Monitoring of seafoods related to the discharge of ALPS treated water

Fisheries Agency
Research and Technological Guidance Division

Overview of Tritium Analysis (1)

Purpose:

Implemented for fisher/consumer's confidence

Target:

Seafoods caught and produced on the Pacific side of the eastern Japan

Overview of Tritium Analysis ②

Target species: about 200 samples/year (FY2025)

Fish, Seaweeds, Shellfishes, Cephalopods, Crustacean

(based on the opinions of fishery-related organizations, etc)

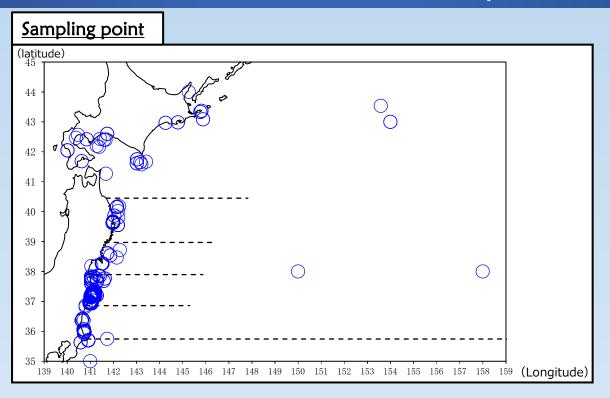
- 1 Common species: Olive flounder (The most common fish species in coastal waters)
- ② Other species: a representative in local area (a large volume of distribution/catch, etc)

Analytical Methodology:

Measurement based on internationally recognized methods (Detection Limit: around 0.4 Bq/kg)

Results of Tritium Analysis ①

So far, JFA has published results for 636 samples taken from seafood. All the results were "Not Detectable".


Tritium in Seafood (Tissue Free Water Tritium) (June 2022 – March 2025)

https://www.jfa.maff.go.jp/e/inspection/index.html#a1

(Detection Limit: around 0.4 Bq/kg)

ſ						(unit:Bq/kg)			
	No.	Item	Name of sampling area on food labeling	Landing port or area	Date of collection	(Detection limit	value)	Facility that conducted the analys	
	1	Willowy flounder	Offshore Fukushima	Offshore Ena	2022/6/29	Not detectable <0.289		Kyushu Environmental Evaluation Association	
	2	Olive flounder	Offshore Ibaraki	Offshore Kashima	2022/6/20	Not detectable	<0.273	Kyushu Environmental Evaluation Association	
	3	Olive flounder	Offshore Ibaraki	Offshore Hitachinaka	2022/7/5	Not detectable	<0.272	Kyushu Environmental Evaluation Association	
	4	Olive flounder	Offshore Fukushima	Offshore Ena	2022/6/29	Not detectable	<0.229	KANSO Technos Co., LTD.	
$\overline{+}$	$\overline{}$	~~~~		~~~~	~~~~	~~~~	~~~	-~~~~	
	633	Olive flounder	Offshore Miyagi	Offshore Minamisanriku Town	2024/12/17	Not detectable	<0.248	KANSO Technos Co., LTD.	
	634	Splendid alfonsino	Offshore Chiba	Offshore Katsuura	2024/12/15	Not detectable	<0.257	KANSO Technos Co., LTD.	
	635	Surf clam	Offshore Aomori	Offshore Oirase Town	2025/2/14	Not detectable	<0.235	Marine Ecology Research Institute	
	636	Wakame seaweed (farmed)	Offshore Iwate	cultivation area of Chikei and Ishinohama	2025/2/26	Not detectable	<0.299	Marine Ecology Research Institute	

Results of Tritium Analysis (2)

Spiecies

Fish (42 species)

Fat greenling, Dusky sole, Stone flounder, Longnose eel, Skipjack tuna, Redwing searobin, Monkfish, Fox jacopever, Coho salmon, Splendid alfonsino, Southern mackerel, Chum salmon, Japanese Spanish mackerel Pacific sanury, Dolphinfish, Whitebait, Drum, Rockfish, Vermiculated puffer, Alaska pollock, Seabass, Crimson seabream, Tiger puffer, Slime flounder, Olive flounder, Albacore, Japanese amberjack, Gurnard, Chub mackerel, Conger eel, Littlemouth flounder, Marbled flounder, Chub mackerel, Red seabream, Pacific cod, Barfin flounder,

John Dory, Rikuzen flounder, Shotted halibut, Bigeye scad, Ridged-eye flounder, Willowy flounder

Japanese spiny lobster, Swimming crab Crustacean (2 species)

Shellfish (7 species) Bloody clam, Japanese littleneck clam, Surf clam, Ezo abalone, Clam, Scallop, Pacific oyster

Cephalopods (4 species) Japanese flying squid, Chestnut octopus, Spear squid, Common octopus

Seaweed (4 species) Laver, Green laver, Sea tangle, Wakame seaweed

Others (3 species) Short-spined sea urchin, Japanese common sea cucumber, Common sea squirt

Tritium analysis enhanced after discharge ①

- After discharge, JFA newly introduced a rapid analysis method (**) for tritium intensive monitoring.
- This method can provide results the day or two after sampling. (Detection Limit: around 10 Bq/kg)

(X) https://www.jstage.jst.go.jp/article/jhps/59/2/59_88/_pdf/-char/en

Purpose:

- · Implemented for fisher/consumer's confidence
- provide information with fisher/consumers quickly

Results to be published on the Fisheries Agency website quickly

Tritium analysis enhanced after discharge (2)

Analysis period and frequency:

During the discharge period: 4 times a week

During no discharge period: 1 time a week

Sampling location:

Samples will be collected from two locations.

North and south sides of Fukushima Daiichi
Nuclear Power Plant

Results of Tritium Analysis (Rapid method)

All the results were "Not Detectable" even after discharging the ALPS treated water.

https://www.jfa.maff.go.jp/e/inspection/index.html#rapid

Detection limit (<10 Bq/kg fresh)

	Item	sampling area	Place of	Fishing gear setting		Fishing gear collection Press		Press release	Propo rologo	(unit:Bq/kg)		Facility that conducted the
No.			collection	date	time	date	time	Date Date	Analysis site	(Detection limit value)		analysis
391	Olive flounder	Offshore Fukushima	T-S3	2025/4/17	JST around 5:00	2025/4/18	JST around 5:00	2025/4/21	muscle	Not detectable	<7.83	Marine Ecology Research Institute
392	Olive flounder	Offshore Fukushima	T-S8	2025/4/17	JST around 5:00	2025/4/18	JST around 4:40	2025/4/21	muscle	Not detectable	<7.79	Marine Ecology Research Institute
393	Olive flounder	Offshore Fukushima	T-S3	2025/4/21	JST around 5:00	2025/4/22	JST around 5:00	2025/4/23	muscle	Not detectable	<8.63	Marine Ecology Research Institute
394	Olive flounder	Offshore Fukushima	T-S8	2025/4/21	JST around 3:00	2025/4/22	JST around 4:00	2025/4/23	muscle	Not detectable	<8.76	Marine Ecology Research Institute
395	Olive flounder	Offshore Fukushima	T-S3	2025/4/22	JST around 5:00	2025/4/23	JST around 5:00	2025/4/24	muscle	Not detectable	<7.26	Marine Ecology Research Institute
396	Olive flounder	Offshore Fukushima	T-S8	2025/4/22	JST around 4:00	2025/4/23	JST around 4:30	2025/4/24	muscle	Not detectable	<7.26	Marine Ecology Research Institute
397	Olive flounder	Offshore Fukushima	T-S3	2025/4/23	JST around 5:00	2025/4/24	JST around 5:00	2025/4/25	muscle	Not detectable	<7.85	Marine Ecology Research Institute
398	Olive flounder	Offshore Fukushima	T-S8	2025/4/23	JST around 5:00	2025/4/24	JST around 4:40	2025/4/25	muscle	Not detectable	<7.99	Marine Ecology Research Institute
399	Olive flounder	Offshore Fukushima	T-S3	2025/4/24	JST around 5:00	2025/4/25	JST around 5:00	2025/4/28	muscle	Not detectable	<7.78	Marine Ecology Research Institute
400	Olive flounder	Offshore Fukushima	T-S8	2025/4/24	JST around 5:00	2025/4/25	JST around 4:40	2025/4/28	muscle	Not detectable	<7.75	Marine Ecology Research Institute
401	Olive flounder	Offshore Fukushima	T-S3	2025/4/27	JST around 4:30	2025/4/28	JST around 4:40	2025/4/30	muscle	Not detectable	<8.19	Marine Ecology Research Institute
402	Olive flounder	Offshore Fukushima	T-S8	2025/4/27	JST around 4:50	2025/4/28	JST around 4:00	2025/4/30	muscle	Not detectable	<8.10	Marine Ecology Research Institute

(Reference)

Methods of Tritium Analysis (internationally recognized methods)

Receive the samples

Measure the samples

Pouch the sample

Identify the samples

Prepare the samples

Methods of Tritium Analysis (internationally recognized methods)

Freeze minced sample into thin plates

Collect moisture as ice

Let samples stand to prevent chemiluminescence

Extract moisture from sample

Remove impurities (e.g. oil, protein, etc.) from the collected moisture

Measure the radiation with Liquid scintillation counter

10

Methods of Tritium Analysis (rapid analysis methods)

Measure the samples

Burn the sample and collect vapor

Let samples stand to prevent chemiluminescence

Cut off the edible part (about 10g) from the sample

Cool the vapor and collect moisture as water

Measure the radiation with Liquid scintillation counter