令和5年度放射性物質測定調査委託費及び
 原子力施設等防災対策等委託費
 (東京電力株式会社福島第一原子力発電所事故に
 伴う放射性物質の分布データの集約)事業

成果報告書

令和6年3月

国立研究開発法人日本原子力研究開発機構

本報告書は、原子力規制庁による令和5年度放射性物質測定調査委託 費及び原子力施設等防災対策等委託費(東京電力株式会社福島第一原子 力発電所事故に伴う放射性物質の分布データの集約)事業の成果をとり まとめたものである。 東京電力(株)福島第一原子力発電所(以下「福島第一原発」という。)事故発生後、文部科学 省(後に原子力規制庁)により、放射性物質の分布状況等に関する調査が継続実施されてきた。 令和5年度の調査では、これまでと同様の分布状況等に関する調査に加え、原子力施設等防災対 策等委託費(生活行動パターンを模擬した連続的な空間線量率の測定及び詳細モニタリング結果 のマップ化)事業と併せて、「令和5年度放射性物質測定調査委託費及び原子力施設等防災対策等 委託費(東京電力株式会社福島第一原子力発電所事故に伴う放射性物質の分布データの集約)事 業」(以下「令和5年度調査」という。)として実施した。本報告書は令和5年度調査における以 下の調査結果をとりまとめたものである。

周辺線量当量率(以下「空間線量率」という。)の分布測定では、主に福島第一原発から80km 圏内(以下「80 km 圏内」という。)において走行サーベイ(2回;ただし、1回は地方自治体と の協働による測定を含め東日本広域での測定)、サーベイメータによる平坦地上の測定(1回)、歩 行サーベイ(1回)及び無人ヘリコプターサーベイ(1回)を実施し、測定結果から空間線量率分 布マップを作成するとともに空間線量率の経時変化を分析した。土壌における放射性セシウムの 分布調査に関しては、可搬型ゲルマニウム半導体検出器を用いた in-situ 測定(1回)及びスクレ ーパープレート法で採取した土壌試料の分析による土壌中深度分布調査(1回)をそれぞれ実施 した(いずれも 80 km 圏内)。これまで蓄積した測定結果を基に空間線量率及び沈着量の実効半 減期を評価した。モニタリング地点の重要度を相対的に評価するためのスコアマップを作成する とともに、多年度のモニタリングデータを使用した場合のスコアの変化要因について考察した。 海水中のトリチウム濃度の評価結果を意思決定者(原子力規制庁)へ報告する体制を構築し運用 し、処理水の海洋への放出前後のトリチウム濃度の変動に着目して解析評価した。総合モニタリ ング計画に基づき実施された海域モニタリングについて令和5年度の測定結果を集約するととも に、過去からの変動などに関して解析評価を行なった。実測データの統合的解析では、階層ベイ ズ統計手法を用いて、令和5年度調査での歩行サーベイ、走行サーベイ及びサーベイメータによ る平坦地上の測定による結果等を統合し、80km 圏内及び福島県全域の空間線量率統合マップを 作成した。空間線量率等分布マップの作成と公開では、「放射性物質モニタリングデータの情報公 開サイト」に令和5年度調査において取得した空間線量率や土壌沈着量の測定結果等を公開した。 総合モニタリング計画に基づく放射線モニタリング及び環境試料分析では、福島第一原発の 20 km 以遠において空間線量率、積算線量、大気浮遊じん中放射性物質濃度、並びに環境試料(土壌 及び松葉)中放射性物質濃度を測定した。生活行動パターンを模擬した被ばく評価では、避難指 示解除区域への帰還後に想定される複数の代表的な生活行動パターンを設定し積算の被ばく線量 を算出するとともに当該地方自治体・住民に向けた説明資料を作成した。 測定データの CSV 化で は、本事業で取得した測定データを CSV(場合によっては Excel®、KMZ)形式にて保存した。 又、当該分野の今後の調査等に活用するため、原子力規制庁や環境省が保有する測定データの一 部を公開資料から抽出し CSV(場合によっては Excel®、KMZ)形式にて保存した。これらのデ ータの一部は原子力規制庁の Web サイトにて公開される。

目 次

1.	はじめ	うに		1					
2.	地上に	1上における広域の空間線量率の分布測定							
	2.1	調査目	1的	5					
	2.2	調査手	≤法	5					
		2.2.1	走行サーベイ	5					
		2.2.2	定点サーベイ	6					
		2.2.3	歩行サーベイ	6					
		6							
		測定手法間の比較	7						
	2.3	空間緩	最率測定結果	11					
		2.3.1	空間線量率分布マップ	11					
		2.3.2	令和4年度との比較	23					
		2.3.3	平成 23 年度との比較	24					
		2.3.4	測定手法間の比較	25					
3.	無人~	、リによ	こる発電所周辺の空間線量率測定						
	3.1								
	3.2	調査手	調査手法						
		3.2.1	調査場所・期間						
		3.2.2	調査機器						
		3.2.3	データ取得方法	31					
		3.2.4	無人へリ測定データの空間線量率への換算	31					
		3.2.5	空間線量率マップの作成	32					
	3.3	調査編	与果	35					
		3.3.1	空間線量率マップ	35					
		3.3.2	測定結果の妥当性の検証	35					
		3.3.3	令和4年度との比較	35					
		3.3.4	天然放射性核種による空間線量率マップ	35					
		3.3.5	福島第一原発から約5km圏内の放射性セシウム沈着量評価						
4.	土壌に	こおける	5放射性セシウムの分布状況						
	4.1	放射性	生セシウムの深度分布						
		4.1.1	調查目的						
		4.1.2	調査内容						
		4.1.3	調査結果	52					
	4.2	放射性	と セシウム沈着量の面的調査	55					

		4.2.1 調查目的	55
		4.2.2 調查內容	55
		4.2.3 調查結果	
5.	空間網	線量率及び放射性セシウム土壤沈着量の実効半減期の評価	71
	5.1	目的	71
	5.2	測定結果の変化傾向	71
	5.3	実効半減期算出方法	
	5.4	空間線量率の実効半減期	77
	5.5	放射性セシウム沈着量の実効半減期	81
	5.6	各測定手法による空間線量率の変化傾向の比較	
6.	測定(箇所の重要度分類のためのスコア化の検討	
	6.1	目的	
	6.2	総合モニタリング計画	
	6.3	地域スコア化によるモニタリング代表性評価	
		6.3.1 地域スコア化手法	
		6.3.2 スコアの評価例	90
		6.3.3 年度別のスコア評価例	93
	6.4	評価結果のまとめ	
7.	海洋(のモニタリングデータの評価	
	7.1	海水中のトリチウム濃度データの解析	
		7.1.1 海水のモニタリング計画	
		7.1.2 測定結果	110
		7.1.3 報告レベル判定	111
	7.2	海生生物中のトリチウム濃度データの解析	
		7.2.1 モニタリング計画	
		7.2.2 測定結果	
	7.3	海域モニタリング地点の重要度分類	
		7.3.1 調查內容	
		7.3.2 調査結果	
		7.3.3 過年度評価結果との比較	131
8.	実測	データの統合的解析	
	8.1	調査目的	135
	8.2	調查內容	135
		8.2.1 統合マップ作成に用いた空間線量率測定データ	135
		8.2.2 測定データ統合手法の概要	136
	8.3	80 km 圏内を対象とした統合マップの作成	137
		8.3.1 統合マップ作成に使用した測定データ	137
		8.3.2 歩行サーベイ結果の空間分布パターンの解析	141

		8.3.3	走行サーベイと歩行サーベイの比較	143
		8.3.4	航空機サーベイと歩行サーベイの比較	145
		8.3.5	統合結果	146
	8.4	福島県	具全域を対象とした統合マップの作成	148
		8.4.1	対象とした測定データ	148
		8.4.2	歩行サーベイを対象とした空間パターンの解析	151
		8.4.3	走行サーベイデータと歩行サーベイデータの比較	153
		8.4.4	航空機サーベイデータと歩行サーベイデータの比較	154
		8.4.5	統合結果	155
	8.5	統合マ	ァップの精度検証	157
9.	空間緩	泉量率等	等分布マップの作成と公開	160
	9.1	目的		160
	9.2	EMD	B の作成と公開	160
	9.3	EMD	Bの運用管理	161
	9.4	詳細モ	テニタリング結果のマップ化	162
10.	総合モ	ミニタリ	リング計画に基づく放射線モニタリング及び環境試料分析	167
	10.1	測定力	7法及び測定結果	167
		10.1.1	空間線量率	167
		10.1.2	?積算線量	167
		10.1.3	3大気浮遊じん中放射性物質濃度	167
		10.1.4	環境試料(土壌及び松葉)中放射性物質濃度	168
	10.2	測定編	5果の公開	168
11.	生活行	亍動パタ	マーンを模擬した被ばく評価	177
	11.1	調査目	1的	177
	11.2	調査手	≤法	177
		11.2.1	生活行動パターンの設定	177
		11.2.2	: 被ばく線量の算出	178
		11.2.3	評価結果の図表化と説明資料の作成	180
		11.2.4	環境省による除染前後のモニタリングデータを用いた評価	180
	11.3	調査編	告果	184
		11.3.1	自治体設定パターン	184
		11.3.2	標準パターン	184
		11.3.3	テ環境省による除染前後のモニタリングデータを用いた評価	184
12.	測定ラ	データの	⊃CSV化	190
	12.1	CSV 4	等の形式で保存した測定データ	190
	12.2	保存し	、た測定データの公開	190
13.	まとめ	5		194
参考	兮文献.			196

付録1	セシウム137の深度分布	203
付録2	詳細モニタリングでの解析結果	208
付録3	令和5年度技術検討会の概要	217

表リスト

表	1-1	各調査における測定項目ごとの実施時期	3
表	2-1	地上における空間線量率測定の測定期間及び測定エリア	8
表	2-2	測定手法間の比較の組み合わせ	8
表	2-3	令和4年度調査と比較した令和5年度調査の空間線量率測定結果の相対変化率	23
表	2-4	平成23年度調査と比較した令和5年度調査の空間線量率測定結果の相対変化率	24
表	3-1	テストサイトにおける換算パラメータ取得条件	32
表	5-1	評価された実効半減期の一覧	78
表	6-1	総合モニタリング計画における測定種別及び担当省庁	87
表	6-2	図 6-1 の作成に使用した空間線量率測定データ一覧	89
表	6-3	ランドマークデータの詳細情報	89
表	6-4	スコア付与例	91
表	6-5	平成 29 年度からスコアに変動が生じたメッシュ数(平成 30 年度)	94
表	6-6	平成29年度からスコアに変動が生じたメッシュ数(令和元年度)	94
表	6-7	平成29年度からスコアに変動が生じたメッシュ数(令和2年度)	94
表	6-8	平成29年度からスコアに変動が生じたメッシュ数(令和3年度)	95
表	6-9	平成29年度からスコアに変動が生じたメッシュ数(令和4年度)	95
表	7-1	総合モニタリング計画に記載されている海水モニタリング1	02
表	7-2	海水モニタリングポイントの番号割り振り10	03
表	7-3	報告レベル3判定のモニタリングポイント1	13
表	7-4	総合モニタリング計画に記載されている海生生物モニタリング1	18
表	7-5	海生生物中のトリチウム濃度の測定結果1	20
表	7-6	各海域(海水採取ポイント)のランク分け結果1	24
表	7-7	各海域(海底土採取ポイント)のランク分け結果1	28
表	7-8	令和4年度調査での評価結果からランクが変化した地点(海水)1	32
表	7-9	令和4年度調査での評価結果からランクが変化した地点(海底土)1	32
表	7-10	令和元年度海域事業から令和5年度調査にかけてのランク変化状況1	33
表	8-1	80 km 圏内統合マップ作成に使用したデータ一覧1	38
表	8-2	相関のパラメータ1	45
表	9-1	評価を行った自治体とメッシュ数1	62
表	10-1	総合モニタリング計画に基づく放射線モニタリング及び環境試料分析の実施項目	<u> </u>
		との測定地点数及び測定(採取)頻度1	67
表	11-1	自治体設定パターン及び標準パターンの設定数1	80
表	11-2	職業・就学カテゴリーごとの各行動に対する平均時間量1	81
表	11-3	常磐線駅区間の空間線量率1	82
表	11-4	特定復興再生拠点区域及び帰還困難区域の自治体ごとの空間線量率代表値1	82
表	11-5	標準パターン(就学カテゴリー)の年間の追加被ばく線量一覧1	85

表 11	-6	標準パターン(職業カテゴリー)の年間の追加被ばく線量一覧	186
表 11	-7	除染前後の年間の追加被ばく線量と低減率	187
表 12	2-1	令和5年度調査で取得した測定データの項目とレコード数	191
表 12	2-2	原子力規制庁・環境省が保有する測定データの項目とレコード数	192
表 12	2-3	測定データをデータベースに保存した自治体リスト	193

図リスト

义	2-1	令和5年度調査における定点サーベイによる空間線量率の測定箇所
义	2-2	令和5年度調査における歩行サーベイによる空間線量率の測定箇所10
义	2-3	令和5年度1回目(第26回)走行サーベイによる空間線量率の測定結果12
义	2-4	令和5年度2回目(第27回)走行サーベイによる空間線量率の測定結果13
义	2-5	平成23年度から令和5年度までの走行サーベイによる80km圏内を中心とした空間
		線量率マップの変化14
义	2-6	令和5年度調査における定点サーベイによる空間線量率の測定結果17
义	2-7	平成23年度から令和5年度までの定点サーベイによる空間線量率マップの変化18
义	2-8	令和5年度調査における歩行サーベイによる空間線量率の測定結果20
义	2-9	平成25年度から令和5年度までの歩行サーベイによる空間線量率マップの変化21
义	2-10	令和4年度調査と令和5年度調査の空間線量率測定結果の比較
义	2-11	令和5年度調査での走行サーベイ及び定点サーベイによる空間線量率結果の平成23
		年度調査との比較
义	2-12	令和5年度調査での空間線量率測定手法間の比較
义	2-13	定点サーベイに対する走行サーベイ及び歩行サーベイの空間線量率の相対偏差29
义	3-1	無人ヘリサーベイの機材の仕様等
义	3-2	令和5年度調査での無人ヘリサーベイの飛行軌跡
义	3-3	令和5年度調査における無人ヘリサーベイによる空間線量率測定結果
义	3-4	平成 24 年度から令和 5 年度までの無人ヘリサーベイによる空間線量率マップの変化
义	3-5	無人ヘリサーベイと地上測定(定点サーベイ)による空間線量率の比較41
义	3-6	令和4年度調査と令和5年度調査での無人ヘリサーベイによる空間線量率測定結果の
		比較42
义	3-7	無人ヘリサーベイによる空間線量率測定結果の令和4年度調査に対する令和5年度調
		査の相対変化率の分布
义	3-8	令和 4 年度調査から令和 5 年度調査に空間線量率が顕著に減少した要因の調査結果
义	3-9	令和5年度調査における無人ヘリサーベイにより評価した天然放射性核種による空気
		カーマ率の分布45
义	3-10	平成 28 年度~平成 30 年度の可搬型 Ge 検出器による放射性セシウム沈着量測定結
		果(令和 5 年度に物理減衰補正)と無人ヘリサーベイによる放射性セシウム沈着量
		(換算値)の比較46
义	3-11	無人ヘリサーベイによる放射性セシウム沈着量(換算値)分布マップ47
义	4-1	令和5年度調査における放射性セシウム深度分布測定箇所
义	4-2	セシウム 137 の深度分布 (重量深度に対する放射能濃度の測定結果)の典型的な例

図 4-3 令和5年度調査での深度分布測定による重量緩衝深度βの自然対数値の頻度分を	布 53
図 4-4 令和 5 年度調査の深度分布測定による実効的な重量緩衝深度 βeff の自然対数値	[の頻度
分布	54
図 4-5 平成 23 年 12 月からの実効的な重量緩衝深度β _{eff} の経時的な変化	54
図 4-6 平成 23 年 12 月からの 90%深度 L _{90%} 及びその幾何平均値の経時的な変化	55
図 4-7 令和5年度調査における可搬型 Ge 検出器を用いた放射性セシウム沈着量の測	l定箇所
	57
図 4-8 可搬型 Ge 検出器による in-situ 測定の結果を基に求められた空間線量率と Na	I(Tl)シ
ンチレーション式サーベイメータによる空間線量率の相関	58
図 4-9 令和 5 年度調査における可搬型 Ge 検出器を用いた in-situ 測定による放射性	セシウ
ムの沈着量分布マップ	61
図 4-10 NaI(Tl)シンチレーション式サーベイメータによる地表面から1m高さの空間	線量率
と可搬型 Ge 検出器を用いた in-situ 測定による放射性セシウム沈着量の相関	63
図 4-11 令和5年度調査における放射性セシウムの土壌沈着量分布マップ	64
図 4-12 平成 23 年度から令和 5 年度調査までの in-situ 測定(一部、土壌試料採取に	よる)
及び空間線量率から評価した土壌沈着量の分布マップの変化	66
図 4-13 可搬型 Ge 検出器を用いた in-situ 測定による沈着量と NaI(Tl)シンチレーシ	′ョン式
サーベイメータによる空間線量率から評価したセシウム 137 沈着量の比較	70
図 5-1 分布状況調査で得られた空間線量率の経時変化傾向	73
図 5-2 分布状況調査で得られた放射性セシウム沈着量の経時変化傾向	75
図 5-3 空間線量率変化傾向及び指数関数の近似	
図 5-4 可搬型 Ge 検出器を用いた in-situ 測定結果における放射性セシウムの沈着量	:変化傾
向及び指数関数の近似	82
図 5-5 走行サーベイ、定点サーベイ、歩行サーベイ及び航空機サーベイの全測定手法	による
データが存在するデータを抽出した箇所(基準地域メッシュ)	84
図 5-6 各測定手法の測定状況と測定対象のイメージ	85
図 5-7 全測定手法によるデータが存在する基準地域メッシュを抽出して解析した空間	線量率
	85
図 6-1 基準地域メッシュ内の最大空間線量率マッフ(令和4年測定アータ)	90
図 6-2 平成 29 年度に測定された空間線量率のスコアマッフ例	91
図 6-3 平成 29 年時点における空間線量率及び事故前の人口密度のスコアを合計した	.スコア
	92
図 6-4 平成 29 年時点における空間線重率、事故前の入口密度及び避難指示区域の入	ユ <i>ノ</i> を
	92
図 6-3 平成 29 年時点における空间線重率、事故則の人口密度、避難指示区域及びフ	ンドマ
ークの人コノを合計しに人コノマツノ例	93
凶 b b b b b b b b b b	~ 17
一 / の ヘ コ / を 盲 訂 し に ヘ コ / マ ツ /	

义	6-7	令和元年時点における空間線量率、事故前の人口密度、避難指示区域及びランドマー
		クのスコアを合計したスコアマップ96
义	6-8	令和2年時点における空間線量率、事故前の人口密度、避難指示区域及びランドマー
		クのスコアを合計したスコアマップ97
义	6-9	令和3年時点における空間線量率、事故前の人口密度、避難指示区域及びランドマー
		クのスコアを合計したスコアマップ97
义	6-10	令和 4 年時点における空間線量率、事故前の人口密度、避難指示区域及びランドマ
		ークのスコアを合計したスコアマップ98
义	6-11	平成 29 年度に対する各年度のスコア変動
义	7-1	モニタリングデータの報告レベルフローチャート101
义	7-2	海水中のトリチウム濃度モニタリングポイント105
义	7-3	海水中のトリチウム濃度の分析数 111
义	7-4	処理水の放出前(左)と放出後(右)における海水中のトリチウム濃度111
义	7-5	報告レベル3判定のモニタリングポイント113
义	7-6	報告レベルが3回あったモニタリングポイント(T-0-1A)114
义	7-7	レベル 3 判定が 2 回あったモニタリングポイントの例(T-2)115
义	7-8	レベル3判定が2回あったモニタリングポイントの例(F-P09)116
义	7-9	モニタリングデータの報告レベルフローチャート改定案117
义	7-10	総合モニタリング計画に記載されている海生生物モニタリングの実施海域119
义	7-11	海生生物中のトリチウム濃度の分析数121
义	7-12	海生生物中のトリチウム濃度の変動傾向121
义	7-13	海底土のセシウム 137 濃度の測定結果例123
义	7- 14	海水モニタリング地点及び令和5年度調査でのランク結果125
义	7-15	海底土モニタリング地点及び令和5年度調査でのランク結果129
义	7-16	令和4年度調査での評価結果からランクが上昇した地点(海底土:E-T4、 F-P61及
		び E-4H)
义	8-1	令和5年度の統合マップ作成に使用した空間線量率データ(80km 圏内)139
义	8-2	JAXAの高解像度土地利用土地被覆図に基づく土地利用状況140
义	8-3	令和5年5月1日時点の避難指示区域(色塗り箇所)140
义	8-4	令和5年度に実施された避難指示区域内外における歩行サーベイによる空間線量率の
		バリオグラム解析結果142
义	8-5	80 km 圏内の統合マップ作成に用いた避難指示区域内外及び全域(区域内外の区別な
		し)における走行サーベイと歩行サーベイによる空間線量率の相関分析結果144
义	8-6	80 km 圏内の統合マップ作成に用いた避難指示区域内外及び全域(区域内外の区別な
		し)における航空機サーベイと歩行サーベイによる空間線量率の相関分析結果146
义	8-7	令和5年度に実施された各種測定結果を統合した80km 圏内の統合マップ(左)及び
		その標準偏差分布(右)147
义	8-8	令和5年度の統合マップ作成に使用した空間線量率データ(福島県全域)149

义	8-9	令和5年度に実施された福島県全域における歩行サーベイによる空間線量率のバリオ
		グラム解析結果152
义	8-10	福島県全域の統合マップ作成に用いた走行サーベイと歩行サーベイによる空間線量
		率の相関分析結果153
义	8-11	福島県全域の統合マップ作成に用いた航空機サーベイと歩行サーベイによる空間線
		量率の相関分析結果154
义	8-12	令和5年度に実施された各種空間線量率測定結果を統合した福島県全域及び80km
		圏内の統合マップ(上)及びその標準偏差分布(下)156
义	8-13	統合マップ作成時に除外された歩行サーベイ相当データの箇所158
义	8-14	統合マップ作成時に除外された歩行サーベイ相当データの結果との比較158
义	8-15	令和4年度統合マップとの比較159
义	9-1	EMDB における測定データ(第 24 及び 25 回走行サーベイ)表示例161
义	9-2	EMDB への令和5年度(令和5年4月1日~令和6年1月31日)アクセス状況162
义	9-3	詳細モニタリングによる空間線量率分布マップ(全体図)163
义	9-4	詳細モニタリングによる空間線量率分布マップ(大熊町)164
义	9-5	詳細モニタリングによる空間線量率分布マップ(双葉町)165
义	9-6	詳細モニタリングによる空間線量率分布マップ(浪江町)166
义	10-1	総合モニタリング計画に基づき実施した空間線量率、積算線量、大気浮遊じん中放射
		性物質濃度、土壌並びに指標植物(松葉)中放射性物質濃度の測定(採取)地点
义	10-2	総合モニタリング計画に基づく空間線量率の測定結果170
义	10-3	総合モニタリング計画に基づく積算線量の経時変化171
义	10-4	総合モニタリング計画に基づく大気浮遊じん中セシウム 137 濃度の経時変化173
义	10-5	総合モニタリング計画に基づく土壌中セシウム 137 濃度の経時変化174
义	10-6	総合モニタリング計画に基づく松葉中セシウム 137 濃度の経時変化175
义	11-1	標準パターンにおける終日のタイムスケジュール183
义	11-2	年間追加被ばく線量の分布(自治体設定パターン:富岡町)188
义	11-3	年間追加被ばく線量の分布(自治体設定パターン:大熊町)188
义	11-4	年間追加被ばく線量の分布(自治体設定パターン: 浪江町)

1. はじめに

平成23年3月11日に発生した太平洋三陸沖を震源とするマグニチュード9.0の東北地方太 平洋沖地震とそれに伴って発生した津波により、東京電力(株)福島第一原子力発電所(以下 「福島第一原発」という。)の事故(以下「事故」という。)が発生し、その結果、福島第一原 発の原子炉施設から環境中へ大量の放射性物質が放出された。事故状況の全体像を把握して影 響評価や対策に資するために、文部科学省からの委託を受けた日本原子力研究開発機構(以下 「原子力機構」という。)が多くの大学や研究機関と協力し、平成23年6月から平成24年度 に「放射性物質の分布状況等に関する調査研究」、「福島第一原子力発電所事故に伴う放射性物 質の第二次分布状況等に関する調査研究」及び「福島第一原子力発電所事故に伴う放射性物質 の長期的影響把握手法の確立」を実施した。これら3回の調査を継承する形で、平成25年度 には原子力規制庁からの委託を受け「平成25年度東京電力(株)福島第一原子力発電所事故に 伴う放射性物質の長期的影響把握手法の確立」、平成26年度は「東京電力株式会社福島第一原 子力発電所事故に伴う放射性物質の分布データの集約及び移行モデルの開発」を実施した。平 成27年度以降は同一の調査名称となり、「東京電力株式会社福島第一原子力発電所事故に伴う 放射性物質の分布データの集約」を実施した。以下、これら各年度の調査¹⁾を「平成〇年度調 査」又は「令和○年度調査」といい、総称して「分布状況調査」という。令和5年度調査にお いては、原子力規制庁からの委託事業「放射性物質測定調査委託費(東京電力株式会社福島第 一原子力発電所事故に伴う放射性物質の分布データの集約)事業」を引き続き実施するととも に、「原子力施設等防災対策等委託費(生活行動パターンを模擬した連続的な空間線量率の測定 及び詳細モニタリング結果のマップ化)事業」(以下「生活行動パターン事業」という。)につ いても併せて実施したa。なお、生活行動パターン事業については、令和元年度から原子力機構 が主体となって調査を実施してきた 2-5)。

分布状況調査において実施してきた各種測定の実施時期を表 1-1 にまとめる。本報告書において、表中等の日付短縮表記は、年(和暦)/月/日とする(例:平成 23 年 6 月 4 日の場合 H23/6/4、 令和 5 年 7 月 1 日の場合 R5/7/1 とする)。

一連の分布状況調査においては、

- 1) 放射性物質の土壌沈着量及び周辺線量当量率(以下「空間線量率」という。)に関する 大規模環境測定と測定結果のマップ化、
- 2) 放射性セシウムの環境中移行メカニズムの調査(平成26年度終了)、
- 3) 空間線量率予測モデルの開発(平成27年度終了)、
- 4) 適正な調査地点及び頻度の検討(モニタリングポイントの分析)、
- 5) 実測データの統合的解析、
- 6)海洋のモニタリングデータについての詳細な解析評価、
- 7) 放射性物質モニタリングデータの情報公開サイト(令和3年度調査までは「拡大マップ

a 委託業務の題目は「令和5年度放射性物質測定調査委託費及び原子力施設等防災対策等委託 費(東京電力株式会社福島第一原子力発電所事故に伴う放射性物質の分布データの集約)事 業」である。

サイト」)等を通したデータの公開 等を実施してきた。

また、生活行動パターン事業においては、

1) 生活行動パターンごとの空間線量率の積算量の算出、

2) 詳細モニタリング結果のマップ化、

3) 簡易に推定被ばく線量の算出等のできるアプリケーションソフトウェアの開発、

4)得られた成果の地方公共団体への提供

等を実施してきた。

令和5年度調査の主な実施内容は、1)福島第一原発から放出された放射性物質の沈着量や 空間線量率の分布測定を実施し現状における沈着状況等についてその変化傾向を把握すること、 2)異なる手法により測定した空間線量率のデータを統計的手法により統合したマップを作成 すること、3)取得したデータを基に作成した空間線量率分布等に関するマップ等をウェブサイ トで公開するとともに、帰還困難区域等の地方自治体の要望により、原子力規制委員会が東京 電力と連携して測定した空間線量率の結果をマップ化すること、4)総合モニタリング計画に基 づき原子力規制委員会が実施することとしている a)福島県下の放射線モニタリング計画に基 づき原子力規制委員会が実施することとしている a)福島県下の放射線モニタリングについて 測定及び考察すること、b)海域モニタリング(海水・海底土・海生生物)について令和4年度の 測定結果を集約するとともに、過去からの変動などに関して評価を行うこと。5)今後の避難 指示区域の見直しが想定される地域等における生活行動パターンを想定した被ばく評価を実施 すること、6)本事業で取得または原子力規制庁が保有する測定データ及び地方自治体が測定し たデータを収集しとりまとめるとともに、海域モニタリングについては、収集したデータを活 用してデータの妥当性の確認を行い、定期的に原子力規制庁に連絡することである。

本報告書では、令和5年度調査で得られた成果についてまとめる。

表 1-1 各調査における測定項目ごとの実施時期(1/2)

	平成 23 年度 (第 1 次)* ⁴	平成 23 年度 (第 2 次)	平成 24 年度 (第 3 次)	平成 25 年度 (第 4 次)	平成 26 年度 (第 5 次)	平成 27 年度 (第 6 次)	平成 28 年度 (第 7 次)
走行サーベイ ^{*1}	第1回	第 2 回 (J) H23/12/5- 12/28	第4回 (J)H24/8/20- 9/7 (自)H24/9/3- 10/12	第6回 (J)H25/6/12- 8/8 (自)H25/6/24- 7/26	第8回 (J) H26/6/23- 7/24 (自) H26/7/1- 8/8	第 10 回 (J) H27/7/2- 7/24 (自) H27/6/29- 8/4	第 12 回 (J) H28/6/27- 7/19 (自) H28/7/4- 8/5
	6/13	第 3 回 (自)H24/3/13- 3/30	第5回 (J)H24/11/5- 11/30 (自)H24/11/9- 12/10	第7回 (J)H25/11/5- 12/4 (自)H25/11/5- 12/12	第9回 (J)H26/11/4- 12/5 (自)H26/11/4- 12/5	第 11 回 (J) H27/11/5- 11/27 (自) H27/11/2- 12/18	第 13 回 (J) H28/10/31- 12/16 (自) H28/10/31 -11/30
				第1回 H25/6/10-7/5	第3回 H26/7/28-9/12	第5回 H27/6/29-8/5	第7回 H28/6/29-8/5
少けり 一 八 1				第2回 H25/11/5-12/4	第4回 H26/10/30- 12/16	第6回 H27/10/26-12/4	第8回 H28/10/27-12/13
定占サーベイ*2	第1回 H23/6/4-6/14 H23/6/27-6/29 H23/6/28-7/8	第2回 H23/12/13-	第3回 H24/8/14-9/7	第5回 H25/6/3-7/4	第7回 H26/7/15-9/5	第9回	第 10 回
		H24/5/29	第4回 H24/11/5-12/7	第6回 H25/10/28-12/4	第8回 H26/11/4-12/5	H27/8/3-9/8	H28/8/22-10/4
毎人へ川			第1回 H24/8/30-10/20	第3回 H25/6/6-7/31	第5回 H26/6/23-7/22	第7回	第8回
*****			第2回 H25/1/27-3/20	第4回 H25/11/19- H26/1/7	第 6 回 H26/11/14- H26/1/15	H27/9/2-10/22	H28/9/1-10/13
沈着量 ^{*3} (in-situ)	土壤試料採取 第一期: H23/6/4-6/14 第二期: H23/6/27-7/8 (H23/6/14)	第1回 H23/12/13- H24/5/29 (H24/3/1)	第2回 H24/8/13-9/19 (H24/9/1) 第3回 H24/11/5-12/12 (H24/12/1)	第4回 H25/6/3-7/10 (H25/7/1) 第5回 H25/10/28-12/6 (H25/12/1)	第6回 H26/6/23-7/30 (H26/7/1) 第7回 H26/10/27-12/5 (H26/12/1)	第8回 H27/8/24-10/7 (H27/10/1)	第9回 H28/8/24-10/6 (H28/10/1)
深度分布 (スクレーパー プレート)	鉄パイプ試料採 取 ^{*5}	第1回 H23/12/12- 12/22、 H24/4/17-4/19	第2回 H24/8/21-9/5、 9/26 第3回 H24/11/26- 12/7、12/21	第4回 H25/6/3-6/27 第5回 H25/10/28- 11/29	第 6 回 H26/7/14-7/24 第 7 回 H26/11/4-11/13	第8回 H27/8/24-9/25	第9回 H28/8/23-10/11

*1 走行サーベイにおける(J)は原子力機構、(自)は自治体による測定。

*2 定点サーベイ:人為的なかく乱のない平坦な開かれた土地における空間線量率分布測定。

*3 平成 23 年度(第1次及び第2次(一部))調査では in-situ 測定はせず土壌試料採取を実施。括弧内日付は放射能濃度を補正した基準日。

*4 ()内は通算調査次数の意味。

*5 平成23年度(第1次及び第2次(一部))調査の深度分布は鉄パイプ等により試料採取。

	平成 29 年度	平成 30 年度	令和元年度	令和 2 年度	令和 3 年度	令和 4 年度	令和 5 年度
	(第 8 次) ^{*4}	(第 9 次)	(第 10 次)	(第 11 次)	(第 12 次)	(第 13 次)	(第 14 次)
	第 14 回 (J) H29/7/3-7/21	第 16 回 (J) H30/7/30- 8/24	第 18 回 (J)R1/6/27-7/16	第 20 回 (J)R2/6/23-7/30	第 22 回 (J)R3/6/22-7/8	第 24 回 (J) R4/6/22-7/19	第 26 回 (J)R5/6/20-7/10
走行サーベイ* ¹	第 15 回 (J) H29/10/24- 11/27 (自) H29/10/20- 12/5	第 17 回 (J) H30/11/1- 11/30 (自) H30/10/22- 12/5	第 19 回 (J) R1/11/11- 12/4 (自) R1/10/28- 12/13	第 21 回 (J) R2/11/4- 12/1 (自) R2/10/26- 12/1	第 23 回 (J)R3/11/4-12/3 (自)R3/10/19- 12/2	第 25 回 (J)R4/11/7- 12/7 (自)R4/10/17- 12/6	第 27 回 (J) R5/11/7- 12/7 (自) R5/10/23- 11/29
歩行サーベイ	第9回	第 10 回	第 11 回	第 12 回	第 13 回	第 14 回	第 15 回
	H29/10/30-12/1	H30/11/1-12/5	R1/6/12-11/22	R2/6/9-11/6	R3/5/11-11/18	R4/5/11-11/18	R5/5/15-11/24
定点サーベイ ^{*2}	第 11 回	第 12 回	第 13 回	第 14 回	第 15 回	第 16 回	第 17 回
	H29/8/28-10/10	H30/9/13-10/26	R1/8/22-9/27	R2/8/20-10/1	R3/8/19-9/30	R4/8/23-10/20	R5/8/8-10/10
無人ヘリ	第9回	第 10 回	第 11 回	第 12 回	第 13 回	第 14 回	第 15 回
	H29/6/13-9/5	H30/7/11-10/16	R1/6/13-12/1	R2/6/9-10/6	R3/5/17-10/4	R4/5/11-9/15	R5/6/20-10/22
沈着量 ^{*3} (in-situ)	第 10 回 H29/8/30-10/11 (H29/10/1)	第 11 回 H30/9/13-10/25 (H30/10/1)	第 12 回 R1/8/8-11/1 (R1/10/1)	第 13 回 R2/8/6-10/15 (R2/10/1)	第 14 回 R3/8/6-10/19 (R3/10/1)	第 15 回 R4/8/22-10/21 (R4/10/1)	第 16 回 R5/8/3-10/18 (R5/10/1)
深度分布 (スクレーパ ープレート)	第 10 回 H29/8/23-9/13	第 11 回 H30/9/13-10/11	第 12 回 R1/8/21-9/13	第 13 回 R2/8/18-9/7	第 14 回 R3/8/18-9/10	第 15 回 R4/8/17-10/6	第 16 回 R5/8/22-9/13

表 1-1 各調査における測定項目ごとの実施時期(2/2)

*1 走行サーベイにおける(J)は原子力機構、(自)は自治体による測定。

*2 定点サーベイ:人為的なかく乱のない平坦な開かれた土地における空間線量率分布測定。 *3 括弧内日付は放射能濃度を補正した基準日。

*4()内は通算調査次数の意味。

2. 地上における広域の空間線量率の分布測定

2.1 調查目的

分布状況調査では、事故により福島第一原発から放出された放射性物質の現状における沈着 状況等を詳細に調査しその変化傾向を把握するとともに多角的に空間線量率を評価するため、 走行サーベイ、サーベイメータによる人為的なかく乱のない平坦な開かれた土地における空間 線量率分布測定(以下「定点サーベイ」という。)及び歩行サーベイによる測定を継続実施して いる。令和5年度調査においても、これまでと同様の手法により地上における広域の空間線量 率の分布測定を行った。

走行サーベイでは、広範囲にわたり現状における空間線量率の分布状況を確認するとともに、 過去の走行サーベイによる空間線量率の測定結果と現状での測定結果を比較・解析し、変化傾 向を把握することを目的としている。

定点サーベイでは、福島第一原発から 80 km 圏内(以下「80 km 圏内」という。)を中心に 人為的なかく乱のない平坦な開かれた土地を対象として現在の空間線量率の詳細な分布状況を 把握するとともに、過去の測定結果との比較により空間線量率の経時的変化の特徴を調べるこ とを目的としている。

歩行サーベイでは、道路と平坦地との間の自動車が走行できない地域も含めた詳細な測定に より、走行サーベイや平坦地上定点における測定結果を補完し、住民が生活する環境(生活経 路)に近い空間線量率分布の特徴を明らかにすること及び空間線量率分布の統合マップ作成や 詳細解析に役立てることを目的としている。

2.2 調查手法

2.2.1 走行サーベイ

KURAMA-II (小型 CsI(TI)シンチレーション検出器と GPS が一体となった GPS 連動型 放射線自動計測システム) ⁶⁾ を自動車の後部座席の右側後方に設置し、3 秒ごとに空間線量 率を測定した。測定は年 2 回とし、これまでの調査結果を基に空間線量率が 0.2 μSv/h 以上 の比較的空間線量率が高い地域の主要幹線道路について、主に 80 km 圏内を対象に 1 回、岩 手県から千葉県までの 8 県を含む東日本広域を対象に 1 回実施した。さらに、地方自治体が 希望する細かな道路を含む測定を地方自治体と協働で 1 回実施した(地方自治体が KURAMA-II を用いて測定し、原子力機構は解析を担当)。測定期間及び測定エリア等につい て表 2-1 に示す。測定ルートは結果とともに図 2-3 及び図 2-4 に示す。なお、KURAMA-II は測定開始前に標準線源(日本アイソトープ協会製 462)を用いて点検・校正を実施した(歩 行サーベイに用いた KURAMA-II も同様)。

車内における空間線量率測定値を車外の空間線量率に換算するための補正係数 ⁶⁾ を用い て、車内での測定結果から道路上 1 m 高さの空間線量率を求めた。現在の空間線量率への寄 与の大部分がセシウム 134 及び 137 (以下「放射性セシウム」という。)によるものであり、 測定実施期間中(約 1 ヶ月)での放射性セシウムの物理的減衰に伴う空間線量率の減少は 1% 未満と評価される。この減少率は測定機器の有する不確かさよりも十分に小さいことを考慮

5

して、空間線量率測定値を一定の日付に揃える減衰補正を行わず、測定した日の測定結果を そのまま使用した。道路上において連続的に測定された空間線量率の測定結果を基に、これ までの分布状況調査と同様に、走行地域を総務省統計局により定義される1km×1kmの「基 準地域メッシュ」をベースとした100 m×100 mのメッシュ(以下「100 m メッシュ」とい う。本報告書において、他の大きさのメッシュも同様に20 m メッシュや10 m メッシュな どという。)に分割し、そのメッシュ内に含まれる空間線量率の値を平均してメッシュの代表 値とした。自治体による測定と原子力機構による広域での測定が同時期であるため、両者を 合わせて100 m メッシュ平均値を求めた。

2.2.2 定点サーベイ

標準線源(日本アイソトープ協会製 0268)を用いて点検・校正した NaI(Tl)シンチレーション式サーベイメータ(日立製作所製 TCS-172B)を使用して、地面から1m高さの空間線 量率を測定した。時定数 10 秒で5回読取った値の平均値をその地点での空間線量率測定値 とした。GPSを用いて測定箇所の位置情報を取得した。

測定期間及び測定エリア等について表 2·1 に示す。80 km 圏内を中心に基準地域メッシュ に分割し、事故以前に人が居住していなかった地域(以下「非可住区域」という。)を除く各 基準地域メッシュ内で測定に適した1箇所を測定箇所として選定した。測定箇所数の合計は 5,030箇所であった(図 2·1 参照)。

2.2.3 歩行サーベイ

KURAMA-II システムを測定者が背負い(空間線量率の測定高さは概ね地上1m)歩くこ とで空間線量率データ及び位置情報を連続的に収集した。測定期間及び測定エリア等につい て表 2-1 に示す。測定対象の基準地域メッシュは、80 km 圏内を中心に、走行サーベイの測 定ルートが含まれ、かつ定点サーベイが行われているものの中から、土地利用状況、空間線 量率範囲、地域の代表性を考慮して 566 メッシュを選んだ(図 2-2 参照)。本測定では令和 元年度に改良した KURAMA-II 測定システム^のを使用し、あらかじめ作成した測定ルート情 報をタブレットに表示させ、その測定ルートをなぞりながら実施した。測定ルートは、主に 道路脇や歩道の上であり、そのほとんどは舗装されている。

走行サーベイと同様の理由により、測定実施期間中(約6ヶ月)の空間線量率測定値を減 衰補正により一定の日付に揃えることはしていない。測定値の統計的なばらつきを低減させ ると同時に、空間線量率の2次元的な分布が詳細に把握できるように、対象とした測定箇所

(歩行地域)は基準地域メッシュをベースとした 20 m メッシュに分割し、そのメッシュ内 に含まれる空間線量率の値を平均して 20 m メッシュの代表値とした。

2.2.4 令和4年度との比較

測定結果の妥当性と令和4年度調査での測定結果からの変化傾向を確認するため、測定手 法ごとに令和4年度と令和5年度の測定結果を比較した。比較に用いるデータは、基準地域 メッシュごとに、メッシュ内に入る測定結果を平均した。また、定量的に傾向を把握するた めに式(1)のように相対変化率 *RC*を定義し、基準地域メッシュごとに計算した数値をヒス トグラムにして平均値及び中央値を求めた。

$$RC = (D_1 - D_2) / D_2 \tag{1}$$

ここで、 D_1 及び D_2 はそれぞれ比較対象の測定時期での測定結果及び基準とする測定時期 での測定結果である。例えば、令和4年度調査に対する令和5年度調査の相対変化率は、 $(D_{R5} - D_{R4})/D_{R4}$ である(ここで、 D_{R4} 及び D_{R5} はそれぞれ令和4年度及び令和5年度調査で の測定結果を示す。)。なお、双方とも天然放射性核種による空間線量率寄与を含んだ数値で ある。

2.2.5 測定手法間の比較

3 種類の測定手法は、それぞれ次のような特徴がある。走行サーベイは、車内に検出器を 搭載して車道を走行しながら空間線量率を測定しているため、車道上の空間線量率変化の影響を受けやすい。定点サーベイは、アスファルト等で覆われていない平坦で開かれた場所を 選定しており、人為的なかく乱の影響が少ない。歩行サーベイは、定点サーベイで選定され た測定点周辺の車道や歩道で測定しており、走行サーベイと同様に車道上の空間線量率の影 響を受けやすく、場所によっては定点サーベイに近い測定環境であるといえる。これらの測 定手法の特徴の違いが測定結果に与える影響を評価するために相互比較を行った。相互比較 の方法は基準地域メッシュごとに、メッシュ内に入るそれぞれの測定結果を散布図として比 較した。また、定量的に傾向を把握するために式(2)のように相対偏差 RDを定義し、メッ シュごとに計算した数値をヒストグラムにして平均値、中央値を求めた。

$RD = (D_{\rm a} - D_{\rm b})/D_{\rm b}$

(2)

ここで、*D*a, *D*b は走行、歩行、定点サーベイによる空間線量率である。*D*a, *D*b の組み合わせ は表 2-2 のとおりである。いずれも天然放射性核種による空間線量率寄与を含んだ数値であ る。

御中	走行サーベイ			定点サーベイ	歩行サーベイ
側足	測定 第 26 回 第 27 回		第 17 回	第 15 回	
実施主体	原子力機構	原子力機構	自治体	原子力機構	原子力機構
測定期間	R5/6/20	R5/11/7	R5/10/23	R5/8/8	R5/5/15
04/2/9104	$\sim 7/10$	$\sim 12/7$	$\sim 11/29$	$\sim 10/10$	$\sim 11/24$
測定エリア	主に 80 km	8 厚*2	7 [目.*3	主に 80 km	主に 80 km
	圈内*1	0 /	• 28	圈内	圈内
測定距離					
又は	7,578 km	14,029 km	13,450 km	5,030 点	566 箇所*4
測定点数					
*1 宮城県、	福島県、茨城県				
*2 岩手県、	宮城県、福島県、	茨城県、栃木	、県、群馬県、堵	所玉県、千葉県	
*3 岩手県、福島県、茨城県、栃木県、群馬県、埼玉県、千葉県					

表 2-1 地上における空間線量率測定の測定期間及び測定エリア

*4 測定ルートが含まれる基準地域メッシュ(1 km×1 km)の数

表 2-2 測定手法間の比較の組み合わせ

No.	D_{a}	$D_{ m b}$
1)	走行サーベイ	定点サーベイ
2)	歩行サーベイ	定点サーベイ
3)	走行サーベイ	歩行サーベイ

図 2-1 令和5年度調査における定点サーベイによる空間線量率の測定箇所

図 2-2 令和5年度調査における歩行サーベイによる空間線量率の測定箇所

2.3 空間線量率測定結果

2.3.1 空間線量率分布マップ

1) 走行サーベイ

令和5年度調査での2回の走行サーベイの結果に基づき作成した空間線量率分布マップを それぞれ図 2-3 及び図 2-4 に示す。なお、空間線量率分布マップでは天然放射性核種による 空間線量率寄与を含んでいる(以下、本章において同様)。福島県以外での約 111,900 メッシ ュ(2回の合計)のうち空間線量率が 0.2 µSv/h 以上であった 100 m メッシュは、栃木県及 び茨城県の7メッシュのみであった。各年度の比較のため、平成23年度(第1次調査)(第 1回走行サーベイ)から令和5年度2回目(第27回走行サーベイ)までの空間線量率測定 結果(主に80 km 圏内について)を図 2-5 に示す。福島第一原発周辺及び北西方向にかけて 比較的高い空間線量率を示す赤から黄色で示される箇所が減少してきていることが分かる。 なお、空間線量率の経時変化傾向の定量的評価については第5章で述べる(定点サーベイ及 び歩行サーベイも同様)。

2) 定点サーベイ

令和5年度調査での定点サーベイによる空間線量率の測定結果を図2-6に示す。また、平成23年度調査から令和5年度調査までの空間線量率測定結果を図2-7に示す。走行サーベイと同様、比較的高い空間線量率を示す赤から黄色で示される箇所が減少してきていることが分かる。

3) 歩行サーベイ

令和 5 年度調査での歩行サーベイの結果に基づき作成した空間線量率分布マップを図 2-8 に示す。また、平成 25 年度以降の歩行サーベイの空間線量率測定結果を図 2-9 に示す。比較的高い空間線量率を示す黄色で示される箇所が減少してきていることが分かる。なお、平成 25 年度の測定開始当初は帰還困難区域での測定がほとんどないため 9.5 μSv/h 以上となる橙 色や赤色で示されるデータは少ない。

図 2-3 令和5年度1回目(第26回)走行サーベイによる空間線量率の測定結果 (天然放射性核種による空間線量率寄与を含んでいる。)

図 2-4 令和5年度2回目(第27回)走行サーベイによる空間線量率の測定結果 (天然放射性核種による空間線量率寄与を含んでいる。)

図 2-5 平成 23 年度から令和5年度までの走行サーベイによる 80 km 圏内を中心とした空間線量率マップの変化(1/3)

図 2-5 平成 23 年度から令和 5 年度までの走行サーベイによる 80 km 圏内を中心とした空間線量率マップの変化(2/3)

図 2-5 平成 23 年度から令和 5 年度までの走行サーベイによる 80 km 圏内を中心とした空間線量率マップの変化(3/3) (天然放射性核種による空間線量率寄与を含んでいる。)

図 2-7 平成 23 年度から令和5年度までの定点サーベイによる空間線量率マップの変化(1/2)

図 2-7 平成 23 年度から令和5年度までの定点サーベイによる空間線量率マップの変化(2/2)

(天然放射性核種による空間線量率寄与を含んでいる。)

19

図 2·8 令和5年度調査における歩行サーベイによる空間線量率の測定結果 (天然放射性核種による空間線量率寄与を含んでいる。)

図 2-9 平成 25 年度から令和 5 年度までの歩行サーベイによる空間線量率マップの変化(1/2)

図 2-9 平成 25 年度から令和 5 年度までの歩行サーベイによる空間線量率マップの変化(2/2)

2.3.2 令和4年度との比較

走行サーベイ、定点サーベイ及び歩行サーベイの令和4年度調査での測定結果との比較について、散布図及び式(1)により計算した相対変化率*RC*のヒストグラム及び積算割合を図2-10に示す。全測定手法について令和4年度調査と令和5年度調査の空間線量率測定結果は決定係数 R²=0.92-0.99と良い相関関係にあり、相対変化率*RC*は正規分布に近い釣鐘型を示した。

各基準地域メッシュにおける相対変化率 *RC*の平均値を放射性セシウムの半減期から計算 した空間線量率の変化率と比較した結果を表 2-3 に示す。空間線量率の半減期補正の計算式 を式 (3) に示す。

$$D_{t} = D_{0} \frac{k \cdot exp(-\lambda_{134} \cdot t) + exp(-\lambda_{137} \cdot t)}{k+1}$$
(3)

ここで、

D_i: 時間 t における空間線量率、D₀: 時間 t=0 での空間線量率、 λ_{134} : セシウム 134 の崩 壊定数 (0.693/セシウム 134 の半減期)、 λ_{137} : セシウム 137 の崩壊定数 (0.693/セシウム 137 の半減期)、t 経過時間、k: 初期のセシウム 134 及び 137 の線量率比 (=2.7) である。 k=2.7 については、文部科学省と日本分析センターが平成 23 年 8 月 13 日に実施した土壌試 料と in-situ 測定の相互比較を行った際の数値 0.917 を半減期補正した平成 23 年 3 月 15 日 時点におけるセシウム 134/セシウム 137 放射能組成比 (1.04) 及び線量率 – 濃度換算係数 (セシウム 134 : 0.0444 (µGy/h)/(kBq/m²)、セシウム 137 : 0.0173 (µGy/h)/(kBq/m²)) ⁸⁾を

考慮して求めた。

表 2-3 令和4年度調査と比較した令和5年度調査の空間線量率測定結果の相対変化率

	走行サーベイ *	定点サーベイ	歩行サーベイ
令和4年度の測定期間	R4/6/22-R4/7/19	R4/8/23-R4/10/20	R4/5/11-R4/11/18
令和5年度の測定期間	R5/6/20-R5/7/10	R5/8/8-R5/10/10	R5/5/15-R5/11/24
放射性セシウムの 半減期による変化率	-4.1%	-3.9%	-4.0%
測定結果による 相対変化率の平均値	-0.05%	-4.2%	-3.9%

* 各年度1 回目の測定

走行サーベイでは、令和4年度調査に対する令和5年度調査の相対変化率は、放射性セシ ウムの半減期から計算した空間線量率の変化率に比べて絶対値が小さくなり、定点サーベイ 及び歩行サーベイでは両者はほぼ一致した。令和3年度から令和4年度までの空間線量率 の変化率(走行サーベイ0.3%、定点サーベイ-0.6%、歩行サーベイ-1.6%)のに対して令和 4年度から令和5年度までは、定点サーベイ-4.2%、歩行サーベイ-3.9%と変化率(絶対値) がやや大きく、走行サーベイについては-0.05%となり令和3年度から微減している。 過去数年の解析結果から、空間線量率が減少し全体的にバックグラウンドに近づくに従い わずかな線量率の変動で比率が大きく変わる。このため測定データのばらつき等により前年 度からの変化率(減少率)は一定でなく、変化率(絶対値)が放射性セシウムの半減期から 計算した空間線量率の変化率より小さかったり前年度から空間線量率が増加したりする場 合もある。

2.3.3 平成 23 年度との比較

事故直後からデータが蓄積されている走行サーベイ及び定点サーベイについては、第1回 測定(平成 23 年度調査)の測定結果からの相対変化率を式(1)により求めた。図 2-11 に平成 23年度調査における測定結果と令和5年度調査における測定結果の散布図及び平成23年度 調査に対する令和5年度調査の測定結果の相対変化率RC(ヒストグラム及び積算割合)を 示す。図 2-11 (a) に示した走行サーベイの全データを見ると線量率が低い場所の線量率の変 化が線量率の高い場所に比べて小さくなっていることが分かる。これはバックグラウンドに なる天然の放射線の寄与が相対的に大きくなるためである。80km 圏内全体の傾向及び放射 性セシウムによる空間線量率の変化傾向を確認するため、平成 23 年度調査での測定結果の うちバックグラウンドの影響が大きいと思われる 0.5 μSv/h 未満を削除し、0.5 μSv/h 以上で あった測定データを用いた比較結果を図 2-11 (b) に示す。また、図 2-11 (c) には定点サーベ イの結果の内、平成23年度調査での測定結果が0.5 µSv/h 以上であった測定データについ ての比較結果を示す。これらの散布図を見ると、走行サーベイと定点サーベイの結果は似た 傾向を示しており、相対変化率の平均値はそれぞれ-90%及び-88%となった。この結果は放 射性セシウムの半減期による空間線量率の変化と比較して減少が大きい傾向にあり、除染や 車両往来等の人為的要因や風雨による放射性物質の除去(移動)に加え、地中への放射性物 質の沈み込みによるためと考えられる。それぞれの相対変化率の平均値を表 2-4 にまとめる。

	走行サーベイ	走行サーベイ	定点サーベイ
	(全地点)	$(\ge \! 0.5 \; \mu \text{Sv/h})^{-*2}$	$(\ge\!0.5~\mu\text{Sv/h})^{-*2}$
平成 23 年度の測定期間	H23/6/4	H23/6/4-H23/7/8	
令和5年度の測定期間*1	R5/10/2	R5/8/8-R5/10/10	
放射性セシウムの 半減期による変化率	_'	77%	-77%
測定結果による 相対変化率の平均値	-84%	-90%	-88%

表 2-4 平成 23 年度調査と比較した令和 5 年度調査の空間線量率測定結果の相対変化率

*1 走行サーベイは令和5年度2回目(通算第27回)

*2 平成 23 年度調査での空間線量率測定結果が 0.5 µSv/h 以上の測定データのみで評価

2.3.4 測定手法間の比較

令和5年度調査での走行サーベイ、定点サーベイ及び歩行サーベイによる空間線量率の相 互比較結果(2者間の相関及び式(2)により計算した相対偏差 RD)について、図2-12に示す。 相対偏差 RDの平均値をみると、走行サーベイは定点サーベイより22%小さい(図2-12(a))。 これは、定点サーベイは測定場所として開けた平坦な土壌の上を選定しているのに対し、走 行サーベイがアスファルトの道路上を測定していることに起因している。歩行サーベイと定 点サーベイによる空間線量率の相対偏差は-6%程度であり(図2-12(b))、走行サーベイと定 点サーベイの相違に比べて小さい。図2-12(c)を見ると走行サーベイは歩行サーベイより 15%小さくなっており、両者の測定対象の違い(車道と歩道)によりセシウムの移動状況の 違いが表れていると考えられる。

これらの経時変化を確認するため、過去のサーベイ結果について定点サーベイに対する走 行サーベイ又は歩行サーベイの空間線量率の比率を比較した。比較結果を図 2-13 に示す。走 行サーベイ/定点サーベイの結果は、事故から約 3 ヶ月後の平成 23 年度調査を除き平均値で -20%から-30%で推移している。定点サーベイに対する歩行サーベイの相対偏差の平均値は 0% から-10%の間で推移しており、走行サーベイに比べて定点サーベイとの違いは小さいと いえる。

以上より、走行サーベイ及び歩行サーベイでは、定点サーベイによる人為的影響の少ない 環境に比べ、空間線量率の減少が速いことが分かる。これは、道路上での測定(走行及び歩 行サーベイ)では土壌上での測定(定点サーベイ)に比べセシウムの洗い流し効果が大きい ためであると考えられる。

図 2-10 令和4年度調査と令和5年度調査の空間線量率測定結果の比較 (相関図の破線は y=x、R²は決定係数、Std は標準偏差、n はデータ数を意味する。)

図 2-11 令和5年度調査での走行サーベイ及び定点サーベイによる空間線量率結果の平成23年度調査との比較 (相関図の破線は y=x、Std は標準偏差、nはデータ数を意味する。)

図 2-12 令和5年度調査での空間線量率測定手法間の比較 (相関図の破線は y=x、R²は決定係数、Std は標準偏差、n はデータ数を意味する。)

図 2-13 定点サーベイに対する走行サーベイ及び歩行サーベイの空間線量率の相対偏差

3. 無人ヘリによる発電所周辺の空間線量率測定

3.1 調查目的

事故後、福島第一原発から3km 圏内については、航空法による飛行制限区域(平成25年2 月5日までは飛行禁止区域)となっており、有人へリコプターによるモニタリング(以下「航 空機サーベイ」という。)は実施されていなかった。また、地上での測定結果も限られており、 本地域の全体像の把握が必要であった。そこで、平成24年度より航空法による規制を受けな い無人へリコプター(以下「無人へリ」という。)を用いて福島第一原発から3km 圏内の放射 線量率分布の測定(以下「無人へリサーベイ」という。)を開始した¹⁰⁾。無人へリは、有人へ リコプターと比較して低高度で飛行が可能でありへリコプターの軌跡幅(測線間隔)も細かく 設定できるため、位置分解能の高い空間線量率分布の測定が可能である。具体的には、航空機 サーベイでは250 mメッシュの分解能に対し、無人へりでは5 mメッシュの分解能で空間線 量率分布の評価が可能である。平成25年度からは、航空機サーベイとの比較も考慮し、航空機 サーベイと2 km程度オーバーラップさせ約5 km 圏内を測定対象とすることにした。これま での分布状況調査での無人へリサーベイには、福島第一原発周辺のモニタリング¹¹⁾、河川敷 のモニタリング¹²⁾及び除染前後のモニタリング¹³⁾などがある。

無人ヘリサーベイの対象地域は、事故直後には空間線量率が高く帰還困難区域に設定された ことから、事故後数年における放射性物質の移動への人為的な影響が小さい。一方、近年除染 によって生じた廃棄物の中間貯蔵施設の建設、高速道路・鉄道の整備及び特定復興再生拠点区 域に認定され5年後(令和4年から)の避難指示解除をめざして除染が加速されるなど、環境 が変化している。本地域での面的及び継続的なデータの取得により、放射性物質の環境動態や 人為的活動の影響について知見を得ることが可能と考えられる。

ここでは、令和5年度調査において1回実施した無人へリサーベイによる福島第一原発から 概ね5kmの範囲の空間線量率の測定結果と、過去データとの比較についてまとめる。また、 無人へリサーベイの測定結果から天然放射性核種による空間線量率や放射性セシウム沈着量を 評価した。

3.2 調查手法

3.2.1 調査場所・期間

調査場所は、福島第一原発周辺(5km 圏内)を設定した。 調査期間:令和5年6月20日~10月22日 フライト範囲:70.2km² 合計測定距離:840km

3.2.2 調査機器

測定にあたっては、ヤマハ発動機株式会社製の自律飛行型無人ヘリ FAZER-R G2 を使用 し、地上からの直達ガンマ線及び空気による散乱線を合わせた全計数率とガンマ線エネルギ ースペクトルを1秒間に1回連続測定した。また、放射線検出器は LaBr₃ (Ce)シンチレーシ ョン検出器(1.5" Φ×1.5"×3 本)を用いた。無人ヘリサーベイに用いた機材等の仕様を図 3-1 に示す。なお、検出器の特性確認として、試験用標準線源(日本アイソトープ協会 0268)を 用いて、正味の計数率とエネルギー分解能を前年度の結果と比較評価するとともに、毎作業 ごとに解析システムにより取得したスペクトルを確認し、エネルギーピークの位置に変動が ないことをチェックした。

3.2.3 データ取得方法

無人へりの飛行高度は、安全面及び測定データの信頼性を考慮し、対地高度で 80 m を目 安とした。上空で測定される放射線は、無人へり下部の直径約 200 m 程度の円内のガンマ線 量を平均化したものである¹⁴⁾。無人へりの飛行軌跡幅(測線間隔)は 80~100 m、無人へ りの飛行速度は 8 m/s (= 28.8 km/h)程度とした。取得データは、放射線検出器で測定され る1秒ごとのガンマ線のデータ(計数率)とエネルギースペクトル及びそれに対応する差分 全地球測位システム DGPS (Differential Global Positioning System)による位置情報であ る。データ取得のためのフライト条件は測定結果の比較を容易にするため、第3回以降は全 く同じとしている。フライトの飛行軌跡を図 3-2 に示す。

3.2.4 無人ヘリ測定データの空間線量率への換算

上空で測定されたガンマ線計数率を空間線量率の値に換算するための係数を取得するため に、測定地域内において比較的空間線量率が一定で平坦な場所に直径 200 m の円形のテスト サイトを設定した。テストサイト上空において、対地高度 20 m、30 m、40 m、60 m、80 m、 100 m、120 m、150 m でそれぞれ 120 秒以上ホバリングを実施した。各対地高度でホバリ ングした際の対地高度の平均値とガンマ線計数率の平均値をプロットし、それらプロットに 対する指数近似曲線の傾きから空気減弱係数 AF (Attenuation Factor、単位: m⁻¹)を算出 し、指数近似曲線から高度 1 m の計数率を推定した。テストサイト内で、あらかじめ KURAMA-IIを用いて地表面から1m高さの空間線量率データを取得した。ホバリング地点 の中心座標から半径 80 m のバッファーの範囲内の空間線量率の平均値を評価した。高度 1 mの推定計数率を空間線量率の平均値で除すことで空間線量率換算係数 CD (cps/(uSv/h)) を算出した。平成 30 年度から令和 5 年度の分布状況調査にて取得したテストサイトにおけ るキャリブレーション結果を表 3-1 に示す。テストサイトは平たんで線量率が一定であるこ とが望ましいが、近年では除染等の人為的影響が広がっており、テストサイトとしてふさわ しい場所がほぼなくなっている。そこで、実際に使用した検出器の AFと CD については、 令和元年度より過去にキャリブレーションで値付けした同じ数値を使用している(AF--0.0080 m⁻¹, CD: 4,382 cps/ (µSv/h))。すなわち近年のテストサイトでのデータ取得は、キャ リブレーションではなく過去の値付けした数値の確認を目的としている。なお、検出器の劣 化によるレスポンス変動ついては、点線源を用いた校正試験で確認し、令和4年度との変化 が±10%以内であることを確認している。

実際のフライトで取得されたガンマ線計数率に対して対地高度と基準高度のずれを高度補 正係数 *HF*により補正し、空間線量率換算係数 *CD*で除することにより地上1m 高さでの空

$$D = \frac{C_{\text{net}} \times HF}{CD} \tag{4}$$

ここで、*C*_{net} (cps)は検出器結晶内に含まれる天然の放射性核種等の固有のバックグラウンド 計数を差し引いた正味の計数率である。なお、空間線量率の値は、放射性セシウムの物理的 減衰を考慮し、各測定期間の最終日に換算した。

表 3-1 テストサイトにおける換算パラメータ取得条件

	テストサイト場所		実施日	ホバリングの	基準高度計数率	地上値	AF	CD
ID –	緯度	経度	-	対地高度(m)	(cps at 80m)	(μSv/h)	(m ⁻¹)	(μ Sv/h/cps)
29	37.41075887	140.9787564	H30.8.23	82	13144	6.48	-0.00841	4048
30	37.455253	140.99945	H30.8.26	79	1378	0.55	-0.00558	3876
31	37.381546	140.716103	H30.11.26	78	777	0.33	-0.00759	3534
33	37.36137103	141.0078806	R2.6.17	80	3160	1.34	-0.00646	3925
34	37.38711193	141.0063403	R2.6.29	77	9614	4.22	-0.00830	4313
35	37.38602783	140.9947421	R2.7.27	80	3542	1.56	-0.00779	4230
36	37.4099319	140.9729545	R2.8.24	80	8336	3.52	-0.00768	4357
38	37.3871103	141.0063297	R2.8.28	76	10390	4.41	-0.00808	4392
40	37.38601914	140.994735	R2.9.10	79	3706	1.62	-0.00769	4225
41	37.40992418	140.9729688	R2.9.18	81	7867	3.14	-0.00761	4622
44	37.38711292	141.0063357	R3.6.14	75	9700	4.68	-0.00801	3796
45	37.38601934	140.9947369	R3.6.21	76	3482	1.71	-0.00769	3696
50	37.38601934	140.9947369	R3.9.21	76	3303	1.46	-0.00771	4063
51	37.38711292	141.0063357	R3.9.21	77	8774	4.03	-0.00828	4141
52	37.36136369	141.0078691	R3.9.29	82	2009	0.58	-0.00528	5322
53	37.387108	141.006331	R4.5.30	73	8435	4.26	-0.00859	3700
56	37.41126229	140.9581993	R4.6.29	81	4852	2.40	-0.00849	3997
57	37.40474969	140.9911988	R4.8.1	76	1798	0.54	-0.00443	4621
58	37.387108	141.006331	R4.8.2	79	8258	4.12	-0.00842	3896
60	37.41126229	140.9581993	R4.8.25	81	4684	2.38	-0.00864	3979
62	37.40473653	140.9912108	R4.9.12	78	1734	0.66	-0.00470	3714
63	37.4047474	140.9912017	R5.6.20	75	1582	0.62	-0.00504	3673
64	37.41124397	140.9581953	R5.6.26	79	4363	2.17	-0.00876	4039
65	37.3860121	140.9947628	R5.7.3	73	2172	0.94	-0.00596	3582
66	37.40473865	140.9912113	R5.7.18	76	1665	0.61	-0.00486	3870
67	37.38601607	140.9947511	R5.7.31	73	2170	0.94	-0.00575	3481
68	37.4047407	140.9912052	R5.8.3	77	1692	0.61	-0.00492	3983
69	37.41126096	140.9582105	R5.8.7	79	4657	2.34	-0.00852	3943
70	37.38601931	140.9947529	R5.8.22	73	2061	0.93	-0.00597	3421
71	37.41124996	140.958207	R5.9.19	76	4421	2.19	-0.00875	3954
72	37.40474611	140.9912133	R5.9.29	78	1550	0.53	-0.00491	4212
						平均值	-0.00706	4020
						採用値	-0.00706	4020

3.2.5 空間線量率マップの作成

上空で取得した無人へリサーベイによる測定値は前述のように地上高さ 1 m の空間線量 率の値に換算し、リンクする位置情報とともに GIS ソフトウエアを用いて、内挿法(クリギ ング法)を用いて 5 m メッシュの分解能で内挿補間した。内挿補間後に作成された 5 m メッ シュのコンター図は空間線量率のレンジで色分けしカラーコンター図としてマップ化した。 また、過去のデータとの比較に用いるデータについては、無人ヘリの測定範囲(線源視野範囲)を考慮し、5mメッシュのデータを基に100mメッシュごとに平均した。

図 3-1 無人ヘリサーベイの機材の仕様等

図 3-2 令和5年度調査での無人ヘリサーベイの飛行軌跡

3.3 調査結果

3.3.1 空間線量率マップ

令和5年度調査において実施した無人ヘリサーベイによる空間線量率マップを図3-3に示 す。また、第1回から令和5年度までの主に5km圏内の空間線量率マップを図3-4に示す。 図3-4から空間線量率の高い暖色系のエリアが小さくなってきていることが分かる。空間線 量率の経時変化傾向の定量的評価については第5章で述べる。

3.3.2 測定結果の妥当性の検証

結果の妥当性を検証するために、測定地点直下の地上で測定した結果(第2章の定点サーベイによる測定結果)と比較した。無人ヘリサーベイの測定結果から評価した100mメッシュデータと同地点における地上での測定結果を比較した散布図及び2測定間の相対偏差(式(2)において、無人ヘリサーベイの測定結果をDa、同地点における定点サーベイによる測定結果をDbとした。)を図3・5に示す。なお、いずれも天然放射性核種による空間線量率寄与を含んだ数値である。散布図を見ると良い相関関係(決定係数 R²=0.86)を示しており、令和5年度調査での結果は概ね地上の測定結果を再現できていたと考えられる。なお、図3・5上図では1µSv/h以下の低線量域において無人ヘリサーベイによる測定値が過大評価となり、図3・5下図では相対偏差が1以上となる頻度がやや大きくなる傾向が近年見られる。令和5年度調査ではその割合が6割程度となった。この原因として、無人ヘリサーベイは広い範囲の平均的な線量を測定するのに対し、地上での測定が、除染等の理由で周辺の空間線量率と比較して局所的に低い測定ポイントで実施されることが多くなったことが考えられる。

3.3.3 令和4年度との比較

測定区域を 100 m メッシュに分割し、メッシュごとに令和 4 年度調査と令和 5 年度調査 での無人ヘリサーベイによる空間線量率測定結果を比較した。散布図及び式(1)で定義した相 対変化率を図 3-6 に示す。散布図は良い相関関係(決定係数 R²=1.0)を示している。また、 令和 5 年度調査では令和 4 年度調査から約 11%減少(変化率の平均値で)したことが分か る。

図 3-7 に令和4年度調査の空間線量率測定結果に対する令和5年度調査の空間線量率の測 定結果の比(相対変化率)をマップにして示す。福島第一原発周辺の地域を中心に顕著に空 間線量率の減少が確認できる場所があることが分かった。この要因を調査した結果を図 3-8 に示す。ほとんどの地域は、現在、建設中である中間貯蔵施設のエリア又は特定復興再生拠 点区域復興再生計画のエリアと一致しており、施設建設における造成作業や除染による影響 が表れているものと考えられる。

3.3.4 天然放射性核種による空間線量率マップ

無人ヘリサーベイではガンマ線スペクトルを測定できるため、平成 25 年度に確立したガ ンマ線スペクトル情報から放射性核種ごとに評価する手法 ¹⁵⁾を用いて天然放射性核種によ る空間線量率の評価が可能である。天然放射性核種のみで構成されるガンマ線スペクトルで は、1,400 keV~2,800 keV の計数率と全計数率の比(*BG-index*)が一定であることを利用 して天然放射性核種による空間線量率を評価する。図 3-9 に天然放射性核種による空気カー マ率の分布を示す。図に示されているように、天然放射性核種による空気カーマ率は、0.03 ~0.06 µGy/h 程度である。また、本結果は過去の結果 ¹⁶と整合している。

3.3.5 福島第一原発から約5km 圏内の放射性セシウム沈着量評価

無人へリによる上空からの放射線測定結果を基に福島第一原発周辺(半径5 km 程度)の 放射性セシウム沈着量を求めた。沈着量評価には、平成25年度に確立したガンマ線スペク トル情報から放射性核種ごとに評価する手法¹⁵⁾を用いている。

本方法は天然核種のみを含む地域を測定して得られるガンマ線スペクトルにおいて、放射 性セシウムが放出するガンマ線を含まない 1,400 keV~2,800 keV の計数率と *BG-index* が 一定であることに着目するものである。機体と検出器の組み合わせごとに、あらかじめ放射 性セシウムによる汚染がない地域をフライトして得られたデータを基に *BG-index* を設定し、 実際のフライトデータの 1,400 keV~2,800 keV の計数率を基に全体の計数率から減算する。

これらのパラメータを用いた放射性セシウムの沈着量の算出手順を以下に示す。また、計 算式を式(5)に示す。

- 測定で得られたガンマ線スペクトルから 1,400 keV~2,800 keV の計数率(CBG)を計算する。
- ② CBGに BG-index を乗じて天然核種起源の全計数率(BGnat)を算出する。
- ③ Cnetから BGnatを差し引き、放射性セシウムのみの計数率(Ccs)を求める。
- ④ C_{cs}に HFを乗じ、CDで除することで放射性セシウムのみの空間線量率(D_{cs})を算 出する。
- ⑤ 式(5)より、空間線量率 *D*csを空間線量率-放射能換算係数(*CF*[μSv/h]/[kBq/m²])で 除して放射性セシウムの沈着量 *Rd*を求める。

$$Rd = \frac{D_{Cs}}{CF}$$
(5)

CFを求めるには、重量緩衝深度の設定が必要であるが、4.1 節に示す結果から実効的な重 量緩衝深度βeff=4.41 g/cm²とした。なお、検出下限値は、本測定範囲の平均的なバックグラ ウンド計数率で計算すると 9.8 kBq/m²と計算できる。また、平成 30 年度調査まで同地域に おいて可搬型ゲルマニウム半導体検出器(以下「可搬型 Ge 検出器」という。)による放射性 セシウム沈着量測定を実施しており、このうち直近 3 年間(平成 28 年度から平成 30 年度) の結果 ¹⁷⁻¹⁹⁾を令和 5 年 10 月に半減期補正した値と、令和 5 年度の無人へりによる測定結果 から放射性セシウム沈着量へ換算した値(以下「沈着量(換算値)」という。)を比較した結 果を図 3-10 に示す。同図の相対偏差(下図)は、式(2)において、無人へリサーベイの測定 結果から求めた沈着量(換算値)を *D*a、同地点における可搬型 Ge 検出器による放射性セシ ウム沈着量を *D*b として求めた。このように両者は一定の相関関係にあるが、相対偏差値の ヒストグラムを見ると平均値も中央値も沈着量(換算値)が高い傾向にある。また、散布図 での分布をみると特に濃度の低いデータについて沈着量(換算値)が高い傾向にあり、局所 的な除染や周囲を森林に囲まれた場所などの状況が上空からの測定では再現できていない可 能性が考えられる。

無人ヘリサーベイの測定結果から求めた沈着量(換算値)の分布マップを図 3-11(右)に 示す。また、比較のため、令和4年度調査での測定結果を同図(左)に示す。福島第一原発 から北西部分と南部分は3 MBq/m²を超える比較的高いエリアが広がっていることが分かる。 一方、北側の海岸沿いは、300 kBq/m²以下のエリアも存在する。令和4年度調査での沈着量 (換算値)と比較すると、測定範囲の全体で沈着量がわずかに低くなったことが分かる。

図 3·3 令和5年度調査における無人ヘリサーベイによる空間線量率測定結果 (天然放射性核種による空間線量率寄与を含んでいる。)

図 3-4 平成 24 年度から令和 5 年度までの無人ヘリサーベイによる空間線量率マップの変化(1/2) (福島第一原発から 5 km 圏内主体。天然放射性核種による空間線量率寄与を含んでいる。)

図 3-4 平成 24 年度から令和5年度までの無人ヘリサーベイによる空間線量率マップの変化(2/2) (福島第一原発から5 km 圏内主体。天然放射性核種による空間線量率寄与を含んでいる。)

図 3-5 無人ヘリサーベイと地上測定(定点サーベイ)による空間線量率の比較 (相関図の破線は y=x、R²は決定係数、Std は標準偏差、n はデータ数を意味する。)

図 3-6 令和4年度調査と令和5年度調査での無人ヘリサーベイによる空間線量率測定結果の 比較

(相関図の破線は y=x、R²は決定係数、Std は標準偏差、n はデータ数を意味する。)

図 3-7 無人ヘリサーベイによる空間線量率測定結果の令和4年度調査に対する令和5年度調 査の相対変化率の分布

	[双葉町大字郡山中間貯蔵 施設] 双葉町の中間貯蔵施設で、 搬入後に覆土されている箇 所、新たに造成中の箇所で 減少している様子が確認で きる。
	[大熊町大野駅周辺と産業 交流ゾーン] 大熊町大野駅周辺と産業交 流ゾーンで昨年よりも表土 が露わになった、または土 が新たに入れられたか、造 成工事が進んでいる様子が 確認できる。
	[大熊町大字熊字熊町] 大熊町大字熊字熊町周辺の 農地などで、昨年と比べ開 墾または除染が行われてい る様子が確認できる。

図 3-8 令和4年度調査から令和5年度調査に空間線量率が顕著に減少した要因の調査結果 (左から地理院タイル²⁰⁾に相対変化率マップ(図 3-7 参照)を追記して掲載、地理院タイルに 測定中に撮影した写真からオルソ画像(地図と同じく写真上の像の位置ズレをなくし、真上か ら見たような傾きのない正しい大きさと位置に表示される画像)を作成し追記。)

図 3·9 令和5年度調査における無人ヘリサーベイにより評価した天然放射性核種による空気 カーマ率の分布

図 3-10 平成 28 年度~平成 30 年度の可搬型 Ge 検出器による放射性セシウム沈着量測定結 果(令和 5 年度に物理減衰補正)と無人ヘリサーベイによる放射性セシウム沈着量(換算値) の比較

(相関図の破線は y=x、R²は決定係数、Std は標準偏差、n はデータ数を意味する。)

図 3-11 無人ヘリサーベイによる放射性セシウム沈着量(換算値)分布マップ(左:令和4年度調査、右:令和5年度調査)