柏崎刈羽原子力発電所第6号橋	設計及び工事計画審査資料		
資料番号	KK6 補足-026-9 改 1		
提出年月日	2024年2月8日		

主排気筒の耐震性についての計算書に関する補足説明資料

2024年2月

東京電力ホールディングス株式会社

1. 設計及び工事計画添付書類に係る補足説明資料

VI-2-7-2-1「主排気筒の耐震性についての計算書」の記載内容を補足するための資料 を以下に示す。なお、地震応答解析及び応力解析には解析コード「fappase」を 用いる。

別紙1 地震応答解析における既工認と今回設工認の解析モデル及び手法の比較

別紙 2	主排気筒のモデル化,境界条件及び拘束条件の考え方
別紙 3	地震応答解析における原子炉建屋の材料物性の不確かさ <mark>等</mark> に関する検討
別紙4	地震荷重と風荷重を重畳させた場合の影響検討
別紙 5	接合部の耐震性について
別紙 6	原子炉建屋と主排気筒の連成解析による影響評価

: 今回提出範囲

別紙2 主排気筒のモデル化,境界条件及び拘束条件の考え方

目 次

1.	概要		 別紙 2-1
2.	モデル化,	境界条件及び拘束条件	 別紙 2-1

別紙2-1 つなぎ材の部材構成について

1. 概要

本資料は, 主排気筒におけるモデル化, 境界条件及び拘束条件についての概要を示す ものである。

2. モデル化,境界条件及び拘束条件

主排気筒のモデル化,境界条件及び拘束条件を表2-1に示す。また,非常用ガス処理 系(以下「SGTS」という。)用排気筒の応力解析におけるモデル化,境界条件及び拘束 条件を表2-2に示す。なお,東京湾平均海面を,以下「T.M.S.L.」という。

表2-1 主排気筒のモデル化,境界条件及び拘束条件(1/3)

<u> </u>	11, 売州本日2				
	/* 194.女(4/4)				
 ・鉄塔部はトラス構造であり、部材な 	を点ごとに要素	を分割する。			
○解析モデルの使い分け					
 ・動的地震荷重:下図に示す解析モラ 	『ルを用いた地	雲応答解析により、各部材の応力			
が出力される。この	つ応力を用いて	, 各部材について断面算定を実施			
する。					
 ・風荷重 ・下図に示す解析モラ ・ いいたちにろう 	『ルを用いた靜	的応力解析により、各部材の応力			
か出力される。この オス このとき 生	ノ心力を用いて 訓雪壮罟 (オイ	, 谷部材についく 所面昇 正 を 美施 ルダンパー) け 考慮し ない たの と			
りる。このとさ、重して設定した	川辰衣直(オイ	ルタンパークは考慮しないものと			
· 아+ 나난 호17		制震装置 (オイルダンパー)			
— : 妖俗韵 — · 倚身部					
 □ : Ⅲ 3 Ⅲ □ : 制震装置(オイルダンパー)(計 8 台) 					
● : コンクリート基礎部					
V	T. M. S. L.				
	(m) A 85.0				
	Λ				
	в 80.0				
	<u>76.25</u>				
	79 5				
	C $\frac{12.5}{2}$	補強リング 支持点アーム			
	<u>68. 8</u>	(a) 平面図 (T.M.S.L. 76.25m)			
	D <u>65.0</u>				
		<u>●∐───₩÷∩÷₩───</u> ∐⊧●			
	<u>60. 8</u>				
	E <u>56.5</u>				
	<u>52. 3</u>				
	- 18 0				
	F <u>40.0</u>				
		3			
	G <u>40.2</u>	① 減衰係数			
PN PN	<u>38. 2</u>	② ばね定数 ◎ 古 は上二			
$\mathbb{R}^{\mathbb{R}}$ \mathbb{Q} \mathbb		 ③ 支持点アーム 			
RD R1		(b) モデル概要			
解析チデル(単位・m) 判電壮罟(ナイルガンパー)					
四年17月11 モノノビ (単121:皿)		辰衣臣 (タイルクラハー)			

表2-1 主排気筒のモデル化,境界条件及び拘束条件(2/3)

表2-2 SGTS用排気筒のモデル化,境界条件及び拘束条件

別紙2-1 つなぎ材の部材構成について

1.	概要	別紙 2-1-1
2.	つなぎ材の部材構成・・・・・・	別紙 2-1-1

1. 概要

本資料は, T.M.S.L.48.0m(筒身支持点部)にある, つなぎ材の部材構成を説明する ものである。

注:東京湾平均海面を,以下「T.M.S.L.」という。

2. つなぎ材の部材構成

っなぎ材は、筒身と鉄塔をつなぐ鋼製の部材であり、8本の部材で構成されている。 筒身側と鉄塔側ともピン取合いとなっており引張力のみ伝達できる構造となっている。 っなぎ材の詳細を図2-1に示す。なお、主排気筒の立体フレームモデルにおいて、つな ぎ材は水平方向に作用する等価なばね要素として、筒身部と鉄塔部四隅の各節点間に設 定する。

つなぎ材詳細図 (A-A 断面)

図 2-1 つなぎ材詳細図(単位:mm)

別紙3 地震応答解析における原子炉建屋の材料物性の不確かさ<mark>等</mark> に関する検討

目 次

1. 概要 ·····	· 別紙 3-1
1.1 検討概要 ·····	· 別紙 3-1
1.2 検討方針 ·····	· 別紙 3-2
2. 建屋応答の不確かさ <mark>等</mark> を考慮した設計用地震力の設定方法・・・・・・・・・	· 別紙 3-4
3. 地震応答解析による建屋応答の不確かさ <mark>等</mark> の影響検討・・・・・・・・・・・・	別紙 3-25
3.1 固有值解析結果 ·····	別紙 3-25
3.2 地震応答解析結果	別紙 3-31
4. まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 3-39

1. 概要

1.1 検討概要

本資料は,主排気筒の地震応答解析における原子炉建屋の材料物性の不確かさ等に 関する検討について説明するものである。

本資料では、材料物性の不確かさ等を考慮した原子炉建屋の応答を用いた地震応答 解析を行い、原子炉建屋の材料物性の不確かさ及び制震装置の不確かさが主排気筒に 及ぼす影響について確認する。なお、本資料においては、原子炉建屋の材料物性の不 確かさ及び制震装置の不確かさを「建屋応答の不確かさ等」ということとする。

建屋応答の不確かさ<mark>等</mark>を考慮する検討ケースを表1-1に示す。なお,実機を用いた 性能試験の結果により制震装置(オイルダンパー)の減衰係数の変動率は±10%以下(性能試験+4.6%,温度依存特性±5%以下)であるが,ここでは保守的に設計時の減衰 係数の変動率±20%(製品誤差±10%,温度依存特性±10%)を採用する。

表1-1中の下線部は、基本ケースとの差異を示す。

検討ケース	コンクリート 剛性	回転ばね 定数	地盤剛性	制震装置 (オイルダンパー) 減衰係数	備考
 ①ケース1 (設工認モデル) 	実強度 (43.1N/mm ²)	100%	標準地盤	標準値	基本ケース
 ②ケース2 (建屋剛性+σ及び 地盤剛性+σ) 	<u>実強度+σ</u> (46.0N/mm ²)	100%	<u>標準地盤+ σ</u> (新期砂層+13%, 古安田層+25%及び 西山層+10%)	標準地盤+ σ (新期砂層+13%, 5安田層+25%及び 西山層+10%)	
 ③ケース3 (建屋剛性 - σ 及び 地盤剛性 - σ) 	<u>実強度-σ</u> (40.2N/mm ²)	100%	<u>標準地盤- σ</u> (新期砂層-13%, 古安田層-25%及び 西山層-10%)	標準値	_
④ケース 4(建屋剛性コア平均)	<u>実強度</u> <u>(コア平均)</u> (55.7N/mm ²)	100%	標準地盤	標準値	_
⑤ケース 5 (建屋剛性-2σ)	<u>実強度-2σ</u> (37.2N/mm ²)	100%	標準地盤	標準値	_
⑥ケース6(回転ばね低減)	実強度 (43.1N/mm ²)	<u>50%</u>	標準地盤	標準値	_
⑦ケース7 (減衰係数+20%)	実強度 (43.1N/mm ²)	100%	標準地盤	標準値×1.2	_
8 (減衰係数-20%)	実強度 (43.1N/mm ²)	100%	標準地盤	標準値×0.8	_

表1-1 建屋応答の不確かさ等を考慮する検討ケース*

注記*:「原子炉建屋の地震応答計算書に関する補足説明資料」のうち別紙3「地震応答解 析における材料物性の不確かさに関する検討」に基づく。

1.2 検討方針

VI-2-7-2-1「主排気筒の耐震性についての計算書」では、建屋応答の不確かさ等を 考慮するため、入力地震動には、材料物性の不確かさを考慮した原子炉建屋全体の地 震応答解析結果から得られる屋上レベル(T.M.S.L.*38.2m)における応答を用いてい る。そのため、本検討における建屋応答の不確かさ等及びその変動幅は、「原子炉建 屋の地震応答計算書に関する補足説明資料」のうち別紙3「地震応答解析における材 料物性の不確かさに関する検討」に準拠し、主排気筒の地震応答解析モデルに対して は建屋剛性の不確かさ(コンクリート強度)及び制震装置の不確かさ(減衰係数)を 考慮する。なお、建屋剛性の不確かさ(コンクリート強度)は、基礎コンクリートの 物性値に考慮する。

検討は,表1-1に示す各検討ケースについて固有値解析及び地震応答解析を行い, ケース1(基本ケース)の結果と比較することで,建屋応答の不確かさ等が主排気筒 に及ぼす影響について確認する。

なお,各解析の方法及び諸元については, VI-2-7-2-1「主排気筒の耐震性についての計算書」と同一である。

主排気筒の地震応答解析モデル図を図1-1に示す。

注記*:なお、東京湾平均海面を、以下「T.M.S.L.」という。

図1-1 主排気筒の地震応答解析モデル

2. 建屋応答の不確かさ<mark>等</mark>を考慮した設計用地震力の設定方法

表1-1に示した検討ケースについて,原子炉建屋の応答を入力地震動として用いた解 析を実施することで,建屋応答の不確かさ等を設計用地震力として考慮する。

建屋応答の不確かさ等を考慮したケースの応答値の算出に当たっては,基本ケースに おける主排気筒の応答を確認したうえで,主排気筒の応答への影響が大きい波(Ss-1及 びSs-2)に対して実施する(別紙3-1「原子炉建屋の材料物性の不確かさ等を考慮した 検討に用いる地震動の選定について」参照)。

Ⅵ-2-7-2-1「主排気筒の耐震性についての計算書」における耐震評価では、入力地震動ごとに、全ての部材をモデル化した立体フレームモデルにおける各部材応力について断面算定を行い、その中で断面算定結果(検定値)が最も厳しくなる地震応答解析結果を設計用地震力(評価用応力)としている。なお、建屋応答の不確かさ等を考慮した地震応答解析結果は、別紙3-2「原子炉建屋の材料物性の不確かさ等を考慮した地震応答解析結果」に示す。

入力地震動の組合せを表2-1に、入力地震動の加速度時刻歴波形を図2-1~図2-12 に示す。なお、図中の〇印は、最大値発生時を示す。Ss-1は、2方向(3成分)(水平1方 向(並進・回転)及び鉛直方向)の同時入力とし、Ss-2は、3方向(5成分)(水平2方向 (並進・回転)及び鉛直方向)の同時入力とする。Ss-1の水平方向については、NS方向 とEW方向で構造としての対称性があるため、検定値が厳しい傾向にあるNS方向を代表と して用いる。なお、Ss-1のケース6、Ss-2のケース1及びケース3~6において誘発上下動 を考慮している。

(a) Ss-1						
入力地震動の組合せ(Ss-1,2方向(3成分)同時入力)						
建屋応答の不確かさ等	水平方向*1				約古	
検討ケース	NS 方向		EW 方向		」 坦 山 山 七 山 * ¹	備考*2
	並進	回転	並進	回転	ניין גע	
ケース 1 (基本ケース)	0	0		—	0	—
ケース 2 (建屋剛性+σ及び 地盤剛性+σ)	0	0	_		0	_
ケース 3 (建屋剛性-σ及び 地盤剛性-σ)	0	0	_		0	_
ケース 4 (建屋剛性コア平均)	0	0	_	_	0	_
ケース 5 (建屋剛性-2σ)	0	0	_	—	0	_
ケース 6 (回転ばね低減)	0	0	_	—	0	誘発上下動考慮
ケース 7 (減衰係数+20%)	0	0			0	_
ケース 8 (減衰係数-20%)	0	0	_		0	_

<mark>表2-1 入力地震動の組合せ(1/2)</mark>

注記*1:組み合わせる成分を「〇」で、組み合わせない成分を「一」で示す。

*2:誘発上下動を考慮しない場合は「一」で示す。

(b) Ss-2						
入力地震動の組合せ(Ss-2,3方向(5成分)同時入力)						
建屋応答の不確かさ等	水平方向*1				松古	
検討ケース	NS 方向		EW 方向		 方向*1	備考*2
	並進	回転	並進	回転	22.1.3	
ケース 1 (基本ケース)	0	0	0	0	0	誘発上下動考慮
ケース 2 (建屋剛性+σ及び 地盤剛性+σ)	0	0	0	0	0	_
ケース 3 (建屋剛性-σ及び 地盤剛性-σ)	0	0	0	0	0	誘発上下動考慮
ケース 4 (建屋剛性コア平均)	0	0	0	0	0	誘発上下動考慮
ケース 5 (建屋剛性-2σ)	0	0	0	0	0	誘発上下動考慮
ケース 6 (回転ばね低減)	0	0	0	0	0	誘発上下動考慮
ケース 7 (減衰係数+20%)	0	0	0	0	0	誘発上下動考慮
ケース 8 (減衰係数-20%)	0	0	0	0	0	誘発上下動考慮

<mark>表2-1 入力地震動の組合せ(2/2)</mark>

注記*1 :組み合わせる成分を「〇」で,組み合わせない成分を「一」で示す。

*2:誘発上下動を考慮しない場合は「一」で示す。

(b) NS方向 回転成分

図2-1 入力地震動の加速度時刻歴波形 (ケース1, Ss-1)

(a) NS方向 並進成分

図2-3 入力地震動の加速度時刻歴波形 (ケース2, Ss-1)

(c) EW方向 亚進成分(2) 2010(c) EW方向 亚進成分(c) 2010(c) 2010(c)

(d) EW方向 回転成分

図2-4 入力地震動の加速度時刻歴波形 (ケース2, Ss-2) (2/2)

(a) NS方向 並進成分

図2-5 入力地震動の加速度時刻歴波形 (ケース3, Ss-1)

(a) NS方向 並進成分

時間(s)

(c) EW方向 並進成分図2-6 入力地震動の加速度時刻歴波形(ケース3, Ss-2)(1/2)

(a) NS方向 並進成分

時間(s)

(c) 鉛直方向図2-7 入力地震動の加速度時刻歴波形(ケース4, Ss-1)

図2-8 入力地震動の加速度時刻歴波形 (ケース4, Ss-2) (1/2)

(a) NS方向 並進成分

(c) 鉛直方向図2-9 入力地震動の加速度時刻歴波形(ケース5, Ss-1)

(a) NS方向 並進成分

(c) EW方向 並進成分図2-10 入力地震動の加速度時刻歴波形(ケース5, Ss-2)(1/2)

(a) NS方向 並進成分

(b) NS方向 回転成分

(a) NS方向 並進成分

図2-12 入力地震動の加速度時刻歴波形 (ケース6, Ss-2) (1/2)

(d) EW方向 回転成分

- 3. 地震応答解析による建屋応答の不確かさ等の影響検討
- 3.1 固有值解析結果

建屋剛性の不確かさ(コンクリート強度)の影響検討として,基礎コンクリートの 剛性を変動させた解析モデルによる固有値解析を実施した。固有値解析結果を表3-1, 固有モードを図3-1~図3-4に示す。

ケース1(基本ケース)に対し,基礎コンクリートの剛性を変動させた解析モデル の固有振動数の変動幅は0%である。主排気筒では,建屋剛性の不確かさ(コンクリー ト強度)による影響は見られない。

表3-1	固有值解析結果	E
------	---------	---

		(4) 1	10/01/10		
田士て、い		NS方向	固有振動数	女f(Hz)	
回有モート	ケース1	ケース2	ケース3	ケース4	ケース5
答 包 1 次	1.20	1.20	1.20	1.20	1.20
同身1次		(1.00)	(1.00)	(1.00)	(1.00)
答真の次	7.73	7.73	7.73	7.73	7.73
同身2次		(1.00)	(1.00)	(1.00)	(1.00)
供 拱 1 次	3.65	3.66	3.65	3.66	3.65
		(1.00)	(1.00)	(1.00)	(1.00)
建成のが	10.99	10.99	10.99	11.00	10.98
		(1.00)	(1.00)	(1.00)	(1.00)
沪 .() 内	11+ 4. 711	マサナフレーダイ	、ニト		

(a) NS方向

注:()内は、ケース1に対する比率を示す。

(b) EW方向

田右ていい		EW方向	固有振動数	女f(Hz)	
回有モート	ケース1	ケース2	ケース3	ケース4	ケース5
答 包 1 次	1.21	1.21	1.21	1.21	1.21
同马1次		(1.00)	(1.00)	(1.00)	(1.00)
答真の歩	7.85	7.85	7.85	7.85	7.85
同身 2 次		(1.00)	(1.00)	(1.00)	(1.00)
供状1次	3.67	3.67	3.67	3.68	3.67
		(1.00)	(1.00)	(1.00)	(1.00)
建技り次	11.32	11.33	11.32	11.33	11.32
<u> </u>		(1.00)	(1.00)	(1.00)	(1.00)

注:()内は、ケース1に対する比率を示す。

(c) 鉛直方向

田右ていい		鉛直方向	固有振動	数f(Hz)	
回有モート	ケース1	ケース2	ケース3	ケース4	ケース5
答 身 1 次	20.39	20.39	20.39	20.40	20.39
同分1次		(1.00)	(1.00)	(1.00)	(1.00)
鉄塔1次	20.23	20.23	20.23	20.24	20.22
<u></u> 新始1八		(1.00)	(1.00)	(1.00)	(1.00)

注:()内は、ケース1に対する比率を示す。

図3-1 固有モード (ケース2)

図3-2 固有モード (ケース3)

図3-3 固有モード (ケース4)

図3-4 固有モード (ケース5)

3.2 地震応答解析結果

建屋応答の不確かさ<mark>等</mark>の影響検討として,建屋応答の不確かさ<mark>等</mark>を考慮した地震応 答解析を実施した。

対象となる検討ケースは表1-1に示す検討ケースとし、代表として、入力地震動に Ss-1を用いた結果を示す。

最大応答値を図3-5~図3-10に示す。なお、図3-7及び図3-10では、以下の主柱 材の最大応力を包絡したものを「鉄塔部 主柱材包絡」として示す。

- ・原子炉建屋のR1通りとRC通りの交点に位置する主柱材
- ・原子炉建屋のR1通りとRD通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRC通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRD通りの交点に位置する主柱材

また、制震装置(オイルダンパー)の最大応答値及び許容値を表3-2に示す。

ケース1(基本ケース)に対し、水平及び鉛直いずれの方向についても、各検討ケ ースの最大応答加速度、最大応答変位、最大応答軸力及び最大応答曲げモーメントは おおむね同等であることを確認した。また、制震装置(オイルダンパー)の最大応答 値は許容値以下である。

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

(b) 筒身部

図3-5 最大応答加速度(Ss-1, NS方向)

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

(b) 筒身部

図3-6 最大応答変位(Ss-1,NS方向)

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部 主柱材包絡

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(b) 筒身部

図3-7 最大応答曲げモーメント (Ss-1, NS方向)

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

(b) 筒身部

図3-8 最大応答加速度(Ss-1,鉛直方向)

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

(b) 筒身部

図3-9 最大応答変位(Ss-1,鉛直方向)

ケース7…減衰係数+20%,ケース8…減衰係数-20%

主柱材包絡 鉄塔部 (a)

(b) 筒身部

図3-10 最大応答軸力(Ss-1)

別紙 3-37

	衣3-2	利晨装	直(オイノ	レダンハー	「の敢入	心合但及	い許谷他	(Ss=1)				
佰日	オイルダンパーの最大応答値											
項日	見日 ケース1 ケース2 ケース3 ケース4 ケース5 ケース6 ケース7 ケース8											
速度 (m/s)	2.04	1.96	2.01	1.99	2.06	2.12	1.84	2.30	2.60			
変位 (mm)	137	128	141	133	139	147	125	152	175			

3-2 制震装置(オイルダンパー)の最大応答値及び許容値(Ss-1)

4. まとめ

建屋応答の不確かさ<mark>等</mark>を考慮した固有値解析及び地震応答解析結果より,以下の傾向 を確認した。

- ・固有値解析より、固有振動数の変動幅は、基本ケースに対し0%である。
- ・地震応答解析より,発生応力,加速度及び変位は,基本ケースとおおむね同等で ある。

上記の傾向については、以下の理由により発生したと考えられる。

主排気筒の地震応答解析では,建屋応答の不確かさとして,入力地震動に材料物性の 不確かさを考慮した原子炉建屋の応答を用いている。「原子炉建屋の地震応答計算書に 関する補足説明資料」のうち別紙3「地震応答解析における材料物性の不確かさに関す る検討」では,材料物性の不確かさによる応答への影響は小さい。また,主排気筒の解 析モデルに対しては,基礎コンクリートの剛性のみに建屋剛性の不確かさ(コンクリー ト強度)を考慮している。よって,主排気筒における建屋応答の不確かさによる影響は 小さくなったと考えられる。

以上より,主排気筒における建屋応答の不確かさ<mark>等</mark>による影響は小さくなったと考え られる。 別紙3-1 原子炉建屋の材料物性の不確かさ<mark>等</mark>を考慮した検討に 用いる地震動の選定について

目 次

1.	概要 •••••••••••••••••••••	別紙 3-1-1
2.	選定方法	別紙 3-1-1
3.	地震動の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 3-1-3
4.	建屋応答の不確かさ <mark>等</mark> を考慮した検討に用いる地震動 ·····	別紙 3-1-12

1. 概要

主排気筒を対象とした,原子炉建屋の材料物性の不確かさ及び制震装置の不確かさ(以下「建屋応答の不確かさ等」という。)を考慮した検討では,基本ケースを対象に, 各入力地震動(Ss-1~Ss-8による原子炉建屋全体の地震応答解析から得られる原子炉建 屋屋上レベル(T.M.S.L.*38.2m)の応答)による地震応答解析を行い,主排気筒の応答 への影響が大きい入力地震動に対して検討を実施する。

本資料では,建屋応答の不確かさ等を考慮した検討に用いる地震動の選定方法及び地 震動の選定結果について説明する。

注記*:東京湾平均海面を,以下「T.M.S.L.」という。

2. 選定方法

建屋応答の不確かさ<mark>等</mark>を考慮した検討に用いる地震動の選定方法を以下に示す。また, 選定方法のフローを図2-1に示す。

- Ss-1~Ss-8の基本ケースについて、原子炉建屋の地震応答解析を行う。(VI-2-2-1「原子炉建屋の地震応答計算書」による。)
- ② ①から得られるSs-1~Ss-8による原子炉建屋屋上レベル(T.M.S.L.38.2m)の時 刻歴応答波を入力地震動として、主排気筒の基本ケースについて地震応答解析を 行う。
- ③ ②から得られる各入力時震動の応答(加速度,変位,軸力及び曲げモーメント) を比較し、いずれかの応答が最大となる基準地震動Ssを建屋応答の不確かさ等 を考慮した検討に用いる入力地震動とする。

注記*1 : 詳細は, VI-2-7-2-1「主排気筒の耐震性についての計算書」による。 *2 : 応答値は, 加速度, 変位, 軸力及び曲げモーメントとする。

図 2-1 建屋応答の不確かさ<mark>等</mark>を考慮した検討に用いる地震動の選定法のフロー

3. 地震動の選定

主排気筒の基準地震動Ssに対する地震動の選定過程を以下に記載する。主排気筒の 基準地震動Ss(基本ケース)に対する最大応答値を表3-1~表3-16に示す。

「2. 選定方法」に基づき確認した結果, Ss-1及びSs-2については, 応答値のいずれ かがSs-1~Ss-8の中で最大となることから, 建屋応答の不確かさ<mark>等</mark>の影響検討に用いる 地震動とする。

动化去	T.M.S.L.				最大际	\$答加速度((m/s^2)			
中的小工	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	<u>53. 2</u>	48.7	39.0	19.2	21.4	19.5	21.5	41.3	53.2
·	76.25	<u>47.1</u>	41.9	34.1	15.8	18.3	16.2	17.9	35.5	47.1
	72.5	<u>39. 7</u>	34.0	29.3	12.2	15.0	12.5	13.9	29.3	39.7
鉄塔部	65.0	<u>27.4</u>	23.1	20.9	9.10	10.7	9.07	10.3	22.3	27.4
	56.5	<u>17.6</u>	14.9	13.7	7.96	8.08	8.17	7.70	16.2	17.6
	48.0	<u>19. 1</u>	11.5	10.9	7.73	7.06	7.89	6.92	14.1	19.1
	40.2	<u>12. 9</u>	8.85	9.16	6.34	5.27	6.56	5.14	11.4	12.9
	38.2	<u>12.3</u>	8.61	8.87	6.10	5.16	6.31	4.95	11.0	12.3
	85.0	<u>67. 9</u>	47.7	53.1	24.7	23.0	24.5	24.8	45.4	67.9
	80.0	<u>46. 7</u>	40.8	38.0	17.3	18.2	17.4	18.5	34.5	46.7
	76.25	<u>44. 3</u>	35.8	31.0	12.3	15.8	12.5	14.6	33.0	44.3
	72.5	<u>45.5</u>	31.2	27.3	10.3	13.7	10.7	12.9	32.5	45.5
筒身部	65.0	<u>38.8</u>	22.3	21.6	12.4	10.9	12.9	9.26	27.2	38.8
	56.5	<u>20. 7</u>	15.0	15.8	8.06	9.01	8.40	8.07	17.0	20.7
	48.0	<u>17. 1</u>	10.9	10.8	7.03	6.68	7.36	6.33	13.6	17.1
	39.0	<u>12.5</u>	8.69	8.98	6.19	5.20	6.41	5.02	11.1	12.5
	38.2	12.3	8.61	8.87	6.10	5.16	6.31	4.95	11.0	12.3

表 3-1 最大応答加速度一覧表(基準地震動 S s, NS 方向)

表 3-2 最大応答加速度一覧表(基準地震動 S s, EW 方向)

立7/六	T.M.S.L.				最大点	5答加速度(m/s^2)			
部亚	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	<u>50.8</u>	49.1	37.4	29.4	29.3	31.6	36.8	38.2	50.8
	76.25	<u>45. 3</u>	42.4	32.6	25.4	25.4	27.1	30.3	33.2	45.3
	72.5	<u>38. 5</u>	34.8	27.8	20.4	20.7	21.8	23.4	27.5	38.5
谷生 拔 立7	65.0	26.6	<u>27. 2</u>	19.6	15.80	14.9	16.2	16.6	21.3	27.2
<u></u>	56.5	16.5	<u>18. 9</u>	12.7	12.7	11.5	12.9	13.70	14.7	18.9
	48.0	<u>19. 1</u>	13.0	11.0	9.63	10.8	9.92	12.6	13.4	19.1
	40.2	<u>12.6</u>	12.0	8.70	7.26	8.80	7.41	9.27	10.9	12.6
	38.2	<u>12. 2</u>	11.7	8.45	6. 98	8.55	7.14	8.95	10.6	12.2
	85.0	61.1	<u>63. 3</u>	50.6	37.3	39.0	36.5	48.6	41.3	63.3
	80.0	44.2	<u>45. 1</u>	36.3	25.7	26.1	28.2	33.9	32.8	45.1
	76.25	<u>41.7</u>	38.3	29.5	22.1	21.7	23.3	23.3	31.1	41.7
	72.5	<u>40.8</u>	37.7	25.8	20.2	17.8	21.2	18.5	29.4	40.8
筒身部	65.0	<u>32. 9</u>	32.1	19.1	19.5	13.1	20.3	13.7	23.2	32.9
	56.5	18.7	<u>20. 6</u>	14.0	13.6	13.9	14.20	14.9	13.6	20.6
	48.0	<u>16.5</u>	12.8	10.1	9. 27	10.4	9.89	12.0	12.8	16.5
	39.0	<u>12.4</u>	11.8	8.54	7.08	8.64	7.24	9.05	10.7	12.4
	38.2	12.2	11.7	8.45	6. 98	8.55	7.14	8.95	10.6	12.2

	T.M.S.L.				最大応	5答加速度(m/s^2)			
고마미국	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	<u>14. 2</u>	10.8	9.13	8.3	8.19	8.68	9.69	7.81	14.2
	76.25	<u>14. 2</u>	10.9	8.97	8.27	8.14	8.67	9.67	7.65	14.2
	72.5	<u>14. 3</u>	10.2	8.87	7.96	7.80	8.18	9.27	7.56	14.3
谷生 拔 立7	65.0	<u>12. 7</u>	8.74	7.60	7.18	7.21	6.92	8.23	6.03	12.7
11日 日 4 人业	56.5	<u>12. 1</u>	7.30	7.02	6.22	6.48	6.12	7.02	5.09	12.1
	48.0	<u>10.6</u>	6.27	6.43	5.41	5.77	5.48	6.04	4.15	10.6
	40.2	<u>9.62</u>	6.52	6.32	4. 74	5.31	4.85	5.31	3. 42	9.62
	38.2	<u>9. 57</u>	6. 53	6.32	4. 75	5.28	4.82	5.27	3. 39	9.57
	85.0	<u>11. 2</u>	6.47	7.86	6.14	5.85	5.71	6.08	6.15	11.2
	80.0	<u>11.2</u>	6.45	7.82	6.11	5.83	5.68	6.05	6.10	11.2
	76.25	<u>11. 1</u>	6.42	7.72	6.05	5.78	5.60	6.00	6.00	11.1
	72.5	<u>10.8</u>	6.32	7.45	5.90	5.67	5.45	5.86	5.74	10.8
筒身部	65.0	<u>10.4</u>	6.11	6.97	5. 59	5.43	5.29	5.58	5.20	10.4
	56.5	<u>9. 91</u>	5.88	6.46	5.22	5.14	5.11	5.23	4.51	9.91
	48.0	<u>9.61</u>	5.83	6.28	4.89	4.86	4.93	4.92	3.85	9.61
	39.0	<u>9.34</u>	5. 79	6.21	4.60	4.63	4.77	4.66	3.18	9.34
	38.2	<u>9.34</u>	5. 79	6.21	4.60	4.63	4.76	4.66	3. 18	9.34

表 3-3 最大応答加速度一覧表(基準地震動 S s, 鉛直方向)

表 3-4 最大応答変位一覧表(基準地震動 S s, NS 方向)

立7/六	T.M.S.L.				最ナ	、応答変位(mm)			
前江	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	<u>181</u>	155	131	53.2	67.9	54.5	63.8	136	181
	76.25	<u>154</u>	132	112	45.3	58.0	46.4	54.2	117	154
	72.5	<u>122</u>	104	88.1	35.4	45.7	36.3	42.3	92.4	122
谷生 技 立7	65.0	<u>69. 0</u>	58.7	50.1	19.7	26.0	20.4	23.4	53. 5	69.0
<u></u> 妖哈司	56.5	<u>29. 2</u>	24.8	21.2	8.32	11.2	8.76	10.1	23.6	29.2
	48.0	<u>5.80</u>	4.95	4.35	1.78	2.51	1.77	2.09	5.59	5.80
	40.2	0.229	<u>0. 252</u>	0.171	0.109	0.136	0.116	0.116	0.212	0.252
	38.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	85.0	<u>264</u>	226	183	89.3	115	91.0	98.5	237	264
	80.0	<u>216</u>	185	147	71.6	94.4	73.3	80.5	194	216
	76.25	<u>181</u>	155	121	58.7	79.1	60.3	67.2	163	181
	72.5	<u>150</u>	127	97.8	46.9	64.8	48.4	55.0	135	150
筒身部	65.0	<u>93. 6</u>	76.9	58.0	26.8	39.3	28.0	33.1	83.2	93.6
	56.5	<u>40.2</u>	32.0	24.1	10.2	16.3	10.7	13.3	35.4	40.2
°	48.0	<u>7.61</u>	6.21	5.24	1.97	3.16	1.99	2.59	7.01	7.61
	39.0	<u>0.0151</u>	0.0108	0.0103	0.00498	0.00501	0.00524	0.00524	0.0116	0.0151
	38.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

立て (古	T.M.S.L.				最大	大応答変位(mm)			
고마미국	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	<u>170</u>	160	123	94.0	95.1	100.0	101	126	170
	76.25	<u>145</u>	137	105	80.0	80.9	85.1	85.5	108	145
	72.5	<u>114</u>	107	82.0	62.6	63.3	66.6	66.5	85.0	114
谷中 4支 立7	65.0	<u>63.4</u>	60.0	45.8	34. 7	34.9	36.9	36.3	48.3	63.4
<u></u>	56.5	<u>25.4</u>	25.1	18.4	13.8	13.8	14.6	13.9	20.1	25.4
	48.0	<u>9.06</u>	8.65	6.63	5.36	5.66	5.69	6.28	6.17	9.06
	40.2	0.212	<u>0. 299</u>	0.154	0.183	0.187	0.194	0.181	0.198	0.299
	38.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	85.0	247	<u>272</u>	172	144	173	159	188	220	272
	80.0	201	<u>220</u>	138	117	140	130	153	180	220
	76.25	168	<u>183</u>	113	97.9	116	108	127	151	183
	72.5	138	<u>148</u>	90.5	79.8	94.0	87.6	102	123	148
筒身部	65.0	83.6	<u>88. 5</u>	52.3	47.9	54. 7	52.5	59.2	74.2	88.5
••• •••	56.5	33.4	<u>35. 8</u>	20.1	19.3	20.8	21.3	22.4	29.8	35.8
	48.0	4.75	<u>5. 84</u>	3.47	3.27	3.13	3. 53	3.43	4.64	5.84
	39.0	<u>0.0152</u>	0.0131	0.00998	0.00773	0.00858	0.00823	0.00979	0.0100	0.0152
	38.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

表 3-5 最大応答変位一覧表(基準地震動 S s, EW 方向)

表 3-6 最大応答変位一覧表(基準地震動 S s, 鉛直方向)

立7/六	T.M.S.L.				最大	、応答変位(mm)			
部亚	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	17.3	<u>24. 9</u>	12.8	13.4	14.2	14.0	13.5	13.1	24.9
	76.25	17.6	<u>25. 5</u>	13.0	13.6	14.5	14.3	13.7	13.4	25.5
	72.5	18.5	<u>23. 9</u>	13.6	12.8	13.6	13.4	12.9	14.0	23.9
鉄塔部	65.0	13.2	<u>19.0</u>	9.75	10.1	10.8	10.6	10.2	10.1	19.0
<u></u> 妖哈司	56.5	10.3	<u>12. 3</u>	7.64	6.46	6.96	6.78	6.6	8.02	12.3
	48.0	4.29	<u>6. 16</u>	3.19	3. 26	3.51	3.42	3.34	3.31	6.16
	40.2	0.174	<u>0. 237</u>	0.129	0.118	0.127	0.124	0.119	0.143	0.237
	38.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	85.0	<u>1.53</u>	1.20	1.26	1.05	1.09	1.10	1.11	1.15	1.53
	80.0	<u>1.51</u>	1.18	1.24	1.04	1.07	1.09	1.10	1.13	1.51
	76.25	<u>1.46</u>	1.15	1.20	1.01	1.04	1.05	1.06	1.10	1.46
	72.5	<u>1.33</u>	1.05	1.10	0. 919	0.95	0.962	0.969	1.00	1.33
筒身部	65.0	<u>1.07</u>	0.844	0.881	0.74	0.764	0.775	0.778	0.802	1.07
	56.5	<u>0. 731</u>	0.577	0.601	0.506	0. 523	0.531	0.53	0.545	0.731
	48.0	<u>0.388</u>	0.308	0.319	0.269	0.278	0.283	0.281	0.288	0.388
	39.0	<u>0.00383</u>	0.00309	0.00321	0.00272	0.00279	0.00286	0.00279	0.00281	0.00383
	38.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

动心	T.M.S.L.				最大	、応答軸力(kN)			
前亚	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	—	_	—	—		—	_	_	_
	76.25	<u>23. 6</u>	19.8	19.8	16.0	18.0	15.8	18.9	18.5	23.6
	72.5	<u>696</u>	678	512	329	292	348	333	519	696
	68.75	<u>716</u>	701	528	347	314	366	351	538	716
	65.0	<u>1740</u>	1700	1280	802	679	850	809	1290	1740
鉄塔部	60.75	<u>1790</u>	1750	1310	843	730	891	848	1330	1790
	56.5	<u>3320</u>	3240	2440	1500	1240	1560	1420	2510	3320
	52.25	<u>3400</u>	3320	2510	1560	1320	1630	1480	2590	3400
	48.0	<u>4560</u>	4560	3360	2040	1640	2110	1790	3550	4560
	40.2	4690	<u>4710</u>	3480	2150	1770	2220	1890	3680	4710
	38.2	<u>6420</u>	6110	4760	2730	2420	2820	2250	5290	6420

表 3-7 最大応答軸力一覧表(基準地震動 S s, R2 通り-RC 通り間主柱材)

表 3-8 最大応答軸力一覧表(基準地震動 S s, R1 通り-RC 通り間主柱材)

±77/±÷	T.M.S.L.				最ナ	、応答軸力(kN)			
前亚	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	—	—	—	—	—	—	—	—	—
	76.25	<u>24. 0</u>	21.2	19.8	16.2	17.2	16.0	16.9	18.7	24.0
	72.5	637	<u>997</u>	427	486	506	508	526	423	997
	68.75	656	<u>1020</u>	444	500	521	523	544	437	1020
	65.0	1590	<u>2510</u>	1050	1220	1280	1280	1310	1050	2510
鉄塔部	60.75	1630	<u>2570</u>	1090	1260	1310	1320	1350	1080	2570
	56.5	3070	<u>4760</u>	2030	2360	2460	2480	2450	1970	4760
	52.25	3140	<u>4850</u>	2100	2410	2520	2540	2500	2030	4850
	48.0	4250	<u>6510</u>	2840	3340	3450	3520	3410	2670	6510
	40.2	4390	<u>6680</u>	2960	3440	3560	3630	3510	2760	6680
	38.2	6110	8490	4260	4600	4760	4850	4630	3720	8490

动 (士	T.M.S.L.				最大	に応答軸力(kN)			
前江	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	—	_	—	—	—	—	—	_	
	76.25	<u>24. 0</u>	20.3	19.4	17.7	16.6	18.7	16.0	18.7	24.0
	72.5	660	<u>693</u>	491	315	346	346	328	483	693
	68.75	679	<u>715</u>	511	335	364	366	345	502	715
	65.0	1670	<u>1760</u>	1230	752	844	840	797	1210	1760
鉄塔部	60.75	1720	<u>1800</u>	1270	801	883	887	837	1250	1800
	56.5	3170	<u>3300</u>	2330	1400	1570	1560	1490	2360	3300
	52.25	3240	<u>3370</u>	2410	1480	1640	1640	1560	2440	3370
	48.0	4400	<u>4510</u>	3230	1970	2160	2130	2060	3390	4510
	40.2	4530	<u>4630</u>	3370	2100	2280	2250	2170	3520	4630
	38.2	<u>6100</u>	5560	4250	2720	3060	2910	2890	4560	6100

表 3-9 最大応答軸力一覧表(基準地震動 S s, g1 通り-gD 通り間主柱材)

表 3-10 最大応答軸力一覧表(基準地震動 S s, R2 通り-RD 通り間主柱材)

±77 /±-	T.M.S.L.				最大	マ応答軸力(kN)			
前江	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	—	—	—	—	—	—	—	—	—
	76.25	<u>22.6</u>	20.6	19.0	18.6	17.2	19.6	18.1	17.1	22.6
	72.5	696	<u>1000</u>	512	546	574	571	543	518	1000
	68.75	716	<u>1030</u>	528	569	594	593	561	538	1030
	65.0	1740	<u>2530</u>	1280	1350	1440	1420	1360	1280	2530
鉄塔部	60.75	1780	<u>2580</u>	1310	1400	1480	1470	1400	1330	2580
	56.5	3320	<u>4790</u>	2440	2500	2690	2630	2540	2510	4790
90 90 91	52.25	3400	<u>4890</u>	2510	2590	2760	2710	2610	2580	4890
	48.0	4560	<u>6590</u>	3350	3360	3650	3530	3450	3550	6590
	40.2	4690	<u>6750</u>	3480	3490	3770	3660	3560	3680	6750
	38.2	6410	<u>8730</u>	4760	4290	4690	4470	4380	5280	8730

±77/÷÷	T.M.S.L.				最ナ	、応答軸力(kN)			
前江	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	85.0	—	—	—	—	—	—	—	—	—
	80.0	<u>49. 1</u>	38.1	40.4	33.5	34.7	35.0	35.9	37.3	49.1
	76.25	<u>139</u>	108	114	94.7	97.9	98.8	101	105	139
	72.5	<u>364</u>	283	299	249	257	259	265	275	364
筒身部	65.0	<u>433</u>	337	356	296	306	309	316	327	433
	56.5	<u>580</u>	454	477	398	412	416	422	437	580
	48.0	<u>701</u>	551	576	483	499	506	509	526	701
	39.0	<u>928</u>	735	764	644	665	677	672	689	928
	38.2	<u>1210</u>	977	1020	861	883	906	883	889	1210

表 3-11 最大応答軸力一覧表(基準地震動 S s, 筒身部)

表 3-12 最大応答曲げモーメント一覧表(基準地震動 S s, R2 通り-RC 通り間主柱材)

动/去	T.M.S.L.				最大応答曲	ョげモーメン	ィト(kN・m)			
中山小	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	76.25	18.6	<u>21.5</u>	13.6	9.76	10.6	10.4	11.3	13.7	21.5
	72.5	<u>44. 9</u>	42.8	33.2	21.4	18.7	22.6	20.6	33.4	44.9
	68.75	72.3	<u>81.5</u>	53.4	38.5	39.3	41.5	45.3	54.4	81.5
	65.0	<u>100</u>	99.9	75.3	49.2	43.3	52.4	50.9	72.3	100
鉄塔部	60.75	64.3	<u>68.2</u>	48.5	37.3	33.9	40.1	41.9	43.5	68.2
	56.5	<u>289</u>	275	215	137	117	146	129	217	289
	52.25	455	<u>504</u>	338	219	237	237	253	355	504
	48.0	<u>427</u>	426	316	212	174	224	211	322	427
	40.2	<u>210</u>	205	153	113	99. 5	118	117	152	210
	38.2	2440	<u>2460</u>	1790	1070	1060	1170	1090	2200	2460

动 (去	T.M.S.L.				最大応答曲	自げモーメン	ィト(kN・m)			
다(미국	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	76.25	18.1	<u>24. 3</u>	13.2	12.3	13.3	13.0	13.4	13.1	24.3
	72.5	41.1	<u>63. 2</u>	29.4	30.9	32.1	32.4	33.1	28.5	63.2
	68.75	66.4	<u>88.4</u>	47.7	44.2	47.7	47.1	51.8	47.1	88.4
	65.0	92.4	<u>145</u>	68.7	71.1	76.5	75.4	78.5	63.4	145
鉄塔部	60.75	64.3	<u>90.6</u>	47.9	47.1	49.2	49.8	52.5	41.9	90.6
	56.5	267	<u>405</u>	194	198	208	208	210	191	405
	52.25	425	<u>531</u>	301	253	282	271	285	316	531
	48.0	396	<u>625</u>	281	303	331	321	329	284	625
	40.2	197	<u>295</u>	134	141	156	151	163	142	295
	38.2	2430	<u>3010</u>	1760	1850	1980	1950	1850	2040	3010

表 3-13 最大応答曲げモーメント一覧表(基準地震動 S s, R1 通り-RC 通り間主柱材)

表 3-14 最大応答曲げモーメント一覧表(基準地震動 S s, R1 通り-RD 通り間主柱材)

动心	T. M. S. L.				最大応答曲	由げモーメン	ィト(kN・m)			
可いて	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	76.25	18.1	<u>21.5</u>	13.1	10.2	11.2	10.8	11.5	13.1	21.5
	72.5	42.0	<u>43. 7</u>	31.1	19.9	21.8	21.8	21.1	30.6	43.7
	68.75	66.9	<u>80.6</u>	49.8	41.1	46.5	43.1	47.0	49.6	80.6
	65.0	98.6	<u>103</u>	73.3	46.0	50.7	50.6	48.3	69.4	103
鉄塔部	60.75	68.2	<u>71.4</u>	51.2	36.1	38.7	38.2	41.4	46.6	71.4
	56.5	269	<u>281</u>	200	130	137	143	138	198	281
	52.25	425	<u>487</u>	301	235	269	247	266	316	487
	48.0	433	<u>461</u>	317	192	196	211	217	308	461
	40.2	202	<u>232</u>	145	99.2	106	107	115	140	232
Í	38.2	<u>2420</u>	2280	1750	1010	1140	1110	1030	2030	2420

动 (去	T.M.S.L.				最大応答曲	由げモーメン	ィト(kN・m)			
旦り小	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	80.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	76.25	18.6	<u>24.5</u>	13.6	12.6	13.5	13.2	13.5	13.7	24.5
	72.5	44.9	<u>63. 9</u>	33.2	34.5	36.4	36.1	34.5	33.4	63.9
	68.75	72.3	<u>92. 9</u>	53.4	48.5	50.7	50.7	50.2	54.4	92.9
	65.0	100	<u>146</u>	75.3	80.5	84.4	84.3	80.1	72.2	146
鉄塔部	60.75	68.2	<u>90.5</u>	51.2	51.9	53.5	54.5	51.7	46.6	90.5
	56.5	289	<u>407</u>	214	217	230	227	218	217	407
	52.25	455	<u>551</u>	338	272	294	285	287	355	551
	48.0	433	<u>621</u>	317	337	366	355	354	323	621
	40.2	212	<u>291</u>	155	165	179	175	178	154	291
	38.2	2430	<u>3170</u>	1780	1720	1870	1820	1730	2190	3170

表 3-15 最大応答曲げモーメント一覧表(基準地震動 S s, R2 通り-RD 通り間主柱材)

表 3-16 最大応答曲げモーメント一覧表(基準地震動 S s, 筒身部)

动传	T.M.S.L.				最大応答曲	由げモーメン	~ト(kN・m)			
前亚	(m)	Ss-1	Ss-2	Ss-3	Ss-4	Ss-5	Ss-6	Ss-7	Ss-8	最大値
	85.0	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	80.0	795	<u>928</u>	622	523	530	514	639	532	928
	76.25	2120	<u>2590</u>	1690	1390	1420	1410	1740	1460	2590
	72.5	2590	<u>2980</u>	1830	1680	1610	1670	1850	1830	2980
筒身部	65.0	3900	<u>4610</u>	2530	2500	2500	2540	2650	3000	4610
	56.5	5090	<u>6870</u>	3530	3340	4030	3620	4230	4460	6870
	48.0	8040	<u>10200</u>	4900	4770	5790	5190	5980	6950	10200
	39.0	3230	<u>3390</u>	2550	1720	1840	1780	1770	3130	3390
	38.2	<u>3250</u>	3110	2590	1770	1950	1840	1980	3010	3250

4. 建屋応答の不確かさ等を考慮した検討に用いる地震動

主排気筒の建屋応答の不確かさ等を考慮した検討に用いる地震動の選定結果を表4-1 に示す。地震動の選定にあたり、基本ケースにおける建屋応答の確認は、以下の資料に 基づき実施した。

・VI-2-7-2-1「主排気筒の耐震性についての計算書」

対免	建屋応答の不確かさ <mark>等</mark> を考 慮した検討に用いる地震動
入] 豕	基準地震動 S s
主排気筒	Ss-1及びSs-2

表 4-1 建屋応答の不確かさ等を考慮した検討に用いる地震動

別紙3-2 原子炉建屋の材料物性の不確かさ<mark>等</mark>を考慮した地震応答 解析結果

目 次

1.	概要		•••••	 	••••	別紙 3-2-1
2.	地震応	答解析結果		 	••••	別紙 3-2-1

1. 概要

本資料は,主排気筒を対象とし,「原子炉建屋の地震応答計算書に関する補足説明資料」のうち,別紙3「地震応答解析における材料物性の不確かさに関する検討」に基づ く原子炉建屋の応答を入力地震動として,原子炉建屋の材料物性の不確かさ及び制震置の不確かさ(以下「建屋応答の不確かさ等」という。)を考慮した地震応答解析結果に ついて示すものである。

建屋応答の不確かさ等を考慮した検討に用いる地震動は、主排気筒の応答への影響が 大きいSs-1及びSs-2である(別紙3-1「原子炉建屋の材料物性の不確かさ等を考慮した 検討に用いる地震動の選定について」参照)。

入力地震動,固有値解析結果及びSs-1による地震応答解析の結果は,別紙3「地震応 答解析における原子炉建屋の材料物性の不確かさ<mark>等</mark>に関する検討」に示している。

本資料では,Ss-2による地震応答解析結果について示す。

2. 地震応答解析結果

入力地震動の組合せを表2-1に、入力地震動の時刻歴波形を図2-1~図2-6に示す。 なお、図中の〇印は、最大値発生時を示す。Ss-2は、3方向(5成分)(水平2方向(並 進・回転)及び鉛直方向)の同時入力とする。なお、Ss-2のケース1、ケース3~6にお いて誘発上下動を考慮している。

建屋応答の不確かさ等を考慮したSs-2に対する地震応答解析結果を図2-7~図2-14 に示す。なお、図2-11及び図2-14では、以下の主柱材の最大応力を包絡したものを 「鉄塔部 主柱材包絡」として示す。

- ・原子炉建屋のR1通りとRC通りの交点に位置する主柱材
- ・原子炉建屋のR1通りとRD通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRC通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRD通りの交点に位置する主柱材

また、制震装置(オイルダンパー)の最大応答値及び許容値を表2-2に示す。

Ss-1の結果と同様にSs-2の結果は、ケース1(基本ケース)に対し、いずれの方向に ついても、各検討ケースの最大応答加速度、最大応答変位、最大応答軸力及び最大応答 曲げモーメントはおおむね同等であることを確認した。また、制震装置(オイルダンパ ー)の最大応答値は許容値以下である。

なお, 東京湾平均海面を, 以下「T.M.S.L.」という。

		/ ///				
	入力地震動の組合せ(Ss-2,3方向(5成分)同時入力)					
建屋応答の不確かさ等 検討ケース	水平方向*1				約古	
	NS 方向		EW 方向		- 町世 七白*1	備考*2
	並進	回転	並進	回転	刀凹	
ケース 1 (基本ケース)	0	0	0	0	0	誘発上下動考慮
ケース 2 (建屋剛性+σ及び 地盤剛性+σ)	0	0	0	0	0	_
ケース 3 (建屋剛性-σ及び 地盤剛性-σ)	0	0	0	0	0	誘発上下動考慮
ケース 4 (建屋剛性コア平均)	0	0	0	0	0	誘発上下動考慮
ケース 5 (建屋剛性-2 o)	0	0	0	0	0	誘発上下動考慮
ケース 6 (回転ばね低減)	0	0	0	0	0	誘発上下動考慮
ケース7 (減衰係数+20%)	0	0	0	0	0	誘発上下動考慮
ケース 8 (減衰係数-20%)	0	0	0	0	0	誘発上下動考慮

表2-1 入力地震動の組合せ(Ss-2)

注記*1:組み合わせる成分を「〇」で、組み合わせない成分を「一」で示す。

*2 :誘発上下動を考慮しない場合は「一」で示す。

(c) EW方向 並進成分図2-1 入力地震動の加速度時刻歴波形(ケース1, Ss-2)(1/2)

図2-2 入力地震動の加速度時刻歴波形 (ケース2, Ss-2) (1/2)

図2-2 入力地震動の加速度時刻歴波形 (ケース2, Ss-2) (2/2)

(a) NS方向 並進成分

(c) EW方向 並進成分図2-3 入力地震動の加速度時刻歴波形 (ケース3, Ss-2) (1/2)

(d) EW方向 回転成分

図2-4 入力地震動の加速度時刻歴波形 (ケース4, Ss-2) (1/2)

(d) EW方向 回転成分

(a) NS方向 並進成分

(c) EW方向 並進成分図2-5 入力地震動の加速度時刻歴波形 (ケース5, Ss-2) (1/2)

(a) NS方向 並進成分

図2-6 入力地震動の加速度時刻歴波形 (ケース6, Ss-2) (1/2)

(d) EW方向 回転成分

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

(b) 筒身部

図2-7 最大応答加速度(Ss-2, NS方向)

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

(b) 筒身部

図2-8 最大応答変位(Ss-2, NS方向)

別紙 3-2-16

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

(D) 回名 印

図2-9 最大応答加速度(Ss-2, EW方向)

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

(b) 筒身部

図2-10 最大応答変位(Ss-2, EW方向)

別紙 3-2-18

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部 主柱材包絡

図2-11 最大応答曲げモーメント (Ss-2)

別紙 3-2-19

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

(b) 筒身部

図2-12 最大応答加速度(Ss-2,鉛直方向)

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

ケース7…減衰係数+20%,ケース8…減衰係数-20%

(a) 鉄塔部

 ,

	ケース6	T. M. S. L. 简身部								
ケース7 - TMSI (m)	・・ ケース8	(m)	ケース1	ケース2	ケース3	ケース4	ケース5	ケース6	ケース7	ケース8
85.0	筒身部	85.0	1.20	1.21	1.19	1.19	1.21	1.20	1.20	1.20
80.0		80.0	1.18	1.19	1.17	1.17	1.19	1.18	1.18	1.18
76.25		76.25	1.15	1.15	1.13	1.13	1.15	1.15	1.15	1.15
72.5		72.5	1.05	1.06	1.04	1.04	1.05	1.05	1.05	1.05
65.0		65.0	0.844	0.850	0.836	0.833	0.849	0.844	0.844	0.844
56.5		56.5	0.577	0.581	0.572	0.570	0.581	0.577	0.577	0.577
48.0		48.0	0.308	0.310	0.305	0.304	0.310	0.308	0.308	0.308
39.0		39.0	0.00309	0.00304	0.00314	0.00269	0.00326	0.00309	0.00309	0.00309
38.2		38.2	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0 2	4 (mm)	注:ケース ケース ケース	1…設上認モ 3…建屋剛性 5…建屋剛性	·テル(基本 三-σ及び地 三-2σ,ケー	ケース), 盤剛性-σ -ス6…回転	ケース2…建 ケース4… ばね低減	屋剛性+σ 建屋剛性コ	及び地盤剛性 ア平均,	±+σ,	

(b) 筒身部

図2-13 最大応答変位(Ss-2,鉛直方向)

別紙 3-2-21

ケース3…建屋剛性 – σ 及び地盤剛性 – σ , ケース4…建屋剛性コア平均,

ケース5…建屋剛性-2σ,ケース6…回転ばね低減

ケース7…減衰係数+20%,ケース8…減衰係数-20%

主柱材包絡 鉄塔部 (a)

(b)	筒身部	
	La tota la La La	1.

図2-14 最大応答軸力 (Ss-2)

別紙 3-2-22

χ_2^{-2} 前辰表直(χ_1^{ν})の取入心谷恒及い計谷恒($3S^{-2}$)											
項目	オイルダンパーの最大応答値										
	ケース1	ケース2	ケース 3	ケース4	ケース 5	ケース6	ケース 7	ケース 8	計谷恒		
速度 (m/s)	1.87	1.66	2.01	1.83	1.88	2.03	1.74	2.01	2.60		
変位 (mm)	144	123	160	140	146	157	131	158	175		

表2-2 制震装置(オイルダンパー)の最大応答値及び許容値(Ss-2)

別紙4 地震荷重と風荷重を重畳させた場合の影響検討

目 次

1.	概要	別紙 4-1
2.	解析方針	別紙 4-2
2.	1 解析モデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 4-2
2.2	2 風荷重	別紙 4-5
3.	断面算定結果(検定値)に基づく影響評価 ・・・・・・・・・・・・・・・・・	別紙 4-7

1. 概要

本資料は主排気筒に対し、地震荷重に加えて風荷重(風速4.1m/s及び16.0m/s)を重 畳させた場合の耐震性に関する裕度を示すものである。詳細には、以下に示す検討を実 施する。

- ・ Ss-1を用いたケース1(基本ケース)に対する検討
- ・ Ss-2を用いたケース6(回転ばね低減)に対する検討

Ss-1 を用いたケース 1 (基本ケース) に対する検討では,建屋応答の不確かさを含め た各入力地震動の代表として,全周期帯の応答が大きく,耐震評価への影響も大きい基 準地震動 Ss-1 を用いた基本ケースを選定し,地震荷重と風荷重を重畳させた場合の影響 を確認することを目的とする。

Ss-2 を用いたケース 6 (回転ばね低減) に対する検討では, VI-2-7-2-1 「主排気筒の 耐震性についての計算書」における断面算定結果が最も厳しくなる検討ケースを対象に, 地震荷重と風荷重を重畳させた場合においても断面算定結果に一定の裕度を有すること を確認することを目的とする。

また、上述の各検討において重畳させる風荷重を以下に示す。<mark>風速の設定については、</mark> 「工事計画に係る補足説明資料(耐震性に関する説明書」のうち「地震荷重と風荷重の 組合せについて」に示す。

- ・ 風速4.1m/sによる風荷重
- ・ 風速16.0m/sによる風荷重

なお、入力地震動は、別紙3「地震応答解析における原子炉建屋の材料物性の不確か さ等に関する検討」に基づき、Ss-1については2方向(3成分)(NS方向(並進・回転) 及び鉛直方向)同時入力とし、Ss-2について3方向(5成分)(水平2方向(並進・回転) 及び鉛直方向)同時入力とする。

また,固有値解析結果は,別紙3「地震応答解析における原子炉建屋の材料物性の不確かさ等に関する検討」に示すケース1(基本ケース)と同一である。

2. 解析方針

2.1 解析モデル

VI-2-7-2-1「主排気筒の耐震性についての計算書」における解析モデル(以下「設 工認モデル」という。)では,既工認との整合性と保守性を担保するため,主柱材及 び筒身の実状の部材断面の切り替え位置よりも低い位置に部材の切り替え位置を設定 し,モデル化を行っている。本検討では,地震荷重に加えて,風荷重を重畳させた場 合の耐震性に関する裕度を確認することを目的としているため,主柱材及び筒身部に ついて,実状に合わせた切り替え位置を考慮したモデルに変更する。

切り替え位置の一覧を表 2-1 に示す。主柱材は,設工認モデルに対して,1.45m 高い位置に部材断面の切り替え位置を変更し,筒身は,C-D間で 1.00m 高い位置,E-F間で 2.42m 高い位置に部材断面の切り替え位置を変更する。

また、切り替え位置の変更を考慮した解析モデルを図 2-1 に示す。

		切り替え位	置のレベル	切り替え位置
		Т.М.S.	L. (m)	の差
部材	部材間	1)		(1) - 2)
		本検討における		
		解析モデル	設上認モアル	(m)
	B - C	77.70	76.25	1.45
<u>→ ŧ→ ŧ</u> ŧ	C – D	70.20	68.75	1.45
土住内	D – E	62.20	60.75	1.45
	E - F	53.70	52.25	1.45
倍良	C - D	69.75	68.75	1.00
同习	E - F	54.67	52.25	2.42
	切り替え位置	置の設定例(主柱林	才E — F 間)	
(「柏崎刈羽原子	子力発電所第6号根	幾工事のうち 発電	電所本館建物新設	工事(その 2)」
のうちK 6 -	-R-ST-D0	4 「鉄塔詳細図 3	(2節東西面)」)	
_				
7		14.3		
		And and	IN and	A DO
	1 E		1// m	O Official
8				
	000	********	B.P-DA	
		/ m 24		
(#K)-	00 D 00	in the second second	H	× ***
	*		I Dem St	THE ALE
		ň / /		111/2
500	425		3	
▼切り替え位置	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			1222 Ver
800	β B		2933	16 29336 16 29776
5000		1		
2 1	14 January 14	Y	12490 Val	
注1:主柱材の	切り替え位置は保	守的に切り替え位	置の始点とする。	
圧2 :東京湾平:	蚐海面を,以下∣	T.M.S.L.」という	0	

表 2-1 切り替え位置の一覧

図 2-1 切り替え位置の変更を考慮した解析モデル

2.2 風荷重

風荷重は、VI-2-7-2-1「主排気筒の耐震性についての計算書」と同一方法により算 定し、作用方向も同一とする。また、風速については 4.1m/s 及び 16.0m/s の 2 ケース について検討する。

風荷重計算表を表 2-2及び表 2-3に示す。

表 2-2 風荷重計算表 (風速 4.1m/s)

(a)	鉄塔部
(u)	

標高	谏度圧	90°	方向風荷重	重*	45°方向風荷重			
T. M. S. L. (m)	q (kN/m²)	風力係数 C _f	見付面積 A (m ²)	風荷重 P(kN)	風力係数 C _f	見付面積 A(m²)	風荷重 P(kN)	
80.0	0.0358	1.92	3.4	0.24	1.50	5.4	0.29	
76.25	0.0358	1.82	7.6	0.50	1.44	11.9	0.62	
72.5	0.0358	1.86	9.6	0.64	1.45	15.5	0.81	
65.0	0.0358	1.72	16.8	1.04	1.36	27.1	1.32	
56.5	0.0358	1.63	21.0	1.23	1.26	34.1	1.54	
48.0	0.0358	1.48	24.3	1.29	1.15	39.7	1.64	
40.2	0.0358	1.43	11.0	0.57	1.10	18.5	0.73	

注記*:NS 方向及び EW 方向の包絡値を示す。

(b) 筒身部

桓高	谏度圧	90	。方向風荷	重	45°方向風荷重			
T. M. S. L. (m)	q (kN/m ²)	風力係数 C _f	見付面積 A(m²)	風荷重 P(kN)	風力係数 C _f	見付面積 A(m²)	風荷重 P(kN)	
85.0	0.0365	0.90	6.8	0.23	0.90	6.8	0.23	
80.0	0.0365	0.89	12.3	0.40	0.89	12.3	0.40	
76.25	0.0365	0.88	10.6	0.35	0.88	10.6	0.35	
72.5	0.0365	0.86	15.8	0.50	0.86	15.8	0.50	
65.0	0.0365	0.83	22.5	0.69	0.83	22.5	0.69	
56.5	0.0365	0.79	24.0	0.70	0.79	24.0	0.70	
48.0	0.0365	0.74	24.7	0.67	0.74	24.7	0.67	
39.0	0.0365	0.68	12.7	0.32	0.68	12.7	0.32	

表 2-3 風荷重計算表 (風速 16.0m/s)

標高	速度圧	90°	方向風荷重	重*	45°方向風荷重			
T. M. S. L. (m)	q (kN/m ²)	風力係数 C _f	見付面積 A (m ²)	風荷重 P(kN)	風力係数 C _f	見付面積 A (m ²)	風荷重 P(kN)	
80.0	0.544	1.92	3.4	3.6	1.50	5.4	4.5	
76.25	0.544	1.82	7.6	7.6	1.44	11.9	9.4	
72.5	0.544	1.86	9.6	9.8	1.45	15.5	12.3	
65.0	0.544	1.72	16.8	15.8	1.36	27.1	20.1	
56.5	0.544	1.63	21.0	18.7	1.26	34.1	23.4	
48.0	0.544	1. 48	24.3	19.6	1.15	39.7	24.9	
40.2	0.544	1. 43	11.0	8.6	1.10	18.5	11.1	

(a) 鉄塔部

注記*:NS 方向及び EW 方向の包絡値を示す。

(b) 筒身部

桓高	速度圧	90	。方向風荷	重	45°方向風荷重			
T. M. S. L. (m)	q (kN/m ²)	風力係数 C _f	見付面積 A (m ²)	風荷重 P(kN)	風力係数 C _f	見付面積 A (m ²)	風荷重 P(kN)	
85.0	0.555	0.90	6.8	3.4	0.90	6.8	3.4	
80.0	0.555	0.89	12.3	6.1	0.89	12.3	6.1	
76.25	0.555	0.88	10.6	5.2	0.88	10.6	5.2	
72.5	0.555	0.86	15.8	7.6	0.86	15.8	7.6	
65.0	0.555	0.83	22.5	10.4	0.83	22.5	10.4	
56.5	0.555	0.79	24.0	10.6	0.79	24.0	10.6	
48.0	0.555	0.74	24.7	10.2	0.74	24.7	10.2	
39.0	0.555	0.68	12.7	4.8	0.68	12.7	4.8	

3. 断面算定結果(検定値)に基づく影響評価

断面算定結果を表 3-1<mark>~表 3-4</mark>に示す。

鉄塔部について,地震荷重と風荷重(風速 4.1m/s 及び 16.0m/s)を重畳させた場合の 検定値の変動はごく微小であることを確認した。特に, VI-2-7-2-1「主排気筒の耐震性 についての計算書」において最も厳しい検定値(0.98)を示す主柱材D-E間について は,重畳させる風荷重を風速 4.1m/s から風速 16.0m/s に変動させた場合でも,検定値は は同一であることを確認した。

主柱材の評価用応力の発生要素の比較を図 3-1 に示す。

部材断面の切り替え位置を変更することで、主排気筒の剛性が増加するとともに、部 材の評価位置が上がるため、風速 16.0m/s を重畳させたとしても主柱材D-E間の検定 値は 0.95 となる。

また,筒身部についてはその他部材と比較をして受風面積が大きいことから,重畳さ せる風荷重の増加に伴い,検定値も増加する傾向であることが確認されたが,最大検定 値はE-F間の検定値0.87であり,十分な裕度を有することを確認した。

以上のことから,風荷重と地震荷重を重畳させた場合についても主排気筒の耐震性に 影響が無いことを確認した。

	(a) Ss-1												
test - La			Ss-1を用いたケース1(基本ケース)に対する検討										
標高		地震荷重	(風荷重と重	重畳しない)	風調	≢4.1m/sと0	の重畳	風退	Ĕ16.0m/sと	の重畳			
1. M. S. L. (m)	部材間	評価月	用応力	σ σ.	評価月	用応力	σ σ.	評価月	用応力	σ σ.			
(m) 80.0		N (kN)	M (kN•m)	$\frac{\sigma_c}{f_c} + \frac{\sigma_b}{f_b}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$			
72.5	B – C	21.9	16.0	0.12	21.9	16.0	0.12	21.9	16.0	0.12			
72.0	C – D	703	44.0	0.41	704	44.1	0.41	709	44.4	0.42			
56 5	D-E	1790	96.7	0.60	1790	96.8	0.60	1810	97.5	0.60			
48.0	E - F	3400	284	0.52	3410	284	0.52	3450	287	0.52			
40. 0 40. 2	F - G	4550	539	0.55	4560	539	0.55	4630	547	0.55			

表 3-1 断面算定結果 主柱材

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

				Ss-2を用]いたケーフ	、6(回転ば	ね低減)に対	する検討		
標高		地震荷重	(風荷重と)	重畳しない)	風這	速4.1m/sとの	の重畳	風退	を16.0m/sと	の重畳
T. M. S. L. (m)	部材間	評価月	用応力	σ σ,	評価月	用応力	σ σ,	評価月	用応力	σ σ,
80.0		N (kN)	M (kN•m)	$\frac{f_c}{f_c} + \frac{f_b}{f_b}$	N (kN)	M (kN•m)	$\frac{f_c}{f_c} + \frac{f_b}{f_b}$	N (kN)	M (kN•m)	$\frac{f_c}{f_c} + \frac{f_b}{f_b}$
30. U	B - C	21.0	22.9	0.16	21.0	22.9	0.16	20.2	23.0	0.16
72. D	C – D	1110	68.9	0.65	1110	69.0	0.65	1120	69.4	0.65
65. 0 E6 E	D-E	2850	154	0.95	2850	154	0.95	2870	155	0.95
50. 5 49. 0	E - F	5390	439	0.81	5390	439	0.81	5440	442	0.81
40.0 40.2	F-G	7460	688	0.81	7460	688	0.81	7540	690	0.82

(b) Ss-2

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(a) Ss-1													
1			Ss-1を用いたケース1(基本ケース)に対する検討										
標局		地震荷重(風荷重	重と重畳しない)	風速4.1m/	sとの重畳	風速16.0m/sとの重畳							
1. M. S. L. (m)	部材間	評価用応力	σ	評価用応力	σ	評価用応力	σ						
		N (kN)	$\frac{c}{f_c}$	N (kN)	$\frac{c}{f_c}$	N (kN)	$\frac{c}{f_c}$						
80.0	B – C	648	0.73	648	0.73	655	0.73						
65 0	C – D	763	0.49	764	0. 49	775	0.50						
56 5	D-E	963	0.34	964	0.34	983	0.35						
49.0	$\mathrm{E}-\mathrm{F}$	1120	0.22	1130	0. 22	1160	0.22						
40.0	F - G	1380	0.16	1390	0.16	1490	0.17						

表 3-2 断面算定結果 斜材

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

			Ss-2を用	用いたケース6(回転ばね低減)に対する検討				
標高		地震荷重(風荷重	値と重畳しない)	風速4.1m/	sとの重畳	風速16.0m/sとの重畳		
1. M. S. L. (m)	部材間	評価用応力	σ	評価用応力	σ	評価用応力	σ	
80.0		N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$	
72 5	B - C	619	0.69	620	0.70	626	0. 70	
65 0	C – D	730	0.47	730	0.47	742	0. 48	
65. 0 EG E	D - E	960	0.34	961	0.34	977	0.35	
18 0	$\mathrm{E}-\mathrm{F}$	1130	0.22	1130	0.22	1150	0. 22	
48.0 40.2	F - G	1520	0.18	1530	0.18	1630	0.19	

(b) Ss-2

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(a) Ss-1												
		Ss-1を用いたケース1(基本ケース)に対する検討										
標局		地震荷重(風荷重	重と重畳しない)	風速4.1m/	sとの重畳	風速16.0m/sとの重畳						
1. M. S. L. (m)	部材位置	評価用応力	σ.	評価用応力	σ.	評価用応力	σ.					
(m)		N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$					
80.0	В	63.7	0.09	63.8	0.09	65.5	0.09					
72.5	С	81.5	0.13	81.6	0.13	83.4	0.13					
65.0	D	143	0.10	143	0.10	146	0.10					
56.5	Е	250	0.19	251	0.19	254	0.19					
48.0	F	213	0.11	212	0.11	234	0.12					

表 3-3 断面算定結果 水平材

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

		Ss-2を用いたケース6(回転ばね低減)に対する検討							
標高		地震荷重(風荷重	重と重畳しない)	風速4.1m/	sとの重畳	風速16.0m/sとの重畳			
1. M. S. L. (m)	部材位置	評価用応力	σ	評価用応力	平価用応力 σ		σ		
(m)		N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$		
80.0	В	64.7	0.09	64.8	0.09	66.3	0.09		
72.5	С	103	0.16	103	0.16	104	0.16		
65.0	D	185	0.13	185	0.13	188	0.13		
56.5	Е	360	0.26	360	0.26	364	0.27		
48.0	F	246	0.13	247	0. 13	259	0.13		

(b) Ss-2

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

		Ss-1を用いたケース1(基本ケース)に対する検討										
標高		地震荷重	(風荷重と	重畳しない)	風	速4.1m/sと	の重畳	風	速16.0m/sと	この重畳		
T. M. S. L. (m)	部材間	評価月	用応力	$\sigma_{\rm c} = \sigma_{\rm b}$	評価月	用応力	$\sigma_{\rm c} = \sigma_{\rm b}$	評価月	用応力	$\sigma_{\rm c} = \sigma_{\rm b}$		
(m) 95 0		N (kN)	M (kN•m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$	N (kN)	M (kN•m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$	N (kN)	M (kN•m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$		
80.0	A - B	19.3	778	0.16	19.3	779	0.17	19.3	795	0.17		
72.5	B - C	147	2580	0.55	147	2580	0.55	147	2680	0.57		
65.0	C - D	177	3080	0.65	177	3090	0.66	177	3250	0.69		
55. 0	D - E	236	5220	0.67	236	5260	0.68	236	5770	0.74		
49.0	$\mathrm{E}-\mathrm{F}$	297	5600	0.72	297	5640	0.73	297	6230	0.80		
48.0 39.0	F - G	444	8240	0. 59	444	8300	0. 59	444	9160	0.65		

表 3-4 断面算定結果 筒身部

(a) Ss-1

注:断面算定方法は, VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づき,時刻 歴断面算定結果を示す。

				Ss-2を	用いたケー	ス6 (回転)	ゴね低減)に対す	⁻る検討		
標高		地震荷重	(風荷重と	:重畳しない)	風	速4.1m/sと	の重畳	風	速16.0m/sさ	との重畳
1. M. S. L. (m)	部材間	評価月	用応力	$\sigma_{\rm a} = \sigma_{\rm b}$	評価月	用応力	$\sigma_{\rm o} = \sigma_{\rm b}$	評価月	用応力	$\sigma_{\rm o} = \sigma_{\rm b}$
(m) 85.0		N (kN)	M (kN•m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$	N (kN)	M (kN•m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$	N (kN)	M (kN•m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$
80.0	A - B	15.9	818	0.17	15.9	818	0.17	15.9	820	0.17
72 5	B - C	135	2660	0.56	135	2660	0.56	135	2680	0.57
65.0	C - D	167	3190	0.67	167	3190	0.67	173	3220	0.68
53. 0	D - E	209	6010	0.77	209	6020	0.77	209	6140	0.78
40.0	E - F	228	6430	0.82	228	6440	0.82	340	6750	0.87
48.0 39.0	F - G	495	8550	0.61	495	8610	0.62	495	9470	0.68

(b) Ss-2

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づき、時刻 歴断面算定結果を示す。

図 3-1 評価用応力の発生要素の比較

別紙6 原子炉建屋と主排気筒の連成解析による影響評価

目 次

1.	概要	別紙 6-1
2.	解析方針	別紙 6-3
3.	地震応答解析結果	別紙 6-10

<u>別紙 6-1 原子炉建屋との偏心を考慮した主排気筒の影響評価</u>
1. 概要

本資料では,主排気筒の地震応答解析モデルについて,既工認と同様に原子炉建屋と 分離した解析モデルを採用することの妥当性を,主排気筒と原子炉建屋を連成した地震 応答解析(以下「連成解析」という。)を実施することにより確認する。

主排気筒の配置図を図 1-1 に示す。

主排気筒は、原子炉建屋の屋上(T.M.S.L.*38.2m)に位置しており、VI-2-7-2-1「主 排気筒の耐震性についての計算書」(以下「STK 今回設工認」という。)における地震応 答解析モデルには、原子炉建屋屋上(T.M.S.L.38.2m)より上部を対象とした立体フレ ームモデル(以下「STK 単独モデル」という。)を採用している。

本資料では,以下の解析を行うことにより,原子炉建屋との連成の影響が小さいこと を断面算定結果(検定値)で確認する。

減衰及び誘発上下動の影響

連成解析を行うにあたり、「減衰を原子炉建屋で採用しているひずみエネルギ比例 型減衰に合わせること」及び「連成解析で考慮することができない誘発上下動を 考慮しないこと」による影響をSTK単独モデルで確認する。

②連成の影響

①による影響を確認した上で、連成の影響確認では、STK単独モデルによる地震 応答解析(以下「STK単独解析」という。)と連成解析の断面算定結果を比較する ことで、連成解析が主排気筒の耐震性に与える影響を確認する。

注記*:東京湾平均海面を,以下「T.M.S.L.」という。

図 1-1 主排気筒配置図(単位:m)

110/131

2. 解析方針

検討ケースを表 2-1 に示す。

入力地震動について,STK単独解析では,STK 今回設工認における断面算定結果として, 主柱材D-E間の検定値が0.98 で最も厳しくなるSs-2(ケース6)を用いるものとし, 原子炉建屋屋上(T.M.S.L.38.2m)で3方向(5成分)(水平2方向(並進・回転)及び鉛 直方向)の同時入力とする。連成解析では,VI-2-2-1「原子炉建屋の地震応答計算書」 (以下「R/B 今回設工認」という。)の方法を準用し,Ss-2を入力(3方向(3成分)(水 平2方向(並進)及び鉛直方向))する。

検討ケースについて,①STK 今回設工認は,別紙 3-2「原子炉建屋の材料物性の不確 かさ等を考慮した地震応答解析結果」で検討したケースであり,STK 単独解析で誘発上 下動を考慮し,減衰は剛性比例型減衰を設定している。②減衰変更は,①STK 今回設工 認の減衰をひずみエネルギ比例型減衰に変更している。③誘発上下動変更は,①STK 今 回設工認の減衰をひずみエネルギ比例型減衰,誘発上下動を非考慮に変更している。④ 連成解析は,連成解析で誘発上下動を非考慮とし,減衰はひずみエネルギ比例型減衰を 設定している。

解析モデルとして,STK 単独モデルを図 2-1,原子炉建屋の地震応答解析モデル(以下「R/B 単独モデル」という。)を図 2-2,連成解析の解析モデル(以下「R/B 連成モデル」という。)の概念図を図 2-3 に示す。

図 2-1 及び図 2-2 に示す STK 単独モデル及び R/B 単独モデルは, それぞれ STK 今回 設工認及び R/B 今回設工認に示す地震応答解析モデルと同一である。

R/B 連成モデルは、上記で示す STK 単独モデルを R/B 単独モデルと原子炉建屋屋上 (T.M.S.L.38.2m)で多点拘束により結合している。なお、R/B 単独モデルでは主排気筒 の重量を考慮しているが、R/B 連成モデルでは主排気筒をモデル化するため、当該重量 を差し引くものとする。

			主排	気筒への	入力 (Ss-2	2(ケース 6))		
検討	解析		水平力	5向*1	的古			
ケース名	モデル	NS 📿	方向	EW 🕽	方向		減衰	
		並進	回転	並進	回転	万回二		
①STK 今回設工認	STK 単独	0	0	0	0	$\bigcirc *^2$	剛性比例型	
②減衰変更	STK 単独	0	0	0	0	$\bigcirc *^2$	ひずみエネルギ 比例型	
③誘発上下動 変更	STK 単独	0	0	0	0	0	ひずみエネルギ 比例型	
④連成解析	R/B 連成	0	0	0	0	0	ひずみエネルギ 比例型	

表 2-1 検討ケース

注記*1:組み合わせる成分を「〇」で示す。

*2 :誘発上下動を考慮する。

図 2-1 STK 単独モデル

注: K_{θ1}は鉄筋コンクリート製原子炉格納容器(以下「RCCV」という。)回転ばねを示 す。

(a) EW 方向

図 2-2 R/B 単独モデル (1/3) (単位:m)

(b) NS 方向

図 2-2 R/B 単独モデル (2/3) (単位:m)

注:K_{θ2}は屋根トラス端部回転拘束ばねを示す。

(c) 鉛直方向

図 2-2 R/B 単独モデル (3/3) (単位:m)

- 注1:赤線部は主排気筒(立体フレームモデル)であり、図2-1をモデル化する。
- 注2:青線部は原子炉建屋(水平方向質点系モデル)を示す。本図では,例として NS 方 向のみを記載する。
- 注3:緑線部は原子炉建屋(鉛直方向質点系モデル)を示す。
- 注4 : 原子炉建屋の各方向の応答を主排気筒で考慮するために,図2-2に示す3方向の モデルを主排気筒とT.M.S.L.38.2mにおいて同時に多点拘束で結合する。
- 注5 : 主排気筒と原子炉建屋の詳細は、それぞれ STK 今回設工認と R/B 今回設工認に示す とおりである。

図 2-3 R/B 連成モデルの概念図

3. 地震応答解析結果

表 3-1 に地震応答解析結果に基づく断面算定結果を示す。

主柱材の検定値について,STK 単独解析である②減衰変更及び③誘発上下動変更は, ①STK 今回設工認に対して減少する傾向にある。これは,②減衰変更及び③誘発上下動 変更が同じ検定値であるため,ひずみエネルギ比例型減衰の影響であることを確認した。 ④連成解析の検定値は,②減衰変更及び③誘発上下動変更よりもやや小さいものの,検 定値が①STK 今回設工認に対して減少する傾向は,②減衰変更及び③誘発上下動変更と 同じである。なお,全部材中で最も検定値が大きくなる主柱材D-E間について,① STK 今回設工認,②減衰変更及び③誘発上下動変更では検定値が 0.98 であったが,④連 成解析では 0.96 となり低減している。

斜材及び水平材の検定値は、各ケースでおおむね整合している。

筒身部の検定値について、②減衰変更、③誘発上下動変更及び④連成解析は、①STK 今回設工認に対して、T.M.S.L.65.0m以上で増大する傾向にあるものの、最大でも 0.81 となっている。T.M.S.L.65.0m以上の検定値については、②減衰変更、③誘発上下動変 更及び④連成解析が、ひずみエネルギ比例型減衰の影響で①STK 今回設工認より検定値 が増加したものの、②減衰変更及び③誘発上下動変更に対し、④連成解析は検定値が低 減している。

以上より,原子炉建屋と主排気筒を連成した場合についても耐震性に影響が無いこと を確認するとともに, VI-2-7-2-1「主排気筒の耐震性についての計算書」で原子炉建屋 と分離した解析モデルを採用することの妥当性を確認した。

表 3-1 断面算定結果(1/2)

					((a) <u>i</u>	主柱材						
					S	STK单独解	析					連成解析	
播古		(1)5	STK今回設	工認		②減衰変]	更	31	秀発上下動	変更		④連成解植	斤
1示同 TMSL	部材間	評価月	用応力	а а.	評価月	目応力	σ σ.	評価月	用応力	а a.	評価月	用応力	а a.
(m)		N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN·m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$	N (kN)	M (kN•m)	$\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$
80.0	B - C	21.5	27.2	0.18	23.9	27.1	0.19	24.9	27.2	0.19	25.1	26.5	0.18
65.0	C - D	1160	102	0.78	1160	101	0.78	1160	102	0.78	1130	99.6	0.76
56.5	D - E	2910	164	0.98	2900	163	0.98	2900	163	0.98	2840	160	0.96
49.0	$\mathrm{E}-\mathrm{F}$	5510	609	0.93	5480	600	0.92	5500	605	0.92	5370	586	0.90
40.2	F - G	7620	703	0.83	7560	703	0.82	7590	705	0.83	7420	696	0.81

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(b) 斜材

			連成	解析					
画古		①STK今I	可設工認	2減3	衰変更	③誘発上	下動変更	④連6	戈解析
1示回 T. M. S. L.	部材間	評価用応力	σ	評価用応力	σ	評価用応力	σ	評価用応力	σ
(m)		N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$
72.5	B - C	640	0.72	637	0.71	645	0.72	619	0.69
65.0	C - D	747	0.48	743	0.48	752	0.48	721	0.46
65. U	D-E	971	0.35	957	0.34	974	0.35	932	0.33
49.0	$\mathrm{E}-\mathrm{F}$	1140	0.22	1150	0.22	1160	0.22	1130	0.22
48.0 40.2	F - G	1510	0.17	1540	0.18	1540	0.18	1470	0.17

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(c) 水平材

				連成	解析				
画古		①STK今回設工認		②减衰変更		③誘発上	下動変更	④連6	戈解析
1示回 T. M. S. L.	部材位置	評価用応力	σ	評価用応力	σ	評価用応力	σ	評価用応力	σ
(m)		N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$
80.0	В	64.2	0.09	64.1	0.09	64.4	0.09	61.6	0.09
72.5	С	98.9	0.16	98.2	0.15	98.4	0.16	96.1	0.15
65.0	D	178	0.12	180	0.13	180	0.13	177	0.12
56.5	E	342	0.25	342	0.25	343	0.25	333	0.24
48.0	F	271	0.14	280	0.14	277	0.14	279	0.14

注:断面算定方法は、Ⅵ-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

	表 3-1	断面算定結果	(2/2)
--	-------	--------	-------

(d) 筒身部

		STK単独解析										連成解	矿
桓高		(1)STK今回	設工認	②減衰変更			③誘発上下動変更				④連成(解析
T. M. S. L.	部材間	評価月	目応力	$\sigma_{\rm o} = \sigma_{\rm b}$	評価月	用応力	$\sigma_{\rm o} = \sigma_{\rm b}$	評価月	目応力	$\sigma_{\rm o} = \sigma_{\rm b}$	評価月	目応力	$\sigma_{\rm o} = \sigma_{\rm b}$
(m) 85.0		N (kN)	M (kN∙m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$	N (kN)	M (kN∙m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$	N (kN)	M (kN∙m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$	N (kN)	M (kN⋅m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$
80.0	A - B	16.6	827	0.17	22.1	949	0.20	20.9	955	0.20	20.2	914	0.19
72 5	B - C	149	2650	0.56	173	3060	0.65	153	3090	0.65	150	2950	0.62
65.0	C - D	192	3360	0.71	217	3830	0.81	182	3870	0.81	177	3680	0.77
56.5	D - E	236	5910	0.76	272	6030	0.77	248	6120	0.78	243	5800	0.74
48.0	$\mathrm{E}-\mathrm{F}$	352	6930	0.89	361	6810	0.88	315	6840	0.88	262	6720	0.86
39.0	$\mathbf{F} - \mathbf{G}$	487	8490	0.61	497	8510	0.61	514	8570	0.62	360	8360	0.59

注:断面算定方法は, VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づき,時刻 歴断面算定結果を示す。 別紙6-1 原子炉建屋との偏心を考慮した主排気筒の影響評価

目 次

1.	概要	 別紙 6-1-1
2.	解析方針	 別紙 6-1-3
3.	地震応答解析結果	 別紙 6-1-7

1. 概要

主排気筒の地震応答解析モデルについて,別紙 6「原子炉建屋と主排気筒の連成解析 による影響評価」(以下「別紙 6 評価」という。)の検討において,原子炉建屋と分離し た解析モデルを採用することの妥当性は確認している。一方で,主排気筒が原子炉建屋 に偏心して設置されている影響については,地震応答解析モデルには反映していない。

本資料では、主排気筒の地震応答解析モデルについて、偏心を考慮しない解析モデル を採用することの妥当性を、偏心を考慮した地震応答解析を実施することにより確認す る。なお、考慮する原子炉建屋との偏心は、NS 方向における主排気筒の筒身部中心位置 から原子炉建屋の炉心位置までの距離(L=23.95m)における偏心とする。

主排気筒と原子炉建屋との偏心距離を図 1-1 に示す。

VI-2-7-2-1「主排気筒の耐震性についての計算書」(以下「STK 今回設工認」という。) における地震応答解析モデルには、原子炉建屋屋上(T.M.S.L.*38.2m)より上部を対象 とした立体フレームモデル(以下「STK 単独モデル」という。)を採用している。

詳細には,以下の解析を行うことにより,原子炉建屋との偏心を考慮した影響が小さ いことを断面算定結果(検定値)で確認する。

- ①偏心を考慮しない主排気筒と原子炉建屋を連成した地震応答解析(以下「偏心を 考慮しない解析」という。)
- ②偏心を考慮した主排気筒と原子炉建屋を連成した地震応答解析(以下「偏心を考慮した解析」という。)

注記*:東京湾平均海面を,以下「T.M.S.L.」という。

図1-1 主排気筒と原子炉建屋との偏心距離(単位:m)

2. 解析方針

検討ケースを表 2-1 に示す。

入力地震動について,別紙 6 評価と同様に Ss-2 (ケース 6) を用いるものとし,原子 炉建屋屋上 (T.M.S.L. 38.2m) で 3 方向 (5 成分)(水平 2 方向(並進・回転)及び鉛直方 向)の同時入力とする。

解析モデルとして, 偏心を考慮しない解析モデルの概念図を図 2-1, 偏心を考慮した 解析モデルの概念図を図 2-2 に示す。

図 2-1 及び図 2-2 に示す STK 単独モデル及び原子炉建屋の地震応答解析モデル(以下「R/B 単独モデル」という。)は、それぞれ STK 今回設工認及びVI-2-2-1「原子炉建屋の地震応答計算書」(以下「R/B 今回設工認」という。)に示す地震応答解析モデルと同一である。

偏心を考慮しない解析モデル及び偏心を考慮した解析モデルは、上記で示す STK 単独 モデルを R/B 単独モデルと原子炉建屋屋上(T.M.S.L.38.2m)で多点拘束により結合して いる。また、偏心を考慮した解析モデルは、NS 方向の偏心距離(L=23.95m)を考慮し た多点拘束で結合する。なお、R/B 単独モデルでは主排気筒の重量を考慮しているが、 R/B 連成モデルでは主排気筒をモデル化するため、当該重量を差し引くものとする。

			主排気筒への入力(Ss-2(ケース 6))							
検討	解析		水平フ	方向*1		約古				
ケース名	モデル	NS	方向	EW 🔎	方向	<u> </u>	減衰			
		並進	回転	並進	回転	刀间				
 ①偏心を考慮しない 解析 	R/B 連成	0	0	0	0	0	ひずみエネルギ 比例型			
②偏心を考慮した解析	R/B 連成	0	$\bigcirc *^2$	0	0	0	ひずみエネルギ 比例型			

表 2-1 検討ケース

注記*1:組み合わせる成分を「〇」で示す。

*2 : 偏心を考慮する。

- 注1:赤線部は主排気筒(立体フレームモデル)を示す。
- 注2:青線部は原子炉建屋(水平方向質点系モデル)を示す。本図では,例として NS 方 向のみを記載する。
- 注3:緑線部は原子炉建屋(鉛直方向質点系モデル)を示す。
- 注4 : 原子炉建屋の各方向の応答を主排気筒で考慮するために、3 方向のモデルを主排気 筒と T. M. S. L. 38. 2m において同時に多点拘束で結合する。
- 注5 : 主排気筒と原子炉建屋の詳細は、それぞれ STK 今回設工認と R/B 今回設工認に示す とおりである。

図 2-1 偏心を考慮しない解析モデルの概念図

- 注1:赤線部は主排気筒(立体フレームモデル)を示す。
- 注2:青線部は原子炉建屋(水平方向質点系モデル)を示す。本図では,例として NS 方 向のみを記載する。
- 注3:緑線部は原子炉建屋(鉛直方向質点系モデル)を示す。
- 注4 : 原子炉建屋の各方向の応答を主排気筒で考慮するために、3 方向のモデルを主排気筒と T.M.S.L. 38.2mにおいて、NS 方向の偏心距離を考慮した多点拘束で結合する。
- 注5 : 主排気筒と原子炉建屋の詳細は、それぞれ STK 今回設工認と R/B 今回設工認に示す とおりである。

図 2-2 偏心を考慮した解析モデルの概念図

3. 地震応答解析結果

表 3-1 に地震応答解析結果に基づく断面算定結果を示す。なお、①偏心を考慮しない 解析の断面算定結果は別紙 6 評価と同様である。

主柱材、斜材、水平材及び筒身部の検定値は、各ケースでおおむね整合している。

全部材中で最も検定値が大きくなる主柱材D-E間について,①偏心を考慮しない解 析では検定比は0.96であったが,②偏心を考慮した解析では検定値は0.95に低減してい る。

以上より,偏心を考慮した場合についても耐震性に影響がないことを確認した。また, 別紙 6 評価において原子炉建屋と分離した解析モデルを採用することの妥当性を確認し たことから, VI-2-7-2-1「主排気筒に耐震性についての計算書」において原子炉建屋と 分離して偏心を考慮しない解析モデルを採用することは妥当であると考える。

				演成	磁桁				
推古		①偏心	を考慮し	ない解析	2偏心	②偏心を考慮した解析			
悰尚 T. M. S. L.	部材間	評価月	用応力	σ σ.	評価用応力		σ σ.		
(m)		N (kN)	M (kN•m)	$\frac{\sigma_c}{f_c} + \frac{\sigma_b}{f_b}$	N (kN)	M (kN•m)	$\frac{\sigma_c}{f_c} + \frac{\sigma_b}{f_b}$		
80. U	B - C	25.2	26.5	0.18	29.7	26.7	0.19		
72.5	C – D	1130	99.5	0.76	1140	101	0.77		
56 5	D-E	2840	160	0.96	2830	160	0.95		
49.0	E - F	5370	586	0.90	5350	587	0.90		
48.0 40.2	F - G	7410	696	0.81	7390	699	0.81		

表 3-1 断面算定結果(1/2) (a) 主柱材

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

		(~	/ /1/1/1			
			連成	解析		
揮卓		①偏心を考慮	憲しない解析	②偏心を考慮した解析		
(宗向 T. M. S. L.	部材間	評価用応力	σ	評価用応力	σ	
(m)		Ν	$\frac{\sigma_c}{f}$	Ν		
80.0		(kN)	¹ c	(kN)	¹ c	
80.0	PC	610	0.60	610	0.60	
72 5	в-С	019	0.09	019	0.09	
12.0	C = D	721	0.46	721	0 46	
65.0		121	0.10	121	0.10	
00.0	D - E	931	0.33	931	0.33	
56.5						
	E - F	1130	0.22	1130	0.22	
48.0						
10.0	F - G	1470	0.17	1460	0.17	
40.2						

(b) 斜材

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

			連成	解析	
趰言		①偏心を考慮	튛しない解析	②偏心を考	慮した解析
1示向 T. M. S. L.	部材位置	評価用応力	σ	評価用応力	σ
(m)		N (kN)	$\frac{f_c}{f_c}$	N (kN)	$\frac{f_c}{f_c}$
80.0	В	61.6	0.09	61.6	0.09
72.5	С	96.1	0.15	95.9	0.15
65.0	D	176	0.12	177	0.12
56.5	Е	332	0.24	333	0.24
48.0	F	279	0.14	289	0.15

(c) 水平材

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

				連成	解析			
锤卓		①偏	心を考慮	しない解析	21	扁心を考慮	〔した解析	
1示回 T. M. S. L.	部材間	評価月	用応力	$\sigma_{\rm o} = \sigma_{\rm b}$	評価月	用応力	$\sigma_{\rm c} = \sigma_{\rm b}$	
(m)		N (kN)	M (kN•m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$	N (kN)	M (kN•m)	$\frac{c}{cf_{cr}} + \frac{b}{bf_{br}}$	
85.0	A-B	20.2	912	0.19	22.5	913	0.19	
70. E	B - C	150	2940	0.62	167	2950	0.63	
65 0	C - D	178	3680	0.77	198	3680	0.78	
65. 0	D-E	243	5790	0.74	272	5790	0.74	
20. D	E – F	247	6730	0.86	395	6680	0.87	
48.0 39.0	F - G	359	8350	0. 59	433	8310	0.59	

表 3-1 断面算定結果(2/2) (d) 筒身部

注:断面算定方法は, VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づき,時刻 歴断面算定結果を示す。