| 柏崎刈羽 | 习原子力発電所第6号機 | 記計及び工事計画審査資料     |
|------|-------------|------------------|
|      | 資料番号        | KK6 補足-026-9 改 1 |
|      | 提出年月日       | 2024年2月8日        |

主排気筒の耐震性についての計算書に関する補足説明資料

# 2024年2月 東京電力ホールディングス株式会社

### 1. 設計及び工事計画添付書類に係る補足説明資料

VI-2-7-2-1「主排気筒の耐震性についての計算書」の記載内容を補足するための資料を以下に示す。なお、地震応答解析及び応力解析には解析コード「fappase」を用いる。

別紙1 地震応答解析における既工認と今回設工認の解析モデル及び手法の比較

別紙2 主排気筒のモデル化,境界条件及び拘束条件の考え方

別紙3 地震応答解析における原子炉建屋の材料物性の不確かさ等に関する検討

別紙4 地震荷重と風荷重を重畳させた場合の影響検討

別紙 5 接合部の耐震性について

別紙 6 原子炉建屋と主排気筒の連成解析による影響評価

: 今回提出範囲

2/131

1

別紙2 主排気筒のモデル化,境界条件及び拘束条件の考え方

# 目 次

| 1. | 概要·  | <br> |     |     |    |     |          | <br> | <br> | <br> | <br> | <br> | <br> | , | 引紙 | 2-1 |
|----|------|------|-----|-----|----|-----|----------|------|------|------|------|------|------|---|----|-----|
| 2. | モデル化 | 境界多  | 6件2 | 支び打 | 拘束 | (条件 | <b>#</b> | <br> | <br> | <br> | <br> | <br> | <br> | 5 | 引紙 | 2-1 |
|    |      |      |     |     |    |     |          |      |      |      |      |      |      |   |    |     |

別紙2-1 つなぎ材の部材構成について

# 1. 概要

本資料は,主排気筒におけるモデル化,境界条件及び拘束条件についての概要を示す ものである。

# 2. モデル化,境界条件及び拘束条件

主排気筒のモデル化,境界条件及び拘束条件を表2-1に示す。また,非常用ガス処理系(以下「SGTS」という。)用排気筒の応力解析におけるモデル化,境界条件及び拘束条件を表2-2に示す。なお,東京湾平均海面を,以下「T.M.S.L.」という。

別紙 2-1 5/131

#### モデル概要 (1/2)

#### ○モデル化範囲及び対象部材

- ・原子炉建屋屋上より上部の(T. M. S. L. 38. 2m~T. M. S. L. 85. 0m)の範囲
- ・筒身部,鉄塔部(主柱材,斜材及び水平材),基礎(鉄塔部及び筒身部)及び制震装置(オイルダンパー)

## ○使用要素

・はり要素 : 筒身部, 鉄塔部 (主柱材及び水平材) 及び基礎 (鉄塔部及び筒身部)

・トラス要素:鉄塔部(斜材)

・ばね要素 :制震装置 (オイルダンパー) 及び筒身支持部



別紙 2-2 6/131

## モデル概要 (2/2)

## ○要素分割

・鉄塔部はトラス構造であり、部材交点ごとに要素を分割する。

#### ○解析モデルの使い分け

・動的地震荷重:下図に示す解析モデルを用いた地震応答解析により,各部材の応力

が出力される。この応力を用いて、各部材について断面算定を実施

する。

• 風荷重 :下図に示す解析モデルを用いた静的応力解析により,各部材の応力

が出力される。この応力を用いて、各部材について断面算定を実施



G 40.2

38.2

解析モデル (単位:m)

① 減衰係数

- ② ばね定数
- ③ 支持点アーム

(b) モデル概要

制震装置 (オイルダンパー)

別紙 2-3 7/131

#### 境界条件及び拘束条件

## 原子炉建屋屋上と基礎の境界 (T.M.S.L.38.2m)

・基礎(鉄塔部及び筒身部)は、原子炉建屋の躯体と一体化しているため、完全固定と する。



原子炉建屋と基礎の境界

## 荷重の入力方法

:鉛直荷重に対する鉄塔部及び筒身部の分担応力の計算は、柏崎刈羽 ・鉛直荷重

> 原子力発電所第6号機「工事計画届出書」(総官発20第179号 平 成20年8月25日)(以下「中越沖地震に伴う補強時(届出)」とい

う。) による。

・静的地震荷重:静的荷重に対する鉄塔部及び筒身部の分担応力の計算は、鉛直荷重

と同様に中越沖地震に伴う補強時(届出)による。

・動的地震荷重:原子炉建屋全体の地震応答解析から得られる原子炉建屋屋上レベル

(T.M.S.L.38.2m) における応答値を入力地震動とし、主排気筒の基

礎を固定として入力する。

:解析モデルにおける鉄塔部及び筒身部の質点位置に対し、風荷重を • 風荷重

分配し載荷する。

別紙 2-4 8/131

## モデル概要,境界条件及び拘束条件

# ○モデル化範囲,対象部材及び使用要素

- ・筒身基礎より上部の (T. M. S. L. 39.0m~T. M. S. L. 85.0m) の範囲
- ・はり要素:筒身, SGTS 用排気筒及び支持点

#### ○境界条件及び拘束条件

- ・筒身脚部は、 $\phi$ 3.8m の基礎により支持されており、軸力、せん断力及び曲げモーメントともに伝達するため、固定とする。
- ・SGTS 用排気筒脚部と基礎の境界は、軸力のみ伝達するため、柱脚位置にてピン接合とする。
- ・支持点の両端は、軸力のみ伝達するため、ピン接合とする。



別紙 2-5 9/131

# 別紙2-1 つなぎ材の部材構成について

# 目 次

| 1. | 概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・       | 別紙 2-1-1 |
|----|-----------------------------------------------|----------|
| 2. | つなぎ材の部材構成・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ | 別紙 2-1-1 |

#### 1. 概要

本資料は、T.M.S.L.48.0m (筒身支持点部) にある、つなぎ材の部材構成を説明するものである。

注:東京湾平均海面を,以下「T.M.S.L.」という。

#### 2. つなぎ材の部材構成

つなぎ材は、筒身と鉄塔をつなぐ鋼製の部材であり、8本の部材で構成されている。 筒身側と鉄塔側ともピン取合いとなっており引張力のみ伝達できる構造となっている。 つなぎ材の詳細を図2-1に示す。なお、主排気筒の立体フレームモデルにおいて、つな ぎ材は水平方向に作用する等価なばね要素として、筒身部と鉄塔部四隅の各節点間に設 定する。



図 2-1 つなぎ材詳細図 (単位:mm)

別紙3 地震応答解析における原子炉建屋の材料物性の不確かさ<mark>等</mark> に関する検討

# 目 次

| 1. 概要 · · · · · · · · · · · · · · · · · ·                                        | … 別紙 3-1  |
|----------------------------------------------------------------------------------|-----------|
| 1.1 検討概要                                                                         | ⋯ 別紙 3-1  |
| 1.2 検討方針 ·····                                                                   | … 別紙 3-2  |
| 2. 建屋応答の不確かさ <mark>等</mark> を考慮した設計用地震力の設定方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ |           |
| 3. 地震応答解析による建屋応答の不確かさ <mark>等</mark> の影響検討・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・   | ⋯ 別紙 3-25 |
| 3.1 固有値解析結果                                                                      | ⋯ 別紙 3-25 |
| 3.2 地震応答解析結果 · · · · · · · · · · · · · · · · · · ·                               | ⋯ 別紙 3-31 |
| 4 まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・                                        | 別紙 3-30   |

#### 1. 概要

#### 1.1 検討概要

本資料は、主排気筒の地震応答解析における原子炉建屋の材料物性の不確かさ等に関する検討について説明するものである。

本資料では、材料物性の不確かさ等を考慮した原子炉建屋の応答を用いた地震応答解析を行い、原子炉建屋の材料物性の不確かさ及び制震装置の不確かさが主排気筒に及ぼす影響について確認する。なお、本資料においては、原子炉建屋の材料物性の不確かさ及び制震装置の不確かさを「建屋応答の不確かさ等」ということとする。

建屋応答の不確かさ等を考慮する検討ケースを表1-1に示す。なお、実機を用いた性能試験の結果により制震装置(オイルダンパー)の減衰係数の変動率は±10%以下(性能試験+4.6%,温度依存特性±5%以下)であるが、ここでは保守的に設計時の減衰係数の変動率±20%(製品誤差±10%,温度依存特性±10%)を採用する。

表1-1中の下線部は、基本ケースとの差異を示す。

表1-1 建屋応答の不確かさ等を考慮する検討ケース\*

| 検討ケース                              | コンクリート<br>剛性                          | 回転ばね<br>定数 | 地盤剛性                                             | 制震装置<br>(オイルダンパー)<br>減衰係数 | 備考    |
|------------------------------------|---------------------------------------|------------|--------------------------------------------------|---------------------------|-------|
| ①ケース 1<br>(設工認モデル)                 | 実強度<br>(43.1N/mm²)                    | 100%       | 標準地盤                                             | 標準値                       | 基本ケース |
| ②ケース 2<br>(建屋剛性+σ及び<br>地盤剛性+σ)     | 実強度 + σ<br>(46. 0N/mm²)               |            |                                                  | 標準値                       | _     |
| ③ケース 3<br>(建屋剛性 - σ及び<br>地盤剛性 - σ) | 実強度 — σ<br>(40.2N/mm²)                | 100%       | 標準地盤 - σ<br>(新期砂層-13%,<br>古安田層-25%及び<br>西山層-10%) | 標準値                       | _     |
| ④ケース 4<br>(建屋剛性コア平均)               | <u>実強度</u><br>_(コア平均)<br>_(55.7N/mm²) | 100%       | 標準地盤                                             | 標準値                       | _     |
| ⑤ケース 5<br>(建屋剛性-2σ)                | <u>実強度−2σ</u><br>(37. 2N/mm²)         |            |                                                  | 標準値                       | _     |
| ⑥ケース 6<br>(回転ばね低減)                 | 実強度<br>(43.1N/mm²)                    | <u>50%</u> | 標準地盤                                             | 標準値                       | _     |
| ⑦ケース7<br>(減衰係数+20%)                | 実強度<br>(43.1N/mm²)                    | 100%       | 標準地盤                                             | 標準値×1.2                   | _     |
| ⑧ケース8<br>(減衰係数−20%)                | 実強度<br>(43.1N/mm²)                    | 100%       | 標準地盤                                             | 標準値×0.8                   | _     |

注記\*:「原子炉建屋の地震応答計算書に関する補足説明資料」のうち別紙3「地震応答解析における材料物性の不確かさに関する検討」に基づく。

別紙 3-1 15/131

#### 1.2 検討方針

WI-2-7-2-1「主排気筒の耐震性についての計算書」では、建屋応答の不確かさ等を考慮するため、入力地震動には、材料物性の不確かさを考慮した原子炉建屋全体の地震応答解析結果から得られる屋上レベル(T. M. S. L. \*38.2m)における応答を用いている。そのため、本検討における建屋応答の不確かさ等及びその変動幅は、「原子炉建屋の地震応答計算書に関する補足説明資料」のうち別紙3「地震応答解析における材料物性の不確かさに関する検討」に準拠し、主排気筒の地震応答解析モデルに対しては建屋剛性の不確かさ(コンクリート強度)及び制震装置の不確かさ(減衰係数)を考慮する。なお、建屋剛性の不確かさ(コンクリート強度)は、基礎コンクリートの物性値に考慮する。

検討は、表1-1に示す各検討ケースについて固有値解析及び地震応答解析を行い、ケース1(基本ケース)の結果と比較することで、建屋応答の不確かさ等が主排気筒に及ぼす影響について確認する。

なお,各解析の方法及び諸元については,VI-2-7-2-1「主排気筒の耐震性についての計算書」と同一である。

主排気筒の地震応答解析モデル図を図1-1に示す。

注記\*:なお,東京湾平均海面を,以下「T.M.S.L.」という。

別紙 3-2 16/131



図1-1 主排気筒の地震応答解析モデル

別紙 3-3 17/131

# 2. 建屋応答の不確かさ等を考慮した設計用地震力の設定方法

表1-1に示した検討ケースについて,原子炉建屋の応答を入力地震動として用いた解析を実施することで,建屋応答の不確かさ等を設計用地震力として考慮する。

建屋応答の不確かさ等を考慮したケースの応答値の算出に当たっては、基本ケースにおける主排気筒の応答を確認したうえで、主排気筒の応答への影響が大きい波(Ss-1及 USs-2)に対して実施する(別紙3-1「原子炉建屋の材料物性の不確かさ等を考慮した検討に用いる地震動の選定について」参照)。

VI-2-7-2-1「主排気筒の耐震性についての計算書」における耐震評価では、入力地震動ごとに、全ての部材をモデル化した立体フレームモデルにおける各部材応力について断面算定を行い、その中で断面算定結果(検定値)が最も厳しくなる地震応答解析結果を設計用地震力(評価用応力)としている。なお、建屋応答の不確かさ等を考慮した地震応答解析結果は、別紙3-2「原子炉建屋の材料物性の不確かさ等を考慮した地震応答解析結果」に示す。

入力地震動の組合せを表2-1に,入力地震動の加速度時刻壓波形を図2-1~図2-12 に示す。なお,図中の〇印は,最大値発生時を示す。Ss-1は,2方向(3成分)(水平1方向(並進・回転)及び鉛直方向)の同時入力とし,Ss-2は,3方向(5成分)(水平2方向(並進・回転)及び鉛直方向)の同時入力とする。Ss-1の水平方向については,NS方向とEW方向で構造としての対称性があるため,検定値が厳しい傾向にあるNS方向を代表として用いる。なお,Ss-1のケース6,Ss-2のケース1及びケース3~6において誘発上下動を考慮している。

別紙 3-4 18/131

# 表2-1 入力地震動の組合せ(1/2)

(a) Ss-1

|                               | 入力地震動の組合せ(Ss-1, 2方向(3成分)同時入力) |    |      |    |               |         |  |  |  |  |
|-------------------------------|-------------------------------|----|------|----|---------------|---------|--|--|--|--|
| 建屋応答の不確かさ等                    |                               |    | 方向*1 | 鉛直 |               |         |  |  |  |  |
| 検討ケース                         | NS 7                          | 方向 | EW 2 | 方向 | 方向*1          | 備考*2    |  |  |  |  |
|                               | 並進                            | 回転 | 並進   | 回転 | <i>JJ</i> [P] |         |  |  |  |  |
| ケース 1<br>(基本ケース)              | 0                             | 0  |      |    | 0             | _       |  |  |  |  |
| ケース 2<br>(建屋剛性+σ及び<br>地盤剛性+σ) | 0                             | 0  | _    | _  | 0             | _       |  |  |  |  |
| ケース 3<br>(建屋剛性-σ及び<br>地盤剛性-σ) | 0                             | 0  | _    | _  | 0             | _       |  |  |  |  |
| ケース 4<br>(建屋剛性コア平均)           | 0                             | 0  | _    | _  | 0             | _       |  |  |  |  |
| ケース 5<br>(建屋剛性-2σ)            | 0                             | 0  | _    | _  | 0             | _       |  |  |  |  |
| ケース 6<br>(回転ばね低減)             | 0                             | 0  | _    | _  | 0             | 誘発上下動考慮 |  |  |  |  |
| ケース 7 (減衰係数+20%)              | 0                             | 0  | _    | _  | 0             | _       |  |  |  |  |
| ケース 8<br>(減衰係数-20%)           | 0                             | 0  | _    | _  | 0             | _       |  |  |  |  |

注記\*1:組み合わせる成分を「○」で、組み合わせない成分を「一」で示す。

\*2:誘発上下動を考慮しない場合は「一」で示す。

別紙 3-5 19/131

# 表2-1 入力地震動の組合せ(2/2)

(b) Ss-2

|                                   | 入力地震動の組合せ(Ss-2, 3方向(5成分)同時入力) |     |    |    |      |         |  |  |  |
|-----------------------------------|-------------------------------|-----|----|----|------|---------|--|--|--|
| 建屋応答の不確かさ等                        |                               | 水平プ |    | 鉛直 |      |         |  |  |  |
| 検討ケース                             | NS 2                          | 方向  | EW | 方向 | 方向*1 | 備考*2    |  |  |  |
|                                   | 並進 回転                         |     | 並進 | 回転 | 刀凹   |         |  |  |  |
| ケース 1<br>(基本ケース)                  | 0                             | 0   | 0  | 0  | 0    | 誘発上下動考慮 |  |  |  |
| ケース 2<br>(建屋剛性+σ及び<br>地盤剛性+σ)     | 0                             | 0   | 0  | 0  | 0    | _       |  |  |  |
| ケース 3<br>(建屋剛性 - σ及び<br>地盤剛性 - σ) | 0                             | 0   | 0  | 0  | 0    | 誘発上下動考慮 |  |  |  |
| ケース 4<br>(建屋剛性コア平均)               | 0                             | 0   | 0  | 0  | 0    | 誘発上下動考慮 |  |  |  |
| ケース 5<br>(建屋剛性-2σ)                | 0                             | 0   | 0  | 0  | 0    | 誘発上下動考慮 |  |  |  |
| ケース 6<br>(回転ばね低減)                 | 0                             | 0   | 0  | 0  | 0    | 誘発上下動考慮 |  |  |  |
| ケース 7 (減衰係数+20%)                  | 0                             | 0   | 0  | 0  | 0    | 誘発上下動考慮 |  |  |  |
| ケース 8<br>(減衰係数-20%)               | 0                             | 0   | 0  | 0  | 0    | 誘発上下動考慮 |  |  |  |

注記\*1:組み合わせる成分を「○」で、組み合わせない成分を「一」で示す。

\*2:誘発上下動を考慮しない場合は「一」で示す。

別紙 3-6 20/131



(a) NS方向 並進成分



(b) NS方向 回転成分



図2-1 入力地震動の加速度時刻歴波形 (ケース1, Ss-1)

別紙 3-7 21/131



(a) NS方向 並進成分



(b) NS方向 回転成分



図2-2 入力地震動の加速度時刻歴波形 (ケース1, Ss-2) (1/2)

別紙 3-8 22/131



(d) EW方向 回転成分



(e) 鉛直方向(誘発上下動考慮) 図2-2 入力地震動の加速度時刻歴波形(ケース1, Ss-2)(2/2)

別紙 3-9 23/131



(a) NS方向 並進成分



(b) NS方向 回転成分



図2-3 入力地震動の加速度時刻歴波形 (ケース2, Ss-1)

別紙 3-10 24/131



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) EW方向 並進成分 図2-4 入力地震動の加速度時刻歴波形 (ケース2, Ss-2) (1/2)

別紙 3-11 25/131



(d) EW方向 回転成分



(e) 鉛直方向

図2-4 入力地震動の加速度時刻歴波形 (ケース2, Ss-2) (2/2)

別紙 3-12 26/131



(a) NS方向 並進成分



(b) NS方向 回転成分



図2-5 入力地震動の加速度時刻歴波形 (ケース3, Ss-1)

別紙 3-13 27/131



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) EW方向 並進成分 図2-6 入力地震動の加速度時刻歴波形 (ケース3, Ss-2) (1/2)

別紙 3-14 28/131



(d) EW方向 回転成分



(e) 鉛直方向(誘発上下動考慮)

図2-6 入力地震動の加速度時刻歴波形 (ケース3, Ss-2) (2/2)

別紙 3-15 29/131



(a) NS方向 並進成分



(b) NS方向 回転成分



図2-7 入力地震動の加速度時刻歴波形 (ケース4, Ss-1)

別紙 3-16 30/131



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) EW方向 並進成分 図2-8 入力地震動の加速度時刻歴波形 (ケース4, Ss-2) (1/2)

別紙 3-17 31/131



(d) EW方向 回転成分



(e) 鉛直方向(誘発上下動考慮)

図2-8 入力地震動の加速度時刻歴波形 (ケース4, Ss-2) (2/2)

別紙 3-18 32/131



(a) NS方向 並進成分



(b) NS方向 回転成分



図2-9 入力地震動の加速度時刻歴波形 (ケース5, Ss-1)

別紙 3-19 33/131



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) EW方向 並進成分 図2-10 入力地震動の加速度時刻歴波形 (ケース5, Ss-2) (1/2)

別紙 3-20 34/131



(d) EW方向 回転成分



(e) 鉛直方向(誘発上下動考慮)

図2-10 入力地震動の加速度時刻歴波形 (ケース5, Ss-2) (2/2)

別紙 3-21 35/131



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) 鉛直方向(誘発上下動考慮) 図2-11 入力地震動の加速度時刻歴波形(ケース6, Ss-1)

別紙 3-22 36/131



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) EW方向 並進成分 図2-12 入力地震動の加速度時刻歴波形 (ケース6, Ss-2) (1/2)

別紙 3-23 37/131



(d) EW方向 回転成分



(e) 鉛直方向(誘発上下動考慮)

図2-12 入力地震動の加速度時刻歴波形 (ケース6, Ss-2) (2/2)

別紙 3-24 38/131

- 3. 地震応答解析による建屋応答の不確かさ<mark>等</mark>の影響検討
  - 3.1 固有值解析結果

建屋剛性の不確かさ(コンクリート強度)の影響検討として、基礎コンクリートの剛性を変動させた解析モデルによる固有値解析を実施した。固有値解析結果を表3-1、固有モードを図3-1~図3-4に示す。

ケース1(基本ケース)に対し、基礎コンクリートの剛性を変動させた解析モデルの固有振動数の変動幅は0%である。主排気筒では、建屋剛性の不確かさ(コンクリート強度)による影響は見られない。

別紙 3-25 39/131

表3-1 固有值解析結果

(a) NS方向

| 田右エード |       | NS方向   | 固有振動数  | ζf (Hz) |        |
|-------|-------|--------|--------|---------|--------|
| 固有モード | ケース1  | ケース2   | ケース3   | ケース4    | ケース5   |
| 筒身1次  | 1.20  | 1.20   | 1.20   | 1.20    | 1.20   |
| 同分1次  |       | (1.00) | (1.00) | (1.00)  | (1.00) |
| 筒身2次  | 7. 73 | 7. 73  | 7. 73  | 7. 73   | 7. 73  |
| 同分4次  |       | (1.00) | (1.00) | (1.00)  | (1.00) |
| 鉄塔1次  | 3.65  | 3.66   | 3.65   | 3.66    | 3.65   |
|       |       | (1.00) | (1.00) | (1.00)  | (1.00) |
| 鉄塔2次  | 10.99 | 10.99  | 10.99  | 11.00   | 10.98  |
|       |       | (1.00) | (1.00) | (1.00)  | (1.00) |

注:()内は、ケース1に対する比率を示す。

(b) EW方向

| 田右て、い |        | EW方向   | 固有振動数  | ζf (Hz) |        |
|-------|--------|--------|--------|---------|--------|
| 固有モード | ケース1   | ケース2   | ケース3   | ケース4    | ケース5   |
| 筒身1次  | 1. 21  | 1.21   | 1.21   | 1.21    | 1.21   |
| 同分1次  |        | (1.00) | (1.00) | (1.00)  | (1.00) |
| 筒身2次  | 7.85   | 7.85   | 7.85   | 7.85    | 7.85   |
| 同分2次  |        | (1.00) | (1.00) | (1.00)  | (1.00) |
| 鉄塔1次  | 3. 67  | 3.67   | 3.67   | 3.68    | 3.67   |
|       |        | (1.00) | (1.00) | (1.00)  | (1.00) |
| 鉄塔2次  | 11. 32 | 11. 33 | 11.32  | 11. 33  | 11.32  |
|       |        | (1.00) | (1.00) | (1.00)  | (1.00) |

注:()内は、ケース1に対する比率を示す。

# (c) 鉛直方向

| 固有モード   |        | 鉛直方向   | 固有振動   | 数 f(Hz) |        |
|---------|--------|--------|--------|---------|--------|
| 回有モート   | ケース1   | ケース2   | ケース3   | ケース4    | ケース5   |
| 筒身1次    | 20. 39 | 20.39  | 20.39  | 20.40   | 20.39  |
| 同分1次    |        | (1.00) | (1.00) | (1.00)  | (1.00) |
| 鉄塔1次    | 20. 23 | 20. 23 | 20. 23 | 20. 24  | 20. 22 |
| 业 日 1 1 |        | (1.00) | (1.00) | (1.00)  | (1.00) |

注:()内は、ケース1に対する比率を示す。



図3-1 固有モード (ケース2)

別紙 3-27 41/131



図3-2 固有モード (ケース3)

別紙 3-28 42/131



図3-3 固有モード (ケース4)

別紙 3-29 43/131



図3-4 固有モード (ケース5)

別紙 3-30 44/131

#### 3.2 地震応答解析結果

建屋応答の不確かさ<mark>等</mark>の影響検討として、建屋応答の不確かさ<mark>等</mark>を考慮した地震応 答解析を実施した。

対象となる検討ケースは表1-1に示す検討ケースとし、代表として、入力地震動に Ss-1を用いた結果を示す。

最大応答値を図3-5~図3-10に示す。なお、図3-7及び図3-10では、以下の主柱 材の最大応力を包絡したものを「鉄塔部 主柱材包絡」として示す。

- ・原子炉建屋のR1通りとRC通りの交点に位置する主柱材
- ・原子炉建屋のR1通りとRD通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRC通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRD通りの交点に位置する主柱材

また、制震装置(オイルダンパー)の最大応答値及び許容値を表3-2に示す。

ケース1(基本ケース)に対し、水平及び鉛直いずれの方向についても、各検討ケースの最大応答加速度、最大応答変位、最大応答軸力及び最大応答曲げモーメントはおおむね同等であることを確認した。また、制震装置(オイルダンパー)の最大応答値は許容値以下である。

別紙 3-31 45/131



注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性+  $\sigma$  及び地盤剛性+  $\sigma$  ,

ケース3…建屋剛性  $-\sigma$ 及び地盤剛性  $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

### (a) 鉄塔部



50

100

 $(\mathrm{m/s}^2)$ 

T. M. S. L. (m)

80.0

76.25

72.5

65.0

56.5

48.0

40.2

38. 2

0

鉄塔部

|             |       |       |       |       |       |       |       | $(m/s^2)$ |
|-------------|-------|-------|-------|-------|-------|-------|-------|-----------|
| T. M. S. L. |       |       |       | 筒身    | 宇部    |       |       |           |
| (m)         | ケース1  | ケース2  | ケース3  | ケース4  | ケース5  | ケース6  | ケース7  | ケース8      |
| 85.0        | 67.9  | 64.8  | 66. 2 | 66. 1 | 67.4  | 72.4  | 70.4  | 65. 1     |
|             |       |       |       |       |       |       |       |           |
| 80.0        | 46.7  | 44.6  | 48.2  | 46.0  | 47. 1 | 50.9  | 50.8  | 43.6      |
|             |       |       |       |       |       |       |       |           |
| 76. 25      | 44. 3 | 42. 7 | 42.8  | 43. 2 | 44. 6 | 45.8  | 47. 6 | 40.4      |
| 72. 5       | 45. 5 | 44. 1 | 42.9  | 44. 2 | 45. 7 | 47.7  | 48. 2 | 42. 2     |
|             |       |       |       |       |       |       |       |           |
|             |       |       |       |       |       |       |       |           |
| 65. 0       | 38.8  | 37. 5 | 36.8  | 37.8  | 39. 1 | 42. 0 | 40. 5 | 36. 8     |
| 00.0        | 00.0  | 01.0  | 00.0  | 01.0  | 00.1  | 12.0  | 10.0  | 00.0      |
|             |       |       |       |       |       |       |       |           |
|             |       |       |       |       |       |       |       |           |
| 56. 5       | 20.7  | 21.6  | 21.0  | 20.4  | 21.1  | 23.6  | 21.4  | 20.4      |
|             |       |       |       |       |       |       |       |           |
|             |       |       |       |       |       |       |       |           |
| 40.0        | 17.1  | 15.5  | 14.4  | 17.0  | 17.0  | 17.0  | 17.0  | 17.1      |
| 48.0        | 17. 1 | 17. 7 | 14. 4 | 17. 0 | 17. 2 | 17.8  | 17. 0 | 17. 1     |
|             |       |       |       |       |       |       |       |           |
|             |       |       |       |       |       |       |       |           |
| 39.0        | 12.5  | 13. 2 | 11.0  | 12.3  | 12.8  | 13.0  | 12. 5 | 12.5      |
| 38. 2       | 12.3  | 13.0  | 10.9  | 12. 1 | 12.6  | 12.8  | 12. 3 | 12.3      |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ , ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

## (b) 筒身部

## 図3-5 最大応答加速度(Ss-1, NS方向)

別紙 3-32 46/131



(mm)

80.0

72.5

65.0

56.5

48.0

40.2

|             |        |        |        |        |           |        |        | (mm)   |
|-------------|--------|--------|--------|--------|-----------|--------|--------|--------|
| T. M. S. L. |        |        |        | 鉄地     | <b>峇部</b> |        |        |        |
| (m)         | ケース1   | ケース2   | ケース3   | ケース4   | ケース5      | ケース6   | ケース7   | ケース8   |
|             |        |        |        |        |           |        |        |        |
|             |        |        |        |        |           |        |        |        |
| 80. 0       | 181    | 173    | 179    | 177    | 182       | 189    | 191    | 170    |
| 76. 25      | 154    | 148    | 153    | 151    | 156       | 162    | 163    | 145    |
| 72. 5       | 122    | 116    | 120    | 119    | 123       | 127    | 129    | 114    |
| 12. 0       | 144    | 110    | 120    | 119    | 123       | 141    | 149    | 114    |
| 65. 0       | 69. 0  | 65. 8  | 68. 2  | 67. 6  | 69. 4     | 72. 2  | 72.7   | 65. 1  |
| 00.0        | 30, 3  | 00.0   | 00.2   | 311.0  | 007.1     |        |        | 00,1   |
| 56. 5       | 29. 2  | 27. 6  | 28. 9  | 28. 5  | 29. 4     | 30. 6  | 30. 7  | 27. 6  |
|             |        |        |        |        |           |        |        |        |
|             |        |        |        |        |           |        |        |        |
| 48.0        | 5.80   | 5. 53  | 5. 96  | 5. 58  | 5. 92     | 6. 23  | 6. 17  | 5. 37  |
|             |        |        |        |        |           |        |        |        |
| 40.2        | 0. 229 | 0. 215 | 0. 234 | 0. 199 | 0. 242    | 0. 238 | 0. 244 | 0. 211 |
| 38. 2       | 0.00   | 0.00   | 0.00   | 0.00   | 0.00      | 0.00   | 0.00   | 0.00   |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性+  $\sigma$  及び地盤剛性+  $\sigma$  ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

### (a) 鉄塔部



|             |         |         |         |         |         |         |         | (mm)    |  |  |  |
|-------------|---------|---------|---------|---------|---------|---------|---------|---------|--|--|--|
| T. M. S. L. |         | 筒身部     |         |         |         |         |         |         |  |  |  |
| (m)         | ケース1    | ケース2    | ケース3    | ケース4    | ケース5    | ケース6    | ケース7    | ケース8    |  |  |  |
| 85. 0       | 264     | 245     | 270     | 256     | 267     | 282     | 275     | 251     |  |  |  |
|             |         |         |         |         |         |         |         |         |  |  |  |
| 80.0        | 216     | 202     | 219     | 209     | 218     | 229     | 226     | 204     |  |  |  |
|             |         | . = .   |         | . = .   |         |         |         | . = .   |  |  |  |
| 76. 25      | 181     | 171     | 182     | 176     | 183     | 191     | 190     | 170     |  |  |  |
| 72. 5       | 150     | 142     | 149     | 145     | 151     | 157     | 158     | 140     |  |  |  |
|             |         |         |         |         |         |         |         |         |  |  |  |
|             |         |         |         |         |         |         |         |         |  |  |  |
| 65. 0       | 93.6    | 89. 1   | 91.6    | 90.8    | 94. 6   | 98. 0   | 99. 1   | 86. 9   |  |  |  |
|             |         |         |         |         |         |         |         |         |  |  |  |
|             |         |         |         |         |         |         |         |         |  |  |  |
| 50.5        | 40.0    | 07.0    | 00.4    | 00.5    | 40.5    | 40.4    | 40.0    | 0.5.0   |  |  |  |
| 56. 5       | 40. 2   | 37.8    | 39. 4   | 38. 7   | 40. 7   | 42. 4   | 42. 6   | 37. 2   |  |  |  |
|             |         |         |         |         |         |         |         |         |  |  |  |
|             |         |         |         |         |         |         |         |         |  |  |  |
| 48. 0       | 7.61    | 6.86    | 7.74    | 7. 16   | 7. 76   | 8. 22   | 8. 10   | 7.03    |  |  |  |
|             |         |         |         |         |         |         |         |         |  |  |  |
|             |         |         |         |         |         |         |         |         |  |  |  |
| 39. 0       | 0. 0151 | 0. 0149 | 0. 0142 | 0. 0133 | 0. 0161 | 0. 0157 | 0. 0149 | 0. 0154 |  |  |  |
| 38. 2       | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    | 0.00    |  |  |  |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性+  $\sigma$  及び地盤剛性+  $\sigma$  ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

 $ケース5…建屋剛性-2 \sigma$ ,ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

# (b) 筒身部

## 図3-6 最大応答変位 (Ss-1, NS方向)

別紙 3-33 47/131





|             |       |       |       |       |       |       |       | (kN·m) |
|-------------|-------|-------|-------|-------|-------|-------|-------|--------|
| T. M. S. L. |       |       |       | 鉄均    | 答部    |       |       |        |
| (m)         | ケース1  | ケース2  | ケース3  | ケース4  | ケース5  | ケース6  | ケース7  | ケース8   |
|             |       |       |       |       |       |       |       |        |
|             |       |       |       |       |       |       |       |        |
| 80. 0       | 0.00  | 0.00  | 0.00  | 0.00  | 0. 00 | 0.00  | 0.00  | 0.00   |
| 76. 25      | 18.6  | 17.9  | 18. 4 | 18. 3 | 18. 8 | 19. 6 | 20. 0 | 17. 0  |
|             |       |       |       |       |       |       |       |        |
| 72. 5       | 44.9  | 43.3  | 44. 7 | 44. 2 | 45. 5 | 47.4  | 47. 9 | 41.6   |
| 68. 75      | 72. 3 | 69.7  | 72. 0 | 71. 0 | 73. 2 | 76. 1 | 76. 9 | 67. 5  |
| 65. 0       | 100   | 96. 5 | 99. 8 | 99. 4 | 102   | 107   | 107   | 92. 5  |
|             |       |       |       |       |       |       |       |        |
| 60. 75      | 62.6  | 60.3  | 61.8  | 62. 3 | 63. 3 | 66. 6 | 67. 2 | 57. 5  |
| 56. 5       | 289   | 279   | 286   | 285   | 291   | 302   | 307   | 271    |
| 52. 25      | 455   | 440   | 451   | 449   | 458   | 473   | 479   | 432    |
| 54. 45      | 400   | 440   | 401   | 449   | 400   | 413   | 419   | 432    |
| 48. 0       | 428   | 418   | 420   | 423   | 430   | 442   | 446   | 412    |
|             |       |       |       |       |       |       |       |        |
|             |       |       |       |       |       |       |       |        |
| 40. 2       | 212   | 210   | 205   | 207   | 215   | 217   | 218   | 209    |
| 38. 2       | 2440  | 2340  | 2480  | 2400  | 2470  | 2580  | 2610  | 2290   |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

### (a) 鉄塔部 主柱材包絡



|             |      |      |       |      |      |       |      | (kN·m) |  |  |  |
|-------------|------|------|-------|------|------|-------|------|--------|--|--|--|
| T. M. S. L. |      | 筒身部  |       |      |      |       |      |        |  |  |  |
| (m)         | ケース1 | ケース2 | ケース3  | ケース4 | ケース5 | ケース6  | ケース7 | ケース8   |  |  |  |
| 85.0        | 0.00 | 0.00 | 0.00  | 0.00 | 0.00 | 0.00  | 0.00 | 0.00   |  |  |  |
|             |      |      |       |      |      |       |      |        |  |  |  |
| 80.0        | 795  | 759  | 776   | 774  | 789  | 848   | 824  | 762    |  |  |  |
| 76. 25      | 2120 | 2030 | 2120  | 2060 | 2120 | 2280  | 2210 | 2010   |  |  |  |
| 72. 5       | 2590 | 2420 | 2480  | 2500 | 2580 | 2740  | 2630 | 2550   |  |  |  |
|             |      |      |       |      |      |       |      |        |  |  |  |
| 65. 0       | 3900 | 3670 | 3730  | 3740 | 3920 | 4140  | 3890 | 3910   |  |  |  |
|             |      |      |       |      |      |       |      |        |  |  |  |
| F.C. F.     | 5000 | 1000 | F100  | 4000 | 5150 | E 400 | E150 | 5000   |  |  |  |
| 56. 5       | 5090 | 4660 | 5160  | 4890 | 5170 | 5460  | 5170 | 5000   |  |  |  |
|             |      |      |       |      |      |       |      |        |  |  |  |
| 48. 0       | 8040 | 7820 | 7610  | 7870 | 8050 | 8260  | 8460 | 7520   |  |  |  |
| 10.0        | 5510 |      | . 510 |      | 2230 | 3230  | 3130 | .020   |  |  |  |
|             |      |      |       |      |      |       |      |        |  |  |  |
| 39. 0       | 3230 | 3130 | 3300  | 3160 | 3290 | 3450  | 3420 | 3000   |  |  |  |
| 38. 2       | 3250 | 3130 | 3110  | 3160 | 3310 | 3440  | 3400 | 3080   |  |  |  |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

## (b) 筒身部

# 図3-7 最大応答曲げモーメント (Ss-1, NS方向)

別紙 3-34 48/131



ケース3…建屋剛性  $-\sigma$ 及び地盤剛性  $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

T. M. S. L. (m)

80.0

76.25

72.5

65.0

56.5

48.0

40.2

38.2

0

15

 $(m/s^2)$ 

#### (a) 鉄塔部



#### (b) 筒身部

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減 ケース7…減衰係数+20%, ケース8…減衰係数-20%

図3-8 最大応答加速度(Ss-1,鉛直方向)

別紙 3-35 49/131



注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性+ $\sigma$ 及び地盤剛性+ $\sigma$ ,

ケース3…建屋剛性  $-\sigma$ 及び地盤剛性  $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

### (a) 鉄塔部



ケース1 …… ケース2

鉄塔部

T. M. S. L. (m)

80.0

76.25

72.5

65.0

56.5

48.0

40.2

38. 2

0

20

40

(mm)

|          |          |          |          |         |            |         |         | (mm)    |
|----------|----------|----------|----------|---------|------------|---------|---------|---------|
| T.M.S.L. |          |          |          | 筒具      | <b>計</b> 部 |         |         |         |
| (m)      | ケース1     | ケース2     | ケース3     | ケース4    | ケース5       | ケース6    | ケース7    | ケース8    |
| 85.0     | 1.53     | 1.60     | 1.42     | 1.49    | 1.55       | 1.53    | 1.53    | 1.53    |
|          |          |          |          |         |            |         |         |         |
| 80.0     | 1. 51    | 1. 58    | 1. 40    | 1.46    | 1. 53      | 1.51    | 1.51    | 1.51    |
| 76. 25   | 1. 46    | 1. 53    | 1. 36    | 1. 42   | 1. 48      | 1. 46   | 1.46    | 1.46    |
| 72. 5    | 1. 33    | 1. 40    | 1. 24    | 1. 30   | 1. 35      | 1. 33   | 1. 33   | 1. 33   |
| .2.0     | 1. 30    | 1. 10    | 1.31     | 1.30    | 1.30       | 1.30    | 1.00    | 1.30    |
|          |          |          |          |         |            |         |         |         |
| 65.0     | 1. 07    | 1. 12    | 1. 000   | 1.04    | 1. 09      | 1.07    | 1.07    | 1.07    |
|          |          |          |          |         |            |         |         |         |
|          |          |          |          |         |            |         |         |         |
| 56. 5    | 0. 731   | 0. 765   | 0. 684   | 0.710   | 0. 740     | 0. 731  | 0.731   | 0.731   |
|          |          |          |          |         |            |         |         |         |
|          |          |          |          |         |            |         |         |         |
| 48.0     | 0. 388   | 0. 406   | 0. 365   | 0. 377  | 0. 393     | 0. 388  | 0.388   | 0.388   |
|          |          |          |          |         |            |         |         |         |
|          |          |          |          |         |            |         |         |         |
| 39. 0    | 0. 00383 | 0. 00392 | 0. 00375 | 0.00328 | 0. 00407   | 0.00383 | 0.00383 | 0.00383 |
| 38. 2    | 0.00     | 0.00     | 0.00     | 0.00    | 0.00       | 0.00    | 0.00    | 0.00    |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%,ケース8…減衰係数-20%

### (b) 筒身部

## 図3-9 最大応答変位 (Ss-1, 鉛直方向)

別紙 3-36 50/131





|             |      |       |       |       |       |       |       | (kN)  |
|-------------|------|-------|-------|-------|-------|-------|-------|-------|
| T. M. S. L. |      |       |       | 鉄地    | 答部    |       |       |       |
| (m)         | ケース1 | ケース2  | ケース3  | ケース4  | ケース5  | ケース6  | ケース7  | ケース8  |
|             |      |       |       |       |       |       |       |       |
|             |      |       |       |       |       |       |       |       |
| 80. 0       |      |       |       |       |       |       |       |       |
| 76. 25      | 24.0 | 24. 3 | 23. 4 | 23. 0 | 24. 3 | 24. 1 | 24. 2 | 23. 8 |
| 72. 5       | 696  | 672   | 696   | 684   | 707   | 738   | 742   | 647   |
| 68. 75      | 716  | 693   | 715   | 704   | 727   | 759   | 763   | 666   |
| 65. 0       | 1740 | 1680  | 1740  | 1710  | 1770  | 1840  | 1860  | 1620  |
| 60. 75      | 1790 | 1720  | 1780  | 1750  | 1810  | 1880  | 1900  | 1660  |
| 56. 5       | 3320 | 3200  | 3300  | 3260  | 3360  | 3480  | 3520  | 3120  |
| 52. 25      | 3400 | 3280  | 3380  | 3340  | 3430  | 3550  | 3600  | 3190  |
| 48.0        | 4560 | 4380  | 4510  | 4480  | 4580  | 4750  | 4800  | 4320  |
| 40. 2       | 4690 | 4520  | 4640  | 4620  | 4720  | 4870  | 4930  | 4450  |
| 38. 2       | 6420 | 6120  | 6390  | 6280  | 6470  | 6690  | 6770  | 6050  |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

### (a) 鉄塔部 主柱材包絡



|             |       |      |       |       |       |       |       | (kN)  |  |  |  |
|-------------|-------|------|-------|-------|-------|-------|-------|-------|--|--|--|
| T. M. S. L. | 筒身部   |      |       |       |       |       |       |       |  |  |  |
| (m)         | ケース1  | ケース2 | ケース3  | ケース4  | ケース5  | ケース6  | ケース7  | ケース8  |  |  |  |
| 85.0        |       |      |       |       |       |       |       |       |  |  |  |
| 80. 0       | 49. 1 | 51.4 | 45. 3 | 47. 7 | 49. 8 | 49. 1 | 49. 1 | 49. 1 |  |  |  |
| 76. 25      | 139   | 145  | 128   | 135   | 140   | 139   | 139   | 139   |  |  |  |
| 72. 5       | 364   | 380  | 336   | 353   | 368   | 364   | 364   | 364   |  |  |  |
| 65. 0       | 433   | 453  | 400   | 420   | 438   | 433   | 433   | 433   |  |  |  |
| 56. 5       | 580   | 607  | 538   | 563   | 588   | 580   | 580   | 580   |  |  |  |
| 48. 0       | 701   | 733  | 653   | 681   | 710   | 701   | 701   | 701   |  |  |  |
| 39. 0       | 928   | 970  | 872   | 902   | 939   | 928   | 928   | 928   |  |  |  |
| 38. 2       | 1210  | 1270 | 1160  | 1180  | 1230  | 1210  | 1210  | 1210  |  |  |  |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性+ $\sigma$ 及び地盤剛性+ $\sigma$ ,

ケース3…建屋剛性 —  $\sigma$  及び地盤剛性 —  $\sigma$  , ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%,ケース8…減衰係数-20%

# (b) 筒身部

## 図3-10 最大応答軸力 (Ss-1)

別紙 3-37 51/131

# 表3-2 制震装置(オイルダンパー)の最大応答値及び許容値(Ss-1)

| 項目          |       | オイルダンパーの最大応答値                                  |      |      |       |       |      |      |      |  |  |
|-------------|-------|------------------------------------------------|------|------|-------|-------|------|------|------|--|--|
| 垻日          | ケース 1 | ·ス 1 ケース 2 ケース 3 ケース 4 ケース 5 ケース 6 ケース 7 ケース 8 |      |      |       |       |      |      |      |  |  |
| 速度<br>(m/s) | 2.04  | 1.96                                           | 2.01 | 1.99 | 2. 06 | 2. 12 | 1.84 | 2.30 | 2.60 |  |  |
| 変位<br>(mm)  | 137   | 128                                            | 141  | 133  | 139   | 147   | 125  | 152  | 175  |  |  |

別紙 3-38 52/131

#### 4. まとめ

建屋応答の不確かさ等を考慮した固有値解析及び地震応答解析結果より、以下の傾向を確認した。

- ・固有値解析より、固有振動数の変動幅は、基本ケースに対し0%である。
- ・地震応答解析より、発生応力、加速度及び変位は、基本ケースとおおむね同等である。

上記の傾向については、以下の理由により発生したと考えられる。

主排気筒の地震応答解析では、建屋応答の不確かさとして、入力地震動に材料物性の不確かさを考慮した原子炉建屋の応答を用いている。「原子炉建屋の地震応答計算書に関する補足説明資料」のうち別紙3「地震応答解析における材料物性の不確かさに関する検討」では、材料物性の不確かさによる応答への影響は小さい。また、主排気筒の解析モデルに対しては、基礎コンクリートの剛性のみに建屋剛性の不確かさ(コンクリート強度)を考慮している。よって、主排気筒における建屋応答の不確かさによる影響は小さくなったと考えられる。

以上より、主排気筒における建屋応答の不確かさ等による影響は小さくなったと考えられる。

別紙 3-39 53/131

別紙3-1 原子炉建屋の材料物性の不確かさ<mark>等</mark>を考慮した検討に 用いる地震動の選定について

# 目 次

| 1. | 概要                                            | 別紙 3-1-1  |
|----|-----------------------------------------------|-----------|
| 2. | 選定方法 ·····                                    | 別紙 3-1-1  |
|    | 地震動の選定                                        |           |
| 4. | 建屋応答の不確かさ <mark>等</mark> を考慮した検討に用いる地震動 ····· | 別紙 3-1-12 |

#### 1. 概要

主排気筒を対象とした、原子炉建屋の材料物性の不確かさ<mark>及び制震装置の不確かさ</mark>(以下「建屋応答の不確かさ<mark>等</mark>」という。)を考慮した検討では、基本ケースを対象に、各入力地震動(Ss-1~Ss-8による原子炉建屋全体の地震応答解析から得られる原子炉建屋屋上レベル(T.M.S.L.\*38.2m)の応答)による地震応答解析を行い、主排気筒の応答への影響が大きい入力地震動に対して検討を実施する。

本資料では、建屋応答の不確かさ等を考慮した検討に用いる地震動の選定方法及び地震動の選定結果について説明する。

注記\*:東京湾平均海面を,以下「T.M.S.L.」という。

#### 2. 選定方法

建屋応答の不確かさ<mark>等</mark>を考慮した検討に用いる地震動の選定方法を以下に示す。また, 選定方法のフローを図2-1に示す。

- ① Ss-1~Ss-8の基本ケースについて,原子炉建屋の地震応答解析を行う。(VI-2-2-1「原子炉建屋の地震応答計算書」による。)
- ② ①から得られるSs-1~Ss-8による原子炉建屋屋上レベル (T.M.S.L.38.2m) の時刻歴応答波を入力地震動として,主排気筒の基本ケースについて地震応答解析を行う。
- ③ ②から得られる各入力時震動の応答(加速度,変位,軸力及び曲げモーメント) を比較し,いずれかの応答が最大となる基準地震動 S s を建屋応答の不確かさ等 を考慮した検討に用いる入力地震動とする。



注記 \* 1 : 詳細は、VI-2-7-2-1「主排気筒の耐震性についての計算書」による。

\*2:応答値は、加速度、変位、軸力及び曲げモーメントとする。

図 2-1 建屋応答の不確かさ<mark>等</mark>を考慮した検討に用いる地震動の選定法のフロー

### 3. 地震動の選定

主排気筒の基準地震動 S s に対する地震動の選定過程を以下に記載する。主排気筒の 基準地震動 S s (基本ケース)に対する最大応答値を表3-1~表3-16に示す。

「2. 選定方法」に基づき確認した結果、Ss-1及びSs-2については、応答値のいずれかが $Ss-1\sim Ss-8$ の中で最大となることから、建屋応答の不確かさ 等の影響検討に用いる地震動とする。

表 3-1 最大応答加速度一覧表(基準地震動 S s, NS 方向)

| ·   | T. M. S. L. |              |       |       | 最大点   | 芯答加速度( | $(m/s^2)$ |       |       |       |
|-----|-------------|--------------|-------|-------|-------|--------|-----------|-------|-------|-------|
| 部位  | (m)         | Ss-1         | Ss-2  | Ss-3  | Ss-4  | Ss-5   | Ss-6      | Ss-7  | Ss-8  | 最大値   |
|     | 80.0        | <u>53. 2</u> | 48. 7 | 39. 0 | 19. 2 | 21.4   | 19. 5     | 21.5  | 41.3  | 53. 2 |
|     | 76. 25      | <u>47. 1</u> | 41. 9 | 34. 1 | 15.8  | 18.3   | 16. 2     | 17.9  | 35. 5 | 47.1  |
|     | 72. 5       | <u>39. 7</u> | 34. 0 | 29. 3 | 12. 2 | 15.0   | 12. 5     | 13.9  | 29. 3 | 39. 7 |
| 鉄塔部 | 65.0        | <u>27. 4</u> | 23. 1 | 20.9  | 9. 10 | 10.7   | 9. 07     | 10.3  | 22. 3 | 27. 4 |
|     | 56. 5       | <u>17. 6</u> | 14. 9 | 13. 7 | 7. 96 | 8.08   | 8. 17     | 7.70  | 16. 2 | 17. 6 |
|     | 48.0        | <u>19. 1</u> | 11. 5 | 10. 9 | 7. 73 | 7.06   | 7. 89     | 6.92  | 14. 1 | 19. 1 |
|     | 40. 2       | <u>12. 9</u> | 8. 85 | 9. 16 | 6. 34 | 5. 27  | 6. 56     | 5.14  | 11.4  | 12.9  |
|     | 38. 2       | <u>12. 3</u> | 8. 61 | 8. 87 | 6. 10 | 5. 16  | 6. 31     | 4.95  | 11.0  | 12.3  |
|     | 85.0        | <u>67. 9</u> | 47. 7 | 53. 1 | 24. 7 | 23.0   | 24. 5     | 24.8  | 45. 4 | 67. 9 |
|     | 80.0        | <u>46. 7</u> | 40.8  | 38.0  | 17. 3 | 18. 2  | 17. 4     | 18.5  | 34. 5 | 46. 7 |
|     | 76. 25      | <u>44. 3</u> | 35.8  | 31.0  | 12. 3 | 15.8   | 12. 5     | 14.6  | 33. 0 | 44. 3 |
|     | 72. 5       | <u>45. 5</u> | 31. 2 | 27. 3 | 10. 3 | 13. 7  | 10.7      | 12.9  | 32. 5 | 45. 5 |
| 筒身部 | 65. 0       | <u>38.8</u>  | 22. 3 | 21.6  | 12. 4 | 10.9   | 12. 9     | 9. 26 | 27. 2 | 38.8  |
|     | 56. 5       | <u>20. 7</u> | 15. 0 | 15.8  | 8. 06 | 9.01   | 8. 40     | 8.07  | 17. 0 | 20. 7 |
|     | 48.0        | <u>17. 1</u> | 10. 9 | 10.8  | 7. 03 | 6.68   | 7. 36     | 6.33  | 13.6  | 17. 1 |
|     | 39. 0       | <u>12. 5</u> | 8. 69 | 8. 98 | 6. 19 | 5. 20  | 6.41      | 5.02  | 11. 1 | 12.5  |
|     | 38. 2       | <u>12. 3</u> | 8. 61 | 8. 87 | 6. 10 | 5. 16  | 6. 31     | 4. 95 | 11.0  | 12. 3 |

表 3-2 最大応答加速度一覧表 (基準地震動 S s, EW 方向)

| 鉄塔部    | T. M. S. L. |              |              |       | 最大原    | 5答加速度( | $m/s^2$ ) |       |       |       |
|--------|-------------|--------------|--------------|-------|--------|--------|-----------|-------|-------|-------|
| 却小不    | (m)         | Ss-1         | Ss-2         | Ss-3  | Ss-4   | Ss-5   | Ss-6      | Ss-7  | Ss-8  | 最大値   |
|        | 80.0        | <u>50.8</u>  | 49. 1        | 37. 4 | 29. 4  | 29.3   | 31. 6     | 36.8  | 38. 2 | 50.8  |
|        | 76. 25      | <u>45. 3</u> | 42. 4        | 32. 6 | 25. 4  | 25.4   | 27. 1     | 30.3  | 33. 2 | 45. 3 |
|        | 72. 5       | <u>38. 5</u> | 34.8         | 27.8  | 20. 4  | 20.7   | 21.8      | 23. 4 | 27. 5 | 38. 5 |
| 分十十六十八 | 65. 0       | 26.6         | <u>27. 2</u> | 19. 6 | 15. 80 | 14. 9  | 16. 2     | 16.6  | 21.3  | 27. 2 |
|        | 56. 5       | 16.5         | <u>18. 9</u> | 12. 7 | 12. 7  | 11.5   | 12. 9     | 13.70 | 14. 7 | 18.9  |
|        | 48.0        | <u>19. 1</u> | 13. 0        | 11. 0 | 9. 63  | 10.8   | 9. 92     | 12.6  | 13. 4 | 19. 1 |
|        | 40.2        | <u>12. 6</u> | 12.0         | 8. 70 | 7. 26  | 8.80   | 7. 41     | 9. 27 | 10.9  | 12.6  |
|        | 38. 2       | <u>12. 2</u> | 11. 7        | 8. 45 | 6. 98  | 8. 55  | 7. 14     | 8.95  | 10.6  | 12. 2 |
|        | 85. 0       | 61.1         | <u>63. 3</u> | 50.6  | 37. 3  | 39. 0  | 36. 5     | 48.6  | 41.3  | 63. 3 |
|        | 80.0        | 44. 2        | <u>45. 1</u> | 36. 3 | 25. 7  | 26. 1  | 28. 2     | 33. 9 | 32.8  | 45. 1 |
|        | 76. 25      | <u>41. 7</u> | 38. 3        | 29. 5 | 22. 1  | 21.7   | 23. 3     | 23. 3 | 31. 1 | 41.7  |
|        | 72. 5       | <u>40.8</u>  | 37. 7        | 25.8  | 20. 2  | 17.8   | 21. 2     | 18.5  | 29. 4 | 40.8  |
| 筒身部    | 65. 0       | <u>32. 9</u> | 32. 1        | 19. 1 | 19. 5  | 13. 1  | 20. 3     | 13. 7 | 23. 2 | 32. 9 |
|        | 56. 5       | 18.7         | <u>20. 6</u> | 14. 0 | 13. 6  | 13. 9  | 14. 20    | 14. 9 | 13.6  | 20.6  |
|        | 48. 0       | <u>16. 5</u> | 12.8         | 10. 1 | 9. 27  | 10.4   | 9. 89     | 12.0  | 12.8  | 16. 5 |
|        | 39. 0       | <u>12. 4</u> | 11.8         | 8. 54 | 7. 08  | 8. 64  | 7. 24     | 9. 05 | 10.7  | 12. 4 |
|        | 38. 2       | <u>12. 2</u> | 11. 7        | 8. 45 | 6. 98  | 8. 55  | 7. 14     | 8. 95 | 10.6  | 12. 2 |

表 3-3 最大応答加速度一覧表(基準地震動 S s, 鉛直方向)

| ·   | T. M. S. L. |              |       |       | 最大原   | 芯答加速度( | $m/s^2$ ) |       |       |       |
|-----|-------------|--------------|-------|-------|-------|--------|-----------|-------|-------|-------|
| 部位  | (m)         | Ss-1         | Ss-2  | Ss-3  | Ss-4  | Ss-5   | Ss-6      | Ss-7  | Ss-8  | 最大値   |
|     | 80.0        | <u>14. 2</u> | 10.8  | 9. 13 | 8. 3  | 8. 19  | 8. 68     | 9.69  | 7.81  | 14. 2 |
|     | 76. 25      | <u>14. 2</u> | 10. 9 | 8. 97 | 8. 27 | 8. 14  | 8. 67     | 9.67  | 7. 65 | 14. 2 |
|     | 72. 5       | <u>14. 3</u> | 10. 2 | 8.87  | 7. 96 | 7.80   | 8. 18     | 9. 27 | 7. 56 | 14. 3 |
| 鉄塔部 | 65. 0       | <u>12. 7</u> | 8. 74 | 7. 60 | 7. 18 | 7. 21  | 6. 92     | 8. 23 | 6. 03 | 12. 7 |
|     | 56. 5       | <u>12. 1</u> | 7. 30 | 7. 02 | 6. 22 | 6.48   | 6. 12     | 7.02  | 5. 09 | 12. 1 |
|     | 48.0        | <u>10. 6</u> | 6. 27 | 6. 43 | 5. 41 | 5. 77  | 5. 48     | 6.04  | 4. 15 | 10.6  |
|     | 40. 2       | <u>9.62</u>  | 6. 52 | 6. 32 | 4. 74 | 5. 31  | 4. 85     | 5.31  | 3. 42 | 9. 62 |
|     | 38. 2       | <u>9. 57</u> | 6. 53 | 6. 32 | 4. 75 | 5. 28  | 4. 82     | 5. 27 | 3. 39 | 9. 57 |
|     | 85. 0       | <u>11. 2</u> | 6. 47 | 7.86  | 6. 14 | 5.85   | 5. 71     | 6.08  | 6. 15 | 11.2  |
|     | 80.0        | <u>11. 2</u> | 6. 45 | 7.82  | 6. 11 | 5.83   | 5. 68     | 6.05  | 6. 10 | 11. 2 |
|     | 76. 25      | <u>11. 1</u> | 6. 42 | 7. 72 | 6.05  | 5. 78  | 5. 60     | 6.00  | 6.00  | 11. 1 |
|     | 72. 5       | <u>10.8</u>  | 6. 32 | 7. 45 | 5. 90 | 5. 67  | 5. 45     | 5.86  | 5. 74 | 10.8  |
| 筒身部 | 65. 0       | <u>10. 4</u> | 6. 11 | 6. 97 | 5. 59 | 5. 43  | 5. 29     | 5. 58 | 5. 20 | 10.4  |
|     | 56. 5       | <u>9. 91</u> | 5. 88 | 6. 46 | 5. 22 | 5. 14  | 5. 11     | 5. 23 | 4. 51 | 9. 91 |
|     | 48.0        | <u>9.61</u>  | 5. 83 | 6. 28 | 4. 89 | 4.86   | 4. 93     | 4. 92 | 3. 85 | 9. 61 |
|     | 39. 0       | <u>9. 34</u> | 5. 79 | 6. 21 | 4. 60 | 4. 63  | 4. 77     | 4.66  | 3. 18 | 9. 34 |
|     | 38. 2       | <u>9. 34</u> | 5. 79 | 6. 21 | 4. 60 | 4. 63  | 4. 76     | 4.66  | 3. 18 | 9. 34 |

表 3-4 最大応答変位一覧表(基準地震動 S s, NS 方向)

| <b>☆</b> □ /       | T. M. S. L. |               |               |         | 最力           | 大応答変位(   | mm)      |         |        |        |
|--------------------|-------------|---------------|---------------|---------|--------------|----------|----------|---------|--------|--------|
| 部位                 | (m)         | Ss-1          | Ss-2          | Ss-3    | Ss-4         | Ss-5     | Ss-6     | Ss-7    | Ss-8   | 最大値    |
|                    | 80.0        | <u>181</u>    | 155           | 131     | 53. 2        | 67. 9    | 54. 5    | 63.8    | 136    | 181    |
|                    | 76. 25      | <u>154</u>    | 132           | 112     | <b>45.</b> 3 | 58. 0    | 46. 4    | 54.2    | 117    | 154    |
|                    | 72. 5       | <u>122</u>    | 104           | 88. 1   | 35. 4        | 45. 7    | 36. 3    | 42.3    | 92. 4  | 122    |
| <b>分</b> 件 ↓块* ☆17 | 65. 0       | <u>69. 0</u>  | 58. 7         | 50. 1   | 19. 7        | 26. 0    | 20. 4    | 23. 4   | 53. 5  | 69. 0  |
| 鉄塔部                | 56. 5       | <u>29. 2</u>  | 24.8          | 21. 2   | 8. 32        | 11.2     | 8. 76    | 10.1    | 23.6   | 29. 2  |
|                    | 48.0        | <u>5.80</u>   | 4. 95         | 4. 35   | 1. 78        | 2. 51    | 1. 77    | 2.09    | 5. 59  | 5.80   |
|                    | 40.2        | 0. 229        | <u>0. 252</u> | 0. 171  | 0. 109       | 0. 136   | 0. 116   | 0.116   | 0.212  | 0. 252 |
|                    | 38. 2       | 0.00          | 0.00          | 0.00    | 0.00         | 0.00     | 0.00     | 0.00    | 0.00   | 0.00   |
|                    | 85. 0       | <u>264</u>    | 226           | 183     | 89. 3        | 115      | 91.0     | 98.5    | 237    | 264    |
|                    | 80.0        | <u>216</u>    | 185           | 147     | 71. 6        | 94. 4    | 73. 3    | 80.5    | 194    | 216    |
|                    | 76. 25      | <u>181</u>    | 155           | 121     | 58. 7        | 79. 1    | 60.3     | 67.2    | 163    | 181    |
|                    | 72. 5       | <u>150</u>    | 127           | 97.8    | 46. 9        | 64.8     | 48. 4    | 55. 0   | 135    | 150    |
| 筒身部                | 65. 0       | <u>93. 6</u>  | 76. 9         | 58. 0   | 26.8         | 39. 3    | 28. 0    | 33. 1   | 83. 2  | 93.6   |
|                    | 56. 5       | <u>40.2</u>   | 32.0          | 24. 1   | 10. 2        | 16. 3    | 10.7     | 13.3    | 35. 4  | 40.2   |
|                    | 48. 0       | <u>7.61</u>   | 6. 21         | 5. 24   | 1. 97        | 3. 16    | 1. 99    | 2. 59   | 7. 01  | 7.61   |
|                    | 39. 0       | <u>0.0151</u> | 0.0108        | 0. 0103 | 0. 00498     | 0. 00501 | 0. 00524 | 0.00524 | 0.0116 | 0.0151 |
|                    | 38. 2       | 0.00          | 0.00          | 0.00    | 0.00         | 0.00     | 0.00     | 0.00    | 0.00   | 0.00   |

表 3-5 最大応答変位一覧表 (基準地震動 S s, EW 方向)

| <b>☆7 /</b> - <b>☆</b> | T. M. S. L. |               |               |          | 最力       | 大応答変位(   | mm)      |          |        |         |
|------------------------|-------------|---------------|---------------|----------|----------|----------|----------|----------|--------|---------|
| 制1亿                    | (m)         | Ss-1          | Ss-2          | Ss-3     | Ss-4     | Ss-5     | Ss-6     | Ss-7     | Ss-8   | 最大値     |
|                        | 80.0        | <u>170</u>    | 160           | 123      | 94. 0    | 95. 1    | 100.0    | 101      | 126    | 170     |
| 鉄塔部                    | 76. 25      | <u>145</u>    | 137           | 105      | 80. 0    | 80. 9    | 85. 1    | 85. 5    | 108    | 145     |
|                        | 72. 5       | <u>114</u>    | 107           | 82.0     | 62. 6    | 63. 3    | 66. 6    | 66. 5    | 85. 0  | 114     |
| 分十十分 立7                | 65. 0       | <u>63. 4</u>  | 60.0          | 45.8     | 34. 7    | 34. 9    | 36. 9    | 36. 3    | 48. 3  | 63. 4   |
|                        | 56. 5       | <u>25. 4</u>  | 25. 1         | 18.4     | 13.8     | 13.8     | 14. 6    | 13.9     | 20.1   | 25. 4   |
|                        | 48.0        | <u>9.06</u>   | 8. 65         | 6. 63    | 5. 36    | 5. 66    | 5. 69    | 6. 28    | 6. 17  | 9.06    |
|                        | 40. 2       | 0.212         | <u>0. 299</u> | 0. 154   | 0. 183   | 0. 187   | 0. 194   | 0. 181   | 0. 198 | 0. 299  |
|                        | 38. 2       | 0.00          | 0.00          | 0.00     | 0.00     | 0.00     | 0.00     | 0.00     | 0.00   | 0.00    |
|                        | 85. 0       | 247           | <u>272</u>    | 172      | 144      | 173      | 159      | 188      | 220    | 272     |
|                        | 80.0        | 201           | <u>220</u>    | 138      | 117      | 140      | 130      | 153      | 180    | 220     |
|                        | 76. 25      | 168           | <u>183</u>    | 113      | 97. 9    | 116      | 108      | 127      | 151    | 183     |
|                        | 72. 5       | 138           | <u>148</u>    | 90. 5    | 79. 8    | 94. 0    | 87. 6    | 102      | 123    | 148     |
| 筒身部                    | 65. 0       | 83.6          | <u>88. 5</u>  | 52. 3    | 47. 9    | 54. 7    | 52. 5    | 59. 2    | 74. 2  | 88. 5   |
|                        | 56. 5       | 33. 4         | <u>35. 8</u>  | 20. 1    | 19. 3    | 20.8     | 21. 3    | 22. 4    | 29.8   | 35.8    |
|                        | 48.0        | 4. 75         | <u>5. 84</u>  | 3. 47    | 3. 27    | 3. 13    | 3. 53    | 3. 43    | 4. 64  | 5. 84   |
|                        | 39. 0       | <u>0.0152</u> | 0. 0131       | 0. 00998 | 0. 00773 | 0. 00858 | 0. 00823 | 0. 00979 | 0.0100 | 0. 0152 |
|                        | 38. 2       | 0.00          | 0.00          | 0.00     | 0. 00    | 0.00     | 0.00     | 0.00     | 0.00   | 0.00    |

表 3-6 最大応答変位一覧表 (基準地震動 S s, 鉛直方向)

| 如 仕 | T. M. S. L. |                 |               |         | 最为       | 応答変位(   | mm)      |         |         |         |
|-----|-------------|-----------------|---------------|---------|----------|---------|----------|---------|---------|---------|
| 部位  | (m)         | Ss-1            | Ss-2          | Ss-3    | Ss-4     | Ss-5    | Ss-6     | Ss-7    | Ss-8    | 最大値     |
|     | 80.0        | 17.3            | <u>24. 9</u>  | 12.8    | 13. 4    | 14. 2   | 14.0     | 13.5    | 13. 1   | 24. 9   |
|     | 76. 25      | 17.6            | <u>25. 5</u>  | 13.0    | 13.6     | 14. 5   | 14. 3    | 13. 7   | 13. 4   | 25. 5   |
|     | 72. 5       | 18. 5           | <u>23. 9</u>  | 13. 6   | 12.8     | 13.6    | 13. 4    | 12.9    | 14. 0   | 23. 9   |
| 鉄塔部 | 65. 0       | 13. 2           | <u>19. 0</u>  | 9. 75   | 10. 1    | 10.8    | 10.6     | 10.2    | 10. 1   | 19.0    |
|     | 56. 5       | 10.3            | <u>12. 3</u>  | 7.64    | 6. 46    | 6. 96   | 6. 78    | 6.6     | 8. 02   | 12.3    |
|     | 48.0        | 4. 29           | <u>6. 16</u>  | 3. 19   | 3. 26    | 3. 51   | 3. 42    | 3. 34   | 3. 31   | 6. 16   |
|     | 40. 2       | 0. 174          | <u>0. 237</u> | 0. 129  | 0. 118   | 0. 127  | 0. 124   | 0.119   | 0. 143  | 0. 237  |
|     | 38. 2       | 0.00            | 0.00          | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    |
|     | 85. 0       | <u>1.53</u>     | 1. 20         | 1. 26   | 1. 05    | 1.09    | 1. 10    | 1.11    | 1. 15   | 1.53    |
|     | 80.0        | <u>1. 51</u>    | 1. 18         | 1. 24   | 1.04     | 1.07    | 1.09     | 1.10    | 1. 13   | 1. 51   |
|     | 76. 25      | <u>1.46</u>     | 1. 15         | 1. 20   | 1. 01    | 1.04    | 1.05     | 1.06    | 1.10    | 1.46    |
|     | 72. 5       | <u>1. 33</u>    | 1.05          | 1. 10   | 0. 919   | 0. 95   | 0. 962   | 0.969   | 1.00    | 1. 33   |
| 筒身部 | 65. 0       | <u>1.07</u>     | 0.844         | 0.881   | 0.74     | 0.764   | 0. 775   | 0.778   | 0.802   | 1.07    |
|     | 56. 5       | <u>0. 731</u>   | 0. 577        | 0.601   | 0. 506   | 0. 523  | 0. 531   | 0.53    | 0. 545  | 0. 731  |
|     | 48.0        | <u>0. 388</u>   | 0. 308        | 0. 319  | 0. 269   | 0. 278  | 0. 283   | 0.281   | 0. 288  | 0.388   |
|     | 39. 0       | <u>0. 00383</u> | 0. 00309      | 0.00321 | 0. 00272 | 0.00279 | 0. 00286 | 0.00279 | 0.00281 | 0.00383 |
|     | 38. 2       | 0.00            | 0.00          | 0.00    | 0.00     | 0.00    | 0.00     | 0.00    | 0.00    | 0.00    |

表 3-7 最大応答軸力一覧表(基準地震動 S s ,  $_R2$  通り $-_RC$  通り間主柱材)

| <b>☆77 /</b> ᆣ: | T. M. S. L. |              |             |      | 最为   | に応答軸力( | kN)  |      |       |       |
|-----------------|-------------|--------------|-------------|------|------|--------|------|------|-------|-------|
| 部位              | (m)         | Ss-1         | Ss-2        | Ss-3 | Ss-4 | Ss-5   | Ss-6 | Ss-7 | Ss-8  | 最大値   |
|                 | 80.0        | _            | —           | —    | —    | _      | —    | _    | _     | _     |
|                 | 76. 25      | <u>23. 6</u> | 19.8        | 19.8 | 16.0 | 18. 0  | 15.8 | 18.9 | 18. 5 | 23. 6 |
|                 | 72. 5       | <u>696</u>   | 678         | 512  | 329  | 292    | 348  | 333  | 519   | 696   |
|                 | 68. 75      | <u>716</u>   | 701         | 528  | 347  | 314    | 366  | 351  | 538   | 716   |
|                 | 65. 0       | <u>1740</u>  | 1700        | 1280 | 802  | 679    | 850  | 809  | 1290  | 1740  |
| 鉄塔部             | 60.75       | <u>1790</u>  | 1750        | 1310 | 843  | 730    | 891  | 848  | 1330  | 1790  |
|                 | 56. 5       | <u>3320</u>  | 3240        | 2440 | 1500 | 1240   | 1560 | 1420 | 2510  | 3320  |
|                 | 52. 25      | <u>3400</u>  | 3320        | 2510 | 1560 | 1320   | 1630 | 1480 | 2590  | 3400  |
|                 | 48.0        | <u>4560</u>  | 4560        | 3360 | 2040 | 1640   | 2110 | 1790 | 3550  | 4560  |
|                 | 40. 2       | 4690         | <u>4710</u> | 3480 | 2150 | 1770   | 2220 | 1890 | 3680  | 4710  |
|                 | 38. 2       | <u>6420</u>  | 6110        | 4760 | 2730 | 2420   | 2820 | 2250 | 5290  | 6420  |

表 3-8 最大応答軸力一覧表(基準地震動 S s ,  $_R1$  通り $-_RC$  通り間主柱材)

| 如 仕 | T. M. S. L. |              |             |      | 最力    | に応答軸力( | kN)  |      |       |       |
|-----|-------------|--------------|-------------|------|-------|--------|------|------|-------|-------|
| 部位  | (m)         | Ss-1         | Ss-2        | Ss-3 | Ss-4  | Ss-5   | Ss-6 | Ss-7 | Ss-8  | 最大値   |
|     | 80.0        | —            | —           | —    | —     | _      | —    | _    | _     | _     |
|     | 76. 25      | <u>24. 0</u> | 21. 2       | 19.8 | 16. 2 | 17. 2  | 16.0 | 16.9 | 18. 7 | 24. 0 |
|     | 72. 5       | 637          | <u>997</u>  | 427  | 486   | 506    | 508  | 526  | 423   | 997   |
|     | 68. 75      | 656          | <u>1020</u> | 444  | 500   | 521    | 523  | 544  | 437   | 1020  |
|     | 65. 0       | 1590         | <u>2510</u> | 1050 | 1220  | 1280   | 1280 | 1310 | 1050  | 2510  |
| 鉄塔部 | 60. 75      | 1630         | <u>2570</u> | 1090 | 1260  | 1310   | 1320 | 1350 | 1080  | 2570  |
|     | 56. 5       | 3070         | <u>4760</u> | 2030 | 2360  | 2460   | 2480 | 2450 | 1970  | 4760  |
|     | 52. 25      | 3140         | <u>4850</u> | 2100 | 2410  | 2520   | 2540 | 2500 | 2030  | 4850  |
|     | 48. 0       | 4250         | <u>6510</u> | 2840 | 3340  | 3450   | 3520 | 3410 | 2670  | 6510  |
|     | 40. 2       | 4390         | <u>6680</u> | 2960 | 3440  | 3560   | 3630 | 3510 | 2760  | 6680  |
|     | 38. 2       | 6110         | <u>8490</u> | 4260 | 4600  | 4760   | 4850 | 4630 | 3720  | 8490  |

表 3-9 最大応答軸力一覧表(基準地震動 S s ,  $_R1$  通り $-_RD$  通り間主柱材)

| <b>☆77 /</b> ᆣ: | T. M. S. L. |              |             |       | 最为   | に応答軸力( | kN)   |      |       |       |
|-----------------|-------------|--------------|-------------|-------|------|--------|-------|------|-------|-------|
| 部位              | (m)         | Ss-1         | Ss-2        | Ss-3  | Ss-4 | Ss-5   | Ss-6  | Ss-7 | Ss-8  | 最大値   |
|                 | 80.0        | _            | —           | _     | _    | _      | —     | _    |       | _     |
|                 | 76. 25      | <u>24. 0</u> | 20. 3       | 19. 4 | 17.7 | 16. 6  | 18. 7 | 16.0 | 18. 7 | 24. 0 |
|                 | 72. 5       | 660          | <u>693</u>  | 491   | 315  | 346    | 346   | 328  | 483   | 693   |
|                 | 68. 75      | 679          | <u>715</u>  | 511   | 335  | 364    | 366   | 345  | 502   | 715   |
|                 | 65. 0       | 1670         | <u>1760</u> | 1230  | 752  | 844    | 840   | 797  | 1210  | 1760  |
| 鉄塔部             | 60.75       | 1720         | <u>1800</u> | 1270  | 801  | 883    | 887   | 837  | 1250  | 1800  |
|                 | 56. 5       | 3170         | <u>3300</u> | 2330  | 1400 | 1570   | 1560  | 1490 | 2360  | 3300  |
|                 | 52. 25      | 3240         | <u>3370</u> | 2410  | 1480 | 1640   | 1640  | 1560 | 2440  | 3370  |
|                 | 48.0        | 4400         | <u>4510</u> | 3230  | 1970 | 2160   | 2130  | 2060 | 3390  | 4510  |
|                 | 40. 2       | 4530         | <u>4630</u> | 3370  | 2100 | 2280   | 2250  | 2170 | 3520  | 4630  |
|                 | 38. 2       | <u>6100</u>  | 5560        | 4250  | 2720 | 3060   | 2910  | 2890 | 4560  | 6100  |

表 3-10 最大応答軸力一覧表(基準地震動 S s ,  $_R2$  通り  $-_RD$  通り間主柱材)

| 如   | T. M. S. L. |              |             |       | 最为    | 応答軸力( | kN)   |       |       |       |
|-----|-------------|--------------|-------------|-------|-------|-------|-------|-------|-------|-------|
| 部位  | (m)         | Ss-1         | Ss-2        | Ss-3  | Ss-4  | Ss-5  | Ss-6  | Ss-7  | Ss-8  | 最大値   |
|     | 80.0        | —            | —           | —     | _     | _     | _     | _     | _     | _     |
|     | 76. 25      | <u>22. 6</u> | 20.6        | 19. 0 | 18. 6 | 17. 2 | 19. 6 | 18. 1 | 17. 1 | 22. 6 |
|     | 72. 5       | 696          | <u>1000</u> | 512   | 546   | 574   | 571   | 543   | 518   | 1000  |
|     | 68. 75      | 716          | <u>1030</u> | 528   | 569   | 594   | 593   | 561   | 538   | 1030  |
|     | 65. 0       | 1740         | <u>2530</u> | 1280  | 1350  | 1440  | 1420  | 1360  | 1280  | 2530  |
| 鉄塔部 | 60. 75      | 1780         | <u>2580</u> | 1310  | 1400  | 1480  | 1470  | 1400  | 1330  | 2580  |
|     | 56. 5       | 3320         | <u>4790</u> | 2440  | 2500  | 2690  | 2630  | 2540  | 2510  | 4790  |
|     | 52. 25      | 3400         | <u>4890</u> | 2510  | 2590  | 2760  | 2710  | 2610  | 2580  | 4890  |
|     | 48. 0       | 4560         | <u>6590</u> | 3350  | 3360  | 3650  | 3530  | 3450  | 3550  | 6590  |
|     | 40. 2       | 4690         | <u>6750</u> | 3480  | 3490  | 3770  | 3660  | 3560  | 3680  | 6750  |
|     | 38. 2       | 6410         | <u>8730</u> | 4760  | 4290  | 4690  | 4470  | 4380  | 5280  | 8730  |

表 3-11 最大応答軸力一覧表(基準地震動 S s, 筒身部)

| 部位  | T. M. S. L. |              |       |       | 最为    | に応答軸力() | kN)   |      |       |       |
|-----|-------------|--------------|-------|-------|-------|---------|-------|------|-------|-------|
| 리기꼬 | (m)         | Ss-1         | Ss-2  | Ss-3  | Ss-4  | Ss-5    | Ss-6  | Ss-7 | Ss-8  | 最大値   |
|     | 85. 0       | _            | _     | —     | _     | _       | _     | _    | _     | _     |
|     | 80.0        | <u>49. 1</u> | 38. 1 | 40. 4 | 33. 5 | 34. 7   | 35. 0 | 35.9 | 37. 3 | 49. 1 |
|     | 76. 25      | <u>139</u>   | 108   | 114   | 94. 7 | 97. 9   | 98.8  | 101  | 105   | 139   |
|     | 72. 5       | <u>364</u>   | 283   | 299   | 249   | 257     | 259   | 265  | 275   | 364   |
| 筒身部 | 65. 0       | <u>433</u>   | 337   | 356   | 296   | 306     | 309   | 316  | 327   | 433   |
|     | 56. 5       | <u>580</u>   | 454   | 477   | 398   | 412     | 416   | 422  | 437   | 580   |
|     | 48.0        | <u>701</u>   | 551   | 576   | 483   | 499     | 506   | 509  | 526   | 701   |
|     | 39. 0       | <u>928</u>   | 735   | 764   | 644   | 665     | 677   | 672  | 689   | 928   |
|     | 38. 2       | <u>1210</u>  | 977   | 1020  | 861   | 883     | 906   | 883  | 889   | 1210  |

表 3-12 最大応答曲げモーメント一覧表 (基準地震動 S s,  $_R2$  通り $-_RC$  通り間主柱材)

| ₩ /÷ | T. M. S. L. | L. 最大応答曲げモーメント(kN·m) |              |       |       |       |       |       |      |       |
|------|-------------|----------------------|--------------|-------|-------|-------|-------|-------|------|-------|
| 部位   | (m)         | Ss-1                 | Ss-2         | Ss-3  | Ss-4  | Ss-5  | Ss-6  | Ss-7  | Ss-8 | 最大値   |
|      | 80.0        | 0.00                 | 0.00         | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00 | 0.00  |
|      | 76. 25      | 18.6                 | <u>21. 5</u> | 13.6  | 9. 76 | 10.6  | 10.4  | 11. 3 | 13.7 | 21.5  |
|      | 72. 5       | <u>44. 9</u>         | 42.8         | 33. 2 | 21.4  | 18. 7 | 22. 6 | 20.6  | 33.4 | 44. 9 |
|      | 68. 75      | 72. 3                | <u>81. 5</u> | 53. 4 | 38. 5 | 39. 3 | 41.5  | 45. 3 | 54.4 | 81.5  |
|      | 65. 0       | <u>100</u>           | 99.9         | 75. 3 | 49. 2 | 43. 3 | 52. 4 | 50. 9 | 72.3 | 100   |
| 鉄塔部  | 60. 75      | 64. 3                | <u>68. 2</u> | 48. 5 | 37. 3 | 33. 9 | 40. 1 | 41. 9 | 43.5 | 68. 2 |
|      | 56. 5       | <u>289</u>           | 275          | 215   | 137   | 117   | 146   | 129   | 217  | 289   |
|      | 52. 25      | 455                  | <u>504</u>   | 338   | 219   | 237   | 237   | 253   | 355  | 504   |
|      | 48. 0       | <u>427</u>           | 426          | 316   | 212   | 174   | 224   | 211   | 322  | 427   |
|      | 40. 2       | <u>210</u>           | 205          | 153   | 113   | 99. 5 | 118   | 117   | 152  | 210   |
|      | 38. 2       | 2440                 | <u>2460</u>  | 1790  | 1070  | 1060  | 1170  | 1090  | 2200 | 2460  |

表 3-13 最大応答曲げモーメント一覧表 (基準地震動 S s, R1 通り-RC 通り間主柱材)

| <b>☆77 /</b> ᆣ: | T. M. S. L. |       |              |       | 最大応答曲 | 由げモーメン | /     |       |       |       |
|-----------------|-------------|-------|--------------|-------|-------|--------|-------|-------|-------|-------|
| 部位              | (m)         | Ss-1  | Ss-2         | Ss-3  | Ss-4  | Ss-5   | Ss-6  | Ss-7  | Ss-8  | 最大値   |
|                 | 80.0        | 0.00  | 0.00         | 0.00  | 0.00  | 0.00   | 0.00  | 0.00  | 0.00  | 0.00  |
|                 | 76. 25      | 18. 1 | <u>24. 3</u> | 13. 2 | 12.3  | 13. 3  | 13. 0 | 13. 4 | 13. 1 | 24. 3 |
|                 | 72. 5       | 41.1  | <u>63. 2</u> | 29. 4 | 30. 9 | 32. 1  | 32. 4 | 33. 1 | 28.5  | 63. 2 |
|                 | 68. 75      | 66. 4 | <u>88. 4</u> | 47. 7 | 44.2  | 47. 7  | 47. 1 | 51.8  | 47.1  | 88.4  |
|                 | 65. 0       | 92.4  | <u>145</u>   | 68.7  | 71.1  | 76. 5  | 75. 4 | 78. 5 | 63.4  | 145   |
| 鉄塔部             | 60.75       | 64. 3 | <u>90. 6</u> | 47. 9 | 47. 1 | 49. 2  | 49.8  | 52. 5 | 41.9  | 90.6  |
|                 | 56. 5       | 267   | <u>405</u>   | 194   | 198   | 208    | 208   | 210   | 191   | 405   |
|                 | 52. 25      | 425   | <u>531</u>   | 301   | 253   | 282    | 271   | 285   | 316   | 531   |
|                 | 48.0        | 396   | <u>625</u>   | 281   | 303   | 331    | 321   | 329   | 284   | 625   |
|                 | 40. 2       | 197   | <u>295</u>   | 134   | 141   | 156    | 151   | 163   | 142   | 295   |
|                 | 38. 2       | 2430  | <u>3010</u>  | 1760  | 1850  | 1980   | 1950  | 1850  | 2040  | 3010  |

表 3-14 最大応答曲げモーメント一覧表 (基準地震動 S s, R1 通り-RD 通り間主柱材)

| <del></del> | T. M. S. L. |             | 最大応答曲げモーメント(kN·m) |       |       |       |       |       |       |       |  |  |
|-------------|-------------|-------------|-------------------|-------|-------|-------|-------|-------|-------|-------|--|--|
| 部位          | (m)         | Ss-1        | Ss-2              | Ss-3  | Ss-4  | Ss-5  | Ss-6  | Ss-7  | Ss-8  | 最大値   |  |  |
|             | 80.0        | 0.00        | 0.00              | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  |  |  |
|             | 76. 25      | 18. 1       | <u>21. 5</u>      | 13. 1 | 10.2  | 11. 2 | 10.8  | 11. 5 | 13. 1 | 21. 5 |  |  |
|             | 72. 5       | 42.0        | <u>43. 7</u>      | 31. 1 | 19. 9 | 21.8  | 21.8  | 21. 1 | 30.6  | 43. 7 |  |  |
|             | 68. 75      | 66. 9       | <u>80. 6</u>      | 49.8  | 41.1  | 46. 5 | 43. 1 | 47. 0 | 49.6  | 80.6  |  |  |
|             | 65. 0       | 98.6        | <u>103</u>        | 73. 3 | 46.0  | 50. 7 | 50.6  | 48. 3 | 69.4  | 103   |  |  |
| 鉄塔部         | 60. 75      | 68. 2       | <u>71. 4</u>      | 51.2  | 36. 1 | 38. 7 | 38. 2 | 41. 4 | 46.6  | 71.4  |  |  |
|             | 56. 5       | 269         | <u>281</u>        | 200   | 130   | 137   | 143   | 138   | 198   | 281   |  |  |
|             | 52. 25      | 425         | <u>487</u>        | 301   | 235   | 269   | 247   | 266   | 316   | 487   |  |  |
|             | 48. 0       | 433         | <u>461</u>        | 317   | 192   | 196   | 211   | 217   | 308   | 461   |  |  |
|             | 40. 2       | 202         | <u>232</u>        | 145   | 99. 2 | 106   | 107   | 115   | 140   | 232   |  |  |
|             | 38. 2       | <u>2420</u> | 2280              | 1750  | 1010  | 1140  | 1110  | 1030  | 2030  | 2420  |  |  |

表 3-15 最大応答曲げモーメント一覧表 (基準地震動 S s, R2 通り-RD 通り間主柱材)

| ·   | T. M. S. L. |       |              |       | 最大応答曲 | 自げモーメン | / ト (kN・m) |       |       |       |
|-----|-------------|-------|--------------|-------|-------|--------|------------|-------|-------|-------|
| 部位  | (m)         | Ss-1  | Ss-2         | Ss-3  | Ss-4  | Ss-5   | Ss-6       | Ss-7  | Ss-8  | 最大値   |
|     | 80.0        | 0.00  | 0.00         | 0.00  | 0.00  | 0. 00  | 0.00       | 0.00  | 0.00  | 0.00  |
|     | 76. 25      | 18.6  | <u>24. 5</u> | 13.6  | 12.6  | 13. 5  | 13. 2      | 13. 5 | 13.7  | 24. 5 |
|     | 72. 5       | 44. 9 | <u>63. 9</u> | 33. 2 | 34. 5 | 36. 4  | 36. 1      | 34. 5 | 33. 4 | 63. 9 |
|     | 68. 75      | 72. 3 | <u>92. 9</u> | 53.4  | 48.5  | 50. 7  | 50. 7      | 50. 2 | 54.4  | 92. 9 |
|     | 65. 0       | 100   | <u>146</u>   | 75. 3 | 80.5  | 84. 4  | 84. 3      | 80. 1 | 72. 2 | 146   |
| 鉄塔部 | 60.75       | 68. 2 | <u>90. 5</u> | 51.2  | 51.9  | 53. 5  | 54. 5      | 51. 7 | 46.6  | 90. 5 |
|     | 56. 5       | 289   | <u>407</u>   | 214   | 217   | 230    | 227        | 218   | 217   | 407   |
|     | 52. 25      | 455   | <u>551</u>   | 338   | 272   | 294    | 285        | 287   | 355   | 551   |
|     | 48.0        | 433   | <u>621</u>   | 317   | 337   | 366    | 355        | 354   | 323   | 621   |
|     | 40. 2       | 212   | <u>291</u>   | 155   | 165   | 179    | 175        | 178   | 154   | 291   |
|     | 38. 2       | 2430  | <u>3170</u>  | 1780  | 1720  | 1870   | 1820       | 1730  | 2190  | 3170  |

表 3-16 最大応答曲げモーメント一覧表 (基準地震動 S s, 筒身部)

| ·   | T. M. S. L. | 最大応答曲げモーメント(kN·m) |              |      |      |       |      |      |      |       |  |  |
|-----|-------------|-------------------|--------------|------|------|-------|------|------|------|-------|--|--|
| 部位  | (m)         | Ss-1              | Ss-2         | Ss-3 | Ss-4 | Ss-5  | Ss-6 | Ss-7 | Ss-8 | 最大値   |  |  |
|     | 85. 0       | 0.00              | 0.00         | 0.00 | 0.00 | 0. 00 | 0.00 | 0.00 | 0.00 | 0.00  |  |  |
|     | 80.0        | 795               | <u>928</u>   | 622  | 523  | 530   | 514  | 639  | 532  | 928   |  |  |
|     | 76. 25      | 2120              | <u>2590</u>  | 1690 | 1390 | 1420  | 1410 | 1740 | 1460 | 2590  |  |  |
|     | 72. 5       | 2590              | <u>2980</u>  | 1830 | 1680 | 1610  | 1670 | 1850 | 1830 | 2980  |  |  |
| 筒身部 | 65. 0       | 3900              | <u>4610</u>  | 2530 | 2500 | 2500  | 2540 | 2650 | 3000 | 4610  |  |  |
|     | 56. 5       | 5090              | <u>6870</u>  | 3530 | 3340 | 4030  | 3620 | 4230 | 4460 | 6870  |  |  |
|     | 48. 0       | 8040              | <u>10200</u> | 4900 | 4770 | 5790  | 5190 | 5980 | 6950 | 10200 |  |  |
|     | 39. 0       | 3230              | <u>3390</u>  | 2550 | 1720 | 1840  | 1780 | 1770 | 3130 | 3390  |  |  |
|     | 38. 2       | <u>3250</u>       | 3110         | 2590 | 1770 | 1950  | 1840 | 1980 | 3010 | 3250  |  |  |

# 4. 建屋応答の不確かさ<mark>等</mark>を考慮した検討に用いる地震動

主排気筒の建屋応答の不確かさ<mark>等</mark>を考慮した検討に用いる地震動の選定結果を表4-1に示す。地震動の選定にあたり、基本ケースにおける建屋応答の確認は、以下の資料に基づき実施した。

・VI-2-7-2-1「主排気筒の耐震性についての計算書」

表 4-1 建屋応答の不確かさ等を考慮した検討に用いる地震動

| 対象    | 建屋応答の不確かさ <mark>等</mark> を考<br>慮した検討に用いる地震動 |  |  |  |  |  |  |
|-------|---------------------------------------------|--|--|--|--|--|--|
| N) 3K | 基準地震動 S s                                   |  |  |  |  |  |  |
| 主排気筒  | Ss-1及びSs-2                                  |  |  |  |  |  |  |

別紙3-2 原子炉建屋の材料物性の不確かさ<mark>等</mark>を考慮した地震応答 解析結果

# 目 次

| 1. | 概要       | <br>別紙 3-2-1 |
|----|----------|--------------|
| 2. | 地震応答解析結果 | <br>別紙 3-2-1 |

#### 1. 概要

本資料は、主排気筒を対象とし、「原子炉建屋の地震応答計算書に関する補足説明資料」のうち、別紙3「地震応答解析における材料物性の不確かさに関する検討」に基づく原子炉建屋の応答を入力地震動として、原子炉建屋の材料物性の不確かさ及び制震置の不確かさ(以下「建屋応答の不確かさ等」という。)を考慮した地震応答解析結果について示すものである。

建屋応答の不確かさ等を考慮した検討に用いる地震動は、主排気筒の応答への影響が大きいSs-1及びSs-2である(別紙3-1「原子炉建屋の材料物性の不確かさ等を考慮した検討に用いる地震動の選定について」参照)。

入力地震動,固有値解析結果及びSs-1による地震応答解析の結果は,別紙3「地震応答解析における原子炉建屋の材料物性の不確かさ等に関する検討」に示している。

本資料では、Ss-2による地震応答解析結果について示す。

#### 2. 地震応答解析結果

入力地震動の組合せを表2-1に、入力地震動の時刻歴波形を図2-1~図2-6に示す。なお、図中の〇印は、最大値発生時を示す。Ss-2は、3方向(5成分)(水平2方向(並進・回転)及び鉛直方向)の同時入力とする。なお、Ss-2のケース1、ケース3~6において誘発上下動を考慮している。

建屋応答の不確かさ等を考慮したSs-2に対する地震応答解析結果を図2-7~図2-14に示す。なお、図2-11及び図2-14では、以下の主柱材の最大応力を包絡したものを「鉄塔部 主柱材包絡」として示す。

- ・原子炉建屋のR1通りとRC通りの交点に位置する主柱材
- ・原子炉建屋のR1通りとRD通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRC通りの交点に位置する主柱材
- ・原子炉建屋のR2通りとRD通りの交点に位置する主柱材

また、制震装置(オイルダンパー)の最大応答値及び許容値を表2-2に示す。

Ss-1の結果と同様にSs-2の結果は、ケース1(基本ケース)に対し、いずれの方向についても、各検討ケースの最大応答加速度、最大応答変位、最大応答軸力及び最大応答曲げモーメントはおおむね同等であることを確認した。また、制震装置(オイルダンパー)の最大応答値は許容値以下である。

なお, 東京湾平均海面を, 以下「T.M.S.L.」という。

表2-1 入力地震動の組合せ (Ss-2)

|                               | 入力均  | 也震動の糺 | 且合せ (S:          | 向 (5 成分 | 分) 同時入力)      |         |
|-------------------------------|------|-------|------------------|---------|---------------|---------|
| 建屋応答の不確かさ等                    |      | 水平力   | 方向* <sup>1</sup> |         | 鉛直            |         |
| 検討ケース                         | NS 2 | 方向    | EW               | 方向      | 」             | 備考*2    |
|                               | 並進   | 回転    | 並進               | 回転      | <i>JJ</i> [P] |         |
| ケース 1<br>(基本ケース)              | 0    | 0     | 0                | 0       | 0             | 誘発上下動考慮 |
| ケース 2<br>(建屋剛性+σ及び<br>地盤剛性+σ) | 0    | 0     | 0                | 0       | 0             | _       |
| ケース 3<br>(建屋剛性-σ及び<br>地盤剛性-σ) | 0    | 0     | 0                | 0       | 0             | 誘発上下動考慮 |
| ケース 4<br>(建屋剛性コア平均)           | 0    | 0     | 0                | 0       | 0             | 誘発上下動考慮 |
| ケース 5<br>(建屋剛性-2σ)            | 0    | 0     | 0                | 0       | 0             | 誘発上下動考慮 |
| ケース 6<br>(回転ばね低減)             | 0    | 0     | 0                | 0       | 0             | 誘発上下動考慮 |
| ケース 7 (減衰係数+20%)              | 0    | 0     | 0                | 0       | 0             | 誘発上下動考慮 |
| ケース 8<br>(減衰係数-20%)           | 0    | 0     | 0                | 0       | 0             | 誘発上下動考慮 |

注記\*1:組み合わせる成分を「○」で、組み合わせない成分を「一」で示す。

\*2:誘発上下動を考慮しない場合は「一」で示す。



(a) NS方向 並進成分



(b) NS方向 回転成分



図2-1 入力地震動の加速度時刻歴波形 (ケース1, Ss-2) (1/2)



(d) EW方向 回転成分



(e) 鉛直方向 (誘発上下動考慮)

図2-1 入力地震動の加速度時刻歴波形 (ケース1, Ss-2) (2/2)



(a) NS方向 並進成分



(b) NS方向 回転成分



図2-2 入力地震動の加速度時刻歴波形 (ケース2, Ss-2) (1/2)



(d) EW方向 回転成分



(e) 鉛直方向

図2-2 入力地震動の加速度時刻歴波形 (ケース2, Ss-2) (2/2)



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) EW方向 並進成分 図2-3 入力地震動の加速度時刻歴波形 (ケース3, Ss-2) (1/2)



(d) EW方向 回転成分



(e) 鉛直方向 (誘発上下動考慮)

図2-3 入力地震動の加速度時刻歴波形 (ケース3, Ss-2) (2/2)



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) EW方向 並進成分 図2-4 入力地震動の加速度時刻歴波形 (ケース4, Ss-2) (1/2)



(d) EW方向 回転成分



(e) 鉛直方向 (誘発上下動考慮)

図2-4 入力地震動の加速度時刻歴波形 (ケース4, Ss-2) (2/2)



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) EW方向 並進成分 図2-5 入力地震動の加速度時刻歴波形 (ケース5, Ss-2) (1/2)



(d) EW方向 回転成分



(e) 鉛直方向 (誘発上下動考慮)

図2-5 入力地震動の加速度時刻歴波形 (ケース5, Ss-2) (2/2)



(a) NS方向 並進成分



(b) NS方向 回転成分



(c) EW方向 並進成分 図2-6 入力地震動の加速度時刻歴波形 (ケース6, Ss-2) (1/2)



(d) EW方向 回転成分



(e) 鉛直方向(誘発上下動考慮)

図2-6 入力地震動の加速度時刻歴波形 (ケース6, Ss-2) (2/2)



注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性+  $\sigma$  及び地盤剛性+  $\sigma$  ,

ケース3…建屋剛性  $-\sigma$ 及び地盤剛性  $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

#### (a) 鉄塔部



50

 $(\mathrm{m/s}^2)$ 

T. M. S. L. (m)

80.0

76.25

72.5

65.0

56.5

48.0

40.2

38. 2

0

|             |       |       |       |       |            |       |       | $(m/s^2)$ |
|-------------|-------|-------|-------|-------|------------|-------|-------|-----------|
| T. M. S. L. |       |       |       |       | <b>計</b> 部 |       |       |           |
| (m)         | ケース1  | ケース2  | ケース3  | ケース4  | ケース5       | ケース6  | ケース7  | ケース8      |
| 85.0        | 47.7  | 45.3  | 50.5  | 46.6  | 47. 9      | 54.5  | 54.0  | 43.0      |
|             |       |       |       |       |            |       |       |           |
| 80.0        | 40.8  | 37. 7 | 42.0  | 39.8  | 41. 2      | 42.5  | 45. 9 | 34. 7     |
| 50.05       | 05.0  | 00.4  | 00.0  | 0.4.5 | 00.0       | 00.0  | 40.0  | 00.5      |
| 76. 25      | 35.8  | 32. 4 | 36.6  | 34. 7 | 36. 2      | 38. 9 | 40.0  | 30. 7     |
| 72. 5       | 31. 2 | 27.6  | 31.6  | 30. 2 | 31. 6      | 35. 5 | 34. 6 | 27. 0     |
|             |       |       |       |       |            |       |       |           |
|             |       |       |       |       |            |       |       |           |
| 65.0        | 22.3  | 18.6  | 22.8  | 21.3  | 22.8       | 27.8  | 24. 4 | 19.8      |
|             |       |       |       |       |            |       |       |           |
|             |       |       |       |       |            |       |       |           |
| 56. 5       | 15. 0 | 15. 3 | 15. 1 | 1.4.4 | 15. 3      | 17. 2 | 15. 4 | 14. 9     |
| 50.5        | 15.0  | 10. 3 | 10.1  | 14. 4 | 15. 5      | 11.2  | 10.4  | 14.9      |
|             |       |       |       |       |            |       |       |           |
|             |       |       |       |       |            |       |       |           |
| 48.0        | 10.9  | 11.6  | 11.5  | 10.7  | 11.0       | 11.6  | 10. 9 | 10.8      |
|             |       |       |       |       |            |       |       |           |
|             |       |       |       |       |            |       |       |           |
| 39. 0       | 8. 69 | 8. 58 | 8. 92 | 8. 42 | 8. 79      | 9. 21 | 8. 69 | 8. 69     |
| 38. 2       | 8. 61 | 8. 40 | 8.83  | 8.35  | 8.71       | 9. 15 | 8. 61 | 8.61      |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ , ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

## (b) 筒身部

### 図2-7 最大応答加速度(Ss-2, NS方向)

別紙 3-2-15



ケース7…減衰係数+20%, ケース8…減衰係数-20% (a) 鉄塔部

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

# **---**ケース3 **--**ケース4 **一・-** ケース5 **一・・** ケース6 **----** ケース7 **-・-** ケース8 T. M. S. L. (m) 筒身部 85.0 80.0 76.25 72.5 65.0 56. 5 48.0 39.0 38.2 200 400

T. M. S. L. (m)

80.0 76.25

72.5

65.0

56.5

48.0

40.2

38.2

0

200

ケース1 …… ケース2

|             |        |        |        |        |            |        |        | (mm)   |
|-------------|--------|--------|--------|--------|------------|--------|--------|--------|
| T. M. S. L. |        |        |        | 筒具     | <b>計</b> 部 |        |        |        |
| (m)         | ケース1   | ケース2   | ケース3   | ケース4   | ケース5       | ケース6   | ケース7   | ケース8   |
| 85.0        | 226    | 192    | 239    | 218    | 229        | 251    | 244    | 205    |
|             |        |        |        |        |            |        |        |        |
| 80.0        | 185    | 157    | 196    | 178    | 187        | 205    | 200    | 168    |
| 76. 25      | 155    | 131    | 163    | 149    | 157        | 172    | 167    | 140    |
| 72. 5       | 127    | 107    | 134    | 122    | 128        | 141    | 137    | 114    |
| · · ·       |        |        |        |        |            |        |        |        |
| 65. 0       | 76. 9  | 65. 0  | 81. 0  | 74. 1  | 78. 1      | 86. 4  | 83. 7  | 68. 9  |
| 05.0        | 76.9   | 00.0   | 81.0   | 74.1   | 10.1       | 80.4   | 00.1   | 08.9   |
|             |        |        |        |        |            |        |        |        |
| 56. 5       | 32.0   | 26. 7  | 33.6   | 30.8   | 32.6       | 36. 6  | 35. 1  | 28. 4  |
|             |        |        |        |        |            |        |        |        |
|             |        |        |        |        |            |        |        |        |
| 48.0        | 6.21   | 4. 89  | 6. 68  | 5. 91  | 6. 36      | 7. 33  | 6.82   | 5. 46  |
|             |        |        |        |        |            |        |        |        |
|             |        |        |        |        |            |        |        |        |
| 39.0        | 0.0108 | 0.0096 | 0.0115 | 0.0093 | 0.0115     | 0.0118 | 0.0105 | 0.0111 |
| 38. 2       | 0.00   | 0.00   | 0.00   | 0.00   | 0.00       | 0.00   | 0.00   | 0.00   |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ , ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

## (b) 筒身部

図2-8 最大応答変位 (Ss-2, NS方向)

別紙 3-2-16



# ケース7…減衰係数+20%, ケース8…減衰係数-20% (a) 鉄塔部

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

T. M. S. L. (m)

80.0 76.25

72.5

65.0

56.5

48.0

40.2

38. 2

0



#### (b) 筒身部

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減 ケース7…減衰係数+20%, ケース8…減衰係数-20%

# 図2-9 最大応答加速度 (Ss-2, EW方向)

別紙 3-2-17



注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性+  $\sigma$  及び地盤剛性+  $\sigma$  ,

ケース3…建屋剛性  $-\sigma$ 及び地盤剛性  $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

#### (a) 鉄塔部



T. M. S. L. (m)

80.0 76.25

72.5

65.0

56.5

48.0

40.2

38. 2

0

200

(mm)

|             |        |        |        |         |            |        |         | (mm)   |
|-------------|--------|--------|--------|---------|------------|--------|---------|--------|
| T. M. S. L. |        |        |        | 筒具      | <b>計</b> 部 |        |         |        |
| (m)         | ケース1   | ケース2   | ケース3   | ケース4    | ケース5       | ケース6   | ケース7    | ケース8   |
| 85.0        | 272    | 232    | 302    | 265     | 275        | 297    | 279     | 264    |
|             |        |        |        |         |            |        |         |        |
| 80.0        | 220    | 188    | 245    | 214     | 223        | 240    | 227     | 213    |
| 76. 25      | 183    | 157    | 202    | 178     | 185        | 198    | 189     | 176    |
| 72. 5       | 148    | 129    | 164    | 144     | 150        | 160    | 154     | 141    |
| . = 2 9     |        |        |        |         |            |        |         |        |
|             |        |        |        |         |            |        |         |        |
| 65.0        | 88.5   | 78. 4  | 95. 7  | 85.8    | 89.6       | 94. 6  | 92. 9   | 83. 1  |
|             |        |        |        |         |            |        |         |        |
|             |        |        |        |         |            |        |         |        |
| 56. 5       | 35.8   | 32. 1  | 37. 3  | 34. 5   | 36. 3      | 38. 2  | 37.8    | 33. 2  |
|             |        |        |        |         |            |        |         |        |
|             |        |        |        |         |            |        |         |        |
| 48.0        | 5.84   | 5, 21  | 5. 94  | 5, 53   | 5. 95      | 6. 30  | 6. 17   | 5. 43  |
|             |        |        |        |         |            |        |         |        |
|             |        |        |        |         |            |        |         |        |
| 39.0        | 0.0131 | 0.0116 | 0.0141 | 0. 0115 | 0.0138     | 0.0145 | 0. 0128 | 0.0133 |
| 38. 2       | 0.00   | 0.00   | 0.00   | 0.00    | 0.00       | 0.00   | 0.00    | 0.00   |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ , ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

## (b) 筒身部

### 図2-10 最大応答変位 (Ss-2, EW方向)

別紙 3-2-18





|             |       |       |       |       |       |       |         | (kN⋅m) |
|-------------|-------|-------|-------|-------|-------|-------|---------|--------|
| T. M. S. L. |       |       |       | 鉄均    | 答部    |       |         |        |
| (m)         | ケース1  | ケース2  | ケース3  | ケース4  | ケース5  | ケース6  | ケース7    | ケース8   |
|             |       |       |       |       |       |       |         |        |
|             |       |       |       |       |       |       |         |        |
| 80. 0       | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00  | 0.00    | 0.00   |
| 76. 25      | 24. 5 | 20.7  | 25. 7 | 23. 4 | 25. 0 | 27. 2 | 27. 5   | 21. 0  |
| 72. 5       | 63. 9 | 51.3  | 68. 2 | 60. 5 | 66. 0 | 71. 7 | 71. 7   | 55. 9  |
| 1210        | 00,0  | 01.0  | 00.2  | 00.0  | 00.0  |       | , , , , | 00.0   |
| 68.75       | 92. 9 | 80.6  | 96. 0 | 89. 1 | 94.6  | 102   | 103     | 81.3   |
| 65. 0       | 146   | 118   | 156   | 138   | 151   | 164   | 164     | 128    |
| 60. 75      | 90.6  | 74. 0 | 95. 3 | 86. 0 | 93. 0 | 101   | 102     | 79. 2  |
| 00.10       | 00.0  | 11.0  | 00.0  | 00.0  | 00.0  | 101   | 102     | 10.2   |
| 56. 5       | 407   | 330   | 434   | 384   | 420   | 458   | 455     | 361    |
|             |       |       |       |       |       |       |         |        |
| 52. 25      | 551   | 472   | 584   | 530   | 561   | 608   | 607     | 488    |
|             |       |       |       |       |       |       |         |        |
| 48.0        | 625   | 503   | 663   | 589   | 645   | 704   | 688     | 566    |
|             |       |       |       |       |       |       |         |        |
|             |       |       |       |       |       |       |         |        |
| 40. 2       | 295   | 242   | 311   | 275   | 305   | 330   | 320     | 270    |
| 38. 2       | 3170  | 2590  | 3430  | 3000  | 3250  | 3580  | 3500    | 2790   |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

#### (a) 鉄塔部 主柱材包絡



|             |       |      |       |      |            |       |       | (kN·m) |
|-------------|-------|------|-------|------|------------|-------|-------|--------|
| T. M. S. L. |       |      |       | 筒身   | <b>才</b> 部 |       |       |        |
| (m)         | ケース1  | ケース2 | ケース3  | ケース4 | ケース5       | ケース6  | ケース7  | ケース8   |
| 85.0        | 0.00  | 0.00 | 0.00  | 0.00 | 0.00       | 0.00  | 0.00  | 0.00   |
|             |       |      |       |      |            |       |       |        |
| 80.0        | 928   | 845  | 995   | 895  | 935        | 1040  | 1000  | 862    |
| 76. 25      | 2590  | 2320 | 2790  | 2500 | 2610       | 2840  | 2860  | 2350   |
| 72. 5       | 2980  | 2710 | 3060  | 2860 | 3020       | 3330  | 3040  | 2890   |
|             |       |      |       |      |            |       |       |        |
| 65. 0       | 4610  | 4230 | 4650  | 4430 | 4680       | 5140  | 4600  | 4600   |
|             |       |      |       |      |            |       |       |        |
| 56. 5       | 6870  | 5910 | 7370  | 6640 | 6960       | 7570  | 7010  | 6710   |
| 50.5        | 0010  | 5910 | 1310  | 0040 | 0900       | 1910  | 7010  | 0710   |
|             |       |      |       |      |            |       |       |        |
| 48.0        | 10200 | 8930 | 10700 | 9840 | 10300      | 11000 | 10800 | 9420   |
|             |       |      |       |      |            |       |       |        |
|             |       |      |       |      |            |       |       |        |
| 39. 0       | 3390  | 2760 | 3700  | 3220 | 3470       | 3950  | 3630  | 3100   |
| 38. 2       | 3110  | 2690 | 3500  | 2950 | 3180       | 3640  | 3290  | 2890   |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース $3\cdots$ 建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース $4\cdots$ 建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

## (b) 筒身部

# 図2-11 最大応答曲げモーメント (Ss-2)

別紙 3-2-19



# ケース7…減衰係数+20%, ケース8…減衰係数-20% (a) 鉄塔部

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

| T. M. S. L. (m)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |             |        |       |       |       |          |          |       |       | . 0.   |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|-------------|--------|-------|-------|-------|----------|----------|-------|-------|--------|
| ケース7    ケース8       T.M. S. L. (m)     (m)     ケース1     ケース2     ケース3     ケース4     ケース5     ケース6     ケース7     ケース8       85. 0     6. 47     6. 61     6. 31     6. 27     6. 57     6. 47     6. 47     6. 47       80. 0     6. 45     6. 59     6. 29     6. 26     6. 55     6. 45     6. 45     6. 45       76. 25     76. 25     6. 42     6. 55     6. 25     6. 22     6. 51     6. 42     6. 42     6. 42       72. 5     6. 32     6. 44     6. 16     6. 14     6. 41     6. 32     6. 32     6. 32       65. 0     65. 0     6. 11     6. 26     5. 97     6. 03     6. 20     6. 11     6. 11     6. 11       56. 5     5. 88     6. 20     5. 73     5. 90     5. 91     5. 83     5. 88     5. 88 |                 |             |        |       |       |       | feter ii | a . derr |       |       | (m/s²) |
| 85.0 簡字部 85.0 6.47 6.61 6.31 6.27 6.57 6.47 6.47 6.47 80.0 80.0 6.45 6.59 6.29 6.26 6.55 6.45 6.45 6.45 76.25 76.25 6.42 6.55 6.22 6.51 6.42 6.42 6.42 72.5 72.5 6.32 6.44 6.16 6.14 6.41 6.32 6.32 6.32 6.32 65.0 65.0 65.0 6.11 6.26 5.97 6.03 6.20 6.11 6.11 6.11 6.11 56.5 56.5 5.88 6.20 5.73 5.90 5.91 5.83 5.88 5.88                                                                                                                                                                                                                                                                                                                                                                                     |                 |             |        |       |       |       |          |          |       |       |        |
| 80. 0 80. 0 6. 45 6. 59 6. 29 6. 26 6. 55 6. 45 6. 45 6. 45  76. 25 76. 25 6. 42 6. 55 6. 25 6. 22 6. 51 6. 42 6. 42 6. 42  72. 5 6. 32 6. 44 6. 16 6. 14 6. 41 6. 32 6. 32 6. 32  65. 0 65. 0 6. 11 6. 26 5. 97 6. 03 6. 20 6. 11 6. 11 6. 11  56. 5 5. 88 6. 20 5. 73 5. 90 5. 91 5. 83 5. 88 5. 88                                                                                                                                                                                                                                                                                                                                                                                                           | T. M. S. L. (m) | lete de des | (m)    | ケース1  | ケース2  | ケース3  | ケース4     | ケース5     | ケース6  | ケース7  | ケース8   |
| 76. 25       6. 42       6. 55       6. 25       6. 22       6. 51       6. 42       6. 42       6. 42         72. 5       72. 5       6. 32       6. 44       6. 16       6. 14       6. 41       6. 32       6. 32       6. 32         65. 0       65. 0       6. 11       6. 26       5. 97       6. 03       6. 20       6. 11       6. 11       6. 11         56. 5       5. 88       6. 20       5. 73       5. 90       5. 91       5. 83       5. 88       5. 88                                                                                                                                                                                                                                        | 85. 0           | 同身部         | 85.0   | 6.47  | 6.61  | 6.31  | 6. 27    | 6. 57    | 6.47  | 6. 47 | 6. 47  |
| 76. 25       6. 42       6. 55       6. 25       6. 22       6. 51       6. 42       6. 42       6. 42         72. 5       72. 5       6. 32       6. 44       6. 16       6. 14       6. 41       6. 32       6. 32       6. 32         65. 0       65. 0       6. 11       6. 26       5. 97       6. 03       6. 20       6. 11       6. 11       6. 11         56. 5       5. 88       6. 20       5. 73       5. 90       5. 91       5. 83       5. 88       5. 88                                                                                                                                                                                                                                        |                 |             |        |       |       |       |          |          |       |       |        |
| 72. 5       6. 32       6. 44       6. 16       6. 14       6. 41       6. 32       6. 32       6. 32         65. 0       65. 0       6. 11       6. 26       5. 97       6. 03       6. 20       6. 11       6. 11       6. 11         56. 5       5. 88       6. 20       5. 73       5. 90       5. 91       5. 83       5. 88       5. 88                                                                                                                                                                                                                                                                                                                                                                   | 80. 0           |             | 80.0   | 6.45  | 6. 59 | 6. 29 | 6. 26    | 6. 55    | 6. 45 | 6. 45 | 6. 45  |
| 72. 5       6. 32       6. 44       6. 16       6. 14       6. 41       6. 32       6. 32       6. 32         65. 0       65. 0       6. 11       6. 26       5. 97       6. 03       6. 20       6. 11       6. 11       6. 11         56. 5       5. 88       6. 20       5. 73       5. 90       5. 91       5. 83       5. 88       5. 88                                                                                                                                                                                                                                                                                                                                                                   |                 |             |        |       |       |       |          |          |       |       |        |
| 65.0       6.11       6.26       5.97       6.03       6.20       6.11       6.11       6.11         56.5       5.88       6.20       5.73       5.90       5.91       5.83       5.88       5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 76. 25          |             | 76. 25 | 6. 42 | 6. 55 | 6. 25 | 6. 22    | 6. 51    | 6. 42 | 6. 42 | 6. 42  |
| 65.0       6.11       6.26       5.97       6.03       6.20       6.11       6.11       6.11         56.5       5.88       6.20       5.73       5.90       5.91       5.83       5.88       5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 72.5            |             | 72. 5  | 6.32  | 6. 44 | 6. 16 | 6. 14    | 6. 41    | 6. 32 | 6. 32 | 6, 32  |
| 56.5 5.88 6.20 5.73 5.90 5.91 5.83 5.88 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 | !           |        |       |       |       |          |          |       |       |        |
| 56.5 5.88 6.20 5.73 5.90 5.91 5.83 5.88 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |             |        |       |       |       |          |          |       |       |        |
| 56.5 5.88 6.20 5.73 5.90 5.91 5.83 5.88 5.88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 65.0            |             | 65.0   | 6 11  | 6 26  | 5.07  | 6.03     | 6.20     | 6 11  | 6 11  | 6 11   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 00.0            |             | 05.0   | 0.11  | 0.20  | 5. 51 | 0.03     | 0.20     | 0.11  | 0.11  | 0.11   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |             |        |       |       |       |          |          |       |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |             |        |       |       |       |          |          |       |       |        |
| 48.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 56. 5           |             | 56. 5  | 5.88  | 6. 20 | 5. 73 | 5.90     | 5. 91    | 5. 83 | 5. 88 | 5. 88  |
| 48.0 5.83 6.15 5.51 5.80 5.86 5.74 5.83 5.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |             |        |       |       |       |          |          |       |       |        |
| 48.0 5.83 6.15 5.51 5.80 5.86 5.74 5.83 5.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |             |        |       |       |       |          |          |       |       |        |
| 48.0 5.83 6.15 5.51 5.80 5.86 5.74 5.83 5.83                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                 |             |        |       |       |       |          |          |       |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 48. 0           |             | 48.0   | 5.83  | 6. 15 | 5. 51 | 5.80     | 5. 86    | 5. 74 | 5. 83 | 5. 83  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |             |        |       |       |       |          |          |       |       |        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                 |             |        |       |       |       |          |          |       |       |        |
| 39.0   39.0   5.79   6.10   5.32   5.71   5.83   5.68   5.79   5.79                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 39. 0           |             | 39. 0  | 5. 79 | 6. 10 | 5. 32 | 5. 71    | 5. 83    | 5. 68 | 5. 79 | 5. 79  |
| 38. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 1 12            |             |        |       |       |       |          |          |       |       |        |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ , ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

0

15

30  $(m/s^2)$ 

ケース7…減衰係数+20%, ケース8…減衰係数-20%

#### (b) 筒身部

### 図2-12 最大応答加速度 (Ss-2, 鉛直方向)

別紙 3-2-20



注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性+  $\sigma$  及び地盤剛性+  $\sigma$  ,

ケース3…建屋剛性  $-\sigma$ 及び地盤剛性  $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

#### (a) 鉄塔部



ケース1 …… ケース2

鉄塔部

T. M. S. L. (m)

80.0

76.25

72.5

65.0

56.5

48.0

40.2

38. 2

0

20

40 (mm)

|             |          |         |         |          |          |         |         | (mm)    |  |  |  |
|-------------|----------|---------|---------|----------|----------|---------|---------|---------|--|--|--|
| T. M. S. L. |          | 筒身部     |         |          |          |         |         |         |  |  |  |
| (m)         | ケース1     | ケース2    | ケース3    | ケース4     | ケース5     | ケース6    | ケース7    | ケース8    |  |  |  |
| 85.0        | 1. 20    | 1. 21   | 1. 19   | 1. 19    | 1. 21    | 1.20    | 1.20    | 1.20    |  |  |  |
|             |          |         |         |          |          |         |         |         |  |  |  |
| 80.0        | 1. 18    | 1. 19   | 1. 17   | 1. 17    | 1. 19    | 1.18    | 1.18    | 1.18    |  |  |  |
| 76. 25      | 1. 15    | 1. 15   | 1. 13   | 1. 13    | 1. 15    | 1. 15   | 1. 15   | 1. 15   |  |  |  |
| 72. 5       | 1. 05    | 1. 06   | 1. 04   | 1. 04    | 1. 05    | 1. 05   | 1. 05   | 1. 05   |  |  |  |
|             |          |         |         |          |          |         |         |         |  |  |  |
|             |          |         |         |          |          |         |         |         |  |  |  |
| 65.0        | 0.844    | 0.850   | 0.836   | 0.833    | 0.849    | 0.844   | 0.844   | 0.844   |  |  |  |
|             |          |         |         |          |          |         |         |         |  |  |  |
|             |          |         |         |          |          |         |         |         |  |  |  |
| 56. 5       | 0. 577   | 0. 581  | 0. 572  | 0. 570   | 0. 581   | 0. 577  | 0. 577  | 0. 577  |  |  |  |
|             |          |         |         |          |          |         |         |         |  |  |  |
|             |          |         |         |          |          |         |         |         |  |  |  |
| 48. 0       | 0. 308   | 0. 310  | 0. 305  | 0. 304   | 0. 310   | 0.308   | 0.308   | 0.308   |  |  |  |
|             |          |         |         |          |          |         |         |         |  |  |  |
|             |          |         |         |          |          |         |         |         |  |  |  |
| 39. 0       | 0. 00309 | 0.00304 | 0.00314 | 0. 00269 | 0. 00326 | 0.00309 | 0.00309 | 0.00309 |  |  |  |
| 38. 2       | 0.00     | 0.00    | 0.00    | 0.00     | 0.00     | 0.00    | 0.00    | 0.00    |  |  |  |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性+ $\sigma$ 及び地盤剛性+ $\sigma$  ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%,ケース8…減衰係数-20%

#### (b) 筒身部

### 図2-13 最大応答変位 (Ss-2, 鉛直方向)

別紙 3-2-21 90/131





|             |       |      |       |      |       |      |       | (kN) |
|-------------|-------|------|-------|------|-------|------|-------|------|
| T. M. S. L. |       |      |       | 鉄地   | 答部    |      |       |      |
| (m)         | ケース1  | ケース2 | ケース3  | ケース4 | ケース5  | ケース6 | ケース7  | ケース8 |
|             |       |      |       |      |       |      |       |      |
|             |       |      |       |      |       |      |       |      |
| 80.0        |       |      |       |      |       |      |       |      |
| 76. 25      | 21. 2 | 21.5 | 22. 8 | 21.0 | 21. 4 | 21.5 | 21. 4 | 21.0 |
| 72. 5       | 1000  | 805  | 1070  | 950  | 1040  | 1130 | 1120  | 887  |
| 68. 75      | 1030  | 825  | 1100  | 976  | 1060  | 1160 | 1150  | 913  |
| 65. 0       | 2530  | 2030 | 2710  | 2390 | 2610  | 2850 | 2840  | 2230 |
| 60. 75      | 2580  | 2080 | 2760  | 2440 | 2670  | 2910 | 2890  | 2280 |
| 56. 5       | 4790  | 3850 | 5130  | 4520 | 4950  | 5410 | 5360  | 4240 |
| 52. 25      | 4890  | 3920 | 5220  | 4610 | 5040  | 5510 | 5450  | 4330 |
| 48. 0       | 6590  | 5300 | 7040  | 6200 | 6800  | 7450 | 7330  | 5840 |
| 40. 2       | 6750  | 5440 | 7200  | 6360 | 6970  | 7620 | 7500  | 6000 |
| 38. 2       | 8730  | 7080 | 9350  | 8250 | 9000  | 9820 | 9690  | 7670 |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース3…建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース4…建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%, ケース8…減衰係数-20%

#### (a) 鉄塔部 主柱材包絡



|             |       |       |       |       |       |       |       | (kN)  |  |  |
|-------------|-------|-------|-------|-------|-------|-------|-------|-------|--|--|
| T. M. S. L. | 筒身部   |       |       |       |       |       |       |       |  |  |
| (m)         | ケース1  | ケース2  | ケース3  | ケース4  | ケース5  | ケース6  | ケース7  | ケース8  |  |  |
| 85. 0       |       |       |       |       |       |       |       |       |  |  |
| 80. 0       | 38. 1 | 38. 4 | 37. 7 | 37. 7 | 38. 3 | 38. 1 | 38. 1 | 38. 1 |  |  |
| 76. 25      | 108   | 109   | 107   | 106   | 108   | 108   | 108   | 108   |  |  |
| 72. 5       | 283   | 285   | 280   | 279   | 284   | 283   | 283   | 283   |  |  |
| 65. 0       | 337   | 340   | 334   | 333   | 339   | 337   | 337   | 337   |  |  |
| 56. 5       | 454   | 457   | 449   | 448   | 456   | 454   | 454   | 454   |  |  |
| 48. 0       | 551   | 555   | 545   | 544   | 554   | 551   | 551   | 551   |  |  |
| 39. 0       | 735   | 741   | 729   | 727   | 740   | 735   | 735   | 735   |  |  |
| 38. 2       | 977   | 984   | 971   | 966   | 983   | 977   | 977   | 977   |  |  |

注:ケース1…設工認モデル(基本ケース),ケース2…建屋剛性 $+\sigma$ 及び地盤剛性 $+\sigma$ ,

ケース $3\cdots$ 建屋剛性 $-\sigma$ 及び地盤剛性 $-\sigma$ ,ケース $4\cdots$ 建屋剛性コア平均,

ケース5…建屋剛性 $-2\sigma$ , ケース6…回転ばね低減

ケース7…減衰係数+20%,ケース8…減衰係数-20%

## (b) 筒身部

### 図2-14 最大応答軸力 (Ss-2)

別紙 3-2-22

# 表2-2 制震装置(オイルダンパー)の最大応答値及び許容値(Ss-2)

| 項目          |       |       | オイ    | ルダンパー | -の最大応答 | <b></b> |       |       | 許容値  |
|-------------|-------|-------|-------|-------|--------|---------|-------|-------|------|
| 垻日          | ケース 1 | ケース 2 | ケース 3 | ケース 4 | ケース 5  | ケース 6   | ケース 7 | ケース 8 | 計谷恒  |
| 速度<br>(m/s) | 1.87  | 1.66  | 2.01  | 1.83  | 1.88   | 2. 03   | 1.74  | 2.01  | 2.60 |
| 変位<br>(mm)  | 144   | 123   | 160   | 140   | 146    | 157     | 131   | 158   | 175  |

別紙4 地震荷重と風荷重を重畳させた場合の影響検討

# 目 次

| 1.   | 概 | 要   |             |   |     |    | • • • |    |    |    |    | <br> | <br>٠. | <br> | <br>• • | <br> | 別名 | 纸 4- | -1 |
|------|---|-----|-------------|---|-----|----|-------|----|----|----|----|------|--------|------|---------|------|----|------|----|
| 2.   | 解 | 析方釒 | +           |   |     |    |       |    |    |    |    | <br> | <br>   | <br> | <br>• • | <br> | 別系 | 纸 4. | -2 |
| 2.   | 1 | 解析す | ゠゙゙゙゙゙゙゙゙゠゙ | ル |     |    |       |    |    |    |    | <br> | <br>   | <br> | <br>• • | <br> | 別系 | 纸 4. | -2 |
| 2. 2 | 2 | 風荷重 | Ĺ           |   |     |    |       |    |    |    |    | <br> | <br>   | <br> | <br>• • | <br> | 別系 | 纸 4  | -5 |
| 3    | 딺 | 面質: | 2結          | 果 | (給? | 它值 | ) 13  | 其~ | うく | 影響 | 評価 |      | <br>   | <br> | <br>    | <br> | 別長 | H 4  | -7 |

#### 1. 概要

本資料は主排気筒に対し、地震荷重に加えて風荷重(風速4.1m/s及び16.0m/s)を重畳させた場合の耐震性に関する裕度を示すものである。詳細には、以下に示す検討を実施する。

- ・ Ss-1を用いたケース1(基本ケース)に対する検討
- Ss-2を用いたケース6(回転ばね低減)に対する検討

Ss-1 を用いたケース 1 (基本ケース) に対する検討では、建屋応答の不確かさを含めた各入力地震動の代表として、全周期帯の応答が大きく、耐震評価への影響も大きい基準地震動 Ss-1 を用いた基本ケースを選定し、地震荷重と風荷重を重畳させた場合の影響を確認することを目的とする。

Ss-2 を用いたケース 6 (回転ばね低減) に対する検討では, VI-2-7-2-1 「主排気筒の耐震性についての計算書」における断面算定結果が最も厳しくなる検討ケースを対象に, 地震荷重と風荷重を重畳させた場合においても断面算定結果に一定の裕度を有することを確認することを目的とする。

また、上述の各検討において重畳させる風荷重を以下に示す。<mark>風速の設定については、「工事計画に係る補足説明資料(耐震性に関する説明書」のうち「地震荷重と風荷重の</mark>組合せについて」に示す。

- 風速4.1m/sによる風荷重
- 風速16.0m/sによる風荷重

なお、入力地震動は、別紙3「地震応答解析における原子炉建屋の材料物性の不確か を等に関する検討」に基づき、Ss-1については2方向(3成分)(NS方向(並進・回転) 及び鉛直方向)同時入力とし、Ss-2について3方向(5成分)(水平2方向(並進・回転) 及び鉛直方向)同時入力とする。

また、固有値解析結果は、別紙3「地震応答解析における原子炉建屋の材料物性の不確かさ等に関する検討」に示すケース1(基本ケース)と同一である。

別紙 4-1 95/131

#### 2. 解析方針

#### 2.1 解析モデル

VI-2-7-2-1「主排気筒の耐震性についての計算書」における解析モデル(以下「設工認モデル」という。)では、既工認との整合性と保守性を担保するため、主柱材及び筒身の実状の部材断面の切り替え位置よりも低い位置に部材の切り替え位置を設定し、モデル化を行っている。本検討では、地震荷重に加えて、風荷重を重畳させた場合の耐震性に関する裕度を確認することを目的としているため、主柱材及び筒身部について、実状に合わせた切り替え位置を考慮したモデルに変更する。

切り替え位置の一覧を表 2-1 に示す。主柱材は、設工認モデルに対して、1.45m 高い位置に部材断面の切り替え位置を変更し、筒身は、C-D間で 1.00m 高い位置、E-F間で 2.42m 高い位置に部材断面の切り替え位置を変更する。

また、切り替え位置の変更を考慮した解析モデルを図2-1に示す。

別紙 4-2 96/131

表 2-1 切り替え位置の一覧

|     |       | 切り替え位<br>T. M. S. |        | 切り替え位置<br>の差 |
|-----|-------|-------------------|--------|--------------|
| 部材  | 部材間   | ①                 | 2      | (1)-2)       |
|     |       | 本検討における<br>解析モデル  | 設工認モデル | (m)          |
|     | B-C   | 77. 70            | 76. 25 | 1. 45        |
| 主柱材 | C - D | 70. 20            | 68. 75 | 1. 45        |
| 土住州 | D - E | 62. 20            | 60.75  | 1. 45        |
|     | E - F | 53.70             | 52. 25 | 1. 45        |
| 筒身  | C-D   | 69.75             | 68.75  | 1.00         |
| 同分  | E - F | 54. 67            | 52. 25 | 2. 42        |

切り替え位置の設定例(主柱材E-F間)

(「柏崎刈羽原子力発電所第6号機工事のうち 発電所本館建物新設工事 (その2)」 のうちK6-R-ST-D04「鉄塔詳細図3(2節東西面)」)



注1: 主柱材の切り替え位置は保守的に切り替え位置の始点とする。

注2:東京湾平均海面を,以下「T.M.S.L.」という。

別紙 4-3 97/131



図 2-1 切り替え位置の変更を考慮した解析モデル

別紙 4-4 98/131

#### 2.2 風荷重

風荷重は、VI-2-7-2-1「主排気筒の耐震性についての計算書」と同一方法により算定し、作用方向も同一とする。また、風速については 4.1 m/s 及び 16.0 m/s の 2 ケースについて検討する。

風荷重計算表を表 2-2 及び表 2-3 に示す。

表 2-2 風荷重計算表 (風速 4.1m/s)

(a) 鉄塔部

| 標高              | 速度圧          | 90°        | 方向風荷重         | 重*            | 45°方向風荷重   |               |               |  |
|-----------------|--------------|------------|---------------|---------------|------------|---------------|---------------|--|
| T. M. S. L. (m) | q<br>(kN/m²) | 風力係数<br>Cf | 見付面積<br>A(m²) | 風荷重<br>P (kN) | 風力係数<br>Cf | 見付面積<br>A(m²) | 風荷重<br>P (kN) |  |
| 80.0            | 0. 0358      | 1.92       | 3. 4          | 0.24          | 1.50       | 5. 4          | 0. 29         |  |
| 76. 25          | 0.0358       | 1.82       | 7. 6          | 0.50          | 1.44       | 11.9          | 0.62          |  |
| 72.5            | 0.0358       | 1.86       | 9.6           | 0.64          | 1. 45      | 15. 5         | 0.81          |  |
| 65.0            | 0.0358       | 1.72       | 16.8          | 1.04          | 1. 36      | 27. 1         | 1. 32         |  |
| 56.5            | 0.0358       | 1.63       | 21.0          | 1.23          | 1. 26      | 34. 1         | 1. 54         |  |
| 48.0            | 0.0358       | 1.48       | 24. 3         | 1. 29         | 1. 15      | 39. 7         | 1. 64         |  |
| 40.2            | 0.0358       | 1. 43      | 11.0          | 0.57          | 1.10       | 18.5          | 0.73          |  |

注記\*:NS 方向及び EW 方向の包絡値を示す。

(b) 筒身部

| 標高              | 速度圧       | 90                     | 。方向風荷         | 重             | 45°方向風荷重               |               |              |  |
|-----------------|-----------|------------------------|---------------|---------------|------------------------|---------------|--------------|--|
| T. M. S. L. (m) | q (kN/m²) | 風力係数<br>C <sub>f</sub> | 見付面積<br>A(m²) | 風荷重<br>P (kN) | 風力係数<br>C <sub>f</sub> | 見付面積<br>A(m²) | 風荷重<br>P(kN) |  |
| 85.0            | 0.0365    | 0.90                   | 6.8           | 0.23          | 0.90                   | 6.8           | 0. 23        |  |
| 80.0            | 0.0365    | 0.89                   | 12.3          | 0.40          | 0.89                   | 12.3          | 0.40         |  |
| 76. 25          | 0.0365    | 0.88                   | 10.6          | 0.35          | 0.88                   | 10.6          | 0.35         |  |
| 72.5            | 0.0365    | 0.86                   | 15.8          | 0.50          | 0.86                   | 15.8          | 0.50         |  |
| 65.0            | 0.0365    | 0.83                   | 22.5          | 0.69          | 0.83                   | 22.5          | 0.69         |  |
| 56.5            | 0.0365    | 0.79                   | 24.0          | 0.70          | 0.79                   | 24.0          | 0.70         |  |
| 48.0            | 0.0365    | 0.74                   | 24. 7         | 0.67          | 0.74                   | 24. 7         | 0. 67        |  |
| 39.0            | 0.0365    | 0.68                   | 12.7          | 0.32          | 0.68                   | 12.7          | 0.32         |  |

別紙 4-5 99/131

表 2-3 風荷重計算表 (風速 16.0m/s)

(a) 鉄塔部

| 標高              | 速度圧          | 90°        | 方向風荷重         | 重*           | 45°方向風荷重   |               |              |  |
|-----------------|--------------|------------|---------------|--------------|------------|---------------|--------------|--|
| T. M. S. L. (m) | q<br>(kN/m²) | 風力係数<br>Cf | 見付面積<br>A(m²) | 風荷重<br>P(kN) | 風力係数<br>Cf | 見付面積<br>A(m²) | 風荷重<br>P(kN) |  |
| 80.0            | 0.544        | 1.92       | 3. 4          | 3.6          | 1.50       | 5. 4          | 4.5          |  |
| 76. 25          | 0.544        | 1.82       | 7. 6          | 7.6          | 1.44       | 11.9          | 9.4          |  |
| 72.5            | 0.544        | 1.86       | 9.6           | 9.8          | 1. 45      | 15. 5         | 12.3         |  |
| 65.0            | 0.544        | 1.72       | 16.8          | 15.8         | 1. 36      | 27. 1         | 20.1         |  |
| 56.5            | 0.544        | 1.63       | 21.0          | 18.7         | 1. 26      | 34. 1         | 23.4         |  |
| 48.0            | 0.544        | 1.48       | 24. 3         | 19.6         | 1. 15      | 39. 7         | 24.9         |  |
| 40.2            | 0.544        | 1. 43      | 11.0          | 8.6          | 1.10       | 18.5          | 11. 1        |  |

注記\*:NS方向及びEW方向の包絡値を示す。

(b) 筒身部

| 標高              | 速度圧       | 90          | 。方向風荷          | 重            | 45° 方向風荷重  |               |               |  |
|-----------------|-----------|-------------|----------------|--------------|------------|---------------|---------------|--|
| T. M. S. L. (m) | q (kN/m²) | 風力係数<br>C f | 見付面積<br>A (m²) | 風荷重<br>P(kN) | 風力係数<br>Cf | 見付面積<br>A(m²) | 風荷重<br>P (kN) |  |
| 85.0            | 0. 555    | 0.90        | 6.8            | 3. 4         | 0.90       | 6.8           | 3. 4          |  |
| 80.0            | 0. 555    | 0.89        | 12.3           | 6. 1         | 0.89       | 12.3          | 6. 1          |  |
| 76. 25          | 0. 555    | 0.88        | 10.6           | 5. 2         | 0.88       | 10.6          | 5. 2          |  |
| 72.5            | 0. 555    | 0.86        | 15.8           | 7. 6         | 0.86       | 15.8          | 7. 6          |  |
| 65.0            | 0. 555    | 0.83        | 22.5           | 10.4         | 0.83       | 22.5          | 10.4          |  |
| 56.5            | 0. 555    | 0.79        | 24.0           | 10.6         | 0.79       | 24.0          | 10.6          |  |
| 48.0            | 0. 555    | 0.74        | 24. 7          | 10. 2        | 0.74       | 24. 7         | 10.2          |  |
| 39.0            | 0. 555    | 0.68        | 12.7           | 4.8          | 0.68       | 12.7          | 4.8           |  |

別紙 4-6 100/131

 断面算定結果(検定値)に基づく影響評価 断面算定結果を表 3-1~表 3-4 に示す。

鉄塔部について、地震荷重と風荷重(風速 4.1 m/s 及び 16.0 m/s)を重畳させた場合の検定値の変動はごく微小であることを確認した。特に、VI-2-7-2-1「主排気筒の耐震性についての計算書」において最も厳しい検定値(0.98)を示す主柱材D-E間については、重畳させる風荷重を風速 <math>4.1 m/s から風速 16.0 m/s に変動させた場合でも、検定値はは同一であることを確認した。

主柱材の評価用応力の発生要素の比較を図3-1に示す。

部材断面の切り替え位置を変更することで、主排気筒の剛性が増加するとともに、部材の評価位置が上がるため、風速 16.0m/s を重畳させたとしても主柱材D-E間の検定値は 0.95 となる。

また、筒身部についてはその他部材と比較をして受風面積が大きいことから、重畳させる風荷重の増加に伴い、検定値も増加する傾向であることが確認されたが、最大検定値はE-F間の検定値 0.87 であり、十分な裕度を有することを確認した。

以上のことから、風荷重と地震荷重を重畳させた場合についても主排気筒の耐震性に 影響が無いことを確認した。

別紙 4-7 101/131

# 表 3-1 断面算定結果 主柱材

(a) Ss-1

|                    |       |           |                    | Ss-1を)                                                                | 用いたケー     | ス1(基本ク             | ァース)に対す                                                               | る検討       |               |                                                                               |  |
|--------------------|-------|-----------|--------------------|-----------------------------------------------------------------------|-----------|--------------------|-----------------------------------------------------------------------|-----------|---------------|-------------------------------------------------------------------------------|--|
| 標高                 |       | 地震荷重      | 地震荷重(風荷重と重畳しない)    |                                                                       |           | 風速4.1m/sとの重畳       |                                                                       |           | 風速16.0m/sとの重畳 |                                                                               |  |
| T. M. S. L.<br>(m) | 部材間   | 評価月       | 用応力                | $\sigma_{\rm c}$ $\sigma_{\rm b}$                                     | 評価月       | 用応力                | σ σ,                                                                  | 評価月       | 用応力           | σ σ,                                                                          |  |
| 80.0               |       | N<br>(kN) | $M_{(kN \cdot m)}$ | $\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$ | N<br>(kN) | $M_{(kN \cdot m)}$ | $\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$ | N<br>(kN) | M<br>(kN·m)   | $\frac{\sigma_{\rm c}}{\rm f_{\rm c}} + \frac{\sigma_{\rm b}}{\rm f_{\rm b}}$ |  |
| 72. 5              | B-C   | 21.9      | 16. 0              | 0. 12                                                                 | 21.9      | 16. 0              | 0. 12                                                                 | 21.9      | 16. 0         | 0.12                                                                          |  |
| 65. 0              | C-D   | 703       | 44. 0              | 0.41                                                                  | 704       | 44. 1              | 0.41                                                                  | 709       | 44. 4         | 0.42                                                                          |  |
| 56. 5              | D-E   | 1790      | 96. 7              | 0.60                                                                  | 1790      | 96.8               | 0.60                                                                  | 1810      | 97. 5         | 0.60                                                                          |  |
|                    | E - E | 3400      | 284                | 0. 52                                                                 | 3410      | 284                | 0. 52                                                                 | 3450      | 287           | 0.52                                                                          |  |
| 48. 0<br>40. 2     | F - G | 4550      | 539                | 0. 55                                                                 | 4560      | 539                | 0. 55                                                                 | 4630      | 547           | 0.55                                                                          |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(b) Ss-2

|                    |       |                 |                    |                                                                                 | 1. )                 | - (         | ) M \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \                               | ) ~ 10 -11    |             |                                                                       |
|--------------------|-------|-----------------|--------------------|---------------------------------------------------------------------------------|----------------------|-------------|-----------------------------------------------------------------------|---------------|-------------|-----------------------------------------------------------------------|
| Lans               |       |                 |                    |                                                                                 | いたケース6(回転ばね低減)に対する検討 |             |                                                                       |               |             |                                                                       |
| 標高                 |       | 地震荷重(風荷重と重畳しない) |                    |                                                                                 | 風速4.1m/sとの重畳         |             |                                                                       | 風速16.0m/sとの重畳 |             |                                                                       |
| T. M. S. L.<br>(m) | 部材間   | 評価月             | 用応力                | $\frac{\sigma_{\rm c}}{\sigma_{\rm c}} + \frac{\sigma_{\rm b}}{\sigma_{\rm b}}$ | 評価月                  | 用応力         | $\sigma = \sigma_1$                                                   | 評価月           | 用応力         | $\sigma = \sigma_1$                                                   |
| 80.0               |       | N<br>(kN)       | $M_{(kN \cdot m)}$ | $\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$           | N<br>(kN)            | M<br>(kN·m) | $\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$ | N<br>(kN)     | M<br>(kN·m) | $\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$ |
| 72. 5              | B-C   | 21.0            | 22. 9              | 0. 16                                                                           | 21.0                 | 22. 9       | 0.16                                                                  | 20. 2         | 23. 0       | 0.16                                                                  |
| 65. 0              | C-D   | 1110            | 68. 9              | 0.65                                                                            | 1110                 | 69. 0       | 0.65                                                                  | 1120          | 69. 4       | 0.65                                                                  |
| 56. 5              | D-E   | 2850            | 154                | 0. 95                                                                           | 2850                 | 154         | 0.95                                                                  | 2870          | 155         | 0.95                                                                  |
| 48. 0              | E - F | 5390            | 439                | 0.81                                                                            | 5390                 | 439         | 0.81                                                                  | 5440          | 442         | 0.81                                                                  |
| 40. 2              | F - G | 7460            | 688                | 0.81                                                                            | 7460                 | 688         | 0.81                                                                  | 7540          | 690         | 0.82                                                                  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

別紙 4-8 102/131

### 表 3-2 断面算定結果 斜材

(a) Ss-1

|                    |       |           | Ss-1を月                              | <b>引いたケース1(</b> 基 | 基本ケース) に対っ                          | <b>上る検討</b>   |                                     |
|--------------------|-------|-----------|-------------------------------------|-------------------|-------------------------------------|---------------|-------------------------------------|
| 標高                 |       | 地震荷重(風荷重  | 重と重畳しない)                            | 風速4.1m/           | sとの重畳                               | 風速16.0m/sとの重畳 |                                     |
| T. M. S. L.<br>(m) | 部材間   | 評価用応力     | σ                                   | 評価用応力             | σ                                   | 評価用応力         | σ                                   |
| 80.0               |       | N<br>(kN) | $\frac{\sigma_{ m c}}{ m f}_{ m c}$ | N<br>(kN)         | $\frac{\sigma_{ m c}}{ m f_{ m c}}$ | N<br>(kN)     | $\frac{\sigma_{ m c}}{ m f}_{ m c}$ |
| 72. 5              | B-C   | 648       | 0.73                                | 648               | 0.73                                | 655           | 0. 73                               |
| 65. 0              | C-D   | 763       | 0.49                                | 764               | 0. 49                               | 775           | 0.50                                |
| 56. 5              | D-E   | 963       | 0.34                                | 964               | 0. 34                               | 983           | 0.35                                |
| 48. 0              | E - F | 1120      | 0. 22                               | 1130              | 0. 22                               | 1160          | 0. 22                               |
| 40. 2              | F - G | 1380      | 0. 16                               | 1390              | 0. 16                               | 1490          | 0. 17                               |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(b) Ss-2

|                    |       |          |                                    | ` ,      |                                    |               |                                     |  |
|--------------------|-------|----------|------------------------------------|----------|------------------------------------|---------------|-------------------------------------|--|
|                    |       |          | Ss-2を用                             | いたケース6(回 | 転ばね低減) に対                          | する検討          |                                     |  |
| 標高                 |       | 地震荷重(風荷重 | 重と重畳しない)                           | 風速4.1m/  | sとの重畳                              | 風速16.0m/sとの重畳 |                                     |  |
| T. M. S. L.<br>(m) | 部材間   | 評価用応力    | ď                                  | 評価用応力    | Œ                                  | 評価用応力         | ď                                   |  |
| (III)              |       | N        | $rac{\sigma_{ m c}}{ m f}_{ m c}$ | N        | $rac{\sigma_{ m c}}{ m f}_{ m c}$ | N             | $\frac{\sigma_{ m c}}{ m f}_{ m c}$ |  |
| 00.0               |       | (kN)     | $^{1}{}_{\mathrm{c}}$              | (kN)     | $^{1}\mathrm{_{c}}$                | (kN)          | $^{1}c$                             |  |
| 80.0               | Б. С  | 210      | 0.00                               | 222      | 0.50                               | 202           | 0.50                                |  |
| 70. 5              | B-C   | 619      | 0.69                               | 620      | 0. 70                              | 626           | 0.70                                |  |
| 72. 5              | C-D   | 730      | 0.47                               | 730      | 0. 47                              | 742           | 0.48                                |  |
| 65.0               | С-Б   | 750      | 0.47                               | 730      | 0.47                               | 142           | 0.46                                |  |
| 05.0               | D-E   | 960      | 0.34                               | 961      | 0.34                               | 977           | 0. 35                               |  |
| 56. 5              | Б Б   | 300      | 0.01                               | 301      | 0.01                               | 311           | 0.00                                |  |
| 00.0               | E - F | 1130     | 0. 22                              | 1130     | 0. 22                              | 1150          | 0. 22                               |  |
| 48.0               | _ •   |          |                                    |          |                                    |               |                                     |  |
|                    | F - G | 1520     | 0. 18                              | 1530     | 0. 18                              | 1630          | 0. 19                               |  |
| 40.2               |       |          |                                    |          |                                    |               |                                     |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

別紙 4-9 103/131

# 表 3-3 断面算定結果 水平材

(a) Ss-1

|                    |      |           | Ss-1を月                                 | 用いたケース1(基 | 本ケース)に対っ                            | よる検討 あんしゅう しゅうしょ |                                        |  |
|--------------------|------|-----------|----------------------------------------|-----------|-------------------------------------|------------------|----------------------------------------|--|
| 標高                 |      | 地震荷重(風荷重  | 重と重畳しない)                               | 風速4.1m/   | sとの重畳                               | 風速16.0m/sとの重畳    |                                        |  |
| T. M. S. L.<br>(m) | 部材位置 | 評価用応力     | σ.                                     | 評価用応力     | σ.                                  | 評価用応力            | σ.                                     |  |
| (iii)              |      | N<br>(kN) | $\frac{\sigma_{\rm c}}{{ m f}_{ m c}}$ | N<br>(kN) | $\frac{\sigma_{ m c}}{ m f_{ m c}}$ | N<br>(kN)        | $\frac{\sigma_{\rm c}}{{ m f}_{ m c}}$ |  |
| 80.0               | В    | 63.7      | 0.09                                   | 63.8      | 0.09                                | 65. 5            | 0.09                                   |  |
| 72. 5              | С    | 81.5      | 0. 13                                  | 81.6      | 0. 13                               | 83. 4            | 0. 13                                  |  |
| 65. 0              | D    | 143       | 0. 10                                  | 143       | 0. 10                               | 146              | 0. 10                                  |  |
| 56. 5              | E    | 250       | 0. 19                                  | 251       | 0. 19                               | 254              | 0. 19                                  |  |
| 48.0               | F    | 213       | 0.11                                   | 212       | 0. 11                               | 234              | 0. 12                                  |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(b) Ss-2

|                    |      |          |                                     | (~) ~~ _ |                                        |               |                                     |  |
|--------------------|------|----------|-------------------------------------|----------|----------------------------------------|---------------|-------------------------------------|--|
|                    |      |          | Ss-2を用                              | いたケース6(回 | 転ばね低減) に対                              | する検討          |                                     |  |
| 標高                 |      | 地震荷重(風荷重 | 重と重畳しない)                            | 風速4.1m/  | sとの重畳                                  | 風速16.0m/sとの重畳 |                                     |  |
| T. M. S. L.<br>(m) | 部材位置 | 評価用応力    | 評価用応力 0                             |          | Ø                                      | 評価用応力         | O.                                  |  |
| (III)              |      | N        | $\frac{\sigma_{ m c}}{ m f}_{ m c}$ | N        | $\frac{\sigma_{\rm c}}{{ m f}_{ m c}}$ | N             | $\frac{\sigma_{ m c}}{ m f}_{ m c}$ |  |
|                    |      | (kN)     | $^{1}{}_{\mathrm{c}}$               | (kN)     | $^{1}\mathrm{_{c}}$                    | (kN)          | $^{1}{}_{\mathrm{c}}$               |  |
| 80.0               | В    | 64.7     | 0.09                                | 64.8     | 0.09                                   | 66. 3         | 0.09                                |  |
| 72. 5              | С    | 103      | 0.16                                | 103      | 0. 16                                  | 104           | 0. 16                               |  |
| 65. 0              | D    | 185      | 0.13                                | 185      | 0. 13                                  | 188           | 0. 13                               |  |
| 56. 5              | E    | 360      | 0. 26                               | 360      | 0. 26                                  | 364           | 0. 27                               |  |
| 48.0               | F    | 246      | 0.13                                | 247      | 0. 13                                  | 259           | 0. 13                               |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

# 表 3-4 断面算定結果 筒身部

(a) Ss-1

|                    |       |           |             | Ss-1を                                   | 用いたケー     | -ス1 (基本      | ケース)に対す                                 | る検討       |               |                                         |  |
|--------------------|-------|-----------|-------------|-----------------------------------------|-----------|--------------|-----------------------------------------|-----------|---------------|-----------------------------------------|--|
| 標高                 |       | 地震荷重      | (風荷重と       | 重畳しない)                                  | 風         | 風速4.1m/sとの重畳 |                                         |           | 風速16.0m/sとの重畳 |                                         |  |
| T. M. S. L.<br>(m) | 部材間   | 評価月       | 用応力         | $\sigma_{\rm c}$ $\sigma_{\rm b}$       | 評価月       | 用応力          | $\sigma_{\rm c}$ $\sigma_{\rm b}$       | 評価月       | 用応力           | $\sigma_{\rm c}$ $\sigma_{\rm b}$       |  |
| 85. 0              |       | N<br>(kN) | M<br>(kN·m) | $\frac{c}{c}f_{cr} + \frac{b}{b}f_{br}$ | N<br>(kN) | M<br>(kN·m)  | $\frac{c}{c}f_{cr} + \frac{b}{b}f_{br}$ | N<br>(kN) | M<br>(kN·m)   | $\frac{c}{c}f_{cr} + \frac{b}{b}f_{br}$ |  |
| 80. 0              | A - B | 19. 3     | 778         | 0. 16                                   | 19. 3     | 779          | 0. 17                                   | 19.3      | 795           | 0. 17                                   |  |
| 72.5               | B-C   | 147       | 2580        | 0. 55                                   | 147       | 2580         | 0.55                                    | 147       | 2680          | 0. 57                                   |  |
| 65. 0              | C-D   | 177       | 3080        | 0.65                                    | 177       | 3090         | 0.66                                    | 177       | 3250          | 0. 69                                   |  |
| 56. 5              | D-E   | 236       | 5220        | 0. 67                                   | 236       | 5260         | 0.68                                    | 236       | 5770          | 0.74                                    |  |
| 48. 0              | E - F | 297       | 5600        | 0.72                                    | 297       | 5640         | 0.73                                    | 297       | 6230          | 0.80                                    |  |
| 39. 0              | F - G | 444       | 8240        | 0. 59                                   | 444       | 8300         | 0.59                                    | 444       | 9160          | 0.65                                    |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づき、時刻 歴断面算定結果を示す。

(b) Ss-2

|                    |       |           |                 | Ss-2&                                   | 用いたケー     | ス6(回転/                 | ばね低減)に対す                                | る検討           |                    |                                         |
|--------------------|-------|-----------|-----------------|-----------------------------------------|-----------|------------------------|-----------------------------------------|---------------|--------------------|-----------------------------------------|
| 標高                 |       | 地震荷重      | 地震荷重(風荷重と重畳しない) |                                         |           | 速4.1m/sと               | の重畳                                     | 風速16.0m/sとの重畳 |                    |                                         |
| T. M. S. L.<br>(m) | 部材間   | 評価月       | 用応力             | $\sigma_{\rm c}$ + $\sigma_{\rm b}$     | 評価月       | 用応力                    | $\sigma_{\rm c}$ $\sigma_{\rm b}$       | 評価月           | 用応力                | $\sigma_{\rm c}$ $\sigma_{\rm b}$       |
| 85. 0              |       | N<br>(kN) | M<br>(kN·m)     | $\frac{c}{c}f_{cr} + \frac{b}{b}f_{br}$ | N<br>(kN) | $M \atop (kN \cdot m)$ | $\frac{c}{c}f_{cr} + \frac{b}{b}f_{br}$ | N<br>(kN)     | $M$ $(kN \cdot m)$ | $\frac{c}{c}f_{cr} + \frac{c}{b}f_{br}$ |
|                    | A - B | 15. 9     | 818             | 0. 17                                   | 15. 9     | 818                    | 0.17                                    | 15. 9         | 820                | 0. 17                                   |
| 80. 0<br>72. 5     | B – C | 135       | 2660            | 0. 56                                   | 135       | 2660                   | 0.56                                    | 135           | 2680               | 0. 57                                   |
| 65. 0              | C-D   | 167       | 3190            | 0. 67                                   | 167       | 3190                   | 0. 67                                   | 173           | 3220               | 0.68                                    |
| 56. 5              | D-E   | 209       | 6010            | 0. 77                                   | 209       | 6020                   | 0.77                                    | 209           | 6140               | 0.78                                    |
| 48. 0              | E - F | 228       | 6430            | 0. 82                                   | 228       | 6440                   | 0.82                                    | 340           | 6750               | 0.87                                    |
| 39. 0              | F - G | 495       | 8550            | 0.61                                    | 495       | 8610                   | 0.62                                    | 495           | 9470               | 0.68                                    |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づき、時刻 歴断面算定結果を示す。



図 3-1 評価用応力の発生要素の比較

別紙6 原子炉建屋と主排気筒の連成解析による影響評価

# 目 次

| 1. | 概要       | 別紙 6-1  |
|----|----------|---------|
| 2. | 解析方針     | 別紙 6-3  |
| 3. | 地震応答解析結果 | 別紙 6-10 |

別紙 6-1 原子炉建屋との偏心を考慮した主排気筒の影響評価

#### 1. 概要

本資料では、主排気筒の地震応答解析モデルについて、既工認と同様に原子炉建屋と 分離した解析モデルを採用することの妥当性を、主排気筒と原子炉建屋を連成した地震 応答解析(以下「連成解析」という。)を実施することにより確認する。

主排気筒の配置図を図1-1に示す。

主排気筒は、原子炉建屋の屋上(T.M.S.L.\*38.2m)に位置しており、VI-2-7-2-1「主排気筒の耐震性についての計算書」(以下「STK 今回設工認」という。)における地震応答解析モデルには、原子炉建屋屋上(T.M.S.L.38.2m)より上部を対象とした立体フレームモデル(以下「STK単独モデル」という。)を採用している。

本資料では、以下の解析を行うことにより、原子炉建屋との連成の影響が小さいこと を断面算定結果(検定値)で確認する。

## ①減衰及び誘発上下動の影響

連成解析を行うにあたり、「減衰を原子炉建屋で採用しているひずみエネルギ比例 型減衰に合わせること」及び「連成解析で考慮することができない誘発上下動を 考慮しないこと」による影響をSTK単独モデルで確認する。

## ②連成の影響

①による影響を確認した上で、連成の影響確認では、STK単独モデルによる地震 応答解析(以下「STK単独解析」という。)と連成解析の断面算定結果を比較する ことで、連成解析が主排気筒の耐震性に与える影響を確認する。

注記\*:東京湾平均海面を,以下「T.M.S.L.」という。

別紙 6-1 109/131



図 1-1 主排気筒配置図(単位:m)

別紙 6-2 110/131

#### 2. 解析方針

検討ケースを表 2-1 に示す。

入力地震動について、STK 単独解析では、STK 今回設工認における断面算定結果として、主柱材D-E間の検定値が 0.98 で最も厳しくなる Ss-2 (ケース 6) を用いるものとし、原子炉建屋屋上 (T.M.S.L.38.2m) で 3 方向 (5 成分) (水平 2 方向(並進・回転)及び鉛直方向)の同時入力とする。連成解析では、VI-2-2-1「原子炉建屋の地震応答計算書」 (以下「R/B 今回設工認」という。)の方法を準用し、Ss-2 を入力 (3 方向(3 成分)(水平 2 方向(並進)及び鉛直方向))する。

検討ケースについて、①STK 今回設工認は、別紙 3-2「原子炉建屋の材料物性の不確かさ等を考慮した地震応答解析結果」で検討したケースであり、STK 単独解析で誘発上下動を考慮し、減衰は剛性比例型減衰を設定している。②減衰変更は、①STK 今回設工認の減衰をひずみエネルギ比例型減衰に変更している。③誘発上下動変更は、①STK 今回設工認の減衰をひずみエネルギ比例型減衰、誘発上下動を非考慮に変更している。④連成解析は、連成解析で誘発上下動を非考慮とし、減衰はひずみエネルギ比例型減衰を設定している。

解析モデルとして、STK 単独モデルを図 2-1、原子炉建屋の地震応答解析モデル(以下「R/B 単独モデル」という。)を図 2-2、連成解析の解析モデル(以下「R/B 連成モデル」という。)の概念図を図 2-3 に示す。

図 2-1 及び図 2-2 に示す STK 単独モデル及び R/B 単独モデルは,それぞれ STK 今回 設工認及び R/B 今回設工認に示す地震応答解析モデルと同一である。

R/B 連成モデルは、上記で示す STK 単独モデルを R/B 単独モデルと原子炉建屋屋上 (T. M. S. L. 38. 2m) で多点拘束により結合している。なお、R/B 単独モデルでは主排気筒 の重量を考慮しているが、R/B 連成モデルでは主排気筒をモデル化するため、当該重量を差し引くものとする。

別紙 6-3 111/131

表 2-1 検討ケース

|               |           |      | 主排為 | 気筒へのフ        | 人力 (Ss-2 | 2 (ケース                   | 6))            |  |
|---------------|-----------|------|-----|--------------|----------|--------------------------|----------------|--|
| 検討            | 解析        |      | 水平力 | <b>ラ向*</b> 1 |          | 鉛直                       | 減衰             |  |
| ケース名          | モデル       | NS 7 | 方向  | EW >         | 方向       | 如區<br>  方向* <sup>1</sup> |                |  |
|               |           | 並進   | 回転  | 並進           | 回転       | <i>77</i> [F]            |                |  |
| ①STK<br>今回設工認 | STK<br>単独 | 0    | 0   | 0            | 0        | O*2                      | 剛性比例型          |  |
| ②減衰変更         | STK<br>単独 | 0    | 0   | 0            | 0        | O*2                      | ひずみエネルギ<br>比例型 |  |
| ③誘発上下動<br>変更  | STK<br>単独 | 0    | 0   | 0            | 0        | 0                        | ひずみエネルギ<br>比例型 |  |
| ④連成解析         | R/B<br>連成 | 0    | 0   | 0            | 0        | 0                        | ひずみエネルギ<br>比例型 |  |

注記\*1:組み合わせる成分を「〇」で示す。

\*2:誘発上下動を考慮する。

別紙 6-4 112/131



注 2 : 赤線は、RB 単独モデル (NS 方向) の 地震応答解析による応答の入力方向を示す。

注3:青線は、RB単独モデル(EW方向)の 地震応答解析による応答の入力方向を示す。

注4:緑線は、RB単独モデル(鉛直方向)の 地震応答解析による応答の入力方向を示す。

(水平2方向(並進・回転)及び鉛直方向)

図 2-1 STK 単独モデル

別紙 6-5 113/131



注: $K_{\theta 1}$ は鉄筋コンクリート製原子炉格納容器(以下「RCCV」という。)回転ばねを示す。

# (a) EW 方向

図 2-2 R/B 単独モデル (1/3) (単位:m)

別紙 6-6 114/131



(b) NS 方向

図 2-2 R/B 単独モデル (2/3) (単位:m)

別紙 6-7 115/131



注: K<sub>θ2</sub>は屋根トラス端部回転拘束ばねを示す。

# (c) 鉛直方向

図 2-2 R/B 単独モデル (3/3) (単位:m)

別紙 6-8 116/131



注1:赤線部は主排気筒(立体フレームモデル)であり、図2-1をモデル化する。

注2:青線部は原子炉建屋(水平方向質点系モデル)を示す。本図では、例として NS 方向のみを記載する。

注3:緑線部は原子炉建屋(鉛直方向質点系モデル)を示す。

注4:原子炉建屋の各方向の応答を主排気筒で考慮するために、図2-2に示す3方向のモデルを主排気筒とT.M.S.L.38.2mにおいて同時に多点拘束で結合する。

注5:主排気筒と原子炉建屋の詳細は、それぞれ STK 今回設工認と R/B 今回設工認に示すとおりである。

# 図 2-3 R/B 連成モデルの概念図

別紙 6-9 117/131

### 3. 地震応答解析結果

表 3-1 に地震応答解析結果に基づく断面算定結果を示す。

主柱材の検定値について、STK 単独解析である②減衰変更及び③誘発上下動変更は、①STK 今回設工認に対して減少する傾向にある。これは、②減衰変更及び③誘発上下動変更が同じ検定値であるため、ひずみエネルギ比例型減衰の影響であることを確認した。④連成解析の検定値は、②減衰変更及び③誘発上下動変更よりもやや小さいものの、検定値が①STK 今回設工認に対して減少する傾向は、②減衰変更及び③誘発上下動変更と同じである。なお、全部材中で最も検定値が大きくなる主柱材D-E間について、①STK 今回設工認、②減衰変更及び③誘発上下動変更では検定値が 0.98 であったが、④連成解析では 0.96 となり低減している。

斜材及び水平材の検定値は,各ケースでおおむね整合している。

筒身部の検定値について、②減衰変更、③誘発上下動変更及び④連成解析は、①STK 今回設工認に対して、T. M. S. L. 65.0m 以上で増大する傾向にあるものの、最大でも 0.81 となっている。T. M. S. L. 65.0m 以上の検定値については、②減衰変更、③誘発上下動変更及び④連成解析が、ひずみエネルギ比例型減衰の影響で①STK 今回設工認より検定値が増加したものの、②減衰変更及び③誘発上下動変更に対し、④連成解析は検定値が低減している。

以上より,原子炉建屋と主排気筒を連成した場合についても耐震性に影響が無いことを確認するとともに,VI-2-7-2-1「主排気筒の耐震性についての計算書」で原子炉建屋と分離した解析モデルを採用することの妥当性を確認した。

表 3-1 断面算定結果 (1/2)

(a) 主柱材

|             |     |           |             |                                     |           | STK単独解      | 析                                                                     |           |             |                                     |           | 連成解析        | 1                                                                     |  |
|-------------|-----|-----------|-------------|-------------------------------------|-----------|-------------|-----------------------------------------------------------------------|-----------|-------------|-------------------------------------|-----------|-------------|-----------------------------------------------------------------------|--|
| 標高          |     | ①STK今回設工認 |             |                                     | ②減衰変更     |             |                                                                       | 31        | ③誘発上下動変更    |                                     |           | ④連成解析       |                                                                       |  |
| T. M. S. L. | 部材間 | 評価月       | 用応力         | $\sigma_{\rm c}$ $\sigma_{\rm b}$   | 評価月       | 用応力         | $\sigma_{\rm c}$ $\sigma_{\rm b}$                                     | 評価月       | 用応力         | $\sigma_{\rm c}$ $\sigma_{\rm b}$   | 評価月       | 用応力         | $\sigma_{\rm c}$ , $\sigma_{\rm b}$                                   |  |
| (m)<br>80.0 |     | N<br>(kN) | M<br>(kN·m) | $\frac{g_c}{f_c} + \frac{g_b}{f_b}$ | N<br>(kN) | M<br>(kN·m) | $\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$ | N<br>(kN) | M<br>(kN·m) | $\frac{g_c}{f_c} + \frac{g_b}{f_b}$ | N<br>(kN) | M<br>(kN·m) | $\frac{\sigma_{\rm c}}{f_{\rm c}} + \frac{\sigma_{\rm b}}{f_{\rm b}}$ |  |
| 72.5        | B-C | 21.5      | 27. 2       | 0.18                                | 23. 9     | 27. 1       | 0.19                                                                  | 24. 9     | 27. 2       | 0.19                                | 25. 1     | 26. 5       | 0.18                                                                  |  |
| 65. 0       | C-D | 1160      | 102         | 0.78                                | 1160      | 101         | 0.78                                                                  | 1160      | 102         | 0.78                                | 1130      | 99. 6       | 0.76                                                                  |  |
| 56. 5       | D-E | 2910      | 164         | 0.98                                | 2900      | 163         | 0.98                                                                  | 2900      | 163         | 0.98                                | 2840      | 160         | 0.96                                                                  |  |
| 48. 0       | E-F | 5510      | 609         | 0.93                                | 5480      | 600         | 0.92                                                                  | 5500      | 605         | 0.92                                | 5370      | 586         | 0.90                                                                  |  |
| 40. 2       | F-G | 7620      | 703         | 0.83                                | 7560      | 703         | 0.82                                                                  | 7590      | 705         | 0.83                                | 7420      | 696         | 0.81                                                                  |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(b) 斜材

|                    |       |           |                                         | STK単      | 独解析                                    |           |                                         | 連成        | 解析                                     |
|--------------------|-------|-----------|-----------------------------------------|-----------|----------------------------------------|-----------|-----------------------------------------|-----------|----------------------------------------|
| 標高                 |       | ①STK今回設工認 |                                         | ②減す       | 衰変更                                    | ③誘発上      | 下動変更                                    | ④連成解析     |                                        |
| 7示回<br>T. M. S. L. | 部材間   | 評価用応力     | σ                                       | 評価用応力     | σ                                      | 評価用応力     | ď                                       | 評価用応力     | σ                                      |
| (m)<br>80.0        |       | N<br>(kN) | $\frac{\sigma_{\rm c}}{{ m f}_{\rm c}}$ | N<br>(kN) | $\frac{\sigma_{\rm c}}{{ m f}_{ m c}}$ | N<br>(kN) | $\frac{\sigma_{\rm c}}{{ m f}_{\rm c}}$ | N<br>(kN) | $\frac{\sigma_{\rm c}}{{ m f}_{ m c}}$ |
| 72.5               | B-C   | 640       | 0.72                                    | 637       | 0.71                                   | 645       | 0.72                                    | 619       | 0. 69                                  |
| 65. 0              | C-D   | 747       | 0.48                                    | 743       | 0.48                                   | 752       | 0.48                                    | 721       | 0.46                                   |
| 56. 5              | D-E   | 971       | 0. 35                                   | 957       | 0.34                                   | 974       | 0. 35                                   | 932       | 0. 33                                  |
| 48. 0              | E - F | 1140      | 0. 22                                   | 1150      | 0. 22                                  | 1160      | 0. 22                                   | 1130      | 0. 22                                  |
| 40. 2              | F - G | 1510      | 0. 17                                   | 1540      | 0. 18                                  | 1540      | 0. 18                                   | 1470      | 0. 17                                  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(c) 水平材

|                    |           |                                         |           | STK単                                    | 独解析       |                                     |           | 連成                                      | 解析    |  |  |
|--------------------|-----------|-----------------------------------------|-----------|-----------------------------------------|-----------|-------------------------------------|-----------|-----------------------------------------|-------|--|--|
| 標高                 |           | ①STK今I                                  | 可設工認      | ②減衰変更                                   |           | ③誘発上                                | 下動変更      | ④連成解析                                   |       |  |  |
| 7示回<br>T. M. S. L. | 部材位置      | 評価用応力                                   | σ         | 評価用応力                                   | σ         | 評価用応力                               | ď         | 評価用応力                                   | σ     |  |  |
| (m)                | N<br>(kN) | $\frac{\sigma_{\rm c}}{{ m f}_{\rm c}}$ | N<br>(kN) | $\frac{\sigma_{\rm c}}{{ m f}_{\rm c}}$ | N<br>(kN) | $\frac{\sigma_{ m c}}{ m f}_{ m c}$ | N<br>(kN) | $\frac{\sigma_{\rm c}}{{ m f}_{\rm c}}$ |       |  |  |
| 80.0               | В         | 64. 2                                   | 0.09      | 64. 1                                   | 0.09      | 64. 4                               | 0.09      | 61.6                                    | 0.09  |  |  |
| 72. 5              | С         | 98. 9                                   | 0. 16     | 98. 2                                   | 0. 15     | 98. 4                               | 0. 16     | 96. 1                                   | 0. 15 |  |  |
| 65. 0              | D         | 178                                     | 0. 12     | 180                                     | 0. 13     | 180                                 | 0. 13     | 177                                     | 0.12  |  |  |
| 56. 5              | E         | 342                                     | 0. 25     | 342                                     | 0. 25     | 343                                 | 0. 25     | 333                                     | 0.24  |  |  |
| 48.0               | F         | 271                                     | 0. 14     | 280                                     | 0.14      | 277                                 | 0. 14     | 279                                     | 0.14  |  |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

表 3-1 断面算定結果 (2/2)

(d) 筒身部

|             |       |           |             |                                         |           | STK単独       | 解析                                      |           |             |                                         |           | 連成角         | <b>军析</b>                               |
|-------------|-------|-----------|-------------|-----------------------------------------|-----------|-------------|-----------------------------------------|-----------|-------------|-----------------------------------------|-----------|-------------|-----------------------------------------|
| 標高          |       | ①STK今回設工認 |             |                                         | ②減衰変更     |             |                                         | ③誘発上下動変更  |             |                                         |           | ④連成         | 解析                                      |
| T. M. S. L. | 部材間   | 評価月       | 応力          | $\sigma_{\rm c}$ $\sigma_{\rm b}$       | 評価月       | 用応力         | $\sigma_{\rm c}$ $\sigma_{\rm b}$       | 評価月       | 用応力         | $\sigma_{\rm c}$ $\sigma_{\rm b}$       | 評価月       | 用応力         | $\sigma_{\rm c}$ $\sigma_{\rm b}$       |
| (m)<br>85.0 |       | N<br>(kN) | M<br>(kN·m) | $\frac{c}{c}f_{cr} + \frac{b}{b}f_{br}$ |
| 80. 0       | A - B | 16. 6     | 827         | 0. 17                                   | 22. 1     | 949         | 0.20                                    | 20.9      | 955         | 0.20                                    | 20. 2     | 914         | 0.19                                    |
| 72. 5       | B-C   | 149       | 2650        | 0. 56                                   | 173       | 3060        | 0.65                                    | 153       | 3090        | 0.65                                    | 150       | 2950        | 0.62                                    |
| 65. 0       | C - D | 192       | 3360        | 0.71                                    | 217       | 3830        | 0.81                                    | 182       | 3870        | 0.81                                    | 177       | 3680        | 0.77                                    |
| 56. 5       | D-E   | 236       | 5910        | 0.76                                    | 272       | 6030        | 0.77                                    | 248       | 6120        | 0.78                                    | 243       | 5800        | 0.74                                    |
| 48. 0       | E - F | 352       | 6930        | 0.89                                    | 361       | 6810        | 0.88                                    | 315       | 6840        | 0.88                                    | 262       | 6720        | 0.86                                    |
| 39. 0       | F - G | 487       | 8490        | 0.61                                    | 497       | 8510        | 0.61                                    | 514       | 8570        | 0.62                                    | 360       | 8360        | 0.59                                    |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づき、時刻 歴断面算定結果を示す。 別紙6-1 原子炉建屋との偏心を考慮した主排気筒の影響評価

# 目 次

| 1. | 概要         | 別紙 6-1-1 |
|----|------------|----------|
| 2. | 解析方針 ····· | 別紙 6-1-3 |
| 3. | 地震応答解析結果   | 別紙 6-1-7 |

#### 1. 概要

主排気筒の地震応答解析モデルについて、別紙 6「原子炉建屋と主排気筒の連成解析による影響評価」(以下「別紙 6 評価」という。)の検討において、原子炉建屋と分離した解析モデルを採用することの妥当性は確認している。一方で、主排気筒が原子炉建屋に偏心して設置されている影響については、地震応答解析モデルには反映していない。

本資料では、主排気筒の地震応答解析モデルについて、偏心を考慮しない解析モデルを採用することの妥当性を、偏心を考慮した地震応答解析を実施することにより確認する。なお、考慮する原子炉建屋との偏心は、NS 方向における主排気筒の筒身部中心位置から原子炉建屋の炉心位置までの距離(L=23.95m)における偏心とする。

主排気筒と原子炉建屋との偏心距離を図1-1に示す。

VI-2-7-2-1「主排気筒の耐震性についての計算書」(以下「STK 今回設工認」という。) における地震応答解析モデルには、原子炉建屋屋上 (T. M. S. L. \*38.2m) より上部を対象 とした立体フレームモデル (以下「STK 単独モデル」という。) を採用している。

詳細には、以下の解析を行うことにより、原子炉建屋との偏心を考慮した影響が小さいことを断面算定結果(検定値)で確認する。

- ①偏心を考慮しない主排気筒と原子炉建屋を連成した地震応答解析(以下「偏心を 考慮しない解析」という。)
- ②偏心を考慮した主排気筒と原子炉建屋を連成した地震応答解析(以下「偏心を考慮した解析」という。)

注記\*:東京湾平均海面を,以下「T.M.S.L.」という。



図 1-1 主排気筒と原子炉建屋との偏心距離(単位:m)

#### 2. 解析方針

検討ケースを表 2-1 に示す。

入力地震動について,別紙 6 評価と同様に Ss-2 (ケース 6) を用いるものとし,原子 炉建屋屋上 (T.M.S.L. 38.2m) で 3 方向 (5 成分) (水平 2 方向(並進・回転)及び鉛直方向)の同時入力とする。

解析モデルとして、偏心を考慮しない解析モデルの概念図を図 2-1、偏心を考慮した解析モデルの概念図を図 2-2 に示す。

図 2-1 及び図 2-2 に示す STK 単独モデル及び原子炉建屋の地震応答解析モデル(以下「R/B 単独モデル」という。)は,それぞれ STK 今回設工認及びVI-2-2-1「原子炉建屋の地震応答計算書」(以下「R/B 今回設工認」という。)に示す地震応答解析モデルと同一である。

偏心を考慮しない解析モデル及び偏心を考慮した解析モデルは、上記で示す STK 単独 モデルを R/B 単独モデルと原子炉建屋屋上 (T. M. S. L. 38.2m) で多点拘束により結合して いる。また、偏心を考慮した解析モデルは、NS 方向の偏心距離(L=23.95m)を考慮した 多点拘束で結合する。なお、R/B 単独モデルでは主排気筒の重量を考慮しているが、 R/B 連成モデルでは主排気筒をモデル化するため、当該重量を差し引くものとする。

表 2-1 検討ケース

|                 |           |    | 主排気筒への入力 (Ss-2 (ケース 6)) |                  |    |    |                |  |  |  |
|-----------------|-----------|----|-------------------------|------------------|----|----|----------------|--|--|--|
| 検討              | 解析        |    | 水平力                     | 方向* <sup>1</sup> |    | 鉛直 |                |  |  |  |
| ケース名            | モデル       | NS | NS 方向                   |                  | 方向 | 方向 | 減衰             |  |  |  |
|                 |           | 並進 | 回転                      | 並進               | 回転 | 刀间 |                |  |  |  |
| ①偏心を考慮しない<br>解析 | R/B<br>連成 | 0  | 0                       | 0                | 0  | 0  | ひずみエネルギ<br>比例型 |  |  |  |
| ②偏心を考慮した<br>解析  | R/B<br>連成 | 0  | O*2                     | 0                | 0  | 0  | ひずみエネルギ<br>比例型 |  |  |  |

注記\*1:組み合わせる成分を「○」で示す。

\*2:偏心を考慮する。



注1:赤線部は主排気筒(立体フレームモデル)を示す。

注2:青線部は原子炉建屋(水平方向質点系モデル)を示す。本図では、例として NS 方向のみを記載する。

注3:緑線部は原子炉建屋(鉛直方向質点系モデル)を示す。

注4:原子炉建屋の各方向の応答を主排気筒で考慮するために、3方向のモデルを主排気筒と T. M. S. L. 38.2m において同時に多点拘束で結合する。

注5:主排気筒と原子炉建屋の詳細は、それぞれ STK 今回設工認と R/B 今回設工認に示すとおりである。

図 2-1 偏心を考慮しない解析モデルの概念図



注1:赤線部は主排気筒(立体フレームモデル)を示す。

注2:青線部は原子炉建屋(水平方向質点系モデル)を示す。本図では、例として NS 方 向のみを記載する。

注3:緑線部は原子炉建屋(鉛直方向質点系モデル)を示す。

注4:原子炉建屋の各方向の応答を主排気筒で考慮するために、3方向のモデルを主排気筒と T. M. S. L. 38. 2m において、NS方向の偏心距離を考慮した多点拘束で結合する。

注 5 : 主排気筒と原子炉建屋の詳細は、それぞれ STK 今回設工認と R/B 今回設工認に示すとおりである。

図 2-2 偏心を考慮した解析モデルの概念図

## 3. 地震応答解析結果

表 3-1 に地震応答解析結果に基づく断面算定結果を示す。なお、①偏心を考慮しない解析の断面算定結果は別紙 6 評価と同様である。

主柱材、斜材、水平材及び筒身部の検定値は、各ケースでおおむね整合している。

全部材中で最も検定値が大きくなる主柱材D-E間について、①偏心を考慮しない解析では検定比は0.96であったが、②偏心を考慮した解析では検定値は0.95に低減している。

以上より、偏心を考慮した場合についても耐震性に影響がないことを確認した。また、別紙 6 評価において原子炉建屋と分離した解析モデルを採用することの妥当性を確認したことから、VI-2-7-2-1「主排気筒に耐震性についての計算書」において原子炉建屋と分離して偏心を考慮しない解析モデルを採用することは妥当であると考える。

表 3-1 断面算定結果 (1/2)

(a) 主柱材

|             |       | 連成解析      |             |                                                                                 |           |             |                                                                                 |  |  |  |
|-------------|-------|-----------|-------------|---------------------------------------------------------------------------------|-----------|-------------|---------------------------------------------------------------------------------|--|--|--|
| 標高          |       | ①偏心       | を考慮しア       | ない解析                                                                            | ②偏心       | ②偏心を考慮した解析  |                                                                                 |  |  |  |
| 7. М. S. L. | 部材間   | 評価月       | 用応力         | $\frac{\sigma_{\rm c}}{\sigma_{\rm c}} + \frac{\sigma_{\rm b}}{\sigma_{\rm b}}$ | 評価月       | 用応力         | $\frac{\sigma_{\rm c}}{\sigma_{\rm c}} + \frac{\sigma_{\rm b}}{\sigma_{\rm b}}$ |  |  |  |
| (m)<br>80.0 |       | N<br>(kN) | M<br>(kN·m) | $\frac{f_c}{f_c} + \frac{f_b}{f_b}$                                             | N<br>(kN) | M<br>(kN·m) | $\frac{g_c}{f_c} + \frac{g_b}{f_b}$                                             |  |  |  |
| 72. 5       | B-C   | 25. 2     | 26. 5       | 0. 18                                                                           | 29. 7     | 26. 7       | 0.19                                                                            |  |  |  |
| 65. 0       | C-D   | 1130      | 99. 5       | 0.76                                                                            | 1140      | 101         | 0.77                                                                            |  |  |  |
| 56. 5       | D-E   | 2840      | 160         | 0. 96                                                                           | 2830      | 160         | 0. 95                                                                           |  |  |  |
| 48. 0       | E - E | 5370      | 586         | 0.90                                                                            | 5350      | 587         | 0.90                                                                            |  |  |  |
| 40. 2       | F - G | 7410      | 696         | 0.81                                                                            | 7390      | 699         | 0.81                                                                            |  |  |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(b) 斜材

|             |       | 連成解析      |                                     |            |                                        |  |  |  |  |
|-------------|-------|-----------|-------------------------------------|------------|----------------------------------------|--|--|--|--|
| 標高          |       | ①偏心を考慮    | <b>重しない解析</b>                       | ②偏心を考慮した解析 |                                        |  |  |  |  |
| T. M. S. L. | 部材間   | 評価用応力     | σ                                   | 評価用応力      | σ                                      |  |  |  |  |
| (m)<br>80.0 |       | N<br>(kN) | $\frac{\sigma_{ m c}}{ m f}_{ m c}$ | N<br>(kN)  | $\frac{\sigma_{\rm c}}{{ m f}_{ m c}}$ |  |  |  |  |
| 72. 5       | B-C   | 619       | 0. 69                               | 619        | 0. 69                                  |  |  |  |  |
| 65. 0       | C-D   | 721       | 0. 46                               | 721        | 0.46                                   |  |  |  |  |
| 56. 5       | D-E   | 931       | 0. 33                               | 931        | 0. 33                                  |  |  |  |  |
| 48. 0       | E-F   | 1130      | 0. 22                               | 1130       | 0. 22                                  |  |  |  |  |
| 40. 2       | F - G | 1470      | 0. 17                               | 1460       | 0. 17                                  |  |  |  |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

(c) 水平材

|                   |      |           | \\\\\\\\                            | An Ir      |                                        |  |  |  |  |  |
|-------------------|------|-----------|-------------------------------------|------------|----------------------------------------|--|--|--|--|--|
|                   |      | 連成解析      |                                     |            |                                        |  |  |  |  |  |
| 標高                |      | ①偏心を考慮    | <b>煮しない解析</b>                       | ②偏心を考慮した解析 |                                        |  |  |  |  |  |
| 示同<br>T. M. S. L. | 部材位置 | 評価用応力     | G                                   | 評価用応力      | Ø                                      |  |  |  |  |  |
| (m)               |      | N<br>(kN) | $\frac{\sigma_{ m c}}{ m f}_{ m c}$ | N<br>(kN)  | $\frac{\sigma_{\rm c}}{{ m f}_{ m c}}$ |  |  |  |  |  |
| 80.0              | В    | 61.6      | 0.09                                | 61.6       | 0.09                                   |  |  |  |  |  |
| 72. 5             | С    | 96. 1     | 0. 15                               | 95. 9      | 0. 15                                  |  |  |  |  |  |
| 65. 0             | D    | 176       | 0. 12                               | 177        | 0. 12                                  |  |  |  |  |  |
| 56. 5             | E    | 332       | 0. 24                               | 333        | 0. 24                                  |  |  |  |  |  |
| 48. 0             | F    | 279       | 0. 14                               | 289        | 0. 15                                  |  |  |  |  |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づく。

表 3-1 断面算定結果 (2/2)

(d) 筒身部

| 標高          |       | <ol> <li>①偏</li> </ol> | 心を考慮        | しない解析                                   | 20        | 扁心を考慮       | ました解析                                   |  |
|-------------|-------|------------------------|-------------|-----------------------------------------|-----------|-------------|-----------------------------------------|--|
| 7. M. S. L. | 部材間   | 評価月                    | 用応力         | $\frac{\sigma_{\rm c}}{\sigma_{\rm b}}$ | 評価月       | 用応力         | $\frac{\sigma_{\rm c}}{\sigma_{\rm b}}$ |  |
| (m)<br>85.0 |       | N<br>(kN)              | M<br>(kN·m) | $\frac{c}{c}f_{cr} + \frac{b}{b}f_{br}$ | N<br>(kN) | M<br>(kN⋅m) | $\frac{c}{c}f_{cr} + \frac{b}{b}f_{br}$ |  |
| 80. 0       | A – B | 20. 2                  | 912         | 0. 19                                   | 22. 5     | 913         | 0. 19                                   |  |
| 72. 5       | B-C   | 150                    | 2940        | 0.62                                    | 167       | 2950        | 0.63                                    |  |
| 65. 0       | C-D   | 178                    | 3680        | 0.77                                    | 198       | 3680        | 0.78                                    |  |
| 56. 5       | D-E   | 243                    | 5790        | 0.74                                    | 272       | 5790        | 0.74                                    |  |
| 48. 0       | E - F | 247                    | 6730        | 0.86                                    | 395       | 6680        | 0.87                                    |  |
| 39. 0       | F - G | 359                    | 8350        | 0. 59                                   | 433       | 8310        | 0. 59                                   |  |

注:断面算定方法は、VI-2-7-2-1「主排気筒の耐震性についての計算書」に基づき、時刻 歴断面算定結果を示す。