柏崎刈羽原子力発電	「所第6号機 設計及び工事計画審査資料
資料番号	KK6 添-2-024 改 1
提出年月日	2024年2月6日

VI-2-2-14 格納容器圧力逃がし装置基礎の耐震性についての計算書

2024 年 2 月 東京電力ホールディングス株式会社

1.	柞	既要			• • • • • •			• • • •	 • • • •	• • • •	 • • • •	• • • •	 	• • • •	1
2.	Z	基本方	· 針						 		 		 	• • • •	2
2.	1	位置	<u>.</u>		• • • • • •			• • • •	 • • • •	• • • •	 ••••		 • • • •		2
2.	2	構造	퓂要	• • • •				• • • •	 • • • •		 • • • •		 • • • •		3
2.	3	評価	ī方針	••••				• • • •	 • • • •	• • • •	 • • • •		 		8
2.	4	適用	規格・	・基準	等·				 		 • • • •		 		10
3.	ţ	也震応	、答解析	Fによ	る評価	后方法	• •		 		 • • • •		 		11
4.	Ţ,	芯力解	『析に』	くる評	価方法	÷			 		 • • • •		 • • • •		14
4.	1	評価	ī対象音	邓位及	び評価	「方針	• •		 		 • • • •		 • • • •		14
4.	2	荷重	【及び荷	苛重の	組合せ				 		 • • • •		 • • • •		16
	4.	2.1	荷重	• • • •					 		 		 • • • •	•••	16
	4.	2.2	荷重0	D組合	せ・				 		 		 • • • •	•••	19
4.	3	許容	※限界	• • • •					 		 		 • • • •	•••	20
4.	4	解析	モデル	レ及び	諸元			• • • •	 • • • •	• • • •	 • • • •	• • • •	 	•••	22
	4.	4.1	モデル	レ化の	基本力	5針		• • • •	 • • • •	• • • •	 ••••	• • • •	 	•••	22
	4.	4.2	解析諸	者元				• • • •	 • • • •	• • • •	 ••••	• • • •	 	•••	25
4.	5	評価	ī方法	• • • •				• • • •	 • • • •	• • • •	 ••••	• • • •	 	•••	26
	4.	5.1	応力解	曜 析方	法·			• • • •	 	• • • •	 • • • •		 	• • •	26
	4.	5.2	断面の	つ評価	方法			• • • •	 	• • • •	 • • • •		 	•••	29
5.	ţ	也震応	、答解が	斤によ	る評価	「結果	• •	• • • •	 	• • • •	 • • • •		 	•••	30
5.	1	耐震	壁のも	せん断	ひずみ	いの評	価結	果	 • • • •	• • • •	 ••••		 	•••	30
5.	2	杭の	評価編	吉果					 	• • • •	 • • • •		 	•••	31
6.	J,	芯力解	『析によ	くる評	価結果	ų			 		 • • • •		 	•••	32

1. 概要

本資料は、VI-2-1-9「機能維持の基本方針」に基づき,格納容器圧力逃がし装置基礎 (以下「装置基礎」という。)の地震時の構造強度及び機能維持の確認について説明す るものであり,その評価は,地震応答解析による評価及び応力解析による評価により行 う。

装置基礎は,重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常 設重大事故緩和設備の間接支持構造物」に分類される。装置基礎のうち,フィルタベン ト遮蔽壁(以下「遮蔽壁」という。)は,重大事故等対処施設において「常設耐震重要 重大事故防止設備及び常設重大事故緩和設備」に分類される。

以下,装置基礎の「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接 支持構造物」としての分類に応じた耐震評価並びに遮蔽壁の「常設耐震重要重大事故防 止設備及び常設重大事故緩和設備」としての分類に応じた耐震評価を示す。

- 2. 基本方針
- 2.1 位置

装置基礎の設置位置を図 2-1 に示す。

図 2-1 装置基礎の設置位置

2.2 構造概要

装置基礎は、基礎スラブ及び遮蔽壁で構成され、主要構造が鉄筋コンクリート造の ボックス形状の構築物である。装置基礎の杭伏図及び概略平面図を図 2-2 に、概略 断面図を図 2-3 に、耐震壁として考慮する遮蔽壁の範囲を図 2-4 に示す。また、遮 蔽壁に対する補助遮蔽性能の要求範囲を図 2-5 に示す。

遮蔽壁の平面は,9.6m (NS 方向)×14.1m (EW 方向),地上高さは14.3m であり, 一部を除いて耐震壁として考慮する。 装置基礎に加わる地震時の水平力は全て耐 震壁で負担し,基礎スラブを介して杭に伝達する。

基礎スラブは,平面が 14.6m (NS 方向) ×15.1m (EW 方向),厚さ 2.5m であり,場 所打ち鋼管コンクリート杭(外径 1.2m,杭長 28.3m,根入れ深さ杭径以上,24本, 以下「杭」という。)を介して西山層に支持させている。また,液状化対策として, 装置基礎の周辺にセメント系の地盤改良を実施する。

(a)杭伏図

注:東京湾平均海面を,以下「T.M.S.L.」という。

(b)概略平面図(T.M.S.L.12.3m)

図 2-2 装置基礎の杭伏図及び概略平面図(単位:m)

(b) B - B 断面図 2-3 装置基礎の概略断面図(単位:m)

(b) A - A 断面図図 2-4 耐震壁として考慮する遮蔽壁の範囲(単位:m)

(b) A - A 断面図図 2-5 補助遮蔽性能の要求範囲(単位:m)

2.3 評価方針

装置基礎は、重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」に分類される。

装置基礎の重大事故等対処施設としての評価においては,基準地震動Ssによる地震力に対 する評価(以下「Ss地震時に対する評価」という。)を行うこととし,VI-2-2-13「格納容器 圧力逃がし装置基礎の地震応答計算書」の結果を踏まえたものとする。装置基礎の評価は,VI -2-1-9「機能維持の基本方針」に基づき,地震応答解析による評価においては,耐震壁のせん 断ひずみ並びに杭の断面,支持力及び引抜き抵抗力の評価を,応力解析による評価においては 基礎スラブの断面の評価を行うことで,装置基礎の地震時の構造強度及び機能維持の確認を行 う。評価にあたっては材料物性の不確かさを考慮する。表 2-1 に材料物性の不確かさを考慮 する解析ケースを示す。

ここで、装置基礎では、運転時及び重大事故等時の状態において、温度の条件が異なるが、 コンクリートの温度が上昇した場合においても、コンクリートの圧縮強度の低下及び剛性低下 は認められず、その影響は小さいと考えられること、また、「発電用原子力設備規格 コンクリ ート製原子炉格納容器規格」((社)日本機械学会、2003)では要素内の温度差及び拘束力によ り発生する熱応力は自己拘束的な応力であり、十分な塑性変形能力がある場合は終局耐力に影 響しないとされていることから、重大事故等対処施設としての評価は、地震時荷重と温度応力 は組み合わせない。

装置基礎の評価フローを図2-6に示す。

検討ケース	地盤剛性	備考
①ケース1(設工認モデル)	標準地盤	基本ケース
②ケース 2(地盤剛性+σ)	標準地盤+ σ (初期せん断弾性係数:埋戻土+54%及び せん断波速度:西山層+10%)	_
③ケース 3 (地盤剛性-σ)	標準地盤- σ (初期せん断弾性係数:埋戻土-35%及び せん断波速度:西山層-10%)	_

表2-1 材料物性の不確かさを考慮する解析ケース

- 注記*1 : VI-2-2-13「格納容器圧力逃がし装置基礎の地震応答計算書」の結果を踏まえた評価を行う。
 - *2 :補助遮蔽について実施する。

図 2-6 装置基礎の評価フロー

2.4 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・建築基準法・同施行令
- ・鉄筋コンクリート構造計算規準・同解説 -許容応力度設計法-((社)日本建築学会,1999改定)
- ・原子力施設鉄筋コンクリート構造計算規準・同解説 ((社)日本建築学会, 2005制定)
- ・鉄骨鉄筋コンクリート構造計算規準・同解説-許容応力度設計と保有水平耐力-((社)日本建築学会,2001改定)
- ・建築基礎構造設計指針((社)日本建築学会,2001改定)
- ・道路橋示方書(Ⅰ共通編・Ⅳ下部構造編)・同解説((社)日本道路協会,平成14 年3月)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・ 補-1984((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- ・2015年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究 所・国立研究開発法人建築研究所)

3. 地震応答解析による評価方法

装置基礎の地震応答解析による評価対象部位は耐震壁及び杭とし, S s 地震時に対す る評価を行う。

耐震壁の構造強度及び機能維持の確認については、VI-2-2-13「格納容器圧力逃がし 装置基礎の地震応答計算書」に基づき、材料物性の不確かさを考慮した耐震壁の最大せ ん断ひずみが許容限界を超えないことを確認する。

杭の断面の評価については、地震応答解析より求めた軸力、曲げモーメント及びせん 断力に対して行う。軸力に対する検討では、杭に生じる軸力が極限支持力及び極限引抜 き抵抗力を超えないことを確認する。曲げモーメントに対する検討では、杭に生じる曲 げモーメントがSs地震時に発生する杭軸力を考慮した杭の終局曲げ耐力以下であるこ とを確認する。せん断力に対する検討では、杭に生じるせん断力が杭の終局せん断耐力 以下であることを確認する。杭の終局せん断耐力は鋼管の短期許容せん断力により評価 する。

地震応答解析による評価における装置基礎の許容限界は, VI-2-1-9「機能維持の基本 方針」に記載の構造強度上の制限及び機能維持方針に基づき,表3-1のとおり設定する。

杭の断面性能及び鋼管の短期許容応力度を表3-2及び表3-3に示す。極限支持力及び 極限引抜き抵抗力は「道路橋示方書(I共通編・IV下部構造編)・同解説」((社)日本 道路協会,平成14年3月)(以下「道路橋示方書」という。)に基づき算定する。また, 杭軸力を考慮した終局曲げ耐力は,「鉄骨鉄筋コンクリート構造計算規準・同解説一許 容応力度設計と保有水平耐力-」((社)日本建築学会,2001改定)(以下「SRC規準」と いう。)に基づき算定する。杭の極限支持力及び極限引抜き抵抗力を表3-4に,曲げモ ーメントと杭軸力の関係を図3-1に,短期許容せん断力を表3-5に示す。

要求 機能	機能設計上 の性能目標	地震力	部位	機能維持の ための考え方	許容限界 (評価基準値)
	構造強度を	基準地震動	耐震壁*1	最大せん断ひずみ が構造強度を確保 するための許容限 界を超えないこと を確認	せん断ひずみ 2.0×10 ⁻³
	有すること	S s	杭	部材に生じる応力 が構造強度を確保 するための許容限 界を超えないこと を確認	「道路橋示方書」 及び 「SRC 規準」 に基づく 終局耐力
遮蔽性	遮蔽体の損 傷により遮 蔽性を損な わないこと	基準地震動 S s	耐震壁*1 (補助遮蔽)	最大せん断ひずみ が遮蔽性を維持す るための許容限界 を超えないことを 確認	せん断ひずみ 2.0×10 ⁻³
支持 機能*2	機器・配管系等の設備	 総器・配管 S S<	耐震壁*1	最大せん断ひずみ が支持機能を維持 するための許容限 界を超えないこと を確認	せん断ひずみ 2.0×10 ⁻³
	を支持する 機能を損な わないこと		杭	部材に生じる応力 が支持機能を維持 するための許容限 界を超えないこと を確認	「道路橋示方書」 及び 「SRC 規準」 に基づく 終局耐力

☆ 5 Ⅰ 地長心谷肝竹による叶Ⅲにわける町谷枢;	界
---------------------------	---

注記*1 :装置基礎としては、地震力を全て耐震壁で負担する構造で、全体に剛性の高 い構造となっており複数の耐震壁間の相対変形が小さいため、耐震壁の最大 せん断ひずみが許容限界を満足していれば、建物・構築物に要求される機能 は維持される。

*2 :「支持機能」の確認には、「内包する設備に対する波及的影響の確認」が含まれる。

断面二次 せん断 板厚*1 全断面積*2 外径 モーメント*2 断面積*2 D (mm) t (mm) A (m^2) I (m^4) A s (m^2) 0.2236 1200 251.838 1.344

表 3-2 杭の断面性能

注:コンクリートは $F c = 24N/mm^2$ とする。

注記*1:上記の板厚に対して腐食代1mmを考慮する。

*2:表中の断面諸元はコンクリート換算した値である。

表 3-3 鋼管の短期許容応力度

(単位:N/mm²)

種別	引張及び圧縮	せん断
SKK490	325	187

注:材料強度は許容応力度(引張及び圧縮)を1.1倍して算出する。

表 3-4 杭の極限支持力及び極限引抜き抵抗力

杭径	極限支持力	極限引抜き抵抗力
φ(mm)	R _u (kN)	P _U (kN)
1200	19000	13000

表 3-5	杭の短期許容せん断力

杭径	短期許容せん断力
φ(mm)	Qsu(kN)
1200	8270

- 4. 応力解析による評価方法
- 4.1 評価対象部位及び評価方針

装置基礎の応力解析による評価対象部位は基礎スラブとし,構造物の荷重伝達及び 遮蔽壁による拘束効果を考慮するため,3次元 FEM モデルを用いた弾性応力解析によ り評価を行う。

弾性応力解析にあたっては、VI-2-2-13「格納容器圧力逃がし装置基礎の地 震応答計算書」により得られた基準地震動Ssによる結果を用いて、荷重の組 合せを行う。基準地震動Ssにより算定される応力が、適用規格・基準等を参 考に設定した許容限界を超えないことを確認する。図4-1に応力解析による評 価フローを示す。

注記*:材料物性の不確かさを考慮する。

図 4-1 応力解析による評価フロー

4.2 荷重及び荷重の組合せ

荷重及び荷重の組合せは、VI-2-1-9「機能維持の基本方針」にて設定している荷重 及び荷重の組合せを用いる。

- 4.2.1 荷重
 - (1) 固定荷重(G)

装置基礎に作用する固定荷重は、VI-2-2-13「格納容器圧力逃がし装置基礎の地震応答計算書」に示す地震応答解析モデルの重量を考慮して表4-1のとおり設定する。

部位	荷重 (kN/m ²)	備考
遮蔽壁	24.0* • t	t :遮蔽壁の厚さ(m)
基礎スラブ	24.0* • t	t :基礎スラブの厚さ(m)

表 4-1 固定荷重(G)

注記*:鉄筋コンクリートの単位体積重量を示す。

(2) 機器荷重(E)

機器荷重は表 4-2 のとおり設定する。

表 4-2 機器荷重(E)

機器名称	設置レベル T.M.S.L.(m)	機器荷重(kN)
フィルタ装置	12.0	1050
よう素フィルタ等	26.3	699

(3) 積雪荷重(Ps)

積雪量は 31.1cm とし,積雪荷重は,表 4-3 のとおり設定する。

表 4-3 積雪荷重 (Ps)

外力の状態	積雪荷重(kN/m²)
Ss地震時	0.914

(4) 浮力(BL)

浮力は、VI-2-1-3「地盤の支持性能に係る基本方針」に基づき地下水位面を地 表面(T.M.S.L.12.0m)とし、基礎スラブに上向きの等分布荷重として入力する。 ただし、装置基礎は原子炉建屋近傍にあり、地下水排水設備による地下水低下の 影響が考えられるため、浮力を無視したケースについても考慮する。

(5) 地震荷重(Ss)

地震荷重(Ss)は、VI-2-2-13「格納容器圧力逃がし装置基礎の地震応答計 算書」から得られるSs地震時の水平及び鉛直方向の最大応答値から算定する。 なお、地震荷重は、浮力考慮ケース・浮力無視ケースともに地下水位面を地表面 (T.M.S.L.12.0m)に設定し、材料物性の不確かさを考慮した地震応答解析結果 を包絡したものとする。機器による地震荷重は別途考慮する。

地震荷重の算定に用いる最大応答値を表 4-4~表 4-6 に示す。

部材	NS 方向	EW 方向	
番号	(×10 ² kN)	(×10 ² kN)	
(1)	266	266	

表 4-4 最大応答せん断力

注:表中の値は材料物性の不確かさを考慮した包絡値を示す。

表 4-5 最大応答曲げモーメント

部材	NS 方向	EW 方向	
番号	(×10 ³ kN・m)	(×10 ³ kN・m)	
(1)	384	385	

注:表中の値は材料物性の不確かさを考慮した包絡値を示す。

表 4-6 最大応答軸力(鉛直方向)

部材	鉛直方向
番号	(×10 ² kN)
(1)	88.6

注:表中の値は材料物性の不確かさを考慮した包絡値を示す。

注:数字は質点番号を,()内は部材番号を示す。

4.2.2 荷重の組合せ

荷重の組合せを表 4-7 に示す。

表 4-7 荷重の組合せ

外力の状態	荷重の組合せ	
S s 地震時(浮力考慮)	G + E + P s + S s + B L	
S s 地震時(浮力無視)	G + E + P s + S s	

G :固定荷重

E :機器荷重

P s : 積雪荷重

Ss:地震荷重

BL:浮力

4.3 許容限界

応力解析による評価における装置基礎の基礎スラブの許容限界は、VI-2-1-9「機能 維持の基本方針」に記載の構造強度上の制限及び機能維持の方針に基づき、表 4-8 の とおり設定する。

また、コンクリート及び鉄筋の許容応力度を表 4-9 及び表 4-10 に示す。

要求 機能	機能設計上の 性能目標	地震力	部 位	機能維持のため の考え方	許容限界 (評価基準値)
_	構造強度を 有すること	基準地震動 S s	基礎スラブ	部材に生じる応 力が構造強度を 確保するための 許容限界を超え ないことを確認	「RC-N 規準」 に基づく 終局強度*1
支持 機能* ²	機器・配管系 等の設備を支 持する機能を 損なわないこ と	基準地震動 S s	基礎スラブ	部材に生じる応 力が支持機能を 維持するための 許容限界を超え ないことを確認	「RC-N 規準」 に基づく 終局強度*1

表 4-8 応力解析による評価における許容限界

注記*1 :「原子力施設鉄筋コンクリート構造計算規準・同解説」((社)日本建築学 会,2005制定)(以下「RC-N規準」という。)の短期許容応力度の鋼材の基準 強度Fを「平成12年建設省告示第2464号」に基づき1.1倍(せん断力に 対する評価時の鋼材の基準強度Fは1.0倍)した耐力とする。

*2 :「支持機能」の確認には、「内包する設備に対する波及的影響の確認」が含まれる。

表 4-9 コンクリートの許容応力度

(単位:N/mm²)

設計基準強度 F c	圧縮	せん断
24.0	16.0	1.09

表 4-10 鉄筋の許容応力度

(単位:N/mm²)

種別	引張及び圧縮	せん断
SD345	345	345

注:材料強度は許容応力度(引張及び圧縮)を1.1倍して算出する。

- 4.4 解析モデル及び諸元
 - 4.4.1 モデル化の基本方針
 - (1) 基本方針

応力解析は、構造物の荷重伝達及び遮蔽壁による拘束効果を考慮するため、3 次元 FEM モデルを用いた弾性応力解析とする。解析モデルには、基礎スラブ内に 生じる応力を適切に評価するため、耐震壁に限らず全ての遮蔽壁を考慮する。解 析モデルを図 4-2 及び図 4-3 に示す。

解析には,解析コード「MSC NASTRAN」を用いる。また,解析コードの検証及び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」に示す。

(2) 使用要素

解析モデルでは FEM 要素として,基礎スラブ及び遮蔽壁にシェル要素を用いる。 解析モデルの節点数は 1563,要素数は 1450 である。

(3) 境界条件

解析モデルの基礎底面には、水平方向及び鉛直方向の地盤ばねを設ける。地盤 ばねは地震応答解析モデルにおける地盤部分の3次元 FEM モデルを用いて加振解 析を行い、算定した複素インピーダンスの実部から設定し、杭位置の各節点に離 散化する。

なお,水平方向の地盤ばねは NS 方向及び EW 方向各々の水平ばね定数に基づき 設定する。鉛直方向の地盤ばねは,水平方向地震に対しては NS 方向及び EW 方向 各々の回転ばね定数,鉛直方向地震を含む鉛直荷重に対しては鉛直ばね定数に基 づき設定する。

図 4-2 解析モデル(装置基礎モデル鳥瞰図) (単位:m)

注:太線は,遮蔽壁の位置を示す。

(a)平面図

注:ばね要素は、杭位置の各節点に離散化する。

(b) A-A断面図

図 4-3 解析モデル(基礎スラブ) (単位:m)

4.4.2 解析諸元

使用材料の物性値を表 4-11 に示す。

諸元	物性値	
ヤング係数(N/mm ²)	2. 27×10^4	
ポアソン比	0.2	

表 4-11 コンクリートの物性値

注:剛性は設計基準強度Fc(24.0N/mm²)に基づく。

4.5 評価方法

4.5.1 応力解析方法

装置基礎の基礎スラブについて、3次元 FEM モデルを用いた弾性応力解析を実施する。

(1) 荷重ケース

Ss地震時の応力は、次の荷重ケースによる応力を組み合わせて求める。

G	:固定荷重
E	:機器荷重
P s	:積雪荷重
$S \ s_{\rm WE}$:水平地震荷重(W→E入力,EW方向)
$S \ s \ {}_{\rm EW}$:水平地震荷重(E→W 入力,EW 方向)
$S \ s \ _{S \ N}$:水平地震荷重(S→N 入力,NS 方向)
$S s_{NS}$:水平地震荷重(N→S 入力,NS 方向)
$S \ s_{\ UD}$: 鉛直地震荷重
ΒL	:浮力

(2) 荷重の組合せケース

荷重の組合せケースを表 4-12 に示す。

水平方向と鉛直方向の荷重の組合せは、「原子力発電所耐震設計技術規程 JEAC4601-2008」((社)日本電気協会)を参考に、組合せ係数法(組合せ係数は 1.0 と 0.4)を用いるものとする。

ケース		公主命広	井手 の知人 リート・コ
No.	水平:鉛但	鉛但晨度	何里の組合セケース
1		上向き	$G + E + P s + 1.0 S s_{WE} - 0.4 S s_{UD} + B L$
2		下向き	$G + E + P s + 1.0 S s_{WE} + 0.4 S s_{UD} + B L$
3		上向き	G + E + P s + 1.0 S s EW - 0.4 S s UD + B L
4	1 0 . 0 4	下向き	G + E + P s + 1.0 S s EW + 0.4 S s UD + B L
5	1.0.0.4	上向き	$G + E + P s + 1.0 S s s_N - 0.4 S s_{UD} + B L$
6		下向き	$G + E + P s + 1.0 S s_{SN} + 0.4 S s_{UD} + B L$
7		上向き	$G + E + P s + 1.0 S s_{NS} - 0.4 S s_{UD} + B L$
8		下向き	$G + E + P s + 1.0 S s_{NS} + 0.4 S s_{UD} + B L$
9		上向き	$G + E + P s + 0.4 S s_{WE} - 1.0 S s_{UD} + B L$
10		下向き	$G + E + P s + 0.4 S s_{WE} + 1.0 S s_{UD} + B L$
11		上向き	G + E + P s + 0.4 S s EW - 1.0 S s UD + B L
12	0.4 · 1.0	下向き	$G + E + P s + 0.4 S s_{EW} + 1.0 S s_{UD} + B L$
13	0.4.1.0	上向き	$G + E + P s + 0.4 S s_{SN} - 1.0 S s_{UD} + B L$
14		下向き	$G + E + P s + 0.4 S s_{SN} + 1.0 S s_{UD} + B L$
15		上向き	$G + E + P s + 0.4 S s_{NS} - 1.0 S s_{UD} + B L$
16		下向き	$G + E + P s + 0.4 S s_{NS} + 1.0 S s_{UD} + B L$
17		上向き	$G + E + P s + 1.0 S s_{WE} - 0.4 S s_{UD}$
18		下向き	$G + E + P s + 1.0 S s_{WE} + 0.4 S s_{UD}$
19		上向き	$G + E + P s + 1.0 S s_{EW} - 0.4 S s_{UD}$
20	$1 0 \cdot 0 4$	下向き	$G + E + P s + 1.0 S s _{EW} + 0.4 S s _{UD}$
21	1.0.0.1	上向き	$G + E + P s + 1.0 S s_{SN} - 0.4 S s_{UD}$
22		下向き	$G + E + P s + 1.0 S s_{SN} + 0.4 S s_{UD}$
23		上向き	$G + E + P s + 1.0 S s_{NS} - 0.4 S s_{UD}$
24		下向き	$G + E + P s + 1.0 S s_{NS} + 0.4 S s_{UD}$
25		上向き	$G + E + P s + 0.4 S s_{WE} - 1.0 S s_{UD}$
26		下向き	$G + E + P s + 0.4 S s_{WE} + 1.0 S s_{UD}$
27	0.4:1.0	上向き	$G + E + P s + 0.4 S s_{EW} - 1.0 S s_{UD}$
28		下向き	$G + E + P s + 0.4 S s_{EW} + 1.0 S s_{UD}$
29		上向き	$G + E + P s + 0.4 S s_{SN} - 1.0 S s_{UD}$
30		下向き	$G + E + P s + 0.4 S s_{SN} + 1.0 S s_{UD}$
31		上向き	$G + E + P s + 0.4 S s_{NS} - 1.0 S s_{UD}$
32		下向き	G + E + P s +0.4 S s _{N S} +1.0 S s _{U D}

表 4-12 荷重の組合せケース

- (3) 荷重の入力方法
 - a. 地震荷重

地震荷重は、上部構造物の慣性力を考慮する。杭に生じる反力が、基準地震動Ssに対する地震応答解析結果と等価になるように設定する。基礎スラブ内に作用する荷重は、Ss地震時の上部構造物による入力荷重と杭に発生する荷重の差をFEMモデルの各要素の大きさに応じて分配し、節点荷重として入力する。

b. 固定荷重,機器荷重,積雪荷重及び浮力

固定荷重は、3次元FEMモデルの各要素に材料の単位体積重量に基づく重量を 与える。また、積雪荷重、機器荷重及び浮力は、荷重の作用する箇所に分布荷 重又は各要素の大きさに応じて分配した節点荷重として入力する。

4.5.2 断面の評価方法

軸力,曲げモーメント及び面内せん断力については,必要鉄筋量が設計配筋量 を超えないことを確認する。必要鉄筋量(A)は、「RC-N 規準」に基づき,各要 素の NS 方向と EW 方向の軸力と曲げモーメントに対して必要となる片側鉄筋量 (At)を柱の許容応力度設計式を用いて算定し,これと面内せん断力に対して 必要となる全鉄筋量(As)より、下式によって算定する。なお、軸力及び曲げ モーメントに対する必要鉄筋量は、「平成12年建設省告示第2464号」に基づ き、鉄筋の引張強度を1.1倍として算定する。

 $A = A t + A s \neq 2 \cdots (4. 1)$

面外せん断力については、「RC-N 規準」に基づき、評価対象部位に生じる面外 せん断力が、次式を基に算定した許容面外せん断力を超えないことを確認する。

 $Q_A = b j \{ \alpha f_s + 0.5_w f_t (p_w - 0.002) \}$ (4. 2) $\Xi \subseteq \overline{C},$

- Q_A : 許容面外せん断力(N)
- b : 断面の幅(mm)
- j : 断面の応力中心距離で,断面の有効せいの 7/8 倍の値 (mm)
- f s : コンクリートの短期許容せん断応力度(N/mm²)
- α :許容せん断力の割増し係数

(2 を超える場合は 2, 1 未満の場合は 1 とする。また、引張軸力が
 2N/mm²を超える場合は1とする。)

- M :曲げモーメント(N・mm)
- Q : せん断力(N)
- d : 断面の有効せい(mm)

wft : : せん断補強筋の短期許容引張応力度(N/mm²)

pw: : せん断補強筋比で, 次式による。(0.002以上とする。*)

a w:1 組のせん断補強筋の断面積(mm²)

x : せん断補強筋の間隔(mm)

注記*:せん断補強筋がない領域については、第2項を0とする。

- 5. 地震応答解析による評価結果
- 5.1 耐震壁のせん断ひずみの評価結果

鉄筋コンクリート造耐震壁について、Ss地震時の最大せん断ひずみが許容限界 (2.0×10⁻³)を超えないことを確認する。

材料物性の不確かさを考慮した最大せん断ひずみは 0.103×10⁻³ (NS 方向, Ss-1, ケース3) であり,許容限界を超えないことを確認した。耐震壁の最大せん断ひずみ一覧を表 5-1 に示す。この表において,最大せん断ひずみについて,せん断スケルトン曲線上にプロットした図を図 5-1 に示す。

表 5-1 せん断スケルトン曲線上の最大せん断ひずみ

方向	最大せん断ひずみ (×10 ⁻³)	許容限界 (×10 ⁻³)
NS	0.103	2.0
EW	0.0993	2.0

5.2 杭の評価結果

杭について, S s 地震時の軸力(鉛直支持力及び引抜き抵抗力),曲げモーメント 及びせん断力が許容限界を超えないことを確認する。

Ss地震時に発生する最大杭応力に対する評価結果を表 5-2 に示す。

Ss地震時において、発生する応力値が許容限界を超えないことを確認した。

項目	S s 地震時	許容限界	検定値*	備考
鉛直支持力	0.71	10.0	0 519	ケース 3, Ss-2,
$(\times 10^3 \text{kN})$	9.71	19.0	0.512	杭番号 1901
引抜き抵抗力	0 07	12 0	0 692	ケース 3, Ss-2,
$(\times 10^{3} \text{kN})$	0.01	15.0	0.005	杭番号 601
曲げモーメント	1 9 1	1 4 4	0.010	ケース 3, Ss-2,
$(imes 10^4 \mathrm{kN} \cdot \mathrm{m})$	1.31	1.44	0.910	杭番号 601
せん断力	F 75	0.97	0 606	ケース 1, Ss-1(EW),
$(\times 10^{3} \text{kN})$	5.75	0.21	0.090	杭番号 1901

表 5-2 最大杭応力に対する評価結果

注記*:評価結果は材料物性の不確かさを考慮したものである。

杭番号(杭頭の要素番号)

6. 応力解析による評価結果

装置基礎の基礎スラブの配筋一覧を表 6-1 に、せん断補強筋の配筋領域図を図 6-1 に示す。

断面の評価結果を記載する要素を、以下のとおり選定する。

軸力,曲げモーメント及び面内せん断力に対する評価については,必要鉄筋量が最大 となる要素を選定し,面外せん断力に対する評価については,面外せん断力に対する短 期許容せん断力の割合が最小となる要素を選定する。選定した要素の位置を図6-2に, 評価結果を表 6-2に示す。

S s 地震時において, 軸力, 曲げモーメント及び面内せん断力に対する必要鉄筋量が 設計配筋量を超えないことを確認した。また, 面外せん断力が短期許容せん断力を超え ないことを確認した。

スラブ厚(m)	方向	位置	設計配筋	
2.5	NC	上ば筋	2-D38@200	
	NS	下ば筋	2-D38@200	
	EW	上ば筋	2-D38@200	
		下ば筋	2-D38@200	

表 6-1 基礎スラブの配筋一覧

図 6-1 基礎スラブの配筋領域図(せん断補強筋)(単位:m)

表 6-2 最大值一覧

項目	方向	評価項目	要素 番号	荷重 ケース	解析 結果	許容限界	備考
軸力 + 曲げ	NS	必要鉄筋量	1319	24	0. 479	1.00	_
モーメント + 面内 せん断力	EW	必要鉄筋量	3121	18	0.511	1.00	_
面外 せん断力	NS	面外せん断力 (kN/m)	1604	24	4120	5630	せん断* ¹ 補強筋
	EW	面外せん断力 (kN/m)	1408	18	3320	4190	コンク*2 リート

注記*1:検討対象要素がせん断補強筋がある領域にあることを示す。

*2:検討対象要素がせん断補強筋がない領域にあることを示す。