ページ	変更前							ページ	変更後				変更内容	
$\square - A$								(□)-A-92						
-88			(b) 底部	垂直落下			_		(ロ)-第A.24表(b)	底部 0.3m 垂直	落下時の燃料被	覆管の強度評価	結果	(A) = 0
		燃料集合体の種類	8×8型	RJ型	BJ型	STEP I 型			燃料集合体の種類	8×8型	RJ 型	BJ 型	STEP Ⅱ型	(4) (2)
		燃料被覆管の最下端に							燃料被覆管の最下端に					
		- わける里里・W(Kg))) (Kg) (kg) (kg) (kg) (kg) (kg) (kg) (kg) (k							おける重量:W(kg)					
		手加定及: GV(m/s) 	12.5	12.3	12.3	19.3	1		衝擊加速度: G _v (m/s ²)					
			12.0	12.0	12.0	12.5	1		燃料被覆管外径:d。(mm)	12.5	12.3	12.3	12.3	
		成長・Pa(WPa)	7.3	7.3	7.3	7.3	4		燃料被覆管内径:d _i (mm)					
		「小江・I ((mia)」 広力時な:S (MPa)	25	28	07	00	1		内圧:P ₀ (MPa)	7.3	7.3	7.3	7.3	
			568	568	568	568	-		応力強さ:S(MPa) 路伏広力・g (MPa)	568	80	97	568	
		全裕率MS	5.68	5.60	4,85	4.73	-			5.68	5.60	4.85	4.73	
		1114 F 1110	0.00	0.00	* ジルコニ・	トレウ張を除く				0.00	0.00	() () () () () () () () () () () () () (「「市正な除く	"
						2011100001001						住) シルユニリ	「ム内康を际く	
$\square - A$	a. 解析	モデル						(□)-A-93	a. 解析モデル					
-89	Δ 5	13と同様に 主に三	次元右限更	表を田いた	(口)-笛 Δ	8 図に示す。	三次元 1/2		(ワ) 音 4 5 1 3 と同様に	主に三次元の	右限亜表を田)	いた(ロ)-笛 Δ	8回に示す三次	(4) - 2
	11.0.		八九日似女	示で/11~7~	(=) ₃₅	0 210/11/					日候女示で用い			(1) (2)
	解析モ	デルを用いる。							元 1/2 解析モデルを用いる。					
$\square - A$	① 荷重条	5件						(□)-A-93	①荷重条件					
-89	水平	落下時に作用する荷重に	は次のとおり	りである。					0.3m 自由落下試験のうち	水平落下(以下	、「0.3m 水平落	下」という。)	時に作用する荷	(4)-2
									重は次のとおりである。					
□ – A	の 倍現タ	公化						(□)-A-93	⑦谙恩冬佐					
-8.9	@ 959FA													() 0
	上・	ト部の緩衝体が取付く面	1 (反力を)	さける面) 0	り上・トそね	れぞれ 1 箇周	hの洛卜方		上・ト部の緩衝体が取りた	すけられる 面(反力を受ける	面)の上・トそ	れぞれ1箇所の	(4) - (2)
	向の変	位を拘束した。また、0	$^{\circ}$ -180° \overline{p}	面の対称面に	こおいて、氵	対称面直交力	ち向の変位		落下方向の変位を拘束した。	また、0°-18	30°面の対称百	面において、対	称面直交方向の	
	を拘束	した。							変位を拘束した。					
	C 1 1/1													
1														
	水平落	下時に作用する荷重条件	牛及び境界纟	条件を <u>(ロ)</u> -	第A.21 図	に示す。			0.3m 水平落下時に作用す	る荷重条件及	び境界条件を	(ロ)-第 A. 21 🛛	<u>図</u> に示す。	//

ページ	変更前	ページ	変更後	変更内容
$\square - A$	c. 解析結果	(□)-A-95	c. 解析結果	
-91	水平落下時の主要な位置((ロ)-第A.20図参照)に対する一次応力強さの評価結果		0.3m 水平落下時の主要な位置((ロ)-第 A.20 図参照)に対する一次応力強さの評価	(4)-2
	を <u>(ロ)-第A.25表</u> に、(一次+二次)応力強さの評価結果を <u>(ロ)-第A.26表</u> に示す。		結果を <u>(ロ)-第 A.25 表</u> に、(一次+二次)応力強さの評価結果を <u>(ロ)-第 A.26 表</u> に示	
	表に示すように、すべての評価位置においてA.1.2に示す解析基準値を満足する。		す。表に示すように、全ての評価位置において(ロ)章A.1.2に示す解析基準値を満足	11
			する。	
$\Box - A$	(日)_第人 95 美 0.9。 北亚茨下時の空襲大付)- 計才を二次広中の巡径(1/9)	(□)-A-96		
-92			<u>(ロ)-第 8-23 夜 0-34 水平落下時の各幕本体に対する一次応力の評価(1/2)</u> 成力気類 ^{注2)} 応力強さ _{マーム} 解析 余裕率	1
	部位 断面 又は応力 表面 又は応力 温度 基準値 ^{先 伯率} No. ^{注1)} の種類 (MFA) (MPA) ^{注3} MS		部位 断面 又は応力 表面 又は応力 温度 基準値 MS (℃) (MPa) ^{注③} (一)	(4)-2)
$\square - A$		(□)-A-97		
-93	(ロ)-第A.25表 0.3m 水平落下時の容器本体に対する一次応力の評価(2/2)		(ロ)-第 A.25 表 0.3m 水平落下時の容器本体に対する一次応力の評価(2/2)	1
				(4)-(2)
	1973 の種類 (MPa) (UPa) 注3) 1975		10. の種類 (WPa) (WPa) ^{注3)} (-)	(1) @
□ – A		(□)-A-98		
-94	<u>(ロ)-第A-26表 0.3m 水平落下時の容器本体の(一次+二次)応力の評価(1/2)</u>		<u>(ロ)-第 A.26 表 0.3m 水平落下時の容器本体の(一次+二次)応力の評価(1/2)</u>	1
				(4)-②
	の種類 (MPa) (MPa) 注2 いし		の種類 (MPa) (MPa) ^{注2)} (-)	
$\Box - A$		(□)-A-99		
-95	(ロ)-第A.26表 0.3m 水平落下時の容器本体の(一次+二次)応力の評価(2/2)		(ロ)-第 A.26表 0.3m 水平落下時の容器本体の(一次+二次)応力の評価(2/2)	
	部位 断面 応分が残 にのか 後 応分 後 温度 時代 余裕率		部位 断面 ^{100,0} 00 表面 又は応力 温度 基準値 <u>MS</u>	(4)-②
			の種類 (MPa) (♥)(MPa))注約 (-)	
$\Box - A$	注 2) σ ₁ : 平均引張応力、σ ₁ + σ _b : 平均引張応力+曲げ応力	(□)-A-99	注 2) σ _m : 平均引張応力、σ _b : 曲げ応力	(4)-2
-95		(Ħ) A 101		
-97		(L)-A-101		
	バンカットプレート 曲げ応力 せん断応力 応力強さ 基準値 余裕率 評価位置 の板厚 曲げ応力 (加入) ・			
	$:t(mn) : \sigma_b(MPa) : \tau (MPa) : S (MPa) (MPa) (-)$		$:t(mm) : \sigma_b(MPa) : \tau(MPa) :S(MPa) (MPa) (-) $	(4)-(2)
		(ı⊐)=A=103		
-99		(H) A 103		
	水平落下時の 軸方向長さ ^{バンカット7℃レート} 圧縮応力 基準値 余裕率 評価位置 衝撃加速度 軸方向長さ の板厚 圧縮応力 S -		水平落下時の 軸方向長さ ^{バヌカットプレート} 圧縮応力 基準値 余裕率 評価位置 衝撃加速度 軸方向長さ の板厚 圧縮応力 : K	(4)-(2)
	$\begin{vmatrix} \mathbf{M} \cdot \mathbf{M} \cdot \mathbf{M} \\ \mathbf{M} $		$: G_{\text{H}}(\text{m/s}^2) : L_{\text{A}}(\text{mm}) : t(\text{mm}) : \sigma_{\text{C}}(\text{MPa}) S_{\text{m}}(\text{MPa}) (-) $	
		(IT)=A=104		
-100	0. 円圧による応力 カビア にため先じてタナウボカは 1 (2) トロドズキス	(⊨) ⁻ A ⁻ 104	D. 内圧による応力 由圧 D. に と D. 任 ド スタナウ たわけ (ロ) キリ こ D. の 1 (0) と 同じ マナス	
177 A	○四上でおより生じる谷方向応力は、1.(3)と何じである。 ○四上でおよう四、一記(な)を休用を(い) 焼き (なま)ここと 時間は開始してたいます。	(17), A 105	四庄 P ₀ により生じる谷方回応刀は、(口) 早 A. 5. 3. 2 の 1. (3) と同じである。	(4)-(2)
-100	以上の諸式を用いて計算した結果を <u>(ロ)-第A.29表</u> に示す。 燃料被覆管に発生する応	(µ)-A-105	燃料 彼復官に生しる 応力の計算条件と計算結果を <u>(ロ)-第A.29表</u> に示す。表に示すと	(4)-(2)
	刀は基準値以下である。		おり、燃料做復官は解析基準値である燃料做復官材料(シルカロイー2)の 260℃における	
			降伏応力を満足している。	1

ページ		変	医更前				ページ		婆	ご更後			変更内容
$\Box - A$							(□)-A-105						(4)-2
-100	<u>(口)-第A.29</u>	表 水平落下時	の燃料被覆管の	<u>)強度評価結果</u>		-		<u>(ロ)-第 A.29表</u>	0.3m 水平落下	時の燃料被覆り	宮の強度評価結り	<u>R</u>	
	燃料集合体の種類	8×8型	RJ型	BJ型	STEP I 型	4		燃料集合体の種類	8×8型	RJ 型	BJ型	STEP I 型	
	ペレット単位長さ当たりの 重量・ma(bra(ma))							ペレット単位長さ当たりの 重量・m:(ha(ma)					
	<u> 単重・wf(kg/mm)</u> 燃料被覆管単位長さ当たりの							<u> 重重・wf(kg/mm)</u>					
	重量: w _c (kg/mm)							重量:w _o (kg/mm)					
	衝撃加速度:G _H (m/s ²)							衝擊加速度:G _H (m/s ²)					
	支持スパン:L(mm)									1	1		
	燃料被覆管外径:d。(mm)	12.5	12.3	12.3	12.3			燃料被復管外径:d _o (mm) 燃料被覆管内区:d _o (mm)	12.5	12.3	12.3	12.3	
	燃料被覆管内径:di(mm)							が高本子1枚1夏目PJ1至・U;(UUU) 内臣:Po(MPa)	7.3	7.3	7.3	7.3	
	内庄:Po(MPa)	7.3	7.3	7.3	7.3			応力強さ:S(MPa)	93	91	102	105	
	応力強さ:S(MPa)	93	91	102	105			降伏応力:σ _y (MPa)	568	568	568	568	
	降伏応力:σy(MPa)	568	568	568	568			余裕率 MS(-)	5.10	5.24	4.56	4.40	,,
	余裕率MS	5.10	5.24	4.56	4.40						注)ジルコニュ	ウム内張を除く	
				* ジルコニ !	ウム内張を除く								
□ – A	0						$(\Box z) = A = 106 - 2$	コーナー遊下					
-101	3. ユー) 裕口 (ロ)_笠 A 19 主にテオトる	17 7-+-	一変下時の衝	酸加速度は	垂直波下及	イドット JT	() / II 100 J.	 (p)-笛A 10 主にテナトる 	17 7-+-	滅下時の衝	設加速度/ナ ミ	毛古波下及バル亚	
	(ロ) 第A.10 衣に小りよう 茲下時に比べて小さく 垂直1	に、ユーナー	冷下呼の倒	軍加速反は、	三田谷下及 ・ かい、 ただ			(ロ)-第A.10 衣に小りよう 落下時に比ぶて小さく 垂直		谷下町の囲	≰加速度は、当 &仲が嵌1 ノ∮	世国裕千及い小平 ちい、ただ」 西	
				木叶が取しい	、ない。 /こ/こ	し、頃		格下時に比べて小さく、 垂直		- htt (L) 上 、 し 、 し 、 し 、 し 、			(1) @
	部コーナー洛下時は、頭部垂直	目洛下時と頃	い蓋部に作	用する稜餌4	い圧復刀か	盍玍囬		部コーナー洛下時は、頭部し).3m <u></u> 垂圓洛 [、時と遅い蓋詞	部に作用する権	麦餌体の 上 復 刀 か	(4)-(2)
	に作用せず内部の収納物等に。	よる慣性力カ	「蓋を介して	蓋ホルトに作	F用する。			蓋全面に作用せず内部の収納	羽物等による慣	[性力が蓋を 2	介して蓋ボル	トに作用する。	
$\square - A$	A.5.4 積み重ね試験						$(\Box) - A - 106$ A.	5.4 積み重ね試験					
101	本項の条件として、輸送物の	の 5 倍に相論	当する荷重ま	または鉛直投	影面積に 1.3	3×10^{-2}		本項の条件として、核燃料	·輸送物の重量	tの 5 倍に相論	当する荷重又に	は鉛直投影面積に	(4)-2
	MPa のいずれか厳しい方を負荷	苛することに	なっている	。本輸送物0)場合、輸送	物の構		1.3×10 ⁻² MPa を乗じて得た値	Eに相当する 荷	^{街重} のうち、I	いずれか厳しい	ハ方を 24 時間負	11
	造解析上での総重量 1.326×1	0 ⁵ kgの5倍	に相当する	6.630 $\times 10^{5}$	kg (6.51×1	0 ⁶ N)		荷することになっている。本	核燃料輸送物	の場合、核爆	然料 <mark>輸送物の</mark> 権	構造解析上での総	11
	の荷重の方が、本輸送容器の銀	鉛直投影面積	間に 1.3×10 ⁻	⁻² MPa を乗し	じて得た値に	相当す		重量 1.326×10 ⁵ kg の 5 倍に木	目当する 6.63	0×10^{5} kg (6. 5	i×10 ⁶ N)の荷	重の方が、本輸送	
	る荷重より大きいので、6.630	$0 imes 10^5$ kg (6	5.51×10^{6} N)の荷重が輔	輸送容器の軸	に垂直		容器の鉛直投影面積に 1.3×	10 ⁻² MPa を乗	じて得た値に	相当する荷重	(軸に垂直な方向	(4)-①
	な方向にかかる場合及び軸方「	向にかかる場	帚合について	行う。				の場合 : 2.50×10 ⁵ N、縦方向の	の場合:1.27	×10 ⁵ N)よりナ	てきいので、6.	630×10^5 kg (6. 51	
								×10 ⁶ N)の荷重が 連続して 輸送	送容器の軸に	垂直な方向に	こかかる場合及	しび軸方向にかか	(4)-2
								る場合について <mark>評価を</mark> 行う。					11
$\Box - A$	1. 軸に垂直な方向の荷重の場合	合					(□)-A-106 1.	軸に垂直な方向の荷重の場合	合				
-101	本輸送物では、容器本体を	円筒構造と	みなして、	最も厳しい彡	条件として <u>(</u>	ロ)-第		本核燃料輸送物では、容器	本体を円筒構	造とみなして	こ、最も厳しい	条件として <u>(ロ)-</u>	(4)-2
	<u>A.24 図</u> に示すようにし、長さ	ら L、外径d。	。(胴外径) 、	内径di(胴	内径) の円筒	笥 (胴)		<u>第 A. 24 図</u> に示すようにし、長	長さL、外径d	。(胴外径)、P	内径 d _i (胴内径)の円筒(胴)を横	
	を横置きにして両端を単純支持	時し、鉛直力	F向に 6.51×	×10 ⁶ Nを等分	命荷重とし	て負荷		置きにして両端を単純支持し	、鉛直方向に	6.51 \times 10 ⁶ N G	の等分布荷重だ	ジ負荷する場合に	11
	する場合について解析する。					-		ついて解析する。		-	_		
$\Box - A$	胴部をこの円筒とみなして曲	げ応力を計算	算した場合の	計算条件と	計算結果を <u>(</u>	ロ) <i>-</i> 第	(□)-A-107	胴部をこの円筒とみなして曲	由げ応力を計算	章した場合の	計算条件と計	算結果を <u>(ロ)-第</u>	
-102	<u>A.30 表</u> に示す。本輸送物は、車	曲に垂直な方	向の荷重に	より圧潰する	ことはない。		<u>A.</u>	<u>30 表</u> に示す。本 <mark>核燃料</mark> 輸送物	かは、軸に垂ī	直な方向の荷	重により圧潰	することはない。	(4)-2

ページ	変更前	ページ	変更後	変更内容
$\Box - A$		(□)-A-107	(ロ)-第人30表 容器本体の軸に垂直な方向の積み重ね広力計算条件及び計算結果	
-102	(日)-第A-3.0支 容器本体の軸に重視な方向の積み重ね込力計算会注反び計算結果 輸送物総重量 容器本体 胴外径 胴内径 成力 基準値 余裕率 評価位置 の 5 倍の荷重 の 全長 : d _i (nan) : d _i (nan) : σ_b (MPa) (MPa) (MPa)		野価位置 様 蒸発 輸送物 総 並重の56 の育重 : 単(N) : U(nn) : U(nn) : は の(nnn) に カ(注 (nnn) に カ(注 (nnn) に カ(注 (nnn) い じ た カ じ た カ じ ち	(4)-②
□ - A - 1 0 3	本輸送物は、軸方向の荷重により圧潰することはない。	(□)-A-109	本核燃料輸送物は、軸方向の荷重により圧潰することはない。	(4)-2
$\begin{array}{c} \square - A \\ -1 & 0 & 3 \end{array}$	<u>(ロ)-第A.31表 容器本体の軸方向の積み重ね応力計算条件及び計算結果</u> 輸送物総重量	(□)-A-109	(ロ) -第 A.31 表 容器本体の軸方向の積み重ね応力計算条件及び計算結果 酸酸維輸送物 解除 胸内径 圧幅応力 条裕率 評価位置 の荷重 : d₀(nan) : d₁(nan) : σ₅(WPa) : S₅(WPa) (-)	(4)-②
-	(表記なし)	(¤)-A-109	以上より、容器本体の構造健全性が維持されるので、密封部の健全性が維持される。 なお、実際に核燃料輸送物を積み重ねた場合には緩衝体部分が積み重なり、外筒や蓋部 及び底部中性子遮蔽材カバーには荷重が作用しないため、遮蔽解析に影響を及ぼすよう な破損は生じない。また、荷重条件が一般の試験条件に包絡されることから、緩衝体変 形量についても、(ロ)章 D の遮蔽解析で考慮している 0.3m 自由落下試験で想定される 変形量に包絡される。	(4)-①
$\begin{array}{c} \Box - A \\ -1 & 0 & 4 \end{array}$	A.5.5 貫 通 本項では、重量6kg、直径3.2 cmの軟鋼棒が1mの高さから本輸送物外表面で最も 板厚の薄い緩衝体カバープレート(板厚┃mm)へ落下するとした場合に、緩衝体カバ ープレートが破断せず軟鋼棒は内部に貫通しないことを示す。	(□)-A-110	A.5.5 貫通 本項では、重量 6kg、直径 3.2cmの軟鋼棒が 1mの高さから本核燃料輸送物外表面で 最も板厚の薄い緩衝体カバープレート(板厚 mm)へ落下するとした場合に、緩衝体カ バープレートが破断せず軟鋼棒は内部に貫通しないことを示す。	(4)-②
$\begin{array}{c} \square - \mathbf{A} \\ -1 \ 0 \ 4 \end{array}$	その他の箇所のせん断に要するエネルギーは、緩衝体カバープレートより大きいた め、せん断破損はおこらず、熱解析及び遮蔽解析への影響は無視できる。	(□)-A-110	その他の箇所のせん断に要するエネルギーは、緩衝体カバープレートより大きいた め、せん断破損は起こらず、密封部の健全性が維持され、また、熱解析及び遮蔽解析へ の影響は無視できる。	(4)-②
$\begin{array}{c} \Box - A \\ -1 \ 0 \ 5 \end{array}$	A.5.6 角又は縁落下 本輸送物は、鋼製の円筒形で重量は 132.6 トンであり、角又は縁落下は該当しない。	(¤)-A-111	 A. 5.6 角又は緑落下 本核燃料輪送物は、鋼製の円筒形で重量は 132.6 トンであり、角又は緑落下は該当しない。 	(4)-②
¤-А -105	1. 解析結果の要約 一般の試験条件下における輸送物に対する評価結果の要約を(ロ)-第A.33 表 に示 す。表に示すように、自由落下試験により緩衝体に永久変形が生じるが、各試験条件 下において輸送物各部はA.1.2に定めた基準を満足し、構造上の健全性が損なわれる ことはない。	(¤)-A-111	 解析結果の要約 一般の試験条件下における核燃料輸送物に対する評価結果の要約を(ロ)-第A.33表 に示す。表に示すように、0.3m自由落下試験及び積み重ね試験により緩衝体に永久変形が生じるが、各試験条件下において核燃料輸送物各部は(ロ)章A.1.2に定めた基準を満足し、構造上の健全性が損なわれることはない。 	(4)-② (以下同様)
$\begin{array}{c} \square - A \\ -1 \ 0 \ 6 \end{array}$	(ロ)-第A.33表 一般の試験条件下に対する構造脳折結果の要約(1/4) 項目 解析基準 解析基準値 解析結果等 余裕率等 (MPa) (MPa) (MPa) (MPa)	(□)-A-112	(ロ)-第 A.33表 一般の試験条件下に対する構造解析結果の要約(1/4) 項目 解析基準 解析基準値 (MPa) 解析結果等 MS (MPa) 余裕率等 MS (-)	(4)-②

ページ	変更前	Ī	ページ	変更後 変更	更内容
$\Box - A$			(□)-A-113		
-107	<u>(ロ)-第A-33 表 一般の試験条件下に対す</u>	する構造解析結果の要約(2/4)		<u>(ロ)-第 A.33 表 一般の試験条件下に対する構造解析結果の要約(2/4)</u> (4))-2
	項目解析基準	解析基準値解析結果等余裕率等(MPa)(MPa)(MS)		項 目 解析基準 解析基準值 解析結果等 ^{ポイロ学} 子 (MPa) (MPa) KS (以下	下同様)
	自由落下試験			0.3m 自由落下試験	
	1.垂直落下 (1) 容器本体(頭部垂直落下)			1.垂直落下 (1) 容器本体(頭部 D.3m 垂直落下)	
			() · · · · · ·		
$\square - A$			(□)-A-114		
-108		する構造解析結果の要約(3/4)		(ロ)-第 A.33表 一般の試験条件下に対する構造解析結果の要約(3/4)	
	項目解析基準	解析基準値解析結果等余裕率等(MPa)(MPa)(MS)		項 目 解析基準 解析基準值 解析結果等 ^{余裕率等} (4) (MPa) (MPa) (1))-2
	(2) 容器本体(底部垂直落下)			(2) 容器本体(底部 0.3m 垂直落下)	"
			1		

ページ		変更前				ページ		変更後	XZ.			変更内容
$\Box - A$						(□)-A-115						
-109	<u>(ロ)-第A.33表 一般の試験到</u>	<u> 条件下に対す</u> 、	る構造解析網	吉果の要約(4/	(4)		<u>(ロ)-第 A.33 表 一般の試験</u>	<u>験条件下に対す</u>	*る構造解析約 	課の要約(4/	<u>4)</u>	
	項目	解析基準	解析基準値 (MPa)	解析結果等 (MPa)	余裕率等 (MS)		項目	解析基準	解析基準値 (MPa)	解析結果等 (MPa)	奈伯举寺 ₩S (-)	(4)-②
	(1) 容器本体 一次応力						2.水平落下 (1) 容器本体					
	一次蓋 (P ₀) 二次蓋 (P ₀) 蓋部中性子遮蔽材カバー(圧縮) 三次蓋	1.55m 1.55m f. 1.55m	183 183 115 205	23 24 36 81	6.95 6.62 2.19 1.53		 一次応力 一次蓋 (P_L) 二次蓋 (P_L) 蓋部中性子遮蔽材カバー(圧縮) 	1.5S _n 1.5S _n f _c	183 183 115	23 24 36	6.95 6.62 2.19	
	胴 (P _i) 底板 (P _i) 底部中性子遮蔽材力バー(圧縮) 外筒	1.55m 1.55m f. fb	183 183 111 180	72 24 76 119	1.54 6.62 0.46 0.51		二八霊 (r_L+r_b) 胴 (P_L) 底板 (P_L) 底部中性子遮蔽材カバー(圧縮)	1.55 _n 1.55 _n 1.55 _n f _c	205 183 183 111	81 72 24 76	1.53 1.54 6.62 0.46	
	二次蓋シール部 (一次+二次)応力 一次業	S, 35-	183 366	79 86	1.31		アド周 二次蓋シール部 (P _L +P _b) (一次+二次)応力	S _y	183	79	1.31	
	- :次蓋 蓋部中性子 遊蔽材カバー(圧縮) 三次蓋 間	35m 3ft 35m	366 465 411 366	70 34 85 76	4.22 12.6 3.83 3.81		ー次蓋 二次蓋 蓋部中性子遮蔽材カバー(圧縮) 三次蓋	35 _n 35 _n 3f _t 35 _n	366 366 465 411	86 70 34 85	3.25 4.22 12.6 3.83	
	加 底板 底部中性子遮蔽材カバー(圧縮) 外筒 (曲)ゲ) 二次巻シール部	35m 35m 3ft 3fb 5-	366 408 540 183	59 86 154 78	5.20 3.74 2.50 1.34		胴 底板 底部中性子遮蔽材カバー(圧縮) 外筒 (曲げ)	35m 35m 3ft 3ft	366 366 408 540	76 59 86 154	3.81 5.20 3.74 2.50	
	ー次蓋ボルト (σ_{a}) ー次蓋ボルト ($\sigma_{a} + \sigma_{b}$) 二次蓋ボルト ($\sigma_{a} + \sigma_{b}$) 二次蓋ボルト ($\sigma_{a} + \sigma_{b}$)	25 m 35 m 25 m 35 m	640 960 640 960	253 486 271 545	1.52 0.97 1.36 0.76		$-(\overline{\Lambda} 霊 \overline{\nabla} - \overline{D} h a p)$ 一次蓋ボルト (σ_{n}) 一次蓋ボルト ($\sigma_{n} + \sigma_{b}$) 二次蓋ボルト (σ_{n}) 二次蓋ボルト (σ_{n})	57 25m 35m 25m 35	640 960 640 960	253 486 271 545	1.34 1.52 0.97 1.36 0.76	
	 三次蓋ボルト (σ_a) 三次蓋ボルト (σ_a+σ_b) ロ開き変形量 (3) バスケット 	25m 35m —	640 960	260 641 0.2mm	1.46 0.49 基準に合致		 三次蓋ボルト (σ_a) 三次蓋ボルト (σ_a+ σ_b) □開き変形量 (3) バスケット 	25 _n 35 _n -	640 960 m	260 641 0.2mm	1.46 0.49 基準に合致	
	バスケットプレート(P _n +P _b) (4) 燃料被復管	1.5Sm <i>σ</i> ₂ (新戦力の速度)	180 568 が垂直及zys	91 105 业亚莎玉)~W	0.97 4.40		バスケットプレート(P _n +P _b) (4) 燃料被覆管	1.5S _n σ _y	180 568	91 105	0.97 4.40	
		間 一 で、 垂直落 い。	下及び水平	落下の結果	より厳しくな			間単加速 で、垂直 い。	夏が垂直及び 落下及び水平	落下の結果	より厳しくな	
	植かまれるみるが 軸に垂直な方向 軸方向	S, S,	183 183	8 5	21.8 35.6		植み里心試験 軸に垂直な方向 軸方向	S ₇ S ₇	183 183	8 5	21.8 35.6	11
	<u>貝進</u> 緩衝体	せん断 环時*-	1.97×10⁵ N∗mm	5.89×104 N+mm	基準に合致		<u>DKE 倖貝迪訊表表</u> 緩衝体	 せん断 エネルギー	1.97×105 N∗mm	5.89×10⁴ N≁mm	基準に合致	
□ – A	A 6 焼団の封殿冬供					(⊐)-A-116 ∧ 6 #	別の試験冬休					
-110	本節では、本輸送物が規則及び告	示に規定	された特	別の試験	条件下におり	いて、 本	節では、本核燃料輸送物が外運	搬 規則及て	[《] 外運搬告:	示に規定さ	いた特別の試験	検条 (4)−②
	A.1.2 に示す基準を満足することを 特別の試験条件は強度試験に引き~	示す。 つづいて執自	的試験が	行われると	・する。熱的	件	「において、 <mark>(ロ)章</mark> A.1.2に示す 時別の試験条件は強度試験に引き	基準を満足 続いて執f	² すること 5試験(火%	を示す。 ⁽ 試験)が行	テわれるとする.	(以下同様) 埶
	影響を及ぼす強度試験による変形は、	輸送物の熱	熱的性能	こ関係する	緩衝体の変	形であ 的詞	(炊災試験)に影響を及ぼす強	度試験に。	る変形は	、核燃料輔	前送物の熱的性能	臣に
	る。9m 落下試験と 1m 貫通試験の試験	領序の違い	いによっ	てこれらの	破損または	変形に関係	ミする緩衝体の変形である。9m 落	下試験と	1m 貫通試	験の試験順	順序の違いによっ	って
	有意な差は生じないので、これらに引	きつづく葬	熱的試験は	こおいては	1、 強度試験	の順序これ	ιらの破損又は変形に有意な差は —	生じない	ので、これ 	らに引き約	続く熱的試験()	く災
	の違いは輸送物に影響を与えない。					試賬	も)においては、強度試験の順序の)違いは <mark>核</mark>	燃料輸送物	に影響を	与えない。	

ページ	変更前	ページ変更後	変更内容
$\Box - A$	A.6.1 強度試験・落下試験 I (9m 落下時)	(ロ)-A-116 A.6.1 強度試験・落下試験 I (9m 落下時)	
-110	連続して <mark>起こる</mark> 特別の試験の第1番目は、輸送物が最大損傷を受けるよう、平らな	連続して行われる特別の試験の第1番目は、核燃料輸送物が最大損傷を受けるよう、	(4)-②
	降伏しない落下試験台上に 9m の高さから輸送物を落下させるものである。	平らな降伏しない落下試験台上に 9m の高さから核燃料輸送物を落下させるものであ	(以下同様)
	本項では、輸送物が 9m 落下した場合、その落下エネルギーが、容器本体端部に取付	る。	
	けられた緩衝体の変形によって吸収され、輸送物に加わる衝撃力が十分緩和されるこ	本項では、核燃料輸送物が 9m 落下した場合、その落下エネルギーが、容器本体端部	
	とを示し、それに対する輸送物の健全性を検討する。	に取り付けられた緩衝体の変形によって吸収され、核燃料輸送物に加わる衝撃力が十	
		分緩和されることを示し、それに対する核燃料輸送物の健全性を検討する。	
$\square - A$	 (1) 解析する落下姿勢 	(ロ)-A-116 (1) 解析する落下姿勢	
-110	輸送物が最大破損を受ける落下方向としては次の4種類を考える。	核燃料 輸送物が最大破損を受ける落下方向としては次の4種類を考える。	(4)-②
	① 垂直落下	①垂直落下	(以下同様)
	② 水平落下	②水平落下	
	③ コーナー落下(落下点が輸送物の重心を通る鉛直線上にある場合)	③コーナー落下(落下点が核燃料輸送物の重心を通る鉛直線上にある場合)	
	④ 傾斜落下	④傾斜落下	
	ここで、傾斜落下については、垂直落下、水平落下及びコーナー落下との比較によ	ここで、傾斜落下については、落下試験及び水平落下の結果に基づき評価する。	
	り評価する。	(2) 解析方法	
	(2) 解析方法	緩衝体の変形量と衝撃力の計算方法は、(ロ)章A.5.3.1に示す方法と同様に行う。	
	緩衝体の変形量と衝撃力の計算方法は、A.5.3.1に示す方法と同様に行う。		
$\square - A$		(II)-A-116	(4)-2
-110	(ロ)-第A.34表輸送物落下エネルギー計算条件及び計算結果	(ロ)-第 A.34 表 核燃料輸送物落下エネルギー計算条件及び計算結果	11
	項目 「輛送初載大車重 車刀加速度 落下高さ 輛送初の落下エネルキー :m (kg) :g (m/s ²) :H (mm) : E _k (N·mm)	項目 項目 よ (kg)	
$\square - A$	ここで、F:解析で求めた衝撃力(N)	(ロ)-A-117 ここで、	
$-1\ 1\ 1$	m:輸送物重量 (kg)	F:解析で求めた衝撃力(N)	
		m:核燃料輸送物最大総重量(kg)	(4)-②
$\square - A$	(ロ)-第A.35 表に示す通り、9m 落下試験時において輸送物の緩衝体に圧潰変形が生じ	(ロ)-A-117 (ロ)-第 A. 35 表に示すとおり、9m 落下試験時において核燃料輸送物の緩衝体に圧潰変形	(4)-②
-111	る。	が生じる。	
$\square - A$	(1) 解析モデル	(ロ)-A-118 (1) 解析モデル	
-112	A.5.3.2 と同様に、主に三次元有限要素を用いた三次元 1/2 解析モデルを用いる。	(ロ)章 A. 5. 3. 2 と同様に、主に三次元有限要素を用いた三次元 1/2 解析モデルを用	(4)-2
		้างจิ.	
$\Box - A$	a. 荷重条件	(ロ)-A-118 a. 荷重条件	
-112	頭部垂直落下時に作用する荷重は次のとおりである。	頭部 9m 垂直落下時に作用する荷重は次のとおりである。	(4)-2
$\square - A$	底部垂直落下時に作用する荷重は次のとおりである。	(ロ)-A-118 底部 9m 垂直落下時に作用する荷重は次のとおりである。	(4)-②
- 1 1 2			1

ページ	変更前	ページ	変更後	変更内容
$\square - A$	a. 容器本体	(□)-A-121	a. 容器本体	
-115	主な位置(<u>(ロ)-第A.29</u> 図参照)に対する頭部垂直落下時の一次応力強さ及び蓋ボ		主な位置(<u>(ロ)-第 A.29 図</u> 参照)に対する頭部 9m 垂直落下時の一次応力強さ及び蓋	(4)-②
	ルトの評価結果を <u>(ロ)-第A.36表</u> に、また、底部垂直落下時の一次応力強さ及び蓋ボ		ボルトの評価結果を <u>(ロ)-第 A.36 表</u> に、また、底部 9m 垂直落下時の一次応力強さ及	(以下同様)
	ルトの評価結果を <u>(ロ)-第A.37 表</u> に示す。		び蓋ボルトの評価結果を <u>(ロ)-第 A. 37 表</u> に示す。	
	それぞれの表に示すように、すべての評価位置においてA.1.2に示す解析基準値を		それぞれの表に示すように、全ての評価位置において <mark>(ロ)章</mark> A. 1. 2 に示す解析基準	
	満足する。		値を満足する。	
$\begin{array}{c} \Box - A \\ -1 \ 1 \ 7 \end{array}$	<u>(ロ)-第A.36表 頭部 9m 垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価</u> <u>(1/2)</u>	(□)-A-123	(ロ)-第 A. 36 表 頭部 9m 垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価 (1/2)	
	部位 断面 No.注1) 応力分類注2 又は応力 の種類 応力強さ 天は応力 (MPa) 脳析 温度 (°C) 解析 基準値 (WPa) 余裕率 MS		部位 断面 No. & 1) 応力分類 ^{注 2)} 又は応力 の種類 表面 応力強さ 又は応力 (MPa) 温度 解析 基準値 (MPa) 余裕率 部位 No. & 1) の種類 次は応力 (MPa) (MPa) (MPa) (MPa) MS	(4)-②
$\Box - A$		(□)-A-124		
-118	<u>(ロ)-第A.36表 頭部 9m 垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価</u> (9/9)		(ロ)-第A.36表 頭部 9m 垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価	
	部位 断面 No, ^{i±1)} 応力分類 ^{i±2)} 又は応力 の種類 応力強さ 天は応力 (MPa) 脳桁 星準値 (MPa) ^{i±3)} 解析 余裕率 MS		部位 断面 No. ^{\pm1} 応力分類 ^{\pm2} 応力強さ 又は応力 温度 又は応力 解析 (P) 余裕率 部位 の種類 (MPa) (C) (MPa) (MPa) (MPa)	(4)-②
$\square - A$	注 2) P ₁ : 一次局部膜応力強さ、 P _b : 一次曲げ応力強さ、 Q : 二次応力強さ、	(□)-A-124	注 2)PL:一次局部膜応力強さ、Pb:一次曲げ応力強さ、Q:二次応力強さ、	
-118	σ »: 平均引張応力、σ »+ σ »: 平均引張応力+曲げ応力		σ _□ : 平均引張応力、σ _b : 曲げ応力	(4)-②
$\begin{array}{c} \Box - A \\ -1 \ 1 \ 9 \end{array}$	(ロ)-第A.37表 底部 9m 垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価 (1/9)	(□)-A-125	(ロ)-第 A. 37 表 底部 9m 垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価	
	部位 断面 No. ^{1±1}) 第位 第位 第位 第一 第二		部位 断面 No. $^{(\pm 1)}$ 応力分類 ^(± 2) 又は応力 の種類 応力強さ 又は応力 (MPa) 温度 (°C) 解析 基準値 (MBa) 余裕率 MS	(4)-2
$\Box - A$		(□)-A-126		
-120	(ロ)-第A-37表 - 底部 9m 垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価 (9/9)		(ロ)-第A.37表 底部9m 垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価 (ロ))	
	部位 断面 No. ^{注1} 応力分類 ^{注2} 又は応力 の種類 応力強さ 又は応力 (MPa) 遮度 (℃) 解析 基準値 (MPa) ^{注3)} 介裕率 MS		部位 断而 No. ^{#1} 応力分類 ^(±) 又は応力 の種類 応力強さ 又は応力 (MPa) 温度 (C) 解析 基準値 (MPa) ^(±) 公社2 名総率 (C)	(4)-②
$\square - A$	注 2) PL: 一次局部膜応力強さ、 Pb: 一次曲げ応力強さ、 Q: 二次応力強さ、	(□)-A-126	注 2) PL: 一次局部膜応力強さ、Pb: 一次曲げ応力強さ、Q: 二次応力強さ、	
-120	σ _m :平均引張応力、σ _m +σ _b :平均引張応力+曲げ応力		σ _m : 平均引張応力、σ _b : 曲げ応力	(4)-②
□ – A	2. バスケット	(□)-A-127	2. バスケット	
-121	垂直落下時にバスケットに生じる応力は、A.5.3.2と同様に求める。		垂直落下時にバスケットに生じる応力は、(ロ)章A.5.3.2 と同様に求める。	(4)-2
$\begin{array}{c} \square - \mathbf{A} \\ -1 \ 2 \ 1 \end{array}$	(ロ)-第A.38表 バスケットプレートの応力計算条件及び計算結果 バスケット 垂直落下時の 基準値 評価位置 材料の密度 全長 衝撃加速度 ・ (Inc ³) ・ 「	(□)-A-127	(ロ)-第 A.38 表 バスケットプレートの応力計算条件及び計算結果 バスケット 垂直落下時の 基準値 余裕率 評価位置 材料の密度 全員 衝撃加速度 このc(MPa) ビ335,	(4)-②
	; ρ (kg/mm [*]) ; L (mm) ; G _v (m/s ⁴) (MPa)			

ページ	変更前	ページ	変更後	変更内容
$\square - A$	(1) 解析モデル	(ロ)-A-128	(1) 解析モデル	
-122	A.5.3.2 と同様に、主に三次元有限要素を用いた三次元 1/2 解析モデルを用いる。		(ロ)章A.5.3.2と同様に、主に三次元有限要素を用いた三次元 1/2 解析モデルを用	(4)-②
			いる。	
$\square - A$	a. 荷重条件	(□)-A-128	a. 荷重条件	
-122	水平落下時に作用する荷重は次のとおりである。		9m 水平落下時に作用する荷重は次のとおりである。	(4)-②
$\square - A$	・内部の収納物等(バスケット及び燃料集合体)の慣性力が胴内面に作用する。	(□)-A-128	・内部の収納物等(バスケット及び燃料集合体)の慣性力が胴内面に働く。	(4)-2
-122				
$\Box - A$	b. 境界条件	(□)-A-128	b. 境界条件	
-122	上・下部の緩衝体が <mark>取付く面</mark> (反力を受ける面)の上・下それぞれ1箇所の落下方		上・下部の緩衝体が取り付けられる面(反力を受ける面)の上・下それぞれ1箇所の	(4)-2
	向の変位を拘束した。		落下方向の変位を拘束した。	

ページ	変更前	ページ	変更後	変更内容
$\square - A$	a. 容器本体	(□)-A-130	a. 容器本体	
-124	水平落下時の主要な位置((ロ)-第A.29 図参照)に対する一次応力強さの評価結		9m 水平落下時の主要な位置((ロ)-第 A.29 図参照)に対する一次応力強さの評価結	(4)-2
	┃ 果を(ロ)−第A. 39 表に示す。表に示すように、すべての評価位置においてA. 1. 2 に		ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	"
			 に示す解析基準値を満足する。	
$\begin{array}{c} \square - A \\ -1 \ 2 \ 5 \end{array}$	(ロ)-第A.39表 9m 水平落下時の容器本体に対する一次応力及び蓋ボルトの評価(1/2) 部位 断面 No. ^{i±1)} 応力分類 ^{i±2)} 応力強さ 温度 (℃) 解析 基準値 (MPa) 余裕率	(ロ)-A-131	(ロ)-第A.39表9m水平落下時の容器本体に対する一次応力及び蓋ボルトの評価(1/2) 部位 断面 No. ^{達1)} 応力分類 ^{達2} 広力強さ 又は応力 の種類 温度 (°C) 解析 基準値 (MPa) ^{達3)} 余裕率	(4)-②
$\Box - A$		(□)-A-132	(ロ)-第120 志 0m 水亚英下時の容異大体に分する一次に力及び差ビルトの評価(2/2)	
-126	(日)-第A.39表 9m 水平客下時の容器本体に対する一次応力及び蓋ホルトの評価(2/2) 部位 断面 応力類 ² 表 応力強さ 温度 解析 余裕率 部位 10 又は応力 面 (MPa) (MPa) 第4 余裕率		$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	(4)-2
$\square - A$	注 2) PL: 一次局部膜応力強さ、Pb: 一次曲げ応力強さ、σm: 平均引張応力、	(□)-A-132	注 2)PL:一次局部膜応力強さ、Pb:一次曲げ応力強さ、σm:平均引張応力、	
-126	σ ₁ +σ _b : 平均引張応力+曲げ応力		σ _b :曲げ応力	(4)-2
$\Box - A$		(□)-A-133	(1) バスケットプレート(横板)	
-127	▲ 水平落下時にバスケットプレート(横板)に生じる応力は、A.5.3.2と同様に求め		水平落下時にバスケットプレート(横板)に生じる応力は、(ロ)章 A.5.3.2 と同様に	(4)-2
	る。		求める。	
$\square - A$		(□)-A-133		
-127	評価位置 パスタァトプレート 曲が応力 せん断応力 応力強さ 基準値 ごの板厚 :σ₀(MPa) <td:c< td=""> :S(MPa) :S(MPa) :S(MPa)</td:c<>		評価位置 バスクットブレート 曲げ応力 せん断応力 応力強さ 基準値 余裕率 評価位置 の板厚 : σъ(MPa) : τ (MPa) : S(MPa) : S_a IS : t (mm) : σъ(MPa) : τ (MPa) : S(MPa) (MPa) (-)	(4)-②
$\Box - A$	(2) バスケットプレート (縦板)	(□)-A-135	(2) バスケットプレート(縦板)	
-129	 水平落下時にバスケットプレート(縦板)に生じる応力は、A.5.3.2と同様に求め		▲ 水平落下時にバスケットプレート(縦板)に生じる応力は、(ロ)章A.5.3.2と同様に	(4)-②
	る。 			
$\square - A$		(□)-A-135		
-129	水平落下時の 衝撃加速度 靴方向長さ ^{N*} 次クトプシート の板厚 圧縮圧力 基準値 : 2/3Su 余裕率 :C _H (m/S ²) :L _A (mm) :t(mm) : σ。(MPa) :2/3Su (-)		水平落下時の 新方向長さ ^か 2/3/3/ ¹ /2 ^{-ト} 原舗圧力 定舗圧力 : 2/3S ₀ : C _B (m/s ²) : C _B (m/s ²)	(4)-②
$\square - A$		(□)-A-136		
-130	項目 許容圧縮応力 一次圧縮応力 基準値 余裕率 :f。*(MPa) :σ。(MPa) :1.5f。*(MPa) (-)		項目 許容圧縮応力 一次圧縮応力 基準値 余裕率 :f _o *(MPa) :σ _o (MPa) :1.5f _o *(MPa) (-)	(4)-②
$\Box - A$	A.6.1.3 コーナー落下	(□)-A-137	A.6.1.3 コーナー落下	
-131	(ロ)-第A.35表に示すように、コーナー落下時の衝撃加速度は、垂直落下及び水平		(ロ)-第A.35表に示すように、コーナー落下時の衝撃加速度は、垂直落下及び水平	
	落下に比べて同等もしくは小さい。		落下に比べて同等又は小さい。	(4)-2

ページ	変更前	ページ	変更後	変更内容
$\square - A$	1. 一次蓋ボルト	(□)-A-137	1. 一次蓋ボルト	
-131	頭部コーナー落下時に、一次蓋ボルトには、一次蓋自重及び内部の収納物(バスク	7	頭部コーナー落下時に、一次蓋ボルトには、一次蓋自重及び内部の収納物(バスケッ	
	ット及び燃料集合体)の慣性力並びに胴内圧及び一二次蓋間圧力による引張応力がな	ŧ	ト及び燃料集合体)の慣性力並びに胴内圧及び一二次蓋間圧力による引張応力が生じ	
	じる。ここで、初期締付力、熱応力、胴内圧及び一二次蓋間圧力によって一次蓋ボバ	ν	る。ここで、初期締付力、熱応力、胴内圧及び一二次蓋間圧力によって一次蓋ボルト	
	トとフランジ部とは釣合った状態になっているが、コーナー落下時、一次蓋ボルトに	۲.	とフランジ部とは釣合った状態になっているが、コーナー落下時、一次蓋自重と収納	
	は、一次蓋自重と収納物の慣性力が外力としてボルトに加わる。		物の慣性力が外力として一次蓋ボルトに加わる。	(4)-②
$\square - A$	(3) ボルトに生じる引張応力	(□)-A-138	(3) 一次蓋ボルトに生じる引張応力	(4)-②
-132	各荷重によりボルトに生じる引張応力σt (MPa) は、次式で与えられる。		各荷重により一次蓋ボルトに生じる引張応力σ _τ (MPa)は、次式で与えられる。	11
$\square - A$	(ロ)-第A.44表 一次蓋ボルトに生じる引張応力計算条件及び計算結果	(□)-A-138	(日)」第100本、二次英ポリ、レンケビンス引起に十計筒条件及び計算結果	
-132			10万元の行政 の豊かルドに上のの方法の方式手来住人の計算編集	
	ガ、胴内圧及び蓋 ホルト より生じる 生じる 解析基準値 余裕率 項目 間圧力により生じ 内力係数 オポデナム オポデナム ミ2/3 Su /			(4)-②
	る引張応力 : ϕ (-) 「短応力 「行気応力 (MPa) (MPa) (MPa)		現応力 : $\phi(-)$ うけ知らり うけたん (MPa) (-) : $\sigma_{t1}(MPa)$: $\sigma_{t2}(MPa)$: $\sigma_{t}(MPa)$ (MPa) (-)	
$\square - A$	2. 二次蓋ボルト	(□)-A-138	2. 二次蓋ボルト	
-132	頭部コーナー落下時に、二次蓋ボルトには、二次蓋自重及び蓋間圧力による引張	5	頭部コーナー落下時に、二次蓋ボルトには、二次蓋自重及び蓋間圧力による引張応	
	力が生じる。ここで、初期締付力、熱応力及び蓋間圧力によってボルトとフランジョ	13	力が生じる。ここで、初期締付力、熱応力及び蓋間圧力によって二次蓋ボルトとフラ	(4)-2
	とは釣合った状態になっているが、コーナー落下時、二次蓋ボルトには二次蓋自重の	0	ンジ部とは釣合った状態になっているが、コーナー落下時、二次蓋自重の慣性力が外	
	慣性力が外力としてボルトに加わる。		力として二次蓋ボルトに加わる。	11
$\square - A$	(3) ボルトに生じる引張応力	(□)-A-139	(3) 二次蓋ボルトに生じる引張応力	(4)-②
-132	各荷重によりボルトに生じる引張応力 σ _t (MPa) は、一次蓋と同様に求める。		各荷重により二次蓋ボルトに生じる引張応力 σ_t (MPa)は、一次蓋と同様に求める。	11
$\square - A$	(豆)-笹A 48 売 二次萎光11.1.)ヶ生ドス引起穴力計算条件及水計算結果	(□)-A-139	(ロ)-筆 A.46表 二次蓋ボルトに生じる引張広力計算条件及び計算結果	
-133	初期締付力、熱応 一 慣性力に ボルトに		初期締付力、熱応 慣性力に ボルトに へやす	
	ガ 胴内圧及び蓋 ホルト より生じる 生じる 解析基準値 余裕率 項目 間圧力により生じ 内力係数 引きませれ 引きませれ ローク (MD) ())		「「」「「「」」の内容は「「」」」では、「「」」では、「「」」では、「「」」では、「「」」では、「「」」では、「「」」では、「「」」では、」」、」」では、「」」、」」では、」」、」」では、「」」、」、」、」、」、」、」、」、」、」、」、」、」、」、」、」、」、」、	(4)-2
	る可服応力 : ϕ (-) うけましの うけましの 、 、 Sy (MFA) (-) : σ_{t1} (MPA) : σ_{t2} (MPA) : σ_{t} (MPA)		る引張応力 : $\phi(-)$ 510歳応刀 510歳応刀 510歳応刀 55 (MPa) (-) : σ_{tt} (MPa) : σ_{t} (MPa) (-)	
$\square - A$	3. 三次蓋ボルト	(□)-A-139	3. 三次蓋ボルト	
-133	頭部コーナー落下時に、三次蓋ボルトには、三次蓋自重及び蓋間圧力による引張に	2	頭部コーナー落下時に、三次蓋ボルトには、三次蓋自重及び蓋間圧力による引張応	
	力が生じる。ここで、初期締付力、熱応力及び蓋間圧力によって三次蓋ボルトとフラ	7	力が生じる。ここで、初期締付力、熱応力及び蓋間圧力によって三次蓋ボルトとフラ	
	ンジ部とは釣合った状態になっているが、コーナー落下時、三次蓋ボルトには三次語	藍	ンジ部とは釣合った状態になっているが、コーナー落下時、三次蓋自重の慣性力が外	
	白香の煙桝力が対力ししてゼルトに加わる		L L L	(1) = 0
	日重の頂任力が外力としてホルトに加切る。		力として三次蓋ホルトに加わる。	(4)-(2)

ページ	変更前	ページ 変更後	変更内容
$\square - A$	(豆)-笠 λ 49 売 コ次等ギルよ)ヶ畑でお引起広力計管条件みが計管結果		
-133	項目初期時行力、熱応 力、胴内圧及び蓋 間圧力により生じ る引張応力 : σ_{t1} (MPa)ボルト 慣性力に より生じる 引張応力 : σ_{t2} (MPa)慣性力に より生じる より生じる 引張応力 : σ_{t2} (MPa)ボルトに より生じる より生じる 引張応力 : σ_{t2} (MPa)解析基準値 (-) (-)		(4)-②
□ – A	A.6.1.4 傾斜落下	(□)-A-141 A.6.1.4 値斜茲下	
-134	価約蒸下については、蒸下方向がコーナー蒸下と垂直蒸下との間の場合と、コーナ	価約蒸下については、蒸下方向がコーナー蒸下と垂直蒸下との間の場合と、コーナ	
	一落下と水平落下の間の場合がある。前者の場合は、落下エネルギーの一部が輸送物	一落下と水平落下の間の場合がある。前者の場合は、落下エネルギーの一部が核燃料	(4)-(2)
	を垂直方向に回転させるのに費やされるので、エネルギーの吸収は垂直落下とコーナ	輸送物を垂直方向に回転させるのに費やされるので、エネルギーの吸収は垂直落下と	(以下同様)
	一落下よりも小さくなり、これらのいずれよりも条件が厳しくなることはない。また、	コーナー落下よりも小さくなり、これらのいずれよりも条件が厳しくなることはな	
	後者の場合、細長い輸送物では落下エネルギーの一部が輸送物の回転運動エネルギー	<i>د</i> ر.	
	となり二次衝突側の吸収エネルギーが増加する場合がある。本輸送物は直径に対する	一方、後者の場合、細長い核燃料輸送物では落下エネルギーの一部が核燃料輸送物	
	長さの比が約1.9と小さく細長い輸送物には該当しないが、A.10.3に示すように細	の回転運動エネルギーとなり二次衝突側の吸収エネルギーが増加する場合がある。本	
	長い輸送物に関する解析例をもとにした二次衝撃側の衝撃加速度の影響を評価して	核燃料輸送物は直径に対する長さの比が約1.9と小さく細長い核燃料輸送物には該当	
	も、傾斜落下時に輸送物の健全性が損なわれることはない。	しないが、(ロ)章 A.10.3 に示すように細長い核燃料輸送物に関する解析例をもとに	
		した二次衝撃側の衝撃加速度の影響を評価しても、傾斜落下時に 核燃料輸送物の健全	
		性が損なわれることはない。	
$\square - A$	1. 結果の要約	(ロ)-A-141 1. 結果の要約	
-134	9m 落下試験の衝撃加速度と緩衝体変形量の要約は(ロ)-第A.35表のとおりである。	9m 落下試験の衝撃加速度と緩衝体変形量の要約は(ロ)-第 A. 35 表のとおりである。	
	本試験では、緩衝体は変形するが、緩衝体は容器から外れることはない。	なお、緩衝体変形量は設計基準変形量以下であり、容器本体に発生する衝撃加速度が	(4)-②
		急激に上昇することはない。本試験では、緩衝体は変形するが、緩衝体は輸送容器本	(以下同様)
		体から外れることはない。	
$\square - A$	2. 結果の検討	(ロ)-A-141 2. 結果の検討	
-134	9m 落下試験による塑性変形は、緩衝体及びバスケットに生じるが、容器本体の構造	9m 落下試験による塑性変形は、緩衝体及びバスケットに生じるが、輸送容器本体の	(4)-②
	上の健全性が損なわれることはない。	構造上の健全性が損なわれることはない。	(以下同様)
	以上の解析及び評価は、周囲温度 38℃の高温側の環境下に対して行った。低温側の	以上の解析及び評価は、周囲温度 38℃の高温側の環境下に対して行った。低温側の	
	環境下に対しては、A.4.2 に示すように、低温になっても材料は脆化等がなく、機械	環境下に対しては、(ロ)章A.4.2に示すように、低温になっても材料は脆化等がなく、	
	的性質が低下することがないので、輸送物の構造上の健全性に問題はない。	機械的性質が低下することがなく、また(ロ)章A.6.1に示すように応力は基準値を満	
		足するため、核燃料輸送物の構造上の健全性は維持され、密封性は維持される。	

ページ	変更前	ページ	変更後							
$\square - A$	A.6.2 強度試験·落下試験II (1m 落下時)	(□)-A-142	A.6.2 強度試験・落下試験 II (1m 落下時)							
-134	本項では、9m 落下試験に引き続いて 1m 貫通試験が起こるとして輸送物が 1m 高さか		本項では、9m 落下試験に引き続いて 1m 貫通試験が行われるとして核燃料輸送物が	(4)-②						
	ら直径 150mm の軟鋼棒へ落下した場合に対して、輸送物が耐えることを解析によって		1m 高さから直径 150mmの軟鋼棒へ落下した場合に対して、核燃料輸送物が耐えること	(以下同様)						
	示す。		を解析によって示す。							
	1m 貫通試験は、輸送物が最大損傷をうけるよう垂直及び水平方向に落下し、衝突時		1m 貫通試験は、核燃料輸送物が最大損傷をうけるよう垂直及び水平方向に落下し、							
	に輸送物の重心の真下に軟鋼棒があるとして解析した。		 衝突時に <mark>核燃料輸送物の重心の真下に軟鋼棒があるとして解析した。</mark>							
	これ以外の落下は、落下エネルギーが回転モーメントとして作用するので輸送物に									
	対して上記落下より大きな損傷を生じることはない。		送物に対して上記落下より大きな損傷を生じることはない。							
$\square - A$		(□)-A-143		(4)-②						
-136	(ロ)-第A.50表 せん断破壊を引起すのに必要な力の計算条件及び計算結果		<u>(ロ)-第 1.50 友 室部の</u> せん町岐場を引さ起こすのに必要な刀の訂昇来円度び訂昇結果 金裕室							
	項目 軟鋼棒直径 板厚 せん断強さ せん断破壊に必 最大荷重 余裕率 項目 :d (mm) :t (mm) :S (MPa) 要な力:F (N) :Fhow (N) (-)		項目 軟鋼棒直径 板厚 せん断強さ せん断破壊に必 最大荷重 2013 「「」	11						
$\square - A$	注 1)	(□)-A-143	注 1)							
-136										
				(4)-2						
$\square - A$		(□)-A-143	(山) 笄』 [1] 事 「廃が あみ) 蛇は信ゃ ゴ やお テナ あ) - 小西 わ 十 あ 計算之外 ひゃう 計算 注目							
-136	(ロ)-第A.51表 せん断破壊を引起すのに必要な力の計算条件及び計算結果			(4)-2						
	項目 軟鋼倖風佺 恢序 ぜん断強さ ぜん断吸暖に必 取大何里 宗裕平 : d (mm) : t (mm) : S (MPa) 要な力: F (N) : F _{bar} (N) (-)		項目 軟鋼棒直径 被厚 せん断強さ せん断破壊に必 歳大何重 KK :d(mm) :t(mm) :S(MPa) 要な力:F(M) :F _{bar} (M) KK	11						
$\square - A$	押し抜きせん断によって胴がせん断破壊を引起すのに必要な力F(N)は、1.の(1)と	(□)-A-144	押し抜きせん断によって胴がせん断破壊を引き起こすのに必要な力 F(N)は、(ロ)章	(4)-2						
-136	同様に求める。計算条件と計算結果を(ロ)-第A.52表に示す。胴が貫通されることはな		6.2 の1.(1)と同様に求める。計算条件と計算結果を(ロ)-第A.52表に示す。胴が貫通							
	1 V.		されることはない。							
$\square - A$		(□)-A-144	(日)_第160車 四四より此は確実ガンおヶ小の)の万面が十の計留支みない計算が1回	(4)-②						
-137	(ロ)-第A-52表 せん断破壊を引起すのに必要な力の計算条件及び計算結果									
	項目 駅鋼倖直径 被序 ぜん断強さ ぜん断破壊に必 酸大何重 余裕率 :d (nm) :t (nm) :S (MPa) 要な力:F (N) :F _{bar} (N) (-)		項目 軟鋼倖風径 被厚 ぜん断強さ ぜん断破壊に必 取大何里 105 :d(n.m.) :t(n.m.) :S(MPa) 要な力:F(N) :Fbar(N) ()	11						
$\square - A$	以上の解析及び評価は周囲温度 38℃の高温側の環境下に対して行った。低温側の環境	(□)-A-144	以上の解析及び評価は周囲温度 38℃の高温側の環境下に対して行った。低温側の環境							
-137	下に対しては、A.4.2に示すように低温になっても材料は脆化等がなく、機械的性質が		下に対しては、(ロ)章A.4.2に示すように低温になっても材料は脆化等がなく、機械的	(4)-②						
	低下することがないので、輸送物の構造上の健全性 <mark>に問題は</mark> ない。		性質が低下することがないので、 核燃料輸送物の構造上の健全性は維持されるため、密	(以下同様)						
			封性能が損なわれることはない。							
$\square - A$	1. 温度	(□)-A-145	1. 温度							
-138	輸送物各部の最高温度はロ章Bの熱解析から求まる。各部位の最高温度と解析基準		核燃料輸送物各部の最高温度は(ロ)章 B の熱解析から求まる。各部位の最高温度と	(4)-②						
	値を定める温度を <u>(ロ)-第A.53 表</u> に示す。		解析基準値を定める温度を <u>(ロ)-第A.53 表</u> に示す。							

ページ	変更前	ページ	変更後	変更内容
$\Box - A$	1. 応力計算	(□)-A-147	1. 応力計算	
-140	本項では、特別の試験条件下における容器本体各部の熱応力と圧力による応力の計		本項では、特別の試験条件下における容器本体各部の熱応力と圧力による応力の計	
	算を行う。B.5.3に示す温度分布と輸送容器各部の圧力を荷重条件とし、解析は有限		算を行う。(ロ)章 B.5.3 に示す温度分布と輸送容器各部の圧力を荷重条件とし、解析	(4)-2
	要素法による ABAQUS コードを用いて行う。		は有限要素法による ABAQUS コードを用いて行う。	
$\square - A$	(1) 解析モデル	(□)-A-147	(1) 解析モデル	
-140	A.5.1.3 と同様に、主に三次元有限要素を用いた(ロ)-第A.8 図に示す三次元 1/2		(ロ)章 A. 5. 1. 3 と同様に、主に三次元有限要素を用いた(ロ)-第 A. 8 図に示す三次	(4)-2
	解析モデルを用いる。		元 1/2 解析モデルを用いる。	
$\square - A$	a. 荷重条件	(□)-A-147	a. 荷重条件	
-140	B.5.3 に示される容器本体の温度差が一番大きくなる火災発生 30 分後における温	1	(ロ)章 B.5.3 に示される容器本体の温度差が一番大きくなる火災発生 30 分後にお	(4)-②
	度分布((ロ)-第B. 17 図参照)、胴内圧(― MPaG)、一二次蓋間圧力(― MPaG)、		ける温度分布 (<u>(ロ)-第 B. 17 図</u> 参照)、胴内圧 ((PaG)、一二次蓋間圧力 ((PaG)、	
	二三次蓋間圧力(MPaG)を荷重条件とする。		二三次蓋間圧力 (MPaG)を荷重条件とする。	
-	(記載なし)	(□)-A-147	なお、側部中性子遮蔽材充填空間及び底部中性子遮蔽材充填空間の圧力は、	(4)-①
			また、一次蓋ボルト、二次蓋ボルト及び三次蓋ボルトにはそれぞれ初期締付力	11
			N/本、N/本、N/本)を考慮する。	

ページ	変更前	ページ	変更後						
$\square - A$	1. 容器本体各部	(□)-A-149	1. 容器本体各部						
-142	(ロ)-第A.29 図に示す容器本体の主要な評価位置における一次応力及び蓋ボルト		(ロ)-第 A.29 図に示す容器本体の主要な評価位置における一次応力及び蓋ボルトの						
	の応力の評価結果を、 <u>(ロ)-第A.55表</u> に示す。表に示すように、いずれの応力もA.1.2		応力の評価結果を、(ロ)-第A.55表に示す。表に示すように、いずれの応力も(ロ)章	(4)-②					
	に定めた解析基準値以下である。		A.1.2 に定めた解析基準値以下である。						
			なお、三次蓋ボルトは三次蓋と異なる材質のため、運搬中に予想される-20~38℃の	(4)-①					
			周囲温度の変化により軸力が変化する。仮に周囲温度-20℃で三次蓋ボルトを締め付						
			けた後特別の試験条件下に置かれた場合は、ステンレス鋼製の三次蓋と合金鋼製の三						
			次蓋ボルトの熱膨張係数の差により三次蓋ボルトの軸力が約 14%増加するものの余裕						
			率が 0.14 以上あるため、また周囲温度 38℃で締め付けた後特別の試験条件下に置か						
			れた場合には、軸力が約6%減少するものの0リングを締め付けるために必要な軸力を						
			維持しているため、三次蓋ボルトに緩みや破損を生じることはない。一方、一次蓋ボ						
			ルトと二次蓋ボルトは、それぞれ一次蓋と二次蓋との温度の差及び熱膨張係数の差が						
			小さく、軸力の変化は軽微であることから、緩みや破損を生じることはない。						
□ – A	(ロ)-第A.55 表 特別の試験条件下における圧力による容器本体の	(□)-A-150	<u>(ロ)-第 A-55 表 特別の試験条件下における圧力による容器本体の</u>						
-143	<u>一次応力及び輩ボルトの応力評価(1/2)</u>		<u>一次応力及び蓋ボルトの応力評価(1/2)</u>						
				(4)-2					
	の種類 (MPa)		の種類 (\\\Pa) (\\\Pa) (\\\Pa))33 ((-)						
$\Box - A$	(ロ)-第A.55麦 特別の試験条件下における圧力による容器本体の	(□)-A-151	<u>(ロ)-第 h.55 表 特別の試験条件下における圧力による容器本体の</u>						
-144	<u>一次応力及び蓋ボルトの応力評価(2/2)</u>		<u>ー次応力及び蓋ボルトの応力評価(2/2)</u>						
	版力 (現本) 応力 (現本) 応力 (現本) 解析 余裕率 部位 _{No,120} 又は応力 表面 又は応力 (1C) 基準値 MS		断面 応刀分類 ²²⁷ 応刀強さ 温度 解析 余裕率 	(4)-②					
$\square - A$	注 2) PL: 一次局部膜応力強さ、 Pb: 一次曲げ応力強さ、 Q: 二次応力強さ、	(□)-A-151	注 2) PL:一次局部膜応力強さ、Pb:一次曲げ応力強さ、Q:二次応力強さ、						
-144	σ_{n} : 平均引張応力、 σ_{n} + σ_{b} : 平均引張応力+曲げ応力		σ _m : 平均引張応力、σ _b :曲げ応力	(4)-②					
$\Box - A$	A.6.4 浸 漬	(□)-A-152	A.6.4 浸漬						
-145	本輸送物の収納物は、最大放射能量がA2値の10万倍を超えるので、A.7において		本核燃料輸送物の収納物は、最大放射能量が A2 値の 10 万倍を超えるので、(ロ)章	(4)-②					
	200m 浸漬に相当する水頭圧で解析を行い、密封装置の破損のないことを確認してい		A.7 において 200m 浸漬に相当する水頭圧で解析を行い、 <mark>胴、底板及び三次蓋</mark> の破損の	(4)-①					
	る。		ないことを確認している。						
	特別の試験条件の15m浸漬試験においては、200m浸漬試験の負荷条件より厳しくな		特別の試験条件の15m浸漬試験においては、強化浸漬試験の負荷条件より厳しくな	(4)-②					
	いため、A.1.2で定めた基準を満足する。		いため、胴、底板及び三次蓋は、(ロ)章A.1.2 で定めた基準を満足するが、外運搬規	(4)-①					
	ここでは、15m 浸漬試験における三次蓋の強度を確認する。		則及び外運搬告示に基づいて 15m 浸漬試験における三次蓋の強度を確認する。	11					
			なお、ここでは内圧を真空(-0.101325MPaG)とし、15m の水圧(0.15MPa)と内圧の差						
			圧(0.251325MPa)を外圧とする。						
	計算条件と計算結果を <u>(ロ)-第A.56表</u> に示す。三次蓋は、外圧に対して十分な強度を	(□)-A-152	計算条件と計算結果を(ロ)-第A.56表に示す。三次蓋は、外圧に対して十分な強度を						
-145	有する。なお、上記の発生応力値は Cにおける三次蓋の材料の設計降伏点(Sy=156		有する。なお、上記の発生応力値は □℃における三次蓋の材料の設計降伏点						
	MPa)より低く、また外圧は蓋を押し付けるように作用するので、蓋Oリングの密封性能		(Sy=156MPa)より低く、また外圧は蓋を押し付けるように作用するので、蓋0リングの密						
	は 15m 浸漬時において保持される。		封性能は 15m 浸漬試験において保持される。	(4)-②					

ページ	変更前	ページ	変更後	変更内容						
$\Box - A$	<u>(ロ)-第A.56表 三次蓋の曲げ応力計算条件及び計算結果</u>	(□)-A-153	(ロ)-第A.56表 三次蓋の曲げ応力計算条件及び計算結果							
-145	項目 円板の 半径 : a (ma) 差圧 : P (MPa) 板厚 : t (ma) 最大 曲げ応力 三次蓋 の温度 設計 引張強さ 余裕率 (-) (**) : a (ma) : P (MPa) : t (ma) : (ma) <td></td> <td>項目 円板の 半径 : a (mm) 差圧 : P (MPa) 板厚 : t (mm) 最大 曲げ応力 三次蓋 の温度 設計 引張強さ 余裕率 項目 : a (mm) : P (MPa) : t (mm) : a (σ_b (MPa) ($^{\circ}$C) : S₀(MPa) ($^{\circ}$)</td> <td>(4)-②</td>		項目 円板の 半径 : a (mm) 差圧 : P (MPa) 板厚 : t (mm) 最大 曲げ応力 三次蓋 の温度 設計 引張強さ 余裕率 項目 : a (mm) : P (MPa) : t (mm) : a (σ_b (MPa) ($^{\circ}$ C) : S ₀ (MPa) ($^{\circ}$)	(4)-②						
-	(記載なし)	(□)-A-153	また、外筒及び底部中性子遮蔽材カバーは内部空間にそれぞれ 🛄 IPaG 及び 🛄 IPaG							
			の内圧が生じているが、水深 15m の水圧(0.15MPa)が外圧として負荷されることで差圧							
			が緩和されるため、遮蔽解析に影響を及ぼすような破損は生じない。							
$\Box - A$	 1. 解析結果の要約 	(□)-A-153	1. 解析結果の要約							
-146	特別の試験条件下における輸送物に対する結果の要約を <u>(ロ)-第A.57表</u> に示す。表		特別の試験条件下における核燃料輸送物に対する結果の要約を <u>(ロ)-第A.57表</u> に示	(4)-2						
	に示すように、各試験条件において輸送物各部はA.1.2に定めた基準を満足し構造上		す。表に示すように、各試験条件において核燃料輸送物各部は(ロ)章 A.1.2 に定めた	11						
	の健全性が損なわれることはない。		基準を満足し構造上の健全性が損なわれることはない。							
$\square - A$	2. 破損の要約	(□)-A-153	2. 破損の要約							
-146	特別の試験条件下における輸送物の主な破損の要約を <u>(ロ)-第A.58表</u> に示す。		特別の試験条件下における <mark>核燃料</mark> 輸送物の主な破損の要約を <u>(ロ)−第 A.58 表</u> に示	(4)-2						
			す。							
$\Box - A$	(日)-笠 A 57 売 特別の計略条件で)における様は認能は更の更約(1/2)	(□)-A-154	(ロ)-第 A. 57 表 特別の試験条件下における構造解析結果の要約(1/3)							
-147	項目 解析基準 解析基準值 解析結果等 余裕率等 (MPa) (MPa) (MS)		項 目 解析基準 解析基準值 解析結果等 MPa) MS (MPa)							

ページ		変更前			ページ			変更後				変更内容
$\square - A$					(□)-A-155	(豆)-篭	ミネ57 表 特別の試験	条件下におい	と構造解析総	5里の 亜約 (9/)	3)	
-148	<u>(ロ)-第A.57表 特別の試験</u>	<u>検条件下における構造解析</u> □	<u>結果の要約(2/</u> まし知地は男笠	<u>3)</u> 本松本筆		<u>k (4</u>	5 11. 57 2-2 14 /1 /1 07 #A(6)X	211 1 102 40 10			<u>。</u> 余裕率等	
	項 目	解析基準 (MPa)	◎ /##1/1 #日末守 (MPa)	赤伯辛寺 (MS)		I	頁 目	解析基準	解析基準1値 (MPa)	解析結果等 (MPa)	MS	
	項目 9m 落下試験 2.水平落下 (1) 容器本体 一次応力 二次蓋(PL) 二次蓋(PL) 蓋部中性子遮蔽材カバー(圧縮) 三次蓋(PL) 應部中性子遮蔽材カバー(圧縮) 三次蓋(PL) 應部中性子遮蔽材カバー(圧縮) 二次蓋ボルト(Gm) 二次蓋ボルト(Gm) 二次蓋ボルト(Gm) 二次蓋ボルト(Gm) 三次蓋ボルト(Gm) 二次蓋ボルト(Gm) 三次蓋ボルト(Gm) 三次蒸ボルト(Gm) 三次蓋ボルト(Gm) 三次蓋ボルト(Gm)	解析基準 解析基準 (WPa) ○ Su 3777 2/3Su 2511 1.5 fo* 195 Su 425 Su 3777 Su 3777 Su 3777 Su 3777 1.5 fo* 1689 Sy 183 2/3Su 6886 Su 961 Sy	i 解析結果等 (MPa) 82 56 118 96 178 57 158 175 271 580 294 639 318 848 0.4mm 105 321	余裕率等 (MS) 5.08 3.48 0.68 3.42 1.14 5.61 0.68 3.42 1.14 5.61 0.06 0.04 1.53 0.77 2.26 0.50 2.02 0.13 基準に合致 0.39 1.13		9m 落下試験 2.水平落下 (1)容器本体 一次応力 二次蓋 三次蓋 整体 子迹 二次蓋 三次蓋 三次蓋 三次蓋 三次蓋 一次送蓋 三次蓋 三次蓋 三次蓋 二次蓋 三次蓋 三次蓋 三次蓋 三次蓋 三次蓋 三次蓋 三次 <	 (P_L) (P_m) dオカバー(圧縮) (P_L+P_b) (P_L) (P_L) (P_L) f(σ_m) (σ_m+σ_b) (σ_m+σ_b) (σ_m+σ_b)	解析基準 Su 2/3Su 1.5fc* Su Su Su Su Su Su Su Su Su Su Su Su Su	解析基準値 (MPa) 377 251 195 425 377 169 183 686 1,030 961 961 961 961 961 961 961 961	解析結果等 (MPa) 82 56 116 96 178 57 158 175 271 580 294 639 318 848 0.4mm 105	宗作学寺 MS (一) 5.08 3.48 0.68 3.42 1.14 5.61 0.68 3.42 1.14 5.61 0.06 0.04 1.53 0.77 2.26 0.50 2.02 0.13 基準に合致 0.39	(4)-②
	ニ 次 蓋 ホル ト 三 次 蓋 ボル ト	Sy 961 Sy 961	256 222	2.75 3.32		 一次蓋ボルト 二次蓋ボルト 		2/3Su Sy	686 961	321 256	1.13 2.75	
						 三次蓋ボルト 4. 傾斜落下 一次蓋ボルト 二次蓋ボルト 三次蓋ボルト 		S, 核燃料輸 下を考慮 ても、基 蓋部の密	 981 送物の各蓋ボ, した衝撃加速, 準値を満足す 封性能が損な; 	222 ルトは強度評価 度が負荷された ることができる われることはな	3.32 m上、傾斜落 t場合におい うことから、 いい。	(4)-①

ページ					変更前				ページ						変更後				変更内容
$\square - A$									(ロ)-A-156	i									
-149	<u>-(च)</u>	第A.5	7表 特	別の試験	検条件下におり	ナる構造解析総	吉果の要約(3/	(3)			<u>(ד)-</u>	₹ A.57	表 判	別の試	験条件下におり	る構造解析編	吉果の要約(3/)	3)	
		項目	ŧ		解析基準	解析基準値	解析結果等	余裕率等				百日			假桁其進	解析基準値	解析結果等	余裕率等 MS	(4)-(2)
	1m 貫通試験					(MPa)	(MPa)	(MS)				л н			N# 01 000 -1-	(MPa)	(MPa)	(-)	())下同样)
	1.垂直落下				_						1m 貫通試験 1 垂直落下								(以下问你)
	蓋部				許容貫通	7.73×10⁰N	7.07×10 ⁶ N	0.09			蓋部				許容貫通	7.73×10 ⁶ N	7.07×10 ⁶ N	0.09	
	底部				許容貫通	$8.65 imes 10^6 N$	$7.07 imes 10^6 \mathrm{N}$	0.22			南如				強度 昨空貫通	9 R5 × 106M	7 07×106M	0.99	
	9 水亚茲下				強度						AEX RP				強度	0.03/ 10 8	7.07 10 1	0.22	
	胴部				許容貫通	$2.38 \times 10^{7} \mathrm{N}$	$7.07 \times 10^{6} N$	2.36			2. 水平落下				許穷書達	9 99∨ 107M	7 07∨ 106M	9 96	
	#4 64 5.5 KG				強度						7119 EP				114頁題 強度	2.30× 10 M	7.07 A 10 N	2.30	
	熟的試験 一次蓋		(P1)			377	15	24.1			熱的試験(火災試験	<u>)</u>				0.00			
	二次蓋		(PL+F	°ь)	S.	377	24	14.7			一次蓋 二次蓋	(F	"ር) Pi + Ps)		S.	377	15 24	24.1	
	蓋部中性子遮蔽	嵌材カノ	バー (せ	ん断)	1.5fs*	160	67	1.38			蓋部中性子遮蔽	材カバ	(ー(せ	ん断)	1.5fs*	160	67	1.38	
	二八章		$(P_{L} + F_{L})$	′ь/	S.	425	69	93.2			三次蓋	(F	$P_L + P_b$)		S,	425	69	5.15	
	底板		$(P_L + F$	ъ)	S.	377	3	124			胴	(F	Բլ) Ե Ե. \		Su	377	4	93.2	
	底部中性子遮蔽	嵌材力ノ	バー (せ	ん断)	1.5fs*	121	3	39.3			底部中性子 遮蔽	材カバ	(ん断)	1.5f.*	121	3	39.3	
	二次蓋シール部	邰	$(P_L + F$	°⊾+Q)	S,	174	24	6.25			 二次蓋シール部 	(F	PL + Pb +	+Q)	S,	174	24	6.25	
	一次蓋ボルト		(σ_m)		2/35.	686	243	1.82			一次蓋ボルト	((σm)		2/3Su	686	243	1.82	
	一次査ホルト		$(\sigma_m + \sigma)$	7ь)	50 8	1030	274	2.75			一次蓋ボルト	()	$\sigma_m + \sigma$	ъ)	S,	1,030	274	2.75	
	- 八重 小 ル ト 二 次 著 ボ ル ト		$(\sigma_n + c$	TL)	5,	961	2.09	2.91			二次蓋ボルト	(0	σ_m) σ_ι σ		S,	961	259	2.71	
	三次蓋ボルト		(σ _m)		S,	961	217	3.42			 二次蓋ホルト 三次蓋ボルト 	6	σ m T O σ m)	ь)	s, S	961	299	3.42	
	三次蓋ボルト		$(\sigma_m + \sigma_m)$	7ь)	S,	961	388	1.47			三次蓋ボルト	()	σ_m+ σ	ь)	S,	961	388	1.47	
	口開き変形量				-	nm	0.4mm	基準に合致			口開き変形量				-	L IL	0.4mm	基準に合致	
	15m 浸酒 一 Wa 第					4.05	1.00				15m 浸清試験								
	二八章				20	420	108	2.00			二八章				- Du	425	109	2.89	
$\square - A$									(□)-A-157	,									
-150	<u>(ㅂ)</u>	-第A	.58表	特別《	の試験条件「	Fにおける	输送物破損(<u>の評価</u>			(ロ)-第	A. 58	表 牜	寺別の言	式験条件下に:	おける 核燃料	斗輸送物破損	の評価	(4)-(2)
					(備;	考)〇印は	破損有り、	-印は破損なし			<u> </u>				(備	者)○印は破		印け破損なし	
	部位		T							Γ	刻位				(010	J/ 0/110/0			(以下问悚)
			<u>∳</u> ₽2	バ									經	バフ					
		杰	飯	5			備老					本	衝	5		ſ	苗考		
		1本	译	2			Ma ()					144	体	2					
	試験			ト							試験			Г					
			+		・緩衝休・	《朔州恋书》	おみ 最大な	変形は底部っこ							・緩衝体が	塑性変形す	る。最大変形	は底部コー	
					12(15)147/	/·±. ⊥.≫.///	7 °0'0 AX/\:								ナー落下	時に下部緩	衝体に生じ	最大 663mm	
	Qm 茨下計論	_			ナー洛ト	い時に下部領	夏町体に生し	ジ、			9m 落下試験	-	0	-	「たきナス	經濟体ルーズ	「応子てん」の	と思ナけんと	
	OIL THE I READY				圧潰する	5。緩衝体)	は変形するが	が、容器本体か							圧損する	。阪田平は多	१ २७२१ २००१ २४	予命や仲から	
					よはずお	2ることはな	201.								外れるこ	とはない。			
					672427-64-T		^~ • 0 ⊾-∰+):x:	TTT/1844.34 93			1 - #F:\7 3.5 EA	~			·緩衝体及	び外筒には	貫通又は変用	彡が生じる。	
	1m 貫涌試驗	0	0	_	* 彼餌1本/> 	くひか同には	→貝趰乂ば多	幻が生じる。			1m 貝理試験	0		-	·側部中性	子遮蔽材が	一部変形する	5.	
		Ľ	Ľ		・側部中性	生子遮蔽材;	一部变形物	する。			熱的試驗			-	• 側部由州	子遮蔽材が	部分的に使わ	目すろ	1
	熱的試験	-	-	-	・側部中性	生子遮蔽材:	「部分的に炒	橈損する。			小レジャー	-	-	-	1 - 414 BAU	- 」 200m以小1 // ⁻⁴	ни <i>) ј</i> и ја – <i>1</i> 961.	rt 7 'a/o	
	温湛計略	-	1_	_			_				(八次武陳)								-
	(文)(其前八词穴										15m 浸漬試験	-	-	-	-				

ページ	変更前	ページ	変更後	変更内容					
$\square - A$	1. 外圧に対する胴の耐圧強度	(□)-A-158	1. 外圧に対する胴の耐圧強度						
-151	本輸送物の収納物は、最大放射能量がA2値の10万倍を超えるので、200m浸漬に相		本核燃料輸送物の収納物は、最大放射能量が A2 値の 10 万倍を超えるので、200m	(4)-2					
	当する水頭圧での解析を行う。		浸漬に相当する水頭圧での解析を行う。						
$\square - A$	<u>(ロ)-第A.59表 円筒の許容外圧計算条件及び計算結果</u>	(□)-A-158	(ロ)-第4.59 麦 円筒の許容外圧計算条件及び計算結果						
-151	m H m M / L / Do, Do / t 肥支持 許容外压 M F 合松安			(4)-②					
	項目 - 加快学 - 加外金 - 及び温度で - 間隔 :1.5P。 - 外圧 - 示伯辛 - : t (m.m.) : Do (m.m.) - 定まる値 - : T. (m.m.) (MPa) : Po (MPa) (-)		項目 - 胴板厚 - 胴外径 友び温度で - 間隔 : 1.5Pa - 外圧 - 胚 : t (nm) : D ₀ (nm) 定まる値 - 1 (nm) (MPa) : P ₀ (MPa) (-)						
	: B (MPa)		: B (MPa)						
$\square - A$		(□)-A-159							
-152	<u>(ロ)-第A.60表 底板の曲け応刀訂昇余件及び訂昇結果</u> 円板の 最大曲げ 設計引募		<u>(ロ)-弟A.60表 版板の曲け応力計算条件及び計算結果</u> 円板の <u>ルニ</u> 最大曲げ <u></u> 由国 設計引張 余裕率						
	項目 半径 差圧 板厚 応力 感板の 動けの 余裕率 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		項目 半径 $差比$ 极厚 応力 低极の 強さ \mathbb{IS} (P) $\mathbb{P}(MPa)$: t (mm) 点(m) 温度(C) 強さ \mathbb{IS}	(4)-②					
	$: a (nm)$ $: \sigma_b (MPa)$ $: S_v (MPa)$: a (mm) : σ b (Mr'a) : S _u (Mr'a) (-)						
$\square - A$	3. 外圧に対する蓋の強度	(□)-A-160	3. 外圧に対する蓋の強度						
-152	蓋の強度解析モデルを <u>(ロ)-第A.34図</u> に示す。三次蓋と二次蓋、二次蓋と一次蓋そ		蓋の強度解析モデルを(ロ)-第A.34図に示す。三次蓋と二次蓋、二次蓋と一次蓋そ						
	れぞれの隙間が十分に小さいことから、三次蓋と二次蓋、二次蓋と一次蓋が接触する		れぞれの隙間が十分に小さいことから、三次蓋と二次蓋、二次蓋と一次蓋が接触する						
	と考えられる。したがって、評価板厚 t は一次蓋の板厚とする。		と考えられる。したがって、評価板厚 t は一次蓋の板厚とし、保守的に薄肉部 ── m	(4)-2					
			を用いる。						
$\square - A$		(□)-A-160							
-153	<u>(ロ)-第A-61表 蓋部の曲げ応力計算条件及び計算結果</u> 最大曲げ 最大曲げ 設計引端		<u>(ロ)-第A.61表 蓋部の曲げ応力計算条件及び計算結果</u> 最大曲げ						
	項目 <u> 蓋半径</u> 差圧 板厚 ポアソン比 応力 一次蓋の (MA)が 余裕率 は a (MA): P (MPa): t (MA) : v (-) は度(C) は度(C)		項目 蓋半径 差圧 板厚 ポアソン比 応力 一次蓋の 低い れん : a (mm) : P(MPa) : t (mm) : ν (-) 応力 温度(\mathbb{C}) 強さ	(4)-2					
	· Ob (Mra) · Su (Mra)		$\vdots \sigma_b(MPa)$ $\vdots S_0(MPa)$ $(-)$						
$\square - A$	A.8 放射性収納物	(□)-A-161	A.8 放射性収納物						
-154	本輸送物の放射性収納物は、BWR 使用済燃料集合体であり、BWR 燃料集合体の構造		本核燃料輸送物の放射性収納物は、BWR 使用済燃料集合体であり、BWR 燃料集合体	(4)-②					
	図を(イ)-第D.1図に示す。		の構造図を(イ)-第 D. 1 図に示す。						
$\Box - A$	燃料集合体の強度解析については、一般の試験条件である 0.3m 落下時に輸送容器と	(ロ)-A-161	燃料集合体の強度解析については、一般の試験条件である 0.3m 自由落下試験時に輸	(4)-2					
-154	等しく落下衝撃を受けるものとして行っている。その結果、燃料被覆管の強度上の余裕		 送容器と等しく落下衝撃を受けるものとして行っている。その結果、燃料被覆管の強度						
	は十分あり、燃料被覆管内の核分裂生成物は、外部に放散されることはない。		上の余裕は十分あり、燃料被覆管内の燃料又は核分裂生成物は、外部に放散されること	11					
			はない。						
$\Box - A$	A.9 核分裂性輸送物	(□)-A-162	A.9 核分裂性輸送物						
-155	本輸送物は核分裂性輸送物に該当する。したがって本項では、ロ章E 臨界解析にお		本 <mark>核燃料</mark> 輸送物は核分裂性輸送物に該当する。したがって本項では、(ロ)章 E 臨界	(4)-②					
	いて想定する輸送物の損傷状態を、以下の試験条件に対して評価する。		解析において想定する核燃料輸送物の損傷状態を、以下の試験条件に対して評価す	(以下同様)					
	なお、本輸送物は周囲温度-20℃以上で使用し、A.4.2に示すとおり周囲温度-20~		Z.						
	38℃の温度条件で <mark>き裂</mark> 、破損等の生じるおそれはない。		なお、本核燃料輸送物は周囲温度-20℃以上で使用し、(ロ)章 A.4.2 に示すとおり						
			周囲温度-20~38℃の温度条件で <mark>亀裂、</mark> 破損等の生じるおそれはない。						

ページ		変更前	Ĩ	ページ	変更後						
□ – A	A.9.1 核分裂性輸送物	に係る一般の試験条件		(□)-A-162	A.9.1 核分裂	性輸送物に係る−	ー般の試験条件				
-155	核分裂性輸送物に	系る一般の試験条件は、	告示により次の4種類が定められてお	り、	核分裂性	輸送物に係る一般	设の試験条件は、外 運	1搬告示により次の3種類が定められ	(4)-2		
	(i)の条件においた	送(ii)~(iv)に条件	の下に置く。		ている。				(以下同様)		
	(i) 水噴霧				(a) 水噴霧·落下試験						
	(ⅲ) 0.3m 自由落	客下			(i) 水噴霧試験						
	(ⅲ) 積み重ね詞	、験			(ⅲ) 0.3m 自由落下試験						
	(iv)6kg 棒貫通	試験			(b) 積み	メ重ね試験					
	ロ章E.臨界解析に	おける評価方法を考慮	して、影響する輸送物の損傷状態をA	A.5	(c) 6kg	棒貫通試験					
	の解析結果をもとに	評価すると次のようにな	える。		(ロ)章 E	臨界解析における	る評価方法を考慮して	こ、影響する <mark>核燃料</mark> 輸送物の損傷状態			
					を(ロ)章 A.	5の解析結果をも	っとに評価すると次の)ようになる。 			
$\square - A$	1. 水噴霧			(□)-A-162	 水噴霧・落 	 客下試験			(4)-2		
-155	A.5.2 と同一であり	、輸送物に損傷はない。			(i)水噴霧	통試験			(以下同様)		
	2. 0.3m 自由落下				(ロ)章A.	5.2と同一であり)、核燃料 <mark>輸送物に</mark> 損	員傷はない。			
	A.5.3と同一であ	り、緩衝体に変形が生し	じるがそれ以外の部位に損傷はない。		(ii) 0.3m	自由落下試験					
					(ロ)章A.	5.3と同一であり	、緩衝体に変形が生	じるがそれ以外の部位に損傷はない。			
$\square - A$	3. 積み重ね試験			(□)-A-162	2. 積み重ね詞	弌験			(4)-②		
-155	A.5.4 と同一であ	り、 <mark>輸送物</mark> に損傷はない	`		(ロ)章A.	5.4と同一であり	、緩衝体に変形が生	じるがそれ以外の部位に損傷はない。	(4)-①		
$\square - A$	4. 6kg 棒貫通試験			(□)-A-162	3. 6kg 棒貫通	試験			(4)-2		
-155	A.5.5 と同一であ	り、輸送物に損傷はない	`		(ロ)章 A.5.5 と同一であり、軟鋼棒は緩衝体カバープレートを貫通しない。						
$\square - A$	以上の結果より、核会	分裂性輸送物に係る一般	の試験条件下における輸送物の損傷状	犬態 (ロ)-A-162	以上の結果より、核分裂性輸送物に係る一般の試験条件下における 核燃料輸送物の損						
-155	は <u>(ロ)-第A.63 表</u> のよ	うにまとめられる。本輔	谕送物は、 <u>(ロ)−第A.64 表</u> に示すよう	に、	傷状態は(ロ)-	-大 A. 6 <u>3 表</u> のよう	うにまとめられる。本	< <u> 核燃料</u> 輸送物は、 <u>(□)−第 A. 64 表</u> に	(以下同様)		
	核分裂性輸送物に係る	一般の試験条件下におい	って、規則及び告示に定められている核	亥分	示すように、	核分裂性輸送物に	上係る一般の試験条件	下において、外運搬規則及び外運搬			
	裂性輸送物としての要	牛を満足する。			告示に定めら:	れている核分裂性	生輸送物としての要件	を満足する。			
$\square - A$ -1.5.6				(□)-A-163							
150	<u>(ロ)-第A.63表 核分</u>	<u>} 裂性輸送物に係る一般</u>	の試験条件下における輸送物の損傷状! □□			<u>(ロ)-第A.63表</u> れ	<u>家分裂性輸送物に係る-</u>	<u>-般の試験条件下における</u> Hate			
	試験条件	輸送物の損傷状態	備考				<u>「認識評判時法的の損傷</u>		(4)-②		
					試	験条件	損傷状態	備考	(以下同様)		
	水噴霧	損傷なし	_								
					水噴霧・	水噴霧試練	損傷なし 	-			
	0.3m 落下	緩衝体の変形	緩衝体は臨界解析では無視する。		落下試験	0.3m 自由	緩衝体の亦形	経衛休け暗異解析では毎月する			
					落下試験 被側体の変形 被側体は磁升群桁では無視する。						
	積み重ね	損傷なし	=		積み	·重ね <mark>試験</mark>	緩衝体の変形	緩衝体は臨界解析では無視する。			
	6kg棒貫通	損傷なし	_		6kg 桐	奉貫通試験	損傷なし	-			

ページ	変更前	ページ	変更後	変更内容
$\Box - A$	A.9.2 核分裂性輸送物に係る特別の試験条件	(□)-A-164	A.9.2 核分裂性輸送物に係る特別の試験条件	
-157	A.9.1 の核分裂性輸送物に係る一般の試験条件に続いて 15m 浸漬試験が実施され		(ロ)章A.9.1の核分裂性輸送物に係る一般の試験条件に続いて15m浸漬試験が実施	(4)-2
	る場合には、A.6.4に示すように本輸送物の損傷が拡大することはないので、本輸送		される場合には、(ロ)章A.6.4に示すように本核燃料輸送物の損傷が拡大することは	(以下同様)
	物に関する核分裂性輸送物に係る特別の試験条件は最大破損条件となる以下の順序		ないので、本核燃料輸送物に関する核分裂性輸送物に係る特別の試験条件は最大破損	
	で実施する。		条件となる以下の順序で実施する。	
	① A.9.1の核分裂性輸送物に係る一般の試験条件		①(ロ)章A.9.1の核分裂性輸送物に係る一般の試験条件	
	② 9m 落下試験		②9m 落下試験	
	③ 1m 貫通試験		③1m 貫通試験	
	④ 熱的試験(耐火)		④熱的試験(火災試験)	
	⑤ 0.9m 浸漬試験		⑤0.9m 浸漬試験	
	ここで、核分裂性輸送物に係る一般の試験条件としては、(ロ)-第A.63表に示すよ		ここで、核分裂性輸送物に係る一般の試験条件としては、(ロ)-第 A.63 表に示すよ	
	うに損傷がある落下試験を採用する。		うに損傷がある 0.3m 自由落下試験を採用する。	
	ロ章E.臨界解析における評価方法を考慮して、影響する輸送物の損傷状態を評価		(ロ)章 E 臨界解析における評価方法を考慮して、影響する核燃料輸送物の損傷状態	
	すると次のようになる。		を評価すると次のようになる。	
	1. 核分裂性輸送物に係る一般の試験条件のうち落下試験		1. 核分裂性輸送物に係る一般の試験条件のうち落下試験	
	本試験条件における輸送物の損傷状態は(ロ)-第A.63表に示すとおりである。		本試験条件における核燃料輸送物の損傷状態は(ロ)-第 A.63 表に示すとおりであ	
			り、緩衝体の変形のみを考慮する必要がある。	
$\square - A$	A.9.1 の 0.3m 落下と 9m 落下の落下方向が同一の場合に緩衝体の変形量が最大にな	(□)-A-164	(ロ)章 A.9.1の0.3m 自由落下試験と9m 落下試験の落下方向が同一の場合に緩衝体の	(4)-2
-157	ると考えられるので、この場合について検討を行う。		変形量が最大になると考えられるので、より厳しい条件として、0.3mと9mの合計であ	(以下同様)
			る 9.3mの高さから落下させる場合(以下「9.3m 落下試験」という。)について検討を行	

ページ					変更前			ページ	変更後							
$\square - A$	A. 6. 1	の2.に示	す手法を	用いて、変現	形量δ及び	衝撃加速度GAを求める。緩	爰衝体の累	(□)-A-166	(ロ)章A.6	6.1の2は	こ示す手術	まを用いて	、変形量δ	及び衝撃加速度 G _A を求める。	緩衝体	(4)-2
-159	積変形量	及び衝撃力	「速度は、	(ロ)-第A.	<u>66 表</u> に示 ⁻	す通りである。			の累積変形量	量及び衝撃	馨加速度!	は、 <u>(ロ)-</u> 等	育 A. 66 表に	示すとおりである。		
									また、比較	較のため(口)章 A.	6.1 に示す	- 9m 落下試	験の各落下姿勢で想定した設	計加速	11
									度を併記する	る。						
$\square - A$	<u>(</u> [])-第A.66	;表 <u>9m</u> 落	下試験時に	おける緩	断体の累積変形量と衝撃加 速	<u>速度</u>	(□)-A-166	6 (ロ)-第 A. 66 表 9.3m 落下試験時における緩衝体の累積変形量と衝撃加速度							(4)-②
$\square - A$	(3) 容器	本体及び	バスケット	の構造健全	全性評価			(□)-A-167								
-160	本落	下試験時0)衝撃加速	度は、A.6	.1に示す	9m 落下試験の各落下試験時	すで想定し		9.3m 落	下試験時	の衝撃加	速度は、(口)章 A. 6.	1 に示す 9m 落下試験の各落下	姿勢で	(4)-2
	た設計	加速度を上	三回らない	。したがっ	て、A.6.1	Lの評価に包絡されるため、	本落下試		想定した評	設計加速度	度を上回り	っない。し	たがって、	(ロ)章 A.6.1の評価に包絡さ	れるた	11
	験におい	いて、容器	景本体及び	バスケット	の構造健全	全性は維持される。			め、本落ヿ	下試験にお	おいて、彳	容器本体及	びバスケッ		0	
$\square - A$	(4) 三次	蓋0リン	グの密封性	生能の評価	(変形量の	評価)		(□)-A-167	(4) 三次蓋(0リングの	り密封性前	もの評価(変	変形量の評価)		
-160	本落	下試験時0)衝撃加速	度は、A.6	.1 に示す	9m 落下試験の各落下 試験時	す で想定し		9.3m 落	下試験時	の衝撃加	速度は、(口)章A.6.	1 に示す 9m 落下試験の各落下	姿勢で	(4)-②
	た設計	加速度を上	三回らない	。したがっ	て、A. 6.5	5の(ロ)-第A. 57 表に示した	たように0		想定した諸	設計加速度	度を上回り	らない。し	たがって、	(ロ)章A.6.5の(ロ)-第A.57	表に示	11
	リング	立置での書	蓋と胴との	和対ロ開き	き変位量は	基準値に対して十分な余裕	疹有して		したように	に0リング	ブ位置での)蓋と胴と	の相対口開	き変位量は基準値に対して十	分な余	
	いるため、密封性能が損なわれることはない。 裕を有しているため、密封性能が損なわれることはない。											はない。				
$\square - A$																
-160		<u>(口)-</u> 弗A・0	(衣 怪刀張)	<u>に輸送物に</u> 所る <u>の</u> 密	<u>新知の試験案</u> 封性能の評価	<u> 叶下における―仏霊玉周カスケット</u>			7	(口)-第 1.6/	衣 核方級[<u>土朝 达 彻 に 1名 る</u> <u>の</u> 整	5円別の試験業1	<u>牛下における―伙室金属刀スケツト</u>		
		*	件	二次蓋金属方	ガスケットの	密封性能 (5×10° ref cm³/s)			二次蓋金属ガスケットの 密封性能(5×10°ref cm ⁸ /s) 条件 二次蓋金属ガスケットの 密封性能(5×10°ref cm ⁸ /s)							
			1	横ずれ;	量 (nm)	を維持する基準値 ^{140,15)} (mm)				*		横ずれ	に量(mm)	を維持する基準値 ^{17), 18)} (mm)		
		0- ** *	垂直落下	横ずれ	0.20	3.0				9m 落下試	垂直落下	横ずれ	0.20	3.0		(4)-2
		SUE AR L	水平落下	横ずれ	1.71	3.0				験	水平落下	横ずれ	1.71	3.0		
		熱的	訪試験	横ずれ	0.06	6.0				熱的試験(火災試験)	横ずれ	0.06	6.0		11
		L		1	I	L]										
$\Box - A$	3.1m貫	通試験						(□)-A-167	3. 1m 貫通討	式験						
-160	1.及	び2.の落	茖下試験 に	おいて緩衝	体が変形す	トるが、これらはA.6.2に示	示すように		(口)章A	A. 9.2の	1 及び20	り落下試験	において緩	衝体が変形するが、これらは	(口)章	(4)-2
	1m 貫通	試験に対る	する評価に	おいて関係	系しない。1	したがって、本試験における	る輸送物の		A.6.2 に示	示すように	- 1m 貫通	試験に対す	る評価にお	らいて関係しない。したがって	、本試	(以下同様)
	損傷状的	態はA.6.	2 の結果((A. 6. 5 にえ	示す要約参	照)と同一である。			験における	る核燃料輔	輸送物の打	員傷状態は	(ロ)章 A.6	5.2 の結果(<mark>(ロ)章</mark> A.6.5 に示	す要約	
	参照)と同一である。															
$\Box - A$	4. 熱的詞	試験						(□)-A-168	4. 熱的試験	(火災試験)					(4)-2
-160,	1.及び2.の落下試験における緩衝体の累積変形量は、A.6.1に示す9m落下試験 (ロ)章A.9.2の1及び2の落下試験における緩衝体の累積変形量は、(ロ)章A.6.1(以											(以下同様)				
101	の各落	下試験時0	つ変形量に	対して若干	増加してい	いるが、緩衝体の変形量増加	ロの熱的試		に示す 9m	n 落下試驗	検の各落∃	「姿勢の変	形量に対し	て若干増加しているが、緩衝	- 体の変	
	験への		小である。	したがっ	て、本熱的	り試験における輸送物の損	傷評価は		形量増加0	の熱的試験	険(火災試	 験)への影	響は微小で	ある。したがって、本熱的試	験にお	
	A. 6. 5	の2.と同]ーとなる。						ける核燃料	科輸送物の	 の損傷評値	 西は(ロ)章	A. 6. 5 の 2	と同一となる。		

ページ			変更前			ページ			変更後		変更内容		
$\square - A$	5. 0.9m	浸漬試験				(□)-A-168	5. 0.9m	ı浸漬試験					
-161	A. 6.	.4の15m浸漬詞	試験の結果から明らかなよ	うに、0.9m 浸漬試験におい	て輸送物		(□)章A.6.4の15m浸	浸漬試験の結果から明らか	なように、0.9m 浸漬試験において	核 (4)-②		
	は損傷	が拡大すること	はない。				燃料	輸送物は損傷が拡大	にすることはない。		11		
$\square - A$	6. 輸送	物の損傷状態の	要約			(□)-A-168	6. 核燃	料輸送物の損傷状	態の要約		(4)-②		
-161	<u>(ロ)</u> -	<u>-第A.68 表</u> に核	核分裂性輸送物に係る特別の	の試験条件下における輸送	物の損傷		(ロ)-第A.68表に核分裂性輸送物に係る特別の試験条件下における核燃料輸送物の(
	状態の	要約を示す。な:	お、核分裂性輸送物に係る	特別の試験条件下において	燃料集合								
	体の強	度評価は行って	いないが、9m 落下時には				集合	本の強度評価は行っ	っていないが、9.3m 落下試	験 時 に は			
		が想定される	13)ことから、燃料集合体に	こついては、臨界解析におい	いて <u>(ロ)-</u>			が想	見定される ¹⁶⁾ ことから、燃	料集合体については、臨界解析に	お		
	<u>第A.6</u>	<u>9 表</u> に示すよう)	こ条件を設定する。				いて	(ロ)-第 A. 69 表 に示	「すように条件を設定する」	5			
$\square - A$						(□)-A-168					(4)-②		
-161	Г	<u>(口)-第A.68表</u>	核分裂性輸送物に係る特別の試験∮	<u>条件下における輸送物の損傷状態</u> │	1			<u>(ロ)-第 A.</u> B	38表 核分裂性輸送物に係る特別の	試験条件下における	(以下同様)		
	-	秦 啎	輸送物の損傷状態	順 考 通流体は乾累解時では無道				条件	核燃料輸送物の損傷状態	備考			
										緩衝体は臨界解析では無視。			
	_			考慮。				9m 落下試験	緩衝体及びバスケットの変形	バスケットの変形は臨界解析で			
	(表面) したい、「「「「「」」」、「「」」、「「」」、「「」、「」、「」、「」、「」、「」、「									考愿。			
			の変形	解析では無視。				1m 貫通試験	緩衝体、外筒及び中性子 遮蔽材 の変形	緩衝体及び中性子遮蔽材は臨界 解析では毎期			
			山性子油菇材の一部指復	臨界解析上は中性子遮蔽材を無					~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				
		熱的試験(<mark>耐火</mark>)	各部位の温度が上昇	視し、燃料温度を 20℃としてい				熱的試験(火災試験)	中性子遮蔽材の一部損傷	臨芥解析上は甲性ナ遮蔽材を無 視し、燃料温度を 20℃としてい			
	-			る。 密封装置及び二次蓋の密封性が					各部位の温度が上昇	ð.			
		0.9m 浸漬	損傷なし	健全であるので、胴内に浸水す				密封装置及び二次蓋の密封性が 健全であるので 肥内に浸水す					
				ることはない。				0.011 12 14	14 10 % 0	磁王 この るの こ、 加内に 夜 不 り ることはない。			
										·			
$\square - A$	A.10.1	スケールモデル	を用いた落下試験			(□)-A-170	A. 10. 1	1/3 スケールモデノ	レを用いた落下試験		(4)-②		
-162 $\square - A$	1 試驗	日的				(□)-A-170	1 計	論日的					
-162	1. 武族	ニーク 送物と頪似の 1	/3 スケールモデルを田いて		= = -70		1. PV	家族判論洋物を新作	の1/3 スケールモデルを	田いた 0m 茲下試驗(垂直及び水亚	茨 (1)-②		
	小前	区初と項因の15 下試験の試験結:	里と 特別の試験条件にお	いて証価した衝撃加速度	経衛休恋		下)に	上りの男の加速度	レ経衛休変形畳を測定]	11、た 5m 倍一 KK駅 (室直及 0 水平			
	形量の	解析 (CRUSH) の	結里を比較することで(6	USH コードを用いた評価手	はの妥当		計論。	を件において評価1	た衝撃加速度経衛休変	、福中記録の記録和末こ、特別 形量の解析(CRUSH)の結里を比較	t .		
	世を確	認する		112/114-75年四十1	12*/ X I		アレックス	トで CRUSH コード	を用いた評価主法の妥当	4を確認する	7		
$\Box - A$	① 垂直:	wu,?。 茲下 (頭部)				(□)-A-170	<u>-170</u> ① 血声波で(前如)						
-162	① <u></u>	茲下					9mの高さから試験体頭部を下側にして垂直姿勢にて変下させろ (2)						
		1111											
							9mの	 高さから水平姿勢)	こて落下させる。]]		

ページ	変更前	ページ	変更後	変更内容
$\Box - A$	3. 試験体	(□)-A-170	3. 試験体	
-162	本落下試験に用いた試験体は、本輸送容器と類似の輸送物について基本的な寸法を		本落下試験に用いた試験体は、本輸送容器と類似の核燃料輸送物について基本的な	(4)-②
	1/3 に縮小するとともに、密封部の挙動に影響する蓋部周りの隙間について、可能な		寸法を1/3に縮小するとともに、密封部の挙動に影響する蓋部周りの隙間について、	
	限り 1/3 スケールを維持できるように設計した。		可能な限り 1/3 スケールを維持できるように設計した。	
	また、主要材料については、本輸送物と同一もしくは <mark>同等の材料を使用し、中性子</mark>		また、主要材料については、本核燃料輸送物と同一又は同等の材料を使用し、中性	11
	遮蔽材領域については、中性子遮蔽材の密度と比較的近い軽量コンクリートに置き換		子遮蔽材領域については、中性子遮蔽材の密度と比較的近い軽量コンクリートに置き	
	えた。		換えた。	
$\square - A$	1. 試験の概要	(□)-A-175	1. 試験の概要	
-167	2003 年に原子力安全基盤機構 (NUPEC) にて実施された <mark>実規模落下</mark> 試験においては、		2003 年に原子力安全基盤機構 (JNES)にて実施された金属キャスク貯蔵技術確証試	(4)-2
	実規模の <mark>輸送貯蔵兼用容器</mark> の 9m 落下試験が実施されている。落下試験体は試験用に		験においては、実規模の金属キャスクの 9m 落下試験が実施されている。落下試験体	(以下同様)
	製作された模擬体であるが、外形寸法や重量は実規模輸送貯蔵兼用容器と同等であ		は試験用に製作された模擬体であるが、外形寸法や重量は実機設計の金属キャスクと	
	వ.		同等である。	
	試験は、頭部垂直落下、水平落下、コーナー落下など複数回行われ、加速度、ひず		試験は、頭部 9m 垂直落下、9m 水平落下、コーナー落下等複数回行われ、加速度、	
	み、密封性などの測定結果と動解析との比較などが行われている。		ひずみ、密封性等の測定結果と動解析との比較等が行われている。	
	本試験においては、バスケット及び使用済燃料を模擬した内部収納物の加速度が容		本試験においては、バスケット及び使用済燃料を模擬した内部収納物の加速度が容	
	器本体の加速度よりも高くなるという現象が確認された170。この現象は、落下時にお		器本体の加速度よりも高くなるという現象が確認された ¹⁸⁾ 。この現象は、落下時にお	
	いて内部収納物が容器本体の内面に衝突する影響と考えられ、この加速度差を容器本		いて内部収納物が容器本体の内面に衝突する影響と考えられ、この加速度差を容器本	
	体に対する内部収納物の加速度の比で表現すると、頭部垂直落下試験で2.6倍、水平		体に対する内部収納物の加速度の比で表現すると、頭部 9m 垂直落下時で 2.6 倍、9m	
	落下 <mark>試験</mark> で1.2倍であった。		水平落下時で 1.2 倍であった。	
	一方、TK-69CHS 型輸送物と類似の 1/3 スケールモデル落下試験(A10.1参照)では、		一方、TK-69CHS型核燃料輸送物と類似の1/3スケールモデル落下試験((ロ)章A10.1	
	容器本体と内部収納物の加速度比は上記よりも小さくなったが、内部収納物に対して		参照)では、容器本体と内部収納物の加速度比は上記よりも小さくなったが、内部収納	
	安全側に、垂直落下に対して2.6倍、水平落下に対して1.2倍の加速度増倍率を考慮		物に対して安全側に、垂直落下に対して 2.6 倍、水平落下に対して 1.2 倍の加速度増	
	した評価を行う。		倍率を考慮した評価を行う。	
□ – A	2. 内部収納物の加速度を考慮した評価	(□)-A-175	2. 内部収納物の加速度を考慮した評価	
-167	実規模落下試験体における内部収納物は、重量を模擬することを目的として設計さ		落下試験体における内部収納物は、重量を模擬することを目的として設計された燃	(4)-②
	れた燃料集合体とバスケットを一体化した構造物であり、実際の燃料集合体及びバス		料集合体とバスケットを一体化した構造物であり、実際の燃料集合体及びバスケット	(以下同様)
	ケットは一体ではないことや剛性が異なることなどの相違点はあるが、本輸送物の解		は一体ではないことや剛性が異なること等の相違点はあるが、本核燃料 輸送物の解析	
	析裕度の確認のため、この試験で得られた加速度増倍率が本輸送物でも生じたと仮定		裕度の確認のため、本試験で得られた加速度増倍率が本核燃料輸送物でも生じたと仮	
	した場合の影響を評価する。		定した場合の影響を評価する。	
$\begin{array}{c} \square - \mathbf{A} \\ -1 \ 6 \ 7 \end{array}$	 9m 落下 	(□)-A-175	(1) 9m 落下試験	(4)-2
□ - A - 1 6 8	a. 垂直落下	(□)-A-176	a. 9m 垂直落下	(4)-②
□ - A	内部収納物の衝突を考慮した垂直落下時にバスケットプレートに生じる応力は、	(□)-A-176	内部収納物の衝突を考慮した垂直落下時にバスケットプレートに生じる応力は、(ロ)	(4)-2
-168	A.5.3.2と同様に求める。		章A.5.3.2と同様に求める。	

余裕率 ■ (4)-② (4)-②
(4)-②
こ生じる応力
(4)-②
余裕率 ■ (4)-② (4)-③
こよる ABAQUS (4)-②
こ生じる応力 (4)-2)
余裕事 ■ (-) (4)-②
(4)-②
(4)-②
コは、(ロ)章 (4)-②
社 余裕率 (4)-②
(-)
に生じる応力
<u>10 表</u> に示す。 (4)-②

ページ	変更前 ページ 変更後	変更内容
$\square - A$	(II)-A-179	
-171	評価位置 $h^{r_{\lambda}\gamma_{2}\gamma_{2}\gamma_{2}-r_{1}}$ 曲げ応力 せん断応力 応力強さ 基準値 余裕率 1 の板厚 : σ_{b} (MPa) : σ_{b} (MPa) : s (MPa)	(4)-②
$\square - A$	イ. バスケットプレート (縦板) (ロ)-A-179 イ. バスケットプレート (縦板)	
-171	内部収納物の衝突を考慮した水平落下時にバスケットプレート(縦板)に生じる応力 内部収納物の衝突を考慮した水平落下時にバスケットプレート(縦板)に生じる応	Ċ
	は、A.5.3.2と同様に求める。計算条件と計算結果を(<u>ロ)-第A.付 11 表</u> に示す。バス は、(ロ)章A.5.3.2と同様に求める。計算条件と計算結果を(<u>ロ)-第A.付 11 表</u> に示す	(4)-2
	ケットプレートに発生する応力は基準値以下である。 バスケットプレートに発生する応力は基準値以下である。	
$\begin{array}{c} \Box - A \\ -1 7 2 \end{array}$	Image: Normal state in the	(4)-②
$\square - A$	3. まとめ (ロ)-A-180 3. まとめ	
-172	以上に示すように、内部収納物の衝突を考慮した 9m 落下時及び 0.3m 落下時において 以上に示すように、内部収納物の衝突を考慮した 9m 落下時及び 0.3m 落下時におい	5
	も、輸送物各部はA.1.2に定めた基準を満足し構造上の健全性が損なわれることはな も、核燃料輸送物各部は(ロ)章A.1.2に定めた基準を満足し構造上の健全性が損なわ	ı (4)−②
	い。ることはない。	

ページ	変更前	ページ	変更後	変更内容
$\square - A$	A.10.3 傾斜落下時の輸送物健全性	(□)-A-181	A.10.3 傾斜落下時の核燃料輸送物健全性	(4)-2
-173	本輸送物の直径に対する長さの比は約1.9であり、細長い輸送物には該当しない。		本核燃料輸送物の直径に対する長さの比は約1.9であり、細長い核燃料輸送物には	11
	本輸送物に類似の1/3スケールモデルを用いた落下試験結果によれば、傾斜落下時の		該当しない。本核燃料輸送物に類似の 1/3 スケールモデルを用いた落下試験結果によ	11
	二次衝撃側の衝撃加速度は水平落下より大きく、水平落下時の衝撃加速度に対する比		れば、傾斜落下時の二次衝撃側の衝撃加速度は水平落下より大きく、水平落下時の衝	
	率は約1.3倍 ¹⁶⁾ 、及び約1.2倍 ¹⁷⁾ である。また、直径に対する長さの比が約2.5と		撃加速度に対する比率は約1.3倍 ¹⁸⁾ 、及び約1.2倍 ¹⁹⁾ である。また、直径に対する長	
	本輸送物のそれより少し大きいものの解析例でも、水平落下時の衝撃加速度に対する		さの比が約2.5と本核燃料輸送物のそれより少し大きいものの解析例でも、水平落下	11
	傾斜落下時の二次衝撃側の衝撃加速度の比率は約1.3 である ¹⁸⁾ 。		時の衝撃加速度に対する傾斜落下時の二次衝撃側の衝撃加速度の比率は約1.3である	
	いずれにしても、長さと直径の比が本輸送物のように2程度の輸送物の傾斜落下時		20) °	
	の二次衝撃側の衝撃加速度は、水平落下時の衝撃加速度の約 1.2~1.3 倍程度と考え		いずれにしても、長さと直径の比が本核燃料輸送物のように2程度の核燃料輸送物	11
	られる。		の傾斜落下時の二次衝撃側の衝撃加速度は、水平落下時の衝撃加速度の約1.2~1.3倍	
	一方、 <u>(ロ)-第A.付 12 表</u> に示す通り、本輸送物の水平落下に対する強度評価にお		程度と考えられる。	
	いては、CRUSH 評価値に対して 🧰 倍以上の割増した設計加速度が用いられている。		ー方、 <u>(ロ)-第 A. 付 12 表</u> に示すとおり、1/3 スケールモデル落下試験結果との比較	(4)-①
	さらに、この設計加速度を用いたバスケット及び各蓋ボルトの強度評価では、0.3m		において、水平落下に対する衝撃加速度については、CRUSH 評価値は 🧰 倍の割増し	
	水平落下時((ロ)-第A.26表、(ロ)-第A.27表及び(ロ)-第A.28表)と9m水平落下時		た評価結果が得られており、加えて、 <u>(ロ)-第 A. 付 13 表</u> に示すとおり、本核燃料輸送	
	((ロ)-第A.39表、(ロ)-第A.40表、(ロ)-第A.41表及び(ロ)-第A.42表)のいずれ		物の水平落下に対する強度評価においては、CRUSH 評価値に対して	
	においても、基準値に対する余裕率が少なくとも 🛄 である。当該強度評価におい		した設計加速度が用いられている。	
	て、バスケット及び各蓋ボルトに生じる応力は負荷される衝撃加速度に比例すること		さらに、この設計加速度を用いた <mark>容器本体、</mark> バスケット及び各蓋ボルトの強度評価	(4)-2
	から、余裕率が であった場合には、衝撃加速度を 倍に割増しても、基準値		では、0.3m水平落下時((ロ)-第 A.26 表、(ロ)-第 A.27 表及び(ロ)-第 A.28 表)と 9m	(以下同様)
	を満足することができるといえる。		水平落下時((ロ)-第 A. 39 表、(ロ)-第 A. 40 表、(ロ)-第 A. 41 表及び(ロ)-第 A. 42 表)	
	以上のことから、本輸送物のバスケット及び各蓋ボルトは強度評価上、水平落下時		のいずれにおいても、基準値に対する余裕率が少なくとも 🛄 である。当該強度評	
	の CRUSH 評価値の 1.32 倍 (×) 以上の衝撃加速度が負荷された場合におい		ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
	ても、基準値を満足することができる。		速度に比例することから、余裕率が であった場合には、衝撃加速度を に	
	したがって、傾斜落下時に水平落下時の1.3倍程度の加速度増加があったとしても、		 割増しても、基準値を満足することができるといえる。	
	バスケット及び各蓋ボルトの健全性が損なわれることはない。		」 以上のことから、本核燃料輸送物の容器本体、バスケット及び各蓋ボルトは強度評	
			ー ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー	
			 負荷された場合においても、基準値を満足することができる。	
			したがって、傾斜落下時に水平落下時の1.3倍程度の加速度増加があったとしても、	
			容器本体、バスケット及び各蓋ボルトの健全性が損なわれることはない。	
-	(記載なし)	(□)-A-181		(4)-①
			(ロ)-弗 1.1712 麦 水平洛下試験での洛下試験結果と	
			<u>CRUSH コード評価結果の比較(衝撃加速度)</u>	
			CRUSH 評価値 設計加速度 加速度の比率	
			(Å) (B) (B/Å)	
			注1)(口)-第1.付2表	

ページ	変更前	ページ	変更後	変更内容
-	(記載なし)	(□)-A-184	9) 10CFR71(2021), "Packaging and Transportation of Radioactive Material".	(4)-①
$\Box - A$	20) ASME Boiler & Pressure Vessel Code Section VII Division3, 2015 Edition,	(□)-A-184	12) "ASME Boiler & Pressure Vessel Code Section VII Division3, 2023	(4)-2
-176	(2015).		Edition".	

ページ	変更前	ページ	変更後	変更内容
$\square - B - 1$	B.1 概 要	(□)-B-1	B.1 概要	
	1. 輸送物の熱設計及びその取扱い		1. 核燃料輸送物の熱設計及びその取扱い	(4)-2
	本輸送物の熱放散システムは次のとおりであり、自然冷却にて輸送を行う。		本核燃料輸送物の熱放散システムは次のとおりであり、自然冷却にて輸送を行	
			ð.	
$\square - B - 1$	熱解析は、一般の試験条件下における輸送物各部の温度を求め、構成部品の温度が使	(□)-B-1	熱解析は、一般の試験条件下における核燃料輸送物各部の温度を求め、構成部品の温	(4)-2
	用可能温度を超えないことを示すとともに、他の解析への条件を示す。また、一般の試		度が使用可能温度を超えないことを示すとともに、他の解析への条件を示す。また、一	(以下同様)
	験条件下の日陰において人の近づきうる表面の最高温度が85℃以下であることを示す。		般の試験条件下の日陰において輸送中人が容易に近づくことができる表面(以下「近接	
	特別の試験条件下においては輸送物各部の温度を求め、構成部品の健全性への影響を		表面」という。)の最高温度が 85℃以下であることを示す。	
	示すとともに、他の解析への条件を示す。		特別の試験条件下においては核燃料輸送物各部の温度を求め、構成部品の健全性へ	
	さらに、一般の試験条件下及び特別の試験条件下における輸送物各部の圧力を求め、		の影響を示すとともに、他の解析への条件を示す。	
	他の解析への条件を示す。		さらに、一般の試験条件下及び特別の試験条件下における核燃料輸送物各部の圧力を	
			求め、他の解析への条件を示す。	
$\square - B - 1$	 2. 熱解析の条件 	(□)-B-1	 2. 熱解析の条件 	
	熱解析は、(ロ)-第B.1表に示す条件で行う。		熱解析は、(ロ)-第 B.1 表に示す条件で行う。	(4) @
	輸送物の最大の発熱量(崩壊熱量)は、(イ)-第A.1表に示したように、14.1kW以		核燃料輸送物の最大の発熱量(崩壊熱量)は、(イ)-第 A.1 表に示したように 14.1kW	(4)-(2)
	下であるが、熱解析ではこれに余裕を見た発熱量とする。		以下であるが、熱解析ではこれに余裕を見た発熱量とする。	

		1	<u>(ロ)-第B.1表 熱</u>	解析の主な条件及	<u>び方法</u>				
	条件		一般の試験条件			特別の試験条件			
項目		最高温度評価条件	人の近づき得る表面 の最高温度評価条件	最低温度評価条件	火災前	火災時	火災後		
Я	壞熱量			OkW					
環境 条件	周囲温度	静止空気 38℃	静止空気 38°C 静止空気 38°C		静止空気 38℃	火災 30分間 800℃	静止空気 38℃		
	太陽熱放射	あり	なし	なし	あり	あり	あり		
	周囲吸収率	1.0	1.0	1.0	1.0	0.g 🕸	1.0		
計算 モデル	輸送物	軸方向二次元軸対称	弥全体モデル及び半径	経方向輪切りモデル	(燃料集合体領域	或は均 質 化近似)		
	燃料集合体	燃料集合体モデル							
温度分布計算 プログラム 有限要素法による ABAQUS ^D コード									
注)火纟	その放射率を対	示す							
ページ	(ロ)-B-	-2							
<u> </u>			<u>(ロ)-第B.1表 熱</u>	解析の主な条件及	<u>び方法</u>				
	条件		一般の試験条件		特別の試験条件				
項目		最高温度評価条件	<mark>近接</mark> 表面の最高温度 評価条件	最低温度評価条件	火災前	火災時	火災後		
崩	壊熱量			Ok₩					
環境 条件	周囲温度	静止空気 38℃	静止空気 38℃	静止空気-20℃	静止空気 38℃	火災 30分間 800℃	静止空気 38℃		
	太陽熱放射	あり	なし	なし	あり	あり	あり		
	周囲吸収率	1.0	1.0	1.0	1.0	0.9 ®	1.0		
計算 モデル	核燃料 輸送物	軸方向二次元軸対和	你全体モデル及び半谷	▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲ ▲					
	燃料集合体	燃料集合体モデル							
<u>温</u> 度 プロ	分布計算 1グラム	有限要素法による。	ABAQUS ^{IJ} ⊐〜ド						
注)火炎	の放射率をお	たす							
(1)									
 (4) - (2)									

ページ	変更前	ページ	変更後	変更内容			
$\square - B - 5$	<u>(ロ)-第B.4表 材料の熱的性質</u>	(□)-B-5	(ロ)-第 B.4 表 材料の熱的性質(その他)	(4)-②			
$\square - B - 6$	B.3 構成要素の仕様	(□)-B-6	B.3 構成要素の仕様				
	 三次蓋部シール 		1. 三次蓋部シール				
	ふっ素ゴム		ふっ素ゴム製0リング				
$\square - B - 6$	B.4.1 熱解析モデル	(□)-B-6	B.4.1 熱解析モデル				
	本輸送物の熱解析は、有限要素法による ABAQUS コードを用いて行った。		本 <mark>核燃料</mark> 輸送物の熱解析は、有限要素法による ABAQUS コードを用いて行った。	(4)-2			
$\square - B - 6$	B.4.1.1 解析モデル	(□)-B-6	B.4.1.1 解析モデル				
	1. 解析に用いる各モデル		1. 解析に用いる各モデル				
	本輸送物の一般の試験条件下における各部温度を評価するために解析モデ		本核燃料輸送物の一般の試験条件下における各部温度を評価するために解析モ	(4)-②			
	ルとして以下の3つのモデルを用いた。		デルとして以下の3つのモデルを用いた。				
$\square - B - 6$	各モデルにおいて評価する輸送物部位は次のとおりである。	(ロ)-B-6	各モデルにおいて評価する核燃料輸送物部位は次のとおりである。	(4)-2			
$\square - B - 8$	一般の試験条件のうち、水噴霧試験及び積み重ね試験では輸送物は変形しないが、自	(□)-B-8	一般の試験条件のうち、水噴霧試験及び積み重ね試験では核燃料輸送物は変形しない	(4)-②			
	由落下試験及び貫通試験において緩衝体に変形を生じる。しかしながら、一般の試験条		が、0.3m自由落下試験及び 6kg 棒貫通試験において緩衝体に変形を生じる。しかしなが	(以下同様)			
	件では、緩衝体が変形しないものとする方が収納物の温度を高く評価できる。したがっ		ら、一般の試験条件では、緩衝体が変形しないものとする方が収納物の温度を高く評価				
	て、一般の試験条件の熱解析では輸送物は変形及び破損はしていないものとする。		できる。したがって、一般の試験条件の熱解析では核燃料輸送物は変形及び破損はして				
			いないものとする。				
$\Box - B$		(□)-B-12					
-12							
	у.						
				(4)-②			
	<u>(ロ)-第B.4 図 輪切りモデル要素分割図</u>		<u>(ロ)第 B.4 図 輪切りモデル要素分割図</u>				

ページ	変更前	ページ	変更後	変更内容
ш — В	B.4.2 最高温度	(ロ)-B-21	B.4.2 最高温度	
-21	一般の試験条件下における、B.4.1に記載した解析モデル及び条件に基づいて		一般の試験条件下における、(ロ)章B.4.1に記載した解析モデル及び条件に基づ	(4)-2
	求めた輸送物各部の最高温度の結果を <u>(□)−第B.9表</u> に示す。		いて求めた <mark>核燃料</mark> 輸送物各部の最高温度の結果を <u>(ロ)-第 B.9 表</u> に示す。	11
	ABAQUS コードで解析して得られた一般の試験条件下で太陽熱放射のある場合		ABAQUS コードで解析して得られた一般の試験条件下の最高温度評価条件におけ	11
	の輸送物とその収納物の各部の温度分布を(ロ)-第B.10図~(ロ)-第B.12図に、		る核燃料輸送物とその収納物の各部の温度分布を(ロ)-第 B. 10 図~(ロ)-第 B. 12 図	
	また、 <mark>太陽熱放射のない場合の</mark> 温度分布を <u>(ロ)-第B.13 図</u> 及び <u>(ロ)-第B.14 図</u>		に、また、一般の試験条件下の近接表面の最高温度評価条件における温度分布を	11
	に示す。なお、輪切りモデルは全体モデルの燃料集合体領域の最高温度発生断面		<u>(ロ)-第 B. 13 図</u> 及び <u>(ロ)-第 B. 14 図</u> に示す。なお、輪切りモデルは全体モデルの燃	
	をモデル化している。ただし、境界条件となる胴内面と外筒外面の温度は、全体		料集合体領域の最高温度発生断面をモデル化している。ただし、境界条件となる胴	
	モデルの胴内面と外筒外面の最高温度を設定している。		内面と外筒外面の温度は、全体モデルの胴内面と外筒外面の最高温度を設定してい	
	一般の試験条件下において、各部の温度はB.3に示す使用可能温度を超えるこ		వ.	
	とはない。		一般の試験条件下において、各部の温度は(ロ)章 B.3 に示す使用可能温度を超え	11
	一般の試験条件下で太陽熱放射のない場合に人が容易に近づきうる表面とし		ることはない。	
	ては、(ロ)-第B.9表に示すように、緩衝体表面は 73℃となり、基準値の 85℃以		近接表面としては、(ロ)-第 B.9 表に示すように、近接表面の最高温度評価条件	11
	下である。外筒外面が 88℃、トラニオン温度は 114℃となり 85℃を超えている		において緩衝体表面は 73℃となり、基準値の 85℃以下である。外筒外面が 88℃、	
	が、外筒外面又はトラニオン部には必要に応じ近接防止金網を取り付けて輸送す		トラニオン温度は 114℃となり 85℃を超えているが、外筒外面又はトラニオン部に	
	る ^{注)} ため、 <mark>輸送中人が容易に近づきうる</mark> 表面の温度は 85℃以下である。		は必要に応じ近接防止金網を取り付けて輸送する ^{注)} ため、 <mark>近接</mark> 表面の温度は85℃以	11
			下である。	
			なお、(ロ)章 B. 4. 1. 1 に示すとおり、一般の試験条件においては収納物及び緩衝	(4)-①
			体の最高温度を高く評価するために緩衝体の変形を考慮していないが、緩衝体表面	
			積の減少分が全て緩衝体表面温度上昇に寄与する場合、保守側に一般の試験条件の	
			垂直落下、水平落下及びコーナー落下の緩衝体変形後の形状を包含する形状を考慮	
			すると、緩衝体の表面積は約14%減少することになり、緩衝体表面温度は約79℃と	
			なるが、技術上の基準に定める 85℃を超えることはない。	

ページ		変更前		ページ 変更後						
$\square - B$				(ロ)-B-22						
-22	<u>(ロ)-第B.9表</u>	- 一般の試験条件下の量	<u> 長高温度</u>		<u>(ロ)-第 B.9 表</u>	般の試験条件下の最	<u>長高温度</u>			
	<u>></u>		(単位:℃)				(単位:℃)	(4)-②		
	冬 供		人の近づきうる		条件	最高温度	近接表面の最高温度			
		最高温度 評価条件	表面の最高温度		如	(太陽熱放射あり)	(太陽熱放射なし)			
	部位	(太陽熱放射あり)	評価条件 (大唱熱抜射な1)		6月 位 徐衡休表面	87	73			
			(太陽熱放射なし)		緩倒性公司	108	93	(4)-①		
	緩衝体表面	87	73			104	89			
	外筒	104	89		外筒	103 注 1)	88 注 1)			
		103 注 1)	88 ^{注1)}		上部端板	95	79			
	上部端板	95	79		下部端板	109	94			
	下部端板	109	94		伝熱フィン	119	104	"		
	側部中性子遮蔽材	115	100		側部中性子遮蔽材	115	100			
			· ·			ł	1			
$\square - B$ - 2.6	<u>(口)-第B.13 図</u> 一	般の試験条件下の全体モ	デル温度分布	(□)-B-26	<u>(ロ)-第 B. 13 図 一</u> 身	段の試験条件下の全体モ	- デル温度分布			
20	(人の近づき・	うる表面の最高温度評価	条件)		<u>(近接</u> 表面の最高温度評価条件)					
□ — B	<u>(口)-</u> 第B.14図 一般	との試験条件下の輪切り そ	= デル温度分布	(□)-B-27	<u>(口)-</u> 第 B. 14 図 一般	の試験条件下の輪切り	モデル温度分布			
-27	(人の近づき・	うる表面の最高温度評価	条件)	(近接表面の最高温度評価条件)						
□ — B	B.4.3 最低温度			(ロ)-B-28 B.4.3 最低温度						
-28	本輸送物の最低使用温度条	(ロ)-第B.5表に	記載したように−20℃ <mark>の大気</mark>	本核燃料輸送物の最低温度評価条件は、(ロ)-第 B.5表に記載したように周囲温度						
	中において、太陽熱放射を受	とけず発 <mark>熱量が 0kW の時</mark> で	ぎあり、輸送物の最低温度は	-20℃において、太陽熱放射がなく崩壊熱量が 0kW のときであり、核燃料輸送物の最						
	-20℃である。この温度におい	いて、構成材料に悪影響を	• 及ぼすような要因は生じな	低温度は-20℃である。(ロ)章 A. 4.2 に示したように、この温度において、構成材料に						
	い。また、本輸送物は乾式で	あり、胴内はヘリウムが	「充填されるため凍結するこ	- 悪影響を及ぼすような要因は生じない。また、本核燃料輸送物は乾式であり、胴内は						
	とはない。			ヘリウムが充填されるため凍結することはない。						
$\square - B$	B.4.4 最大内圧			(□)-B-28	B.4.4 最大内圧					
- 2 8	一般の試験条件下におい	て輸送物に最大内圧を	生じるのは、崩壊熱量が		一般の試験条件下において核	然料 <mark>輸送物に最大内</mark> 圧	を生じるのは、崩壊熱量が	(4)-②		
	17.56kW、環境温度が 38℃の	場合であるので、このと	きの一次蓋と胴で構成され		17.56kW、環境温度が 38℃の場合	であるので、このとき	の一次蓋と胴で構成される空			
	る空間の圧力(以下「胴内圧	ミ」という。)、一次蓋と二	こ次蓋間の空間の圧力(以下		間の圧力(以下「胴内圧」という。)、一次蓋と二次蓋間の	⊃空間の圧力(以下「一二次蓋			
	「一二次蓋間圧力」という。)	、二次蓋と三次蓋間の空	E間の圧力(以下「二三次蓋		間圧力」という。)、二次蓋と三次	蓋間の空間の圧力(以下	「二三次蓋間圧力」という。)			
	間圧力」という。)及び三次蓋	監と胴で構成される密封 3	表置の圧力(以下「三次蓋-		及び三次蓋と胴で構成される密封	装置の圧力(以下「三次	【蓋−胴内圧力」 という。)の計			
	胴内圧力」という。)の計算ス	方法及び計算結果を示す。	2		算方法及び計算結果を示す。					
$\square - B$ - 2.8	1. 胴内圧			(□)-B-28	1. 胴内圧					
20	輸送物の内部には、輸送に先立	ち燃料集合体を装荷後、	所定の圧力のヘリウムが充		核燃料輸送物の内部には、輸送	に先立ち燃料集合体を	装荷後、所定の圧力のヘリウ	(4)-2		
	填される。一般の試験条件下での	ヘリウムの温度を保守的	ロにバスケット平均温度とす		ムが充填される。一般の試験条件	下でのヘリウムの温度	を保守的にバスケット平均温			
	ると、胴内圧は以下の通り求めら	っれる。			度とすると、胴内圧は以下のとお	り求められる。				

ページ	変更前	ページ	変更後	変更内容
$\square - B$	計算条件と計算結果を(ロ)-第B.10表に示す。なお、設計評価期間中の一二次蓋間へ	(□)-B-28	計算条件と計算結果を(ロ)-第 B. 10 表に示す。なお、設計貯蔵期間中の一二次蓋間へ	(4)-2
-28	リウムの胴内への漏えいは十分小さく、漏えいを考慮しても胴内圧は負圧を維持する。		リウムの胴内への漏えいは十分小さく、漏えいを考慮しても胴内圧は負圧を維持する。	
□ — B	3. 二三次蓋間圧力	(□)-B-29	3. 二三次蓋間圧力	
-29	三次蓋取付け時の二三次蓋間は常温、大気圧の空気とする。また、保守側に二次蓋		三次蓋取付け時の二三次蓋間は常温かつ大気圧の空気とする。また、保守側に二次	(4)-②
	シールの密封性が失われ一二次蓋間のヘリウムが漏えいすると仮定すると、一般の試		蓋シールの密封性が失われ一二次蓋間のヘリウムが漏えいすると仮定すると、一般の	
	験条件下での二三次蓋間圧力は、以下の通り求められる。		試験条件下での二三次蓋間圧力は、以下のとおり求められる。	
□ — B	計算条件と計算結果を <u>(ロ)-第B.12表</u> に示す。	(□)-B-30	計算条件と計算結果を <u>(ロ)-第 B. 12 表</u> に示す。	
-30			なお、三次蓋取付け時の周囲温度が仮に-20℃であった場合には空気の密度が大きく	(4)-①
			なるため、二三次蓋間圧力は約山。増加する可能性がある。この圧力上昇による三次蓋の	
			応力増加は最大 3MPa、三次蓋ボルトの応力増加は最大 12MPa であり、(ロ)章 A.5.1の一	
			般の試験条件の熱的試験、(ロ)章 A.5.3 の一般の試験条件の 0.3m 落下事象、及び(ロ)	
			章 A.6.1 の特別の試験条件の 9m 落下事象において解析基準値に対して応力増加値以上	
			の余裕を有していることを確認している。	
□ — B	B.4.5 最大熱応力	(□)-B-33	B.4.5 最大熱応力	
- 3 2	一般の試験条件下においては、輸送物に熱応力が生じるが、ロ章A.5.1 に示す		一般の試験条件下においては、核燃料輸送物に熱応力が生じるが、(ロ)章 A.5.1 に	(4)-2
	ようにいずれも評価基準を下回る。		示すようにいずれも評価基準を下回る。	
□ — B	B.4.6 結果の要約及びその評価	(□)-B-33	B.4.6 結果の要約及びその評価	
- 3 2	一般の試験条件下における熱解析結果の要約と評価を <u>(ロ)-第B.14表</u> に示す。		一般の試験条件下における熱解析結果の要約と評価を <u>(ロ)-第 B.14 表</u> に示す。本核	(4)-2
	本輸送物は以下の通り一般の試験条件の基準を満足している。		燃料輸送物は以下のとおり一般の試験条件の基準を満足している。	(以下同様)
	・容易に人の近づきうる部分としての<緩衝体表面の最高温度は太陽熱放射なし		・最高温度評価条件において、三次蓋0 リングの最高温度は 96℃となり、(ロ)章	
	の場合において 73℃であり、基準値の 85℃を超えることはない。外筒外面及		B.3に記載した使用可能温度 180℃を超えることはない。	
	びトラニオン温度は 85℃を超えているが、外筒外面又はトラニオン部には必		・最高温度評価条件において、一次蓋金属ガスケット及び二次蓋金属ガスケットの	
	要に応じ近接防止金網を取り付けて輸送するため、人が容易に近づき得る表		最高温度はそれぞれ 100℃及び 97℃であり、(ロ)章 B.3 に記載した使用可能温度	
	面の温度は85℃以下である。		130℃を超えることはない。	
	・三次蓋Oリングの最高温度は 96℃となり、B.3 に記載した使用可能温度		・最高温度評価条件において、蓋部、底部及び側部の中性子遮蔽材は、その最高温	
	180℃を超えることはない。		度が 124℃であり、(ロ)章 B.3 に記載した使用可能温度 150℃を超えることはな	
	・蓋部、底部及び側部の中性子遮蔽材は、その最高温度が 124℃であり、使用		ل ^ب ه	
	可能温度である150℃を超えることはない。		・最高温度評価条件において、上記を除く構成材料についても、健全性に悪影響を	
	 その他の構成材料についても、悪影響を及ぼすような温度にはならない。 		及ぼすような温度にはならない。	
	・周囲温度が-20℃で太陽熱放射なしの場合においては、 すべての部位が-20℃		 ・近接表面の最高温度評価条件において、 緩衝体表面の最高温度は73℃であり、基 	
	に達するが、輸送物の健全性に問題はない。		準値の 85℃を超えることはない。一方、外筒外面及びトラニオン温度は 85℃を	
			超えているが、外筒外面又はトラニオン部には必要に応じ近接防止金網を取り付	
			けて輸送するため、 <mark>近接</mark> 表面の温度は 85℃以下である。	
			・最低温度評価条件において、周囲温度が−20℃で、太陽熱放射がなく崩壊熱量が	
			0kW のため、全ての部位が−20℃に達するが、核燃料輪送物の健全性に問題はない。	

ページ	変更前				ページ	ページ 変更後					
□ - B - 3 3	(ロ)-第日,14表 一般の試験条件下の執解析結果の要約と評価					(ロ)-第 B.14 麦 一般の試験条件下の執解析結果の要約と評価(1/2)					
55	項目	基準値	結果			項目	結果	基準値	評 価	他の解析への条件	(4)-①
	最高温度 燃料集合体 (BJ型、STEPI型)	270°C	248°C	基準に合致、構造解析に使用		最高温度 燃料集合体 (BJ型、STEP II型)	248°C	270°C181	基準值以下	構造解析では 260℃を使用 ^{注1)}	(以下同様)
	燃料集合体 (8×8型、RJ型)	200°C	189°C	基準に合致、構造解析に使用		燃料集合体	189°C	200°C ¹⁸⁾	基準值以下	構造解析では	
	バスケット	425℃	226°C	基準に合致、構造解析に使用		(8×8型、RJ型)				260℃を使用 = 1/	
	蓋部、底部及び側部 中性子遮蔽材	150°C	124°C	基準に合致		バスケット	226°C	425°C ^{19),20)}	基準值以下	構造解析では ℃を使用 ^{注1)}	
	一次蓋金属ガスケット	130°C	100°C	基準に合致		蓋部、底部及び側部	124°C ^{注2)}	150°C ¹³⁾	基準 <mark>値以下</mark>	-	
	二次蓋金属ガスケット	130°C	97°C	基準に合致		中性子遮蔽材					
	三次蓋Oリング	180°C	96°C	基準に合致		一次蓋金属ガスケット	100°C	130°C ¹⁶⁾	基準值以下	÷	
	外筒	350°C	104°C	基準に合致、構造解析に使用		二次蓋金属ガスケット	97°C	130°C ¹⁶⁾	基準値以下	E E	
	月间	350°C	129°C	基準に合致、構造解析に使用		三次蓋 0 リング	96°C	180°C ^{11), 12)}	基準值以下	+	
	近接表面注印	85°C	114°C	必要に応じて近接防止金網を 取付けるため基準に合致		外筒	104°C	350°C ^{19), 20)}	基準值以下	構造解析では Cを伸用 ^{注1)}	
	最低温度	胴内の 凍結なし	すべての部位が 周囲温度-20℃	胴内雰囲気がヘリウムである ため凍結しない		月间	129°C	350°C ^{19), 20)}	基準 <mark>値以下</mark>	構造解析では	
	最大内庄 	-	0.0785 MPa (-0.0229 MPaG)	設計評価期間中のヘリウムの 内部への漏えいを考慮しても 0.097 MPa ^{達の} 未満 構造解析では		近接表面 ^{注 3)}	73℃ ^{±4}	85°C	基準值以下	Cを使用 ^{進10}	
	一二次蓋間圧力	-		-0.101325MPaGを使用 構造解析では MPaGを使用		最低温度	核燃料輸送物 の全部位が周 囲温度-20℃	胴内の凍結 なし	胴内雰囲気が ヘリウムであ るため凍結し ない	ł	
	二三次蓋間圧力	-		構造解析では MPaGを使用		<u>注</u> 1)構造解析における その温度を包絡す	温度条件として る許容値の設定	は、熱解析結果 温度条件を代表	見としての温度分 浸に示す。	立布を入力するが、	
	三次蓋-胴内圧力	-	0.0820 MPa	設計評価期間中のヘリウムの 内部への漏えいを考慮しても 0.097 MPa ^{注2} 未満		注 2) 蓋部、底部及び側注 3) 近接表面の最高温	部中性子遮蔽材 度評価条件にお	のうち、最高と ける <mark>評価</mark> 結果で	・・・・・ なる温度。 である。なお、タ	外筒外面及びトラニ	
	注 1) ──般の試験条件下で ニオン温度は 85℃を ため、人が容器に近 注 2) 高気圧及び低気圧に	太陽熱放射な 超えている; づきうる表面 よる大気圧3	のない場合の評価で が、必要に応じ近接 町の温度は 85℃以下 変動(±0.004 MPa)	ある。なお、外筒外面及びトラ 防止金網を取り付けて輸送する である。 を考慮した最低圧力		オン温度はそれぞ ニオン部には必要 輸送するため、 近 注 4) 緩衝体表面の最高	*れ 88℃及び 114* 『に応じ近接防止』 「接表面の温度は 「温度	Cであり 85℃: 金網(73℃以下 85℃以下であ	を超えているが. ((ロ)章 B.6.3 ẩ る。	、外筒外面又はトラ 参照))」を取り付けて	

ページ	変更前				ページ 変更後						変更内容		
□ – B	<u>(ロ)-第</u> B	<u>(ロ)-第B.14表 一般の試験条件下の熱解析結果の要約と評価</u>				(II)-B-35							
-33	項目	基準値	結果	評	価		<u>(口)-第</u>	<u>B.14表 一般の記</u>	<u>ば験条件下の</u> ↓ # ## ##	·熱解析結果○	<u>の要約と</u>	<u>評価(2/2)</u>	(4)-①
	最高温度						項 目	給 果	▲ 準 値	詳	1曲	他の解析への条件	(以下同様)
	燃料集合体 (BJ型、STEP II型)	270°C	248°C	基準 <mark>に合致、</mark> 相	構造解析に使用		取大内庄	0.0785MPa	-	 設計貯蔵集	開申の	構造解析では	
	燃料集合体	200°C	189°C	基準に合致し	構造解析に使用		10-1-17-2	(-0.0229MPaG)		ヘリウムの	り内部へ	-0.101325MPaG を	
	(8×8型、RJ型)									の漏えいる ても 0.09	と考慮し 17MPa ^{注)}	使用	
	バスケット 善辞 序がまいのけ	425°C	226°C	基準に合致、相	構造解析に使用					未満			
	室部、 愿部 及 O 则 部 中性子 遮蔽材	150°C	124°C	基準	に合致		——————————————————————————————————————		1 -	_		構造解析では	
	一次蓋金属ガスケット	130°C	100°C	基準)	に合致							MPaGを使用	
	二次蓋金属ガスケット	130°C	97°C	基準	に合致		二三次蓋間圧力		-	-		構造解析では MPaG を使用	
	三次蓋〇リング	180°C	96°C	基準(に合致			0.092040	•	设计时带机	调制曲小		
	外简	350°C	104°C	基準 <mark>に合致、</mark> 相	構造解析に使用		三次蓋-胴内圧刀	0.0020m1a		ヘリウムの あまえいお	の同中の の内部へ を表慮し		
	胴	350°C	129°C	基準に合致、相	構造解析に使用					ても 0.09	2 9,02 0 17MPa ³ ≛)		
	近接表面建口	85°C	114°C	必要に応じて) 取付けるたど	近接防止金網を め基準に合致		 注)高気圧及び低気	 【圧による大気圧3	<u> </u> 変動(±0.004	木満 MPa)を考慮	した最低	」 ; 庄力	
	最低温度	胴内の 凍結なし	すべての部位が 周囲温度-20℃	胴内雰囲気が~ ため凍縦	ヘリウムである 結しない								
	最大内庄												
	胴内庄	-	0.0785 MPa (-0.0229 MPaG)	設計評価期間 内部への漏えい 0.097 MF 構造解 -0.101325	中のヘリウムの いを考慮しても Pa ^{注印} 未満 耕行では MPaGを使用								
	一二次蓋間圧力	-		構造解 MPa	耕では aG を使用								
	二三次蓋間圧力	_		構造解 MP:	¥析では aG を使用								
	三次蓋-胴内圧力	-	0.0820 MPa	設計評価期間 内部への漏え、 0.097 MF	中のヘリウムの いを考慮しても Pa ^{注2]} 未満								
	注1) 一般の試験条件下	で太陽熱放射	のない場合の評価で	ある。なお、外律	資外面及びトラ								
	ニオン温度は 85%	を超えている Fect キュマ 表	が、必要に応じ近接 素の調慮は 95℃01丁	防止金網を取り付 でする	寸けて輸送する								
	/この、人が合益に 注 2) 高気圧及び低気圧	処つさうね衣 による大気圧	面の温度は 85 U以下 変動 (±0.004 MPa)	じのる。 を考慮した最低	压力								
□ - B	B.5.1 熱解析モデル					(□)-B-36	B.5.1 熱解析モデル	/					
-34	輸送物の熱解析	は、有限要素	表法による ABAQUS	コードを用い	て行った。		核燃料輸送物の)熱解析は、有限	要素法によ	る ABAQUS コ	コードを	・用いて行った。	(4)-②
$\square - B$ -34	各モデルにおいて評価	する輸送物音	『位は次のとおり	である。		(□)-B-36	各モデルにおいて	「評価する核燃料	輸送物部位	は次のとお	りである	5.	(4)-②

ページ	変更前	ページ	変更後	変更内容
$\Box - B$	特別の試験条件の熱解析は、強度試験(9m 落下試験及び 1m 貫通試験)条件に引き続	(□)-B-36	特別の試験条件の熱解析は、強度試験(9m 落下試験及び 1m 貫通試験)条件に引き続い	
-34	いて、耐火試験条件におかれるものとし、落下試験等の影響を以下のように解析モデル		て、熱的試験(火災試験)条件におかれるものとし、落下試験等の影響を以下のように解	(4)-②
	に考慮した。		析モデルに考慮した。	
□ — B	・1m 貫通試験における輸送物の変形は、緩衝体及び外筒に生じる変形である。外筒には	(□)-B-36	・1m 貫通試験における核燃料輸送物の変形は、緩衝体及び外筒に生じる変形である。外	(4)-2
-34	直径 150mm の範囲の変形が生じるが、熱解析結果への影響は無視しうるものであるこ		筒には直径150mmの範囲の変形が生じるが、熱解析結果への影響は無視しうるもので	
	とから、解析モデルでは外筒が変形しないものとした。また、緩衝体に穴があく可能		あることから、解析モデルでは外筒が変形しないものとした。また、緩衝体に穴があ	
	性があるが、局所的であり断熱効果への影響は無視しうるものであることから、解析		く可能性があるが、局所的であり断熱効果への影響は無視しうるものであることか	
	モデルでは緩衝体の貫通孔はないものとした。		ら、解析モデルでは緩衝体の貫通孔はないものとした。	
$\square - B$	B.5.2 輸送物の評価条件	(□)-B-42	B.5.2 核燃料輸送物の評価条件	(2)
-40	9m 落下試験における輸送物の変形は緩衝体に生じる変形である。緩衝体の変形		9m 落下試験における核燃料輸送物の変形は緩衝体に生じる変形である。緩衝体の変	(4)-②
	量は次のとおり。		形量は次のとおり。	
$\square - B$	1m 貫通試験における輸送物の変形は、緩衝体及び外筒に生じる変形である。緩衝体は	(□)-B-42	lm 貫通試験における核燃料輸送物の変形は、緩衝体及び外筒に生じる変形である。緩	(4)-②
-40	落下時に穴があく可能性があるが、局所的であるので、断熱効果に大きな変化はない。		衝体は落下時に穴があく可能性があるが、局所的であるので、断熱効果に大きな変化は	
	また、外筒の最大変形は直径 150mm の範囲の変形である。この変形は局所的であり、外		ない。また、外筒の最大変形は直径 150mm の範囲の変形である。この変形は局所的であ	
	筒が変形していないと仮定しても、輸送物の熱的性能に影響をおよぼすことはない。		り、外筒が変形していないと仮定しても、 核燃料 輸送物の熱的性能に影響を及ぼすこと	11
			はない。	
$\square - B$	B.5.3 輸送物温度	(□)-B-42	B.5.3 核燃料輸送物温度	(2)
-40	特別の試験条件下におけるB.5.1 に記載した解析モデル及び条件に基づいて		特別の試験条件下における(ロ)章B.5.1に記載した解析モデル及び条件に基づいて	(4)-2
	求めた輸送物各部の最高温度の結果と、そのときの火災発生後からの時間を		求めた核燃料輸送物各部の最高温度の結果と、そのときの火災発生後からの時間を	(以下同様)
	<u>(ロ)-第B.19表</u> に示す。		<u>(ロ)-第B.19表</u> に示す。	
	ABAQUSコードで解析して得られた火災発生 30 分後の輸送物各部の温度		ABAQUS コードで解析して得られた火災発生 30 分後の <mark>核燃料</mark> 輸送物各部の温度分布	
	分布を <u>(ロ)-第B.17 図</u> 及び <u>(ロ)-第B.18 図</u> に、また、燃料集合体温度が最も高		を(ロ)-第 B. 17 図及び <u>(ロ)-第 B. 18 図</u> に、また、燃料集合体温度が最も高くなる火災	
	くなる火災発生後の58.8時間における温度分布を <u>(ロ)-第B.19図、(ロ)-第B.20</u>		発生後の 58.8 時間における温度分布を(ロ)-第 B.19 図、(ロ)-第 B.20 図及び(ロ)-第	
	<u>図</u> 及び <u>(ロ)-第B.21 図</u> に、さらに、時刻歴温度変化を <u>(ロ)-第B.22 図</u> に示す。		<u>B. 21 図</u> に、さらに、時刻歴温度変化を <u>(ロ)-第 B. 22 図</u> に示す。	
	なお、密封境界となる三次蓋Oリングの最高温度は 121℃となり、使用限度 48		なお、密封境界となる三次蓋0リングの最高温度は121℃となり、特別の試験条件	
	時間における使用可能温度 260℃を超えることはない。		下における使用可能温度 260℃を超えることはない。	
$\square - B$	B.5.4 最大内圧	(□)-B-50	B.5.4 最大内圧	
-48	輸送物の熱解析から、特別の試験条件下において輸送物の胴内圧は、胴内のへ		核燃料輸送物の熱解析から、特別の試験条件下において <mark>核燃料</mark> 輸送物の胴内圧は、	(4)-2
	リウム及び FP ガスの温度が最高となる時、つまり燃料集合体の温度が最高とな		胴内のヘリウム及び FP ガスの温度が最高となるとき、つまり燃料集合体の温度が最	
	る火災発生後の 59.4 時間の時に最大となる。また、一二次蓋間圧力については、		高となる火災発生後の 59.4 時間のときに最大となる。また、一二次蓋間圧力につい	
	ヘリウムの温度が最高となる火災発生後の 22.4 時間の時に最大となる。また、		ては、ヘリウムの温度が最高となる火災発生後の22.4 時間のときに最大となる。ま	
	二三次蓋間圧力については、空気の温度が最高となる火災発生後の8.0時間の時		た、二三次蓋間圧力については、空気の温度が最高となる火災発生後の8.0時間のと	
	に最大となる。胴内圧、一二次蓋間圧力、二三次蓋間圧力及び三次蓋-胴内圧力		きに最大となる。胴内圧、一二次蓋間圧力、二三次蓋間圧力及び三次蓋-胴内圧力の計	
	の計算方法及び計算結果を示す。		算方法及び計算結果を示す。	

ページ	変更前	ページ	変更後	変更内容
$\square - B$	3. 二三次蓋間圧力	(□)-B-52	3. 二三次蓋間圧力	
-50	特別の試験条件下での空気の温度から、二三次蓋間圧力は、一般の試験条件と同様		特別の試験条件下での空気の温度から、二三次蓋間圧力は、一般の試験条件と同様	
	に求められる。		に求められる。	
	計算条件と計算結果を(ロ)-第B.22表に示す。		計算条件と計算結果を <u>(ロ)-第 B. 22 表</u> に示す。	
			なお、三次蓋取付け時の周囲温度が仮に-20℃であった場合には空気の密度が大き	(4)-①
			くなるため、二三次蓋間圧力は約16増加する可能性がある。この圧力上昇による三次	
			蓋の応力増加は最大 3MPa、三次蓋ボルトの応力増加は最大 12MPa であり、(ロ)章 A. 6. 3	
			の特別の試験条件の熱的試験(火災試験)において解析基準値に対して応力増加値以	
			上の余裕を有していることを確認している。	
□−B	4. 三次蓋一胴内圧力	(□)-B-53	4. 三次蓋胴内圧力	
-50, 51	密封解析に使用する三次蓋-胴内圧力としては、設計評価期間中の一次蓋の漏えい		密封解析に使用する三次蓋-胴内圧力としては、設計 <mark>貯蔵</mark> 期間中の一次蓋の漏えい	(4)-2
01	を考慮して一般の試験条件下の圧力を 0.097MPa と仮定し、また、全燃料棒の密封機		を考慮して一般の試験条件下の圧力を 0.097MPa と仮定し、また、全燃料棒の密封機	
	能が失われたとして、燃料棒内に封入されていたヘリウム及び FP ガスによる圧力上		能が失われたとして、燃料棒内に封入されていたヘリウム及び FP ガスによる圧力上	
	昇を考慮し、胴内ガスの特別の試験条件下の温度上昇による圧力上昇を考慮する。		昇を考慮し、胴内ガスの特別の試験条件下の温度上昇による圧力上昇を考慮する。	
$\square - B$ -51	P。:設計評価期間中の一次蓋の漏えいを考慮した一般の試験条件下の胴内圧 (MPa)	(□)-B-53	P。 :設計 <mark>貯蔵</mark> 期間中の一次蓋の漏えいを考慮した一般の試験条件下の胴内圧(MPa)	(4)-2
$\Box - B$		(□)-B-55		(4)-2
-52	 		設計 <mark>貯蔵</mark> 期間中の一次蓋の漏えいを考慮 した一般の試験条件下の胴内圧(絶対圧) P。 MPa 0.097	
□ – B	B.5.5 最大熱応力	(□)-B-56	B.5.5 最大教応力	
-53	特別の試験条件下における輸送物各部の温度分布はB.5.3 に記載したとおり		+ 100 100 100 100 100 100 100 100 100 10	(4)-②
	である。特別の試験条件下において輸送物に生じる熱応力については、ロ章		とおりである。特別の試験条件下において核燃料輸送物に生じる熱応力については、	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	A.6.3 で説明したように、容器本体各部位が熱膨張を拘束しあって生じ、温度差		(ロ)章 A. 6.3 で説明したように、容器本体各部位が熱膨張を拘束しあって生じ、温度	
	が最大になる火災発生30分後に最大熱応力が生じる。		差が最大になる火災発生30分後に最大熱応力が生じる。	

ページ			変更前		ページ			変更後			変更内容
□ — B	B.5.6 結果の要約及びその	の評価			(□)-B-56	B.5.6 結果の要約及びその)評価				(4)-②
- 5 3	特別の試験条件下	における熱	解析結果の要約	ıと評価を <u>(ロ)-第B.24 表</u> に示す	5	特別の試験条件下にお	おける熱解	折結果の要約	」と評価を <u>(ロ)-第</u>	<u>B. 24 表</u> に示す。本核	(以下同様)
	本輸送物の状態は以	下のとおり	であり、損傷に	こついては各解析に反映している。		燃料輸送物の状態は以下	「のとおり」	であり、損傷	については各解析	に反映している。	
	 密封境界となる 	三次蓋Oリン	·グの温度は <mark>使</mark> 月	用限度 48 時間における <mark>使用可能</mark>		・密封境界となる三次	蓋0リング	の温度は(ロ)章B.3に記載した	-使用可能温度260℃	
	度である 260℃を	超えること	はな <mark>く、</mark> 特別の	試験条件下で密封性能が損なわれ	ι	を超えることはない	、したが-	って 、 特別の	試験条件下におい	て密封性能が損なわ	
	ることはない。					れることはない。					
	 耐火試験 による個 	则部中性子遮	€蔽材の焼損をネ	考慮して、遮蔽解析では安全側に	-	·熱的試験(火災試験))による側部	部中性子遮蔽	材の焼損を考慮し	て、遮蔽解析では安	
	れを 100%無視す	る。				全側にこれを 100%	無視する。				
	・蓋部及び底部中位	生子遮蔽材に	は使用可能温度	200℃を超えることはない。し))	・蓋部及び底部中性子	・遮蔽材のネ	温度は(ロ)章	B.3 に記載した <mark></mark> 使	頁用可能温度 200℃を	
	し、遮蔽解析では	は安全側に個	则部中性子遮蔽	材と同様に無視する。		超えることはない。	しかし、	庶蔽解析では	安全側に側部中性	子遮蔽材と同様に無	
	・臨界解析において	こは、外筒ま	でをモデル化し	ノ、中性子遮蔽材はすべて <mark>喪失す</mark>	5	視する。					
	とすることにより	り、中性子別	吸収効果を無視	し、安全側の解析を行っている。		・臨界解析においてに	は、外筒ま~	でをモデル化	し、中性子遮蔽材	は全て <mark>失われるとし</mark>	
	・その他の構成材料	ねこついては	は、輸送物の健全	性に対し悪影響を及ぼす温度に	t	てモデル化しないこ	ことにより、	,中性子吸収	効果を無視し、安	全側の解析を行って	
	ならない。					いる。					
						 その他の構成材料に 	こついては、	核燃料輸送	物の健全性に対し	悪影響を及ぼす温度	
					() = ==	には到達しない。					
$\square - B$ - 5.4					(□)-B-57				Antibut data into a mittel. 1. See		
01		4表 特別の 甘 滩 は	試験 <u>条件下の</u> 熟解	<u> 新結果の要約と評価</u>		<u>(口)-第B,24</u>	<u>表 特別の</u> ₂₄ 田	<u> 試験条件下の</u> 要		(<u>山(1/2)</u> (地の転転。の冬代	(4)-①
	最高温度			at im		最高温度		金十直	ат іщ	1000年10日、000末日	(以下同様)
	バスケット	425°C	301°C	基準に合致		バスケット	301°C	425°C ^{19),20)}	基準值以下	-	
	蓋部、底部及び側部 中性子遮蔽材	200°C	477℃	遮蔽解析及び 臨界解析で無視		蓋部、底部及び側部 中性 子 遮蔽材	477°C ^{™1)}	200°C ¹⁴⁾	蓋部、底部: 基準値以下 ^{注 2)} 個 ⁽¹⁾	遮蔽解析及び臨界 解析で保守的にモ デル化しない。	
	二次蓋金属ガスケット	190°C	122°C	基準に合致					基準値を超過 ^{注 2)}		
	三次蓋〇リング	260°C	121°C	基準に合致		二次蓋金属ガスケット	122°C	190°C17)	基準值以下	+	
	月同	350°C	221°C	基準に合致、構造解析に使用		三次蓋0リング	121°C	260°C ¹²⁾	基準值以下	-	
	最大内庄					胴	221°C	350°C ^{19),20)}	基準值以下	構造解析では Cを使用注 ³⁾	
	胴内圧	_		構造解析では		注1) 蓋部、底部及び側部	郭中性子遮蔽	- 財のうち、最	高となる温度。	- C 10010	
				女主則に MPaG を使用		注2) 蓋部及び底部中性	子遮蔽材の量	最高温度はそれ	ぞれ 122℃及び 143℃	こであり、使用可能	
	一二次蓋間圧力	-		構造解析では 安全側に MPaGを使用		温度 200℃を超え・ 使用可能温度を超	ることはない えるが全てタ	ゝ。一方、側部 夫われることは	中性子遮蔽材の最高) ;ない。	島度は477℃であり、	
	二三次蓋間圧力	-		構造解析では 安全側に MPaGを使用		注 3) 構造解析における その温度を包絡す	。温度条件と る許容値の言	しては、熱解精 没定温度条件を	所結果としての温度分 代表に示す。	布を入力するが、	
	三次蓋 – 胴内圧力	-		密封解析では 安全側に MPaを使用							

ページ			変更前		ページ			変更後			変更内容
□ – B	(내 후, 사람 미 ~ :	山脉々みてっあめ	#长针用	(□)-B-58						
-54	<u>(日)-第日.2</u> 道 目	4 夜 村別の 其 淮 値	試験 東中 の 熟恵	<u>≇析結果の安約と評価</u> 誕 価		<u>(ロ)-第 B.24 ま</u>	表 特別の試験	条件下の熱	解析結果の裏	<u> 長約と評価(2/2)</u>	(4)-①
	最高温度		NH //	н I I I I I I I I I I I I I I I I I I I		項目	結 果	基準値	評価	他の解析への条件	(以下同様)
	バスケット	425°C	301°C	基準 <mark>に合致</mark>		最大内庄					
	蓋部、 底部 及び側部 中性子 遮蔽材	200°C	477°C	遮蔽解析及び 臨界解析で <mark>無視</mark>		胴内庄		-	-	構造解析では MPaGを使用	
	二次蓋金属ガスケット	190°C	122°C	基準に合致		一二次蓋間圧力		-	-	構造解析では	
	三次蓋〇リング	260°C	121°C	基準に合致						miad 2 g/h	
	用间	350°C	221°C	基準 <mark>に合致、構造解析に使用</mark>		二三次蓋間圧力		-	-	構造解析では MPaGを使用	
	最大内庄										
	胴内庄	-		構造解析では 安全側に <mark></mark> MPaGを使用		三次蓋-胴内圧力		-	-	密封解析では MPaを使用	
	一二次蓋間圧力	-		構造解析では 安全側に <mark>して</mark> MPaGを使用				4]
	二三次蓋間圧力	-		構造解析では 安全側に MPaGを使用							
	三次蓋 - 胴内圧力	-		密封解析では 安全側に MPaを使用							
$\square - B$	B.6.1.1 全体モデルに用い	た対流熱伝	宝達率		(□)-B-59	B.6.1.1 全体モデルに月	目いた対流熱伝道	幸率			
00	1. 輸送物表面と周囲	国の熱伝達	率			1. 核燃料輸送物表面	と周囲の熱伝達	率			(4)-2
$\square - B$ -58	B.6.1.2 輪切りモデルに用	いた熱伝達	率		(ロ)-B-63	B.6.1.2 輪切りモデルに	こ用いた <mark>対流</mark> 熱(云達率			(4)-②

ページ	変更前	ページ	変更後	変更内容
-	(記載なし)	(□)-B-65	B.6.3 近接防止金網の温度評価について	(4)-①
			1. 評価の考え方	
			以下の考え方に基づき近接防止金網の温度を評価した。(<u>(ロ)-第B.付2図</u> 参照)	
			①近接防止金網温度に対応する規則要件は 38℃の日陰における近接可能な容器	
			表面最高温度を 85℃以下とすることであるから、太陽熱放射を考慮しない。	
			②近接防止金網は、当該輸送容器を輸送架台上に設置した際に近接可能な外筒領	
			域及びトラニオン領域を覆うように取り付けられている。	
			③近接防止金網は容器周りに垂直平板状に設けられているため、厚さを持たない	
			板として考える。	
			④近接防止金網は輸送容器と周囲の自然対流を阻害しない形状とすることによ	
			り熱伝達を干渉しないものと仮定する。したがって、近接防止金網温度を求め	
			るために使用する輸送容器表面の温度は一般の試験条件(近接表面の最高評価	
			条件)で得られた結果を用いる。	
			⑤温度を求めるに当たっては、自然対流と放射を考慮する。自然対流熱伝達率は	
			垂直平板の自然対流熱伝達率を用いて評価する。これらを考慮して、容器から	
			近接防止金網への入熱量と近接防止金網から大気への放熱量がつりあうよう	
			に近接防止金網温度を定める。	
			⑥容器と近接防止金網間にある空気の自然対流の評価において、容器と近接防止	
			金網の間の空気の温度は近接防止金網温度と容器表面温度の平均温度である	
		(₩) D CE	とする。	
-	(記載なし)	(¤)-B-65	キャスク本体 放射 放射 自然対流 (近接防止金網) (雰囲気)	(4)-①
			(ロ)-第B.付2図 近接防止金網周りの伝熱モデル	

ページ	変更前	ページ	変更後	変更内容
-	(記載なし)	(□)-B-66	2. 評価方法	(4)-①
			キャスク本体から近接防止金網への入熱量 Qin 及び近接防止金網から大気への放熱	
			量 Qout は、それぞれ以下の式で表される。近接防止金網温度 Taは Qin=Qout を満たす温	
			度として求めることができる。	
			$Q_{in} = h_1 (T_{arc} - T_a) + \sigma F_a \{ (T_1 + 273, 15)^4 - (T_a + 273, 15)^4 \} $ -(1)	
			$0 = b_0 (T - T_0) + \sigma + c_0 \{ (T + 273, 15)^4 - (T_0 + 273, 15)^4 \} $ (2)	
			$F = \frac{1}{(1/c_{a}) + (1/c_{a}) - 1}$	
			$\frac{1}{c} = \frac{1}{1} \left(\frac{1}{c} + \frac{1}{c} + \frac{1}{c} + \frac{1}{c} \right)$	
			ここと、	
			Q_{in} , $U_{ix}(y) \perp \pm in (1 + in)$	
			$(\mu/(-2, \nu))((\mu) 竿 \mu/(+ + + + + + + + + + + + + + + + + + + $	
			$(W/(II \cdot A))((P)^{- \pi} B. Y 4 衣 変 思)$	
			n_0 : 成款の現外候価及にわける 並且平板の日 然対 派款 伝達平	
			(W/(面・A))((ロ)-第 B. 竹 2 衣参照)	
			I _{ave} : 輸达物外衣面温度と虹接防止金網の平均温度(空気)(C)	
			I _a :近接防止金網温度(C)	
			T ₀ : 雰囲気温度(℃)	
			σ:ステファン・ボルツマン定数(=5.670400×10 ⁻ W/(m ² ・K))	
			F。:形態係数	
			ε1:輸送物外表面放射率(外筒外表面 0.8)	
			ε ₂ :近接防止金網放射率(1.0)	
-	(記載なし)	(□)-B-66	3. 評価結果	(4)-(1)
			近接防止金網温度を <u>(ロ)-第 B. 付 4 表</u> に示す。近接防止金網の温度は基準値(85℃)	
			より低い。	
-	(記載なし)	(□)-B-66	(ロ)-筆 B 付 4 表 近接防止全綱温度の評価結果	
			評価条件(℃) 評価結果(℃)	(4)-①
			輸送物外表面温度 雰囲気温度 近接防止金網温度 基準値(℃)	
			114 38 73 85	
$\Box - B$	4) ASME Boiler and Pressure Vessel Code Section II, Part D Properties (Metric),	(□)-B-67	4) Part D Properties (Metric)(2023), "ASME Boiler and Pressure Vessel Code	(4)-2
-61	(2013).		Section II ".	

ページ	変更前	ページ	変更後	変更内容
-	(記載なし)	(¤)-B-68	 18) (独)原子力安全基盤機構(2009年),『平成20年度リサイクル燃料資源貯蔵技術調査等(中間貯蔵設備等長期健全性等試験のうち貯蔵燃料健全性等調査に関する試験成果報告書)』。 19) (社)日本機械学会(2008年),『使用済燃料貯蔵施設規格 金属キャスク構造規格(2007年版)(JSME S FA1-2007)』。 20) (一社)日本機械学会(2013年),『発電用原子力設備規格 材料規格(2012年版)(JSME S NJ1-2012)』。 	(4)-①
$\square - B$ - 6 2	 "Regulations for the Safe Transport of Radioactive Material 2012 Edition", INTERNATIONAL ATOMIC ENERGY AGENCY, VIENNA, (2012). 	(□)-B-68	21) INTERNATIONAL ATOMIC ENERGY AGENCY VIENNA (2018), "Regulations for the Safe Transport of Radioactive Material 2018 Edition".	(4)-②
п -С-1	C. 密封解析 C.1 概 要 本輸送物は、ロ章Bに示すように一般の試験条件下において密封境界の内部は負 圧である。したがって、一般の試験条件下における放射性物質の漏えいはないが、 仮に密封境界の内部の圧力が大気圧になる場合を想定し、漏えい試験によって求め た密封境界からの漏えい率に基づいて放射性物質の密封境界外への漏えい率を評 価し、その漏えい率が一般の試験条件下における放射性物質漏えい率の基準を満足 することを示す。また、特別の試験条件下においては、密封境界の内部が正圧にな る可能性があるため、同様に、漏えい試験によって求めた密封境界からの漏えい率 に基づいて放射性物質の密封境界外への漏えい率を評価し、その漏えい率が特別の 試験条件下における放射性物質漏えい率の基準を満足することを示す。	(II)-C-1	C. 密封解析 C. 密封解析 C.1 概要 本核燃料輸送物は、(ロ)章 B.4.6 に示すように一般の試験条件下において密封境界の内部は負圧である。したがって、一般の試験条件下における放射性物質の漏えいはないが、仮に密封境界の内部の圧力が大気圧になる場合を想定し、漏えい試験によって求めた密封境界からの漏えい率に基づいて放射性物質の密封境界外への漏えい率を評価し、その漏えい率が一般の試験条件下における放射性物質漏えい率の基準を満足することを示す。また、特別の試験条件下においては、密封境界の内部が正圧になる可能性があるため、同様に、漏えい試験によって求めた密封境界からの漏えい率に基づいて放射性物質の密封境界外への漏えい率を評価し、その漏えい率が特別の試験条件下における放射性物質漏えい率の基準を満足することを示す。	(4)-2
			^y 。 なお、本評価における収納放射能量は、ORIGEN2.2 コードを用いて求めた。ま た、データライブラリは BWR-U ライブラリを用いた。	(4)-①
$\square - C - 2$	溶接部は、その耐熱性(ロ章B.4.6及びB.5.6)ならびに耐寒性(ロ章A.4.2)により、一般及び特別の試験条件下並びに最低使用温度でも健全であり密封性を保つことができる。	(□)-C-2	溶接部は、その耐熱性((ロ)章 B.4.6 及び(ロ)章 B.5.6)並びに耐寒性((ロ)章 A.4.2) により、一般及び特別の試験条件下並びに最低使用温度でも健全であり密封性を保つこ とができる	(4)-②

ページ	変更前	ページ	変更後	変更内容
$\square - C - 2$	C.3 一般の試験条件	(□)-C-2	C.3 一般の試験条件	
	一般の試験条件下において密封装置の構造強度が維持され機能が損なわれな		一般の試験条件下において密封装置の構造強度が維持され機能が損なわれないこ	
	いことはロ章A.5 により確認している。また、ロ章B.4.6 に示すように一般の		とは(ロ)章 A.5 により確認している。また、(ロ)章 B.4.6 に示すように一般の試験条	
	試験条件下における三次蓋と胴で構成される密封装置の圧力(以下「三次蓋-胴		件下における三次蓋と胴で構成される密封装置の圧力(以下「三次蓋-胴内圧力」とい	
	内圧力」という。)は、0.0820 MPa であり、設計評価期間中のヘリウムの内部へ		う。)は、0.0820MPa であり、設計 <mark>貯蔵</mark> 期間中のヘリウムの内部への漏えいを考慮して	(4)-②
	の漏えいを考慮しても <mark>ホ章 5.に示すように</mark> 0.097 MPa 未満である。したがって、		も 0.097MPa 未満である。したがって、一般の試験条件下において密封装置の加圧を	11
	一般の試験条件下において密封装置の加圧を考慮しても三次蓋-胴内圧力は負		考慮しても三次蓋-胴内圧力は負圧である。また、一般の試験条件下において密封装置	
	圧である。また、一般の試験条件下において密封装置は健全であり漏えいはない。		は健全であり漏えいはない。このように漏えいはないが、仮に密封境界の内部の圧力	
	このように漏えいはないが、仮に密封境界の内部の圧力が大気圧の上限値 0.105		が大気圧の上限値 0.105MPa、外気圧が大気圧の下限値 0.097MPa であると仮定し、一	
	MPa、外気圧が大気圧の下限値 0.097 MPa であると仮定し、一般の試験条件下に		般の試験条件下における放射性物質漏えい率の基準を満足することを確認する。	
	おける放射性物質漏えい率の基準を満足することを確認する。			
$\square - C$	C.3.2 密封装置の加圧	(□)-C-6	C.3.2 密封装置の加圧	
-5,6	密封装置の加圧は、密封装置内のガスの温度上昇及び設計評価期間中の一次蓋		密封装置の加圧は、密封装置内のガスの温度上昇及び設計貯蔵期間中の一次蓋と二	(4)-②
	と二次蓋の間に充填されているヘリウムの胴内への漏えいにより生じる。さら		次蓋の間に充填されているヘリウムの胴内への漏えいにより生じる。さらに、全収納	
	に、全収納物の 0.1%の燃料棒の密封機能が失われ核分裂性生成ガスが胴内に放		物の 0.1%の燃料棒の密封機能が失われ核分裂性生成ガスが胴内に放出されたと仮定	
	出されたと仮定しても、三次蓋と胴で構成される密封装置内の圧力は負圧に維持		しても、三次蓋と胴で構成される密封装置内の圧力は負圧に維持される。	
	される。			
$\square - C - 7$	C.5 結果の要約及びその評価	(□)-C-8	C.5 結果の要約及びその評価	
	密封解析の評価結果は以下に示すとおりであり、本輸送容器の密封性能は規則及		密封解析の評価結果は以下に示すとおりであり、本輸送容器の密封性能は外運搬規	(4)-②
	び告示に定められるBM型輸送物に係る技術上の基準に適合する。		則及び外運搬告示に定められる BM 型輸送物に係る技術上の基準に適合する。	11
$\square - C - 8$	2. 一般の試験条件	(□)-C-8	 一般の試験条件 	
	 (1) 放射性物質の漏えい 		(1) 放射性物質の漏えい	
	本輸送物は一般の試験条件下では負圧を維持するため、放射性物質の環境への		本核燃料輸送物は一般の試験条件下では負圧を維持するため、放射性物質の環境	(4)-②
	漏えいはないが、胴内圧が大気圧上限値まで上昇し、その後大気圧下限値の環境下		への漏えいはないが、胴内圧が大気圧上限値まで上昇し、その後大気圧下限値の環	
	に置かれたとしても、一般の試験条件下における放射性物質の漏えい率と基準値		境下に置かれたとしても、一般の試験条件下における放射性物質の漏えい率と基準	
	との比率の合計は最大 1.04×10 ⁻⁴ であり、放射性物質の漏えい率は基準値A₂値×		値との比率の合計は最大 1.04×10 ⁻⁴ であり、放射性物質の漏えい率は基準値 A2 値×	
	10 ⁻⁶ /h を満足する。		10 ⁻⁶ /h を満足する。	
$\square - C - 9$	3) American National Standard Institute, Inc.," American National Standard for	(□)-C-9	3) American National Standard Institute, Inc. (2022), "American National	(4)-②
	Radioactive materials - Leakage Tests on Packages for Shipment", ANSI N14.5-		Standard for Radioactive Materials - Leakage Tests on Packages for	
	1997, (1998).		Shipment", ANSI N14.5-2022.	
$\square - D - 1$	D.1 概 要	(□)-D-1	D.1 概要	
	本輸送物の主要なガンマ線遮蔽材は、(イ)-第C.5図、(イ)-第C.6図及び(イ)-第		本核燃料輸送物の主要なガンマ線遮蔽材は、(イ)-第 C.5 図、(イ)-第 C.6 図及び	(4)-②
	C.1表に示すとおり、側部方向には胴及び外筒の炭素鋼等であり、軸方向には蓋部及		(イ)-第 C.1 表に示すとおり、側部方向には胴及び外筒の炭素鋼等であり、軸方向に	
	び底部の炭素鋼等である。		は蓋部及び底部の炭素鋼等である。	

ページ	変更前	ページ	変更後	変更内容
$\square - D - 1$	線源としては核分裂生成物及びアクチノイドによる線源並びに構造材の放射化によ	(□)-D-1	線源としては核分裂生成物及びアクチノイドによる線源並びに構造材の放射化によ	
	る線源を考慮した。線源強度は、ORIGEN2.2コード1)及び放射化計算式により連続照射		る線源を考慮した。線源強度は、ORIGEN2.2 コード 1)及び放射化計算式により連続照射	
	を仮定して求めた。		を仮定して求めた。また、ORIGEN2.2コードによる線源強度計算で用いるライブラリは、	(4)-①
	一般の試験条件下及び特別の試験条件下においては、想定される輸送容器及び収納物		ORIGEN2.2 コード内蔵の BWR-U のデータを使用した。	
	の状態を考慮して線量当量率を評価する。線量当量率の計算には、DOT3.5コード ²⁾ を用		一般の試験条件下及び特別の試験条件下においては、想定される輸送容器及び収納物	
	いた。		の状態を考慮して線量当量率を評価した。線量当量率の計算には、DOT3.5コード ²⁾ を用	(4)-②
	これらの計算から得られた線量当量率は、規則及び告示で定められた基準を満足す		いた。また、線量当量率評価で用いる断面積ライブラリは、DLC-23/CASK のデータ ³⁾ を	(4)-①
	వం		使用した。	
			これらの計算から得られた線量当量率は、外運搬規則及び外運搬告示で定められた基	(4)-②
			準を満足する。	
$\square - D - 3$	1. 燃料有効部のガンマ線源	(□)-D-3	1. 燃料有効部のガンマ線源	
	燃料有効部のガンマ線源は、核分裂生成物及びアクチノイドによるものである。		燃料有効部のガンマ線源は、核分裂生成物及びアクチノイドによるものである。	
	ガンマ線源強度の計算は、ORIGEN2.2コードを用いて行った。計算においては <mark>付属書</mark>		ガンマ線源強度の計算は、ORIGEN2.2 コードを用いて行った。計算においては(ロ)章	(4)-②
	類D.6.1に示す軸方向の燃焼度分布を考慮した。		D.6.1 に示す軸方向の燃焼度分布を考慮した。	
$\square - D - 4$	(ロ)-第D.3表 燃料有効部のガンマ線の各エネルギーごとの線源強度	(□)-D-4	(ロ)-第 D.3表 燃料有効部のガンマ線の各エネルギーの線源強度	(4)-②
	(輸送物1基当り)		(核燃料輸送物1基当たり)	11
$\square - D - 5$	(ロ)-第D.4表 燃料集合体構造材の放射化によるガンマ線源強度	(□)-D-5	(ロ)-第 D.4表 燃料集合体構造材の放射化によるガンマ線源強度	
	(輸送物1基当り)		(核燃料輸送物1基当たり)	(4)-②
$\square - D - 6$	D.2.2 中性子源	(□)-D-6	D.2.2 中性子源	
	燃料中には中性子源となる超ウラン元素が生成される。これらの核種から中性子が		燃料中には中性子源となる超ウラン元素が生成される。これらの核種から中性子が	
	生成する反応は、自発核分裂及び(α, n)反応である。一次中性子源強度の計算は、		生成する反応は、自発核分裂及び(α, n)反応である。一次中性子源強度の計算は、	
	ORIGEN2.2コードを用いて行った。計算においては付属書類D.6.1に示す軸方向の燃		ORIGEN2.2 コードを用いて行った。計算においては(ロ)章 D.6.1 に示す軸方向の燃焼	(4)-②
	焼度分布を考慮した。		度分布を考慮した。	(以下同様)
	体系の増倍効果を考慮した全中性子源強度(N。)は次式で求められる。		体系の増倍効果を考慮した全中性子源強度(N _s)は次式で求められる。	
	$N_s = N_o / (1 - \text{keff})$		$N_s=N_0/(1-keff)$	
	ここで、		ここで、	
	N 。 : 輸送物 1 基当りの一次中性子源強度 (n/s)		N。 : 核燃料輸送物1基当たりの一次中性子源強度(n/s)	
	keff :使用済燃料を収納した場合の輸送物の実効増倍率(-)		keff :使用済燃料を収納した場合の核燃料輸送物の実効増倍率(-)	
	ここでは乾燥状態において使用済燃料を収納した場合の輸送物の keff を求		ここでは乾燥状態において使用済燃料を収納した場合の <mark>核燃料</mark> 輸送物の keff	
	めた。		を求めた。	

ページ	変更前	ページ	変更後	変更内容
$\Box - D$	2. 計算結果	(□)-D-32	2. 計算結果	
- 3 2	各モデル における主要部位でのガンマ線量当量率及び中性子線量当量率の計算結		通常時及び一般の試験条件下の解析モデルにおける主要部位でのガンマ線量当量	(4)-②
	果を <u>(ロ)-第D.4図、(ロ)-第D.5図</u> 及び <u>(ロ)-</u> 第D.10表 <u>~(ロ)-</u> 第D.12表に示す。		率及び中性子線量当量率の計算結果を <mark>(ロ)-第 D.4 図、(ロ)-第 D.10 表</mark> 及び <u>(ロ)-第</u>	(以下同様)
	ここでは、頭部、側部及び底部の各エリアにおいて、輸送物表面及び表面から1m		D.11表に、特別の試験条件下の解析モデルにおけるガンマ線量当量率及び中性子線量	
	で線量当量率が最大となる位置での線量当量率の合計値及びその内訳を記載してい		当量率の計算結果を <u>(ロ)-第 D.5 図</u> 及び <u>(ロ)-第 D.12 表</u> に示す。	
	వం		ここでは、頭部、側部及び底部の各エリアにおいて、核燃料輪送物表面及び表面か	
	また、(ロ)-第D.10 表及び(ロ)-第D.11 表に示すように一般の試験条件下に置か		ら 1m で線量当量率が最大となる位置での線量当量率の合計値及びその内訳を記載し	
	れた輸送物表面の最高線量当量率は、著しく増加することはない。		ている。	
			また、(ロ)-第 D. 10 表及び(ロ)-第 D. 11 表に示すように一般の試験条件下に置かれ	
			た <mark>核燃料</mark> 輸送物表面の最高線量当量率は、著しく増加することはない。	
$\Box - D$	また、計算から得られた最大線量当量率の要約は <u>(ロ)-第D.14 表</u> に示すとおりであ	(□)-D-38	また、計算から得られた最大線量当量率の要約は <u>(ロ)-第 D.14 表</u> に示すとおりであ	
-38	り、規則及び告示で定められた基準を満足する。		り、使用予定年数(60年)の中性子遮蔽体の密度減損を考慮した場合においても外運搬	(4)-②
			規則及び外運搬告示で定められた基準を満足する。	
$\Box - D$		(□)-D-38		
- 3 8	速 密器本体 厳 体		遊 遊 蔽 体 体 本体 本体 単 二次蓋、外筒、中性子遮蔽材 体 体 本 本 本 本 本 本 本 本 本 本 本 、 期、底板、底部サポート、一次蓋、二次蓋、 二次蓋、 二、二次蓋、 二、二次蓋、 二、二次蓋、 二、二次 二、二次 二、二、 二、 二、 二、 二、 二、 二、 二、 二、	(4)-②
□ - D		(□)-D-39		
-39	(ロ)-第D.14表 最大線量当量率の要約		<u>(ロ)-第 D.14 表 最大線量当量率の要約</u>	
	部位 輸送物表面 (μSv/h) (μSv/h)		部位 校園和輸送物表面 (µ Sv/h) 表面より1m (µ Sv/h)	(4)-②
$\square - D$	D.6.2 中性子遮蔽材の密度減損	-	(削除)	(2)
-42	中性子遮蔽材であるレジン(エチレンプロピレン系ゴム)の長期使用による密			
	度減損は、劣化パラメータにより次式で表される。			
	$\triangle w = 6.18 \times 10^{-4} \times Ep - 5.99^{-6}$			
	ここで、			
	⊿w:レジンの密度減損率(%)			
	Ep :劣化パラメータ = T × (17 + ln(t)) (-)			
	T : レジン温度 (K)			
	t : レジン加熱時間(h)			
	設計評価期間中の温度の低下を考慮すると、設計評価期間経過時までのレジンの			
	減損率は約──6となる。これを丸めて <mark>●</mark> %の減損があるとして評価する。			

ページ	変更前	ページ	変更後	変更内容
$\square - D$	6)	-	(削除)	(2)
-44				
P - E - 1	木輪洋突哭け燃料集合体を装荷後 胴肉水が排出され さらに直空乾燥が行われる	(ロ)-E-1	大輪洋突哭け燃料集合体を装置後 胴内水が排出され さらに直空乾燥が行われる	
	本制と各価は添加来日体を表向後、周ロホル野田ともし、どうに美工地床が1142400。 また 変封性能を有した複数の萎を有しており 核分型性輸送物に係る一般及び控制の	() = -	本軸な存留はなが17米日体を表向後、前に55%が近日になり、どうに美工地なが142403。 すた 密封性能を右した複数の萎を右しており 核分型性給洋物になる一般及び整別の	
	対験条件下においても胴内に水が浸入することけない」とかって 胴内を生言第95条		よた、福野正能を行じた後数の量を行じており、秋方秋江軸と初に休る 版文の特別の 試験条件下においても胴内に水が浸入することけたい、」たがって 胴内を 从 運搬生示	(1)-2
	第1号のただしまきに記載されている「浸水及び湯水を防止する特別な措置が講じられ		第 95 条筆 1 号のただし書きに記載されていろ「浸水及び漏水を防止する特別な措置が	(以下同様)
	た部分」とし、 胴内を水で満たさかい冬供で臨界解析を行うこととする		第26 未知1 500 ににしり目されに記載されている「夜水灰の mm たちのエア 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
	本 協思 解析 でけ 核分型性 輪送物に 係る 特別の 試験条件下における 輪送 容異 及び 燃料		本臨界解析では「核分型性輪送物に係る特別の試験条件下における輪送容異及び燃料	
	生命体の変形を考慮し、 境界条件として完全反射を仮定することにより、以下の条件よ		年間の前所では、(水)など1個と物に小う(いの)(水)(トローローローローローローローローローローローローローローローローローローロー	
	り厳しい条件とする。		り厳しい条件とする。	
	① 通常輸送時		①通常輸送時	
	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		② 「「「「」」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」 「」	
	③ 核分裂性輸送物に係る一般の試験条件下に置いた輸送物を孤立系の条件に置く場		③核分裂性輸送物に係る一般の試験条件下に置いた核燃料輸送物を孤立系の条件に	
	合		置く場合	
	④ 核分裂性輸送物に係る特別の試験条件下に置いた輸送物を孤立系の条件に置く場		④核分裂性輸送物に係る特別の試験条件下に置いた核燃料輸送物を孤立系の条件に	
	合		置く場合	
	⑤ 核分裂性輸送物に係る一般の試験条件下に置いた輸送物を配列系の条件に置く場		⑤核分裂性輸送物に係る一般の試験条件下に置いた核燃料輸送物を配列系の条件に	
	습 		置く場合	
	⑥ 核分裂性輸送物に係る特別の試験条件下に置いた輸送物を配列系の条件に置く場		⑥核分裂性輸送物に係る特別の試験条件下に置いた核燃料輸送物を配列系の条件に	
	合		置く場合	
	臨界解析には、SCALE コードシステム ¹⁾ を用い、実効増倍率(keff)の計算は多群モ		臨界解析には、SCALE コードシステム ¹⁾ を用い、実効増倍率(keff)の計算は多群モン	
	ンテカルロ法による KEN0-V.a コード ¹⁾ を用いて行った。その結果、keff は標準偏差の		テカルロ法による KENO-V.a コード ¹⁾ を用いて行った。その結果、keff は標準偏差(σ)	
	3 倍を加えても十分未臨界である。		の3倍を加えても十分未臨界である。	
	したがって、本輸送物は上記①~⑥のいずれの条件においても未臨界である。		したがって、本核燃料輸送物は上記①~⑥のいずれの条件においても未臨界である。	
$\Box - E - 4$	E.2.3 中性子吸収材	(□)-E-4	E.2.3 中性子吸収材	
	(イ)-第C.13 図に <mark>バスケットの構造を</mark> 示す。		バスケットの構造は、(イ)-第 C. 13 図に示すとおりである。	(4)-2
	バスケットには中性子吸収材であるほう素が添加されたほう素添加アルミニ		バスケットには中性子吸収材であるほう素が添加されたほう素添加アルミニウ	
	ウム合金を用いている。ほう素添加アルミニウム合金の成分については原子個数		ム合金を用いている。ほう素添加アルミニウム合金の成分については原子個数密度	
	密度をE.3.2に示す。		を(ロ)章E.3.2に示す。	"
$\square - E - 9$	E.3.2 解析モデル各領域における原子個数密度	(□)-E-9	E.3.2 解析モデル各領域における原子個数密度	
	本臨界解析で用いた輸送物各領域の構成物質の原子個数密度を <u>(ロ)-第E.2表</u> に、		本臨界解析で用いた核燃料輸送物各領域の構成物質の原子個数密度を(ロ)-第 E.2	(4)-2
	また均質化燃料領域の構成物質の体積比を <u>(ロ)-第E.3表</u> に示す。		<u>表</u> に、また均質化燃料領域の構成物質の体積比を <u>(ロ)-第 E.3 表</u> に示す。	
$\square - E$ - 1 0	<u>(ロ)-第E.2表 輸送物各領域の原子個数密度</u>	(ロ)-E-10	<u>(ロ)-第 E.2 表 核燃料</u> 輸送物各領域の原子個数密度	(4)-②

ページ	変更前	ページ	変更後	変更内容
$\Box - E$	1. 収納物	(□)-E-11	1. 収納物	
-11	本輸送物の最大燃料装荷量は BWR 燃料集合体 69 体であるため、本解析は最大装荷		本核燃料輸送物の最大燃料装荷量は BWR 燃料集合体 69 体であるため、本解析は最	(4)-2
	量の場合を想定している。		大装荷量の場合を想定している。	
	解析の対象とした(ロ)-第E.1表に示す燃料仕様はE.2.1に示すとおり keff が		解析の対象とした(ロ)-第 E.1 表に示す燃料仕様は(ロ)章 E.2.1 に示すとおり keff	11
	最も大きくなる仕様である。		が最も大きくなる仕様である。	
□ − E	また、胴内には核分裂性輸送物に係る特別の試験条件下においても浸水はないため水	(□)-E-11	また、胴内には核分裂性輸送物に係る特別の試験条件下においても浸水はないため水	
-11	が存在しないが、安全側に浸水量を仮定し、水は胴内に均一に存在するとした。		が存在しないが、安全側に浸水量を仮定し、水は核燃料輸送物胴内に均一に存在すると	(4)-②
			した。	
$\square - E$	3. 中性子吸収材	(□)-E-11	3. 中性子吸収材	
-11	ロ章A.9 で述べたように、バスケットは核分裂性輸送物に係る特別の試験条件下に		(ロ)章 A.9 で述べたように、バスケットは核分裂性輸送物に係る特別の試験条件下	
	おいて微小変形するが破断することはない。また、胴内中性子束が小さいのでほう素		において微小変形するが破断することはない。また、(ロ)章F.2に示すように、輸送	(4)-②
	添加アルミニウム合金が使用期間中に中性子を吸収して効果を失うこともない。		容器内の中性子束に対して、ほう素添加アルミニウム合金は使用予定期間中に有意な	11
			性能低下はない。	
$\Box - E$	E.4.2 輸送物への水の浸入等	(□)-E-11	E.4.2 核燃料輸送物への水の浸入等	(2)
-11	輸送物への水の浸入等に関しては次のとおりである。		核燃料輸送物への水の浸入等に関しては次のとおりである。	(4)-②
	・ロ章A.9に示したように核分裂性輸送物に係る特別の試験条件下においても		・(ロ)章A.9に示したように核分裂性輸送物に係る特別の試験条件下においても密	(以下同様)
	密封装置の健全性及び二次蓋の防水機能は保たれるので、胴内への水の浸入		封装置の健全性及び二次蓋の防水機能は保たれるので、核燃料輸送物胴内への水	
	はない。ただし、臨界解析モデルでは 15m浸漬における浸水量に基づいて安		の浸入はない。ただし、臨界解析モデルでは 15m 浸漬試験における浸水量に基づ	
	全側に胴内の水量を 一 g とし、この水が均一に分散していると仮定した。		いて安全側に胴内の水量を 🛄 g とし、この水が均一に分散していると仮定し	
	 ・本臨界解析では緩衝体を無視し、輸送容器の外側で完全反射境界条件として 		⁺⊂。	
	いるので、輸送物の配列変化による接近により keff がより大きくなること		 ・本臨界解析では緩衝体を無視し、輸送容器の外側で完全反射境界条件としている 	
	はない。		ので、核燃料輸送物の配列変化による接近により keff がより大きくなることは	
			ない。	
$\Box - E$	E.4.4 計算結果	(□)-E-12	E.4.4 計算結果	
-12	臨界解析の結果を <u>(ロ)-第E.4 表</u> に示す。本計算は <mark>通常輸送時並びに核分裂性</mark>		臨界解析の結果を <u>(ロ)-第 E.4 表</u> に示す。本計算は(ロ)章 E.1 に示す①~⑥の条件	(4)-②
	輸送物に係る一般の試験条件下及び特別の試験条件下に置かれた輸送物の孤立		と比較して安全側の計算であり、keff はσの3倍を加えても十分未臨界である。	11
	系及び配列系の各状態と比較して安全側の計算であり、十分未臨界である。			

ページ	変更前	ページ	変更後	変更内容
II – E	ベンチマーク解析対象とした PNL-3602 臨界実験の体系は、鉄の反射体に挟まれた3	(□)-E-14	ベンチマーク解析対象とした PNL-3602 臨界実験の体系は、鉄の反射体に挟まれた 3	
-14	つのクラスタ(低濃縮ウラン燃料棒を正方格子に配列した体系)の間に中性子吸収材を		つのクラスタ(低濃縮ウラン燃料棒を正方格子に配列した体系)の間に中性子吸収材を	
	設置したものであり、中性子吸収材の種類、板厚、水ギャップ幅及び燃料濃縮度な		設置したものであり、中性子吸収材の種類、板厚、水ギャップ幅、燃料濃縮度等、核燃	(4)-2
	ど、輸送物の臨界解析で重要と考えられる要因に関し、数種類の異なる体系で実施さ		料輸送物の臨界解析で重要と考えられる要因に関し、数種類の異なる体系で実施され	(以下同様)
	れている。実験体系の概要を <u>(ロ)-第E.4図</u> に示す。		ている。実験体系の概要を <u>(ロ)-第 E.4 図</u> に示す。	
	この臨界実験体系は周囲を炭素鋼製の厚い胴に囲まれ、各燃料集合体の間にバスケ		この臨界実験体系は周囲を炭素鋼製の厚い胴に囲まれ、各燃料集合体の間にバスケ	
	ットのほう素添加アルミニウム合金による中性子吸収材を有する本輸送物の臨界解析		ットのほう素添加アルミニウム合金による中性子吸収材を有する本 <mark>核燃料</mark> 輸送物の臨	
	体系と類似している。		界解析体系と類似している。	
	ベンチマーク解析は 238GROUPNDF5 ライブラリを用い SCALE コードシステムで行っ		ベンチマーク解析は 238GROUPNDF5 ライブラリを用い SCALE コードシステムで行っ	
	た。(ロ)-第E.5表にベンチマーク臨界計算の結果を示す。ベンチマーク解析の結果、		た。(<u>ロ)-第 E.5 表</u> にベンチマーク臨界計算の結果を示す。ベンチマーク解析の結果、	
	本輸送物の臨界解析に用いた計算コード及び核データは妥当な結果を与えるといえ		本核燃料輸送物の臨界解析に用いた計算コード及び核データは妥当な結果を与えると	
	る。		いえる。	
II – E	本輸送物の臨界解析は、①通常輸送時、②輸送物を孤立系の条件に置く場合、③核分	(ロ)-E-16	本核燃料輸送物の臨界解析は、①通常輸送時、②核燃料輸送物を孤立系の条件に置く	(4)-2
-16	裂性輸送物に係る一般の試験条件下に置いた輸送物を孤立系の条件に置く場合、④核分		場合、③核分裂性輸送物に係る一般の試験条件下に置いた核燃料輸送物を孤立系の条件	(以下同様)
	裂性輸送物に係る特別の試験条件下に置いた輸送物を孤立系の条件に置く場合、⑤核分		に置く場合、④核分裂性輸送物に係る特別の試験条件下に置いた <mark>核燃料</mark> 輸送物を孤立系	
	裂性輸送物に係る一般の試験条件下に置いた輸送物を配列系の条件に置く場合、⑥核分		の条件に置く場合、⑤核分裂性輸送物に係る一般の試験条件下に置いた核燃料輸送物を	
	裂性輸送物に係る特別の試験条件下に置いた輸送物を配列系の条件に置く場合のいず		配列系の条件に置く場合、⑥核分裂性輸送物に係る特別の試験条件下に置いた核燃料輸	
	れの条件よりも厳しい条件で行い、結果は十分未臨界であった。したがって、上記①~		送物を配列系の条件に置く場合のいずれの条件よりも厳しい条件で行い、結果は十分未	
	⑥のいずれの条件においても未臨界が維持される。		臨界であった。したがって、上記①~⑥のいずれの条件においても未臨界が維持される。	
$\Box - E$	E.7.1 輸送容器の品質管理及び輸送前の密封性能の確認	(□)-E-17	E.7.1 輸送容器の品質管理及び輸送前の密封性能の確認	
-17	本輸送容器については、ハ章に示す品質管理の基本方針に基づいて高度の品質		本輸送容器については、別紙2に基づいて高度の品質管理が行われ、参考に示すよ	(1)-③
	管理が行われ、参考に示すように、製作中及び製作完了時に十分な検査が行われ		うに、製作中及び製作完了時に十分な検査が行われる。また、(ハ)章に示す保守によ	(2)
	る。また、二章に示す保守により性能が維持される。		り性能が維持される。	
	輸送前には、二章に示すように発送前検査において三次蓋及び二次蓋の気密漏		輸送前には、(ハ)章に示すように発送前検査において三次蓋及び二次蓋の気密漏え	11
	えい検査が実施され密封性能が確認される。		い検査が実施され密封性能が確認される。	
$\Box - E$	E.7.3 取扱い時の臨界解析	(ロ)-E-18	E.7.3 取扱い時の臨界解析	
-18	輸送物の取扱い時においては、胴内に水が満たされる。ここでは、胴内に水が		核燃料輸送物の取扱い時においては、 核燃料輸送物 胴内に水が満たされる。ここで	(4)-②
	満たされる場合の臨界解析を行う。		は、 <mark>核燃料輸送物</mark> 胴内に水が満たされる場合の臨界解析を行う。	11
$\Box - E$	・バスケットの格子穴内幅の公差を安全側に考慮。なお、取扱い時の条件なので、核分	(□)-E-19	・バスケットの格子穴内幅の公差を安全側に考慮。なお、核燃料輸送物の取扱い時の条	(4)-2
-19	裂性輸送物に係る特別の試験条件下でのバスケットの微小変形は考慮しない。		件なので、核分裂性輸送物に係る特別の試験条件下でのバスケットの微小変形は考慮	
			しない。	
$\Box - E$	本臨界解析で用いた輸送物各領域の構成物質の原子個数密度を(ロ)-第E.付3表に、	(□)-E-20	本臨界解析で用いた <mark>核燃料</mark> 輸送物各領域の構成物質の原子個数密度を <u>(ロ)-第 E.付 3</u>	(4)-2
-20	また均質化燃料領域の構成物質の体積比を <u>(ロ)-第E.付4表</u> に示す。		<u>表</u> に、また均質化燃料領域の構成物質の体積比を <u>(ロ)-第 E. 付 4 表</u> に示す。	
	輸送物の keff を最も大きく評価するために、胴内の水の密度は 1.0g/cm ³ とし、燃料		核燃料輸送物の keff を最も大きく評価するために、胴内の水の密度は 1.0g/cm ³ とし、	"
	集合体の温度は常温(20℃)とした。		燃料集合体の温度は常温(20℃)とした。	

ページ	変更前	ページ	変更後	変更内容
$\square - E$	(ロ)-第E.付3表 輸送物各領域の原子個数密度	(□)-E-23	(ロ)-第 E. 付 3 表 核燃料輸送物各領域の原子個数密度	(4)-2
-23				
$\Box - E$	3. 計算方法	(□)-E-24	3. 計算方法	
-24	臨界計算には、E.4.3と同様に SCALE コードシステムを用いた。		臨界計算には、(ロ)章 E.4.3 と同様に SCALE コードシステムを用いた。	(4)-2
□ − E	4. 計算結果	(□)-E-24	4. 計算結果	
-24	(ロ)−第E.付5表に臨界計算の結果を示す。本計算はE.4.4に示した臨界計算結果		<u>(ロ)-第 E.付5表</u> に臨界計算の結果を示す。本計算は(ロ)章 E.4.4 に示した臨界計	(4)-②
	より中性子実効増倍率が大きくなるが、十分未臨界である。		算結果より中性子実効増倍率が大きくなるが、十分未臨界である。	
□ – E	無限増倍率が1.3となる燃料集合体モデルは複数考えられるが、バスケットの中性子	(□)-E-24	無限増倍率が1.3となる燃料集合体モデルは複数考えられるが、バスケットの中性子	
-24	吸収効果が小さくなるように燃料棒を配置し、輸送物体系が安全側に評価されるように		吸収効果が小さくなるように燃料棒を配置し、核燃料輸送物体系が安全側に評価される	(4)-②
	する。均一濃縮度の燃料棒配置や内側に低濃縮度燃料棒、外側に高濃縮度燃料棒を配置		ようにする。均一濃縮度の燃料棒配置や内側に低濃縮度燃料棒、外側に高濃縮度燃料棒	
	する組合せより、内側に高濃縮度燃料棒、外側に低濃縮度燃料棒を配置する組合せの方		を配置する組合せより、内側に高濃縮度燃料棒、外側に低濃縮度燃料棒を配置する組合	
	が安全側であり、(ロ)-第E.付1図に示す燃料集合体モデルは、適切な保守性を有する		せの方が安全側であり、(ロ)−第 E.付 1 図に示す燃料集合体モデルは、適切な保守性を	
	ように設定したものである。		有するように設定したものである。	
□ − E	4) American National Standards Institute, Inc., "American National Standard for	(□)-E-26	4) American National Standards Institute, Inc. (2022), "American National	(4)-2
-2.6	Radioactive Materials - Leakage Tests on Packages for Shipment", ANSI N14.5-		Standard for Radioactive Materials - Leakage Tests on Packages for	
	1997, (1998).		Shipment", ANSI N14.5-2022.	

ページ			変更前		ページ			変更後			変更内容
表紙	口章F 規則	」及び告示に対す	る適合性の評価		表紙	(口)章G外運搬	規則及び <mark>外運搬</mark> 台	告示に対する適合性	の評価		(2)
$\square-\mathrm{F}-1$	F. 規則及び智	F示に対するi	適合性の評価		(□)-G-1	G. 外運搬規則及	及び <mark>外運搬</mark> 告示	に対する適合性	の評価		(2)
□ - F - 1	規則の項目 (核燃料輪送物としての核燃料物 質等の運搬) 第3条 第1項第1号 第2号 第3号 (L型輪送物に係 る技術上の基準) 第4条第1号	告示の項目 (L型輸送物として運搬できる核燃料物質等) 第3条 (A型輸送物をもて運搬で書の限度) 第6の重の限度) 第4条	 説 明 該当しない。 本輸送物の収納物は原子力規制委員会の定める 量を超える量の放射能を有する核燃料物質等に 該当するので、BM型輸送物として輸送する。 本輸送物は、以下に示すように容易に、かつ安全 に取扱うことができる。 4、輸送物は、本体にトラニオンがあり、吊上げ、 吊下しは専用吊具を用い、クレーンを使用し で容易に行える。また、輸送物は専用の輸送 架台を用いて車輌又は船舶に強固に積付けら れる等、安全に取扱えるものである。 輸送物の吊上装置は安全係数を3としてお り、急激な吊上げに耐えられるものである。 輸送物にはトラニオンを除いて輸送物を吊上 げるおそれのある吊手はない。 また、輸送物は専用吊具によって容易に、か つ、安全に取扱うことができる。 	申請書記載 対応事項 (イ) -A, (/) -B (/) -D (/) -C	(=)-G-1	外運酸規則の項目 (核燃料輸送物と しての核燃料物質 等の運搬) 第3条 第1項第1号 第2号 第2号 第3号	外運融告示の項目 (L 型輸送物として運搬できる核燃料物質等) 第 3条 (A 型輸送物として運搬できの放射能の量の防度度) 第 4条	説 該当しない。 本核燃料輸送物の主なあり、原子力規制委員: 放射能を有する核燃料 型輸送物として輸送す 放射能を有する核燃料 24輸送物の主ない。 確契 1 (kg 以下) 放射能の量 (kg 以下) 放射能の量 (kg 以下) 第時部(21年) (MTD/MTU 以下) (MTD/MTU 以下) 市央部(21年) (MTD/MTU 以下) (H 以納物平均) (MTD/MTU 以下) (MTD/MTU 以下) (MTD/MTU 以下) (MTD/MTU 以下) (MTD/MTU 以下) (MTD/MTU 以下) 該当しない。	明 ・	申請書記載 対応事項 (イ)-A, (イ)-B, (イ)-D	(4)-2

ページ			変更前			ページ			変更後			変更内容
$\Box - F - 1$	規則の項目	告示の項目	説	明	申請書記載	(□)-G-2	外運搬規則の項目	外運搬告示の項目	説	明	申請書記載 対応事項	
	 (核燃料輸送物としての核燃料物 質等の運搬) 第3条 第1項第1号 	 (L型輸送物として運搬できる核燃料物質等) 第3条 (A型輸送物として運搬できる核燃料物質等) (A型輸送物として運搬できる核燃料物質等の関係) 	該当しない。	<i>n</i>	対応事項 (イ)-A、 (イ)-B		第3条 第3項		本核燃料輸送物は、E 輸送容器の構成部材 下のとおり考慮した。 術上の基準に通しし、 1.本核燃料輸送物に れに伴い考慮すべ とおり。 (1)使用状況 構内輸送、貯蔵(済燃料(BWR型)の 数を80年、使用	編型輸送物に該当するため 及び収納物の経年変化を以 とで、外運搬規則第6条の打 ていることを確認している。 想定される使用状況及び き該年変化の要因は以下の 保管)、再処理工場への使用 強議の用途で、使用予定4 特定回数を10回と想定する。	$(\mathcal{A}) - \mathcal{A}_{\lambda}$ $(\mathcal{A}) - \mathcal{A}_{\lambda}$ $(\mathcal{L}) - \mathcal{A}_{\lambda}$ $(\mathcal{L}) - \mathcal{A}_{\lambda} - \mathcal{A}_{\lambda}$	(4)-②
	第2号 第3号	第4条	該当しない。 本輸送物の収納物は原子力 量を超える量の放射能を有 該当するので、 BM型輸送	り規制委員会の定める すする核燃料物質等に 物として輸送する。	(イ) -D				 (2)経年変化の要因熱的劣化、放射器化及び疲労によっ 2.外運搬規則第3第器の構成部材及び考慮の必要性及び 	線照射による劣化、化学的9 6劣化とする。 第3項1を踏まえ、輸送等 収防物に対し、経年変化の 考慮の方法について、以7	\$ F C	
	(L型輸送物に係 る技術上の基準) 第4条第1号		本輸送物は、以下に示すよ に取扱うことができる。 a.輸送物は、本体にトラニ 吊下しは専用吊具を用い て容易に行える。また、 架台を用いて車輛又は れる等、安全に取扱える b.輸送物の吊上装置は安 り、急激な吊上げに耐う c.輸送物にはトラニオン3 げるおそれのある吊手い また、輸送物は専用吊 つ、安全に取扱うことな	うに容易に、かつ安全 コオンがあり、吊上げ、 、クレーンを使用し 輸送物は専用の輸送 沿船に強固に積付けら さものである。 全係数を3としてお こされるものである。 そ全係数を3としてお こされるものである。 を除いて輸送物を吊上 はない。 具によって容易に、か ができる。	(1)-C (D)-A.4.4 (1)-C				(8)のおり劣(1)の)の)の)の)の)の)の)の)の)の)の)の)の)の)の)の)の)の)の	考慮の方なについて、以一 。 では、貯蔵又は輸送時に非 ((最高温度評価結果)を基応 全解析において以下の構成 考慮することとした。 からの発生ガスに上か上昇が が考っては、高温現 からの発生ガスに上力上昇が がすっては、高温現 がから放出されによる正子 が考示す。中性子連読材が うる。発熱量の低下力上昇が がしジンのにないたごを構 がしジンのでは、高温現 がから放出されのたいでは、高温現 がすでは、の低度減損を考慮 がま考慮の上、ご供 に伴う11 となったことから、連調 なる。変換した密封性能定す。 環境下での長期間使用後の です。した漏えい率、量を計 環境下での長期間使用後の を考慮した高封性能定す。 環境下での長期間使用後の を考慮した高封性能定す。 環境をすった量を設定す。 環境ででの長期間使用後の を考慮した高大量を計 」 本書をして、構造です。 なる、 の低下での長期間であったことな 、 なの、 なのでは、 なる。 です。 に伴的に なの漫水	、 うに花 義丁ににて、 / 門街友 - 「 巻丁巻ミト ラッド かく	

ページ			変更前			ページ			変更後			変更内容
$\Box - F - 1$	規則の項目	告示の項目	説	明	申請書記載 対応事項	(□)-G-3	外運搬規則の項目	外運搬告示の項目	説	明	申請書記載 対応事項	(₁)-@
	 (核燃料輸送物を) しての核燃料物 質等の運搬) 第3条 第1項第1号 第2号 第3号 (L型輸送物に係 る技術上の基準) 第4条第1号 	 (L型輸送物き、 (A型輸送物質等) 第3条 (A型輸送物をして (A型輸送物管等の (A型輸送物管等の (A型輸行等等の (A型輸行等等の (A型輸行等) (A型輸行等) (A型輸送物管等の (A型輸送物管等の (A型輸送物管等) (A型輸送物管等の (A型輸送物管等) (A型輸送) (A=M 	該当しない。 本輸送物の収納物は原子 量を超える量の放射能を 該当するので、BM型輸設 本輸送物は、以下に示す。 に取扱うことができる。 a.輸送物は、以下に示す。 に取扱うことができる。 a.輸送物は、本体にトラ 吊下しは得える。また にで容易に行える。また れる等、安全に取扱え b.輸送物の吊上装置は り、急激な吊上げに耐 c.輪送物にはトラニオン げるおそれのある吊手 また、輸送物にはトラニオン げるたれのある吊手	力規制委員会の定める 有する核燃料物質等に さ物として輸送する。 ように容易に、かつ安全 ニオンがあり、吊上げ、 い、クレーンを使用し 記船に強固に積付ける るものである。 安全係数を3としてお えられるものである。 を除いて輸送物を吊上 はない。 見によって容易に、か ができる。	(<i>A</i>) - A, (<i>A</i>) - B (<i>A</i>) - D (<i>A</i>) - C (D) - A. 4. 4 (<i>A</i>) - C		# 3 # 第 3 項 (つづき)		また教育の中心になった。 また教育の中心になった。 またの人の中心になった。 またの人の中心になった。 またの人の中心になった。 またの人の中心になった。 またの人の中心になった。 またの人の中心になった。 またの人の中心になった。 またの人の中心になった。 またの人の人の中心になった。 またの人の人の人の人の人の人の人の人の人の人の人の人の人の人の人の人の人の人の人	2. 愛情にないた。 の心理には、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので、 ので	wi希に尾鉛基にこった度で 生生中ならすを 使み連思をひ 均守安定をと 曲ス合 をとて著く燃採攝化準よと リ以考 子質の要、るす のや続曲確影 外重化期料を 出ケの操実をもが	

ページ			変更前			ページ			変更後			変更内容
$\Box - F - 1$	規則の項目	告示の項目	説 明	月	申諸書記載 対応事項	(□)-G-4	外運搬規則の項目	外運搬告示の項目	説	眀	申請書記載 対応事項	(4)-2
	 (核燃料輸送物としての核燃料物 「等の運搬) 第3条 第1項第1号 	(L型輸送物とし て運搬できる核 燃料物質等) 第3条	該当しない。		(1)-A, (1)-B		 (BM 型輸送物に係 る技術上の基準) 第6条第1号 (第5条第1号) 		後述のとおり外運搬 までに定める基準に通 第 6 号に定められる要 後述のとおり外運搬 号、第 8 号及び第 10 いる。	1則第5条第1号から第8号 1合している。ただし、同条 1件は該当しない。 1則第4条第1号から第5 号に定める基準に適合して		
	第2号 第3号 (工型輸送物に係 る技術上の基準) 第4条第1号	(A型輸送物とし て運搬できる核 燃料物質等の放 射能の量の限度) 第4条	該当しない。 本輸送物の収納物は原子力規制 量を超える量の放射能を有する 該当するので、BM型輸送物とし 本輸送物は、以下に示すように署 に取扱うことができる。 a. 輸送物は、本体にトラニオン、 吊下しは専用吊具を用い、ク て容易に行える。また、輸送 なるぞ用いて車輌又は船舶に れる等、安全に取扱こるちの b. 輸送物の吊上装置は安全係 り、急激な吊上げに耐えられ c. 輸送物にはトラニオンを除い げるおそれのある吊手はない また、輸送物は専用吊具によ つ、安全に取扱うことができ	 委員会の定める 変換約 変換約 な物話する。 容易に、かつ安全 がレめ車用 がした かつ安全 がした のして たる。 こって こって ふ。 	(1)-D (1)-C (1)-A.4.4 (1)-C		(第 4 条第 1 号) (第 4 条第 2 号)		いる。 本核燃料輸設設 物は、こと、 物は、こと、 、本核燃料輸設 の 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、	下に示すように容易に、か ができる。 本体にトラニオンがあり、 専用吊具を用い、クレーン 行える。また、核燃料輸送 台を用いてすって、気気の 合いてすって、ない により、取扱の最大収納体 により、取扱の最大収納体 により、取納の最大収納体 により、取納の最大の であるトラニオンは、 し、収納物の最大収 の のよう設計してある。 を考慮がいた に 新 よう設計してある。 た の に る 線返しの 重 を を うたの ある 品 ち 設 に の た る 線 返 明 の 重 を を 考 慮 が が し ま う に の た 物 の る よ う 設 計 し て あ る も ち 設 け の て あ る も ち 設 引 し に あ る も ち 設 引 し て あ る も ち 設 引 し に の あ し 、 の い 物 の の よ う 設 計 し に の あ し 、 の い 物 で あ る も ち 設 訳 し て あ る も ち 設 記 し て あ る も ち に の お し げ の て あ よ う 設 記 し て あ る も ち の お り の の あ よ う 記 的 の の よ う 言 た に の 高 志 う 同 の の よ う 号 の つ ま し 、 の 時 を 考 慮 し が の の 市 上 げ 奇 重 し て う 記 う こ う こ る る る ち の ち の の ち よ う 記 の 同 た が の の よ う う 記 の の る よ う 記 の の る よ う こ に う の る の る 、 の う に め の る 、 の う の る の る の る 、 の の ろ の う に う の る の う に う に う の る の よ う う こ う と う に う た う の る う の う に う た う の う こ う つ 、 の の 、 の つ つ に あ の の つ 、 の う の う の の う の 、 う の う の う の 、 の の 、 う の う の	(イ)-C (Ħ)-A.4.4 (イ)-C (イ)-C	

ページ			変更前		ページ			変更後			変更内容
ページ ローF-2	規則の項目 第 4条第 2号	告示の項目	 変更前 説 明 本輸送物は以下に示すように、運搬中に子 る温度及び内圧の変化、振動等により、き 損等の生じるおそれはない。 a. 収納物の発熱量が最大値に裕度 につとき収納物の最高温度は244 の、収納物の健全性は損なわれること。 b. 三次蓋は輸送時の振動等により緩ま う、ボルトにより強固に締付けられて 輸送中の温度、内圧を考慮しても、開 はない。また、輸送物の本体と三次蓋 部の密討境界にはつリングを設けてお 封を保っている。 c. 輸送物の主要な中性子遮蔽材であるレ 最高温度は124℃であり、使用可能温度 より低いため、遮蔽能力が低下するこい。 また、二次蓋金属ガスケットの通用可能温度 を超えることはない。 容器本体は、予想される容器本体各部 差による熱応力が負荷されても割れが 	申請書記載 対応事項 想され 裂、破 と見た (D) -B.4.6 でであ 対ない。 ないよ (D) -C.2.4 おり、 くことの接合 ジンの (D) -B.4.6 ごりつな 150°C うりで 130°C の温度 生じる	ページ (ロ)-G-5	<u>外運輸規則の項目</u> (第4条第2号) (つづき)	外運搬告示の項目 1. 運動 二 温度 条 4 「 4 5	変更後 説 数年に予想される核 要は、 要なした。 数度はない。 第一次の 数度は、 数度は、 数度は、 のに、 に、 ない、 数度は、 ない、 数度は、 ない、 ない、 ない、 ない、 ない、 ない、 ない、 ない	明 燃料輸送物各部の最低 最高温度は一般の試験 に周囲温度38℃及び太 続で負荷した上で、収納 に裕度を見た に裕度を見た に裕度を見た に が間の温度をABAUSコー でいる。低温環境にお のの材料は、-20℃まで 性破に対して問題な て、収納物の最高温度 健徳的特性に影響は、21℃であり、健 でより低いため、遮蔽 でより低いため、遮蔽 でより使いため、遮蔽 でより使いため、遮蔽 でより使いため、遮蔽 でより使いため、遮蔽 でより使いため、遮蔽 でよりであり、速 でしより低いため、速 でしより低いため、速 でしより低いため、速 でしょりであり、 して いて、の したしであり、 して いて、 にが でした。 にが でした。 にが した。 にが した。 にが した。 にが した。 にが にが した。 にが した。 にが した。 にが した。 にが した。 にが した。 にが した。 にが した。 にが した。 にが して い 思な にが した。 して い 思な した。 した。 して い た した。 して い た して い た して い た の た の た か にが して い して い に か の た いた。 の して い た の して い た の して い して い して い して い た の して い して い して い して い して い して い た の して い して い して い して い して い して い して い し い た の に の し い し い し い し い た い し い し い し い た の に の し に し い で あ り 、 し い た の に の し い た の し い た の し い し の し い し い し い し 、 の し い し い し い し い し い し い し い し い し い し 、 二 い 二 の し 、 の し の し 、 こ い し 、 二 い し 、 し の し 、 し 、 の し 、 し い し 、 し 、 し の し 、 の し 、 の し 、 し の し 、 し こ の し 、 二 の し の し の し の し の し の し の し の し の し の し の し の し の し の し の し し の し の し の し の し し の し の し い し し し の し し し の し の し し し の し し の し し し の し の し し し の し し し の し し し し し し し し し し の し し し の し し し し し し し し し し し し し	申請書記載 <u>対応事項</u> (ロ)-A.4.2、 (ロ)-B.1、 (ロ)-B.4.6	変更内容 (4)-②
	쓟오묜		を超えることはない。 容器本体は、予想される容器本体各部 差による熱応力が負荷されても割れが ことはない。 d. 輸送物の胴内圧が高くなることはなく 性を損なうこともない。 e. 固縛装置は、輸送中発生する上下及び 向加速度2g並びに左右方向加速度1 えるように設計されている。また、本 は固有振動数(214H2)と輸送による (10H2)の差が大であり、輸送物に与 響はない。	の温度 生じる 、密封 (D)-B.4.4 前後方 (D)-A.4.5、 gに耐 輸送物 振動数 える影			ング 温む ない 2. 運動 照料 には オート ためた り、 計してま 等の	グ温度は 98℃であり が。 酸中に一予想される温 財輸送物は「一部品の 十分に小さく、部品の 十分に小さく、部品の 十分に小さく、部品の か、 電数、破損 第4 の 生する熱応力を 応力を に た た た た し の た の た に し の た の で 、 の た の さ の た の の の の の の こ わ の て 、 く 、 部 品 の た か さ の た の た の さ の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の の た の の し の た の た の た の た の の の し の の の し の の の の し の し の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の た の の の の の の の の の の の の の	、0リングの使用可能 め、密封性能に影響は 度の変化に対して、核 に20~38℃の温度の範 熱聴張に伴う寸法変化 同士の干渉が足じない 生じるわそれはない。 ~ドを用いた評価によ 含めた各部の応力が設 を下回ることを確認し 維持され、亀裂、破損 い。	(Ħ)-A.5.1	
	弗乙写		輸送初表面には、市工装置であるトワニネ には不要な突起物がなく、また、輸送物表 らかに仕上げており、除染は容易である。	」 「「」 「」 「」 「」 「」 「」 「」 「」 「」							
	第 4号		本輸送物には、多種の材料が使われてい 各々の材料相互の間及び収納物との間では な物理的又は化学的作用を起こすおそれは	るが、 (D)-A.4.1 、危険 ない。							
	第 5号		本輸送物には弁はなく該当しない。	(b) -C. 2. 1							

$\Box - F - 2$	規則の項目 第4条第2号	告示の項目	₩			$(\Box) - G - 6$						
	第 3号 第 4号			明 、運搬中に予想され 等により、き裂、破 に満った。 になり、き裂、破 に満った。 なり、き裂、破 ににない。 なりにない。 にになった。 ないした。 ないででであれる温度とのでしなででです。 なしなで、 密封 すた。 なるこた。 なるこた。 なるこた。 なるこた。 なるこた。 なるこのででは、 なので、 なる、 、 、 、 、 、 なう、 、 、 、 、 、 、 、 、 、 、 、 、 、	 Ф I # # I E # 31/С # 74 (D) -B. 4. 6 (D) -C. 2. 4 (D) -B. 4. 6 (D) -B. 4. 6 (D) -B. 4. 4 (D) -A. 4. 5. (D) -A. 4. 7 (A) -C (D) -A. 4. 1 		外運搬規則の項目 (第 4条第 2号) (つづき)	外運搬告示の項目	説 3. 運動中におんで、 燃料輸送物の.0790Pa、- ニニン、営動の、 二三次営業目が「」」があった。 上型でするので、 上型でするので、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にはないため、 にないため、 にないため、 にないたが、 にはないため、 にないため、 にないたが、 にないたが、 にないため、 にないため、 にないため、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にないたが、 にない、 にない、 にないたが、 にない、 になない、 になない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 にない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 になない、 に になない、 に になない、 に になない、 に になない、 に になない、 に になない、 に になない、 に になない、 に になない、 に にない、 に に に に に に に に に に に に に	明 甲間 執力 項 項目 対面 (口)- ごの変化にる豊大の圧は、 (口)- 二次激調の 面印名、 二次激調の 酒所方では 二次激調の 酒所方では 二次激調の 酒所方では 二次激調の 酒所方では 二次調査 第二 注意解析では 差圧を利用の、 二次調査 第二 運営 第二 注意解析では 差圧をを削肉、 注意に設定した条件で、熱 力をABAQUSコードを用 (二 (注意 2000-2000-2000-200-200-200-200-200-200-	3:4.4 4:4.7 5:1 5:1 5:1 5:1 5:1 5:1 5:1 5:1	(4)-2
	第5号		™aro+±nyへva10子ny1F用を起 本輸送物には弁はなく該当し	~ 9 O T 1113/2V'0 &V'0	(p)-C.2.1							

ページ			変更前		ページ			変更後			変更内容
$\Box - F - 2$	規則の項目	告示の項目	説明	申請書記載 対応事項	(□)-G-7	外運搬規則の項目	外運搬告示の項目	説	明	申請書記載 対応事項	(4)-2
	第4条第2号		本輸送物は以下に示すように、運搬中に予想され る温度及び内圧の変化、振動等により、き裂、耐 損等の生じるおそれはない。 a. 収納物の発熱量が最大値に裕度を見た と聞のとき取納物の最高温度は248℃であ り、収納物の健全性は損なわれることはない b. 三次薹は輸送時の振動等により渡まないよ う、ボルトにより強固に締付けられており、 輸送中の温度、内圧を考慮しても、開くこと はない。また、輸送物の本体と三次薹の接合 部の密封境界にはりリングを設けており、雪 封を保っている。	2 (b) -B. 4. 6 6 (b) -C. 2. 4 7 5		(第4条第2号) (つづき)		6. 固縛装置であるトラ 計算により、核燃料 た上で、輸送中に発行 にも設計降伏点を下 るため、亀裂、破損等 また、本核燃料輸送 輸送による核燃料輸送 力による核燃料輸送 し、輸送中の振動に 件の 0.3m 落下事象に 燃料輸送物は予想さ 裂、破損等の生じる 認	ニオンは、公式を用いた 輸送物最大質量を考慮し 主する上下及び前後方向 可るように設計されてい すの生じるおそれはない。 かは固有振動数(214H2)と 出2)の差が大きく、励振 なる荷重は一般の試験楽 包絡される。よって、種 6それはない。	(1)-A.4.5 (1)-A.4.7 (1)-A.4.7	(4)~©
			 c. 輸送物の主要な中性子遮蔽材であるレジンの 最高温度は124℃であり、使用可能温度1500 より低いため、遮蔽能力が低下することはな い。また、二次蓋金属ガスケットの温度は970 であり、金属ガスケットの使用可能温度1300 客超えることはない。 容器本体は、予想される容器本体各部の温度 差による熱応力が負荷されても割れが生じることはなく。 cとはない。 d. 輸送物の胴内圧が高くなることはなく、密封 性を損なうこともない。 e. 固縛装置は、輸送中発生する上下及び前後方 向加速度2g並びに左右方向加速度1gに両 えるように設計されている。また、本輸送税 は固有振動数(21442)と輸送による振動数 (1042)の差が大であり、輸送物に与える暴 響はない。 	(b) -B. 4. 6 (c) -B. 4. 6 (c) -B. 4. 6 (c) -B. 4. 4 (c) -A. 4. 5. (c) -A. 4. 7 (c) -A. 4. 7		(第4条第3号) (第4条第4号)		核燃料輸送物表面には、 ン、取扱用吊具以外にはは、 た、核燃料輸送物表面には、 た、核燃料輸送物表面になった。 体で燃料輸送物表面は、炭 学的に安定した材料を使 はうに各々の材料相互の は、危険な物理的作用又 れはない。 1. 構成部品同士の熟態が から、「材料相互の類が を生じる外間等に密 リウム雰囲気にする、 生じない設計ししてい 3. レジンを外間等に密 リウム雰囲気にする、 生じない設すしとしまる。 、 ためびのリング 学反応を起こすおそえ、 4. 伝熱フィンと服及び、	吊上装置であるトラニオ 不要な突起物がなく、ま ステンレス網天は塗装ら かに仕上げていること。 素綱、ステンレス鋼等に の間及び収納物との間で 切したで反応を起こす お したで反応を起こす お したで腐食等 は による、 和料相互で腐食等が いる、 また、胴内を がい、 る 属と接触しても 化 れない。 外筒の接合部は、 種本 に なる「単体の 見知して も 化	(-~)-C (12)-A.5.1.2 (12)-A.4.1 (12)-A.4.1 (12)-A.4.1	
	第3号		輸送物表面には、吊上装置であるトラニオン以外 には不要な突起物がなく、また、輸送物表面は沿 らかに仕上げており、除染は容易である。	F (4)-C		(第4条第5号)		周技照による 电気的 [↓] 。 本核燃料輸送物には弁は	る)励良に進の影響は小さ なく該当しない。	(Ħ)-C.2.1	
	第 4号		本輸送物には、 多種の材料が使われているが、 各々の材料相互の間及び収納物との間では、危険 な物理的又は化学的作用を起こすおそれはない。	(D)-A.4.1		(第4条第6号) (第4条第7号)		該当しない。		(¤)-A.4.3	
	第5号		本輸送物には弁はなく該当しない。	(b)-C.2.1		্যেন বিশ্বসি <i>(म)</i>		KY⊐ (,471,9			

ページ			変更前			ページ			変更後			変更内容
$\square - F - 3$	規則の項目	告示の項目	説	明	申請書記載	(□)-G-8	次軍 御祖町 小市日	从雷舰生于亦有日	EA	BE	申諸書記載	
	第4条第6号				対応事項		ア以里服の見町の項目	(表面密度限度)	E/L	97	対応事項	(4)-②
	第7号		該当しない。				(第4条第8号)	第9条	本核燃料輸送物の表面 送前に表面密度限度」 上で、発送される。	の放射性物質の密度は、 以下であることを確認し	発 (ハ)-A.2.1 た	
	第8号	(表面密度限度) 第9条	本輸送物の表面の放射性物 表面密度限度以下であるこ 発送される。	質の密度は、発送前に とを確認したうえで、	(=)-A				区分 アルファ線を放出 する放射性物質	表面密度限度(Bq/cm²) 0.4		
			区分 表面 アルファ線を放出 する放射性物質	i密度限度 (Bq/cm²) 0.4			(第4条第9号)		アルファ線を放出 しない放射性物質 該当しない。	4		
			アルファ線を放出	4			(1) (1) (1) (1)					
	第 9号		該当しない。				(第4条第10号)		本核燃料輸送物には、 れていないことを確認 核燃料輸送物の安全性	収納物以外のものが収納 した上で蓋をするので、: 生を損なうおそれのある	さ (フヽ)-A 本 も	
	第 10 号		本輸送物には所定のものし いことを確認したうえで蓋 の安全性を損なうおそれの	(外が収納されていな をするので、本輸送物)あるものを収納する	(=)-A				の使用等に必要な書類 に輸送することはない	♥。 また、本内級科和地ム 、工具等以外のものを同 。	時	
	(A型輸送物に係 2ttをものまま)		ことはない。				(第5条第2号)		本核燃料輸送物の仕様の円筒型容器であり、	は外径約3.5m、長さ約8. 外接する直方体の各辺	8m (イ)-C は	
	る40m上の基準) 第5条第1号		前述のとおり前条(第4条) で、第8号及び第10号に5 いる。) 第1号から第5号ま 定める基準に適合して			(第5条第3号)		10cm 以上である。 本核燃料輸送物の三次 に締め付けられており	蓋は、三次蓋ボルトで強 、輸送の際には上部緩衝	固 (イ)-C.2、 体 (ロ)-A.4.3、	
	第 2号		本輸送容器の仕様は外径約 円筒型容器であり、外接する 以上である。	3.5m、長さ約 6.8m の 8直方体の各辺は 10cm	(1)-0				で覆われているため、 ことはない。また、上 れるので、開封された らかとなる。	不用意にボルトが外され 部緩衝体は取付け後 場合に開封されたことが	る (フヽ)-A 	
	第3号		本輸送物の三次蓋は、ボル り、輸送の際には上部緩衝 用意にボルトが外されるこ 緩衝体は取付後される。 はそれが明らかとなる。	トで締め付けられてお 体で覆われるため、不 とはない。また、上部 ので、開放された場合	(b)-A.4.3		(第5条第4号)		本核燃料輸送物は、馬 る。そのため、本核燃 -20℃から運搬中に予 脆化、著しい強度の低 なく、構成部品に亀裂	囲温度-20~38℃で使用 数料輸送物の構成部品は 思される最高温度の範囲 下等、材料強度への影響 、破損等の生じるおそれ。	す (ロ)-A.3、 (ロ)-A.4.2、 で (ロ)-B.4.6 は は	
	第 4号		本輸送容器は、周囲温度-2 本輸送容器の構成部品は、 もき裂、破損等は生じない、 したがって、20℃から70℃	0℃以上で使用する。 -20℃の温度において 。 の周囲温度において、	(D)-A.4.2		(第5条第5号)		ない。 本核燃料輸送物の密封 の場合を考慮した差別 設定した解析において	装置は、周囲圧力が 60k Eを胴内及びニ三次蓋間 も構造健全性が維持され	Pa (□)-A.4.6	
	第 5号		(第021)前にご設、破損等を: 本輸送物の密封装置は周囲) も、放射性物質の漏えいは:	エしるわせれはない。 圧力が 60kPa の場合で ない。	(b)-A.4.6				 ・ ・ ・	おそれはないこと及び0 口開き変形量が0リング いことを、外運搬規則第 X構造解析において ABAO	リ の 4 JS	
	第 6号		該当しない。						コードを用いて確認し 料輸送物の密封性が損 性物質の漏えいはない	ている。このため、本核 なわれることはなく、放 。	燃 射	
												1

ページ			変更前			ページ			変更後			変更内容
$\Box - F - 4$	規則の項目	告示の項目	説	明	申請書記載 対応事項	(□)-G-9	外運搬規則の項目	外運搬告示の項目	説	明	申請書記載 対応事項	(1)-@
	第5条第7号	(線量当量率) 第8条	本輸送物は最大放射能量の 輸送物の最大表面線量当 り、基準値の 2mSv/hを超	D収納物を収納しても、 量率は 0.724mSv/h であ えることはない。	(D) -D. 4, (D) -D. 5		(第 5条第 6号) (第 5条第 7号)		該当しない。 最大の放射能の量 において、ガンマ	を示す収納物を収納した場 線強度なび中性子源強度	合 (ロ)-D.4、 は (ロ)-D.5	(4)-2
	第 8号		本輸送物は最大放射能量(輸送物の表面から1mの距 量率は 86.1µSv/hであ) を超えることはない。	の収納物を収納しても、 拒離における最大線量当 り、基準値の 100μ Sv/}	(b) -D. 4, (b) -D. 5				URIGEN2.2 ゴードが 射を仮定して求め、 考慮して保守的な 用いて解析を行った 表面の最大線量当り	2000116計算式により連続 連載解析については、以下 条件を設定し、DOI3.5コード そ。通常輸送時の核燃料輸送 電率は0.725mSv/hであり、基 2世によっ	照 を を 物 準	
	第 9号 第 10号		該当しない。 該当しない。						100 2mSv/h以下を 1. 線源として保守 料 21 体を、外) 収納するとして 2. 燃料の燃焼条件	満定する。 ○的に中央部に最高燃焼度の 問部最高燃焼度の燃料 48 体 いる。 ぶる 絡する軸方向燃焼度分	燃 を 布	
	(BM型輸送物に 係る技術上の基 準) 第6条第1号	(BM型輸送物に (BM型輸送物に	前述のとおり前条(第55 でに定める基準に適合し に定められる要件は該当	程)第1号から第8号ま ている。ただし、第6号 しない。	- -				2. mm()のmm() を考慮している。 3. 燃料集合体の放 4. 解析モデルにつ 用している。 5. 中性子遮蔽材に 項の技術上の量 明のとおり、熱 	と、日子で相子で相方に構成が度方。 射化を考慮している。 いては遮蔽材の最小寸法を ついては外運搬規則第3条算 準に対する連合性において 約劣化を考慮し、その質量 ている。	使 (3) 説 が	
	第6条第2号	味る一版の試練 条件) 第14条 別記第4第1号	本輸送物は、周囲温度 38% を1日につき安全側に 24 に達した温度を評価してい は、水平に輸送されない「	C及び下表の太陽放射熱 日時間負荷して定常状態 いる。また、技術基準上 下向きの表面に対しては	(D)-B.4.1.1		(第5条第8号)		本核燃料輸送物は、 解析した結果、通常 から 1m 離れた位 86.1µSv/h であり ^い 。	上記と同じ保守的な条件に 輸送時の核燃料輸送物の表 置における最大線量当量率 基準値の 100μSv/h を超え	て (ロ)-D.4、 面 (ロ)-D.5 は な	
			200W/m ² であるが、解析」 に対して400W/m ² としてい	:は安全側に全ての曲面 <u>`る。</u>	î		(第5条第9号)		該当しない。			
			表面の形状及び位置 垂直に輸送される平 その他の表面(曲面)	於射熱 (\\/m ²) 面 200 9 400			(第5条第10号)		該当しない。			

ページ			変更前			ページ			変更後			変更内容
$\Box - F - 4$	規則の項目	告示の項目	説	明	申請書記載 対応事項	(□)-G-10	外運搬規則の項目	外運搬告示の項目	説	明	申請書記載 対応事項	(4)-2
	第5条第7号	(線量当量率) 第8条	本輸送物は最大放射能量 輸送物の最大表面線量当 り、基準値の 2mSv/h を調	:の収納物を収納しても、 量率は 0.724mSv/h であ 置えることはない。	(D)-D.4. (D)-D.5		第 6 条第 2 号	(BM 型輸送物に係 る一般の試験条 件) 第14条 別記第4第1号	日陰において 38℃の)大気中に、本核燃料輸送物(< (ロ)-A.5.1、	(4)-(2)
	第 8号		本輸送物は最大放射能量 輸送物の表面から1mの 量率は 86.1µSV/h であ を超えることはない。	:の収納物を収納しても、 距離における最大線量当 り、基準値の 100µ Sv/}	(D) -D. 4. (D) -D. 5				最大崩壊熱を発生す 合において ABAQUS: 一般の試験条件下で できる表面における 73℃である。したが	る燃料集合体を収納した数 ロードを用いて求めた。 の人が容易に近づくことが 設高温度は、緩衝体表面(って、本核燃料輸送物の表)	場 (ロ)-B.4 が の 面	
	第 9号 第 10号		該当しない。 該当しない。						温度は技術基準に定 て 85℃を超えること また、一般の試験条 各部温度評価として	める気温 38℃の日陰におい はない。 牛の下での本核燃料輸送物の 、外運搬規則第4条第2号	ר ת 1	
	(BM型輸送物に 係る技術上の基 準) 第6条第1号		前述のとおり前条(第5 でに定める基準に適合し	条)第1号から第8号ま ている。ただし、第6号					の熱解析において、 を保守的に連続で負 達した温度を評価し ないことを確認して た各部の温度分布を	囲温度 38℃及び太陽放射熱 荷した条件にて定常状態 、各部が使用可能温度を超 いる。続いて、上記で評価 引き継いだ ABAQUS コード(換 た え し	
	第6条第2号	 (BM型輸送物に 係る一般の試験 条件) 第14条 	に定められる要件は該当	itav.					よる構造解析におい 基準値を下回ること 全性が維持され、亀 ないこと及び0リン 形量が0リングの初 確認している。	て、各部が設計応力強さ等の を確認しているため、構造的 裂、破損等の生じるおそれ(グ取付位置での相対口開き3 明緒付け代より小さいこと)	の建さ変を	
		別記第4第1号	本輸送物は、周囲温度 38 を1日につき安全側に 2 に達した温度を評価して は、水平に輸送されない	℃及び下表の太陽放射熱 4 時間負荷して定常状態 いる。また、技術基準上 下向きの表面に対しては	(D)-B.4.1.1			第2号	以下のとおり別記第 評価している。	3第1号の条件の下に置いて	τ	
			200Ψ/m ² であるが、解析 に対して400Ψ/m ² として 表面の形状及び位置 垂直に輸送される平	上は安全側に全ての曲面 いる。 <u>最</u> 放射熱 (W/m ²) 面 200				別記第3第1号 イ	一般の試験条件 水噴霧 本核燃料輸送物の表 を施した炭素網面で 本試験の実施によっ 全性及び密封性を損	(面はステンレス綱又は塗 あり、水切りは極めてよく、 、ても核燃料輸送物の構造) なうことはない。	(ロ)-A.5.2 装 建	
			その他の表面 (囲面)) 400								

ページ		変更前					ページ変更後					
$\Box - F - 5$	規則の項目	告示の項目	説	明	申請書記載 対応事項	(□)-G-11	外運搬規則の項目	外運搬告示の項目	説	明	申請書記載	(1) @
	規則の項目 第6条第2号	<u>音示の項目</u> 第14条 別記第4第2号 別記第3第1号	 説 以下のとおり別記第 3第 1 て評価している。 一般の試験条件 イ、水噴霧試験 本輸送物の表面は2 塗装を施した炭素鋼 めてよく、本試験のの の健全性を損うこと D. (1)自由落下 本輸送物の重量 るため、落下時に記 るよう、垂正 姿勢について解 緩衝体の最大望 落下時に記 るよう、垂直といいでに解 緩衝体の最大望 該当しない。 (3)積み重ね試験 自重の5倍(6.51×10⁰ N であ を乗じて得た信 大きいので、こ 解析は輸送物の 及び水平方向の 	明 一号の条件の下に置い デンレス鋼若しくば こであり、水切りは極 によっても輸送物 は132.6トン以下であ にあり、水切りは極 によっても輸送物 は132.6トン以下であ がであり、水切りは極 にあったで受け 休している。 二形量であるが、輸送 うことはない。 に相当する荷重量より れを解析している。 に 相当する荷重まり れを解析している。 に 相当する荷でまより れを解析している。 に に な た に な に な し こ た に し っ で に し っ 、 、 、 、 、 、 、 、 、 、 、 、 、	対応事項 (D) - A. 5. 2 (D) - A. 5. 3 (D) - A. 5. 4		<u></u> 外運搬規則の項目 第6条第2号 (つづき)	<u>外運搬告示の項目</u> 第14条 別記第3第1号 ロ (1) (1)	 説 外運搬告示別記第3第後、次の条件の下に置 自由落下本核燃料輸送物の質量 め、落下高さは0.3m、物が最大損傷を受け けーのたく姿勢について 術が、最大損傷を受け けーであた、変形して解した核燃料構 とし、緩衝体の安死形量 結果を踏まえ保を解析 設定している。次形 については公式 でいる。容にかい器本体の弊所 しる応力容器並びに容弱 ることとのが新鮮価 でについい器本体(が 間る応力容器並びに容弱 ることない。 該当しない 私の、 構造理としない。 がもしない。 私の、 着和重の5倍に相当す 台口を見る。 から、 指重したい。 から、 おい、 も信に13kPa ない 	明 11号イの条件の下に置いた は132.6トン以下であるた であり、落下時に核燃料輸送 るよう、垂直、水平及びコー でRUSHコードを用いて、総 輸送物と落下試験との比較検詢 2000第下試験との比較検詢 2000第下試験との比較検詢 2000第一次のが発行し、2を考 に、保守的な設計加速度を の最大変形量は底部コーナ marである。 本体各部の応力を ABAUS = 61し、バスケット及び燃料被覆管は 力が負荷されても各部に生 気な等の基準値を下回るこ スケット及び燃料被覆管は 力が負荷されても各部に生 気なかり入及び燃料被覆管は なり料理である。 本体各部の広力を ABAUS = 61し、バスケット及び燃料被覆管は なりが負荷されても名部に生 し、ころいが損なわれ る荷重(6.51×10%)の方が、 を乗じて得た値に相する	中語音品(取 対応事項 (ロ)-A.5.3 (ロ)-A.5.4	(4)-2
		第2号	 3 Clay、本紙 全性を損うこと (4) 貫通試験 貫通試験は重量 を輸送物の最もから落下させた 軟鋼とし、衝撃 ものとして解析 施によっても扱い。 該当しない。 	(の実施によらても確 はない。 6 kg、直径 3.2 cm の棒 時い部分に 1m の高さ としている。試験権は 苛重は輸送物が受持つ しており、本試験の実 全性を損うことはな	(D)-A.5.5				(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	2023年11日、少、初級料輸送物 書算により、初級料輸送物 度及び水平方向の曲げ強度 本試験の実施によっても話 器本体の構造健全性を損な 生に影響を与える損傷はな 着み重ねた場合、緩衝体部 外筒や蓋部及び底部中性子 河面重が作用しないため、通 には生じない。また、荷重柔 :包給されることから、緩種 (ロ)章Dの遮蔽解析で考慮 想定される変形量に包給さ		