ページ	変更前	ページ	変更後	変更内容
$\square - A$	c. 解析結果	(□)-A-84	c. 解析結果	
-79	主要な位置((ロ)-第A.20図参照)に対する頭部垂直落下時の一次応力強さの評価		主要な位置(<u>(ロ)-</u> 第 A.20 図参照)に対する頭部 <mark>0.3m</mark> 垂直落下時の一次応力強さの	(4)-2
	結果を(ロ)-第A.19 表に、(一次+二次)応力強さ及び蓋ボルトの応力の評価結果を		評価結果を(ロ)-第A.19表に、(一次+二次)応力強さ及び蓋ボルトの応力の評価結果	(以下同様)
	(ロ) - 第A.20 表に、また底部垂直落下時の一次応力強さの評価結果を(ロ) - 第A.21		を <u>(ロ)-第 A. 20 表</u> に、また底部 <mark>0. 3m</mark> 垂直落下時の一次応力強さの評価結果を <u>(ロ)-第</u>	
	<u>表</u> に、(一次+二次)応力強さ及び蓋ボルトの評価結果を <u>(ロ)-第A.22表</u> に示す。		<u>A. 21 表</u> に、(一次+二次)応力強さ及び蓋ボルトの評価結果を <u>(ロ)-第 A. 22 表</u> に示す。	
	それぞれの表に示すように、すべての評価位置においてA.1.2に示す解析基準値		それぞれの表に示すように、全ての評価位置において(ロ)章 A. 1. 2 に示す解析基準	
	を満足する。		値を満足する。	
	また、三次蓋と本体の0リング取付け位置での相対ロ開き変形量は頭部垂直落下、		また、三次蓋と本体の0リング取付位置での相対ロ開き変形量は頭部0.3m 垂直落	
	底部垂直落下ともに 0.1mm 以下であり、0 リングの初期締付け代 🛄 nm より小さく、		下、底部 0.3m 垂直落下ともに 0.1mm 以下であり、0 リングの初期締付け代 🌅 🖿 より	
	密封性が損なわれることはない。		小さく、密封性が損なわれることはない。	
$\square - A$ - 8.0	(ロ) - 第A.20図 自由落下時の応力評価位置	(□)-A-85	<u>(ロ)-</u> 第 A. 20 図 0. 3m 自由落下 <mark>試験</mark> 時の応力評価位置	(4)-②
□ – A		(□)-A-86		
-81	<u>(ロ)</u> - 弟A. 19 表 頭節 0. 3m 垂直洛下時の谷盗本体に対する一次応力の評価(1/2)		<u>(ロ)-第A.19表</u> 頭部0.3m 垂直落下時の容器本体に対する一次応力の評価(1/2)	
	部位 断面 No. 応刀分類 ^(±2) 応刀強き 温度 解析 余裕率 電位 No. 進1) スは応力の 表面 又は応力 (C) 基準値 (MPa) 余裕率		部位 断面 No. 応力分類 ^{注2} 応力強さ 温度 解析 余裕率 調位 No. 注1 スは応力の 表面 又は応力 温度 基準値 MS (MPa) (%) (MPa) ^{±33} (m)	(4)-②
□ – A		(ロ)-A-87		
-82	(ロ)-第A.19表 頭部 0.3m垂直落下時の容器本体に対する一次応力の評価(2/2)	() 11 01	(ロ)-第A.19表 頭部 0.3m 垂直落下時の容器本体に対する一次応力の評価(2/2)	
	部位 断面 No. ± 1) 応力分類 又は応力の 種類 応力強さ 異面 温度 又は応力 解析 基準値 (MPa) 余裕率 部位 No. ± 1) 和類 (MPa) (C) 「(C) 解析 基準値 (MPa) ± 2) 余裕率		部位 断面 No. (±1) 応力分類 又は応力の 種類 応力強さ 又は応力 (MPa) 温度 (C) 解析 基準値 (MPa) 余裕率 MS 部位 No. (±1) 種類 次は応力 (MPa) (C) 「MT MS	(4)-②
$\Box - A$		(□)-A-88	(17) 第4 00 末 商畑 0.9	
-83	<u>(ロ) - 第A.20表 頭部 0.3m 垂直落 ト時の容器本体に対する</u> (一次+二次) 応力及び蓋ボルトの評価(1/2)		(ロ)-第 A. 20 次 頃前 0.5m 垂直洛下時の各部本体に対する (一次+二次)応力及び蓋ボルトの評価(1/2)	
			応力強さ 調査 解析 余裕率	
	部位 新位 新田 応力の種類 表面 又は応力 (MPa) (*C) (MPa) = 27 (MPa) (*C) (MPa) = 27 (*C) (*		部位 ¹⁶⁷¹¹¹¹ No. ^{E1)} 応力の種類 表面 又は応力 ^{(加及} 基準値 MS (MPa) ^{(*} C) ^(MPa)	(4)-2
$\Box - A$		(□)-A-89		
-84	(() - 第A.20 表 頭部 0.3m 垂直落下時の容器本体に対する(- 次) に カルズ 差 ず ルトの 認知 (2.42)		<u>(ロ)第A.20表 頭部0.3m 垂直落下時の容器本体に対する</u>	
	部位 断面 応力の 表面 Zは応力 温度 No. ^{注11} 種類 ^{注2)} 表面 Zは応力 (CC) 基準値 (MPa) ^{注3)}		部位 断面 応力の 表面 又は応力 温度 那何 示和学 Mo. ^{注1)} 種類 ^{注2)} 表面 又は応力 (C) 基準値 MS (MPa) ^{注3)} (一)	(4)-②
□ – A	注 2) σ _m : 平均引張応力 σ _m +σ _b : 平均引張応力+曲げ応力	(□)-A-89	注 2) σ _n : 平均引張応力、σ _b :曲げ応力	(4)-②
-84 $\square - A$		(□)-A-00		
-85	(ロ)-第A.21表 底部0.3m垂直落下時の容器本体に対する一次応力の評価(1/2)	(=) h 30	(ロ)-第A.21表 底部 0.3m 垂直落下時の容器本体に対する一次応力の評価(1/2)	
	部位 断面 No. 応力分類 ^(±2) 又は応力の 種類 応力強さ 又は応力 温度 (℃) 解析 基準値 (MPa) 余裕率		部位 断面 No. ^{注1} 応力分類 ^{注2} 応力強さ 又は応力の 種類 応力強さ 又は応力 温度 (C) 解析 基準値 (MPa) ^{注3} 余裕率	(4)-②

ページ	変更前	ページ	変更後	変更内容
$\square - A$	(ロ) - 寛 A 91 志 広知 A 92 - 五声波下時の空思大体に対ける - みに もの評価 (9 / 9)	(□)-A-91	(1)-第1.91 志 応知 0.2m 孫武波下陸の突要太休にかナスールで 九の冠研(9/9)	
-86	(二) 第74.21 (2) (2) (3) (三) (3) (三) (3) (3) (3) (3) (3) (3) (3) (3) (3) (3		<u> </u>	
	部位 $ P $ $ P $ $ V $		部位 $No. \pm 1$ 又は応力の 表面 又は応力 $Mo. \pm 1$ MS $Mo. \pm 1$ 種類 MS MPa MPa MS MPa	(4)-(2)
$\square - A$		(□)-A-92		
-87	<u>(ロ)</u> -第A.22表 底部 0.3m 垂直落下時の容器本体に対する		<u>(ロ)-第A.22表</u> 底部0.3m 垂直落下時の容器本体に対 <u>する</u> (ーマーンマーンマンドナルマズ美ゴルトの要価(1/2)	
	<u>(一次+_</u> 次) 応力及び蓋ボルトの評価 (1/2)		(一次十二次)応力及び益ホルトの計画(1/2)	
	部位 断面 No. ^{±1}) 応力の種類 表面 応力強さ 温度 所列 基準値 (MPa) 余裕率 (MPa) (°C) 【基準値 (MPa) ^{±2}) (MS)		部位 断面 No. ^{±1} 応力の種類 表面 又は応力 (MPa) 温度 (C) 新用 基準値 (MPa) MS 部位 No. ^{±1} (MPa) (C) (MPa) (C) (MPa) (C)	(4)-②
$\square - A$	(ロ)-第A.22表 底部0.3m垂直落下時の容器本体に対する	(□)-A-93		
- 0 0	(一次+二次) 応力及び蓋ボルトの評価 (2/2)		<u>(ロ)-弟A.22表 低部0.3m 亜直落下時の容器本体に対する</u> (一次+二次)応力及び蓋ボルトの評価(2/2)	
	部位			
	(MPa) (MPa) (MPa) (MPa) (MPa)		部加. No. ED 種類E2 衣田 人はない (YC) 基理理 MS (MPa) (C) (MPa) (C) (MPa)	(4)-(2)
□ – A - 8 8	注2) σ_m : 平均引張応力 $\sigma_m + \sigma_b$: 平均引張応力+曲げ応力	(□)-A-93	注 2) σ _m : 平均引張応力、 σ _b : 曲げ応力	(4)-②
$\square - A$	ただし、ρ :バスケット材料(ほう素添加ステンレス鋼)の密度 (kg/mm ³)	(□)-A-94	ここで、	(4)-②
- 8 9			ρ : バスケット材料(ほう素添加ステンレス鋼)の密度(kg/mm ³)	
$\square - A$ - 8 9	(ロ)-第A.23 表 バスケットプレートの応力計算条件及び計算結果	(□)-A-94	(ロ)-第 A. 23 表 バスケットプレートの応力計算条件及び計算結果	
	ズスケット バスケット 垂直落下時の 圧縮応力 基準値 余裕率 評価位置 材料の密度 全長 衝撃加速度 圧縮応力 :Sm 余裕率		パスカット材料 パスカット 垂直落下時の 正統広力 基準値 余裕率	(4)-②
	$\begin{array}{c c} \vdots \rho & (\text{kg/mm}^3) \\ \vdots \rho & (\text{kg/mm}^3) \\ \vdots L & (\text{mm}) \\ \vdots G_V (\text{m/s}^2) \\ \vdots \sigma_c & (\text{MPa}) \\ \end{array} $ (MPa) (-)		評価位置 $: \rho$ $: \rho$ $: \rho$: L(nm) $: G_{\overline{y}}(m/s^2)$ $: G_{\overline{y}}(m/s^2)$ $: \sigma_{c}(MPa)$ (MPa) (MPa)	
	ハスケット 294 11 146 12.2		パネガット 294 11 146 12 2	
			7° Vh 2017 11 110 12.2	
$\square - A$	(ロ)-第A.24表 垂直落下時の燃料被覆管の強度評価結果	(□)-A-97	(ロ)-第 A. 24 表(a) 頭部 0. 3m 垂直落下時の燃料被覆管の強度評価結果	(4)-②
-91) 活动无声波下			
□ – A	a) 項印亚旦洛丁 b) 底部垂直茨下	(□)-A-97	(ロ)-筆A 24 表(b)	(4)-2
-91				(1) @
$\square - A$ -92		(□)-A-98	a. 解析モデル	
	A. 5. 1. 3 と同様に、主に二次元有限要素を用いた(ロ)-第A. 8 図に示す三次元		【ロ】 車 A. 5. 1. 3 と同様に、主に二次元有限要素を用いた(ロ)-第 A. 8 図に示す三次 ニ 1/2 報告 モデルも用いる	(4)-(2)
□ – A	 1/2 麻竹でフルを用いる。 ① 詰重条件 	(ロ)-A-98	元1/4 胜灯で7 ルを用いる。 ① 荷香冬佐	
-92	业 回 単本口 水 平落下時に作用する荷重は次のとおりである。		●四重本日 0.3m 自由落下試験のうち水平落下(以下「0.3m 水平落下」という。)時に作用する荷	(4)-(2)
			重は次のとおりである。	0

ページ	変更前	ページ	変更後	変更内容
$\square - A$	② 境界条件	(□)-A-98	②境界条件	
-92	上・下部緩衝体が取付く面(反力を受ける面)の上・下それぞれ1箇所の落下方向を		上・下部緩衝体が <mark>取り付けられる</mark> 面 (反力を受ける面) の上・下それぞれ 1 箇所の落	(4)-2
	拘束した。また、0°-180°面の対称面において対称面法線方向の変位を拘束した。		下方向を拘束した。また、0°-180°面の対称面において対称面法線方向の変位を拘束	
			した。	
	水平落下時に作用する荷重条件及び境界条件を(ロ) - 第A.21図に示す。			
			0.3m 水平落下時に作用する荷重条件及び境界条件を <u>(ロ)-第 A.21 図</u> に示す。	11

ページ	変更前	ページ	変更後	変更内容
$\Box - A$	c. 解析結果	(□)-A-100	c. 解析結果	
-94	水平落下時の主要な位置((ロ)-第A.20 図参照)に対する一次応力強さの評価結果		0.3m 水平落下時の主要な位置((ロ)-第 A.20 図参照)に対する一次応力強さの評価結	(4)-2
	を <u>(ロ)-第A.25 表</u> に、(一次+二次)応力強さの評価結果を <u>(ロ)-第A.26 表</u> に示す。		果を <u>(ロ)-第 A. 25 表</u> に、(一次+二次)応力強さの評価結果を <u>(ロ)-第 A. 26 表</u> に示す。	
	表に示すように、すべての評価位置においてA. 1. 2 に示す解析基準値を満足する。		表に示すように、全ての評価位置において(ロ)章 A.1.2 に示す解析基準値を満足す	"
			る。	
$\Box - A$	(ロ)-第A.25表 0.3m水平落下時の容器本体に対する一次応力の評価(1/2)	(□)-A-101	<u>(ロ)-第A.25表 0.3m水平落下時の容器本体に対する一次応力の評価(1/2)</u>	
-95	応力分類 ^{注2)} 応力強さ _{退産} 解析 _{合公素}		応力分類 ^{注2)} 応力強さ _{温度} 解析 余裕率	
	部位 $Mathbf{Mathb}{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathb}{Mathbf{Mathbf{Mathbf{Mathbf{Mathb}{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathb}{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathbf{Mathb}{Mathbf{Mathbf{Mathbf{Mathb}{Mathbf{Mathbf{Mathb}{Mathbf{Mathb}{Mathbf{Mathbf{Mathb}{Mathbf{Mathbf{Mathb}{Mathb}{Mathbf{Mathb}{Mathbf{Mathb}{Mathb}{Mathbf{Mathb}{Mathbf{Mathb}{Mathbf{Mathb}{Mathbf{Mathb}{Mathb}{Mathbf{Mathb}{Mathbf{Mathb}{Mathbf{Mathb}{Mathbf{Mathb}{Mathb}{Mathbf{Mathb}{Mathb}{Mathbf{Mathb}{Mathb}{Mathb}{Mathbf{Mathb}{Mathb}{Mathb}{Mathbf{Mathb}{Ma$		部位 No. μ Z L 応力の 表面 Z L 応力 μ Z L 応力 私類 (MPa) (C) 基準値 MS (MPa) (C) (MPa) (C) (MPa) (C)	(4)-(2)
ш — А		(ロ)-A-102		
-96	(ロ)-第A.25表 0.3m水平洛下時の谷器本体に対する一次応力の評価(2/2)		(ロ)-第 A. 25 表 0.3m 水平落下時の容器本体に対する一次応力の評価(2/2)	
	部位 断面 No. 応力須須 又は応力の 応力強さ 表面 副度 解析 温度 解析 基準値 余裕率 部位 No. 注1) 又は応力の 表面 又は応力 (°C) (We ²) (MS)		断面 No. 応力分類 又は応力の 新面 応力強さ 又は応力の 温度 又は応力 解析 基準値 (C) 余裕率 部位 No. 進力 近方分類 次は応力の 第 3	(4)-②
	1975% (in a) (in a)			
$\square - A$	(ロ)-第A.26表 0.3m水平落下時の容器本体に対する(一次+二次)応力の評価(1/2)	(□)-A-103	(ロ)-第 A. 26 表 0.3m 水平落下時の容器本体に対する (一次+二次)応力の評価(1/2)	
-97	如臣 断面 たわの新海 表示 又はたわ 温度 解析 余裕率		加佐 断面 たちの新知 まて ストウキー 温度 解析 余裕率	(4) (0)
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		部位 No. 注1) 応力の種類 衣面 X(は応力 (℃) 基準値 MS (MPa) (℃) (MPa) ^{注2)} (一	(4)-(2)
$\Box - A$	(ロ)-第A.26表 0.3m水平落下時の容器本体に対する(一次+二次)応力の評価(2/2)	(□)-A-104	(ロ)-第 A. 26 表 0.3m 水平落下時の容器本体に対する (一次+二次)応力の評価 (2/2)	
-98	- 応力強さ _{温座} 解析 へんやや		- 応力強さ 四広 解析 余裕率	
	部位 [M] (M) (ACM/A) 表面 又は応力 (m) 及 基準値 示留率 No, 注1) 種類注2) 表面 (MPa) (C) (MPa) [3,3]		部位	(4)-2
$\Box - A$	注2) σ _m :平均引張応力 σ _m +σ _b :平均引張応力+曲げ応力	(□)-A-104	注 2) σ _m :平均引張応力、σ _b :曲げ応力	(4)-2
-98				
$\Box - A$	ただし、 M :曲げモーメント (N・mm/mm)	(□)-A-105	ここで、	(4)-②
-99			M:曲げモーメント(N·mm/mm)	
$\square - A$		(□)-A-107		
-100	アケントマード 曲げ応力 せん断 応力強さ 基準値 余裕率		パンガット 曲げ応力 せん断 応力強さ 基準値 余裕率	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$		評価位置 アレーの板 : σ_b 応力: τ : $S(MPa)$: $I.5S_m$ MS 厚: $t(mm)$ (MPa) (MPa) (MPa) (MPa) (-)	(4)-②
$\square - A$	ただし、w _v : 縦板 1 枚分の重量(kg)	(□)-A-107	ここで、	(4)-②
-100			w _v :縦板1枚分の重量(kg)	
$\Box - A$		(□)-A-108		
-101	バスケット 圧縮応力 基準値 余裕率 評価位置 軸方向長さ ブレートの 正 σ 。 : S _m (MPa) (-)		評価位置 $\stackrel{\wedge^{\circ} X j_{7} h}{p^{\circ} b - h O}$ 圧縮応力 基準値 余裕率 評価位置 i.l.(mm) 板厚:t : σ_{\circ} : S_{n} (MPa) MS	(4)-②
	(mm) (MPa)		(mm) (Mr'a) (⁻)	

ページ	変更前	ページ	変更後	変更内容
$\square - A$	b. 内圧による各方向応力	(□)-A-109	b. 内圧による各方向応力	
-101,	内圧 Poにより生じる各方向応力は、1.(3)と同じである。		内圧 Po により生じる各方向応力は、(ロ)章 A. 5. 3.2の1.(3)と同じである。	(4)-2
102				
$\square - A$	以上の諸式を用いて計算した結果を(ロ)-第A.29 表に示す。燃料被覆管に発生する	(□)-A-109	燃料被覆管に生じる応力の計算条件と計算結果を(ロ)-第A.29表に示す。表に示すと	(4)-2
-102	応力は基準値以下である。		おり、燃料被覆管は解析基準値である燃料被覆管材料(ジルカロイ-2)の 260℃におけ	
			る降伏応力を満足している。	
$\square - A$	(ロ)-第A.29表 水平落下時の燃料被覆管の強度評価結果	(□)-A-109	(ロ)-第 A. 29 表 0. 3m 水平落下時の燃料被覆管の強度評価結果	(4)-2
-102				
$\square - A$	3. コーナー落下	(□)-A-110	3. コーナー落下	
-103	(ロ)-第A.18 表に示すように、コーナー落下時の衝撃加速度は垂直落下及び水平		(ロ)-第 A. 18 表に示すように、コーナー落下時の衝撃加速度は垂直落下及び水平落	
	落下時に比べて小さく、垂直及び水平落下時に比べて条件が厳しくない。ただし、頭		下時に比べて小さく、垂直及び水平落下時に比べて条件が厳しくない。ただし、頭部	
	部コーナー落下時は、頭部垂直落下時と違い蓋部に作用する緩衝体の圧潰力が蓋全面		コーナー落下時は、頭部 0.3m 垂直落下時と違い蓋部に作用する緩衝体の圧潰力が蓋	(4)-2
	に作用せず内部の収納物等による慣性力が蓋を介して蓋ボルトに作用する		全面に作用せず内部の収納物等による慣性力が蓋を介して蓋ボルトに作用する。	
$\Box - A$	A.5.4 積み重ね試験	(□)-A-110	A.5.4 積み重ね試験	
-103	本項の条件として、輸送物の5倍に相当する荷重又は鉛直投影面積に1.3×10 ⁻² MPa		本項の条件として、核燃料輸送物の重量の5倍に相当する荷重又は鉛直投影面積に	(4)-2
	を乗じて得た値に相当する荷重のうち、いずれか厳しい方を負荷することになってい		1.3×10 ⁻² MPa を乗じて得た値に相当する荷重のうち、いずれか厳しい方を 24 時間負	11
	る。本輸送物の場合、輸送物の構造解析上での総重量 1.322×10 ⁵ kgの5倍に相当す		荷することになっている。本核燃料輸送物の場合、核燃料輸送物の構造解析上での総	11
	る 6.61×10 ⁵ kg (6.48×10 ⁶ N)の荷重の方が、本輸送容器の鉛直投影面積に 1.3×10 ⁻		重量 1.322×10 ⁵ kg の 5 倍に相当する 6.61×10 ⁵ kg (6.48×10 ⁶ N)の荷重の方が、本輸送	
	² MPa を乗じて得た値に相当する荷重より大きいので、6.61×10 ⁵ kg (6.48×10 ⁶ N)の		容器の鉛直投影面積に 1.3×10 ⁻² MPa を乗じて得た値に相当する荷重(軸に垂直な方向	(4)-①
	荷重が輸送容器の軸に垂直な方向にかかる場合及び軸方向にかかる場合について行		の場合:1.51×10 ⁵ N、縦方向の場合:4.75×10 ⁴ N)より大きいので、6.61×10 ⁵ kg(6.48	
	う。		×10 [®])の荷重が連続して輸送容器の軸に垂直な方向にかかる場合及び軸方向にかか	(4)-2
			る場合について <mark>評価を</mark> 行う。	11
$\square - A$	1. 軸に垂直な方向の荷重の場合	(□)-A-110	1. 軸に垂直な方向の荷重の場合	
-103	本輸送物では、容器本体を円筒構造とみなして、最も厳しい条件として(<u>ロ)-第</u>		本核燃料輸送物では、容器本体を円筒構造とみなして、最も厳しい条件として(<u>ロ)-</u>	(4)-2
	<u>A. 24 図</u> に示すようにし、長さL、外径 d 。(胴外径)、内径 d i (胴内径)の円筒(胴)		<u>第 A. 24 図</u> に示すようにし、長さ L、外径 d。(胴外径)、内径 d _i (胴内径)の円筒(胴)を横	
	を横置きにして両端を単純支持し、鉛直方向に 6.48×10 ⁶ Nを等分布荷重として負荷		置きにして両端を単純支持し、鉛直方向に 6.48×10 [®] の等分布荷重が負荷する場合に	11
	する場合について解析する。		ついて解析する。	
$\Box - A$	ただし、	(□)-A-111	ここで、	(4)-2
-104	M_{max} ・最大曲げモーメント $(N \cdot mm) = 1 \cdot W \cdot I$			
			Mmax: 取入曲りモーメント(N·mm)=	
$\square - A$	胴部をこの円筒とみなして曲げ応力を計算した場合の計算条件と計算結果を <u>(ロ)-</u>	(□)-A-111		
-104	第A.30表に示す。本輸送物は、軸に垂直な方向の荷重により圧潰することはない。		A.30表に示す。本核燃料輸送物は、軸に垂直な方向の荷重により圧潰することはない。	(4)-②

ページ	変更前	ページ	変更後	変更内容
$\Box - A$		(□)-A-111		
-104	(ロ)-第A.30表 容器本体の軸に垂直な方向の積み重ね応力計算条件及び計算結果		(口)-第 4.30 表 容器本体の難に垂直な方向の積み重ね応力計算条件及び計算結果	(4)-②
	評価位置 輸送物総重 量の5倍の 荷重:W(N) 容器本体の 全長 :L_(mm) 胴外径 :d_o(mm) 胴内径 :d_(mm) 最大曲げ 応力: σь :d_) 基準値 :Sy 余裕率 (-) (MPa) :L(mm) :Sy (MPa) (MPa) (MPa)		評価位置 経営活動 容器本体の 物給重量の 重: W(N) 胴外径 主長 胴外径 : $d_o(mn)$ 服内径 : $d_1(mn)$ 最大曲げ 基準値 応力: σ_s 基準値 : S _y 希裕率 1 第個の荷 重: W(N) : L(mn) : $d_o(mn)$: $d_1(mn)$ (MPa) (MPa) (MPa)	
	ا (کی بل	(→) A 111	* *	(4) @
$\square - A$	にたし、 W ・ 荷香(N)	(LL) -A-111	\mathbf{W} · 荷香 (N)	(4)-(2)
поч п-А		(ロ)-A-112	"・阿里(4) III 部をこの円筒とみなして圧縮応力を計算した場合の計算条件と計算結果を(ロ)-第	
-105	第A.31表に示す。本輸送物は、軸方向の荷重により圧潰することはない。	() 11 112	A.31表に示す。本核燃料輸送物は、軸方向の荷重により圧潰することはない。	(4)-(2)
			以上より、容器本体の構造健全性が維持されるので、密封部の健全性が維持される。	(4)-(1)
			なお、実際に核燃料輸送物を重ねた場合には緩衝体部分が積み重なり、外筒や蓋部及び	., .
			底部中性子遮蔽材カバーには直接荷重が作用しないため、遮蔽解析に影響を及ぼすよう	
			な破損が生じるおそれはない。また、荷重条件が一般の試験条件に包絡されることから、	
			緩衝体変形量についても、(ロ)章 Dの遮蔽解析で考慮している 0.3m 自由落下試験で想	
			定される変形量に包絡される。	
$\Box - A$		(□)-A-112		
-105	<u>(ロ)-第A.31表 容器本体の軸方向の積み重ね応力計算条件及び計算結果</u>			
	評価位置 輸送物総重 量の5倍の 荷重:W7(N) 胴外径 :d _o (mm) 胴内径 :d _i (mm) 圧縮応力 :d _i (mm) 基準値 :Sy (MPa) 余裕率 (-)		経営経費の 胴外径 胴内径 圧縮応力 基準値 余裕率 評価位置 5倍の荷 :d ₀ (nm) :d ₁ (nm) : σ ₀ (MPa) :S _y (MPa) Mage 重: Ψ(N)	(4)-②
$\Box - A$	A. 5. 5 貫 通	(□)-A-113	A.5.5 貫通	
-106	本項では、重量6kg、直径 3.2cmの軟鋼棒が1mの高さから本輸送物外表面で最も		本項では、重量 6kg、直径 3.2cm の軟鋼棒が 1m の高さから本核燃料輸送物外表面で	(4)-2
	– 板厚の薄い緩衝体カバープレート(板厚 <mark>–</mark> mm)へ落下するとした場合に、緩衝体カバー		最も板厚の薄い緩衝体カバープレート(板厚 □ mm)へ落下するとした場合に、緩衝体カ	
	プレートが破断せず軟鋼棒は内部に貫通しないことを示す。		バープレートが破断せず軟鋼棒は内部に貫通しないことを示す。	
$\Box - A$	ただし、	(□)-A-113	ここで、	(4)-2
-106	m :軟鋼棒の重量 (kg)		m:軟鋼棒の重量(kg)	
$\Box - A$	一方、軟鋼棒が緩衝体カバープレートへ落下した際、貫通するためには落下エネルギ	(□)-A-113	一方、軟鋼棒が緩衝体カバープレートへ落下した際、貫通するためには落下エネルギ	
-106	ーが <u>(ロ)-第A.26 図</u> に示すごとくカバープレートのせん断に必要なエネルギーより大		ーが <u>(ロ)-第A.26図</u> に示すようにカバープレートのせん断に必要なエネルギーより大き	(4)-②
	きい場合である。この場合のせん断に要するエネルギーES (N・mm) は、次式で与えら		い場合である。この場合のせん断に要するエネルギーES(N·mm)は、次式で与えられる。	
	れる。			
$\square - A$	ただし、	(□)-A-113	ここで、	(4)-2
-106	d :軟鋼棒の直径(mm)		d:軟鋼棒の直径(mm)	
$\square - A$	A.5.6 角又は縁落下	(□)-A-114	A.5.6 角又は縁落下	
-107	本輸送物は、鋼製の円筒形で重量は 132.2 トンであり、角又は縁落下は該当しない。		本核燃料輸送物は、鋼製の円筒形で重量は132.2トンであり、角又は緑落下は該当 しない。	(4)-②

ページ	変更前	ページ	変更後	変更内容
$\square - A$	 1. 解析結果の要約 	(□)-A-114	 解析結果の要約 	
-107	一般の試験条件下における輸送物に対する評価結果の要約を(ロ)-第A.33 表に示	:	一般の試験条件下における核燃料輸送物に対する評価結果の要約を(ロ)-第A.33表	(4)-②
	す。表に示すように、自由落下試験により緩衝体に永久変形が生じるが、各試験条件	:	に示す。表に示すように、0.3m自由落下試験及び積み重ね試験により緩衝体に永久変	(以下同様)
	下において輸送物各部はA.1.2に定めた基準を満足し、構造上の健全性が損なわれ	,	形が生じるが、各試験条件下において核燃料輸送物各部は(ロ)章 A.1.2 に定めた基準	
	ることはない。		を満足し、構造上の健全性が損なわれることはない。	
$\square - A$		(ロ)-A-115		
-108	(ロ)-第A.33 表 一般の試験条件下における構造解析結果の要約(1/5)		<u>(ロ)-第A.33 表</u> 一般の試験条件下における構造解析結果の要約(1/5)	
	項 目 解析基準 解析基準值 解析結果等 余裕率等 (MPa) (MPa) (MS)		項 目 解析基準 解析基準值 解析結果等 余裕率等 MS (MPa) KS (MPa) C (MPa)	(4)-②
		()		
□ – A	(ロ) - 第A.33 表 一般の試験条件下における構造解析結果の要約(2/5)	(□)-A-116	(ロ)-第A.33表 一般の試験条件下における構造解析結果の要約(2/5)	(1) @
-109	■ 「一」 「一」 「一」 「一」 「一」 「一」 「一」 「一」		<u>bartititititititititititititititititititi</u>	(4)-(2)
	項目 解析基準 (MPa) (MPa) (MS)		項目 解析基準 ^附 析 选单 MS (MPa) MS	(以下同様)
	自由落下試験 1 垂直落下		0.3m 自由落下試験	
	(1) 容器本体(頭部垂直落下)		1. 垂直落下 (1) 容器本体(頭部 0. 3m 垂直落下)	
		(17) - 1 - 117		
	<u>(ロ)-第A.33 表</u> 一般の試験条件下における構造解析結果の要約(3/5)		(ロ)-第 A. 33 表 一般の試験条件下における構造解析結果の要約(3/5)	
110	解析基準値 解析結果等 全裕率等		解析基準值 解析結果等 余裕率等	(1)-2
	項目 解析基準 (MPa) (MPa) (MS)		項 目 解析基準 (MPa) (MPa) MS ((-)	
	(2) 容器本体(底部垂直落下)		(2) 容器本体(底部 0.3m 垂直落下)	
$\square - A$		(ロ)-A-118		
$-1\ 1\ 1$	<u>(ロ)</u> -第A.33表 一般の試験条件下における構造解析結果の要約(4/5)		<u>(ロ)-第A.33表</u> 一般の試験条件下における構造解析結果の要約(4/5)	
	項 目 解析基準 解析基準值 解析結果等 余裕率等 (m) (m) (m) (m)		項 目 解析基準 解析基準症 解析結果等 A 裕率等 MS	(4)-2
	(MPA) (MPA) (MS)		(m a) (m a) (-)	
$\square - A$		(□)-A-119		
-112	(ロ) - 第A.33 表 一般の試験条件下における構造解析結果の要約(5/5)		<u>(ロ)-第A.33 表</u> 一般の試験条件下における構造解析結果の要約(5/5)	
	項 目 解析基準 解析基準值 解析結果等 余裕率等 (MPa) (MPa) (MS)		在11日本11日本11日本11日本11日本11日本11日本11日本11日本11日	(4)-2
	3. コーナー落下 衝撃加速度が垂直及び水平落下に比べて小さいので、垂		項目 解析基準 (MPa) (MPa) MS (-)	
	直落下及び水平落下の結果より厳しくない。 積み重ね試験		 コーナー落下 衝撃加速度が垂直及び水平落下に比べて小さいので、垂	
	軸に垂直な方向 Sy 184 7 25.2 軸七白 5 104 5 55.0		積み重ね試験	
	町1/1川 5 y 184 5 35.8 貫通 <td></td> <td>軸に垂直な方向 Sy 184 7 25.2 軸方向 Sy 184 5 35.8</td> <td></td>		軸に垂直な方向 Sy 184 7 25.2 軸方向 Sy 184 5 35.8	
	せん断 エネルギー 4.71×10 [°] N・m 5.89×10 ['] N・m 基準に合致		6kg 棒貫通試驗	11
			緩衝体 せん町 エネルギー 4.71×10Ñ mm 5.89×10N mm 基準に合致	

ページ	変更前	ページ	変更後	変更内容
$\Box - A$	A.6 特別の試験条件	(□)-A-120	A.6 特別の試験条件	
-113	本節では本輸送物が規則及び告示に規定された特別の試験条件下において、A.		本節では本核燃料輸送物が外運搬規則及び外運搬告示に規定された特別の試験条	(4)-2
	1.2に示す基準を満足することを示す。		件下において、(ロ)章 A.1.2 に示す基準を満足することを示す。	(以下同様)
	特別の試験条件は強度試験に引きつづいて <mark>耐火試験</mark> が行われるとする。耐火試験		特別の試験条件は強度試験に引き続いて <mark>熱的試験(火災試験)</mark> が行われるとする。	
	に影響を及ぼす強度試験による変形は、輸送物の熱的性能に関係する緩衝体の変形		熱的試験(火災試験)に影響を及ぼす強度試験による変形は、核燃料輸送物の熱的性	
	である。9m落下試験と1m貫通試験の試験順序の違いによってこれらの破損又は		能に関係する緩衝体の変形である。9m 落下試験と 1m 貫通試験の試験順序の違いによ	
	変形に有為な差は生じないので、これらに引きつづく <mark>耐火試験</mark> においては、強度試		ってこれらの破損又は変形に有為な差は生じないので、これらに引き続く熱的試験	
	験の順序の違いは輸送物に影響を与えない。したがって、強度試験は9m落下試験		(火災試験)においては、強度試験の順序の違いは核燃料輸送物に影響を与えない。	
	に続いて1m貫通試験が行われるとして解析する。		したがって、強度試験は 9m 落下試験に続いて 1m 貫通試験が行われるとして解析す	
			る。	
$\square - A$	A.6.1 強度試験・落下試験I(9m落下時)	(□)-A-120	A.6.1 強度試験・落下試験 I (9m 落下時)	
$-1\ 1\ 3$	連続して起こる特別の試験条件の第1番目は、輸送物が最大破損を受けるよう、		連続して行われる特別の試験条件の第1番目は、核燃料輸送物が最大破損を受け	(4)-②
	平らな降伏しない落下試験台上に9mの高さから輸送物を落下させるものである。		るよう、平らな降伏しない落下試験台上に 9m の高さから <mark>核燃料</mark> 輸送物を落下させる	(以下同様)
	本項では輸送物が9m落下した場合、その落下エネルギーが、容器本体端部に取		ものである。	
	付けられた緩衝体の変形によって吸収され、輸送物に加わる衝撃力が十分緩和され		本項では核燃料輸送物が9m落下した場合、その落下エネルギーが、容器本体端部	
	ることを示し、それに対する輸送物の健全性を検討する。		に取り付けられた緩衝体の変形によって吸収され、核燃料輸送物に加わる衝撃力が	
			十分緩和されることを示し、それに対する <mark>核燃料</mark> 輸送物の健全性を検討する。	
$\Box - \mathbf{A}$	(1) 解析する落下姿勢	(□)-A-120	 (1) 解析する落下姿勢 	
-113	輸送物が最大破損を受ける落下方向としては次の4種類を考える。		核燃料 輸送物が最大破損を受ける落下方向としては次の4種類を考える。	(4)-2
	① 垂直落下		①垂直落下	(以下同様)
	② 水平落下		②水平落下	
	③ コーナー落下(落下点が輸送物の重心を通る鉛直線上にある場合)		③コーナー落下(落下点が <mark>核燃料</mark> 輸送物の重心を通る鉛直線上にある場合)	
	④ 傾斜落下		④傾斜落下	
	ここで、傾斜落下については、 <u>垂直</u> 落下、水平落下及びコーナー落下との比較に		ここで、傾斜落下については、落下試験及び水平落下の結果に基づき評価する。	
	より評価する。		(2) 解析方法	
	(2)解析方法		緩衝体の変形量と衝撃力の計算方法は(ロ)章A.5.3.1の1に示す方法と同様に行	
	緩衝体の変形量と衝撃力の計算方法はA.5.3.1の1.に示す方法と同様に行う。		う。	
$\Box - A$	(ロ)- 第A 34 表 輸送物茲下エネルギー計算条件及び計算結果	(□)-A-120	(ロ)-第1/34 末 藤厳智齢送物変下エネルギー計算条件及び計算結果	
-113				(4)-2
			□ 項目 ■	11
			$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	

ページ	変更前	ページ	変更後	変更内容
$\square - A$	ここで、 衝撃加速度GAは次式で求めている。	(□)-A-121	衝撃加速度 GA は次式で求めている。	(4)-2
$-1\ 1\ 4$	$G_{+} = F$		c – ^F	(以下同様)
	m m		G _A =- m	
	F:解析で求めた衝撃力 (N)		ここで、	
	m:輸送物重量 (kg)		F:解析で求めた衝撃力(N)	
			m:核燃料輸送物最大総重量(kg)	
$\square - A$	(ロ)-第A.35表に示すとおり、9m落下試験時において輸送物の緩衝体に圧潰変形	(□)-A-121	(ロ)-第 A. 35 表に示すとおり、9m 落下試験時において核燃料輸送物の緩衝体に圧潰	(4)-2
$-1\ 1\ 4$	が生じる。		変形が生じる。	
$\square - A$	(1) 解析モデル	(□)-A-122	(1) 解析モデル	
$-1\ 1\ 5$	A.5.3.2と同様に、主に三次元有限要素を用いた三次元1/2解析モデルを用い		(ロ)章 A. 5. 3. 2 と同様に、主に三次元有限要素を用いた三次元 1/2 解析モデルを	(4)-2
	సం		用いる。	
$\square - A$	a. 荷重条件	(□)-A-122	a. 荷重条件	
$-1\ 1\ 5$	頭部垂直落下時に作用する荷重は次のとおりである。		頭部 9m 垂直落下時に作用する荷重は次のとおりである。	(4)-2
$\square - A$	底部垂直落下時に作用する荷重は次のとおりである。	(□)-A-122	底部 9m 垂直落下時に作用する荷重は次のとおりである。	(4)-2
$-1\ 1\ 5$				

ページ	変更前	ページ	変更後	変更内容
$\square - A$	a. 容器本体	(□)-A-126	a. 容器本体	
-119	主要な位置((ロ)-第A.29図参照)に対する頭部垂直落下時の一次応力強さ及び		主要な位置((ロ)-第 A. 29 図参照)に対する頭部 9m 垂直落下時の一次応力強さ及び	(4)-②
	蓋ボルトの評価結果を(ロ)-第A.36表に、また、底部垂直落下時の一次応力強さ及		蓋ボルトの評価結果を <u>(ロ)-第 A. 36 表</u> に、また、底部 9m 垂直落下時の一次応力強さ	(以下同様)
	び蓋ボルトの評価結果を <u>(ロ) - 第A. 37 表</u> に示す。		及び蓋ボルトの評価結果を <u>(ロ)-第 A. 37 表</u> に示す。	
	それぞれの表に示すように、すべての評価位置においてA.1.2に示す解析基準		それぞれの表に示すように、全ての評価位置において(ロ)章 A. 1.2 に示す解析基	
	値を満足する。		準値を満足する。	
$\square - A$		(□)-A-128	(ロ)-第 A.36 表 頭部 9m 垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価	
-121	 (ロ) - 第A.36表 頭部9m垂直落下時の容器本体に対する一次応力及び蓋ボルトの評価 			
	断面 応力分類 ⁽²⁾ 応力強さ 温度 解析 余裕率 部位		部位 MTII 又は応力の 表面 又は応力 温度 基準値 MS No. 注1) 発館 (MPa) (*C) (MPa)注3 (一)	(4)-②
	No, #1/ 種類 (MPa) (C) (MPa) #3) (MS)			
$\square - A$	社2) P _m :一次一般膜心力強さ P _L :一次局部膜心力強さ P _b :一次曲け応力 強さ	(□)-A-128	注 2) P_m : 一次一般膜応力強さ、 P_L : 一次局部膜応力強さ、 P_b : 一次曲け応力強さ、 σ : 平均引張応力、 σ_s : 曲げ応力、 0 : 二次応力強さ	() 0
-121	$\sigma_{\rm m}$: 平均引張応力 $\sigma_{\rm m} + \sigma_{\rm b}$: 平均引張応力+曲げ応力			(4)-(2)
$\square - A$	(ロ)-第A.37表 底部9m垂直落下時の容器本体に対する一次応力及び蓄ボルトの評価	(□)-A-129	(ロ)-第 4 37 志 府部 9m 垂直変下時の突襲太体に対すろ一次広力及び萎ポルトの評価	1
-122			<u> </u>	
	部位 No. 注1) 又は応力の 表面 又は応力 (№) (№) (№) (№) (№) (№) (№) (№) (№) (№)		部位 No. ^(注1) 又は応力の 表面 又は応力 (℃) (Ψ ₂)(±) (Ψ ₂)(±)	(4)-②
	125.794 (Juli d) (Juli d)		125.794 (Jul d) (Jul d)	
$\square - A$	注2) P _m : 一次一般膜応力強さ P _L : 一次局部膜応力強さ P _b : 一次曲げ応力	(□)-A-129	注 2) P_m : 一次一般膜応力強さ、 P_L : 一次局部膜応力強さ、 P_b : 一次曲げ応力強さ、	
-122	$\sigma_{\rm m}$: 平均引張応力 $\sigma_{\rm m} + \sigma_{\rm b}$: 平均引張応力+曲げ応力		$\sigma_{\mathbf{n}}$: 平均分散応力、 $\sigma_{\mathbf{b}}$: 曲り応力、 \mathbf{Q} : 二人応力強さ	(4)-②
$\square - A$	2. バスケット	(□)-A-130	2. バスケット	
-123	垂直落下時にバスケットに生じる応力はA.5.3.2と同様に求める。		垂直落下時にバスケットに生じる応力は(ロ)章 A.5.3.2 と同様に求める。	(4)-②
$\square - A$		(□)-A-130		
-123	(ロ) - 第A. 38 表 バスケットプレートの応力計算条件及び計算結果		(ロ)-第A.38表 バスケットプレートの応力計算条件及び計算結果	
	バスケット バスケット 垂直落下時の 評価位置 材料の密度 全長:L 衝撃加速度 応力強さ 基準値 : 2/3 Su 余裕率		バスケット バスケット 垂直落下時の 基準値 余裕率 評価位置 材料の密度 全長: 衝撃加速度 応力強さ :2/3S _w INS	(4)-②
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		$\frac{1}{1000} \frac{1}{1000} \frac{1}{10000} \frac{1}{10000000000000000000000000000000000$	
$\square - A$	(1) 解析モデル	(□)-A-131	(1) 解析モデル	
-124	A.5.3.2と同様に、主に三次元有限要素を用いた三次元 1/2 解析モデルを用い		(ロ)章 A. 5. 3. 2 と同様に、主に三次元有限要素を用いた三次元 1/2 解析モデルを用	(4)-(2)
		() ,	いる。	
□-A		(□)-A-131		
-124	水平洛下時に作用する何里は次のとおりである。		9回 水平洛下時に作用する何里は次のとおりである。	(4)-(2)

ページ	変更前	ページ	変更後	変更内容
$\square - A$	a. 容器本体	(□)-A-133	a. 容器本体	
-126	水平落下時の主要な位置((ロ)-第A.29 図参照)に対する一次応力強さの評価結		9m 水平落下時の主要な位置((ロ)-第 A. 29 図参照)に対する一次応力強さの評価結	(4)-②
	果を <u>(ロ)-第A.39 表</u> に示す。表に示すように、すべての評価位置においてA.1.2		果を <u>(ロ)-第 A. 39 表</u> に示す。表に示すように、全ての評価位置において <mark>(ロ)章</mark> A. 1. 2	11
	に示す解析基準値を満足する。		に示す解析基準値を満足する。	
$\begin{array}{c} \Box - A \\ -1 \ 2 \ 7 \end{array}$	(ロ) -第A.39 表 9 m水平落下時の容器本体に対する一次応力及び蓋ボルトの評価 部位 断面 No. [±1] 応力分類 ^(±2) 又は応力の 素面 応力強さ 又は応力 (℃) 3度 基準値 (𝔅C) 解析 基準値 (𝔅C) 余裕率	(□)-A-134	(ロ)-第A.39表9m水平落下時の容器本体に対する一次応力及び蓋ボルトの評価 第6 応力分類性20 応力強さ 温度 解析 余裕率 部位 第6 又は応力の 麦面 又は応力 温度 基準値 MS	(4)-②
			No, (±-) 種類 (MPa) (C) (MPa)(±3) (-)	
$\square - A$ - 1.2.7	注2) P _m :一次一般膜応力強さ P _L :一次局部膜応力強さ P _b :一次曲け応力 強さ	(□)-A-134	注 2)Pm: 一次一般膜応力強さ、PL: 一次局部膜応力強さ、Pb: 一次曲げ応力強さ、	
-127	σ_{m} : 平均引張応力 $\sigma_{m} + \sigma_{b}$: 平均引張応力+曲げ応力		σ _m :平均引張応力、σ _b :曲げ応力	(4)-②
$\square - A$	a. バスケットプレート(横板)	(□)-A-135	(1) バスケットプレート(横板)	
-128	水平落下時にバスケットプレート(横板)に生じる応力はA.5.3.2と同様に求め		水平落下時にバスケットプレート(横板)に生じる応力は(ロ)章 A. 5. 3. 2 と同様に	(4)-2
	る。計算条件と計算結果を <u>(ロ)-第A.40表</u> に示す。		求める。計算条件と計算結果を <u>(ロ)-第 A. 40 表</u> に示す。	
$\Box - A$		(□)-A-135		
-128	評価位置 $\gamma^{r} \chi_{J\gamma}$ 曲げ応力 せん断応力 応力強さ 基準値 余裕率 :r (MPa) :r (MPa) :S (MPa) :S (MPa) (-)		バスケット 曲げ応力 せん断応力 応力強さ 基準値 余裕率 評価位置 ブレートの板厚 : σ _b (MPa) : τ (MPa) : S(MPa) : Su(MPa) : Su(MPa) <td>(4)-②</td>	(4)-②
$\square - A$		(□)-A-136		(4)-②
-128				
$\square - A$	b. バスケットプレート(縦板)	(□)-A-137	(2) バスケットプレート(縦板)	
-130	水平落下時にバスケットプレート(縦板)に生じる応力はA.5.3.2と同様に求め		水平落下時にバスケットプレート(縦板)に生じる応力は(ロ)章 A.5.3.2 と同様に	(4)-2
	る。計算条件と計算結果を <u>(ロ)-第A.42 表</u> に示す。		求める。計算条件と計算結果を <u>(ロ)-第 A. 42 表</u> に示す。	
ローA -130	評価位置 軸方向長さ :L (mm) ^^ ? 次ット ブ レートの 板厚:t (mm) 圧縮応力 : σ c 基準値 :2/3 S u 余裕率 (-)	(□)-A-137	軸方向長さ パ [*] スグット プ [*] レートの 圧縮応力 基準値 余裕率 評価位置 : L 板厚:t : σ。 : 2/3Su MS (mm) (mm) (MPa) (-)	(4)-2
$\begin{array}{c} \Box - A \\ -1 3 1 \end{array}$	ここで、バスケットに生じる一次圧縮応力は(ロ)-第A.42表で示した 85 MPa である。計算条件と計算結果を(ロ)-第A.43表に示す。	(□)-A-138	バスケットに生じる一次圧縮応力は(ロ)-第A.42表で示した85MPaである。計算条件と計算結果を(ロ)-第A.43表に示す。	(4)-②
ш-А -131	項目 許容圧縮応力 一次圧縮応力 基準値 :f _c (MPa) :σ _c (MPa) (MPa) (-)	(口)-A-138	項目 許容圧縮応力 一次圧縮応力 : f _c (MPa) : σ _c (MPa) : Δ _c (MPa) : σ _c (MPa) : σ _c (MPa)	(4)-②

ページ	変更前	ページ	変更後	変更内容
$\square - A$	A. 6.1.3 コーナー落下	(□)-A-139	A.6.1.3 コーナー落下	
-132	(ロ)-第A.35表に示すように、コーナー落下時の衝撃加速度は垂直落下及び水平		(ロ)-第 A. 35 表に示すように、コーナー落下時の衝撃加速度は垂直落下及び水平	
	落下に比べて同等もしくは小さい。		落下に比べて同等又は小さい。	(4)-2
$\square - A$	1. 一次蓋ボルト	(□)-A-139	1. 一次蓋ボルト	
-132	頭部コーナー落下時に、一次蓋ボルトには、一次蓋自重及び内部の収納物(バス		頭部コーナー落下時に、一次蓋ボルトには、一次蓋自重及び内部の収納物(バスケ	
	ケット及び燃料集合体)の慣性力並びに胴内圧及び一二次蓋間圧力による引張応力		ット及び燃料集合体)の慣性力並びに胴内圧及び一二次蓋間圧力による引張応力が生	
	が生じる。ここで、初期締付力、熱応力、胴内圧及び一二次蓋間圧力によって一次		じる。ここで、初期締付力、熱応力、胴内圧及び一二次蓋間圧力によって一次蓋ボ	
	蓋ボルトとフランジ部とは釣合った状態になっているが、コーナー落下時、一次蓋		ルトとフランジ部とは釣り合った状態になっているが、コーナー落下時、一次蓋ボ	
	ボルトには、一次蓋自重と収納物の慣性力が外力としてボルトに加わる。		ルトには、一次蓋自重と収納物の慣性力が外力として一次蓋ボルトに加わる。	(4)-2
$\square - A$	(2) 慣性力により生じる引張応力	(□)-A-139	(2) 慣性力により生じる引張応力	
-132	慣性力によりボルトに生じる引張応力σt2(MPa)は、次式で与えられる。		慣性力により一次蓋ボルトに生じる引張応力σ _{t2} (MPa)は、次式で与えられる。	(4)-2
$\Box - A$	(3) ボルトに生じる引張応力	(□)-A-140	(3) 一次蓋ボルトに生じる引張応力	(4)-2
-133	各荷重によりボルトに生じる引張応力σt (MPa) は、次式で与えられる。		各荷重により一次蓋ボルトに生じる引張応力σ _t (MPa)は、次式で与えられる。	11
□ – A		(ロ)-A-140		
-133	(ロ)-第A.45表 一次蓋ボルトに生じる引張応力計算条件及び計算結果		<u>(ロ)-第A.45表 一次蓋ボルトに生じる引張応力計算条件及び計算結果</u>	
	項目 初期締付力、熱応 力、脳内圧及び蓋 間圧力により生じ る引張応力: σ_{t1} (MPa) (MPa) (慣性力に ボルトに 内力係数 引張応力 : ϕ (-) (慣性力に より生じる 引張応力 : σ_{t2} (MPa) (MPa) (MPa)		項目 初期締付力、熱応 力、胴内圧及び蓋 間圧力により生じ る引張応力:すτ1 (MPa) ボルト ボルト 内力係数 ボルトに より生じる 引張応力 ボルトに 生じる 引張応力 解析基準値 主2/3Su (MPa) 余裕率 項目 間底方に引張です:1 (MPa) : φ(-) : σ _t 2 (MPa) (MPa) (MPa)	(4)-②
$\square - A$	2. 二次蓋ボルト	(□)-A-140	2. 二次蓋ボルト	
-133	頭部コーナー落下時に、二次蓋ボルトには、二次蓋自重及び蓋間圧力による引張		頭部コーナー落下時に、二次蓋ボルトには、二次蓋自重及び蓋間圧力による引張	
	応力が生じる。ここで、初期締付力、熱応力及び蓋間圧力によってボルトとフラン		応力が生じる。ここで、初期締付力、熱応力及び蓋間圧力によって <mark>二次蓋</mark> ボルトと	(4)-2
	ジ部とは釣合った状態になっているが、コーナー落下時、二次蓋ボルトには二次蓋		フランジ部とは釣り合った状態になっているが、コーナー落下時、二次蓋ボルトに	
	自重の慣性力が外力としてボルトに加わる。		は二次蓋自重の慣性力が外力として二次蓋ボルトに加わる。	11
$\Box - A$	(2) 慣性力により生じる引張応力	(□)-A-140	(2) 慣性力により生じる引張応力	
-133	慣性力によりボルトに生じる引張応力 σt2 (MPa) は、Wを二次蓋の重量として一		慣性力により二次蓋ボルトに生じる引張応力 σt2(MPa)は、Wを二次蓋の重量とし	(4)-2
	次蓋と同様に求める。		て一次蓋と同様に求める。	
$\square - A$	(3)ボルトに生じる引張応力	(□)-A-141	(3) 二次蓋ボルトに生じる引張応力	(4)-2
-134	各荷重によりボルトに生じる引張応力 σt (MPa) は、一次蓋と同様に求める。		各荷重により二次蓋ボルトに生じる引張応力 σ_t (MPa)は、一次蓋と同様に求める	11
$\Box - A$ - 1 3 4	(ロ)-第A.47表 二次蓋ボルトに生じる引張応力計算条件及び計算結果	(□)-A-141	(ロ)-第 A. 47 表 二次蓋ボルトに生じる引張応力計算条件及び計算結果	
	項目 切期総付力、熱応力、 脳内圧及び蓋間圧力に より生じる引張応力 : σ_{t1} (MPa) ガルト 内力係数 : ϕ (-) ば (L) (MPa) ボルト 内力係数 : σ_{t2} (MPa) ボルトに より生じる 引張応力 : σ_{t} (MPa) (MPa) (個Pa) (MPa) (MPa) (MPa) (MPa)		項目 初期締付力、熱応力、 耐内圧及び蓋間圧力に より生じる引張応力 : σ_{t1} (MPa) ボルト 方力係数 : $\phi(-)$ 慣性力に より生じる 引張応力 (慣性力に より生じる 引張応力 : σ_{t2} (MPa) (MPa) (慣性力に より生じる 引張応力 : σ_{t2} (MPa) (MP	(4)-②

ページ	変更前	ページ	変更後	変更内容					
$\Box - A$	3. 三次蓋ボルト	(□)-A-141	3. 三次蓋ボルト						
-134	頭部コーナー落下時に、三次蓋ボルトには、三次蓋自重及び蓋間圧力による引張		頭部コーナー落下時に、三次蓋ボルトには、三次蓋自重及び蓋間圧力による引張						
	応力が生じる。ここで、初期締付力、熱応力及び蓋間圧力によってボルトとフラン		応力が生じる。ここで、初期締付力、熱応力及び蓋間圧力によって <mark>三次蓋</mark> ボルトと	(4)-2					
	ジ部とは釣合った状態になっているが、コーナー落下時、三次蓋ボルトには三次蓋		フランジ部とは釣り合った状態になっているが、コーナー落下時、三次蓋ボルトに						
	自重の慣性力が外力としてボルトに加わる。		は三次蓋自重の慣性力が外力として三次蓋ボルトに加わる。	11					
□ – A	(2)慣性力により生じる引張応力	(□)-A-141	(2) 慣性力により生じる引張応力						
-134	慣性力によりボルトに生じる引張応力 σ _{t2} (MPa)は、Wを三次蓋の重量として一		慣性力により三次蓋ボルトに生じる引張応力 σt2(MPa)は、Wを三次蓋の重量とし						
	次蓋と同様に求める。		て一次蓋と同様に求める。						
$\square - A$	(3) ボルトに生じる引張応力	(□)-A-142	(3) 三次蓋ボルトに生じる引張応力	(4)-②					
-135	各荷重によりボルトに生じる引張応力σ _t (MPa) は、一次蓋と同様に求める。		各荷重によりボルトに生じる引張応力σ _t (MPa)は、一次蓋と同様に求める。						
$\square - A$		(□)-A-142							
-135			(ロ)-第A.49表 三次蓋ボルトに生じる引張応力計算条件及び計算結果						
	1 初期総行力、熱応力、 ボルト 現住力に ホルドに 解析基準値 調内圧及び蓋間圧力に 内力な数 より生じる 生じる ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・		初期締付カ、熱応力、 ボルト より生じる ボルトに 解析基準値 余裕率						
	γ_{Q} より生じる引張応力 γ_{P} (MPa) : $\sigma_{\pm1}$ (MPa) : ϕ (一) : $\sigma_{\pm2}$ (MPa) (MPa) (MPa)		項目	(4)-②					
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$						
$\square - A$	A.6.1.4 傾斜落下	(□)-A-142	A. 6. 1.4 傾斜落下						
100	傾斜落下については、落下方向がコーナー落下と垂直落下との間の場合とコーナ		傾斜落下については、落下方向がコーナー落下と垂直落下との間の場合とコーナ						
	ー落下と水平落下との間の場合がある。前者の場合は、落下エネルギーの一部が輸		一落下と水平落下との間の場合がある。前者の場合は、落下エネルギーの一部が核	(4)-2					
	送物を垂直方向に回転させるのに費やされるので、エネルギーの吸収は垂直落下と		燃料輸送物を垂直方向に回転させるのに費やされるので、エネルギーの吸収は垂直						
	コーナー落下よりも小さくなり、これらのいずれよりも条件が厳しくなることはな		落下とコーナー落下よりも小さくなり、これらのいずれよりも条件が厳しくなるこ						
	い。また、後者の場合、細長い輸送物では落下エネルギーの一部が輸送物の回転運		とはない。						
	動エネルギーとなり二次衝突側の吸収エネルギーが増加する場合がある。本輸送物		一方、後者の場合、細長い核燃料輸送物では落下エネルギーの一部が核燃料輸送						
	は直径に対する長さの比が約1.9と小さく細長い輸送物には該当しないが、A.10.		物の回転運動エネルギーとなり二次衝突側の吸収エネルギーが増加する。特に、蓋						
	3に示すように細長い輸送物に関する解析例をもとにした二次衝撃側の衝撃加速度		密封部が二次衝撃側となる場合、密封性能を損なうおそれがあるため、二次衝撃側						
	の影響を評価しても、傾斜落下時に輸送物の健全性が損なわれることはない。		の衝撃加速度の影響を評価する必要がある。(ロ)章 A. 10.4 に示すように、落下試験						
			結果を基にした密封性能の評価の結果、傾斜落下時に核燃料輸送物の健全性が損な						
		(⇒) A 140	われることはない。						
-135		(12)-A-142							
	9m洛ト試験の衝撃加速度と緩衝体変形量の要約は(ロ)ー第A.35表のとおりであ		9m 洛ト試験の衝撃加速度と緩衝体変形量の要約は(ロ)-第A.35 表のとおりであ	(1) @					
	る。本試験では、緩衝体は変形するが、緩衝体は容器本体からはずれることはな		る。なお、綾町体変形量は設計基準変形量以下であり、容器本体に発生する衝撃加	(4)-(2)					
				(以下同様)					
			本試験では、 被衝体は 変形するか、 縦衝体は 輸送谷器 本体から 外れることは な 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、 、						
			↓ V _o						

ページ	変更前	ページ	変更後	変更内容
$\square - A$	2. 結果の検討	(□)-A-143	2. 結果の検討	
-135	9m落下試験による塑性変形は、緩衝体及びバスケットに生じるが、容器本体の		9m 落下試験による塑性変形は、緩衝体及びバスケットに生じるが、輸送容器本体	(4)-2
	構造上の健全性が損なわれることはない。		の構造上の健全性が損なわれることはない。	(以下同様)
	以上の解析及び評価は周囲温度 38℃の高温側の環境下に対して行った。低温側の		以上の解析及び評価は周囲温度 38℃の高温側の環境下に対して行った。低温側の	
	環境下に対しては、A. 4. 2に示すように低温になっても材料は脆化等がなく、機		環境下に対しては、(ロ)章A.4.2に示すように低温になっても材料は脆化等がな	
	械的性質が低下することが <mark>ないので、輸送物の構造上の健全性に問題はない。</mark>		く、機械的性質が低下することがなく、また、(ロ)章 A.6.1 に示すように応力は基	
			準値を満足するため、核燃料輸送物の構造上の健全性は維持され、密封性は維持さ	
			れる。	
□ – A	A.6.2 強度試験·落下試験II(1m落下時)	(□)-A-144	A.6.2 強度試験・落下試験II(1m 落下時)	
-136	本項では、9m落下試験に引きつづいて1m貫通試験が起こるとして輸送物が1		本項では、9m 落下試験に引き続いて 1m 貫通試験が行われるとして核燃料輸送物が	(4)-2
	m高さから直径150 mmの軟鋼棒へ落下した場合に対して、輸送物が耐えることを解		1m 高さから直径 150mmの軟鋼棒へ落下した場合に対して、核燃料輸送物が耐えるこ	(以下同様)
	析によって示す。		とを解析によって示す。	
	1 m 貫通試験は、輸送物が最大破損をうけるよう垂直及び水平方向に落下し、衝		1m 貫通試験は、核燃料輸送物が最大破損を受けるよう垂直及び水平方向に落下	
	突時に輸送物の重心の真下に軟鋼棒があるとして解析した。		し、衝突時に <mark>核燃料</mark> 輸送物の重心の真下に軟鋼棒があるとして解析した。	
	これ以外の落下は、落下エネルギーが回転モーメントとして作用するので輸送物		これ以外の落下は、落下エネルギーが回転モーメントとして作用するので核燃料	
	に対して上記落下より大きな破損を生じることはない。		輸送物に対して上記落下より大きな破損を生じることはない。	
$\square - A$	ただし、	(□)-A-144	ここで、	(4)-2
-136	$\sigma_{\rm u}:$ 軟鋼棒の設計引張強さ(MPa)		$\sigma_{\rm u}$: 軟鋼棒の設計引張強さ (MPa)	
$\Box - A$	ただし、	(□)-A-144	ここで、	(4)-2
-136	d : 軟鋼棒直径(mm)		d:軟鋼棒直径(mm)	
$\square - A$		(□)-A-145		
-137	(ロ)-第A.51表 せん断破壊を引起すのに必要な力の計算条件及び計算結果		(ロ)-第A.51表 蓋部のせん断破壊を引き起こすのに必要な力の計算条件及び計算結果	(4)-2
	項目 軟鋼棒直径 板厚:t せん断強さ せん断破壊に 最大荷重 余裕率		軟鋼棒直径 板厚・t せん断確さ せん断破壊に 最大荷重 余裕率	
	・ ɑ (mm) (mm) ・ S (mra) 必要な/J・r (n) ・ r bar (n) (一)		項目 : d(mm) (mm) : S(MPa) 必要な力: $F(N)$: $F_{bar}(N)$ (-)	11
$\Box - A$		(□)-A-146		
-137	(ロ) - 第A.52表 せん断破壊を引起すのに必要な力の計算条件及び計算結果		(ロ)-第A.52表 底部のせん断破壊を引き起こすのに必要な力の計算条件及び計算結果	(4)-2
	項目 軟鋼棒直径 板厚:t せん断強さ せん断破壊に 最大荷重 余裕率			
	· ɑ (mm) (mm) · S (mra) 必要な/J· r (n) · r bar (n) (=)		項目 :d(mm) (mm) :S(MPa) 必要な力:F(N) :F _{bar} (N) (-)	11
□ – A	押し抜きせん断によって胴がせん断破壊を引起すのに必要な力F (N) は、1.の	(□)-A-146	押し抜きせん断によって胴がせん断破壊を引き起すのに必要な力F(N)は、(ロ)章	(4)-2
-138	(1) と同様に求める。計算条件と計算結果を(ロ) - 第A.53 表に示す。胴が貫通され		A.6.2の1.(1)と同様に求める。計算条件と計算結果を(ロ)-第A.53表に示す。胴が貫	
	ることはない。		通されることはない。	

ページ	変更前	ページ 変更後					
¤-А -138	(ロ)-第A.53表 せん断破壊を引起すのに必要な力の計算条件及び計算結果	(¤)-A-146	(ロ)-第A.53表 胴のせん断破壊を引き起こすのに必要な力の計算条件及び計算結果	(4)-②			
	項目 軟鋼棒直径 板厚:t せん断強さ せん断破壊に 最大荷重 余裕率 :d (mm) (mm) :S (MPa) 必要な力:F(N) :F bar (N) (-)		項目 軟鋼棒直径 : d(mm) 板厚:t (mm) せ人断強さ : S(MPa) せ人断破壊こ 必要な力:F(N) 最大荷重 : F _{bar} (N) 余裕率 III (-)	11			
$\begin{array}{c} \Box - A \\ -1 3 9 \end{array}$	以上の解析及び評価は周囲温度 38℃の高温側の環境下に対して行った。低温側の環 境下に対しては、A.4.2に示すように低温になっても材料は脆化等がなく、機械的 性質が低下することがないので、輸送物の構造上の健全性に問題はない。	(ロ)-A-147	以上の解析及び評価は周囲温度38℃の高温側の環境下に対して行った。低温側の環 境下に対しては、(ロ)章A.4.2に示すように低温になっても材料は脆化等がなく、機 械的性質が低下することがないので、核燃料輸送物の構造上の健全性は維持されるた め、変封性が損なわれることけない	(4)-② "			
			なお、三次蓋シール部への垂直方向落下又は水平方向落下では、衝突荷重により塑 性変形が生じると、0リングと三次蓋又は胴フランジのシール面との間に生じた隙間が 原因で密封性能を損なうおそれがあるが、輸送容器の緩衝体は、(イ)章に示すとお り、当該部への直接的な荷重入力を防止するために緩衝体内部のカバープレートの剛 性を高める設計としている。仮に三次蓋密封部に直接的な衝突荷重が生じたとして も、三次蓋の横ずれを防止する嵌め合い構造となっているため、三次蓋ボルトには直 接的な荷重が作用することはなく、密封性能が損なわれることはない。	(4)-①			
$\begin{array}{c} \Box - A \\ -1 4 0 \end{array}$	 温度 輸送物各部の最高温度はロ章Bの熱解析から求まる。各部位の最高温度と解析基準値を定める温度を(ロ)-第A.54表に示す。 	(ロ)-A-148	 温度 該燃料輸送物各部の最高温度は(ロ)章Bの熱解析から求まる。各部位の最高温度と解析基準値を定める温度を(ロ)-第A.54表に示す。 	(4)-②			
¤-А -142	1. 応力計算 本項では、特別の試験条件下における容器本体各部の熱応力と圧力による応力の 計算を行う。B.5.3に示す温度分布と輸送容器各部の圧力を荷重条件とし、解析 は有限要素法による ABAQUS コードを用いて行う。	(ロ)-A-150	 応力計算 本項では、特別の試験条件下における容器本体各部の熱応力と圧力による応力の 計算を行う。(ロ)章 B.5.3に示す温度分布と輸送容器各部の圧力を荷重条件とし、 解析は有限要素法による ABAQUS コードを用いて行う。 	(4)-②			
$\begin{array}{c} \square - \mathbf{A} \\ -1 \ 4 \ 2 \end{array}$	 (1)解析モデル A.5.1.3と同様に、主に三次元有限要素を用いた(ロ)-第A.8図に示す三次元1/2解析モデルを用いる。 	(ロ)-A-150	 (1) 解析モデル (ロ)章A.5.1.3と同様に、主に三次元有限要素を用いた(ロ)-第A.8図に示す三次元1/2解析モデルを用いる。 	(4)-②			
□ - A - 1 4 2	 a.荷重条件 B. 5.3に示される容器本体の温度差が一番大きくなる火災発生 30 分後における 温度分布((ロ) - 第B.17 図参照)、胴内圧(0.18 MPa G)、一二次蓋間圧力(0.40 MPa G)、二三次蓋間圧力(0.25 MPa G)を荷重条件とする。 蓋部、底部における中性子遮蔽材充填空間については、長期貯蔵後の中性子遮蔽 材の劣化に伴う圧力上昇を考慮して、蓋部を ▲ MPa G ▲ MPa)、底部を ▲ MPa G ▲ MPa)とする。 	(¤)-A-150	 a. 荷重条件 (ロ)章 B.5.3 に示される容器本体の温度差が一番大きくなる火災発生 30 分後における温度分布((<u>ロ)-第 B.17</u> 図参照)、胴内圧(0.18MPaG)、一二次蓋間圧力 (0.40MPaG)、二三次蓋間圧力(0.25MPaG)を荷重条件とする。 蓋部、底部における中性子遮蔽材充填空間については、長期貯蔵後の中性子遮蔽材の劣化に伴う圧力上昇を考慮して、蓋部を □ 4PaG (□ 4Pa)、底部を 4PaG (□ 4Pa)とする。 	(4)-2 (4)-1			
			また、一次蓋ボルト、二次蓋ボルト及び三次蓋ボルトにはそれぞれ初期締付力 (N/本、N/本、N/本)を考慮する。	"			

ページ	変更前	ページ	変更後	変更内容			
$\Box - A$	1. 容器本体各部	(□)-A-152	1. 容器本体各部				
-144	(ロ)-第A. 29 図に示す容器本体の主要な評価位置における一次応力及び蓋ボルト		(ロ)-第 A. 29 図に示す容器本体の主要な評価位置における一次応力及び蓋ボルト				
	の応力の評価結果を <u>(ロ)-第A.56表</u> に示す。表に示すように、いずれの応力もA.		の応力の評価結果を <u>(ロ)-第 A. 56 表</u> に示す。表に示すように、いずれの応力も(ロ)	(4)-2			
	1.2に定めた解析基準値以下である。		章 A. 1.2 に定めた解析基準値以下である。				
	また、三次蓋と本体の0リング取付け位置での相対ロ開き変形量は0.2 mm であ		なお、一次蓋ボルト、二次蓋ボルト及び三次蓋ボルトは、それぞれ一次蓋、二次	(4)-①			
	り、0リングの初期締付け代 🛄 🖿 より小さく、密封性が損なわれることはない。		蓋及び三次蓋との温度の差及び熱膨張係数の差が小さく、軸力の変化は軽微である				
			ことから、緩みや破損を生じることはない。				
			また、三次蓋と本体の0リング取付位置での相対ロ開き変形量は0.2mm であり、0				
			リングの初期締付け代 🌅 mm より小さく、密封性が損なわれることはない。				
$\Box - A$		(□)-A-153					
-145	 (ロ) - 第A.56 表 特別の試験条件下における圧力による容器本体の 一次にカカバ素ボルトのにカ変価 		 (ロ)-第 A. 56 表 特別の試験条件下における圧力による容器本体の 一次応力及び蓋ボルトの応力評価 				
	<u> </u>		ボロ ボロ ボロ ボロ ボロ ボロ ボロ ボロ ボロ ボロ ボロ ボロ				
	部位 No. 注1) 74応力の 表面 又は応力 14元2 基準値 不同子 No. 注1) 種類 (MPa) (°C) (MPa)注3) (MS)		110位 No. 注1) 又はしいか 表面 又はいか (°C) 超単値 MS 種類 (MPa) (°C) (MPa)注3) (一)	(4)-2			
$\square - A$	注2) P _m : 一次一般膜応力強さ P _L : 一次局部膜応力強さ P _b : 一次曲げ応力	(□)-A-153	注 2) P _m :一次一般膜応力強さ、P _L :一次局部膜応力強さ、P _b :一次曲げ応力強さ、				
-145	σ_{m} : 平均引張応力 σ_{m} + σ_{b} : 平均引張応力+曲げ応力		σ_{m} : 平均引張応力、 σ_{b} : 曲げ応力、Q:二次応力強さ	(4)-②			
$\square - A$	A.6.4 浸 漬	(□)-A-154	A. 6. 4 浸漬				
-146	本輸送物の収納物は、最大放射能量がA2値の10万倍を超えるので、A.7におい		本 <mark>核燃料</mark> 輸送物の収納物は、最大放射能量が A₂値の 10 万倍を超えるので、(ロ)章	(4)-2			
	て 200m浸漬に相当する水頭圧で解析を行い、密封装置の破損のないことを確認して		A.7 において 200m 浸漬に相当する水頭圧で解析を行い、胴、底板及び三次蓋の破損				
	いる。		のないことを確認している。				
	特別の試験条件の 15m浸漬試験においては、200m浸漬試験の負荷条件より厳しく		特別の試験条件の15m浸漬試験においては、強化浸漬試験の負荷条件より厳しく	(4)-2			
	ないためА.1.2で定めた基準を満足する。		ないため胴、底板及び三次蓋は(ロ)章 A.1.2 で定めた基準を満足するが、外運搬規	(4)-①			
	ここでは、15m浸漬試験における三次蓋の強度を確認する。		則及び外運搬告示に基づいて 15m 浸漬試験における三次蓋の強度を確認する。	11			
			なお、ここでは内圧を真空(-0.101325MPaG)とし、15mの水圧(0.15MPa)と内圧の差				
			圧(0.251325MPa)を外圧とする。				
$\square - A$	三次蓋を端部固定の円板としてモデル化すると、その最大曲げ応力 σ_b (MPa)は、次	(□)-A-154	三次蓋を端部固定の円板としてモデル化すると、その最大曲げ応力 σ_b (MPa)は、次式				
-140	式で与えられる ¹²⁾ 。ここで、板厚 t は保守的に薄肉部 (ロ mm)を用いる。		で与えられる ¹⁴⁾ 。計算式の板厚 t は保守的に薄肉部 (二 mn)を用いる。	(4)-2			
$\square - A$	ただし、a : 円板の半径 (mm)	(□)-A-154	ここで、	(4)-②			
-140			a:円板の半径(mm)	ļ			
$\square - A$	計算条件と計算結果を(ロ)-第A.57表に示す。三次蓋は、外圧に対して十分な強度	(□)-A-154	計算条件と計算結果を(ロ)-第 A. 57 表に示す。三次蓋は、外圧に対して十分な強度				
-140	を有する。なお、上記の発生応力値は100℃における三次蓋の材料の設計降伏点(Sy		を有する。なお、上記の発生応力値は100℃における三次蓋の材料の設計降伏点				
	=239 MPa)より低く、また外圧は蓋を胴に押し付けるように作用するので蓋0リング		(Sy=239MPa)より低く、また外圧は蓋を胴に押し付けるように作用するので蓋0リング				
	の密封性能は 15m浸漬時において保持される。		の密封性能は15m浸漬試験において保持される。	(4)-2			

ページ	変更前	ページ	変更後	変更内容
$\square - A$		(□)-A-155		
-146	(ロ)-第A.57表 三次蓋の曲げ応力計算条件及び計算結果		(ロ)-第A.57表 三次蓋の曲げ応力計算条件及び計算結果	
	項目 円板の 半径:a (mm) 差圧:P 板厚 最大曲げ 応力:σ _b 三次蓋の 温度(℃) 設計引張強さ :S _u (MPa) 余裕率		項目 平板の 半径: a (mm) 差圧:P 板厚	(4)-②
-	(記載なし)	(□)-A-155	また、外筒及び底部中性子遮蔽材カバーは内部空間にそれぞれ 🔜 IPaG 及び 🔜 IPaG	(4)-①
			の内圧が生じているが、水深 15m の水圧(0.15MPa)が外圧として負荷されることで差圧	
			が緩和されるため、遮蔽解析に影響を及ぼすような破損は生じない。	
$\square - A$	 1. 解析結果の要約 	(□)-A-156		
-147	特別の試験条件下における輸送物に対する結果の要約を <u>(ロ)-第A.58 表</u> に示す。		特別の試験条件下における <mark>核燃料</mark> 輸送物に対する結果の要約を <u>(ロ)-第 A.58 表</u> に	(4)-2
	表に示すように、各試験条件において輸送物各部はA.1.2に定めた基準を満足し		示す。表に示すように、各試験条件において核燃料輸送物各部は(ロ)章 A.1.2 に定	(以下同様)
	構造上の健全性が損なわれることはない。		めた基準を満足し構造上の健全性が損なわれることはない。	
$\square - A$	2. 破損の要約	(□)-A-156	2. 破損の要約	
-147	特別の試験条件下における輸送物の主な破損の要約を <u>(ロ)-第A.59 表</u> に示す。		特別の試験条件下における核燃料輸送物の主な破損の要約を <u>(ロ)-第A.59表</u> に示	(4)-2
$\square - A$		(□)-A-156		
-147	(ロ)-第A.58表 特別の試験条件下における構造解析結果の要約(1/4)		<u>(ロ)-第 A.58 表 特別の試験条件下における構造解析結果の要約(1/4)</u>	
	項 日 解析基準值 解析結果等 余裕率等		如北京進住 如北外東京 余裕率等	
	MPa) (MPa) (MS)		項目 解析基準 解析基準 MF MA未守 MS (MPa) (MPa) T	(4)-②
$\square - A$		(□)-A-157		
-148	(ロ)-第A.58表 特別の試験条件下における構造解析結果の要約(2/4)		(ロ)-第A.58表 特別の試験条件下における構造解析結果の要約(2/4)	
	項目 解析基準值 解析結果等 余裕率等		ATHE # 3#14 ATHE 4- A	(4)-2
	(MPa) (MPa) (MS)		項 目 解析基準 解析基準 解析基準 MS MS	

ページ		ページ			変更後				変更内容				
$\begin{array}{c} \Box - A \\ -1 4 9 \end{array}$	<u>(ロ)-第A.58表 特別の試験条</u>	牛下における棒	<u> </u>	の要約(3/	4)	(□)-A-158		<u>(ロ)-第 A.58表 特</u>	別の試験条件下におけ	る構造解析結り	果の要約(3/4)		
	項目	解析基準	解析基準値 (MPa)	解析結果等 (MPa)	余裕率等 (MS)			項目	解析基準	解析基準値 (MPa)	解析結果等 (MPa)	余裕率等 MS	(4)-2
	2. 水平落下 (1) 容器本体 一次蓋 (P _L +P _b) 二次蓋 (P _m) 三次蓋 (P _L +P _b) 順 (P _m) 順 (P _L) 底板 (P _L) 底都中性子遊椒材力バー (P _L) 蓋部中性子遊椒材力バー (P _L) 蓋部中性子遊椒材力バー (P _L) 二次蓋シール部 (P _L) 一次蓋シール部 (P _L)	Su 2/3Su Su 2/3Su Su Su 2/3Su Su Sy 2/3Su	377 286 431 251 377 377 429 291 437 184 616	38 40 98 58 126 41 224 29 58 130 233	8.92 6.15 3.39 3.32 1.99 8.19 0.91 9.03 6.53 0.41		-	 水平落下 字器本体 一次蓋 (P_e) + P_b) 二次蓋 (P_e) 三次蓋 (P_e) 三次蓋 (P_e) + P_b) 周 (P_e) 周 (P_e) 周 (P_e) 感称 (P_e) 感都中性子遮蔽材力バー(P_e) 蓋部中性子遮蔽材力バー(P_e) 蓋部中性子遮蔽材力バー(P_e) 二次蓋 ジール部 (P_e) 一次蓋 ボ ル (P_e) 	Su 2/35, Su 2/35, Su Su Su 2/35, b) Su Sy Sy 2/35, Su Su 2/35, Su Su Su Su Su Su Su Su Su Su Su Su Su	377 286 431 251 377 377 429 291 437 184 816	38 40 98 58 126 41 224 29 58 130 233	8.92 6.15 3.39 3.32 1.99 8.19 0.91 9.03 6.53 0.41 0.84	
	一次蓋ボルト ($\sigma_m + \sigma_b$) 二次蓋ボルト ($\sigma_m + \sigma_b$) 二次蓋ボルト ($\sigma_m + \sigma_b$) 三次蓋ボルト ($\sigma_m + \sigma_b$) 三次蓋ボルト ($\sigma_m + \sigma_b$) 可聞き変形量 (2)バスケット バスケットプレート ($P_m + P_b$) バスケットプレート (σ_o)	Su Sy Sy Sy Sy - Su 1.5 fc*	924 853 853 853 853 853 mm 438 212	847 309 743 396 726 0.3 mm 233 85	0.09 1.76 0.14 1.15 0.17 基準に合致 0.87 1.49			() ((σ_n + σ_b) 二次蓋ボルト (σ_n + σ_b) 二次蓋ボルト (σ_n) 三次蓋ボルト (σ_n + σ_b) 口開き変形量 (2) パスケットプレート (P_n + P_t パスケットプレート (σ_c) 3. コーナーズ本下) Su Sy Sy Sy Sy I.5fo*	924 853 853 853 853 853 853 853 853 853 853	847 309 743 396 726 0.3mm 233 85	0.09 1.76 0.14 1.15 0.17 基準に合政 0.87 1.49	
	 コーナー落下 一次蓋ボルト 二次蓋ボルト 三次蓋ボルト 	2/3Su Sy Sy	616 853 853	355 256 343	0.73 2.33 1.48			 ・ ングボルト ・ 次蓋ボルト ニ 次蓋ボルト 4. 傾斜落下 ー 次蓋ボルト 三 次蓋ボルト 三 次蓋ボルト 	2/35。 Sy Sy 校感料輸 下を考慮 ても、基 蓄 部の密封	616 853 853 送物の各蓋ボル にた衝撃加速度 車値を満足する す性能が損なわ	355 256 343 トは強度評価。 が負荷されたち ことができるこ れることはない	0.73 2.33 1.48 と、領料落 点(和料落 ことから、 、。	(4)-①

ページ		変更前	変更後	変更内容
$\begin{array}{c} \Box - A \\ -1 5 0 \end{array}$	<u>(ロ)- 第A.58表 特別の試験条</u>	≥件下における構造解析結果の要約(4/4)	- <u>表 特別の試験条件下における構造解析結果の要約(4/4)</u>	
	項 目 1 m貫通試験	解析基準值 解析基準值 解析基準 条裕率等 (MPa) (MPa) (MS)	解析基準 解析基準値 (MPa) 解析結果等 (MPa) 余裕率等 MS	(1) @
	1.垂直落下 蓋部			(4)-② (以下同様)
	底部	許容貫通 強度 乱度 1.28×10 ⁷ N 7.07×10 ⁶ N 0.81	□11年月222 2.84×10 ⁷ N 7.07×10 ⁶ N 3.01 強度 許容書通	
	2.水平落下 胴部	許容貫通 _{路度} 2.52×10 ⁷ N 7.07×10 ⁶ N 2.56	1.28×10 ⁴ N 7.07×10 ⁴ N 0.81	
	熱的試験 一次蓋 (P」)		許容貫通 強度 2.52×10 ⁷ N 7.07×10 ⁶ N 2.56	
	一次蒸 (PL) 二次蒸 (PL) 三次蒸 (PL+Pb) 胴 (PL) 底板 (PL+Pb) 底都中性子遮蔽材カバー (PL) 蒸部中性子遮蔽材カバー (PL) 蓋蔀中性子遮蔽材カバー (PL) 二次蓋ボルト (σ_m) 一次蒸ボルト (σ_m) 二次蓋ボルト (σ_m) 二次蓋ボルト ($\sigma_m + \sigma_b$) 二次蓋ボルト ($\sigma_m + \sigma_b$) 三次蓋ボルト ($\sigma_m + \sigma_b$) 三次蒸ボルト ($\sigma_m + \sigma_b$) 三次蒸	Su 426 18 22.6 Su 426 89 3.78 2/3Su 251 1 250 Su 377 5 74.4 Su 377 9 40.8 Su 425 66 5.43 2/3Su 286 2 142 Su 778 4 68.5 Sy 180 34 4.29 2/3Su 608 308 0.97 Su 912 387 1.35 Sy 839 255 2.29 Sy 839 341 1.46 Sy 839 341 1.46 Sy 839 495 0.69 - - - - - Su 431 74 4.82	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
ローA -151	<u>(ロ)</u> 一第A.59表 特別の	D試験条件下における輸送物破損の評価 (備考)○印は破損有り, 一印は破損無し	S。 431 74 4.82 59 表 特別の試験条件下における	(4)-(2)
	部位 本 援 パス 試験 体 体	備考	(備考)○□□は破損有り、□□□は破損なし 、 緩 パ 衝 ケ 備 考 、 体 [×]	(以下同様)
	9m落下試験 - 〇 -	 ・ 緩衝体が塑性変形する。最大変形は頭部コーナー落 下時に上部緩衝体に生じ、最大 732 nm 圧潰する。緩 衝体は変形するが、容器本体からはずれることはな い。 	 ・緩衝体が塑性変形する。最大変形は頭部コーナー落下時に上部緩衝体に生じ、最大 732mm 圧潰する。緩衝体は変形するが、容器本体から外れることはない。 	
	1 m貫通試験 〇 〇 -	 ・ 緩衝体及び外筒には貫通又は変形が生じる。 ・ 側部中性子遮蔽材が一部変形する。 	 ・ 緩衝体及び外筒には貫通又は変形が生じる。 ・	
	熱的試験 — — —	・ 側部中性子遮蔽材が部分的に焼損する。	⁻ ⁻ ⁻ ⁻ ⁻ ・ 側部中性子遮蔽材が部分的に焼損する。	
	浸漬試験 — — — —	_		
L				1

ページ	変更前	ページ	変更後	変更内容
$\square - A$	1. 外圧に対する胴の耐圧強度	(□)-A-161	1. 外圧に対する胴の耐圧強度	
-152	本輸送物の収納物は、最大放射能量がA2値の10万倍を超えるので、200m浸漬		本核燃料輸送物の収納物は、最大放射能量が A₂値の 10 万倍を超えるので、200m	(4)-2
	に相当する水頭圧で解析を行う。		浸漬に相当する水頭圧で解析を行う。	
$\Box - A$	ただし、	(□)-A-161	ここで、	(4)-2
-152	t : 胴板厚 (mm)		t :胴板厚(mm)	
□ - A - 1 5 2	(ロ) - 第A, 60 表 円筒の許容外圧計算条件及び計算結果	(□)-A-161	(ロ)-第A.60表 円筒の許容外圧計算条件及び計算結果	
	項目 胴板厚 胴外径 L/Do, Do't 胴支持 許容外圧 外圧: Po 余裕率 項目 : t : Do 及び温度で定 電話 : 1.5 Pa 外圧: Po 余裕率 (mm) (mm) (mm) (MPa) (mm) (MPa) (MPa) (-)		項目 胴板厚 胴外径 L/Do, Do/t及 胴支持 許容外圧 外圧: Po 余裕率 (mm) : Do (mm) : Do (mm) ご温度で定ま 間隔: : 1.5Pa (MPa) (MPa)	(4)-②
$\square - A$	ただし、	(□)-A-161	ここで、	(4)-②
-152	a :円板の半径 (mm)		a:円板の半径(mm)	
□ - A - 1 5 3	(ロ) - 第A.61 表 底板の曲げ応力計算条件及び計算結果	(ロ)-A-162	<u>(ロ)-第A.61表 底板の曲げ応力計算条件及び計算結果</u>	
	項目 円板の 差圧: P 板厚: t 低厚: t (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (MPa) (C) $(Africal Barbon (Africal Barbon$		項目 円板の 半径: a (mm) 差圧:P 板厚:t 最大曲げ応 底板の温度 低板の温度 強計引張 余裕率 強さ:	(4)-②
$\square - A$	ただし、	(□)-A-162	ここで、	(4)-2
-153	a : 蓋半径 (mm)		a:蓋半径(mm)	
□ – A	(ロ)-第A.62表 蓋部の曲げ応力計算条件及び計算結果	(□)-A-163	(ロ)-筆 4 62 表	
-154	項目 $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		項目 蓋半径 : a (mm) 差圧: P 板厚: t ボアソン 比: v (-) 最大曲げ 応力: σ_b 二次蓋の 温度(℃) 設計引張 強さ: Su(MPa) 余裕率 []	(4)-②
$\Box - A$	A.8 放射性収納物	(□)-A-164	A.8 放射性収納物	
-155	本輸送物の放射性収納物は、BWR使用済燃料集合体であり、BWR燃料集合体		本核燃料輸送物の放射性収納物は、BWR 使用済燃料集合体であり、BWR 燃料集合体	(4)-②
	の構造図を(イ)-第D.1図に示す。		の構造図は(イ)-第 D.1 図に示すとおりである。	11
□ – A	燃料集合体の強度解析については、一般の試験条件である 0.3m落下時に輸送容器と	(□)-A-164	燃料集合体の強度解析については、一般の試験条件である 0.3m 自由落下試験時に輸	(4)-2
-155	等しく落下衝撃を受けるものとして行っている。その結果、燃料被覆管の強度上の余		送容器と等しく落下衝撃を受けるものとして行っている。その結果、燃料被覆管の強	
	裕は十分あり、燃料被覆管内の核分裂生成物は、外部に放散されることはない。		度上の余裕は十分あり、燃料被覆管内の 燃料又は 核分裂生成物は、外部に放散される	11
			ことはない。	
$\square - A$	A.9 核分裂性輸送物	(□)-A-165	A.9 核分裂性輸送物	
-156	本輸送物は核分裂性輸送物に該当する。したがって本項では、ロ章E. 臨界解析		本 <mark>核燃料</mark> 輸送物は核分裂性輸送物に該当する。したがって本項では、(ロ)章 E の	(4)-②
	において想定する輸送物の損傷状態を、以下の試験条件に対して評価する。		臨界解析において想定する核燃料輸送物の損傷状態を、以下の試験条件に対して評	(以下同様)
	なお、本輸送物は周囲温度-20℃以上で使用し、A.4.2に示すとおり周囲温度-		価する。	
	20~38℃の温度条件でき裂、破損等の生じるおそれはない。		なお、本核燃料輸送物は周囲温度-20℃以上で使用し、 (ロ)章 A.4.2 に示すとおり	
			周囲温度-20~38℃の温度条件で <mark>亀裂</mark> 、破損等の生じるおそれはない。	

ページ			変	更前	ページ				変更後		変更P	内容
$\square - A$	A. 9	.1 核分裂性輸送	送物に係る一般の試験	2条件	(□)-A-165	A. 9. 1	核分裂性	ミ輸送物に係る一般	の試験条件			
-156	柞	亥分裂性輸送物に	係る一般の試験条件は	は、告示により次の4種類が定められて	6	核	分裂性輪	前送物に係る一般の	試験条件は、外運	搬告示により次の3種類が定め	ちら (4)-	-2
	り、	(i) の条件に:	おいた後(ii)~(iv)の	条件と置く。		れて	いる。				(以下同	同様)
		(i)水噴霧					①水噴霧	雾・落下試験				
		(ⅲ) 0.3m自	由落下				・水噴	賃霧 試験				
		(iii) 積み重	ね試験				• 0. 3n	n自由落下試驗				
		(iv) 6 kg 棒	貫通試験				②積み重	重ね試験				
	ĩ	コ章E. 臨界解析	「における評価方法を	考慮して、影響する輸送物の損傷状態をA	4.		③6kg 椿	^長 貫通試験				
	50	の解析結果をもと	:に評価すると次のよ	うになる。		(1	ロ)章Eの)臨界解析における	評価方法を考慮し	て、影響する <mark>核燃料</mark> 輸送物の掛	員傷	
						状態	を (ロ)章	f A.5 の解析結果を	もとに評価すると	次のようになる。		
$\square - A$	1. 7	水噴霧			(□)-A-165	1. 水雪	賁霧・ 落	下試験			(4)-	-2
-156	А.	5.2と同一であ	っり、輸送物に損傷は	ない。		(1)7	水噴霧試驗	験			(以下同	同様)
	2.0	0.3m自由落下				(1	口)章 A.5	.2と同一であり、	核燃料輸送物に損	傷はない。		
	А.	5.3と同一であ	り、緩衝体に変形が	生じるがそれ以外の部位に損傷はない。		(2)0).3m 自由	落下試験				
						(1	口)章 A.5	.3と同一であり、	緩衝体に変形が生	じるがそれ以外の部位に損傷に	はな	
						い。						
$\square - A$	3. 積み重ね試験					2. 積み	み重ね試験	験				
-156	А.	5.4と同一であ	っり、 輸送容器に損傷	はない。		(□)	章 A.5.4	と同一であり、緩	衝体に変形が生じ	るがそれ以外の部位に損傷はな	(4)-	-1
						い。						
$\square - A$	4. 0	5 kg 棒貫通試験			(□)-A-165	-A-165 3. 6kg 棒貫通試験						
-156	А.	5.5と同一であ	っり、 輸送容器 に損傷	はない。		(ロ)章 A.5.5 と同一であり、軟鋼棒は緩衝体カバープレートを貫通しない。						-1)
$\square - A$	以_	上の結果より、杉	ぶ分裂性輸送物に係る	一般の試験条件下における輸送物の損傷物	犬 (ロ)-A-165	³⁵ 以上の結果より、核分裂性輸送物に係る一般の試験条件下における核燃料輸送物の					物の (4)-	-2
-156	態は <u>(</u>	(ロ)-第A.64表	のようにまとめられる	5。本輸送物は、 <u>(ロ)-第A.65表</u> に示す	L	損傷状態は <u>(ロ)-第 A. 64 表</u> のようにまとめられる。本 <mark>核燃料</mark> 輸送物は、 <u>(ロ)-第 A. 65</u>				<u>65</u> (以下同	同様)	
	うに、	核分裂性輸送物	加に係る一般の試験条件	牛下において、規則及び告示に定められて	C	<u>表</u> に示	すように	、核分裂性輸送物	に係る一般の試験	条件下において、 <mark>外運搬</mark> 規則及	支び	
	いる権	亥分裂性輸送物と	しての要件を満足す	る。		外運搬	告示に定	ぎめられている核分	≷性輸送物として	の要件を満足する。		
$\square - A$		((□)-A-166						(4) -	-2
-157		<u>(口)</u> 一弟A.64	表 核分裂性輸送物に係る	一般の試験条件下における輸送物の損傷状態			<u>(ロ)-第 A. (</u>	64 表 核分裂性輸送物に	係る一般の試験条件下に	おける <mark>核燃料</mark> 輸送物の損傷状態	(以下同	同様)
		試験条件	輸送物の損傷状態	備考				試験条件	核燃料 輸送物の損傷 状態	備考		
		水噴霧	損傷なし	_			水噴霧·	水噴霧試験	損傷なし	-		
		0.3m落下	緩衝体の変形	緩衝体は臨界解析では無視する。			落下試験	0.3m 自由落下試験	緩衝体の変形	緩衝体は臨界解析では無視する。		
		積み重ね	損傷なし	H				積み重ね試験	緩衝体の変形	緩衝体は臨界解析では無視する。		
		6 kg 棒貫通	損傷なし	-			6	ikg棒貫通試験	損傷なし	-		

ページ	変更前	ページ	変更後	変更内容
$\square - A$	A.9.2 核分裂性輸送物に係る特別の試験条件	(ロ)-A-167	A.9.2 核分裂性輸送物に係る特別の試験条件	
-158	A.9.1の核分裂性輸送物に係る一般の試験条件に続いて 15m浸漬試験が実施さ		(ロ)章A.9.1の核分裂性輸送物に係る一般の試験条件に続いて15m浸漬試験が実	(4)-2
	れる場合には、A.6.4に示すように本輸送物の損傷が拡大することはないので、		施される場合には、(ロ)章 A.6.4 に示すように本核燃料輸送物の損傷が拡大するこ	(以下同様)
	本輸送物に関する核分裂性輸送物に係る特別の試験条件は最大破損条件となる以下		とはないので、本核燃料輸送物に関する核分裂性輸送物に係る特別の試験条件は最	
	の順序で実施する。		大破損条件となる以下の順序で実施する。	
	① A.9.1の核分裂性輸送物に係る一般の試験条件		①(ロ)章A.9.1の核分裂性輸送物に係る一般の試験条件	
	② 9m落下試験		②9m 落下試験	
	③ 1m貫通試験		③1m 貫通試験	
	④ 熱的試験(耐火)		④熱的試験(火災試験)	
	⑤ 0.9m浸漬試験		⑤0.9m 浸漬試験	
$\square - A$	1. 核分裂性輸送物に係る一般の試験条件のうち落下試験	(□)-A-167	1. 核分裂性輸送物に係る一般の試験条件	
-158	本試験条件における輸送物の損傷状態は(ロ)-第A.64表に示すとおりである。		本試験条件における輸送物の損傷状態は(ロ)-第 A. 64 表に示すとおりであり、緩	(4)-②
			衝体の変形のみを考慮する必要が <mark>ある。</mark>	
$\Box - A$	A.9.1の0.3m落下と9m落下の落下方向が同一の場合に緩衝体の変形量が最大にな	(□)-A-167	(ロ)章 A.9.1の0.3m 自由落下試験と9m 落下試験の落下方向が同一の場合に緩衝体の	(4)-2
-158	ると考えられるので、この場合について検討を行う。		変形量が最大になると考えられるので、より厳しい条件として、0.3mと9mの合計であ	(以下同様)
			る 9.3m の高さから落下させる場合(以下「9.3m 落下試験」という。)について検討を行	
			ð.	

ページ		変更前						ページ変更後						
$\begin{array}{c} \Box - A \\ -1 \ 6 \ 0 \end{array}$	<u>(</u>])-	第A.6	ö7表 9 m	落下試験時に	おける緩衝体	の累積変形量と衝撃加速度	(□)-A-169	(ロ)-A-169 (ロ)-第 A. 67 表 9.3m 落下試験時における緩衝体の累積変形量と衝撃加速度					(4)-②	
$\Box - A$	(3) 容器	本体及	びバスケッ	・トの構造健全	全性評価		(□)-A-170	(3) 容器本体	及びバスケ	ットの構造健全	全性評価			
-161	本落下	試験時	の衝撃加速	速度は、A.6.	1に示す9n	n落下試験の各落下 <mark>試験時</mark> で想	9.3m 落下試験時の衝撃加速度は、(ロ)章 A.6.1 に示す 9m 落下試験の各落下姿勢で						(4)-②	
	定した設	計加速	度を上回ら	っない。したか	ぶって、A. 6	.1の評価に包絡されるため、	想定した設計加速度を上回らない。したがって、(ロ)章A.6.1の評価に包絡される						11	
	本落下試	験にお	いて、容器	景本体及びバス	、ケットの構造	造健全性は維持される。	ため、本落下試験において、容器本体及びバスケットの構造健全性は維持される。							
$\square - A$	(4) 三次	蓋0リ	ングの密封	甘性能の評価	(変形量の評価	町)	(ロ)-A-170 (4) 三次蓋0リングの密封性能の評価(変形量の評価)							
-161	本落下	本落下試験時の衝撃加速度は、A.6.1に示す9m落下試験の各落下試験時で想						9.3m 落下試験時の衝撃加速度は、(ロ)章 A.6.1 に示す 9m 落下試験の各落下姿勢で						
	定した設	計加速	度を上回ら	っない。したか	ぶって、A. 6	. 5の(ロ)-第A. 58 表に示した		想定した設	計加速度を_	上回らない。し	<i>、</i> たがって、(ロ)章A.6.5の(ロ)-第A.58表に	11	
	ように 0	リング	位置での妻	藍と胴との相対	日開き変形量	量は基準値に対して十分な余裕		示したよう	に0リング信	立置での蓋と肌	同との相対口関	鼎き変形量は基準値に対して十分		
	を有して	いるた	め、密封性	も 能が損なわれ	いることはない	<i>\</i> ₀		な余裕を有	しているため	り、密封性能が	「損なわれる、	ことはない。		
□ – A	(5) 二次	蓋防水	機能の評価	fi			(□)-A-170	(5) 二次蓋防	水機能の評価	Щ				
-161	(ロ)-第A.68表に示すように、核分裂性輸送物に係る特別の試験条件下における							(ロ)-第A	<u>. 68 表</u> に示す	すように、核分	分裂性輸送物は	C係る(ロ)章 A.6の特別の試験条	(4)-②	
	二次蓋金	属ガス	ケットの構	黄ずれ量は基準	■値に対して┨	一分な余裕を有しており、防水		件下におけ	る二次蓋金属	属ガスケット0	つ横ずれ量は碁	基準値に対して十分な余裕を有し		
	機能が損	なわれ	ることはな	εい。なお、Ξ	こ次蓋貫通孔の)モニタリングポートカバープ	ており、防水機能が損なわれることはない。なお、二次蓋貫通孔のモニタリングポ							
	レートは	0リン	グで密封さ	これており、本	本 落下試験条件	‡下においても防水機能が維持		ートカバー	プレートは	0 リングで密封	すされており、	本落下試験条件下においても防		
	される。							水機能が維	持される。					
□-A							(□)-A-170	(等人のませれ	、初日山本へそれのマガマ	杜田の計画タルマ			
-161	<u>(口)一弟</u>	A. 00 🕸	(核万农性	1115初に休る村	<u>加の試験来住下</u> 性能の該価	にわける二氏蓋即並属ルヘケット		<u>(1)</u>	<u>- 弗 A. 08 衣 核</u> 2	<u>する11期に初にする</u> 盗	<u>特別の試験条件下</u> 討性能の評価	にわける二次盃印並馬ルヘケットの		
				<u></u>		· 你 共 好 公 (5 \ 1058 6	- 加米公民ゼッケットの (次キャルトの) - (次キャルトの)							
		条	件	二次蓋金属カ	ブスケットの 导 (mm)	密到性能 (5×10 Ter cm ³ /s)		197	条件		。 量(mm)	密約注記(3×10 FeI cm/s) を維持する基準値 ^{17),18)} (mm)		
				1円 9 4 し	EL (MM)	を維持する基準値 ^{15),18)} (mm)								
		9	垂直落下	横ずれ	0.5	3		9 m	垂直落下	横ずれ	0.5	3		
		落	1					格 下						
		下	水半落下	横すれ	1.2	3		試験	水平落下	横ずれ	1.2	3	(4)-2	
		熱的]試験	横ずれ	0.1	6								
		,						熱的試	、験(火災試験)	横ずれ	0.1	6	"	
	o 1 - #	V7 - LFA					(17) - 1-171	0 1 441735	-					
-161	3.1m頁		。 ポープ キ ー 一	Ar to server to the			(~)-A-1/1	 3. lm 員通試験 	灰 0 0 0 1 7 7	ッ の の 占 十 世 - - - - - - - - - - - - -				
	1. 皮	U [·] Z.	の浴下試験	Rにおいし 秡健	加変形する	DM、これらはA. b. 2に不す 、 1 たがって、大計時にかけ		(口)卓A.	9.2のI及(アムの日田洛(、	◎ 抜倒14の系積変形重は、(□) 早	(4)-(2)	
	よりに1	II 貝進 の場応	い時に対す	る計1曲におい 6 9 の体用		'。しにかつし、平訊駅におけ こ十一約弁四)トローでたて		A. 0.1 に不。 休 の赤形具	9 9m 浴 下試。	釈の 合格 下安等	おり変形重に	Nして石干増加しているか、 綾餌	(以下问様)	
	る鞩达物	い損傷	沢態はA.	0.20結果	(A. 6. 5)にオ	<u>、9 安約豕煎</u> 」と回一である。		14の変形重	増加の熱的 の提復 読 研	へ映への影響に	「成小である。	したかつし、平試験における核		
								燃料輸达物	の損傷評価	よ(ロ) 卓 A. 6. と	の2と同一と	これる。		

ページ		変更前		ページ		変更後						
$\Box - A$	4. 熱的試験 (耐火	:)		(□)-A-171	4. 熱的試験 (火災試)	験)		(4)-②				
-162	1. 及び2. の葬	客下試験における緩衝体の累	積変形量は、A.6.1に示す9m落		(ロ)章A.9.2の1	及び2の落下試験における約	爰衝体の累積変形量は、(ロ)章 A. 6.1	(以下同様)				
	下試験の各落下 試験	険時の変形量に対して若干増	加しているが、緩衝体の変形量増加		に示す 9m 落下試験	の各落下 <mark>姿勢</mark> 時の変形量に対	して若干増加しているが、緩衝体の					
	の熱的試験への影響	響は微小である。したがって	本熱的試験における輸送物の損傷評		変形量増加の熱的詞	(映 (火 災 試 験) への 影 響 は 微 /	トである。したがって本熱的試験に					
	価はA.6.5の2.	と同一となる。			おける核燃料輸送物	の損傷評価は(ロ)章A.6.5の	り2と同一となる。					
$\square - A$	5.0.9m浸漬試験			(□)-A-171								
-162	A. 6. 4 Ø 15m	浸漬試験の結果から明らかな	こように、0.9m浸漬試験において輸	送	(ロ)章A.6.4の1	5m 浸漬試験の結果から明られ	かなように、0.9m 浸漬試験において	(4)-2				
	物は損傷が拡大する	ることはない。			核燃料輸送物は損傷	「が拡大することはない。		11				
$\Box - A$	6. 輸送物の損傷状態	態の要約		(□)-A-171	 6. 輸送物の損傷状態 	の要約						
-162	(ロ)-第A.69表	長に核分裂性輸送物に係る特別	別の試験条件下における輸送物の損	有易	(ロ)-第 A. 69 表に	核分裂性輸送物に係る特別の	の試験条件下における核燃料輸送物	(4)-2				
	状態の要約を示す。	- なお、核分裂性輸送物に係	る特別の試験条件下において燃料集		の損傷状態の要約を	:示す。なお、核分裂性輸送物	勿に係る特別の試験条件下において					
	合体の強度評価は行	テっていないが、9m落下時	には		燃料集合体の強度評	² 価は行っていないが、9.3m	落下試験時には	11				
	がれ	想定される ¹⁴⁾ ことから、燃料	→ ↓ 集合体については、臨界解析におい	• •		が想定される ¹⁶⁾ こと	から、燃料集合体については、臨界					
	て(ロ)-第A.70表	長に示すように条件を設定す	a.		解析において(ロ)-	第 A. 70 表に示すように条件	を設定する。					
$\Box - A$				(□)-A-172	2	<u></u>		(4)-(2)				
-162	2 (ロ) - 第A. 69 表 核分裂性輸送物に係る特別の試験条件下における輸送物の損傷状態				<u>(口)-第A.69表</u>	<u>家分裂性輸送物に係る特別の試験条</u>	件下における核燃料輸送物の損傷状態	(以下同様)				
	条件	輸送物の損傷状態	備考		条件	核燃料 輸送物の損傷状態	備考					
	9 m落下試験	緩衝体及びバスケットの変形	緩衝体は臨界解析では無視。 バスケットの変形は臨界解析で考慮。		9m 落下試験	緩衝体及びバスケットの変形	緩衝体は臨界解析では無視。 バスケットの変形は臨界解析で考慮。					
	1 m貫通試験	緩衝体、外筒及び中性子遮蔽材 の変形	緩衝体及び中性子遮蔽材は臨界解析 では無視。		1m 貫通試験	緩衝体、外筒及び中性子遮蔽材の 変形	緩衝体及び中性子遮蔽材は臨界解析 では無視。					
	熱的試験(耐火)	中性子遮蔽材の一部焼損 各部位の温度が上昇	臨界解析上は中性子遮蔽材を無視し、 燃料集合体の温度を20℃としている		熱的試験(火災試験)	中性子遮蔽材の一部焼損 各部位の温度が上昇	臨界解析上は中性子遮蔽材を無視し、 燃料集合体の温度を 20℃としている。					
$\square - A$	 1. 試験目的 			(□)-A-173	3 1. 試験目的							
-163	本試験は、標準的	的な設計による容器本体及び	緩衝体(以下「標準設計輸送容器」)	-	本試験は、標準的	」な設計による容器本体及び総	爰衝体(以下「標準設計輸送容器」と					
	いう。)を1/3スケ	ールで模擬した試験体を用い	いて9m落下試験(垂直及び水平)を第		いう。)を1/3スケ	ールで模擬した試験体を用い	て 9m 落下試験(垂直及び水平 <mark>落下</mark>)	(4)-2				
	施し、容器の胴のた	加速度と緩衝体変形量を測定	したものである。ここでは、A.6.		を実施し、容器の肺	同の加速度と緩衝体変形量を液	則定したものである。ここでは、	(以下同様)				
	 1の特別の試験条件 	牛下において評価した胴加速	度、緩衝体変形量の解析(CRUSH)と同	1	(ロ)章 A.6.1 の特別	」の試験条件下において評価)	した胴加速度、緩衝体変形量の解析					
	手法で解析を行い、	試験結果と比較することで	、A. 6. 1で評価した手法の妥当		(CRUSH)と同手法で解析を行い、試験結果と比較することで (ロ)音A 6 1 で評価1							
	性を確認する。				た手法の妥当性を確認する。							
$\Box - A$	(1) 頭部垂直落下			(□)-A-173	3 (1) 頭部 9m 垂直落下			(4)-(2)				
-163												
$\square - A$ -163	(2)水平落下			(□)-A-173	³ (2)9m 水平落下			(4)-2				

ページ	変更前	ページ	変更後	変更内容
-	(記載なし)	(□)-A-180	A.10.2 1/2.5 スケールモデル落下試験	(4)-2
			1. 試験目的	
			本試験は、HDP-69B型輸送容器を1/2.5スケールで内部収納物も含めて模擬した	
			試験体を用いて 9m 落下試験(水平及び傾斜落下)を実施し、容器の胴及び蓋部の加	
			速度を測定したものである。ここでは、傾斜落下時の密封部付近に生じる二次衝	
			突の加速度を水平落下時の衝撃加速度と比較することで、本輸送容器における水	
			平落下時に対する傾斜落下時の加速度比(増倍率)を確認する。注	
-	(記載なし)	(ロ)-A-180	2. 試験項目	(4)-2
			(1) 9m 水平落下	
			9mの高さから水平姿勢にて落下させる。	
			(2) 9m 傾斜落下	
			9mの高さから試験体底部が下側となるよう床面に対して 5°傾斜させ、床面と	
			の衝突時に底部側が一次衝突、頭部側が二次衝突となるように落下させる。	
-	(記載なし)	(□)-A-180	3. 試験体	(4)-②
			(1) 容器本体	
			試験体のうち、容器本体の構造を <u>(ロ)-第 A. 付 7 図</u> に示す。胴、蓋等からなる容	
			器本体は材質を HDP-69B 型輸送容器と同じ、又は相当材を用いている。本体胴及	
			び蓋部には、加速度を測定するための加速度計が取り付けられている。	
			次に、容器本体に収納される内部収納物について説明する。HDP-69B 型輸送容器	
			の実機設計におけるバスケット材質はほう素添加ステンレス鋼であるが、その母	
			材である SUS304 で代用している。また、燃料集合体は重量を模擬してバスケット	
			に 69 体収納する。	
-	(記載なし)	(□)-A-180	(2) 緩衝体	(4)-②
			緩衝体構造を <u>(ロ)-第A.付8図</u> 及び(ロ)-第A.付9図に示す。標準的な緩衝体設	
			計に対し1/2.5 スケールとなるよう模擬した。	
-	(記載なし)	(□)-A-180	注)HDP-69B型はHDP-69BCH型とトラニオンの寸法が異なるものの、落下挙動への影	(4)-②
			響は小さいため、試験結果を適用できる。	

	ページ	_
	(記載なし)	1
変更		
前		
	ページ	(17)-4-181
変更		
後		
		(ロ)-第 A.付 7 図 1/2.5 スケールモデル落下試験用試験体(容器本体)
	(4)-2	
変		
~ 内		
谷		

ページ	変更前	ページ	-ジ 変更後			
-	(記載なし)	(□)-A-182			(4)-2	
				<u>(ロ)-第 A.付 8図 1/2.5 スケールモデル落下試験用試験体(上部緩衝体)</u>		

ページ	変更前	ページ	変更後		
-	(記載なし)	(□)-A-183			(4)-2
			<u>(ロ)-第 A.付9図 1/2.5スケールモ</u>	デル落下試験用試験体(下部緩衝体)	
-	(記載なし)	(ロ)-A-184	吉果		(4)-(2)
			:結果を <u>(ロ)-第 A. 付 4 表</u> にまとめる	5.	

ページ	変更前	ページ	変更後			
-	(記載なし)	(□)-A-184	(1) 9m 水平落下	(4)-2		
			9m 水平落下後の試験体の状況を <u>(ロ)-第 A. 付 10 図</u> に示す。また、蓋部及び 0°側			
			胴の測定位置((ロ)-第A.付7図参照)で測定した、径方向加速度履歴データを <u>(ロ)-</u>			
			第A.付11図及び <u>(ロ)-第A.付12図</u> に示す。			
-	(記載なし)	(□)-A-184	(2) 9m 傾斜落下	(4)-②		
			9m 傾斜落下後の試験体の状況を <u>(ロ)-第 A. 付 13 図</u> に示す。また、蓋部及び 0°側			
			胴の測定位置((ロ)-第A.付7図参照)で測定した、径方向加速度履歴データを <u>(ロ)-</u>			
			<u>第A.付14図</u> 及び <u>(ロ)-第A.付15図</u> に示す。			
-	(記載なし)	(□)-A-184	(3) 水平落下時に対する傾斜落下時の加速度増倍率	(4)-②		
			(ロ)-第A.付4表に示す落下試験結果から、9m水平落下時に対する9m傾斜落下時			
			の加速度比(増倍率)を求めた結果を <u>(ロ)-第A.付5表</u> に示す。同表に示すように、傾			
			斜落下時の二次衝突により、密封部付近に発生する最大加速度は水平落下時に比べ			
			て同等以上の値となり、その加速度比の平均値を求めると約			
-	(記載なし)	(□)-A-185		(4)-②		
			<u>【ロノー弟 A. 付 4 表 1/2.5 スケールモナル落ト試験結果のまとめ</u>			
			9m 9m 9m 項目 水平落下 傾斜落下 備考			
			0° 胴頭側			
			最大 0° 胴底側			
			加速度 (m/s²)			
			三次蓋			

ページ 変更前	ページ	変更後				
- (記載なし)	(¤)-A-185	(ロ)-第 A.付5表 1/2.5 スケールモデル試験における 水平落下時に対する傾斜落下時の加速度比 最大加速度(m/s²) 計測位置 9m 9m 9m (増倍率)	(4)-②			
		水平洛下 頃新洛下 0° 胴頭側 一次蓋 二次蓋 三次蓋				
- (記載なし)	(口)-A-186		(4)-②			

ページ	変更前	ページ	ジ 変更後 変	変更内容
-	(記載なし)	(□)-A-186	186 (ロ)-第 4.付 11 図 9m 水平落下試験時の蓋部の加速度履歴	(4)-2
_	(記載なし)	(ロ)-A-187	187 (ロ)-第 A.付 12 図 9m 水平落下試験時の 0° 側胴の加速度履歴	(4)-2

ページ	変更前	ページ	変更後	変更内容
-	(記載なし)	(□)-A-187		(4)-②
			(ロ)-第 A.付 13 図 9m 傾斜落下試験後の試験体の状況	
		(H) ∧ 100		(J) (C)
-	(記載なし)	(□)-A-188		(4)-2
-	(記載なし)	(□)-A-188		(4)-②
-	(記載なし)	(¤)-A-188		(4)-②
-	(記載なし)	(□)-A-188		(4)-②
-	(記載なし)	(III)-A-188		(4)-②
-	(記載なし)	(III)-A-188		(4)-②
_	(記載なし)	(II)-A-188		(4)-②
_	(記載なし)	(II)-A-188		(4)-2
_	(記載なし)	(II)-A-188		(4)-2
_	(記載なし)	(□)-A-188		(4)-2)
_	(記載なし)	(II)-A-188		(4)-2
_	(記載なし)	(II)-A-188		(4)-②
_	(記載なし)	(II)-A-188		(4)-②

ページ	変更前	ページ	変更後	変更内容
-	(記載なし)	(□)-A-188		(4)-2
			<u>(ロ)-第 A.付 15 図 9m 傾斜落下試験時の 0° 側胴の加速度履歴</u>	
II – A	1. 試験の概要	(□)-A-189 1	. 試験の概要	
-170	2003 年に原子力安全基盤機構 (NUPEC) にて実施された実規模落下試験においては、		2003 年に原子力安全基盤機構 (TNES)にて実施された金属キャスク貯蔵技術確証試	(4)-2
	実規模のキャスクの9m落下試験が実施されている。落下試験体は試験用に製作され		験においては、実規模の金属キャスクの9m落下試験が実施されている ¹⁸⁾ 。落下試験	(以下同様)
	た模擬体であるが、外形寸法や重量は実規模キャスクと同等である。		体は試験用に製作された模擬体であるが、外形寸法や重量は実機設計の金属キャス	
			クと同等である。	
	み、密封性などの試験結果と動解析との比較などを行っている。		試験は、頭部 9m 垂直落下、9m 水平落下、9m コーナー落下等複数回行われ、加速	
	本試験においては、内部収納物の衝突の影響と考えられる、本体と内部収納物の加		度、ひずみ、密封性等の試験結果と動解析との比較等が行われている。	
	速度に差が見られる現象が確認された ¹⁵⁾ 。加速度差を本体と内部収納物の比で表現す		本試験においては、内部収納物の衝突の影響と考えられる、本体と内部収納物の	
	ると、頭部垂直落下試験で2.6倍、水平落下試験で1.2倍であり、それぞれ内部収納		加速度に差が見られる現象が確認された17)。加速度差を本体と内部収納物の比で表	
	物の加速度が高くなっていることがわかった。		現すると、頭部 9m 垂直落下時で2.6倍、9m 水平落下時で1.2倍であり、それぞれ内	
			部収納物の加速度が高くなっていることがわかった。	
$\square - A$	2. 内部収納物の加速度を考慮した評価	(□)-A-189 2	2. 内部収納物の加速度を考慮した評価	
-170	実規模落下試験体における内部収納物は、重量を模擬することを目的として設計さ		落下試験体における内部収納物は、重量を模擬することを目的として設計された	(4)-②
	れた燃料集合体とバスケットを一体化した構造物であり、実際の燃料集合体やバスケ		燃料集合体とバスケットを一体化した構造物であり、実際の燃料集合体やバスケッ	(以下同様)
	ットとは一体化していないことや剛性が異なることなど相違点はあるが、本輸送物の		トは一体化していないことや剛性が異なること等相違点はあるが、本 <mark>核燃料</mark> 輸送物	
	解析裕度の確認のため、この試験で得られた加速度増倍が本輸送物でも生じたと仮定		の解析裕度の確認のため、本試験で得られた加速度増倍が本核燃料輸送物でも生じ	
	した場合の影響を評価する。		たと仮定した場合の影響を評価する。	

ページ	変更前	ページ	変更後				
$\Box - \mathbf{A}$ $- 1 7 0$	(ロ) -第A.付4表 内部収納物の衝突を考慮した場合の バスケットプレートの応力計算条件及び計算結果 バスケットオ料 バスケット 第価位置 バスケット材料 ドの密度 全長 (1) (kg/nm ³) :L(nm) :G _v (m/s ²) :G _v (M/s ²) (MPa) (-)	(¤)-A-189	(ロ)-第 A.付 6 表 内部収納物の衝突を考慮した場合の バスケットプレートの広力計算条件及び計算結果 バスケットオ料 バスケット 垂直落下時の の密度 圧縮応力 基準値 余裕率 評価位置 ・ ・ ・ ・ ・ ・ ・ ・	(4)-2			
□ – A – 1 7 1	パスケット 曲げ応力 せん断 応力強さ 基準値 余裕率 評価位置 プレートの板厚 :σь 応力:τ に力強さ :1.5 Sm (MPa) :t (ma) (MPa) (MPa) :S(MPa) (MPa) (MPa)	(ロ)-A-190	バンカット 曲げ応力 せん断 応力強さ 基準値 余裕率 評価位置 プレートの板厚 :σ₀ 応力:τ :S(MPa) :1.5S₀ MS :t(mm) (MPa) (MPa) (MPa) (MPa) (MPa) (-)	(4)-②			
□ – A – 1 7 1	評価位置 軸方向長さ :L(mm) N [*] 次7ト 7°レーの 規厚:t 圧縮応力 :σ。 基準値 :Sm(MPa) 余裕率	(□)-A-190	評価位置 軸方向長さ : L(mm) パスケット プレートの 圧縮応力 にの。 基準値 : σ。 余裕率 評価位置 ・L(mm) ボワントの 板厚:t にの。 ・S _m (MPa) (-)	(4)-②			
ы — А — 1 7 2	(ロ)-第A.付7表 内部収納物の衝突を考慮した場合の バスケットプレートの応力計算条件及び計算結果 バスケットプレートの応力計算条件及び計算結果 評価位置 バスケット 材料の密度 :p(kg/mm ³) バスケット 全長:L (mm) 垂直落下時の 衝撃加速度 :G _V (m/s ²) 基準値 :S(MPa) 余裕率 :2/3Su (MPa)	(¤)-A-191	(ロ)-第 A.付9表 内部収納物の衝突を考慮した場合の バスケットプレートの応力計算条件及び計算結果 バスケット バスケット 第価位置 バスケット ボスケット エスケット 季価位置 ボスケット ボスケット エスケット ボスケット 季電落下時の ボカ油さ ・2/3Su ボロ曲位置 ・0 (kg/mm ³) L(mm) ・Cr(m/s ²) ・S(MPa) (MPa)	(4)-②			
□ – A – 1 7 2	^{N[®] 汐2^ト 評価位置 プ⁰レ⁻トの板厚 曲げ応力 せん断応力 応力強さ 基準値 余裕率 :t (mm) :σ (MPa) :τ (MPa) :S (MPa) :S (MPa) (-)}	(□)-A-191	N [*] 次ット 評価位置 プ ⁰ レートの板厚 :t(mm) 世み断応力 せん断応力 せん断応力 :τ(MPa) 応力強さ 応力強さ に力強さ にたり い にたり い にたり にたり にたり にたり にたり にたり にたり にの にたり にの にの にの にの にの にの にの にの にの にの にの にの にの	(4)-②			
□ – A – 1 7 3	評価位置 前方向長さ パスケット 圧縮応力 基準値 評価位置 軸方向長さ プレートの :σ。 :2/3Su 余裕率 :L(mm) 板厚:t :σ。 :2/3Su (-) (mm) (MPa) (MPa) (MPa)	(ロ)-A-192	Imenant Imenant Imenant Imenant Imenant Imenant Imenant 評価位置 軸方向長さ 7°レートの 圧縮応力 基準値 余裕率 評価位置 ・L(mm) 万°レートの : σ。 : 2/3S m MS (mm) (MPa) (MPa) (-)	(4)-②			

ページ	変更前	ページ	変更後	変更内容
$\square - A$	A.10.3 傾斜落下時の輸送物健全性	(ロ)-A-193	A.10.4 傾斜落下時の核燃料輸送物健全性	(4)-2
-174	本輸送物の直径に対する長さの比は約1.9であり、細長い輸送物には該当しないが、 直径に対する長さの比が4の輸送物モデルの解析例 ¹⁷⁾ によると、傾斜落下時の二次 衝撃側の衝撃加速度は水平落下より大きくなる場合があり、その比率は約1.2~1.3で ある。 本輸送物の評価においては、(ロ)-第A.付10表に示すように CRUSH 評価値に対し て1.1倍程度割り増した設計加速度を用いている。A.10.2での評価は、水平落下時 において、設計加速度としての加速度割増(約1.1倍)と内部加速度増倍としての加速 度割増1.2倍の両方を考慮していることになり、CRUSH 評価値に対してそれらの増倍 分(約1.3倍)を割り増しても基準を満たすことが示されていることから、傾斜落下 時に1.3倍程度の加速度増加があったとしても、バスケットの健全性が損なわれるこ とはない。		本核燃料輸送物の直径に対する長さの比は約1.9であり、細長い核燃料輸送物に は該当しないが、直径に対する長さの比が4の核燃料輸送物モデルの解析例 ¹⁹ によ ると、傾斜落下時の二次衝撃側の衝撃加速度は水平落下より大きくなる場合があ り、その比率は約1.2~1.3である。 本核燃料輸送物の評価においては、(ロ)-第A.付12表に示すようにCRUSH評価値 に対して1.1倍程度割り増した設計加速度を用いている。(ロ)章A.10.2での評価 は、水平落下時において、設計加速度としての加速度割増(約1.1倍)と内部加速度 増倍としての加速度割増1.2倍の両方を考慮していることになり、CRUSH評価値に対 してそれらの増倍分(約1.3倍)を割り増しても基準を満たすことが示されているこ とから、傾斜落下時に1.3倍程度の加速度増加があったとしても、バスケットの健 全性が損なわれることはない。	(以下同様)
$\Box - \mathbf{A}$	以上のことから、本輸送物の各蓋ボルトは強度評価上、水平落下時の CRUSH 加速度の	(□)-A-194	以上のことから、本 <mark>核燃料</mark> 輸送物の各蓋ボルトは強度評価上、水平落下時の CRUSH	(4)-②
-174	 1.3倍(=)の衝撃加速度が負荷された場合においても、基準値を満足することができる。 したがって、傾斜落下時に水平落下時の1.3倍程度の加速度増倍があったとしても、 各蓋ボルトに塑性変形等が生じることはない。 		加速度の1.3倍(=)の衝撃加速度が負荷された場合においても、基準 値を満足することができる。 これに対して、1/2.5スケールモデル落下試験によって確認した傾斜落下時の水平落 下時に対する加速度増倍率は、(ロ)-第A.付5表に示すように であり、上記の評 価に包絡される。したがって、傾斜落下時に水平落下時の1.3倍程度の加速度増倍が あったとしても、各蓋ボルトに塑性変形等が生じることはない。	11
-	(記載なし)	(¤)-A-196	A. 10.6 緩衝材低温時の強度評価 本核燃料輸送物の緩衝体緩衝材には木材()を適 用している。緩衝材である各木材は、使用最低温度である-20℃では常温時に対して強 度が 23~32%上昇する。-20℃の木材強度を用いて評価を行った場合に核燃料輸送物に 発生する衝撃加速度は(ロ)-第 A. 18 表及び(ロ)-第 A. 35 表に示す設計加速度(常温時 の解析結果に裕度を考慮した値)に対して増加する。本項では、低温時の衝撃加速度の 増加を考慮しても、核燃料輸送物の各部位に発生する応力は評価基準を満足すること を示す。	(4)-①
-	(記載なし)	(III) -A-196	 -20℃における木材強度の上昇割合 木材は温度が低くなると強度が上昇する。その特性を CRUSH 解析で考慮するために、 温度係数として緩衝材の応力-ひずみ特性に考慮する。低温時における各木材の温度と温度係数の関係については、米国農務省文献²⁰⁾のデータにまとめられている。米国 農務省文献をもとに線形補完することで、木材の温度を本核燃料輸送物の周囲温度- 20℃とした場合の温度係数を求めた。木材低温時に木材の応力-ひずみ特性に考慮する温度係数を(ロ)-第A.付15表に示す。 木材低温時の応力-ひずみ特性は、(ロ)-第A.付15表の温度係数を(ロ)-第A.12 図に示す常温条件での応力-ひずみ特性に乗じた値となる。 	(4)-①

ページ	変更前	ページ	変更後					変更内容	
-	(記載なし)	(□)-A-196						(4)-①	
			(ロ)-第1.付15表 木材の応力-ひずみ特性に考慮する温度係数(低温時:-20°C)						
				1 1 1 minut			温度係数		
				木材種	含水率	木目方向	1 木目道	 [交方向	
					8%				
_	(記載なし)	(□)-A-197	2 −20°C k	ておけろ衝撃	加速度				(4)-(1)
			」 1 項に示	ミマネジ きょうしょう	の上昇割合を	:考慮して CRUSH	I 解析を行った	結果を(ロ)-第 A. f	t
			16 表 (0. 3r	n自由落下試	<u>、験)</u> 及び <u>(ロ)</u> ・	-第 A. 付 17 表 (9	m 落下試験)に	示す。その他解析系	
			件は(ロ)章	葦 A. 5. 3. 1 及	び(ロ)章A.6	5.1 に示す条件と	こ同様である。		
			木材温厚	度が低くなる	と木材の強度	まは上昇するた&	ち、(ロ)-第 A. (寸 16 表及び(ロ)-賃	ě
			A. 付 17 表	に示すとお	り、落下時の	衝撃加速度は常	温時に比べてオ	、きくなる。	
-	(記載なし)	(□)-A-197	_						(4)-①
				<u>:)-第A.付 1</u>	<u>6表 0.3m 目</u>	由落下試験にお	いうる衝撃加速 <u>度</u>	<u>隻計算結果</u>	
					- 1-1-1	衝撃加速度	設計		
			落	下姿勢	温度	訂昇結未 ^一 (A)	//瓜本/夏~ (B)	(A)/(B)	
					1447.50	(m/s²)	(m/s²)		
				i百 女女	常温	259	904	0.88	
			垂直	29 AP	低温	302	204	1.03	
			落下	र संस	常温	268	904	0.92	
				/23, EP	低温	320	284	1.09	
			-L- 3		常温	161	100	0.83	
			- AC		低温	178	190	0.91	
				言葉交け	常温	113	1.472	0.77	
			5-9-		低温	117	147	0.80	
			落下	cia é d	常温	112	117	0.77	
				思部	低温	116	147	0.79	
			注) 言	†算結果(常淵	盟)と設計加速	夏度は、(ロ)-第	A.18表に記載 [、]	する値。	

ページ	変更前	ページ		変更後 変								
-	(記載なし)	(□)-A-198	:							(4)-①		
					(ロ)-第 A. ⁄	付17表 9m ¾	<u>客下試験におけ</u>	る衝撃加速度計	·算結果			
							衝擊加速度	設計				
				落下姿勢		下姿勢	計算結果 ^{注)}	計算結果 ^{達)} 加速度 ^{達)} (A) (B) (m/s^2) (m/s^2)	(A) / (B)			
						温度	(A) (m/s^2)					
						常温	555		0.95			
				垂直	頭部		657	588	1.12			
				落下		常温	584		0.92			
					底部	低温	685	637	1.08			
						常温	573		0.90			
				水平	Z 落 下	低温	612	637	0.96			
						常温	509		0.95			
				コーナー	頭部 -	低温	546	539	1.02			
				落下		常温	554		0.95			
					LE部 -	低温	585	588	1.00			
				注)計	算結果(常)	温)と設計加速	返度は、(ロ)−第	A. 35 表に記載 ⁻	する値。			
-	(記載なし)	(□)-A-199	3. 衝	j擊加速.	度の上昇カ	「構造評価に」	与える影響			(4)-①		
			木柞	才常温明	寺に対する	木材低温時に	こおける衝撃加	速度の上昇が	構造評価に与える	影		
			響につ	ついて臣	以下に示す	0						
-	(記載なし)	(□)-A-199	(ロ)-	-第 A. 付	† 16 表及て	ド(ロ)-第 A. 作	† 17 表に示すと	こおり木材低温	時の衝撃加速度に	t, (4)-①		
			(ロ)-第	; A. 18 表	長及び(ロ)・	-第 A. 35 表に	示す設計加速度	度(構造評価にフ	(力する加速度)か	15		
			増加する	る。ここ	こで、余裕	率が最も小さ	い部位について	て、木材低温時	の衝撃加速度の」	:昇		
			により権	 黄造評伯	町において	発生する応力	を評価する。					
			評価式を以下に示す。 99 $\sigma_{1}=(\sigma_{2}-\sigma_{f})\times\frac{\alpha_{1}}{\alpha_{2}}+\sigma_{f}$ (蓋ボルトの評価式)									
_	(記載なし)	(□)-A-199										
				価式)								

ページ	変更前	ページ	変更後								変更内容	
-	(記載なし)	(□)-A-199	ここで									(4)-①
			σ	1:木材低	氐温時の 0.:	3m 又は 9m	落下時に	評価部位に	こ発生する	。応力(MPa)		
			σ	2:0.3m	又は 9m 落下	「時の設計」	加速度にお	るいて評価	前位に発	生する応力()	(MPa)	
			σ	f:初期綺	帝付力、熱応	、カ、胴内屋	E及び蓋間	圧力によ	り各ボル	トに生じる引	張応力	
				(MPa)								
			α	1:木材低	氏温時の衝撃	肇加速度(m	n/s^{2})					
			α	2:0.3m	又は 9m 落下	「時の設計」	加速度(m/	s^{2})				
-	(記載なし)	(□)-A-199	評価条	件及び評	価結果を <u>(</u> ロ	コ)-第 A. 付	<u>† 18 表</u> 及て	バ <u>(ロ)-第</u>	A. 付 19 表	に示す。		(4)-①
			(口)-貧	第 A. 付 18	3 表及び(ロ)-第 A. 付	19 表に示	すとおり	余裕率が損	最も小さい部	『位へ発	
			生する応	力は評価	基準を満足	する。						
-	(記載なし)	(□)-A-200	0							(4)-①		
				莎丁次教	<u>(ロ)-</u> 5 0 2m 首本は	<u> 市内 18 夜</u> 重古茲下		<u>ト試験にわけ</u> 転言落下		/亚茲下		
				谷下安势	世· 301 3月前3 蓋部中性子		U. OIL /EGEF		0.011.7			
				評価部位	遮蔽材	一次蓋	一次蓋	二次蓋	二次蓋	三次蓋		
					カバー	ホルト	ホルト	ホルト	ホルト	ホルト		
				σ2	86MPa	351MPa	296MPa	246MPa	621MPa	602MPa		
				σf	-	300MPa	300MPa	249Mpa	249MPa	328MPa		
			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$									
			α₂ ∠34m/s* 234m/s* 190m/s* σ₁ 39MPa 353MPa 296MPa 587MPa 577MPa									
				評価	(07175	5.00VD		50400				
				基準制	137MPa	590MPa	590MPa	594MPa	891MPa	891MPa		
			注) 評価基準を設定する温度(核燃料輸送物各部位の低温時温度)は、木材温度と同程度低									
			下(木材温度:38~-20℃へ約 60℃低下)するとし、「低温時温度=(設計温度)-60℃」と 、・									
				した。								

ページ	変更前	ページ	変更後 変									
-	(記載なし)	(□)-A-200										(4)-①
			(ロ)-第 A. 付 19 表 9m 落下試験における強度評価									
			9m 頭部 9m 底部									
			洛卜姿勞 9m 頭部垂直洛卜 9m 底部垂直洛卜					9m 水平洛下 コーナー 落下			コーナー 落下	
			亚体如位 一次蓋 一次蓋 一次蓋				一次蓋	一次蓋	二次蓋		欠蓋	
			〒〒1町町り1立。	ボルト	ボルト	ボルト	ボルト	ボルト	ボルト	ボノ	レト	
			σ 2	459MPa	664MPa	293MPa	345MPa	847MPa	743MPa	355	MPa	
			σf	300MPa	300MPa	300MPa	300MPa	300MPa	249MPa	300	MPa	
			α1	657	m/s ²	685	m/s ^z	612	m/s ²	546m/s ²	585m/s ²	
			α 2 588m/s ² 637m/s ² 637r						m/s ²	539m/s ²	588m/s ²	
			0 I	470MPa	TOTMPa	295MPa	349MPa	820mra	724mra	JOOMPA	зээмга	
			基準注)	655MPa	982MPa	655MPa	982MPa	982MPa	890MPa	655MPa	655MPa	
			注)	評価基準を	 設定する温度	 [(核燃料輸	送物各部位。	の低温時温度	」 E)は、木材温	 度と同程度	低	
				下(木材)	昷度:38~-20)℃へ約 60°	C低下)する	とし、「低温」	時温度=(設計	+温度)−60℃		
				とした。								
-	(記載なし)	(□)-A-201 1	A-201 10) 10CFR71(2021), "Packaging and Transportation of Radioactive Material".									(4)-①
$\square - A$	18) ASME Boiler & Pressure Vessel Code Section VII Division3, 2015 Edition,	(□)-A-201 1	A-201 13) "ASME Boiler & Pressure Vessel Code Section VII Division3, 2023 Edition".								(4)-②	
-176	(2015).											
-	(記載なし)	(□)-A-202 2	0) Forest	Products	Laborato	ry(1999), "Woo	d Handboo	ok, Unite	d States	Department	(4)-①
		o	f Agricul	ture, Ger	neral Tecl	nnical F	eport",	FPL-GTR	-113, cha	apter 4,	p. 36.	

ページ	変更前	ページ	変更後	変更内容
$\square - B - 1$	B.1 概 要	(□)-B-1	B.1 概要	() 0
	1. 輸送物の熱設計及びその取扱い		1. 核燃料輸送物の熱設計及びその取扱い	(4)-(2)
	本輸送物の熱放散システムは次のとおりであり、自然冷却にて輸送を行う。		本 <mark>核燃料</mark> 輸送物の熱放散システムは次のとおりであり、自然冷却にて輸送を行う。	
$\square - B - 1$	熱解析は、一般の試験条件下における輸送物各部の温度を求め、構成部品の温度が使	(□)-B-1	熱解析は、一般の試験条件下における核燃料輸送物各部の温度を求め、構成部品の温	(4)-②
	用可能温度を超えないことを示すとともに、他の解析への条件を示す。また、一般の試		度が使用可能温度を超えないことを示すとともに、他の解析への条件を示す。また、一	(以下同様)
	験条件下の日陰において人の近づきうる表面の最高温度が85℃以下であることを示す。		般の試験条件下の日陰において輸送中人が容易に近づくことができる表面(以下「近接	
	特別の試験条件下においては輸送物各部の温度を求め、構成部品の健全性への影響を		表面」という。)の最高温度が 85℃以下であることを示す。	
	示すとともに、他の解析への条件を示す。		特別の試験条件下においては核燃料輸送物各部の温度を求め、構成部品の健全性への	
	さらに、一般及び特別の試験条件下における輸送物各部の圧力を求め、他の解析への		影響を示すとともに、他の解析への条件を示す。	
	条件を示す。		さらに、一般及び特別の試験条件下における 核燃料輸送物各部の圧力を求め、他の解	
			析への条件を示す。	
$\square - B - 1$	 2. 熱解析の条件 	(□)-B-1	 2. 熱解析の条件 	
	熱解析は、(ロ)-第B.1表に示す条件で行う。		熱解析は、(ロ)-第 B.1 表に示す条件で行う。	(4) - 2
	輸送物の最大の発熱量(崩壊熱量)は、(イ)-第A.1表に示したように12.1 kW		核燃料輸送物の最大の発熱量(崩壊熱量)は、(イ)-第 A. 1 表に示したように 12. 1kW	(1) (2)
	以下であるが、熱解析ではこれに余裕を見た発熱量とする。		以下であるが、熱解析ではこれに余裕を見た発熱量とする。	

	~	ジ ローE	3-2										
				<u>(ロ)-第B.1表</u>	熱解析の主な条件及び	<u> ボ方法</u>]						
		< 条 件		一般の試験条件	1		特別の試験条件						
変更前 変更前 変更後 変更内容 変更内容 変更内容	項目		最高温度評価条件	人の近づきうる 表面 の最高温度評価条件	最低温度評価条件	火 災 前	火 災 時	火災後					
	崩	壊 熱 量	15.3 kW	15.3 kW	0 kW	15.3 kW	15.3 kW	15.3 kW					
		周囲温度	静止空気 38℃	静止空気 38℃	静止空気-20℃	*Y 学時 火災時 火災後 「二15.3 kW 15.3 kW 15.3 kW 15.3 kW 20°C 静止空気 38°C 火災30 分間 静止空気 38°C 20°C 静止空気 38°C 80°C 1.0 20°C 静止空気 38°C 9 あり あり 20°C 静止空気 38°C 80°C 1.0 0.9 ²⁰ 1.0 0.9 ²⁰ 1.0 1.0 デル (燃料集合体領域は均質化近似)							
发 更 前	環境 条件	太陽熱放射	あり	なし	なし	あり	あり	あり					
		周囲吸収率	1.0	1.0	1.0	1.0	0.9 ^{注)}	1.0					
	計算	輸送物	軸方向二次元軸対称	5全体モデル及び半径方	「向輪切りモデル(燃料	斗集合体領域は均質	〔化近似〕						
	モデル	燃料集合体	燃料集合体モデル										
	温度分布計算 プログラム 有限要素法による ABAQUS ¹⁾ コード												
	<u>(ロ)-第B.1表</u> 熱解析の主な条件及び方法 一般の試験条件 特別の試験条件												
		条件		「「「「「「「「」」」」」									
	坦日		最高温度評価条件	<u> 近接</u> 表面の最高温度 評価条件	最低温度評価条件	火 災 前	火 災 時	火災後					
	崩	壊 熱 量	15.3kW	15.3kW	OkW	15.3kW	15.3kW	15.3kW					
変		周囲温度	静止空気 38℃	● 小豆豆豆豆豆豆豆豆 ● 松豆菜 ● 松豆菜 ● 水 災 時 火 災 歳 15.3 km 0 km 15.3 km 15.3 km 15.3 km 15.3 km 静止空気 38℃ 静止空気 38℃ 静止空気 38℃ 静止空気 38℃ 静止空気 38℃ 静止空気 38℃ な し な し か り あ り あ り あ り 1.0 1.0 1.0 0.9 m 1.0 0 年本 レ な し あ り あ り 1.0 第4(K15 ¹⁾ コード - - - - - - (11) 第 比較新行の主な条件及び主任 - - - - - - - ド ***********************************									
更 後	環境 条件	太陽熱放射	あり	なし	なし	あり	あり	あり					
		周囲吸収率	1.0	1.0	1.0	1.0	0.9 注)	1.0					
	計算	核燃料輸送物	軸方向二次元軸対称	全体モデル及び半径方	向輪切りモデル(燃料	集合体領域は均質化	七近似)						
	2770	燃料集合体	燃料集合体モデル										
	温 ほ プ	5分布計算 ログラム	有限要素法による A	BAQUS ¹⁾ コード									
	注)火炎	の放射率を示す。											
変更内	(4)-2												

ページ 変更前	ページ	変更後	変更内容
ロ-B-5 1. 三次蓋部シール	(□)-B-5	1. 三次蓋部シール	
EPDM O リング		EPDM 製 0 リング	(4)-②
ロ-B-6 B.4.1 熱解析モデル	(□)-B-6	B.4.1 熱解析モデル	
輸送物の熱解析は、有限要素法による ABAQUS コードを用いて行った。		核燃料輸送物の熱解析は、有限要素法による ABAQUS コードを用いて行った。	(4)-②
ロ-B-6 B.4.1.1 解析モデル	(□)-B-6	B.4.1.1 解析モデル	
1. 解析に用いる各モデル		1. 解析に用いる各モデル	
本輸送物の一般の試験条件下における各部温度を評価するために解析モデル		本核燃料 輸送物の一般の試験条件下における各部温度を評価するために解析	(4)-②
として以下の3つのモデルを用いた。		モデルとして以下の3つのモデルを用いた。	
ローB-6 各モデルにおいて評価する輸送物部位は次のとおりである。	(□)-B-6	各モデルにおいて評価する核燃料輸送物部位は次のとおりである。	(4)-②
ローB-7 一般の試験条件のうち、水噴霧試験及び積み重ね試験では輸送物は変形しないが、自	(ロ)-B-7	一般の試験条件のうち、水噴霧試験及び積み重ね試験では核燃料輸送物は変形しない	(4)-②
由落下試験及び貫通試験において緩衝体に変形を生じる。しかしながら、一般の試験系	:	が、0.3m自由落下試験及び6kg棒貫通試験において緩衝体に変形を生じる。しかしなが	(以下同様)
件では、緩衝体が変形しないものとする方が収納物の温度を高く評価できる。したがっ		ら、一般の試験条件では、緩衝体が変形しないものとする方が収納物の温度を高く評価	
て、一般の試験条件の熱解析では輸送物は変形及び破損はしていないものとする。		できる。したがって、一般の試験条件の熱解析では核燃料輸送物は変形及び破損はして	
		いないものとする。	
□ - B $ (□) = 28 B 5 = - 48 O 就驗各件 O 熱解析各件$	(ロ)-B-15		
		<u>(ロ)-第 B.5 表</u> 一般の試験条件の熱解析条件	(4)-②
項 日 最高温度 うる表面の 最低温度		西日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日日	
評価条件 最高温度 評価条件		了一口。	
詳伽衆性			
ローB 注1)技術基準上は一日につき 12 時間の負荷であるが、解析上は連続照射とする。	(□)-B-15	注 1) 外運搬規則及び外運搬告示に定める技術基準上は一日につき 12 時間の負荷であ	(4)-②
- 15 注2)技術基準上は「水平に輸送されない下向きの表面」に対しては 200 W/m ² であるが		るが、解析上は連続照射とする。	
解析上は安全側に全ての曲面に対して 400 W/m ² とする。		注2) 外運搬規則及び外運搬告示に定める技術基準上は「水平に輸送されない下向きの	11
		表面」に対しては 200W/m ² であるが、解析上は安全側に全ての曲面に対して	
		400W/m ² とする。	
□ - B (c) 第D 2ま 絵印 z ま 絵印 z	(□)-B-16		
-16 <u>(ロ)-第5.7家 ==995777(における住が同党営業力がの他</u> 発熱量 ^(注) (kW)		<u>(ロ)-</u> 弟B.7表 1100 モアルにおける住力回発熱量分布の値 発熱量 ^注 (kW)	
軸方向への熱の逃げ考慮後		軸方向への 軸方向への逃げ考慮後	(4)-②
部位 燃料集合 熱の逃げ考慮前 最高温度評価条件 人の近づきうる表面 の最高温度評価条件		部位 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二 二	
	(ロ)-B-16	(ロ)-第B8末 輪切りエデルにおける軸古向への執我動員	
ー I 0 (ロ) - 第B.8表 輪切りモデルにおける軸方向への熱移動量			
軸方向への熱移動量 ^{注)} (kW)			
部位		最高温度評価条件 近接 表面の最高温度評価 条件	(4)-2
取向価度計画采用 最高温度評価条件			

ページ		変更前		ページ		変更後		変更内容					
$\square - B$	B.4.2 最高温度			(□)-B-20	B.4.2 最高温度								
-20	一般の試験条件下における、B.4.	1に記載した解析モテ	「ル及び条件に基づいて求		一般の試験条件下における、(ロ)章	B.4.1 に記載した解析	モデル及び条件に基づい	(4)-②					
	めた輸送物各部の最高温度の結果を <u>(</u>	<u>コ) - 第B.9表</u> に示す。	5		て求めた核燃料輸送物各部の最高温度	で結果を <u>(ロ)-第B.9</u>	<u>表</u> に示す。						
	ABAQUS コードで解析して得られた-	一般の試験条件下 <mark>で太</mark>	陽熱放射のある場合の輸		ABAQUS コードで解析して得られた	一般の試験条件下の最	高温度評価条件における	11					
	送物とその収納物の各部の温度分布を	<u>(ロ)-第B.10図~(</u> に	<u>コ)-第B.12 図</u> に、また、		核燃料 <mark>輸送物とその収納物の各部の</mark> 温	L度分布を <u>(ロ)-第 B. 10</u>	図~(ロ)-第 B. 12 図に、						
	太陽熱放射のない場合の温度分布を <u>(</u> に	コ)-第B.13 図及び(ロ)-第B.14 図に示す。		また、一般の試験条件下の近接表面の	つ最高温度評価条件にお	おける <mark>温度分布を<u>(ロ)-</u>第</mark>	11					
	なお、輪切りモデルは全体モデルの燃	3、輪切りモデルは全体モデルの燃料集合体領域の最高温度発生断面をモデル化し		<u>B.13 図</u> 及び <u>(ロ)-第 B.14 図</u> に示す。な	<u>B.13図</u> 及び <u>(ロ)-第B.14図</u> に示す。なお、輪切りモデルは全体モデルの燃料集合体								
	ている。ただし、境界条件となる胴内	面と外筒外面の温度は	は、全体モデルの胴内面と		域の最高温度発生断面をモデル化して	こいる。ただし、境界条	件となる胴内面と外筒外						
	外筒外面の最高温度を設定している。				面の温度は、全体モデルの胴内面と外筒外面の最高温度を設定している。								
	一般の試験条件下において、各部の)温度はB.3に示す使	用可能温度を超えること		一般の試験条件下において、各部の温度は(ロ)章 B.3 に示す使用可能温度を超え								
	はない。				ことはない。								
	一般の試験条件下で太陽熱放射のな	い場合に人が容易に近	行づきうる <mark>表面としては、</mark>		近接 <mark>表面としては、(ロ)-第 B.9 表</mark>	に示すように、近接表	面の最高温度評価条件に	11					
	(ロ) - 第B.9表に示すように、緩衝体	広表面は 70℃となり、基	基準値の 85℃以下である。		おいて <mark>緩衝体表面は 70℃となり、基[®]</mark>	準値の 85℃以下である	。外筒外面が 86℃、トラ						
	外筒外面が 86℃、トラニオン温度は 97℃となり 85℃を超えているが、外筒外面又は	外筒外面が 86℃、トラニオン温度は 97℃となり 85℃を超えているが、外筒外面又は	ニオン温度は 97℃となり 85℃を超え	ているが、外筒外面又	【はトラニオン部には必要								
	トラニオン部には必要に応じ近接防止	よ必要に応じ近接防止金網を取り付けて輸送する ^{注)} ため、 <mark>輸送中人が</mark>		に応じ近接防止金網を取付けて輸送す	る ^{注)} ため、 <mark>近接</mark> 表面の)温度は85℃以下である。	11						
	容易に近づきうる <mark>表面の温度は 85℃</mark> レ	↓下である。			なお、(ロ)章 B. 4.1の1に示すとお	り、一般の試験条件に	おいては収納物及び緩衝	(4)-①					
					体の最高温度を高く評価するために緩	衝体の変形を考慮して	こいないが、緩衝体表面積						
		の減少分が全て緩衝体表面温度上昇に	寄与する場合、保守側	间に一般の試験条件の垂直									
		落下、水平落下及びコーナー落下の約	爰衝体変形後の形状を	後の形状を包含する形状を考慮する									
						と、緩衝体の表面積は約 11%減少す	表面温度は約 74℃となる						
					が、技術上の基準に定める85℃を超え	えることはない。							
$\square - B$				(□)-B-21	(ロ)-第B9表 一般の討	【験条件下の最高温』	(単位:℃)						
- 2 1	<u>(ロ)-第B.9表</u> 一般の試験	検条件下の最高温度	(単位:℃)			最高温度	近接表面の最高	(4)-2					
		最高温度	人の近つきりる 表面の最高温度		条件	評価条件	温度評価条件						
	条件	評価条件	評価条件		部 位	(太陽熱放射	(太陽熱放射						
	部位	(太陽熱放射 あり)	(太陽熱放射			めり)	なし)						
		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	なし)		緩衝体表面	84	70						
	緩衝体表面	84	70		緩衝体木材	107	92	(4)-①					
			88				88						
	外筒	103			外筒	103	00						
			(86) (#)				(86) ^{注)}						
$\square - B$ - 25	<u>(ロ)</u> ー第B.13図 一般の	試験条件下の全体モデ	ル温度分布	(□)-B-25	<u>(ロ)-第 B. 13 図 一般の</u> 言	試験条件下の全体モデ	ル温度分布						
20	(人の近づきうる素	長面の最高温度評価条	(4)		(近接表面の	最高温度評価条件)		(4)-2					

ページ	変更前	ページ	変更後	変更内容
$\Box - B$	(ロ)-第B.14図 一般の試験条件下の輪切りモデル温度分布	(□)-B-26	<u>(ロ)-第 B.14 図 一般の試験条件下の輪切りモデル温度分布</u>	
-20	(人の近づきうる表面の最高温度評価条件)		(近接表面の最高温度評価条件)	(4)-②
$\square - B$	B. 4. 3 最低温度	(□)-B-27		
-27	本輸送物の最低使用温度条件は、(ロ)-第B.5表に記載したように-20℃の大気中		本核燃料輸送物の最低温度評価条件は、(ロ)-第B.5表に記載したように周囲温度	(4)-2
	において、太陽熱放射を受けず発熱量が0kWの時であり、輸送物の最低温度は-20℃		-20℃において、太陽熱放射がなく崩壊熱量が 0kW のときであり、核燃料輸送物の最	(以下同様)
	である。この温度において、構成材料に悪影響を及ぼすような要因は生じない。また、		低温度は-20℃である。(ロ) 章 A. 4. 2 に示したように、この温度において、構成材料に	
	本輸送物は乾式であり、胴内はヘリウムが充填されるため凍結することはない。		悪影響を及ぼすような要因は生じない。また、本核燃料輸送物は乾式であり、胴内は	
			ヘリウムが充填されるため凍結することはない。	
□ — B	B.4.4 最大内圧	(□)-B-27	B.4.4 最大内圧	
-27	一般の試験条件下において輸送物に最大内圧が生じるのは、崩壊熱量が15.3 kW、		一般の試験条件下において <mark>核燃料</mark> 輸送物に最大内圧が生じるのは、崩壊熱量が	(4)-2
	環境温度が 38℃の場合であるので、このときの一次蓋と胴で構成される空間の圧力		15.3kW、環境温度が38℃の場合であるので、このときの一次蓋と胴で構成される空間	
	(以下「胴内圧」という。)、一次蓋と二次蓋間の空間の圧力(以下「一二次蓋間圧力」		の圧力(以下「胴内圧」という。)、一次蓋と二次蓋間の空間の圧力(以下「一二次蓋間	
	という。)、二次蓋と三次蓋間の空間の圧力(以下「二三次蓋間圧力」という。)及び三		圧力」という。)、二次蓋と三次蓋間の空間の圧力(以下「二三次蓋間圧力」という。)	
	次蓋と胴で構成される密封装置の圧力(以下「三次蓋-胴内圧力」という。)の計算方		及び三次蓋と胴で構成される密封装置の圧力(以下「三次蓋-胴内圧力」という。)の計	
	法及び計算結果を示す。		算方法及び計算結果を示す。	
$\square - B$	1. 胴内圧	(□)-B-27	1. 胴内圧	
-27	輸送物の内部には、輸送に先立ち燃料集合体を装荷後、所定の圧力のヘリウムが充		核燃料輸送物の内部には、輸送に先立ち燃料集合体を装荷後、所定の圧力のヘリウ	(4)-2
	填される。一般の試験条件下でのヘリウムの温度を保守側に燃料集合体最高温度とす		ムが充填される。一般の試験条件下でのヘリウムの温度を保守側に燃料集合体最高温	
	ると、胴内圧は、以下のとおり求められる。		度とすると、胴内圧は、以下のとおり求められる。	
$\square - B$	計算条件と計算結果を(ロ)-第B.10 表に示す。なお、設計評価期間中の一二次蓋間	(□)-B-27	計算条件と計算結果を(ロ)-第 B. 10 表に示す。なお、設計 貯蔵 期間中の一二次蓋間へ	(4)-②
-27	ヘリウムの胴内への漏えいは十分に小さく、漏えいを考慮しても胴内圧は負圧を維持す		リウムの胴内への漏えいは十分に小さく、漏えいを考慮しても胴内圧は負圧を維持す	
	る。		る。	
$\Box - B$	3. 二三次蓋間圧力	(□)-B-29	3. 二三次蓋間圧力	
- 2 9	三次蓋取付け時の二三次蓋間は常温、大気圧の空気とし、一般の試験条件下での空		三次蓋取付け時の二三次蓋間は常温かつ大気圧の空気とし、一般の試験条件下での	(4)-2
	気の温度を保守側に二次蓋最高温度とする。		空気の温度を保守側に二次蓋最高温度とする。	
$\Box - B$	計算条件と計算結果を <u>(ロ)-第B.12表</u> に示す。	(□)-B-29	計算条件と計算結果を <u>(ロ)-第 B. 12 表</u> に示す。	_
- 2 9			なお、三次蓋取付け時の周囲温度が仮に-20℃であった場合には空気の密度が大きく	(4)-①
			なるため、二三次蓋間圧力は約16%増加する可能性があるが、構造解析においては保守	
			的にこれを包絡する圧力で評価している。	
$\square - B$	B.4.5 最大熱応力	(□)-B-33	B.4.5 最大熱応力	
- 3 2	一般の試験条件下においては輸送物に熱応力が生じるが、ロ章A.5.1に示すよう		一般の試験条件下においては核燃料輸送物に熱応力が生じるが、(ロ)章 A.5.1 に示	(4)-2
	にいずれも評価基準を下回る。		すようにいずれも評価基準を下回る。	

ページ	変更前	ページ	変更後	変更内容
$\square - B$	B.4.6 結果の要約及びその評価	(□)-B-33	B.4.6 結果の要約及びその評価	
-32	一般の試験条件下における熱解析結果の要約と評価を(ロ)-第B.14 表に示す。本		一般の試験条件下における熱解析結果の要約と評価を(ロ)-第 B.14 表に示す。本核	(4)-2
	輸送物は以下のとおり一般の試験条件の基準を満足している。		燃料輸送物は以下のとおり一般の試験条件の基準を満足している。	(以下同様)
	・容易に人の近づきうる部分としての緩衝体表面の最高温度は太陽熱放射なしの場		・最高温度評価条件において、三次蓋 0 リングの最高温度は 94℃となり、(ロ)章	
	合において 70℃であり、基準値の 85℃を超えることはない。外筒外面及びトラ		B.3に記載した使用可能温度 150℃を超えることはない。	
	ニオン温度は85℃を超えているが、外筒外面及びトラニオン部には必要に応じ近		・最高温度評価条件において、蓋部、底部及び側部の中性子遮蔽材は、その最高温	
	接防止金網を取り付けて輸送するため、 <mark>人が容易に近づきうる</mark> 表面の温度は85℃		度が 119℃であり、(ロ)章 B.3 に記載した使用可能温度 150℃を超えることはな	
	以下である。		ار م ار م	
	 ・三次蓋0リングの最高温度は94℃となり、B.3に記載した使用可能温度150℃ 		・ 最高温度評価条件において、 上記を除く 構成材料についても、 健全性に 悪影響を	
	を超えることはない。		及ぼすような温度にはならない。	
	・蓋部、底部及び側部の中性子遮蔽材は、その最高温度が 119℃であり、使用可能		 ・近接表面の最高温度評価条件において、 緩衝体表面の最高温度は70℃であり、基 	
	温度である 150℃を超えることはない。		準値の 85℃を超えることはない。外筒外面及びトラニオン温度は 85℃を超えて	
	 その他の構成材料についても悪影響を及ぼすような温度にはならない。 		いるが、外筒外面及びトラニオン部には必要に応じ近接防止金網を取付けて輸送	
	・周囲温度が-20℃で太陽熱放射なしの場合においては、すべての部位が-20℃に達		するため、 <mark>近接</mark> 表面の温度は 85℃以下である。	
	するが輸送物の健全性に問題はない。		・最低温度評価条件において、周囲温度が−20℃で太陽熱放射がなく崩壊熱量が 0kW	
			のため、全ての部位が-20℃に達するが <mark>核燃料</mark> 輸送物の健全性に問題はない。	

ページ				変更前		ページ	変更後							
$\square - B$						(ロ)-B-34								
-33		<u>(ロ)-第H</u>	8.14表 一般の	<u>試験条件下の熱解析</u>	<u>結果の要約と評価</u>			<u>(ロ)-第</u>	B.14 表 一般の	試験条件の熱解析;	結果の要約及びその評価	(1/2)	(4)-①	
	項	Ē	基準値	結果	評価		項	目	結果	基準値	評価	他の解析への条件	(以下同様)	
	燃料集	〔合体	270°C ^{造1)}	253°C	基準に合致、構造解析に使用		最高温度			270 ⁹ C (11) 16) 17)	11-266-14-151-7	構造解析では		
	バスク	アット	350°C	241°C	基準に合致、構造解析に使用		燃料事	長台体	253 C	270°C ^(±1) , ¹⁰⁾ , ¹¹⁾	基準值以下	260℃を使用 4 27		
	蓋部、底部 中性子:	B及び側部 遮蔽材	150°C	119°C	基準に合致		バスク	アット	241°C	350°C ⁸⁾	基準値以下	構造解析では 250℃を使用 ^{注2)}		
	一次蓋金属	ガスケット	130°C	97°C	基準に合致		中性子:	遮蔽材	119℃ ^{注3)}	150°C ⁵⁾	基準值以下	•		
	二次蓋金属	ガスケット	130°C	95°C	基準に合致		一次蓋金属	ガスケット	97°C	$130^{\circ}C^{14)}$ $120^{\circ}C^{14)}$	基準値以下			
	ゴ炉薯(u1528	15000	9497	其)注() (今)初		二次童亚两	コーンガ	95 C	150°C11)	基準値以下			
	外	筒	350°C	103°C	基準に自該 基準に合致、構造解析に使用		三次蓋日) リ <i>ンク</i> 筒	94 C 103℃	350℃ ¹⁸⁾	基準値以下	構造解析では 110℃を使用 ^{注2)}		
	AI	ij	350°C	125°C	基準に合致、構造解析に使用		用	ī	125℃	350°C ¹⁸⁾	基準値以下	構造解析では 130℃を使用 ^{注2)}		
	近接表词	面 往2)	85°C	85°C以下	必要に応じて近接防止金網を 取り付けるため基準に合致		近接表	表面 ^{注 4)}	70°C ^{注 5)}	85°C	必要に応じて近接防 止金網を取り付ける ため基準に合致	Ŧ		
	最低温度		胴内の 凍結なし	すべての部位が 周囲温度-20℃	胴内雰囲気がヘリウムである ため凍結しない		最低	温度	核燃料輸送物 の全ての部位	胴内の	胴内雰囲気がヘリウ ムであるため凍結し			
	最大内庄								が周囲温度 -20℃	凍結なし	talv	-		
	最大内圧 胴内圧 – 0.0792 MPa (-0.022 MPaG) - 0.097 MPa ^{は20} 未満 構造解析では -0.101325 MPaG を使用						注 1) 注 2)	8×8 型及び 8×8 型及び に制限し、 構造解析にま	RJ型は200℃、F RJ型を収納する: 然料集合体の温度 5ける温度条件と	BJ 型及び STEP II 型 場合には、核燃料幅 を 200℃以下にす しては、熱解析結	」 は270℃であるが高い方 泳送物の最大の発熱量を1 る。 果としての温度分布を入	を記載している。 2.1kWから8.1kW 力するが、その		
	一二次畫	間圧力	-	0.421 MPa (0.320 MPaG)	構造解析では 0.40 MPaGを使用		i 注 3)	温度を包絡す 蓋部、底部Љ	っる許容値の設定 るび側部中性子遮	温度条件を代表に 蔽材のうち、最高	示す。 となる温度			
	二三次畫	間圧力	-	0.281 MPa (0.179 MPaG)	構造解析では 0.25 MPaGを使用		注 4)	一般の試験彡 温度は 85℃	条件で太陽熱放射 を超えているが、	のない場合の評価 必要に応じ近接障	である。なお、外筒外面 5止金網 <mark>(64℃以下((ロ)</mark> 鸢	及びトラニオン f B. 6. 3 参照))		
	三次蓋	胴内圧力	-	0.0815 MPa	設計評価期間中のヘリウムの 内部への漏えいを考慮しても 0.097 MPa ^{進a)} 未満		注 5)	取り付けて 載衝体表面の	輸送するため、近 D最高温度	接表面の温度は8	5℃以下である。			
	注1)8×	8型及びR J	型は200℃、B	J型及びSTEPI	 型は 270℃であるが高い方を記載									
	して	いる。8×8	型及びRJ型を	収納する場合には、	谕送物の最大の発熱量を 12.1k₩ か									
	ら8.	1kWに制限し	、燃料集合体の	温度を 200℃以下に	ta.									
	注 2) 一般(温度	D試験条件下 は85℃を超え	で太陽熱放射の ているが、必要	ない場合の評価であ。 記応じ近接防止金網	5。なお、外筒外面及びトラニオン を取り付けて輸送するため、人が									
	容易	に近づきうる	表面の温度は 8	5℃以下である。										
	注3)高気	圧及び低気圧	による大気圧変	動(±0.004 MPa)∛	6考慮した最低圧力									

ページ			ページ					変	更後			変更内容		
□ — B					(□)-B-35		(60.4		** ********		(~ (0 (0)	
-33	<u>(ロ)-第</u>	B.14表 一般の	試験条件下の熱解析	<u>結果の要約と評価</u>			- <u>(<u></u><u></u><u></u><u></u>)-3</u>	第 <u>B.14</u> 表	ビー般の	り試験条件の	<u>熟解析結果の</u> 署	<u>果約及びその評</u>	<u>曲(2/2)</u> (他の智能。の名(件)	(4)-①
	項目	基準値	結果	評価		最大内圧	н	πa	禾	基毕旭	att.	1m	他の解析への来社	(以下同様)
	取同 <u>偏</u> 反 燃料集合体	270℃ ^{進1)}	253°C	基準に合致、構造解析に使用		胴内。	Ŧ	0.07	32MPa	_	 設計貯蔵期間 の内部への源	中のヘリウム えいを考慮し	構造解析では -0.101325WPaG を	
	バスケット	350°C	241°C	基準に合致、構造解析に使用				(-U.UZ	ZMPaG)		ても 0.097MP	a ^{注)} 未満	使用	
	室部、底部及び1则部 中性子遮蔽材	150°C	119°C	基準に合致										
	一次蓋金属ガスケット	一次蓋金属ガスケット 130°C 97°C 基準に合数				合数 0.421MPa − (0.320MPaG) -	-	構造解析では 0.40MPaGを使用						
	二次蓋金属ガスケット	130°C	95°C	基準に合致		二三次蓋問	二三次蓋間圧力 (0.179MPaG)		-		-	構造解析では 0.25MPaGを使用		
	三次蓋0リング 150℃ 94℃ 基準に合致													
	外 筒 350℃ 103℃ 基準に合数、構造解析に使用					三次蓋-胴	内圧力	0.08	15MPa	-	設計貯蔵期間 の内部への源 ても 0.097MP	中のヘリウム えいを考慮し a ^(主) 未満	H	
	胴	350°C		注)高5	気圧及び	低気圧に	よる大気	」 .圧変動(±0.	」 004MPa)を考慮	した最低圧力				
	近接表面 ^{往2)}	85°C		100, 101,										
	最低温度													
	最大内庄													
	胴内庄	- 0.0792 MPa 胴内圧 – 0.0792 MPa (-0.022 MPaG) 構造解析では -0.101325 MPaG を使用												
	一二次蓋間圧力	-	0.421 MPa (0.320 MPaG)	構造解析では 0.40 MPaGを使用										
	二三次蓋間圧力	-	0.281 MPa (0.179 MPaG)	構造解析では 0.25 MPaGを使用										
	三次蓋-胴内圧力	_	0.0815 MPa	設計評価期間中のヘリウムの 内部への漏えいを考慮しても 0.097 MPa ^{速3)} 未満										
	注 1) 8 × 8型及びR 。 している。8 × 8	J 型は 200℃、 B 型及びR J 型を												
	ら 8.1kW に制限し 決 の) 一郎 の計除名供で	/、燃料集合体の *☆★限熱放射の												
	注 27 一般の試験来中「 温度は 85℃を超う	・CAU場際加速的の そているが、必要												
	容易に近づきうる	5表面の温度は8	5℃以下である。											
	注3) 高気圧及び低気度	Eによる大気圧変	E動(±0.004 MPa)を	6考慮した最低圧力										
														_
$\square - B$	B.5.1 熱解析モデル				(□)-B-36	j B.5.1 熱解析モデル								
- 3 4	輸送物の熱解析は、	輸送物の熱解析は、有限要素法による ABAQUS コードを用いて行った。						の熱解析	Fは、 有	了限要素法	による ABAQI	IS コードを月	目いて行った。	(4)-2

ページ	変更前	ページ	変更後	変更内容
$\Box - B$	各モデルにおいて評価する輸送物部位は次のとおりである。	(□)-B-36	各モデルにおいて評価する核燃料輸送物部位は次のとおりである。	(4)-2
-34	特別の試験条件の熱解析は、強度試験(9m落下試験及び1m貫通試験)条件に引き		特別の試験条件の熱解析は、強度試験(9m 落下試験及び 1m 貫通試験)条件に引き続い	
	続いて、耐火試験条件下におかれるものとし、落下試験等の影響を以下のように解析モ		て、熱的試験(火災試験)条件下におかれるものとし、落下試験等の影響を以下のように	11
	デルに考慮した。		解析モデルに考慮した。	
□ — B	 1 m貫通試験における輸送物の変形は緩衝体及び外筒に生じる変形である。外筒には 	(□)-B-36	・1m 貫通試験における核燃料輸送物の変形は緩衝体及び外筒に生じる変形である。外筒	(4)-2
-34	直径 150 mm の範囲の変形が生じるが、熱解析結果への影響は無視しうるものである		には直径 150mm の範囲の変形が生じるが、熱解析結果への影響は無視しうるものであ	
	ことから、解析モデルでは外筒が変形しないものとした。また、緩衝体に穴があく可		ることから、解析モデルでは外筒が変形しないものとした。また、緩衝体に穴があく	
	能性がある。局所的であり断熱効果への影響はないが、解析モデルでは安全側に中央		可能性がある。局所的であり断熱効果への影響はないが、解析モデルでは安全側に中	
	部に貫通孔を考慮した。		央部に貫通孔を考慮した。	
□ — B	B.5.2 輸送物の評価条件	(□)-B-42	B.5.2 核燃料輸送物の評価条件	(2)
-40	9m落下試験における輸送物の変形は緩衝体に生じる変形である。緩衝体の変形量		9m 落下試験における核燃料輸送物の変形は緩衝体に生じる変形である。緩衝体の変	(4)-②
	は次のとおり。		形量は次のとおり。	
□ — B	1m貫通試験における輸送物の変形は緩衝体及び外筒に生じる変形である。緩衝体は	(□)-B-42	1m 貫通試験における核燃料輸送物の変形は緩衝体及び外筒に生じる変形である。緩衝	(4)-2
-40	落下時に穴があく可能性がある。局所的であるので、断熱効果に大きな変化はないが、		体は落下時に穴があく可能性がある。局所的であるので、断熱効果に大きな変化はない	(以下同様)
	安全側に中央部に貫通孔をモデル化する。		が、安全側に中央部に貫通孔をモデル化する。	
	外筒の最大変形は直径 150 mm の範囲の変形である。この変形は局所的であり、外筒		外筒の最大変形は直径 150mm の範囲の変形である。この変形は局所的であり、外筒が	
	が変形していないと仮定しても、輸送物の熱的性能に影響をおよぼすことはない。		変形していないと仮定しても、核燃料輸送物の熱的性能に影響を及ぼすことはない。	
	なお、燃料集合体については、A.8に示したように9m落下時には上・下部タイプレ		なお、燃料集合体については、(ロ)章 A.8 に示したように 9m 落下時には上・下部タイ	
	ートの変形並びに部分的な燃料棒ピッチの拡大及び縮小が想定されるが、燃料棒ピッチ		プレートの変形並びに部分的な燃料棒ピッチの拡大及び縮小が想定されるが、燃料棒ピ	
	が燃料集合体温度に与える影響は小さく、また、上下部タイプレートの変形を考慮しな		ッチが燃料集合体温度に与える影響は小さく、また、上・下部タイプレートの変形を考	
	い方が燃料集合体温度を安全側に評価することから、燃料集合体の変形はないものとし		慮しない方が燃料集合体温度を安全側に評価することから、燃料集合体の変形はないも	
	てモデル化する。		のとしてモデル化する。	
□ – B	B.5.3 輸送物温度	(□)-B-42	B.5.3 核燃料輸送物温度	(2)
-40	特別の試験条件下におけるB.5.1に記載した解析モデル及び条件に基づいて求		特別の試験条件下における(ロ)章B.5.1に記載した解析モデル及び条件に基づいて	(4)-②
	めた輸送物各部の最高温度の結果とそのときの火災発生後からの時間を <u>(ロ)-第</u>		求めた核燃料輸送物各部の最高温度の結果とそのときの火災発生後からの時間を	(以下同様)
	<u>B.19表</u> に示す。		<u>(ロ)-第 B. 19 表</u> に示す。	
	ABAQUS コードで解析して得られた火災発生 30 分後の輸送物各部の温度分布を(ロ)		ABAQUS コードで解析して得られた火災発生 30 分後の核燃料輸送物各部の温度分布	
	<u>- 第B.17</u> 図及び <u>(ロ)- 第B.18</u> 図に、また、燃料集合体温度が最も高くなる火災後		を(ロ)-第 B. 17 図及び <u>(ロ)-第 B. 18 図</u> に、また、燃料集合体温度が最も高くなる火災	
	84.7時間における温度分布を <u>(ロ)-第B.19図、(ロ)-第B.20図</u> 及び <u>(ロ)-第B.21</u>		後 84.7 時間における温度分布を <u>(ロ)-第 B.19 図、(ロ)-第 B.20 図</u> 及び <u>(ロ)-第 B.21</u>	
	<u>図</u> に、さらに、時刻歴温度変化を <u>(ロ)-第B. 22 図</u> に示す。		<u>図</u> に、さらに、時刻歴温度変化を <u>(ロ)-第 B. 22 図</u> に示す。	
	なお、密封境界となる三次蓋0リングの最高温度は119℃となり、使用限度48時間		なお、密封境界となる三次蓋0リングの最高温度は119℃となり、特別の試験条件	
	における使用可能温度 300℃を超えることはない。		下における使用可能温度 300℃を超えることはない。	