柏崎刈羽原子力発電所第6号機	設計及び工事計画審査資料
資料番号	KK6 補足-028-10-59 改 0
提出年月日	2024年1月22日

ダクトの耐震支持間隔算定時におけるサポート剛性の取扱いについて

2024年1月 東京電力ホールディングス株式会社

ダクトの耐震支持間隔算定時におけるサポート剛性の取扱いについて

目 次

1.	はじめに			
2.	ダクト及て	バサポートの設計方法	よ(サポート剛性の取扱い)	

1. はじめに

ダクトの支持点は、定ピッチスパン法(計算モデル:両端単純支持はり)により設計しており、耐震支持間隔の算定においては、ダクト系が適切な剛性を有すると共に、ダクトの発生曲 げモーメントが許容座屈曲げモーメントを満足するものとしている。

本紙はこのうち, ダクトの耐震支持間隔算定時におけるサポート剛性の取扱いについて補足 説明するものである。

2. ダクト及びサポートの設計方法(サポート剛性の取扱い)

ダクトの耐震支持間隔の算定は、サポート剛性を剛(無限大)として計算を行っている。しかしながら実機のダクト系(サポートとの連成)においては、厳密にはサポート剛性の影響により計算モデル(両端単純支持梁)よりも剛性が低下することから、固有振動数も計算モデルより低下することとなる(図1参照)。

そこで実際の設計においては、サポートの剛性を一定以上確保し、同剛性による固有振動数低下分を考慮した余裕を加味したサポートスパンとすることにより、ダクト系として固有振動数20Hzを確保する設計としている。サポートは個別に解析を実施することで必要な剛性(ばね定数または固有振動数)を確保しており、これによりダクト系の固有振動数20Hzを確保している。

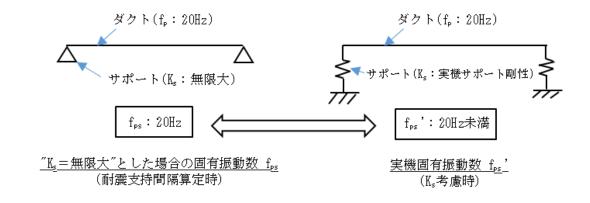


図1 ダクト系固有振動数に対するサポート剛性の影響