柏崎刈羽原子力発電所第6号機	設計及び工事計画審査資料
資料番号	KK6 添-2-046 改 0
提出年月日	2024年1月10日

-2-11-2-2-1 非常用ディーゼル発電設備燃料移送ポンプ 防護板の耐震性についての計算書

2024年1月 東京電力ホールディングス株式会社

目 次

1. 根	我要 ······1
2	-般事項2
2.1	配置概要2
2.2	構造概要4
2.3	評価方針12
2.4	適用基準15
3. 幫	P価部位 ················16
	F容限界 ·····31
	構造物全体の変形性能に対する許容限界31
	構造部材の健全性に対する許容限界 ・・・・・・・・・・・・・・・・・31
4.3	使用材料の許容限界評価条件32
	村震評価33
5.1	耐震評価方法33
5.2	荷重の組合せ34
5.3	解析モデル36
	固有周期38
5.5	設計用地震力39
	計算方法40
	.6.1 構造物全体の変形性能評価40
5	.6.2 構造部材の健全性評価41
5.7	変形及び応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・42
5	.7.1 変形評価42
5	.7.2 応力評価 ···········42
6. 諄	<u> P価結果 ·······················45</u>
6.1	構造物全体の変形性能評価45
6.2	構造部材の健全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・46

1. 概要

本資料は, -2-11-1「波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」に基づき,非常用ディーゼル発電設備燃料移送ポンプ防護板が基準地震動Ssに対して十分な構造強度を有していることを確認することで,内部に設置された上位クラス施設である非常用ディーゼル発電設備燃料移送ポンプ等に対して,波及的影響を及ぼさないことを説明するものである。

2. 一般事項

2.1 配置概要

非常用ディーゼル発電設備燃料移送ポンプ防護板の位置図を図 2-1 に,配置図を図 2-2 に示す。

図 2-2に示すとおり,非常用ディーゼル発電設備燃料移送ポンプ防護板内部に上位クラス施設である燃料移送ポンプ等が設置されており,本施設の転倒時に燃料移送ポンプ等に波及的影響を及ぼすおそれがある。

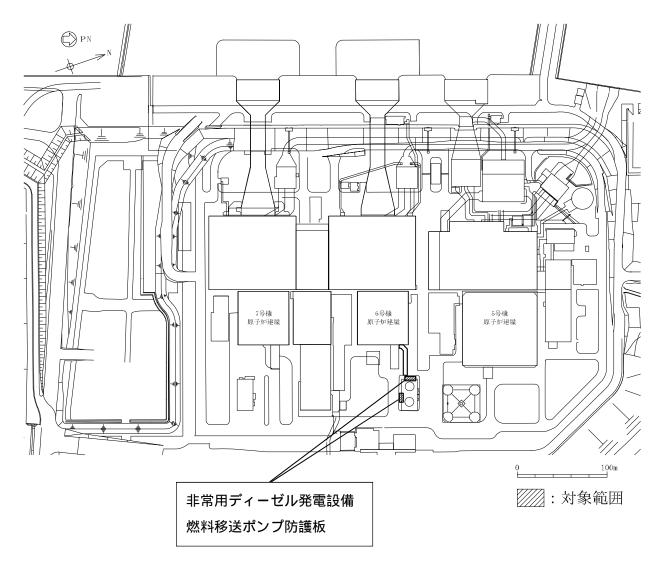


図 2-1 非常用ディーゼル発電設備燃料移送ポンプ防護板の位置図

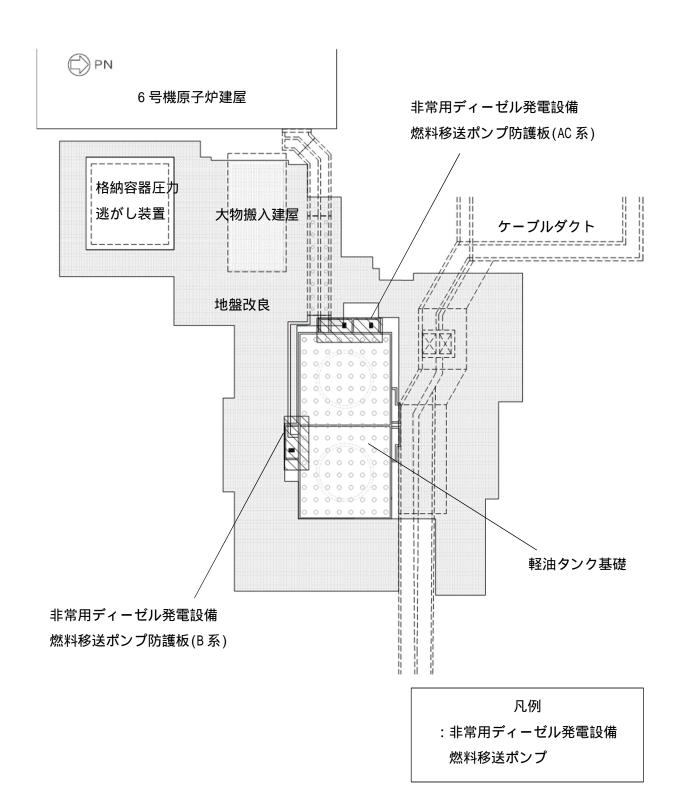


図 2-2 非常用ディーゼル発電設備燃料移送ポンプ防護板の配置図

2.2 構造概要

非常用ディーゼル発電設備燃料移送ポンプ防護板は,防護鋼板,防護鋼板を支持する架構(はリ,柱,ブレース),及び架構を鉄筋コンクリート造の基礎に固定する柱脚(ベースプレート,基礎ボルト)から構成される。平面図を図 2-3及び図 2-4に,立面図を図 2-5及び図 2-6に,断面図を図 2-7及び図 2-8に,柱とはりの接合部の詳細図を図 2-9に,基礎ボルトの断面図を図 2-10に示す。

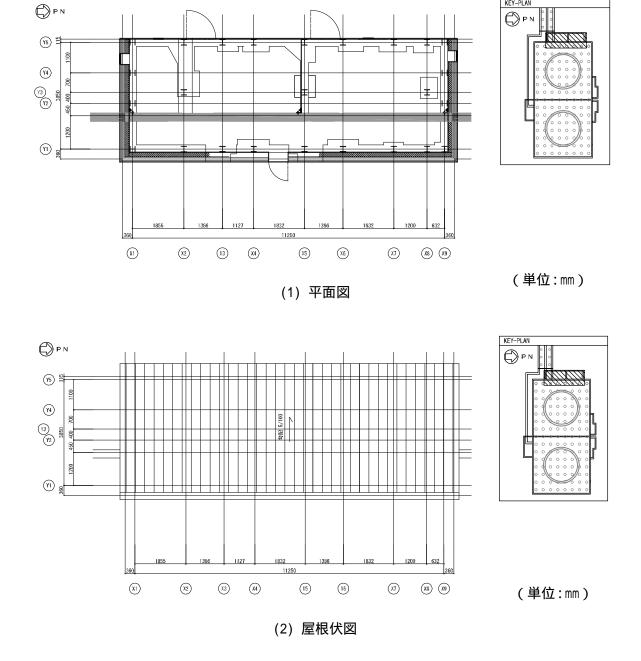
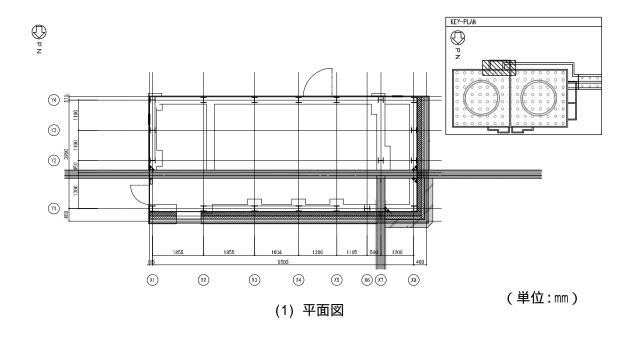



図 2-3 非常用ディーゼル発電設備燃料移送ポンプ防護板の平面図(AC系)

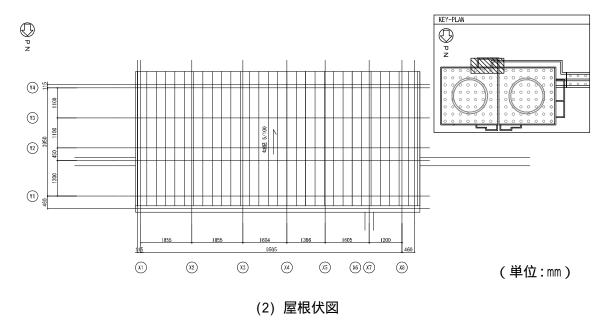
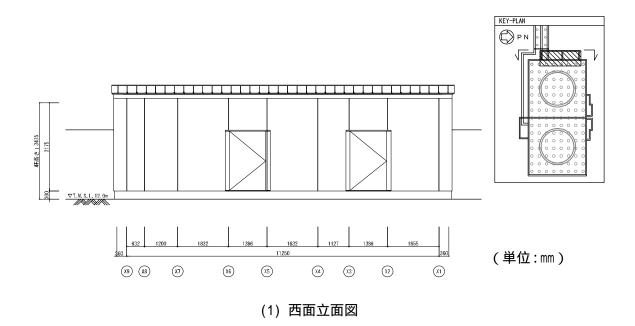



図 2-4 非常用ディーゼル発電設備燃料移送ポンプ防護板の平面図 (B系)

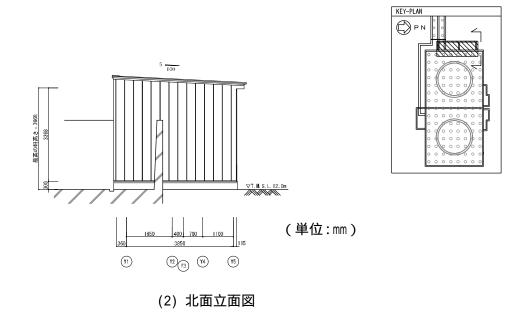
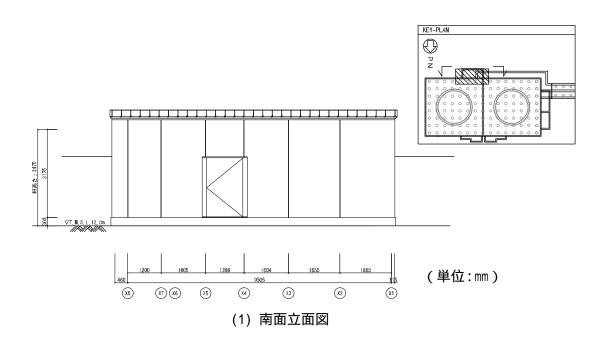



図 2-5 非常用ディーゼル発電設備燃料移送ポンプ防護板の立面図(AC系)

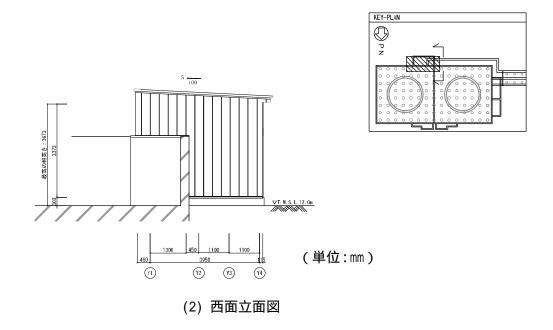
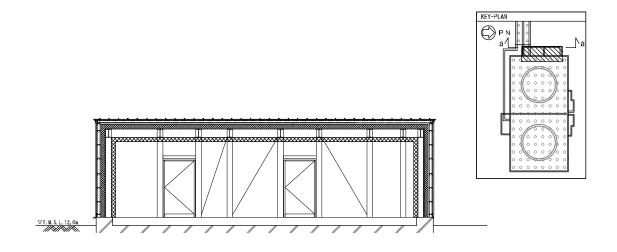
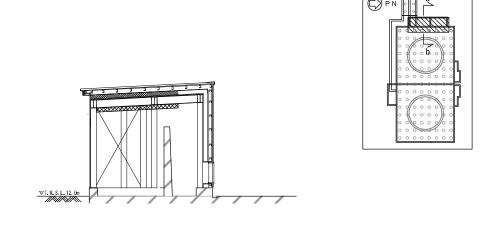
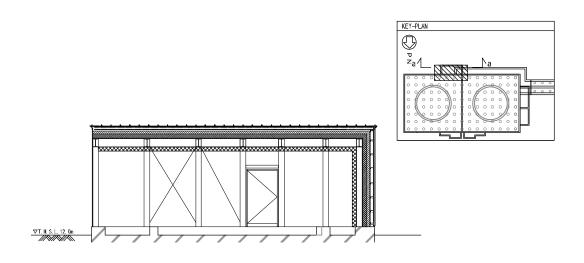
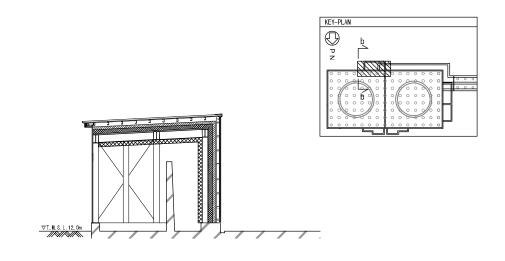




図 2-6 非常用ディーゼル発電設備燃料移送ポンプ防護板の立面図(B系)

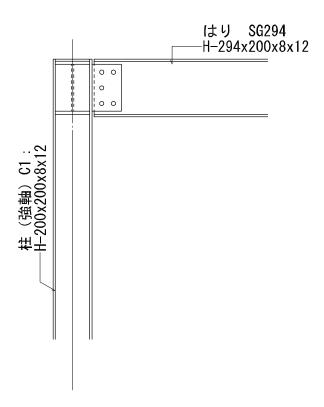


(1) a - a 断面図



(2) b - b 断面図

図 2-7 非常用ディーゼル発電設備燃料移送ポンプ防護板の断面図(AC系)



(1) a - a 断面図

(2) b - b 断面図

図 2-8 非常用ディーゼル発電設備燃料移送ポンプ防護板の断面図(B系)

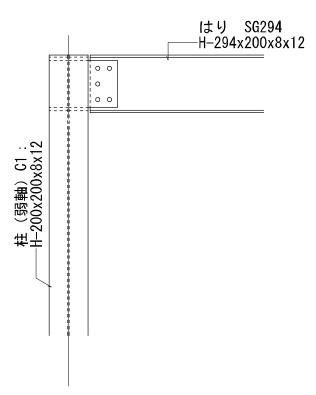
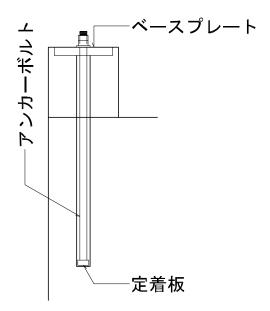



図 2-9 接合部詳細図(一般図,上段:柱強軸,下段:柱弱軸)

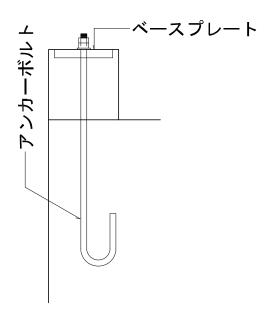


図 2-10 基礎ボルト断面図 (一般図,上段:タイプA,下段:タイプB)

2.3 評価方針

非常用ディーゼル発電設備燃料移送ポンプ防護板の耐震評価は, -2-11-1「波及的影響を及ぼすおそれのある下位クラス施設の耐震評価方針」の「3. 耐震評価方針」に基づき実施する。評価については, -2-1-7「設計用床応答曲線の作成方針」における軽油タンク基礎の設計用床応答曲線に基づき,静的応力解析による構造物全体の変形性能評価及び構造部材の健全性評価を行う。表 2-1 に非常用ディーゼル発電設備燃料移送ポンプ防護板の評価項目を示す。

構造物全体の変形性能評価は,構造物全体の層間変形角が許容限界以下であることを確認する。また,構造部材の健全性評価は,構造部材の応力が許容限界以下であることを確認する。各評価項目の許容限界は終局応力度とすることを基本とするが,はり,柱のせん断応力及び基礎ボルトの評価項目については,構造物の脆性崩壊を避けるため,保守的に短期許容応力度を許容限界とする。構造物全体の変形性能評価及び構造部材の健全性評価を実施することで,基準地震動Ssに対して十分な構造強度を有し,内部に設置された上位クラス施設に波及的影響を及ぼさないことを確認する。

構造物全体の層間変形角及び構造部材の応力は,解析コード「Super Build/SS3」を用いた3次元静的線形応力解析により算定する。なお,解析コードの検証及び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」に示す。

非常用ディーゼル発電設備燃料移送ポンプ防護板の耐震評価フローを図 2 - 11 に示す。

表 2-1 非常用ディーゼル発電設備燃料移送ポンプ防護板の評価項目

ス 2 - 1 中市用 7 1 ビル 元 电 取 闸 燃 作 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											
評価方針	価方針 評価項目 評価部位			評価方法	許容限界 						
	構造物全体			構造物全体の							
		1:	#`先师人 /+	層間変形角が	構造物全体の	層間変形角					
	としての	作	ちょう ちょうりょう ちょうかい かいかい ちょうかん ちょうかん ちょうかん ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう ちょう	許容限界以下で	層間変形角	1/200*1					
	変形性能			あることを確認							
				部材に生じる	曲げ応力	終局曲げ応力度*3					
			はり , 柱	応力が許容限界	軸応力	終局軸応力度*3					
			はり、作	以下であること							
内部に設置	れた上位 ラス施設 改及的影 を及ぼさ 構造部材の いこと 健全性		架		を確認	せん断応力	せん断応力度*2				
された上位		構プレース		÷0++1		已70图70071及					
				部材に生じる							
			応力が許容限界	軸応力	終局軸応力度 ^{*3}						
				以下であること							
				を確認							
ないこと		健全性			部材に生じる						
				ベース	応力が許容限界	44 1 18 2 - 4	<i>//</i> 5 □ ↓↓				
				プレート	以下であること	曲げ応力	終局曲げ応力度 ^{*3}				
		柱		を確認							
		<u> </u> 脚		部材に生じる	****	<i>6</i> = ₩□÷ <i>6</i> ♂ ±					
			基礎	応力が許容限界	軸応力	短期許容軸応力度*2					
								ボルト	以下であること		短期許容
				を確認	せん断応力	せん断応力度*2					

注記*1:「建築基準法施行令第82条の2(層間変形角)」に基づく。

*2 :「鋼構造設計規準 - 許容応力度設計法 - 」(日本建築学会,2005年改定)に基づく。

*3 :「建築基準法及び同施行令」及び「鋼構造設計規準 - 許容応力度設計法 - 」(日本建

築学会,2005年改定)に基づく。

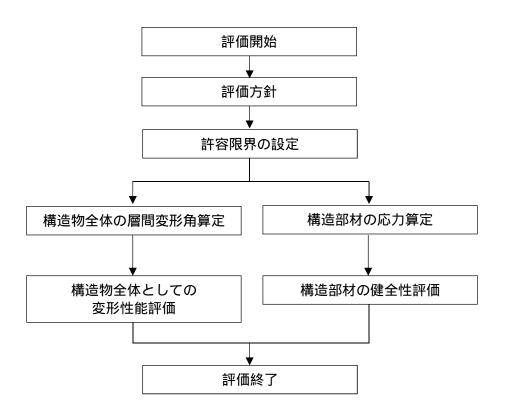


図 2-11 非常用ディーゼル発電設備燃料移送ポンプ防護板の耐震評価フロー

2.4 適用基準

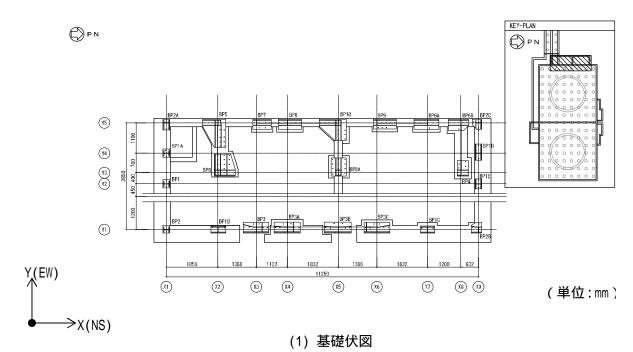
適用する規格,規準等を以下に示す。

- ・建築基準法及び同施行令
- ·新潟県建築基準法施行細則(昭和35年12月30日新潟県規則第82号)
- ・鋼構造設計規準 許容応力度設計法 (日本建築学会, 2005年改定)
- ・2015 年版 建築物の構造関係技術基準解説書(国土交通省国土技術政策総合研究所・国立研究開発法人建築研究所)
- ・挿入型鉄筋定着工法「Post-Head-Anchor 工法」(BCJ評定-SS0030-03)(日本建築センター)
- ・鉄筋コンクリート構造計算規準・同解説(日本建築学会,1999年)
- ・各種合成構造設計指針・同解説(日本建築学会,2010年改定)
- ・原子力発電所耐震設計技術指針 JEAG 4601-1987(日本電気協会)

3. 評価部位

非常用ディーゼル発電設備燃料移送ポンプ防護板の耐震評価では、構造物全体の変形性能評価及び構造部材の健全性評価を行う。構造部材の健全性評価については、架構(はり、柱、ブレース)及び柱脚(ベースプレート、基礎ボルト)を評価対象部位とする。評価対象部位の一覧を表3-1及び表3-2に、評価対象部位の位置図を図3-1及び図3-2に示す。

表 3-1 評価対象部位一覧(AC系)


表 3 - 1 評価対象部位一覧(AC 糸)						
部位	記号		部材	鋼種		
	SG294	 - はり	H-294 × 200 × 8 × 12	SS400		
	SG294A,B	18.7	H-294 × 200 × 8 × 12	SS400		
	C1	 - 柱	H-200 × 200 × 8 × 12	SS400		
架構	C2	7±	BH-200 × 200 × 9 × 16	SS400		
木佣	HV1,HV1A	水平ブレース	L-100 × 100 × 13	SS400		
	HV2	水平ブレース	2 PL s -105 × 12	SS400		
	V1	公本づし つ	2 [-150 × 75 × 9 × 12.5	SS400		
	V2	- 鉛直ブレース	2 [-200 × 90 × 8 × 13.5	SS400		
	BP1,BP1A,	ベースプレート	BPL-36	SN490B		
	BP1B,BP1C,					
	BP1D,BP1E,					
	BP2,BP2A,	基礎ボルト	2-D29	SD390		
	BP2B,BP2C					
	BP3,BP3A,	ベースプレート	BPL-36	SN490B		
	BP3B,BP3C,					
	BP4,BP6,BP6A,	 基礎ボルト	6-D29	SD390		
	BP6B,BP7			05000		
柱脚	BP9	ベースプレート	BPL-36	SN490B		
	bra	基礎ボルト	7-D29	SD390		
	BP10	ベースプレート	BPL-36	SN490B		
	BETU	基礎ボルト	10-D29	SD390		
	DDOA	ベースプレート	BPL-36	SN490B		
	BP8A	基礎ボルト	11-D29	SD390		
	DDE	ベースプレート	BPL-36	SN490B		
	BP5	基礎ボルト 12-D29		SD390		
	DDO	ベースプレート	BPL-36	SN490B		
	BP8	基礎ボルト	13-D29	SD390		

注:特記なき限り,基礎ボルトはタイプAとする。

表 3-2 評価対象部位一覧(B系)

部位	記号	部	材	鋼種
	SG294	1+12	H-294 × 200 × 8 × 12	SS400
	SG294A	はり	H-294 × 200 × 8 × 12	SS400
	C1	t`	H-200 × 200 × 8 × 12	SS400
力D 1	C2	柱	BH-200 × 200 × 9 × 16	SS400
架構	HV1	水平ブレース	L-100 × 100 × 13	SS400
	HV2	水平ブレース	2 PL s -105 × 12	SS400
	V1		2 [-150 × 75 × 6.5 × 10	SS400
	V2	· 鉛直ブレース	2 [-150 × 75 × 9 × 12.5	SS400
	BP1,BP9A	ベースプレート	BPL-36	SN490B
	DFI, DF9A	基礎ボルト(タイプB)	2-D25	SD345
		ベースプレート	BPL-36	SN490B
	BP1A,BP2, BP2A,BP8, BP9,BP10 BP7 BP3,BP3A	基礎ボルト	2-D29	SD390
		ベースプレート	BPL-36	SN490B
		基礎ボルト	5-D29	SD390
±÷ 9+n		ベースプレート	BPL-36	SN490B
柱脚	DF3, DF3A	基礎ボルト(タイプB)	6-D25	SD345
	BP5A,BP6,	ベースプレート	BPL-36	SN490B
	BP6A,BP6B, BP6C	基礎ボルト	6-D29	SD390
	DDE	ベースプレート	BPL-36	SN490B
	BP5	基礎ボルト	7-D29	SD390
	BP4	ベースプレート	BPL-36	SN490B
	D74	基礎ボルト	10-D29	SD390
	BP4A	ベースプレート	BPL-36	SN490B
	DF4A	基礎ボルト	12-D29	SD390

注:特記なき限り,基礎ボルトはタイプAとする。

注:図中の BP はベースプレートを示す。

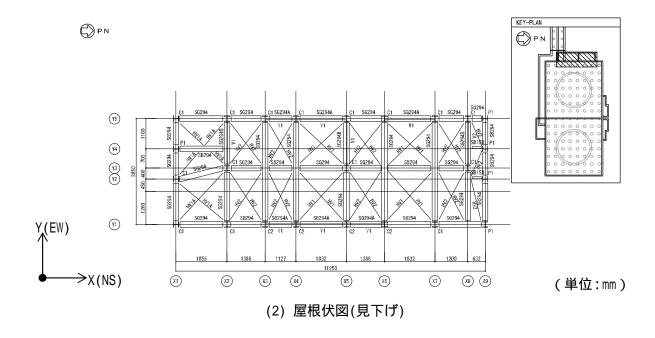
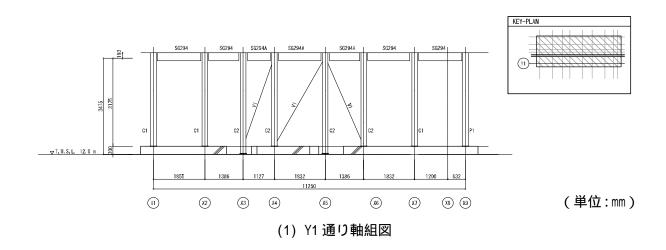
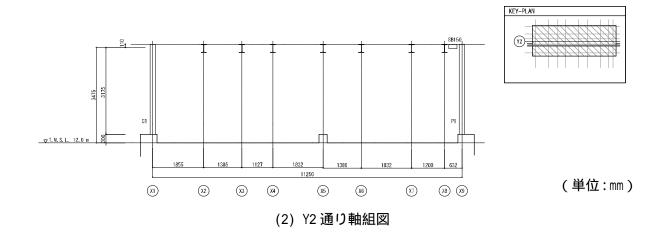




図 3-1 評価対象部位位置図(AC系)(1/7)

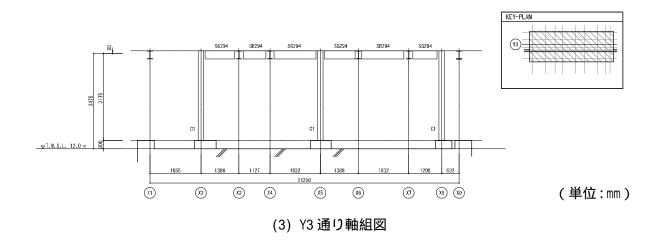
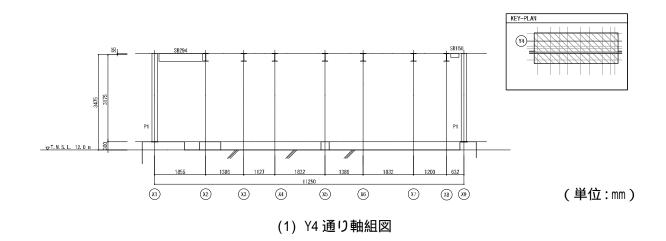
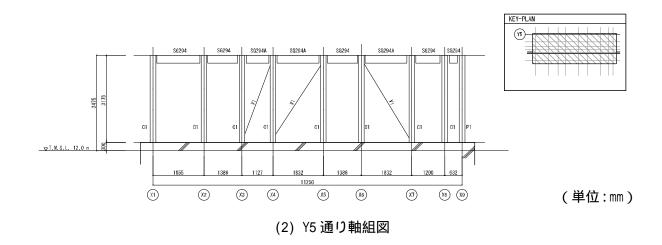
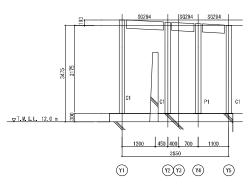
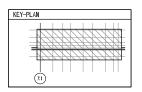
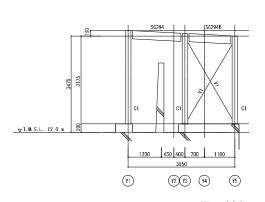
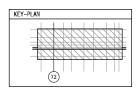



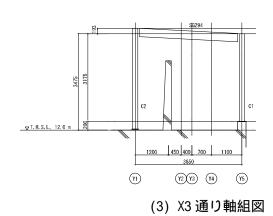
図 3-1 評価対象部位位置図(AC系)(2/7)


図 3-1 評価対象部位位置図(AC系)(3/7)

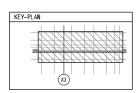
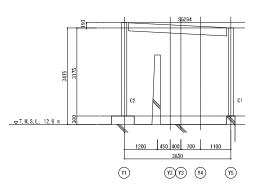
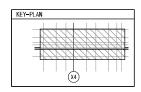
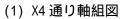
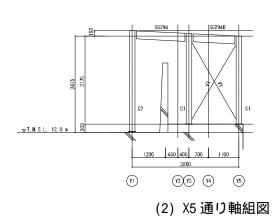


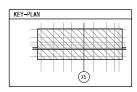
(1) X1 通り軸組図

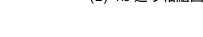

(単位:mm)

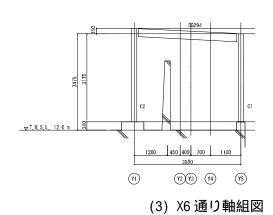
(2) X2 通り軸組図

(単位:mm)

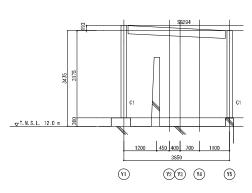
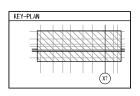
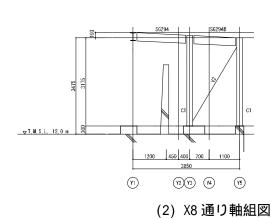






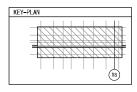

図 3-1 評価対象部位位置図(AC系)(4/7)

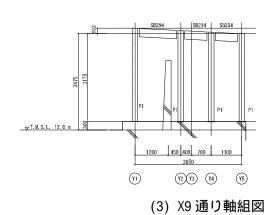




(単位:mm)

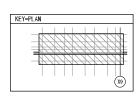
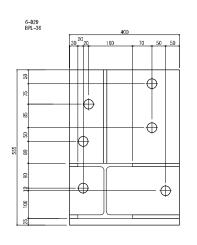
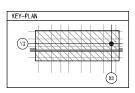





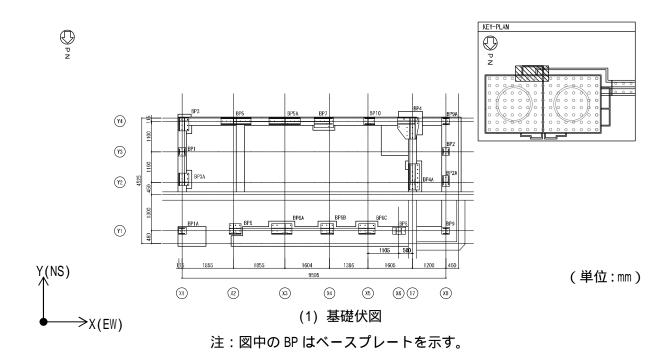

図 3-1 評価対象部位位置図(AC系)(5/7)



(1) X7 通り軸組図

(単位:mm)


図 3-1 評価対象部位位置図(AC系)(6/7)

(1) BP4 詳細図

図 3-1 評価対象部位位置図(AC系)(7/7)

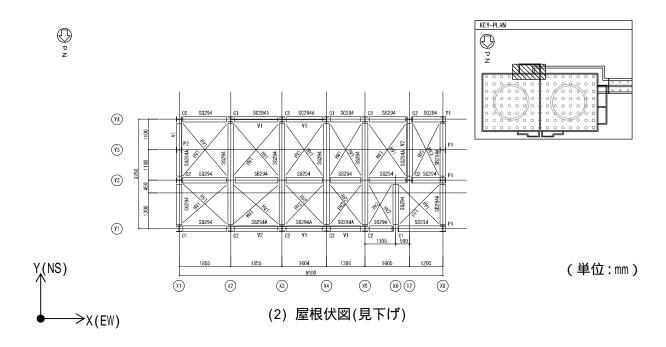


図 3-2 評価対象部位位置図(B系)(1/7)

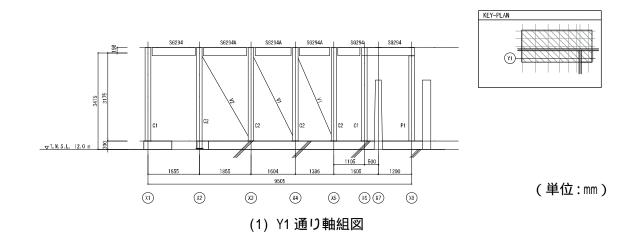
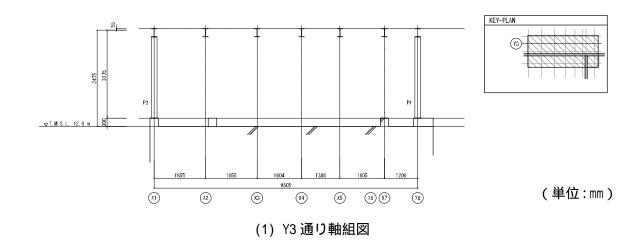
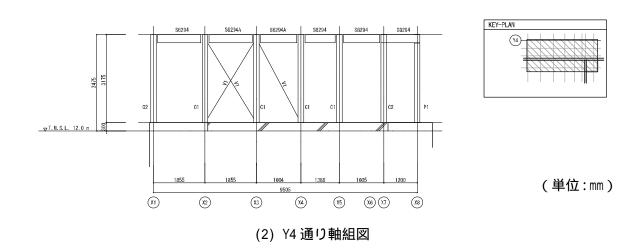
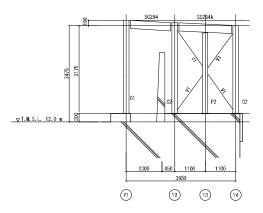
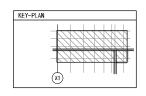
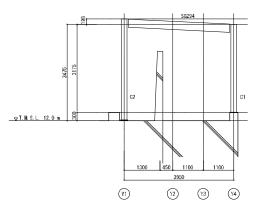
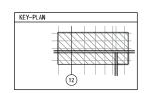
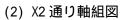
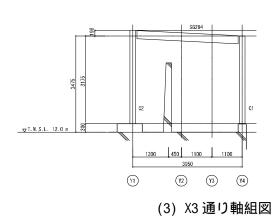



図 3-2 評価対象部位位置図(B系)(2/7)

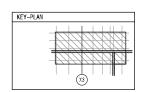
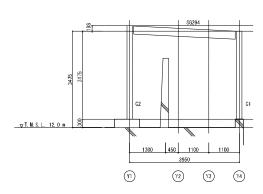
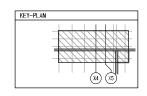





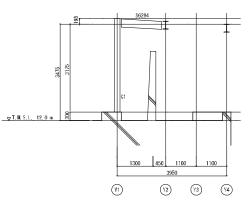

図 3-2 評価対象部位位置図(B系)(3/7)

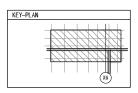


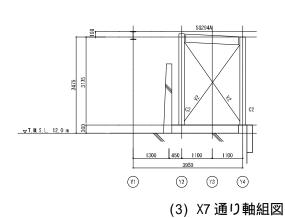

(1) X1 通り軸組図

(単位:mm)

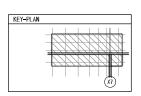
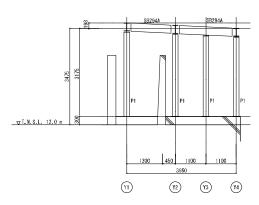
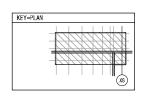

図 3-2 評価対象部位位置図(B系)(4/7)

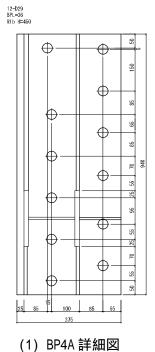


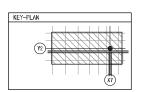

(1) X4,X5 通り軸組図

(2) X6 通り軸組図

(単位:mm)


図 3-2 評価対象部位位置図(B系)(5/7)



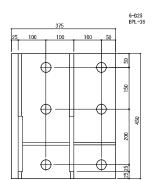

(1) X8 通り軸組図

図 3-2 評価対象部位位置図(B系)(6/7)

(単位:mm)

KEY-PLAVI

(2) BP3A 詳細図

図 3-2 評価対象部位位置図(B系)(7/7)

4. 許容限界

4.1 構造物全体の変形性能に対する許容限界

構造物全体の変形性能に対する許容限界は,構造物全体の層間変形角が建築基準法施行令第82条の2に基づく層間変形角1/200以下とする。

4.2 構造部材の健全性に対する許容限界

評価対象部材の許容限界における応力度算出式を表 4-1に示す。

表 4-1 評価対象部材の許容限界における応力度*1

部材 応力		応力度の種類	単位	許容応力度計算式
架構	曲げ	終局曲げ応力度 sfbu	N/mm²	$_{S}f_{bu} = f_{b} \times 1.1$
(はり,柱,ブレース) 柱脚		終局軸応力度 sf cu(圧縮時) sf tu(引張り時)	N/mm²	$_{S}f_{cu} = f_{c} \times 1.1 (圧縮時)$ $_{S}f_{tu} = F \times 1.1 (引張り時)$
(ベースプレート)	せん断	短期許容せん断応力度 _s f _s	N/mm²	$_{\rm S}f_{\rm S}$ = $F/\sqrt{3}$
柱脚	引張り	短期許容引張応力度 Bft	N/mm²	_B f _t = F
(基礎ボルト)	せん断 ^{*2}	短期許容せん断応力度 _B f _s	N/mm²	$_{\rm B}f_{\rm s} = F/\sqrt{3}$

注記*1:応力の組合せが考えられる場合には,組合せ応力に対しても評価を行う。

*2 : 基礎ボルトのせん断は,鉄筋コンクリートの支圧によるせん断破壊に対しても評価を行う。

ここで,

f _b :短期許容曲げ応力度(N/mm²)

f : 短期許容圧縮応力度(N/mm²)

F :鋼材の基準強度(N/mm²)

4.3 使用材料の許容限界評価条件

架構(はり,柱,ブレース)及び柱脚(ベースプレート,基礎ボルト)の使用材料の許容限界評価条件を表 4-2から表 4-4に示す。

表 4-2 使用材料の許容限界評価条件(鋼材)*1

	材料	基準強度	短期		
評価部材		F	引張り	せん断	
	(寸法:mm)	(N/mm^2)	(N/mm²)	(N/mm²)	
架構	SS400	235	225	125	
(はり,柱,ブレース)	(t 40)	233	235	135	
柱脚	SN490B	325	325	187	
(ベースプレート)	(t 40)	323	325	107	

表 4-3 使用材料の許容限界評価条件(鉄筋)*2

			短期			
<u></u>	- -		引張り及び	せん断		
評価部材		材料	圧縮			
			(N/mm^2)	(N/mm^2)		
柱脚	タイプA	SD390	390	390		
(基礎ボルト)	タイプB	SD345	345	345		

表 4-4 使用材料の許容限界評価条件(コンクリート)*2

評価部材				短期	
		材料	圧縮	せん断	付着
			(N/mm²)	(N/mm²)	(N/mm²)
柱脚 タイプA (基礎ボルト) タイプB		F _c 23.5	15.6	1 00	1.48
		Γ _C ∠3.3	10.0	1.08	1.40

注記*1:鋼構造設計規準-許容応力度設計法-(日本建築学会,2005年改定)に基づく

*2:鉄筋コンクリート構造計算規準・同解説(日本建築学会,1999年)に基づく

5. 耐震評価

5.1 耐震評価方法

耐震評価は,「5.3 解析モデル」に示す評価部位全体を対象とした解析モデルを用いた3次元静的線形応力解析に基づき行う。本応力解析により得られた架構全体の変形性能を評価するとともに,個々の部材に生じる応力が許容値以下であり十分な強度を有していることを確認する。応力解析は以下の方針に基づく。

- (1) モデルに作用する荷重及び荷重の組合せは、「5.2 荷重の組合せ」による。本解析は線 形解析であることから、個々の荷重による変形及び応力を求め、それらを「5.6 計算方 法」に示す方法により評価することで、荷重組合せ時の結果として検討を行う。
- (2) 地震荷重は,水平2方向(NS方向及びEW方向)と鉛直方向(UD方向)を考慮する。3 方向地震荷重の組合せは,組合せ係数法(1.0,0.4,0.4)による。
- (3) 屋根面は剛床としてモデル化を行うが,屋根面勾配および水平ブレースによりはりに生じる軸力は別途考慮の上,部材検討を行う。
- (4) 応力解析には,一貫構造計算プログラム「Super Build/SS3」を用いる。

5.2 荷重の組合せ

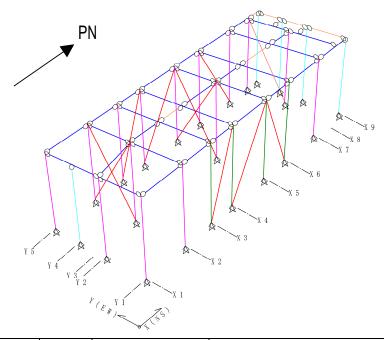
応力解析において,考慮する荷重を以下に示す。

- (1) 固定荷重(G) 固定荷重として,躯体自重を考慮する。
- (2) 積載荷重(P)積載荷重として,積雪荷重を考慮する。
- (3) 地震荷重 (S s NS , S s EW , S s UD)

基準地震動 S s による水平 2 方向(NS 方向及び EW 方向)と鉛直(UD 方向)の荷重を考慮する。3 方向地震荷重の組合せは,組合せ係数法(1.0,0.4,0.4)による。荷重の組合せの一覧を表 5-1 に示す。

表 5-1 荷重の組合せ

衣 5・1 何里の組合せ						
外力の状態	ケース No.	荷重の組合せ				
	1	G + P + 1.0 S S NS + 0.4 S S EW + 0.4 S S UD				
	2	G + P + 1.0 S s NS + 0.4 S S EW - 0.4 S S UD				
	3	G + P - 1.0 S s NS + 0.4 S S EW + 0.4 S S UD				
	4	G + P - 1.0 S s NS + 0.4 S S EW - 0.4 S S UD				
	5	G + P + 1.0 S s NS - 0.4 S S EW + 0.4 S S UD				
	6	G + P + 1.0 S S NS - 0.4 S S EW - 0.4 S S UD				
	7	$G + P - 1.0 S S_{NS} - 0.4 S S_{EW} + 0.4 S S_{UD}$				
	8	$G + P - 1.0 S S_{NS} - 0.4 S S_{EW} - 0.4 S S_{UD}$				
	9	$G + P + 0.4S S_{NS} + 1.0S S_{EW} + 0.4S S_{UD}$				
	10	G + P + 0.4 S s NS + 1.0 S S EW - 0.4 S S UD				
	11	G + P - 0.4 S s NS + 1.0 S S EW + 0.4 S S UD				
ul zat (a)	12	G + P - 0.4 S s NS + 1.0 S S EW - 0.4 S S UD				
地震時(Ss) 	13	G + P + 0.4 S s NS - 1.0 S S EW + 0.4 S S UD				
	14	G + P + 0.4 S s NS - 1.0 S S EW - 0.4 S S UD				
	15	G + P - 0.4 S s NS - 1.0 S S EW + 0.4 S S UD				
	16	G + P - 0.4 S s _{NS} - 1.0 S s _{EW} - 0.4 S s _{UD}				
	17	G + P + 0.4 S s NS + 0.4 S S EW + 1.0 S S UD				
	18	G + P + 0.4 S s NS + 0.4 S S EW - 1.0 S S UD				
	19	G + P - 0.4 S s NS + 0.4 S S EW + 1.0 S S UD				
	20	G + P - 0.4 S s NS + 0.4 S S EW - 1.0 S S UD				
	21	G + P + 0.4 S S NS - 0.4 S S EW + 1.0 S S UD				
	22	G + P + 0.4 S s NS - 0.4 S S EW - 1.0 S S UD				
	23	G + P - 0.4S S NS - 0.4S S EW + 1.0S S UD				
	24	G + P - 0.4S S NS - 0.4S S EW - 1.0S S UD				

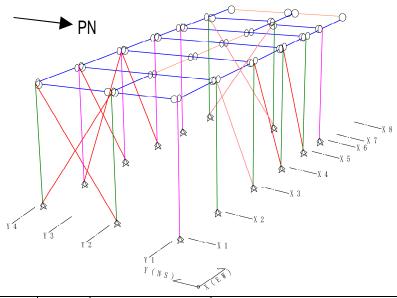

ここで,

G : 固定荷重P : 積載荷重

S s_{NS}: 地震荷重(NS方向) S s_{EW}: 地震荷重(EW方向) S s_{UD}: 地震荷重(UD方向)

5.3 解析モデル

3次元静的応力解析に用いる解析モデルを図 5-1及び図 5-2に示す。解析モデルは,架構(はり,柱,ブレース)をはりでモデル化し,はりと柱の接合部はピン接合とする。柱脚(ベースプレート,基礎ボルト)は,ピン支点としてモデル化する。


部位	凡例	記号	部材	鋼種
大ばり	-	SG294, SG294A,	H-294 × 200 × 8 × 12	SS400
人はリ		SG294B		
小ばり	_	SB294	H-294 × 200 × 8 × 12	SS400
小はら		SB150	$[-150\times75\times6.5\times10$	SS400
主柱	_	C1	H-200 × 200 × 8 × 12	SS400
土柱	_	C2	BH-200 × 200 × 9 × 16	SS400
間柱	I	P1	H-200 × 200 × 8 × 12	SS400
鉛直ブレース・	_	V1	2 [-150 × 75 × 9 × 12.5	SS400
如且ノレース	_	V2	2 [-200 × 90 × 8 × 13.5	SS400

注:床面は剛床としてモデル化する。

条件	記号	備考
部材接合条件		ピン接合
支点境界条件		ピン支点

注:鉛直ブレースの両端部はピン接合とする。

図 5-1 解析モデル(AC系)

部位	凡例	記号	部材	鋼種
大ばり	_	SG294, SG294A	H-294 × 200 × 8 × 12	SS400
小ばり	_	SB294, SB294A	H-294 × 200 × 8 × 12	SS400
主柱	_	C1	H-200 × 200 × 8 × 12	SS400
土作土		C2	BH-200 × 200 × 9 × 16	SS400
鉛直ブレース	_	V1	2 [-150 × 75 × 6.5 × 10	SS400
如且ノレース		V2	2 [-150 × 75 × 9 × 12.5	SS400

注:床面は剛床としてモデル化する。

条件	記号	備考
部材接合条件		ピン接合
支点境界条件		ピン支点

注:鉛直ブレースの両端部はピン接合とする。

図 5-2 解析モデル(B系)

5.4 固有周期

地震力の算出においては,屋根面レベルにおける構造物の固有周期による応答値の増幅を考慮する。固有周期算定の概念図を図 5-3に示す。当構造物は一層で成り立つ平屋構造であり,屋根面が剛床であることから,構造物の振動は質量及び層剛性から決まる一質点系の振動となる。よって当構造物に対する固有値解析は,次式により固有周期を算定することと同義である。

$$T = 2 \cdot \sqrt{m/k}$$

m : 非常用ディーゼル発電設備燃料移送ポンプ防護板の質量(kg)

k : 各方向における層剛性(N/m)

各方向における層剛性は,水平方向については応力解析モデルの地震荷重と変形の関係から,鉛直方向については応力解析モデルの柱鉛直剛性の集計により算出する。一質点系の振動であることから,生じる振動モードは一次モードのみである。以上の固有周期の算定手法は,一般建築分野の構造計算及び建築確認申請で広く使用される方法である。

固有周期の算定結果を表 5-2に示す。

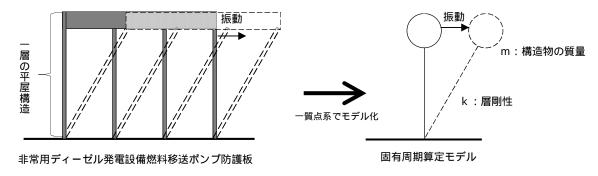


図 5-3 固有周期算定の概念図

表 5-2 固有周期算定結果

系統	方向		固有周期 T (s)	固有振動数 f [*] (Hz)
	水平	X方向	0.098	10.21
AC系	方向	Y方向	0.101	9.91
	鉛直方向		0.020	51.03
	水平	X方向	0.088	11.36
B系	方向	Y方向	0.091	10.97
	鉛直	方向	0.020	51.29

注記*:固有振動数fは次式にて算出する。

f = 1/T

5.5 設計用地震力

適用する設計用地震力は, -2-1-7「設計用床応答曲線の作成方法」における軽油タンク基礎の設計用床応答曲線について,表 5-2に示す固有周期に対応した震度を上回るように設定する。減衰定数は,「原子力発電所耐震設計技術指針 JEAG 4601-1987」(日本電気協会)の鉄骨構造物に適用される減衰定数の値より,2%を用いる。

評価に用いる設計用地震力を表 5-3に示す。

表 5-3 設計用地震力

	固有周期(s)			基準地震動Ss			減衰定数(%)	
系統	水平	方向	鉛直方向	水平方向 設計震度		鉛直方向	水平	鉛直
	X方向	Y方向	如旦刀凹	X方向	Y方向	設計震度	小十	如且
AC系	0.098	0.101	0.020	1.60	1.60	1.00	2	2
B系	0.088	0.091	0.020	1.60	1.60	1.00	2	2

5.6 計算方法

5.6.1 構造物全体の変形性能評価

構造物全体の変形性能評価は「SuperBuild/SS3」を用いた3次元静的線形応力解析の結果より,構造物全体の層間変形角を算出する。なお,水平2方向の地震力を組み合わせる際の変形性能評価は「Square-Root-of-the-Sum-of-the-Squares 法(以下「SRSS」という。)」により行う。構造物全体の層間変形角の計算式を表 5-4に示す。

表 5-4 構造物全体の層間変形角の計算式

種別		变形計算式
	X 方向	X
層間変形角	Y 方向	Y
	2 方向	$\sqrt{\begin{array}{ccc} 2 & 2 \\ \chi & + & \gamma \end{array}}$

ここで,

χ:層間変形角(X方向)

y:層間変形角(Y方向)

5.6.2 構造部材の健全性評価

構造部材の健全性評価のうち,架構(はり,柱,ブレース)の応力評価は3次元静的線形 応力解析の結果より評価部位の応力を算出する。柱脚(ベースプレート,基礎ボルト)の応力評価は3次元静的線形応力解析の結果より支点反力を算出する。構造部材の応力度の計算式を表 5-5 に示す。

表 5-5 構造部材の応力度の計算式

	な 0 0 特定的物の心力及の日本が							
	評価部位	応力度の種類	単位	応力度計算式				
		曲げ応力度 _b	N/mm²	$_{b} = M_{\chi}/Z_{px}$				
	はり 軸応力度 _{c(t)}		N/mm²	_{c(t)} = N c (t)/A _g				
		せん断応力度	N/mm²	= Q 1 / A _w				
架構		曲げ応力度 _{b×} , _{by}	N/mm²	$_{b \times} = M_{\chi}/Z_{p \times}$, $_{b y} = M_{\gamma}/Z_{p y}$				
	柱	軸応力度 _{c(t)}	N/mm²	$_{c(t)} = Nc(t)/A_g$				
		せん断応力度 1, 2	N/mm²	$_{1}=Q 1/A_{w}$, $_{2}=Q 2/A_{f}$				
	ブレース	軸応力度 _{c(t)}	N/mm²	$_{c(t)} = Nc(t)/A_g$				
	ベースプレート	曲げ応力度 _b	N/mm²	$_{b} = M_{B}/Z_{p}$				
柱 脚	基礎ボルト	せん断応力度 ts	N/mm²	$_{t s} = Q_{DS}/a_{s}$				
		引張応力度 ts	N/mm²	ts=T _{DS} /a _s				

ここで,

 M_{χ} , M_{γ} : 強軸及び弱軸回りの曲げモーメント(N・mm)

 M_{B} : ベースプレートに作用する曲げモーメント $(N \cdot mm)$

 $M_R = P b \times L$

Pb : 各柱脚部の支点反力より得られる基礎ボルト1本あたりの軸力

L : 基礎ボルトと柱軸芯間の距離

Nc(t):圧縮及び引張り軸力(N)

Q1,Q2 : 強軸及び弱軸方向のせん断力(N)

Z p : 塑性断面係数(mm³) A g : 部材の断面積(mm²)

 A W
 : 部材のウェブ断面積(mm²)

 A f
 : 部材のフランジ断面積(mm²)

 $Z_{p\times(py)}$: 強軸及び弱軸回りの塑性断面係数(mm³)

Q D S: 基礎ボルト1 本に負担させるせん断力(N)T D S: 基礎ボルト1 本に負担させる引張り力(N)

a _、 : 基礎ボルトの断面積(mm²)

5.7 変形及び応力の評価

5.7.1 変形評価

「5.6.1 構造物全体の変形性能評価」で算定した構造物全体の層間変形角が「4.1 構造物全体の変形性能に対する許容限界」で定める許容限界以下であることを確認する。

5.7.2 応力評価

「5.6.2 構造部材の健全性評価」で算定した応力度が表 5-6,表 5-7及び表 5-8に示す応力評価式を満たすことを確認する。

表 5-6 構造部材の応力評価式(架構)

評価部位	応力	応力の種類	単位	検定方法
	曲げ	曲げ応力度	N/mm²	_b sf _{bu}
	圧縮	圧縮応力度	N/mm²	c sfcu
はり	せん断	せん断応力度	N/mm ²	$_{8}f_{8}$
la i	組合せ	曲げ+軸力	-	$\frac{b}{s f_{bu}} + \frac{c(t)}{s f_{c(t)u}} = 1.0$
	担口	曲げ+せん断 +軸力	N/mm²	$\sqrt{\frac{2}{b} + \frac{2}{c(t)}^2 + 3}$ sf _{tu}
	曲げ	曲げ応力度	N/mm²	_b sf _{bu}
	圧縮/ 引張り	軸応力度	N/mm²	_{c s} f _{cu} (圧縮時) _{t s} f _{tu} (引張り時)
	せん断	せん断応力度	N/mm²	1(2) Sfs
柱		曲げ+軸力	-	$\frac{bx}{sf_{bxu}} + \frac{by}{sf_{byu}} + \frac{c(t)}{sf_{c(t)u}} $ 1.0
	組合せ	組合せ 曲げ+せん断 + 軸力		$\max \left\{ \sqrt{\begin{array}{ccccc} 2 & 2 & 2 & 2 \\ bx & + & c(t) & +3 & 1 \\ \hline & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ &$
ブレース	圧縮/ 引張り	軸応力度	N/mm²	_{c s} f _{cu} (圧縮時) _{t s} f _{tu} (引張り時)

表 5-7 構造部材の応力評価式 (ベースプレート)

評価部位	応力	応力の種類	単位	検定方法
ベース プレート	曲げ	曲げ応力度	N/mm²	_b sf _{bu}

表 5-8 構造部材の応力評価式(基礎ボルト)

衣 5-8 傾垣部例の心力評価式(基礎ホルト)						
評価	部位	評価対象	応力	応力の種類	単位	検定方法
			引張り	引張応力度	N/mm²	ts Bft
		鋼材	せん断	せん断応力度	N/mm²	ts Bfs
基	タイプ		組合せ	引張応力度 (引張り +せん断)	N/mm²	$_{ts}$ 1.2 f $_{ts} - \sqrt{3}$ $_{ts}$
巻 礎 ボ	А	定着部	せん断	せん断力	kN	Q _{DS} Q _{ac}
ルト	コンク リート	組合せ	せん断力 (引張り +せん断)	kN	Q_{DS} (1.2- $_{ts}/f_{ts}$)· Q_{ac}	
	タ	鋼材,	引張り	引張り力	kN	T _{DS} t _{ac}
	イ プ	定着部コンク	せん断	せん断力	kN	Q _{DS} q _{ac}
	В	リート	組合せ	引張り + せん断	-	$\left(\frac{T_{DS}}{t_{ac}}\right)^2 + \left(\frac{Q_{DS}}{q_{ac}}\right)^2 \qquad 1.0$

8

 Q_{ac} : 定着筋 1 本あたりの許容せん断力(タイプA) (N) 許容せん断力(タイプA) Q_{ac} は,下式により求める。

$$Q_{ac} = min(Q_{ac1}, Q_{ac2})$$

$$Q_{ac1} = 0.5 \cdot a_s \cdot \sqrt{F_c \cdot E_c}$$

$$Q_{ac2} = \cdot 0.31 \cdot \sqrt{F_c} \cdot A_{qc}$$

:低減係数(短期設計用=2/3)

a。 : 定着筋の断面積 (mm²)

F_c: コンクリートの設計基準強度(N/mm²)

E : コンクリートのヤング係数(N/mm²)

A g c : せん断力に対するコーン状破壊の有効投影面積(mm²)

t ac: 定着筋 1 本あたりの許容引張り力(タイプB) (N)

許容引張り力(タイプB) t_{ac} は,下式により求める。

$$t_{ac} = min(t_{ac1}, t_{ac2})$$

$$t_{ac1} = s f_y \cdot a_s$$

$$t_{ac2} = \cdot 0.31 \cdot \sqrt{F_c} \cdot A_c$$

s **f**_y : 鉄筋アンカーボルトの規格降伏点強度 (N/mm²)

A : コーン状破壊面の有効水平投影面積(mm²)

q _{a c} :定着筋 1 本あたりの許容せん断力(タイプ B) (N)

許容せん断力(タイプB) q_{ac} は,下式により求める。

$$q_{ac} = min(q_{ac1}, q_{ac2}, q_{ac3})$$

$$q_{ac1} = 0.7 \cdot_s f_y \cdot a_s$$

$$q_{ac2} = \cdot 0.5 \cdot a_s \cdot \sqrt{F_c \cdot E_c}$$

$$q_{ac3} = 0.31 \cdot \sqrt{F_c} \cdot A_{qc}$$

6. 評価結果

6.1 構造物全体の変形性能評価

非常用ディーゼル発電設備燃料移送ポンプ防護板における構造物全体の変形性能評価結果を表 6-1に示す。

構造物全体の変形性能評価の結果,構造物全体の最大層間変形角が許容限界以下であることを確認した。

表 6-1 構造物全体の変形性能評価結果

系統	方向	最大層間変形角	許容限界	
AC 系	X 方向	1/839	4/200	
	Y 方向	1/746		
	2 方向	4./005		
	(SRSS)	1/625		
B 系	X 方向	1/1023	1/200	
	Y 方向	1/871		
	2 方向	1/746		
	(SRSS)	17740		

6.2 構造部材の健全性評価

非常用ディーゼル発電設備燃料移送ポンプ防護板における構造部材の健全性評価結果を表 6 - 2 及び表 6 - 3 に示す。また最大応力発生箇所を図 6 - 1 及び図 6 - 2 に示す。

発生応力度は許容限界以下であり、また、座屈の評価の条件式を満足していることから、設計用地震力に対して十分な構造強度を有していることを確認した。

表 6-2 構造部材の健全性評価結果(AC系)(1/2)

				28 4L + L		
評価部材		材料	応力	発生応力 度 (N/mm²)	許容限界 (N/mm²)	発生箇所
			曲げ	51	258	X6/Y1-5
		SS400	圧縮	76	236	X5/Y3-5
			せん断	18	135	X6/Y1-5
	はり		組合せ [*]	0.00	1.0	X5/Y3-5
			(曲げ+軸力)	0.38		
			組合せ	78	258	X5/Y3-5
			(曲げ+せん断			
			+ 軸力)			
	柱		曲げ	0	258	-
架構			圧縮	74	203	X8/Y5
			せん断	0	135	-
		99400	組合せ [*] (曲げ+軸力) 0.37 1. 組合せ	1.0	X8/Y5	
		33400		1.0	70/13	
			(曲げ+せん断	74	258	X8/Y5
			+ 軸力)			
	水平ブレース	SS400	引張り 192 258	102	250	Y1-3/
	ハ 十 ノ レース	33400		200	X4-5	
	鉛直ブレース	SS400	圧縮	107	145	Y1/X4-5

注記*:検定比による結果を示す。

表 6-2 構造部材の健全性評価結果(AC系)(2/2)

評価部材		材料	応力	発生応力度	許容限界	発生箇所	
				(N/mm ²)	(N/mm^2)		
	ベースプレート		SN490B	曲げ	280	357	X8/Y3
柱脚	基礎ボルト		SD390	引張り	220	390	X5/Y3
				せん断	139	225	X8/Y3
				組合せ	163	228	X8/Y3
				(引張応力度)			
			定着部コ ンクリー ト	せん断 [*]	62	107	X8/Y3
				組合せ [*]	62	84	X8/Y3
				(せん断力)			

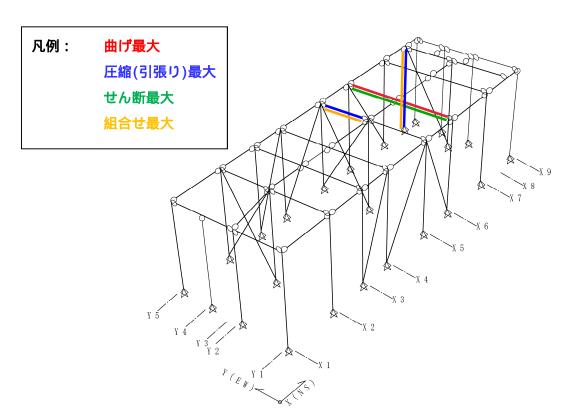
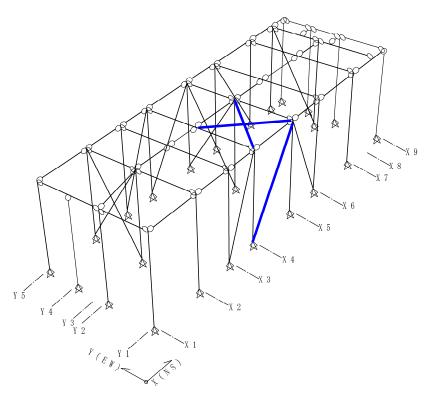

注記*:単位はkNとする。

表 6-3 構造部材の健全性評価結果(B系)


			材料	記	発生応力度	許容限界	
評価部材		(N/mm ²)			(N/mm ²)	発生箇所	
	はり			曲げ	112	258	Y2/X7-8
			SS400	圧縮	85	226	X7/Y2-4
				せん断	41	135	Y2/X7-8
				 組合せ ^{* 1}	0.45	1.0	X7/Y2-4
				(曲げ+軸力)			
				組合せ	133	258	Y2/X7-8
				(曲げ+せん断			
				+軸力)			
				曲げ	145	258	X7/Y2
架構				圧縮	61	202	X7/Y2
1179				せん断	20	135	X7/Y2
	1)	-	SS400	組合せ ^{* 1}	0.70	4.0	V7 (V0
	1	柱		(曲げ+軸力)	0.73	1.0	X7/Y2
				組合せ			
				(曲げ+せん断	149	258	X7/Y2
				+軸力)			
	水平ブレース		SS400	引張り	162	258	Y2-4/
				ט אנוכ			X5-7
	鉛直ブレース		SS400	圧縮	90	158	Y4/X3-4
	ベースプレート		SN490B	曲げ	231	357	X1/Y2
	基礎ボルト	タイプ A	SD390	引張り	278	390	Y4/X2
				せん断	159	225	X7/Y2
				組合せ	278	348	Y4/X2
脚				(引張応力度)			
			定着部コンクリート	せん断 ^{*2}	71	107	X7/Y2
				組合せ ^{*2}	71	88	X7/Y2
				(せん断力)	, ,		71/12
		タイプ B	SD345,	引張り*2	91	116	X1/Y4
			定着部コン	せん断*2	35	81	X1/Y2
				組合せ ^{*1}	0.80	1.0	X1/Y2

注記*1:検定比による結果を示す。

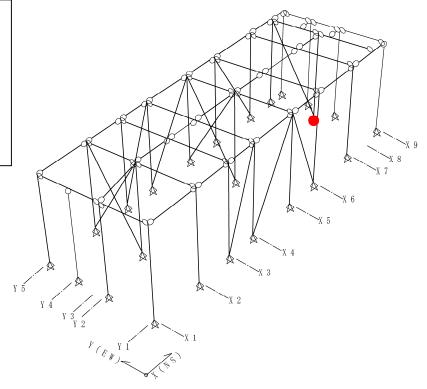
*2 :単位は kN とする。

(1) 架構(はり,柱)の最大応力度発生箇所

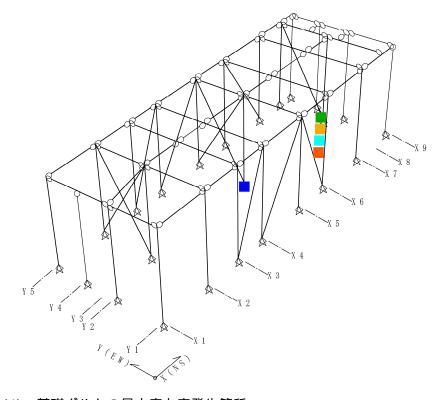
(2) 架構(ブレース)の最大応力度発生箇所

図 6-1 最大応力度発生箇所 (AC系) (1/2)

凡例: 曲げ最大

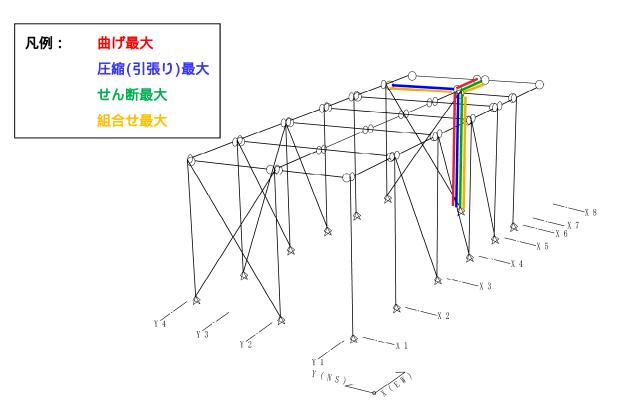

圧縮(引張り)最大

せん断最大

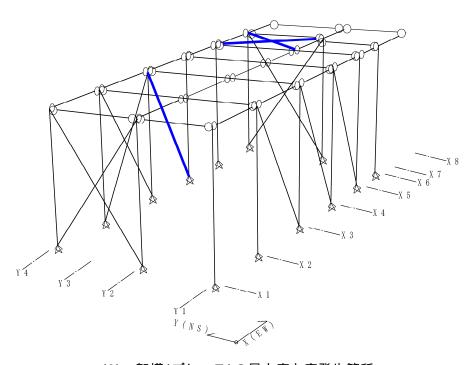

組合せ最大 t

せん断最大Q

組合せ最大 Q



(3) ベースプレートの最大応力度発生箇所



(4) 基礎ボルトの最大応力度発生箇所

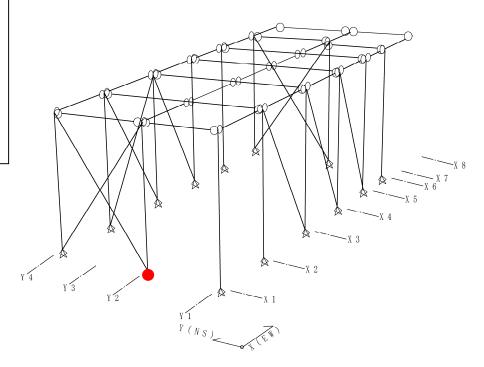
図 6-1 最大応力度発生箇所 (AC系) (2/2)

(1) 架構(はり・柱)の最大応力度発生箇所

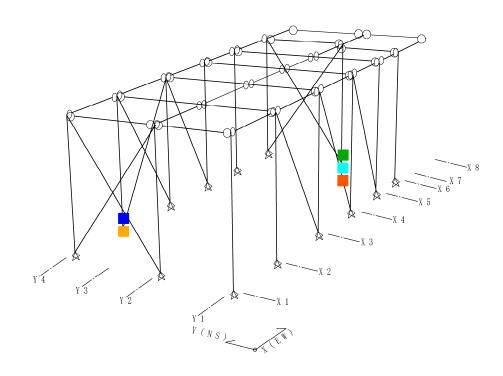
(2) 架構(ブレース)の最大応力度発生箇所

図 6-2 最大応力度発生箇所 (B系) (1/3)

凡例: 曲げ最大


圧縮(引張り)最大

せん断最大


組合せ最大 t

せん断最大Q

組合せ最大 Q

(3) ベースプレートの最大応力度発生箇所

(4) 基礎ボルト(タイプA)の最大応力度発生箇所

図 6-2 最大応力度発生箇所 (B系) (2/3)

凡例: 引張り最大 せん断最大 Q 組合せ最大

(5) 基礎ボルト(タイプB)の最大応力度発生箇所

図 6-2 最大応力度発生箇所 (B系) (3/3)