本資料のうち、枠囲みの内容	柏崎刈羽原子力発電所第6号機	& 設計及び工事計画審査資料	
は、機密事項に属しますので	資料番号	KK6 補足-009 改 2	
公開できません。	提出年月日	2023年11月28日	

工事計画に係る補足説明資料(計測制御系統施設)

2023年11月 東京電力ホールディングス株式会社

工事計画添付書類に係る補足説明資料 添付書類の記載内容を補足するための資料を以下に示す。

資料 No.	添付書類名称		補足説明資料(内容)	備考
1	計測装置の構成に関 する説明書並びに計 測範囲及び警報動作 範囲に関する説明書	 1. 2. 3. 4. 5. 6. 7. 	格納容器内酸素濃度及び水素濃度の監視 格納容器下部水位監視について 原子炉圧力容器内の水位監視について 可搬型計測器について 安全保護装置の不正アクセス行為防止のための 措置について 主要パラメータの代替パラメータによる推定の 誤差の影響について 格納容器内水素濃度(SA)の設置位置について	今回 提出 範囲
2	工学的安全施設等の 起動(作動)信号の設 定値の根拠に関する 説明書	1. 2. 3. 4.	原子炉圧力高設定値について 代替自動減圧ロジック(代替自動減圧機能)の 回路構成について 計装誤差に含まれる余裕の考え方について 原子炉圧力容器零レベルについて	
3	発電用原子炉の運転 を管理するための制 御装置に係る制御方 法に関する説明書	1. 2. 3.	安全保護系及びその他の工学的安全施設等の応 答時間 原子炉冷却材再循環ポンプトリップ機能につい て 制御棒駆動系及び原子炉再循環流量制御系のイ ンターロックにおける原子炉出力の設定につい て	

資 No	∹料 o.	添付書類名称	補足説明資料(内容)	
	4-1	 (1) 中央制御室の機 能に関する説明書 (中央制御室の有毒 ガス防護について除 く) 	設計基準事故時の 中央制御室の機能1. 環境条件中央制御室の機能2. 誤操作防止対策3. 中央制御室から外の 状況を把握する設備4. 酸素濃度・二酸化炭素 濃度計等重大事故等時の 中央制御室の機能1. 重大事故等時の中央 制御室の機能について	
4	4-2	 (2) 中央制御室の機 能に関する説明書 (中央制御室の有毒 ガス防護について) (2) 緊急時対策所の 機能に関する説明書 (緊急時対策所の有 毒ガス防護について) て) 	 有毒ガス防護に係る影響評価ガイドへの適合状況について 固定源及び可動源の特定について 他の有毒化学物質等との反応により発生する有毒ガスの考慮について 可動源から漏えいした際の液だまり厚さについて 有毒ガス影響評価に使用する気象条件について 原子炉施設周辺の建屋影響による拡散の影響について 	
	5	通信連絡設備に関す る説明書	 通信連絡設備の一覧 多様性を確保した通信回線 各重大事故時に必要な通信連絡設備の数量 通信連絡設備が接続する無停電電源の仕様 データ伝送設備のパラメータ 安全パラメータ表示システム (SPDS) 及びデータ 伝送設備の範囲 無線連絡設備の使用可能範囲と使用範囲 	

別紙 工認添付書類と設置許可まとめ資料との関係

工認添付書類と設置許可まとめ資料との関係 (工事計画に係る補足説明資料(計測制御系統施設))

工認添付資料		設置	許可まとめ資料	引用内容
計測装置の構成に 関する説明書並び	DB	第16条	燃料体等の取扱施設及び貯 蔵施設	資料の一部を引用
に計測範囲及び警	DB	第24条	安全保護回路	資料を概ね引用
私動作範囲に関する説明書	SA	第58条	計装設備	資料の一部を引用
工学的安全施設等 の起動(作動)信	SA	第44条	緊急停止失敗時に発電用原 子炉を未臨界にするための 設備	資料の一部を引用
号の設定値の根拠 に関する説明書	SA	第46条	原子炉冷却材圧力バウンダ リを減圧するための設備	資料の一部を引用
発電用原子炉の運 転を管理するため の制御装置に係る	SA	第44条	緊急停止失敗時に発電用原 子炉を未臨界にするための 設備	資料の一部を引用
制御方法に関する 説明書に係る補足 説明資料	SA	第46条	原子炉冷却材圧力バウンダ リを減圧するための設備	資料の一部を引用
	DB	第10条	誤操作の防止	資料を概ね引用
中央制御室の機能 に関する説明書	DB	第26条	原子炉制御室等	資料を概ね引用
	SA	第59条	運転員が原子炉制御室にと どまるための設備	資料の一部を引用
中央制御室の機能 に関する説明書 (中央制御室の有 毒ガス防護につい て)	DB	第26条	中央制御室, 緊急時対策所及 び重大事故等対処上特に重 要な操作を行う地点の有毒 ガス防護について	資料を概ね引用
通信連絡設備に関	DB	第35条	通信連絡設備	資料を概ね引用
する説明書に係る 補足説明書	SA	第62条	通信連絡を行うために必要 な設備	資料を概ね引用

• • • • • • •				· · · · · · · · · · · · · · · · · · ·
工認添付資料	設置許可まとめ資料			引用内容
緊急時対策所の機			山山圳御安 取為時封築市及	
能に関する説明書			中天前仰主, 亲忌时对 用 力	
(緊急時対策所の	DB	第34条	い里大事故等対処上符に里	資料を概ね引用
有毒ガス防護につ			安な操作を行う地点の有毒	
いて)			カス防護について	

(工事計画に係る補足説明資料(その他発電用原子炉の附属施設のうち緊急時対策所))

- 1. 格納容器内酸素濃度及び水素濃度の監視
- 1.1 格納容器水素・酸素濃度計測装置について

格納容器水素・酸素濃度計測装置は,著しい炉心の損傷が発生した場合に,原子炉格納容器 内に発生する水素及び酸素を監視する目的で,水素及び酸素濃度が変動する可能性のある範囲 で測定できる設計とする。

原子炉格納容器内の酸素濃度は,解析上は事象発生から約168時間後まで酸素濃度が可燃限 界である5vo1%を超えることは無く,原子炉格納容器内での水素燃焼は生じない。しかしなが ら,徐々にではあるが,酸素濃度は上昇し続けることから,代替原子炉補機冷却系が使用可能 となった時点で速やかに酸素濃度を測定できる設計としている(水素濃度については事故初期 から継続して監視が可能)。

代替原子炉補機冷却系が復旧されない場合,炉心から発生する崩壊熱が原子炉格納容器内に 蓄積され,それに伴い発生する蒸気の過圧によって格納容器内圧力は上昇し,原子炉格納容器 の限界圧力(620kPa(gage))に到達するまでに格納容器ベントを実施することとなる(有効性 評価「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」では約38時間後に格納 容器ベントを実施)。格納容器ベントを実施する約38時間までは,水の放射線分解によって発 生する酸素ガスの濃度は緩やかに上昇することから,原子炉格納容器内の酸素濃度が可燃限界 (5vol%)に到達するおそれはない。

このために、格納容器内水素・酸素濃度計測装置は、可燃限界に到達するまでに準備対応が でき、炉心損傷時の環境条件に対応できるものであることが求められ、中央制御室にて原子炉 格納容器内水素濃度及び酸素濃度の傾向(トレンド)を監視できることが重要となる。柏崎刈 羽原子力発電所6号機では、重大事故等時の原子炉格納容器内の水素濃度及び酸素濃度を格納 容器内水素濃度(SA)、格納容器内水素濃度及び格納容器内酸素濃度によって監視することと している。格納容器内水素濃度(SA)については代替電源設備からの給電により事故初期から 原子炉格納容器内の水素濃度の監視が可能である。また、格納容器内水素濃度及び格納容器内 酸素濃度においては代替原子炉補機冷却系が使用可能となった時点で使用可能となるが、有効 性評価シナリオ「雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損)」においては 代替原子炉補機冷却系が使用可能となる時点では原子炉格納容器内の酸素濃度は 5vol%に到 達しない。

格納容器内水素濃度は、水素の熱伝導率が空気、窒素、酸素等と大きく異なることを利用した、水素に着目した熱伝導方式の濃度計である。熱伝導方式は、事故時に酸素濃度等のガス成分に変動があっても熱伝導率が水素と大きく異なるため、水素濃度測定に対して大きな誤差にはならない。

格納容器内酸素濃度は、常磁性体である酸素分子が磁界内で、磁化された際に生じる吸引力 を利用した熱磁気風式の濃度計である。酸素は強い磁化率を有しており、測定において水素や 窒素のような弱い反磁性を有する他ガスの影響は受けない。

1

- 1.2 格納容器内水素濃度及び格納容器内酸素濃度の概要
 - 1.2.1 測定原理
 - (1) 格納容器内水素濃度

原子炉格納容器内の水素濃度を測定するために用いる格納容器内水素濃度は、熱伝導式 のものを用いる。熱伝導式の水素検出器は、図1-1「水素濃度計検出回路の概要図」に 示すとおり、検知側サーミスタ素子(以下、検知素子)と補償側サーミスタ素子(以下、 補償素子)、及び2つの固定抵抗でブリッジ回路が構成されている。検知素子の部分に、 サンプリングされたガスが流れるようになっており、補償素子には基準となる標準空気が 密閉されており測定対象ガスとは接触しない構造になっている。

水素濃度計指示部より電圧を印加して検知素子と補償素子の両方を約150℃に加熱した 状態で、検知素子側に水素を含む測定ガスを流すと、測定ガスが熱を奪い、検知素子の温 度が低下することにより抵抗が低下する。この検知素子の抵抗が低下するとブリッジ回路 の平衡が失われ、図1-1のAB間に電位差が生じる。この電位差が水素濃度に比例する原 理を用いて、水素濃度を測定する。

なお,格納容器内水素濃度の計測範囲 0~30vo1%において,計器仕様は最大±0.6vo1% の誤差を生じる可能性があるが,この誤差があることを理解した上で,原子炉格納容器内 の水素濃度の推移,傾向(トレンド)を監視していくことができる。

(2) 格納容器内酸素濃度

原子炉格納容器内の酸素濃度を測定するために用いる格納容器内酸素濃度は、熱磁気風 式のものを用いる。熱磁気風式の酸素検出器は、図1-2「酸素濃度計検出回路の概要 図」に示すとおり、発風側サーミスタ素子(以下、発風側素子)、受風側サーミスタ素子 (以下、受風側素子)及び2つの固定抵抗でブリッジ回路が構成されており、発風側素子 及び受風側素子は一定温度で保温されている。

図 1-2 酸素濃度計検出回路の概要図

酸素含有ガスの流れを図1-3「酸素含有ガスの流れ」に示す。酸素濃度計は2層構造 のチャンバーで構成されており、サンプル入口より下部流入チャンバー内にサンプルガス が流入する。サンプルガスの大部分は下部流入チャンバーを通過しサンプル出口へ流出す るが、少量のサンプルガスは上部測定チャンバー内に流入する。酸素は極めて強い常磁性 体であることから、上部測定チャンバーに流入したサンプルガスは磁界中心部に引き寄せ られ、加熱された発風側素子により温度が上昇する。磁化率は温度に反比例することか ら、後から流入してくる低温のサンプルガスにより、高温となったサンプルガスは磁界中 心部から追い出されることとなる。発風側素子は低温のサンプルガスに熱を奪われること で冷やされることとなり、磁界外の受風側素子は発風側素子が奪われた熱を受け取り、暖 められることとなる。

図 1-3 酸素含有ガスの流れ

チャンバー内に酸素を含む原子炉格納容器内雰囲気ガスを流すと、磁気風により発風側 素子の温度が下がることで、発風側素子の抵抗は小さくなる。一方、受風側素子の温度が 上がることで、受風側素子の抵抗は大きくなる。発風側素子と受風側素子の抵抗値が変化 することで、ブリッジ回路の平衡が変化し、図1-2のAB間に電位差(電流)が生じる。 この電位差が酸素濃度に比例する原理を用いて、酸素濃度を測定する。

なお,格納容器内酸素濃度の計測範囲 0~30vo1%において,計器仕様は最大±0.6vo1% の誤差を生じる可能性があるが,この誤差があることを理解した上で,原子炉格納容器内 の酸素濃度の推移,傾向(トレンド)を監視していくことができる。

1.2.2 システム構成

格納容器内の水素及び酸素濃度の測定においては,格納容器内ガスサンプリング装置に て原子炉格納容器内の雰囲気ガスを原子炉建屋原子炉区域内へ導き,検出器で測定するこ とで,原子炉格納容器内の水素濃度及び酸素濃度を中央制御室より監視できる設計とす る。格納容器内ガスサンプリング装置の構成を図1-4「格納容器内ガスサンプリング装 置の構成」に示す。

(1) 配管ヒータ

配管ヒータはサンプルガスが配管途中での放熱による管内でのドレン発生を避けるため,加熱保温するために設置する。

(2) 格納容器内ガスサンプリング装置

格納容器内ガスサンプリング装置は水素濃度及び酸素濃度の測定を行うことを目的とし て設置している。格納容器内ガスサンプリング装置は、水素濃度検出器、酸素濃度検出器、 冷却器、除湿器等で構成され、大きさは幅約2.2m、奥行き約0.8m、高さ約1.9mである。 各構成機器の概要について以下に示す。

a. 冷却器

冷却器はガス濃度を分析するための前処理としてサンプルガスを冷却するために設置 する。

b. 除湿器

除湿器はガス濃度を分析するための前処理としてサンプルガスを除湿するために設置 する。

- c. ドレン計量部 ドレン計量部は冷却・除湿した際に発生するドレンを計測し湿分補正のパラメータと して用いるために設置する。
- d. 減圧弁

減圧弁はサンプルガスを 310kPa 以下に減圧するために設置する。

- e. 水素濃度検出器 水素濃度検出器はサンプルガス中の水素濃度を計測するために設置する。
- f. 酸素濃度検出器 酸素濃度検出器はサンプルガス中の酸素濃度を計測するために設置する。

g. サンプルポンプ

サンプルポンプはサンプルガスを原子炉格納容器に戻す際に昇圧するために設置する。

図 1-4 格納容器内ガスサンプリング装置の構成

 1.3 格納容器内水素濃度及び格納容器内酸素濃度の電源供給について 格納容器内水素濃度及び格納容器内酸素濃度は、常設代替交流電源設備又は可搬型代替交流 電源設備から給電できる設計とする。

電源供給については図1-5「格納容器内水素濃度及び格納容器内酸素濃度の電源概略構成 図」に示す。

図 1-5 格納容器内水素濃度及び格納容器内酸素濃度の電源概略構成

2. 格納容器下部水位監視について

重大事故等時において,原子炉格納容器下部に落下した溶融炉心を冷却し,溶融炉心・コンク リート相互作用(MCCI,以下引用)を抑制するために原子炉格納容器下部注水設備を設置してい る。格納容器下部の水位を監視するために格納容器下部水位計を設置する。

格納容器下部水位計の概略構成及び検出器の構造は『VI-1-5-1 計測装置の構成に関する説明 書並びに計測範囲及び警報動作範囲に関する説明書』の3.1.7 原子炉格納容器本体の水位を計測 する装置(2)格納容器下部水位に示す。

2.1 格納容器下部注水時の水位監視

格納容器下部の水位計設置状況は、図2-1「格納容器下部水位計設置図」、図2-2「格納容器下部水位計配置図」、図2-3「格納容器下部水位計取付図」に示す。

格納容器下部への注水は、原子炉圧力容器下鏡部温度が300℃に到達した時点で注水開始 し、MCCI緩和の効果が期待できる+2mまで初期水張りを実施する水位監視として+2m及び、 その後は事故後の崩壊熱に応じた流量で注水中の水位監視のために+1m、+3mを計測する電 極式水位計を各高さに1個設置する。

注:寸法はmmを示す。

図 2-2 格納容器下部水位計配置図

図 2-3 格納容器下部水位計取付図

2.2 格納容器下部水位計の計測機能

水位計の検出部の環境条件を表 2-1「検出部の環境条件」に,測定原理を図 2-4「電極式水 位計の動作原理」に示す。

(1) 環境条件

水位計は,重大事故等時の格納容器破損防止対策の有効性評価における環境条件を満足 する試験を実施し,健全性を確認している。

項目	環境条件(包絡条件)	試験条件	評価結果
			想定される環境温度での機能維
温度	200℃(168 時間)	300℃以上(168 時間以上)	持を確認しており、健全性を維
			持できる。
			想定される環境湿度での機能維
湿度	蒸気(168 時間)	蒸気(168時間以上)	持を確認しており、健全性を維
			持できる。
			想定される環境圧力での機能維
圧力	620kPa(168 時間)	900kPa 以上(168 時間以上)	持を確認しており、健全性を維
			持できる。
放射線			当該設備は全て無機物で構成さ
	2001-0 /162 時間		れるため、放射線劣化を考慮す
	000KGY/ 108 时间		る必要がなく,健全性を維持で
			きる。
放射線	800kGy/168 時間		持できる。 当該設備は全て無機物で構成 れるため,放射線劣化を考慮 る必要がなく,健全性を維持 きる。

表 2-1 検出部の環境条件

(2) 検出原理

格納容器下部水位計は、シース熱電対、保護管、シース熱電対と保護管間を絶縁するセ ラミック、および MI ケーブル*から構成されている(全て無機材料で構成)。

この水位検出原理は,図2-4にあるように,シース熱電対とその周りを囲む保護管とで 構成される電極間の導通を測定することで,センサ位置が水中か気中かを判定するもので ある。センサが気中にある場合はシース熱電対と保護管は絶縁されているが,シース熱電 対と保護管間に水がある場合は導通して抵抗値が低下する。

*無機物(金属)シースを使用したケーブルであり、シースと芯線間も無機物で絶縁する ことにより、耐環境性に優れたケーブルとなる。

図 2-4 電極式水位計の動作原理

- 3. 原子炉圧力容器内の水位監視について
- 3.1 原子炉圧力容器内の水位監視について

BWR プラントにおいては,原子炉圧力容器の水位を計測することで,原子炉圧力容器内の水 位の状態を監視し,炉心の冷却状態を把握する上で重要となる原子炉圧力容器内の保有水量の 監視を行っている。

重大事故等に対処するために監視することが必要なパラメータのうち,原子炉圧力容器内の 水位については,原子炉水位(広帯域),原子炉水位(燃料域)及び原子炉水位(SA)を主要パ ラメータとしており,原子炉水位の計測が困難になった場合,以下の推定手段を整備している。

①原子炉水位(SA)による原子炉圧力容器内の水位計測(原子炉水位(SA)を推定する場合 は、原子炉水位(広帯域)、原子炉水位(燃料域)にて推定)。

②原子炉圧力容器への注水流量(高圧代替注水系系統流量,復水補給水系流量(RHR A系代 替注水流量),復水補給水系流量(RHR B系代替注水流量),原子炉隔離時冷却系系統流量,高 圧炉心注水系系統流量,残留熱除去系系統流量)による原子炉水位の推定。

③原子炉圧力,原子炉圧力(SA)及び格納容器内圧力(S/C)による原子炉圧力容器が満水であることを推定。

百日	原子炉圧力容器内の水位					
項日	監視パラメータ		対応設備	検出器	個数	計測範囲
		原子炉水位	重十重均竿対如設備	差圧式水位	2	2200- 12500 *1
	(1)	(広帯域)	重八爭似守凡处议偏	検出器	J	3200°° † 3300mm
	(1)	原子炉水位	重十重步等计加設備	差圧式水位	9	$-4000 \sim \pm 1300 \text{mm}^{*2}$
主要パラ		(燃料域)	里八爭似寻刈处议偏	検出器	2	4000 - 1300000
メータ		原子炉水位	重十重步等计加設備	差圧式水位	1	$-2200 \sim \pm 2500 \text{mm}^{*1}$
	(2)	(SA)	重八爭似守凡处议偏	検出器	1	3200 - 1 3300mm
(2)	原子炉水位	重大重故笙动如恐備	差圧式水位	1	$-8000 \sim \pm 3500 \text{mm}^{*1}$	
		(SA)	重八争成寺州处议师	検出器	1	
	原子炉水位 (広帯域)		重大事故笔对机設備	差圧式水位	3	$-3200 \sim +3500 \text{mm}^{*1}$
			重八争成寻利之政偏	検出器	0	5200 + 5000mm
	原子炉水位		重大事故笔对机設備	差圧式水位	9	$-4000 \sim \pm 1300 \text{mm}^{*2}$
推定手段 ① 原		(燃料域)	里八ず以守刈死叹佣	検出器	2	4000 + 1300mm
	百二	· 后水荷(sn)	重大重故笙动如恐備	差圧式水位	1	$-3200 \sim \pm 3500$ mm $*1$
	所 1		重八争成寺州处议师	検出器	I	
	百二		重十重投华分加設借	差圧式水位	1	$-8000 \sim +3500$ mm ^{*1}
	<i>『</i> 示丁	<i>ŊŢ /JN<u> U</u>. (SA)</i>	里八爭成寺刈处成佣	検出器	1	

表 3-1 主要パラメータと推定手段(1/2)

百日	原子炉圧力容器内の水位							
Ϋ́́Γ	監視パラメータ	対応設備	検出器	個数	計測範囲			
	高圧代替注水系	香土重妆华牡伽乳牌	差圧式流量	1	$0 \sim 200 m^3 / h$			
	系統流量	里八争议寺刈处议佣	検出器	1	0~300m ^o /n			
	復水補給水系流量		羊口士法具					
	(RHR A 系代替	重大事故等対処設備	<u> </u>	1	$0\sim 200 \text{m}^3/\text{h}$			
	注水流量)		快口奋					
	復水補給水系流量		辛口子法具					
推定手段	(RHR B 系代替	重大事故等対処設備	<u> </u> 左 に 式 派 里	1	$0\sim 350 \mathrm{m}^3/\mathrm{h}$			
2	注水流量)		使出奋					
	原子炉隔離時	毛上市投放分词现供	差圧式流量	1	$0\sim 300 \text{m}^3/\text{h}$			
	冷却系系統流量	里入爭似等刘処砇佣	検出器	1				
	高圧炉心注水系	手上重投放另加到供	差圧式流量	9	$0\sim 1000 \text{m}^3/\text{h}$			
	系統流量	里入爭似等刘処砇佣	検出器	Z				
	残留熱除去系	手上事状体异如乳供	差圧式流量	0	$0 \sim 1500 { m m}^3 / { m h}$			
	系統流量	里入爭似等刘処砇佣	検出器	3				
	臣フに亡も	手上重投放异如乳供	弾性圧力	0	0 10MD			
推定手段	原于炉庄刀	里入爭似等刘処砇佣	検出器	3	0~10mPa			
	原子炉圧力	壬上末北放去加訊供	弾性圧力	-	0.11100			
3	(SA)	里八爭议寺对处設備	検出器	1	0∼11MPa			
	格納容器内圧力	毛上市投放社加利供	弾性圧力	1				
	(S/C)	里八爭议寺对处設備	検出器	1	$0\sim$ 980. <i>(</i> kPa[abs]			

表 3-1 主要パラメータと推定手段(2/2)

*1 :基準点は蒸気乾燥器スカート下端(原子炉圧力容器零レベルより1224cm)。

*2 :基準点は有効燃料棒頂部(原子炉圧力容器零レベルより905cm)。

- 3.2 原子炉水位(広帯域),原子炉水位(燃料域)及び原子炉水位(SA)の概要 原子炉水位計は,差圧式検出器により,原子炉圧力容器下部の計装配管より分岐した受圧部 (高圧側)に加わる水頭圧と凝縮槽より分岐した受圧部(低圧側)に加わる圧力との差を検出 することで,水位に比例した信号を検出し,信号演算処理後,指示,記録する。
 - (1) 原子炉水位(広帯域)及び原子炉水位(SA)

原子炉水位(広帯域),原子炉水位(SA)は蒸気乾燥器スカート下端(原子炉圧力容器零 レベルより1224cm)を基準とし、-3200~+3500mm までの水位を計測することにより、原 子炉圧力容器内の水位を確認する。

原子炉水位(広帯域)及び原子炉水位(SA)は,通常運転時の炉内環境下で使用するため,通常運転時の炉水飽和温度287℃を考慮した水の密度に対して補正を行っている。

(2) 原子炉水位(燃料域)

原子炉水位(燃料域)は燃料有効長頂部(原子炉圧力容器零レベルより905cm)を基準とし、-4000~+1300mmまでの水位を計測することにより、原子炉圧力容器内の水位を確認する。

原子炉水位(燃料域)は、大気圧時の飽和水温度 100℃における水の密度に対して補正を 行っている。

なお、原子炉圧力及び温度が補正よりも高い状態では水位の指示は実水位よりも低く指示 するため、燃料有効長頂部に到達及び燃料有効長底部から燃料有効長の10%上の位置に到 達等の水位低下の判断は実水位よりも早めに行うことになる。

(3) 原子炉水位(SA)

原子炉水位(SA)は蒸気乾燥器スカート下端(原子炉圧力容器零レベルより1224cm)を 基準とし、-8000~+3500mmまでの水位を計測することにより、原子炉圧力容器内の水位 を確認する。

原子炉水位(SA)は、通常運転時の炉内環境下で使用するため、通常運転時の炉水飽和温度 287℃を考慮した水の密度に対して補正を行っている。

計器の概要については図 3-1「原子炉水位(広帯域)及び原子炉水位(SA)の概要」,図 3-2「原子炉水位(燃料域)の概要」及び図 3-3「原子炉水位(SA)の概要」に、凝縮槽 の配置については図 3-4「凝縮槽の配置図」に、凝縮槽から計器までの配管ルートについ ては図 3-5「凝縮槽から原子炉水位への配管ルート概略図」に示す。また、凝縮槽を兼用 している計器については表 3-2「凝縮槽を兼用している計器」に、計器の仕様については 表 3-3「原子炉水位(広帯域)及び原子炉水位(燃料域)の仕様」及び表 3-4「原子炉水 位(SA)の仕様」に示す。

図 3-1 原子炉水位(広帯域)及び原子炉水位(SA)の概要

図 3-2 原子炉水位(燃料域)の概要

図 3-3 原子炉水位 (SA)の概要

図 3-4 凝縮槽の配置図

図 3-5 凝縮槽から原子炉水位への配管ルート概略図

名称	計器番号	計測範囲	凝縮槽	用途
	B21-LT001A		А	百二后非尚信止信号
	B21-LT001B	$0 \sim \pm 1800$ mm	В	尿丁炉外吊停止信ち そのMの枚納容哭隔離金間
	B21-LT001C	0 - 10001111	С	北堂田ガス処理系記動
	B21-LT001D		D	· · · · · · · · · · · · · · · · · · ·
原子炉水位	B21-LT002A		А	
(狭帯域)	B21-LT002B	$0\sim$ + 1800mm	В	原子炉水位高/低検知
	B21-LT002C		С	
	B21-LT042A	0 1000	А	ATWS 緩和設備(代基)の制材再循環ポ
	B21-LT042B	$0\sim$ + 1800mm	В	ンプ・トリップ)
	B21-LT042C		С	• • • • • • • • • • • • • • • • • • • •
	B21-LT003A		А	その他の格納容器隔離弁閉 原子炉隔離時冷却系起動 残留熱除去系(低圧注水系)起動 自動減圧系起動 中央制御室計器 中央制御室外原子炉停止装置室計 器
原子炉水位 (広帯域)	B21-LT003B	$-3200 \sim +3500$ mm	В	その他の格納容器隔離弁閉 原子炉隔離時冷却系起動 残留熱除去系(低圧注水系)起動 自動減圧系起動 代替自動減圧起動
	B21-LT003C		С	その他の格納容器隔離弁閉 原子炉隔離時冷却系起動 残留熱除去系(低圧注水系)起動 自動減圧系起動 代替自動減圧起動 中央制御室計器
	B21-LT003D		D	その他の格納容器隔離弁閉 原子炉隔離時冷却系起動 残留熱除去系(低圧注水系)起動 自動減圧系起動
	B21-LT003E		A	主蒸気隔離弁閉 その他の格納容器隔離弁閉 高圧炉心注水系起動 残留熱除去系(低圧注水系)起動 自動減圧系起動 代替自動減圧系起動
	B21-LT003F			В

表 3-2 凝縮槽を兼用している計器(1/3)

名称	計器番号	計測範囲	凝縮槽	用徐	
· LA, H .		H 1 1/1 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1	274E/110111	主蒸気隔離弁閉	
				その他の格納容器隔離弁閉	
	B21-LT003G		С	高圧炉心注水系起動	
				残留熱除去系(低圧注水系)起動	
				自動減圧系起動	
				主蒸気隔離弁閉	
原子炉水位				その他の格納容器隔離弁閉	
(広帯域)	B21-LT003H	$-3200 \sim +3500$ mm	D	高圧炉心注水系起動	
				残留熱除去系(低圧注水系)起動	
				自動減圧系起動	
	B21-LT043A		А		
	B21-LT043B		В	AIWS 緩相說傭(代晉前御俸押八)	
	B21-LT043C		С	AIWS 被和設備(八省行动的 丹相現か	
	B21-LT043D		D		
原子炉水位	B21-LT006A	$-4000 \sim \pm 1300$ mm	А	山山山御宮計哭	
(燃料域)	B21-LT006B	4000 - 13001111	В		
原子炉水位	B21-I T090	$-3200 \sim +3500$ mm	А		
(SA)	D21 E1030	5200 + 5000mm	11	中央制御室計器	
原子炉水位	水位 B21-LT091	$-8000 \sim +3500$ mm	А		
(SA)					
	B21-PI010A*		A	現場計器	
	B21-PI010B*		В		
	B21-PS038A*		В	-	
	B21-PS038B*		В		
	B21-PS038C*		В		
	B21-PS038D*		B		
	B21-PS038E*		A		
	B21-PS038F*		A		
	B21-PS038G*		A		
原子炉圧力	B21-PS038H*	$0\sim 10$ MPa	A		
	B21-PS038J*		В	主蒸気逃がし安全弁の逃がし弁機	
	B21-PS038K*		A		
	B21-PS038L*		D		
	B21-PS038M*		D		
	B21-PS038N*		D		
	B21-PS038P*		C		
	B21-P5038K*				
	B21-PS0385*		C		
	B21-PS038T*		C		
	B21-PS038U*		C		

表 3-2 凝縮槽を兼用している計器(2/3)

名称	計器番号	計測範囲	凝縮槽	用途	
	B21-PT007A		А	原子炉非常停止信号	
			**	中央制御室計器	
	B21-PT007B	0∼10MPa	В	中央制御室外原子炉停止装置室計 器	
	B21-PT007C		С	原子炉非常停止信号 中央制御室計器	
	B21-PT007D		D	原子炉非常停止信号	
┏ㅋ╔┍┶	B21-PT-008A		А		
原于炉庄刀	B21-PT-008B	5.884∼7.845MPa	В	原子炉圧力制御機能	
	B21-PT-008C		С		
	B21-PT-011A		А		
	B21-PT-011B		В	原子炉圧力制御機能	
	B21-PT-011C	0∼9.807MPa	С		
	B21-PT039A		А	原乙烷压力直换知	
	B21-PT039B		В	原于炉庄刀高横和	
	B21-PT040	5.884~7.845MPa	D	中央制御室計器	
				ATWS 緩和設備(代替制御棒挿入)	
原子炉圧力 (SA)	B21-DT0414		٨	ATWS 緩和設備 (代替冷却材再循環ポ	
	D21 11041A		А	ンプ・トリップ)	
		$0\sim 11 \mathrm{MPa}$		中央制御室計器	
百之后下力	B21-PT041B		В	ATWS 緩和設備(代替制御棒挿入)	
原于炉庄力	B21-PT041C		С	ンプ・トリップ)	

表 3-2 凝縮槽を兼用している計器(3/3)

*:工事計画書記載対象外

項目		計器仕様	補足
計 測 範	囲	(広帯域)-3200~+3500mm (燃料域)-4000~+1300mm	燃料有効長底部から主蒸気管高さまでの水 位を確認可能であり,燃料体の冠水を確認 可能である。
検出器種	類	差圧式水位検出器	水位に比例する水頭圧を検出することがで きる。
個	数	(広帯域) 3 (燃料域) 2	_
精	度	(広帯域) ±47mm (燃料域) ±35mm	原子炉水位(広帯域)は原子炉水位(SA) (1)と比較してループ構成機器が多いため誤 差が大きくなっている。
検出器耐環境	の 性	耐環境仕様	重大事故時の温度,圧力及び放射線に耐え うることを確認。
耐 震	性	Sクラス	
電	源	非常用所内電源系又は代替電 源設備から給電	

表 3-3 原子炉水位(広帯域)及び原子炉水位(燃料域)の仕様

表 3-4 原子炉水位 (SA) の仕様

項目	計器仕様	補足
計測範囲	(1) $-3200 \sim +3500$ mm (2) $-8000 \sim +3500$ mm	燃料有効長底部から主蒸気管高さまでの水 位を確認可能であり,燃料体の冠水を確認 可能である。
検出器種類	差圧式水位検出器	水位に比例する水頭圧を検出することがで きる。
個 数	(1) 1 (2) 1	_
精度	(1) ± 45 mm (2) ± 77 mm	原子炉水位(SA)(2)は原子炉水位(燃料 域)と比較して計測範囲が広いため誤差が 大きくなっている。
検 出 器 の 環 境 性	耐環境仕様	重大事故時の温度,圧力及び放射線に耐え うることを確認。
耐 震 性	Ss 機能維持	
電 源	代替電源設備から給電	

3.3 原子炉圧力容器への注水流量による原子炉圧力容器内の水位の推定手段

原子炉圧力容器への注水流量と水位不明時から水位推定時点までの経過時間により,水位不 明となってから原子炉圧力容器へ注水された水量(以下「V₁」という)を算出する。図3-6「崩 壊熱除去に必要な水量」において水位不明となってから崩壊熱除去によって蒸発した水量(以 下「V₂」という)は水位推定時点の崩壊熱除去に必要な注水量を上辺,水位不明となった時点 の崩壊熱除去に必要な注水量を下辺,水位不明となってから水位推定時点までの経過時間を高 さとした台形の面積として近似される。V₁とV₂の差が水位不明となってから水位推定時点ま での水量の変化量となるため,V₁とV₂の差を原子炉圧力容器レベル換算により原子炉水位変 化幅に換算し,直前まで判明していた水位に原子炉水位変化幅を足すことにより原子炉水位を 推定する。

【原子炉水位推定までの計算過程】

 $V_{1} = Q_{1} \times (t_{2} - t_{1})$ $V_{2} = (Q_{21} + Q_{22}) \times (t_{2} - t_{1}) / 2$ $1 = (V_{1} - V_{2}) / k$ $L_{2} = L_{1} + 1$

V1:水位不明となってから原子炉圧力容器へ注水された水量[m³]
V2:水位不明となってから崩壊熱除去によって蒸発した水量[m³]
Q1:原子炉圧力容器への注水流量[m³/h]
Q21:水位不明となった時点の崩壊熱除去に必要な注水量[m³/h]
Q22:水位推定時点の崩壊熱除去に必要な注水量[m³/h]
t1:原子炉停止後から水位不明となるまでの経過時間[h]
t2:原子炉停止後の経過時間[h]
1:原子水位変化幅[mm]
k:原子炉圧力容器レベル換算=

L1: 直前まで判明していた水位[mm]

L₂:推定水位[mm]

図 3-6 崩壊熱除去に必要な水量

【誤差による影響について】

原子炉圧力容器内の水位を監視する目的は、炉心冷却状態を把握することであり、代替パラ メータ(原子炉水位)による推定は、同一物理量からの推定であり、計器誤差を考慮した上で 対応することにより、重大事故等時の対策を実施することが可能である。

代替パラメータ(原子炉圧力容器への注水流量)による推定では,崩壊熱除去に必要な注水量 を注水することで,炉心冷却状態の傾向が把握できるため,計器誤差を考慮した上で対応する ことにより,重大事故等時の対策を実施することが可能である。

- 3.4 原子炉圧力,原子炉圧力(SA)及び格納容器内圧力(S/C)による水位の推定手段 原子炉圧力容器が満水であることを確認することで炉心冷却状態を確認する。 具体的には、主蒸気逃がし安全弁により原子炉圧力が低圧状態で維持されている状態におい て、非常用炉心冷却系による原子炉圧力容器への注水により原子炉水位が主蒸気管高さまで上 昇し、主蒸気逃がし安全弁から蒸気ではなく水が流れ出すことで原子炉圧力容器内の圧力が上 昇し、原子炉圧力又は原子炉圧力(SA)と格納容器内圧力(S/C)の差圧が 以上であ れば原子炉圧力容器を満水と推定する。(図 3-7「満水判断のイメージ」を参照)
 - 注記*:原子炉圧力容器への非常用炉心冷却系による注水があり、崩壊熱により発生した蒸気が逃がし安全弁 ↓ から排出されている場合における原子炉停止 分後の原子 炉圧力 MPa に余裕を加えた値

なお,原子炉圧力容器の満水が必要となるのは,最短で原子炉停止 分以降である と予想されるため,原子炉停止 分後の値を基準としている。

図 3-7 満水判断のイメージ

4. 可搬型計測器について

可搬型計測器は,重大事故等対処設備の機能を有しており,重大事故等時に計測に必要な計器 電源が喪失した場合には,炉心損傷防止対策及び格納容器破損防止対策等を成功させるために必 要な発電用原子炉施設の状態を把握するためのパラメータを計測する設備について,中央制御室 運転員2名及び現場運転員2名が可搬型計測器を検出器に接続する。

中央制御室運転員2名及び現場運転員2名は温度検出器からの起電力又は抵抗値を計測するこ とにより、温度を監視するとともに、圧力、水位及び流量検出器の電気信号を計測した後、その 計測結果を換算表を用いて圧力、水位及び流量に換算し、監視するとともに、要員が記録用紙に 記録し、保存する。(図4-1「可搬型計測器の概略構成図」、表4-1「可搬型計測器の計測対象 パラメータ」及び図4-2「可搬型計測器接続イメージ」、表4-2「可搬型計測器の必要個数整 理」参照)

図 4-1 可搬型計測器の概略構成図

監視パラ	ラメータ
高圧炉心注水系ポンプ吐出圧力	ドライウェル雰囲気温度
残留熱除去系ポンプ吐出圧力	サプレッションチェンバ気体温度
残留熱除去系熱交換器入口温度	サプレッションチェンバプール水温度
残留熱除去系熱交換器出口温度	復水貯蔵槽水位 (SA)
復水補給水系温度(代替循環冷却)	復水補給水系流量(格納容器下部注水流量)
残留熱除去系系統流量	サプレッションチェンバプール水位
原子炉隔離時冷却系系統流量	格納容器下部水位
高圧炉心注水系系統流量	原子炉圧力容器温度
高圧代替注水系系統流量	フィルタ装置水位
復水補給水系流量(RHR A 系代替注水流量)	フィルタ装置入口圧力
復水補給水系流量(RHR B系代替注水流量)	フィルタ装置金属フィルタ差圧
原子炉圧力	原子炉補機冷却水系系統流量
原子炉圧力(SA)	残留熱除去系熱交換器入口冷却水流量
原子炉水位(広帯域)	復水移送ポンプ吐出圧力
原子炉水位(燃料域)	静的触媒式水素再結合器動作監視装置
原子炉水位(SA)	使用済燃料貯蔵プール水位・温度 (SA)
格納容器内圧力(D/W)	使用済燃料貯蔵プール水位・温度(SA 広域)
格納容器内圧力(S/C)	_

表 4-1 可搬型計測器の計測対象パラメータ

<可搬型計測器接続>

<可搬型計測器>

<計測結果読み取り>

<盤内詳細>

図 4-2 可搬型計測器接続イメージ

分類	監視パラメータ	計測範囲	計測可能範囲	検出器の 設置個数	可搬型計 測器の必 要個数	検出器の種類	計測箇所	備考	
原子炉圧 力容器内 の温度	原子炉圧力容器温度	0∼350℃	0∼350℃	2	1	熱電対	中央制御室	複数チャンネルが存在 するが,代表して1チャ ンネルを計測する。	
原子炉圧 力容器内 の圧力	原子炉圧力	0∼10MPa	0∼10MPa	3	1	弹性圧力 検出器	原子炉建屋	複数チャンネルが存在 するが, 代表して 1 チャ ンネルを計測する	
	原子炉圧力(SA)	0∼11MPa	0∼11MPa	1	I	弹性圧力 検出器	中央制御室		
	原子炉水位(広帯 域)	$-3200\sim3500$ mm ^{*1}	$-3200\sim3500$ mm *1	3		差圧式水位 検出器	原子炉建屋	原子炉建屋	
原子炉圧	原子炉水位(燃料 域)	-4000~1300mm*2	-4000~1300mm*2	2	1	差圧式水位 検出器	原子炉建屋	複数チャンネルが存在	
刀容器内の水位	原子炉水位(SA)	$-3200\sim3500$ mm ^{*1}	$-3200\sim3500$ mm *1	1		差圧式水位 検出器	中央制御室	するか,代表してIナヤンネルを計測する。	
		$-8000 \sim 3500 \text{mm}^{*1}$	$-8000 \sim 3500 \text{mm}^{*1}$	1		差圧式水位 検出器	中央制御室		

表 4-2 可搬型計測器の必要個数整理(1/7)

分類	監視パラメータ	計測範囲	計測可能範囲	検出器の 設置個数	可搬型計 測器の必 要個数	検出器の種類	計測箇所	備考
原子炉圧 力容器へ の注水量	高圧代替注水系系統 流量	$0\sim 300 \mathrm{m}^3/\mathrm{h}$	$0\sim 300 \mathrm{m}^3/\mathrm{h}$	1		差圧式流量 検出器	中央制御室	どちらか一方の系統を 使用する。
	原子炉隔離時冷却系 系統流量	$0\sim 300 \text{m}^3/\text{h}$	$0\sim 300 \text{m}^3/\text{h}$	1	1	差圧式流量 検出器	原子炉建屋	
	高圧炉心注水系系統 流量	$0\sim 1000 \text{m}^3/\text{h}$	$0\sim 1000 {m^3/h}$	2		差圧式流量 検出器	原子炉建屋	
	復水補給水系流量 (RHR A 系代替注水 流量)	$0\sim 200 \text{m}^3/\text{h}$	$0\sim 200 { m m}^3/{ m h}$	1		差圧式流量 検出器	中央制御室	
	復水補給水系流量 (RHR B系代替注水 流量)	$0\sim 350 \mathrm{m}^3/\mathrm{h}$	$0\sim\!350{ m m}^3/{ m h}$	1	1	差圧式流量 検出器	中央制御室	どちらか一方の系統を 使用する。
	残留熱除去系系統流 量	$0\sim 1500 \text{m}^3/\text{h}$	$0\sim 1500 \mathrm{m}^3/\mathrm{h}$	3		差圧式流量 検出器	原子炉建屋	
原子炉格 納容器へ の注水量	復水補給水系流量 (RHR B 系代替注水 流量)	$0\sim 350 \mathrm{m}^3/\mathrm{h}$	$0\sim\!350{ m m}^3/{ m h}$	1	1	差圧式流量 検出器	中央制御室	どちらか一方の系統を
	復水補給水系流量 (格納容器下部注水 流量)	$0\sim 150 \mathrm{m}^3/\mathrm{h}$	$0\sim 150 \mathrm{m}^3/\mathrm{h}$	1		差圧式流量 検出器	中央制御室	使用する。

表 4-2 可搬型計測器の必要個数整理(2/7)

分類	監視パラメータ	計測範囲	計測可能範囲	検出器の 設置個数	可搬型計 測器の必 要個数	検出器の種類	計測箇所	備考
百子后枚	ドライウェル雰囲気 温度	0∼300℃	0∼350℃	2	1	熱電対	中央制御室	複数チャンネルが存在 するが, 代表して1チャ ンネルを計測する。
納容器内 の温度	サプレッションチェ ンバ気体温度	0∼300°C	0∼350°C	1	1	熱電対	中央制御室	複数チャンネルが存在
	サプレッションチェ ンバプール水温度	0∼200°C	$-200\sim500^{\circ}C$	3	1	測温抵抗体	中央制御室	¬するが,代表して1チャ ンネルを計測する。
原子炉格 納容器内 の圧力	格納容器内圧力 (D/₩)	0~1000kPa[abs]	0~1000kPa[abs]	1	1	弾性圧力 検出器	中央制御室	複数チャンネルが存在
	格納容器内圧力 (S/C)	0∼980.7kPa[abs]	0∼980.7kPa[abs]	1	1	弹性圧力 検出器	中央制御室	ッ るか, 代表して1) ヤ ンネルを計測する。
原子炉格 納容器内 の水位	サプレッションチェ ンバプール水位	$-6 \sim +11 m$ (T. M. S. L. $-7150 mm \sim$ +9850 mm) * ³	$-6 \sim +11 m$ (T. M. S. L. $-7150 mm \sim$ +9850 mm) * ³	1	1	差圧式水位 検出器	中央制御室	_
	格納容器下部水位	+1m, +2m, +3m (T. M. S. L. -5600mm, -4600mm, -3600mm) * ³	+1m, +2m, +3m (T. M. S. L. -5600mm, -4600mm, -3600mm) *3	3	1	電極式水位 検出器	中央制御室	複数チャンネルが存在 するが, 代表して1チャ ンネルを計測する。
原子炉格	格納容器内水素濃度	0~30vo1%	—	2	*4	熱伝導式水素 検出器	_	可搬型計測器での計測 対象外。
の水素濃度	格納容器内水素濃度 (SA)	0~100vol%	_	2	*4	水素吸蔵 材料式水素 検出器	_	可搬型計測器での計測 対象外。

表 4-2 可搬型計測器の必要個数整理(3/7)

分類	監視パラメータ	計測範囲	計測可能範囲	検出器の 設置個数	可搬型計 測器の必 要個数	検出器の種類	計測箇所	備考
原子炉格 納容器内 の線量当 量率	格納容器内雰囲気放 射線モニタ (D/W)	$10^{-2} \sim 10^{5} \text{Sv/h}$	—	2	*4	電離箱	—	可搬型計測器での計測 対象外。
	格納容器内雰囲気放 射線モニタ (S/C)	$10^{-2} \sim 10^{5} \text{Sv/h}$	_	2	*4	電離箱	—	可搬型計測器での計測 対象外。
未臨界の 維持又は 監視	起動領域モニタ	$\begin{array}{c} 10^{-1} \sim 10^{6} \mathrm{s}^{-1} \\ (1.\ 0 \times 10^{3} \sim 1.\ 0 \\ \times 10^{9} \mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}) \\ 0 \sim 40\% \ensuremath{\mathbb{Z}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{Z}} \ensuremath{\mathbb{C}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{Z}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{C}} \ensuremath{\mathbb{I}} \ensuremath{\mathbb{I}} $	_	10	*4	核分裂 電離箱	_	可搬型計測器での計測 対象外。
	出力領域モニタ	$\begin{array}{c} 0 \sim 125\% \\ (1.2 \times 10^{12} \text{~} 2.8 \\ \times 10^{14} \text{cm}^{-2} \cdot \text{s}^{-1}) \end{array} *5}$	_	4^{*6}	*4	核分裂 電離箱	_	可搬型計測器での計測 対象外。

表 4-2 可搬型計測器の必要個数整理(4/7)

分類	監視パラメータ	計測範囲	計測可能範囲	検出器の 設置個数	可搬型計 測器の必 要個数	検出器の種類	計測箇所	備考
	復水補給水系温度 (代替循環冷却)	0∼200°C	0∼350°C	1	1	熱電対	中央制御室	_
	フィルタ装置水位	$0\sim 6000$ mm	$0{\sim}6000$ mm	2	1	差圧式水位 検出器	中央制御室	複数チャンネルが存在 するが, 代表して1チャ ンネルを計測する。
	フィルタ装置入口圧 力	0~1MPa	0~1MPa	1	1	弹性圧力 検出器	中央制御室	—
	フィルタ装置出口放 射線モニタ	$10^{-2}\sim 10^5 \mathrm{mSv/h}$	_	2	 *4	電離箱	_	可搬型計測器での計測 対象外。
最終ヒー	フィルタ装置水素濃 度	0~100vo1%	_	2	 *4	熱伝導式 水素検出器		可搬型計測器での計測 対象外。
トシンク の確保の 監視	フィルタ装置金属フ ィルタ差圧	$0{\sim}50$ kPa	$0{\sim}50$ kPa	2	1	差圧式圧力 検出器	中央制御室	複数チャンネルが存在 するが, 代表して1チャ ンネルを計測する。
	フィルタ装置スクラ バ水 pH	pH0~14	_	1	 *4	pH 検出器	_	可搬型計測器での計測 対象外。
	耐圧強化ベント系放 射線モニタ	$10^{-2}\sim 10^5 \mathrm{mSv/h}$	_	2	 *4	電離箱	_	可搬型計測器での計測 対象外。
	残留熱除去系熱交換 器入口温度	0∼300℃	0∼350℃	3	1	熱電対	原子炉建屋	複数チャンネルが存在 するが, 代表して1チャ ンネルを計測する。
	残留熱除去系熱交換 器出口温度	0∼300℃	0∼350°C	3	1	熱電対	原子炉建屋	複数チャンネルが存在 するが, 代表して1チャ ンネルを計測する。

表 4-2 可搬型計測器の必要個数整理(5/7)

分類	監視パラメータ	計測範囲	計測可能範囲	検出器の 設置個数	可搬型計 測器の必 要個数	検出器の種類	計測箇所	備考
最終ヒー トシンク の確保の 監視	原子炉補機冷却水系 系統流量	0~4000m ³ /h (区分Ⅰ, Ⅱ) 0~3000m ³ /h (区分Ⅲ)	0~4000m ³ /h (区分Ⅰ, Ⅱ) 0~3000m ³ /h (区分Ⅲ)	3	1	差圧式流量 検出器	原子炉建屋 (区分Ⅰ, Ⅱ) タービン建 屋 (区分Ⅲ)	複数チャンネルが存在 するが, 代表して1チャ ンネルを計測する。
	残留熱除去系熱交換 器入口冷却水流量	$0\sim 2000 \text{m}^3/\text{h}$	$0\sim 2000 \mathrm{m}^3/\mathrm{h}$	3		差圧式流量 検出器	原子炉建屋	複数チャンネルが存在 するが, 代表して1チャ ンネルを計測する。
格納容器	高圧炉心注水系ポン プ吐出圧力	$0\sim 12$ MPa	$0{\sim}12 MPa$	2	1	弹性圧力検 出器	原子炉建屋	複数チャンネルが存在
の監視	残留熱除去系ポンプ 吐出圧力	0∼3.5MPa	$0{\sim}3.5 \mathrm{MPa}$	3	1	弹性圧力検 出器	原子炉建屋	ンネルを計測する。
水源の確	復水貯蔵槽水位 (SA)	$0{\sim}16{\rm m}$	$0\sim\!16{ m m}$	1	1	差圧式水位 検出器	中央制御室	—
保の監視	復水移送ポンプ吐出 圧力	0~2MPa	0∼2MPa	3	1	弹性圧力 検出器	中央制御室	どちらか一方の系統を 使用する
原子炉建	原子炉建屋水素濃度	0~20vo1%	_	8	*4	熱伝導式 水素検出器	_	可搬型計測器での計測 対象外。
屋内の水 素濃度	静的触媒式水素再結 合器動作監視装置	0∼300℃	0∼350℃	4	1	熱電対	中央制御室	複数チャンネルが存在 するが, 代表して1チャ ンネルを計測する。

表 4-2 可搬型計測器の必要個数整理(6/7)

分類	監視パラメータ	計測範囲	計測可能範囲	検出器の 設置個数	可搬型計 測器の必 要個数	検出器の種類	計測箇所	備考	
原子炉格 納容器内 の酸素濃 度	格納容器内酸素濃度	0∼30vo1%	_	2	*4	熱磁気風式 酸素検出器	_	可搬型計測器での計測 対象外。	
	使用済燃料貯蔵プー ル水位・温度(SA 広 域)	0∼150℃	0∼350℃	1*7	1	熱電対	中央制御室	複数チャンネルが存在 するが,代表して1チャ	
使用済燃	使用済燃料貯蔵プー ル水位・温度(SA)	0∼150°C	0∼350°C	1*8		熱電対	中央制御室	ンネルを計測する。	
料貯蔵プ ールの監 視	使用済燃料貯蔵プー	$10\sim 10^8 { m mSv/h}$	_	1	*4	電離箱	—	可搬型計測器での計測	
	ル 成 新緑 モニタ(高 レンジ・低レンジ)	$10^{-3}\sim 10^4 \mathrm{mSv/h}$	—	1		電離箱	_	対象外。	
	使用済燃料貯蔵プー ル監視カメラ	_	_	1	*4	赤外線 カメラ	_	可搬型計測器での計測 対象外。	

表 4-2 可搬型計測器の必要個数整理(7/7)

配備個数 : 可搬型計測器を 24 個(計器故障を考慮した 1 個含む)配備する。なお,故障及び点検時の予備として 5 号機原子炉建屋内緊急時対策所に 24 個配備する。 注記*1 : 基準点は蒸気乾燥器スカート下端(原子炉圧力容器零レベルより 1224cm)。

*2 : 基準点は有効燃料棒上端(原子炉圧力容器零レベルより905cm)。

*3 : T.M.S.L. = 東京湾平均海面。

*4 : 全交流動力電源喪失時は,水素監視装置,酸素監視装置,pH 監視装置,放射線監視装置,炉内核計装装置(区分Ⅰ及びⅡ)及び使用済燃料貯蔵プール監視カメラ に対して常設代替交流電源設備(第一ガスタービン発電機)により電源供給されるため,監視計器は使用可能である。

*5 : 定格出力時の値に対する比率で示す。

*6 :局部出力領域モニタの検出器は 208 個であり、出力領域モニタの各チャンネルには、52 個ずつの信号が入力される。

*7 : 検出点 14 箇所。

*8 : 検出点 8 箇所。

4.1 可搬型計測器による監視パラメータの計測結果の換算概要

可搬型計測器による温度,圧力,水位及び流量(注水量)のパラメータについて,検出器からの温度指示の監視,又は電流信号を計測した後,換算表を用いて圧力,水位及び流量に換算 する際の概要を以下に示す。

- (1)温度(例:原子炉圧力容器温度の場合) 可搬型計測器にて原子炉圧力容器温度の検出器のタイプ(熱電対)を選択し、表示された値を読み取る。
- (2) 圧力(例:原子炉圧力の場合) 可搬型計測器にて原子炉圧力の圧力検出器から電流信号を計測し、その結果を以下の換 算式により工学値に読み替える。

原子炉圧力= (電流値−4) /16 × 10 [計測範囲:0~10 MPa, 電流値:4~20 mA]

(3)水位(例:原子炉水位(広帯域)の場合) 可搬型計測器にて原子炉水位(広帯域)の水位検出器から電流信号を計測し、その結果 を以下の換算式により工学値に読み替える。

原子炉水位(広帯域) = (電流値-4) /16 ×6700-3200 [計測範囲:-3200 mm~3500 mm, 電流値:4~20 mA]

(4)流量(注水量)(例:高圧代替注水系系統流量の場合) 可搬型計測器にて高圧代替注水系系統流量の流量検出器から、電流信号を計測し、その 結果を以下の換算式により工学値に読み替える。

高圧代替注水系系統流量=√(電流値-4) /16 ×300 [計測範囲:0~300 m³/h, 電流値:4~20 mA] 5. 安全保護装置の不正アクセス行為防止のための措置について

「実用発電用原子炉及びその附属施設の技術基準に関する規則」第35条(安全保護装置)第 5号にて要求されている,『不正アクセス行為その他の電子計算機に使用目的に沿うべき動作を させず,又は使用目的に反する動作をさせる行為による被害を防止することができるものとす るために必要な措置が講じられているものであること。』に対して安全保護装置について適切な 措置を実施している。

5.1 安全保護装置の概要

安全保護装置の機能を実現する計測制御設備は、4 区分構成の検出器、多重伝送装置、安全 保護系盤等で構成し、このうち、安全保護系盤には、マイクロプロセッサを用いたディジタル 制御装置を適用した設計とする。安全保護系盤は、プロセス信号(検出器からの信号)を処 理、監視するとともに、設定値との比較を行い、原子炉非常停止信号及び工学的安全施設作動 に係る信号を発信する設備である。(図 5-1 「安全保護系の構成例」及び図 5-2 「安全保 護系構成概略図」参照。)

安全保護系は、相互干渉が起こらないように、物理的、電気的独立性を持たせている。盤内 のソフトウェアは区分ごとにそれぞれ設けており、ソフトウェアの故障、異常等の単一故障又 は使用状態からの単一の取外しを行った場合でも、安全保護系機能を喪失しない設計とする。

また, 誤信号発生等による誤動作・誤不動作を防止するため, 区分ごとに論理回路部を設け, 2 out of 4 ロジック回路を構成する設計とする。

図 5-1 安全保護系の構成例

図 5-2 安全保護系構成概略図

- 5.2 安全保護系の物理的な分離又は機能的な分離対策
 - 5.2.1 安全保護装置の物理的分離対策

安全保護装置は、不正アクセスを防止するため、安全保護系盤等の扉及び保守ツール接 続部には施錠を行い、許可された者以外はハードウェアを直接接続できない対策を実施し ている。

許可されない者のアクセスを防止するため,安全保護系盤等の扉及び保守ツール接続部 は、当直長により社内規程に定められた鍵管理を行い,保守ツールは、主管箇所により社 内規程に定められた保管及び施錠,鍵管理を行うことで許可されない者のアクセスを防止 している。また,情報セキュリティに関する教育を行っている。 5.2.2 ハードウェアの物理的及び機能的な分離対策

安全保護装置の信号は、安全保護系盤→プロセス計算機→防護装置→緊急時対策支援シ ステム伝送装置→防護装置を介して外部に伝送している。この信号の流れにおいて、安全 保護装置からは発信されるのみであり、外部からの信号を受信しないこと、及びハードウ ェアを直接接続しないことで物理的及び機能的分離を行っている。(図 5-3 ネットワー ク概略図参照。)

安全保護系盤から緊急時対策支援システムへの信号について,安全保護系盤からプロセス計算機間の伝送は,光変換カードによって送信側(安全保護系盤)と受信側(プロセス計算機)の物理的及び電気的分離を行っており,送信側(安全保護系盤)から受信側(プロセス計算機)へ信号は光伝送方式(伝送設定)により通信方向を一方向に制限しているため,受信側から送信側へ信号は伝送されない。プロセス計算機から緊急時対策支援システム伝送装置の伝送は防護装置を通り外部ネットワークとの伝送を行っている。防護装置は目的外の通信を遮断することで外部からのウイルス等の侵入を防止している。

図 5-3 ネットワーク概略図

5.2.3 物理的分離及び電気的分離について

安全保護系盤からプロセス計算機(インターフェース部)の分離は,光変換カードに よって送信側と受信側の物理的及び電気的分離(計測制御系で短絡等の故障が生じても 安全保護系に影響を与えない)を行っている。

図 5-4 通信における分離概念図

38

5.2.4 物理的及び電気的アクセスの制限対策

発電所等への入域に対して出入管理を行うことにより物理的アクセスを制限し,電気的 アクセスについては,安全保護装置を有する制御盤を施錠管理及び保守ツールのパスワー ド管理,保守ツールを施錠管理された場所に保管することにより,不要なソフトウェアへ のアクセスを制限し管理されない変更を防止している。

5.3 想定脅威に対する対策について

安全保護系のソフトウェアは、工場製作段階から表 5-1 に示す想定脅威に対する対策を適切に行うことで高い信頼性を実現している。

想定脅威	対策

表 5-1 想定脅威に対する対策(工場製作及び出荷)

5.4 耐ノイズ・サージ対策

安全保護系は, 雷・誘導サージ・電磁波障害等による擾乱に対して, 制御盤へ入線する電源 受電部にラインフィルタや絶縁回路を設置, 外部からの信号入出力部にラインフィルタや絶縁 回路を設置, 通信ラインにおける光ケーブルを適用している。また開発検証時に耐ノイズ/サ ージに対する耐性を確認している。 5.5 ソフトウェアの検証と妥当性の確認

ソフトウェアの検証と妥当性の確認はJEAG4609に準じて確認している。各ステップで 行った検証内容の概略を表 5-2「ソフトウェアの検証及び検証内容」に示す。

検証 項目	検証内容	基準図書	対象図書
	ディジタル安全保護系システ	・設置許可申請書	・基本設計仕様書
検証	ム要求事項が正しくシステム	• J E A G 4609	・設定値根拠書
1	設計要求仕様に反映されてい		
	ることを検証する。		
	システム設計要求仕様が正し	・基本設計仕様書	・インターロックブロック
検証	くハードウェア・ソフトウェア	・設定値根拠書	線図
2	設計要求仕様に反映されてい		・計装ブロック図
	ることを検証する。		・機器設計仕様書
	ソフトウェア設計要求仕様が	・インターロックブロック	・ソフトウェア図
検証	正しくソフトウェア設計に反	線図	
3	映されていることを検証する。	・計装ブロック図	
		・機器設計仕様書	
	ソフトウェア設計通りに正し	・インターロックブロック	・ソフトウェア図
検証	くソフトウェアが製作されて	線図	
4	いることを検証する。	・計装ブロック図	
		・機器設計仕様書	
	ハードウェアとソフトウェア	・ソフトウェア図	下記インターフェース部
t∕s∋r	を統合してハードウェア・ソフ		・ソフトウェア図
何可能	トウェア設計要求仕様通りの		・展開接続図
5	システムとなっていることを		
	検証する。		
	ハードウェアとソフトウェア	• 設置許可申請書	・工場試験要領書
妥当	を統合して検証されたシステ		・工場試験成績書
性確	ムが, ディジタル安全保護系シ		
認	ステム要求事項を満たしてい		
	ることを確認する。		

表 5-2 ソフトウェアの検証項目及び検証内容

検証及び妥当性確認はあらかじめ作成された計画書に基づき実施される。

発注者は計画書の記載内容を確認するとともに、各検証の基準図書となる書類について内容の確認を行う。これらの図書は調達文書にて提出を求め、設計管理要項に定める方法により確認する。

6. 主要パラメータの代替パラメータによる推定の誤差の影響について

重大事故等が発生し、計測機器の故障により、重大事故等に対処するために監視することが必要なパラメータ(主要パラメータ)を計測することが困難となった場合において、代替パラメータにより推定するときの代替パラメータの誤差による影響について説明する。

分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	
原子炉圧力容器内の温度	原子炉圧力容器温度	手 有手 有手 手	炉心損傷確認 原子炉圧力容器破損 確認 原子炉格納容器下部 への注水判断 原子炉除熱機能確認	 ①主要パラメータの他チャンネル ②原子炉圧力 ②原子炉圧力 (SA) ②原子炉水位 (広帯域) ②原子炉水位 (燃料域) ②原子炉水位 (SA) ③残留熱除去系熱交換器入口温度 	 ①原子炉圧力容器温度の1チャンネルが故障した場合は,他チャンネルにより推定可能であり,判断に与える影響はない。 ②原子炉圧力容器温度の監視が不可能となった場合は,原子炉水位が有効燃料頂部以上の場合には,原子炉圧力容器内の施和状態と想定し,原子炉圧力容器内の温度は原子炉圧力,原子炉水位(SA),原子炉水位(広帯域),原子炉水位(燃料域),原子炉水位(SA)で推定ができるため,事故収束を行う上で問題とならない。原子炉水位が有効燃料頂部以下の場合には,輻射伝熱及び燃料棒鉛直方向の熱伝導等を考慮していないため定量的な評価は困難だが,原子炉圧力容器内の状態を把握する上で有効である。 ③残留熱除去系が運転状態であれば,残留熱除去系熱交換器入口温度により推定可能であり,判断に与える影響はない。 	なし
原子炉圧力容	原子炉圧力	有手 有手 手	原子炉圧力容器減圧 機能確認 低圧・高圧注水機能確 認 炉心損傷確認	 ①主要パラメータの他チャンネル ②原子炉圧力(SA) ③原子炉水位(広帯域) ③原子炉水位(燃料域) ③原子炉水位(SA) ③原子炉圧力容器温度 	 ①原子炉圧力の1チャンネルが故障した場合は,他チャンネルにより推定可能であり、判断に与える影響はない。 ②原子炉圧力の監視が不可能となった場合は、同じ仕様の原子炉圧力(SA)で監視可能であり、判断に与える影響はない。 ③原子炉圧力容器内が飽和状態にあることが限定されるものの、原子炉圧力容器内の圧力は上記①②で推定ができるため、事故収束を行う上で問題とならない。 	なし
谷器内の圧力	原子炉圧力(SA)	有手 有手 手	原子炉圧力容器減圧 機能確認 低圧・高圧注水機能確 認 炉心損傷確認	 ①原子炉圧力 ②原子炉水位(広帯域) ②原子炉水位(燃料域) ②原子炉水位(SA) ②原子炉圧力容器温度 	 ①原子炉圧力(SA)の監視が不可能となった場合は、同じ仕様の原子炉圧力により監視可能であり、判断に与える影響はない。 ②原子炉圧力容器内が飽和状態にあることが限定されるものの、原子炉圧力容器内の圧力は上記①で推定ができるため、事故収束を行う上で問題とならない。 	なし

表 6-1 代替パラメータによる判断への影響(1/18)

*1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ	判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響
原子炉圧力容器内の水位	原子炉水位(広帯域) 原子炉水位(燃料域)	有 高圧・低圧注水機能研究 手 認 有 原子炉圧力容器減圧 手 機能確認 有 原子炉圧力容器破損 手 確認	 ①主要パラメータの他チャンネル ②原子炉水位(SA) ③高圧代替注水系系統流量 ③復水補給水系流量(RHR A 系代替注水流量) ③復水補給水系流量(RHR B 系代替注水流量) ③復水補給水系流量(RHR B 系代替注水流量) ③原子炉隔離時冷却系系統流量 ③高圧炉心注水系系統流量 ④高圧炉心注水系系統流量 ④原子炉圧力(SA) ④降轴容異肉压力(SA) 	 ①原子炉水位(広帯域),原子炉水位(燃料域)の1チャンネルが 故障した場合は,他チャンネルにより推定可能であり,判断に与 える影響はない。 ②原子炉水位の監視が不可能となった場合は,同じ仕様の原子炉水 位(SA)により監視可能であり,判断に与える影響はない。 ③直前まで判明していた原子炉水位に変換率を考慮し,原子炉圧力 容器への注水流量と崩壊熱除去に必要な水量の差を利用して,発 電用原子炉施設の状態を考慮した推定としており,炉心冷却状態 を把握する上で適用でき,判断に与える影響はない。 ④原子炉水位の監視が困難となった場合の原子炉圧力容器の満水 操作時における発電用原子炉施設の状態を考慮した推定として おり,炉心冷却状態を把握する上で適用でき,判断に与える影響 はない。 	なし
	原子炉水位(SA)	有 高圧・低圧注水機能研認 有 原子炉圧力容器減圧 手 機能確認 有 原子炉圧力容器破損 手 確認 手 炉心損傷確認	 ①原子炉水位(広帯域) ①原子炉水位(広帯域) ①原子炉水位(燃料域) ②高圧代替注水系系統流量 ②復水補給水系流量(RHR A 系代替注水流量) ②復水補給水系流量(RHR B 系代替注水流量) ②原子炉隔離時冷却系系統流量 ②原子炉隔離時冷却系系統流量 ③原子炉压力(SA) ③格納容器内压力(S/C) 	 ①原子炉水位(SA)の監視が不可能となった場合は、同じ仕様の原子炉水位(広帯域)、原子炉水位(燃料域)により監視可能であり、判断に与える影響はない。 ②原子炉水位の監視が不可能となった場合は、直前まで判明していた原子炉水位に変換率を考慮し、原子炉圧力容器への注水流量と崩壊熱除去に必要な水量の差を利用して、発電用原子炉施設の状態を考慮した推定としており、炉心冷却状態を把握する上で適用でき、判断に与える影響はない。 ③原子炉水位の監視が困難となった場合の原子炉圧力容器の満水操作時における発電用原子炉施設の状態を考慮した推定としており、炉心冷却状態を把握する上で適用でき、判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(2/18)

*1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響			
	高圧代替注水系系統流量	有手	高圧注水機能確認	 ①復水貯蔵槽水位(SA) ②原子炉水位(広帯域) ②原子炉水位(燃料域) ②原子炉水位(SA) 	①各系統の原子炉圧力容器への注水量の監視が不可能となった場は、水源である復水貯蔵槽水位(SA)、サプレッションチェンバブール水位の水位変化により原子炉圧力容器への注水量を推定可能であり、判断に与える影響はない。				
原子炉圧力容器への注水量	復水補給水系流量(RHR A系代替 注水流量) 復水補給水系流量(RHR B系代替 注水流量)	有手	低圧注水機能確認	①復水貯蔵槽水位(SA) ②原子炉水位(広帯域) ②原子炉水位(燃料域) ②原子炉水位(SA)	②崩壊熱除去に必要な注水量と原子炉水位変化率に相当する水量の和を利用して,発電用原子炉施設の状態を考慮した推定としており,崩壊熱除去に必要な注水量を確認し炉心冷却状態を把握する上で適用でき,判断に与える影響はない。	なし			
	原子炉隔離時冷却系系統流量	有手	高圧注水機能確認	①復水貯蔵槽水位(SA) ②原子炉水位(広帯域) ②原子炉水位(燃料域) ②原子炉水位(SA)	†.				
	高圧炉心注水系系統流量	有手	高圧注水機能確認	①復水貯蔵槽水位(SA) ②原子炉水位(広帯域) ②原子炉水位(燃料域) ②原子炉水位(SA)					
	残留熱除去系系統流量	有手	低圧注水機能確認	①サプレッションチェンバプール水位 ②原子炉水位(広帯域) ②原子炉水位(燃料域) ②原子炉水位(SA)					
原子炉格納容器への注水量	復水補給水系流量(RHR B 系代替 注水流量) 復水補給水系流量(格納容器下部 注水流量)	有手	原子炉格納容器冷却 機能確認	①復水貯蔵槽水位(SA) ②格納容器内圧力(D/W) ②格納容器内圧力(S/C) ②格納容器下部水位	 ①各系統の原子炉格納容器への注水量の監視が不可能となった場は、水源である復水貯蔵槽水位(SA)の変化により原子炉格納容器への注水量を推定可能であり、判断に与える影響はない。 ②注水特性を用いる上で格納容器内圧力(D/W)、格納容器内圧力(S/C)を確認し、発電用原子炉施設の状態を考慮した推定としており、原子炉格納容器への注水量を把握する上で適用でき、判断に与える影響はない。 ②原子炉格納容器下部へ注水した場合は、計測範囲内において適用可能である。なお、原子炉格納容器下部へつ注水の目的は、原子炉格納容器下部に落下した溶融炉心を冷却するため、初期水張り:約2mが計測されれば良いため、事故対応を行う上で必要な状態を把握でき、判断に与える影響はない。 	なし			

表 6-1 代替パラメータによる判断への影響(3/18)

*1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響
	ドライウェル雰囲気温度	有手	原子炉圧力容器破損確 認	①主要パラメータの他チャンネル ②格納容器内圧力(D/W)	①ドライウェル雰囲気温度の1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。	
		有手	原子炉格納容器除熱機 能確認	③格納容器内庄力(5/0)	格納容器内が飽和状態にあることが限定されるが,重大事故等時 の有効性評価(雰囲気圧力・温度による静的負荷(格納容器過圧・ 過温破損))において,事象初期において一時的に原子炉格納容器 内が過熱状態に至るものの,その後のほとんどの期間で原子炉格 納容器内は飽和状態に速やかに維持されることから,原子炉格納 容器の過温破損防止対策に必要な情報を得ることができ,判断に 与える影響はない。	なし
	サプレッションチェンバ気体温 度	有 手	原子炉圧力容器破損確 認	 ①サプレッションチェンバプール水温度 ②格納容器内圧力(S/C) 	①サプレッションチェンバ気体温度の監視が不可能となった場合 は、原子炉格納容器内の各部の温度を同じ仕様のサプレッション	
原子炉格納容器内の温度		有手	原子炉格納容器除熱機 能確認	③[サブレッションチェンバ気体温度]*2	 チェンバブール水温度により推定可能であり、原子炉格納容器の 過温破損防止対策を行う上で判断に与える影響はない。 ②サプレッションチェンバ気体温度の監視が不可能となった場合 は、原子炉格納容器内が飽和状態にあることが限定されるが、重 大事故等時の有効性評価(雰囲気圧力・温度による静的負荷(格 納容器過圧・過温破損))において、事象初期において一時的に原 子炉格納容器内が過熱状態に至るものの、その後のほとんどの期 間で原子炉格納容器内は飽和状態に速やかに維持されることか ら、原子炉格納容器の過温破損防止対策に必要な情報を得ること ができ、判断に与える影響はない。 ③常用計器でサプレッションチェンバ気体温度を監視可能であれ ば、判断に与える影響はない。 	なし
	サプレッションチェンバプール 水温度 有 手	有手 有手	 原子炉圧力容器破損確 認 サプレッションチェン バプール水冷却機能確 	①主要パラメータの他チャンネル②サプレッションチェンバ気体温度	 ①サプレッションチェンバプール水温度の1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②サプレッションチェンバプール水温度の監視が不可能となった場合は、原子炉格納容器内の各部の温度を同じ仕様のサプレッション 	なし
		有	認 原子炉圧力容器減圧機 能確認		ョンチェンバ気体温度により推定可能であり、原子炉格納容器の 過温破損防止対策を行う上で判断に与える影響はない。	

表 6-1 代替パラメータによる判断への影響(4/18)

*1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響
原子炉格納容器内の圧力			原子炉圧力容器破損確 認 原子炉格納容器除熱機 能確認	 ①格納容器内圧力(S/C) ②ドライウェル雰囲気温度 ③[格納容器内圧力(D/W)]*2 	 ①格納容器内圧力(D/W)の監視が不可能となった場合は、ドライウェルとサプレッションチェンバは、真空破壊装置、連通孔及びベント管を介してそれぞれ均圧されることから、同じ仕様の格納容器内圧力(S/C)により推定可能であり、原子炉格納容器の過圧破損防止対策を行う上で判断に与える影響はない。 ②原子炉格納容器内が飽和状態にあることが限定されるが、重大事故等時の有効性評価(雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損))において、事象初期において一時的に原子炉格納容器内が過熱状態に至るものの、その後のほとんどの期間で原子炉格納容器内は飽和状態に速やかに維持されることから、原子炉格納容器の過圧破損防止対策に必要な情報を得ることができ、判断に与える影響はない。 ③常用計器で格納容器内圧力(D/W)を監視可能であれば、判断に与える影響はない。 	なし
	格納容器内圧力(S/C)	有手 有手	原子炉圧力容器破損確 認 原子炉格納容器除熱機 能確認	 ①格納容器内圧力 (D/W) ②サプレッションチェンバ気体温度 ③[格納容器内圧力 (S/C)]*² 	 ①格納容器内圧力(S/C)の監視が不可能となった場合は、ドライウェルとサプレッションチェンバは、真空破壊装置、連通孔及びベント管を介してそれぞれ均圧されることから、同じ仕様の格納容器内圧力(D/W)により推定可能であり、原子炉格納容器の過圧破損防止対策を行う上で判断に与える影響はない。 ②原子炉格納容器内が飽和状態にあることが限定されるが、重大事故等時の有効性評価(雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損))において、事象初期において一時的に原子炉格納容器内が過熱状態に至るものの、その後のほとんどの期間で原子炉格納容器内は飽和状態に速やかに維持されることから、原子炉格納容器の過圧破損防止対策に必要な情報を得ることができ、判断に与える影響はない。 ③常用計器で格納容器内圧力(S/C)(常用計器)を監視可能であれば、判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(5/18)

*1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響
原子炉格納容器内の水位	サプレッションチェンバプール 水位	有手 有手	原子炉圧力容器破損確 認 原子炉格納容器除熱機 能確認	 ①復水補給水系流量(RHR B系代替注水流量) ②復水貯蔵槽水位(SA) ③格納容器内圧力(D/W) ③格納容器内圧力(S/C) ④[サプレッションチェンバプール水位] 	 ①サプレッションチェンバプール水位の監視が不可能となった場合は、復水補給水系流量(RHR B 系代替注水流量)の注水量により推定可能であり、判断に与える影響はない。 ②水源である復水貯蔵槽の水位変化により推定可能であり、判断に与える影響はない。 ③計測範囲が限定されるものの、原子炉格納容器内の水位は上記①②で推定ができるため、事故収束に向けた対応を行う上で問題とはならない。 ④常用計器でサプレッションチェンバプール水位を監視可能であれば、判断に与える影響はない。 	なし
	格納容器下部水位	有 师手 7	原子炉格納容器下部注 水機能確認	 ①主要パラメータの他チャンネル ②復水補給水系流量(格納容器下部注水流量) ③復水貯蔵槽水位(SA) 	 ①格納容器下部水位の1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②格納容器下部水位の監視が不可能となった場合は、復水補給水系流量(格納容器下部注水流量)の注水量により、格納容器下部水位を推定可能であり、判断に与える影響はない。 ③水源である復水貯蔵槽の水位変化により、格納容器下部水位を推定可能であり、判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(6/18)

*1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響
原子炉格納容品	格納容器内水素濃度	手手	原子炉圧力容器破損確 認 格納容器ベント判断	①主要パラメータの他チャンネル ②格納容器内水素濃度(SA)	 ①格納容器内水素濃度の1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②格納容器内水素濃度の監視が不可能となった場合は、格納容器内水素濃度(SA)により推定可能であり、判断に与える影響はない。 	なし
容器内の水素濃度	格納容器内水素濃度(SA)	手手	原子炉圧力容器破損確 認 格納容器ベント判断	①主要パラメータの他チャンネル ②格納容器内水素濃度	 ①格納容器内水素濃度(SA)の1チャンネルが故障した場合は,他 チャンネルにより推定可能であり、判断に与える影響はない。 ②格納容器内水素濃度(SA)の監視が不可能となった場合は、格納 容器内水素濃度により推定可能であり、判断に与える影響はない。 	なし
原子炉格納容	格納容器内雰囲気放射線モニタ (D/W)	有 手 有	炉心損傷確認 原子炉格納容器除熱機 能確認	 ①主要パラメータの他チャンネル ②[エリア放射線モニタ]*² 	 ①格納容器内雰囲気放射線モニタ(D/W)の1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②格納容器内雰囲気放射線モニタ(D/W)の監視が不可能となった場合は、推定による評価条件が限定されるものの、原子炉格納容器内の線量当量率は納容器内雰囲気放射線モニタ(D/W)の他チャンネルにより推定できるため、事故収束に向けた対応を行う上で問題とはならない。 	なし
お内の線量当量率	格納容器内雰囲気放射線モニタ (S/C)	有手 有手	炉心損傷確認 原子炉格納容器除熱確 認	①主要パラメータの他チャンネル ②[エリア放射線モニタ]*2	 ①格納容器内雰囲気放射線モニタ(S/C)の1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②格納容器内雰囲気放射線モニタ(S/C)の監視が不可能となった場合は、推定による評価条件が限定されるものの、原子炉格納容器内の線量当量率は格納容器内雰囲気放射線モニタ(S/C)の他チャンネルにより推定できるため、事故収束に向けた対応を行う上で問題とはならない。 	なし

表 6-1 代替パラメータによる判断への影響(7/18)

*1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響
*	起動領域モニタ	有 手	原子炉スクラム確認原子炉未臨界確認	 ①主要パラメータの他チャンネル ②出力領域モニタ ③[制御棒操作監視系]*² 	 ①起動領域モニタの1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②起動領域モニタの監視が不可能となった場合は、出力領域モニタより推定可能であり、判断に与える影響はない。 ③制御棒は、発電用原子炉が低温状態において臨界未満に維持できる設備であるため、その機能が満足していることを全制御棒が全挿入位置にあることで確認することができる。これにより、発電用原子炉の未臨界を推定可能であり、判断に与える影響はない。 	なし
「臨界の維持又は監視	出力領域モニタ	有手手	原子炉スクラム確認原子炉未臨界確認	 ①主要パラメータの他チャンネル ②起動領域モニタ ③[制御棒操作監視系]*² 	 ①出力領域モニタの1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②出力領域モニタの監視が不可能となった場合は、起動領域モニタにより推定可能であり、判断に与える影響はない。 ③制御棒は、発電用原子炉が低温状態において臨界未満に維持できる設備であるため、その機能が満足していることを全制御棒が全挿入位置にあることで確認することができる。これにより、発電用原子炉の未臨界を推定可能であり、判断に与える影響はない。 	なし
	[制御棒操作監視系]*2	手	原子炉スクラム確認	 ①起動領域モニタ ②出力領域モニタ 	 ①制御棒操作監視系の監視が不可能となった場合は、起動領域モニタにより発電用原子炉の出力を監視可能であり、判断に与える影響はない。 ②出力領域モニタにより発電用原子炉の出力を監視可能であり、判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(8/18)

*1:代替パラメータの番号は優先順位を示す。

分	瀕	主要パラメータ	判断基準		代替パラメータ*1	代替パラメータによる判断への影響	
最終ヒートシンクの確保の監視		サプレッションチェンバプール水温度	有 代替循環冷却系による ① 手 原子炉格納容器除熱確 ② 認 □ □ ① □ □ ③ □ □ ○ □ □ ○ □ □ ○ □ □ ○ □ □ ○ □ □ ○ □ □ ○ □ □ ○ □ □ ○ □ □	①主要パラメータの他チャンネル ②サプレッションチェンバ気体温度	 ①サプレッションチェンバプール水温度の1 チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②サプレッションチェンバプール水温度の監視が不可能となった場合は、サプレッションチェンバ内の温度を同じ仕様のサプレッションチェンバプール水温度により推定可能であり、最終ヒートシンクが確保されていることを把握する上で判断に与える影響はない。 	, なし	
	代替循環冷却	復水補給水系温度(代替循環冷却)		①サプレッションチェンバプール水温 度	①復水補給水系温度(代替循環冷却)の監視が不可能となった場合は,除熱対象であるサプレッションチェンバプール水温度の低下傾向を確認することができれば,除熱が適切に行われていることを確認することができ,最終ヒートシンクが確保されていることを把握する上で判断に与える影響はない。	なし	
	子 孫	復水補給水系流量(RHR A 系代替注水流量)			①原子炉水位(広帯域) ①原子炉水位(燃料域) ①原子炉水位(SA) ②原子炉圧力容器温度	 ①復水補給水系流量(RHR A系代替注水流量)の監視が不可能となった場合は、崩壊熱除去に必要な注水量と原子炉水位変化率に相当する水量の和を利用して、発電用原子炉施設の状態を考慮した推定としており、崩壊熱除去に必要な注水量を確認し炉心冷却状態を把握する上で適用でき、最終ヒートシンクが確保されていることを把握する上で判断に与える影響はない。 ②除熱対象である原子炉圧力容器温度の低下傾向を確認することができれば、除熱が適切に行われていることを把握することができ、最終ヒートシンクが確保されていることを把握する上で判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(9/18)

*1:代替パラメータの番号は優先順位を示す。

1	分類	主要パラメータ	判断基準		代替パラメータ*1	代替パラメータによる判断への影響	影響
最終ヒートシンクの確保の監視代替循環冷却系	代替循環冷	復水補給水系流量(RHR B 系代替注水流量)		代替循環冷却系による 原子炉格納容器除熱確 認	 ①復水補給水系流量(RHR A系代替注水 流量) ①復水補給水系流量(格納容器下部注水 流量) ①復水移送ポンプ吐出圧力 ①格納容器内圧力(S/C) ①サプレッションチェンバプール水位 ②サプレッションチェンバプール水温度 ②ドライウェル雰囲気温度 ②サプレッションチェンバ気体温度 	 ①復水補給水系流量(RHR B系代替注水流量)の監視が不可能となった場合は、原子炉圧力容器側の復水補給水系流量(RHR A系代替注水流量)又は原子炉格納容器下部側の復水補給水系流量(格納容器下部注水流量)と復水移送ポンプ吐出圧力,格納容器内圧力(S/C)、サプレッションチェンバプール水位にて、復水移送ポンプの注水特性から推定した総流量より原子炉格納容器側への注水量を確認し、発電用原子炉施設の状態を考慮した推定としており、原子炉格納容器への注水量を把握する上で判断に与える影響はない。 ②除熱対象であるサプレッションチェンバプール水温度、ドライウェル雰囲気温度、サプレッションチェンバ気体温度の低下傾向を確認することができれば、除熱が適切に行われていることを確認することができ、最終ヒートシンクが確保されていることを把握する上で判断に与える影響はない。 	なし
	利系	復水補給水系流量(格納容器下部注水流量)			 ①復水補給水系流量(RHR B系代替注水 流量) ①復水移送ポンプ吐出圧力 ①格納容器内圧力(S/C) ①サプレッションチェンバプール水位 ②格納容器下部水位 	 ①復水補給水系流量(格納容器下部注水流量)の監視が不可能となった場合は、原子炉圧力容器側の復水補給水系流量(RHR B系代替注水流量)と復水移送ポンプ吐出圧力、格納容器内圧力(S/C)、サプレッションチェンバプール水位にて、復水移送ポンプの注水特性から推定した総流量より原子炉格納容器下部側への注水量を確認し、発電用原子炉施設の状態を考慮した推定としており、原子炉格納容器への注水量を把握する上で判断に与える影響はない。 ②格納容器下部に落下した溶融炉心を冷却するため、初期水張り:約2mが計測されれば良いため、事故対応を行う上で必要な状態を把握することができ、判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(10/18)

*1:代替パラメータの番号は優先順位を示す。

*2:[]は有効監視パラメータ又は重要監視パラメータの常用計器(耐震性又は耐環境性等はないが,監視可能であれば発電用原子炉施設の状態を把握することが可能な計器)を示す。

51

2	分類	主要パラメータ	判断基準		代替パラメータ*1	代替パラメータによる判断への影響	影響
		フィルタ装置水位	有手	格納容器圧力逃がし装置による原子炉格納容	①主要パラメータの他チャンネル	①フィルタ装置水位の1チャンネルが故障した場合は、他チャン ネルにより推定可能であり、判断に与える影響はない。	なし
最終ヒートシンクの確保の監視		フィルタ装置入口圧力			①格納容器内圧力 (D/₩) ①格納容器内圧力 (S/C)	①フィルタ装置入口圧力の監視が不可能となった場合は、格納容器内圧力(D/W)、格納容器内圧力(S/C)の低下傾向から格納容器ベントの実施を確認することができ、判断に与える影響はない。	なし
	格	フィルタ装置出口放射線モニタ			①主要パラメータの他チャンネル	①フィルタ装置出口放射線モニタの1 チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。	なし
	納容器圧力逃がし装置	フィルタ装置水素濃度			①主要パラメータの他チャンネル ②格納容器内水素濃度(SA)	 ①フィルタ装置水素濃度の1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②フィルタ装置水素濃度の監視が不可能となった場合は、原子炉格納容器内の水素ガスが格納容器圧力逃がし装置の配管内を通過することから、格納容器内水素濃度(SA)により推定可能であり、判断に与える影響はない。 	なし
	旦	フィルタ装置金属フィルタ差圧			①主要パラメータの他チャンネル	①フィルタ装置金属フィルタ差圧の1 チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。	なし
		フィルタ装置スクラバ水 pH			①フィルタ装置水位	①フィルタ装置スクラバ水 pH の監視が不可能となった場合は、 フィルタ装置スクラバ水に必要な pH が確保されているかを確認することが目的であり、フィルタ装置水位の水位変化を確認することで、必要な pH が確保されていることを推定であり、 判断に与える影響はない。	なし

表 6-1 代替パラメータによる判断への影響(11/18)

*1:代替パラメータの番号は優先順位を示す。

分	類	主要パラメータ	判断基準		代替パラメータ*1	代替パラメータによる判断への影響	影響
	耐圧強	耐圧強化ベント系放射線モニタ	手	耐圧強化ベント系によ る原子炉格納容器除熱 確認	①主要パラメータの他チャンネル	①耐圧強化ベント系放射線モニタの1 チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。	なし
最終ヒートシンクの確保の監視	化ベント系	フィルタ装置水素濃度			①格納容器内水素濃度(SA)	①フィルタ装置水素濃度が不可能となった場合は、原子炉格納容器内の水素ガスが格納容器圧力逃がし装置の配管内を通過することから、格納容器内水素濃度(SA)により推定可能であり、判断に与える影響はない。	なし
		残留熱除去系熱交換器入口温度	有手	残留熱除去系による原 子炉格納容器除熱確認	 ①原子炉圧力容器温度 ①サプレッションチェンバプール水温 度 	①残留熱除去系熱交換器入口温度の監視が不可能となった場合は、除熱対象である原子炉圧力容器温度、サプレッションチェンバプール水温度の低下傾向を確認することができれば、除熱が適切に行われていることを確認することができ、最終ヒートシンクが確保されていることを把握することができ、判断に与える影響はない。	
	残留熱除去系	残留熱除去系熱交換器出口温度			 ①残留熱除去系熱交換器入口温度 ②原子炉補機冷却水系系統流量 ②残留熱除去系熱交換器入口冷却水流量 	 ①残留熱除去系熱交換器出口温度の監視が不可能となった場合は、熱交換器ユニットの熱交換量評価から、残留熱除去系熱交換器入口温度により残留熱除去系熱交換器出口温度を推定可能であり、判断に与える影響はない。 ②原子炉補機冷却系の流量が確保されていることから残留熱除去系熱交換器出口側が冷却されるため、最終ヒートシンクが確保されていることを把握することができ、判断に与える影響はない。 	なし
		残留熱除去系系統流量				①残留熱除去系ポンプ吐出圧力	①残留熱除去系系統流量の監視が不可能となった場合は,残留熱除去系ポンプの注水特性から推定した流量より残留熱除去系系統流量を確認し,発電用原子炉施設の状態を考慮した推定としており,原子炉格納容器への注水量を把握するができ,判断に与える影響はない。

表 6-1 代替パラメータによる判断への影響(12/18)

*1:代替パラメータの番号は優先順位を示す。

1	分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響				
格納容器バイパスの監視		原子炉水位(広帯域) 原子炉水位(燃料域)	有手	有手	インターフェイス システム LOCA の 判断	①主要パラメータの他チャンネル ②原子炉水位 (SA)	 ①原子炉水位(広帯域),原子炉水位(燃料域)の1チャンネルが 故障した場合は、他チャンネルにより推定可能であり、判断に 与える影響はない。 ②原子炉水位(広帯域),原子炉水位(燃料域)の監視が不可能と なった場合は、同じ仕様の原子炉水位(SA)で原子炉圧力容器内 の水位を監視することができ、判断に与える影響はない。 	なし			
	原	原子炉水位(SA)			-	-	-		①原子炉水位(広帯域) ①原子炉水位(燃料域)	①同じ仕様の原子炉水位(広帯域),原子炉水位(燃料域)で原子 炉圧力容器内の水位を監視することができ、判断に与える影響 はない。	なし
	子炉圧力容器内の状態	原子炉圧力									 ①主要パラメータの他チャンネル ②原子炉圧力(SA) ③原子炉水位(広帯域) ③原子炉水位(燃料域) ③原子炉水位(SA) ③原子炉圧力容器温度
		原子炉圧力(SA)			①原子炉圧力 ②原子炉水位(広帯域) ②原子炉水位(燃料域) ②原子炉水位(SA) ②原子炉圧力容器温度	 ①原子炉圧力(SA)の監視が不可能となった場合は、同じ仕様の原 子炉圧力で原子炉圧力容器内の圧力を計測することができ、判 断に与える影響はない。 ②原子炉圧力容器内が飽和状態にあることが限定されるものの、 原子炉圧力容器内の圧力は上記①で推定可能であり、事故収束 を行う上で問題とならない。 	なし				

表 6-1 代替パラメータによる判断への影響(13/18)

有:重要事故シーケンス(有効性評価)に使用した判断基準,手:技術的能力審査基準(各手順)に係る判断基準

*1:代替パラメータの番号は優先順位を示す。

分類		主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響
格	原	ドライウェル雰囲気温度	有手	インターフェイスシ ステム LOCA の判断	 ①主要パラメータの他チャンネル ②格納容器内圧力 (D/W) 	①ドライウェル雰囲気温度の1チャンネルが故障した場合は、他 チャンネルにより推定可能であり、判断に与える影響はない。 ②ドライウェル雰囲気温度の監視が不可能となった場合は、原子 炉格納容器内が飽和状態にあることが限定されるが、重大事故 等時の有効性評価(雰囲気圧力・温度による静的負荷(格納容器 過圧・過温破損))において、事象初期において一時的に原子炉 格納容器内が過熱状態に至るものの、その後のほとんどの期間 で原子炉格納容器内は飽和状態に速やかに維持されることか ら、適用可能であり、判断に与える影響はない。	なし
*** 容器バイパスの監視	ナ炉格納容器内の状態	格納容器内圧力(D/W)			 ①格納容器内圧力 (S/C) ②ドライウェル雰囲気温度 ③[格納容器内圧力 (D/W)]*2 	 ①格納容器内圧力(D/W)の監視が不可能となった場合は、ドライウェルとサブレッションチェンバは、真空破壊装置、連通孔及びベント管を介してそれぞれ均圧されることから、同じ仕様の格納容器内圧力(S/C)により推定可能であり、原子炉格納容器の過圧破損防止対策を行う上で判断に与える影響はない。 ②原子炉格納容器内が飽和状態にあることが限定されるが、重大事故等時の有効性評価(雰囲気圧力・温度による静的負荷(格納容器過圧・過温破損))において、事象初期において一時的に原子炉格納容器内が過熱状態に至るものの、その後のほとんどの期間で原子炉格納容器の過圧破損防止対策に必要な情報を得ることができ判断に与える影響はない。 ③常用計器で格納容器内圧力(D/W)を監視可能であれば、判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(14/18)

*1:代替パラメータの番号は優先順位を示す。

分類		主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	
格納容器バイパスの監視	原子炉建	高圧炉心注水系ポンプ吐出圧力	有手	インターフェイスシ ステム LOCA の判断	 ①原子炉圧力 ①原子炉圧力 (SA) ②[エリア放射線モニタ]*² 	 ①高圧炉心注水系ポンプ吐出圧力の監視が不可能となった場合は、格納容器バイパスが発生した場合(発生箇所の隔離まで)は、原子炉圧力と破断箇所が同様の傾向を示すことから判断に与える影響はない。 ②エリア放射線モニタ(有効監視パラメータ)の指示値上昇傾向を把握することにより、格納容器バイパス事象が発生したことを推定可能であり、判断に与える影響はない。 	なし
	建屋内の状態	残留熱除去系ポンプ吐出圧力			①原子炉圧力 ①原子炉圧力 (SA) ②[エリア放射線モニタ]* ²	 ①残留熱除去系ポンプ吐出圧力の監視が不可能となった場合は、 格納容器バイパスが発生した場合(発生箇所の隔離まで)は、原 子炉圧力と破断箇所が同様の傾向を示すことから、破断検知を する上で、判断に与える影響はない。 ②エリア放射線モニタ(有効監視パラメータ)の指示値上昇傾向 を把握することにより、格納容器バイパスが発生したことを推 定可能であり、判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(15/18)

56 *1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ	主要パラメータ 判断基準		代替パラメータ*1	代替パラメータによる判断への影響	影響
水源の確	復水貯蔵槽水位(SA)	有手	高圧注水機能確認	 ①高圧代替注水系系統流量 ①復水補給水系流量(RHR A系代替注水流量) ①復水補給水系流量(RHR B系代替注水流量) ①原子炉隔離時冷却系系統流量 ①高圧炉心注水系系統流量 ①復水補給水系流量(格納容器下部注水流量) ②原子炉水位(広帯域) ②原子炉水位(燃料域) ②原子炉水位(SA) ②復水移送ポンプ吐出圧力 ③[復水貯蔵槽水位]*² 	 ①復水貯蔵槽水位(SA)の監視が不可能となった場合は、復水貯蔵 槽を水源とする各系統の注水量と直前まで判明していた復水貯 蔵槽の水位に水位容量曲線を用いて推定可能であり、判断に与 える影響はない。 ②復水移送ポンプが正常に動作していることをポンプ吐出圧力で 確認することで、必要な水源である復水貯蔵槽水位が確保され ていることを推定可能であり、判断に与える影響はない。 ②注水先の原子炉水位の水位変化を確認することで、必要な水源 である復水貯蔵槽水位が確保されていることを推定可能であ り、判断に与える影響はない。 ③常用計器で復水貯蔵槽水位を監視可能であれば、判断に与える 影響はない。 	なし
#保の監視	サプレッションチェンバプール 水位	有手	低圧注水機能確認	 ①復水補給水系流量(RHR A系代替注水流量) ①復水補給水系流量(RHR B系代替注水流量) ①残留熱除去系系統流量 ②復水移送ポンプ吐出圧力 ②残留熱除去系ポンプ吐出圧力 ③[サプレッションチェンバプール水位]*2 	 ①サプレッションチェンバプール水位の監視が不可能となった場合は、サプレッションチェンバプール水位を水源とする各系統の注水量と直前まで判明していたサプレッションチェンバの水位に水位容量曲線を用いて推定するため、必要な水源であるサプレッションチェンバプール水位が確保されていることを推定可能であり、判断に与える影響はない。 ②復水移送ボンブ及び残留熱除去系ポンプが正常に動作していることをポンプ吐出圧力で確認することで、必要な水源であるサプレッションチェンバプール水位が確保されていることを推定可能であり、判断に与える影響はない。 ③常用計器でサプレッションチェンバプール水位を監視可能であれば、判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(16/18)

*1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響
水素濃度	原子炉建屋水素濃度	手	原子炉建屋内水素濃 度確認	 ①主要パラメータの他チャンネル ②静的触媒式水素再結合器動作監視装置 	 ①原子炉建屋水素濃度の1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②原子炉建屋水素濃度の監視が不可能となった場合は、原子炉建屋内の水素ガスが静的触媒式水素再結合器で処理された場合、発熱反応が生じ、装置の入口と出口温度に差が生じる。温度差を測定することにより静的触媒式水素再結合器に入る水素濃度が推定可能であり、判断に与える影響はない。 	なし
酸素濃度	格納容器内酸素濃度	手 手	原子炉圧力容器破損 確認 格納容器ベント判断	 ①主要パラメータの他チャンネル ②格納容器内雰囲気放射線モニタ(D/W) ②格納容器内雰囲気放射線モニタ(S/C) ②格納容器内圧力(D/W) ②格納容器内圧力(S/C) 	 ①格納容器内酸素濃度の1チャンネルが故障した場合は、他チャンネルにより推定可能であり、判断に与える影響はない。 ②格納容器内酸素濃度の監視が不可能となった場合は、炉心損傷判断後の初期酸素濃度と保守的な6値を入力とした評価結果(解析結果)では、実際の原子炉格納容器内の酸素濃度よりも高く評価されることになるが、原子炉格納容器内にの水素燃焼を防止する上で判断に与える影響はない。 ②格納容器内圧力(D/W)及び格納容器内圧力(S/C)を確認し、事故後の原子炉格納容器内への空気(酸素)の流入有無を把握することは、炉心損傷判断後の初期酸素濃度と保守的な6値を入力とした評価結果(解析結果)の信頼性を上げることとなるから、原子炉格納容器内での水素燃焼の可能性を把握する上で判断に与える影響はない。 	なし

表 6-1 代替パラメータによる判断への影響(17/18)

有:重要事故シーケンス(有効性評価)に使用した判断基準、手:技術的能力審査基準(各手順)に係る判断基準

*1:代替パラメータの番号は優先順位を示す。

分類	主要パラメータ		判断基準	代替パラメータ*1	代替パラメータによる判断への影響	影響
使用済燃料貯蔵プールの監視	使用済燃料貯蔵プール水位・温度 (SA 広域)	有手	使用済燃料貯蔵プ ールの冷却機能又 は注水機能確認	①使用済燃料貯蔵プール水位・温度(SA) ②使用済燃料貯蔵プール放射線モニタ(高レン ジ・低レンジ) ③使用済燃料貯蔵プール監視カメラ	 ①同じ仕様の使用済燃料貯蔵プール水位・温度(SA)で使用済燃料 貯蔵プールの水位・温度を計測することができ、使用済燃料貯蔵 プールの監視を行う上で判断に与える影響はない。 ②水位/線量当量率の関係を利用して、必要な水位が確保されてい ることを推定でき、使用済燃料貯蔵プールの監視を行う上で判断 に与える影響はない。 ③使用済燃料貯蔵プールの状態の監視を行う上で判断に与える影響 響はない。 	なし
	使用済燃料貯蔵プール水位・温度 (SA)	有手		①使用済燃料貯蔵プール水位・温度(SA 広域) ②使用済燃料貯蔵プール放射線モニタ(高レン ジ・低レンジ) ③使用済燃料貯蔵プール監視カメラ	 ①同じ仕様の使用済燃料貯蔵プール水位・温度(SA 広域)で使用済 燃料貯蔵プールの水位・温度を計測することができ、使用済燃料 貯蔵プールの監視を行う上で判断に与える影響はない。 ②水位/線量当量率の関係を利用して、必要な水位が確保されてい ることを推定でき、使用済燃料貯蔵プールの監視を行う上で判断 に与える影響はない。 ③使用済燃料貯蔵プールの状態の監視を行う上で判断に与える影響 響はない。 	なし
	使用済燃料貯蔵プール放射線モ ニタ(高レンジ・低レンジ)	有手		 ①使用済燃料貯蔵プール水位・温度(SA 広域) ①使用済燃料貯蔵プール水位・温度(SA) ②使用済燃料貯蔵プール監視カメラ 	 ①水位/線量当量率の関係を利用して、必要な水位が確保されていることを推定でき、使用済燃料貯蔵プールの監視を行う上で判断に与える影響はない。 ②使用済燃料貯蔵プールの状態の監視を行う上で判断に与える影響はない。 	なし
	使用済燃料貯蔵プール監視カメ ラ	有手		 ①使用済燃料貯蔵プール水位・温度(SA 広域) ①使用済燃料貯蔵プール水位・温度(SA) ①使用済燃料貯蔵プール放射線モニタ(高レンジ・低レンジ) 	①水位/線量当量率の関係を利用して,必要な水位が確保されていることを推定でき,使用済燃料貯蔵プールの監視を行う上で判断に与える影響はない。	なし

表 6-1 代替パラメータによる判断への影響(18/18)

*1:代替パラメータの番号は優先順位を示す。

名称	検出器の種類	計測範囲	個数	取付箇所	誤差
原子炉圧力 容器温度	熱電対	0∼350℃	2	原子炉格納 容器内	±3.3℃
原子炉圧力	弹性圧力 検出器	0∼10MPa	3	原子炉建屋 地下1階	±0.03MPa
原子炉圧力(SA)	弹性圧力 検出器	0∼11MPa	1	原子炉建屋 地下1階	±0.074MPa
原子炉水位 (広帯域)	差圧式水位 検出器	$-3200\sim +3500 \mathrm{mm}^{*1}$	3	原子炉建屋 地下1階	± 47 mm
原子炉水位 (燃料域)	差圧式水位 検出器	$-4000 \sim$ +1300mm*2	2	原子炉建屋 地下3階	± 35 mm
百之后水位(64)	差圧式水位	$-3200\sim +3500 { m mm}^{*1}$	1	原子炉建屋 地下1階	$\pm 45 \mathrm{mm}$
原于沪水位(5A)	検出器	$-8000\sim +3500 { m mm}^{*1}$	1	原子炉建屋 地下3階	$\pm77 \mathrm{mm}$
高圧代替注水系 系統流量	差圧式流量 検出器	$0\sim 300 \mathrm{m}^3/\mathrm{h}$	1	原子炉建屋 地下2階	$\pm 3 m^3/h$
復水補給水系流量 (RHR A 系 代替注水流量)	差圧式流量 検出器	$0\sim 200 \text{m}^3/\text{h}$	1	原子炉建屋 地下1階	$\pm 1.9 \mathrm{m}^3/\mathrm{h}$
復水補給水系流量 (RHR B 系 代替注水流量)	差圧式流量 検出器	$0\sim 350 \mathrm{m}^3/\mathrm{h}$	1	原子炉建屋 地下1階	$\pm 3.4 \mathrm{m}^3/\mathrm{h}$
原子炉隔離時冷却系 系統流量	差圧式流量 検出器	$0\sim 300 \text{m}^3/\text{h}$	1	原子炉建屋 地下3階	$\pm 4.9 \mathrm{m}^3/\mathrm{h}$
高圧炉心注水系 系統流量	差圧式流量 検出器	$0\sim 1000 {m^3/h}$	2	原子炉建屋 地下3階	$\pm 16 \mathrm{m}^3/\mathrm{h}$
残留熱除去系 系統流量	差圧式流量 検出器	$0\sim$ 1500m ³ /h	3	原子炉建屋 地下3階	$\pm 31 \mathrm{m}^3/\mathrm{h}$
復水補給水系流量 (格納容器下部 注水流量)	差圧式流量 検出器	$0\sim\!150{ m m}^3/{ m h}$	1	原子炉建屋 地下2階	± 1.4 m³/h
ドライウェル 雰囲気温度	熱電対	0∼300°C	2	原子炉格納 容器内	±2.9°C
サプレッション チェンバ気体温度	熱電対	0∼300℃	1	原子炉格納 容器内	±2.9°C
サプレッション チェンバプール 水温度	測温抵抗体	0∼200℃	3	原子炉格納 容器内	±1.3°C

表 6-2 計装設備の計器誤差について(1/4)

名称	検出器の種類	計測範囲	個数	取付箇所	誤差
格納容器内圧力	弾性圧力	0~1000kPa		原子炉建屋	
(D/W)	検出器	[abs]	1	地上中3階	±6.7kPa
格納容器内圧力	弹性圧力	0∼980. 7kPa	1	原子炉建屋	
(S/C)	検出器	[abs]	1	地上1階	±0.0KPa
サプレッション チェンバプール水位	差圧式水位 検出器	$-6\!\!\sim\!+11 {\tt m}^{*3}$	1	原子炉建屋 地下3階	±0.14m
		$+3m^{*4}$	1		$-0\!\sim\!+100$ mm
格納容器下部水位	電極式水位	$+2m^{*4}$	1	原子炉格納	$-0 \sim +100$ mm
	快山岙	$+1m^{*4}$	1	谷岙内	$-0 \sim +100$ mm
格納容器内 水素濃度	熱伝導式 水素検出器	0~30vo1%	2	原子炉建屋 地上中3階 原子炉建屋 地上3階	$\pm 0.62\%$
格納容器内 水素濃度(SA)	水素吸蔵 材料式水素 検出器	0∼100vol%	2	原子炉格納 容器内	±2.0%
格納容器内雰囲気 放射線モニタ (D/W)	電離箱	10 ⁻² ~10 ⁵ Sv/h	2	原子炉建屋 地上1階	5. $2 \times 10^{N-1} \sim$ 1. $9 \times 10^{N} \text{Sv/h}$
格納容器内雰囲気 放射線モニタ (S/C)	電離箱	10 ⁻² ~10 ⁵ Sv/h	2	原子炉建屋 地下1階	5. $2 \times 10^{N-1} \sim$ 1. $9 \times 10^{N} \text{Sv/h}$
起動領域モニタ	核分裂 電離箱	$\begin{array}{c} 10^{-1} \sim 10^{6} \mathrm{s}^{-1} \\ (1.0 \times 10^{3} \sim \\ 1.0 \times 10^{9} \\ \mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}) \\ 0 \sim 40\% \ensuremath{\mathcal{I}} \ensuremath{\mathcal{I}} \ensuremath{\mathcal{I}} \\ 0 \sim 125\% \\ (1.0 \times 10^{8} \sim \\ 2.0 \times 10^{13} \\ \mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}) \end{array}$	10	原子炉格納 容器内	$7.0 \times 10^{N-1} \sim$ $1.4 \times 10^{N} s^{-1}$ $\pm 4.5\%$
出力領域モニタ	核分裂 電離箱	$\begin{array}{c} 0 & 3 \\ \hline 0 \sim 125\%^{*5} \\ (1.2 \times 10^{12} \sim \\ 2.8 \times 10^{14} \\ \mathrm{cm}^{-2} \cdot \mathrm{s}^{-1}) \end{array}$	208*6	原子炉格納 容器内	±2.5%
復水補給水系温度 (代替循環冷却)	熱電対	0∼200°C	1	原子炉建屋 地下3階	±2.1°C
フィルタ装置水位	差圧式水位 検出器	0~6000mm	2	屋外 (フィルタベン ト遮蔽壁内)	± 56 mm
フィルタ装置 入口圧力	弹性圧力 検出器	0~1MPa	1	原子炉建屋 地上3階	±0.007MPa

表 6-2 計装設備の計器誤差について(2/4)

		···· ··· ··· ··· ··· ·	-		
名称	検出器の種類	計測範囲	個数	取付箇所	誤差
フィルタ装置	示谢公	$10^{-2} \sim 10^5$	0	屋外	5. $13 \times 10^{N-1} \sim$
出口放射線モニタ	電解相	mSv/h	2	(原于炉建屋	$1.94 \times$
					10™mSv/h
フィルタ装置 水素濃度	熱伝導式 水素検出器	0∼100vo1%	2	原子炉建屋 地上3階	$\pm 2.0 \mathrm{vol}\%$
フィルタ装置 金属フィルタ差圧	差圧式 圧力検出器	0~50kPa	2	屋外 (フィルタベン ト遮蔽壁内)	± 0.39 kPa
フィルタ装置 スクラバ水 pH	pH 検出器	pH0∼14	1	屋外 (フィルタベン ト遮蔽壁内)	± 0.09 pH
耐圧強化ベント系		$10^{-2} \sim 10^5$		原子炉建屋	5. $13 \times 10^{N-1}$ ~
放射線モニタ	電離箱	mSv/h	2	地上4階	$1.94 \times$
				医子后热日	10 ^m mSv/h
残留熱除去系 熱交換器入口温度	熱電対	0∼300°C	3	原子炉建屋 地下3階	±3.2°C
残留熱除去系 熱交換器出口温度	熱電対	0∼300°C	3	原子炉建屋 地下2階	±3.2°C
原子炉補機冷却水系	差圧式流量	0~4000m³/h (区分Ⅰ, Ⅱ)	3	タービン建屋 地下2階	$\pm 27 \mathrm{m}^3/\mathrm{h}$
糸 税 流 重	(供出器)	$0\sim 3000 { m m}^3/{ m h}$		原子炉建屋	± 20 ³ /1
		(区分Ⅲ)		地下3階	<u> </u>
残留熱除去系				原子炉建屋	
熱交換器入口	走 上 式 流 量 検 出 器	$0\sim 2000 \mathrm{m}^3/\mathrm{h}$	3		$\pm 32 \text{m}^3/\text{h}$
冷却水流量				地下3階	
高圧炉心注水系 ポンプ吐出圧力	弹性圧力 検出器	0∼12.0MPa	2	原子炉建屋 地下3階	±0.08MPa
残留熱除去系 ポンプ吐出圧力	弹性圧力 検出器	0∼3.5MPa	3	原子炉建屋 地下3階	±0.023MPa
復水貯蔵槽水位	差圧式水位	0- 10 *7	-1	廃棄物処理建屋	+ 100
(SA)	検出器	$0 \sim + 10m^{-1}$	1	地下3階	<u> </u>
復水移送ポンプ	弹性圧力		0	廃棄物処理建屋	$\pm 0.014 \text{MD}_{-}$
吐出圧力	検出器	u∼2mPa	3	地下3階	⊥0.014MPa

表 6-2 計装設備の計器誤差について(3/4)

反升	かい 空 市 変	111年日 1111年11日11日11日11日11日11日11日11日11日11日11日11	佃粉	西什姓氏	記士
~ 1 你	1次山谷り1世親	百1 (四] 車已 出	间剱	取り固川	
	熱伝導式		3	原子炉建屋 地上4階	$\pm 0.8\%$ vo1%
百工后建民水表漂在		$0 \sim 20 \text{ wol} \frac{10}{2}$	2	原子炉建屋 地上 2 階	$\pm 0.8\%$ vo1%
坏] 於 建 座 小 茶 祳 反	水素検出器	0 2000170	1	原子炉建屋 地下1階	$\pm 0.8\%$ vo1%
			2	原子炉建屋 地下2階	$\pm 0.8\%$ vo1%
静的触媒式 水素再結合器 動作監視装置	熱電対	0∼300℃	4	原子炉建屋 地上4階	±2.9°C
格納容器内	熱磁気風式	0 00 10/	0	原子炉建屋 地上中3階	
酸素濃度	酸素検出器	0∼30vo1%	2	原子炉建屋 地上3階	±0.62%
使用済燃料貯蔵 プール水位・温度 (SA 広域)	熱電対	水位 T. M. S. L. 20180 mm~ T. M. S. L. 31170 mm 温度 0~150℃	1*8	原子炉建屋 地上4階	±1.7℃
使用済燃料貯蔵 プール水位・温度 (SA)	熱電対	水位 T. M. S. L. 23420 mm~ T. M. S. L. 30420 mm 温度 0~150℃	1*9	原子炉建屋 地上4階	±1.7℃
使用済燃料貯蔵 プール放射線モニタ (高レンジ)	電離箱	10~10 ⁸ mSv/h	1	原子炉建屋 地上4階	$5.13 \times 10^{\text{N-1}} \sim$ $1.94 \times$ $10^{\text{NmSv/h}}$
使用済燃料貯蔵 プール放射線モニタ (低レンジ)	電離箱	$10^{-2} \sim 10^{5}$ mSv/h	1	原子炉建屋 地上4階	$5.13 \times 10^{N-1} \sim$ $1.94 \times$ 10^{N}mSv/h

表 6-2 計装設備の計器誤差について(4/4)

注記*1 :基準点は蒸気乾燥器スカート下端"(原子炉圧力容器零レベルより1224cm)"。

*2 : 基準点は有効燃料棒上端"(原子炉圧力容器零レベルより 905cm)"。

*3 : 基準点は N.W.L. (T.M.S.L. - 1150mm)。

*4:基準点は下部ドライウェル底部。

*5:定格出力時の値に対する比率で示す。

*6 : 平均出力領域モニタの各チャンネル(4チャンネル)には,52個ずつの信号が入力される。

*7:基準点は復水貯蔵槽のノズル下端。

*8:検出点14箇所。

*9 : 検出点8箇所。

7. 格納容器内水素濃度(SA)の設置位置について

格納容器内水素濃度(SA)の設置位置を図1-1「格納容器内水素濃度(SA)の設置位置」に示す。 また,ドライウェルスプレイ管及びサプレッションチェンバスプレイ管との詳細の位置関係並びに 格納容器スプレイの影響範囲を示した図を図1-2「格納容器スプレイ影響範囲図」に示す。

図 1-1 に示すとおり,格納容器内水素濃度(SA)の設置高さは格納容器スプレイによる原子炉格 納容器の水位上昇を考慮しても水没しない高さ,かつ格納容器内水素濃度と同等の高さとしている。

図 1-2 に示す通り,ドライウェルスプレイ管及びサプレッションチェンバスプレイ管のスプレイ 角度を考慮しても,スプレイによる検出性能への影響はない位置に検出器を設置している。ドライ ウェルスプレイの場合,下向き 度でスプレイされ,サプレッションチェンバの場合,上向き 度でスプレイされる。スプレイノズルの形状により放出範囲には幅があるため,検出器に最も近づ く軌道でスプレイが放出された場合においても開口部は被水しないため検出性能に影響がないこと を確認している。*

また,格納容器内水素濃度(SA)の周囲に原子炉格納容器内の気体が滞留するような構造物がなく,開口部が閉塞しない位置に設置している。

注記*:共同研究「内部火災及び内部溢水 PRA の高度化に関する研究」における配管破断時に放出 される水滴の軌道を求める式により,格納容器スプレイの軌道を確認。

A部詳細

B部詳細

図 1-2 格納容器スプレイ影響範囲図