本資料のうち、枠囲みの内容 は、機密事項に属しますので 公開できません。

柏崎刈羽原子力発電所第6号機	設計及び工事計画審査資料
資料番号	KK6 添-2-034-3 改 0
提出年月日	2023年11月27日

VI-2-3-3-1-3 原子炉圧力容器本体の応力計算書

2023年11月 東京電力ホールディングス株式会社 VI-2-3-3-1-3 原子炉圧力容器本体の応力計算書

目 次(全体目次)

1.	概要	1-1
2.	胴板の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-1
3.	下部鏡板の応力計算・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-1
4.	制御棒駆動機構ハウジング貫通孔の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-1
5.	原子炉冷却材再循環ポンプ貫通孔 (N1) の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-1
6.	主蒸気ノズル (N3) の応力計算	6-1
7.	給水ノズル (N4) の応力計算	7-1
8.	低圧注水ノズル (N6) の応力計算	8-1
9.	上蓋スプレイ・ベントノズル (N7) の応力計算	9-1
10.	原子炉停止時冷却材出口ノズル(N8)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-1
11.	原子炉停止時冷却材出口ノズル(N10)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-1
12.	原子炉冷却材再循環ポンプ差圧検出ノズル(N9)の応力計算 ·····	12-1
13.	炉心支持板差圧検出ノズル(N11)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-1
14.	計装ノズル(N12)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-1
15.	計装ノズル(N13)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-1
16.	計装ノズル(N14)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-1
17.	ドレンノズル (N15) の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-1
18.	高圧炉心注水ノズル(N16)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-1

目 次

(胴板)

2. 胴板の応力計算	2-1
2.1 一般事項 ·····	2-1
2.1.1 形状・寸法・材料	2-1
2.1.2 解析範囲	2-1
2.1.3 計算結果の概要	2-1
2.2 計算条件 ·····	2-4
2.2.1 設計条件	2-4
2.2.2 運転条件	2-4
2.2.3 材料	2-4
2.2.4 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-4
2.2.5 荷重の組合せ及び応力評価	2-4
2.2.6 許容応力 ·····	2-4
2.3 応力計算	2-4
2.3.1 応力評価点	2-4
2.3.2 内圧による応力	2-4
2.3.3 外荷重による応力	2-5
2.3.4 応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-5
2.4 応力強さの評価	2-5
2.4.1 一次一般膜応力強さの評価	2-5
2.4.2 一次膜+一次曲げ応力強さの評価	2-5
2.4.3 一次+二次応力強さの評価	2-5
2.5 繰返し荷重の評価	2-6
2.5.1 疲労解析	2-6

図 表 目 次 (胴板)

図2-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-2
図2-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-7
表2-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-3
表2-2	機器諸元	2-8
表2-3	一次一般膜応力強さの評価のまとめ	2-9
表2-4	一次膜+一次曲げ応力強さの評価のまとめ	2-10
表2-5	一次+二次応力強さの評価のまとめ	2-11
表2-6	疲労累積係数の評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-12

目 次(下部鏡板)

3. 下部	鏡板の応力計算	3-1
3.1	般事項	3-1
3. 1. 1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-1
3. 1. 2	解析範囲	3-1
3. 1. 3	計算結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-1
3.2 計	算条件	3-4
3. 2. 1	設計条件	3-4
3. 2. 2	運転条件	3-4
3. 2. 3	材料	3-4
3. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-4
3. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-4
3. 2. 6	許容応力	3-4
3.3 応	力計算	3-4
3. 3. 1	応力評価点	3-4
3. 3. 2	内圧及び差圧による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-4
3. 3. 3	外荷重による応力	3-5
3. 3. 4	応力の評価	3-5
3.4 応	力強さの評価	3-5
3. 4. 1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-5
3. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-5
3. 4. 3	一次+二次応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-6
3.5 繰	返し荷重の評価	3-6
3 5 1	疲労解析	3-6

(下部鏡板)

図3-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-2
図3-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-7
表3-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3-3
表3-2	機器諸元	3-8
表3-3	一次一般膜応力強さの評価のまとめ	3-9
表3-4	一次膜+一次曲げ応力強さの評価のまとめ	3-10
表3-5	一次+二次応力強さの評価のまとめ	3-11
表3-6	疲労累積係数の評価のまとめ	3-12

目 次 (制御棒駆動機構ハウジング貫通孔)

4. 制御棒駆動機構ハウジング貫通孔の応力計算	· · 4-1
4.1 一般事項	· · 4-1
4.1.1 記号の説明	· · 4-1
4.1.2 形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	· · 4-1
4.1.3 解析範囲	· · 4-1
4.1.4 計算結果の概要	· · 4-1
4.2 計算条件	· · 4-4
4.2.1 設計条件	• 4-4
4.2.2 運転条件	• 4-4
4.2.3 材料	• 4-4
4.2.4 荷重の組合せ及び許容応力状態	• 4-4
4.2.5 荷重の組合せ及び応力評価	•• 4-4
4.2.6 許容応力	• • 4-4
4.3 応力計算	•• 4-4
4.3.1 応力評価点	•• 4-4
4.3.2 内圧による応力	•• 4-4
4.3.3 外荷重による応力	• 4-5
4.3.4 応力の評価	• 4-5
4.4 応力強さの評価	• 4-5
4.4.1 一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 4-5
4.4.2 一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 4-5
4.4.3 一次+二次応力強さの評価	• 4-5
4.5 繰返し荷重の評価	• • 4-6
4.5.1 疲労解析	• • 4-6
4.6 特別な応力の評価	• • 4-6
4.6.1 座屈に対する評価	4-6

(制御棒駆動機構ハウジング貫通孔)

図4-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-2
図 4−2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-8
表4-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-3
表4-2	機器諸元	4-9
表4-3	一次一般膜応力強さの評価のまとめ	4-10
表4-4	一次膜+一次曲げ応力強さの評価のまとめ	4-11
表4-5	一次+二次応力強さの評価のまとめ	4-12
表4-6	疲労累積係数の評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-13
表4-7	座屈に対する評価に用いる荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-14
表4-8	座屈に対する評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-14

目 次 (原子炉冷却材再循環ポンプ貫通孔(N1))

5. 原子	炉冷却材再循環ポンプ貫通孔(N1)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-1
5. 1 —	般事項	5-1
5. 1. 1	記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-1
5. 1. 2	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-1
5. 1. 3	解析範囲	5-1
5. 1. 4	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-1
5.2 計	算条件	5-4
5. 2. 1	設計条件	5-4
5. 2. 2	運転条件	5-4
5. 2. 3	材料	5-4
5. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-4
5. 2. 5	荷重の組合せ及び応力評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-4
5. 2. 6	許容応力 ·····	5-4
5.3 応	力計算	5-4
5. 3. 1	応力評価点	5-4
5. 3. 2	内圧及び動圧による応力	5-4
5. 3. 3	外荷重による応力	5-5
5. 3. 4	応力の評価	5-5
5.4 応	力強さの評価	5-5
5. 4. 1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-5
5. 4. 2	一次膜+一次曲げ応力強さの評価	5-5
5. 4. 3	一次+二次応力強さの評価	5-5
5.5 繰	返し荷重の評価	5-6
5. 5. 1	疲労解析	5-6
5.6 特点	別な応力の評価	5-6
5. 6. 1	座屈に対する評価	5-6

(原子炉冷却材再循環ポンプ貫通孔 (N1))

図5-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-2
図5-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-8
表5-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-3
表5-2	機器諸元	5-10
表5-3	一次一般膜応力強さの評価のまとめ	5-11
表5-4	一次膜+一次曲げ応力強さの評価のまとめ	5-12
表5-5	一次+二次応力強さの評価のまとめ	5-13
表5-6	疲労累積係数の評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-14
表5-7	座屈に対する評価に用いる荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5-15
表5-8	座屈に対する評価	5-15

目 次 (主蒸気ノズル (N3))

6.	主蒸気	〔ノズル(N3)の応力計算	6-1
6.	1 一船	设事項	6-1
	6.1.1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-1
	6.1.2	解析範囲	6-1
	6. 1. 3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-1
6.	2 計算	章条件	6-4
	6. 2. 1	設計条件	6-4
	6. 2. 2	運転条件	6-4
	6. 2. 3	材料	6-4
	6. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-4
	6. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-4
	6. 2. 6	許容応力 ·····	6-4
6.	3 応力	フ計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-4
	6.3.1	応力評価点	6-4
	6.3.2	内圧による応力	6-4
	6. 3. 3	外荷重による応力	6-5
	6.3.4	応力の評価	6-5
6.	4 応力	J強さの評価 ·····	6-5
	6. 4. 1	一次一般膜応力強さの評価	6-5
	6.4.2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-5
	6. 4. 3	一次+二次応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-5
6.	5 繰返	豆し荷重の評価	6-6
	6. 5. 1	疲労解析	6-6

図 表 目 次 (主蒸気ノズル (N3))

図6-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-2
図6-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-7
表6-1	計算結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-3
表6-2	機器諸元	6-9
表6-3	一次一般膜応力強さの評価のまとめ	6-10
表6-4	一次膜+一次曲げ応力強さの評価のまとめ	6-11
表6-5	一次+二次応力強さの評価のまとめ	6-12
表6-6	疲労累積係数の評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-13

目 次 (給水ノズル (N4))

7. 給水ノズル (N4	4)の応力計算	7-1
7.1 一般事項 ·		7-1
7.1.1 形状・寸	†法・材料	7-1
7.1.2 解析範囲	且	7-1
7.1.3 計算結果	その概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-1
7.2 計算条件 ·		7-4
7.2.1 設計条件	‡ ·····	7-4
7.2.2 運転条件	‡	7-4
7.2.3 材料 ·		7-4
7.2.4 荷重の組	B合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-4
7.2.5 荷重の組	且合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-4
7.2.6 許容応力	j	7-4
7.3 応力計算 ·		7-4
7.3.1 応力評価	西点	7-4
7.3.2 内圧及び	が差圧による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-4
7.3.3 外荷重に	こよる応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-5
7.3.4 応力の評	平価	7-5
7.4 応力強さの評	平価 ·····	7-5
7.4.1 一次一般	段膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-5
7.4.2 一次膜+	- 一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-5
7.4.3 一次十二	こ次応力強さの評価	7-5
7.5 繰返し荷重の)評価	7-6
7.5.1 疲労解析	f	7-6

図 表 目 次 (給水ノズル (N4))

図7-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-2
図 7-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-7
表7-1	計算結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-3
表7-2	機器諸元	7-9
表7-3	一次一般膜応力強さの評価のまとめ	7-10
表7-4	一次膜+一次曲げ応力強さの評価のまとめ	7-11
表7-5	一次+二次応力強さの評価のまとめ	7-12
表7-6	疲労累積係数の評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7-13

目 次 (低圧注水ノズル (N6))

8.	低圧沒	È水ノズル (N6) の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-1
8. 1	一般	段事項 ·····	8-1
8	. 1. 1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-1
8	. 1. 2	解析範囲	8-1
8	. 1. 3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-1
8. 2	計算	章条件	8-4
8	. 2. 1	設計条件	8-4
8	. 2. 2	運転条件	8-4
8	. 2. 3	材料	8-4
8	. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-4
8	. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-4
8	. 2. 6	許容応力 ·····	8-4
8.3	応力	フ計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-4
8	. 3. 1	応力評価点	8-4
8	. 3. 2	内圧及び差圧による応力	8-4
8	. 3. 3	外荷重による応力	8-5
8	. 3. 4	応力の評価	8-5
8. 4	応力	D強さの評価	8-5
8	. 4. 1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-5
8	. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-5
8	. 4. 3	一次+二次応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-6
8.5	繰迟	図し荷重の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-6
8	. 5. 1	疲労解析 · · · · · · · · · · · · · · · · · · ·	8-6

図 表 目 次 (低圧注水ノズル (N6))

図8-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-2
図8-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-7
表8-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-3
表8-2	機器諸元	8-9
表8-3	一次一般膜応力強さの評価のまとめ	8-10
表8-4	一次膜+一次曲げ応力強さの評価のまとめ	8-11
表8-5	一次+二次応力強さの評価のまとめ	8-12
表8-6	疲労累積係数 · · · · · · · · · · · · · · · · · · ·	8-13
表8-7	疲労累積係数の評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8-14

目 次 (上蓋スプレイ・ベントノズル (N7))

9. 上記	きスプレイ・ベントノズル(N7)の応力計算 ·····	9-1
9.1 -	-般事項	9-1
9. 1.	1 形状・寸法・材料	9-1
9. 1.	2 解析範囲	9-1
9. 1.	3 計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9-1
9.2 言	†算条件	9-4
9. 2.	1 設計条件	9-4
9. 2.	2 運転条件	9-4
9. 2.	3 材料	9-4
9. 2.	4 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9-4
9. 2.	5 荷重の組合せ及び応力評価	9-4
9. 2.	6 許容応力	9-4
9.3 万	5.力計算	9-4
9. 3.	1 応力評価点	9-4
9. 3.	2 内圧による応力	9-4
9. 3.	3 外荷重による応力	9-5
9. 3.	4 ボルト荷重による応力	9-5
9. 3.	5 応力の評価	9-5
9.4 万	5.力強さの評価	9-5
9.4.	1 一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9-5
9.4.	2 一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9-6
9. 4.	3 一次+二次応力強さの評価	9-6
9.5 糸	ぬ返し荷重の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9-6
9. 5.	1 疲労解析	9-6

図 表 目 次 (上蓋スプレイ・ベントノズル (N7))

図9-1	形状・寸法・材料・応力評価点	9-2
図9-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9-7
表9-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9-3
表9-2	機器諸元	9-9
表9-3	一次一般膜応力強さの評価のまとめ	9-10
表9-4	一次膜+一次曲げ応力強さの評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9-11
表9-5	一次+二次応力強さの評価のまとめ	9-12
表9-6	疲労累積係数の評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9-13

目 次 (原子炉停止時冷却材出口ノズル (N8))

10. 原子均	戸停止時冷却材出口ノズル (N8) の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-1
10.1 一角	安事項 ·····	10-1
10. 1. 1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-1
10. 1. 2	解析範囲	10-1
10. 1. 3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-1
10.2 計算	章条件	10-4
10. 2. 1	設計条件	10-4
10. 2. 2	運転条件	10-4
10. 2. 3	材料	10-4
10. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-4
10. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-4
10. 2. 6	許容応力 ·····	10-4
10.3 応力	力計算	10-4
10. 3. 1	応力評価点	10-4
10. 3. 2	内圧による応力	10-4
10. 3. 3	外荷重による応力	10-5
10. 3. 4	応力の評価	10-5
10.4 応力	り強さの評価	10-5
10. 4. 1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-5
10. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-5
10. 4. 3	一次+二次応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-5
10.5 繰過	豆し荷重の評価	10-6
10. 5. 1	疲労解析 ·····	10-6

(原子炉停止時冷却材出口ノズル (N8))

図10-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-2
図10-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-7
表10-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	10-3
表10-2	機器諸元	10-9
表10-3	一次一般膜応力強さの評価のまとめ	10-10
表10-4	一次膜+一次曲げ応力強さの評価のまとめ	10-11
表10-5	一次+二次応力強さの評価のまとめ	10-12
表10-6	疲労累積係数の評価のまとめ	10-13

目 次 (原子炉停止時冷却材出口ノズル (N10))

11. 原子均	戸停止時冷却材出口ノズル(N10)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-1
11.1 一角	ຽ事項 · · · · · · · · · · · · · · · · · · ·	11-1
11. 1. 1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-1
11. 1. 2	解析範囲	11-1
11. 1. 3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-1
11.2 計算	章条件	11-4
11. 2. 1	設計条件	11-4
11. 2. 2	運転条件	11-4
11. 2. 3	材料	11-4
11. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-4
11. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-4
11. 2. 6	許容応力	11-4
11.3 応力	り計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-4
11. 3. 1	応力評価点	11-4
11. 3. 2	内圧による応力	11-4
11. 3. 3	外荷重による応力	11-5
11. 3. 4	応力の評価	11-5
11.4 応力	り強さの評価	11-5
11. 4. 1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-5
11. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-5
11. 4. 3	一次+二次応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-5
11.5 繰過	豆し荷重の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-6
11. 5. 1	疲労解析	11-6

(原子炉停止時冷却材出口ノズル (N10))

図11-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-2
図11-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-7
表11-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	11-3
表11-2	機器諸元	11-9
表11-3	一次一般膜応力強さの評価のまとめ	11-10
表11-4	一次膜+一次曲げ応力強さの評価のまとめ	11-11
表11-5	一次+二次応力強さの評価のまとめ	11-12
表11-6	疲労累積係数の評価のまとめ	11-13

目 次 (原子炉冷却材再循環ポンプ差圧検出ノズル (N9))

12. 原子烷	戸冷却材再循環ポンプ差圧検出ノズル(N9)の応力計算 ·····	12-1
12.1 一病	段事項	12-1
12. 1. 1	記号の説明	12-1
12. 1. 2	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-1
12. 1. 3	解析範囲	12-1
12. 1. 4	計算結果の概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-1
12.2 計算	章条件	12-4
12. 2. 1	設計条件	12-4
12. 2. 2	運転条件	12-4
12. 2. 3	材料	12-4
12. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-4
12. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-4
12. 2. 6	許容応力 ·····	12-4
12.3 応力	力計算	12-4
12. 3. 1	応力評価点	12-4
12. 3. 2	内圧による応力	12-4
12. 3. 3	外荷重による応力	12-5
12. 3. 4	応力の評価	12-5
12.4 応	力強さの評価	12-5
12. 4. 1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-5
12. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-5
12. 4. 3	一次+二次応力強さの評価	12-5
12.5 繰記	返し荷重の評価	12-6
12. 5. 1	疲労解析	12-6
12.6 特別	別な応力の評価	12-6
12. 6. 1	座屈に対する評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-6

(原子炉冷却材再循環ポンプ差圧検出ノズル (N9))

図12-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-2
図12-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-8
表12-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-3
表12-2	機器諸元	12-10
表12-3	一次一般膜応力強さの評価のまとめ	12-11
表12-4	一次膜+一次曲げ応力強さの評価のまとめ	12-12
表12-5	一次+二次応力強さの評価のまとめ	12-13
表12-6	疲労累積係数の評価のまとめ	12-14
表12-7	座屈に対する評価に用いる荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12-15
表12-8	座屈に対する評価	12-15

目 次 (炉心支持板差圧検出ノズル (N11))

13. 炉心艺	支持板差圧検出ノズル(N11)の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-1
13.1 一般	段事項	13-1
13. 1. 1	記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-1
13. 1. 2	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-1
13. 1. 3	解析範囲	13-1
13. 1. 4	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-1
13.2 計算	章条件	13-4
13. 2. 1	設計条件	13-4
13. 2. 2	運転条件	13-4
13. 2. 3	材料	13-4
13. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-4
13. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-4
13. 2. 6	許容応力	13-4
13.3 応力	力計算	13-4
13. 3. 1	応力評価点	13-4
13. 3. 2	内圧による応力	13-4
13. 3. 3	外荷重による応力	13-5
13. 3. 4	応力の評価	13-5
13.4 応力	D強さの評価	13-5
13. 4. 1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-5
13. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-5
13. 4. 3	一次+二次応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-5
13.5 繰迟	豆し荷重の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-6
13. 5. 1	疲労解析	13-6
13.6 特別	な応力の評価	13-6
13. 6. 1	座屈に対する評価	13-6

(炉心支持板差圧検出ノズル (N11))

図13-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-2
図13-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-8
表13-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-3
表13-2	機器諸元	13-10
表13-3	一次一般膜応力強さの評価のまとめ	13-11
表13-4	一次膜+一次曲げ応力強さの評価のまとめ	13-12
表13-5	一次+二次応力強さの評価のまとめ	13-13
表13-6	疲労累積係数の評価のまとめ	13-14
表13-7	座屈に対する評価に用いる荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-15
表13-8	座屈に対する評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	13-15

目 次 (計装ノズル (N12))

14. 計裝/	/ズル(N12)の応力計算 ·····	14-1
14.1 一般	段事項 ·····	14-1
14. 1. 1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-1
14. 1. 2	解析範囲	14-1
14. 1. 3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-1
14.2 計算	算条件	14-4
14. 2. 1	設計条件	14-4
14. 2. 2	運転条件	14-4
14. 2. 3	材料	14-4
14. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-4
14. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-4
14. 2. 6	許容応力 ·····	14-4
14.3 応力	力計算	14-4
14. 3. 1	応力評価点	14-4
14. 3. 2	内圧による応力	14-4
14. 3. 3	外荷重による応力	14-5
14. 3. 4	応力の評価	14-5
14.4 応力	り強さの評価	14-5
14. 4. 1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-5
14. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-5
14. 4. 3	一次+二次応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-6
14.5 繰迟	豆し荷重の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-6
14. 5. 1	疲労解析 ·····	14-6

(計装ノズル (N12))

図14-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-2
図14-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-7
表14-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-3
表14-2	機器諸元	14-9
表14-3	一次一般膜応力強さの評価のまとめ	14-10
表14-4	一次膜+一次曲げ応力強さの評価のまとめ	14-11
表14-5	一次+二次応力強さの評価のまとめ	14-12
表14-6	疲労累積係数	14-13
表14-7	疲労累積係数の評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14-14

目 次 (計装ノズル (N13))

15. 計装/	/ズル(N13)の応力計算 ·····	15-1
15.1 一船	安事項	15-1
15. 1. 1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-1
15. 1. 2	解析範囲	15-1
15. 1. 3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-1
15.2 計算	章条件	15-4
15. 2. 1	設計条件	15-4
15. 2. 2	運転条件 · · · · · · · · · · · · · · · · · · ·	15-4
15. 2. 3	材料	15-4
15. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-4
15. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-4
15. 2. 6	許容応力 ·····	15-4
15.3 応力	力計算	15-4
15. 3. 1	応力評価点	15-4
15. 3. 2	内圧による応力	15-4
15. 3. 3	外荷重による応力	15-5
15. 3. 4	応力の評価	15-5
15.4 応力	り強さの評価	15-5
15. 4. 1	一次一般膜応力強さの評価	15-5
15. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-5
15. 4. 3	一次+二次応力強さの評価	15-6
15.5 繰迟	豆し荷重の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-6
15. 5. 1	疲労解析 · · · · · · · · · · · · · · · · · · ·	15-6

(計装ノズル (N13))

図15-1	形状・寸法・材料・応力評価点	15-2
図15-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-7
表15-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-3
表15-2	機器諸元	15-9
表15-3	一次一般膜応力強さの評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15-10
表15-4	一次膜+一次曲げ応力強さの評価のまとめ	15-11
表15-5	一次+二次応力強さの評価のまとめ	15-12
表15-6	疲労累積係数	15-13
表15-7	疲労累積係数の評価のまとめ	15-14

目 次 (計装ノズル (N14))

16. 計装/	/ズル(N14)の応力計算 ·····	16-1
16.1 一角	ຽ事項	16-1
16. 1. 1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-1
16. 1. 2	解析範囲	16-1
16. 1. 3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-1
16.2 計算	章条件	16-4
16. 2. 1	設計条件	16-4
16. 2. 2	運転条件	16-4
16. 2. 3	材料	16-4
16. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-4
16. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-4
16. 2. 6	許容応力 ·····	16-4
16.3 応力	り計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-4
16. 3. 1	応力評価点	16-4
16. 3. 2	内圧による応力	16-4
16. 3. 3	外荷重による応力	16-5
16. 3. 4	応力の評価	16-5
16.4 応力	り強さの評価	16-5
16. 4. 1	一次一般膜応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-5
16. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-5
16. 4. 3	一次+二次応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-5
16.5 繰过	豆し荷重の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-6
16, 5, 1	疲労解析	16-6

(計装ノズル (N14))

図16-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-2
図16-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-7
表16-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16-3
表16-2	機器諸元	16-9
表16-3	一次一般膜応力強さの評価のまとめ	16-10
表16-4	一次膜+一次曲げ応力強さの評価のまとめ	16-11
表16-5	一次+二次応力強さの評価のまとめ	16-12
表16-6	疲労累積係数の評価のまとめ	16-13

目 次 (ドレンノズル (N15))

17. ドレン	/ノズル(N15)の応力計算 ·····	17-1
17.1 一角	段事項 ·····	17-1
17. 1. 1	形状・寸法・材料 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-1
17. 1. 2	解析範囲	17-1
17. 1. 3	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-1
17.2 計算	章条件	17-4
17. 2. 1	設計条件	17-4
17. 2. 2	運転条件 · · · · · · · · · · · · · · · · · · ·	17-4
17. 2. 3	材料	17-4
17. 2. 4	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-4
17. 2. 5	荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-4
17. 2. 6	許容応力 ·····	17-4
17.3 応力	力計算	17-4
17. 3. 1	応力評価点	17-4
17. 3. 2	内圧による応力	17-4
17. 3. 3	外荷重による応力	17-5
17. 3. 4	応力の評価	17-5
17.4 応力	り強さの評価	17-5
17. 4. 1	一次一般膜応力強さの評価	17-5
17. 4. 2	一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-5
17. 4. 3	一次+二次応力強さの評価	17-5
17.5 繰迟	豆し荷重の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-6
17. 5. 1	疲労解析 · · · · · · · · · · · · · · · · · · ·	17-6

(ドレンノズル (N15))

図17-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-2
図17-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-7
表17-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-3
表17-2	機器諸元	17-8
表17-3	一次一般膜応力強さの評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	17-9
表17-4	一次膜+一次曲げ応力強さの評価のまとめ	17-10
表17-5	一次+二次応力強さの評価のまとめ	17-11
表17-6	疲労累積係数の評価のまとめ	17-12

目 次 (高圧炉心注水ノズル (N16))

18. 高圧炉心注水ノズル (N16) の応力計算 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-1
18.1 一般事項	18-1
18.1.1 形状・寸法・材料	18-1
18.1.2 解析範囲	18-1
18.1.3 計算結果の概要	18-1
18.2 計算条件 · · · · · · · · · · · · · · · · · · ·	18-4
18.2.1 設計条件	18-4
18.2.2 運転条件	18-4
18.2.3 材料	18-4
18.2.4 荷重の組合せ及び許容応力状態	18-4
18.2.5 荷重の組合せ及び応力評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-4
18.2.6 許容応力	18-4
18.3 応力計算	18-4
18.3.1 応力評価点	18-4
18.3.2 内圧及び差圧による応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-4
18.3.3 外荷重による応力	18-5
18.3.4 応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-5
18.4 応力強さの評価	18-5
18.4.1 一次一般膜応力強さの評価	18-5
18.4.2 一次膜+一次曲げ応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-5
18.4.3 一次+二次応力強さの評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-6
18.5 繰返し荷重の評価	18-6
18.5.1 疲労解析	18-6

図 表 目 次

(高圧炉心注水ノズル (N16))

図18-1	形状・寸法・材料・応力評価点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-2
図18-2	応力計算のモデル ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-7
表18-1	計算結果の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-3
表18-2	機器諸元	18-9
表18-3	一次一般膜応力強さの評価のまとめ	18-10
表18-4	一次膜+一次曲げ応力強さの評価のまとめ	18-11
表18-5	一次+二次応力強さの評価のまとめ	18-12
表18-6	疲労累積係数	18-13
表18-7	疲労累積係数の評価のまとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18-14

1. 概要

本計算書は、原子炉圧力容器本体の応力計算書である。

本計算書の各機器は、VI-2-3-3-1-1「原子炉圧力容器の応力解析の方針」(以下「応力解析の方針」という。)に基づき評価する。

本計算書は,原子炉圧力容器本体であって,設計基準対象施設及び重大事故等対処設備に分類される下記の機器について,構造強度評価の結果を示すものである。

- 胴板
- 下部鏡板
- ・制御棒駆動機構ハウジング貫通孔
- ・原子炉冷却材再循環ポンプ貫通孔 (N1)
- ・主蒸気ノズル (N3)
- ・給水ノズル (N4)
- ・低圧注水ノズル (N6)
- ・上蓋スプレイ・ベントノズル (N7)
- ・原子炉停止時冷却材出口ノズル (N8)
- ・原子炉停止時冷却材出口ノズル (N10)
- ・原子炉冷却材再循環ポンプ差圧検出ノズル (N9)
- ・炉心支持板差圧検出ノズル (N11)
- ・計装ノズル (N12)
- ・計装ノズル (N13)
- ・計装ノズル (N14)
- ・ドレンノズル (N15)
- ・高圧炉心注水ノズル (N16)

なお、原子炉圧力容器であって、設計基準対象施設に分類される下記の機器については、VI-2-3-3-1-2(1)「原子炉圧力容器の耐震計算結果」に構造強度評価の結果を示す。

- ブラケット類
- ・原子炉圧力容器スカート
- ・原子炉圧力容器基礎ボルト

注:本計算書においては、平成5年6月17日付け4資庁第14561号にて認可された工事計画の添付書類(「応力解析の方針」の参照図書(1))を「既工認」という。

2. 胴板の応力計算

2.1 一般事項

本章は、胴板の応力計算について示すものである。

胴板は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設 耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図2-1に示す。

2.1.2 解析範囲

解析範囲を図2-1に示す。

2.1.3 計算結果の概要

計算結果の概要を表2-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に 着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価 点を記載する。

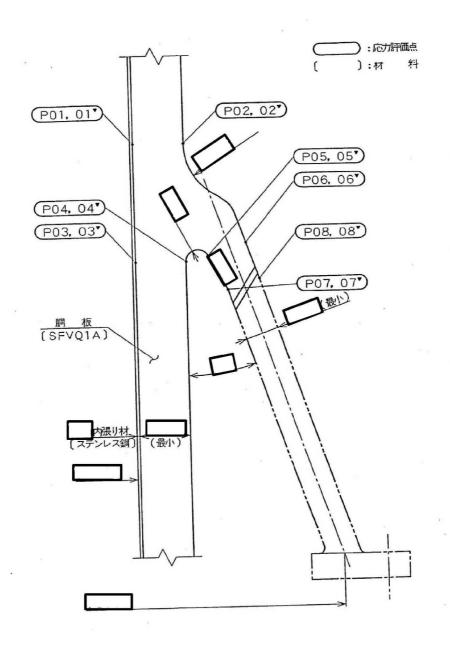


図2-1 形状・寸法・材料・応力評価点 (単位:mm)

表 2-1 計算結果の概要

		- ₹	欠一般膜		一次膜		げ応力強さ	一次一	+二次応	力強さ	疲	労解析	
ウワノンス・フドナナ业	新宏长五座能	(MPa)		(MPa)			(MPa)						
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
	III A S	177	303	P01 - P02	151	394	P01 - P02	_	_	_	_	_	_
胴板	IV a S	177	320	P01 - P02	157	416	P01 - P02	_	_	_	_	_	_
SFVQ1A	III a S	_	_	_	_	_	_	68	552	P02	0.009	1. 0	P03
	IV a S	_	_	_		_	_	106	552	P02	0.009	1.0	F03
スカート	III a S	39	303	P07' - P08'	109	390	P05 - P06	_	_	_	_	_	_
付根部	IV a S	55	320	P07' - P08'	115	413	P05 - P06	_	_	_	_	_	_
77 作品。 SFVQ1A	III A S	_	_	_		_	_	92	552	P07	0. 551	1. 0	P05
SIVWIA	IV A S	_	_	_		_	_	154	552	P07	0. 551	1.0	F05

注記* :疲労累積係数は,運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

2.2 計算条件

2.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

2.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

2.2.3 材料

各部の材料を図2-1に示す。

2.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

2.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

2.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

2.3 応力計算

2.3.1 応力評価点

応力評価点の位置を図2-1に示す。

なお,応力集中を生じる箇所の応力集中係数は,既工認から変更はなく「応力解析の方針」の参照図書(1)c. に定めるとおりである。

2.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は, 既工認から変更はなく「応力解析の方針」の参照図書(1)c. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)c. に定めるとおりである。

2.3.3 外荷重による応力

(1) 荷重条件(L12, L13, L18, L19, L14及びL16)外荷重を「応力解析の方針」の表4-1(2)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、原子炉圧力容器スカートとの取り合い部で溶接されるため、原子炉圧力容器スカートを含めてモデル化している。拘束条件は、原子炉圧力容器スカートの下面を拘束している。

応力計算のモデル及び仮定した境界条件を図 2-2 に示す。また、地震による評価に用いる機器の諸元について表 2-2 に示す。

2.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強さ を算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

2.4 応力強さの評価

2.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表2-3に示す。

表2-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に 示す許容応力を満足する。

2.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表2-4に示す。

表2-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の3.5 節に示す許容応力を満足する。

2.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表2-5に示す。

表2-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_n$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

2.5 繰返し荷重の評価

2.5.1 疲労解析

胴板の応力評価点について,詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表2-6に示す。

表2-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

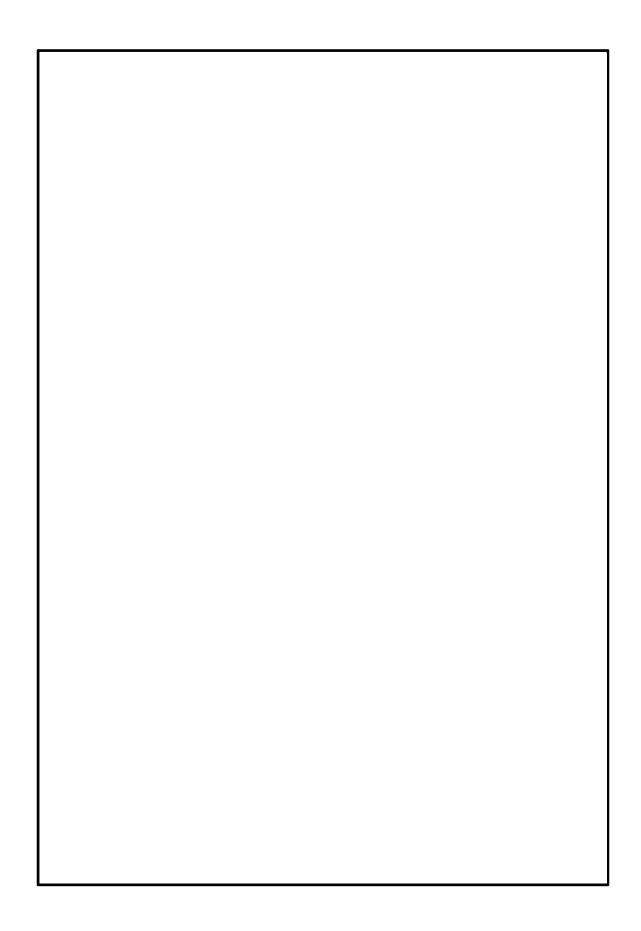


図 2-2 応力計算のモデル

表 2-2 機器諸元

項目		記号	単位	入力値
材質			_	SFVQ1A
温度条件		Т	$^{\circ}$	
縦弾性係数	SFVQ1A	E	MPa	
ポアソン比		ν	_	
要素数		_	_	
節点数		_	_	

表2-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力物	犬態ⅢaS	許容応力場	犬態ⅣAS	
心刀評細曲	応力強さ	許容応力	応力強さ	許容応力	
P01	177	303	177	320	
P02	111	505	111	520	
P01'	177	303	177	320	
P02'	177	303	177	320	
P03	177	303	177	320	
P04	177	303	177	320	
P03'	177	303	177	320	
P04'	177	303	177	320	
P07	14	303	29	320	
P08	14	505	29	320	
P07'	39	303	55	320	
P08'	39	303	33	320	

表 2-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力ង	犬態ⅢAS	許容応力ង	犬態IVAS
心力評価囲	応力強さ	許容応力	応力強さ	許容応力
P01 P02	151	394	157	416
P01' P02'	129	394	124	416
P03 P04	131	394	130	416
P03' P04'	131	394	134	416
P05 P06	109	390	115	413
P05' P06'	107	390	112	413
P07 P08	90	390	97	413
P07' P08'	103	390	110	413

表 2-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

	一次+1	二次応力差最	大範囲				
応力評価点	$(P_L + P_b + Q)$						
心力計画点			許容応力				
	S n # 1	$S_n \# 2$	3 · S m				
P01	44	70	552				
P01'	44	70	552				
P02	68	106	552				
P02'	68	106	552				
P03	22	34	552				
P03'	22	34	552				
P04	58	92	552				
P04'	58	92	552				
P05	60	100	552				
P05'	60	100	552				
P06	36	56	552				
P06'	36	56	552				
P07	92	154	552				
P07'	92	154	552				
P08	26	40	552				
P08'	26	40	552				

表 2-6 疲労累積係数の評価のまとめ

皮 去葱/雨上		2			
応力評価点	U n	U _{sd}	U s s	U _f *	許容値
P01	0.000	0.000	0.000	0.000	1.0
P01'	0.000	0.000	0.000	0.000	1.0
P02	0.007	0.000	0.000	0.007	1.0
P02'	0.007	0.000	0.000	0.007	1.0
P03	0.009	0.000	0.000	0.009	1. 0
P03'	0.009	0.000	0.000	0.009	1.0
P04	0.005	0.000	0.002	0.007	1. 0
P04'	0.005	0.000	0.002	0.007	1.0
P05	0.550	0.000	0.001	0. 551	1.0
P05'	0.550	0.000	0.001	0. 551	1.0
P06	0.021	0.000	0.000	0.021	1.0
P06'	0.021	0.000	0.000	0.021	1.0
P07	0.178	0.000	0.001	0.179	1.0
P07'	0.178	0.000	0.001	0.179	1.0
P08	0.021	0.000	0.000	0.021	1.0
P08'	0.021	0.000	0.000	0.021	1.0

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

3. 下部鏡板の応力計算

3.1 一般事項

本章は、下部鏡板の応力計算について示すものである。

下部鏡板は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては 常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

3.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図3-1に示す。

3.1.2 解析範囲

解析範囲を図3-1に示す。

3.1.3 計算結果の概要

計算結果の概要を表3-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に 着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価 点を記載する。

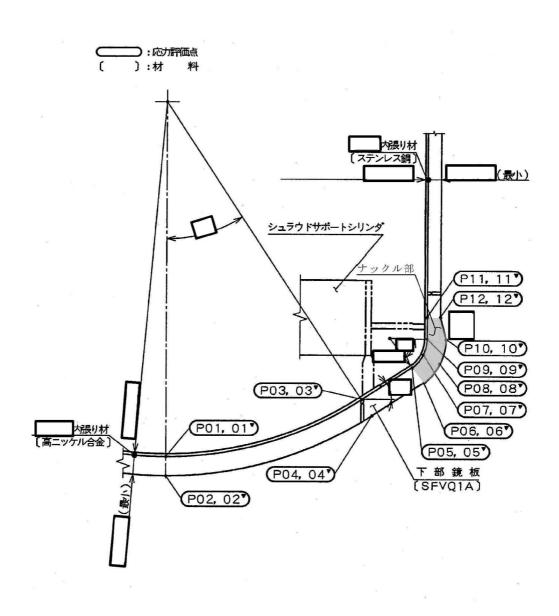


図3-1 形状・寸法・材料・応力評価点 (単位:mm)

表 3-1 計算結果の概要

		<u>}</u>	欠一般膜原 (MPa		一次膜	+一次世 (MPa	げ応力強さ	一次-	+ 二次応; (MPa)	力強さ	渡	労解析	
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
	W 0	強さ	応力	DO1 DOO	強さ	応力	D04 D00	強さ	応力	評価点	累積係数		評価点
	III A S	188	303	P01 - P02	209	394	P01 - P02	_	_	_	_	_	_
球殼部	IV a S	195	320	P01 - P02	216	416	P01 - P02	_	_	_	_	_	_
SFVQ1A	III A S	_	_	_	_	_	_	16	552	P01	0.007	1 0	P02
	IV A S	_	_	_	_	_	_	30	552	P01	0.007	1.0	P02
球殻部と	III a S	_	_	_	94	394	P03 - P04	_	_	_	_	_	_
円錐部の	IV A S	_	_	_	98	416	P03 - P04	_	_	_	_	_	_
接続部	III a S	_	_	_	_	_	_	74	552	P04	0.001	1.0	DOO
SFVQ1A	IV A S	_	_	_	_	_	_	88	552	P04	0.001	1.0	P03
	III a S	_	_	_	113	394	P07 - P08	_	_	_	_	_	_
ナックル部	IV A S	_	_	_	118	416	P07 - P08	_	_	_	_	_	_
SFVQ1A	III a S	_	_	_	_	_	_	66	552	P07	0.011	1.0	P07
	IV a S	_	_	_	_	_	_	90	552	P07	0. 011	1.0	P07
ナックル部と	III ∧ S	_	_	_	112	394	P11 - P12	_	_	_	_	_	_
円筒胴部の	IV A S	_	_	_	116	416	P11 - P12	_	_	_	_	_	_
接続部	III A S	_	_	_	_	_	_	44	552	P11	0.005	1.0	D10
SFVQ1A	IV A S	_		_	_	_	_	58	552	P11	0. 025	1.0	P12

注記*:疲労累積係数は、運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

3.2 計算条件

3.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

3.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

3.2.3 材料

各部の材料を図3-1に示す。

3.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

3.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

3.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

3.3 応力計算

3.3.1 応力評価点

応力評価点の位置を図3-1に示す。

なお,応力集中を生じる箇所の応力集中係数は,既工認から変更はなく「応力解析の方針」の参照図書(1)e. に定めるとおりである。

3.3.2 内圧及び差圧による応力

(1) 荷重条件(L01及びL02)

各運転状態による内圧及び差圧は、既工認から変更はなく「応力解析の方針」の参照図書(1) e. に定めるとおりである。

(2) 計算方法

内圧及び差圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)e.に定めるとおりである。

3.3.3 外荷重による応力

(1) 荷重条件(L12, L13, L18, L19, L14及びL16)外荷重を「応力解析の方針」の表4-1(1)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板及びシュラウドサポートとの取り合い部で溶接されるため、胴板、シュラウドサポート及びシュラウドの一部を含めてモデル化している。 拘束条件は、下部鏡板及び胴板の端部の変位を拘束している。

応力計算のモデル及び仮定した境界条件を図3-2に示す。また、地震による評価に用いる機器の諸元について表3-2に示す。

3.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強さ を算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

3.4 応力強さの評価

3.4.1 一次一般膜応力強さの評価

応力評価面P01-P02及びP01'-P02'について各許容応力状態における評価を表3-3に示す。なお、その他の応力評価面は、構造不連続部であるため、一次一般膜応力に分類される応力は存在しない。

表3-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に 示す許容応力を満足する。

3.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表3-4に示す。

表3-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の3.5 節に示す許容応力を満足する。

3.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表3-5に示す。

表3-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_m$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

3.5 繰返し荷重の評価

3.5.1 疲労解析

下部鏡板の応力評価点について、詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表3-6に示す。

表3-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

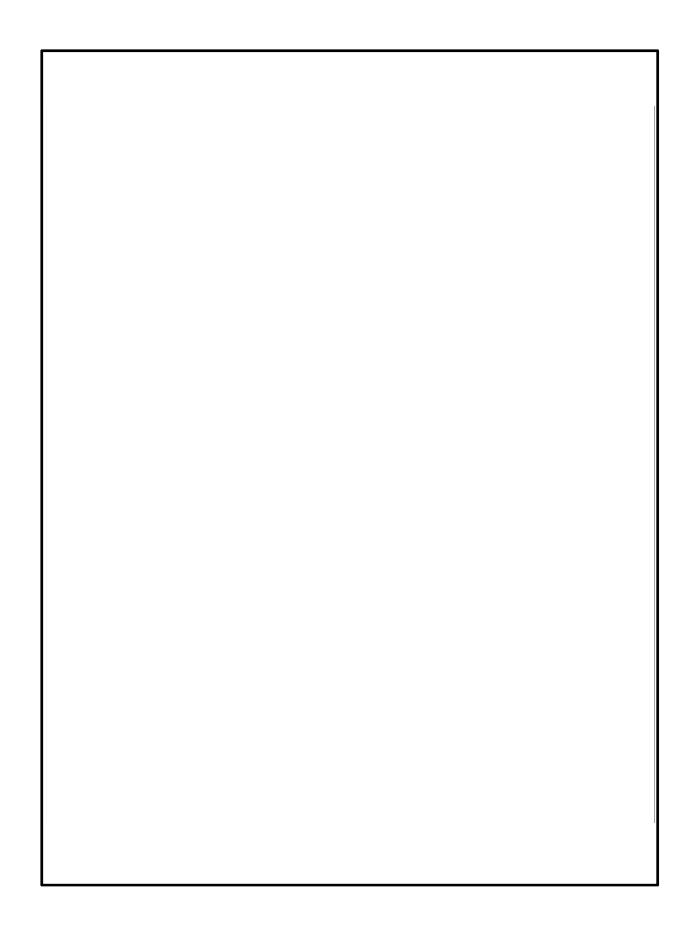


図3-2 応力計算のモデル

表 3-2 機器諸元

項目		記号	単位	入力値
材質	材質		_	SFVQ1A
温度条件		Т	$^{\circ}$	
縦弾性係数	SFVQ1A	Е	MPa	
ポアソン比		ν	_	
要素数		_	_	
節点数		_	_	

表 3-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力状態ⅣAS		
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01	188	303	195	320	
P02	100	303	195	320	
P01'	176	202	169	320	
P02'	176	303	109	320	

表 3-4 一次膜+一次曲げ応力強さの評価のまとめ

	許容応力料	犬態ⅢAS	許容応力料	犬態IVAS
応力評価面	応力強さ	許容応力	応力強さ	許容応力
P01 P02	209	394	216	416
P01' P02'	195	394	188	416
P03 P04	94	394	98	416
P03' P04'	77	394	73	416
P05 P06	111	394	117	416
P05' P06'	88	394	83	416
P07 P08	113	394	118	416
P07' P08'	87	394	82	416
P09 P10	101	394	107	416
P09' P10'	70	394	64	416
P11 P12	112	394	116	416
P11' P12'	95	394	91	416

表 3-5 一次+二次応力強さの評価のまとめ

	一次+	二次応力差最	·大範囲
		$P_L + P_b + Q$	
応力評価点			許容応力
	S n # 1	S n # 2	3 • S m
P01	16	30	552
P01'	16	30	552
P02	14	30	552
P02'	14	30	552
P03	52	54	552
P03'	52	54	552
P04	74	88	552
P04'	74	88	552
P05	62	82	552
P05'	62	82	552
P06	34	40	552
P06'	34	40	552
P07	66	90	552
P07'	66	90	552
P08	40	52	552
P08'	40	52	552
P09	54	72	552
P09'	54	72	552
P10	28	38	552
P10'	28	38	552
P11	44	58	552
P11'	44	58	552
P12	22	32	552
P12'	22	32	552

表 3-6 疲労累積係数の評価のまとめ

皮 - 5 - 5 - 7 - 12								
応力評価点	U n	Usd	Uss	U _f *	許容値			
P01	0.006	0.000	0.000	0.006	1.0			
P01'	0.006	0.000	0.000	0.006	1.0			
P02	0.007	0.000	0.000	0.007	1.0			
P02'	0.007	0.000	0.000	0.007	1.0			
P03	0.001	0.000	0.000	0.001	1.0			
P03'	0.001	0.000	0.000	0.001	1.0			
P04	0.001	0.000	0.000	0.001	1.0			
P04'	0.001	0.000	0.000	0.001	1.0			
P05	0.006	0.000	0.000	0.006	1.0			
P05'	0.006	0.000	0.000	0.006	1.0			
P06	0.000	0.000	0.000	0.000	1.0			
P06'	0.000	0.000	0.000	0.000	1.0			
P07	0.011	0.000	0.000	0.011	1.0			
P07'	0.011	0.000	0.000	0.011	1. 0			
P08	0.000	0.000	0.000	0.000	1. 0			
P08'	0.000	0.000	0.000	0.000	1.0			
P09	0.005	0.000	0.000	0.005	1.0			
P09'	0.005	0.000	0.000	0.005	1. 0			
P10	0.001	0.000	0.000	0.001	1.0			
P10'	0.001	0.000	0.000	0.001	1. 0			
P11	0.008	0.000	0.000	0.008	1.0			
P11'	0.008	0.000	0.000	0.008	1.0			
P12	0.025	0.000	0.000	0.025	1.0			
P12'	0.025	0.000	0.000	0.025	1.0			

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

4. 制御棒駆動機構ハウジング貫通孔の応力計算

4.1 一般事項

本章は、制御棒駆動機構ハウジング貫通孔の応力計算について示すものである。

制御棒駆動機構ハウジング貫通孔は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

注:以下,制御棒駆動機構ハウジングを「ハウジング」,制御棒駆動機構ハウジング貫通孔 スタブチューブを「スタブチューブ」という。

4.1.1 記号の説明

記号の説明を「応力解析の方針」の2.4節に示す。

更に,本章において,以下の記号を用いる。

記号	記号の説明	単位
R i	スタブチューブの内半径	mm
t	スタブチューブの最小厚さ	mm
A	スタブチューブの断面積	mm^2
Z	スタブチューブの断面係数	mm^3
σса	許容応力	MPa
L	スタブチューブの最大長さ	m

4.1.2 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図4-1に示す。

4.1.3 解析範囲

解析範囲を図4-1に示す。

4.1.4 計算結果の概要

計算結果の概要を表4-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に 着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価 点を記載する。

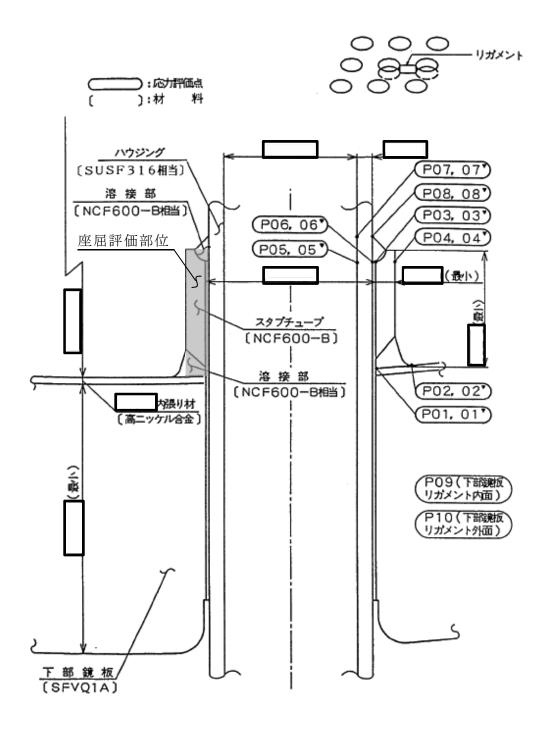


図4-1 形状・寸法・材料・応力評価点 (単位:mm)

表 4-1(1) 計算結果の概要

		一次一般膜応力強さ		一次膜+一次曲げ応力強さ		一次+二次応力強さ		疲労解析					
部分及び材料 許容応力状態	- 	(MPa)		(MPa)		(MPa)							
	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力	
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
スタブ	III A S	53	196	P01' - P02'	193	269	P01' - P02'	_	_	_	_	_	_
チューブ	IV A S	55	334	P01' - P02'	192	457	P01' - P02'	_		_		_	_
NCF600-B	III A S	_	_	_	_	_	_	102	492	P03	0.050	1. 0	P01
NCF600-B 相当	IV a S	_	_	_	_	_	_	100	492	P03	0.059	1.0	1.0
	III ∧ S	54	142	P05 - P06	76	198	P05 - P06	_		_		_	_
ハウジング	IV a S	55	280	P05 - P06	77	389	P05 - P06	_	_	_	_	_	_
SUSF316 相当	III A S	_	_	_	_	_	_	68	360	P08	0.000	1.0	P06
	IV A S	_	_	_	_	_	_	66	360	P06	0.008	1. 0	100
	III ∧ S	165	303	P09' - P10'	171	454	P09 - P10	_	_	_	_	_	_
下部鏡板 リガメント SFVQ1A	IV A S	165	320	P09' - P10'	171	481	P09 - P10	_	_	_	_	_	_
	III A S		_		_		_	10	552	P09	0.020	1. 0	P09
	IV A S	_	_	_	_	_	_	10	552	P09	0.030	1.0	F 09

注記* :疲労累積係数は、運転状態 I 及びⅡに地震荷重 S d*又は地震荷重 S s のいずれか大きい方を加えた値である。

表4-1(2) 計算結果の概要

カワノン ひ スドナナ北口	新索片力供能	座屈に対する評価			
部分及び材料	許容応力状態	圧縮応力	許容応力		
スタブチューブ	III ∧ S	85	99		
NCF600-B	IV A S	83	124		

4.2 計算条件

4.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

4.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

4.2.3 材料

各部の材料を図4-1に示す。

4.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

4.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

4.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

4.3 応力計算

4.3.1 応力評価点

応力評価点の位置を図4-1に示す。

なお,応力集中を生じる箇所の応力集中係数は,既工認から変更はなく「応力解析の方針」の参照図書(1)f.に定めるとおりである。

4.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は, 既工認から変更はなく「応力解析の方針」の参照図書(1)f. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)f. に定めるとおりである。

4.3.3 外荷重による応力

(1) 荷重条件(L12, L13, L18, L19, L14及びL16)外荷重を「応力解析の方針」の表4-1(3)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、下部鏡板との取り合い部で溶接されるため、下部鏡板の一部を含めてモデル化している。拘束条件は、下部鏡板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 4-2 に示す。また、地震による評価に用いる機器の諸元について表 4-2 に示す。

4.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強さ を算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

4.4 応力強さの評価

4.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4-3に示す。

表4-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に 示す許容応力を満足する。

4.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表4-4に示す。

表4-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の3.5 節に示す許容応力を満足する。

4.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表4-5に示す。

表4-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_n$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

4.5 繰返し荷重の評価

4.5.1 疲労解析

スタブチューブ, ハウジング及び下部鏡板リガメント部の応力評価点について, 詳細な 繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表4-6に示す。

表4-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

4.6 特別な応力の評価

4.6.1 座屈に対する評価

スタブチューブには、制御棒駆動機構ハウジング貫通孔に作用する鉛直力及びモーメントにより、圧縮応力が生じる。したがって、これらの荷重の組合せにより発生する圧縮応力の評価を行う。

(1) 計算データ

スタブチューブの内半径 $R_i = mm$ $T_i =$

 $A = \pi \cdot \{(R_i + t)^2 - R_i^2\} = \pi \times$ スタブチューブの断面係数

$$Z = \frac{\pi}{4} \cdot \frac{(R_{i} + t)^{4} - R_{i}^{4}}{R_{i} + t} = \frac{\pi}{4} \times$$

$$= \boxed{\qquad \qquad mm^{3}}$$

(2) 荷重

スタブチューブに作用する鉛直力及びモーメントを「応力解析の方針」の表4-1(3)に示す。

(3) 圧縮応力

計算データ(断面性能)を基に、表4-7に示す各許容応力状態の荷重によってスタブチューブに発生する圧縮応力を表4-8に示す。

(4) 許容応力

各許容応力状態における許容応力の計算は、設計・建設規格 PVB-3117を準用して計算する。

a. 許容応力状態ⅢAS

許容応力状態 \mathbb{H} ASにおける許容応力 σ 。aは、次のように得られる。

$$\sigma_{ca} = 1.2 MIN[S_m, B]$$

ここで,

$$S_m = MPa$$

$$B = 83 \text{ MPa}$$

~ (における値)

このうちB値は、設計・建設規格 PVB-3117より、次のようにして求める。

設計・建設規格 付録材料図表 Part7 図1より

$$A = \frac{0.125}{R_i / t} = \frac{0.125}{m_i / t}$$

を用いて、設計・建設規格 付録材料図表 Part7 図7より

B = 83 MPa

よって, 許容応力σ caは,

$$\sigma_{ca} = 1.2 \cdot B = 1.2 \times 83 = 99 \text{ MPa}$$

b. 許容応力状態IVAS

許容応力状態IVAS における許容応力 σ c_a は、次のように得られる。

$$\sigma_{ca} = 1.5 MIN[S_m, B]$$

よって、許容応力 σ caは、

$$\sigma_{ca} = 1.5 \cdot B = 1.5 \times 83 = 124 \text{ MPa}$$

(5) 座屈に対する評価

各許容応力状態における座屈に対する評価を表4-8に示す。

表4-8より,各許容応力状態における圧縮応力は,許容応力を満足するため,座屈は発生しない。

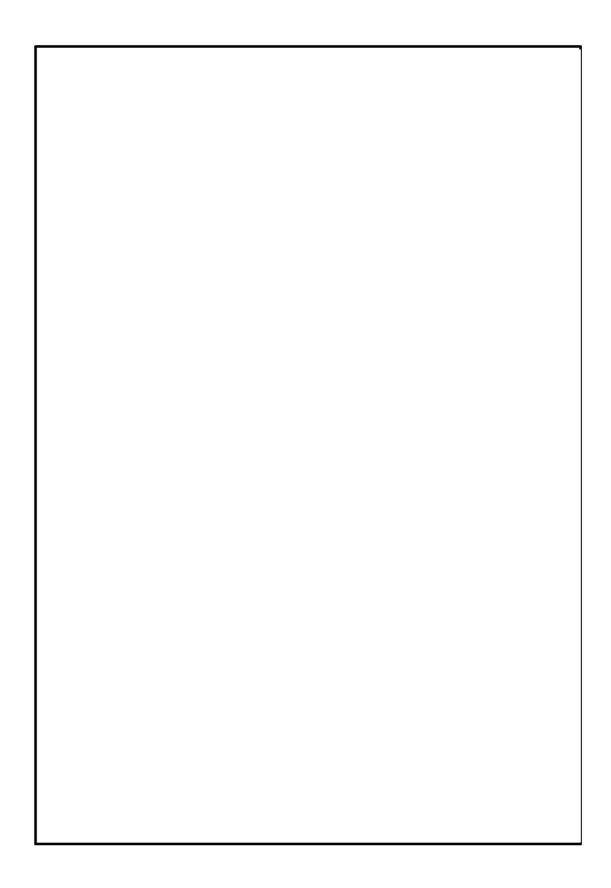


図 4-2 応力計算のモデル

表 4-2 機器諸元

項目		記号	単位	入力値		
						SFVQ1A
材質				SUSF316		
				NCF600-B		
温度条件		Т	$^{\circ}\!\mathbb{C}$			
	SFVQ1A	E	MPa			
縦弾性係数	SUSF316	E	MPa			
	NCF600-B	E	MPa			
ポアソン比		ν	_			
要素数		_	_			
節点数		_	_			

表 4-3 一次一般膜応力強さの評価のまとめ

4 1 37 m -	許容応力ង	犬態ⅢAS	許容応力状態ⅣAS			
応力評価面	応力強さ 許容応え		応力強さ	許容応力		
P01 P02	49	196	49	334		
P01' P02'	53	196	55	334		
P03 P04	49	196	49	334		
P03' P04'	53	196	55	334		
P05 P06	54	142	55	280		
P05' P06'	50	142	49	280		
P07 P08	2	142	1	280		
P07' P08'	5	142	5	280		
P09 P10	161	303	161	320		
P09' P10'	165	303	165	320		

表 4-4 一次膜+一次曲げ応力強さの評価のまとめ

1 37 by	許容応力ង	犬態ⅢAS	許容応力状態IVAS		
応力評価面	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	142	269	143	457	
P01' P02'	193	269	192	457	
P03 P04	13	269	13	457	
P03' P04'	58	269	57	457	
P05 P06	76	198	77	389	
P05' P06'	43	198	42	389	
P07 P08	32	198	29	389	
P07' P08'	24	198	21	389	
P09 P10	171	454	171	481	
P09' P10'	154	454	154	481	

表 4-5 一次+二次応力強さの評価のまとめ

	一次+二次応力差最大範囲					
応力評価点	$(P_L + P_b + Q)$					
心力計画点			許容応力			
	S n # 1	S n # 2	3 • S m			
P01	36	36	492			
P01'	36	36	492			
P02	72	66	492			
P02'	72	66	492			
P03	102	100	492			
P03'	102	100	492			
P04	20	18	492			
P04'	20	18	492			
P05	8	10	360			
P05'	8	10	360			
P06	58	66	360			
P06'	58	66	360			
P07	10	6	360			
P07'	10	6	360			
P08	68	60	360			
P08'	68	60	360			
P09	10	10	552			
P09'	10	10	552			
P10	2	2	552			
P10'	2	2	552			

表 4-6 疲労累積係数の評価のまとめ

皮力数压上		}	疲労累積係数	•	
応力評価点	U n	Usd	Uss	U _f *	許容値
P01	0.059	0.000	0.000	0.059	1.0
P01'	0.059	0.000	0.000	0.059	1.0
P02	0.004	0.000	0.000	0.004	1.0
P02'	0.004	0.000	0.000	0.004	1. 0
P03	0.015	0.002	0.002	0.017	1. 0
P03'	0.015	0.002	0.002	0.017	1.0
P04	0.000	0.000	0.000	0.000	1. 0
P04'	0.000	0.000	0.000	0.000	1.0
P05	0.000	0.000	0.000	0.000	1.0
P05'	0.000	0.000	0.000	0.000	1. 0
P06	0.007	0.001	0.001	0.008	1. 0
P06'	0.007	0.001	0.001	0.008	1.0
P07	0.000	0.000	0.000	0.000	1.0
P07'	0.000	0.000	0.000	0.000	1.0
P08	0.000	0.000	0.000	0.000	1.0
P08'	0.000	0.000	0.000	0.000	1.0
P09	0.030	0.000	0.000	0.030	1.0
P09'	0.030	0.000	0.000	0.030	1.0
P10	0.012	0.000	0.000	0.012	1.0
P10'	0.012	0.000	0.000	0.012	1.0

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重 S_d *又は 地震荷重 S_s のいずれか大きい方を加えた値である。

表4-7 座屈に対する評価に用いる荷重

許容応力状態	鉛直力* ¹ V(kN)	モーメント*2 M (kN·m)
IIIAS		
IVAS		

注記*1:「応力解析の方針」の4.2節に示すV1+V2の値

*2: 「応力解析の方針」の4.2節に示すM₁+M₂+(H₁+H₂)・Lの値

Lは、スタブチューブの最大長さ= mである。

表4-8 座屈に対する評価

許容応力状態	圧縮応力	許容応力
IIIAS	85	99
IV _A S	83	124

5. 原子炉冷却材再循環ポンプ貫通孔(N1)の応力計算

5.1 一般事項

本章は、原子炉冷却材再循環ポンプ貫通孔 (N1) の応力計算について示すものである。 原子炉冷却材再循環ポンプ貫通孔 (N1) は、設計基準対象施設においてはSクラス施設に、 重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に 分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

注:以下,原子炉冷却材再循環ポンプを「RIP」,原子炉冷却材再循環ポンプ貫通孔を「貫通孔」,原子炉冷却材再循環ポンプモータケーシングを「ケーシング」という。 また,原子炉冷却材再循環ポンプ貫通孔のうち,下部鏡板との接続部を「スタブ」という。

5.1.1 記号の説明

記号の説明を「応力解析の方針」の2.4節に示す。 更に、本章において、以下の記号を用いる。

記号	記号の説明	単位
R i	貫通孔スタブの内半径	mm
t	貫通孔スタブの厚さ	mm
A	貫通孔スタブの断面積	mm^2
Z	貫通孔スタブの断面係数	mm^3
σ _{са}	許容応力	MPa

5.1.2 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図5-1に示す。

5.1.3 解析範囲

解析範囲を図5-1に示す。

5.1.4 計算結果の概要

計算結果の概要を表5-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

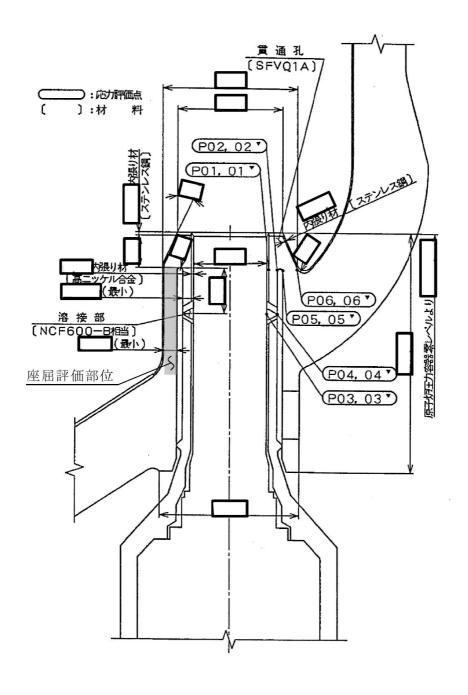


図5-1 形状・寸法・材料・応力評価点 (単位:mm)

表 5-1(1) 計算結果の概要

		一次一般膜応力強さ (MPa)		一次膜	一次膜+一次曲げ応力強さ (MPa)		一次+二次応力強さ (MPa)		疲労解析				
部分及び材料	許容応力状態	応力 強さ	許容応力	応力評価面	応力 強さ	許容	応力評価面	応力強さ	許容応力	応力 評価点		許容値	応力 評価点
	III A S	51	303	P01 - P02	224	418	P01' - P02'	— —	ー - - -	一一	光惧	_	— 一 一
ケーシング側	IV A S	53	320	P01 - P02	281	442	P01' - P02'	_	_	_	_	_	_
付け根R部 SFVQ1A	III A S	_	_	_	_	_	_	310	552	P02	0.941	1.0	P02
SFVQIA	IV A S		_			_	_	520	552	P02	0. 241	1. 0	P02
RIPノズル	III ∧ S	38	196	P03 - P04	110	277	P03 - P04	_		_		_	_
溶接部	IV a S	39	334	P03 - P04	160	470	P03 - P04	_		_	_	_	_
NCF600-B相当	III A S		_			_	_	190	492	P04	0, 001	1. 0	P04
Nervood D 7H =	IV A S	1	_		1	_	_	322	492	P04	0.001	1.0	F04
スタブと下部	III A S	45	303	P05 - P06	196	421	P05' - P06'	_		_		_	_
スタフと下部 鏡板の接続部	IV A S	45	320	P05 - P06	214	445	P05' - P06'	_		_		_	_
野似の1女形で同 SFVQ1A	III A S		_	_		_	_	98	552	P05	0. 084	1. 0	P05
SIVVIA	IV A S	_	_	_		_	_	164	552	P05	0.004	1.0	601

注記* :疲労累積係数は、運転状態 I 及びⅡに地震荷重 S d*又は地震荷重 S s のいずれか大きい方を加えた値である。

表5-1(2) 計算結果の概要

部分及び材料	許容応力状態	座屈に対する評価		
部分及い材料	計谷応力仏態	圧縮応力	許容応力	
貫通孔スタブ	III A S	37	165	
SFVQ1A	IV A S	57	207	

5.2 計算条件

5.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

5.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

5.2.3 材料

各部の材料を図5-1に示す。

5.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

5.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

5.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

5.3 応力計算

5.3.1 応力評価点

応力評価点の位置を図5-1に示す。

なお,応力集中を生じる箇所の応力集中係数は,既工認から変更はなく「応力解析の方針」の参照図書(1)h.に定めるとおりである。

5.3.2 内圧及び動圧による応力

(1) 荷重条件(L01及びL02)

各運転状態による内圧及び動圧は、既工認から変更はなく「応力解析の方針」の参照図書(1)h.に定めるとおりである。

(2) 計算方法

内圧及び動圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)h. に定めるとおりである。

5.3.3 外荷重による応力

(1) 荷重条件(L07, L12, L14及びL16)外荷重を「応力解析の方針」の表4-1(4)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、ケーシング及び下部鏡板との取り合い部で溶接されるため、ケーシング及び下部鏡板の一部を含めてモデル化している。拘束条件は、下部鏡板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図5-2に示す。また、地震による評価に用いる機器の諸元について表5-2に示す。

5.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強さ を算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

5.4 応力強さの評価

5.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5-3に示す。

表5-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

5.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表5-4に示す。

表5-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の3.5 節に示す許容応力を満足する。

5.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表5-5に示す。

表5-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_n$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

5.5 繰返し荷重の評価

5.5.1 疲労解析

貫通孔及びRIPノズル溶接部の応力評価点について,詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表5-6に示す。

表5-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

5.6 特別な応力の評価

5.6.1 座屈に対する評価

貫通孔スタブには、原子炉冷却材再循環ポンプ貫通孔(N1)に作用する鉛直力及びモーメントにより、圧縮応力が生じる。したがって、これらの荷重の組合せにより発生する圧縮応力の評価を行う。

(1) 計算データ

貫通孔スタブの内半径 $R_i = mm$ (くされ代を除いた値) 貫通孔スタブの厚さ t = mm (くされ代を除いた値)

貫通孔スタブの断面積

 $A = \pi \cdot \{(R_i + t_i)^2 - R_i^2\} = \pi \times$ 貫通孔スタブの断面係数

$$Z = \frac{\pi}{4} \cdot \frac{(R_{i} + t)^{4} - R_{i}^{4}}{R_{i} + t} = \frac{\pi}{4} \times$$

$$= \boxed{mm^{3}}$$

(2) 荷重

貫通孔スタブに作用する鉛直力及びモーメントを「応力解析の方針」の表4-1(4)に示す。

(3) 圧縮応力

計算データ(断面性能)を基に、表5-7に示す各許容応力状態の荷重によって貫通孔スタブに発生する圧縮応力を表5-8に示す。

(4) 許容応力

各許容応力状態における許容応力の計算は、設計・建設規格 PVB-3117を準用して計算する。

a. 許容応力状態ⅢAS

許容応力状態 \mathbb{H} ASにおける許容応力 σ 。aは、次のように得られる。

$$\sigma_{ca} = 1.2 MIN[S_m, B]$$

ここで,

$$B = 138 \text{ MPa}$$

【 ℃における値)

このうちB値は、設計・建設規格 PVB-3117より、次のようにして求める。

設計・建設規格 付録材料図表 Part7 図1より

$$A = \frac{0.125}{R_i / t} = \frac{0.125}{R_i / t}$$

を用いて、設計・建設規格 付録材料図表 Part7 図6より

B = 138 MPa

よって, 許容応力σ caは,

$$\sigma_{ca} = 1.2 \cdot B = 1.2 \times 138 = 165 \text{ MPa}$$

b. 許容応力状態IVAS

許容応力状態IVAS における許容応力 σ c_a は、次のように得られる。

$$\sigma_{ca} = 1.5 MIN[S_m, B]$$

よって、許容応力 σ caは、

$$\sigma_{ca} = 1.5 \cdot B = 1.5 \times 138 = 207 \text{ MPa}$$

(5) 座屈に対する評価

各許容応力状態における座屈に対する評価を表5-8に示す。

表5-8より,各許容応力状態における圧縮応力は,許容応力を満足するため,座屈は発生しない。

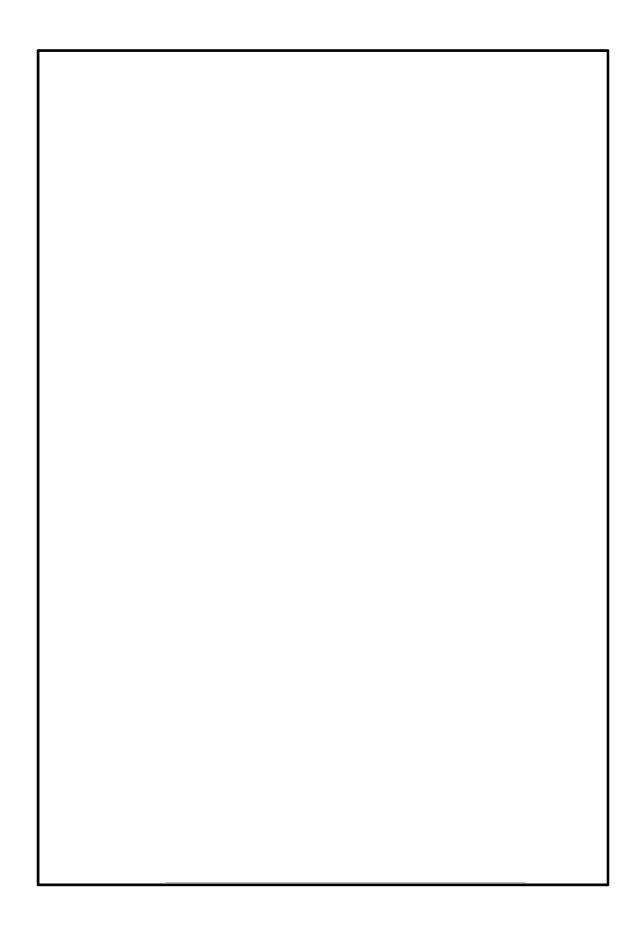


図 5-2(1) 応力計算のモデル

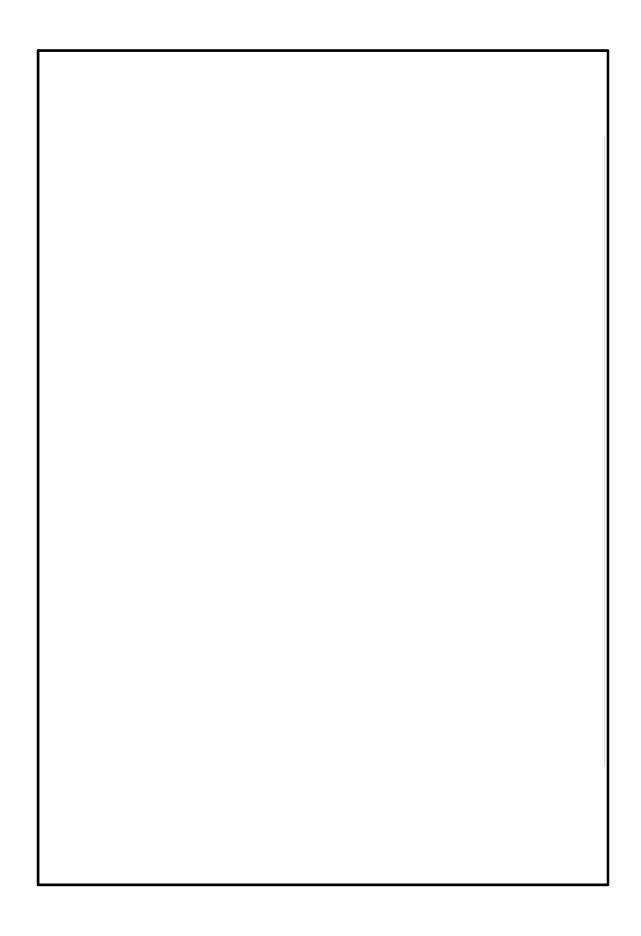


図 5-2(2) 応力計算のモデル

表 5-2 機器諸元

項目		記号	単位	入力値
11 55				SFVQ1A
材質				NCF600-B
温度条件		Т	$^{\circ}\!\mathbb{C}$	
%	SFVQ1A		MPa	
縦弾性係数	NCF600-B	E	MPa	
ポアソン比		ν	_	
要素数		_	_	
節点数		_	_	

表 5-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢaS	許容応力状態ⅣAS		
心刀評細曲	応力強さ	許容応力	応力強さ	許容応力	
P01	51	303	53	320	
P02	31	505	00	520	
P01'	51	303	52	320	
P02'	31	303	32	520	
P03	38	196	39	334	
P04	30	190	39	334	
P03'	37	196	38	334	
P04'	31	190	36	334	
P05	45	303	45	320	
P06	40	303	40	320	
P05'	45	303	45	320	
P06'	40	303	40	320	

表 5-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力ង	犬態ⅢAS	許容応力状態ⅣAS		
が分評価囲	応力強さ	許容応力	応力強さ	許容応力	
P01	122	418	177	442	
P02	122	410	111	112	
P01'	224	418	281	442	
P02'	224	410	201	112	
P03	110	277	160	470	
P04	110	211	100	410	
P03'	103	277	153	470	
P04'	103	211	100	410	
P05	141	421	129	445	
P06	141	421	129	440	
P05'	196	421	214	445	
P06'	190	421	214	440	

表 5-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

	一次+二次応力差最大範囲						
 応力評価点	$(P_L + P_b + Q)$						
心力計画点			許容応力				
	S n # 1	S n # 2	3 • S m				
P01	34	54	552				
P01'	34	54	552				
P02	310	520	552				
P02'	310	520	552				
P03	80	130	492				
P03'	80	130	492				
P04	190	322	492				
P04'	190	322	492				
P05	98	164	552				
P05'	98	164	552				
P06	20	30	552				
P06'	20	30	552				

表 5-6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数										
心力評価点	U n	$U_{ m S\ d}$	U _{ss}	U _f *	許容値						
P01	0.026	0.000	0.000	0.026	1.0						
P01'	0.026	0.000	0.000	0.026	1.0						
P02	0.040	0.045	0. 201	0. 241	1.0						
P02'	0.025	0.045	0. 201	0. 226	1.0						
P03	0.000	0.000	0.000	0.000	1.0						
P03'	0.000	0.000	0.000	0.000	1.0						
P04	0.000	0.000	0.001	0.001	1.0						
P04'	0.000	0.000	0.001	0.001	1.0						
P05	0.075	0.002	0.009	0.084	1.0						
P05'	0.068	0.002	0.009	0.077	1.0						
P06	0.050	0.000	0.000	0.050	1.0						
P06'	0.047	0.000	0.000	0.047	1.0						

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

表5-7 座屈に対する評価に用いる荷重

許容応力状態	鉛直力*1 V(kN)	モーメント*2 M (kN·m)			
IIIAS					
IVAS					

注記*1: 「応力解析の方針」の4.2節に示す V_1+V_2 の値

*2 : 「応力解析の方針」の4.2節に示す M_1+M_2 の値

表5-8 座屈に対する評価

許容応力状態	圧縮応力	許容応力
IIIAS	37	165
IVAS	57	207

6. 主蒸気ノズル (N3) の応力計算

6.1 一般事項

本章は、主蒸気ノズル (N3) の応力計算について示すものである。

主蒸気ノズル (N3) は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

6.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図6-1に示す。

6.1.2 解析範囲

解析範囲を図6-1に示す。

6.1.3 計算結果の概要

計算結果の概要を表6-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に 着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価 点を記載する。

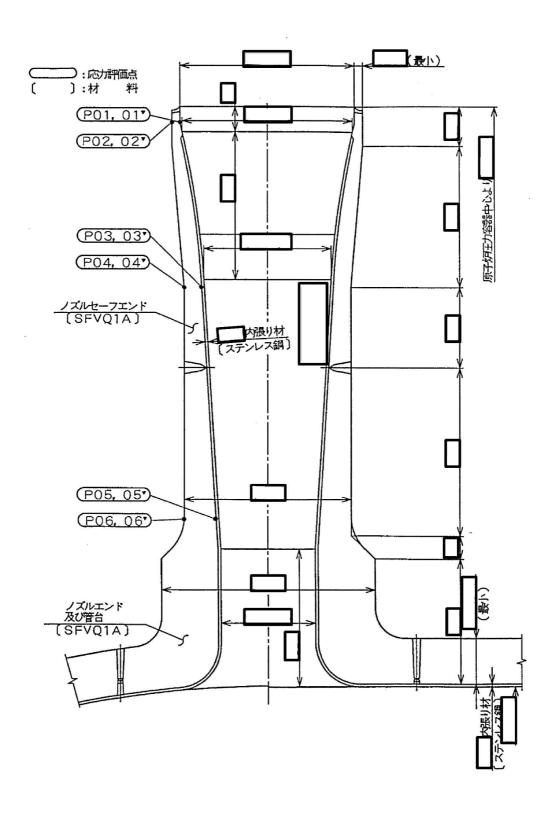


図6-1 形状・寸法・材料・応力評価点 (単位:mm)

表 6-1 計算結果の概要

		一次一般膜応力強さ		一次膜	一次膜+一次曲げ応力強さ		一次+二次応力強さ			疲労解析			
ウワノヘ ひ イドナナボー	新 索片 4	(MPa)		(MPa)			(MPa)						
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
ノズル	III A S	95	303	P01 - P02	96	400	P01 - P02		_	_	_	_	_
セーフエンド	IV A S	95	320	P01 - P02	98	423	P01 - P02		_	_	_	_	_
SFVQ1A	III A S		_	_		_	_	80	552	P01	0.004	1. 0	P01
SIVQIA	IV a S		_	_		_	_	136	552	P01	0.004	1.0	FU1
	III A S	17	303	P05 - P06	36	454	P05 - P06		_	_	_	_	_
ノズルエンド	IV A S	17	320	P05 - P06	40	481	P05 - P06		_	_	_	_	_
SFVQ1A	III A S		_	_		_	_	52	552	P06	0.002	1.0	DOG
	IV A S	_	_	_	_	_	_	90	552	P06	0.002	1.0	P06

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記*:疲労累積係数は、運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

6.2 計算条件

6.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

6.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

6.2.3 材料

各部の材料を図6-1に示す。

6.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

6.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

6.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

6.3 応力計算

6.3.1 応力評価点

応力評価点の位置を図6-1に示す。

なお,応力集中を生じる箇所の応力集中係数は,既工認から変更はなく「応力解析の方針」の参照図書(1)i.に定めるとおりである。

6.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は, 既工認から変更はなく「応力解析の方針」の参照図書(1)i. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)i. に定めるとおりである。

6.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板との取り合い部で溶接されるため、胴板の一部を含めてモデル化 している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図6-2に示す。また、地震による評価に用いる機器の諸元について表6-2に示す。

6.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強さ を算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

6.4 応力強さの評価

6.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表6-3に示す。

表6-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に 示す許容応力を満足する。

6.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表6-4に示す。

表6-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の3.5 節に示す許容応力を満足する。

6.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表6-5に示す。

表6-5より,すべての評価点において S_n ^{#1}及び S_n ^{#2}は, $3\cdot S_n$ 以下であり,「応力解析の方針」の3.5節に示す許容応力を満足する。

6.5 繰返し荷重の評価

6.5.1 疲労解析

ノズルセーフエンド及びノズルエンドの応力評価点について,詳細な繰返し荷重の評価 を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表6-6に示す。

表6-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

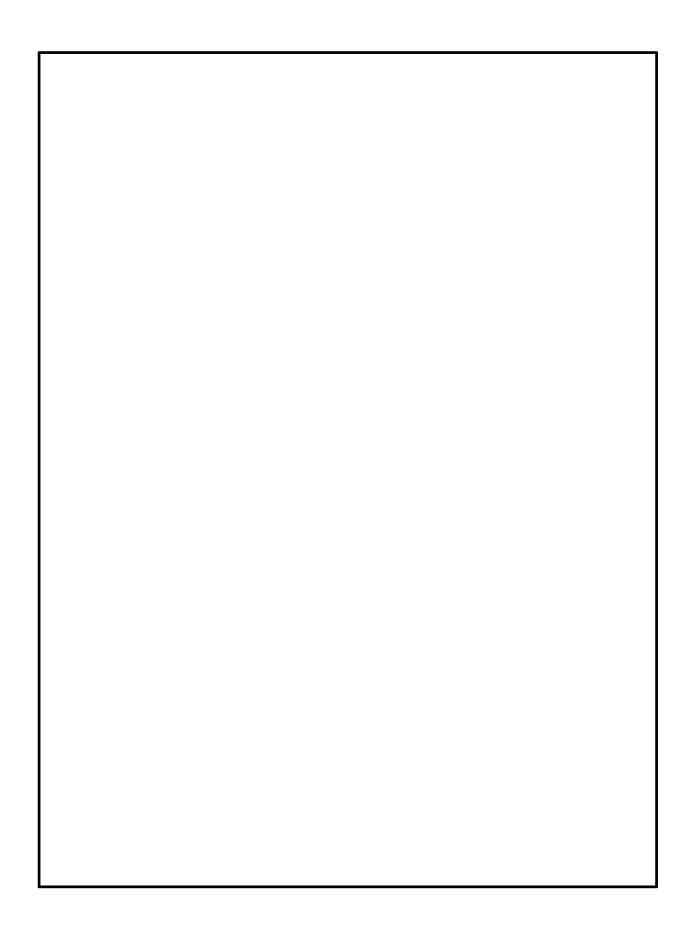


図 6-2(1) 応力計算のモデル

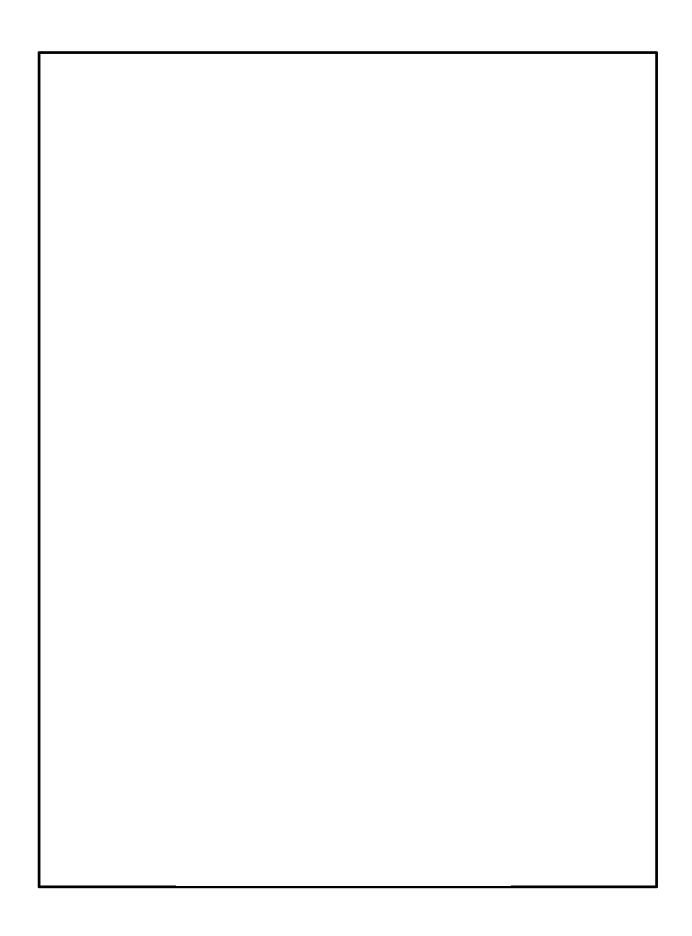


図 6-2(2) 応力計算のモデル

表 6-2 機器諸元

項目		記号	単位	入力値
材質		_	_	SFVQ1A
温度条件		Т	$^{\circ}\! \mathbb{C}$	
縦弾性係数	SFVQ1A	E	MPa	
ポアソン比		ν		
要素数		_		
節点数		_	_	

表 6-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力状態ⅣAS			
心力計画画	応力強さ	許容応力	応力強さ	許容応力		
P01 P02	95	303	95	320		
P01' P02'	95	303	95	320		
P03 P04	33	303	33	320		
P03' P04'	33	303	33	320		
P05 P06	17	303	17	320		
P05' P06'	17	303	17	320		

表 6-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力物	犬態ⅢaS	許容応力状態ⅣAS			
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力		
P01	96	400	98	423		
P02	90	400	90	423		
P01'	95	400	95	423		
P02'	90	400	90	423		
P03	43	430	48	455		
P04	40	430	40	400		
P03'	43	430	48	455		
P04'	40	430	40			
P05	36	454	40	481		
P06	30	404	40	481		
P05'	35	454	39	481		
P06'	39	404	39	481		

表 6-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

	一次+二次応力差最大範囲								
応力評価点	$(P_L + P_b + Q)$								
心力計画点			許容応力						
	S n # 1	S n # 2	3 · S m						
P01	80	136	552						
P01'	80	136	552						
P02	68	116	552						
P02'	68	116	552						
P03	40	66	552						
P03'	40	66	552						
P04	52	96	552						
P04'	52	96	552						
P05	18	32	552						
P05'	18	32	552						
P06	52	90	552						
P06'	52	90	552						

表 6-6 疲労累積係数の評価のまとめ

応力評価点		}	疲 労累積係数	疲労累積係数										
心力評価点	U n	$U_{ m S\ d}$	U _{ss}	U _f *	許容値									
P01	0.003	0.000	0.001	0.004	1.0									
P01'	0.000	0.000	0.001	0.001	1.0									
P02	0.000	0.000	0.000	0.000	1.0									
P02'	0.000	0.000	0.000	0.000	1.0									
P03	0.000	0.000	0.000	0.000	1.0									
P03'	0.000	0.000	0.000	0.000	1.0									
P04	0.000	0.000	0.000	0.000	1.0									
P04'	0.000	0.000	0.000	0.000	1.0									
P05	0.002	0.000	0.000	0.002	1.0									
P05'	0.002	0.000	0.000	0.002	1.0									
P06	0.002	0.000	0.000	0.002	1.0									
P06'	0.001	0.000	0.000	0.001	1.0									

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重 S_d *又は 地震荷重 S_s のいずれか大きい方を加えた値である。

7. 給水ノズル (N4) の応力計算

7.1 一般事項

本章は、給水ノズル (N4) の応力計算について示すものである。

給水ノズル (N4) は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備に おいては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

7.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図7-1に示す。

7.1.2 解析範囲

解析範囲を図7-1に示す。

7.1.3 計算結果の概要

計算結果の概要を表7-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に 着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価 点を記載する。

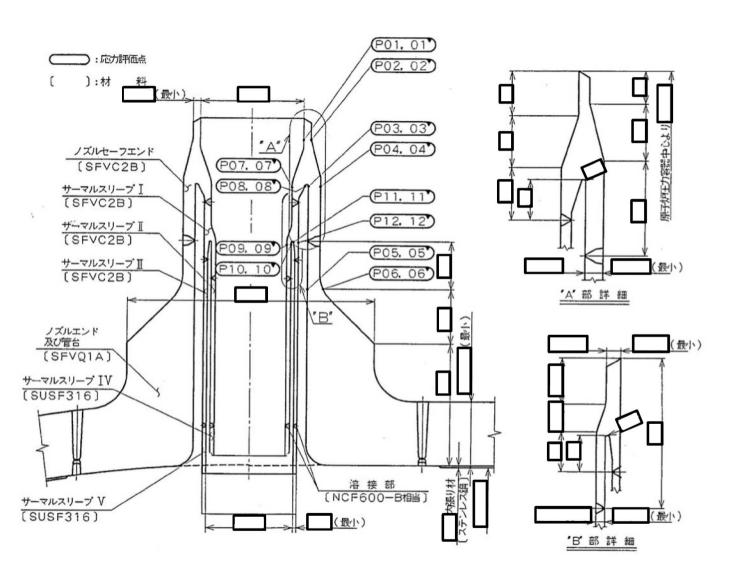


図 7-1 形状・寸法・材料・応力評価点 (単位:mm)

表 7-1 計算結果の概要

		一次一般膜応力強さ		一次膜+一次曲げ応力強さ			一次+二次応力強さ			疲労解析			
部分及び材料	許容応力状態	-1- 1	(MPa			(MPa)		(MPa)			and a NA str	-1 1-1	-1. [
H1.30 % C 0 13 11	AT A 70 7 VICE	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
ノズル	III A S	88	188	P01 - P02	129	252	P01 - P02	_	_	_	_	_	_
セーフエンド	IV A S	102	292	P01 - P02	193	391	P01' - P02'	_	_	_	_	_	_
SFVC2B	III A S	_	_	_		_	_	182	383	P02	0. 100	1. 0	P03'
SI VC2D	IV a S	_	_	_		_	_	362	383	P02	0. 100	1.0	103
	III A S	56	303	P05 - P06	83	415	P05' - P06'	_	_	_	_	_	_
ノズルエンド	IV A S	62	320	P05 - P06	123	439	P05' - P06'	_	_	_	_	_	_
SFVQ1A	III A S	_	_	_		_	_	134	552	P06	0.008	1. 0	P06
	IV A S	_	_	_	1	_	_	274	552	P06	0.008	1.0	100
4 1.	III A S	6	188	P09 - P10	39	248	P09 - P10	_	_	_	_	_	_
サーマル スリーブ	IV A S	9	292	P09 - P10	65	385	P09 - P10	_	_	_	_	_	_
SFVC2B	III A S	_	_	_		_	_	194	383	P10	0. 082	1.0	D11'
51· VC2D	IV A S	_	_	_	_	_	_	380	383	P10	0.002	1.0	P11'

注: 管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記*:疲労累積係数は、運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

7.2 計算条件

7.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

7.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

7.2.3 材料

各部の材料を図7-1に示す。

7.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

7.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

7.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

7.3 応力計算

7.3.1 応力評価点

応力評価点の位置を図7-1に示す。

なお,応力集中を生じる箇所の応力集中係数は,既工認から変更はなく「応力解析の方針」の参照図書(1)j.に定めるとおりである。

7.3.2 内圧及び差圧による応力

(1) 荷重条件(L01及びL02)

各運転状態による内圧及び差圧は、既工認から変更はなく「応力解析の方針」の参照図書(1)j.に定めるとおりである。

(2) 計算方法

内圧及び差圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)j.に定めるとおりである。

7.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)及び表4-1(6)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板及び炉内配管との取り合い部で溶接されるため、胴板及び炉内配管の一部を含めてモデル化している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図7-2に示す。また、地震による評価に用いる機器の諸元について表7-2に示す。

7.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強さ を算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

7.4 応力強さの評価

7.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表7-3に示す。

表7-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

7.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表7-4に示す。

表7-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の3.5 節に示す許容応力を満足する。

7.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表7-5に示す。

表7-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_n$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

7.5 繰返し荷重の評価

7.5.1 疲労解析

ノズルセーフエンド, ノズルエンド及びサーマルスリーブの応力評価点について, 詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表7-6に示す。

表7-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

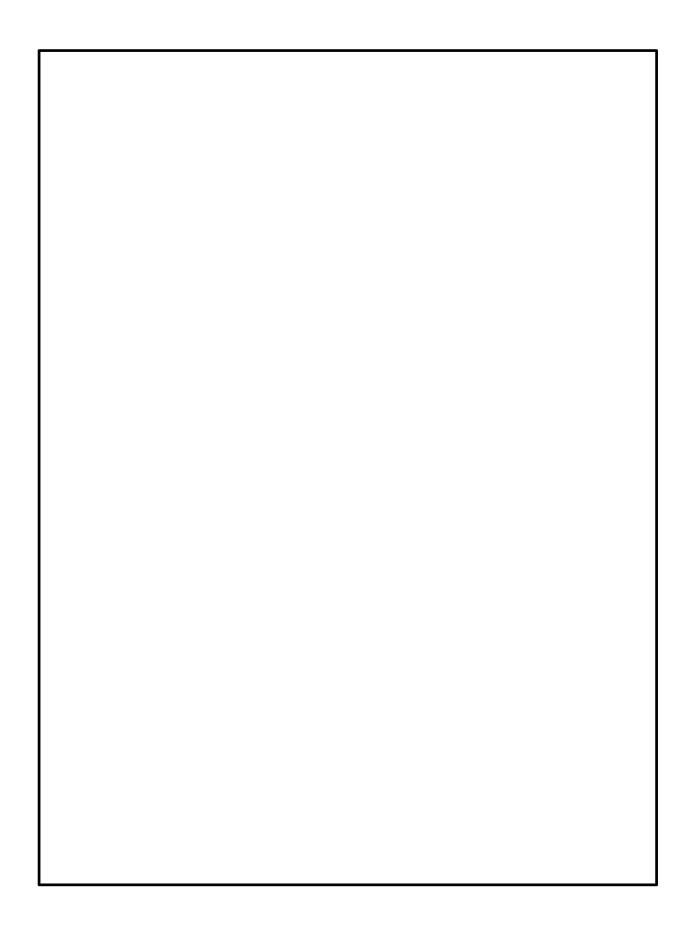


図 7-2(1) 応力計算のモデル

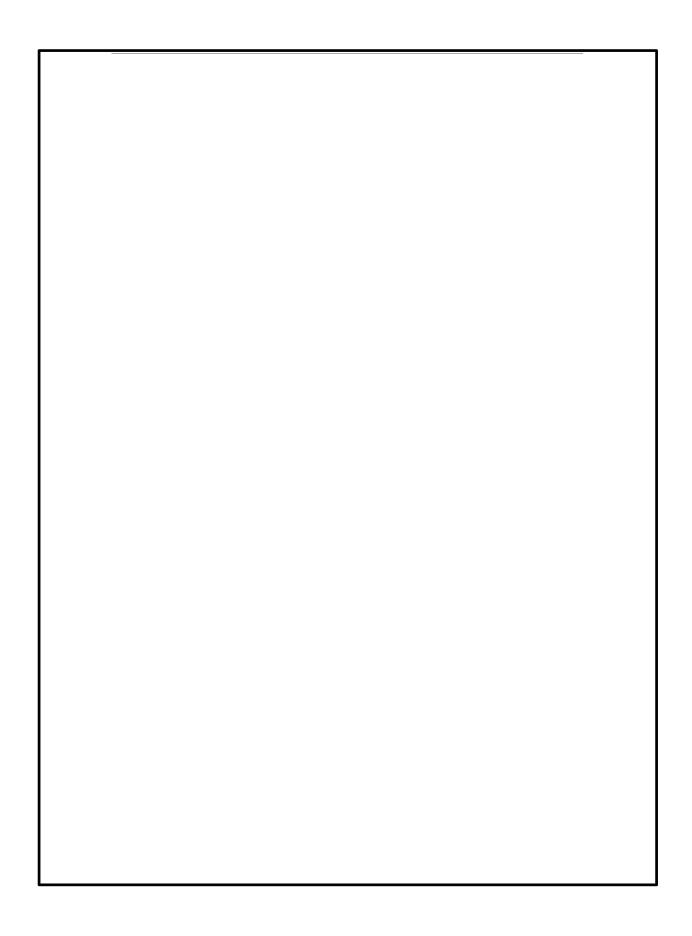


図 7-2(2) 応力計算のモデル

表 7-2 機器諸元

項目	1	記号	単位	入力値
1.1.65				SFVQ1A
				SFVC2B
材質				SUSF316
	_			NCF600-B
温度条件		Т	$^{\circ}\! \mathbb{C}$	
	SFVQ1A	Е	MPa	
 縦弾性係数	SFVC2B	Е	MPa	
秋 押 1 1 1 1	SUSF316	Е	MPa	
	NCF600-B	Е	MPa	
ポアソン比	ポアソン比			
要素数				
節点数		_	_	

表 7-3 一次一般膜応力強さの評価のまとめ

	許容応力ង	犬態ⅢAS	許容応力状態IVAS		
応力評価面	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	88	188	102	292	
P01' P02'	87	188	100	292	
P03 P04	56	188	62	292	
P03' P04'	55	188	61	292	
P05 P06	56	303	62	320	
P05' P06'	55	303	61	320	
P07 P08	2	188	3	292	
P07' P08'	2	188	3	292	
P09 P10	6	188	9	292	
P09' P10'	4	188	8	292	
P11 P12	0	188	0	292	
P11' P12'	0	188	0	292	

表 7-4 一次膜+一次曲げ応力強さの評価のまとめ

大力並任 差	許容応力ង	犬態ⅢAS	許容応力物	犬態IV A S
応力評価面	応力強さ	許容応力	応力強さ	許容応力
P01 P02	129	252	189	391
P01' P02'	128	252	193	391
P03 P04	77	257	111	400
P03' P04'	78	257	114	400
P05 P06	82	415	121	439
P05' P06'	83	415	123	439
P07 P08	12	263	19	408
P07' P08'	12	263	19	408
P09 P10	39	248	65	385
P09' P10'	35	248	61	385
P11 P12	0	248	0	385
P11' P12'	0	248	0	385

表 7-5 一次+二次応力強さの評価のまとめ

	一次+	二次応力差最	· 大 絎 囲
		$P_L + P_b + Q$	
応力評価点	· ·		許容応力
	S n # 1	S n # 2	3 • S m
P01	128	262	383
P01'	128	262	383
P02	182	362	383
P02'	182	362	383
P03	116	232	383
P03'	116	232	383
P04	86	170	383
P04'	86	170	383
P05	58	116	552
P05'	58	116	552
P06	134	274	552
P06'	134	274	552
P07	8	18	383
P07'	8	18	383
P08	50	106	383
P08'	50	106	383
P09	24	48	383
P09'	24	48	383
P10	194	380	383
P10'	194	380	383
P11	36	70	383
P11'	36	70	383
P12	30	66	383
P12'	30	66	383

表 7-6 疲労累積係数の評価のまとめ

皮 - 5 - 5 - 7 - 12		疲労累積係数								
応力評価点	U n	U _{sd}	U s s	U _f *	許容値					
P01	0.009	0.000	0.003	0.012	1.0					
P01'	0.006	0.000	0.003	0.009	1.0					
P02	0.004	0.002	0.015	0.019	1.0					
P02'	0.003	0.002	0.015	0.018	1.0					
P03	0.071	0.002	0.021	0.092	1.0					
P03'	0.079	0.002	0.021	0.100	1.0					
P04	0.003	0.000	0.001	0.004	1.0					
P04'	0.002	0.000	0.001	0.003	1.0					
P05	0.001	0.000	0.000	0.001	1.0					
P05'	0.001	0.000	0.000	0.001	1.0					
P06	0.000	0.001	0.008	0.008	1.0					
P06'	0.000	0.001	0.008	0.008	1.0					
P07	0.041	0.000	0.000	0.041	1.0					
P07'	0.041	0.000	0.000	0.041	1. 0					
P08	0.033	0.000	0.001	0.034	1. 0					
P08'	0.033	0.000	0.001	0.034	1. 0					
P09	0.016	0.000	0.000	0.016	1.0					
P09'	0.016	0.000	0.000	0.016	1.0					
P10	0.002	0.006	0.049	0.051	1.0					
P10'	0.002	0.006	0.049	0.051	1.0					
P11	0.081	0.000	0.000	0.081	1.0					
P11'	0.082	0.000	0.000	0.082	1.0					
P12	0.012	0.000	0.000	0.012	1.0					
P12'	0.012	0.000	0.000	0.012	1.0					

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

8. 低圧注水ノズル (N6) の応力計算

8.1 一般事項

本章は、低圧注水ノズル (N6) の応力計算について示すものである。

低圧注水ノズル (N6) は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

8.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図8-1に示す。

8.1.2 解析範囲

解析範囲を図8-1に示す。

8.1.3 計算結果の概要

計算結果の概要を表8-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に 着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価 点を記載する。

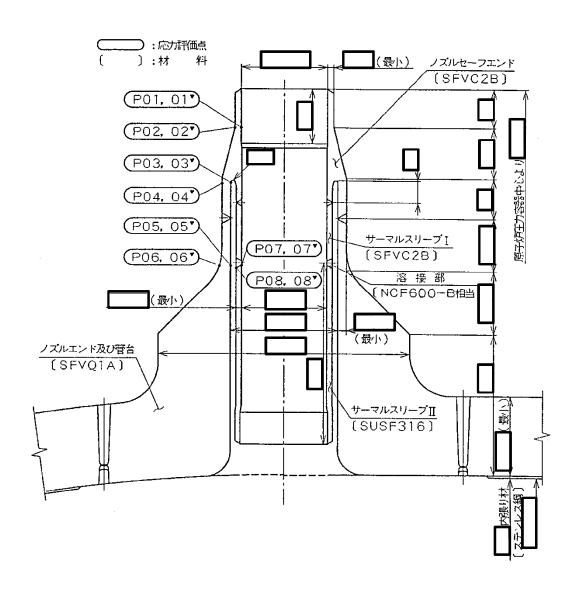


図8-1 形状・寸法・材料・応力評価点 (単位:mm)

表 8-1 計算結果の概要

		一次一般膜応力強さ (MPa)		一次膜+一次曲げ応力強さ 一を (MPa)		一次-	一次+二次応力強さ (MPa)		疲労解析				
部分及び材料	許容応力状態	応力 強さ	許容	応力評価面	応力 強さ	許容応力	応力評価面	応力 強さ	許容応力	応力 評価点	疲労*1 累積係数	許容値	応力 評価点
ノズル	III A S	86	188	P01 - P02	144	252	P01 - P02	_	_	_	_	_	_
セーフエンド	IV A S	99	292	P01 - P02	213	391	P01' - P02'	_	_	_	_	_	_
SFVC2B	III ∧ S					_		216	383	P02	0. 180	1. 0	P03
SI VC2D	IV A S					_		426*2	383	P02	0. 160	1.0	F03
	III A S	75	303	P05 - P06	112	406	P05 - P06	_	_	_	_	_	_
ノズルエンド	IV a S	81	320	P05 - P06	160	429	P05 - P06	_	_	_	_	_	_
SFVQ1A	III A S	_	_	_	_	_	_	176	552	P06	0.016	1.0	P06
	IV a S	_	_	_	_	_	_	348	552	P06	0.010	1.0	001
4-71	III A S	3	142	P07 - P08	24	191	P07 - P08	_	_	_	_	_	_
サーマル スリーブ	IV A S	7	280	P07 - P08	42	375	P07 - P08	_	_	_	_	_	_
SUSF316	III A S	-		_		_	_	78	360	P08	0. 185	1.0	P07
5051510	IV A S	1	1			_		154	360	P08	0. 105	1.0	107

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記*1:疲労累積係数は、運転状態 I 及びⅡに地震荷重 S d*又は地震荷重 S s のいずれか大きい方を加えた値である。

*2:許容値3·Smを超えるため、設計・建設規格 PVB-3300の簡易弾塑性解析を行う。

8.2 計算条件

8.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

8.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

8.2.3 材料

各部の材料を図8-1に示す。

8.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

8.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

8.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

8.3 応力計算

8.3.1 応力評価点

応力評価点の位置を図8-1に示す。

なお,応力集中を生じる箇所の応力集中係数は,既工認から変更はなく「応力解析の方針」の参照図書(1)k.に定めるとおりである。

8.3.2 内圧及び差圧による応力

(1) 荷重条件(L01及びL02)

各運転状態による内圧及び差圧は、既工認から変更はなく「応力解析の方針」の参照図書(1)k.に定めるとおりである。

(2) 計算方法

内圧及び差圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)k.に定めるとおりである。

8.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)及び表4-1(6)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板及び炉内配管との取り合い部で溶接されるため、胴板及び炉内配管の一部を含めてモデル化している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図8-2に示す。また、地震による評価に用いる機器の諸元について表8-2に示す。

8.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強さ を算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

8.4 応力強さの評価

8.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表8-3に示す。

表8-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

8.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表8-4に示す。

表8-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の3.5 節に示す許容応力を満足する。

8.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表8-5に示す。

表8-5より,以下の評価点を除くすべての評価点において S_n ^{#1}及び S_n ^{#2}は,3・ S_n 以下であり,「応力解析の方針」の3.5節に示す許容応力を満足する。

P02, P02', P03及びP03'

一次+二次応力強さの最大範囲が3・S_mを超える応力評価点(P02, P02', P03及びP03') にあっては, 「応力解析の方針」の5.3節に示す簡易弾塑性解析の方法を適用する。

8.5 繰返し荷重の評価

8.5.1 疲労解析

ノズルセーフエンド, ノズルエンド及びサーマルスリーブの応力評価点について, 詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

 $S_n^{#1}$ 又は $S_n^{#2}$ が $3\cdot S_m$ を超える応力評価点のうち最も厳しい応力評価点(P03)における疲労累積係数の計算結果を表8-6に示す。また,各応力評価点における疲労累積係数を表8-7に示す。

表8-7より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

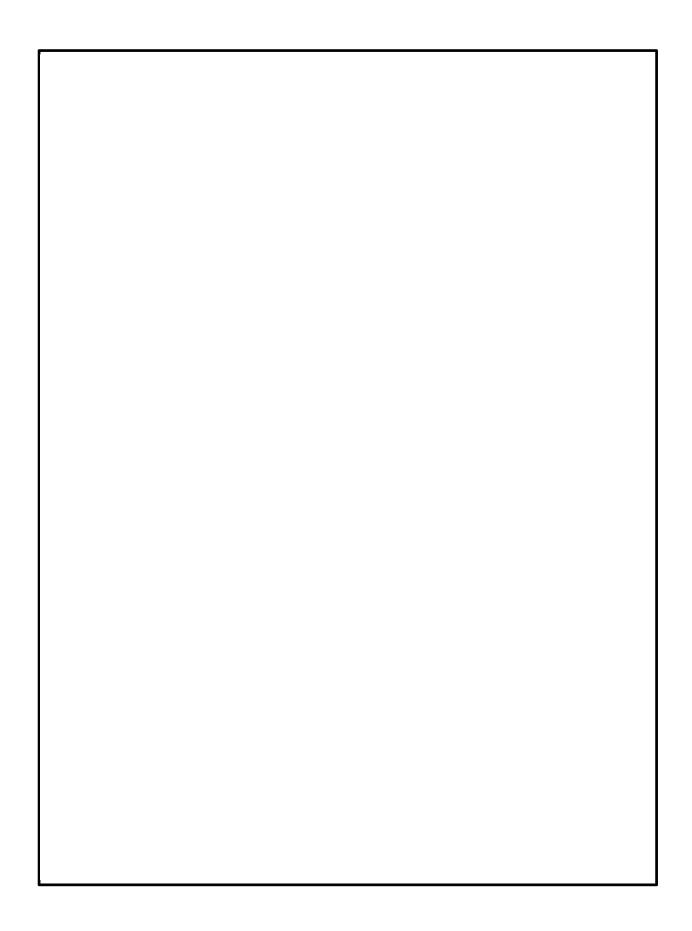


図8-2(1) 応力計算のモデル

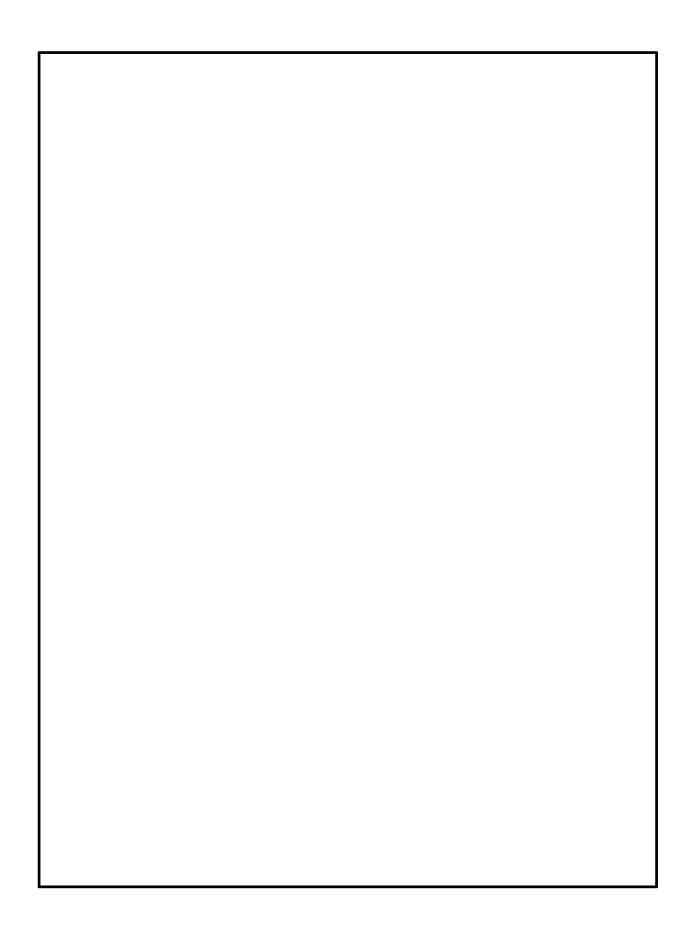


図8-2(2) 応力計算のモデル

表 8-2 機器諸元

項目	I	記号	単位	入力値
		_	_	SFVQ1A
++ 斦				SFVC2B
材質				SUSF316
		_	_	NCF600-B
温度条件		Т	$^{\circ}$	
	SFVQ1A	Е	MPa	
 縦弾性係数	SFVC2B	E	MPa	
秋 押 1 1 1 1	SUSF316	E	MPa	
	NCF600-B	E	MPa	
ポアソン比	ポアソン比		_	
要素数	要素数			
節点数		_	_	

表 8-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力状態ⅣAS		
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	86	188	99	292	
P01' P02'	85	188	98	292	
P03 P04	75	188	81	292	
P03' P04'	75	75 188		292	
P05 P06	75	303	81	320	
P05' P06'	75	75 303		320	
P07 P08	3	142	7	280	
P07' P08'	2	142	6	280	

表 8-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力ង	犬態ⅢAS	許容応力状態ⅣAS		
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	144	252	212	391	
P01' P02'	142	252	213	391	
P03 P04	106	252	150	391	
P03' P04'	104	252	150	391	
P05 P06	112	406	160	429	
P05' P06'	110	406	160	429	
P07 P08	24	191	42	375	
P07' P08'	22	191	40	375	

表 8-5 一次+二次応力強さの評価のまとめ

		``	+ 14. · M1 a)					
	一次十二次応力差最大範囲							
応力評価点	$(P_L + P_b + Q)$							
			許容応力					
	S n # 1	S n # 2	3 · S m					
P01	144	274	383					
P01'	144	274	383					
P02	216	426*	383					
P02'	216	426*	383					
P03	210	412*	383					
P03'	210	412*	383					
P04	108	210	383					
P04'	108	210	383					
P05	98	192	552					
P05'	98	192	552					
P06	176	348	552					
P06'	176	348	552					
P07	62	114	360					
P07'	62	114	360					
P08	78	154	360					
P08'	78	154	360					

注記*:簡易弾塑性解析を行う。

表 8-6 疲労累積係数

応力評価点 — P03

材 料 — SFVC2B

No.	S n (MPa)	K e	S p (MPa)	S _ℓ *¹ (MPa)	S ¿'*2 (MPa)	N a	N c	N c / N a			
1	412	1. 335	726	485	539	1168	200	0.172			
	疲労累積係数 U _{ss} = 0.172										
	疲労累積係数 U _n = 0.008										
	疲労累積係数 U _f =U _n +U _{Ss} = 0.180										

注:疲労累積係数の求め方は、「応力解析の方針」の5.3.1項(疲労解析)に示す。

注記*1:設計・建設規格 PVB-3315(1)又は(2)により求めた値である。

*2 : S_ℓに (E₀/E) を乗じた値である。

 $E_0 = MPa$, E = MPa

表 8-7 疲労累積係数の評価のまとめ

皮 去葱/雨上		疲労累積係数								
応力評価点	U n	U _{sd}	U s s	U _f *	許容値					
P01	0.054	0.000	0.004	0.058	1.0					
P01'	0.091	0.000	0.004	0.095	1.0					
P02	0.008	0.003	0.045	0.053	1.0					
P02'	0.007	0.003	0.045	0.052	1.0					
P03	0.008	0.009	0.172	0.180	1. 0					
P03'	0.000	0.009	0. 172	0.172	1.0					
P04	0.000	0.000	0.002	0.002	1. 0					
P04'	0.000	0.000	0.002	0.002	1. 0					
P05	0.000	0.000	0.001	0.001	1.0					
P05'	0.000	0.000	0.001	0.001	1.0					
P06	0.000	0.002	0.016	0.016	1.0					
P06'	0.000	0.002	0.016	0.016	1.0					
P07	0.185	0.000	0.000	0. 185	1.0					
P07'	0.185	0.000	0.000	0. 185	1.0					
P08	0.000	0.000	0.000	0.000	1.0					
P08'	0.000	0.000	0.000	0.000	1.0					

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

9. 上蓋スプレイ・ベントノズル (N7) の応力計算

9.1 一般事項

本章は、上蓋スプレイ・ベントノズル (N7) の応力計算について示すものである。

上蓋スプレイ・ベントノズル (N7) は、設計基準対象施設においてはSクラス施設に、重大 事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類 される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

9.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図9-1に示す。

9.1.2 解析範囲

解析範囲を図9-1に示す。

9.1.3 計算結果の概要

計算結果の概要を表9-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に 着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価 点を記載する。 : 応力評価点: 材 料

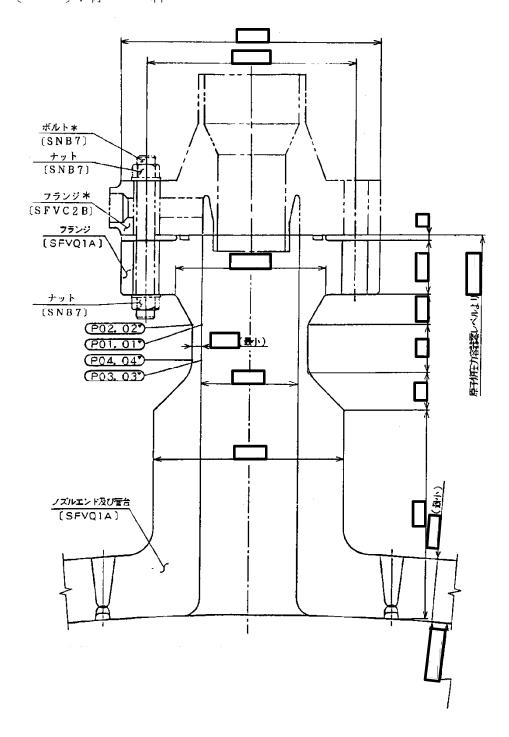


図9-1 形状・寸法・材料・応力評価点 (単位:mm)

表 9-1 計算結果の概要

	許容応力状態	一次一般膜応力強さ		一次膜+一次曲げ応力強さ		一次+二次応力強さ		疲労解析					
部分及び材料		(MPa)		(MPa)		(MPa)							
		応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
	III A S	60	303	P01 - P02	206	409	P01' - P02'	_	_	_	_	_	_
フランジ SFVQ1A	IV A S	63	320	P01 - P02	242	432	P01' - P02'		_	_	_	_	_
	III A S	_	_			_	_	240	552	P02	0. 055	1. 0	P02
	IV A S	_	_			_	_	466	552	P02	0.055	1.0	F02
	III A S	60	303	P03 - P04	112	409	P03 - P04		_	_	_	_	_
ノズルエンド	IV A S	63	320	P03 - P04	153	432	P03 - P04		_	_	_	_	_
SFVQ1A	III ∧ S	_	_	_	_		_	246	552	P04	0.046	1.0	P04
	IV a S	_	_	_	_	_	_	486	552	P04	0.046	1.0	F04

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記* :疲労累積係数は、運転状態 I 及びⅡに地震荷重 S d*又は地震荷重 S s のいずれか大きい方を加えた値である。

9.2 計算条件

9.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

9.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

9.2.3 材料

各部の材料を図9-1に示す。

9.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

9.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

9.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

9.3 応力計算

9.3.1 応力評価点

応力評価点の位置を図9-1に示す。

なお,応力集中を生じる箇所の応力集中係数は,既工認から変更はなく「応力解析の方針」の参照図書(1)1.に定めるとおりである。

9.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は, 既工認から変更はなく「応力解析の方針」の参照図書(1)1. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)1. に定めるとおりである。

9.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板との取り合い部で溶接されるため、胴板の一部を含めてモデル化 している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 9-2 に示す。また、地震による評価に用いる機器の諸元について表 9-2 に示す。

9.3.4 ボルト荷重による応力

(1) 荷重条件(L11)

ボルト荷重は、既工認から変更はなく「応力解析の方針」の参照図書(1)1. に定めると おりである。

(2) 計算方法

ボルト荷重による応力の計算は,既工認から変更はなく「応力解析の方針」の参照図書 (1)1. に定めるとおりである。

9.3.5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強さ を算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

9.4 応力強さの評価

9.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表9-3に示す。

表9-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

9.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表9-4に示す。

表9-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の3.5 節に示す許容応力を満足する。

9.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表9-5に示す。

表9-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_n$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

9.5 繰返し荷重の評価

9.5.1 疲労解析

フランジ及びノズルエンドの応力評価点について、詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表9-6に示す。

表9-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

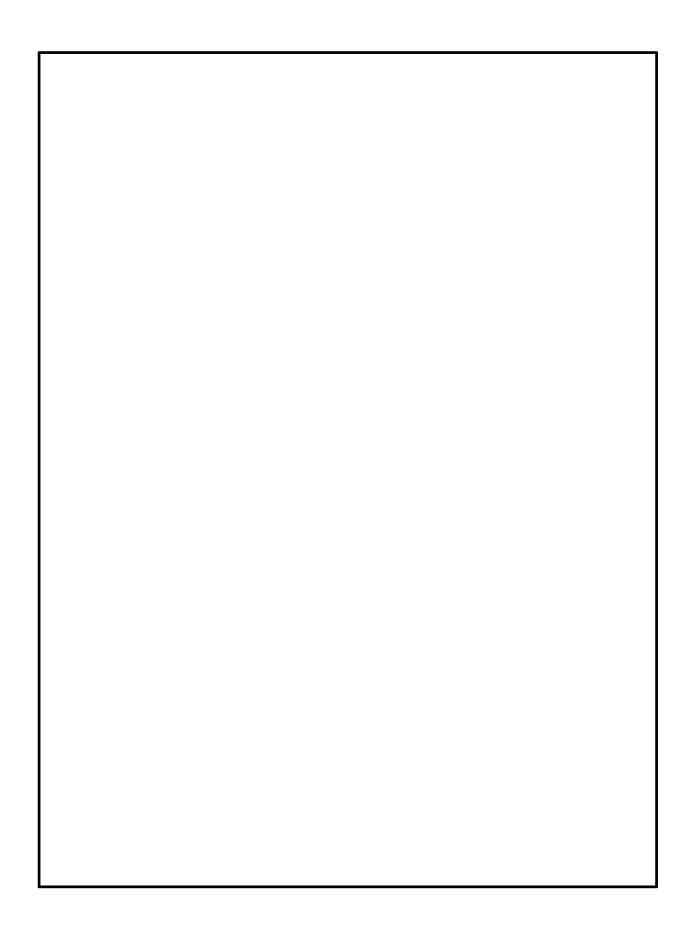


図 9-2(1) 応力計算のモデル

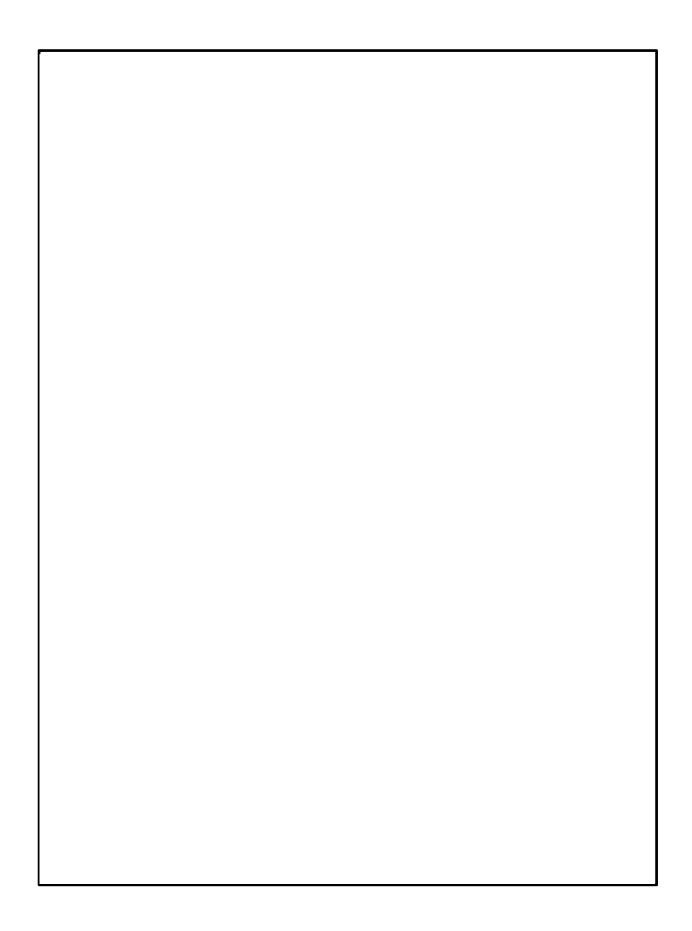


図 9-2(2) 応力計算のモデル

表 9-2 機器諸元

項目		記号	単位	入力値
材質		_	_	SFVQ1A
温度条件		Т	$^{\circ}\!\mathbb{C}$	
縦弾性係数	縦弾性係数 SFVQ1A		MPa	
ポアソン比		ν	_	
要素数		_	_	
節点数		_	_	

表 9-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力物	犬態ⅢAS	許容応力状態ⅣAS		
心力評価曲	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	60	303	63	320	
P01'				320	
P02'	60	303	63		
P03	60	303	63	320	
P04	00	303	03	320	
P03'	60	303	63	320	
P04'	00	303	0.5	320	

表 9-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力状態ⅣAS		
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01	150	409	155	432	
P02	150	409	155	432	
P01'	206	409	242	432	
P02'	200	409	242	432	
P03	110	400	159	432	
P04	112	409	153	432	
P03'	106	409	147	422	
P04'	100	409	147	432	

表 9-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

大力 源/压上	一次+二次応力差最大範囲 (Р _L +Р _b +Q)					
応力評価点	S n # 1	S n # 2	許容応力 3・S _m			
P01	112	224	552			
P01'	112	224	552			
P02	240	466	552			
P02'	240	466	552			
P03	118	234	552			
P03'	118	234	552			
P04	246	486	552			
P04'	246	486	552			

表 9-6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数							
心力許ш点	U n	U _{sd}	U _{ss}	U _f *	許容値			
P01	0.001	0.000	0.003	0.004	1. 0			
P01'	0.001	0.000	0.003	0.004	1. 0			
P02	0.003	0.007	0.052	0.055	1.0			
P02'	0.001	0.007	0.052	0.053	1. 0			
P03	0.001	0.000	0.003	0.004	1. 0			
P03'	0.000	0.000	0.003	0.003	1.0			
P04	0.001	0.006	0.045	0.046	1.0			
P04'	0.000	0.006	0.045	0.045	1.0			

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

10. 原子炉停止時冷却材出口ノズル (N8) の応力計算

10.1 一般事項

本章は、原子炉停止時冷却材出口ノズル (N8) の応力計算について示すものである。 原子炉停止時冷却材出口ノズル (N8) は、設計基準対象施設においてはSクラス施設に、 重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に 分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

10.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図10-1に示す。

10.1.2 解析範囲

解析範囲を図10-1に示す。

10.1.3 計算結果の概要

計算結果の概要を表10-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

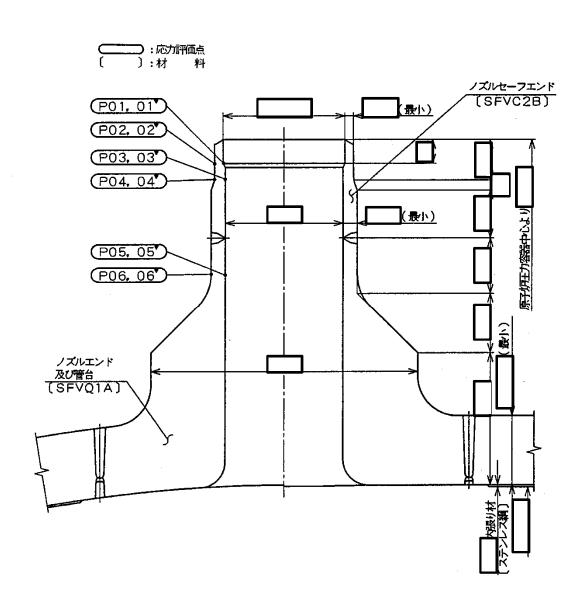


図10-1 形状・寸法・材料・応力評価点 (単位:mm)

表 10-1 計算結果の概要

		一次一般膜応力強さ		一次膜	一次膜+一次曲げ応力強さ		一次+二次応力強さ		力強さ	疲労解析			
カワノノ ひ イドナナボ	新宏尺力化能	(MPa)		(MPa)		(MPa)							
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
ノズル	III A S	76	188	P01 - P02	96	252	P01 - P02	_	_	_	_	_	_
セーフエンド	IV a S	79	292	P01 - P02	135	391	P01 - P02	_	_	_	_	_	_
SFVC2B	III a S	_	_	_	_	_	_	118	383	P04	0.008	1.0	P04
SFVC2D	IV a S	_	_	_	_	_	_	246	383	P04	0.008	1.0	P04
	III a S	55	303	P05 - P06	73	412	P05 - P06	_	_	_	_	_	_
ノズルエンド	IV a S	57	320	P05 - P06	106	436	P05 - P06	_	_	_	_	_	_
SFVQ1A	III A S		_	_		_	_	98	552	P06	0.005	1. 0	P06
	IV A S	_	_	_	_	_	_	204	552	P06	0.005	1.0	F00

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記*:疲労累積係数は、運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

10.2 計算条件

10.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

10.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

10.2.3 材料

各部の材料を図10-1に示す。

10.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

10.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

10.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

10.3 応力計算

10.3.1 応力評価点

応力評価点の位置を図10-1に示す。

なお、応力集中を生じる箇所の応力集中係数は、既工認から変更はなく「応力解析の 方針」の参照図書(1)m. に定めるとおりである。

10.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は,既工認から変更はなく「応力解析の方針」の参照図書(1)m. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)m. に定めるとおりである。

10.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板との取り合い部で溶接されるため、胴板の一部を含めてモデル化 している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 10-2 に示す。また、地震による評価に用いる機器の諸元について表 10-2 に示す。

10.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強 さを算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

10.4 応力強さの評価

10.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表10-3に示す。

表10-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

10.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表10-4に示す。

表10-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の 3.5節に示す許容応力を満足する。

10.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表10-5に示す。

表10-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_m$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

10.5 繰返し荷重の評価

10.5.1 疲労解析

ノズルセーフエンド及びノズルエンドの応力評価点について,詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表10-6に示す。

表10-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

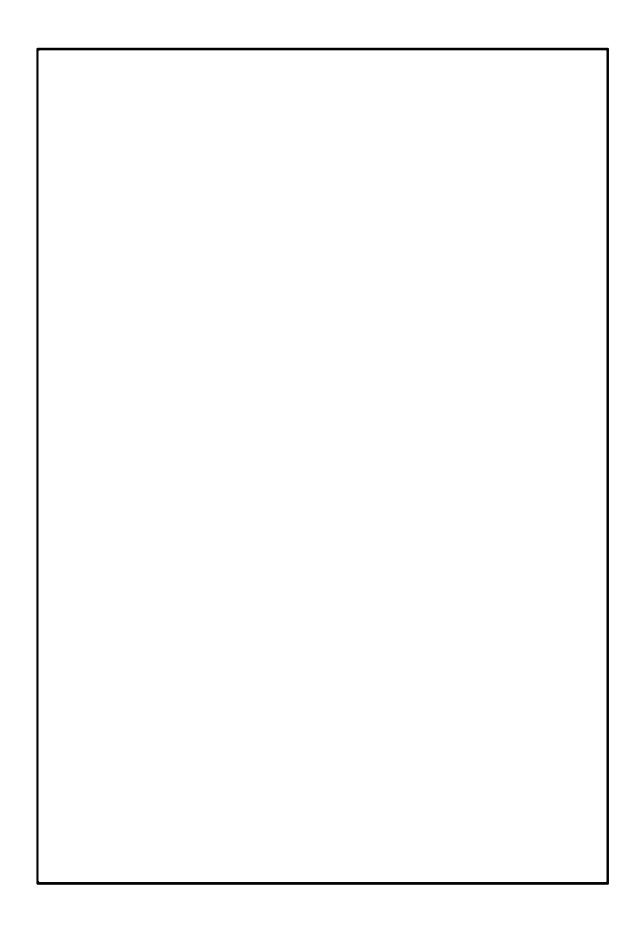


図 10-2(1) 応力計算のモデル

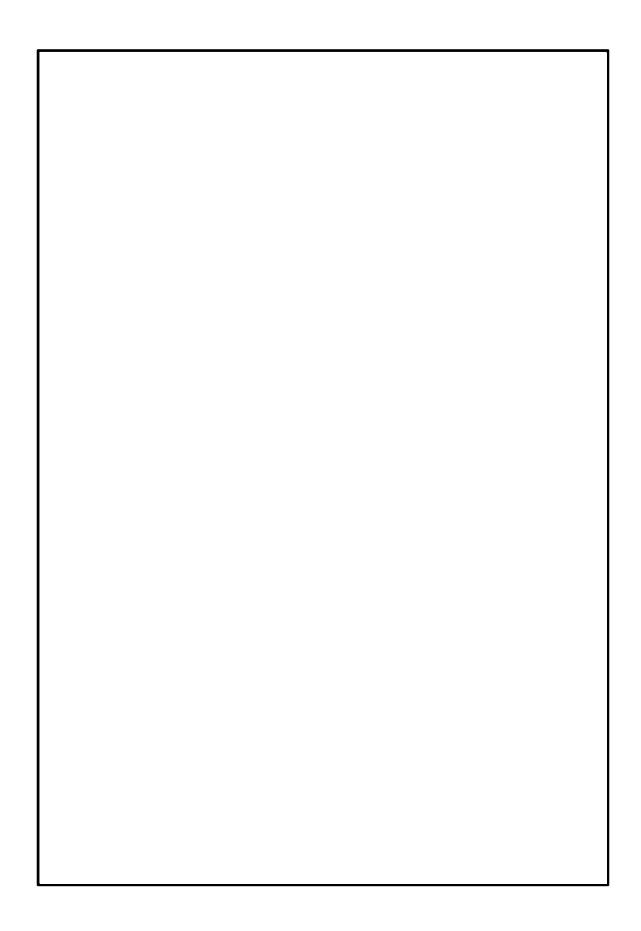


図 10-2(2) 応力計算のモデル

表 10-2 機器諸元

項目		記号	単位	入力値
1.1.55		_		SFVQ1A
材質		_		SFVC2B
温度条件		Т	$^{\circ}\!\mathbb{C}$	
% 部 怀 农 米	SFVQ1A	E	MPa	
縦弾性係数	SFVC2B	Е	MPa	
ポアソン比		ν	_	
要素数		_	_	
節点数		_	_	

表 10-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力料	犬態ⅢAS	許容応力場	犬態IVAS
心力計画画	応力強さ	許容応力	応力強さ	許容応力
P01 P02	76	188	79	292
P01' P02'	76	188	78	292
P03 P04	69	188	72	292
P03' P04'	69	188	71	292
P05 P06	55	303	57	320
P05' P06'	55	303	57	320

表 10-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力物	犬態ⅢaS	許容応力場	犬態ⅣAS	
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01	96	252	135	391	
P02	90	202	155	391	
P01'	93	252	134	391	
P02'	90	202	134	391	
P03	89	252	125	391	
P04	09	202	120	591	
P03'	87	252	124	391	
P04'	01	202	124	391	
P05	73	412	106	436	
P06	70	412	100	430	
P05'	73	412	106	436	
P06'	73	412	100	430	

表 10-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

	一次+二次応力差最大範囲						
- 応力評価点	$(P_L + P_b + Q)$						
心力計画点			許容応力				
	S n # 1	S n # 2	3 · S m				
P01	68	142	383				
P01'	68	142	383				
P02	114	244	383				
P02'	114	244	383				
P03	58	124	383				
P03'	58	124	383				
P04	118	246	383				
P04'	118	246	383				
P05	44	92	552				
P05'	44	92	552				
P06	98	204	552				
P06'	98	204	552				

表 10-6 疲労累積係数の評価のまとめ

応力評価点		疲労累積係数								
心力許伽点	U n	Usd	U s s	U _f *	許容値					
P01	0.003	0.000	0.001	0.004	1.0					
P01'	0.000	0.000	0.001	0.001	1.0					
P02	0.003	0.000	0.002	0.005	1.0					
P02'	0.000	0.000	0.002	0.002	1.0					
P03	0.000	0.000	0.000	0.000	1.0					
P03'	0.000	0.000	0.000	0.000	1.0					
P04	0.003	0.000	0.005	0.008	1.0					
P04'	0.003	0.000	0.005	0.008	1.0					
P05	0.000	0.000	0.000	0.000	1.0					
P05'	0.000	0.000	0.000	0.000	1.0					
P06	0.002	0.000	0.003	0.005	1.0					
P06'	0.000	0.000	0.003	0.003	1.0					

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

11. 原子炉停止時冷却材出口ノズル (N10) の応力計算

11.1 一般事項

本章は、原子炉停止時冷却材出口ノズル(N10)の応力計算について示すものである。 原子炉停止時冷却材出口ノズル(N10)は、設計基準対象施設においてはSクラス施設に、 重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に 分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

11.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図11-1に示す。

11.1.2 解析範囲

解析範囲を図11-1に示す。

11.1.3 計算結果の概要

計算結果の概要を表11-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

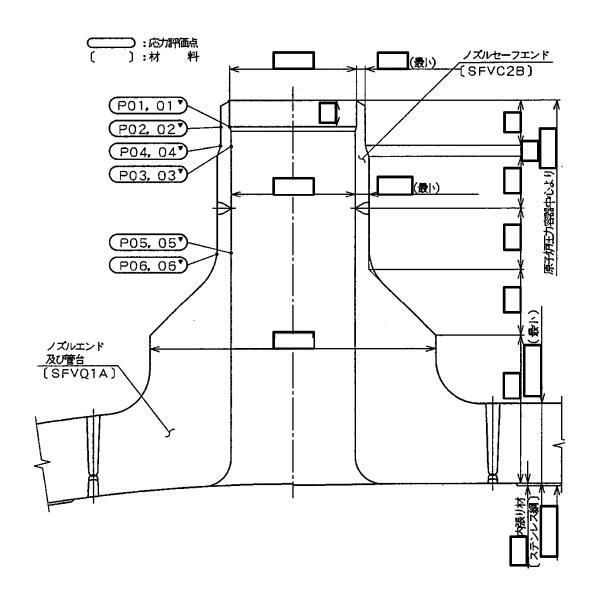


図11-1 形状・寸法・材料・応力評価点 (単位:mm)

表 11-1 計算結果の概要

		− ₹	欠一般膜质	芯力強さ	一次膜	+一次世	げ応力強さ	一次一	+二次応	力強さ	疲	罗解析	
カワノノ ひ イドナナボ	新宏尺力供能	(MPa)		(MPa)		(MPa)							
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
ノズル	III A S	78	188	P01 - P02	98	252	P01 - P02		_	_	_		_
セーフエンド	IV a S	80	292	P01 - P02	123	391	P01 - P02		_	_	_	_	_
SFVC2B	III A S		_	_		_	_	140	383	P04	0.009	1. 0	P04
SI VC2D	IV a S		_	_		_	_	270	383	P04	0.009	1.0	F04
	III A S	55	303	P05 - P06	78	412	P05' - P06'		_	_	_	_	_
ノズルエンド	IV a S	56	320	P05 - P06	97	436	P05' - P06'		_	_	_	_	_
SFVQ1A	III A S		_	_		_	_	122	552	P06	0.006	1.0	P06
	IV A S		_	_		_	_	224	552	P06	0.006	1. 0	F00

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記*:疲労累積係数は、運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

11.2 計算条件

11.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

11.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

11.2.3 材料

各部の材料を図11-1に示す。

11.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

11.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

11.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

11.3 応力計算

11.3.1 応力評価点

応力評価点の位置を図11-1に示す。

なお、応力集中を生じる箇所の応力集中係数は、既工認から変更はなく「応力解析の 方針」の参照図書(1)m. に定めるとおりである。

11.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は,既工認から変更はなく「応力解析の方針」の参照図書(1)m. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)m. に定めるとおりである。

11.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板との取り合い部で溶接されるため、胴板の一部を含めてモデル化 している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 11-2 に示す。また、地震による評価に用いる機器の諸元について表 11-2 に示す。

11.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強 さを算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

11.4 応力強さの評価

11.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表11-3に示す。

表11-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

11.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表11-4に示す。

表11-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の 3.5節に示す許容応力を満足する。

11.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表11-5に示す。

表11-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_m$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

11.5 繰返し荷重の評価

11.5.1 疲労解析

ノズルセーフエンド及びノズルエンドの応力評価点について,詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表11-6に示す。

表11-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

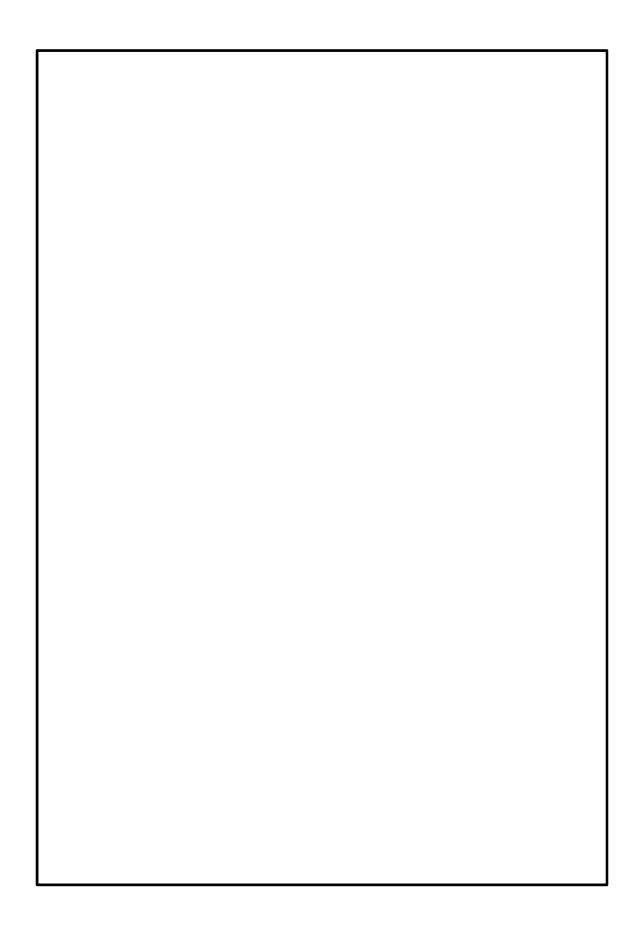


図 11-2(1) 応力計算のモデル

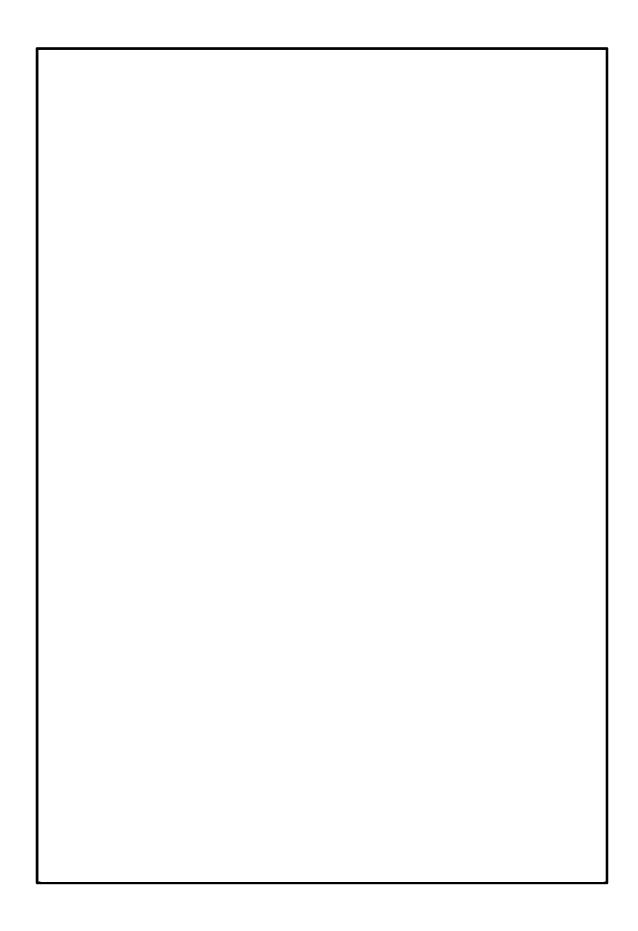


図 11-2(2) 応力計算のモデル

表 11-2 機器諸元

		1		T
項目		記号	単位	入力値
++ 6斤		_		SFVQ1A
材質		_		SFVC2B
温度条件		Т	$^{\circ}\!\mathbb{C}$	
公大 3只 ↑↑ ~ ~ ★ ↑	SFVQ1A		MPa	
縦弾性係数	SFVC2B	E	MPa	
ポアソン比		ν	_	
要素数		_	_	
節点数		_	_	

表 11-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力場	犬態IVAS
心力計画画	応力強さ	許容応力	応力強さ	許容応力
P01 P02	78	188	80	292
P01' P02'	78	188	80	292
P03 P04	70	188	72	292
P03' P04'	70	188	71	292
P05 P06	55	303	56	320
P05' P06'	55	303	56	320

表 11-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力場	犬態IVAS
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力
P01 P02	98	252	123	391
P01' P02'	97	252	123	391
P03 P04	90	252	112	391
P03' P04'	87	252	110	391
P05 P06	77	412	96	436
P05' P06'	78	412	97	436

表 11-5 一次+二次応力強さの評価のまとめ

		一次+二次応力差最大範囲						
 応力評価点	$(P_L + P_b + Q)$							
心力計画点			許容応力					
	S n # 1	$S_n # 2$	3 • S m					
P01	88	164	383					
P01'	88	164	383					
P02	138	264	383					
P02'	138	264	383					
P03	78	142	383					
P03'	78	142	383					
P04	140	270	383					
P04'	140	270	383					
P05	60	108	552					
P05'	60	108	552					
P06	122	224	552					
P06'	122	224	552					

表 11-6 疲労累積係数の評価のまとめ

応力評価点		}	疲労累積係数	•	
心力許伽思	U n	Usd	U s s	U _f *	許容値
P01	0.002	0.000	0.001	0.003	1.0
P01'	0.001	0.000	0.001	0.002	1.0
P02	0.003	0.000	0.003	0.006	1.0
P02'	0.000	0.000	0.003	0.003	1.0
P03	0.000	0.000	0.000	0.000	1.0
P03'	0.000	0.000	0.000	0.000	1.0
P04	0.003	0.001	0.006	0.009	1.0
P04'	0.002	0.001	0.006	0.008	1.0
P05	0.000	0.000	0.000	0.000	1.0
P05'	0.000	0.000	0.000	0.000	1.0
P06	0.002	0.000	0.004	0.006	1.0
P06'	0.000	0.000	0.004	0.004	1.0

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ssのいずれか大きい方を加えた値である。

12. 原子炉冷却材再循環ポンプ差圧検出ノズル (N9) の応力計算

12.1 一般事項

本章は、原子炉冷却材再循環ポンプ差圧検出ノズル (N9) の応力計算について示すものである。

原子炉冷却材再循環ポンプ差圧検出ノズル(N9)は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故 緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

12.1.1 記号の説明

記号の説明を「応力解析の方針」の2.4節に示す。

更に,本章において,以下の記号を用いる。

記号	記号の説明	単位
R i	肉盛溶接部の内半径	mm
t	肉盛溶接部の最小厚さ	mm
A	肉盛溶接部の断面積	mm^2
Z	肉盛溶接部の断面係数	mm^3
σса	許容応力	MPa
L 1	荷重作用点からスタブ付根までの距離	m
$_{ m L_{2}}$	荷重作用点からスタブ付根までの距離	m

12.1.2 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図12-1に示す。

12.1.3 解析範囲

解析範囲を図12-1に示す。

12.1.4 計算結果の概要

計算結果の概要を表12-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

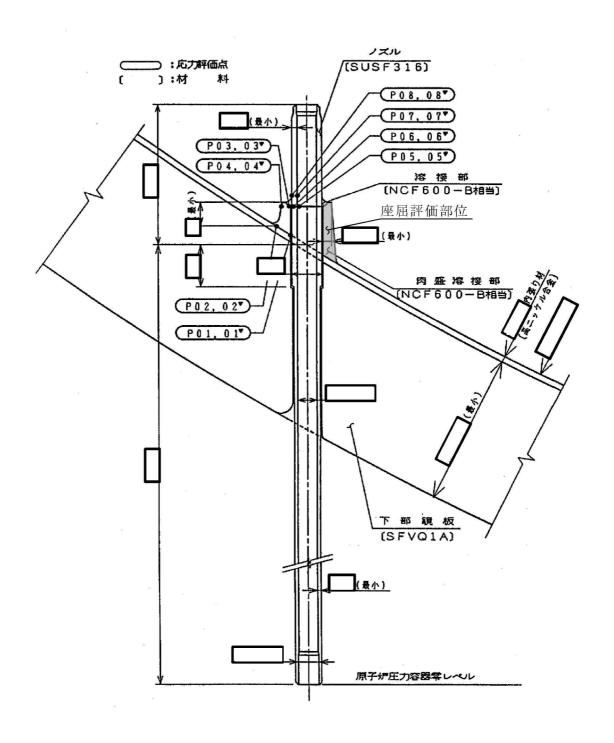


図12-1 形状・寸法・材料・応力評価点 (単位:mm)

12-3

表 12-1(1) 計算結果の概要

		− γ	欠一般膜质	芯力強さ	一次膜	[十一次世	げ応力強さ	一次-	+二次応	力強さ	疲	労解析	
カワノンひょうドナナル	許容応力状態	(MPa)		(MPa)			(MPa)						
部分及び材料		応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
	III A S	20	196	P01 - P02	109	295	P01' - P02'	_	_	_	_	_	_
肉盛溶接部	IV a S	21	334	P01 - P02	115	501	P01' - P02'	_	_	_	_	_	_
NCF600-B 相当	III A S	_	_	_	_	_	_	136	492	P03	0 120	1. 0	P01
	IV A S	_	_	_		_	_	198	492	P03	0. 132	1.0	F01
	III A S	36	142	P05 - P06	135	214	P05 - P06	_	_	_	_	_	_
ノズルエンド	IV A S	46	280	P05 - P06	156	420	P05 - P06	_		_		_	_
SUSF316	III ∧ S	_		_		_		186	360	P06	0. 180	1. 0	P06'
	IV a S	_	_	_		_	_	258	360	P06	0.180	1.0	100

注記*:疲労累積係数は、運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

表12-1(2) 計算結果の概要

			(124 • 111 (4)		
部分及び材料	許容応力状態	座屈に対する評価			
部分及い物料		圧縮応力	許容応力		
肉盛溶接部	III A S	24	99		
NCF600-B 相当	IV A S	31	124		

12.2 計算条件

12.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

12.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

12.2.3 材料

各部の材料を図12-1に示す。

12.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

12.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

12.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

12.3 応力計算

12.3.1 応力評価点

応力評価点の位置を図12-1に示す。

なお、応力集中を生じる箇所の応力集中係数は、既工認から変更はなく「応力解析の 方針」の参照図書(1)n. に定めるとおりである。

12.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は, 既工認から変更はなく「応力解析の方針」の参照図書(1)n. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)n. に定めるとおりである。

12.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板及び炉内配管との取り合い部で溶接されるため、胴板及び炉内配管の一部を含めてモデル化している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 12-2 に示す。また、地震による評価に用いる機器の諸元について表 12-2 に示す。

12.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強 さを算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

12.4 応力強さの評価

12.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表12-3に示す。

表12-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

12.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表12-4に示す。

表12-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の 3.5節に示す許容応力を満足する。

12.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表12-5に示す。

表12-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、3・ S_m 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

12.5 繰返し荷重の評価

12.5.1 疲労解析

肉盛溶接部及びノズルの応力評価点について、詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表12-6に示す。

表12-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

12.6 特別な応力の評価

12.6.1 座屈に対する評価

肉盛溶接部には、原子炉冷却材再循環ポンプ差圧検出ノズル (N9) に作用する鉛直力 及びモーメントにより、圧縮応力が生じる。したがって、これらの荷重の組合せにより 発生する圧縮応力の評価を行う。

(1) 計算データ

肉盛溶接部の内半径 $R_i = 1$ mm 肉盛溶接部の最小厚さ $t_i = 1$ mm

肉盛溶接部の断面積

$$Z = \frac{\pi}{4} \cdot \frac{(R_{i} + t)^{4} - R_{i}^{4}}{R_{i} + t} = \frac{\pi}{4} \times$$

$$= mm^{3}$$

(2) 荷重

肉盛溶接部に作用する鉛直力及びモーメントを「応力解析の方針」の表4-1(5)に示す。

(3) 圧縮応力

計算データ(断面性能)を基に、表12-7に示す各許容応力状態の荷重によって肉盛溶接部に発生する圧縮応力を表12-8に示す。

(4) 許容応力

各許容応力状態における許容応力の計算は、設計・建設規格 PVB-3117を準用して計算する。

a. 許容応力状態ⅢAS

許容応力状態 \mathbb{H} ASにおける許容応力 σ 。aは、次のように得られる。

$$\sigma_{ca} = 1.2 MIN[S_m, B]$$

ここで,

$$B = 83 \text{ MPa}$$

【 でにおける値)

このうちB値は、設計・建設規格 PVB-3117より、次のようにして求める。

設計・建設規格 付録材料図表 Part7 図1より

$$A = \frac{0.125}{R_i / t} = \frac{0.125}{m_i / t} = \frac{0.125}{m_i / t}$$

を用いて、設計・建設規格 付録材料図表 Part7 図7より

B = 83 MPa

よって, 許容応力σ caは,

$$\sigma_{ca} = 1.2 \cdot B = 1.2 \times 83 = 99 \text{ MPa}$$

b. 許容応力状態IVAS

許容応力状態WASにおける許容応力 σ 。。は、次のように得られる。

$$\sigma_{ca} = 1.5 MIN[S_m, B]$$

よって、許容応力 σ caは、

$$\sigma_{ca} = 1.5 \cdot B = 1.5 \times 83 = 124 \text{ MPa}$$

(5) 座屈に対する評価

各許容応力状態における座屈に対する評価を表12-8に示す。

表12-8より,各許容応力状態における圧縮応力は,許容応力を満足するため,座屈は発生しない。

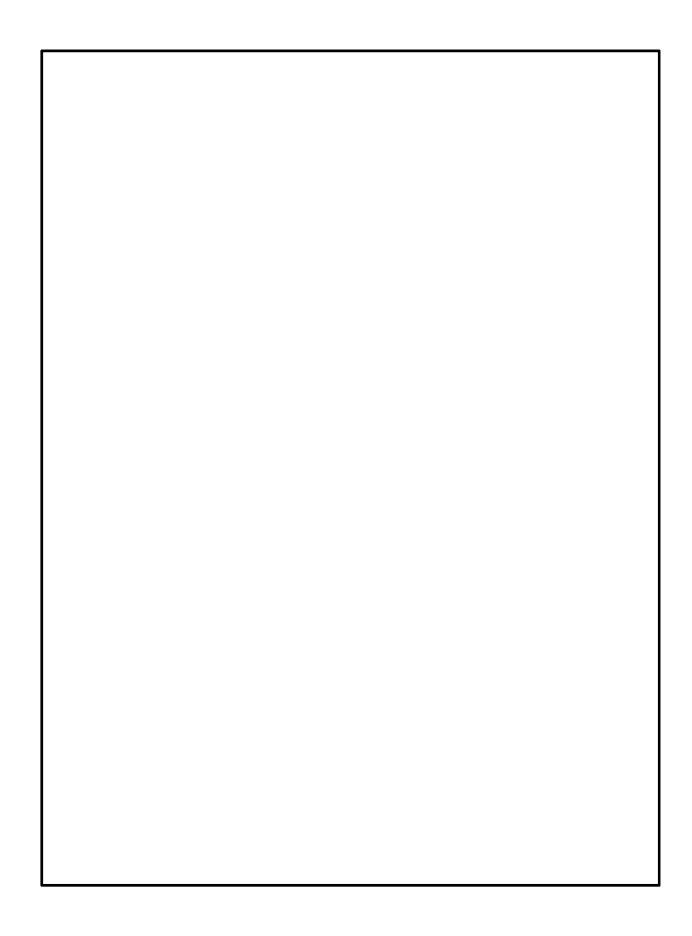


図 12-2(1) 応力計算のモデル

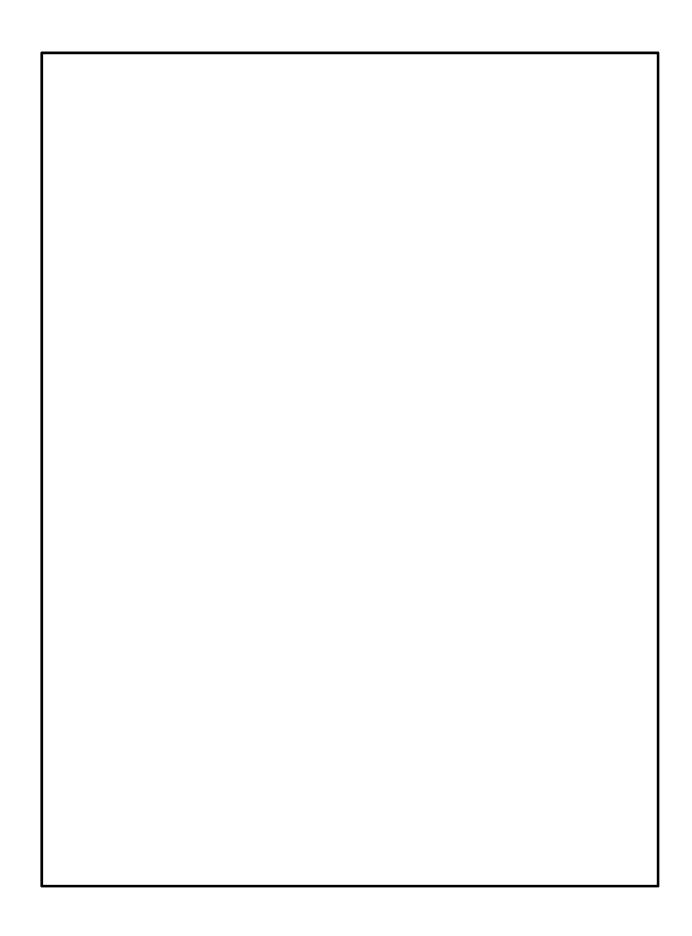


図 12-2(2) 応力計算のモデル

表 12-2 機器諸元

項目		記号	単位	入力値		
				SFVQ1A		
材質	質			SUSF316		
				NCF600-B		
温度条件		Т	${}^{\sim}$			
	SFVQ1A	Е	MPa			
縦弾性係数	SUSF316	Е	MPa			
	NCF600-B	E	MPa			
ポアソン比		ν	_			
要素数		_	_			
節点数		_	_			

表 12-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力ង	犬態ⅢAS	許容応力状態ⅣAS		
心力評価囲	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	20	196	21	334	
P01' P02'	20	196	21	334	
P03 P04	1 20		21	334	
P03' P04'	20 36	196	21	334	
P05 P06		142	46	280	
P05' P06'	36	142	46	280	
P07 P08	0	142	0	280	
P07' P08' 0		142	0	280	

表 12-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力料	犬態ⅢAS	許容応力状態ⅣAS		
心力評価囲	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	62	295	60	501	
P01' P02'	109	295	115	501	
P03 P04	41	295	49	501	
P03' P04'	36 135	295	43	501	
P05 P06		214	156	420	
P05' P06'	102	214	124	420	
P07 P08	45	214	57	420	
P07' P08'	1 93		35	420	

表 12-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

	一次+二次応力差最大範囲						
 応力評価点	$(P_L + P_b + Q)$						
			許容応力				
	S n # 1	S n # 2	3 · S m				
P01	24	32	492				
P01'	24	32	492				
P02	26	40	492				
P02'	26	40	492				
P03	136	198	492				
P03'	136	198	492				
P04	26	38	492				
P04'	26	38	492				
P05	40	50	360				
P05'	40	50	360				
P06	186	258	360				
P06'	186	258	360				
P07	18	22	360				
P07'	18	22	360				
P08	132	198	360				
P08'	132	198	360				

表 12-6 疲労累積係数の評価のまとめ

	疲労累積係数							
応力評価点	U _n	Usd	U _{Ss}	U _f *	許容値			
P01	0. 132	0.000	0.000	0. 132	1.0			
P01'	0.098	0.000	0.000	0.098	1. 0			
P02	0.005	0.000	0.000	0.005	1. 0			
P02'	0.007	0.000	0.000	0.007	1.0			
P03	0.012	0.003	0.014	0.026	1.0			
P03'	0.003	0.003	0.014	0.017	1.0			
P04	0.000	0.000	0.000	0.000	1.0			
P04'	0.000	0.000	0.000	0.000	1.0			
P05	0.000	0.000	0.000	0.000	1.0			
P05'	0.000	0.000	0.000	0.000	1.0			
P06	0.010	0.039	0. 126	0. 136	1.0			
P06'	0.054	0.039	0. 126	0.180	1.0			
P07	0.000	0.000	0.000	0.000	1.0			
P07'	0.000	0.000	0.000	0.000	1.0			
P08	0.000	0.000	0.001	0.001	1.0			
P08'	0.000	0.000	0.001	0.001	1.0			

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重 S d * 又は 地震荷重 S s のいずれか大きい方を加えた値である。

表12-7 座屈に対する評価に用いる荷重

許容応力状態	鉛直力* ¹ V(kN)	モーメント*2 M (kN·m)
IIIAS		
IVAS		

注記*1:「応力解析の方針」の4.2節に示す炉内側及び炉外側からのFzの合計荷重

*2:「応力解析の方針」の4.2節に示す炉内側からの荷重 $M+H \cdot L_1$ と炉外側からの荷重 $M+H \cdot L_2$ の合計荷重。なお, L_1 及び L_2 は荷重作用点からスタブ付根までの距離であり,それぞれ L_1 = m, L_2 = m である。

表12-8 座屈に対する評価

許容応力状態	圧縮応力	許容応力
IIIAS	24	99
IV _A S	31	124

13. 炉心支持板差圧検出ノズル (N11) の応力計算

13.1 一般事項

本章は、炉心支持板差圧検出ノズル (N11) の応力計算について示すものである。

炉心支持板差圧検出ノズル (N11) は、設計基準対象施設においてはSクラス施設に、重大 事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類 される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

13.1.1 記号の説明

記号の説明を「応力解析の方針」の2.4節に示す。 更に、本章において、以下の記号を用いる。

記号	記号の説明	単位
R i	肉盛溶接部の内半径	mm
t	肉盛溶接部の最小厚さ	mm
Α	肉盛溶接部の断面積	mm^2
Z	肉盛溶接部の断面係数	mm^3
σ _{са}	許容応力	MPa
L 1	荷重作用点からスタブ付根までの距離	m
L 2	荷重作用点からスタブ付根までの距離	m

13.1.2 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図13-1に示す。

13.1.3 解析範囲

解析範囲を図13-1に示す。

13.1.4 計算結果の概要

計算結果の概要を表13-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

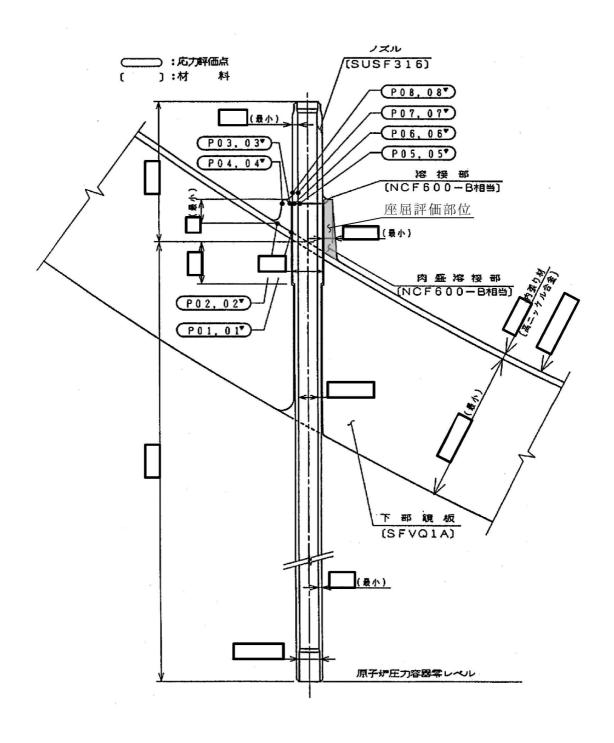


図13-1 形状・寸法・材料・応力評価点 (単位:mm)

13-3

表 13-1(1) 計算結果の概要

		— ₹	欠一般膜质	芯力強さ	一次膜	[十一次世	げ応力強さ	一次-	+二次応	力強さ	疲	労解析	
ウワノン ひ ィドナナギコ	**************************************	(MPa)			(MPa)			(MPa)					
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
	III ∧ S	20	196	P01 - P02	109	295	P01' - P02'	_	_	_	_	_	_
肉盛溶接部	IV A S	21	334	P01 - P02	115	501	P01' - P02'	_	_	_	_	_	_
NCF600-B 相当	III a S	_	_	_	_	_	_	136	492	P03	0 120	1. 0	P01
	IV A S	_	_	_	_	_	_	198	492	P03	0. 132	1.0	101
	III a S	36	142	P05 - P06	135	214	P05 - P06	_	_	_	_	_	_
ノズルエンド	IV A S	46	280	P05 - P06	156	420	P05 - P06	_		_	_	_	_
SUSF316	III A S	_	_	_		_	_	186	360	P06	0 190	1.0	P06'
	IV A S	_	_	_	_	_	_	258	360	P06	0. 180	1.0	100

注記*:疲労累積係数は、運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

表13-1(2) 計算結果の概要

			(124 • 111 (4)	
部分及び材料	許容応力状態	座屈に対する評価		
部分及い物料	計谷心刀仏忠 	圧縮応力	許容応力	
肉盛溶接部	III A S	24	99	
NCF600-B 相当	IV A S	31	124	

13.2 計算条件

13.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

13.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

13.2.3 材料

各部の材料を図13-1に示す。

13.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

13.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

13.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

13.3 応力計算

13.3.1 応力評価点

応力評価点の位置を図13-1に示す。

なお、応力集中を生じる箇所の応力集中係数は、既工認から変更はなく「応力解析の 方針」の参照図書(1)o. に定めるとおりである。

13.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は,既工認から変更はなく「応力解析の方針」の参照図書(1)o. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)o. に定めるとおりである。

13.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板及び炉内配管との取り合い部で溶接されるため、胴板及び炉内配管の一部を含めてモデル化している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 13-2 に示す。また、地震による評価に用いる機器の諸元について表 13-2 に示す。

13.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強 さを算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

13.4 応力強さの評価

13.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表13-3に示す。

表13-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

13.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表13-4に示す。

表13-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の 3.5節に示す許容応力を満足する。

13.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表13-5に示す。

表13-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、3・ S_m 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

13.5 繰返し荷重の評価

13.5.1 疲労解析

肉盛溶接部及びノズルの応力評価点について、詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表13-6に示す。

表13-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

13.6 特別な応力の評価

13.6.1 座屈に対する評価

肉盛溶接部には、炉心支持板差圧検出ノズル(N11)に作用する鉛直力及びモーメントにより、圧縮応力が生じる。したがって、これらの荷重の組合せにより発生する圧縮応力の評価を行う。

(1) 計算データ

肉盛溶接部の内半径 $R_i = 1$ mm 肉盛溶接部の最小厚さ $t_i = 1$ mm

肉盛溶接部の断面積

 $A = \pi \cdot \{(R_i + t)^2 - R_i^2\} = \pi \times$ 肉盛溶接部の断面係数

(2) 荷重

肉盛溶接部に作用する鉛直力及びモーメントを「応力解析の方針」の表4-1(5)に示す。

(3) 圧縮応力

計算データ(断面性能)を基に、表13-7に示す各許容応力状態の荷重によって肉盛溶接部に発生する圧縮応力を表13-8に示す。

(4) 許容応力

各許容応力状態における許容応力の計算は、設計・建設規格 PVB-3117を準用して計算する。

a. 許容応力状態ⅢAS

許容応力状態 \mathbb{H} ASにおける許容応力 σ 。aは、次のように得られる。

$$\sigma_{ca} = 1.2 MIN[S_m, B]$$

ここで,

$$B = 83 \text{ MPa}$$

~ ℃における値)

このうちB値は、設計・建設規格 PVB-3117より、次のようにして求める。

設計・建設規格 付録材料図表 Part7 図1より

$$A = \frac{0.125}{R_i / t} = \frac{0.125}{m_i / t} = \frac{0.125}{m_i / t}$$

を用いて、設計・建設規格 付録材料図表 Part7 図7より

B = 83 MPa

よって, 許容応力σ caは,

$$\sigma_{ca} = 1.2 \cdot B = 1.2 \times 83 = 99 \text{ MPa}$$

b. 許容応力状態IVAS

許容応力状態WASにおける許容応力 σ 。。は、次のように得られる。

$$\sigma_{ca} = 1.5 MIN[S_m, B]$$

よって、許容応力 σ caは、

$$\sigma_{ca} = 1.5 \cdot B = 1.5 \times 83 = 124 \text{ MPa}$$

(5) 座屈に対する評価

各許容応力状態における座屈に対する評価を表13-8に示す。

表13-8より,各許容応力状態における圧縮応力は,許容応力を満足するため,座屈は発生しない。

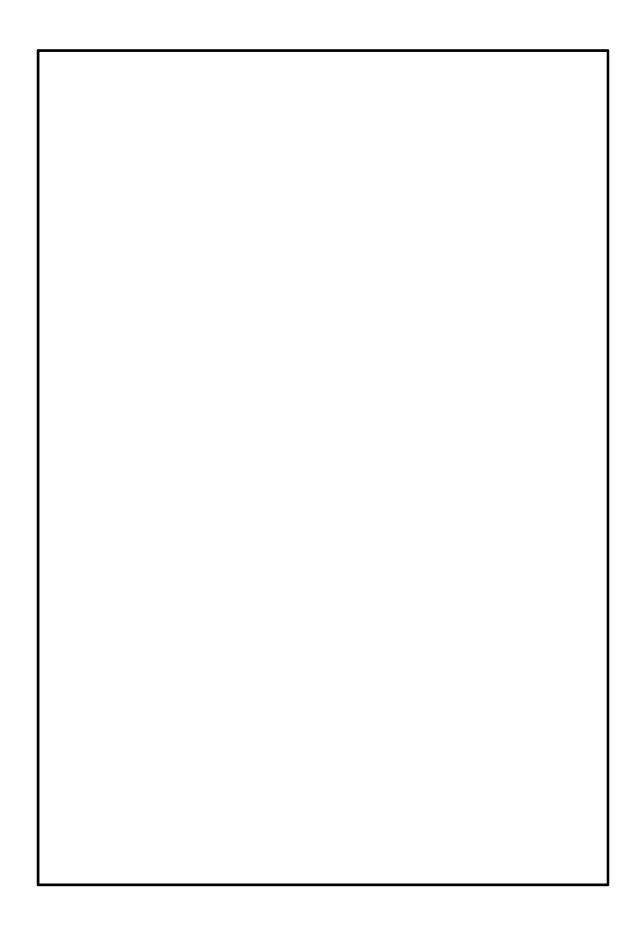


図 13-2(1) 応力計算のモデル

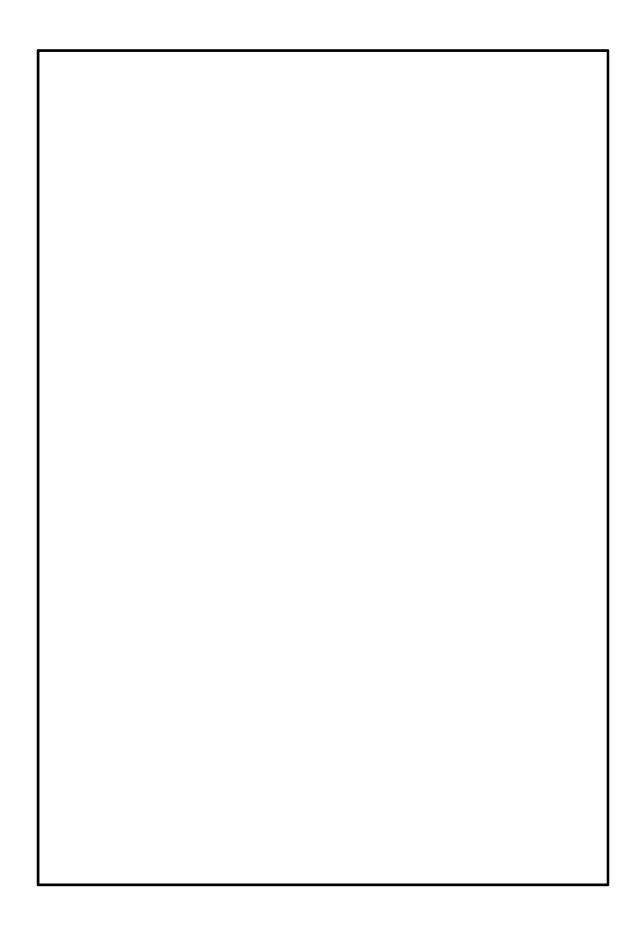


図 13-2(2) 応力計算のモデル

表 13-2 機器諸元

項目	İ	記号	単位	入力値
		_	_	SFVQ1A
材質				SUSF316
				NCF600-B
温度条件	温度条件		${}^{\sim}$	
	SFVQ1A	Е	MPa	
縦弾性係数	SUSF316	Е	MPa	
	NCF600-B	E	MPa	
ポアソン比		ν	_	
要素数		_	_	
節点数		_	_	

表 13-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力ង	犬態ⅢAS	許容応力状態ⅣAS		
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	20	196	21	334	
P01' P02'	20	196	21	334	
P03 P04	20	196	21	334	
P03' P04'	20 36	196	21	334	
P05 P06		142	46	280	
P05' P06'	36	142	46	280	
P07 P08	0	142	0	280	
P07' P08'	0	142	0	280	

表 13-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力ង	犬態ⅢAS	許容応力状態ⅣAS		
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	62	295	60	501	
P01' P02'	109	295	115	501	
P03 P04	41	295	49	501	
P03' P04'	36	295	43	501	
P05 P06	135	214	156	420	
P05' P06'	102	214	124	420	
P07 P08	45	214	57	420	
P07' P08'	23	214	35	420	

表 13-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

	一次+二次応力差最大範囲					
- 応力評価点	$(P_L + P_b + Q)$					
心力計画点			許容応力			
	S n # 1	S n # 2	3 · S m			
P01	24	32	492			
P01'	24	32	492			
P02	26	40	492			
P02'	26	40	492			
P03	136	198	492			
P03'	136	198	492			
P04	26	38	492			
P04'	26	38	492			
P05	40	50	360			
P05'	40	50	360			
P06	186	258	360			
P06'	186	258	360			
P07	18	22	360			
P07'	18	22	360			
P08	132	198	360			
P08'	132	198	360			

表 13-6 疲労累積係数の評価のまとめ

	疲労累積係数							
応力評価点	T T	1		U _f *	新索荷			
	U n	U _{sd}	Uss		許容値			
P01	0.132	0.000	0.000	0.132	1.0			
P01'	0.098	0.000	0.000	0.098	1.0			
P02	0.005	0.000	0.000	0.005	1.0			
P02'	0.007	0.000	0.000	0.007	1.0			
P03	0.012	0.003	0.014	0.026	1.0			
P03'	0.003	0.003	0.014	0.017	1.0			
P04	0.000	0.000	0.000	0.000	1.0			
P04'	0.000	0.000	0.000	0.000	1.0			
P05	0.000	0.000	0.000	0.000	1.0			
P05'	0.000	0.000	0.000	0.000	1.0			
P06	0.010	0.039	0.126	0.136	1.0			
P06'	0.054	0.039	0.126	0.180	1.0			
P07	0.000	0.000	0.000	0.000	1.0			
P07'	0.000	0.000	0.000	0.000	1.0			
P08	0.000	0.000	0.001	0.001	1.0			
P08'	0.000	0.000	0.001	0.001	1.0			

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

表13-7 座屈に対する評価に用いる荷重

許容応力状態	鉛直力* ¹ V(kN)	*2モーメント*2 M (kN·m)
II IAS		
IVAS		

注記*1:「応力解析の方針」の4.2節に示す炉内側及び炉外側からのFzの合計荷重

*2:「応力解析の方針」の4.2節に示す炉内側からの荷重 $M+H \cdot L_1$ と炉外側からの荷重 $M+H \cdot L_2$ の合計荷重。なお, L_1 及び L_2 は荷重作用点からスタブ付根までの距離であり,それぞれ L_1 = m, L_2 = m である。

表13-8 座屈に対する評価

許容応力状態	圧縮応力	許容応力
IIIAS	24	99
IV _A S	31	124

14. 計装ノズル (N12) の応力計算

14.1 一般事項

本章は、計装ノズル (N12) の応力計算について示すものである。

計装ノズル (N12) は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

14.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図14-1に示す。

14.1.2 解析範囲

解析範囲を図14-1に示す。

14.1.3 計算結果の概要

計算結果の概要を表14-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

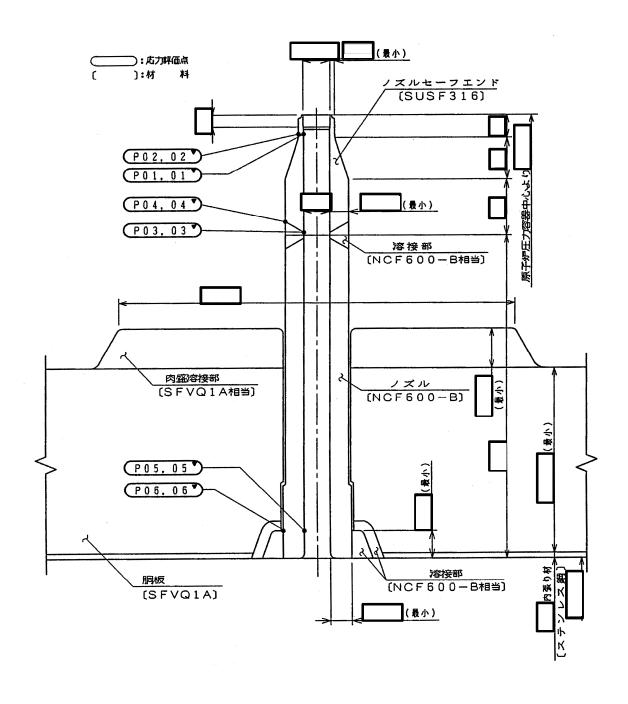


図14-1 形状・寸法・材料・応力評価点 (単位:mm)

注: 管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記*1:疲労累積係数は、運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

*2:許容値3·Smを超えるため、設計・建設規格 PVB-3300の簡易弾塑性解析を行う。

14-

14.2 計算条件

14.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

14.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

14.2.3 材料

各部の材料を図14-1に示す。

14.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

14.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

14.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

14.3 応力計算

14.3.1 応力評価点

応力評価点の位置を図14-1に示す。

なお、応力集中を生じる箇所の応力集中係数は、既工認から変更はなく「応力解析の 方針」の参照図書(1)p. に定めるとおりである。

14.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は, 既工認から変更はなく「応力解析の方針」の参照図書(1)p. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)p. に定めるとおりである。

14.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板との取り合い部で溶接されるため、胴板の一部を含めてモデル化 している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 14-2 に示す。また、地震による評価に用いる機器の諸元について表 14-2 に示す。

14.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強 さを算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

14.4 応力強さの評価

14.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表14-3に示す。

表14-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

14.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表14-4に示す。

表14-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の 3.5節に示す許容応力を満足する。

14.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表14-5に示す。

表14-5より,以下の評価点を除くすべての評価点において S_n ^{#1}及び S_n ^{#2}は,3・ S_m 以下であり,「応力解析の方針」の3.5節に示す許容応力を満足する。

P02及びP02'

一次+二次応力強さの最大範囲が3・S_mを超える応力評価点(P02及びP02')にあっては、「応力解析の方針」の5.3節に示す簡易弾塑性解析の方法を適用する。

14.5 繰返し荷重の評価

14.5.1 疲労解析

ノズルセーフエンド及びノズルの応力評価点について,詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

 $S_n^{\#1}$ 又は $S_n^{\#2}$ が $3\cdot S_m$ を超える応力評価点のうち最も厳しい応力評価点(P02)における疲労累積係数の計算結果を表14-6に示す。また,各応力評価点における疲労累積係数を表14-7に示す。

表14-7より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

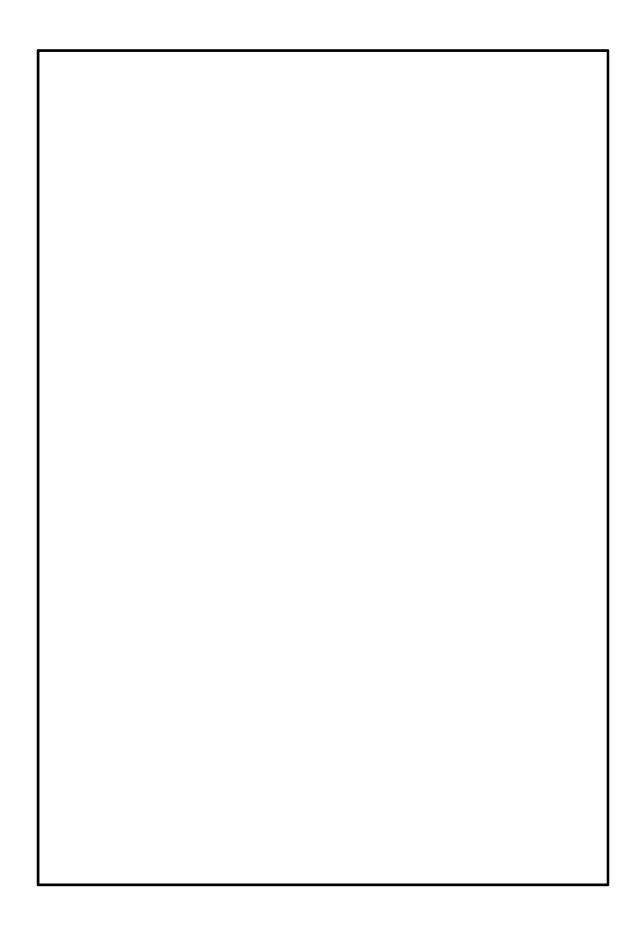


図 14-2(1) 応力計算のモデル

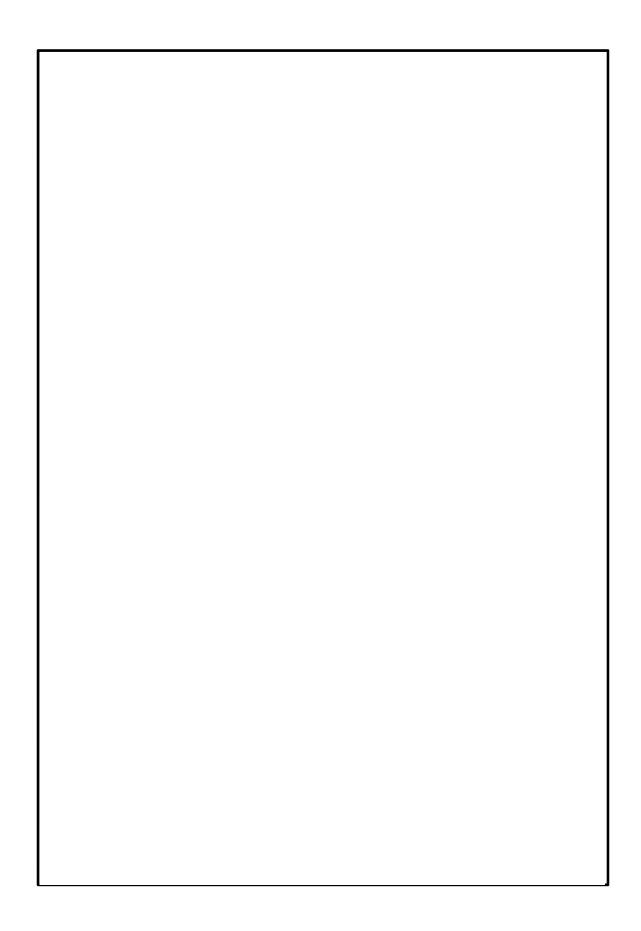


図 14-2(2) 応力計算のモデル

表 14-2 機器諸元

項目		記号	単位	入力値
				SFVQ1A
材質				SUSF316
				NCF600-B
温度条件		Т	$^{\circ}\!\mathbb{C}$	
	SFVQ1A	E	MPa	
縦弾性係数	SUSF316	E	MPa	
	NCF600-B	E	MPa	
ポアソン比		ν	_	
要素数		_	_	
節点数		_	_	

表 14-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力物	犬態ⅢaS	許容応力状態IVAS		
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01	79	142	117	280	
P02	19	142	117	200	
P01'	80	142	117	200	
P02'	80	142	117	280	
P03	14	142	19	280	
P04	14	142	19	200	
P03'	14	142	19	280	
P04'	14	142	19	200	
P05	12	196	14	334	
P06	12	190	14	334	
P05'	12	196	14	224	
P06'	14	190	14	334	

表 14-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力状態IVAS		
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	145	205	192	403	
P01' P02'	153	205	206	403	
P03 P04	28	214	35	420	
P03' P04'	27	214	35	420	
P05 P06	27	295	34	501	
P05' P06'	27	295	34	501	

表 14-5 一次+二次応力強さの評価のまとめ

	一次+二次応力差最大範囲					
- 応力評価点	$(P_L + P_b + Q)$					
			許容応力			
	S n # 1	S n # 2	3 · S m			
P01	156	224	360			
P01'	156	224	360			
P02	296	404*	360			
P02'	296	404*	360			
P03	16	24	360			
P03'	16	24	360			
P04	44	62	360			
P04'	44	62	360			
P05	10	14	492			
P05'	10	14	492			
P06	44	60	492			
P06'	44	60	492			

注記*:簡易弾塑性解析を行う。

表 14-6 疲労累積係数

応力評価点 — P02 材 料 — SUSF316

No.	S n (MPa)	K e	S p (MPa)	S _ℓ *1 (MPa)	S ½'*2 (MPa)	N a	N c	N c / N a
1	404	1. 229	464	285	316	52800	200	0.004
	疲労累積係数 U _{ss} = 0.004							
	疲労累積係数 U _n = 0.000							
疲労累積係数 U _f =U _n +U _{Ss} = 0.004								

注 :疲労累積係数の求め方は、「応力解析の方針」の 5.3.1 項 (疲労解析) に示す。

注記*1:設計・建設規格 PVB-3315(1)又は(2)により求めた値である。

*2 : S_Qに (E_O/E) を乗じた値である。

 $E_0 = MPa, E = MPa$

表 14-7 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数							
心力許伽思	U n	U _{sd}	U s s	U _f *	許容値			
P01	0.000	0.000	0.001	0.001	1.0			
P01'	0.000	0.000	0.001	0.001	1.0			
P02	0.000	0.001	0.004	0.004	1.0			
P02'	0.000	0.001	0.004	0.004	1.0			
P03	0.000	0.000	0.000	0.000	1.0			
P03'	0.000	0.000	0.000	0.000	1.0			
P04	0.000	0.000	0.000	0.000	1.0			
P04'	0.000	0.000	0.000	0.000	1.0			
P05	0.000	0.000	0.000	0.000	1.0			
P05'	0.000	0.000	0.000	0.000	1.0			
P06	0.009	0.001	0.001	0.010	1.0			
P06'	0.010	0.001	0.001	0.011	1.0			

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ssのいずれか大きい方を加えた値である。

15. 計装ノズル (N13) の応力計算

15.1 一般事項

本章は、計装ノズル (N13) の応力計算について示すものである。

計装ノズル (N13) は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

15.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図15-1に示す。

15.1.2 解析範囲

解析範囲を図15-1に示す。

15.1.3 計算結果の概要

計算結果の概要を表15-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

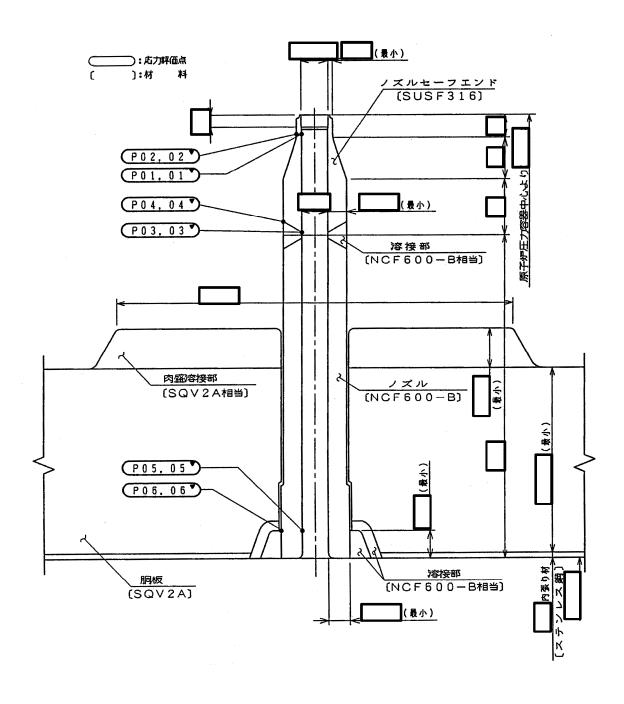


図15-1 形状・寸法・材料・応力評価点 (単位:mm)

		一次一般膜応力強さ		一次膜+一次曲げ応力強さ		一次+二次応力強さ		力強さ	疲労解析				
ウワノン ひ イドナナボー	新索尺力供能	(MPa)			(MPa)		(MPa)						
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*1	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
ノズル	III A S	80	142	P01' - P02'	153	205	P01' - P02'	_	_	_	_	_	_
セーフエンド	IV a S	117	280	P01 - P02	206	403	P01' - P02'	_	_	_	_	_	_
SUSF316	III A S	_	_	_	_	_	_	296	360	P02	0.004	1.0	DOO
2021210	IV a S	_	_	_	_	_	_	404*2	360	P02	0.004	1.0	P02
	III A S	12	196	P05 - P06	27	295	P05 - P06	_	_	_	_	_	_
ノズル	IV a S	14	334	P05 - P06	34	501	P05 - P06		_	_	_	_	_
NCF600-B	III A S	_	_	_	_	_	_	44	492	P06	0.011	1.0	P06'
	IV a S	_	_	_		_	_	60	492	P06	0.011	1.0	700

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記*1:疲労累積係数は、運転状態 I 及びⅡに地震荷重 S d*又は地震荷重 S s のいずれか大きい方を加えた値である。

*2:許容値3·Smを超えるため、設計・建設規格 PVB-3300の簡易弾塑性解析を行う。

15-

15.2 計算条件

15.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

15.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

15.2.3 材料

各部の材料を図15-1に示す。

15.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

15.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

15.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

15.3 応力計算

15.3.1 応力評価点

応力評価点の位置を図15-1に示す。

なお、応力集中を生じる箇所の応力集中係数は、既工認から変更はなく「応力解析の 方針」の参照図書(1)p. に定めるとおりである。

15.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は,既工認から変更はなく「応力解析の方針」の参照図書(1)p. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)p. に定めるとおりである。

15.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板との取り合い部で溶接されるため、胴板の一部を含めてモデル化 している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 15-2 に示す。また、地震による評価に用いる機器の諸元について表 15-2 に示す。

15.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強 さを算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

15.4 応力強さの評価

15.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表15-3に示す。

表15-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

15.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表15-4に示す。

表15-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の 3.5節に示す許容応力を満足する。

15.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表15-5に示す。

表15-5より,以下の評価点を除くすべての評価点において S_n ^{#1}及び S_n ^{#2}は,3・ S_m 以下であり,「応力解析の方針」の3.5節に示す許容応力を満足する。

P02及びP02'

一次+二次応力強さの最大範囲が3・S_mを超える応力評価点(P02及びP02')にあっては、「応力解析の方針」の5.3節に示す簡易弾塑性解析の方法を適用する。

15.5 繰返し荷重の評価

15.5.1 疲労解析

ノズルセーフエンド及びノズルの応力評価点について,詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

 $S_n^{\#1}$ 又は $S_n^{\#2}$ が $3\cdot S_m$ を超える応力評価点のうち最も厳しい応力評価点(P02)における疲労累積係数の計算結果を表15-6に示す。また,各応力評価点における疲労累積係数を表15-7に示す。

表15-7より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

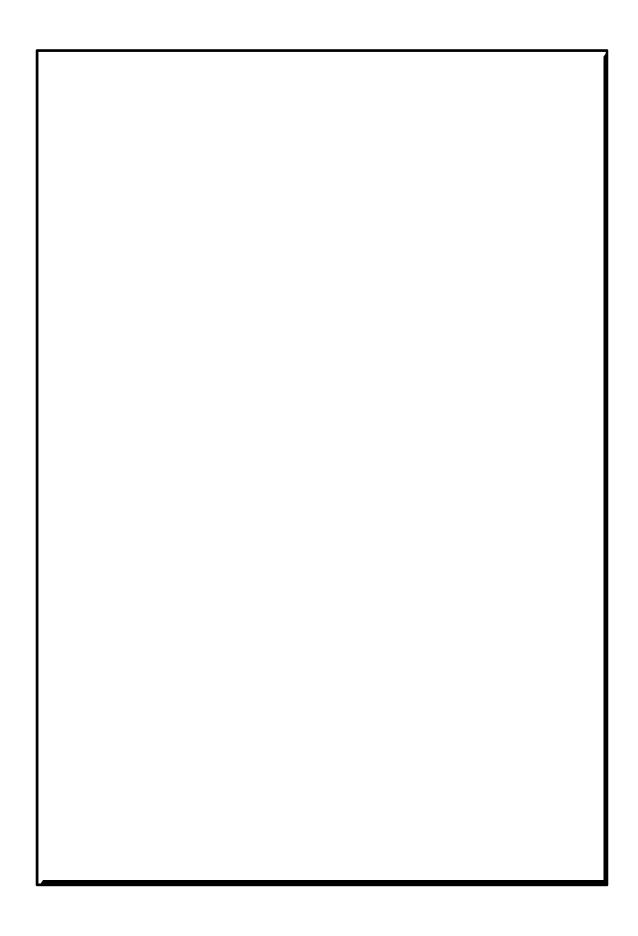


図 15-2(1) 応力計算のモデル

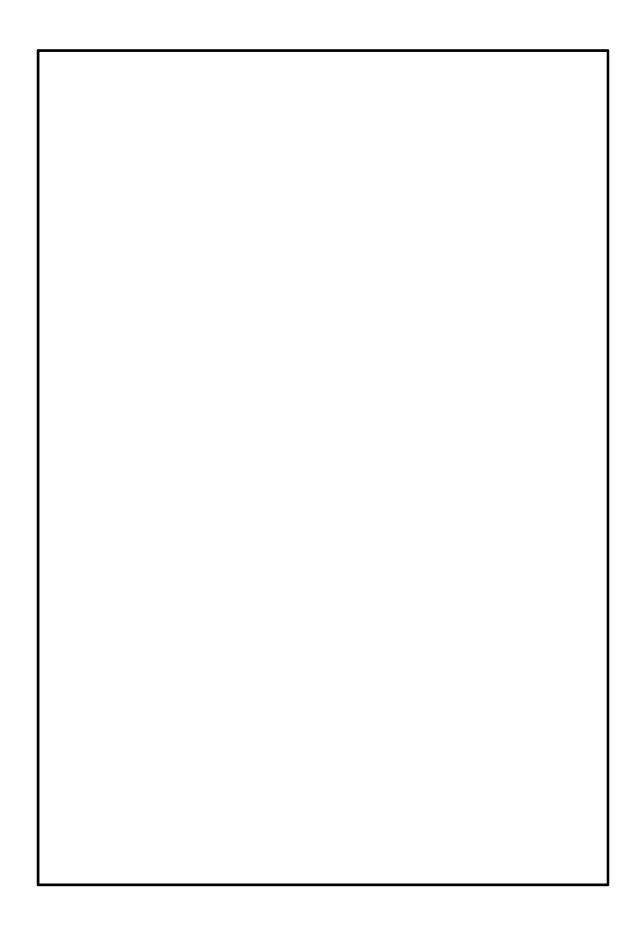


図 15-2(2) 応力計算のモデル

表 15-2 機器諸元

項目	1	記号	単位	入力値
		_		SQV2A
材質				SUSF316
				NCF600-B
温度条件		Т	$^{\circ}\!\mathbb{C}$	
	SQV2A	Е	MPa	
縦弾性係数	SUSF316	Е	MPa	
	NCF600-B	E	MPa	
ポアソン比	ポアソン比		_	
要素数		_	_	
節点数			_	

表 15-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力物	犬態ⅢAS	許容応力状態ⅣAS		
心刀評細曲	応力強さ	許容応力	応力強さ	許容応力	
P01	79	142	117	280	
P02	19	142	117	280	
P01'	80	142	117	280	
P02'	80	142	117	280	
P03	14	142	19	280	
P04	14	142	19	200	
P03'	14	142	19	280	
P04'	14	142	19		
P05	12	196	14	334	
P06	12	190	14	334	
P05'	12	196	14	224	
P06'	12	190	14	334	

表 15-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力物	犬態ⅢAS	許容応力状態NAS		
心刀評細曲	応力強さ	許容応力	応力強さ	許容応力	
P01	145	205	192	403	
P02	140	200	192	403	
P01'	153	205	206	403	
P02'	155	205	200	403	
P03	28	214	35	420	
P04	20	214	33	420	
P03'	27	214	35	420	
P04'	۷1	214	33	420	
P05	27	295	34	501	
P06	21	290	34		
P05'	27	295	34	501	
P06'	21	∠ 9 0	34	501	

表 15-5 一次+二次応力強さの評価のまとめ

	. V/m	一条片五米貝	十年田					
	一次+二次応力差最大範囲							
応力評価点	$(P_L + P_b + Q)$							
心力計画点			許容応力					
	S n # 1	S n # 2	3 • S m					
P01	156	224	360					
P01'	156	224	360					
P02	296	404*	360					
P02'	296	404*	360					
P03	16	24	360					
P03'	16	24	360					
P04	44	62	360					
P04'	44	62	360					
P05	10	14	492					
P05'	10	14	492					
P06	44	60	492					
P06'	44	60	492					

注記*:簡易弾塑性解析を行う。

表 15-6 疲労累積係数

応力評価点 — P02

材 料 — SUSF316

No.	S n (MPa)	K e	S p (MPa)	S _ℓ *1 (MPa)	S ½'*2 (MPa)	N a	N c	N c / N a
1	404	1. 229	464	285	316	52800	200	0.004
					疲労界	累積係数	$U_{Ss} =$	0.004
					疲労	累積係数	$U_n =$	0.000
				疲労累利	漬係数 U	$_{\rm f} = \overline{\rm U}_{\rm n} +$	- U _s =	0.004

注 :疲労累積係数の求め方は、「応力解析の方針」の 5.3.1 項 (疲労解析) に示す。

注記*1:設計・建設規格 PVB-3315(1)又は(2)により求めた値である。

*2 : S_{ℓ} に (E_0 /E) を乗じた値である。

 $E_0 = MPa, E = MPa$

表 15-7 疲労累積係数の評価のまとめ

応力評価点		3	疲 労累積係数		
心力評価点	U n	$U_{ m S\ d}$	U _{ss}	U _f *	許容値
P01	0.000	0.000	0.001	0.001	1.0
P01'	0.000	0.000	0.001	0.001	1.0
P02	0.000	0.001	0.004	0.004	1.0
P02'	0.000	0.001	0.004	0.004	1.0
P03	0.000	0.000	0.000	0.000	1.0
P03'	0.000	0.000	0.000	0.000	1.0
P04	0.000	0.000	0.000	0.000	1.0
P04'	0.000	0.000	0.000	0.000	1.0
P05	0.000	0.000	0.000	0.000	1.0
P05'	0.000	0.000	0.000	0.000	1.0
P06	0.009	0.001	0.001	0.010	1.0
P06'	0.010	0.001	0.001	0.011	1.0

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

16. 計装ノズル (N14) の応力計算

16.1 一般事項

本章は、計装ノズル (N14) の応力計算について示すものである。

計装ノズル (N14) は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

16.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図16-1に示す。

16.1.2 解析範囲

解析範囲を図16-1に示す。

16.1.3 計算結果の概要

計算結果の概要を表16-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

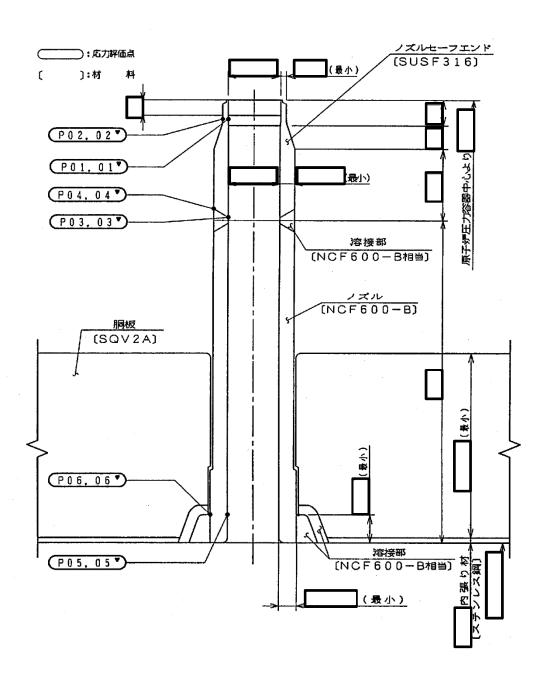


図16-1 形状・寸法・材料・応力評価点 (単位:mm)

表 16-1 計算結果の概要

		一次一般膜応力強さ		一次膜	一次膜+一次曲げ応力強さ		一次+二次応力強さ		疲労解析				
ウワノヘ ひ イドナナボー	新宏长力供能		(MPa)			(MPa)		(MPa)					
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
ノズル	III A S	47	142	P01 - P02	78	197	P01 - P02	_	_	_	_	_	_
セーフエンド	IV A S	48	280	P01 - P02	87	386	P01 - P02		_	_	_	_	_
SUSF316	III A S	_	_	_		_	_	94	360	P02	0.000	1. 0	P02
3031310	IV a S	_	_	_		_	_	116	360	P02	0.000	1.0	FU2
	III A S	16	196	P05 - P06	27	295	P05 - P06		_	_	_	_	_
ノズル	IV a S	16	334	P05 - P06	31	501	P05 - P06		_	_	_	_	_
NCF600-B	III A S	_	_	_		_	_	32	492	P06	0.010	1. 0	P06
	IV A S	_	_	_		_	_	44	492	P06	0.010	1.0	F00

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記*:疲労累積係数は、運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

16.2 計算条件

16.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

16.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

16.2.3 材料

各部の材料を図16-1に示す。

16.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

16.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

16.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

16.3 応力計算

16.3.1 応力評価点

応力評価点の位置を図16-1に示す。

なお、応力集中を生じる箇所の応力集中係数は、既工認から変更はなく「応力解析の 方針」の参照図書(1)p. に定めるとおりである。

16.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は,既工認から変更はなく「応力解析の方針」の参照図書(1)p. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)p. に定めるとおりである。

16.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板との取り合い部で溶接されるため、胴板の一部を含めてモデル化 している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 16-2 に示す。また、地震による評価に用いる機器の諸元について表 16-2 に示す。

16.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強 さを算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

16.4 応力強さの評価

16.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表16-3に示す。

表16-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

16.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表16-4に示す。

表16-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の 3.5節に示す許容応力を満足する。

16.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表16-5に示す。

表16-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_m$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

16.5 繰返し荷重の評価

16.5.1 疲労解析

ノズルセーフエンド及びノズルの応力評価点について,詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表16-6に示す。

表16-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」 の3.5節に示す許容値を満足する。

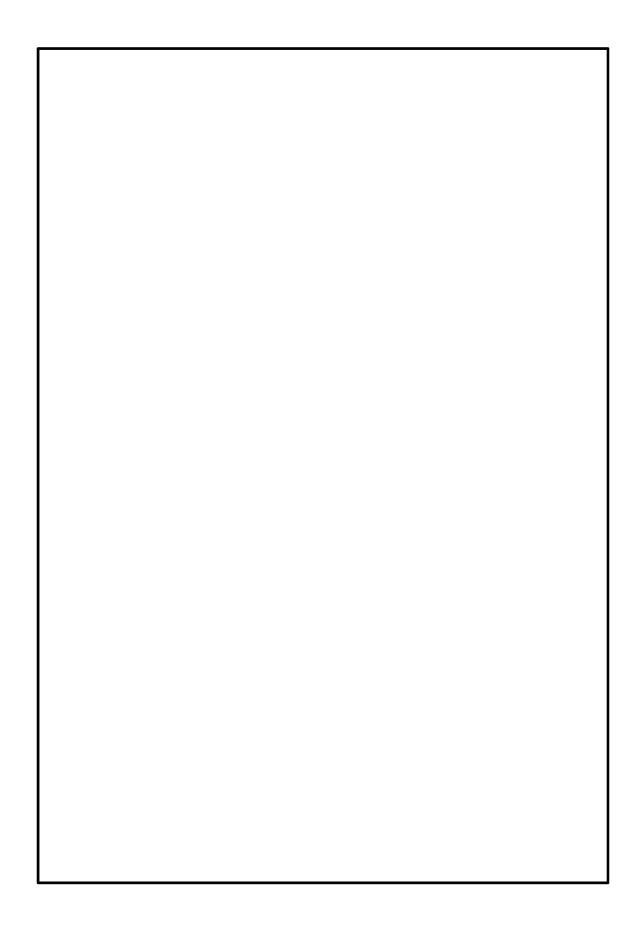


図 16-2(1) 応力計算のモデル

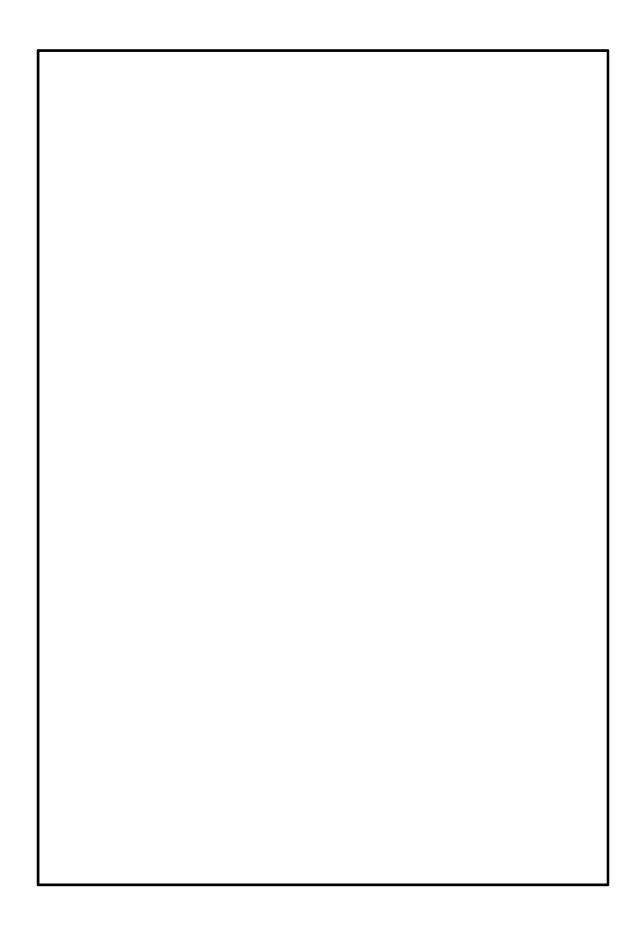


図 16-2(2) 応力計算のモデル

表 16-2 機器諸元

項目		記号	単位	入力値
				SQV2A
材質				SUSF316
				NCF600-B
温度条件	温度条件		$^{\circ}\!\mathbb{C}$	
	SQV2A	E	MPa	
縦弾性係数	SUSF316	E	MPa	
	NCF600-B	E	MPa	
ポアソン比	ポアソン比		_	
要素数		_	_	
節点数			_	

表 16-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力場	犬態IVAS
心力計画画	応力強さ	許容応力	応力強さ	許容応力
P01 P02	47	142	48	280
P01' P02'	47	142	47	280
P03 P04	21	142	21	280
P03' P04'	21	142	21	280
P05 P06	16	196	16	334
P05' P06'	16	196	16	334

表 16-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力物	犬態ⅢAS	許容応力状態IVAS		
心刀評細曲	応力強さ	許容応力	応力強さ	許容応力	
P01	78	197	87	386	
P02	70	197	01	386	
P01'	77	197	86	386	
P02'	11	197	80	360	
P03	32	212	35	417	
P04	52	212	55	417	
P03'	30	212	32	417	
P04'	30	212	32	417	
P05	27	295	31	501	
P06	21	290	31	501	
P05'	26	295	30	501	
P06'	20	290	30	501	

表 16-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

	一次+二次応力差最大範囲						
 応力評価点	$(P_L + P_b + Q)$						
心力計画点			許容応力				
	S n # 1	$S_n # 2$	3 · S m				
P01	46	56	360				
P01'	46	56	360				
P02	94	116	360				
P02'	94	116	360				
P03	16	20	360				
P03'	16	20	360				
P04	28	36	360				
P04'	28	36	360				
P05	10	10	492				
P05'	10	10	492				
P06	32	44	492				
P06'	32	44	492				

表 16-6 疲労累積係数の評価のまとめ

大力 新年 占	疲労累積係数							
応力評価点	U n	Usd	U s s	U _f *	許容値			
P01	0.000	0.000	0.000	0.000	1.0			
P01'	0.000	0.000	0.000	0.000	1.0			
P02	0.000	0.000	0.000	0.000	1.0			
P02'	0.000	0.000	0.000	0.000	1.0			
P03	0.000	0.000	0.000	0.000	1.0			
P03'	0.000	0.000	0.000	0.000	1.0			
P04	0.000	0.000	0.000	0.000	1.0			
P04'	0.000	0.000	0.000	0.000	1.0			
P05	0.002	0.000	0.000	0.002	1.0			
P05'	0.002	0.000	0.000	0.002	1.0			
P06	0.010	0.000	0.000	0.010	1.0			
P06'	0.009	0.000	0.000	0.009	1.0			

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ssのいずれか大きい方を加えた値である。

17. ドレンノズル (N15) の応力計算

17.1 一般事項

本章は、ドレンノズル (N15) の応力計算について示すものである。

ドレンノズル (N15) は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

17.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図17-1に示す。

17.1.2 解析範囲

解析範囲を図17-1に示す。

17.1.3 計算結果の概要

計算結果の概要を表17-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

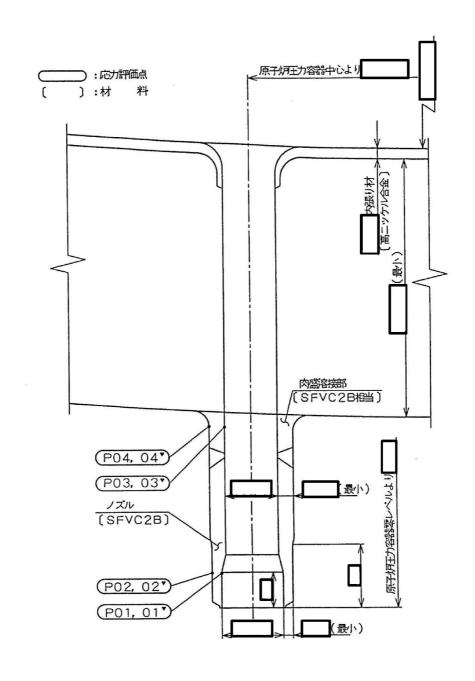


図17-1 形状・寸法・材料・応力評価点 (単位:mm)

表 17-1 計算結果の概要

		一次一般膜応力強さ		一次膜+一次曲げ応力強さ		一次+二次応力強さ		疲労解析					
如八五水叶料 新宏片土地轮	(MPa)		(MPa)		(MPa)								
部分及び材料	許容応力状態	応力	許容	応力評価面	応力	許容	応力評価面	応力	許容	応力	疲労*	許容値	応力
		強さ	応力		強さ	応力		強さ	応力	評価点	累積係数		評価点
	III A S	74	188	P01 - P02	121	257	P01' - P02'	_	_	_	_	_	_
ノズル	IV a S	120	292	P01' - P02'	198	400	P01' - P02'	_	_	_	_	_	_
SFVC2B	III a S	_	_	_	_	_	_	172	383	P02	0.012	1 0	P01
	IV a S	_	_	_	_	_	_	344	383	P02	0.012	1.0	P01
	III a S	39	188	P03 - P04	187	274	P03' - P04'	_	_	_	_	_	_
肉盛溶接部	IV a S	70	292	P03' - P04'	234	426	P03' - P04'	_	_	_	_	_	_
SFVC2B 相当	III A S	_	_	_		_	_	- 136 383 P04	0.019	1.0	P04		
	IV A S	_	_	_		_	_	272	383	P04	0.019 1.0	1.0	P04

注記* :疲労累積係数は,運転状態Ⅰ及びⅡに地震荷重Sd*又は地震荷重Ssのいずれか大きい方を加えた値である。

17.2 計算条件

17.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

17.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

17.2.3 材料

各部の材料を図17-1に示す。

17.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

17.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

17.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

17.3 応力計算

17.3.1 応力評価点

応力評価点の位置を図17-1に示す。

なお、応力集中を生じる箇所の応力集中係数は、既工認から変更はなく「応力解析の 方針」の参照図書(1) q. に定めるとおりである。

17.3.2 内圧による応力

(1) 荷重条件(L01)

各運転状態による内圧は, 既工認から変更はなく「応力解析の方針」の参照図書(1)q. に定めるとおりである。

(2) 計算方法

内圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)q. に定めるとおりである。

17.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板との取り合い部で溶接されるため、胴板の一部を含めてモデル化 している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 17-2 に示す。また、地震による評価に用いる機器の諸元について表 17-2 に示す。

17.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強 さを算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

17.4 応力強さの評価

17.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表17-3に示す。

表17-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

17.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表17-4に示す。

表17-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の 3.5節に示す許容応力を満足する。

17.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表17-5に示す。

表17-5より、すべての評価点において S_n ^{#1}及び S_n ^{#2}は、 $3\cdot S_m$ 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

17.5 繰返し荷重の評価

17.5.1 疲労解析

ノズル及び肉盛溶接部の応力評価点について,詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

各応力評価点における疲労累積係数を表17-6に示す。

表17-6より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」の3.5節に示す許容値を満足する。

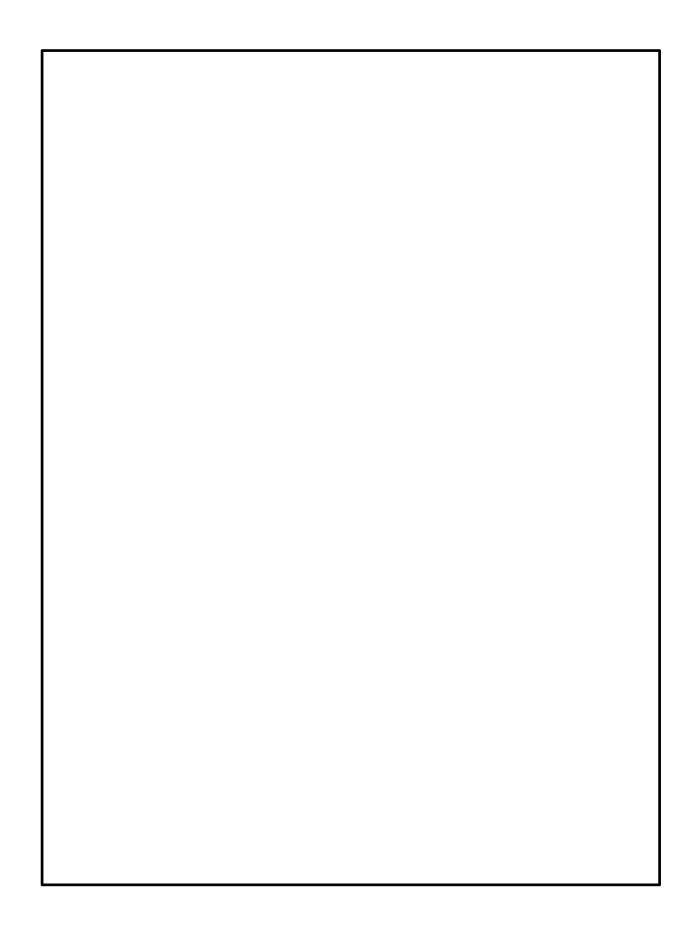


図 17-2 応力計算のモデル

表 17-2 機器諸元

項目		記号	単位	入力値
材質		_	_	SFVC2B
温度条件		Т	$^{\circ}$	
縦弾性係数	SFVC2B	E	MPa	
ポアソン比		ν	_	
要素数		_	_	
節点数		_	_	

表 17-3 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力状態IVAS		
	応力強さ	許容応力	応力強さ	許容応力	
P01	74	188	119	292	
P02	14	100	119	292	
P01'	73	188	120	292	
P02'	13	100	120	292	
P03	39	188	69	292	
P04	39	100	09	292	
P03'	39	188	70	292	
P04'	39	100	10	494	

表 17-4 一次膜+一次曲げ応力強さの評価のまとめ

応力評価面	許容応力場	犬態ⅢAS	許容応力状態IVAS		
心刀計画画	応力強さ	許容応力	応力強さ	許容応力	
P01	120	257	187	400	
P02	120	201	107	400	
P01'	121	257	198	400	
P02'	121	201	190	400	
P03	108	274	116	426	
P04	100	274	110	420	
P03'	187	274	234	426	
P04'	107	274	234	420	

表 17-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

皮力变 / 大	一次+二次応力差最大範囲 (Р _L +Р _b +Q)					
応力評価点	S n # 1	S n # 2	許容応力 3・S _m			
P01	164	322	383			
P01'	164	322	383			
P02	172	344	383			
P02'	172	344	383			
P03	60	116	383			
P03'	60	116	383			
P04	136	272	383			
P04'	136	272	383			

表 17-6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数								
心力計画点	U n	U _{sd}	U _{ss}	U _f *	許容値				
P01	0.003	0.001	0.009	0.012	1.0				
P01'	0.003	0.001	0.009	0.012	1.0				
P02	0.003	0.001	0.008	0.011	1.0				
P02'	0.003	0.001	0.008	0.011	1.0				
P03	0.003	0.000	0.000	0.003	1.0				
P03'	0.005	0.000	0.000	0.005	1.0				
P04	0.008	0.001	0.011	0.019	1.0				
P04'	0.000	0.001	0.011	0.011	1.0				

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。

18. 高圧炉心注水ノズル (N16) の応力計算

18.1 一般事項

本章は、高圧炉心注水ノズル (N16) の応力計算について示すものである。

高圧炉心注水ノズル (N16) は、設計基準対象施設においてはSクラス施設に、重大事故等 対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。 以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

18.1.1 形状・寸法・材料

本章で解析する箇所の形状・寸法・材料を図18-1に示す。

18.1.2 解析範囲

解析範囲を図18-1に示す。

18.1.3 計算結果の概要

計算結果の概要を表18-1に示す。

なお、応力評価点の選定に当たっては、形状不連続部、溶接部及び厳しい荷重作用点に着目し、各部分ごとに数点の評価点を設けて評価を行い、疲労累積係数が厳しくなる評価点を記載する。

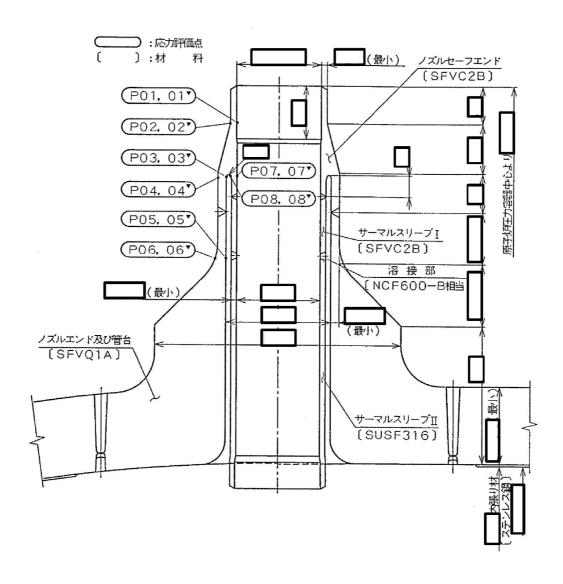


図18-1 形状・寸法・材料・応力評価点 (単位:mm)

表 18-1 計算結果の概要

보다 V 그 스까 LL NVI		一次一般膜応力強さ (MPa)		一次膜+一次曲げ応力強さ (MPa)		一次+二次応力強さ (MPa)		疲労解析					
部分及び材料	許容応力状態	応力 強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力評価面	応力 強さ	許容 応力	応力 評価点	疲労* ¹ 累積係数	許容値	応力 評価点
	III A S	81	188	P01 - P02	159	252	P01 - P02	_	_	_	_	_	_
ノズル セーフエンド	IV A S	92	292	P01 - P02	277	391	P01' - P02'	_	_	_	_	_	_
SFVC2B	III A S	_	_	_	_	_	_	240	383	P02	0.027	1.0	DOS
51 · 0 2 5	IV A S	_	_	_	_	_	_	538*2	383	P02	0. 237	1.0	P03
	III ∧ S	73	303	P05 - P06	116	406	P05 - P06	_	_	_	_	_	_
ノズルエンド	IV A S	78	320	P05 - P06	188	429	P05 - P06	_	_	_	_	_	_
SFVQ1A	III A S	-	_	_	_	_	_	164	552	P06	0.001	1.0	P06
	IV A S			_		_	_	360	552	P06	0.021	1.0	P06
ノズル	III A S	7	188	P07 - P08	41	248	P07 - P08	_	_	_	_	_	_
セーフエンド (サーマル	IV A S	9	292	P07 - P08	59	385	P07 - P08	_	_	_	_	_	_
スリーブ付根部)	III ∧ S			_	1	_	_	118	383	P08	0.024	1.0	P07
SFVC2B	IV A S		_	_	_	_	_	228	383	P08	0.024	1.0	101

注:管台(穴の周辺部)については設計・建設規格 PVB-3510(1)により、応力評価は不要である。

注記*1:疲労累積係数は、運転状態 I 及び II に地震荷重 S d*又は地震荷重 S s のいずれか大きい方を加えた値である。

*2:許容値3·Smを超えるため、設計・建設規格 PVB-3300の簡易弾塑性解析を行う。

18.2 計算条件

18.2.1 設計条件

設計条件を「応力解析の方針」の4.1節に示す。

18.2.2 運転条件

考慮した運転条件を「応力解析の方針」の4.2節に示す。

18.2.3 材料

各部の材料を図18-1に示す。

18.2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」の3.4節に示す。

18.2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」の4.3節に示す。

18.2.6 許容応力

許容応力を「応力解析の方針」の3.5節に示す。

18.3 応力計算

18.3.1 応力評価点

応力評価点の位置を図18-1に示す。

なお、応力集中を生じる箇所の応力集中係数は、既工認から変更はなく「応力解析の 方針」の参照図書(1)r. に定めるとおりである。

18.3.2 内圧及び差圧による応力

(1) 荷重条件(L01及びL02)

各運転状態による内圧及び差圧は,既工認から変更はなく「応力解析の方針」の参照図書(1)r.に定めるとおりである。

(2) 計算方法

内圧及び差圧による応力の計算は、既工認から変更はなく「応力解析の方針」の参照図書(1)r. に定めるとおりである。

18.3.3 外荷重による応力

(1) 荷重条件(L04, L07, L14, L15, L16及びL17)外荷重を「応力解析の方針」の表4-1(5)及び表4-1(6)に示す。

(2) 計算方法

外荷重による形状不連続の効果を含まない応力の計算は、「応力解析の方針」の 5.1 節に示す解析コード「PIPE」により行う。

外荷重による形状不連続の効果を含む応力の計算は、二次元軸対称の有限要素でモデル化し、「応力解析の方針」の 5.1 節に示す解析コード「STAX」及び「ASHSD」により行う。

解析においては、胴板及び炉内配管との取り合い部で溶接されるため、胴板及び炉内配管の一部を含めてモデル化している。拘束条件は、胴板の端部を拘束している。

応力計算のモデル及び仮定した境界条件を図 18-2 に示す。また、地震による評価に用いる機器の諸元について表 18-2 に示す。

18.3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め、応力強 さを算出する。

応力強さの算出方法は、「応力解析の方針」の5.2.2項に定めるとおりである。

18.4 応力強さの評価

18.4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表18-3に示す。

表18-3より,各許容応力状態の一次一般膜応力強さは,「応力解析の方針」の3.5節に示す許容応力を満足する。

18.4.2 一次膜+一次曲げ応力強さの評価

各許容応力状態における評価を表18-4に示す。

表18-4より,各許容応力状態の一次膜+一次曲げ応力強さは,「応力解析の方針」の 3.5節に示す許容応力を満足する。

18.4.3 一次+二次応力強さの評価

地震荷重のみにおける評価を表18-5に示す。

表18-5より、以下の評価点を除くすべての評価点において S_n ^{#1}及び S_n ^{#2}は、3・ S_m 以下であり、「応力解析の方針」の3.5節に示す許容応力を満足する。

P02, P02', P03及びP03'

一次+二次応力強さの最大範囲が3・S_mを超える応力評価点(P02, P02', P03及びP03') にあっては, 「応力解析の方針」の5.3節に示す簡易弾塑性解析の方法を適用する。

18.5 繰返し荷重の評価

18.5.1 疲労解析

ノズルセーフエンド, ノズルエンド及びノズルセーフエンド (サーマルスリーブ付根部) の応力評価点について, 詳細な繰返し荷重の評価を行う。

(1) 疲労累積係数

 $S_n^{\#1}$ 又は $S_n^{\#2}$ が $3\cdot S_m$ を超える応力評価点のうち最も厳しい応力評価点(P03)に おける疲労累積係数の計算結果を表18-6に示す。また,各応力評価点における疲労累積 係数を表18-7に示す。

表18-7より,各応力評価点において疲労累積係数は1.0以下であり,「応力解析の方針」の3.5節に示す許容値を満足する。

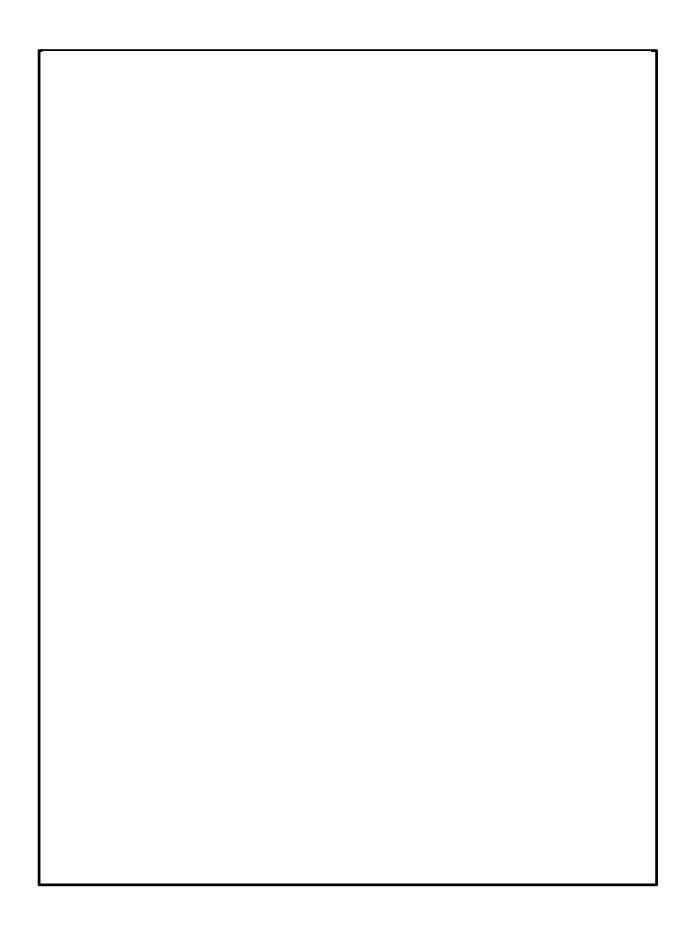


図 18-2(1) 応力計算のモデル

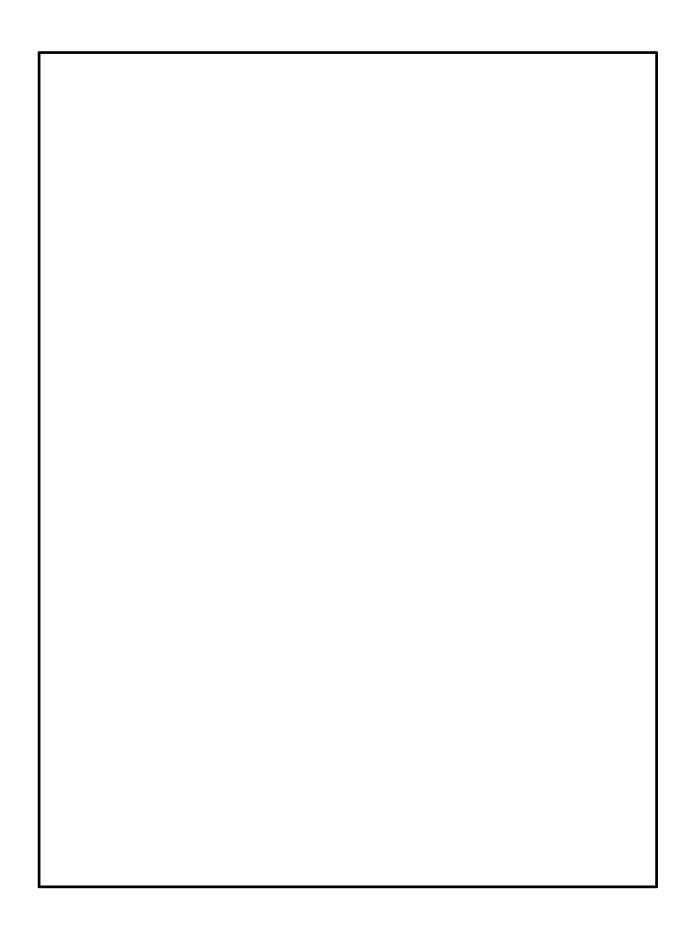


図 18-2(2) 応力計算のモデル

表 18-2 機器諸元

項目		記号	単位	入力値		
		_	_	SFVQ1A		
材質				SFVC2B		
70 頁		_	_	SUSF316		
						NCF600-B
温度条件		Т	$^{\circ}\! \mathbb{C}$			
	SFVQ1A	Е	MPa			
一 縦弾性係数	SFVC2B	E	MPa			
秋 押 1 1 1 1	SUSF316	E	MPa			
	NCF600-B	E	MPa			
ポアソン比		ν				
要素数			_			
節点数		_	_			

表 18-3 一次一般膜応力強さの評価のまとめ

(単位:MPa)

応力評価面	許容応力ង	犬態ⅢAS	許容応力ង	犬態IVAS
心力評価囲	応力強さ	許容応力	応力強さ	許容応力
P01 P02	81	188	92	292
P01' P02'	81	188	90	292
P03 P04	73	188	78	292
P03' P04'	73	188	77	292
P05 P06	73	303	78	320
P05' P06'	73	303	77	320
P07 P08	7	188	9	292
P07' P08'	6	188	8	292

表 18-4 一次膜+一次曲げ応力強さの評価のまとめ

(単位:MPa)

応力評価面	許容応力場	犬態ⅢAS	許容応力状態ⅣAS		
心刀計៕॥	応力強さ	許容応力	応力強さ	許容応力	
P01 P02	159	252	276	391	
P01' P02'	158	252	277	391	
P03 P04	111	252	177	391	
P03' P04'	112	252	178	391	
P05 P06	116	406	188	429	
P05' P06'	116	406	188	429	
P07 P08	41	248	59	385	
P07' P08'	40	248	58	385	

表 18-5 一次+二次応力強さの評価のまとめ

(単位:MPa)

		``	+ 14. · M1 a)				
	一次十二次応力差最大範囲						
応力評価点	$(P_L + P_b + Q)$						
			許容応力				
	S n # 1	S n # 2	3 · S m				
P01	154	340	383				
P01'	154	340	383				
P02	240	538*	383				
P02'	240	538*	383				
P03	200	436*	383				
P03'	200	436*	383				
P04	102	224	383				
P04'	102	224	383				
P05	84	186	552				
P05'	84	186	552				
P06	164	360	552				
P06'	164	360	552				
P07	28	48	383				
P07'	28	48	383				
P08	118	228	383				
P08'	118	228	383				

注記*:簡易弾塑性解析を行う。

表 18-6 疲労累積係数

応力評価点 — P03材 料 — SFVC2B

No.	S n (MPa)	K e	S p (MPa)	S _ℓ *1 (MPa)	S ½'*2 (MPa)	N a	N c	N c / N a	
1	436	1.379	772	532	592	902	200	0.222	
					疲労界	累積係数	$U_{Ss} =$	0.222	
					疲労	累積係数	$U_n =$	0.015	
	疲労累積係数 U _f =U _n +U _{Ss} = 0.237								

注 :疲労累積係数の求め方は、「応力解析の方針」の 5.3.1 項 (疲労解析) に示す。

注記*1:設計・建設規格 PVB-3315(1)又は(2)により求めた値である。

*2 : S_{ℓ} に (E_0 /E) を乗じた値である。

 $E_0 = MPa$, E = MPa

表 18-7 疲労累積係数の評価のまとめ

		疲労累積係数								
応力評価点	U n	U _{sd}	U s s	U _f *	許容値					
P01	0.000	0.001	0.008	0.008	1.0					
P01'	0.000	0.001	0.008	0.008	1.0					
P02	0.007	0.005	0.211	0. 218	1.0					
P02'	0.002	0.005	0. 211	0. 213	1.0					
P03	0.015	0.008	0. 222	0. 237	1. 0					
P03'	0.007	0.008	0. 222	0. 229	1.0					
P04	0.001	0.000	0.002	0.003	1.0					
P04'	0.001	0.000	0.002	0.003	1. 0					
P05	0.000	0.000	0.001	0.001	1.0					
P05'	0.000	0.000	0.001	0.001	1.0					
P06	0.002	0.002	0.019	0.021	1.0					
P06'	0.000	0.002	0.019	0.019	1. 0					
P07	0.024	0.000	0.000	0.024	1.0					
P07'	0.024	0.000	0.000	0.024	1.0					
P08	0.003	0.001	0.007	0.010	1.0					
P08'	0.000	0.001	0.007	0.007	1.0					

注記* :疲労累積係数 U_f は、運転状態 I 及びII に地震荷重Sd*又は 地震荷重Ss のいずれか大きい方を加えた値である。