原子力規制委員会 殿

仙台市青葉区本町一丁目 7 番 1 号東北電力株式会社

取締役社長 社長執行役員
樋口 康二郎

女川原子力発電所原子炉施設保安規定変更認可申請について

核原料物質，核燃料物質及び原子炉の規制に関する法律第43条の3の24第1項の規定に基づき，下記のとおり女川原子力発電所原子炉施設保安規定の変更認可を申請いたします。

記

1．変更の内容
昭和 5 8 年9月20日付 5 8 資庁第1 3 0 4 5 号で認可を受け，別表のとおり変更認可を受けた女川原子力発電所原子炉施設保安規定の記述を，別添の女川原子力発電所原子炉施設保安規定変更比較表の変更後欄のとおり変更する。 （ただし，下線は含まない。）

2．変更理由
（1）運転上の制限を逸脱した場合における要求される措置等の変更
第1206回原子力発電所の新規制基準適合性に係る審査会合（BWRの保安規定変更に係る基本方針について）における指摘事項および当社からの回答内容 を踏まえ，要求される措置等の変更を行う。

本変更に伴い，以下の関連する保安規定条文の変更を行う。

- 第66条（重大事故等対処設備（2号炉））
- 第 75 条（予防保全を目的とした保全作業を実施する場合）

3．施行期日
（1）本規定は，原子力規制委員会の認可を受けた日から10日以内に施行する。
（2）本規定施行の際，規定の適用については，原子炉の状態が「運転，起動，高温停止」となる前において，本規定施行の日から適用する。ただし，本規定施行の日が附則（令和 5 年 2 月 15 日 原規規発第2302152号）で定める日より前の場合は，当該附則で定める日から適用する。

女川原子力発電所原子炉施設保安規定変更認可の経緯

	認 可 年 月 日	認 可 証 番 号
1	昭和59年7月24日	59 資庁第9848号
2	昭和 63 年 2 月 4 日	62 資庁第16331号
3	平成元年2月27日	元資庁第679号
4	平成元年3月31日	元資庁第3497号
5	平成元年5月9日	元資庁第4554号
6	平成2年2月19日	2 資 庁 第1412号
7	平成2年3月23日	2資庁第1878号
8	平成5年4月16日	5 資 庁 第3048号
9	平成5年10月7日	5 資庁第10275号
10	平成6年9月26日	6 資 庁 第 9665 号
11	平成7年7月19日	7 資 庁 第 8462 号
12	平成7年12月6日	7 資庁第12272号
13	平成11年4月20日	平成 $11 \cdot 02 \cdot 18$ 資第 15 号
14	平成12年1月26日	平成 $11 \cdot 12 \cdot 21$ 資第 31 号
15	平成12年5月19日	平成 $12 \cdot 04 \cdot 12$ 資第 23 号
16	平成13年1月5日	平成 $12 \cdot 08 \cdot 31$ 資第8号
17	平成13年2月23日	平成 $13 \cdot 01 \cdot 19$ 原第1号
18	平成13年3月30日	平成 13.03 .23 原第2号
19	平成13年7月25日	平成 $13 \cdot 07 \cdot 02$ 原第 12 号
20	平成13年10月11日	平成 $13.09 \cdot 19$ 原第1号
21	平成13年12月18日	平成 $13 \cdot 11 \cdot 29$ 原第7号
22	平成14年7月15日	平成 $14.06 \cdot 21$ 原第2号
23	平成14年10月22日	平成 14.09 .27 原第6号
24	平成15年3月19日	平成 $15.03 \cdot 11$ 原第 9 号
25	平成15年7月1日	平成 $15 \cdot 06 \cdot 26$ 原第6号
26	平成16年5月20日	平成 $15 \cdot 12 \cdot 24$ 原第18号
27	平成16年8月31日	平成 $16 \cdot 08 \cdot 11$ 原第 13 号
28	平成16年12月17日	平成 $16 \cdot 11 \cdot 17$ 原第 11 号
29	平成17年11月28日	平成 $17 \cdot 11 \cdot 07$ 原第 4 号
30	平成18年2月22日	平成 $18 \cdot 01 \cdot 27$ 原第 12 号
31	平成18年10月27日	平成 $18 \cdot 10 \cdot 12$ 原第 4 号
32	平成19年6月12日	平成 $19.05 \cdot 18$ 原第3号
33	平成19年12月13日	平成 $19 \cdot 09 \cdot 28$ 原第 35 号
34	平成19年12月13日	平成 $19 \cdot 11 \cdot 30$ 原第 20 号
35	平成20年6月18日	平成 $20.05 \cdot 28$ 原第8号
36	平成20年8月22日	平成 $20.07 \cdot 11$ 原第8号
37	平成20年12月12日	平成 $20 \cdot 10 \cdot 31$ 原第4号
38	平成21年10月14日	平成 $21 \cdot 08 \cdot 17$ 原第5号
39	平成 22 年 1 月 22 日	平成 $21 \cdot 12 \cdot 17$ 原第 1 号
40	平成 23 年 6 月 1 日	平成 $23 \cdot 04 \cdot 08$ 原第 35 号

	認 可 年 月 日	認 可 証 番 号
41	平成23年6月1日	平成 $23 \cdot 04 \cdot 22$ 原第 10 号
42	平成23年6月15日	平成 $23 \cdot 05 \cdot 19$ 原第 16 号
43	平成 24 年 9月6日	20120731 原第68号
44	平成 25 年 7 月 5 日	原管B発第1307047号
45	平成 26 年 1月28日	原管 B 発第1401281号
46	平成26年5月21日	原規規発第1405212号
欠番		
48	平成26年6月24日	原規規発第1406241号
49	平成 28 年 3 月 24 日	原規規発第1603245号
50	平成 29 年6月30日	原規規発第1706302号
51	平成 30 年 2 月 6 日	原規規発第1802067号
52	平成 31 年 2 月 15 日	原規規発第1902153号
53	令和元年6月3日	原規規発第19060310号
54	令和 2 年 3 月 18 日	原規規発第2003182号
55	令和 2 年 9 月 17 日	原規規発第2009179号
56	令和 3 年 5 月 18 日	原規規発第2105182号
57	令和 4 年 8月31日	原規規発第2208311号
58	令和 5 年 2 月 15 日	原規規発第2302152号
59	令和 5 年 9 月 20 日	原規規発第2309207号

女川原子力発電所原子炉施設保安規定変更比較表

枠囲みの内容は商業機密の観点から公開できません。

女川原子力発電所原子炉施設保安規定

2023年9月

東北電力株式会社

女川原子力発電所原子炉施設保安規定
\qquad年 \qquad月

東北電力株式会社
（重大事故等対処設備（ 2 号炉））原子炬の状能に応じて，次の各号の重大事故等対処設備＊${ }^{*}$ は，表 66 －1 から表66－19 で定める事項を運転上の制限とする。
（1）緊急停止失敗時に発電用原子炉を未臨界にするための設備
（2）原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を泠却するための設備
（3）原子炉冷却材圧力バウンダリを減圧するための設備
（4）原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備
（5）最終ヒートシンクへ熱を輸送するための設備
原子炉格納容器の過圧破損を防止するための設備
水素爆発による原子炉格納容器の破損を防止するための設備
水素爆発による原子炉建屋等の損傷を防止するための設備
（6）原子炉格納容器内の泠却等のための設備
（7）原子炉格納容器下部の溶融炉心を椧却するための設備
（8）水素爆発による原子炉建屋等の損傷を防止するための設備
（9）使用済燃料プールの泠却等のための設備
（10）発電所外への放射性物質の拡散を抑制するための設備
（11）重大事故等の収束に必要となる水の供給設備
（12）電源設備
（13）計装設備
（14）運転員が中央制御室にとどまるための設備
（15）監視測定設備
（16）緊急時対策所
（17）通信連絡を行うために必要な設備
（18）アクセスルートの確保
（19）大容量送水ポンプ
2．重大事故等対処設備が前項で定める運転上の制限を満足していることを確認するため，次号を実施する。
（1）各課長は，原子炉の状態に応じて表66－1から表66－19の確認事項を実施し，その結果を発電管理課長または防災課長に通知する。
3．発電課長または防災課長は，重大事故等対処設備が第 1 項で定める運転上の制限を満足してい ないと判断した場合，表66－1から表66－19の要求される措置を講じる。 ※ 1：可搬型設備の系統には，資機材等を含む。

（重大事故等対処設備（2号炬））

第 66 条 2 号炬について 原子炬の壮能に店じて 次の各号の重大事故等対処設備※ ${ }^{1}$ は，表 66 －1 から表66－19で定める事項を運転上の制限とする
（1）緊急停止失敗時に発電用原子炉を未臨界にするための設備
（2）原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を泠却するための設備
（3）原子炉冷却材圧力バウンダリを減圧するための設備
（4）原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を泠却するための設備
（5）最終ヒートシンクへ熱を輸送するための設備
原子炉格納容器の過圧破損を防止するための設備
水素爆発による原子灲格納容器の破損を防止するための設備
水素爆発による原子炉建屋等の損傷を防止するための設備
（6）原子炉格納容器内の冷却等のための設備
（7）原子炉格納容器下部の溶融炉心を泠却するための設備
（8）水素爆発による原子炉建屋等の損傷を防止するための設備
（9）使用済燃料プールの泠却等のための設備
（10）発電所外への放射性物質の拡散を抑制するための設備
（11）重大事故等の収束に必要となる水の供給設備
（12）電源設備
（13）計装設備
（14）運転員が中央制御室にとどまるための設備
（15）監視測定設備
（16）緊急時対策所
（17）通信連絡を行うために必要な設備
（18）アクセスルートの確保
（19）大容量送水ポンブ
2．重大事故等対処設備が前項で定める運転上の制限を満足していることを確認するため，次号を実施する。
（1）各課長は，原子炉の状態に応じて表66－1 から表66－19の確認事項を実施し，その結果を発電管理課長または防災課長に通知する。
3．発電課長または防災課長は，重大事故等対処設備が第 1 項で定める運転上の制限を満足してい ないと判断した場合，表 66－1 から表66－19の要求される措置を講じる。
※ 1 ：可搬型設備の系統には，資機材等を含む。

運転上の制限を逸脱した場合における要求される措置等の変更

変更前	
表66－5 最終ヒートシンクへ熱を輸送するための設備 原子炉格納容器の過圧破損を防止するための設備 水素爆発による原子灲格納容器の破損を防止するための設備水素爆発による原子炉建屋等の損傷を防止するための設備	
66－5－4 原子炉補機代	替冷却水系
（1）運転上の制限	
項 目	運転上の制限
原子炬補機代替冷却水系	原子炉補機代替冷却水系 2 系列 ${ }^{*} 1$ が動作可能であること ${ }^{\text {a }}$

表66－5 最終ヒートシンクへ熱を輸送するための設備

適用される原子炉の状態	設 備	所要数
運 転 起 動 高温停止 椧温停止 燃料交換	大容量送水ポンプ（タイプ I）	※ 3
	熱交換器ユニット	1 台 $\times 2$ \％ $4 * 5$
	常設代替交流電源設備	※ 6
	燃料補給設備	※ 7

※ 1：1 系列とは，熱交換器ユニット 1 台およびホースをいう。
※2：動作可能とは，当該系統に期待されている機能を達成するための原子炉補機冷却水系 $* 8$ の A系およびB系のループ配管，残留熱除去系熱交換器，サージタンク，主要配管上の手動弁，電動弁および接続口を含む流路を構成できることを含む。
なお，動作可能であるべき原子炉補機冷却水系（接続口含む。）は，原子炉の状態が運転，起動および高温停止においては，A系およびB系の計 2 系列，原子炉の状態が冷温停止およ び燃料交換においては，A系またはB系どちらか 1 系列とする。
※3：「66－19－1 大容量送水ポンプ（タイプI）」において運転上の制限等を定める。
※ 4：熱交換器ユニットは，第 1 保管エリアおよび第 3 保管エリアに 1 セットずつ分散配置されて いること。
※5：淡水ポンプおよび除熱ヘッダを含む。
※6：「66－12－1 常設代替交流電源設備」において運転上の制限等を定める。
※ 7：「66－12－7 燃料補給設備」において運転上の制限等を定める。
※8：原子炉補機冷却水系のA系の泠却ラインは，「66－5－5 代替循環冷却系」と兼ねる。動作不能時は，「66－5－5 代替循環冷却系」の運転上の制限も確認する。
また，当該系統が動作不能時は，「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」の運転上の制限も確認する。

原子炉格納容器の過圧破損を防止するための設備
水素爆発による原子炉格納容器の破損を防止するための設備
水素爆発による原子炉建屋等の損傷を防止するための設備
（省略）
66－5－4 原子炉補機代替冷却水系
（1）運転上の制限

項 目	運転上の制限
原子炉補機代替冷却水系	原子炉補機代替冷却水系 2 系列 11 が動作可能であること 22

適用される原子炉の状態	設 備	所要数
運 転 起 動 高温停止 冷温停止 燃料交換	大容量送水ポンプ（タイプ I ）	※3
	熱交換器ユニット	1 台 $\times 2 \times 4 * 5$
	常設代替交流電源設備	※ 6
	燃料補給設備	※ 7

※ 1：1 系列とは，熱交換器ユニット 1 台およびホースをいう。
※2：動作可能とは，当該系統に期待されている機能を達成するための原子炉補機冷却水系＊8 の A系およびB系のループ配管，残留熱除去系熱交換器，サージタンク，主要配管上の手動弁，電動弁および接続口を含む流路を構成できることを含む。
なお，動作可能であるべき原子炉補機冷却水系（接続口含む。）は，原子炉の状態が運転，起動および高温停止においては，A采およびB系の計 2 系列，原子炉の状態が泠温停止およ び燃料交換においては，A系またはB系どちらか 1 系列とする。
※3：「66－19－1 大容量送水ポンプ（タイプ I）」において運転上の制限等を定める。
※ 4 ：熱交換器ユニットは，第 1 保管エリアおよび第 3 保管エリアに 1 セットずつ分散配置されて いること。
※5：淡水ポンプおよび除熱ヘッダを含む。
※6：「66－12－1 常設代替交流電源設備」において運転上の制限等を定める。
※7：「66－12－7 燃料補給設備」において運転上の制限等を定める。
※8：原子炉補機泠却水系のA系の泠却ラインは，「66－5－5 代替循環冷却系」と兼ねる。動作不能時は，「66－5－5 代替循環冷却系」の運転上の制限も確認する。
また，当該系統が動作不能時は，「第52条 原子炉補機冷却水系および原子炉補機冷却海水系」の運転上の制限も確認する。

変更前		
（2）確認事項		
項 目	頻 度	担 当
1．熱交換器ユニットの淡水ポンプの流量および揚程が以下を満足していることを確認する。 －流量が \square $\mathrm{m}^{3} / \mathrm{h}$ 以上で揚程か \square以上。	2 年に 1 回	原子炉課長
2．R CW 常用冷却水供給側分離弁（A），R CW 常用冷却水供給側分離弁（B），R CW常用泠却水戻り側分離弁（A），R CW常用冷却水戻り側分離弁（B），R CW代替冷却水不要負荷分離弁（A），およびR CW代替冷却水不要負荷分離弁 （B）が動作可能であることを確認する。また，動作碓認後，動作確認に際して作動した弁の開閉状態を確認する。	定事検停止時	発電課長
3．熱交換器ユニットが動作可能であることを確認する。	3 ヶ月に 1 回	防災課長
4．RHR熱交換器（A）冷却水出口弁，RHR熱交換器（B）泠却水出口弁，F P C 熱交換器（A）冷却水出口弁およびF PC 熱交換器（B）冷却水出口弁が動作可能であることを確認する。また，動作確認後，動作確認に際して作動した弁 の開閉状態を確認する。	1ヶ月に1回	発電課長

適用される 原 子 炉 の 状 態	条 件	要求される措置	完了時間
運 転 起 動高温停止	A．動作可能な原子炉補機代替冷却水系が 2 系列未満1系列以上の場合	A1．防災課長は，残りの原子炉補機代替冷却水系が動作可能であることを確認する。 および A2．発電課長は，原子炉補機冷却水系 1 系列 を起動し，動作可能であることを確認す る ${ }^{* 9}$ とともに，その他の設備 ${ }^{* 10}$ が動作可能であることを確認する。 および A3．1．防災課長は，当該機能を補完する自主対策設備 ${ }^{* 11}$ が動作可能であることを確認する。 または A3．2．防災課長は，代替措置甾12を検討し，原子炉主任技術者の確認を得て実施す る。 および A4．防災課長は，当該系統を動作可能な状態 に復旧する。	速やかに 速やかに 10日間 10日間 30 日間

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
適用される \\
原 子 炉 \\
の 状 態
\end{tabular} \& 条 件 \& 要求される措置 \& 完了時間 \\
\hline \multirow[t]{2}{*}{\begin{tabular}{l}
運 転 \\
起 動 \\
高温停止
\end{tabular}} \& \multirow[t]{2}{*}{A．動作可能な原子炉補機代替冷却水系が2系列未満1系列以上の場合} \& \begin{tabular}{l}
A1．防災課長は，残りの原子炉補機代替冷却 \\
水系が動作可能であることを確認する。 および \\
A2．発電課長は，原子炉補機冷却水系 1 系列 を起動し，動作可能であることを確認す る＊9とともに，その他の設備 \({ }^{* 10}\) が動作可能であることを確認する。 \\
および
\end{tabular} \& 速やかに
速やかに \\
\hline \& \& \begin{tabular}{l}
A3．防㷋課長は，代替措置企11を検討し，原子炉主任技術者の確認を得て実施する。 \\
および \\
A4．防災課長は，当該系統を動作可能な状態 に復旧する。
\end{tabular} \& 10 日間

30 日間

\hline
\end{tabular}

運転上の制限を逸脱した場合における要求される措置等の変更

変更前				変更後				理由 運転上の制限を逸脱した 場合における要求される 措置等の変更
適用される 原子炉 の 状 態	条 件	要求される措置	完了時間	適用される 原子炉 の 状 態	条 件	要求される措置	完了時間	
運 転 起 動 高温停止	B．動作可能な原子炉補機代替冷却水系が 1 系列未満の場合	B1．発電課長は，原子炬補機冷却水系 1 系列 を起動し，動作可能であることを確認す る ${ }^{* 9}$ とともに，その他の設備 ${ }^{* 10}$ が動作可能であることを確認する。 および B2．1．防災課長は，当該機能を補完する自主対策設備 ${ }^{* 11}$ が動作可能であることを確認する。 または B2．2．防災課長は，代替措置 ${ }^{*}$ 12を検討し，原子炉主任技術者の確認を得て実施す る。 および B3．防災課長は，当該系統を動作可能な状態 に復旧する。	速やかに 3日間 3日間 10日間	運 転 起 動 高温停止	B．動作可能な原子炉補機代替冷却水系が 1 系列未満の場合	B1．発電課長は，原子炉補機冷却水系 1 系列 を起動し，動作可能であることを確認す る＊9とともに，その他の設備 ${ }^{* 10}$ が動作可能であることを確認する。 および B2．防災課長は，代替措置災11を検討し，原子炉主任技術者の確認を得て実施する。 および B3．防災課長は，当該系統を動作可能な状態 に復旧する。	速やかに 3 日間 10 日間	
	C．原子炉補機冷却水系のA系と共用する配管また は弁が動作不能 の場合	C1．発電課長は，代替循環冷却系を動作不能 とみなす。 および C2．発電課長は，原子炉補機冷却水系 B 系を起動し，動作可能であることを確認する ${ }^{9}$ とともに，その他の設備粦 13 が動作可能 であることを確認する。 および C3．発電課長は，当該系統を動作可能な状態 に復旧する。	速やかに速やかに 10日間		C．原子炉補機冷却水系のA系と共用する配管また は弁が動作不能 の場合	C1．発電課長は，代替循環冷却系を動作不能 とみなす。 および C2．発電課長は，原子炬補機冷却水系B系を起動し，動作可能であることを確認する ${ }^{9}$ とともに，その他の設備企 12 が動作可能 であることを確認する。 および C3．発電課長は，当該系統を動作可能な状態 に復旧する。	速やかに 速やかに 10日間	
	D．原子炉補機冷却水系のB系と共用する配管また は弁が動作不能 の場合	D1．発電課長は，原子炉補機冷却水系A系を起動し，動作可能であることを確認する ${ }^{9}$ とともに，その他の設備菓 13 が動作可能 であることを確認する。 および D2．発電課長は，当該系統を動作可能な状態 に復旧する。	速やかに 10日間		D．原子炬補機冷却水系のB系と共用する配管また は弁が動作不能 の場合	D1．発電課長は，原子炉補機冷却水系A系を起動し，動作可能であることを確認する ${ }^{9}$ とともに，その他の設備炎 12 が動作可能 であることを確認する。 および D2．発電課長は，当該系統を動作可能な状態 に復旧する。	速やかに 10日間	
	E．条件 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ また は D で要求され る措置を完了時間内に達成でき ない場合	E1．発電課長は，高温停止にする。 および E2．発電課長は，冷温停止にする。	24 時間 36 時間		E．条件 $\mathrm{A}, \mathrm{B}, \mathrm{C}$ また は D で要求され る措置を完了時間内に達成でき ない場合	E1．発電課長は，高温停止にする。 および E2．発電課長は，泠温停止にする。	24 時間 36 時間	

66－8－1 静的触媒式水素再結合装置

（1）運転上の制限

項 目	運転上の制限
静的触媒式水素再結合装置	静的触媒式水素再結合装置の所要数が動作可能であること

適用される原子炉の状態	設 備	所要数
運 転 起 動 高温停止 冷温停止 燃料交換 ${ }^{*}{ }^{1}$	静的触媒式水素再結合装置	19 個
	静的触媒式水素再結合装置動作監視装置	※2

（1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合
（2）原子炉内から全燃料が取出され，かつプールゲートが閉の場合
※2：「66－13－1 主要パラメータおよび代替パラメータ」において運転上の制限等を定める。

項 目	頻 度	担 当
1．静的触媒式水素再結合装置が動作可能であることを確認す る。	定事検停止時	原子炉課長
2．原子炉の状態が運転，起動，高温停止，冷温停止および燃料交換 ${ }^{*}{ }^{3}$ において，所要数の静的触媒式水素再結合装置が動作可能であることを外観点検により確認する。	1ヶ月に1回	発電課長

※3：原子炉が次に示す状態となった場合は適用しない
（1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合
（2）原子炬内から全燃料が取出され，かつプールゲートが閉の場合

> 表66-8 水素爆発による原子炉建屋等の損傷を防止するための設備
> $66-8-1$ 静的触媒式水素再結合装置
（1）運転上の制限

項 目	運転上の制限
静的触媒式水素再結合装置	静的触媒式水素再結合装置の所要数が動作可能であること

適用される原子炉の状態	設 備	所要数
運 転 起 動 高温停止冷温停止燃料交換 ${ }^{*} 1$	静的触媒式水素再結合装置	19個
	静的触媒式水素再結合装置動作監視装置	※2

※ 1：原子炉が次に示す状態となった場合は適用しない。
（1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合
（2）原子炉内から全燃料が取出され，かつプールゲートが閉の場合
※2：「66－13－1 主要パラメータおよび代替パラメータ」において運転上の制限等を定める。
（2）確認事項

項 目	頻 度	担 当
1．静的触媒式水素再結合装置が動作可能であることを確認す る。	定事検停止時	原子炉課長
2．原子炉の状態が運転，起動，高温停止，泠温停止および燃料交換 ${ }^{3}$ において，所要数の静的触媒式水素再結合装置が動作可能であることを外観点検により確認する。	1ヶ月に 1 回	発電課長

※3：原子炉が次に示す状態となった場合は適用しない。
（1）原子炉水位がオーバーフロー水位付近で，かつプールゲートが開の場合
（2）原子炉内から全燃料が取出され，かつプールゲートが閉の場合

女川原子力発電所原子炉施設保安規定変更比較表（2023年度 東北電原運第9号）

66－10－2 海洋への放射性物質の拡散抑制
（1）運転上の制限

項 目	運転上の制限
海洋への拡散抑制設備 （シルトフエェス）	所要数が使用可能であること

適用される 原子炉の状態	設 備	所要数
運 転 起 動 高温停止 泠温停止 燃料交換	シルトフェンス＊1	
•南		12 本

※ 1 ：南側排水路排水桝用（高さ $5 \mathrm{~m} \times$ 幅 5 m ）： 2 本，タービン補機放水ピット用（高さ $7 \mathrm{~m} \times$ 幅 5 m ）： 2 本，北側排水路排水桝用（高さ $6 \mathrm{~m} \times$ 幅 11 m ）： 2 本，取水口用（高さ $12 \mathrm{~m} \times$ 幅 20 m ）： 6 本
（2）確認事項

| 項 目 | 頻 度 | 担 当 |
| :---: | :---: | :---: | :---: |
| 1．シルトフェンスについて，所要数が使用可能であることを
 外観点検により確認する。 | 3 ヶ月に 1 回 | 防災課長 |

表66－10 発電所外への放射性物質の拡散を抑制するための設備
（省略）
66－10－2 海洋への放射性物質の拡散抑制
（1）運転上の制限

項 目	運転上の制限
海洋への拡散抑制設備 （シルトフェンス）	所要数が使用可能であること

適用される原子炬の状態	設 備	所要数
運 転 起 動 高温停止 冷温停止 燃料交換	シルトフェンス＊1	12本

※ 1 ：南側排水路排水桝用（高さ $5 \mathrm{~m} \times$ 幅 5 m ）： 2 本，タービン補機放水ピット用（高さ $7 \mathrm{~m} \times$ 幅 5 m ） 2 本，北側排水路排水桝用（高さ $6 \mathrm{~m} \times$ 幅 11 m ）： 2 本，取水口用（高さ $12 \mathrm{~m} \times$ 幅 20 m ）： 6 本

項 目	頻 度	担 当
1．シルトフェンスについて，所要数が使用可能であることを外観点検により確認する。	3 ヶ月に 1 回	防災課長

変更前				変更後				束北电力林式会社
（3）要求される措置				（3）要求される措置				運転上の制限を逸脱した場合における要求される措置等の変更
適用される 原 子 炉 の 状 態	条 件	要求される措置	完了時間	適用される 原 子 炉 の 状 態	条 件	要求される措置	完了時間	
運 転 起 動 高温停止	A．海洋への拡散抑制設備（シルトフ ェンス）が所要数 を満足していな い場合			運 転 起 動 高温停止	A．海洋への拡散抑制設備（シルトフ エンス）が所要数 を満足していな い場合	A1．発電課長は，残留熱除去系 1 系列を起動 し，動作可能であることを確認する※2と ともに，その他の設備＊${ }^{*}$ が動作可能であ ることを確認する。 および A2．発電課長は，使用済燃料プールの水位が オーバーフロー水位付近にあることおよ び水温が $65^{\circ} \mathrm{C}$ 以下であることを確認す る。 および A3．防災課長は，代替措置 ${ }^{*} 4$ を検討し，原子炉主任技術者の確認を得て実施する。 および	速やかに	
		A2．発電課長は，使用済燃料プールの水位が オーバーフロー水位付近にあることおよ び水温が $65^{\circ} \mathrm{C}$ 以下であることを確認す る。 および	速やかに				速やかに	
		A3．1．防災課長は，代替措置＊4 を検討し，原子炉主任技術者の確認を得て実施する。 または A3．2．防災課長は，当該機能を補完する自主対策設備 ${ }^{*} 5$ が使用可能であることを確認 する。 および A4．防災課長は，当該設備を使用可能な状態 に復旧する。	3日間 $3 \text { 日間 }$ 10日間				3日間	
	B．条件 A で要求さ れる措置を完了時間内に達成で きない場合	B1．発電課長は，高温停止にする。 および B2．発電課長は，椧温停止にする。	$\begin{aligned} & 24 \text { 時間 } \\ & 36 \text { 時間 } \end{aligned}$		B．条件 A で要求さ れる措置を完了時間内に達成で きない場合	B1．発電課長は，高温停止にする。 および B2．発電課長は，泠温停止にする。	24 時間 36 時間	
冷温停止燃料交換	A．海洋への拡散抑制設備（シルトフ ェンス）が所要数 を満足していな い場合	A1．防災課長は，当該設備を使用可能な状態 に復旧する措置を開始する。 および A2．発電課長は，使用済燃料プールの水位が オーバーフロー水位付近にあることおよ び水温が $65^{\circ} \mathrm{C}$ 以下であることを確認す る。 および A3．1．防災課長は，代替措置 ${ }^{* 4}$ を検討し，原子炉主任技術者の確認を得て実施する措置を開始する。 または A3．2．防災課長は，当該機能を補完する自主対策設備＊5 が使用可能であることを確認 する。	速やかに 速やかに 速やかに 速やかに	冷温停止燃料交換	A．海洋への拡散抑制設備（シルトフ エンス）が所要数 を満足していな い場合	A1．防災課長は，当該設備を使用可能な状態 に復旧する措置を開始する。 および A2．発電課長は，使用済燃料プールの水位が オーバーフロー水位付近にあることおよ び水温が $65^{\circ} \mathrm{C}$ 以下であることを確認す る。 および A3．防災課長は，代替措置 ${ }^{*} 4$ を検討し，原子炉主任技術者の確認を得て実施する措置 を開始する。	速やかに 速やかに 速やかに	
※2：運転中の ※ 3 ：残りの殊 ※ 4：代替品 ※5：放射性物	ポンプについては，運留熱除去系 2 系列をし補充等をいう。質吸着材をいら。	転状態により確認する。 い，至近の記録等により動作可能であること	確認する。	※2：運転中の ※ 3：残りの残 ※ 4：代替品の	ポンプについては，運留熱除去系 2 系列をし補充等をいう。	転状態により確認する。 い，至近の記録等により動作可能であること	確認する。	

変更前	
表66－12 電源設備	
66－12－1 常設代替交流電源設備	
（1）運転上の制限	
項 目	運転上の制限
常設代替交流電源設備	常設代替交流電源設備が動作可能であること※1

表66－12
$66-12-1$
電源設備
6 6 常設代替交流電源設備
（1）運転上の制限

項 目	運転上の制限
常設代替交流電源設備	常設代替交流電源設備が動作可能であること※1

適用される原子炉の状態	設 備	所要数
運 転 起 動 高温停止 椧温停止 燃料交換	ガスタービン発電機	2 台
	ガスタービン発電設備軽油タンク	※2
	ガスタービン発電設備燃料移送ポンプ	2 台
	タンクローリ	※2
	軽油タンク	※2

適用される原子炉の状態	設 備	所要数
$\begin{array}{ll}\text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 }\end{array}$高温停止泠温停止燃料交換	ガスタービン発電機	2 台
	ガスタービン発電設備軽油タンク	※2
	ガスタービン発電設備燃料移送ポンプ	2 台
	タンクローリ	※2
	軽油タンク	※2

※1：当該系統が動作不能時は，「66－16－2 緊急時対策所の代替電源設備」の運転上の制限 も確認する。
※2：「66－12－7 燃料補給設備」において運転上の制限等を定める。
（2）確認事項

| 項 目 | 頻 度 | 担 当 |
| :---: | :---: | :---: | :---: |
| 1．ガスタービン発電機が模擬信号で作動することおよび運転
 状態（電圧等）に異常のないことを確認する。 | 定事検停止時 | 電気課長 |
| 2．ガスタービン発電機を起動し，動作可能であることを確認
 する。 | 1 ヶ月に 1 回 | 発電課長 |
| 3．ガスタービン発電設備燃料移送ポンプを起動し，動作可能
 であることを確認する。 | 1 ヶ月に 1 回 | 発電課長 |

※1：当該系統が動作不能時は，「66－16－2 緊急時対策所の代替電源設備」の運転上の制限 も碓認する。
※2：「66－12－7 燃料補給設備」において運転上の制限等を定める。
（2）確認事項
（2）確認事項

| 項 目 | 頻 度 | 担 当 |
| :---: | :---: | :---: | :---: |
| 1．ガスタービン発電機が模擬信号で作動することおよび運転
 状態（電圧等）に異常のないことを確認する。 | 定検停止時 | 電気課長 |
| 2．ガスタービン発電機を起動し，動作可能であることを確認
 する。 | 1 ヶ月に 1 回 | 発電課長 |
| 3．ガスタービン発電設備燃料移送ポンプを起動し，動作可能
 であることを確認する。 1 ヶ月に 1 回 | 発電課長 | |

変更前	
66－12－2 可搬型代替交流電源設備	
（1）運転上の制限	
項 目	運転上の制限
可搬型代替交流電源設備	可搬型代替交流電源設備 2 系列 ${ }^{1}$ が動作可能であること ${ }^{\text {a }}$ 2

（1）運転上の制限

項 目	運転上の制限
可搬型代替交流電源設備	可搬型代替交流電源設備2系列※1 が動作可能であること 22

適用される原子炉の状態	設 備	所要数
$\begin{array}{ll}\text { 運 } & \text { 転 } \\ \text { 起 } & \text { 動 }\end{array}$高温停止泠温停止燃料交換	電源車	2 台 $\times 2$ \％${ }^{\text {a }}$
	タンクローリ	※ 4
	軽油タンク	※ 4
	ガスタービン発電設備軽油タンク	※ 4

※1：1系列とは，電源車2台をいう。
※2：動作可能とは，電源車接続口（原子炉建屋西側）または電源車接続口（原子炉建屋東側）に接続 できることを含む。
※3：電源車は，第 2 保管エリアおよび第 3 保管エリアに分散配置されていること。
※4：「66－12－7 燃料補給設備」において運転上の制限等を定める。
（2）確認事項

項 目	頻 度	担 当
1．電源車を起動し，運転状態（電圧等）に異常のないことを確 認する。	2 年に 1 回	防災課長
2 ．電源車を起動し，動作可能であることを確認する。	3 ヶ月に 1 回	防災課長

適用される原子炉の状態	設 備	所要数
運 転 起 動 高温停止 椧温停止 燃料交換	電源車	2 台 $\times 2$＊${ }^{\text {a }}$
	タンクローリ	$※ 4$
	軽油タンク	$※ 4$
	ガスタービン発電設備軽油タンク	※ 4

※1：1系列とは，電源車 2 台をいう。
※2：動作可能とは，電源車接続口（原子炉建屋西側）または電源車接続口（原子炉建屋東側）に接続 できることを含む。
※3：電源車は，第 2 保管エリアおよび第 3 保管エリアに分散配置されていること。 ※4：「66－12－7 燃料補給設備」において運転上の制限等を定める。

（2）確認事項

項 目	頻 度	担 当
1．電源車を起動し，運転状態（電圧等）に異常のないことを確 認する。 2年に 1 回	防災課長	
2 ．電源車を起動し，動作可能であることを確認する。	3 ヶ月に 1 回	防災課長

変更前	
表66－13 計装設備	
66－13－1 主要パラメータおよび代替パラメータ	
（1）運転上の制限	
項 目	運転上の制限
主要パラメータ	主要パラメータを計測する計器が 1 チャンネル以上動作可能である こと 1 1 ${ }^{3} 3$
代替パラメータ	主要パラメータの推定が可能であること 1 ※ 2 ※3

※ 1：プラント起動に伴う計器校正，原子炉水圧検査および格納容器漏えい率検査時に計器保護の ため隔離している場合ならびに計器ベント等の計器隔離時は，運転上の制限を満足していな いとはみなさない。
※2：代替パラメータに記載する番号は優先順位であり，推定方法が複数あることを示す。 なお，推定方法が複数ある場合は，いずれかの方法で推定できれば運転上の制限を満足して いないとはみなさない。
※3：主要パラメータおよび代替パラメータに記載する［ ］は，有効監視パラメータまたは重要監視パラメータの常用計器（耐震性または耐環境性等はないが，監視可能であれば原子炉施設 の状態を把握することが可能な計器）を示す。運転上の制限は適用しないが，要求される措置で代替パラメータとして確認することができる。

運転上の制限を浼脱した場合における要求される措置等の変更

66－13－1 主要パラメータおよび代替パラメータ
（1）運転上の制限

項 目	運転上の制限
主要パラメータ	主要パラメータを計測する計器が 1 チャンネル以上動作可能である こと※3
代替パラメータ	主要パラメータの推定が可能であること※1＊2

※ 1：プラント起動に伴う計器校正，原子炉水圧検査および格納容器漏えい率検査時に計器保護の ため隔離している場合ならびに計器ベント等の計器隔離時は，運転上の制限を満足していな いとはみなさない。
※2：代替パラメータに記載する番号は優先順位であり，推定方法が複数あることを示す。
なお，推定方法が複数ある場合は，いずれかの方法で推定できれば運転上の制限を満足して いないとはみなさない。
※ 3：［ ］は，有効監視パラメータ（耐震性または耐環境性等はないが，監視可能であれば原子炉施設の状態を把握することが可能な計器）を示す。有効監視パラメータは運転上の制限を適用しない。

女川原子力発電所原子炉施設保安規定変更比較表（2 0 2 3 年度 東北電原運第9号）

女川原子力発電所原子炉施設保安規定変更比較表（2 0 2 3 年度 東北電原運第9号）

女川原子力発電所原子炉施設保安規定変更比較表（2 0 2 3 年度 東北電原運第9号）

変更前				変更後				理由	
11．未臨界の維持または監視				11．末臨界の維持または監視				運転上の制限を逸脱した場合における要求される措置等の変更	
適用される原子炉の状態	主要パラメータ	代替パラメータ		適用される原子炉の状態	主要パラメータ	代替パラメータ			
	要素	要素	推定方法		要素	要素	推定方法		
起 動＊8 高温停止 椧温停止 燃料交換 ${ }^{*} 9$	起動領域モニタ	$\begin{aligned} & \text { (1)主要パラメータの他チャ } \\ & \text { ンネル } \end{aligned}$	起動領域モニタの 1 チャン ネルが故障した場合は，他チ ャンネルにより推定する。	起 動 ${ }^{*} 8$ 高温停止 椧温停止 燃料交換 ${ }^{*} 9$	起動領域モニタ	（1）主要パラメータの他チャ ンネル	起動領域モニタの1チャン ネルが故障した場合は，他于 ヤンネルにより推定する。		
		（2）平均出力領域モニタ	平均出力領域モニタにより推定する。			（2）平均出力領域モニタ	平均出力領域モニタにより推定する。		
		（3）［制御棒位置指示系］	制御棒位置指示系（有効監視 パラメータ）により全制御棒 が全挿入状態にあることが 確認できる場合は，未臨界状	運 転 起 動	平均出力領域 モニタ	（1）主要パラメータの他チャ ンネル	平均出力領域モニタの1チ ヤンネルが故障した場合は，他チャンネルにより推定す る。		
$\begin{array}{ll}\text { 運 転 } \\ \text { 起 } & \\ \text { 動 }\end{array}$	平均出力領域 モニタ	$\begin{aligned} & \text { (1)主要パラメータの他チャ } \\ & \text { ンネル } \end{aligned}$	平均出力領域モニタの1チ ヤンネルが故障した場合は，他チャンネルにより推定す る。			（2）起動領域モニタ	起動領域モニタにより推定 する。		
					［制御棒位置指	（1）起動領域モニタ	起動領域モニタにより推定 する。		
		（2）起動領域モニタ	起動領域モニタにより推定 する。		示系］	（2）平均出力領域モニタ	平均出力領域モニタにより推定する。		
		（3）［制御棒位置指示系］	制御棒位置指示系（有効監視 パラメータ）により全制御棒 が全挿入状態にあること年 確認できるる場合は，未臨界状 態の維持を推定する。	※8：中性子源領域の場合に適用する。 ※9：起動領域モニタ周りの燃料が 4 体未満の場合は除く。					
	［制御棒位置指示系］	（1）起動領域モニタ	起動領域モニタにより推定 する。						
		（2）平均出力領域モニタ	平均出力領域モニタにより推定する。						
※ 8：中性子源領域の場合に適用する。 ※9：起動領域モニタ周りの燃料が 4 体未満の場合は除く。									

変更前	
表66－16 緊急時対策所	
（省略）	
66－16－2 緊急時対策所の代替電源設備	
（1）運転上の制限	
項 目	運転上の制限
緊急時対策所の代替電源設備	緊急時対策所の代替電源設備が動作可能であること 1 \％2

適用される原子炉の状態	設 備	所要値 \cdot 所要数
運 転 起 動 高温停止 椧温停止 燃料交換	ガスタービン発電機	※ 4
	ガスタービン発電設備軽油タンク	※ 5
	タンクローリ	※ 5
	軽油タンク	※ 5
	ガスタービン発電設備燃料移送ポンプ	※ 4
	ガスタービン発電機接続盤	※6
	緊急用高圧母線 2 F 系	※6
	電源車（緊急時対策所用）	1 台
	緊急時対策所軽油タンクレベル＊3	2， 410 mm
	緊急時対策所用高圧母線 J 系	2系列

※ 1：燃料移送系の必要な弁および配管を含む。
※2：動作可能とは，電源車接続口（緊急時対策建屋北側）に接続できることを含む。
※3：緊急時対策所軽油タンクレベルとは，緊急時対策所軽油タンク 2 基の各々の軽油タンクレベ ルをいう。
※ 4：「66－12－1 常設代替交流電源設備」において運転上の制限等を定める。
※ 5：「66－12－7 燃料補給設備」において運転上の制限等を定める。
※6：「66－12－6 代替所内電気設備」において運転上の制限等を定める。

（2）確認事項

項 目	頻 度	担 当
1．電源車（緊急時対策所用）を起動し，運転状態（電圧等）に異常のないことを確認する。	2年に1回	防災課長
2．電源車（緊急時対策所用）を起動し，動作可能であることを確認する。	3 ヶ月に 1 回	防災課長
3．緊急時対策所軽油タンクレベルが所要値以上であることを確認する。	1ヶ月に 1 回	防災課長
4．緊急時対策所用高圧母線 J 系が使用可能であることを外観点検により確認する。	1 ヶ月に 1 回	防災課長

（省略）
66－16－2 緊急時対策所の代替電源設備
（1）運転上の制限

項 目	運転上の制限
緊急時対策所の代替電源設備	緊急時対策所の代替電源設備が動作可能であること 1 \％ 2

適用される原子炉の状態	設 備	所要値 \cdot 所要数
運 転起 動高温停止冷温停止燃料交換	ガスタービン発電機	※ 4
	ガスタービン発電設備軽油タンク	※ 5
	タンクローリ	※ 5
	軽油タンク	※ 5
	ガスタービン発電設備燃料移送ポンプ	※ 4
	ガスタービン発電機接続盤	※6
	緊急用高圧母線 2 F 系	※6
	電源車（緊急時対策所用）	1 台
	緊急時対策所軽油タンクレベル＊3	2， 410 mm
	緊急時対策所用高圧母線 J 系	2 系列

※ 1 ：燃料移送系の必要な弁および配管を含む。
※2：動作可能とは，電源車接続口（緊急時対策建屋北側）に接続できることを含む。
※ 3：緊急時対策所軽油タンクレベルとは，緊急時対策所軽油タンク 2 基の各々の軽油タンクレベ
ルをいう。
※ 4：「66－12－1 常設代替交流電源設備」において運転上の制限等を定める。
※5：「66－12－7 燃料補給設備」において運転上の制限等を定める。
※6：「66－12－6 代替所内電気設備」において運転上の制限等を定める。

（2）確認事項

| 項 目 | 頻 度 | 担 当 |
| :---: | :---: | :---: | :---: |
| 1．電源車（緊急時対策所用）を起動し，運転状態（電圧等）に
 異常のないことを確認する。 | 2 年に 1 回 | 防災課長 |
| 2．電源車（緊急時対策所用）を起動し，動作可能であることを
 確認する。 | 3 ヶ月に 1 回 | 防災課長 |
| 3．緊急時対策所軽油タンクレベルが所要値以上であることを
 確認する。 | 1 ヶ月に 1 回 | 防災課長 |
| 4．緊急時対策所用高圧母線 J 系が使用可能であることを外観
 点検により確認する。 | 1 ヶ月に 1 回 | 防災課長 |

 る場合は，当該運転上の制限を満足していないと判断した場合に要求される措置＂${ }^{*}$ を，その有効性 について確率論的リスク評価等を用いて検証した上で，要求される完了時間の範囲内で実施する。 2．各課長は，予防保全を目的とした保全作業を実施するため，計画的に運転上の制限外に移行す る場合であって，当該運転上の制限を満足していないと判断した場合に要求される措置を要求さ れる完了時間の範囲を超えて保全作業を実施する場合は，あらかじめ必要な安全措置 ${ }^{*}$ を定め， その有効性について確率論的リスク評価等を用いて検証し，原子炉主任技術者の確認を得て実施 する。
3．各課長は，表75 で定める設備について，保全計画に基づき定期的に行う保全作業を実施する ため，計画的に運転上の制限外に移行する場合は，同表に定める保全作業時の措置を実施する。 なお，要求される完了時間の範囲を超えて保全作業を実施する場合は，あらかじめ必要な安全措置※2を定め，その有効性について確率論的リスク評価等を用いて検証し，原子炉主任技術者の確認を得て実施する。
4．第1項，第2項および第3項の実施については，第 74 条第 1 項の運転上の制限を満足しない場合とはみなさない。
5．各課長は，第 1 項，第 2 項または第 3 項に基づく保全作業を行う場合，関係課長と協議し実施す る。
6．第 1 項，第 2 項および第 3 項の実施にあたっては，運転上の制限外へ移行した時点を保全作業 に対する完了時間の起点とする。
7．各課長は，第 1 項を実施する場合，運転上の制限外に移行する前に，要求される措置※3を順次実施し，すべて終了した時点から24時間以内に運転上の制限外に移行する
8．各課長は，第 1 項，第 2 項または第 3 項を実施する場合，第 74 条第 3 項および第 8 項に準拠す る。なお，第3項に基づき運転上の制限外に移行する場合は，「要求される措置」を「保全作業時 の措置」に読み替えるものとする。
9．各課長は，第 1 項の要求される措置，第 2 項の安全措置および第 3 項の保全作業時の措置を実施できなかった場合，当該運転上の制限を満足していないと判断する。
10 。各課長は，第 2 項および第 3 項に基づく保全作業において当該運転上の制限外から復帰して いると判断した場合は，発電管理課長または防災課長に報告し，発電管理課長または防災課長は原子炉主任技術者に報告する。
※ 1：第3節各条の第 2 項に基づく事項として同様の措置を実施している場合は，第 1 項において は要求される措置，第 2 項においては必要な安全措置に代えることができる。
※2：表75に基づく事項として同様の措置を実施している場合は，必要な安全措置に代えること ができる。
※ 3 ：保全作業を実施する当該設備等に係る措置および運転上の制限が適用されない状態へ移行す る措置を除く。また，複数回の実施要求があるものについては， 2 回目以降の実施について は除く。
（予防保全を目的とした保全作業を実施する場合）
第 75 条 各課長は，予防保全を目的とした保全作業を実施するため，計画的に運転上の制限外に移行す る場合は，当該運転上の制限を満足していないと判断した場合に要求される措置蓡1を，その有効性 について確率論的リスク評価等を用いて検証した上で，要求される完了時間の範囲内で実施する。

連転上の制限を逸脱した場合における要求される措置等の変更

2．各課長は，予防保全を目的とした保全作業を実施するため，計画的に運転上の制限外に移行す る場合であって，当該運転上の制限を満足していないと判断した場合に要求される措置を要求さ れる完了時間の範囲を超えて保全作業を実施する場合は，あらかじめ必要な安全措置＂1を定め， その有効性について確率論的リスク評価等を用いて検証し，原子炉主任技術者の確認を得て実施 する。
－各課長は，表75で定める設備について，保全計画に基づき定期的に行う保全作業を実施する ため，計画的に運転上の制限外に移行する場合は，同表に定める保全作業時の措置を実施する。 なお，要求される完了時間の範囲を超えて保全作業を実施する場合は，あらかじめ必要な安全措置＊2を定め，その有効性について確率論的リスク評価等を用いて検証し，原子炉主任技術者の確認を得て実施する。
4．第 1 項，第 2 項および第 3 項の実施については，第 74 条第 1 項の運転上の制限を満足しない場合とはみなさない。
5．各課長は，第 1 項，第 2 項または第 3 項に基づく保全作業を行う場合，関係課長と協議し実施す る。
6．第1項，第2項および第3項の実施にあたつては，運転上の制限外へ移行した時点を保全作業 に対する完了時間の起点とする。
7．各課長は，第 1 項を実施する場合，運転上の制限外に移行する前に，要求される措置＊3を順次実施し，すべて終了した時点から24時間以内に運転上の制限外に移行する。
8．各課長は，第 1 項，第 2 項または第 3 項を実施する場合，第 74 条第 3 項および第 8 項に準拠す る。なお，第 3 項に基づき運転上の制限外に移行する場合は，「要求される措置」を「保全作業時 の措置」に読み替えるものとする。
9．各課長は，第 1 項の要求される措置，第 2 項の安全措置および第 3 項の保全作業時の措置を実施できなかった場合，当該運転上の制限を満足していないと判断する。
10 。各課長は，第 2 項および第 3 項に基づく保全作業において当該運転上の制限外から復帰して いると判断した場合は，発電管理課長または防災課長に報告し，発電管理課長または防災課長は原子炉主任技術者に報告する。
※ 1：第3節各条の第2項に基づく事項として同様の措置を実施している場合は，第 1 項において は要求される措置，第 2 項においては必要な安全措置に代えることができる。
※2：表75に基づく事項として同様の措置を実施している場合は，必要な安全措置に代えること ができる。
※ 3 ：保全作業を実施する当該設備等に係る措置および運転上の制限が適用されない状態い移行す る措置を除く。また，複数回の実施要求があるものについては，2回目以降の実施について は除く。

女川原子力発電所原子炉施設保安規定変更比較表（2 0 2 3 年度 東北電原運第9号）

女川原子力発電所原子炉施設保安規定変更比較表（2 0 2 3 年度 東北電原運第9号）
変更前

附 則（令和 5 年 2 月 15 日 原規規発第 2302152 号）
（施行期日）
第 1 条 本規定は，原子力規制委員会の認可を受けた日から 10 日以内に施行する。
2．本規定施行の際，各原子炉施設に係る規定については，各原子炉施設に係る使用前事業者検査終了日以降に適用することとし，それまでの間は従前の例による。なお，第12条（運転員等の確保），第 17 条（火災発生時の体制の整備），第 17 条の 2 （内部溢水発生時の体制の整備（ 2 号炉）），第 17 条の 3 （火山影響等発生時の体制の整備（ 2 号炉）），第 17 条の 4 （その他自然災害発生時等の体制の整備），第 17 条の 5 （有毒ガス発生時の体制の整備（ 2 号炉）），第 17 条の 6 （資機材等の整備（2号炉）），第17条の7（重大事故等発生時の体制の整備（2号炉））および第17条の8（大規模損壊発生時の体制の整備（ 2 号炬））については，教㐬訓練に係る規定を除 き2号炉の発電用原子炉に燃料体を挿入する前の時期における各原子炉施設に係る使用前事業者検査終了日以降に適用することとし，それまでの間は従前の例による。ただし，それ以降に実施 する使用前事業者検査の対象となる設備に係る規定については当該検査終了日以降に適用するこ ととし，それまでの間は従前の例による。

（施行期日）

第1条 本規定は，原子力規制委員会の認可を受けた日から10日以内に施行する。
2．本規定施行の際，各原子炉施設に係る規定については，各原子炉施設に係る使用前事業者検査終了日以降に適用することとし，それまでの間は従前の例による。なお，第12条（運転員等の確保），第 17 条（火災発生時の体制の整備），第 17 条の 2 （内部溢水発生時の体制の整備（ 2 号炉）），第 17 条の 3 （火山影響等発生時の体制の整備（ 2 号炉）），第 17 条の 4 （その他自然災害発生時等の体制の整備），第 17 条の 5 （有毒ガス発生時の体制の整備（ 2 号炉）），第 17 条の 6 （資機材等の整備（2号炉）），第 17 条の 7 （重大事故等発生時の体制の整備（ 2 号炉））および第 17 条の 8 （大規模損壊発生時の体制の整備（ 2 号炉））については，教育訓練に係る規定を除 き 2 号炉の発電用原子炉に燃料体を挿入する前の時期における各原子炉施設に係る使用前事業者検査終了日以降に適用することとし，それまでの間は従前の例による。ただし，それ以降に実施 する使用前事業者検査の対象となる設備に係る規定については当該検查終了日以降に適用するこ ととし，それまでの間は従前の例による。
（省略）

附 則 \qquad年 月 日 原規規発管 \qquad号）
（施行期日）
第1条 本規定は，原子力規制委員会の認可を受けた日から10日以内に施行する。
2．本規定施行の際，規定の適用については，原子炉の状態が「運転，起動，高温停止」となる前に おいて，本規定施行の日から適用する。ただし，本規定施行の日が附則（令和 5 年 2 月 15 日原規規発第2302152号）で定める日より前の場合は，当該附則で定める日から適用する。

