柏崎刈羽原子力発電所第6号機		設計及び工事計画審査資料
資料番号		KK6補足−026−2 改0
提出年月日		2023年11月15日

タービン建屋の耐震性についての計算書に関する補足説明資料

2023年11月 東京電力ホールディングス株式会社

1. 設計及び工事の計画添付書類に係る補足説明資料

VI-2-2-6「タービン建屋の耐震性についての計算書」の記載内容を補足するための資料を以下 に示す。なお、応力解析には解析コード「MSC NASTRAN」を用いる。

- 別紙1 応力解析における既工認と今回設工認の解析モデル及び手法の比較
- 別紙2 応力解析におけるモデル化,境界条件及び拘束条件の考え方
- 別紙3 地震荷重の入力方法
- 別紙4 応力解析における断面の評価部位の選定
- 別紙5 基礎スラブの応力解析における諸条件の変更に伴う影響検討
- 別紙6 最大接地圧について
- 別紙7 水平・鉛直を分離した解析について

別紙1 応力解析における既工認と今回設工認の 解析モデル及び手法の比較

目 次

1.	概要	 別紙 1-1
2.	応力解析モデル及び手法の比較 ・・・・・・・・・・・	 別紙 1-2

1. 概要

本資料は,タービン建屋基礎スラブの既工認時及び今回設工認時の応力解析モデル及 び手法の比較を示すものである。

なお、比較に用いる既工認時の応力解析モデル及び手法は、平成3年8月23日付け3 資庁第6674号にて認可された工事計画の添付書類Ⅳ-2-9「タービン建屋の耐震性についての計算書」(以下「既工認」という。)のものである。 2. 応力解析モデル及び手法の比較

タービン建屋の応力解析モデル及び手法の比較を表 2-1 に示す。また,今回設工認時 の応力解析モデルを図 2-1 に示す。

項目 内容		既工認	今回設工認 同左 MSC NASTRAN (基礎スラブモデル部分) 同左 (上部構造モデル部分) 建屋全体でモデル化	
解析手法		・3 次元 FEM モデルを用いた応力解析(弾性解析)	・同左	—
解析コード		• NASTRAN	•MSC NASTRAN	
	モデル化範囲	・基礎スラブ	 (基礎スラブモデル部分) ・同左 (上部構造モデル部分) ・建屋全体でモデル化 	1
モデル	材料物性	検討時の各規準, コンクリートの設計基準強度に基づき設定 ・コンクリートのヤング係数:E=2.55×10 ⁴ N/mm ² (SI 換算) ・コンクリートのポアソン比:ν=0.167	 適用規準等の見直しによる再設定 ・コンクリートのヤング係数: E=2.79×10⁴N/mm² ・コンクリートのポアソン比: ν = 0.2 ・鋼材のヤング係数: E=2.05×10⁵N/mm² ・鋼材のポアソン比: ν = 0.3 	2 3 4 5
,.	要素種別	 ・基礎スラブ:シェル要素 ・耐震壁:はり要素 	・基礎スラブ,スラブ及び壁:シェル要素 ・柱,はり及びブレース:はり要素及びトラス要素	
	境界条件	 ・底面を弾性地盤ばねにより支持 ・底面の弾性地盤ばねは、浮上りを考慮 ・側面の水平ばね及び回転ばねは考慮せず 	・同左	
	非線形特性	・考慮しない	・同左	—
地震荷重との 組合せ		VL+S+SOE VL:鉛直荷重(固定荷重,機器荷重,配管荷重,積載荷重,積雪荷重, クレーン荷重,T/G架台の柱脚応力及び浮力) S:地震荷重 SOE:地震時土圧	 VL+Ss+SOE+BL VL:鉛直荷重(固定荷重,機器荷重,配管荷重,積載荷重,積雪荷重, クレーン荷重及びT/G架台の柱脚応力) Ss:地震荷重 SOE:地震時土圧 BL:浮力 	6

	固定荷重	・構造体の自重を考慮	・同左	
	山西北五	・基礎自体の物体力及び基礎上端面における上部構造からの地震力(転倒	・上部構造の各階床位置に水平力及び付加曲げモーメントを入力	
	地震何里	モーメント,水平力及び鉛直力)を入力	・鉛直震度は地震応答解析モデルの基礎底面位置における鉛直力から算定	
			常時土圧 Po=0.5・y・h	
			γ : 土の単位体積重量(kN/m ³)	
			h : 地表面からの深度(m)	
荷			地震時増分土圧	
舌			・(加力側) $P_a = 0.6 \cdot r \cdot \rho \cdot H_a \cdot \alpha_{max}$	
<u></u> 一			・(支持側) $P_{si} = \beta_i \cdot F / (B \cdot H_i)$	
() ==	地震時土圧荷重	$P_{a} = 10.0 + 0.65 \cdot \gamma \cdot h$	r : 埋戻し土部分の補正係数	
 衣		γ : 土の単位体積重量(t/m³)	$ ho$: 地盤一般部の密度 ($ imes 10^3$ kg/m 3)	\overline{O}
定		h : 地表面からの深度(m)	H _a : 地盤一般部の厚さ(m)	
			α _{max} : 地表面の最大加速度 (m/s ²)	
			β _i : 建物・構築物の慣性力に対する側方地盤部 i 層の分担率	
			F :建物・構築物の慣性力(kN)	
			B : 建物・構築物の奥行幅(m)	
			H _i : i層の厚さ(m)	
			地震時土圧	
			$P = P_0 + max(P_a, P_{si})$	
評価 方法	応力解析	・発生応力が許容応力度を超えないことを確認	・発生応力が許容応力度を超えないこと、鉄筋及びコンクリートのひずみが評価 基準値を超えないことを確認	8

大

【具体的な反映事項】(表の備考欄に対応)

① 開口部等の扱いについては、「タービン建屋の耐震性についての計算書に関する補足説明資料」のうち別紙2「応力解析におけるモデル化、境界条件及び拘束条件の考え方」に示す。

② コンクリートのヤング係数及びせん断弾性係数については、「鉄筋コンクリート構造計算規準・同解説 -許容応力度設計法-」((社)日本建築学会、1999 改定)に基づき再計算する。

③ 「鋼構造設計規準 -許容応力度設計法-」((社)日本建築学会,2005 改定)に基づき設定する。

④ コンクリートのヤング係数を算出するための圧縮強度は実強度、断面の評価のための圧縮強度は設計基準強度を採用する。

⑤ 既工認時には耐震要素として考慮しなかったが、実際には耐震壁と考慮可能であると考えられる壁を補助壁として、その分の剛性を考慮する。

⑥ 既工認と今回設工認で凡例の記載が異なっているが、既工認から考慮している荷重は変更しておらず、浮力算定時の地下水位面の設定も変更していない。

⑦ 「原子力発電所耐震設計技術指針 JEAG4601-1991追補版」((社)日本電気協会)に基づき再計算し,詳細は図2-2に示す。

⑧ 「発電用原子力設備規格 コンクリート製原子炉格納容器規格」((社)日本機械学会,2003),「原子力施設鉄筋コンクリート構造計算規準・同解説」((社)日本建築学会,2005 制定)に基づき 評価する。鉄筋及びコンクリートのひずみ算定においては、エネルギー定則に基づいた等価ひずみを算定する、詳細は図 2-3 及び図 2-4 に示す。

(a) 全体図

(b) 基礎スラブ

注:東京湾平均海面を,以下「T.M.S.L.」という。

図 2-1 応力解析モデル図 (1/2) (単位:m)

別紙 1-5 9/64

注:太線部は耐震壁及び補助壁,黒丸は独立柱の位置を示す。

(c) 基礎スラブ水平面投影図図 2-1 応力解析モデル図(2/2)(単位:m)

(1) 地震時土圧荷重の算定方法

図 2-2 に地震時土圧荷重の算定方法を示す。地震時土圧荷重は、「原子力発電所耐 震設計技術指針 JEAG4601-1991 追補版」((社)日本電気協会)に基づき、 常時土圧に地震時増分土圧を加えて算定した地震時土圧を包絡させて設定する。

地震時増分土圧は,建物・構築物に対し加力側に作用する地震時増分土圧と建物・ 構築物を支える支持側の地震時増分土圧を算定し,加力側増分土圧及び支持側増分 土圧を包絡した値とする。

地震時土圧荷重は,基本ケース及びパラスタケースごとに算定した地震時土圧を 包絡するように設定する。

図 2-2 地震時土圧荷重の算定方法

(2) 基礎スラブの弾性応力解析における等価ひずみの採用について

基礎スラブのコンクリート及び鉄筋のひずみ評価結果は、以下のとおりである。 コンクリートひずみについては、「タービン建屋の耐震性についての計算書に関す る補足説明資料」のうち別紙4「応力解析における断面の評価部位の選定」に示すと おり、コンクリート最大圧縮ひずみは要素番号 1016 の 507×10⁻⁶(許容限界 3000×10⁻⁻ ⑥)であり、最大圧縮ひずみにおいても許容限界に対して大きな余裕がある。なお、 コンクリートのひずみコンター図を図 2-3 に示す。

鉄筋ひずみについては、荷重の組合せ全16ケースのうち、発生応力に対応するひ ずみが降伏時ひずみ(1682×10⁻⁶)を超えるケースが4ケース(計17要素)あったた め、これらの要素についてはエネルギー定則に基づく等価ひずみの評価を行った。鉄 筋の最大ひずみは要素番号 1239 において生じ,鉄筋最大ひずみは 2960×10⁻⁶(許容 限界 5000×10⁻⁶) となっている。検定値が最大となる鉄筋のひずみコンター図を図 2 -4に示す。

この結果より発生ひずみが降伏時ひずみを超える要素は局所的であり、当該要素 の周辺要素には大きなひずみが生じていないことが確認できることから、当該要素 においては周辺要素との応力の再分配が期待でき、エネルギー定則に基づく等価ひ ずみによる断面評価を行うことが十分に可能であると考えられる。

要素番号:1016

別紙 1-9 13/64

(NS 方向, ケース 8, 鉄筋降伏時ひずみ: 1682×10⁻⁶)

別紙2 応力解析におけるモデル化,境界条件及び拘束条件の考え方

目 次

1.	概要		 別紙 2-1
2.	応力解析におけるモデル化,	境界条件及び拘束条件	 別紙 2-2

1. 概要

本資料は、タービン建屋基礎スラブの応力解析におけるモデル化、境界条件及び拘束条件の考 え方について示すものである。

応力解析におけるモデル化,境界条件及び拘束条件
 タービン建屋基礎スラブの応力解析におけるモデル化,境界条件及び拘束条件を表 2-1 に示す。

直接基礎の底面地盤ばねの設定における基本的な考え方は、以下のとおり。

・水平ばね

振動アドミッタンス理論に基づく水平ばねにより算出する。

・鉛直ばね

基礎浮上りを考慮し、回転ばね反力として生じる転倒モーメントを適切に評価するため、 振動アドミッタンス理論に基づく回転ばねより算出する。

有限要素法を用いた解析モデルにおける要素分割の考え方*については、以下のとおり。

・シェル要素

要素分割は、基本的には発生する応力状態によって決まり、構造形状と荷重状態より要素 分割数を考慮する。要素形状の縦横比(アスペクト比)は、重要部分で1:2以下、その他の 領域や応力変化が少ない領域では、1:3程度までで、分割に際しては4角形要素を利用して 格子状とするのが一般的である。曲面版構造の場合は、平板要素や軸対象シェル要素の大き さは、集中荷重や不連続部を含む曲面部近傍では2.5√(R/t)を10~20分割すると適切な応 力分布が求められ、構造物の半径(R)と板厚(t)が考慮されている。また、面内曲げ・軸 力及び面外のせん断や曲げを受ける部材のシェル要素の辺の長さは、シェルの広がり方向の 応力分布の状態から決まり、応力変化が大きい領域は要素を小さくする必要がある。

注記*:構造解析のための有限要素法実践ハンドブック(非線形 CAE 協会, 2008 年)を示す。

表 2-1 タービン建屋基礎スラブの応力解析におけるモデル化,境界条件及び拘束条件(1/3)

モデル化概要 ○要素分割 ・要素の一辺の長さを 2~3m 程度とし, 壁及び柱位置を考慮して分割する。T/G 架台脚部は断 面が大きいため、架台脚部の断面形状に合わせて分割する。 PN 0.5 $_{\rm T}A$ – 8.0 _тВ — 0 тС — 9.0 $- d_{T}$ 10.081. œ. ∃¹ _TF – 8.5 $_{T}G -$ 0 10. - H_{T} 0 10. _тЈ — 6.0 тК — °. 0.5 0.5 12.0 12.0 12.0 12.0 12.0 12.0 12.0 12.0 96.0 I T T $_{\mathrm{T}}5$ $_{T}6$ $_{\mathrm{T}}3$ т⁷ $_{\rm T}8$ T^1 _T2 T^4 $_{T}9$ 注:太線部は耐震壁及び補助壁,黒丸は独立柱の位置を示す。 モデル概要(基礎スラブ)(単位:m)

表 2-1 タービン建屋基礎スラブの応力解析におけるモデル化,境界条件及び拘束条件(2/3)

表 2-1 タービン建屋基礎スラブの応力解析におけるモデル化,境界条件及び拘束条件(3/3)

境界条件及び拘束条件				
上部構造物と基礎スラブの境界				
・基礎スラブと上部構造物との境界部においては、上部構造物の剛性を考慮することで、基礎ス				
ラブの応力・変形状態を評価する。				
・主要な開口部については、要素を設置しないことで考慮する。				
・基礎スラブから立ち上がる独立柱については、上部構造物から基礎スラブへの地震荷重を適切				
に入力する目的でその剛性を考慮する。				
基礎スラブと地盤の境界				
・応力解析モデルへの地震荷重の入力について、基礎スラブの応力解析モデル上は、地震応答解析				
結果と等価となるように設定を行う。タービン建屋基礎スラブモデル部に入力する付加せん断				
力は、側面地盤ばねを応力解析モデルにモデル化していないことから、基礎底面ばねに生じる水				
平力と基礎スラブより上部の部材から伝わる水平力の差から算出する。付加曲げモーメントは、				
最大応答曲げモーメントと水平力により発生する曲げモーメントの差分から算出する。以上よ				
り、地震応答解析で求まる応力と等価となる。				
・基礎スラブの節点には、底面地盤を表現するばね要素を設ける。解析では鉛直方向の底面地盤ば				
ねに引張力が作用すると、鉛直方向及び水平方向(2方向)の合計3つのばね剛性をゼロとする				
ことにより、基礎の浮上りを表現する。				
・水平剛性及び鉛直剛性は以下のとおり設定する。				
・水平剛性:振動アドミッタンス理論による水平ばねK _{HNS(EW)} を節点支配面積A _i で離散化。				
$K_{H i NS (EW)} = (K_{H NS (EW)} \nearrow A) \cdot A_{i} \cdots \cdots \cdots \cdots \cdots \cdots \cdots (2. 1)$				
A:基礎スラブの底面積				
・鉛直剛性:転倒モーメントが支配的となるため振動アドミッタンス理論による回転ばねK _R を				
節点支配面積A _i で離散化。				
$K_{Vi} = (K_{RNS} / I_{NS} + K_{REW} / I_{EW}) / 2 \cdot A_{i} \cdots (2. 2)$				
I:基礎スラブの断面二次モーメント				
Shin Market				
The second secon				
And the second s				
Fine Fine Fine				
State State NW				
The second secon				
the second				
基礎底面ばね(水平方向) 基礎浮上り考慮				
モデル概要				

別紙 2-5 21/64 別紙3 地震荷重の入力方法

目 次

1.	概要	 別紙 3-1
2.	地震荷重の入力方法	 別紙 3-2

1. 概要

本資料は、タービン建屋基礎スラブに作用する地震荷重の入力方法について示すものである。

2. 地震荷重の入力方法

タービン建屋基礎スラブの応力解析に当たっては,FEM モデルに入力する地震荷重として,水 平地震力,鉛直地震力及び地震時土圧荷重を考慮する。なお,FEM モデルについては,評価対象 である基礎スラブに加え,基礎スラブに作用する上部構造物からの地震時反力を適切に評価する ため,建屋全体をモデル化している。

地震荷重の入力は、基準地震動Ssに対する地震応答解析結果を考慮し、最大応答せん断力、 最大応答曲げモーメント及び最大応答軸力により算定したFEMモデルに入力する水平地震力及び 鉛直地震力が、質点位置で地震応答解析結果と等価になるように設定する。

具体的には,FEM モデルに入力する水平地震力については,地震応答解析により求まる各層の 最大応答せん断力に基づく水平力を,地震応答解析モデルの質点が支配する領域の床スラブに分 配した節点力として入力する。

曲げモーメントについては、地震応答解析により求まる各質点の最大応答曲げモーメントと FEM モデルに作用した水平力により発生する曲げモーメントの差分(以下「付加曲げモーメント」 という。)を、地震応答解析モデルの質点が支配する領域の床スラブに偶力として分配した節点力 として入力する。

鉛直地震力については、地震応答解析により求まる基礎底面地盤ばねの最大応答軸力から、地 震時の鉛直震度を求め、FEM モデルの常時の鉛直荷重に荷重係数として乗じる。なお、常時の鉛 直荷重は単位体積重量、節点力及び面荷重として入力する。

地震時土圧荷重は、常時土圧に地震時増分土圧を加えて算定する。地震時増分土圧荷重については、加力側及び支持側の地震時増分土圧の包絡値を、FEMモデルの土と接する地下外壁(北側、 東側及び西側)に面荷重及び節点荷重として入力する。

FEM モデルに入力する地震荷重の概念図を図 2-1 に示す。FEM モデルに入力する水平地震力, 付加曲げモーメント,鉛直地震力及び地震時増分土圧荷重の概要を図 2-2~図 2-7 に示す。

- Q_i : 地震応答解析による最大応答せん断力
- M_i : 地震応答解析による最大応答曲げモーメント
- P_i : FEM モデルに入力する水平力
- M'i : FEM モデルに入力した水平力により発生する曲げモーメント
- M"i : FEM モデルに入力する付加曲げモーメント (最大応答曲げモーメントと水平力により発生する曲げモーメントの差分。)

(a) 水平地震力

V_R : 地震応答解析より設定した基礎スラブ底面に生じる軸力

(b) 鉛直地震力

図 2-1 FEM モデルに入力する地震荷重の概念図

別紙 3-3 26/64

(a) 断面荷重図

図 2-2 FEM モデルに入力する水平地震力 (NS 方向)

図 2-3 FEM モデルに入力する水平地震力(EW 方向)

(b) 鳥瞰荷重図図 2-5 FEM モデルに入力する付加曲げモーメント(EW 方向)

別紙 3-6 29/64

(a) 断面荷重図

(b) 鳥瞰荷重図

別紙 3-7 30/64

図 2-7 FEM モデルに入力する地震時増分土圧荷重

別紙4 応力解析における断面の評価部位の選定

目 次

1.	概要	別紙 4-1
2.	断面の評価部位の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	別紙 4-2

1. 概要

本資料は、タービン建屋基礎スラブの応力解析における断面の評価部位の選定に関し、断面の評価要素の選定結果について示すものである。

2. 断面の評価部位の選定

タービン建屋基礎スラブの荷重の組合せケースを表 2-1 に,基礎スラブのスラブ厚を図 2-1 に,配筋領域図を図 2-2 から図 2-6 に,配筋一覧を表 2-2 から表 2-6 に示す。

各評価項目の検定値一覧を表 2-7, 断面力ごとの検定値が最大となる要素及び断面の評価結果 を図 2-7 に, 断面の評価部位の選定に関する荷重組合せケースの断面力コンター図を図 2-8 に 示す。

ケース No.	水平:鉛直	鉛直震度	荷重の組合せケース
1		下向き	$(1.0+0.4 \text{K v}) \text{ V L} + \text{S s}_{\text{SN}} + \text{SOE} + \text{B L}$
2		上向き	(1.0-0.4 K v) VL + S s _{SN} + SOE + BL
3		下向き	(1.0+0.4 K v) VL + S s _{NS} + SOE + BL
4	1 0 . 0 4	上向き	(1.0-0.4 K v) VL + S s _{NS} + SOE + BL
5	1.0:0.4	下向き	(1.0+0.4 K v) VL + S s _{EW} + SOE + BL
6		上向き	$(1.0-0.4 \text{K v}) \text{ V L} + \text{S s}_{\text{EW}} + \text{S O E} + \text{B L}$
7		下向き	$(1.0+0.4 \text{K v}) \text{ V L} + \text{S s}_{WE} + \text{S O E} + \text{B L}$
8		上向き	(1.0-0.4 K v) VL + S s _{WE} + SOE + BL
9		下向き	$(1.0 + Kv) VL + 0.4S s_{SN} + 0.4SOE + BL$
10		上向き	(1.0 - Kv) VL +0.4S s _{SN} +0.4SOE + BL
11		下向き	(1.0 + Kv) VL +0.4S s _{NS} +0.4SOE + BL
12	0.4:1.0	上向き	(1.0 - Kv) VL +0.4S s _{NS} +0.4S OE + BL
13		下向き	(1.0 + Kv) VL +0.4S s _{EW} +0.4SOE + BL
14		上向き	(1.0 - Kv) VL+0.4S s _{EW} +0.4SOE+BL
15		下向き	(1.0 + Kv) VL +0.4S s _{WE} +0.4S OE + BL
16	7	上向き	(1.0 - Kv) VL+0.4S s _{WE} +0.4SOE+BL

表 2-1 荷重の組合せケース

- VL :鉛直荷重
- S s s N :水平地震荷重(S→N入力,NS方向)
- S s N s : 水平地震荷重(N→S 入力, NS 方向)
- Ssew:水平地震荷重(E→W入力,EW方向)
- Sswe:水平地震荷重(W→E入力,EW方向)
- Kv : 鉛直震度
- SOE :土圧荷重
- BL :浮力

図 2-1 基礎スラブのスラブ厚(単位:m)

	領域	一段目	二段目	三段目	断面積 (mm ² /m)
	領域A	D35@200	_		4785
	領域B	D35@200	D35@400	_	7178
	領域C	D35@200	D35@200	_	9570
	領域D	D35@200	D35@200	D35@400	11960
	領域E	D35@200	D35@200	D35@200	14360
	領域F	D38@200	—	_	5700
	領域G	D38@200	D38@400		8550
	領域H	D38@200	D38@200		11400
ſ	領域 I	D38@200	D38@200	D38@400	14250

図 2-2 基礎スラブの配筋領域図(NS 方向,上ば筋)(単位:m)

領域	一段目	二段目	三段目	断面積 (mm ² /m)
領域A	D35@200	_	_	4785
領域B	D35@200	D35@400	_	7178
領域C	D35@200	D35@200	_	9570
領域D	D35@200	D35@200	D35@400	11960
領域E	D35@200	D35@200	D35@200	14360
領域F	D38@200	—	—	5700
領域G	D38@200	D38@400		8550
領域H	D38@200	D38@200		11400

図 2-3 基礎スラブの配筋領域図(NS 方向,下ば筋)(単位:m)

領域	一段目	二段目	三段目	断面積 (mm ² /m)
領域A	D35@200	_	_	4785
領域B	D35@200	D35@400	_	7178
領域C	D38@200	_	_	5700
領域D	D38@200	D38@400	_	8550
領域E	D38@200	D38@200	_	11400
領域F	D38@200	D38@200	D38@400	14250

表 2-4 基礎スラブの配筋(EW 方向,上ば筋)

図 2-4 基礎スラブの配筋領域図(EW 方向,上ば筋)(単位:m)

領域	一段目	二段目	三段目	断面積 (mm ² /m)
領域A	D35@200	_	_	4785
領域B	D35@200	D35@400	_	7178
領域C	D35@200	D35@200	_	9570
領域D	D38@200	—	_	5700
領域E	D38@200	D38@400	_	8550
領域F	D38@200	D38@200		11400
領域G	D38@200	D38@200	D38@400	14250

表 2-5 基礎スラブの配筋(EW 方向,下ば筋)

図 2-5 基礎スラブの配筋領域図(EW 方向,下ば筋)(単位:m)

別紙 4-8 41/64

領域	鉄筋	ピッチ	断面積 (mm ² /m)
領域A	D22	@400×@400	2419
領域B	D25	@400×@400	3169

表 2-6 基礎スラブの配筋(せん断補強筋)

図 2-6 基礎スラブの配筋領域図(せん断補強筋)(単位:m)

別紙 4-9 42/64

項目	方向	要素番号	荷重 ケース	検定値
コンクリート	NS	1061	3	0.133
最大圧縮ひずみ	EW	1016	7	0.169
みな見ナバギ7,	NS	1239	8	0.592
 	EW	898	3	0.384
五切みと断力	NS	232	3	<u>0. 947</u>
山アトセん肉ノ	EW	1016	7	0.764

表 2-7 各評価項目の検定値一覧

注:下線部は、検定値が最大となる値を示す。

注:下線部は、検定値が最大となる値を示す。

図 2-7 断面力ごとの検定値が最大となる要素及び断面の評価結果

面外せん断力(NS方向,ケース3)

図 2-8 断面の評価部位の選定に関する荷重組合せケースの断面力コンター図

別紙5 基礎スラブの応力解析における諸条件の変更に伴う影響検討

1.	概要	 別紙 5-1

1. 概要

本資料は、タービン建屋基礎スラブの応力解析において以下に示す事象を想定した荷 重条件が基礎スラブの応力に及ぼす影響を検討するものであり、その影響についての説 明は、令和2年10月14日付け原規規発第2010147号にて認可された柏崎刈羽原子力発 電所第7号機の設計及び工事の計画の説明資料「タービン建屋の耐震性についての計算 書に関する補足説明資料(KK7補足-026資料2)」のうち別紙6「基礎スラブの応力解析 における諸条件の変更に伴う影響検討」による。

- ・地下水位が基礎スラブ以深の場合
- ・タービン建屋と T/G 架台が逆位相で振動する場合

別紙 5-1 48/64 別紙6 最大接地圧について

目 次

1.	概要	• •	•••	•••	 •••	 ••	•••	 •••	 •••	•••	 • •	•••	 	•••	•••	• •		•••	• •	•	•••		別紙 6-1
2.	接地压	-	•••	•••	 •••	 	•••	 •••	 •••	•••	 	•••	 	•••			• •			•	• •	••	別紙 6-2
2.	1 Ss	地	震	侍	 •••	 ••	•••	 ••	 •••	•••	 	•••	 			••				•	•••		別紙 6-2

1. 概要

本資料は、タービン建屋の基準地震動Ssによる地震力(以下「Ss地震時」という。) に対する接地圧を示すものである。 2. 接地圧

2.1 Ss地震時

S s 地震時の最大接地圧が,地盤の極限支持力度(5980kN/m²)を超えないことを確認する。

Ss地震時の接地圧を表 2-1~表 2-10 に示す。材料特性の不確かさを考慮 したSs地震時の最大接地圧は 752kN/m²であることから,地盤の極限支持力度 を超えないことを確認した。なお,鉛直力及び転倒モーメントは減衰力を含んだ 反力とする。

基準地震動 S s	鉛直力 N(×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN·m)	最大接地圧 (kN/m ²)
Ss-1	33.2	38.9	721
Ss-2	30.7	32.0	636
Ss-3	30.9	30.7	629
Ss-4	29.3	22.3	542
Ss-5	29.4	18.9	518
Ss-6	29.7	22.8	551
Ss-7	29.3	17.9	509
Ss-8	28.5	34.9	630

表 2-1 S s 地震時の接地圧(基本ケース, NS 方向)

表 2-2 S s 地震時の接地圧(基本ケース, EW 方向)

基準地震動 S s	鉛直力 N(×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN・m)	最大接地圧 (kN/m ²)
Ss-1	33.2	32.6	718
Ss-2	30.7	32.6	687
Ss-3	30.9	27.3	641
Ss-4	29.3	25.8	606
Ss-5	29.4	30.3	650
Ss-6	29.7	27.9	631
Ss-7	29.3	34.0	683
Ss-8	28.5	32.9	662

基準地震動 S s	鉛直力 N(×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN・m)	最大接地圧 (kN/m ²)
Ss-1	33.3	33.9	683
Ss-2	30.7	32.4	639
Ss-3	30.7	28.8	611
Ss-6	29.6	23.5	556
Ss-7	29.2	16.8	499
Ss-8	28.5	31.6	604

表 2-3 S s 地震時の接地圧 (ケース 2, NS 方向)

表 2-4 S s 地震時の接地圧 (ケース 2, EW 方向)

基準地震動 S s	鉛直力 N (×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN·m)	最大接地圧 (kN/m ²)
Ss-1	33.3	32.1	714
Ss-2	30.7	32.6	687
Ss-3	30.7	26.5	631
Ss-6	29.6	27.6	627
Ss-7	29.2	32.4	666
Ss-8	28.5	30.2	636

基準地震動 S s	鉛直力 N(×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN・m)	最大接地圧 (kN/m ²)
Ss-1	32.9	39.9	725
Ss-2	30.4	31.5	628
Ss-3	31.0	33.7	653
Ss-6	29.9	23.0	555
Ss-7	29.4	18.3	513
Ss-8	28.4	38.6	658

表 2-5 S s 地震時の接地圧 (ケース 3, NS 方向)

表 2-6 S s 地震時の接地圧 (ケース 3, EW 方向)

基準地震動 S s	鉛直力 N(×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN·m)	最大接地圧 (kN/m ²)
Ss-1	32.9	34.7	734
Ss-2	30.4	32.0	677
Ss-3	31.0	29.0	658
Ss-6	29.9	30.5	657
Ss-7	29.4	36.0	702
Ss-8	28.4	35.0	680

基準地震動 S s	鉛直力 N(×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN・m)	最大接地圧 (kN/m ²)
Ss-1	33.3	37.0	707
Ss-2	30.7	34.0	651
Ss-3	30.9	30.9	630
Ss-6	29.6	23.0	552
Ss-7	29.3	17.8	508
Ss-8	28.4	35.1	631

表 2-7 S s 地震時の接地圧 (ケース 4, NS 方向)

表 2-8 S s 地震時の接地圧 (ケース 4, EW 方向)

基準地震動 S s	鉛直力 N (×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN·m)	最大接地圧 (kN/m ²)
Ss-1	33.3	36.2	752
Ss-2	30.7	32.7	688
Ss-3	30.9	28.4	651
Ss-6	29.6	28.9	639
Ss-7	29.3	34.4	686
Ss-8	28.4	34.7	677

基準地震動 S s	鉛直力 N (×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN・m)	最大接地圧 (kN/m ²)
Ss-1	33.2	39.6	726
Ss-2	30.7	31.4	631
Ss-3	31.0	30.8	631
Ss-6	29.7	21.1	538
Ss-7	29.3	18.2	512
Ss-8	28.5	35.1	632

表 2-9 S s 地震時の接地圧 (ケース 5, NS 方向)

表 2-10 S s 地震時の接地圧 (ケース 5, EW 方向)

基準地震動 S s	鉛直力 N (×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN·m)	最大接地圧 (kN/m ²)
Ss-1	33.2	33.1	723
Ss-2	30.7	32.6	687
Ss-3	31.0	28.4	652
Ss-6	29.7	28.2	633
Ss-7	29.3	33.3	676
Ss-8	28.5	32.1	654

別紙7 水平及び鉛直地震力を分離した解析について

目 次

1.	概	要・		•••					• • •	•••			• • • •	•••	•••	• • •	 ••	 •••	• • •	別紙 7-1
2.	分	離解も	Fによ	、る	接地	圧	と時	刻团	胚和	によ	こる	接地	圧の	り比り	較		 •••	 •••	• • •	別紙 7-2
2.	1	入力地	也震重	<u>ታ</u>	•••	••••	•••				•••			•••	•••	• • • •	 •••	 •••	• • •	別紙 7-4
2.2	2	接地国	Eの比	≤較	•	••••	••••				•••		• • • •	•••	•••	••••	 	 •••		別紙 7-5
3.	ま	とめ		•••			• • • •			•••				•••	• • •	• • • •	 ••	 •••	• • •	別紙 7-6

1. 概要

水平方向の動的地震力と鉛直方向の動的地震力の算定に当たっては、それぞれ個別の モデルを用いて地震応答解析を行っている。基礎スラブの応力解析では従来手法におい ては水平及び鉛直地震力を同時に不利な方向に作用させ応力を算定していたが、今回設 工認では、鉛直地震力が大きいことから、水平及び鉛直地震力を同時に作用させると転 倒モーメントと地盤反力との力のつり合いが取れなくなり、一部のケースにおいて解析 が解けなくなる事象が生じた。そのため、VI-2-2-6「タービン建屋の耐震性についての 計算書」においては水平方向の地震力に対して得られた基礎スラブ応力と鉛直方向の地 震力に対して得られた基礎スラブ応力を個別に算定し、それらの応力を同時に不利な方 向に作用させて組合せ応力を算定している。

本資料は、次の2点に着目した検討を行うことにより、基礎スラブの応力解析では水 平方向と鉛直方向の地震荷重に対して、それぞれ分離して個別に解析する手法(以下 「分離解析」という。)が適応できることを確認する。

- ①静的解析では水平及び鉛直地震力を同時に作用させると解けない解析が、動的解析では解けることを確認するために、地震応答解析モデルの水平及び鉛直方向の地震応答の時刻歴を時々刻々組み合わせて算定した最小接地率(以下「時刻歴和による接地率」という。)が0%より大きいことを確認する。
- ②分離解析による最大接地圧は地震応答解析モデルの水平及び鉛直方向の地震応答の時刻歴を時々刻々組み合わせて算定した最大接地圧(以下「時刻歴和による接地圧」という。)と同等又は保守的な評価となることを確認する。

接地圧は基礎スラブに加わる地震力に対する反力に相当するため,接地圧を確認する ことで荷重の与え方の妥当性を確認するものである。 2. 分離解析による接地圧と時刻歴和による接地圧の比較

タービン建屋の基準地震動Ssに対する地震応答解析では、時刻歴和による最小接地 率が0%より大きく動的解析が解けることを確認した上で、時刻歴和による接地圧によ り動的地震時の接地圧評価を行う。この時刻歴和による接地圧を分離解析で算定した応 力解析用モデルによる接地圧と比較する。接地圧の比較フローを図2-1に示す。なお、 応力解析用モデルを用いた応力解析の接地圧は、地盤ばね反力を地盤ばね要素の面積で 除した値の最大値とする。

注記*:時刻歴和による接地率が0%より大きいことを確認する。

図 2-1 接地圧の比較フロー

2.1 入力地震動

基準地震動Ssに対する地震応答解析(基本ケース)により算定された接地圧を表 2-1に示し、この表に基づき接地圧が最も大きいSs-1のNS方向を代表として選出する。

基準地震動 S s	鉛直力 N (×10 ⁵ kN)	転倒モーメント M(×10 ⁶ kN・m)	最大接地圧 (kN/m ²)
Ss-1	33.2	38.9	721
Ss-2	30.7	32.0	636
Ss-3	30.9	30.7	629
Ss-4	29.3	22.3	542
Ss-5	29.4	18.9	518
Ss-6	29.7	22.8	551
Ss-7	29.3	17.9	509
Ss-8	28.5	34.9	630

表 2-1 S s 地震時の接地圧*

(a) 基本ケース, NS 方向

(b) 基本ケース, EW 方向

其淮 州雲動 S 。	鉛直力	転倒モーメント	最大接地圧				
本中地反到53	N (×10 ⁵ kN)	$M(imes 10^6 k N \cdot m)$	(kN/m^2)				
Ss-1	33.2	32.6	718				
Ss-2	30.7	32.6	687				
Ss-3	30.9	27.3	641				
Ss-4	29.3	25.8	606				
Ss-5	29.4	30.3	650				
Ss-6	29.7	27.9	631				
Ss-7	29.3	34.0	683				
Ss-8	28.5	32.9	662				

注記*:「タービン建屋の耐震性についての計算書に関する補足説明資料」のうち別紙 6「最大接地圧について」より抜粋。 2.2 接地圧の比較

地震応答解析で得られた「時刻歴和による最小接地率*1」を表 2-2 に示す。また、 地震応答解析で得られた「時刻歴和による最大接地圧*1」と、基礎スラブ評価用建屋 3次元 FEM モデルの分離解析から得られた接地圧の最大値*2を表 2-3 に示す。

表 2-2 より,時刻歴和による接地率が 0%より大きく,静的解析では水平地震荷重 と鉛直地震荷重を同時に作用させると解けない解析が,動的解析では解けることを確 認した。

表 2-3 より,時刻歴和による最大接地圧 σ_1 が 754kN/m²に対し,基礎スラブ評価用 建屋 3 次元 FEM モデルの分離解析による最大接地圧 σ_2 は 1370kN/m²と保守的な評価 となることを確認した。

- 注記*1:「時刻歴和による最小接地率」又は「時刻歴和による最大接地圧」とは,水 平方向地震応答解析により得られた時刻歴の転倒モーメントと鉛直方向地 震応答解析より得られた時刻歴の鉛直力(自重含む)を用いて,三角形の 反力分布を仮定して求めた「接地率の最小値」又は「接地圧の最大値」を それぞれ言う。
 - *2:建屋 3 次元 FEM モデルは耐震計算書の設工認モデルと同一であり,基礎ス ラブに入力する建屋の地震荷重を Ss-1 基本ケースとした場合の最大接地圧。

表 2-2 時刻歴和による最小接地率(NS 方向)

(単位:%)

地震動	時刻歴和による 最小接地率
Ss-1	100

表 2-3 時刻歴和による最大接地圧と分離解析による接地圧の比較(NS 方向)

(単位:kN/m²)

地震動	時刻歴和による 最大接地圧 _{の1}	分離解析による 最大接地圧 _{の2}
Ss-1	754	1370

3. まとめ

地震応答解析の結果から,次のことを確認した。

- ①時刻歴和による接地率が 0%より大きく,静的解析では水平地震荷重と鉛直地震荷 重を同時に作用させると解けない解析が,動的解析では解けることを確認した。
- ②基礎スラブの応力解析において分離解析による接地圧は,時刻歴和による最大接地 圧と比べ,保守的な評価となる。

以上のことから,タービン建屋の基礎スラブの応力評価において,水平荷重と鉛直荷 重を別々に評価することは妥当であることを確認した。