本資料のうち、枠囲みの内容 は、機密事項に属しますので 公開できません。

柏崎刈羽原子力発電所第6号機	設計及び工事計画審査資料
資料番号	KK6 添-2-041-2 改 0
提出年月日	2023年11月6日

VI-2-10-1-2-1-1 非常用ディーゼル発電機の耐震性についての計算書

2023年11月 東京電力ホールディングス株式会社 VI-2-10-1-2-1-1 非常用ディーゼル発電機の耐震性についての 計算書

目 次

1. ディーゼル機関	1
1.1 概要	1
1.2 一般事項	1
1.2.1 構造計画	1
1.2.2 評価方針	3
1.2.3 適用規格・基準等	4
1.2.4 記号の説明	5
1.2.5 計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	7
1.3 評価部位	8
1.4 固有周期 ·····	9
1.4.1 固有周期の計算方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
1.4.2 固有周期の計算条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	9
1.4.3 固有周期の計算結果	10
1.5 構造強度評価	11
1.5.1 構造強度評価方法	11
1.5.2 荷重の組合せ及び許容応力	11
1.5.3 設計用地震力	15
1.5.4 計算方法	16
1.5.5 計算条件	24
1.5.6 応力の評価	25
1.6 機能維持評価	26
1.6.1 動的機能維持評価方法	26
1.7 評価結果	27
1.7.1 設計基準対象施設としての評価結果	27
1.7.2 重大事故等対処設備としての評価結果	27
2. 発電機	36
2.1 概要	36
2.2 一般事項	36
2.2.1 構造計画	36
2.2.2 評価方針	38
2.2.3 適用規格・基準等	39
2.2.4 記号の説明	40
2.2.5 計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	42
2.3 評価部位	43
2.4 固有周期	44
2 4 1 固有周期の計算方法	44

	2.4.2	固有周期の計算条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44
	2. 4. 3	固有周期の計算結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	45
2.	5 構造	造強度評価	46
	2. 5. 1	構造強度評価方法	46
	2. 5. 2	荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	46
	2. 5. 3	設計用地震力 · · · · · · · · · · · · · · · · · · ·	50
	2. 5. 4	計算方法 ·····	51
	2. 5. 5	計算条件	63
	2. 5. 6	応力の評価	64
2.	6 機能	a維持評価 ······	65
:	2. 6. 1	動的機能維持評価方法 · · · · · · · · · · · · · · · · · · ·	65
2.	7 評句	Б結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	66
	2.7.1	設計基準対象施設としての評価結果	66
	2.7.2	重大事故等対処設備としての評価結果	66

1. ディーゼル機関

1.1 概要

本計算書は、VI-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、非常用ディーゼル発電設備ディーゼル機関が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

非常用ディーゼル発電設備ディーゼル機関は,設計基準対象施設においてはSクラス施設に, 重大事故等対処設備においては常設重大事故防止設備(設計基準拡張)及び常設重大事故緩和 設備(設計基準拡張)に分類される。以下,設計基準対象施設及び重大事故等対処設備として の構造強度評価及び動的機能維持評価を示す。

1.2 一般事項

1.2.1 構造計画

非常用ディーゼル発電設備ディーゼル機関の構造計画を表 1-2-1 に示す。

表 1-2-1 構造計画

計画の概要		概略構造図
基礎・支持構造	主体構造	
ディーゼル機関は機	4サイクルたて	
関取付ボルトで直接	形 18 気筒ディ	
据付台床に取り付け	ーゼル機関	5404
る。据付台床は基礎		<u> </u>
ボルトで基礎に据え		
付ける。		ディーゼル機関 ディーゼル 機関取付ボルト 据付台床 基礎 基礎 基礎 基礎 基礎 ま ま ま ま ま ま ま ま ま ま ま ま ま
		(単位:mm)

1.2.2 評価方針

非常用ディーゼル発電設備ディーゼル機関の応力評価は、VI-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「1.2.1 構造計画」にて示す非常用ディーゼル発電設備ディーゼル機関の部位を踏まえ「1.3 評価部位」にて設定する箇所において、「1.4 固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「1.5 構造強度評価」にて示す方法にて確認することで実施する。また、非常用ディーゼル発電設備ディーゼル機関の機能維持評価は、VI-2-1-9「機能維持の基本方針」にて設定した動的機器の機能維持の方針に基づき、地震時の応答加速度が動的機能確認済加速度以下であることを、「1.6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「1.7 評価結果」に示す。

非常用ディーゼル発電設備ディーゼル機関の耐震評価フローを図1-2-1に示す。

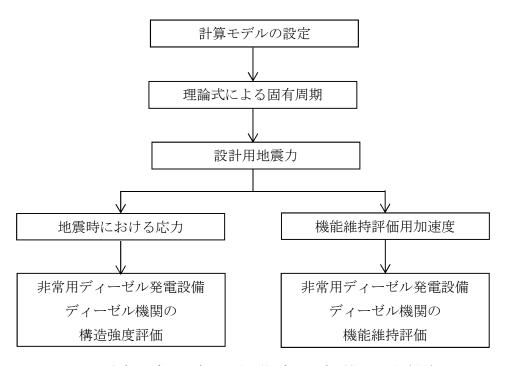


図 1-2-1 非常用ディーゼル発電設備ディーゼル機関の耐震評価フロー

1.2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984((社)日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格 ((社) 日本機械学会, 2005/2007) (以下「設計・建設規格」という。)

1.2.4 記号の説明

記号	記号の説明	単位
А	最小断面積	mm ²
A b i	ボルトの軸断面積*1	mm^2
A s	最小有効せん断断面積	mm^2
Сен	ディーゼル機関往復運動による水平方向震度	_
Cev	ディーゼル機関往復運動による鉛直方向震度	_
Сн	水平方向設計震度	_
Сv	鉛直方向設計震度	_
d i	ボルトの呼び径*1	mm
Е	縦弾性係数	MPa
F i	設計・建設規格 SSB-3121.1(1)に定める値*1	MPa
F i *	設計・建設規格 SSB-3133 に定める値*1	MPa
Fbi	ボルトに作用する引張力(1 本当たり)*1	N
$f_{ m \ s \ b \ i}$	せん断力のみを受けるボルトの許容せん断応力*1	MPa
f t o i	引張力のみを受けるボルトの許容引張応力*1	MPa
ftsi	引張力とせん断力を同時に受けるボルトの許容引張応力*1	MPa
G	せん断弾性係数	MPa
g	重力加速度(=9.80665)	m/s^2
h i	据付面又は取付面から重心までの距離*2	mm
I	断面二次モーメント	mm^4
ℓ_1 i	重心とボルト間の水平方向距離*1,*3	mm
ℓ_2 i	重心とボルト間の水平方向距離*1,*3	mm
M_{E} i	ディーゼル機関回転により作用するモーメント*1	N·mm
m i	運転時質量*2	kg
N	回転数(ディーゼル機関の定格回転数)	rpm
n i	ボルトの本数*1	_
n f i	評価上引張力を受けるとして期待するボルトの本数*1	_
Р	ディーゼル機関出力	kW
Q b i	ボルトに作用するせん断力*1	N
S u i	設計・建設規格 付録材料図表 Part5 表 9 に定める値*1	MPa
S y i	設計・建設規格 付録材料図表 Part5 表 8 に定める値*1	MPa
Syi (RT)	設計・建設規格 付録材料図表 Part5 表 8 に定める材料の	MPa
	40℃における値*¹	
Тн	水平方向固有周期	S
Τv	鉛直方向固有周期	S
π	円周率	

記号	記号の説明	単位
о b i	ボルトに生じる引張応力*1	MPa
τ b i	ボルトに生じるせん断応力*1	MPa

注記*1: Abi, di, Fi, Fi, Fbi, fsbi, ftoi, ftsi, ℓ 1i, ℓ 2i, MEi, ni, nfi, Qbi, Sui, Syi, Syi(RT), σ bi及び τ biの添字iの意味は,以下のとおりとする。

i =1:基礎ボルト

i=2:ディーゼル機関取付ボルト

*2: h i 及びm i の添字 i の意味は、以下のとおりとする。

i =1:据付面

i = 2: ディーゼル機関取付面

 $*3:\ell_1 i \leq \ell_2 i$

1.2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表1-2-2に示すとおりとする。

表 1-2-2 表示する数値の丸め方

X 1 2 2 X/ハ y 3 数値 ∨ / / Lw/ / / / / / / / / / / / / / / / /							
数値の種類	単位	処理桁	処理方法	表示桁			
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位			
震度	_	小数点以下第3位	切上げ	小数点以下第2位			
温度	$^{\circ}\!\mathbb{C}$	_	_	整数位			
質量	kg	_	_	整数位			
長さ	mm	_	_	整数位*1			
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字4桁*2			
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字 4 桁*2			
カ	N	有効数字 5 桁目	四捨五入	有効数字 4 桁*2			
算出応力	MPa	小数点以下第1位	切上げ	整数位			
許容応力*3	MPa	小数点以下第1位	切捨て	整数位			

注記*1:設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*2:絶対値が1000以上のときはべき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び 降伏点は、比例法により補間した値の小数点以下第1位を切り捨て、整数位までの値とする。

1.3 評価部位

非常用ディーゼル発電設備ディーゼル機関の耐震評価は、「1.5.1 構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなる基礎ボルト及びディーゼル機関取付ボルトについて実施する。非常用ディーゼル発電設備ディーゼル機関の耐震評価部位については、表 1-2-1 の概略構造図に示す。

1.4 固有周期

1.4.1 固有周期の計算方法

非常用ディーゼル発電設備ディーゼル機関の固有周期の計算方法を以下に示す。

- (1) 計算モデル
 - a. ディーゼル機関の質量は重心に集中するものとする。
 - b. ディーゼル機関は据付台床上にあり、据付台床は基礎ボルトで基礎に固定されており、 固定端とする。また、ディーゼル機関は、据付台床上に取付ボルトで固定されるもの とする。
 - c. 耐震計算に用いる寸法は、公称値を使用する。 ディーゼル機関は、図1-4-1に示す下端固定の1質点系振動モデルとして考える。

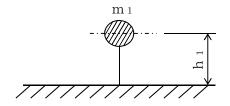


図 1-4-1 固有周期の計算モデル

(2) 水平方向固有周期

水平方向固有周期は次式で求める。

$$T_{H}= 2 \cdot \pi \sqrt{\frac{m_{1}}{1000} \cdot \left(\frac{h_{1}^{3}}{3 \cdot E \cdot I} + \frac{h_{1}}{A \cdot s \cdot G}\right)} \cdot \cdot (1.4.1.1)$$

(3) 鉛直方向固有周期

鉛直方向固有周期は次式で求める。

$$T_{V} = 2 \cdot \pi \sqrt{\frac{m_{1}}{1000} \cdot \frac{h_{1}}{A \cdot E}} \cdot \dots \cdot \dots \cdot (1.4.1.2)$$

1.4.2 固有周期の計算条件

固有周期の計算に用いる計算条件は、本計算書の【非常用ディーゼル発電設備ディーゼル機関の耐震性についての計算結果】の機器要目に示す。

1.4.3 固有周期の計算結果

固有周期の計算結果を表 1-4-1 に示す。計算の結果,固有周期は 0.05 秒以下であり,剛であることを確認した。

表 1-4-1	固有周期	朔	(単位:s)
水平		Γ	
鉛直			

1.5 構造強度評価

1.5.1 構造強度評価方法

1.4.1 項 a. ~ c. のほか、次の条件で計算する。

- (1) 地震力はディーゼル機関に対して水平方向及び鉛直方向から作用するものとする。 また、水平方向及び鉛直方向の動的地震力による荷重の組合せには、絶対値和を適用する。
- (2) 転倒方向は図 1-5-1~図 1-5-8 における軸直角方向及び軸方向について検討し、計算書には計算結果の厳しい方(許容値/発生値の小さい方をいう。)を記載する。

1.5.2 荷重の組合せ及び許容応力

1.5.2.1 荷重の組合せ及び許容応力状態

非常用ディーゼル発電設備ディーゼル機関の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 1-5-1 に,重大事故等対処設備の評価に用いるものを表 1-5-2 に示す。

1.5.2.2 許容応力

非常用ディーゼル発電設備ディーゼル機関の許容応力は、VI-2-1-9「機能維持の基本方針」に基づき表 1-5-3 のとおりとする。

1.5.2.3 使用材料の許容応力評価条件

非常用ディーゼル発電設備ディーゼル機関の使用材料の許容応力評価条件のうち設計基準対象施設の評価に用いるものを表 1-5-4 に、重大事故等対処設備の評価に用いるものを表 1-5-5 に示す。

表 1-5-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設	施設区分機器名称		耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
非常用電源	非常用発電			*	$D+P_D+M_D+S_d^*$	III A S
設備	装置	ディーゼル機関	イーゼル機関 S*		$D+P_D+M_D+S_S$	IV a S

注記*:その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

表 1-5-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分		機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態	
	非常用電源 非常用発電 非常用ディーゼル発電設備 設備 装置 ディーゼル機関			常設/防止		D+PD+MD+S s *3	IV A S
非常用電源		(DB拡張)	3 4-0		V A S		
設備		装置ディーゼル機関	常設/緩和	*2	D+Psad+Msad+Ss	(VASELTIV	
			(DB拡張)		D I SAD WISAD 5 S	ASの許容限界を	
						用いる。)	

注記*1:「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張),「常設/緩和(DB拡張)」は常設重大事故緩和設備(設計基準拡張)。 張)を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力状態を適用する。

*3:「D+Psad+Msad+Ss」の評価に包絡されるため、評価結果の記載を省略する。

表 1-5-3 許容応力 (その他の支持構造物及び重大事故等その他の支持構造物)

	許容限界* ^{1,*2} (ボルト等)			
許容応力状態	一次応力			
	引張り	せん断		
III A S	1.5 · f t	1.5 · f s		
IV A S				
VAS (VASとしてIVASの許容限界を用いる。)	1.5 · f t*	1.5 · f s *		

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 1-5-4 使用材料の許容応力評価条件(設計基準対象施設)

評価部材	 材料	温度条件		S y	S u	Sy (RT)
計111111日1272	171 14	(℃)		(MPa)	(MPa)	(MPa)
基礎ボルト	S45C (40mm<径≦100mm)	周囲環境温度	50	339	556	_
ディーゼル機関 取付ボルト	S45C (径≦40mm)	最高使用温度	85*	458	632	_

注記*:機関冷却水最高運転温度

表 1-5-5 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件		S y	S u	Sy (RT)
a平1四音10个/	*** *** *** ***	(℃)		(MPa)	(MPa)	(MPa)
基礎ボルト	S45C (40mm<径≦100mm)	周囲環境温度	50	339	556	_
ディーゼル機関 取付ボルト	S45C (径≦40mm)	最高使用温度	85*	458	632	_

注記*:機関冷却水最高運転温度

1.5.3 設計用地震力

評価に用いる設計用地震力を表 1-5-6 及び表 1-5-7 に示す。

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は、VI-2-1-7「設計用床応答曲線の作成方針」に基づき設定する。

表 1-5-6 設計用地震力(設計基準対象施設)

据付場所 及び	固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動Ss	
床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋 T. M. S. L. 13. 33 (T. M. S. L. 12. 3* ¹)			$C_{\rm H} = 0.67^{*2}$	$C_{V} = 0.52^{*2}$	C _H =1.08*3	C v=1.05*3

注記*1:基準床レベルを示す。

*2:設計用最大加速度 I (弾性設計用地震動 S d) 又は静的震度

*3:設計用最大加速度 I (基準地震動 S s)

表 1-5-7 設計用地震力(重大事故等対処設備)

据付場所 及び	固有周期(s)		弾性設計用 又は静	地震動Sd 的震度	基準地震動Ss		
床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	
原子炉建屋 T. M. S. L. 13. 33 (T. M. S. L. 12. 3* <mark>1</mark>)			_	_	C _H =1.08*2	$C v = 1.05^{*2}$	

注記*1:基準床レベルを示す。

*2:設計用最大加速度 I (基準地震動 S s)

1.5.4 計算方法

1.5.4.1 応力の計算方法

1.5.4.1.1 基礎ボルトの計算方法

基礎ボルトの応力は地震による震度、ディーゼル機関の往復運動による震度及びディーゼル機関回転により作用するモーメントによって生じる引張力とせん断力について計算する。

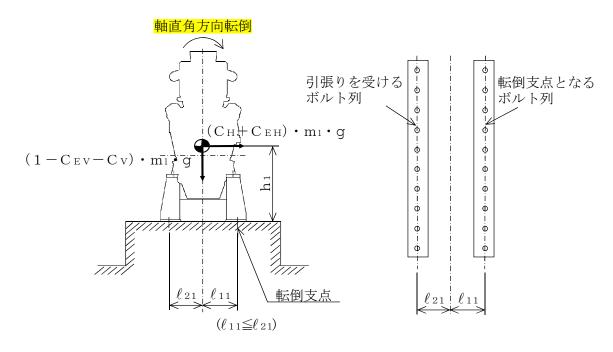


図 1-5-1 計算モデル (軸直角方向転倒:弾性設計用地震動 S d 又は静的震度の場合)

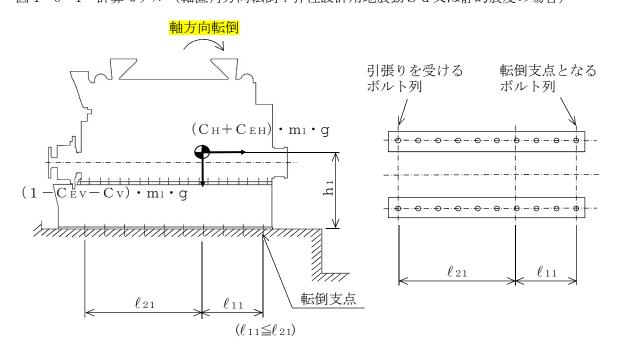


図 1-5-2 計算モデル (軸方向転倒:弾性設計用地震動 S d 又は静的震度の場合)

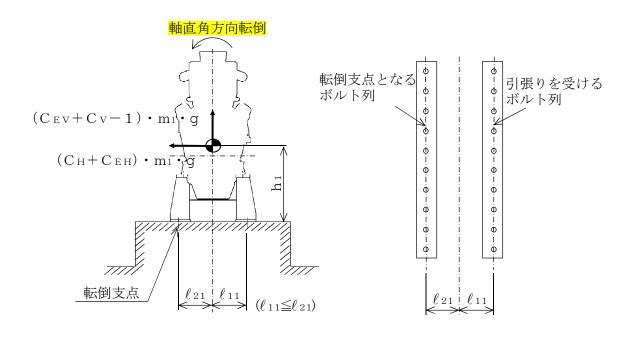


図 1-5-3 計算モデル (軸直角方向転倒:基準地震動Ssの場合)

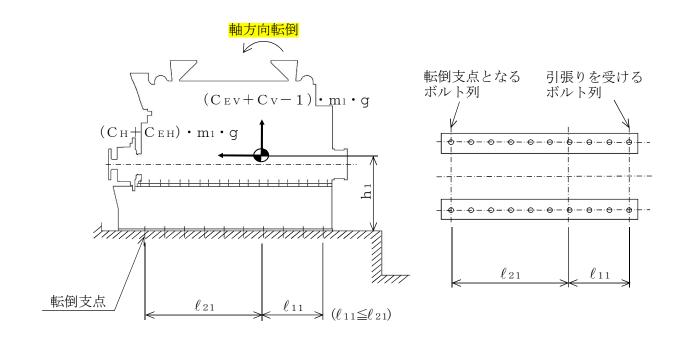


図 1-5-4 計算モデル (軸方向転倒:基準地震動Ssの場合)

(1) 引張応力

基礎ボルトに対する引張力は最も厳しい条件として,図 1-5-1~図 1-5-4 で基礎ボルトを支点とする転倒を考え,これを片側の列の基礎ボルトで受けるものとして計算する。

なお、計算モデル図 1-5-2 及び図 1-5-4 の場合は、ディーゼル機関回転によるモーメント*は、作用しない。

引張力

弾性設計用地震動 S d 又は静的震度の場合

$$F_{b1} = \frac{(C_H + C_{EH}) \cdot m_1 \cdot g \cdot h_1 + M_{E1} - (1 - C_{EV} - C_V) \cdot m_1 \cdot g \cdot \ell_{11}}{n_{f1} \cdot (\ell_{11} + \ell_{21})}$$

$$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1, 5, 4, 1, 1, 1)$$

基準地震動Ssの場合

$$F_{b1} = \frac{(C_{H} + C_{EH}) \cdot m_{1} \cdot g \cdot h_{1} + M_{E1} - (1 - C_{EV} - C_{V}) \cdot m_{1} \cdot g \cdot \ell_{21}}{n_{f1} \cdot (\ell_{11} + \ell_{21})}$$

$$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1, 5, 4, 1, 1, 2)$$

ここで、CEH及びCEVはディーゼル機関の往復運動による起振力及びディーゼル機関の回転速度を考慮して定める値である。また、ディーゼル機関回転によるモーメントME1は次式により求める。

注記*:
$$ME1 = \left(\frac{60}{2 \cdot \pi \cdot N}\right) \cdot 10^6 \cdot P$$

$$(1 kW = 10^6 N \cdot mm/s)$$

引張応力

ここで、基礎ボルトの軸断面積Ab1は次式により求める。

$$A_{b1} = \frac{\pi}{4} \cdot d_{1}^{2} \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot (1.5.4.1.1.4)$$

ただし、Fb1が負のとき基礎ボルトには引張力が生じないので、引張応力の計算は 行わない。

(2) せん断応力

基礎ボルトに対するせん断力は基礎ボルト全本数で受けるものとして計算する。

せん断力

$$Q_{b1} = (C_H + C_{EH}) \cdot m_1 \cdot g \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1.5.4.1.1.5)$$

せん断応力

1.5.4.1.2 ディーゼル機関取付ボルトの計算方法

ディーゼル機関取付ボルトの応力は地震による震度,ディーゼル機関の往復運動による震度及びディーゼル機関回転により作用するモーメントによって生じる引張力とせん断力について計算する。

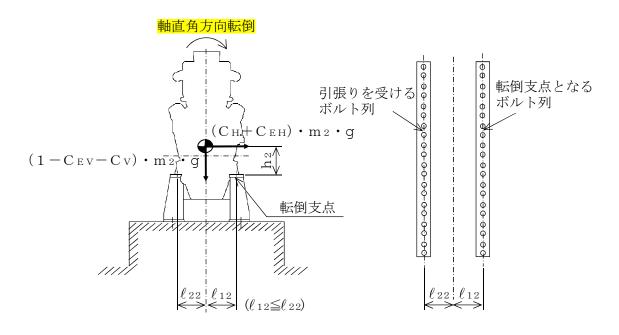


図 1-5-5 計算モデル (軸直角方向転倒:弾性設計用地震動Sd 又は静的震度の場合)

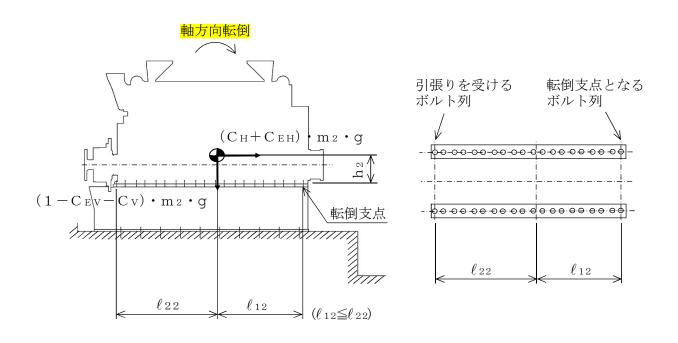


図 1-5-6 計算モデル (軸方向転倒:弾性設計用地震動 S d 又は静的震度の場合)

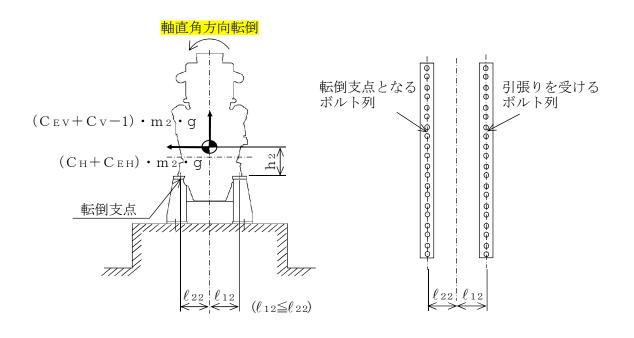


図 1-5-7 計算モデル (軸直角方向転倒:基準地震動Ssの場合)

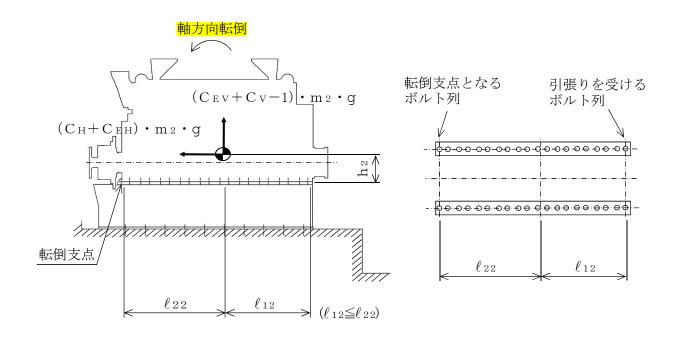


図 1-5-8 計算モデル (軸方向転倒:基準地震動Ssの場合)

(1) 引張応力

ディーゼル機関取付ボルトに対する引張力は最も厳しい条件として,図 1-5-5~図 1-5-8 でディーゼル機関取付ボルトを支点とする転倒を考え,これを片側の列のディーゼル機関取付ボルトで受けるものとして計算する。

なお、計算モデル図 1-5-6 及び図 1-5-8 の場合は、ディーゼル機関回転によるモーメント*は作用しない。

引張力

弾性設計用地震動 S d 又は静的震度の場合

$$F_{b2} = \frac{(C_H + C_{EH}) \cdot m_2 \cdot g \cdot h_2 + M_{E2} - (1 - C_{EV} - C_V) \cdot m_2 \cdot g \cdot \ell_{12}}{n_{f2} \cdot (\ell_{12} + \ell_{22})}$$

基準地震動Ssの場合

$$F_{b2} = \frac{(C_H + C_{EH}) \cdot m_2 \cdot g \cdot h_2 + M_{E2} - (1 - C_{EV} - C_V) \cdot m_2 \cdot g \cdot \ell_{22}}{n_{f2} \cdot (\ell_{12} + \ell_{22})}$$

$$\cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1.5.4.1.2.2)$$

ここで、CEH及びCEVはディーゼル機関の往復運動による起振力及びディーゼル機関の回転数を考慮して定める値である。また、ディーゼル機関回転によるモーメントME2は次式により求める。

注記*:
$$ME2 = ME1 = \left(\frac{60}{2 \cdot \pi \cdot N}\right) \cdot 10^6 \cdot P$$
 (1 kW=10⁶N·mm/s)

引張応力

ここで、ディーゼル機関取付ボルトの軸断面積Ab2は次式により求める。

$$A_{b2} = \frac{\pi}{4} \cdot d_{2}^{2} \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot (1.5.4.1.2.4)$$

ただし、 F_{b2} が負のときディーゼル機関取付ボルトには引張力が生じないので、引張応力の計算は行わない。

(2) せん断応力

ディーゼル機関取付ボルトに対するせん断力はディーゼル機関取付ボルト全本数で 受けるものとして計算する。

せん断力

$$Q_{b2} = (C_H + C_{EH}) \cdot m_2 \cdot g \cdot \cdot \cdot \cdot \cdot \cdot \cdot \cdot (1.5.4.1.2.5)$$

せん断応力

1.5.5 計算条件

1.5.5.1 基礎ボルトの応力計算条件

基礎ボルトの応力計算に用いる計算条件は、本計算書の【非常用ディーゼル発電設備ディーゼル機関の耐震性についての計算結果】の設計条件及び機器要目に示す。

1.5.5.2 ディーゼル機関取付ボルトの応力計算条件

ディーゼル機関取付ボルトの応力計算に用いる計算条件は、本計算書の【非常用ディーゼル発電設備ディーゼル機関の耐震性についての計算結果】の設計条件及び機器要目に示す。

1.5.6 応力の評価

1.5.6.1 ボルトの応力評価

1.5.4 項で求めたボルトの引張応力 σ b i は次式より求めた許容引張応力 f t s i 以下であること。ただし,f t o i は下表による。

$$f_{t s i} = Min[1.4 \cdot f_{t o i} - 1.6 \cdot \tau_{b i}, f_{t o i}] \cdots (1.5.6.1.1)$$

せん断応力 τ b i はせん断力のみを受けるボルトの許容せん断応力 f s b i 以下であること。ただし,f s b i は下表による。

	弾性設計用地震動 S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による荷重との 組合せの場合
許 容 引 張 応 力 f t o i	$\frac{\mathrm{F} \; \mathrm{i}}{2} \cdot 1.5$	$\frac{\mathrm{F}\mathrm{i}}{2}^{*} \cdot 1.5$
許 容 せ ん 断 応 力 f s b i	$\frac{\text{F i}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\text{F i}^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

1.6 機能維持評価

1.6.1 動的機能維持評価方法

非常用ディーゼル発電設備ディーゼル機関の地震後の動的機能維持評価について以下に示す。

なお,機能維持評価用加速度はVI-2-1-7「設計用床応答曲線の作成方針」に基づき,基準地震動Ssにより定まる応答加速度を設定する。

非常用ディーゼル発電設備ディーゼル機関は地震時動的機能維持が確認された機種と類似の構造及び振動特性であるため、VI-2-1-9「機能維持の基本方針」に記載の機能確認済加速度を適用する。

機能確認済加速度を表 1-6-1 に示す。

表 1-6-1 機能確認済加速度

 $(\times 9.8 \text{ m/s}^2)$

評価部位	形式	方向	機能確認済加速度
1446 日日		水平	1.1
機関	高速形	鉛直	1.0
. 12 . 9 l.	ディーゼル機関	水平	1.8
ガバナ		鉛直	1.0

1.7 評価結果

1.7.1 設計基準対象施設としての評価結果

非常用ディーゼル発電設備ディーゼル機関の設計基準対象施設としての耐震評価結果を 以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及 び動的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

1.7.2 重大事故等対処設備としての評価結果

非常用ディーゼル発電設備ディーゼル機関の重大事故等時の状態を考慮した場合の耐震 評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な 構造強度及び動的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

【非常用ディーゼル発電設備ディーゼル機関の耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

440 DD 57 ±64-	耐震重要度	据付場所及び	固有周]期(s)	弾性設計用 又は静		基準地質	震動Ss	ディーゼル機関 往復運動による	ディーゼル機関	最高使用温度	周囲環境温度
機器名称	分類	床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	水平方向震度		(℃)	(℃)
非常用ディーゼル発電設備 ディーゼル機関	S	原子炉建屋 T. M. S. L. 13. 33 (T. M. S. L. 12. 3*1)			Сн=0.67*3	$C_{V} = 0.52^{*3}$	Сн=1.08*4	$C_{v}=1.05^{*4}$	Сен=0.06	C E V = 0. 07	85*2	50

注記*1:基準床レベルを示す。 *2:機関冷却水最高運転温度

*3:設計用最大応答加速度 I (弹性用設計地震動 S d) 又は静的震度

*4:設計用最大応答加速度 I (基準地震動 S s)

1.2 機器要目

1.0 1% 11 5 1							
部材	m i (kg)	h i (mm)	d i (mm)	ℓ _{1 i} *¹ (mm)	ℓ₂ i *1 (mm)	n i	n f i *1
基礎ボルト		1660	35	800	800	20	10
(i = 1)		1000	(M42)	1574	2566	20	2
ディーゼル機関取付ボルト		560	24	687	687	40	20
(i = 2)		500	(M24)	2027	2313 *	40	2

				_	-	転倒		
部材	A b i (mm²)	Sуі (MPa)	Sui (MPa)	Fi (MPa)	Fi (MPa)	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	Me i (N∙mm)
基礎ボルト (i=1)	962. 1	339*2 (40mm<径≦100mm)	556* ² (40mm<径≦100mm)	339	389	軸	軸	_
ディーゼル機関取付ボルト (i =2)	452. 4	458*³ (径≦40mm)	632* ³ (径≦40mm)	442	442	軸直角	軸	5. 056×10^7

P (kW)	N (rpm)	E (MPa)	G (MPa)	I (mm ⁴)	$A s (mm^2)$	$A (mm^2)$
5295	1000	172000	66000	5.606×10^{10}	3.685×10^4	2.148×10^5

注記*1:ボルトにおける上段は軸直角方向転倒に対する評価時の要目を示し、下段は軸方向転倒に対する評価時の要目を示す。

*2:周囲環境温度で算出*3:最高使用温度で算出

1.3 計算数値

1.3.1 ボルトに作用する力

(単位:N)

<i>\$17.</i> ++	Fь	i	Q b i			
部材	弾性設計用地震動 S d 又は静的震度	基準地震動Ss	弾性設計用地震動 Sd又は静的震度	基準地震動 S s		
基礎ボルト (i=1)						
ディーゼル機関取付ボルト (i =2)						

1.4 結論

29

1.4.1 ボルトの応力

(単位:MPa)

部材 材料		応力	弾性設計用地震動	Sd又は静的震度	基準地震動S s		
四四四	121 147) (C)	算出応力	許容応力	算出応力	許容応力	
基礎ボルト	0.450	引張り	σь1= 43	f t s 1 = 254*	σь1=167	f t s 1 = 292*	
(i =1)	S45C	せん断	τы1= 23	f s b 1=195	τ ы 1 = 36	f s b 1 = 225	
ディーゼル機関 取付ボルト	,	引張り	σ b 2 = 8	f t s 2=331*	σ ь 2= 82	f t s 2=331*	
(i =2)	S45C	せん断	τь2= 15	f s b 2=255	τ ь 2= 22	f s b 2=255	

すべて許容応力以下である。

注記*: f t s i =Min[1.4 · f t o i -1.6 · τ b i, f t o i]

1.4.2 動的機能の評価結果

 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
+00 88	水平方向	0.90	1.1
機関	鉛直方向	0.88	1.0
-18 L-	水平方向	0.90	1.8
ガバナ	鉛直方向	0.88	1.0

注記*:<mark>設計用最大応答加速度 I (</mark>基準地震動 S s) により定まる応答加速度とする。

機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

2. 重大事故等対処設備

2.1 設計条件

機器名称	据付場所及び 設備分類 床面高さ (m)	固有周期(s) 弾 ^付		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		ディーゼル機関ディーゼル機関 住復運動による往復運動による		具言体田泪座	国田谭培祖帝	
			水平方向	鉛直方向	水平方向	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	往復運動による 水平方向震度		取商使用值及 (℃)	(℃)
非常用ディーゼル発電設備 ディーゼル機関	常設/防止 (DB拡張) 常設/緩和 (DB拡張)	原子炉建屋 T. M. S. L. 13. 33 (T. M. S. L. 12. 3*1)			_	_	С _Н =1.08 <mark>*3</mark>	$C_{\rm V} = 1.05^{*3}$	С ЕН=0.06	CEV=0.07	85*2	50

注記*1:基準床レベルを示す。 *2:機関冷却水最高運転温度

*3:設計用最大加速度 I (基準地震動 S s)

2.2 機器要目

部材	m i (kg)	h i (mm)	d i (mm)	ℓ _{1 i} *1 (mm)	ℓ _{2 i} *1 (mm)	n i	n f i *1
基礎ボルト		1660	35	800	800	20	10
(i = 1)		1000	(M42)	1574	2566	20	2
ディーゼル機関取付ボルト		EGO	24	687	687	40	20
(i = 2)		560	(M24)	2027	2313 *	40	2

							転倒方向			
	部材	А b і (mm²)	Syi (MPa)	S u i (MPa)	F i (MPa)	F i (MPa)	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s	M ∈ i (N·mm)	
Ī	基礎ボルト (i=1)	962. 1	339*2 (40mm<径≦100mm)	556*2 (40mm<径≦100mm)	_	389	_	軸	_	
	ディーゼル機関取付ボルト (i =2)	452. 4	458* ³ (径≦40mm)	632*3 (径≦40mm)	_	442	_	軸	_	

P (kW)	N (rpm)	E (MPa)	G (MPa)	I (mm ⁴)	As (mm ²)	A (mm ²)
5295	1000	172000	66000	5.606×10^{10}	3.685×10^4	2.148×10^5

注記*1:ボルトにおける上段は軸直角方向転倒に対する評価時の要目を示し、下段は軸方向転倒に対する評価時の要目を示す。

*2:周囲環境温度で算出 *3:最高使用温度で算出

2.3 計算数値

2.3.1 ボルトに作用する力

(単位:N)

部材	Fь	i	Q b i		
司2047	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	
基礎ボルト (i=1)	_		_		
ディーゼル機関取付ボルト (i =2)	_		_		

2.4 結論

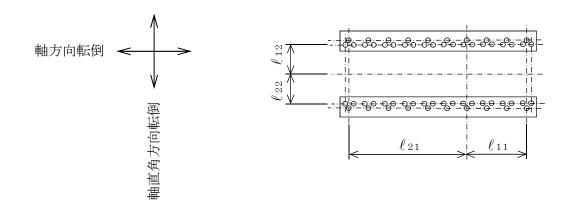
2.4.1 ボルトの応力

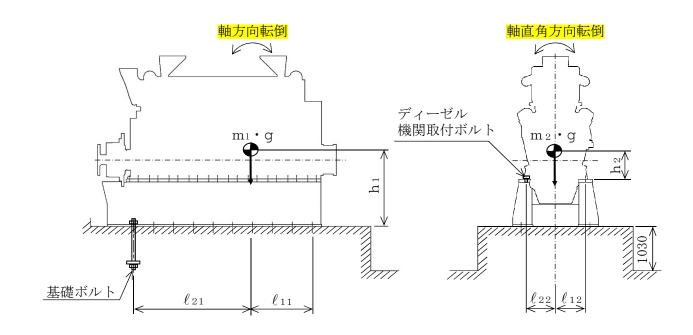
(単位:MPa)

部材	材料	応力	弾性設計用地震動	Sd又は静的震度	基準地震動 S s		
口以初	1/1/1/1) 	算出応力	許容応力	算出応力	許容応力	
基礎ボルト	S45C	引張り	_	_	σь1=167	f t s 1 = 292*	
(i =1)		せん断		_	τ ы 1 = 36	f s b 1 = 225	
ディーゼル機関 取付ボルト (i =2)	S45C	引張り		_	σ ь 2= 82	f t s 2=331*	
		せん断		_	τ ь 2= 22	f s b 2=255	

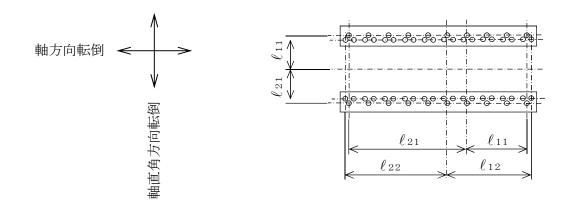
すべて許容応力以下である。

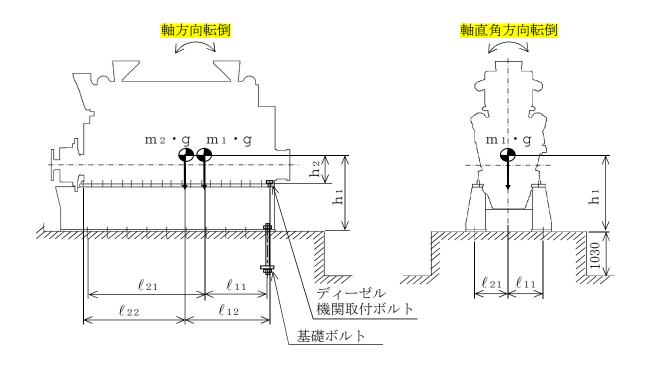
注記*: f t s i =Min[1.4 · f t o i -1.6 · τ b i, f t o i]


2.4.2 動的機能の評価結果


 $(\times 9.8 \text{m/s}^2)$

		機能維持評価用加速度*	機能確認済加速度
TW BB	水平方向	0.90	1.1
機関	鉛直方向	0.88	1.0
	水平方向	0.90	1.8
ガバナ	鉛直方向	0.88	1.0


注記*:<mark>設計用最大加速度 I (</mark>基準地震動 S s) により定まる応答加速度とする。


機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

【弾性設計用地震動Sd又は静的震度の場合】

【基準地震動Ssの場合】

2. 発電機

2.1 概要

本計算書は、VI-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき、発電機が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。

発電機は、設計基準対象施設においてはSクラス施設に、重大事故等対処設備においては常設重大事故防止設備(設計基準拡張)及び常設重大事故緩和設備(設計基準拡張)に分類される。以下、設計基準対象施設及び重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

2.2 一般事項

2.2.1 構造計画

発電機の構造計画を表 2-2-1 に示す。

表 2-2-1 構造計画

計画の	概戒	32 2 1 H						
			概略構造図					
基礎・支持構造	主体構造							
発電機は機関側軸受台取	機関側軸受台,軸受台					田夕フ田	ਰੇ/ ਦਿਵ ੇਗ ਹੈ	
付ボルト,機関側軸受台	及び固定子部からなる	【発電機】		機関	側軸受台	回 上 丁 印	対ボルト_	
下部ベース取付ボルト,	横軸回転界磁三相交流	基礎ボルト		取付	ボルト	/		
固定子取付ボルト、軸受	発電機				/	_#	軸受台取付ボ	ルト
台取付ボルト及び軸受台								· -
下部ベース取付ボルトで						<u>├</u> ┼-/	軸受台	- 1 %
直接据付台床に取り付け			<i>j</i> -	┄ ╎╸┆╶╏╸ ┤ ┆╸ ┆┆┇ ╸		▗▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ ▗ 	下部ベース	高さ
る。据付台床は基礎ボル						William Land	取付ボルト	<u> </u>
トで基礎に据え付ける。		基礎					基礎 人	
		<u> </u>						
				'	1 1		(関側軸受台	
						\ ! '	部ベース	
		据付	台床	*	たて	—————————————————————————————————————	付ボルト	
				発電機	発電機	発電機		
				6A	6B	6C		
			たて	5050	5050	5050		
			横	4160	4160	4160		
			高さ	2500	2500	2500		
								()\\\
								(単位:mm)

2.2.2 評価方針

発電機の応力評価は、VI-2-1-9「機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき、「2.2.1 構造計画」にて示す発電機の部位を踏まえ「2.3 評価部位」にて設定する箇所において、「2.4 固有周期」にて算出した固有周期に基づく設計用地震力による応力等が許容限界内に収まることを、「2.5 構造強度評価」にて示す方法にて確認することで実施する。また、発電機の機能維持評価は、VI-2-1-9「機能維持の基本方針」にて設定した動的機器の機能維持の方針に基づき、地震時の応答加速度が動的機能確認済加速度以下であることを、「2.6 機能維持評価」にて示す方法にて確認することで実施する。確認結果を「2.7 評価結果」に示す。

発電機の耐震評価フローを図2-2-1に示す。

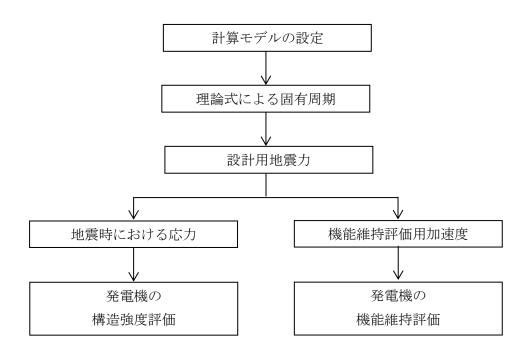


図 2-2-1 発電機の耐震評価フロー

2.2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補 -1984((社)日本電気協会)
- ·原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格 ((社) 日本機械学会, 2005/2007) (以下「設計・建設規格」という。)

2.2.4 記号の説明

記号	記号の説明	単位
A	最小断面積	mm^2
Аbi	ボルトの軸断面積*1	mm^2
As	最小有効せん断断面積	mm^2
C G	発電機振動による震度	_
Сн	水平方向設計震度	_
Cv	鉛直方向設計震度	_
d i	ボルトの呼び径*1	mm
E	縦弾性係数	MPa
F i	設計・建設規格 SSB-3121.1(1)に定める値*1	MPa
F i *	設計・建設規格 SSB-3133 に定める値*1	MPa
F b i	ボルトに作用する引張力(1 本当たり)*1	N
f s b i	せん断力のみを受けるボルトの許容せん断応力*1	MPa
f t o i	引張力のみを受けるボルトの許容引張応力*1	MPa
f t s i	引張力とせん断力を同時に受けるボルトの許容引張応力*1	MPa
G	せん断弾性係数	MPa
g	重力加速度(=9.80665)	$\mathrm{m/s^2}$
h i	据付面又は取付面から重心までの距離*2	mm
I	断面二次モーメント	mm^4
ℓ1 i	重心とボルト間の水平方向距離*1, *5	mm
ℓ 2 i	重心とボルト間の水平方向距離*1, *5	mm
${ m M}_{ m G}$	発電機回転により作用するモーメント	N•mm
m i	運転時質量*3	kg
m i (h)	水平方向に働く質量*4	kg
m i (v)	鉛直方向に働く質量*4	kg
N	回転速度 (発電機の定格回転速度)	rpm
n i	ボルトの本数*1	_
n f i	評価上引張力を受けるとして期待するボルトの本数*1	_
Р	ディーゼル機関出力	kW
Q b i	ボルトに作用するせん断力*1	N
S u i	設計・建設規格 付録材料図表 Part5 表 9 に定める値*1	MPa
S y i	設計・建設規格 付録材料図表 Part5 表 8 に定める値*1	MPa
Т	固有周期	S
π	円周率	_
σ b i	ボルトに生じる引張応力*1	MPa
τьі	ボルトに生じるせん断応力*1	MPa

注記*1: Abi, di, Fi, Fi*, Fbi, fsbi, ftoi, ftsi, ℓ 1i, ℓ 2i, ni, nfi, Qbi, Sui, Syi, σ bi及び τ biの添字iの意味は、以下のとおりとする。

i =1:基礎ボルト

i =2: 固定子取付ボルト

i=3:機関側軸受台下部ベース取付ボルト

i=4:軸受台下部ベース取付ボルト

i=5:機関側軸受台取付ボルト

i=6:軸受台取付ボルト

*2: h i の添字 i の意味は、以下のとおりとする。

i =1:据付面

i =2:固定子取付面

i=3:機関側軸受台下部ベース取付面

i =4: 軸受台下部ベース取付面

i =5:機関側軸受台取付面

i=6:軸受台取付面

*3:miの添字iの意味は、以下のとおりとする。

i =1:据付面

i =2: 固定子取付面

i =4: 軸受台下部ベース取付面

i=6:軸受台取付面

*4: m i (h), m i (v)の添字 i の意味は,以下のとおりとする。

i=3:機関側軸受台下部ベース取付面

i =5:機関側軸受台取付面

*5: ℓ_1 i \leqq ℓ_2 i

2.2.5 計算精度と数値の丸め方

精度は,有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2-2に示すとおりである。

表 2-2-2 表示する数値の丸め方

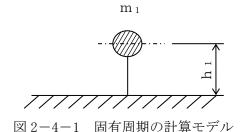
数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度	_	小数点以下第3位	切上げ	小数点以下第2位
温度	$^{\circ}$ C	_	_	整数位
質量	kg	_	_	整数位
長さ	mm	_	_	整数位*1
面積	mm^2	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
モーメント	N•mm	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
カ	N	有効数字 5 桁目	四捨五入	有効数字 4 桁*2
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*3	MPa	小数点以下第1位	切捨て	整数位

注記 *1: 設計上定める値が小数点以下第1位の場合は、小数点以下第1位表示とする。

*2:絶対値が1000以上のときは、べき数表示とする。

*3:設計・建設規格 付録材料図表に記載された温度の中間における引張強さ及び降伏点は,比例法により補間した値の小数点以下第1位を切り捨て,整数位までの値とする。

2.3 評価部位


発電機の耐震評価は、「2.5.1 構造強度評価方法」に示す条件に基づき、耐震評価上厳しくなる基礎ボルト及び取付ボルトについて実施する。発電機の耐震評価部位については、表 2-2 -1 の概略構造図に示す。

2.4 固有周期

2.4.1 固有周期の確認

発電機の固有周期の計算方法を以下に示す。

- (1) 計算モデル
 - a. 発電機の質量は重心に集中するものとする。
 - b. 発電機は据付台床上にあり、据付台床は基礎ボルトで基礎に固定されるものとする。また、機関側軸受台、軸受台及び固定子は、据付台床上に取付ボルトで固定されるものとする。
 - c. 耐震計算に用いる寸法は、公称値を使用する。 発電機は、図 2-4-1 に示す下端固定の1質点系振動モデルとして考える。

(2) 水平方向固有周期

水平方向固有周期は次式で求める。

$$T_{H}=2 \cdot \pi \cdot \sqrt{\frac{m_{1}}{1000} \cdot \left(\frac{h_{1}^{3}}{3 \cdot E \cdot I} + \frac{h_{1}}{A \cdot s \cdot G}\right)} \cdot \cdot \cdot (2.4.1.1)$$

(3) 鉛直方向固有周期

鉛直方向固有周期は次式で求める。

$$T_{V} = 2 \cdot \pi \cdot \sqrt{\frac{m_{1}}{1000} \cdot \frac{h_{1}}{A \cdot E}} \qquad \qquad \cdot \cdot \cdot (2.4.1.2)$$

2.4.2 固有周期の計算条件

固有周期の計算に用いる計算条件は、本計算書の【発電機 6A の耐震性にいての計算結果】,【発電機 6B の耐震性についての計算結果】及び【発電機 6C の耐震性についての計算結果】の機器要目に示す。

2.4.3 固有周期の計算結果

固有周期の計算結果を表 2-4-1 に示す。計算の結果,固有周期は 0.05 秒以下であり,剛であることを確認した。

表 2-4-1 固有周期

(単位:s)

TV FELIX CA	水平		
発電機 6A	鉛直		
発電機 6B	水平		
	鉛直		
発電機 6C	水平		
	鉛直		

2.5 構造強度評価

2.5.1 構造強度評価方法

2.4.1 項 a. ~ c. のほか, 次の条件で計算する。

- (1) 地震力は発電機に対して水平方向及び鉛直方向から作用するものとする。また、水平方向及び鉛直方向の動的地震力による荷重の組合せには、絶対値和を適用する。
- (2) 転倒方向は図 2-5-1~図 2-5-12 における軸直角方向及び軸方向について検討し、 計算書には計算結果の厳しい方(許容値/発生値の小さい方をいう。)を記載する。

2.5.2 荷重の組合せ及び許容応力

2.5.2.1 荷重の組合せ及び許容応力状態

発電機の荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価に用いるものを表 2-5-1 に、重大事故等対処設備の評価に用いるものを表 2-5-2 に示す。

2.5.2.2 許容応力

発電機の許容応力は、VI-2-1-9「機能維持の基本方針」に基づき表 2-5-3 のとおりとする。

2.5.2.3 使用材料の許容応力評価条件

発電機の使用材料の許容応力評価条件のうち設備基準対象施設の評価に用いるものを表 2-5-4 に、重大事故等対処設備の評価に用いるものを表 2-5-5 に示す。

表 2-5-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設	区分	機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態				
その他発電	非常用電源	2/2 EE: 14/4)	*	$D+P_D+M_D+S d^*$	III a S				
用原子炉の 附属施設	設備	発電機	5	<u> </u>	$D+P_D+M_D+S_S$	IV A S				

注記*:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

表 2-5-2 荷重の組合せ及び許容応力状態 (重大事故等対処設備)

施設	比区分	機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力状態
その他発電	北帝田春酒		常設/防止		D+P _D +M _D +S _s *3	IV A S
用原子炉の 附属施設	非常用電源 設備	発電機	(DB拡張) 常設/緩和 (DB拡張)	*2	D+Psad+Msad+Ss	VAS (VASとして IVASの許容限界 を用いる。)

注記*1:「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張),「常設/緩和(DB拡張)」は常設重大事故緩和設備(設計基準拡張) 張)を示す。

*2:その他の支持構造物の荷重の組合せ及び許容応力を適用する。

*3: $[D+P_{SAD}+M_{SAD}+S_{S}]$ の評価に包絡されるため、評価結果の記載を省略する。

表 2-5-3 許容応力 (その他の支持構造物及び重大事故等その他の支持構造物)

	許容限界* ^{1,*2} (ボルト等)				
許容応力状態	一次応力				
	引張り	せん断			
III A S	1.5 • f t	1.5 · f s			
IV A S					
VAS (VASとしてIVASの許容限界を用いる。)	1.5 · f t*	1.5 • f s*			

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2: 当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 2-5-4 使用材料の許容応力評価条件(設計基準対象施設)

农 2 0 年 区/ 13位付 20日 在地方前 圖木 (区) 五年内 3 地区)									
評価部材	材料	温度条件 (℃)		Sy (MPa)	S u (MPa)	Sy (RT) (MPa)			
		(0)		(MLa)	(MI a)	(MLa)			
基礎ボルト	(40mm <u><径≦</u> 100mm)	周囲環境温度	50	339	556	_			
固定子取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	_			
機関側軸受台下部 ベース取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	_			
軸受台下部ベース 取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	_			
機関側軸受台取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	_			
軸受台取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	_			

表 2-5-5 使用材料の許容応力評価条件(重大事故等対処設備)

評価部材	材料	温度条件		Sу	S u	Sy (RT)
다 에 다 다시기	1/2] 1/31	(℃)		(MPa)	(MPa)	(MPa)
基礎ボルト	(40mm<発≦100mm)	周囲環境温度	50	339	556	_
固定子取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	_
機関側軸受台下部 ベース取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	_
軸受台下部ベース 取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	
機関側軸受台取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	_
軸受台取付ボルト	(径≦100mm)	周囲環境温度	50	241	391	_

2.5.3 設計用地震力

耐震評価に用いる設計用地震力を表 2-5-6 及び表 2-5-7 に示す。

「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は、VI-2-1-7 「設計用床応答曲線の作成方針」に基づき設定する。

表 2-5-6 設計用地震力(設計基準対象施設)

据付場所 及び	固有周期(s) 水平方向 鉛直方向		弾性設計用 又は静	地震動Sd 的震度	基準地震動Ss		
床面高さ (m)			水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	
原子炉建屋 T. M. S. L. 13. 570 (T. M. S. L. 12. 300* <mark>1</mark>)			Сн=0.67 <mark>*</mark> 2	$C v = 0.52^{*2}$	Сн=1.09 <mark>*3</mark>	$C_{V} = 1.05^{*3}$	

注記*1:基準床レベルを示す。

*2:設計用最大応答加速度 I (弾性設計用地震動 S d) 又は静的震度

*3:設計用最大応答加速度 I (基準地震動 S s)

表 2-5-7 設計用地震力(重大事故等対処設備)

据付場所 及び	固有周期(s) 水平方向 鉛直方向		万 選挙		基準地震動S s	
床面高さ (m)			水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋 T. M. S. L. 13. 570 (T. M. S. L. 12. 300* <mark>1</mark>)			_	_	Сн=1.09 <mark>*</mark> 2	$C_{V} = 1.05^{*2}$

注記*1:基準床レベルを示す。

*2:設計用最大応答加速度 I (基準地震動 S s)

2.5.4 計算方法

2.5.4.1 応力の計算方法

2.5.4.1.1 基礎ボルトの計算方法

基礎ボルトの応力は地震による震度、発電機振動による震度及び発電機回転により作用するモーメントによって生じる引張力とせん断力について計算する。

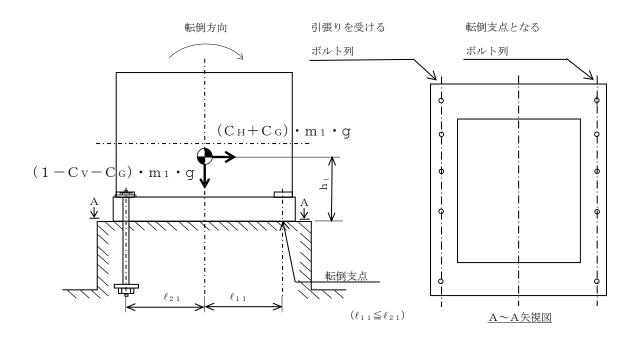


図 2-5-1 計算モデル (軸直角方向転倒)

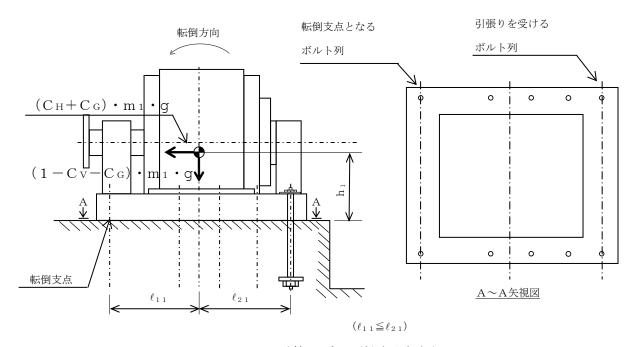


図 2-5-2 計算モデル (軸方向転倒)

(1) 引張応力

基礎ボルトに対する引張力は最も厳しい条件として、図 2-5-1 及び図 2-5-2 で基礎ボルトを支点とする転倒を考え、これを片側の列の基礎ボルトで受けるものとして計算する。

なお、計算モデル図 2-5-2 の場合は、発電機回転によるモーメントは、作用しない。

引張力

$$F_{b1} = \frac{(C_H + C_G) \cdot m_1 \cdot g \cdot h_1 + M_G - (1 - C_V - C_G) \cdot m_1 \cdot g \cdot \ell_{11}}{n_{f1} \cdot (\ell_{11} + \ell_{21})}$$

$$\cdot \cdot \cdot \cdot \cdot (2.5, 4.1, 1.1)$$

ここで、発電機回転によるモーメントMgは次式により求める。

$$M_{G} = \left(\frac{60}{2 \cdot \pi \cdot N}\right) \cdot 10^{6} \cdot P$$

$$(1 \text{ kW} = 10^{6} \text{ N} \cdot \text{mm/s})$$

引張応力

ここで、基礎ボルトの軸断面積Ab1は次式により求める。

$$A_{b 1} = \frac{\pi}{4} \cdot d_{1}^{2} \cdot \cdots \cdot \cdots \cdot \cdots \cdot \cdots \cdot (2.5.4.1.1.3)$$

ただし、F b 1 が負のとき基礎ボルトには引張力が生じないので、引張応力の計算は行わない。

(2) せん断応力

基礎ボルトに対するせん断力は基礎ボルト全本数で受けるものとして計算する。

せん断力

$$Q_{b1} = (C_H + C_G) \cdot m_1 \cdot q \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2.5.4.1.1.4)$$

せん断応力

2.5.4.1.2 固定子取付ボルトの計算方法

固定子取付ボルトの応力は地震による震度、発電機振動による震度及び発電機 回転により作用するモーメントによって生じる引張力とせん断力について計算す る。

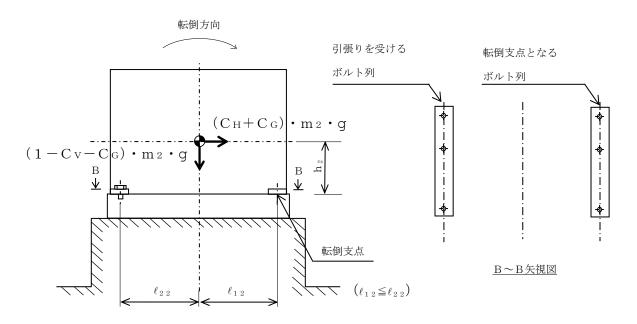


図 2-5-3 計算モデル (軸直角方向転倒)

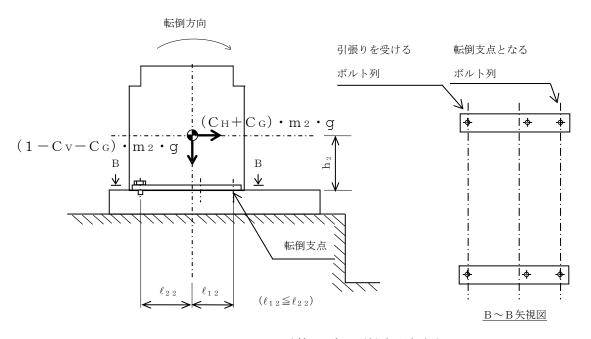


図 2-5-4 計算モデル (軸方向転倒)

(1) 引張応力

固定子取付ボルトに対する引張力は最も厳しい条件として、図 2-5-3 及び図 2-5-4 で固定子取付ボルトを支点とする転倒を考え、これを片側の列の固定子取付ボルトで受けるものとして計算する。

なお、計算モデル図 2-5-4 の場合は、発電機回転によるモーメントは作用しない。

引張力

$$F_{b2} = \frac{(C_H + C_G) \cdot m_2 \cdot g \cdot h_2 + M_G - (1 - C_V - C_G) \cdot m_2 \cdot g \cdot \ell_{12}}{n_{f2} \cdot (\ell_{12} + \ell_{22})}$$

$$\cdot \cdot \cdot \cdot \cdot (2.5, 4.1, 2.1)$$

ここで、発電機回転によるモーメントMGは次式により求める。

$$M_{G} = \left(\frac{60}{2 \cdot \pi \cdot N}\right) \cdot 10^{6} \cdot P$$

$$(1 \text{ kW} = 10^{6} \text{ N} \cdot \text{mm/s})$$

引張応力

ここで,固定子取付ボルトの軸断面積 A b 2 は次式により求める。

ただし、 F_{b2} が負のとき固定子取付ボルトには引張力が生じないので、引張応力の計算は行わない。

(2) せん断応力

固定子取付ボルトに対するせん断力は固定子取付ボルト全本数で受けるものとして計算する。

せん断力

$$Q_{b2} = (C_H + C_G) \cdot m_2 \cdot q \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2.5.4.1.2.4)$$

せん断応力

2.5.4.1.3 機関側軸受台下部ベース取付ボルトの計算方法

機関側軸受台下部ベース取付ボルトの応力は地震による震度,発電機振動による震度によって生じる引張力とせん断力について計算する。

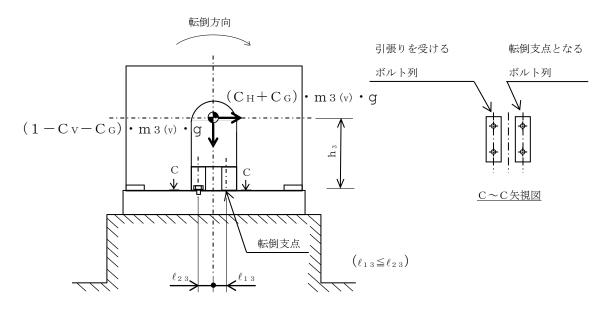


図 2-5-5 計算モデル (軸直角方向転倒)

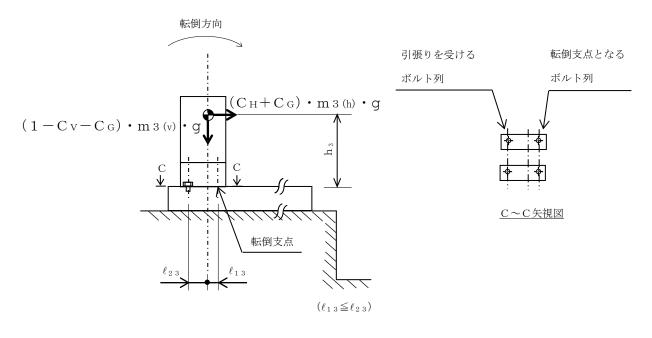


図 2-5-6 計算モデル (軸方向転倒)

(1) 引張応力

機関側軸受台下部ベース取付ボルトに対する引張力は最も厳しい条件として,図 2-5-5 及び図 2-5-6 で機関側軸受台下部ベース取付ボルトを支点とする転倒を考え,これを片側の列の機関側軸受台下部ベース取付ボルトで受けるものとして計算する。

引張力

$$F_{b3} = \frac{(C_H + C_G) \cdot m_{3(h)} \cdot g \cdot h_{3} - (1 - C_V - C_G) \cdot m_{3(v)} \cdot g \cdot \ell_{13}}{n_{f3} \cdot (\ell_{13} + \ell_{23})}$$

$$\cdot \cdot \cdot \cdot (2.5.4.1.3.1)$$

ただし、軸直角方向転倒では、(2.5.4.1.3.1)式中のm3(h)はm3(v)として計算する。

引張応力

ここで,機関側軸受台下部ベース取付ボルトの軸断面積 A b 3 は次式により求める。

ただし、F b 3 が負のとき機関側軸受台下部ベース取付ボルトには引張力が生じないので、引張応力の計算は行わない。

(2) せん断応力

機関側軸受台下部ベース取付ボルトに対するせん断力は機関側軸受台下部ベース 取付ボルト全本数で受けるものとして計算する。

せん断力

$$Q_{b3} = (C_H + C_G) \cdot m_{3(h)} \cdot g \cdot \cdot \cdot \cdot \cdot \cdot (2.5.4.1.3.4)$$

せん断応力

2.5.4.1.4 軸受台下部ベース取付ボルトの計算方法

軸受台下部ベース取付ボルトの応力は地震による震度及び発電機振動による震 度によって生じる引張力とせん断力について計算する。

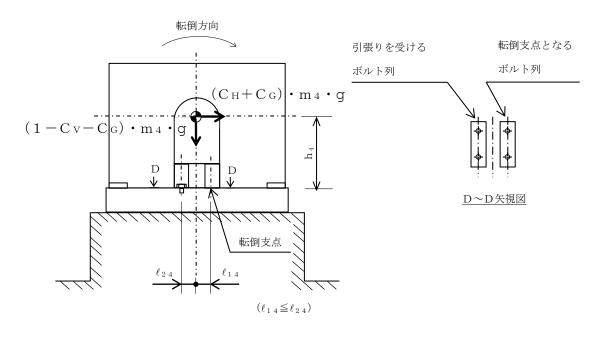


図 2-5-7 計算モデル (軸直角方向転倒)

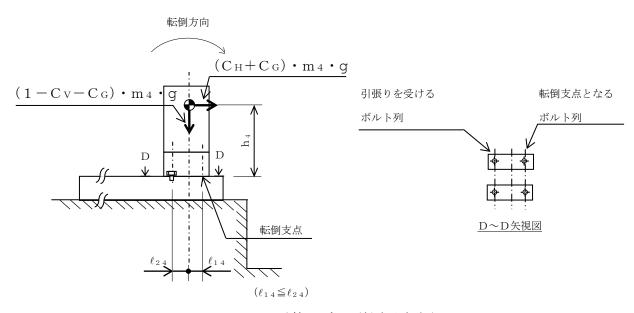


図 2-5-8 計算モデル (軸方向転倒)

(1) 引張応力

軸受台下部ベース取付ボルトに対する引張力は最も厳しい条件として,図 2-5-7 及び図 2-5-8 で軸受台下部ベース取付ボルトを支点とする転倒を考え,これを片側の列の軸受台下部ベース取付ボルトで受けるものとして計算する。

引張力

$$F_{b4} = \frac{(C_H + C_G) \cdot m_4 \cdot g \cdot h_4 - (1 - C_V - C_G) \cdot m_4 \cdot g \cdot \ell_{14}}{n_{f4} \cdot (\ell_{14} + \ell_{24})}$$

$$\cdot \cdot \cdot \cdot (2.5.4.1.4.1)$$

引張応力

ここで、軸受台下部ベース取付ボルトの軸断面積 A b 4 は次式により求める。

ただし、 $F_{b,4}$ が負のとき軸受台下部ベース取付ボルトには引張力が生じないので、 引張応力の計算は行わない。

(2) せん断応力

軸受台下部ベース取付ボルトに対するせん断力は軸受台下部ベース取付ボルト全 本数で受けるものとして計算する。

せん断力

$$Q_{b4} = (C_H + C_G) \cdot m_4 \cdot g \cdot \cdot \cdot \cdot \cdot \cdot \cdot (2.5.4.1.4.4)$$

せん断応力

2.5.4.1.5 機関側軸受台取付ボルトの計算方法

機関側軸受台取付ボルトの応力は地震による震度,発電機振動による震度によって生じる引張力とせん断力について計算する。

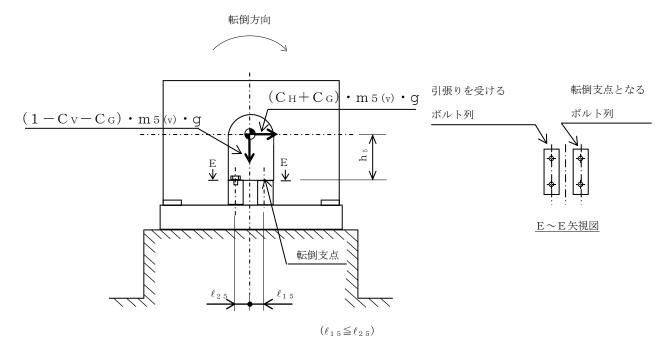


図 2-5-9 計算モデル (軸直角方向転倒)

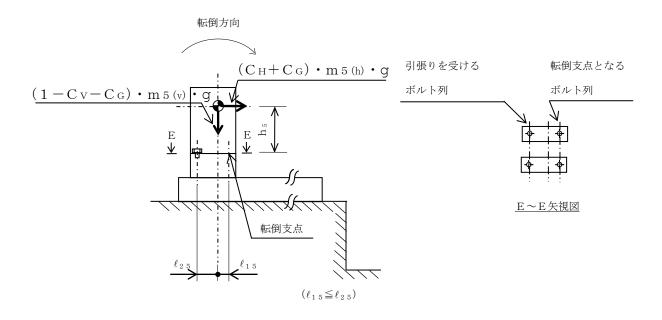


図 2-5-10 計算モデル (軸方向転倒)

(1) 引張応力

機関側軸受台取付ボルトに対する引張力は最も厳しい条件として、図 2-5-9 及 び図 2-5-10 で機関側軸受台取付ボルトを支点とする転倒を考え、これを片側の列 の機関側軸受台取付ボルトで受けるものとして計算する。

引張力

$$F_{b5} = \frac{(C_H + C_G) \cdot m_{5(h)} \cdot g \cdot h_{5} - (1 - C_V - C_G) \cdot m_{5(v)} \cdot g \cdot \ell_{15}}{n_{f5} \cdot (\ell_{15} + \ell_{25})}$$

ただし、軸直角方向転倒では、(2.5.4.1.5.1)式中の $m_{5(h)}$ は $m_{5(v)}$ として計算する。

引張応力

ここで、機関側軸受台取付ボルトの軸断面積 A b 5 は次式により求める。

ただし、F b 5 が負のとき機関側軸受台取付ボルトには引張力が生じないので、引 張応力の計算は行わない。

(2) せん断応力

機関側軸受台取付ボルトに対するせん断力は機関側軸受台取付ボルト全本数で受けるものとして計算する。

せん断力

$$Q_{b5} = (C_H + C_G) \cdot m_{5(h)} \cdot q \cdot \cdot \cdot \cdot \cdot \cdot (2.5.4.1.5.4)$$

せん断応力

2.5.4.1.6 軸受台取付ボルトの計算方法

軸受台取付ボルトの応力は地震による震度及び発電機振動による震度によって 生じる引張力とせん断力について計算する。

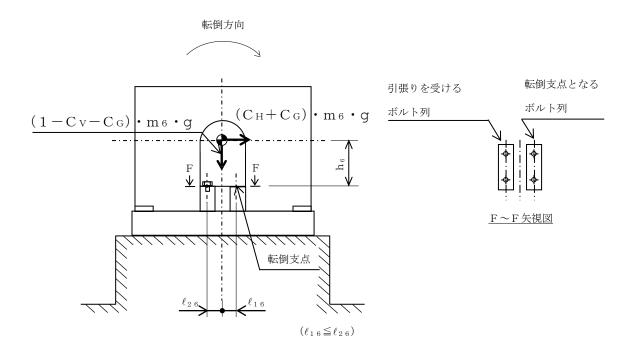


図 2-5-11 計算モデル (軸直角方向転倒)

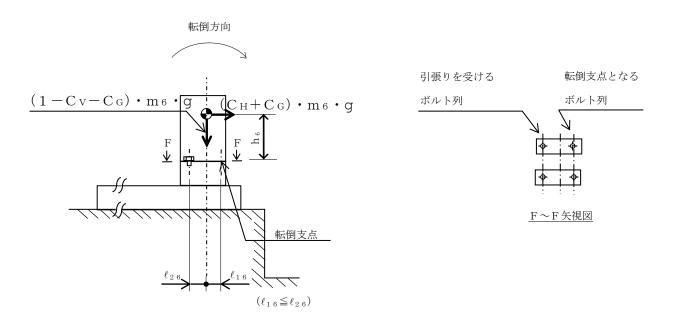


図 2-5-12 計算モデル (軸方向転倒)

(1) 引張応力

軸受台取付ボルトに対する引張力は最も厳しい条件として,図 2-5-11 及び図 2-5-12 で軸受台取付ボルトを支点とする転倒を考え,これを片側の列の軸受台取付ボルトで受けるものとして計算する。

引張力

$$F_{b6} = \frac{(C_H + C_G) \cdot m_6 \cdot g \cdot h_6 - (1 - C_V - C_G) \cdot m_6 \cdot g \cdot \ell_{16}}{n_{f6} \cdot (\ell_{16} + \ell_{26})}$$

$$\cdot \cdot \cdot \cdot \cdot (2.5.4.1.6.1)$$

引張応力

ここで、軸受台取付ボルトの軸断面積 Ab 6 は次式により求める。

A b 6 =
$$\frac{\pi}{4}$$
 · d 6² · · · · · · · · · · · · · · · · (2.5.4.1.6.3)

ただし、F b 6 が負のとき軸受台取付ボルトには引張力が生じないので、引張応力の計算は行わない。

(2) せん断応力

軸受台取付ボルトに対するせん断力は軸受台取付ボルト全本数で受けるものとして計算する。

せん断力

$$Q_{b6} = (C_H + C_G) \cdot m_6 \cdot q \cdot \cdot \cdot \cdot \cdot \cdot (2.5.4.1.6.4)$$

せん断応力

2.5.5 計算条件

2.5.5.1 基礎ボルトの応力計算条件

基礎ボルトの応力計算に用いる計算条件は、本計算書の【発電機 6A の耐震性についての計算結果】、【発電機 6B の耐震性についての計算結果】及び【発電機 6C の耐震性についての計算結果】の設計条件及び機器要目に示す。

2.5.5.2 発電機固定子取付ボルトの応力計算条件

発電機固定子取付ボルトの応力計算に用いる計算条件は、本計算書の【発電機 6A の耐震性についての計算結果】、【発電機 6B の耐震性についての計算結果】及び【発電機 6C の耐震性についての計算結果】の設計条件及び機器要目に示す。

2.5.5.3 機関側軸受台下部ベース取付ボルトの応力計算条件

機関側軸受台下部ベース取付ボルトの応力計算に用いる計算条件は、本計算書の【発電機 6A の耐震性についての計算結果】、【発電機 6B の耐震性についての計算結果】及び【発電機 6C の耐震性についての計算結果】の設計条件及び機器要目に示す。

2.5.5.4 軸受台下部ベース取付ボルトの応力計算条件

軸受台下部ベース取付ボルトの応力計算に用いる計算条件は、本計算書の【発電機 6A の耐震性についての計算結果】、【発電機 6B の耐震性についての計算結果】及び【発電機 6C の耐震性についての計算結果】の設計条件及び機器要目に示す。

2.5.5.5 機関側軸受台取付ボルトの応力計算条件

機関側軸受台取付ボルトの応力計算に用いる計算条件は、本計算書の【発電機 6A の耐震性についての計算結果】、【発電機 6B の耐震性についての計算結果】及び【発電機 6C の耐震性についての計算結果】の設計条件及び機器要目に示す。

2.5.5.6 軸受台取付ボルトの応力計算条件

軸受台取付ボルトの応力計算に用いる計算条件は、本計算書の【発電機 6A の耐震性についての計算結果】、【発電機 6B の耐震性についての計算結果】及び【発電機 6C の耐震性についての計算結果】の設計条件及び機器要目に示す。

2.5.6 応力の評価

2.5.6.1 ボルトの応力評価

2.5.4項で求めたボルトの引張応力 σ b i は次式より求めた許容引張応力f t s i 以下であること。ただし、f t o i は下表による。

せん断応力 τ b i はせん断力のみを受けるボルトの許容せん断応力 f s b i 以下であること。ただし,f s b i は下表による。

	弾性設計用地震動S d 又は静的震度による 荷重との組合せの場合	基準地震動 S s による荷重との 組合せの場合
許 容 引 張 応 力 f t o i	$\frac{\mathrm{F}_{\mathrm{i}}}{2} \cdot 1.5$	$\frac{\mathrm{F} \; \mathrm{i}}{2}^{*} \cdot 1.5$
許容せん断応力 f _{sbi}	$\frac{\text{F i}}{1.5 \cdot \sqrt{3}} \cdot 1.5$	$\frac{\text{F i}^*}{1.5 \cdot \sqrt{3}} \cdot 1.5$

2.6 機能維持評価

2.6.1 動的機能維持評価方法

発電機の地震後の動的機能維持評価について以下に示す。

なお,機能維持評価用加速度はVI-2-1-7「設計用床応答曲線の作成方針」に基づき, 基準地震動Ssにより定まる応答加速度を設定する。

発電機は、「JEAG4601-1991 追補版」に基づき、地震時動的機能維持が確認された電動機に準じた評価となるため、VI-2-1-9「機能維持の基本方針」に記載の電動機の機能確認済加速度を適用する。

機能確認済加速度を表 2-6-1 に示す。

表 2-6-1 機能確認済加速度

 $(\times 9.8 \text{m/s}^2)$

評価部位	形式	方向	機能確認済加速度
発 電 機	世でようりお気	水平	2.6
	横形すべり軸受	鉛直	1.0

2.7 評価結果

2.7.1 設計基準対象施設としての評価結果

発電機の設計基準対象施設としての耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

2.7.2 重大事故等対処設備としての評価結果

発電機の重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。発生値は許容限界を満足しており、設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

(2) 機能維持評価結果

動的機能維持評価の結果を次頁以降の表に示す。

【発電機 6Aの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

166 DD 67 TLa	耐震重要度	度 据付場所及び 床面高さ (m)	固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動S s		発電機振動に	最高使用温度	周囲環境温度
機器名称	分類		水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	よる震度	(℃)	(℃)
発電機 6A	S	原子炉建屋 T. M. S. L. 13. 570 (T. M. S. L. 12. 300*1)			Сн=0.67 <mark>*2</mark>	$C v = 0.52^{*2}$	Сн=1.09 <mark>*3</mark>	C v=1.05 <mark>*3</mark>		_	50

注記*1:基準床レベルを示す。

*2:設計用最大応答加速度 I (弾性設計用地震動 S d) 又は静的震度

*3:設計用最大応答加速度 I (基準地震動 S s)

1.2 機器要目

							ℓ1 i ((mm) *1	ℓ2 i (n	nm) *1		n f	i *1			
部材		m i (kg)	m i (h) (kg)	m i (v) (kg)	h i (mm)	d i (mm)	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	n i	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s			
基礎ボルト	П						1175		117	75	1 [5				
(i = 1)									1675		575	2050			2 3	
固定子取付ボルト									11	1175		75				
(i = 2)				L	770		880		J I	2						
機関側軸受台下部ベース			695 150 675		95	695			2							
取付ボルト(i =3)					50	350		2								
軸受台下部ベース							6'	75	67	5		2				
取付ボルト(i =4)						L	18	85	20	5	J I	2				
機関側軸受台				50	00	50	0		2							
取付ボルト(i=5)							1:	30	34	0	I	2				
軸受台取付ボルト							485		485			2				
(i = 6)						13	80	20	0		2					

注記 *1:ボルトにおける上段は軸直角方向転倒に対する評価時の要目を示し、

下段は軸方向転倒に対する評価時の要目を示す。

67

			Sui (MPa)	F i (MPa)	F i* (MPa)	転倒方向		$\mathbf{M}_{\mathrm{G}}\left(N\!\cdot\!\mathtt{mm}\right)$	
部材	Аьі (mm²)	Syi (MPa)				弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s
基礎ボルト (i=1)		339*1 (40mm<径≦100mm)	556*1 (40mm<径≦100mm)	339	389	軸直角	軸		_
固定子取付ボルト (i=2)		241*1 (径≦100mm)	391*¹ (径≦100mm)	241	273	軸	軸	_	_
機関側軸受台下部ベース 取付ボルト(i=3)		241*1 (径≦100mm)	391*¹ (径≦100mm)	241	273	軸	軸	_	_
軸受台下部ベース 取付ボルト(i=4)		241*1 (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	_
機関側軸受台取付ボルト (i=5)		241*¹ (径≦100mm)	391*¹ (径≦100mm)	241	273	軸	軸	_	_
軸受台取付ボルト (i=6)		241*1 (径≦100mm)	391*¹ (径≦100mm)	241	273	軸	軸	_	_

注記 *1:周囲環境温度で算出

P(kW)	N (rpm)	E (MPa)	G (MPa)	I (mm ⁴)	As (mm ²)	A (mm ²)
5295	1000					

1.3 計算数值

1.3.1 ボルトに作用する力

(単位·N)

1.3.1 ホルトに作用する刀 (単)									
	I	d bi	Q_{bi}						
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s					
基礎ボルト									
(i = 1)									
固定子取付ボルト	1								
(i = 2)									
機関側軸受台下部ベース									
取付ボルト(i=3)									
軸受台下部ベース									
取付ボルト(i =4)									
機関側軸受台取付ボルト									
(i = 5)									
軸受台取付ボルト									
(i = 6)									

69

1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

₩ 77++	++401	E-4	弾性設計用地震動	Sd又は静的震度	基準地別	통動Ss
部材	材料	応力	算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	σ b1= 5	$f_{\rm ts1} = 254^*$	σ b1= 30	$f_{\rm ts1} = 292*$
(i =1)		せん断	τ ы= 12	$f_{\rm sb1} = 195$	τы= 19	$f_{\rm sb1} = 225$
固定子取付ボルト		引張り	σ b2= 4	$f_{\rm ts2} = 180^*$	σ b2= 16	$f_{\rm ts2} = 205*$
(i =2)		せん断	τ b2= 6	$f_{\rm sb2} = 139$	τ b2= 10	$f_{\rm sb2} = 158$
機関側軸受台下部ベース		引張り	σ b3= 44	$f_{\rm ts3} = 180^*$	σ b3= 77	$f_{\rm ts3} = 205^*$
取付ボルト(i=3)		せん断	τ ыз= 14	$f_{\rm sb3} = 139$	τ ыз= 23	$f_{\rm sb3} = 158$
軸受台下部ベース		引張り	σ b4= 23	$f_{\rm ts4} = 180^*$	σ b4= 43	$f_{\rm ts4} = 205^*$
取付ボルト(i =4)		せん断	τ b4= 7	$f_{\rm sb4} = 139$	τ ы4≡ 11	$f_{\rm sb4} = 158$
機関側軸受台取付ボルト		引張り	σ b5= 31	$f_{\rm ts5} = 180^*$	σ b5= 56	$f_{\rm ts5} = 205^*$
(i =5)		せん断	τ ь5= 14	$f_{\rm sb5} = 139$	τ b5= 22	$f_{\rm sb5} = 158$
軸受台取付ボルト		引張り	σ b6= 15	$f_{\rm ts6} = 180^*$	σ b6= 31	$f_{\rm ts6} = 205^*$
(i =6)		せん断	τ ы6= 7	$f_{\text{sb6}} = 139$	τ ы6= 10	$f_{\rm sb6} = 158$

すべて許容応力以下である。

注記*: f t s i = Min[1.4 · f t o i - 1.6 · τ b i, f t o i]

1.4.2 動的機能の評価結果

(単位:×9.8m/s²)

***************************************			· · · · · · · · · · · · · · · · · · ·
		機能維持評価用加速度*	機能確認済加速度
70 FF 1610 C A	水平方向	0.90	2.6
発電機 6A	鉛直方向	0.88	1.0

注記*:<mark>設計用最大応答加速度 I (</mark>基準地震動 S s) により定まる応答加速度とする。 機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

2. 重大事故等対処設備

2.1 設計条件

-4% ID 57 #J-	凯 / 类 八 将	据付場所及び	固有周期(s)			弾性設計用地震動 S d 又は静的震度		基準地震動 S s		最高使用温度	
機器名称	設備分類	床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	よる震度	(℃)	(℃)
発電機 6A	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	原子炉建屋 T. M. S. L. 13. 570 (T. M. S. L. 12. 300*1)			_	_	Сн=1.09 <mark>*</mark> 2	C v=1.05*2		_	50

注記*1:基準床レベルを示す。

*2 : 設計用最大応答加速度 I (基準地震動 S s)

2.2 機器要目

						ℓ1 i (mm) *1	ℓ 2 i (m	m) *1		n f	i *1
部材	m i (kg)	m i (h) (kg)	m i (v) (kg)	h i (mm)	d i (mm)	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	n i	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s
基礎ボルト						11	75	117	5		5	
(i = 1)						16	75	205	0		2	
固定子取付ボルト						11	75	117	5		3	
(i = 2)						7'	70	88	0		2	
機関側軸受台下部ベース						69	95	69	5		2	
取付ボルト(i=3)						1	50	350	0		2	
軸受台下部ベース						6'	75	67	5		2	
取付ボルト(i =4)						18	35	20	5		2	
機関側軸受台						50	00	50	0		2	
取付ボルト(i =5)	_					1:	30	34	0		2	
軸受台取付ボルト						48	35	48	5		2	
(i = 6)						18	30	20	0		2	

注記 *1: ボルトにおける上段は軸直角方向転倒に対する評価時の要目を示し,

下段は軸方向転倒に対する評価時の要目を示す。

	~1
ŀ	_

						転倒之	方向	M_{G} (N	·mm)
部材	Аьі (mm²)	Syi (MPa)	Sui (MPa)	F i (MPa)	Fi* (MPa)	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s
基礎ボルト		339*1	556*1	_	389	_	軸	_	_
(i = 1)	1 1	(40mm<径≦100mm)	(40mm<径≦100mm)				1.5		
固定子取付ボルト		241*1	391*1		273		軸		
(i = 2)		(径≦100mm)	(径≦100mm)		213	_	押出		_
機関側軸受台下部ベース	1 [241*1	391*1		273		軸	_	
取付ボルト(i =3)		(径≦100mm)	(径≦100mm)		213		平田		
軸受台下部ベース	1 [241*1	391*1		273		軸		
取付ボルト(i =4)		(径≦100mm)	(径≦100mm)	_	213		半田		_
機関側軸受台取付ボルト	1 [241*1	391*1		079		軸		
(i =5)		(径≦100mm)	(径≦100mm)	_	273	_	1		_
軸受台取付ボルト] [241*1	391*1		273		軸		
(i = 6)		(径≦100mm)	(径≦100mm)		413		押		

注記 *1:周囲環境温度で算出

P(kW)	N (rpm)	E (MPa)	G (MPa)	I (mm ⁴)	As (mm²)	A (mm ²)
5295	1000					

2.3 計算数值

231 ボルトに作用するカ

(単位·N)

2.3.1 ホルトに作用	9 3 71			(単位:N)
	F	P _{bi}	Q	bi
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト (i =1)	_		_	
固定子取付ボルト (i=2)	_		_	
機関側軸受台下部ベース 取付ボルト(i=3)	_		_	
軸受台下部ベース 取付ボルト(i=4)	_		_	
機関側軸受台取付ボルト (i =5)	_		_	
軸受台取付ボルト (i=6)	_		_	

2.4 結論

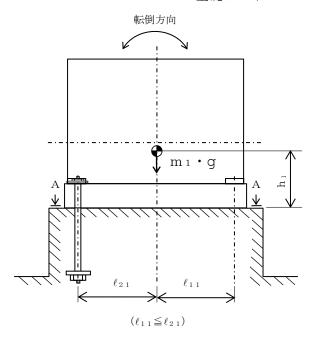
2.4.1 ボルトの応力

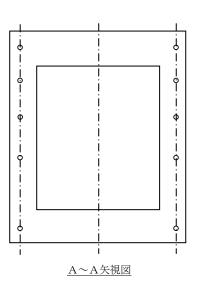
(単位:MPa)

部材	材料	 	弾性設計用地震動	Sd又は静的震度	基準地別	§動Ss
司孙孙	1/1 1/1	応力	算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	_	_	σ b1= 30	$f_{\rm ts1} = 292^*$
(i =1)		せん断	_	_	τы= 19	$f_{\rm sb1} = 225$
固定子取付ボルト		引張り	_	_	σ b2= 16	$f_{\rm ts2} = 205^*$
(i =2)		せん断	_	_	τ ы2= 10	$f_{\rm sb2} = 158$
機関側軸受台下部ベース		引張り	_	_	σ ыз= 77	$f_{\rm ts3} = 205^*$
取付ボルト(i=3)		せん断	_	_	τ ыз= 23	$f_{\rm sb3} = 158$
軸受台下部ベース		引張り	_	_	σ b4= 43	$f_{\rm ts4} = 205^*$
取付ボルト(i =4)		せん断	_	_	τ ы4≡ 11	$f_{\rm sb4} = 158$
機関側軸受台取付ボルト		引張り	_	_	σ ь5= 56	$f_{\rm ts5} = 205^*$
(i =5)		せん断	_	_	τ ь5= 22	$f_{\rm sb5} = 158$
軸受台取付ボルト		引張り	_	_	σ ы6= 31	$f_{\rm ts6} = 205^*$
(i =6)		せん断			τ ы6= 10	$f_{\rm sb6} = 158$

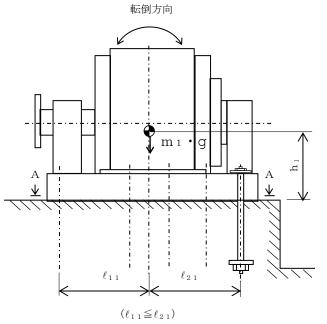
すべて許容応力以下である。

注記*: f t s i = Min[1.4 · f t o i - 1.6 · τ b i, f t o i]

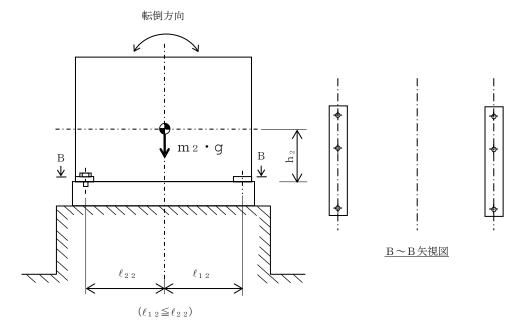

2.4.2 動的機能の評価結果

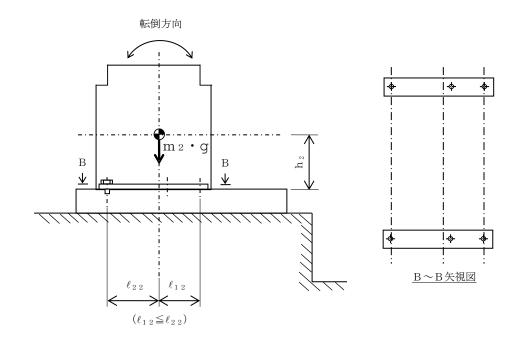

(単位:×9.8m/s²)

		機能維持評価用加速度*	機能確認済加速度
7% FE-14% C A	水平方向	0.90	2.6
発電機 6A	鉛直方向	0.88	1.0


注記*:<mark>設計用最大応答加速度 I (</mark>基準地震動 S s) により定まる応答加速度とする。 機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

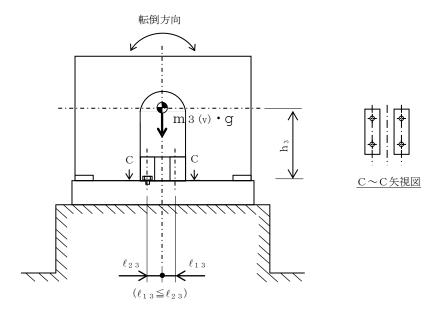
基礎ボルト


軸直角方向転倒

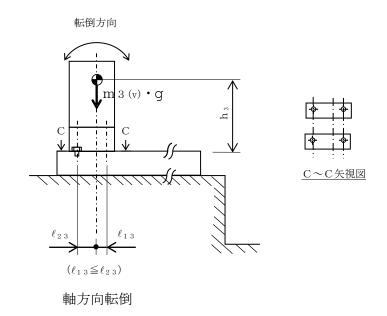


軸方向転倒

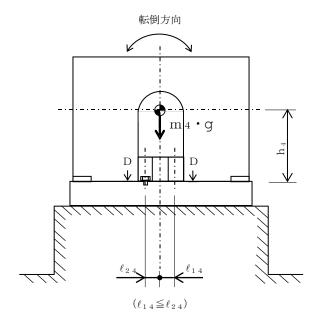
固定子取付ボルト

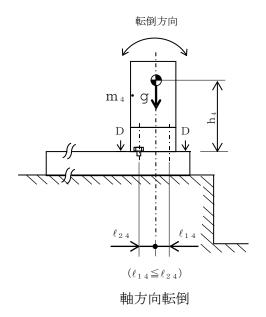


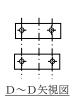
軸直角方向転倒



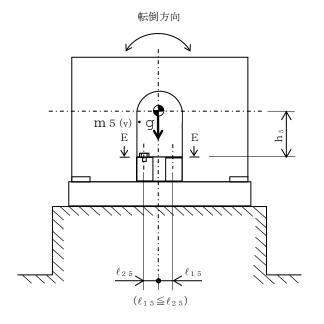
軸方向転倒

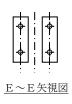

機関側軸受台下部ベース取付ボルト

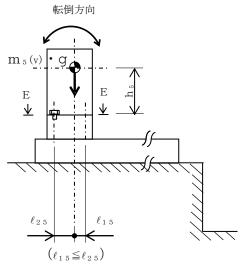

軸直角方向転倒



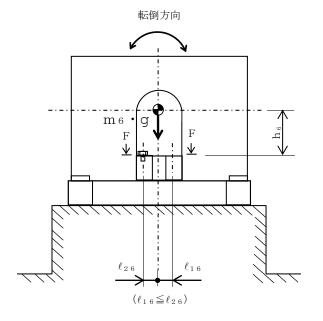
軸受台下部ベース取付ボルト


軸直角方向転倒

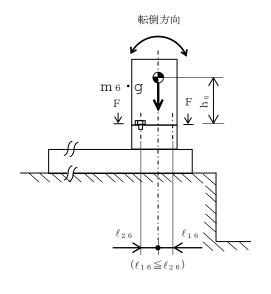



D~D矢視図

機関側軸受台取付ボルト


軸直角方向転倒

軸方向転倒


軸受台取付ボルト

 $F \sim F$ 矢視図

軸直角方向転倒

 $F \sim F$ 矢視図

軸方向転倒

【発電機 6Bの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

機器名称	耐震重要度	据付場所及び	固有周	固有周期(s) 弾性設計用地震動 S d 又は静的震度		基準地震動Ss		発電機振動に	最高使用温度	周囲環境温度	
	分類	床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	よる震度	(℃)	(℃)
発電機 6B	S	原子炉建屋 T. M. S. L. 13. 570 (T. M. S. L. 12. 300*1)			Сн=0.67 <mark>*2</mark>	$C v = 0.52^{*2}$	Сн=1.09 <mark>*3</mark>	C v=1.05*3		_	50

注記*1:基準床レベルを示す。

*2:設計用最大応答加速度 I (弾性設計用地震動 S d) 又は静的震度

*3:設計用最大応答加速度 I (基準地震動 S s)

1.2 機器要目

							ℓ1 i (mm) *1	ℓ2 i (m	m) *1		n f	i *1
	部材	m i (kg)	m i (h) (kg)	m i (v) (kg)	h i (mm)	d i (mm)	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	n i	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s
	基礎ボルト						11	75	117	75		5	
	(i = 1)						16	75	205	50		2	
	固定子取付ボルト						11	75	117	75		3	
	(i = 2)						7'	70	88	0		2	
	機関側軸受台下部ベース						69	95	69	5		2	
	取付ボルト(i =3)						1.	50	350	0		2	
	軸受台下部ベース						6'	75	67	5		2	
	取付ボルト(i =4)						18	35	20	5		2	
	機関側軸受台						50	00	50	0		2	
	取付ボルト(i=5)						1:	30	34	0		2	
Ī	軸受台取付ボルト						48	35	48	5		2	
	(i = 6)						18	30	20	0		2	

注記 *1:ボルトにおける上段は軸直角方向転倒に対する評価時の要目を示し,

下段は軸方向転倒に対する評価時の要目を示す。

						転倒之	方向	M_{G} (N	•mm)
部材	A b i (mm²)	Syi (MPa)	Sui (MPa)	F i (MPa)	Fi* (MPa)	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s
基礎ボルト (i=1)		339*1 (40mm<径≦100mm)	556*1 (40mm<径≦100mm)	339	389	軸直角	軸		_
固定子取付ボルト (i=2)		241*1 (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	_
機関側軸受台下部ベース 取付ボルト(i=3)		241*1 (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	_
軸受台下部ベース 取付ボルト(i=4)		241*1 (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	_
機関側軸受台取付ボルト (i=5)] [241*¹ (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	_
軸受台取付ボルト (i =6)		241*1 (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	_

注記 *1:周囲環境温度で算出

P(kW)	N (rpm)	E (MPa)	G (MPa)	I (mm ⁴)	As (mm ²)	A (mm ²)
5295	1000					

1.3 計算数值

1.3.1 ボルトに作用する力

(単位:N)

1.3.1 ホルトに作用す	3 刀		(単位:N)			
	F	bi	Q	bi		
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動 S s		
基礎ボルト						
(i = 1)						
固定子取付ボルト						
(i = 2)						
機関側軸受台下部ベース						
取付ボルト(i=3)						
軸受台下部ベース						
取付ボルト(i =4)						
機関側軸受台取付ボルト						
(i = 5)						
軸受台取付ボルト						
(i = 6)						

1.4.1 ボルトの応力

(単位:MPa)

₩	++401	rt-h	弾性設計用地震動	Sd又は静的震度	基準地別	§動Ss
部材	材料	応力	算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	σ b1= 5	$f_{\rm ts1} = 254^*$	σ b1= 30	$f_{\rm ts1} = 292^*$
(i =1)		せん断	τ b1= 12	$f_{\rm sb1} = 195$	τы= 19	$f_{\rm sb1} = 225$
固定子取付ボルト		引張り	σ b2= 4	$f_{ts2} = 180*$	σ ь2= 16	$f_{\rm ts2} = 205^*$
(i =2)		せん断	τ b2= 6	$f_{\rm sb2} = 139$	τ ы2= 10	$f_{\rm sb2} = 158$
機関側軸受台下部ベース		引張り	σ b3= 44	$f_{ts3} = 180*$	σ ыз= 77	$f_{\rm ts3} = 205^*$
取付ボルト(i=3)		せん断	τ ыз= 14	$f_{\rm sb3} = 139$	τ ыз= 23	$f_{\rm sb3} = 158$
軸受台下部ベース		引張り	σ b4= 23	$f_{ts4} = 180*$	σ ы4= 43	$f_{\rm ts4} = 205^*$
取付ボルト(i=4)		せん断	τ ы4= 7	$f_{\rm sb4} = 139$	τ ы4≡ 11	$f_{\rm sb4} = 158$
機関側軸受台取付ボルト		引張り	σ b5= 31	$f_{\rm ts5} = 180^*$	σ b5= 56	$f_{\rm ts5} = 205^*$
(i = 5)		せん断	τ ь5= 14	$f_{\rm sb5} = 139$	τ ь5= 22	$f_{\rm sb5} = 158$
軸受台取付ボルト		引張り	σ b6= 15	fts6=180*	σ ы6= 31	$f_{\rm ts6} = 205^*$
(i =6)		せん断	τ ы6= 7	$f_{\rm sb6} = 139$	τ ы6= 10	$f_{\rm sb6} = 158$

すべて許容応力以下である。

注記*: f t s i = Min[1.4 · f t o i - 1.6 · τ b i, f t o i]

1.4.2 動的機能の評価結果

(単位:×9.8m/s²)

		機能維持評価用加速度*	機能確認済加速度
₹V ÆF#W CD	水平方向	0. 90	2. 6
発電機 6B	鉛直方向	0.88	1.0

注記*:<mark>設計用最大応答加速度 I (</mark>基準地震動 S s) により定まる応答加速度とする。 機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

2. 重大事故等対処設備

2.1 設計条件

機器名称 設備分類	凯 凚 八 粨	据付場所及び 安備分類 床面高さ (m)	固有周期(s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S s			最高使用温度	周囲環境温度
	放 分 規		水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	よる震度	(℃)	(℃)
発電機 6B	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	原子炉建屋 T. M. S. L. 13. 570 (T. M. S. L. 12. 300*1)			_	_	Сн=1.09 <mark>*</mark> 2	C v=1.05*2		_	50

注記*1:基準床レベルを示す。

*2:設計用最大応答加速度 I (基準地震動 S s)

2.2 機器要目

						ℓ 1 i	(mm) *1	ℓ 2 i (n	m) *1		n f	i *1
部材	m i (kg)	m i (h) (kg)	m i (v) (kg)	h i (mm)	d i (mm)	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	n i	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s
基礎ボルト						11	.75	117	75		5	
(i = 1)						16	375	205	50	J L	2	
固定子取付ボルト						11	.75	117	5		3	
(i = 2)						7	70	88	0		2	
機関側軸受台下部ベース						6	95	69	5		2	
取付ボルト(i=3)						1	50	35	0		2	
軸受台下部ベース						6	75	67	5		2	
取付ボルト(i =4)						1	85	20	5		2	
機関側軸受台						5	00	50	0		2	
取付ボルト(i=5)						1	30	34	0	J L	2	
軸受台取付ボルト						4	85	48	5		2	
(i = 6)						1	80	20	0		2	

注記 *1:ボルトにおける上段は軸直角方向転倒に対する評価時の要目を示し,

下段は軸方向転倒に対する評価時の要目を示す。

						転倒之	方向	M_{G} (N	· mm)
部材	Аьі (mm²)	Syi (MPa)	Sui (MPa)	F i (MPa)	Fi* (MPa)	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト		339*1	556*1	_	389	_	軸	_	_
(i = 1)		(40mm<径≦100mm)	(40mm<径≦100mm)				,,,,		
固定子取付ボルト		241*1	391*1		273		軸		
(i = 2)		(径≦100mm)	(径≦100mm)	_	213		14日		_
機関側軸受台下部ベース		241*1	391*1		273	_	軸	_	
取付ボルト(i=3)		(径≦100mm)	(径≦100mm)		213		平田		
軸受台下部ベース		241*1	391*1		273		軸		
取付ボルト(i =4)		(径≦100mm)	(径≦100mm)	_	213	_	半田		_
機関側軸受台取付ボルト	1	241*1	391*1		273		軸		
(i = 5)		(径≦100mm)	(径≦100mm)	_	213	_	1		_
軸受台取付ボルト	1 [241*1	391*1		273		軸		
(i = 6)		(径≦100mm)	(径≦100mm)		413	_	뫡		_

注記 *1:周囲環境温度で算出

P(kW)	N (rpm)	E (MPa)	G (MPa)	I (mm ⁴)	As (mm ²)	A (mm ²)
5295	1000					

2.3 計算数值

2.3.1 ボルトに作用する力

(単位:N)

2. 3. 1 N/V P (C)P/H 9	(D)			(単位・10)	
	F	P _{bi}	Q	bi	
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	
基礎ボルト (i =1)	_		_		
固定子取付ボルト (i=2)	_		_		
機関側軸受台下部ベース 取付ボルト(i=3)	_		_		
軸受台下部ベース 取付ボルト(i=4)	_		_		
機関側軸受台取付ボルト (i=5)	_		_		
軸受台取付ボルト (i=6)	_		_		

2.4 結論

2.4.1 ボルトの応力

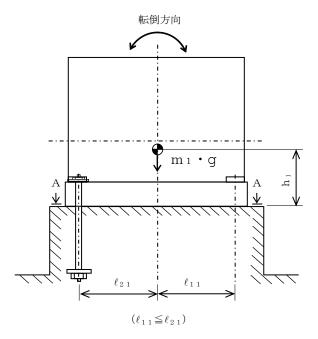
(単位:MPa)

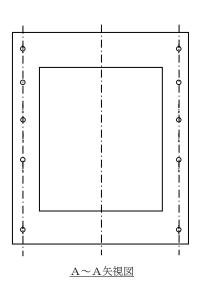
₩	++401	ct to	弾性設計用地震動	Sd又は静的震度	基準地別	통動Ss
部材	材料	応力	算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	_		σ b1= 30	$f_{\rm ts1} = 292^*$
(i =1)		せん断	_		τы= 19	$f_{\rm sb1} = 225$
固定子取付ボルト		引張り	_		σ b2= 16	$f_{\rm ts2} = 205^*$
(i =2)		せん断	_	_	τ b2= 10	$f_{\rm sb2} = 158$
機関側軸受台下部ベース		引張り	_	_	σ ыз= 77	$f_{\text{ts3}} = 205^*$
取付ボルト(i=3)		せん断	_	_	τ ыз= 23	$f_{\rm sb3} = 158$
軸受台下部ベース		引張り	_		σ b4= 43	$f_{\rm ts4} = 205^*$
取付ボルト(i=4)		せん断	_		τ ы4= 11	$f_{\rm sb4} = 158$
機関側軸受台取付ボルト		引張り	_	_	σ b5= 56	$f_{\rm ts5} = 205^*$
(i = 5)		せん断	_	_	τ b5= 22	$f_{\rm sb5} = 158$
軸受台取付ボルト		引張り	_	_	σ b6= 31	$f_{\rm ts6} = 205^*$
(i =6)		せん断	_	_	τ ы6= 10	$f_{\rm sb6} = 158$

すべて許容応力以下である。

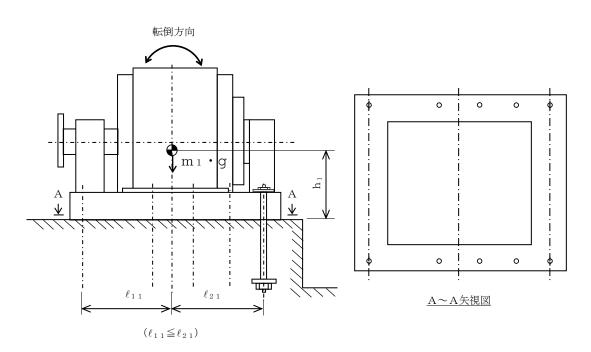
注記*: ftsi= Min[1.4 · ftoi - 1.6 · τ bi, ftoi]

2.4.2 動的機能の評価結果

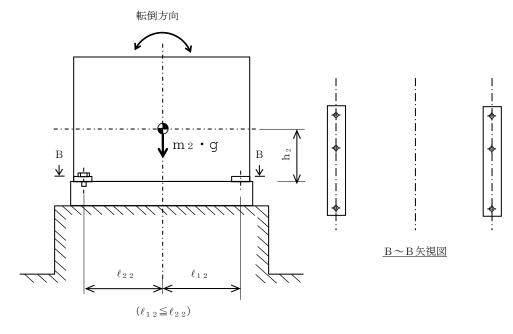

(単位:×9.8m/s²)


		機能維持評価用加速度*	機能確認済加速度
ZV CENTRY CD	水平方向	0.90	2.6
発電機 6B	鉛直方向	0.88	1. 0

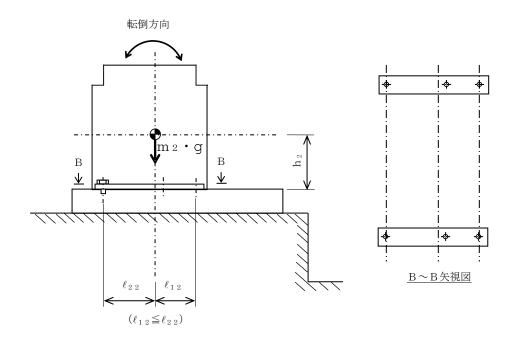
注記*:<mark>設計用最大応答加速度 I (</mark>基準地震動 S s) により定まる応答加速度とする。 機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。


Óο

基礎ボルト

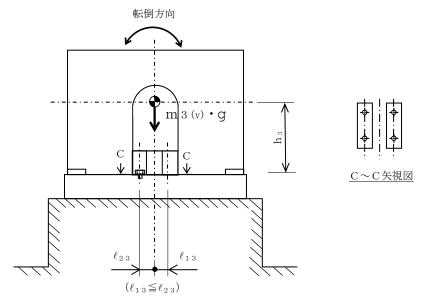


軸直角方向転倒

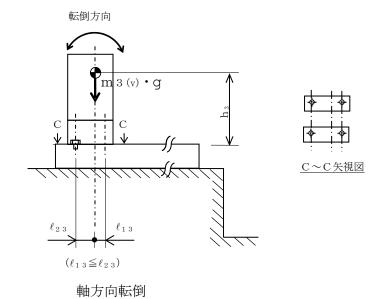


軸方向転倒

固定子取付ボルト

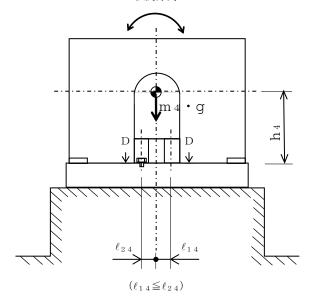


軸直角方向転倒



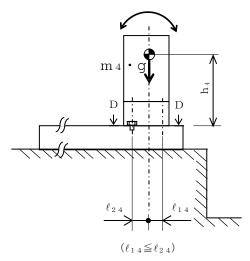
軸方向転倒

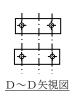
機関側軸受台下部ベース取付ボルト



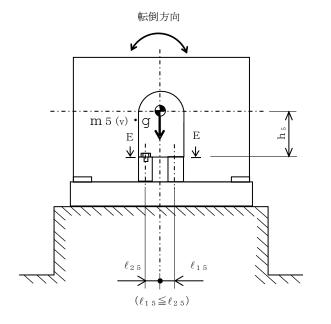
軸直角方向転倒

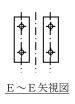
軸受台下部ベース取付ボルト

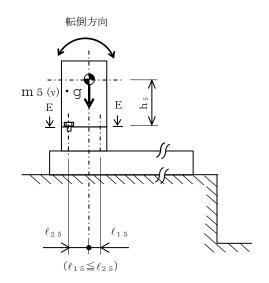

転倒方向



軸直角方向転倒

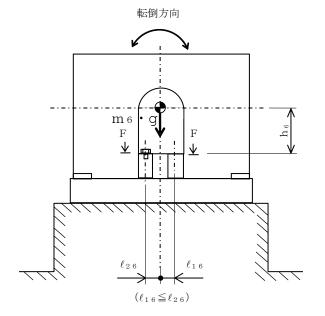

転倒方向




軸方向転倒

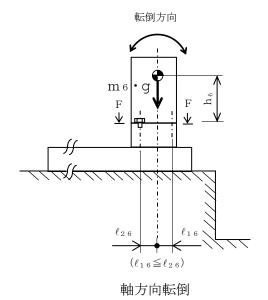
機関側軸受台取付ボルト

軸直角方向転倒



E~E矢視図

軸方向転倒


軸受台取付ボルト

 $F \sim F$ 矢視図

軸直角方向転倒

 $F \sim F$ 矢視図

【発電機 6Cの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

機器名称	耐震重要度	据付場所及び 床面高さ	2	震動Ss	発電機振動に	最高使用温度	周囲環境温度				
按 奋· 4 个	分類		水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	よる震度	(℃)	(℃)
発電機 6C	S	原子炉建屋 T. M. S. L. 13. 570 (T. M. S. L. 12. 300*1)			Сн=0.67 <mark>*2</mark>	$C v = 0.52^{*2}$	Сн=1.09 <mark>*3</mark>	$C v = 1.05^{*3}$		_	50

注記*1:基準床レベルを示す。

*2:設計用最大応答加速度 I (弾性設計用地震動 S d) 又は静的震度

*3:設計用最大応答加速度 I (基準地震動 S s)

1.2 機器要目

							ℓ1 i (mm) *1	ℓ2 i (n	nm) *1		n f	i *1	
部材		m i (kg)	m i (h) (kg)	m i (v) (kg)	h i (mm)	d i (mm)	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	n i	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s	
基礎ボルト							11	75	1175			5		
(i = 1)							1675 1175		205	50		2		
固定子取付ボルト									117	1175		3		
(i = 2)							7	70	88	0		2		
機関側軸受台下部ベース							695		695			2		
取付ボルト(i=3)						L	15	50	35	0		2		
軸受台下部ベース							6	75	67	5		2		
取付ボルト(i=4)						L	18	35	20	5		2		
機関側軸受台							50	00	50	0		2		
取付ボルト(i=5)							1;	30	34	0		2		
軸受台取付ボルト							48	35	48	5		2		
(i = 6)							18	30	20	0		2		

注記 *1:ボルトにおける上段は軸直角方向転倒に対する評価時の要目を示し,下段は軸方向転倒に対する評価時の要目を示す。

						転倒力	方向	M_{G} (N	·mm)
部材	Аьі (mm²)	Syi (MPa)	Sui (MPa)	F i (MPa)	Fi* (MPa)	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s
基礎ボルト (i=1)		339*1 (40mm<径≦100mm)	556*1 (40mm<径≦100mm)	339	389	軸直角	軸		_
固定子取付ボルト (i=2)		241*1 (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	_
機関側軸受台下部ベース 取付ボルト(i=3)		241*¹ (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	_
軸受台下部ベース 取付ボルト(i=4)		241*¹ (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	_
機関側軸受台取付ボルト (i=5)		241*1 (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	
軸受台取付ボルト (i=6)		241*1 (径≦100mm)	391*1 (径≦100mm)	241	273	軸	軸	_	

G (MPa)

注記 *1:周囲環境温度で算出

N (rpm)

1000

P(kW)

5295

1.3 計算数值

1.3.1 ボルトに作用する力

(単位:N)

 $I (mm^4)$

 $As(mm^2)$

 $A (mm^2)$

1. 3. 1 M/V P (C)P/H 9	2/1		(半江・ハ)				
]	Fbi	Q	bi			
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動Ss			
基礎ボルト							
(i = 1)							
固定子取付ボルト							
(i = 2)							
機関側軸受台下部ベース							
取付ボルト(i=3)							
軸受台下部ベース							
取付ボルト(i =4)							
機関側軸受台取付ボルト							
(i = 5)							
軸受台取付ボルト							
(i = 6)							

E (MPa)

1.4 結論

1.4.1 ボルトの応力

(単位:MPa)

₩	++161	¢.	弾性設計用地震動	Sd又は静的震度	基準地別	통動S s
部材	材料	応力	算出応力	許容応力	算出応力	許容応力
基礎ボルト		引張り	σ b1= 5	$f_{\rm ts1} = 254^*$	σ b1= 30	$f_{\text{ts1}} = 292^*$
(i =1)		せん断	τ ы= 12	$f_{\rm sb1} = 195$	τы= 19	$f_{\rm sb1} = 225$
固定子取付ボルト		引張り	σ b2= 4	$f_{\rm ts2} = 180*$	σ ь2= 16	$f_{\rm ts2} = 205^*$
(i = 2)		せん断	τ b2= 6	$f_{\rm sb2} = 139$	τ ы2= 10	$f_{\rm sb2} = 158$
機関側軸受台下部ベース		引張り	σ b3= 44	$f_{\text{ts3}} = 180^*$	σ ыз= 77	$f_{\text{ts3}} = 205^*$
取付ボルト(i=3)		せん断	τ ыз= 14	$f_{\rm sb3} = 139$	τ ыз= 23	$f_{\rm sb3} = 158$
軸受台下部ベース		引張り	σ b4= 23	$f_{\rm ts4} = 180^*$	σ ы4= 43	$f_{\text{ts4}} = 205^*$
取付ボルト(i =4)		せん断	τ ы4= 7	$f_{\rm sb4} = 139$	τ ы4≡ 11	$f_{\rm sb4} = 158$
機関側軸受台取付ボルト		引張り	σ b5= 31	$f_{\rm ts5} = 180^*$	σ ь5= 56	$f_{\rm ts5} = 205^*$
(i =5)		せん断	τ b5= 14	$f_{\rm sb5} = 139$	τ ы5= 22	$f_{\rm sb5} = 158$
軸受台取付ボルト		引張り	σ b6= 15	$f_{\rm ts6} = 180^*$	σ ы6= 31	$f_{\rm ts6} = 205^*$
(i =6)		せん断	τ ы6= 7	$f_{\rm sb6} = 139$	τ ы6= 10	$f_{\rm sb6} = 158$

すべて許容応力以下である。

注記 $*: f_{t s i} = Min[1.4 \cdot f_{t o i} - 1.6 \cdot \tau_{b i}, f_{t o i}]$

1.4.2 動的機能の評価結果

(単位:×9.8m/s²)

	- H		(1 == 1 - 1 - 1 - 7
		機能維持評価用加速度*	機能確認済加速度
秋春₩ cc	水平方向	0.90	2.6
発電機 6C	鉛直方向	0.88	1.0

注記*: 設計用最大応答加速度 I (基準地震動 S s) により定まる応答加速度とする。 機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

2. 重大事故等対処設備

2.1 設計条件

機器名称	凯供八辂	据付場所及び	固有周	期(s)	弾性設計用 又は静	地震動Sd 的震度	基準地別	雲動Ss	発電機振動に	最高使用温度	周囲環境温度
 	設備分類	床面高さ (m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	よる震度	(°C)	(℃)
発電機 6C	常設/防止 (DB 拡張) 常設/緩和 (DB 拡張)	原子炉建屋 T. M. S. L. 13. 570 (T. M. S. L. 12. 300*1)			_	_	Сн=1.09 <mark>*2</mark>	C v=1.05*2		_	50

注記*1:基準床レベルを示す。

*2:設計用最大応答加速度 I (基準地震動 S s)

2.2 機器要目

							ℓ1 i (mm) *1	ℓ2 i (m	m) *1		n f	i *1
部材	m i (kg)	m i (h) (kg)	m i (v) (kg)	h i (mm)	d i (mm)		弾性設計用 地震動Sd 又は静的震度	基準地震動 S s	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	n i	弾性設計用 地震動Sd 又は静的震度	基準地震動 S s
基礎ボルト							11	75	117	75		5	
(i = 1)							16	75	205	50		2	
固定子取付ボルト							lL	1175		117	'5		2 3 2
(i = 2)							770		88	0		2	2
機関側軸受台下部ベース						lL	69	95	69	5		2	
取付ボルト(i =3)							15	50	35	0		2	
軸受台下部ベース						lL	67	75	67	5		2	
取付ボルト(i =4)							18	35	20	5		2	
機関側軸受台						lL	50	00	50	0		2	
取付ボルト(i =5)							13	30	34	0		2	
軸受台取付ボルト							48	35	48	5		2	
(i = 6)							18	30	20	0		2	

注記 *1: ボルトにおける上段は軸直角方向転倒に対する評価時の要目を示し、

下段は軸方向転倒に対する評価時の要目を示す。

						転倒之	方向	M_{G} (N	· mm)
部材	Аьі (mm²)	Sуі (MPa)	Sui (MPa)	F i (MPa)	Fi* (MPa)	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s	弾性設計用 地震動 S d 又は静的震度	基準地震動 S s
基礎ボルト		339*1	556*1	_	389	_	軸	_	_
(i =1)		(40mm<径≦100mm)	(40mm<径≦100mm)						
固定子取付ボルト		241*1	391*1		273		軸		
(i = 2)		(径≦100mm)	(径≦100mm)	_	213		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	_	_
機関側軸受台下部ベース		241*1	391*1		273		軸		
取付ボルト(i=3)		(径≦100mm)	(径≦100mm)		213		平田		
軸受台下部ベース	1	241*1	391*1		273		軸		
取付ボルト(i =4)		(径≦100mm)	(径≦100mm)	_	213		半田		_
機関側軸受台取付ボルト	1 1	241*1	391*1		273		軸		
(i = 5)		(径≦100mm)	(径≦100mm)	_	213	_	甲田	_	_
軸受台取付ボルト	1	241*1	391*1		979		軸		
(i = 6)		(径≦100mm)	(径≦100mm)		273	_	料		_

注記 *1:周囲環境温度で算出

P(kW)	N (rpm)	E (MPa)	G (MPa)	I (mm ⁴)	As (mm ²)	A (mm ²)
5295	1000					

2.3 計算数值

2.3.1 ボルトに作用する力

(単位:N)

2.3.1 M/V P (CTP/TT 9	(D)		(平世·N)					
	F	e bi	Q	bi				
部材	弾性設計用地震動 Sd又は静的震度	基準地震動 S s	弾性設計用地震動 Sd又は静的震度	基準地震動 S s				
基礎ボルト (i=1)	_		_					
固定子取付ボルト (i=2)	_		_					
機関側軸受台下部ベース 取付ボルト(i=3)	_		_					
軸受台下部ベース 取付ボルト(i=4)	_		_					
機関側軸受台取付ボルト (i=5)	_		_					
軸受台取付ボルト (i=6)	_		_					

2.4 結論

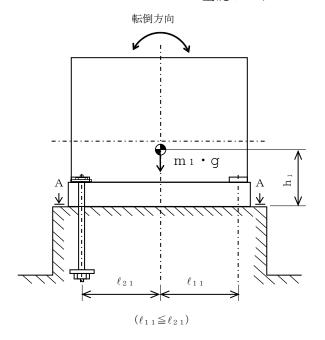
2.4.1 ボルトの応力

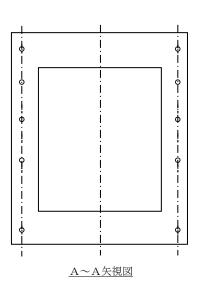
(単位:MPa)

部材	材料	応力	弾性設計用地震動Sd又は静的震度		基準地震動 S s	
			算出応力	許容応力	算出応力	許容応力
基礎ボルト (i =1)		引張り	_	_	σ b1= 30	$f_{\rm ts1} = 292^*$
		せん断	_	_	τы= 19	$f_{\rm sb1} = 225$
固定子取付ボルト (i=2)		引張り	_	_	σ b2= 16	$f_{\rm ts2} = 205^*$
		せん断	_	_	τ ы2= 10	$f_{\rm sb2} = 158$
機関側軸受台下部ベース 取付ボルト(i=3)		引張り	_	_	σ ыз= 77	$f_{\rm ts3} = 205^*$
		せん断	_	_	τ ыз= 23	$f_{\rm sb3} = 158$
軸受台下部ベース 取付ボルト(i =4)		引張り	_	_	σ b4= 43	$f_{\rm ts4} = 205^*$
		せん断	_	_	τ ы4≡ 11	$f_{\rm sb4} = 158$
機関側軸受台取付ボルト (i=5)		引張り	_	_	σ b5= 56	$f_{\rm ts5} = 205^*$
		せん断	_	_	τ ь5= 22	$f_{\rm sb5} = 158$
軸受台取付ボルト (i=6)		引張り	_	_	σ ь6= 31	$f_{\rm ts6} = 205^*$
		せん断			τ ы6= 10	$f_{\rm sb6} = 158$

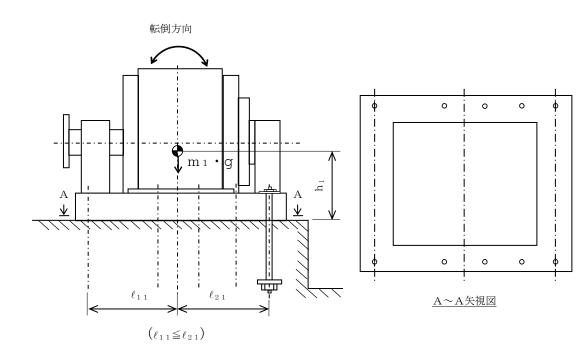
すべて許容応力以下である。

注記*: ftsi= Min[1.4 · ftoi - 1.6 · τ bi, ftoi]


2.4.2 動的機能の評価結果


(単位:×9.8m/s²)

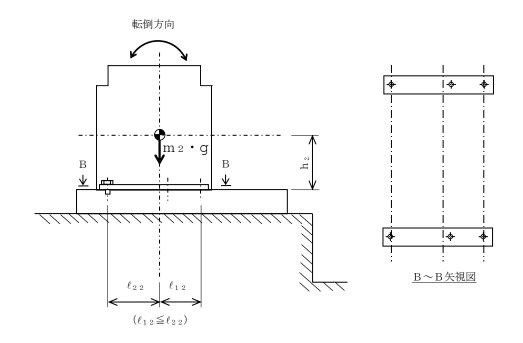
		機能維持評価用加速度*	機能確認済加速度
発電機 6C	水平方向	0.90	2.6
	鉛直方向	0.88	1.0


注記*:<mark>設計用最大応答加速度 I (</mark>基準地震動 S s) により定まる応答加速度とする。 機能維持評価用加速度(1.0・ZPA)はすべて機能確認済加速度以下である。

基礎ボルト

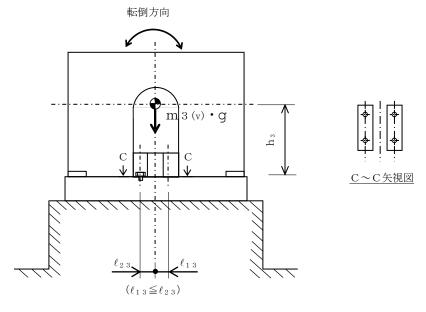


軸直角方向転倒

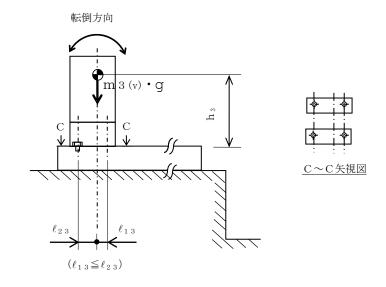


軸方向転倒

固定子取付ボルト

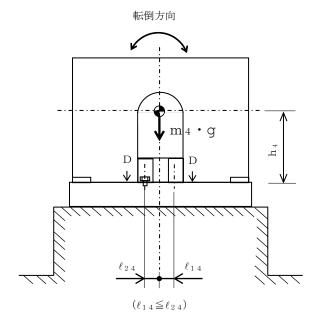


軸直角方向転倒

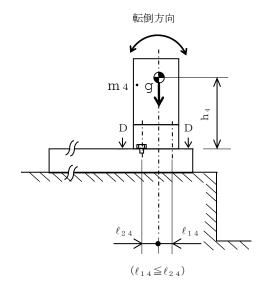


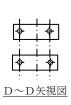
軸方向転倒

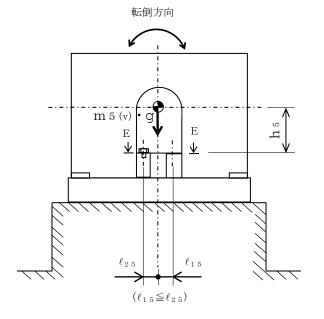
機関側軸受台下部ベース取付ボルト

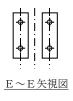


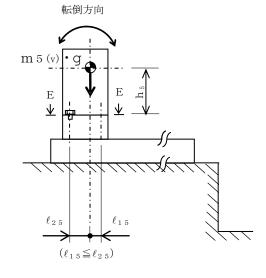

軸直角方向転倒


軸方向転倒


軸受台下部ベース取付ボルト

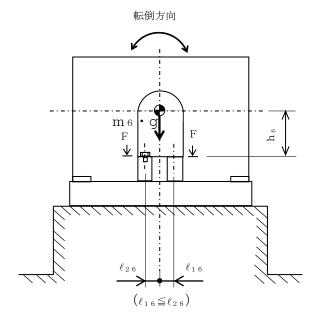

軸直角方向転倒




軸方向転倒

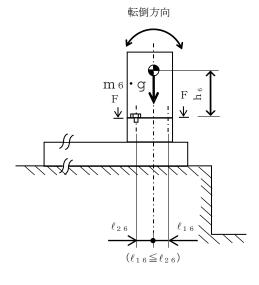
機関側軸受台取付ボルト

軸直角方向転倒



E~E矢視図

軸方向転倒


軸受台取付ボルト

 $F \sim F$ 矢視図

軸直角方向転倒

 $F \sim F$ 矢視図

軸方向転倒