本資料のうち、枠囲みの内容		柏崎刈羽原子力発電所第6号機 工事計画審査資料		
は,機密事項に属しますので公		資料番号	KK6 補足-027-2 改 0	
開できません。		提出年月日	2023年11月2日	

資料2 軽油タンク基礎の耐震安全性評価

2023年11月

東京電力ホールディングス株式会社

1.	軽油タンク基礎の耐震安全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	$1\!-\!1$
2.	軽油タンク基礎(7 号機設備)の耐震安全性評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2 - 1

1. 軽油タンク基礎の耐震安全性評価

目 次

1.	概要 · · · · · · · · · · · · · · · · · · ·
2.	7 号工認からの変更点 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3.	地震応答解析モデルへの反映・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	3.1 追加改良体のモデル化 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.	耐震評価に対する追加改良体の影響確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.1 評価項目,解析ケース及び地震動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	4.2 評価結果
	4.3 追加改良体の耐震評価に対する影響について
5.	まとめ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

参考資料

(参考資料1-1)	付帯設備の耐震評価	(参考) 1-1-	-1
(参考資料 1-2)	静的地震力に対する耐震評価	(参考) 1-2-	-1
(参考資料1-3)	非常用ディーゼル発電設備燃料移送ポンプ防護板の		
	重量増加及び形状拡大の影響について	(参考) 1-3-	-1

1. 概要

本資料は,軽油タンク基礎の地震応答計算及び耐震評価についての内容を補足するものである。 軽油タンク基礎は,設計基準対象施設においては,Sクラス施設の間接支持構造物である屋外重 要土木構造物に,重大事故等対処施設においては,常設耐震重要重大事故防止設備及び常設重大 事故緩和設備が設置される重大事故等対処施設に分類されており,耐震評価は,基準地震動Ss に対する構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

軽油タンク基礎は、令和2年10月14日付け原規規発第2010147号にて認可された柏崎刈羽原 子力発電所第7号機の設計及び工事の計画(以下「7号工認」という。)において、常設耐震重要 重大事故防止設備及び常設重大事故緩和設備が設置される重大事故等対処施設に分類されており、 基準地震動Ssに対する構造部材の健全性評価及び基礎地盤の支持性能評価を実施していること から、軽油タンク基礎の地震応答計算及び耐震評価に関する説明は、7号工認の説明資料「屋外 重要土木構造物の耐震性についての計算書(KK7補足-027) 資料2 軽油タンク基礎の耐震安全 性評価)」のうち「2. 軽油タンク基礎(6号機設備)の耐震安全性評価」に示す、基準地震動S sによる耐震評価による。

- 2. 7 号工認からの変更点
- 2.1 追加検討の概要

今回の柏崎刈羽原子力発電所第6号機の設計及び工事の計画認可申請では,軽油タンク基礎の周辺構造物である大物搬入建屋に対し,地盤改良工事が計画されている。「VI-2-2-17 軽油 タンク基礎の地震応答計算書」では上記の大物搬入建屋に対する追加地盤改良体を反映した解 析モデルを使用して計算を実施しているが,「VI-2-2-18 軽油タンク基礎の耐震性についての 計算書」では構造物の耐震評価に対する保守性を考慮し,7号工認添付資料「V-2-2-23 軽油 タンク基礎(6号機設備)の地震応答計算書」に示した地震応答解析結果を用いて耐震評価を 実施している。

本資料では,軽油タンク基礎の7号工認からの変更点及びその変更点の地震応答解析モデル に対する反映方法を示すとともに,7号工認からの変更を踏まえた耐震評価を実施し,その影響を確認する。

2.2 7号工認からの変更点の概要

軽油タンク基礎周辺の7号工認からの変更点を図 2-1に、変更点を踏まえた軽油タンク基礎周辺の地盤改良体の割当図を図 2-2に示す。軽油タンク基礎に隣接する大物搬入建屋の耐 震強化工事として、周辺地盤に対して西山層深さまでの地盤改良工事を計画しており、その新 設地盤改良体(無筋コンクリート)のうち、図 2-2において赤破線で囲まれた範囲(以下「追 加改良体」という。)が軽油タンク基礎B-B断面のモデル化範囲に含まれる。

(単位:mm)

図 2-1 軽油タンク基礎周辺の7号工認からの変更点

D PN

(単位:mm)

注 :置換工法(CD 掘削)の施工範囲の内, 地上構造物及び埋設構造物がある箇所 では,高圧噴射を適用

既設/新設	凡例	地盤改良工法	
既設地盤改良体		置換(CD掘削)	
新設地盤改良体		置換(CD掘削)	
		置換(開削)	
		高圧噴射	
		無筋コンクリート	

図 2-2 7号工認からの変更を反映した地盤改良体の割当図

3. 地震応答解析モデルへの反映

「VI-2-2-17 軽油タンク基礎の地震応答計算書」では、「2.7号工認からの変更点」で示した追加改良体を反映した解析モデルを用いて地震応答解析を実施している。本章では、追加改良体の地震応答解析モデルへの反映方法について説明する。

なお,追加改良体を反映するB-B断面の地震応答解析モデル以外の解析手法及び諸条件は, 7 号工認補足説明資料「屋外重要土木構造物の耐震性についての計算書(KK7 補足-027) 資料2 軽油タンク基礎の耐震安全性評価」のうち,「2. 軽油タンク基礎(6 号機設備)の耐震安全性評価」による。

3.1 追加改良体のモデル化

軽油タンク基礎B-B断面の地震応答解析モデルに追加改良体を反映する。追加改良体は, 改良率を考慮し,解析奥行幅に応じた等価剛性を設定し,オーバーラップでモデル化する。オ ーバーラップでモデル化する範囲を図 3-1に,オーバーラップ部を含めたB-B断面の解析 モデル図を図 3-2に,追加改良体の配置を考慮した解析用物性値を表 3-1に示す。

オーバーラップでモデル化する範囲(以下「オーバーラップ部」という。)と、それ以外の 範囲(以下「主体部」という。)の境界には、表 3-2に示す境界条件を設定し、地震時の境界 部における剥離、すべり及び定着を考慮する。なお、オーバーラップ部と主体部が解析奥行方 向に重なる場合は、その境界面を自由境界とする。

	既設/新設	新設地盤改良体		
	種別(地盤種別	無筋コンクリート		
物理	密度	ρ	(g/cm^3)	2.17
特性	間隙率	n		_*
	動せん断弾性係数	$G_{\mathtt{ma}}$	(kN/m²)	6.68×10^{6}
変形	基準平均有効拘束圧	σ_{ma}	(kN/m²)	_*
特性	ポアソン比	ν		0.20
	減衰定数の上限値	h_{max}		-*
強度特性	粘着力	с	(kN/m²)	_*

表 3-1 追加改良体の配置を考慮した解析用物性値

注記* :線形弾性体としてモデル化することから設定しない

図 3-1 オーバーラップでモデル化する範囲

図 3-2 追加地盤改良体を反映したB-B断面の解析モデル図

条件	境界条件
	節点共有
地盤と地盤改良体	ジョイント要素*

表 3-2 オーバーラップ部と主体部の境界条件

注記*:7号工認補足説明資料「屋外重要土木構造物の耐震性についての計算 書(KK7補足-027) 資料2 軽油タンク基礎の耐震安全性評価」の 「2. 軽油タンク基礎(6号機設備)の耐震安全性評価」のうち 「3.2.7 ジョイント要素の設定」参照。 4. 耐震評価に対する追加改良体の影響確認

構造物に対する地盤改良工事は,一般に変形抑制効果を期待して実施される。今回対象として いる追加改良体も,大物搬入建屋に対する変形抑制を期待して設置されるものであるが,その変 形抑制効果は隣接する軽油タンク基礎に対しても発揮されると考えられる。本章では,軽油タン ク基礎の耐震評価について,「3. 地震応答解析モデルへの反映」に示す追加改良体を反映した 地震応答解析結果に基づく耐震評価を「追加ケース」として実施し,その影響について確認する。

なお,解析手法及び評価手法は,7 号工認補足説明資料「屋外重要土木構造物の耐震性についての計算書(KK7 補足-027) 資料2 軽油タンク基礎の耐震安全性評価」のうち「2. 軽油タン ク基礎(6 号機設備)の耐震安全性評価」による。

4.1 評価項目,解析ケース及び地震動

7 号工認における地震応答解析結果を用いた評価結果を「基本ケース」とし、基本ケースの 各評価項目について照査値が最大となる解析ケース及び地震動を用いて影響確認の追加ケース を実施する。影響確認の追加ケースの評価項目,解析ケース及び地震動を表 4-1 に示す。

評価対象	断面	評価項目	解析ケース	地震動
		曲げ軸力照査	1	Ss-1-+
鉄筋コンクリート部材		せん断力照査	1	Ss-1+-
		曲げ軸力照査	3	Ss-1-+
鳓管杭	B-B) 上 国 四	せん断力照査	3	Ss-1++
甘甜瓜煎瓜		押込み照査	1	Ss-1
基礎地盤の文持性能	B-B断面	引抜き照査	1	Ss-1+-

表 4-1 影響確認の評価項目,解析ケース及び地震動

		1	2	3	4	5
解析ぐ	ケース	基本ケース	地盤物性のば らつき(+1σ) を考慮した解 析ケース	地盤物性のば らつき(-1σ) を考慮した解 析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性の らき(+1 の を考慮して 液状化の条 を仮定した 析 ケース
地盤圖	削性の	地盤剛性	地盤剛性	地盤剛性	地盤剛性	地盤剛性
設	:定	(平均値)	(+1 σ)	(-1 \sigma)	(平均値)	(+1σ)
液状(と強度	液状化強度	液状化強度	液状化強度	液状化パラメ	液状化パラメ
特性の	の設定	特性(-1σ)	特性(-1σ)	特性(-1σ)	ータを非適用	ータを非適用

4.2 評価結果

4.2.1 鉄筋コンクリート部材に対する評価結果

鉄筋コンクリート部材の曲げ軸力照査の比較を表 4-2に,鉄筋コンクリート部材のせん断力照査の比較を表 4-3に示す。曲げ軸力照査では基本ケースの照査用圧縮ひずみが106.79µ,追加ケースの照査用圧縮ひずみが106.11µであり,追加ケースは基本ケースと比べて発生ひずみが減少したが,照査値の変化は丸めの範囲に収まる結果となった。せん断力照査においても同様に,追加ケースは基本ケースと比べて発生力が減少したが,照査値の変化は丸めの範囲に収まる結果となった。

検討ケース照査用圧縮ひずみ*
 $\epsilon_{d}(\mu)$ 限界ひずみ
 $\epsilon_{r}(\mu)$ 照査値
 $\epsilon_{d}/\epsilon_{r}$ 基本ケース107100000.02追加ケース107100000.02

表 4-2 鉄筋コンクリート部材の曲げ軸力照査の比較

注記* : 照査用圧縮ひずみ ε d = 圧縮縁の発生ひずみ ε × 構造解析係数 γ a

検討な、フ	照査用せん断力*	せん断耐力	照査値
検討ケース	V_{d} (kN)	V_{yd} (kN)	$V_{d} \neq V_{y d}$
基本ケース	511	1920	0.27
追加ケース	510	1921	0. 27

表 4-3 鉄筋コンクリート部材のせん断力照査の比較

注記* :照査用せん断力V_d=発生せん断力×構造解析係数γ_a

4.2.2 鋼管杭に対する評価結果

鋼管杭の曲げ軸力照査の比較を表 4-4に,鋼管杭のせん断力照査の比較を表 4-5に 示す。鋼管杭の曲げ軸力照査の追加ケースは基本ケースと比べて発生曲率が大きくなった が,発生軸力の変化により許容限界も大きくなり,照査値が改善する結果となった。せん 断力照査の追加ケースは,基本ケースと比べて発生力が減少し,照査値が改善する結果と なった。

			2010	
検討ケース	評価位置	照査用曲率* φ _d (1/m)	降伏モーメント に対する曲率 φ _y (1/m)	照査値 φ d/φ y
基本ケース	9 (肉厚 9mm の杭)	1.58×10^{-3}	1.75×10^{-3}	0.91
追加ケース	9 (肉厚 9mm の杭)	1.78×10^{-3}	2. 06×10^{-3}	0.87

表 4-4 鋼管杭の曲げ軸力照査の比較(B-B断面)

注記* : 照查用曲率 ϕ_d = 発生曲率×構造解析係数 γ_a

評価位置

	亚在位置	照査用せん断力*	終局せん断強度	照査値
使 割 ク 一 ス	計111111月	Q_{d} (kN)	Q_u (kN)	$Q_{d} \swarrow Q_{u}$
基本ケース	15 (肉厚 14mm の杭)	1467	1977	0.75
追加ケース	15 (肉厚 14mm の杭)	1416	1977	0.72

表 4-5 鋼管杭のせん断力照査の比較(B-B断面)

注記* :照査用せん断力 Q_d =発生せん断力×構造解析係数 γ_a

4.2.3 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能に対する押込み照査の比較を表 4-6に,引抜き照査の比較を表 4 -7に示す。押込み照査の追加ケースについては,基本ケースと比べて最大鉛直力が減少 したが,照査値は丸めの範囲に収まる結果となった。引抜き照査の追加ケースについては, 基本ケースと比べて引抜き力が増加したが,許容限界は満足する結果となった。

表 4-6 基礎地盤の押込み照査の比較(B-B断面)

松手を、フ	亚価位置	最大鉛直力	終局鉛直支持力*	照查值
(東計) 2 二 八	計测江里	R_{a} (kN)	R_{ua} (kN)	R_a / R_{ua}
基本ケース	l (肉厚 14mm の杭)	1818	6617	0.28
追加ケース	1 (肉厚 14mm の杭)	1807	6617	0.28

注記* :終局鉛直支持力Rua=極限支持力Ru÷安全率

評価位置

ゆきたーフ	亚在位墨	引抜き力	終局引抜き力*	照查値
検討クース	F平1111112.1直。	P_{a} (kN)	P _{ua} (kN)	P a / P u a
基本ケース	1 (肉厚 14mm の杭)	1973	2450	0.81
追加ケース	1 (肉厚 14mm の杭)	2033	2450	0.83

表 4-7 基礎地盤の引抜き照査の比較(B-B断面)

注記* :終局引抜き力Pua=極限引抜き力Pu÷安全率

- 4.3 追加改良体の耐震評価に対する影響について
 - 影響確認の結果,鉄筋コンクリート部材及び鋼管杭は,曲げ軸力照査及びせん断力照査共に 照査値が改善することを確認できた。この結果は,追加改良体の変形抑制効果が軽油タンク基 礎に対しても発揮されたためだと考えられる。基礎地盤の支持性能については,押込み照査の 追加ケースにおいては,基本ケースと比べて最大鉛直力が減少したが,照査値は丸めの範囲に 収まる結果となった。引抜き照査の追加ケースにおいては,基本ケースと比べて引抜き力の増 加が見られたものの,追加改良体による影響は軽微であり,許容限界を満足する結果となった。
- 5. まとめ

本資料では、7 号工認からの変更点である追加改良体の地震応答解析モデルへの反映方法,及 び耐震評価において追加改良体を反映した際の影響を確認した。影響検討の結果から,追加改良 体を考慮した耐震評価においても照査値を満足することを確認した。 軽油タンク基礎の耐震安全性評価に関する参考資料

(参考資料 1-1)	付帯設備の耐震評価	(参考)1-1-1
(参考資料1-2)	静的地震力に対する耐震評価	(参考) 1-2-1
(参考資料1-3)	非常用ディーゼル発電設備燃料移送ポンプ防護板の	
	重量増加及び形状拡大の影響について	(参考) 1-3-1

1. 概要

本項では,軽油タンク基礎の付帯設備のうち,Sクラス施設を間接支持する機能を有する張出 しダクト,張出し基礎及び防油堤が,基準地震動Ssに対して十分な構造強度を有していること を確認する。評価対象とする付帯設備を図 1-1 に,各付帯設備の断面図を図 1-2~図 1-4 に 示す。

凡例	設備名称	Sクラス施設
	- 非山 し ゲ カ し	非常用ディーゼル発電設備
	張田 Uダ ク ト 	燃料油系配管
	張出し基礎	燃料移送ポンプ
	R士 \int +目	非常用ディーゼル発電設備
	防油堤	燃料油系配管

図 1-1 評価対象とする付帯設備

図 1-2 張出しダクト断面図 (a-a 断面)

図 1-3 張出し基礎断面図(b-b 断面)*

注記* : c-c 断面の断面形状は b-b 断面と同様であるため, c-c 断面を省略。

(単位:mm)

図 1-4 防油堤断面図

2. 評価方針

軽油タンク基礎の付帯設備の耐震評価は、「VI-2-2-17 軽油タンク基礎の地震応答計算書」よ り得られた応答値を用いて、2次元静的応力解析に基づく構造部材の健全性評価により行う。耐 震評価フローを図 2-1に示す。2次元静的応力解析には解析コード「TDAPⅢ(Ver.3.11)」 を用いる。

各付帯設備の評価項目を表 2-1 に示す。

図 2-1 耐震評価フロー

付帯設備	評価項目	適用規格	評価内容
		原子力発電所屋外重要土木構	限界層間変形角を設定した上で,
	曲げ軸力	造物の耐震性能照査指針・マニ	発生層間変形角が限界層間変形角
張出しダクト		ュアル(2005 年)	以下であることを確認する*。
	1上) 座山	コンクリート標準示方書 [構造	発生せん断力が終局せん断強度以
	せん断刀	性能照查編] (2002年)	下であることを確認する*。
	曲げ軸力		発生曲げモーメントが終局曲げ耐
		コンクリート標準示方書 [構造	力以下であることを確認する*。
	せん断力	性能照査編] (2002年)	発生せん断力が終局せん断強度以
			下であることを確認する*。
防油堤	曲げ軸力		発生曲げモーメントが終局曲げ耐
		コンクリート標準示方書 [構造	力以下であることを確認する*。
		性能照査編] (2002年)	発生せん断力が終局せん断強度以
	せん断刀		下であることを確認する*。

表 2-1 付帯設備の評価項目

注記 *:妥当な安全余裕を考慮する。

3. 耐震評価

- 3.1 張出しダクト
 - 3.1.1 構造概要

張出しダクトは、非常用ディーゼル発電設備燃料油系配管を間接支持する構造物である。
張出しダクトは、耐震補強工事として頂版と軽油タンク基礎版との間の増厚を実施している。
また、側壁のうち上部の範囲は、後施エプレート定着型せん断補強鉄筋(Post-Head-bar)工法(以下「PHb工法」という。)によるせん断補強を実施している。
張出しダクトの構造図を図 3-1に、概略配筋図を図 3-2に、PHb工法による補強仕様を図 3-3に示す。

図 3-1 張出しダクトの構造図

図 3-3 張出しダクトのPHb工法による補強仕様

(参考) 1-1-6

3.1.2 解析モデル

図 3-1に示す構造図に基づき,張出しダクトの解析モデルを図 3-4に示すとおり設定 する。ダクト躯体を非線形はり要素でモデル化し,隅角部にはコンクリート標準示方書に 基づき剛域を設定する。モデルは各部材の軸線でモデル化することを基本とするが,頂版 については,増厚部のみの軸線でモデル化する。頂版の剛性及び強度は保守的に増厚部の みで算定し,既設の範囲については質量のみを考慮する。また,軽油タンク基礎版と結合 している範囲は剛域とし,上端部は固定とする。解析奥行幅は単位奥行幅(1m)として設 定する。

図 3-4 張出しダクトの解析モデル

3.1.3 材料特性

(1) 使用材料

耐震評価に用いる材料定数は,建設時の設計値に基づき設定する。使用材料を表 3-1 に、材料物性値を表 3-2 に示す。

表 3-1 使用材料

材料	諸元
コンクリート	設計基準強度 23.5 N/mm ²
鉄筋	SD35 (SD345 相当)

表 3-2 材料物性值

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	23.5*	2. $45 \times 10^{4*}$	0.2*

注記*:建設時の設計値に基づく

(2) 鉄筋コンクリートの非線形特性

鉄筋コンクリート部材は、図 3-5~図 3-7 に示す非線形特性及び履歴特性を考慮する。

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用)
 図 3-5 鉄筋コンクリート部材のM-φ関係

(1) コンクリートの応力-ひずみ関係

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用)

図 3-6 構造部材の非線形特性

(道路橋示方書(V耐震設計編)・同解説(平成14年3月)に一部加筆) 図 3-7 鉄筋コンクリート部材の履歴特性

3.1.4 照查用震度

張出しダクトの照査用震度は,軽油タンク基礎の地震応答解析(A-A断面)より得られる応答加速度から設定する。加速度の抽出位置は,張出しダクト頂版が軽油タンク基礎版の南面と剛結していることから,図 3-8に示す各節点を加速度抽出位置とする。

照査用震度設定のための解析ケースは,地中構造物である張出しダクトに対して支配的 な荷重である土圧及び水圧に着目し,軽油タンク基礎で照査を実施した全解析ケースのう ち,土圧及び水圧の合力が最大となる解析ケースとする。

当該解析ケースにおいて,全時刻歴における加速度抽出節点の平均加速度の最大値から, 水平及び鉛直方向それぞれの照査用震度を設定する。設定した照査用震度を表 3-3 に示 す。

図 3-8 照査用震度を設定するための加速度抽出位置

表	3 -	3	照査用震度の設定

加振方向	解析ケース	地震動	照査用震度
水平	1	Ss-1-+	0.95
鉛直	1)	Ss-1-+	0.71

3.1.5 考慮する荷重

(1) 荷重の種類
 張出しダクトの耐震評価において考慮する荷重を表 3-4 に示す。

区分	種別	考慮する荷重		
主荷重	固定荷重	自重		
	積載荷重	配管荷重,積雪荷重		
	常時土圧	ダクト側壁に作用する常時土圧		
	常時水圧	ダクト側壁、底版に作用する常時水圧		
・ 地震時 の影響	地震荷重	ダクト躯体、配管に作用する慣性力、積雪荷重		
	地震時土圧	ダクト側壁に作用する地震時土圧		
	地震時水圧	ダクト側壁に作用する地震時水圧		

表 3-4 考慮する荷重

- (2) 荷重の設定
 - a. 固定荷重

自重は、鉄筋コンクリートの単位体積重量に基づき設定する。

b. 積載荷重

積載荷重のうち配管荷重は,設計図書に基づき 1.37kN/m²とし,ダクト北側壁に分布 荷重として作用させる。積雪荷重は,VI-1-1-3「発電用原子炉施設の自然現象等による 損傷の防止に関する説明書」のうち,VI-1-1-3-1-1「発電用原子炉施設に対する自然現 象等による損傷防止に関する基本方針」に従い,積雪厚さ 115.4cm,積雪厚さ 1cm あた りの荷重を 29.4N/cm・m²とし,頂版に 3.39kN/m²の分布荷重として設定する。積載荷重 の作用位置を図 3-9 に示す。

c. 土圧及び水圧

張出しダクト側壁に作用する土圧及び水圧は,鉄筋コンクリート部材に作用する土圧 及び水圧として,地震応答解析モデルにおける基礎版側面に接する地盤要素及び間隙水 要素の要素応力から算定する。土圧及び水圧の抽出位置を図 3-10 に示す。

要素応力を抽出するための解析ケースは、「3.1.4 照査用震度」に示す選定ケースと 同様とし、軽油タンク基礎の照査を実施した全解析ケースのうち、土圧及び水圧の合力 が最大となる解析ケースから、全時刻歴における最大値をモデルに作用させる。土圧及 び水圧の算定結果を表 3-5 に示す。また、張出しダクト底面には常時分の水圧を作用 させる。

算定した土圧及び水圧は「3.1.6 載荷方向」に示すとおり作用させる。

図 3-10 張出しダクト側壁に作用する土圧及び水圧の抽出位置

表 3-5 土圧及び水圧の算定結果

解析ケース	地震動	地震時土圧 (kN/m ²)	地震時水圧 (kN/m ²)	計 (kN/m²)
\bigcirc	Ss-1-+	0.6	32.9	33.6

なお,図 3-11 に土圧及び水圧を抽出した解析ケースにおける鉛直方向及び水平方向 の最大圧縮応力の分布図を示す。図 3-11 に示すとおり,基礎版底面に対して地震に伴 う極端な地盤反力は生じていない。

また, 張出しダクト底版からの土圧は, 張出しダクト全体の変形を抑制するように作 用するため, 耐震評価上の保守的な配慮として, 基礎版本体と同様に張出しダクト底版 に土圧は考慮しない。

鉛直方向

水平方向

図 3-11 最大圧縮応力分布図 (A-A断面,解析ケース①,地震動 Ss-1-+)

(参考) 1-1-13

d. 地震荷重

ダクト躯体及び配管の自重に照査用震度を乗じた慣性力とする。

3.1.6 載荷方向

水平方向については,保守的に躯体の変形を大きく算定するため,慣性力,土圧及び水 圧を同一方向に載荷する。鉛直方向については,慣性力が上向き,または下向きに作用す る場合を考慮し,水平及び鉛直方向の組合せを踏まえた計4ケースを実施する。なお,各 ケースともに底版に作用する常時水圧を考慮する。載荷ケース一覧を表 3-6,各ケースの 概念図を図 3-12に示す。

載荷ケース	慣性力の向き (水平)	慣性力の向き (鉛直)	土圧及び水圧の方向
ケース1	右向き	下向き	右向き(南側壁)
ケース2	右向き	上向き	右向き(南側壁)
ケース3	左向き	下向き	左向き(北側壁)
ケース4	左向き	上向き	左向き(北側壁)

表 3-6 載荷ケース一覧

図 3-12 各載荷ケースの概念図

(参考) 1-1-15

- 3.1.7 許容限界
 - (1) 曲げに対する許容限界
 曲げに対する許容限界は、土木学会マニュアルに基づき限界層間変形角(層間変形角)/100)とする。
 - (2) せん断に対する許容限界 せん断に対する許容限界は、コンクリート標準示方書に基づき終局せん断強度とする。

- 3.1.8 評価結果
 - (1) 曲げ軸力に対する評価結果

曲げ軸力に対する照査結果を表 3-7 に示す。照査結果より,照査用層間変形角が限界 層間変形角を下回ることを確認した。

載荷ケース	照查用層間変形角*	限界層間変形角	照查值
	R _d	R u	R_{d}/R_{u}
ケース1	2.59×10^{-4}	1.0×10^{-2}	0. 03

表 3-7 曲げ軸力照査結果

注記* :照查用層間変形角R_d=最大層間変形角R×構造解析係数γ_a

(2) せん断力に対する評価結果

せん断力に対する照査結果のうち, 頂版, 底版及び側壁の各部材の最大照査値を表 3-8, 評価位置を図 3-13に示す。側壁上部(評価位置 2, 4)については, PHb工法によ る耐震補強を実施しているため, 建設技術審査証明報告書*に基づき, 終局せん断強度を 算定した。なお, 張出しダクトに対するPHb工法の適用性を別紙2に示す。

照査結果より、照査用せん断力が終局せん断強度を下回ることを確認した。

注記* :建設技術審査証明報告書 技術名称 後施工プレート定着型せん断補強鉄筋「Post-Head-bar」

評価位置		載荷ケース	照査用せん断力*	終局せん断強度	照査値
			V_{d} (kN)	V_{yd} (kN)	$V_{d} \swarrow V_{y d}$
頂版	1	ケース1	139	564	0.25
側壁上部	4	ケース4	108	815	0.14
側壁下部	5	ケース1	115	485	0.24
底版	6	ケース2	43	473	0.10

表 3-8 せん断力照査結果

注記* :照査用せん断力V_d=発生せん断力×構造解析係数γ_a

3.2 張出し基礎

3.2.1 構造概要

張出し基礎は、燃料移送ポンプを間接支持する構造物である。張出し基礎の構造図を図 3
−14、概略配筋図を図 3−15 に示す。張出し基礎は軽油タンク基礎西面にAC系、南面に
B系が設置されている。張出し基礎は、耐震補強工事としてAC系及びB系ともに増厚を
実施している。

図 3-14 張出し基礎の構造図*

注記*: c-c 断面の断面形状はb-b 断面と同様であるため, c-c 断面を省略。

(参考) 1-1-18

3.2.2 解析モデル

張出し基礎の解析モデルを図 3-16 に示す。張出し基礎は、非線形はり要素を用いた片 持ちばりでモデル化する。部材の剛性及び強度は保守的に増厚部のみで算定し、既設の範 囲については質量のみを考慮する。

解析奥行幅は張出し基礎の幅とし、AC系は9.25m、B系は6.31mとする。

図 3-16 張出し基礎の解析モデル

- 3.2.3 材料特性
 - (1) 使用材料

耐震評価に用いる材料定数は,建設時の設計値に基づき設定する。使用材料を表 3-9 に、材料物性値を表 3-10 に示す。

12 5	9 区用构料	
材料	諸元	
コンクリート	設計基準強度 23.5 N/mm ²	
鉄筋	SD35 (SD345 相当)	

表 3-9 使用材料

表 3-10 材料物性值

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	23.5*	2. $45 \times 10^{4*}$	0.2*

注記*:建設時の設計値に基づく

(2) 鉄筋コンクリートの非線形特性

鉄筋コンクリート部材は、図 3-17~図 3-19 に示す非線形特性及び履歴特性を考慮する。

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用)

図 3-17 張出し基礎のM-φ関係

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用) 図 3-18 構造部材の非線形特性

(道路橋示方書(V耐震設計編)・同解説(平成14年3月)に一部加筆)
 図 3-19 鉄筋コンクリート部材の履歴特性

3.2.4 照查用震度

張出し基礎の照査用震度は,軽油タンク基礎の地震応答解析より得られる応答加速度から設定する。加速度の抽出位置は,AC系は軽油タンク基礎の西側面,B系は軽油タンク 基礎の南側面にそれぞれ剛結していることから,図 3-20 に示すとおり,AC系はB-B 断面,B系はA-A断面の各節点を加速度抽出位置とする。

照査用震度を設定するための解析ケースは,地表面に設置された張出し基礎に対して支 配的な荷重である慣性力に着目し,軽油タンク基礎の照査を実施した全解析ケースのうち, 抽出節点の加速度の平均値が最大となる解析ケースをA-A断面,B-B断面それぞれで 選定する。

選定したそれぞれの解析ケースにおいて,全時刻歴における抽出節点の平均加速度の最 大値から,AC系用及びB系用の照査用震度を,水平及び鉛直方向にそれぞれ設定する。 設定した照査用震度を表 3-11 に示す。

(B-B断面)

図 3-20 照査用震度を設定するための加速度抽出位置

	÷ •	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
位置	加振方向	解析ケース	地震動	照査用震度
107	水平	3	Ss-1++	0.96
AC糸	鉛直	1	Ss-1+-	0.72
РŤ	水平	3	$S_{S}-3++$	1.06
Вж	鉛直	1	Ss-1+-	0.71

表 3-11 照查用震度

3.2.5 考慮する荷重

(1) 荷重の種類
 張出し基礎の耐震評価において考慮する荷重を表 3-12 に示す。

表 3-12 考慮する荷重

区分	種別	考慮する荷重
	固定荷重	自重
	~++ +1\ +++ =T.	非常用ディーゼル発電設備燃料移送ポンプ,
主荷重	積載向重 	非常用ティーセル発電設備燃料移送ボンブ防護板(積雪
		何里を召むり
	常時土圧	躯体側面に作用する常時土圧
	常時水圧	躯体側面、底面に作用する常時水圧
		躯体,非常用ディーゼル発電設備燃料移送ポンプ,非常
	地震荷重	用ディーゼル発電設備燃料移送ポンプ防護板に作用す
地震時		る慣性力
の影響	地震時土圧	躯体側面に作用する地震時土圧
	地震時水圧	躯体側面に作用する地震時水圧

(2) 荷重の設定

a. 固定荷重

自重は、鉄筋コンクリートの単位体積重量に基づき設定する。

b. 積載荷重

積載荷重は図 3-21 に示すように, 張出し基礎上の非常用ディーゼル発電設備燃料移 送ポンプ, 非常用ディーゼル発電設備燃料移送ポンプ防護板の設置位置を考慮して集中 荷重または分布荷重として作用させる。

図 3-21 積載荷重の作用箇位置

c. 土圧及び水圧

張出し基礎側面に作用する土圧及び水圧は、地震応答解析モデルにおける基礎版側面 に接する地盤要素及び間隙水要素の要素応力から算定する。

土圧及び水圧の抽出位置を図 3-22 に示す。「3.2.4 照査用震度」に示したとおり, AC系, B系それぞれの張出し基礎設置位置を考慮し, AC系はB-B断面から, B系 はA-A断面から土圧及び水圧を抽出する。

要素応力を抽出するための解析ケースは,各断面ともに「3.2.4 照査用震度」におい て水平方向の照査用震度を算定したケースとし,AC系,B系それぞれに各断面の全時 刻歴における最大値をモデルに作用させる。土圧及び水圧の算定結果を表 3-13 に示す。 また,張出し基礎底面には常時分の水圧を作用させる。算定した土圧及び水圧は図 3-23 に示すとおり作用させる。

なお,図 3-24 及び図 3-25 に土圧及び水圧を抽出した解析ケースにおける鉛直方向 及び水平方向の最大圧縮応力分布図を示す。

図 3-24 及び図 3-25 に示すとおり,基礎版底面に対して地震に伴う極端な地盤反力 は生じていない。

また,張出し基礎底面からの土圧は,張出し基礎の変形を抑制するように作用するため,耐震評価上の保守的な配慮として,基礎版本体と同様に張出し基礎底面に土圧は考 慮しない。

図 3-22 基礎版側面の土圧及び水圧の抽出位置

表	3 - 13	土圧及び水圧の算定結果
---	--------	-------------

	解析ケース	地震動	地震時土圧 (kN/m ²)	地震時水圧 (lrN/m ²)	計 (比N/m ²)
AC系	(3)	$S_{S-1} + +$	1.5	29.5	31.0
B系	3	Ss-3++	0.2	26.9	27.1

最大圧縮応力(kN/m²)

鉛直方向

水平方向 図 3-24 最大圧縮応力分布図 (A-A断面,解析ケース③,地震動 Ss-3++)

(参考) 1-1-26

図 3-25 最大圧縮応力分布図 (B-B断面,解析ケース③,地震動 Ss-1++)

d. 地震荷重

躯体,非常用ディーゼル発電設備燃料移送ポンプ及び非常用ディーゼル発電設備燃料 移送ポンプ防護板の自重に照査用震度を乗じた慣性力とする。

3.2.6 載荷方向

載荷方向については,水平方向は曲げ耐力が小さくなる引張方向,鉛直方向は上向き, 下向きの両方を考慮する。載荷ケース一覧を表 3-14 に示す。

#世ケーフ	慣性力の向き	慣性力の向き		
戦何クース	(水平)	(鉛直)		
ケース1	引張方向	下向き		
ケース2	引張方向	上向き		

表 3-14 載荷ケース一覧

- 3.2.7 許容限界
 - (1) 曲げに対する許容限界曲げに対する許容限界は、コンクリート標準示方書に基づき終局曲げ耐力とする。
 - (2) せん断に対する許容限界 せん断に対する許容限界は、コンクリート標準示方書に基づき終局せん断強度とする。
- 3.2.8 評価結果
 - (1) 曲げ軸力に対する評価結果
 曲げ軸力に対する照査結果を表 3-15 に示す。照査結果より,照査用曲げモーメントが
 終局曲げ耐力を下回ることを確認した。

告要	お た っ	照査用曲げモーメント*	終局曲げ耐力	照査値
	戦何クース	M_{d} (kN · m)	M_{ud} (kN · m)	$M_{d} \swarrow M_{u d}$
AC系	ケース1	285	693	0.42
B系	ケース1	271	694	0.40

表 3-15 曲げ軸力照査結果

注記* :照査用曲げモーメントM_d=発生曲げモーメント×構造解析係数γ_a

(2) せん断力に対する評価結果

せん断力に対する照査結果を表 3-16 に示す。照査結果より,照査用せん断力が終局せん断強度を下回ることを確認した。

位墨	#世ケーフ	照査用せん断力*	終局せん断強度	照査値
1业10	戦何クース	V_{d} (kN)	V_{yd} (kN)	V d∕V y d
AC系	ケース1	175	637	0.28
B系	ケース1	159	638	0.25

表 3-16 せん断力照査結果

注記* :照査用せん断力V_d=発生せん断力×構造解析係数 y_a

3.3 防油堤の耐震評価

3.3.1 構造概要

防油堤は,非常用ディーゼル発電設備燃料油系配管を間接支持する構造物である。防油 堤の構造図を図 3-26,概略配筋図を図 3-27 に示す。防油堤は軽油タンク基礎の周囲(d -d 断面)及び中央(e-e 断面)に設置されている。

図 3-27 防油堤の概略配筋図

3.3.2 解析モデル

図 3-26 に示す構造図に基づき,防油堤の解析モデルを図 3-28 に示すとおり設定する。 防油堤は,非線形はり要素を用いた片持ちばりでモデル化し,解析奥行幅は単位奥行幅(1m) として設定する。

図 3-28 防油堤の解析モデル

3.3.3 材料特性

(1) 使用材料

耐震評価に用いる材料定数は,建設時の設計値に基づき設定する。使用材料を表 3-17 に、材料物性値を表 3-18 に示す。

表 3-17 使用材料

材料	諸元
コンクリート	設計基準強度 23.5 N/mm ²
鉄筋	SD35(SD345 相当)

表 3-18 材料の物性値

材料	単位体積重量 (kN/m ³)	ヤング係数 (N/mm ²)	ポアソン比
鉄筋コンクリート	23.5*	2. $45 \times 10^{4*}$	0.2*

注記*:建設時の設計値に基づく

(2) 鉄筋コンクリートの非線形特性

鉄筋コンクリート部材は,図 3-29~図 3-31 に示す非線形特性及び履歴特性を考慮する。

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用) 図 3-29 防油堤のM-φ関係

(1) コンクリートの応力-ひずみ関係

(2) 鉄筋の応力-ひずみ関係

(原子力発電所屋外重要構造物の耐震性能照査指針・マニュアル(土木学会,2005年)より引用) 図 3-30 構造部材の非線形特性

(道路橋示方書(V耐震設計編)・同解説(平成14年3月)に一部加筆)図 3-31 鉄筋コンクリート部材の履歴特性

3.3.4 照查用震度

防油堤の照査用震度は、軽油タンク基礎の地震応答解析より得られる応答加速度から設 定する。加速度の抽出位置は、防油堤の設置位置を考慮し、図 3-32 に示すとおり、基礎 版周囲の防油堤についてはA-A断面及びB-B断面の各節点を、基礎版中央の防油堤に ついてはB-B断面中央の節点を加速度抽出位置とする。

照査用震度を設定するための解析ケースは,基礎版上に設置された防油堤に対して支配 的な荷重である慣性力に着目し,軽油タンク基礎の照査を実施した全解析ケースのうち, 抽出節点の加速度の平均値が最大となる解析ケースをA-A断面及びB-B断面それぞれ で選定する。

選定した各解析ケースにおいて,全時刻歴における抽出節点の平均加速度の最大値から, 基礎版周囲の防油堤用及び基礎版中央の防油堤用の照査用震度を,水平及び鉛直方向にそ れぞれ設定する。なお,基礎版周囲の防油堤の照査用震度については,A-A断面及びB -B断面の平均加速度最大値のうち,より大きいものから設定する。設定した照査用震度 を表 3-19に示す。

位置	加振方向	解析ケース	地震動	照査用震度		
	水平	③ (A-A断面)	Ss-3++	1.06		
基礎版间囲	鉛直	① (B-B断面)	Ss-1+-	0.73		
ᅷᄲᄣᇰ	水平	3	Ss-1++	0.95		
基礎版甲央	鉛直	5	Ss-1-+	0.66		

表 3-19 照査用震度の設定

3.3.5 考慮する荷重

(1) 荷重の種類

防油堤の耐震評価において考慮する荷重を表 3-20 に示す。

表 3-20 考慮する荷重

区分	種別	考慮する荷重			
子 士 壬	固定荷重	自重			
土何里	積載荷重	配管荷重(基礎版周囲のみ)			
地震時の影響	地震荷重	躯体,配管に作用する慣性力			

(2) 荷重の設定

a. 固定荷重

自重は、鉄筋コンクリートの単位体積重量に基づき設定する。

b. 積載荷重

基礎版周囲のモデルについては、図 3-33 に示すとおり配管荷重を等分布に作用させる。

図 3-33 積載荷重の作用箇所

c. 地震荷重

躯体及び配管の自重に照査用震度を乗じた慣性力とする。

3.3.6 載荷方向

基礎版周囲に設置する防油堤については内側と外側で主筋の仕様が異なるため,水平方向の慣性力については表 3-21 に示すとおり,2 方向の載荷ケースを考慮する。鉛直方向については,曲げ耐力が小さくなる上向き方向とする。

A 0 21		金爬/队/时四/
ませた ニュ	慣性力の向き	慣性力の向き
戦何クース	(水平)	(鉛直)
ケース1	内側→外側	上向き
ケース2	外側→内側	上向き

表 3-21 載荷ケース一覧(基礎版周囲)

- 3.3.7 許容限界
 - (1) 曲げに対する許容限界曲げに対する許容限界は、コンクリート標準示方書に基づき終局曲げ耐力とする。
 - (2) せん断に対する許容限界 せん断に対する許容限界は、コンクリート標準示方書に基づき終局せん断強度とする。

3.3.8 評価結果

(1) 曲げ軸力に対する評価結果

曲げ軸力に対する照査結果を表 3-22 に示す。照査結果より,照査用曲げモーメントが 終局曲げ耐力を下回ることを確認した。

冶平	お生たって	照査用曲げモーメント*	終局曲げ耐力	照査値
业直	載何クース	M_{d} (kN · m)	$\mathbf{M}_{u\ d}$ (kN $\boldsymbol{\cdot}$ m)	$M_{d} \swarrow M_{u d}$
基礎版周囲	ケース1	36	63	0.58
基礎版中央	—	17	95	0.18

表 3-22 曲げ軸力照査結果

注記* :照査用曲げモーメントM_d=発生曲げモーメント×構造解析係数γ。

(2) せん断力に対する評価結果

せん断力に対する照査結果を表 3-23 に示す。照査結果より,照査用せん断力が終局せん断強度を下回ることを確認した。

位墨	#世ケーフ	照査用せん断力*	終局せん断強度	照査値
112.00.	戦何ク <i>一へ</i>	V_{d} (kN)	V_{yd} (kN)	V d∕V y d
基礎版周囲	ケース2	31	243	0.13
基礎版中央	—	16	267	0.06

表 3-23 せん断力照査結果

注記* :照査用せん断力V_d=発生せん断力×構造解析係数 y_a

4. まとめ

本項では,軽油タンク基礎の付帯設備のうち,Sクラス施設を間接支持する機能を有する張出 しダクト,張出し基礎及び防油堤に関して耐震評価を行った。評価の結果,各付帯設備は基準地 震動Ssに対して十分な耐震性を有していることを確認した。 (参考資料1-1 別紙1) 張出しダクトと基礎版接続部の耐震評価

1. 概要

張出しダクトと基礎版は、後施工による鉄筋(以下、「アンカー筋」という。)を介して接続されている。アンカー筋の位置を図 1-1 に示す。アンカー筋の基礎版に対する埋込長は、上側が 1.6m、下側が 0.8m である。

本項では、アンカー筋の引張り及び引抜きに対する耐震性について確認する。

図 1-1 張出しダクトと基礎版接続部のアンカー筋位置

2. 許容限界の設定

アンカー筋は、ケミカルアンカーによって基礎版との定着を確保している。アンカー筋の引張 り及び引抜きに対する許容限界は、「あと施工アンカー【接着系】 ケミカルアンカーRタイプ(-N) -技術資料-(日本デコラックス株式会社、平成24年11月)」に基づき設定する。

2.1 引張りに対する許容限界

アンカー筋の引張りに対する許容限界は、アンカー筋鋼材の降伏により決まる許容引張力と する。許容引張力の算定方法を以下に示す。また、許容引張力の算定結果を表 2-1 に示す。

 $P_1 = \phi \cdot s \sigma_u \cdot s c a$

P1 : アンカー筋鋼材の降伏により決まる許容引張力(N)

φ :低減定数(短期荷重として、φ=1.5とする)

sσ_u:アンカー筋鋼材の許容引張応力度(N/mm²)

(SD345 相当:_sσ_u=200N/mm²とする。)

_sa:アンカー筋の軸部断面積とねじ部有効断面積のうち小さな値(mm²)

アンカー筋 位置	低減定数 <i>ф</i>	許容引張 応力度 sσu (N/mm ²)	アンカー筋の 軸部断面積 _{s c} a (mm ²)	鋼材の降伏に対する 許容引張力 P ₁ (kN/本)
上側	1.5	200	957	287
下側	1.5	200	957	287

表 2-1 引張りに対する許容限界

2.2 引抜きに対する許容限界

アンカー筋の引抜きに対する許容限界は、コンクリートとケミカルアンカーの樹脂の付着強度から算定される許容引張力とする。許容引張力の算定方法を以下に示す。また、許容引張力の算定結果を表 2-2 に示す。

アンカー筋 位置	低減定数 ϕ	許容付着 応力度τ _а (N/mm ²)	穿孔径D (mm)	有効埋込 深さ1 _e (mm)	付着に対する 許容引張力 P ₂ (kN/本)
上側	0.5	10.58	45	1565.1	1170
下側	0.5	10.58	45	765.1	572

表 2-2 引抜きに対する許容限界

3. アンカー筋の引張軸力の算定

アンカー筋に生じる引張軸力は、「(参考資料1-1) 付帯設備の耐震評価」にて実施した、静 的解析による張出しダクトの耐震評価において、張出しダクト頂版の要素のうち、曲げモーメン トが最大となる要素の断面力から算定する。なお、上側アンカー筋に生じる引張軸力は上側引張 の曲げモーメントが最大になる要素から、下側アンカー筋に生じる引張軸力は下側引張りの曲げ モーメントが最大になる要素から、それぞれ断面力を抽出する。表 3-1 に算定したアンカー筋 の引張軸力を示す。

アンカー筋 位置	頂版要素の軸力*1 (kN/m)	頂版要素の 最大曲げモーメント* ² (kN・m/m)	アンカー筋の 引張軸力* ³ (kN/本)
上側	-121	177	43
下側	50	59	95

表 3-1 アンカー筋の引張軸力の算定結果

注記*1:引張り側を正とする。

*2:上側引張の曲げモーメントを正とする。

*3:構造解析係数 γ_a=1.05 を考慮。

4. 評価結果

引張りに対する照査結果を表 4-1に,引抜きに対する照査結果を表 4-2に示す。アンカー筋 に生じる引張軸力は,アンカー筋鋼材の降伏により決まる許容引張力及びコンクリートとアンカ ー樹脂の付着強度から算定される許容引張力を下回ることを確認した。

アンカー筋 位置	アンカーの 引張軸力* (kN/本)	鋼材の降伏に対する 許容引張力 P ₁ (kN/本)	照查値
上側	43	287	0.15
下側	95	287	0. 34

表 4-1 引張りに対する照査結果

注記* :構造解析係数 y_a=1.05 を考慮。

表 4-2 引抜きに対する照査結果

アンカー筋 位置	アンカーの 引張軸力* (kN/本)	付着に対する 許容引張力 P ₂ (kN/本)	照查値
上側	43	1170	0.04
下側	95	572	0.17

注記* :構造解析係数 y_a=1.05 を考慮。

(参考資料1-1 別紙2) 後施工プレート定着型せん断補強鉄筋工法の適用性について

1. 概要

軽油タンク基礎の付帯設備である張出しダクトについては、後施工プレート定着型せん断補強 鉄筋(Post-Head-bar)(以下「PHb」という。)工法によるせん断補強を実施している。 本項では、張出しダクトに対して、PHb工法の適用性を確認する。

- 2. PHb工法について
- 2.1 PHb工法の適用範囲

張出しダクトのPHb工法の適用範囲を図 2-1に示す。図 2-1に示すとおり, 張出しダ クト側壁上部の範囲でPHb工法によるせん断補強を実施している。

図 2-1 張出しダクトにおけるPHb工法の適用範囲

2.2 PHb工法の概要

PHb工法の概要については、7 号工認資料「屋外重要土木構造物の耐震性についての計算 書(KK7補足-027) 資料2 軽油タンク基礎の耐震安全性評価)」のうち「1. 軽油タンク基 礎の耐震安全性評価」の「(参考資料1−1 別紙2)後施工プレート定着型せん断補強鉄筋工法 の適用性について」のうち「2.2 PHb工法の概要」による。

3. 建設技術審査証明報告書の概要

建設技術審査証明報告書の概要については,7 号工認資料「屋外重要土木構造物の耐震性についての計算書(KK7補足-027) 資料2 軽油タンク基礎の耐震安全性評価)」のうち「1. 軽油タンク基礎の耐震安全性評価」の「(参考資料1-1 別紙2)後施工プレート定着型せん断補強鉄筋工法の適用性について」のうち「3. 建設技術審査証明報告書の概要」による。

4. 張出しダクトにおけるPHbの適用性確認

4.1 方針

方針については、7号工認資料「屋外重要土木構造物の耐震性についての計算書(KK7補足-027) 資料 2 軽油タンク基礎の耐震安全性評価)」のうち「1. 軽油タンク基礎の耐震安全 性評価」の「(参考資料1-1 別紙2)後施工プレート定着型せん断補強鉄筋工法の適用性につ いて」のうち「4.1 方針」による。 4.2 耐震評価に基づく補強仕様の設定

耐震評価を実施し,各部材において不足するせん断耐力を満足するように設定した補強仕様 を図 4-1に示す。

図 4-1 張出しダクトのPHbによる補強仕様

4.3 ①適用性確認項目の抽出

①適用性確認項目の抽出については、7 号工認資料「屋外重要土木構造物の耐震性についての計算書(KK7 補足-027) 資料2 軽油タンク基礎の耐震安全性評価)」のうち「1. 軽油タンク基礎の耐震安全性評価」の「(参考資料1-1 別紙2)後施工プレート定着型せん断補強鉄 筋工法の適用性について」のうち「4.3 ①適用性確認項目の抽出」による。 4.4 ②建設技術審査証明報告書の適用範囲の確認

PHb工法を適用するにあたり、「4.3 ①適用性確認項目の抽出」で抽出した項目について 建設技術審査証明報告書から適用範囲を確認する。確認結果を以下に示す。

I. 使用目的

張出しダクトは地中構造物であり,既設コンクリート部材に対して後施工によるせん 断補強の目的でPHb工法を適用していることから,建設技術審査証明報告書に合致し ている(表 4-1参照)。

表 4-1 PHb工法の適用範囲と使用状況

建設技術審査証明報告書の適用範囲	使用箇所及び状況
	地中構造物であり、片側からしか施工できない制
	限を有する既設コンクリート構造物に対して、後
	施工によるせん断補強の目的で用いる。
	地中構造物に適用し、せん断補強の目的で用いる。
	(曲げ破壊モードにある構造物の変形性能の更な
	る改善を目的としていない。)

Ⅱ. 構造形式

建設技術審査証明報告書に,使用目的として「地震時の変形量が限定される地中構造物 など」という記載があり,張出しダクトのような地中に埋設されたボックスカルバート構 造を想定していると考えられるため,適用可能である。

Ⅲ. 構造細目

建設技術審査証明報告書に、以下のとおり構造細目として記載されている。

- PHbによって補強された壁部材においては、補強前に配置されていたスター ラップとPHbを加えたせん断補強鉄筋の断面積比*が 0.15%以上になるよう に、PHbを配置する。
- 2) PHbを配置するせん断スパン方向の最大間隔は、補強対象部材の有効高さの 1/2 以下で、かつ 300mm 以下としなければならない。また、計算上PHbによ る補強を必要とする区間の外側の有効高さに等しい区間にも、これと同量のP Hbを配置するものとする。
- 3) PHbの配置は図 4-2 に示す標準配置によるものとする。ただし、定着する PHbがかぶりを確保できない場合には、かぶりを侵す部分のPHbの手前側 プレートあるいは鉄筋に防食塗装を行うものとする。
- 4) PHbの埋込先端は、軸方向鉄筋の位置まで配置することを原則とする。ただし、埋込先端のかぶりは、必要なかぶりを確保しかつ 50mm 以上とする。

注記* : せん断補強筋の断面積比は以下の式により算定する。

せん断補強筋の断面積(1本分)

せん断スパン方向ピッチ×せん断スパン直角方向ピッチ

各項目の張出しダクトにおける適用性は,表 4-2 に示すとおり,建設技術審査証明報 告書と合致している。

なお、2)においては、収縮ひび割れに対する用心鉄筋としての配慮であることがコン クリート標準示方書に記述されているので、収縮が収束していると考えられる部材の補 強ではこの規定(せん断スパン方向の最大間隔 300 mm 以下)を外すことができる。

	Ⅲ. 構造細目			
	せん断補強筋の 断面積比	せん断スパン方向 の最大間隔	PHbの配置	PHbの埋込先端
建設技術審査証明報告書で 規定されている適用範囲				
PHb適用部材 (張出しダクト側壁上部)	0. 65%*	 150mm* (計算上PHbが必要な区間の外側の有効高さに等しい区間にも、これと同量のPHbを配置する) 	図 4-2のとおり配 置し,かぶりも確 保する。	軸方向鉄筋の位置 まで配置し,埋込 先端のかぶりは113 mmとする。

表 4-2 構造細目に関する適用性確認結果

注記*:補強前に配置されていたせん断補強筋とPHbによる補強筋の両方を考慮

図 4-2 PHbの標準配置*

(建設技術審査証明報告書より引用)

注記* :片側矩形プレート型の標準的な配置図を示す。張出しダクトにおいても、図のとおり配置する。

Ⅳ. 部材諸元, V.載荷方法

構造細目,部材諸元及び載荷方法について,張出しダクトへの適用範囲及び整理結果を 表 4-3 に示す。

PHbによる補強効果については,建設技術審査証明報告書の各種実験にて検証して いる。部材諸元に関して,部材厚,せん断スパン比,PHbの鉄筋径,鉄筋種別,主鉄筋 比についてはPHb適用部材と実験モデルが同程度である。コンクリート強度について は,先行の審査実績において,張出しダクトと同程度の部材に対する適用性が実証されて いる。以上より,部材諸元については適用範囲内であると考えられる。

載荷方法についても、先行の審査実績において、分布荷重が作用する側壁に対する適用 性が実証されていること、適用部材のせん断スパン比が実験の範囲内であることから、適 用範囲内であると考えられる。

	IV. 部材諸元						V. 載荷方法
	部材厚 (mm)	せん断 スパン比	PHbの 鉄筋径 (mm)	PHbの 鉄筋種別	主鉄筋比	コンクリート 強度(N/mm ²)	荷重形態
建設技術審査証明報告書で 規定されている適用範囲*1 建設技術審査証明報告書の							
実験から確認した範囲**					0.48%		
先行原子力発電所における 審査実績 ^{*2}	500	2. 29	D22	SD345	(D19@150) 0.85% (D25@150)	23. 5	分布荷重
PHb適用部材 (張出しダクト側壁上部)	500	2. 52 ^{*3}	D22	SD345	0.85% (D25@150)	23.5	分布荷重

表 4-3 適用範囲の整理結果

注記*1:片端矩形プレート型のせん断補強効果の確認に関する実験について整理した結果を示す。

*2:「東京電力ホールディングス株式会社 柏崎刈羽原子力発電所第7号機」審査実績より。

*3:「(参考資料1-1)付帯設備の耐震評価」における張出しダクトの評価におけるせん断照査で,照査値最 大となるケースの曲げモーメント分布から得られるせん断スパンと,部材の有効高さから算定した。 VI~IX. 使用材料, X. せん断補強筋の定着長

建設技術審査証明報告書に記載されている使用材料と合致している(図 4-3参照)。

注記 *1: 充てん材はPHbモルタル(可塑性グラウト)を標準とする。

*2:断面修復材はポリマーセメントモルタルとする。

図 4-3 張出しダクトのPHbの使用材料

(参考1-1 別紙2-10)
XI. せん断ひび割れ抑制効果の確認

張出しダクトのPHb適用部材のせん断力に対する照査のうち,最も厳しい照査値は0.14となっている。終局限界(せん断耐力)に対して十分な余裕があることから, 特異なせん断ひび割れが発生するような状態ではないと判断した。

XⅡ. 構造部材の曲げモーメントと曲率の関係

部材の応力状態について,鉄筋コンクリートが健全であることをM-φ曲線により 確認する。図 4-4は、PHbの適用部位のうち、曲げモーメントが最も大きくなる部 材のM-φ曲線を示すものである。最大応答は、M-φ曲線の第2折点(鉄筋の降伏) 以下であり、弾性範囲内にあることから、PHbの定着プレートの機能に影響はないと 判断した。

(照査部材)

図 4-4 張出しダクトのPHb適用部材のM-φ曲線 (参考1-1 別紙2-11)

XⅢ. 変形量

変形量が適用確認実験の変形量と同程度以下であることを確認する。適用確認実験 における層間変形角が 0.4%程度以上であるが,張出しダクトにおいては最大で層間変 形角 0.03%であり,適用確認実験の変形量以下であることを確認した。なお,適用実験 における層間変形角は,実験において発生している変位量及びせん断スパン比から算 出した。

XIV. 使用環境

張出しダクトにおけるPHb工法による耐震補強では、地中の部材に対してPHb 工法を適用する。PHbそのものはすべて構造物内に埋設され、かぶり部分にて腐食に 対する抵抗性が確保される。また、「4.6④施工実績・研究事例等の確認」に記載のと おり、地中構造物で数多くの施工実績があることが確認できている。

4.5 ③せん断補強効果の確認

「4.3 ①適用性確認項目の抽出」で抽出した適用性確認項目に対し,「4.4 ②建設技術審 査証明報告書の適用範囲の確認」で,張出しダクトのPHbは全項目において,適用範囲内で あることを確認した。よって張出しダクトのPHbは,建設技術審査証明報告書に記載のとお り,せん断補強効果が期待できると判断する。 4.6 ④施工実績・研究事例等の確認

④施工実績・研究事例等の確認については、7 号工認資料「屋外重要土木構造物の耐震性に ついての計算書(KK7 補足-027) 資料2 軽油タンク基礎の耐震安全性評価)」のうち「1. 軽 油タンク基礎の耐震安全性評価」の「(参考資料1-1 別紙2)後施工プレート定着型せん断補 強鉄筋工法の適用性について」のうち「4.6 ④施工実績・研究事例等の確認」による。

4.7 ⑤ P H b の施工上の確認

PHb工法によるせん断補強にあたっては,既設鉄筋配置のずれ等施工のばらつきにより計 画どおり施工できなかった場合,期待するせん断補強効果に影響を及ぼす可能性がある。そこ で施工上せん断補強効果に影響を及ぼす可能性がある施工のばらつきに関する項目を抽出し, 適切な施工管理によりばらつきを生じさせない,もしくはせん断補強効果に大きな影響を及ぼ さないことを確認する。

4.7.1 削孔角度

PHb挿入計画位置をドリルにより削孔するが,削孔角度に誤差が生じた場合,PHb のせん断補強効果に影響が及ぶ可能性がある。そこで施工用架台にドリルを設置し,ドリ ルの鉛直方向,水平方向が削孔面に対して垂直となるようスラントルール,金尺等で確認 し削孔する。図 4-5 に削孔状況を示す。以上より,削孔時に施工用架台を使用すること で削孔角度のばらつきは生じない。

また、「建設技術審査証明報告書 技術名称 後施工型せん断補強用無機系モルタルカプ セルおよびせん断補強筋「RMA」(建技審証 第1203号)」では、コンクリートコアドリ ル長尺削孔精度確認試験を実施している(図 4-6)。コンクリートコアドリル長尺削孔精 度確認試験では、幅1,200 m×高さ600 mm×長さ1,200 mmのコンクリートブロック4体 を削孔し、削孔位置のずれを確認した。コンクリートコアドリル長尺削孔精度の計測結果 を表 4-4 に示す。削孔角度誤差は最大でも約 0.9°程度となり、十分な精度があること が示されている。

さらに、論文「⑦せん断補強鉄筋埋込工法(後施工)による東京湾第二航路海底トンネルの側壁補強」において、削孔角度誤差について記載されているが、そこではドリルによる削孔時に2方向より定規を添えて初期削孔を行い、途中2~3回確認することで施工用架台を使用せず誤差2°以内を確保している。今回は、施工用架台を使用し、より精度良く削孔することが可能である。

図 4-5 削孔状況

図 4-6 試験概要図

(建設技術審査証明報告書 技術名称 後施工型せん断補強用無機系モルタルカプセルおよびせん断補強筋「R MA」より引用)

表 4-4 コンクリートコアドリル長尺削孔精度の計測結果

(建設技術審査証明報告書 技術名称 後施工型せん断補強用無機系モルタルカプセルおよびせん断補強筋「R MA」より引用)

4.7.2 削孔位置

PHb挿入計画位置をドリルにより削孔するが,部材内部に障害物があり計画位置で削 孔できずPHbを計画どおり配置できない可能性がある。その場合は,付近を再削孔しP Hbを挿入することで設計上必要な補強鉄筋量を確保する。ただし,再削孔しPHbを配 置する際は「4.4 ②建設技術審査証明報告書の適用範囲の確認」に示す建設技術審査証明 報告書に記載の構造細目を満足するものとする。

なお、図 4-7に示すせん断補強筋正面配置図及び部材断面配置図のとおり、再削孔す る際は削孔計画位置(赤丸)から位置をずらし、せん断補強効果に影響のない位置に削孔 することが可能である。なお、孔と鉄筋の干渉を避けて再削孔を行う際、削岩機ベースの PHbドリルでは孔をラップさせることができないため再削孔位置の選定が制限され、再 削孔しても新たに別の鉄筋に干渉してしまう可能性がある。そこで、孔のラップが可能な PHb工法指定の特殊コアドリルを必要に応じて併用することとし、再削孔時の精度向上 を図る。

以上より, 削孔位置にばらつきが生じても必要鉄筋量を確保するためせん断補強効果に 影響を及ぼさない。

図 4-7 張出しダクト(側壁)のせん断補強筋正面配置図及び部材断面配置図

4.7.3 定着効果

充填材の定着効果については,建設技術審査証明報告書にて充填確認試験を実施しており,削孔内に設置したPHbの先端定着部までグラウトが密実に充填され,PHbとコンクリート躯体が一体となっていることを確認している。

4.7.1~4.7.3 に示したとおり,施工上の配慮により,せん断補強効果に大きな影響を及 ぼすような施工のばらつきは生じないと考えられる。しかし,現時点では後施工による施 工のばらつきに対して施工実績に基づく十分な統計がとれていないため,施工のばらつき による影響が生じる可能性を完全に否定することはできない。

しかし,張出しダクトのPHb適用部材のうち,せん断力照査で最も厳しい照査値は 0.14であり,十分な裕度があることから,安全上問題ないことを確認している。 5. PHbの適用性確認結果

「4.1 方針」に沿って、「4.2 耐震評価に基づく補強仕様の設定」で設定したPHbによる補 強仕様が、張出しダクトの耐震補強に適用できることを検討した結果、建設技術審査証明報告書 のとおりせん断補強効果を期待できることを確認した。

(参考資料1-2)静的地震力に対する耐震評価

軽油タンク基礎については、平成5年6月17日付け4資庁第14561号にて認可された柏崎刈 羽原子力発電所第6号機の工事計画において、Cクラス施設に求められる静的地震力(kh=0.16) を上回る、Asクラス用設計地震(最大水平加速度450cm/s²)による地震力に対して、許容応力度 法による耐震評価を実施していることから、今回工認では、静的地震力による評価は省略する。

(参考資料1-3) 非常用ディーゼル発電設備燃料移送ポンプ防護板の重量増加及び形状拡大の影響について

1. 概要

軽油タンク基礎の付帯設備である張出し基礎(AC系,B系)には、非常用ディーゼル発電設 備燃料移送ポンプ防護板(AC系,B系)が設置されている。非常用ディーゼル発電設備燃料移 送ポンプ防護板(AC系,B系)は、当初設計では重量AC系 31t,B系 19t として計画してい たが、設計及び工事の進捗に伴い、完成後の重量はAC系 64t,B系 49t となった。また、非常 用ディーゼル発電設備燃料移送ポンプ防護板(B系)を支持する張出し基礎(B系)については その形状を拡大した。以上の変更点を図 1-1に示す。

本項では、上記の非常用ディーゼル発電設備燃料移送ポンプ防護板(AC系, B系)と張出し 基礎(B系)の重量増及び形状拡大による,耐震評価及び床応答に対する影響について確認する。

図 1-1 非常用ディーゼル発電設備燃料移送ポンプ防護板の設計及び工事進捗に伴う変更点

2. 検討方針

耐震評価に対する影響検討として、補足説明資料本文に記載の大物搬入建屋周辺の新設地盤改 良体を考慮した耐震評価結果(以下「基本ケース」という。)と、基本ケースに非常用ディーゼル 発電設備燃料移送ポンプ防護板(AC系、B系)及び張り出し基礎(B系)の設計変更を反映し た耐震評価結果(以下「追加ケース」という。)を比較し、その影響を確認する。影響確認は表 2 -1 に示すとおり、基本ケースの各照査項目において照査値が最大となる解析ケース及び地震動 を用いて行う。

また,床応答に対する影響検討として,基本ケースと追加ケースの加速度応答スペクトルを比較し,その影響を確認する。影響検討は,応答加速度が卓越するケース③の基準地震動 Ss-1++, Ss-1++及び Ss-1--の4 波を用いて行う。

評価対象	断面	照查項目	解析ケース*	地震動	
		曲げ軸力照査	(1)	Ss-1-+	
鉄肋コンクリート部材	中国 一 せん断力照査 由げ軸力照査 曲げ軸力照査 していたい せん断力照査 日 日 日 日 日 日 日 日	1)	Ss-1+-		
		曲げ軸力照査	3	$S_{S}-3++$	
鋼管杭	A-A附面	せん断力照査	3	$S_{S}-3++$	
	B-B断面	曲げ軸力照査	3	Ss-1-+	
		せん断力照査	3	Ss-1++	
	A-A断面	押込み照査	1)	Ss-8++	
地盤の支持性能照査		引抜き照査	3	Ss-3+-	
		押込み照査	1	Ss-1	
	B-B) 四	引抜き照査	1)	Ss-1+-	

表 2-1 影響検討実施ケース

Ż	注: 耐震評価における解析ケース一覧					
		1	2	3	(4)	5
	解析ケース	基本ケース	地盤物性のば らつき(+1g) を考慮した解 析ケース	地盤物性のば らつき(-1σ) を考慮した解 析ケース	非液状化の条 件を仮定した 解析ケース	地盤物性のば らつき(+1σ) を考慮して非 液状化の条件 を仮定した解 析ケース
	地盤剛性の 設定	地盤剛性 (平均値)	地盤剛性 (+1σ)	地盤剛性 (-1σ)	地盤剛性 (平均値)	地盤剛性 (+1σ)
	液状化強度 特性の設定	液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化強度 特性(-1σ)	液状化パラメ ータを非適用	液状化パラメ ータを非適用
	<u> </u>	•	•		I	·

- 3. 追加ケースの解析条件
- 3.1 地震応答解析モデルの荷重の設定

非常用ディーゼル発電設備燃料移送ポンプ防護板(AC系,B系)は,張り出し基礎(AC 系,B系)にそれぞれ設置されており,地震応答解析においてその荷重は,張出し基礎(AC 系,B系)の躯体荷重と合わせて,基礎版の張り出し基礎(AC系,B系)設置位置に付加質 量として考慮している。基本ケースと追加ケースの荷重の比較を表 3-1に示す。

また, B-B断面における張出し基礎(B系)拡大に伴う付加質量載荷範囲の比較を図 3-1に示す。

対象設備	基本ケース	追加ケース	考慮する荷重
張出し基礎(AC系)	151t	186t	 ・張出し基礎(AC系)躯体 ・燃料移送ポンプ(A系) ・燃料移送ポンプ(C系) ・非常用ディーゼル発電設備燃料移送 ポンプ防護板(AC系)←重量増 ・積雪
張出し基礎(B系)	69t	123t	 ・張出し基礎(B系)躯体←重量増 ・燃料移送ポンプ(B系) ・非常用ディーゼル発電設備燃料移送 ポンプ防護板(B系)←重量増 ・積雪

表 3-1 基本ケースと追加ケースの荷重の比較

↓:張出し基礎(B系)荷重

図 3-1 B-B断面における張出し基礎(B系)拡大に伴う付加質量載荷範囲の比較

3.2 3次元構造解析の条件設定

軽油タンク基礎の鉄筋コンクリート部材は3次元積層シェルモデルによる構造解析にて耐震 評価を実施している。非常用ディーゼル発電設備燃料移送ポンプ防護板(AC系, B系)及び 張り出し基礎(AC系, B系)の地震時荷重は, 張出しダクト及び張出し基礎の荷重算定モデ ルを用いて地震時荷重を算定し, 基礎版モデルへ作用させている。

非常用ディーゼル発電設備燃料移送ポンプ防護板(AC系,B系)及び張り出し基礎(B系) の重量増及び形状拡大に伴い,追加ケースの3次元構造解析では表 3-2に示す項目について, 基本ケースから変更を行う。

表 3-2 3次元構造解析における基本ケースと追加ケースの相違点

注:各設備の重量は表 3-1に基づく。

- 4. 解析結果の比較
- 4.1 鉄筋コンクリート部材に対する評価結果

鉄筋コンクリート部材の曲げ軸力照査の比較を表 4-1,鉄筋コンクリート部材のせん断力 照査の比較を表 4-2に示す。曲げ軸力照査では、追加ケースは基本ケースと比べて照査用圧 縮ひずみが増加したが、照査値の変化は丸めの範囲に収まる結果となった。せん断力照査では、 追加ケースは基本ケースと比べて照査用せん断力が増加したが、照査値は許容限界に対して余 裕のある結果となった。

やきた、フ	照査用圧縮ひずみ*	限界ひずみ	照査値
使的クース	ε _d (μ)	ε г (μ)	εd/εr
基本ケース	107	10000	0.02
追加ケース	115	10000	0. 02

表 4-1 鉄筋コンクリート部材の曲げ軸力照査の比較

注記* : 照査用圧縮ひずみ ε d = 圧縮縁の発生ひずみ ε × 構造解析係数 γ a

検針ケーフ	照査用せん断力*		照查值			
(東部クーク)	V_{d} (kN)	V_{yd} (kN)	$V_{d} / V_{y d}$			
基本ケース	510	1921	0.27			
追加ケース	539	1854	0.30			

表 4-2 鉄筋コンクリート部材のせん断力照査の比較

注記* :照査用せん断力V_d=発生せん断力×構造解析係数 y_a

4.2 鋼管杭に対する評価結果

鋼管杭の曲げ軸力照査の比較を表 4-3, 鋼管杭のせん断力照査の比較を表 4-4 に示す。曲 げ軸力照査では、A-A断面、B-B断面ともに追加ケースは基本ケースと比べて照査用曲率 が増加したが、照査値は許容限界に対して余裕のある結果となった。せん断力照査では、A-A断面、B-B断面ともに追加ケースは基本ケースと比べて照査用せん断力が増加したが、照 査値は許容限界に対して余裕のある結果となった。

検討ケース	評価位置	照査用曲率* φ _d (1/m)	降伏モーメント に対する曲率 φ _y (1/m)	照査値 φ d/φ y
基本ケース	2 (肉厚 9mm の杭)	1.78 $\times 10^{-3}$	2. 05×10^{-3}	0.87
追加ケース	2 (肉厚 9mm の杭)	1.79×10^{-3}	2. 05×10^{-3}	0.88

表 4-3 (1) 鋼管杭の曲げ軸力照査における最大照査値(A-A断面)

注記* :照查用曲率 ϕ_d =発生曲率×構造解析係数 γ_a

表 4-3(2) 鋼管杭の曲げ軸力照査の比較(B-B断面)

検討ケース	評価位置	照査用曲率* φ _d (1/m)	降伏モーメント に対する曲率 φ _y (1/m)	照査値 φ d/φ y
基本ケース	9 (肉厚 9mm の杭)	1.78×10^{-3}	2. 06×10^{-3}	0.87
追加ケース	9 (肉厚 9mm の杭)	1.80×10^{-3}	2. 05×10^{-3}	0.88

注記* : 照查用曲率 ϕ_d =発生曲率×構造解析係数 γ_a

評価位置

☆ チャーフ	亚在位置	照査用せん断力*	終局せん断強度	照查値
使 い ク ー ス	計11111210	Q_{d} (kN)	\mathbf{Q}_{u} (kN)	$Q_{d} \swarrow Q_{u}$
基本ケース	1 (肉厚 14mm の杭)	967	1977	0.49
追加ケース	1 (肉厚 14mm の杭)	976	1977	0.50

表 4-4(1) 鋼管杭のせん断力照査における最大照査値(A-A断面)

注記* : 照査用せん断力 Q_d =発生せん断力×構造解析係数 γ_a

表 4-4(2) 鋼管杭のせん断力照査の比較(B-B断面)

やき ケーフ	河伍位署	照査用せん断力*	終局せん断強度	照査値
使的クース	計111111月	\mathbf{Q}_{d} (kN)	\mathbf{Q}_{u} (kN)	$\mathbf{Q}_{\mathrm{d}} \diagup \mathbf{Q}_{\mathrm{u}}$
基本ケース	15 (肉厚 14mm の杭)	1416	1977	0.72
追加ケース	15 (肉厚 9mm の杭)	889	1224	0.73

注記* :照査用せん断力Q_d=発生せん断力×構造解析係数γ_a

評価位置

4.3 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能に対する押込み照査の比較を表 4-5, 引抜き照査の比較を表 4-6 に示 す。押込み照査では、A-A断面、B-B断面ともに追加ケースは基本ケースと比べて照査用 曲率がわずかに増加したが、照査値の変化は丸めの範囲に収まる結果となった。引抜き照査で は、A-A断面、B-B断面ともに追加ケースは基本ケースと比べて照査用せん断力が増加し たが、照査値は許容限界を満足した。なお、引抜き照査については、杭1本ごとについて引抜 きに対する評価を行った結果を記載しているが、全ての杭に生じる鉛直力の総和と終局引抜き 力の総和を比較し、基礎一体として評価することで、許容限界に対して十分余裕があることを 確認している。

検討ケーフ	河伍位置	最大鉛直力	終局鉛直支持力*	照查值	
便的分子不	計測江區	R_{a} (kN)	R_{ua} (kN)	R_a / R_{ua}	
基本ケース	7 (肉厚 14mm の杭)	2082	7530	0.28	
追加ケース	7 (肉厚 14mm の杭)	2106	7530	0.28	

表 4-5(1) 基礎地盤の押込み照査における最大照査値(A-A断面)

注記* :終局鉛直支持力Rua=極限支持力Ru÷安全率

表 4-5(2) 基礎地盤の押込み照査の比較(B-B断面)

検討ケース	亚価位置	最大鉛直力	終局鉛直支持力*	照查值
		R _a (kN)	R _{ua} (kN)	$R_a \nearrow R_{ua}$
基本ケース	1 (肉厚 14mm の杭)	1807	6617	0.28
追加ケース	1 (肉厚 14mm の杭)	1830	6617	0.28

注記* :終局鉛直支持力R_u_a=極限支持力R_u÷安全率

評価位置

やき ケー フ	冠在侍里	引抜き力	終局引抜き力*	照查值
便的分子不	計測江區	P _a (kN)	P_{ua} (kN)	P a / P u a
基本ケース	7 (肉厚 14mm の杭)	3278	3363	0.98
追加ケース	7 (肉厚 14mm の杭)	3280	3363	0.98

表 4-6(1) 基礎地盤の引抜き照査における最大照査値(A-A断面)

注記* :終局引抜き力Pua=極限引抜き力Pu÷安全率

表 4-6(2) 基礎地盤の引抜き照査の比較(B-B断面)

検討ケース	評価位置	引抜き力	終局引抜き力*	照査値
		P _a (kN)	P_{ua} (kN)	P a∕P u a
基本ケース	1 (肉厚 14mm の杭)	2033	2450	0.83
追加ケース	1 (肉厚 14mm の杭)	2035	2450	0.84

注記* :終局引抜き力Pua=極限引抜き力Pu÷安全率

5. 加速度応答スペクトルの比較

基本ケースと追加ケースの加速度応答スペクトルの比較を図 5-1に示す。基本ケースと追加 ケースの加速度応答スペクトルは、ケース③の基準地震動 Ss-1++, Ss-1-+, Ss-1+-, Ss-1 --の4波の各解析において、図 5-2に示す基礎版上面の節点の各加速度応答スペクトル(減 衰定数 2%)を包絡したものである。基本ケースと追加ケースの加速度応答スペクトルを比較し た結果、水平方向及び鉛直方向のいずれにおいても、概ね一致することを確認した。

図 5-1 加速度応答スペクトルの比較

6. まとめ

本項では、非常用ディーゼル発電設備燃料移送ポンプ防護板(AC系,B系)と張出し基礎(B 系)の重量増及び形状拡大による軽油タンク基礎の耐震評価及び床応答に対する影響を確認した。 耐震評価の観点では、鉄筋コンクリート部材、鋼管杭及び基礎地盤の支持性能の評価を実施した 結果、追加ケースの照査値が基本ケースの照査値を若干上回るものの、許容限界に対しては余裕 があることを確認した。また、床応答の観点では、基本ケースと追加ケースの加速度応答スペク トルが概ね一致していることを確認した。

以上の結果より,非常用ディーゼル発電設備燃料移送ポンプ防護板(AC系,B系)と張出し 基礎(B系)の重量増及び形状拡大による軽油タンク基礎の耐震評価に影響がないことを確認し た。また,機器・配管系の床応答に対する影響は軽微であると判断した。 2. 軽油タンク基礎(7号機設備)の耐震安全性評価

1. 概要

本資料は,軽油タンク基礎(7号機設備)の地震応答計算及び耐震評価についての内容を補足す るものである。軽油タンク基礎(7号機設備)は,常設耐震重要重大事故防止設備及び常設重大事 故緩和設備である軽油タンク(7号機設備)を間接支持する機能を求められる土木構造物であり, 耐震評価は,重大事故等対処施設の評価として基準地震動Ssに対する構造部材の健全性評価及び 基礎地盤の支持性能評価を行う。

軽油タンク基礎(7号機設備)は、令和2年10月14日付け原規規発第2010147号にて認可され た柏崎刈羽原子力発電所第7号機の設計及び工事の計画(以下「7号工認」という。)において、設 計基準対象施設においては、Sクラス施設の間接支持構造物である屋外重要土木構造物に、重大事 故等対処施設においては、常設耐震重要重大事故防止設備及び常設重大事故緩和設備が設置される 重大事故等対処施設に分類されており、基準地震動Ssに対する構造部材の健全性評価及び基礎地 盤の支持性能評価を実施していることから、軽油タンク基礎(7号機設備)の地震応答計算及び耐 震評価に関する説明は、7号工認の説明資料「屋外重要土木構造物の耐震性についての計算書(KK7 補足-027) 資料2 軽油タンク基礎の耐震安全性評価)」のうち「1. 軽油タンク基礎の耐震安 全性評価」に示す、基準地震動Ssによる耐震評価による。