島根原子力発電所2号炉 高経年化技術評価 (コンクリートおよび鉄骨構造物)

補足説明資料

2023 年 11 月 2 日 中国電力株式会社

1. はじ	こめに	1
2. 基本	、方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3. 評価	6対象と評価手法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.1	代表構造物の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.2	高経年化対策上着目すべき経年劣化事象の抽出 ・・・・・・・・・・・・・・・	9
3.3	劣化要因毎の評価対象部位の選定結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	16
3.4	評価手法	16
4. 代表	構造物の技術評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
4.1	コンクリートの強度低下 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
4.2	コンクリートの遮へい能力低下 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	29
4.3	現状保全	30
4.4	総合評価	30
4.5	高経年化への対応 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
5. 代表	構造物以外の技術評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	31
6. まと	·め ·····	32
6.1	審査ガイド等記載事項に対する確認結果	32
6.2	施設管理に関する方針として策定する事項	32
別紙1.	点検手順書における目視点検の項目、方法および判定基準について	
別紙2.	鉄骨構造物の金属疲労評価の計算過程および結果について	
別紙3.	島根2号炉周辺地域の凍害危険度について	
別紙4.	評価に用いる温度の考え方について	
別紙5.	温度測定方法,測定位置および測定結果について	
別紙6.	放射線照射量の算出方法,評価モデル,過程および結果について	
別紙7.	空気環境測定方法および位置について	
別紙8.	中性化深さの推定値の算定過程について	
別紙9.	塩化物イオン濃度の測定方法、測定位置について	
別紙10.	塩分浸透における鉄筋の腐食減量の算定過程について	
別紙11.	機械振動の評価対象および評価点の選定過程について	
別紙12.	熱による遮へい能力低下の評価に用いた温度分布解析について	
別紙13.	島根2号炉周辺の地下水による劣化影響について	
別紙14.	使用開始から40年以上が経過した建物・構築物のアルカリ骨材反応	
	の潜在性について	

1. はじめに

本資料は、「実用発電用原子炉の設置、運転等に関する規則」第82条第1項の規定に基づき実施した高経年化技術評価のうち、コンクリート構造物の強度低下,遮へい能力低下および鉄骨構造物の強度低下の評価結果について、補足説明するものである。

2. 基本方針

評価対象構造物において経年劣化事象の発生の可能性について評価し、その発生の可能性が将 来にわたって否定できない場合は、その発生または進展に係る健全性評価を行い、実用発電用原 子炉施設における高経年化対策審査ガイドおよび高経年化対策実施ガイドの記載事項(以下、「審 査ガイド等記載事項」という。)を踏まえ、高経年化技術評価を実施する。

コンクリートおよび鉄骨構造物の経年劣化事象を評価するにあたっての審査ガイド等記載事項 を表1に整理する。

表1(1/2) コンクリートおよび鉄骨構造物評価についての審査ガイド等記載事項

カ゛イト゛	記載事項
	3. 高経年化技術評価等の審査の視点・着眼点
	(1) 高経年化技術評価の審査
	⑫健全性の評価
	実施ガイド 3.1⑤に規定する期間の満了日までの期間につい
	て、高経年化対策上着目すべき経年劣化事象の発生又は進展に
	係る健全性を評価していることを審査する。
	⑬現状保全の評価
実用発電用原子炉施設	健全性評価結果から現状の保全策の妥当性が評価されている
における高経年化対策	ことを審査する。
審查ガイド	⑭追加保全策の抽出
	現状保全の評価結果から、現状保全に追加する必要のある新
	たな保全策が抽出されていることを審査する。
	(2) 長期施設管理方針の審査
	①長期施設管理方針の策定
	すべての追加保全策について長期施設管理方針として策定さ
	れているかを審査する。

表1(2/2) コンクリートおよび鉄骨構造物評価についての審査ガイド等記載事項

カ゛イト゛	記載事項
	3.1 高経年化技術評価の実施及び見直し
	⑤抽出された高経年化対策上着目すべき経年劣化事象について、
	以下に規定する期間の満了日までの期間について機器・構造物
	の健全性評価を行うとともに、必要に応じ現状の施設管理に追
	加すべき保全策(以下「追加保全策」という。)を抽出すること。
	イ 実用炉規則第82条第1項の規定に基づく高経年化技術評価
	プラントの運転を開始した日から 60 年間
	3.2 長期施設管理方針の策定及び変更
	長期施設管理方針の策定及び変更に当たっては、以下の要求事
実用発電用原子炉施設	項を満たすこと。
における高経年化対策	①高経年化技術評価の結果抽出された全ての追加保全策(発電用
実施ガイド	原子炉の運転を断続的に行うことを前提として抽出されたもの
	及び冷温停止状態が維持されることを前提として抽出されたも
	の全て。)について、発電用原子炉ごとに、施設管理の項目及び
	当該項目ごとの実施時期を規定した長期施設管理方針を策定す
	ること。
	なお、高経年化技術評価の結果抽出された追加保全策について、
	発電用原子炉の運転を断続的に行うことを前提とした評価から
	抽出されたものと冷温停止状態が維持されることを前提とした
	評価から抽出されたものの間で、その対象の経年劣化事象及び
	機器・構造物の部位が重複するものについては、双方の追加保
	全策を踏まえた保守的な長期施設管理方針を策定すること。

- 3. 評価対象と評価手法
 - 3.1 代表構造物の選定

コンクリートおよび鉄骨構造物の強度低下,遮へい能力低下が想定される構造物は多数存 在するため,高経年化技術評価では,評価対象となる構造物の中から代表構造物を選定して 評価を行う。評価対象構造物,代表構造物は以下の手順にて選定する。

3.1.1 評価対象構造物の抽出とグループ化

安全上重要な構造物「重要度分類審査指針における PS-1,2 および MS-1,2 に該当する構造物または該当する機器・構造物を支持する構造物」「高温・高圧の環境下にある PS-3, MS-3の機器を支持する構造物」「常設重大事故等対処設備に該当する構造物または該当する機器・構造物を支持する構造物」「浸水防護施設に属する構造物」に該当する構造物を抽出し、コンクリート構造物と鉄骨構造物にグループ化を実施した。その結果を表2に示す。

3.1.2 代表構造物の選定

グループ化した評価対象構造物について,使用条件等を考慮して代表構造物を選定した。 コンクリート構造物における代表構造物選定結果を表 3,鉄骨構造物における代表構造物 選定結果を表 4 に示す。

対象構造物	重要度*1	コンクリート構造物	鉄骨構造物
原子炉建物	PS-1,重*4	\bigcirc	○ (鉄骨部)
タービン建物	MS-1,重*4	0	○ (鉄骨部)
廃棄物処理建物	MS-1,重*4	0	
制御室建物	MS-1,重*4	0	
排気筒(制震装置付)	MS-1,重*4	0	\bigcirc
サイトバンカ建物	高*2	0	
補助ボイラ室	高*2	0	0
屋外配管ダクト(タービン建物~排気筒)	MS-1,重*4	0	
取水構造物	MS-1,重*4	0	
防波壁	款*3	0	
防波壁通路防波扉	款*3		0
1号機取水槽流路縮小工	款*3		0
1号機取水槽北側壁	款*3	0	
水密扉(取水槽除じん機エリア)	款*3		0
水密扉(復水器エリア)	武*3 武		\bigcirc
防水壁(取水槽除じん機エリア)	款*3		\bigcirc
防水壁(復水器ェリア)	款*3		0
屋外排水路逆止弁	款*3		0
漂流防止装置(係船柱)	款*3		\bigcirc

表2(1/2) 評価対象構造物の抽出とグループ化

対象構造物	重要度*1	コンクリート構造物	鉄骨構造物
漂流防止装置基礎 (荷揚護岸)	<u>款*3</u>	0	
漂流防止装置基礎(多重鋼管杭)	<u></u> 我*3		0
屋外配管ダクト(タービン建物~放水槽)	重*4	0	
第1ベントフィルタ格納槽	重*4	0	
低圧原子炉代替注水ポンプ格納槽	重*4	0	
(低圧原子炉代替注水槽含む)			
ガスタービン発電機建物	重*4	0	○ (鉄骨部)
ガスタービン発電機用軽油タンク基礎	重*4	0	
屋外配管ダクト(ガスタービン発電機用	重*4	0	
軽油タンク~ガスタービン発電機)			
屋外配管ダクト(Bーディーゼル燃料貯蔵タンク	重*4	0	
~原子炉建物)			
B-ディーゼル燃料貯蔵タンク格納槽	重*4	0	
緊急時対策所	重*4	0	
(緊急時対策所遮蔽含む)			
緊急時対策所用燃料地下タンク	重*4	0	

表2(2/2) 評価対象構造物の抽出とグループ化

*1:最上位の重要度を示す。

- *2:最高使用温度が 95℃を超え,または最高使用圧力が 1,900kPa を超える環境下にある原子炉 格納容器外の重要度クラス3の機器を支える構造物を示す。
- *3:設計基準対象施設として評価対象とした機器および構造物を示す。
- *4:重要度クラスとは別に常設重大事故等対処設備に属する機器および構造物を示す。

対象構造物 (コンクリート構造物)			使用条件等								
		重要度	運転開始後	高温部	放射線	振動の	設置現	景境	供給	選定	選定理由
			経過年数*7	の有無	の有無	有無	屋内	屋外	塩化物量		
1	原子炉建物	クラス 1,重*5 設備支持	29 年	0	0	\bigtriangleup	一部 仕上げ無し	仕上げ有り	\bigtriangleup	0	高温部、放射線の影響
2	ターヒッン建物	クラス 1,重*5 設備支持	29 年	\bigtriangleup	\bigtriangleup	0	一部 仕上げ無し	仕上げ有り	\bigtriangleup	0	振動の影響
3	廃棄物処理建物	クラス 1,重*5 設備支持	29 年	\bigtriangleup	\bigtriangleup		一部 仕上げ無し ^{*2}	仕上げ有り	\bigtriangleup		
4	制御室建物	クラス 1, 重*5 設備支持	43 年				一部 仕上げ無し	仕上げ有り	\bigtriangleup	0	運転開始後経過年数
5	排気筒基礎	クラス 1, 重*5 設備支持	29 年	—	—			埋設*1	\bigtriangleup		
6	サイトバンカ建物	クラス3 設備支持	33 年	\bigtriangleup	\bigtriangleup		一部 仕上げ無し ^{*2}	仕上げ有り	\bigtriangleup		
\bigcirc	補助ボイラ室	クラス3 設備支持	31 年 20 年	\bigtriangleup	—		一部 仕上げ無し ^{*2}	仕上げ有り	\bigtriangleup		
8	屋外配管ダクト(タービン 建物~排気筒)	クラス 1,重*5 設備支持	29 年		—			埋設*1	\bigtriangleup		
9	取水構造物	クラス 1,重*5 設備支持	29 年	—	—			仕上げ無し*3	〇 (海水と接触)		
10	防波壁	設*4	0年*6	—	—	—		仕上げ無し*3	\bigtriangleup		
1	1号機取水槽北側壁	設 ^{*4} 設備支持	43 年		—			仕上げ無し	○ (海水と接触)	O	供給塩化物量の影響 (運転開始後経過年数, Sクラスの支持構造物)
12	漂流防止装置基礎(荷 揚護岸)		43年 0年 ^{*6}		_			仕上げ無し*3	 (海水と接触)		

表3(1/2) コンクリート構造物における代表構造物選定結果

*1:環境条件の区分として、土中埋設は一般の環境として区分されることから、他の屋外で仕上げがない構造物で代表させる。

*2:他の屋内で仕上げがない構造物で代表させる。

*3:他の屋外で仕上げがない構造物で代表させる。

*4:設計基準対象施設として評価対象とした機器および構造物であることを示す。

*5:重要度クラスとは別に常設重大事故等対処設備に属する機器および構造物であることを示す。

*6:既に設置されているが、使用前事業者検査の合格をもって使用開始とする。

*7:2018年2月10日時点での経過年数を示す。

対象構造物 (コンクリート構造物)			使用条件等								
		重要度	運転開始後 経過年数*6	高温部 の有無	放射線 の有無	振動の 有無		環境 屋外	供給 塩化物量	選定	選定理由
13	屋外配管ダクト(タービン 建物~放水槽)	重 ^{*4} 設備支持	29 年					埋設*1	\bigtriangleup		
14	第1ベントフィルタ格納槽	重 ^{*4} 設備支持	0年*5	—	_	_	仕上げ無し*2	埋設*1	\bigtriangleup		
15	低圧原子炉代替注水ポ ンプ格納槽(低圧原子 炉代替注水槽含む)	重 ^{*4} 設備支持	0年*5	_	_	_	一部 仕上げ無し ^{*2}	埋設*1	\bigtriangleup		
16	ガスタービン発電機建物	重 ^{*4} 設備支持	0 年*5	\bigtriangleup	_	\bigtriangleup	一部 仕上げ無し ^{*2}	仕上げ有り	\bigtriangleup		
17)	ガスタービン発電機用軽油 タンク基礎	重 ^{*4} 設備支持	0年*5	_		_		仕上げ無し*3	\bigtriangleup		
18	屋外配管ダクト(ガスタービ ン発電機用軽油タンク~ガ スタービン発電機)	重 ^{*4} 設備支持	0年*5	_	_	_		埋設*1	\bigtriangleup		
19	屋外配管ダクト(Bーディー ゼル燃料貯蔵タンク~原子 炉建物)	重 ^{*4} 設備支持	29 年 0 年* ⁵	_	_	_		埋設*1	\bigtriangleup		
20	B-ディーゼル燃料貯蔵タンク 格納槽	重 ^{*4} 設備支持	0 年*5	—	_	—	仕上げ無し*2	埋設*1	\bigtriangleup		
21)	緊急時対策所(緊急時 対策所遮蔽含む)	重*4	0年*5	_	_	_	一部 仕上げ無し ^{*2}	仕上げ有り	\bigtriangleup		
22	緊急時対策所用燃料地 下タンク	重 ^{*4} 設備支持	0年*5					埋設*1	\bigtriangleup		

表3(2/2) コンクリート構造物における代表構造物選定結果

*1:環境条件の区分として、土中埋設は一般の環境として区分されることから、他の屋外で仕上げがない構造物で代表させる。

*2:他の屋内で仕上げがない構造物で代表させる。

*3:他の屋外で仕上げがない構造物で代表させる。

*4:重要度クラスとは別に常設重大事故等対処設備に属する機器および構造物であることを示す。

*5:既に設置されているが、使用前事業者検査の合格をもって使用開始とする。

*6:2018年2月10日時点での経過年数を示す。

【凡例】 :影響大 -:影響極小,または無し

対象構造物			使用条件等					
		重要度	運転開始後	後 設置環境		選定	選定理由	
	(或自悟迫初)		経過年数*6	屋内	屋外			
1	原子炉建物 (鉄骨部)	クラス 1,重* ³ 設備支持	29 年	仕上げ有り*1				
2	ターヒ*ン建物(鉄骨部)	クラス 1,重* ³ 設備支持	29 年	仕上げ有り*1				
3	排気筒	クラス 1,重*³ 設備支持	29 年		仕上げ有り	O	屋外環境	
4	補助ボイラ室	クラス3 設備支持	31 年	仕上げ有り		O	屋内環境	
5	防波壁通路防波扉	言几*2 月又	0年*4		仕上げ有り*5			
6	1号機取水槽流路縮 小工	<u>記</u> *2 武	0 年*4		仕上げ有り*5			
\bigcirc	水密扉(取水槽除じ ん機エリア)	言几*2 页	0年*4		仕上げ有り*5			
8	水密扉(復水器ェリア)	言几*2 月又	0年*4	仕上げ有り*1				
9	防水壁(取水槽除じ ん機エリア)	<u>言几*2</u> 武文	0年*4		仕上げ有り*5			
10	防水壁(復水器ェリア)	言几*2 页又	0年*4	仕上げ有り*1				
11	屋外排水路逆止弁	言几*2 成	0年*4		仕上げ無し*5 (ステンレス鋼)			
12	漂流防止装置(係船 柱)	言几*2 页又*2	0 年*4		仕上げ有り*5			
13	漂流防止装置基礎 (多重鋼管杭)	設 ^{*2} 設備支持	0年*4		仕上げ有り*5			
14	ガスタービン発電機建物 (鉄骨部)	重 ^{*3} 設備支持	0年*4	仕上げ有り*1				

表4 鉄骨構造物における代表構造物選定結果

*1:他の屋内で仕上げがある構造物で代表させる。 *2:設計基準対象施設として評価対象とした機器および構造物であることを示す。 *3:重要度クラスとは別に常設重大事故等対処設備に属する機器および構造物であることを示す。

*4:既に設置されているが、使用前事業者検査の合格をもって使用開始とする。

*5:他の屋外で仕上げがある構造物で代表させる。 *6:2018年2月10日時点での経過年数を示す。

3.2 高経年化対策上着目すべき経年劣化事象の抽出

機能に影響を及ぼすことが否定できない経年劣化事象として, コンクリートの強度低下, 遮へい能力低下及び鉄骨の強度低下が考えられ,これらを想定される経年劣化事象として 選定する。

また,想定される経年劣化事象を引き起こす可能性がある劣化要因については,経年劣 化メカニズムまとめ表((社)日本原子力学会,日本原子力学会標準 原子力発電所の高経 年化対策実施基準(2021))に記載のある劣化要因の中から,対象構造物の構造,材料,環 境及び現在までの運転経験を考慮し,想定の要否を整理する。想定される経年劣化事象及 び劣化要因の整理結果を表5に示す。

構造物	経年劣化 事象	経年劣化要因および整理結果					
	強度低下	熱	コンクリートが熱を受けると,温度条件によってはコンクリート中の水分の逸散 に伴う乾燥に起因する微細なひび割れ,あるいは水分の移動に起因す る空隙の拡大等により強度が低下する可能性があり,想定が必要と整 理する。	要			
		放射線 照射	コンクリートが中性子照射やガンマ線照射を受けると,照射量によっては, 強度が低下する可能性があり,想定が必要と整理する。	要			
コンクリート		中性化	コンクリートは、空気中の二酸化炭素の作用を受けると、表面から徐々に そのアルカリ性を失い中性化する。中性化がコンクリートの内部に進行し、鉄筋 を保護する能力が失われると、鉄筋はコンクリート中の水分、酸素の作用に より腐食し始め、腐食に伴う体積膨張によりコンクリートにひび割れやはく 離が生じ、コンクリート構造物としての健全性が損なわれる可能性があり、 想定が必要と整理する。	要			
		コンクリート中に塩化 塩分 が徐々に進行し、 浸透 離が生じ、コンクリー 想定が必要と整理	コンクリート中に塩化物インが浸透し,鉄筋位置まで達すると,鉄筋の腐食が徐々に進行し,腐食に伴う体積膨張によりコンクリートにひび割れやはく離が生じ,コンクリート構造物としての健全性が損なわれる可能性があり, 想定が必要と整理する。	要			
		強度低下	アルカリ 骨 反	アレルカリ骨材反応は、コンクリート中に存在するアルカリ溶液と、骨材中に含まれ る反応性のシリカ鉱物の化学反応である。この反応により生成されたアレカ リ・シリカゲルが周囲の水を吸収し膨張すると、コンクリート表面にひび割れが生 じ、コンクリート構造物としての健全性が損なわれる可能性があり、想定が 必要と整理する。	要		
			機械 振動	コンクリート構造物は、長期間にわたって機械振動による繰返し荷重を受けるとひび割れが発生し、コンクリート構造物としての健全性が損なわれる可能性があり、想定が必要と整理する。	要		
		凍結 融解	コンクリート中の水分が凍結し、それが気温の上昇や日射を受けること等 により融解する凍結融解を繰り返すことでコンクリートにひび割れが生じ、 コンクリート構造物としての健全性が損なわれる可能性があり、想定が必要 と整理する。	要			
		化学的 侵食	地下水等に化学物質が含まれる場合,コンクリートが侵食を受け劣化する 可能性がある。ただし,地下水による劣化影響(別紙13)より,化学 的侵食が発生し,進展する可能性は低いため,想定不要と整理する。	否			
		酸性雨	酸性雨がコンクリート中に浸入するとセメントの主成分が分解され,強度が低 下する可能性がある。ただし,対象構造物は基本的に防水層や塗膜等 が施され,雨掛かりがないことや,雨水の滞留により雨水が長時間接 触することはないため,想定不要と整理する。	否			

表5 経年劣化事象および劣化要因の整理結果(1/2)

表 5	経年劣化事象および劣化要因の整理結果	(2/2))
		· · · ·	

構造物	経年劣化 事象	経年劣化要因および整理結果					
		乾燥 収縮	コンクリート中の自由水の逸散に伴う乾燥により収縮が生じ、ひび割れが 発生し、コンクリート構造物としての健全性が損なわれる可能性がある。た だし、乾燥収縮によるひび割れは一般建築物における壁の薄い部材に おいて問題になる要因であることや、その影響が軽微であることか ら、想定不要と整理する。	否			
	強度低下	日射	コンクリート表面の温度変動により、膨張および収縮現象が生じることで 強度が低下する可能性がある。ただし、日射による温度上昇は特に屋 上において顕著であるが、対象構造物の屋上には基本的に防水層とそ の保護材が施されてコンクリート躯体の温度上昇は抑制され、その影響は軽 微であることから、想定不要と整理する。	否			
コンクリート		風化	コンクリート中のセメント水和物が、周囲の水(軟水)に溶解して組織が疎と なることで、強度が低下する可能性がある。ただし、風化は軟水等の 成分濃度の低い水が河川のように常に新しく供給されるような環境 において進行する現象であり、対象構造物はこのような環境下にない ため、想定不要と整理する。	否			
		たわみ	過荷重等により部材に変形やひび割れが発生し、コンクリート構造物とし ての健全性が損なわれる可能性がある。ただし、設計時に想定した荷 重を上回る重量機器等を設置する場合には都度、構造体や部材の健全 性を確認するため、想定不要と整理する。	否			
	遮へい 能力低下	熱	コンクリートは,周辺環境からの伝達熱および放射線照射に起因するコンクリ ート内部の温度上昇により,コンクリート中の水分が逸散し,放射線に対する 遮へい能力が低下する可能性があり,想定が必要と整理する。	要			
	強度低下	腐食	一般的に,鋼材は大気中の酸素および水分と化学反応を起こして腐 食する。腐食は,海塩粒子等により促進され,進行すると鋼材の断面 欠損に至り,鉄骨の強度低下につながる可能性があり,想定が必要と 整理する。	要			
		金属 疲労	繰返し荷重が継続的に鉄骨構造物にかかることにより,疲労による 損傷が蓄積され,鉄骨の強度低下につながる可能性があり,想定が必 要と整理する。	要			
		化学的 腐食	薬品等の浸入により鉄部が発錆することで強度低下につながる可 能性がある。ただし、対象構造物には塗装が施されており薬品等が浸 入する可能性が低いことから、想定不要と整理する。	否			
斜。母		酸性雨	酸性雨が直接鉄部に掛かると発錆が促進され,強度低下につながる 可能性がある。ただし,対象構造物には塗装が施されており,雨掛か りがないことから,想定不要と整理する。	否			
<u></u> ず		腐食	一般的に,鋼材は大気中の酸素および水分と化学反応を起こして腐 食する。腐食は,海塩粒子等により促進され,進行すると制震装置(粘 性ダンパ)の断面欠損に至り,制震装置(粘性ダンパ)の強度低下につ ながる可能性があり,想定が必要と整理する。	要			
	制震装置	摩耗	制震装置(粘性ダンパ)の摺動部に長期間の使用により摩耗が発生す ると,動作不良に至り,制震装置(粘性ダンパ)の強度低下につながる 可能性があり,想定が必要と整理する。	要			
	强度低下	化学的 腐食	薬品等の浸入により鉄部が発錆することで強度低下につながる可 能性がある。ただし、制震装置(粘性ダンパ)には塗装が施されており 薬品等が浸入する可能性が低いことから、想定不要と整理する。	否			
		酸性雨	酸性雨が直接鉄部に掛かると発錆が促進され,強度が低下する可能 性がある。ただし,制震装置(粘性ダンパ)には塗装が施されており, 雨掛かりがないことから,想定不要と整理する。	否			

3.2.1 高経年化対策上着目すべき経年劣化事象

高経年化対策上着目すべき経年劣化事象を表 6 に示す。また,表 5 に示した経年劣化事 象のうち,以下①と②以外について,高経年化対策上着目すべき経年劣化事象として抽出 した。

構造物	経年劣化事象	高経年化対策上着目すべき経年劣化要因	
		熱	
		放射線照射	
ام روا ا	強度低下	中性化	
1200-F			塩分浸透
		機械振動	
	遮へい能力低下	熱	

表6 高経年化対策上着目すべき経年劣化事象

①高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象)

表7に示す経年劣化事象については、想定した劣化傾向等に基づき適切な保全活動を行っていることから、高経年化対策上着目すべき経年劣化事象ではない事象と判断した。なお、コンクリートおよび鉄骨構造物の保全活動は、保全計画に基づく頻度、「QMS7-06-N16 島根原子力発電所土木建築関係設備点検手順書」(以下、「点検手順書」という)に定めた 点検方法により、実施している。具体的な点検および補修の実績を表8に示す。また、点 検手順書における目視点検の項目、方法および判定基準について、別紙1に示す。

構造物	経年劣化事象	劣化要因	理由
コンクリート	強度低下	アルカリ骨材 反応	定期的(1回/年)に点検手順書に基づく目視点検を行ってい るが,7khり骨材反応に起因すると判断されるひび割れは確認され ていない。 また,試験によりコンクリート構造物の健全性に影響を与えるような 反応性がないことを確認している。試験結果を表9に示す。 今後も使用環境が急激に変化することはないことから,7kh)骨 材反応の進展傾向は極めて小さいと考えられる。
		腐食	定期的(1回/年)に点検手順書に基づく目視点検を行い,鋼 材の腐食に影響する塗膜の劣化等が認められた場合には,補修塗 装を施すことによって健全性を確保している。
鉄骨	強度低下	金属疲労	鉄骨構造物のうち,風による繰返し荷重を受ける排気筒が対象 構造物と考えられる。 島根2号炉の排気筒は,その耐震裕度を向上させるために鉄塔 支持型(制震装置付)に変更し,2015年4月に完了している。 鉄骨構造物の風等による繰返し荷重に対する評価は,(社)日 本建築学会「鋼構造設計規準(2005)」に示されている評価式を用 いて,発電所近傍で計測された風に基づき算定した応力範囲が, 運転開始後60年時点においても,許容疲労強さよりも小さいこ とを確認し,疲労を考慮する必要はないと評価した。排気筒の疲 労評価について別紙2に示す。 島根2号炉の排気筒は鉄塔支持型であり,自立型よりも共振現 象が起きにくいとされている。また排気筒の主要構造部材は,こ れまでの目視点検でも共振による疲労割れは確認されておらず, 今後もこれらの共振現象による疲労割れは確認されておらず, 今後もこれらの共振現象による疲労が大きく変化する要因があ るとは言い難い。 以上から,鉄骨の金属疲労については,高経年化対策上着目す べき経年劣化事象ではないと判断する。
	制震装置	腐食	定期的(1回/年)に点検手順書に基づく目視点検を行い,有 意な塗膜の劣化等が認められた場合には,補修塗装を施すことに よって健全性を確保している。
	強度低下	摩耗	定期的(1回/年)に点検手順書に基づく目視点検を行い,有 意な摩耗が認められた場合には,新品への取替え等を行うことに より,健全性を確保している。

表7 日常劣化管理事象

表8 アルカリ骨材反応,鉄骨腐食,金属疲労および摩耗に関する点検および補修の実績

経年劣化事象	劣化要因	対象構造物	点検方法	点検頻度	点検結果	補修実績
コンクリートの強度低 下	アルカリ骨材 反応	コンクリート構造物全般	目視点検	1回/年	アルカリ骨材反応 に起因すると 判断されるひ び割れは確認 されていない	補修実績なし
鉄骨の強度低下	腐食 鉄骨構造物全般		目視点検	1回/年	有害な腐食は 認められない	補修実績なし
	金属疲労	排気筒	目視点検	1回/年	有害な疲労割 れは認められ ない	補修実績なし
制震装置の強度 低下	腐食	排気筒	目視点検	1回/年	有害な腐食は 認められない	補修実績なし
	摩耗	排気筒	目視点検	1回/年	有害な摩耗は 認められない	補修実績なし

表9 アルカリ骨材反応に関する試験結果(1/3)

対象構造物	試験方法 (試験実施年)	骨材	測定値	判定基準	結果
		八雲村産 粗骨材	0.024%		% 無害
原子炉建物ほ		古志町産 粗骨材	0.068%		
		加茂町産 細骨材	0.013%		
	モルタルハ゛ー法*3	広瀬町産 細骨材	0.008%	膨張率が 6 か月で 0.1%	
	(昭和 59 年)	横田町産 細骨材	0.017%	以下が無害	
か主要構造物*1		仁多町産 細骨材	0.013%		
		大島町産 細骨材	0.019%		
		西園町産 細骨材	0.013%		
	モルタルハ*ー法*4	古志町産 粗骨材	0.018%	膨張率が6か月で0.1%	無害
	(平成 11 年)	横田町産 細骨材	0.026%	未満が無害	

対象構造物	試験方法 (試験実施年)	骨材	測定値	判定基準	結果
		八雲町産 粗骨材	Sc=29mmo1/1 Rc=81mmo1/1		
		隠岐の島町産 粗骨材	Sc=12mmol/1 Rc=44mmol/1		
		広瀬町産 細骨材	Sc=19mmo1/1 Rc=28mmo1/1		
		秋芳町産 粗骨材	Sc=2mmo1/1 Rc=10mmo1/1	Sc が 10mmol/1 以上で	
17-1-1-1-1-1-1-1-1	化学法*5	広瀬町産 細骨材	Sc=22mmo1/1 Rc=32mmo1/1	Rc か 700mm01/1 未満の 時 Sc < Rc ならば無害	価字
协波壁™	(平成 23 年)	奥出雲町産 細骨材	Sc=21mmol/1 Rc=31mmol/1	Sc が 10mmol/1 未満で	燕 者
		日野町産 粗骨材	Sc=16mmo1/1 Rc=35mmo1/1	Rc が 700mmol/1 未満な らば無害	
		糸魚川市産 粗骨材	Sc=2mmo1/1 Rc=15mmo1/1		
		八雲町産 粗骨材	Sc=32mmo1/1 Rc=230mmo1/1		
		奥出雲町産 細骨材	Sc=18mmo1/1 Rc=33mmo1/1		
		奥出雲町産 粗骨材	Sc=32mmo1/1 Rc=40mmo1/1	Sc が 10mmol/1 以上で Rc が 700mmol/1 未満の	無害
漂流防止装置基礎(荷揚護岸) (新設報)*2	化学法*5 (令和5年)	津久見市産 粗骨材	Sc=1mmol/1 Rc=47mmol/1	時 Sc < Rc ならば無害 Sc が 10mmol /1 未満で	
		広瀬町産 細骨材	Sc=21mmo1/1 Rc=22mmo1/1	Rc が 700mmol/1 未満な らば無害	
第1~ントフィルタ	化学法*5	隠岐の島町産 粗骨材	Sc=10mmo1/1 Rc=80mmo1/1	Sc が 10mmol/1 以上で	毎定
格納槽*2	(平成 25 年)	広瀬町産 細骨材	Sc=19mmo1/1 Rc=38mmo1/1	Rc フム 700mmo1/1 未満の 時 Sc < Rc ならば無害	無害
低圧原子炉代		八雲町産 粗骨材	Sc=26mmo1/1 Rc=100mmo1/1	C - + 10	
新槽(低圧原 乙烷化基注水	化学法* ⁵ (平成 25 年)	隠岐の島町産 粗骨材	Sc=10mmo1/1 Rc=60mmo1/1	Rc が 700mmol/1 未満の 時 Sa / Pa ならげ無害	無害
」 が 「 が 1 が 1 が 1 が 1 が 1 が 1 が 1 が 1 が 1 か 1 で 1 の の の の う の 1 の う の の の の の の の の の の の の の		広瀬町産 細骨材	Sc=19mmo1/1 Rc=38mmo1/1	〒 3C < KC なりは無音	
	11 N/ XI +5	八雲町産 粗骨材	Sc=26mmo1/1 Rc=86mmo1/1	- Sc が 10mmol/1 以上で	
ガスタービン発電 機建物*2	化学法* ⁵ (平成 27 年)	隠岐の島町産 租骨材 広瀬町産	Sc=10mmo1/1 Rc=45mmo1/1	Rc が 700mmo1/1 未満の 時 Sc <rc td="" ならば無害<=""><td>無害</td></rc>	無害
		山 御 間 歴 一 御 骨 材 八 雲 町 産 一 一 一 一 一 一 一 一 一 一 一 一	<u>Rc=45mmo1/1</u> Sc=29mmo1/1		
がスタービン発電	化学法*5	<u>粗</u> 骨材 隠岐の島町産	Rc=81mmo1/1 Sc=12mmo1/1	Sc が 10mmol/1 以上で	無序
機用軽油タンク基 礎*2	(平成 23 年)	粗骨材 広瀬町産	Rc=44mmol/1 Sc=19mmol/1	Kcか700mmo1/1 未満の 時 Sc < Rc ならば無害	— 燕音
		細骨材	Rc=28mmol/1		

表9 アルカリ骨材反応に関する試験結果(2/3)

対象構造物	試験方法 (試験実施年)	骨材	測定値	判定基準	結果
屋外配管ダクト (ガスタービン発 電機用軽油タンク ~ガスタービン発 電機)* ²	化学法* ⁵ (平成 28 年)	八雲町産 粗骨材 隠岐の島町産 粗骨材 広瀬町産 細骨材	Sc=22mmo1/1 Rc=46nmo1/1 Sc=11mmo1/1 Rc=56nmo1/1 Sc=22mmo1/1 Rc=28mmo1/1	Sc が 10mmol/1 以上で Rc が 700mmol/1 未満の 時 Sc < Rc ならば無害	無害
屋外配管ダクト (B-ディーゼル燃 料貯蔵タンク~原 子炉建物) (新設部)*2	化学法*5 (平成 30 年)	八雲町産 粗骨材 隠岐の島町産 粗骨材 広瀬町産 細骨材	Sc=25mmo1/1 Rc=71mmo1/1 Sc=11mmo1/1 Rc=50mmo1/1 Sc=23mmo1/1 Rc=39mmo1/1	- Sc が 10mmol/1 以上で Rc が 700mmol/1 未満の 時 Sc < Rc ならば無害	無害
B-ディーゼル燃料 貯蔵タンク格納槽 *2	化学法* ⁵ (平成 30 年)	八雲町産 粗骨材 隠岐の島町産 粗骨材 広瀬町産 細骨材	Sc=25mmol/1 Rc=71nmol/1 Sc=11nmol/1 Rc=50nmol/1 Sc=23nmol/1 Rc=39nmol/1	Sc が 10mmol/1 以上で Rc が 700mmol/1 未満の 時 Sc < Rc ならば無害	無害
緊急時対策所 (緊急時対策 所遮蔽含む)* ²	化学法* ⁵ (平成 28 年)	八雲町産 粗骨材 隠岐の島町産 粗骨材 広瀬町産 細骨材	Sc=23mmo1/1 Rc=57mmo1/1 Sc=11mmo1/1 Rc=49mmo1/1 Sc=21mmo1/1 Rc=34mmo1/1	- Sc が 10mmol/1 以上で Rc が 700mmol/1 未満の 時 Sc < Rc ならば無害	無害
緊急時対策所 用燃料地下タンク *2	化学法* ⁵ (平成 24, 25 年)	八雲町産 粗骨材 隠岐の島町産 粗骨材 広瀬町産 細骨材	Sc=24nmo1/1 Rc=91mmo1/1 Sc=16nmo1/1 Rc=61mmo1/1 Sc=20nmo1/1 Rc=26nmo1/1	- Sc が 10mmol/l 以上で Rc が 700mmol/l 未満の 時 Sc < Rc ならば無害	無害

表9 アルカリ骨材反応に関する試験結果(3/3)

注記 Sc:溶解シリカ量 (mmol/1), Rc:アルカリ濃度減少量 (mmol/1)

- *1:原子炉建物,タービン建物,廃棄物処理建物,制御室建物,排気筒基礎,サイトバンカ建 物,補助ボイラ室,屋外配管ダクト(タービン建物~排気筒),取水構造物,1号機取水 槽北側壁,漂流防止装置基礎(荷揚護岸)(既設部),屋外配管ダクト(タービン建物~放 水槽),屋外配管ダクト(B-ディーゼル燃料貯蔵タンク~原子炉建物)(既設部)
- *2:工事開始前の試験結果を示す。
- *3:ASTM C 227-81 に準拠
- *4: JIS A 5308 に準拠
- *5: JIS A 1145 に準拠

②高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象以外)

表 10 に示す経年劣化事象については、今後も経年劣化事象の進展が考えられない、また は進展傾向が極めて小さいと考えられることから、高経年化対策上着目すべき経年劣化事 象ではない事象と判断した。

構造物	経年劣化事象	劣化要因	理由
コンクリート	強度低下	凍結融解	日本建築学会「高耐久性鉄筋コンクリート造設計施工指針(案)・ 同解説(1991)」によると、凍害危険度が2以上の地域は、凍 結融解を含む凍害を考慮する必要がある地域とある。 日本建築学会「建築工事標準仕様書・同解説 JASS5 鉄筋コ ンクリート工事(2015)」に示されている解説図26.1(凍害危険度 の分布図)によると、島根2号炉の周辺地域は凍結融解の危険 性がない地域に該当している。 あらためて、気象条件から島根2号炉の周辺地域の凍害危険 度を確認すると、凍結融解の危険性がない地域に該当していた。 島根2号炉周辺地域の凍害危険度について別紙3に示す。

表 10 日常劣化管理事象以外

3.3 劣化要因毎の評価対象部位の選定結果経年劣化事象に対する劣化要因毎の評価対象部位について, 選定した結果を表 11 に示す。

3.4 評価手法

高経年化対策上着目すべき経年劣化事象について,劣化要因毎に評価対象部位の材料およ び構造部条件並びに使用および環境条件に基づき,その進展の程度が大きいと考えられる評 価点について,材料面の性能を確認する。

性能を確認する方法としては,学会基準等による既往の健全性評価または国内外の研究成 果による健全性評価とした。

							• • • •							
	構造種別				コンクリート	構造物					鉄骨棒	冓造物		
я́л	圣年劣化事象	・ 進度低下 ・ 適定のでの ・ い ・ しい ・ 能力 ・ 値度低下 ・ ・ ・							備					
	要因	熱	放射線照射	中性化	塩分浸透	骨材反応	機械振動	凍結融解	熱	腐食	金属疲労	腐食	摩耗	考
	原子炉建物	\bigcirc^{*1}	○*1	\bigcirc^{*2}	0	\bigtriangleup	0		○*5					*1:一次遮へい 壁
	タービン建物	0	0	\bigcirc^{*2}	0	\bigtriangleup	○*4		0					*2:内壁 *3:壁面
代表	制御室建物			\bigcirc^{*2}	0	\bigtriangleup								*4:タービン発電 機架台
悟造物	排気筒									\bigtriangleup	\bigtriangleup	\bigtriangleup	\bigtriangleup	*5:ガンマ線遮へ
	補助ボイラ室									\bigtriangleup				V THE
	1号機取水槽 北側壁			\bigcirc^{*3}	\bigcirc^{*3}	\bigtriangleup								

表 11 経年劣化事象に対する要因毎の評価対象部位

○:高経年化対策上着目すべき経年劣化事象

△:高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象)

▲:高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象以外)

* :評価対象部位

- 4. 代表構造物の技術評価
 - 4.1 コンクリートの強度低下
 - 4.1.1 熱による強度低下
 - (1) 評価の概要

評価対象部位は、対象構造物のうち、通常運転時に雰囲気温度が高く、高温の原子炉圧 力容器近傍に位置する一次遮へい壁とし、評価点は一次遮へい壁内側とした(図1参照)。 評価については、別紙4に示す評価に用いる温度の考え方に基づき、通常運転時におけ る周辺の温度測定結果と、コンクリートの温度制限値を比較した。通常運転時における温 度測定の方法、位置および結果を別紙5に示す。

図1 原子炉格納容器概要

(2) 評価結果

コンクリートの温度制限値は設計基準強度確保の観点から,局部では90℃,一般部では 65℃と定められている^{*1}。

評価温度は、一次遮へい壁に対して温度条件の厳しくなる原子炉格納容器内の雰囲気温度とし、測定値の最高温度は62℃(測定位置は、原子炉圧力容器に近く温度の高くなるガンマ線遮へい壁近傍)であり、コンクリートの温度制限値以下である。

また,定期的に目視点検を行っており,熱に起因する有害なひび割れ等は確認されていない。

以上から、熱による強度低下に対しては、長期健全性評価上問題とならない。

※1:日本建築学会「原子炉建屋構造設計指針・同解説(1988)」

4.1.2 放射線照射による強度低下

(1) 評価の概要

評価対象部位は,対象構造物のうち,原子炉圧力容器近傍に位置し,運転時に中性子照 射量およびガンマ線照射量の最も大きい一次遮へい壁とし,評価点を一次遮へい壁内側と した。

評価については,評価点における運転開始後 60 年時点で予想される中性子照射量および ガンマ線照射量を解析により算出した。放射線照射量の算出方法,条件,過程および結果 を別紙 6 に示す。

(2) 評価結果

中性子照射と強度の関係に関しては、従来 Hilsdorf 他の文献^{*2}における「中性子照射したコンクリートの圧縮強度(f_{cu})と照射しないコンクリートの圧縮強度(f_{cu})の変化」を参照していた。一方、小嶋他の試験結果を踏まえた最新知見(小嶋他、NTEC-2019-1001「中性子照射がコンクリートの強度に及ぼす影響」)によると、コンクリートの圧縮強度は、およそ1×10¹⁹n/cm²の中性子照射量(E>0.1MeV)から低下する可能性が確認されている。

運転開始後 60 年時点で予想される中性子照射量 (E>0.1MeV) は、放射線照射量解析の 結果、評価点において 1.32×10^{14} n/cm²であり、 1×10^{19} n/cm²を超えておらず、中性子照射 によるコンクリートの強度低下への影響はないと判断する。

一方,ガンマ線照射量と強度との関係についても,Hilsdorf他の文献^{**2}によると,ガンマ線照射量が2×10¹⁰rad程度以下では有意な強度低下は見られない(図2参照)。

運転開始後 60 年時点で予想されるガンマ線照射量は,放射線照射量解析の結果,評価点 において 2.81×10⁶rad であり,2×10¹⁰rad を超えることはないと推定されるため,ガンマ 線照射によるコンクリート強度低下への影響はないものと判断する。

また,定期的に目視点検を行っており,放射線照射に起因する有害なひび割れ等は確認 されていない。

以上から、放射線照射による強度低下に対しては、長期健全性評価上問題とならない。

※2 : Hilsdorf, Kropp, and Koch, "The Effects of Nuclear Radiation on the Mechanical Properties of Concrete", American Concrete Institute Publication, SP-55, Paper 10. (1977)

図 2 ガンマ線照射したコンクリートの圧縮強度 (f_{cu}) と照射しないコン クリートの圧縮強度 (f_{cu})の変化

4.1.3 中性化による強度低下

(1) 評価の概要

中性化の進展度合いは,環境条件(温度,相対湿度,二酸化炭素濃度)の影響を受ける ため,空気環境測定を実施した。空気環境測定方法および位置を別紙7に示す。

中性化の評価対象部位は,屋外と屋内では,鉄筋位置に対する中性化深さと鉄筋腐食の 開始の関係が異なることから,各々に対して評価対象部位を抽出することとし,空気環境 の影響を遮断するコンクリートの塗装仕上げの有無,環境条件(温度,相対湿度,二酸化 炭素濃度)に基づく中性化に及ぼす影響度,かぶり厚さを考慮して選定した。

仕上げの状況については、対象構造物のうち、仕上げが無い箇所がある構造物を選定し、 設置環境が屋内の構造物と屋外の構造物に分類する。屋外の構造物については、対象構造 物のうち、1号機取水槽北側壁を選定した。屋内については、対象構造物のうち、原子炉建 物、タービン建物および制御室建物の内壁を選定した。

評価点については、屋内の各評価対象構造物で鉄筋腐食開始年数が最小となった、原子 炉建物3階非常用ガス処理装置室、タービン建物3階タービン室、制御室建物1階1D非常 用電気室、1C非常用電気室の内壁とした。なお、鉄筋腐食開始年数については、各環境条 件(温度、相対湿度、二酸化炭素濃度)が入力値となる森永式^{*3}を用いて算出した。表12 に各評価対象部位での森永式から算出される鉄筋腐食開始年数を示す。

また,屋外の構造物については海水によりコンクリート表面が湿潤とならず,空気環境の影響を受ける1号機取水槽北側壁の壁面(気中帯)とした。

対象構造物		調査部位	測定面 種類	鉄筋が腐食し 始める時点の 中性化深さ ^{*1} (cm)	60 年時点 ^{*2} における 中性化深さ (cm)	鉄筋腐食 開始年数 ^{*3} (年)
		B2 階(東面)	塗装面	7.0	0.88	3, 837
		B1 階(西面)	塗装面	7.0	1.10	2, 430
百		1階(西面)	塗装面	7.0	1.04	2,770
亦 子 与	示 子 内	o. 叶(末天)	塗装面	8.0	0.93	4, 444
炉 壁	2 階(東面)	未塗装面	8.0	2.39	674	
物	物	3階(北面)	塗装面	7.0	0.97	3, 136
		非常用ガス処理装置室	未塗装面	7.0	2.50	472
		4階(北面)	塗装面	7.0	0.93	3, 460
			塗装面	7.0	0.57	9, 194
		BI 隋(北面)	未塗装面	7.0	1.46	1, 386
タ			塗装面	8.0	0. 98	4,031
 ビ	内		未塗装面	8.0	2.51	609
ン 建	壁		塗装面	6.0	0.89	2,770
物		2 階 (四面)	未塗装面	6.0	2.27	422
		3階(北面)	塗装面	6.0	0.91	2,629
		ターヒッン室	未塗装面	6.0	2.34	397
制		1 階(東面) 1C 非常用電気室	未塗装面	7.0	4.53	177
御室建	内壁	1 階(北面) 廊下	塗装面	7.0	1.29	2, 207
物		1 階 1D 非常用電気室	未塗装面	7.0	4.53	177

表 12 森永式による中性化の鉄筋腐食開始年数の比較

*1:かぶり厚さから評価した値(屋内ではかぶり厚さに2cmを加えた値)

*2:島根2号炉運転開始より60年時点

*3:森永式によって算出される中性化深さが,鉄筋が腐食し始める時点の中性化深さに達する年数

森永式

$$x = \sqrt{\frac{c}{5}} \cdot 2.44 \cdot R \cdot (1.391 - 0.017 \cdot RH + 0.022 \cdot T) \cdot (4.6 \cdot w/c - 1.76) \cdot \sqrt{t}$$

t:材令(日) x:中性化深さ(mm) w/c:水セメント比 C:炭酸ガス濃度(%) RH:相対湿度(%) T:温度(℃) R:仕上げ材による係数 評価については以下の手順にて実施した。算定過程を別紙8に示す。

①中性化深さの推定

中性化深さの推定式(岸谷式^{**4},森永式^{**3}および中性化深さの実測値に基づく√t式^{**} ⁵)により,運転開始後 60 年経過時点の中性化深さを算出

②最大中性化深さ推定値の抽出

中性化深さの推定式により得られる中性化深さのうち、最大値となる中性化深さを抽出

③鉄筋が腐食し始める時点の中性化深さの算出

鉄筋が腐食し始める時点の中性化深さとして,屋内はかぶり厚さに 2cm を加えた値, 屋外はかぶり厚さの値をそれぞれ算出

④運転開始後 60 年経過時点の中性化深さの評価②が③よりも小さいことを確認

※4:日本建築学会「高耐久性鉄筋コンクリート造設計施工指針(案)・同解説(1991)」 ※5:土木学会「コンクリート標準示方書 維持管理編(2013)」

(2) 評価結果

評価対象部位の運転開始後 60 年経過時点における中性化深さの推定値は表 13 に示すと おり、いずれの評価点においても鉄筋が腐食し始める時点の中性化深さを十分に下回って いることを確認した。

また,定期的に目視点検を実施しているが,中性化による鉄筋腐食に起因する有害なひ び割れ等は確認されていない。

以上から、中性化による強度低下に対しては、長期健全性評価上問題とならない。

表 13 運転開始後 60 年時点と鉄筋が腐食し始める時点の中性化深さの比較

(単	立	:	cm)
	_		

		調査時点の	中性化深さ			
評価点		調査時期 (経過年数)	実測値 (最大値)	運転開始後 60 年時 点の中性化深さ*1	鉄筋が腐食し始める 時点の中性化深さ*2	
	原子炉建物 3 階内壁	2016 年 (27 年)	0.65 (2.2)	3.57 (岸谷式)	7.0	
屋内	タービン建物 3階内壁	2016 年 (27 年)	0.36 (1.2)	3.57 (岸谷式)	6.0	
	制御室建物 1 階内壁	2013 年 (39 年)	0.00 (0.1)	5.24 (岸谷式)	7.0	
屋外	1 号機取水 槽北側壁 気中帯	2011 年 (37 年)	3.05 (4.5)	4.35 (√ t 式)	6.6	

*1:岸谷式,森永式および中性化深さの実測値に基づく√t式による評価結果のうち最大値を 記載

*2:かぶり厚さから評価した値

4.1.4 塩分浸透による強度低下

(1) 評価の概要

塩分浸透の評価対象部位は、対象構造物のうち飛来塩分および海水とその飛沫の影響に より最も厳しい塩分浸透環境下にあり、塗装等の仕上げが施されていない部位がある1号 機取水槽北側壁とした。塩分浸透の測定結果を表14に示す。

評価点については,評価対象構造物(1号機取水槽北側壁)のうち,「高経年化技術評価 審査マニュアル(JNES-RE-2013-9012)」に基づき,塩分浸透環境を考慮し,図3に示すと おり,環境条件が異なる1号機取水槽の気中帯,干満帯および海中帯をそれぞれ評価点と して選定した。

図3 1号機取水槽の概要

					塩化物イオン	量 (kg/m ³)		
対象の	表面から	の深さ	気中帯		干満帯		海中帯	
コンクリート構造物	(mn	n)	2.4 1 14	平均值		平均值	1.3 1 1.4	平均值
		No. 1	3.11		7.14		4.49	
	0~10	No. 2	4.81	5.18	6.67	6.41	4.33	4.15
		No. 3	7.63		5.43		3.63	
		No. 1	5.56		3.26		5.78	
	$10 \sim 20$	No. 2	5.38	5.27	5.62	4.18	5.75	5.90
		No. 3	4.88		3.66		6.16	
		No. 1	6.18		1.95		4.05	
	$20 \sim 30$	No. 2	7.22	6.35	2.05	2.05	3.57	3.87
		No. 3	5.66		2.16		3.99	
		No. 1	4.90		1.13		2.56	
	$30 \sim 40$	No. 2	9.33	6.82	1.02	1.20	2.84	2.87
		No. 3	6.23		1.44		3.20	
		No. 1	4.47		0.82		1.66	
	$40 \sim 50$	No. 2	7.74	6.01	0.60	0.85	2.09	1.90
		No. 3	5.82		1.13		1.95	
		No. 1	4.41		0.52		1.20	
	$50 \sim 60$	No. 2	5.02	4.58	0.37	0.54	1.40	1.36
		No. 3	4.31		0.72		1.48	
1 旦继雨水擂		No. 1	2.66		0.52		0.88	
1 万1%以小1管	$60 \sim 70$	No. 2	4.16	3.14	0.24	0.41	0.78	0.92
们则空		No. 3	2.61		0.48		1.10	
		No. 1	1.66		0.28		0.59	
	$70 \sim 80$	No. 2	2.30	2.21	0.17	0.27	0.47	0.66
		No. 3	2.68		0.37		0.92	
		No. 1	1.02		0.24		0.39	
	$80 \sim 90$	No. 2	2.22	1.57	0.13	0.22	0.98	0.64
		No. 3	1.47		0.28		0.56	
		No. 1	0.79		0.17		0.24	
	$90 \sim 100$	No. 2	1.22	1.02	0.13	0.17	0.33	0.32
		No. 3	1.05		0.22		0.38	
	100~	No. 1	0.43		0.13		0.15	
	120	No. 2	0.57	0.52	0.09	0.26	0.18	0.21
	120	No. 3	0.55		0.55		0.31	
	120~	No. 1	0.21		0.11		0.04	
	140	No. 2	0.27	0.28	0.09	0.10	0.04	0.08
	UTU	No. 3	0.37		0.09		0.16	
	140~	No. 1	0.15		0.07		0.04	
	160	No. 2	0.27	0.19	0.09	0.07	0.04	0.04
	100	No. 3	0.14		0.04		0.04	
点検	年月日		2011 年	2月2日	2011 年	2月4日	2011 年	2月8日
()内	はデータ採取	日	(2011年)	1月14日)	(2011年	1月14日)	(2011年	1月14日)

表 14 塩分浸透の測定結果

評価については、以下の手順にて実施した。算定過程を別紙 10 に示す。

①運転開始後 60 年時点における鉄筋の腐食減量の算出

- ・拡散方程式により塩化物イオン濃度の測定結果をもとに、運転開始経過年毎のコンクリート表面からの塩化物イオンの浸透を予測し、鉄筋位置における塩化物イオン量を算出
- ・森永式^{※3}により鉄筋位置における塩化物イオン量を用いて、運用開始経過年数毎の 鉄筋の腐食減量を算出
- ②かぶりコンクリートにひび割れが発生する時点における鉄筋の腐食減量の算出

森永式により鉄筋径およびかぶり厚さを用いて,かぶりコンクリートにひび割れが発 生する時点における鉄筋の腐食減量を算出

③運転開始後 60 年時点における鉄筋の腐食減量の評価

①が②より小さいことを確認

(2) 評価結果

評価対象部位の運転開始後 60 年経過時点における鉄筋の腐食減量の推定値は表 15 に示 すとおり、かぶりコンクリートにひび割れが発生する時点の鉄筋の腐食減量を十分に下回 っていることを確認した。

また,定期的に目視点検を実施しているが,塩分浸透による鉄筋腐食に起因する有害な ひび割れ等は確認されていない。

以上から、塩分浸透による強度低下に対しては、長期健全性評価上問題とならない。

				鉄筋の	腐食減量(×I	10^{-4} g/cm^2
評価点		調査時期 (経過年 数)	鉄筋位置での 塩化物イオン濃度 (%)	調査時点	運転開始後 60 年時点	かぶりコンクリート にひび割れが 発生する時点
1	気中帯	2011 年 (37 年)	$\begin{array}{c} 0.18\ (3.79) \end{array}^{*}$	9.9	31.6	69.2
北機取北	干満帯	2011 年 (37 年)	$\begin{array}{c} 0.\ 016 \ (0.\ 35) \end{array} *$	0.0	7.1	69.2
小槽	海中帯	2011 年 (37 年)	$\begin{array}{c} 0.\ 057 \ (1.\ 28) \end{array} *$	0.5	3. 3	69.2

表15 鉄筋の腐食減量

*:()内は塩化物イオン量(kg/m³)

- 4.1.5 機械振動による強度低下
- (1) 評価の概要

評価対象部位は、プラント運転中常時振動を受ける代表構造物のうち、最も大きな機械 振動を受けるタービン建物のタービン発電機架台とし、評価点については、機械振動荷重 を直接受ける機器支持部付近(基礎ボルト周辺のコンクリート)を選定した。

機械振動の評価対象および評価点の選定過程は別紙 11 に示す。

(2) 評価結果

タービン発電機については、「QMS7-02-N28 2号機巡視点検要領書」に基づき異常振動 の有無を日常的なパトロールで確認している。タービン発電機架台については定期的(1回 /年)に点検手順書に基づき目視点検を行い、コンクリート表面において強度に支障をき たす可能性のある欠陥がないことを確認している。

また,仮に機械振動により機器のコンクリート基礎への定着部の支持力が失われるよう な場合,機器の異常振動が発生するものと考えられるが,「QMS7-02-N01 運転管理手順書」 に基づき日常的な巡視点検やタービン監視計器により軸振動の測定値を中央制御室におい て連続監視しており,異常の兆候は検知可能である。

以上から、機械振動による強度低下に対しては、長期健全性評価上問題とならない。

4.2 コンクリートの遮へい能力低下

4.2.1 熱による遮へい能力低下

(1) 評価の概要

評価対象部位は,放射線の遮へい能力が要求されるガンマ線遮へい壁および一次遮へ い壁のうち,原子炉圧力容器近傍に位置し,周辺環境からの伝達熱および運転時に照射 量の最も大きいガンマ線遮へい壁とする。評価点は,ガンマ線遮へい壁の炉心領域部と する。評価に用いる温度の考え方について,別紙4に示す。

(2) 評価結果

放射線防護の観点から、コンクリート遮へい体の設計に適用されている「コンクリー ト遮へい体設計基準」(R.G.Jaeger et al.「Engineering Compendium on Radiation Shielding (ECRS) VOL.2」)には、周辺および内部最高温度の制限値が示されており、 「コンクリートに対しては中性子遮へいで 88℃以下、ガンマ線遮へいで 177℃以下」と なっている。

これに対し、評価対象部位の最高温度は、工事計画認可申請書添付書類「生体しゃへい装置の放射線のしゃへい及び熱除去についての計算書」によると、コンクリート中の 全ガンマ線束による発熱を考慮して温度分布解析を行った結果は78℃であり、コンクリ ート温度制限値を下回っていることから、運転開始後60年時点においても遮へい能力へ の影響はないと判断する。なお、評価に用いた温度分布解析の詳細については別紙12に 示す。

また,仮に熱によるコンクリート構造物の遮へい能力低下が生じた場合,放射線量が 上昇するものと考えられるが,放射線量は日常的に監視しており,異常の兆候は検知可 能である。

以上から,熱によるコンクリートの遮へい能力低下に対しては,長期健全性評価上問 題とならない。

4.3 現状保全

コンクリート構造物の強度低下については、定期的(1回/年)に点検手順書に基づくコン クリート表面の目視点検を実施している。目視点検の結果、ひび割れ等の補修が必要となる 損傷が確認された場合、即時補修が必要な場合を除き、その経過を継続的に監視しつつ、点 検実施後数年以内を目途に補修を計画、実施している。

コンクリート構造物の遮へい能力低下については、ガンマ線遮へいコンクリートが、鉄板 で覆われているため、ガンマ線遮へいコンクリートに近く、他の部位より熱の影響を受けて いると思われる一次遮へい壁において構造物の健全性維持の観点から定期的(1回/年)に点 検手順書に基づくコンクリート表面の目視点検を実施している。また、放射線量を日常的に 監視している。

4.4 総合評価

コンクリート構造物の強度低下については,健全性評価結果から判断して,今後,強度低 下が急激に発生する可能性は小さい。

また,定期的(1回/年)な点検手順書に基づく目視点検により補修対象となったひび割れ 等の補修を計画,実施しており,現状の保全方法は,コンクリート構造物の健全性を維持す る上で適切である。

コンクリート構造物の遮へい能力低下については,健全性評価結果から判断して,現状に おいて問題はなく,今後,遮へい能力低下が急激に発生する可能性は小さい。

また,仮に熱によるコンクリート構造物の遮へい能力低下が生じた場合,放射線量が上昇 するものと考えられるが,放射線量は日常的に監視しており,異常の兆候は検知可能である。

4.5 高経年化への対応

コンクリート構造物の強度低下および遮へい能力低下に対しては,高経年化対策の観点から現状の保全内容に対して追加すべき項目はなく,今後も現状保全を継続していく。

5. 代表構造物以外の技術評価

コンクリートおよび鉄骨構造物の技術評価については、代表構造物について各経年劣化事象に 影響を及ぼす要因毎に使用条件を考慮して実施しており、グループ内構造物の使用条件は代表構 造物に包含されているため、技術評価結果も代表構造物に包含された結果となる。

- 6. まとめ
 - 6.1 審査ガイド等記載事項に対する確認結果

「2. 基本方針」で示した審査ガイド等記載事項に対して,高経年化技術評価を適切に実施していることを確認した。コンクリートおよび鉄骨構造物についての審査ガイド等記載事項との対比を表 16 に示す。

6.2 施設管理に関する方針として策定する事項

今後も現状の保全方法により健全性を確認していくものとし,現状保全項目に高経年化対策 の観点から追加すべきものはなく,施設管理に関する方針として策定する事項はない。

以 上

表16(1/2) コンクリートおよび鉄骨構造物についての審査ガイド等記載事項との対比	
--	--

カ゛イト゛	記載事項	技術評価結果
実用発電用原子 炉施設における 高経年化対策審 査ガイド	(1) 高経年化技術評価の審査	「4. 代表構造物の技術評価」に示すとお
	⑫健全性の評価	り,代表構造物について運転開始後 60 年時
	実施ガイド 3.1⑤に規定する期間の満了日までの期間について、高経年化対策	点を想定した健全性評価を実施した。
	上着目すべき経年劣化事象の発生又は進展に係る健全性を評価していることを	
	審査する。	
	13現状保全の評価	「4.3 現状保全」に示すとおり,健全性評
	健全性評価結果から現状の保全策の妥当性が評価されていることを審査する。	価結果から、現状の保全策が妥当であるこ
		とを確認した。
	⑭追加保全策の抽出	「4.5 高経年化への対応」に示すとおり,
	現状保全の評価結果から、現状保全に追加する必要のある新たな保全策が抽出	現状保全項目に、高経年化対策の観点から
	されていることを審査する。	追加すべき新たな保全策はなかった。
	(2) 長期施設管理方針の審査	「4.5 高経年化への対応」に示すとおり,
	①長期施設管理方針の策定	現状保全項目に,高経年化対策の観点から
	すべての追加保全策について長期施設管理方針として策定されているかを審	追加すべきものはなく、施設管理に関する
	査する。	方針として策定する事項はなかった。

カ゛イト゛	記載事項	技術評価結果
	3.1 高経年化技術評価の実施及び見直し	「4.5 高経年化への対応」に示すとおり,
	⑤抽出された高経年化対策上着目すべき経年劣化事象について、以下に規定する期	現状保全項目に、高経年化対策の観点から
	間の満了日までの期間について機器・構造物の健全性評価を行うとともに、必要	追加する新たな保全策はなかった。
	に応じ現状の施設管理に追加すべき保全策(以下「追加保全策」という。)を抽出	
	すること。	
	イ 実用炉規則第 82 条第 1 項の規定に基づく高経年化技術評価 プラントの運転を	
	開始した日から 60 年間	
実用発電用原子	3.2 長期施設管理方針の策定及び変更	「4.5 高経年化への対応」に示すとおり,
炉施設における	長期施設管理方針の策定及び変更に当たっては、以下の要求事項を満たすこと。	現状保全項目に、高経年化対策の観点から
高経年化対策実	①高経年化技術評価の結果抽出された全ての追加保全策(発電用原子炉の運転を断	追加すべきものはなく、施設管理に関する
施ガイド	続的に行うことを前提として抽出されたもの及び冷温停止状態が維持されるこ	方針として策定する事項はなかった。
	とを前提として抽出されたもの全て。)について、発電用原子炉ごとに、施設管理	
	の項目及び当該項目ごとの実施時期を規定した長期施設管理方針を策定するこ	
	と。	
	なお、高経年化技術評価の結果抽出された追加保全策について、発電用原子炉の	
	運転を断続的に行うことを前提とした評価から抽出されたものと冷温停止状態	
	が維持されることを前提とした評価から抽出されたものの間で、その対象の経年	
	劣化事象及び機器・構造物の部位が重複するものについては、双方の追加保全策	
	を踏まえた保守的な長期施設管理方針を策定すること。	

表 16(2/2) コンクリートおよび鉄骨構造物についての審査ガイド等記載事項との対比

34
点検手順書における目視点検の項目, 方法および判定基準について

「QMS7-06-N16 島根原子力発電所土木建築関係設備点検手順書」に基づき定期的(1回/ 年)に実施する目視点検について、点検手順書に定める、目視点検の項目・方法および判定基準 を以下に示す。

QMS7-06-N16-24 表 5 = 2 (1 / 6) [5.1 項関係]

島根原子力発電所 土木建築関係設備 点検基準

1 号機土木関係設備(廃止措置段階設備)

/\ #71	de the		定 期 点 檢	鋼 別 点 検	
27 30	f : 12]+	定调点换频度	ημ II	箱 度	л <u>і</u>
	放水口	1回/年	亀製、劣化、相対変位の状態等	1回/2定検(※1)	潜水点検による危裂・劣化の状態等
海岸構築物	版水口 版水路			1回/2定檢(※1)	潜水点検による危裂・劣化の状態等
	放水路			1回/4定検(※1)	滞水点検による危裂・劣化の状態等
	取 水 槽				
岩盤上の構築物) 屋外機械装置基礎 1回/年 約		龟裂、劣化、相対変位の状態等	上同之任	変位測定(「消防法に基づく素検管理手順書」に定められた設備が対象)
	放水槽				
盛土地盤上の	屋外揽被装置基礎		前 40 - 42 F→ 10 18 前117 (5 41) 66 42	1回/年(※2)	変位測定(抗基礎のものは除く)
構 築 物	¥ 9 F	1 101 × 44	10.22、2711、111月20日9247.22年	1回/年	委位測定

(注)潜水点検について、運転中立入りできない側所は定期検査時に実施する。
 (※1) 電気事業法第っ4条に基づく定期検査
 (※2) 測定結果等により問題がないと判断される場合には、頻度を減少又は測定を省略することができる。なお、頻度を減少又は測定を省略する場合には、その理由を明確にし、これを記録・保管しておくものとする。

QMS7-06-N16-24 表 5 - 2 (2 / 6) 〔5.1項関係〕

島根原子力発電所 土木建築関係設備 点検基準

2 号機土木関係設備(共用設備含む)

			定 期 点 検		個別点検
分類 名称		定期点検頻度	項目	頻度	項目
	護岸 (津波防波壁,屋外 排水路逆止弁含む) 防 波 堤 物 揚 場	1回/平	亀裂、劣化、相対変位の状態等	1 回/年	変位測定,潜水点検による 亀裂・劣化の状態等
	放水口			1回/3定検(※1)	潜水点検等による亀裂・劣化の状態等
海岸構築物	泊 地			必要に応じ	深浅调量
	取 水 口 取 水 路			1回/1定検(※1)	潜水点検による亀裂・劣化の状態等
	放水路			1回/3定検(※1)	潜水点検等による亀裂・劣化の状態等
	御御時御屋 (図4)	1回/年	劣化の状態等	1回/年	諸測定(絶縁抵抗等)
	(本位的故語 (梁书)	1回/3月	扉の外観点検および開閉試験,予備発電機等の試運転		
	取 水 槽			1回/5年	コンクリートの非破壊検査(反発度の測定)
	屋外機械装置基礎			1回/年	変位測定(「消防法に基づく点検管理手順書」に定められた設備が対象)
岩 盤 上 の 構 築 物	ダクト 屋外開閉所基礎 放水槽 屋外壁 フィルタ付ペント設備終納槽 恒設代替注水水槽 補助消火水槽	1回/年	亀裂、劣化、相対変位の状態等		
盛土地盤上の 構 築 物	 貯 水 槽 	1回/年	亀裂,劣化,相対変位の状態等	1回/年(※2) 1回/年(※2)	変位測定(杭基礎のものは除く) 漏水測定(屋外開放の貯水槽のみ) 変位測定(杭基礎のものは除く) 変位測定
	屋 外 壁				
1. 10 19 10 L 9	斜面	1回/年	亀裂,劣化,相対変位, 植生,周辺地山の状態等	1回/年(※2)	変位測定(高さ20m 未満の斜面,および自然斜面は除く)
工地に係わる 構 築 物	擁壁		亀裂,劣化,相対変位の状態等	1回/年(※2)	変位測定(高さ 5m 未満の擁壁は除く)
	調 整 池 注 砂 池	1 回/年	亀裂,劣化,相対変位,周辺斜面の状態等	1回/年(※2)	変位測定(※3) 堆積土砂測定(※3)
道 路	道路	1回/年	亀裂,劣化,沈下,安全施設の状態等		

(注)滞水点検について、運転中立入りできない個所は定期検査時に実施する。 (※1) 電気事業法第54条に基づく定期検査 (※2) 測定結果等により問題がないと判断される場合には、頻度を減少又は測定を省略することができる。なお、頻度を減少又は測定を省略する場合には、その理由を明確にし、これを記録・保管しておくものとする。 (※3) 現状はな谷調整池・沈砂池、深日調整池のみとする。 (※4) 津波防波扉(荷揚場北、荷揚場南,北中,東,1号機数水口)

表5-2(5/6) [5.1項関係]

島根原子力発電所 土木建築関係設備 点検基準

2号機建築関係設備(共用設備含む)

1. 40	da The	通常・定期点検		個 別 点 検		
27 共	名 朴	定期点検頻度	項目	頻度	項目	
	発電所本館建物			1回/5年	原子炉建物,タービン建物のコンクリート非破壊検査	
健 物	固 体 廃 棄 物 貯蔵所 サイトバンカ 建 物	1回/年	様式5-4 (建築関係設備 点検チェックシート) による			
AE 10	屋内開閉所等 その他付属建物					
	管理事務所等 一般建物(※1)		様式5-4 (建築関係設備 点検チェックシート)による			
	免護部材		様式5-4 (建築関係設備 点検チェックシート) による	竣工後5年, 10年後, 1回/10年程度	免震部材・免震層・建物外周部の変位計測等(※2)	
		1回/年(※4)	様式5-4 (建築関係設備 点検チェックシート) による(※3)	1回/5年程度	塗膜厚,鋼板板厚調定	
	排気筒			1回/10年	排気筒の筒身部,基礎ボルトの外観検査【定期事業者検査】	
構築物	サイトバンカ建物 排気筒	1回/年(※5)	様式5-4 (建築関係設備 点検チェックシート) による	1回/10年	排気筒の筒身部の外観検査【定期事業者検査】	
	ディーゼル燃料移 送ポンプ障壁・水 密扉	1回/年	様式5-4 (建築関係設備 点検チェックシート) による			

(注) 定期点検について,運転中立入りできない個所は定期検査時に実施する。

(※1)管理事務所2号館を除く。

(※2)点検項目,点検方法については,「一般社団法人日本免震構造協会 免震建物の維持管理基準」および「免震重要棟における免震部材の維持管理計画書」に準拠する。

(※3)高光度航空障害灯・原子力施設灯火については、以下の頻度で定期的に交換を実施する。

(※5)筒身部底面鋼板部の点検頻度は1回/10年とする。

土木関係設備処置判定表

点検結果に基づくA異常なし、B継続監視、C詳細調査、D計画的補修、E速やかに補修の処置判定を点検対象物および変状の種類ごとに以下に示す。

1.コンクリート

(1)ひび割れ

ひび割れが確認された場合は,

a. ひび割れ幅

b. ひび割れ位置

c. ひび割れパターン

による防水性能,構造上の影響度より処置判定(B継続監視,C詳細調査,D計画的補修,E速やかに補修)を行う。

上記 a ~ c による防水性能,構造上の影響度による処置判定後,ひび割れ 0.3mm 未満は記録対象外とし,0.4mm 以上のひび割れが認められた場合は、「B継続監視」、「D計画的補修」の判定を行う。

a. ひび割れによる防水性能への影響度

	名 称	判定項目	処置判定 ¹⁾			
			В	継続監視	C詳細調査またはD計画的補作	を E速やかに補修
	貯水槽 等	側壁,底版等のひび割れによる 防水性能への影響度				
ь.	ひび割れ位置による構造上の影響度					
			処置判定			
	名 称	制笔項目	。頂の測定を実	せん断ひび割れ、曲げひび割れである		ある
	сы уу у .	T TANK IN P	施施	B継続監視	C 詳細調査または D計画的補修	E速やかに補修
	屋外機械装置基礎, 取水槽, 配管ダクト, 放水口 (土留壁,	梁,壁,柱のひび割れ位置によ	せん断ひび割	構造部材への影響が小	構造部材への影響が小さ	構造部材への影響が大き
	排水路),放水槽,護岸(津波防波壁含む),防波堤,物揚	る構造部材への影響度	れ, 曲げひび割	さい, かつ「d-1. 補	い,かつ「d-1.補修の要	く,構造物全体の安全性に
	場,貯水槽,屋外壁,ヘリポート		れではない	修の要否検討」で「B	否検討」で「D計画的補修」	影響を及ぼす可能性があ
	調整池, 沈砂池,トンネル, 道路 (橋台, 橋脚), 切取盛土			継続監視」と判定した	と判定した場合	る場合
	斜面および自然斜面(法枠,排水路),擁壁,フィルタ付			場合		

ベント設備格納槽, 恒設代替注水水槽, 補助消火水槽 等

c.ひび割れパターンによる構造上の影響度

				処置判定			
タ 称	利宅項目	4百の判定を実		ある]	
nin (kar	THAT A H	施施	B継続監視	C 詳細調査または D計画的補修	E速やかに補修		
屋外機械装置基礎,取水槽,配管ダクト,放水口(土留壁,	壁,擁壁の膨張性の網目状のび	ない	構造部材への影響が小さ	構造部材への影響が小さ	構造部材への影響が大き	1	
排水路),放水槽,護岸(津波防波壁含む),防波堤,物揚	割れ		い, かつ「d-1. 補修の	い,かつ「d-1.補修の	く,構造物全体の安全性に	0	麦
場,貯水槽,屋外壁,ヘリポート	軸方向鉄筋に沿った膨張性の		要否検討」で「B継続監	要否検討」で「D計画的補	影響を及ぼす可能性があ		υ
調整池, 沈砂池,トンネル, 道路 (橋台, 橋脚), 切取盛土	ひび割れ		視」と判定した場合	修」と判定した場合	る場合		1
斜面および自然斜面(法枠,排水路),擁壁,フィルタ付	鉄筋腐食による直線状のひび						ហ
ベント設備格納槽, 恒設代替注水水槽, 補助消火水槽 等	割れ					」	_
						- ¥=	1 🗭

別紙 1-5

密4

d.	ひび割れ幅						
	h7 54						
	名 松	A: 異常なし	補修の要否検討(B継続監視またはD計i	西的補修) E速やかに補修			
	屋外機械装置基礎,取水槽,配管ダクト,放水口(土留壁, 排水路),放水槽,護岸(津波防波壁含む),防波堤,物場 場,貯水槽,泊地,屋外壁,ヘリボート,調整池,泥砂池, トンネル,道路(橋台,橋脚),切取盛土斜面および自然 斜面(法枠,排水路),擁壁,フィルタ付ベント設備格納 槽,恒設代替注水水槽,補助消火水槽 等	土木関係設備につ 機械基礎および機	いては,「図5-2 コンクリートのひび割れ処置 器アンカー部については,「図5-4 コンクリー	^{登判定フロー」} による - トのひび割れ処置判定フロー」による			
d -	- 1. 補修の要否検討						
	k7 24-	제6575 모	処置	计判定			
	名 称	刊正項目	B継続監視	D計画的補修			
		as assisted a set of the state of the set	8	de ser			

ひび割れ幅が 0.4mm 以上ある場合もしくは構造部材への影	ひび割れによる第三者への影響度	ない	ある	
響が小さい場合の補修の要否判定	ひび割れによる機能性	影響が小さい	影響が大きい	
	ひび割れによる耐久性	影響が小さい	影響が大きい	

	∕z ¥r	処置判定の					
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	B継続監視	C詳細調査またはD計画的補修	E速やかに補修			
	道路トンネル						
L							

(2)はく離・はく落

名 称	判定項目		処置判定	
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
屋外機械装置基礎、取水槽、配管ダクト、放水口(土留壁,排水	はく離・はく落による構造安全性	影響が小さい	影響が大きい	
路),放水槽,護岸(津波防波壁含む),防波堤,物揚場,貯水	はく落による第三者への影響度	ない	影響が大きい	影響なるでナゴやみが
信, 重小型, マシルー下, 調整池, 沈砂池,トンネル、道路(橋台,橋脚), 切取盛土斜面お	はく離・はく落による機能性	影響が小さい	影響が大きい	- 「影響を及は9号能性が 」極めて高い
よび自然斜面(法枠,排水路),擁壁,フィルタ付ベント設備格 納槽,恒設代替注水水槽,補助消火水槽等	はく離・はく落による耐久性	影響が小さい	影響が大きい	

#### (3) 鉄筋腐食

名称	判定項目	処置判定		
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
屋外機械装置基礎,取水槽,配管ダクト,放水槽,貯水槽,屋外 壁,ヘリポート,トンネル,道路(橋台,橋脚),切取盛土斜面 および自然斜面(法枠,排水路),フィルタ付ベント設備格納槽, 恒設代替注水水槽,補助消火水槽 等	鉄筋腐食によるコンクリート構 造物としての耐久性	影響が小さい	影響が大きい	影響を及ぼす可能性が 極めて高い

#### (4) 日地切れ

名 称	判定項目	処置判定		
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
屋外機械装置基礎,取水槽,配管ダクト,放水槽,貯水槽, 屋外壁,ヘリポート 等	目地切れによる構造物としての機能性	影響が小さい	影響が大きい	影響を及ぼす可能性が 極めて高い

表 5 一 5 (2/4) 〔5. 5. 1 項関係〕

#### (5) 沈下

名称	判定項目	処置判定		
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
屋外機械装置基礎、取水槽、配管ダクト、放水口(土留壁、	沈下による構造安全性	影響が小さい	影響が大きい	
排水路),放水槽,護岸(津波防波壁含む),防波堤,物揚	沈下による第三者への影響度	ない	影響が大きい	影郷なみぼナ可能研が
場,貯水槽,屋外壁,ヘリポート	沈下による機能性	影響が小さい	影響が大きい	極めて高い
調整池, 沈砂池,トンネル, 道路 (橋台, 橋脚), 切取盛土	沈下による耐久性	影響が小さい	影響が大きい	122.00 € 101.0
斜面および自然斜面(法枠,排水路),擁壁 等				

#### (6)漏水,湧水

名称	判定項目		処置判定	
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
取水槽,配管ダクト,放水槽,貯水槽	漏水、湧水による構造安全性	影響が小さい	影響が大きい	
調整池,沈砂池,恒設代替注水水槽,補助消火水槽 等	漏水、湧水による第三者への影響度	ない	影響が大きい	影響を及ぼす可能性が
	漏水、湧水による機能性	影響が小さい	影響が大きい	極めて高い
	漏水、湧水による耐久性	影響が小さい	影響が大きい	

#### 2. 法面

名 称	判定項目		処置判定	
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
切取、盛土法面	法面の各種変状による構造安全性	影響が小さい	影響が大きい	
	法面の各種変状による第三者への影響 度	ない	ある	影響を及ぼす可能性が
	法面の各種変状による機能性	影響が小さい	影響が大きい	極めて向い
	法面の各種変状による耐久性	影響が小さい	影響が大きい	

#### 3. 構造物周辺

名称	判定項目		処置判定	
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
配管ダクト,貯水槽,擁壁,屋外壁,ヘリポート	構造物周辺の各種変状による構造安全 性	影響が小さい	影響が大きい	
	構造物周辺の各種変状による第三者へ の影響度	ない	影響が大きい	影響を及ぼす可能性が 極めて高い
	構造物周辺の各種変状による機能性	影響が小さい	影響が大きい	
	構造物周辺の各種変状による耐久性	影響が小さい	影響が大きい	

# 4._______路

10 kg				
名 称	判定項目		処置判定	
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
道路路面	舗装面の変状による第三者への影響度	影響が小さい	影響が大きい	影響を及ぼす可能性が
	舗装面の変状による機能性	影響が小さい	影響が大さい	極めて高い

#### 5. 鋼構造物(浸水防止設備他)

名 称	判定項目		処置判定	
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
物揚場,放水口,取水槽(防水壁,水密扉,耐火扉,竜卷	劣化等による構造安全性	影響が小さい	影響が大きい	
防護設備),津波防波扉(1号放水口連絡トンネル止水扉含む),	劣化等による第三者への影響度	ない	影響が大きい	影響を及ぼす可能性が
産外研小路逆正升, 復小町廠タンク遮蔽壁(小密扉), 補助 復水貯蔵タンク遮蔽壁(水密扉), トーラス水受入タンク遮	劣化等による機能性	影響が小さい	影響が大きい	極めて高い
蔽壁(水密扉),復水貯蔵タンク連絡ダクト(水密扉)	劣化等による耐久性	影響が小さい	影響が大きい	

#### 6. 遮水シート

名 称	判定項目		処置判定	
		B継続監視	C詳細調査またはD計画的補修	E速やかに補修
貯水槽(輪谷東側)	漏水・劣化による構造安全性	影響が小さい	影響が大きい	
	漏水・劣化による第三者への影響度	ない	影響が大きい	影響を及ぼす可能性が
	漏水・劣化による機能性	影響が小さい	影響が大きい	極めて高い
	漏水・劣化等による耐久性	影響が小さい	影響が大きい	

1)日本コンクリート工学協会:コンクリートのひび割れ調査,補修・補強指針-2003-

²⁾:電力共通研究「原子力発電所におけるRC板状部材のひび割れ後耐力・耐漏洩機能に関する研究;平成16年度」

³⁾:日本道路協会:「道路トンネル維持管理便覧 1993.11」

## 建築関係設備処置判定表

点検結果に基づくA異常なし、B継続監視、D計画的補修、E速やかに補修の処置判定を点検対象物および変状の種類ごとに以下に示す。

I. 建物

別紙 1-9

# 1. 仕上部の点検

## (1) 屋根および屋上

tz zla	上达英日		処置	判定	
名	息 使 塤 日	A異常なし	B継続監視	D計画的補修	E速やかに補修
(a) アスファルト防水	①漏水の有無		漏水の跡が有る	漏水が有る	
	②防水保護材の亀裂,浮き,盛上り,及 び損傷の有無		漏水の恐れは無い	漏水の恐れが有る	
	③伸縮目地材の劣化及び損傷の有無		漏水の恐れは無い	漏水の恐れが有る	
	<ol> <li>④排水状態の良否</li> </ol>			排水状態が不良	
<ul> <li>(b)シート防水及び塗膜</li> <li>防水</li> </ul>	①漏水の有無	*****	漏水の跡が有る	漏水が有る	
15.7 /12	②防水層の亀裂,破断,めくれ,ふくれの有無		漏水の恐れは無い	漏水の恐れが有る	
	③保護塗装の劣化の有無		漏水の恐れは無い	漏水の恐れが有る	
	④排水状態の良否			排水状態が不良	
(c) 金属屋根,	①漏水の有無		漏水の跡が有る	漏水が有る	
ス レート 屋 根	②変形,割れ,錆,腐食,塗装の劣化及び表面処理の劣化の有無		漏水の恐れは無く,機 能性,耐久性への影響 が小さい	漏水の恐れが有り,機 能性,耐久性への影響 が大きい	
	③下地材の変形,錆,腐食の有無		漏水の恐れは無く,機 能性,耐久性への影響 が小さい	漏水の恐れが有り,機 能性,耐久性への影響 が大きい	
	<ul> <li>④シーリング材のひび割れ,変形, 損傷及び劣化の有無</li> </ul>		漏水の恐れは無く,機 能性,耐久性への影響 が小さい	漏水の恐れが有り,機 能性,耐久性への影響 が大きい	
(d) パラペット (コンクリート笠木	<ul> <li>①コンクリートまたはモルタルのひび割れ, 浮</li> <li>き,及び剥落等の有無</li> </ul>		機能性,耐久性への影響が小さい	機能性, 耐久性への影響が大きい	剥落等により第三者 被害の可能性が有る
及び金属笠木)	②金属笠木の変形,錆,腐食の有無 及び取付状態の良否		機能性,耐久性への影響が小さい	機能性,耐久性への影響が大きい	剥落等により第三者 被害の可能性が有る
	③シーリング材のひび割れ,変形, 損傷及び劣化の有無		機能性,耐久性への影響が小さい	機能性, 耐久性への影響大きい	

Ж от

- 6 ( 1 
eq 1 4 )

## 2.構造部の点検

# (1) 基 礎

友 秭	古绘而日		処置	判定	
-10 19/s	点 侠 塤 曰	A異常なし	B継続監視	D計画的補修	E 速やかに補修
(1) 建物まわり	①建物と周辺地盤との相対的な沈下 及び浮上の有無		構造安定性,機能性へ の影響が小さい	構造安定性,機能性 への影響が大きい	建物全体の安全性に 重大な影響を及ぼす 可能性が有る
	②建物に近接した法面及び舗装面の 亀裂,ゆるみ,はらみ出し及び陥没 の有無		構造安定性,機能性へ の影響が小さい	構造安定性,機能性 への影響が大きい	建物全体の安全性に 重大な影響を及ぼす 可能性が有る
(2) 基礎本体	<ol> <li>基礎の損傷の有無 (目視可能な場合のみ)</li> </ol>		構造安定性,機能性へ の影響が小さい	構造安定性,機能性 への影響が大きい	建物全体の安全性に 重大な影響を及ぼす 可能性が有る
	②建物の傾斜の有無,外壁面のひび 割れから基礎の変形状態を推定		構造安定性,機能性へ の影響が小さい	構造安定性,機能性 への影響が大きい	建物全体の安全性に 重大な影響を及ぼす 可能性が有る

## (2)上部躯体(RC造、SRC造、補強コンクリートブロック造)

k7 #4.	上位夜日		処置	判定		
名 朳	品 快 項 日	A異常なし	B継続監視	D計画的補修	E速やかに補修	
柱,梁,壁, 床スラブ,機械基礎,機	①ひび割れの有無		図 5 - 3, 図 5 · 処 圈	- 4 コンクリートのひ 判定フローによる	、び割れ	
器アンカー部	②剥離及び剥落の有無		構造安定性,機能性, 耐久性への影響が小さい	構造安定性,機能性, 耐久性への影響が大 きい	剥落により第三者被 害の可能性が有る	
	③梁及び床の過大なたわみの有無		構造安定性,機能性, 耐久性への影響が小さい	構造安定性,機能性, 耐久性への影響が大 きい	建物全体の安全性に 重大な影響を及ぼす 可能性が有る	
	<ol> <li>④異常な振動の有無</li> </ol>		構造安定性,機能性, 耐久性への影響が小さい	構造安定性,機能性, 耐久性への影響が大 きい	建物全体の安全性に 重大な影響を及ぼす 可能性が有る	[5.5.
	⑤ 補強コンクリートプロック造の壁 面ひび割れ及びそりの有無		構造安定性,機能性, 耐久性への影響が小さい	構造安定性,機能性, 耐久性への影響が大 きい	建物全体の安全性に 重大な影響を及ぼす 可能性が有る	1項関係

kz #4.			処置	判定	
2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	品 快 項 日	A異常なし	B継続監視	D計画的補修	E速やかに補修
(1) 柱,梁,筋かい,床,	①部材及び溶接部のひび割れ及び変		構造安定性,機能性,	構造安定性,機能性,	建物全体の安全性に
屋根	形の有無		耐久性への影響が小さ	耐久性への影響が大	重大な影響を及ぼす
			10	きい	可能性が有る
	②部材及び溶接部の錆及び腐食の有		構造安定性,機能性,	構造安定性,機能性,	建物全体の安全性に
	無		耐久性への影響が小さ	耐久性への影響が大	重大な影響を及ぼす
			10	きい	可能性が有る
	③塗装及び表面処理の劣化の有無		耐久性への影響が小さ	耐久性への影響が大	
			15	きい	
	④筋かいのゆるみの有無		構造安定性,機能性へ	構造安定性,機能性	
			の影響が小さい	への影響が大きい	
	⑤梁及び床の過大なたわみの有無		構造安定性,機能性,	構造安定性,機能性,	建物全体の安全性に
			耐久性への影響が小さ	耐久性への影響が大	重大な影響を及ぼす
			10	きい	可能性が有る
	⑥異常な振動の有無		構造安定性,機能性,	構造安定性,機能性,	建物全体の安全性に
			耐久性への影響が小さ	耐久性への影響が大	重大な影響を及ぼす
			N	きい	可能性が有る
	⑦床のひび割れの有無		図 5 − 3, 図 5 − 4 🖙	ンクリートのひび割れ	
			処置判定フ	ローによる	
	⑧床の剥離及び剥落の有無		構造安定性,機能性,	構造安定性,機能性,	剥落により第三者被
			耐久性への影響が小さ	耐久性への影響が大	害の可能性が有る
			10	きい	
(2) 耐火被覆材	①浮き、剥離及び脱落の有無		機能性への影響が小さ	機能性への影響が大	
			10	きい	

(3) 上部躯体(鉄骨造)

			処置	判定	
名 称	点檢項目	A異常なし	B継続監視	C詳細調査または	E速やかに補修
				D計画的補修	
(1) 水密扉	<ol> <li>①扉の変形,錆,腐食,傷,損耗, 塗装の劣化の有無等</li> </ol>		機能性, 耐久性への影響が小さい	機能性, 耐久性への 影響が大きい	
	②止水ゴムの劣化の有無		劣化しているが,水密 性能を満足している	水密性能を満足しな い	
2) 防水壁	<ol> <li>①止水パネルの変形,錆,腐食,傷, 損耗,塗装の劣化の有無</li> </ol>		機能性, 耐久性への影響が小さい	機能性, 耐久性への 影響が大きい	
(3) 堰	<ol> <li>①堰の変形, 錆, 腐食, 傷, 損耗, 塗装の劣化の有無</li> </ol>		機能性, 耐久性への影響が小さい	機能性, 耐久性への 影響が大きい	
	②止水ゴムの劣化の有無		<ul><li>劣化しているが,水密</li><li>性能を満足している</li></ul>	水密性能を満足しな い	
4) その他 ・止水テーブ	<ol> <li>②変形,腐食,傷,損耗の有無</li> </ol>		<ul> <li>機能性への影響が小さ</li> <li>い</li> </ul>	機能性への影響が大きい	
・ ハッチ, マンホール 蓋 ・ エキスハ [*] ンションシ [*] ョイント	②止水ゴムの劣化の有無		劣化しているが, 水密 性能を満足している	水密性能を満足しな い	
・FRP 防水	③固定ボルトの腐食,損耗の有無		機能性への影響が小さ い	機能性への影響が大きい	
	<ul> <li>④防水層の亀裂,破断,めくれ,ふ</li> <li>くれの有無</li> </ul>		機能性への影響が小さい	機能性への影響が大きい	

3. 浸水防止設備の点検

## 建築関係設備処置判定

# Ⅱ.構築物

# 1. 排気筒の点検

			処置	判定	
名 称	点検項日	A異常なし	B継統監視	C詳細調査または	E速やかに補修
				D計画的補修	
(1)筒身部	①座屈,割れ,錆,腐食等の異常有無		構造安定性,機能性,	構造安定性,機能性,	構造物全体の安全性
(a) 一般 部			耐久性への影響が小さ	耐久性への影響が大	に重大な影響を及ぼ
			l h	きい	す可能性が有る
	②筒身本体付属部材接合部の変形,		構造安定性,機能性,	構造安定性,機能性,	構造物全体の安全性
	割れ,錆,腐食等の異常有無		耐久性への影響が小さ	耐久性への影響が大	に重大な影響を及ぼ
			10	きい	す可能性が有る
	③塗装の劣化の有無		耐久性への影響が小さ	耐久性への影響が大	
			10	きい	
(b)脚部	<ul> <li>①根巻きコンクリート部のひび割れ発生の 有無</li> </ul>	図 5	-3 コンクリートのひ	び割れ処置判定フローに	こよる
	②根巻きコンクリート部の漏水個所の有無		漏水の跡が有る	漏水が有る	
(c)底面	①コンクリート部のひび割れの有無	コンクリート部のひび割れの有無 図5-3 コンクリートのひび割れ処置判定フローによる			
	②鋼板部の亀裂,腐食の有無		漏水の恐れは無い	漏水が有る	
(2)筒身支持構造部	①主要部材(主柱,斜·水平材,支持		構造安定性,機能性,	構造安定性,機能性,	構造物全体の安全性
(a) 鉄塔	材)の変形,割れ,錆,腐食等の異常		耐久性への影響が小さ	耐久性への影響が大	に重大な影響を及ぼ
	有無		10	きい	す可能性が有る
	②塗装の劣化の有無		耐久性への影響が小さ	耐久性への影響が大	
			10	きい	
(b)脚部	<ul> <li>①根巻きコンクリート部のひび割れ発生の 有無</li> </ul>	図 5	-3 コンクリートのひ	び割れ処置判定フローに	こよる
	②根巻きコンクリート部の漏水個所の有無		漏水の跡が有る	漏水が有る	
3) 付帯設備	①変形,割れ,錆,腐食及び取付状態		構造安定性,機能性,	構造安定性,機能性,	脱落等により第三者
(a) 架設手摺・ステッブ	の異常の有無		耐久性への影響が小さ	耐久性への影響が大	被害の可能性が有る
<ul><li>(b) 階段・歩廊・梯子</li></ul>			10	きい	
	<ol> <li>②塗装の劣化の有無</li> </ol>		耐久性への影響が小さ	耐久性への影響が大	
			10	きい	
(4)高光度航空障害灯·原	<ol> <li>損傷,取付状態の異常の有無</li> </ol>		機能性への影響が小さ	機能性への影響が大	
子力灯火			10	きい	
	②球切れの有無			球切れが有る	

(5)制振ダンバ	①部材(シリンダ,クレビス部,ロッド,蛇腹)	機能性への影響が小さ	機能性への影響が大	構造物全体の安全性
	の傷、変形、錆、腐食及び破損等	 د <i>ب</i> ا	きい	に重大な影響を及
	の異常の有無			ぼす可能性が有る
	②塗装の劣化の有無	耐久性への影響が小さ	耐久性への影響が大	
		 6	きい	
	③オイル漏れの有無	機能性への影響が小さ	機能性への影響が大	
		64	きい	



図5-2 コンクリートひび割れ処置判定フロー(土木関係設備)〔5.5.1 項関係〕





図5-4 コンクリートひび割れ処置判定フロー(機械基礎・機器アンカー部)[5.5.1項関係]

1. はじめに

風などの繰返し荷重が継続的に鉄骨に作用することにより,疲労による損傷が蓄積され,鉄骨 部材あるいは接合部の健全性が損なわれる可能性がある。

島根2号炉の機器・構造物のうち,風による繰返し荷重を受ける排気筒の鉄骨構造物を評価対象とし,排気筒を直接支持している鉄塔の主柱材および排気筒の筒身について疲労の検討を行う。

評価対象である排気筒の筒身および鉄塔について,建設時において,筒身は工場溶接で製作し たブロックを現地で溶接して組み立てており,鉄塔については,工場溶接で製作した主柱材等を 現地で高力ボルト接合により組み立てている。工場製作での品質管理として,鋼材検査証明書(ミ ルシート)による材料検査,工場出荷時に寸法検査および外観検査を実施するとともに,放射線 透過試験にて異常な欠陥がないことを確認している。現地溶接部については開先面検査,開先合 せ検査を実施するとともに,放射線透過試験にて異常な欠陥がないことを確認している。排気筒 建設以降は,筒身,鉄塔ともに保全計画に基づく外観点検を実施しており,表面に機能・性能に 影響を及ぼすおそれのある割れ・変形等の有意な異常がないことを確認している。

排気筒の疲労評価は、(社)日本建築学会「鋼構造設計規準-許容応力度設計法-2005」(以下、 「S 規準」という)に示される疲労損傷評価法を参照し、疲労評価を実施している。

S規準の「7.1 適用範囲」には、「1×10⁴回を超える繰返し応力を受ける部材,および接合部に 対して疲労の検討を行う」と規定されており、日本鋼構造協会編「鋼構造物の疲労設計指針・同 解説 1993」等の最新知見を取り入れた上で、建築鋼構造の各種継手形式に対応する疲労設計曲 線を定め、応力の繰返し数に応じた許容疲労強さを規定するとともに、変動応力振幅や組合せ応 力の繰返しに対する疲労の検討を可能としている。

疲労設計曲線には、応力範囲の打切り限界(疲労限)が設定されており、打切り限界以下の繰 返し応力範囲は疲労を考慮する必要はないとされているため、本評価においては、応力の繰返し 数および繰返し応力範囲を算定し、許容疲労強さ並びに打切り限界と比較することにより、疲労 を考慮する必要性の有無を評価する。

なお、検討条件は工事計画認可申請書の条件を用いる。

- 2. 排気筒の疲労評価
  - 2.1 評価条件
  - (1) 評価対象

風による繰返し荷重を受ける排気筒の鉄骨構造部を対象とした。

- (2) 評価内容
- ①使用材料

排気筒の使用材料は、以下の通りである。

・鉄 塔(主柱材):STK400 一般構造用炭素鋼鋼管

・筒 身:SMA400A 溶接構造用耐候性熱間圧延鋼材

②検討用風速および発生日数

風に関する記録として、気象庁 HP および国立天文台編「理科年表 令和5年第96冊」(以

下,「理科年表」という)には、日最大風速(「10分間の風速の平均値)を表す)10m/s以上 および15m/s以上の日数の月別平均値(1991~2020年までの平均値)が掲載されている。こ れらのうち、島根2号炉近傍の気象官署地点として鹿島、松江を選定する。また、理科年表 に記載されている山陰地方の気象官署地点である、鳥取、浜田も選定する。

各気象官署における風に関する記録を表-別紙 2-1 に示す。

表-別紙 2-1 発電所近傍の気象官署における風に関する記録

項目	鹿島	松江	鳥取	浜田
日最大風速 10m/s 以上の日数の年間平均 値(日)	16.3	67.4	28.2	64.9
日最大風速 15m/s 以上の日数の年間平均 値(日)	0.3	6.0	1.5	8.9

これらを踏まえ,島根2号炉近傍の観測点として松江気象官署の記録を,また,保守的評価の観点から各風速で最も発生回数の多い浜田気象官署の記録を用いて,以下の4ケースで検討を行う。

- ・ケース1:検討用風速 V₁=10.0 (m/s),年間平均日数67.4 (日)
- ・ケース2:検討用風速 V₂=15.0 (m/s),年間平均日数6.0 (日)
- ・ケース3:検討用風速 V₃=10.0 (m/s),年間平均日数64.9 (日)
- ・ケース4:検討用風速 V₄=15.0 (m/s),年間平均日数8.9 (日)
- (3) 応力の繰返し数

気象庁 HP および理科年表より求められた年間平均日数を評価年数60年分の累積時間(秒) に換算し、各ケースに対する累積時間を下式のように算定する。

・累積時間:発生日数×1日中(24時間×3,600秒)×評価年数(60年間)

この累積時間を工事計画認可申請書に示される排気筒の一次固有周期で除した値を,応力の繰返し数として求める。各ケースの応力の繰返し数の算出結果を表-別紙 2-2 に示す。

	検討用風	累積時間の算定			一次因有周	応力の	
ケース	速 (m/s)	発生 日数	評価 年数	累積 日数	累積秒数	期(秒)	繰返し数 (回)
1	10.0	67.4		4,044	3. $49 \times 10^8$		3. $16 \times 10^8$
2	15.0	6.0	60 年	360	3. $11 \times 10^7$	1 106	2.81 $\times 10^{7}$
3	10.0	64.9	00 4	3, 894	3. $36 \times 10^8$	1.100	3. $04 \times 10^8$
4	15.0	8.9		534	4. $61 \times 10^{7}$		4. $17 \times 10^{7}$

表-別紙 2-2 各ケースの応力の繰返し数

(4) 基準疲労強さおよび応力の打切り限界(変動振幅)

鉄塔(主柱材)および筒身の母材は、S 規準の表 7.1 における「圧延材,引抜き材」に該当 するが、鉄塔、補強材接合部は高力ボルトとしていること、および筒身は縦横方向に完全溶 込み溶接されていることを考慮し、基準疲労強さ Δ σ_Fおよび変動振幅の応力範囲の打切り限 界 Δ σ_Mを表-別紙 2-3 に示す通りとする。

表-別紙 2-3 鉄塔(主柱材)および筒身の基準疲労強さおよび応力範囲の打切り限界

項目	鉄塔(主柱材)	筒身
基準疲労強さ:Δσ _F (N/mm ² )	100	80
応力範囲の打切り限界: $\Delta \sigma_{VL}$ (N/mm ² )	39	29

(5) 許容疲労強さ

許容疲労強さは、荷重の繰返し数(N)に応じて応力範囲で示され、S規準の7.1式により以下のように示される。

・垂直応力範囲の許容疲労強さ:Δ_σa=(126 / ³√N)×Δ_σF

N:総繰返し数

Δ σ_F: 垂直応力範囲の基準疲労強さ

(6) 検討用応力

工事計画認可申請書の風荷重に対する応力解析結果は,基準風速 V₀=30.0 (m/s) *を用いて 算定された数値であるため,風荷重が風速の2乗に比例することから,本検討においては(2) の各検討用風速と基準風速 V₀との比α(観測記録の最大風速の2乗/基準風速の2乗)を算 定し,係数倍した応力を風荷重に対する検討用応力とする。

- ・ケース1:  $\alpha_1 = V_1^2 / V_0^2 = 10.0^2 / 30.0^2 \Rightarrow 0.11$
- ・ケース2:  $\alpha_2 = V_2^2 / V_0^2 = 15.0^2 / 30.0^2 = 0.25$
- ・ケース3:  $\alpha_3 = V_3^2 / V_0^2 = 10.0^2 / 30.0^2 \Rightarrow 0.11$
- ・ケース4:  $\alpha_4 = V_4^2 / V_0^2 = 15.0^2 / 30.0^2 = 0.25$
- *: 基準風速 V₀は,各地域における風の性状に応じて 30~46(m/s)の範囲で国土交通大臣が定める風速を示す。

2.2 評価内容

(1) 検討用応力の算定

検討用応力は、工事計画認可申請書に記載される設計用風荷重による曲げモーメント M₁を 用いて算定する。検討用応力の算定結果について表-別紙 2-4, 2-5 に示す。

・検討用風荷重による曲げモーメント: M₂= α M₁

				風荷重	
k_7	標高	寸法	設計用応力	検	;討用応力
1)-X	GL. (m)	(mm)	曲げモーメント	反粉	曲げモーメント
			$M_1$ (kN • m)	徐毅 α	M ₂ (kN $\cdot$ m)
1,3	53.7	53.7 508.0 $\phi \times 9.5$	21.2	0.11	2.4
2,4			21.2	0.25	5.3

表-別紙 2-4 検討用応力の算定(鉄塔(主柱材))

表-別紙 2-5 検討用応力の算定(筒身)

			風荷重			
ケーフ	標高	寸法	設計用応力	検	討用応力	
7-5	GL. (m)	(mm)	曲げモーメント	反举	曲げモーメント	
			$M_1$ (kN • m)	休奴 α	$M_2$ (kN · m)	
1,3	79.4	79.4 3, 320 $\phi \times 10$	4,835.6	0.11	532.0	
2,4			4,835.6	0.25	1, 208. 9	

(2) 検討用応力範囲の算定

検討用応力範囲Δσは、工事計画認可申請書に記載される断面算定結果を用いて、最大風 速が正負交番荷重(完全両振り)として作用した場合を想定し、以下のように算定する。な お、排気筒から排出される気体による腐食の可能性は少ないことから、筒身の算定に用いる 断面係数は腐食代を考慮しない。検討用応力範囲の算定結果について、表-別紙 2-6、2-7 に 示す。

・検討用応力範囲: $\Delta \sigma = (M_2/Z) \times 2$ 

ケース	標高 GL. (m)	寸法 (mm)	断面係数 Z (× 10 ³ mm ³ )	検討用応力 曲げモーメント Ma (kN・m)	曲げ応力度 M ₂ /Z (N/mm ² )	検討用応力 範囲 $\Delta \sigma$
1, 3	(III) E.2. 7	53. 7 508. 0 $\phi \times 9.5$	1,820	2.4	1.4	2.8
2,4	əə. <i>1</i>		1,820	5.3	3.0	6.0

表-別紙 2-6 検討用応力範囲の算定結果(鉄塔(主柱材))

表-別紙 2-7 検討用応力範囲の算定結果(筒身)

ケース	標高 GL. (m)	寸法 (mm)	断面係数 Z (× 10 ³ mm ³ )	検討用応力 曲げモーメント M ₂ (kN・m)	曲げ応力度 M ₂ /Z (N/mm ² )	検討用応力 範囲Δσ (N/mm ² )
1,3	70.4	3, 320 <i>φ</i>	85, 700	532.0	6.3	12.6
2,4	19.4	$\times 10.0$	85, 700	1, 208. 9	14.2	28.4

2.3 評価結果

算定した検討用応力範囲  $\Delta \sigma$  と許容疲労強さ  $\Delta \sigma_a$  の比較を行い許容疲労強さおよび打切り 限界(疲労限)以下であることを確認する。2.2 で算定した検討用応力範囲  $\Delta \sigma$  と許容疲労強 さ  $\Delta \sigma_a$ の比較結果を表-別紙 2-8, 2-9 に示す。

また, S 規準の図 7.1.1 を参考に,検討結果をプロットしたものを,図−別紙 2-1, 2-2 に示す。

したがって、いずれの部材も許容疲労強さおよび打切り限界(疲労限)以下となっている。

基準疲労強さ 総繰返し数 許容疲労強さ 検討用応力範囲 ΔσζΔσα ケース  $\Delta \sigma_{\rm F} ({\rm N/mm^2})$ (回)  $\Delta \sigma_{\rm a}$  (N/mm²)  $\Delta \sigma (\text{N/mm}^2)$ との比較  $39.0^{*}$ 1 3.  $16 \times 10^8$ 2.8 0.08  $2.81 \times 10^{7}$ 2 41.4 6.0 0.15 100 3  $3.04 \times 10^8$  $39.0^{*}$ 2.8 0.08 4 4.  $17 \times 10^{7}$  $39.0^{*}$ 6.0 0.16

表-別紙 2-8 検討用応力範囲の比較結果(鉄塔(主柱材))

表-別紙 2-9 検討用応力範囲の比較結果(筒身)

ケース	基準疲労強さ $\Delta \sigma_{\rm F}$ (N/mm ² )	総繰返し数 (回)	許容疲労強さ $\Delta \sigma_{ m a}$ (N/mm ² )	検討用応力範囲 $\Delta \sigma$ (N/mm ² )	Δ σ と Δ σ a との比較
1		3. $16 \times 10^8$	29.0*	12.6	0.44
2	00	$2.81 \times 10^{7}$	33.1	28.4	0.86
3	80	$3.04 \times 10^{8}$	29.0*	12.6	0.44
4		4. $17 \times 10^{7}$	29.1	28.4	0.98

*: 打切り限界値を示す(図-別紙 2-1, 2-2 参照)



図-別紙 2-1 垂直応力範囲の繰返しによる疲労設計曲線(鉄塔(主柱材))



図-別紙 2-2 垂直応力範囲の繰返しによる疲労設計曲線(筒身)

1. はじめに

コンクリート中の水分が凍結し、それが気温の上昇や日射を受けること等により融解する凍結 融解を繰り返すことでコンクリートにひび割れが生じ、コンクリート構造物としての健全性が損 なわれる可能性がある。

図-別紙 3-1 に示す日本建築学会「建築工事標準仕様書・同解説 JASS5 鉄筋コンクリート工 事(2015)」(以下,「JASS5」という)解説図 26.1(凍害危険度の分布図)によると,島根 2 号 炉の周辺地域は凍結融解の危険性がない地域に該当している。

なお,凍害危険度の分布図にある凍害危険度は,気象資料を用いて外気温上の凍結融解作用の 強さに日射等の影響と含水程度を考慮して算出したものである。

あらためて、気象資料から島根2号炉周辺地域の凍害危険度を確認した結果を以下に示す。



図-別紙 3-1 JASS5 凍害危険度の分布図

2. 凍結融解作用を受けるコンクリート

JASS5「26節 凍結融解作用を受けるコンクリート」に、寒冷地に建設する建築物の激しい凍結融解作用を受ける部分に使用するコンクリートの仕様が示されている。

26節の適用にあたっては、解説に「凍結融解作用が激しくない場合、本節を適用する必要はない」とされ、同節の適用にあたっての目安が表により示されている。表-別紙 3-1 に、JASS5 26節適用の目安を示す。



表-別紙 3-1 JASS5 26 節適用の目安

3. 島根2号炉周辺地域の凍害危険度

最新の平滑平年値(1991~2020年の観測値)により,島根2号炉の周辺地域である松江地方 気象台の鹿島および松江の2地点の最低気温を確認すると,それぞれ0.6℃および0.8℃であった。

表-別紙 3-1 によると,新潟の最低気温-0.7℃に対して,凍害危険度は0 である。これに対し,島根2号炉の周辺地域である鹿島および松江の最低気温は0.6℃および0.8℃であり,新潟よりも最低気温が高いことから,凍害危険度は0 となり,凍結融解作用を受ける危険性はない地域と判断した。

なお,JASS5 解説に「わが国の多くの地域で最低気温と凍結融解回数が対応している」ことか ら,「凍結融解作用の温度条件の厳しさを最低気温によって表している」とされており,最低気 温から凍害危険度を確認することは妥当と考える。 1. 基本方針

コンクリートの技術評価に用いる温度は実測値を基本とし、2002年2月から2012年1月に計 測された最大値を用いる。

採用にあたっては,計測位置と評価対象部位との位置関係を考慮し,保守的な値であることを 確認する。なお,解析値の方が保守的な値である場合は,解析値を採用する。

2. 熱によるコンクリートの強度低下

評価対象部位は一次遮へい壁とし,評価点は一次遮へい壁内側とした。評価温度は別紙5に示 すとおり,一次遮へい壁に対して温度条件の厳しくなる原子炉格納容器内の雰囲気温度とし,実 測値の最高温度である62℃(ガンマ線遮へい壁近傍)を採用した。熱によるコンクリートの強 度低下の評価に用いる最高温度の計測位置を,図-別紙4-1に示す。



図-別紙 4-1 熱によるコンクリートの強度低下 評価温度概要

3. 熱によるコンクリートの遮へい能力低下

評価対象部位は,原子炉圧力容器近傍に位置するガンマ線遮へい壁とした。ガンマ線遮へい壁 近傍で測定された雰囲気温度の最高温度は62℃であるが,コンクリートの内部発熱も考慮した 温度分布解析結果*は78℃であり,解析値の方が実測値よりも高い値であるため,評価温度は解 析値の78℃とした。

熱によるコンクリートの遮へい能力低下の評価に用いる評価温度の概要を,図-別紙 4-2 に示 す。

※:工事計画認可申請書添付書類「生体しゃへい装置の放射線のしゃへい及び熱除去についての 計算書」



図-別紙 4-2 熱によるコンクリートの遮へい能力低下 評価温度概要

# 1. 温度測定の方法および位置について

評価対象部位周辺の温度を確認するため,原子炉格納容器内の温度計の測定値について確認した。温度測定の方法および位置を表-別紙 5-1 並びに図-別紙 5-1 に示す。

計器名称	測定位置	測定方法
TE217-2A		
TE217-2B	RPV ペデスタル内温度	
TE217-2C		
TE217-2D		
TE217-2E		
TE217-2F	逃がし安全弁周囲温度	
TE217-2G		
TE217-2H		
TE217-2J		
TE217-2K	RPV 上蓋フランジ周囲温度	
TE217-2L		
TE217-2M		
TE217-2N	HVD 戻りリング ダクト温度	
TE217-2P		熱電対
TE217-2R	トップ、ヘット、給気温度	
TE217-2S	トップ ヘット 戻り温度	
TE217-2T		
TE217-2U	RPV・遮へい壁間空気供給温度	
TE217-2V		
TE217-2W		
TE217-2X	RPV・遮へい壁間空気出口温度	
TE217-2Y		
TE217-3A		
TE217-3B		
TE217-3C	RPV 胴体フランジ周囲温度	
TE217-3D		
TE217-3E		

表-別紙 5-1 温度測定の方法および位置



図-別紙 5-1 原子炉格納容器内雰囲気温度計検出点位置

# 3. 測定結果

2002 年 2 月から 2012 年 1 月において測定した値のうち,最高温度を表-別紙 5-2 に示す。 原子炉格納容器内の雰囲気温度は最大で 62℃であり,コンクリートの温度制限値の 65℃を下 回る。

計器名称	最高温度	測定日
TE217-2A	52°C	2007年8月21日
TE217-2B	51°C	2007年8月21日
TE217-2C	53°C	2007年8月21日
TE217-2D	50°C	2007年8月21日
TE217-2E	53°C	2005年8月9日
TE217-2F	54°C	2005年8月9日
TE217-2G	55°C	2008年8月19日
TE217-2H	51°C	2008年7月25日
TE217-2J	53°C	2007年8月21日
TE217-2K	48°C	2007年8月21日
TE217-2L	47°C	2007年8月21日
TE217-2M	51°C	2008年8月19日
TE217-2N	50°C	2008年7月25日
TE217-2P	50°C	2007年8月21日
TE217-2R	33°C	2008年7月25日
TE217-2S	$50^{\circ}\mathrm{C}$	2007年8月21日
TE217-2T	35°C	2007年8月21日
TE217-2U	35°C	2005年8月9日
TE217-2V	35°C	2007年8月21日
TE217-2W	$56^{\circ}\mathrm{C}$	2004年8月31日
TE217-2X	48°C	2009年8月18日
TE217-2Y	62°C	2007年8月21日
TE217-3A	52°C	2005年8月9日
TE217-3B	56°C	2003年9月19日
TE217-3C	60°C	2002年9月11日
TE217-3D	60°C	2007年9月19日
TE217-3E	49°C	2007年8月21日

表-別紙 5-2 温度測定記録

- 1. 算出方法
  - (1) 放射線照射量の算出に用いる計算機コード

一次遮へい壁の放射線照射量は,原子炉圧力容器周囲を評価モデルとして,2次元輸送計算 コード DORT (DOORS3.2a バージョン)により,各部における中性子束(E>0.1MeV)およびガン マ線束を算出し,運転時間を乗じることで中性子照射量およびガンマ線照射量を求めている。

DORT コードは、米国のオークリッジ国立研究所で開発された中性子輸送方程式を数値的に 解くコードであり、入力パラメータは以下のとおりである。



※1 評価済み核データ JENDL-3.3 より作成された輸送計算用断面積ライブラリ MATXSLIB-J33 を使用。

(2) 放射線照射量の算出手順

一次遮へい壁における中性子照射量およびガンマ線照射量は、以下の手順で算出している。

- a. 基準計算として, R-Z 体系モデル(垂直断面モデル)により,一次遮へい壁の中性子束お よびガンマ線吸収線量率(ガンマ線束に吸収線量率換算係数を乗じる)を算出する。
- b. 補正計算として、R-θ 体系モデル(水平断面モデル)により、燃料配置の影響を考慮した 周方向中性子束およびガンマ線束の分布から補正係数を算出し、基準計算にて得られた中 性子束およびガンマ線吸収線量率に乗じることで、炉内各位置の中性子束およびガンマ線 吸収線量率の分布とする。
- c. 一次遮へい壁に対して, b. で求めた中性子束およびガンマ線束分布から,構造上最も数値 が高くなる位置における中性子束およびガンマ線束を求める。
- d. 運転開始後 60 年時点での実効運転期間を設定する。
- e. 一次遮へい壁における最大中性子束またはガンマ線吸収線量率に実効運転期間を乗じて、
   一次遮へい壁の運転開始後 60 年時点での中性子照射量またはガンマ線照射量(ガンマ線吸収線量)とする。

2. 評価モデル

(1) R-Z 体系モデル(垂直断面モデル)

基準計算として,図-別紙 6-1 のような形状のモデルを用いて一次遮へい壁の中性子束および ガンマ線束を算出する。

図-別紙 6-1 R-Z 体系モデル(垂直断面モデル)

(2) R- θ 体系モデル (水平断面モデル)

図-別紙 6-2 のような形状のモデルを用いて燃料配置による周方向中性子束およびガンマ線束 分布から補正係数を算出する。

図-別紙 6-2 R- θ 体系モデル(水平断面モデル)

3. 60年時点の実効運転期間

2015 年 7 月末時点および運転開始後 60 年時点での実効運転期間(EFPY)は,運転時間から 下記の通り算出した。

<2015 年 7 月末時点の EFPY>

= 2015 年 7 月末時点の総運転時間÷ (24×365.25)

- $= \frac{1}{24(\mathrm{H/D}) \times 365.25(\mathrm{D/Y})}$
- = 19.13EFPY

<運転開始後 60 年時点の EFPY>

- = (2015 年 7 月末時点の総運転時間+次回起動日以降の総運転時間*1)÷ (24×365.25)
- $= \frac{167,615(\text{H}) + 241,532(\text{H})}{(100)}$
- $24 (H/D) \times 365.25 (D/Y)$
- = 46.68EFPY
- *1:次回起動日(暫定:2018年7月1日)~運転開始後60年時点(2049年2月10日)までの総時間のうち稼働率を90%と想定し算出した。

# 4. 放射線照射量の算出結果

一次遮へい壁の放射線照射量の算出結果を表-別紙 6-1 に示す。

	中性子束またはガンマ線束が 最大となる位置	運転開始後 60 年時点の 放射線照射量
中性子照射量	図-別紙 6-3, 6-4 参照	$1.32 \times 10^{14} n/cm^2$
ガンマ線照射量	図-別紙 6-3, 6-4 参照	$2.81  imes 10^6$ rad

表-別紙 6-1 一次遮へい壁の放射線照射量

図-別紙 6-3 中性子束またはガンマ線束が最大となる位置(R-0 体系モデル)

図-別紙 6-4 中性子束またはガンマ線束が最大となる位置(R-Z体系モデル)
空気環境測定方法および位置を以下に示す。

### 1. 空気環境測定

中性化の進展度合いは,空気環境条件(温度,相対湿度,二酸化炭素濃度)の影響を受けるため,空気環境測定を実施した。

### 1-1. 測定方法

空気環境測定に使用した機器を表-別紙 7-1 に示す。温度,相対湿度の測定は,原子炉建物, タービン建物は 2015 年 12 月 23 日から 2016 年 9 月 29 日の期間で,制御室建物は 2010 年 12 月 22 日から 2011 年 5 月 9 日の期間で実施し,2 週間に1回の頻度で測定を行った。1号機取水槽 北側壁は 2010 年 12 月 5 日から 2011 年 12 月 4 日の期間で実施し,1時間間隔で連続測定を行っ た。

二酸化炭素濃度の測定は,原子炉建物,タービン建物は2015年12月23日から2016年9月 29日の期間で,制御室建物は2010年12月22日から2011年5月9日の期間で,1号機取水槽 北側壁は2010年12月11日から2011年11月28日の期間で実施し,2週間に1回の頻度で測定 を行った。

測定場所	測定項目	使用機器
	温度	泪泪庄礼
構内各所	相対湿度	仙仙及司
	二酸化炭素濃度	二酸化炭素濃度計

表-別紙 7-1 空気環境測定 使用機器

1-2. 測定位置

温度,相対湿度,二酸化炭素濃度について,建物内外の計54箇所にて測定を実施した。測定 位置図を図-別紙7-1~9に示す。 図-別紙7-1 原子炉建物 (EL 1,300), タービン建物 (EL 2,000), 制御室建物 (EL 1,600 および EL 5,300) 図-別紙 7-2 原子炉建物 (EL 8,800), タービン建物 (EL 5,500), 制御室建物 (EL 8,800)

図-別紙 7-3 原子炉建物 (EL 10,300), タービン建物 (EL 12,500), 制御室建物 (EL 12,800)

図-別紙 7-4 原子炉建物 (EL 15,500),制御室建物 (EL 16,900)

図-別紙 7-5 原子炉建物 (EL 23,800), タービン建物 (EL 20,600)

図-別紙 7-6 原子炉建物 (EL 30,500)

図-別紙 7-7 原子炉建物 (EL 34,800)

図-別紙 7-8 原子炉建物 (EL 42,800)

図-別紙 7-9 1号機取水槽北側壁(断面図)

調査時点および運転開始後 60 年経過時点の中性化深さの推定値の算定過程(推定式,条件, パラメータ)を以下に示す。

### 中性化深さの測定値の元となる実測値データ

	評価点	測定值 1 (cm)	測定值 2 (cm)	測定值 3 (cm)	実測値 (平均値) (cm)
屋	原子炉建物 3 階内壁	0.65	0.65	0.65	0.65
内	タービン建物 3階内壁	0.16	0.50	0. 43	0.36
	制御室建物 1 階内壁	0.00	0.00	0.01	0.00
屋 外	1 号機取水槽 北側壁 気中帯	3. 11	3. 51	2.54	3.05

調査時点及び運転開始後 60 年経過時点の中性化深さの推定値の算定結果(推定式,条件,パ ラメータ)を以下に示す。

	百子 <b>仁</b> 建物 加水 "少建物		制御室建物	1号機取水槽		
	原于护建初	アレン建物	前仰主建初	北側壁	備考	
	3 階内壁	3 階内壁	1 階内壁	気中帯		
w:水tメント比	0.53	0.53	0.59	0.557		
α:劣化外力係数	1.7	1.7	1.7	1.0	原子炉建物他:屋内 1号機取水槽北側壁: 屋外	
β:仕上げ材による係数	1.0	1.0	1.0	1.0	原子炉建物他:仕上げ 無し 1号機取水槽北側壁: 仕上げ無し	
γ: セメントによる係 数	0.8	0.8	0.8	0.8	フライアッシュセメントB種	
調査時点の推定値 (cm)	2. 44	2. 44	3. 85	1. 45	原子炉建物·外-ビン建物:運転開始後27年 経過時点 制御室建物:運転開始後39年経過時点 1号機取水槽北側壁: 運転開始後37年経過 時点	
運転開始後 60 年 経過時点*の推定 値 (cm)	3. 57	3. 57	5.24	2.07		

*: 島根2号炉運転開始より60年時点

岸谷式

$$t = \frac{7.2}{R^2 \cdot (4.6w - 1.76)^2} \cdot x^2$$

t:期間(年) x:中性化深さ(cm) w:水セメント比

:中性化深さの推定に必要なパラメータ

R:中性化率 ( $R = \alpha \cdot \beta \cdot \gamma$ )

: 推定結果

α:劣化外力の区分による係数

β:仕上げ材による係数

γ:セメントによる係数

### 2. 森永式

	百之后建物	タードン建物	制御室建物	1 号機取水槽	
	床了炉建初		前峄主定初	北側壁	備考
	3 階内壁	3 階内壁	1 階内壁	気中帯	
w/c:水セメント比	0.53	0.53	0.59	0.507	
R:仕上げ材による係 数	1.00	1.00	1.00	1.00	仕上げなし
<b>C</b> :炭酸ガス濃度(%)	0. 047	0. 048	0. 046	0. 0526	原子炉建物, ゲビン建物: 2015年12月23日から 2016年9月29日の期間 で, 2週間に1回測定した 結果の平均値 制御室建物:2010年12月 22日から2011年5月9日 の期間で, 2週間に1回測 定した結果の平均値 1号機取水槽北側壁:2010 年12月11日から2011年 11月28日の期間で, 2週 間に1回測定した結果の 平均値
<i>RH</i> :相対湿度(%)	52.0	54.0	41.2	69. 7	原子炉建物, タービン建物: 2015年12月23日から 2016年9月29日の期間 で, 2週間に1回測定した 結果の平均値 制御室建物: 2010年12月
<i>T</i> :温度(℃)	24. 6	22. 6	23.6	16. 5	22日から2011年5月9日 の期間で、2週間に1回測 定した結果の平均値 1号機取水槽北側壁:2010 年12月5日から2011年 12月4日の期間で、1時間 間隔で連続測定した結果 の平均値
調査時点の推定値 (cm)	1. 70	1. 59	3. 33	0.05	原子炉建物・タービン建物運 転開始後 27 年経過時点 制御室建物:運転開始後 39 年経過時点 1号機取水槽北側壁:運転 開始後 37 年経過時点
運転開始後 60 年経 過時点*の推定値 (cm)	2.50	2.34	4. 53	0.07	

*:島根2号炉運転開始より60年時点

: 中性化深さの推定に必要なパラメータ

: 推定結果

森永式

$$x = \sqrt{\frac{c}{5}} \cdot 2.44 \cdot R \cdot (1.391 - 0.017 \cdot RH + 0.022 \cdot T) \cdot (4.6 \cdot w/c - 1.76) \cdot \sqrt{t}$$

t:材令(日) x:中性化深さ(mm) w/c:水セメント比 C:炭酸ガス濃度(%)
 RH:相対湿度(%)
 T:温度(℃)
 R:仕上げ材による係数

3.		t	式
J.	$\checkmark$	ι	ТV

	百之后建物	ねードン建物	制御索建物	1号機取水槽	
	床 ] 炉 建物	/ し / 建 1/0	而叫主定物	北側壁	備考
	3 階内壁	3 階内壁	1 階内壁	気中帯	
中性化実測深さ (cm)	0.65	0.36	0.00	3.05	中性化深さの測定結果
運転開始後 60 年経過 時点*の推定値(cm)	0.95	0. 53	0.00	4. 35	

*:島根2号炉運転開始より60年時点

:中性化深さの推定に必要なパラメータ

: 推定結果

√t 式

 $x = A \cdot \sqrt{t}$ 

t:期間(年)

**x**:中性化深さ (cm)

A:中性化速度係数(中性化実測深さと中性化期間により算出)

### 塩化物イオン濃度の測定方法,測定位置について

塩化物イオン濃度の測定方法、測定位置を以下に示す。

1. 測定方法

JIS A 1154「硬化コンクリート中に含まれる塩化物イオン濃度の試験方法」に基づき、塩 化物イオン量の測定を実施した。測定は、コンクリートコア1本につき表面から 10 cmまでを 1 cm 間隔,表面から 10 cm~16 cm 間を 2 cm 間隔の計 13 断面で実施した。

2. 測定位置

塩化物イオン濃度について、1号機取水槽の気中帯、干満帯および海中帯をそれぞれ選定 し、測定を実施した。

なお、最高潮位および最低潮位は、島根原子力発電所において、2005年4月から2010年 3月の期間で観測を実施したデータにより設定している。観測を実施したデータについて は、島根原子力発電所の潮位観測記録の値である。

それぞれの評価点については、以下に示すとおりであり、2005年4月から2010年3月の 期間の潮位変化を図-別紙9-1に示す。

また、潮位観測記録を踏まえた、塩化物イオン濃度測定位置を図-別紙 9-2~3 に示す。

気中帯:最高潮位 EL+0.75m 以上の位置

干満帯:最高潮位 EL+0.75m 未満,最低潮位 EL-0.41m 以上の位置

海中帯:最低潮位 EL-0.41m 未満の位置



図-別紙 9-1 2005 年 4 月から 2010 年 3 月までの潮位変化





2.1 測定位置の海水の飛沫環境について

気中帯,干満帯および海中帯における塩化物イオン濃度測定点と図-別紙 9-1 に示す潮位変化を踏まえた海水飛沫環境について,表-別紙 9-1 に示す。

なお、「干満帯」は潮が干満を繰り返す領域であるが、「図-別紙 9-1 2005 年 4 月から 2010 年 3 月までの潮位変化」に示すとおり、時期によって潮位変化の傾向が異なるため、分割し て整理を行った。

	気中帯	干消	<b>尚</b> 帯	海中帯
塩化物イオン	No. 3 EL+2, 730	No. 1 EL+220		No. 1~3 EL-5, 750
濃度測定位置	No. 2 EL+2, 400	No. 2 EL+ 5		
	No. 1 EL+2, 400	No.3 EL-10		
	最高潮位 EL+750	[時期:各年1~6月]	[時期:各年7~12月]	最低潮位 EL-410
湖侍亦世	平均潮位 EL+252	最高潮位 EL+690	最高潮位 EL+750	平均潮位 EL+252
俯凹友儿		最低潮位 EL-410	最低潮位 EL-250	
		平均潮位 EL+158	平均潮位 EL+345	
	外気環境	1月から6月は潮位が低	左記の期間に比べて潮位	常時海水に浸かる環
		い傾向にあり、コンクリート	が高い傾向であり、干満	境
環境		表面が海面より上に長	の影響を常に受けてい	
		期間現れていることが	る。	
		多い。		

表-別紙 9-1 塩化物イオン濃度測定点の環境の違い

表-別紙 9-1 に示すとおり、「気中帯」の測定点は最高潮位から約 1.6m 高い位置ではあるが、 外気環境であり飛沫塩分を受けてコンクリート表面が乾湿を繰り返している環境である。

「干満帯」については、1月から6月の潮位傾向が7月から12月の潮位傾向よりも各年で同様に低い傾向であり、1月から6月はコンクリート表面が海水面より上に長時間現れていることが多く、海水の飛沫を受けてコンクリートの表面が乾湿を繰り返している環境であると考えられる。

一方,7月から12月の潮位傾向は,1月から6月と比べて各年で同様に高く,潮の干満影響を 常に受けている時期であり,コンクリート表面は海水によりほぼ飽和状態にあると考えられるた め,海水の飛沫の影響を受けて乾湿を繰り返している環境とは言い難い。

このため、「干満帯」については、常時海水の飛沫を受ける環境ではなく、一時的に海水の飛 沫を受ける環境にあると考える。

「海中帯」は、最低潮位より5m以上低い位置であり、常時海水に浸かっている環境である。

### 1. 鉄筋の腐食減量算定

鉄筋の腐食減量の算定過程(方法,条件,パラメータ)を以下に示す。

なお、以下パラメータのうち、干満帯の酸素濃度については、別紙9で示したように一時的に 海水の飛沫による影響を受け、コンクリート表面が乾湿を繰り返している環境であることから、 コンクリート表面の乾湿の繰り返しの程度を考慮して気中帯と同様の外気環境に曝される状態で あると想定して設定した。

	1号機取水槽北側壁		/11: -17	
	気中帯	干満帯	海中帯	加方
x : かぶり厚さ (mm)	66	66	66	
C:鉄筋位置における塩化物化/量(kg/m)	3.79 4.16	0.35 0.48	1.28 1.10	上段:塩分浸透の測定結果(調査時点の推定値) 下段:鉄筋位置近傍における塩化物休/量試験結果
Co:コンクリート表面の塩化物化ン量 (kg/m ³ )	20. 29	4.97	5.59	拡散方程式のGとDを未知数として、測定値の回 帰分析を行った。Levenberg-marquardt 法により、 が2乗が最小となるGを求めた。
D:コンパリート中の塩化物(オンの見かくす上の 拡散係数 (cm²/年)	0.34	0. 18	0. 41	拡散方程式の Gと Dを未知数として、測定値の回 帰分析を行った。Levenberg-marquardt 法により、 が2 乗が最小となる Dを求めた。
<ul> <li>              G : 鉄筋位置における塩化物(か量 (kg/m³) (推定値)      </li> </ul>	0.00~7.18	0.00~1.02	0.00~2.23	運転開始から60年経過時点までの各年の推定値
x : かぶり厚さ (mm)	66	66	66	
<i>d</i> : 鉄筋径 (mm)	22	22	22	
W : 単位水量(kg/m ³ )	152	152	152	
<i>W/C</i> :水t水比(比)	0.507	0.507	0.507	
N:練り混ぜ水の塩分濃度(%)	0.00~7.78	0.00~1.10	0.00~2.42	運転開始から60年経過時点までの各年の推定値
T:温度 (C)	16. 5	19. 1	19. 1	気中帯:2010年12月5日から2011年12月4日 の期間で、1時間間隔で連続測定した結果の平均値 干満帯、海中帯:沿岸定点の海水温の調査結果
RH:相対湿度(%)	85	100	100	気中帯:腐食による鉄筋コンクリート構造物の寿 命予測(森永論文 [*] )干満帯,海中帯:海水との接 触により100%(森永論文 ^{**} )
0:酸素濃度(比)	0.21	0.21	0.0062	気中帯:一般大気中の酸素濃度(理科年表) 干満帯:別紙9のうち2.1の考察により、気中帯 と同様のパラノタとした。 海中帯:土木学会「原子力発電所屋外重要土木構造 物の新撰性能照査指針・モュ7ル(2005)」引用
<i>q1</i> :調査時点の鉄筋の腐食減量(×10 ⁻⁴ g/cm ² )	9.92	0.0	0.52	
q1:運転開始60年経過時点の鉄筋の腐食減量(×10 ⁻⁴ g/cm ² )	31.56	7.08	3.29	
Qa:かぶりコンクリートにひび害�れが発生する時 点の鉄筋の腐食減量 推定値 (×10 ⁴ g/cm ² )	69.2	69.2	69.2	

※森永他「腐食による鉄筋コンクリート構造物の寿命予測」-コンクリート工学論文集(1990)

量の評価を実施するのに必要なパラメータ

: 推定結果

C:鉄筋位置における塩化物イオン量(kg/m³)  $C_0:$ コンクリート表面における塩化物イオン量 (kg/m³) *erf*:誤差関数

 $erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$ 

**x**:かぶり厚さ (mm) D:コンクリート中の塩化物イオンの見かけの拡散係数 (cm²/年) t:材齢(年)

拡散方程式

 $C = C_0 \left[ 1 - erf\left(\frac{0.1x}{2\sqrt{D \cdot t}}\right) \right]$ 

森永式

$$q = q_1 \cdot \frac{q_2}{q_2}$$
$$q_1 = \frac{d}{c^2} [-0.51 - 7.60N + 44.97(W/C)^2 + 67.95N(W/C)^2]$$

 $q_2 = 2.59 - 0.05T - 6.89H - 22.87O - 0.99N + 0.14TH$ 

 $+\ 0.51TO + 0.01TN + 60.81HO + 3.36HN + 7.32ON$ 

 $q_2 = 0.56528 + 1.4304N$ 

q:鉄筋の腐食速度(×10⁻⁴g/cm²/年)
q₁:塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
q₂:寿命予測対象部位で,塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
q'₂:寿命予測対象部位で,標準環境下(温度15℃,湿度69%, 酸素濃度20%)での腐食速度(×10⁻⁴g/cm²/年)
d:鉄筋径(nm)
c:かぶり厚さ(nm)
N:練り混ぜ水の塩分濃度(%)
W/C:水セメント比(比)
T:温度(℃)
H:湿度に関する項 H = (RH - 45)/100
RH:相対湿度(%)
O:酸素濃度(比)

$$Q_{cr}=0.602\left(1+\frac{2c}{d}\right)^{0.85}\times d$$

- 2. 拡散方程式の回帰分析結果
- 2.1 拡散方程式の回帰分析

塩化物イオン濃度は、気中帯、干満帯および海中帯のそれぞれに対して、3箇所(No.1, No.2, No.3)のコア採取により測定している。測定位置および測定結果は、「別紙9 図-別紙 9-2~3」および「P26 表14 塩分浸透の測定結果」に示す。

拡散方程式 (D, Co) は、気中帯、干満帯および海中帯のそれぞれに対して、測定された塩 化物イオン濃度を回帰分析することで評価する。評価は、コア (No. 1, No. 2, No. 3)の平均値 を用いる場合と、コア (No. 1, No. 2, No. 3)の単独値を用いる場合の双方について実施した。

回帰分析に当たっては、中性化の影響の可能性(土木学会規準「実構造物におけるコンクリート中の全塩化物イオン分布の測定方法(案)(JSCE-G 573-2003 コンクリート委員会・規準 関連小委員会)」(以下、「土木学会規準(案)」という。))を考慮し、コンクリート表面に近い 領域の測定値について、その有無の影響を検討し、影響の大きな方を採用した。最も影響の大 きい場合の回帰分析結果を図-別紙10-1、各回帰分析に用いた塩化物イオン量を表-別紙10-1 に示す。

なお、中性化の影響範囲については、気中帯、干満帯および海中帯のそれぞれの塩化物イオン濃度測定箇所において、中性化深さを実測していることから、各測定点における実測深さの 最大値を採用した。各測定点における中性化実測深さ・平均値および最大値を以下に示す。

	測定値1 (cm)	測定值2 (cm)	測定值3 (cm)	実測値 (平均値) (cm)	最大値 (cm)
気中帯	1.09	0.51	0.51	0.70	2.40
干満帯	0.00	0. 01	0.00	0.00	0.15
海中帯	0.09	0.08	0.08	0.08	0.60



	塩化物イオン濃度(%)				
表面からの深さ	( )	内は、塩化物イオン量(k	g/m ³ )		
(mm)	気中帯	干満帯	海中帯		
	No. 2	No. 3	No. 3		
00.10	0.228	0.249	0.162		
0, 0, 10	(4.81)	(5. 43)	(3. 63)		
$10 \sim 20$	0.255	0.168	0.275		
10 20	(5. 38)	(3. 66)	(6. 16)		
$20 \sim 30$	0.342	0.099	0.178		
20 30	(7.22)	(2.16)	(3.99)		
30~40	0.442	0.066	0.143		
50 10	(9.33)	(1.44)	(3. 20)		
40~50	0.367	0.052	0.087		
40 - 30	(7.74)	(1.13)	(1.95)		
50~60	0.238	0.033	0.066		
50/~60	(5.02)	(0.72)	(1.48)		
$60 \sim 70$	0.197	0.022	0.049		
60~70	(4.16)	(0. 48)	(1.10)		
$70\sim 80$	0.109	0.017	0.041		
10 - 80	(2.30)	(0.37)	(0. 92)		
80~90	0.105	0.013	0.025		
00 - 90	(2.22)	(0.28)	(0.56)		
90~100	0.058	0.010	0.017		
50 - 100	(1.22)	(0.22)	(0. 38)		
100~120	0.027	0.025	0.014		
100 -120	(0.57)	(0.55)	(0.31)		
120~140	0.013	0.004	0.007		
120 - 140	(0.27)	(0.09)	(0.16)		
1400-160	0.013	0.002	0.002		
140~100	(0.27)	(0.04)	(0.04)		

表-別紙 10-1 回帰分析に用いた塩化物イオン量

- 3. 調査時点,運転開始後 60 年時点及びかぶりコンクリートにひび割れが発生する時点の前後 5 年の鉄筋の腐食減量
- 3.1 評価結果

上記,拡散方程式の回帰分析で求めたコンクリート中の塩化物イオンの見かけの拡散係数 (D)およびコンクリート表面の塩化物イオン濃度(Co)を森永式に展開し,鉄筋の腐食減量 (気中帯,干満帯,海中帯)を算定した。各地点における評価結果を表-別紙10-2に示す。

運転開始後 60 年時点の鉄筋の腐食減量が、かぶりコンクリートにひび割れが発生する時点の鉄筋腐食減量(69.2×10⁻⁴g/cm²)を下回っていることを確認した。

なお,上記結果(気中帯,干満帯,海中帯)は、3本のコアの単独の測定値を用いた場合, およびその平均値を用いた場合のそれぞれにおいて,最も影響の大きいケースを示す。

## 表-別紙 10-2 鉄筋の腐食減量の結果

気中帯 ^{※1} No. 2コア測定結果	干満帯 ^{※1} No.3コア測定結果	海中帯 ^{※2} No.3コア測定結果
経過年数 ^{【1号での年数】} (年) <i>Σq</i> (×10 ⁻⁴ g/cm ² )	経過年数 【 ^{1号での年数】} (年) <i>とq</i> (×10 ⁻⁴ g/cm ² )	経過年数 【 ^{1号での年数】} (年) <i>Σq</i> (×10 ⁻⁴ g/cm ² )
17       [32]       7.9         18       [33]       8.3         19       [34]       8.7         20       [35]       9.1         21       [36]       9.5         22       [37]       9.9         23       [38]       10.4         24       [39]       10.8         25       [40]       11.2	17 [32]       0.0         18 [33]       0.0         19 [34]       0.0         20 [35]       0.0         21 [36]       0.0         22 [37]       0.0         23 [38]       0.0         24 [39]       0.0         25 [40]       0.0	17       [32]       0.3         18       [33]       0.3         19       [34]       0.4         20       [35]       0.4         21       [36]       0.5         22       [37]       0.5         23       [38]       0.6         24       [39]       0.6         25       [40]       0.7
26 [41]       11. 7         27 [42]       12. 2         55 [70]       28. 2         56 [71]       28. 9         57 [72]       29. 5         58 [73]       30. 2         59 [74]       30. 9         60 [75]       31. 6         61 [76]       32. 3         62 [77]       32. 9         63 [78]       33. 6         64 [79]       34. 3	26 [41]       0.0         27 [42]       0.0         55 [70]       5.4         56 [71]       5.8         57 [72]       6.1         58 [73]       6.4         59 [74]       6.8         60 [75]       7.1         61 [76]       7.4         62 [77]       7.8         63 [78]       8.1         64 [79]       8.4	26 [41]       0.7         27 [42]       0.8         55 [70]       2.8         56 [71]       2.9         57 [72]       3.0         58 [73]       3.1         59 [74]       3.2         60 [75]       3.3         61 [76]       3.4         62 [77]       3.5         63 [78]       3.6         64 [79]       3.7
103       [118]       64.9         104       [119]       65.7         105       [120]       66.6         106       [121]       67.5         107       [122]       68.3         108       [123]       69.2         109       [124]       70.1         110       [125]       70.9         111       [126]       71.8         112       [127]       72.7         113       [128]       73.5	05 [30]       8.8         212 [227]       66.9         213 [228]       67.3         214 [229]       67.8         215 [230]       68.2         216 [231]       68.7         217 [232]       69.1         218 [233]       69.5         219 [234]       70.0         220 [235]       70.4         221 [236]       70.9         222 [237]       71.3	491       [506]       68.3         492       [507]       68.4         493       [508]       68.6         494       [509]       68.8         495       [510]       69.0         496       [511]       69.1         497       [512]       69.3         498       [513]       69.5         499       [514]       69.7         500       [516]       70.0

※1:コンクリート表面に近い領域のデータを用いない場合 ※2:コンクリート表面に近い領域の全データを用いる場合

- 3.2 影響の大きいケースの選定
  - 1)気中帯について

塩化物イオン濃度測定結果が鉄筋の腐食減量結果に及ぼす影響について,「調査時点」, 「運転開始後 60 年経過時点」および「かぶりコンクリートにひび割れが発生する時点」を 比較して表-別紙 10-3~10-4 に示す。

なお,土木学会規準(案)を参考に,実測された中性化深さ+1cmの領域を含む塩化物イオン濃度のデータを用いる場合と用いない場合の影響を確認した。

この結果,「運転開始後 60 年経過時点」の鉄筋腐食減量が,最も大きくなる①-2(コンク リート表面に近い領域のデータを用いない場合,No.2コアの測定結果)のデータを選定した。

1	⊢1		(1)	)-2	1	1	)-3	1 1	1	-4
No	.1		No	. 2		No	. 3	11	計算値	(平均)
経過年数	腐食減量	経道	日年数	腐食減量		経過年数	腐食減量	11	経過年数	腐食減量
【1号での年数】	Σq	【1号で	の年数】	Σq		【1号での年数】	Σq		【1号での年数】	Σq
(年)	$(x 10^{-4} g/cm^2)$	(	年)	$(\times 10^{-4} \sigma / cm^2)$		(年)	$(\times 10^{-4} g/cm^2)$		(年)	$(\times 10^{-4} \sigma/cm^2)$
17 [32]	7 1	17	[32]	7 9		17 [32]	7.5		17 [32]	7.5
18 [33]	7.4	18	[33]	8.3		18 [33]	7.8	1 1	18 [33]	7.9
19 [34]	7.4	10	[34]	8.7		19 [34]	8.2		19 [34]	8.2
20 [35]	8.1	20	[35]	0.7	5	20 [35]	8.5	1 1	20 [35]	8.6
21 [36]	8.4	20	[36]	9.5	2 1	21 [36]	8.9		20 [35]	9.0
22 [37]	8.7	21	[37]	9.0		22 [37]	0.3		22 [37]	9.0
23 [38]	9.1	23	[38]	10.4		23 [38]	9.6		23 [38]	9.7
24 [39]	9.4	24	[39]	10.4		24 [39]	10.0	1 1	24 [39]	10.1
25 [40]	9.7	25	[40]	11.2		25 [40]	10.0	1 1	25 [40]	10.1
26 [40]	10.1	26	[41]	11.2	2	26 [40]	10.4	1 1	26 [41]	10.0
27 [42]	10.5	20	[42]	12.2		27 [42]	11.2	1 1	27 [42]	11.3
21 1421	10.0	21	1421	16.6	1 2	21 1421	11.2	1	27 1421	11.0
55 [70]	22.3	55	[70]	28.2	5 - S	55 [70]	24.5	1 1	55 [70]	25.1
56 [71]	22.8	56	[71]	28.9		56 [71]	25.0	11	56 [71]	25.7
57 [72]	23.3	57	[72]	29.5		57 [72]	25.6	11	57 [72]	26.2
58 [73]	23.8	58	[73]	30.2		58 [73]	26.1	11	58 [73]	26.8
59 [74]	24.3	59	[74]	30.9		59 [74]	26.7	11	59 [74]	27.4
60 [75]	24.8	60	[75]	31.6		60 [75]	27.2		60 [75]	28.0
61 [76]	25.3	61	[76]	32.3		61 [76]	27.8	11	61 [76]	28.5
62 [77]	25.8	62	[77]	32.9		62 [77]	28.3	11	62 [77]	29.1
63 [78]	26.3	63	[78]	33.6		63 [78]	28.9	11	63 [78]	29.7
64 [79]	26.8	64	[79]	34.3		64 [79]	29.5	11	64 [79]	30.3
65 [80]	27.3	65	[80]	35.1		65 [80]	30.0	11	65 [80]	30.9
<参考:かぶ	りコンクリート	にひび割れ	が発生	する前後5年の	跌筋	の腐食減量>				
131 [146]	65.8	103	[118]	64.9		120 [135]	65.4	] [	116 [131]	65.3
132 [147]	66.5	104	[119]	65. 7		121 [136]	66. 1		117 [132]	66. 0
133 [148]	67.1	105	[120]	66.6		122 [137]	66. 9		118 [133]	66. 8
134 [149]	67.7	106	[121]	67.5		123 [138]	67.6		119 [134]	67.5
135 [150]	68.4	107	[122]	68.3		124 [139]	68.3	] [	120 [135]	68.2
136 [151]	69.0	108	[123]	69.2		125 [140]	69.0		121 [136]	69.0
137 [152]	69.7	109	[124]	70.1		126 [141]	69.7		126 [137]	69.7
138 [153]	70. 3	110	[125]	70. 9		127 [142]	70.4		127 [138]	70.5
139 [154]	71.0	111	[126]	71.8		128 [143]	71.1		128 [139]	71.2
140 [155]	71.7	112	[127]	72.7		129 [144]	71.8		129 [140]	72.0
141 [156]	72.3	113	[128]	73.5		130 [145]	72.6		120 [141]	72.7

表-別紙10-3 鉄筋の腐食減量の算定結果【気中帯】 【コンクリート表面に近い領域のデータを用いない場合】

(2)	-1		(2)	-2	ĺ	2	-3	7	2	-4
No	. 1		No	. 2		No	. 3		計算值	(平均)
経過年数	腐食減量		経過年数	腐食減量		経過年数	腐食減量		経過年数	腐食減量
【1号での年数】	Σq		【1号での年数】	Σq		【1号での年数】	Σq		【1号での年数】	Σq
(年)	$(\times 10^{-4} {\rm g/cm^2})$		(年)	$(\times 10^{-4} g/cm^2)$		(年)	$(\times 10^{-4} \text{g/cm}^2)$		(年)	$(\times 10^{-4} {\rm g/cm^2})$
17 [32]	7.9		17 [32]	9.4		17 [32]	8.1		17 [32]	8.5
18 [33]	8.2		18 [33]	9.8		18 [33]	8.5		18 [33]	8.8
19 [34]	8.5		19 [34]	10. 2		19 [34]	8.8		19 [34]	9.2
20 [35]	8.8		20 [35]	10.6		20 [35]	9.2		20 [35]	9.5
21 [36]	9.1		21 [36]	11.0		21 [36]	9.5		21 [36]	9.9
22 [37]	9.5		22 [37]	11.4		22 [37]	9.9		22 [37]	10. 3
23 [38]	9.8		23 [38]	11.9		23 [38]	10.3		23 [38]	10.7
24 [39]	10.1		24 [39]	12.3		24 [39]	10.6		24 [39]	11.0
25 [40]	10, 5		25 [40]	12.7		25 [40]	11.0		25 [40]	11.4
26 [41]	10.8		26 [41]	13.1		26 [41]	11.4		26 [41]	11.8
27 [42]	11.2		27 [42]	13.6		27 [42]	11.8		27 [42]	12.2
55 [70]	21.6		55 [70]	26.8		55 [70]	23.5		55 [70]	24.0
56 [71]	21.9		56 [71]	27.3		56 [71]	23.9		56 [71]	24.4
57 [72]	22. 3		57 [72]	27.8		57 [72]	24.4		57 [72]	24.9
58 [73]	22.7		58 [73]	28.3		58 [73]	24.8		58 [73]	25.3
59 [74]	23.1		59 [74]	28.8		59 [74]	25.3		59 [74]	25.8
60 [75]	23. 5		60 [75]	29.3		60 [75]	25.7		60 [75]	26.3
61 [76]	23.9		61 [76]	29.8		61 [76]	26.2		61 [76]	26.7
62 [77]	24. 3		62 [77]	30. 3		62 [77]	26.6		62 [77]	27.2
63 [78]	24. 7		63 [78]	30.8		63 [78]	27.1		63 [78]	27.6
64 [79]	25.1		64 [79]	31.3		64 [79]	27.6		64 [79]	28.1
65 [80]	25.5		65 [80]	31.9		65 [80]	28.0		65 [80]	28.5
<参考:かぶ	リコンクリート	にひ	び割れが発生す	する前後5年の	跌筋	の腐食減量>				
159 [174]	66.8		128 [143]	66.3		141 [156]	66. 4		141 [156]	66.4
160 [175]	67.3		129 [144]	66. 9		142 [157]	67.0		142 [157]	66.9
161 [176]	67.7		130 [145]	67.4		143 [158]	67.5		143 [158]	67.4
162 [177]	68.2		131 [146]	68.0		144 [159]	68.0		144 [159]	68.0
163 [178]	68.6		132 [147]	68.6		145 [160]	68.6		145 [160]	68.5
164 [179]	69.1		133 [148]	69.1		146 [161]	69.1		146 [161]	69.0
165 [180]	69.6		134 [149]	69.7		147 [162]	69.6		147 [162]	69.5
166 [181]	70.0		135 [150]	70. 3		148 [163]	70. 2		148 [163]	70.1
167 [182]	70. 5		136 [151]	70.9		149 [164]	70. 7		149 [164]	70.6
168 [183]	71.0		137 [152]	71.4		150 [165]	71.3		150 [165]	71.1
169 [184]	71.4		138 [153]	72.0		151 [166]	71.8		151 [166]	71.7

### 表-別紙10-4 鉄筋の腐食減量の算定結果【気中帯】 【コンクリート表面に近い領域のデータを用いる場合】

2) 干満帯について

塩化物イオン濃度測定結果が鉄筋の腐食減量結果に及ぼす影響について,「調査時点」, 「運転開始後 60 年経過時点」および「かぶりコンクリートにひび割れが発生する時点」を 比較して表-別紙 10-5~10-6 に示す。

なお、土木学会規準(案)を参考に、実測された中性化深さ+1cmの領域を含む塩化物イオン濃度のデータを用いる場合と用いない場合の影響を確認した。

この結果,「運転開始後 60 年経過時点」の鉄筋腐食減量が,最も大きくなる①-3(コンク リート表面に近い領域のデータを用いない場合,No.3 コアの測定結果)のデータを選定した。

# 表-別紙 10-5 鉄筋の腐食減量の算定結果【干満帯】 【コンクリート表面に近い領域のデータを用いない場合】

1	)-1	1	)-2		1	)-3		1	-4
No	. 1	No	. 2	1	No	. 3	1	計算値	(平均)
経過年数	腐食減量	経過年数	腐食減量	1	経過年数	腐食減量		経過年数	腐食減量
【1号での年数】	Σq	【1号での年数】	Σq		【1号での年数】	Σq		【1号での年数】	Σq
(年)	$(\times 10^{-4} {\rm g/cm}^2)$	(年)	$(\times 10^{-4} g/cm^2)$		(年)	$(\times 10^{-4} g/cm^2)$		(年)	$(\times 10^{-4} g/cm^2)$
17 [32]	0.0	17 [32]	0.0	1	17 [32]	0.0		17 [32]	0.0
18 [33]	0.0	18 [33]	0.0	1	18 [33]	0.0	1	18 [33]	0.0
19 [34]	0.0	19 [34]	0.0	1	19 [34]	0.0		19 [34]	0.0
20 [35]	0.0	20 [35]	0.0	1	20 [35]	0.0		20 [35]	0.0
21 [36]	0.0	21 [36]	0.0	1	21 [36]	0.0		21 [36]	0.0
22 [37]	0.0	22 [37]	0.0		22 [37]	0.0		22 [37]	0.0
23 [38]	0.0	23 [38]	0.0		23 [38]	0.0		23 [38]	0.0
24 [39]	0.0	24 [39]	0.0	1	24 [39]	0.0		24 [39]	0.0
25 [40]	0.0	25 [40]	0.0	1	25 [40]	0.0		25 [40]	0.0
26 [41]	0.0	26 [41]	0.0	1	26 [41]	0.0		26 [41]	0.0
27 [42]	0.0	27 [42]	0.0	1	27 [42]	0.0		27 [42]	0.0
			9						
55 [70]	3.4	55 [70]	0.0		55 [70]	5.4		55 [70]	5.4
56 [71]	3.7	56 [71]	0.0	1	56 [71]	5.8		56 [71]	5.7
57 [72]	4.1	57 [72]	0.0	1	57 [72]	6.1		57 [72]	6.0
58 [73]	4.4	58 [73]	0.0	1	58 [73]	6.4		58 [73]	6.3
59 [74]	4.7	59 [74]	0.0		59 [74]	6.8		59 [74]	6.7
60 [75]	5.0	60 [75]	0.0		60 [75]	7.1		60 [75]	7.0
61 [76]	5.3	61 [76]	0.0		61 [76]	7.4		61 [76]	7.3
62 [77]	5.6	62 [77]	0.0	1	62 [77]	7.8		62 [77]	7.6
63 [78]	6.0	63 [78]	0.0	1	63 [78]	8.1		63 [78]	8.0
64 [79]	6.3	64 [79]	0.0	1	64 [79]	8.4		64 [79]	8.3
65 [80]	6.6	65 [80]	0.0	1	65 [80]	8.8		65 [80]	8.7
<参考:かぶ	りコンクリート	にひび割れが発生	する前後5年の	跌筋	の腐食減量>				
227 [242]	67.2	266 [281]	66. 9		212 [227]	66. 9		204 [219]	66. 6
228 [243]	67.6	267 [282]	67.4	1	213 [228]	67.3		205 [220]	67.1
229 [244]	68.0	268 [283]	67.9		214 [229]	67.8		206 [221]	67.6
230 [245]	68.4	269 [284]	68.3	1	215 [230]	68.2		207 [222]	68. 1
231 [246]	68.8	270 [285]	68.8	1	216 [231]	68.7		208 [223]	68.6
232 [247]	69.3	271 [286]	69.3		217 [232]	69.1		209 [224]	69.1
233 [248]	69.7	272 [287]	69.7		218 [233]	69.5		210 [225]	69.5
234 [249]	70.1	273 [288]	70. 2		219 [234]	70.0		211 [226]	70.0
235 [250]	70. 5	274 [289]	70.7		220 [235]	70.4		212 [227]	70.5
236 [251]	70. 9	275 [290]	71.2		221 [236]	70.9		213 [228]	71.0
237 [252]	71.3	276 [291]	71.6		222 [237]	71.3		214 [229]	71.5

### 表-別紙 10-6 鉄筋の腐食減量の算定結果【干満帯】 【コンクリート表面に近い領域のデータを用いる場合】

2	⊢ <b>1</b>	2	)-2		2-3			2-4	
No	. 1	No	. 2		No	. 3		計算値	(平均)
経過年数	腐食減量	経過年数	腐食減量	1	経過年数	腐食減量		経過年数	腐食減量
【1号での年数】	Σq	【1号での年数】	Σq		【1号での年数】	Σq		【1号での年数】	Σq
(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$		(年)	$(\times 10^{-4} g/cm^2)$		(年)	$(\times 10^{-4} g/cm^2)$
17 [32]	0.0	17 [32]	0.0		17 [32]	0.0		17 [32]	0.0
18 [33]	0.0	18 [33]	0.0		18 [33]	0.0		18 [33]	0.0
19 [34]	0.0	19 [34]	0.0	1	19 [34]	0.0		19 [34]	0.0
20 [35]	0.0	20 [35]	0.0	1	20 [35]	0.0		20 [35]	0.0
21 [36]	0.0	21 [36]	0.0		21 [36]	0.0		21 [36]	0.0
22 [37]	0.0	22 [37]	0.0		22 [37]	0.0		22 [37]	0.0
23 [38]	0.0	23 [38]	0.0		23 [38]	0.0	-	23 [38]	0.0
24 [39]	0.0	24 [39]	0.0		24 [39]	0.0		24 [39]	0.0
25 [40]	0.0	25 [40]	0.0		25 [40]	0.0		25 [40]	0.0
26 [41]	0.0	26 [41]	0.0		26 [41]	0.0		26 [41]	0.0
27 [42]	0.0	27 [42]	0.0		27 [42]	0.0		27 [42]	0.0
-									
55 [70]	3.5	55 [70]	0.0		55 [70]	5.3		55 [70]	5.3
56 [71]	3.9	56 [71]	0.0	1	56 [71]	5.6		56 [71]	5.6
57 [72]	4.2	57 [72]	0.0		57 [72]	5.9		57 [72]	5.9
58 [73]	4.5	58 [73]	0.0		58 [73]	6.3		58 [73]	6.2
59 [74]	4.8	59 [74]	0.0		59 [74]	6.6		59 [74]	6.5
60 [75]	5.1	60 [75]	0.0		60 [75]	6.9		60 [75]	6.8
61 [76]	5.4	61 [76]	0.0		61 [76]	7.2		61 [76]	7.1
62 [77]	5.7	62 [77]	0.0		62 [77]	7.6		62 [77]	7.4
63 [78]	6.0	63 [78]	0.0		63 [78]	7.9		63 [78]	7.7
64 [79]	6.4	64 [79]	0.0		64 [79]	8.2		64 [79]	8.0
65 [80]	6.7	65 [80]	0.0		65 [80]	8.5		65 [80]	8.4
<参考:かぶ	りコンクリート	にひび割れが発生	する前後5年の第	跌筋	の腐食減量>				
240 [255]	67.3	255 [270]	66. 7		214 [229]	67.0		219 [234]	67.0
241 [256]	67.7	256 [271]	67.2		215 [230]	67.4		220 [235]	67.5
242 [257]	68.1	257 [272]	67.7		216 [231]	67.9		221 [236]	67.9
243 [258]	68.5	258 [273]	68.2		217 [232]	68.3		222 [237]	68.4
244 [259]	68.9	259 [274]	68.6		218 [233]	68.8		223 [238]	68.8
245 [260]	69.3	260 [275]	69.1		219 [234]	69.2		224 [239]	69.2
246 [261]	69.7	261 [276]	69.6		220 [235]	69.7		225 [240]	69.7
247 [262]	70. 1	262 [277]	70.1		221 [236]	70.1		226 [241]	70. 1
248 [263]	70.6	263 [278]	70.6		222 [237]	70.6		227 [242]	70.6
249 [264]	71.0	264 [279]	71.0		223 [238]	71.0		228 [243]	71.0
250 [265]	71.4	265 [280]	71.5		224 [239]	71.5		229 [244]	71.5

3)海中帯について

塩化物イオン濃度測定結果が鉄筋の腐食減量結果に及ぼす影響について,「調査時点」, 「運転開始後 60 年経過時点」および「かぶりコンクリートにひび割れが発生する時点」を 比較して表-別紙 10-7~10-8 に示す。

なお,土木学会規準(案)を参考に,実測された中性化深さ+1cmの領域を含む塩化物イオン濃度のデータを用いる場合と用いない場合の影響を確認した。

この結果,「運転開始後 60 年経過時点」の鉄筋腐食減量が,最も大きくなる②-3(コンク リート表面に近い領域のデータを用いる場合,No.3コアの測定結果)のデータを選定した。

1	-1	1	)-2	1	1-3		-4
No	. 1	No	. 2	No	. 3	計算値	(平均)
経過年数	腐食減量	経過年数	腐食減量	経過年数	腐食減量	経過年数	腐食減量
【1号での年数】	Σq	【1号での年数】	Σq	【1号での年数】	Σq	【1号での年数】	Σq
(年)	$(\times 10^{-4} {\rm g/cm^2})$	(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$
17 [32]	0.0	17 [32]	0.1	17 [32]	0.2	17 [32]	0.1
18 [33]	0.0	18 [33]	0.1	18 [33]	0.2	18 [33]	0.1
19 [34]	0.0	19 [34]	0.2	19 [34]	0.2	19 [34]	0.1
20 [35]	0.0	20 [35]	0.2	20 [35]	0.2	20 [35]	0.1
21 [36]	0.1	21 [36]	0.2	21 [36]	0.3	21 [36]	0. 2
22 [37]	0.1	22 [37]	0.3	22 [37]	0.3	22 [37]	0.2
23 [38]	0.1	23 [38]	0.3	23 [38]	0.4	23 [38]	0. 2
24 [39]	0.1	24 [39]	0.3	24 [39]	0.4	24 [39]	0.3
25 [40]	0.1	25 [40]	0.4	25 [40]	0.4	25 [40]	0.3
26 [41]	0.2	26 [41]	0.4	26 [41]	0.5	26 [41]	0.3
27 [42]	0.2	27 [42]	0.4	27 [42]	0.5	27 [42]	0.4
			_				
55 [70]	1.5	55 [70]	2.1	55 [70]	2.4	55 [70]	2. 1
56 [71]	1.6	56 [71]	2.2	56 [71]	2.5	56 [71]	2.1
57 [72]	1.7	57 [72]	2.3	57 [72]	2.6	57 [72]	2.2
58 [73]	1.7	58 [73]	2.4	58 [73]	2.7	58 [73]	2.3
59 [74]	1.8	59 [74]	2.4	59 [74]	2.8	59 [74]	2.4
60 [75]	1.9	60 [75]	2.5	60 [75]	2.8	60 [75]	2.5
61 [76]	1.9	61 [76]	2.6	61 [76]	2.9	61 [76]	2. 5
62 [77]	2.0	62 [77]	2.7	62 [77]	3.0	62 [77]	2.6
63 [78]	2.1	63 [78]	2.8	63 [78]	3.1	63 [78]	2.7
64 [79]	2.2	64 [79]	2.8	64 [79]	3.2	64 [79]	2.8
65 [80]	2.2	65 [80]	2.9	65 [80]	3.3	65 [80]	2.9
<参考:かぶ	りコンクリートに	こひび割れが発生	する前後5年の筆	鉄筋の腐食減量>			
478 [493]	68.2	501 [516]	68.3	465 [480]	68.2	477 [492]	68. 2
479 [494]	68.4	502 [517]	68.4	466 [481]	68.4	478 [493]	68.4
480 [495]	68.6	503 [518]	68.6	467 [482]	68.6	479 [494]	68.6
481 [496]	68.8	504 [519]	68.8	468 [483]	68.8	480 [495]	68.8
482 [497]	69.0	505 [520]	69.0	469 [484]	69.0	481 [496]	69.0
483 [498]	69.2	506 [521]	69.1	470 [485]	69.2	482 [497]	69. 2
484 [499]	69.4	507 [522]	69.3	471 [486]	69.4	483 [498]	69.3
485 [500]	69.6	508 [523]	69.5	472 [487]	69.6	484 [499]	69.5
486 [501]	69.8	509 [524]	69.7	473 [488]	69.8	485 [500]	69.7
487 [502]	70.0	510 [525]	69.9	474 [489]	70.0	486 [501]	69.9
488 [503]	70.2	511 [526]	70.0	475 [490]	70.2	487 [502]	70, 1

表-別紙 10-7	鉄筋の腐食減量の算定結果【海中幕	- 书】
【コンクリート表	面に近い領域のデータを用いない場	合】

# 表-別紙 10-8 鉄筋の腐食減量の算定結果【海中帯】 【コンクリート表面に近い領域のデータを用いる場合】

2	-1	(2	)-2	ř i	2	-3	2	)-4
No	. 1	No	. 2		No	. 3	計算値	(平均)
経過年数	腐食減量	経過年数	腐食減量		経過年数	腐食減量	経過年数	腐食減量
【1号での年数】	Σq	【1号での年数】	Σq		【1号での年数】	Σq	【1号での年数】	Σq
(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$		(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$
17 [32]	0, 1	17 [32]	0.2		17 [32]	0.3	17 [32]	0.2
18 [33]	0.1	18 [33]	0.2		18 [33]	0.3	18 [33]	0.2
19 [34]	0.1	19 [34]	0.2		19 [34]	0.4	19 [34]	0.3
20 [35]	0.1	20 [35]	0.3		20 [35]	0.4	20 [35]	0.3
21 [36]	0.2	21 [36]	0.3		21 [36]	0.5	21 [36]	0.3
22 [37]	0.2	22 [37]	0.4		22 [37]	0.5	22 [37]	0.4
23 [38]	0.2	23 [38]	0.4		23 [38]	0.6	23 [38]	0.4
24 [39]	0.2	24 [39]	0.4		24 [39]	0.6	24 [39]	0.5
25 [40]	0.3	25 [40]	0.5		25 [40]	0.7	25 [40]	0.5
26 [41]	0.3	26 [41]	0.5		26 [41]	0.7	26 [41]	0.5
27 [42]	0.4	27 [42]	0.6		27 [42]	0.8	27 [42]	0.6
			•					•
55 [70]	2.0	55 [70]	2.4		55 [70]	2.8	55 [70]	2.4
56 [71]	2.0	56 [71]	2.5		56 [71]	2.9	56 [71]	2.5
57 [72]	2.1	57 [72]	2.5		57 [72]	3.0	57 [72]	2.6
58 [73]	2.2	58 [73]	2.6		58 [73]	3.1	58 [73]	2.7
59 [74]	2.3	59 [74]	2.7		59 [74]	3.2	59 [74]	2.8
60 [75]	2.3	60 [75]	2.8		60 [75]	3.3	60 [75]	2.9
61 [76]	2.4	61 [76]	2.9	1	61 [76]	3.4	61 [76]	2.9
62 [77]	2.5	62 [77]	3.0		62 [77]	3.5	62 [77]	3.0
63 [78]	2.6	63 [78]	3.0		63 [78]	3.6	63 [78]	3.1
64 [79]	2.7	64 [79]	3.1		64 [79]	3.7	64 [79]	3.2
65 [80]	2.7	65 [80]	3.2		65 [80]	3.8	65 [80]	3.3
<参考:かぶ	りコンクリート	にひび割れが発生	する前後5年の第	失筋	の腐食減量>			
503 [518]	68.3	501 [516]	68.4		491 [506]	68.3	496 [511]	68.3
504 [519]	68.5	502 [517]	68.5		492 [507]	68.4	497 [512]	68.5
505 [520]	68.7	503 [518]	68.7		493 [508]	68.6	498 [513]	68. 7
506 [521]	68.8	504 [519]	68.9		494 [509]	68.8	499 [514]	68.8
507 [522]	69.0	505 [520]	69.1		495 [510]	69.0	500 [515]	69.0
508 [523]	69. 2	506 [521]	69.3		496 [511]	69.1	501 [516]	69.2
509 [524]	69.4	507 [522]	69.4		497 [512]	69.3	502 [517]	69.4
510 [525]	69.6	508 [523]	69.6		498 [513]	69.5	503 [518]	69.5
511 [526]	69.7	509 [524]	69.8		499 [514]	69.7	504 [519]	69.7
512 [527]	69.9	510 [525]	70.0		500 [515]	69.8	505 [520]	69.9
513 [528]	70.1	511 [526]	70.1		501 [516]	70.0	506 [521]	70.1

### 機械振動の評価対象および評価点の選定過程について

運転中に比較的大きな振動を受け	†る機器の原動機出力を以下に示	す。
-----------------	-----------------	----

機器名称	運転状態	仕様(定格出力)
高圧タービン・低圧タービン	連続	820,000kW
原子炉再循環ポンプ	連続	4,540kW
高圧炉心スプレイポンプ	一時	2, 380kW
高圧炉心スプレイ系ディーゼル発電設備	一時	3, 480kW
低圧炉心スプレイポンプ	一時	910kW
高圧原子炉代替注水ポンプ	一時	
低圧原子炉代替注水ポンプ	一時	210kW
残留熱除去ポンプ	一時	560kW
原子炉補機冷却ポンプ	一時	360kW
非常用ディーゼル発電設備	一時	6,150kW
ガスタービン発電機	一時	5,200kW

常時振動している機器のうち,躯体への影響が最も大きい機器は,原動機出力から高圧タービン・低圧タービンとなることから,評価対象部位は,タービン発電機架台とし,評価点については,機械振動荷重を直接受ける機器支持部(基礎ボルト周辺のコンクリート)付近を選定した。 タービン発電機架台躯体図を図-別紙 11-1 に示す。

振動を受ける機器であるポンプについては、出力、機器重量がタービン設備に比べ非常に小さ く、構造体に与える影響はごくわずかである。

また,非常用ディーゼル発電機は,常時振動機器ではないことから,経年劣化の進展は極めて 小さいと考えられる。

以上より、評価対象部位は、タービン発電機架台で問題ないと判断する。

図-別紙11-1 タービン発電機架台躯体図

ガンマ線遮へい壁のガンマ発熱による温度分布は,別紙6に示す2次元輸送計算コードDORTに より算出したガンマ線束を用いてガンマ線発熱量を算出し,熱伝導方程式を解いてガンマ線遮へ い壁内の温度分布を求めた。

- 1. 解析条件
- (1) 内部発熱量

ガンマ線束 (cm⁻²・s⁻¹) に吸収線量率換算係数 ((Gy/h)/(cm⁻²・s⁻¹)) を乗じて、ガンマ線吸 収線量率 (Gy/h) を算出し、これよりコンクリート内部の発熱量 Q(kJ/m³・h) を求めた。

(2) 境界条件



原子炉圧力容器保温材表面温度	T1	(°C)
原子炉圧力容器保温材~ガンマ線遮へい壁間雰囲気温度	T2	62(°C)
ガンマ線遮へい壁~原子炉格納容器壁間雰囲気温度	T3	62 (°C)

(3)物性値

コンクリートの熱伝導率	λ	1.628(W/m • K)
-------------	---	----------------

2. 温度分布解析

1. の評価条件を用いて,熱伝導方程式を解いて温度分布を求めた結果,ガンマ線遮へい壁の最高温度は,図-別紙 12-1 に示す通り 71.6℃であった。

$$\lambda \cdot \frac{d^2T}{dx^2} + Q(x) = 0$$

λ:熱伝導率

Q(x): 内部発熱量



図-別紙12-1 ガンマ線遮へい壁の温度分布

3. 評価に用いるガンマ線遮へい壁の最高温度

温度分布解析結果は71.6℃であるが、建設時の工事計画認可申請書添付書類「生体しゃへい 装置の放射線のしゃへい及び熱除去についての計算書」では78℃としていることから、熱によ るコンクリートの遮へい能力低下の評価に用いるガンマ線遮へい壁の温度は、保守的な評価と なる工事計画認可申請書の値を用いることとし、78℃とした。

別紙 13

### 島根2号炉周辺の地下水による劣化影響について

1. はじめに^

島根2号炉の原子炉建物,タービン建物,廃棄物処理建物,制御室建物,屋外配管ダクト(タ ービン建物~排気筒),取水構造物,1号機取水槽北側壁,屋外配管ダクト(タービン建物~放水 槽),第1ベントフィルタ格納槽,屋外配管ダクト(ガスタービン発電機用軽油タンク~ガスター ビン発電機),屋外配管ダクト(B-ディーゼル燃料貯蔵タンク~原子炉建物),B-ディーゼル燃料 貯蔵タンク格納槽,緊急時対策所用燃料地下タンクの一部は地下に埋設されているため,これら の構造物に対する地下水による劣化影響について検討する。

コンクリートの強度低下に影響を及ぼすと想定される地下水に起因する劣化要因を抽出すると ともに、それらが島根2号炉の地下埋設部コンクリートにおいて発生し、進展する可能性につい て評価を行う。

#### 2. 劣化影響評価

2.1 地下水に起因するコンクリート劣化要因の抽出

地下水に起因するコンクリートの劣化要因とその概要を表-別紙13-1に示す。

劣化要因	概要
塩分浸透	地下水に含まれる塩化物イオンの浸透により、鉄筋腐食が発生し、コンクリートに
	膨張性のひび割れが発生する。
アルカリ骨材反応	骨材中の反応性鉱物とセメントペースト中のアルカリイオンが反応し、これに水が加わ
	ることにより、コンクリートに膨張性のひび割れが発生する。
化学的侵食	水分中の酸や硫酸塩等の塩類とセメント水和物の化学反応により、セメントペースト
	の溶解(酸)やコンクリート表層のはく離・はく落(塩類)が発生する。

表-別紙13-1 地下水の存在下で引き起こされるコンクリートの経年劣化要因

2.2 地下水に起因するコンクリートの材料劣化評価

コンクリートの材料劣化に該当する劣化要因のうち,塩分浸透,アルカリ骨材反応,化学的 侵食が島根2号炉の地下埋設部コンクリートにおいて発生し,進展する可能性について,島根 2号炉の環境条件に基づき評価を行った。

#### 2.2.1 塩分浸透

コンクリート中に塩化物イオンが浸透し,鉄筋位置まで達すると,鉄筋の腐食が徐々に進行 し,鉄筋の体積膨張によりひび割れやはく離が生じ,コンクリート構造物としての健全性が損 なわれる可能性がある。

島根2号炉の対象構造物においては、塩分浸透が生じる可能性があるため、経年劣化に対す る評価を実施している。

その結果、各評価部位における鉄筋の腐食減量は、運転開始後 60 年時点の想定においても、

かぶりコンクリートにひび割れが発生する時点での鉄筋の腐食減量を十分に下回っている。

また,定期的な建物内部からの目視点検の結果,塩分浸透に起因する鉄筋腐食が生じた場合 に発生する膨張性のひび割れは確認されていない。さらにコンクリート躯体が直接海水に接触 し,塩分浸透に対し最も厳しい環境条件下にある1号機取水槽北側壁においても,塩分浸透に よる鉄筋腐食に起因する膨張性のひび割れは確認されていない。

したがって、塩分浸透の評価結果、目視点検の結果および最も厳しい環境下にある1号機取 水槽北側壁の現状を鑑み、同じ産地の材料を使用しているその他の地下埋設部コンクリートに おいても塩分浸透によるコンクリートの劣化が進展し、島根2号炉の供用期間中にコンクリー ト構造物としての健全性が損なわれる可能性は小さいと考えられる。

### 2.2.2 アルカリ骨材反応

アルカリ骨材反応は、コンクリート中に含まれるアルカリ性の水溶液と、骨材中に含まれる 反応性鉱物の化学反応である。このとき生成されたアルカリ・シリカゲルが周囲の水を吸収し 膨張すると、コンクリート表面にひび割れが生じ、コンクリート構造物としての健全性が損な われる可能性がある。

ただし、島根2号炉においては、建設時の1984年にコンクリートの使用骨材についてモルタ ルバー法(ASTM C 227-81)による反応性試験を実施しており、その結果得られた膨張率は「材 齢6か月で0.1%以下」の判定基準に対し、無害と判定されている。

また、定期的な建物内部からの目視点検の結果、アルカリ骨材反応が発生した場合に発生する膨張性のひび割れは確認されていない。さらに絶えず海水が供給される環境下にある1号機 取水槽北側壁においても、アルカリ骨材反応に起因する膨張性のひび割れは確認されていない。

したがって、使用骨材の反応性試験結果、目視点検の結果および外部からの水分供給に対し て最も厳しい環境下にある1号機取水槽北側壁の現状を鑑み、同じ産地の材料を使用している その他の地下埋設部コンクリートにおいてもアルカリ骨材反応によるコンクリートの劣化が生 じる可能性は小さいと考えられる。

2.2.3 化学的侵食

コンクリートの化学的侵食は、コンクリートが外部からの化学作用によって、セメント硬化 体を構成する水和生成物が変質や分解することにより、結合能力を失っていく事象である。化 学的侵食はその劣化機構によって、①セメント水和物との化学反応による溶解、②セメント水 和物との化学反応による膨張に大別される。

#### ①セメント水和物との化学反応による溶解

コンクリート中のセメント水和物との化学反応により、本来、水に溶解しにくいセメント 水和物を可溶性物質に変質させ、コンクリートが多孔質化する、あるいは分解することで、 骨材の露出や脱落等が生じる。

#### ②セメント水和物との化学反応による膨張

コンクリート中のセメント水和物との化学反応により,新たな化合物が生成され,膨張す る際の膨張圧がコンクリートにひび割れやはく離を生じさせる。 一般的な環境においては、化学的侵食が発生することはほとんどなく、温泉地帯、酸性河川 流域および酸性・硫酸塩土壌等に建造された構造物等が化学的侵食の影響を受けるとされてい る。

そこで,島根2号炉における地下水質の調査結果に基づき化学的侵食が発生し,進展する可 能性について評価を行った。

(1) 島根2号炉周辺における地下水質の調査位置および調査結果

島根2号炉周辺のサブドレンピット(図-別紙13-1)においては,2013年12月に地下水質 調査を実施している。結果を表-別紙13-2に示す。

なお,調査結果は海水の影響を考慮し,図-別紙 13-1 に示す通り,陸側と海側の2つのエ リアに大別して分析を行った。



図-別紙 13-1 島根 2 号炉周辺のサブドレン配置図

採取箇所		рН	硫酸塩 (mg/1)	マク゛ネシウム (mg/1)	アンモニウム (mg/1)	侵食性 遊離炭酸 (mg/1)
陸側	採水位置①	7.6	100	11	0.02 未満	1.4
海側	採水位置②	6.7	230	30	0.02	5.3
海側	採水位置③	6.9	240	21	0.03	4.2

表-別紙 13-2 島根 2 号炉周辺における地下水質の調査結果

(2) 地下水質調査結果の分析

島根2号炉周辺の地下水において得られているpH,硫酸塩,マグネシウム,アンモニウムおよび侵食性遊離炭酸をEN206の地下水の環境区分と対比した結果を表-別紙13-3に示す。

表-別紙13-3 島根2号炉における調査結果とEN206の環境区分(地下水)の対比

	XA1	XA2	XA3	
環境区分	弱い	標準的な	強い	備考
	化学的侵食	化学的侵食	化学的侵食	
ъЦ	6 5>V>5 5	5 5 > V > 4 5	4 E V 24 0	該当区分
рп	$0.5 \leq \Lambda \leq 5.5$	5.5∕∆≦4.5	4. 5 ∕ ∆≦4. 0	なし
硫酸塩	$200 \leq X \leq 600$	600 < X < 2000	2000 < V < 6000	陸側は該当
[mg/1]	(海側:235)	000 <x≧3000< td=""><td>3000 &lt; ∆≧0000</td><td>区分なし</td></x≧3000<>	3000 < ∆≧0000	区分なし
マク゛ネシウム	$200 \le V \le 1000$	200 < V < 1000 1000 < V < 2000		該当区分
[mg/1]	300≧∆≧1000	1000 <x≧3000< td=""><td>2000 &lt; X</td><td>なし</td></x≧3000<>	2000 < X	なし
アンモニウム	$15 \le V \le 20$	20 < V < 60	$60 < V \le 100$	該当区分
[mg/1]	$15 \ge \Lambda \ge 50$	30 <x≧00< td=""><td>00&lt; X≧100</td><td>なし</td></x≧00<>	00< X≧100	なし
侵食性遊離炭酸	酸			<b>      甘</b> 田     八
[mg/1]	$15 \leq X \leq 40$	$40 \! < \! \mathrm{X} \! \le \! 100$	$100 \! < \! X$	秋日区方
(aggressive)				い し

注)網掛け箇所は島根2号炉の調査結果が該当する区分を、()内には該当するエリアとその平均値を示す。

(a) pH

EN206のいずれの環境区分にも該当しないことを確認した。

(b) 硫酸塩

陸側において, EN206 のいずれの環境区分にも該当しないことを確認した。海側について は、硫酸塩が EN206 の「弱い化学的侵食」に区分される結果となった。これは、海側の地 下水に海水が流入していると考えられ、海水に含まれる各種イオン量との比較からも確認 できる。

硫酸塩による劣化では、膨張性のエトリンガイトが生成されるが、海水のように過剰な 塩化物イオンが共存する環境下においては、塩化物があるとエトリンガイトが溶解し、海 水によって浸出することがあるため、有害な膨張を伴わないとされている。また、I-GALL Reportにおいて侵食性があるとされる硫酸塩濃度の1500ppm以下であることから硫酸塩劣 化の可能性はないと考えられる。

(c) マグネシウム

EN206のいずれの環境区分にも該当しないことを確認した。

(d) アンモニウム

EN206のいずれの環境区分にも該当しないことを確認した。

(e) 侵食性遊離炭酸

EN206のいずれの環境区分にも該当しないことを確認した。

(3) 化学的侵食に関する劣化評価

島根2号炉の地下水質調査結果に基づき,地下水成分の分析を行った結果,酸や硫酸塩に 起因するコンクリート劣化の可能性はないと考えられる。

また,対象構造物のうち,海洋環境の影響を直接受ける1号機取水槽北側壁においては, 化学的侵食に特有の劣化兆候は見られない。

したがって、地下水の分析結果や、海水由来の侵食性物質に対して最も厳しい環境下にある1号機取水槽北側壁の現状を鑑み、同じ産地の材料を使用しているその他の地下埋設部コンクリートにおいても化学的侵食によるコンクリートの劣化が生じる可能性はないと考えられる。

2.3 地下水に起因するコンクリート劣化評価についてのまとめ

地下水に起因するコンクリートの劣化要因が,島根2号炉の地下埋設部コンクリートにおい て発生し,進展する可能性について,島根2号炉の環境条件に基づき評価を行った。結果を表-別紙13-4に示す。

これより,塩分浸透およびアルカリ骨材反応については発生の可能性が否定できないものの, 1号機取水槽北側壁等の定期的な目視点検により,塩分浸透による鉄筋腐食およびアルカリ骨 材反応に起因するひび割れがないことを確認していく。

一方,地下水に起因する化学的侵食については,島根2号炉の環境条件および設計条件から 判断して,発生の可能性はないことを確認した。

経年		劣化要因のスクリーニング結果			
劣化     劣化要因       事象		発生の         進展の         島根2号炉の環境条件・根拠等           可能性         可能性         目		島根2号炉の環境条件・根拠等	
 強度低下	塩分浸透	0	Δ	地下水から塩化物イオンが供給されるため発生の可能性はあるが, 各経年劣化評価部位における鉄筋の腐食減量は,運転開始後 60 年 時点の想定においても,健全性を有していることを確認してい る。 また,塩分浸透に起因する鉄筋腐食が生じた場合に発生する膨張 性のひび割れは,建物内部からの目視点検において確認されてい ない。 さらにコンクリート躯体が直接海水に接触し,塩分浸透に対し最も厳し い環境条件下にある1号機取水槽北側壁においても,塩分浸透に よる鉄筋腐食に起因する膨張性のひび割れは確認されていない。	
	アルカリ骨材 反応	Δ	Δ	島根2号炉建設時にコンクリート使用骨材についてモルタルバー法による反応性試験を実施した結果,無害と判定された。 また,仮にアルカリ骨材反応が発生した場合に発生する膨張性のひび割れは,建物内部からの目視点検において確認されていない。 さらに絶えず海水が供給される環境下にある1号機取水槽北側壁においても,アルカリ骨材反応に起因する膨張性のひび割れは確認 されていない。	
	化学的 侵食	×	×	島根2号炉は、土壌や地下水に侵食性物質が多く含まれる温泉地 帯や酸性河川流域等の付近には建設されていない。 また、島根2号炉の地下水成分の分析の結果、酸や硫酸塩に起因 するコンクリート劣化の可能性はないことを確認している。	

表-別紙 13-4 地下水に起因するコンクリートの劣化要因に係る発生および進展の可能性

凡例) ○: 可能性あり, △: 可能性は小さいが日常劣化管理事象, ×: 可能性なし

別紙 14

〈使用開始から40年以上が経過した建物・構築物のアルカリ骨材反応の潜在性について〉

1. はじめに

制御室建物,1号機取水槽北側壁および漂流防止装置基礎(荷揚護岸)については、使用開始 から40年以上が経過しているが、定期的に目視点検を実施し、コンクリートのアルカリ骨材反応 (以下、「ASR」という。)に起因すると判断されるひび割れがないこと、また、昭和59年に実施 した試験(モルタルバー法 ASTM C 227-81)によりコンクリート構造物に影響を与えるような反 応性がないことを確認しており、コンクリートの健全性に影響を与えるような ASR が発生した可 能性は極めて低いと判断している。

一方,原子力規制庁「安全研究成果報告 運転期間延長認可制度及び高経年化対策制度に係る 技術的知見の整備に関する研究」(RREP-2018-1004)では,近年,これまでASRの主要な原因と考 えられてきた急速膨張性骨材以外に,遅延膨張性骨材(10数年以上経過してからコンクリートに ひび割れを生じさせる。)による劣化事例が一般構造物で報告されていることが指摘されており, コンクリート構造物の長期健全性を評価するための「コンクリート構造物のASR 診断フロー(例)」 が示されている。図-別紙14-1にコンクリート構造物のASR 診断フロー(例)を示す。

以上を踏まえ、制御室建物、1号機取水槽北側壁および漂流防止装置基礎(荷揚護岸)を対象 に、コンクリート構造物のASR診断フロー(例)に基づき、ASR(急速膨張性および遅延膨張性) の可能性について確認した。



図-別紙14-1 コンクリート構造物のASR診断フロー(例)

- 2. 各構造物の対象部位および試験方法
- 2.1 各構造物の対象部位

制御室建物,1号機取水槽北側壁,漂流防止装置基礎(荷揚護岸)において,試験を実施する 対象部位を以下に示す。対象部位は、「実用発電用原子炉の運転期間延長認可申請に係る運用ガイ ド」(原子力規制委員会,最終改正:令和2年3月31日)に基づき,選定した。

·制御室建物:内壁,外壁,基礎

- •1号機取水槽北側壁:気中带,干満帯,海中帯
- ·漂流防止装置基礎(荷揚護岸):気中帯,干満帯,海中帯

2.2 試験方法

試験方法としては、図-別紙 14-1 に基づき、対象構造物のコンクリートの健全性に影響を与え るような ASR の発生状況が確認できる実体顕微鏡観察を実施した。実体顕微鏡観察は、コンクリ ート切断面(採取コアサンプル表面)の観察による反応リム・ゲルの有無・程度、ひび割れ状況 等の確認により、コンクリートの ASR の発生の有無・程度が確認できる方法である。

また,念のため,上記の試験方法の選定プロセスおよび試験結果の妥当性を確認するため,偏 光顕微鏡観察を実施した。偏光顕微鏡観察は,コアサンプルから作成した薄片を用いて,反応性 骨材の鉱物・岩種の同定,反応の進行段階の確認,ひび割れ状況の確認等により,ASR が生じてい るコンクリートの反応の進行段階がより精緻に確認できる方法である。

加えて、将来の潜在膨張性(急速性および遅延性)を確認するため、促進膨張試験(アルカリ 溶液浸漬法)を実施した。促進膨張試験(アルカリ溶液浸漬法)は、80±2℃の1±0.01mo1/Lの 水酸化ナトリウム溶液にコンクリートコアを浸漬し、その膨張率を測定することで、コンクリー トの将来の潜在膨張性または残存膨張性が確認できる方法である。

以上より,試験としては実体顕微鏡観察,偏光顕微鏡観察および促進膨張試験(アルカリ溶液 浸漬法)を実施し,表-別紙14-1に各試験方法の特徴を示す。
		実体顕微鏡観察	偏光顕微鏡観察	促進膨張試験(アルカリ溶液浸漬法)	
	写真			н.е.         Алборалавианан         Оканан           л.г.         Улаконан         Оканан	
	実施内容	<ul> <li>・コンクリート切断面(コアサンプル表面)を観察</li> </ul>	<ul> <li>・コアサンプルにより作成した薄片を観察</li> </ul>	<ul> <li>・コアサンプルを水酸化ナトリウム溶液</li> <li>に浸漬して膨張率を測定</li> </ul>	
	特徴	・概ね 2~30 倍で観察	・概ね 25~200 倍で観察	・80±2℃の 1±0.01mol/L の水酸化ナト	
		・コアの全体的な状況,反応リム・ゲルの	・岩石や鉱物の観察に汎用される	リウム溶液を使用	
概		有無・程度、ひび割れ状況等を観察	・薄片に偏光を照射・透過させて鉱物の偏	・膨張率の判定までに3週間必要	
西			光特性等から,反応が生じている骨材の	・急速膨張性骨材・遅延膨張性骨材に適す	
安			鉱物・岩種の同定, 進行段階, ひび割れ	3	
			状況等を観察		
	まとめ	・ASR の発生有無・程度が確認できる	・ASR が生じているコンクリート(骨材)	・膨張率を測定することで、コンクリート	
			の反応の進行段階がより精緻に確認で	の将来の潜在膨張性または残存膨張性	
			きる	が確認できる	
課題 ¹⁾		・岩種の詳細は分からない	・薄片作成・観察に熟練を要する	・水酸化ナトリウム濃度が高いため、シリ	
				カはアルカリ溶液に溶解し,チャートを	
				有害判定できない	

表-別紙14-1 各試験方法の特徴

(参考文献)

1) 原子力用コンクリートの反応性骨材の評価方法の提案(JNES-RE-2013-2050)

別紙 14-4

3. 試験結果

## 3.1 実体顕微鏡観察の結果

各構造物から採取したコンクリートについて実体顕微鏡観察を実施した結果,1号機取水槽北 側壁(干満帯)のみ,粗骨材(安山岩と流紋岩)の一部粒子に,淡い反応リムの形成,あるいはわ ずかな ASR ゲルの滲出が認められたが,進行段階が軽微であり,実構造物の状況も踏まえると, コンクリートの健全性に影響を与えるような反応性はないと判断した。その他の構造物・対象部 位については,粗骨材,細骨材ともに ASR の発生は認められなかった。

表-別紙 14-2 に実体顕微鏡観察結果(反応性)を,図-別紙 14-2 に実体顕微鏡観察写真(1号 機取水槽北側壁,干満帯)を示す。

				- ,			
	対象部位	実体顕微鏡観察結果					
対象構造物		粗情	骨材	細骨材			
		進行段階	反応性	進行段階	反応性		
	内壁	—	なし	—	なし		
制御室建物	外壁	—	なし	—	なし		
	基礎	—	なし	—	なし		
	気中帯	—	なし	—	なし		
1号機取水槽北側壁	干満帯	ii	なし	_	なし		
	海中帯	—	なし	—	なし		
<b>洒达陆山壮栗甘</b> 林	気中帯	—	なし	—	なし		
「一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	干満帯	_	なし	_	なし		
(11月1分喪)千)	海中帯	_	なし	_	なし		

表-別紙 14-2 実体顕微鏡観察結果(反応性)

劣化度の評価

進行段階	該当なし	: <	1 健全	⇒反応性なし
進行段階	i $\sim$ iii	:	1 軽微(潜伏期)	⇒反応性なし
進行段階	iv	:	2 中程度(進展期・加速期)	⇒反応性あり
進行段階	V	:	3顕著(加速期・劣化期)	⇒反応性あり



(観察結果)

粗骨材(安山岩および流紋岩)の一部 粒子に,淡い反応リムの形成,あるいは わずかな ASR ゲルの滲出(濡れ色)が認 められる。

図-別紙14-2 実体顕微鏡観察写真(1号機取水槽北側壁,干満帯)

3.2 偏光顕微鏡観察の結果

各構造物から採取したコンクリートについて偏光顕微鏡観察を実施した結果,実体顕微鏡観察 の結果と同様に,1号機取水槽北側壁(干満帯)のみ,粗骨材(安山岩と流紋岩)の一部粒子に, 淡い反応リムの形成,あるいはわずかなASRゲルの滲出が認められたが,進行段階が軽微であり, 実構造物の状況も踏まえると,コンクリートの健全性に影響を与えるような反応性はないと判断 した。その他の構造物・対象部位については,粗骨材,細骨材ともにASRの発生は認められなか った。以上より,実体顕微鏡観察の選定プロセスおよび試験結果の妥当性を確認することができ た。

また,主要な構成鉱物を確認すると,全ての構造物の粗骨材(安山岩および流紋岩)において, 遅延膨張性の ASR 反応性鉱物(微晶質石英,微晶質~隠微晶質石英)が認められ,急速膨張性の ASR 反応性鉱物は認められなかった。なお,細骨材において,急速膨張性および遅延膨張性の ASR 反応性鉱物は認められなかった。

表-別紙 14-3 に粗骨材の偏光顕微鏡観察結果(反応性)を,表-別紙 14-4 に粗骨材の偏光顕微 鏡観察結果(反応性鉱物)を,図-別紙 14-3 に偏光顕微鏡観察写真を示す。

	対象 部位	粗骨材 の 岩種	進行段階						
			i	ii	iii	iv	V	劣化度	
対象構造物			骨材	セメントヘ゜ースト	骨材	セメントへ。ースト	セメントへ。ースト	評価	反応性
			反応リム の形成	ゲルの滲み ・取り巻き	ひび割れ ゲル充填	ひび割れ ゲル充填	気泡への ゲル充填		
	内壁	安山岩	_	_	_	_	_	< 1	なし
制御室建物	外壁	安山岩	_	_	_	_	_	< 1	なし
	基礎	安山岩	—	—	—	—	—	< 1	なし
	気中帯	安山岩	_	_	—	_	_	< 1	なし
1 号機	干満帯	安山岩	+	_	_	_	_	1	なし
北側壁		נדו נשון ד	流紋岩	+	+	_	_	_	1
	海中帯	安山岩	—	_	—	_	_	< 1	なし
	気中帯	安山岩	—	_	—	_	_	< 1	なし
漂流防止	干満帯	安山岩	_	_	_	_	_	< 1	なし
~ ^{衣 匹 卒 啶} (荷揚護岸)	海中帯	安山岩	_	_	_	_	_	< 1	なし
		玄武岩	_	_	_	_	_	< 1	なし

表-別紙14-3 粗骨材の偏光顕微鏡観察結果(反応性)

進行段階の凡例 ◎:顕著 ○:あり +:痕跡程度 -:なし

劣化度の評価

進行段階	該当なし	: <	1 健全	⇒反応性なし
進行段階	i $\sim$ iii	:	1 軽微(潜伏期)	⇒反応性なし
進行段階	iv	:	2 中程度(進展期・加速期)	⇒反応性あり
進行段階	V	:	3顕著(加速期・劣化期)	⇒反応性あり

対象構造物	対象部位	岩石	主要な構成鉱物	ASR 反応性鉱物 の有無
	内壁	安山岩 (砕石)	斜長石,カリ長石,輝石,微晶質石英,不透 明鉱物	○ (微晶質石英)
制御室建物	外壁	安山岩 (砕石)	斜長石,カリ長石,輝石,微晶質石英,不透 明鉱物	〇 (微晶質石英)
	基礎	安山岩 (砕石)	斜長石,カリ長石,輝石,微晶質石英,不透 明鉱物	○ (微晶質石英)
	気中帯	安山岩 (砕石)	斜長石,微晶質石英,粘土鉱物,石英,鉄チ タン鉱物,輝石,角閃石	○ (微晶質石英)
1 日.1%1开水抽	干満帯	安山岩 (砕石)	斜長石,微晶質石英,粘土鉱物,石英,鉄チ タン鉱物,輝石,角閃石	○ (微晶質石英)
北側壁		流紋岩 (砕石)	微晶質~隠微晶質石英,石英,斜長石,粘土 鉱物,鉄チタン鉱物	○ (微晶質~隠微 晶質石英)
	海中帯	安山岩 (砕石)	斜長石,微晶質石英,粘土鉱物,石英,鉄チ タン鉱物,輝石,角閃石	○ (微晶質石英)
	気中帯	安山岩 (砕石)	カリ長石,斜長石,輝石,微晶質石英,不透 明鉱物	○ (微晶質石英)
漂流防止	干満帯	安山岩 (砕石)	カリ長石,斜長石,輝石,不透明鉱物	_
<u> </u>	<u>УР Т. Ш.</u>	安山岩 (砕石)	カリ長石,斜長石,輝石,不透明鉱物	_
	伊宁市	玄武岩 (砕石)	斜長石,輝石,不透明鉱物	_

表-別紙14-4 粗骨材の偏光顕微鏡観察結果(反応性鉱物)

○:あり -:なし



図-別紙14-3 偏光顕微鏡観察写真(1号機取水槽北側壁,干満帯)(1/2)

(観察結果)

粗骨材の流紋岩は、石英や斜長石などの斑晶(ともに視野外)と、その粒間を埋める微細な組織(微細な石英や斜長石など)からなる石基から構成される。流紋岩や安山岩には ASR の現象として、淡い反応リムの形成や ASR ゲルの滲みが認められたが、膨張や劣化を伴う進行した ASR の現象である膨張ひび割れの発生は認められなかった。

※ 破線:骨材-セメントペースト界面



図-別紙14-3 偏光顕微鏡観察写真(1号機取水槽北側壁,干満帯)(2/2)

(観察結果)

粗骨材の流紋岩の石基部分を拡大して示す。流紋岩の石基は、微細な石英や長石から主に構成 される。石基に含まれる微晶質~隠微晶質石英は遅延膨張性の ASR 反応性鉱物である。 3.3 促進膨張試験(アルカリ溶液浸漬法)の結果

各構造物から採取したコンクリートについて促進膨張試験(アルカリ溶液浸漬法)を実施した 結果,判定基準²⁾(21日で膨張率が0.1%未満)に対し,28日浸漬させても最大で0.042%と判定 基準以下であり,将来の潜在膨張(急速性および遅延性)の可能性は低いと判断した。表-別紙14-5に促進膨張試験結果(アルカリ溶液浸漬法)を,図-別紙14-4にコアの促進膨張試験結果(制御 室建物,外壁)を示す。

対象構造物	対象の部位	測定値(%)
	内壁	0.039
制御室建物	外壁	0.042
	基礎	0.035
	気中帯	0.008
1号機取水槽北側壁	干満帯	0.006
	海中帯	0.007
<b>海达</b> 比山壮要甘 <b>冰</b>	気中帯	0.038
(益坦難巴)	干満帯	0.023
(11月1勿词)干)	海中帯	0.025

表-別紙 14-5 促進膨張試験結果 (アルカリ溶液浸漬法)



図-別紙14-4 コアの促進膨張試験結果(制御室建物,外壁)

2) 判定基準は, Katayama et al. 「Alkali-aggregate reaction under the influence of deicing salts in the Hokuriku district, Japan. Materials Characterization, Vol.53, No.2-4, pp.105-122, 2004」を参考に設定した。

4. まとめ

使用開始から 40 年以上が経過した制御室建物,1号機取水槽北側壁および漂流防止装置基礎 (荷揚護岸)について、コンクリート構造物の ASR 診断フロー(例)に基づき、ASR(急速膨張性 および遅延膨張性)の可能性を確認した。

試験方法として選定した実体顕微鏡観察の結果,ASRの反応性は確認できなかったことから,対 象構造物のコンクリートの健全性に影響を与えるような反応性はないと判断した。また,念のた め実施した偏光顕微鏡観察の結果からも実体顕微鏡観察の結果と同様の結果が得られたことから, 実体顕微鏡観察の選定プロセスおよび試験結果の妥当性を確認することができた。

なお, 偏光顕微鏡観察の結果, 粗骨材から遅延膨張性の ASR 反応性鉱物(微晶質石英, 微晶質 ~ 隠微晶質石英)が確認されたが, 促進膨張試験(アルカリ溶液浸漬法)の結果より, 将来の潜 在膨張(急速性および遅延性)の可能性は低いと判断した。

以 上