島根原子力発電所2号炉 高経年化技術評価 (照射誘起型応力腐食割れ)

補足説明資料

2023年11月2日

中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

Ħ	次
	~~~

1.	根	要	•••	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
2.	基	本	方金	<b>·</b> •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
3.	訂	価	対象	もち	評	価	手	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
(]	1)	評	価対	象	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	3
(2	2)	評	価手	法	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	4
4.	拐	祈	評佰	<b>i</b> •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
4. 1	1 ;	炉内	]構	造物	勿の	)方	友徒	訡訡	平行	E	•	•	•	•	•	•	•	•	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
(]	1)	健	全性	評	価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
(2	2)	現	状伢	と 全	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	7
(3	3)	総	合評	価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
(4	4)	高	経年	化	$\sim$	$\mathcal{O}_{i}^{i}$	対	応	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	14
4.2	2 1	制御	□棒	のŁ	支衍	衍訂	陌	Ei•	•		• •	• •	• •	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
(]	1)	健	全性	評	価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	15
(2	2)	現	状伢	全	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	16
(3	3)	総	合評	価	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
(4	4)	高	経年	化	$\sim$	$\mathcal{O}_{i}^{i}$	対	応	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
5.	ŧ	ミと	め・	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
(]	1)	審	査え	イ	ド	等	記	載	事	項	に	対	·J	る	確	認	綿	课	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18
(2	2)	施	設管	理	に	関	す	る	方	針	Ŀ	l	.7	策	定	す	-2	事	項	į•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	18

別紙1. 炉内構造物の運転開始後60年時点での中性子照射量について

- 別紙2. 上部格子板グリッドプレートに発生する応力について
- 別紙3. 炉内構造物に関する照射誘起型応力腐食割れ発生の可能性評価について
- 別紙4. ウォータージェットピーニング施工による応力腐食割れ抑制効果について
- 別紙5. 原子炉冷却材の水質の管理値と至近の実績について
- 別紙 6. 原子炉水のトリチウム濃度測定結果について
- 別紙7. ハフニウム棒型制御棒の他社プラントでの不具合事象に対する島根2号炉の評価につい て
- 別紙8. 炉心シュラウドおよび上部格子板に関するトラブル事例の反映について

1. 概要

本資料は、「実用発電用原子炉の設置、運転等に関する規則」第82条第1項に基づき実施した 高経年化技術評価のうち、照射誘起型応力腐食割れの評価結果について、補足説明するものであ る。

オーステナイト系ステンレス鋼は,高い中性子照射を受けると材料自体の応力腐食割れの感受 性が高くなる。照射誘起型応力腐食割れは,この状況に引張応力が作用すると粒界型応力腐食割 れが生じる現象である。

照射誘起型応力腐食割れの発生要因としては,材料,環境および応力の3つの要因が考えられ, 運転時間が経過し,比較的高い累積中性子照射量を受けたステンレス鋼において発生する可能性 があるため,これらの要因の観点から照射誘起型応力腐食割れの評価を実施した。

#### 2. 基本方針

評価対象部位において照射誘起型応力腐食割れの発生の可能性について評価し、その発生の可 能性が将来にわたって否定できない場合は、その発生または進展に係る健全性評価を行い、「実用 発電用原子炉施設における高経年化対策審査ガイド」および「実用発電用原子炉施設における高 経年化対策実施ガイド」の記載事項(以下、「審査ガイド等記載事項」という。)を踏まえ、高経 年化技術評価を実施する。

照射誘起型応力腐食割れを評価するにあたっての審査ガイド等記載事項を表1に整理する。

カ゛イト゛	記載事項
実用発電用原子炉施設 における高経年化対策 審査ガイド	<ul> <li>(1)高経年化技術評価の審査</li> <li>(2)健全性の評価</li> <li>実施が小、3.1⑤に規定する期間の満了日までの期間について、高経年化対策上着目すべき経年劣化事象の発生又は進展に係る健全性を評価していることを審査する。</li> <li>(3)現状保全の評価</li> <li>健全性評価結果から現状の保全策の妥当性が評価されていることを審査する。</li> <li>(4)追加保全策の抽出</li> <li>現状保全の評価結果から、現状保全に追加する必要のある新たな保全策が抽出されていることを審査する。</li> </ul>
	<ul> <li>(2)長期施設管理方針の審査</li> <li>①長期施設管理方針の策定</li> <li>すべての追加保全策について長期施設管理方針として策定されているかを審査する。</li> </ul>

表1(1/2) 照射誘起型応力腐食割れについての審査ガイド等記載事項

表1(2/2) 照射誘起型応力腐食割れについての審査ガイド等記載事項

カ゛イト゛	記載事項
	3.1 高経年化技術評価の実施及び見直し
	⑤抽出された高経年化対策上着目すべき経年劣化事象について、
	以下に規定する期間の満了日までの期間について機器・構造物
	の健全性評価を行うとともに、必要に応じ現状の施設管理に追
	加すべき保全策(以下「追加保全策」という。)を抽出すること。
	イ 実用炉規則第82条第1項の規定に基づく高経年化技術評価
	プラントの運転を開始した日から 60 年間
	3.2 長期施設管理方針の策定及び変更
	長期施設管理方針の策定及び変更に当たっては、以下の要求事
実用発電用原子炉施設	項を満たすこと。
における高経年化対策	①高経年化技術評価の結果抽出された全ての追加保全策(発電用
実施ガイド	原子炉の運転を断続的に行うことを前提として抽出されたもの
	及び冷温停止状態が維持されることを前提として抽出されたも
	のの全て。)について、発電用原子炉ごとに、施設管理の項目及
	び当該項目ごとの実施時期を規定した長期施設管理方針を策定
	すること。
	なお、高経年化技術評価の結果抽出された追加保全策について、
	発電用原子炉の運転を断続的に行うことを前提とした評価から
	抽出されたものと冷温停止状態が維持されることを前提とした
	評価から抽出されたものの間で、その対象の経年劣化事象及び
	機器・構造物の部位が重複するものについては、双方の追加保
	全策を踏まえた保守的な長期施設管理方針を策定すること。

3. 評価対象と評価手法

(1) 評価対象

炉心を取り囲む機器である炉内構造物は材料がステンレス鋼であり,このうちオーステナイ ト系ステンレス鋼は比較的高い累積中性子照射量を受けた場合に照射誘起型応力腐食割れの感 受性が現れると考えられている。

比較的高い累積中性子照射量を受ける機器として,炉内構造物のうち炉心を取り囲む機器で ある炉心シュラウド,上部格子板,炉心支持板,周辺燃料支持金具,制御棒案内管および制御 棒を評価対象とする(図1参照)。



図1 原子炉圧力容器鳥瞰図および評価対象機器

(2) 評価手法

① 炉内構造物

炉内構造物については、炉心を取り囲む機器である炉心シュラウド、上部格子板、炉心支持板、周辺燃料支持金具、制御棒案内管について、運転開始後 60 年時点での予想中性子照射量を 算出し、照射誘起型応力腐食割れの感受性が現れると考えられている照射量(以下、「しきい照 射量」という。)を超えるかを確認する。

次に,しきい照射量を超えると予想された機器については,材料,環境および応力の観点で 照射誘起型応力腐食割れの発生の可能性を評価する。

最後に,照射誘起型応力腐食割れの発生の可能性を評価した結果,その発生の可能性が否定 できないものについては,その発生または進展に係る健全性評価を行い,実用発電用原子炉施 設における高経年化対策審査ガイドに定める要求事項に適合することを確認する。

② 制御棒

ボロン・カーバイド粉末型制御棒については,中性子照射量に応じた核的寿命に対して保守 的に定めた運用基準,ハフニウム棒型制御棒については構造材の高速中性子照射量の最大実績 値に対して保守的に定めた運用基準に基づき取替を実施していることから,この運用基準に基 づく取替によって制御棒の機能が維持できることを評価し,実用発電用原子炉施設における高 経年化対策審査ガイドに定める要求事項に適合することを確認する。

③ 適用規格

評価に用いた規格を以下に示す。

- ・社団法人 日本原子力学会標準 原子力発電所の高経年化対策実施基準:2008 (AESJ-SC-P005:2008)
- ・社団法人 日本機械学会 発電用原子力設備規格 維持規格 (JSME S NA1-2008)(以下,「維持規格」という。)

4. 技術評価

- 4.1 炉内構造物の技術評価
  - (1) 健全性評価
  - ① 中性子照射量と照射誘起型応力腐食割れの感受性の関係

炉心を取り囲む機器である炉内構造物は材料がステンレス鋼であり、このうちオーステナ イト系ステンレス鋼は、しきい照射量以上の中性子照射量を受けた場合に照射誘起型応力腐 食割れの感受性が現れると考えられている(表2参照)。

表2 照射誘起型応力腐食割れのしきい照射量※1

材料	しきい照射量 [n/m ² ] ^{※2}
ステンレス鋼 (SUS304)	$5\! imes\!10^{24}$
ステンレス鋼 (SUS316)	$1 \times 10^{25}$

※1:「島根原子力発電所2号炉 高経年化技術評価書(30年目)」(平成30年2月)のうち、「炉内構造物の技術評価書」図2.3-2参照。維持規格解説 IJG-B-3「上部格子板の個別検査の試験内容」。
 ※2:高速中性子(エネルギー>1[MeV])による照射量。本文にて特に断りのない場合は高速中性子の照射量をいう。

② 炉内構造物の使用材料および中性子照射量

炉内構造物のうち,炉心を取り囲む機器である炉心シュラウド,上部格子版,炉心支持板, 周辺燃料支持金具,制御棒案内管における運転開始後 60 年時点での予想中性子照射量は以下 の値と想定される(表3参照)。

炉内構造物の各部における使用材料および運転開始後 60 年時点での中性子照射量,その算 出の考え方および算出過程については別紙1に示す。

評価対象機器	材料	中性子照射量[n/m²]
炉心シュラウト゛	SUS316L	2. $7 \times 10^{25 \times 3}$
上部格子板	SUS316L	4. $4 \times 10^{25}$
炉心支持板	SUS316L	3. $0 \times 10^{24}$
周辺燃料支持金具	SUS316LTP	$1.2  imes 10^{24}$
制御棒案内管	SUS304L	4. $5 \times 10^{24}$

表3 炉内構造物各機器の使用材料および運転開始後60年時点での中性子照射量

※3:母材部の値。炉心シュラウド中間胴の溶接継手のうち構造維持に必要な周溶接継手では、 中間胴の中央に位置するH4周溶接継手が最も照射量が高く、その値は内面で 2.6×10²⁵[n/m²]、外面で1.5×10²⁵[n/m²]であり、内外面ともしきい照射量を超える。

照射誘起型応力腐食割れのしきい照射量以上の中性子照射量を受ける炉内構造物は、炉心 シュラウド中間胴(母材部,H4周溶接継手)および上部格子板グリッドプレートである。 ③ 炉内構造物の照射誘起型応力腐食割れ発生の可能性評価

炉心シュラウド中間胴 H4 周溶接継手(熱影響部含む)は、しきい照射量を超えるものの、 内外面にはウォータージェットピーニング施工による残留応力の改善を行っていることから、 照射誘起型応力腐食割れが発生する可能性はないと判断する。

炉心シュラウド中間胴の母材部は、しきい照射量を超えるものの、溶接による引張残留応 力はなく、運転中の差圧、熱、自重等に起因する引張応力成分は低いことから、照射誘起型 応力腐食割れが発生する可能性はないと判断する。

上部格子板のグリッドプレートは、しきい照射量を超えるものの、溶接部がないため溶接 による引張残留応力はなく、運転中の差圧、熱、自重等に起因する引張応力成分は低いこと から、照射誘起型応力腐食割れが発生する可能性はないと判断する。上部格子板のグリッド プレートに発生する応力を評価した結果を別紙2に示す。

炉心支持板,周辺燃料支持金具および制御棒案内管については,しきい照射量を超えない ことから,照射誘起型応力腐食割れが発生する可能性はないと判断する。

炉内構造物に関する照射誘起型応力腐食割れ発生の可能性評価を別紙3に示す。

(2) 現状保全

① 点検状況

中性子照射量評価により,照射誘起型応力腐食割れのしきい照射量を超える中性子照射を 受ける炉内構造物(炉心シュラウド,上部格子板)の保全の状況は以下のとおりである。

炉内構造物(炉心シュラウド,上部格子板)については,定期的に水中カメラによる目視 点検を実施しており,有意な欠陥は確認されていない。炉心シュラウドおよび上部格子板の 点検内容を表4に示す。また,維持規格に基づく点検範囲の概略図を図2に,自主点検とし て実施している上部格子板グリッドプレートの点検範囲の概略図を図3に示す。

					-		
点検対象		点検方法	点検頻度	至近の点検実績	点検結果	備考	
信むいいの日間	中田	MUT 1	運転時間で	第17回定期事業	白 ※6		
	トノ田	MV1-1	5~20 年**3	者検査(2017年)	R		
	씨포	MUT 1	運転時間で	第12回定期検査	白 ※6		
<b>П4 </b> 向俗按松于	クト国	MV1-1	5~20 年 ^{※3}	(2004年)	R	花 村 規 俗	
炉心シュラウド※2		VT 9	10 年※4	第15回定期検査	白 ※6	に並りて	
		V1-3	10 平 ~~	(2008年)	R	尽快	
上部格子板※2		VT 9	10 年※4	第17回定期事業	白 ※6		
		V1-2	10 ++-	者検査(2017年)	R		
上部格子板 (グリッドプレート)		MUT 1	10 年※5	第17回定期事業	白 ※6	白十占妗	
		MV1-1	10 ++-	者検査(2017年)	<b>尺</b> ⁽¹⁾	日土믔俠	

表4 炉心シュラウドおよび上部格子板の点検内容

※1:維持規格 IJG 炉内構造物の個別検査(表 IJG-2500-B-2)に、亀裂の解釈の条件(縦溶接線との交差 部を含む)を課した上で実施。H4は、炉心シュラウドの点検箇所である周溶接継手のうち、しきい照射 量を超えるもの。

※2:維持規格 IG 炉内構造物の標準検査(表 IG-2500-1, 添付 I-4) による。

- ※3:次回点検の頻度(維持規格 IJG 炉内構造物の個別検査(表 IJG-2500-B-2,添付 IJG-B-2-1)による)。 なお、次々回点検以降の頻度は、運転時間で5~15年以内とする。
- ※4:維持規格 IA-2310 検査間隔による。
- ※5:維持規格に基づく上部格子板の点検に合わせて確認する。
- ※6: 炉内構造物点検の判定基準に基づく

MVT-1の判定基準:表面について、摩耗、き裂、腐食、浸食等の異常がないこと。

VT-3の判定基準:過度の変形,心合わせ不良,傾き,部品の破損および脱落がないこと。



図2 維持規格に基づく点検範囲概略図



図3 上部格子板グリッドプレートの自主点検範囲概略図

② 応力腐食割れに対する予防保全対策

応力腐食割れについては,発生因子である「応力」,「材料」,「環境」を改善することで発 生を抑制する効果が期待できる。

照射誘起型応力腐食割れのしきい照射量を超える中性子照射を受ける炉内構造物(炉心シ ュラウド,上部格子板)に対する応力腐食割れの抑制対策について表5に示す。

表5 炉内構造物(炉心シュラウド,上部格子板)の応力腐食割れの抑制対策

発生因子		炉心シュラウド		上部格子板
<u>к</u> +	$\checkmark$	ウォータージェットピーニング施工による残留		
がいフリ		応力の改善(2004, 2006 年)*1		_
材料	٨	低炭素ステンレス鋼 SUS316L を使用	A	低炭素ステンレス鋼 SUS316L を使用
世世	À	水素注入による腐食電位の低減	٨	水素注入による腐食電位の低減
<b></b>		(2006年~)		(2006 年~)

※1:周溶接継手H4内外面等 図4参照

島根2号炉の第11回定期検査(2003年)において,NISA文書^{*2}に基づき炉心シュラウドの目視点検(MVT-1)を実施したところ,炉心シュラウド周溶接継手H4内面近傍に1箇所のひびを確認した。第11回定期検査で確認されたひびの発生箇所を図5に示す。

確認したひびは構造強度評価の結果,5年後においても十分な構造強度を有することから, 直ちに補修を必要とするものではなかったが,ひびが進展する可能性を考慮し,第12回定期 検査(2004年)において,研削によるひびの除去および研削加工面に対してウォータージェ ットピーニングによる応力改善を実施した。第12回定期検査時の実施内容を表6に示す。

第12回定期検査(ひびの除去,ウォータージェットピーニングによる応力改善)以降のひ び除去部に対する点検については、NISA文書^{*2}に基づき、ひびの除去を行った次の定期検査 である第13回定期検査(2006年)に目視点検(MVT-1)を行い、ひび除去部の健全性を確認 している。

第13回定期検査以降についても,目視点検(MVT-1)を行い,ひび除去部の健全性を確認 している。点検実績について表7に示す。

 ※2: 炉心シュラウド及び原子炉再循環系配管等のひび割れに関する点検について(平成15・04・09原院第 4号)

項目	実施内容	目的	結果		
	1. 渦流探傷試験	ひび位置の確認	ひび位置 331°付近		
	2.目視点検(MVT-1)	ひび長さの確認	ひび長さ26mm		
研判による	3. 超音波探傷試験	ひび深さの確認	最大ひび深さ 19.6mm		
いびの除去	4. 研削	ひびの除去	_		
	5.研磨	研削加工面の仕上げ	—		
	6.目視点検(MVT-1)	ひびの無いことを確認 ^{**3}	ひびの無いことを確 認した。		
	7. 超音波厚さ測定	研削加工深さの測定	最大研削深さ 24.6mm		
ウォーターシェットピーニング	8. ウォータージ [*] ェットピ [*] ーニンク [*] 施工	ひび除去部の応力改善	_		
による応力改善	9.目視点検(MVT-1)	ひびの無いことを確認	異常なし		

表6 第12回定期検査時の実施内容

※3:ひびの無いことを確認できるまで研削・研磨工程を繰り返す。

表7 第12回定期検査以降のひび除去部に対する点検実績

時期	点検内容	目的	結果
第13回定期検査 (2006年)	目視点検(MVT-1)	ひび除去部の健全性確認	異常なし
第 17 回定期事業者 検査(2016 年)	目視点検(MVT-1)	ひび除去部の健全性確認	異常なし

ウォータージェットピーニング施工は,維持規格において,「RB-2450 ピーニング方法」 に応力腐食割れの予防保全として施工方法が記載されている。炉心シュラウドに実施したウ ォータージェットピーニング施工に関する応力腐食割れの抑制効果を別紙4に示す。

また,炉内構造物の各機器および制御棒は原子炉冷却材と接液しており,通常運転時の温度は約289 ℃である。また,原子炉冷却材の水質管理は,社内規程「化学管理手順書」において管理値を定め,水質管理を実施している。原子炉冷却材の水質の管理値と至近の実績について別紙5に示す。



- : ウォータージェットピーニング施工範囲

こしきい照射量:1×10²⁵n/m²を超える範囲^{**}(運転開始後 60 年時点)

※炉心シュラウド内側,外側それぞれの照射量を算出し、しきい照射量を超える範囲図を作成した。

注)H4周溶接継手内外面のウォータージェットピーニングについては、全長の100%を施工した。

図4 炉心シュラウド 応力改善箇所概要図

12



図5 第11回定期検査で確認されたひびの発生箇所

(3) 総合評価

炉心シュラウド中間胴 H4 周溶接継手(熱影響部含む)は、しきい照射量を超えるものの、内外 面にはウォータージェットピーニング施工による残留応力の改善を行っていることから、照射誘 起型応力腐食割れが発生する可能性はなく、60 年の健全性は維持できると判断する。

炉心シュラウド中間胴の母材部は、しきい照射量を超えるものの、溶接による引張残留応力は なく、運転中の差圧、熱、自重等に起因する引張応力成分は低いことから、照射誘起型応力腐食 割れが発生する可能性はなく、60年の健全性は維持できると判断する。

上部格子板のグリッドプレートは、しきい照射量を超えるものの、溶接部がないため溶接による引張残留応力はなく、運転中の差圧、熱、自重等に起因する引張応力成分は低いことから、照 射誘起型応力腐食割れが発生する可能性はなく、60年の健全性は維持できると判断する。

炉心支持板,周辺燃料支持金具および制御棒案内管については,しきい照射量を超えないこと から,照射誘起型応力腐食割れが発生する可能性はなく,60年の健全性は維持できると判断する。

(4) 高経年化への対応

炉心シュラウド,上部格子板,炉心支持板,周辺燃料支持金具および制御棒案内管の照射誘起 型応力腐食割れに対しては,高経年化対策の観点から現状保全の内容に追加すべき項目はない。 4.2 制御棒の技術評価

(1) 健全性評価

制御棒に使用されているステンレス鋼は、4.1 で述べたとおり、しきい照射量以上の中性 子照射を受けた場合に照射誘起型応力腐食割れの感受性が現れると考えられている。

島根2号炉で使用している制御棒は、ボロン・カーバイド粉末型制御棒およびハフニウム 棒型制御棒であり、その上部に位置し、比較的高い照射量を受ける制御材被覆管(ボロン・ カーバイド粉末型制御棒のみ)、シース、タイロッド、ピン、上部ハンドルについては、表8 に示すとおりステンレス鋼を使用している。

通常運転中,全引抜運用としているボロン・カーバイド粉末型制御棒は,軸方向に4分割 した各セグメントのいずれかの平均反応度が新品の90%まで減少した時の核的寿命に対して 保守的に定めた運用基準1.81×10²⁵ n/m²(熱中性子)に基づき取替を実施している。

通常運転中,出力制御用として炉心に挿入しているハフニウム棒型制御棒は,構造材(ス テンレス鋼)の高速中性子照射量の最大実績値に対し保守的に定めた運用基準4.0×10²⁵ n/m² (熱中性子)に基づき取替を実施している。

ボロン・カーバイド粉末型制御棒およびハフニウム棒型制御棒の上部は比較的高い中性子 照射を受ける。

以上より,照射量の観点から,ステンレス鋼を使用している制御棒上部について照射誘起 型応力腐食割れが発生する可能性は否定できない。

部位	ホ゛ロン・カーハ゛イト	*粉末型制御棒	ハフニウム棒型制御棒			
制御材被覆管**1	ASTM A269 TP304	ASTM A269 TP304L	_			
シース	SU	S316L	SUS316L			
タイロット゛	SU	S316L	SUS316L			
ヒ°ン	ASTM A580	S21800 相当	ASTM A580 S21800 相当			
上部ハント・ル	SU	S316L	SUS316L			

表8 制御棒の上部の使用材料

※1:第11回定期検査(2003年)以降の取替分より,材料をステンレス鋼(ASTM A269 TP304)
 からステンレス鋼(ASTM A269 TP304L)に変更。

制御材被覆管(ボロン・カーバイド粉末型制御棒のみ),シース,タイロッド,ピン,上 部ハンドルは溶接熱影響部に引張残留応力が存在する。また,制御材被覆管(ボロン・カ ーバイド粉末型制御棒のみ)には,制御材の熱中性子捕獲による¹⁰B(n, α)⁷Li反応での He 発生に伴う内圧上昇,ならびに制御材の体積膨張によって引張応力が作用する。

このため、応力の観点から、照射誘起型応力腐食割れが発生する可能性は否定できない。

なお,他プラントにおいて,制御棒上部ハンドルローラ近傍に製造時の残存不純物と照 射量蓄積の相乗効果により,照射誘起応力腐食割れと推定されるひびが発見されている。 その後、制御棒上部ハンドルローラピン穴を通水溝付ピン穴構造とした応力腐食割れ対 策品に設計変更されており、島根2号炉においても第9回定期検査(2000年)以降の制御 棒取替では、この応力腐食割れ対策品を採用している。

また,制御材被覆管(ボロン・カーバイド粉末型制御棒のみ)に照射誘起型応力腐食割 れが発生した場合,内部のボロン・カーバイドの流出によって原子炉水のトリチウム濃度 が上昇する^{※2}。

他プラントでは、制御材被覆管の割れが原因と考えられる原子炉水のトリチウム濃度の 上昇が確認されたため、島根2号炉においても定期的にトリチウム濃度の測定(3ヶ月に1 度)を実施している。その結果、トリチウム濃度の急上昇はなく、制御材被覆管に照射誘 起型応力腐食割れによるボロン・カーバイドの流出がないことを確認している。原子炉水 のトリチウム濃度測定結果を別紙6に示す。

※2:制御材被覆管の割れが発生した場合,¹⁰Bの炉内への流出が生じ,¹⁰Bは炉内で以下の反応に より³H(トリチウム)が生じる。

 ${}^{10}B + n \rightarrow {}^{7}Li + {}^{4}He$   ${}^{7}Li + n \rightarrow {}^{3}H + {}^{4}He + n$   ${}^{10}B + n \rightarrow {}^{3}H + 2{}^{4}He$ 

(2) 現状保全

①点検状況

中性子照射量評価により,照射誘起型応力腐食割れのしきい照射量以上の中性子照射を 受ける制御棒の保全の状況は以下のとおりである。

通常運転中全引抜運用としているボロン・カーバイド粉末型制御棒は、軸方向に4分割 した各セグメントのいずれかの平均反応度が新品の90%まで減少した時の核的寿命に対し て保守的に定めた運用基準に基づき取替を実施している。

通常運転中出力制御用として炉心に挿入しているハフニウム棒型制御棒は,構造材(ス テンレス鋼)の高速中性子照射量の最大実績値に対し保守的に定めた運用基準に基づき取 替を実施している。

また,定期事業者検査毎に実施している原子炉停止余裕検査,制御棒駆動水圧系機能検 査および制御棒駆動機構機能検査により,制御棒の制御能力および動作性に問題が生じて いないことを確認している。

なお,前述のとおり,定期的にトリチウム濃度の測定を行うことで,制御材被覆管に照 射誘起型応力腐食割れによるボロン・カーバイドの流出がないことを確認している。

さらに、制御棒を取り替える場合は、取り出した制御棒について、点検計画に基づき外 観点検を行い異常のないことを確認している。また、取り替える制御棒については、応力 腐食割れ対策品とすることで、照射誘起型応力腐食割れの発生する可能性を抑制できると 考える。 ②応力腐食割れに対する予防保全対策

制御棒に対する応力腐食割れの抑制対策について、表9に示す。

発生因子	対策内容
	▷ 溶接部の残留応力低減(取替品)
応力	▶ 製造時の不純物管理,上部ハンドルローラのピン穴に通水溝(取替品)
	(図6参照)
++水	▶ 低炭素ステンレス鋼 SUS316L および ASTM A269 TP304L(取替品)を
们科	使用
環境	<ul> <li>水素注入による腐食電位の低減(2006 年~)</li> </ul>

表9 制御棒の応力腐食割れの抑制対策



図6 上部ハンドルガイドローラのピン穴長穴構造化

(3) 総合評価

制御棒は,照射量および応力の観点から,ステンレス鋼を使用している上部に位置する部 位について照射誘起型応力腐食割れが発生する可能性は否定できない。

しかしながら,運用基準に基づく制御棒の取替,定期事業者検査毎の原子炉停止余裕検査, 制御棒駆動水圧系機能検査および制御棒駆動機構機能検査を実施していくことで,機能上の 観点から健全性の確認は可能と判断する。

また,定期的なトリチウム濃度の測定によって,制御材被覆管(ボロン・カーバイド粉末 型制御棒のみ)の照射誘起型応力腐食割れによるボロン・カーバイドの流出がないことを確 認している。

したがって,照射誘起型応力腐食割れの発生または進展を前提としても,これらの運用を 継続することで,制御棒の機能は維持できると判断する。

なお、制御棒を取り替える場合は、取り出した制御棒について、点検計画に基づき外観点 検を行い異常のないことを確認し、取り替える制御棒については製造時の不純物管理を徹底 するとともに、応力腐食割れ対策品とすることで、照射誘起型応力腐食割れの発生する可能 性を抑制できると考える。

(4) 高経年化への対応

制御棒(制御材被覆管(ボロン・カーバイド粉末型制御棒のみ),シース,タイロッド,ピン,上部ハンドル)の照射誘起型応力腐食割れに対しては,高経年化対策の観点から現状保全の内容に追加すべき項目はない。

5. まとめ

(1) 審査ガイド等記載事項に対する確認結果

「2. 基本方針」で示した審査ガイド等記載に対して,高経年化技術評価を適切に実施していることを確認した。照射誘起型応力腐食割れについての審査ガイド等記載事項との対比を表 10 に示す。

(2) 施設管理に関する方針として策定する事項

炉心シュラウド,上部格子板,炉心支持板,周辺燃料支持金具,制御棒案内管および制御棒 については,施設管理に関する方針として策定する事項は抽出されなかった。

カ゛イト゛	記載事項	技術評価結果
	(1) 高経年化技術評価の審査	「4.1 (1)」および「4.2 (1)」の「健全性評価」に
	②健全性の評価	示すとおり,中性子照射量の比較的高い炉内構造物お
	実施ガイド 3.1⑤に規定する期間の満了日までの期間について、高	よび制御棒について照射誘起型応力腐食割れの発生
	経年化対策上着目すべき経年劣化事象の発生又は進展に係る健全	または進展に係る健全性を評価した。
	性を評価していることを審査する。	
	③現状保全の評価	「4.1 (2)」および「4.2 (2)」の「現状保全」に示
実用発電用原子炉施設	健全性評価結果から現状の保全策の妥当性が評価されていること	すとおり,健全性評価結果から現状の保全策が妥当で
における高経年化対策	を審査する。	あることを確認した。
審査ガイド	⑭追加保全策の抽出	「4.1 (4)」および「4.2 (4)」の「高経年化への対
	現状保全の評価結果から、現状保全に追加する必要のある新たな	応」に示すとおり、現状保全項目に、高経年化対策の
	保全策が抽出されていることを審査する。	観点から追加すべき新たな保全策はなかった。
	(2)長期施設管理方針の審査	「4.1 (4)」および「4.2 (4)」の「高経年化への対
	①長期施設管理方針の策定	応」に示すとおり、現状保全項目に、高経年化対策の
	すべての追加保全策について長期施設管理方針として策定されて	観点から追加すべきものはなく,施設管理に関する方
	いるかを審査する。	針として策定する事項はなかった。

表10(1/2) 照射誘起型応力腐食割れについての審査ガイド等記載事項との対比

カ゛イト゛	記載事項	技術評価結果
	3.1 高経年化技術評価の実施及び見直し	「4.1 (4)」および「4.2 (4)」の「高経年化への対
	⑤抽出された高経年化対策上着目すべき経年劣化事象について、以下	応」に示すとおり、現状保全項目に、高経年化対策の
	に規定する期間の満了日までの期間について機器・構造物の健全性	観点から追加すべき新たな保全策はなかった。
	評価を行うとともに、必要に応じ現状の施設管理に追加すべき保全	
	策(以下「追加保全策」という。)を抽出すること。	
	イ 実用炉規則第 82 条第 1 項の規定に基づく高経年化技術評価	
	プラントの運転を開始した日から 60 年間	
	3.2 長期施設管理方針の策定及び変更	「4.1 (4)」および「4.2 (4)」の「高経年化への対
	長期施設管理方針の策定及び変更に当たっては、以下の要求事項を	応」に示すとおり、現状保全項目に、高経年化対策の
実用発電用原子炉施設	満たすこと。	観点から追加すべきものはなく,施設管理に関する方
における高経年化対策	①高経年化技術評価の結果抽出された全ての追加保全策(発電用原子	針として策定する事項はなかった。
実施ガイド	炉の運転を断続的に行うことを前提として抽出されたもの及び冷温	
	停止状態が維持されることを前提として抽出されたものの全て。)に	
	ついて、発電用原子炉ごとに、施設管理の項目及び当該項目ごとの実	
	施時期を規定した長期施設管理方針を策定すること。	
	なお、高経年化技術評価の結果抽出された追加保全策について、	
	発電用原子炉の運転を断続的に行うことを前提とした評価から抽出	
	されたものと冷温停止状態が維持されることを前提とした評価から	
	抽出されたものの間で、その対象の経年劣化事象及び機器・構造物の	
	部位が重複するものについては、双方の追加保全策を踏まえた保守的	
	な長期施設管理方針を策定すること。	

表10(2/2) 照射誘起型応力腐食割れについての審査ガイド等記載事項との対比

20

### 炉内構造物の運転開始後 60 年時点での中性子照射量について

1. 中性子照射量の算出に用いる計算機コード

中性子照射量は、炉内各位置における中性子束を2次元輸送計算コード DORT (DOORS3. 2a バー ジョン)により算出し、運転時間を掛けることで中性子照射量を求めている。

DORT コードは、米国のオークリッジ国立研究所で開発された中性子輸送方程式を数値的に解く コードであり、プログラムの構成は以下のとおりである。



※1:評価済み核データ JENDL-3.3 より作成された輸送計算用断面積ライブラリ MATXSLIB-J33 を使用。

#### 2. 中性子照射量の算出手順

炉内構造物における中性子照射量は、以下の手順で算出している。

- (1) 基準計算として, R-Z 体系モデル(垂直断面モデル)により, 炉内各位置の中性子束を算 出する。
- (2)補正計算として、R-θ 体系モデル(水平断面モデル)により、燃料配置の影響を考慮した 周方向中性子束の分布から補正係数を算出し、基準計算にて得られた中性子束に乗じるこ とで、炉内各位置の中性子束分布とする。
- (3) 炉内構造物のうち、炉心を取り囲む評価対象機器(炉心シュラウド、上部格子板、炉心支 持板、周辺燃料支持金具および制御棒案内管)について、(2)で求めた中性子束分布から、 構造上最も中性子束が高くなる位置およびその位置の中性子束を求める。
- (4) 運転開始後 60 年時点での実効運転期間を設定する。
- (5) 評価対象機器の中性子束が最も高くなる位置における中性子束と実効運転期間を乗じて, 評価対象機器の運転開始後 60 年時点での中性子照射量とする。

3. 計算モデル

(1) R-Z 体系モデル(垂直断面モデル) 基準計算として、図1のような形状のモデルを用いて炉内各位置の中性子束を算出する。

図1 R-Z 体系モデル(垂直断面モデル)

(2) R-θ 体系モデル (水平断面モデル)

図2のような形状のモデルを用いて燃料配置による周方向中性子束分布から補正係数を算 出する。

図2 R-θ 体系モデル (水平断面モデル)

4. 60年時点の実効運転期間

2015 年 7 月末時点および運転開始後 60 年時点での実効運転期間(EFPY)は,運転時間から 下記の通り算出した。

<2015 年 7 月末時点の EFPY>

= 2015 年 7 月末時点の総運転時間÷ (24×365.25)

- $= \frac{1}{24 \,(\mathrm{H/D}) \times 365.\,25 \,(\mathrm{D/Y})}$
- = 19.13EFPY

<運転開始後 60 年時点の EFPY>

- = (2015 年 7 月末時点の総運転時間+次回起動日以降の総運転時間^{*1})÷ (24×365.25)
- $= \frac{167,615(\mathrm{H}) + 241,532(\mathrm{H})}{2}$
- $24 (H/D) \times 365.25 (D/Y)$

= 46.68EFPY

※1:次回起動日(暫定:2018年7月1日)~運転開始後60年時点(2049年2月10日)までの総時間のうち稼働率を90%と想定し算出した。(2018年7月1日までの実績稼働率約64%に対して保守的に設定)

# 5. 中性子照射量の算出結果

評価対象機器の中性子照射量の算出結果を表1に示す。

評価対象機器	中性子束が 最大となる位置	運転開始後 60 年時点の 中性子照射量[n/m ² ]
炉心シュラウト゛	中間胴 H4 周溶接継手から上へ	2. $7 \times 10^{25}$
炉心シュラウド	中間胴 H4 周溶接継手内面	$2.6 \times 10^{25}$
(周溶接継手) ^{※1}	(周方向位置は図3参照)	$2.0 \times 10$
上部格子板	グリッドプレート下端, 炉中心位置	$4.4 \times 10^{25}$
炉心支持板	支持板上端	3. $0 \times 10^{24}$
周辺燃料支持金具	支持金具上端	$1.2 \times 10^{24}$
制御棒案内管	上面,炉中心位置	4. $5 \times 10^{24}$

表1 炉内構造物各機器の中性子照射量

※1: 炉心支持機能の維持のため必要な溶接継手として評価



図3 炉心シュラウドの周方向中性子束分布

# 6. 解析値と監視試験片の線量から評価した値と比較

解析により求められた中性子束と,第2回監視試験片の線量から評価した中性子束を表2に示す。解析値(C)と監視試験片評価(E)の比(C/E)は約1.2であり,解析値に保守性があることを確認した。

	中性子束	比苏	
位置	解析による評価結果	監視試験による評価結果	レーザズ
	(C)	(E)	(C/E)
監視試験片位置	$1.80 \times 10^{9}$	$1.53 \times 10^{9}$	1.2

表2 解析による中性子束と第2回監視試験片の評価による中性子束の比較

上部格子板グリッドプレートに発生する応力について

上部格子板のグリッドプレートは、しきい照射量を超えるものの、溶接部がないため溶接によ る引張残留応力はなく、運転中の差圧、熱、自重等に起因する引張応力成分は低く、照射誘起型 応力腐食割れが発生する可能性はないと評価している。上部格子板のグリッドプレートに発生す る応力を評価した結果を以下に示す。

1. 差圧による応力

運転中の差圧による応力は,評価部位であるグリッドプレート下部に生じる自重による応力 を低減させる方向に働くことから,応力腐食割れの評価には保守的に評価しない。

2. 熱による応力

上部格子板はすべて同じ温度領域にあり、同じ材料(ステンレス鋼)であるため、急激な温 度差や熱膨張差は生じず、運転中の熱による応力は微小であることから、考慮しない。

3. 自重による応力

自重による応力は、その値が最大となるように、最長のグリッドプレートの中央部の応力と する。

(1) 自重W

評価部位に生じる自重Wは、次式により求める。

$$W = \gamma \times t \times h \times L$$

$$=$$

$$[N]$$

γ:材料の比重 = [N/mm³]
 t:グリッドプレート板厚 = [mm]
 h:グリッドプレート高さ = [mm]
 L:最長グリッドプレート長さ = [mm]

図1および図2に示す最長グリッドプレート中央部の曲げモーメントMは,等分布荷重を 受ける両端固定梁の公式より,次のように求める。



(2) 死荷重による応力 σ_b

モーメントMによる曲げ応力σ_bは、材料力学の公式より、次のように求める。



以上より、上部格子板のグリッドプレートにかかる荷重は主に自重であり、その応力は最大でも [MPa] と小さい。







図2 上部格子板グリッドプレートの構造図

炉内構造物に関する照射誘起型応力腐食割れ発生の可能性評価について

炉心を取り囲む評価対象機器(炉心シュラウド,上部格子板,炉心支持板,周辺燃料支持金具 および制御棒案内管)について,材料,環境,中性子照射量および応力に基づき,照射誘起型応 力腐食割れ発生の可能性を評価する。結果を表1に示す。

(材料)

- 評価対象機器の材料はすべてステンレス鋼(SUS316L, SUS316LTP, SUS304L)であり, 照射誘 起型応力腐食割れ発生の因子となる可能性が否定できない。
- (環境)
- 評価対象機器の環境は通常運転時約289℃の純水であり、照射誘起型応力腐食割れ発生の 因子となる可能性が否定できない。ただし、水素注入により応力腐食割れに対して環境面 からの改善を図っており、照射誘起型応力腐食割れ発生の因子となる可能性は小さい。
- (中性子照射量)
- しきい照射量と評価対象機器の中性子照射量を比較した結果、炉心シュラウド中間胴母材部、中間胴H4周溶接継手および上部格子板グリッドプレートの照射量はしきい照射量よりも大きくなると予測されることから、照射誘起型応力腐食割れが発生する因子となる可能性は否定できない。

(応力)

● 上述の中性子照射量がしきい値を超えると予測される、炉心シュラウド中間胴母材部および上部格子板グリッドプレートについては、溶接による引張残留応力はなく、運転中の差圧、熱、自重等に起因する引張応力は小さいことから、照射誘起型応力腐食割れ発生の因子となる可能性はないと判断する。炉心シュラウドの中間胴H4周溶接継手内外面については、ウォータージェットピーニング施工による残留応力の改善を行っていることから、照射誘起型応力腐食割れ発生の因子となる可能性はないと判断する。

(評価結果)

- 炉心シュラウド中間胴の母材部および上部格子板のグリッドプレートは、しきい照射量を 超えるものの、溶接による引張残留応力はなく、運転中の差圧、熱、自重等に起因する引 張応力成分が低いことから、照射誘起型応力腐食割れが発生する可能性はないと判断する。
- 炉心シュラウド中間胴 H4 周溶接継手の内外面は、しきい照射量を超えるものの、ウォータ ージェットピーニング施工による残留応力の改善を行っているため、照射誘起型応力腐食 割れが発生する可能性はないと判断する。
- 炉心支持板,周辺燃料支持金具および制御棒案内管については、しきい照射量を越えない ことから,照射誘起型応力腐食割れが発生する可能性はないと判断する。

評価対望 機器	象		材料	(	環境 温度は通常 運転時)	[暃	中性子照射量 [n/m ² ] 長大となる位置] ^{*1*2}	応	力(中性子照射量が最大 となる位置の評価)	照射誘起型応力腐食割れ発生の可能性 に関する総合評価
炉心シュラ ウト	内面	0	ステンレス鋼 SUS316L	0	炉水, 289℃,水素 注入	0	2.6×10 ²⁵ [中間胴 H4 溶接継 手]		ウォータージェットピーニング施 工による残留応力の改 善を行っている。	ウォータージェットピーニング施工による残留応 力の改善を行っていることから,照射
<ul><li>(周溶接 継手)</li></ul>	外 面	0	ステンレス鋼 SUS316L		炉水, 289℃,水素 注入	0	1.5×10 ²⁵ [中間胴 H4 溶接継 手]	—	ウォータージェットピーニング施 工による残留応力の改 善を行っている。	誘起型応力腐食割れが発生する可能性   はないと判断する。 
炉心シュラウ  (母材部)	\° )	0	ステンレス鋼 SUS316L	0	炉水, 289℃,水素 注入	0	2.7×10 ²⁵ [中間胴 H4 周溶接 継手から上へ約 mmの母材部]		溶接による引張残留応 力はない。運転中の差 圧,熱,自重等に起因 する引張応力は小さ い。	溶接による引張残留応力はなく引張応 力成分が低いことから,照射誘起型応
上部格子标	板	0	ステンレス鋼 SUS316L	0	炉水, 289℃,水素 注入	0	4.4×10 ²⁵ [グリッドプレート下 端,中央部]		溶接による引張残留応 力はない。運転中の差 圧,熱,自重等に起因 する引張応力は小さ い。	する。
炉心支持	板	0	ステンレス鋼 SUS316L	0	炉水, 289℃,水素 注入	—	3.0×10 ²⁴ [支持板上端]		運転中の差圧,熱,自	
周辺燃料	支	0	ステンレス鋼 SUS316LTP	0	炉水, 289℃,水素 注入		1.2×10 ²⁴ [支持金具上端]		重等に起因する引張応 力は小さい。溶接部は 入熱が小さく引張残留	中性子照射量が照射誘起型応力腐食割 れのしきい照射量を超えないことか ら,発生の可能性はないと判断する。
制御棒案日	内	0	ステンレス鋼 SUS304L	0	炉水, 289℃,水素 注入		4.5×10 ²⁴ [上面,中央部]		応力は小さい。	

表1 照射誘起型応力腐食割れ発生の可能性に関する評価

※1:運転開始後60年時点の中性子照射量とその位置。別紙2参照

※2:しきい照射量 1×10²⁵ [n/m²] (ステンレス鋼 SUS316 材の値),5×10²⁴ [n/m²] (ステンレス鋼 SUS304 材の値)と比較し評価。

凡例 ○:照射誘起型応力腐食割れ発生の因子となる可能性を否定できない。 ▲:照射誘起型応力腐食割れ発生の可能性は小さい。

- : 照射誘起型応力腐食割れ発生の因子となる可能性はない。 「-」をハッチング

別紙 3-2

#### 別紙4

ウォータジェットピーニング施工による応力腐食割れ抑制効果について

1. はじめに

ウォータジェットピーニング施工(以下,「WJP」という。)とは,高圧水を水中でノズルから噴 射することにより発生させたキャビテーションを含むジェットで,機器表面をピーニングするこ とにより,材料表面の引張残留応力を圧縮側に改善する方法である。

WJP による応力腐食割れの抑制効果に関する概要を以下に述べる。

2. WJPの概要

WJP は,財団法人発電設備技術検査協会にて「原子炉炉内構造物へのウォータジェットピーニング法適用に関する確性試験(以下,「WJP 確性試験」という。)」の審議が行われ,平成8年10月に合格証明書が発行されている。

WJPを適用する場合には、その施工を受ける部材の耐食性等の健全性が損なわれていないこと、 即ち、材料に対して悪い影響が与えられていないことの確認を行う必要があり、WJP 確性試験に おいて各種の試験が実施された。また、残留応力が圧縮側に改善される WJP の施工条件が確認さ れている。

また,日本原子力技術協会の予防保全工法ガイドライン [ピーニング工法] *1 (以下,「ピーニ ング工法ガイドライン」という。)において,応力腐食割れの予防保全工法として WJP が添付され ている。

維持規格においては、WJP が炉内構造物の予防保全工法として、「RB-2450 ピーニング方法」に 記載されている。また、「添付 IJG-B-2-1 シュラウドに対する予防保全の適用」の「表 添付 IJG-B-2-1-1 予防保全の適用」に、「ピーニング」を適用した場合に「予防保全実施時期を供用開 始時期として、表 IJG-2500-B-2 の G3. 10 および G3. 20 を適用できる。」としており、WJP の効果 に関する規定がある。

WJP による引張残留応力改善の原理を図1に示す。

※1: JANTI-VIP-03-第2版 予防保全工法ガイドライン [ピーニング工法] 平成20年1月 有限責任中間法人 日本原子力技術協会

### (解説 2-1) W J P の原理

WJPは、高圧水を水中でノズルから噴射することにより発生させたキャビテーションを含むジェットで、機器表面をピーニングする技術である。このWJPの原理を、解 説図 2-1(1)及び(2)に示す。



解説図 2-1(1) W J Pの原理

図1 WJPによる引張残留応力改善の原理 (ピーニング工法ガイドラインより) 3. WJP による応力腐食割れの抑制効果

WJP による応力腐食割れの抑制効果として、ピーニング工法ガイドラインに記載された残留応 力改善効果の確認試験結果を図2に示す。強研削によって付与した初期の引張残留応力が、圧縮 側になっていることが確認できる。



解説図 1・1 ウォータジェットピーニングによる残留応力低減効果例(出典:日本ウォータージェット学会「噴流工学」Vol.20、No.1 (2003 年 2 月))

図2 WJPによる残留応力改善効果(ピーニング工法ガイドラインより)

4. WJP の効果の持続性

WJP により付与された圧縮残留応力については,60 年運転を考慮した場合,起動停止による繰り返しのひずみ負荷や運転期間中の熱によって持続することができるかを検討した。

応力腐食割れの予防保全対策として応力改善工法を適用した場合の効果の持続性については, 国内電力 10 社による共同研究の成果があり、このうちステンレス鋼の溶接熱影響部に WJP を施工 した場合に関する成果について,要点を以下に紹介する。なお,研究の成果は,(財)発電設備技 術検査協会 溶接・非破壊検査技術センター技術レビューVol.9 2013 に紹介されている。

- (1)試験片の製作:SUSU316L と NCF600, 溶接金属がインコネル 182 合金の異材溶接継手を製作, 表面に WJP を施工(表 1,図 3)。
- (2) ひずみ負荷:320℃(BWR 運転温度 290℃よりも厳しい PWR の条件)で 0.07%のひずみを試験片長手方向(溶接線方向)に,実機 60 年運転を想定した設計上の繰り返し数以上となる 200 回まで負荷。
- (3)熱時効処理:上記ひずみを負荷した後,320℃で 60 年間(525,600 時間)相当の熱履歴を ラーソンミラーパラメータ^{※1}で加速条件を算出し,400℃で 461 時間に相当するとして熱時 効処理を実施。
- (4) 残留応力測定:ひずみ負荷後および熱時効処理後の表面および板厚内部(100μm)の残留 応力をX線回折法で測定(図4)。

流量	$800 \text{cm}^3/\text{s}$
入射時間	24s/cm
入射距離	140mm
入射角	$90^{\circ}$
リズル径	2mm

表1 試験片への WJP 施工条件



※1: ラーソンミラーパラメータP=T (C+log t), Tは温度[K], tは時間[h], Cは材料定数で多くの耐熱材
 料が 20 前後となる知見から 20 とした。(出典:「改訂 材料強度学」社団法人 日本材料学会)
 別紙 4-4

(5)結果:ひずみを繰り返し与えた場合,さらにその後熱時効処理を施した場合においても表面および内部に圧縮残留応力が持続していた。なお、1回目のひずみ負荷時に昇温とひずみ負荷に伴う応力の再分配が生じて圧縮残留応力の緩和が生じるが、その後は同等の熱的および力学的な負荷に対して圧縮残留応力の変化は少なくなっている(図5)。



以上より、WJP により付与された圧縮残留応力は、実機の 60 年運転を想定した条件下でも持続 すると考えられる。

5. 島根2号炉への WJP 施工の有効性

島根2号炉の炉心シュラウド H4 周溶接継手の内外面(以下,「H4 内外面」という。)は,2004 年の第12回定期検査にて WJP 施工による残留応力の改善を行っていることから,照射誘起型応力 腐食割れが発生する可能性はないと考えている。ここでは,WJP が残留応力の改善に有効な条件 で施工されたことを以下に示す。

(1) 施工条件

炉心シュラウドH4内外面へのWJP施工による残留応力改善の基本支配因子に対する施工条件を 表2および表3に示す。表2に示すH4内面へのWJP施工条件ついては,実機の施工記録が確性試 験の施工条件の範囲内となっている。また,表3に示すH4外面へのWJP施工条件については,噴 射距離および噴射角度が確性試験の施工条件範囲外となっているが,追加確認試験により応力改 善効果を確認している。

確認項目	確性試験における 施工条件 ^{*1}	実機の施工記録
ノズル仕様	噴射口径 2mm の ホーンノズル(穴数:1)	同左
噴射流量[L/min]	41~49	
噴射距離[mm]	80~200	
噴射時間[min/m]	20~60	
噴射角度[°]	45 以上 90 以下	

表2 炉心シュラウドH4内面へのWJP施工条件

※1:ピーニング工法ガイドライン 解説表 4-1(2)より引用。ノズル移動方向が走行方向(噴 射角度の方向にノズルが走行する方向)における条件。

確認項目	確性試験における 施工条件 ^{*1}	確認試験における 施工条件 ^{*2}	実機の施工記録
Jズル仕様	噴射口径 2mm の ホーンノズル(穴数:1)	噴射口径 2mm の ホーンノズル(穴数:1)	同左
噴射流量[L/min]	41~49		
噴射距離[mm]	80~200		
噴射時間[min/m]	20~60		
噴射角度[°]	45 以上 90 以下		

表3 炉心シュラウドH4外面へのWJP施工条件

- ※1:ピーニング工法ガイドライン 解説表 4-1(2)より引用。ノズル移動方向が走行方向(噴 射角度の方向にノズルが走行する方向)における条件。
- ※2:確認試験は、平板試験体の表面に研削加工によって引張残留応力を付与し、WJP 施工前 後で残留応力を測定し、施工後に圧縮側になっていることを確認している。

以上より,島根2号炉の炉心シュラウドH4内外面には,WJPが残留応力の改善に有効な条件で 施工されていることを確認した。

(2) 中性子照射による影響を考慮した WJP の応力改善効果について

中性子照射による影響を考慮した状態で、WJP を行った場合でも応力改善効果が得られるか について、国内電力等により実施した共同研究^{*3}(以下「電力共研」という。)の内容を以下に 示す。

※3:共同研究報告書 シュラウドの健全性に関する研究 平成8年度上半期(最終報告書)

照射硬化模擬材で試験を行うにあたり、3×10²¹n/cm²(32EFPY 照射量相当)の照射量を模擬した。この照射量に相当する硬度上昇は、図6に示されるようにビッカース硬度でおよそ である。照射硬化模擬材として、この硬度に相当する材料を冷間加工によって得ることにした。

図7はSUS304鋼のビッカース硬度と冷間加工の関係を示す。これより、ビッカース硬度でお よそ___を得るにはおよそ___%の冷間加工度が必要なことが示されている。したがって試験で は照射模擬材として___%の冷間加工材を用いた。





図6 ステンレス鋼の硬さの照射量依存性

出典:電力共研「炉内構成材料の耐食性への照射影響研究(平5/下) 出典: j. Kuniya, I. Masaoka, R. Sasaki, CORROSION-NACA, 44, 1 (1983)

図8に示すとおり,照射硬化模擬材に対して,WJP施工前後の応力値を確認した結果,WJPによる応力改善効果が得られていた。

	材料、表面状態 ノズルロ巻 吐出圧力(IFA) 噴射距離(m) 施工時間(ain/s [施工回数]	1 ) ))	
試験体	X	間加工相	র
測定位置	A部	B部	C部
WJP施工前の応力 (MPa)			
WJP施工後の応力(MPa)	[		



図8 照射模擬 %冷間加工材の残留応力に及ぼす WJP の効果

出典「共同研究報告書 シュラウドの健全性に関する研究 平成8年度上半期(最終報告書)」

島根2号炉のWJP施工範囲のうち,施工時(2004年)の最大照射量(H4内面)と電力共研で 模擬した照射量の比較を表4に示す。

	WJP 施工時の最大照射量 (H4 内面)	電力共研で模擬した照射量
中性子照射量(n/cm²)	7.5 $\times 10^{20}$	$3 \times 10^{21}$

表4 島根2号炉のWJP施工時の最大照射量と電力共研で模擬した照射量の比較

電力共研で模擬した照射量は 3×10²¹ n/cm² であり, 島根 2 号炉の WJP 施工時の最大照射量 (H4 内面) 7.5×10²⁰ n/cm² よりも高いことから, 島根 2 号炉で実施した炉心シュラウド溶接線に対す る WJP 施工は, 中性子照射による影響を考慮した場合においても応力改善効果が得られている と判断できる。 原子炉冷却材の水質の管理値と至近の実績について

原子炉冷却材の測定項目と基準値・目標値を表1に示す。

項目	基準値・目標値
導電率 (25℃において)	100 µ S/m 以下(基準値)
pH (25℃において)	5.6~8.6(基準値)
塩素イオン	0.1 ppm(100 ppb)以下(基準値)
溶存酸素濃度	0.5 ppm(500 ppb)以下(目標値)

表1 原子炉冷却材の主な水質測定項目と基準値・目標値

図1に原子炉冷却材のサンプリング点を,図2に原子炉冷却材の水質の推移データを示す。



図1 島根2号炉 原子炉浄化系概略図 (原子炉冷却材のサンプリング点は ◆部)



図2 原子炉冷却材の水質の推移

トリチウム濃度の急上昇はなく,制御材被覆管に照射誘起型応力腐食割れによるボロン・カー バイドの流出は生じていないと判断する。



ハフニウム棒型制御棒の他社プラントでの不具合事象に対する島根2号炉の評価について

他社プラントにおいてハフニウム棒型制御棒のスティフナーとハフニウム棒の間に腐食生成物 が発生し、制御棒動作に支障を与えた事象が確認されている。当該事象に対する島根2号炉の評 価結果を以下に示す。

1. 他社プラントでの不具合事象の概要

運転中にスティフナーとハフニウム棒の間隙部において腐食生成物等が蓄積し、両者が固着 された状態になっていたところ、原子炉が停止して原子炉内の温度が下がり制御棒が冷却され たため、ハフニウムとステンレスの熱収縮差による引張力および圧縮力がハフニウム棒とステ ンレスシースに加わって変形し、ステンレスシースの割れ等が起こった。

そのため,制御棒と燃料集合体のチャンネルボックスが干渉し,制御棒動作に支障が生じた。 図1にハフニウム棒型制御棒の概要,図2に事象発生メカニズムを示す。



「出典:東京電力ホールディングス株式会社」





## 2. 島根2号炉における評価

(1) 対応状況

島根2号炉では予防保全の観点から,第6回定期検査(1996年)以降スティフナーを廃止 した改良品のハフニウム棒型制御棒へ計画的に取替を行い,第7回定期検査(1998年)に全 てスティフナーを廃止した改良品への取替が完了している。

表1に他社プラントでの不具合事象発生から取替完了までの経緯を示す。

表1 他社プラントでの不具合事象発生から取替完了までの経緯

時期	内容
1995年8月	他社プラントにてハフニウム棒型制御棒のスティフナーとハフニウムの間に
	腐食生成物が発生したことによる制御棒動作不良発生。
1996年2月	予防保全対策としてスティフナーを廃止したハフニウム棒型制御棒を採用(次
	回取替から実施)
1996年10月	第 6 回定期検査にてスティフナーを廃止したハフニウム棒型制御棒へ取替を
	開始
1998年1月	第7回定期検査にて全てのハフニウム棒型制御棒をスティフナーを廃止した
	改良品に取替完了

(2) 評価結果

島根2号炉のハフニウム棒型制御棒については,他社プラントでの不具合事象発生以降,ス ティフナーを廃止した改良品に取替済である。

また,運用基準に基づく制御棒の取替時に取り出した制御棒に対して外観検査を実施してお り、これまでに異常は確認されていない。

したがって、ハフニウム棒型制御棒の他社プラントでの不具合事象に対しては、島根2号炉 において問題となる可能性はない。

別紙8

炉心シュラウドおよび上部格子板に関するトラブル事例の反映について

照射誘起型応力腐食割れが想定される機器のうち,運転開始後 60 年時点の中性子照射量がしき い照射量(1×10²⁵n/m²)を超えると予測される炉心シュラウドおよび上部格子板について,応力 腐食割れに関する主なトラブル事例を整理した。トラブル事例の概要と島根2号炉での評価を表 1にまとめる。

表1(1/2)	炉心シュラウド,	上部格子板の	トラブル事例	と島根2号炉、	での評価
---------	----------	--------	--------	---------	------

対象機器	部位	発生箇所	発生時期	事例概要および島根2号炉での評価	出典
炉心 シュラウト゛	溶接部	国内プラント 海外プラント	1990 年~ 2004 年	<事例概要> ・溶接による引張残留応力,機械加工により表面が硬くなっていたことが原因となり応力腐食割れが 発生した。 <島根2号炉での評価> ・島根2号炉でも第11回定期検査(2003年)に周溶接継手(H4内面)にひびを確認しており,ひび 除去を行っている。 ・運転開始後60年時点の中性子照射量がしきい照射量を超える範囲の溶接部はウォータージェットピーニングに よる応力改善を行っている。 ・維持規格に基づき,MVT-1により溶接部にき裂がないことを確認している。	NUCIA NRC ホーム ヘ゜ーシ゛
炉心 シュラウド	母材部	国内プラント	2002 年, 2010 年	<事例概要> <ul> <li>・製造過程で実施した研磨ベルトまたは研磨ディスクによる表面加工により、加工部のごく浅い表層部が 硬化し、引張残留応力が発生したことにより、応力腐食割れが発生した。</li> <li>・ひびの進展は深さ方向にはなくシュラウドの極めて浅い表層部に限定されると結論付けられている。</li> </ul> <4島根2号炉での評価> <ul> <li>・炉心シュラウド母材部の表面加工の際には、JIS 規格に従い、表面硬さが HV200 以下となるように施工 しており、母材表面に硬化層は形成されないため、同様の事象は発生しないと評価する。</li> </ul>	NUCIA
炉心 シュラウト゛	中間部 リングの 溶接部	国内プラント	2002 年, 2003 年	<事例概要> 炉心シュラウドの中間部リングとアライナーブラケット,中間部リングと上部格子板用ベースの溶接による引張残留応力 が原因で応力腐食割れが発生した。 <島根2号炉での評価> ・当該部の60年目時点の照射量はしきい照射量未満であり,照射誘起型応力腐食割れは発生しない と評価する。 ・当該部にき裂が生じた場合でも,中間部リング全周への進展や板厚の貫通は想定されないため,シュラウ ドの構造健全性への影響はないと評価する。	NUCIA

対象機器	部位	発生箇所	発生時期	事例および島根2号炉での評価	出典
炉心 シュラウド	上部リングの溶接部	国内プラント	2002 年, 2004 年	<事例概要> ・炉心シュラウドの上部リングとシュラウドヘッドボルト,上部リングとガイドピンブラケットの溶接による引張残留 応力が原因で応力腐食割れが発生した。 <島根2号炉での評価> ・当該部の60年目時点の照射量はしきい照射量未満であり,照射誘起型応力腐食割れは発生し ないと評価する。 ・当該部にき裂が生じた場合でも,上部リング全周への進展や板厚の貫通は想定されないため, シュラウドの構造健全性への影響はないと評価する。	NUCIA
上部 格子板	ケ゛リット゛ フ゜レート	海外プラント	1991 年 ~2005 年	<事例概要> ・ グリッドプレート交差部および交差部以外のプレート部でき裂が確認された。 ・ グリッドプレートには SUS304 材が使用されていた。 ・ 事象が発生したプラントの中性子照射量は4.5×10 ²⁵ n/m ² であった。(しきい照射量:5.0×10 ²⁴ n/m ² ) <島根2号炉での評価> ・島根2号炉のグリッドプレートには、SUS304 材と比較して中性子照射に対する感受性の小さい SUS316L 材を使用している。 ・本事象は、海外2プラントのみでしか確認されておらず、グリッドプレートには溶接部がないため 溶接による引張残留応力はなく、運転転注の差圧、熱、自重等に起因する引張応力成分は低 いことから、照射誘起型応力腐食割れが発生する可能性はないと評価する。	NRC ホ−ム ∧° −•ン
上部 格子板	リム胴と下部 フランジの溶 接部	海外プラント	1994 年	<事例概要> ・リム胴と下部フランジの溶接部で応力腐食割れが発生した。 ・当該部位には炭素含有量の多い SUS347 材が使用されており,溶接時に鋭敏化した可能性があ ると考えられている。 <島根2号炉での評価> ・当該部には,炭素含有量の少なく溶接による鋭敏化の起こらない SUS316L 材を使用している。 ・当該部の 60 年目時点の照射量はしきい照射量未満であり,照射誘起型応力腐食割れは発生し ないと評価している。	NRC ホーム ヘ゜ーシ゛

表1(2/2) 炉心シュラウド、上部格子板の損傷事例と島根2号炉での評価