資料1-3 Doc No. GK04-SC-D01 Rev.4 2023年10月20日 日立造船株式会社

補足説明資料16-3

16条 燃料体等の取扱施設及び貯蔵施設

遮蔽機能に関する説明資料

無断複製·転載禁止 日立造船株式会社

目 次

1.	要求事項		•••••			 •••••	$\cdots 1$
2.	要求事項へ	の適合性	•••••			 	4
3.	Hitz-B69 型	リの遮蔽機能	に関する構	輩诰及び評 価	Б	 	8

- 別紙1 線源強度計算条件
- 別紙2 遮蔽解析条件
- 別紙3 中性子実効増倍率の設定について
- 別紙 4 中性子源スペクトルを ²³⁹Pu 核分裂スペクトルで代表させる設定の妥当性
- 別紙5 遮蔽解析に使用する解析コードについて
- 別紙6 遮蔽解析に用いる断面積ライブラリについて
- 別紙7 (参考)表面線量当量率評価結果について
- 別紙8 (参考)上部格子枠のモデル化について
- 別紙9 (参考) バスケット格子構造を均質化することによる軸方向の遮蔽機能評価への 影響について

1. 要求事項

特定機器の設計の型式証明申請において、特定兼用キャスク(以下「キャスク」という。) の遮蔽機能に関する要求事項は、以下のとおりである。

- (1) 設置許可基準規則要求事項
- a. 設置許可基準規則第16条第4項第一号
 使用済燃料からの放射線に対して適切な遮蔽能力を有するものとすること。
- b. 設置許可基準規則解釈別記4第16条第2項

第16条第4項第1号に規定する「適切な遮蔽能力を有する」とは、第5項に規定す るもののほか、以下をいう。

- ・貯蔵事業許可基準規則解釈第4条第1項第3号に規定する金属キャスクの設計に関 する基準を満たすこと。
- ▶ 貯蔵事業許可基準規則解釈第4条第1項第三号 使用済燃料を金属キャスクに収納するに当たっては、遮蔽機能に関する評価で考慮 した使用済燃料の燃焼度に応じた当該使用済燃料の配置の条件又は範囲を逸脱し ないよう必要な措置が講じられること。
- ・兼用キャスク表面の線量当量率が1時間当たり2ミリシーベルト以下であり、かつ、 兼用キャスク表面から1メートル離れた位置における線量当量率が1時間当たり100 マイクロシーベルト以下であること。
- ・貯蔵建屋(工場等内において兼用キャスクを収納する建物をいう。以下この条において同じ。)を設置する場合には、当該貯蔵建屋の損傷によりその遮蔽機能が著しく低下したときにおいても、工場等周辺の実効線量は周辺監視区域外における線量限度を超えないこと。

なお、当該貯蔵建屋が損傷したときからその遮蔽機能の応急の復旧が完了するまで の間は、第29条に規定する「通常運転時」には当たらない。

c. 設置許可基準規則解釈別記4第16条第5項

第16条第2項第1号ハ及び同条第4項各号を満たすため、兼用キャスクは、当該兼 用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用済燃料の 健全性を確保する設計とすること。ここで、「兼用キャスクを構成する部材及び使用済 燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設計」とは、以下を満 たす設計をいう。

- ・設計貯蔵期間を明確にしていること。
- ・設計貯蔵期間中の温度、放射線等の環境条件下での経年変化を考慮した材料及び構造

であること。

(2) 原子力発電所敷地内での輸送・貯蔵兼用乾式キャスクによる使用済燃料の貯蔵に関 する審査ガイド確認事項

「2.安全機能の確保 2.2 遮蔽機能」には、以下のように記載されている。

【審査における確認事項】

- (1) 設計上想定される状態において、使用済燃料からの放射線に対して適切な遮蔽 機能を有すること。
- (2) 通常貯蔵時の兼用キャスク表面の線量当量率を2mSv/h以下とし、かつ、兼用 キャスク表面から1m離れた位置における線量当量率を100µSv/h以下とするこ と。
- (3) 通常貯蔵時の直接線及びスカイシャイン線について、原子力発電所敷地内の他の施設からのガンマ線と兼用キャスクからの中性子及びガンマ線とを合算し、 ALARAの考え方の下、敷地境界において実効線量で50µSv/y以下となることを 目標に、線量限度(1mSv/y)を十分下回る水準とすること。
- (4) 貯蔵建屋等の損傷によりその遮蔽機能が著しく低下した場合においても、工場 等周辺の実効線量が線量限度(1mSv/y)を超えないこと。

]

【確認内容】

ſ

Γ

以下を踏まえ遮蔽設計が妥当であること。

- 使用済燃料の放射線源強度評価 使用済燃料の放射線源強度は、検証され適用性が確認された燃焼計算コードを使 用して求めること。また、燃料型式、燃焼度、濃縮度、冷却年数等を条件とし、核 種の生成及び崩壊を計算して求めること。
- 2) 兼用キャスクの遮蔽機能評価
 - a. 兼用キャスクからの線量当量率は、兼用キャスクの実形状を適切にモデル化し、
 及び1)で求めた放射線源強度に基づき、検証され適用性が確認された遮蔽解析コード及び断面積ライブラリ(以下「遮蔽解析コード等」と総称する。)を使用して
 求めること。その際、設計貯蔵期間中の兼用キャスクのガンマ線遮蔽材及び中性子
 遮蔽材の熱劣化による遮蔽機能の低下を考慮すること。
 - b. 兼用キャスク表面の線量当量率を 2mSv/h 以下とし、かつ、兼用キャスク表面か

ら1m離れた位置における線量当量率を100µSv/h以下とすること。

- 3) 敷地境界における実効線量評価
 - ① 直接線及びスカイシャイン線の評価

兼用キャスクが敷地境界に近い場所に設置される場合等に、使用済燃料から放 出される中性子の敷地境界線量への寄与が大きくなる可能性があることを適切に 考慮した上で、通常貯蔵時の直接線及びスカイシャイン線(ガンマ線及び中性子) による実効線量について評価すること。

② ソースターム

兼用キャスクの遮蔽機能データ又は兼用キャスク表面から 1m 離れた位置にお ける線量当量率が 100μSv/h となるよう放射線源強度を規格化したものを用いる こと。ここで、放射線源強度を規格化して用いる場合は、中性子 100%又はガンマ 線 100%のいずれか保守的な線量評価とすること。また、中性子及びガンマ線の表 面エネルギースペクトルは、保守的な線量評価となるものを使用すること。

③ 遮蔽解析コード等

検証され適用性が確認された遮蔽解析コード等を使用すること。なお、モンテカ ルロコードを用いる場合は、相互遮蔽効果、ストリーミング及びコンクリート深層 透過の観点から検証され適用性が確認されたものであること。

④ 通常貯蔵時の線量

通常貯蔵時の直接線及びスカイシャイン線について、原子力発電所敷地内の他の施設からのガンマ線と兼用キャスクからの中性子及びガンマ線とを合算し、 ALARAの考え方の下、敷地境界において実効線量で 50µSv/y 以下となることを 目標に、線量限度(1mSv/y)を十分下回る水準とすること。

なお、兼用キャスク以外の施設の線量は、既評価の空気カーマ(Gy/y)を実効線 量(Sv/y)へ換算し、又は新たに実効線量(Sv/y)を評価するものとする。換算に 当たっては、係数を1とすること。

4) 応急復旧

貯蔵建屋等を設置する場合は、貯蔵建屋等の損傷によりその遮蔽機能が著しく低下した場合においても、必要に応じて土嚢による遮蔽の追加等の適切な手段による応急復旧を行うことにより、工場等周辺の実効線量が敷地全体で線量限度(1mSv/y)を超えないこと。この場合において、応急復旧による遮蔽機能の回復を期待する場合には、その実施に係る体制を適切に整備すること。

」

2. 要求事項への適合性

Hitz-B69 型の遮蔽機能については、以下のとおり設置許可基準規則に適合している。

a. 設置許可基準規則第16条第4項第一号
使用済燃料からの放射線に対して適切な遮蔽能力を有するものとすること。
b. 設置許可基準規則解釈別記4第16条第2項
第16条第4項第1号に規定する「適切な遮蔽能力を有する」とは、第5項に規
定するもののほか、以下をいう。
・貯蔵事業許可基準規則解釈第4条第1項第3号に規定する金属キャスクの設計
に関する基準を満たすこと。
▶ 貯蔵事業許可基準規則解釈第4条第1項第三号
使用済燃料を金属キャスクに収納するに当たっては、遮蔽機能に関する評価で
考慮した使用済燃料の燃焼度に応じた当該使用済燃料の配置の条件又は範囲
を逸脱しないよう必要な措置が講じられること。
・兼用キャスク表面の線量当量率が 1 時間当たり 2 ミリシーベルト以下であり、
かつ、兼用キャスク表面から1メートル離れた位置における線量当量率が1時
間当たり 100 マイクロシーベルト以下であること。
・貯蔵建屋(工場等内において兼用キャスクを収納する建物をいう。以下この条に
おいて同じ。)を設置する場合には、当該貯蔵建屋の損傷によりその遮蔽機能が
著しく低下したときにおいても、工場等周辺の実効線量は周辺監視区域外にお
ける線量限度を超えないこと。
なお、当該貯蔵建屋が損傷したときからその遮蔽機能の応急の復旧が完了する

までの間は、第29条に規定する「通常運転時」には当たらない。

Hitz-B69型は以下に示す設計方針により、収納する使用済燃料からの放射線に対して 適切な遮蔽能力を有する設計としている。

Hitz-B69型は、使用済燃料集合体から放出される放射線をキャスクの本体胴及び蓋部 により遮蔽する設計とし、ガンマ線遮蔽材には十分な厚みを有する鋼製の材料を用い、中 性子遮蔽材には樹脂(レジン)を用いる。設計貯蔵期間 60 年間における中性子遮蔽材の 熱による遮蔽機能の低下を考慮しても、キャスク表面及びキャスク表面から 1m の位置 における線量当量率は、それぞれ 2mSv/h 以下及び 100μSv/h 以下となる設計とする。

Hitz-B69 型の遮蔽機能に関する評価は、収納する使用済燃料集合体の種類、燃焼度、 冷却期間等の条件から、遮蔽評価の結果が厳しくなる入力条件を設定したうえで、線源強 度を求める。キャスクの実形状を二次元でモデル化し、キャスク表面及びキャスク表面か ら 1m の位置における線量当量率を求め、上記に示す線量当量率の基準を満足すること を確認する。

なお、Hitz-B69型に使用済燃料集合体を収納するに当たっては、キャスクの遮蔽機能 に関する評価で考慮した使用済燃料集合体の種類、燃焼度及び冷却期間に応じた使用済 燃料集合体の配置の条件又は範囲を逸脱しないような措置が講じられること、及び貯蔵 建屋の損傷によりその遮蔽機能が著しく低下した場合においても、工場等周辺の実効線 量は周辺監視区域外における線量限度を超えないことについては、設置(変更)許可申請 時に別途確認されるものとする。

以上の設計方針に基づく Hitz-B69 型の遮蔽機能に関する構造及び評価を 3.項に示す。

c. 設置許可基準規則解釈別記4第16条第5項 第16条第2項第1号ハ及び同条第4項各号を満たすため、兼用キャスクは、当該兼用キャスクを構成する部材及び使用済燃料の経年変化を考慮した上で、使用 済燃料の健全性を確保する設計とすること。ここで、「兼用キャスクを構成する部 材及び使用済燃料の経年変化を考慮した上で、使用済燃料の健全性を確保する設 計」とは、以下を満たす設計をいう。

- ・設計貯蔵期間を明確にしていること。
- ・設計貯蔵期間中の温度、放射線等の環境条件下での経年変化を考慮した材料及 び構造であること。

Hitz-B69型の設計貯蔵期間は60年と明確にしている。

Hitz-B69型は、安全機能を維持するうえで重要な構成部材について、設計貯蔵期間 60 年間における温度、放射線等の環境及びその環境下での腐食、クリープ、応力腐食割れ等 の経年変化に対して信頼性を有する材料を選定することにより、必要とされる強度及び 性能を維持し、使用済燃料の健全性を確保する設計としている。設計貯蔵期間中の温度、 放射線等の環境及びその環境下での腐食等の経年変化に対して信頼性を有する材料を選 定していることについては、申請書 添付書類一 4.7 に示すとおりである。

 $\mathbf{5}$

また、審査ガイドでは、兼用キャスクの有する安全機能(臨界防止機能、遮蔽機能、除 熱機能及び閉じ込め機能)に係る設計の基本方針の妥当性を確認することが定められて おり、Hitz-B69型の遮蔽機能については、以下のとおり審査ガイドの確認内容が考慮さ れている。

〔確認内容〕

 使用済燃料の放射線源強度評価 使用済燃料の放射線源強度は、検証され適用性が確認された燃焼計算コードを使 用して求めること。また、燃料型式、燃焼度、濃縮度、冷却年数等を条件とし、核 種の生成及び崩壊を計算して求めること。

Hitz-B69型の放射線源強度評価に用いる燃焼計算コードは、別紙5に示すとおり検証 され、適用性が確認されている。また、燃料型式、燃焼度、濃縮度、冷却年数等を条件と して核種の生成及び崩壊を計算して求めていることは3.項及び別紙1に示す通りである。

〔確認内容〕

- 2) 兼用キャスクの遮蔽機能評価
 - a. 兼用キャスクからの線量当量率は、兼用キャスクの実形状を適切にモデル化し、 及び1)で求めた放射線源強度に基づき、検証され適用性が確認された遮蔽解析コ ード及び断面積ライブラリ(以下「遮蔽解析コード等」と総称する。)を使用して 求めること。その際、設計貯蔵期間中の兼用キャスクのガンマ線遮蔽材及び中性子 遮蔽材の熱劣化による遮蔽機能の低下を考慮すること。
 - b. 兼用キャスク表面の線量当量率を 2mSv/h 以下とし、かつ、兼用キャスク表面から 1m 離れた位置における線量当量率を 100µSv/h 以下とすること。

Hitz-B69型の線量当量率は、キャスクの実形状を二次元で適切にモデル化し、及び上記の燃焼計算コードを用いて求めた放射線源強度に基づき、別紙5に示すとおり検証され適用性が確認された遮蔽解析コード及び断面積ライブラリを使用して、3.項及び別紙2に示す通り求めている。その際、設計貯蔵期間60年間の中性子遮蔽材(樹脂(レジン))の熱劣化による遮蔽機能の低下を別紙2に示す通り考慮している。

3.項に示す通り、キャスク表面の線量当量率は 2mSv/h 以下であり、かつ、キャスク表面から 1m 離れた位置における線量当量率は 100µSv/h 以下である。

〔確認内容〕

- 3) 敷地境界における実効線量評価
 - 直接線及びスカイシャイン線の評価 兼用キャスクが敷地境界に近い場所に設置される場合等に、使用済燃料から放 出される中性子の敷地境界線量への寄与が大きくなる可能性があることを適切に

考慮した上で、通常貯蔵時の直接線及びスカイシャイン線(ガンマ線及び中性子) による実効線量について評価すること。

② ソースターム

兼用キャスクの遮蔽機能データ又は兼用キャスク表面から 1m 離れた位置にお ける線量当量率が 100µSv/h となるよう放射線源強度を規格化したものを用いる こと。ここで、放射線源強度を規格化して用いる場合は、中性子 100%又はガンマ 線 100%のいずれか保守的な線量評価とすること。また、中性子及びガンマ線の表 面エネルギースペクトルは、保守的な線量評価となるものを使用すること。

③ 遮蔽解析コード等

検証され適用性が確認された遮蔽解析コード等を使用すること。なお、モンテカ ルロコードを用いる場合は、相互遮蔽効果、ストリーミング及びコンクリート深層 透過の観点から検証され適用性が確認されたものであること。

④ 通常貯蔵時の線量

通常貯蔵時の直接線及びスカイシャイン線について、原子力発電所敷地内の他の施設からのガンマ線と兼用キャスクからの中性子及びガンマ線とを合算し、 ALARAの考え方の下、敷地境界において実効線量で 50µSv/y 以下となることを 目標に、線量限度(1mSv/y)を十分下回る水準とすること。

なお、兼用キャスク以外の施設の線量は、既評価の空気カーマ(Gy/y)を実効線 量(Sv/y)へ換算し、又は新たに実効線量(Sv/y)を評価するものとする。換算に 当たっては、係数を1とすること。

4) 応急復旧

貯蔵建屋等を設置する場合は、貯蔵建屋等の損傷によりその遮蔽機能が著しく 低下した場合においても、必要に応じて土嚢による遮蔽の追加等の適切な手段に よる応急復旧を行うことにより、工場等周辺の実効線量が敷地全体で線量限度 (1mSv/y)を超えないこと。この場合において、応急復旧による遮蔽機能の回復 を期待する場合には、その実施に係る体制を適切に整備すること。

敷地境界における実効線量評価及び応急復旧については型式証明申請の範囲外とし、 設置(変更)許可申請時に別途確認されるものとする。

7

- 3. Hitz-B69型の遮蔽機能に関する構造及び評価
 - (1) 遮蔽機能に関する構造

Hitz-B69型は、使用済燃料集合体からの放射線をキャスク本体及び蓋部により遮蔽する。ガンマ線遮蔽材には鋼製の材料を用い、中性子遮蔽材には水素を多く含有する樹脂 (レジン)を用いる。

Hitz-B69型の遮蔽機能に関する構造を図3-1に示す。

(2) 遮蔽機能に関する評価

遮蔽解析フローを図3-2に示す。

遮蔽解析では、二次元輸送計算コードDOT3.5(DLC-23/CASKライブラリ)を用いて 線量当量率を評価する。線量当量率評価に用いる線源強度は、収納する使用済燃料集合体 の種類、燃焼度、濃縮度、冷却期間等を条件に、燃焼計算コードORIGEN2を用いて求め る。

図3-3に示されるHitz-B69型の使用済燃料集合体の燃料収納位置の条件(配置(1)から 配置(4))及び図3-4に示される軸方向燃焼度の条件を考慮し、配置(1)から配置(4)それぞ れについて、使用済燃料集合体の線源強度計算条件を表3-1に示す。線源強度の計算には、 使用済燃料集合体の平均燃焼度に対する軸方向の燃焼度の比を包含する燃焼度分布(以 下「ピーキングファクタ」という。)を考慮する。遮蔽解析では、配置(1)から配置(4)の うち、収納する使用済燃料集合体の燃焼度が大きく、また、冷却期間が短い配置(4)の条 件を代表として評価する。線源強度の計算結果を表3-2に示す。

線源強度計算条件の詳細及び配置(4)を代表とする妥当性について別紙1に示す。

線量当量率の評価に当たっては、配置(4)の使用済燃料集合体の燃焼度に応じた収納位 置条件を考慮し、図3-5に示す使用済燃料集合体の収納位置条件とする。また、設計貯蔵 期間中におけるHitz-B69型の中性子遮蔽材の熱による遮蔽性能の低下を考慮する。

遮蔽解析条件及び解析モデルの詳細を別紙2に示す。

上記条件に基づく解析の結果、表3-3に示すように、表面及び表面から1m離れた位置に おける線量当量率は、それぞれ2mSv/h及び100μSv/h以下を満足している。

表面及び表面から1m離れた位置における線量当量率の評価位置及び評価結果の詳細を 表3-4及び図3-6に示す。

本評価においては、以下の点について保守性を有している。

- ・収納制限に対する解析条件の保守性
 - 収納制限(配置(1)から配置(4))の中で、中央部及び外周部ともに最も線源強度が 高くなる配置(4)(中央部:高燃焼度8×8燃料、外周部:新型8×8ジルコニウム ライナ燃料)を代表として評価している。
 - 線源強度の計算において、初期濃縮度は評価条件とする燃焼度程度に到達する燃

料集合体の初期濃縮度の最小値として、高燃焼度 8×8 燃料は 3.35wt%、及び新型 8×8 ジルコニウムライナ燃料は 2.88wt%としている。

- 収納制限では、高燃焼度 8×8 燃料のキャスク1 基当たりの平均燃焼度は 44,000
 MWd/t に、新型 8×8 ジルコニウムライナ燃料のキャスク1 基当たりの平均燃焼 度は 33,000 MWd/t にそれぞれ制限されるが、収納位置によって制限される最高 燃焼度の燃料が全数収納された条件(中央部(高燃焼度 8×8 燃料)は全て 48,000
 MWd/t、外周部(新型 8×8 ジルコニウムライナ燃料)は全て 35,000 MWd/t)と している。これにより、キャスク1 基当たりの平均燃焼度を上回る燃焼度の燃料 が偏って収納された場合でも、局所的な線量当量率が評価結果を上回ることはな い。
- ・モデル化の保守性
 - 中性子遮蔽材は設計貯蔵期間中の熱的影響により質量減損するため、設計貯蔵期間経過後の質量減損率を計算し、遮蔽評価上は貯蔵初期において質量減損したものとする。(別紙2「3.中性子遮蔽材の質量減損について」参照)
 - 使用済燃料は、蓋方向、底部方向に移動したモデルとしており、線源である使用済
 燃料が評価点により近くなる設定とする。
 - 申請範囲外である貯蔵用緩衝体及び貯蔵用緩衝体アダプターは無視する。
 - チャンネルボックスは、放射化による線源強度については考慮するが、構造材としての遮蔽効果は無視する。

10

図 3-2 遮蔽解析フロー図

□ :新型 8×8 燃料

(38,000MWd/t以下、冷却 34 年以上)

□:8×8燃料

(30,000MWd/t 以下、冷却 34 年以上)又は 新型 8×8 燃料

(30,000MWd/t以下、冷却 34 年以上)

 □ :新型8×8ジルコニウムライナ燃料 (40,000MWd/t以下、冷却28年以上)
 □ :新型8×8燃料 (35,000MWd/t以下、冷却34年以上)又は 新型8×8ジルコニウムライナ燃料

(35,000MWd/t以下、冷却 30 年以上)

配置(2)

○ :新型8×8ジルコニウムライナ燃料
 (40,000MWd/t以下、冷却28年以上)又は
 高燃焼度8×8燃料

(48,000MWd/t以下、冷却 20 年以上)

- 図:新型8×8ジルコニウムライナ燃料
 (35,000MWd/t以下、冷却30年以上)
- □:新型 8×8 燃料

(30,000MWd/t以下、冷却 34 年以上)

配置(3)

 図:新型8×8ジルコニウムライナ燃料 (40,000MWd/t以下、冷却28年以上)又は 高燃焼度8×8燃料 (48,000MWd/t以下、冷却20年以上)

□:新型8×8ジルコニウムライナ燃料
 (35,000MWd/t以下、冷却30年以上)

配置(4)

図 3-3 使用済燃料集合体の燃料収納位置の条件の概要

※:配置(2)又は配置(4)の条件で外周部 32 体の位置に収納する新型 8×8 ジルコニウムライ ナ燃料及び配置(4)の条件で中央部 37 体の位置に収納する高燃焼度 8×8 燃料は、軸方 向燃焼度が本図の条件に包含される。

図 3-4 使用済燃料集合体の軸方向燃焼度の条件(配置(2)又は配置(4)の条件で、新型 8× 8 ジルコニウムライナ燃料又は高燃焼度 8×8 燃料を収納する場合)

項	Į		田	8×8	燃料	新型 8>	<8燃料
燃	焼	度	(MWd/t)	30,0	000	38,0	000
比	出	力	(MW/t)	23	.7	25	.3
照射	何	 東用済燃	料集合体	1,2	66	1,5	02
期間 (日)	チャ	ンネル	- ボックス				
濃	縮	度	(wt%)	2.1	.4	2.8	38
冷步	却 期	間	(年)	34 (12,41	4 8日)	3- (12,41	4 18 日)
ウラ	ンゴ	重 量	(kg)	18	8	17	7
				ノード	PF	ノード	PF
			(上部)				
ピーキ	ング	ファ	クタ ^(注1) (下部)				
(注1) /	ノードは	t <mark>燃料有</mark> 落	効部を軸方向に	こした	こものである	0	

表 3-1 (1/4) 使用済燃料集合体の線源強度計算条件(配置(1))

14

	項		目	新型 8	3×8 ジルコニ	ニウムライフ	ナ燃料
燃	焼	度	(MWd/t)	35,	000	40,	000
比	出	力	(MW/t)	25	5.3	25	5.3
照身	1	使用済燃	料集合体	1,3	84	1,5	582
期間]	チャンネノ	レボックス				
濃	縮	度	(wt%)	2.	88	2.	88
冷	却	期間	(年)	3 (10,9)	0 57日)	2 (10,2	8 27日)
ウ	ラン	重量	(kg)	17	77	1′	77
				ノード	PF	ノード	PF
			(上部)				
۴ – :	キン	グファク	ケタ (注1)				
			(下部)				
(注1)	ノード	は燃料有効	部を軸方向に	L7	とものである	0	

表 3-1 (2/4) 使用済燃料集合体の線源強度計算条件(配置(2))

15

I	頁		目	新型 8>	×8燃料	新型: ジルコ: ライナ	8×8 ニウム ⁻ 燃料	高燃 8×8	尭度 燃料
燃	焼	度	(MWd/t)	30,0	000	35,0	00	48,0	00
比	出	力	(MW/t)	25	.3	25.	3	26.	2
照射	1	吏用済燃	料集合体	1,1	.86	1,38	84	1,83	33
期間(日)	チャ	・ンネル	レボックス						
濃	縮	度	(wt%)	2.8	88	2.8	8	3.3	5
冷	却期	間	(年)	3 (12,41	4 18 日)	30 (10,95) 7日)	20 (7,308) 5日)
ウラ	ラン	重量	(kg)	17	77	17	7	17	4
				ノード	PF	ノード	PF	ノード	PF
			(上部)						
ピ ー ヨ	テング	* ファ	クタ ^(注1) (下部)						
(注	1) /-	ドは燃料	有効部を軸方	向に	したも	のである。			

表 3-1 (3/4) 使用済燃料集合体の線源強度計算条件(配置(3))

項	l		目	新型 ジルコ ライナ	8×8 ニウム ト燃料	高燃 8×8	焼度 燃料
燃	焼	度	(MWd/t)	35,0	000	48,0	000
比	出	力	(MW/t)	25	.3	26	.2
照射	使	可用済燃	料集合体	1,3	84	1,8	33
期間(日)	チャ	ンネノ	ルボックス				
濃	縮	度	(wt%)	2.8	38	3.3	35
冷去	₽ 期	間	(年)	30 (10,95	0 57日)	2 (7,30	0 5日)
ウラ	ン重	〕 量	(kg)	17	7	17	74
ピーキ	ング	7 7	(上部) クタ ^(注1)				
			(下部)		68		

表 3-1 (4/4) 使用済燃料集合体の線源強度計算条件(配置(4))

燃料種類 : 高燃焼度 8×8 燃料
 収納体数 : 37 体
 燃焼度 : 48,000MWd/t[※]
 冷却期間 : 20 年
 燃料種類 : 新型 8×8 ジルコニウムライナ燃料
 収納体数 : 32 体
 燃焼度 : 35,000MWd/t[※]

冷却期間 : 30 年

※:表 3-1 に示すピーキングファクタを考慮

図 3-5 遮蔽解析における使用済燃料集合体の収納位置条件(配置(4)) (新型 8×8 ジルコニウムライナ燃料及び高燃焼度 8×8 燃料を収納する場合)

	項	目	新型 8×8 ジルコニウム ライナ燃料	高燃焼度 8×8燃料
	燃焼度	f (MWd/t)	35,000	48,000
	Ϋ́́Τ	計却期間 (年)	30	20
使用	ガンーの	燃料有効部 ^(注 1) (photons/s)	7.353×10^{14}	1.211×10^{15}
一体当たり	カンマ旅	構造材放射化 (⁶⁰ Co:Bq)	3.671×10^{11}	1.676×10^{12}
り 合 体	中性子	燃料有効部 (n/s)	6.317×10^{7}	2.184×10^{8}
	ЦУ	2納体数	32 体 (外周部)	37 体 (中央部)
1	ガンロ伯	燃料有効部 ^(注 1) (photons/s)	6.833	$ imes 10^{16}$
ー基当たり		構造材放射化 (⁶⁰ Co:Bq)	7.378	$ imes 10^{13}$
	中性子	燃料有効部 ^(注 2) (n/s)	1.443	$ imes 10^{10}$

表 3-2 ガンマ線及び中性子の線源強度

(注1) ORIGEN2 コードのエネルギー群構造を、DLC-23/CASK ライブラリのエネルギ ー群構造に換算した線源強度を示す。

(注2) 中性子増倍の効果を考慮した値である。

項 目	評価結果	評価基準	備考
表面線量当量率	0.30mSv/h	2mSv/h 以下	線量当量率の詳細 は表 3-4 に示す。
表面から 1m 離れた位 置における線量当量率	83µSv/h	100µSv/h 以下	線量当量率の評価 位置は図 3-5 に示 す。

表 3-3 線量当量率評価結果

表 3-4 各評価位置の線量当量率

(単位	:	$\mu Sv/h)$
(単位	:	$\mu Sv/h$)

				頭 部				底 部	
	評	価 点	軸 方 向	径方向	径 方 向 (トラニオン部)	側部	径方向	径 方 向 (トラニオン部)	軸 方 向
			(1)	3a	3b	5	⑦a	⑦b	9
	ガ	燃料有効部	$< 0.1^{leph 1}$	15.5	1.8	137.6	0.1	6.7	1.1
表	ンマ	構造材放射化	0.8	164.6	23.0	$< 0.1^{leph 1}$	0.4	3.1	89.4
	禄	二次ガンマ線	0.6	5.0	3.2	29.8	1.9	5.0	4.2
面		中 性 子	162.9	3.4	165.6	41.4	285.9	281.1	41.9
		合 計	164.4	188.5	193.6	208.9	288.3	<u>295.9</u>	136.6
	評	価 点	2	(4)a	(4) b	6	®a	8b	10
	ガ	燃料有効部	$< 0.1^{\%1}$	21.3	20.1	56.8	28.1	23.4	0.4
表面	ンマ	構造材放射化	5.1	23.9	11.7	0.2	2.0	0.9	30.5
から	禄	二次ガンマ線	0.1	4.3	4.1	11.1	5.1	4.8	1.1
1 m		中 性 子	24.6	6.7	9.4	14.6	6.5	10.5	17.1
		合 計	29.9	56.1	45.3	82.7	41.7	39.6	49.1

注:合計欄に下線で示す値は、表面及び表面から1m離れた位置における線量当量率の最大値である。

※1: "< 0.1"の値は、"0.1"として合計値に含めた。

無断複製·転載禁止 日立造船株式会社

21

図 3-6 線量当量率評価点及び最大線量当量率位置

内は商業機密のため、非公開とします。

22

線源強度計算条件

1. 使用済燃料集合体の放射線源強度について

使用済燃料集合体の放射線源強度(以下「線源強度」という。)は、「燃料有効部からの ガンマ線及び中性子」、「使用済燃料集合体構造材からの放射化ガンマ線」に分けて計算す る。

使用済燃料集合体の線源強度計算方法及び条件を別紙 1-1 表に示す。

別紙 1-2 表に Hitz-B69 型の配置(1)から配置(4)の収納制限に応じた線源強度評価条件 及び結果の概要を示す。配置(4)において、中央部及び外周部に配置される使用済燃料集 合体の線源強度並びにキャスク 1 基当たりの線源強度がいずれも最大となるため、遮蔽 機能の評価では配置(4)を代表とする。

別紙 1-3 表に燃料集合体構造材からの放射化ガンマ線源強度、別紙 1-4 表に中性子源 強度、別紙 1-5 表に燃料有効部のエネルギーごとのガンマ線源強度並びに別紙 1-6 表に 中性子のエネルギーごとの中性子スペクトルを示す。なお、使用済燃料集合体構造材の放 射化ガンマ線源(⁶⁰Co)は1崩壊で1.17MeV及び1.33MeVのガンマ線を1個ずつ放出 する。

項目	計算方法	計算条件
燃料有効部から	燃焼計算コード	燃焼条件:表 3-1 参照
のガンマ線及び	ORIGEN2を用い、ガン	解析コード : ORIGEN2.2UPJ
中性子	マ線及び中性子源強度	ライブラリ:BWR-U ライブラリ
	を計算。使用済燃料集	軸方向燃焼度分布:表 3-1 参照
	合体の軸方向燃焼度分	実効増倍率:0.3 (別紙3参照)
	布を考慮。また、中性子	
	については実効増倍率	
	を考慮。	
燃料集合体構造	使用済燃料集合体構造	放射化計算式
材からの放射化	材の ⁵⁹ Co 含有量に従	$A = N_0 \sigma \phi \{1 - \exp(-\lambda T_1)\} \times \exp(-\lambda T_2)$
ガンマ線	い、放射化計算式に基	A :放射化核種(⁶⁰ Co)の放射能(Bq)
	づいて ⁵⁹ Co から ⁶⁰ Co	N ₀ :ターゲット核種(⁵⁹ Co)の個数(atoms)
	への放射化量を計算。	σ : 2200m/s の中性子による ⁵⁹ Co の
		(n、γ) 反応断面積 (cm ²)
		ϕ : 炉内照射熱中性子束 $(n/(cm^2 \cdot s))$
		λ : ⁶⁰ Coの崩壊定数(3.6001×10 ⁻⁴ /日)
		T ₁ : 照射期間(日)(表 3-1 参照)
		T ₂ : 冷却期間(日)(表 3-1 参照)
中性子源スペク		²³⁹ Puの核分裂スペクトル (別紙 1-6 表参照 ^(注 1))
トル	_	

別紙 1-1 表 使用済燃料集合体の線源強度計算方法及び条件

(注1)中性子源スペクトルを²³⁹Puの核分裂スペクトルで代表させる設定の妥当性について別紙4に示す。

所複製・転載禁止 日

油

百日	
一治	
÷	
t	
1-3	

項目		配置(1)		配置(2)		配置(3)		配置(4)				
		中央部 (37 体)	外周部 (32 体)	中央部 (37 体)	外周部 (32 体)	中央部 (37 体)	中間部 (8体)	外周部 (24 体)	中央部 (37 体)	外周部 (32 体)		
(注 収納物仕様			燃料タイプ	新型 8×8 燃料	8×8燃料	新型 8×8 ジ ルコニウムライナ 燃料	新型 8×8 ジルコニウムライナ 燃料	高燃焼度 8×8燃料	新型 8×8 ジルコニウムライナ 燃料	新型 8×8 燃料	高燃焼度 8×8燃料	新型 8×8 ジルコ=ウムライナ 燃料
	粉松枝	<u>0</u> #	初期濃縮度 (wt%以下)	3.19	2.80	3.19	3.19	3.66	3.19	3.19	3.66	3. <mark>1</mark> 9
	燃料集合体 1体の仕様		ウラン重量 (kg)									
			燃焼度(集合体平均) (GWd/t以下)	38	30	40	35	48	35	30	48	35
			冷却期間 (年以上)	34	34	28	30	20	30	34	20	30
	Hitz-B69 型		平均燃焼度	35		35		44	-	-	44	33
	 1 基当たり 	の仕様	(GWd/t以下)					(38)		(39)		
線源			燃料タイプ	新型 8×8 燃料	8×8燃料	新型 8×8 ジルコニウムライナ 燃料	新型 8×8 ジルコニウムライナ 燃料	高燃焼度 8×8燃料	新型 8×8 ジルコニウムライナ 燃料	新型 8×8 燃料	高燃焼度 8×8燃料	新型 8×8 ジルコニウムライナ 燃料
度	燃料集	合体	初期濃縮度(wt%)	2.88	2.14	2.88	2.88	3.35	2.88	2.88	3.35	2.88
評	1体の	仕様	ウラン重量 (kg)	177	188	177	177	174	177	177	174	177
価条件			燃焼度(集合体平均) (GWd/t)	38	30	40	35	48	35	30	48	35
-0335			冷却期間(年)	34	34	28	30	20	30	34	20	30
		ガンフ組	燃料有効部(ph./s) ^(注2)	6.7×10^{14}	6.3×10^{14}	8.5×10^{14}	7.4×10^{14}	$1.2 imes 10^{15}$	$7.4 imes 10^{14}$	5.8×10^{14}	1.2×10^{15}	7.4×10^{14}
線源強度	燃料集合体 1体当たり	<i>JJ → × 10</i> ×	構造材放射化(Bq)	$2.3 imes10^{11}$	2.5×10^{11}	5.3×10^{11}	3.7×10^{11}	1.7×10^{12}	3.7×10^{11}	1.9×10^{11}	1.7×10^{12}	3.7×10^{11}
			中性子 (n/s)	5.5×10^{7}	6.3×10^{7}	1.1×10^{8}	6.3×10^{7}	2.2×10^{8}	6.3×10^{7}	2.6×10^{7}	2.2×10^{8}	6.3×10^{7}
	400.0 000000	40	燃料有効部(ph./s) ^(注2)	4.5×	10 ¹⁶	$5.5 \times$	(10 ¹⁶		5.1×10^{16}		6.8×	10 ¹⁶
	キャスク 1 基当たり	ハノマ豚	構造材放射化(Bq)	$1.7 \times$	10 ¹³	3.1×	(10 ¹³		7.0×10^{13}		7.4 imes	1013
			中性子 (n/s) ^(注3)	5.8>	<10 ⁹	8.5>	<10 ⁹		1.3×10^{10}		1.4 imes	1010

別紙 1-2表 遮蔽解析における収納物条件及び線源強度の概要

(注1) 各配置条件・位置において想定される収納物仕様のうち、最も線源強度が大きくなるものを記載。

(注 2) ORIGEN2 コードのエネルギー群構造から DLC-23/CASK ライブラリのエネルギー群構造に換算した値。

(注3) 中性子増倍の効果を考慮した値。

別紙 1-3 表 燃料集合体構造材の放射化ガンマ線源強度(配置(4))

(Hitz-B69型1基当たり)

エニッル海	14	燃料集合体構造材の線源強度(⁶⁰ Co TBq)			
モナル化領	- 奥	中央部	外周部	合 計	
しかりノートしか	ハンドル部	7.053×10^{-1}	1.331×10^{-1}	8.384×10 ⁻¹	
上部タイノ ート部	グリッド部	8.865×10 ⁰	1.717×10 ⁰	1.058×10^{1}	
上部プレナム	い部	3.262×10^{1}	6.153×10 ⁰	3.878×10^{1}	
下部タイプレート部		1.984×10^{1}	3.742×10^{0}	2.358×10^{1}	
注: にチャン	イネルボックスの	の放射化ガンマ線	源強度を含む。	÷	

無断複製·転載禁止 日立造船株式会社

別紙 1-4

内は商業機密のため、非公開とします。

別紙 1-4 表 中性子源強度(配置(4))

(Hitz-B69型1基当たり)

		燃料有効部			
		中央部	外周部	合 計	
一次中性子源強度	(a、n) 反応	1.310×10^{8}	5.994×10^{7}	1.909×10^{8}	
N _O	自発核分裂	7.949×10^{9}	1.962×10^{9}	9.910×10^9	
(n/s)	合 計	8.080×10^{9}	2.021×10^{9}	1.010×10^{10}	
Hitz-B69 型の実効	b増倍率 keff ^(注)		0.3		
全中性子源強度	ŧ N _S (n/s)	1.154×10^{10}	2.888×10^{9}	1.443×10^{10}	

(注) ORIGEN2 コードにより、燃焼に伴う核分裂性物質の減少及びポイズンとなる核分裂 生成物の生成量を求め、これらを考慮した核種組成を用いて臨界解析に示す手法と 同一手法(KENO-V.a コード)により評価して得られる結果に対して保守的な設定 としている。(別紙4参照) 別紙 1-5 表 燃料有効部のエネルギーごとのガンマ線の線源強度(配置(4))

エネルギー	平均エネルギー	燃料有効部(photons/s)				
群数	(MeV)	中央部	外周部	合 計		
1	9.00	4.876×10^{6}	1.206×10^{6}	6.083×10^{6}		
2	7.25	2.912×10^{7}	7.205×10^{6}	3.632×10^{7}		
3	5.75	1.638×10^{8}	4.055×10^{7}	2.044×10^{8}		
4	4.50	1.937×10^{8}	4.795×10^{7}	2.417×10^{8}		
5	3.50	8.207×10^{8}	2.018×10^{8}	1.023×10^{9}		
6	2.75	5.523×10^{9}	2.353×10^{9}	7.876×10^{9}		
7	2.25	2.107×10^{9}	5.086×10^{8}	2.616×10^{9}		
8	1.83	1.231×10^{13}	3.768×10^{12}	1.608×10^{13}		
9	1.50	$1.766{ imes}10^{14}$	5.075×10^{13}	2.273×10^{14}		
10	1.17	4.221×10^{14}	1.210×10^{14}	5.431×10^{14}		
11	0.90	4.214×10^{14}	1.172×10^{14}	5.386×10^{14}		
12	0.70	8.277×10^{15}	4.331×10^{15}	1.261×10^{16}		
13	0.50	1.694×10^{16}	9.006×10^{15}	2.595×10^{16}		
14	0.35	3.675×10^{14}	1.955×10^{14}	5.630×10^{14}		
15	0.25	7.549×10^{14}	3.986×10^{14}	1.154×10^{15}		
16	0.15	1.779×10^{15}	8.511×10^{14}	2.630×10^{15}		
17	0.08	3.405×10^{15}	1.896×10^{15}	5.300×10^{15}		
18	0.03	1.225×10^{16}	6.558×10^{15}	1.880×10^{16}		
合	言 十	4.480×10^{16}	2.353×10^{16}	6.833×10^{16}		

(Hitz-B69 型 1 基当たり)

注:ORIGEN2 コードのエネルギー群構造から DLC-23/CASK ライブラリのエネルギー群 構造に換算した線源強度を示す。

無断複製·転載禁止 日立造船株式会社

エネルギー	上限エネルギー	ત્ર∘ દો રો ¥1		
群数	(eV)	スペットル*1		
1	1.492×10^{7}	5.72×10^{-4}		
2	1.220×10^{7}	2.02×10^{-3}		
3	1.000×10^{7}	6.07×10^{-3}		
4	8.180×10^{6}	2.00×10^{-2}		
5	6.360×10^{6}	4.12×10^{-2}		
6	4.960×10^{6}	5.27×10^{-2}		
7	4.060×10^{6}	1.10×10^{-1}		
8	3.010×10^{6}	8.74×10^{-2}		
9	2.460×10^{6}	2.28×10^{-2}		
10	2.350×10^{6}	1.15×10^{-1}		
11	1.830×10^{6}	2.07×10^{-1}		
12	1.110×10^{6}	1.89×10^{-1}		
13	5.500×10^5	1.31×10^{-1}		
14	1.110×10^{5}	1.59×10^{-2}		
15	3.350×10^{3}	8.12×10^{-5}		
16	5.830×10^{2}	5.89×10^{-6}		
17	1.010×10^{2}	3.89×10^{-7}		
18	2.900×10^{1}	5.53×10^{-8}		
19	1.070×10^{1}	1.33×10^{-8}		
20	3.060×10^{0}	1.88×10^{-9}		
21	1.120×10^{0}	4.19×10^{-10}		
22	4.140×10^{-1}	1.20×10^{-10}		

別紙 1-6表 中性子線源スペクトル

注記※1:²³⁹Pu の核分裂スペクトルを DLC-23/CASK ライブラリの中性子 22 群構造に振り分けたものである。

遮蔽解析条件

1. 遮蔽解析のモデル化について

遮蔽解析モデル化の概要を別紙 2-1 図、解析モデル図を別紙 2-2 図に示す。遮蔽解析 モデルのモデル化方針は以下のとおりである。

二次元輸送計算コード DOT3.5 では、Hitz-B69 型を R-Z 体系の有限円筒モデル(以下「二次元モデル」という。)でモデル化している。ただし、有限円筒モデルで直接モデル化できない使用済燃料集合体、バスケット、トラニオン等は、構造上の特徴を考慮して、均質化あるいは線束接続によって評価している。なお、二次元モデルは、キャスク中心付近で二分割しており、頭部評価モデルは、使用済燃料集合体が一次蓋に接した状態とし、底部評価モデルは、使用済燃料集合体が胴(底板)に接した状態として、線源である使用済燃料集合体から評価点までの距離が短い保守的なモデルとしている。

(1) 燃料領域

別紙 2-3 図に示すとおり、使用済燃料集合体とバスケットを均質化してモデル化している。燃料領域は、均質化する範囲として設定する領域の断面積と等価な面積となる円(円筒)にモデル化している。

均質化する使用済燃料集合体は、燃料領域が低密度となるよう、高燃焼度 8×8 燃料 と新型 8×8 ジルコニウムライナ燃料の構成材料質量を比較し、質量の小さいもので構 成される仮想的な燃料集合体を仮定する。

線源強度の入力としては、中央部に収納する 37 体分及び外周部に配置する 32 体分の線源強度を分けて入力するため、燃料領域の断面積(体積)を燃料集合体の体数比(37:32)に分割するように中央部線源領域及び外周部線源領域を設定する。

(2) バスケット外周部

別紙 2-4 図に示すとおり、燃料有効部領域より外側からバスケット外径までの領域 を均質化した円筒としてモデル化している。実形状は円周方向に不均一な厚さとなっ ている構造であることから、保守的な評価となるようバスケット外周部の密度を密度 係数で調整している。密度係数は、別紙 2-5 図に示すとおり、水平断面 X-Y 体系のモ デルにて円周方向のキャスク表面から 1m 離れた位置の最大線量当量率を算出し、こ の値と同等以上になるようなバスケット外周部の密度係数を無限円筒モデルより求め、 本体モデルに反映している。したがって、本体モデルにおける線量当量率は、実形状に おける最大線量当量率を包絡する設定となる。 (3) 胴、側部中性子遮蔽材及び外筒

別紙 2-3 図に示すとおり、円筒としてモデル化している。なお、側部中性子遮蔽材内 部に伝熱フィン及びスペーサがある領域では、伝熱フィン及びスペーサー(空隙)は側 部中性子遮蔽材と均質化している。

(4) トラニオン部

トラニオン部については、実形状を模擬して別途モデル化し、評価している。なお、 Hitz-B69型のトラニオンは位置により複数存在するが、別紙 2-5 図のように遮蔽解析 モデルの形状を保守的に設定している。

別紙 2-6 図に示すとおり、トラニオンを無視した本体モデルにて得られたトラニオン底面及び側面付近の線束を、別途モデル化した R-Z 体系のトラニオン部モデルに接続している。接続する線束は保守的に燃料有効部に近い側の線束としている。

トラニオン部の線量当量率は、トラニオン有りモデルとトラニオン無しモデルの線 量当量率結果より、線種ごとの線量当量率結果の差を補正値として求め、本体モデルの 線量当量率にその補正値を加減算して評価している。

(5) モニタリングポート部

モニタリングポート部(二次蓋の窪み部)については、実形状を模擬して別途モデル 化し、評価している。なお、貯蔵時に設置されるモニタリングポートカバーは遮蔽体と しては無視しているが、表面における線量当量率の評価においては形状を考慮し、評価 位置をモニタリングポートカバーの表面となる位置としている。

別紙 2-7 図に示すように、Hitz-B69 型のモニタリングポート部の線束接続位置付近 は、燃料領域及び蓋部中性子遮蔽材との位置関係により、キャスク内径側で放射化ガン マ線束が大きく、キャスク外径側で中性子線束が大きい傾向があるため、両者をそれぞ れ接続している。

モニタリングポートカバーの表面を含む二次蓋表面から離れた位置におけるモニタ リングポート部の線量当量率は、モニタリングポート有りモデルとモニタリングポー ト無しモデルの線量当量率結果より、線種ごとの線量当量率結果の差を補正値として 求め、本体モデルの線量当量率にその補正値を加減算して評価している。補正の方法は トラニオン部の評価と同様としているが、モニタリングポートは 2 か所あるため、表 面から 1m 離れた位置における線量当量率については補正値を 2 倍している。

2. 解析モデルの入力条件への不確かさの考慮について

解析モデルの入力条件への不確かさとして以下を考慮している。

 構成部材密度 最低保証密度を使用して原子個数密度を設定している。

② 寸法公差

解析モデルの各種寸法は公称寸法でモデル化するが、各構成部材の寸法公差に ついては最小厚さを密度係数(=最小寸法/公称寸法)で考慮。

別紙 2-1 図 遮蔽解析モデル化概要

別紙 2-4

内は商業機密のため、非公開とします。

				(単位:mm)
	別紙 9_9 図 (1/4	1) 海蔽敏振エニ	「小(雨如)	
	加加44 4 四 (1/4	1) 心的以为牛切してフ	/111月14/	
無断複製・転載禁止	日立造船株式会社			
		別紙 2-5	内は商業機密	のため、非公開とします

(単位:mm)

別紙 2-2 図(2/4) 遮蔽解析モデル(底部)

無断複製·転載禁止 日立造船株式会社

別紙 2-6

(単位:mm)

別紙 2-2 図 (3/4) 遮蔽解析モデル (トラニオン部)

無断複製·転載禁止 日立造船株式会社

別紙 2-7

(単位:mm)

別紙 2-2 図(4/4) 遮蔽解析モデル(モニタリングポート部)

無断複製·転載禁止 日立造船株式会社

別紙 2-8

遮蔽解析モデルへの入力

二次元モデルの解析では円筒形状での入力となるため、燃料領域(燃料集合体が装荷され る領域)として設定した断面積と等価な面積となる円(円筒)としてモデル化している。そ の際、燃料領域には使用済燃料集合体とバスケットを均質化した物性値を設定する。なお、 均質化した燃料領域が低密度となるよう、使用済燃料集合体は、高燃焼度 8×8 燃料と新型 8×8 ジルコニウムライナ燃料の構成材料質量を比較し、質量の小さいもので構成される仮想的な 燃料集合体を仮定する。

線源強度の入力としては、中央部に収納する 37 体分及び外周部に配置する 32 体分の線源 強度を分けて入力するため、燃料領域の断面積を燃料集合体の体数比(37:32) に分割する ように中央部線源領域及び外周部線源領域を設定する。

また、側部中性子遮蔽材領域は、当該領域の中性子遮蔽材(樹脂(レジン))、伝熱フィン、 スペーサー(空隙)の断面積比を用いて均質化した原子個数密度を入力する。

別紙 2-3 図 キャスク本体中央断面の実形状と解析モデル

別紙 2-9

無断複製·転載禁止 日立造船株式会社

実形状	実形状
海志知七てごり	産花籾七エデル
巡撤が時代モナル	巡袖の時付モナル
上部トラニオン(長)(90°-270°)	<u>上部トラニオン(短)(0°-180°)</u>
	中心中
美形状	关形认
遮蔽解析モデル	遮蔽解析モデル

<u>下部トラニオン(長)(90°-270°)</u> 下部トラニオン(短)(0°-180°)

注:下部トラニオン(長)及び下部トラニオン(短)は、両者に対して保守的な評価結果が 得られる同一のモデルを適用し、上部トラニオン(長)も同じモデルを適用する。

別紙 2-5 図 トラニオンのモデル化

無断複製·転載禁止 日立造船株式会社

別紙 2-11

本体モデル

トラニオン部の評価方法
手順① トラニオンを無視した本体の二次元(R-Z体系)モデル(本体モデル)によるトラニオン部の線量当量率
を計算する。
手順② ①の計算で得られた、トラニオン底面及び側面付近の線束を、別途モデル化した R-Z 体系のトラニオン
部モデル(トラニオン有りモデル/トラニオン無しモデル)に接続し、表面及び表面から 1m 離れた位
置の線量当量率を計算する。
手順③ ①、②の結果から下式により頭部径方向(トラニオン部)及び底部径方向(トラニオン部)の線量当量率
を算出する。
表面位置における線量当量率 = トラニオン有りモデルの線量当量率
表面から 1m離れた位置における線量当量率 = (本体モデルの線量当量率)
+ {(トラニオン右りエデルの線量当量率) - (トラニオン無しエデルの線量当量率)}

別紙 2-7 図 モニタリングポート部線束接続位置の概略図

別紙 2-13

3. 中性子遮蔽材の質量減損について

中性子遮蔽材(レジン)は熱による質量減損が生じる。遮蔽解析では、設計貯蔵期間(60 年)経過後の中性子遮蔽材の質量減損を考慮した原子個数密度を用いている。

中性子遮蔽材の質量減損は、劣化パラメータにより次式で表される。

$$\Delta w = 5.69 \times 10^{-4} \times E_n - 18.7^{\times 1}$$

ここで、

Δw :中性子遮蔽材の質量減損率(%)

 E_p :劣化パラメータ = T × (77.6 + ln (t))

T :中性子遮蔽材温度(K)

t : 中性子遮蔽材加熱時間(h)

※1:NUPEC報告書⁽¹⁾の評価式を 95%信頼性確度で再評価している。

Hitz-B69 型の燃料集合体の収納制限において、中性子遮蔽材温度が最高となる配置 (4)の条件における設計貯蔵期間中の発熱量を ORIGEN2 コードを用いて計算し、除熱機 能評価における解析手法を用いて求めた貯蔵期間中の中性子遮蔽材の最高温度を別紙 2-1 表に示す。

別紙 2-1 表に基づき、貯蔵期間中の温度低下を時間区分して階段状に温度低下するものとして考慮し、上記の劣化パラメータの式を用いて中性子遮蔽材の質量減損率を計算する。具体的には、貯蔵期間 0~5 年は 100 分割、5~20 年は 50 分割、20~40 年は 10 分割、40~60 年は 5 分割とし、各分割区間の開始時点の温度を別紙 2-1 表の最高温度を線形補間して設定することで、貯蔵期間中の最高温度を上回る温度履歴を与えている。例として、側部中性子遮蔽材(中央部)の質量減損率の計算に用いる温度履歴条件を別紙 2-8 図に示す。設定した温度履歴に基づく劣化パラメータは、分割区間毎に温度と加熱時間から劣化パラメータを求め、貯蔵期間 0 年における温度(初期温度)において等しい劣化パラメータとなる加熱時間(等価加熱時間)を算出し、全ての分割区間で求めた等価加熱時間の総和を累積等価加熱時間とし、初期温度と累積等価加熱時間を劣化パラメータを求める式の T 及び t に代入して求められる。質量減損率の計算結果及び設計に用いる質量減損率を別紙 2-2 表に示す。

なお、中性子遮蔽材から放出される成分は水が支配的であり、水よりも水素含有率が高 いガス成分はわずかである⁽²⁾。したがって、遮蔽解析においては、中性子の遮蔽性能を 安全側に設定するため、中性子遮蔽材の質量減損の成分を全て水と仮定する。

4. 参考文献

- (1) (財)原子力発電技術機構、「平成14年度 リサイクル燃料資源貯蔵技術調査等 (金属キャスク貯蔵技術確証試験)報告書」、(2003)
- (2) 原燃輸送株式会社、「使用済燃料等の輸送容器に用いられる中性子しゃへい材 (NS-4-FR)の連続加熱評価試験」、(1997)

貯蔵期間	側	部中性子遮蔽材	蓋部中性子	底部中性子	
(年)	上部	中央部	下部	遮蔽材	遮蔽材
0	117	131	126	117	132
5	112	125	121	113	126
20	101	111	108	101	112
40	91	98	96	91	99
60	85	90	89	85	91

別紙 2-1 表 設計貯蔵期間中の中性子遮蔽材の最高温度

※1: 伝熱フィンが存在する領域を中央部、蓋部側の伝熱フィンが存在しない領域を上部、 底部側の伝熱フィンが存在しない領域を下部とする。

注:設計貯蔵期間中の中性子遮蔽材の最高温度を解析で求めたものである。詳細は補足説明 資料 16-4 除熱機能に関する説明資料(GK04-SC-B01)別紙6に記載。

	側	部中性子遮蔽杯	蓋部中性子	底部中性子		
	上部	中央部	下部	遮蔽材	遮蔽材	
質量減損率 計算結果	0.91%	1.57%	1.36%	0.94%	1.62%	
初期温度	117℃	131℃	126℃	117℃	132℃	
累積等価加熱時間				•		
劣化パラメータ						
遮蔽解析に適用する質量減損率	1.0%	1.6%	1.6%	1.0%	1.7%	

別紙 2-2表 設計貯蔵期間経過後の中性子遮蔽材の質量減損率

※1: 伝熱フィンが存在する領域を中央部、蓋部側の伝熱フィンが存在しない領域を上部、 底部側の伝熱フィンが存在しない領域を下部とする。

注:計算では累積等価加熱時間及び劣化パラメータの値は表示桁以下も丸めず用いている ため、本表記載値に基づき質量減損率を計算すると最終桁が異なる場合がある。

別紙 2-16

別紙 2-8 図 側部中性子遮蔽材(中央部)の温度履歴条件

中性子実効増倍率の設定について

中性子源強度は、体系の増倍効果を考慮して次式により、乾燥状態において使用済燃料集合体を収納した場合のHitz-B69型の実効増倍率を求め、中性子源強度に考慮した。

 $N_{S} = N_{O} / (1 - keff)$

ここで、

No: Hitz-B69型1基当たりの一次中性子源強度

keff:使用済燃料集合体を収納した場合のHitz-B69型の実効増倍率

実効増倍率の評価に用いた使用済燃料集合体の条件、評価結果及び線源強度設定に用いた実効増倍率を別紙 2-1 表に示す。線源強度が高くなる収納条件配置(4)において収納される高燃焼度 8×8 燃料と新型 8×8 ジルコニウムライナ燃料それぞれについて、全 69 体収納した場合の実効増倍率を評価し、それらを上回る遮蔽解析用実効増倍率を設定した。

なお、実効増倍率は ORIGEN2 コードにより、燃焼に伴う核分裂性物質の減少及び中性 子の吸収に対して寄与が大きな核分裂生成物の生成量を求め、これらを考慮した核種組成 を用いて、臨界解析で用いる KENO-V.a コードにより求めた。なお、考慮している核種⁽¹⁾ は以下のとおりである。

アクチニド:²³⁵U、²³⁶U、²³⁸U、²³⁹Pu、²⁴⁰Pu、²⁴¹Pu、²⁴²Pu

核分裂生成物: ⁹⁹Tc、¹⁰³Rh、¹³¹Xe、¹³³Cs、¹⁴³Nd、¹⁴⁵Nd、¹⁴⁷Pm、¹⁴⁷Sm、¹⁴⁹Sm、 ¹⁵¹Sm、¹⁵²Sm、¹⁵³Eu、¹⁵⁵Gd

項目	高燃焼度 8×8 燃料収納時	新型 8×8ジルコニウムラ付燃料
ウラン重量 (kg/体)		
初期濃縮度(wt%)	3.66	
燃焼度 (MWd/t)	44,000	33,000
比出力(MW/t)		
冷却期間(年)	20	30
実効増倍率(注)		
遮蔽解析用実効増倍率	0	0.3

別紙 2-1 表 実効増倍率評価条件及び評価結果

無断複製·転載禁止 日立造船株式会社

⁽注) 実効増倍率評価結果に統計誤差の3倍を加えた値。

(参考文献)

 (1) (一社)日本原子力学会、「使用済燃料・混合酸化物新燃料・高レベル放射性廃棄物 輸送容器の安全設計及び検査基準:2013(AESJ-SC-F006:2013)」、(2014) 中性子源スペクトルを²³⁹Puの核分裂スペクトルで代表させる設定の妥当性

中性子源スペクトルを²³⁹Pu の核分裂スペクトルで代表させる設定の妥当性について下 記に示す。

使用済燃料からの主要な中性子源としては、以下の3つが挙げられる。

- 1. 一次中性子源である Cm の自発核分裂による中性子
- 2. 一次中性子源である(a、n)反応による中性子

3. 二次中性子源である核分裂反応により増倍される中性子

このうち、一次中性子源においては、別紙 4-1 図に示すとおり使用済燃料の場合、冷却期間が数十年までの間は自発核分裂による中性子が支配的である。また、Hitz-B69型に収納する使用済燃料集合体の中性子源強度は、別紙 4-1 表に示すとおり自発核分裂による中性子が支配的である。

別紙 4-1 表 中性子源強度(配置(4))

(Hitz-B69型1基当たり)

		燃料有効部				
		中央部	外周部	合 計		
一次中性子源強度 N _O (n/s)	(a、n) 反応	1.310×10^{8}	5.994×10^{7}	1.909×10^{8}		
	自発核分裂	7.949×10^{9}	1.962×10^{9}	9.910×10^9		
	合 計	8.080×10^{9}	2.021×10^{9}	1.010×10^{10}		

上記より、中性子源スペクトルの候補(主要な核分裂核種)は以下の3つとなる。

- ① Cm の自発核分裂反応
- ②²³⁹Puの核分裂反応
- ③ ²³⁵Uの核分裂反応

ここで、²³⁹Pu の核分裂、及び Cm の自発核分裂による中性子源スペクトルの比較を別紙 4-2 図に、²³⁹Pu 及び ²³⁵U の核分裂による中性子源スペクトルの比較を別紙 4-3 図に示す。

別紙 4-2 図に示すとおり、²⁴²Cm、²⁴⁴Cm の自発核分裂による中性子源スペクトルに対して、²³⁹Pu の核分裂による中性子源スペクトルの方がより高エネルギー成分が多い。 また、別紙 4-3 図に示すとおり、²³⁵U の核分裂による中性子源スペクトルに対しても ²³⁹Puの核分裂による中性子源スペクトルの高エネルギー成分が多い。

したがって、中性子源スペクトルを ²³⁹Pu の核分裂スペクトルで代表させる設定は保守 側の設定であり妥当である。

(参考文献)

- L. B. Shappert, et al., "The Radioactive Materials Packaging Handbook", ORNL/M-5003, Oak Ridge National Laboratory, 9-9, (1998)
- (2) H. S. Bailey, R. N. Evatt, G. L. Gyorey, et al., "Neutron Shielding Problems in the Shielding of High Burnup Thermal Reactor Fuel", Nuclear Technology, ANS, 17, 222, (1973)
- E. D. Arnold, R. G. Jaeger, et al., "Engineering Compendium on Radiation Shielding", Volume I Shielding Fundamentals and Methods, Springer-Verlag, Germany, 69, (1968)

Fig. 9.2. Neutrons emitted by 1 metric ton of initial heavy metal (MTIHM): PWR/33,000 MWd/MTU. Source: ref. 24.

Fig. 9.3. Neutrons emitted by 1 metric ton of initial heavy metal (MTIHM): BWR/27,500 MWd/MTU. Source: ref. 24.

別紙 4-1 図 使用済燃料の自発核分裂及び(a、n)反応に伴う 中性子源強度と冷却期間との関係⁽¹⁾

Neutron emission spectra for several sources.

別紙 4-2 図 ²³⁹Puの核分裂、及び²⁴²Cm、²⁴⁴Cmの自発核分裂中性子源スペクトルの比較⁽²⁾

Fig. 2.3.-2. Typical measured fission neutron spectra of $^{235}U + n_{th}$ and $^{239}Pu + n_{th}$.

別紙 4-3 図 ²³⁵U 及び ²³⁹Pu の核分裂中性子源スペクトルの比較⁽³⁾

遮蔽解析に使用する解析コードについて

Hitz-B69型の遮蔽設計に用いられる解析コードについて、その機能、計算方法、使用実 績及び検証結果について説明する。

- 1. ORIGEN2 $\neg \vDash$
- (1) 概要

ORIGEN2 コード⁽¹⁾は、米国のオークリッジ国立研究所(ORNL)で開発された燃焼計算コードである。ORIGEN2 コードは公開コードであり、輸送容器の崩壊熱計算等 に広く用いられている。

(2) 機能

ORIGEN2 コードは、燃焼計算に際して以下の機能を有している。

- a. 燃料の炉内での燃焼計算、炉取出後の減衰計算により、冷却期間に対応した崩壊 熱、放射線源の強度、各核種の放射能量等が求められる。
- b. 原子炉の炉型と燃料の組合せに対し、中性子エネルギースペクトルの違いによ り重みをつけた断面積ライブラリデータが内蔵されており、任意に選択できる。
- c. 計算結果は、放射化生成物、アクチニド、核分裂生成物に分類して出力される。
- d. 燃焼計算に必要な放射性核種のデータ(崩壊熱、ガンマ線のエネルギー分布、自 発核分裂と(a、n)反応により発生する中性子源強度等)は、ライブラリデータ としてコードに内蔵されている。
- (3) 解析フローORIGEN2 コードの計算フローを別紙 5-1 図に示す。
- (4) 使用実績及び検証

ORIGEN2 コードは、輸送キャスク、原子燃料施設の崩壊熱計算に広く使用されている。また、ORNL では ORIGEN2 コードの崩壊熱計算結果を ANS 標準崩壊熱の値と 比較し、ORIGEN2 コードの妥当性を検証している⁽²⁾。

ORIGEN2 コードの検証例を別紙 5-2 図に示す。

別紙 5-1 図 ORIGEN2 コードの計算フロー図

Fig. 3. Differences between ORIGEN2 and ANS Standard 5.1 decay heat values for 10¹³-s irradiation of ²³⁵U.

(注) ORIGEN2 の崩壊熱は、ANS 標準崩壊熱と比較して、15 年以上(Hitz-B69 型に 収納される燃料の冷却期間以上)の冷却年数に対して高めの値を示している。こ の理由は、ANS 標準崩壊熱は ⁹⁹Tc を考慮していないためである。したがって、 ORIGEN2 の解析結果より ⁹⁹Tc を除いた崩壊熱を比較するとよい一致を示して いる。

別紙 5-2 図 ORIGEN2 コードの検証例⁽²⁾

2. DOT3.5 コード

(1) 概要

二次元輸送計算コード DOT3.5 コード⁽³⁾(以下「DOT3.5 コード」という。)は、米 国オークリッジ国立研究所(ORNL)で開発された二次元輸送計算コードである。

(2) 機能

DOT3.5 コードは、遮蔽解析に際して以下の機能を有している。

- a. ガンマ線や中性子に対するボルツマン輸送方程式を Sn 法により解く解析コー ドであり、放射線の挙動を追跡するのに重要な非等方性が表現できる。
- b. DOT3.5 コードは、二次元の体系を扱うことができる。
- (3) 解析フローDOT3.5 コードの解析フローを別紙 5-3 図に示す。
- (4) 使用実績及び検証

DOT3.5 コードは、原子力施設の遮蔽計算に広く用いられており、輸送キャスクの遮蔽解析の豊富な実績がある。使用済燃料輸送容器の解析事例と測定値⁽⁴⁾ を別紙 5-4 図 及び別紙 5-5 図に示す。測定値はすべて解析値よりも低い値を示しており、解析コードが信頼できることを示している⁽⁴⁾。

第 13 基準研究部会「使用済燃料の安全輸送に関する調査研究報告書」昭和 54 年 3 月、日本 造船研究協会⁽⁷⁾の PALLAS コード検証例に DOT コード解析結果を追記したものである。

別紙 5-4 図 DOT3.5 コードによるガンマ線の線量当量率の検証例⁽⁴⁾

無断複製·転載禁止 日立造船株式会社

(注)中性子をDOT3.5 コード、二次ガンマ線をANISN(一次元輸送コードで計算法上の差はない)、燃料有効部のガンマ線をQAD(点減衰核積分法によるもので、原子力施設の遮蔽計算に広く用いられており、建屋の遮蔽解析の豊富な実績がある。)の各コードで解析した結果である。

別紙 5-5 図 DOT3.5 コードによる中性子の線量当量率の検証例⁽⁵⁾

- 3. 参考文献
- M. Ishikawa, T. JIN, J. Kataoka, H. Matsumoto, Y. Ohkawachi, S. Ohki, A. Onoue,
 A. Sasahara, K. Yanagisawa, "ZZ-ORIGEN2.2-UPJ, A complete package of ORIGEN2 libraries based on JENDL-3.2 and JENDL-3.3", Computer Programs NEA-1642, OECD/NEA Databank, (2006)
- A. G. Croff, "ORIGEN2 : A Versatile Computer Code for Calculating the Nuclide Compositions and Characteristics of Nuclear Materials", Nuclear Technology, Vol.62, p335, (1983)
- Oak Ridge National Laboratory, "DOT3.5-Two-Dimensional Discrete Ordinates Radiation Transport Code", CCC-276, (1976)
- (4) 日立造船株式会社,「使用済燃料乾式貯蔵設備の安全解析で使用する解析コードについて」, HZTR-02, (1997)
- (5) (社)日本原子力学会,「中性子遮蔽設計ハンドブック」,(1993)

遮蔽解析に用いる断面積ライブラリについて

Hitz-B69型の遮蔽設計では、二次元輸送計算コード DOT3.5 を用いて実施しており、断面積ライブラリとして DLC-23/CASK ライブラリを用いている。

DLC-23/CASK ライブラリは、輸送容器等の許認可申請において多くの使用実績があり、 別紙5で引用している解析事例において断面積ライブラリとして DLC-23/CASK ライブラ リを用いていることから、妥当性は確認されている。一方で、DLC-23/CASK ライブラリを 用いた場合、鉄の単層透過時に中性子線量当量率を過小評価することが報告されているこ とから、共鳴領域の自己遮蔽因子が用意されている断面積ライブラリとして、JENDL-3.3 に基づく MATXSLIB-J33 ライブラリを使用して遮蔽解析を実施し、ライブラリの違いに よる影響確認をおこなった。

1.遮蔽解析条件

DLC-23/CASK ライブラリを使用した場合の評価(以下「評価 A」という。)条件と MATXSLIB-J33 ライブラリを使用した場合の評価(以下「評価 B」という。)条件の比 較を別紙 6-1 表に示す。ライブラリ以外の計算条件は同一とした。

2.遮蔽解析結果

両ライブラリをそれぞれ用いた場合の線量当量率評価結果を別紙 6-2 表に、評価方向 毎の最大線量当量率を与える位置を別紙 6-1 図に示す。評価 B において、評価 A の値(表 3-4 記載値)を上回る箇所が存在するものの、金属キャスク表面及び表面から 1m 離れた 位置における線量当量率は、それぞれ 2mSv/h(2,000µSv/h)以下及び 100µSv/h 以下で ある。

無断複製·転載禁止 日立造船株式会社

断面積ライブラリ		DLC-23/CASK	MATXSLIB-J33	
エネルギー	中性子	22 群	175 群	
群構造	ガンマ線	18 群	42 群	
中性子スペクトル ガンマ線線源強度 1cm 線量当量率への換算 係数		²³⁹ Pu の核分裂スペクトル を DLC-23/CASK の 22 群 構造に振り分けたものを使 用。	²³⁹ Pu の核分裂スペクトルを VITAMIN-J 形式の 175 群構 造に振り分けたものを使用。	
		ORIGEN2 のエネルギースペ クトルを DLC-23/CASK の 18 群構造に振り分けたものを 使用。	ORIGEN2 のエネルギースペ クトルを VITAMIN-J 形式の 42 群構造に振り分けたものを 使用。	
		AESJ-SC-F006:2013 ^{※1} に 記載する値を使用。	ICRP Pub.74の換算係数を中性子 175 群構造、ガンマ線 42群構造に振り分けて使用。	

別紙 6-1 表 ライブラリの評価条件比較

※1:「使用済燃料・混合酸化物新燃料・高レベル放射性廃棄物輸送容器の安全設計及び検査 基準:2013」

別紙 6-2表 線量当量率評価結果の比較

$(\pm \mu) \nu \mu \mu \nu \mu $	(単位	:	$\mu Sv/h)$
--	-----	---	-------------

	頭部							底部								
	評価点		軸方向		径方向 径 (トラ:		径フ (トラニ	5向 オン部)	側部		軸方向		径方向		径方向 (トラニオン部)	
			0	D	3a**3		3	b	Ē	5	9)**3	⑦a		⑦b	
	ラ	イブラリ*2	А	В	А	В	А	В	А	В	А	В	А	В	А	В
	ガ	燃料有効部	< 0.1 ^{**1}	< 0.1 ^{**1}	15.5	9.3 (< 0.1 ^{**} 1)	1.8	1.2	137.6	103.1	1.1	0.8 (< 0.1 ^{**1})	0.1	0.1	6.7	4.9
	ンマ	構造材放射化	0.8	0.7	164.6	$131.2 \\ (< 0.1^{*1})$	23.0	17.2	$< 0.1^{*1}$	< 0.1 ^{**1}	89.4	62.7 (4.6)	0.4	0.3	3.1	2.3
表面	線	二次ガンマ	0.6	0.7	5.0	6.9 (0.6)	3.2	5.0	29.8	38.8	4.2	6.2 (2.5)	1.9	3.9	5.0	7.7
		中性子	162.9	219.4	3.4	3.3 (172.1)	165.6	267.6	41.4	45.6	41.9	63.8 (262.7)	285.9	636.5	281.1	460.1
	合計		164.4	220.9	188.5	150.7 (172.9)	193.6	291.0	208.9	187.6	136.6	133.5 (269.9)	288.3	640.8	295.9	475.0
	評価点		② ^{**3} ④a		a	(4	b	Œ	3)	(0	(8	Ba	(8	b	
	ラ	イブラリ*2	А	В	А	В	А	В	А	В	А	В	А	В	А	В
	ガ	燃料有効部	< 0.1 ^{**1}	< 0.1 ^{**} 1 (< 0.1)	21.3	16.4	20.1	15.5	56.8	45.5	0.4	0.3	28.1	22.2 (< 0.1 ^{**1})	23.4	18.5
表面	ンマ	構造材放射化	5.1	3.5 (4.1)	23.9	20.3	11.7	10.5	0.2	0.2	30.5	23.2	2.0	1.8 (4.2)	0.9	0.9
から	線	二次ガンマ	0.1	0.2 (0.2)	4.3	5.8	4.1	5.6	11.1	14.8	1.1	1.6	5.1	6.8 (0.7)	4.8	6.5
1 m		中性子	24.6	36.1 (36.1)	6.7	7.9	9.4	13.9	14.6	16.8	17.1	35.0	6.5	7.8 (34.8)	10.5	16.9
		合計	29.9	39.9 (40.5)	56.1	50.4	45.3	45.5	82.7	77.3	49.1	60.1	41.7	38.6 (39.8)	39.6	42.8

※1: "< 0.1"の値は、"0.1"として合計値に含めた。

※2: ライブラリAをDLC-23/CASK ライブラリ、ライブラリBをMATXSLIB-J33 ライブラリとする。

※3:AとBで最大値を与える位置が顕著に異なるため、括弧内にBでの最大値を与える評価位置(別紙 6-1 図参照)における値を示す。

別紙 6-3

(参考)表面線量当量率評価結果について

Hitz-B69型の遮蔽機能の評価結果として示す表面線量当量率(表 3-3)は、類似設計で ある Hitz-B52型(令和 2 年 12 月 18 日に使用済燃料貯蔵施設に係る特定容器等の設計の 型式証明(M-DPC20002)を受領)と比較して大きく低減している。

百日	線量当量率評価結果					
供日	Hitz-B69 型	Hitz-B52 型				
表面線量当量率	0.30mSv/h	0.87mSv/h				
表面から 1m 離れた位置に	0.2 C/h	79 9/1-				
おける線量当量率	ooµov/n	/8µ8v/n				

別紙 7-1 表 線量当量率評価結果の比較

Hitz-B69型の表面線量当量率が最大となる位置は、図 3-6 において⑦b に示す位置(下部径方向(トラニオン部))であり、表 3-4より、合計の線量当量率 0.30mSv/h に対して中性子の線量当量率が約 0.28mSv/h と支配的である。一方で、Hitz-B52型の表面線量当量率が最大となる位置は、図 3-6 において⑦a の位置(下部径方向)に相当する位置であり、合計の線量当量率 0.87mSv/h に対して中性子の線量当量率が約 0.85mSv/h と支配的であった。なお、Hitz-B69型の⑦a の位置においても中性子が支配的という傾向は同様である。

別紙 7-1 図に、Hitz-B69 型と Hitz-B52 型の比較のため、表面線量当量率最大となる位置における中性子の線量当量率分布を示す。合わせて、Hitz-B69 型と Hitz-B52 型の遮蔽解析モデルにおいて、燃料有効部領域(中性子源)と評価位置⑦a(に相当する位置)までの距離を示している。

別紙 7-1 図に示すように、Hitz-B69 型と Hitz-B52 型では、Hitz-B69 型の方が中性子 源強度は小さいが遮蔽厚さは薄く、結果としては線量当量率及びその分布形状は評価位置 ⑦a 付近を除き概ね同程度となっている。このことは、線束接続で評価しているトラニオン 部についても同様である。一方で、評価位置⑦a 付近においては、Hitz-B69 型では外筒下 部の端板を Hitz-B52 型よりも底部側に配置し、側部中性子遮蔽材がより底部側まで覆う構 造としたため、中性子源から評価位置までの距離が遠くなり、また、側部中性子遮蔽材と底 部中性子遮蔽材との空隙が狭まることで、中性子線量当量率が低減している。

したがって、Hitz-B69 型の最大線量当量率は、Hitz-B52 型との比較において妥当な結果であり、適切に評価されている。

:燃料有効部領域(中性子源) → :表面線量当量率最大となる位置

(線量当量率の単位:µSv/h)

別紙 7-1 図 Hitz-B69 型(上)と Hitz-B52 型(下)の表面線量率最大となる位置 における中性子線量当量率分布

無断複製·転載禁止 日立造船株式会社

別紙 7-2

(参考)上部格子枠のモデル化について

Hitz-B69型は、類似設計である Hitz-B52型(令和2年12月18日に使用済燃料貯蔵施 設に係る特定容器等の設計の型式証明(M-DPC20002)を受領)と比較すると、遮蔽機能 評価に影響する構成部材としては、バスケットの上部格子枠が追加された点が異なってい る。ここでは、Hitz-B69型で追加された上部格子枠のモデル化について記載する。

Hitz-B69型の遮蔽解析モデルの概要は別紙 2-1 図に示した通りであり、実形状を R-Z 二 次元モデルにするため、胴内は燃料集合体の構成部材とバスケットの構成部材を均質化し ている。この時、キャスク径方向には、線源を含む燃料領域と線源を含まないバスケット外 周部領域に区分し(別紙 2-3 図参照)、キャスク軸方向には、軸方向に垂直な断面で燃料集 合体及びバスケットの構造が変わる位置で区分し、それぞれの領域で均質化材質(核種又は 元素毎の原子個数密度)を設定している。このように設定することで、キャスク胴内に分布 する線源及び遮蔽物となる物質の位置関係を考慮している。

上部格子枠部を含む遮蔽解析モデル(頭部)は別紙 2-2 図に示しているが、厳密には別紙 8-1 図に示すように、燃料領域は燃料集合体の構造が変わる位置で区分した領域を、さらに バスケットの構造が変わる軸方向の位置で細分している。各領域の原子個数密度は、当該領 域に含まれる燃料集合体の構成部材の質量に基づく燃料集合体由来の原子個数密度と、同 領域に含まれるバスケットの構成部材の質量に基づくバスケット由来の原子個数密度の和 になる。上部格子枠のモデル化においては、上部格子枠を燃料領域(燃料上部構造材領域の 部分)に均質化する部分とバスケット外周部(上部格子枠部)に均質化する部分に分け、そ れぞれに含む上部格子枠の部材質量に基づき、原子個数密度を設定している。

上部格子枠の燃料領域とバスケット外周部(上部格子枠部)の分け方について、Hitz-B69 型の遮蔽解析モデルでは、燃料領域として均質化する領域の境界(燃料領域境界)は燃料有 効部の断面(コンパートメントを含む断面)における り、上部格子枠の 、設定した燃料領域境界に基づく場合、上 部格子枠の燃料領域に均質化する部分とバスケット外周部(上部格子枠部)に均質化する部 分は別紙 8-2 図に示すように分けられ、このように分けて均質化することが基本的な考え 方である。しかし、Hitz-B69型の遮蔽機能評価に適用しているモデルでは、別紙 8-3 図に イメージを示すように、各領域に均質化する上部格子枠の部材質量が設定した燃料領域境 界に基づく場合より小さくなるように、後述する 均質化する部材の量を設 定している。

Hitz-B69型の遮蔽機能評価に適用しているモデルに含まれる上部格子枠の部材質量及び 設定した燃料領域境界に基づく場合の部材質量を表 8-1 に示す。各領域及び体系全体(合

無断複製·転載禁止 日立造船株式会社

別紙 8-1

計)において、遮蔽機能評価に適用している質量は設定した燃料領域境界に基づく場合より も小さく、基本的な考え方に対して保守的である。

別糸	氏 8-4 図に示す	上部格子枠の形
状から部材の量を求め、燃料領域に均質化	とする部材の量は	とし、バスケット外周
部領域では上部格子枠の全質量から	を差し引いている	。燃料領域に均質化する部
材の量をとすることで、別紙	8-3 図のように	す
る。		

ここで参考として、別紙 8-2 図に示した設定した燃料領域境界に基づく場合のモデルと 遮蔽機能評価に適用しているモデルの解析結果の比較を行った。比較する線源は、上部格子 枠の存在する領域と線源が分布する領域が重なるため、上部格子枠のモデル化の差異によ る影響が顕著となる構造材放射化ガンマ線とし、評価位置は評価基準値に対する余裕が小 さい表面から 1m の位置とした。

各モデルによる線量当量率分布を別紙 8-5 図に示す。遮蔽機能評価に適用しているモデ ルの方が、上部格子枠部の近傍において線量当量率のピークとなる頭部径方向で 高い線量当量率となるが、上部格子枠から離れた側部中央付近では影響は微小である。

なお、表 3-4 より、全体で最も評価基準に対する余裕が小さい評価点は側部の表面から 1mの評価点(評価点⑥)だが、当該評価点はキャスクの側部中央(図 3-6 参照)であり、 上部格子枠のモデル化の違いによる影響は微小である。

以上より、Hitz-B69型の遮蔽機能評価に適用している遮蔽解析モデルにおける上部格子 枠のモデル化の考え方は妥当である。

別紙 8-2

別紙 8-1 図 Hitz-B69 型遮蔽解析モデル(頭部)の領域細分

無断複製·転載禁止 日立造船株式会社

別紙 8-3
別紙 8-2 図 設定した燃料領域境界に基づく場合の上部格子枠の分け方

別紙 8-3 図 遮蔽機能評価に適用している上部格子枠均質化部分のイメージ

	燃料領域	バスケット外周部 (上部格子枠部)	合計
設定した燃料領域境界 に基づく場合 (別紙 8-2 図)			
Hitz-B69 型の 遮蔽機能評価に適用 (別紙 8-3 図)			

別紙 8-1 表 上部格子枠の遮蔽解析モデルに均質化する部材質量

※:遮蔽解析における構成部材密度に基づく上部格子枠の全質量。

無断複製·転載禁止 日立造船株式会社

別紙 8-4

	し如故ス执の如けの形状みだ婚判領域への考虑

別紙 8−4 凶

上部格子枠の部材の形状及び燃料領域への考慮

無断複製·転載禁止 日立造船株式会社

別紙 8-5

別紙 8-6

(参考)バスケット格子構造を均質化することによる 軸方向の遮蔽機能評価への影響について

バスケットは軸方向に開口した格子構造であるため、解析モデルにおいて均質化を行う と軸方向に対する遮蔽への寄与が実際よりも大きくなり、軸方向の線量当量率を過小評価 する可能性がある。ここでは、Hitz-B69型の遮蔽機能評価に適用している解析モデルにお けるバスケットの均質化による軸方向の遮蔽機能評価への影響について記載する。

1. 影響確認方法

格子構造の均質化による影響を確認するため、格子構造を均質化せずにモデル化可能な 三次元輸送計算コード(MCNP5)を用い、格子構造を均質化しない場合と均質化した場合 の線量当量率を解析し比較した。合わせて、Hitz-B69型の遮蔽機能評価における解析結果 との比較を試みた。

1.1 着目点及び解析モデル

別紙 9-1 図に示すように、Hitz-B69 型のバスケットの格子構造の開口部は、底部側の開 口部は蓋部側の開口部と比較して小さく、均質化しない場合(実形状)において遮蔽に寄与 しやすい幾何学的条件となっているため、底部側の均質化による非保守側の影響は蓋部側 よりも小さいと考えられる。したがって、ここでは蓋部側に着目した。

表 3-4 より、蓋部側(頭部)軸方向の線量当量率は中性子が支配的であり、また、ガンマ 線については構造材放射化ガンマ線の寄与が比較的大きいため、解析対象とする線源を中 性子及び燃料上部構造材の放射化ガンマ線とした。

格子構造を均質化しないモデル(以下「非均質化モデル」という。)を別紙 9-2 図に、格 子構造を均質化したモデル(以下「均質化モデル」という。)を別紙 9-3 図に示す。均質化 モデルでは、胴内の均質化領域は Hitz-B69 型の遮蔽機能評価に適用している解析モデルと 同様の均質化を行った。非均質化モデルでは、バスケット格子は軸方向に全て均一な厚さの 格子形状としたが、実形状において格子状に存在する部材の量に基づいて個数密度を設定 することで、実形状における部材の量を解析モデルに考慮した。

軸方向の遮蔽に影響する両モデルの燃料及び格子部の計算上の部材質量の比較を別紙 9-1表に示す。対応する領域に含む部材の量は概ね同等であるため、格子構造の均質化による 影響が無ければ、概ね同程度の解析結果が得られると予想される。

蓋部側開口部

注:開口部をハッチングで示す。

底部側開口部

別紙 9-1 図 Hitz-B69 型のバスケット格子構造の開口部

軸方向領域	非均質化モデルの 領域質量 (A) ^{※1}	均質化モデルの 領域質量(B) ^{※2}	B∕A	
燃料有効部	g	g	1.06 ^{**3}	
上部プレナム部	g	g	1.04 ^{**3}	
グリッド部	g	g	1.00	
ハンドル部	g	g	1.00	

別紙 9-1表 非均質化モデルと均質化モデルの部材質量の比較

注: MCNP5 による解析において体系内に考慮される質量である。

※1:燃料集合体 69 体分の質量とバスケット格子の質量の和。

※2:Hitz-B69型遮蔽解析モデルにおける均質化領域の設定と同等。

る。

別紙 9-2

別紙 9-3

別紙 9-4

別紙 9-5

別紙 9-6

1.2 解析条件

主な解析条件を別紙 9-2 表に示す。

線量当量率の評価点は、別紙 9-2 図及び別紙 9-3 図に示すように、代表点として非均質 化モデルにおける中央の燃料集合体とそこから X 軸方向に並ぶ燃料集合体のそれぞれの中 心軸上における二次蓋表面及び二次蓋表面から 1m の位置に設定した。

項目		解析条件	備考	
解析コード		MCNP5 1.60		
断面積ライブラリ		中性子 : FSXLIB-J33		
		ガンマ線:MCPLIB84		
線派	原強度	遮蔽機能評価条件と同条件		
	中世之	²³⁹ Pu 核分裂スペクトル		
線源	中国丁	(DLC-23/CASK 22 群構造)		
スペクトル	構造材放射化	$1.17 \mathrm{MeV}$: 50%	線スペクトル	
	ガンマ線	1.33 MeV : 50%		
		キャスク全体を三次元でモデル化す	燃料集合体の軸方	
		るが、蓋部側に着目するため側部及び	向位置やキャスク	
		底部側は簡易的に取扱い、中性子遮蔽	全長を短縮したモ	
		材は全て質量減損を考慮した蓋部中	デル化は遮蔽機能	
角沼 本丘	エデル	性子遮蔽材と同じ材質とする。	評価用解析モデル	
月午少日		胴内は、非均質化モデルでは格子構造	と同様。	
		を模擬して燃料集合体を個別に配置		
		し、均質化モデルでは遮蔽機能評価用		
		解析モデル(DOT3.5 二次元モデル)		
		と同様の均質化を行う。		
検出器		Track Length Estimator		
		(体積検出器)		
		表面 : 直径 1cm の球形状		
		表面から 1m 位置:		
		直径 10cm の球形状		
分散低減法		ウェイト・ウィンドウ		
線量当量率換算係数		遮蔽機能評価条件と同条件		
統計指標		統計誤差10%以下(目標値)	マニュアル推奨値	

別紙 9-2表 主な解析条件

無断複製·転載禁止 日立造船株式会社

2. 解析結果·考察

解析結果を別紙 9-4 図に示す。別紙 9-4 図には、DOT3.5 を用いた Hitz-B69 型の遮蔽機 能評価における解析結果を合わせて示す。なお、Hitz-B69 型の遮蔽機能評価における解析 では DLC-23/CASK ライブラリを用いているが、別紙 6 に記載した通り当該ライブラリを 用いた場合の中性子の過小評価の問題に対して MATXSLIB-J33 ライブラリを用いた解析 による確認を実施しているため、中性子については両ライブラリの結果を記載した。

2.1 格子構造の均質化による軸方向の遮蔽への影響について

別紙 9-4 図より、非均質化モデルと均質化モデルを比較すると、中性子と構造材放射化 ガンマ線のどちらもモデルの違いにより絶対値としては大きな差は生じていないが、構造 材放射化ガンマ線については、均質化モデルの方が非均質化モデルよりも低い値を示す傾 向が確認できる。

別紙 9-3 表に、表面における非均質化モデルと均質化モデルの解析結果の比較を示す。 中性子については格子構造の均質化の非保守的な影響は確認できないが、構造材放射化ガ ンマ線については、均質化モデルよりも非均質化モデルの方が約 20%程度低く、格子構造 を均質化することにより軸方向の線量当量率を過小評価する可能性が示唆される。

中性子と構造材放射化ガンマ線で傾向が異なる理由は、中性子の方が線源位置が格子構造の深い位置にあるため間隙を通過する直接線成分が少ないことや、中性子の方がガンマ線よりも鋼材中の平均自由行程が大きいため格子構造との相互作用が生じにくい(格子開口部へのストリーミングの恐れが少ない)ことが考えられる。

	中性子		構造材放射化ガンマ線			
	[A]	[B]		[A]	[B]	
評価点※	非均質化	均質化	B	非均質化	均質化	B
	モデル	モデル	\overline{A}^{-1}	モデル	モデル	\overline{A}^{-1}
	(µ Sv/h)	(µSv/h)		(µSv/h)	(µSv/h)	
1			+0.11			-0.28
2			-0.03			-0.13
3		[-0.01			-0.19
4		ſ	+0.06			-0.07
5			+0.03			-0.30
平均			+0.03			-0.19

別紙 9-3 表 表面における非均質化モデルと均質化モデルの解析結果の比較

※:表面の評価点のうち、キャスク中心軸に近い方から順に評価点1~5とした。

無断複製·転載禁止 日立造船株式会社

別紙 9-8

2.2 Hitz-B69型の遮蔽機能評価における解析結果(DOT3.5)との比較

別紙 9-4 図より、構造材放射化ガンマ線については、表面及び表面から 1m の位置にお ける非均質化モデルの線量当量率が DOT3.5 による解析結果と概ね一致しており、Hitz-B69 型の遮蔽機能評価における解析結果は格子構造の均質化による影響を考慮しても妥当 であると考えられる。

中性子については格子構造の均質化による非保守側の影響は確認できなかったが、DLC-23/CASK ライブラリを用いた DOT3.5 による解析結果はライブラリに由来する過小評価の 問題があり、MCNP5 による解析結果と比較してもその傾向が確認できる。ただし、ライブ ラリの問題に対する確認として実施している MATXSLIB-J33 ライブラリを用いた場合、 表面のキャスク中心軸付近では MCNP5 の解析結果と同程度の値であり、それ以外の位置 では MCNP5 による解析結果を上回っていることから、Hitz-B69 型の遮蔽機能は線量当量 率の最大値について保守的に評価できていると考えられる。

なお、蓋部中性子遮蔽材との位置関係により、表面においてはキャスク中心軸からの距離 が離れるに従い中性子の線量当量率は増大して極大となるが、MCNP5 による解析結果よ り DOT3.5 による解析結果の方が増大の傾斜が大きい。この理由は、Hitz-B69 型の遮蔽機 能評価用解析モデルは

(別紙 2-1 図参照)ためであり、それにより表面から 1m の位置における線量当量率も増大している。

以上より、Hitz-B69型の遮蔽機能評価においては、格子構造の均質化による軸方向への 非保守側な影響を考慮しても最大値に対しては保守的な評価となっており、遮蔽機能評価 結果に対して影響はない。

無断複製·転載禁止 日立造船株式会社

別紙 9-9

(b) Hitz-B69型二次蓋表面から1mの位置の線量当量率

別紙 9-4 図 解析結果

無断複製·転載禁止 日立造船株式会社

別紙 9-10