【法令等の要求事項(規則・審査基準)】	【認可申請書(本文)の記載内容】	【添付書類の記載内容】
【規則】	P10	P3-1
第六条	・放射能濃度の評価に用いる放射性物質(以下,「評価対象核種」という。)	・評価に用いる放射性物質は,放射能濃度確認対象物中に含まれる放射性
一 評価に用いる放射性物質は、放射能濃度確認対象物中に含まれる放射	は、放射能濃度確認対象物中に含まれる放射性物質のうち放射線量を評	物質のうち放射線量を評価する上で重要なものを選択する。
性物質のうち放射線量を評価する上で重要なものであること。	価する上で重要なものを選択する。	
【審査基準】	P11	P3-1,3-2
3.1. 評価に用いる放射性物質の選定	・基準日 (2023 年 8 月 1 日) から 2037 年 4 月 1 日までの期間, ΣD/C	・基準日(2023 年 8 月 1 日)から 2037 年 4 月 1 日までの期間, ΣD/C
評価に用いる放射性物質を選定するに当たっては、放射能濃度について	(評価対象核種)がΣD/C(審査基準 32 核種)の 90%以上となるよう	(評価対象核種)がΣD/C(審査基準 32 核種)の 90%以上となるよう
の確認の申請時における放射能濃度を考慮し、放射能濃度確認対象物中	評価対象核種を選択する。	評価対象核種を選択する。
に含まれる放射性物質のうち放射線量を評価する上で影響を与えること		
が予想される放射性物質が見落とされないよう、以下の手順により選定		
が行われていること。		
(1) 発電用原子炉設置者が発電用原子炉を設置した工場等又は試験研究炉	P1	P1-2
等設置者等が特定試験研究用原子炉(試験研究の用に供する試験研究用	一 氏名又は名称及び住所並びにその代表者の氏名	1. 浜岡 1 号炉
等原子炉(船舶に設置するものを除く。)及び船舶に設置する軽水減速加	名称 中部電力株式会社	・浜岡1号炉は、濃縮ウラン・軽水減速・軽水冷却・沸騰水型原子炉であ
圧軽水冷却型原子炉(減速材及び冷却材として加圧軽水を使用する原子	住所 名古屋市東区東新町1番地	り, 熱出力は約 1,593MW である。
炉であって蒸気発生器が構造上原子炉圧力容器の外部にあるものをい	代表者の氏名 代表取締役社長	・運転実績は、2001年11月7日の余熱除去系の配管破断に伴い、2001年
う。)であって研究開発段階にある試験研究用等原子炉をいう。)を設置	社長執行役員 林 欣吾	11 月 8 日に原子炉を停止するまでの約 27 年間である。
した工場等において用いた資材その他の物	二 放射能濃度確認対象物が生ずる工場等の名称及び所在地	・廃止措置第2段階では、屋外機器(管理区域外)の解体撤去を継続しな
	名称 浜岡原子力発電所	がら屋内機器(管理区域内のうち原子炉領域周辺設備)の解体撤去を行
	所在地 静岡県御前崎市佐倉	っている。
	三放射能濃度確認対象物が生ずる施設の名称	2. 浜岡 2 号炉
	名称 浜岡原子力発電所 1号原子炉施設	・浜岡2号炉は、濃縮ウラン・軽水減速・軽水冷却・沸騰水型原子炉であ
	浜岡原子力発電所 2 号原子炉施設	り, 熱出力は約 2,436MW である。
		・運転実績は、2004年2月22日に原子炉を停止し第20回定期検査を実
		施するまでの約26年間である。
		・廃止措置第2段階では、屋外機器(管理区域外)の解体撤去を継続しながら屋内機器(管理区域内のうち原子炉領域周辺設備)の解体撤去を行
		から屋内候番(自座区域内のすら原丁炉関域局及設備)の解降撤去を行っている。
 イ:放射能濃度確認対象物が金属くず又はコンクリート破片若しくはガラ	D2	P3-1
スくず (ロックウール及びグラスウールに限る。) の場合	・放射能濃度確認対象物の種類は、「(本文) 表-1 に示すとおり、浜岡 1,2	゚゚ー1 ・放射能濃度確認対象物は,「本文四 に示すとおり,全て浜岡 1,2 号炉の
	号炉の廃止措置第2段階及び第3段階において発生する原子炉領域周辺	原子炉格納容器の外側に存在し、一次系に接液、又は一次系に存在する
	設備の解体撤去物のうち、非金属機器、大型金属機器(タービン・発電	放射性物質によって汚染されたおそれのある金属製の機器・配管等であ
	機の回転軸)及び原子炉で発生した非凝縮性ガスが流れる系統(以下、	る。
	「オフガス系」という。)の機器を除いた金属製の解体撤去物の一部であ	
	り、具体的には浜岡 1,2 号炉のタービン設備のうち「給復水系、冷却水	
	系、冷却海水系等」、原子炉設備のうち「サプレッションチェンバー関連	
	設備、非常用炉心冷却系等」、廃棄物処理設備のうち「固体廃棄物処理系	
	等」及び複数の系統にまたがる設備のうち「サポート、ケーブルトレイ、	

【法令等の要求事項 (規則・審査基準)】)解体撤去物へのクリアフンス制度適用に関する法令寺の晏氷事項へ 【認可申請書(本文)の記載内容】	【添付書類の記載内容】
	電線管,現場盤,ラック等」である。 ・放射能濃度確認対象物の材質は、「(本文)表-2」に示すとおり、全て金属であり、主に炭素鋼である。	\$0.00 mo 00.00 mg
①原子炉の運転状況、炉型、構造等の特性を踏まえ、中性子の作用による放射化汚染、原子炉冷却材等に係る放射性物質の付着、浸透等による二次的な汚染の履歴及び機構、放射性物質の放射性壊変等を考慮して、別記第1号に掲げる33種類の放射性物質kの放射能濃度又は放射性物質kと基準核種(例えばCo-60)との放射能濃度比が計算等により算出されていること。この際、以下のとおりであること。 (a)放射化汚染を放射化計算法によって算出する場合については、使用実績のある放射化計算コード(許認可実績のあるコード又は汎用的なコード	P6 ・先行事例において浜岡 1,2 号炉の原子炉格納容器の外側で発生した金属	P2-4 ・先行事例において浜岡 1,2 号炉の原子炉格納容器の外側で発生した金属
若しくは第三者による技術的レビューを受けた公開コード)を用いるとともに、放射性物質の種類が幅広く選定されるよう、合理的な範囲で計算に用いる入力パラメータ(親元素の組成、中性子東、照射時間等)が設定されていること。ただし、施設の構造上、管理区域の設定が不要である等、中性子線による放射化の影響を考慮する必要がないことが明らかである場合は、放射化による汚染を考慮する必要はない。	製の解体撤去物を対象とした放射化汚染の調査の結果(参考文献 2「添付図表 3-64,65」)より、放射化汚染の主要な核種は ⁶⁰ Co である。具体的には、調査の結果、 ⁶⁰ Co の放射能濃度(D)を ⁶⁰ Co の「工場等において用いた資材その他の物に含まれる放射性物質の放射能濃度が放射線による障害の防止のための措置を必要としないものであることの確認等に関する規則」(令和 2 年原子力規制委員会規則第 16 号。以下、「規則」という。)別表第 2 欄の放射能濃度(C)(以下、「基準値」という。)で除した比率(D/C)は、参考文献 4(「放射能濃度についての確認を受けようとする物に含まれる放射性物質の放射能濃度の測定及び評価の方法に係る審査基準」(令和 3 年 9 月 29 日施行、原規規発第 2109292 号、原子力規制委員会決定。以下、「審査基準」という。))別記第 1 号に掲げる 33種類の放射性物質(以下、「審査基準」という。))別記第 1 号に掲げる 33種類の放射性物質(以下、「審査基準」という。))の ΣD/C に対して占める比率が 2017 年 7 月 1 日から 2037 年 4 月 1 日の期間において常に 90%以上であることを確認している。放射能濃度確認対象物は先	製(主に炭素鋼)の解体撤去物を対象とした放射化汚染の調査結果(参考文献1「添付図表3-64,65」)より、60CoのD/Cは審査基準33核種の ΣD/Cに対して占める比率が2017年7月1日から2037年4月1日までの期間において90%以上であり、放射化汚染の主要な核種は60Coである。本申請における放射能濃度確認対象物は、「1.放射能濃度確認対象物の種類」で述べたとおり、浜岡1,2号炉の原子炉格納容器外側の金属製(主に炭素鋼)の解体撤去物であることから、先行事例と同様に、放射化汚染の主要な核種は60Coであると判断した。 P2-5 ・(前略)3種類の中性子線による放射化汚染影響を代表するサンプルの60Co放射能濃度を測定した結果、いずれも60CoのD/Cは1.0E-02(基準値の1%)未満であることから、放射化汚染の影響は極めて僅かであると判断した。
	行事例(参考文献 2) と同じく浜岡 1,2 号炉の原子炉格納容器の外側で発生した金属製の解体撤去物であり、先行事例の調査結果(参考文献 2 「添付図表 3-64,65」)で代表できることから、放射能濃度確認対象物の放射化汚染の主要な核種は ⁶⁰ Co であると判断した。 P7 ・(前略) 3 種類の中性子線による放射化汚染影響を代表するサンプルの ⁶⁰ Co 放射能濃度を測定した結果、「(本文)表-6」に示すとおり、いずれも ⁶⁰ Co の放射能濃度は基準値(1.0E-01Bq/g)の 100 分の 1 未満であることから、放射化汚染の影響は極めて僅かであると判断した。 P10 ・放射能濃度確認対象物の汚染状況は、「本文四」に示すとおり、主に二次的な汚染であり、放射化汚染の影響は極めて僅かであることから、評価	・放射化汚染の状況を調査した結果、「本文四」に示すとおり、主要な核種は ⁶⁰ Co である。また、 ⁶⁰ Co の放射能濃度は、「(本文)表 -6」に示すとおり、浜岡 1号炉サプレッションチェンバーベント管で 5.1E-04Bq/g、浜岡 2号炉サプレッションチェンバーベント管で検出限界値(5.6E-04Bq/g)未満であり、いずれも ⁶⁰ Co の放射能濃度は基準値(1.0E-01Bq/g)の 200分の 1程度である。以上より、放射化汚染の影響は極めて僅かであることから、評価に用いる放射性物質の選択において無視できると判断した。

(b) 二次的な可吸を放射化計算法等に基づいた計算及び評価によって第2世 19.01 19.02 19.02 19.02 19.03	【法令等の要求事項(規則・審査基準)】	の解体撤去物へのクリアランス制度適用に関する法令等の要求事項へ 【認可申請書(本文)の記載内容】	【添付書類の記載内容】
(6) 二次的な行場を放射化計算法等に基づいた計算及の評価によって物価 する場合については、放棄性物質の種間が無て、(選定されるよう、企理	TATE OF STATE OF STAT		MANIA EL DAS SIGNATA EL T
50-天然ら清後を放射に出電点までよう。公主電影が発電によって専出			
→ 5名名合については、取材性物質の種類が個化(選定されるよう、合理	(b)二次的な汚染を放射化計算法等に基づいた計算及び評価によって算出		P3-2
9、代表サングルの取射化学が指導度なで検出限界値よ済である。このうち最大の検出限界値よ済である。このうち最大の検出限界値よ済である。このうち最大の検出限を検によりなが出て「(大文) 表 「2) 1 元字 東京 東京 (2) 1 元字 東京 政府 (2) 2 日本 東京 (2) 1 元字 東京 政府 (2) 2 日本 日本 (2) 1 元字 東京 政府 (2) 2 日本 日本 (2) 1 元字 東京 政府 (2) 2 日本 日本 (2) 1 元字 東京 政府 (2) 2 日本 日本 (2) 1 元字 東京 政府 (2) 2 日本 日本 (2) 1 元字 東京 (2) 1 元字 (2) 2 日本 日本 (2) 2 日本			• 3H の汚染の状況は,「(本文)表-8」に示すとおり, 代表サンプルの放
#護度確認対象物における最大の比表面確 2.7cm ² /g を乗じて韓由した 成幹能的度は 8.44-42144/g (2012年 8 月 1 日時2)であり、1 の 5.45 作 (1018年) 2 (2012年 8 月 1 日時2)であり、1 中 5.45 作 (2012年 8 月 1 日時2)であり、1 中 5.45 所 3 株 2 0 5 日 を除いた 32 株 2 と 1 日 5.45	的な範囲で当該計算及び評価がなされていること。	り、代表サンプルの放射化学分析結果は全て検出限界値未満である。こ	射化学分析結果は全て検出限界値未満である。このうち最大の検出限界
能配度鑑認対象物における最大の比表面配 2.7cm/g を乗じて質出した 放射能震度と8.4在02Ba/g (2023年8月1日時点)であり、刊の基準的 (100Ba/g 2023年8月1日時点)であり、刊の基準的 (100Ba/g 2023年8月1日時点)であり、日本の主意の中央 (100Ba/g 2023年8月1日時点)を対するといるの主意の中央 (100Ba/g 2023年8月1日時点)を対するといるの主意の中央 (100Ba/g 2023年8月1日時点)のは、日本の主意の中央 (100Ba/g 2023年8月1日時点)を表示しまり、日本の主意の中央 (100Ba/g 2023年8月1日時点)を表示しまり、日本の主意の中央 (100Ba/g 2023年8月1日時点)を表示しまり、日本の主意の中央 (100Ba/g 2023年8月1日時点)を表示しまり、(100Ba/g 2023年8月1日時点)を表示しまり、(100Ba/g 2023年8月1日時点)を表示しまり、(100Ba/g 2023年8月日時点)を表示しまり、(100Ba/g 2023年8月日時点)を表示しまり、(100Ba		のうち最大の検出限界値 3.1E-02Bq/cm² に「(本文) 表−12」に示す放射	値 3.1E-02Bq/cm²に「(本文) 表-12」に示す放射能濃度確認対象物にお
(100Bq/g) の1000 分の1 程度であり、極めて僅かであることから、評価対象が評価対象域極の変圧において無視できると判断した。 ** 高玄基年33 核煙のうち 1 米食 (たま) 大 (木文) 大 (大大) (下) 本 (大大) (大大) (大大) (大大) (大大) (大大) (大大)		能濃度確認対象物における最大の比表面積 2.7cm²/g を乗じて算出した	
部価対象核種の選定において無視できると判断した。 - 喜喜滋維 33 核他のうち 刊 名除い 近 3 核他 (以下) 「書喜妹準 32 核他 (如下) 2 が 3 が 3 が 4 が 4 が 5 が 5 が 5 が 5 が 5 が 5 が 5 が 5		放射能濃度は 8.4E-02Bq/g(2023 年 8 月 1 日時点)であり、 ³ H の基準	02Bq/g (2023 年 8 月 1 日時点) であり、3H の基準値 (100Bq/g) の 1000
・審査基準 33 核種のうち 刊を除いた 32 核種(以下、「審査基準 22 核種) という。) の放射能濃度の評価方法上 (本文)表 一4 に示すとおり、放射化計算法(福対比率計算法)又は放射化学分析法である。放射化計類の指数 選択されるよう、合理的な理回で計算条件を設定し、成析化 計算を行う。 放射化学分析法により 放射能濃度を評価する場合は、分析 6 の放計的な分布を考慮した資格可均応 95%信頼 12 5年の月後の 95%信頼 13 -18 ~ 20」) における活回 12 5年の前條版大物を対象とした評価対象核性建設円の放射能震度の設定手順と同様に、		値(100Bq/g)の 1000 分の 1 程度であり、極めて僅かであることから、	分の1程度であり、極めて僅かであることから、評価対象核種の選択に
という。)の放射能濃度の評価方法は「(本文) 表 - 14」に示すとおり、放射化計算の計算条件(放射化計算用が心部の中性子フルが放射能濃度を評価する場合は、評価に用いる放射性物質の種類が高低く選供されるよう。 合理的な範囲で計算条件と設定し、放射化学分析法により放射能濃度を評価する場合は、分析値の統計的な分布を考慮した質析で均値の95%信頼区間片側上限値(以下 15%上限値)という)を採用する。		評価対象核種の選定において無視できると判断した。	おいて無視できると判断した。
放射化計算法(相対比率計算法)又は放射化学分析法である。放射化計算法により放射機震度を解析する場合は、評価に用いる放射性物質内種類が確広く選択されるよう、合理的な範囲で計算条件を設定し、放射化計算などの大変を変した発行事例(参考文献 1 「添付別表3 様をする。計算を作う、放射化学分析法とより放射構造度を発達して資格で対値の95%信頼区間片側上設値(以下195%上設値)という)を採用する。 一等を基準32 様種の放射能造度は、先行事例(参考文献 2 13-18-20」における派列 1.2 号炉の解体膨出物を対象とした評価対象核種選択用の放射能造度の設定手順と同様に		・審査基準 33 核種のうち ³ H を除いた 32 核種 (以下,「審査基準 32 核種」	P3-2,3-3
第法により放射能震度を評価する場合は、評価に用いる放射性物質の鑑 類が幅広く選択されるよう。合理的な範囲で計算条件を設定し、放射化 計算を行う。放射化学分析法により放射能濃度を評価する場合は、分析 値の統計的な分布を考慮した資제で対面の95%后傾区間片側上限値(以下「95%上限値」という)を採用する。 ・審査基準 32 核種の放射能濃度は、光行平例(参考文献 2 13 - 18~20」) における浜岡 1.2 号炉の解体敝 生物を対象とした評価対象核極選択用の 放射能濃度の設定手順と同様に		という。)の放射能濃度の評価方法は「(本文)表-14」に示すとおり、	・放射化計算の計算条件(放射化計算用炉心部の中性子フルエンス率,放
類が翻広く選択されるよう、合理的な範囲で計算条件を設定し、放射化計算を行う。放射化学分析法により放射能速度を評価する場合は、分析値の統計的な分布を考慮した領帯で加り 59%信頼区間片側上限値(以下「59%に振動」という)を採用する。 ・ 審査基準 32 核種の放射能濃度は、先行事例(参考文献 2 13-18~20」)における浜岡 1.2 号炉の解体磁生物を対象とした評価対象核種選択用の放射能速度の設定手順と同様に.		放射化計算法(相対比率計算法)又は放射化学分析法である。放射化計	射化計算コード,ORIGEN ライブラリ,元素組成)は,浜岡 1,2 号炉の
計算を行う。放射化学分析法により放射能濃度を評価する場合は、分析 (値の統計的な分布を考慮した算額下均値の95%信額(周片側上限値(以下 195%上限値)という)を採用する。		算法により放射能濃度を評価する場合は、評価に用いる放射性物質の種	解体撤去物を対象とした先行事例(参考文献 1「添付図表 3-78」)と同
値の統計的な分布を考慮した算術平均値の 95%信頼区間片側上限値(以下 195%上限値」という)を採用する。 ・ 寄春基準 32 核種の放射能濃度は、先行事例(参考文献 2 「3 - 18~20」) における浜岡 1,2 号炉の解体撤去物を対象とした評価対象核種選択用の 放射能濃度の設定手順と同様に		類が幅広く選択されるよう、合理的な範囲で計算条件を設定し、放射化	様とする。
下「95%上限値」という)を採用する。 - 審査基準 32 核種の放射能濃度は、先行事例(参考文献 2 3-18~20」)における浜岡 1,2 号炉の解体散大物を対象とした評価対象核種選択用の放射能濃度の改定手順と同様に、 - CP 核種の親元素は、浜岡 1,2 号炉 (BWR) の原子炉を含めく接流面積はスチンレス剝が 75%程度を占めることから、金親元素として、天然ウランは、燃料集合体及び炉間を超元素として、天然ウランは、燃料集合体及び炉間を超元素として、天然ウランとは、燃料集合体及び炉間を加入元素をして、天然ウランとは、水型にに示すとおり、初販界から運転停止上次的な汚染に影響があると考えられる事故、トラブル及に無いことから、親元素の候補として、選縮ウランは、「本文四」に示すとおり、初助界から運転停止上次的な汚染に影響があると考えられる事故、トラブル及に無いことから、親元素の候補として受当でないと判断した。天然・ウランと比較して存在量は僅かであることから、親元素の候補として受当でないと判断した。大然・ウランとは、「本文四」に示すとおり、初助界から運転停止上次的な汚染に影響があると考えられる事故、トラブル及に無いことから、親元素の候補として受当でないと判断した。大然・ウランと比較して存在量は僅かであることから、親元素と質を行い、放射能力を表示した。それが表示して発生して表述を表示した。それが表示した。後述の表示と対した。それが表示して表述といる対した。それが表示して発生して表述を表示した。それが表示して発生して表述を表示して表述を表述を表示して表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表述を表		計算を行う。放射化学分析法により放射能濃度を評価する場合は、分析	P3-3
・審査基準 32 核種の放射能濃度は、先行事例(参考文献 2 「3-18~20」) における浜岡 1,2 号炉の解体撤去物を対象とした評価対象核種選択用の 放射能濃度の設定手順と同様に			
における浜岡 1,2 号炉の解体散去物を対象とした評価対象核種選択用の放射能濃度の設定手順と同様に、			基に、総運転期間及び総停止期間を、それぞれ運転サイクル及び定期検
放射能濃度の設定手順と同様に. (四年の			査回数で除した平均とし、全てのサイクルの運転期間及び定期検査期間
・ CP 核種の親元素は、浜岡 1.2 号炉 (BWR) の原子炉を含めた を親元素として放射化計算を行い、放射能濃度を算出する。 を親元素として放射化計算を行い、放射能濃度を算出する。 ・ FP 核種の親元素として, 天然ウランは, 燃料集合体及び炉に 微量元素として存在し, FP 核種の親元素として蓋然性が高 FP 核種の親元素の候補として, 濃縮ウラン及びトリウムが 濃縮ウランは, 「本文四」に示すとおり, 初臨界から連転停止 二次的な汚染に影響があると考えられる事故、トラブル及 無いことから、親元素の候補として妥当でないと判断した。 天然ウランと比較して存在量は僅かであることから、親元等ですい、放射能濃度を算出する。 ・ 放射性物質の浄化は、核種の物理的半減期による減衰より の核種の除去が早いため、原子炉水中の放射能濃度比は、大			
の接液面橋はステンレス鋼が 75%程度を占めることから、を親元素として放射化計算を行い、放射能濃度を算出する。 ・FP 核種の親元素として、天然ウランは、燃料集合体及び炉「微量元素として存在し、FP 核種の親元素として蓋然性が高 FP 核種の親元素の候補として、濃縮ウラン及びトリウムが濃縮かランは、「本文四」に示すとおり、初臨界から運転停止二次的な汚染に影響があると考えられる事故、トラブル及「無いことから、親元素の候補として妥当でないと判断した。 天然ウランと比較して存在量は僅かであることから、親元まで対っシンと比較して存在量は僅かであることから、親元までより更ないと判断した。 従って、天然ウランを親元素と「算を行い、放射能濃度を算出する。・ 放射性物質の浄化は、核種の物理的半減期による減衰より」の核種の除去が早いため、原子炉水中の放射能濃度比は、材質の除去が早いため、原子炉水中の放射能濃度比は、材質の除去が早いため、原子炉水中の放射能濃度比は、材質の除去が早いため、原子炉水中の放射能濃度比は、材質の除去が早いため、原子炉水中の放射能濃度比は、材質の終土が早いため、原子炉水中の放射能濃度比は、材質の		放射能濃度の設定手順と同様に,	
を親元素として放射化計算を行い、放射能濃度を算出する。 ・FP 核種の親元素として、天然ウランは、燃料集合体及び炉「微量元素として存在し、FP 核種の親元素として蓋然性が高 FP 核種の親元素の候補として、濃縮ウラン及びトリウムが 濃縮ウランは、「本文四」に示すとおり、初臨界から運転停止 二次的な汚染に影響があると考えられる事故、トラブル及じ 無いことから、親元素の候補として妥当でないと判断した。 天然ウランと比較して存在量は僅かであることから、親元までなりとと比較して存在量は僅かであることから、親元すて妥当でないと判断した。従って、天然ウランを親元素とは算を行い、放射能濃度を算出する。 ・放射性物質の浄化は、核種の物理的半減期による減衰よりが の核種の除去が早いため、原子炉水中の放射能濃度比は、表			
・FP 核種の親元素として、天然ウランは、燃料集合体及び炉に 微量元素として存在し、FP 核種の親元素として蓋然性が高 FP 核種の親元素の候補として、濃縮ウラン及びトリウムが 濃縮ウランは、「本文四」に示すとおり、初臨界から運転停止 二次的な汚染に影響があると考えられる事故、トラブル及い 無いことから、親元素の候補として妥当でないと判断した。 天然ウランと比較して存在量は僅かであることから、親元する で妥当でないと判断した。従って、天然ウランを親元素と 算を行い、放射能濃度を算出する。 ・ 放射性物質の浄化は、核種の物理的半減期による減衰より の核種の除去が早いため、原子炉水中の放射能濃度比は、材			
微量元素として存在し、FP 核種の親元素として蓋然性が高 FP 核種の親元素の候補として、濃縮ウラン及びトリウムが 濃縮ウランは、「本文四」に示すとおり、初臨界から運転停止 二次的な汚染に影響があると考えられる事故、トラブル及で 無いことから、親元素の候補として妥当でないと判断した。 天然ウランと比較して存在量は僅かであることから、親元素として妥当でないと判断した。従って、天然ウランを親元素として 第を行い、放射能濃度を算出する。 ・放射性物質の浄化は、核種の物理的半減期による減衰よりしの核種の除去が早いため、原子炉水中の放射能濃度比は、木			
FP 核種の親元素の候補として、濃縮ウラン及びトリウムが 濃縮ウランは、「本文四」に示すとおり、初臨界から運転停止 二次的な汚染に影響があると考えられる事故、トラブル及り 無いことから、親元素の候補として妥当でないと判断した。 天然ウランと比較して存在量は僅かであることから、親元素 で妥当でないと判断した。従って、天然ウランを親元素とは 算を行い、放射能濃度を算出する。 ・放射性物質の浄化は、核種の物理的半減期による減衰より の核種の除去が早いため、原子炉水中の放射能濃度比は、材			
濃縮ウランは、「本文四」に示すとおり、初臨界から運転停止 二次的な汚染に影響があると考えられる事故、トラブル及で 無いことから、親元素の候補として妥当でないと判断した。 天然ウランと比較して存在量は僅かであることから、親元素とで の事でないと判断した。従って、天然ウランを親元素とで 算を行い、放射能濃度を算出する。 ・放射性物質の浄化は、核種の物理的半減期による減衰より の核種の除去が早いため、原子炉水中の放射能濃度比は、材			
二次的な汚染に影響があると考えられる事故、トラブル及で無いことから、親元素の候補として妥当でないと判断した。 天然ウランと比較して存在量は僅かであることから、親元素で で妥当でないと判断した。従って、天然ウランを親元素とは 算を行い、放射能濃度を算出する。 ・放射性物質の浄化は、核種の物理的半減期による減衰より加 の核種の除去が早いため、原子炉水中の放射能濃度比は、材			
無いことから、親元素の候補として妥当でないと判断した。 天然ウランと比較して存在量は僅かであることから、親元素と で妥当でないと判断した。従って、天然ウランを親元素と 算を行い、放射能濃度を算出する。 ・放射性物質の浄化は、核種の物理的半減期による減衰より の核種の除去が早いため、原子炉水中の放射能濃度比は、核			
天然ウランと比較して存在量は僅かであることから、親元素とでないと判断した。従って、天然ウランを親元素と 算を行い、放射能濃度を算出する。 ・放射性物質の浄化は、核種の物理的半減期による減衰よりが の核種の除去が早いため、原子炉水中の放射能濃度比は、材			
て妥当でないと判断した。従って、天然ウランを親元素と 算を行い、放射能濃度を算出する。 ・放射性物質の浄化は、核種の物理的半減期による減衰より の核種の除去が早いため、原子炉水中の放射能濃度比は、林			
算を行い、放射能濃度を算出する。 ・放射性物質の浄化は、核種の物理的半減期による減衰より の核種の除去が早いため、原子炉水中の放射能濃度比は、材			
・放射性物質の浄化は、核種の物理的半減期による減衰より」 の核種の除去が早いため、原子炉水中の放射能濃度比は、木			
の核種の除去が早いため,原子炉水中の放射能濃度比は,木			・放射性物質の浄化は、核種の物理的半減期による減衰より原子炉浄化系
			の核種の除去が早いため,原子炉水中の放射能濃度比は,核種発生率の
·[•

【法令等の要求事項 (規則・審査基準)】	【認可申請書(本文)の記載内容】	【添付書類の記載内容】
	本文図表-25,26 (浜岡 1 号炉の例(2023 年 8 月 1 日時点)を示す) (木文) 表-15 放射能濃度の設定結果 (評価対象核種の選択)(1/2) 評価対象核種の選択に用いる放射能濃度の設定結果を以下に示す。 (浜岡 1 号炉> (2023 年 8 月 1 日時点) No. 核種 設定結果 D (Bg/g) 基準値 C (Bg/g) DC	- 放射性物質の減衰は、付着後に減衰するものとする。この時、逐次壊変を考慮する。具体的には、全 α の比率は天然ウランの放射化計算法で2 ⁴¹ Pu, ²⁴¹ Am, ²³⁹ Pu の比率を設定するとともに、 ²⁴¹ Am の親核種 ²⁴¹ Pu からの逐次壊変も考慮する。 添付図表 3-10,11,12,13 (浜岡 1 号炉の例(2023 年 8 月 1 日時点)を示す) (添付 3) 表 - 3 放射能濃度の配定結果及U評価対象機構の選択に用いる Σ DIC (評価対象機構) に対する比率を以下に示す。(ハッチンプは評価対象機構を示す。)、(高岡 1 号炉の 例 (2023 年 8 月 1 日時点) を示す) (添付 3) 表 - 3 放射能濃度の配定結果及U評価対象機構の選択に用いる Σ DIC (評価対象機構) に対する比率を以下に示す。(ハッチンプは評価対象機構を示す。)、(高岡 1 号炉ン (2023 年 8 月 1 日時点) (2023 年 8 月 1 日
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
	31 241Pu 4.8E-20 10 4.8E-21 32 241Am 6.3E-21 0.1 6.3E-20	

【法令等の要求事項 (規則・審査基準)】	【認可申請書(本文)の記載内容】	【添付書類の記載内容】
	請書では放射能濃度の単位は Bq/g として扱う。	化学分析結果に放射能濃度確認対象物の比表面積を乗じて求める。審査 基準 32 核種の放射能濃度は、60Co の放射能濃度を 0.1Bq/g として規格 化した比率(核種組成比)で設定する。評価に用いる放射性物質は、Σ D/C(評価対象核種)がΣD/C(審査基準 32 核種)の 90%以上となる よう D/C の大きい順に核種を選択する。
③「評価に用いる放射性物質」として、下式を満足するよう、33種類の放	D11 12	P3-4,3-5
射性物質 k の中から D_k/C_k の大きい順に n 種類の放射性物質 j が選定さ	・2023 年 8 月 1 日時点において、設定した放射能濃度から求めた D/C の	·
れていること。	比率は, 浜岡 1,2 号炉とも ⁶⁰ Co が第 1 位であり, D/C (⁶⁰ Co) の比率は, 浜岡 1 号炉で 91%, 浜岡 2 号炉で 92%となる。	「(添付3)表-3」に示すとおり, 浜岡1号炉は大きい順に ⁶⁰ Co が 91%, ¹³⁷ Cs が 5%, ¹⁴ C が 3%, 浜岡2号炉は大きい順に ⁶⁰ Co が 92%, ¹³⁷ Cs が
$\sum (D_j/C_j)/\sum (D_k/C_k) \ge 0.9$	・また 2037 年 4 月 1 日時点においては、浜岡 1,2 号炉とも [®] Co が第 1 位 であるが、D/C ([®] Co) の比率は、浜岡 1,2 号炉とも 90%を下回ること	5%, ¹⁴ C が 3%である。また ΣD/C(⁶⁰ Co, ¹³⁷ Cs, ¹⁴ C)の ΣD/C(審査 基準 32 核種)に対する比率は,浜岡 1,2 号炉とも 99%である。
$\texttt{Z} \texttt{Z} \texttt{VZ}, \; \; D_1/C_1 \ge D_2/C_2 \ge \cdots \ge D_n/C_n \ge \cdots \ge D_{33}/C_{33}$	から, 90%以上となるよう評価に用いる放射性物質を D/C の大きい順に	・また, 2037年4月1日時点で「(添付3)表-3」に示すとおり, 浜岡1
この式において、 k 、 j 、 D_k 、 C_k 、 D_j 及び C_j は、それぞれ次の事項を表	選択し, 浜岡 1 号炉では第 2 位の ¹⁴ C 及び第 3 位の ¹³⁷ Cs, 浜岡 2 号炉で	号炉は大きい順に ⁶⁰ Co が 66%, ¹⁴ C が 15%, ¹³⁷ Cs が 15%, 浜岡 2 号炉
す。	は第 2 位の ¹³⁷ Cs 及び第 3 位の ¹⁴ C を評価対象核種に加える。	は大きい順に ⁶⁰ Co が 69%, ¹³⁷ Cs が 15%, ¹⁴ C が 12%である。またΣ
k:別記第1号に掲げる 33 種類の放射性物質	・以上より, 浜岡 1,2 号炉ともに評価対象核種は, ⁶⁰ Co, ¹³⁷ Cs, ¹⁴ C の 3 核	D/C (⁶⁰ Co, ¹³⁷ Cs, ¹⁴ C) の Σ D/C (審査基準 32 核種) に対する比率は,
j : 33 種類の放射性物質のうち評価に用いる D_j/C_j の大きい n 種類の放	種とする。	浜岡 1,2 号炉とも 96%である。
射性物質		・以上より浜岡 1,2 号炉ともに評価対象核種は、60Co, ¹³⁷ Cs, ¹⁴ C の 3 核種
D _k :放射能濃度確認対象物に含まれる放射性物質 k の平均放射能濃度 [Bq/kg]		とする。
C _k :規則別表第2欄に掲げる放射性物質 k の放射能濃度[Bq/kg]		
D _j : 放射能濃度確認対象物に含まれる評価に用いる放射性物質 j の平 均放射能濃度[Bq/kg]		
Cj:規則別表第2欄に掲げる放射性物質jの放射能濃度[Bq/kg]		
(5) 以上の点について、規則第5条第1項第5号及び第2項第3号に掲げ	(上記の通り本文五に記載されている。)	(上記の通り添付書類三に記載されている。)
る事項に係る申請書及びその添付書類に記載されていること。		
なお、東京電力株式会社福島第一原子力発電所事故により大気中に放	P9	P2-7,2-8
出された放射性物質の降下物(以下「フォールアウト」という。)による	・フォールアウトは、参考文献3(「東京電力株式会社福島第一原子力発電	・フォールアウトは,参考文献 2 に基づき, ¹³⁴ Cs 及び ¹³⁷ Cs を調査対象核
影響を受けるおそれのある資材その他の物の安全規制上の取扱いについ	所事故に係るフォールアウトによる原子力施設における資材等の安全規	種とした。
ては、必要に応じて、東京電力株式会社福島第一原子力発電所事故に係	制上の取扱いについて(内規)」(経済産業省原子力安全・保安院,平成	・フォールアウトの調査方法及び評価結果は,先行事例(参考文献 1 「本文
るフォールアウトによる原子力施設における資材等の安全規制上の取扱	24・03・26 原院第 10 号)) に基づき、134Cs 及び 137Cs を調査対象核種と	図表-20~23」)のとおり、放射能濃度確認対象物の発生場所及び保管場
いについて(平成 24・03・26 原院第 10 号平成 24 年 3 月 30 日原子力安	した。	所において、全て理論検出限界計数率未満であった。以上より、フォー
全・保安院制定)を参照していること。	・フォールアウトの調査方法及び評価結果は、先行事例(参考文献 2「本文	ルアウトの影響はみられないと評価した。
	図表-20~23」)のとおり、放射能濃度確認対象物の発生場所及び保管場	P2-8
	所において、全て理論検出限界計数率未満であった。以上より、フォー	参考文献
	ルアウトの影響はみられないと評価した。	1. 浜岡原子力発電所において用いた資材等に含まれる放射性物質の放射 能濃度の測定及び評価の方法の認可申請書(浜岡原子力発電所 1 号原 子炉施設及び浜岡原子力発電所 2 号原子炉施設の廃止措置第 2 段階で 発生する解体撤去物の一部)(平成 31 年 3 月 19 日原子力規制委員会

		【添付書類の記載内容】
		認可(原規規発第1903191号) 2. 東京電力株式会社福島第一原子力発電所事故に係るフォールアウトによる原子力施設における資材等の安全規制上の取り扱いについて(内規)」(経済産業省原子力安全・保安院,平成24・03・26原院第10号)
【規則】	P13	P4-1
第六条	・汚染の程度が大きく異なる物を 1 つの測定単位とならないように、(中	・汚染の程度が大きく異なる物を 1 つの測定単位とならないように、(中
二 評価単位ごとの重量は、放射能濃度の分布の均一性及び想定される放	略),放射能濃度確認対象物の表面汚染密度が 8.0E-01Bq/cm² 未満であ	略),放射能濃度確認対象物の表面汚染密度が 8.0E-01Bq/cm ² 未満であ
射能濃度を考慮した適切なものであること。	ることを確認し、測定容器に収納する。	ることを確認し,測定容器に収納する。
【審査基準】		
3.2. 評価単位の設定		
(1)「放射能濃度の分布の均一性及び想定される放射能濃度を考慮した適切なものであること」とは、以下のことをいう。		
イ:汚染の履歴等を考慮して、汚染の程度が大きく異なると考えられる物		
を一つの測定単位としていないこと。		
ロ:評価単位内のいずれの測定単位においても、評価に用いる放射性物質]	P13	P4-1
のΣ (Dj/Cj) が 10 を越えないこと。	・「測定単位」は、Ge 半導体検出器を用いて1回の測定で評価対象核種の うち主要な核種である ⁶⁰ Co の放射能量を求め、 Σ D/C (評価対象核種) が10以下であることを判断する範囲であり、占有容積部分を仮想的に8 分割したものとする。	・「測定単位」は、Ge 半導体検出器を用いて1回の測定 ¹ で評価対象核種の うち主要な核種である ⁶⁰ Co の放射能量を求め、 Σ D/C (評価対象核種) が10以下であることを判断する範囲であり、占有容積部分を仮想的に8 分割したものとする。
ハ:10トンを超えないこと。	P13	P4-1
	・「評価単位」の重量は10トン以下とし、測定容器に収納した放射能濃度確認対象物の重量を測定することにより求める。	・「評価単位」の重量は 10 トン以下とし、測定容器に収納した放射能濃度 確認対象物の重量を重量計を用いて測定することにより求める。実際の 運用では収納重量上限の目安を 1.6 トンとする。
(2)以上の点について、規則第5条第1項第6号及び第2項第4号に掲げる	(上記の通り本文六に記載されている。)	(上記の通り添付書類四に記載されている。)
事項として、申請書及びその添付書類に記載されていること。		
【規則】 1	P14	P5-1
	・ ⁶⁰ Co はγ線を放出する放射性物質であるため、汎用の Ge 半導体検出器	・評価対象核種のうち主要核種である 60Co の放射能濃度は放射線測定装置
三 放射能濃度の決定は、放射線測定装置を用いて、放射能濃度確認対象	を用いて測定する。	を用いた測定により求める。 ⁶⁰ Co はγ線を放出する放射性物質であるた
	・「測定単位」の ⁶⁰ Co 放射能濃度は、放射線測定により「測定単位」の ⁶⁰ Co	め、汎用のGe 半導体検出器を用いて測定する。
いて測定することが困難である場合には、適切に設定された放射性物質	放射能量を求め、これを「測定単位」の重量で除して求める。	・評価対象核種(¹³⁷ Cs 及び ¹⁴ C)の放射能濃度は核種組成比法により求め
	・60Co以外の評価対象核種(¹³⁷ Cs 及び ¹⁴ C)の放射能濃度は、あらかじめ	る。 「測字単位」における60C。の故財鉄連度は、C。坐道体験山界を用いた故
できる。	代表試料の放射化学分析の結果を基に核種組成比を設定し、核種組成比と 60Co の測定結果を用いて求める。	・「測定単位」における ⁶⁰ Co の放射能濃度は、Ge 半導体検出器を用いた放 射線測定により「測定単位」の ⁶⁰ Co の放射能量を求め、これを「測定単
	・放射能濃度の決定に用いる核種組成比(¹³⁷ Cs/ ⁶⁰ Co 及び ¹⁴ C/ ⁶⁰ Co) は,	対
	分析値の統計的な分布を考慮し、算術平均値の 95%上限値で設定する。 (後略)	・評価対象核種 (¹³⁷ Cs 及び ¹⁴ C) の放射能濃度は、核種組成比法により求める。放射能濃度の決定に用いる核種組成比 (¹³⁷ Cs/ ⁶⁰ Co 及び ¹⁴ C/ ⁶⁰ Co)

¹ Ge 半導体検出器は,「測定単位」が±60 度以内の視野に含まれるように設定する。

【認可申請書(本文)の記載内容】 【法令等の要求事項 (規則・審査基準)】 【添付書類の記載内容】 は、「添付書類三」で設定した値を採用し、それぞれ分析値の検定を行い、 算術平均値の95%上限値を設定値とする。 【審査基準】 P15 P5-3 3.3. 放射能濃度の決定方法 ・⁶⁰Co の放射線測定値は、放射線測定値の統計的誤差の不確かさを考慮す ・⁶⁰Co の放射線測定値は、放射線測定値の統計的誤差の不確かさを考慮す (1)放射線測定法又は「放射性物質の組成比又は計算その他の方法」によっ るため、60Co が検出された場合、検出値の95%片側上限値(検出値+標 るため、60Co が検出された場合、検出値の95%片側上限値(検出値+標 て評価単位の D: を評価するに当たっては、以下のとおりであること。 準偏差の 1.645 倍) を放射能濃度の決定に用いる放射線測定値として採 準偏差の 1.645 倍) を放射能濃度の決定に用いる放射線測定値として採 イ:放射線測定法によって放射能濃度の決定を行う場合には、放射線測定 用する。(後略) 用する。(後略) 値、測定効率(放射線検出器の校正、測定対象物と放射線測定器との位 | P16 P6-2 置関係、測定対象物内部での放射線の減衰等)、測定条件(実際の測定条 ・Ge 半導体検出器の放射線測定値及び検出限界値を得るための条件とし ・測定条件として、測定場所周辺のバックグラウンドの状況、放射能換算 件と測定効率を設定した条件との違い、測定場所周辺のバックグラウン て「測定場所周辺における「測定単位」以外の ⁶⁰Co のγ線の計数率(以 係数、検出限界値、測定時間、点検・校正及び不確かさを考慮する。 ドの変動等)、データ処理(放射能濃度換算等)に起因する不確かさに関 下,「ピーク BG | という。) | を考慮する。 ・測定場所周辺のバックグラウンドの影響を考慮する必要があるか確認す する適切な説明がなされていること。 ・測定場所周辺のバックグラウンドの影響を考慮する必要があるか確認す るために、各測定期間の測定開始前にピーク BG 測定を実施し、ピーク るために、各測定期間²の測定開始前にピーク BG 測定を実施し、ピーク BG の有無を確認する。 BG の有無を確認する。 P18 P6-10.6-11 ・測定条件の不確かさの要因として、放射能換算係数の不確かさを考慮す ・測定条件の設定に関する不確かさとして、放射能換算係数を考慮する。 ・放射能換算係数の不確かさとして ・放射能換算係数の不確かさは を保守的に考慮して設定する。 を保守的に考慮して設定する。 ロ:核種組成比法によって放射能濃度の決定を行う場合には、核種組成比 | P11 P3-5 がおおむね均一であることが想定される領域から、ランダムに、又は保 ・先行事例(参考文献2「本文図表-15」)では、浜岡1,2号炉の解体撤去 ・先行事例の放射化学分析値を基に設定した値(137Cs/60Co 及び14C/60Co) 守性を考慮して選定された十分な数のサンプルの分析値に基づいて核種 物を対象とし、放射化計算法及び放射化学分析法を用いて審査基準32核 は、分析値の統計的な分布を考慮し、算術平均値の95%上限値である。 種の放射能濃度を設定した。放射能濃度を放射化計算法によって算出す 組成比が設定されていること、クリアランスレベル近傍の放射能濃度に 具体的には、 $\lceil (添付3)$ 表-2|に示すとおり、 対応する放射能濃度の基準核種が含まれているサンプルを含んでいるこ る場合は浜岡1.2号炉の運転履歴等を考慮した条件で放射化計算を行い, と及び統計処理(例えば有限個のサンプル分析値からの母集団パラメー 放射化学分析法によって設定する場合は低レベル放射性廃棄物のスケー タの推定)の妥当性に関する合理的な説明がなされていること、並びに リングファクター設定のための分類を参考に浜岡 1,2 号炉の原子炉系, の検定を行い、適合する統計的な分布の算術平均値の95%上限値を求め、 タービン系、廃棄物処理系から試料を選定し、放射化学分析を行った。 統計処理等に起因する不確かさに関する適切な説明がなされているこ 放射能濃度の設定に用いることにより不確かさを考慮する。 と。 本申請の放射能濃度確認対象物も浜岡 1.2 号炉の解体撤去物であること P5-4 から、先行事例の放射化計算結果及び放射化学分析結果を適用できると ・放射能濃度の決定に用いる核種組成比は、分析値の統計的な分布を考慮 し、算術平均値の95%上限値とする。この設定方法は、評価対象核種の 判断した。(後略) P15 選択に用いる放射化学分析値の整理方法と同様であり、詳細は「添付書 ・核種組成比(137Cs/60Co 及び 14C/60Co) の不確かさの考慮として、分析 類三 に示す。 値の算術平均値の95%上限値を放射能濃度の決定に用いる核種組成比と

枠囲みの内容は営業秘密に係る事項のため、公開できません

する。

²至近の測定から1週間以上測定しない場合,新たな測定期間とする。

【法令等の要求事項 (規則・審査基準)】	【認可申請書(本文)の記載内容】	【添付書類の記載内容】
 ハ:放射化計算法によって放射能濃度の決定を行う場合には、使用実績のある放射化計算コードが用いられ、計算に用いた入力パラメータ(親元素の組成、中性子束、照射時間等)の妥当性及びサンプル分析値との比較結果等による計算結果の妥当性に関する合理的な説明がなされていること、並びに入力パラメータの不確かさに関する適切な説明がなされていること。 ニ:平均放射能濃度法によって放射能濃度の決定を行う場合には、サンプル分析値に基づいて評価単位での放射性物質濃度を適切に評価できるよう代表性を考慮して十分な数のサンプルの採取箇所が選定されていること及び統計処理(例えば有限個のサンプル分析値からの母集団パラメータの推定)の妥当性に関する合理的な説明がなされていること、並びに統計処理等に起因する不確かさに関する適切な説明がなされていること。 		
て。 (2)クリアランスレベル以下であることの判断に当たっては、上記(1)に掲げる不確かさを考慮した上で、評価単位における評価に用いる放射性物質の $\Sigma(D_i/C_i)$ の信頼の水準を片側 95%としたときの上限値 (以下「95%上限値」という。)が 1 を超えないことを確認すること。これは、上記(1)のイからニまでの方法 (D_i の評価に用いた方法に限る。)に起因する不確かさがそれぞれ独立であるとしてモンテカルロ計算等で評価することや、これらの不確かさを考慮した 95%上限値を個別に求めておくことにより評価することができる。		P5-3 ・ ⁶⁰ Co の放射線測定値は、放射線測定値の統計的誤差の不確かさを考慮するため、 ⁶⁰ Co が検出された場合、検出値の 95%片側上限値(検出値+標準偏差の 1.645 倍)を放射能濃度の決定に用いる放射線測定値として採用する。(後略) P5-4 ・ 放射能濃度の決定に用いる核種組成比は、分析値の統計的な分布を考慮し、算術平均値の 95%上限値とする。この設定方法は、評価対象核種の選択に用いる放射化学分析値の整理方法と同様であり、詳細は「添付書類三」に示す。 P6-10,6-11 ・ 測定条件の不確かさの要因として、放射能換算係数の不確かさを考慮する。 ・ 放射能換算係数の不確かさは 「を保守的に考慮して設定する。
(3) 放射能濃度確認対象物及びその汚染の状況に応じて、以下のとおりであること。 イ:放射能濃度確認対象物の汚染が表面汚染のみであって厚い部材の場合には、決定される放射能濃度が過小評価とならないように、適切な厚さ (例えば建屋コンクリートの場合は5cm程度)に応じた当該対象物の重	・汚染の程度が大きく異なる物を1つの測定単位とならないように、「本文九」に記載のとおり、放射能濃度確認対象物の表面汚染密度が8.0E-01Bq/cm²未満であることを確認し、測定容器に収納する。	P4-1 ・汚染の程度が大きく異なる物を1つの測定単位とならないように、「本文九」に記載のとおり、放射能濃度確認対象物の表面汚染密度が8.0E-01Bq/cm²未満であることを確認し、測定容器に収納する。 P7-1

・放射能濃度確認対象物を測定容器へ収納してから放射能濃度の測定まで

の間及び測定から国の確認が終了するまでの間に測定容器が開放されて

いないことを封印により確認することで、異物の混入を防止する。

・放射能濃度確認対象物を測定容器へ収納してから放射能濃度の測定まで

の間及び測定から国の確認が終了するまでの間に測定容器が開放されて

量をもとに放射能濃度の決定が行われていること。

【法令等の要求事項(規則・審査基準)】	【認可申請書(本文)の記載内容】	【添付書類の記載内容】
ロ:放射能濃度確認対象物が被覆付きケーブルの場合であって、被覆部と 芯線部を分別しない場合には、過小評価とならないように放射能濃度の 決定が行われていること。		いないことを封印により確認することで、異物の混入を防止する。 P添付図表 7-1 再利用等の都合により、必要に応じて切断する場合もある。その際、汚染が有意な部分のみを切断して扱うことはない。
(5) 以上の点について、規則第5条第1項第7号並びに第2項第2号及び 第5号に掲げる事項として、申請書及びその添付書類に記載されている こと。	(上記の通り本文七に記載されている。)	(上記の通り添付書類五に記載されている。)
【規則】 第六条 四 放射線測定装置の選択及び測定条件の設定は、次によるものであること。 イ 放射線測定装置は、放射能濃度確認対象物の形状、材質、汚染の状況等に応じた適切なものであること ロ 放射能濃度の測定条件は、第二条に規定する基準を超えないかどうか	 P16 ・放射能濃度の測定に使用する放射線測定装置は、放射能濃度確認対象物の形状、材質、汚染の状況等に応じた適切なものを選択し、測定効率が適切に設定されている放射線測定装置とする。 	P6-1 ・放射能濃度の測定に使用する放射線測定装置は、放射能濃度確認対象物の形状、材質、汚染の状況等に応じた適切なものを選択し、測定効率が適切に設定されている放射線測定装置とする。
を適切に判断できるものであること。 【審査基準】 3.4. 放射線測定装置の選択及び測定条件 (1)「放射能濃度確認対象物の形状、材質、汚染の状況等に応じた適切なもの」については、以下のとおりであること。 イ:放射能濃度の測定に用いる放射線測定装置については、測定効率が適切に設定されていること。	P16 ・放射能濃度の測定に使用する放射線測定装置は、放射能濃度確認対象物の形状、材質、汚染の状況等に応じた適切なものを選択し、測定効率が適切に設定されている放射線測定装置とする。	P6-1 ・放射能濃度の測定に使用する放射線測定装置は、放射能濃度確認対象物の形状、材質、汚染の状況等に応じた適切なものを選択し、測定効率が適切に設定されている放射線測定装置とする。
(2)「第二条に規定する基準を超えないかどうかを適切に判断できるもの」については、以下のとおりであること。 イ:放射能濃度の測定条件について、クリアランスレベル以下であることの判断が可能となるよう検出限界値が設定されていること、また、測定場所周辺のバックグランドの状況、放射能濃度確認対象物の遮蔽効果等が考慮されていること。	P18	P6-9 ・Ge 半導体検出器の検出限界値は、計数率の統計的誤差を考慮しても D/C (⁶⁰ Co)が1以下であることの判断が可能となるよう5.0E-02Bq/g(⁶⁰ Co)以下とする。 ・検出限界値 (Bq/g) は、日本原子力学会標準を参考に (6-4) 式により、検出限界計数率 (s ⁻¹) に相当する放射能量 (Bq) を放射能換算係数 (Bq/s ⁻¹) から求め、「測定単位」の重量 (g) で除して放射能濃度 (Bq/g)として求める。その際、バックグラウンドの変動及び遮蔽の影響を考慮する。(参考文献1、5)

【法令等の要求事項(規則・審査基準)】	【認可申請書(本文)の記載内容】	【添付書類の記載内容】
		$A_d = CF_{Ge} \cdot \frac{k^2}{t_T} + \sqrt{\left(\frac{k^2}{t_T}\right)^2 + 4(1 - k^2 r_2^2)k^2 \left[\frac{n_B + m_{CO}}{t_T} + \sigma_B^2 + \sigma_{mcO}^2\right]} \cdot \frac{1}{W}$ ここで、 A_d : 検出限界値(Bq/g) k : 定数($k=3$)($-$) t_T : 測定時間(s) n_B : バックグラウンド計数率(s^{-1}) σ_B : n_B の標準誤差(s^{-1}) m_{CO} : ピーク BG (s^{-1}) σ_{mco} : m_{Co} の標準誤差(s^{-1}) CF_{Ge} : 放射能換算係数(Bq/s^{-1}) t_T : 放射能換算係数の相対誤差(t_T) t_T : 放射能換算係数の相対誤差(t_T) t_T : 以射能換算係数の相対誤差(t_T)
ロ:測定単位の放射能濃度を測定した結果、検出限界値以下である場合に は、当該測定単位の放射能濃度の値が検出限界値と同じであるとみなし ていること。	P18 ・「測定単位」の放射能濃度を測定した結果, 検出限界値未満である場合は, 当該「測定単位」の放射能濃度の値が検出限界値と同じであるとみなす。	P6-9 ・「測定単位」の放射能濃度を測定した結果、検出限界値未満である場合には、当該「測定単位」の放射能濃度の値が検出限界値と同じであるとみなす。
(3)以上の点について、規則第5条第1項第8号及び第2項第6号に掲げる 事項として、申請書及びその添付書類に記載されていること。	(上記の通り本文八に記載されている。)	(上記の通り添付書類六に記載されている。)
 【規則】 第六条 五 放射能濃度確認対象物について、異物の混入及び放射性物質による汚染を防止するための適切な措置が講じられていること 【審査基準】 3.5. 異物の混入等の防止措置 (1)「異物の混入及び放射性物質による汚染を防止するための適切な措置が講じられていること」とは、以下のとおりであること。 イ:放射能濃度確認対象物については、容器等に収納する場合は、当該容器等に封入し、施設内のあらかじめ定められた放射性物質による追加的な汚染のない場所で保管していること。また、容器等に収納しない場合は、放射性物質による追加的な汚染のない保管場所で保管し、当該保管場所の出入口を施錠していること。 	・放射能濃度確認対象物を測定容器へ収納してから放射能濃度の測定までの間及び測定から国の確認が終了するまでの間に測定容器が開放されていないことを封印により確認することで、異物の混入を防止する。	 P7-1 ・放射能濃度確認対象物を測定容器へ収納してから放射能濃度の測定までの間及び測定から国の確認が終了するまでの間に測定容器が開放されていないことを封印により確認することで、異物の混入を防止する。
ロ:原子力事業者等の放射能濃度確認を担当する部署の者及び当該原子力 事業者等から承認を受けた者以外の者が上記イの保管場所に立ち入らな いようにするための制限を行っていること。	P19 ・放射能濃度確認対象物の保管場所である「保管・収納エリア」,「測定待ちエリア」,「測定エリア」及び「確認待ちエリア」(以下,「保管・収納エリア等」という。)では,異物の混入及び放射性物質による追加汚染を防止するため以下の措置を講じる。	承認を受けた者以外の者が立ち入らないように制限する。具体的には、

【法令等の要求事項 (規則・審査基準)】	【認可申請書(本文)の記載内容】	【添付書類の記載内容】
ハ:放射能濃度の測定後の放射能濃度確認対象物に測定前の放射能濃度確認対象物等が混入しないように措置を講ずること。万一、異物が混入した場合にもその状況を確認することができるよう、測定時に放射能濃度確認対象物をモニター撮影する等の措置を講ずること。	・「保管・収納エリア等」では、放射能濃度確認を担当する部署の責任者の 承認を受けた者以外の者が立ち入らないように制限する。具体的には、 立ち入りを制限のためにエリアの区画及び標識の掲示を行い、出入口を 施錠管理する。 P19 ・放射能濃度確認対象物を測定容器へ収納してから放射能濃度の測定まで の間及び測定から国の確認が終了するまでの間に測定容器が開放されて いないことを封印により確認することで、異物の混入を防止する。 P20 ・(前略)。また、万一、異物が混入した場合にもその状況を確認すること ができるよう測定時に測定容器内を写真撮影するとともに、測定後は再 度測定容器の上蓋を取り付け、封印をすることで、異物の混入を防止す る。	P7-1 ・放射能濃度確認対象物を測定容器へ収納してから放射能濃度の測定までの間及び測定から国の確認が終了するまでの間に測定容器が開放されていないことを封印により確認することで、異物の混入を防止する。
ニ:放射能濃度の測定後から原子力規制委員会の確認が行われるまでの間 の原子力事業者等の管理体制が厳格な品質管理の下になされること等の 措置を講ずること。		
	 P20 ・「測定エリア」は、汚染のおそれのない管理区域とし放射性物質による追加的な汚染のない場所とする。(後略) P19 ・建屋内(汚染のおそれのある管理区域)から搬出した以降は、追加的な汚染のおそれのある場所を通過しないよう運搬経路を選定する。 	P7-1
(2)以上の点について、規則第5条第1項第9号及び第2項第7号に掲げる 事項として、申請書及びその添付書類に記載されていること。	(上記の通り本文九に記載されている。)	(上記の通り添付書類七に記載されている。)
【審査基準】 4. 放射能濃度の測定及び評価のための品質保証 (1)放射能濃度確認対象物がクリアランスレベル以下であることを確認する上で、原子力事業者等による放射能濃度の測定及び評価に係る業務が高い信頼性をもって実施され、かつ、その信頼性が維持されていることが重要であることから、上記3. の測定及び評価の方法については、その測定及び評価の業務に係る品質保証の体制が、以下のとおりであること。 イ: 放射能濃度の測定及び評価並びに放射能濃度確認対象物の保管に関する業務を統一的に管理する者を定め、その責任を明らかにしていること。	P22 ・品質保証体制は社長をトップマネジメントとして構築し、体系化した組織及び文書類により、放射能濃度の測定及び評価のための一連の業務に係る計画、実施、評価及び改善のプロセスを実施するための品質保証計画を定める。	織及び文書類により、放射能濃度の測定及び評価のための一連の業務に係る計画、実施、評価及び改善のプロセスを実施するための品質保証計画を定める。 ・放射能濃度の測定及び評価並びに放射能濃度確認対象物の保管管理に関する業務を統一的に管理する者を、浜岡原子力発電所原子炉施設保安規定に定め組織の中で明確にする。
ロ:放射能濃度の測定及び評価に係る業務は、それぞれの業務に必要な知 識及び技術 を習得した者に行わせているとともに、当該業務を実施する		P8-1

【法令等の要求事項 (規則・審査基準)】	【認可申請書(本文)の記載内容】	【添付書類の記載内容】
上で必要な定期的な 教育及び訓練についてのマニュアル等を定め、これ	織及び文書類により,放射能濃度の測定及び評価のための一連の業務に	織及び文書類により,放射能濃度の測定及び評価のための一連の業務に
に基づいて教育及び訓練を実施していることが確認できる体制が定めら	係る計画、実施、評価及び改善のプロセスを実施するための品質保証計	係る計画,実施,評価及び改善のプロセスを実施するための品質保証計
れていること。	画を定める。	画を定める。
		・放射能濃度の測定及び評価並びに放射能濃度確認対象物の保管管理に関
		する業務に必要な教育・訓練の実施事項を社内規定に定めて明確にし,
		当該業務を実施する者への教育・訓練の実施及び技能の維持を図る。
		・放射能濃度の測定及び評価に必要な技能を習得した者が業務を実施する
		よう社内認定を行う。
ハ:放射線測定装置の点検及び校正についてのマニュアル等を定め、これ	P22	P8-1
に基づいて 点検及び校正が行われていることが確認できる体制が定め	・品質保証体制は社長をトップマネジメントとして構築し、体系化した組	・品質保証体制は社長をトップマネジメントとして構築し、体系化した組
られていること。	織及び文書類により,放射能濃度の測定及び評価のための一連の業務に	織及び文書類により,放射能濃度の測定及び評価のための一連の業務に
	係る計画、実施、評価及び改善のプロセスを実施するための品質保証計	係る計画,実施,評価及び改善のプロセスを実施するための品質保証計
	画を定める。	画を定める。
		・放射能濃度の測定及び評価に使用する放射線測定装置は、定期的な点検・
		校正を社内規定に定め実施する。
ニ:放射能濃度確認対象物とそれ以外の廃棄物が混在することのないよう	P22	P8-1
分別して管理する体制が定められていること。	・放射能濃度確認対象物の発生から分別,放射能濃度の測定及び評価,保	・放射能濃度確認対象物の発生から分別,放射能濃度の測定及び評価,保
	管管理,搬出,これら一連の管理に関する記録の作成及び保存並びに不	管管理、搬出、これら一連の管理に関する記録の作成及び保存並びに不
	適合発生時の処置を行う際には、品質保証活動を実施し、放射能濃度の	適合発生時の処置を行う際には,以下の品質保証活動を実施し,放射能
	測定及び評価並びに放射能濃度確認対象物の保管管理に関する業務の信	濃度の測定及び評価並びに放射能濃度確認対象物の保管管理に関する業
	頼性を確保する。	務の信頼性を確保する。
		・放射能濃度確認対象物とそれ以外が混在することがないように、放射能
		濃度確認対象物の識別を社内規定に定め実施する。
(2)以上の点について、規則第5条第2項第8号に掲げる事項として、申請	(上記の通り本文十に記載されている。)	(上記の通り添付書類八に記載されている。)
書の添付書類に記載されていること。		