5. 波圧評価

5.1. 波圧試験

5.1.1. 試験概要

波圧試験は、巻き上がった底質の含有による流体の密度および粘性等の変化が、防潮堤に作用 する波力に与える影響を検討することを目的に実施した.

本試験は、沖で発生した津波の第一波により底泥が巻き上がり、護岸前面の流体密度が高くなった場所に津波の第二波が来襲し、護岸を越流して防潮堤に黒い津波が衝突する状況を想定している.そこで、本試験装置は、2次元開水路内に仕切板を設けて沖側に清水・陸側に濁水を溜め、 津波造波時に仕切板を引き抜くことで清水の津波が濁水に伝播し、防潮堤に衝突する機構とした. 津波の種類は波形の異なる2ケース、濁水の密度ρはシリカフュームの混入量を調整することで 3ケース (ρ=1.00, 1.05, 1.10g/cm³)を設定した.なお、仕切板の引上げによる影響を確認するため、 密度 ρ=1.00g/cm³については仕切板の引上げ有無2ケースを実施した.

本試験は、以下の手順で実施した.

①粘性試験:設定した濁水の密度3ケースについて、レオメーターにより粘性を確認した.

- ②波検定:造波装置の各バルブを開放するタイミングを変えて波形を調整し,津波2ケースを 決定した.
- ③通過波試験:防潮堤模型が無い状態で,防潮堤位置における流速をプロペラ式流速計により 測定した.

④衝突試験:津波波形・濁水密度を変化させ,防潮堤に作用する波力等を計測した.本試験ケースとして,同条件で各15回行い,全120ケースを実施した.

以降に詳細を示す.

5.1.2. 試験方法

(1) 試験装置

波圧試験では、図-5.1 に示す2次元開水路(幅0.19m×高さ0.34m×延長約6.3m)内に、高さ0.03m,擦付け勾配1:10の地形と、その途中に仕切板を設置した.陸側端部には、護岸模型(高さ0.06m)と汀線から陸側0.3mの位置に壁模型を設置した.護岸前面の水深は0.05mとした.仕切板より沖側に流体(1)として清水(水道水)、陸側に流体(2)として底質模型を水道水に混ぜて所定の密度にした濁水を溜めた.沖側端部には、チャンバー式の津波造波装置を設置し、装置内部に清水を溜めて上面のバルブ開放により津波を発生させた.なお、津波波形の調整は、造波装置内の初期水位や各バルブ(8個)の開放のタイミングで実施した.衝突試験の際は、清水による津波を造波してから1秒後に仕切板を機械的に自動で引き上げ、濁水に津波を伝播し、陸上の壁模型に衝突させた.

図-5.1 波圧試験装置 概要図

(2) 底質模型

底質模型は、材料としてシリカフュームを使用し、流体密度ρの異なる3ケース(ρ=1.00, 1.05, 1.10g/cm³)を設定した.なお、試験前に別途バケツ等で所定の流体密度に調整した濁水を作製し、 津波造波直前に再撹拌して水路内に溜めて、衝突試験を実施した.

(3) 計測項目

① 水位・流速

図-5.1 に示す位置において,容量式波高計(7箇所:H1~H7),電磁流速計(2箇所:Vx1,Vx2) とプロペラ流速計(1箇所:Vx7)により計測した.

波圧・波力

図-5.2 (a)の通り, 波圧は壁模型の前面に設置した圧力計, 波力は背面に設置したロードセルに より計測した. なお, 圧力計は図-5.2 (b)に示す鉛直方向 10~20cm 間隔で 12 箇所にエスエスケイ 社製の超小型圧力計(図-5.2 (c); P310-02, 計測限界 0.2kgf/cm²)を設置した. また, ロードセル はケネック社製の水中 6 分力計(図-5.2 (d); LB-120; 完全防水型, 計測限界 50kg)を使用し, ノ イズ除去のため 30Hz のローパスフィルタを設定した.

③ 波形変化

水路側面から高速度カメラにより、陸上護岸~壁模型の範囲を撮影した.

(a) ロードセル・圧力計の設置位置

(b) 圧力計設置位置

(4) 試験手順

① 粘性試験

レオメーターによる二重円筒型粘度計により,底質模型を含む濁水の粘度/せん断応力を計測し, 流体(2)の密度3ケースを設定した.

2 波検定

図-5.1 (a)のセットアップとし、仕切板・壁模型・陸上護岸が無い状態で水路内に流体(1)(清水)のみを溜め、津波造波装置内の初期水位を一定に各バルブの開放のタイミングを変えて波形を調整し、津波2ケースを決定した.

③ 通過波試験

図-5.1(b)のセットアップとし、仕切板・壁模型が無い状態で水路内に流体(1)(清水)のみを溜め、②で決定した津波を造波し、壁模型位置の流速を計測してフルード数を求めた.

④ 衝突試験

図-5.1 (c)のセットアップとし、仕切板より沖側に流体(1)(清水),陸側に流体(2)(密度を調整 した濁水)を溜め、津波を壁模型に衝突させた.その際の波圧の鉛直分布および波力を計測し、 波形変化や壁模型との衝突状況を撮影した.

(5) 試験ケース

波圧試験(衝突試験)のケースとして,表-5.1に示す.なお,同一条件での試験回数は15回とし,合計120ケースを実施した.ここで,津波波形は2ケース(W1,W2),流体(2)の密度は3ケース(ρ =1.00g/cm³, ρ =1.05g/cm³, ρ =1.10g/cm³)とし,密度 ρ =1.00g/cm³については仕切板の有無2ケースを設定した.

波圧試験(衝突試験)のケース一覧を表-5.2,表-5.3に示す.

流体(2)			仕切板の	津波波形		
材料	記号	密度[g/cm ³]	有無	W1	W2	
シリカフューム	r100	1.00	N:無	0	0	
		1.00	Y:有	0	0	
	r105	1.05	有	0	0	
	r110	1.10	有	0	0	

表-5.1 波圧試験(衝突試験)ケースの設定

※〇:採用8ケース×繰返し15回=全120ケース

No	ケースタ	津波	密度	仕切板の有無	試験
110.			[g/cm³]	(Y, N)	回数
1	W1_r100N_01				1
2	W1_r100N_02				2
3	W1_r100N_03				3
4	W1_r100N_04				4
5	W1_r100N_05				5
6	W1_r100N_06				6
7	W1_r100N_07				7
8	W1_r100N_08			N	8
9	W1_r100N_09				9
10	W1_r100N_10				10
11	W1_r100N_11				11
12	W1_r100N_12				12
13	W1_r100N_13	-			13
14	W1_r100N_14	-			14
15	W1_r100N_15	-	1.00		15
16	W1_r100Y_01				1
17	W1_r100Y_02	4			2
18	WI_rIUUY_03	4			3
19	WI_rI00Y_04	4			4
20		4			5
		4			0 7
22	WI_rI00V_00			v	0
23	W1_1007_08	-			0
25	W1_r100Y_10	-			10
26	W1 r100Y 11				11
27	W1 r100Y 12				12
28	W1 r100Y 13				13
29	W1_r100Y_14				14
30	W1_r100Y_15	W/1			15
31	W1_r105_01	**1			1
32	W1_r105_02				2
33	W1_r105_03	-			3
34	W1_r105_04				4
35	WI_r105_05	-			5
30	WI_rI05_00	-			0
20	W1_r105_07		1.05	(Y)	0
20	W1_r105_08	-	1.00	(1)	0 0
40	W1 r105 10	1			10
41	W1 r105 11	1			11
42	W1 r105 12	1			12
43	W1_r105_13]			13
44	W1_r105_14]			14
45	W1_r105_15				15
46	W1_r110_01	1			1
47	W1_r110_02	4			2
48	W1_r110_03	4			3
49	W1_r110_04	4			4
50	W1_r110_05	4			5
51	W1_r110_06	4			6
52	W1_r110_07	1	1 10	(\mathbf{v})	/
53	W1_r110_08	1	1.10	(1)	<u>გ</u>
54	W1 r110 10	1			9 10
56	W1 r110 11	1			11
57	W1 r110 12	1			12
58	W1 r110 13	1			13
59	W1 r110 14	1			14
60	W1 r110 15	1			15

No.	ケース名	津波	密度	仕切板の有無	試験
			[g/cm°]	(Y, N)	回致
61	W2_r100N_01				1
62	W2_r100N_02				2
64	W2_r100N_03				3
65	W2_r100N_04				<u>4</u> 5
66	W2_r100N_06				6
67	W2_1100N_07				7
68	W2 r100N 08			N	8
69	W2 r100N 09				9
70	W2_r100N_10				10
71	W2_r100N_11				11
72	W2_r100N_12				12
73	W2_r100N_13				13
74	W2_r100N_14				14
75	W2_r100N_15		1.00		15
76	W2_r100Y_01				1
1/	W2_r100Y_02				2
70	W2_r100Y_03				3
80	W2_r100Y_04				<u>4</u> 5
81	W2_r1001_05				6
82	W2_1100Y_00				7
83	W2 r100Y 08			Y	8
84	W2 r100Y 09				9
85	W2_r100Y_10				10
86	W2_r100Y_11				11
87	W2_r100Y_12				12
88	W2_r100Y_13				13
89	W2_r100Y_14				14
90	W2_r100Y_15	W2			15
91	W2_r105_01				1
92	W2_r105_02				2
93	W2_r105_03				3
95	W2_1105_04 W2_r105_05				5
96	W2_1105_06				6
97	W2 r105 07				7
98	W2_r105_08		1.05	(Y)	8
99	W2_r105_09				9
100	W2_r105_10				10
101	W2_r105_11	1			11
102	W2_r105_12	4			12
103	W2_r105_13	{			13
104	W2_r105_14				14
105	W2_r105_15	4		 	15
100	W2_TITO_01	1			ן ס
107	$W2_r110_02$ W2_r110_03	1			2
100	W2 r110 04	1			4
110	W2 r110 05	1			5
111	W2_r110 06	1			6
112	W2_r110_07]			7
113	W2_r110_08		1.10	(Y)	8
114	W2_r110_09				9
115	W2_r110_10	ļ			10
116	W2_r110_11	ļ			11
117	W2_r110_12	ļ			12
118	W2_r110_13	{			13
119	W2_r110_14	4			14
120	W2_r110_15				15

5.1.3. 粘性試験結果

波圧試験に用いた底質材料のシリカフュームについて含水比(密度)を変化させ、二重円筒型 粘度計により粘性を確認した.得られた結果を図-5.3に示す.なお、各試験結果は図-5.4~図-5.7 に示す.

図-5.3 二重円筒型粘度計による試験結果: 濁水密度に対する粘度

図-5.4 二重円筒型粘度計による試験結果(シリカフューム, w=323.4%, p=1.15g/cm³)

図-5.5 二重円筒型粘度計による試験結果(シリカフューム, w=502.0%, p=1.10g/cm³)

図-5.6 二重円筒型粘度計による試験結果(シリカフューム, w=1017.8%, p=1.05g/cm³)

図-5.7 二重円筒型粘度計による試験結果(清水, $\rho=1.00g/cm^3$)

5.1.4. 波検定結果

波検定として、津波造波装置のバルブを開放するタイミングを調整し、津波波形を2種類 (W1, W2)設定した(図-5.8). ここで,津波 W1 は全バルブを一斉に開放して段波状の波とし,津波 W2 は各バルブを連続的に開放して徐々に水位が高くなる波とした.

5.1.5. 通過波試験結果

通過波試験の結果として,壁模型位置における水位 H7・流速 Vx7・フルード数の各時系列を図 - 5.9,図-5.10 に示す.なお,フルード数の時系列については,水位が 0.001m 以下もしくは流速 が負の値の際にはフルード数 *F_r*=0とした.

通過波の最大浸水深・最大流速・最大フルード数を表-5.4,表-5.5 にそれぞれ示す.得られた 結果から,W1,W2ともにフルード数は2程度であると分かった.

津波	No	最大演	曼水深	最大流道	惠 [m/s]	最大フル・	ード数[-]	フルード数の
ケース	NO.	[m]	[s]	[m/s]	[s]	[-]	[s]	平均值[-]
	1	0.047	6.42	1.084	4.19	2.20	4.16	
	2	0.045	6.52	1.156	4.22	2.34	4.17	
W1	3	0.049	6.41	1.056	4.23	1.91	4.23	2.17
	4	0.046	6.41	1.109	4.25	2.35	4.28	
	5	0.046	6.67	1.008	4.26	2.06	4.26	

表-5.4 通過波の最大浸水深・最大流速・最大フルード数(津波 W1)

表-5.5 通過波の最大浸水深・最大流速・最大フルード数(津波 W2)

津波	No.	最大演	 浸水深	最大流道	恵[m/s]	最大フル・	ード数[-]	フルード数の
ケース		[m]	[s]	[m/s]	[s]	[-]	[s]	平均值[-]
	1	0.045	9.42	1.076	6.46	1.81	6.48	
W2	2	0.045	9.2	1.053	6.46	1.89	6.47	
	3	0.042	9.05	1.043	6.58	2.47	2.46	1.98
	4	0.047	9.07	1.080	6.6	1.89	6.43	
	5	0.047	9.09	1.070	6.45	1.85	6.46	

5.1.6. 衝突試験結果

各ケースの衝突試験を繰返し15回実施した結果として、沖側水位H1・護岸汀線水位H6・壁模型に作用する波力を図-5.11~図-5.18に示す.また、各ケースの衝突試験15回分について、H4の最大水位・H6およびH7における津波の到達時間・水中6分力計および圧力計による最大波力の結果を表-5.6および表-5.7、それらの平均値・最大値・最小値を表-5.8に示す.また、各ケース(津波W1,W2・流体(2)密度・仕切板有無)の代表例を図-5.19~図-5.26に示す.ここで、各計測位置(H1~H7)の水位時系列・水中6分力計による波力Fと圧力計による波力 ΣpA の比較・圧力計による波力最大(ΣpA_{max})時の波圧分布と壁模型付近のスナップショットについて示した.表-5.8および図-5.19~図-5.22より、流体(2)密度 ρ =1.00g/cm³のケースにおいて仕切板の有無(Y,N)による結果を比較すると、最大波力に相違はあるものの津波W1,W2ともに衝撃波力のため計測結果のばらつきと考えられるため、仕切板の影響はほとんどないと考えられる.

本試験では,壁模型前面から3 cm 沖側,護岸天端から1 cm 上方の位置で津波衝突時に濁水を 採取し,4.2巻き上げ試験と同様に,表-5.9の通り濁水密度を求めた.得られた結果から,陸上 護岸を遡上する津波の濁水密度は,設定密度(*p*=1.05,1.10g/cm³)よりも95%程度に低下していた. これは,津波造波前に護岸前面に溜めた濁水中の底質模型(シリカフューム)が沈降して密度の 鉛直分布が生じていたためと考えられる.

図-5.11 衝突試験結果ばらつき確認(津波 W1,流体(2)密度 p=1.00g/cm³,仕切板なし)

図-5.12 衝突試験結果ばらつき確認(津波 W2,流体(2)密度 p=1.00g/cm³,仕切板なし)

図-5.13 衝突試験結果ばらつき確認(津波 W1,流体(2)密度 p=1.00g/cm³,仕切板あり)

図-5.14 衝突試験結果ばらつき確認(津波 W2,流体(2)密度 p=1.00g/cm³,仕切板あり)

津波	密度 「m / n m ³ 1	仕切板 (X N)	試験	採用	最大水位 [m]	到達時間 [s]		最大波力 [N]		
	[g/cm ⁻]	(1,1)	回致	INO.	H4	H6	H7	F	ΣpA	
			1	1	0.051	3.64	3.93	11.749	10.874	
			2	2	0.049	3.63	3.95	10.922	13.120	
			3	3	0.047	3.64	3.94	13.484	9.752	
津波 密度 [g/cm ³] 1.00			4	4	0.048	3.64	3.93	13.756	13.257	
			5	5	0.048	3.61	3.95	10.061	10.281	
			6	6	0.049	3.64	3.95	9.295	10.117	
		7	7	0.048	3.64	3.94	16.983	11.234		
		Ν	8	8	0.047	3.63	3.94	13.941	16.541	
			9	9	0.048	3.66	3.96	13.008	14.852	
			10	10	0.049	3.63	3.94	9.755	10.432	
			11	11	0.048	3.64	3.98	12.306	12.672	
			12	12	0.050	3.64	3.96	13.462	11.060	
			13	13	0.049	3.63	3.96	10.651	11.077	
			14	14	0.051	3.63	3.94	13.367	13.581	
	1.00		15	15	0.044	3.64	3.98	16.179	10.355	
	1.00		1	2	0.048	3.62	3.92	11.998	12.273	
			2	3	0.048	3.62	3.94	10.828	12.745	
			3	4	0.045	3.62	3.91	9.658	11.557	
			4	5	0.049	3.59	3.91	13.775	12.567	
			5	6	0.047	3.58	3.89	10.629	12.945	
			6	7	0.047	3.60	3.90	10.672	11.961	
			7	9	0.049	3.63	3.95	10.675	11.569	
		Y	8	10	0.049	3.59	3.92	11.889	15.123	
			9	11	0.049	3.60	3.93	13.840	16.000	
			10	12	0.046	3.61	3.91	11.968	12.831	
			11	13	0.050	3.61	3.93	14.384	15.615	
			12	14	0.050	3.58	3.90	12.653	16.061	
			13	15	0.050	3.61	3.93	11.206	11.452	
			14	16	0.045	3.59	3.91	13.382	15,905	
			15	21	0.048	3.64	3.96	10.491	13.532	
W1	-		1	3	0.046	3.64	3.99	11.330	10.388	
				2	5	0.042	3.63	3.98	7.613	8.828
			3	6	0.041	3.66	3.95	8.850	8.982	
			4	7	0.045	3.68	4 00	9 208	9 231	
			5	8	0.045	3 70	4 00	7 329	8 002	
			6	9	0.042	3.68	3.97	8 218	9 783	
			7	10	0.042	3.67	4.01	10.036	9,214	
	1.05	_	8	11	0.044	3.66	3.97	8 313	9 948	
	1.00		9	12	0.042	3.69	3.99	7 852	11 702	
			10	13	0.043	3.69	4 00	8 450	11.584	
			10	10	0.044	3.68	3.98	7 335	9 427	
			12	15	0.045	3.64	3.95	8 406	11 965	
			13	16	0.045	3.06	3.97	9 847	13 642	
			14	10	0.043	3.69	3.98	8 900	12 952	
			15	18	0.042	3.69	3.98	7 729	10.465	
			10	3	0.040	3.00	3.90	7 326	9 789	
			2	Л	0.040	3.70	4.02	7 982	11 2/1	
			3	5	0.040	3.69	3.99	7.562	10.028	
			1	7	0.040	3.05	3.55	7 146	7 337	
			5	8	0.040	3.69	4.02	8 760	10 301	
			6	9	0.044	3.09	4.02	0.700 Q 202	13 0.501	
			7	10	0.043 0.043	3.10	2.00	7 225	0 330	
	1 10	_	2	10	0.043	3.09 2.71	3.99	1.223 6.061	9.320 10 690	
	1.10		0	12	0.043	3./1 2.71	3.97	0.901	10.000	
			9 10	12	0.042	3.71	4.01	9.476	13.730	
			10	1.5	0.042	3.09	3.97	0.299	0.030	
			12	14	0.041	3.71	4.06	10.391	11.586	
			12	10	0.046	3.08	3.92	7.413	11.210	
			13	10	0.041	3./3	3.99	1.908	8.34Z	
			14	10	0.039	3.72	3.99	6.989	8.785	
	1		15	10	0.036	3.72	4.00	6.043	6.629	

表-5.6 各ケースにおける衝突試験結果(1)

Lg/cm ⁻¹ (Y, N) Lg/cm ⁻¹ H4 H6 H7 F 1 1 0.048 5.30 6.23 12.77 2 2 0.048 5.27 6.23 12.32 3 3 0.048 5.26 6.21 12.68 4 4 0.048 5.27 6.23 12.97 5 5 0.048 5.27 6.22 12.97 5 5 0.048 5.27 6.22 12.97 6 6 0.049 5.29 6.22 12.97 6 6 0.049 5.29 6.22 12.97 6 6 0.049 5.29 6.22 12.97 7 7 0.048 5.28 6.23 11.87 N 8 8 0.048 5.24 6.23 11.73 9 9 0.049 5.28 6.23 12.22	Σ pA 5 12.171 8 11.619 7 12.806 2 12.442 6 11.848 2 12.922 4 11.825 5 11.472
1 1 0.048 5.30 6.23 12.73 2 2 0.048 5.27 6.23 12.33 3 3 0.048 5.26 6.21 12.66 4 4 0.048 5.24 6.21 12.97 5 5 0.048 5.27 6.22 12.97 6 6 0.049 5.29 6.22 12.97 6 6 0.049 5.29 6.22 12.97 6 6 0.049 5.29 6.22 12.97 7 7 0.048 5.24 6.21 12.97 6 6 0.049 5.29 6.22 12.97 7 7 0.048 5.24 6.23 11.87 8 8 0.048 5.24 6.23 11.73 9 9 0.049 5.28 6.23 12.22	5 12.171 8 11.619 7 12.806 2 12.442 6 11.848 2 12.922 4 11.825 5 11.472
2 2 0.048 5.27 6.23 12.32 3 3 0.048 5.26 6.21 12.66 4 4 0.048 5.24 6.21 12.97 5 5 0.048 5.27 6.22 12.97 6 6 0.049 5.29 6.22 12.97 7 7 0.048 5.29 6.22 12.97 6 6 0.049 5.29 6.22 12.97 7 7 0.048 5.24 6.21 12.97 7 7 0.048 5.29 6.22 12.97 8 8 0.048 5.28 6.23 11.87 9 9 0.049 5.28 6.23 11.73	8 11.619 7 12.806 2 12.442 6 11.848 2 12.922 4 11.825 5 11.472
3 3 0.048 5.26 6.21 12.66 4 4 0.048 5.24 6.21 12.97 5 5 0.048 5.24 6.21 12.97 6 6 0.049 5.29 6.22 12.97 7 7 0.048 5.28 6.23 11.87 N 8 8 0.048 5.24 6.23 11.73 9 9 0.049 5.28 6.23 12.22	7 12.806 2 12.442 6 11.848 2 12.922 4 11.825 5 11.472
4 4 0.048 5.24 6.21 12.97 5 5 0.048 5.27 6.22 12.29 6 6 0.049 5.29 6.22 12.09 7 7 0.048 5.28 6.23 11.87 8 8 0.048 5.24 6.23 11.73 9 9 0.049 5.28 6.23 12.22	2 12.442 6 11.848 2 12.922 4 11.825 5 11.472
5 5 0.048 5.27 6.22 12.29 6 6 0.049 5.29 6.22 12.09 7 7 0.048 5.28 6.23 11.87 N 8 8 0.048 5.24 6.23 11.73 9 9 0.049 5.28 6.23 12.22	6 11.848 2 12.922 4 11.825 5 11.472
6 6 0.049 5.29 6.22 12.09 7 7 0.048 5.28 6.23 11.87 8 8 0.048 5.24 6.23 11.73 9 9 0.049 5.28 6.23 12.22	2 12.922 4 11.825 5 11.472
7 7 0.048 5.28 6.23 11.87 N 8 8 0.048 5.24 6.23 11.73 9 9 0.049 5.28 6.23 12.22	4 11.825 5 11.472
N 8 8 0.048 5.24 6.23 11.73 9 9 0.049 5.28 6.23 12.22	5 11.472
9 9 0.049 5.28 6.23 12.22	
	3 12.867
10 10 0.048 5.28 6.22 12.02	2 11.662
11 11 0.048 5.19 6.19 11.72	4 11.482
12 12 0.048 5.21 6.20 12.87	4 12.233
13 13 0.048 5.27 6.23 13.43	3 13.410
14 14 0.048 5.28 6.22 12.86	7 12.131
15 15 0.049 5.24 6.23 12.40	4 12.702
1 2 0.047 5.20 5.74 10.47	6 11.100
2 3 0.048 5.18 6.08 11.00	2 10.992
3 6 0.049 5.27 6.18 11.69	4 11.633
4 7 0.048 5.25 6.15 10.90	2 10.571
5 9 0.048 5.24 6.17 11.72	7 11.417
6 10 0.048 5.21 6.18 10.77	5 10.606
7 11 0.050 5.15 6.08 11.91	6 11.516
Y 8 12 0.049 5.20 6.16 11.37	9 10.873
9 13 0.049 5.29 6.19 12.28	1 12.890
10 14 0.049 5.31 6.21 11.54	3 12.164
11 15 0.048 5.27 6.18 11.63	6 12.435
12 16 0.047 5.22 6.17 10.54	0 10.760
13 19 0.050 5.20 6.14 11.63	1 11.490
14 20 0.050 5.25 6.17 11.65	6 10.585
15 21 0.049 5.25 6.17 12.19	7 10.556
1 1 0.049 5.68 6.29 9.44	4 10.437
2 5 0.050 5.72 6.29 9.44	1 10.486
3 6 0.043 5.50 6.25 10.53	4 14.161
4 7 0.045 5.69 6.26 10.05	1 12.042
5 8 0.045 5.57 6.24 10.34	2 14.699
6 9 0.045 5.49 6.25 10.75	7 10.938
7 10 0.045 5.63 6.26 10.18	4 12.310
1.05 - 8 11 0.045 5.55 6.23 10.23	7 13.625
9 12 0.043 5.54 6.25 10.86	4 11.110
10 13 0.045 5.46 6.24 10.25	4 12.397
11 14 0.046 5.58 6.18 10.20	7 11.348
12 15 0.045 5.65 6.25 10.13	0 10.619
13 16 0.045 5.63 6.28 10.32	0 10.359
14 17 0.046 5.66 6.26 11.18	7 14.307
15 18 0.047 5.47 6.24 10.86	0 11.717
1 2 0.044 5.94 6.28 9.04	5 12.376
2 3 0.044 5.80 6.26 10.70	3 14.525
3 4 0.046 5.77 6.27 9.24	2 12.651
4 5 0.042 5.70 6.28 11.93	6 14.055
5 7 0.043 5.84 6.24 9.61	7 12.828
6 8 0.042 5.64 6.26 12.44	5 12.737
7 9 0.046 5.77 6.25 8.05	5 12.215
1.10 - 8 10 0.043 5.60 6.24 9.95	8 10.991
9 11 0.045 5.88 6.26 10.49	3 12.503
10 12 0.043 5.77 6.25 10.22	8 14.033
11 13 0.044 5.86 6.24 10.37	9 10.786
12 14 0.044 5.78 6.23 10.63	9 12.735
13 16 0.044 5.89 6.24 11.28	4 14.996
14 19 0.043 5.66 4.82 9.36	9 9.297
15 20 0.042 5.79 6.27 8.93	2 13.109

表-5.7 各ケースにおける衝突試験結果(2)

津波	密度 仕切板		(H4: 最大水位 [m]			H6:	到達時間	[s]	H7: 到達時間 [s]		
	[g/cm]	(1,1)	平均值	最大値	最小値	平均值	最大値	最小値	平均值	最大値	最小値
	1.00	Ν	0.049	0.051	0.044	3.64	3.66	3.61	3.95	3.98	3.93
\\\/1	1.00	Y	0.048	0.050	0.045	3.61	3.64	3.58	3.92	3.96	3.89
	1.05	-	0.043	0.046	0.041	3.63	3.70	3.06	3.98	4.01	3.95
	1.10	-	0.042	0.046	0.036	3.70	3.73	3.68	3.99	4.06	3.92
	1.00	Ν	0.048	0.049	0.048	5.26	5.30	5.19	6.22	6.23	6.19
\\\/2	1.00	Y	0.048	0.050	0.047	5.23	5.31	5.15	6.13	6.21	5.74
V V Z	1.05	-	0.046	0.050	0.043	5.59	5.72	5.46	6.25	6.29	6.18
	1.10	-	0.044	0.046	0.042	5.78	5.94	5.60	6.16	6.28	4.82
津波	密度 仕切板		F:最大波力[N]			ΣpA	:最大波力	[N] כ			
	[g/cm°]	[g/cm ²] (1, N)	平均值	最大値	最小值	平均値	最大値	最小值			
	1.00	Ν	12.594	16.983	9.295	11.947	16.541	9.752			
\\\/1	1.00	Y	11.870	14.384	9.658	13.476	16.061	11.452			
VV T	1.05	-	8.628	11.330	7.329	10.408	13.642	8.002			
	1.10	-	7.786	10.391	6.043	9.914	13.730	6.629			
	1.00	Ν	12.414	13.433	11.724	12.239	13.410	11.472			
10/2	1.00	Y	11.424	12.281	10.476	11.306	12.890	10.556			
VVZ	1.05	-	10.321	11.187	9.441	12.037	14.699	10.359			

表-5.8 各ケースにおける衝突試験結果の平均値・最大値・最小値

図- 5.19 衝突試験結果(津波 W1, 流体(2)密度 ρ=1.00g/cm³, 仕切板なし)

圧力計による波力最大時の波圧分布 (d) 圧力計による波力最大時のスケッノショッ
図-5.20 衝突試験結果(津波 W2,流体(2)密度 ρ=1.00g/cm³,仕切板なし)

図- 5.21 衝突試験結果(津波 W1, 流体(2)密度 ρ=1.00g/cm³, 仕切板あり)

(c) 圧力計による波力最大時の波圧分布 (d) 圧力計による波力最大時のスナップショット
図-5.22 衝突試験結果(津波 W2,流体(2)密度 ρ=1.00g/cm³,仕切板あり)

(c) 圧力計による波力最大時の波圧分布 (d) 圧力計による波力最大時のスナップショット
図-5.23 衝突試験結果(津波 W1,流体(2)密度 ρ=1.05g/cm³)

(c) 圧力計による波力最大時の波圧分布 (d) 圧力計による波力最大時のスナップショット
図-5.24 衝突試験結果(津波 W2,流体(2)密度 ρ=1.05g/cm³)

(c) 圧力計による波力最大時の波圧分布 (d) 圧力計による波力最大時のスナップショット
図-5.25 衝突試験結果(津波 W1,流体(2)密度 ρ=1.10g/cm³)

(c) 圧力計による波力最大時の波圧分布 (d) 圧力計による波力最大時のスナップショット
 図-5.26 衝突試験結果(津波 W2,流体(2)密度 ρ=1.10g/cm³)

Casa	No	濁水密度 ρ[g/cm ³]		設定密度
Case	INO.			との比
W1-r105	1	1.0114		96%
	2	1.0067		
	3	1.0064	1.007	
	4	1.0057		
	5	1.0041		
	1	1.0104		
W1-r110	2	1.0131		92%
	3	1.0161	1.015	
	4	1.0181		
	5	1.0148		
W2-r105	1	1.0119		96%
	2	1.0112		
	3	1.0107	1.012	
	4	1.0109		
	5	1.0152		
W2-r110	1	1.0585		
	2	1.0421		
	3	1.0498	1.050	95%
	4	1.0499		
	5	1.0511		

表-5.9 津波衝突時の壁模型前面における濁水密度

5.1.7. 流体密度による比較

流体密度による比較として,H4における最大水位・H6,H7における津波の到達時間・圧力計に よる最大波力について,表-5.8より各ケースの平均値を図-5.27の通り図化した.なお,水中6分 力計による最大波力については,壁模型に津波が到達後,壁模型の裏側へ水が回り込むこと等に より波力が低下するため比較対象外とした.

図-5.27 (a)に示す W2 の最大水位より,津波高は濁水密度に反比例して小さくなることが確認 された.また,粘度が高くなるとエネルギー減衰により津波高は小さくなると考えられるが,本 試験結果から密度変化に相当する波高低減効果以上の低減は確認されなかったため,今回の試験 範囲では波形変化に対する粘度の影響は小さいと考えられる.一方,W1の最大水位は,密度変化 に相当する津波高の低減効果以上に津波高が低減した.W1の段波先端部分では大きな乱れが発 生していることから,粘性によるエネルギー減衰が影響していると推察される.

図-5.27(b)より, W1, W2 ともに密度が大きくなると津波高の低減により伝播速度が小さくなり, 到達時間が遅くなった.

図-5.22、図-5.24、図-5.26より、W2の場合には、密度が大きくなると護岸に到達する津波高 は小さくなるが、波圧は密度が大きいために清水よりも大きな傾きの静水圧となる。そのため、 津波高の低減効果と水圧の増大効果が相殺し、図-5.27(c)の通り密度変化に比較して津波波力の 変化は小さい.一方、W1の場合には、図-5.27(c)より濁水の方が清水よりも波力が小さくなる結 果となった.上述したように、密度増大の影響に加えて粘性の影響により津波高が小さくなって いることが要因として考えられる。また、入射津波高が小さくなると、護岸を超えて浸入する際 の津波浸水深の低減率は入射津波高の低減率よりも大きくなる。衝撃的な波力が卓越する場合、 衝突する津波先端部分の運動量が大きく影響していると考えられるため、密度増大の影響よりも 浸水深低下の影響が大きく、波力が低減していると考えられる。これらから、密度変化に対する 波力の大小関係は、波形によって異なることが示唆された。

写真-5.1~写真-5.6より,各ケースにおける護岸上を遡上する津波のスナップショットを示す. これらの写真より,陸域に遡上した津波の先端部の波形は,密度の高い方が水面の角度が大きく なる(切り立つ)傾向が確認された.この要因として,粘性の増加による底面摩擦増大の影響が 考えらえるが,特性を明らかにするにはより詳細な検討が必要である.ただし,本試験において は,前面勾配の増大は衝撃的な波力の増大には繋がっていないことが示唆された.

(a) 3.8 秒後(b) 3.9 秒後(c) 4.0 秒後写真- 5.1 護岸上を遡上する津波のスナップショット(W1, ρ=1.00g/cm³, 仕切板あり)

(a) 3.8 秒後
 (b) 3.9 秒後
 (c) 4.0 秒後
 写真- 5.2 護岸上を遡上する津波のスナップショット(W1, ρ=1.05g/cm³)

(a) 3.8 秒後
 (b) 3.9 秒後
 (c) 4.0 秒後
 写真- 5.3 護岸上を遡上する津波のスナップショット(W1, ρ=1.10g/cm³)

(a) 6.0 秒後(b) 6.1 秒後(c) 6.2 秒後写真- 5.4 護岸上を遡上する津波のスナップショット(W2, ρ=1.00g/cm³, 仕切板あり)

(a) 6.0 秒後
 (b) 6.1 秒後
 (c) 6.2 秒後
 写真- 5.5 護岸上を遡上する津波のスナップショット(W2, ρ=1.05g/cm³)

(a) 6.0 秒後
 (b) 6.1 秒後
 (c) 6.2 秒後
 写真- 5.6 護岸上を遡上する津波のスナップショット(W2, ρ=1.10g/cm³)

結果の整理

本事業では、海底に堆積したヘドロ等の泥・シルト性堆積物を含む津波(以降、黒津波とする) に関する既往文献を調査して整理し、有識者へのヒアリングおよび技術検討会を実施した.また、 実際の海域においてヘドロ等をサンプリングして性状を分析・整理するとともに、ヘドロ等の巻 き上げおよび波圧に関する水理試験を実施することにより、実海域における黒津波の発生条件や その特性等に係る知見を拡充した.本事業で得られた結果を以下にまとめる.

知見調査

- ✓ 有識者のヒアリングを3名に実施し、現地調査・水理試験の計画などを説明し、意見を頂いた.
- ✓ 文献調査では、現地調査・水理試験・数値解析の項目に分類して整理した.
- ✓ 現地調査に関する既往文献については、東日本大震災において黒津波が確認された気仙沼 湾における底質調査事例を整理した.
- ✓ 水理試験に関する既往文献については、河川工学等の分野も含めて調査を実施し、底泥を 対象とした巻き上げ試験・波圧試験を整理した.
- ✓ 数値解析に関する既往文献については、津波による土砂移動モデルにシルテーションモデルを用いた平面2次元解析や、黒津波を対象とした水理試験を再現した鉛直2次元解析等について整理した。
- ✓ 技術検討会では1名の有識者を招聘し、原子力規制庁担当者同席のもと、各試験内容等について討議した.

現地調査

- ✓ 現地調査では、河口付近の海域2箇所において、海底に堆積した底質(ヘドロ等)を採取し、粒度分布・比重・含水比・密度・組成等を分析した.
- ✓ 実際に黒津波が確認された場所として気仙沼湾奥を調査した結果,全5箇所で約20~60cm の底泥(ヘドロ)が確認された.また,昨年度の関連事業の調査でヘドロが確認された場 所として川崎港京浜運河も調査した.
- ✓ 海底表層 20cm で採取された底質を分析した結果,気仙沼湾奥の底質は川崎港京浜運河に 比べて,中央粒径・比重は同程度,含水比は小さく,密度は大きく,強熱減量・有機体炭素 は小さい結果となった.また,各種金属・イオンについては,川崎港京浜運河の底質が比 較的大きい結果であった.

巻き上げ評価

- ✓ 試験体として、流速の大きい領域におけるヘドロ等の巻き上げを模擬できる試験装置の製 作および底質模型の選定を実施した.
- ✓ 試験装置は、管路区間(幅0.2m×高さ0.2m)および開水路区間(幅0.5m×高さ1.0m)を有 する2次元水路を用い、管路区間のサンドベッド(延長3.5m×深さ0.15m)に設置した底質 模型を、津波を模した流れにより巻き上げる機構とした。
- ✓ 底質模型は、せん断応力が限界せん断応力を大きく上回る条件を模擬できるようにシリカフューム(中央粒径 0.31µm, 比重 2.27)、フライアッシュ(中央粒径 3.81µm, 比重 2.34)を選定し、比較用に硅砂 6 号(中央粒径 412µm, 比重 2.65)を使用した.なお、シリカフュームについては、含水比を3 種類設定し、粘性による影響を検討した。
- ✓ 津波を模した流れとして、目標断面平均流速を 0.5, 1.0, 1.5, 2.0 m/s の 4 ケースに設定した.
 また、流速の増加率(加速度)の影響も確認するため、 0.09, 0.27, 1.2 m/s² の 3 ケースを設定した.
- ✓ 予備試験として、サンドベッドに底質模型を敷き均し、ポンプの回転数を徐々に上げ、流速を連続的に増加させた.水路側面から撮影した動画から、底質が動き出し始める流速(流送限界)と底質全体が大きく流れ始める流速(破壊限界)を求め、それぞれ限界摩擦速度と限界シールズ数を推定した.
- ✓ サンドベッドに蓋(各底質材料を貼り付けた粗度板)をした固定床試験では、PIV (Particle Image Velocimetry)により定常状態における管路内の流速分布を計測し、Prandtl-Karmanの 対数分布則により摩擦速度およびシールズ数を推定した。
- ✓ 粗度板の蓋を取り外して底質を敷き均した移動床試験では、サンドベッドおよびその下流の2地点において水路側面から鉛直方向にそれぞれ8箇所および1箇所に設けた吸引孔により、巻き上がった底質を含む濁水を水路断面中央位置で吸い込み採取した.得られた試料の乾燥質量から、濁水密度・体積濃度・SS濃度を確認した.なお、同条件において3回繰返し実施した.
- ✓ サンドベッドで鉛直方向に8箇所設置した吸引孔による濃度の結果から、底質が同じであ れば流速が大きいほど鉛直分布の傾きは大きくなり、流速が同じ条件でも粘性が高い底質 では鉛直分布の傾きは小さい傾向にあることが分かった.ただし、サンドベッド内の底質 の粘性が低い(含水比が低い=濃度が低い)と巻き上がり量自体が少ないため、粘性が高 い底質よりも鉛直分布の傾きが小さくなる場合があった.
- ✓ サンドベッド下流で水路床近くに1箇所設置した吸引孔による濃度の結果から、サンドベッド内の底質に破壊が生じて流動化しているか否かを判断した.サンドベッドにある底質表層の一部が流動化した場合、下流側の吸引孔における濃度がサンドベッド内の濃度と同程度に増加する.本試験の結果より、流速が同じ条件に対して、加速度が小さい場合には濃度が上流側と同程度(破壊は生じていない)であっても、加速度が大きくなると濃度が高くなり破壊が生じていることが確認できた.なお、流れの加速度や底質の粘性等による流動化範囲(深さ)については、今後さらに検討が必要である.
- ✓ 体積濃度については、累乗近似および指数近似により濃度の鉛直分布を推定した。各近似 式のパラメータは、流速が大きいほど大きくなる傾向は見られたが、加速度や底質の粘性

等による明確な傾向は確認できなかったため、今後、追加の検討が必要である.

- ✓ SS 濃度の鉛直分布から巻き上げ速度を推定した.ただし,所定流速に至るまでにサンドベッド内の底質が浸食されており,巻き上がった底質の濁りにより底面位置が明確に判読できないため,今回の結果は参考値とする.
- ✓ 粘性評価として、底質模型について二重円筒型粘度計により粘性試験を実施し、せん断速度に対するせん断応力の変化から、降伏せん断応力を求めた.得られた結果より、底質の含水比が大きくなるほど降伏せん断応力は小さくなり、両者の関係は累乗近似式で整理できることが分かった.なお、本試験結果は既往研究との比較により同様の傾向が得られたことを確認した.
- ✓ さらに、ベーン型粘度計を用いた粘性試験も実施し、底質模型の降伏せん断応力について 現地採取試料との比較を行った.その結果、シリカフュームの含水比 100%の底質模型が、 現地採取試料(沈降後1週間後)の粘性を概ね再現していることが確認できた.

波圧評価

- ✓ 波圧試験は、沖で発生した津波の第一波により底泥が巻き上がり、護岸前面の流体密度が 高くなった場所に津波の第二波が来襲し、護岸を越流して防潮堤に黒い津波が衝突する状 況を想定した。
- ✓ 2 次元開水路(幅 0.19m×高さ 0.34m)を用いて、濁水を対象とした防潮堤に働く津波波力の計測試験を実施した.入射津波の特性を濁水の密度によらず一定とするため、水路内に仕切板を設置し、津波造波装置側は常に清水とし、防潮堤(壁模型)側を濁水とした.
- ✓ 清水および2種類の密度の濁水を対象に試験を実施し、津波の伝播にともなう波形の変化、
 防潮堤に働く津波波力・波圧を計測した.なお、同条件において15回繰返し実施した.
- ✓ 濁水については、粘度計により密度と粘性の関係を予め明らかにした.
- ✓ 波検定により、2種類(W1,W2)の津波波形を設定した.
- ✓ 防潮堤(壁模型)の無い状態で,防潮堤位置における通過波の浸水深および流速を計測し, フルード数を算定した.その結果,両波形ともにフルード数は2程度であると分かった.
- ✓ 清水による衝突試験の結果から、仕切板の有無による影響はほとんどないと考えられる.
- ✓ 砕波を伴わない津波波形(W2)の場合,密度変化による津波高の変化の計測結果から,津 波高は濁水密度に反比例して小さくなることが確認された.また,粘度が高くなるとエネ ルギー減衰により津波高は小さくなると考えられるが,本試験結果から密度変化に相当す る波高低減効果以上の低減は確認されなかったため,今回の試験範囲では波形変化に対す る粘度の影響は小さいと考えられる.
- ✓ 段波波形(W1)の場合,密度変化に相当する津波高の低減効果以上に津波高が低減した.
 段波の先端部分では大きな乱れが発生していることから,粘性によるエネルギー減衰が影響していると推察される.
- ✓ 密度が大きくなると津波高の低減により伝播速度が小さくなり、到達時間が遅くなる.
- ✓ 砕波を伴わない津波波形(W2)の場合,密度が大きくなると護岸に到達する津波高は小さくなるが,波圧は密度が大きいために清水よりも大きな傾きの静水圧となる.そのため, 津波高の低減効果と水圧の増大効果が相殺し,密度変化に比較して津波波力の変化は小さいと考えられる.
- ✓ 段波波形(W1)の場合,濁水の方が清水の場合よりも波力は小さくなる結果となった.上述したように,密度増大の影響に加えて粘性の影響により津波高が小さくなっていることが要因として考えられる.また加えて,入射津波高が小さくなると,護岸を超えて浸入する際の津波浸水深の低減率は入射津波高の低減率よりも大きくなる.衝撃的な波力が卓越する場合,衝突する津波先端部分の運動量が大きく影響していると考えられるため,密度増大の影響よりも浸水深低下の影響が大きく,波力が低減していると考えられる.
- ✓ 上記より,密度変化に対する波力の大小関係は,波形によって異なることが示唆された.
- ✓ 陸域に遡上した津波の先端部の波形は、密度の高い方が水面の角度が大きくなる(切り立つ)傾向が確認された.要因として粘性の増加による底面摩擦増大の影響が考えらえるが、 特性を明らかにするにはより詳細な検討が必要である.ただし本試験においては、前面勾配の増大は、衝撃的な波力の増大には繋がっていないことが示唆された.

相似則の影響

- ✓ 巻き上げ試験では、実際のスケール(想定縮尺 1/1)での津波の再現を目標とし、製作した 試験装置で発生可能な最大流速;断面平均流速 2m/s を設定した.この流速は、水深 15m に おいて津波高 2.5m の津波が来襲する時の流速と同等である.
- ✓ 東日本大震災時における気仙沼湾での黒津波を事例に、実際のスケールにおけるシールズ 数を推定すると、以下の通りである.
 - ・気仙沼湾の最大津波高 η=5.75m, 推定水深 h=20m → 鉛直平均流速ū=4.0 m/s
 - ・流速分布が対数則と仮定,底泥の平均粒径 $d_{50}=7\mu m$ \rightarrow 摩擦速度 $u^*=0.093 \text{ m/s}$

・底泥の粒子密度 *ρs*=2.7g/cm³

→ シールズ数^{*}=74

ー方,本試験の固定床で得られた流速分布から推定したシールズ数より,東日本大震災後に黒津波の痕跡で採取された底泥の中央粒径相当であるフライアッシュ(*d*₅₀=3.81µm)は 14 ~197 であり,それより粒径の細かいシリカフューム(*d*₅₀=0.314µm)は 356~3686 であった. このことから,本試験は実際の巻き上げ現象を包括的に捉えられていると考えられる.

✓ 波圧試験では、フルード相似則を適用し想定縮尺 1/100 とした.ただし、フルード相似則に 従うと、底質を含む濁水の粘度[Pa・s]は 1/1000 であるが、実際の黒津波の粘性は不明であ ることから、更なる調査・検討が必要である.

巻末資料

現地調査補足資料

以下の内容について,資料を添付する.

- (1) 作業写真集
- (2) 試験分析報告書

No. 1
気仙沼湾奥
作業前打合せ
撮影日:2022年10月31日

<u>No. 2</u>
気仙沼湾奥
地点A
周辺状況
撮影日:2022年10月31日
No 3

NU. 3
気仙沼湾奥
地点A
周辺状況
撮影日:2022年10月31日

No. 7
気仙沼湾奥
地点A
コアサンプル

No. 9
気仙沼湾奥
地点A
コアサンプル

No. 10
気仙沼湾奥
地点B
周辺状況
撮影日:2022年10月31日

No. 11
気仙沼湾奥
地点B
周辺状況
撮影日:2022年10月31日

No.	12	-	
気仙	1沼澤	弯奥	
地点	ίB		
周辽	2状》	2	

No. 13 気仙沼湾奥 地点B 海底状況 撮影日:2022年10月31日

<u>No. 14</u>
気仙沼湾奥
地点B
採泥作業
撮影日:2022年10月31日

No. 15	
気仙沼湾奥	
地点B	
コアサンプル	
	-
	-

No. 18
気仙沼湾奥
地点B
コアサンプル

<u>No. 20</u>
気仙沼湾奥
地点C
周辺状況
撮影日:2022年10月31日

No. 21
気仙沼湾奥
地点C
周辺状況

No. 22
気仙沼湾奥
地点C
周辺状況
撮影日:2022年10月31日
N 00
<u>No. 23</u>
気仙沼湾奥
地点C
水温と塩分の計測

No. 24
気仙沼湾奥
地点C
海底状況

No.	25	-		
気仙	沼澤	弯奥		
地点	iC			
採泥	作	ŧ		
撮影 I	∃ : 20:	22年 ⁻	10月3	1日

No. 26
気仙沼湾奥
地点C
コアサンプル
撮影日:2022年10月31日

No. 27
気仙沼湾奥
地点C
コアサンプル

No. 28
気仙沼湾奥
地点C
コアサンプル

No.	29	
気仙	沼湾奥	
地点	C	
コア	サンプル	
撮影E	3:2022年10月31日	

No. 30	
気仙沼湾奥	
地点D	
割辺状況	

No. 31
気仙沼湾奥
地点D
周辺状況
_
撮影日:2022年10月31日

<u>No. 32</u>
気仙沼湾奥
地点D
周辺状況
撮影日:2022年10月31日

No. 33	
気仙沼湾奥	
地点D	
海底状況	

_№. 36 気仙沼湾奥 地点D コアサンプル

No. 38
気仙沼湾奥
地点E
周辺状況
撮影日:2022年10月31日

No. 39	_
気仙沼淵	弯奥
地点E	
周辺状》	元

No. 40
気仙沼湾奥
地点E
周辺状況
撮影日:2022年10月31日

No. 41
気仙沼湾奥
地点E
周辺状況
撮影日:2022年10月31日

No. 42
気仙沼湾奥
地点E
海底状況
撮影日:2022年10月31日

No. 46
地点E
コアサンプル

No. 49
川崎港京浜運河
地点A1
周辺状況
撮影日:2022年10月23日

No. 50	
川崎港京浜運河	
<u>地点A1</u>	
周辺状況	
撮影日:2022年10月23日	
No. 51	

川崎港京浜運河
地点A1
周辺状況

No.	52
川崎	港京浜運河
地点	A1
潜水	±
撮影E	目:2022年10月23日

<u>No. 53</u> 川崎港京浜運河 地点A1 スミスマッキンタイヤ 型採泥器 撮影日:2022年10月23日

110. 01
川崎港京浜運河
地点A1
海底状況
<u> </u>

撮影日:2022年10月24日

No. 55							
川崎港京浜運河							
地点A1							
コア採泥作業							
撮影日:2022年10月24日							
No. 56							
川崎港京浜運河							
地点A1							
コア採泥作業							

撮影日:2022年10月24日

 No.
 57

 川崎港京浜運河
 地点A1

 スミスマッキンタイヤ型
 採泥器での採泥作業

撮影日:2022年10月24日

No. 58 川崎港京浜運河 地点A1 スミスマッキンタイヤ型 採泥器での採泥作業 撮影日:2022年10月24日 No. 59 川崎港京浜運河 地点A1 コアサンプル 撮影日:2022年10月23日

試 験 分 析 報 告 書

【含有量試験】

海洋エンジニアリング株式会社 様

海底表層にある底質の分析一式

2022年11月2日受付の試料について試験した結果を下記のとおり 報告いたします。

			試料	受付方法 持込 討	験責任者 若林 和也 完善
試料名称 試験分析項目	単位	地点A	地点B	地点C	試験分析方法
粒度試験	-	別紙	別紙	別紙	JIS A 1204
比重	_	2. 691	2. 698	2. 708	ピクノメーター法
含水比	%	123. 60	118. 79	143. 00	JIS A 1203準拠
液性限界	%	82. 6	70. 0	82. 3	JIS A 1205
塑性限界	%	42. 1	40. 1	40. 3	JIS A 1205
沈降速度(遠心沈降法)	—	別紙	別紙	別紙	光透過式遠心沈降法
強熱減量	%	12. 11	11. 81	12. 25	JIS A 1226準拠
рH	рH	7. 3 (25°C)	7. 5 (25℃)	7.4(25°C)	底質調査方法(H24) Ⅱ4.4
COD	mg/g	63	47	37	底質調査方法(H24) Ⅱ4.7
硫化物	mg/g	2.4	1.8	2. 2	底質調査方法(H24) II4.6 よう素滴定法
全りん	mg/g	0. 89	1. 2	1.4	底質調査方法(H24) Ⅱ4.9 モリブデン青吸光光度法
全有機炭素	mg/g	22	20	20	底質調査方法(H24) Ⅱ 4.10 燃焼酸化法
有機塩素化合物	mg/kg	<4	<4	<4	環告第13号別表第6/JIS K 0102 35.3 オンクロマトク・ラフ法
鉄	mg/kg	40000	34000	39000	底質調査方法(H24) Ⅱ5.5. 4 ICP発光分析法
マンガン	mg/kg	310	290	410	底質調査方法(H24) Ⅱ5.6. 4 ICP発光分析法
銅	mg/kg	240	130	130	底質調査方法(H24) Ⅱ5.3. 4 ICP発光分析法
亜鉛	mg/kg	300	220	190	底質調査方法(H24) Ⅱ5.4. 4 ICP発光分析法
総水銀	mg/kg	0. 16	0. 21	0. 10	底質調査方法(H24) Ⅱ5.14 .1 原子吸光法
カドミウム	mg/kg	<0. 5	<0.5	<0.5	底質調査方法(H24) Ⅱ5.1. 4 ICP発光分析法
六価クロム	mg/kg	<2	<2	<2	底質調査方法(H24) Ⅱ5.12 .3 吸光光度法
ひ素	mg/kg	9. 4	9.7	8. 9	底質調査方法(H24) Ⅱ5.9. 4 水素化-ICP発光法
シアン	mg/kg	<3	<3	<3	底質調査方法(H24) Ⅱ4.11 .1 4-PCA-ピラソ゚ロン吸光法
密度	kg/m	_	1433	1473	重量法
以下余白					
	試験分析項目 粒度試験 比重 含水比 液性限界 塑性限界 沈降速度(遠心沈降法) 強熱減量 pH COD 硫化物 全りん 全有機炭素 有機塩素化合物 鉄 マンガン 鋼 亜鉛 総水銀 カドミウム 六価クロム ひ素 シアン 密度 以下余白 二 二 二 二 二 二	試料名称 単位 粒度試験	試料名称 単位 地点A 粒度試験 一 別紙 比重 一 2.691 含水比 96 123.60 液性限界 96 82.6 塑性限界 96 42.1 沈降速度(遠心沈降法) 一 別紙 強熱減量 96 12.11 p H pH 7.3(25°C) C O D mg/g 63 硫化物 mg/g 2.4 全 りん mg/g 0.89 全有機成素 mg/g 22 有機塩素化合物 mg/kg 44 銃 mg/kg 40000 マンガン mg/kg 310 鋼 mg/kg 300 総水銀 mg/kg 0.16 カドミウム mg/kg 4 シアン mg/kg 3.4 シアン mg/kg 3.4 シアン mg/kg 3.3 密度 kg/mi - 以下余白 - -	試料名称 単位 地点A 地点B 和度試験 一 別 紙 別 紙 別 紙 比重 一 2.691 2.698 含水比 96 123.60 118.79 液性限界 96 82.6 70.0 常性限界 96 42.1 40.1 沈降速度(達心沈降法) 一 別 紙 別 紙 算機構造 96 12.11 11.81 p H pH 7.3(25°C) 7.5(25°C) C O D mg/g 63 47 硫化物 mg/g 2.4 1.8 ድ りん mg/g 2.4 1.8 ድ りん mg/g 2.4 1.8 ድ りん mg/g 2.4 3.0 マ ガレ mg/g 310 290 育機準集化合物 mg/kg 34000 34000 マンガン mg/kg 300 220 レ mg/kg 300 220 総 mg/kg 0.16 0.21	試料名称 単位 地点 地点 試験分析項目 一 別 紙 別 紙 別 紙 比重 一 2.691 2.698 2.708 含水比 96 123.60 118.79 143.00 液性限界 96 82.6 70.0 82.3 蕈性限界 96 42.1 40.1 40.3 沈陽濃度(建心沈降法) 一 別 紙 別 紙 別 紙 沈陽濃度 96 12.11 11.81 12.25 0 月 7.3(25°C) 7.5(25°C) 7.4(25°C) 0 mg/g 63 47 37 磁化物 mg/g 2.4 1.8 2.2 0 H 7.3(25°C) 7.5(25°C) 7.4(25°C) 0 mg/g 0.89 1.2 1.4 240 mg/g 0.89 1.2 1.4 空灯 mg/g 0.89 1.2 1.4 24 4 4 4 4 25 mg/g 300

試料受付方法 持込

TES

<u>発行No 22122991</u> 2022年12月15日

出出ナナド

TEL 03-5440-4301

冊明日四1日0番43号 TEL 042-530-4030 東京都No. 624(濃度) 東京都No. 1003(音圧) 東京都No. 1004(振動)

帝人エコ・サイエンス株式会社

東京都港区三田三丁目3番8号

計量証明事業登録

事業所 東京都羽村市神明台四丁目8番43号

ページ 1/ 2

試験分析報告書

【含有量試験】

海洋エンジニアリング株式会社 様

海底表層にある底質の分析一式

2022年11月2日受付の試料について試験した結果を下記のとおり 報告いたします。

					A
	試料名称	単位	地点D	地点E	試験分析方法
1	粒度試験		別紙	別紙	JIS A 1204
2	比重	_	2. 624	2. 653	ピクノメーター法
3	含水比	%	68. 61	122. 51	JIS A 1203準拠
4	液性限界	%	49. 7	74. 6	JIS A 1205
5	塑性限界	%	31.8	42. 2	JIS A 1205
6	沈降速度(遠心沈降法)	_	別紙	別紙	光透過式遠心沈降法
7	強熱減量	%	7. 80	12. 39	JIS A 1226準拠
8	рH	pН	7.6(25°C)	7. 4 (25°C)	底質調査方法(H24) Ⅱ4.4
9	COD	mg/g	21	48	底質調査方法(H24) Ⅱ4.7
10	硫化物	mg/g	1.1	1.6	底質調査方法(H24) Ⅱ4.6 よう素滴定法
11	全りん	mg/g	0. 70	1.0	底質調査方法(H24) Ⅱ4.9 モリブデン青吸光光度法
12	全有機炭素	mg/g	7. 8	23	底質調査方法(H24) Ⅱ4.10 燃焼酸化法
13	有機塩素化合物	mg/kg	<4	<4	環告第13号別表第6/JIS K 0102 35.3 イオンクロマトク・ラフ法
14	鉄	mg/kg	40000	41000	底質調査方法(H24) Ⅱ5.5. 4 ICP発光分析法
15	マンガン	mg/kg	330	380	底質調査方法(H24) Ⅱ5.6. 4 ICP発光分析法
16	銅	mg/kg	120	130	底質調査方法(H24) Ⅱ5.3. 4 ICP発光分析法
17	亜鉛	mg/kg	140	130	底質調査方法(H24) Ⅱ5.4. 4 ICP発光分析法
18	総水銀	mg/kg	0. 13	0. 11	底質調査方法(H24) Ⅱ5.14 .1 原子吸光法
19	カドミウム	mg/kg	<0.5	<0. 5	底質調査方法(H24) Ⅱ5.1. 4 ICP発光分析法
20	六価クロム	mg/kg	<2	<2	底質調査方法(H24) Ⅱ5.12 .3 吸光光度法
21	ひ素	mg/kg	7. 0	11	底質調査方法(H24) Ⅱ5.9. 4 水素化-ICP発光法
22	シアン	mg/kg	<3	<3	底質調査方法(H24) Ⅱ4.11 .1 4-PCA-t [°] ラソ゚ロン吸光法
23	密度	kg/m²	1653	1395	重量法
	以下余白				

計量証明事業登録

試料受付方法 持込

TES

2022年12月15日

<u>発行No 22122991</u>

TEL 042-530-4030

東京都No. 624 (濃度)

東京都No. 1003 (音圧) 東京都No. 1004 (振動)

若林 和也

帝人エコ・サイエンス株式会社

東京都港区三田三丁目3番8号 TEL 03-5440-4301

事業所 東京都羽村市神明台四丁目8番43号

試験責任者

23

Laser Micron Sizer LMS-2000e

www.betterseishin.co.jp

SEISHIN

SEISHIN

Laser Micron Sizer LMS-2000e

SEISHIN

Laser Micron Sizer LMS-2000e

SEISHIN

Laser Micron Sizer LMS-2000e

土質試験結果一覧表(材料)

調査件名 土質試験

整理年月日

2022年 12月 14日

整理担当者 宮下 晃 試 料 番 号 地点A 地点B 地点C 地点D 地点E さ) (深 湿 潤 密 度 ρ_ι g/cm³ 乾燥密度 pa g/cm3 土粒子の密度 ρ。g/cm³ 自然含水比 *w*。 % 隙比e 間 般 和 度 *S*r % 飽 分 (75mm以上) % 石 分"(2~75mm) % 礫 粒 砂 分"(0.075~2mm) % シルト分"(0.00j~0.07jm)% 粘土分"(0.005mm糒)% 最大粒径 mm 均等係数U。 度 コンシステンシー特性 82.3 液性限界wi % 82.6 70.0 49.7 74.6 塑性限界w。 42.2 % 42.1 40.1 40.3 31.8 塑性指数 Ⅰ。 29.9 17.9 32.4 40.5 42.0 地盤材料の 分 分類名 頖 分類記号 試験方法 締 固 最大乾燥密度 pdmax g/cm³ め 最適含水比 Wout % 試験方法 膨張比r。 С % % 貫入試験後含水比 222 В 平 均 CBR % R %修正CBR % 突固め回数 回/層 コーン指数 コーン指数 q。kN/m² 特記事項 1) 石分を除いた75mm未満の土質材料 に対する百分率で表す。 [1kN/m²≒0.0102kgf/cm²]

JIS	А	1205
JGS		$0\ 1\ 4\ 1$

土の液性限界・塑性限界試験(試験結果)

調査件名 土質試験

試験年月日 2022年 12月 14日

試料番号(深さ) 地点A 液性限界試験 塑性限界試験 液性限界 ω % 落下回数 含水比 ω % 含水比 w % 82.6 89.9 9 42.3 塑性限界 w,% 1785.5 41.8 42.1 塑性指数 I, 23 83.4 42.2 40.5 28 81.8 35 79.8 47 78.3 試料番号(深さ) 地点B 液性限界試験 塑性限界試験 液性限界 ω1 % 含水比 w % 落下回数 含水比 w % 70.0 10 塑性限界 w,% 76.8 40.9 72.4 39.8 40.1 16 塑性指数 1, 2270.9 39.5 2669.8 29.9 35 67.9 45 65.7 試料番号(深さ) 地点C 液性限界試験 液性限界 ω1% 塑性限界試験 落下回数 含水比 w % 含水比 w % 82.3 39.4 87.8 塑性限界 w,% 10 16 84.4 40.0 40.3

22	82.9	41.6	塑性指数 Ⅰ。
28	81.7		42.0
38	79. 8		
46	79. 1		
·			

試料番号(深さ) 地点D

液	性限界試験	塑性限界試験	液性限界 ω」%
落下回数	含水比 w %	含水比 w %	49.7
8	56.2	31.9	塑性限界 w, %
15	52.4	31.4	31.8
22	50.3	32. 2	塑性指数 1,
28	49.1		17.9
37	47. 4		
48	46.4		
特記事項			

25 30

40 50

20

15

10

JIS	А	$1\ 2\ 0\ 5$
JGS		$0\ 1\ 4\ 1$

土の液性限界・塑性限界試験(試験結果)

調査件名 土質試験

試験年月日 2022年 12月 14日

試料番号(深さ) 地点E

液	生限界試験	塑性限界試験	液性限界 ω1 %
落下回数	含水比 w %	含水比 w %	74.6
8	82. 1	41. 1	塑性限界 w, %
14	77.9	43. 2	42.2
22	75.4	42.4	塑性指数 I,
28	73. 8		32.4
37	71.8		
49	70. 6		

試料番号 (深さ)

液	塑性限界試験		液性限界	w١	%				
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	w_{*}	%
							塑性指数	I,	

試料番号 (深さ)

液	塑性限界試験		液性限界	$w_{\scriptscriptstyle 1}$	%				
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	w_{P}	%
							塑性指数	I,	
	[

試料番号 (深さ)

液	生限界試驗	¢		塑性限界試験			液性限界	WL	%
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	w_{*}	%
							塑性指数	I,	

特記事項

測定報告書

1 測定項目

光透過式遠心沈降法による粒度分布

2 測定試料

地点A

地点B 地点C

地点D

地点E

計:5検体

3 使用機器

SKC-2000

4 測定条件

粒径:0.5~	·75(μm)	
沈降距離:	70mm	
液温:	地点A:	19.5°C
	地点B:	19.0°C
	地点C:	16.5°C
	地点D:	18.0°C
	地点E:	15.0°C
使用溶剤:	Water	

5 測定結果

別紙参照下さい。

1	SAMPLE	地点A
2	SAMPLE DENSITY	2.691 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.998 g/cm3
5	MEDIUM VISCOSITY	1.018 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	19.5 ℃
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/12/12
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.66407862
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Н	T1	DT1	NT	Ν
1	75.00	μm	70.0	00'14"	00'14"		
2	50.00	μm	70.0	00'31"	00'17"		
3	30.00	μm	70.0	01'26"	00'55"		
4	20.00	μm	70.0	03'13"	01'47"		
5	15.00	μm	70.0	05'43"	02'30"		
6	10.00	μm	70.0	12'53"	07'10"		
7	7.00	μm	70.0	26'17"	13'24"	43″	300
8	5.00	μm	70.0	51'30"	25'13"	81″	300
9	3.00	μm	70.0	143'04"	91'34"	106″	500
10	2.00	μm	70.0	321'54"	178'50"	144″	600
11	1.50	μm	70.0	572'16"	250'22"	114″	800
12	1.00	μm	70.0	1287'35"	715'19"	208″	1000
13	0.70	μm	70.0	2627'43"	1340'08"	230″	1300
14	0.50	μm	70.0	5150'20"	2522'37"	433″	1300
15							
16							

測定条件入力&TC_地点A

		Dark	9.2	
		Blank	191.8	1
初期濃度	を下限	ł	45.7	1.301
初期濃度	を上限	Į	55.0	1.3997
		測定結果	透過率	吸光度
75.00	μm	51.68	23.28	1.367
50.00	μm	51.89	23.39	1.369
30.00	μm	52.73	23.85	1.378
20.00	μm	54.77	24.97	1.397
15.00	μm	57.22	26.31	1.420
10.00	μm	65.25	30.71	1.487
7.00	μm	94.11	46.51	1.668
5.00	μm	128.20	65.17	1.814
3.00	μm	160.09	82.63	1.917
2.00	μm	176.43	91.57	1.962
1.50	μm	180.45	93.78	1.972
1.00	μm	185.76	96.68	1.985
0.70	μm	187.24	97.49	1.989
0.50	μm	188.39	98.12	1.992

51.68 1.3669

測定条件入力&TC_地点A

RANGE			NXX			Х		NXXX	VACC	V8	SACC	S%
<	0.50	М	2.000	- 1.992	×	2.25	=	0.019	0.019	0.50	0.07	15.10
<	0.70	М	1.992	- 1.989	×	1.68	=	0.005	0.023	0.62	0.08	16.69
<	1.00	М	1.989	- 1.985	×	1.45	=	0.005	0.028	0.76	0.09	17.95
<	1.50	М	1.985	- 1.972	×	1.44	=	0.019	0.048	1.28	0.10	21.05
<	2.00	М	1.972	- 1.962	×	1.49	=	0.015	0.063	1.69	0.11	22.84
<	3.00	М	1.962	- 1.917	×	1.70	=	0.076	0.139	3.73	0.14	29.03
<	5.00	М	1.917	- 1.814	×	2.32	=	0.239	0.378	10.15	0.20	41.21
<	7.00	М	1.814	- 1.668	×	3.36	=	0.492	0.870	23.38	0.28	57.93
<	10.00	М	1.668	- 1.487	×	4.97	=	0.896	1.767	47.47	0.39	79.42
<	15.00	М	1.487	- 1.420	×	9.25	=	0.621	2.387	64.14	0.44	89.53
<	20.00	М	1.420	- 1.397	×	16.10	=	0.366	2.753	73.97	0.46	93.79
<	30.00	М	1.397	- 1.378	×	25.00	=	0.497	3.250	87.32	0.48	97.84
<	50.00	М	1.378	- 1.369	×	40.00	=	0.338	3.588	96.41	0.49	99.56
<	75.00	М	1.369	- 1.367	×	62.50	=	0.134	3.722	100.00	0.49	100.00
	RAN < < < < < < < < < < < < < < < < < < <	RANGE < 0.50 < 0.70 < 1.00 < 1.50 < 2.00 < 3.00 < 5.00 < 7.00 < 10.00 < 15.00 < 20.00 < 30.00 < 50.00 < 75.00	RANGE <	RANGE <	RANGE NXX <	RANGE NXX <	RANGE NXX X <	RANGE NXX X <	RANGENXXXNXXX<	RANGE NXX X NXXX VACC <	RANGENXXXNXXXVACCV%<	RANGE NXX X NXXX VACC V% SACC <

```
D10 : 4.952\mu m D50 : 10.760\mu m D90 : 35.897\mu m SV = 3063.19 cm2/g
```


測定結果_地点A

1	SAMPLE	地点B
2	SAMPLE DENSITY	2.698 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.998 g/cm3
5	MEDIUM VISCOSITY	1.030 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	19.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/12/12
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.65016021
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Н	T 1	DT1	NT	N
1	75.00	μm	70.0	00'14"	00'14"		
2	50.00	μm	70.0	00'31"	00'17"		
3	30.00	μm	70.0	01'27"	00'56"		
4	20.00	μm	70.0	03'15"	01'48"		
5	15.00	μm	70.0	05'46"	02'31"		
6	10.00	μm	70.0	12'59"	07'13"		
7	7.00	μm	70.0	26'30"	13'31"	44″	300
8	5.00	μm	70.0	51'56"	25'26"	82″	300
9	3.00	μm	70.0	144'16"	92'20"	107″	500
10	2.00	μm	70.0	324'37"	180'21"	145″	600
11	1.50	μm	70.0	577 ' 05"	252'28"	114″	800
12	1.00	μm	70.0	1298'27"	721'22"	209″	1000
13	0.70	μm	70.0	2649'53"	1351'26"	232″	1300
14	0.50	μm	70.0	5193'46"	2543'53"	437″	1300
15							
16							

測定条件入力&TC_地点B

Dark	9.2
Blank	191.9

初期濃度 初期濃度	E下阻 E上阻	測定結果	4. 5. 透過率	5.7 5.0	1.301 1.3997 吸光度
75.00	μm	46.97	20	.69	1.316
50.00	μm	47.15	20	.79	1.318
30.00	μm	48.67	21	.62	1.335
20.00	μm	51.11	22	.95	1.361
15.00	μm	54.68	24	.91	1.396
10.00	μm	57.81	. 26	.62	1.425
7.00	μm	71.44	34	.08	1.532
5.00	μm	93.99	46	.42	1.667
3.00	μm	133.06	67	.80	1.831
2.00	μm	162.62	83	.97	1.924
1.50	μm	174.41	90	.42	1.956
1.00	μm	183.19	95	.23	1.979
0.70	μm	187.19	97	.42	1.989
0.50	μm	188.98	98	.40	1.993

46.97 1.3157

測定条件入力&TC_地点B

RANGE			NXX			Х		NXXX	VACC	V%	SACC	S%	
0.00	<	0.50	М	2.000	- 1.993	×	2.25	=	0.016	0.016	0.40	0.06	11.68
0.50	<	0.70	М	1.993	- 1.989	×	1.68	=	0.007	0.023	0.59	0.08	13.93
0.70	<	1.00	М	1.989	- 1.979	×	1.45	=	0.014	0.037	0.95	0.09	17.03
1.00	<	1.50	М	1.979	- 1.956	×	1.44	=	0.032	0.070	1.77	0.12	21.81
1.50	<	2.00	М	1.956	- 1.924	×	1.49	=	0.048	0.117	2.98	0.15	26.86
2.00	<	3.00	М	1.924	- 1.831	×	1.70	=	0.158	0.275	6.99	0.21	38.54
3.00	<	5.00	М	1.831	- 1.667	×	2.32	=	0.382	0.657	16.68	0.30	56.18
5.00	<	7.00	М	1.667	- 1.532	×	3.36	=	0.451	1.108	28.12	0.38	70.07
7.00	<	10.00	М	1.532	- 1.425	×	4.97	=	0.533	1.641	41.65	0.44	81.67
10.00	<	15.00	М	1.425	- 1.396	×	9.25	=	0.267	1.909	48.43	0.46	85.63
15.00	<	20.00	М	1.396	- 1.361	×	16.10	=	0.571	2.480	62.92	0.50	91.66
20.00	<	30.00	М	1.361	- 1.335	×	25.00	=	0.651	3.130	79.43	0.52	96.47
30.00	<	50.00	М	1.335	- 1.318	×	40.00	=	0.682	3.812	96.73	0.54	99.62
50.00	<	75.00	М	1.318	- 1.316	×	62.50	=	0.129	3.941	100.00	0.54	100.00

D10 : $3.621\mu m$ D50 : $15.541\mu m$ D90 : $42.219\mu m$ SV = 3085.75 cm2/g

.

測定結果_地点B

1	SAMPLE	地点C
2	SAMPLE DENSITY	2.708 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.097 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.5 ℃
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/12/13
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.55752051
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Н	T1	DT1	NT	N
1	75.00	μm	70.0	00'15"	00'15"		
2	50.00	μm	70.0	00'33"	00'18"		
3	30.00	μm	70.0	01'32"	00'59"		
4	20.00	μm	70.0	03'26"	01'54"		
5	15.00	μm	70.0	06'07"	02'41"		
6	10.00	μm	70.0	13'45"	07'38"		
7	7.00	μm	70.0	28'04"	14'19"	46″	300
8	5.00	μm	70.0	55'02"	26'58"	87 ″	300
9	3.00	μm	70.0	152'51"	97'49"	114″	500
10	2.00	μm	70.0	343'55"	191'04"	154″	600
11	1.50	μm	70.0	611'25"	267'30"	121″	800
12	1.00	μm	70.0	1375'40"	764'15"	222″	1000
13	0.70	μm	70.0	2807 ' 30"	1431'50"	246″	1300
14	0.50	μm	70.0	5502'41"	2695'11"	463″	1300
15							
16							

測定条件入力&TC_地点C

		Dark	9.1				
		Blank	193.0				
初期濃度	45.9	1.301					
初期濃度	き上限	Ę	55.2	1.3997			
		測定結果	透過率	吸光度			
75.00	μm	49.76	22.12	1.345			
50.00	μm	50.50	22.53	1.353			
30.00	μm	52.95	23.86	1.378			
20.00	μm	54.87	24.90	1.396			
15.00	μm	57.53	26.35	1.421			
10.00	μm	64.29	30.03	1.477			
7.00	μm	83.18	40.30	1.605			
5.00	μm	110.63	55.22	1.742			
3.00	μm	150.45	76.87	1.886			
2.00	μm	170.27	87.65	1.943			
1.50	μm	177.25	91.45	1.961			
1.00	μm	183.95	95.09	1.978			
0.70	μm	187.17	96.84	1.986			
0.50	μm	188.31	97.46	1.989			

49.76 1.3449

測定条件入力&TC_地点C

	RANGE			NXX			Х		NXXX	VACC	V۶	SACC	Se
0.00	<	0.50	М	2.000	- 1.989	×	2.25	=	0.025	0.025	0.56	0.10	18.40
0.50	<	0.70	М	1.989	- 1.986	×	1.68	=	0.005	0.030	0.66	0.11	19.82
0.70	<	1.00	М	1.986	- 1.978	×	1.45	=	0.011	0.041	0.92	0.12	22.29
1.00	<	1.50	М	1.978	- 1.961	×	1.44	=	0.024	0.066	1.46	0.14	25.86
1.50	<	2.00	М	1.961	- 1.943	×	1.49	=	0.027	0.093	2.07	0.16	28.73
2.00	<	3.00	М	1.943	- 1.886	×	1.70	=	0.097	0.190	4.23	0.20	35.82
3.00	<	5.00	М	1.886	- 1.742	×	2.32	=	0.333	0.523	11.65	0.28	51.07
5.00	<	7.00	М	1.742	- 1.605	×	3.36	=	0.460	0.983	21.89	0.36	65.10
7.00	<	10.00	М	1.605	- 1.477	×	4.97	=	0.635	1.618	36.04	0.43	78.78
10.00	<	15.00	М	1.477	- 1.421	×	9.25	=	0.525	2.143	47.73	0.47	86.47
15.00	<	20.00	М	1.421	- 1.396	×	16.10	=	0.395	2.538	56.52	0.49	90.59
20.00	<	30.00	М	1.396	- 1.378	×	25.00	=	0.465	3.003	66.88	0.51	94.00
30.00	<	50.00	М	1.378	- 1.353	×	40.00	=	0.998	4.001	89.10	0.54	98.57
50.00	<	75.00	М	1.353	- 1.345	×	62.50	=	0.489	4.490	100.00	0.55	100.00

2 - 5 1

D10 : 4.555µm D50 : 16.292µm D90 : 52.055µm SV = 2816.54 cm2/g

測定結果_地点C

1	SAMPLE	地点D
2	SAMPLE DENSITY	2.624 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.056 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	18.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/12/13
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.5390662
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Н	T1	DT1	NT	N
1	75.00	μm	70.0	00'15"	00'15"		
2	50.00	μm	70.0	00'33"	00'18"		
3	30.00	μm	70.0	01'33"	01'00"		
4	20.00	μm	70.0	03'29"	01'56"		
5	15.00	μm	70.0	06'11"	02'42"		
6	10.00	μm	70.0	13'55"	07'44"		
7	7.00	μm	70.0	28'25"	14'30"	47 <i>"</i>	300
8	5.00	μm	70.0	55'41"	27'16"	88″	300
9	3.00	μm	70.0	154'41"	99 ' 00"	115″	500
10	2.00	μm	70.0	348'03"	193'22"	156″	600
11	1.50	μm	70.0	618'44"	270'41"	123″	800
12	1.00	μm	70.0	1392'10"	773'26"	224″	1000
13	0.70	μm	70.0	2841'10"	1449'00"	249″	1300
14	0.50	μm	70.0	5568'40"	2727'30"	468″	1300
15							
16							
17							

測定条件入力&TC_地点D

Dark	9.1
Blank	192.4

初期濃度下風 初期濃度上風	艮 艮 測定結果	45.7 55.1 透過率	1.301 1.3997 吸光度
75.00 μm	48.32	21.41	1.331
50.00 μm	48.73	21.64	1.335
30.00 µm	51.02	22.89	1.360
20.00 µm	54.68	24.88	1.396
15.00 μm	59.81	27.68	1.442
10.00 µm	63.82	29.87	1.475
7.00 µm	86.48	42.23	1.626
5.00 µm	114.91	57.74	1.762
3.00 µm	154.64	79.42	1.900
2.00 µm	174.36	90.18	1.955
1.50 µm	181.02	93.81	1.972
1.00 µm	187.11	97.14	1.987
0.70 µm	187.74	97.48	1.989
0.50 µm	188.45	97.87	1.991

48.32 1.3307

測定条件入力&TC_地点D

RAN	IGE			NXX		Х		NXXX	VACC	V۶	SACC	S%
<	0.50	М	2.000	- 1.991	×	2.25	=	0.021	0.021	0.43	0.08	15.67
<	0.70	М	1.991	- 1.989	×	1.68	=	0.003	0.024	0.49	0.09	16.57
<	1.00	М	1.989	- 1.987	×	1.45	=	0.002	0.026	0.53	0.09	17.05
<	1.50	М	1.987	- 1.972	×	1.44	=	0.022	0.048	0.98	0.11	20.29
<	2.00	М	1.972	- 1.955	×	1.49	=	0.026	0.073	1.50	0.12	23.00
<	3.00	М	1.955	- 1.900	×	1.70	=	0.094	0.167	3.41	0.16	29.97
<	5.00	М	1.900	- 1.762	×	2.32	=	0.321	0.488	9.95	0.24	44.90
<	7.00	М	1.762	- 1.626	×	3.36	=	0.456	0.945	19.24	0.32	59.05
<	10.00	М	1.626	- 1.475	×	4.97	=	0.748	1.693	34.48	0.41	75.41
<	15.00	М	1.475	- 1.442	×	9.25	=	0.306	1.998	40.70	0.43	79.95
<	20.00	М	1.442	- 1.396	×	16.10	=	0.745	2.744	55.88	0.47	87.87
<	30.00	М	1.396	- 1.360	×	25.00	=	0.907	3.651	74.37	0.51	94.62
<	50.00	М	1.360	- 1.335	×	40.00	=	0.976	4.627	94.25	0.53	99.16
<	75.00	М	1.335	- 1.331	×	62.50	=	0.282	4.909	100.00	0.54	100.00
	RAN < < < < < < < < < < < < < < < < < < <	RANGE < 0.50 < 0.70 < 1.00 < 2.00 < 2.00 < 3.00 < 5.00 < 10.00 < 15.00 < 20.00 < 30.00 < 50.00 < 75.00	RANJE <	RANGE <	RANGE NXX <	RANGE NXX <	RANGE NXX X <	RANGE NXX X <	RANGE NXX X NXXX <	RANGE NXX X NXXX VACC <	RANGE NXX X NXX VACC V% <	RANGE NXX X NXXX VACC V% SACC <

D10 : 5.011 μ m D50 : 18.062 μ m D90 : 45.721 μ m SV = 2639.38 cm2/g

測定結果_地点D

1	SAMPLE	地点E
2	SAMPLE DENSITY	2.654 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.140 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	15.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/12/14
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.45080673
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Н	T1	DT1	NT	N
1	75.00	μm	70.0	00'16"	00'16"		
2	50.00	μm	70.0	00'35"	00'19"		
3	30.00	μm	70.0	01'38"	01'03"		
4	20.00	μm	70.0	03'42"	02'04"		
5	15.00	μm	70.0	06'34"	02'52"		
6	10.00	μm	70.0	14'46"	08'12"		
7	7.00	μm	70.0	30'08"	15'22"	50″	300
8	5.00	μm	70.0	59'04"	28'56"	93″	300
9	3.00	μm	70.0	164'06"	105'02"	122″	500
10	2.00	μm	70.0	369'13"	205'07"	165″	600
11	1.50	μm	70.0	656'23"	287'10"	130″	800
12	1.00	μm	70.0	1476'52"	820'29"	238″	1000
13	0.70	μm	70.0	3014'00"	1537'08"	264″	1300
14	0.50	μm	70.0	5907'26"	2893'26"	497″	1300
15							
16							
17							

測定条件入力&TC_地点E

		Blank		192.0	
初期濃度 初期濃度	E下随 E上随	測定結果	透過率	45.7 55.0	1.301 1.3997 吸光度
75.00	μm	48.19		21.39	1.330
50.00	μm	48.45		21.53	1.333
30.00	μm	50.12		22.44	1.351
20.00	μm	51.44		23.16	1.365
15.00	μm	52.92		23.97	1.380
10.00	μm	56.51		25.93	1.414
7.00	μm	73.18		35.05	1.545
5.00	μm	87.21		42.72	1.631
3.00	μm	117.06		59.03	1.771
2.00	μm	147.29		75.56	1.878
1.50	μm	161.47		83.31	1.921
1.00	μm	179.02		92.90	1.968
0.70	μm	186.88		97.20	1.988
0.50	μm	187.92		97.77	1.990

Dark

9.1

48.19 1.3301

測定条件入力&TC_地点E

	RAN	IGE			NXX		Х		NXXX	VACC	V۶	SACC	S8
0.00	<	0.50	М	2.000	- 1.990	×	2.25	=	0.022	0.022	0.64	0.09	15.42
0.50	<	0.70	М	1.990	- 1.988	×	1.68	=	0.004	0.026	0.77	0.10	16.66
0.70	<	1.00	М	1.988	- 1.968	×	1.45	=	0.028	0.055	1.59	0.13	22.50
1.00	<	1.50	М	1.968	- 1.921	×	1.44	=	0.068	0.123	3.57	0.18	32.02
1.50	<	2.00	М	1.921	- 1.878	×	1.49	=	0.063	0.186	5.41	0.22	38.32
2.00	<	3.00	М	1.878	- 1.771	×	1.70	=	0.182	0.368	10.72	0.29	51.07
3.00	<	5.00	М	1.771	- 1.631	×	2.32	=	0.326	0.694	20.21	0.37	65.32
5.00	<	7.00	М	1.631	- 1.545	×	3.36	=	0.289	0.983	28.62	0.42	73.74
7.00	<	10.00	М	1.545	- 1.414	×	4.97	=	0.650	1.633	47.55	0.50	87.12
10.00	<	15.00	М	1.414	- 1.380	×	9.25	=	0.316	1.949	56.76	0.52	91.54
15.00	<	20.00	М	1.380	- 1.365	×	16.10	=	0.240	2.189	63.75	0.54	93.94
20.00	<	30.00	М	1.365	- 1.351	×	25.00	=	0.344	2.533	73.76	0.55	96.34
30.00	<	50.00	М	1.351	- 1.333	×	40.00	=	0.721	3.254	94.76	0.57	99.50
50.00	<	75.00	М	1.333	- 1.330	×	62.50	=	0.180	3.434	100.00	0.57	100.00

D10 : 2.865µm D50 : 11.329µm D90 : 45.464µm SV = 3780.26 cm2/g

測定結果_地点E

沈降速度(遠心沈降法)結果一覧

ストークスの式:V= ______ d² (ρs-ρf) g_____ 18μ

0.999

0.999

1.111

1.111

0.5

65.182

0.000020

0.3383

2.624

2.624

V:沈降速度 (cm/s) d:粒子径 (cm) ρs:粒子密度 (g/cm³)

ρf:液体密度 (g/cm³)

		g :重力加速 μ :液体の粘 β	度(cm/s²) =98 度(g/cm・s)	30						
		o f		d	V	1	26	o f		d
N. 00100001	ρS 約フ应由	ρT ンエィー・マン・ロー	μ 法仕の非由	C at the second	V 油肉`声庄	N. 00100001	ρs ⊯tzoner	ρτ states effe	μ 法仕の計座	自動物
10.22122991	化丁西皮	/文 华西/支	収砕の相反	小山王	小吽述皮	10.22122991	位」 古皮	加冲击反	/反体の/伯皮	₹ <u>₩</u> 1±
	g/cm ²	g/cm ²	c poise	μm 75	Cm/s	at the	g/cm ²	g/cm ²	c poise	μm
地点A	2.691	0.998	1.111	/5	0.4667	地点L	2.654	0.999	1.111	/5
	2.691	0.998	1.111	50	0.2074		2.654	0.999	1.111	50
	2.691	0.998	1.111	30	0.0747		2.654	0.999	1.111	30
	2.691	0.998	1.111	20	0.0332		2.654	0.999	1.111	20
	2.691	0.998	1.111	15	0.0187		2.654	0.999	1.111	15
	2.691	0.998	1.111	10	0.0083		2.654	0.999	1.111	10
	2.691	0.998	1.111	7	0.0041		2.654	0.999	1.111	7
	2.691	0.998	1.111	5	0.0021		2.654	0.999	1.111	5
	2.691	0.998	1.111	3	0.00075		2.654	0.999	1.111	3
	2.691	0.998	1.111	2	0.00033		2.654	0.999	1.111	2
	2.691	0.998	1.111	1.5	0.00019		2.654	0.999	1.111	1.5
	2.691	0.998	1.111	1	0.000083		2.654	0.999	1.111	1
	2.691	0.998	1.111	0.7	0.000041		2.654	0.999	1.111	0.7
	2.691	0.998	1.111	0.5	0.000021		2.654	0.999	1.111	0.5
	2.691	0.998	1.111	17.131	0.0243		2.654	0.999	1.111	18.774
地点B	2.698	0.998	1.111	75	0.4686					
	2.698	0.998	1.111	50	0.2083					
	2.698	0.998	1.111	30	0.0750					
	2.698	0.998	1.111	20	0.0333					
	2.698	0.998	1.111	15	0.0187					
	2.698	0.998	1.111	10	0.0083					
	2.698	0.998	1.111	7	0.0041					
	2.698	0.998	1.111	5	0.0021	-				
	2,698	0.998	1.111	3	0.00075	-				
	2.698	0.998	1 111	2	0.00033	-				
	2.698	0.998	1 111	1.5	0.00019	-				
	2 698	0.998	1 111	1	0.00008	-				
	2.698	0.998	1 111	0.7	0.000041	-				
	2.670	0.999	1.111	0.5	0.000021	-				
	2.070	0.998	1.111	21 479	0.000021	-				
また	2.070	0.990	1.111	21.470	0.0304	-				
10m0	2.700	0.000	1.111	7.5 E0	0.4711	-				
	2.708	0.999	1.111	30	0.2094	-				
	2.708	0.999	1.111	30	0.0754	-				
	2.708	0.999	1.111	20	0.0335	-				
	2.708	0.999	1.111	15	0.0188	-				
	2.708	0.999	1.111	10	0.0084	_				
	2.708	0.999	1.111	/	0.0041	-				
	2.708	0.999	1.111	5	0.0021	-				
	2.708	0.999	1.111	3	0.00075	-				
	2.708	0.999	1.111	2	0.00033	_				
	2.708	0.999	1.111	1.5	0.00019	-				
	2.708	0.999	1.111	1	0.00008	-				
	2.708	0.999	1.111	0.7	0.000041	_				
	2.708	0.999	1.111	0.5	0.000021					
	2.708	0.999	1.111	19.73	0.0326					
地点D	2.624	0.999	1.111	75	0.4479	_				
	2.624	0.999	1.111	50	0.1991	_				
	2.624	0.999	1.111	30	0.0717	_				
	2.624	0.999	1.111	20	0.0319					
	2.624	0.999	1.111	15	0.0179					
	2.624	0.999	1.111	10	0.0080					
	2.624	0.999	1.111	7	0.0039	1				
	2.624	0.999	1.111	5	0.0020	1				
	2.624	0.999	1.111	3	0.00072	1				
	2.624	0.999	1.111	2	0.00032	1				
	2.624	0.999	1.111	1.5	0.00018	1				
	2.624	0.999	1.111	1	0.000080	1				
	2.624	0.999	1.111	0.7	0.000039	1				

V 沈降速度

cm/s 0.4562 0.2028 0.0730 0.0324

0.0182 0.0081 0.0040 0.0020

0.00073 0.00018 0.00008 0.000040 0.000020

0.0286

試験分析報告書

【含有量試験】

海洋エンジニアリング株式会社 様

海底表層にある底質の分析ー式

2022年10月31日受付の試料について試験した結果を下記のとおり 報告いたします。

試料名称 試験分析方法 単位 A1 (KE-A1) 試験分析項目 JIS A 1204 1 粒度試験 別 紙 ____ ピクノメーター法 2 比重 2.637 ____ JIS A 1203準拠 3 含水比 % 359.31 JIS A 1205 4 液性限界 % 146.4 5 塑性限界 **JIS A 1205** 70.6 % 光透過式遠心沈降法 6 沈降速度(遠心沈降法) 別紙 ____ JIS A 1226準拠 7 強熱減量 % 18.67 底質調査方法(H24) Ⅱ4.4 8 pH pН 7.4(25°C) 底質調查方法(H24) Ⅱ4.7 9 COD 71 mg/g 10 硫化物 底質調査方法(H24) Ⅱ4.6 5.8 mg/g よう素滴定法 底質調査方法(H24) Ⅱ4.9 11 全りん 1.8 mg/g モリブデン青吸光光度法 底質調査方法(H24) Ⅱ4.10 12 全有機炭素 59 mg/g 燃焼酸化法 環告第13号別表第6/JIS K 13 有機塩素化合物 <4 mg/kg 0102 35.3 イオンクロマトク・ラフ法 底質調査方法(H24) Ⅱ5.5. 14 鉄 mg/kg 74000 4 ICP発光分析法 底質調査方法(H24) Ⅱ5.6. マンガン 15 870 mg/kg 4 ICP発光分析法 底質調査方法(H24) Ⅱ5.3. 16 銅 450 mg/kg 4 ICP発光分析法 底質調査方法(H24) Ⅱ5.4. 17 亜鉛 2200 mg/kg 4 ICP発光分析法 底質調査方法(H24) Ⅱ5.14 18 総水銀 6.3 mg/kg 1 原子吸光法 底質調査方法(H24) Ⅱ5.1. 19 カドミウム <0.5 mg/kg 4 ICP発光分析法 底質調査方法(H24) Ⅱ5.12 六価クロム 20 <2 mg/kg 3 吸光光度法 底質調査方法(H24) Ⅱ5.9. 21 ひ素 mg/kg 19 4 水素化-ICP発光法 底質調査方法(H24) Ⅱ4.11 22 シアン mg/kg 6 .1 4-PCA-L° ラゾロン吸光法 密度 重量法 23 1167 kg/m² 以下余白

<u>発行No 22122929</u>

2022年12月15日

満け雨

TEL 03-5440-4301

TEL 042-530-4030

芳林 和也

東京都No. 624 (濃度)

東京都No. 1003 (音圧)

東京都No.1004 (振動)

帝人エコ・サイエンス株式会社

東京都港区三田三丁目3番8号

事業所 東京都羽村市神明台四丁目8番43号

計量証明事業登録

試験責任者

試料受付方法

持込

ページ 1/ 1

Laser Micron Sizer LMS-2000e

土質試験結果一覧表(材料)

調査件名 土質試験

整理年月日 2022年 12月 14日 ------_____

				整理担当者	宮下 晃	
間	、料番号	A1 (VE_A1)				
1	(深 さ)	AI (KE-AI)				
	湿潤密度 ρt g/cm ³					
-	乾燥密度 ρ。g/cm³					
	土粒子の密度 ρ。g/cm ³					
	自然含水比 w。 %					
般	間 隙 比 <i>e</i>					
	飽和度Sr %					
	石 分 (75mm以上) %					-
	礫 分 ¹⁾ (2~75mm)%					
粒	砂 分"(0.075~2mm) %					
	シルト分"(0.00j~0.07jmm) %					
	【粘土分"(0.005mm糒)%		[
	最大粒径 mm					
度	均等係数 <i>U</i> 。			 		
コンシ	液性限界 wi %	146.4				
ンステ	塑性限界w。 %	70.6				
ンシー	塑性指数 /。	75.8				
特性						
分	地盤材料の					
松石	分類名					
親	分類記号					
締	試 験 方 法					
固め	最大乾燥密度 ρ _{dmax} g/cm ³					
(%	最適含水比 w _{opt} %					
	試 験 方 法			 		
С	膨張比r。%			 		
В	貫入試驗後含水比 w_2 %			 		
R	平均 CBR %			 		
	%修正CBR %			 		
					,	
Э	突固め回数 回/層			 		
	コーン指数 q. kN/m²			 		
指				 		
特記	事項			1) Ā 1	石分を除いた75mm こ対する百分率で	未満の土質材料 表す。

JIS	А	$1\ 2\ 0\ 5$
JGS		$0\ 1\ 4\ 1$

土の液性限界・塑性限界試験(試験結果)

調査件名 土質試験

_____ 試料番号(深さ) A1(KE-A1) 液性限界試験 塑性限界試験 液性限界 ω % 落下回数 含水比 w % 含水比 w % 146.4 塑性限界 w,% 9 159.7 69.8 150.5 69.8 18 70.6 147.6 塑性指数 I, 23 72.1 144.7 75.8 29 34 142.1 46 138.6

試料番号(深さ)

液	生限界試験	贠		塑性限	界試	験	液性限界	$w_{\tt L}$	%
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	$w_{\mathfrak{p}}$	%
							塑性指数	I_{p}	

試料番号(深さ)

液	生限界試驗	矦		塑性限界試験			液性限界	$w_{\scriptscriptstyle m L}$	%
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	w_{P}	%
							塑性指数	I,	

試料番号 (深さ)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	生限界試驗	炱		塑性限界試験			液性限界	$w_{\scriptscriptstyle  m L}$	%
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	w₽	%
							塑性指数	Ip	





5

10

15

20 25 30

40 50

### 測定報告書

#### 1 測定項目

光透過式遠心沈降法による粒度分布

#### 2 測定試料

A1(KE-A1)

#### 3 使用機器

SKC-2000

#### 4 測定条件

粒径:0.5~75(µm) 沈降距離: 70mm 液温: 20.0℃ 使用溶剤:Water

#### 5 測定結果

別紙参照ください

1	SAMPLE	A1(KE-A1)
2	SAMPLE DENSITY	2.637 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.998 g/cm3
5	MEDIUM VISCOSITY	1.005 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	20.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/12/12
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.63094527
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Н	Τ1	DT1	$\mathbf{NT}$	Ν
1	75.00	μm	70.0	00'14"	00'14"		
2	50.00	μm	70.0	00'32"	00'18"		
3	30.00	$\mu m$	70.0	01'28"	00'56"		
4	20.00	μm	70.0	03'17"	01'49"		
5	15.00	μm	70.0	05'50"	02'33"		
6	10.00	$\mu m$	70.0	13'08"	07'18"		
7	7.00	μm	70.0	26'49"	13'41"	44″	300
8	5.00	$\mu m$	70.0	52'33"	25'44"	83″	300
9	3.00	μm	70.0	145'58"	93'25"	108″	500
10	2.00	μm	70.0	328'26"	182'28"	147″	600
11	1.50	μm	70.0	583'53"	255'27"	116″	800
12	1.00	μm	70.0	1313'44"	729'51"	212″	1000
13	0.70	μm	70.0	2681'06"	1367'22"	235 <b>″</b>	1300
14	0.50	μm	70.0	5254'58"	2573'52"	442″	1300
15							
16							

#### 測定条件&TC_A1(KE-A1)

Dark	9.2
Blank	194.6

.

52.51 1.3688

初期濃度下限     46.2     1.301       初期濃度上限     55.7     1.3997									
		測定結果	透過举	吸光度					
75.00	$\mu m$	52.51	23.38	1.369					
50.00	$\mu m$	52.78	23.52	1.371					
30.00	$\mu m$	53.47	23.89	1.378					
20.00	$\mu m$	53.97	24.16	1.383					
15.00	μm	54.56	24.48	1.389					
10.00	$\mu m$	58.11	26.40	1.422					
7.00	$\mu m$	71.88	33.82	1.529					
5.00	$\mu m$	96.07	46.87	1.671					
3.00	$\mu m$	127.93	64.05	1.807					
2.00	$\mu m$	158.02	80.27	1.905					
1.50	$\mu m$	171.08	87.32	1.941					
1.00	μm	184.21	94.40	1.975					
0.70	$\mu m$	190.10	97.57	1.989					
0.50	$\mu m$	191.54	98.35	1.993					

#### 測定条件&TC_A1(KE-A1)

	RAN	IGE			NXX		Х		NXXX	VACC	V۶	SACC	S%
0.00	<	0.50	М	2.000	- 1.993	×	2.25	=	0.016	0.016	0.63	0.07	12.99
0.50	<	0.70	М	1.993	- 1.989	×	1.68	=	0.006	0.022	0.85	0.07	14.92
0.70	<	1.00	М	1.989	- 1.975	×	1.45	-	0.021	0.043	1.65	0.10	19.80
1.00	<	1.50	М	1.975	- 1.941	×	1.44	=	0.049	0.091	3.52	0.14	27.58
1.50	<	2.00	М	1.941	- 1.905	×	1.49	=	0.054	0.146	5.62	0.17	33.78
2.00	<	3.00	М	1.905	- 1.807	×	1.70	=	0.167	0.313	12.04	0.24	47.10
3.00	<	5.00	М	1.807	- 1.671	×	2.32	=	0.315	0.627	24.17	0.31	62.82
5.00	<	7.00	М	1.671	- 1.529	×	3.36	=	0.476	1.103	42.51	0.39	78.67
7.00	<	10.00	М	1.529	- 1.422	×	4.97	=	0.535	1.639	63.13	0.46	91.25
10.00	<	15.00	М	1.422	- 1.389	×	9.25	=	0.302	1.941	74.78	0.48	96.08
15.00	<	20.00	М	1.389	- 1.383	×	16.10	=	0.091	2.032	78.31	0.49	97.13
20.00	<	30.00	М	1.383	- 1.378	×	25.00	=	0.122	2.154	83.00	0.49	98.10
30.00	<	50.00	М	1.378	- 1.371	×	40.00	=	0.273	2.427	93.51	0.50	99.46
50.00	<	75.00	М	1.371	- 1.369	×	62.50	=	0.169	2.595	100.00	0.50	100.00

D10 : 2.682µm D50 : 8.090µm D90 : 43.324µm SV = 4394.27 cm2/g



測定結果_A1(KE-A1)

#### 沈降速度(遠心沈降法)結果一覧

	ρs	ρf	μ 	d	V
No.22122929	粒子密度	液体密度	液体の粘度	粒佺	沉降速度
	g/cm ³	g/cm ³	c poise	μm	cm/s
A1(KE-A1)	2.637	0.998	1.111	75	0.4518
	2.637	0.998	1.111	50	0.2008
	2.637	0.998	1.111	30	0.0723
	2.637	0.998	1.111	20	0.0321
	2.637	0.998	1.111	15	0.0181
	2.637	0.998	1.111	10	0.0080
	2.637	0.998	1.111	7	0.0039
	2.637	0.998	1.111	5	0.0020
	2.637	0.998	1.111	3	0.00072
	2.637	0.998	1.111	2	0.00032
	2.637	0.998	1.111	1.5	0.00018
	2.637	0.998	1.111	1	0.000080
	2.637	0.998	1.111	0.7	0.000039
	2.637	0.998	1.111	0.5	0.000020
	2.637	0.998	1.111	14.845	0.0177



この印刷物は、印刷用の紙へ リサイクルできます。