令和4年度原子力規制庁委託成果報告書

原子力施設等防災対策等委託費 (シビアアクシデント時格納容器内溶融炉心 冷却性評価技術高度化)事業

> 国立研究開発法人 日本原子力研究開発機構 令和5年3月

本報告書は、原子力規制委員会原子力規制庁からの委託により実施した業務の成果をとりまとめたものです。

本報告書に関する問い合わせは、原子力規制庁までお願いします。

目次

1.	はじめに			1-1
2.	アグロメ	レーションの角	释析	2-1
2.	1 実施す	肾景		2-1
2.2	2 DEF	OR-A 実験		2-1
	2.2.1	実験概要		2-1
	2.2.2	実験条件		2-3
2.	3 平成	27 年度から令え	和3年度までの実施内容	2-5
	2.3.1	平成 27 年度		2-5
	2.3.2	平成 28 年度		2-6
	2.3.3	平成 29 年度		2-7
	2.3.4	平成 30 年度		2-7
	2.3.5	平成 31 年度	(令和元年度)	2-8
	2.3.6	令和2年度		2-8
	2.3.7	令和3年度		2-8
2.	4 今年月	度の実施内容		2-9
	2.4.1	解析体系		2-9
	2.4.2	感度解析		2-10
	2.4.3	解析結果		2-11
	2.4.4	考察		2-15
	2.4.5	まとめ		2-16
2.	5 総括	まとめ		2-17
3.	溶融物の	拡がりの解析		3-1
3.	1 実施す	肾景		3-1
3.	2 今年月	度の実施内容		3-1
3.	3 実施[内容の総括		3-1
	3.3.1	平成 27 年度		3-1
	3.3.2	平成 28 年度		3-2
	3.3.3	平成 29 年度		3-3
	3.3.4	平成 30 年度		3-4
	3.3.5	平成 31 年度	(令和元年度)	3-5
	3.3.6	令和2年度		3-6
	3.3.7	令和3年度		3-7
3.	4 ROS	AU MST-1 実懸	食の実験解析	3-8
3.	5 まとこ	<i>ф</i>		3-8
4.	実機冷却	性評価		4-1

4.1	概要	
4.2	実機冷	却性評価のまとめ
	4.2.1	平成 29 年度
	4.2.2	平成 30 年度
	4.2.3	平成 31 年度(令和元年度)
	4.2.4	令和2年度
	4.2.5	令和3年度
4.3	実機冷	却性評価実施内容
	4.3.1	解析する原子炉及びベースシナリオ
	4.3.2	解析条件及び不確かさを考慮するパラメータ
	4.3.3	MELCOR 解析
	4.3.4	代表ケースの分析
	4.3.5	JASMINE 解析で使用するデータ
	4.3.6	JASMINE 解析条件
	4.3.7	溶融物物性値の算出
	4.3.8	JASMINE 解析実行
	4.3.9	冷却の成功・失敗判定
	4.3.10	冷却の成功確率評価
	4.3.11	JASMINE 入出力パラメータの相関関係
5. 水	×蒸気爆発 実施書	後解析
0.1 5 9	天旭月 公年由	泉
0.4 5 9	つ 半皮 敏 垢 対	の 一の 美施 内谷
0.3 5 4	一件// 入 (主 転会 飯)	家 " " 午
0.4	<i>天</i> 厥所	-01
	0.4.1 5 4 9	脾忉 未叶 韶振 注 囲
	0.4.2 5.4.9	7571711101不 多家
Б Б	0.4.0 咸庻午	~示 ?析
0.0	/恋/文/門 551	~ 解析冬件
	559	解析结果
	5.5.3	2月17日17日275 老宛
56	5.0.0 まとみ)
0.0	みこめ	
6. ž	ふわりに	
6.1	アグロ	メレーションの解析
6.2	溶融物	」の拡がりの解析
6.3	実機冷	*却性解析
6.4	水蒸気	爆発解析

付録A	JASMINE コードの概要	A-1
付録 B	冷却可能な最大デブリ堆積高さの評価	B-1
付録 C	実機解析データ	C-1
付録 D	ウェブ会議報告	D-1

1. はじめに

軽水炉のシビアアクシデントにおいて、原子炉圧力容器の下部ヘッドが溶融炉心との相 互作用により破損すると、溶融炉心が格納容器の原子炉キャビティ(PWR)あるいはペデ スタル(BWR)に移行し、これらの構造材であるコンクリートとの相互作用が発生し得る。 この溶融炉心/コンクリート相互作用(MCCI: Molten Core/Concrete Interaction)が継 続すると、コンクリートの溶融浸食あるいはそれに伴う非凝縮性気体や可燃性気体(二酸化 炭素、一酸化炭素及び水素)の発生による過圧等に起因して格納容器の健全性が脅かされる。

東京電力福島第一原子力発電所(1F)の事故においては、長時間にわたり炉心の冷却が 確保できなかったため、相当量の溶融炉心がペデスタルに移行したと推定され[1.1][1.2]、宇 宙線ミュオンを用いた測定によっても溶融炉心の移行が裏付けられた[1.3]。また、1から3 号機では格納容器壁面に存在する貫通部からカメラ、線量計を挿入しての内部調査が実施 された。格納容器内の映像により燃料集合体の一部をなす部材がペデスタルに落下したこ とが確認されており、圧力容器に比較的大きな開口が生じたことが示唆された[1.4]。

また、ペデスタル領域の入り口付近に置いて、壁のコンクリートが喪失し、鉄筋のみが残 るだけになっていることが確認された。この原因はいまだ判明していないが、ペデスタルに 落下した溶融物との接触が可能性の一つとして検討されている。

1F 事故を踏まえて原子力規制委員会により新たに策定された規制基準では、申請者に対して、シビアアクシデント(重大事故)に適切に対応することを求めている。MCCI に係わる対策は、溶融炉心が格納容器に移行した後に溶融炉心上に注水する対策(ドライ・キャビティ戦略)と溶融炉心が格納容器に落下する前に格納容器内に先行的に注水する対策(ウェット・キャビティ戦略)に大別され、我が国の事業者は後者を採ることとしている。これは、溶融炉心が格納容器内の水プール中を落下する間に、その全てあるいは一部がブレークアップ(粒子化)し、冷却可能なデブリベッドが格納容器の床面上に形成されることを期待するものである。我が国以外でも、例えばスウェーデンの BWR においてウェット・キャビティ戦略が採られているが[1.5]、水蒸気爆発リスクの低減を優先してドライ・キャビティ戦略を採る国が多数派であり、それ故に実験データは十分でない。

このため、現時点ではウェット・キャビティ戦略による溶融炉心の冷却性を評価する科学 的・合理的な手法は確立されていない。このような状況を鑑み、本事業においては、図 1.1 に示すようなアプローチに基づいて、先行注水された格納容器内における溶融炉心の冷却 性を評価する手法の構築を目指す。具体的には、以下のように評価技術を開発する。

(a)機構論的な溶融炉心/冷却材相互作用解析コードJASMINE[1.6]を改良し、溶融炉心の冷却性を支配すると考えられる水プール中における溶融炉心ジェットのブレークアップ、ブレークアップで生じた粒子同士の結合による塊状デブリ(アグロメレーションデブリ)の生成及び溶融炉心の床面上における拡がり挙動に係わる予測性能の向

上を図る。

- (b) 冷却性の観点で特に重要と考えられるアグロメレーションデブリの重量 Ma 及び床面 に拡がって連続層状に堆積する溶融炉心の重量 Mc の合計(または合計体積 Va)を JASMINE コードの解析により求める。複雑な溶融炉心の堆積状態を単純かつ保守的 な体系に置き換えて、溶融炉心とコンクリートとの境界における最高温度 T_{max}(また は溶融炉心の堆積深さ ha)を算出する。
- (c) JASMNE コードによる解析には、初期及び境界条件や解析モデルに含まれる不確か さが存在するため、これらの不確かさを考慮して(b)の解析を繰り返し実施する。一連 の解析により、溶融炉心とコンクリートとの境界における最高温度 T_{max}(または堆積 深さ h_d)の不確かさ分布を得る。この分布とコンクリートの溶融浸食温度 T_{abl}(また は冷却可能な最大堆積深さ h_{cool})を比較することにより、溶融炉心の冷却に成功する 確率を評価する。
- (d) 上記の(b)及び(c)を格納容器内に形成される水プールの水深をパラメータとして実施 することにより、溶融炉心の冷却性を高い確度で達成するために必要な水プールの水 深を評価する。

図 1.1 格納容器内溶融炉心冷却性評価のアプローチ及びアウトプット

今年度の事業においては、これまで改良を続けてきた JASMINE コードの改良・高度化 に向けての課題及び、今後の実験において着目するべき項目を抽出することを目的として 溶融物の落下条件を対象とした感度解析を実施した。また、図 1.1 に示したアプローチによ る実機評価の一環として、事故条件の不確かさを考慮した解析を JASMINE コードにより 実施した。今年度の具体的な実施項目は以下のとおりである。また、本事業は平成 27 年度 から令和 4 年度まで継続して実施され、本年度が最終年度であることから、それぞれの章 にはこれまでの内容を総括する節を設けた。

- ① 溶融炉心のブレークアップで生じた粒子のうち、冷却されて固化する前に他の粒子と結合してアグロメレーションデブリを形成する溶融物の質量割合(アグロメレーション割合)を評価するモデルがJASMINEコードに組み込まれている。アグロメレーションに対して支配的となる物理現象の要因を検討し、実験における計測に要する精度や不確かさ要因及び解析モデルの不確かさの項目を同定することを目的として、DEFOR-A実験[1.7]を対象とし、溶融物の過熱度及びプール水のサブクール度をパラメータとした感度解析を実施した。
- ② 溶融炉心の冷却性を評価する際には、連続層状デブリの堆積を評価することが重要となる。平成27年度から平成31年度(令和元年度)までに溶融物の拡がりモデルを構築することにより、溶融物の拡がり及び連続層状デブリの堆積範囲を良好に再現することが可能となった。令和2年度から令和3年度までに溶融物の物性値、溶融物の空隙率及び投入条件を変更した感度解析を行い、溶融物の拡がりに対して支配的となる要因を検討した。令和2年度から令和3年度までに直交座標での二相流及び溶融物の拡がりモデルの検証結果に基づき、経済協力開発機構/原子力機関(OECD/NEA)の主導で実施されるシビアアクシデントの不確かさ低減に関する実験計画(ROSAU)で実施された、溶融物を円筒形の容器に投入した後にスライドゲートを開放することで冷却水に流入させるダムブレイク方式を採用したMST-1実験の実験解析を行った。
- ③ 図 1.1 で示した実機の溶融物冷却性評価手法の開発を目的として実機を対象とした評価を行った。シビアアクシデント総合解析コード MELCOR を用い、炉心損傷及び事故対策に関連する入力パラメータに不確かさを仮定した上で大破断LOCA 事故シーケンスを対象とした解析を行った。その結果に基づき溶融物条件(格納容器内に流出する溶融炉心の組成、質量、温度及び溶融炉心ジェットの径等)及び組成から算出した溶融物の物性値を設定し、JASMINE コードによる格納容器内溶融物挙動解析を実施した。デブリの最終的な堆積高さから MCCI 回避確率

(冷却成功確率)を評価し、これを複数の格納容器水位条件に対して実施すること で、冷却成功確率を評価した。

④ 本事業では、粒子化した溶融物のアグロメレーション及び床面に到達した溶融物の拡がりを解析できるように JASMINE コードを改修した。今年度は、改修したJASMINE コードを用いて水蒸気爆発の解析が適切に解析できることを確認するために、水蒸気爆発実験解析及び感度解析を実施した。実験解析及び感度解析の対象は、SERENA 計画で実施された高温の溶融物を冷却水に投入した水蒸気爆発実験とした。感度解析では、溶融物の粒子直径、溶融物の投入条件及び溶融物の落下回数を変更することにより、水蒸気爆発により発生する冷却水の機械的エネルギー量に及ぼす影響を調査した。

参考文献

- [1.1] Pellegrini, M., Dolganov. K, Herranz, L. E., Bonneville, H., Luxat, D., Sonnenkalb, M., Ishikawa, J., Song, J. J., Gauntt, R. O., Moguel, L. F., Payot, F., Nishi, Y., 2017, Benchmark Study of the Accident at the Fukushima Daiichi NPS: Best-Estimate Case Comparison, Nucl. Technol., 196, 198-210
- [1.2] Madokoro, H. and Sato, I., 2021, Estimation of the core degradation and relocation at the Fukushima Daiichi Nuclear Power Station Unit 2 based on RELAP/SCDAPSIM analysis, Nucl. Eng. Des., 376, 111123
- [1.3] 東京電力ホールディングス,福島第一1~3号機ミュオン測定による燃料デブリ分布の把握について,2017年8月30日,http://www.tepco.co.jp/nu/fukushima-np/handouts/2017/images2/handouts_170830_09-j.pdf
- [1.4] 東京電力ホールディングス,福島第一原子力発電所2号機原子炉格納容器内部調査実施結果(速報),2017年2月20日,http://www.tepco.co.jp/nu/fukushima-np/handouts/2018/images1/handouts_180119_08-j.pdf.
- [1.5] S. Galushin and P. Kudinov, "Sensitivity analysis of debris properties in lower plenum of a Nordic BWR", Nucl. Eng. Des., Vol. 332, pp. 374-382, 2018.
- [1.6] K. Moriyama, Y. Maruyama and H. Nakamura, Steam Explosion Simulation Code JASMINE v.3 User's Guide, JAEA-Data/Code 2008-014, Japan Atomic Energy Agency, July, 2008.
- [1.7] P. Kudinov and M. Davydov, " Development and Validation of Conservative-Mechanistic and Best Estimate Approaches to Quantifying Mass Fractions of Agglomerated Debris", Nucl. Eng. Des., Vol. 262, pp. 452-461, 2013.

2. アグロメレーションの解析

2.1. 実施背景

原子炉圧力容器の破損により、格納容器下部(キャビティまたはペデスタル)に溶融物が 落下する可能性がある。格納容器下部に事前注水された場合には、溶融物は冷却水中で粒子 化する。粒子状の溶融物が個別に固化して堆積した粒子状デブリは、比表面積(重量当たり の表面積)が大きいために容易に冷却される。一方、粒子状の溶融物が固化する前に他の粒 子同士と結合することにより形成された塊状のデブリ(アグロメレーションデブリ)は、粒 子状デブリと比較して比表面積が小さいために冷却され難く、連続層状デブリとともに MCCIを引き起す可能性がある。したがって、溶融炉心冷却性評価では、アグロメレーショ ンデブリの質量割合を評価することが重要となる。

本章では、改良した機構論的な溶融炉心/冷却材相互作用解析コード JASMINE を用いて、スウェーデン王立工科大学(KTH)で実施された DEFOR-A 実験[2.1] [2.2]を解析対象とした。

2.2. DEFOR-A 実験

2.2.1. 実験概要

DEFOR-A 実験は、高温の溶融物を冷却水へジェット状に落下させることにより、溶融ジェットが冷却水中で粒子化することで生成した粒子同士の結合 (アグロメレーション)を解明することを目的とした実験である。図 2.2.1 に実験装置の概略図を示す。実験装置は、模擬物質を溶融させるための高周波誘導加熱炉、溶融物ジェットを形成するための漏斗及び溶融物のジェットを落下させる試験容器から構成される。試験容器の上部に設置された高周波誘導加熱炉で模擬物質を加熱し溶融させた後に、高周波誘導加熱炉を傾けることで溶融物が漏斗を通して冷却水中に落下する。漏斗の下部に設置されたノズルを通してジェット状の溶融物が冷却水中に落下する。試験容器の断面は 0.45 m × 0.5 m の矩形、高さは 2 m となっている。DEFOR-A 実験では、透明な試験容器の壁面を通して、冷却水中を落下する溶融ジェットを観察できる。

試験容器の内部には、冷却水中で生成した粒子を捕獲するために 0.3 m 間隔で4つの異 なる水深にキャッチャーが備えられている。図 2.2.2 に試験容器を上面から見たときのキャ ッチャーの配置を示す。冷却水中で発生した溶融物の粒子を4段キャッチャーが4分の1 ずつ受け止めるように設計されている。このために、1回の実験で4通りの水深での実験デ ータを取得できる。冷却水中に落下した溶融ジェットをキャッチャーに到達するまでにす べて粒子化させるために、最も浅い水深に備えられたキャッチャー1の水深がジェットブレ ークアップ長さ(溶融物ジェットが完全に粒子化する深さ)を上回るようキャッチャー1の 設置位置を設定している。ジェットブレークアップ長さは式(2.2.1)に示す Saito の式 [2.3] に基づき推定している。

$$\frac{L_{brk}}{D_{jet}} = 2.1 \sqrt{\frac{\rho_m}{\rho_w} \frac{v_{jet}^2}{gD_{jet}}}$$
(2.2.1)

ここで、 L_{brk} はジェットブレークアップ長さ、 D_m は溶融ジェットの侵入直径、 ρ_m は溶融 物密度、 ρ_w は冷却水密度、 v_{jet} :溶融ジェットの侵入速度及び g は重力加速度をそれぞれ 示す。

(1) 試験容器
(2) 試験容器の内部に設置されるキャッチャー
図 2.2.1 DEFOR-A 実験装置 [2.1]

図 2.2.2 DEFOR-A 実験でのキャッチャーの配置

2.2.2. 実験条件

DEFOR-A 実験では、酸化ビスマスと酸化タングステンの共晶点混合物 (Bi₂O₃-WO₃)を
溶融物として冷却水中に投入している。溶融物である Bi₂O₃-WO₃ 共晶物質 (モル比 27:
73)の物性値を、表 2.2.1 に示す。

物性 [単位]	値
溶融物融点 [K]	1143
溶融物固相線温度 [K]	1138
溶融物液相線温度 [K]	1148
液相比熱 [J/kg/K]	280.0
固相比熱 [J/kg/K]	390.6
凝固潜熱 [J/k]	170000.0
液相密度 [kg/m ³]	6876
固相密度 [kg/m ³]	7811
液相熱伝導率 [W/m/K]	5.3
固相熱伝導率 [W/m/K]	5.3

表 2.2.1 Bi₂O₃-WO₃ の物性値 [2.1] [2.4] [2.5]

主要な実験条件は、溶融物の温度(過熱度:溶融物融点と溶融物温度の差)、溶融ジェット直径、冷却水温(サブクール度:水沸点と水温の差)である。表 2.2.2 及び表 2.2.3 に DEFOR-A1~9 実験及び A23~27 実験の実験条件をそれぞれ示す。DEFOR-A3 実験では。途中で溶融物の放出が止まったと報告されている [2.1]。DEFOR-A27 実験では、堆積した デブリの組成を計測した結果、共晶組成よりも WO₃の割合が多くなっていたことが報告されている。

実験番号	A1	A2	A3	A4	A5	A6	A7	A8	A9
溶融物温度 [K]	1253	1246	1483	1221	1245	1279	1349	1255	1343
溶融物過熱度 [K]	110	103	-	78	102	136	206	112	200
溶融物ジェット直径 [mm]	10	20	20	20	10	12	25	25	20
ジェット放出時間 [s]	38	11	-	11	38	20	10	10	11
ジェット放出高さ [m]	1.7	1.7	1.7	1.7	1.7	1.7	1.62	1.62	1.7
ジェット自由落下距離 [m]	0.18	0.18	0.18	0.2	0.18	0.18	0.2	0.2	0.18
水プール深さ [m]	1.52	1.52	1.52	1.5	1.52	1.52	1.42	1.42	1.52
水初期温度 [K]	346	366	345	346	364	346	356	355	355
水サブクール度 [K]	27	7	28	27	9	27	17	18	18
回収デブリ重量 [kg]	20.8	21.0	4.3	21.3	21.0	21.7	21.1	21.2	19.9
重量平均直径 [mm]	4	3.7	-	3	4.4	3.1	4.8	3.9	4.3

表 2.2.2 DEFOR-A1~9 実験条件 [2.2]

表 2.2.3 DEFOR-A23~27 実験条件

実験番号	A23	A24	A25	A26	A27
溶融物温度 [K]	1280	1248	1216	1299	1342
溶融物過熱度 [K]	137	105	73	156	199
溶融物ジェット直径 [mm]	25	34	34	34	20
ジェット放出時間 [s]	5.8	5.3	5.7	5.5	6.92
ジェット放出高さ [m]	1.72	1.77	1.77	1.77	1.695
ジェット自由落下距離 [m]	0.205	0.17	0.17	0.17	0.195
水プール深さ [m]	1.515	1.6	1.6	1.6	1.5
水初期温度 [K]	332	346	363	346	360.5
水サブクール度 [K]	41	27	10	27	12.5
回収デブリ重量 [kg]	23.6	24.9	22.7	24.1	21.2
重量平均直径 [mm]	-	-	-	-	-

2.3. 平成 27 年度から令和 3 年度までの実施内容

平成 27 年度から令和3年度までに、アグロメレーションモデルを構築することにより、 アグロメレーションデブリの質量割合を目標とした水準で再現することが可能となった。 本事業は令和4年度が最終年度であるため、本節では令和3年度までに実施した研究内容 及び得られた成果についてまとめた。

2.3.1. 平成 27 年度

実施内容:平成27年度では、JASMINEコードに分裂粒子径分布モデルの組み込みとブレークアップ実験の解析を行った。メルトジェットから分裂して生じる分裂粒子の直径に対する累積質量割合がRosin-Rammler分布に従うとしている。このために、分裂粒子径分布としては粒子の直径に対する累積質量割合がRosin-Rammler分布となるようにモンテカルロ法を用いて発生させた。表 2.3.1 に JASMINE コードにおける粒子直径の発生方法を示す。

	モンテカルロ法によって計算する方法(正規分布、または Rosin-Rammler 分					
No.	布)					
	次の入力データを与える					
1	・正規分布:乱数のシード値、粒子の平均直径と標準偏差					
	・Rosin-Rammler					
9	モンテカルロ法により、初期設定にて確保している配列分の直径分布を計算					
Z	(対数正規分布または Rosin-Rammler 分布)					
3	pre-group から real-group に開放される、メルト総質量を計算					
4	代表粒子径の質量を計算					
5	メルト総質量/代表粒子径質量を、代表粒子径の粒子数とする					
6	粒子は生成位置とタイミング毎に、1 つの粒子グループが生成される					
No.	代表粒子径と質量割合を入力で与える方法					
1	入力データで与える数値は、代表粒子径と質量割合					
2	pre-group から real-group に開放される、メルト総質量を計算					
3	代表粒子径毎に、質量を計算					
4	メルト総質量/代表粒子径質量×質量割合を、代表粒子径の粒子数とする					
5	粒子は生成位置とタイミング毎に、複数粒子が生成される					

表 2.3.1 粒子発生モデルの具体的な計算方法

成果及び残った課題: 改良した JASMINE コードの妥当性を確認し、スウェーデン王立 工科大学(KTH)で実施された DEFOR-A 実験の解析を行った。DEFOR-A1、A2 試験の 比較を中心に、分裂粒子の広がりのパターンについて検討し、広がりの大きいパターンでは 粒子の巻き上がりや滞留が生じていることが示された。アグロメレーションモデルは未開 発のため、キャッチャーに着地した時点における溶融状態の粒子(液体粒子)質量割合を評 価した。その結果、評価式からかい離のあるケースにおいては共通の現象が存在することが 示唆された。

2.3.2. 平成 28 年度

実施内容:平成 28 年度では、溶融物が水中にジェット状に落下し、粒子化(ブレークア ップ)した粒子同士が結合(アグロメレーション)したアグロメレーションデブリ(塊状デ ブリ)の質量割合評価のモデルを追加した。このモデルは、床面または溶融物プールの上 面クラストの上に落下した溶融粒子について、落下点近傍の粒子との接触状態や粒子温度 からアグロメレーションの発生を判定するものである。該当する粒子群が既にアグロメレ ーションしている場合、その粒子群の温度が融点以上なら落下粒子群とのアグロメレーシ ョンが生じると判定する。該当する粒子群がアグロメレーションしていない場合、重なり の程度を評価し、アグロメレーションを判定する。粒子群 grp1 及び grp2 のそれぞれに含 まれる粒子の断面積の合計を、

Spar1 = (grp1 に含まれる粒子 1 個の断面積) × (grp1 に含まれる粒子の個数) Spar2 = (grp2 に含まれる粒子 1 個の断面積) × (grp2 に含まれる粒子の個数)

とし、さらに、これらの和を、

Spar = Spar1 + Spar2

とする。また、図 2.3.2 に示す様に、2 つの粒子群が含まれる空間領域の床への投影面積を、 Sgrp = (grp1 空間領域の投影面積) + (grp2 空間領域の投影面積) – (重なり部分の面積) とする。

図 2.3.1 に示すように、これら 2 つの面積の比□ = Spar / Sgrp が判定基準**の**lim よりも大きい場合に粒子群 grp1 及び grp2 がアグロメレーションすると判定する。

図 2.3.1 粒子群の重なり状態の定量化

アグロメレーション判定基準である Φ_{im} を最適化するために、改良を加えた JASMINE コードを用いて DEFOR-A2 実験の解析を実施した。DEFOR-A2 実験の結果に基づきアグ ロメレーション判定基準を決定し、その他の DEFOR-A 実験の解析に適用した。

成果及び残った課題:水プールの水深とアグロメレーション質量割合の関係を整理した結 果は、アグロメレーション割合について、実験結果を過小評価する傾向が示されたが、水深 の増大に伴いアグロメレーション割合が急激に低下するという実験結果と同様の傾向が再 現された。また、アグロメレーションモデルによる実験結果の再現性及び実機適用時の信頼 性を向上させるには、アグロメレーション判定基準や熱伝達のさらなる検討、溶融物プール 上面のクラスト上で生成されるアグロメレーションデブリの性状把握が必要と考えられる。

2.3.3. 平成 29 年度

実施内容:平成 29 年度では、平成 28 年度の JASMINE コードにより得られたアグロメ レーション割合は DEFOR-A 実験結果により得られたアグロメレーション割合を過小評価 する傾向があったため、アグロメレーションモデルの判定基準の改良を行った。改良したア グロメレーションモデルは、粒子群同士の重なり状態の評価方法は変更せず、判定基準を以 下で示す、判定対象の 2 つの粒子群の平均エンタルピの関数とした。

 $\Phi_{lim} = \infty \qquad \qquad \text{for} \qquad h_{av}/h_{melt} \le 1$

 $\Phi_{lim} = \Phi_{min} + (\Phi_{max} - \Phi_{min})/(h_{av}/h_{melt})^{\alpha} \qquad \text{for} \qquad h_{av}/h_{melt} > 1$ ここで、 h_{av} は粒子群 grp1 及び grp2 の平均エンタルピ、 h_{melt} は溶融物の溶融エンタルピである。また、 Φ_{im} は判定基準、 Φ_{im} 、 Φ_{im} 及び α は調整パラメータである。

このモデルでは、溶融物の過熱度が高いほどアグロメレーションし易いという定性的な予 測を反映できる。加えて、JASMINEの適用範囲を拡大するために、非共晶点の溶融物に も対応できるように溶融物の物性モデルを改良した。このモデルでは、固相粒子は液相中に 分散し、固相と液相の分離はなく、両相のスリップもないと仮定した。

成果: 改良したアグロメレーションモデルを用いて、判定基準の調整パラメータを $\Phi_{min} = 0.05$ 、 $\Phi_{max} = 1.5$ 、 $\alpha = 15.0$ と設定することで、DEFOR-A 実験におけるアグロメ レーション割合の再現性が向上した。

2.3.4. 平成 30 年度

実施内容:平成29年度のアグロメレーションモデルでは、アグロメレーションによる粒 子群の比表面積の減少を考慮し、粒子群の表面熱伝達量を調整するための係数 k_{qhtr} (<1) が導入された。平成30年度は、平成29年度に改良したアグロメレーションモデルを用い て、粒子群の表面からの熱伝達量がアグロメレーションデブリの生成割合に与える影響を 検討した。

成果: DEFOR-A 実験の再現度の検証を行うとともに、アグロメレーションモデルの調整 係数k_{qhtr}の適切な設定値を決定した。調整係数 k_{qhtr} はほとんどの条件でアグロメレーシ ョン質量割合に影響せず、再現度を極端に向上させるものではないことを確認した。アグロ メレーションデブリ生成割合の予測モデルは、目標とした水準に概ね達したと考えられる。 2.3.5. 平成 31 年度(令和元年度)

実施内容:平成30年度に実施されたDEFOR-A27実験は、実験後に固化したデブリの組成が測定され、共晶組成よりもWO3の割合が多いことが明らかになった。共晶組成から外れた条件では見かけ上の融点が変化するため、アグロメレーション挙動に影響を及ぼした可能性が高い。これを受けて、令和元年度の実施内容は、溶融物質が非共晶組成だったという条件を想定してDEFOR-A23~A27の解析を実施し、その影響について調査した。

成果及び残った課題: 過去の DEFOR 実験(A1~A9)における一般的な傾向に従う結果 が得られた A23、A24 及び A26 実験に関しては、平成 30 年度版のアグロメレーションモ デルで共晶組成を仮定した解析により、実験結果を概ね再現できた。一方、特異な傾向が示 された A25 実験に関しては実験データ自体の信頼性が低いと考えられる。また、広い範囲 の水深において高いアグロメレーション割合が示された A27 実験の結果については、過去 の A7 及び A9 実験とともに、約 200K と高い溶融物の過熱度条件の影響を受けたと考え られ、現行のアグロメレーションモデルによる再現はできなかった。共晶組成からの逸脱の 影響はアグロメレーションモデルにおける判定基準に用いるパラメータである溶融物の融 点を調整することで評価したが、JASMINE 解析による A27 実験結果の再現がそもそも困 難だったため、非共晶組成に対する評価の妥当性を確認できなかった。よって、評価精度の 向上という観点では、モデル最適化に用いた過去の DEFOR-A 実験試料の組成分析が必要 となるが、安全評価ツールとしての利用に際しては、アグロメレーションモデルに与えるパ ラメータの調整等により、目的に応じた保守性を確保することが可能である。

2.3.6. 令和2年度

実施内容:令和 2 年度では、アグロメレーションに対して支配的となる物理現象等の要因を調査するために、DEFOR-A 実験を対象とした感度解析を実施した。感度解析では、溶融物の物性値及び溶融ジェットより発生する粒子群の粒子直径を決定する疑似乱数のシード値がアグロメレーションデブリの質量割合へ与える影響を検討した。

成果:溶融物の密度の増加及び減少は、それぞれ、アグロメレーションデブリの質量割合 を増加及び減少させることが分かった。また、疑似乱数のシード値がアグロメレーションに 対して与える影響が限定的であることを確認した。

2.3.7. 令和3年度

実施内容:令和3年度では、溶融物の投入直径と投入速度がアグロメレーションデブリの質量割合へ与える影響を調査するために、令和2年度と同様にDEFOR-A実験を対象とした感度解析を行った。

成果:溶融ジェット直径の増加および溶融物の投入速度の増加は、アグロメレーションデ ブリの質量割合を増加させることが分かった。実験で投入された溶融ジェット直径及び溶 融物の投入速度を正確に把握することが DEFOR-A 実験を対象とした実験解析の更なる精 度向上につながるものと考えられる。

2.4. 今年度の実施内容

令和 4 年度では、アグロメレーションに対して支配的となる物理現象等の要因を検討す ることを目的として、構築したアグロメレーションモデルを用いて、DEFOR-A 実験を対象 とした温度に関する感度解析を実施する。感度解析では、溶融物の過熱度及び水のサブクー ル度がアグロメレーションデブリの質量割合へ与える影響を調査する。このことにより、実 験において温度の計測及び決定に精度を要する項目や不確かさの要因となる解析モデルの 項目を同定することを目的とする。

2.4.1. 解析体系

DEFOR-A 実験では、異なる水深に設置した 4 つのキャッチャーを試験容器に設置する ことにより、1 回の実験で 4 通りの水深についてデータを取得する。JASMINE コードに よる解析では 4 通りの水深を個別の解析で実施する。図 2.4.1 に DEFOR-A1 実験の解析 体系を例として示す。DEFOR-A 実験の試験容器の水平断面は 0.5 m × 0.45 m の矩形で あるが、JASMINE コードによる解析では解析体系の形状を、試験容器と水平断面積が等 しい円筒形とした。解析では、実験と異なり解析体系の上方及び外側の気相部分の体積が有 限となる。このことにより、水蒸気の発生等に起因して解析体系の圧力が有意に上昇するこ とを避けるため、気相部分に十分に余裕を持った解析体系を設定した。

図 2.4.1 DEFOR-A1 実験での解析体系

2.4.2. 感度解析

(1) 解析対象

感度解析の対象とする実験条件は、令和3年度の感度解析の対象と同一とした。令和3年 度の実験解析の結果を受けて、解析結果と実験結果の差異となり得る要因を考察するため に、解析結果が実験結果を過小評価もしくは過大評価した DEFOR-A1、A5、A8、A23、A24 及び A26 実験を感度解析の対象とした。溶融物の放出が途中で止まったと報告されている DEFOR-A3 実験は感度解析の対象より除外した。解析結果が実験結果を良好に再現した DEFOR-A2 及び A4 実験は感度解析の対象より除外した。同特異的な実験結果となった DEFOR-A6、DEFOR-A7、DEFOR-A9、DEFOR-A25 及び A27 実験は感度解析の対象よ り除外した。感度解析のベースケースとなる実験解析の解析条件、溶融ジェットより発生す る粒子群の粒子直径の分布、アグロメレーションモデルに係る調整係数及びアグロメレー ションした粒子群の表面からの熱伝達量を調整する係数を含めたアグロメレーションモデ ルは令和3年度と同一とした。 (2) 解析条件

DEFOR-A 実験を対象とした感度解析では、溶融物の温度と冷却水温がアグロメレーションデブリの堆質量に与える影響に着目する。温度を変更する場合には、過熱度(溶融物の 温度)及びサブクール度(冷却水温)を個別に1.5倍及び0.5倍する。表2.4.1に感度解析 の解析条件を示す。過熱度とサブクール度の係数(1.5倍及び0.5倍)の数値に意味はなく、 代表値として解析条件の係数を決定した。溶融物の温度と冷却水温が解析結果に与える影 響が不明であるために、過熱度とサブクール度の係数はすべての解析条件に関する感度解 析で統一した。温度を変更した解析条件は、DEFOR-A実験の実験条件とは異なる仮想的な 解析条件であるために、実験結果と解析結果との定量的な比較は意味を持たないことに留 意する必要がある。

実験番号	A1	A5	A8	A23	A24	A26
溶融物温度 [K]	1253	1245	1255	1280	1248	1299
溶融物過熱度 ΔT_{sp} [K]	110	102	112	137	105	156
$1.5 \Delta T_{sp}$ [K]	165	153	168	205.5	157.5	234
$0.5 \Delta T_{sp}$ [K]	55	51	56	68.5	52.5	78
水初期温度 [K]	346	364	355	332	346	346
水サブクール度 ΔT_{sub} [K]	27	9	18	41	27	27
$1.5 \Delta T_{sub}$ [K]	40.5	13.5	27	61.5	40.5	40.5
$0.5 \Delta T_{sub}$ [K]	13.5	4.5	9	20.5	13.5	13.5

表 2.4.1 感度解析の解析条件

2.4.3. 解析結果

DEFOR-A 実験の感度解析の結果を図 2.4.2 から図 2.4.7 に示す。図 2.4.2 から図 2.5.7 は、それぞれ DEFOR-A1、A5、A8、A23、A24 及び A26 実験の感度解析の結果を示す。

DEFOR-A1 実験

図 2.4.2 (1) に示す通り、過熱度の増加に伴いすべてのキャッチャーでアグロメレーショ ンデブリの質量割合が増加する傾向を示したものの、DEFOR A1 実験で得られたキャッチ ャー 1 で高いアグロメレーションデブリの質量割合となる傾向を再現できなかった。図 2.4.2 (2) に示す通り、サブクール度の減少に伴いアグロメレーションデブリの質量割合が 増加する傾向を示したものの、DEFOR A1 実験で得られたキャッチャー 1 で高いアグロ メレーションデブリの質量割合となる傾向を再現できなかった。

DEFOR-A5 実験

図 2.4.3 (1) に示す通り、過熱度の減少した場合、キャッチャー1 から 3 でアグロメレー ションデブリの質量割合を過大評価する傾向が改善した。図 2.4.3 (2) に示す通り、サブク ール度の変更によるアグロメレーションデブリの質量割合への影響はほぼ見られなかった。

DEFOR-A8 実験

図 2.4.4 (1) に示す通り、過熱度の増加に伴いすべてのキャッチャーでアグロメレーショ ンデブリの質量割合が増加した。図 2.4.4 (2) に示す通り、サブクール度の変更によるアグ ロメレーションデブリの質量割合への影響はほぼ見られなかった。

DEFOR-A23 実験

図 2.4.5 (1) に示す通り、過熱度の増加に伴いすべてのキャッチャーでアグロメレーショ ンデブリの質量割合が増加した。図 2.4.5 (2) に示す通り、サブクール度の増加に伴いすべ てのキャッチャーでアグロメレーションデブリの質量割合が減少した。

図 2.4.5 アグロメレーション質量割合: DEFOR-A23

DEFOR-A24 実験

図 2.4.6 (1) に示す通り、過熱度の増加に伴いすべてのキャッチャーでアグロメレーショ ンデブリの質量割合が増加した。図 2.4.6 (2) に示す通り、サブクール度の増加に伴いすべ てのキャッチャーでアグロメレーションデブリの質量割合が減少した。

DEFOR-A26 実験

図 2.4.7 (1) に示す通り、過熱度の増加に伴いすべてのキャッチャーでアグロメレーショ ンデブリの質量割合が増加した。図 2.4.7 (2) に示す通り、サブクール度の増加に伴いすべ てのキャッチャーでアグロメレーションデブリの質量割合が減少した。図 2.4.7 (1) と (2) に示す通り、過熱度及びサブクール度を変更した場合でも、キャッチャー1のアグロメレー ションデブリの質量割合を過小評価する及びキャッチャー4 でのアグロメレーションデブ リの質量割合を過大評価する傾向に変化はなかった。

2.4.4. 考察

(1) 過熱度

過熱度が増加すると、溶融物の温度が上昇する。そのため、溶融物は固化までの時間が増加する。したがって、粒子状の溶融物はキャッチャーの表面へ到達する前に固化される割合が減少し、アグロメレーションデブリの質量割合が増加したものと考えられる。一方で、 過熱度が減少すると、溶融物の温度が低下する。そのため、溶融物は固化までの時間が減少 する。したがって、粒子状の溶融物はキャッチャーの表面へ到達する前に固化される割合 が増加し、アグロメレーションデブリの質量割合が減少したものと考えられる。

(2) サブクール度

サブクール度が増加すると、冷却水の温度が低下する。そのため、溶融物は固化までの時間が減少する。したがって、粒子状の溶融物はキャッチャーの表面へ到達する前に固化される割合が増加し、アグロメレーションデブリの質量割合が減少したものと考えられる。一 方で、サブクール度が減少すると、冷却水の温度が上昇する。そのため、溶融物は固化までの時間が減少する。したがって、粒子状の溶融物はキャッチャーの表面へ到達する前に固 化される割合が増加し、アグロメレーションデブリの質量割合が減少したものと考えられ

DEFOR-A05 と DEFOR-A08 実験において、サブクール度が小さかった。そのため、溶融物は固化までの時間がさほど変わらない。したがって、サブクール度の変更によるアグロメレーションデブリの質量割合への影響はほぼなかった。

2.4.5. まとめ

JASMINE コードを用いて、DEFOR-A 実験を対象とした温度に関する感度解析を実施 した。感度解析では、過熱度及びサブクール度がアグロメレーションデブリの質量割合へ与 える影響を調査した。

感度解析の結果、過熱度の増加及び減少は、それぞれ、アグロメレーションデブリの質量 割合を増加及び減少させることが分かった。また、サブクール度の増加及び減少は、それぞ れ、アグロメレーションデブリの質量割合を減少および増加させることが分かった。溶融物 温度また冷却水温度の上昇は、溶融物は固化まで時間の増加をもたらす。粒子状溶融物はキ ャッチャーの表面へ到達する前に固化される割合が減少することから、アグロメレーショ ンデブリの質量割合に影響すると解釈される。実験で投入された溶融物及び冷却水の温度 を正確に把握することが DEFOR-A 実験を対象とした実験解析の更なる精度向上につなが るものと考えられる。 2.5. 総括まとめ

格納容器内の水プールに落下した溶融炉心は、溶融ジェット分裂で生成された溶融物粒 子が固化した粒子状デブリ、床面で拡がった溶融物が固化したケーキ状デブリ、さらに、一 旦粒子状になった溶融物同士が床面で結合したアグロメレーションデブリになると考えら れる。このうち、重量当たりの表面積が小さく冷却されにくいケーキ状デブリとアグロメレ ーションデブリは MCCI を引き起す可能性がある。したがって、溶融炉心冷却性評価では、 アグロメレーションデブリの質量割合を評価することが重要となる。本章では、過去の実施 内容のまとめと溶融炉心の水中落下時の挙動評価のために、溶融炉心/冷却材相互作用解 析コード(JASMINE コード)の検証を行った。

- ① JASMINE コードは元来 FCI 解析のために開発されたため、溶融炉心の水中落下時の挙動評価に必要な機能を追加した。改良また追加したモデルは分裂粒子径分布モデル、溶融物モデルおよびアグロメレーションモデルである。
 - 分裂粒子径分布モデルでは、粒子の直径に対する累積質量割合が Rosin-Rammler 分布となるようにモンテカルロ法を用いて発生させる。
 - 溶融物モデルでは、固相粒子は液相に懸濁されまた、固相と液相の分離はなく両相のスリップもないと仮定する。
 - アグロメレーションモデルでは、粒子群の位置や大きで決まる粒子群同士の重なり状態および平均エンタルピを表す指標を導入し、これを判定基準と比較することでアグロメレーション発生を機構論的に判定する。
- ② モデルの検証には、KTH で実施された融物ジェット分裂及びアグロメレーション挙動を対象とした DEFOR-A 実験で得られたアグロメレーションデブリ割合データを用いた、多くの実験結果をよく再現することを確認した。
- ③ DEFOR-A 実験を対象として溶融物の物性値、投入条件および粒子群の粒子直径の分 布などを変更した感度解析を行い、溶融物の密度、投入直径、投入速度、過熱度およ びサブクール度がアグロメレーションデブリの質量割合に大きな影響を与えること を確認した。

- [2.1] P. Kudinov, et al., "Agglomeration and size distribution of debris in DEFOR-A experiments with Bi₂O₃-WO₃ corium simulant melt", Nucl. Eng. Des., 263, 284-295, 2013.
- [2.2] P. Kudinov, M. Davydov, "Development and validation of conservative-mechanistic and best estimate approaches to quantifying mass fractions of agglomerated debris", Nucl. Eng. Des., 262, 452-461, 2013.
- [2.3] M. Saito, K. Sato, S. Imahori, "Experimental study on penetration behaviors of water jet into Freon-11 and liquid nitrogen [I]", PNC SN9410, 88-014, 198
- [2.4] P. Kudinov, A. Karbojian, W. Ma, "The DEFOR-S experimental study of debris formation with corium simulant materials", Nucl. Technol., 170, 219-230, 2010
- [2.5] P. Kudinov, et al., "Validation of the FCI codes against DEFOR-A data on the mass fraction of agglomerated debris", In: 5th European Review Meeting on Severe Accident Research (ERMSAR-2012), Cloyne, Germany, March 21-23, 2012

3. 溶融物の拡がりの解析

3.1 実施背景

原子炉圧力容器の破損により、原子炉格納容器の床面に溶融炉心(溶融物)が落下する可 能性がある。格納容器の内部に事前注水をした場合には、溶融物は冷却水に侵入する。冷却 水中で溶融物が粒子化して格納容器の床面に到達した場合には、粒子状の溶融物が固化し て堆積することにより、粒子状デブリとして堆積し得る。粒子状デブリの比表面積(重量当 たりの表面積)は大きいため、容易に冷却される。一方、冷却水中で溶融物が粒子化せずに 格納容器の床面に到達した場合には、溶融物の拡がりにより連続層状デブリが堆積する。連 続層状デブリは、粒子状デブリと比較して比表面積が小さいために冷却され難く、溶融炉心 /コンクリート相互作用(MCCI)を引き起す可能性がある。したがって、溶融炉心の冷却 性を評価する際には、連続層状デブリの堆積を評価することが重要となる。

3.2 今年度の実施内容

本事業は令和4年度が最終年度であるために、平成27年度から令和3年度まで行った実施内容を総括した。平成27年度から平成31年度(令和元年度)までに溶融物の拡がりモデルを構築することにより、溶融物の拡がり及び連続層状デブリの堆積範囲を良好に再現することが可能となった。令和2年度から令和3年度までに溶融物の物性値、溶融物の空隙率及び投入条件を変更した感度解析を行い、溶融物の拡がりに対して支配的となる要因を検討した。令和2年度から令和3年度までに直交座標での二相流及び溶融物の拡がりモデルの検証を行った。令和4年度では、直交座標での二相流及び溶融物の拡がりモデルの検証結果に基づき、経済協力開発機構/原子力機関(OECD/NEA)の主導で実施されるシビアアクシデントの不確かさ低減に関する実験計画(ROSAU)で実施された、溶融物を円筒形の容器に投入した後にスライドゲートを開放することで冷却水に流入させるダムブレイク方式を採用したMST-1実験の実験解析を行った。

3.3 実施内容の総括

3.3.1 平成 27 年度

平成 27 年度では、JASMINE コード[3.1]を格納容器の床面での溶融物の拡がり及び冷却 を解析できるように改修を行った。床面に拡がった溶融物の冷却では、溶融部の上部と底部 に表面クラスト及び底クラストが形成される三層構造とした。このために、溶融部の平均質 量、平均流速及び平均内部エネルギーを計算する浅水方程式に、表面クラスト及び底クラス トへの運動量及びエネルギーの輸送を計算する項を追加した。表面クラストから冷却水へ の除熱量を計算するために、表面クラストの平均内部エネルギーから表面クラストの表面 温度を算出するようにした。

改修した JASMINE コードの機能を検証するために、スウェーデン王立工科大学(KTH) で実施された PULiMS 実験[3.2]を対象とした実験解析を行った。改修した JASMINE の解 析結果により得られた溶融物の拡がり面積は、PULiMS 実験で得られた溶融物の拡がり面 積より約 2 倍程度大きくなった。解析結果が実験結果を過大評価する原因は 2 つ考えられ る。1つ目は、溶融物から床面への熱伝達に関する境界条件が床面の温度一定(冷却水温度 と同一)もしくは床面が断熱のみであり、床面の深さ方向への伝熱の影響を考慮できていな いことである。2つ目は、コンクリート床面の熱分解により発生した気泡が溶融物に与える 浮力の影響を考慮できていないことである。今後の課題では、床面の深さ方向への熱伝達に 関する境界条件の追加及びコンクリート床面からの熱分解ガスが溶融物に与える影響を考 慮することとした。

3.3.2 平成 28 年度

平成 28 年度では、平成 27 年度での溶融物の拡がり面積の解析結果が実験結果を過大評 価したため、熱伝達に関する境界条件を追加するとともにコンクリート床面からの熱分解 ガスが溶融物に与える影響を考慮した。加えて新たに、表面クラストと底クラストが成長し て溶融部の厚さが小さくなり流動が停止した (完全固化と呼称)際の完全固化したクラスト から冷却水への熱伝達の改修を行った。熱伝達に関する境界条件の追加では、新たに薄い金 属板を想定した有限厚さの床面及びコンクリート床面を想定した無限厚さの床面を模擬す る境界条件を追加した。コンクリート床面からの熱分ガスが溶融物に与える影響では、溶融 物の内部に熱分解ガス気泡(ボイド)があると溶融物の見かけの密度が低下し、ボイドの浮 力により水平方向への溶融物の拡がりの駆動力が減少すると考えられる。このため、浮力を 考慮しない(従来通り)、溶融物内部のボイド率が一定、コンクリート床面からの熱分解ガ スの質量及び密度を入力で指定してボイド率を算出及びコンクリート床面からの熱分解ガ スの種類を指定してボイド率を算出する方法を追加した。完全固化したクラストから冷却 水への熱伝達の改修では、表面クラストと底クラストが成長して床面に拡がった溶融部の 厚さが十分に小さくなると流動が停止(完全固化)すると仮定して、平成27年度ではクラ ストの内部から冷却水への熱伝達の計算対象から除外していた。このため、完全固化したク ラストが保有する熱量が熱伝達により冷却水へ移行しなくなる。平成 28 年度では、除外し ていた完全固化したクラストが保有する熱量の熱伝達の計算を継続するように改修した。

改修した JASMINE コードの機能を検証するために、PULiMS 実験を対象とした実験解 析を行った。改修した JASMINE コードを用いた解析結果により得られた溶融物の拡がり 面積は、PULiMS 実験により得られた溶融物の拡がり面積より約3倍程度大きくなった。 解析結果が実験結果を過大評価する原因としては、境界条件の変更による床面への伝熱量 の減少が考えられる。平成27年度の実験解析では溶融物から床面への境界条件を床面温度 一定と設定していたが、平成28年度では溶融物から床面への境界条件を有限厚さの床面に 設定した。このため、溶融物から床面への伝熱量が床面温度一定の境界条件よりも小さくな ったため、底クラストの成長が遅くなり溶融物の拡がりが大きくなったと考えられる。改修 した JASMINE の解析結果から得られた冷却水温度は、実験結果から得られた冷却水温度 よりも約1.0%過小評価した。解析結果から得られた冷却水温度が実験結果から得られた冷 却水温度を過小評価する原因は、溶融物から冷却水への熱伝達における伝熱面積の差と考 えられる。PULiMS 実験では溶融物の内部から発生した水蒸気が上昇し、クラスト表面か ら冷却水中に離脱する際に、クラストの表面に凹凸が発生して溶融物と冷却水との接触面

3-2

積が増加することが伝熱面積の増加に寄与する。JASMINE コードではクラストの表面に 凹凸を発生することを想定していないため、実験では解析と比較して溶融物から冷却水へ の伝熱量が多くなると考えられる。仮想の沸騰水型原子炉を対象とした実機解析を行った 際には、溶融物の一部が完全固化した場合、溶融部の拡がりが妨げられ完全固化したクラス トより内側に堆積した。JASMINE コードでは完全固化したクラストを溶融部が乗り越え ることを想定していない、しかしながら、実際には溶融部が完全固化したクラストを乗り越 えて拡がると考えられる。今後の課題では、PULiMS 実験と解析条件の溶融物から冷却水 への伝熱量の差をなくすため、実験で床面に拡がった溶融物の表面に見られた凹凸を JASMINE の解析で模擬できるようにすることとした。加えて、溶融物の一部が完全固化し たクラストを溶融部が乗り越える流動を考慮することとした。

3.3.3 平成 29 年度

平成 29 年度では、平成 28 年度で JASMINE コードにより得られた溶融物の拡がり面積 が実験結果により得られた溶融物の拡がり面積を過大評価したため、床面に拡がった溶融 物表面に凹凸を模擬した。加えて、溶融物の一部が完全固化したクラストを溶融部が乗り越 える流動を考慮した。PULiMS 実験で得られた堆積した溶融物の表面に見られた凹凸を模 擬するために、表面クラストと冷却水との見かけの接触面積を増加させる。表面クラストと 冷却水との見かけの接触面積を増加させるために、表面クラストから冷却水への伝熱量を 決める熱流束に係数をかける。床面に拡がった溶融物の表面クラストと底クラストが成長 して溶融部が十分に小さくなり完全固化クラストになった後に、再び溶融物が拡がること により完全固化したクラスト溶融部の高さが完全固化したクラストの高さを上回った場合、 完全固化したクラストの上を乗り越えて流れる溶融部の挙動を考慮できるようにした。加 えて、冷却水への伝熱量の差をなくすために、沸騰熱伝達率の相関式の変更を行った。膜沸 騰の熱伝達率に冷却水のサブクール度による影響を考慮した実験相関式[3.3]を採用した。

改修した JASMINE コードの機能を検証するために、PULiMS 実験を対象とした実験解 析を行った。解析条件は平成 29 年度に追加した入力条件を除き、平成 27 年度及び平成 28 年度と同様とした。改修した JASMINE コードを用いた解析結果により得られた溶融物の 拡がり面積は、PULiMS 実験より得られた溶融物の拡がり面積と比較して約 3 倍程度過大 評価した。JASMINE コードの改修により解析結果と実験結果との差異が改善しなかった ため、入力条件の最適化を行うための感度解析を行った。感度解析の結果、溶融物の拡がり を支配する要因として溶融物の表面張力、極小熱流束点温度及び溶融物一床面間の熱抵抗 の 3 つの影響が大きいことが判明した。特に溶融物の表面張力の影響が顕著であった。入 力条件を最適化した解析を行った結果、解析結果により得られた溶融物の拡がり面積が実 験結果により得られた溶融物の拡がり面積と比較して約 0.9 から 1.7 倍程度の値となった。 溶融物の落下位置から離れた位置での冷却水温度の最大値は実験結果の冷却水温度の最大 値と比較して最大で約 0.6%小さくなった。実験結果では実験開始から約 100 秒後から溶融 物の落下位置から離れた位置での冷却水温度が徐々に減少し、最終的な(溶融物落下開始か ら 200 秒時点)冷却水温度は実験結果と解析結果で良好に一致した。解析結果での溶融物 の落下位置から離れた位置での冷却水温度の上昇時刻は、実験結果での溶融物の落下位置から離れた位置での冷却水温度の上昇時刻と比較して約10秒程の遅れが発生した。今後の 課題は、PULiMS実験の解析において、溶融物の表面張力が溶融物の拡がりに与える影響 が大きかったため、溶融部の先端における凝固による見かけの表面張力の増加を考慮する こととした。加えて、実験結果と解析結果での溶融物の落下位置から離れた位置での冷却水 温度の上昇時刻の差及び実験結果で見られた溶融物の落下位置から離れた位置での冷却水 温度が徐々に減少する現象の原因を調査することとした。

3.3.4 平成 30 年度

平成 30 年度では、PULiMS 実験の解析において、溶融物の表面張力が溶融物の拡がりに 与える影響が大きかったため、溶融部の先端における凝固による見かけの表面張力の増加 を考慮した。加えて、実験結果と解析結果での溶融物の落下位置から離れた位置での冷却水 温度の上昇時刻の差及び実験結果で見られた溶融物の落下位置から離れた位置での冷却水 温度が徐々に減少する現象の原因の調査を行った。床面上を溶融物が拡がる過程において、 表面クラストと底クラストに挟まれた中央部分を溶融部が流れる。溶融部が溶融物の拡が りの先端で冷却水と接触する際に、固相が形成されて溶融物の拡がりを妨げるというモデ ルを追加した。

改修した JASMINE コードの機能を検証するために、PULiMS 実験を対象とした実験解 析を行った。改修した JASMINE コードを用いた解析結果により得られた溶融物の拡がり 面積は、実験結果より得られた溶融物の拡がり面積と比較して良好に一致した。しかしなが ら、溶融物の先端位置の時間変化を比較すると、実験結果での溶融物の拡がりに対して解析 結果での溶融物の拡がりが遅いことが確認できた。実験では溶融ジェットが床面に到達し た際に、溶融物が床面に衝突した勢いのまま床面を拡がる(射流)ことが確認できた。解析 では射流を想定していない。このことが実験開始直後の溶融物の拡がりの不一致の原因と 考えられる。溶融物の落下位置から離れた位置での冷却水温度の上昇時刻の差の原因は、 PULiMS 実験 E8 及び E9 の録画映像から溶融物を冷却水に投入することで大量に発生す る水蒸気により液面が大きく吹き上がり、吹き上がった液面が溶融ジェット及び投入ノズ ルに衝突することで溶融ジェットが乱れ多数の粒子が広範囲に拡がり落下することが確認 できた。発生した高温の粒子が、床面上を拡がる溶融物が到達するよりも早く溶融物の落下 位置から離れた位置の床面に落下することにより、冷却水温度の上昇時刻が早くなったこ とが溶融物の落下位置から離れた位置での冷却水温度の上昇時刻の差の原因と考えられる。 溶融物の投入開始から約 100 秒後から冷却水温度が徐々に減少する原因は、上記で述べた 液面の吹き上がりで発生して床面へ落下した粒子が冷えることにより冷却水の温度が徐々 に減少したことが、溶融物の投入開始から約 100 秒後から冷却水温度が徐々に減少する原 因と考えられる。液面の吹き上がりによる投入ノズル直下での粒子の発生は PULiMS 実験 固有のものと判断してモデル化等は見送ることとした。今後の課題では、溶融ジェットが床 面に衝突した際の溶融物の射流を考慮することとした。実験解析を行ってきた PULiMS 実 験は実験体系が小規模であり、同一の溶融物(模擬物質)を用いた実験であるため、実験体

系が大規模であり、コリウム等を用いた実験を対象として検証を行う必要がある。しかし、 コリウム等を使用した二相流の大規模実験が存在しない。そこで、床面上に冷却水が存在せ ず溶融物を水平方向に投入するドライ条件でのコリウム等を使用した大規模な実験を解析 対象として JASMINE コードの検証を行うこととした。

3.3.5 平成 31 年度(令和元年度)

平成 31 年度では、実験では溶融ジェットが床面に到達した際に、溶融物が床面に衝突し た勢いのまま床面を拡がる(射流)ことが確認できた。平成 30 年度までは、溶融物のジェ ットが床面に到達した際に水平方向の運動量が得られずに、溶融物の拡がり速度が 0.0 m/s から上昇する。新たに追加した射流モデルでは、溶融物のジェットが床面に到達した際にジ ェットが落下する運動量を水平方向の運動量に変換することで溶融物が拡がりやすくなる 改修を行った。溶融物にコリウム等を使用した床面上に冷却水が存在しない条件(ドライ条 件)での大規模な実験を解析対象とした実験解析を行うために、溶融ジェット、粒子群及び 二相流を計算する部分を省略した。さらに、ドライ条件実験は、変形流路に溶融物を水平方 向に投入するため、変形流路(非軸対称体系)への対応、原点と接している第一セル(x=1, z=1)から溶融物を水平方向に直接供給する境界条件を追加した。

改修した JASMINE コードの機能を検証するために、PULiMS 実験及びドライ条件実験 の実験解析を行った。改修した JASMINE コードを用いた PULiMS 実験の解析結果により 得られた平成 30 年度で問題となった溶融物の拡がり速度は、解析結果により得られた溶融 物の拡がり速度と実験結果より得られた溶融物の拡がり速度と良好に一致した。ドライ条 件実験の実験解析は VULCANO VE-U7 実験[3.4] [3.5]、KATS-13 及び 14 実験[3.6] [3.7]、 ECOKATS V-1 実験[3.8] [3.9]、FARO L-26S 実験[3.10]及び COMAS EU-4 実験[3.11] [3.12] を対象とした。VULCANO VE-U7 実験では、コンクリート床面とセラミック床面の2種類 の床面を用いた分岐流路に同時に溶融物を流入させる実験のため、解析ではコンクリート 床面とセラミック床面の2種類の解析を個別に実施した。VULCANO VE-U7のコンクリ ート床面及びセラミック床面の解析では、解析結果より得られた溶融物の拡がりの先端位 置と実験結果より得られた溶融物の拡がりの先端位置が良好に一致した。KATS-13 では、 解析結果より得られた溶融物の拡がりの先端位置は実験結果より得られた溶融物の拡がり の先端位置を約 20%程度過小評価した。KATS-14 では、解析結果より得られた溶融物の拡 がりの先端位置は実験結果より得られた溶融物の拡がりの先端位置と良好に一致した。 ECOKATS V-1 では、解析結果より得られた溶融物の拡がりの先端位置は実験結果より得 られた溶融物の拡がりの先端位置を約 10%程度過大評価した。FARO L-26S では、解析結 果より得られた溶融物の拡がりの先端位置は実験結果より得られた溶融物の拡がりの先端 位置と良好に一致した。COMAS EU-4 では、解析結果より得られた溶融物の拡がりの先端 位置実験結果より得られた溶融物の拡がりの先端位置を最大で約35%程度過少評価した。 この原因は、COMAS EU-4 実験は流路幅 0.4m の等幅流路の途中から流路の片側だけ 45° の拡大部を持つ変形流路である。実験では等幅流路で得た速度を維持したまま拡大部へ直 進して拡がるために、溶融物の多くが拡大部へ拡がらない。JASMINE コードを用いた解析

3-5

では、溶融物プールに対して一次元による解析モデルを適用しているために、流路の拡大部 で溶融物が均一に拡がる。このことにより、解析では実験と比較して溶融物の多くが拡大部 に拡がるために、解析結果より得られた溶融物の先端位置は実験結果より得られた溶融物 の先端位置より小さくなる。したがって、JASMINEコードを用いた解析では、拡大部を持 つ二次元的な溶融物の流動に対して適用できない。平成27年度から平成31年度(令和元 年度)までに溶融物の拡がりモデルを構築することにより、溶融物の拡がり及び連続層状デ ブリの堆積範囲を良好に再現することが可能となった。今後の課題では、溶融物の物性値、 溶融物の空隙率及び投入条件を変更した感度解析を行い、溶融物の拡がりに対して支配的 となる要因を検討することとした。

3.3.6 令和2年度

平成 27 年度から平成 31 年度(令和元年度)までに溶融物の拡がりモデルを構築するこ とにより、溶融物の拡がり及び連続層状デブリの堆積範囲を良好に再現することが可能と なった。令和 2 年度では、溶融物の物性値及び溶融物の空隙率を変更した感度解析を行い、 溶融物の拡がりに対して支配的となる要因を検討した。空隙率は溶融物が落下した際に巻 き込む空気もしくは、冷却水の水蒸気等により発生し得る。感度解析の対象とする溶融物の 物性値として密度、比熱、熱伝導率、粘性係数及び表面張力を感度解析の対象として選定し た。

溶融物の物性値及び溶融物の空隙率が溶融物の拡がりに対して支配的となる要因を調査 するため、PULiMS 実験及びドライ条件実験を解析対象として物性値及び空隙率を実験解 析の数値から 1.5 倍及び 0.5 倍に変更した感度解析を行った。なお、ドライ条件実験の感度 解析の対象から COMAS EU-4 実験は除外した。PULiMS 実験を対象とした感度解析では、 溶融物の密度を増加させると溶融物の拡がり面積が大きくなった。 溶融物の比熱、熱伝導率、 粘性係数及び表面張力を増減させても溶融物の拡がり面積に対する影響は少なかった。溶 融物の空隙率を増減させても溶融物の拡がり面積に対する影響は少なかった。ドライ条件 実験での感度解析では、溶融物の密度、熱伝達率及び粘性係数を増加させると溶融物の拡が り面積が小さくなった。溶融物の比熱及び表面張力を増減させても溶融物の拡がり面積に 対する影響は少なかった。溶融物の空隙率を増加させると溶融物の拡がり面積が大きくな り、溶融物の空隙率を減少させると溶融物の拡がり面積が小さくなった。PULiMS 実験の 感度解析では溶融物の密度が増加すると溶融物に作用する重力が増加するために溶融物の 落下速度が増加することにより、溶融物の拡がり速度が増加することが原因と考えられる。 ドライ条件実験の感度解析では、溶融物が解析体系の左側(x=1,z=1)から水平方向に流 入するために、落下速度の増加による拡がり速度の増加がない。 溶融物の密度が増加すれば 溶融物に作用する重力も増加するために、溶融物の拡がり速度が減少し、溶融物の拡がりの 進展が阻害されることが原因と考えられる。令和2年度は主に溶融物の物性値を変更した 感度解析を実施したために、今後の課題では、溶融物の投入条件を変更した感度解析を実施 することにより溶融物の拡がりに対して支配的となる因子を検討することとした。加えて、 OECD/ROSAU 計画で実施予定の実験を解析するために、変形流路で二相流の解析を実施

できるように改修をする必要がある。改修の予備検討として直交座標での二相流及び溶融 物の拡がりを検証することした。

3.3.7 令和3年度

令和 2 年度に溶融物の物性値及び空隙率を変更した感度解析を実施したために、令和 3 年度では、溶融物の投入条件(溶融ジェット直径、投入速度)を変更した感度解析を実施することにより、溶融物の拡がりに対して支配的となる要因を検討した。加えて、 OECD/ROSAU 計画で実施予定の実験を解析するために、変形流路で二相流の解析を実施できるように改修をする必要がある。改修の予備検討として直交座標での二相流及び溶融物の拡がりを検証するために RIT 実験[3.13]の実験解析を行った。

溶融物の投入条件が溶融物の拡がりに与える影響を調査するため、令和 2 年度と同様に PULiMS 実験及びドライ条件実験の感度解析を行った。PULiMS 実験を対象とした感度解 析では、溶融ジェット直径及び投入速度を増加させると溶融物の拡がり面積が大きくなっ た。ドライ条件実験を対象とした感度解析では、溶融ジェット直径及び投入速度を増加させ ると溶融物の拡がり面積が大きくなった。PULiMS 実験及びドライ条件実験の感度解析よ り得られた解析結果より、溶融ジェット直径が投入速度より溶融物の拡がりに与える影響 が大きかった。溶融ジェット直径が投入速度より溶融物の拡がりに与える影響が大きかっ た理由は、溶融ジェット直径を増加させると、溶融ジェットの質量流量が増加して溶融物の 拡がり速度が増加することで溶融物の拡がりも増加する。この質量流量の計算において溶 融ジェット直径が 2 乗されるので投入速度よりも溶融ジェット直径の方が溶融物の拡がり に与える影響が大きくなると考えられる。直交座標での二相流及び溶融物の拡がりを検証 するために RIT 実験を対象として実験解析を行った。RIT 実験の実験解析の対象を 2MWS-Ox-3[3.13]条件とした。令和3年度時点までのJASMINEコードでは直交座標で二相流を 対象とした解析を行うことができなかったため、冷却水の一次近似モデルを使用した簡易 的な解析を行った。冷却水の一点近似モデルとは、冷却水が静止した状態で冷却水温度及び ボイド率が一定と仮定するモデルである。解析結果より得られた溶融物の拡がりの先端位 置は、実験結果より得られた溶融物の拡がりの先端位置を過大評価した。今後の課題では、 JASMINE コードを用いて変形流路での二相流の解析を実施するための改修により、 ROSAU MST-1 実験の実験解析を行うこととした。

3.4 ROSAU MST-1の実験解析

格納容器内における溶融物の拡がりや冷却現象には未解明の事項が多く、シビアアクシ デント進展、モデリング等に関する知見に不確かさが存在する。OECD/ROSAU 計画は、 OECD/NEA の主導の下、シビアアクシデントの進行と抑制に関連する不確かさを低減する ことを目的とした実験計画である。2019年に開始し、2024年まで継続する予定である。

実験は、米国原子力規制委員会の調整の下、アメリカのアルゴンヌ国立研究所で実施される。最大 300 kg の溶融プロトタイプ材料(コリウム)を使用した 5 つの大規模な冷却水中溶融拡散実験(MST)、及び、新しく設計された施設で最大 80 kg のコリウムを使用した 5 つの溶融物-コンクリート相互作用(MCCI)を対象としたテスト(DCAM)を実施する。 DCAM では、溶融物の温度を最大で 2500℃として、溶融物中の金属とコンクリートの含有量及び冷却水量とサブクーリング度をパラメータとして実施される。令和4年度では、MST-1実験の解析を行った。

令和4年度では、ROSAU MST-1実験の実験解析を実施するために、JASMINE コード を改修し、流路幅を流れ方向に沿って任意に変形させた変形流路を対象とした解析を可能 とした。JASMINE コードを用いた実験解析では、MST-1実験の解析を行った。解析の結 果から溶融物の拡がりを適切に予測するために、溶融物の固相線温度、液相線温度及び融点 の関係を把握する必要があることを明らかにした。

3.5 まとめ

本事業は令和4年度が最終年度であるために、平成27年度から令和3年度まで行った実施内容を総括した。平成27年度から平成31年度(令和元年度)までに実施した内容により、スウェーデン王立工科大学で実施されたPULiMS実験及び溶融物にコリウム等を使用したドライ条件の大規模な実験(ECOKATS等)に基づき溶融物の拡がり及び連続層状デブリの堆積範囲を良好に再現することが可能となった。令和2年度から令和3年度までに溶融物の物性値、溶融物の空隙率及び投入条件を変更した感度解析を行い、溶融物の拡がりに対して支配的となる要因を明らかにした。令和2年度から令和3年度まで実施したRIT実験の検証結果に基づき、OECD/NEAの主導で実施されるROSAUMST-1実験の実験解析を行った。

3-8

参考文献

- [3.1] Kiyofumi MORIYAMA, Yu MARUYAMA, Hideo NAKAMURA, Steam Explosion Simulation Code JASMINE v.3 User's Guide 2008
- [3.2] A. Konovalenko, A. Karbojian, P. Kudinov, "Experimental Results on Pouring and Underwater Liquid Melt Spreading and Energetic Melt-coolant Interaction", NUTHOS-9, Kaohsing, Taiwan, (Sep. 2012),N9P0303
- [3.3] S. Nishio, M. Uemura, K. Sakaguchi, "Film Boiling Heat Transfer and Minimum-Heat-Flux(MHF)-Point Condition in Subcooled Pool Boiling", JSME International Journal, 1987, Vol. 30, No. 266
- [3.4] C. Journeau, E. Boccaccio, C. Brayer, G. Cognet, J.-F. Haquet, C. J'egou, P. Piluso, J. Monerris, Ex-vessel corium spreading: results from the VULCANO spreading tests, Nuclear Engineering and Design, vol.223, 75-102, doi:10.1016/S0029-5493(02)00397-7, 2003.
- [3.5] C. Journeau, J.-F. Haquet, B. Spindler, C. Spengler, J. Foit, The VULCANO VE-U7 corium spreading benchmark, Progress in Nuclear Energy, vol.48, 215-234, doi:10.1016/j.pnucene.2005.09.009, 2006.
- [3.6] G. Engel, G. Fieg, H. Massier, U. Stegmaier, W. Sch"utz, KATS experiments to simulate corium spreading in the EPR core catcher concept, OECD Workshop on Ex-Vessel Debris Coolability, Karlsruhe 1999, 148--155, 1999.
- [3.7] B. Eppinger, G. Fieg, W. Sch"utz, U. Stegmaier, KATS experiments to simulate corium spreading in the EPR core catcher concept, 9th International Conference on Nulcear Engineering, 2001.
- [3.8] H. Alsmeyer, T. Cron, J.J. Foit, G. Messemer, S. Schmidt-Stiefel, W. H"afner, H. Kriscio, Test report of the melt spreading tests ECOKATS-V1 and ECOKATS-1, FZKA-7064, SAM-ECOSTR-D15, Forschungszentrum Karlsruhe, 2004.
- [3.9] J.J. Foit, Large-scale ECOKATS experiments: spreading of oxide melt on ceramic and concrete surfaces, Nuclear Engineering and Design, vol.236, 2567-2573, doi:10.1016/j.nucengdes.2006.03.010, 2006.
- [3.10] W. Tromm, J.J. Foit, Dry and wet spreading experiments with prototypical material at the FARO facility and theoretical analysis, OECD Workshop on Ex-Vessel Debris Coolability, Karlsruhe 1999, 178--188, 1999.
- [3.11] M. Sappok, W. Steinwarz, Large-scale experiments on ex-vessel core melt behavior, Nuclear Technology, vol.125, 363-370, 1999.
- [3.12] W. Steinwarz, A. Alemberti, W. H"afner, Z. Alkan, M. Fischer, Investigations on the phenomenology of ex-vessel core melt behaviro (COMAS), Nuclear Engineering and Design, vol.209, 139-146, 2001.
- [3.13] M.T. Farmer, The MELTSPREAD Code for Modeling of Ex Vessel CoreDebris Spreading Behavior, Code Manual Version3.0, pp.214 230, 2018
4. 実機冷却性評価

4.1 概要

この章では実機を対象とした格納容器内の溶融物冷却性評価について述べる。4.2 では本 事業内で平成 29 年度から令和 3 年度[4.1~4.6]の間に実施された実機を対象とした評価につ いて取りまとめる。つづいて 4.3 では、本年度実施した実機評価について記載する。4.4 で は本年度のまとめを述べる。

4.2 実機冷却性評価のまとめ

1. はじめにで述べたように格納容器内に落下する溶融物条件には不確かさが含まれる。 そこで、JASMINE コードの入力パラメータとなる溶融物条件の不確かさについてはシビ アアクシデント (SA) 総合解析コード MELCOR1.8.5[4.6] (以下 MELCOR) による炉心 損傷及び事故シナリオに関するパラメータに不確かさ分布を与えた解析の結果から決定す るという方法をとることとした。公開資料を基に解析対象のプラントの条件、事故シナリオ 等を設定した[4.7][4.8]。格納容器へ移行する溶融物条件の求めるためにシビアアクシデン ト解析コード MELCOR による多ケース解析を行っており、対象としたのは共通して、 Mark-I 型格納容器を持つ定格出力 840MWe の BWR4 である。ここで抽出した溶融物条件 を用いて格納容器内における溶融物の挙動を JASMINE コードにより解析するが、 MELCOR の解析とは切り離されて実施されており、出力 820MWe の Mark-I 改良型格納 容器を対象としている。格納容器内の床面はサンプピット等がない水平な平面とし、格納容 器内の初期圧力は大気圧とした。

4.2.1 平成 29 年度

JASMINE コードを用いての実機スケールを対象とした格納容器内の溶融物冷却性の評価は、平成29年度[4.1]から実施された。落下溶融物条件の不確かさ分布を仮定して、ラテン超方格サンプリング(LHS)によりパラメータセットを生成することとした。不確かさを与えた溶融物条件は、溶融物落下量、溶融物初速、圧力容器破損部開口直径(溶融ジェットの直径となる)、溶融物温度及び格納容器内水温である。ここで、冷却の成功・失敗の判定基準を、格納容器床面に堆積した溶融物が固化したデブリが定常状態で溶融物の温度がMCCI開始しない(コンクリート溶融温度を超えない)こととした。JASMINE解析の結果を集計し、幅広い溶融物条件に対して、冷却成功ケースが優位であることが確認され、冷却の成功確率を算出することに成功した。

4.2.2 平成 30 年度

平成 30 年度[4.2]の実機冷却性評価では、格納容器内の初期水位条件に関する検討を行った。他の条件は前年度のものと同様として、初期水位を3条件設定し、それぞれの水位条件の下、JASMINEコードによる多ケース解析を実施した。ここで、水位は高いほど溶融物ジェットの分裂量が多くなる。結果として、本研究で冷却性が悪く、MCCIの開始に寄与する

とみなしている連続層状及びアグロメレーション状デブリの質量割合が小さくなるため、 水位が高いほど冷却確率が高くなる傾向が予想される。解析結果を前年度と同様に集計し、 冷却成功確率が水位ごとに求まった。冷却成功確率は水位条件に感度があり、予想の通りと なることが確認された。統計的な分析の結果から、溶融物量に対する感度が一番大きいこと が確認された。

4.2.3 平成 31 年度(令和元年度)

平成 31 年度[4.3]の解析では、JASMINE コード解析の入力となる格納容器内へ移行する 溶融物条件の不確かさを、解析の結果から求めるため、次の手順をとることとした。

①SA コードである MELCOR による不確かさを考慮した多ケース解析を行う。解析の結果 から溶融物条件を抽出し、JASMINE コードの入力パラメータの確率分布を求める。

②求めた確率分布に基づいた入力パラメータセットに対する JASMINE 解析の結果から溶 融炉心の堆積高さの分布を求め、冷却可能な堆積高さと比較して MCCI 回避の成功・失敗 を判定し、デブリの冷却成功確率を評価する。

MELOR によるシビアアクシデント解析では福島 3 号機の事故をベースにした仮想的な 事故を対象とした。炉心溶融進展に関連するパラメータに不確かさを与えて、LHS により 生成したパラメータセットを用いて多ケース解析を実施した。ここでは格納容器から放出 される溶融物はコリウム(UO₂+ZrO₂)の共晶物質を想定していた。また、一度溶融物条件 の確率分布に置き換えるため、溶融物温度条件は融点以上に限定し、一様分布とした。他の パラメータはワイブル分布で再現できるとして、分布パラメータを算出した。

溶融物条件の確率分布を基に再びLHSによりパラメータセットを生成し、JASMINEによる解析を実施した。解析結果からデブリ堆積高さを算出した後、冷却の成功・失敗を判定し、冷却の成功確率を求めた。以上の結果から、格納容器内に移行する溶融物条件を求めるために、SA解析コードであるMELCORとJASMINEコードを組み合わせるという実機の冷却性評価に見通しがたった。一方、溶融物条件を一旦確率分布に置き換える方法では、溶融物条件どうしの相関が無視される可能性があることが課題として挙げられる。相関係数を設定してサンプリングする必要があるが、物質の組成等も考慮する際には相関関係を適切に設定する難しさがある。

4.2.4 令和2年度

令和 2 年度[4.4]の解析では、溶融物の各パラメータどうしの非現実的な組み合わせを除 外し、現実的な相関関係を維持した評価を行うため、1ケースの MELCOR 解析から抽出 した溶融物条件に対して1ケースの JASMINE 解析を実施するという手順で同様に MCCI 回避の成功・失敗判定からデブリの冷却成功確率を評価した。この際、溶融物条件として、 MELCOR 解析の結果得られた組成情報と、熱力学平衡計算の結果得られた相図の情報を組 み合わせて融点(固/液相線温度)の情報を反映させた。このことにより1ケース対1ケー スの方法のメリットを活かすことができた。

MELOR によるシビアアクシデント解析では、シビアアクシデントの代表的なシナリオ

4-2

である TQUV 及び TB シーケンスを対象とした。MELCOR の結果から組成(成分の割合) 情報を抽出し、溶融物の物性値を計算した。ここで、融点(液相線・固相線温度)について は、Thermo-Calc 計算による相図を構築して取得した。MELCOR 解析の結果から、TB シ ナリオでは炉心溶融開始から圧力容器破損までに時間を要したため、落下する溶融物量が TQUV シナリオのものより多くなった。複数の水位条件の下、JASMINE 解析を実施し、 前年度と同様にデブリの冷却確率を評価した。JASMINE 解析の結果では、落下溶融物量を 反映して、TB シナリオのデブリ堆積高さは TQUV シナリオのものの 2 倍程度になった。 しかしながら、冷却確率は変わらないという結果となった。

4.2.5 令和3年度

令和3年度では。解析対象を代表的な事故シナリオであるTBシーケンスをベースとして、事故シナリオに係わる不確かさに対応した評価を検討することとした。MELCOR計算の不確かさパラメータは事故シナリオに係わるRCICの稼働限界時間(バッテリーの枯渇を想定)とモデルパラメータである下部ヘッド破損温度を対象とした。不確かさパラメータは確率分布としては与えず、等間隔の一様分布 (uniform distribution)とした。複数の水位条件の下、JASMINE 解析を実施し、前年度と同様にデブリの冷却確率を評価した。

以上の解析を通して、MELCOR によるシビアアクシデント解析と JASMINE による格 納容器内溶融物挙動解析を組み合わせた、デブリの冷却性評価が、事故シナリオに係わる不 確かさパラメータを考慮した評価への適用可能性を示した。

4.3 実機冷却性評価実施内容

MELCOR 解析で対象とするプラントは、福島第一原子力発電所3号炉の公開情報を基に 入力を作成した[4.9][4.10]。事故シナリオはBWRにおけるSAの代表的な事故シナリオで ある大破断LOCAをベースとしてパラメータを決定した。過去の解析からは、溶融物拡が り面積には落下溶融物量の影響が大きいことが分かっている。その落下溶融物量に対して はモデルパラメータのうち圧力容器(RPV)下部ヘッド破損温度の影響が比較的大きい。本 年度は下部ヘッド破損温度と、事故対策であるRPV内への注水の継続時間をパラメータと した解析とした。

4.3.1 解析する原子炉及びベースシナリオ

(1) 解析対象とする原子炉

解析対象は、Mark-I型格納容器を持つ定格出力 840MWe の BWR4 である。入力ファイ ルを作成するにあたり、原子炉のデータを種々の公開文献から値を推定した。表 4.3.1 に主 要なプラント条件を示す。図 4.3.1 及び図 4.3.2 は MELCOR 解析における炉心ノード分割 及びボリューム分割を示す。原子炉圧力容器は、下部プレナム、バイパス、炉心、上部プレ ナム、蒸気ドーム、ダウンカマ、再循環ライン、主蒸気ライン、SR 弁等の 16 のボリュー ムに分割された。格納容器は、ドライウェル区画をペデスタル、ドライウェル、ベント管等 の5つのボリュームに分割した。

(2) 大破断 LOCA シナリオの解析条件設定

本解析では以下のように LOCA を解析対象の事故シナリオを設定した。設定値は公開情 報を基にしているが、現実と異なる場合もある。表 4.3.2 にはベースとした大破断 LOCA シ ナリオにおける発生イベントを示す。LOCA の破断箇所は原子炉再循環系の配管(図 4.3.2 の LOOP A)とした。破断断面積は解析の不確かさパラメータ(4.3.2 に考え方を記載)と した。冷却材が流出すると、原子炉水位が低下する。原子炉水位が L1(9.465 m)に到達時 に低圧注水(LPCI)が作動する。LPCI は原子炉水位が L2(11.965 m)を超えると注水停 止する。また、L1 を下回ると注水は再開される。LPCI のポンプは非常用ディーゼル発電 機(EDG)により作動する。EDG は LOCA 発生から最大 24 時間まで稼働するとした。 LPCI による注水が不可能になると、LOCA の破断口から原子炉内冷却水が流出し、燃料被 覆管の損傷後、原子炉下部ヘッドに損壊・溶融した燃料が堆積する。下部ヘッドを加温して、 下部ヘッドの貫通部が破損温度(TPFAIL)を超えた時下部ヘッド破損と判定される。本事 故シナリオでは原子炉隔離時冷却系(RCIC)及び高圧注水系(HPCI)は不作動とした。ま た、LOCA によって流出する冷却水は格納容器内ペデスタルの水位等に影響がする可能性 があるが、MELCOR の結果は溶融物の放出条件を取得するのみとして、JASMINE 計算に は反映しないこととした。

項目	值	備考
初期原子炉熱出力	2381 MWt	定格値
初期原子炉圧力	7.03 MPa	通常運転圧力
初期原子炉水位	ベッセル下端から 14.3m	文献からの推定値
蒸気温度	559K	
UO2質量	107 t (ウラン質量 94t)	
有効炉心ノード分割	半径方向 3 リング 軸方向 6 レベル	
原子炉圧力容器及び格	図 4.3.2 MELCOR 解析に	下部ヘッドの破損も
納容器ボリューム分割	おけるボリューム分割参照	リングごとに生じる
崩壊熱	ANS 標準データ	
炉心損傷温度	被覆管破損温度 1173 K 燃料棒破損温度 2500 K	
格納容器空間容積	ドライウェル空間 (ベント管空間部を含む) 4240m ³ サプレッションチェンバ空間 3160m ³ サプレッションプール水量 2980 m ³	
コンクリート組成	玄武岩系コンクリート (Basalt aggregate concrete)	融点は 1450 K

表 4.3.1 MELCOR 解析の対象プラント条件

表 4.3.2	大破断 LOCA シナリオにおける発生イベント
---------	-------------------------

イベント	時間 [s] or 作動条件	イベントについての詳細情報
大破断 LOCA	0.0	破断箇所は、原子炉再循環系の配管。
		破断面積の最大値:0.77m ² ←配管直径
		0.7mの断面積 0.385m ² の 2 倍(ギロチン破
		断を想定)
		破断面積の最小値 : 0.0127m ² ←NUREG-
		1150より、直径5インチ以上の円の破断面
		を大 LOCA と定義
		破断面積は、サンプリングにより決定。
原子炉スクラム	0.0	
LPCI 作動	原子炉水位が	20 秒の作動遅れの後に作動。
	L1(9.465m)に到達時	注水は、原子炉内の圧力が
		3.1MPa(=31.7kg/cm ²)以下に達してから開始
		する。注水量は 500kg/s (=1800t/h)。
		注水先は炉心上部(シュラウド内部に注水)
LPCI の注水停止/	原子炉水位が L2 を越	L2の水位は、11.965m。
再開	えると注水停止、L1	L1の水位は、9.465m。
	を下回ると注水再開。	
EDG 故障	大破断 LOCA 発生か	EDG が故障すると、LPCI の注水は不可に
	ら 0 秒~24 時間後	なる。
		故障発生時刻は、サンプリングにより決定。
	↓ LPCI が注水不可に 流出し、燃料被覆行	ーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーーー
下如へいド础相	下却へいどの貫通動が	

下部ヘッド破損	下部ヘッドの貫通物が	破損温度(TPFAIL)は、最小 900℃、最大
	破損温度(TPFAIL)を	1400℃。破損温度は、サンプリングにより
	越えた時	決定。

図 4.3.1 MELCOR 解析における炉心部セル分割

図 4.3.2 MELCOR 解析におけるボリューム分割

4.3.2 解析条件及び不確かさを考慮するパラメータ

予備計算を行い、計算の安定性などを考慮して以下の設定を行った。

IDEJ オプションの設定

MELCOR の COR パッケージのオプション IDEJ については放出溶融物が「固相及び液 相(IDEJ=0)」を選択した。JASMINE 計算では落下する溶融物は液相を前提としている が、本計算においては溶融物中の固相及び液相が均一に混ざっている状態を仮定しており、 固相率に従って粘性率を上昇させることで固相の影響を考慮した。

<u>抽出するデータ</u>

MELCORの出力のうち、物質ごとの質量は COR-Mxx-DB のデータを抽出した。溶融物 放出量は COR-MEJEC-TOT、下部ヘッドの損傷面積は COR-ABRCH を抽出した。

下部ヘッド破損時に COR-MEJEC-TOT と COR-ABRCH がノンゼロになるタイミング は 24 時間の計算では約 1000 秒のラグがある。両タイミングでの溶融物組成は異なってい るが、本解析では COR-MEJEC-TOT を基準に抽出した。

<u>不確かさパラメータ</u>

下記の3つのパラメータ

➤ LOCA 面積(最大値: 0.77m²、最小値: 0.0127m²)

▶ EDG 故障発生時間(最大値:24h、最小値:0s)

▶ 下部ヘッドの貫通物の破損温度(最大値 1400℃、最小値 900℃)

に対して、PREP コード[4.11]を用いて LHS 法によるサンプリングを行い、300 ケースの 入力パラメータを作成した。使用した入力パラメータは付録表 C・1 に示した。下部ヘッド の破損温度(TPFAIL)については、事故シナリオでは最大値を 1400℃としている。さら に、EDG 故障が最長の 24 時間後、かつ、LOCA の面積が最小の 0.0127m²の場合が原子 炉内に最も水が残りやすい状況であり、炉心損傷に至るのに時間がかかる。この状況下で も炉心損傷し、溶融炉心によって RPV の下部が破損するか確認するためのテスト解析を 行った。その結果、そのような状況下でも炉心損傷に至り、LOCA 発生から 49.1 時間後

(EDG 故障から 25.1 時間後)に下部ヘッドが破損することが分かった。この結果を踏ま え、サンプリング値を適用した本解析での解析終了時間は、EDG が故障してから 40 時間 後に設定した。

4.3.3 MELCOR 解析

300 ケースの MELCOR 解析を実施した。圧力容器破損は径方向に3 領域のリングに分割されており、リングごとに破損判定が行われる。最終時刻(EDG 故障後 40 時間経過)まで正常に計算できたのは 299 ケースである。リングの各部に1 つずつ貫通物がモデル化されている。解析が実行できた 299 ケースでは、これら3 つの貫通物のうち、少なくとも1 つの貫通物は破損(いずれかのリングで破損が発生)し、溶融デブリが下部ヘッドに生じた穴から放出された。

入力のサンプリング値と貫通物の破損との関係を図 4.3.3 と図 4.3.4 に示す。図 4.3.3 は、 少なくとも1つの貫通物が破損するケースの分布であり、解析が実行できた 299 ケースの 分布を示している。どのケースでも1つの貫通物の破損が生じており、EDG 故障後、炉心 への注水が無くなってから十分計算できていると考えられる。図 4.3.4 の方は、3つの貫通 物全てが破損するケースの分布を示している。LOCA の破断面積や EDG 故障の発生時間 は、全ての貫通物の破損するかどうかに明確な相関は見られない。一方、下部ヘッドの貫通 物の破損温度、破損温度が高いほど、3 つとも破損するケースは少なくなるという相関がみ られる。中心に近いリングほど破損しやすく、破損した貫通物からの溶融物等が流出するこ とで、中心から2番目3番目のリングにおける破損が生じにくくなると考えられる。

図 4.3.3 下部ヘッドの貫通物が少なくとも1つ破損するケースの分布 上:LOCAの破断面積、中:EDG 故障の発生時間、下:貫通物の破損温度

図 4.3.4 下部ヘッドの貫通物が全て破損するケースの分布 上:LOCAの破断面積、中:EDG 故障の発生時間、下:貫通物の破損温度

4.3.4 代表ケースの分析

299 ケースの MELCOR 解析より、いくつかの代表ケースに注目し、事故進展の確認や下 部ヘッドに存在する溶融物組成、温度等を分析する。MELCOR の出力ファイルは拡張子 (.MES 等)で指定して言及する。その分析結果をもとに、JASMINE 解析に使用するデー タを整理する。

<u>ケース 001(LOCA 面積:0.1527m²、EDG 故障発生時間:13.67h、</u>貫通物の破損温度: <u>1271℃)</u>

事故進展の特長を示す主要な解析結果を図 4.3.5 及び図 4.3.6 に示す。

図 4.3.5 ケース 001 の解析結果 その 1 (左上:LOCA 流出量、右上:LPCI 注水量、左下:RPV 内圧力、右下:D/W 圧力)

図 4.3.6 ケース 001 の解析結果 その 2 (左上:炉心部水位、右上:下部プレナム水位、 左下:下部ヘッドの穴からのデブリ流出量、右下:下部ヘッドに生じた穴の面積)

事故進展としては、LOCA の破断面積が比較的大きいため、LPCI による注水とほぼ同 量の水が LOCA の破断口から流出し続ける。炉心部の水位は、ジェットポンプの吸い込み 口の高さ(7.95m)付近までしか回復しない。LPCI による注水が行われている間は、炉心冷 却は可能であるが、EDG が故障して LPCI による注水ができなくなると、炉心部の水位は 低下していき、炉心損傷に至る。その後炉心溶融が始まり、下部ヘッド上に溜まった溶融 デブリによって 35 時間後あたりで下部ヘッドの貫通物が破損する。表 4.3.3 に示した値 は、MELCOR 出力ファイル (.MES) より取得した下部ヘッドの貫通物、および、下部ヘ ッドが破損(Fail)する時間である。下部ヘッドの破損の判定条件については、COR Reference Manual の「5.2 Failure」に記載されている。ここで下部ヘッドそのものの破 損については、下部ヘッドの温度条件(下部ヘッドの温度が TPFAIL を越える)の他にも 圧力やクリープ破損が考えられる。

	リング1	リング2	リング3
貫通物が破損する時間[h]	34.58	35.42	破損しない
下部ヘッドが破損する時間[h]	35.98	破損しない	破損しない

表 4.3.3 下部ヘッドの貫通物、および、下部ヘッドが破損(Fail)する時間

※リング 1,2,3 が示すセル位置については、図 4.3.1 参照。

次に、下部プレナム上に堆積したデブリの分析を行う。図 4.3.7 は、下部ヘッド直上の 粒子デブリの温度、および、下部プレナムの各セルにおける粒子デブリの温度である。

図 4.3.7 下部ヘッド直上の粒子デブリの温度および下部プレナムの各セルにおける粒子デ ブリの温度

下部プレナムの各セル番号については図 4.3.1 に示しており、図 4.3.7 の凡例は COR-TPD_(セル番号)の形式で与えている。左上に示した下部ヘッド直上(下部プレナムの底) の粒子デブリの温度を見ると、下部ヘッドの貫通物が破損する 35 時間あたりで温度が最 も高くなっているのが分かる。図 4.3.6 に示した下部プレナム水位を見ると、32 時間あた りで下部プレナムの水が無くなる。その結果、下部プレナム内のデブリを冷やす水が無く なり、デブリ温度が上昇して、下部ヘッドの貫通物が加熱されて破損に至ったと考えられる。ただし、図 4.3.7 の下部プレナムの各セルの温度を見てみると、最下部のセルではなく、それよりも少し上のセルの方が温度が高い。最下部は下部ヘッド構造体が冷却されていることにより熱移行するためと考えられる。

続いて、下部プレナムに堆積したデブリの成分(物質)や状態(液相 or 固相)を調べる。図 4.3.8 は、リング1の下部プレナムにおけるデブリ量を示した図である。左は下部 プレナムの底(セル 101)のデブリに含まれる各物質の質量、右はセル 101~106 における UO₂の質量を示している。

図 4.3.8 左:下部プレナムの底(セル 101)のデブリに含まれる各物質の質量、右:セル 101~106における UO2の質量

デブリに含まれる物質の質量は、Control Function を利用して追加出力しており、入力 ファイル PLOT_JASMINE.inp に追加した出力項目を記載している。Control Function の値とその値に割り当てられた出力内容との関係は、以下の通りである(表 4.3.4)。 ● 指定セルに存在するデブリに含まれる指定物質の総質量

= "CF2" + セル番号(3桁) + "0" + 物質番号(1桁)

(例) セル 103 にあるデブリに含まれる UO2の質量 = CF210301 = COR-MUO2-DB.103

指定セルに存在する指定構造物に含まれる指定物質の溶融率

= "CF2" + セル番号(3桁) + 物質番号(1桁) + 構造物番号(1桁)

 (例) セル 201 にある粒子状デブリに含まれる ZrO₂の溶融率 = CF220146 = COR-MLTFR.201.4.6

物質番号	物質	物質番号	物質
1	UO_2	4	$ m ZrO_2$
2	Zircaloy	5	Steel oxide
3	Steel	6	Control rod poison (B4C)

表 4.3.4 Control Function 出力物質割り当て

図 4.3.8 の左図を見ると、下部プレナムの底(セル 101)のデブリに含まれる物質は、 UO₂が最も多く、ZrO₂、Zircaloy と続く。図 4.3.8 の右図を見ると、25 時間以降に下部プ レナムの底(セル 101)に炉心燃料である UO₂が多く堆積するが、33 時間あたりになる と、セル 103 や 104 に UO₂が多く堆積し始める。その理由は、その時間で炉心を支えて いるカラムが Fail し、カラム上に残っていた炉心が一気に落下するためである。図 4.3.9 は出力ファイル(.MES)の一部を抜粋したものであるが、33.1 時間で炉心を支えている カラムが Fail し、炉心が支えられなくなったと記載されている。図 4.3.10 はリング 3 の UO₂ 温度であるが、33.1 時間で温度が 0K になっている。つまり、炉心が落下したことを 意味している。

33.1[h] /SMESSAGE/ TIME= 1.19233E+05 CYCLE= 1203882 COR0005: MESSAGE FROM CORE PACKAGE CORE SUPPORT STRUCTURE (COLUMN) HAS FAILED IN CELL 306 FAILURE WAS BY YIELDING /SMESSAGE/ TIME= 1.19233E+05 CYCLE= 1203882 CELL 306 တこと。 COR0005: MESSAGE FROM CORE PACKAGE CORE SUPPORT STRUCTURE (PLATEB) IN CELL 307 CAN NO LONGER SUPPORT CORE BECAUSE OF FAILURE OF COLUMNS BELOW IT

図 4.3.10 リング 3 の UO₂ 温度

次に、下部プレナムに堆積したデブリの溶融状態(液相 or 固相)について述べる。図 4.3.11 図 4.3.11 は、セル 101 とセル 103 のデブリに含まれる各物質の液相、固相割合を 示した円グラフである。この割合を算出する際に利用した計算結果のタイミングは、35.4 時間(下部ヘッドの穴からデブリが流出する直前のタイミング)である。セル 101 の方は 固相の割合が多く、液相割合はごくわずかである。一方、セル 103 の方は UO₂の液相割 合が 6 割近くを占め、ZrO₂の液相割合も 2 割近くある。上で述べたように、セル 103 の 方はカラムの Fail で落下してきた燃料であり、下部プレナムの底に溜まったデブリのよう に除熱がされておらず、崩壊熱によって溶融し続けているために液相割合が高いと考えら れる。

図 4.3.11 デブリに含まれる各物質の液相、固相割合

4.3.5 JASMINE 解析で使用するデータ

MELCOR コードによる解析では下部ヘッドの破損はリングの数だけ時間をおいて複数 回(1~3回)にわたって生じたが、JASMINE コードによる解析では、1度の落下に集 約することとした。また、JASMINE コードでは体系内で溶融物の物性値は同一の値を使 用する。下部プレナムに堆積するデブリの最高温度、物質の質量割合については、1回目 のデブリ落下直前のタイミングの値を使用することとした。

以上のことから JASMINE 解析で使用するデータを以下のように選択した。

- ▶ 下部プレナムに堆積するデブリの最高温度
- ▶ 下部プレナムに堆積するデブリの物質の質量割合
- ▶ 下部ヘッドの貫通穴から落下したデブリの総重量
- ▶ 下部ヘッドの貫通穴の面積(最終時刻)
- ▶ デブリが落下している時間(複数回落下する場合は、その時間の和)

4.3.6 JASMINE 解析条件

JASMINE のバージョン

本解析では令和3年度に開発された JASMINE コード(JASMINE 4.4f)を使用した。

解析体系

令和3年度と同様に出力820MWeのMark-I改良型格納容器を有するBWRプラントを 仮定し、格納容器床(ペデスタル)の直径、上部自由空間容積を決定した。主要な実機解析 の条件を表4.3.5に示す。格納容器内の床面はサンプピット等がない水平な平面とした。格 納容器内の初期圧力は大気圧とした。その他、格納容器床材コンクリート組成、溶融炉心プ ールのボイド率、溶融炉心粒子の入力、粒子の粒径と溶融炉心プールへの堆積の各条件は令 和3年度と同じである。また、溶融炉心の発熱量は100 W/kgとした。

ジェット流入及び溶融物条件の設定

溶融物の放出は複数回に分かれているケースがあるが、以下の考え方に従って1回の放 出にまとめた。

溶融物物性値:1回目放出開始時の溶融物組成から算出した。

- ジェット流入温度:1回目放出開始時のデブリの最高温度を使用した。
- ジェット流入速度:ジェット流入直径と溶融物落下量、溶融物落下時間、溶融物の液相 密度から算出した。ただし、1.0m/s以下となった場合は1.0m/sとする。
- ジェット流入直径:下部ヘッドの貫通穴の面積(最終時刻)から円形を仮定して直径を 求めた。ただし、ジェット流入速度を1.0m/sへ修正したケースに対し ては単位時間に系に入ってくる溶融物の質量と合計の落下量が修正前

と等しくなるように調整した。

溶融物落下量と溶融物落下時間:各放出の合計値を使用した。 溶融物物性値:組成に応じた値を算出し、使用した。(4.4.2 に記述)

上記の付録の表 C-2, C-3, C-4 にそれぞれ JASMINE コードのジェットに関する入力、溶融物物性値及び相図に関する入力パラメーター覧を記載した。

水位の設定

水位は2水準、1.5及び1.75mに設定した。

項目	数值
床直径	6 m
上部自由空間容積	8000 m ³
初期圧力	0.1 MPa $(T_{sat} = 372.76 \text{ K})$
溶融炉心放出高さ	床から 4 m
溶融炉心発熱量	100 W/kg
原子炉格納容器内の冷却水温	299.2 K
原子炉格納容器内の初期水位	0.5, 1.0
表面クラストドライアウト熱流束	500 kW /m²
クラスト拘束条件	流動、所定の厚みで固定

表 4.3.5 実機冷却性評価の主要な入力条件

4.3.7 溶融物の物性値の算出

炉心の溶融進展の結果として、圧力容器破損時の炉心溶融物の組成は各ケースで異なる。 MELCOR 計算の各ケースにおいて取得した酸化物である UO₂、ZrO₂、Steel Oxide の各質 量割合、また、非酸化物・金属成分である Steel、Zr、Poison 物質(本解析では B₄C と仮 定した)の質量割合に基づいて各物性値を算出した。

融点・固/液相線温度は熱力学平衡計算ソフト Thermo-Calc を用いた熱力学平衡/状態 図計算により求めた。計算に用いるデータベースは[4.12]による先行研究で取得されたもの を用いた。図 4.3.12 及び図 4.3.13 に得られた酸化物成分及び金属成分の固相面/液相面温 度を示す。相図データから固相面温度、液相面温度をそれぞれ求めた後、その中で最も高い 温度を溶融物の液相線、最も低い温度を固相線とした。(図 4.3.14) 溶融物の融点は、溶融 物の固相体積率が 0.56 となる温度として設定した。

その他の物性値としては固相線及び液相線それぞれにおける密度、比熱、凝固潜熱及び熱 伝導率等がある。各成分について固相/液相での物性値は、温度から固相、遷移、液相のど こに位置するか判定した後にエンタルピから各材料の物性値を計算した。そして、混合物の 物性値については、下部ヘッドではすべての成分は均一に混合していると仮定したうえで、 物質の各成分の質量比による重み付けをして求めた。

凝固点 T_m は、溶融物の流動が不可能になる温度である。このことから、溶融物の粘性が 無限大となる固相体積率は 0.55 となる。解析では発散を避けるために、固相体積率が 0.55 よりわずかに小さくなる値 0.56 を T_m とした。粘性係数増倍係数が固相体積率が 0.55 の ときに極大になるように決めた。

溶融物の相図データ:液相線から固相線まで温度を変化させたときの固相重量率の変化 から、溶融物の温度/固相重量率テーブルを以下のようにして作成する。まず、ある与えら れた溶融物温度から酸化物と非酸化物に対してそれぞれ固相重量率を求める(液相から固相 までの間は線形に固相重量率が変化すると考える)。その後、溶融物中の酸化物と非酸化物 の重量比から以下のようにして溶融物全体の固相重量率を算出する。

・溶融物中の酸化物の重量比;

$$w^{ox} = \frac{M_{UO2} + M_{ZrO2} + M_{FeO}}{M_{UO2} + M_{ZrO2} + M_{FeO} + M_{Zr} + M_{Fe} + M_{B4C}}$$

・溶融物中の非酸化物の重量比;

$$w^{non_ox} = \frac{M_{Zr} + M_{Fe} + M_{B4C}}{M_{U02} + M_{Zr02} + M_{Fe0} + M_{Zr} + M_{Fe} + M_{B4C}}$$

・溶融物全体の固相重量率;

 $w^{ox} \times$ 酸化物の固相重量率+ $w^{non_ox} \times$ 非酸化物の固相重量率

以上で求めた物性値は JASMINE 解析及び堆積デブリの高さ計算や、冷却可能高さの計 算にも用いられた。

図 4.3.14 溶融物の固/液相線温度

4.3.8 JASMINE 解析実行

299 ケースの入力ファイルのうち、ジェット流入温度が融点以上となった付録表 C-5 の 64 ケースを対象として、プール水位 1.5m、1.75m の各場合について解析を実施した。その 他のケースについては、計算開始時点でジェット流入温度が融点以下であるため冷却成功 として、解析対象から除外した。

4.3.9 冷却の成功・失敗判定

JASMINE 解析の結果

JASMINE 解析結果からは、拡がりが半径 3m に到達した時点の粒子状デブリ質量、アグ ロメレーションデブリ質量、連続層状デブリ質量及び未落下分の溶融物質量を抽出した。ア グロメレーションデブリ質量、連続層状デブリ質量及び未落下分の溶融物質量と表 C-3 に 記載した溶融物の物性値を用いてデブリ堆積高さを算出した。上記の結果は付録 C-6 及び C-7 に記載した。

冷却可能なデブリの最大堆積高さ

JASMINE 計算の結果から、デブリは円筒形を仮定して堆積高さが求められた。 デブリは発熱体であるため、高くなるほど総発熱量が増大し、やがて下面(コンクリートと の界面)温度がコンクリート溶融浸食温度(MCCI 開始温度)に到達する。この時の高さをデ ブリ冷却が可能な最大堆積高さと考える。円筒形に堆積した溶融炉心デブリの冷却は、主に 上面における水との熱交換により行われる。ここでは、円筒側面における伝熱を無視し、鉛 直方向の1次元問題として冷却可能な最大堆積高さを求めた。求める方法は付録Bにまと めた。表4.3.6 に評価に用いた変数の値を示す。また、デブリ崩壊熱及び浸水層崩壊熱に関 しては100 (W/kg) に UO₂ の重量比(wt%)を乗算した値を用いた。各ケースの崩壊熱の一 覧は付録表 C-8 に示した。

変数	説明	値
λ	デブリ熱伝導率(固相) [W/m-K]	表 4.3.3 に記載
ρ	デブリ密度(固相) [kg/m ³]	表 4.3.3 に記載
Q_d	デブリ崩壊熱 [W/kg]	表 4.3.8 に記載
		表 4.3.8 エラー! 参照
Q_w	浸水層崩壞熱 [W/kg]	元が見つかりません。
		に記載
T _{sat}	水飽和温度 [K] ※0.5MPa を仮定	424.986
T _{abl}	コンクリート溶融浸食温度 [K]	1600
q _{dry}	ドライアウト熱流束 [W/m²]	350000
T _{melt}	デブリ融点 [K]	表 4.3.3 に記載

表 4.3.6 デブリ冷却が可能な最大堆積高さ評価に用いたパラメータ一覧

4.3.10 冷却成功確率評価

4.4.4 での結果として、デブリ堆積高さと冷却が可能な最大堆積高さ(Coolable debris height)から溶融炉心冷却成功・失敗の判定を行った(付録表 C-9 及び C-10)。結果を集計して冷却成功確率の評価を行った。図 4.3.15 及びに図 4.3.16 に、プール水位 1.5m、1.75mのそれぞれの場合のデブリ堆積高さのヒストグラムおよび累積確率分布を示した。いずれのプール水位の場合でも確率密度分布には差は見られない。JASMINE コードの計算結果が得られたケースのうちデブリ堆積高さが冷却可能な最大堆積高さを下回ったケース数の割合を求めることにより溶融炉心冷却成功確率 *P*を求めた結果は2ケースとも

$$P = \frac{59}{64} = 0.921875$$

となった。JASMINE 解析から除外した融点を下回るケース(235 ケース)を冷却成功とした場合の冷却成功確率は以下のようになった。

$$P = \frac{294}{299} = 0.98328$$

図 4.3.15 デブリ堆積高さのヒストグラム・確率密度分布 (プール水位 1.5m)

図 4.3.16 デブリ堆積高さのヒストグラム・確率密度分布 (プール水位 1.75m)

4.3.11 JASMINE 入出力パラメータの相関関係

JASMINE 入力パラメータ(ジェット流入温度、ジェット流入直径、溶融物落下量、融点、 固相密度)と JASMINE 出力パラメータ(連続層状デブリの質量、アグロメレーションデブ リの質量、粒子状デブリの質量、デブリ堆積高さ)との各変数間の相関関係の強さを示す相 関係数を求めた結果を図4.3.17(プール水位1.5m)、図4.3.18(プール水位1.75m)に示した。 プール水位 1.75m の場合はすべてのケースでアグロメレーションデブリが生じなかったた め、アグロメレーションデブリの質量に対応する棒グラフはグラフに表示されていない。

いずれのケースも溶融物拡がりはペデスタル領域の端まで達しているため、デブリ堆積 高さは溶融物落下量によりほぼ決定され、溶融物落下量 vs. デブリ堆積高さの相関係数は1 に近い値となっている。また、ジェット流入速度を1.0m/s へ調整したため、ジェット流入 直径は溶融物落下量が多いほど大きくなるため、ジェット流入直径 vs. デブリ堆積高さの 相関係数も大きくなっている。

図 4.3.17 JASMINE 入力パラメータと JASMINE 出力パラメータとの相関 (プール水位 1.5m)

図 4.3.18 JASMINE 入力パラメータと JASMINE 出力パラメータとの相関 (プール水位 1.75m)

4.4 まとめ

MELCOR コードによるシビアアクシデント事故解析

格納容器内へ流入する溶融物条件を求めるために BWR プラントの再循環ループ破断に よる LOCA の事故シナリオに沿って、MELCOR コードによる解析を行った。LOCA の破 断面積、EDG 故障の発生時間、下部ヘッドの貫通物の破損温度の3つのパラメータをサン プリングにより決定し、サンプリング値を適用した 300 ケースの解析を実施した。その結 果 299 ケースの解析が解析終了時間まで解析でき、下部ヘッドの破損に至った。299 ケー スの中から代表ケースを選定し、事故進展の分析を行った。その結果、EDG が故障して LPCI による注水が行われなくなると、炉心損傷が生じ、溶融した炉心が下部プレナムに溜まり、 下部ヘッドの貫通物を破損させたことが分かった。下部プレナムに堆積した溶融デブリを 分析した結果、下部ヘッド破損のタイミングでデブリの温度や液相・固相割合が変わること が分かった。溶融物組成から溶融物の融点を含めた物性値を求めたところ、多くのケースで ジェット流入温度が融点以下となった。ジェット流入温度が融点以上のケースに対して JASMINE コードによる格納容器内溶融物挙動解析を行った。 JASMINE コードによる格納容器内溶融物挙動解析について

初期水位として 1.5 及び 1.75 m の条件の下で JASMINE 解析を実施し、最終的なデブリ 堆積状態を求めた。JASMINE 解析の結果、デブリ堆積高さ評価の結果、全てのケースで溶 融物が端に到達した。MELCOR 解析のどのケースに対しても格納容器内へ移行する溶融物 量は多量で、水中で分裂せずに床面上へ到達したケースがほとんどであり、溶融物の拡がり は途中で止まらずに全てキャビティ壁面へ到達した。また、水中で分裂した粒子状デブリ及 び粒子が結合して生成するアグロメレーションデブリの質量割合は非常に小さいという結 果になった。

JASMINE 解析結果から連続層状及びアグロメレーションデブリの質量とデブリの拡が り面積からデブリ堆積高さを評価した。ケースごとの溶融物組成を反映した物性値を用い て算出した冷却可能な最大デブリ高さと比較し、冷却の成否判定を行った。結果を集計 し、冷却成功確率を求めたところ、初期水位による差は現れなかった。 参考文献

- [4.1] 平成 29 年度原子力規制庁委託成果報告書「原子力施設等防災対策等委託費(シビア アクシデント時格納容器内溶融炉心冷却性評価技術高度化)事業」
- [4.2] 平成 30 年度原子力規制庁委託成果報告書「原子力施設等防災対策等委託費(シビア アクシデント時格納容器内溶融炉心冷却性評価技術高度化)事業」
- [4.3] 平成 31 年度原子力規制庁委託成果報告書「原子力施設等防災対策等委託費(シビア アクシデント時格納容器内溶融炉心冷却性評価技術高度化)事業」
- [4.4] 令和2年度原子力規制庁委託成果報告書「原子力施設等防災対策等委託費(シビアア クシデント時格納容器内溶融炉心冷却性評価技術高度化)事業」
- [4.5] 令和3年度原子力規制庁委託成果報告書「原子力施設等防災対策等委託費(シビアア クシデント時格納容器内溶融炉心冷却性評価技術高度化)事業」
- [4.6] Sandia National Laboratories, "MELCOR Computer Code Manuals Primer and User's Guide Version 1.8.5", NUREG/CR-6119, Vol.1, SAND2000-2417/1
- [4.7] "Benchmark Study of the Accident at the Fukushima Daiichi Nuclear Power Plant (BSAF Project)", NEA/CSNI/R(2015)18, February 2016
- [4.8] 石川 淳, 村松 健, 坂本 亨 "THALES2 コードによる BWR Mark-II を対象とし たレベル 3PSA のための系統的なソースターム解析", JAERI-Research 2005-021 (2005)
- [4.9] TEPCO et.al., Information Portal for the Fukushima Daiich Accident Analysis and Decommissioning Activities, https://fdada.info/en/home2/
- [4.10] Jun, I. Kenji, K. and Yu, M. "Analysis for iodine release from unit 3 of Fukushima Dai-ichi nuclear power plant with consideration of water phase iodine chemistry", Journal of Nuclear Science and Technology, p. 308-314, Vol. 52 (3), (2015)
- [4.11] T. Homma and A. Saltelli, LISA package user guide, Part 1: PREP (Statistical PRE Processor) preparation of input sample for Monte Carlo simulations program description and user guide, EUR-13922, Commission of the European Communities, 1992.
- [4.12]経済産業省資源エネルギー庁「原子力の安全性向上に資する共通基盤整備のための技術開発事業(シビアアクシデント時の燃料破損・溶融過程解析手法の高度化)」(平成24 年~令和2年)

5. 水蒸気爆発解析

5.1. 実施背景

本事業では、粒子化した溶融物のアグロメレーション及び床面に到達した溶融物の拡が りを解析できるように JASMINE コードを改修した。今年度は、改修した JASMINE コー ドを用いて水蒸気爆発の解析が適切に解析できることを確認するために、水蒸気爆発実験 解析及び感度解析を実施した。

5.2. 今年度の実施内容

実験解析では、現在公開されている JASMINE 3.3b[4.1]を用いた水蒸気爆発実験の実験 解析の解析結果と本事業で改修を行った JASMINE 4.4f を用いた水蒸気爆発実験の実験解 析の解析結果との比較を行った。感度解析では、溶融物の粒子直径、溶融物の投入条件及び 溶融物の落下回数を変更することにより、水蒸気爆発により発生する冷却水の機械的エネ ルギー量に及ぼす影響を調査した。実験解析及び感度解析の対象は、SERENA 計画で実施 された高温の溶融物を冷却水に投入した水蒸気爆発実験とした。

5.3. 解析対象

SERENA 計画で実施された高温の溶融物を冷却水に投入した水蒸気爆発実験の内、 KROTOS-44[4.2]及び FARO-L33[4.3]実験を実験解析の解析対象とした。KROTOS-44 及 び FARO-L33 は共に欧州の共同研究センター(JRC)で行われた実験である。KROTOS-44 は、アルミナ 1.5 kg を溶融物として飽和温度に近い冷却水に投入した後に高圧ガスによ る外部トリガーを加えて水蒸気爆発を発生させた。FARO-L33 は、コリウム(UO₂-ZrO₂, 80:20wt.%) 100kg を溶融物として冷却水中に投入した後に爆薬(デトネータ)による外 部トリガーを加えて水蒸気爆発を発生させた。KROTOS-44 及び FARO-L33 の実験条件の 概要を表 5.1 及び表 5.2 にそれぞれ示す。

	組成	アルミナ
	投入質量 (kg)	1.50
溶融物	初期温度 (K)	2673
	溶融ジェット直径 (mm)	30
	自由落下高さ (m)	0.44
	温度(サブクール)(K)	363 (10)
冷却水	水深 (m)	1.105
	容器直径(m)	0.20
	組成	水蒸気
気相	圧力 (MPa)	0.10
	体積 (m3)	0.290
トリガー機構	方法	高圧ガス
	圧力 (MPa)	14.8
	トリガー時刻 (s)	1.7

表 5.1 KROTOS-44 実験条件[4.1]の概要[4.2]

表 5.2 FARO-L33 実験条件[4.1]の概要[4.3]

	組成	コリウム (UO2-ZrO2 ,80:20wt%)
冰云三山市	投入質量 (kg)	100 (爆発時約 40kg)
谷熙物	初期温度 (K)	3070
	溶融ジェット直径 (mm)	48
	自由落下高さ (m)	0.77
	温度(サブクール)(K)	294 (124)
冷却水	水深 (m)	1.62
	容器直径(m)	0.71
気相	組成	アルゴン+水蒸気
	圧力 (MPa)	0.41
	体積 (m3)	3.496
トリガー機構	方法	デトネータ (爆薬)
	圧力 (MPa)	35.0
	トリガー時刻 (s)	0.9

5.4. 実験解析

5.4.1. 解析条件

表 5.3 及び表 5.4 に KROTOS-44 及び FARO-L33 の解析条件をそれぞれ示す。表 5.5 及 び表 5.6 に KROTOS-44 及び FARO-L33 の粗混合と水蒸気爆発のモデルパラメータをそれ ぞれ示す。図 5.1 に KROTOS-44 及び FARO-L33 の解析体系を示す。KROTOS-44 及び FARO-L33 の解析条件と解析体系は文献[4.1]と同様とした。KROTOS-44 実験では、溶融 物が入ったモリブデン製のるつぼがパイプ内を落下する途中で銅ワイヤーを溶断する時刻 を実験開始時刻とする。るつぼがパイプの底でパンチャー(穿孔機)に衝突することでるつ ぼの底に直径 50 mm の穿孔が空く。穿孔から溶融物が放出されて、内径 30 mm の投入ノ

ズルを通過して冷却水へと侵入する。投入ノズル内部の溶融ジェットは自由落下による慣 性力を有するために、投入ノズルより放出される溶融ジェットの速度が静止した状態から 水頭圧で放出される速度より速い。パンチャー等の障害物を通過して投入されるため、溶融 ジェットの内部に空隙を含む等の不規則な形状になっていると考えられる。投入開始から 約 0.4 秒後に、るつぼと投入ノズル内部の水頭圧による準定常的な供給となる。投入速度 は、るつぼから水頭圧で投入される溶融物の流れに関する 1 次元非定常のモデルにより推 定する。これにより、時間によって変化する投入速度を与えた[4.1]。KROTOS-44 実験で は、溶融物投入開始から1.7秒後に水蒸気爆発を起こすため高圧ガスにより外部トリガーを 与えた。実験解析では、実験と解析での投入開始時刻の設定方法の違い及び障害物を通過し て投入される溶融ジェットの先端位置の時間変化を考慮して、溶融物投入開始から 0.9 秒後 に高圧ガスで圧力 14.8 MPa を与えた。JASMINE 3.3b の KROTOS-44 の解析から JASMINE 4.4fの KROTOS-44 の解析で prmj_sacent の値を 2.5 から 1.5 に変更した。 prmj sacent は、溶融ジェットから剥がれ落ちる溶融物の質量流束にかかる係数である。 prmj_sacent を変更した理由は、prmj_sacent = 2.5 で溶融ジェットが到達する距離を計算 すると 0.575 m となる。これに対して実験での溶融ジェットが到達する距離は 0.3~0.4m 程度であるため、実験と同じ溶融ジェットが到達する距離を再現するため prmj sacent = 1.5 に変更した。

FARO-L33 実験では、試験容器の直上にある加熱炉から供給された溶融物を保持容器に 貯める。保持容器のバルブを解放することにより溶融物を冷却水へと投入する。投入速度は 保持容器から水頭圧で投入される溶融物の流れに関する 1 次元非定常のモデルにより推定 する。これにより、時間によって変化する投入速度を与えた[4.1]。FARO-L33 実験では、 溶融物投入開始から 1.12 秒後に水蒸気爆発を起こすため爆薬により外部トリガーを与えた。 実験解析でも同じ時刻に爆薬による外部トリガーを模擬するために、圧力源を配置するこ とにより外部トリガーを与えた。

表 5.3 及び表 5.4 の実験解析のトリガー入力の項に示す、非凝縮性ガスの体積率及び非凝縮性ガスの温度の指定方法を記載する。トリガー入力により発生するエネルギー量は、トリガー入力の圧力、圧力源を置くセルの体積及び圧力源にトリガーとして与えられる非凝縮性ガスの体積率の積で表される。トリガー入力により発生するエネルギー量及びトリガー入力の圧力は実験で判明している。圧力源を置くセルの体積は入力で指定するために、解析で指定する必要のある非凝縮性ガスの体積率を逆算して求める。非凝縮性ガスの温度は、水蒸気爆発が発生する際に断熱膨張で非凝縮性ガスの温度が下がりすぎて解析上の不具合が発生しないように適当に与えた数値である。気相は体積当たりの比熱が小さいので圧力源のように少量の気相の温度を高く設定した場合でも、全体のエネルギー量に与える影響は小さい。

5-3

	組成	アルミナ
	投入質量 (kg)	1.5
》 空中 世	自由落下高さ (m)	0.4
谷間3初	初期温度(K)	2673
	溶融ジェット直径 (mm)	30.0
	投入速度(m/s)	2.0
	温度(サブクール) (K)	363 (10)
冷却水	水深 (m)	1.105
	容器直径 (m)	0.20
	組成	アルゴン+水蒸気
気相	体積 (m³)	0.29
	圧力 (MPa)	0.1
	トリガー時刻 (s)	0.9
	圧力源	セル(x = 1, z = 1)
トリガー入力	圧力源体積(cm ³)	15.0
	圧力 (MPa)	14.8
	発生エネルギー量 (kJ)	0.22
	非凝縮性ガスの体積率(・)	0.153
	非凝縮性ガスの温度 (K)	1000.0

表 5.3 KROTOS-44 の解析条件

	組成	コリウム
	投入質量 (kg)	100.0
》 空中 H/m	自由落下高さ (m)	0.7
谷際約	初期温度 (K)	3070
	溶融ジェット直径 (mm)	~48
	投入速度(m/s)	~2.94
	温度(サブクール) (K)	294 (124)
冷却水	水深 (m)	1.62
	容器直径 (m)	0.355
	組成	アルゴン+水蒸気(飽和)
気相	体積 (m³)	3.496
	圧力 (MPa)	0.41
	トリガー時刻 (s)	1.12
	圧力源	セル(x = 1, z = 1)
トリガー入力	圧力源体積(cm ³)	29.0
	圧力 (MPa)	35.0
	発生エネルギー量(kJ)	1.0
	非凝縮性ガスの体積率(・)	0.0046
	非凝縮性ガスの温度 (K)	1200.0

表 5.4 FARO-L33 の解析条件[4.1]

	変数名	説明	パラメーター
主な粗混合 モデルの調 整パラメー タ	inohtdamp	溶融物から冷却水への熱伝達の時 間変化を緩やかにする計算の安定 化のためのフラグ(-)	1 (無効化)
	prmj_brkmdl	溶融ジェットが到達する距離を計 算するモデルを選択するためのフ ラグ (-)	3 (JAERI モデル)
	prmj_sacent	溶融ジェットから剥がれ落ちる溶 融物の質量流束にかかる係数 (-)	1.5
	prmj_saedia	発生粒子の粒子直径 (m)	$1.0 imes 10^{-2}$
	prmpa_crnump	粒子グループ発生時の粒子数の基 準 (-)	100
	prmpa_crhist	粒子グループ発生時のステップ数 の基準 (-)	500
主な水蒸気 爆発モデル の調整パラ メータ	prmf_cfrg	単一粒子が水蒸気爆発によりフラ グメントする際の単位時間当たり の質量を調整する係数(·)	0.35
	prmf_ckevfrg	粒子群がフラグメントする際の放 熱量が冷却水の相変化に寄与する 割合 (-)	0.7
	prmf_ttriglife	水蒸気爆発が発生した際に粒子群のフラグメントが持続する時間(s)	$1.0 imes 10^{-3}$
	prmf_ptrig	水蒸気爆発が発生した際に粒子群 がフラグメントするための圧力の 閾値 (Pa)	$2.0 imes 10^{5}$
	prmf_dfrg	フラグメントの粒子直径 (m)	$50.0 imes 10^{-6}$

表 5.5 KROTOS-44 の粗混合及び水蒸気爆発モデルパラメータ[4.1]

	変数名	説明	
主な粗混合 モデルの調 整パラメー タ	inohtdamp	溶融物から冷却水への熱伝達の時	1
		間変化を緩やかにする計算の安定	(時間
		化のためのフラグ (-)	的緩和を無効化)
	prmj_brkmdl	溶融ジェットが到達する距離を計	0
		算するモデルを選択するためのフ	び (IAEDI エニッル)
		ラグ (-)	(JAERI (1777)
	prmj_sacent	溶融ジェットから剥がれ落ちる溶	1.0
		融物の質量流束にかかる係数 (-)	
	prmj_saedia	発生粒子の粒子直径 (m)	$3.0 imes 10^{-3}$
	prmpa_crnump	粒子グループ発生時の粒子数の基	1000
		準 (-)	
	prmpa_crhist	粒子グループ発生時のステップ数	1000
		の基準 (-)	
	prmf_cfrg	単一粒子が水蒸気爆発によりフラ	
主な水蒸気		グメントする際の単位時間当たり	0.35
		の質量を調整する係数(-)	
	prmf_ckevfrg	粒子群がフラグメントする際の放	
		熱量が冷却水の相変化に寄与する	0.7
		割合 (-)	
爆発モデル		水蒸気爆発が発生した際に粒子群	
の調整パラ メータ	prmf_ttriglife	のフラグメントが持続する時間	$1.0 imes 10^{-3}$
		(s)	
	prmf_ptrig	水蒸気爆発が発生した際に粒子群	5.0×105
		がフラグメントするための圧力の	
		閾値 (Pa)	$0.0 imes 10^{\circ}$
	prmf_dfrg	フラグメントの粒子直径 (m)	$50.0 imes 10^{-6}$

表 5.6 FARO-L33 の粗混合及び爆発モデルパラメータ[4.1]

図 5.1 KROTOS-44 及び FARO-L33 の解析体系 (文献[4.1]、Figure 4.24 参照)

5.4.2. 解析結果

(1) KROTOS-44

図 5.2 に粗混合過程での冷却水のボイド率及び溶融物の粒子群の分布を示す。図中の赤い 点は、溶融状態の溶融物の粒子群を灰色の点は固化した状態の溶融物の粒子群及び黄色い 線は溶融ジェットをそれぞれ示す。ボイド率は1が気相、0が液相となるので、凡例より黄 色い部分が気相、青い部分が液相を示す。投入開始から0.4 秒時点で溶融ジェットは冷却水 の液面から約0.3 m で完全に崩壊して溶融物の粒子群となる。トリガー時刻の0.9 秒では 溶融物の粒子群が床面から約0.2 m まで到達しており、すべての粒子群が溶融状態となっ ている。トリガー時刻を過ぎた1.4 秒時点でも溶融物の粒子群に固化は見られない。

図 5.3 及び図 5.4 に JASMINE 3.3b と JASMINE 4.4f の解析結果から得られた粗混合過 程での溶融物の質量の時間変化をそれぞれ示す。図 5.3 に示す JASMINE 3.3b の解析結果 では、約 1.15 秒から粒子群が溶融物プールにマージする。対して図 5.4 に示す JASMINE 4.4f の解析結果では、入力条件として床面に到達した粒子群が溶融物プールにマージしな い設定としている。約 1.15 秒までの質量の時間変化は図 5.3 及び図 5.4 で良好に一致した。

図 5.5 及び図 5.6 に JASMINE 3.3b と JASMINE 4.4f の解析結果から得られた粗混合過 程での溶融物の粒子群の質量の時間変化をそれぞれ示す。このとき、図 5.5 及び図 5.6 で は、粒子群の総質量、溶融状態の粒子群の質量及び固化状態の粒子群の質量を示す。固化し た粒子群が存在しないため、粒子群の総質量と溶融状態の粒子群の質量が一致した。図 5.5 で粒子群の総質量が減少しているのは、図 5 粒子群が溶融物プールにマージしたためであ る。

図 5.7 に粗混合過程での冷却水が保有する総流体運動エネルギー量の時間変化を示す。 JASMINE 3.3b と JASMINE 4.4f の解析結果は概ね一致した。図 5.7 に示す JASMINE 4.4f の解析結果では、約 0.6 秒頃に冷却水が保有する総流体運動エネルギー量が急増した。 このことは、図 5.2 の時刻 0.6 秒の JASMINE 4.4f の解析結果に示す通り、冷却水が水蒸 気となったことが要因と考えられる。

図 5.8 に水蒸気爆発過程での冷却水中での圧力伝播を示す。グラフの赤い点は、溶融状態の粒子群を示す。トリガー時刻(グラフでは0.0 秒とする)では、解析体系の底部(x = 1, z = 1)に設定した圧力源を示す。圧力源から圧力波が伝播して、溶融物の粒子群が存在する領域に入ると圧力波が増幅しながら冷却水の液面に対してほぼ水平の波として上昇する。 圧力波が液面に到達した後は圧力波が解析体系の底部へと伝播した。

図 5.9 に水蒸気爆発が発生した後の圧力履歴の実験結果と解析結果の比較を示す。 KROTOS 実験の実験装置に設置されている圧力センサー位置 z = 0.0~950 mm (図 5.1 の K0~K5 参照)における圧力履歴を示す。解析結果では、底部に近いほど圧力の上昇時刻が 早くなり、液面に近いほど最大圧力が高くなり、実験結果により得られた傾向を再現した。 JASMINE 3.3b と JASMINE 4.4f の解析結果は概ね一致した。

図 5.10 及び図 5.11 に水蒸気爆発過程での溶融物の粒子群の質量の時間変化をそれぞれ 示す。固化した粒子群が無いため、粒子群の総質量と溶融状態の粒子群の質量は一致する。 粒子群の総質量が減少するのは、水蒸気爆発によって粒子群がフラグメントとなるためで
ある。JASMINE 4.4fの解析結果より得られたフラグメント粒子の質量はJASMINE 3.3b の解析結果より得られたフラグメント粒子の質量より約 0.05 kg 多くなった。

図 5.12 に粗混合で生じた粒子が水蒸気爆発によってフラグメントした粒子の質量分率を 示す。JASMINE 3.3b 及び JASMINE 4.4f の解析結果ともに約 2.0×10⁻³ 秒までに粒子の フラグメントが終了している。JASMINE 4.4f の解析結果より得られた質量分率は JASMINE 3.3b の解析結果より得られた質量分率より約 0.05 多くなった。

図 5.13 に水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化を示 す。JASMINE 3.3b 解析結果より得られた総流体運動エネルギー量と JASMINE 4.4f の解 析結果より得られた総流体運動エネルギー量は概ね一致した。

図 5.2 粗混合過程での冷却水のボイド率及び溶融物の粒子群の分布: KROTOS-44

図 5.4 粗混合過程での溶融物の質量の時間変化(4.4f): KROTOS-44

図 5.6 粗混合過程での溶融物の粒子群の質量の時間変化(4.4f): KROTOS-44

図 5.7 粗混合過程での冷却水が保有する総流体運動エネルギー量の時間変化 : KROTOS-44

図 5.8 水蒸気爆発過程での冷却水中の圧力伝播: KROTOS-44

図 5.9 水蒸気爆発過程での圧力履歴: KROTOS-44

図 5.11 水蒸気爆発過程での溶融物の粒子群の質量の時間変化(4.4f): KROTOS-44

図 5.12 粗混合で生じた粒子が水蒸気爆発によってフラグメントした粒子の質量分率: KROTOS-44

図 5.13 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44

(2) FARO-L33

図 5.14 に粗混合過程での冷却水のボイド率及び溶融物の粒子群の分布を示す。図中の赤 い点は、溶融状態の溶融物の粒子群を灰色の点は固化した状態の溶融物の粒子群及び黄色 い線は溶融ジェットをそれぞれ示す。投入開始から約 0.6 秒時点で溶融ジェットは冷却水の 液面から約 0.8 m で完全に崩壊して溶融物の粒子群となる。トリガー時刻となる 1.12 秒時 点で溶融物の粒子群が床面から約 0.2 m まで到達しており、底部に近い粒子群の一部が固 化した。

図 5.15 及び図 5.16 に JASMINE 3.3b と JASMINE 4.4f の解析結果から得られた粗混合 過程での溶融物の質量の時間変化をそれぞれ示す。JASMINE 3.3b の解析結果と JASMINE 4.4f の解析結果は良好に一致した。

図 5.17 及び図 5.18 に JASMINE 3.3b と JASMINE 4.4f の解析結果から得られた粗混合 過程の溶融物の粒子群の質量の時間変化をそれぞれ示す。図 5.17 及び図 5.18 の時刻約 0.9 秒時点で固化した粒子群の質量が溶融状態の粒子群の質量を上回った。図 5.17 及び図 5.18 のトリガー時刻となる 1.12 秒時点では粒子群の総質量の内、約 57%が固化した粒子群の質 量となった。

図 5.19 に粗混合過程での冷却水が保有する総流体運動エネルギー量の時間変化を示す。 JASMINE 3.3b の解析結果より得られた総流体運動エネルギー量は JASMINE 4.4f の解析 結果より得られた総流体運動エネルギー量と良好に一致した。約 1.0 秒時点で総流体運動エ ネルギー量が上昇しているのは、図 5.14 の JASMINE 4.4f の解析結果に示す通り、冷却水 が水蒸気になったことが要因と考えられる。

図 5.20 に水蒸気爆発過程での冷却水中の圧力伝播を示す。トリガー時刻(グラフでは 0.0 秒とする)では解析体系の底部(x=1,z=1)にセットされた圧力源を示す。圧力源から圧 力波が伝播して、溶融物の粒子群が存在する領域に入ると圧力波が増幅しながら冷却水の 液面に対してほぼ水平の波として上昇する。圧力波が液面に到達した後は圧力波が解析体 系の底部へと伝播した。

図 5.21 に水蒸気爆発過程での冷却水での圧力履歴を示す。FARO 実験の実験装置に設置 されている圧力センサーの位置 z = 490~1615 mm (z = 0 は底部:図 5.2 参照) での圧力 履歴を示す。解析結果では、底部に近いほど圧力の上昇時刻が早くなり、液面に近いほど最 大圧力が高くなり、実験結果により得られた傾向を再現した。JASMINE 3.3b の解析結果 と JASMINE 4.4f の解析結果は概ね一致した。

図 5.22 及び図 5.23 に水蒸気爆発が発生した後の溶融物の粒子群の質量の時間変化をそれぞれ示す。解析開始直後に粒子の総質量が減少するのは、水蒸気爆発によって粒子がフラグメントとなるためである。JASMINE 3.3b の解析結果と JASMINE 4.4f の解析結果は良好に一致した。

図 5.24 に粗混合で生じた粒子が水蒸気爆発によってフラグメントした粒子の質量分率を 示す。JASMINE 3.3b 及び JASMINE 4.4f の解析結果ともに 5.0×10⁻³秒までに粒子のフ ラグメントが終了している。JASMINE 4.4f の解析結果より得られた質量分率は JASMINE 3.3b の解析結果より得られた質量分率より約 0.01 多くなった。 図 5.25 に水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化を示 す。図中の黒線は、実験結果から得られた水蒸気爆発過程での冷却水が保有する総流体運動 エネルギー量が取り得る値の範囲を示す。JASMINE 4.4fの解析結果より得られた最大流 体運動エネルギー量は JASMINE 3.3b の解析結果より得られた最大流体運動エネルギー 量よりも約 50KJ 多くなった。総流体運動エネルギー量は水蒸気爆発後約 13×10⁻³ 秒で最 大となった。解析結果より得られた総流体運動エネルギー量は、実験結果より得られた総流 体運動エネルギー量が取り得る値の範囲内に収まった。

図 5.14 粗混合過程での冷却水のボイド率及び溶融物の粒子群の分布(4.4f): FARO-L33

図 5.16 粗混合過程での溶融物の質量の時間変化(4.4f): FARO-L33

図 5.18 粗混合過程での溶融物の粒子群の質量の時間変化(4.4f): FARO-L33

: FARO-L33

図 5.20 水蒸気爆発過程での冷却水中の圧力伝播(4.4f): FARO-L33

図 5.21 水蒸気爆発過程の圧力履歴 FARO-L33

図 5.23 水蒸気爆発過程での溶融物の粒子群の質量の時間変化(4.4f): FARO-L33

図 5.24 粗混合で生じた粒子が水蒸気爆発によってフラグメントした粒子の質量分率: FARO-L33

図 5.25 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化 FARO-L33

5.4.3. 考察

水蒸気爆発実験を対象とした実験解析に関して JASMINE 3.3b と JASMINE 4.4f より 得られた解析結果を比較すると概ね一致した解析結果となった。JASMINE 3.3b に基づき 本事業で改修した JASMINE 4.4f では、水蒸気爆発に関する箇所に変更を加えていない。 したがって、JASMINE 3.3b と JASMINE 4.4f での水蒸気爆発実験の解析に関して一貫し た解析結果が得られた。本事業で粒子化した溶融物のアグロメレーション及び床面に到達 した溶融物の拡がりを解析できるように改修した JASMINE 4.4f は、JASMINE 3.3b と同 様に水蒸気爆発の解析に対応できる。 5.5. 感度解析

5.5.1. 解析条件

溶融物の粒子直径、溶融物の投入条件及び溶融物の落下回数を変更した感度解析を行う ことにより、水蒸気爆発により発生する冷却水の機械的エネルギー量(総流体運動エネルギ ー量)に及ぼす影響を調査した。KROTOS-44 実験及び FARO-L33 実験を解析対象とする。

(1) 粒子直径に関する解析条件

表 5.7 及び表 5.8 に Base Case 及び Ref. Case01~05 の粒子直径に関する解析条件をそ れぞれ示す。粒子直径に関する感度解析では、粗混合過程で発生する粒子直径及び水蒸気爆 発過程で発生する粒子直径を個別に着目する。実験解析は粗混合過程と水蒸気爆発過程で 発生する粒子直径を一様と設定した(Base Case)。粗混合過程により発生する粒子直径を 変更した感度解析では、粗混合過程で発生する粒子直径を正規分布で与えた(Ref. Case01)。 正規分布で使用する平均粒子直径は Base Case の一様粒子直径と同一とした。粗混合過程 で発生する粒子の直径を一様と正規分布に設定した場合の総流体運動エネルギー量に与え る影響を調査する。正規分布における平均粒子直径を Ref. Case01 の 1.5 倍(Ref. Case02) 及び 0.5 倍(Ref. Case03)と設定した。正規分布の平均値を大きくした場合と小さくした 場合の総流体運動エネルギー量に与える影響を調査する。以上の解析では、フラグメント粒 子直径は Base Case と同一とした。水蒸気爆発過程で発生するフラグメント粒子直径に着 目した感度解析では、粗混合過程の解析を Ref Case01 と同一として、水蒸気爆発過程での 溶融物の粒子がフラグメントした際の粒子直径(prmf_dfrg)を Ref. Case01 の 1.5 倍(Ref. Case04)及び 0.5 倍(Ref. Case05)と設定した。フラグメント粒子直径を大きくした場合 と小さくした場合の総流体運動エネルギー量に与える影響を調査する。

(2) 投入条件に関する解析条件

表 5.9 及び表 5.10 に投入条件に関する Ref. Case06~09 の KROTOS-44 及び FARO-L33 での解析条件をそれぞれ示す。投入条件を変更した感度解析では、粗混合過程で溶融物を投 入する際の溶融ジェット直径及び投入速度を個別に着目する。Base Case から、粗混合過程 での投入条件(溶融ジェット直径、投入速度)を変更した感度解析を行った。粗混合過程で 投入する溶融物の溶融ジェット直径に着目した感度解析では、溶融ジェット直径を Base Case から 1.5 倍(Ref. Case06)及び 0.5 倍(Ref. Case07)と設定した。溶融ジェット直 径を大きくした場合と小さくした場合の総流体運動エネルギー量に与える影響を調査する。 粗混合過程で投入する溶融物の投入速度に着目した感度解析では、投入速度を Base Case から 1.5 倍(Ref. Case08)及び 0.5 倍(Ref. Case09)と設定した。投入速度を速くした場 合と遅くした場合の総流体運動エネルギー量に与える影響を調査する。以上の解析では、水 蒸気爆発過程の解析は Base Case と同様とした。Ref. Case06~09 は Base Case と比較を 行い、総流体運動エネルギー量に与える影響を調査する。

(3) 投入回数に関する解析条件

表 5.11 及び表 5.12 に投入回数を変更した KROTOS-44 及び FARO-L33 の解析条件をそ れぞれ示す。投入回数を変更した感度解析では、粗混合過程で溶融物を投入する回数に着目 する。Base Case から粗混合過程での溶融物の投入回数を変更した感度解析を行った。溶融 物の投入回数の変更は、トリガー時刻の半分の時間で溶融物の投入を一時停止した後に 2回 目の投入を行う。1回目と 2回目の投入でトリガー時刻内に溶融物をすべて投入する(Ref. Case10)、2回目の投入の途中で水蒸気爆発が発生する(Ref. Case11)、2回目の投入の前 に水蒸気爆発が発生する(Ref. Case12)解析を行った。以上の解析では、水蒸気爆発過程 の解析は Base Case と同様とした。Ref. Case10~12 は Base Case と比較を行い、総流体 運動エネルギー量に与える影響を調査する。FARO-L33 はトリガー時刻より投入時間の方 が長いため、トリガー時刻内にすべての溶融物を投入する解析である Ref. Case10 は行わ なかった。

ケース名	粒子直径分布	一様粒子直径	平均粒子直径	標準偏差 (-)
		(m)	(m)	
Base Case	一様	$3.0 imes 10^{-3}$	_	_
Ref. Case01	正規分布	—	$3.0 imes 10^{-3}$	$3.0 imes 10^{-4}$
Ref. Case02	正規分布	—	$4.5 imes 10^{-3}$	$3.0 imes 10^{-4}$
Ref. Case03	正規分布	—	$1.5 imes 10^{-3}$	$3.0 imes 10^{-4}$
Ref. Case04	正規分布	—	$3.0 imes 10^{-3}$	$3.0 imes 10^{-4}$
Ref. Case05	正規分布	_	$3.0 imes 10^{-3}$	$3.0 imes 10^{-4}$

表 5.7 粒子直径分布及び平均粒子直径を変更した感度解析の解析条件 : KROTOS-44 及び FARO-L33

ケース名	フラグメント粒子直径[m]
Base Case	$50\! imes\!10^{-6}$
Ref. Case01	$50\! imes\!10^{-6}$
Ref. Case02	$50\! imes\!10^{-6}$
Ref. Case03	$50\! imes\!10^{-6}$
Ref. Case04	$75 imes10^{-6}$
Ref. Case05	$25 imes 10^{-6}$

表 5.8 フラグメント粒子直径を変更した感度解析の解析条件 : KROTOS-44 及び FARO-L33

表 5.9 投入条件を変更した感度解析の解析条件: KROTOS-44

ケース名	粒子直径分布	一様粒子直径 [m]	溶融ジェット直径 [m]	投入速度[m/s]
Base Case	一様	$3.0 imes 10^{-3}$	0.03	2.0
Ref. Case06	一様	$3.0 imes 10^{-3}$	0.045	2.0
Ref. Case07	一様	$3.0 imes 10^{-3}$	0.015	2.0
Ref. Case08	一様	$3.0 imes 10^{-3}$	0.03	3.0
Ref. Case09	一様	$3.0 imes 10^{-3}$	0.03	1.0

表 5.10 投入条件を変更した感度解析の解析条件: FARO-L33

ケース名	粒子直径分布	一様粒子直径 [m]	溶融ジェット直径 [m]	投入速度[m/s]
Base Case	一様	$3.0 imes 10^{-3}$	~0.048	~2.94
Ref. Case06	一様	$3.0 imes 10^{-3}$	~ 0.072	~2.94
Ref. Case07	一様	$3.0 imes 10^{-3}$	~0.024	~2.94
Ref. Case08	一様	$3.0 imes 10^{-3}$	~0.048	~4.41
Ref. Case09	一様	$3.0 imes 10^{-3}$	~0.048	~1.47

表 5.11 投入回数を変更した感度解析の解析条件: KROTOS-44

ケース名	粒子直径分布	一様粒子直径 [m]	投入回数	時間間隔
Base Case	一様	$3.0 imes 10^{-3}$	1	_
Ref. Case10	一様	$3.0 imes 10^{-3}$	2	0.3
Ref. Case11	一様	$3.0 imes 10^{-3}$	2	0.6
Ref. Case12	一様	$3.0 imes 10^{-3}$	2	0.9

ケース名	粒子直径分布	一様粒子直径 [m]	投入回数	時間間隔
Base Case	一様	$3.0 imes 10^{-3}$	1	_
Ref. Case11	一様	$3.0 imes 10^{-3}$	2	0.28
Ref. Case12	一様	$3.0 imes 10^{-3}$	2	0.60

表 5.12 投入回数を変更した感度解析の解析条件: FARO-L33

5.5.2. 解析結果

KROTOS-44

(1) 粒子直径に関する解析結果

一様分布と正規分布の比較(Base Case、Ref. Case01)

図 5.26 に粒子直径分布を正規分布に設定した場合(Ref. Case01)の粗混合過程での溶融物の質量の時間変化のグラフを示す。Ref. Case01の解析結果は Base Case の解析結果と比較して、粒子の質量の増加が速くなった。

図 5.26 に粗混合過程での溶融物の粒子の質量の時間変化のグラフを示す。Ref. Case01 のグラフでは、約 1.0 秒過ぎから固化した粒子の質量が増加した。Base Case のグラフでは 粒子の固化は見られなかった。これは、粒子直径を正規分布で与えたことで直径が小さい粒 子が発生したため粒子が固化したものと考えられる。

図 5.26 に水蒸気爆発過程での溶融物の粒子の質量の時間変化のグラフを示す。Ref. Case01のフラグメントした粒子の質量が Base Case のフラグメントした粒子の質量の約2 倍となった。これは、粒子直径を正規分布で与えたことで直径が大きい粒子が発生したため 粒子がフラグメントしやすくなったためと考えられる。

図 5.27 に水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化を示す。Ref. Case01の解析結果は Base Case と概ね同一となった。

正規分布における分布の平均粒子直径の比較(Ref. Case01、02、03)

Ref. Case01 をもとに粒子直径分布の平均粒子直径を 1.5 倍 (Ref. Case02)、0.5 倍 (Ref. Case03) に変更した感度解析を行った。Ref. Case02 及び Ref. Case03 の解析結果は Ref. Case01 の解析結果と比較を行う。

図 5.28 及び図 5.30 に Ref. Case02 及び Ref. Case03 の粗混合過程での溶融物の質量の時間変化のグラフをそれぞれ示す。Ref. Case02 の解析結果は Ref. Case01 の解析結果と良好に一致した。Ref. Case03 の解析結果は Ref. Case01 の解析結果と比較して、約 0.4 秒以降から溶融物全体の質量が不自然に増加している。この原因は、平均粒子直径を 0.5 倍にしたことで発生する粒子の数が増加し、冷却水中に大量の水蒸気が発生することにより溶融ジェットが乱れて数値計算上で問題が発生したと考えられる。

図 5.28 及び図 5.30 に Ref. Case02 及び Ref. Case03 の粗混合過程での溶融物の粒子の 質量の時間変化のグラフをそれぞれ示す。Ref. Case02 の解析結果は Ref. Case01 の解析結 果とトリガー時刻内では良好に一致した。Ref. Case01 の解析結果で見られた約 1.0 秒以降 に発生する粒子の固化は Ref. Case02 では発生しなかった。Ref. Case03 の解析結果は約 0.38 秒から粒子の固化が始まり約 1.03 秒で固化した粒子の質量が溶融状態の粒子の質量を 上回った。

図 5.28 及び図 5.30 に Ref. Case02 及び Ref. Case03 の水蒸気爆発過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case02 のフラグメント粒子の質量は Ref. Case01 のフラグメント粒子の質量と良好に一致した。Ref. Case03 のフラグメント粒子の質量は 子の質量は Ref. Case01 のフラグメント粒子の質量より約半分程度となった。この原因は、 平均粒子直径を 0.5 倍したことで粒子のフラグメントが発生しにくくなったためと考えられる。

図 5.29 及び図 5.31 に Ref. Case02 及び Ref. Case03 水蒸気爆発過程での冷却水が保有 する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref. Case02 の最大流体運動エネ ルギー量は Ref. Case01 の最大流体運動エネルギー量より約 20 kJ 程度減少した。Ref. Case02 の最大流体運動エネルギー量が Ref. Case01 の最大流体運動エネルギー量より減少 した原因は、粒子の直径が増加したため、粒子の降下速度が下がり水蒸気爆発時に圧力を加 えるセル (x=1, z=1) より遠い位置に粒子があったため、水蒸気爆発の際の圧力の上昇に寄 与できなかったと考えられる。Ref. Case03 の最大流体運動エネルギー量は Ref. Case01 の 最大流体運動エネルギー量より約 60 kJ 程度減少した。Ref. Case03 の最大流体運動エネル ギー量が Ref. Case01 の最大流体運動エネルギー量より減少した原因は、粒子の直径が小 さくなったことにより粒子の固化が起きやすくなったため、水蒸気爆発の際の圧力の増加 が小さくなったからと考えられる。

正規分布における水蒸気爆発過程で発生するフラグメント粒子直径の比較(Ref. Case01、04、05)

Ref. Case01をもとにフラグメント粒子直径を1.5倍(Ref. Case04)、0.5倍(Ref. Case05) に変更した感度解析を行った。Ref. Case04 及び Ref. Case05の粗混合過程での解析結果は Ref. Case01 と同じ入力データを使用するため、Ref. Case01 と同一の解析結果となる。Ref. Case04 及び Ref. Case05の水蒸気爆発過程の解析結果は Ref. Case01の水蒸気爆発過程の 解析結果と比較を行った。

図 5.32 及び図 5.34 に Ref. Case04 及び Ref. Case05 の水蒸気爆発過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case04 のフラグメント粒子の質量は Ref. Case01 のフラグメント粒子の質量概ね同一となった。Ref. Case05 のフラグメント粒子の質量はベースケースのフラグメント粒子の質量と概ね同一となった。

図 5.33 及び図 5.35 に Ref. Case04 及び Ref. Case05 の水蒸気爆発過程での冷却水が保 有する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref. Case04 の最大流体運動エ ネルギー量は Ref. Case01 の最大流体運動エネルギー量より約 10 kJ 程度減少した。Ref. Case04 の最大流体運動エネルギー量が Ref. Case01 の最大流体運動エネルギー量より減少 した原因は、フラグメント粒子直径を増加したことにより粒子がフラグメントする割合が 減少したため、水蒸気爆発の際の圧力の上昇が小さくなったと考えられる。Ref. Case05 の 感度解析では、フラグメント粒子直径を減少させることによりフラグメントする粒子の質 量割合が増加して Ref. Case01 より総流体運動エネルギー量が増加すると考えられていた が、解析の結果、Ref. Case05 の解析結果と Ref. Case01 の解析結果は良好に一致した。こ の原因は、解析で使用するタイムステップ幅内で計算できる熱伝達量が計算の上限に達し たため、Ref. Case05 と Ref. Case01 の総流体運動エネルギー量に変化が見られなかったと 考えられる。 (2) 投入条件に関する解析結果

粗混合過程で投入する溶融物の溶融ジェット直径の比較(Base Case、Ref.Case06、07)

Base Case をもとに溶融ジェット直径を 1.5 倍 (Ref. Case06)、0.5 倍 (Ref. Case07) に 変更した感度解析を行った。Ref. Case06 及び Ref. Case07 の解析結果は Base Case の解 析結果と比較を行った。

図 5.36 及び図 5.38 に Ref. Case06 及び Ref. Case07 の粗混合過程での溶融物の質量の時間変化のグラフをそれぞれ示す。Ref. Case06 の解析結果は Base Case の解析結果より約 0.2 秒早く溶融物の投入が終了した。Ref. Case07 の解析結果は Base Case の解析結果より、トリガー時刻以内に投入される溶融物の質量が約 0.8 kg 程度減少した。この原因は、溶融ジェット直径を減少させたことにより、投入される溶融物の質量流量が減少したためトリガー時刻内にすべての溶融物を投入できなかったことが原因と考えられる。

図 5.36 及び図 5.38 に Ref. Case06 と Ref. Case07 の粗混合過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case06 の解析結果は Base Case の解析結果 より約 0.2 秒早く粒子の総質量が最大値に到達した。Ref. Case06 の解析結果は Base Case の解析結果と粒子の最大質量が良好に一致した。Ref. Case06 の解析結果は Base Case の解析結果より粒子の総質量が約 8.0 kg 程度減少した。

図 5.36 及び図 5.38 に Ref. Case06 と Ref. Case07 の水蒸気爆発過程での溶融物の粒子 の質量の時間変化のグラフをそれぞれ示す。Ref. Case06 のフラグメント粒子の質量は Base Case のフラグメント粒子の質量より約 0.2 kg 程度減少した。Ref. Case07 のフラグメント 粒子の質量は Base Case のフラグメント粒子の質量より約 0.4 kg 程度減少した。

図 5.37 及び図 5.39 に水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref. Case06 の最大流体運動エネルギー量は Base Case の最大流体運動エネルギー量より約 20 kJ 程度減少した。Ref. Case06 の最大流体運動エネルギー 量が Base Case の最大流体運動エネルギー量より減少した原因は、溶融ジェット直径を増加させたことにより質量流量が増加して投入時間が短くなったため、発生する粒子の数が減少して水蒸気爆発の際の圧力の増加に寄与できなくなったためと考えられる。Ref. Case07 の最大流体運動エネルギー量は Base Case の最大流体運動エネルギー量より約 100 kJ 程度減少した。Ref. Case07 の最大流体運動エネルギー量が Base Case の最大流体運動エネルギー量より約 20 kJ 程度減少した。Ref. Case07 の最大流体運動エネルギー量が Base Case の最大流体運動エネルギー量は Base Case の最大流体運動エネルギー量が Base Case の最大流体運動 エネルギー量より減少した原因は、溶融ジェット直径を減少させたことにより、投入される溶融物の質量が減少するとともに発生する粒子の数が減少し、水蒸気爆発の際の圧力の増加に寄与できなくなったためと考えられる。

粗混合過程で投入する溶融物の投入速度の比較(Base Case、Ref. Case08、09)

Base Case をもとに投入速度を 1.5 倍 (Ref. Case08)、0.5 倍 (Ref. Case09) に変更した 感度解析を行った。Ref. Case08 及び Ref. Case09 の解析結果は Base Case の解析結果と 比較を行った。

図 5.40 及び図 5.42 に Ref. Case08 及び 0Ref. Case09 にした場合の粗混合過程での溶融物の質量の時間変化のグラフをそれぞれ示す。Ref. Case08 の解析結果は Base Case の解

析結果より約 0.1 秒投入時間が短くなった。Ref. Case09 の解析結果は Base Case の解析結 果より約 0.4 秒投入時間が長くなったが、トリガー時刻内にすべての溶融物を投入すること ができた。

図 5.40 及び図 5.42 に Ref. Case08 及び Ref. Case09 の粗混合過程での溶融物の粒子の 質量の時間変化のグラフをそれぞれ示す。Ref. Case08 の解析結果は Base Case の解析結 果より約 0.1 秒早く粒子の総質量が最大値に到達した。Ref. Case08 の解析結果は Base Case の解析結果と粒子の最大質量が良好に一致した。Ref. Case09 の解析結果は Base Case の解析結果よりトリガー時刻での粒子の質量が約 0.2 kg 程度減少した。Ref. Case09 の解 析結果が Base Case の解析結果よりトリガー時刻での粒子の質量が減少した原因は、投入 速度を減少させたことにより投入時間が約 0.4 秒長くなったことによって溶融ジェットが 粒子になる前に水蒸気爆発が発生したためと考えられる。

図 5.40 及び図 5.42 にに Ref. Case08 及び Ref. Case09 の水蒸気爆発過程での溶融物の 粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case08 のフラグメント粒子の質量は Base Case のフラグメント粒子の質量より約 0.1 kg 程度減少した。Ref. Case09 のフラグ メント粒子の質量は Base Case のフラグメント粒子の質量と概ね同一となった。

図 5.41 及び図 5.43 に Ref. Case08 及び Ref. Case09 の水蒸気爆発過程での冷却水が保 有する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref. Case08 の総流体運動エネ ルギー量は Base Case の総流体運動エネルギー量と概ね同一の結果となった。Ref. Case09 の最大流体運動エネルギー量は Base Case の最大流体運動エネルギー量より約 30 kJ 程度 減少した。Ref. Case09 の最大流体運動エネルギー量が Base Case の最大流体運動エネル ギー量より減少した原因は、Ref. Case09 は Base Case よりも投入速度が遅くなるので粒 子の降下速度も遅くなり、水蒸気爆発発生時に爆発の圧力を与えるセル(x=1, z=1)と離れ た位置に粒子が存在するため、水蒸気爆発による圧力の上昇に寄与できなかったと考えら れる。

(3) 投入回数に関する解析結果

粗混合過程での溶融物の投入回数(Ref. Case10、11、12)

Base Case をもとに溶融物の投入回数を2回に分けて時間間隔を与えトリガー時刻内に 溶融物をすべて投入する(Ref. Case10)、2回目の投入の途中で水蒸気爆発が発生する(Ref. Case11)、2回目の投入の前に水蒸気爆発が発生する(Ref. Case12)に変更した感度解析を 行った。Ref. Case10、Ref. Case11 及び Ref. Case12 の解析結果は Base Case の解析結果 と比較を行った。

図 5.44、図 5.46 及び図 5.48 に Ref. Case10、Ref. Case11 及び Ref. Case12 の粗混合過 程での溶融物の質量の時間変化のグラフをそれぞれ示す。Ref. Case10 の解析結果は Base Case の解析結果より約 0.3 秒遅れて投入が終了した。Ref. Case11 の解析結果は Base Case の解析結果より投入した溶融物の質量が約 0.4 kg 程度減少した。Ref. Case12 の解析結果 はベースケースの解析結果より投入した溶融物の質量が約 0.7 kg 程度減少した。

図 5.44、図 5.46 及び図 5.48 に Ref. Case10、Ref. Case11 及び Ref. Case12 の粗混合過

程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case10 の解析結果は Base Case の解析結果とトリガー時刻での粒子の質量が良好に一致した。Ref. Case11 の解 析結果は Base Case の解析結果よりトリガー時刻での粒子の質量が約 0.7 kg 程度減少し た。Ref. Case12 の解析結果は Base Case の解析結果よりトリガー時刻での粒子の質量が 約 0.7 kg 程度減少した。

図 5.44、図 5.46 及び図 5.48 に Ref. Case10、Ref. Case11 及び Ref.Case12 の水蒸気爆 発過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case10 のフラグ メント粒子の質量は Base Case のフラグメント粒子の質量より約 0.1 kg 程度減少した。 Ref. Case11 のフラグメント粒子の質量は Base Case のフラグメント粒子の質量より約 0.3 kg 程度減少した。Ref. Case12 のフラグメント粒子の質量は Base Case のフラグメント粒子の 子の質量より約 0.3 kg 程度減少した。

図 5.45、図 5.47 及び図 5.49 に Ref. Case10、Ref. Case11 及び Ref. Case12 の水蒸気爆 発過程での冷却水が保有する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref. Case10 の最大流体運動エネルギー量は Base Case の最大流体運動エネルギー量より約 20 kJ 程度減少した。Ref. Case10 の最大流体運動エネルギー量が Base Case の最大流体運動 エネルギー量より減少した原因は、溶融物の投入を 2 回に分けたことにより、発生する粒 子の数が減少及び 2 回目の溶融物投入の際に発生した粒子の位置が水蒸気爆発の圧力を与 えるセル (x=1, z=1) と離れた位置にあったため、水蒸気爆発の際の圧力の増加に寄与でき なくなったためと考えられる。Ref. Case11 及び Ref. Case12 の最大流体運動エネルギー量 は Base Case の最大流体運動エネルギー量より約 60 kJ 程度減少した。Ref. Case11 及び Ref. Case12 の最大流体運動エネルギー量が Base Case の最大流体運動エネルギー量より 減少した原因は、投入する溶融物の質量が減少したため発生する粒子の数が減少し、水蒸気 爆発の際の圧力の増加に寄与できなくなったためと考えられる。

図 5.26 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case01

図 5.27 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case01

図 5.28 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case02

図 5.29 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case02

図 5.30 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case03

図 5.31 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case03

図 5.32 水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case04

図 5.33 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case04

図 5.34 水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case05

図 5.35 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case05

図 5.36 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case06

図 5.37 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case06

図 5.38 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case07

図 5.39 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case07

図 5.40 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case08

図 5.41 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case08

図 5.42 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case09

図 5.43 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case09

図 5.44 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case10

図 5.45 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case10

図 5.46 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case11

図 5.47 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case11

図 5.48 粗混合過程及び水蒸気爆発過程での解析結果: KROTOS-44_Ref. Case12

図 5.49 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: KROTOS-44_Ref. Case12

FARO-L33

(1) 粒子直径に関する解析結果

一様分布と正規分布の比較(Base Case、Ref. Case01)

Base Case をもとに粒子直径分布を正規分布に設定(Ref. Case01)した感度解析を行った。Ref. Case01の解析結果は Base Case の解析結果と比較を行う。

図 5.50 に Ref. Case01 の粗混合過程での溶融物の質量の時間変化のグラフを示す。Ref. Case01 の解析結果は Base Case の解析結果と同一となった。

図 5.50 に Ref. Case01の粗混合過程での溶融物の粒子の質量の時間変化のグラフを示す。 Ref. Case01の解析結果は Base Case の解析結果と概ね同一となった。

図 5.50 に Ref. Case01 の水蒸気爆発過程での溶融物の粒子の質量の時間変化のグラフを示す。Ref. Case01 の解析結果は Base Case の解析結果と概ね同一となった。

図 5.51 に Ref. Case01 の水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化を示す。Ref. Case01 の解析結果は Base Case の解析結果と概ね同一となった。

正規分布における分布の平均粒子直径の比較(Ref. Case01、02、03)

Ref. Case01 をもとに粒子直径分布の平均粒子直径を 1.5 倍(Ref. Case02)、0.5 倍(Ref. Case03)に変更した感度解析を行った。Ref. Case02 及び Ref. Case03 の解析結果は Ref. Case01 の解析結果と比較を行った。

図 5.52 及び図 5.54 に Ref. Case02 及び Ref. Case03 の粗混合過程での溶融物の質量の時間変化のグラフをそれぞれ示す。Ref. Case02 の解析結果は Ref. Case01 の解析結果と良好に一致した。Ref. Case03 の解析結果は Ref. Case01 の解析結果より約 0.8 秒から粒子の質量が微かに増加した。Ref. Case03 の粒子の質量が Ref. Case01 の粒子の質量より増加する原因は、粒子の平均粒子直径が小さくなったことで発生する粒子の数が増加したためと考えられる。

図 5.52 及び図 5.54 に Ref.Case02 及び Ref. Case03 の粗混合過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case02 の解析結果は Ref. Case01 の解析結果 より溶融状態の粒子の質量が約 5.0 kg 増加して固化した粒子の質量を上回った。Ref. Case02 の解析結果が Ref. Case01 の解析結果より溶融状態の粒子の質量が増加した原因 は、平均粒子直径を増加させたことにより粒子が固化しにくくなったと考えられる。Ref. Case03 の解析結果は Ref. Case01 の解析結果より固化した粒子の質量が約 5.0 kg 増加し た。Ref. Case03 の解析結果が Ref. Case01 の解析結果より固化した粒子の質量が増加した 原因は、平均粒子直径を減少させたことにより、粒子が小さくなりより固化しやすくなった ためと考えられる。

図 5.52 及び図 5.54 に Ref. Case02 及び Ref. Case03 の水蒸気爆発過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case02 の解析結果は Ref. Case01 の解析結果よりフラグメント粒子の質量が約 6.0 kg 増加した。Ref. Case02 のフラグメント粒子の質量が Ref. Case01 のフラグメント粒子の質量より増加した原因は、平均粒子直径を増加させたことにより、発生する粒子の直径が大きくなり水蒸気爆発でフラグメントしやす

くなったと考えられる。Ref. Case03の解析結果は Ref. Case01の解析結果よりフラグメント粒子の質量が約 2.0 kg 減少した。Ref. Case03のフラグメント粒子の質量が Ref. Case01のフラグメント粒子の質量より減少した原因は、平均粒子直径を減少させたことにより、発生する粒子の直径が小さくなり水蒸気爆発でフラグメントしにくくなったと考えられる。

図 5.53 及び図 5.55 に Ref. Case02 及び Ref. Case03 の水蒸気爆発過程での冷却水が保 有する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref. Case02 の最大流体運動エ ネルギー量は、Ref. Case01 の最大流体運動エネルギー量より約 1000 KJ 程度増加した。 Ref. Case02 の最大流体運動エネルギー量が Ref. Case01 の最大流体運動エネルギー量より 増加する原因は、平均粒子直径が増加したことで固化する粒子が減少したため、水蒸気爆発 による圧力の上昇に対する寄与が増加して流体の運動エネルギーに大きな影響を与えたと 考えられる。Ref. Case03 の最大流体運動エネルギー量は、Ref. Case01 の最大流体運動エ ネルギー量より約 200 KJ 程度減少した。Ref. Case03 の最大流体運動エネルギー量が Ref. Case01 の最大流体運動エネルギー量より減少する原因は、平均粒子直径が減少したことで 固化する粒子が増加したため、水蒸気爆発による圧力の上昇に寄与できなかったと考えら れる。

正規分布における水蒸気爆発で発生するフラグメント粒子直径の比較(Ref. Case01、04、05)

Ref. Case01をもとにフラグメント粒子直径を1.5倍(Ref. Case04)、0.5倍(Ref. Case05) に変更した感度解析を行った。Ref. Case04 及び Ref. Case05の粗混合過程での解析結果は Ref. Case01 と同じ入力データを使用するため、Ref. Case01 と同一の解析結果となる。Ref. Case04 及び Ref. Case05の水蒸気爆発過程の解析結果は Ref. Case01の水蒸気爆発過程の 解析結果と比較を行った。

図 5.56 及び図 5.58 に Ref. Case04 及び Ref. Case05 の水蒸気爆発過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case04 及び Ref. Case05 の解析結果は Ref. Case01 の解析結果と概ね同一となった。

図 5.57 及び図 5.59 に Ref. Case04 及び Ref. Case05 の水蒸気爆発過程での冷却水が保 有する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref.Case04 の最大流体運動エ ネルギー量は Ref. Case01 の最大流体運動エネルギー量より約 50 kJ 程度増加した。Ref. Case05 の解析結果は Ref. Case01 の解析結果と概ね同一となった。Ref. Case05 の解析で は、フラグメント粒子直径を減少させることによりフラグメントする粒子の質量割合が増 加して Ref. Case01 より総流体運動エネルギー量が増加すると考えられていたが、解析の 結果、Ref. Case05 と Ref. Case01 の解析結果は概ね同一となった。この原因は、解析で使 用するタイムステップ幅内で計算できる熱伝達量が計算の上限に達したため、Ref. Case05 と Ref. Case01 の総流体運動エネルギー量に変化が見られなかったと考えられる。

(2) 投入条件に関する解析結果

粗混合過程で投入する溶融物の溶融ジェット直径の比較(Base Case、Ref. Case06、07) Base Case をもとに溶融ジェット直径を 1.5 倍(Ref. Case06)、0.5 倍(Ref. Case07)に 変更した感度解析を行った。Ref. Case06 及び Ref. Case07 の解析結果は Base Case の解

析結果と比較を行った。

図 5.60 及び図 5.62 に Ref. Case06 及び Ref. Case07 の粗混合過程での溶融物の質量の時間変化のグラフをそれぞれ示す。Ref. Case06 の溶融物の総質量が Base Case の溶融物の総質量より約 60 kg 程度増加した。Ref. Case06 の溶融物の総質量が Base Case の溶融物の総質量より増加した原因は、溶融ジェット直径が増加したことにより質量流量が増加して投入時間が短くなりトリガー時刻内に本来投入するはずであった溶融物 100 kg すべて投入されたためである。Ref. Case07 の溶融物の総質量が Base Case の溶融物の総質量より減少した。Ref. Case07 の溶融物の総質量が Base Case の溶融物の総質量より減少した原因は、溶融ジェット直径が減少したことにより質量流量が減少して投入時間が長くなりトリガー時刻内に投入される溶融物質量が Base Case より減少したためである。

図 5.60 及び図 5.62 に Ref. Case06 及び Ref. Case07 の粗混合過程での溶融物の粒子の 質量の時間変化のグラフをそれぞれ示す。Ref. Case06 の解析結果は Base Case の解析結 果より、トリガー時刻における粒子の総質量が約 50 kg 程度増加した。Ref. Case07 の解析 結果は Base Case の解析結果より、トリガー時刻における粒子の総質量が約 28 kg 程度減 少した。

図 5.60 及び図 5.62 に Ref. Case06 及び Ref. Case07 の水蒸気爆発過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case06 のフラグメント粒子の質量は Base Case のフラグメント粒子の質量より約 5.0 kg 程度増加した。Ref. Case06 のフラグ メント粒子の質量が Base Case のフラグメント粒子の質量より増加した原因は、Ref. Case06 の方が Base Case より投入される溶融物の質量が増加するため、発生する粒子の数 が多いくなり水蒸気爆発の影響でフラグメントした粒子が増加したと考えられる。Ref. Case07 のフラグメント粒子の質量は Base Case のフラグメント粒子の質量より、約 4.0 kg 程度減少した。Ref. Case07 のフラグメント粒子の質量が Base Case のフラグメント粒子 の質量より減少した原因は、Ref. Case07 の方が Base Case より投入される溶融物の質量 が減少するため、発生する粒子の数が少なくなり水蒸気爆発の影響でフラグメントした粒 子も減少したと考えられる。

図 5.61 及び図 5.63 に Ref. Case06 及び Ref. Case07 の水蒸気爆発過程での冷却水が保 有する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref. Case06 の最大流体運動エ ネルギー量は Base Case の最大流体運動エネルギー量より約 800 kJ 程度増加した。Ref. Case06 の最大流体運動エネルギー量が Base Case の最大流体運動エネルギー量より増加 した原因は、溶融ジェット直径を増加させたことによりトリガー時刻内に投入される溶融 物の質量が増加する。それに伴い発生する粒子の数が増加し、水蒸気爆発による圧力に増加 に寄与したためと考えられる。Ref. Case07 の最大流体運動エネルギー量は Base Case の 最大流体運動エネルギー量より約 150 kJ 程度減少した。Ref. Case07 の最大流体運動エネ ルギー量が Base Case の最大流体運動エネルギー量より減少した原因は、溶融ジェット直 径を減少させたことによりトリガー時刻内に投入される溶融物の質量が減少する。それに 伴い粒子の数が減少し、水蒸気爆発による圧力に増加に寄与できなかったためと考えられ る。

粗混合過程で投入する溶融物の投入速度の比較(Base Case、Ref. Case08、09)

Base Case をもとに投入速度を 1.5 倍 (Ref. Case08)、0.5 倍 (Ref. Case09) に変更した 感度解析を行った。Ref. Case08 及び Ref. Case09 の解析結果は Base Case の解析結果と 比較を行った。

図 5.66 及び図 5.68 に Ref. Case08 及び Ref. Case09 の粗混合過程での溶融物の質量の 時間変化のグラフをそれぞれ示す。Ref. Case08 の解析結果は Base Case の解析結果より、 トリガー時刻 1.12 秒時点での溶融物の総質量が約 30 kg 程度増加した。Ref. Case08 の解 析結果が Base Case の解析結果よりトリガー時刻での溶融物の総質量が増加した原因は、 Base Case では溶融物の投入の途中で水蒸気爆発が発生したが、投入速度を増加させたこ とでトリガー時刻内に投入する溶融物の質量が増加したためと考えられる。Ref. Case09 の 解析結果は Base Case の解析結果より、トリガー時刻 1.12 秒時点での溶融物の総質量が約 20 kg 程度減少した。Ref. Case09 の解析結果が Base Case の解析結果よりトリガー時刻で の溶融物の総質量が減少した原因は、Base Case では溶融物の投入の途中で水蒸気爆発が 発生したが、投入速度を減少させたことでトリガー時刻内に投入する溶融物の質量が減少 したためと考えられる。

図 5.66 及び図 5.68 に Ref. Case08 と Ref. Case09 の粗混合過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case08 の解析結果は Base Case の解析結果 よりトリガー時刻 1.12 秒時点での粒子の質量が約 30 kg 程度増加した。Ref. Case09 の解析結果は Base Case の解析結果より 1.12 秒時点での粒子の質量が約 20 kg 程度減少した。

図 5.66 及び図 5.68 に Ref. Case08 と Ref. Case09 の水蒸気爆発過程での溶融物の粒子 の質量の時間変化のグラフをそれぞれ示す。Ref. Case08 のフラグメント粒子の質量は Base Case のフラグメント粒子の質量より約 2.0 kg 程度減少した。Ref. Case08 のフラグメント 粒子の質量が Base Case のフラグメント粒子の質量より減少した原因は、JASMINE では 水蒸気爆発による影響を受ける粒子の条件として「粒子の存在するセルのボイド率が 0.75 以下である」という条件がある。Ref. Case08 は投入速度を増加させることにより粒子の降 下速度も上昇して粒子が散らばらずに 1 箇所にまとまっているため、粒子の存在するセル のボイド率が 0.75 以上になり水蒸気爆発によるフラグメントの対象から除外されたと考え られる。Ref. Case09 の解析結果は Base Case の解析結果より、フラグメント粒子の質量が 約 1.0 kg 程度減少した。Ref. Case09 のフラグメント粒子の質量が Base Case のフラグメ ント粒子の質量をより減少した原因は、投入速度を減少させたことにより投入される溶融 物の粒子数が減少したため、水蒸気爆発の影響でフラグメントした粒子も減少したと考え られる。 図 5.67 及び図 5.69 に Ref. Case08 及び Ref. Case09 の水蒸気爆発過程での冷却水が保 有する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref. Case08 の最大流体運動エ ネルギー量は Base Case の最大流体運動エネルギー量より約 200 kJ ほど程度減少した。 Ref. Case08 の最大流体運動エネルギー量が Base Case の最大流体運動エネルギー量より 減少した原因は、投入速度を増加させたことにより投入される溶融物質量及び粒子数が増 加して冷却水中のボイド率が上昇する。冷却水中のボイド率が上昇してボイド率が 0.75 以 上になると、水蒸気爆発によるフラグメントの対象から除外されるため圧力の上昇が小さ くなり、流体運動エネルギー量も小さくなると考えられる。Ref. Case09 の最大流体運動エ ネルギー量は Base Case の最大流体運動エネルギー量より約 200 kJ 程度増加した。Ref. Case09 の最大流体運動エネルギー量が Base Case の最大流体運動エネルギー量より増加 した原因は、固化した粒子より溶融状態の粒子の方が多く、投入速度が遅いため粒子が拡散 せず 1 箇所にまとまっていたため水蒸気爆発による圧力が増加し流体の運動エネルギーに 影響を与えたと考えられる。

(3) 投入回数に関する解析結果

粗混合過程での溶融物の投入回数の比較(Base Case、Ref. Case11、12)

Base Case をもとに溶融物の投入回数を2回に分けて、2回の投入に時間間隔を与える。 2回目の投入の途中で水蒸気爆発が発生する(Ref. Case11)、2回目の投入の前に水蒸気爆 発が発生する(Ref. Case12)に変更した感度解析を行った。Ref. Case11及び Ref. Case12 の解析結果は Base Case の解析結果と比較を行った。

図 5.70 及び図 5.72 に Ref. Case11 及び Ref. Case12 の粗混合過程での溶融物の質量の時 間変化のグラフをそれぞれ示す。Ref. Case11 の溶融物の総質量は Base Case の溶融物の 総質量より約 10 kg 程度減少した。Ref. Case12 の溶融物の総質量は Base Case の溶融物 の総質量より約 25 kg 程度減少した。Ref. Case11 及び Ref. Case12 の溶融物の総質量が Base Case の溶融物の総質量より減少する原因は、溶融物の投入回数を 2 回に分けたこと により投入する溶融物の質量が減少したためと考えられる。

図 5.70 及び図 5.72 に Ref. Case11 及び Ref. Case12 の粗混合過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case11 の溶融状態の粒子の質量は Base Case の溶融状態の粒子の質量より約 10 kg 程度減少した。Ref. Case11 の溶融状態の粒子の質量 が Base Case の溶融状態の粒子の質量より減少した原因は、投入回数を 2 回に分けたこと により 1 度に投入する溶融物の質量が減少するため、発生する粒子の質量も減少すること で、より粒子が固化しやすくなったためと考えられる。Ref. Case12 の溶融状態の粒子の質 量は Base Case の溶融状態の粒子の質量より約 12 kg 程度減少した。Ref. Case12 の溶融 状態の粒子の質量が Base Case の溶融状態の粒子の質量より減少した原因は、トリガー時 刻内に 2 回目の投入が行われなかったため Ref. Case11 よりも発生する粒子の質量が減少 し、粒子がより固化しやすくなったためと考えられる。

図 5.70 及び図 5.72 に Ref. Case11 及び Ref. Case12 の水蒸気爆発過程での溶融物の粒子の質量の時間変化のグラフをそれぞれ示す。Ref. Case11 の解析結果は Base Case の解析

結果よりフラグメント粒子の質量が約3.0 kg程度減少した。Ref. Case12の解析結果はBase Case の解析結果よりフラグメント粒子の質量が約4.0 kg程度減少した。Ref. Case11及び Ref. Case12のフラグメント粒子の質量が Base Caseのフラグメント粒子の質量より減少 した原因は、投入する溶融物の質量が減少したため、溶融状態の粒子の質量も減少し、水蒸 気爆発による影響を受けてフラグメントする粒子も少なくなったと考えられる。

図 5.71 及び図 5.73 に Ref. Case11 及び Ref. Case12 の水蒸気爆発過程での冷却水が保有 する総流体運動エネルギー量の時間変化をそれぞれ示す。Ref. Case11 の最大流体運動エネ ルギー量は Base Case の最大流体運動エネルギー量より約 200 kJ 程度減少した。Ref. Case12 の最大流体運動エネルギー量は Base Case の最大流体運動エネルギー量より約 250 kJ 程度減少した。Ref. Case11 及び Ref. Case12 の最大流体運動エネルギー量が Base Case の最大流体運動エネルギー量より減少した原因は、投入回数が 2 回にしたことにより 1 度 に投入する溶融物の質量が減少し、発生する粒子の質量が少なくなり粒子の固化が起きや すくなったため、水蒸気爆発による圧力の上昇に寄与できなかったと考えられる。

図 5.50 粗混合過程及び水蒸気爆発過程での解析結果: FARO-L33_Ref. Case01

図 5.51 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case01

図 5.52 粗混合過程及び水蒸気爆発過程での解析結果: FARO-L33_Ref. Case02

図 5.53 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case02

図 5.54 粗混合過程及び水蒸気爆発過程での解析結果: FARO-L33_Ref. Case03

図 5.55 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case03

図 5.56 水蒸気爆発過程での解析結果: FARO-L33_Ref. Case04

図 5.57 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case04

図 5.60 水蒸気爆発過程での解析結果: FARO-L33_Ref. Case05

図 5.61 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case05

図 5.62 粗混合過程及び水蒸気爆発過程での解析結果: FARO-L33_Ref. Case06

図 5.63 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case06

図 5.64 粗混合過程及び水蒸気爆発過程での解析結果: FARO-L33_Ref. Case07

図 5.65 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case07

図 5.66 粗混合過程及び水蒸気爆発過程での解析結果: FARO-L33_Ref. Case08

図 5.67 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case08

図 5.68 粗混合過程及び水蒸気爆発過程での解析結果: FARO-L33_Ref. Case09

図 5.69 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case09

図 5.70 粗混合過程及び水蒸気爆発過程での解析結果: FARO-L33_Ref. Case11

図 5.71 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case11

図 5.72 粗混合過程及び水蒸気爆発過程での解析結果: FARO-L33_Ref. Case12

図 5.73 水蒸気爆発過程での冷却水が保有する総流体運動エネルギー量の時間変化: FARO-L33_Ref. Case12

5.5.3. 考察

(1) 粒子直径に関する感度解析

KROTOS-44 及び FARO-L33 での粗混合過程で発生する粒子直径に着目した感度解析で は、総流体運動エネルギー量に大きな変化は見られなかった。正規分布の平均粒子直径を変 更した感度解析では、KROTOS-44 は、平均粒子直径の増加に伴い、粒子直径を増加するこ とにより粒子の降下速度が減少して粒子と圧力源の距離が離れたため、粒子が圧力の増加 に寄与できなくなり CaseO1 より流体の運動エネルギー量が減少することが確認できた。 FARO-L33 は、平均粒子直径の増加に伴い、粒子直径が増加することにより粒子が保有す る熱量が増加することで粒子が固化しづらくなり、水蒸気爆発時の圧力の増加に寄与する ため、流体の運動エネルギー量が増加した。

水蒸気爆発過程で発生するフラグメント粒子直径を変更した感度解析では、粒子のフラ グメントが起こった際に発生するフラグメント粒子の単位質量あたりの発生熱量の計算に おいて、フラグメント粒子の直径が大きいほどフラグメント粒子の単位質量あたりの発生 熱量が小さくなる計算式をJASMINEでは使用している。KROTOS-44では、フラグメン ト粒子直径を増加させた感度解析での流体の運動エネルギー量が CaseO1 の流体の運動エ ネルギー量より減少した。フラグメント粒子直径を減少させた感度解析での流体の運動エ ネルギー量は CaseO1 の流体の運動エネルギー量と良好に一致した。FARO-L33では、フ ラグメント粒子直径を増加させた感度解析での流体の運動エネルギー量が CaseO1 の流体 の運動エネルギー量より増加した。フラグメント粒子直径を増加させた感度解析での流体 の運動エネルギー量より増加したためと考えられる。フラグメント粒子直径を減少させた感度解析 での流体の運動エネルギー量は CaseO1 の流体の運動エネルギー量と良好に一致した。

(2) 投入条件に関する感度解析

溶融ジェット直径を変更した感度解析では、溶融ジェット直径を増加させると質量流量 が増加するため溶融物の投入時間が短くなる。KROTOS-44 は、もともとの投入時間がトリ ガー時刻より短いので、より短時間で溶融物の投入が終了する。このため、発生する粒子の 数が減少して、粒子が水蒸気爆発時の圧力の増加に寄与できなくなり、流体の運動エネルギ 一量が減少した。FARO-L33 は、もともとの投入時間がトリガー時刻より長いのでトリガ ー時刻内に投入される溶融物の質量が増加する。このため、発生する粒子の数が増加して粒 子が水蒸気爆発時の圧力の増加に寄与するため、流体の運動エネルギー量が増加した。

投入速度を変更した感度解析では、投入速度を増加させると質量流量が増加するため溶 融物の投入時間が短くなる。KROTOS-44 は、もともとの投入時間がトリガー時刻より短い ので、投入速度を増加させるとより短時間で溶融物の投入が終了する。このため、発生する 粒子の数が減少して、粒子が水蒸気爆発時の圧力の増加に寄与できなくなり、流体の運動エ ネルギー量が減少した。FARO-L33 は、もともとの投入時間がトリガー時刻より長いので、 投入速度を増加させるとトリガー時刻内に投入される溶融物の質量が増加する。しかし、 FARO-L33 の投入速度を増加させた解析では流体の運動エネルギー量が減少した。この原 因は、投入する溶融物の質量が増加したことにより発生する粒子の数が増加したため、冷却 水が蒸発して水蒸気になりセルのボイド率が 0.75 以上になったためである。セルのボイド 率が 0.75 以上になると、セル内部の粒子がフラグメントの対象外となり水蒸気爆発による 圧力の上昇に寄与しなくなってしまう。

(3) 投入回数に関する感度解析

投入回数を増加させると一度に投入する溶融物の質量が減少する。このため、発生する粒 子の数が減少して粒子が水蒸気爆発時の圧力の増加に寄与できなくなり流体の運動エネル ギー量が減少した。また、1回目以降の溶融物の投入で発生する粒子は圧力源から遠い位置 にあるため、水蒸気爆発時の圧力の増加に寄与できなくなり流体の運動エネルギー量が減 少する要因となる。

5.6. まとめ

JASMINE コードを用いて水蒸気爆発の解析が適切に解析できることを確認するために、 水蒸気爆発実験解析及び感度解析を実施した。実験解析及び感度解析の対象は、SERENA 計画で実施された高温の溶融物を冷却水に投入した水蒸気爆発実験である KROTOS-33 及 び FARO-L33 とした。実験解析では、現在公開されている JASMINE 3.3b を用いた水蒸気 爆発実験の実験解析の解析結果と本事業で改修を行った JASMINE 4.4f を用いた水蒸気爆 発実験の実験解析の解析結果との比較を行った。水蒸気爆発実験を対象とした実験解析に 関して JASMINE 3.3b と JASMINE 4.4f より得られた解析結果を比較すると概ね一致し た解析結果となった。本事業で粒子化した溶融物のアグロメレーション及び床面に到達し た溶融物の拡がりを解析できるように改修した JASMINE 4.4f は、JASMINE 3.3b と同様 に水蒸気爆発の解析に対応できることを確認した。感度解析では、溶融物の粒子直径、溶融 物の投入条件及び溶融物の投入回数を変更することにより、水蒸気爆発により発生する冷 却水の機械的エネルギー量(総流体運動エネルギー量)に及ぼす影響を調査した。水蒸気爆 発では圧力波により、粒子群がフラグメントする際の放熱により冷却水が水蒸気となるこ とで圧力が上昇する。圧力の上昇により総流体運動エネルギー量が上昇する。感度解析の結 果より、入力条件の変更により総流体運動エネルギー量が増加することはなく、複数の状態 が重複して発生すると総流体運動エネルギー量が増加すると考えられる。総流体運動エネ ルギー量が増加する状態は、粒子群の存在数が多いこと、粒子群が溶融状態であること、粒 子群が圧力源に近いこと、粒子群が密集して存在すること、粒子群の存在する位置での二相 流のボイド率が 0.75 以下となる等が考えられる。

参考文献

- [4.1] Kiyofumi MORIYAMA, Yu MARUYAMA, Hideo NAKAMURA, Steam Explosion Simulation Code JASMINE v.3 User's Guide 2008
- [4.2] I. Huhtiniemi, D. Magallon, and H. Hohmann. Results of recent KROTOS FCI tests: alumina versus corium melts. Nuclear Engineering and Design, 189, pp.379– 389, 1999.
- [4.3] D. Magallon and I. Huhtiniemi. Energetic event in fuel-coolant interaction test FARO L33. Proc. 9th International Conference on Nuclear Engineering (ICONE-9), Nice Acropolis, France, 2001. (Paper no.285).

6. おわりに

本事業においては、シビアアクシデント時における溶融炉心/コンクリート相互作用 (MCCI: Molten Core/Concrete Interaction)を回避あるいはその影響を緩和する対策の 有効性を評価する手法を高度化し、基準適合性審査等における規制判断の根拠となる技術 的知見を提供することを目的に、溶融炉心が格納容器に落下する前に格納容器内に先行的 に注水する場合における溶融炉心の冷却性を科学的・合理的に評価する手法を構築する。今 年度の事業では、格納容器内溶融炉心冷却性評価手法において中心的な役割を果たす溶融 炉心/冷却材相互作用解析コード JASMINE に関して、溶融物粒子の格納容器床面上での アグロメレーション挙動及び格納容器床面上での溶融物拡がり挙動に係わる溶融物の落下 条件をパラメータとした感度解析を実施するとともに、図 1.1 に示したアプローチによる実 機評価の一環として、事故条件の不確かさを考慮した溶融炉心冷却性評価をシビアアクシ デント総合解析コード MELCOR と JASMINE を連動して実施した。主要な成果は以下の とおりである。

6.1 アグロメレーションの解析

JASMINE コードを用いて、スウェーデン王立工科大学(KTH)で行われた DEFOR-A 実験を対象に感度解析を行った。溶融ジェットの直径及び投入速度をパラメータとして、ア グロメレーションデブリの質量割合へ与える影響を調査した。

溶融ジェットの直径及び投入速度の増加はアグロメレーションデブリの質量割合を増加 させた。ジェット直径及び速度の増加は溶融物の慣性を増大させ、結果的にジェットブレー クアップ長が増加した。水深が浅い場所で発生する粒子が減少し、深い場所で発生する粒子 が増加する。そのため、キャッチャー表面へ到達する前に固化する粒子の割合が減少するこ とによるものと解釈される。アグロメレーションデブリの質量割合へ影響する粒子発生に 係わる液液二相流動を正確に把握することが実験解析の精度向上につながると考えられる。

6.2 溶融物の拡がりの解析

本事業は令和4年度が最終年度であるために、平成27年度から令和3年度まで行った実施内容を総括した。平成27年度から平成31年度(令和元年度)までに実施した内容により、スウェーデン王立工科大学で実施されたPULiMS実験及び溶融物にコリウム等を使用したドライ条件の大規模な実験(ECOKATS等)に基づき溶融物の拡がり及び連続層状デブリの堆積範囲を良好に再現することが可能となった。令和2年度から令和3年度までに溶融物の物性値、溶融物の空隙率及び投入条件を変更した感度解析を行い、溶融物の拡がりに対して支配的となる要因を明らかにした。令和2年度から令和3年度で実施されたRIT実験の検証結果に基づき、OECD/NEAの主導で実施されるROSAUMST-1実験の実験解析を行った。ROSAUMST-1の実験解析の結果により溶融物の拡がりを適切に予測するために、溶融物の固相線温度、液相線温度及び融点の関係を把握する必要があることを明らか

にした。

6.3 実機冷却性評価

格納容器先行注水時の溶融炉心冷却性の評価として、MELCOR によるシビアアクシデント解析とJASMINE による格納容器内溶融炉心挙動解析を組み合わせてデブリの堆積高さを評価し、冷却成功確率を求めた。

MELCOR 解析では、大破断 LOCA シナリオをベースに、炉心損傷及び事故対策に関連 する入力パラメータに不確かさを仮定して 300 ケースの入力パラメータセットを抽出し、 圧力容器破損時の溶融物条件を抽出した。

溶融物組成から物性値と熱力学平衡計算を利用して固/液相面温度を取得し、これと溶 融物条件に基づいた JASMINE 解析の入力条件の下で格納容器内の溶融物挙動解析を実施 した。最終的な堆積デブリ高さを評価し、それを簡易モデルで推定した各ケースの溶融物条 件に応じた最大冷却可能高さと比較することで MCCI 回避の成否を判断した。この手順を 異なる格納容器水位条件で繰り返したところ、冷却成功確率はシナリオ内では水位に依ら ず一定となるという結果を得た。

6.4 水蒸気爆発解析

JASMINE コードを用いて水蒸気爆発の解析が適切に解析できることを確認するために、 水蒸気爆発実験解析及び感度解析を実施した。実験解析及び感度解析の対象は、SERENA 計画で実施された高温の溶融物を冷却水に投入した水蒸気爆発実験である KROTOS-33 及 び FARO-L33 とした。実験解析では、現在公開されている JASMINE 3.3b を用いた水蒸気 爆発実験の実験解析の解析結果と本事業で改修を行った JASMINE 4.4f を用いた水蒸気爆 発実験の実験解析の解析結果との比較を行った。水蒸気爆発実験を対象とした実験解析に 関して JASMINE 3.3b と JASMINE 4.4f より得られた解析結果を比較すると概ね一致し た解析結果となった。本事業で粒子化した溶融物のアグロメレーション及び床面に到達し た溶融物の拡がりを解析できるように改修した JASMINE 4.4f は、JASMINE 3.3b と同様 に水蒸気爆発の解析に対応できることを確認した。感度解析の結果より、入力条件の変更に より総流体運動エネルギー量が増加することはなく、複数の状態が重複して発生すると総 流体運動エネルギー量が増加することはなく、複数の状態が重複して発生すると総 流体運動エネルギー量が増加すること、粒子群が溶融状態であること、粒子群が圧力源に近いこと、 粒子群が密集して存在すること、粒子群の存在する位置での二相流のボイド率が 0.75 以下 となる等が考えられる。

付録A JASMINE コードの概要

JASMINE コード (**JA**eri **S**imulator for **M**ultiphase **IN**teraction and **E**xplosion)の開 発は 1994 年から進められてきた。ここでは、詳細な解析モデルが User's Guide [C.1]に公 開されているバージョン 3 について説明する。

A.1 コードの目的及び対象とする現象

JASMINE コードは、軽水炉シビアアクシデント時における溶融炉心と冷却水の相互作用(水蒸気爆発)を解析するために開発された。

水蒸気爆発は、高温溶融物が水中に落下し、その一部または全部が液滴となって水中に 分散する粗混合過程及び引き続き生じる爆発過程から成るとされている。その概略及び JASMINE コードにおける解析モデルを図 A.1 に示す。粗混合過程では、高温溶融物液滴 の周囲は膜沸騰状態であり蒸気膜に覆われている。爆発過程では、何らかのきっかけ(ト リガー)で発生した圧力波が液滴に到達したときに、蒸気膜を不安定化させて液滴を微粒 化させることにより液滴からの熱伝達を急増させ、このときに発生する蒸気が圧力波をさ らに増幅または維持伝播させる。

予混合過程において液滴とならなかった溶融物は、床面に達して水平方向に拡がり、溶 融物のプールを形成する。また、トリガーが生じなかった場合や、圧力波を維持できるほ どの量の液滴が生じなかった場合、または液滴が冷却されて表面に厚い固化層が形成され 微粒化しなかった場合には水蒸気爆発は生じず、溶融物液滴は冷却固化されて落下し、や がては溶融物プールに吸収される。冷却により溶融物プールの表面に厚い固化層(クラス ト)が形成されている場合には、その上に粒子層(デブリベッド)が形成される。

+分な水深がある場合には、水中に流入する溶融物(溶融物ジェット)は全て液滴とな り、それらの液滴は床面に達する前に水中で固化し、床面上に堆積してデブリベッドを形 成する。ここで、液滴同士の結合により比表面積の小さな塊状のデブリが生じた場合、デ ブリベッドの冷却が不十分となり、やがて水の浸透し難い部分で崩壊熱による再溶融が生 じる恐れがある。JASMINE バージョン3には、塊状デブリの生成やデブリベッドの再溶 融のモデルは組み込まれていない。

A-1

図 A.1 水蒸気爆発現象と JASMINE コードの解析モデル

A.2 基本モデルと計算式

JASMINE コードは軸対称二次元コードであり、溶融物は体系の中心軸上に落下する。 溶融物及び水の旋回運動成分は考慮していない。予混合過程及び爆発過程は時間スケール が異なるものの、溶融物ジェット・液滴・水の流動・伝熱と水蒸気二相流の挙動で表され るため同様のモデルを使用している。以下に各部分でのモデル詳細を述べる。

JASMINE コードの構成は、溶融物計算部と水-蒸気挙動計算部(水プール)とに大別される。また、溶融物計算部は、溶融物ジェット挙動、溶融物プール挙動、溶融物液滴挙動に分けられる。本節に記述する式中の記号の説明は(5)に示す。

(1) 溶融物ジェット

以下に示すオイラー座標で記述された高さ方向一次元の質量保存則、エネルギー保存則 及び運動量保存則を CIP 法で積分し、流速変化、温度変化及び溶融物ジェット径の変化を 計算する。

質量保存則:

$$\frac{\partial A_J \rho_J}{\partial t} + v_J \frac{\partial A_J \rho_J}{\partial z} = -\sqrt{2\Theta A_J} m_e - A_J \rho_J \frac{\partial v_J}{\partial z}$$

エネルギー保存則:

$$\frac{\partial e_J}{\partial t} + v_J \frac{\partial e_J}{\partial z} = -\sqrt{\frac{2\Theta}{A_J} \frac{q}{\rho_J}}$$

運動量保存則:

$$\frac{\partial v_J}{\partial t} + v_J \frac{\partial v_J}{\partial z} = -\frac{1}{\rho_J} \frac{\partial p_a}{\partial z} + K_f (v_a - v_J) + g$$

ここで、質量保存式中のmeは予混合過程における液滴発生量であり、溶融物がすべて液 滴に変わり溶融物ジェット径がゼロになる深さ(ブレークアップ長さ。図A.2 参照)L_{brk}か ら計算する。ブレークアップ長さは基本的には次に示す Saito の式を用いて計算する。

$$\frac{L_{brk}}{D_{Ji}} = 2.1 \left(\frac{\rho_J}{\rho_l}\right)^{1/2} \left(\frac{V_{Ji}^2}{g D_{Ji}}\right)^{1/2}$$

液滴発生量は、溶融物ジェット径が深さに対して一定の割合で減少するという仮定に基 づき計算する。すなわち

$$V_e = \frac{v_J}{2} \frac{D_{Ji}}{L_{brk}}$$

により、ジェット表面での溶融物剥離速度を求め、さらに、

図 A.2 JASMINE コードにおける溶融物ジェットのモデル

 $m_e = C_{ent} \rho_I V_e$

として質量速度に換算する。ここで C_{ent} は、入力パラメータであり、デフォルト値は1とする。

(2) 溶融物プール

半径方向一次元の浅水方程式を有限差分法により解く。オイラー座標で記述し、エネル ギー保存則、運動量保存則は非保存形である。すなわち、

質量保存則:

$$\frac{\partial w h_P \rho_P}{\partial t} + \frac{\partial (w h_P \rho_P v_P)}{\partial x} = w m_s$$

エネルギー保存則:

$$\frac{\partial e_P}{\partial t} + v_P \frac{\partial e_P}{\partial x} = \frac{q}{h_P \rho_P} + \frac{(e_{ms} - e_P)max(m_s, 0)}{h_P \rho_P}$$

運動量保存則:

 $\frac{\partial v_P}{\partial t} + v_P \frac{\partial v_P}{\partial x} = -\frac{1}{\rho_P} \left[\frac{\partial p_a}{\partial x} + \frac{g}{2} \frac{\partial h_P \rho_P}{\partial x} \right] + K_{fa} (v_a - v_P) - K_{fw} v_P + \frac{(v_{ms} - v_P)max(m_s, 0)}{h_P \rho_P} + \frac{(v_{ms} - v_P)max(m_s, 0)}{h_P \rho_P} \right]$

とする。

溶融物プールの表面温度 T_{sf} は、 e_p から計算した平均温度 T_{av} と水温 T_c を用いて、プール高さ方向の温度分布が二次関数で表されると仮定して次式で計算する。

$$T_{sf} = \frac{T_{av} + T_c \frac{h_P H}{6\lambda_P}}{1 + \frac{h_P H}{6\lambda_P}}$$

ここで、Hは溶融物表面の水側熱伝達率である。

(3) 溶融物液滴

離散要素法を採用し、ラグランジュ座標で記述された運動量及びエネルギーの保存式を 解く。個々の液滴をすべて計算するのではなく、同じ条件の多数の液滴から成るグループ を想定し、グループ毎の代表値を計算し、代表値にそのグループ内の液滴数を乗じて水と の交換熱量、堆積溶融物量等を求める。また、液滴初速の決定に乱数を使用しており、液 滴が水プールに及ぼす影響及び溶融物プールへの流入量に関してはモンテカルロ法を使用 していることになる。

運動量保存則は、速度について:

$$\frac{\partial \boldsymbol{v}_p}{\partial t} = \mathbf{g} - \frac{\boldsymbol{\nabla} p_a}{\rho_p} + \frac{\boldsymbol{F}_{hy}}{m_p}$$

液滴位置について:

$$\frac{\partial \boldsymbol{x}_p}{\partial t} = \boldsymbol{v}_p$$

また、エネルギー保存則は:

$$\frac{\partial e_p}{\partial t} = \frac{q}{m_p}$$

となる。

液滴と水の相互作用の計算は、溶融物ジェットから液滴が発生した時に直ちに始めるの ではなく、pre-particle というグループを考え、この中にある程度の質量が蓄積される等の 条件に至った時に real-group として水との相互作用の計算を始める。この条件は、

- (a) 液滴数が所定の値に達した時
- (b) グループが占める空間領域の x 方向の大きさが x 方向分割メッシュ最小サイズの 1/4 を 超えた時
- (c) グループが占める空間領域の外周が x 方向第1 メッシュに達した時
- (d) 所定の時間が経過した時
- としている。

液滴の初期径は、バージョン 3.3 b までは固定値を入力で与えている。 液滴発生時の初速(x、z方向成分をそれぞれvex、vezとする)は、次式で計算する。

$$v_{ex} = C_{vx} (2V_e) \{ 0.02 + 0.98 \phi_r \}$$

$$v_{ez} = C_{vzwt} v_J + (1 - C_{vzwt}) v_c$$

ここで、C_{px}、C_{pzwt}は、入力で与える定数でデフォルト値はそれぞれ 5.0、0.5 である。

また、Ørは0~1の一様乱数である。

液滴の表面温度は、温度境界層の考えを取り入れプロフィル法を用いて次式で計算する。 すなわち温度境界層内部の温度分布は二次関数で近似し、内部の温度と滑らかに接続され るという条件から、温度境界層厚さ**δ**の変化は次式で与えられる。

$$\delta \left\{ 1 - \frac{3}{4} \frac{\delta}{R} + \frac{1}{5} \left(\frac{\delta}{R} \right)^2 \right\} d\delta = 3\kappa dt$$

また、表面温度T_{sf}は液滴平均温度T_{av}と液滴半径から次式で決定される。

$$T_{av} - T_{sf} = \frac{q\delta}{2\lambda} \left[1 - \frac{\delta}{R} \left\{ 1 - \frac{1}{2}\frac{\delta}{R} + \frac{1}{10} \left(\frac{\delta}{R}\right)^2 \right\} \right]$$

(4) 水プール

水プールの温度及び流動の挙動は、多流体モデルの圧縮性二相流に関する質量、運動量 及びエネルギーの保存則について有限差分法を用いて計算する。座標系はオイラー座標軸 対称二次元(並進対称二次元の機能も有する)であるが、プログラム上は円筒座標三次元 としており、θ方向1セルについて計算するセクターモデルである。セクター角度は入力に より指定可能である(通常は0.1 ラディアン)。旧日本原子力研究所で開発された ACE-3D コードを用いており、気相及び液相のそれぞれに以下の基本式を適用する。

質量保存則:

$$\frac{\partial}{\partial t}(\alpha_k \rho_k) + \nabla \cdot (\alpha_k \rho_k \boldsymbol{v}_k) = \gamma_k$$

エネルギー保存則:

$$\frac{\partial}{\partial t}(\alpha_k \rho_k e_k) + \nabla \cdot (\alpha_k \rho_k e_k \nu_k) = -p \left[\frac{\partial \alpha_k}{\partial t} + \nabla \cdot (\alpha_k \nu_k) \right] + q_{ik} + q_{mk} + q_{wk} + \sum_{j \neq k} q_{jk} + \gamma_k h_k$$

運動量保存則:

$$\frac{\partial \boldsymbol{\nu}_k}{\partial t} + \boldsymbol{\nu}_k \cdot \boldsymbol{\nabla} \boldsymbol{\nu}_k = -\frac{1}{\rho_k} \boldsymbol{\nabla} p - [K_{ik}(\boldsymbol{\nu}_k - \boldsymbol{\nu}_i)]_{i \neq k} - \frac{\gamma_k^+}{\alpha_k \rho_k} (\boldsymbol{\nu}_k - \boldsymbol{\nu}_i)_{i \neq k} + \frac{f_{mk}}{\alpha_k \rho_k} + \boldsymbol{g}$$

水及び蒸気の物性については、蒸気表から求めた近似式を使用する。また、非凝縮性ガスは理想気体とする。

溶融物プール及び液滴の表面と水・蒸気との摩擦力及び熱伝達の評価に使用される相関 式を以下にまとめる。

項目	溶融物プールの表面	溶融物液滴の表面
摩擦抗力	無	球の抗力係数 f = max(24/Re,18.5/
		$Re^{0.6}$, 0.44)
対流熱伝達	水平平面自然対流熱伝達式	球まわりの対流熱伝達 Nu = 2 +
		$0.6Re^{1/2}Pr^{1/3}$
核沸騰熱流	Kutateladze	Kutateladze
限界熱流束	Zuber	Zuber
膜沸騰熱伝	Berenson	Liu-Theofanous
達		
極小熱流束	Berenson	Kondo et al.

表 A.1 JASMINE コードで使用される水・蒸気と溶融物の相互作用の相関式

水のボイド率に応じて上記の式に補正項を掛ける。

(5) 溶融物プールの運動方程式

【運動量保存式】

① 表面クラストが存在し、流動する場合(
$$v_{cr} = v_p$$
)

$$\frac{v_{p,i+\frac{1}{2}}^{n+1} - v_{p,i+\frac{1}{2}}^{n}}{\Delta t} = -\left[\max\left(v_{p,i+\frac{1}{2}}, 0\right) \frac{v_{p,i+\frac{1}{2}}^{n+1} - v_{p,i-\frac{1}{2}}^{n+1}}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}^{n+1}} + \min\left(v_{p,i+\frac{1}{2}}, 0\right) \frac{v_{p,i+\frac{3}{2}}^{n+1} - v_{p,i+\frac{1}{2}}^{n+1}}{x_{i+\frac{3}{2}} - x_{i+\frac{1}{2}}^{n+\frac{1}{2}}} - \frac{1}{\rho_{p,i+\frac{1}{2}}} \left[\frac{p_{a,i+1} - p_{a,i}}{x_{i+1} - x_{i}} + g \frac{[h_p \rho_p]_{i+1} - [h_p \rho_p]_{i-1} + [d_{cr} \rho_{cr}]_{i+1} - [d_{cr} \rho_{cr}]_{i-1} + [d_b \rho_{cr}]_{i+1} - [d_b \rho_{cr}]_{i-1}}{x_{i+1} - x_{i}} \right] + \left[\frac{K_{a-cr}}{h_p} (v_a - v_{cr}) |v_a - v_{cr}| - \frac{f_w}{h_p} \frac{1}{2} v_p |v_p| + \frac{(v_{ms} - v_p) \max(m_s, 0)}{h_p \rho_p} \right]_{i+\frac{1}{2}}$$
(2.67)

② 表面クラストが存在し、固定されている場合(
$$v_{cr} = 0$$
)

$$\frac{v_{p,i+\frac{1}{2}}^{n+1} - v_{p,i+\frac{1}{2}}^{n}}{\Delta t} = -\left[\max\left(v_{p,i+\frac{1}{2}}, 0\right) \frac{v_{p,i+\frac{1}{2}}^{n+1} - v_{p,i-\frac{1}{2}}^{n+1}}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}^{n+1}} + \min\left(v_{p,i+\frac{1}{2}}, 0\right) \frac{v_{p,i+\frac{3}{2}}^{n+1} - v_{p,i+\frac{1}{2}}^{n+1}}{x_{i+\frac{3}{2}} - x_{i+\frac{1}{2}}^{n+\frac{1}{2}}}\right] - \frac{1}{\rho_{p,i+\frac{1}{2}}} \left[\frac{p_{a,i+1} - p_{a,i}}{x_{i+1} - x_{i}} + g \frac{[h_{P}\rho_{P}]_{i+1} - [h_{P}\rho_{P}]_{i-1} + [d_{cr}\rho_{cr}]_{i+1} - [d_{cr}\rho_{cr}]_{i-1} + [d_{b}\rho_{cr}]_{i+1} - [d_{b}\rho_{cr}]_{i-1}}{x_{i+1} - x_{i}}\right] + \left[-\frac{f_{cr}}{h_{P}}\frac{1}{2}v_{P}|v_{P}| - \frac{f_{w}}{h_{P}}\frac{1}{2}v_{P}|v_{P}| + \frac{(v_{ms} - v_{P})\max(m_{sp}, 0)}{h_{P}\rho_{P}}\right]_{i+\frac{1}{2}}$$

③表面クラストが存在しない場合

$$\frac{v_{p,i+\frac{1}{2}}^{n+1} - v_{p,i+\frac{1}{2}}^{n}}{\Delta t} = -\left[\max\left(v_{p,i+\frac{1}{2}}, 0\right) \frac{v_{p,i+\frac{1}{2}}^{n+1} - v_{p,i-\frac{1}{2}}^{n+1}}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}} + \min\left(v_{p,i+\frac{1}{2}}, 0\right) \frac{v_{p,i+\frac{3}{2}}^{n+1} - v_{p,i+\frac{1}{2}}^{n+1}}{x_{i+\frac{3}{2}} - x_{i+\frac{1}{2}}}\right] \\ -\frac{1}{\rho_{p,i+\frac{1}{2}}} \left[\frac{p_{a,i+1} - p_{a,i}}{x_{i+1} - x_{i}} + g \frac{[h_{P}\rho_{P}]_{i+1} - [h_{P}\rho_{P}]_{i-1} + [d_{b}\rho_{cr}]_{i+1} - [d_{b}\rho_{cr}]_{i-1}}{x_{i+1} - x_{i}}\right] \\ + \left[\frac{K_{a-p}}{h_{P}}\left(v_{a} - v_{p}\right)\left|v_{a} - v_{p}\right| - \frac{f_{w}}{h_{P}}\frac{1}{2}v_{P}\left|v_{P}\right| + \frac{(v_{ms} - v_{P})\max(m_{s}, 0)}{h_{P}\rho_{P}}\right]_{i+\frac{1}{2}}\right]$$
(2.69)

連立方程式の係数の導出:

表面クラストが存在し、固定されている場合($v_{cr} = 0$)を例とする。元の方程式は

$$\frac{v_{P,i+\frac{1}{2}}^{n+1} - v_{P,i+\frac{1}{2}}^{n}}{\Delta t} = -\left[\max\left(v_{P,i+\frac{1}{2}}, 0\right) \frac{v_{P,i+\frac{1}{2}}^{n+1} - v_{P,i-\frac{1}{2}}^{n+1}}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}^{n+1}} + \min\left(v_{P,i+\frac{1}{2}}, 0\right) \frac{v_{P,i+\frac{3}{2}}^{n+1} - v_{P,i+\frac{1}{2}}^{n+1}}{x_{i+\frac{3}{2}} - x_{i+\frac{1}{2}}^{n+1}}\right] \\ -\frac{1}{\rho_{P,i+\frac{1}{2}}} \left[\frac{p_{a,i+1} - p_{a,i}}{x_{i+1} - x_{i}} + g \frac{[h_{P}\rho_{P}]_{i+1} - [h_{P}\rho_{P}]_{i-1} + [d_{cr}\rho_{cr}]_{i+1} - [d_{cr}\rho_{cr}]_{i-1} + [d_{b}\rho_{cr}]_{i+1} - [d_{b}\rho_{cr}]_{i+1}}{x_{i+1} - x_{i}} \right] \\ + \left[-\frac{f_{cr}}{h_{P}} \frac{1}{2} v_{P} |v_{P}| - \frac{f_{w}}{h_{P}} \frac{1}{2} v_{P} |v_{P}| + \frac{(v_{ms} - v_{P})\max(m_{sp}, 0)}{h_{P}\rho_{P}} \right]_{i+\frac{1}{2}} \right]$$

既知の状態の時刻 n と求める時刻 n+1 を明確に分ける。

$$v_P = \frac{v_{P,i+\frac{1}{2}}^n + v_{P,i+\frac{1}{2}}^{n+1}}{2}$$

とする。

$$\begin{split} \frac{1}{\Delta t} v_{P,i+\frac{1}{2}}^{n+1} &- \frac{1}{\Delta t} v_{P,i+\frac{1}{2}}^{n} \\ &= -\frac{\max\left(v_{P,i+\frac{1}{2}},0\right)}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}} \left(v_{P,i+\frac{1}{2}}^{n+1} - v_{P,i-\frac{1}{2}}^{n+1}\right) - \frac{\min\left(v_{P,i+\frac{1}{2}},0\right)}{x_{i+\frac{3}{2}} - x_{i+\frac{1}{2}}} \left(v_{P,i+\frac{3}{2}}^{n+1} - v_{P,i+\frac{1}{2}}^{n+1}\right) + B \\ &- \frac{(f_{cr} + f_w)}{2h_P} \left|v_{P,i+\frac{1}{2}}^{n}\right| v_{P,i+\frac{1}{2}}^{n+1} + \left[\frac{\left(v_{ms} - v_{P,i+\frac{1}{2}}^{n}/2 - v_{P,i+\frac{1}{2}}^{n+1}/2\right) \max(m_{sp},0)}{h_P \rho_P}\right]_{i+\frac{1}{2}} \end{split}$$

左辺に未知数を含む項、右辺に既知の項を集めて整理する。

$$\begin{cases} \frac{1}{\Delta t} + \frac{\max\left(v_{P,i+\frac{1}{2}}, 0\right)}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}} - \frac{\min\left(v_{P,i+\frac{1}{2}}, 0\right)}{x_{i+\frac{3}{2}} - x_{i+\frac{1}{2}}} + \frac{(f_{cr} + f_w)}{2h_P} \left| v_{P,i+\frac{1}{2}}^n \right| + \frac{\max(m_{sp}, 0)}{2h_P \rho_P} \end{cases} v_{P,i+\frac{1}{2}}^{n+1} \\ - \frac{\max\left(v_{P,i+\frac{1}{2}}, 0\right)}{x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}} v_{P,i-\frac{1}{2}}^{n+1} + \frac{\min\left(v_{P,i+\frac{1}{2}}, 0\right)}{x_{i+\frac{3}{2}} - x_{i+\frac{1}{2}}} v_{P,i+\frac{3}{2}}^{n+1} = \frac{1}{\Delta t} v_{P,i+\frac{1}{2}}^n + B \\ + \left[\frac{\left(v_{ms} - v_{P,i+\frac{1}{2}}^n / 2\right) \max(m_{sp}, 0)}{h_P \rho_P} \right]_{i+\frac{1}{2}} \end{cases}$$

ここにあるように右辺に摩擦項(fcr、fwを含む項)が無い点が注目される。

$$\begin{split} \Xi \equiv \Im^{\circ} \\ \mathbf{B} &= -\frac{1}{\rho_{p,i+\frac{1}{2}}} \left[\frac{p_{a,i+1} - p_{a,i}}{x_{i+1} - x_i} + \right] \\ g \frac{[h_P \rho_P]_{i+1} - [h_P \rho_P]_{i-1} + [d_{cr} \rho_{cr}]_{i+1} - [d_{b} \rho_{cr}]_{i+1} - [d_{b} \rho_{cr}]_{i-1}}{x_{i+1} - x_i} \right] \quad (\mathbf{A}) \\ &= \frac{1}{2} \left(v_{p,i+\frac{1}{2}}^n + \frac{\Delta v}{2} \right)^2 = \frac{1}{2} \left(v_{p,i+\frac{1}{2}}^n + v_{p,i+\frac{1}{2}}^n \Delta v + \frac{\Delta v^2}{4} \right) \\ &\cong \frac{1}{2} \left\{ v_{p,i+\frac{1}{2}}^n + v_{p,i+\frac{1}{2}}^n \left(v_{p,i+\frac{1}{2}}^{n+1} - v_{p,i+\frac{1}{2}}^n \right) \right\} = \frac{1}{2} v_{p,i+\frac{1}{2}}^n \cdot v_{p,i+\frac{1}{2}}^{n+1} \\ \Xi \equiv \Im^{\circ} \end{split}$$

$$\Delta v = v_{P,i+\frac{1}{2}}^{n+1} - v_{P,i+\frac{1}{2}}^n \ll v_{P,i+\frac{1}{2}}^n$$

従って Δv^2 の項は $v_{P,i+\frac{1}{2}}^n \Delta v$ の項などに比べて negligible

(6) 記号の説明

JASMINE コードにおける計算式の説明に使用された記号及び添字の定義を以下に示す。

記号

- A:断面積
- e:比内部エネルギー
- g:重力加速度
- h:液深または比エンタルピ
- K:摩擦係数
- m: 質量または質量速度
- **p**: 圧力
- *R*:半径
- t:時間
- **v**:速度
- $w: セクターモデルの周方向分割メッシュ幅長さ (w = x \Theta)$
- x:水平方向座標
- z:高さ方向座標
- *α*:ボイド率
- γ_k :単位体積当たり質量変化
- $\kappa: 熱拡散率$
- λ:熱伝導率

ρ:密度

Θ:セクターモデルの周方向分割メッシュ幅角度

添字

a:水プールを表す

av: 平均を表す

- e:エントレインメント
- J:溶融物ジェット (Jiは、水面高さでの値を示す)
- **k**:流体の種類
- l:水
- P:溶融物プール
- p:溶融物液滴
- *sf*:表面

A.3 プログラムの特徴

(1) 計算手順

予混合過程と爆発過程を同一のコードで解析する。爆発過程の計算時には、予混合過程 の計算時に作成されたファイルから指定された時刻のデータを読み出し、リスタート機能 を使用して細かい計算ステップ幅で計算を行う。この時、爆発過程の計算を指示するフラ グとトリガーとなるセルの状態は入力で与える。

(2) JASMINE コードで使用する物性値

(a) 溶融物

実機解析、実験解析に備えて、以下の物質に対する物性値の関数を用意している。

名称	物質
corium	UO ₂ 80:ZrO ₂ 20 wt% (FARO/KROTOS のコリウム)
corium2	=tsol/tmelt/tliq を 2420/2545/2670 とするコリウム
corium3	UO2 70:ZrO2 30 wt% (TROI-13 のコリウム: 共晶点近傍)
alumina	アルミナ
alumina2	SERENA-T3のアルミナ
zirconia	ジルコニア
ss304	304L ステンレススチール

表 A.2 JASMINE コードで用意されている溶融物

このうち、実機解析に使用される corium 及び corium3 について、具体的な数値を表 E.3 に示す。固相線温度と液相線温度の間にある温度の場合は以下のように補間する。

密度は、固相線温度、液相線温度の値をコサイン関数で補間した値とする。温度-内部 エネルギーの換算に使用する内部エネルギーの温度微係数(比熱)については、温度の一 次関数で表し(固相・液相線温度の平均温度で折れ曲がる)、温度による積分値が凝固潜熱 と一致するように決定する。伝熱計算相関式に使用される比熱については、固相・液相線 温度の平均温度との大小比較で固相のものと液相のものを使い分ける。corium3の熱伝導 率については、密度と同様、コサイン関数で補間する。

変 数	タイプ	説 明	corium	corium3
			$\mathrm{UO}_2 ext{-}\mathrm{ZrO}_2$	$\mathrm{UO}_2 ext{-}\mathrm{ZrO}_2$
			80:20wt%	70:30wt%
tmelt	実数	溶融物融点 [K]	2840	2811
tsoli	実数	溶融物固相線温度 [K]	2830	2806
tliqu	実数	溶融物液相線温度 [K]	2850	2816
rhosol	実数	固相密度 [kg/m ³]	9430	8285.1
rholiq	実数	液相密度 [kg/m ³]	7960	7121.6
cpsol	実数	固相比熱 [J/kg/K]	445	566.2
cpliq	実数	液相比熱 [J/kg/K]	565	680.7
lheat	実数	凝固潜熱 [J/kg]	362.0E3	428.0E3
lamsol	実数	固相熱伝導率 [W/m/K]	2.88	1.911
lamliq	実数	液相熱伝導率 [W/m/K]	2.88	3.601
viscmm	実数	粘性係数 [Pa·s]	4.23E-3	3.489E-3
sftnmm	実数	表面張力 [N/m]	0.45	0.45
emssmm	実数	輻射率 [-]	0.79	0.79
cf_visc	実数	粘性係数の温度依存性の 係数(温度の1次式の係 数)	0	0
cf_sftn	実数	表面張力の温度依存性の 係数(温度の1次式の係 数)	0	0
cf_emss	実数	輻射率の温度依存性の係 数(温度の1次式の係数)	0	0

表 A.3 JASMINE で使用されるコリウムの物性値

(b) 蒸気表

JASMINE コードでは、計算速度の高速化を図るために、蒸気表の近似関数を作成し組 み込んでいる。日本機械学会蒸気表[C.2]との比較により、臨界点近傍を除き、いずれの物 性値についても良好な精度で一致していることを確認している。

(c) 沸騰熱伝達

JASMINE コードで使用している沸騰曲線の一例をグラフに示す。雰囲気圧力を大気圧 とし、水プールのサブクール度をパラメータとして、溶融物の表面過熱度に対する熱流束 を計算した。図 A.3 が液滴表面熱流束、図 A.4 が溶融物プール表面熱流束である。液滴表 面熱流束の計算では、液滴径は 3 mm、液滴と水との相対速度は 0.3 m/s とした。

溶融物プール表面熱流束に関しては、膜沸騰熱流束及び極小熱流束への水サブクール度の影響がほとんどないことが分かる。よって、JASMINE コードにより溶融物の床面拡がり解析を行った場合に水サブクール度の影響がきわめて小さくなると予想される。

C.4 コードの開発履歴と検証

JASMINE コードの開発・改良は長期間にわたり行われている。これまでの開発の経緯 とコードバージョン名及び解析・比較の対象とした実験を表 A.4 に示す。JASMINE v.3 で、 コードの基本式・計算手法・構成が固まり、その後、予混合過程での溶融物液滴の粒径分 布考慮機能などの追加が行われてきた。平成 27 度事業において改良したバージョンを JASMINE 4.0 とし、平成 28 度事業において作成・改良したアグロメレーションモデル (ver. 4.0_agl) とメルトスプレッドモデル (ver. 4.0_msp) を結合したバージョンを JASMINE 4.1、 とする。

その後、DEFOR-A 実験、PULiMS 実験との比較により解析モデルの改良を継続し、平 成 29 年度の改良により JASMINE 4.2 を、本年度(平成 30 年度)の改良により JASMINE 4.3a を作成した。

令和元年度の作業では、4.3a を改良した JASMINE 4.3d を用いて PULiMS 解析、及び 実機冷却性評価の解析を行うとともに、気相中実験の解析を可能とした JASMINE 4.4 を開 発しこれまで手を付けてこなかった気相中実験の解析を行った。

令和2年度の作業では、JASMINE 4.4 を改良した JASMINE 4.4b を用いて DEFOR-A 実験及び PULiMS 実験の溶融物の物性値を変更した感度解析を行った。

今年度(令和3年度)の作業では、JASMINE 4.4b を改良した JASMINE 4.4d を使用し て DEFOR-A 実験及び PULiMS 実験の投入条件を変更した感度解析を行うとともに、 JASMINE 4.4a で追加された水プールの一点近似モデルを使用して Wet 条件で直交座標系 変形流路の実験解析を行った。

バージョン名	発行/	内容・参考文献	比較対象実験
	実施年		及び
	月		解析对象
JASMINE	1994		Gilbertson らの非加 熱ケズズの実験
		低相流辨付ユート MISIRAL を元 に予想合過程の解析如を作成	熱 や 米 い た い 夫 映 MACICO 実 融
		に予施古過程の辨別部を下成。 [C3]	MAGIOU 关款
JASMINE Pro	2000/12	爆発過程の解析部を作成。	
		ユーザーマニュアルを発行。	
		[C.4]	
JASMINE-pre	2004/1	水—蒸気系の計算にACE-3Dを利用	FARO-L24, -L31
		した予混合過程計算部を作成。	
		論文発行。 [C.5]	
JASMINE 3	2008/07	予混合過程・爆発過程を同一の計	FARO-L14, -L28,
		算プロセスで扱うバージョンを作	-L31, -L33
		成。ユーザーズマニュアルを発行。	KROTOS-KAA -42
		[C.1]	-K37
JASMINE 3.3b	2010/07	プログラムの構成・変数名、説明文	OECD/NEA
		書等を整理。	SERENA Project
			Phase-1
JASMINE_NRA	2014/10	予混合過程の液滴粒径分布考慮。	OECD/NEA
		ジェットの流動抵抗計算式変更。	SERENA Project
		溶融物の物性値人力を可能とした。	rnase-2
JASMINE 3.3NW	2015/07	環境をLINUX (UNIX) から	
		WINDOWS に変更。 コンハイフを	
		インアル Visual Fortran Composer XE に変更 入力マニュアル改訂	
JASMINE 4.0	亚成 97 包	E度事業において、ジェットブレーク	DEFOR-A
SASWIIVE 4.0	アップに:	おける Rosin-Rammler 粒径分布モデ	PULiMS
	ル及び床	面拡がり挙動におけるクラスト形成	
	モデルを	追加。	
JASMINE 4.0_agl	2017/3	アグロメレーションモデルを導入	DEFOR-A
JASMINE 4.0_msp	2017/3	床材内熱伝導解析を組み込み、溶融	PULiMS
-		物中ボイドの影響を考慮	
JASMINE 4.1	2017/9	4.0_agl と 4.0_msp を結合	H29年度 実機冷却
			性評価の予備解析
JASMINE 4.2	2018/3	平成 29 年度事業においてアグロメ	DEFOR-A
		レーションモデル及びメルトスプ	PULiMS
		レッドモデルを改良	
JASMINE 4.3a	2019/3	平成 30 年度事業においてメルトス	DEFOR-A
		フレッドモテルを改良。	PULIMS
		よに、可読性回上を目的として粒子 ※動計管如葉な公園 まきみみた	
		宇動可昇即守を万司、青さ以めた。	

表 A.4 JASMINE コードの開発・改良の経緯

JASMINE 4.3d	2019/8	射流モデル組み込み	PULiMS E10~ E15、E17,E18 実機冷却性評価
JASMINE 4.4	2019/12	流路幅が変化する形状に対応	PULiMS E16 ドライ実験
JASMINE 4.4a	2020/2	初期条件の多様化 水プールの一点近似モデル組込	DEFOR-A 実験 PULiMS 実験 ドライ実験
JASMINE 4.4b	2021/1	モデルの修正、整理	DEFOR-A1、5、8、 23、24、26 PULiMS-E10~14、 16
JASMINE 4.4c	2021/6	水蒸気爆発の機能確認及び問題抽 出	DEFOR-A 実験 PULiMS 実験 ドライ実験
JASMINE 4.4d	2022/1	モデルの修正、整理	DEFOR-A1、5、8、 23、24、26 PULiMS-E10~14、 16 ドライ条件実験 RIT 試験 (2MWS-Ox-3)

- A.5 参考文献
- [A.1] Kiyofumi MORIYAMA, Yu MARUYAMA, Hideo NAKAMURA, "Steam Explosion Simulation Code JASMINE v.3 User's Guide", JAEA-DATA/Code 2008-014, July 2008, Japan Atomic Energy Agency
- [A.2] 日本機械学会, "1999 日本機械学会蒸気表", (1999-11月)
- [A.3] 森山清史ら,"水蒸気爆発解析コード JASMINE の開発", JAERI-Data/Code 95-016 (1995-11 月) 日本原子力研究所
- [A.4] Y. Yang, et al., "JASMINE-PRO: a Computer Code for the Analysis of Propagation Process in Steam Explosions—User's Manual", JAERI-Data/Code 2000-035 (Sep. 2000) Japan Atomic Energy Agency
- [A.5] K. Moriyama, H. Nakamura, Y. Maruyama, "Analytical tool development for coarse break-up of a molten jet in a deep water pool", Nucl. Eng. Des. 236(2006) 2010-2025

付録 B 冷却可能な最大デブリ堆積高さの評価

円筒状に堆積した溶融炉心デブリの冷却は、主に上面における水への伝熱により行われ る。ここでは、円筒側面における伝熱を無視し、鉛直方向の1次元問題として取り扱う。 デブリは発熱体であるため、高さが大きくなると総発熱量が増大し、やがて下面(コンク リートとの界面)温度がコンクリート溶融浸食温度(すなわち、MCCI開始温度)に到達す る。この時の高さを冷却可能な最大デブリ堆積高さと考える。

評価の考え方

堆積したデブリのモデルを図 B-1 に示す。ここで、デブリ(高さ L の連続層状デブリ) の上部には固化時の熱収縮で生じたクラック等に水が浸水した「浸水層」(高さる)が存在す ると仮定する。いま、デブリ下面がコンクリート溶融浸食温度に達した状態を考えると、デ ブリ内部及び浸水層における温度分布は図 B-2 のようになる。このときの 1 次元熱伝導方 程式は以下の通りである。

$$\rho c \frac{\partial T}{\partial t} = \lambda \frac{\partial^2 T}{\partial x^2} + Q_d$$

(B-1)

定常解を考えるので時間変化の項が 0 となり、デブリ上下面の温度境界条件から以下の 解を得る。

$$T = -\frac{Q_d}{2\lambda}x^2 + \left(\frac{Q_dL}{2\lambda} - \frac{T_{abl} - T_{sat}}{L}\right)x + T_{abl}$$
(B-2)

また、デブリ内部の最高温度T_{max}については、

$$x = \frac{\lambda}{Q_d} \left(\frac{Q_d L}{2\lambda} - \frac{T_{abl} - T_{sat}}{L} \right)$$
(B-3)

のとき

$$T_{max} = \frac{\lambda}{2Q_d} \left(\frac{Q_d L}{2\lambda} - \frac{T_{abl} - T_{sat}}{L} \right)^2 + T_{abl}$$
(B-4)

となるが、これがデブリの融点T_{melt}を超える場合は除熱量に対してデブリの崩壊熱(すなわちデブリ高さ)が大きすぎて冷却できないと見なす。よって、次式を考慮することで冷却可能なデブリ高さLが得られる。

$$T_{max} < T_{melt}$$

(B-5)

いま、デブリ高さが Lのとき、デブリから浸水層への熱流束は次式となる。

$$q_{c} = -\lambda \left(\frac{\partial T}{\partial x}\right)_{x=L} = \lambda \left(\frac{Q_{d}L}{2\lambda} + \frac{T_{abl} - T_{sat}}{L}\right)$$
(B-6)

浸水層では浸入した水が水蒸気となることで除熱が行われる。この除熱量は、デブリから 浸水層に流入した熱と浸水層で生じた崩壊熱の合計に等しい。また、この値の上限はドライ アウト熱流束となる。

$$q_{dry} > q_w = q_c + Q_w \delta \tag{B-7}$$

本評価では、与えられた物性値、崩壊熱、デブリ高さ及びドライアウト熱流束に対して、 ドライアウト熱流束で除熱できる最大の浸水層高さ**δ**を次式から評価する。

$$q_{dry} = q_c + Q_w \delta \tag{B-8}$$

最終的に、デブリ及び浸水層の高さの合計L+δをデブリ冷却が可能な最大堆積高さとして 得る。

: デブリ熱伝導率(固相) [W/m-K] λ δ : 浸水層高さ [m] : デブリ密度(固相) [kg/m³] ρ : デブリ比熱(固相) [J/kg-K] С : デブリ高さ [m] L : デブリ崩壊熱 [W/m³] Q_d Q_w : 浸水層崩壊熱 [W/m³] ₩1 : デブリから浸水層への熱流束 [W/m²] q_c *q_{btm}*: デブリからコンクリート床面への熱流束 [W/m²] : 浸水層におけるドライアウト熱流束 [W/m²] q_{dry} : 浸水層から水への熱流束 [W/m²] q_w Т : 温度 [K] *T_{abl}* : コンクリート溶融浸食温度 [K] *T_{max}* : デブリ最高温度 [K] T_{melt} : デブリ融点 [K] $\times 2$ T_{sat}: 水の飽和温度 [K]

- ※1 本評価においてはデブリ崩壊熱と等しいと仮定する。
- ※2 共晶組成でない場合は固相線温度を用いる。

付録C 実機解析データ

付録 C では、4 章実機解析における計算結果や算出データ等を記載する。

- 表 C-1 MELCOR 入力パラメータ一覧
- 表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧
- 表 C-3 JASMINE コード・溶融物物性値に関する入力パラメーター覧
- 表 C-4 JASMINE コード・相図に関する入力パラメーター覧
- 表 C-5 JASMINE 解析実行ケース一覧
- 表 C-6 JASMINE コード解析結果(プール水位 1.5m)
- 表 C-7 JASMINE コード解析結果(プール水位 1.75m)
- 表 C-8 デブリ崩壊熱一覧
- 表 C-9 デブリ冷却が可能な最大堆積高さ評価結果(プール水位 1.5m)
- 表 C-10 デブリ冷却が可能な最大堆積高さ評価結果(プール水位 1.75m)

ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]
1	0.1527	49200	1271
2	0.5035	24750	1341
3	0.3078	77920	1038
4	0.1916	18610	965.7
5	0.3816	3009	1023
6	0.6644	54960	1116
7	0.6908	82600	982.3
8	0.0329	55760	1188
9	0.2840	86250	1386
10	0.1794	60450	1326
11	0.2827	63200	1298
12	0.7356	59690	1160
13	0.5534	57140	938
14	0.0454	20650	1384
15	0.5854	69250	929.5
16	0.1871	67200	1306
17	0.7607	9445	1227
18	0.5976	39760	1218
19	0.0235	6364	913.3
20	0.5901	5597	1105
21	0.2550	62600	934.7
22	0.1772	70930	1223
23	0.0337	85110	1355
24	0.6835	65170	1045
25	0.0960	16810	1347
26	0.2700	82920	908.1
27	0.0798	62420	1224
28	0.6025	28810	962.2
29	0.7174	27950	967.8
30	0.7202	19380	1193
31	0.4302	74490	1220
32	0.4903	10450	1379
33	0.3087	64510	910.2

表 C-1 MELCOR 入力パラメーター覧(1/10)

ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]
34	0.1159	45810	1329
35	0.4408	36950	1051
36	0.7503	45410	1095
37	0.2026	27650	1025
38	0.6238	74680	1261
39	0.2151	61230	1204
40	0.4784	69650	1296
41	0.5155	78460	1247
42	0.0829	85840	1123
43	0.5122	8680	1125
44	0.0564	1348	984.9
45	0.4656	73150	915.8
46	0.1574	58790	1250
47	0.5570	36010	1086
48	0.2240	23670	1179
49	0.3318	25990	1045
50	0.6809	54220	1125
51	0.3451	80720	1152
52	0.4558	14010	1281
53	0.3024	66060	1315
54	0.6296	66500	1327
55	0.6508	57470	1004
56	0.0674	73540	1195
57	0.4955	77680	958.4
58	0.0498	66640	1176
59	0.2597	15820	1288
60	0.4167	56960	1276
61	0.4985	38190	1062
62	0.2489	85610	1072
63	0.4073	62840	1092
64	0.4204	60150	1215
65	0.6354	43100	1200
66	0.5290	63530	1006

表 C-1 MELCOR 入力パラメーター覧(2/10)

ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]
67	0.5055	35960	1338
68	0.2184	1729	913.9
69	0.5228	27550	932.5
70	0.5806	64020	1325
71	0.0394	29210	1082
72	0.7099	13040	1232
73	0.4444	55080	995.6
74	0.7681	70390	1372
75	0.1857	31100	1071
76	0.6444	7238	1292
77	0.3677	21410	935.4
78	0.3948	52750	1257
79	0.2994	48780	974.9
80	0.6134	9736	1374
81	0.0159	44060	1167
82	0.2345	76070	1343
83	0.6640	72810	1110
84	0.5941	11010	1036
85	0.6476	83960	1106
86	0.6109	20850	1017
87	0.1094	79150	1130
88	0.1078	44150	1061
89	0.5920	81370	1254
90	0.0611	23610	1008
91	0.0218	29760	1249
92	0.1969	55350	1019
93	0.0912	52030	918
94	0.5493	50500	1090
95	0.3801	52360	976.9
96	0.7452	66910	1311
97	0.4517	2461	1210
98	0.6527	82040	1277
99	0.3476	60920	919.9

表 C-1 MELCOR 入力パラメーター覧(3/10)

ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]
100	0.3140	82990	980.5
101	0.7405	37590	1398
102	0.1656	40130	1053
103	0.7535	115	992.6
104	0.5185	84640	1080
105	0.0876	21850	1353
106	0.1379	41480	1035
107	0.7126	3384	1349
108	0.3689	30410	955.9
109	0.5353	73360	1256
110	0.4819	83260	1141
111	0.1126	56550	1065
112	0.0469	34440	1184
113	0.3250	63700	1303
114	0.3971	20100	1236
115	0.5452	7026	1160
116	0.7570	80600	979.5
117	0.2968	18420	926
118	0.3584	51260	1134
119	0.7490	50710	1191
120	0.7028	57810	1025
121	0.7595	25320	920.5
122	0.5986	42840	997.6
123	0.1019	1680	968.5
124	0.2374	17800	1033
125	0.5402	70650	1148
126	0.4429	32260	1225
127	0.2713	15850	1331
128	0.1042	4711	1262
129	0.6985	77130	1011
130	0.2879	11530	1146
131	0.1702	70050	1267
132	0.6738	15260	1172

表 C-1 MELCOR 入力パラメーター覧(4/10)
ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]
133	0.5807	39270	1318
134	0.3226	82250	948
135	0.3549	13430	1294
136	0.5862	46500	1206
137	0.3357	59170	1215
138	0.5636	47170	1028
139	0.2125	84320	1113
140	0.5316	46710	1315
141	0.0355	32140	1192
142	0.2948	69000	989.4
143	0.1304	5217	951.5
144	0.1352	65040	1392
145	0.0634	47670	903.9
146	0.0849	26710	1232
147	0.3781	36430	1212
148	0.3869	72510	1056
149	0.6859	33300	963.6
150	0.4354	85360	1367
151	0.3502	59360	922.6
152	0.1620	22480	1150
153	0.5630	7554	1351
154	0.0127	43460	1363
155	0.0767	9153	1301
156	0.2298	39150	1170
157	0.4477	67750	1286
158	0.1441	52580	1290
159	0.5477	83620	999
160	0.4756	44370	1383
161	0.5511	75110	1078
162	0.2773	34730	973.2
163	0.2436	45010	1069
164	0.2116	14630	1237
165	0.2415	65510	1357

表 C-1 MELCOR 入力パラメーター覧(5/10)

ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]		
166	0.7264	29410	1308		
167	0.2618	8499	1165		
168	0.3620	18080	1183		
169	0.6554	43600	1298		
170	0.5662	31380	1009		
171	0.1391	75640	1229		
172	0.1326	80940	1113		
173	0.7057	56160	1280		
174	0.6993	56250	1170		
175	0.6584	35070	948.3		
176	0.6890	75870	1163		
177	0.2727	74010	940.1		
178	0.0699	35220	1317		
179	0.3307	48190	1156		
180	0.3407	61670	1100		
181	0.4671	45730	1199		
182	0.1260	27270	923.5		
183	0.5222	9808	975.3		
184	0.3266	53050	927.3		
185	0.2859	67990	1177		
186	0.1474	25530	1081		
187	0.5009	33790	1321		
188	0.6272	5042	1212		
189	0.4026	53600	1313		
190	0.0289	46310	960.9		
191	0.1998	60580	1266		
192	0.4242	41960	1154		
193	0.3126	2224	986.3		
194	0.1936	19790	1252		
195	0.4927	68480	971		
196	0.4608	24250	1395		
197	0.5586	40510	1002		
198	0.5405	10760	1138		

表 C-1 MELCOR 入力パラメーター覧(6/10)

ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]
199	0.5704	10230	1390
200	0.1827	74230	1049
201	0.6165	78680	1055
202	0.6072	16670	1088
203	0.4156	49780	1097
204	0.2053	71700	1013
205	0.6202	22460	1120
206	0.2506	13770	1203
207	0.0278	37930	1345
208	0.6148	64450	1397
209	0.4589	79350	1059
210	0.3593	19250	1219
211	0.5718	58520	1339
212	0.4831	22010	1361
213	0.4848	8126	990.7
214	0.1176	50300	1246
215	0.5274	394	1347
216	0.1009	14190	1110
217	0.6706	6162	1119
218	0.1551	81660	1118
219	0.2248	3908	1048
220	0.2318	17200	1307
221	0.2365	58220	1145
222	0.0427	26430	1190
223	0.4269	6846	1042
224	0.7320	38650	1259
225	0.6772	34040	1133
226	0.3938	12720	1369
227	0.1205	25010	1094
228	0.3717	68620	1240
229	0.0736	76360	1292
230	0.3048	35450	1387
231	0.7296	33530	1076

表 C-1 MELCOR 入力パラメーター覧(7/10)

ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]
232	0.4626	42540	1057
233	0.0546	7808	1151
234	0.1977	20380	1234
235	0.5129	36630	1142
236	0.4050	62120	1174
237	0.2575	67660	939.6
238	0.7152	25850	956.7
239	0.1511	80270	1102
240	0.4013	38460	1282
241	0.3175	44690	1021
242	0.1681	77310	952.6
243	0.0600	49940	1001
244	0.7446	18840	1108
245	0.4706	78330	1274
246	0.7093	41290	1285
247	0.0904	26900	1074
248	0.3661	12650	1014
249	0.4124	32880	1364
250	0.4884	30230	942.1
251	0.6040	16360	1042
252	0.5091	71980	1354
253	0.4106	39550	1269
254	0.4324	71140	930.6
255	0.6921	72080	1377
256	0.7342	11410	1139
257	0.3371	54520	987.5
258	0.3417	21210	1130
259	0.6965	58020	1245
260	0.7653	37250	1305
261	0.2090	15350	946.2
262	0.2458	84860	1181
263	0.1428	17540	953.8
264	0.7642	741	1323

表 C-1 MELCOR 入力パラメーター覧(8/10)

ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]		
265	0.7242	79640	1186		
266	0.1275	51520	1158		
267	0.3901	31500	1272		
268	0.1612	32810	1390		
269	0.4536	24070	1031		
270	0.1237	30620	1264		
271	0.4386	3716	1040		
272	0.3201	5966	906.3		
273	0.6334	4135	1029		
274	0.2787	28390	901.1		
275	0.6409	54120	1128		
276	0.0507	12260	1366		
277	0.1767	23290	1067		
278	0.3760	51670	1208		
279	0.6430	61520	943.8		
280	0.6763	897	1333		
281	0.0189	2709	1381		
282	0.4735	75170	1137		
283	0.3842	31780	1359		
284	0.0979	40910	1371		
285	0.2925	76710	1084		
286	0.4238	65870	1334		
287	0.3510	49370	1377		
288	0.5754	28570	1091		
289	0.2671	47900	1240		
290	0.6669	40800	1197		
291	0.6220	80010	1017		
292	0.7384	69760	909.7		
293	0.5349	14870	1335		
294	0.5780	48590	1065		
295	0.2212	53550	902.1		
296	0.6613	4346	1103		
297	0.6363	22760	994		

表 C-1 MELCOR 入力パラメーター覧(9/10)

ケース	LOCA 面積 [m2]	EDG 故障発生時間 [s]	下部ヘッド破損温度 [℃]
298	0.1729	42240	1165
299	0.0729	47230	1394
300	0.2632	11830	1242

表 C-1 MELCOR 入力パラメータ一覧(10/10)

ジェット流入 ジェット流入 ジェット流入 ジェット流入 ジェット流入 ジェット流入 溶融物 溶融物 ケース 溶融物 温度(℃) 温度(K) 直径(m)補正前 直径(m)補正後 速度(m/s)補正前 速度(m/s)補正後 落下量(kg) 落下量(t) 落下時間(s) 1 1965.32 2238.47 0.92087 0.09583 0.010831 201923 201.923 4492 $\mathbf{2}$ 1562.591835.74 0.60764 0.088650.02129 1 194178 194.178 5019.81608.91 3 1335.76 0.56629 0.06767 0.01428 1 175511 175.511 8044 1 4 1325.961599.11 0.46212 0.082550.03191112494 112.4943508.70.09796 $\mathbf{5}$ 1841.41 2114.56 0.30376 0.095071 125161 125.1612933.36 1790.68 2063.83 0.69544 0.11496 0.02732 1 200231 200.231 3097 7 1943.03 2216.18 0.75696 0.108540.02056 1 202346 202.346 3510 8 1787.84 2060.99 0.634970.091570.02080 1 194013 194.013 47599 1426.86 1700.01 1.02907 0.14927 0.02104 1 194937 194.937 180510 1647.34 1920.49 0.56794 0.09902 0.03039 1 188785 188.785 3959 1 11 1506.491779.64 0.523000.103680.03930 181607 181.607 3566.7121561.38 1834.53 0.41998 0.09977 0.05643 1 188587 188.587 3922 13 1520.25 0.44926 0.07033 0.024511 113164 113.164 4843.6 1247.10141824.852098 0.59802 0.08026 0.01801 1 172600 172.65688.7151351.52 1624.67 0.51670 0.08637 0.027941 175067 175.0674926 161460.92 1734.07 0.09354 0.02292 186478 186.478 4365 0.617811 1924.94 2198.09 0.572010.08034 0.01972 1 97842.6 97.8426 3235.7 1718 1824.85 2098 0.52917 1 193839 193.839 0.10871 0.042213457.4

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (1/16)

0.01005

1

156117

156.117

0.10682

2902.4

2386.89

1.06525

19

2113.74

$ = \pm C - 9 IASMINE コード・ジェットに関すストカパラメーター (9/16) $		
	ジェットに関する入力パラメータ一覧 (2/16)	表 C-2 JASMINE コード・ジェッ

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
20	1824.85	2098	0.55545	0.07974	0.02061	1	102376	102.376	3421.9
21	1354.18	1627.33	0.52347	0.09427	0.03243	1	178728	178.728	4202
22	1538.26	1811.41	0.30084	0.08177	0.07388	1	135157	135.157	4152
23	1919.90	2193.05	0.97701	0.16283	0.02777	1	188610	188.61	1455
24	1288.99	1562.14	0.37047	0.06346	0.02935	1	158426	158.426	8330.3
25	1824.86	2098.01	0.46328	0.11046	0.05684	1	122686	122.686	2131.4
26	1364.24	1637.39	0.52262	0.10298	0.03883	1	190535	190.535	3820
27	1485.81	1758.96	0.28222	0.06424	0.05181	1	125750	125.75	6296.1
28	1476.13	1749.28	0.45495	0.09122	0.04021	1	192620	192.62	4764.4
29	1824.85	2098	0.66731	0.07067	0.01122	1	102377	102.377	4318.9
30	1815.62	2088.77	0.66576	0.07578	0.01295	1	110300	110.3	4052.7
31	1728.12	2001.27	0.38234	0.09439	0.06094	1	191860	191.86	4450
32	1824.86	2098.01	0.54370	0.08198	0.02273	1	168218	168.218	5312.2
33	1768.95	2042.1	0.51068	0.07899	0.02392	1	107138	107.138	3664
34	1491.75	1764.9	0.78985	0.09841	0.01552	1	186733	186.733	3978.4
35	1372.35	1645.5	0.66310	0.05992	0.00817	1	114346	114.346	6721.7
36	1761.43	2034.58	0.57337	0.09912	0.02988	1	191854	191.854	4123
37	1597.79	1870.94	0.53705	0.07582	0.01993	1	198941	198.941	7098.7
38	1561.45	1834.6	0.73254	0.09960	0.01849	1	196265	196.265	4111

表 C -2 JASMINE:	コード・ジェットに関する	る入力パラメーター覧	(3/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
39	1604.32	1877.47	0.37079	0.10070	0.07375	1	194338	194.338	3974
40	1750.84	2023.99	0.62711	0.11356	0.03279	1	184363	184.363	2944
41	1629.88	1903.03	0.70994	0.08937	0.01585	1	201190	201.19	5256
42	1619.99	1893.14	0.45788	0.08897	0.03776	1	194439	194.439	5058
43	1824.85	2098	0.61364	0.06114	0.00993	1	96681.6	96.6816	5515.8
44	1834.16	2107.31	0.35213	0.09462	0.07221	1	122343	122.343	2925.21
45	1698.11	1971.26	0.53349	0.08571	0.02581	1	170769	170.769	4963
46	1800.80	2073.95	0.63618	0.09434	0.02199	1	191136	191.136	4422
47	1824.85	2098	0.56197	0.09662	0.02956	1	178533	178.533	4033
48	1824.85	2098	0.56616	0.09854	0.03029	1	192687	192.687	4201.2
49	1426.86	1700.01	0.64764	0.08950	0.01910	1	183302	183.302	4698.8
50	1786.06	2059.21	0.69259	0.11466	0.02741	1	199739	199.739	3106
51	1824.85	2098	0.73858	0.11306	0.02343	1	200271	200.271	3204
52	1844.48	2117.63	0.41977	0.10535	0.06299	1	121570	121.57	2328.2
53	1620.42	1893.57	0.29513	0.07359	0.06217	1	123373	123.373	4859
54	1725.71	1998.86	0.63356	0.10982	0.03004	1	193068	193.068	3295
55	1517.18	1790.33	0.39466	0.08619	0.04769	1	190022	190.022	5259
56	1909.06	2182.21	0.60462	0.10472	0.03000	1	200206	200.206	3772
57	1303.97	1577.12	0.57012	0.07927	0.01933	1	110530	110.53	3739

表 C-2 JASMINE コード・ジェットに	する入力パラメーター覧 (4/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
58	1824.86	2098.01	0.55750	0.10371	0.03461	1	196621	196.621	3756
59	1824.85	2098	0.59388	0.10071	0.02875	1	190739	190.739	3965
60	1610.95	1884.1	0.31578	0.09315	0.08701	1	191543	191.543	4578
61	1824.85	2098	0.40379	0.07406	0.03364	1	114743	114.743	4413.7
62	1345.32	1618.47	0.54480	0.09311	0.02921	1	191314	191.314	4556
63	1824.85	2098	0.36483	0.09971	0.07470	1	183972	183.972	3963
64	1652.74	1925.89	0.74043	0.09413	0.01616	1	192205	192.205	4583.5
65	1760.57	2033.72	0.69386	0.07866	0.01285	1	193450	193.45	6431
66	1748.33	2021.48	0.22204	0.09623	0.18782	1	193530	193.53	4459
67	1426.86	1700.01	0.79841	0.10058	0.01587	1	186451	186.451	3779.3
68	2022.86	2296.01	0.48704	0.09664	0.03937	1	107553	107.553	2466.9
69	1486.23	1759.38	0.51685	0.08965	0.03009	1	196264	196.264	4990
70	1526.45	1799.6	0.26690	0.07397	0.07681	1	125047	125.047	4740
71	1824.86	2098.01	0.46941	0.09140	0.03792	1	194438	194.438	4963.6
72	1824.85	2098	0.50781	0.07263	0.02046	1	119452	119.452	4831.4
73	1449.60	1722.75	0.47352	0.09200	0.03774	1	178658	178.658	4364
74	1673.02	1946.17	0.41174	0.07729	0.03523	1	187023	187.023	6462
75	1431.47	1704.62	0.62853	0.07993	0.01617	1	192998	192.998	6276.4
76	1929.51	2202.66	0.39452	0.09000	0.05204	1	122894	122.894	3258.2

表 C -2 JASMINE コード・ジェットに関する入力パラメータ一覧 (5/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
77	1824.86	2098.01	0.58521	0.08660	0.02190	1	102581	102.581	2891.7
78	1827.23	2100.38	0.72344	0.10394	0.02064	1	201404	201.404	3813
79	1824.86	2098.01	0.69408	0.10521	0.02298	1	199870	199.87	3688
80	1452.26	1725.41	0.59362	0.09927	0.02797	1	185629	185.629	3845.6
81	1778.82	2051.97	0.50201	0.08809	0.03079	1	194946	194.946	5187
82	1824.86	2098.01	0.75646	0.08737	0.01334	1	200083	200.083	5350
83	1869.43	2142.58	0.52661	0.10284	0.03813	1	189704	189.704	3767
84	1890.76	2163.91	0.54674	0.08991	0.02704	1	98237.4	98.2374	2592.9
85	1969.80	2242.95	0.85917	0.10810	0.01583	1	204363	204.363	3571
86	1612.00	1885.15	0.66728	0.08783	0.01733	1	196783	196.783	5216.7
87	1735.16	2008.31	0.58612	0.09775	0.02782	1	188471	188.471	4147
88	1824.85	2098	0.38373	0.08153	0.04515	1	190369	190.369	6112.9
89	1960.81	2233.96	0.93915	0.11603	0.01526	1	203039	203.039	3072
90	1798.09	2071.24	0.73444	0.06826	0.00864	1	177619	177.619	8001.5
91	1824.85	2098	0.61957	0.11169	0.03250	1	193433	193.433	3307.3
92	1484.66	1757.81	0.55561	0.08331	0.02248	1	199076	199.076	5845
93	1246.97	1520.12	0.50429	0.05102	0.01024	1	106253	106.253	8700.4
94	1824.86	2098.01	0.72904	0.10322	0.02005	1	201754	201.754	3864
95	1483.08	1756.23	0.57637	0.09042	0.02461	1	196516	196.516	4902

ジェット流入 ジェット流入 ジェット流入 ジェット流入 ジェット流入 ジェット流入 ケース 溶融物 溶融物 溶融物 速度(m/s)補正後 温度(℃) 温度(K) 直径(m)補正前 直径(m)補正後 速度(m/s)補正前 落下量(kg) 落下量(t) 落下時間(s) 96 1561.211834.36 0.55949 0.12202 0.047571 177989 177.989 244497 2098 0.09485 0.09086 126964 126.9642974.81824.850.31467 1 98 2084.00 2357.15 1.10374 0.09303 0.00710 1 205766 205.766 4849 99 1 1750.792023.94 0.40388 0.064240.02530126020 126.026470.11896.66 1001623.510.48438 0.092370.03637 1 192040 192.044719 1011575.281848.43 0.78396 0.06384 0.00663 1 173494 173.494 8679.8 1021370.05 1643.20.86393 0.06726 0.00606 1 178278 178.278 8354 1031896.12 2169.27 0.651320.10904 0.02803 1 188789 188.789 3462.08 104 1632.69 1905.84 0.02640 1 199955 199.955 3814 0.64518 0.104821824.85 2098 0.522080.07018 0.01807 1 192800 192.88281.2 1051 106 1351.881625.03 1.105840.082600.00558 174396 174.3965411.5107 2073.74 2346.89 0.45293 0.08144 0.03233 1 3821.5 118401 118.401 108 1426.86 1700.01 0.547200.08499 0.02413 1 198912 198.912 5594.51091858.902132.05 0.79622 0.08703 0.01195 1 200035200.0355386 110 1464.75 1737.9 0.80572 0.11424 0.02010 1 203397 203.397 3235111 1804.22 0.80662 0.08805 195679 51311531.070.01191 1 195.6791823.58 0.237040.08340 0.123791 189453 189.4531121550.435612.11131523.39 1796.54 0.256540.09294 1 0.13123184614 184.6144404.6 1625.20 1898.35 114 0.53366 0.103620.03770 1 194571 194.5713700.9

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (6/16)

ジェット流入 ジェット流入 ジェット流入 ジェット流入 ジェット流入 ジェット流入 ケース 溶融物 溶融物 溶融物 速度(m/s)補正後 温度(℃) 温度(K) 直径(m)補正前 直径(m)補正後 速度(m/s)補正前 落下量(kg) 落下量(t) 落下時間(s) 1151484.571757.720.582770.080990.01931 1 188650 188.655940.6 116 1634.10 1907.25 0.36509 0.09561 0.06858 191275 191.275 4379 1 2098.01 1171824.86 0.62700 0.07598 0.01469 1 112132 112.132 4118.9 1 118 1761.062034.210.637580.11408 0.03202195163 195.1633076 2079.03 119 1805.88 0.67343 0.076170.012791 186369 186.3696804.7 1201726.58 1999.73 0.60458 0.10333 0.02921 1 196508 196.508 3779 1211824.85 2098 0.63296 0.06791 0.01151 1 106221 106.221 4855.6 1221644.04 1917.19 0.518550.09053 0.03048 1 190976 190.976 4801 1232088.07 2361.22 0.559200.08046 0.02070 1 114078 114.078 3775.4 2101.67 1241828.52 0.58518 0.08482 0.02101 1 176257 176.25751821 1251473.91 1747.06 0.240990.096950.16185187698 187.698 4135 1261696.03 1969.18 0.627140.08331 0.01765 1 192647 192.647 57321271817.43 2090.58 0.593740.09268 0.02437 1 196489 196.489 4810.2 1281912.102185.25 0.45458 0.122650.07280 1 183766 183.76625981291987.68 2260.83 0.78300 0.11306 0.02085 1 204114 204.114 3260 1301833.07 2106.22 0.08622 0.03295 131928 131.928 3739.1 0.475011 1533.341806.49 0.30123 0.08799 0.08533 1 130406 130.406 3465 1311321824.86 2098.01 0.67653 1 108260 108.263948 0.076420.012761758.73 0.967830.01008 177052 1331485.580.097181 177.0523854.7

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (7/16)

ジェット流入 ジェット流入 ジェット流入 ジェット流入 ジェット流入 ジェット流入 ケース 溶融物 溶融物 溶融物 速度(m/s)補正後 温度(℃) 温度(K) 直径(m)補正前 直径(m)補正後 速度(m/s)補正前 落下量(kg) 落下量(t) 落下時間(s) 1341583.81 1856.96 0.62694 0.107550.02943 1 199196 199.196 364213520980.591210.08024 0.01842 6332.3 1824.851 192425 192.4251361697.79 1970.94 0.77380 0.10990 0.02017 1 190132 190.132 3324.4 1371 1668.821941.97 0.544090.094550.03020 193144 193.14444252003.21 1381730.06 0.457950.088530.03737 1 200030 200.035217 3769 1391451.86 1725.01 0.67115 0.10654 0.025201 202501 202.501 1401775.31 2048.46 0.69358 0.12463 0.03229 1 193410 193.41 25611411817.14 2090.29 0.565670.112150.03931 1 190286 190.286 3274.51421426.85 17000.35898 0.08102 0.05094 1 182278 182.278 5791 2212.32 1431939.17 0.55529 0.08464 0.02323 1 130632 130.632 3880.2 1 1441565.561838.71 0.51144 0.086500.02860168545168.5454648 2098.01 1824.86 0.62350 0.078510.01586 1 106504 106.504 3644.6 1451461771.72 2044.87 0.57396 0.088350.02370 1 133448 133.448 3609.6 1471437.551710.7 0.66409 0.089940.01834 1 194284 194.2844945 1481824.19 2097.34 0.40698 0.09489 0.05436 1 192172 192.172 4484 1491209.65 1482.8 169346 6137.4 0.71165 0.076780.01164 1 169.3461596.86 1870.01 0.118520.024571 194357 194.3572863 1500.756111511330.65 1603.8 0.08422 1 178206 178.206 53280.526500.025591631.16 199623 5897.5 1521904.31 0.59046 0.08303 0.01977 1 199.623

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (8/16)

表 C-2 JASMINE コード	ジェットに関する入力パラメータ一覧 (9/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
153	1898.79	2171.94	0.32088	0.07187	0.05017	1	122016	122.016	5054.1
154	1999.97	2273.12	0.85808	0.07564	0.00777	1	199404	199.404	7118
155	1926.49	2199.64	0.68210	0.14559	0.04556	1	179550	179.55	1793.6
156	1422.12	1695.27	0.58543	0.08110	0.01919	1	193809	193.809	6224.3
157	1540.78	1813.93	0.32713	0.09363	0.08191	1	181508	181.508	4293
158	1532.52	1805.67	0.65864	0.10163	0.02381	1	201482	201.482	4091
159	1650.38	1923.53	0.55635	0.10820	0.03782	1	199768	199.768	3575
160	1913.09	2186.24	0.82456	0.10239	0.01542	1	195838	195.838	3816
161	1428.52	1701.67	0.57549	0.09541	0.02749	1	188470	188.47	4304
162	1196.41	1469.56	0.64686	0.06447	0.00993	1	103994	103.994	5302.9
163	1824.85	2098	0.45313	0.08302	0.03357	1	122903	122.903	3759.4
164	1824.86	2098.01	0.55955	0.11080	0.03921	1	183500	183.5	3170.1
165	1447.27	1720.42	0.22723	0.06031	0.07044	1	124608	124.608	7302.4
166	1799.83	2072.98	0.45021	0.08996	0.03993	1	130347	130.347	3401.9
167	1824.86	2098.01	0.36775	0.09612	0.06832	1	127201	127.201	2937.2
168	1824.85	2098	0.68599	0.07056	0.01058	1	102753	102.753	4332.8
169	1858.69	2131.84	0.87761	0.10288	0.01374	1	203537	203.537	3909
170	1640.31	1913.46	0.53621	0.08969	0.02798	1	197056	197.056	4984.2
171	1628.93	1902.08	0.44313	0.10003	0.05096	1	190907	190.907	3944

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (10/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
172	1872.35	2145.5	0.55850	0.11191	0.04015	1	195265	195.265	3247
173	1740.79	2013.94	0.65173	0.10338	0.02516	1	188142	188.142	3625
174	1760.28	2033.43	0.73860	0.08213	0.01237	1	119974	119.974	3762
175	1824.85	2098	0.62573	0.07295	0.01359	1	104639	104.639	4187.3
176	1600.36	1873.51	0.51970	0.09629	0.03433	1	195412	195.412	4314
177	1375.84	1648.99	0.55370	0.09081	0.02690	1	177312	177.312	4520
178	1488.88	1762.03	0.85558	0.10013	0.01370	1	177006	177.006	3631.3
179	1533.41	1806.56	0.28275	0.08371	0.08766	1	134852	134.852	4101.5
180	1426.86	1700.01	0.38417	0.07881	0.04209	1	176019	176.019	5917.2
181	1403.39	1676.54	1.93374	0.08119	0.00176	1	183275	183.275	5867.8
182	1611.76	1884.91	0.47743	0.08169	0.02928	1	117178	117.178	3734.1
183	1834.31	2107.46	0.66888	0.06937	0.01075	1	103585	103.585	4517.8
184	1253.69	1526.84	0.62917	0.07804	0.01539	1	177128	177.128	6075
185	1487.36	1760.51	0.18172	0.08652	0.22670	1	135865	135.865	3742
186	1806.76	2079.91	0.46344	0.07554	0.02657	1	131798	131.798	4836.7
187	1505.34	1778.49	0.66987	0.10359	0.02391	1	190320	190.32	3652.4
188	1851.32	2124.47	0.46749	0.10797	0.05334	1	189298	189.298	3456.2
189	1655.34	1928.49	0.64169	0.09369	0.02132	1	184837	184.837	4307
190	1330.77	1603.92	0.73429	0.10922	0.02212	1	186114	186.114	3279

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (11/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
191	1627.15	1900.3	0.33948	0.10044	0.08753	1	192551	192.551	3938
192	1391.27	1664.42	1.78255	0.05846	0.00108	1	114350	114.35	7088.5
193	2037.89	2311.04	1.93613	0.07148	0.00136	1	107923	107.923	4528.4
194	1824.85	2098	0.41793	0.10270	0.06039	1	121786	121.786	2449
195	1740.68	2013.83	0.42433	0.06537	0.02373	1	114719	114.719	5659
196	1556.47	1829.62	0.54976	0.10775	0.03841	1	179355	179.355	3158.1
197	1323.59	1596.74	0.46282	0.05520	0.01422	1	114394	114.394	7923.7
198	1841.93	2115.08	0.65369	0.07427	0.01291	1	111453	111.453	4263.2
199	1804.55	2077.7	0.66645	0.08471	0.01616	1	166108	166.108	4792.5
200	1449.30	1722.45	0.66833	0.08281	0.01535	1	178932	178.932	5453.8
201	1417.79	1690.94	0.61107	0.08338	0.01862	1	185622	185.622	5594
202	1824.85	2098	0.66421	0.09297	0.01959	1	104739	104.739	2540.5
203	1600.92	1874.07	0.57671	0.07696	0.01781	1	198370	198.37	6867
204	1824.85	2098	0.67087	0.10634	0.02513	1	197072	197.072	3573
205	1595.44	1868.59	0.47805	0.08297	0.03012	1	195512	195.512	5806.5
206	1902.84	2175.99	0.62582	0.07317	0.01367	1	107435	107.435	4242.2
207	1824.85	2098	0.41720	0.06821	0.02673	1	125795	125.795	5816.1
208	1639.39	1912.54	0.39256	0.07703	0.03851	1	170523	170.523	5926
209	1406.36	1679.51	0.59717	0.07968	0.01781	1	184414	184.414	6120

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (12/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
210	1480.30	1753.45	0.55179	0.08235	0.02227	1	196433	196.433	6056.2
211	1691.76	1964.91	0.65565	0.11420	0.03034	1	178485	178.485	2827
212	1639.75	1912.9	0.72555	0.06547	0.00814	1	173312	173.312	8331.1
213	1946.81	2219.96	2.06233	0.07001	0.00115	1	98183.9	98.1839	4287.4
214	1869.98	2143.13	0.89798	0.08820	0.00965	1	199498	199.498	5243
215	1824.86	2098.01	0.54893	0.13296	0.05867	1	121900	121.9	1460.3
216	1824.85	2098	0.55763	0.06944	0.01551	1	129249	129.249	5653.1
217	2011.63	2284.78	0.66464	0.07013	0.01113	1	103742	103.742	4501.1
218	1871.13	2144.28	0.55902	0.11062	0.03916	1	196668	196.668	3346
219	2033.92	2307.07	0.43430	0.10694	0.06064	1	178850	178.85	3336.5
220	1644.61	1917.76	0.66402	0.13132	0.03911	1	176164	176.164	2158.9
221	1658.92	1932.07	0.55815	0.10278	0.03391	1	190279	190.279	3716
222	1781.38	2054.53	0.65813	0.09706	0.02175	1	186912	186.912	4168.7
223	1707.72	1980.87	0.59784	0.09678	0.02621	1	184492	184.492	4048.7
224	1752.91	2026.06	0.66888	0.10237	0.02342	1	189721	189.721	3719.1
225	1824.85	2098	0.70804	0.07270	0.01054	1	172670	172.67	6951.7
226	1760.27	2033.42	0.68987	0.08772	0.01617	1	192274	192.274	5154.7
227	1781.92	2055.07	0.48892	0.09137	0.03492	1	184290	184.29	4650.1
228	1572.22	1845.37	0.50213	0.08535	0.02889	1	190752	190.752	5381

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (13/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
229	1612.88	1886.03	0.44782	0.09540	0.04538	1	191617	191.617	4293
230	1600.63	1873.78	0.47660	0.09262	0.03777	1	169311	169.311	4064.8
231	1824.85	2098	0.40085	0.06804	0.02881	1	161507	161.507	7397.2
232	1824.85	2098	0.39451	0.07514	0.03627	1	115120	115.12	4301.4
233	1798.30	2071.45	0.53440	0.06310	0.01394	1	135863	135.863	7257.6
234	1824.85	2098	0.60820	0.11804	0.03767	1	184171	184.171	2787
235	1824.85	2098	0.55715	0.10070	0.03267	1	178428	178.428	3710.7
236	1549.68	1822.83	0.28223	0.08774	0.09665	1	133547	133.547	3588
237	1451.63	1724.78	0.35278	0.08487	0.05787	1	185258	185.258	5459
238	1824.85	2098	0.60926	0.07270	0.01424	1	113303	113.303	4529.1
239	1822.01	2095.16	0.70135	0.11293	0.02592	1	200528	200.528	3219
240	1462.11	1735.26	0.81315	0.08524	0.01099	1	195615	195.615	5536.1
241	1824.85	2098	0.56693	0.06408	0.01278	1	108497	108.497	5585.6
242	1743.95	2017.1	0.38828	0.09028	0.05406	1	120520	120.52	3104
243	1723.11	1996.26	0.49409	0.09619	0.03790	1	190264	190.264	4224.9
244	1693.50	1966.65	0.51209	0.09183	0.03216	1	194490	194.49	4882
245	1703.77	1976.92	0.39012	0.08518	0.04768	1	190475	190.475	5433
246	1868.34	2141.49	0.85111	0.11169	0.01722	1	203005	203.005	3315
247	1817.47	2090.62	0.71205	0.11055	0.02411	1	126081	126.081	2185.1

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (14/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
248	1850.06	2123.21	0.65097	0.06887	0.01119	1	114377	114.377	5105.5
249	1719.23	1992.38	0.60365	0.16873	0.07813	1	171457	171.457	1248.1
250	1562.37	1835.52	0.55824	0.08739	0.02451	1	181414	181.414	4995.2
251	1824.86	2098.01	0.64351	0.07196	0.01250	1	106928	106.928	4361.5
252	1594.18	1867.33	0.41875	0.09859	0.05543	1	190742	190.742	4001
253	1444.22	1717.37	0.70020	0.08454	0.01458	1	200167	200.167	5769.1
254	1436.35	1709.5	0.49024	0.08197	0.02796	1	102515	102.515	3246
255	1531.85	1805	0.54382	0.11161	0.04212	1	170632	170.632	2834
256	1479.93	1753.08	0.64358	0.08711	0.01832	1	193359	193.359	5256
257	1553.23	1826.38	0.63295	0.07594	0.01439	1	167713	167.713	6138.8
258	1373.47	1646.62	0.55649	0.06099	0.01201	1	122527	122.527	6906.5
259	1720.08	1993.23	0.53624	0.10624	0.03926	1	193900	193.9	3540
260	1728.88	2002.03	0.69382	0.10475	0.02279	1	187540	187.54	3518.6
261	1838.79	2111.94	0.62851	0.07087	0.01271	1	102759	102.759	4343
262	1702.25	1975.4	0.54152	0.09549	0.03109	1	133062	133.062	3004
263	1764.44	2037.59	0.49297	0.07689	0.02433	1	115725	115.725	4165.5
264	1883.12	2156.27	0.33765	0.08016	0.05637	1	176065	176.065	5926.1
265	2008.67	2281.82	0.94622	0.10363	0.01199	1	203420	203.42	3877
266	1670.81	1943.96	0.56755	0.10457	0.03395	1	192585	192.585	3632

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (15/16)

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
267	1530.49	1803.64	0.12084	0.08513	0.49624	1	189075	189.075	5373.4
268	1823.69	2096.84	0.49197	0.04553	0.00856	1	113631	113.631	11458.1
269	1269.44	1542.59	2.13032	0.06545	0.00094	1	105969	105.969	5224.4
270	1751.25	2024.4	0.71509	0.06922	0.00937	1	199278	199.278	8501
271	1919.94	2193.09	0.32662	0.10204	0.09761	1	125351	125.351	2562.3
272	1824.85	2098	0.35010	0.09375	0.07171	1	125212	125.212	3022
273	1824.85	2098	0.28696	0.09178	0.10230	1	126269	126.269	3178
274	1471.35	1744.5	0.59070	0.07424	0.01580	1	107402	107.402	4110.8
275	1762.60	2035.75	0.67824	0.11438	0.02844	1	196286	196.286	3078
276	1824.86	2098.01	0.64076	0.08814	0.01892	1	180528	180.528	4946.2
277	1824.86	2098.01	0.65167	0.07226	0.01230	1	102999	102.999	4158.7
278	1602.64	1875.79	0.58143	0.08614	0.02195	1	190550	190.55	5407.2
279	1337.50	1610.65	0.51547	0.09763	0.03587	1	188379	188.379	4193
281	1927.88	2201.03	0.65694	0.06994	0.01133	1	190400	190.4	8048
282	1593.49	1866.64	0.52488	0.09611	0.03353	1	189068	189.068	4198
283	1426.85	1700	0.56507	0.08149	0.02080	1	189288	189.288	5859.3
284	1779.12	2052.27	0.64039	0.12315	0.03698	1	179971	179.971	2440.1
285	1726.77	1999.92	0.59460	0.10823	0.03313	1	195987	195.987	3568
286	1450.08	1723.23	0.21371	0.06200	0.08417	1	131219	131.219	6978

ケース	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	ジェット流入	溶融物	溶融物	溶融物
	温度(℃)	温度(K)	直径(m)補正前	直径(m)補正後	速度(m/s)補正前	速度(m/s)補正後	落下量(kg)	落下量(t)	落下時間(s)
287	1824.85	2098	0.77054	0.08979	0.01358	1	193294	193.294	4934
288	1619.12	1892.27	0.55932	0.10991	0.03861	1	195077	195.077	3287.5
289	1950.37	2223.52	0.87469	0.08998	0.01058	1	202172	202.172	5299
290	1733.54	2006.69	0.52713	0.07431	0.01987	1	186415	186.415	6903.5
291	1892.37	2165.52	0.78240	0.11110	0.02016	1	202380	202.38	3488
292	1212.97	1486.12	0.46812	0.07461	0.02540	1	114338	114.338	4181
293	1583.94	1857.09	0.60964	0.09181	0.02268	1	173480	173.48	4204.2
294	1774.34	2047.49	0.72432	0.09177	0.01605	1	200263	200.263	4962
295	1824.86	2098.01	0.59866	0.07172	0.01435	1	101892	101.892	4239.8
296	1956.96	2230.11	0.36207	0.08824	0.05940	1	128294	128.294	3483.8
297	1824.85	2098	0.63493	0.07283	0.01316	1	111572	111.572	4446.1
298	1824.85	2098	0.57196	0.09989	0.03050	1	178381	178.381	3661.8
299	1753.12	2026.27	0.67624	0.13016	0.03705	1	171632	171.632	2150
300	1831.53	2104.68	0.59046	0.10686	0.03275	1	192454	192.454	3059.1

表 C-2 JASMINE コード・ジェットに関する入力パラメータ一覧 (16/16)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
1	2036.76	1508.94	2783.96	6255.9	6232.2	1037.57	1039.78	336098.9	13.8425	11.8644
2	2063.61	1497.82	2729.41	6420.9	6266.5	933.59	953.02	323378.5	15.9724	14.9219
3	2085.08	1502.12	2891.98	6089.1	6067.5	1094.10	1532.85	343198.8	11.1267	10.1088
4	2363.86	1535.22	2985.56	6010.5	5991.0	1146.49	1619.42	328196.9	10.2319	9.3525
5	2868.22	1233.47	2932.22	6138.4	6010.5	1113.60	1594.99	318541.5	9.6372	10.1416
6	2044.8	1497.82	2738.6	6251.0	6229.3	1044.57	1046.62	343837.9	13.1556	11.3392
7	2022	1497.82	2738.6	6252.5	6231.0	1040.05	1042.38	344080.4	13.3121	11.4187
8	2081.76	1497.82	2755.06	6352.6	6191.0	972.85	995.05	335262.3	13.6995	13.2143
9	2079.27	1502.12	2795.97	6200.9	6171.8	1047.33	1046.14	334816.6	13.0613	11.7718
10	2073.86	1508.94	2783.96	6217.2	6192.8	1053.78	1054.53	337396.3	13.0138	11.4179
11	2098.53	1497.82	2913.43	6047.3	6030.4	1125.45	1584.62	332504.4	11.0367	9.6653
12	2083.55	1497.82	2821.15	6295.1	6150.6	1033.11	1053.48	327674.9	12.2018	11.8379
13	2101.87	1497.82	2964.17	6032.5	6014.1	1130.63	1593.95	335420.7	10.4781	9.4504
14	2335.96	1233.47	3190.36	6174.0	5996.4	1048.22	1498.48	339706.0	9.4539	11.1222
15	2086.56	1502.12	2922.76	6082.3	6066.2	1113.04	1564.99	345172.9	10.6936	9.4514
16	2062.76	1497.82	2717.36	6375.4	6216.9	939.99	958.50	328416.4	15.0801	14.5080
17	2351.89	1233.47	3111.19	6120.3	5965.6	1107.73	1597.30	333660.1	8.2482	9.6467
18	2148.21	1497.82	2827.21	6168.4	6039.9	1043.33	1056.24	317913.2	12.1311	12.2309
19	2346.55	1233.47	3019.05	6173.1	6002.5	1110.72	1606.60	340019.4	7.5559	9.1741
20	2332.36	1233.47	2991.66	6142.1	5990.5	1070.98	1529.81	329247.0	9.8783	10.9490

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメータ一覧 (1/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
21	2081.37	1497.82	2834.17	6109.5	6094.4	1104.16	1107.58	332200.6	12.0869	10.1811
22	2032.78	1497.82	2774.58	6344.6	6198.3	1013.69	1036.21	331328.4	12.8701	12.1187
23	2039.87	1502.12	2795.97	6249.9	6225.4	1042.03	1043.86	333751.2	13.7866	11.8785
24	2343.23	1393.54	3100.53	6176.2	6012.1	1045.66	1486.46	330426.8	10.3894	11.6566
25	2050.64	1233.47	2999.04	6172.8	6007.1	1059.73	1519.68	339995.8	9.3446	10.6493
26	2093.14	1497.82	3042.04	6002.4	5987.9	1150.85	1631.51	339536.9	9.6551	8.6621
27	2295.26	1692.46	2856.26	6193.3	6162.9	1049.23	1048.43	323976.5	13.6605	12.1797
28	2042.84	1497.82	2785.54	6209.1	6185.6	1001.05	1004.59	340776.6	15.1748	12.7872
29	2034.93	1233.47	2849.53	6185.7	6042.8	989.31	1373.94	315789.8	13.3180	13.9876
30	2083.13	1393.54	2980.03	6190.3	6034.9	1026.81	1449.51	325158.8	11.5883	12.4438
31	2066.63	1497.82	2762.13	6188.6	6162.0	1054.17	1053.66	336997.0	12.7867	11.4273
32	2331.46	1233.47	2987.86	6145.8	5999.5	1065.57	1516.38	324045.9	10.4485	11.3742
33	2103.66	1497.82	2978.16	5978.6	5967.1	1184.31	1688.07	335599.2	8.7915	7.8684
34	2086.05	1497.82	2821.15	6318.1	6170.7	1011.65	1030.20	324044.9	12.9798	12.6580
35	2097.13	1497.82	2913.43	6050.6	6032.2	1118.61	1573.49	327430.2	11.5122	10.0355
36	2141.99	1508.94	3119.39	6195.7	6030.6	1009.94	1424.94	335389.8	11.8206	12.4744
37	2112.36	1508.94	2783.96	6367.5	6206.6	958.24	977.49	326609.9	14.5808	14.1337
38	2340.8	1816.93	2819.1	6160.9	6127.9	1053.84	1049.99	335812.5	12.3819	11.6496
39	2046.49	1497.82	2808.39	6163.2	6140.5	1072.07	1073.04	333530.2	12.6610	11.0719
40	2068.06	1508.94	2783.96	6207.4	6183.3	1058.76	1059.24	338802.1	12.7282	11.2279

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメーター覧 (2/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
41	2127.9	1502.12	2812.3	6131.9	6102.2	1073.46	1069.98	337750.8	11.6473	10.9722
42	2101.96	1508.94	2783.96	6212.8	6183.4	1041.34	1040.03	338224.8	13.0552	11.7978
43	2351.6	1393.54	3092.9	6123.1	5970.4	1080.94	1547.06	330234.7	9.5007	10.6645
44	2348.78	1233.47	2895.68	6077.8	5947.8	1146.45	1656.87	324176.0	8.0554	8.9715
45	2102.7	1497.82	2956.5	5977.3	5963.7	1179.20	1679.47	334307.3	8.9072	8.0843
46	2068.06	1508.94	2783.96	6207.7	6183.5	1058.64	1059.15	338214.5	12.7695	11.2574
47	2096.51	1497.82	2827.21	6167.5	6038.2	1041.56	1054.13	317691.4	12.1485	12.3007
48	2333.18	1393.54	2983.98	6171.8	6014.4	1053.26	1498.62	329712.2	10.4256	11.4412
49	2219.26	1692.46	2856.26	6232.6	6200.1	1024.72	1024.60	320643.3	14.7625	12.9811
50	2039.93	1516.04	2772.43	6249.6	6227.7	1045.45	1047.42	343222.8	13.1526	11.3486
51	2267	1535.22	2819.1	6250.4	6226.0	1041.99	1043.83	333913.0	13.7801	11.8730
52	2337.26	1233.47	2991.66	6139.6	5989.8	1078.61	1541.41	327325.2	9.7551	10.8290
53	2103.9	1497.82	2987.8	5980.9	5969.5	1184.73	1689.01	337032.8	8.6735	7.7940
54	2072.93	1516.04	2772.43	6208.9	6186.1	1057.57	1058.22	343895.9	12.4918	11.0112
55	2068.87	1502.12	2795.97	6219.7	6193.5	1048.47	1049.00	333575.4	13.3626	11.7368
56	2037.82	1497.82	2903.72	6186.6	6162.6	1000.65	1373.36	350495.7	14.3860	12.3643
57	2107.2	1497.82	2987.8	6004.2	5989.6	1155.30	1635.80	333232.5	9.9589	8.8420
58	2060.05	1497.82	2717.35	6225.7	6196.8	1026.08	1024.46	351082.5	12.7500	11.6180
59	2322.26	1233.47	2987.86	6206.7	6039.5	1047.74	1493.70	335130.6	10.1067	11.2563
60	2070.39	1497.82	2808.39	6161.9	6139.8	1074.93	1075.77	336051.0	12.4120	10.8935

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメーター覧 (3/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
61	2158.25	1497.82	2860.75	6161.8	6034.8	1045.18	1470.32	317169.6	12.1192	12.2218
62	2025	1425.42	2935.4	6328.4	6166.9	955.64	1337.86	348457.2	14.1529	13.0859
63	2366.93	1393.54	3100.53	6086.7	5945.1	1124.18	1621.38	328220.5	8.2938	9.4684
64	2103.23	1497.82	2913.43	6043.0	6026.0	1127.51	1587.74	330792.7	11.0679	9.6875
65	2074.87	1502.12	2795.97	6214.4	6189.4	1054.77	1055.43	334856.7	13.1149	11.5115
66	2372.47	1588.06	2957.67	5978.9	5968.0	1186.82	1691.97	334759.1	8.8113	7.8277
67	2033.25	1497.82	2821.15	6352.5	6209.7	990.93	1008.86	320338.1	14.1052	13.4036
68	2339.34	1233.47	2909.04	6071.4	5944.3	1116.68	1601.08	317671.7	9.3281	10.2356
69	2113.27	1502.12	2795.97	6382.0	6230.8	948.93	967.22	321522.3	15.4825	14.6283
70	2074.08	1497.82	2787.38	6286.2	6139.1	1039.84	1060.72	329771.5	11.7703	11.5469
71	2317.38	1233.47	2895.68	6110.8	5969.9	1048.84	1482.61	314208.3	11.2078	12.4548
72	2341.89	1233.47	2995.39	6108.8	5967.9	1088.53	1557.05	323978.2	9.6725	10.7198
73	2075.87	1497.82	2849.97	6307.7	6159.1	977.53	999.56	330680.2	14.3127	13.4233
74	2069.18	1497.82	2774.58	6370.1	6169.1	1021.90	1052.73	332865.9	11.5033	11.6392
75	2064.93	1497.82	2885.63	6152.3	6127.8	1056.58	1467.02	347401.3	12.1727	10.9879
76	2363.48	1233.47	3021.98	6070.3	5928.6	1153.96	1675.63	330527.9	7.0474	8.4560
77	2082.41	1393.54	2976.01	6177.7	6022.7	1048.76	1490.55	329477.9	10.6928	11.5604
78	2039.33	1516.04	2772.43	6247.8	6225.5	1042.64	1044.66	341624.0	13.3292	11.4804
79	2062.56	1508.94	2783.96	6257.3	6234.2	1040.93	1043.07	337977.0	13.6305	11.7072
80	2057.38	1497.82	2774.58	6379.4	6236.7	967.26	988.41	324046.2	15.2030	13.9101

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメーター覧 (4/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
81	2104.36	1497.82	2781.36	6295.2	6167.3	977.22	993.16	317418.9	15.0971	14.0301
82	2020.9	1497.82	2738.6	6258.4	6237.2	1039.60	1042.07	344837.3	13.3144	11.4007
83	2066.68	1497.82	2865.08	6079.8	6063.2	1119.85	1578.26	348009.3	10.1128	9.1214
84	2340.7	1233.47	3006.1	6115.4	5967.6	1087.73	1557.33	326375.8	9.4060	10.6393
85	2020.7	1497.82	2738.6	6256.1	6235.0	1037.21	1039.77	345232.5	13.3662	11.4256
86	2115.57	1502.12	2795.97	6377.5	6225.5	945.69	962.94	320078.8	15.5646	14.8176
87	2316.19	1233.47	2845.99	6221.5	6055.6	1061.46	1515.31	333099.4	9.8400	10.9283
88	2074.09	1233.47	2995.39	6103.9	5964.7	1076.63	1536.03	323029.9	10.1344	11.1288
89	2035.16	1508.94	2783.96	6273.8	6250.8	1035.28	1037.97	336484.4	13.9929	11.9161
90	2155.64	1497.82	2950.24	6220.6	6066.7	1022.79	1443.24	328009.8	11.8920	12.3405
91	2875.15	1393.54	2967.75	6089.4	5969.3	1073.97	1520.57	310837.9	11.4599	11.8625
92	2053.99	1497.82	2749.09	6410.7	6248.1	943.89	965.50	331275.4	15.0074	14.2117
93	2846.97	1552.65	3059.87	5982.8	5972.7	1202.00	1717.47	341133.6	7.7791	7.1608
94	2037.33	1516.04	2772.43	6262.0	6239.5	1039.77	1042.11	339448.8	13.6162	11.6652
95	2100.99	1497.82	2766.29	6404.3	6243.8	937.76	956.93	325635.2	15.4305	14.7233
96	2051.34	1497.82	2705.84	6256.5	6227.4	1013.13	1012.99	343569.3	13.7986	12.2250
97	2324.08	1535.22	2895.68	6056.1	6040.3	1159.56	1641.88	324346.6	10.1902	8.9610
98	2010.04	1497.82	2705.84	6263.4	6242.4	1034.47	1037.28	344772.6	13.5233	11.5138
99	2104.4	1497.82	2931.7	6026.7	6009.6	1134.54	1600.07	330776.0	10.7681	9.5135
100	2311.09	1233.47	2835.19	6241.3	6072.8	1056.13	1076.21	336182.6	9.9149	10.8831

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメーター覧 (5/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
101	2065.63	1516.04	2772.43	6410.1	6245.5	964.77	988.94	333309.0	14.3497	13.5175
102	2104.4	1497.82	2931.7	6022.9	6005.6	1134.49	1601.74	330573.7	10.7317	9.4841
103	2397.93	1535.22	3079.73	5924.0	5839.8	1219.76	1773.68	310879.8	7.3895	7.5992
104	2061.18	1393.54	2827.78	6245.9	6075.0	1059.42	1080.99	339877.5	9.6160	10.5743
105	2343.47	1393.54	3076.47	6179.0	6017.8	1057.85	1508.89	333659.1	10.0805	11.0931
106	2103.96	1497.82	2922.76	6031.2	6014.0	1130.15	1594.19	329942.0	10.9534	9.6169
107	2355.05	1233.47	3019.05	6092.5	5948.5	1124.49	1621.57	326550.2	8.1673	9.5408
108	2030.21	1497.82	2750.11	6432.3	6266.5	953.94	974.54	328726.3	14.5491	14.0000
109	2059.33	1523.43	2761.43	6263.2	6242.6	1039.45	1042.07	346193.9	13.2714	11.3440
110	2116.25	1508.94	2799.85	6163.9	6134.4	1061.59	1058.82	339503.3	12.0942	11.2401
111	2047.57	1497.82	2742.87	6424.0	6263.9	939.31	960.77	329011.1	15.4120	14.4482
112	2304.53	1535.22	2831.13	6205.9	6179.5	1056.64	1056.89	330720.7	13.2244	11.6610
113	2291.56	1692.46	2856.26	6208.1	6178.8	1047.52	1047.43	324247.5	13.8236	12.2019
114	2052.21	1497.82	2750.11	6389.5	6234.8	966.25	989.43	331842.2	14.5476	13.5242
115	2139.59	1497.82	2808.39	6319.1	6164.8	963.31	978.97	321223.3	14.5312	14.3335
116	2061.71	1393.54	2824.01	6246.0	6083.6	1047.98	1067.25	333436.0	10.5141	11.2373
117	2321.8	1233.47	3012.8	6164.8	6003.7	1035.40	1466.95	326401.2	10.8266	12.1838
118	2042.53	1516.04	2772.43	6229.8	6207.0	1051.92	1053.17	341774.4	12.9083	11.2592
119	2091.53	1393.54	2980.03	6150.2	6009.9	1028.97	1448.75	318241.5	12.1159	12.7648
120	2043.56	1508.94	2783.96	6225.0	6201.4	1052.43	1053.47	339825.1	12.9674	11.3386

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメーター覧 (6/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
121	2367.24	1811.99	2950.24	6074.4	6039.6	1064.03	1476.28	324875.1	12.6101	11.9430
122	2075.67	1502.12	2795.97	6204.4	6179.3	1059.00	1059.30	335674.8	12.8718	11.3717
123	2350.69	1233.47	2995.39	6078.2	5942.6	1120.03	1613.81	326654.1	8.6032	9.6458
124	2339.44	1393.54	3088.94	6185.0	6019.7	1047.49	1492.93	334934.3	10.1599	11.3223
125	2079.99	1497.82	2808.39	6299.0	6148.8	1035.96	1057.38	330773.1	11.8218	11.6005
126	2078.59	1497.82	2808.39	6315.6	6165.2	1033.48	1055.43	329726.1	12.0678	11.7190
127	2075.62	1393.54	2971.92	6218.8	6054.9	1020.36	1443.18	331965.3	11.3754	12.2314
128	2378.87	1783.27	2959.17	6012.6	5986.8	1138.26	1605.94	325154.0	10.1787	9.7478
129	2020.7	1497.82	2738.6	6257.7	6236.6	1037.18	1039.78	345261.4	13.3741	11.4268
130	2307.23	1233.47	2853.03	6205.9	6042.8	1038.12	1472.74	329482.8	10.7734	11.8544
131	2028.79	1497.82	2754.79	6333.5	6188.6	1019.67	1041.75	329916.9	12.7401	12.0402
132	2062.97	1233.47	3027.37	6142.2	5979.1	1033.00	1466.24	328608.3	10.5339	12.1597
133	2085.65	1497.82	2821.15	6337.5	6192.1	996.19	1014.03	322070.4	13.6844	13.1813
134	2078.32	1497.82	3060.12	6043.6	6020.8	1089.23	1527.96	343594.1	11.1908	10.2560
135	2062.2	1233.47	3006.1	6174.8	6008.7	1052.68	1501.47	333448.9	9.9107	11.2714
136	2345.11	1393.54	2976.01	6191.4	6029.6	1099.28	1583.33	336793.6	8.5094	9.6208
137	2059.51	1497.82	2729.41	6377.1	6216.7	986.14	1008.11	332804.5	13.3383	12.8754
138	2038.46	1508.94	2783.96	6252.6	6229.0	1040.20	1042.25	336690.0	13.7022	11.7778
139	2076.02	1497.82	3038.52	6047.6	6026.9	1096.02	1538.34	343940.0	11.0932	10.0481
140	2074.87	1502.12	2795.97	6215.7	6190.7	1054.22	1054.98	334156.3	13.1876	11.5540

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメーター覧 (7/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
141	2096.22	1233.47	3123.62	6011.9	5882.8	1100.15	1576.90	320429.0	9.3810	10.6920
142	2080.49	1497.82	2808.39	6127.7	6104.8	1102.28	1101.20	335943.5	11.1264	10.1238
143	2869.32	1580.69	2932.22	6009.0	5983.6	1144.78	1616.53	320744.2	10.2549	9.7318
144	2294.7	1692.46	2819.1	6195.8	6171.0	1061.58	1061.66	337618.7	12.6352	11.2115
145	2139.97	1497.82	2813.77	6172.1	6036.2	1050.66	1065.73	323723.5	11.4532	11.7144
146	2058.74	1233.47	2999.04	6193.4	6030.1	1016.02	1434.83	328582.6	11.4296	12.5855
147	2070.46	1497.82	2767.96	6323.7	6183.4	1005.45	1023.99	323480.5	13.4569	12.8147
148	2085.33	1497.82	2879.03	6078.9	6060.0	1115.59	1569.61	342264.3	10.5150	9.5107
149	2379.08	1692.46	3124.48	5986.6	5959.0	1115.58	1568.15	328643.9	10.7885	10.3352
150	2079.67	1502.12	2795.97	6182.2	6153.4	1055.61	1054.12	334727.2	12.7270	11.5379
151	2835.08	1425.42	2979.48	6014.5	6004.0	1165.15	1652.35	343166.7	9.2297	8.1476
152	2104.43	1497.82	2762.13	6406.1	6251.5	936.38	954.90	322295.8	15.8291	14.9277
153	2361.72	1393.54	2971.92	6080.1	5950.7	1135.34	1637.89	324622.0	8.4579	9.2717
154	2024.01	1497.82	2750.11	6256.5	6233.4	1037.52	1039.83	338145.7	13.7393	11.7655
155	2333.56	1233.47	2991.66	6169.3	6013.4	1071.36	1530.92	329933.6	9.7526	10.8593
156	2062.18	1393.54	2827.78	6166.8	6027.9	1046.77	1060.60	322435.8	11.4526	11.9293
157	2077.29	1497.82	2808.39	6163.8	6141.2	1083.10	1083.40	334761.5	12.0237	10.6398
158	2067.92	1497.82	2871.92	6087.5	6071.4	1098.43	1543.27	340044.9	11.5901	9.9529
159	2061.18	1393.54	2827.78	6249.4	6077.2	1058.42	1080.22	340499.7	9.5953	10.5691
160	2062.46	1508.94	2783.96	6256.1	6232.8	1040.13	1042.27	337345.7	13.6879	11.7520

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメーター覧 (8/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
161	2025.71	1497.82	2750.01	6136.2	6124.7	1092.84	1098.62	334184.9	12.6615	10.2633
162	2113.56	1497.82	3053.16	6139.5	6007.0	1082.79	1546.14	328724.8	10.5363	10.5710
163	2148.4	1497.82	2940.9	6170.9	6038.8	1047.44	1482.21	321196.3	11.7766	11.9350
164	2062.4	1233.47	3009.5	6168.4	6003.5	1051.41	1499.49	333055.3	9.9454	11.3289
165	2368.06	1535.22	2978.16	5984.8	5973.6	1185.61	1690.22	337487.1	8.6303	7.7489
166	2156.17	1497.82	2959.17	6171.4	6027.6	1041.15	1472.83	323916.3	11.5527	12.0614
167	2087.08	1393.54	2983.98	6113.1	5968.2	1104.84	1592.85	333765.6	8.6262	9.6626
168	2026.79	1233.47	2835.19	6224.3	6065.2	1009.23	1024.71	328818.2	12.0048	12.6967
169	2017.2	1497.82	2738.6	6284.8	6263.9	1033.72	1036.89	342873.2	13.7557	11.6529
170	2053.71	1497.82	2750.11	6410.8	6257.5	949.55	971.40	328219.5	15.3298	14.1824
171	2098.07	1502.12	2795.97	6183.9	6158.9	1065.44	1065.12	337599.0	12.4427	11.1165
172	2061.46	1497.82	2833.56	6130.8	6113.7	1089.86	1078.22	350810.7	11.1145	9.8018
173	2075.67	1502.12	2795.97	6208.2	6182.9	1057.09	1057.42	335348.5	12.9597	11.4391
174	2301.02	1233.47	2870.02	6176.8	6019.5	1014.32	1427.46	321683.4	11.8157	13.0270
175	2324.4	1233.47	3012.8	6128.9	5979.4	1032.02	1457.06	319835.6	11.4037	12.6615
176	2057.36	1497.82	2727.66	6248.7	6219.9	1022.26	1021.66	344689.9	13.3907	11.9711
177	2074.05	1497.82	2948.55	6073.5	6056.3	1108.60	1560.02	348237.1	10.5194	9.4329
178	2083.05	1497.82	2821.15	6333.6	6189.7	1009.69	1029.22	324134.2	13.2750	12.6686
179	2374.52	1588.06	3051.12	5985.8	5973.8	1185.67	1688.72	337964.9	8.5597	7.7813
180	2084.45	1497.82	2821.15	6121.4	6097.8	1103.73	1102.52	333164.6	11.2116	10.2108

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメーター覧 (9/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
181	2137.72	1497.82	3016.82	6162.9	6032.5	1045.15	1478.33	322966.9	11.9658	11.9360
182	2363.17	1535.22	3120.07	6005.7	5987.4	1141.83	1613.90	342528.3	9.5417	8.9138
183	2031.03	1233.47	2838.83	6223.1	6067.1	1012.25	1026.61	325891.2	12.0511	12.7485
184	2078.28	1497.82	2978.68	6120.1	6095.4	1058.79	1470.64	345254.9	12.2627	11.0753
185	2062.59	1497.82	2754.79	6321.3	6175.4	1022.55	1044.26	330485.4	12.5081	11.9434
186	2034.59	1233.47	2845.99	6239.5	6079.4	986.16	1378.25	323065.5	12.9280	13.6883
187	2075.18	1497.82	2787.38	6328.3	6182.9	1010.18	1029.71	325428.4	13.1096	12.5901
188	2063.42	1233.47	2870.02	6127.9	5982.5	1084.76	1553.83	326479.0	9.4496	10.6376
189	2093.19	1497.82	2760.79	6380.3	6225.3	949.56	968.91	326234.2	15.1116	14.3470
190	2072.05	1497.82	2815.65	6077.2	6058.7	1098.94	1100.81	331531.8	11.9934	10.3463
191	2068.77	1502.12	2795.97	6364.1	6171.4	1008.71	1038.72	332660.3	12.2496	12.0953
192	2094.23	1497.82	2885.63	6136.1	6010.6	1096.56	1569.74	327129.1	10.2499	10.1854
193	2875.41	1744.91	3053.71	5958.3	5938.2	1181.16	1680.99	325492.1	8.8563	8.5061
194	2061.4	1233.47	3009.5	6167.0	6002.6	1035.22	1471.35	332228.4	10.4955	11.8553
195	2097.82	1497.82	2903.72	6057.5	6040.9	1120.82	1576.34	333338.4	11.1975	9.7544
196	2082.07	1502.12	2795.97	6381.2	6228.5	947.04	964.77	320631.5	15.5121	14.7472
197	2085.71	1497.82	2827.21	6049.6	6032.8	1123.62	1125.53	327630.4	11.4376	9.8689
198	2310.8	1233.47	2866.7	6196.2	6034.0	1045.08	1484.36	327352.6	10.4973	11.7622
199	2825.32	1692.46	2880.22	6178.0	6150.2	1064.10	1472.01	327201.6	13.0303	11.6363
200	2080.16	1497.82	2985.56	6117.5	6091.2	1054.28	1460.81	342792.1	12.5464	11.3728

表 C-3 JASMINE コード・溶融物物性値に関する入力パラメータ一覧 (10/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
201	2069.79	1497.82	2882.99	6091.3	6076.4	1104.04	1552.54	347637.1	10.9345	9.5128
202	2116.95	1497.82	2920.75	6222.5	6073.0	1032.53	1461.87	331187.6	11.6684	11.8355
203	2100.5	1497.82	2776.7	6370.5	6210.3	949.00	967.91	327908.0	14.7967	14.3035
204	2064.96	1508.94	2783.96	6234.1	6210.2	1046.81	1048.27	337139.1	13.3633	11.5918
205	2059.03	1497.82	2762.13	6382.3	6228.0	960.67	981.65	327455.5	14.8300	13.9549
206	2062	1233.47	3006.1	6190.3	6022.1	1048.55	1494.64	333519.7	9.9850	11.3605
207	2882.27	1393.54	3076.47	6037.0	5918.3	1126.53	1615.52	315898.0	9.4200	10.0984
208	2076.47	1502.12	2795.97	6200.6	6174.3	1053.34	1053.33	334951.5	13.0252	11.5427
209	2066.85	1497.82	2948.55	6059.9	6042.4	1109.69	1563.50	346415.8	10.5489	9.4539
210	2336.73	1535.22	2913.43	6109.5	6090.2	1092.75	1524.80	334846.7	12.0880	10.5273
211	2072.79	1497.82	2808.39	6190.6	6164.2	1059.41	1059.35	331471.7	13.0241	11.5433
212	2292.63	1692.46	2869.23	6209.4	6180.0	1049.50	1049.63	320736.4	13.9616	12.2670
213	2362.23	1393.54	2980.03	6079.8	5949.4	1133.91	1635.57	324642.5	8.4536	9.3195
214	2024.51	1497.82	2750.11	6251.2	6228.5	1040.03	1042.16	340148.0	13.5144	11.6111
215	2064.89	1233.47	2995.39	6160.2	6012.5	1015.36	1426.79	318829.3	12.2080	13.1443
216	2059.4	1233.47	3009.5	6205.2	6037.1	1003.95	1413.46	327209.7	11.6938	13.0238
217	2340.16	1233.47	3024.76	6126.8	5967.3	1083.94	1553.39	329675.5	9.0237	10.6132
218	2056.23	1497.82	2913.43	6132.6	6115.7	1090.24	1527.01	351455.8	11.0796	9.7637
219	2053.15	1233.47	2860.75	6102.1	5967.4	1128.35	1628.11	325843.9	8.3662	9.3613
220	2350.17	1535.22	3014.57	6040.9	6024.6	1129.01	1590.71	343750.8	10.1867	9.1756

表 C-3 JASMINE コード・溶融物物性値に関する入力パラメータ一覧 (11/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
221	2295.23	1692.46	2831.13	6197.2	6171.5	1060.37	1060.42	333660.7	12.8996	11.4303
222	2075.62	1393.54	2971.92	6223.9	6059.4	1019.60	1441.74	332094.1	11.4120	12.2426
223	2230.76	1692.46	2856.26	6222.8	6194.6	1050.23	1050.75	322729.9	13.8977	12.1569
224	2273.73	1535.22	2831.13	6223.6	6197.7	1049.36	1050.27	331188.5	13.5392	11.8168
225	2323.1	1233.47	3012.8	6134.2	5984.2	1027.79	1449.45	319437.5	11.5558	12.8024
226	2081.25	1497.82	2821.15	6316.2	6172.3	1028.59	1049.56	326438.4	12.5695	12.0163
227	2079.48	1393.54	2983.98	6204.9	6044.6	1016.85	1434.16	327195.7	11.6831	12.6150
228	2087.02	1497.82	2781.62	6351.4	6195.4	944.12	961.81	328805.7	14.8576	14.3773
229	2053.74	1497.82	2841.94	6438.5	6244.4	956.42	985.97	340095.2	13.7669	13.2546
230	2304.83	1535.22	2831.13	6208.5	6182.2	1056.59	1056.84	331224.6	13.2021	11.6458
231	2066.24	1233.47	2999.04	6155.3	6004.4	1022.67	1440.83	321079.3	11.7904	12.8336
232	2142.7	1497.82	2940.9	6165.0	6036.0	1047.86	1481.29	318960.1	11.9294	12.0462
233	2332.94	1233.47	2999.04	6145.1	5985.5	1073.58	1539.02	335251.1	9.2923	10.5626
234	2314.59	1233.47	2995.39	6205.2	6038.2	1025.05	1449.71	329234.1	11.1229	12.2989
235	2096.61	1497.82	2827.21	6166.6	6037.6	1041.46	1053.86	317249.9	12.1738	12.3296
236	2100.08	1497.82	2787.38	6299.2	6155.6	1008.44	1028.10	326944.1	13.1623	12.6206
237	2837.1	1535.22	2987.8	6008.7	5999.4	1193.48	1702.99	345762.4	7.8668	7.1758
238	2083.48	1393.54	2983.98	6184.3	6027.4	1034.75	1464.15	326459.5	11.2100	12.1565
239	2269.3	1535.22	2819.1	6244.0	6219.8	1044.58	1046.22	335387.5	13.5778	11.7399
240	2086.35	1497.82	2821.15	6337.9	6191.4	997.62	1015.49	321815.3	13.6253	13.1635

表 C-3 JASMINE コード・溶融物物性値に関する入力パラメータ一覧 (12/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
241	2071.59	1393.54	2847.39	6154.9	6022.3	1054.71	1490.12	320922.8	11.4536	11.7693
242	2313.12	1233.47	2842.42	6235.4	6065.9	1060.20	1514.82	335879.5	9.7375	10.8011
243	2299.8	1535.22	2819.1	6221.4	6197.6	1052.54	1053.71	336819.2	13.1455	11.4554
244	2079.01	1425.42	2898.71	6023.2	6014.5	1162.86	1650.16	343456.7	9.4259	8.1161
245	2086.33	1497.82	2762.13	6177.4	6151.8	1058.82	1058.50	338128.0	12.5818	11.2253
246	2035.36	1508.94	2783.96	6273.3	6250.4	1034.37	1037.12	337463.8	13.9667	11.8870
247	2033.9	1233.47	3006.1	6178.3	6011.0	1012.80	1437.53	336926.5	10.8785	12.2141
248	2328	1233.47	3009.5	6178.5	6013.3	1050.38	1496.84	331790.4	10.0227	11.4091
249	2301.74	1692.46	2843.54	6171.0	6143.7	1068.17	1479.64	330245.9	12.6877	11.3955
250	2099.7	1497.82	2956.5	6076.9	6055.1	1097.40	1534.43	333365.8	11.7559	10.4982
251	2045.79	1233.47	2845.99	6184.7	6028.4	1036.50	1468.75	328049.7	11.0803	11.9953
252	2039.92	1497.82	2722.42	6409.7	6244.7	958.28	982.81	337220.2	14.3079	13.4600
253	2092.75	1497.82	2821.15	6327.0	6180.7	999.60	1017.12	322261.1	13.4726	13.0905
254	2368.26	1535.22	2978.16	5992.7	5984.1	1202.07	1718.12	343710.0	7.7185	7.0138
255	2061.71	1497.82	2741.91	6303.7	6154.4	1021.20	1042.46	334195.5	12.0964	11.7918
256	2117.19	1497.82	2808.39	6324.3	6172.1	967.51	984.22	321976.8	14.5130	14.1497
257	2094.5	1497.82	2931.7	6051.4	6032.0	1110.61	1558.98	330158.0	11.6089	10.2039
258	2137.29	1497.82	2808.39	6227.2	6072.9	1044.40	1063.22	331066.0	11.0513	11.4954
259	2068.06	1508.94	2783.96	6202.2	6178.3	1057.04	1057.60	339859.2	12.7139	11.1993
260	2077.79	1497.82	2808.39	6211.6	6185.1	1052.96	1053.42	330417.8	13.3907	11.7659

表 C-3 JASMINE コード・溶融物物性値に関する入力パラメータ一覧 (13/15)

ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
261	2330.1	1233.47	3009.5	6161.0	5998.1	1059.69	1513.18	332274.3	9.7444	11.1309
262	2067.19	1497.82	2808.39	6330.3	6185.5	1013.53	1036.14	329074.9	13.1584	12.3210
263	2363.46	1535.22	3106.46	5998.5	5982.5	1152.62	1632.37	343381.5	9.2289	8.5623
264	2373.95	1233.47	3107.75	6010.5	5886.5	1164.25	1689.46	324610.6	7.3700	8.5080
265	2025.31	1497.82	2750.11	6244.3	6221.0	1037.99	1040.07	338564.5	13.6399	11.7175
266	2069.87	1502.12	2795.97	6199.9	6174.2	1055.75	1055.99	334451.6	13.0180	11.4957
267	2291.94	1692.46	2843.54	6209.8	6182.6	1054.41	1054.67	327881.6	13.4646	11.8548
268	2153.87	1497.82	2959.17	6252.0	6091.3	1004.44	1410.62	326782.4	12.3906	12.9351
269	2118.82	1497.82	2992.22	6155.1	6029.4	1072.34	1523.59	322213.2	11.3311	11.1723
270	2056.46	1497.82	2717.36	6390.2	6230.1	959.94	982.56	332901.9	14.4736	13.6702
271	2086.88	1393.54	2874.18	6107.6	5981.8	1123.13	1613.59	320083.2	9.1792	9.8051
272	2368.29	1692.46	2925.99	6022.0	6002.4	1151.50	1630.79	334186.0	9.5008	8.8959
273	2074.39	1393.54	2847.39	6141.1	6005.2	1072.59	1527.94	323412.7	10.5903	11.1379
274	2098.34	1497.82	2860.34	6050.7	6035.4	1120.35	1571.97	330126.5	11.5961	9.8996
275	2042.53	1516.04	2772.43	6229.1	6206.3	1052.41	1053.61	341894.2	12.8799	11.2432
276	2853.38	1233.47	2918.98	6123.1	5981.3	1052.79	1489.91	314942.4	11.0473	12.2687
277	2328.55	1393.54	2967.75	6187.1	6038.5	1036.30	1465.07	324357.6	11.5419	12.1694
278	2096.2	1497.82	2931.7	6175.1	6047.0	1071.09	1524.81	328844.7	11.2720	10.8198
279	2362.96	1535.22	3053.16	6019.4	6001.5	1143.09	1614.86	338797.5	9.7786	9.0060
281	2363.2	1233.47	3009.5	6076.4	5934.3	1152.61	1674.77	332850.7	7.0443	8.3514

表 C-3 JASMINE コード・溶融物物性値に関する入力パラメータ一覧 (14/15)
ケース	融点(K)	固相線温度	液相線温度	固相密度	液相密度	固相比熱	液相比熱	凝固潜熱	固相熱伝導	液相熱伝導
		(K)	(K)	(kg/m3)	(kg/m3)	(J/kg/K)	(J/kg/K)	(J/kg)	率(W/m/K)	率(W/m/K)
282	2299.23	1692.46	2831.13	6184.3	6158.4	1066.12	1065.68	334176.8	12.6071	11.2692
283	2085.05	1497.82	2821.15	6350.1	6208.1	991.89	1009.57	319463.7	14.1311	13.4274
284	2074.87	1502.12	2795.97	6219.3	6194.3	1054.51	1055.25	334219.1	13.1814	11.5554
285	2031.63	1497.82	2762.13	6215.7	6192.3	1052.07	1053.46	337275.7	13.1489	11.4193
286	2104.13	1497.82	2968.13	5981.2	5970.5	1187.35	1693.43	336763.0	8.6501	7.7198
287	2038.56	1508.94	2783.96	6252.0	6228.4	1041.30	1043.29	336626.5	13.6664	11.7571
288	2074.97	1502.12	2795.97	6212.4	6187.2	1051.43	1052.12	334750.8	13.2151	11.5870
289	2033.83	1516.04	2772.43	6277.1	6254.8	1034.24	1037.12	338964.9	13.9106	11.8214
290	2321.14	1233.47	2999.04	6153.3	6000.6	1034.53	1462.62	323110.2	11.2727	12.3800
291	2022	1497.82	2738.6	6248.7	6227.0	1040.01	1042.26	344114.0	13.2914	11.4130
292	2364.3	1535.22	2987.8	6000.9	5985.4	1150.07	1627.98	330472.1	10.2686	9.0767
293	2107.52	1497.82	2781.62	6417.2	6254.8	895.46	911.95	321251.6	17.0265	16.2470
294	2024.31	1497.82	2750.11	6256.4	6233.4	1039.92	1042.12	338892.8	13.6113	11.6817
295	2115.31	1497.82	2827.21	6227.0	6101.3	1027.84	1043.34	318618.3	13.0706	12.5402
296	2862.33	1393.54	2980.03	6083.7	5948.5	1133.18	1634.89	326482.8	8.3396	9.2761
297	2317.44	1233.47	2999.04	6181.1	6021.7	1028.76	1453.61	325233.6	11.2920	12.4192
298	2072.29	1393.54	2847.39	6158.1	6023.2	1047.31	1482.58	320838.6	11.5825	11.9945
299	2068.48	1497.82	2774.58	6366.7	6216.0	1004.88	1027.19	329787.7	13.1740	12.4652
300	2061.9	1233.47	3006.1	6163.9	5999.3	1049.73	1496.39	333101.1	10.0260	11.3916

表 C -3 JASMINE コード・溶融物物性値に関する入力パラメータ一覧 (15/15)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
1	0.026956	0.077309	0.127662	0.206079	0.285367	0.364655	0.443942	0.523230	0.602518	0.980026
2	0.023311	0.062113	0.137242	0.215548	0.293855	0.372162	0.450469	0.528776	0.607082	0.980004
3	0.008641	0.058526	0.135634	0.212742	0.289850	0.366958	0.444065	0.521173	0.598281	0.980064
4	0.007369	0.040994	0.122653	0.204312	0.285971	0.367629	0.449288	0.530947	0.612606	0.980009
5	0.438017	0.508100	0.578183	0.648266	0.718348	0.765654	0.765654	0.765654	0.765654	0.980006
6	0.031255	0.102482	0.173709	0.244936	0.316162	0.387389	0.458616	0.529843	0.601069	0.980025
7	0.028511	0.079588	0.140781	0.217821	0.294860	0.371900	0.448939	0.525979	0.603018	0.980054
8	0.023169	0.095656	0.168144	0.240632	0.313120	0.385608	0.458095	0.530583	0.603071	0.980031
9	0.027225	0.076006	0.136240	0.214124	0.292009	0.369893	0.447778	0.525663	0.603547	0.980044
10	0.027892	0.077407	0.132951	0.211512	0.290073	0.368633	0.447194	0.525754	0.604315	0.980018
11	0.008490	0.067402	0.143084	0.218767	0.294450	0.370132	0.445815	0.521497	0.597180	0.980048
12	0.026170	0.074427	0.125115	0.204811	0.284508	0.364204	0.443900	0.523597	0.603293	0.980043
13	0.007606	0.040275	0.119797	0.199319	0.278841	0.358363	0.437885	0.517407	0.596929	0.980058
14	0.006185	0.019395	0.032605	0.045815	0.158662	0.272318	0.385974	0.499629	0.613285	0.980000
15	0.007798	0.040897	0.120503	0.200109	0.279714	0.359320	0.438925	0.518531	0.598136	0.980051
16	0.024507	0.073563	0.149704	0.225845	0.301986	0.378127	0.454268	0.530409	0.606550	0.980032
17	0.005283	0.015310	0.025338	0.111289	0.211611	0.311932	0.412254	0.512575	0.612897	0.980009
18	0.036868	0.107465	0.178063	0.248660	0.319257	0.389854	0.460452	0.531049	0.601646	0.980017
19	0.004903	0.013145	0.063757	0.155576	0.247396	0.339215	0.431035	0.522854	0.614674	0.980009
20	0.007116	0.018844	0.101247	0.186308	0.271369	0.356431	0.441492	0.526553	0.611614	0.980006

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (1/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
21	0.027608	0.092658	0.164908	0.237158	0.309407	0.381657	0.453907	0.526157	0.598406	0.980039
22	0.026470	0.075558	0.132386	0.210693	0.289001	0.367308	0.445616	0.523923	0.602230	0.980065
23	0.026583	0.076832	0.127287	0.206388	0.285488	0.364589	0.443690	0.522790	0.601891	0.980017
24	0.007888	0.022822	0.037755	0.120499	0.218800	0.317102	0.415403	0.513704	0.612005	0.980014
25	0.006611	0.022287	0.075570	0.162421	0.249272	0.336123	0.422974	0.509824	0.596675	0.980011
26	0.006321	0.021315	0.064714	0.153503	0.242292	0.331081	0.419870	0.508659	0.597448	0.980017
27	0.040402	0.097065	0.153728	0.211158	0.292533	0.373909	0.455284	0.536660	0.618035	0.980019
28	0.014296	0.064023	0.140788	0.217552	0.294317	0.371082	0.447846	0.524611	0.601375	0.980028
29	0.018119	0.090284	0.162449	0.234614	0.306779	0.378944	0.451109	0.523273	0.595438	0.980008
30	0.009620	0.032887	0.113317	0.193748	0.274178	0.354609	0.435039	0.515470	0.595901	0.980012
31	0.028248	0.077364	0.144111	0.220783	0.297455	0.374128	0.450800	0.527472	0.604144	0.980051
32	0.007637	0.031644	0.114331	0.197017	0.279703	0.362389	0.445075	0.527762	0.610448	0.980007
33	0.005626	0.035642	0.115789	0.195936	0.276083	0.356230	0.436377	0.516524	0.596671	0.980052
34	0.025163	0.071405	0.124407	0.204253	0.284099	0.363945	0.443791	0.523637	0.603483	0.980006
35	0.009142	0.064832	0.140902	0.216972	0.293042	0.369112	0.445182	0.521252	0.597322	0.980020
36	0.010912	0.037576	0.064239	0.134699	0.227344	0.319989	0.412634	0.505280	0.597925	0.980045
37	0.039294	0.109618	0.179942	0.250267	0.320591	0.390915	0.461239	0.531563	0.601887	0.980034
38	0.056842	0.127090	0.197339	0.267587	0.337835	0.408083	0.478331	0.548579	0.618827	0.980027
39	0.027412	0.079626	0.132251	0.210386	0.288521	0.366656	0.444791	0.522925	0.601060	0.980006
40	0.028804	0.100197	0.171590	0.242982	0.314375	0.385768	0.457160	0.528553	0.599946	0.980015

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (2/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
41	0.032199	0.103378	0.174557	0.245736	0.316915	0.388094	0.459273	0.530452	0.601631	0.980034
42	0.037940	0.108365	0.178790	0.249215	0.319640	0.390065	0.460490	0.530915	0.601340	0.980044
43	0.007037	0.020077	0.033118	0.128641	0.225351	0.322062	0.418772	0.515482	0.612192	0.980007
44	0.045965	0.116689	0.187412	0.258135	0.328859	0.399582	0.470305	0.541029	0.611752	0.980009
45	0.005914	0.047887	0.126297	0.204707	0.283117	0.361528	0.439938	0.518348	0.596758	0.980040
46	0.028748	0.100147	0.171546	0.242946	0.314345	0.385744	0.457143	0.528542	0.599942	0.980046
47	0.035713	0.106070	0.176427	0.246784	0.317141	0.387498	0.457855	0.528212	0.598569	0.980003
48	0.008412	0.022097	0.099571	0.185070	0.270568	0.356067	0.441565	0.527064	0.612562	0.980007
49	0.038327	0.099363	0.160399	0.221435	0.282472	0.343508	0.417822	0.521523	0.625225	0.980013
50	0.028350	0.080267	0.135545	0.213383	0.291221	0.369059	0.446897	0.524735	0.602573	0.980020
51	0.042699	0.101634	0.160569	0.219505	0.298130	0.378111	0.458091	0.538072	0.618052	0.980002
52	0.006996	0.026693	0.110178	0.193662	0.277146	0.360630	0.444115	0.527599	0.611083	0.980007
53	0.005437	0.029977	0.110929	0.191881	0.272832	0.353784	0.434736	0.515688	0.596639	0.980046
54	0.029052	0.079857	0.139016	0.216574	0.294132	0.371689	0.449247	0.526805	0.604363	0.980018
55	0.026971	0.096436	0.168320	0.240203	0.312087	0.383971	0.455854	0.527738	0.599622	0.980049
56	0.012134	0.038401	0.064669	0.151537	0.241548	0.331559	0.421569	0.511580	0.601591	0.980036
57	0.006902	0.033745	0.114149	0.194552	0.274955	0.355359	0.435762	0.516165	0.596568	0.980048
58	0.029532	0.085671	0.159897	0.234123	0.308349	0.382575	0.456801	0.531027	0.605254	0.980019
59	0.007318	0.019496	0.085923	0.173744	0.261565	0.349385	0.437206	0.525027	0.612847	0.980008
60	0.027758	0.093436	0.165691	0.237947	0.310202	0.382457	0.454713	0.526968	0.599224	0.980031

表 C -4 JASMINE コード・相図に関する入力パラメータ一覧 (3/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
61	0.025620	0.097544	0.169467	0.241391	0.313315	0.385239	0.457162	0.529086	0.601010	0.980032
62	0.012146	0.039789	0.067433	0.144160	0.235343	0.326525	0.417707	0.508890	0.600072	0.980025
63	0.005811	0.016469	0.041182	0.136300	0.231418	0.326535	0.421653	0.516771	0.611889	0.980011
64	0.008557	0.074150	0.148825	0.223499	0.298174	0.372848	0.447523	0.522198	0.596872	0.980008
65	0.027314	0.076554	0.128839	0.208029	0.287220	0.366411	0.445601	0.524792	0.603982	0.980034
66	0.005939	0.060682	0.139747	0.218813	0.297878	0.376943	0.456008	0.535074	0.614139	0.980009
67	0.023911	0.071011	0.118111	0.165210	0.212310	0.304139	0.406813	0.509488	0.612162	0.980044
68	0.042681	0.113258	0.184197	0.255135	0.326074	0.397013	0.467951	0.538890	0.609829	0.980008
69	0.028425	0.100125	0.171825	0.243525	0.315225	0.386925	0.458625	0.530326	0.602026	0.980045
70	0.027355	0.076136	0.136293	0.214202	0.292111	0.370020	0.447929	0.525838	0.603747	0.980053
71	0.045748	0.116116	0.186484	0.256853	0.327221	0.397589	0.467957	0.538325	0.608693	0.980011
72	0.006919	0.034459	0.116739	0.199018	0.281297	0.363576	0.445856	0.528135	0.610414	0.980002
73	0.014251	0.070970	0.146403	0.221837	0.297271	0.372704	0.448138	0.523571	0.599005	0.980061
74	0.027485	0.075955	0.136666	0.214596	0.292527	0.370457	0.448387	0.526317	0.604247	0.980013
75	0.009779	0.033140	0.114047	0.194954	0.275861	0.356768	0.437675	0.518582	0.599489	0.980007
76	0.004429	0.011720	0.091568	0.178453	0.265338	0.352223	0.439109	0.525994	0.612879	0.980007
77	0.008682	0.031825	0.112435	0.193046	0.273656	0.354266	0.434877	0.515487	0.596097	0.980024
78	0.028081	0.079546	0.134496	0.212514	0.290533	0.368551	0.446570	0.524588	0.602607	0.980025
79	0.027271	0.090874	0.163660	0.236446	0.309232	0.382018	0.454804	0.527590	0.600376	0.980065
80	0.023592	0.092859	0.165372	0.237885	0.310398	0.382911	0.455424	0.527937	0.600449	0.980040

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (4/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
81	0.032255	0.103485	0.174714	0.245944	0.317173	0.388403	0.459632	0.530862	0.602091	0.980001
82	0.028547	0.079768	0.139118	0.216449	0.293779	0.371109	0.448439	0.525770	0.603100	0.980028
83	0.007435	0.052002	0.130169	0.208336	0.286503	0.364670	0.442837	0.521004	0.599171	0.980037
84	0.006676	0.017783	0.099749	0.185009	0.270269	0.355530	0.440790	0.526050	0.611311	0.980007
85	0.028467	0.079559	0.138851	0.216237	0.293623	0.371009	0.448395	0.525781	0.603166	0.980027
86	0.032432	0.103618	0.174804	0.245991	0.317177	0.388363	0.459549	0.530735	0.601921	0.980011
87	0.050837	0.121120	0.191402	0.261685	0.331967	0.402250	0.472533	0.542815	0.613098	0.980007
88	0.007362	0.033736	0.113888	0.194040	0.274192	0.354344	0.434496	0.514648	0.594800	0.980002
89	0.026849	0.077112	0.127374	0.204058	0.283779	0.363500	0.443221	0.522943	0.602664	0.980062
90	0.013605	0.044568	0.123909	0.203250	0.282591	0.361932	0.441273	0.520614	0.599955	0.980027
91	0.223689	0.315136	0.406583	0.498030	0.589478	0.680925	0.724026	0.726222	0.728418	0.980003
92	0.035544	0.106185	0.176826	0.247467	0.318108	0.388749	0.459390	0.530032	0.600673	0.980027
93	0.004198	0.006432	0.008666	0.010900	0.013134	0.205826	0.522439	0.839052	0.895538	0.980001
94	0.027736	0.078709	0.131391	0.209958	0.288525	0.367091	0.445658	0.524225	0.602792	0.980032
95	0.035060	0.106014	0.176967	0.247921	0.318874	0.389827	0.460781	0.531734	0.602688	0.980006
96	0.028408	0.080297	0.155386	0.230474	0.305563	0.380652	0.455741	0.530830	0.605919	0.980046
97	0.044752	0.108704	0.172655	0.236606	0.301327	0.379715	0.458103	0.536490	0.614878	0.980005
98	0.029049	0.079581	0.144366	0.220981	0.297595	0.374210	0.450825	0.527440	0.604055	0.980002
99	0.008146	0.064548	0.140589	0.216629	0.292670	0.368711	0.444751	0.520792	0.596832	0.980035
100	0.050040	0.120508	0.190975	0.261443	0.331911	0.402379	0.472847	0.543314	0.613782	0.980005

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧(5/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
101	0.027182	0.098865	0.170548	0.242231	0.313913	0.385596	0.457279	0.528962	0.600645	0.980032
102	0.008135	0.064529	0.140571	0.216612	0.292654	0.368695	0.444736	0.520778	0.596819	0.980027
103	0.005210	0.029584	0.112292	0.194999	0.277706	0.360414	0.443121	0.525828	0.608536	0.980002
104	0.018966	0.091318	0.163670	0.236021	0.308373	0.380725	0.453077	0.525429	0.597780	0.980058
105	0.007588	0.021492	0.035684	0.131815	0.227947	0.324079	0.420211	0.516342	0.612474	0.980010
106	0.008430	0.069382	0.144736	0.220089	0.295443	0.370796	0.446150	0.521503	0.596857	0.980053
107	0.005490	0.014604	0.097006	0.182789	0.268572	0.354355	0.440138	0.525921	0.611704	0.980007
108	0.024679	0.069095	0.113511	0.157927	0.214681	0.314946	0.415210	0.515474	0.615739	0.980015
109	0.028712	0.093604	0.166141	0.238679	0.311217	0.383754	0.456292	0.528830	0.601367	0.980080
110	0.032487	0.103641	0.174795	0.245948	0.317102	0.388256	0.459410	0.530563	0.601717	0.980018
111	0.028768	0.100320	0.171873	0.243425	0.314978	0.386530	0.458083	0.529635	0.601188	0.980057
112	0.042856	0.106108	0.178843	0.251579	0.324314	0.397049	0.469785	0.542520	0.615256	0.980020
113	0.040214	0.096986	0.153758	0.210530	0.289318	0.371584	0.453849	0.536114	0.618379	0.980028
114	0.031940	0.103045	0.174151	0.245257	0.316363	0.387469	0.458574	0.529680	0.600786	0.980044
115	0.038895	0.109306	0.179717	0.250127	0.320538	0.390949	0.461359	0.531770	0.602180	0.980039
116	0.028536	0.099633	0.170731	0.241829	0.312927	0.384024	0.455122	0.526220	0.597318	0.980012
117	0.008033	0.021910	0.081826	0.170046	0.258266	0.346486	0.434706	0.522926	0.611146	0.980009
118	0.028567	0.080694	0.139333	0.216493	0.293653	0.370813	0.447973	0.525133	0.602293	0.980069
119	0.010159	0.046997	0.125331	0.203664	0.281997	0.360330	0.438663	0.516996	0.595329	0.980008
120	0.028021	0.079889	0.137433	0.214845	0.292256	0.369668	0.447080	0.524491	0.601903	0.980053

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (6/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
121	0.013056	0.056185	0.135995	0.215805	0.295615	0.375424	0.455234	0.535044	0.614853	0.980011
122	0.027595	0.077287	0.131523	0.210220	0.288918	0.367615	0.446313	0.525010	0.603708	0.980049
123	0.005895	0.031406	0.114268	0.197131	0.279993	0.362855	0.445718	0.528580	0.611443	0.980003
124	0.007660	0.022012	0.036365	0.117052	0.216245	0.315437	0.414630	0.513822	0.613015	0.980008
125	0.026863	0.075781	0.130473	0.209277	0.288080	0.366884	0.445688	0.524491	0.603295	0.980030
126	0.026618	0.075184	0.126774	0.206241	0.285708	0.365174	0.444641	0.524108	0.603574	0.980052
127	0.009405	0.030480	0.104878	0.186836	0.268793	0.350751	0.432709	0.514667	0.596624	0.980008
128	0.009251	0.063808	0.142442	0.221076	0.299710	0.378343	0.456977	0.535611	0.614244	0.980000
129	0.028465	0.079553	0.138843	0.216230	0.293616	0.371003	0.448390	0.525777	0.603164	0.980029
130	0.043815	0.114852	0.185888	0.256925	0.327962	0.398999	0.470036	0.541073	0.612109	0.980002
131	0.027026	0.076077	0.139431	0.216614	0.293797	0.370980	0.448163	0.525346	0.602529	0.980017
132	0.007800	0.026605	0.085040	0.170088	0.255135	0.340183	0.425231	0.510278	0.595326	0.980002
133	0.024351	0.069125	0.119675	0.200384	0.281094	0.361803	0.442512	0.523222	0.603931	0.980018
134	0.007910	0.027324	0.046739	0.127122	0.221386	0.315650	0.409914	0.504179	0.598443	0.980056
135	0.007159	0.024054	0.091202	0.175274	0.259345	0.343416	0.427487	0.511559	0.595630	0.980007
136	0.006358	0.016386	0.098863	0.184813	0.270764	0.356714	0.442664	0.528615	0.614565	0.980002
137	0.026677	0.071355	0.145678	0.222365	0.299051	0.375738	0.452424	0.529111	0.605797	0.980051
138	0.027135	0.077709	0.129372	0.208200	0.287028	0.365856	0.444683	0.523511	0.602339	0.980036
139	0.007846	0.026725	0.045604	0.134702	0.227475	0.320249	0.413023	0.505797	0.598570	0.980039
140	0.027219	0.076288	0.128428	0.207699	0.286969	0.366239	0.445509	0.524779	0.604049	0.980048

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (7/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
141	0.006367	0.022721	0.070747	0.157950	0.245152	0.332355	0.419558	0.506761	0.593964	0.980001
142	0.029203	0.082346	0.143050	0.219556	0.296062	0.372569	0.449075	0.525581	0.602087	0.980042
143	0.445538	0.515598	0.585659	0.655720	0.725781	0.778800	0.778800	0.778800	0.778800	0.980015
144	0.044773	0.103471	0.162169	0.224740	0.303883	0.383026	0.462169	0.541312	0.620455	0.980026
145	0.041155	0.111210	0.181265	0.251320	0.321376	0.391431	0.461486	0.531541	0.601597	0.980004
146	0.008590	0.028781	0.099169	0.181843	0.264517	0.347191	0.429865	0.512540	0.595214	0.980009
147	0.025730	0.070598	0.134791	0.213161	0.291531	0.369900	0.448270	0.526640	0.605009	0.980013
148	0.007957	0.070878	0.146179	0.221480	0.296782	0.372083	0.447384	0.522686	0.597987	0.980019
149	0.008361	0.023942	0.039523	0.121083	0.219432	0.317781	0.416130	0.514479	0.612829	0.980014
150	0.027588	0.076993	0.138601	0.216050	0.293499	0.370947	0.448396	0.525845	0.603294	0.980054
151	0.005474	0.007450	0.009426	0.070385	0.290079	0.509773	0.729466	0.849167	0.851143	0.980002
152	0.042086	0.112160	0.182233	0.252306	0.322380	0.392453	0.462526	0.532600	0.602673	0.980012
153	0.006325	0.061218	0.139837	0.218457	0.297076	0.375696	0.454316	0.532935	0.611555	0.980002
154	0.027614	0.077741	0.135741	0.213604	0.291467	0.369330	0.447192	0.525055	0.602918	0.980013
155	0.006972	0.018443	0.100795	0.185959	0.271122	0.356285	0.441448	0.526611	0.611774	0.980005
156	0.029576	0.100521	0.171466	0.242412	0.313357	0.384302	0.455247	0.526193	0.597138	0.980007
157	0.028188	0.079709	0.132521	0.210931	0.289342	0.367753	0.446163	0.524574	0.602984	0.980003
158	0.009252	0.047830	0.126604	0.205379	0.284154	0.362928	0.441703	0.520477	0.599252	0.980000
159	0.018953	0.091309	0.163666	0.236022	0.308379	0.380735	0.453091	0.525448	0.597804	0.980031
160	0.027180	0.090740	0.163552	0.236364	0.309175	0.381987	0.454798	0.527610	0.600421	0.980030

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (8/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
161	0.028894	0.081214	0.139433	0.216648	0.293862	0.371076	0.448290	0.525504	0.602719	0.980011
162	0.008585	0.028750	0.085382	0.170531	0.255679	0.340828	0.425976	0.511125	0.596273	0.980004
163	0.012574	0.066156	0.142190	0.218225	0.294260	0.370295	0.446330	0.522365	0.598400	0.980039
164	0.007193	0.024225	0.089920	0.174204	0.258488	0.342772	0.427056	0.511340	0.595624	0.980013
165	0.005401	0.030728	0.114157	0.197586	0.281015	0.364444	0.447874	0.531303	0.614732	0.980001
166	0.012772	0.051696	0.129886	0.208075	0.286265	0.364455	0.442644	0.520834	0.599024	0.980027
167	0.006514	0.028419	0.109536	0.190654	0.271771	0.352888	0.434006	0.515123	0.596240	0.980003
168	0.009878	0.078262	0.152327	0.226391	0.300456	0.374521	0.448586	0.522650	0.596715	0.980004
169	0.028050	0.078638	0.133237	0.211619	0.290001	0.368384	0.446766	0.525148	0.603531	0.980040
170	0.033774	0.104646	0.175517	0.246388	0.317259	0.388130	0.459002	0.529873	0.600744	0.980054
171	0.030408	0.101719	0.173029	0.244339	0.315649	0.386959	0.458270	0.529580	0.600890	0.980033
172	0.008701	0.064477	0.140928	0.217379	0.293830	0.370281	0.446733	0.523184	0.599635	0.980010
173	0.027488	0.076988	0.131075	0.209861	0.288646	0.367432	0.446218	0.525003	0.603789	0.980016
174	0.039049	0.110443	0.181837	0.253231	0.324625	0.396019	0.467413	0.538807	0.610201	0.980005
175	0.008597	0.023391	0.101849	0.186403	0.270958	0.355512	0.440067	0.524621	0.609175	0.980017
176	0.028452	0.076133	0.151712	0.227292	0.302872	0.378451	0.454031	0.529611	0.605190	0.980004
177	0.007496	0.023883	0.091514	0.176042	0.260571	0.345100	0.429628	0.514157	0.598686	0.980034
178	0.024928	0.070928	0.118013	0.199006	0.279999	0.360992	0.441985	0.522978	0.603971	0.980042
179	0.005248	0.014125	0.059838	0.152330	0.244822	0.337314	0.429805	0.522297	0.614789	0.980010
180	0.028755	0.081715	0.139615	0.216666	0.293716	0.370766	0.447816	0.524866	0.601917	0.980027

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (9/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
181	0.011641	0.037226	0.097881	0.181222	0.264563	0.347904	0.431244	0.514585	0.597926	0.980028
182	0.005897	0.017056	0.028215	0.095533	0.199407	0.303282	0.407157	0.511032	0.614907	0.980003
183	0.009904	0.082541	0.155945	0.229349	0.302753	0.376157	0.449561	0.522965	0.596369	0.980003
184	0.009351	0.030400	0.078575	0.165237	0.251899	0.338561	0.425223	0.511885	0.598547	0.980028
185	0.027263	0.074441	0.136995	0.215024	0.293054	0.371084	0.449113	0.527143	0.605172	0.980005
186	0.016974	0.089311	0.161648	0.233986	0.306323	0.378660	0.450998	0.523335	0.595672	0.980017
187	0.025755	0.071612	0.130337	0.209353	0.288368	0.367384	0.446399	0.525415	0.604430	0.980035
188	0.022714	0.094319	0.165925	0.237531	0.309137	0.380743	0.452349	0.523955	0.595561	0.980005
189	0.027819	0.099728	0.171637	0.243545	0.315454	0.387363	0.459272	0.531180	0.603089	0.980020
190	0.019342	0.091805	0.164269	0.236732	0.309196	0.381659	0.454123	0.526586	0.599050	0.980053
191	0.026300	0.095730	0.167717	0.239705	0.311693	0.383681	0.455669	0.527656	0.599644	0.980015
192	0.009229	0.078599	0.152724	0.226849	0.300975	0.375100	0.449225	0.523350	0.597475	0.980003
193	0.006687	0.009668	0.012648	0.015629	0.185301	0.398653	0.612004	0.825355	0.855496	0.980006
194	0.007725	0.026035	0.091913	0.175838	0.259763	0.343688	0.427613	0.511539	0.595464	0.980003
195	0.008695	0.072509	0.147470	0.222431	0.297392	0.372353	0.447314	0.522275	0.597236	0.980042
196	0.022619	0.062988	0.119110	0.200164	0.281217	0.362271	0.443324	0.524378	0.605431	0.980028
197	0.033910	0.104429	0.174949	0.245468	0.315988	0.386508	0.457027	0.527547	0.598066	0.980048
198	0.031877	0.104423	0.176969	0.249516	0.322062	0.394608	0.467154	0.539700	0.612246	0.980001
199	0.510769	0.580872	0.650975	0.702818	0.702818	0.702818	0.702818	0.702818	0.702818	0.980001
200	0.009674	0.031571	0.076964	0.163875	0.250786	0.337698	0.424609	0.511521	0.598432	0.980043

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (10/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
201	0.008261	0.043987	0.123278	0.202569	0.281859	0.361150	0.440441	0.519732	0.599023	0.980037
202	0.012148	0.045865	0.124939	0.204013	0.283087	0.362161	0.441235	0.520309	0.599383	0.980017
203	0.029488	0.101102	0.172716	0.244331	0.315945	0.387559	0.459174	0.530788	0.602402	0.980012
204	0.027506	0.094884	0.167073	0.239262	0.311451	0.383640	0.455829	0.528019	0.600208	0.980049
205	0.034055	0.104840	0.175625	0.246411	0.317196	0.387981	0.458767	0.529552	0.600337	0.980006
206	0.007219	0.024256	0.091435	0.175475	0.259515	0.343555	0.427594	0.511634	0.595674	0.980000
207	0.006929	0.010294	0.013658	0.017022	0.156610	0.364605	0.572600	0.780595	0.800608	0.980011
208	0.027339	0.076515	0.131846	0.210505	0.289164	0.367824	0.446483	0.525142	0.603801	0.980015
209	0.007604	0.024364	0.081376	0.167684	0.253993	0.340302	0.426611	0.512920	0.599229	0.980040
210	0.009565	0.069679	0.147446	0.225212	0.302978	0.380745	0.458511	0.536277	0.614043	0.980007
211	0.026930	0.096481	0.168285	0.240089	0.311894	0.383698	0.455502	0.527306	0.599110	0.980034
212	0.039254	0.095838	0.152423	0.209007	0.285408	0.368471	0.451534	0.534597	0.617660	0.980026
213	0.006309	0.054797	0.134327	0.213856	0.293385	0.372914	0.452443	0.531972	0.611502	0.980002
214	0.027918	0.078560	0.136845	0.214521	0.292198	0.369875	0.447551	0.525228	0.602904	0.980017
215	0.009328	0.033584	0.113711	0.193839	0.273966	0.354094	0.434221	0.514349	0.594477	0.980017
216	0.008844	0.029852	0.096082	0.179240	0.262398	0.345556	0.428714	0.511872	0.595030	0.980006
217	0.006350	0.017219	0.076356	0.165678	0.254999	0.344321	0.433643	0.522965	0.612287	0.980011
218	0.008137	0.025573	0.086410	0.172002	0.257594	0.343187	0.428779	0.514371	0.599964	0.980021
219	0.029434	0.088862	0.156217	0.229571	0.302925	0.376279	0.449633	0.522987	0.596341	0.980013
220	0.006865	0.018266	0.061507	0.153869	0.246231	0.338593	0.430955	0.523317	0.615679	0.980004

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (11/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
221	0.043526	0.101841	0.160155	0.219989	0.299949	0.379910	0.459871	0.539831	0.619792	0.980007
222	0.009430	0.030561	0.104955	0.186900	0.268846	0.350791	0.432737	0.514682	0.596628	0.980012
223	0.040155	0.102947	0.165739	0.228532	0.291324	0.354116	0.422131	0.523499	0.624868	0.980018
224	0.042342	0.101345	0.160348	0.219351	0.298290	0.378026	0.457761	0.537497	0.617232	0.980001
225	0.008735	0.023797	0.102331	0.186787	0.271243	0.355699	0.440155	0.524611	0.609067	0.980008
226	0.025803	0.073531	0.121260	0.199825	0.280597	0.361368	0.442139	0.522911	0.603682	0.980013
227	0.009712	0.031674	0.106648	0.188228	0.269808	0.351388	0.432967	0.514547	0.596127	0.980004
228	0.018200	0.076401	0.151680	0.226959	0.302238	0.377516	0.452795	0.528074	0.603353	0.980030
229	0.013819	0.041854	0.121663	0.201473	0.281282	0.361092	0.440901	0.520711	0.600520	0.980025
230	0.042927	0.106205	0.178930	0.251654	0.324378	0.397103	0.469827	0.542551	0.615275	0.980024
231	0.008943	0.030683	0.111237	0.191792	0.272346	0.352900	0.433455	0.514009	0.594564	0.980009
232	0.012780	0.057053	0.134454	0.211855	0.289256	0.366657	0.444059	0.521460	0.598861	0.980037
233	0.006580	0.017536	0.084955	0.172947	0.260940	0.348933	0.436926	0.524919	0.612911	0.980002
234	0.008302	0.022433	0.084974	0.172750	0.260526	0.348302	0.436079	0.523855	0.611631	0.980005
235	0.035707	0.106060	0.176412	0.246764	0.317117	0.387469	0.457821	0.528174	0.598526	0.980031
236	0.031247	0.102535	0.173822	0.245110	0.316398	0.387685	0.458973	0.530260	0.601548	0.980017
237	0.004321	0.005949	0.007577	0.009205	0.236695	0.477753	0.718811	0.890185	0.891813	0.980004
238	0.009226	0.029996	0.110721	0.191589	0.272456	0.353324	0.434192	0.515059	0.595927	0.980069
239	0.043105	0.102353	0.161601	0.220850	0.299031	0.378797	0.458562	0.538328	0.618093	0.980004
240	0.024409	0.069248	0.121222	0.201657	0.282091	0.362526	0.442961	0.523395	0.603830	0.980019

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (12/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
241	0.030833	0.101544	0.172256	0.242968	0.313680	0.384391	0.455103	0.525815	0.596526	0.980003
242	0.043418	0.114729	0.186039	0.257350	0.328660	0.399970	0.471281	0.542591	0.613902	0.980008
243	0.043891	0.105366	0.178344	0.251322	0.324300	0.397278	0.470256	0.543235	0.616213	0.980019
244	0.005934	0.064799	0.140849	0.216899	0.292948	0.368998	0.445048	0.521098	0.597147	0.980059
245	0.039723	0.109955	0.180187	0.250419	0.320652	0.390884	0.461116	0.531348	0.601580	0.980038
246	0.026892	0.077220	0.127549	0.204185	0.283863	0.363541	0.443219	0.522898	0.602576	0.980041
247	0.008094	0.027767	0.056912	0.146943	0.236974	0.327005	0.417036	0.507066	0.597097	0.980002
248	0.007257	0.019620	0.080662	0.169232	0.257803	0.346373	0.434944	0.523514	0.612085	0.980011
249	0.043060	0.101385	0.159710	0.220460	0.300132	0.379805	0.459477	0.539149	0.618822	0.980022
250	0.009071	0.040700	0.120194	0.199688	0.279182	0.358676	0.438170	0.517664	0.597158	0.980046
251	0.022473	0.094148	0.165823	0.237498	0.309173	0.380848	0.452523	0.524197	0.595872	0.980011
252	0.033028	0.104110	0.175191	0.246273	0.317354	0.388435	0.459517	0.530598	0.601680	0.980031
253	0.024558	0.069279	0.122011	0.202370	0.282728	0.363087	0.443446	0.523804	0.604163	0.980044
254	0.004230	0.015199	0.101081	0.186962	0.272844	0.358725	0.444607	0.530488	0.616370	0.980005
255	0.027967	0.075526	0.147382	0.223627	0.299871	0.376115	0.452360	0.528604	0.604848	0.980037
256	0.033293	0.104270	0.175248	0.246225	0.317203	0.388180	0.459158	0.530135	0.601113	0.980040
257	0.009118	0.049001	0.127357	0.205713	0.284070	0.362426	0.440783	0.519139	0.597495	0.980018
258	0.041690	0.111703	0.181716	0.251728	0.321741	0.391754	0.461766	0.531779	0.601792	0.980022
259	0.028810	0.100202	0.171594	0.242986	0.314378	0.385770	0.457162	0.528554	0.599946	0.980012
260	0.026536	0.075003	0.124932	0.204728	0.284523	0.364319	0.444114	0.523910	0.603706	0.980008

表 C -4 JASMINE コード・相図に関する入力パラメータ一覧(13/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
261	0.007004	0.018901	0.079589	0.168375	0.257161	0.345948	0.434734	0.523520	0.612306	0.980006
262	0.025415	0.086435	0.159747	0.233059	0.306370	0.379682	0.452994	0.526306	0.599618	0.980064
263	0.005585	0.015959	0.026334	0.102000	0.204665	0.307330	0.409994	0.512659	0.615324	0.980001
264	0.004497	0.012747	0.053072	0.146013	0.238954	0.331895	0.424836	0.517777	0.610718	0.980009
265	0.027692	0.077869	0.137780	0.215285	0.292789	0.370294	0.447798	0.525303	0.602808	0.980012
266	0.027360	0.098221	0.169833	0.241444	0.313055	0.384667	0.456278	0.527889	0.599501	0.980034
267	0.041702	0.099208	0.156715	0.214221	0.293334	0.374767	0.456201	0.537634	0.619068	0.980019
268	0.013906	0.041902	0.121527	0.201212	0.280897	0.360582	0.440267	0.519952	0.599637	0.980051
269	0.009780	0.045668	0.124297	0.202927	0.281556	0.360185	0.438814	0.517444	0.596073	0.980019
270	0.025500	0.067632	0.142930	0.220250	0.297570	0.374890	0.452210	0.529530	0.606850	0.980039
271	0.029423	0.100247	0.171072	0.241896	0.312721	0.383546	0.454370	0.525195	0.596020	0.980036
272	0.007631	0.077957	0.154692	0.231427	0.308162	0.384897	0.461632	0.538367	0.615102	0.980002
273	0.032794	0.103257	0.173720	0.244183	0.314646	0.385109	0.455571	0.526034	0.596497	0.980005
274	0.030035	0.100940	0.171845	0.242750	0.313655	0.384561	0.455466	0.526371	0.597276	0.980014
275	0.028603	0.080796	0.139481	0.216626	0.293771	0.370917	0.448062	0.525207	0.602352	0.980057
276	0.425684	0.496739	0.567794	0.638849	0.709904	0.715694	0.717157	0.718619	0.720081	0.980010
277	0.009555	0.040099	0.121666	0.203232	0.284799	0.366366	0.447932	0.529499	0.611065	0.980009
278	0.009982	0.050841	0.128928	0.207015	0.285101	0.363188	0.441275	0.519362	0.597449	0.980007
279	0.006398	0.017438	0.053006	0.146547	0.240088	0.333629	0.427170	0.520711	0.614252	0.980007
281	0.004417	0.015115	0.100514	0.185913	0.271311	0.356710	0.442109	0.527508	0.612906	0.980008

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (14/30)

ケース	mwtf1	mwtf2	mwtf3	mwtf4	mwtf5	mwtf6	mwtf7	mwtf8	mwtf9	mwtf10
282	0.044048	0.102621	0.161194	0.223558	0.302771	0.381985	0.461199	0.540412	0.619626	0.980017
283	0.023876	0.067813	0.116195	0.197531	0.278868	0.360205	0.441542	0.522879	0.604216	0.980026
284	0.027243	0.076355	0.128531	0.207781	0.287032	0.366282	0.445532	0.524782	0.604032	0.980031
285	0.027962	0.079029	0.139832	0.216907	0.293981	0.371056	0.448131	0.525205	0.602280	0.980029
286	0.005530	0.040759	0.120191	0.199623	0.279055	0.358487	0.437919	0.517351	0.596783	0.980060
287	0.027181	0.077833	0.129562	0.208358	0.287154	0.365949	0.444745	0.523541	0.602336	0.980014
288	0.027164	0.076127	0.128168	0.207473	0.286779	0.366084	0.445389	0.524695	0.604000	0.980034
289	0.027405	0.078008	0.128612	0.205512	0.285030	0.364549	0.444068	0.523586	0.603105	0.980005
290	0.008459	0.022794	0.100963	0.185825	0.270687	0.355549	0.440411	0.525273	0.610136	0.980009
291	0.028519	0.079611	0.140811	0.217848	0.294884	0.371920	0.448956	0.525992	0.603029	0.980048
292	0.007314	0.039099	0.121022	0.202945	0.284868	0.366791	0.448714	0.530637	0.612559	0.980006
293	0.024401	0.096719	0.169036	0.241354	0.313671	0.385989	0.458306	0.530624	0.602941	0.980035
294	0.027797	0.078235	0.136407	0.214158	0.291909	0.369659	0.447410	0.525160	0.602911	0.980047
295	0.024903	0.095327	0.167511	0.239695	0.311879	0.384062	0.456246	0.528430	0.600614	0.980033
296	0.006213	0.043337	0.186953	0.330569	0.474184	0.617800	0.761416	0.821887	0.823715	0.980009
297	0.008457	0.022868	0.092140	0.178572	0.265004	0.351436	0.437868	0.524300	0.610732	0.980013
298	0.032285	0.102803	0.173321	0.243839	0.314358	0.384876	0.455394	0.525912	0.596431	0.980008
299	0.026065	0.072078	0.128248	0.207710	0.287172	0.366634	0.446096	0.525558	0.605020	0.980003
300	0.007286	0.024486	0.091679	0.175671	0.259663	0.343656	0.427648	0.511640	0.595633	0.980002

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (15/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
1	2733.96	2636.785	2539.61	2442.435	2345.26	2248.085	2150.91	2053.735	1956.56	1542.06
2	2679.41	2596.185	2512.96	2429.735	2346.51	2263.285	2180.06	2096.835	2013.61	1540.71
3	2841.98	2741.1175	2640.255	2539.3925	2438.53	2337.6675	2236.805	2135.9425	2035.08	1535.68
4	2935.56	2857.8475	2780.135	2702.4225	2624.71	2546.9975	2469.285	2391.5725	2313.86	1670.86
5	2882.22	2874.22	2866.22	2858.22	2850.22	2842.22	2834.22	2826.22	2818.22	1353.52
6	2688.6	2601.875	2515.15	2428.425	2341.7	2254.975	2168.25	2081.525	1994.8	1532.6
7	2688.6	2599.025	2509.45	2419.875	2330.3	2240.725	2151.15	2061.575	1972	1532.8
8	2705.06	2620.8975	2536.735	2452.5725	2368.41	2284.2475	2200.085	2115.9225	2031.76	1535.66
9	2745.97	2656.3825	2566.795	2477.2075	2387.62	2298.0325	2208.445	2118.8575	2029.27	1538.77
10	2733.96	2645.1975	2556.435	2467.6725	2378.91	2290.1475	2201.385	2112.6225	2023.86	1544.76
11	2863.43	2761.5675	2659.705	2557.8425	2455.98	2354.1175	2252.255	2150.3925	2048.53	1532.63
12	2771.15	2678.95	2586.75	2494.55	2402.35	2310.15	2217.95	2125.75	2033.55	1535.95
13	2914.17	2806.3825	2698.595	2590.8075	2483.02	2375.2325	2267.445	2159.6575	2051.87	1531.87
14	3140.36	3033.56	2926.76	2819.96	2713.16	2606.36	2499.56	2392.76	2285.96	1395.16
15	2872.76	2768.235	2663.71	2559.185	2454.66	2350.135	2245.61	2141.085	2036.56	1535.06
16	2667.36	2585.535	2503.71	2421.885	2340.06	2258.235	2176.41	2094.585	2012.76	1538.56
17	3061.19	2966.2775	2871.365	2776.4525	2681.54	2586.6275	2491.715	2396.8025	2301.89	1422.69
18	2777.21	2692.335	2607.46	2522.585	2437.71	2352.835	2267.96	2183.085	2098.21	1536.61
19	2969.05	2884.9875	2800.925	2716.8625	2632.8	2548.7375	2464.675	2380.6125	2296.55	1437.35
20	2941.66	2859.2475	2776.835	2694.4225	2612.01	2529.5975	2447.185	2364.7725	2282.36	1373.96

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (16/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
21	2784.17	2690.07	2595.97	2501.87	2407.77	2313.67	2219.57	2125.47	2031.37	1533.97
22	2724.58	2631.855	2539.13	2446.405	2353.68	2260.955	2168.23	2075.505	1982.78	1535.38
23	2745.97	2651.4575	2556.945	2462.4325	2367.92	2273.4075	2178.895	2084.3825	1989.87	1538.07
24	3050.53	2955.8675	2861.205	2766.5425	2671.88	2577.2175	2482.555	2387.8925	2293.23	1520.23
25	2949.04	2830.49	2711.94	2593.39	2474.84	2356.29	2237.74	2119.19	2000.64	1384.64
26	2992.04	2873.4275	2754.815	2636.2025	2517.59	2398.9775	2280.365	2161.7525	2043.14	1529.94
27	2806.26	2736.135	2666.01	2595.885	2525.76	2455.635	2385.51	2315.385	2245.26	1749.16
28	2735.54	2642.7025	2549.865	2457.0275	2364.19	2271.3525	2178.515	2085.6775	1992.84	1534.74
29	2799.53	2697.705	2595.88	2494.055	2392.23	2290.405	2188.58	2086.755	1984.93	1322.53
30	2930.03	2817.9175	2705.805	2593.6925	2481.58	2369.4675	2257.355	2145.2425	2033.13	1497.43
31	2712.13	2625.1925	2538.255	2451.3175	2364.38	2277.4425	2190.505	2103.5675	2016.63	1533.13
32	2937.86	2855.81	2773.76	2691.71	2609.66	2527.61	2445.56	2363.51	2281.46	1364.36
33	2928.16	2818.8475	2709.535	2600.2225	2490.91	2381.5975	2272.285	2162.9725	2053.66	1529.96
34	2771.15	2679.2625	2587.375	2495.4875	2403.6	2311.7125	2219.825	2127.9375	2036.05	1537.55
35	2863.43	2761.3925	2659.355	2557.3175	2455.28	2353.2425	2251.205	2149.1675	2047.13	1533.33
36	3069.39	2947.215	2825.04	2702.865	2580.69	2458.515	2336.34	2214.165	2091.99	1545.89
37	2733.96	2650.01	2566.06	2482.11	2398.16	2314.21	2230.26	2146.31	2062.36	1550.46
38	2769.1	2709.3125	2649.525	2589.7375	2529.95	2470.1625	2410.375	2350.5875	2290.8	1888.2
39	2758.39	2663.1525	2567.915	2472.6775	2377.44	2282.2025	2186.965	2091.7275	1996.49	1534.29
40	2733.96	2644.4725	2554.985	2465.4975	2376.01	2286.5225	2197.035	2107.5475	2018.06	1541.66

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (17/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
41	2762.3	2676.75	2591.2	2505.65	2420.1	2334.55	2249	2163.45	2077.9	1536.8
42	2733.96	2648.71	2563.46	2478.21	2392.96	2307.71	2222.46	2137.21	2051.96	1544.96
43	3042.9	2950.2375	2857.575	2764.9125	2672.25	2579.5875	2486.925	2394.2625	2301.6	1535.6
44	2845.68	2777.3175	2708.955	2640.5925	2572.23	2503.8675	2435.505	2367.1425	2298.78	1405.88
45	2906.5	2799.775	2693.05	2586.325	2479.6	2372.875	2266.15	2159.425	2052.7	1530.2
46	2733.96	2644.4725	2554.985	2465.4975	2376.01	2286.5225	2197.035	2107.5475	2018.06	1541.66
47	2777.21	2685.8725	2594.535	2503.1975	2411.86	2320.5225	2229.185	2137.8475	2046.51	1536.71
48	2933.98	2852.63	2771.28	2689.93	2608.58	2527.23	2445.88	2364.53	2283.18	1512.38
49	2806.26	2726.635	2647.01	2567.385	2487.76	2408.135	2328.51	2248.885	2169.26	1729.76
50	2722.43	2630.8675	2539.305	2447.7425	2356.18	2264.6175	2173.055	2081.4925	1989.93	1545.93
51	2769.1	2700.0875	2631.075	2562.0625	2493.05	2424.0375	2355.025	2286.0125	2217	1600.8
52	2941.66	2859.86	2778.06	2696.26	2614.46	2532.66	2450.86	2369.06	2287.26	1376.36
53	2937.8	2827.3125	2716.825	2606.3375	2495.85	2385.3625	2274.875	2164.3875	2053.9	1529.8
54	2722.43	2634.9925	2547.555	2460.1175	2372.68	2285.2425	2197.805	2110.3675	2022.93	1550.43
55	2745.97	2655.0825	2564.195	2473.3075	2382.42	2291.5325	2200.645	2109.7575	2018.87	1537.87
56	2853.72	2745.4825	2637.245	2529.0075	2420.77	2312.5325	2204.295	2096.0575	1987.82	1531.72
57	2937.8	2827.725	2717.65	2607.575	2497.5	2387.425	2277.35	2167.275	2057.2	1531.5
58	2667.35	2585.1875	2503.025	2420.8625	2338.7	2256.5375	2174.375	2092.2125	2010.05	1531.65
59	2937.86	2854.66	2771.46	2688.26	2605.06	2521.86	2438.66	2355.46	2272.26	1370.06
60	2758.39	2666.14	2573.89	2481.64	2389.39	2297.14	2204.89	2112.64	2020.39	1533.79

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (18/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
61	2810.75	2722.9375	2635.125	2547.3125	2459.5	2371.6875	2283.875	2196.0625	2108.25	1537.55
62	2885.4	2771.6	2657.8	2544	2430.2	2316.4	2202.6	2088.8	1975	1500.8
63	3050.53	2958.83	2867.13	2775.43	2683.73	2592.03	2500.33	2408.63	2316.93	1565.53
64	2863.43	2762.155	2660.88	2559.605	2458.33	2357.055	2255.78	2154.505	2053.23	1533.13
65	2745.97	2655.8325	2565.695	2475.5575	2385.42	2295.2825	2205.145	2115.0075	2024.87	1538.67
66	2907.67	2834.52	2761.37	2688.22	2615.07	2541.92	2468.77	2395.62	2322.47	1756.37
67	2771.15	2672.6625	2574.175	2475.6875	2377.2	2278.7125	2180.225	2081.7375	1983.25	1539.55
68	2859.04	2787.8275	2716.615	2645.4025	2574.19	2502.9775	2431.765	2360.5525	2289.34	1373.74
69	2745.97	2660.6325	2575.295	2489.9575	2404.62	2319.2825	2233.945	2148.6075	2063.27	1546.07
70	2737.38	2648.2175	2559.055	2469.8925	2380.73	2291.5675	2202.405	2113.2425	2024.08	1534.28
71	2845.68	2773.3925	2701.105	2628.8175	2556.53	2484.2425	2411.955	2339.6675	2267.38	1343.38
72	2945.39	2863.7025	2782.015	2700.3275	2618.64	2536.9525	2455.265	2373.5775	2291.89	1377.99
73	2799.97	2703.2075	2606.445	2509.6825	2412.92	2316.1575	2219.395	2122.6325	2025.87	1537.07
74	2724.58	2636.405	2548.23	2460.055	2371.88	2283.705	2195.53	2107.355	2019.18	1534.18
75	2835.63	2733.0425	2630.455	2527.8675	2425.28	2322.6925	2220.105	2117.5175	2014.93	1531.53
76	2971.98	2889.6675	2807.355	2725.0425	2642.73	2560.4175	2478.105	2395.7925	2313.48	1459.18
77	2926.01	2814.31	2702.61	2590.91	2479.21	2367.51	2255.81	2144.11	2032.41	1500.41
78	2722.43	2630.7925	2539.155	2447.5175	2355.88	2264.2425	2172.605	2080.9675	1989.33	1546.03
79	2733.96	2643.785	2553.61	2463.435	2373.26	2283.085	2192.91	2102.735	2012.56	1542.16
80	2724.58	2634.93	2545.28	2455.63	2365.98	2276.33	2186.68	2097.03	2007.38	1538.08

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (19/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
81	2731.36	2646.735	2562.11	2477.485	2392.86	2308.235	2223.61	2138.985	2054.36	1540.56
82	2688.6	2598.8875	2509.175	2419.4625	2329.75	2240.0375	2150.325	2060.6125	1970.9	1532.8
83	2815.08	2715.28	2615.48	2515.68	2415.88	2316.08	2216.28	2116.48	2016.68	1529.28
84	2956.1	2872.925	2789.75	2706.575	2623.4	2540.225	2457.05	2373.875	2290.7	1383.2
85	2688.6	2598.8625	2509.125	2419.3875	2329.65	2239.9125	2150.175	2060.4375	1970.7	1532.9
86	2745.97	2660.92	2575.87	2490.82	2405.77	2320.72	2235.67	2150.62	2065.57	1546.47
87	2795.99	2729.765	2663.54	2597.315	2531.09	2464.865	2398.64	2332.415	2266.19	1364.49
88	2945.39	2830.2275	2715.065	2599.9025	2484.74	2369.5775	2254.415	2139.2525	2024.09	1369.29
89	2733.96	2640.36	2546.76	2453.16	2359.56	2265.96	2172.36	2078.76	1985.16	1542.06
90	2900.24	2800.915	2701.59	2602.265	2502.94	2403.615	2304.29	2204.965	2105.64	1535.74
91	2917.75	2906.175	2894.6	2883.025	2871.45	2859.875	2848.3	2836.725	2825.15	1498.95
92	2699.09	2612.2025	2525.315	2438.4275	2351.54	2264.6525	2177.765	2090.8775	2003.99	1537.39
93	3009.87	2983.2575	2956.645	2930.0325	2903.42	2876.8075	2850.195	2823.5825	2796.97	1790.87
94	2722.43	2630.5425	2538.655	2446.7675	2354.88	2262.9925	2171.105	2079.2175	1987.33	1546.13
95	2716.29	2633.1275	2549.965	2466.8025	2383.64	2300.4775	2217.315	2134.1525	2050.99	1540.39
96	2655.84	2574.0275	2492.215	2410.4025	2328.59	2246.7775	2164.965	2083.1525	2001.34	1532.94
97	2845.68	2774.23	2702.78	2631.33	2559.88	2488.43	2416.98	2345.53	2274.08	1634.18
98	2655.84	2568.865	2481.89	2394.915	2307.94	2220.965	2133.99	2047.015	1960.04	1532.24
99	2881.7	2778.2875	2674.875	2571.4625	2468.05	2364.6375	2261.225	2157.8125	2054.4	1532.7
100	2785.19	2719.6775	2654.165	2588.6525	2523.14	2457.6275	2392.115	2326.6025	2261.09	1363.39

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (20/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
101	2722.43	2634.08	2545.73	2457.38	2369.03	2280.68	2192.33	2103.98	2015.63	1548.03
102	2881.7	2778.2875	2674.875	2571.4625	2468.05	2364.6375	2261.225	2157.8125	2054.4	1532.7
103	3029.73	2944.505	2859.28	2774.055	2688.83	2603.605	2518.38	2433.155	2347.93	1727.13
104	2777.78	2681.955	2586.13	2490.305	2394.48	2298.655	2202.83	2107.005	2011.18	1504.88
105	3026.47	2934.845	2843.22	2751.595	2659.97	2568.345	2476.72	2385.095	2293.47	1525.27
106	2872.76	2770.41	2668.06	2565.71	2463.36	2361.01	2258.66	2156.31	2053.96	1532.96
107	2969.05	2886.05	2803.05	2720.05	2637.05	2554.05	2471.05	2388.05	2305.05	1415.55
108	2700.11	2610.1225	2520.135	2430.1475	2340.16	2250.1725	2160.185	2070.1975	1980.21	1538.31
109	2711.43	2623.6675	2535.905	2448.1425	2360.38	2272.6175	2184.855	2097.0925	2009.33	1551.13
110	2749.85	2664.4	2578.95	2493.5	2408.05	2322.6	2237.15	2151.7	2066.25	1543.65
111	2692.87	2605.9575	2519.045	2432.1325	2345.22	2258.3075	2171.395	2084.4825	1997.57	1537.37
112	2781.13	2715.305	2649.48	2583.655	2517.83	2452.005	2386.18	2320.355	2254.53	1615.83
113	2806.26	2735.6725	2665.085	2594.4975	2523.91	2453.3225	2382.735	2312.1475	2241.56	1747.76
114	2700.11	2612.8725	2525.635	2438.3975	2351.16	2263.9225	2176.685	2089.4475	2002.21	1536.91
115	2758.39	2674.79	2591.19	2507.59	2423.99	2340.39	2256.79	2173.19	2089.59	1540.69
116	2774.01	2678.7225	2583.435	2488.1475	2392.86	2297.5725	2202.285	2106.9975	2011.71	1498.81
117	2962.8	2876.425	2790.05	2703.675	2617.3	2530.925	2444.55	2358.175	2271.8	1357.9
118	2722.43	2631.1925	2539.955	2448.7175	2357.48	2266.2425	2175.005	2083.7675	1992.53	1545.83
119	2930.03	2818.9675	2707.905	2596.8425	2485.78	2374.7175	2263.655	2152.5925	2041.53	1491.93
120	2733.96	2641.41	2548.86	2456.31	2363.76	2271.21	2178.66	2086.11	1993.56	1541.46

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (21/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
121	2900.24	2827.365	2754.49	2681.615	2608.74	2535.865	2462.99	2390.115	2317.24	1888.54
122	2745.97	2655.9325	2565.895	2475.8575	2385.82	2295.7825	2205.745	2115.7075	2025.67	1538.27
123	2945.39	2864.8025	2784.215	2703.6275	2623.04	2542.4525	2461.865	2381.2775	2300.69	1403.09
124	3038.94	2945.2525	2851.565	2757.8775	2664.19	2570.5025	2476.815	2383.1275	2289.44	1524.04
125	2758.39	2667.34	2576.29	2485.24	2394.19	2303.14	2212.09	2121.04	2029.99	1534.99
126	2758.39	2667.165	2575.94	2484.715	2393.49	2302.265	2211.04	2119.815	2028.59	1535.29
127	2921.92	2809.8825	2697.845	2585.8075	2473.77	2361.7325	2249.695	2137.6575	2025.62	1499.82
128	2909.17	2836.6325	2764.095	2691.5575	2619.02	2546.4825	2473.945	2401.4075	2328.87	1891.37
129	2688.6	2598.8625	2509.125	2419.3875	2329.65	2239.9125	2150.175	2060.4375	1970.7	1532.9
130	2803.03	2734.805	2666.58	2598.355	2530.13	2461.905	2393.68	2325.455	2257.23	1349.53
131	2704.79	2614.04	2523.29	2432.54	2341.79	2251.04	2160.29	2069.54	1978.79	1534.79
132	2977.37	2856.82	2736.27	2615.72	2495.17	2374.62	2254.07	2133.52	2012.97	1361.67
133	2771.15	2679.2125	2587.275	2495.3375	2403.4	2311.4625	2219.525	2127.5875	2035.65	1538.85
134	3010.12	2887.395	2764.67	2641.945	2519.22	2396.495	2273.77	2151.045	2028.32	1530.52
135	2956.1	2838.1125	2720.125	2602.1375	2484.15	2366.1625	2248.175	2130.1875	2012.2	1373.1
136	2926.01	2847.1475	2768.285	2689.4225	2610.56	2531.6975	2452.835	2373.9725	2295.11	1550.81
137	2679.41	2595.6725	2511.935	2428.1975	2344.46	2260.7225	2176.985	2093.2475	2009.51	1535.21
138	2733.96	2640.7725	2547.585	2454.3975	2361.21	2268.0225	2174.835	2081.6475	1988.46	1541.96
139	2988.52	2868.2075	2747.895	2627.5825	2507.27	2386.9575	2266.645	2146.3325	2026.02	1530.32
140	2745.97	2655.8325	2565.695	2475.5575	2385.42	2295.2825	2205.145	2115.0075	2024.87	1538.77

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (22/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
141	3073.62	2945.195	2816.77	2688.345	2559.92	2431.495	2303.07	2174.645	2046.22	1390.52
142	2758.39	2667.4025	2576.415	2485.4275	2394.44	2303.4525	2212.465	2121.4775	2030.49	1531.99
143	2882.22	2874.3575	2866.495	2858.6325	2850.77	2842.9075	2835.045	2827.1825	2819.32	1692.32
144	2769.1	2703.55	2638	2572.45	2506.9	2441.35	2375.8	2310.25	2244.7	1756.5
145	2763.77	2679.545	2595.32	2511.095	2426.87	2342.645	2258.42	2174.195	2089.97	1535.07
146	2949.04	2831.5025	2713.965	2596.4275	2478.89	2361.3525	2243.815	2126.2775	2008.74	1349.84
147	2717.96	2630.7725	2543.585	2456.3975	2369.21	2282.0225	2194.835	2107.6475	2020.46	1536.66
148	2829.03	2729.8175	2630.605	2531.3925	2432.18	2332.9675	2233.755	2134.5425	2035.33	1531.13
149	3074.48	2981.305	2888.13	2794.955	2701.78	2608.605	2515.43	2422.255	2329.08	1811.98
150	2745.97	2656.4325	2566.895	2477.3575	2387.82	2298.2825	2208.745	2119.2075	2029.67	1538.27
151	2929.48	2911.43	2893.38	2875.33	2857.28	2839.23	2821.18	2803.13	2785.08	1608.08
152	2712.13	2629.9175	2547.705	2465.4925	2383.28	2301.0675	2218.855	2136.6425	2054.43	1541.63
153	2921.92	2845.645	2769.37	2693.095	2616.82	2540.545	2464.27	2387.995	2311.72	1551.62
154	2700.11	2609.3475	2518.585	2427.8225	2337.06	2246.2975	2155.535	2064.7725	1974.01	1534.01
155	2941.66	2859.3975	2777.135	2694.8725	2612.61	2530.3475	2448.085	2365.8225	2283.56	1376.86
156	2777.78	2682.08	2586.38	2490.68	2394.98	2299.28	2203.58	2107.88	2012.18	1490.28
157	2758.39	2667.0025	2575.615	2484.2275	2392.84	2301.4525	2210.065	2118.6775	2027.29	1533.29
158	2821.92	2721.42	2620.92	2520.42	2419.92	2319.42	2218.92	2118.42	2017.92	1531.22
159	2777.78	2681.955	2586.13	2490.305	2394.48	2298.655	2202.83	2107.005	2011.18	1504.98
160	2733.96	2643.7725	2553.585	2463.3975	2373.21	2283.0225	2192.835	2102.6475	2012.46	1542.26

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (23/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
161	2700.01	2609.4725	2518.935	2428.3975	2337.86	2247.3225	2156.785	2066.2475	1975.71	1532.41
162	3003.16	2885.71	2768.26	2650.81	2533.36	2415.91	2298.46	2181.01	2063.56	1533.96
163	2890.9	2791.8375	2692.775	2593.7125	2494.65	2395.5875	2296.525	2197.4625	2098.4	1536.5
164	2959.5	2841.1125	2722.725	2604.3375	2485.95	2367.5625	2249.175	2130.7875	2012.4	1372.4
165	2928.16	2851.8975	2775.635	2699.3725	2623.11	2546.8475	2470.585	2394.3225	2318.06	1720.36
166	2909.17	2808.795	2708.42	2608.045	2507.67	2407.295	2306.92	2206.545	2106.17	1535.97
167	2933.98	2821.8675	2709.755	2597.6425	2485.53	2373.4175	2261.305	2149.1925	2037.08	1506.68
168	2785.19	2684.14	2583.09	2482.04	2380.99	2279.94	2178.89	2077.84	1976.79	1334.69
169	2688.6	2598.425	2508.25	2418.075	2327.9	2237.725	2147.55	2057.375	1967.2	1533.4
170	2700.11	2613.06	2526.01	2438.96	2351.91	2264.86	2177.81	2090.76	2003.71	1537.81
171	2745.97	2658.7325	2571.495	2484.2575	2397.02	2309.7825	2222.545	2135.3075	2048.07	1537.67
172	2783.56	2687.0475	2590.535	2494.0225	2397.51	2300.9975	2204.485	2107.9725	2011.46	1530.16
173	2745.97	2655.9325	2565.895	2475.8575	2385.82	2295.7825	2205.745	2115.7075	2025.67	1538.47
174	2820.02	2748.895	2677.77	2606.645	2535.52	2464.395	2393.27	2322.145	2251.02	1336.42
175	2962.8	2876.75	2790.7	2704.65	2618.6	2532.55	2446.5	2360.45	2274.4	1349.7
176	2677.66	2593.8725	2510.085	2426.2975	2342.51	2258.7225	2174.935	2091.1475	2007.36	1532.96
177	2898.55	2789.2375	2679.925	2570.6125	2461.3	2351.9875	2242.675	2133.3625	2024.05	1529.85
178	2771.15	2678.8875	2586.625	2494.3625	2402.1	2309.8375	2217.575	2125.3125	2033.05	1537.85
179	3001.12	2916.545	2831.97	2747.395	2662.82	2578.245	2493.67	2409.095	2324.52	1778.52
180	2771.15	2679.0625	2586.975	2494.8875	2402.8	2310.7125	2218.625	2126.5375	2034.45	1532.55

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (24/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
181	2966.82	2856.9325	2747.045	2637.1575	2527.27	2417.3825	2307.495	2197.6075	2087.72	1535.82
182	3070.07	2975.4575	2880.845	2786.2325	2691.62	2597.0075	2502.395	2407.7825	2313.17	1704.77
183	2788.83	2687.855	2586.88	2485.905	2384.93	2283.955	2182.98	2082.005	1981.03	1334.43
184	2928.68	2816.13	2703.58	2591.03	2478.48	2365.93	2253.38	2140.83	2028.28	1532.08
185	2704.79	2618.265	2531.74	2445.215	2358.69	2272.165	2185.64	2099.115	2012.59	1534.49
186	2795.99	2694.565	2593.14	2491.715	2390.29	2288.865	2187.44	2086.015	1984.59	1325.89
187	2737.38	2648.355	2559.33	2470.305	2381.28	2292.255	2203.23	2114.205	2025.18	1536.58
188	2820.02	2719.195	2618.37	2517.545	2416.72	2315.895	2215.07	2114.245	2013.42	1371.62
189	2710.79	2627.34	2543.89	2460.44	2376.99	2293.54	2210.09	2126.64	2043.19	1538.89
190	2765.65	2672.7	2579.75	2486.8	2393.85	2300.9	2207.95	2115	2022.05	1532.65
191	2745.97	2655.07	2564.17	2473.27	2382.37	2291.47	2200.57	2109.67	2018.77	1538.47
192	2835.63	2736.705	2637.78	2538.855	2439.93	2341.005	2242.08	2143.155	2044.23	1533.23
193	3003.71	2981.4225	2959.135	2936.8475	2914.56	2892.2725	2869.985	2847.6975	2825.41	1894.41
194	2959.5	2840.9875	2722.475	2603.9625	2485.45	2366.9375	2248.425	2129.9125	2011.4	1362.9
195	2853.72	2752.9825	2652.245	2551.5075	2450.77	2350.0325	2249.295	2148.5575	2047.82	1532.82
196	2745.97	2656.7325	2567.495	2478.2575	2389.02	2299.7825	2210.545	2121.3075	2032.07	1546.27
197	2777.21	2684.5225	2591.835	2499.1475	2406.46	2313.7725	2221.085	2128.3975	2035.71	1533.11
198	2816.7	2747.2125	2677.725	2608.2375	2538.75	2469.2625	2399.775	2330.2875	2260.8	1353.6
199	2830.22	2823.3575	2816.495	2809.6325	2802.77	2795.9075	2789.045	2782.1825	2775.32	1753.12
200	2935.56	2822.385	2709.21	2596.035	2482.86	2369.685	2256.51	2143.335	2030.16	1532.56

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (25/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
201	2832.99	2731.34	2629.69	2528.04	2426.39	2324.74	2223.09	2121.44	2019.79	1530.29
202	2870.75	2770.275	2669.8	2569.325	2468.85	2368.375	2267.9	2167.425	2066.95	1534.55
203	2726.7	2642.175	2557.65	2473.125	2388.6	2304.075	2219.55	2135.025	2050.5	1539.1
204	2733.96	2644.085	2554.21	2464.335	2374.46	2284.585	2194.71	2104.835	2014.96	1542.06
205	2712.13	2624.2425	2536.355	2448.4675	2360.58	2272.6925	2184.805	2096.9175	2009.03	1537.63
206	2956.1	2838.0875	2720.075	2602.0625	2484.05	2366.0375	2248.025	2130.0125	2012	1372
207	3026.47	3002.195	2977.92	2953.645	2929.37	2905.095	2880.82	2856.545	2832.27	1537.77
208	2745.97	2656.0325	2566.095	2476.1575	2386.22	2296.2825	2206.345	2116.4075	2026.47	1538.67
209	2898.55	2788.3375	2678.125	2567.9125	2457.7	2347.4875	2237.275	2127.0625	2016.85	1529.45
210	2863.43	2791.3425	2719.255	2647.1675	2575.08	2502.9925	2430.905	2358.8175	2286.73	1639.73
211	2758.39	2666.44	2574.49	2482.54	2390.59	2298.64	2206.69	2114.74	2022.79	1534.89
212	2819.23	2747.155	2675.08	2603.005	2530.93	2458.855	2386.78	2314.705	2242.63	1746.83
213	2930.03	2852.805	2775.58	2698.355	2621.13	2543.905	2466.68	2389.455	2312.23	1552.03
214	2700.11	2609.41	2518.71	2428.01	2337.31	2246.61	2155.91	2065.21	1974.51	1533.61
215	2945.39	2829.0775	2712.765	2596.4525	2480.14	2363.8275	2247.515	2131.2025	2014.89	1340.59
216	2959.5	2840.7375	2721.975	2603.2125	2484.45	2365.6875	2246.925	2128.1625	2009.4	1346.5
217	2974.76	2889.185	2803.61	2718.035	2632.46	2546.885	2461.31	2375.735	2290.16	1390.86
218	2863.43	2756.28	2649.13	2541.98	2434.83	2327.68	2220.53	2113.38	2006.23	1529.23
219	2810.75	2709.8	2608.85	2507.9	2406.95	2306	2205.05	2104.1	2003.15	1378.35
220	2964.57	2881.52	2798.47	2715.42	2632.37	2549.32	2466.27	2383.22	2300.17	1680.87

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (26/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
221	2781.13	2714.1425	2647.155	2580.1675	2513.18	2446.1925	2379.205	2312.2175	2245.23	1754.33
222	2921.92	2809.8825	2697.845	2585.8075	2473.77	2361.7325	2249.695	2137.6575	2025.62	1499.52
223	2806.26	2728.0725	2649.885	2571.6975	2493.51	2415.3225	2337.135	2258.9475	2180.76	1732.96
224	2781.13	2711.455	2641.78	2572.105	2502.43	2432.755	2363.08	2293.405	2223.73	1602.43
225	2962.8	2876.5875	2790.375	2704.1625	2617.95	2531.7375	2445.525	2359.3125	2273.1	1347.9
226	2771.15	2678.6625	2586.175	2493.6875	2401.2	2308.7125	2216.225	2123.7375	2031.25	1536.55
227	2933.98	2820.9175	2707.855	2594.7925	2481.73	2368.6675	2255.605	2142.5425	2029.48	1496.48
228	2731.62	2644.795	2557.97	2471.145	2384.32	2297.495	2210.67	2123.845	2037.02	1537.52
229	2791.94	2693.415	2594.89	2496.365	2397.84	2299.315	2200.79	2102.265	2003.74	1535.24
230	2781.13	2715.3425	2649.555	2583.7675	2517.98	2452.1925	2386.405	2320.6175	2254.83	1616.13
231	2949.04	2832.44	2715.84	2599.24	2482.64	2366.04	2249.44	2132.84	2016.24	1345.24
232	2890.9	2791.125	2691.35	2591.575	2491.8	2392.025	2292.25	2192.475	2092.7	1536.2
233	2949.04	2865.7775	2782.515	2699.2525	2615.99	2532.7275	2449.465	2366.2025	2282.94	1385.44
234	2945.39	2860.29	2775.19	2690.09	2604.99	2519.89	2434.79	2349.69	2264.59	1353.89
235	2777.21	2685.885	2594.56	2503.235	2411.91	2320.585	2229.26	2137.935	2046.61	1536.71
236	2737.38	2651.4675	2565.555	2479.6425	2393.73	2307.8175	2221.905	2135.9925	2050.08	1536.78
237	2937.8	2918.9625	2900.125	2881.2875	2862.45	2843.6125	2824.775	2805.9375	2787.1	1766.6
238	2933.98	2821.4175	2708.855	2596.2925	2483.73	2371.1675	2258.605	2146.0425	2033.48	1498.78
239	2769.1	2700.375	2631.65	2562.925	2494.2	2425.475	2356.75	2288.025	2219.3	1602.2
240	2771.15	2679.3	2587.45	2495.6	2403.75	2311.9	2220.05	2128.2	2036.35	1538.75

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (27/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
241	2797.39	2700.415	2603.44	2506.465	2409.49	2312.515	2215.54	2118.565	2021.59	1490.29
242	2792.42	2726.2575	2660.095	2593.9325	2527.77	2461.6075	2395.445	2329.2825	2263.12	1366.52
243	2769.1	2704.1875	2639.275	2574.3625	2509.45	2444.5375	2379.625	2314.7125	2249.8	1616.3
244	2848.71	2746.2475	2643.785	2541.3225	2438.86	2336.3975	2233.935	2131.4725	2029.01	1513.11
245	2712.13	2627.655	2543.18	2458.705	2374.23	2289.755	2205.28	2120.805	2036.33	1532.83
246	2733.96	2640.385	2546.81	2453.235	2359.66	2266.085	2172.51	2078.935	1985.36	1542.06
247	2956.1	2834.575	2713.05	2591.525	2470	2348.475	2226.95	2105.425	1983.9	1357
248	2959.5	2874.3125	2789.125	2703.9375	2618.75	2533.5625	2448.375	2363.1875	2278	1371.2
249	2793.54	2725.815	2658.09	2590.365	2522.64	2454.915	2387.19	2319.465	2251.74	1755.84
250	2906.5	2799.4	2692.3	2585.2	2478.1	2371	2263.9	2156.8	2049.7	1533.4
251	2795.99	2695.965	2595.94	2495.915	2395.89	2295.865	2195.84	2095.815	1995.79	1345.19
252	2672.42	2587.1075	2501.795	2416.4825	2331.17	2245.8575	2160.545	2075.2325	1989.92	1535.82
253	2771.15	2680.1	2589.05	2498	2406.95	2315.9	2224.85	2133.8	2042.75	1538.45
254	2928.16	2851.9225	2775.685	2699.4475	2623.21	2546.9725	2470.735	2394.4975	2318.26	1771.56
255	2691.91	2606.885	2521.86	2436.835	2351.81	2266.785	2181.76	2096.735	2011.71	1533.51
256	2758.39	2671.99	2585.59	2499.19	2412.79	2326.39	2239.99	2153.59	2067.19	1540.49
257	2881.7	2777.05	2672.4	2567.75	2463.1	2358.45	2253.8	2149.15	2044.5	1533.1
258	2758.39	2674.5025	2590.615	2506.7275	2422.84	2338.9525	2255.065	2171.1775	2087.29	1534.19
259	2733.96	2644.4725	2554.985	2465.4975	2376.01	2286.5225	2197.035	2107.5475	2018.06	1541.66
260	2758.39	2667.065	2575.74	2484.415	2393.09	2301.765	2210.44	2119.115	2027.79	1535.49

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (28/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
261	2959.5	2874.575	2789.65	2704.725	2619.8	2534.875	2449.95	2365.025	2280.1	1376.2
262	2758.39	2665.74	2573.09	2480.44	2387.79	2295.14	2202.49	2109.84	2017.19	1536.39
263	3056.46	2963.585	2870.71	2777.835	2684.96	2592.085	2499.21	2406.335	2313.46	1714.26
264	3057.75	2966.025	2874.3	2782.575	2690.85	2599.125	2507.4	2415.675	2323.95	1455.75
265	2700.11	2609.51	2518.91	2428.31	2337.71	2247.11	2156.51	2065.91	1975.31	1533.91
266	2745.97	2655.2075	2564.445	2473.6825	2382.92	2292.1575	2201.395	2110.6325	2019.87	1537.57
267	2793.54	2724.59	2655.64	2586.69	2517.74	2448.79	2379.84	2310.89	2241.94	1750.04
268	2909.17	2808.5075	2707.845	2607.1825	2506.52	2405.8575	2305.195	2204.5325	2103.87	1536.67
269	2942.22	2833.045	2723.87	2614.695	2505.52	2396.345	2287.17	2177.995	2068.82	1535.72
270	2667.36	2584.7475	2502.135	2419.5225	2336.91	2254.2975	2171.685	2089.0725	2006.46	1536.96
271	2824.18	2725.7675	2627.355	2528.9425	2430.53	2332.1175	2233.705	2135.2925	2036.88	1503.28
272	2875.99	2806.2775	2736.565	2666.8525	2597.14	2527.4275	2457.715	2388.0025	2318.29	1823.49
273	2797.39	2700.765	2604.14	2507.515	2410.89	2314.265	2217.64	2121.015	2024.39	1498.49
274	2810.34	2715.09	2619.84	2524.59	2429.34	2334.09	2238.84	2143.59	2048.34	1533.84
275	2722.43	2631.1925	2539.955	2448.7175	2357.48	2266.2425	2175.005	2083.7675	1992.53	1545.83
276	2868.98	2860.78	2852.58	2844.38	2836.18	2827.98	2819.78	2811.58	2803.38	1345.58
277	2917.75	2837.85	2757.95	2678.05	2598.15	2518.25	2438.35	2358.45	2278.55	1498.15
278	2881.7	2777.2625	2672.825	2568.3875	2463.95	2359.5125	2255.075	2150.6375	2046.2	1534.3
279	3003.16	2916.885	2830.61	2744.335	2658.06	2571.785	2485.51	2399.235	2312.96	1691.46
281	2959.5	2878.7125	2797.925	2717.1375	2636.35	2555.5625	2474.775	2393.9875	2313.2	1459.8

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (29/30)

ケース	tmat1	tmat2	tmat3	tmat4	tmat5	tmat6	tmat7	tmat8	tmat9	tmat10
282	2781.13	2714.6425	2648.155	2581.6675	2515.18	2448.6925	2382.205	2315.7175	2249.23	1756.83
283	2771.15	2679.1375	2587.125	2495.1125	2403.1	2311.0875	2219.075	2127.0625	2035.05	1539.65
284	2745.97	2655.8325	2565.695	2475.5575	2385.42	2295.2825	2205.145	2115.0075	2024.87	1538.77
285	2712.13	2620.8175	2529.505	2438.1925	2346.88	2255.5675	2164.255	2072.9425	1981.63	1533.53
286	2918.13	2810.13	2702.13	2594.13	2486.13	2378.13	2270.13	2162.13	2054.13	1529.73
287	2733.96	2640.785	2547.61	2454.435	2361.26	2268.085	2174.91	2081.735	1988.56	1541.96
288	2745.97	2655.845	2565.72	2475.595	2385.47	2295.345	2205.22	2115.095	2024.97	1538.87
289	2722.43	2630.105	2537.78	2445.455	2353.13	2260.805	2168.48	2076.155	1983.83	1546.23
290	2949.04	2864.3025	2779.565	2694.8275	2610.09	2525.3525	2440.615	2355.8775	2271.14	1351.64
291	2688.6	2599.025	2509.45	2419.875	2330.3	2240.725	2151.15	2061.575	1972	1532.8
292	2937.8	2859.8625	2781.925	2703.9875	2626.05	2548.1125	2470.175	2392.2375	2314.3	1671.9
293	2731.62	2647.3575	2563.095	2478.8325	2394.57	2310.3075	2226.045	2141.7825	2057.52	1544.22
294	2700.11	2609.385	2518.66	2427.935	2337.21	2246.485	2155.76	2065.035	1974.31	1533.71
295	2777.21	2688.2225	2599.235	2510.2475	2421.26	2332.2725	2243.285	2154.2975	2065.31	1537.91
296	2930.03	2915.3175	2900.605	2885.8925	2871.18	2856.4675	2841.755	2827.0425	2812.33	1554.43
297	2949.04	2863.84	2778.64	2693.44	2608.24	2523.04	2437.84	2352.64	2267.44	1351.64
298	2797.39	2700.5025	2603.615	2506.7275	2409.84	2312.9525	2216.065	2119.1775	2022.29	1488.99
299	2724.58	2636.3175	2548.055	2459.7925	2371.53	2283.2675	2195.005	2106.7425	2018.48	1536.18
300	2956.1	2838.075	2720.05	2602.025	2484	2365.975	2247.95	2129.925	2011.9	1370.7

表 C-4 JASMINE コード・相図に関する入力パラメータ一覧 (30/30)

case	ジェット流入温度(K)	融点(K)	スーパーヒート(K)	プール水位 1.5m	プール水位 1.75m
				二相流セル幅(m)	二相流セル幅(m)
1	2238.47	2036.76	201.71	0.55	0.6
6	2063.83	2044.8	19.03	0.55	0.7
7	2216.18	2022	194.18	0.5	0.6
19	2386.89	2346.55	40.34	0.5	0.6
23	2193.05	2039.87	153.18	0.5	0.6
25	2098.01	2050.64	47.37	0.5	0.6
29	2098	2034.93	63.07	0.5	0.6
30	2088.77	2083.13	5.64	0.5	0.6
46	2073.95	2068.06	5.89	0.65	0.7
47	2098	2096.51	1.49	0.5	0.6
50	2059.21	2039.93	19.28	0.75	0.7
56	2182.21	2037.82	144.39	0.6	0.6
58	2098.01	2060.05	37.96	0.6	0.6
77	2098.01	2082.41	15.6	0.5	0.6
78	2100.38	2039.33	61.05	0.5	0.65
79	2098.01	2062.56	35.45	0.5	0.7
82	2098.01	2020.9	77.11	0.6	0.6
83	2142.58	2066.68	75.9	0.5	0.65
85	2242.95	2020.7	222.25	0.6	0.6
88	2098	2074.09	23.91	0.5	0.6
89	2233.96	2035.16	198.8	0.5	0.6
94	2098.01	2037.33	60.68	0.5	0.65
98	2357.15	2010.04	347.11	0.5	0.6
109	2132.05	2059.33	72.72	0.6	0.6
123	2361.22	2350.69	10.53	0.5	0.6
127	2090.58	2075.62	14.96	0.5	0.6
129	2260.83	2020.7	240.13	0.5	0.6
132	2098.01	2062.97	35.04	0.5	0.6
135	2098	2062.2	35.8	0.5	0.6
148	2097.34	2085.33	12.01	0.75	0.7
154	2273.12	2024.01	249.11	0.5	0.6
160	2186.24	2062.46	123.78	0.6	0.6

表 C -5 JASMINE 解析実行ケース一覧 (1/2)

case	ジェット流入温度(K)	融点(K)	スーパーヒート(K)	プール水位 1.5m	プール水位 1.75m
				二相流セル幅(m)	二相流セル幅(m)
164	2098.01	2062.4	35.61	0.5	0.6
167	2098.01	2087.08	10.93	0.5	0.6
168	2098	2026.79	71.21	0.5	0.6
169	2131.84	2017.2	114.64	0.5	0.6
172	2145.5	2061.46	84.04	0.5	0.65
183	2107.46	2031.03	76.43	0.5	0.6
186	2079.91	2034.59	45.32	0.5	0.6
188	2124.47	2063.42	61.05	0.5	0.6
194	2098	2061.4	36.6	0.5	0.6
204	2098	2064.96	33.04	0.55	0.65
206	2175.99	2062	113.99	0.5	0.6
214	2143.13	2024.51	118.62	0.5	0.6
215	2098.01	2064.89	33.12	0.5	0.65
216	2098	2059.4	38.6	0.5	0.6
218	2144.28	2056.23	88.05	0.5	0.65
219	2307.07	2053.15	253.92	0.5	0.6
231	2098	2066.24	31.76	0.5	0.6
235	2098	2096.61	1.39	0.5	0.6
238	2098	2083.48	14.52	0.5	0.6
241	2098	2071.59	26.41	0.5	0.6
246	2141.49	2035.36	106.13	0.5	0.6
247	2090.62	2033.9	56.72	0.5	0.6
251	2098.01	2045.79	52.22	0.5	0.6
265	2281.82	2025.31	256.51	0.5	0.65
271	2193.09	2086.88	106.21	0.5	0.65
273	2098	2074.39	23.61	0.5	0.6
287	2098	2038.56	59.44	0.55	0.7
289	2223.52	2033.83	189.69	0.5	0.7
291	2165.52	2022	143.52	0.55	0.7
294	2047.49	2024.31	23.18	0.75	0.7
298	2098	2072.29	25.71	0.5	0.7
300	2104.68	2061.9	42.78	0.5	0.7

表 C -5 JASMINE 解析実行ケース一覧 (2/2)

ケース	粒子状デブリ	アグロメレー	連続層状デブ	未落下分の溶	拡がり半径	デブリ堆積高
	質量 (kg)	ションデブリ	リ質量 (kg)	融物質量	(m)	さ (m)
		質量 (kg)		(kg)		
1	31.17	0.00	20734	181158	3	1.141
6	3.16	0.00	31576	168652	3	1.133
7	106.34	0.00	22990	179250	3	1.144
19	6.20	0.00	20639	135472	3	0.894
23	57.30	0.00	17799	170753	3	1.067
25	11.13	0.00	22230	100444	3	0.703
29	77.94	0.00	24271	78028	3	0.585
30	2.49	0.00	24920	85378	3	0.630
46	3.21	0.00	32060	159073	3	1.089
47	0.00	0.00	30914	147619	3	1.024
50	0.00	0.00	31124	168615	3	1.130
56	12.60	0.00	20969	179224	3	1.144
58	5.63	0.00	28115	168500	3	1.117
77	2.42	0.00	24231	78348	3	0.587
78	11.37	0.00	28404	172989	3	1.140
79	3.00	0.00	29951	169916	3	1.130
82	23.16	0.00	33048	167012	3	1.131
83	102.26	0.00	92857	96744	3	1.103
85	86.58	0.00	20507	183769	3	1.155
88	2.38	0.00	23819	166547	3	1.103
89	128.25	0.00	24996	177914	3	1.144
94	13.34	0.00	26640	175101	3	1.139
98	719.18	0.00	18495	186552	3	1.158
109	9.45	0.00	31494	168531	3	1.130
123	2.24	0.00	22430	91645	3	0.664
127	2.43	0.00	24278	172209	3	1.117
129	176.41	0.00	19848	184090	3	1.153
132	9.38	0.00	23424	84826	3	0.623
135	6.88	0.00	22927	169491	3	1.102
148	3.15	0.00	31523	160646	3	1.118

表 C-6 JASMINE コード解析結果(プール水位 1.5m) (1/3)

ケース	粒子状デブリ	アグロメレー	連続層状デブ	未落下分の溶	拡がり半径	デブリ堆積高
番号	質量 (kg)	ションデブリ	リ質量 (kg)	融物質量	(m)	さ (m)
		質量 (kg)		(kg)		
154	178.63	0.00	26471	172754	3	1.126
160	11.61	0.00	23183	172644	3	1.107
164	4.72	0.00	23582	159913	3	1.052
167	2.44	0.00	24350	102848	3	0.736
168	101.44	0.00	23480	79171	3	0.583
169	87.29	0.00	28988	174462	3	1.145
172	12.63	0.00	25236	170017	3	1.126
183	32.20	0.00	22961	80591	3	0.589
186	12.03	0.00	24044	107742	3	0.747
188	15.85	0.00	22608	166674	3	1.092
194	4.81	0.00	24005	97776	3	0.698
204	6.02	0.00	30070	166995	3	1.118
206	112.53	0.00	22384	84939	3	0.613
214	67.21	0.00	27922	171509	3	1.128
215	8.22	0.00	27354	94538	3	0.700
216	45.32	0.00	25124	104080	3	0.736
218	12.46	0.00	24886	171769	3	1.134
219	600.67	31.91	18120	160098	3	1.033
231	73.17	0.00	30404	131030	3	0.928
235	0.00	0.00	30600	147828	3	1.023
238	2.40	0.00	24032	89268	3	0.648
241	10.51	0.00	35034	73453	3	0.623
246	17.81	0.00	22224	180763	3	1.144
247	8.62	0.00	21522	104550	3	0.722
251	51.96	0.00	24685	82191	3	0.611
265	281.51	0.00	20099	183039	3	1.151
271	56.14	0.00	21521	103774	3	0.726
273	2.40	0.00	23957	102309	3	0.727
287	5.01	0.00	25023	168266	3	1.2367
289	136.54	0.00	22991	179044	3	1.2538

表 C-6 JASMINE コード解析結果(プール水位 1.5m) (2/3)

ケース	粒子状デブリ	アグロメレー	連続層状デブ	未落下分の溶	拡がり半径	デブリ堆積高
番号	質量 (kg)	ションデブリ	リ質量 (kg)	融物質量	(m)	さ (m)
		質量 (kg)		(kg)		
291	27.26	0.00	19419	182934	3	1.145
294	2.89	0.00	28892	171369	3	1.132
298	4.92	0.00	24562	153814	3	1.024
300	8.92	0.00	22273	170173	3	1.104

表 C-6 JASMINE コード解析結果(プール水位 1.5m) (3/3)
ケース	粒子状デブリ	アグロメレー	連続層状デブ	未落下分の溶	拡がり半径	デブリ堆積高
	質量 (kg)	ションデブリ	リ質量 (kg)	融物質量	(m)	さ (m)
		質量 (kg)		(kg)		
1	197.13	0.00	28777	172948	3	1.140
6	3.46	0.00	34612	165616	3	1.133
7	77.71	0.00	28686	173582	3	1.144
19	5.92	0.00	29596	126515	3	0.894
23	45.43	0.00	23816	164748	3	1.067
25	5.79	0.00	28904	93776	3	0.703
29	31.92	0.00	26561	75784	3	0.585
30	2.61	0.00	26121	84176	3	0.630
46	3.14	0.00	31413	159720	3	1.089
47	2.69	0.00	26849	151681	3	1.024
50	3.27	0.00	32703	167033	3	1.130
56	26.26	0.00	23828	176352	3	1.144
58	5.61	0.00	28049	168567	3	1.117
77	3.37	0.00	33671	68907	3	0.587
78	11.56	0.00	28863	172529	3	1.140
79	3.36	0.00	33573	166294	3	1.130
82	7.61	0.00	25339	174736	3	1.131
83	6.10	0.00	30466	159232	3	1.104
85	171.47	0.00	30430	173761	3	1.154
88	2.60	0.00	26023	164344	3	1.103
89	58.28	0.00	27674	175306	3	1.144
94	14.44	0.00	28850	172889	3	1.139
98	256.90	0.00	24431	181078	3	1.160
109	10.54	0.00	26338	173686	3	1.130
123	2.46	0.00	24539	89536	3	0.664
127	3.34	0.00	33388	163098	3	1.117
129	236.91	0.00	28286	175591	3	1.152
132	2.49	0.00	24896	83362	3	0.623
135	4.99	0.00	24910	167510	3	1.102
148	3.64	0.00	36337	155832	3	1.118

表 C -7 JASMINE コード解析結果(プール水位 1.75m) (1/3)

ケース	粒子状デブリ	アグロメレー	連続層状デブ	未落下分の溶	拡がり半径	デブリ堆積高
番号	質量 (kg)	ションデブリ	リ質量 (kg)	融物質量	(m)	さ (m)
		質量 (kg)		(kg)		
154	202.15	0.00	27104	172098	3	1.126
160	23.94	0.00	26559	169255	3	1.107
164	7.96	0.00	26506	156986	3	1.052
167	2.69	0.00	26856	100342	3	0.736
168	32.56	0.00	27098	75623	3	0.584
169	22.37	0.00	31924	171590	3	1.145
172	13.59	0.00	27154	168097	3	1.126
183	61.21	0.00	25434	78090	3	0.588
186	2.57	0.00	25702	106093	3	0.747
188	11.52	0.00	28765	160521	3	1.092
194	3.15	0.00	31485	90298	3	0.698
204	3.20	0.00	31946	165122	3	1.118
206	39.09	0.00	24383	83013	3	0.614
214	25.39	0.00	25351	174122	3	1.129
215	5.80	0.00	28950	92944	3	0.700
216	2.61	0.00	26059	103187	3	0.737
218	8.71	0.00	28995	167664	3	1.134
219	465.23	0.00	25950	152435	3	1.034
231	15.54	0.00	25875	135616	3	0.928
235	2.73	0.00	27263	151163	3	1.023
238	2.58	0.00	25807	87494	3	0.648
241	55.29	0.00	26267	82175	3	0.623
246	11.67	0.00	29133	173861	3	1.144
247	8.82	0.00	29357	96715	3	0.722
251	5.07	0.00	25315	81608	3	0.611
265	369.35	0.00	27385	175666	3	1.150
271	20.53	0.00	25630	99700	3	0.726
273	2.66	0.00	26633	99634	3	0.727
287	8.60	0.00	28654	164632	3	1.093
289	308.00	0.00	30791	171073	3	1.149

表 C -7 JASMINE コード解析結果(プール水位 1.75m) (2/3)

ケース	粒子状デブリ	アグロメレー	連続層状デブ	未落下分の溶	拡がり半径	デブリ堆積高
番号	質量 (kg)	ションデブリ	リ質量 (kg)	融物質量	(m)	さ (m)
		質量 (kg)		(kg)		
291	14.39	0.00	23949	178416	3	1.145
294	3.00	0.00	29992	170268	3	1.132
298	5.84	0.00	29195	149180	3	1.024
300	8.14	0.00	27095	165351	3	1.104

表 C -7 JASMINE コード解析結果(プール水位 1.75m) (3/3)

ケース	UO2 wt%	デブリ崩壊熱 (=浸水層崩壊熱) (W/kg)	
1	0.529296	52.929566	
6	0.537630	53.763000	
7	0.530676	53.067568	
19	0.659974	65.997396	
23	0.536174	53.617436	
25	0.595486	59.548644	
29	0.513887	51.388682	
30	0.558196	55.819632	
46	0.557005	55.700532	
47	0.562574	56.257436	
50	0.538981	53.898064	
56	0.475598	47.559796	
58	0.523367	52.336661	
77	0.580680	58.067992	
78	0.534983	53.498265	
79	0.534017	53.401685	
82	0.530255	53.025541	
83	0.621058	62.105835	
85	0.526334	52.633391	
88	0.609931	60.993081	
89	0.526807	52.680686	
94	0.532151	53.215130	
98	0.522754	52.275421	
109	0.529957	52.995651	
123	0.656489	65.648911	
127	0.550643	55.064257	
129	0.526361	52.636142	
132	0.572476	57.247615	
135	0.591941	59.194116	
148	0.617568	61.756835	
154	0.528664	52.866424	
160	0.532851	53.285116	
164	0.590276	59.027575	

表 C-8 デブリ崩壊熱一覧 (1/2)

ケース	UO2 wt%	デブリ崩壊熱 (=浸水層崩壊熱) (W/kg)	
167	0.639245	63.924464	
168	0.536439	53.643892	
169	0.523564	52.356429	
172	0.584923	58.492334	
183	0.540742	54.074202	
186	0.514722	51.472187	
188	0.622769	62.276864	
194	0.571404	57.140358	
204	0.541369	54.136875	
206	0.588605	58.860532	
214	0.531691	53.169140	
215	0.545743	54.574348	
216	0.540487	54.048703	
218	0.585339	58.533882	
219	0.667033	66.703259	
231	0.554923	55.492315	
235	0.562619	56.261883	
238	0.567943	56.794330	
241	0.578270	57.827022	
246	0.525220	52.522006	
247	0.543749	54.374894	
251	0.568520	56.852034	
265	0.528454	52.845440	
271	0.657560	65.756003	
273	0.600655	60.065535	
287	0.5345188	53.4518893	
289	0.52484023	52.484023	
291	0.53038459	53.0384597	
294	0.53219889	53.2198893	
298	0.57167905	57.1679053	
300	0.58776344	58.7763439	

表 C-8 デブリ崩壊熱一覧 (2/2)

ケース	デブリ堆積高さ(m)	冷却可能な	冷却成功判定
	(JASMINE 結果)	デブリ堆積高さ(m)	(○:成功、×:失敗)
1	1.141	1.2481	0
6	1.133	1.2281	0
7	1.144	1.2388	0
19	0.894	1.0255	0
23	1.067	1.2347	0
25	0.703	1.1035	0
29	0.585	1.2920	0
30	0.630	1.1929	0
46	1.089	1.1982	0
47	1.024	1.1952	0
50	1.130	1.2244	0
56	1.144	1.3964	0
58	1.117	1.2639	0
77	0.587	1.1453	0
78	1.140	1.2343	0
79	1.130	1.2417	0
82	1.131	1.2384	0
83	1.103	1.0850	×
85	1.155	1.2477	0
88	1.103	1.1008	×
89	1.144	1.2509	0
94	1.139	1.2394	0
98	1.158	1.2530	0
109	1.130	1.2461	0
123	0.664	1.0571	0
127	1.117	1.1999	0
129	1.153	1.2474	0
132	0.623	1.1619	0
135	1.102	1.1159	0
148	1.118	1.0972	×
154	1.126	1.2459	0
160	1.107	1.2448	0

表 C-9 デブリ冷却が可能な最大堆積高さ評価結果(プール水位 1.5m) (1/2)

ケース	デブリ堆積高さ(m)	冷却可能な	冷却成功判定
	(JASMINE 結果)	デブリ堆積高さ(m)	(○:成功、×:失敗)
164	1.052	1.1202	0
167	0.736	1.0423	0
168	0.583	1.2234	0
169	1.145	1.2504	\bigcirc
172	1.126	1.1451	0
183	0.589	1.2158	0
186	0.747	1.2769	0
188	1.092	1.0686	×
194	0.698	1.1590	\bigcirc
204	1.118	1.2289	\bigcirc
206	0.613	1.1197	0
214	1.128	1.2388	0
215	0.700	1.2248	0
216	0.736	1.2226	0
218	1.134	1.1428	0
219	1.033	0.9964	×
231	0.928	1.2041	0
235	1.023	1.1955	0
238	0.648	1.1722	0
241	0.623	1.1576	\bigcirc
246	1.144	1.2544	\bigcirc
247	0.722	1.2095	\bigcirc
251	0.611	1.1630	0
265	1.151	1.2482	0
271	0.726	1.0207	0
273	0.727	1.1139	\bigcirc
287	1.093	1.2367	0
289	1.150	1.2538	0
291	1.145	1.2400	0
294	1.132	1.2374	0
298	1.024	1.1705	0
300	1.104	1.1260	0

表 C-8 デブリ冷却が可能な最大堆積高さ評価結果(プール水位 1.5m) (2/2)

ケース	デブリ堆積高さ(m)	冷却可能な	冷却成功判定
	(JASMINE 結果)	デブリ堆積高さ(m)	(○:成功、×:失敗)
1	1.140	1.2481	0
6	1.133	1.2281	0
7	1.144	1.2388	0
19	0.894	1.0255	0
23	1.067	1.2347	0
25	0.703	1.1035	0
29	0.585	1.2920	0
30	0.630	1.1929	0
46	1.089	1.1982	0
47	1.024	1.1952	0
50	1.130	1.2244	0
56	1.144	1.3964	0
58	1.117	1.2639	0
77	0.587	1.1453	0
78	1.140	1.2343	0
79	1.130	1.2417	0
82	1.131	1.2384	0
83	1.104	1.0850	×
85	1.154	1.2477	0
88	1.103	1.1008	×
89	1.144	1.2509	0
94	1.139	1.2394	0
98	1.160	1.2530	0
109	1.130	1.2461	0
123	0.664	1.0571	0
127	1.117	1.1999	0
129	1.152	1.2474	0
132	0.623	1.1619	0
135	1.102	1.1159	0
148	1.118	1.0972	×
154	1.126	1.2459	0
160	1.107	1.2448	0

表 C-10 デブリ冷却が可能な最大堆積高さ評価結果(プール水位 1.75m) (1/2)

ケース	デブリ堆積高さ(m)	冷却可能な	冷却成功判定
	(JASMINE 結果)	デブリ堆積高さ(m)	(○:成功、×:失敗)
164	1.052	1.1202	0
167	0.736	1.0423	0
168	0.584	1.2234	0
169	1.145	1.2504	0
172	1.126	1.1451	0
183	0.588	1.2158	0
186	0.747	1.2769	0
188	1.092	1.0686	×
194	0.698	1.1590	0
204	1.118	1.2289	0
206	0.614	1.1197	0
214	1.129	1.2388	0
215	0.700	1.2248	0
216	0.737	1.2226	0
218	1.134	1.1428	0
219	1.034	0.9964	×
231	0.928	1.2041	0
235	1.023	1.1955	0
238	0.648	1.1722	0
241	0.623	1.1576	0
246	1.144	1.2544	0
247	0.722	1.2095	0
251	0.611	1.1630	0
265	1.150	1.2482	0
271	0.726	1.0207	0
273	0.727	1.1139	0
287	1.093	1.2367	0
289	1.149	1.2538	0
291	1.145	1.2400	0
294	1.132	1.2374	0
298	1.024	1.1705	0
300	1.104	1.1260	0

表 C-10 デブリ冷却が可能な最大堆積高さ評価結果(プール水位 1.75m) (2/2)

付録 D ウェブ会議報告

ウェブ会議(1)

件名	CSARP/ MCAP 会合への出席			
主催	U.S.NRC			
出張先	オンライン			
期間	令和4年6月6日(月)~令和4年6月10日(金)			
参加者	研究員2名			
概要	米国 NRC が主催する、CSARP(COOPERATIVE SEVERE ACCIDENT			
	RESEARCH PROGRAM) 及び MCAP (MELCOR Code Assessment Program)			
	会合に出席した。原子力機構及び日本原子力規制庁を含め、各国参加機関が			
	シビアアクシデントに関係する研究を紹介した。原子力機構からは、			
	MELCOR コードと JASMINE コードを組み合わせた実機における溶融物冷			
	却性評価について以下のタイトルで紹介した。また、他参加組織によるシビ			
	アアクシデント解析に関する最新知見を取得した。			
	Probabilistic evaluation of ex-vessel molten core coolability by combined			
	analyses using MELCOR and JASMINE codes			
	Toshinori Matsumoto (Japan Atomic Energy Agency, Japan)			

ウェブ会議(2)

件名	IAEA 格納容器内における溶融コリウム挙動及び冷却性に関する技術会合		
主催	IAEA		
出張先	オンライン		
期間	令和4年6月14日(火)~令和4年6月17日(金)		
参加者	研究員3名		
概要	軽水炉の格納容器内(Ex-Vessel)における溶融コリウム挙動及び冷却性に		
	関する最新の技術的知見の共有を目的として、IAEA の原子力安全・セキュ		
	リティー (NSS) 局主催で開催された技術会合 (Technical Meeting on Ex-Vessel		
	Molten Corium Behaviour and Coolability)である。		
	4日間の会合中に、4つのテーマ(格納容器内デザイン、格納容器内の溶		
	融進展現象、格納容器内溶融コリウム挙動、関連する IAEA 及び国際的なプ		
	ロジェクト) で計23 件の発表があった。 今後 IAEA は溶融コリウムの物性、		
	形態及び特性に関するオンラインドキュメントを整備することとした。		

ウェブ会議(3)

件名	OECD/ ROSAU 会議
主催	OECD/NEA
出張先	オンライン
期間	令和3年6月21日(火)~令和3年6月22日(水)
参加者	研究員2名
概要	OECD/NEA における実験プロジェクト ROSAU (Reduction Of Severe
	Accident Uncertainties) 第5回会合(Web 会合)に出席し、シビアアクシデ
	ント時の溶融炉心コンクリート相互作用(MCCI: Molten Core/Concrete
	Interaction)の発生防止・影響緩和対策関連する DCAM (Debris Coolability And
	MCCI) 及び MST (Melt Spreading Test) 実験に関する最新情報を取得した。
	ROSAU 実験は米国 ANL (Argonne National Loaboratory)において実施さ
	れる。2019年6月から2024年5月まで継続される。本プロジェクトでは、
	模擬コリウム (ウラン酸化物やジルコニウム酸化物を含む模擬溶融物)を用
	い、注水による溶融炉心の冷却性に係わる DCAM 実験 5 ケース及び水中床
	面における溶融炉心の拡がりに係わる MST 実験 6 ケースが予定されてい
	る。
	DCAM-2 テストについて、実験を実施した ANL より報告された。今後実
	施される DCAM-3 で使用する模擬コリウムの組成について議論された。ま
	た、今後実施される MST テストに向けて予備的な実験 MST-0 について ANL
	より報告された。

ウェブ会議(4)

OECD/NEA WGAMA 第 23 回会合出席
OECD/NEA
オンライン
令和4年9月8日(木)~令和4年9月16日(金)
嘱託職員1名
OECD/NEAのCSNI(原子力施設安全委員会)WGAMA(事故の分析・ 管理ワーキンググループ)第24回会合に出席し、原子炉の安全研究に関す る各国の取り組み、国際協力の進捗等について最新情報を取得した。 本会合は毎年1回開催され、軽水炉のシビアアクシデント(SA)を含む熱水 力安全の確保・向上に資する安全情報の共有を目指した活動の検討を行って いる。

ウェブ会議(5)

件名	IRSN-NRA-JAEA 三者セミナー
主催	
出張先	オンライン
期間	令和4年11月28日(月)~令和4年11月30日(水)
参加者	研究員2名
概要	フランス放射線防護原子力安全研究所(IRSN)、原子力規制庁(NRA)及
	び安全研究センターで IRSN-JAEA-S/NRA/R Scientific Seminar 2019 を
	開催し、安全研究に関する三者間の協力を推進するため、シビアアクシデン
	ト、燃料安全、材料劣化、熱水力安全等の分野における各機関の最新知見や
	研究計画等の情報交換を行うとともに、今後の三者間の研究協力の枠組み等
	について協議を行った。原子力機構からは以下の発表を行った。
	Enhancement of JASMINE code for ex-vessel debris coolability evaluation
	Zidi WANG (Japan Atomic Energy Agency, Japan)

ウェブ会議(6)

件名	OECD/ ROSAU 会議
主催	OECD/NEA
出張先	オンライン
期間	令和4年12月13日(火)~令和4年12月14日(水)
参加者	研究員2名
概要	OECD/NEA における実験プロジェクト ROSAU (Reduction Of Severe
	Accident Uncertainties)中間技術会合(Web 会合)に出席し、シビアアクシデ
	ント時の溶融炉心コンクリート相互作用(MCCI: Molten Core/Concrete
	Interaction)の発生防止・影響緩和対策関連する DCAM (Debris Coolability And
	MCCI)及びMST (Melt Spreading Test)実験に関する最新情報を取得した。
	DCAM-3 テストについて、実験を実施した ANL より報告された。DCAM-
	3 の結果は DCAM-1, 2 の延長線上にあるといえる結果となった。高コンク
	リート条件の優先度は下がり、今後は Fe リッチ条件が検討されることとな
	った。