重大事故等対処設備

目 次

1. 概要		1
2. 概問	系統図及び鳥瞰図 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.1	概略系統図	2
2.2	鳥瞰図 ••••••	9
3. 計算	条件 ·····	13
3.1	計算方法 ••••••	13
3.2	荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
3. 3	設計条件 ••••••	16
3.4	材料及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	28
3.5	設計用地震力	29
4. 解枯	結果及び評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
4.1	固有周期及び設計震度 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	30
4.2	評価結果	42
4.2	1 管の応力評価結果	42
4.2	2 支持構造物評価結果 ······	45
4.2	3 弁の動的機能維持評価結果	46
4.2	4 代表モデルの選定結果及び全モデルの評価結果 ・・・・・・・・・・・	47

1. 概要

本計算書は、VI-2-1-14「計算書作成の方法 添付資料-6 管の耐震性についての計算書作 成の基本方針」(以下「基本方針」という。)に基づき,残留熱除去系の管,支持構造物及び弁 が設計用地震力に対して十分な構造強度及び動的機能を有していることを説明するものである。 評価結果記載方法は、以下に示すとおりである。

(1) 管

設計及び工事の計画書に記載される範囲の管のうち,各応力区分における最大応力評価点評価結果を解析モデル単位に記載する。また,全 23 モデルのうち,各応力区分における最大応力評価点の許容値/発生値(以下「裕度」という。)が最小となる解析モデルを代表として鳥瞰図,計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を4.2.4 に記載する。

(2) 支持構造物

設計及び工事の計画書に記載される範囲の支持点のうち、種類及び型式単位に反力が 最大となる支持点の評価結果を代表として記載する。

(3) 弁

機能確認済加速度の機能維持評価用加速度に対する裕度が最小となる動的機能維持要 求弁を代表として評価結果を記載する。

2. 概略系統図及び鳥瞰図

2.1 概略系統図

概略系統図記号凡例

記号例	内容
(太線)	設計及び工事の計画書に記載されている範囲の管のう ち,本計算書記載範囲の管
	設計及び工事の計画書に記載されている範囲の管のう ち、本系統の管であって他計算書記載範囲の管
(破線)	設計及び工事の計画書に記載されている範囲外の管又 は設計及び工事の計画書に記載されている範囲の管の うち,他系統の管であって解析モデルの概略を示すた めに表記する管
000-000	鳥瞰図番号
$\mathbf{\Theta}$	アンカ

残留熱除去系概略系統図(その1)

4

СЛ

残留熱除去系概略系統図(その6)

 ∞

2.2 鳥瞰図

鳥瞰図記号凡例

記号例	内容
	設計及び工事の計画書記載範囲の管のうち,本計算書記載範囲 の管
< 申請範囲外	設計及び工事の計画書記載範囲外の管
< 000系	設計及び工事の計画書記載範囲の管のうち,他系統の管であっ て本系統に記載する管
•	質点
$\mathbf{\Theta}$	アンカ
A A A A A A A A A A A A A A A A A A A	レストレイント (矢印は斜め拘束の場合の全体座標系における拘束方向成分を 示す。スナッバについても同様とする。)
H. H.	スナッバ
∃∕∕⊶	ハンガ
	拘束点の地震による相対変位量(mm) (*は評価点番号,矢印は拘束方向を示す。また,内 に変位量を記載する。)

3. 計算条件

3.1 計算方法

管の構造強度評価は、「基本方針」に記載の評価方法に基づき行う。解析コードは、「IS AP」を使用し、解析コードの検証及び妥当性確認等の概要については、別紙「計算機プロ グラム(解析コード)の概要」に示す。

3.2 荷重の組合せ及び許容応力状態

本計算書において考慮する荷重の組合せ及び許容応力状態を下表に示す。

施設名称	設備名称	系統名称	施設 分類*1	設備 分類* ²	機器等 の区分	耐震重要度分類	荷重の組合せ*3.4	許容応力 状態⁵
原子炉 冷却系統 施設	残留熱除去設備	残留熱除去系	S A	A 常設/防止 (DB拡張) 重大事故等 クラス2管 -		_	$V_{L} + S_{S}$ $V_{L}(L) + S_{d}$ $V_{L}(L) + S_{S}$	V A S
原子炉 冷却系統 施設	非常用炉心冷却設備 その他原子炉注水設備	低圧代替注水系	SA	常設耐震/防止 常設/緩和	重大事故等 クラス2管		$\frac{V_{L}(LL) + S_{S}}{V_{L}(L) + S_{d}}$ $\frac{V_{L}(LL) + S_{d}}{V_{L}(LL) + S_{S}}$	V A S
原子炉 冷却系統 施設	非常用炉心冷却設備 その他原子炉注水設備	低圧注水系	S A	常設/防止 (DB拡張)	重大事故等 クラス2管	_	$V_{L}+S_{S}$ $V_{L}(L)+S_{d}$ $V_{L}(L_{L})+S_{S}$	V A S
原子炉 格納施設	圧力低減設備 その他安全設備	格納容器 スプレイ冷却系	S A	常設/防止 (DB拡張) 常設/緩和 (DB拡張)	重大事故等 クラス2管	_	$V_L + S_S$	V A S
原子炉 格納施設	圧力低減設備 その他安全設備	代替循環冷却系	S A	常設/緩和	重大事故等 クラス2管	_	$V_L + S_s$	V A S
原子炉格納施設	圧力低減設備 その他安全設備	低圧代替注水系	SA	常設/緩和	重大事故等 クラス2管	_	$ \hline V_{L} + S s V_{L}(L) + S d V_{L}(L L) + S s $	V A S

14

(続き)

施設名称	設備名称	系統名称	施設 分類*1	設備 分類*2	機器等 の区分	耐震重要度分類	荷重の組合せ ^{*3,4}	許容応力 状態* ⁵
原子炉 格納施設	圧力低減設備 その他安全設備	サプレッション チェンバプール水 冷却系	SΑ	常設/防止 (DB拡張) 常設/緩和 (DB拡張)	重大事故等 クラス2管	_	$V_L + S_s$	V A S
原子炉 格納施設	圧力低減設備 その他安全設備	代替格納容器 スプレイ冷却系	SΑ	常設耐震/防止 常設/緩和	重大事故等 クラス2管	_	$V_L + S_s$	V A S

15 注記*1:DBは設計基準対象施設,SAは重大事故等対処設備を示す。

- *2:「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張),「常設/緩和(DB拡張)」は常設重大事故緩和設備(設計基準拡張), 「常設耐震/防止」は常設耐震重要重大事故防止設備,「常設/緩和」は常設重大事故緩和設備を示す。
- *3:運転状態の添字Lは荷重,(L)は荷重が長期間作用している状態,(LL)は(L)より更に長期間荷重が作用している状態を示す。
- *4:許容応力状態ごとに最も厳しい条件又は包絡条件を用いて評価を実施する。
- *5:許容応力状態VASは許容応力状態WASの許容限界を使用し、許容応力状態WASとして評価を実施する。

3.3 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し,管名称と対応する評価点番号を示す。 鳥 瞰 図 RHR-005

管名称	最高使用圧力 (MPa)	最高使用温度 (℃)	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	9.22	306	267.4	18.2	STS410		184280
2	9.22	306	216.3	15.1	STS410	. and the	184280

管名称と対応する評価点 評価点の位置は鳥瞰図に示す。

鳥 瞰 図 RHR-005

管名称						対	応一	する	評	価	点					
1	6	7	8	10	11	12	13	14	15	16	17	18	19	20	21	
	22	23	24	25	26	27	28	29	101	201	202	211				
2	29	30	31	32	102											

配管の質量(配管の付加質量及びフランジの質量を含む)

鳥 瞰 図 RHR-005

評価点の質量を下表に示す。

評価点	質量(kg)								
7		16		22		28		102	
11		17		23		29		201	
12		18		24		30		202	
13		19		25		31		211	
14		20		26		32			
15		21		27		101			

鳥 瞰 図 RHR-005

弁部の質量を下表に示す。

弁1		弁2						
評価点	質量(kg)	評価点	質量(kg)					
4		8						
5		9						
6		10						

鳥 瞰 図 RHR-005

弁部の寸法を下表に示す。

弁NO.	評価点	外径(mm)	厚さ(mm)	長さ(mm)
弁1	5			
弁2	9			

支持点及び貫通部ばね定数

鳥 瞰 図 RHR-005

支持点部のばね定数を下表に示す。

支持点番号	各軸	方向ばね定数(N	/mm)	各軸回り回転ばね定数(N・mm/rad		
	Х	Y	Z	Х	Y	Z
7						
** 7 **						
16	1					
18						
** 201 **	1					

設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し,管名称と対応する評価点番号を示す。

管名称	最高使用圧力 (MPa)	最高使用温度 (℃)	外径 (mm)	厚さ (mm)	材料	耐震 重要度分類	縦弾性係数 (MPa)
1	0. 620	166	457.2	9.5	SGV410		193720
2	1.37	182	457.2	9.5	SGV410		192440
3	1.37	182	355.6	11. 1	SGV410	_	192440
4	1.37	182	355.6	11.1	STS410	_	192440

鳥 瞰 図 RHR-012

管名称と対応する評価点 評価点の位置は鳥瞰図に示す。

管名称						対	応う	トる	評	価系	1					
1	2	3														
2	5	6	7	8	9	10	11	12	13	14	15	16	17			
3	8	34														
4	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	

鳥 瞰 図 RHR-012

配管の質量(配管の付加質量及びフランジの質量を含む)

鳥 瞰 図 RHR-012

評価点の質量を下表に示す。

評価点	質量(kg)								
2		11		17		23		29	
6		12		18		24		30	
7		13		19		25		31	
8		14		20		26			
9		15		21		27			
10		16		22		28			

鳥 瞰 図 RHR-012

弁部の質量を下表に示す。

弁2 評価点 質量(kg) 弁1 評価点 質量(kg) 3 32 4 33 5 34 101 103 102 104 Π

鳥 瞰 図 RHR-012

弁部の寸法を下表に示す。

弁NO.	評価点	外径(mm)	厚さ(mm)	長さ(mm)
弁1	4			
弁2	33			

支持点及び貫通部ばね定数

鳥 瞰 図 RHR-012

支持点部のばね定数を下表に示す。

支持点番号	各軸	方向ばね定数(N	/mm)	各軸回り回転ばね定数(N・mm/rad)			
	Х	Y	Z	Х	Y	Z	
11							
17							
18							
20							
26							
** 26 **							
0.1							

3.4 材料及び許容応力

材料	最高使用温度	許容応力 (MPa)						
900 m of 100	(°C)	${ m S}_{ m m}$	S y	S _u	S _h			
STS410	182	_	209	404	_			
	306	122			_			
SGV410	166		193	366				
	182		191	364				

使用する材料の最高使用温度での許容応力を下表に示す。

3.5 設計用地震力

本計算書において考慮する設計用地震力の算出に用いる設計用床応答曲線を下表に示す。 なお,設計用床応答曲線はVI-2-1-7「設計用床応答曲線の作成方針」に基づき策定したもの を用いる。また,減衰定数はVI-2-1-6「地震応答解析の基本方針」に記載の減衰定数を用いる。

鳥瞰図	建屋・構築物	標高 (m)	減衰定数(%)
RHR-005	原子炉遮蔽壁		
RHR-012	原子炉建屋		

4. 解析結果及び評価

4.1 固有周期及び設計震度

鳥 瞰 図 RHR-005

適用す	る地震動等	S s				
モード	固有周期	応答水平	応答鉛直震度*1			
r	(s)	X方向	Z方向	Y方向		
1 次						
2 次						
3 次						
4 次						
5 次						
6 次						
動的	的震度*2					

注記*1:各モードの固有周期に対し,設計用床応答曲線より得られる震度を示す。 *2:Ss地震動に基づく設計用最大応答加速度より定めた震度を示す。 各モードに対応する刺激係数

鳥 瞰 図 RHR-005

K	固有周期		刺激係数*	
τ γ.	(s)	X方向	Y方向	Z方向
1 次				
2 次				
3 次				
4 次				
5 次				

31

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、 次ページ以降に示す。 代表的振動モード図(|次)

33

代表的振動モード図(2次)

代表的振動モード図(3次)

固有周期及び設計震度

鳥 瞰 図 RHR-012

適用す	る地震動等		S s								
K	固有周期	応答水	応答水平震度*1								
r	(s)	X方向	Z方向	Y方向							
1 次											
2 次											
3 次											
4 次											
5 次											
6 次											
7 次											
動的	的震度*2										

注記*1:各モードの固有周期に対し,設計用床応答曲線より得られる震度を示す。 *2:Ss地震動に基づく設計用最大応答加速度より定めた震度を示す。 各モードに対応する刺激係数

鳥 瞰 図 RHR-012

モード		固有周期		刺激係数*									
	(s)		X方向	Y方向	Z方向								
1 次													
2 次													
3 次													
4 次													
5 次													
6 次													

注記*:刺激係数は、モード質量を正規化し、固有ベクトルと質量マトリックスの積から算出した値を示す。

代表的振動モード図

振動モード図は、3次モードまでを代表とし、各質点の変位の相対量・方向を破線で図示し、 次ページ以降に示す。 代表的振動モード図(| 次)

鳥瞰図	RHR-() 2
-----	-------	-----

代表的振動モード図(2次)

鳥瞰図	RHR-0	2
-----	-------	---

代表的振動モード図(3次)

鳥瞰図 RHR-	\bigcirc	2
----------	------------	---

4.2 評価結果

4.2.1 管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス1管

		_				一次虎 (M	5力評価 Pa)	一次+二社 (M	疲労評価		
鳥瞰図	許容 応力 状態	最大 応力 評価点	配管 要素 名称	最大応力 区分	一次応力	許容応力	ねじり応力*	許容応力	一次+二次 応力	許容応力	疲労累積係数
					$S_{prm}(Ss)$	$3 \cdot S_m$	S _t (Ss)	0.73 • S _m	S _n (S _s)	3•S _m	U + U S s
	V _A S	30	ELBOW	$S_{prm}(Ss)$	181	366	_		_	_	_
DUD 005	V _A S	30	ELBOW	S _t (Ss)	—	—	95	89		,	_
KHK-005	V _A S	30	ELBOW	S _n (S _s)	—	—	_		453	366	0. 0839
	$V_A S$	32	NOZZLE	U + U S s	—	_	_			-	0.1350

注記*:ねじり応力が許容応力状態VASのとき0.73・Smを超える場合は、曲げ+ねじり応力評価を実施する。

鳥瞰図		一次応力評価 (MPa)									
	評価点	ねじり応力	許容応力	曲げとねじり応力	許容応力						
		S _t (S s)	0.73 • S _m	$\mathbf{S}_{\mathrm{t}} + \mathbf{S}_{\mathrm{b}} \left(\mathbf{S}_{\mathrm{s}} \right)$	2.4 • S _m						
R H R - 0 0 5	30	95	89	145	292						

下表に示すとおりねじりによる応力が許容応力状態V_ASのとき0.73・S_mを超える評価点の うち曲げとねじりによる応力は許容値を満足している。

管の応力評価結果

下表に示すとおり最大応力及び疲労累積係数はそれぞれの許容値以下である。

重大事故等クラス2管であってクラス2以下の管

鳥瞰図			最大応力 区分	一次応 (M	力評価 Pa)	一次+二社 (M	疲労評価	
	許容応力 状態	最大応力 評価点		計算応力	許容応力	計算応力	許容応力	疲労累積係数
				S _{prm} (Ss)	0.9 • S _u	S _n (S _s)	2 • S _y	US s
RHR-012	V _A S	20	S _{prm} (Ss)	213	363			
	V _A S	20	S _n (S _s)	_	, 	416	418	—

4.2.2 支持構造物評価結果

下表に示すとおり計算応力及び計算荷重はそれぞれの許容値以下である。

支持構造物評価結果(荷重評価)

					評価結果		
支持構造物 番号	種類	型式	材質	温度 (℃)	計算 荷重 (kN)	許容 荷重 (kN)	
RHR-001-009S	メカニカルスナッバ	SMS-16-100	VI 9 1 19 F	152	240		
RHR-001-011HA	スプリングハンガ	VS60F-16	VI-2-1-12 □ F	電圧の又	41	2×20	
RHR-001-011HB		15001 10	内隔近初の間		TI	2720	
RHR-003-016B	ロッドレストレイント	RST-5	」ついて」	106	235		

支持構造物評価結果(応力評価)

支持構造物 番号			材質		支持点荷重					評価結果			
	種類	型式		温度 (℃) _	Ŀ	反力(kN)		モーメント (kN・m)		N·m)	応力	計算	許容
					F _X	F _Y	F _z	$M_{\rm X}$	My	Mz	分類	応力 (MPa)	応力 (MPa)
RHR-003-022R	レストレイント	ラインガイド	SM400B	306	319	130	57	1	-	_	せん断	31	185
RHR-011-026A	アンカ	ラグ	SGV410	182	134	206	122	168	81	176	曲げ	283	440

4.2.3 弁の動的機能維持評価結果

下表に示すとおり機能維持評価用加速度が機能確認済加速度以下又は計算応力が許容応力以下である。

弁番号	形式	要求機能	機能維持 加速 (×9.	寺評価用 速度 8m/s ²)	機能確認 (×9.	済加速度 8m/s²)	構造強度評価結果 (MPa)		
			水平	鉛直	水平	鉛直	計算応力	許容応力	
	_	_						_	

4.2.4 代表モデルの選定結果及び全モデルの評価結果

代表モデルは各モデルの最大応力点の応力と裕度を算出し,応力分類毎に裕度最小のモデルを選定して鳥瞰図,計算条件及び評価結果を 記載している。下表に,代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス1管)

	配管 モデル						許容応	与状態	$V_A S$						
		一次応力						一次+二次応力					疲労評価		
No.		評 価 点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価 点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価 点	疲労 累積 係数	代 表	
1	RHR-001	12	90	366	4.06	_	15	229	366	1.59	_	23	0.0172	_	
2	RHR-002	12	137	366	2.67	_	12	369	366	0.99	—	12	0.0534	_	
3	RHR-003	22	92	366	3.97	_	23	204	366	1.79	—	23	0.0215	_	
4	RHR-004	25	118	366	3.10	_	25	326	366	1.12	_	27	0.0813	_	
5	RHR-005	30	181	366	2.02	0	30	453	366	0.80	0	32	0.1350	0	

			許容応力状態 VAS											
	and and the first states			一次応力			一次+二次応力					疲労評価		
No.	配管 モデル	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評価点	疲労累積係数	代表
1	KRHR-254	225	90	363	4.03	_	21	114	418	3.66		-	—	-
2	RHR-006	21	113	363	3.21		21	292	418	1.43	—	—		_
3	RHR-007	9	83	327	3.93		17	202	418	2.06		_	-	
4	RHR-008	38	115	363	3.15		38	176	418	2.37	_	_	_	_
5	RHR-009	4	148	363	2.45		40	302	422	1.39			_	
6	RHR-010	10	24	345	14.37		2	79	256	3.24	—			-
7	RHR-011	13	131	363	2.77		13	240	418	1.74	—	—	-	
8	RHR-012	20	213	363	1.70	0	20	416	418	1.00	0	_	-	-
9	RHR-013	28	119	363	3.05		52	168	418	2.48		_	_	
10	RHR-014	11	158	363	2.29		13	311	418	1.34			—	
11	RHR-015	20	148	363	2.45	_	20	298	422	1.41		_	_	
12	RHR-016	13	62	345	5.56		13	85	256	3.01	_	-		
13	RHR-017	11	132	363	2.75		11	268	418	1.55	—		-	
14	RHR-018	20	211	363	1.72		20	412	418	1.01	—	—	—	
15	RHR-019	28	120	363	3.02	-	52	166	418	2.51		_	—	—

代表モデルの選定結果及び全モデルの評価結果(重大事故等クラス2管であってクラス2以下の管)

(続き)

							許容応	万状態	$V_{\Lambda}S$					
	ገኛ ግ ሎሎ	一次応力				一次十二次応力					疲労評価			
No.	モデル	評 価 点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評 価 点	計算 応力 (MPa)	許容 応力 (MPa)	裕度	代表	評 価 点	疲労 累積 係数	代表
16	RHR-020	32	191	363	1.90	-	32	335	418	1.24	-		—	-
17	RHR-021	7	140	363	2.59		20	265	422	1.59	—	—	_	
18	RHR-022	15	47	345	7.34		2	81	256	3.16	—	_	_	Ĩ
19	KRHR–266	3	57	363	6.36		3	84	418	4.97		—	_	
20	KRHR-276	16	83	363	4.37		16	127	422	3.32	—	—	-	_
21	KRHR-277	6	46	363	7.89	÷	6	88	418	4.75	-	—	—	-
22	KRHR-287	14	115	363	3.15		14	205	362	1.76	—	—		_
23	KRHR-291	21	72	394	5.47		21	135	372	2.75	—	_	_	_
24	KRHR-292	6	66	363	5.50		1	128	362	2.82	—	—	_	

VI-2-5-4 非常用炉心冷却設備その他原子炉注水設備の

耐震性についての計算書

VI-2-5-4-1 高圧炉心注水系の耐震性についての計算書

VI-2-5-4-1-1 高圧炉心注水系ポンプの耐震性についての計算書

1. 概要 ······	1
2. 一般事項 ······	1
2.1 構造計画 ······	1
 固有値解析及び構造強度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.1 固有値解析及び構造強度評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.2 荷重の組合せ及び許容応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.2.1 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.2.2 許容応力	3
3.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.3 解析モデル及び諸元	9
3.4 固有周期 ······	9
3.5 設計用地震力	10
3.6 計算条件	10
4. 機能維持評価	11
4.1 動的機能維持評価方法 ·····	11
5. 評価結果	12
5.1 設計基準対象施設としての評価結果	12
5.2 重大事故等対処設備としての評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12

1. 概要

本計算書は、VI-2-1-9「機能維持の基本方針」にて設定している構造強度及び機能維持の設計 方針に基づき、高圧炉心注水系ポンプが設計用地震力に対して十分な構造強度及び動的機能を有 していることを説明するものである。

高圧炉心注水系ポンプは、設計基準対象施設においてはSクラス施設に、重大事故等対処設備 においては常設重大事故防止設備(設計基準拡張)に分類される。以下、設計基準対象施設及び 重大事故等対処設備としての構造強度評価及び動的機能維持評価を示す。

なお、高圧炉心注水系ポンプは、VI-2-1-14「計算書作成の方法」に記載のたて軸ポンプであ るため、VI-2-1-14「計算書作成の方法 添付資料-2 たて軸ポンプの耐震性についての計算書 作成の基本方針」に基づき評価を実施する。

- 2. 一般事項
- 2.1 構造計画

高圧炉心注水系ポンプの構造計画を表 2-1 に示す。

表 2-1 構造計画

 \sim

- 3. 固有値解析及び構造強度評価
- 3.1 固有値解析及び構造強度評価方法

高圧炉心注水系ポンプの構造強度評価は、VI-2-1-14「計算書作成の方法 添付資料-2 た て軸ポンプの耐震性についての計算書作成の基本方針」に記載の耐震計算方法に基づき行う。

- 3.2 荷重の組合せ及び許容応力
 - 3.2.1 荷重の組合せ及び許容応力状態 高圧炉心注水系ポンプの荷重の組合せ及び許容応力状態のうち設計基準対象施設の評価 に用いるものを表 3-1 に,重大事故等対処設備の評価に用いるものを表 3-2 に示す。
 - 3.2.2 許容応力

高圧炉心注水系ポンプの許容応力は、VI-2-1-9「機能維持の基本方針」に基づき表 3-3 及び表 3-4 のとおりとする。

3.2.3 使用材料の許容応力評価条件

高圧炉心注水系ポンプの使用材料の許容応力評価条件のうち設計基準対象施設の評価に 用いるものを表 3-5 に,重大事故等対処設備の評価に用いるものを表 3-6 に示す。

表 3-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

施設区分		機器名称	耐震重要度分類機器等の区分		荷重の組合せ	許容応力状態
百乙后必却	非常用炉心冷				$D + P_D + M_D + S d^*$	III A S
凉于炉帘却 系統施設	原子炉注水	高圧炉心注水系ポンプ	S	クラス2ポンプ*	$D + P_D + M_D + S_S$	IV A S
	設備					IV II S

注記*:クラス2ポンプの支持構造物を含む。

表 3-2 荷重の組合せ及び許容応力状態(重大事故等対処設備)

施設区分		機器名称	設備分類	機器等の区分	荷重の組合せ	許容応力状態
	非常用炉心冷				$D + P_D + M_D + S_s *^3$	IV A S
原子炉冷却	却設備その他	高圧炉心注水系ポンプ	常設/防止	重大事故等		V _A S
系統施設	原子炉注水 設備		(DB拡張)	クラス2ポンプ*2	$D+P_{SAD}+M_{SAD}+S_{S}$	(VASとして IVASの許容限
	設備					界を用いる。)

注記*1:「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張)を示す。

*2:重大事故等クラス2ポンプの支持構造物を含む。

*3:「D+Psad+Msad+Ss」の評価に包絡されるため、評価結果の記載を省略する。

		許	·容限界*		
許容応力状態	一次一般膜応力	一次膜応力+ 一次曲げ応力	一次+二次応力	一次+二次+ピーク応力	
III A S	Syと0.6・Suの小さい方 ただし,オーステナイト系ステ ンレス鋼及び高ニッケル合金に ついては上記値と1.2・Sとの 大きい方	左欄の 1.5 倍の値	弾性設計用地震動Sd又は基準地震動Ssのみによる疲労角 析を行い、疲労累積係数が1.0以下であること。		
IV A S			下であれば、疲労解析は不要。	>	
VAS (VASとしてIVASの 許容限界を用いる。)	0.6 · S u	左禰の1.5倍の値	基準地震動Ssのみによる疲労解析を行い、疲労累積係数 1.0以下であること。 ただし、地震動のみによる一次+二次応力の変動値が2・S 以下であれば、疲労解析は不要。		

表 3-3 許容応力(クラス2,3ポンプ及び重大事故等クラス2ポンプ)

注記*:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

	許容限 (ボル	界* ^{1,*2} 小等)				
許容応力状態	一次応力					
	引張り	せん断				
III A S	1.5 • f t	1.5 • f s				
IV A S						
VAS (VASとしてIVASの許容限界を用いる。)	1.5 • f t *	1.5 • f s *				

表 3-4 許容応力(クラス2,3支持構造物及び重大事故等クラス2支持構造物)

注記*1:応力の組合せが考えられる場合には、組合せ応力に対しても評価を行う。

*2:当該の応力が生じない場合、規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

評価部材	材料	温度条((℃)	牛	S (MPa)	Sу (MPa)	S u (MPa)	Sy(RT) (MPa)			
バレルケーシング		最高使用温度	100				_			
基礎ボルト		周囲環境温度	66				_			
ポンプ取付ボルト		最高使用温度	100				_			
原動機台取付ボルト		最高使用温度	100				_			
原動機取付ボルト		周囲環境温度	66	_			_			

表 3-5 使用材料の許容応力評価条件(設計基準対象施設)

評価部材	材料	温度条件 (℃)		S (MPa)	Sy (MPa)	S u (MPa)	Sy(RT) (MPa)
バレルケーシング		最高使用温度	最高使用温度 120				
基礎ボルト		周囲環境温度	100				_
ポンプ取付ボルト		最高使用温度	120				
原動機台取付ボルト		最高使用温度	120				
原動機取付ボルト		周囲環境温度	100				

表 3-6 使用材料の許容応力評価条件(重大事故等対処設備)

3.3 解析モデル及び諸元

固有値解析及び構造強度評価に用いる解析モデル及び諸元は、本計算書の【高圧炉心注水系 ポンプの耐震性についての計算結果】の機器要目及びその他の機器要目に示す。解析コード は、「MSC NASTRAN」を使用し、解析コードの検証及び妥当性確認等の概要につい ては、別紙「計算機プログラム(解析コード)の概要」に示す。

3.4 固有周期

固有値解析の結果を表 3-7 に示す。固有周期は、0.05 秒以下であり、剛構造であることを 確認した。

- 12			水平方向	鉛直方向	
	早越方问	固有周期(s)	NS 方向	EW 方向	刺激係数
1次	水平	0.049			—

表 3-7 固有值解析結果

3.5 設計用地震力

評価に用いる設計用地震力を表 3-8 及び表 3-9 に示す。

「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」による地震力は、VI-2-1-7 「設計用床応答曲線の作成方針」に基づき設定する。また、減衰定数はVI-2-1-6「地震応答解 析の基本方針」に記載の減衰定数を用いる。

据付場所 及び	固有周期(s)		弾性設計用 又は静	地震動Sd 的震度	基準地	減衰 (?	定数 6)	
床面高さ (m)	水平 方向	鉛直 方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	水平	鉛直
原子炉建屋 T.M.S.L8.2 ^{*1}	0.049	*2	Сн=0.58	Cv = 0.50	Сн=0.89	Cv = 1.02		

表 3-8 設計用地震力(設計基準対象施設)

注記*1:基準床レベルを示す。

*2:固有周期は十分に小さく計算は省略する。

据付場所 及び	固有周期(s)		弾性設計用: 又は静	地震動Sd 的震度	基準地	減衰 (?	定数 6)	
床面高さ (m)	水平 方向	鉛直 方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	水平	鉛直
原子炉建屋 T.M.S.L8.2 ^{*1}	0.049	*2	_		Сн=0.89	Cv=1.02		

表 3-9 設計用地震力(重大事故等対処設備)

注記*1:基準床レベルを示す。

*2:固有周期は十分に小さく計算は省略する。

3.6 計算条件

応力計算に用いる計算条件は,本計算書の【高圧炉心注水系ポンプの耐震性についての計算 結果】の設計条件及び機器要目に示す。

4. 機能維持評価

4.1 動的機能維持評価方法

高圧炉心注水系ポンプの地震後の動的機能維持評価は、VI-2-1-14「計算書作成の方法 添 付資料-2 たて軸ポンプの耐震性についての計算書作成の基本方針」に記載の評価方法に基づ き行う。

高圧炉心注水系ポンプは地震時動的機能維持が確認された機種と類似の構造及び振動特性であるため、VI-2-1-9「機能維持の基本方針」に記載の機能確認済加速度を適用する。機能確認済加速度を表 4-1 に示す。

	$(\times 9.8 \text{m/s}^2)$		
評価部位	形式	方向	機能確認済加速度
N9. 0	ピットバレル形	水平	10.0
ホンフ	ポンプ	鉛直	1.0
原動機	立形すべり軸受	水平	2.5
	電動機	鉛直	1.0

表 4-1 機能確認 済加速度

 $(\times 9.8 \text{m/s}^2)$

- 5. 評価結果
- 5.1 設計基準対象施設としての評価結果

高圧炉心注水系ポンプの設計基準対象施設としての耐震評価結果を以下に示す。発生値は許 容限界を満足しており,設計用地震力に対して十分な構造強度及び動的機能を有していること を確認した。

(1) 構造強度評価結果

構造強度評価の結果を次頁以降の表に示す。

- (2) 機能維持評価結果動的機能維持評価の結果を次頁以降の表に示す。
- 5.2 重大事故等対処設備としての評価結果

高圧炉心注水系ポンプの重大事故等時の状態を考慮した場合の耐震評価結果を以下に示す。 発生値は許容限界を満足しており,設計用地震力に対して十分な構造強度及び動的機能を有していることを確認した。

- (1) 構造強度評価結果
 構造強度評価の結果を次頁以降の表に示す。
- (2) 機能維持評価結果動的機能維持評価の結果を次頁以降の表に示す。

【高圧炉心注水系ポンプの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

		また正式の 据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	据付場所及び	固有周	引期(s)	弾性設計用地震動	Sd又は静的震度	基準地震	震動S s	ポンプ振動	最高使用	周囲環境	最高使用	王力(MPa)
機器名称	耐震重要度分類	床面高さ(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	による震度	温度 (℃)	温度 (℃)	吸込側	吐出側													
高圧炉心注水系 ポンプ	S	原子炉建屋 T.M.S.L.−8.2*1	0.049	*2	Сн=0.58	$C_{v} = 0.50$	Сн=0.89	Cv = 1.02		100	66	1.37	11.77													

注記*1:基準床レベルを示す。

*2:固有周期は十分に小さく計算は省略する。

1.2 機器要目

(1) ボルト

部材	m i (kg)	D i (mm)	di (mm)	${ m A}$ b i (mm ²)	ni	nfi	M p (N∙mm)	Sуi (MPa)	Sııi (MPa)	Fi (MPa)	Fi (MPa)	部材	S (MPa)	Sy (MPa)	Su (MPa)	D c (mm)	t (mm)
基礎ボルト (i=1)					24	24						バレルケーシング				1450	19
ポンプ取付ボルト (i=2)					40	40	8.913×10^{6}							Ĩ	注記*:最	と高使用温.	度で算出
原動機台取付ボルト (i=3)					20	20	8.913×10^{6}										
原動機取付ボルト (i=4)					12	12	8.913×10^{6}										

(2) バレルケーシング

注記*1:最高使用温度で算出 *2:周囲環境温度で算出

H_{p}	N
(µm)	(rpm)

1.3 計算数値

(1) ボルトに作用する力

(2) バレルケーシングに作用する力

(単位:N・mm)

	Mi((N•mm)	Fь	i (N)	Q b	i (N)		1	М
部材	弾性設計用地震動 S d 又は静的震度	基準地震動 S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s	部材	弾性設計用 地震動Sd又は 静的震度	基準地震動S s
基礎ボルト (i=1)							バレルケーシング		
ポンプ取付ボルト									
(i =2)									
原動機台取付ボルト									
(i =3)									
原動機取付ボルト									
(i = 4)									

1.4 結論

1.4.1 固有周期	(単位:s)
ホード	固有周期
水平 1次	$T_{H1} = 0.049$
鉛直 1次	*

14 注記*:固有周期は十分に小さく計算は省略する。

1.4.2 ボルトの応力

1.	1.7.5					(十)正:加で	
部材	材料	応力	弾性設計用地震動	S d 又は静的震度	基準地震動S s		
נאיאם		//u·/J	算出応力	許容応力	算出応力	許容応力	
基礎ボルト		引張り	σ _{b1} =3	f t s 1=491*	σ b 1 = 18	f t s 1=491*	
(i =1)		せん断	τь1=2	f s b 1=378	τ b 1 = 3	fsb1=378	
ポンプ取付ボルト		引張り	σ b 2=4	fts2=474*	σ b 2 = 10	f t s 2=474*	
(i=2)		せん断	τ b 2 = 3	f s b 2=365	au b 2 = 4	fsb2=365	
原動機台取付ボルト		引張り	σьз=16	f t s 3=444*	σ b 3 = 30	f t s 3=444*	
(i=3)		せん断	τ b 3 = 6	f s b 3=342	τ b 3 $= 8$	fsb3=342	
原動機取付ボルト (i=4)		引張り	σ _{b4} =17	$f_{t s 4} = 455^*$	$\sigma_{b4} = 39$	$f_{t s 4} = 455^*$	
		せん断	τ _{b4} =12	f s b 4=350	au b 4 = 17	$f_{\rm s \ b \ 4} = 350$	

(単位:MPa) 1.4.3 バレルケーシングの応力

(単位:MPa)

至四本才	林北		一次一般膜応力	
市147 173 173 173 173 173 173 173 173 173 17			許容応力	
バレルケーシング		弾性設計用地震動 Sd又は静的震度	σ =53	S a=201
		基準地震動 S s	$\sigma = 53$	S a =223

すべて許容応力以下である。

すべて許容応力以下である。

注記*:ftsi=Min[1.4・ftoi-1.6・て bi, ftoi]

1.4.4 動的機	$(\times 9.8 \text{m/s}^2)$		
		機能維持評価用加速度*	機能確認済加速度
+21/-2	水平方向	0.74	10.0
~~ /	鉛直方向	0.85	1.0
百動操	水平方向	0.74	2.5
原動機	鉛直方向	0.85	1.0

注記*:基準地震動Ssにより定まる応答加速度を設定する。なお、水平方向の機能維持評価用加速度はコラム先端(原動機にあっては軸受部)の応答加速度 又は設計用最大応答加速度(1.0・ZPA)のいずれか大きい方を、鉛直方向は設計用最大応答加速度(1.0・ZPA)を設定する。

機能維持評価用加速度はすべて機能確認済加速度以下である。

1.5 その他の機器要目 (1) 節点データ

位占平日	節 点 座 標 (mm)							
即尽备亏	Х	у	Z					
1								
2								
3								
4								
5								
6								
7								
8								
9								
10								
11								
12								
13								
14								
15								
16								
17								
18								
19								
20								
21								
22								
23								
24								
25								
26								
27								
28								
29								
30								
31								
32								
33								
34								
41								
42								
43								
44								
45								
46								

(続き)	節 点 座 標 (mm)								
節点番号			_						
47	X	У	Z						
48									
49									
50									
51									
52									
53									
54									
55									
56									
57									
58									
59									
60									
61									
62									
71									
72									
73									
74									
75									
76									
77									
78									
79									
80									
81									
82									
83									
84									
85									
86									
87									
88									
89									
90									
91									
92									
93									
14	±.	÷	1						
----	----	---	---	--					
いお	Π.	7							

做占亚日	節 点 座 標 (mm)						
即尽备万	х	у	Z				
94							
95							
96							
97							
98							
99							
100							

·-/						
	断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断 面 積 (mm ²)	断面二次 モーメント (mm ⁴)	断面二次 極モーメント (mm ⁴)
	1	1-2	91		2.366×10^{10}	
	2	2-3	91		2.366×10^{10}	_
	3	3-4	91		2.366×10^{10}	
	4	4-5	91		2.366×10^{10}	
	5	5-6	91		2.366×10^{10}	
	6	6-7	91		2.366×10^{10}	
	7	7-8	91		2.366×10^{10}	
	8	8-9	91		2.366×10^{10}	_
	9	9-10	91		2.366×10^{10}	
	10	10-11	91		2.366 $\times 10^{10}$	_
	11	11-12	91		2.366×10^{10}	
	12	12-13	91		2.366 $\times 10^{10}$	_
	13	13-14	91		2.366×10^{10}	_
	14	14-15	91		2.366×10^{10}	_
	15	15-16	91		2.366×10^{10}	_
	16	16-17	91		2.366×10^{10}	_
	17	17-18	91		8.892×10^{10}	
	18	18-19	91		1.670×10^{12}	
	19	19-20	91		4.641×10^{11}	
	20	20-21	91		5.412×10^{10}	
	21	21-22	91		5.412×10^{10}	
	22	22-23	91		5.412×10^{10}	—
	23	23-24	91		2.955×10^{11}	_
	24	24-25	91		7.553×10^{10}	_
	25	25-26	91		7.553×10^{10}	_
	26	26-27	91		7.553×10^{10}	_
	27	27-28	94		2.760×10^{9}	_
	28	28-29	94		7.260×10^{9}	
	29	29-30	94		2.830×10^{9}	_
	30	30-31	94		6.060×10^9	
	31	31-32	94		5.690×10^{9}	
	32	32-33	94		1.700×10^{9}	
	33	33-34	94		2.940×10^{8}	
	41	41-42	91		4.269×10^{7}	
	42	42-43	91		3.738×10^{10}	
	43	43-44	91		1.541×10^{9}	
	44	44-45	91		6.115×10^9	
	45	45-46	91		1.656×10^{10}	—
	46	46-47	91		2.792×10^{10}	—
	47	47-48	91		2.836×10^{10}	_
	48	48-49	91		3.463×10^{10}	_
	49	49-50	91		3.463×10^{10}	—
	50	50-51	91		3.463×10^{10}	

(2) 要素の断面性状

(続き)					
断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断面積 (mm²)	断面二次 モーメント	断面二次 極モーメント
51	51-52	91		(IIIII) 3 463×10 ¹⁰	
52	52-53	91		3.463×10^{10}	
53	53-54	91		3.463×10^{10}	
54	54-55	91		3.463×10^{10}	
55	55-56	91		3.463×10^{10}	
56	56-57	91		6.034×10^9	
57	57-58	91		2.479×10^{9}	
58	58-59	91		2.479×10^{9}	_
59	59-60	91		2.479×10^{9}	_
60	60-61	91		3.169×10^{9}	_
61	61-62	91		3.169×10^{9}	_
71	71-72	93		4.492×10^{5}	_
72	72-73	93		8.762×10^{5}	_
73	73-74	93		8.762×10^{5}	
74	74-75	93		1.161×10^{7}	
75	75-76	93		8.585×10^{6}	
76	76-77	93		8.888×10^{6}	
77	77-78	93		9.198×10^{6}	
78	78-79	93		9. 517×10^{6}	
79	79-80	93		9.844 $\times 10^{6}$	_
80	80-81	93		1.018×10^{7}	_
81	81-82	93		1.052×10^{7}	_
82	82-83	93		1.087×10^{7}	_
83	83-84	93		1.124×10^{7}	_
84	84-85	93		1.161×10^{7}	_
85	85-86	93		1.198×10^{7}	_
86	86-87	93		1.630×10^{7}	_
87	87-88	93		1.886×10^{7}	—
88	88-89	93		1.886×10^{7}	—
89	89-90	93		1.886×10^{7}	_
90	90-91	93		1.886×10^{7}	_
91	91-92	93		1.630×10^{7}	_
92	92-93	93		1.630×10^{7}	_
93	93-94	93		7.724×10^{6}	_
94	94-95	93		9. 014×10^7	_
95	95-96	94		3.640×10^{7}	
96	96-97	94		5. 520×10^7	
97	97-98	94		1.840×10^{8}	
98	98-99	94		7.980×10^{7}	
99	99-100	94		7. 740×10^7	

(3) ばね結合部の指定

ばねの両端	の節点番号	ばね定数
41	71	
44	74	
46	76	
47	77	
48	78	
49	79	
50	80	
51	81	
52	82	
53	83	
54	84	
55	85	
56	86	
61	91	
28	96	
33	99	
4	43	
7	46	
20	59	
23	62	
6	-	
19	-	
19	_	

(4)	笛占の皙量	
(1)	「「「」、「「」」「」」「」」「」」「」」「」」「」」「」」」	

節点番号	質 量 (kg)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
41	
42	
43	
44	
45	
46	

(法	t	1
(前元	9)

節点番号	質量
47	(kg)
48	
40	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	
92	
93	

(続き)

節点番号	質 量 (kg)
94	
95	
96	
97	
98	
99	
100	

(5) 材料物性值

材料番号	温度 (℃)	縦弾性係数 (MPa)	質量密度 (kg/mm ³)	ポアソン比 (一)	材質
91	100			0.3	
93	100			0.3	
94	66			0.3	

2. 重大事故等対処設備

2.1 設計条件

	、 据付場所及び	高所及び 固有厚		弾性設計用地震動Sd又は静的震度		基準地震動 S s		ポンプ振動	最高使用 周囲環境		最高使用质	王力(MPa)
機器名称 設備分類	子類 床面高さ(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	による震度	温度 (℃)	温度 (℃)	吸込側	吐出側
高圧炉心注水系 常設/防 ポンプ (DB拡張	防止 原子炉建屋 広張) T. M. S. L8. 2 ^{*1}	0.049	*2	_	_	С н=0.89	Cv=1.02		120	100	1.37	11.77

注記*1:基準床レベルを示す。

*2:固有周期は十分に小さく計算は省略する。

2.2 機器要目

(1) ボルト

(2)	バレルケー・ハノガ
(4)	

部材	m i (kg)	Di (mm)	d i (mm)	${ m A}$ b i (mm ²)	n i	nfi	M p (N∙mm)	S y i (MPa)	Sıui (MPa)	F i (MPa)	Fi [*] (MPa)	部材	S (MPa)	S y (MPa)	Su (MPa)	D c (mm)	t (mm)
基礎ボルト (i=1)					24	24	_					バレルケーシング		_		1450	19
ポンプ取付ボルト (i=2)					40	40	8.913×10^{6}			_				注言	己*:最高	高使用温度	度で算出
原動機台取付ボルト (i=3)					20	20	8.913×10^{6}			_							
原動機取付ボルト (i=4)					12	12	8.913×10^{6}			_							

注記*1:最高使用温度で算出 *2:周囲環境温度で算出

H_{p}	N
(µm)	(rpm)

2.3 計算数値

(1) ボルトに作用する力

(2) バレルケーシングに作用する力

(単位:N・mm)

		Mi(N•mm)	F b	i (N)	Q b	i (N)		
	部材	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s	弾性設計用地震動 S d 又は静的震度	基準地震動S s	部材	弾 地震
	基礎ボルト (i=1)	—		_		—		バレルケーシング	
	ポンプ取付ボルト (i=2)	_		_		_			
ļ	原動機台取付ボルト (i=3)	_		_		_			
	原動機取付ボルト (i=4)			_		_			

	Ν	Λ
部材	弾性設計用 地震動 S d 又は 静的震度	基準地震動Ss
レルケーシング	_	

2.4 結論

2.4.1 固有周期	(単位:s)
モード	固有周期
水平 1次	Тн1=0.049
鉛直 1次	*

26

注記*:固有周期は十分に小さく計算は省略する。

2.4.2 ボルトの応力

部材	村彩」	内土	弾性設計用地震動	S d 又は静的震度	基準地震動S s		
	12 14	ν υ γυ	算出応力	許容応力	算出応力	許容応力	
基礎ボルト		引張り	_	—	σ _{b1} =18	fts1=474*	
(i = 1)		せん断	_	—	τ ы1=3	f s b 1=365	
ポンプ取付ボルト		引張り	_	—	σ _{b2} =10	f t s 2=469*	
(i = 2)		せん断	—		τ b 2=4	f s b 2=361	
原動機台取付ボルト		引張り	_	—	σьз 30	fts3=444*	
(i = 3)		せん断	_	—	τьз 8	f s b 3=342	
原動機取付ボルト		引張り	—	—	0 b 4 39	fts4=444*	
(i=4)		せん断	—	—	τь4 17	f s b 4=342	

(単位:MPa) 2.4.3 バレルケーシングの応力

(単位:MPa)

	林彩		一次一般膜応力	
Label 1	123 127		算出応力	許容応力
バレルケーシング		弾性設計用地震動 Sd又は静的震度	_	_
		基準地震動 S s	$\sigma = 53$	S a =222

すべて許容応力以下である。

すべて許容応力以下である。

注記*:ftsi=Min[1.4・ftoi-1.6・て bi, ftoi]

2.4.4 動的機	$(\times 9.8 \text{m/s}^2)$		
		機能維持評価用加速度*	機能確認済加速度
70,000	水平方向	0. 74	10.0
ハンノ	鉛直方向	0.85	1.0
百動楼	水平方向	0.74	2.5
原動機	鉛直方向	0.85	1.0

注記*:基準地震動Ssにより定まる応答加速度を設定する。なお、水平方向の機能維持評価用加速度はコラム先端(原動機にあっては軸受部)の応答加速度 又は設計用最大応答加速度(1.0・ZPA)のいずれか大きい方を、鉛直方向は設計用最大応答加速度(1.0・ZPA)を設定する。

機能維持評価用加速度はすべて機能確認済加速度以下である。

2.5 その他の機器要目 (1) 節点データ

林上亚口				
前点番亏	Х	У	Z	
1				
2				
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
18				
19				
20				
21				
22				
23				
24				
25				
26				
27				
28				
29				
30				
31				
32				
33				
34				
41				
42				
43				
44				
45				
46				

(続き)	1		
節点番号		節点座標(mm)	1
	Х	у	Z
47			
48			
49			
50			
51			
52			
53			
54			
55			
56			
57			
58			
59			
60			
61			
62			
71			
72			
73			
74			
75			
76			
77			
78			
79			
80			
81			
82			
83			
84			
85			
86			
87			
88			
89	1		
90	1		
91	1		
92			
93	1		
	B		

(続	き)
< <u>19</u>	<u> </u>	/

節占乗旦	節 点 座 標 (mm)			
即品番亏	Х	у	Z	
94				
95				
96				
97				
98				
99				
100				

• •	2,111111111					
	断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断 面 積 (mm²)	断面二次 モーメント (mm ⁴)	断面二次 極モーメント (mm ⁴)
	1	1-2	91		2.366×10^{10}	
	2	2-3	91		2. 366×10^{10}	
	3	3-4	91		2.366×10^{10}	
	4	4-5	91		2. 366×10^{10}	
	5	5-6	91		2. 366×10^{10}	
	6	6-7	91		2.366 $\times 10^{10}$	_
	7	7-8	91		2.366 $\times 10^{10}$	_
	8	8-9	91		2.366×10^{10}	_
	9	9-10	91		2.366 $\times 10^{10}$	_
	10	10-11	91		2.366 $\times 10^{10}$	_
	11	11-12	91		2.366×10^{10}	
	12	12-13	91		2.366 $\times 10^{10}$	
	13	13-14	91		2.366 $\times 10^{10}$	
	14	14-15	91		2.366 $\times 10^{10}$	
	15	15-16	91		2.366 $\times 10^{10}$	
	16	16-17	91		2.366 $\times 10^{10}$	
	17	17-18	91		8.892×10^{10}	
	18	18-19	91		$1.670 imes 10^{12}$	
	19	19-20	91		4.641×10^{11}	
	20	20-21	91		5. 412×10^{10}	
	21	21-22	91		5.412×10^{10}	_
	22	22-23	91		5.412×10^{10}	_
	23	23-24	91		2.955×10^{11}	
	24	24-25	91		7.553 $\times 10^{10}$	_
	25	25-26	91		7.553 $ imes 10^{10}$	_
	26	26-27	91		7.553×10^{10}	_
	27	27-28	94		2.760 $\times 10^{9}$	_
	28	28-29	94		7.260×10^9	
	29	29-30	94		2.830×10^9	
	30	30-31	94		6.060×10^9	
	31	31-32	94		5.690×10^{9}	
	32	32-33	94		1.700×10^{9}	
	33	33-34	94		2.940×10^{8}	
	41	41-42	91		4.269×10^{7}	
	42	42-43	91		3.738×10^{10}	
	43	43-44	91		1.541×10^{9}	
	44	44-45	91		6.115×10^9	
	45	45-46	91		1.656×10^{10}	
	46	46-47	91		2.792×10^{10}	
	47	47-48	91		2.836×10^{10}	
	48	48-49	91		3.463×10^{10}	
	49	49-50	91		3.463×10^{10}	—
	50	50-51	91		3.463×10^{10}	_

(2) 要素の断面性状

(続き)					
断面特性番号 (要素番号)	要素両端の節点 番号	材料 番号	断面積 (mm²)	断面二次 モーメント	断面二次 極モーメント
51	51-52	91		(mm^2)	(mm ⁻)
52	52-53	91		3.463×10^{10}	
53	53-54	91		3.463×10^{10}	
54	54-55	91		3.463×10^{10}	
55	55-56	91		3.463×10^{10}	
56	56-57	01		6.034×10^9	
57	57-58	91		2.479×10^9	
58	58-59	91		2.479×10^{9}	
59	59-60	91		2.479×10^{9}	
60	60-61	01		2.479×10^{9}	
61	61-62	01		3.169×10^{9}	
71	71-72	91		3.109×10^{5}	
7.9	71 72	93		4.492×10^{5}	
72	72-74	93		8.762×10^{5}	
7.4	73-74	93		3.762×10^{-1}	
74	74-73	93		1.101×10	
75	75-76	93		8.383×10^{-10}	
76	76-77	93		8.888×10^{-10}	
70	71-18	93		9. 198×10 ⁴	
78	78-79	93		9.517 \times 10°	
79	79-80	93		9.844 $\times 10^{\circ}$	
80	80-81	93		1.018×10^{7}	
81	81-82	93		1.052×10^{7}	
82	82-83	93		1.087×10^{7}	
83	83-84	93		1.124×10^{7}	
84	84-85	93		1.161×10^{7}	
85	85-86	93		1. 198×10 ⁷	
86	86-87	93		1.630×10^{7}	
87	87-88	93		1.886×10 ⁴	
88	88-89	93		1.886×10^{7}	—
89	89-90	93		1.886×10 ⁴	
90	90-91	93		1.886×10'	
91	91-92	93		1.630×10^{7}	—
92	92-93	93		1.630×10^{6}	—
93	93-94	93		7.724×10 ⁶	
94	94-95	93		9.014×10'	
95	95-96	94		3.640×10^{7}	
96	96-97	94		5.520×10^{7}	
97	97-98	94		1.840×10^{8}	—
98	98-99	94		7.980×10^{7}	—
99	99-100	94		7.740 $\times 10^{7}$	—

(3) ばね結合部の指定

ばねの両端	の節点番号	ばね定数
41	71	
44	74	
46	76	
47	77	
48	78	
49	79	
50	80	
51	81	
52	82	
53	83	
54	84	
55	85	
56	86	
61	91	
28	96	
33	99	
4	43	
7	46	
20	59	
23	62	
6	_	
19	-	
19	-	

(4) 節点の質量

節点番号	質 量 (kg)
1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
41	
42	
43	
44	
45	
46	

(続き)	
------	--

筋占釆早	質量
	(kg)
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
61	
62	
71	
72	
73	
74	
75	
76	
77	
78	
79	
80	
81	
82	
83	
84	
85	
86	
87	
88	
89	
90	
91	1
92	
93	

(続き)

節点番号	質 量 (kg)
94	
95	
96	
97	
98	
99	
100	

(5) 材料物性值

材料番号	温度 (℃)	縦弾性係数 (MPa)	質量密度 (kg/mm ³)	ポアソン比 (一)	材質
91	120			0.3	
93	120			0.3	
94	100			0.3	

VI-2-5-4-1-2 高圧炉心注水系ストレーナの耐震性についての計算書

設計基準対象施設

1. 棋	既要 ·····	1
2. –	-般事項	1
2.1	構造計画	1
2.2	評価方針	3
2.3	適用規格・基準等 ····································	4
2.4	記号の説明 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	5
2.5	計算精度と数値の丸め方 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	8
3. 青	平価部位	9
4. 均	也震応答解析及び構造強度評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4.1	地震応答解析及び構造強度評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4.2	荷重の組合せ及び許容応力・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4.2	.1 荷重の組合せ及び許容応力状態 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4.2	.2 許容応力	12
4.2	.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12
4.2	.4 設計荷重	17
4.3	解析モデル及び諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
4.4	固有周期 ·····	20
4.5	設計用地震力	21
4.6	計算方法 ·····	22
4.6	.1 応力評価	22
4.6	.2 応力評価点	22
4.6	.3 応力計算方法	22
4.7	各応力評価部位に加わる最大荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	25
4.7	.1 組合せ荷重の計算	25
4.7	.2 多孔プレートに加わる荷重 ・・・・・	28
4.7	.3 コアチューブに加わる荷重 ・・・・・	36
4.7	.4 アウターリム及びインナーギャップからエンドディスク面に加わる荷重 ・・・・・・	48
4.7	.5vアウターリム及びインナーギャップから中間ディスク面に加わる荷重 ・・・・・・	53
4.8	応力評価	58
4.8	.1 多孔プレートの評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	58
4.8	.2 エンドコアの多孔プレートに発生する応力	59
4.8	.3 エンドディスクの多孔プレートに発生する応力 ・・・・・・・・・・・・・・・・・・・・・・・	64
4.8	.4 中間ディスクの多孔プレートに発生する応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	71
4.8	.5 アウターリムの多孔プレートに発生する応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	76
4.8	.6 インナーギャップの多孔プレートに発生する応力 ・・・・・・・・・・・・・・・・・・・・・・	78

目	次	(続き)

4.8.7 コアチューブの評価部位に発生する応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
4.8.8 フランジに発生する応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	81
4.8.9 ストレーナ取付部ボルトに発生する応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	83
4.9 計算条件	85
4.10 応力の評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	85
4.11 設計・建設規格における材料の規定によらない場合の評価 ・・・・・・・・・・・・・・・・	86
4.11.1 コアチューブ材料の評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	86
4.11.2 多孔プレート・フランジ材料の評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	87
4.11.3 ストレーナ取付部ボルト材料の評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	88
5. 評価結果	89
6. 引用文献 · · · · · · · · · · · · · · · · · · ·	89
添付資料	96
1. ラジアル補剛材の配置諸元 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
1.1 ラジアル補剛材の配置角度・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
1.2 ラジアル補剛材の等価受圧長さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	96
2. アウターリム部の等価受圧長さとコアチューブ部の等価受圧長さ ・・・・・・・・・・	97
2.1 アウターリム部の等価受圧長さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
2.2 コアチューブ部の等価受圧長さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	97
3. 内面からの荷重の評価エリア ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	98

1. 概要

本計算書は、技術基準規則の解釈第 17 条 4 において記載される「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成 20・02・12 原院第 5 号(平成 20 年 2 月 27 日原子力安全・保安院制定))及びVI-2-1-9「機能維持の基本方針」にて設定している構造強度の設計方針に基づき、高圧炉心注水系ストレーナが設計用地震力に対して十分な構造強度を有していることを説明するものである。その耐震評価は高圧炉心注水系ストレーナの応力評価により行う。

高圧炉心注水系ストレーナは,設計基準対象施設においてはSクラス施設に分類される。以下, 設計基準対象施設としての構造強度評価を示す。

- 2. 一般事項
- 2.1 構造計画

高圧炉心注水系ストレーナの構造計画を表 2-1 に示す。

表 2-1 構造計画

 \sim

2.2 評価方針

高圧炉心注水系ストレーナの応力評価は,「非常用炉心冷却設備又は格納容器熱除去設備に 係るろ過装置の性能評価等について(内規)」(平成20・02・12原院第5号(平成20年2月27 日原子力安全・保安院制定))及びVI-2-1-9「機能維持の基本方針」に基づき設定した荷重及び 荷重の組合せ並びに許容限界に基づき,「2.1 構造計画」にて示す高圧炉心注水系ストレーナ の部位を踏まえ「3. 評価部位」にて設定する箇所において,「4.3 解析モデル及び諸元」及 び「4.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収 まることを,「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。 確認結果を「5. 評価結果」に示す。

高圧炉心注水系ストレーナの耐震評価フローを図 2-1 に示す。

図 2-1 高圧炉心注水系ストレーナの耐震評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984((社) 日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格((社)日本機械学会,2005/2007)(以下「設計・ 建設規格」という。)
- ・非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規) (平成 20・02・12 原院第5号(平成 20 年 2 月 27 日原子力安全・保安院制定))

2.4 記号の説明

計算書の記号	記号の説明		
А	断面積	mm^2	
a. back	計算に使用する矩形平板の短辺の長さ	mm	
Aproj	実効面積		
ass	Ss 地震時の設計震度		
asd	Sd 地震時の設計震度	—	
b. _{back}	計算に使用する矩形平板の長辺の長さ		
B2	応力係数	—	
С	組合せ等価圧力荷重	kPa	
Crivet	リベット頭部の半径	mm	
CD	定常ドラッグ係数	_	
CG	重心位置	mm	
d	孔径	mm	
DP	ストレーナ差圧荷重	kPa	
Eecc	コアチューブとディスクの中心間距離	mm	
Eeff	等価縦弾性係数	MPa	
F	荷重	Ν	
Ft	ストレーナ取付部ボルトに発生する軸力	Ν	
Fi.tube.1	コアチューブ最終列位置に作用する荷重(i=x, y, z)	Ν	
Fi.tube.2	コアチューブ第一列位置に作用する荷重(i=x, y, z)	Ν	
Fi.tube.3	コアチューブフランジ接触面に作用する荷重(i=x, y, z)	Ν	
h	孔の間の最小間隙	mm	
IR	内半径	mm	
Kpp	応力増倍率	—	
Q	ストレーナ取付部ボルトにかかるモーメントアーム長さ	mm	
L	長さ	mm	
Ls	補剛材長さ	mm	
М	モーメント	N•mm	
MASS	水力学的質量	Ν	
Mi.tube.1	コアチューブ最終列位置にかかるモーメント(i=x, v. z)		
Mi.tube.2	コアチューブ第一列位置にかかるモーメント(i=x, y, z)	N•mm	
Mi.tube.3	コアチューブフランジ接触面にかかるモーメント(i=x, y, z)	N•mm	
Mback	多孔プレート内面にかかる単位長さ当りのモーメント	N•mm/mm	
Mxback	多孔プレート内面にかかる単位長さ当りのモーメント (x 方向)	N•mm/mm	
Myback	多孔プレート内面にかかる単位長さ当りのモーメント (y方向)	N•mm/mm	

計算書の記号	記号の説明			
OD	外径			
Р	孔間のピッチ			
q	等価圧力			
S2	補剛材有効断面係数			
SAtot	ストレーナの有効表面積			
Sct	コアチューブ断面係数			
Ss	基準地震動 Ss により定まる地震力			
Sd 🖌	弾性設計用地震動 Sd により定まる地震力または静的地震力	—		
Sd	弾性設計用地震動 Sd により定まる地震力	—		
SRV	逃がし安全弁作動時荷重	N/m^2		
SRVdrag	逃がし安全弁作動時定常ドラッグ荷重	N/m^2		
SRVP	逃がし安全弁作動時定常ドラッグ荷重	N/m^2		
t	ディスク多孔プレートの厚さ	mm		
t_{flan}	フランジ板厚	mm		
u	計算上の変数	—		
U	計算上の変数	—		
Vdrag	加速度ドラッグ体積	m ³		
W	ディスク幅	mm		
Wd	異物の自重による異物荷重	Ν		
Wm1	ストレーナの慣性質量 (デブリ質量を不含)	Ν		
Wm2	ストレーナの慣性質量(デブリ質量を含む)	Ν		
WT	ストレーナの自重による荷重	Ν		
Wt	質量	Ν		
u eff	等価ポアソン比	—		
α	係数	—		
β	係数	—		
γ	水の比重量	N/m^3		
π	円周率	—		
σb	一次一般膜+曲げ応力	MPa		
σ bolt	ストレーナ取付部ボルトの引張応力	MPa		
σ ct	コアチューブに発生する応力	MPa		
σm	一次一般膜応力	MPa		
σ back	内面より加わる荷重による応力	MPa		
σ front	外面より加わる荷重による応力	MPa		
σ pl	多孔プレート表面の応力	MPa		

計算書の記号	記号の説明				
σr	フランジ部曲げ応力	MPa			
Ψ	計算上の変数				
bolt	ストレーナ取付部ボルト				
disk	エンドディスク及び中間ディスク				
endcore	エンドコア				
enddisk/end	エンドディスク				
face	多孔プレート面	—			
flan	フランジ	—			
G3	許容応力ⅢAS状態	—			
G4	許容応力WAS状態	—			
gap	インナーギャップ	—			
int	中間補剛材	—			
lat	軸直角方向	—			
middisk/mid	中間ディスク	—			
rad.stfnr	ラジアル補剛材				
rim	アウターリム				
strnr	ストレーナディスク部				
stub	コアチューブスタブ	—			
total	ストレーナ部全体	—			
tube/ct/per.tube	コアチューブ	—			
wire	ワイヤー	—			
х	水平方向				
У	鉛直方向				
Z	軸方向				

注:ここで定義されない記号については、各計算の項目において説明する。

2.5 計算精度と数値の丸め方

精度は、有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度		小数点以下第3位	切上げ	小数点以下第2位
圧力	MPa/kPa	小数点以下第3位	四捨五入	小数点以下第2位*1
温度	°C	_		整数位
質量	kg	_	_	整数位
長さ	mm	小数点以下第2位	_	小数点以下第1位*2
面積	mm^2	有効数字5桁目	四捨五入	有効数字4桁*3
モーメント	N•mm	有効数字5桁目	四捨五入	有効数字4桁*3
力	Ν	有効数字5桁目	四捨五入	有効数字4桁*3
縦弾性係数	MPa	小数点以下第1位	四捨五入	整数位
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*4	MPa	小数点以下第1位	切捨て	整数位

表 2-2 表示する数値の丸め方

注記*1:必要に応じて小数点以下第3位とする。

*2:設計上定める値が小数点以下第2位の場合は、小数点以下第2位表示とする。 *3:絶対値が1000以上のときは、べき数表示とする。

*4:設計・建設規格 付録材料図表に記載された温度の中間における許容引張応 力,設計降伏点及び設計引張強さは、比例法により補間した値の小数点以下 第1位を切り捨て,整数位までの値とする。

3. 評価部位

高圧炉心注水系ストレーナの耐震評価は、「4.1 地震応答解析及び構造強度評価方法」に示す 条件に基づき、主要部品であるエンドコア、エンドディスク、中間ディスク、アウターリム、イ ンナーギャップ、コアチューブ、フランジ及びストレーナ取付部ボルトについて実施する。

高圧炉心注水系ストレーナの取付状況,形状及び主要寸法,構造概要を図 3-1,図 3-2 及び 図 3-3 に示す。

図 3-1 高圧炉心注水系ストレーナの取付状況

④ アウターリム、⑤ インナーギャップ、⑥ コアチューブ
(①,②,③,④,⑤は多孔プレート形状である。)

図 3-2 高圧炉心注水系ストレーナの形状及び主要寸法(単位:mm)

図 3-3 高圧炉心注水系ストレーナの構造概要

- 4. 地震応答解析及び構造強度評価
- 4.1 地震応答解析及び構造強度評価方法
 - (1) 高圧炉心注水系ストレーナの質量には、ストレーナに付着する異物量を考慮し、荷重の算 出において組み合わせるものとする。
 - (2) 地震力は,高圧炉心注水系ストレーナに対して軸方向及び軸直角方向(水平/鉛直)に作用するものとする。
 - (3) 耐震計算に用いる寸法は、公称値に基づき設定する。
- 4.2 荷重の組合せ及び許容応力
 - 4.2.1 荷重の組合せ及び許容応力状態
 高圧炉心注水系ストレーナの設計基準対象施設の評価に用いる荷重の組合せ及び許容応力状態を表 4-1 に、荷重の組合せ整理表を表 4-2 に示す。
 - 4.2.2 許容応力

高圧炉心注水系ストレーナの許容応力は「非常用炉心冷却設備又は格納容器熱除去設備 に係るろ過装置の性能評価等について(内規)」(平成20・02・12原院第5号(平成20年 2月27日原子力安全・保安院制定))及びVI-2-1-9「機能維持の基本方針」に基づき表4-3及び表4-4に示す。

4.2.3 使用材料の許容応力評価条件

高圧炉心注水系ストレーナの設計基準対象施設の評価に用いる許容応力評価条件を表 4 -5 に示す。

なお、各評価部位の使用材料については以下のとおり。

コアチューブ 多孔プレート フランジ ストレーナ取付部ボルト
	我了了。"···································							
施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力 状態		
E 7 L					$D + P_D + M_D + S d^*$	III A S		
原子炉 冷却系統	非常用炉心冷却 設備その他	高圧炉心注水系 ストレーナ	S	クラス2	$D + P_L + M_L + S d^*$	III _A S		
施設	原子炉汪水設備				$D + P_D + M_D + S_S$	IV A S		

表 4-1 荷重の組合せ及び許容応力状態(設計基準対象施設)

組合せ No.						SRV	SRV荷重		LOCA荷重			苛重	
		運転状態	死荷重	異物 荷重	差圧 荷重	運転時	中小 破断時	プール スウェル	蒸気 凝縮 (CO)	チャギング (CH)	S d * 荷重	S s 荷重	許容応力 状態
	DBA-1	運転状態 I	0								0		III A S
	DBA-2	運転状態 I	0									0	IV A S
DBA*	DBA-3	運転状態Ⅱ	0			0					0		III A S
	DBA-4	運転状態Ⅱ	0			0						0	IV A S
	DBA-5	運転状態Ⅳ(L)	0	0	0						0		IIIAS

表 4-2 荷重の組合せ整理表(設計基準対象施設)

注記*:設計基準対象事故時

		許容限界*1						
許容応力状態	一次一般膜応力	一次応力 (曲げ応力を含む)	一次十二次応力*2					
III A S	Syと0.6・Suの小さい方 ただし, オーステナイト系ステンレ ス鋼及び高ニッケル合金について は上記値と1.2・Sとの大きい方	S y ただし, オーステナイト系ステンレ ス鋼及び高ニッケル合金について は上記値と 1.2・Sとの大きい方	弾性設計用地震動Sd又は基準地震動Ssの みによる疲労解析を行い,疲労累積係数が 1.0以下であること。					
IV A S	0.6•Su	左欄の 1.5 倍の値	ただし,地震動のみによる一次+二次応力の 変動値が 2・Sy以下であれば,疲労解析は 不要。					

表4-3 許容応力(クラス2管)

注記*1:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

*2:二次応力が発生する場合のみ考慮する。

許容応力状態	許容限界
III A S	1.5 • S
IV A S	2 • S

表 4-4 許容応力(クラス2耐圧部テンションボルト)

評価部材	材料	温度条件 (℃)		S (MPa)	Sy (MPa)	Su (MPa)	Sy(RT) (MPa)
コアチューブ		最高使用温度	104				
多孔プレート		最高使用温度 104					
フランジ		最高使用温度 104					
ストレーナ取付部ボルト		最高使用温度	最高使用温度 104]

表 4-5 使用材料の許容応力評価条件(設計基準対象施設)

4.2.4 設計荷重

(1) 死荷重

高圧炉心注水系ストレーナの自重(W_T)による荷重及び高圧炉心注水系ストレーナに付着する異物の自重による異物荷重(W_D)^{*1}の2つの死荷重を考慮する。

高圧炉心液	主水系	ミス	トレーナの自重	$(W_{\rm T})$	=	Ν
異物荷重	(W_D)	=	Ν			

注記*1:異物荷重は運転状態Ⅳの荷重の組合せ時に考慮する。

(2) 差圧荷重

ストレーナ差圧による荷重*2は,異物付着時の高圧炉心注水系ストレーナを通しての 最大設計差圧より設定し,以下のとおりとする。

ストレーナ差圧荷重= kPa

注記*2:ストレーナ差圧荷重は運転状態IVの荷重の組合せ時に考慮する。

(3) 水力学的動荷重(逃がし安全弁作動時荷重)

逃がし安全弁作動時には、サプレッションチェンバ内の水中構造物に水力学的動荷重が 作用する。この荷重については、原子力安全委員会が策定した評価指針「BWR, MAR K-Ⅱ型格納容器圧力抑制系に加わる動荷重の評価指針」(以下「MARK-Ⅱ動荷重指針」 という。)に準じて荷重の評価を実施する。

水力学的動荷重は下記の典型的な型で表されるが,逃がし安全弁作動時荷重(以下「S RV荷重」という。)は下記①と③の荷重として評価する。

- 定常ドラッグ荷重
- ② 加速度ドラッグ荷重
- ③ 圧力荷重, 圧力パルス荷重

MARK-Ⅱ動荷重指針に基づき,高圧炉心注水系ストレーナに加わるSRV荷重を算 出した結果を表4-6に示す。表4-6に示した荷重は、考慮すべきSRV荷重が最大とな る位置を選定して算出した値であり,地震荷重と組み合わせるSRV荷重のみを記載する。 また,高圧炉心注水系ストレーナは、SRV荷重のうち、水ジェット及び蒸気凝縮過程に よる荷重については十分小さいため評価対象としない。

なお、最終的な荷重はそれぞれ下記となる。

定常ドラッグ荷重 (N) = SRV荷重 (N/m²) × 実効面積 (m²) × 定常ドラッグ係数 C_D 圧力荷重 (N) = SRV荷重 (N/m²) × 実効面積 (m²) 軸方向の圧力荷重は、各ディスクの前列ディスクと後列ディスクで軸方向荷重の1/2 ず つを受け持つとし、この荷重をディスク体積比で配分し、軸方向の圧力荷重として作用さ せる。

軸直角方向(水平/鉛直方向)の圧力荷重は,ストレーナ前面で正圧の荷重を,後面で 負圧の荷重を 1/2 ずつを受け持つとし,ストレーナの全面の投影面積で軸直角方向荷重を 除算し,軸直角方向(水平/鉛直方向)の圧力荷重として作用させる。

荷重名称	軸方向	鉛直方向	水平方向	備考
SRV荷重				定常ドラッグ荷重
(運転時)				圧力荷重

表4-6 水力学的動荷重(SRV荷重)

注: SRV荷重が作用する方向は図 4-1 を参照

図 4-1 SRV荷重の作用方向

4.3 解析モデル及び諸元

高圧炉心注水系ストレーナの応答解析及び応力評価は、はりモデル及び三次元シェルモデル による有限要素解析手法を適用する。なお、ストレーナ本体の応力計算に用いた三次元シェル モデルについては、「4.8.5 アウターリムの多孔プレートに発生する応力」及び「4.8.6 イン ナーギャップの多孔プレートに発生する応力」で説明する。本項においては、ストレーナから 原子炉格納容器貫通部までをモデル化したはりモデル(以下「応答解析モデル」という。)につ いて説明する。

高圧炉心注水系ストレーナの応答解析モデルを図4-2に,解析モデルの概要を以下に示す。 また,機器の諸元を本計算書の【高圧炉心注水系ストレーナの耐震性についての計算結果】の 機器要目に示す。

- (1) 応答解析モデルではストレーナから原子炉格納容器貫通部までをはり要素を用いた有限要素モデルとしてモデル化して解析を行い,荷重を算出する。
- (2) ストレーナ部ティーと原子炉格納容器貫通部は溶接構造で取り付けられており、付根部は 完全拘束とする。
- (3) 各部の質量は、ストレーナ部ティー及び原子炉格納容器貫通部については分布荷重として 与え、ストレーナについては図4-2の△部に集中質量を与える。
- (4) 本設備はサプレッションプールに水没している機器であるため、応答解析では内包水影響 を加味し、質量に含める。また、異物の質量も応答解析において考慮する。
- (5) 解析コードは「ISAP」及び「MSC NASTRAN」を使用し、固有値及び荷重を 求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、別紙 「計算機プログラム(解析コード)の概要」に示す。

RO

図 4-2 応答解析モデル

4.4 固有周期

固有値解析の結果を表 4-7 に示す。固有周期は,0.05 秒以下であり,剛であることを確認 した。

		固有周期	水平方向	刺激係数	鉛直方向
モード	卓越方向	(s)	X方向	Y方向	刺激係数
1次	水平	0.027	_	_	_

表 4-7 固有值解析結果

4.5 設計用地震力

評価に用いる設計用地震力を表 4-8 に示す。

「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」による地震力は、VI-2-1-7 「設計用床応答曲線の作成方針」に基づき設定する。なお、図3-1に示すように、ストレーナ の軸方向には水平方向の震度、軸直角方向には水平方向及び鉛直方向の震度が作用するため、 軸方向及び軸直角方向に作用する地震力を表4-9に示す。

据付場所	固有周期 (s)		弾性設計用地震動Sd 又は静的震度		基準地震動 S s	
及び 床面高さ (m)	水平 方向	鉛直 方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋 T.M.S.L. (T.M.S.L1.700*)	0. 027	0.05 以下	С _н =0.58	C _V =0.50	С _н =1.02	$C_{v} = 1.02$

表 4-8 設計用地震力(設計基準対象施設)

注記*:基準床レベルを示す。

地震荷重	取付伯	取付位置 T.M.S.L. m					
	軸方向震度	水平方向震度	鉛直方向震度				
S d *	0.58	0.58	0.50				
S s	1.02	1.02	1.02				

表 4-9 ストレーナに作用する地震力

4.6 計算方法

4.6.1 応力評価

設置されている2系統の高圧炉心注水系ストレーナは、形状、設置レベルが同一である こと、考慮すべき水力学的動荷重(SRV荷重)として最大となる位置の値を使用して計 算することから、応力評価は代表して1つの系統の高圧炉心注水系ストレーナにつき実施 する。

4.6.2 応力評価点

高圧炉心注水系ストレーナの構造は,図 3-2 及び図 3-3 に示すように,コアチューブ が主強度部材となり各ディスクを支える構造になっている。各ディスクの表面は多孔プレ ートを配し,ろ過装置としての機能を有している。4.2 項で設定した設計荷重の大部分は, ワイヤー,補剛材等により支えられた各ディスクの多孔プレート表面に加わり,最終的に はコアチューブに伝達される。ワイヤー,補剛材等多孔プレートを支持する補助部材につ いては,荷重を適切に伝達させるよう,十分な強度を持つように設計している。従って, ストレーナの主要構成部材である多孔プレート,コアチューブ及びフランジについて構造, 形状を考慮した応力評価部位を選定し,評価を実施する。

応力評価点を表 4-10,図 4-3及び図 4-4 に示す。

4.6.3 応力計算方法

高圧炉心注水系ストレーナに考慮すべき荷重の組合せ(4.2.1項)より,各応力評価点 におけるこれらの荷重の組合せの中で,最大となる荷重を用いて評価を実施する。また, 計算は荷重により各応力評価点に生じる応力を,引用文献に基づく計算と解析コード「A NSYS」を使用した計算の組合せにより実施する。なお,評価に用いる解析コードの検 証及び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」 に示す。

名称	応力評価点番号	応力評価点			
エンドコア	P1	コアチューブ端の多孔プレート			
エンドディスク	P2	エンドディスクの多孔プレート			
中間ディスク	P3	中間ディスクの多孔プレート			
アウターリム	P4	ディスク外径部リムの曲り多孔プレート			
インナーギャップ	Р5	ディスク間インナーギャップの曲り多孔プ レート			
最終列位置	P6	コアチューブの最終列ディスク位置			
第一列位置	P7	コアチューブの第一列ディスク位置			
フランジ接触面	P8	コアチューブのフランジ接触面位置			
フランジ	P9	フランジ			
ストレーナ取付部ボルト	P10	ボルト			

図 4-3 多孔プレートの応力評価点

図 4-4 コアチューブ及びフランジ部の応力評価部位

4.7 各応力評価部位に加わる最大荷重

地震荷重は,ストレーナ各要素に働く水力学的質量の寄与分に比例して加わる荷重である。 従って,地震荷重は水力学的質量の関数として扱うことができる。

定常ドラッグ荷重である逃がし安全弁作動時定常ドラッグ荷重(SRVdrag)は、ストレーナ各 要素の実効面積に比例し加わる荷重である。また、圧力パルス荷重である逃がし安全弁作動時 圧力荷重(SRV_P)は、ストレーナ各要素の実効面積に比例、もしくは横切る差圧として加わる 荷重である。従って、これらの荷重は実効面積の関数として扱うことができる。なお、ストレ ーナ差圧荷重(DP)は多孔プレートに加わり、ストレーナをつぶす方向に作用する。

以上より,各荷重により高圧炉心注水系ストレーナに加わる荷重はストレーナ各要素に加わ る荷重に分割することができ,多孔プレートに対しては表面荷重(等価圧力)として与えられ る。

4.7.1 組合せ荷重の計算

4.2.1 項に示した設計基準事故時の各組合せ荷重を算出し,最大荷重算出の一次スクリ ーニングを行う。ただし,ストレーナ差圧荷重(DP)については多孔プレート面に対して 加わるため,多孔プレート面の位置により座標軸が変わる。従って,ストレーナ差圧荷重 (DP)については「4.7.2 多孔プレートに加わる荷重」で考慮する。

(1) 荷重組合せ No. DBA-1 ($W_T + S_d$) 荷重組合せ No. DBA-1 ($W_T + S_d$) にてストレーナに加わる荷重は,

$$C_{DBA-1} = (W_T + S_d) = W_T + asd \times (W_{M1} + V_{drag} \times \gamma)$$

$$= \Box_{n+1} + \begin{pmatrix} 0.58 \\ 0.50 \\ 0.58 \end{pmatrix} \times \Box_{n+1} + \Box_{n+1} \times 9807 \end{bmatrix} = \begin{pmatrix} 3795 \\ 6962 \\ 3732 \end{pmatrix} N$$
ここで、 $\begin{pmatrix} A \\ B \\ C \end{pmatrix}$ はそれぞれ、A:軸方向、B:鉛直方向、C:水平方向を表す。
また、
 W_T : ストレーナ質量 = \Box_{n} N
 W_{M1} : ストレーナの慣性質量 (N)
 $W_{M1} = \Box_{n}$ N
asd : Sd 地震時の設計震度
 V_{drag} : 加速度ドラッグ体積 (m³)
(流体中の物体の運動に伴って移動する周囲の流体 (付加質量) も考
慮した物体の体積で、ストレーナ形状より決定)
 $V_{drag} = \Box_{n}$ m³

γ : 水の比重量 = 9807 N/m³

(2) 荷重組合せ No. DBA-2 (W_T + S_S) 荷重組合せ No. DBA-2 ($W_T + S_s$) にてストレーナに加わる荷重は,

ここで,

ass : Ss 地震時の設計震度

(3) 荷重組合せ No. DBA-3 (W_T + SRV + S_d) 荷重組合せ No. DBA-3 ($W_T + SRV + S_d$) にてストレーナに加わる荷重は,

Ľ

 SRV_P SRV_{drag}: 逃がし安全弁作動時荷重(定常ドラッグ荷重)

: 実効面積 (m²) Aproj

> (物体の流れに垂直な面に対する投影面積,あるいは圧力の加わる 面積で,ストレーナの形状より決定)

(4) 荷重組合せ No. DBA-4 (W_T + SRV + S_s) 荷重組合せ No. DBA-4 ($W_T + SRV + S_s$) にてストレーナに加わる荷重は,

(5) 荷重組合せ No. DBA-5
$$(W_T + W_D + DP + S_d)$$

荷重組合せ No. DBA-5 $(W_T + W_D + DP + S_d)$ にてストレーナに加わる荷重は,
 $C_{DBA-5} = (W_T + W_D + DP + S_d)$

$$= \begin{bmatrix} W_T + W_D + asd \times (W_{M2} + V_{drag} \times \gamma) \end{bmatrix}$$
$$= \begin{bmatrix} W_T + W_D + asd \times (W_{M2} + V_{drag} \times \gamma) \end{bmatrix}$$
$$+ \begin{bmatrix} 0.58\\ 0.50\\ 0.58 \end{bmatrix} \times \begin{bmatrix} W_T + W_D + asd \times 9807 \end{bmatrix}$$
$$= \begin{pmatrix} 4682\\ 9255\\ 4619 \end{bmatrix} N$$

ここで,

 W_{M2} : ストレーナのデブリ質量を含む慣性質量 (N) $W_{M2} =$ + = $\begin{pmatrix} 5273\\5273\\5273\\5273 \end{pmatrix}$ N

以上をまとめると、表 4-11 のとおりとなり、許容応力状態Ⅲ_ASのクリティカルな荷 重条件として DBA-3 とストレーナ差圧荷重(DP)が加わる DBA-5 を、許容応力状態Ⅳ_AS のクリティカルな荷重条件として DBA-4 を選出し、以下の検討を行う。

表 4-11 組合せ荷重

荷重組合せ No.	荷重の組合せ	許容応力 状態	軸方向荷重 (N)	鉛直方向荷重 (N)	水平方向荷重 (N)	代表性
DBA-1	$W_{T} + S_{d}$	III _A S	3795	6962	3732	DBA-3 に包絡
DBA-2	$W_T + S_S$	IV _A S	6674	10308	6564	DBA-4 に包絡
DBA-3	W_T + SRV + S_d	III _A S	5682	9650	10698	Ⅲ _A Sのクリテ ィカル条件
DBA-4	W_{T} + SRV + S _S	IV _A S	8561	12996	13530	Ⅳ _A Sのクリテ ィカル条件
DBA-5	$W_T + W_D + DP + S_d$	III _A S	4682	9255	4619	Ⅲ _A Sのクリテ ィカル条件

4.7.2 多孔プレートに加わる荷重

ストレーナの多孔プレートの各応力評価部位に加わる最大荷重を,4.7.1 項で選定した クリティカル条件(荷重組合せ No. DBA-3, DBA-4 及び DBA-5)を基に算出する。

- エンドコアに加わる軸方向荷重
 エンドコアに軸方向外面に加わる荷重を荷重の組合せ毎に計算する。
 - a. 荷重組合せ No. DBA-3 $(W_T + SRV + S_d)$

$$\begin{split} q_{DBA-3.endcore} &= (W_T + SRV + S_d) \\ &= SRV_{P.z} \cdot \frac{W_{enddisk}}{L_{strnr}} + SRV_{drag.z} \cdot C_D + asd_z \cdot \frac{(MASS_{endcore} + Wt_{endcore})}{\frac{\pi}{4} \cdot OD_{tube}^2} \\ &= 1.47 \text{ kPa} \\ \text{ここで,} \\ &MASS_{endcore} : \text{エンドコア部の水力学的質量} = \square \text{N} \\ &Wt_{endcore} : \text{エンドコア質量} (多孔プレート及び補剛材) = \square \text{N} \end{split}$$

b. 荷重組合せ No. DBA-4 ($W_T + SRV + S_s$)

$$q_{DBA-4.endcore} = (W_T + SRV + S_S)$$

= $SRV_{P.z} \cdot \frac{W_{enddisk}}{L_{strnr}} + SRV_{drag.z} \cdot C_D + ass_z \cdot \frac{(MASS_{endcore} + Wt_{endcore})}{\frac{\pi}{4} \cdot OD_{tube}^2}$
= 2.46 kPa

c. 荷重組合せ No. DBA-5 $(W_T + W_D + DP + S_d)$

$$q_{DBA-5.endcore} = (W_T + W_D + DP + S_d)$$

= $DP + asd_z \cdot \frac{(MASS_{endcore} + Wt_{endcore})}{\frac{\pi}{4} \cdot OD_{tube}^2} + asd_z \cdot \frac{W_D}{SA_{tot}}$
= 12.14 kPa

ここで, DP :

$$DP : ストレーナ差圧荷重 = kPa$$

 $W_D : デブリ質量 = N$
 $SA_{tot} : ストレーナの有効表面積 = m^2$

以上より,エンドコアに軸方向外面より加わる最大荷重は,許容応力状態Ⅲ_ASで12.14 kPa,許容応力状態Ⅳ_ASで2.46 kPaとなる。

- (2) エンドディスクに加わる軸方向荷重エンドディスクに軸方向外面に加わる荷重を荷重組合せ毎に計算する。
 - a. 荷重組合せ No. DBA-3 $(W_T + SRV + S_d)$

$$\begin{split} q_{DBA-3.enddisk} &= (W_T + SRV + S_d) \\ &= \frac{1}{2} \cdot SRV_{P.z} \cdot \frac{W_{enddisk}}{L_{strnr}} + SRV_{drag.z} \cdot C_D + asd_z \cdot \frac{(MASS_{enddisk} + Wt_{disk})}{\frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2)} \\ &= 0.54 \text{ kPa} \end{split}$$
ここで、
$$\begin{split} MASS_{enddisk} &: \quad x \sim \forall \forall \forall \tau a \neq 0 \text{ and } \forall \forall t_{disk} = \mathbf{N} \\ Wt_{disk} &: \quad \forall \forall \tau a \neq 0 \text{ and } \forall \forall t_{disk} = \mathbf{N} \end{split}$$

b. 荷重組合せ No. DBA-4 ($W_T + SRV + S_s$)

$$q_{DBA-4.enddisk} = (W_T + SRV + S_S)$$

= $\frac{1}{2} \cdot SRV_{P,z} \cdot \frac{W_{enddisk}}{L_{strnr}} + SRV_{drag,z} \cdot C_D + ass_z \cdot \frac{(MASS_{enddisk} + Wt_{disk})}{\frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2)}$
= 0.89 kPa

c. 荷重組合せ No. DBA-5
$$(W_T + W_D + DP + S_d)$$

$$q_{DBA-5.enddisk} = (W_T + W_D + DP + S_d)$$

= $DP + asd_z \cdot \frac{(MASS_{enddisk} + Wt_{disk})}{\frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2)} + asd_z \cdot \frac{W_D}{SA_{tot}}$
= 11.30 kPa

以上より、エンドディスクに軸方向外面より加わる最大荷重は、許容応力状態 III_AS で 11.30 kPa,許容応力状態 IV_AS で0.89 kPaとなる。

- (3) 中間ディスクに加わる軸方向荷重中間ディスクに軸方向外面に加わる荷重を荷重組合せ毎に計算する。
 - a. 荷重組合せ No. DBA-3 $(W_T + SRV + S_d)$

$$\begin{split} q_{DBA-3.middisk} &= (W_T + SRV + S_d) \\ &= \frac{1}{2} \cdot SRV_{P.z} \cdot \frac{W_{middisk}}{L_{strnr}} + asd_z \cdot \frac{(MASS_{middisk} + Wt_{disk})}{\frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2)} \\ &= 0.16 \text{ kPa} \end{split}$$

ここで、
$$\begin{split} MASS_{middisk} &: \quad 中間ディスク部の水力学的質量 = \square \mathbb{N} \end{split}$$

b. 荷重組合せ No. DBA-4 $(W_T + SRV + S_s)$

$$q_{DBA-4.middisk} = (W_T + SRV + S_S)$$

= $\frac{1}{2} \cdot SRV_{P.z} \cdot \frac{W_{middisk}}{L_{strnr}} + ass_z \cdot \frac{(MASS_{middisk} + Wt_{disk})}{\frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2)}$
= 0.24 kPa

c. 荷重組合せ No. DBA-5
$$(W_T + W_D + DP + S_d)$$

$$q_{DBA-5.middisk} = (W_T + W_D + DP + S_d)$$

= $DP + asd_z \cdot \frac{(MASS_{middisk} + Wt_{disk})}{\frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2)} + asd_z \cdot \frac{W_D}{SA_{tot}}$
= 10.95 kPa

以上より,中間ディスクに軸方向外面より加わる最大荷重は,許容応力状態Ⅲ_ASで 10.95 kPa,許容応力状態Ⅳ_ASで0.24 kPa となる。

- (4) アウターリムに加わる水平方向荷重と鉛直方向荷重アウターリムに水平方向と鉛直方向外面より加わる荷重を荷重組合せ毎に計算する。
 - a. 荷重組合せ No. DBA-3 $(W_T + SRV + S_d)$

$$q_{DBA-3.rim.x} = (W_T + SRV + S_d)$$

$$= \frac{1}{2} \cdot SRV_{P.x} + \frac{1}{2} \cdot SRV_{drag.x} \cdot C_D + asd_x \cdot \frac{(MASS_{disk} + Wt_{rim})}{2 \cdot L_{disk} \cdot OD_{disk}}$$

$$= 7.87 \text{ kPa}$$

$$q_{DBA-3.rim.y} = (W_T + SRV + S_d)$$

$$= \frac{1}{2} \cdot SRV_{P.y} + \frac{1}{2} \cdot SRV_{drag.y} \cdot C_D$$

$$+ \frac{asd_y \cdot MASS_{disk} + (1 + asd_y) \cdot Wt_{rim}}{2 \cdot L_{disk} \cdot OD_{disk}}$$

ここで,

$$L_{disk}$$
 : エンドディスク幅と中間ディスク幅の合計 = mm
 $MASS_{disk}$: ディスク部の水力学的質量 = N
 Wt_{rim} : アウターリム部の質量(多孔プレート及び補剛材) = N

よって、水平方向と鉛直方向の合成荷重 q_{DBA-3.rim.lat} は、

$$q_{DBA-3.rim.lat} = \sqrt{q_{DBA-3.rim.x}^2 + q_{DBA-3.rim.y}^2}$$

= 8.80 kPa

b. 荷重組合せ No. DBA-4
$$(W_T + SRV + S_S)$$

 $q_{DBA-4.rim.x} = (W_T + SRV + S_S)$
 $= \frac{1}{2} \cdot SRV_{P.x} + \frac{1}{2} \cdot SRV_{drag.x} \cdot C_D + ass_x \cdot \frac{(MASS_{disk} + Wt_{rim})}{2 \cdot L_{disk} \cdot OD_{disk}}$
 $= 9.11 \text{ kPa}$
 $q_{DBA-4.rim.y} = (W_T + SRV + S_S)$
 $= \frac{1}{2} \cdot SRV_{P.y} + \frac{1}{2} \cdot SRV_{drag.y} \cdot C_D$
 $+ \frac{ass_y \cdot MASS_{disk} + (1 + ass_y) \cdot Wt_{rim}}{2 \cdot L_{disk} \cdot OD_{disk}}$
 $= 5.41 \text{ kPa}$

よって、水平方向と鉛直方向の合成荷重
$$q_{DBA-4.rim.lat}$$
 は、
 $q_{DBA-4.rim.lat} = \sqrt{q_{DBA-4.rim.x}^2 + q_{DBA-4.rim.y}^2}$
= 10.60 kPa

c. 荷重組合せ No. DBA-5 $(W_T + W_D + DP + S_d)$

$$q_{DBA-5.rim.x} = (W_T + W_D + DP + S_d)$$

= $asd_x \cdot \frac{(MASS_{disk} + Wt_{rim})}{2 \cdot L_{disk} \cdot OD_{disk}} + asd_x \cdot \frac{W_D}{SA_{tot}}$
= 1.69 kPa

$$q_{DBA-5.rim.y} = (W_T + W_D + DP + S_d)$$

= $\frac{asd_y \cdot MASS_{disk} + (1 + asd_y) \cdot Wt_{rim}}{2 \cdot L_{disk} \cdot OD_{disk}} + \frac{(1 + asd_y) \cdot W_D}{SA_{tot}}$
= 1.67 kPa

よって、水平方向と鉛直方向の合成荷重及びストレーナ差圧荷重 (DP) の合計荷重 *q*_{DBA-5.rim.lat} は,

$$q_{DBA-5.rim.lat} = \sqrt{q_{DBA-5.rim.x}^2 + q_{DBA-5.rim.y}^2 + DP}$$

= 13.17 kPa

以上より、アウターリムに軸直角方向外面より加わる最大合成荷重は、許容応力状態Ⅲ ASで13.17 kPa,許容応力状態IVASで10.60 kPaとなる。

a. 荷重組合せ No. DBA-3 $(W_T + SRV + S_d)$

$$\begin{aligned} q_{DBA-3.gap.x} &= (W_T + SRV + S_d) \\ &= \frac{1}{2} \cdot SRV_{P.x} + \frac{1}{2} \cdot SRV_{drag.x} \cdot C_D + asd_x \cdot \frac{(MASS_{gap} + Wt_{gap})}{2 \cdot L_{gap} \cdot OD_{gap}} \\ &= 6.76 \text{ kPa} \\ q_{DBA-3.gap.y} &= (W_T + SRV + S_d) \\ &= \frac{1}{2} \cdot SRV_{P.y} + \frac{1}{2} \cdot SRV_{drag.y} \cdot C_D \\ &+ \frac{asd_y \cdot MASS_{gap} + (1 + asd_y) \cdot Wt_{gap}}{2 \cdot L_{gap} \cdot OD_{gap}} \end{aligned}$$

ここで,

$$L_{gap}$$
 : インナーギャップ部の幅の合計 = $_$ mm
 $MASS_{gap}$: インナーギャップ部の水力学的質量 = $_$ N
 Wt_{gap} : インナーギャップ部の質量(多孔プレート及び補剛材) = $_$ N

よって、水平方向と鉛直方向の合成荷重 q_{DBA-3.gap.lat} は,

$$q_{DBA-3.gap.lat} = \sqrt{q_{DBA-3.gap.x}^{2} + q_{DBA-3.gap.y}^{2}}$$

= 7.38 kPa

b. 荷重組合せ No. DBA-4
$$(W_T + SRV + S_s)$$

 $q_{DBA-4.gap.x} = (W_T + SRV + S_s)$
 $= \frac{1}{2} \cdot SRV_{P.x} + \frac{1}{2} \cdot SRV_{drag.x} \cdot C_D + ass_x \cdot \frac{(MASS_{gap} + Wt_{gap})}{2 \cdot L_{gap} \cdot OD_{gap}}$
 $= 7.17 \text{ kPa}$
 $q_{DBA-4.gap.y} = (W_T + SRV + S_s)$
 $= \frac{1}{2} \cdot SRV_{P.y} + \frac{1}{2} \cdot SRV_{drag.y} \cdot C_D$
 $+ \frac{ass_y \cdot MASS_{gap} + (1 + ass_y) \cdot Wt_{gap}}{2 \cdot L_{disk} \cdot OD_{disk}}$
 $= 3.43 \text{ kPa}$

よって、水平方向と鉛直方向の合成荷重 q_{DBA-4.gap.lat} は、

$$q_{DBA-4.gap.lat} = \sqrt{q_{DBA-4.gap.x}^2 + q_{DBA-4.gap.y}^2}$$
$$= 7.95 \text{ kPa}$$

c. 荷重組合せ No. DBA-5 $(W_T + W_D + DP + S_d)$

$$q_{DBA-5.gap.x} = (W_T + W_D + DP + S_d)$$

$$= asd_x \cdot \frac{(MASS_{gap} + Wt_{gap})}{2 \cdot L_{gap} \cdot OD_{gap}} + asd_x \cdot \frac{W_D}{SA_{tot}}$$

$$= 0.59 \text{ kPa}$$

$$q_{DBA-5.gap.y} = (W_T + W_D + DP + S_d)$$

$$= \frac{asd_y \cdot MASS_{gap} + (1 + asd_y) \cdot Wt_{gap}}{2 \cdot L_{gap} \cdot OD_{gap}} + \frac{(1 + asd_y) \cdot W_D}{SA_{tot}}$$

$$= 0.68 \text{ kPa}$$

よって、水平方向と鉛直方向の合成荷重及びストレーナ差圧荷重 (DP) の合計荷重 *q*_{DBA-5.gap.lat} は、

$$q_{DBA-5.gap.lat} = \sqrt{q_{DBA-5.gap.x}^2 + q_{DBA-5.gap.y}^2 + DP}$$

= 11.69 kPa

以上より、インナーギャップに軸直角方向外面より加わる最大荷重は、許容応力状態 Ⅲ_ASで11.69 kPa,許容応力状態IV_ASで7.95 kPaとなる。 (1) 項から(5) 項までの結果より,ストレーナ多孔プレートの各応力評価部位に加わる表面荷重(等価圧力)の位置を図4-5,荷重を表4-12にまとめる。

		各応力評価部位に加わる表面荷重					
No.	名称	許容応力状態	凭 Ⅲ _A S	許容応力状態 IV _A S			
		表面荷重(kPa)	荷重方向	表面荷重(kPa)	荷重方向		
1	エンドコア	12.14 *1	軸方向	2.46	軸方向		
2	エンドディスク	11.30 *1	軸方向	0.89	軸方向		
3	中間ディスク	10. 95 *1	軸方向	0.24	軸方向		
4		1.69	水平方向	9.11	水平方向		
	アウターリム	1.67	鉛直方向	5.41	鉛直方向		
		13. 17 *1	軸直角方向 *2	10.60	軸直角方向 *2		
5		0.59	水平方向	7.17	水平方向		
	インナーギャップ	0.68	鉛直方向	3. 43	鉛直方向		
		11.69 *1	軸直角方向 *2	7.95	軸直角方向 *2		

表 4-12 多孔プレートの各応力評価部位に加わる表面荷重(等価圧力)

注記*1:ストレーナ差圧荷重(10.79 kPa)を含む。

*2:水平方向荷重と鉛直方向荷重を SRSS 法にて合成した。

図 4-5 多孔プレートの各応力評価部位

4.7.3 コアチューブに加わる荷重

ストレーナの多孔プレート部に負荷された荷重は、ディスク内部の補強材によりコアチ ューブに伝達され、これらの荷重によりコアチューブには異なる位置で異なる応力が発生 する。従って、4.7.2項と同様に4.7.1項で選定したクリティカル条件(荷重組合せ No.DBA-3、DBA-4及びDBA-5)を基に、構造上厳しい条件となる第一列ディスク位置、最終列ディスク 位置及びフランジ接触面の3つの位置での荷重を算出する。

- (1) コアチューブスタブ部の荷重(等価圧力)コアチューブスタブ部に加わる流体及び地震からの荷重(等価圧力)を算出する。
 - a. 荷重組合せ No. DBA-3 ($W_T + SRV + S_d$)

$$q_{DBA-3.stub.x} = (W_T + SRV + S_d)$$

= $\frac{1}{2} \cdot SRV_{P.x} \cdot \frac{OD_{tube}}{OD_{disk}} + \frac{1}{2} \cdot SRV_{drag.x} \cdot C_D + asd_x \cdot \frac{(MASS_{stub} + Wt_{stub})}{2 \cdot L_{stub} \cdot OD_{tube}}$
= 4.51 kPa

$$q_{DBA-3.stub.y} = (W_T + SRV + S_d)$$

= $\frac{1}{2} \cdot SRV_{P.y} \cdot \frac{OD_{tube}}{OD_{disk}} + \frac{1}{2} \cdot SRV_{drag.y} \cdot C_D$
+ $\frac{asd_y \cdot MASS_{stub} + (1 + asd_y) \cdot Wt_{stub}}{2 \cdot L_{stub} \cdot OD_{tube}}$

ここで,

$$MASS_{stub}$$
: コアチューブスタブ部の水力学的質量 = \square N
 Wt_{stub} : コアチューブスタブ部の質量 = \square N

b. 荷重組合せ No. DBA-4 ($W_T + SRV + S_S$)

$$q_{DBA-4.stub.x} = (W_T + SRV + S_S)$$

= $\frac{1}{2} \cdot SRV_{P.x} \cdot \frac{OD_{tube}}{OD_{disk}} + \frac{1}{2} \cdot SRV_{drag.x} \cdot C_D + ass_x \cdot \frac{(MASS_{stub} + Wt_{stub})}{2 \cdot L_{stub} \cdot OD_{tube}}$
= 6.54 kPa

$$\begin{aligned} q_{DBA-4.stub.y} &= (W_T + SRV + S_S) \\ &= \frac{1}{2} \cdot SRV_{P.y} \cdot \frac{OD_{tube}}{OD_{disk}} + \frac{1}{2} \cdot SRV_{drag.y} \cdot C_D \\ &+ \frac{ass_y \cdot MASS_{stub} + (1 + ass_y) \cdot Wt_{stub}}{2 \cdot L_{stub} \cdot OD_{tube}} \end{aligned}$$

= 6.86 kPa

c. 荷重組合せ No. DBA-5 $(W_T + W_D + DP + S_d)$

$$q_{DBA-5.stub.x} = (W_T + W_D + DP + S_d)$$

= $asd_x \cdot \frac{(MASS_{stub} + Wt_{stub})}{2 \cdot L_{stub} \cdot OD_{tube}}$
= 2.68 kPa

$$q_{DBA-5.stub.y} = (W_T + W_D + DP + S_d)$$
$$= \frac{asd_y \cdot MASS_{stub} + (1 + asd_y) \cdot Wt_{stub}}{2 \cdot L_{stub} \cdot OD_{tube}}$$
$$= 3.80 \text{ kPa}$$

なお、ストレーナ差圧荷重 (DP) と異物荷重 (W_D) はコアチューブスタブ部には加わらない。

コアチューブスタブ部に加わる最大表面荷重(等価圧力)を表 4-13 にまとめる。

表 4-13 コアチューブスタブ部に加わる最大表面荷重(等価圧力)

反私	許容応力状態	≹∭ _A S	許容応力状態IVAS		
石桥	表面荷重(kPa)	荷重方向	表面荷重(kPa)	荷重方向	
コマエー・ブラカブ如	4.51	水平方向	6.54	水平方向	
コノリューノスタノ部	4.46	鉛直方向	6.86	鉛直方向	

- (2) コアチューブに加わる水平方向荷重(F_x) コアチューブに加わる水平方向荷重を評価部位毎に算出する。
 - a. 許容応力状態Ⅲ_ASでの水平方向荷重
 - (a) 最終列位置

 $F_{x.tube.G3.1} = 2 \cdot (q_{rim.x.G3} \cdot W_{enddisk} \cdot OD_{disk}) + (q_{gap.x.G3} \cdot W_{gap} \cdot OD_{gap})$ = 1979 N

ここで,

q_{rim.x.G3} : アウターリムに水平方向より加わる許容応力状態Ⅲ_ASでの最大等 価圧力(表 4-12 参照)

- *q_{gap.x.G3}*: インナーギャプに水平方向より加わる許容応力状態Ⅲ_ASでの最大 等価圧力(表 4-12 参照)
- (b) 第一列位置

 $F_{x.tube.G3.2} = 2 \cdot F_{x.tube.G3.1} + 6 \cdot (q_{rim.x.G3} \cdot W_{middisk} \cdot OD_{disk} + q_{gap.x.G3} \cdot W_{gap} \cdot OD_{gap}) = 8599 \text{ N}$

- b. 許容応力状態IVASでの水平方向荷重
- (a) 最終列位置

$$F_{x.tube.G4.1} = 2 \cdot (q_{rim.x.G4} \cdot W_{enddisk} \cdot OD_{disk}) + (q_{gap.x.G4} \cdot W_{gap} \cdot OD_{gap})$$
$$= 2277 \text{ N}$$

ここで,

- q_{rim.x.G4}
 : アウターリムに水平方向より加わる許容応力状態IVASでの最大等

 価圧力(表 4-12 参照)
- qgap.x.G4
 : インナーギャプに水平方向より加わる許容応力状態WASでの最大

 等価圧力(表 4-12 参照)

(b) 第一列位置

 $F_{x.tube.G4.2} = 2 \cdot F_{X.tube.G4.1} + 6 \cdot (q_{rim.x.G3} \cdot W_{middisk} \cdot OD_{disk} + q_{gap.x.G4} \cdot W_{gap} \cdot OD_{gap})$ = 9838 N

- (c) フランジ接触面
 - $F_{x.tube.G4.3} = F_{x.tube.G4.2} + 2 \cdot q_{stub.x.G4} \cdot OD_{tube} \cdot L_{stub}$ = 10649 N
 - ここで,
 - qstub.x.G4
 : コアチューブスタブ部に水平方向より加わる許容応力状態IVASでの最大等価圧力(表 4-13 参照)
- (3) コアチューブに加わる鉛直方向荷重(Fy)
 コアチューブに加わる鉛直方向荷重を評価部位毎に算出する。
 - a. 許容応力状態Ⅲ_ASでの鉛直方向荷重

 (a) 最終列位置
 F_{y.tube.G3.1} = 2 · (q_{rim.y.G3} · W_{enddisk} · OD_{disk} ·) + q_{gap.y.G3} · W_{gap} · OD_{gap}
 = 980 N
 ここで,
 q_{rim.y.G3} : アウターリムに鉛直方向より加わる許容応力状態Ⅲ_ASでの最大等
 価圧力(表 4-12 参照)
 q_{gap.y.G3} : インナーギャプに鉛直方向より加わる許容応力状態Ⅲ_ASでの最大
 等価圧力(表 4-12 参照)

(b) 第一列位置

 $F_{y.tube.G3.2} = 2 \cdot F_{y.tube.G3.1}$

 $+6 \cdot (q_{rim.y.G3} \cdot W_{middisk} \cdot OD_{disk} + q_{gap.y.G3} \cdot W_{gap} \cdot OD_{gap})$ $+ (Wt_{strnr} - Wt_{rim} - Wt_{gap})$ = 7415 N

ここで,

Wt_{strnr} : ストレーナディスク部質量 = ____N

また、アウターリム部質量(Wt_{rim})とインナーギャップ部質量(Wt_{gap})は、アウターリム部鉛直方向荷重($q_{rim.y.G3}$)及びインナーギャップ部鉛直方向荷重($q_{gap.y.G3}$)で考慮されているため、減じる。

(c) フランジ接触面

$$F_{y.tube.G3.3} = F_{y.tube.G3.2} + (2 \cdot q_{stub.y.G3} \cdot OD_{tube} \cdot L_{stub} - Wt_{stub})$$
$$= 7783 \text{ N}$$

ここで,

q_{stub.y.G3} : コアチューブスタブ部に鉛直方向より加わる許容応力状態Ⅲ_ASで の最大等価圧力(表 4-13 参照)

また,コアチューブスタブ部質量 (Wt_{stub}) は,コアチューブスタブ部鉛直方向荷 重 ($q_{stub.y.G3}$) で考慮されているため,減じる。

b. 許容応力状態IVASでの鉛直方向荷重

(a) 最終列位置

$$F_{y.tube.G4.1} = 2 \cdot (q_{rim.y.G4} \cdot W_{end.disk} \cdot OD_{disk}) + (q_{gap.y.G4} \cdot W_{gap} \cdot OD_{gap})$$
$$= 1332 \text{ N}$$

 q_{rim.y.G4}
 : アウターリムに鉛直方向より加わる許容応力状態WASでの最大等

 価圧力(表 4-12 参照)

 qgap.y.G4
 : インナーギャプに鉛直方向より加わる許容応力状態WASでの最大

 等価圧力(表 4-12 参照)

 $F_{y.tube.G4.2} = 2 \cdot F_{y.tube.G4.1} + 6 \cdot (q_{rim.y.G4} \cdot W_{middisk} \cdot OD_{disk} + q_{gap.y.G4} \cdot W_{gap} \cdot OD_{gap}) + (Wt_{strnr} - Wt_{rim} - Wt_{gap}) = 8879 \text{ N}$

(c) フランジ接触面

$$F_{y.tube.G4.3} = F_{y.tube.G4.2} + 2 \cdot (q_{stub.y.G4} \cdot OD_{tube} \cdot L_{stub})$$

= 9545 N

ここで,

 qstub.y.G4
 : コアチューブスタブ部に鉛直方向より加わる許容応力状態IVASで

 の最大等価圧力(表 4-13 参照)

- (4) コアチューブに加わる軸方向荷重(F_z) コアチューブに加わる軸方向荷重を評価部位毎に算出する。
 - a. 許容応力状態Ⅲ_ASでの軸方向荷重
 - (a) 最終列位置

$$F_{z.tube.G3.1} = q_{endcore.z.G3} \cdot \frac{\pi}{4} \cdot OD_{tube}^{2} + 2 \cdot (q_{enddisk.z.G3} - DP) \cdot \frac{\pi}{4} \cdot (OD_{disk}^{2} - OD_{tube}^{2})$$

$$= 3177 \text{ N}$$

ここで,

q_{endcore.z.G3}: エンドコアに軸方向より加わる許容応力状態Ⅲ_ASでの最大等価 圧力(表 4-12 参照)

q_{enddisk.z.G3}: エンドディスクに軸方向より加わる許容応力状態Ⅲ_ASでの最大 等価圧力(表 4-12 参照,ストレーナ差圧荷重を含む)
 DP: ストレーナ差圧荷重 = kPa

$$F_{z.tube.G3.2} = F_{z.tube.G3.1} + 2 \cdot (q_{enddisk.z.G3} - DP) \cdot \frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2) + 6 \cdot (q_{middisk.z.G3} - DP) \cdot \frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2)$$

 $+ asd_z \cdot (Wt_{rad.stfnr} + Wt_{perf.tube} + Wt_{rim} + Wt_{gap})$

ここで、
$$Wt_{rad.stfnr}$$
 : ラジアル補剛材質量 = \square N
 $Wt_{perf.tube}$: コアチューブ質量 = \square N

(c) フランジ接触面

 $F_{z.tube.G3.3} = F_{z.tube.G3.2} + asd_z \cdot (Wt_{stub} + Wt_{flan})$ = 7287 N ここで, Wt_{flan} : フランジ質量 = □N b. 許容応力状態IVASでの軸方向荷重

$$F_{z.tube.G4.2} = F_{z.tube.G4.1} + 2 \cdot q_{enddisk.z.G4} \cdot \frac{1}{4} \cdot (OD_{disk}^{-} - OD_{tube}^{-}) + 6 \cdot q_{middisk.z.G4} \cdot \frac{\pi}{4} \cdot (OD_{disk}^{-} - OD_{tube}^{-}) + ass_{z} \cdot (Wt_{rad.stfnr} + Wt_{perf.tube} + Wt_{rim} + Wt_{gap}) = 9576 \text{ N}$$

(c) フランジ接触面
$$F_{z.tube.G4.3} = F_{z.tube.G4.2} + ass_z \cdot (Wt_{stub} + Wt_{flan})$$

= 10010 N

- (5) コアチューブに加わる鉛直方向曲げモーメント(*M_x*) コアチューブに加わる鉛直方向曲げモーメントを評価部位毎に算出する。
 - a. 許容応力状態Ⅲ_ASでの鉛直方向曲げモーメント
 - (a) 最終列位置
 - $M_{x.tube.G3.1} = 0.000 \text{ N} \cdot \text{mm}$

最終列の鉛直方向曲げモーメントは小さく、無視できる。

(b) 第一列位置

$$M_{x.tube.G3.2} = (F_{y.tube.G3.2} - Wt_{strnr}) \cdot \frac{L_{strnr}}{2} + Wt_{strnr} \cdot (CG_{strnr.z} - L_{stub})$$

= 1.931 × 10⁶ N · mm
ここで、
 Wt_{strnr} : ストレーナディスク部質量 = N
 $CG_{strnr.z}$: フランジ面とストレーナディスク部の軸方向重心位置
との距離 = mm

(c) フランジ接触面

$$M_{x.tube.G3.3} = \left(F_{y.tube.G3.2} - Wt_{strnr}\right) \cdot \left(\frac{L_{strnr}}{2} + L_{stub}\right) \\ + \left(2 \cdot q_{stub.y.G3} \cdot OD_{tube} \cdot L_{stub} - Wt_{stub}\right) \cdot \frac{L_{strnr}}{2} + W_{T} \cdot CG_{total.z} \\ = 3.107 \times 10^{6} \text{ N} \cdot \text{mm}$$

ここで,

q_{stub.y.G3}: コアチューブスタブ部に鉛直方向より加わる許容応力状態Ⅲ_ASでの最大等価圧力(表 4-13 参照)
 W_T: ストレーナ質量 = ____N
 CG_{total.z}: フランジ面とストレーナ全体の軸方向重心位置との距離 = _____

mm

- b. 許容応力状態IVASでの鉛直方向曲げモーメント
 - (a) 最終列位置
 - $M_{x.tube.G4.1} = 0.000 \text{ N} \cdot \text{mm}$

最終列の鉛直方向曲げモーメントは小さく、無視できる。

(b) 第一列位置

$$M_{x.tube.G4.2} = \left(F_{y.tube.G4.2} - Wt_{strnr}\right) \cdot \frac{L_{strnr}}{2} + Wt_{strnr} \cdot (CG_{strnr.z} - L_{stub})$$
$$= 2.312 \times 10^6 \text{ N} \cdot \text{mm}$$

(c) フランジ接触面

$$M_{x.tube.G4.3} = (F_{y.tube.G4.2} - Wt_{strnr}) \cdot \left(\frac{L_{strnr}}{2} + L_{stub}\right) + \left(2 \cdot q_{stub.y.G4} \cdot OD_{tube} \cdot L_{stub} - Wt_{stub}\right) \cdot \frac{L_{strnr}}{2} + W_{T} \cdot CG_{total.z} = 3.733 \times 10^{6} \text{ N} \cdot \text{mm}$$

$$\Xi \subseteq \mathfrak{C},$$

q_{stub.y.G4}: コアチューブスタブ部に鉛直方向より加わる許容応力状態W_ASでの 最大等価圧力(表 4−13 参照)

- a. 許容応力状態ⅢASでの水平方向曲げモーメント
- (a) 最終列位置

 $M_{y.tube.G3.1} = 0.000 \text{ N} \cdot \text{mm}$

最終列の水平方向曲げモーメントは小さく、無視できる。

(b) 第一列位置

$$M_{y.tube.G3.2} = F_{x.tube.G3.2} \cdot \frac{L_{strnr}}{2} + F_{z.tube.G3.2} \cdot E_{ecc}$$

 $= 4.203 \times 10^{6} \text{ N} \cdot \text{mm}$
ここで,
 E_{ecc} : コアチューブとディスクの中心間距離 = ____mm

$$M_{y.tube.G3.3} = F_{x.tube.G3.2} \cdot \left(\frac{L_{strnr}}{2} + L_{stub}\right) + 2 \cdot q_{stub.x.G3} \cdot OD_{tube} \cdot L_{stub} \cdot \frac{L_{stub}}{2} + F_{z.tube.G3.2} \cdot E_{ecc} = 5.557 \times 10^6 \text{ N} \cdot \text{mm}$$

ここで,

- b. 許容応力状態IVASでの水平方向曲げモーメント
 - (a) 最終列位置

 $M_{y.tube.G4.1} = 0.000 \text{ N} \cdot \text{mm}$

最終列の水平方向曲げモーメントは小さく、無視できる。

(b) 第一列位置

$$M_{y.tube.G4.2} = F_{x.tube.G4.2} \cdot \frac{L_{strnr}}{2} + F_{z.tube.G4.2} \cdot E_{ecc}$$
$$= 5.234 \times 10^{6} \text{ N} \cdot \text{mm}$$

(c) フランジ接触面

$$M_{y.tube.G4.3} = F_{x.tube.G4.2} \cdot \left(\frac{L_{strnr}}{2} + L_{stub}\right)$$

 $+ 2 \cdot q_{stub.x.G4} \cdot OD_{tube} \cdot L_{stub} \cdot \frac{L_{stub}}{2} + F_{z.tube.G4.2} \cdot E_{ecc}$
 $= 6.795 \times 10^6 \text{ N} \cdot \text{mm}$
ここで、
 $q_{stub.y.G4}$: コアチューブスタブ部に鉛直方向より加わる許容応力状態 W_AS
での最大等価圧力 (表 4-13 参照)

(7) コアチューブに加わるねじりモーメント
$$(M_z)$$

コアチューブに加わるねじりモーメントを評価部位毎に算出する。

a. 許容応力状態ⅢASでのねじりモーメント

(a) 最終列位置

$$M_{z.tube.G3.1} = 2 \cdot (q_{rim.y.G3} \cdot W_{enddisk} \cdot OD_{disk}) \cdot E_{ecc} + \frac{1}{5} \cdot (Wt_{face} \cdot CG_{face.x} + Wt_{rim} \cdot CG_{rim.x} + Wt_{rad.stfnr} \cdot CG_{stfnr.x} + Wt_{wire} \cdot CG_{wire.x} + Wt_{int} \cdot CG_{int.x})$$

$$= 4.331 \times 10^5 \text{ N} \cdot \text{mm}$$

Š	こで,		
	Wt_{face}	:	ディスク面の質量 = N
	$CG_{face.x}$:	コアチューブ中心線とディスク面の水平方向重心位置
			との距離 =mm
	Wt_{rim}	:	アウターリムの質量 =N
	$CG_{rim.x}$:	コアチューブ中心線とアウターリムの水平方向重心位置
			との距離 = mm
	Wt _{rad.stfnr}	:	ラジアル補剛材の質量 = N
	CG _{stfnr.x}	:	コアチューブ中心線とラジアル補剛材の水平方向重心位置
			との距離 = mm
	Wt _{wire}	:	ワイヤーの質量 = N
	$CG_{wire.x}$:	コアチューブ中心線とワイヤーの水平方向重心位置
			との距離 = mm
	Wt _{int}	:	中間補剛材の質量 =N
	$CG_{int.x}$:	コアチューブ中心線と中間補剛材の水平方向重心位置
			との距離 = mm

(b) 第一列位置

$$M_{z.tube.G3.2} = 2 \cdot q_{rim.y.G3} \cdot (OD_{disk} \cdot L_{disk}) \cdot E_{ecc} + Wt_{strnr} \cdot CG_{strnr.x}$$

= 1.918×10⁶ N·mm
ここで,
 L_{disk} : エンドディスク幅と中間ディスク幅の合計 = ____mm

$$Wt_{strmr}$$
: ストレーナディスク部質量 = N
 $CG_{strmr.x}$: コアチューブ中心線とストレーナディスク部との水平方向重心位置
との距離 = mm

(c) フランジ接触面

(a)

 $M_{z.tube.G3.3} = M_{z.tube.G3.2}$ $= 1.918 \times 10^6 \text{ N} \cdot \text{mm}$

b. 許容応力状態IVASでのねじりモーメント

最終列位置

$$M_{z.tube.G4.1} = 2 \cdot (q_{rim.y.G4} \cdot W_{enddisk} \cdot OD_{disk}) \cdot E_{ecc}$$

 $+ \frac{1}{5} \cdot (Wt_{face} \cdot CG_{face.x} + Wt_{rim} \cdot CG_{rim.x} + Wt_{rad.stfnr} \cdot CG_{stfnr.x}$
 $+ Wt_{wire} \cdot CG_{wire.x} + Wt_{int} \cdot CG_{int.x})$
 $= 5.287 \times 10^5 \text{ N} \cdot \text{mm}$
ここで,

q_{stub.y.G4}: コアチューブスタブ部に鉛直方向より加わる許容応力状態Ⅳ_ASでの 最大等価圧力(表 4-13 参照)

(b) 第一列位置

$$M_{z.tube.G4.2} = 2 \cdot q_{rim.y.G4} \cdot (OD_{disk} \cdot L_{disk}) \cdot E_{ecc} + Wt_{strnr} \cdot CG_{strnr.x}$$

 $= 2.302 \times 10^6 \text{ N} \cdot \text{mm}$

(c) フランジ接触面

 $M_{z.tube.G4.3} = M_{z.tube.G4.2}$

$$= 2.302 \times 10^6 \text{ N} \cdot \text{mm}$$

以上より,許容応力状態Ⅲ_AS及びⅣ_ASにおいてコアチューブの3つの異なる位置に 加わる荷重は表 4-14 に示すとおりとなる。

		許容応力	伏態 Ⅲ _A S		許容応力状態 IVAS			
反称	荷重		モーメント		荷重		モーメント	
石竹	荷重値 (N)	方向	モーメント (N・mm)	方向	荷重値 (N)	方向	モーメント (N・mm)	方向
	1979	水平 (x)	0.000	鉛直曲げ (Mx)	2277	水平 (x)	0.000	鉛直曲げ (Mx)
最終列位置	980	鉛直 (y)	0.000	水平曲げ (My)	1332	鉛直 (y)	0.000	水平曲げ (My)
	3177	軸 (z)	4. 331×10^5	ねじり (Mz)	3115	軸 (z)	5. 287×10^5	ねじり (Mz)
	8599	水平 (x)	1.931×10^{6}	鉛直曲げ (Mx)	9838	水平 (x)	2. 312×10^{6}	鉛直曲げ (Mx)
一列位置	7415	鉛直 (y)	4. 203×10^{6}	水平曲げ (My)	8879	鉛直 (y)	5.234 $\times 10^{6}$	水平曲げ (My)
	7041	軸 (z)	1.918×10^{6}	ねじり (Mz)	9576	軸 (z)	2. 302×10^{6}	ねじり (Mz)
	9158	水平 (x)	3. 107×10^{6}	鉛直曲げ (Mx)	10649	水平 (x)	3.733 $\times 10^{6}$	鉛直曲げ (Mx)
フランジ 接触面	7783	鉛直 (y)	5.557 $\times 10^{6}$	水平曲げ (My)	9545	鉛直 (y)	6.795 $\times 10^{6}$	水平曲げ (My)
	7287	軸 (z)	1.918×10^{6}	ねじり (Mz)	10010	軸 (z)	2. 302×10^{6}	ねじり (Mz)

表 4-14 許容応力状態Ⅲ_AS及びIV_ASにおけるコアチューブに加わる荷重

図4-6 ストレーナに加わる荷重方向

4.7.4 アウターリム及びインナーギャップからエンドディスク面に加わる荷重

アウターリム及びインナーギャップに水平及び鉛直方向より受けた荷重は, ラジアル補 剛材からエンドディスクに伝達され, リベット接合されたエンドディスクの多孔プレート 面に面内荷重とモーメントが加わる。

従って,4.7.2 項と同様に4.7.1 項で選定したクリティカル条件(荷重組合せ No.DBA-3,DBA-4 及びDBA-5)を基に,配置位置が異なる6本のラジアル補剛材からエンドディス クに加わる荷重を算出する。

- (1) ラジアル補剛材からエンドディスク面に加わる面内荷重(Pend)
 - a. 許容応力状態Ⅲ_ASでの面内荷重
 アウターリム及びインナーギャップからラジアル補剛材に加わる合計の水平方向荷重
 *F_{end.x.G3}*と鉛直方向荷重*F_{end.y.G3}*は,

$$F_{end.x.G3} = q_{rim.x.G3} \cdot W_{end.disk} \cdot OD_{disk} + q_{gap.x.G3} \cdot \frac{w_{gap}}{2} \cdot OD_{gap}$$

= 989 N
$$F_{end.y.G3} = q_{rim.y.G3} \cdot W_{end.disk} \cdot OD_{disk} + q_{gap.y.G3} \cdot \frac{W_{gap}}{2} \cdot OD_{gap}$$

= 490 N

ここで,

$q_{rim.x.G3}$:	アウターリムに水平方向より加わる許容応力状態Ⅲ _A Sでの最大等
		価圧力(表4-12参照)
$q_{rim.y.G3}$:	アウターリムに鉛直方向より加わる許容応力状態ⅢASでの最大等
		価圧力(表4-12参照)
$q_{gap.x.G3}$:	インナーギャプに水平方向より加わる許容応力状態IIIASでの最大
		等価圧力(表4-12参照)
$q_{gap.y.G3}$:	インナーギャプに鉛直方向より加わる許容応力状態IIIASでの最大
		等価圧力(表 4-12 参照)

各々のラジアル補剛材に加わる曲げ荷重は, ラジアル補剛材の配置回転角を考慮して 以下となる。

$$P_{end.G3.k} = F_{end.x.G3} \cdot \frac{Wx_k}{OD_{disk}} \cdot |\cos(\theta_k)| + F_{end.y.G3} \cdot \frac{Wy_k}{OD_{disk}} \cdot |\sin(\theta_k)| \quad (k = 1,6)$$
$$= \begin{pmatrix} 323\\246\\203\\192\\209\\213 \end{pmatrix} \qquad N$$
$$\Xi \subseteq \mathbb{C},$$

θ_k: 各ラジアル補剛材の回転角
 Wx_k, Wy_k: 各ラジアル補剛材の水平方向受圧長さ及び鉛直方向受圧長さ
 ラジアル補剛材の配置詳細と受圧長さは添付資料に記載する。
b. 許容応力状態IVASでの面内荷重

アウターリム及びインナーギャップからラジアル補剛材に加わる合計の水平方向荷重 $F_{end.x.G4}$ と鉛直方向荷重 $F_{end.y.G4}$ は、

$$F_{end.x.G4} = q_{rim.x.G4} \cdot W_{end.disk} \cdot OD_{disk} + q_{gap.x.G4} \cdot \frac{W_{gap}}{2} \cdot OD_{gap}$$

= 1138 N
$$F_{end.y.G4} = q_{rim.y.G4} \cdot W_{end.disk} \cdot OD_{disk} + q_{gap.y.G4} \cdot \frac{W_{gap}}{2} \cdot OD_{gap}$$

= 666 N

ここで,

- q_{rim.x.G4}
 : アウターリムに水平方向より加わる許容応力状態IVASでの最大等

 価圧力(表4-12参照)
- q_{rim.y.G4}
 : アウターリムに鉛直方向より加わる許容応力状態IVASでの最大等

 価圧力(表 4-12 参照)
- *q_{gap.x.G4}* : インナーギャプに水平方向より加わる許容応力状態Ⅳ_ASでの最大 等価圧力(表 4-12 参照)
- qgap.y.G4
 : インナーギャプに鉛直方向より加わる許容応力状態IVASでの最大

 等価圧力(表 4-12 参照)

各々のラジアル補剛材に加わる曲げ荷重は, ラジアル補剛材の配置回転角を考慮して 以下となる。

$$P_{end.G4.k} = F_{end.x.G4} \cdot \frac{Wx_k}{OD_{disk}} \cdot |\cos(\theta_k)| + F_{end.y.G4} \cdot \frac{Wy_k}{OD_{disk}} \cdot |\sin(\theta_k)| \qquad (k = 1,6)$$
$$= \begin{pmatrix} 371\\ 306\\ 270\\ 236\\ 244\\ 245 \end{pmatrix} \qquad N$$

- (2) ラジアル補剛材からエンドディスク面に加わるモーメント(Mend)
 - a. 許容応力状態Ⅲ_ASでのエンドディスク面に加わるモーメント エンドディスクからラジアル補剛材に加わる軸方向荷重によりラジアル補剛材に発生 する曲げモーメントは、アウターリム側の荷重 w1_{rad.end.G3} からコアチューブ側の荷重 w2_{rad.end.G3} までの台形分布荷重から求める。

図 4-7 エンドディスクのラジアル補剛材に加わる荷重状態

各ラジアル補剛材にエンドディスクから加わるアウターリム側の荷重 $w1_{rad.end.G3.k}$ コアチューブ側の荷重 $w2_{rad.end.G3.k}$ は,

 $w1_{rad.end.G3.k} = (q_{enddisk.z.G3} - DP) \cdot L_{ark.max_k} \qquad (k = 1, 6)$ $w2_{rad.end.G3.k} = (q_{enddisk.z.G3} - DP) \cdot L_{ark.min_k} \qquad (k = 1, 6)$

$q_{enddisk.z.G3}$:	エンドディスクに軸方向より加わる許容応力状態ⅢASでの最大
		等価圧力(表 4-12 参照,ストレーナ差圧荷重を含む)
DP	:	ストレーナ差圧荷重 = kPa
$L_{ark.max_k}$:	各ラジアル補剛材のアウターリム部の等価受圧長さ
$L_{ark.min_k}$:	各ラジアル補剛材のコアチューブ部の等価受圧長さ
なお、ラジアル神	浦岡	材の配置詳細と等価受圧長さは添付資料に記載する。

$$w1_{rad.end.G3.k} = \begin{pmatrix} 0.250\\ 0.280\\ 0.264\\ 0.195\\ 0.162\\ 0.151 \end{pmatrix} \qquad N/mm$$
$$w2_{rad.end.G3.k} = \begin{pmatrix} 0.150\\ 0.140\\ 0.101\\ 0.063\\ 0.049\\ 0.045 \end{pmatrix} \qquad N/mm$$

ラジアル補剛材からエンドディスク面に加わるモーメント M_{end.G3} は,

$$M_{end.G3.k} = \frac{1}{2} \cdot w2_{rad.end.G3.k} \cdot L_{stf.k}^{2} + \frac{1}{3} \cdot (w1_{rad.end.G3.k} - w2_{rad.end.G3.k}) \cdot L_{stf.k}^{2}$$
$$= \begin{pmatrix} 3.294 \times 10^{3} \\ 8.773 \times 10^{3} \\ 2.758 \times 10^{4} \\ 3.200 \times 10^{4} \\ 3.125 \times 10^{4} \end{pmatrix} \qquad \text{N} \cdot \text{mm}$$

ここで,

L_{stf.k}: 各ラジアル補剛材のアウターリム側の荷重 w1_{rad.end.G3.k} とコアチューブ側の荷重 w2_{rad.end.G3.k}の作用点間距離

$$L_{stf.k} = \begin{pmatrix} 175.4\\274.2\\512.4\\650.7\\715.5\\734.2 \end{pmatrix} mm$$

b. 許容応力状態IVASでのエンドディスク面に加わるモーメント

a 項と同様に、エンドディスクからラジアル補剛材に加わる軸方向荷重によりラジアル補剛材に発生する曲げモーメントは、アウターリム側の荷重 w1_{rad.end.G4} からコアチューブ側の荷重w2_{rad.end.G4} までの台形分布荷重から求める。

各ラジアル補剛材に加わるエンドディスクから加わるアウターリム側の荷重 w1_{rad.end.G4,k} コアチューブ側の荷重 w2_{rad.end.G4,k} は,

 $w1_{rad.end.G4.k} = q_{enddisk.z.G4} \cdot L_{ark.max_k}$ (k = 1, 6)

 $w2_{rad.end.G4.k} = q_{enddisk.z.G4} \cdot L_{ark.min_k}$ (k = 1, 6)

ここで,

q_{enddisk.z.G4} : エンドディスクに軸方向より加わる許容応力状態IV_ASでの最大 等価圧力(表 4-12 参照,ストレーナ差圧荷重は不含)

$$w1_{rad.end.G4.k} = \begin{pmatrix} 0.436\\ 0.488\\ 0.462\\ 0.341\\ 0.282\\ 0.264 \end{pmatrix} \qquad N/mm$$
$$w2_{rad.end.G4.k} = \begin{pmatrix} 0.262\\ 0.244\\ 0.177\\ 0.109\\ 0.085\\ 0.079 \end{pmatrix} \qquad N/mm$$

ラジアル補剛材からエンドディスク面に加わるモーメント Mend.G4 は,

$$M_{end.G4.k} = \frac{1}{2} \cdot w2_{rad.end.G4.k} \cdot L_{stf.k}^{2} + \frac{1}{3} \cdot (w1_{rad.end.G4.k} - w2_{rad.end.G4.k}) \cdot L_{stf.k}^{2}$$
$$= \begin{pmatrix} 5.753 \times 10^{3} \\ 1.532 \times 10^{4} \\ 4.816 \times 10^{4} \\ 5.587 \times 10^{4} \\ 5.542 \times 10^{4} \\ 5.457 \times 10^{4} \end{pmatrix} \qquad \text{N} \cdot \text{mm}$$

ここで,

L_{stf.k} : 各ラジアル補剛材のアウターリム側の荷重w1_{rad.end.G4.k}とコアチュー ブ側の荷重w2_{rad.end.G4.k}の作用点間距離 4.7.5 アウターリム及びインナーギャップから中間ディスク面に加わる荷重

4.7.4 項と同様に、アウターリム及びインナーギャップに水平及び鉛直方向より受けた 荷重は、ラジアル補剛材から中間ディスクに伝達され、リベット接合された中間ディスク の多孔プレート面に面内荷重とモーメントが加わる。

従って,4.7.1項で選定したクリティカル条件(荷重組合せ No. DBA-3, DBA-4 及び DBA-5)を基に,配置位置が異なる6本のラジアル補剛材から中間ディスク面に加わる荷重を算出する。

- (1) ラジアル補剛材から中間ディスク面に加わる面内荷重 (Pmid)
 - a. 許容応力状態Ⅲ_ASでの面内荷重
 アウターリム及びインナーギャップからラジアル補剛材に加わる合計の水平方向荷重
 *F_{mid.x.G3}*と鉛直方向荷重*F_{mid.v.G3}*は,

$$F_{mid.x.G3} = q_{rim.x.G3} \cdot W_{disk} \cdot OD_{disk} + q_{gap.x.G3} \cdot W_{gap} \cdot OD_{gap}$$

= 774 N
$$F_{mid.y.G3} = q_{rim.y.G3} \cdot W_{disk} \cdot OD_{disk} + q_{gap.y.G3} \cdot W_{gap} \cdot OD_{gap}$$

= 377 N

各々のラジアル補剛材に加わる曲げ荷重は, ラジアル補剛材の配置回転角を考慮して 以下となる。

$$P_{mid.G3.k} = F_{mid.x.G3} \cdot \frac{Wx_k}{OD_{disk}} \cdot |\cos(\theta_k)| + F_{mid.y.G3} \cdot \frac{Wy_k}{OD_{disk}} \cdot |\sin(\theta_k)| \quad (k = 1,6)$$
$$= \begin{pmatrix} 252\\ 191\\ 157\\ 149\\ 164\\ 166 \end{pmatrix} \qquad N$$

b. 許容応力状態IVASでの面内荷重

アウターリム及びインナーギャップからラジアル補剛材に加わる合計の水平方向荷重 $F_{mid,x.G4}$ と鉛直方向荷重 $F_{mid,y.G4}$ は、

 $F_{mid.x.G4} = q_{rim.x.G4} \cdot W_{disk} \cdot OD_{disk} + q_{gap.x.G4} \cdot W_{gap} \cdot OD_{gap}$ = 881 N $F_{mid.y.G4} = q_{rim.y.G4} \cdot W_{disk} \cdot OD_{disk} + q_{gap.y.G4} \cdot W_{gap} \cdot OD_{gap}$ = 504 N 各々のラジアル補剛材に加わる曲げ荷重は, ラジアル補剛材の配置回転角を考慮して 以下となる。

$$P_{mid.G4,k} = F_{mid.x.G4} \cdot \frac{Wx_k}{OD_{disk}} \cdot |\cos(\theta_k)| + F_{mid.y.G4} \cdot \frac{Wy_k}{OD_{disk}} \cdot |\sin(\theta_k)| \qquad (k = 1,6)$$
$$= \begin{pmatrix} 287\\ 234\\ 205\\ 181\\ 188\\ 189 \end{pmatrix} \qquad N$$

a. 許容応力状態Ⅲ_ASでの中間ディスク面に加わるモーメント
 4.7.4項と同様に、中間ディスクからラジアル補剛材に加わる軸方向荷重によりラジ

アル補剛材に発生する曲げモーメントは、アウターリム側の荷重 w1_{rad.mid.G3} からコ アチューブ側の荷重w2_{rad.mid.G3} までの台形分布荷重から求める。

図 4-8 中間ディスクのラジアル補剛材の荷重状態

各ラジアル補剛材に加わる中間ディスクから加わるアウターリム側の荷重 w1_{rad.midG3,k} コアチューブ側の荷重 w2_{rad.mid.G3,k} は,

 $w1_{rad.mid.G3.k} = (q_{middisk.z.G3} - DP) \cdot L_{ark.max_k}$ (k = 1,6) $w2_{rad.mid.G3.k} = (q_{middisk.z.G3} - DP) \cdot L_{ark.min_k}$ (k = 1,6) ここで、 $q_{middisk.z.G3}$: 中間ディスクに軸方向より加わる許容応力状態 III_A Sでの最大等 価圧力(表 4-12参照、ストレーナ差圧荷重を含む) DP : ストレーナ差圧荷重 = kPa $L_{ark.max_k}$: 各ラジアル補剛材のアウターリム部の等価受圧長さ $L_{ark.min_k}$: 各ラジアル補剛材のコアチューブ部の等価受圧長さ

$$w1_{rad.mid.G3.k} = \begin{pmatrix} 0.078\\ 0.087\\ 0.082\\ 0.061\\ 0.050\\ 0.047 \end{pmatrix} \qquad N/mm$$
$$w2_{rad.mid.G3.k} = \begin{pmatrix} 0.047\\ 0.044\\ 0.031\\ 0.019\\ 0.015\\ 0.014 \end{pmatrix} \qquad N/mm$$

ラジアル補剛材から中間ディスク面に加わるモーメント M_{mid.G3} は,

$$M_{mid..G3.k} = \frac{1}{2} \cdot w 2_{rad.mid.G3.k} \cdot L_{stf.k}^{2} + \frac{1}{3} \cdot (w 1_{rad.mid.G3.k} - w 2_{rad.mid.G3.k}) \cdot L_{stf.k}^{2}$$
$$= \begin{pmatrix} 1.024 \times 10^{3} \\ 2.727 \times 10^{3} \\ 8.574 \times 10^{3} \\ 9.947 \times 10^{3} \\ 9.867 \times 10^{3} \\ 9.715 \times 10^{3} \end{pmatrix}$$
N · mm

ここで,

L_{stf.k}: 各ラジアル補剛材のアウターリム側の荷重 w1_{rad.mid.G3.k} とコアチュー ブ側の荷重w2_{rad.mid.G3.k}の作用点間距離

$$L_{stf.k} = \begin{pmatrix} 175.4 \\ 274.2 \\ 512.4 \\ 650.7 \\ 715.5 \\ 734.2 \end{pmatrix} \text{ mm}$$

b. 許容応力状態IV_ASでの中間ディスク面に加わるモーメント

a 項と同様に、中間ディスクからラジアル補剛材に加わる軸方向荷重によりラジアル 補剛材に発生する曲げモーメントは、アウターリム側の荷重 w1_{rad.mid.G4} からコアチュ ーブ側の荷重w2_{rad.mid.G4} までの台形分布荷重から求める。

各ラジアル補剛材に中間ディスクから加わるアウターリム側の荷重 $w1_{rad.mid.G4.k}$ コアチューブ側の荷重 $w2_{rad.mid.G4.k}$ は,

 $w1_{rad.mid.G4.k} = q_{middisk.z.G4} \cdot L_{ark.max_k} \qquad (k = 1, 6)$

 $w2_{rad.mid.G4.k} = q_{middisk.z.G4} \cdot L_{ark.min_k} \qquad (k = 1, 6)$

ここで,

q_{middisk.z.G4} : 中間ディスクに軸方向より加わる許容応力状態W_ASでの最大等 価圧力(表 4−12 参照,ストレーナ差圧荷重を不含)

$$w1_{rad.mid.G4.k} = \begin{pmatrix} 0.120\\ 0.135\\ 0.127\\ 0.094\\ 0.078\\ 0.073 \end{pmatrix} \qquad N/mm$$
$$w2_{rad.mid.G4.k} = \begin{pmatrix} 0.072\\ 0.067\\ 0.049\\ 0.030\\ 0.023\\ 0.022 \end{pmatrix} \qquad N/mm$$

ラジアル補剛材から中間ディスクに加わるモーメント M_{mid.G4} は,

$$M_{mid.G4.k} = \frac{1}{2} \cdot w 2_{rad.mid.G4.k} \cdot L_{stf.k}^{2} + \frac{1}{3} \cdot (w 1_{rad.mid.G4.k} - w 2_{rad.mid.G4.k}) \cdot L_{stf.k}^{2}$$
$$= \begin{pmatrix} 1.585 \times 10^{3} \\ 4.221 \times 10^{3} \\ 1.327 \times 10^{4} \\ 1.540 \times 10^{4} \\ 1.527 \times 10^{4} \\ 1.504 \times 10^{4} \end{pmatrix} \qquad N \cdot mm$$

ここで,

L_{stf.k}: 各ラジアル補剛材のアウターリム側の荷重w1_{rad.mid.G4.k}とコアチューブ側の荷重w2_{rad.mid.G4.k}の作用点間距離

以上より、ラジアル補剛材からエンドディスク及び中間ディスク面に加わる最大荷重と 最大モーメントは表 4-15 に示すとおりとなる。

	許容応力状態 Ⅲ _A S				許容応力状態 Ⅳ _A S			
名称	荷重		モーメント		荷重		モーメント	
	荷重値 (N)	種類	モーメント (N・mm)	種類	荷重値 (N)	種類	モーメント (N・mm)	種類
エンド ディスク	323	面内	3.200×10^4	曲げ	371	面内	5.587 $\times 10^{4}$	曲げ
中間 ディスク	252	面内	9. 947×10^{3}	曲げ	287	面内	1.540×10^{4}	曲げ

表 4-15 ラジアル補剛材に加わる最大荷重と最大モーメント

4.8 応力評価

4.8.1 多孔プレートの評価方法

多孔プレートの応力計算は、中身がつまった等価な平板として計算する。板の厚さとしては実肉厚を使用し、孔の欠損部を補った材料物性値として引用文献(2)及び(3)で示される等価縦弾性係数及び等価ポアソン比を使用する。

多孔プレートのリガメント効率 h/P は,

また,多孔プレートの応力倍率 *K*_{pp}(等価平板に乗じる応力拡大係数)は,多孔プレートの孔径とピッチから決定され,

$$K_{PP} = \frac{P}{h} = 2.72$$

- 4.8.2 エンドコアの多孔プレートに発生する応力
 - (1) 外面より加わる荷重で発生する応力
 - a. 許容応力状態ⅢASでの発生応力 多孔プレートを補剛材により支持された両端支持はりとして,引用文献(4)の Chapter
 - 1, Section 3 に示す方法にて計算する。

引用文献(4)の(15)式(下式)を解くことによりパラメータ*u*を求め,(16)式及び(17) 式から発生応力を算出する。

$$\left\{ \frac{E_{eff} \cdot u^2}{(1 - v_{eff}^2) \cdot q} \cdot \left(\frac{t}{Ls}\right)^4 \right\}^2 = -\frac{81}{16 \cdot u^7 \cdot \tanh(u)} - \frac{27}{16 \cdot u^6 \cdot \sinh(u)^2} + \frac{27}{4 \cdot u^8} + \frac{9}{8 \cdot u^6} \quad . \quad (15)$$

$$\sigma_{m} = \frac{E_{eff} \cdot u^{2}}{3 \cdot (1 - v_{eff}^{2})} \cdot \left(\frac{t}{Ls}\right)^{2} \cdot K_{pp} \quad : \quad -$$
次局部膜応力(MPa) • • • • • • • (16)

$$\Psi = \frac{3 \cdot (u - \tanh(u))}{u^2 \cdot \tanh(u)}$$

ここで, q は外荷重, t は多孔プレートの板厚及び Ls は補剛材長さ

(15)式の左辺に、エンドコアに加わる軸方向荷重、板厚及び補剛材寸法を入れて、 $(u_{endcore.G3})^4$ に乗じる係数 $U_{endcore.G3}$ を計算すると、

$$U_{endcore.G3} = \left\{ \frac{E_{eff}}{(1 - v_{eff}^2) \cdot q_{endcore.z.G3}} \cdot \left(\frac{t}{Ls_{endcore}}\right)^4 \right\}^2$$
$$= 0.174$$

ここで,

 q_{endcore.z.G3}
 : エンドコアに軸方向外面より加わる許容応力状態Ⅲ_ASでの最大

 等価圧力(表 4-12 参照)

 t
 : ディスク部多孔プレートの板厚 = ____mm

 Ls_{endcore}
 : エンドコア補剛材の長さ = ____mm

(15) 式をパラメータ u_{endcore.G3} について解くと,

 $u_{endcore.G3} = 0.202$

(17)式のパラメータ
$$\Psi_{endcore.G3}$$
 は,

 $\Psi_{endcore.G3}=0.9973$

エンドコアに軸方向外面から加わる荷重により発生する一次局部膜応力は,

$$\sigma_{m_{endcore.G3}} = \frac{E_{eff} \cdot u_{endcore.G3}^2}{3 \cdot (1 - v_{eff}^2)} \cdot \left(\frac{t}{Ls_{endcore}}\right)^2 \cdot K_{pp} = 1 \text{ MPa}$$

エンドコアに軸方向外面から加わる荷重により発生する曲げ応力は,

$$\sigma_{b_{endcore.G3}} = \frac{q_{endcore.z.G3}}{2} \cdot \left(\frac{Ls_{endcore}}{t}\right)^2 \cdot \Psi_{endcore.G3} \cdot K_{pp} = 66 \text{ MPa}$$

一次局部膜応力と曲げ応力の合計 $\sigma_{front.endcore.G3}$ は,

 $\sigma_{front.endcore.G3} = \sigma_{m_{endcore.G3}} + \sigma_{b_{endcore.G3}} = 67 \text{ MPa}$

b. 許容応力状態IVASでの発生応力

a 項と同様に引用文献(4)の(15)式を解くことによりパラメータ *u*_{endcore.G4} を求め, (16)式及び(17)式から発生応力を算出する。

(15)式の左辺に、エンドコアに加わる軸方向荷重、板厚及び補剛材寸法を入れて、 $(u_{endcore.G4})^4$ に乗じる係数 $U_{endcore.G4}$ を計算すると、

$$U_{endcore.G4} = \left\{ \frac{E_{eff}}{(1 - v_{eff}^{2}) \cdot q_{endcore.z.G4}} \cdot \left(\frac{t}{Ls_{endcore}}\right)^{4} \right\}^{2}$$
$$= 4.242$$

ここで,

 q_{endcore.z.G4}
 : エンドコアに軸方向外面より加わる許容応力状態IVASでの最大

 等価圧力(表 4-12 参照)

(15) 式をパラメータ $u_{endcore.G4}$ について解くと,

 $u_{endcore.G4} = 0.041$

(17)式のパラメータ $\Psi_{endcore.G4}$ は,

 $\Psi_{endcore.G4} = 0.9999$

エンドコアに軸方向外面から加わる荷重により発生する一次局部膜応力は,

$$\sigma_{m_{endcore.G4}} = \frac{E_{eff} \cdot u_{endcore.G4}^2}{3 \cdot (1 - v_{eff}^2)} \cdot \left(\frac{t}{Ls_{endcore}}\right)^2 \cdot K_{pp} = 1 \text{ MPa}$$

エンドコアに軸方向外面から加わる荷重により発生する曲げ応力は,

$$\sigma_{b_{endcore.G4}} = \frac{q_{endcore.z.G4}}{2} \cdot \left(\frac{Ls_{endcore}}{t}\right)^2 \cdot \Psi_{endcore.G4} \cdot K_{pp} = 14 \text{ MPa}$$

一次局部膜応力と曲げ応力の合計 $\sigma_{front.endcore.G4}$ は,

 $\sigma_{front.endcore.G4} = \sigma_{m_{endcore.G4}} + \sigma_{b_{endcore.G4}} = 15 \text{ MPa}$

- (2) 内面からの荷重で発生する応力
 - a. 許容応力状態Ⅲ_ASでの発生応力

多孔プレートが等間隔でリベットにより支持された連続平板として,引用文献(4)の Chapter 7, Section 54 に示す方法にて計算する。

エンドコア部のリベット位置よりリベット間隔寸法を図 4-10 に示す。

図 4-10 エンドコア部リベット間隔寸法

従って、引用文献(4)の Table 58 よりパラメータ $\alpha_{endcore}$, $\beta_{endcore}$ は、

 $\alpha_{endcore} = 0.846, \quad \beta_{endcore} = -0.356$

連続平板に発生する荷重 Mxback.endcore.G3, Myback.endcore.G3 は,

$$Mx_{back.endcore.G3} = \frac{-(q_{endcore.z.G3} - DP) \cdot a_{endcore.back} \cdot b_{endcore.back}}{4\pi} \cdot \left[(1 + v_{eff}) \cdot ln \left(\frac{a_{endcore.back}}{c_{rivet}} \right) - (\alpha_{endcore} + \beta_{endcore} \cdot v_{eff}) \right]$$

$$= -2.156$$
 N \cdot mm/mm

$$My_{back.endcore.G3} = \frac{-(q_{endcore.z.G3} - DP) \cdot a_{endcore.back} \cdot b_{endcore.back}}{4\pi} \cdot \left[(1 + v_{eff}) \cdot ln \left(\frac{a_{endcore.back}}{c_{rivet}} \right) - (\beta_{endcore} + \alpha_{endcore} \cdot v_{eff}) \right]$$
$$= -2.802 \quad N \cdot mm/mm$$

ここで,

q_{endcore.z.G3}: エンドコアに軸方向外面より加わる許容応力状態Ⅲ_ASでの最大等 価圧力(表 4-12 参照)

連続平板に発生する最大荷重 M_{back.endcore.G3} は,

 $M_{back.endcore.G3} = \max(|Mx_{back.endcore.G3}|, |My_{back.endcore.G3}|) = 2.802$ N·mm/mm 多孔プレート面の応力は、

 $\sigma_{back.endcore.G3} = \frac{6 \cdot M_{back.endcore.G3}}{t^2} \cdot K_{pp}$ = 32 MPa

b. 許容応力状態IVASでの発生応力

a 項と同様に、多孔プレートが等間隔でリベットにより支持された連続平板として、 引用文献(4)の Chapter 7, Section 54 に示す方法にて計算する。

連続平板に発生する荷重 Mx_{back.endcore.G4}, My_{back.endcore.G4} は,

$$Mx_{back.endcore.G4} = \frac{-q_{endcore.Z.G4} \cdot a_{endcore.back} \cdot b_{endcore.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{endcore.back}}{c_{rivet}} \right) - \left(\alpha_{endcore} + \beta_{endcore} \cdot v_{eff} \right) \right] \\ = -3.916 \quad N \cdot mm/mm$$

$$My_{back.endcore.G4} = \frac{-q_{endcore.Z.G4} \cdot a_{endcore.back} \cdot b_{endcore.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{endcore.back}}{c_{rivet}} \right) - \left(\beta_{endcore} + \alpha_{endcore} \cdot v_{eff} \right) \right]$$
$$= -5.088 \quad \text{N} \cdot \text{mm/mm}$$

ここで,

q_{endcore.z.G4}: エンドコアに軸方向外面より加わる許容応力状態*W*_ASでの最大 等価圧力(表 4−12 参照)

連続平板に発生する最大荷重 M_{back.endcore.G4} は,

 $M_{back.endcore.G4} = \max(|Mx_{back.endcore.G4}|, |My_{back.endcore.G4}|) = 5.088$ N·mm/mm 多孔プレート面の応力は,

$$\sigma_{back.endcore.G4} = \frac{6 \cdot M_{back.endcore.G4}}{t^2} \cdot K_{pp}$$
$$= 57 \text{ MPa}$$

- (3) エンドコアの多孔プレートに発生する最大応力
 - a. 許容応力状態Ⅲ_ASでの発生応力 エンドコアの多孔プレートに発生する最大応力は、4.8.2(1)項 a 及び(2)項 a より、

 $\sigma_{endcore.G3} = \max(\sigma_{front.endcore.G3}, \sigma_{back.endcore.G3})$ = 67 MPa

b. 許容応力状態IV_ASでの発生応力 エンドコアの多孔プレートに発生する最大応力は、4.8.2(1)項b及び(2)項bより、

 $\sigma_{endcore.G4} = \max(\sigma_{front.endcore.G4}, \sigma_{back.endcore.G4})$ = 57 MPa

- 4.8.3 エンドディスクの多孔プレートに発生する応力
 - (1) 外面より加わる荷重で発生する応力
 - a. 許容応力状態Ⅲ_ASでの発生応力

4.8.2 項と同様に、多孔プレートを補剛材により支持された両端支持はりとして、引 用文献(4)の Chapter 1, Section 3 に示す方法にて計算する。

引用文献(4)の(15)式を解くことによりパラメータ u_{enddisk.G3} を求め,引用文献(4)の(16)式及び(17)式から発生応力を算出する。

(15)式の左辺に、エンドディスクに加わる軸方向荷重、板厚及び補剛材寸法を入れて、
 (*u*_{enddisk.G3})⁴に乗じる係数 *U*_{enddisk.G3} を計算すると、

$$U_{enddisk.G3} = \left\{ \frac{E_{eff}}{\left(1 - v_{eff}^{2}\right) \cdot q_{enddisk.z.G3}} \cdot \left(\frac{t}{Ls_{enddisk}}\right)^{4} \right\}^{2}$$

ここで,

q_{enddisk.z.G3}: エンドディスクに軸方向外面より加わる許容応力状態Ⅲ_ASでの 最大等価圧力(表 4-12 参照)

t : ディスク多孔プレートの板厚 =
$$mm$$

Ls_{enddisk} : エンドディスク補剛材の長さ = mm

(15) 式をパラメータ *u_{enddisk.G3}* について解くと,

 $u_{enddisk.G3} = 0.060$

(17)式のパラメータ $\Psi_{enddisk.G3}$ は,

 $\Psi_{enddisk.G3} = 0.9998$

エンドディスクに軸方向外面から加わる荷重により発生する一次局部膜応力は,

$$\sigma_{m_{enddisk.G3}} = \frac{E_{eff} \cdot u_{enddisk.G3}^2}{3 \cdot (1 - v_{eff}^2)} \cdot \left(\frac{t}{Ls_{enddisk}}\right)^2 \cdot K_{pp} = 1 \quad \text{MPa}$$

エンドディスクに軸方向外面から加わる荷重により発生する曲げ応力は,

$$\sigma_{b_{enddisk.G3}} = \frac{q_{enddisk.z.G3}}{2} \cdot \left(\frac{Ls_{enddisk}}{t}\right)^2 \cdot \Psi_{enddisk.G3} \cdot K_{pp} = 35 \text{ MPa}$$

一次局部膜応力と曲げ応力の合計 $\sigma_{front.enddisk.G3}$ は、

 $\sigma_{front.enddisk.G3} = \sigma_{m_{enddisk.G3}} + \sigma_{b_{enddisk.G3}} = 36$ MPa

b. 許容応力状態IVASでの発生応力

a 項と同様に引用文献(4)の(15)式を解くことによりパラメータ *u*_{enddisk.G4} を求め, (16)式及び(17)式から発生応力を算出する。

(15)式の左辺に、エンドディスクに加わる軸方向荷重、板厚及び補剛材寸法を入れて、
 (*u*_{enddisk.G4})⁴ に乗じる係数 *U*_{enddisk.G4} を計算すると、

$$U_{enddisk.G4} = \left\{ \frac{E_{eff}}{\left(1 - v_{eff}^{2}\right) \cdot q_{enddisk.Z.G4}} \cdot \left(\frac{t}{Ls_{enddisk}}\right)^{4} \right\}^{2}$$
$$= 318.1$$

ここで,

- $q_{enddisk.z.G4}$: エンドディスクに軸方向外面より加わる許容応力状態 W_AS での最大等価圧力(表 4-12 参照)
- (15) 式をパラメータ $u_{enddisk.G4}$ について解くと,

 $u_{enddisk.G4} = 0.009$

(17) 式のパラメータ $\Psi_{enddisk.G4}$ は,

 $\Psi_{enddisk.G4} = 0.9999$

エンドディスクに軸方向外面から加わる荷重により発生する一次局部膜応力は,

$$\sigma_{m_{enddisk.G4}} = \frac{E_{eff} \cdot u_{enddisk.G4}^2}{3 \cdot (1 - v_{eff}^2)} \cdot \left(\frac{t}{Ls_{enddisk}}\right)^2 \cdot K_{pp} = 1 \quad \text{MPa}$$

エンドディスクに軸方向外面から加わる荷重により発生する曲げ応力は,

$$\sigma_{b_{enddisk.G4}} = \frac{q_{enddisk.z.G4}}{2} \cdot \left(\frac{Ls_{enddisk}}{t}\right)^2 \cdot \Psi_{enddisk.G4} \cdot K_{pp} = 3 \text{ MPa}$$

一次局部膜応力と曲げ応力の合計 $\sigma_{front.enddisk.G4}$ は、

 $\sigma_{front.enddisk.G4} = \sigma_{m_{enddisk.G4}} + \sigma_{b_{enddisk.G4}} = 4$ MPa

- (2) 内面からの荷重で発生する応力
 - a. 許容応力状態Ⅲ_ASでの発生応力

多孔プレートが等間隔でリベットにより支持された連続平板として,引用文献(4)の Chapter 7, Section 54 に示す方法にて計算する。

エンドディスク部リベット位置の間隔寸法より,

 $a_{enddisk.back}$: 計算に使用する矩形平板の短辺寸法 = ____mm $b_{enddisk.back}$: 計算に使用する矩形平板の長辺寸法 = ____mm c_{rivet} : リベット頭部半径 = ____mm $\frac{b_{enddisk.back}}{a_{enddisk.back}} = 1.08$

従って、引用文献(4)の Table 58 よりパラメータ $\alpha_{enddisk}$, $\beta_{enddisk}$ は、

 $\alpha_{enddisk} = 0.8198, \quad \beta_{enddisk} = 0.7206$

連続平板に発生する荷重 Mxback.enddisk.G3, Myback.enddisk.G3 は,

$$Mx_{back.enddisk.G3} = \frac{-(q_{enddisk.ZG3} - DP) \cdot a_{enddisk.back} \cdot b_{enddisk.back}}{4\pi} \cdot \left[(1 + v_{eff}) \cdot ln \left(\frac{a_{enddisk.back}}{c_{rivet}} \right) - (\alpha_{enddisk} + \beta_{enddisk} \cdot v_{eff}) \right]$$
$$= -4.400 \quad \text{N} \cdot \text{mm/mm}$$
$$My_{back.enddisk.G3} = \frac{-(q_{enddisk.ZG3} - DP) \cdot a_{enddisk.back} \cdot b_{enddisk.back}}{4\pi} \cdot \left[(1 + v_{eff}) \cdot ln \left(\frac{a_{enddisk.back}}{c_{rivet}} \right) - (\beta_{enddisk} + \alpha_{enddisk} \cdot v_{eff}) \right]$$
$$= -4.480 \quad \text{N} \cdot \text{mm/mm}$$

ここで,

連続平板に発生する最大荷重 M_{back.enddisk.G3} は,

 $M_{back.enddisk.G3} = \max(|Mx_{back.enddisk.G3}|, |My_{back.enddisk.G3}|) = 4.480 \text{ N} \cdot \text{mm/mm}$

多孔プレート面の応力は,

$$\sigma_{back.enddisk.G3} = \frac{6 \cdot M_{back.enddisk.G3}}{t^2} \cdot K_{pp}$$
$$= 50 \text{ MPa}$$

b. 許容応力状態IVASでの発生応力

a 項と同様に、多孔プレートが等間隔でリベットにより支持された連続平板として、 引用文献(4)の Chapter 7, Section 54 に示す方法にて計算する。

連続平板に発生する荷重 Mxback.enddisk.G4, Myback.enddisk.G4 は,

$$Mx_{back.enddisk.G4} = \frac{-q_{enddisk.Z.G4} \cdot a_{enddisk.back} \cdot b_{enddisk.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{enddisk.back}}{c_{rivet}} \right) - \left(\alpha_{enddisk} + \beta_{enddisk} \cdot v_{eff} \right) \right]$$
$$= -7.684 \quad \text{N} \cdot \text{mm/mm}$$
$$My = \frac{-q_{enddisk.Z.G4} \cdot a_{enddisk.back} \cdot b_{enddisk.back}}{2\pi}$$

$$My_{back.enddisk.G4} = \frac{16nulisk.504 \vee 6nulisk.back}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{enddisk.back}}{c_{rivet}} \right) - \left(\beta_{enddisk} + \alpha_{enddisk} \cdot v_{eff} \right) \right]$$
$$= -7.824 \quad \text{N} \cdot \text{mm/mm}$$

ここで,

連続平板に発生する最大荷重 M_{back.enddisk.G4} は,

 $M_{back.enddisk.G4} = \max(|Mx_{back.enddisk.G}|, |My_{back.enddisk.G4}|) = 7.824$ N·mm/mm 多孔プレート面の応力は、

$$\sigma_{back.enddisk.G4} = \frac{6 \cdot M_{back.enddisk.G4}}{t^2} \cdot K_{pp}$$
$$= 88 \text{ MPa}$$

- (3) ラジアル補剛材から加わる荷重で発生する応力
 - a. 許容応力状態Ⅲ_ASでの発生応力

各ラジアル補剛材からエンドディスクに加わるせん断力 $P_{end.G3.k}$ 及び曲げモーメント $M_{end.G3.k}$ により、多孔プレートに発生する応力を計算する。エンドディスクの多孔プレートに発生する応力 $\sigma_{pl.enddisk.G3.k}$ は、

$$\sigma_{pl.enddisk.G3.k} = \left(\frac{P_{end.G3.k}}{A_{stf.end.k}} + \frac{M_{end.G3.k}}{S2_{stf.end.k}}\right) \cdot K_{pp} \qquad (k = 1, 6)$$
$$= \begin{pmatrix} 3\\4\\8\\9\\9\\9\\9 \end{pmatrix} MPa$$

ここで,

- Pend.G3.k : 各ラジアル補剛材からエンドディスクに加わるせん断力 (4.7.4 (1)項参照)
 Mend.G3.k : 各ラジアル補剛材からエンドディスクに加わるモーメント
- $A_{stf.end.k}$: エンドディスクラジアル補剛材の有効断面積*

$$A_{stf.end.k} = \begin{pmatrix} 474.2 \\ 474.0 \\ 473.1 \\ 471.2 \\ 469.7 \\ 469.2 \end{pmatrix} \text{mm}^2$$

(4.7.4 (2)項参照)

S2_{stf.end.k}: エンドディスク各ラジアル補剛材の有効断面係数*

$$S2_{stf.end.k} = \begin{pmatrix} 12517\\ 12493\\ 12358\\ 12057\\ 11834\\ 11750 \end{pmatrix} \text{ mm}^3$$

ラジアル補剛材からエンドディスクに加わるせん断力 P_{end.G3.k}及び曲げモーメント M_{end.G3.k}により、多孔プレートに発生する最大応力は、

 $\sigma_{pl.enddisk.G3} = \max \left(\sigma_{pl.enddisk.G3.k} \right) = 9$ MPa

注記*:引用文献(5) Section B2 に従い、ラジアル補剛材と薄肉平板の相互効果による 曲げ荷重に対する鋼材の有効幅を補正して、有効断面積及び有効断面係数を算 出した。

b. 許容応力状態IVASでの発生応力

各ラジアル補剛材からエンドディスクに加わるせん断力 $P_{end.G4,k}$ 及び曲げモーメント $M_{end.G4,k}$ により、多孔プレートに発生する応力を計算する。エンドディスクの多孔プレートに発生する応力 $\sigma_{pl.enddisk.G4,k}$ は、

$$\sigma_{pl.enddisk.G4.k} = \left(\frac{P_{end.G4.k}}{A_{stf.end.k}} + \frac{M_{end.G4.k}}{S2_{stf.end.k}}\right) \cdot K_{pp} \qquad (k = 1, 6)$$
$$= \begin{pmatrix} 4\\5\\13\\14\\15\\14 \end{pmatrix} \qquad MPa$$

ラジアル補剛材からエンドディスクに加わるせん断力 P_{end.G4.k} 及び曲げモーメント M_{end.G4.k} により、多孔プレートに発生する最大応力は、

 $\sigma_{pl.enddisk.G4} = \max(\sigma_{pl.enddisk.G4,k}) = 15$ MPa

(4) エンドディスクの多孔プレートに発生する最大応力

a. 許容応力状態Ⅲ_ASでの発生応力

エンドディスクの多孔プレートに発生する最大応力は、4.8.3 (1)項a, (2)項a及び (3)項aより、エンドディスクの外面より加わる荷重で発生する応力と内面からの荷重 で発生する応力の大きい応力にラジアル補剛材より加わる荷重で発生する応力を加えて 計算する。

エンドディスクの多孔プレートにラジアル補剛材から受ける荷重で発生する応力との 合成応力の最大値 *σenddisk.com.G3* は,

 $\sigma_{enddisk.com.G3} = \sigma_{pl.enddisk.G3}$

 $+ \max\left(\sigma_{front.enddisk.G3} \cdot \frac{(q_{enddisk.G3} - DP)}{q_{enddisk.G3}}, \sigma_{back.enddisk.G3}\right)$

エンドディスクの多孔プレートに発生する最大応力 $\sigma_{enddisk.G3}$ は,

 $\sigma_{enddisk.G3} = \max \left(\sigma_{front.enddisk.G3}, \sigma_{back.enddisk.G3}, \sigma_{enddisk.com.G3} \right)$

= 59 MPa

b. 許容応力状態IVASでの発生応力

エンドディスクの多孔プレートに発生する最大応力は、4.8.3 (1)項b, (2)項b及び (3)項bより、エンドディスクの外面より加わる荷重で発生する応力と内面からの荷重 で発生する応力の大きい応力にラジアル補剛材より加わる荷重で発生する応力を加えて 計算する。

エンドディスクの多孔プレートにラジアル補剛材から受ける荷重で発生する応力との 合成応力の最大値 $\sigma_{enddisk.com.G4}$ は,

 $\sigma_{enddisk.com.G4} = \sigma_{pl.enddisk.G4}$

+ max($\sigma_{front.enddisk.G4}$, $\sigma_{back.enddisk.G4}$)

= 102 MPa

エンドディスクの多孔プレートに発生する最大応力 $\sigma_{enddisk.G4}$ は,

 $\sigma_{enddisk.G4} = \max \left(\sigma_{front.enddisk.G4}, \sigma_{back.enddisk.G4}, \sigma_{enddisk.com.G4} \right)$

= 102 MPa

- 4.8.4 中間ディスクの多孔プレートに発生する応力
 - (1) 外面より加わる荷重で発生する応力
 - a. 許容応力状態Ⅲ_ASでの発生応力

中間ディスクの多孔プレートに発生する応力 $\sigma_{front.middisk.G3}$ はエンドディスクの多 孔プレートに発生する応力 $\sigma_{front.enddisk.G3}$ より, プレートに外面より加わる等価圧力の 比で計算する。

 $\sigma_{front.middisk.G3} = \frac{q_{middisk.z.G3}}{q_{enddisk.z.G3}} \cdot \sigma_{front.enddisk.G3}$ = 35 MPa

b. 許容応力状態IVASでの発生応力

中間ディスクの多孔プレートに発生する応力 $\sigma_{front.middisk.G4}$ は、a 項と同様に、エンドディスクの多孔プレートに発生する応力 $\sigma_{front.enddisk.G4}$ より、プレートに外面より加わる等価圧力の比で計算する。

$$\sigma_{front.middisk.G4} = \frac{q_{middisk.Z.G4}}{q_{enddisk.Z.G4}} \cdot \sigma_{front.middisk.G4}$$
$$= 2 \text{ MPa}$$

(2) 内面からの荷重で発生する応力

a. 許容応力状態Ⅲ_ASでの発生応力

多孔プレートが等間隔でリベットにより支持された連続平板として,引用文献(4)の Chapter 7, Section 54 に示す方法にて計算する。

中間ディスク部リベット位置の間隔寸法より,

 $a_{middisk,back}$: 計算に使用する矩形平板の短辺寸法 = ____mm $b_{middisk,back}$: 計算に使用する矩形平板の長辺寸法 = ____mm c_{rivet} : リベット頭部半径 = ____mm $\frac{b_{middisk,back}}{a_{middisk,back}}$ = 1.08

従って、引用文献(4)の Table 58 よりパラメータ $\alpha_{middisk}$, $\beta_{middisk}$ は、

 $\alpha_{middisk} = 0.8198, \quad \beta_{middisk} = 0.7206$

連続平板に発生する荷重 Mx_{back.middisk.G3}, My_{back.middisk.G3}は,

$$Mx_{back.middisk.G3} = \frac{-(q_{middisk.z.G3} - DP) \cdot a_{middisk.back} \cdot b_{middisk.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{middisk.back}}{c_{rivet}} \right) - \left(\alpha_{middisk} + \beta_{middisk} \cdot v_{eff} \right) \right]$$
$$= -1.368 \quad N \cdot mm/mm$$

$$My_{back.middisk.G3} = \frac{-(q_{middisk.Z.G3} - DP) \cdot a_{middisk.back} \cdot b_{middisk.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{middisk.back}}{c_{rivet}} \right) - \left(\beta_{middisk} + \alpha_{middisk} \cdot v_{eff} \right) \right]$$
$$= -1.393 \quad N \cdot mm/mm$$

q_{middisk.z.G3}: 中間ディスクに軸方向外面より加わる許容応力状態Ⅲ_ASでの最 大等価圧力(表 4-12 参照)

連続平板に発生する最大荷重 Mback.middisk.G3 は,

 $M_{back.middisk.G3} = \max(|Mx_{back.middisk.G3}|, |My_{back.middisk.G3}|) = 1.393 \text{ N} \cdot \text{mm/mm}$

多孔プレート面の応力は、

$$\sigma_{back.middisk.G3} = \frac{6 \cdot M_{back.middisk.G3}}{t^2} \cdot K_{pp}$$

= 16 MPa

b. 許容応力状態IVASでの発生応力

a 項と同様に、多孔プレートが等間隔でリベットにより支持された連続平板として、 引用文献(4)の Chapter 7, Section 54 に示す方法にて計算する。

連続平板に発生する荷重 Mxback.middisk.G4 , Myback.middisk.G4 は,

$$Mx_{back.middisk.G4} = \frac{-q_{middisk.Z.G4} \cdot a_{middisk.back} \cdot b_{middisk.back}}{4\pi} \\ \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{middisk.back}}{c_{rivet}} \right) - \left(\alpha_{middisk} + \beta_{middisk} \cdot v_{eff} \right) \right] \\ = -2.117 \quad \text{N} \cdot \text{mm/mm}$$

$$My_{back.middisk.G4} = \frac{-q_{middisk.Z.G4} \cdot a_{middisk.back} \cdot b_{middisk.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{middisk.back}}{c_{rivet}} \right) - \left(\beta_{middisk} + \alpha_{middisk} \cdot v_{eff} \right) \right]$$
$$= -2.156 \quad N \cdot mm/mm$$

ここで,

連続平板に発生する最大荷重 M_{back.middisk.G4} は,

 $M_{back.middisk.G4} = \max(|Mx_{back.middisk.G4}|, |My_{back.middisk.G4}|) = 2.156$ N·mm/mm 多孔プレート面の応力は、

$$\sigma_{back.middisk.G4} = \frac{6 \cdot M_{back.middisk.G4}}{t^2} \cdot K_{pp}$$
$$= 25 \text{ MPa}$$

- (3) ラジアル補剛材から加わる荷重で発生する応力
 - a. 許容応力状態Ⅲ_ASでの発生応力

各ラジアル補剛材から中間ディスクに加わるせん断力 $P_{mid.G3,k}$ 及び曲げモーメント $M_{mid.G3,k}$ により、多孔プレートに発生する応力を計算する。中間ディスクの多孔プレートに発生する応力 $\sigma_{pl.middisk.G3,k}$ は、

$$\sigma_{pl.middisk.G3.k} = \left(\frac{P_{mid.G3.k}}{A_{stf.mid.k}} + \frac{M_{mid.G3.k}}{S2_{stf.mid.k}}\right) \cdot K_{pp} \qquad (k = 1, 6)$$
$$= \begin{pmatrix} 3\\ 3\\ 5\\ 6\\ 6\\ 6 \end{pmatrix} \qquad MPa$$

ここで,

- P_{mid.G3.k}: 各ラジアル補剛材から中間ディスクに加わるせん断力 (4.7.5 (1)項参照)
 M_{mid.G3.k}: 各ラジアル補剛材から中間ディスクに加わるモーメント (4.7.5 (2)項参照)
- *A_{stf.k}*: 中間ディスクラジアル補剛材の有効断面積*

$$A_{stf.mid.k} = \begin{pmatrix} 312.9\\ 312.7\\ 311.9\\ 309.9\\ 308.4\\ 307.9 \end{pmatrix} \text{mm}^2$$

S2_{stf.k}:中間ディスクラジアル補剛材の有効断面係数*

$$S2_{stf.mid.k} = \begin{pmatrix} 7103\\7087\\6998\\6796\\6648\\6592 \end{pmatrix} \text{mm}^3$$

ラジアル補剛材から中間ディスクに加わるせん断力 *P_{mid.G3.k}*及び曲げモーメント *M_{mid.G3.k}*により,多孔プレートに発生する最大応力は,

 $\sigma_{pl.middisk.G3} = \max(\sigma_{pl.middisk.G3.k}) = 6$ MPa

注記*:引用文献(5) Section B2 に従い、ラジアル補剛材と薄肉平板の相互効果による曲げ荷重に対する鋼材の有効幅を補正して、有効断面積及び有効断面係数 を算出した。

b. 許容応力状態IVASでの発生応力

各ラジアル補剛材から中間ディスクに加わるせん断力 $P_{mid.G4,k}$ 及び曲げモーメント $M_{mid.G4,k}$ により、多孔プレートに発生する応力を計算する。中間ディスクの多孔プレートに発生する応力 $\sigma_{pl.middisk.G4,k}$ は、

$$\sigma_{pl.middisk.G4.k} = \left(\frac{P_{mid.G4.k}}{A_{stf.mid.k}} + \frac{M_{mid.G4.k}}{S2_{stf.mid.k}}\right) \cdot K_{pp} \qquad (k = 1, 6)$$
$$= \begin{pmatrix} 4\\4\\7\\8\\8\\8 \end{pmatrix} \qquad MPa$$

ラジアル補剛材から中間ディスクに加わるせん断力 P_{mid.G4.k}及び曲げモーメント M_{mid.G4.k}により、多孔プレートに発生する最大応力は、

 $\sigma_{pl.middisk.G4} = \max(\sigma_{pl.middisk.G4.k}) = 8$ MPa

(4) 中間ディスクの多孔プレートに発生する最大応力

a. 許容応力状態Ⅲ_ASでの発生応力

中間ディスクの多孔プレートに発生する最大応力は、4.8.4(1)項a、(2)項a及び(3) 項aより、中間ディスクの外面より加わる荷重で発生する応力と内面からの荷重で発生 する応力の大きい応力にラジアル補剛材より加わる荷重で発生する応力を加えて計算す る。

中間ディスクの多孔プレートにラジアル補剛材から受ける荷重で発生する応力との合成応力の最大値 *σ_{middisk.com.G3}*は,

$$\sigma_{middisk.com.G3} = \sigma_{pl.middisk.G3}$$

 $+ \max\left(\sigma_{front.middisk.G3} \cdot \frac{(q_{middisk.G3} - DP)}{q_{middisk.G3}}, \sigma_{back.middisk.G3}\right)$

中間ディスクの多孔プレートに発生する最大応力 $\sigma_{middisk.G3}$ は,

 $\sigma_{middisk.G3} = \max \left(\sigma_{front.middisk.G3}, \sigma_{back.middisk.G3}, \sigma_{middisk.com.G3} \right)$

= 35 MPa

b. 許容応力状態IVASでの発生応力

中間ディスクの多孔プレートに発生する最大応力は、4.8.4 (1)項b, (2)項b及び(3) 項bより、中間ディスクの外面より加わる荷重で発生する応力と内面からの荷重で発生 する応力の大きい応力にラジアル補剛材より加わる荷重で発生する応力を加えて計算す る。

中間ディスクの多孔プレートにラジアル補剛材から受ける荷重で発生する応力との合成応力の最大値 *σ_{middisk.com.G4}*は,

 $\sigma_{middisk.com.G4} = \sigma_{pl.middisk.G4}$

+ max $(\sigma_{front.middisk.G4}, \sigma_{back.middisk.G4})$

= 33 MPa

中間ディスクの多孔プレートに発生する最大応力 $\sigma_{middisk.G4}$ は,

 $\sigma_{middisk.G4} = \max \left(\sigma_{front.middisk.G4}, \sigma_{back.middisk.G4}, \sigma_{middisk.com.G4} \right)$

= 33 MPa

- 4.8.5 アウターリムの多孔プレートに発生する応力
 - (1) 応力計算方法

アウターリムの多孔プレートに発生する応力計算には,アウターリム取付部含み三次元 シェル要素でモデル化し,解析コード「ANSYS」を使用した有限要素解析手法を適用 する。

アウターリムの多孔プレートの三次元シェルモデル(以下「アウターリム応力解析モデル」という。)を図4-11及び図4-12に、解析モデルの概要を以下に示す。また、機器の諸元を本書計算書の【高圧炉心注水系ストレーナの耐震性についての計算結果】の機器要目に示す。

- a. アウターリム応力解析モデルでは、アウターリムの多孔プレートと取付部をシェル要素でモデル化して解析を行う。
- b. アウターリム応力解析モデルは,鉛直面に対称境界を与え,鉛直軸を境界として片側 半分をモデル化する。
- c. 多孔プレートの等価縦弾性係数,等価ポアソン比及び応力倍率は4.8.1項に記載した 数値を使用する。
- d. 各部の質量は、各シェル要素に密度として与える。

RO

図 4-11 アウターリム多孔プレートの有限要素

図 4-12 アウターリム応力解析モデル

(2) アウターリムの多孔プレートの発生応力アウターリムの多孔プレートに発生する応力を表 4-16 にまとめる。

表4-10 アリターサムの多れアレートに発生する応力				
新 索 亡 - 山 - 単 能	一次応力 (MPa)			
计谷心刀状態	一般膜応力	一般膜応力+曲げ応力		
III _A S	36	39		
IV _A S	22	24		

表 4-16 アウターリムの多孔プレートに発生する応力

- 4.8.6 インナーギャップの多孔プレートに発生する応力
 - (1) 応力計算方法

インナーギャップの多孔プレートに発生する応力計算には、4.8.5 項と同様に、インナ ーギャップ取付部含み三次元シェル要素でモデル化し、解析コード「ANSYS」を使用 した有限要素解析手法を適用する。

インナーギャップの多孔プレートの三次元シェルモデル(以下「インナーギャップ応力 解析モデル」という。)を図 4-13 及び図 4-14 に,解析モデルの概要を以下に示す。

- a. インナーギャップ応力解析モデルでは、インナーギャップの多孔プレートと取付部を シェル要素でモデル化して解析を行う。
- b. インナーギャップ応力解析モデルは,鉛直面に対称境界を与え,鉛直軸を境界として 片側半分をモデル化する。
- c. インナーギャップの多孔プレートは両サイドのディスクプレートにリベットにて固定 されており 30°ピッチでリベット間隔を定め固定端としてモデル化する。
- d. 多孔プレートの等価縦弾性係数,等価ポアソン比及び応力倍率は4.8.1項に記載した数値を使用する。
- e. 各部の質量は、各シェル要素に密度として与える。

RO

図 4-14 インナーギャップ応力解析モデル

(2) インナーギャップの多孔プレートの発生応力インナーギャップの多孔プレートに発生する応力を表 4-17 にまとめる。

	一次応力 (MPa)			
矸谷心刀扒怒	一般膜応力	一般膜応力+曲げ応力		
III _A S	11	13		
IV _A S	8	9		

表 4-17 インナーギャップの多孔プレートに発生する応力

- 4.8.7 コアチューブの評価部位に発生する応力
 - (1) 許容応力状態Ⅲ_ASでの発生応力

コアチューブに発生する応力は、以下の式で計算する。

$$\sigma_{ct.G3,l} = \frac{F_{z.tube.G3,l}}{A_{ct.l}} + \frac{B2}{S_{ct.l}} \cdot \sqrt{M_{x.tube.G3,l}^2 + M_{y.tube.G3,l}^2 + M_{z.tube.G3,l}^2} \quad (l = 1, 3)$$
$$= \begin{pmatrix} 3\\26\\21 \end{pmatrix} \quad MPa$$

ここで, $\begin{pmatrix} A \\ B \\ C \end{pmatrix}$ はそれぞれ, A:最終面, B:第一列位置及び C:フランジ面を表す。

F_{z.tube.G3.l}: コアチューブに作用する各評価点の許容応力状態Ⅲ_ASでの軸方向 荷重

$$M_{x.tube.G3.l}$$

 $M_{y.tube.G3.l}$: コアチューブに作用する各評価点の許容応力状態 III_AS でのモーメ $M_{z.tube.G3.l}$ ント

$$A_{ct.l}$$
 : コアチューブの各評価点の断面積 $A_{ct.l} = \begin{pmatrix} 11575\\ 12563\\ 15708 \end{pmatrix}$ mm²

$$S_{ct.l}$$
 : コアチューブの各評価点の断面係数
 $S_{ct.l} = \begin{pmatrix} 7.11 \times 10^5 \\ 9.00 \times 10^5 \\ 1.50 \times 10^6 \end{pmatrix}$ mm³
B2 : 応力係数 = 4.5

(2) 許容応力状態IVASでの発生応力

コアチューブに発生する応力は、以下の式で計算する。

$$\sigma_{ct.G4.l} = \frac{F_{z.tube.G4.l}}{A_{ct.l}} + \frac{B2}{S_{ct.l}} \cdot \sqrt{M_{x.tube.G4.l}^2 + M_{y.tube.G4.l}^2 + M_{z.tube.G4.l}^2} \quad (l = 1, 3)$$
$$= \begin{pmatrix} 4\\32\\25 \end{pmatrix} \quad MPa$$

ここで,

F_{z.tube.G4.l}: コアチューブに作用する各評価点で許容応力状態IVASでの軸方向 荷重

 $M_{x.tube.G4.l}$

 $M_{y.tube.G4.l}$: コアチューブに作用する各評価点の許容応力状態 \mathbb{IV}_A S でのモーメ $M_{z.tube.G4.l}$ ント

- 4.8.8 フランジに発生する応力
 - (1) 応力計算方法

以下に示す計算方法により応力評価を行う。

ストレーナ取付部のフランジは、一般的なフランジとは異なりガスケットを使用しな い。そこで、フランジを以下のようにモデル化し、応力評価を行う。

フランジを外周(ボルト穴中心円直径)が固定された平板と考え,表4-18に示すモー メントが中心部に作用すると考える。この場合の発生応力は,引用文献(6)より,図4-15 に示す計算モデルで下記の計算式より求める。

図 4-15 フランジ断面の計算モデル

(2) モーメントの設定

ストレーナ取付部のフランジの設計荷重は、ストレーナに作用する荷重から4.3 項に示 す「応答解析」により算出したフランジ部のモーメントを用いる。ここでのモーメントは、 図4-16に示すように、ストレーナ重心に作用する荷重とその作用点からフランジまでの モーメントアームから計算したフランジに対して面外方向の曲げモーメント(2 方向ある 面外方向曲げモーメントの二乗和平方根の合成値)を考慮する。なお、フランジ面内に発 生するモーメント(ねじり)により発生するせん断応力は微小であるため、ここでは考慮 から外す。

フランジの設計荷重を表 4-18 に示す。

図 4-16 フランジに作用するモーメント

表 4-18 フランジの設計荷重

(畄台	• 1	J•mm)	
	- E - I'	N • (((())	

	荷重	モーメント M _{f.max}
1	死荷重	
2	異物荷重	
3	差圧荷重	
4	SRV荷重	
5	ストレーナSd*地震荷重	
6	ストレーナSs地震荷重	
7	異物Sd*地震荷重	
8	異物Ss地震荷重	

- 4.8.9 ストレーナ取付部ボルトに発生する応力
 - (1) 応力計算方法

ストレーナ取付部ボルト(以下「ボルト」という。)には,表4-18に示すモーメントに 加え,ストレーナの軸方向に発生する荷重によりボルトに軸方向荷重が発生する。

フランジに作用する中立軸まわりのモーメントにより,ボルトに生じる軸力は,以下の ように算出する。

図 4-17 に示すフランジの中心を通る中立軸(X軸又はY軸)まわりのモーメントを考 える。このとき、中立軸まわりのモーメントは、各ボルトに発生する軸力とボルトの中立 軸からの距離の積から得られるモーメントとつりあっていると考えることができる。ここ で、軸方向荷重によって中立軸が移動するが、軸方向荷重のボルトへの影響が小さいため、 軸方向荷重による中立軸の移動は無視する。

したがって、X軸まわりのモーメントと各ボルトの軸力の関係は下記となる。

$$M_X = \sum_{k=1}^n Ft_k \cdot \ell_k$$

ここで,

- M_X : X軸まわりのモーメント (N·mm)
- *Ft_k*: 各ボルトに発生する軸力(N)
- ℓ_k : 任意のボルトkにおけるX軸からの距離 (mm)
- n : ボルトの本数 = 本

図 4-17 各ボルトに発生する軸力とモーメントアームの関係

また、ボルト軸力のX軸まわりのモーメント寄与分は中立軸上ではゼロであり、図 4-16 に示すように、曲げモーメントを伝えるボルトの軸力は回転中心からの距離に比例して 変化するとして算定する。この場合、ボルトに発生する最大の軸力を Ft とすると、各ボル トに発生する軸力 Ft_k は以下となる。

$$Ft_k = Ft \cdot \frac{\ell_k}{Ds/2}$$

ここで,

Ft : 最大の軸力が発生する軸方向荷重 (N)

 Ft_k : 各ボルトに発生する軸力 (N)

Ds : ボルト孔中心円直径= mm

以上より、nが偶数の場合、X軸まわりのモーメントは下記となる。

$$M_X = \frac{2 \cdot Ft}{Ds} \cdot \sum_{k=1}^n \ell_k^2 = \frac{Ft \cdot Ds \cdot n}{4}$$

ただし,

$$\ell_k = \frac{Ds}{2} \cdot \sin\left\{\frac{2\pi}{n} \cdot (k-1)\right\}$$

よって,表 4-18 に示す面外方向の曲げモーメント(2 方向ある面外方向曲げモーメントの二乗和平方根の合成値)から,ボルトの軸力は以下のように算出できる。

$$Ft = \frac{4}{Ds \cdot n} \cdot M_{f.max}$$

(2) ボルトに発生する応力

ボルトの設計荷重は、4.8.8 (2)項に示すフランジに作用する最大モーメントに加え、 ストレーナの軸方向に発生する反力であるボルトの軸方向荷重を考慮した引張力を合算し た軸方向荷重を引張方向の荷重として応力評価を行う。フランジとボルトは摩擦接合であ るため、ボルトに対するせん断力は作用しないものとする。ボルトに加わる設計荷重を表 4-19に示す。

ボルトに発生する引張応力 のbolt は下記となる。

$$\sigma_{bolt} = \frac{F_z}{A_{bolt} \cdot n} + \frac{Ft}{A_{bolt}}$$

ここで,

 σ_{bolt} : ボルトの発生応力 (MPa) A_{bolt} : ボルトの有効断面積 (mm²) $A_{bolt} = \frac{\pi}{4} d_b^2$ d_b : ボルトのねじ部谷径 = __ mm F_z : 表 4-19 に示す軸方向荷重 (N)
表 4-19 ボルトの設計荷重

(単位:N)

			· • •
	荷重	軸方向荷重	1
1	死荷重		
2	異物荷重		
3	差圧荷重		
4	SRV荷重		
5	ストレーナSd*地震荷重		
6	ストレーナSs地震荷重		
7	異物Sd*地震荷重		
8	異物Ss地震荷重		

4.9 計算条件

応力計算に用いる計算条件は,本計算書の【高圧炉心注水系ストレーナの耐震性についての 計算結果】に示す。

4.10 応力の評価

「4.6 計算方法」で求めた応力が表 4-3,表 4-4 及び表 4-5 を用いて算出した許容応力 以下であること。なお、二次応力は発生しないため、一次+二次応力評価は実施していない。

- 4.11 設計・建設規格における材料の規定によらない場合の評価
 - 4.11.1 コアチューブ材料の評価結果
 コアチューブに使用している
 は、クラス2管の使用可能な材料として設計・建設規格に記載されていないことから、クラス2管の使用可能な材料として設計・建設規格に記載されている材料
 と機械的強度及び 化学的成分を比較し、同等であることを示す。
 - (1) 機械的強度

	引張強さ	降伏点 又は耐力	比較結果
使用材料			引張強さ及び降伏点は同
比較材料			等と考えられる。

(2) 化学成分

	化学的成分(%)											
	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu			
使用 材料												
比較 材料												
比較 結果	化学的成	分比較で	は, 違いた	がなく同等	と考える。	0						

(3) 評価結果

(1)(2)の評価により、機械的強度、化学的成分いずれにおいても比較材料と同等である ことを確認したため、本機器において をクラス2材料として使用するこ とに問題ないと考える。 4.11.2 多孔プレート・フランジ材料の評価結果
 多孔プレート・フランジに使用している
 は、クラス2管の使用可能な材料として設計・建設規格に記載されていないことから、クラス2管の使用可能な材料として設計・建設規格に記載されている材料
 と機械的強度及び化学的成分を比較し、同等であることを示す。

(1) 機械的強度

	引張強さ	降伏点 又は耐力	比較結果
使用材料			引張強さ及び降伏点は同
比較材料	-		等と考えられる。

(2) 化学成分

				ſ	化学的成分	子(%)				
	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu	Ν
使用 材料										
比較 材料		1			, ,					
比較 結果	C, Si及 C, Si 能性z	てで Cr の行 及び Cr の がある。 し	含有率に表 の含有量に しかしなか	吉干の違い は JIS の弱 ぶら, (1)の	いがあるが 夏求範囲内 の評価結界	, 以下に であるが 見から機柄	より同等 ,機械的 成的強度に	と考える 強度に	っ。 響を与 <i>;</i> ある。	える可

(3) 評価結果

(1)(2)の評価により,機械的強度,化学的成分いずれにおいても比較材料と同等である ことを確認したため,本機器において をクラス2材料として使用する ことに問題ないと考える。 4.11.3 ストレーナ取付部ボルト材料の評価結果
 ストレーナ取付部ボルトに使用している
 ロ能な材料として設計・建設規格に記載されていないことから、ボルトの使用可能な材料として設計・建設規格に記載されている材料
 と機械的
 強度及び化学的成分を比較し、同等であることを示す。

(1) 機械的強度

	引張強さ	降伏点 又は耐力	比較結果
使用材料			引張強さ及び降伏点は同
比較材料			等以上と考える。

(2)	化学成	分									
	化学的成分(%)										
	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu	Ν	
使用 材料	-	1	1	1	1	1	1	1			
比較 材料											
比較結果	化学的		交では, 達	量いがなく	同等と考	える。					

(3) 評価結果

(1)(2)の評価により、比較材料と比べ機械的強度は同等以上、化学的成分は同等である ことを確認したため、本機器において をボルト材料として使 用することに問題ないと考える。 5. 評価結果

高圧炉心注水系ストレーナの設計基準対象施設としての耐震評価結果を以下に示す。発生値は 許容限界を満足しており,設計用地震力に対して十分な構造強度を有していることを確認した。 構造強度評価の結果を次頁以降の表に示す。

なお,各評価点における算出応力は表 4-3 に示す荷重の組合せのうち,各許容応力状態ⅢAS 及びⅣASで,発生値が高い方の評価を記載している。

- 6. 引用文献
 - John A. Roberson and Clayton T. Crowe, "Engineering Fluid Mechanics" 2nd Edition, Rudolf Steiner Press, 1969, Library of Congress Catalog No 79-87855.
 - (2) ASME B&PV CODE, Section III, Division 1, Appendix, Article A-8000, "Stresses in Perforated Flat Plates" 1989 Edition, NO Addenda.
 - (3) W. J. O'Donnell, "Effective Elastic Constants for the Bending of Thin Perforated Plates with Triangular and Square Penetration Patterns", Journal of Engineering for Industry, February 1973.
 - (4) Steohen P. Timoshenko and S. Woinowsky-Krieger, "Theory of Plates and Shells", 2nd Edition, McGraw-Hill, 1959.
 - (5) AISI Specification for the Design of Cold-Formed Steel Structural Members, 1996 Edition
 - (6) Warren C. Young and Richard G. Budynas, "Roark' s Formulas for Stress and Strain" 7th Edition, McGraw-Hill

【高圧炉心注水系ストレーナの耐震性についての計算結果】

1. 設計基準対象施設

1.1 設計条件

114-12-2 分 而	耐震重更度分粗	据付場所及び床面高さ	固有	「周期 s)	弾性設計用 又は静	地震動Sd 的震度	基準地震	ξ動Ss	最高使用温度	周囲環境温度
178 10 -71 1/1	间辰里女反刀块	(m)	水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(°C)	(°C)
高圧炉心注水系 ストレーナ	S	原子炉建屋 T. M. S. L. (T. M. S. L1. 700*)	0.027	0.05 以下	Сн=0.58	C _V =0.50	Сн=1.02	Cv=1.02	104	_

注記*:基準床レベルを示す。

1.2 機器要目

			(単位:mm))		I
OD _{disk}	OD_{gap}	OD_{tube}	E _{ecc}]		
				J		
					(単作	立:mm)
L _{tube}	L _{strnr}	L _{stub}	W _{enddisk}	W_{gap}	W_{mid}	ddisk
		(単位:mm))			
Р	h	d				
			1			
析モデルの諸元	(応答解析用))					
析モデルの諸元	(応答解析用)) 項目		単位	入	、力値	
析モデルの諸元	(応答解析用)) 項目 水系ストレーナ0)材質	単位	入	、力値	
析モデルの諸元 高圧炉心注 高圧炉心注	(応答解析用)) 項目 水系ストレーナの 水系ストレーナの) 7) 質量	単位 — kg/個	入	、力値	7
析モデルの諸元 高圧炉心注 高圧炉心注 高圧炉心 存	 (応答解析用)) 項目 水系ストレーナの 水系ストレーナの 水系ストレーナの 注水系ストレーナの 	り材質)質量 トの	単位 一 kg/個 kg/個	λ	力値	
ボモデルの諸元 高圧炉心注 高圧炉心注 高圧炉心 ダ ストレーナ」	 (応答解析用)) 項目 水系ストレーナの 水系ストレーナの 注水系ストレーナの 注水系ストレーナの 1 1 1 4 5 6 6 7 <li7< li=""> 7 7 7 <li< td=""><td>D材質 D質量 トの の質量</td><td>単位 — kg/個 kg/個</td><td>λ</td><td>、力値</td><td></td></li<></li7<>	D材質 D質量 トの の質量	単位 — kg/個 kg/個	λ	、力値	
析モデルの諸元 高圧炉心注 高圧炉心 ア ストレーナ1	 (応答解析用)) 項目 水系ストレーナの 水系ストレーナの 注水系ストレーナの 注水系ストレーナの 10 10 40 本の質量 40 細あたりの異物 縦弾性係数 	D材質 D質量 トの の質量	単位 — kg/個 kg/個 MPa	<u>ک</u>	、力値	
析モデルの諸元 高圧炉心注 高圧炉心 ア ストレーナ」	 (応答解析用)) 項目 水系ストレーナの 水系ストレーナの 注水系ストレーナの 注水系ストレーナの 1 個あたりの異物 縦弾性係数 ポアソン比 	D材質 D質量 トの の質量	単位 — kg/個 kg/個 MPa —	<u></u> Д	、力値 	
ボモデルの諸元 高圧炉心注 高圧炉心注 高圧炉心 ア ストレーナ1	 (応答解析用)) 項目 水系ストレーナの 水系ストレーナの 注水系ストレーナの 注水系ストレーナの 注水系ストレーテー 1 団あたりの異物 縦弾性係数 ポアソン比 要素数 	D村質 D質量 トの の質量	単位 — kg/個 kg/個 MPa — 個	<u>کر</u> 0	、力値 D. 30	

(解析モデルの諸元(応力解析用))

項目	単位	入力値
高圧炉心注水系ストレーナの材質	—	
高圧炉心注水系ストレーナの質量	kg/個	
多孔プレートの等価縦弾性係数	MPa	
多孔プレートの等価ポアソン比		0.27
多孔プレートの応力増倍率	—	2.72
アウターリムモデル要素数	個	
アウターリムモデル節点数	個	
インナーギャップモデル要素数	個	
インナーギャップモデル節点数	個	

(単位:MPa)

部材	材料	S	S y	S u	S y (R T)
コアチューブ					_
多孔プレート					_
フランジ					_
ストレーナ取付部ボルト					—

1.3 計算数値

1.3.1 水力学的動荷重

逃がし安全弁作動時荷重			(単位:N/m ²)
荷重名称	軸方向荷重	鉛直方向荷重	水平方向荷重
SRV荷重(圧力荷重)			
SRV荷重(ドラッグ荷重)			

1.3.2 ストレーナの設計荷重

自重	異物荷重	差圧荷重		
(N)	(N)	(kPa)		

1.3.3 フランジの設計荷重

93

		(単位 : N·mm)
	荷重	モーメント
1	死荷重	
2	異物荷重	
3	差圧荷重	
4	SRV荷重	
5	ストレーナSd*地震荷重	
6	ストレーナS s 地震荷重	
7	異物Sd*地震荷重	
8	異物Ss地震荷重	

1.3.4 ボルトの設計荷重

		(単位:N)
	荷重	軸方向荷重
1	死荷重	
2	異物荷重	
3	差圧荷重	
4	SRV荷重	
5	ストレーナSd*地震荷重	
6	ストレーナSs地震荷重	
7	異物Sd*地震荷重	
8	異物Ss地震荷重	

1.4 結論

1.4.1 固有周期 (単				
オーズ	方向	固有周期		
1次モード	水平	0.027		

1.4.2 応力

(単位:MPa)

河(石本)(4)(#	⇒⊽ (再 ☆ℓ /☆		++*1 5	亡士八海		III A S		IV A S		
計៕因象設備		許加可以必	竹杆	心力分類	算出応力	許容応力	荷重組合せ	算出応力	許容応力	荷重組合せ
	P1	エンドコア		一次膜応力+ 一次曲げ応力	67		DBA-3	57		DBA-4
	P2	エンドディスク		一次膜応力+ 一次曲げ応力	59		DBA-3	102		DBA-4
	P3	中間ディスク		一次膜応力+ 一次曲げ応力	35		DBA-3	33		DBA-4
高圧炉心注水系 ストレーナ	P4	アウターリム		一次膜応力	36		DBA-3 22 DBA-3 24 8 DBA-2	22		
				一次膜応力+ 一次曲げ応力	39			24		DDA-4
	Р5	25 インナーギャップ		一次膜応力	11			8		
				一次膜応力+ 一次曲げ応力	13		DDA-3	9		DDA-4
	P6	コアチューブ 最終列位置		一次膜応力+ 一次曲げ応力	3		DBA-3	4		DBA-4
	P7	コアチューブ 第一列位置		一次膜応力+ 一次曲げ応力	26		DBA-3	32		DBA-4
	P8	コアチューブ フランジ接触面		一次膜応力+ 一次曲げ応力	21		DBA-3	25		DBA-4
	P9	フランジ		曲げ応力	20		DBA-3	28		DBA-4
	P10	ストレーナ取付部ボルト		引張応力	9		DBA-3	12		DBA-4

すべて許容応力以下である。

添付資料

- 1. ラジアル補剛材の配置諸元
- 1.1 ラジアル補剛材の配置角度

ラジアル補剛材の配置は添付図1に示すようにx軸より以下の角度で配置されている。

$$\theta_k = \begin{pmatrix} 0\\60\\112\\141\\162\\180 \end{pmatrix} \quad (k = 1, 6) \quad \not{\mathbb{E}}$$

1.2 ラジアル補剛材の等価受圧長さ

ラジアル補剛材のx方向(水平)とy方向(鉛直)の等価受圧長さは添付図1に示すように 以下となる。

- 2. アウターリム部の等価受圧長さとコアチューブ部の等価受圧長さ
- 2.1 アウターリム部の等価受圧長さ

アウターリム部の等価受圧長さ $L_{arc.max_k}$ は、添付図2より以下となる。

$$L_{arc.max_{k}} = \begin{pmatrix} 491.45\\ 550.23\\ 519.87\\ 384.39\\ 317.88\\ 297.73 \end{pmatrix}$$
 mm, ここで, 配置角度 $\phi_{s.max_{k}} = \begin{pmatrix} 40.82\\ 45.70\\ 43.18\\ 31.93\\ 26.41\\ 24.73 \end{pmatrix}$ $(k = 1, 6)$ 度

2.2 コアチューブ部の等価受圧長さ
 コアチューブ部の等価受圧長さ Larc.min_kは、添付図2より以下となる。

添付図2 アウターリム部の等価受圧長さとコアチューブ部の等価受圧長さ

3. 内面からの荷重の評価エリア

エンドディスク及び中間ディスクについて、内面からの荷重に対する評価エリアとその寸法を 添付図3に示す。

添付図3 エンドディスク及び中間ディスクの内面からの荷重評価エリア

重大事故等対処設備

1. 概要
2. 一般事項
2.1 構造計画
2.2 評価方針
2.3 適用規格·基準等 ···································
2.4 記号の説明 ・・・・・・
2.5 計算精度と数値の丸め方 ······8
3. 評価部位
4. 地震応答解析及び構造強度評価
4.1 地震応答解析及び構造強度評価方法
4.2 荷重の組合せ及び許容応力
4.2.1 荷重の組合せ及び許容応力状態
4.2.2 許容応力
4.2.3 使用材料の許容応力評価条件 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・12
4.2.4 設計荷重
4.3 解析モデル及び諸元 ・・・・・19
4.4 固有周期 ······20
4.5 設計用地震力
4.6 計算方法
4.6.1 応力評価
4.6.2 応力評価点
4.6.3 応力計算方法22
4.7 各応力評価部位に加わる最大荷重 ·····25
4.7.1 組合せ荷重の計算 ······25
4.7.2 多孔プレートに加わる荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.7.3 コアチューブに加わる荷重 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.7.4 アウターリム及びインナーギャップからエンドディスク面に加わる荷重 ・・・・・・38
4.7.5 アウターリム及びインナーギャップから中間ディスク面に加わる荷重 ・・・・・・41
4.8 応力評価
4.8.1 多孔プレートの評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.8.2 エンドコアの多孔プレートに発生する応力 ・・・・・・・・・・・・・・・・・・・・・・・・45
4.8.3 エンドディスクの多孔プレートに発生する応力 ・・・・・・・・・・・・・・・・48
4.8.4 中間ディスクの多孔プレートに発生する応力 ・・・・・・・・・・・・・・・・・52
4.8.5 アウターリムの多孔プレートに発生する応力 ・・・・・・・・・・・・・・・・・55
4.8.6 インナーギャップの多孔プレートに発生する応力 ・・・・・・・・・・・・・・・57

4.8.7 コアチューブの評価部位に発生する応力 ・・・・・・・・・・・・・・・・・・・・・・59
4.8.8 フランジに発生する応力 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
4.8.9 ストレーナ取付部ボルトに発生する応力 ・・・・・・・・・・・・・・・・・・・・・・・・62
4.9 計算条件
4.10 応力の評価 ····································
4.11 設計・建設規格における材料の規定によらない場合の評価 ・・・・・・・・・・・・65
4.11.1 コアチューブ材料の評価結果 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・65
4.11.2 多孔プレート・フランジ材料の評価結果 ・・・・・・・・・・・・・・・・・・・・・・66
4.11.3 ストレーナ取付部ボルト材料の評価結果 ・・・・・・・・・・・・・・・・・・・・・・・67
5. 評価結果
6. 引用文献 · · · · · · · · · · · · · · · · · · ·
添付資料
1. ラジアル補剛材の配置諸元
1.1 ラジアル補剛材の配置角度 ・・・・・ 75
1.2 ラジアル補剛材の等価受圧長さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2. アウターリム部の等価受圧長さとコアチューブ部の等価受圧長さ
2.1 アウターリム部の等価受圧長さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
2.2 コアチューブ部の等価受圧長さ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
3. 内面からの荷重の評価エリア ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・

1. 概要

本計算書は、技術基準規則の解釈第 17 条 4 において記載される「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規)」(平成 20・02・12 原院第 5 号(平成 20 年 2 月 27 日原子力安全・保安院制定))及びVI-2-1-9「機能維持の基本方針」にて設定している構造強度の設計方針に基づき、高圧炉心注水系ストレーナが設計用地震力に対して十分な構造強度を有していることを説明するものである。その耐震評価は高圧炉心注水系ストレーナの応力評価により行う。

高圧炉心注水系ストレーナは,重大事故等対処設備においては常設重大事故防止設備(設計基 準拡張)に分類される。以下,重大事故等対処設備としての構造強度評価を示す。

2. 一般事項

2.1 構造計画

高圧炉心注水系ストレーナの構造計画を表 2-1 に示す。

表 2-1 構造計画

 \sim

2.2 評価方針

高圧炉心注水系ストレーナの応力評価は,「非常用炉心冷却設備又は格納容器熱除去設備に 係るろ過装置の性能評価等について(内規)」(平成20・02・12原院第5号(平成20年2月27 日原子力安全・保安院制定))及びVI-2-1-9「機能維持の基本方針」に基づき設定した荷重及び 荷重の組合せ並びに許容限界に基づき,「2.1 構造計画」にて示す高圧炉心注水系ストレーナ の部位を踏まえ「3. 評価部位」にて設定する箇所において,「4.3 解析モデル及び諸元」及 び「4.4 固有周期」で算出した固有周期に基づく設計用地震力による応力等が許容限界内に収 まることを,「4. 地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。 確認結果を「5. 評価結果」に示す。

高圧炉心注水系ストレーナの耐震評価フローを図 2-1 に示す。

図 2-1 高圧炉心注水系ストレーナの耐震評価フロー

2.3 適用規格·基準等

本評価において適用する規格・基準等を以下に示す。

- ・原子力発電所耐震設計技術指針 重要度分類・許容応力編 JEAG4601・補-1984((社) 日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1987((社)日本電気協会)
- ・原子力発電所耐震設計技術指針 JEAG4601-1991 追補版((社)日本電気協会)
- ・発電用原子力設備規格 設計・建設規格((社)日本機械学会,2005/2007)(以下「設計・ 建設規格」という。)
- ・非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について(内規) (平成 20・02・12 原院第5号(平成 20 年 2 月 27 日原子力安全・保安院制定))

2.4 記号の説明

計算書の記号	記号の説明	単位
А	断面積	mm^2
a. back	計算に使用する矩形平板の短辺の長さ	mm
Aproj	実効面積	mm^2
ass	Ss 地震時の設計震度	—
asd	Sd 地震時の設計震度	—
b. _{back}	計算に使用する矩形平板の長辺の長さ	mm
B2	応力係数	—
С	組合せ等価圧力荷重	kPa
Crivet	リベット頭部の半径	mm
CG	重心位置	mm
d	孔径	mm
DP	ストレーナ差圧荷重	kPa
Eecc	コアチューブとディスクの中心間距離	mm
Eeff	等価縦弾性係数	MPa
F	荷重	Ν
Ft	ストレーナ取付部ボルトに発生する軸力	Ν
Fi.tube.1	コアチューブ最終列位置に作用する荷重(i=x, y, z)	Ν
Fi.tube.2	コアチューブ第一列位置に作用する荷重(i=x, y, z)	Ν
Fi.tube.3	コアチューブフランジ接触面に作用する荷重(i=x, y, z)	Ν
h	孔の間の最小間隙	mm
IR	内半径	mm
Kpp	応力増倍率	—
Q	ストレーナ取付部ボルトにかかるモーメントアーム長さ	mm
L	長さ	mm
Ls	補剛材長さ	mm
М	モーメント	N•mm
MASS	水力学的質量	Ν
Mi.tube.1	コアチューブ最終列位置にかかるモーメント(i=x, y, z)	N•mm
Mi.tube.2	コアチューブ第一列位置にかかるモーメント(i=x, y, z)	N•mm
Mi.tube.3	コアチューブフランジ接触面にかかるモーメント(i=x, y, z)	N•mm
Mback	多孔プレート内面にかかる単位長さ当りのモーメント	N•mm/mm
Mxback	多孔プレート内面にかかる単位長さ当りのモーメント (x 方向)	N•mm/mm
Myback	多孔プレート内面にかかる単位長さ当りのモーメント (y方向)	N•mm/mm

計算書の記号	記号の説明	単位
OD	外径	mm
Р	孔間のピッチ	mm
q	等価圧力	kPa
S2	補剛材有効断面係数	mm^3
SAtot	ストレーナの有効表面積	mm^2
Sct	コアチューブの断面係数	mm^3
Ss	基準地震動 Ss により定まる地震力	—
Sd 🖌	弾性設計用地震動 Sd により定まる地震力または静的地震力	—
Sd	弾性設計用地震動 Sd により定まる地震力	—
t	ディスク多孔プレートの厚さ	mm
t_{flan}	フランジ板厚	mm
u	計算上の変数	—
U	計算上の変数	—
Vdrag	加速度ドラッグ体積	m^3
W	ディスク幅	mm
Wd	異物の自重による異物荷重	Ν
Wm1	ストレーナの慣性質量(デブリ質量を不含)	Ν
Wm2	ストレーナの慣性質量(デブリ質量を含む)	Ν
WT	ストレーナの自重による荷重	Ν
Wt	質量	Ν
u eff	等価ポアソン比	—
α	係数	—
β	係数	—
γ	水の比重量	N/m^3
π	円周率	—
σ b	一次一般膜+曲げ応力	MPa
σ bolt	ストレーナ取付部ボルトの引張応力	MPa
σ ct	コアチューブに発生する応力	MPa
σm	一次一般膜応力	MPa
σ back	内面より加わる荷重による応力	MPa
σ front	外面より加わる荷重による応力	MPa
σ pl	多孔プレート表面の応力	MPa
σr	フランジ部曲げ応力	MPa
Ψ	計算上の変数	—

計算書の記号	記号の説明	単位
bolt	ストレーナ取付部ボルト	_
disk	エンドディスク及び中間ディスク	—
endcore	エンドコア	—
enddisk/end	エンドディスク	—
face	多孔プレート面	—
flan	フランジ	—
G5	許容応力VAS状態	—
gap	インナーギャップ	—
int	中間補剛材	—
lat	軸直角方向	—
middisk/mid	中間ディスク	—
rad.stfnr	ラジアル補剛材	—
rim	アウターリム	—
strnr	ストレーナディスク部	—
stub	コアチューブスタブ	—
total	ストレーナ部全体	—
tube/ct/per.tube	コアチューブ	—
wire	ワイヤー	—
Х	水平方向	—
у	鉛直方向	—
Z	軸方向	—

注:ここで定義されない記号については、各計算の項目において説明する。

2.5 計算精度と数値の丸め方

精度は、有効数字6桁以上を確保する。

表示する数値の丸め方は表 2-2 に示すとおりとする。

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	S	小数点以下第4位	四捨五入	小数点以下第3位
震度		小数点以下第3位	切上げ	小数点以下第2位
圧力	MPa/kPa	小数点以下第3位	四捨五入	小数点以下第2位*1
温度	°C	_	_	整数位
質量	kg	_	_	整数位
長さ	mm	小数点以下第2位		小数点以下第1位*2
面積	mm^2	有効数字5桁目	四捨五入	有効数字4桁*3
モーメント	N•mm	有効数字5桁目	四捨五入	有効数字4桁*3
力	Ν	有効数字5桁目	四捨五入	有効数字4桁*3
縦弾性係数	MPa	小数点以下第1位	四捨五入	整数位
算出応力	MPa	小数点以下第1位	切上げ	整数位
許容応力*4	MPa	小数点以下第1位	切捨て	整数位

表 2-2 表示する数値の丸め方

注記*1:必要に応じて小数点以下第3位とする。

*2:設計上定める値が小数点以下第2位の場合は、小数点以下第2位表示とする。 *3:絶対値が1000以上のときは、べき数表示とする。

*4:設計・建設規格 付録材料図表に記載された温度の中間における許容引張応 力,設計降伏点及び設計引張強さは、比例法により補間した値の小数点以下 第1位を切り捨て,整数位までの値とする。

3. 評価部位

高圧炉心注水系ストレーナの耐震評価は、「4.1 地震応答解析及び構造強度評価方法」に示す 条件に基づき、主要部品であるエンドコア、エンドディスク、中間ディスク、アウターリム、イ ンナーギャップ、コアチューブ、フランジ及びストレーナ取付部ボルトについて実施する。

高圧炉心注水系ストレーナの取付状況,形状及び主要寸法,構造概要を図 3-1,図 3-2 及び 図 3-3 に示す。

図 3-1 高圧炉心注水系ストレーナの取付状況

エンドコア, ② エンドディスク, ③ 中間ディスク
 アウターリム, ⑤ インナーギャップ, ⑥ コアチューブ
 (①, ②, ③, ④, ⑤は多孔プレート形状である。)

図 3-2 高圧炉心注水系ストレーナの形状及び主要寸法(単位:mm)

図 3-3 高圧炉心注水系ストレーナの構造概要

- 4. 地震応答解析及び構造強度評価
- 4.1 地震応答解析及び構造強度評価方法
 - (1) 高圧炉心注水系ストレーナの質量には、ストレーナに付着する異物量を考慮し、荷重の算 出において組み合わせるものとする。
 - (2) 地震力は、高圧炉心注水系ストレーナに対して軸方向及び軸直角方向(水平/鉛直)に作用するものとする。
 - (3) 耐震計算に用いる寸法は、公称値に基づき設定する。
- 4.2 荷重の組合せ及び許容応力
 - 4.2.1 荷重の組合せ及び許容応力状態 高圧炉心注水系ストレーナの重大事故等対処設備の評価に用いる荷重の組合せ及び許容 応力状態を表 4-1に、荷重の組合せ整理表を表 4-2に示す。
 - 4.2.2 許容応力

高圧炉心注水系ストレーナの許容応力は「非常用炉心冷却設備又は格納容器熱除去設備 に係るろ過装置の性能評価等について(内規)」(平成20・02・12原院第5号(平成20年 2月27日原子力安全・保安院制定))及びVI-2-1-9「機能維持の基本方針」に基づき表4-3及び表4-4に示す。

4.2.3 使用材料の許容応力評価条件

高圧炉心注水系ストレーナの重大事故等対処設備の評価に用いる許容応力評価条件を表 4-5 に示す。

なお、各評価部位の使用材料については以下のとおり。

コアチューブ 多孔プレート フランジ ストレーナ取付部ボルト

RO

① VI-2-5-4-1-2 (重)

K6

12

施設区分		機器名称	設備分類*1	機器等の区分	荷重の組合せ	許容応力 状態
原子炉 炉心	非常用 炉心冷却設備	高圧炉心注水系	常設/防止	重大事故等 クラス2	$D + P_D + M_D + S s *^2$	IV A S
施設	その他 原子炉注水設備	ストレーナ	(DB拡張)		$D + P_{SAD} + M_{SAD} + S_s$	VAS(VASとしてIVA Sの許容限界を用いる。)

表 4-1 荷重の組合せ及び許容応力状態(重大事故等対処設備)

注記*1:「常設/防止(DB拡張)」は常設重大事故防止設備(設計基準拡張)を示す。

*2:「D+P_{SAD}+M_{SAD}+Ss」の評価に包絡されるため、評価結果の記載を省略する。

						SRV荷重		LOCA荷重			地震荷重		
組合せ	t No.	運転状態	死荷重	異物 荷重	差圧 荷重	運転時	中小 破断時	プール スウェル	蒸気 凝縮 (CO)	チャギング (CH)	S d * 荷重	S s 荷重	許容応力 状態
~ *1	SA-1	運転状態V(L)*2	0	0	0						0		V A S *3
S A*1	SA-2	運転状態V(LL)	0	0	0							0	V A S *3

表 4-2 荷重の組合せ整理表(重大事故等対処設備)

注記*1:重大事故等時

*2:運転状態V(L)は、温度条件を重大事故等時における最高使用温度120℃とした運転状態V(LL)の評価で代表される。(「4.7.1 組合せ 荷重の計算」参照)

*3:許容応力状態VASとしてIVASの許容応力を用いる。

14

	許容限界*1							
許容応力状態	一次一般膜応力	一次応力 (曲げ応力を含む)	一次十二次応力*2					
IV A S	0.6•Su	左欄の 1.5 倍の値	弾性設計用地震動Sd又は基準地震動Ssの みによる疲労解析を行い,疲労累積係数が 1.0以下であること。 ただし,地震動のみによる一次+二次応力の 変動値が2・Sy以下であれば,疲労解析は 不要。					
VAS (VASとしてWASの 許容限界を用いる。)	(同上)	(同上)	基準地震動Ssのみによる疲労解析を行い, 疲労累積係数が1.0以下であること。 ただし,地震動のみによる一次+二次応力の 変動値が2・Sy以下であれば,疲労解析は 不要。					

表4-3 許容応力(重大事故等クラス2管)

注記*1:当該の応力が生じない場合,規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

*2:二次応力が発生する場合のみ考慮する。

許容応力状態	許容限界
IV A S	
VAS (VASとして, ⅣASの許容限界を用いる。)	2 • S

表 4-4 許容応力(重大事故等クラス2耐圧部テンションボルト)

評価部材	材料	温度条件 (℃)		S (MPa)	Sy (MPa)	S u (MPa)	Sy(RT) (MPa)
コアチューブ		最高使用温度	120				
多孔プレート		最高使用温度	120				
フランジ		最高使用温度	120				
ストレーナ取付部ボルト		最高使用温度	120			1	

表 4-5 使用材料の許容応力評価条件(重大事故等対処設備)

- 4.2.4 設計荷重
 - (1) 死荷重

高圧炉心注水系ストレーナの自重 (W_T) による荷重及び高圧炉心注水系ストレーナに付着する異物の自重による異物荷重 (W_D) *1の2つの死荷重を考慮する。

高圧炉心注水系ス	トレーナの自重	(W_{T})	=	N
異物荷重(W _D)=	Ν			

注記*1:異物荷重は運転状態Vの荷重の組合せ時に考慮する。

(2) 差圧荷重

ストレーナ差圧による荷重*2は,異物付着時の高圧炉心注水系ストレーナを通しての 最大設計差圧より設定し,以下のとおりとする。

ストレーナ差圧荷重= kPa

注記*2:ストレーナ差圧荷重は運転状態Vの荷重の組合せ時に考慮する。

4.3 解析モデル及び諸元

高圧炉心注水系ストレーナの応答解析及び応力評価は、はりモデル及び三次元シェルモデル による有限要素解析手法を適用する。なお、ストレーナ本体の応力計算に用いた三次元シェル モデルについては、「4.8.5 アウターリムの多孔プレートに発生する応力」及び「4.8.6 イン ナーギャップの多孔プレートに発生する応力」で説明する。本項においては、ストレーナから 原子炉格納容器貫通部までをモデル化したはりモデル(以下「応答解析モデル」という。)につ いて説明する。

高圧炉心注水系ストレーナの応答解析モデルを図4-1に,解析モデルの概要を以下に示す。 また,機器の諸元を本計算書の【高圧炉心注水系ストレーナの耐震性についての計算結果】の 機器要目に示す。

- (1) 応答解析モデルではストレーナから原子炉格納容器貫通部までをはり要素を用いた有限要素モデルとしてモデル化して解析を行い,荷重を算出する。
- (2) ストレーナ部ティーと原子炉格納容器貫通部は溶接構造で取り付けられており、付根部は 完全拘束とする。
- (3) 各部の質量は、ストレーナ部ティー及び原子炉格納容器貫通部については分布荷重として 与え、ストレーナについては図4-1の△部に集中質量を与える。
- (4) 本設備はサプレッションプールに水没している機器であるため、応答解析では内包水の影響を加味し、質量に含める。また、異物の質量も応答解析において考慮する。
- (5) 解析コードは「ISAP」及び「MSC NASTRAN」を使用し、固有値及び荷重を 求める。なお、評価に用いる解析コードの検証及び妥当性確認等の概要については、別紙 「計算機プログラム(解析コード)の概要」に示す。

R0
4.4 固有周期

固有値解析の結果を表 4-6 に示す。固有周期は,0.05 秒以下であり,剛であることを確認 した。

		固有周期	水平方向	鉛直方向	
モード 早越方	早越万可	(s)	X方向	Y方向	刺激係数
1次	水平	0.027	_	_	_

表 4-6 固有值解析結果

4.5 設計用地震力

評価に用いる設計用地震力を表 4-7 に示す。

「弾性設計用地震動Sd又は静的震度」及び「基準地震動Ss」による地震力は、VI-2-1-7 「設計用床応答曲線の作成方針」に基づき設定する。なお、図3-1に示すように、ストレーナ の軸方向には水平方向の震度、軸直角方向には水平方向及び鉛直方向の震度が作用するため、 軸方向及び軸直角方向に作用する地震力を表4-8に示す。

据付場所	固有周期 (s)		弾性設計用地震動Sd 又は静的震度		基準地震動S s	
及び 床面高さ (m)	水平 方向	鉛直 方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度
原子炉建屋 T.M.S.L. (T.M.S.L1.700*)	0.027	0.05 以下	С _н =0.58	C _V =0.50	С _н =1.02	$C_{v} = 1.02$

表 4-7 設計用地震力 (重大事故等対処設備)

注記*:基準床レベルを示す。

地震帯重	取付伯	立置 T.M.S.L.	m
地展刊里	軸方向震度	水平方向震度	鉛直方向震度
S d *	0.58	0.58	0.50
S s	1.02	1.02	1.02

表 4-8 ストレーナに作用する地震力

4.6 計算方法

4.6.1 応力評価

設置されている2系統の高圧炉心注水系ストレーナは、形状、設置レベルが同一である ことから、応力評価は代表して1つの系統の高圧炉心注水系ストレーナにつき実施する。

4.6.2 応力評価点

高圧炉心注水系ストレーナの構造は、図 3-2 及び図 3-3 に示すように、コアチューブ が主強度部材となり各ディスクを支える構造になっている。各ディスクの表面は多孔プレ ートを配し、ろ過装置としての機能を有している。4.2 項で設定した設計荷重の大部分は、 ワイヤー、補剛材等により支えられた各ディスクの多孔プレート表面に加わり、最終的に はコアチューブに伝達される。ワイヤー、補剛材等多孔プレートを支持する補助部材につ いては、荷重を適切に伝達させるよう、十分な強度を持つように設計している。従って、 ストレーナの主要構成部材である多孔プレート、コアチューブ及びフランジについて構造、 形状を考慮した応力評価部位を選定し、評価を実施する。

応力評価点を表 4-9, 図 4-2 及び図 4-3 に示す。

4.6.3 応力計算方法

高圧炉心注水系ストレーナに考慮すべき荷重の組合せ(4.2.1項)より,各応力評価点 におけるこれらの荷重の組合せの中で,最大となる荷重を用いて評価を実施する。また, 計算は荷重により各応力評価点に生じる応力を,引用文献に基づく計算と解析コード「A NSYS」を使用した計算の組合せにより実施する。なお,評価に用いる解析コードの検 証及び妥当性確認等の概要については,別紙「計算機プログラム(解析コード)の概要」 に示す。

名称	応力評価点番号	応力評価点						
エンドコア	P1	コアチューブ端の多孔プレート						
エンドディスク	P2	エンドディスクの多孔プレート						
中間ディスク	P3	中間ディスクの多孔プレート						
アウターリム	P4	ディスク外径部リムの曲り多孔プレート						
インナーギャップ	Р5	ディスク間インナーギャップの曲り多孔プ レート						
最終列位置	P6	コアチューブの最終列ディスク位置						
第一列位置	P7	コアチューブの第一列ディスク位置						
フランジ接触面	P8	コアチューブのフランジ接触面位置						
フランジ	Р9	フランジ						
ストレーナ取付部ボルト	P10	ボルト						

表 4-9 応力評価点

図 4-2 多孔プレートの応力評価点

図 4-3 コアチューブ及びフランジ部の応力評価部位

4.7 各応力評価部位に加わる最大荷重

地震荷重は、ストレーナ各要素に働く水力学的質量の寄与分に比例して加わる荷重である。 従って、地震荷重は水力学的質量の関数として扱うことができる。なお、ストレーナ差圧荷重 (DP)は多孔プレートに加わり、ストレーナをつぶす方向に作用する。

以上より,各荷重により高圧炉心注水系ストレーナに加わる荷重はストレーナ各構成要素に 加わる荷重に分割することができ,多孔プレートに対しては表面荷重(等価圧力)として与え られる。

4.7.1 組合せ荷重の計算

4.2.1 項に示した重大事故等時の各組合せ荷重を算出し,最大荷重算出の一次スクリー ニングを行う。ただし,ストレーナ差圧荷重(DP)については多孔プレート面に対して加 わるため,多孔プレート面の位置により座標軸が変わる。従って,ストレーナ差圧荷重(DP) については「4.7.2 多孔プレートに加わる荷重」で考慮する。

(1) 荷重組合せ No. SA-1 (W_T + W_D + DP + S_d)
 荷重組合せ No. SA-1 (W_T + W_D + DP + S_d) にて、ストレーナに加わる荷重は、

$$C_{SA-1} = (W_T + W_D + DP + S_d)$$

$$= [W_T + W_D + asd \times (W_{M2} + V_{drag} \times \gamma)]$$

$$= \left[\begin{array}{c} W_T + W_D + asd \times (W_{M2} + V_{drag} \times \gamma) \right]$$

$$= \left[\begin{array}{c} 4682 \\ 9255 \\ 4619 \end{array} \right] \times \left[\begin{array}{c} 0.58 \\ 0.58 \end{array} \right] \times \left[\begin{array}{c} + \end{array} \right] \times 9807 \right]$$

ここで、
$$\begin{pmatrix} A \\ B \\ C \end{pmatrix}$$
はそれぞれ、A:軸方向、B:鉛直方向、C:水平方向を表す。

また,

 W_T :ストレーナ質量 = N W_{M2} :ストレーナのデブリ質量 (N) を含む慣性質量 (N) W_{M2} = + = N N

asd : Sd 地震時の設計震度

V_{drag} : 加速度ドラッグ体積 (m³)

(流体中の物体の運動に伴って移動する周囲の流体(付加質量)も考慮 した物体の体積で,ストレーナ形状より決定)

$$V_{drag} =$$
 m³

 γ : 水の比重量 = 9807 N/m³

ここで,

ass : Ss 地震時の設計震度

以上をまとめると、表 4-10 のとおりとなり、許容応力状態VASのクリティカルな荷 重条件として SA-2 を選出し、以下の検討を行う。

荷重組合せ No.	荷重の組合せ	許容応力 状態	軸方向荷重 (N)	鉛直方向荷重 (N)	水平方向荷重 (N)	代表性
SA-1	$W_T + W_D + DP + S_d$	V _A S	4682	9255	4619	SA-2 に包絡
SA-2	$W_T + W_D + DP + S_S$	V _A S	8233	13396	8123	V _A Sのクリ ティカル条件

表 4-10 組合せ荷重

4.7.2 多孔プレートに加わる荷重

ストレーナの多孔プレートの各応力評価部位に加わる最大荷重を,4.7.1項で選定した クリティカル条件(荷重組合せ No. SA-2)を基に算出する。

(1) エンドコアに加わる軸方向荷重: No. SA-2 ($W_T + W_D + DP + S_s$) エンドコアに軸方向外面から加わる荷重は,

$$q_{SA-2.endcore} = (W_T + W_D + DP + S_s)$$

= $DP + ass_z \cdot \frac{(MASS_{endcore} + Wt_{endcore})}{\frac{\pi}{4} \cdot OD_{tube}^2} + ass_z \cdot \frac{W_D}{SA_{tot}}$
= 13.17 kPa

ここで,

$$MASS_{endcore}$$
: エンドコア部の水力学的質量 = \square N
 $Wt_{endcore}$: エンドコア質量(多孔プレート及び補剛材) = \square N
 SA_{tot} : ストレーナの有効表面積 = \square m²

エンドコアに軸方向外面より加わる最大荷重は,許容応力状態 V_AS で13.17 kPaとなる。

(2) エンドディスクに加わる軸方向荷重: No. SA-2 ($W_T + W_D + DP + S_s$) エンドディスクに軸方向外面から加わる荷重は,

$$q_{SA-2.enddisk} = (W_T + W_D + DP + S_S)$$

= $DP + ass_z \cdot \frac{(MASS_{enddisk} + Wt_{disk})}{\frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2)} + ass_z \cdot \frac{W_D}{SA_{tot}}$
= 11.68 kPa

ここで,

$$MASS_{enddisk}$$
:エンドディスク部の水力学的質量Image: N Wt_{disk} :多孔プレート及び補剛材質量Image: N

エンドディスクに軸方向外面より加わる最大荷重は,許容応力状態VASで 11.68 kPa となる。

(3) 中間ディスクに加わる軸方向荷重: No. SA-2 ($W_T + W_D + DP + S_s$) 中間ディスクに軸方向外面から加わる荷重は,

$$q_{SA-2.middisk} = (W_T + W_D + DP + S_s)$$

= $DP + ass_z \cdot \frac{(MASS_{middisk} + Wt_{disk})}{\frac{\pi}{4} \cdot (OD_{disk}^2 - OD_{tube}^2)} + ass_z \cdot \frac{W_D}{SA_{tot}}$
= 11.07 kPa

ここで,

MASS_{middisk}: 中間ディスク部の水力学的質量 = N

中間ディスクに軸方向より加わる最大荷重は,許容応力状態VASで11.07 kPaとなる。

(4) アウターリムに加わる水平方向荷重と鉛直方向荷重: No. SA-2 ($W_T + W_D + DP + S_s$) アウターリムに水平方向と鉛直方向外面より加わる荷重を計算する。

$$q_{SA-2.rim.x} = (W_T + W_D + DP + S_s)$$

$$= ass_x \cdot \frac{(MASS_{disk} + Wt_{rim})}{2 \cdot L_{disk} \cdot OD_{disk}} + ass_x \cdot \frac{W_D}{SA_{tot}}$$

$$= 2.98 \text{ kPa}$$

$$q_{SA-2.rim.y} = (W_T + W_D + DP + S_s)$$

$$= \frac{ass_y \cdot MASS_{disk} + (1 + ass_y) \cdot Wt_{rim}}{2 \cdot L_{disk} \cdot OD_{disk}} + \frac{(1 + ass_y) \cdot W_D}{SA_{tot}}$$

$$= 3.18 \text{ kPa}$$

ここで,

$$L_{disk}$$
: エンドディスク幅と中間ディスク幅の合計mm $MASS_{disk}$: ディスク部の水力学的質量Imm Wt_{rim} : アウターリム部の質量(多孔プレート及び補剛材)Imm

よって,水平方向と鉛直方向の合成荷重及びストレーナ差圧荷重 (DP) の合計荷重 *q*_{SA-2.rim.lat} は,

$$q_{SA-2.rim.lat} = \sqrt{q_{SA-2.rim.x}^2 + q_{SA-2.rim.y}^2 + DP}$$

= 15.15 kPa

アウターリムに軸直角方向外面より加わる最大荷重は,許容応力状態V_ASで15.15 kPa となる。 (5) インナーギャップに加わる水平方向荷重と鉛直方向荷重: No. SA-2 ($W_T + W_D + DP + S_s$) インナーギャップに水平方向と鉛直方向外面より加わる荷重を計算する。

よって,水平方向と鉛直方向の合成荷重及びストレーナ差圧荷重 (DP) の合計荷重 *q*_{SA-2.gap.lat} は,

$$q_{SA-2.gap.lat} = \sqrt{q_{SA-2.gap.x}^2 + q_{SA-2.gap.y}^2 + DP}$$

= 12.38 kPa

インナーギャップに軸直角方向外面より加わる最大荷重は,許容応力状態VASで 12.38 kPaとなる。 (1) 項から(5) 項までの結果より,ストレーナ多孔プレートの各応力評価部位に加わる表面荷重(等価圧力)の位置を図4-4,荷重を表4-11にまとめる。

		各応力評価部位に加わる表面荷重			
No.	名称	許容応力状態 V _A S			
		表面荷重(kPa)	荷重方向		
1	エンドコア	13. 17 *1	軸方向		
2	エンドディスク	11.68 *1	軸方向		
3	中間ディスク	11.07 *1	軸方向		
		2.98	水平方向		
4	アウターリム	3.18	鉛直方向		
		15. 15 *1	軸直角方向 *2		
		1.03	水平方向		
5	インナーギャップ	1.21	鉛直方向		
		12. 38 *1	軸直角方向 *2		

表 4-11 多孔プレートの各応力評価部位に加わる表面荷重(等価圧力)

注記*1:ストレーナ差圧荷重(10.79 kPa)を含む。

*2:水平方向荷重と鉛直方向荷重を SRSS 法にて合成した。

図 4-4 多孔プレートの各応力評価部位

4.7.3 コアチューブに加わる荷重

ストレーナの多孔プレート部に負荷された荷重は、ディスク内部の補強材によりコアチ ューブに伝達され、これらの荷重によりコアチューブには異なる位置で異なる応力が発生 する。従って、4.7.2項と同様に4.7.1項で選定したクリティカル条件(荷重組合せ No. SA-2)を基に、構造上厳しい条件となる第一列ディスク位置、最終列ディスク位置及びフランジ接 触面の3つの位置での荷重を算出する。

(1) コアチューブスタブ部の荷重(等価圧力): No. SA-2 ($W_T + W_D + DP + S_s$) コアチューブスタブ部に負荷される流体及び地震からの荷重(等価圧力)を算出する。

$$q_{SA-2.stub.x} = (W_T + W_D + DP + S_s)$$

$$= ass_x \cdot \frac{(MASS_{stub} + Wt_{stub})}{2 \cdot L_{stub} \cdot OD_{tube}}$$

$$= 4.71 \text{ kPa}$$

$$q_{SA-2.stub.y} = (W_T + W_D + DP + S_s)$$

$$= \frac{ass_y \cdot MASS_{stub} + (1 + ass_y) \cdot Wt_{stub}}{2 \cdot L_{stub} \cdot OD_{tube}}$$

$$= 6.20 \text{ kPa}$$

ここで,

 $MASS_{stub}$: コアチューブスタブ部の水力学的質量 = N Wt_{stub} : コアチューブスタブ部の質量 = N

なお、ストレーナ差圧荷重 (DP) と異物荷重 (W_D) はコアチューブスタブ部には加わらない。

コアチューブスタブ部に加わる最大表面荷重(等価圧力)を表 4-12 にまとめる。

to the	許容応力	状態V _A S
石竹	表面荷重(kPa)	荷重方向
コマエ デフロゴ如	4.71	水平方向
コノリューノスタノ部	6.20	鉛直方向

表 4-12 コアチューブスタブ部に加わる最大表面荷重(等価圧力)

a. 最終列位置

 $F_{x.tube.G5.1} = 2 \cdot (q_{rim.x.G5} \cdot W_{enddisk} \cdot OD_{disk}) + (q_{gap.x.G5} \cdot W_{gap} \cdot OD_{gap})$ = 714 N

ここで,

q_{rim.x.G5}: アウターリムに水平方向より加わる許容応力状態V_ASでの最大等価 圧力(表 4-11 参照)
 q_{gap.x.G5}: インナーギャプに水平方向より加わる許容応力状態V_ASでの最大等

b. 第一列位置

$$F_{x.tube.G5.2} = 2 \cdot F_{x.tube.G5.1} + 6 \cdot (q_{rim.x.G5} \cdot W_{middisk} \cdot OD_{disk} + q_{gap.x.G5} \cdot W_{gap} \cdot OD_{gap})$$
$$= 2972 \text{ N}$$

a. 最終列位置

$$F_{y.tube.G5.1} = 2 \cdot (q_{rim.y.G5} \cdot W_{enddisk} \cdot OD_{disk}) + (q_{gap.y.G5} \cdot W_{gap} \cdot OD_{gap})$$
$$= 766 \text{ N}$$

ここで,

q_{rim.y.G5}: アウターリムに鉛直方向より加わる許容応力状態V_ASでの最大等 価圧力(表 4-11 参照)

q_{gap.y.G5}: インナーギャプに鉛直方向より加わる許容応力状態 V_AS での最大 等価圧力(表 4-11 参照) b. 第一列位置

 $F_{y.tube.G5.2} = 2 \cdot F_{y.tube.G5.1} + 6 \cdot (q_{rim.y.G5} \cdot W_{middisk} \cdot OD_{disk} + q_{gap.y.G5} \cdot W_{gap} \cdot OD_{gap}) + (Wt_{strnr} - Wt_{rim} - Wt_{gap}) = 6390 \text{ N}$ ここで、 Wt_{strnr} : ストレーナディスク部質量 = ____N

また、アウターリム部質量 (Wt_{rim}) とインナーギャップ部質量 (Wt_{gap}) は、アウ ターリム部鉛直方向荷重 ($q_{rim.y.G5}$) 及びインナーギャップ部鉛直方向荷重 ($q_{gap.y.G5}$) で考慮されているため、減じる。

c. フランジ接触面

$$F_{y.tube.G5.3} = F_{y.tube.G5.2} + (2 \cdot q_{stub.y.G5} \cdot OD_{tube} \cdot L_{stub} - Wt_{stub})$$

= 6974 N

ここで,

q_{stub.y.65}: コアチューブスタブ部に鉛直方向より加わる許容応力状態V_ASでの 最大等価圧力(表 4-12 参照)

また,コアチューブスタブ部質量 (Wt_{stub}) は,コアチューブスタブ部鉛直方向荷 重 ($q_{stub.y.65}$) で考慮されているため,減じる。

a. 最終列位置

$$F_{z.tube.G5.1} = q_{endcore.z.G5} \cdot \frac{\pi}{4} \cdot OD_{tube}^{2} + 2 \cdot (q_{enddisk.z.G5} - DP) \cdot \frac{\pi}{4} \cdot (OD_{disk}^{2} - OD_{tube}^{2})$$

= 4524 N

ここで,

- qendcore.z.G5
 : エンドコアに軸方向より加わる許容応力状態VASでの最大等価

 圧力(表 4-11 参照)
- *q_{enddisk.z.G5}* : エンドディスクに軸方向より加わる許容応力状態V_ASでの最大 等価圧力(表 4-11 参照,ストレーナ差圧荷重を含む)

DP : ストレーナ差圧荷重 = kPa

b. 第一列位置

$$F_{z.tube.G5.2} = F_{z.tube.G5.1} + 2 \cdot (q_{enddisk.z.G5} - DP) \cdot \frac{\pi}{4} \cdot (OD_{disk}^{2} - OD_{tube}^{2}) + 6 \cdot (q_{middisk.z.G5} - DP) \cdot \frac{\pi}{4} \cdot (OD_{disk}^{2} - OD_{tube}^{2}) + 6 \cdot (q_{middisk.z.G5} - DP) \cdot \frac{\pi}{4} \cdot (OD_{disk}^{2} - OD_{tube}^{2})$$

 $+ ass_z \cdot \left(Wt_{rad.stfnr} + Wt_{perf.tube} + Wt_{rim} + Wt_{gap} \right)$

= 11320 N

ここで、
$$Wt_{rad.stfnr}$$
: ラジアル補剛材質量 = N
 $Wt_{perf.tube}$: コアチューブ質量 = N

c. フランジ接触面

$$F_{z.tube.G5.3} = F_{z.tube.G5.2} + ass_z \cdot (Wt_{stub} + Wt_{flan})$$

= 11754 N
ここで,
 Wt_{flan} : フランジ質量 = N

(5) コアチューブに加わる鉛直方向曲げモーメント(*M_x*) コアチューブに加わる鉛直方向曲げモーメントを評価部位毎に算出する。

a. 最終列位置

 $M_{x.tube.G5.1} = 0.000 \text{ N} \cdot \text{mm}$

最終列の鉛直方向曲げモーメントは小さく、無視できる。

 $M_{x.tube.G5.2} = \left(F_{y.tube.G5.2} - Wt_{strnr}\right) \cdot \frac{L_{strnr}}{2} + Wt_{strnr} \cdot (CG_{strnr.z} - L_{stub})$ $= 1.665 \times 10^6 \text{ N} \cdot \text{mm}$

$$Wt_{strnr}$$
 : ストレーナディスク部質量 = N
 $CG_{strnr.z}$: フランジ面とストレーナディスク部の軸方向重心位置
との距離 = mm

c. フランジ接触面

$$M_{x.tube.G5.3} = (F_{y.tube.G5.2} - Wt_{strnr}) \cdot \left(\frac{L_{strnr}}{2} + L_{stub}\right) \\ + (2 \cdot q_{stub.y.G5} \cdot OD_{tube} \cdot L_{stub} - Wt_{stub}) \cdot \frac{L_{strnr}}{2} + W_{T} \cdot CG_{total.z} \\ = 2.701 \times 10^{6} \text{ N} \cdot \text{mm} \\ \square \mathbb{C} \mathbb{C} \mathbb{C}, \\ q_{stub.y.G5} : \exists T \mathcal{F}_{2} - \mathcal{T}_{Z} \mathcal{F} \mathcal{T}$$
部に鉛直方向より加わる許容応力状態VASでの最大等価圧力(表 4-12 参照)

$$W_T$$
 : ストレーナ質量 = N
 $CG_{total.z}$: フランジ面とストレーナ全体の軸方向重心位置との距離 = mm

- (6) コアチューブに加わる水平方向曲げモーメント(M_y)
 コアチューブに加わる水平方向曲げモーメントを評価部位毎に算出する。
 - a. 最終列位置

 $M_{v,tube,G5.1} = 0.000 \,\text{N} \cdot \text{mm}$

最終列の水平方向曲げモーメントは小さく、無視できる。

b. 第一列位置

$$M_{y.tube.G5.2} = F_{x.tube.G5.2} \cdot \frac{L_{strnr}}{2} + F_{z.tube.G5.2} \cdot E_{ecc}$$

 $= 3.936 \times 10^6 \text{ N} \cdot \text{mm}$
ここで,
 E_{ecc} : コアチューブとディスクの中心間距離 = mm

c. フランジ接触面 $M_{y.tube.G5.3} = F_{x.tube.G5.2} \cdot \left(\frac{L_{strnr}}{2} + L_{stub}\right)$ $+ 2 \cdot q_{stub.x.G5} \cdot OD_{tube} \cdot L_{stub} \cdot \frac{L_{stub}}{2} + F_{z.tube.G5.2} \cdot E_{ecc}$ $= 4.433 \times 10^6 \text{ N} \cdot \text{mm}$

ここで,

q_{stub.x.G5} : コアチューブスタブ部に水平方向より加わる許容応力状態V_ASで の最大等価圧力(表 4-12 参照)

(7) コアチューブに加わるねじりモーメント
$$(M_z)$$

コアチューブに加わるねじりモーメントを評価部位毎に算出する。

a. 最終列位置

$$\begin{split} M_{z.tube.G5.1} &= 2 \cdot \left(q_{rim.y.G5} \cdot W_{enddisk} \cdot OD_{disk} \right) \cdot E_{ecc} \\ &+ \frac{1}{5} \cdot \left(Wt_{face} \cdot CG_{face.x} + Wt_{rim} \cdot CG_{rim.x} + Wt_{rad.stfnr} \cdot CG_{stfnr.x} \right. \\ &+ Wt_{wire} \cdot CG_{wire.x} + Wt_{int} \cdot CG_{int.x} \right) \end{split}$$

 $= 3.845 \times 10^5 \text{ N} \cdot \text{mm}$

Ś	Ś	で,	

Wt_{face}	:	ディスク面の質量 = N
$CG_{face.x}$:	コアチューブ中心線とディスク面の水平方向重心位置
		との距離 =mm
Wt_{rim}	:	アウターリムの質量 = N
$CG_{rim.x}$:	コアチューブ中心線とアウターリムの水平方向重心位置
		との距離 =mm
Wt _{rad.stfnr}	:	ラジアル補剛材の質量 = 🔜 N
CG _{stfnr.x}	:	コアチューブ中心線とラジアル補剛材の水平方向重心位置
		との距離 =mm
Wt _{wire}	:	ワイヤーの質量 = N
$CG_{wire.x}$:	コアチューブ中心線とワイヤーの水平方向重心位置
		との距離 =mm
Wt _{int}	:	中間補剛材の質量 =N
$CG_{int.x}$:	コアチューブ中心線と中間補剛材の水平方向重心位置
		との距離 = mm

b. 第一列位置

$$M_{z.tube.G5.2} = 2 \cdot q_{rim.y.G5} \cdot (OD_{disk} \cdot L_{disk}) \cdot E_{ecc} + Wt_{strnr} \cdot CG_{strnr.x}$$

 $= 1.722 \times 10^6 \text{ N} \cdot \text{mm}$

c. フランジ接触面

$$M_{z.tube.G5.3} = M_{z.tube.G5.2}$$
$$= 1.722 \times 10^6 \text{ N} \cdot \text{mm}$$

以上より,許容応力状態VASにおいてコアチューブの3つの異なる位置に加わる荷重 は表4-13に示すとおりとなる。

	荷	重	モーン	モーメント		
名称	荷重値 (N)	方向	モーメント (N・mm)	方向		
	714	水平 (x)	0.000	鉛直曲げ (Mx)		
最終列位置	766	鉛直 (y)	0.000	水平曲げ (My)		
	4524	軸 (z)	3. 845×10^5	ねじり (Mz)		
	2972	水平 (x)	1.665×10^{6}	鉛直曲げ (Mx)		
一列位置	6390	鉛直 (y)	3. 936×10^{6}	水平曲げ (My)		
	11320	軸 (z)	1.722×10^{6}	ねじり (Mz)		
	3556	水平 (x)	2.701 $\times 10^{6}$	鉛直曲げ (Mx)		
フランジ 接触面	6974	鉛直 (y)	4. 433×10^{6}	水平曲げ (My)		
	11754	軸 (z)	1.722×10^{6}	ねじり (Mz)		

表 4-13 許容応力状態VASにおけるコアチューブに加わる荷重

図 4-5 ストレーナに加わる荷重方向

4.7.4 アウターリム及びインナーギャップからエンドディスク面に加わる荷重

アウターリム及びインナーギャップに水平及び鉛直方向より受けた荷重は, ラジアル補 剛材からエンドディスクに伝達され, リベット接合されたエンドディスクの多孔プレート 面に面内荷重とモーメントが加わる。

従って、4.7.2項と同様に4.7.1項で選定したクリティカル条件(荷重組合せ No. SA-2) を基に、配置位置が異なる6本のラジアル補剛材からエンドディスク面に加わる荷重を算 出する。

アウターリム及びインナーギャップからラジアル補剛材に加わる合計の水平方向荷重 $F_{end,x.G5}$ と鉛直方向荷重 $F_{end,y.G5}$ は、

T 4 7

$$F_{end.x.G5} = q_{rim.x.G5} \cdot W_{enddisk} \cdot OD_{disk} + q_{gap.x.G5} \cdot \frac{W_{gap}}{2} \cdot OD_{gap}$$

= 357 N
$$F_{end.y.G5} = q_{rim.y.G5} \cdot W_{enddisk} \cdot OD_{disk} + q_{gap.y.G5} \cdot \frac{W_{gap}}{2} \cdot OD_{gap}$$

= 383 N

ここで,

- q_{rim.x.G5}: アウターリムに水平方向より加わる許容応力状態V_ASでの最大等

 価圧力(表 4-11 参照)
- *q_{rim.y.G5}*: アウターリムに鉛直方向より加わる許容応力状態V_ASでの最大等 価圧力(表 4-11 参照)
- q_{gap.x.G5}
 : インナーギャプに水平方向より加わる許容応力状態VASでの最大

 等価圧力(表 4-11 参照)
- q_{gap.y.G5}
 : インナーギャプに鉛直方向より加わる許容応力状態VASでの最大

 等価圧力(表 4-11 参照)

各々のラジアル補剛材に加わる曲げ荷重は, ラジアル補剛材の配置回転角を考慮して以 下となる。

$$P_{end.G5.k} = F_{end.x.G5} \cdot \frac{Wx_k}{OD_{disk}} \cdot |\cos(\theta_k)| + F_{end.y.G5} \cdot \frac{Wy_k}{OD_{disk}} \cdot |\sin(\theta_k)| \qquad (k = 1,6)$$
$$= \begin{pmatrix} 116\\134\\146\\99\\82\\77 \end{pmatrix} \qquad N$$

ここで,

θ_k: 各ラジアル補剛材の回転角
 Wx_k, Wy_k: 各ラジアル補剛材の水平方向受圧長さ及び鉛直方向受圧長さラジ

アル補剛材の配置詳細と受圧長さは添付資料に記載する。

(2) ラジアル補剛材からエンドディスク面に加わるモーメント(M_{end})
 エンドディスクからラジアル補剛材に加わる軸方向荷重によりラジアル補剛材に発生す

る曲げモーメントは、アウターリム側の荷重 $w1_{rad.end.G5}$ からコアチューブ側の荷重 $w2_{rad.end.G5}$ までの台形分布荷重から求める。

図 4-6 エンドディスクのラジアル補剛材に加わる荷重状態

各ラジアル補剛材に加わるエンドディスクから加わるアウターリム側の荷重 w1_{rad.end.65k} コアチューブ側の荷重 w2_{rad.end.65k} は, $w1_{rad.end.G5.k} = (q_{enddisk.z.G5} - DP) \cdot L_{ark.max_k}$ (k = 1, 6) $w2_{rad.end.G5.k} = (q_{enddisk.z.G5} - DP) \cdot L_{ark.min_k}$ (k = 1, 6)ここで、 *q*enddisk.z.G5 : エンドディスクに軸方向より加わる許容応力状態V_ASでの最大 等価圧力(表 4-11 参照,ストレーナ差圧荷重を含む) : ストレーナ差圧荷重 = kPa DP : 各ラジアル補剛材のアウターリム部の等価受圧長さ Lark.max k : 各ラジアル補剛材のコアチューブ部の等価受圧長さ $L_{ark.min_k}$ なお、ラジアル補剛材の配置詳細と等価受圧長さは添付資料に記載する。

$$w1_{rad.end.G5.k} = \begin{pmatrix} 0.439\\ 0.492\\ 0.465\\ 0.344\\ 0.284\\ 0.266 \end{pmatrix} \qquad N/mm$$
$$w2_{rad.end.G5.k} = \begin{pmatrix} 0.264\\ 0.246\\ 0.178\\ 0.110\\ 0.086\\ 0.079 \end{pmatrix} \qquad N/mm$$

ラジアル補剛材からエンドディスク面に加わるモーメント M_{end.G5} は,

$$\begin{split} M_{end.G5.k} &= \frac{1}{2} \cdot w 2_{rad.end.G5.k} \cdot L_{stf.k}^{2} + \frac{1}{3} \cdot (w 1_{rad.end.G5.k} - w 2_{rad.end.G5.k}) \cdot L_{stf.k}^{2} \\ &= \begin{pmatrix} 5.793 \times 10^{3} \\ 1.543 \times 10^{4} \\ 4.850 \times 10^{4} \\ 5.627 \times 10^{4} \\ 5.582 \times 10^{4} \\ 5.496 \times 10^{4} \end{pmatrix} \qquad \text{N} \cdot \text{mm} \end{split}$$

ここで,

L_{stf.k}: 各ラジアル補剛材のアウターリム側の荷重 w1_{rad.end.G5.k} とコアチューブ 側の荷重 w2_{rad.end.G5.k}の作用点間距離

$$L_{stf.k} = \begin{pmatrix} 175.4\\274.2\\512.4\\650.7\\715.5\\734.2 \end{pmatrix} mm$$

4.7.5 アウターリム及びインナーギャップから中間ディスク面に加わる荷重

4.7.4 項と同様に,アウターリム及びインナーギャップに水平及び鉛直方向より受けた 荷重は,ラジアル補剛材から中間ディスクに伝達され,リベット接合された中間ディスク の多孔プレート面にせん断荷重とモーメントが加わる。

従って、4.7.1項で選定したクリティカル条件(荷重組合せ No. SA-2)を基に、配置位置 が異なる6本のラジアル補剛材から中間ディスクに加わる荷重を算出する。

(1) ラジアル補剛材から中間ディスク面に加わる荷重(Pmid)

アウターリム及びインナーギャップからラジアル補剛材に加わる合計の水平方向荷重 $F_{mid.x.G5}$ と鉛直方向荷重 $F_{mid.y.G5}$ は,

$$F_{mid.x.G5} = q_{rim.x.G5} \cdot W_{disk} \cdot OD_{disk} + q_{gap.x.G5} \cdot W_{gap} \cdot OD_{gap}$$

= 257 N
$$F_{mid.y.G5} = q_{rim.y.G5} \cdot W_{disk} \cdot OD_{disk} + q_{gap.y.G5} \cdot W_{gap} \cdot OD_{gap}$$

= 278 N

各々のラジアル補剛材に加わる曲げ荷重は, ラジアル補剛材の配置回転角を考慮して 以下となる。

$$P_{mid.G5.k} = F_{mid.x.G5} \cdot \frac{Wx_k}{OD_{disk}} \cdot |\cos(\theta_k)| + F_{mid.y.G5} \cdot \frac{Wy_k}{OD_{disk}} \cdot |\sin(\theta_k)| \qquad (k = 1,6)$$
$$= \begin{pmatrix} 84\\97\\106\\72\\59\\55 \end{pmatrix} \qquad N$$

(2) ラジアル補剛材から中間ディスク面に加わるモーメント(M_{mid})

4.7.4 項と同様に、中間ディスクからラジアル補剛材に加わる軸方向荷重によりラジア ル補剛材に発生する曲げモーメントは、アウターリム側の荷重 w1_{rad.mid.G5} からコアチュ ーブ側の荷重w2_{rad.mid.G5} までの台形分布荷重から求める。

図 4-7 中間ディスクのラジアル補剛材の荷重状態

各ラジアル補剛材に中間ディスクから加わるアウターリム側の荷重 w1_{rad.mid.G5.k} コア チューブ側の荷重 w2_{rad.mid.G5.k} は, w1_{rad.mid.G5.k} = $(q_{middisk.z.G5} - DP) \cdot L_{ark.max_k}$ (k = 1,6) w2_{rad.mid.G5.k} = $(q_{middisk.z.G5} - DP) \cdot L_{ark.min_k}$ (k = 1,6) ここで, $q_{middisk.z.G5}$: 中間ディスクに軸方向より加わる許容応力状態V_ASでの最大等 価圧力 (表 4-11 参照, ストレーナ差圧荷重を含む) DP : ストレーナ差圧荷重 = kPa $L_{ark.max_k}$: 各ラジアル補剛材のアウターリム部の等価受圧長さ $L_{ark.min_k}$: 各ラジアル補剛材のコアチューブ部の等価受圧長さ

$$w1_{rad.mid.G5.k} = \begin{pmatrix} 0.137\\ 0.153\\ 0.144\\ 0.107\\ 0.088\\ 0.083 \end{pmatrix} \qquad N/mm$$
$$w2_{rad.mid.G5.k} = \begin{pmatrix} 0.082\\ 0.077\\ 0.055\\ 0.034\\ 0.027\\ 0.025 \end{pmatrix} \qquad N/mm$$

ラジアル補剛材から中間ディスク面に加わるモーメント M_{mid.G5} は,

$$M_{mid.G5.k} = \frac{1}{2} \cdot w_{2rad.mid.G5.k} \cdot L_{stf.k}^{2} + \frac{1}{3} \cdot (w_{1rad.mid.G5.k} - w_{2rad.mid.G5.k}^{2}) \cdot L_{stf.k}^{2}$$

$$= \begin{pmatrix} 1.801 \times 10^{3} \\ 4.796 \times 10^{3} \\ 1.508 \times 10^{4} \\ 1.749 \times 10^{4} \\ 1.735 \times 10^{4} \\ 1.709 \times 10^{4} \end{pmatrix} \qquad \text{N} \cdot \text{mm}$$

ここで,

L_{stf.k}: 各ラジアル補剛材のアウターリム側の荷重 w1_{rad.mid.G5.k} とコアチュー ブ側の荷重 w2_{rad.mid.G5.k}の作用点間距離

$$L_{stf.k} = \begin{pmatrix} 175.4 \\ 274.2 \\ 512.4 \\ 650.7 \\ 715.5 \\ 734.2 \end{pmatrix} mm$$

以上より,許容応力状態V_ASにおいて,ラジアル補剛材からエンドディスク面及び中間ディスク面に加わる最大荷重と最大モーメントは表4-14に示すとおりとなる。

表 4-14 ラジアル補剛材に加わる最大荷重と最大モーメント

	荷重		モーメント	
	荷重値 (N)	種類	モーメント (N・mm)	種類
エンド ディスク	146	面内	5.627×10^4	曲げ
中間 ディスク	106	面内	1.749×10^{4}	曲げ

4.8 応力評価

4.8.1 多孔プレートの評価方法

多孔プレートの応力計算は、中身がつまった等価な平板として計算する。板の厚さとしては実肉厚を使用し、孔の欠損部を補った材料物性値として引用文献(2)及び(3)で示される等価縦弾性係数及び等価ポアソン比を使用する。

多孔プレートのリガメント効率 h/P は,

また、多孔プレートの応力倍率 *K*_{pp} (等価平板に乗じる応力拡大係数)は、多孔プレートの孔径とピッチから決定され、

$$K_{PP} = \frac{P}{h} = 2.72$$

- 4.8.2 エンドコアの多孔プレートに発生する応力
 - (1) 外面より加わる荷重で発生する応力 多孔プレートを補剛材により支持された両端支持はりとして,引用文献(4)のChapter 1, Section 3に示す方法にて計算する。

引用文献(4)の(15)式(下式)を解くことによりパラメータ *u* を求め,(16)式及び(17)式から発生応力を算出する。

$$\left\{ \frac{E_{eff} \cdot u^2}{(1 - v_{eff}^2) \cdot q} \cdot \left(\frac{t}{Ls}\right)^4 \right\}^2 = -\frac{81}{16 \cdot u^7 \cdot \tanh(u)} - \frac{27}{16 \cdot u^6 \cdot \sinh(u)^2} + \frac{27}{4 \cdot u^8} + \frac{9}{8 \cdot u^6} \quad \dots \quad (15)$$

$$\sigma_{m} = \frac{E_{eff} \cdot u^{2}}{3 \cdot (1 - v_{eff}^{2})} \cdot \left(\frac{t}{Ls}\right)^{2} \cdot K_{pp} \quad : -$$
次局部膜応力 (MPa) · · · · · · (16)

$$\sigma_b = \frac{q}{2} \cdot \left(\frac{Ls}{t}\right)^2 \cdot \Psi \cdot K_{pp}$$
 :曲げ応力(MPa) · · · · · · · · · (17)

$$\Psi = \frac{3 \cdot (u - \tanh(u))}{u^2 \cdot \tanh(u)}$$

ここで, q は外荷重, t は多孔プレートの板厚及び Ls は補剛材長さ (15)式の左辺に, エンドコアに加わる軸方向荷重,板厚及び補剛材寸法を入れて,

 $(u_{endcore.G5})^4$ に乗じる係数 $U_{endcore.G5}$ を計算すると,

$$U_{endcore.G5} = \left\{ \frac{E_{eff}}{\left(1 - v_{eff}^{2}\right) \cdot q_{endcore.z.G5}} \cdot \left(\frac{t}{Ls_{endcore}}\right)^{4} \right\}^{2}$$
$$= 0.146$$

ここで,

 q_{endcore.z.G5}
 : エンドコアに軸方向外面より加わる許容応力状態V_ASでの最大

 等価圧力(表 4-11 参照)

 t
 : ディスク部多孔プレートの板厚 = _____mm

 $Ls_{endcore}$: エンドコア補剛材の長さ = ____ mm

(15) 式をパラメータ $u_{endcore.G5}$ について解くと,

 $u_{endcore.G5} = 0.221$

(17)式のパラメータ $\Psi_{endcore.G5}$ は,

 $\Psi_{endcore.G5} = 0.9968$

エンドコアに軸方向外面から加わる荷重により発生する一次局部膜応力は,

$$\sigma_{m_{endcore.G5}} = \frac{E_{eff} \cdot u_{endcore.G5}^2}{3 \cdot (1 - v_{eff}^2)} \cdot \left(\frac{t}{Ls_{endcore}}\right)^2 \cdot K_{pp} = 1 \text{ MPa}$$

エンドコアに軸方向外面から加わる荷重により発生する曲げ応力は,

$$\sigma_{b_{endcore.G5}} = \frac{q_{endcore.z.G5}}{2} \cdot \left(\frac{Ls_{endcore}}{t}\right)^2 \cdot \Psi_{endcore.G5} \cdot K_{pp} = 71 \text{ MPa}$$

一次局部膜応力と曲げ応力の合計 $\sigma_{front.endcore.G5}$ は,

$$\sigma_{front.endcore.G5} = \sigma_{m_{endcore.G5}} + \sigma_{b_{endcore.G5}} = 72 \text{ MPa}$$

(2) 内面からの荷重で発生する応力

多孔プレートが等間隔でリベットにより支持された連続平板として,引用文献(4)の Chapter 7, Section 54に示す方法にて計算する。

エンドコア部のリベット位置よりリベット間隔寸法を図 4-9 に示す。

図 4-9 コアエンド部リベット間隔寸法

従って,引用文献(4)の Table 58 よりパラメータ $\alpha_{endcore}$, $\beta_{endcore}$ は,

$$\alpha_{endcore} = 0.846, \quad \beta_{endcore} = -0.356$$

連続平板に発生する荷重 Mxback.endcore.G5, Myback.endcore.G5 は,

$$Mx_{back.endcore.G5} = \frac{-(q_{endcore.z.G5} - DP) \cdot a_{endcore.back} \cdot b_{endcore.back}}{4\pi} \cdot \left[(1 + v_{eff}) \cdot ln \left(\frac{a_{endcore.back}}{c_{rivet}} \right) - (\alpha_{endcore} + \beta_{endcore} \cdot v_{eff}) \right]$$

= -3.792 N \cdot mm/mm

$$My_{back.endcore.G5} = \frac{-(q_{endcore.z.G5} - DP) \cdot a_{endcore.back} \cdot b_{endcore.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{endcore.back}}{c_{rivet}} \right) - \left(\beta_{endcore} + \alpha_{endcore} \cdot v_{eff} \right) \right]$$

= -4.928 N·mm/mm

ここで,

q_{endcore.z.G5}: エンドコアに軸方向外面より加わる許容応力状態V_ASでの最大等 価圧力(表 4-11 参照)

連続平板に発生する最大荷重 M_{back.endcore.G5} は,

 $M_{back.endcore.G5} = \max(|Mx_{back.endcore.G5}|, |My_{back.endcore.G5}|) = 4.928$ N·mm/mm 多孔プレート面の応力は, $\sigma_{back.endcore.G5} = \frac{6 \cdot M_{back.endcore.G5}}{t^2} \cdot K_{pp}$ = 55 MPa

(3) エンドコアの多孔プレートに発生する最大応力 エンドコアの多孔プレートに発生する最大応力は、4.8.2 (1)項及び(2)項より、

> $\sigma_{endcore.G5} = \max(\sigma_{front.endcore.G5}, \sigma_{back.endcore.G5})$ = 72 MPa

- 4.8.3 エンドディスクの多孔プレートに発生する応力
 - (1) 外面より加わる荷重で発生する応力

4.8.2 項と同様に、多孔プレートを補剛材により支持された両端支持はりとして、引用 文献(4)の Chapter 1, Section 3 に示す方法にて計算する。

引用文献(4)の(15)式を解くことによりパラメータ *u*_{enddisk.G5} を求め,引用文献(4)の(16)式及び(17)式から発生応力を算出する。

(15)式の左辺に、エンドディスクに加わる軸方向荷重、板厚及び補剛材寸法を入れて、
 (*u*_{enddisk.G5})⁴に乗じる係数 *U*_{enddisk.G5} を計算すると、

 $U_{enddisk.G5} = \left\{ \frac{E_{eff}}{\left(1 - v_{eff}^2\right) \cdot q_{enddisk.z.G5}} \cdot \left(\frac{t}{Ls_{enddisk}}\right)^4 \right\}^2$

$$= 0.181$$

ここで,

Qenddisk.z.G5 : エンドディスクに軸方向外面より加わる許容応力状態V_ASでの 最大等価圧力(表 4-11 参照)

t : ディスク多孔プレートの板厚 =
$$mm$$

Ls_{enddisk} : エンドディスク補剛材の長さ = mm

(15) 式をパラメータ $u_{enddisk.G5}$ について解くと,

 $u_{enddisk.G5} = 0.063$

(17)式のパラメータ $\Psi_{enddisk.G5}$ は,

 $\Psi_{enddisk.G5} = 0.9997$

エンドディスクに軸方向外面から加わる荷重により発生する一次局部膜応力は,

$$\sigma_{m_{enddisk.G5}} = \frac{E_{eff} \cdot u_{enddisk.G5}^2}{3 \cdot (1 - v_{eff}^2)} \cdot \left(\frac{t}{Ls_{enddisk}}\right)^2 \cdot K_{pp} = 1 \quad \text{MPa}$$

エンドディスクに軸方向外面から加わる荷重により発生する曲げ応力は,

$$\sigma_{b_{enddisk.G5}} = \frac{q_{enddisk.z.G5}}{2} \cdot \left(\frac{Ls_{enddisk}}{t}\right)^2 \cdot \Psi_{enddisk.G5} \cdot K_{pp} = 36 \text{ MPa}$$

一次局部膜応力と曲げ応力の合計 $\sigma_{front.enddisk.G5}$ は,

 $\sigma_{front.enddisk.G5} = \sigma_{m_{enddisk.G5}} + \sigma_{b_{enddisk.G5}} = 37$ MPa

(2) 内面からの荷重で発生する応力

多孔プレートが等間隔でリベットにより支持された連続平板として,引用文献(4)の Chapter 7, Section 54 に示す方法にて計算する。

エンドディスク部リベット位置の間隔寸法より,

 $a_{enddisk,back}$: 計算に使用する矩形平板の短辺寸法 = ____mm $b_{enddisk,back}$: 計算に使用する矩形平板の長辺寸法 = ____mm c_{rivet} : リベット頭部半径 = ____mm $\frac{b_{enddisk,back}}{a_{enddisk,back}} = 1.08$

従って、引用文献(4)の Table 58 よりパラメータ $\alpha_{enddisk}$, $\beta_{enddisk}$ は、

 $\alpha_{enddisk} = 0.8198, \quad \beta_{enddisk} = 0.7206$

連続平板に発生する荷重 Mxback.enddisk.G5, Myback.enddisk.G5 は,

$$Mx_{back.enddisk.G5} = \frac{-(q_{enddisk.z.G5} - DP) \cdot a_{enddisk.back} \cdot b_{enddisk.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{enddisk.back}}{c_{rivet}} \right) - \left(\alpha_{enddisk} + \beta_{enddisk} \cdot v_{eff} \right) \right]$$

= -7.738 N·mm/mm

$$My_{back.enddisk.G5} = \frac{-(q_{enddisk.Z.G5} - DP) \cdot a_{enddisk.back} \cdot b_{enddisk.back}}{4\pi} \cdot \left[(1 + v_{eff}) \cdot ln \left(\frac{a_{enddisk.back}}{c_{rivet}} \right) - (\beta_{enddisk} + \alpha_{enddisk} \cdot v_{eff}) \right]$$

= -7.879 N \cdot mm/mm

ここで,

連続平板に発生する最大荷重 M_{back.enddisk.G5} は,

 $M_{back.enddisk.G5} = \max(|Mx_{back.enddisk.G5}|, |My_{back.enddisk.G5}|) = 7.879 \text{ N} \cdot \text{mm/mm}$

多孔プレート面の応力は,

$$\sigma_{back.enddisk.G5} = \frac{6 \cdot M_{back.enddisk.G5}}{t^2} \cdot K_{pp}$$
$$= 88 \text{ MPa}$$

(3) ラジアル補剛材から加わる荷重で発生する応力

各ラジアル補剛材からエンドディスクに加わるせん断力 $P_{end.G5.k}$ 及び曲げモーメント $M_{end.G5.k}$ により、多孔プレートに発生する応力を計算する。エンドディスクの多孔プレートに発生する応力 $\sigma_{pl.enddisk.G5.k}$ は、

$$\sigma_{pl.enddisk.G5.k} = \left(\frac{P_{end.G5.k}}{A_{stf.end.k}} + \frac{M_{end.G5.k}}{S2_{stf.end.k}}\right) \cdot K_{pp} \qquad (k = 1, 6)$$
$$= \begin{pmatrix} 2\\5\\12\\14\\14\\14 \end{pmatrix} MPa$$

ここで,

 P_{end.G5.k}: 各ラジアル補剛材からエンドディスクに加わるせん断力 (4.7.4 (1)項参照)
 M_{end.G5.k}: 各ラジアル補剛材からエンドディスクに加わるモーメント (4.7.4 (2)項参照)
 A_{stf.end.k}: エンドディスクラジアル補剛材の有効断面積*

$$A_{stf.end.k} = \begin{pmatrix} 474.2\\474.0\\473.1\\471.2\\469.7\\469.2 \end{pmatrix} \text{mm}^2$$

S2_{stf.k}:エンドディスクラジアル補剛材の有効断面係数*

$$S2_{stf.end.k} = \begin{pmatrix} 12517\\ 12493\\ 12358\\ 12057\\ 11834\\ 11750 \end{pmatrix} \text{ mm}^3$$

ラジアル補剛材からエンドディスクに加わるせん断力 P_{end.G5.k} 及び曲げモーメント M_{end.G5.k}により、多孔プレートに発生する最大応力は、

 $\sigma_{pl.enddisk.G5} = \max(\sigma_{pl.enddisk.G5.k}) = 14$ MPa

注記*:引用文献(5) Section B2 に従い、ラジアル補剛材と薄肉平板の相互効果によ る曲げ荷重に対する鋼材の有効幅を補正して、有効断面積及び有効断面係数を 算出した。 (4) エンドディスクの多孔プレートに発生する最大応力

エンドディスクの多孔プレートに発生する最大応力は、4.8.3 (1)項、(2)項及び(3)項 より、エンドディスクの外面より加わる荷重で発生する応力と内面からの荷重で発生する 応力の大きい応力にラジアル補剛材より加わる荷重で発生する応力を加えて計算する。

エンドディスクの多孔プレートにラジアル補剛材から受ける荷重で発生する応力との合成応力の最大値 *σenddisk.com.G5* は,

 $\sigma_{enddisk.com.G5} = \sigma_{pl.enddisk.G5}$

 $+ \max\left(\sigma_{front.enddisk.G5} \cdot \frac{(q_{enddisk.G5} - DP)}{q_{enddisk.G5}}, \sigma_{back.enddisk.G5}\right)$

= 102 MPa

エンドディスクの多孔プレートに発生する最大応力 $\sigma_{enddisk.G5}$ は,

 $\sigma_{enddisk.G5} = \max \left(\sigma_{front.enddisk.G5}, \sigma_{back.enddisk.G5}, \sigma_{enddisk.com.G5} \right)$

= 102 MPa

- 4.8.4 中間ディスクの多孔プレートに発生する応力
 - (1) 外面より加わる荷重で発生する応力
 中間ディスクの多孔プレートに発生する応力 σ_{front.middisk.G5} はエンドディスクの多孔
 プレートに発生する応力 σ_{front.enddisk.G5} より、プレートに外面より加わる等価圧力の比で
 計算する。

$$\sigma_{front.midisk.G5} = \frac{q_{middisk.z.G5}}{q_{enddisk.z.G5}} \cdot \sigma_{front.enddisk.G5}$$
$$= 35 \text{ MPa}$$

(2) 内面からの荷重で発生する応力

多孔プレートが等間隔でリベットにより支持された連続平板として,引用文献(4)の Chapter 7, Section 54 に示す方法にて計算する。

中間ディスク部リベット位置の間隔寸法より,

 $a_{middisk.back}$: 計算に使用する矩形平板の短辺寸法 = ____mm $b_{middisk.back}$: 計算に使用する矩形平板の長辺寸法 = ____mm c_{rivet} : リベット頭部半径 = ____mm $\frac{b_{middisk.back}}{a_{middisk.back}}$ = 1.08

従って、引用文献(4)の Table 58 よりパラメータ $\alpha_{middisk}$, $\beta_{middisk}$ は、

 $\alpha_{middisk} = 0.8198, \quad \beta_{middisk} = 0.7206$

連続平板に発生する荷重 Mx_{back.middisk.G5}, My_{back.middisk.G5}は,

$$Mx_{back.middisk.G5} = \frac{-(q_{middisk.ZG5} - DP) \cdot a_{middisk.back} \cdot b_{middisk.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{middisk.back}}{c_{rivet}} \right) - \left(\alpha_{middisk} + \beta_{middisk} \cdot v_{eff} \right) \right]$$

= -2.406 N·mm/mm

$$My_{back.middisk.G5} = \frac{-(q_{middisk.z.G5} - DP) \cdot a_{middisk.back} \cdot b_{middisk.back}}{4\pi} \cdot \left[\left(1 + v_{eff} \right) \cdot ln \left(\frac{a_{middisk.back}}{c_{rivet}} \right) - \left(\beta_{middisk} + \alpha_{middisk} \cdot v_{eff} \right) \right]$$

 $= -2.450 \text{ N} \cdot \text{mm/mm}$

ここで,

 $q_{middisk.z}$

連続平板に発生する最大荷重 M_{back.middisk.G5} は,

 $M_{back.middisk.G5} = \max(|Mx_{back.middisk.G5}|, |My_{back.middisk.G5}|) = 2.450$ N·mm/mm 多孔プレート面の応力は,

$$\sigma_{back.middisk.G5} = \frac{6 \cdot M_{back.middisk.G5}}{t^2} \cdot K_{pp}$$
$$= 26 \quad \text{MPa}$$

(3) ラジアル補剛材から加わる荷重で発生する応力
 各ラジアル補剛材から中間ディスクに加わるせん断力 P_{mid.G5.k}及び曲げモーメント
 M_{mid.G5.k}により、多孔プレートに発生する応力を計算する。中間ディスクの多孔プレートに発生する応力 σ_{pl.middisk.G5.k}は、

$$\sigma_{pl.middisk.G5.k} = \left(\frac{P_{mid.G5.k}}{A_{stf.mid.k}} + \frac{M_{mid.G5.k}}{S2_{stf.mid.k}}\right) \cdot K_{pp} \qquad (k = 1, 6)$$
$$= \begin{pmatrix} 2\\3\\7\\8\\8\\8 \end{pmatrix} \qquad MPa$$

ここで,

 P_{mid.G5.k}: 各ラジアル補剛材から中間ディスクに加わるせん断力 (4.7.4 (1)項参照)
 M_{mid.G5.k}: 各ラジアル補剛材から中間ディスクに加わるモーメント (4.7.4 (2)項参照)

$$A_{stf.mid.k} = \begin{pmatrix} 312.9\\ 312.7\\ 311.9\\ 309.9\\ 308.4\\ 307.9 \end{pmatrix} \quad \mathrm{mm}^2$$

S2_{stf.k}: 中間ディスクラジアル補剛材の有効断面係数*

$$S2_{stf.mid.k} = \begin{pmatrix} 7103\\7087\\6998\\6796\\6648\\6592 \end{pmatrix} \text{ mm}^3$$

注記*:引用文献(5) Section B2 に従い、ラジアル補剛材と薄肉平板の相互効果による曲げ荷重に対する鋼材の有効幅を補正して、有効断面積及び有効断面係数を 算出した。 ラジアル補剛材から中間ディスクに加わるせん断力 P_{mid.G5.k}及び曲げモーメント M_{mid.G5.k}により、多孔プレートに発生する最大応力は、

 $\sigma_{pl.middisk.G5} = \max(\sigma_{pl.middisk.G5.k}) = 8$ MPa

(4) 中間ディスクの多孔プレートに発生する最大応力

中間ディスクの多孔プレートに発生する最大応力は、4.8.4 (1)項、(2)項及び(3)項よ り、中間ディスクの外面より加わる荷重で発生する応力と内面からの荷重で発生する応力 の大きい応力にラジアル補剛材より加わる荷重で発生する応力を加えて計算する。

中間ディスクの多孔プレートにラジアル補剛材から受ける荷重で発生する応力との合成応力の最大値 $\sigma_{middisk.com.G5}$ は、

 $\sigma_{middisk.com.G5} = \sigma_{pl.middisk.G5}$

 $+ \max\left(\sigma_{front.middisk.G5} \cdot \frac{(q_{middisk.G5} - DP)}{q_{middisk.G5}}, \sigma_{back.middisk.G5}\right)$

= 34 MPa

中間ディスクの多孔プレートに発生する最大応力 $\sigma_{middisk.G5}$ は、

 $\sigma_{middisk.G5} = \max \left(\sigma_{front.middisk.G5}, \sigma_{back.middisk.G5}, \sigma_{middisk.com.G5} \right)$

- 4.8.5 アウターリムの多孔プレートに発生する応力
 - (1) 応力計算方法

アウターリムの多孔プレートに発生する応力計算には,アウターリム取付部含み三次元 シェル要素でモデル化し,解析コード「ANSYS」を使用した有限要素解析手法を適用 する。

アウターリムの多孔プレートの三次元シェルモデル(以下「アウターリム応力解析モデル」という。)を図4-10及び図4-11に、解析モデルの概要を以下に示す。また、機器の諸元を本書計算書の【高圧炉心注水系ストレーナの耐震性についての計算結果】の機器要目に示す。

- a. アウターリム応力解析モデルでは、アウターリムの多孔プレートと取付部をシェル要素でモデル化して解析を行う。
- b. アウターリム応力解析モデルは,鉛直面に対称境界を与え,鉛直軸を境界として片側 半分をモデル化する。
- c. 多孔プレートの等価縦弾性係数,等価ポアソン比及び応力倍率は4.8.1項に記載した 数値を使用する。
- d. 各部の質量は、各シェル要素に密度として与える。

RO

図 4-10 アウターリムの多孔プレートの有限要素
図 4-11 アウターリム応力解析モデル

(2) アウターリムの多孔プレートの発生応力アウターリムの多孔プレートに発生する応力を表 4-15 にまとめる。

- 表 4-15 アワターリムの多扎フレートに発生する

	一次応力	(MPa)
矸谷心刀扒憨	一般膜応力	一般膜応力+曲げ応力
V _A S	34	37

- 4.8.6 インナーギャップの多孔プレートに発生する応力
 - (1) 応力計算方法

インナーギャップの多孔プレートに発生する応力計算には、4.8.5 項と同様に、インナ ーギャップ取付部含み三次元シェル要素でモデル化し、解析コード「ANSYS」を使用 した有限要素解析手法を適用する。

インナーギャップの多孔プレートの三次元シェルモデル(以下「インナーギャップ応力 解析モデル」という。)を図4-12及び図4-13に,解析モデルの概要を以下に示す。

- a. インナーギャップ応力解析モデルでは、インナーギャップの多孔プレートと取付部を シェル要素でモデル化して解析を行う。
- b. インナーギャップ応力解析モデルは,鉛直面に対称境界を与え,鉛直軸を境界として 片側半分をモデル化する。
- c. インナーギャップの多孔プレートは両サイドのディスクプレートにリベットにて固定 されており 30°ピッチでリベット間隔を定め固定端としてモデル化する。
- d. 多孔プレートの等価縦弾性係数,等価ポアソン比及び応力倍率は4.8.1項に記載した数値を使用する。
- e. 各部の質量は、各シェル要素に密度として与える。

RO

図 4-13 インナーギャップ応力解析モデル

(2) インナーギャップの多孔プレートの発生応力インナーギャップの多孔プレートに発生する応力を表 4-16 にまとめる。

表 4-16	インナーギャップの多孔プレー	トに発生する応力
--------	----------------	----------

<u> </u>	一次応力	(MPa)
计 在心力状態	一般膜応力	一般膜応力+曲げ応力
V _A S	12	14

4.8.7 コアチューブの評価部位に発生する応力

コアチューブに発生する応力は、以下の式で計算する。

$$\sigma_{ct.G5.l} = \frac{F_{z.tube.G5.l}}{A_{ct.l}} + \frac{B2}{S_{ct.l}} \cdot \sqrt{M_{x.tube.G5.l}^2 + M_{y.tube.G5.l}^2 + M_{z.tube.G5.l}^2} \quad (l = 1, 3)$$
$$= \begin{pmatrix} 3\\ 24\\ 18 \end{pmatrix} \quad \text{MPa}$$

ここで, $\begin{pmatrix} A \\ B \\ C \end{pmatrix}$ はそれぞれ, A:最終面, B:第一列位置及び C:フランジ面を表す。

F_{z.tube.G5.l}: コアチューブに作用する各評価点の許容応力状態V_ASでの軸方向 荷重

 $M_{x.tube.G5.l}$ $M_{y.tube.G5.l}$: コアチューブに作用する各評価点の許容応力状態 $V_A S$ でのモーメ $M_{z.tube.G5.l}$ ント

Act.l: コアチューブの各評価点の断面積

$$A_{ct.l} = \begin{pmatrix} 11575\\12563\\15708 \end{pmatrix} \quad \text{mm}^2$$

Sct.l: コアチューブの各評価点の断面係数

$$S_{ct.l} = \left(\begin{array}{c} 7.11 \times 10^5\\ 9.00 \times 10^5\\ 1.50 \times 10^6 \end{array}\right) \quad \mathrm{mm}^3$$

B2 : 応力係数 = 4.5

- 4.8.8 フランジに発生する応力
 - (1) 応力計算方法

以下に示す計算方法により応力評価を行う。

ストレーナ取付部のフランジは、一般的なフランジとは異なりガスケットを使用しな い。そこで、フランジを以下のようにモデル化し、応力評価を行う。

フランジを外周(ボルト穴中心円直径)が固定された平板と考え,表4-13に示すモー メントが中心部に作用すると考える。この場合の発生応力は,引用文献(6)より,図4-14 に示す計算モデルで下記の計算式より求める。

図 4-14 フランジ断面の計算モデル

(2) モーメントの設定

ストレーナ取付部のフランジの設計荷重は、ストレーナに作用する荷重から4.3項に示 す「応答解析」により算出したフランジ部のモーメントを用いる。ここでのモーメントは、 図4-15に示すように、ストレーナ重心に作用する荷重とその作用点からフランジまでの モーメントアームから計算したフランジに対して面外方向の曲げモーメント(2方向ある 面外方向曲げモーメントの二乗和平方根の合成値)を考慮する。なお、フランジ面内に発 生するモーメント(ねじり)により発生するせん断応力は微小であるため、ここでは考慮 から外す。

フランジの設計荷重を表 4-17 に示す。

図 4-15 フランジに作用するモーメント

表 4-17 フランジの設計荷重

(単位:N・mm)

	荷重	モーメント $M_{f.max}$
1	死荷重	
2	異物荷重	
3	差圧荷重	
4	ストレーナSd*地震荷重	
5	ストレーナSs地震荷重	
6	異物Sd*地震荷重	
7	異物Ss地震荷重	

- 4.8.9 ストレーナ取付部ボルトに発生する応力
 - (1) 応力計算方法

ストレーナ取付部ボルト(以下「ボルト」という。)には,表4-17に示すモーメントに 加え,ストレーナの軸方向に発生する荷重によりボルトに軸方向荷重が発生する。

フランジに作用する中立軸まわりのモーメントにより,ボルトに生じる軸力は,以下の ように算出する。

図 4-16 に示すフランジの中心を通る中立軸(X軸又はY軸)まわりのモーメントを考 える。このとき、中立軸まわりのモーメントは、各ボルトに発生する軸力とボルトの中立 軸からの距離の積から得られるモーメントとつりあっていると考えることができる。ここ で,軸方向荷重によって中立軸が移動するが,軸方向荷重のボルトへの影響が小さいため、 軸方向荷重による中立軸の移動は無視する。

したがって、X軸まわりのモーメントと各ボルトの軸力の関係は下記となる。

$$M_X = \sum_{k=1}^n Ft_k \cdot \ell_k$$

ここで,

 M_X :X軸まわりのモーメント (N·mm)

 Ft_k : 各ボルトに発生する軸力(N)

- ℓ_k :任意のボルトkにおけるX軸からの距離(mm)
- n :ボルトの本数 = 本

図 4-16 各ボルトに発生する軸力とモーメントアームの関係

また、ボルト軸力のX軸まわりのモーメント寄与分は中立軸上ではゼロであり、図 4-16 に示すように、曲げモーメントを伝えるボルトの軸力は回転中心からの距離に比例して 変化するとして算定する。この場合、ボルトに発生する最大の軸力を Ft とすると、各ボル トに発生する軸力 Ft_k は以下となる。

$$Ft_k = Ft \cdot \frac{\ell_k}{Ds/2}$$

ここで,

Ft : 最大の軸力が発生する軸方向荷重 (N)

Ft_k: 各ボルトに発生する軸力(N)

Ds : ボルト孔中心円直径= _____mm

以上より、nが偶数の場合、X軸まわりのモーメントは下記となる。

$$M_X = \frac{2 \cdot Ft}{Ds} \cdot \sum_{k=1}^n \ell_k^2 = \frac{Ft \cdot Ds \cdot n}{4}$$

ただし,

$$\ell_k = \frac{Ds}{2} \cdot \sin\left\{\frac{2\pi}{n} \cdot (k-1)\right\}$$

よって,表 4-17 に示す面外方向の曲げモーメント(2 方向ある面外方向曲げモーメントの二乗和平方根の合成値)から,ボルトの軸力は以下のように算出できる。

$$Ft = \frac{4}{Ds \cdot n} \cdot M_{f.max}$$

(2) ボルトに発生する応力

ボルトの設計荷重は、4.8.8 (2)項に示すフランジに作用する最大モーメントに加え、 ストレーナの軸方向に発生する反力であるボルトの軸方向荷重を考慮した引張力を合算し た軸方向荷重を引張方向の荷重として応力評価を行う。フランジとボルトは摩擦接合であ るため、ボルトに対するせん断力は作用しないものとする。ボルトに加わる設計荷重を表 4-18に示す。

ボルトに発生する引張応力 のbolt は下記となる。

$$\sigma_{bolt} = \frac{F_Z}{A_{bolt} \cdot n} + \frac{Ft}{A_{bolt}}$$

ここで,

 σ_{bolt} : ボルトの発生応力 (MPa) A_{bolt} : ボルトの有効断面積 (mm²) $A_{bolt} = \frac{\pi}{4} d_b^2$ d_b : ボルトのねじ部谷径 = ____mm F_z : 表 4-18 に示す軸方向荷重 (N)

表 4-18 ボルトの設計荷重

(単位:N)

	荷重	軸方向荷重	_
1	死荷重		
2	異物荷重		
3	差圧荷重		
4	ストレーナSd*地震荷重		
5	ストレーナSs地震荷重		
6	異物Sd*地震荷重		
7	異物Ss地震荷重		

4.9 計算条件

応力計算に用いる計算条件は,本計算書の【高圧炉心注水系ストレーナの耐震性についての 計算結果】に示す。

4.10 応力の評価

「4.6 計算方法」で求めた応力が表 4-3,表 4-4 及び表 4-5 を用いて算出した許容応力 以下であること。なお、二次応力は発生しないため、一次+二次応力評価は実施していない。

- 4.11 設計・建設規格における材料の規定によらない場合の評価
 - 4.11.1 コアチューブ材料の評価結果
 コアチューブに使用している
 は、クラス2管の使用可能な材料として設計・建設規格に記載されていないことから、クラス2管の使用可能な材料として設計・建設規格に記載されている材料 (
 と機械的強度及び 化学的成分を比較し、同等であることを示す。

(1) 機械的強度

	引張強さ	降伏点 又は耐力	比較結果
使用材料			引張強さ及び降伏点は同
比較材料			等と考えられる。

	(2)	化学成分
--	-----	------

	化学的成分(%)								
	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu
使用 材料									
比較 材料									
比較 結果	化学的成分比較では、違いがなく同等と考える。								

(3) 評価結果

(1)(2)の評価により、機械的強度、化学的成分いずれにおいても比較材料と同等である ことを確認したため、本機器において をクラス2材料として使用するこ とに問題ないと考える。 4.11.2 多孔プレート・フランジ材料の評価結果
 多孔プレート・フランジに使用している
 は、クラス2管の使用可能な材料として設計・建設規格に記載されていないことから、クラス2管の使用可能な材料として設計・建設規格に記載されている材料
 と機械的強度及び化学的成分を比較し、同等であることを示す。

(1) 機械的強度

	引張強さ	降伏点 又は耐力	比較結果
使用材料			引張強さ及び降伏点は同
比較材料			等と考えられる。

(2) 化学成分

	化学的成分(%)									
	С	Si	Mn	Р	S	Ni	Cr	Mo	Cu	Ν
使用 材料										
比較 材料										
比較 結果	C, Si 及び Cr の含有率に若干の違いがあるが,以下により同等と考える。 C, Si 及び Cr の含有量は JIS の要求範囲内であるが,機械的強度に影響を与える可 能性がある。しかしながら,(1)の評価結果から機械的強度は同等である。									

(3) 評価結果

(1)(2)の評価により,機械的強度,化学的成分いずれにおいても比較材料と同等である ことを確認したため,本機器において をクラス2材料として使用する ことに問題ないと考える。 4.11.3 ストレーナ取付部ボルト材料の評価結果
 ストレーナ取付部ボルトに使用している
 可能な材料として設計・建設規格に記載されていないことから、ボルトの使用可能な材料として設計・建設規格に記載されている材料
 強度及び化学的成分を比較し、同等であることを示す。

(1) 機械的強度

	引張強さ	降伏点 又は耐力	比較結果
使用材料			引張強さ及び降伏点は同
比較材料			等以上と考える。

- 化学成分 (2)化学的成分(%) С Si Р S Ni Cr Mn Mo Cu Ν 使用 材料 比較 材料 比較 化学的成分比較では,違いがなく同等と考える。 結果
 - (3) 評価結果

(1)(2)の評価により、比較材料と比べ機械的強度は同等以上、化学的成分は同等である ことを確認したため、本機器において をボルト材料として使 用することに問題ないと考える。 5. 評価結果

高圧炉心注水系ストレーナの重大事故等対処設備としての耐震評価結果を以下に示す。発生値 は許容限界を満足しており,設計用地震力に対して十分な構造強度を有していることを確認した。 構造強度評価の結果を次頁以降の表に示す。

なお,各評価点における算出応力は表 4-3 に示す荷重の組合せのうち,各許容応力状態VAS で,発生値が高い方の評価を記載している。

- 6. 引用文献
 - John A. Roberson and Clayton T. Crowe, "Engineering Fluid Mechanics" 2nd Edition, Library of Congress Catalog No 79-87855, Rudolf Steiner Press, 1969.
 - (2) ASME B&PV CODE, Section Ⅲ, Division 1, Appendix, Article A-8000, "Stresses in Perforated Flat Plates" 1989 Edition, NO Addenda.
 - (3) W. J. O'Donnell, "Effective Elastic Constants for the Bending of Thin Perforated Plates with Triangular and Square Penetration Patterns", Journal of Engineering for Industry, February 1973.
 - (4) Steohen P. Timoshenko and S. Woinowsky-Krieger, "Theory of Plates and Shells" 2nd Edition, McGraw-Hill, 1959.
 - (5) AISI Specification for the Design of Cold-Formed Steel Structural Members, 1996 Edition
 - (6) Warren C. Young and Richard G. Budynas, "Roark' s Formulas for Stress and Strain" 7th Edition, McGraw-Hill

【高圧炉心注水系ストレーナの耐震性についての計算結果】

1. 重大事故等対処設備

1.1 設計条件

機器名称	設備分類	据付場所及び床面高さ (m)	固有周期 (s)		弾性設計用地震動 S d 又は静的震度		基準地震動 S s		最高使用温度	周囲環境温度
			水平方向	鉛直方向	水平方向 設計震度	鉛直方向 設計震度	水平方向 設計震度	鉛直方向 設計震度	(°C)	(°C)
高圧炉心注水系 ストレーナ	常設/防止 (DB拡張)	原子炉建屋 T. M. S. L (T. M. S. L1. 700*)	0.027	0.05 以下	С _н =0.58	C _V =0.50	С _н =1.02	Cv=1.02	120	_

注記*:基準床レベルを示す。

1.2 機器要目

	(単位:mm)	l	
OD_{disk} OD_{gap} OD_{tube}	E _{ecc}]	
		-	(単位:mm)
L _{tube} L _{strnr} L _{stub}	W _{enddisk}	W_{gap}	W _{middisk}
(単位:mm)	7		
P h a	1		
モデルの建立(古ダ銀近田))			
モデルの諸元(応答解析用))			
モデルの諸元(応答解析用)) 項目	単位	入力値	
モデルの諸元(応答解析用)) 項目 高圧炉心注水系ストレーナの材質	単位	入力値	
モデルの諸元(応答解析用)) 項目 高圧炉心注水系ストレーナの材質 高圧炉心注水系ストレーナの質量	単位 kg/個	入力値	
モデルの諸元(応答解析用)) 項目 高圧炉心注水系ストレーナの材質 高圧炉心注水系ストレーナの質量 高圧炉心注水系ストレーナの 内包水の質量	単位 — kg/個 kg/個	入力値	
モデルの諸元(応答解析用)) 項目 高圧炉心注水系ストレーナの材質 高圧炉心注水系ストレーナの質量 高圧炉心注水系ストレーナの 内包水の質量 ストレーナ1個あたりの異物の質量	単位 一 kg/個 kg/個 kg/個	入力値	
モデルの諸元 (応答解析用)) 項目 高圧炉心注水系ストレーナの材質 高圧炉心注水系ストレーナの質量 高圧炉心注水系ストレーナの 内包水の質量 ストレーナ1 個あたりの異物の質量 縦弾性係数	単位 一 kg/個 kg/個 MPa	入力値	
モデルの諸元(応答解析用)) 項目 高圧炉心注水系ストレーナの材質 高圧炉心注水系ストレーナの質量 高圧炉心注水系ストレーナの質量 ネトレーナ1個あたりの異物の質量 縦弾性係数 ポアソン比	単位 ————————————————————————————————————	入力値	
モデルの諸元 (応答解析用)) 項目 高圧炉心注水系ストレーナの材質 高圧炉心注水系ストレーナの質量 高圧炉心注水系ストレーナの 内包水の質量 ストレーナ1個あたりの異物の質量 縦弾性係数 ポアソン比 要素数	単位 — kg/個 kg/個 MPa — 個	入力値 0.30	

(解析モデルの諸元(応力解析用))

項目	単位	入力値
高圧炉心注水系ストレーナの材質	—	
高圧炉心注水系ストレーナの質量	kg/個	
多孔プレートの等価縦弾性係数	MPa	
多孔プレートの等価ポアソン比	_	0.27
多孔プレートの応力増倍率	—	2.72
アウターリムモデル要素数	個	
アウターリムモデル節点数	個	
インナーギャップモデル要素数	個	
インナーギャップモデル節点数	個	

(単位:MPa)

部材	材料	S	S y	S u	Sy (RT)
コアチューブ					
多孔プレート					_
フランジ					_
ストレーナ取付部ボルト					_

1.3 計算数値

1.3.1 ストレーナの設計荷重

自重	異物荷重	差圧荷重
(N)	(N)	(kPa)

1.3.2 フランジの設計荷重

		(単位:N·mm)
	荷重	モーメント
1	死荷重	
2	異物荷重	
3	差圧荷重	
4	ストレーナSd*地震荷重	
5	ストレーナS s 地震荷重	
6	異物Sd*地震荷重	
7	異物Ss地震荷重	

1.3.4 ボルトの設計荷重

		(単位:N)
	荷重	軸方向荷重
1	死荷重	
2	異物荷重	
3	差圧荷重	
4	ストレーナSd*地震荷重	
5	ストレーナS s 地震荷重	
6	異物Sd*地震荷重	
7	異物Ss地震荷重	

1.4 結論

1.4.1 固有周期

固有周期	固有周期					
モード	方向	固有周期				
1次モード	水平	0.027				

1.4.<u>2</u> 応力

(単位:MPa)

河(11-14-6-31)/#	評価部位		材料	応力分類	V A S			
計個対象設備					算出応力	許容応力	荷重組合せ	
	P1	エンドコア		一次膜応力+ 一次曲げ応力	72		SA-2	
	P2	エンドディスク		一次膜応力+ 一次曲げ応力	102		SA-2	
	P3	中間ディスク		一次膜応力+ 一次曲げ応力	35		SA-2	
	P4	7-5-5-11-1		一次膜応力	34		SA-2	
		799-94		一次膜応力+ 一次曲げ応力	37			
高圧炉心注入系	P5	インナーギャップ		一次膜応力	12		SA-2	
ストレーナ				一次膜応力+ 一次曲げ応力	14			
	P6	コアチューブ 最終列位置		一次膜応力+ 一次曲げ応力	3		SA-2	
	P7	コアチューブ 第一列位置		一次膜応力+ 一次曲げ応力	24		SA-2	
	P8	コアチューブ フランジ接触面		一次膜応力+ 一次曲げ応力	18		SA-2	
	Р9	フランジ		曲げ応力	29		SA-2	
	P10	ストレーナ取付部ボルト		引張応力	11		SA-2	

すべて許容応力以下である。

添付資料

- 1. ラジアル補剛材の配置諸元
- 1.1 ラジアル補剛材の配置角度

ラジアル補剛材の配置は添付図1に示すようにx軸より以下の角度で配置されている。

$$\theta_{k} = \begin{pmatrix} 0\\60\\112\\141\\162\\180 \end{pmatrix} \quad (k = 1, 6) \quad \mathbb{E}$$

1.2 ラジアル補剛材の等価受圧長さ

ラジアル補剛材のx方向(水平)とy方向(鉛直)の等価受圧長さは添付図1に示すように 以下となる。

$$W_{X_k} = \begin{pmatrix} 480.3\\ 416.5\\ 121.0\\ 233.1\\ 304.2\\ 316.4 \end{pmatrix} \text{ mm } \qquad W_{y_k} = \begin{pmatrix} 41.2\\ 370.1\\ 560.6\\ 337.0\\ 147.0\\ 17.3 \end{pmatrix} \text{ mm }$$

添付図1 ラジアル補剛材の配置諸元

- 2. アウターリム部の等価受圧長さとコアチューブ部の等価受圧長さ
- 2.1 アウターリム部の等価受圧長さ

アウターリム部の等価受圧長さ $L_{arc.max_k}$ は、添付図2より以下となる。

$$L_{arc.max_{k}} = \begin{pmatrix} 491.45 \\ 550.23 \\ 519.87 \\ 384.39 \\ 317.88 \\ 297.73 \end{pmatrix}$$
 mm, ここで, 配置角度 $\phi_{s.max_{k}} = \begin{pmatrix} 40.82 \\ 45.70 \\ 43.18 \\ 31.93 \\ 26.41 \\ 24.73 \end{pmatrix}$ $(k = 1, 6)$ 度

2.2 コアチューブ部の等価受圧長さ コアチューブ部の等価受圧長さ $L_{arc.min_k}$ は、添付図2より以下となる。

添付図2 アウターリム部の等価受圧長さとコアチューブ部の等価受圧長さ

3. 内面からの荷重の評価エリア

エンドディスク及び中間ディスクについて、内面からの荷重に対する評価エリアとその寸法を 添付図3に示す。

添付図3 エンドディスク及び中間ディスクの内面からの荷重評価エリア