原子力規制委員会 殿

仙台市青葉区本町一丁目 7 番 1 号東 北 電 力株式会社取締役社長 社長執行役員

樋口 康二郎

設計及び工事計画変更認可申請書の一部補正について

令和 5 年 3 月 6 日付け東北電原設第 8 号をもって申請いたしました女川原子力発電所第 2 号機の設計及び工事計画変更認可申請書について，別紙 のとおり一部補正いたします。

本資料のうち，枠囲みの内容は，
商業機密又は防護上の観点から公開できません。

別 紙

目 次

1．設計及び工事計画変更認可申請書の補正項目を記載した書類

2．補正を必要とする理由を記載した書類

3．設計及び工事計画変更認可申請書の補正内容及び補正を行う書類

1．設計及び工事計画変更認可申請書の補正項目を記載した書類

補正項目
令和5年3月6日付け東北電原設第8号にて申請した設計及び工事計画変更認可申請書のう ち，「I 名称及び住所並びに代表者の氏名」，「II 工事計画」，「III 工事工程表」，「IV 設計及 び工事に係る品質マネジメントシステム」，「V 変更の理由」及び「VI 添付書類」を補正し， その内容については，「3．設計及び工事計画変更認可申請書の補正内容及び補正を行う書類」 に示す。

2．補正を必要とする理由を記載した書類

補正を必要とする理由

令和 5 年 3 月 6 日付け東北電原設第 8 号にて申請した設計及び工事計画変更認可申請書において，変更が必要となった事項の反映，説明書の充実，表現の明確化及 び記載の適正化を行うことから，「I 名称及び住所並びに代表者の氏名」，「II 工事計画」，「III 工事工程表」，「IV 設計及び工事に係る品質マネジメントシステム」，「V 変更の理由」及び「VI 添付書類」を補正する。

3．設計及び工事計画変更認可申請書の補正内容及び補正を行う書類
（1）設計及び工事計画変更認可申請書補正内容
I 名称及び住所並びに代表者の氏名
II 工事計画
III 工事工程表
IV 設計及び工事に係る品質マネジメントシステム
V 変更の理由
VI 添付書類
（2）補正を行う書類
補正を行う書類を別紙1に示す。

補正を行う書類

I 名称及び住所並びに代表者の氏名
II 工事計画
III 工事工程表
IV 設計及び工事に係る品質マネジメントシステム
V 変更の理由
VI 添付書類

申 請 範 囲

今回の申請範囲は，女川原子力発電所第 2 号機の次の部分であります。
（設計及び工事の計画の変更に該当するものに限る。）

3 原子炉冷却系統施設
3.5 残留熱除去設備

3．5．1 残留熱除去系
（7）主要弁（常設）
3．5．2 原子炉格納容器フィルタベント系
（8）主配管（常設）
3．5．3 耐圧強化ベント系
（8）主配管（常設）
3.6 非常用炉心冷却設備その他原子炉注水設備

3．6．3 高圧代替注水系
（7）主配管（常設）
3.9 原子炉冷却材浄化設備

3．9．1 原子炉冷却材浄化系
（6）主配管
3.11 原子炉冷却系統施設（蒸気タービンを除く。）の基本設計方針，適用基準及び適用規格
3.12 原子炉冷却系統施設（蒸気タービンを除く。）に係る工事の方法

7 原子炉格納施設
7.3 圧力低減設備その他の安全設備
（6）原子炉格納容器安全設備
e．高圧代替注水系
ヌ 主配管（常設）
（7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備
a．非常用ガス処理系
ヌ 主要弁（常設）
g．原子炉格納容器フィルタベント系
ル 主配管（常設）
（8）原子炉格納容器調気設備
a．原子炉格納容器調気系

ホ 主配管
（9）圧力逃がし装置
a．原子炉格納容器フィルタベント系
二 主配管（常設）
7．4 原子炉格納施設の基本設計方針，適用基準及び適用規格
7.5 原子炉格納施設に係る工事の方法

8 その他発電用原子炉の附属施設
8.5 浸水防護施設

8．5．1 外郭浸水防護設備
8．5．3 浸水防護施設の基本設計方針，適用基準及び適用規格
8．5．4 浸水防護施設に係る工事の方法

女川原子力発電所第 2 号機設計及び工事計画認可申請書本文及び添付書類

目 録

I 名称及び住所並びに代表者の氏名
II 工事計画
III 工事工程表
IV 設計及び工事に係る品質マネジメントシステム
V 変更の理由
VI 添付書類

VI－1 説明書

VI－1－1 各発電用原子炉施設に共通の説明書
VI－1－1－1 発電用原子炉の設置の許可との整合性に関する説明書
VI－1－1－1－1 発電用原子炉設置変更許可申請書「本文（五号）」との整合性
VI－1－1－1－2 発電用原子炉設置変更許可申請書「本文（十一号）」との整合性
VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書
VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する説明書
VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針
VI－1－1－2－1－2 防護対象施設の範囲
VI－1－1－2－2 津波への配慮に関する説明書
VI－1－1－2－2－1 耐津波設計の基本方針
VI－1－1－2－2－2 基準津波の概要
$\mathrm{VI}-1-1-2-2-3$ 入力津波の設定
VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価
VI－1－1－2－2－5 津波防護に関する施設の設計方針
$\mathrm{VI}-1-1-4$ 設備別記載事項の設定根拠に関する説明書
VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書（原子炉冷却系統施設）
VI－1－1－4－3－3 残留熱除去設備に係る設定根拠に関する説明書
VI－1－1－4－3－3－1 残留熱除去系
VI－1－1－4－3－3－1－5 残留熱除去系 主要弁（常設）
VI－1－1－4－3－3－2 耐圧強化ベント系
VI－1－1－4－3－3－2－1 耐圧強化ベント系 主配管（常設）
VI－1－1－4－3－4 非常用炉心冷却設備その他原子炉注水設備に係る設定根拠に関する説明書

VI－1－1－4－3－4－3 高圧代替注水系
VI－1－1－4－3－4－3－2 高圧代替注水系 主配管（常設）
VI－1－1－4－3－7 原子炉冷却材浄化設備に係る設定根拠に関する説明書 VI－1－1－4－3－7－1 原子炉冷却材浄化系

VI－1－1－4－3－7－1－1 原子炉冷却材浄化系 主配管
VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書（原子炉格納施設）
VI－1－1－4－7－5 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備に係る設定根拠に関する説明書
VI－1－1－4－7－5－1 非常用ガス処理系
VI－1－1－4－7－5－1－5 非常用ガス処理系 主要弁（常設）
VI－1－1－4－7－6 原子炉格納容器調気設備に係る設定根拠に関する説明書
VI－1－1－4－7－6－1 原子炉格納容器調気系
VI－1－1－4－7－6－1－2 原子炉格納容器調気系 主配管
VI－1－1－4－7－7 圧力逃がし装置に係る設定根拠に関する説明書
VI－1－1－4－7－7－1 原子炉格納容器フィルタベント系
VI－1－1－4－7－7－1－4 原子炉格納容器フィルタベント系 主配管（常設）
VI－1－1－5 クラス 1 機器及び炉心支持構造物の応力腐食割れ対策に関する説明書
VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書
VI－1－4 原子炉冷却系統施設の説明書
VI－1－4－2 流体振動又は温度変動による損傷の防止に関する説明書
VI－1－8 原子炉格納施設の説明書
VI－1－8－1 原子炉格納施設の設計条件に関する説明書
VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書
VI－1－10 設計及び工事に係る品質マネジメントシステムに関する説明書
VI－1－10－1 設計及び工事に係る品質マネジメントシステムに関する説明書
VI－1－10－4 本設工認に係る設計の実績，工事及び検査の計画 原子炉冷却系統施設
VI－1－10－8 本設工認に係る設計の実績，工事及び検査の計画 原子炉格納施設
VI－1－10－13 本設工認に係る設計の実績，工事及び検查の計画 浸水防護施設
VI－2 耐震性に関する説明書
VI－2－1 耐震設計の基本方針
VI－2－1－1 耐震設計の基本方針
VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要
VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針
VI－2－1－5 波及的影響に係る基本方針
VI－2－1－6 地震応答解析の基本方針
VI－2－1－7 設計用床応答曲線の作成方針
VI－2－1－8 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価方針
VI－2－1－9 機能維持の基本方針
VI－2－1－10 ダクティリティに関する設計方針
VI－2－1－11 機器•配管の耐震支持設計方針
VI－2－1－12 配管及び支持構造物の耐震計算について
VI－2－1－12－1 配管及び支持構造物の耐震計算について

VI－2－1－13 機器•配管系の計算書作成の方法
VI－2－1－13－6 管の耐震性についての計算書作成の基本方針
VI－2－2 耐震設計上重要な設備を設置する施設の耐震性についての計算書
VI－2－2－1 原子炉建屋の地震応答計算書
VI－2－2－2 原子炉建屋の耐震性についての計算書
VI－2－2－7 海水ポンプ室の地震応答計算書
VI－2－2－8 海水ポンプ室の耐震性についての計算書
VI－2－2－9 第3号機海水ポンプ室の地震応答計算書
VI－2－2－10 第3号機海水ポンプ室の耐震性についての計算書 VI－2－5 原子炉冷却系統施設の耐震性についての計算書

VI－2－5－1 原子炉冷却系統施設の耐震性についての計算結果
VI－2－5－3 原子炉冷却材の循環設備の耐震性についての計算書
VI－2－5－3－2 復水給水系の耐震性についての計算書
VI－2－5－3－2－1 管の耐震性についての計算書（復水給水系）
VI－2－5－4 残留熱除去設備の耐震性についての計算書
VI－2－5－4－1 残留熱除去系の耐震性についての計算書
VI－2－5－4－1－4 管の耐震性についての計算書（残留熱除去系）
VI－2－5－4－2 耐圧強化ベント系の耐震性についての計算書
VI－2－5－4－2－1 管の耐震性についての計算書（耐圧強化ベント系）
VI－2－5－5 非常用灲心泠却設備その他原子灲注水設備の耐震性についての計算書 VI－2－5－5－3 高圧代替注水系の耐震性についての計算書
VI－2－5－5－3－2 管の耐震性についての計算書（高圧代替注水系）
VI－2－5－8 原子炉冷却材浄化設備の耐震性についての計算書
VI－2－5－8－1 原子炉冷却材浄化系の耐震性についての計算書
VI－2－5－8－1－1 管の耐震性についての計算書（原子炉冷却材浄化系）
VI－2－9 原子炉格納施設の耐震性についての計算書
VI－2－9－1 原子炉格納施設の耐震性についての計算結果
VI－2－9－4 圧力低減設備その他の安全設備の耐震性についての計算書
VI－2－9－4－4 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の耐震性についての計算書
VI－2－9－4－4－1 非常用ガス処理系の耐震性についての計算書
VI－2－9－4－4－1－2 管の耐震性についての計算書（非常用ガス処理系）
VI－2－9－4－5 原子炉格納容器調気設備の耐震性についての計算書
VI－2－9－4－5－1 原子炉格納容器調気系の耐震性についての計算書
VI－2－9－4－5－1－1 管の耐震性についての計算書（原子炉格納容器調気系）
VI－2－9－4－6 圧力逃がし装置の耐震性についての計算書
VI－2－9－4－6－1 原子炉格納容器フィルタベント系の耐震性についての計算書
VI－2－9－4－6－1－1 管の耐震性についての計算書（原子炉格納容器フィルタベント系）
VI－2－10 その他発電用原子炉の附属施設の耐震性についての計算書

VI－2－10－2 浸水防護施設の耐震性についての計算書
VI－2－10－2－1 浸水防護施設の耐震性についての計算結果
VI－2－10－2－10 逆止弁付ファンネルの耐震性についての計算書
VI－2－10－2－10－1 逆止弁付ファンネル（第2号機）の耐震性についての計算書
VI－2－10－2－10－2 逆止弁付ファンネル（第3号機）の耐震性についての計算書 VI－2－12 水平2方向及び鉛直方向地震力の組合せに関する影響評価

VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関する影響評価結果
VI－3 強度に関する説明書
VI－3－1 強度計算の基本方針
VI－3－1－1 強度計算の基本方針の概要
VI－3－1－2 クラス 1 機器の強度計算の基本方針
VI－3－1－3 クラス 2 機器の強度計算の基本方針
VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針
VI－3－2 強度計算方法
VI－3－2－1 強度計算方法の概要
VI－3－2－3 クラス 1 弁の強度計算方法
VI－3－2－4 クラス 2 管の強度計算方法
VI－3－2－5 クラス 2 弁の強度計算方法
VI－3－2－9 重大事故等クラス 2 管の強度計算方法

VI－3－3 強度計算書

VI－3－3－3 原子炉冷却系統施設の強度に関する説明書 VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書 VI－3－3－3－2－2 復水給水系の強度計算書

VI－3－3－3－2－2－1 管の強度計算書（復水給水系）
VI－3－3－3－2－2－1－2 管の応力計算書（復水給水系）
VI－3－3－3－3 残留熱除去設備の強度計算書
VI－3－3－3－3－1 残留熱除去系の強度計算書
VI－3－3－3－3－1－4 弁の強度計算書（残留熱除去系）
VI－3－3－3－3－1－5 管の強度計算書（残留熱除去系）
VI－3－3－3－3－1－5－2 管の応力計算書（残留熱除去系）
VI－3－3－3－3－2 耐圧強化ベント系の強度計算書
VI－3－3－3－3－2－1 管の強度計算書（耐圧強化ベント系）
VI－3－3－3－3－2－1－1 管の基本板厚計算書（耐圧強化ベント系）
VI－3－3－3－3－2－1－2 管の応力計算書（耐圧強化ベント系）
VI－3－3－3－4 非常用炉心冷却設備その他原子炉注水設備の強度計算書
VI－3－3－3－4－3 高圧代替注水系の強度計算書
VI－3－3－3－4－3－3 管の強度計算書（高圧代替注水系）
VI－3－3－3－4－3－3－1 管の基本板厚計算書（高圧代替注水系）

VI－3－3－3－4－3－3－2 管の応力計算書（高圧代替注水系）
VI－3－3－3－7 原子炉冷却材浄化設備の強度計算書
VI－3－3－3－7－1 原子炉冷却材浄化系の強度計算書
VI－3－3－3－7－1－1 管の強度計算書（原子炉冷却材浄化系）
VI－3－3－3－7－1－1－1 管の基本板厚計算書（原子炉冷却材浄化系）
VI－3－3－3－7－1－1－2 管の応力計算書（原子炉冷却材浄化系）
VI－3－3－6 原子炬格納施設の強度に関する説明書
VI－3－3－6－2 圧力低減設備その他の安全設備の強度計算書
VI－3－3－6－2－8 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の強度計算書

VI－3－3－6－2－8－1 非常用ガス処理系の強度計算書
VI－3－3－6－2－8－1－2 管の強度計算書（非常用ガス処理系）
VI－3－3－6－2－8－1－2－2 管の応力計算書（非常用ガス処理系）
VI－3－3－6－2－8－1－4 弁の強度計算書（非常用ガス処理系）
VI－3－3－6－2－9 原子炉格納容器調気設備の強度計算書
VI－3－3－6－2－9－1 原子炉格納容器調気系の強度計算書
VI－3－3－6－2－9－1－2 管の強度計算書（原子炉格納容器調気系）
VI－3－3－6－2－9－1－2－1 管の基本板厚計算書（原子炉格納容器調気系）
VI－3－3－6－2－9－1－2－2 管の応力計算書（原子炉格納容器調気系）
VI－3－3－6－2－10 圧力逃がし装置の強度計算書
VI－3－3－6－2－10－1 原子炉格納容器フィルタベント系の強度計算書
VI－3－3－6－2－10－1－3 管の強度計算書（原子炉格納容器フィルタベント系）
VI－3－3－6－2－10－1－3－1 管の基本板厚計算書（原子炉格納容器フィルタベント系）
VI－3－3－6－2－10－1－3－2 管の応力計算書（原子炉格納容器フィルタベント系）
VI－3－別添3 津波又は溢水への配慮が必要な施設の強度に関する説明書
VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針
VI－3－別添3－2 津波への配慮が必要な施設の強度計算書
VI－3－別添3－2－9 逆止弁付ファンネルの強度計算書
VI－3－別添3－2－9－1 逆止弁付ファンネル（第2号機）の強度計算書
VI－3－別添3－2－9－2 逆止升付ファンネル（第3号機）の強度計算書
VI－6 図面
4．原子炉冷却系統施設
4.3 残留熱除去設備

4．3．1 残留熱除去系
第4－3－1－1－1図 【設計基準対象施設】残留熱除去系系統図（1／3）（残留熱除去系そ の1）
第4－3－1－1－2図 【設計基準対象施設】残留熱除去系系統図（2／3）（残留熱除去系そ の 2）
【「第4－3－1－1－1～2図」は，令和3年12月23日付け原規規発第2112231号にて認可され

た設計及び工事の計画による】
第4－3－1－4－3図 E11－F004A，B，C 構造図
第4－3－1－5－4図 残留熱除去系 機器の配置を明示した図面（その4）
【「第4－3－1－5－4図」は，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画による】
4．3．2 原子炉格納容器フィルタベント系
第4－3－2－1－2図【設計基準対象施設】原子炉格納容器フィルタベント系系統図（2／
4）（原子炉格納容器調気系その 2 ）
第4－3－2－1－6図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図（2 ／4）（原子炉格納容器調気系その 2 ）
【「第4－3－2－1－2，6図」は，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画による】
4．3．3 耐圧強化ベント系
第4－3－3－1－1図【設計基準対象施設】耐圧強化ベント系系統図（1／2）（原子炉格納容器調気系その 2）
第4－3－3－1－3図【重大事故等対処設備】耐圧強化ベント系系統図（1／2）（原子炉格納容器調気系その2）
【「第4－3－3－1－1，3図」は，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画による】
4.4 非常用炉心泠却設備その他原子炉注水設備

4．4．3 高圧代替注水系
第4－4－3－1－3図【設計基準対象施設】高圧代替注水系系統図（3／7）（復水給水系 その4）
第4－4－3－1－7図【設計基準対象施設】高圧代替注水系系統図（7／7）（原子炉冷却材浄化系その1）
第4－4－3－1－10図【重大事故等対処設備】高圧代替注水系系統図（3／7）（復水給水系その4）
第4－4－3－1－14図【重大事故等対処設備】高圧代替注水系系統図（7／7）（原子炉冷却材浄化系その1）
【「第4－4－3－1－3，7，10，14図」は，令和3年12月23日付け原規規発第2112231号にて認可 された設計及び工事の計画による】
4.7 原子炉冷却材浄化設備

4．7．1 原子炉冷却材浄化系
第4－7－1－2－1図 原子炉冷却材浄化系 主配管の配置を明示した図面（その1）
第4－7－1－2－2図 原子炉冷却材浄化系 主配管の配置を明示した図面（その 2）
第4－7－1－3－1図【設計基準対象施設】原子炉冷却材浄化系系統図（原子炉泠却材浄化系その1）

8．原子炉格納施設

8.3 圧力低減設備その他の安全設備

8．3．2 原子炉格納容器安全設備
8．3．2．5 高圧代替注水系
第8－3－2－5－1－3図【設計基準対象施設】高圧代替注水系系統図（3／7）（復水給水系その4）
第8－3－2－5－1－7図【設計基準対象施設】高圧代替注水系系統図（7／7）（原子炉冷却材浄化系その1）
第8－3－2－5－1－10図【重大事故等対処設備】高圧代替注水系系統図（ $3 / 7$ ）（復水給水系その4）

第8－3－2－5－1－14図【重大事故等対処設備】高圧代替注水系系統図（7／7）（原子炉冷却材浄化系その1）
【「第8－3－2－5－1－3，7，10，14図」は，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画による】

8．3．3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備
8．3．3．1 非常用ガス処理系
第8－3－3－1－1－1図【設計基準対象施設】非常用ガス処理系系統図
第8－3－3－1－1－2図【重大事故等対処設備】非常用ガス処理系系統図
【「第8－3－3－1－1－1～2図」は，令和3年12月23日付け原規規発第2112231号にて認可 された設計及び工事の計画による】

第8－3－3－1－2－2図 T46－F001A，B 構造図
第8－3－3－1－2－3図 T46－F003A，B 構造図
第8－3－3－1－3－1図 非常用ガス処理系 機器の配置を明示した図面（その1）
第8－3－3－1－3－2図 非常用ガス処理系 機器の配置を明示した図面（その2）
【「第8－3－3－1－3－1～2図」は，令和3年12月23日付け原規規発第2112231号にて認可 された設計及び工事の計画による】
8．3．3．7 原子炉格納容器フィルタベント系
第8－3－3－7－1－2図【設計基準対象施設】原子炉格納容器フィルタベント系系統図 （2／4）（原子炉格納容器調気系その 2 ）
第8－3－3－7－1－6図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図（ $2 / 4$ ）（原子炉格納容器調気系その 2 ）
【「第8－3－3－7－1－2，6図」は，令和3年12月23日付け原規規発第2112231号にて認可さ れた設計及び工事の計画による】
8．3．4 原子炉格納容器調気設備
8．3．4．1 原子炉格納容器調気系
第8－3－4－1－1－1図 【設計基準対象施設】原子炉格納容器調気系系統図（原子炉格納容器調気系その 2）
【「第8－3－4－1－1－1図」は，令和3年12月23日付け原規規発第2112231号にて認可され

た設計及び工事の計画による】

第8－3－4－1－4－2図 原子炉格納容器調気系 主配管の配置を明示した図面（その 2 ）第8－3－4－1－4－3図 原子炉格納容器調気系 主配管の配置を明示した図面（その3）第8－3－4－1－4－4図 原子炉格納容器調気系 主配管の配置を明示した図面（その4）第8－3－4－1－4－5図 原子炉格納容器調気系 主配管の配置を明示した図面（その5）第8－3－4－1－4－6図 原子炉格納容器調気系 主配管の配置を明示した図面（その6）

【「第8－3－4－1－4－3，5図」は，令和3年12月23日付け原規規発第2112231号にて認可さ れた設計及び工事の計画による】

8．3．5 圧力逃がし装置

8．3．5．1 原子炉格納容器フィルタベント系
第8－3－5－1－1－2図【設計基準対象施設】原子炉格納容器フィルタベント系系統図 （2／4）（原子炉格納容器調気系その 2 ）

第8－3－5－1－1－6図【重大事故等対処設備】原子炉格納容器フィルタベント系系統図（2／4）（原子炉格納容器調気系その 2）

【「第8－3－5－1－1－2，6図」は，令和3年12月23日付け原規規発第2112231号にて認可さ れた設計及び工事の計画による】

9．その他発電用原子炉の附属施設

9.4 浸水防護施設

9．4．1 外郭浸水防護設備

第9－4－1－1－40図 第2号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル （No．1），（No．2），（No．3）構造図

第9－4－1－1－41図 第2号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル （No．1），（No．2），（No．3）構造図
第9－4－1－1－42図 第2号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネ ル（No．1），（No．2）構造図

第9－4－1－1－43図 第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2），（No．3）構造図

第9－4－1－1－44図 第3号機原子炉補機冷却海水ポンプ（A）（C）室逆止弁付ファンネル （No．1），（No．2）構造図

第9－4－1－1－45図 第3号機原子炉補機冷却海水ポンプ（B）（D）室逆止弁付ファンネル （No．1），（No．2）構造図

第9－4－1－1－46図 第3号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付ファンネ ル（No．1），（No．2）構造図

第9－4－1－1－47図 第3号機タービン補機冷却海水ポンプ室逆止弁付ファンネル （No．1），（No．2），（No．3）構造図

第9－4－1－2－2図 外郭浸水防護設備 機器の配置を明示した図面（その 2 ）
【「第9－4－1－1－40～47及び第9－4－1－2－2図」は，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画による】

女川原子力発電所

第2号機

設計及び工事計画変更認可申請書本文及び添付書類

東北電力株式会社

本設計及び工事計画変更認可申請書は，「女川原子力発電所第 2 号機 設計及び工事計画認可申請書本文及び添付書類」（令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可）についての変更認可申請である。

I 名称及び住所並びに代表者の氏名

I 名称及び住所並びに代表者の氏名
名 称 東北電力株式会社
住 所 宮城県仙台市青葉区本町一丁目7番1号
代表者の氏名 取締役社長 社長執行役員 樋口 康二郎

II 工事計画

II 工事計画
一 発電用原子炉施設
1．発電用原子炉を設置する工場又は事業所の名称及び所在地名 称 女川原子力発電所

所 在 地 宮城県牡鹿郡女川町及び石巻市
2．発電用原子炉施設の出力及び周波数
出 力 1650000 kW
第2号機 825000 kW （今回申請分）
第 3 号機 825000 kW
周 波 数 50 Hz

3．原子炉冷却系統施設
3.5 残留熱除去設備

3．5．1 残留熱除去系

			変 更 前		変 更 後	
名	称		E11－F008A，B		変更なし	
種	類	－	止め弁			
最	高 使 用 圧 力	MPa	3.73			
	高使 用 温 度	${ }^{\circ} \mathrm{C}$	186			
$\begin{array}{\|l\|l\|} \hline \text { 軍 } \\ \text { 法 } \end{array}$	呼 び 径	－	350 A			
	弁 箱 厚 さ	mm				
	弁 ふた厚さ	mm				
	弁 箱	－				
料	弁 ふ た	－				
駆	動 方 法	－				
個	数	－				
取		－	$\begin{gathered} \text { E11-F008A } \\ \text { 残留熱除去系A系 } \\ \hline \end{gathered}$	$\begin{gathered} \text { E11-F008B } \\ \text { 残留熱除去系B系 } \end{gathered}$		
付	設 置 床	－	原子炉建屋 0．P． 15.00 m	$\begin{aligned} & \text { 原子炬建屋 } \\ & 0 . \text { P. } 15.00 \mathrm{~m} \end{aligned}$		
綯	$\begin{array}{\|l\|l\|} \hline \text { 溢 } & \text { 水防護 } \\ \text { 区 } & \text { 上 } \\ \text { 区 } & \text { 画 } \\ \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	R－1F－1	R－1F－11		
所	$\begin{array}{\|l\|} \hline \text { 溢水防護上の配慮 } \\ \text { が必要な高さ } \\ \hline \end{array}$	－	床上0．58m以上	床上0．59m以上		

			変 更 前		変 更 後
名	称		E11－F010A，B		変更なし
種	類	－	止め弁		
	高 使 用 圧 力	MPa	3.73		
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	186		
主要寸法	呼 び 径	－	250A		
	弁 箱 厚 さ	mm			
	弁 ふ た 厚 さ	mm			
	弁 箱	－			
料	弁 ふ た	－			
駆	動 方 法	－			
個	数	－			
取	$\begin{gathered} \text { 系 } \\ (\text { ラ } \\ \text { 統 } \end{gathered} \text { 名 }$	－	$\begin{gathered} \text { E11-F010A } \\ \text { 残留熱除去系A系 } \end{gathered}$	$\begin{gathered} \text { E11-F010B } \\ \text { 残留熱除去系B系 } \end{gathered}$	
付	設 置 床	－	原子炉建屋 0．P． 15.00 m	$\begin{aligned} & \text { 原子炉建屋 } \\ & 0 . \text { P. } 15.00 \mathrm{~m} \\ & \hline \end{aligned}$	
所	$\begin{array}{\|l\|l\|l\|l\|} \hline \text { 溢 } & \text { 水防 護 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	R－1F－9	R－1F－8	
	溢水防護上の配慮 が必要な高さ	－	床上 0.00 m 以上	床上2．66m以上	

			変 更 前		変 更 後
名	称		E11－F011A，B		変更なし
種	類	－	止め弁		
	高 使 用 圧 力	MPa	3.73		
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	186		
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼 び 径	－	100A		
	弁 箱 厚 さ	mm			
	弁 ふ た 厚 さ	mm			
	弁 箱	－			
料	弁 ふ た	－			
駆	動 方 法	－			
個	数	－			
取		－	$\begin{gathered} \text { E11-F011A } \\ \text { 残留熱除去系A系 } \end{gathered}$	$\begin{gathered} \text { E11-F011B } \\ \text { 残留熱除去系B系 } \end{gathered}$	
付	設 置 床	－	原子炉建屋 $\text { 0. Р. }-8.10 \mathrm{~m}$	原子炉建屋 0．P．-8.10 m	
所	$\begin{array}{lcccc} \text { 溢 } & \text { 水 } & \text { 防 } & \text { 護 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \\ \hline \end{array}$	－	R－B3F－10	R－B3F－10	
	溢水防護上の配慮 が必要な高さ	－	床上6．40m以上	床上6．40m以上	

			変 更 前	変 更 後
名		称	E11－F021	
種	類	－	止め弁	
	高 使 用 圧 力	MPa	8.62	
最	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	302	
主	呼び径	－	100A	
要	弁 箱 厚 さ	mm		
法	弁 ふ た 厚 さ	mm		
	弁 箱	－	SCPH2	
材	弁 ふ た	－	SCPH2	
科	弁 体	－	S25C	変更なし
駆	動 方 法	－	電気作動	
個	数	－	1	
取	系 $($ ラ イ	－	E11－F021 残留熱除去系	
付箇	設 置 床	－	原子炉建屋 0．P． 15.00 m	
所	$\begin{array}{ccccc} \text { 溢 } & \text { 水 防 } & \text { 護 } & \text { 上 } & \text { の } \\ \text { 区 } & \text { 画 } & \text { 番 } & \text { 号 } \end{array}$	－	－	
	溢水防護上の配慮 が必要な高さ	－	－	

（8）主配管（常設）

変 更 前								変 更 後								
	名 称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		名	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
	原子炉格納容器配管貫通部 （X－281）	7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。							変更なし							
		7．原子炉格納施設 7.3 圧力低減設備その他の安全設備 （9）圧力逃がし装置 a．原子炉格納容器フィルタベント系二主配管（常設） に記載する。							変更なし							

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
＊3：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，残留熱除去設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
 とする。
 る。
容器フィルタベント系）として本工事計画で兼用とする。

3．5．3 耐圧強化ベント采
（8）主配管（常設）

変 更 前								変 更 後							
		名 称	$\begin{gathered} \text { 最高使 用 } \\ \text { 圧 力*1 } \\ (\mathrm{kPa}) \end{gathered}$	最高使用 温 度＊1 $\left({ }^{\circ} \mathrm{C}\right)$	外 径＊2 （mm）	$\begin{gathered} \text { 厚 さ*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料		名	称	$\begin{gathered} \text { 最高使 用 } \\ \text { 圧 力*1 } \\ (\mathrm{kPa}) \\ \hline \end{gathered}$	最 高 使 用温 度＊${ }^{*}$ $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*3 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材 料
耐 圧 強 化 心仡 ン 卜 系	非 常 用 ガ ス 処 理 系	非常用ガス処理系フィ ルタ装置出口配管合流点排気筒	7．原子炉格納施設 7.3 圧力低減設備その他の安全設備 （7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 a．非常用ガス処理系 ル 主配管（常設） に記載する。					耐 圧 強 化 べ ン ト 系	変更なし						

注記＊1 ：重大事故等時の使用時の値。
＊2 ：外径は公称値を示す。
＊3：（ ）内は公称値を示す。
＊4 ：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，残留熱除去設備（耐圧強化ベント系）として本工事計画で兼用とする。
＊5：本設備は，既存の原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器調気設備（原子炉格納容器調気系）であり，残留熱除去設備（耐圧強化べント系）として本工事計画で兼用とする。 ＊6 ：エルボを示す

3.6 非常用炉心冷却設備その他原子炉注水設備

3．6．3 高圧代替注水系
（7）主配管（常設）

注記 $* 1$ ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す。
$* 3$ ：重大事故等時の使用時の値。
＊ 4 ：本設備は，既存の原子炉冷却材の循環設備（主蒸気系）であり，非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊5：本設備は，既存の原子炉冷却材補給設備（原子炉隔離時冷却系）であり，非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊6：本設備は，既存の原子炉格納施設のうち原子炉格納容器（配管貫通部）であり，非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊7 ：原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
＊ 8 ：エルボを示す
＊9：本設備は，既存の原子炉冷却材補給設備（補給水系）であり，非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊10：本設備は，既存の非常用炉心泠却設備その他原子灲注水設備（高圧炉心スプレイ系）であり，非常用炉心泠却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊11：本設備は，既存の原子炉冷却材浄化設備（原子炉冷却材浄化系）であり，非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
＊ 12 ：本設備は，既存の原子炉冷却材の循環設備（復水給水系）であり，非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系）として本工事計画で兼用とする。
3.9 原子炉冷却材浄化設備

3．9．1 原子炬冷却材浄化系
（6）主配管

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multicolumn{7}{|c|}{変 更 前} \& \multicolumn{8}{|c|}{変 更 後}

\hline \& 名 称 \& $$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 力 } \\
& (\mathrm{MPa})
\end{aligned}
$$ \& 最高使用
温

$\left({ }^{\circ} \mathrm{C}\right)$ 度 \& \[
$$
\begin{gathered}
\text { 外 径*1 } \\
(\mathrm{mm})
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$

\] \& 材 料 \& \& 称 \& \[

$$
\begin{aligned}
& \text { 最高使 用 } \\
& \text { 圧 } \begin{array}{c}
\text { 力 } \\
(\mathrm{MPa})
\end{array}
\end{aligned}
$$

\] \& \[

$$
\begin{aligned}
& \begin{array}{l}
\text { 最高使 用 } \\
\text { 温 }{ }^{\left({ }^{\circ} \mathrm{C}\right)} \text { 度 }
\end{array}
\end{aligned}
$$

\] \& \[

$$
\begin{gathered}
\text { 外 径*1 } \\
(\mathrm{mm})
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
\text { 厚 さ*2 } \\
(\mathrm{mm}) \\
\hline
\end{gathered}
$$
\] \& 材 \& 料

\hline \multirow{5}{*}{\[
$$
\begin{aligned}
& \text { 原 } \\
& \text { 子 } \\
& \text { 烚 } \\
& \text { 却 } \\
& \text { 材 } \\
& \text { 浄 } \\
& \text { 华 }
\end{aligned}
$$

\]} \& | 原子炉冷却材浄化系再生熱交換器（胴側）出口配管分岐点 |
| :--- |
| 原子炉隔離時冷却系注入配管合流点 | \& 8.62 \& 302 \& \[

$$
\begin{gathered}
216.3 \\
\text { / } \\
165.2 \\
165.2
\end{gathered}
$$

\] \& \[

$$
\begin{gathered}
(18.2) \\
\text { / } \\
(14.3) \\
(14.3)
\end{gathered}
$$
\] \& STS42

STS410 \& \multirow{5}{*}{$$
\begin{aligned}
& \text { 原 } \\
& \text { 炉 } \\
& \text { 炩 } \\
& \text { 却 } \\
& \text { 材 } \\
& \text { 浄 } \\
& \text { 炛 }
\end{aligned}
$$} \& \multicolumn{7}{|c|}{変更なし}

\hline \& \multirow{4}{*}{| 原子炉隔離時冷却系注入配管合流点 |
| :--- |
| 原子炉冷却材浄化系 B 系注入配管合流点 |} \& \multirow{4}{*}{8.62} \& \multirow{4}{*}{302} \& 165.2 \& （14．3） \& SFVC2B \& \& \& \& \& \& \& \&

\hline \& \& \& \& 165.2 \& （14．3） \& STS410 \& \& \& \& \& \& \& \&

\hline \& \& \& \& $$
\begin{gathered}
165.2 \\
/ \\
165.2 \\
/ \\
114.3
\end{gathered}
$$ \& \[

$$
\begin{gathered}
(14.3) \\
/ \\
(14.3) \\
/ \\
(11.1) \\
\hline
\end{gathered}
$$
\] \& STS42 \& \& \& \& 変更なし \& \& \& \&

\hline \& \& \& \& $$
165.2{ }^{* 3}
$$ \& \[

(14.3){ }^{* 3}

\] \& \[

\operatorname{STS} 410{ }^{* 3}
\] \& \& \& \& \& \& \& \&

\hline
\end{tabular}

注記＊1 ：外径は公称値を示す。
＊2 ：（ ）内は公称値を示す
＊ 3 ：エルボを示す
＊ 4 ：非常用灲心冷却設備その他原子炉注水設備（高圧代替注水系）及び原子炉格納施設のうち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。 ＊5 ：非常用炉心椧却設備その他原子炉注水設備（原子炉隔離時冷却系）と兼用。
3.11 原子炉冷却系統施設（蒸気タービンを除く。）の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。	変更なし
第1章 共通項目 1．地盤等 1.1 地盤 設計基準対象施設のうち，地震の発生によって生じるおそれがあるそ の安全機能の喪失に起因する放射線による公衆への影響の程度が特に大きい施設（以下「耐震重要施設」という。）の建物•構築物，津波防護機能を有する施設（以下「津波防護施設」という。），浸水防止機能を有する設備（以下「浸水防止設備」という。）及び敷地における津波監視機能を有する設備（以下「津波監視設備」という。）並びに浸水防止設備又は津波監視設備が設置された建物•構築物について，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）については，自重や運転時の荷重等に加え， その供用中に大きな影響を及ぼすおそれがある地震動（設置（変更）許可を受けた基準地震動 S s（以下「基準地震動 S s 」という。））による地震力が作用した場合においても，接地圧に対する十分な支持力を有す る地盤に設置する。	第1章 共通項目 1．地盤等 1.1 地盤 変更なし

変更前

また，上記に加え，基準地震動 S s による地震力が作用することによ つて弱面上のずれが発生しない地盤として，設置（変更）許可を受けた地盤に設置する。設置（変更）許可を受けた地盤のらち改良地盤につい ては，設置（変更）許可後の施工を含むことを踏まえ，所定の物性値が確保されていることを施工時の品質管理で確認する。

ここで，建物•構築物とは，建物，構築物及び土木構造物（屋外重要土木構造物及びその他の土木構造物）の総称とする。

また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系及び設備の間接支持機能又は非常時における海水の通水機能を求められる土木構造物をいう。

設計基準対象施設のうち，耐震重要施設以外の建物•構築物について は，自重や運転時の荷重等に加え，地震により発生するおそれがある安全機能の喪失（地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。）及びそれに続く放射線による公衆への影響を防止する観点から，各施設の安全機能が喪失した場合の影響の相対的な程度（以下「耐震重要度」という。）に応じた，Sクラス， Bクラス又はCクラスの分類（以下「耐震重要度分類」という。）の各 クラスに応じて算定する地震力が作用した場合，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設については，自重や運転時の荷重等に加え，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類の各クラスに応じて算定する地震力が作用した場合におい ても，接地圧に対する十分な支持力を有する地盤に設置する。

設計基準対象施設のうち，耐震重要施設，若しくは，重大事故等対処

変更前	変更後
施設のうち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備 が設置される重大事故等対処施設は，地震発生に伴う地殻変動によって生じる支持地盤の傾斜及び撓み並びに地震発生に伴う建物•構築物間の不等沈下，液状化及び揺すり込み沈下等の周辺地盤の変状により，その安全機能，若しくは，重大事故に至るおそれがある事故（運転時の異常 な過渡変化及び設計基準事故を除く。）又は重大事故（以下「重大事故等」という。）に対処するために必要な機能が損なわれるおそれがない地盤として，設置（変更）許可を受けた地盤に設置する。 設計基準対象施設のうち，耐震重要施設，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備 が設置される重大事故等対処施設は，将来活動する可能性のある断層等 の露頭がない地盤として，設置（変更）許可を受けた地盤に設置する。設計基準対象施設のらち，S クラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）の地盤，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物の地盤の接地圧に対する支持力の許容限界について，自重や運転時の荷重等と基準地震動 S s によ る地震力との組合せにより算定される接地圧が，安全上適切と認められ る規格，基準等による地盤の極限支持力度に対して妥当な余裕を有する ことを確認する。 また，上記の設計基準対象施設にあっては，自重や運転時の荷重等と設置（変更）許可を受けた弾性設計用地震動 S d（以下「弾性設計用地	

変更前	変更後
震動 S d」という。）による地震力又は静的地震力との組合せにより算定される接地圧について，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。 屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物の地盤 においては，自重や運転時の荷重等と基準地震動S s による地震力との組合せにより算定される接地圧が，安全上適切と認められる規格，基準等による地盤の極限支持力度に対して妥当な余裕を有することを確認 する。 設計基準対象施設のうち，B クラス及びCクラスの施設の地盤，若し くは，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラスのもの）が設置される重大事故等対処施設の建物•構築物及び機器•配管系の地盤においては，自重や運転時の荷重等と，静的地震力及び動的地震力（B クラスの共振影響検討に係る もの又は B クラスの施設の機能を代替する常設重大事故防止設備の共振影響検討に係るもの）との組合せにより算定される接地圧に対して，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。 1.2 急傾斜地の崩壊の防止 「急傾斜地の崩壊による災害の防止に関する法律」に基づき指定され た急傾斜地崩壊危険区域でない地域に設備を施設する。	1.2 急傾斜地の崩壊の防止 変更なし

変更前	変更後
2．自然現象 2.1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針 耐震設計は，以下の項目に従って行う。 a．設計基準対象施設のうち，耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそれがある地震（基準地震動 S s）による加速度によって作用する地震力に対して，その安全機能が損なわれるおそれがない設計とする。 重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張） （当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）は，基準地震動 S s による地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがないように設計する。 b．設計基準対象施設は，耐震重要度に応じて，Sクラス，Bクラ ス又はC クラスに分類し，それぞれに応じた地震力に十分耐え られる設計とする。 重大事故等対処施設については，施設の各設備が有する重大事故等に対処するために必要な機能及び設置状態を踏まえて，常設耐震重要重大事故防止設備が設置される重大事故等対処施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。	2．自然現象 2.1 地震による損傷の防止 2．1．1 耐震設計 変更なし

変更前

以下同じ。），常設重大事故緩和設備が設置される重大事故等対処施設，常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。），常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）及び可搬型重大事故等対処設備に分類する。

重大事故等対処施設のらち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設は，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される地震力に十分に耐えることができ る設計とする。
常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設と常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の両方に属する重大事故等対処施設については，基準地震動 S s による地震力を適用するものとする。

重大事故等対処施設のうち，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラ スのもの）が設置される重大事故等対処施設は，当該設備が属す る耐震重要度分類のクラスに適用される地震力に十分に耐える ことができる設計とする。
常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの）が設置される重大事故等対処施設と常設重大事故緩和設備又は常設重大事故緩

和設備（設計基準拡張）が設置される重大事故等対処施設の両方 に属する重大事故等対処施設については，基準地震動 S s による地震力を適用するものとする。

なお，特定重大事故等対処施設に該当する施設は本申請の対象外である。
c．S クラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基準地震動 S s による地震力に対してその安全機能が保持できる設計とする。建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）に対して十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有する設計とする。機器•配管系については， その施設に要求される機能を保持する設計とし，塑性ひずみが生 じる場合であっても，その量が小さなレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさない，また，動的機器等については，基準地震動 S s によ る応答に対してその設備に要求される機能を保持する設計とす る。なお，動的機能が要求される機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往の研究等で機能維持 の確認がなされた機能確認済加速度等を超えていないことを確認する。

また，弾性設計用地震動 S d による地震力又は静的地震力のい ずれか大きい方の地震力に対しておおむね弾性状態にとどまる範囲で耐えられる設計とする。建物•構築物については，発生す る応力に対して，「建築基準法」等の安全上適切と認められる規

格及び基準による許容応力度を許容限界とする。機器•配管系に ついては，応答が全体的におおむね弾性状態にとどまる設計とす る。

常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設は，基準地震動 S s によ る地震力に対して，重大事故等に対処するために必要な機能が損 なわれるおそれがないように設計する。建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）について十分 な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有する設計とする。機器•配管系については，その施設に要求さ れる機能を保持する設計とし，塑性ひずみが生じる場合であって も，その量が小さなレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさない，また，動的機器等については，基準地震動 S s による応答に対して，そ の設備に要求される機能を保持する設計とする。なお，動的機能 が要求される機器については，当該機器の構造，動作原理等を考慮した評価を行い，既往の研究等で機能維持の確認がなされた機能確認済加速度等を超えていないことを確認する。
d．Sクラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）について，静的地震力は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用す るものとする。

また，基準地震動 S s 及び弾性設計用地震動 S d による地震力 は，水平 2 方向及び鉛直方向について適切に組み合わせて算定 するものとする。
常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動 S s 及び弾性設計用地震動 S d による地震力は水平 2 方向及び鉛直方向について適切に組み合わせて算定するものとする。
e．屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物は，基準地震動 S s による地震力に対して，構造物全体と して変形能力（終局耐力時の変形）について十分な余裕を有する とともに，それぞれの施設及び設備に要求される機能が保持でき る設計とする。

常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物は，基準地震動 S s による地震力に対して，重大事故等に対処するために必要な機能が損なわれるおそれがない設計とする。
f．B クラスの施設は，静的地震力に対しておおむね弾性状態にと どまる範囲で耐えられる設計とする。

また，共振のおそれのある施設については，その影響について

の検討を行う。その場合，検討に用いる地震動は，弾性設計用地震動 S d に 2 分の 1 を乗じたものとする。なお，当該地震動によ る地震力は，水平 2 方向及び鉛直方向について適切に組み合わ せて算定するものとする。
C クラスの施設は，静的地震力に対しておおむね弾性状態にと どまる範囲で耐えられる設計とする。
常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設は，上記に示す，代替する機能 を有する設計基準事故対処設備が属する耐震重要度分類のクラ スに適用される地震力に対して，おおむね弾性状態にとどまる範囲で耐えられる設計とする。

常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラスのもの）が設置される重大事故等対処施設は，上記に示す，当該設備が属する耐震重要度分類のクラスに適用される地震力に対して，おおむね弾性状態に とどまる範囲で耐えられる設計とする。
g．耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備 が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設が， それ以外の発電所内にある施設（資機材等含む。）の波及的影響 によって，その安全機能及び重大事故等に対処するために必要な機能を損なわない設計とする。
h．可搬型重大事故等対処設備については，地震による周辺斜面の

崩壊等の影響を受けないように「5．1．5 環境条件等」に基づく設計とする。
i．緊急時対策所の耐震設計の基本方針については，「（6）緊急時対策所」に示す。
j．耐震重要施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，その安全機能が損なわれな いよう，適切な対策を講ずる設計とする。

常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，液状化，揺 すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処するために必要な機能が損なわれるおそれがな いよう，適切な対策を講ずる設計とする。
（2）耐震重要度分類及び重大事故等対処施設の設備の分類
a．耐震重要度分類
設計基準対象施設の耐震重要度を以下のとおり分類する。
（a）Sクラスの施設
地震により発生するおそれがある事象に対して，原子炉を停止し，炉心を冷却するために必要な機能を持つ施設，自ら放射性物質を内蔵している施設，当該施設に直接関係しておりその機能喪失により放射性物質を外部に拡散する可能性のある施設，これらの施設の機能喪失により事故に至った場合の影響を緩和し，放射線による公衆への影響を軽減するために必要な機

能を持つ施設及びこれらの重要な安全機能を支援するために必要となる施設，並びに地震に伴って発生するおそれがある津波による安全機能の喪失を防止するために必要となる施設で あって，その影響が大きいものであり，次の施設を含む。

- 原子炉冷却材圧力バウンダリを構成する機器•配管系
- 使用済燃料を貯蔵するための施設
- 原子炉の緊急停止のために急激に負の反応度を付加する ための施設，及び原子炉の停止状態を維持するための施設
- 原子炉停止後，炉心から崩壊熱を除去するための施設
- 原子炉冷却材圧力バウンダリ破損事故後，炉心から崩壊熱 を除去するための施設
－原子炉冷却材圧力バウンダリ破損事故の際に，圧力障壁と なり放射性物質の放散を直接防ぐための施設
－放射性物質の放出を伴うような事故の際に，その外部放散 を抑制するための施設であり，上記の「放射性物質の放散 を直接防ぐための施設」以外の施設
- 津波防護施設及び浸水防止設備
- 津波監視設備
（b）Bクラスの施設
安全機能を有する施設のうち，機能喪失した場合の影響が S クラス施設と比べ小さい施設であり，次の施設を含む。
－原子炉冷却材圧力バウンダリに直接接続されていて，一次冷却材を内蔵しているか又は内蔵し得る施設
－放射性廃棄物を内蔵している施設（ただし，内蔵量が少な

[^0]－放射性廃棄物以外の放射性物質に関連した施設で，その破損により，公衆及び従事者に過大な放射線被ばくを与える可能性のある施設

- 使用済燃料を泠却するための施設
- 放射性物質の放出を伴うような場合に，その外部放散を抑制するための施設で，S クラスに属さない施設
（c）C クラスの施設
Sクラスに属する施設及びBクラスに属する施設以外の一般産業施設又は公共施設と同等の安全性が要求される施設であ る。

上記に基づく耐震重要度分類を第2．1．1表に示す。
なお，同表には当該施設を支持する構造物の支持機能が維持 されることを確認する地震動及び波及的影響を考慮すべき施設に適用する地震動についても併記する。
b．重大事故等対処施設の設備分類
重大事故等対処設備について，施設の各設備が有する重大事故等に対処するために必要な機能及び設置状態を踏まえて，以下の設備分類に応じて設計する。
（a）常設重大事故防止設備

重大事故等対処設備のらち，重大事故に至るおそれがある事故が発生した場合であって，設計基準事故対処設備の安全機能又は使用済燃料プールの冷却機能若しくは注水機能が喪失し た場合において，その喪失した機能（重大事故に至るおそれが ある事故に対処するために必要な機能に限る。）を代替するこ とにより重大事故の発生を防止する機能を有する設備であっ て常設のもの
イ．常設耐震重要重大事故防止設備
常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能を代替するもの
口．常設耐震重要重大事故防止設備以外の常設重大事故防止設備

常設重大事故防止設備であって，イ．以外のもの
（b）常設重大事故緩和設備
重大事故等対処設備のうち，重大事故が発生した場合におい て，当該重大事故の拡大を防止し，又はその影響を緩和するた めの機能を有する設備であって常設のもの
（c）常設重大事故防止設備（設計基準拡張）
設計基準対象施設のうち，重大事故等時に機能を期待する設備であって，重大事故の発生を防止する機能を有する（a）以外 の常設のもの
（d）常設重大事故緩和設備（設計基準拡張）
設計基準対象施設のらち，重大事故等時に機能を期待する設備であって，重大事故の拡大を防止し，又はその影響を緩和す

変更前	変更後
るための機能を有する（b）以外の常設のもの （e）可搬型重大事故等対処設備 重大事故等対処設備であって可搬型のもの 重大事故等対処設備のうち，耐震評価を行う主要設備の設備分類について，第2．1．2表に示す。 （3）地震力の算定方法 耐震設計に用いる地震力の算定は以下の方法による。 a．静的地震力 設計基準対象施設に適用する静的地震力は，Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。），Bクラス及びCクラスの施設に適用することとし，それぞれ耐震重要度分類に応じて次の地震層せん断力係数 C i 及 び震度に基づき算定 する。 重大事故等対処施設については，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設に，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類のクラスに適用される静的地震力を，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBク ラス又はCクラスのもの）が設置される重大事故等対処施設に，当該設備が属する耐震重要度分類のクラスに適用される静的地震力を，それぞれ適用する。 （a）建物•構築物 水平地震力は，地震層せん断力係数 C_{i} に，次に示す施設の耐震重要度分類に応じた係数を乗じ，更に当該層以上の重量を	

変更前	変更後
乗じて算定するものとする。 $\begin{array}{ll} \text { S クラス } & 3.0 \\ \text { B クラス } & 1.5 \\ \text { C クラス } & 1.0 \end{array}$ ここで，地震層せん断力係数 C i は，標準せん断力係数 C 。を 0.2 以上とし，建物•構築物の振動特性，地盤の種類等を考慮 して求められる値とする。 また，必要保有水平耐力の算定においては，地震層せん断力係数 C_{i} に乗じる施設の耐震重要度分類に応じた係数は，S ク ラス，B クラス及びCクラスともに 1.0 とし，その際に用いる標準せん断力係数C。は1．0以上とする。 S クラスの施設については，水平地震力と鉛直地震力が同時 に不利な方向の組合せで作用するものとする。鉛直地震力は，震度 0.3 以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮し，高さ方向に一定として求めた鉛直震度より算定 するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認められ る規格及び基準を参考に，Cクラスに適用される静的地震力を適用する。 （b）機器•配管系 静的地震力は，上記（a）に示す地震層せん断力係数 C i に施設の耐震重要度分類に応じた係数を乗じたものを水平震度と して，当該水平震度及び上記（a）の鉛直震度をそれぞれ 20% 増 しとした震度より求めるものとする。	

変更前	変更後
S クラスの施設については，水平地震力と鋁直地震力は同時 に不利な方向の組合せで作用するものとする。ただし，鉛直震度は高さ方向に一定とする。 上記（a）及び（b）の標準せん断力係数C。等の割増し係数の適用については，耐震性向上の観点から，一般産業施設，公共施設等の耐震基準との関係を考慮して設定する。 b．動的地震力 設計基準対象施設については，動的地震力は，sクラスの施設，屋外重要土木構造物及びBクラスの施設のらち共振のおそれのあ るものに適用する。 Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）については，基準地震動 S s 及び弾性設計用地震動 S dから定める入力地震動を適用する。 Bクラスの施設のらち共振のおそれのあるものについては，弾性設計用地震動 S d から定める入力地震動の振幅を 2 分の 1 にし たものによる地震力を適用する。 屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物について は，基準地震動 S s による地震力を適用する。 重大事故等対処施設のらち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張） （当誩設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準抎張）が設置される重大事故等対処施設については，基準地震動 S s による地震力を適用する。	

変更前	変更後
常設耐震重要重大事故防止設備以外の常設重大事故防止設備 が設置される重大事故等対処施設のらち，Bクラスの施設の機能 を代替する共振のおそれのある施設，常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設のらち，当該設備 が属する耐震重要度分類がBクラスで共振のおそれのある施設に ついては，共振のおそれのあるBクラスの施設に適用する地震力 を適用する。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物について は，基準地震動 S s による地震力を適用する。 重大事故等対処施設のうち，設計基準対象施設の既往評価を適用できる基本構造と異なる施設については，適用する地震力に対 して，要求される機能及び構造健全性が維持されることを確認す るため，当該施設の構造を適切にモデル化した上で地震応答解析，加振試験等を実施する。 動的解析においては，地盤の諸定数も含めて材料のばらつきに よる変動幅を適切に考慮する。 動的地震力は水平2方向及び鉛直方向について適切に組み合わ せて算定する。動的地震力の水平2方向及び鉛直方向の組合せに ついては，水平 1 方向及び鉛直方向地震力を組み合わせた既往の耐震計算への影響の可能性がある施設•設備を抽出し，3次元応答性状の可能性も考慮したらえで既往の方法を用いた耐震性に	

及ぼす影響を評価する。
（a）入力地震動
原子炉格納施設設置位置周辺は，地質調査の結果によれば，約 $1.4 \mathrm{~km} / \mathrm{s}$ の S 波速度を持つ堅硬な岩盤が十分な広がりをも つて存在することが確認されており，建物•構築物はこの堅硬 な岩盤に支持させる。

敷地周辺には中生界ジュラ系の砂岩，頁岩等が広く分布し，原子炉建屋の設置レベルにもこの岩盤が分布していることか ら，解放基盤表面は，この岩盤が分布する原子炉建屋の設置位置 0．P．－14．1mに設定する。

建物•構築物の地震応答解析における入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用地震動 S d を基に，対象建物•構築物の地盤の非線形特性等の条件を適切に考慮した上で，必要に応じ 2 次元 FEM 解析， 1 次元波動論又は 1 次元地盤応答解析により，地震応答解析モデルの入力位置で評価した入力地震動を設定する。地盤条件を考慮する場合には，地震動評価で考慮した敷地全体の地下構造との関係や対象建物•構築物位置と炉心位置での地質•速度構造の違いに も留意するとともに，地盤の非線形応答に関する動的変形特性 を考慮する。また，必要に応じ敷地における観測記録による検証や最新の科学的•技術的知見を踏まえ，地質•速度構造等の地盤条件を設定する。

また，設計基準対象施設における耐震 B クラスの建物•構築物及び重大事故等対処施設における耐震 B クラスの施設の機

能を代替する常設重大事故防止設備又は当該設備が属する耐震重要度分類が B クラスの常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物のうち共振のおそれがあり，動的解析が必要なものに対しては，弾性設計用地震動S dに2分の1を乗じたものを用いる。
（b）地震応答解析
イ．動的解析法
（イ）建物•構築物
動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，建物•構築物に応じた適切な解析条件 を設定する。動的解析は，時刻歴応答解析法又は線形解析 に適用可能な周波数応答解析法による。

建物•構築物の動的解析に当たつては，建物•構築物の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換した解析モデルを設定する。

動的解析には，建物•構築物と地盤との相互作用を考慮 するものとし，解析モデルの地盤のばね定数は，基礎版の平面形状，基礎側面と地盤の接触状況，地盤の剛性等を考慮して定める。設計用地盤定数は，原則として，弾性波試験によるものを用いる。

地盤一建物•構築物連成系の減衰定数は，振動エネルギ の地下逸散及び地震応答における各部のひずみレベルを考慮して定める。

変更前

基準地震動 S s 及び弾性設計用地震動 S d に対する応答解析において，主要構造要素がある程度以上弾性範囲を超える場合には，実験等の結果に基づき，該当する建物部分の構造特性に応じて，その弾塑性挙動を適切に模擬した復元力特性を考慮した応答解析を行う。

また，Sクラスの施設を支持する建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設を支持する建物•構築物の支持機能を検討するための動的解析において，施設を支持する建物•構築物の主要構造要素 がある程度以上弾性範囲を超える場合には，その弾塑性挙動を適切に模擬した復元力特性を考慮した応答解析を行 う。

応答解析に用いる材料定数については，地盤の諸定数も含めて材料のばらつきによる変動幅を適切に考慮する。な お，平成 23 年（2011 年）東北地方太平洋沖地震等の地震 やコンクリートの乾燥収縮によるひび割れ等に伴う初期剛性の低下については，観測記録や試験データなどから適切に応答解析モデルへ反映し，保守性を確認した上で適用 する。屋外重要土木構造物については，平成 23 年（2011年）東北地方太平洋沖地震等の地震に起因する構造上問題 となるひび割れが認められないこと及び地中構造物であ

る屋外重要土木構造物に対する支配的な地震時荷重であ る土圧は，ひび割れ等に起因する初期剛性低下を考慮しな い方が保守的な評価となる。したがって，屋外重要土木構造物については，初期剛性低下を考慮しないが，必要に応 じて機器•配管系の設計用地震力に及ぼす影響を検討す る。さらに，材料のばらつきによる変動が建物•構築物の振動性状や応答性状に及ぼす影響として考慮すべき要因 を選定した上で，選定された要因を考慮した動的解析によ り設計用地震力を設定する。
建物•構築物の動的解析にて，地震時の地盤の有効応力 の変化に応じた影響を考慮する場合は，有効応力解析を実施する。有効応力解析に用いる液状化強度特性は，敷地の原地盤における代表性及び網羅性を踏まえた上で実施し た液状化強度試験結果に基づき，保守性を考慮して設定す る。

原子炉建屋については，3次元 FEM 解析等から，建物•構築物の 3 次元応答性状及びそれによる機器•配管系へ の影響を評価する。

動的解析に用いる解析モデルは，地震観測網により得ら れた観測記録により振動性状の把握を行い，解析モデルの妥当性の確認を行う。

屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラス

のもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物の動的解析は，構造物と地盤の相互作用を考慮できる連成系の地震応答解析手法とし，地盤及び構造物の地震時における非線形挙動の有無や程度に応じて，線形，等価線形又は非線形解析 のいずれかにて行う。

地震力については，水平 2 方向及び鉛直方向について適切に組み合わせて算定する。
（ロ）機器•配管系
動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，解析条件として考慮すべき減衰定数，剛性等の各種物性値は，適切な規格及び基準又は試験等の結果に基づき設定する。ここで，原子炉本体の基礎につい ては，鋼板とコンクリートの複合構造物として，より現実 に近い適正な地震応答解析を実施する観点から，コンクリ ートの剛性変化を適切に考慮した復元力特性を設定する。復元力特性の設定に当たつては，既往の知見や実物の原子炉本体の基礎を模擬した試験体による加力試験結果を踏 まえて，妥当性，適用性を確認するとともに，設定におけ る不確実性や保守性を考慮し，機器•配管系の設計用地震力を設定する。なお，原子炉本体の基礎の構造強度は，鋼板のみで地震力に耐える設計とする。

機器の解析に当たっては，形状，構造特性等を考慮して，

変更前	変更後
代表的な振動モードを適切に表現できるよう質点系モデ ル，有限要素モデル等に置換し，設計用床応答曲線を用い たスペクトルモーダル解析法又は時刻歴応答解析法によ り応答を求める。 また，時刻歴応答解析法及びスペクトルモーダル解析法 を用いる場合は地盤物性等のばらつきを適切に考慮する。 スペクトルモーダル解析法には地盤物性等のばらつきを考慮した床応答曲線を用いる。 配管系については，その仕様に応じて適切なモデルに置換し，設計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法により応答を求める。 スペクトルモーダル解析法及び時刻歴応答解析法の選択に当たつては，衝突・すべり等の非線形現象を模擬する観点又は既往研究の知見を取り入れ実機の挙動を模擬す る観点で，建物•構築物の剛性，地盤物性のばらつきへの配慮をしつつ時刻歴応答解析法を用いる等，解析対象とす る現象，対象設備の振動特性•構造特性等を考慮し適切に選定する。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせるものとする。 剛性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価に用いる地震力を算定する。	

c．設計用減衰定数
地震応答解析に用いる減衰定数は，安全上適切と認められる規格及び基準に基づき，設備の種類，構造等により適切に選定する とともに，試験等で妥当性を確認した値も用いる。
なお，建物•構築物の地震応答解析に用いる鉄筋コンクリート の減衰定数の設定については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討する。

また，地盤と屋外重要土木構造物の連成系地震応答解析モデル の減衰定数については，地中構造物としての特徴，同モデルの振動特性を考慮して適切に設定する。
（4）荷重の組合せと許容限界耐震設計における荷重の組合せと許容限界は以下による。
a．耐震設計上考慮する状態地震以外に設計上考慮する状態を以下に示す。
（a）建物•構築物
設計基準対象施設については以下のイ．～ハ。の状態，重大事故等対処施設については以下のイ，～ニ，の状態を考慮する。
イ．運転時の状態
発電用原子炉施設が運転状態にあり，通常の自然条件下に おかれている状態。

ただし，運転状態には通常運転時，運転時の異常な過渡変化時を含むものとする。
ロ．設計基準事故時の状態
発電用原子炉施設が設計基準事故時にある状態。

変更前	変更後
八．設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 二．重大事故等時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故又 は重大事故時の状態で，重大事故等対処施設の機能を必要と する状態。 （b）機器•配管系 設計基準対象施設については以下のイ．～ニ．の状態，重大事故等対処施設については以下のイ．～ホ，の状態を考慮する。 イ．通常運転時の状態 発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又は頻繁に行われた場合であって運転条件が所定の制限値以内にある運転状態。 ロ．運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若し くはその誤作動又は運転員の単一の誤操作及びこれらと類似の頻度で発生すると予想される外乱によって発生する異常な状態であって，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著しい損傷が生じるおそれが あるものとして安全設計上想定すべき事象が発生した状態。八。設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な状態 であって，当該状態が発生した場合には発電用原子炉施設か	

変更前	変更後
ら多量の放射性物質が放出するおそれがあるものとして安全設計上想定すべき事象が発生した状態。 二．設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 ホ．重大事故時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故又 は重大事故時の状態で，重大事故等対処施設の機能を必要と する状態。 b．荷重の種類 （a）建物•構築物 設計基準対象施設については以下のイ。～ニ，の荷重，重大事故等対処施設については以下のイ．～ホ，の荷重とする。 イ．発電用原子炉のおかれている状態にかかわらず常時作用 している荷重，すなわち固定荷重，積載荷重，土圧，水圧及 び通常の気象条件による荷重 ロ．運転時の状態で施設に作用する荷重 八。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 ホ．重大事故等時の状態で施設に作用する荷重 ただし，運転時の状態，設計基準事故時の状態及び重大事故等時の状態での荷重には，機器•配管系から作用する荷重が含 まれるものとし，地震力には，地震時土圧，機器•配管系から の反力，スロッシング等による荷重が含まれるものとする。	

（b）機器•配管系
設計基準対象施設については，以下のイ．～ニ．の荷重，重大事故等対処施設については以下のイ．～ホ，の荷重とする。
イ．通常運転時の状態で施設に作用する荷重
ロ．運転時の異常な過渡変化時の状態で施設に作用する荷重
ハ．設計基準事故時の状態で施設に作用する荷重
二。 地震力，風荷重，積雪荷重
ホ．重大事故等時の状態で施設に作用する荷重
c．荷重の組合せ
地震と組み合わせる荷重については，「2．3 外部からの衝撃に
よる損傷の防止」で設定している風及び積雪による荷重を考慮
し，以下のとおり設定する。
（a）建物•構築物（（c）に記載のものを除く。）
イ．S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのも
の）又は常設重大事故緩和設備（設計基準拡張）が設置され る重大事故等対処施設の建物•構築物については，常時作用 している荷重及び運転時（通常運転時又は運転時の異常な過渡変化時）の状態で施設に作用する荷重と地震力とを組み合 わせる。
ロ．S クラスの建物•構築物については，常時作用している荷重及び設計基準事故時の状態で施設に作用する荷重のらち長時間その作用が続く荷重と弾性設計用地震動 S d による

変更前	変更後
地震力又は静的地震力とを組み合わせる。 ${ }^{* 1, * 2}$ 八。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重，設計基準事故時の状態及び重大事故等時の状態で施設に作用する荷重 のうち，地震によって引き起こされるおそれがある事象によ つて作用する荷重と地震力とを組み合わせる。重大事故等に よる荷重は設計基準対象施設の耐震設計の考え方及び確率論的な考察を踏まえ，地震によって引き起こされるおそれが ない事象による荷重として扱ら。 二．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重，設計基準事故時の状態及び重大事故等時の状態で施設に作用する荷重 のうち，地震によって引き起こされるおそれがない事象によ る荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力（基準地震動 S s又は弾性設計用地震動 S d による地震力）と組み合わせる。 この組合せについては，事故事象の発生確率，継続時間及び地震動の年超過確率の積等を考慮し，工学的，総合的に勘案	

変更前

の上設定する。なお，継続時間については対策の成立性も考慮した上で設定する。

以上を踏まえ，原子炉格納容器バウンダリを構成する施設 （原子炉格納容器内の圧力，温度の条件を用いて評価を行う その他の施設を含む。）については，いったん事故が発生し た場合，長時間継続する事象による荷重と弾性設計用地震動 S d による地震力とを組み合わせ，その状態から更に長期的 に継続する事象による荷重と基準地震動 S s による地震力 を組み合わせる。なお，格納容器破損モードの評価シナリオ のうち，原子炉圧力容器が破損する評価シナリオについて は，重大事故等対処設備による原子炉注水は実施しない想定 として評価しており，本来は機能を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による原子炉注水により炉心損傷の回避が可能であることから荷重条件として考慮しない。

また，その他の施設については，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動S s によ る地震力とを組み合わせる。

ホ．B クラス及びCクラスの建物•構築物並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの）が設置される重大事故等対処施設の建物•構築物については，常時作用して

変更前	変更後
いる荷重及び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力とを組み合わせる。 ＊1：S クラスの建物•構築物の設計基準事故の状態で施設に作用する荷重については，（b）機器•配管系の考え方 に沿った下記の 2 つの考え方に基づき検討した結果と して後者を踏まえ，施設に作用する荷重のらち長時間そ の作用が続く荷重と弾性設計用地震動S dによる地震力又は静的地震力とを組み合わせることとしている。こ の考え方は，JEAG4601における建物•構築物の荷重の組合せの記載とも整合している。 －常時作用している荷重及び設計基準事故時の状態の らち地震によって引き起こされるおそれのある事象 によって施設に作用する荷重は，その事故事象の継続時間との関係を踏まえ，適切な地震力と組み合わせて考慮する。 －常時作用している荷重及び設計基準事故時の状態の らち地震によって引き起こされるおそれのない事象 であっても，いったん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及び地震動の超過確率の関係を踏まえ，適切 な地震力と組み合わせる。 ＊2：原子炉格納容器バウンダリを構成する施設については，異常時圧力の最大値と弾性設計用地震動 S d による地震力とを組み合わせる。	

（b）機器•配管系（（c）に記載のものを除く。）
イ．S クラスの機器•配管系及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのも
の）又は常設重大事故緩和設備（設計基準拡張）が設置され る重大事故等対処施設の機器•配管系については，通常運転時の状態で施設に作用する荷重と地震力とを組み合わせる。

ロ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によっ て引き起こされるおそれのある事象によって施設に作用す る荷重と地震力とを組み合わせる。
八．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時の異常な過渡変化時の状態，設計基準事故時の状態及び重大事故等時の状態で作用する荷重のうち，地震によって引き起こされるおそれがある事象 によって作用する荷重と地震力とを組み合わせる。重大事故等による荷重は設計基準対象施設の耐震設計の考え方及び確率論的な考察を踏まえ，地震によって引き起こされるおそ れがない事象による荷重として扱う。
ニ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のうち地震によっ

変更前	変更後
て引き起こされるおそれのない事象であっても，いったん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。＊3 木．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がS クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時の異常な過渡変化時の状態，設計基準事故時の状態及び重大事故等時の状態で施設に作用する荷重のうち地震によって引き起こされるおそれがな い事象による荷重は，その事故事象の発生確率，継続時間及 び地震動の年超過確率の関係を踏まえ，適切な地震力（基準地震動 S s 又は弾性設計用地震動 S d による地震力）と組み合わせる。この組合せについては，事故事象の発生確率，継続時間及び地震動の年超過確率の積等を考慮し，工学的，総合的に勘案の上設定する。なお，継続時間については対策の成立性も考慮した上で設定する。 以上を踏まえ，重大事故等時の状態で作用する荷重と地震力（基準地震動 S s 又は弾性設計用地震動 S d による地震力）との組合せについては，以下を基本設計とする。 原子炉冷却材圧力バウンダリを構成する設備については， いったん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動S dによる地震力とを組み合わせ，そ	

変更前

の状態から更に長期的に継続する事象による荷重と基準地震動 S s による地震力とを組み合わせる。

原子炉格納容器バウンダリを構成する設備（原子炉格納容器内の圧力，温度の条件を用いて評価を行うその他の施設を含む。）については，いったん事故が発生した場合，長時間継続する事象による荷重と弾性設計用地震動S dによる地震力とを組み合わせ，その状態から更に長期的に継続する事象による荷重と基準地震動 S s による地震力とを組み合わ せる。

なお，格納容器破損モードの評価シナリオのうち，原子炉圧力容器が破損する評価シナリオについては，重大事故等対処設備による原子炉注水は実施しない想定として評価して おり，本来は機能を期待できる高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設） （直流駆動低圧注水系ポンプ）による原子炉注水により炉心損傷の回避が可能であることから荷重条件として考慮しな い。

その他の施設については，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動S s による地震力とを組み合わせる。
へ。 B クラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの）が設置される重

変更前
大事故等対処施設の機器•配管系については，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時 の状態で施設に作用する荷重と，動的地震力又は静的地震力 とを組み合わせる。
ト．炉心内の燃料被覆管の放射性物質の閉じ込めの機能の確認においては，通常運転時の状態で燃料被覆管に作用する荷重及び運転時の異常な過渡変化時の状態のうち地震によっ て引き起こされるおそれのある事象によって燃料被覆管に作用する荷重と地震力とを組み合わせる。 ＊3：原子炉格納容器バウンダリを構成する設備については，異常時圧力最大値と弾性設計用地震動 S d による地震力とを組み合わせる。
（c）津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物
イ．津波防護施設及び浸水防止設備が設置された建物•構築物 については，常時作用している荷重及び運転時の状態で施設 に作用する荷重と基準地震動 S s による地震力とを組み合 わせる。

ロ．浸水防止設備及び津波監視設備については，常時作用して いる荷重及び運転時の状態で施設に作用する荷重と基準地震動 S s による地震力とを組み合わせる。

なお，上記（c）イ．，ロ．については，地震と津波が同時に作用する可能性について検討し，必要に応じて基準地震動S s による地震力と津波による荷重の組合せを考慮する。ま

変更前	変更後
た，津波以外による荷重については，「b．荷重の種類」に準じるものとする。 （d）荷重の組合せ上の留意事項 動的地震力については，水平 2 方向と鉛直方向の地震力と を適切に組み合わせ算定するものとする。 d．許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている値を用いる。 （a）建物•構築物（（c）に記載のものを除く。） イ．S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのも の）又は常設重大事故緩和設備（設計基準拡張）が設置され る重大事故等対処施設の建物•構築物（へ，に記載のものを除く。） （イ）弾性設計用地震動 S d による地震力又は静的地震力と の組合せに対する許容限界 「建築基準法」等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 ただし，冷却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリを構成する設備における長期的荷重との組合せを除く。）に対しては，下記イ。（ロ）に示す許容限界を適用する。	

（ロ）変更前限界

構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひ ずみ，応力等）。

なお，終局耐力は，建物•構築物に対する荷重又は応力 を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力 に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。
ロ．B クラス及びCクラスの建物•構築物（へ．及びト，に記載 のものを除く。）並びに常設耐震重要重大事故防止設備以外 の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又は C クラスのもの）が設置される重大事故等対処施設の建物•構築物（ト，に記載のものを除く。）上記イ。（イ）による許容応力度を許容限界とする。
八。 耐震重要度分類の異なる施設又は設備分類の異なる重大事故等対処施設を支持する建物•構築物（へ．及びト。に記載のものを除く。）

変更前

上記イ。（ロ）を適用するほか，耐震重要度分類の異なる施設又は設備分類の異なる重大事故等対処施設がそれを支持 する建物•構築物の変形等に対して，その支持機能を損なわ ないものとする。

当該施設を支持する建物•構築物の支持機能が維持される ことを確認する際の地震動は，支持される施設に適用される地震動とする。
二．建物•構築物の保有水平耐力（ $へ$ 。及びト．に記載のものを除く。）

建物•構築物については，当該建物•構築物の保有水平耐力が必要保有水平耐力に対して耐震重要度分類又は重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類に応じた安全余裕を有している ものとする。

ここでは，常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設につい ては，上記における重大事故等対処施設が代替する機能を有 する設計基準事故対処設備が属する耐震重要度分類を S ク ラスとする。
木，気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設

構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については，その機能を維持できる許容限界を適切に設定するものとする。

変更前	変更後
へ．屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物 （イ）静的地震力との組合せに対する許容限界 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （ロ）基準地震動 S s による地震力との組合せに対する許容限界 構造部材の曲げについては限界層間変形角，限界ひず み，降伏曲げモーメント又は許容応力度，構造部材のせん断についてはせん断耐力，許容応力度又は限界せん断ひず みを許容限界とする。 なお，限界層間変形角，限界ひずみ，降伏曲げモーメン ト及びせん断耐力，限界せん断ひずみの許容限界に対して は妥当な安全余裕を持たせることとし，それぞれの安全余裕については，各施設の機能要求等を踏まえ設定する。 ト．その他の土木構造物及び常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラスのもの）が設置される重大事故等対処施設の土木構造物 安全上適切と認められる規格及び基準による許容応力度	

を許容限界とする。
機器•配管系（（ c ）に記載のものを除く。）
イ．S クラスの機器•配管系
（イ）弾性設計用地震動 S d による地震力又は静的地震力と の組合せに対する許容限界

応答が全体的におおむね弾性状態にとどまるものとす る（評価項目は応力等）。
ただし，冷却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリ及び非常用炉心冷却設備等 における長期的荷重との組合せを除く。）に対しては，下記イ。（ロ）に示す許容限界を適用する。
（ロ）基準地震動 S s による地震力との組合せに対する許容限界

塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさないように応力，荷重等を制限する値を許容限界とする。

また，地震時又は地震後に動的機能又は電気的機能が要求される機器については，基準地震動S s による応答に対 して，実証試験等により確認されている機能確認済加速度等を許容限界とする。
口．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和

```
変更前
設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系
イ．（ロ）に示す許容限界を適用する。
ただし，原子炉格納容器バウンダリを構成する設備及び非常用炉心冷却設備等の弾性設計用地震動 S d と設計基準事故時の状態における長期的荷重との組合せに対する許容限界は，イ．（イ）に示す許容限界を適用する。
ハ．B クラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類 B クラス又はC クラスのもの）が設置される重大事故等対処施設の機器•配管系
応答が全体的におおむね弾性状態にとどまることとする （評価項目は応力等）。
ニ．チャンネルボックス
チャンネルボックスは，地震時に作用する荷重に対して，燃料集合体の原子炉冷却材流路を維持できること及び過大 な変形や破損を生ずることにより制御棒の挿入が阻害され ないものとする。
ホ．燃料被覆管
炉心内の燃料被覆管の放射性物質の閉じ込めの機能につ いての許容限界は，以下のとおりとする。
（イ）弾性設計用地震動 S d による地震力又は静的地震力と の組合せに対する許容限界
```


変更前

応答が全体的におおむね弾性状態にとどまることとす る。
（ロ）基準地震動 S s による地震力との組合せに対する許容限界

塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，放射性物質の閉じ込めの機能に影響を及ぼさないこととする。
へ。 主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで）

主蒸気逃がし安全弁排気管は基準地震動 S s に対して，主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで）は弾性設計用地震動S d に対してイ。（ロ）に示す許容限界を適用す る。
（c）津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物

津波防護施設及び浸水防止設備が設置された建物•構築物に ついては，当該施設及び建物•構築物が構造物全体としての変形能力（終局耐力時の変形）及び安定性について十分な余裕を有するとともに，その施設に要求される機能（津波防護機能及 び浸水防止機能）が保持できるものとする（評価項目はせん断 ひずみ，応力等）。

浸水防止設備及び津波監視設備については，その設備に要求 される機能（浸水防止機能及び津波監視機能）が保持できるも のとする。

変更前	変更後
（5）設計における留意事項 a．波及的影響 耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備 が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（以下「上位クラス施設」という。）は，下位クラス施設の波及的影響によって，その安全機能及び重大事故等に対処するために必要 な機能を損なわない設計とする。 波及的影響については，耐震重要施設の設計に用いる地震動又 は地震力を適用して評価を行う。なお，地震動又は地震力の選定 に当たっては，施設の配置状況，使用時間等を踏まえて適切に設定する。また，波及的影響においては水平 2 方向及び鉛直方向の地震力が同時に作用する場合に影響を及ぼす可能性のある施設，設備を選定し評価する。 波及的影響の評価に当たつては，敷地全体を俯瞰した調査•検討等を行う。 ここで，下位クラス施設とは，上位クラス施設以外の発電所内 にある施設（資機材等含む。）をいう。 波及的影響を防止するよう現場を維持するため，機器設置時の配慮事項等を保安規定に定めて管理する。 耐震重要施設に対する波及的影響については，以下に示す（a） ～（d）の 4 つの事項から検討を行う。 なお，原子力発電所の地震被害情報等から新たに検討すべき事	

	変更前	変更後
$\begin{aligned} & \omega \\ & \stackrel{1}{屯} \\ & \stackrel{1}{\oplus} \end{aligned}$	項が抽出された場合には，これを追加する。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設に対する波及的影響につ いては，以下に示す（a）～（d）の 4 つの事項について「耐震重要施設」を「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設」に，「安全機能」 を「重大事故等に対処するために必要な機能」に読み替えて適用 する。 （a）設置地盤及び地震応答性状の相違等に起因する不等沈下又 は相対変位による影響 イ．不等沈下 耐震重要施設の設計に用いる地震動又は地震力に対して，不等沈下による耐震重要施設の安全機能への影響。 口．相対変位 耐震重要施設の設計に用いる地震動又は地震力に対して，下位クラス施設と耐震重要施設の相対変位による耐震重要施設の安全機能への影響。 （b）耐震重要施設と下位クラス施設との接続部における相互影響 耐震重要施設の設計に用いる地震動又は地震力に対して，耐	

震重要施設に接続する下位クラス施設の損傷による耐震重要施設の安全機能への影響。
（c）建屋内における下位クラス施設の損傷，転倒，落下等による耐震重要施設への影響

耐震重要施設の設計に用いる地震動又は地震力に対して，建屋内の下位クラス施設の損傷，転倒，落下等による耐震重要施設の安全機能への影響。
（d）建屋外における下位クラス施設の損傷，転倒，落下等による耐震重要施設への影響

耐震重要施設の設計に用いる地震動又は地震力に対して，建屋外の下位クラス施設の損傷，転倒，落下等による耐震重要施設の安全機能への影響。
b．主要施設への地下水の影響
防潮堤下部の改良地盤及び置換コンクリートにより山から海 に向から地下水の流れが遮断され，敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，原子炉建屋，制御建屋及び第 3 号機海水熱交換器建屋に作用する揚圧力の低減及び周辺の土木構造物等に生じる液状化影響の低減を目的とし，地下水位を一定の範囲に保持するために，原子炉建屋•制御建屋エリ ア及び第 3 号機海水熱交換器建屋エリアに地下水位低下設備を各エリア 2 系統設置する。

耐震評価において，地下水位の影響を受ける施設及びアクセス ルートについて，地下水位低下設備の効果が及ぶ範囲 （0．P．＋14．8m 盤）においては，その機能を考慮した設計用地下

水位を設定し水圧の影響を考慮する。なお，地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮 する。
地下水位低下設備は，ドレーン，接続桝，揚水井戸，蓋，揚水 ポンプ，配管，水位計，制御盤，電源（非常用ディーゼル発電機），電源盤及び電路により系統を構成する。
地下水位低下設備は，ドレーン及び接続桝により揚水井戸に地下水を集水し，揚水ポンプ（容量 $375 \mathrm{~m}^{3} / \mathrm{h} /$ 個，揚程 52 m ，原動機出力 $110 \mathrm{~kW} /$ 個）により，揚水ポンプに接続された配管を通して地下水を屋外排水路へ排水する。

揚水ポンプは，地下水の最大流入量を排水可能な容量を有する設計とし，設備の信頼性向上のため 100% 容量のポンプを 1 系統当たり 2 個（計 8 個）設置し，集水した地下水を排水できる設計 とする。
配管上端部には仮設ホース等を接続するための接続口を設置 し，屋外排水路の排水異常により地表面での滞水が確認された場合に，揚水ポンプにより汲み上げた地下水を仮設ホース等を通じ て排水可能なものとする。

地下水位低下設備は，1 系統当たり 3 個（計 12 個）設置した水位計からの水位信号を用いて， 2 out of 3 論理により揚水ポ ンプの自動起動及び自動停止を行うことで，揚水井戸の水位を自動で制御できる設計とする。また，各系統の水位を，原子炉建屋及び中央制御室に設置した制御盤から監視可能な設計とする。水

位や設備の異常時には，これらを確実に検出して自動的に中央制御室に警報（水位低又は高，水位高高，電源喪失，揚水ポンプ故障）を発信する装置を設けるとともに，表示ランプの点灯，ブザ一鳴動により運転員に通報できる設計とする。

制御盤は， 2 系統の独立した設備を 1 系統当たり現場及び中央制御室に 1 面ずつ設置し，原子炉建屋•制御建屋エリア及び第 3号機海水熱交換器建屋エリアのそれぞれ 1 系統の設備ごとに，監視•制御可能な設計とする。
地下水位低下設備は，電源盤（容量 296 kVA ），及び電路を設置 し，非常用交流電源設備である非常用ディーゼル発電機から設備 に必要な電力を供給できる設計とする。また，全交流動力電源喪失となった場合は常設代替交流電源設備であるガスタービン発電機から設備に必要な電力を供給できる設計とする。

電源盤は，2系統の独立した設備を 1 系統当たり 1 面ずつ設置 し，原子炉建屋•制御建屋エリア及び第 3 号機海水熱交器建屋エ リアのそれぞれ 1 系統の設備ごとに電力を供給できる設計とす る。

揚水ポンプ，配管及び水位計は揚水井戸内に設置し，揚水井戸 により支持するとともに，揚水井戸上部に蓋を設置することで，外部事象の影響を受けない設計とする。
地下水位低下設備は，地震時及び地震後を含む，原子力発電所 の供用期間の全ての状態（通常運転時（起動時，停止時含む），運転時の異常な過渡変化時，設計基準事故時及び重大事故等時） において機能維持を可能とするため，基準地震動 S s による地震

変更前	変更後
屋外排水路の排水異常により，地表面での滞水が確認された場合は，仮設ホース等の対応を行い，排水経路の確保を行う。 また，地下水位低下設備の復旧措置及び屋外排水路の排水異常時の措置に的確かつ柔軟に対処できるように，地下水位低下設備 の復旧措置及び屋外排水路の排水異常時の措置に係る資機材の配備，手順書及び体制の整備並びに教育訓練の実施方針を自然災害発生時等の体制の整備及び重大事故等発生時の体制の整備と して，保安規定に定めた上で，社内規定に定める。 地下水位低下設備の機能喪失を想定しても，地震時の液状化に伴う地中埋設構造物の浮上りに対して，アクセスルートの通行性 を外部からの支援が可能となるまでの一定期間確保するととも に，アクセスルートの通行性に影響を与える場合は対策を講ずる設計とする。 地下水位低下設備で汲み上げた地下水は，支線排水路，敷地の北側及び南側に設置した幹線排水路から構成される屋外排水路 を通じて海へ排水する設計とする。 敷地側集水ピットから海への排水経路を構成する北側幹線排水路流末部（敷地側集水ピット（北側），北側排水路（防潮堤横断部）及び出口側集水ピット（北側）），南側幹線排水路流末部（敷地側集水ピット（南側），南側排水路（防潮堤横断部）及び出口側集水ピット（南側））については，基準地震動 S s に対し機能維持することにより，排水経路を確保する。また，地震時におい ては，敷地の形状又は仮設ホース等の取り付けにより，各揚水井戸配管出口から敷地側集水ピットまでの排水経路を確保する。	

変更前	変更後
（6）緊急時対策所 緊急時対策所については，基準地震動 S s による地震力に対し て，重大事故等に対処するために必要な機能が損なわれるおそれが ない設計とする。 緊急時対策所を設置する緊急時対策建屋については，耐震構造と し，基準地震動 S s による地震力に対して，遮蔽性能を確保する。 また，緊急時対策所の居住性を確保するため，基準地震動 S s によ る地震力に対して，緊急時対策所の換気設備の性能とあいまって十分な気密性を確保する。 さらに，施設全体の更なる安全性を確保するため，基準地震動 S s による地震力との組合せに対して，短期許容応力度以内に収める設計とする。 なお，地震力の算定方法及び荷重の組合せと許容限界について は，「2．1．1（3）地震力の算定方法」及び「2．1．1（4）荷重の組合せと許容限界」に示す建物•構築物及び機器•配管系のものを適用する。 2．1．2 地震による周辺斜面の崩壊に対する設計方針 耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属 する耐震重要度分類がS クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，基準地震動 S s による地震力により周辺斜面の崩壊の影響がない ことが確認された場所に設置する。	2．1．2 地震による周辺斜面の崩壊に対する設計方針変更なし

第2．1．1表 耐震重要度分類表（ $1 / 6$ ）

	機能刮份類	主要欴倘＊${ }^{\text {a }}$				直接支持㛵造物＊3		開接支特㛵造物＊＊			
		適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { 隹 } \end{aligned}$	適用莗进	$\begin{aligned} & \text { 耐震 } \\ & \end{aligned}$	適用触讲	$\begin{aligned} & \text { 而震 } \\ & \text { クラス } \end{aligned}$	適用緉囲		適用笙进	
sクラス			s	軣設備	S		$\begin{aligned} & \mathrm{s} \\ & \mathrm{~s} \end{aligned}$	- 原子炬本体の基礎 - 原子炬建屋 - 制卸建屋	$\begin{aligned} & \mathrm{Ss} \\ & \mathrm{~S} \\ & \mathrm{So} \end{aligned}$		$\begin{aligned} & \mathrm{So} \\ & \mathrm{So} \\ & \mathrm{~S} \text { s } \\ & \mathrm{So} \\ & \mathrm{So} \\ & \hline \end{aligned}$
	（ii）使用済燃料を眝蔵 するための施設	- 使用済燃料プール - 使用済燃料貯蔵ラック	s	－	－		s	－原子怇建屋	S s		$\begin{aligned} & \text { Sos } \\ & \mathrm{Sos} \\ & \mathrm{So} \\ & \mathrm{~S} \\ & \mathrm{So} \\ & \mathrm{So} \\ & \hline \end{aligned}$
	（iii）原子炉の緊急停止 のために急激に負の反応度を付加するた めの灺設及び原子炻 の停止状態を維持す るための施設		S		$\begin{aligned} & \hline \mathrm{S} \\ & \mathrm{~S} \\ & \mathrm{~S} \end{aligned}$		S		$\begin{aligned} & \hline \mathrm{Sos} \\ & \mathrm{Sos} \\ & \mathrm{So} \end{aligned}$		$\begin{aligned} & \hline \mathrm{Ss} \\ & \mathrm{~S} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \end{aligned}$
	（iv）原子炬停止後，炻心 から崩淕熱を除去す るための施設	 －残留熱悇去系（停止時 椧却モード運転に必 要な設備） －洽却水源としてのサブ レッションチェンバ	$\begin{aligned} & \hline \mathrm{s} \\ & \mathrm{~s} \\ & \mathrm{~s} \end{aligned}$	－当該施設の浍却采 （原子炉襕機冷却水 海水系考含む），高圧炬心スプレイ補悈冷却水系（高块炬ス プレイ襕戏浍却烸水系を含む） 炬心支持構造物 －非常用電源及U語1装設傏だイーゼル発系•補助施設を含き） 	$\begin{aligned} & \mathrm{S} \\ & \mathrm{~S} \end{aligned}$		s	- 原子炬建屋 - 海水ポンプ室 - 原子炬機器浍却烸水配 管ダクト - 軽油タンク室 - 軽油タンク連絡ダクト - 制御建屋	$\begin{aligned} & \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \\ & \mathrm{~S}_{\mathrm{s}} \\ & \mathrm{Ss} \\ & \mathrm{Ss} \end{aligned}$	- 海水ポンブ室門型クレーン - 槞巻篗ネット - 原子炉建屋クレーン - 実制俇空大井照明 - 耐扷陽壁 タービン建屋 - 補助ボイラー建屋 - 第1号機制销建屋 壁）	

第2．1．1表 耐震重要度分類表（2／6）

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \multirow[b]{2}{*}{胹震重要度
分
類} \& \multirow[b]{2}{*}{機能別分頑} \& \multicolumn{2}{|l|}{主要設備＊1} \& \multicolumn{2}{|l|}{補助設備＊2} \& \multicolumn{2}{|l|}{直接支持粠造物＊3} \& \multicolumn{2}{|l|}{間接支持構造物＊4} \& \multicolumn{2}{|l|}{\[
\begin{gathered}
\text { 波及的影響を } \\
\text { 考慮すべき施設 } \\
\hline
\end{gathered}
\]} \\
\hline \& \& 適用範囲 \& \[
\begin{aligned}
\& \text { 耐 震 } \\
\& \text { クラ }
\end{aligned}
\] \& 適用範囲 \& \[
\begin{aligned}
\& \text { 耐 震 } \\
\& \text { クラス }
\end{aligned}
\] \& 適用範囲 \& \[
\begin{aligned}
\& \text { 耐 震 } \\
\& \text { クラ }
\end{aligned}
\] \& 適用範囲 \& \[
\begin{aligned}
\& \text { 梌拥 } \\
\& \text { 地箽 }
\end{aligned}
\] \& 適用範囲 \& \[
\begin{aligned}
\& \text { 検拥 } \\
\& \text { 地需 }
\end{aligned}
\] \\
\hline \multirow[t]{3}{*}{Sクラス} \& （v）原子炬椧却林圧力 バウンダリ破損事故後，炉䐩壊熱を除去するための施設 \& \begin{tabular}{l}
－非常用炻椧却系 \\
1）高王炬心スプレイ系 \\
2）低王炬心スブレイ系 \\
3）残留熱除去系（低圧 \\
注水モード運転に必 \\
要な設備） \\
4）自動堿圧系 \\
－椧却水源としてのサプ \\
レッションチェンバ
\end{tabular} \& S \& \begin{tabular}{l}
－当該施設の椧却系 （原子炬補機冷却水系（原子炉補幾冷却海水系を含む引），高圧炬心スプレイ補機玲却系（高圧炬心スプ レイ補機洽却海水系 を含む）） \\
－非常用電源及ひ䛠装設備（ディーゼル発電機及びその泠却系•補助施設を含む） －中央制御空の遮敬及 ひ空調設備 －当該施設の機能維特 に必要な空傌備
\end{tabular} \& \begin{tabular}{l}
S \\
S S
\end{tabular} \& －機器•配管，電気計装設備等の支持構造物 \& S \& \begin{tabular}{l}
- 原子炬建屋 \\
- 海水ポンプ室 \\
- 原子炬機器呤却海水配管ダクト \\
- 軽油タンク室 \\
- 軽油タンク連絡ダクト \\
- 制御建屋
\end{tabular} \& \[
\begin{aligned}
\& \hline \mathrm{Ss} \\
\& \mathrm{Sos} \\
\& \mathrm{~S} \text { s } \\
\& \\
\& \mathrm{Ss} \\
\& \mathrm{Sos} \\
\& \mathrm{So}
\end{aligned}
\] \& \begin{tabular}{l}
- 海水ポンブ室門型クレーン \\
- 竜巻防護ネット \\
- 原子炉建屋クレーン \\
- 中央制御室天井照明 \\
- タービン建屋 \\
- 補助ボイラー建屋 \\
- 第 1 号機制御建屋 \\
- 防護設備（防潮堤（金融管式鉛直壁）
\end{tabular} \& \\
\hline \& （vi）原子炉泠却休圧力 バウンダリ破損事故 の際に，圧力障壁とな り放射性物質の放散 を直接防ぐための施設 \& －原子炬格納容器 －原子炬格納容器バウン ダリに属する配管•弁 \& \[
\begin{aligned}
\& \hline \text { S } \\
\& \text { S }
\end{aligned}
\] \& －鲖誰亣を閉とするた めに必要な電気計装設備 \& S \& －機器•配管，電気計装設備等の支持構造物 \& S \& \begin{tabular}{l}
- 原子炬建屋 \\
- 制御建屋
\end{tabular} \& \[
\begin{aligned}
\& \hline \mathrm{Ss} \\
\& \mathrm{~S}
\end{aligned}
\] \& \begin{tabular}{l}
- 原子炉ウェルカパー \\
- 中央制锒室天井照明 \\
- タービン建屋 \\
- 補助ボイラー建屋 \\
- 第 1 号機制迮建屋
\end{tabular} \& \[
\begin{aligned}
\& \hline \text { Ss } \\
\& \text { S s }
\end{aligned}
\] \\
\hline \& （vii）放射性物質の放出 を伴うような事故の際に，その外部放散を抑制するための施設 で上記（vi）以外の施設 \& \begin{tabular}{l}
－残留熱除去系（格納容 \\
器スブレイ椧却モー \\
ド連动に必要な設備） \\
- 可然性ガス濃度制组系 \\
- 原子炉建屋原子炋棟 \\
- 非常用ガス処理系及び \\
排気筒 \\
－原子炻格納容器圧力抑制装置（ベントヘッ \\
タ，ダウンカマ等） \\
－洽却水源としてのサプ
\end{tabular} \& \begin{tabular}{l}
S \\
S
S
S
S \\
S
\end{tabular} \& \& S
S

S \& －機器•配管，電気計装設備等の支持構造物 \& S \& \begin{tabular}{l}
- 原子炬建屋

- 海水ポンブ室

- 原子炬機器哈却海水配管ダクト

- 軽油タンク室

- 軽油タンク連絡ダクト

- 排気筒連絡ダクト

- 排気筒基礎

- 制御建屋

 \& \&

- 第1号機排気筒

- 海水ポンブ室門型クレーン

- 竜巻防護ネット

- 原子炉建屋クレーン

- 中央制御室天井照明

- タービン建屋

- 補助ボイラー建屋

- 第 1 号機制御建屋

- 防護設備（防潮堤（金滆管式鉛直壁）

\end{tabular} \& \[

$$
\begin{aligned}
& \hline \text { S s } \\
& \text { S s }
\end{aligned}
$$
\]

\hline
\end{tabular}

第2．1．1 表 耐震重要度分類表（4／6）

耐震重要度分 類	機能別分類	主要設備＊1		補助設備＊2		直接支持構造物＊3		間接支持構造物＊4	
		適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラ } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラ } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラ } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 梌討用 } \\ & \text { 地震動 } \end{aligned}$
B クラス	（i）原子炬冷却材圧 カバウンダリに直接接続されてい て，一次冷却材を内蔵しているか又 は内蔵し得る施設	－主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで）	B＊9	－	－	－機器•配管等の支持構造物	B＊9	- 原子炬建屋 - タービン建屋（主蒸気第二隔離弁から主蒸気止め弁まで の配管•弁を支持す る部分）	$\begin{aligned} & \mathrm{Sd} \\ & \mathrm{~S} d \end{aligned}$
		－主蒸気逃がし安全弁排気管	B＊10	－	－	－機器•配管等の支持構造物	B＊10	－原子炬建屋	S s
		$\begin{aligned} & \text { - 主蒸気系及び給水 } \\ & \text { •原子炉冷却材浄化 } \\ & \text { 采 } \end{aligned}$	$\begin{aligned} & \hline \text { B } \\ & \text { B } \end{aligned}$	－	－	－機器•配管等の支持構造物	B	- 原子炬建屋 - タービン建屋	$\begin{aligned} & \mathrm{S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$
	（ii）放射性廃棄物を内蔵している施設，ただし内蔵量 が少ない又は貯蔵方式により，その破損によって公衆 に与える放射線の影響が周辺監視区域外における年間 の線量限度に比べ十分に小さいもの は除く	$\begin{aligned} & \text { - 放射性噔裹物処理 } \\ & \text { 設備,ただし, C } \\ & \text { ラスに属するもの } \\ & \text { は除く } \end{aligned}$	B	－	－	－機器•配管等の支持構造物	B	- 原子炉建屋 - タービン建屋 - 焼却炉建屋 - サイトバンカ建屋	$\begin{aligned} & \hline \mathrm{S}_{B} \\ & \mathrm{~S}_{B} \\ & \mathrm{~S}_{B} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$

第2．1．1 表 耐震重要度分類表（5／6）

耐震重要度分類	機能別分類	主要設備＊1		補助設備＊2		直接支持構造物＊3		間接支持構造物＊4	
		適用範囲	$\begin{gathered} \text { 耐 震 } \end{gathered}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \\ & \text { クラス } \end{aligned}$	適用範囲	$\begin{aligned} & \text { 耐 震 } \end{aligned}$	適用範囲	検討用地震動
B クラス	（iii）放射性廃棄物以外の放射性物質に関連した施設で， その破損により，公衆及び従業員に過大な放射線被ば くを与える可能性 のある施設	－蒸気タービン，湿 分分離加熱器， 主復水器，給水加熱器及びその主要配管 - 復水浄化系 - 復水貯蔵タンク - 燃料プール泠却浄化系 －放射線低減効果の大きい遮蔽 －制御棒駆動水圧系 （放射性流体を内蔵する部分，ただ し，スクラム機能 に関するものを除 - 原子炉建屋クレー - 燃料取扱設備 - 制御棒貯蔵ラック	$\begin{aligned} & \text { B } \\ & \hline \\ & \text { B } \\ & \text { B } \\ & \text { B } \end{aligned}$	－	－	•機器•配管等の支持構造物	B	- 原子炬建屋 - タービン建屋 －タービンペデスタ ル －復水貯蔵タンク基礎	$\begin{aligned} & \mathrm{S}_{B} \\ & \mathrm{~S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$
	（iv）使用済燃料を泠却するための施設	－燃料プール冷却浄化系	B	－原子炬補機冷却水系（原子炉補機冷却海水系を含む） －電気計装設備	B	－機器•配管，電気計装設備等の支持構造物	B	- 原子炬建屋 - 海水ポンプ室 - 原子炬機器泠却海水配管ダクト	$\begin{aligned} & \mathrm{S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \\ & \mathrm{~S}_{\mathrm{B}} \end{aligned}$
	（ v ）放射性物質の放出を伴うような場合に，その外部放散を抑制するため の施設で， S クラス に属さない施設	－	－	－	－	－	－	－	－

第2．1．1表 耐震重要度分類表（6／6）

$\begin{aligned} & \text { 而震重要度 } \\ & \text { 分 類 } \end{aligned}$	機能別分類	主要設備＊1		補助設備＊2		直接文持構造物＊3		間接支持構造物＊${ }^{* 1}$	
		適用钝囲	$\begin{gathered} \text { 耐 震 } \\ ク ラ ラ \end{gathered}$	適用範囲	$\begin{gathered} \text { 耐 震 } \\ \text { クラ } \end{gathered}$	適用筒囲	$\begin{gathered} \text { 耐 震 } \\ ク ラ ラ ~ \end{gathered}$	適用範囲	
Cクラス		－原子炬再循睘流量制御装置 －制作此䛾駆動水圧系（S クラス及びBクラス に属さない部分）		－	－	－機器•配管，電気計装設備等の支持構造物	C	- 原子炬建屋 - 制御建屋	$\begin{aligned} & \hline \mathrm{S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \end{aligned}$
	（ii）放身性物質を内蔵 しているか，又はこれ に関連した施設でS クラス及びB クラス に属さない施設	- 試料採取系 - 固化装置より下流の固体廃寁物取扱い設備（貯蔵庫を含 む） - 雑固体系 - 新然料貯蔵設備 - その他	$\begin{aligned} & \hline \mathrm{C} \\ & \mathrm{C} \end{aligned}$ $\begin{aligned} & \mathrm{C} \\ & \mathrm{C} \\ & \mathrm{C} \\ & \hline \end{aligned}$	－	－	－機器•配管等の支持搆造物	C	- 原子炬建屋 - タービン建屋 - 搷抾戸建屋 - サイトバンカ建屋	$\begin{aligned} & \mathrm{S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \end{aligned}$
	（iii）放射線安全に関係 しない施設等	- 循澴水系 - タービン補幾朎却系 - 補助ボイラー - 消火系 - 開閉所，発電機，変圧器 －換気空調系（Sクラ スの換気空調系以外のもの） - タービン建屋クレー - 圧縮空気系 - その他		\square	－	－機器•配管，電気計装設備等の支持構造物	C	- 原子炉建屋 - 海水ポンプ室 - タービン建屋 - 制御建屋 - 当該施設に係る屋外 コンクリート構造物	$\begin{aligned} & \hline \mathrm{S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \\ & \mathrm{~S}_{\mathrm{C}} \end{aligned}$
		－地下水位低下設備	$C^{* 11}$	－電気計装設備	C＊11	－機器•配管，電気計装設備等の支持構造物	C＊＊	- 原子炬建屋 - 制值建屋 - 当該施設に係る屋外 コンクリート構造物	$\begin{aligned} & \text { S s } \\ & \text { S s } \\ & \text { S s } \end{aligned}$
		－屋外排水路（敷地側集水ピット（北側）北側排水路（防潮䐎横断部），出口側集水ピット（北瞕），敷地則集水ピット（南側），南則排水路（防潮堤㯖䉼部）及び出口側集水ピット（南側）	$C^{* 11}$	－	－	－	－	－	－

注記 $* 1$ ：主要設備とは，当該機能に直接的に関連する設備をいう。
＊2：補助設備とは，当該機能に間接的に関連し，主要設備の補助的役割を持つ設備をい う。
＊3：直接支持構造物とは，主要設備，補助設備に直接取り付けられる支持構造物又はこ れらの設備の荷重を直接的に受ける支持構造物をいう。
＊4：間接支持構造物とは，直接支持構造物から伝達される荷重を受ける構造物（建物•構築物，土木構造物）をいう。
＊5：波及的影響を考慮すべき施設とは，下位クラス施設のらち，その破損等によって上位クラス施設に波及的影響を及ぼすおそれのある施設をいう。
＊6： S s ：基準地震動 s s により定まる地震力 Sd：弾生設計用地震動S dにより定まる地震力 $\mathrm{S}_{\mathrm{B}}: ~ \mathrm{~B}$ クラス施設に適用される地震力 S_{c} ：Cクラス施設に適用される静的地震力
＊7：ほら酸水注入系は，安全機能の重要度を考慮して，Sクラスに準じて取り扱う。
＊ 8 ：原子炉圧力容器内部構造物は，炉内にあることの重要度を考慮して， S クラスに準 じて取り扱う。
＊9：Bクラスではあるが，弾性設計用地震動S d に対し破損しないことを確認する。
＊ 10 ：主蒸気逃がし安全弁排気管については，基準地震動 S s に対して破損しないことを確認することで，蒸気凝縮性能の信頼性を担保する。
＊11：C クラスではあるが，基淮地震動 s s に対し機能維持することを確認する。

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（2／18）

設備分類	定義	主要設備 （［ ］内は設計基準対象施設を兼ねる設備の耐震重要度分類）
1．常設而震重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	- 原子炉圧力容器 - 原子炉建屋ブローアウトパネル - 給水スパージャ - 残留熱除去系配管（原子炉圧力容器内部） - 高圧灲心スプレイ系配管（原子炉圧力容器内部） - 高圧炬心スプレイスパージャ - 差圧検出・ほう酸水注入系配管 （ティーよりN11ノズルまでの外管） －差圧検出・ほう酸水注入系配管 （原子炉圧力容器内部） －残留熱除去系熱交換器
		3．計測制御系統施設 - 制御棒［S］ - 制御棒駆動機構［S］ - 水圧制御ユニット（アキュムレータ） - 水圧制御ユニット（窒素容器）［S］ - ほう酸水注入系ポンプ［S］ - ほら酸水注入采貯蔵タンク［S］ - 起動領域モニタ［S］ - 出力領域モニタ［S］ - 高圧代替注水系ポンプ出口圧力 - 直流駆動低圧注水系ポンプ出口圧力 - 復水移送ポンプ出口圧力 - 残留熱除去系熱交換器出口温度［C］ - 高圧代替注水系ポンプ出口流量 - 残留熱除去系洗浄ライン流量（残留熱除去系へ ッドスプレイライン洗浄流量） －残留熱除去系洗浄ライン流量（残留熱除去系 B系格納容器冷却ライン洗浄流量） - 直流駆動低圧注水系ポンプ出口流量 - 原子炉圧力［S］ - 原子炉圧力（SA） - 原子炉水位（広帯域）［S］ - 原子炉水位（然料域）［S］ - 原子炉水位（SA 広帯域）

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（3／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の而震重要度分類）
1．常設耐震重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	- 原子炉水位（SA 燃料域） - 圧力抑制室圧力［S］ - 圧力抑制室内空気温度［S］ - サプレッションプール水温度［S］ - 格納容器内水素濃度（D／W） - 格納容器内水素濃度（S／C） - 復水貯蔵タンク水位 - 原子炉格納容器代替スプレイ流量 - 圧力抑制室水位 $[\mathrm{S}]$ - 関連配管［S］ - 関連弁［S］ - フィルタ装置出口水素濃度 - 原子炉圧力容器温度 - フィルタ装置入口圧力（広域帯） - フィルタ装置出口圧力（広域帯） - フィルタ装置水位（広域帯） - フィルタ装置水温度 - 高圧窒素ガス供給系 ADS 入口圧力 - 代替高圧窒素ガス供給系窒素ガス供給止め弁入口圧力 - 6－2F－1 母線電圧 - 6－2F－2 母線電圧 - 6－2C 母線電圧［S］ - 6－2D 母線電圧［S］ - 4－2C 母線電圧［S］ - 4－2D 母線電圧［S］ - 125 V 直流主母線 2 A 電圧［S］ - 125 V 直流主母線 2 B 電圧［S］ $\cdot 125 \mathrm{~V}$ 直流主母線 2A－1 電圧 - 125 V 直流主母線 $2 \mathrm{~B}-1$ 電圧 - 250 V 直流主母線電圧［S］ - 差圧検出・ほう酸水注入系配管 （ティーよりN11ノズルまでの外管） －差圧検出・ほう酸水注入系配管 （原子炉圧力容器内部）

管2．1．2表 重大事故等対処設備（主要設備）の設備分類（4／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の而震重要度分類）
1．常設而振重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	- 炬心支持構造物 - 原子炉圧力容器 - 主蒸気逃がし安全弁自動减圧機能用 アキュムレータ －主蒸気逃がし安全弁
		4．放射線管理施設 - 格納容器内雰囲気放射線モニタ（D／W）［S］ - 格納容器内雰囲気放射線モニタ（S／C）［S］ - フィルタ装置出口放射線モニタ - 耐圧強化ベント系放射線モニタ - 使用済閃料プール上部空間放射線モニタ（低線量） －使用済閃料プール上部空間放射線モニタ（高線量） - 中央制御室送風機［S］ - 中央制御室再循環送風機［S］ - 中央制御室排風機［S］ - 中央制御室再循環フィルタ装置［S］ - 中央制御室しやへい壁［S］ - 関連配管［S］
		5．原子炉格納施設 - 原子炉格納容器［S］ - 機器搬出入用ハッチ［S］ - 逃がし安全弁搬出入口［S］ - 制御棒駆動機構般出入口［S］ - サプレッションチェンバ出入口［S］ - 所員用エアロック［S］ - 配管貫通部［S］ - 電気配線貫通部［S］ - 真空破壊弁［S］ －ダウンカマ［S］ - ベント管［S］ - ベント管ベローズ $[\mathrm{S}]$ －ベントヘッダ［S］ - ドライウェルスプレイ管［S］ - サプレッションチェンバスプレイ管［S］ - 復水移送ポンプ

第2．1．2 表 重大事故等対処設備（主要設備）の設備分類（5／18）

設備分類	定義	主要設備 （［ ］内は設計基準対象施設を兼ねる設備の耐震重要度分類）
1．常設耐震重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	- 復水貯蔵タンク - フィルタ装置 - フィルタ装置出口側ラプチャディスク - 関連配管 - 関連弁 - 遠隔手動弁操作設備 - 遠隔手動弁操作設備遮蔽
		6．非常用電源設備 - 非常用ディーゼル発電設備軽油タンク［S］ - ガスタービン発電設備ガスタービン機関 - ガスタービン発電設備調速装置 - ガスタービン発電設備非常調速装置 - ガスタービン発電設備然料移送ポンプ - ガスタービン発電設備軽油タンク - ガスタービン発電設備然料小出槽 - 高圧炬心スプレイ系ディーゼル発電設備軽油 タンク - ガスタービン発電設備ガスタービン発電機 - ガスタービン発電設備ガスタービン発電機励磁装置 －ガスタービン発電設備ガスタービン発電機保護䋃電装置 - 緊急時対策所軽油タンク - 125 V 蓄電池 2 A 及び $2 \mathrm{~B}[\mathrm{~S}]$ - 125 V 代替蓄電池 - 250 V 蓄電池 - 関連配管［S］ - メタルクラッドスイッチギア（非常用） - メタルクラッドスイッチギア（高圧炉心スプレ イ系用） - パワーセンタ（非常用） - モータコントロールセンタ（非常用） - モータコントロールセンタ（高圧炬心スプレイ系用） - 動力変圧器（非常用） - 動力変圧器（高圧炉心スプレイ系用） - 460V 原子炉建屋交流電源切替盤（非常用） - 中央制御室 120 V 交流分電盤（非常用） - ガスタービン発電機接続盤 - メタルクラッドスイッチギア（緊急用）

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（6／18）

設備分類	定義	主要設備 （［ ］内は設計基準対象施設を兼ねる設備の耐震重要度分類）
1．常設耐震重要重大事故防止設備	常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能 を代替するもの	- 動力変圧器（緊急用） - パワーセンタ（緊急用） - モータコントロールセンタ（緊急用） - ガスタービン発電設備燃料移送ポンプ接続盤 - 460V 原子炉建屋交流電源切替盤（緊急用） - 120V 原子炉建屋交流電源切替盤（緊急用） - 中央制御室 120 V 交流分電盤（緊急用） - 125V 充電器 2 A 及び 2 B - 125V 直流主母線盤2A 及び2B - 125 V 直流主母線盤 $2 \mathrm{~A}-1$ 及び $2 \mathrm{~B}-1$ - 125 V 直流分電盤 $2 \mathrm{~A}-1,2 \mathrm{~A}-2,2 \mathrm{~A}-3,2 \mathrm{~B}-1,2 \mathrm{~B}-2$ 及 び2B－3 - 125 V 直流電源切替盤 2 A 及び 2 B - 125V 直流RCIC モータコントロールセンタ - 125 V 充電器 2 H - 125 V 直流主母線盤2H - 125 V 代替充電器 - 250 V 充電器 - 250 V 直流主母線盤 - メタルクラッドスイッチギア（緊急時対策所用） - 動力変圧器（緊急時対策所用） - モータコントロールセンタ（緊急時対策所用） - 105V 交流電源切替盤（緊急時対策所用） - 105V 交流分電盤（緊急時対策所用） - 120V 交流分電盤（緊急時対策所用） - 210 V 交流分電盤（緊急時対策所用） $\cdot 125 \mathrm{~V}$ 直流主母線盤（緊急時対策所用）
		7．補機駆動用燃料設備 - 非常用ディーゼル発電設備軽油タンク - 高圧灲心スプレイ系ディーゼル発電設備軽油 タンク - ガスタービン発電設備軽油タンク - 関連配管
		8．非常用取水設備 －貯留医［C］

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（7／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	1．核燃料物質の取扱及び貯蔵施設 －使用済然料プール （設計基準対象施設としてのみ第 1,2 号機共用） ［S］ －使用済燃料貯蔵ラック （設計基淮対象施設としてのみ第 1,2 号機共用） ［S］ - 制御棒•破損然料貯蔵ラック［S］ - 使用済然料プール水位／温度 （ガイドパルス式）［C］ －使用済然料プール水位／温度 (ヒートサーモ式) - 関連配管 - 使用済燃料プール監視カメラ
		2．原子炉冷却系統施設 －主蒸気逃がし安全弁自動减圧機能用 アキュムレータ［S］ - 主蒸気逃がし安全弁［S］ - 高圧代替注水系タービンポンプ - 復水貯蔵タンク - 復水移送ポンプ - 代替循環冷却ポンプ - 残留熱除去系ストレーナ - 原子炬補機冷却水サージタンク［S］ - 関連配管［S，B］ - 関連弁 - 炬心支持構造物 - 原子炉圧力容器 - 給水スパージャ - 残留熱除去系配管（原子炉圧力容器内部） - 残留熱除去系熱交換器 - 原子炉格納容器

笏212表 重大事故等対処設備（主要設備）の設備分類（8／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の而震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	3．計測制御系統施設 - ほう酸水注入系ポンプ［S］ - ほう酸水注入采貯蔵タンク［S］ - 高圧代替注水系ポンプ出口圧力 - 代替循環冷却ポンプ出口圧力 - 復水移送ポンプ出口圧力 - 残留熱除去系熱交換器入口温度［C］ - 高圧代替注水系ポンプ出口流量 - 残留熱除去系洗净ライン流量（残留熱除去系へ ッドスプレイライン洗浄流量） －残留熱除去系洗净ライン流量（残留熱除去系B系格納容器冷却ライン洗浄流量） - 代替循環冷却ポンプ出口流量 - 原子炉圧力［S］ - 原子炉圧力（SA） - 原子炉水位（広帯域）［S］ - 原子炉水位（燃料域）［S］ - 原子炉水位（SA 広帯域） - 原子炉水位（SA 燃料域） - ドライウェル圧力［S］ - 圧力抑制室圧力［S］ - ドライウェルレ温度［S］ - 圧力抑制室内空気温度［S］ - サプレッションプール水温度［S］ - 原子炉格納容器下部温度 - 格納容器内雰囲気酸素濃度［S］ - 格納容器内水素濃度（D／W） - 格納容器内水素濃度（S／C） - 格納容器内雰囲気水素濃度［S］ - 復水貯蔵タンク水位 - 原子炉格納容器代替スプレイ流量 - 原子炉格納容器下部注水流量 - 圧力抑制室水位［S］ - 原子炉格納容器下部水位

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（9／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の而震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	- ドライウェル水位 - 原子炉建屋内水素濃度 - 関連配管［S］ - 関連弁［S］ - 無線連絡設備（固定型）［C］ - 衛星電話設備（固定型）［C］ - 安全パラメータ表示システム（SPDS）［C］ - データ伝送設備［C］ - フィルタタ装置出口水素濃度 - 静的触媒式水素再結合装置動作監視装置 - 原子炉圧力容器温度 - フィルタ装置入口圧力（広帯域） - フィルタ装置出口圧力（広帯域） - フィルタ装置水位（広帯域） - フィルタ装置水温度 - 6－2F－1 母線電圧 - 6－2F－2 母線電圧 - 6－2C 母線電圧［S］ - 6－2D 母線電圧［S］ $\cdot 4-2 \mathrm{C}$ 母線電圧［S］ - 4－2D 母線電圧［S］ - 125 V 直流主母線 2 A 電圧［S］ - 125 V 直流主母線 2 B 電圧［S］ $\cdot 125 \mathrm{~V}$ 直流主母線 $2 \mathrm{~A}-1$ 電圧 - 125 V 直流主母線 2B－1 1 電圧 - 差圧検出・ほう酸水注入采配管 （ティーよりN11ノズルまでの外管） －差圧検出・ほう酸水注入采配管 （原子炉圧力容器内部） - 炉心支持構造物 - 原子炉圧力容器

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（10／18）

設備分類	定義	主要設備 （［ ］内は設計基漼対象施設を 兼ねる設備の而㹉震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	4．放射線管理施設 - 格納容器内雰囲気放射線モニタ（D／W）［S］ - 格納容器内雰囲気放射線モニタ（S／C）［S］ - フィルタ装置出口放射線モニタ - 使用済燃料プール上部空間放射線モニタ （低線量） －使用済燃料プール上部空間放射線モニタ （高線量） - 中央制御室送風機［S］ - 中央制御室再循環送風機［S］ - 中央制御室排風機［S］ - 中央制御室再循環フィルタ装置［S］ - 緊急時対策所非常用送風機 - 緊急時対策所非常用フィルタ装置 -2 次しゃへい壁（原子炉建屋原子炉等外壁（B］ - 補助しゃへい（原子炉建屋）［B］ - 補助しやへい（制御建屋）［B］ - 中央制御室しやへい壁［S］ - 中央制御室待避所遮蔽 - 緊急時対策所遮蔽 - 関連配管［S］
		5．原子炉格納施設 - 原子炉格納容器［S］ - 機器搬出入用ハッチ［S］ - 逃がし安全弁搬出入口［S］ - 制御棒駆動機構般出入口［S］ - サプレッションチェンバ出入口［S］ - 所員用エアロック［S］ - 配管貫通部［S］ - 電気配線貫通部［S］ - 原子炉建屋原子炉棟（二次格納施設） - 原子炉建屋大物般入口［S］ - 原子炉建屋エアロック［S］

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（11／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）
2．常設重大事故緩和設備	重大事故等対処設備のうち，重大事故 が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能 を有する設備であ って常設のもの	－真空破壊弁［S］ －ダウンカマ［S］ - ベント管［S］ - ベント管ベローズ $[\mathrm{S}]$ －ベントヘッダ［S］ - ドライウェルスプレイ管［S］ - サプレッションチェンバスプレイ管［S］ - 復水移送ポンプ - 代替循環冷却ポンプ - 復水貯蔵タンク - 残留熱除去系ストレーナ - 残留熱除去系熱交換器 - 高圧代替注水系タービンポンプ - ほう酸水注入系ポンプ - ほう酸水注入系貯蔵タンク - 非常用ガス処理系排風機［S］ - 静的触媒式水素再結合装置 - フィルタ装置 - フィルタ装置出口側ラプチャディスク - 関連配管［S］ - 関連弁 - 炉心支持構造物 - 原子炉圧力容器 - 残留熱除去系配管（原子炉圧力容器内部） - 給水スパージャ - 差圧検出・ほう酸水注入系配管（ティー よりN11ノズルまでの外管） －差圧検出・ほう酸水注入系配管（原子炉圧力容器内部） - 非常用ガス処理系空気乾燥装置 - 非常用ガス処理系フィルタ装置 - 排気筒 - 原子炉建屋ブローアウトパネル閉止装置 - 遠隔手動弁操作設備 - 遠隔手動弁操作設備遮蔽

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（12／18）

$\|$設備分類 2． 2常設重大事故緩 和設備

定義主要設備
（［ ］内は設計基準対象施設を
兼ねる設備の而搌重要度分類）

常設重 和設備

重大事故等対処設 6 ．非常用電源設備備のうち，重大事故 •非常用ディーゼル発電設備軽油タンク［S］ が発生した場合に ・ガスタービン発電設備ガスタービン機関 おいて，当該重大事 ・ガスタービン発電設備調速装置故の拡大を防止し，又はその影響を緩和するための機能和するための機能 を有する設備であ

- ガスタービン発電設備非常調速装置
- ガスタービン発電設備然料移送ポンプ って常設のもの
- ガスタービン発電設備軽油タンク
- ガスタービン発電設備燃料小出槽
- 高圧炉心スプレイ系ディーゼル発電設備軽油夕
- 高場
- ガスタービン発電設備ガスタービン発電機
- ガスタービン発電設備ガスタービン発電機励磁

装置
－ガスタービン発電設備ガスタービン発電機保護継電装置

- 緊急時対策所軽油タンク
- 然急时対策所軽油ダ 125 V 蓄電池 2 A 及び $2 \mathrm{~S}[\mathrm{~S}$
$\cdot 125 \mathrm{~V}$ 蓄電池 2 A 及び
$\cdot 125 \mathrm{~V}$ 代替蓄電池
- 125 V 代替蓄電池
－関連配管［S］
- 関連配管［S］
- メタルクラッドスイッチギア（非常用）
- メタルクラッドスイッチギア（高圧灲心スプレ

イ系用）

- パワーセンタ（非常用）
- モータコントロールセンタ（非常用）
- モータコントロールセンタ（高圧炉心スプレイ系用）
- 動力変圧器（非常用）
- 動力変圧器（高圧炬心スプレイ系用）
- 460V 原子炉建屋交流電源切替盤（非常用）
- 中央制御室 120 V 交流分電盤（非常用）
- ガスタービン発電機接続盤
- メタルクラッドスイッチギア（緊急用）
- 動力変圧器（緊急用）
- 動力変土器（緊急用）
- モータコントロールセンタ（緊急用）
- ガスタービン発電設備燃料移送ポンフ接続盤
- 460 V 原子炉建屋交流電源切替盤（緊急用）
- 120V 原子炉建屋交流電源切替盤（緊急用）
- 中央制御室 120 V 交流分電盤（緊急用）
- 125V 充電器 2 A 及び $2 B$

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（13／18）

2．常設重大事故緩 重大事故等対処設 •125V直流主母線盤 2 A 及び 2 B
備のうち，重大事故 •125V直流主母線盤 $2 A-1$ 及び $2 B-1$
が発生した場合に $\quad \cdot 125 \mathrm{~V}$ 直流分電盤 $2 \mathrm{~A}-1,2 \mathrm{~A}-2,2 \mathrm{~A}-3,2 \mathrm{~B}-1,2 \mathrm{~B}-2$ 及 おいて，当該重大事 び2B－3
故の拡大を防止し，•125V 直流電源切替盤 2 A 及び 2 B
又はその影響を緩 •125V直流RCICモータコントロールセンタ和するための機能 • 125 V 充電器 2 H
を有する設備であ •125V直流主母線盤2H
って常設のもの
-125 V 代替充電器
－125V 代替充電器
・メタルクラッドスイッチギア（緊急時対策所
－メタ
動力変圧器（緊急時文策所用）
－モータコントロールセンタ（緊急時対策所用）
105 V 交流電源切替盤（緊急時対策所用）

- 105V 交流分電盤（緊急時対策所用）
- 120V 交流分電盤（緊急時対策所用）
- 210 V 交流分電盤（緊急時対策所用）
- 125 V 直流主母線盤（緊急時対策所用）

7．補機駆動用燃料設備

- 非常用ディーゼル発電設備軽油タンク
- 高圧炉ふスプレイ系ディーゼル発電設備軽油

タンク

- ガスタービン発電設備軽油タンク
- 関連配管

8．非常用取水設備

- 貯留堰［C］
- 取水口［C
- 取水路［C］
- 海水ポンプ室［C

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（14／18）

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）
3．常設重大事故緩 和設備（設計基準拡張）	設計基準対象施設 のうち，重大事故等時に機能を期待す る設備であって，重大事故の拡大を防止し，又はその影響 を緩和するための機能を有する常設重大事故緩和設備以外の常設のもの	1．原子炉冷却系統施設 - 原子炬補機冷却水系熱交換器［S］ - 原子炉補機冷却水ポンプ［S］ - 原子炉補機泠却海水ポンプ［S］ - 原子炉補機冷却水サージタンク［ S$]$ - 原子炉補機泠却海水系ストレーナ［S］ - 関連配管［S］ 2．非常用電源設備 －非常用ディーゼル発電設備非常用ディーゼル機関［S］ - 非常用ディーゼル発電設備調速装置［S］ - 非常用ディーゼル発電設備非常調速装置［S］ - 非常用ディーゼル発電設備機関付清水ポンプ ［S］ - 非常用ディーゼル発電設備空気だめ（自動）［S］ - 非常用ディーゼル発電設備燃料デイタンク［S］ - 非常用ディーゼル発電設備然料移送ポンプ［S］ - 非常用ディーゼル発電設備非常用ディーゼル発電機［S］ - 非常用ディーゼル発電設備励磁装置［S］ - 非常用ディーゼル発電設備保護継電装置［S］ - 関連配管［S］ - 関連弁［S］

第2．1．2表 重大事故等対処設備（主要設備）の設備分類（15／18）
設備分類主要設備

双俯分類	定義	$\begin{array}{c}\text {（［］内は設計基準対象施設を } \\ \text { 兼ねる設備の耐震重要度分類）}\end{array}$

4．常設耐震重要重 常設重大事故防止 1．核燃料物質の取扱施設及び眝蔵施設
大事故防止設備 設備であって，耐震核燃料物質の取扱施設及び貯蔵施設
大事故防止設備 設備であって，而震
－使用済然料プール水位／温度（ガイドパル以外の常設重重要施設に属する
設計其淮事故対処

事故防止設備	$\begin{array}{l}\text { 設計基準事故対処 } \\ \text { 設備が有する機能 } \\ \text { を代替するもの以 }\end{array}$
供すの	

万式）［C］
使用済然料プール水位／温度（ヒートサー

外のもの

モ式）
－使用済然料プール監視カメラ
2．原子炉冷却系統施設
－関連配管
3．計測制御系統施設

- ドライウェル圧力［S］
- ドライウェル温度［S］
- 無線連絡設備（固定型）［C］
- 衛星電話設備（固定型）［C］

4．放射線管理施設
－ 2 次しやへい壁（原子炉建屋原子炉等外
壁（B］

- 補助しやへい（原子炉建屋）［B］
- 補助しやへい（制御建屋）［B］

5．非常用取水設備

- 取水口［C］
- 取水口［C］
- 取水路［C］
- 海水ポンプ室［C］

変更なし

\begin{tabular}{|c|c|c|c|}
\hline \& \multicolumn{3}{|r|}{変更前} \\
\hline \& \multicolumn{3}{|r|}{第2．1．2表 重大事故等対処設備（主要設備）の設備分類（16／18）} \\
\hline \& 設備分類 \& 定義 \& \begin{tabular}{l}
主要設備 \\
（［］内は設計基漼対象施設を兼ねる設備の耐震重要度分類）
\end{tabular} \\
\hline ®
\(=\)
\(=\)
\(\Theta\)
1
k

0

0 \& 5．常設重大事故防止設備（設計基準拡張） \& 設計基準対象施設 のうち，重大事故等時に機能を期待す る設備であって，重大事故の発生を防止する機能を有す る常設重大事故防止設備以外の常設 のもの \& | 1．原子炉冷却系統施設 |
| :--- |
| - 残留熱除去系熱交換器［S］ |
| - 残留熱除去系ポンプ［S］ |
| - 残留熱除去系ストレーナ［S］ |
| - ドライウェルスプレイ管 |
| - サプレッションチェンバスプレイ管 |
| - 高圧炉心スプレイ系ポンプ［S］ |
| - 復水貯蔵タンク |
| - 高圧炉心スプレイ系ストレーナ［S］ |
| - 低王炬心スプレイ系ポンプ［S］ |
| - 低圧炬心スプレイ系ストレーナ［S］ |
| - 原子炉隔融時冷却系ポンプ |
| - 原子炉補機冷却水系熱交換器［S］ |
| - 原子炉補機泠却水ポンプ［S］ |
| - 原子炉補機泠却海水ポンプ［S］ |
| - 原子炬補機泠却水系サージタンク［S］ |
| - 原子炉補機冷却海水系ストレーナ［S］ |
| - 高圧炬心スプレイ補機冷却水系熱交換器［S］ |
| - 高圧炬心スプレイ補機泠却水ポンプ［S］ |
| - 高圧炬心スプレイ補機泠却海水ポンプ［S］ |
| - 高圧炝心スプレイ補機冷却水系サージタンク ［S］ |
| －高圧烼心スプレイ補機冷却海水系ストレーナ |
| ［S］ |
| - 関連配管［S，B］ |
| - 関連弁［S］ |
| - 炉心支持構造物 |
| - 原子炉圧力容器 |
| - 原子炉格納容器 |
| －ジェットポンプ |
| －高圧炝心スプレイ采配管（原子炉圧力容器内部） |
| - 高圧灲心スプレイスパージャ |
| - 低圧炉心スプレイ系配管（原子炬圧力容器内部） |
| - 低圧灲心スプレイスパージャ |
| - 給水スパージャ |
| - 残留熱除去系配管（原子炉圧力容器内部） |

\hline
\end{tabular}

- 残留熱除去系熱交換
- 残留熱除去系ポンプ
- 残留熱除去系ストレーナ
- ドライウェルスプレイ管
- サブレッションチェンバスプレイ管
- 関連配管
- 関連弁

原子炉格納容器

5．非常用電源設備

－非常用ディーゼル発電設備非常用ディーゼル機関［S］

- 非常用ディーゼル発電設備調速装置［S］
- 非常用ディーゼル発電設備非常調速装置［S］
- 非常用ディーゼル発電設備機関付清水ポンプ ［S］
－非常用ディーゼル発電設備空気だめ（自動）［S］非常用ディーゼル発電設備燃料デイタンク［S］ －非常用ディーゼル発電設備然料移送ポンプ［S －非常用ディーゼル発電設備非常用ディーゼル発電機 si ．
－非常用ディーゼル発電設備厉磁装置［S］

設備分類	定義	主要設備 （［ ］内は設計基淮対象施設を兼ねる設備の耐震重要度分類）
5．常設重大事故防止設備（設計基準拡張）	設計基準対象施設 のうち，重大事故等時に機能を期待す る設備であって，重大事故の発生を防止する機能を有す る常設重大事故防止設備以外の常設 のもの	- 非常用ディーゼル発電設備保護継電装置［S］ - 高圧炬心スプレイ系ディーゼル発電設備高圧炬心スプレイ系ディーゼル機関［S］ －高圧炬心スプレイ系ディーゼル発電設備調速装置［S］ －高圧炬心スプレイ系ディーゼル発電設備非常調速装置［S］ －高圧炬心スプレイ系ディーゼル発電設備機関付清水ポンプ［S］ －高圧炬心スプレイ系ディーゼル発電設備空気 だめ（自動）［S］ －高圧炬心スプレイ系ディーゼル発電設備燃料 デイタンク［S］ －高圧炬心スプレイ系ディーゼル発電設備燃料移送ポンプ［S］ －高圧炬心スプレイ系ディーゼル発電設備軽油 タンク［S］ －高圧炉心スプレイ系ディーゼル発電設備高圧灲心スプレイ系ディーゼル発電機［S］ －高圧炉心スプレイ系ディーゼル発電設備励磁装置［S］ －高圧炬心スプレイ系ディーゼル発電設備保護継電装置［S］ - 125 V 蓄電池 $2 \mathrm{H}[\mathrm{S}]$ - 関連配管［S］ - 関連弁［S］ - 125 V 充電器 2 H $\cdot 125 \mathrm{~V}$ 直流分電盤 2 H

変更前	変更後
2.2 津波による損傷の防止 原子炉冷却系統施設の津波による損傷の防止の基本設計方針につい ては，浸水防護施設の基本設計方針に基づく設計とする。 2.3 外部からの衝撃による損傷の防止 設計基準対象施設は，外部からの衝撃のらち自然現象による損傷の防止において，発電所敷地で想定される風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮の自然現象 （地震及び津波を除く。）又は地震及び津波を含む自然現象の組合せに遭遇した場合において，自然現象そのものがもたらす環境条件及びその結果として施設で生じ得る環境条件において，その安全性を損なうおそ れがある場合は，防護措置，基礎地盤の改良その他，供用中における運転管理等の運用上の適切な措置を講じる。 地震及び津波を含む自然現象の組合せについて，火山については積雪 と風（台風），基準地震動 S s については積雪，基準津波については弾性設計用地震動 S d と積雪の荷重を，施設の形状及び配置に応じて考慮 する。 地震，津波と風（台風）の組合せについても，風荷重の影響が大きい と考えられるような構造や形状の施設については，組合せを考慮する。組み合わせる積雪深の大きさは，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測された月最深積雪の最大値である 43 cm と し，風速の大きさは「建築基準法」を準用して基準風速 $30 \mathrm{~m} / \mathrm{s}$ とする。組み合わせる積雪深は，地震及び津波と組み合わせる場合は，「建築基準法」に定められた平均的な積雪荷重を与えるための係数 0.35 を考	2.2 津波による損傷の防止 変更なし 2.3 外部からの衝撃による損傷の防止変更なし

変更前	変更後
慮する。 設計基準対象施設は，外部からの衝撃のらち人為による損傷の防止に おいて，発電所敷地又はその周辺において想定される爆発，近隣工場等 の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び電磁的障害 により発電用原子炉施設の安全性を損なわせる原因となるおそれがあ る事象であって人為によるもの（故意によるものを除く。）（以下「人為事象」という。）に対してその安全性が損なわれないよう，防護措置又 は対象とする発生源から一定の距離を置くことによる適切な措置を講 じる。 想定される人為事象のうち，飛来物（航空機落下）については，防護設計の要否を判断する基準を超えないことを評価して設置（変更）許可 を受けている。工事計画認可申請時に，設置（変更）許可申請時から，防護設計の要否を判断する基準を超えるような航空路の変更がないこ とを確認していることから，設計基準対象施設に対して防護措置その他適切な措置を講じる必要はない。 なお，定期的に航空路の変更状況を確認し，防護措置の要否を判断す ることを保安規定に定めて管理する。 航空機落下及び爆発以外に起因する飛来物については，発電所周辺の社会環境からみて，発生源が設計基準対象施設から一定の距離が確保さ れており，設計基準対象施設が安全性を損ならおそれがないため，防護措置その他の適切な措置を講じる必要はない。 また，想定される自然現象（地震及び津波を除く。）及び人為事象に対する防護措置には，設計基準対象施設が安全性を損なわないために必要な設計基準対象施設以外の施設又は設備等（重大事故等対処設備を含	

	変更前	変更後
	む。）への措置を含める。 重大事故等対処設備は，外部からの衝撃による損傷の防止において，想定される自然現象（地震及び津波を除く。）及び人為事象に対して， 「5．1．2 多様性，位置的分散等」及び「5．1．5 環境条件等」の基本設計方針に基づき，必要な機能が損なわれることがないよう，防護措置そ の他の適切な措置を講じる。 設計基準対象施設又は重大事故等対処設備に対して講じる防護措置 として設置する施設は，その設置状況並びに防護する施設の耐震重要度分類及び重大事故等対処施設の設備分類に応じた地震力に対し構造強度を確保し，外部からの衝撃を考慮した設計とする。	
	2．3．1 外部からの衝撃より防護すべき施設 設計基準対象施設が外部からの衝撃によりその安全性を損なう ことがないよう，外部からの衝撃より防護すべき施設は，設計基準対象施設のうち，「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されているクラス 1 ，クラス 2 及び安全評価上その機能に期待するクラス 3 に属する構築物，系統及び機器（以下「外部事象防護対象施設」という。）とする。また，外部事象防護対象施設の防護設計については，外部からの衝撃により外部事象防護対象施設に波及的影響を及ぼすおそれのある外部事象防護対象施設以外の施設についても考慮する。さらに，重大事故等対処設備についても，重大事故防止設備が，設計基準事故対処設備並びに使用済燃料貯蔵槽（使用済燃料プール）の泠却設備及び注水設備（以下「設計基準事故対処設備等」という。）の安全機能と	2．3．1 外部からの衝撃より防護すべき施設変更なし

変更前	変更後
屋外に設置されている外部事象防護対象施設については，設計基準事故が発生した場合でも，機器の運転圧力や温度等が変わらない ため，設計基準事故時荷重が発生するものではなく，自然現象（地震及び津波を除く。）による衝撃と重なることはない。 屋外に設置される重大事故等対処設備について，竜巻に対しては位置的分散を考慮した配置とするなど，重大事故等が発生した場合 でも，重大事故等時の荷重と自然現象（地震及び津波を除く。）に よる衝撃を同時に考慮する必要のない設計とする。 したがって，自然現象（地震及び津波を除く。）による衝撃と設計基準事故又は重大事故等時の荷重は重なることのない設計とす る。 2．3．3 設計方針 外部事象防護対象施設及び重大事故等対処設備は，以下の自然現象（地震及び津波を除く。）及び人為事象に係る設計方針に基づき設計する。 自然現象（地震及び津波を除く。）のうち森林火災，人為事象の らち爆発，近隣工場等の火災，危険物を搭載した車両及び有毒ガス の設計方針については「c．外部火災」の設計方針に基づき設計す る。 なお，危険物を搭載した車両については，近隣工場等の火災及び有毒ガスの中で取り扱う。 （1）自然現象 a．竜巻	2．3．3 設計方針 変更なし

外部事象防護対象施設は，竜巻防護に係る設計時に，設置（変更）許可を受けた最大風速 $100 \mathrm{~m} / \mathrm{s}$ の竜巻（以下「設計竜巻」と いう。）が発生した場合について竜巻より防護すべき施設に作用 する荷重を設定し，外部事象防護対象施設が安全機能を損なわな いよう，それぞれの施設の設置状況等を考慮して影響評価を実施 し，外部事象防護対象施設が安全機能を損ならおそれがある場合 は，影響に応じた防護措置その他の適切な措置を講じる設計とす る。

また，重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置することにより，設計基準事故対処設備等 の安全機能と同時にその機能を損なわない設計とする。

さらに，外部事象防護対象施設に波及的影響を及ぼす可能性が ある施設の影響及び竜巻の随伴事象による影響について考慮し た設計とする。

なお，定期的に新知見の確認を行い，新知見が得られた場合に評価を行うことを保安規定に定めて管理する。
（a）影響評価における荷重の設定
構造強度評価においては，風圧力による荷重，気圧差による荷重及び飛来物の衝撃荷重を組み合わせた設計竜巻荷重並び に竜巻以外の荷重を適切に組み合わせた設計荷重を設定する。風圧力による荷重及び気圧差による荷重としては，設計竜巻 の特性値に基づいて設定する。

飛来物の衝撃荷重としては，設置（変更）許可を受けた設計

	変更前	変更後
$$	飛来物である鋼製材（長さ $4.2 \mathrm{~m} \times$ 幅 $0.3 \mathrm{~m} \times$ 高さ 0.2 m ，質量 135 kg ，飛来時の水平速度 $46.6 \mathrm{~m} / \mathrm{s}$ ，飛来時の鉛直速度 $16.7 \sim$ $34.7 \mathrm{~m} / \mathrm{s}) ~ よ り も$ 運動エネルギ又は貫通力が大きな重大事故等対処設備，資機材等は設置場所及び障害物の有無を考慮し，固縛，固定又は外部事象防護対象施設等からの離隔を実施するこ と，並びに車両については入構管理及び退避を実施することに より飛来物とならない措置を講じることから，設計飛来物が衝突する場合の荷重を設定することを基本とする。さらに，設計飛来物に加えて，竜巻の影響を考慮する施設の設置状況その他環境状況を考慮し，評価に用いる飛来物の衝突による荷重を設定する。 なお，飛来した場合の運動エネルギ又は貫通力が設計飛来物 である鋼製材よりも大きな重大事故等対処設備，資機材等につ いては，その保管場所，設置場所及び障害物の有無を考慮し，外部事象防護対象施設，飛来物の衝突により外部事象防護対象施設の安全機能を損なわないよう設置する防護措置（以下「防護対策施設」という。）及び外部事象防護対象施設を内包する施設に衝突し，外部事象防護対象施設の機能に影響を及ぼす可能性がある場合には，固縛，固定又は外部事象防護対象施設等 からの離隔によって，浮き上がり又は横滑りにより外部事象防護対象施設の機能に影響を及ぼすような飛来物とならない設計とする。 重大事故等対処設備，資機材等の固縛，固定又は外部事象防護対象施設からの離隔を実施すること，並びに車両について	

は，入構管理及び退避を実施することを保安規定に定めて管理 する。
（b）竜巻に対する影響評価及び竜巻防護対策
屋外の外部事象防護対象施設は，安全機能を損なわないよ う，設計荷重に対して外部事象防護対象施設の構造強度評価を実施し，要求される機能を維持する設計とすることを基本とす る。

屋内の外部事象防護対象施設については，設計荷重に対して安全機能を損なわないよう，外部事象防護対象施設を内包する施設により防護する設計とすることを基本とし，外気と繋がっ ている屋内の外部事象防護対象施設及び建屋等による飛来物 の防護が期待できない屋内の外部事象防護対象施設は，加わる おそれがある設計荷重に対して外部事象防護対象施設の構造強度評価を実施し，安全機能を損なわないよう，要求される機能を維持する設計とすることを基本とする。
外部事象防護対象施設の安全機能を損なうおそれがある場合には，防護措置その他の適切な措置を講じる設計とする。
屋外の重大事故等対処設備は，竜巻による風圧力による荷重 に対し，設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を考慮した配置とすることに より，重大事故等に対処するために必要な機能を有効に発揮す る設計とする。

また，屋外の重大事故等対処設備は，その保管場所及び設置場所を考慮し，外部事象防護対象施設及び防護対策施設に衝突

	変更前	変更後
$\begin{aligned} & \omega \\ & \stackrel{1}{\rightleftharpoons} \\ & \stackrel{1}{\perp} \\ & \mapsto \end{aligned}$	し，外部事象防護対象施設の機能に影響を及ぼす可能性がある場合には，浮き上がり若しくは横滑りを拘束することにより，飛来物とならない設計とする。ただし，浮き上がり又は横滑り を拘束する車両の重大事故等対処設備のうち，地震時の移動等 を考慮して地震後の機能を維持する設備は，重大事故等に対処 するために必要な機能を損なわないよう，余長を有する固縛で拘束する。 屋内の重大事故等対処設備は，竜巻による風圧力による荷重 に対し，設計基準事故対処設備等の安全機能と同時に重大事故等に対処するために必要な機能を損なわないように，重大事故等対処設備を内包する施設により防護する設計とすることを基本とする。 防護措置として設置する防護対策施設としては，竜巻防護ネ ット（ネット（金網部）（硬鋼線材：線径 $\phi 4 \mathrm{~mm}$ ，網目寸法 50 mm及び 40 mm ），防護板（炭素鋼：板厚 8 mm 以上）及び支持部材に より構成する。）及び竜巻防護鋼板（防護鋼板（炭素鋼：板厚 8 mm 以上）及び架構により構成する。）を設置し，内包する外部事象防護対象施設の機能を損なわないよう，外部事象防護対象施設の機能喪失に至る可能性のある飛来物が外部事象防護対象施設に衝突することを防止する設計とする。防護対策施設 は，地震時において外部事象防護対象施設に波及的影響を及ぼ さない設計とする。 外部事象防護対象施設及び重大事故等対処設備を内包する施設については，設計荷重に対する構造強度評価を実施し，内	

	変更前	変更後
$\begin{aligned} & \underset{\sim}{\underset{\sim}{\oplus}} \\ & \underset{\sim}{\infty} \end{aligned}$	包する外部事象防護対象施設及び重大事故等対処設備の機能 を損なわないよう，飛来物が内包する外部事象防護対象施設及 び重大事故等対処設備に衝突することを防止可能な設計とす ることを基本とする。飛来物が内包する外部事象防護対象施設及び重大事故等対処設備に衝突し，その機能を損なうおそれが ある場合には，防護措置その他の適切な措置を講じる設計とす る。 また，外部事象防護対象施設及び重大事故等対処設備は，設計荷重により，機械的及び機能的な波及的影響により機能を損 なわない設計とする。外部事象防護対象施設に対して，重大事故等対処設備を含めて機械的な影響を及ぼす可能性がある施設は，設計荷重に対し，当該施設の倒壊，損壊等により外部事象防護対象施設に損傷を与えない設計とする。当該施設が機能喪失に陥った場合に外部事象防護対象施設も機能喪失させる機能的影響を及ぼす可能性がある施設は，設計荷重に対し，必要な機能を維持する設計とすることを基本とする。 海水ポンプ室門型クレーンは，竜巻の襲来が予測される場合 には，クレーン作業を中止し，外部事象防護対象施設に影響を及ぼさない停留位置へ固定を行う運用等を保安規定に定めて管理する。 竜巻随伴事象を考慮する施設は，過去の竜巻被害の状況及び発電所における施設の配置から竜巻の随伴事象として想定さ れる火災，溢水及び外部電源喪失による影響を考慮し，竜巻の随伴事象に対する影響評価を実施し，外部事象防護対象施設及	

	変更前	変更後
$\begin{aligned} & \omega \\ & \stackrel{1}{\rightleftharpoons} \\ & \stackrel{1}{\infty} \\ & \infty \end{aligned}$	び重大事故等対処設備に竜巻による随伴事象の影響を及ぼさ ない設計とする。竜巻随伴による火災に対しては，火災による損傷の防止における想定に包絡される設計とする。また，竜巻随伴による溢水に対しては，溢水による損傷の防止における溢水量の想定に包絡される設計とする。さらに，竜巻随伴による外部電源喪失に対しては，非常用ディーゼル発電機による電源供給が可能な設計とする。 b．火山 外部事象防護対象施設は，発電所の運用期間中において発電所 の安全性に影響を及ぼし得る火山事象として設置（変更）許可を受けた降下火砕物の特性を設定し，その降下火砕物が発生した場合においても，外部事象防護対象施設が安全機能を損ならおそれ がない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。 なお，定期的に新知見の確認を行い，新知見が得られた場合に評価することを保安規定に定めて管理する。 （a）防護設計における降下火砕物の特性の設定 設計に用いる降下火砕物は，設置（変更）許可を受けた層厚 15 cm ，粒径 2 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態）$\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）と設定する。 （b）降下火砕物に対する防護対策	

降下火砕物の影響を考慮する施設は，降下火砕物による「直接的影響」及び「間接的影響」に対して，以下の適切な防護措置を講じることで安全機能を損ならおそれがない設計とする。 イ．直接的影響に対する設計方針
（イ）構造物への荷重
外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のうち，屋外に設置してい る施設及び外部事象防護対象施設を内包する施設につい て，降下火砕物が堆積しやすい構造を有する場合には荷重 による影響を考慮する。

これらの施設については，降下火砕物を除去することに より，降下火砕物による荷重並びに火山と組み合わせる積雪及び風（台風）の荷重を短期的な荷重として考慮し，機能を損ならおそれがないよう構造健全性を維持する設計 とする。
なお，降下火砕物が長期的に堆積しないよう当該施設に堆積する降下火砕物を適宜除去することを保安規定に定 めて管理する。

屋内の重大事故等対処設備については，降下火砕物によ る短期的な荷重により機能を損なわないように，降下火砕物による組合せを考慮した荷重に対し安全裕度を有する建屋内に設置する設計とする。

屋外の重大事故等対処設備については，降下火砕物によ る荷重により機能を損なわないように，降下火砕物を適宜

変更前

除去することにより，設計基準事故対処設備等の安全機能 と同時に重大事故等対処設備の重大事故等に対処するた めに必要な機能が損なわれるおそれがない設計とする。 なお，降下火砕物により必要な機能を損ならおそれがな いよう屋外の重大事故等対処設備に堆積する降下火砕物 を適宜除去することを保安規定に定めて管理する。
（ロ）閉塞
i．水循環系の閉塞
外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，降下火砕物を含む海水の流路となる施設については，降下火砕物に対 し，機能を損ならおそれがないよう，降下火砕物の粒径 に対し十分な流路幅を設けることにより，水循環系の狭隘部が閉塞しない設計とする。
ii．換気系，電気系及び計測制御系に対する機械的影響 （閉塞）

外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，非常用ディー ゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含 む。）は，吸気口上流側の外気取入口にルーバを設置し，下側から吸い込む構造とすることにより，降下火砕物が流路に侵入しにくい設計とする。排気筒及び非常用ガス処理系（屋外配管）は，排気筒の排気により降下火砕物 を侵入し難くすることで排気流路が閉塞しない設計と

	変更前	変更後
$\begin{aligned} & \underset{\sim}{1} \\ & \stackrel{1}{\rightleftharpoons} \\ & \stackrel{\infty}{0} \end{aligned}$	する。 また，外気を取り入れる非常用換気空調系（外気取入 ロ）及び非常用ディーゼル発電機（高圧炉心スプレイ系 ディーゼル発電機を含む。）の空気の流路にそれぞれバ グフィルタを設置することにより，フィルタメッシュよ り大きな降下火砕物が内部に侵入しにくい設計とし，更 に降下火砕物がフィルタに付着した場合でも取替え又 は清掃が可能な構造とすることで，降下火砕物により閉塞しない設計とする。 非常用ディーゼル機関及び高圧炉心スプレイ系ディ ーゼル機関は，フィルタを通過した小さな粒径の降下火砕物が侵入した場合でも，降下火砕物により閉塞しない設計とする。 非常用換気空調系（外気取入口）以外の降下火砕物を含む空気の流路となる換気系，電気系及び計測制御系の施設についても，降下火砕物に対し，機能を損ならおそ れがないよう，降下火砕物が侵入しにくい構造，又は降下火砕物が侵入した場合でも，降下火砕物により流路が閉塞しない設計とする。 なお，降下火砕物により閉塞しないよう外気取入ダン パの閉止，換気空調系の停止又は事故時運転モードへ切替えることを保安規定に定めて管理する。 （八）摩耗 i．水循環系の内部における摩耗	

変更前	変更後
外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，降下火砕物を含む海水の流路となる施設の内部における摩耗につい ては，主要な降下火砕物は砂と同等又は砂より硬度が低 くもろいことから，摩耗による影響は小さい。また当該施設については，定期的な内部点検及び日常保守管理に より，状況に応じて補修が可能であり，摩耗により外部事象防護対象施設の安全機能を損なわない設計とする。 ii ．換気系，電気系及び計測制御系に対する機械的影響 （摩耗） 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，降下火砕物を含む空気を取り込みかつ摺動部を有する換気系，電気系及び計測制御系の施設については，降下火砕物に対し，機能を損なうおそれがないよう，降下火砕物が侵入しに くい構造とすること又は摩耗しにくい材料を使用する ことにより，摩耗しにくい設計とする。 なお，摩耗が進展しないようバグフィルタの取替え又 は清掃すること等を保安規定に定めて管理する。 （二）腐食 i．構造物の化学的影響（腐食） 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，屋外に設置し ている施設及び外部事象防護対象施設を内包する施設	

については，降下火砕物に対し，機能を損ならおそれが ないよう，耐食性のある材料の使用又は塗装を実施する ことにより，降下火砕物による短期的な腐食が発生しな い設計とする。
なお，長期的な腐食の影響については，日常保守管理等により，状況に応じて補修が可能な設計とする。

屋内の重大事故等対処設備については，降下火砕物に よる短期的な腐食により機能を損なわないように，耐食性のある塗装を実施した建屋内に設置する設計とする。屋外の重大事故等対処設備については，降下火砕物を適宜除去することにより，降下火砕物による腐食に対し て，設計基準事故対処設備等の安全機能と同時に重大事故等対処設備の重大事故等に対処するために必要な機能が損なわれるおそれがない設計とする。

なお，降下火砕物により腐食の影響が生じないよう，屋外の重大事故等対処設備に堆積する降下火砕物を適宜除去することを保安規定に定めて管理する。
ii．水循環系の化学的影響（腐食）
外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，降下火砕物を含む海水の流路となる施設については，降下火砕物に対 し，機能を損なうおそれがないよう，耐食性のある材料 の使用又は塗装等を実施することにより，降下火砕物に よる短期的な腐食が発生しない設計とする。

変更前	変更後
なお，長期的な腐食の影響については，日常保守管理等により，状況に応じて補修が可能な設計とする。 iii．換気系，電気系及び計測制御系に対する化学的影響 （腐食） 外部事象防護対象施設等及び外部事象防護対象施設等に波及的影響を及ぼし得る施設のうち，降下火砕物を含む空気の流路となる換気系，電気系及び計測制御系の施設については，降下火砕物に対し，機能を損ならおそ れがないよう，耐食性のある材料の使用又は塗装を実施 することにより，降下火砕物による短期的な腐食が発生 しない設計とする。 なお，長期的な腐食の影響については，日常保守管理等により，状況に応じて補修が可能な設計とする。 （ホ）発電所周辺の大気汚染 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のらち，中央制御室換気空調系については，降下火砕物に対し，機能を損なうおそれ がないよう，バグフィルタを設置することにより，降下火砕物が中央制御室に侵入しにくい設計とする。 また，中央制御室換気空調系については，外気取入ダン パの閉止及び事故時運転モードとすることにより，中央制御室内への降下火砕物の侵入を防止する。さらに外気取入遮断時において，酸素濃度及び二酸化炭素濃度の影響評価 を実施し，室内の居住性を確保する設計とする。	

Abstract

変更前 降下火砕物による中央制御室の大気汚染を防止す るよう事故時運転モードへの切替え等を保安規定に定め て管理する。 （へ）絶縁低下 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のうち，空気を取り込む機構を有する電気系及び計測制御系の盤については，降下火砕物に対し，機能を損なうおそれがないよう，計測制御用電源設備（無停電電源装置）及び非常用所内電気設備（所内低圧系統）の設置場所の非常用換気空調系にバグフィル夕を設置することにより，降下火砕物が侵入しにくい設計 とする。 なお，降下火砕物による電気系及び計測制御系の盤の絶縁低下を防止するようバグフィルタの取替え又は清掃す ることを保安規定に定めて管理する。 ロ．間接的影響に対する設計方針 降下火砕物による間接的影響である長期（7日間）の外部電源喪失及び発電所外での交通の途絶によるアクセス制限事象に対し，原子炉及び使用済燃料プールの安全性を損なわ ないようにするために， 7 日間の電源供給が継続できるよ う，非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼ ル発電機を含む。）の燃料を貯蔵するための軽油タンク及び燃料を移送するための燃料移送ポンプ等を降下火砕物の影響を受けないよう設置する設計とする。

変更後

	変更前	変更後
	取扱所及び危険物を内包する貯蔵設備以外の設備（以下「危険物貯蔵施設等」という。）の火災•爆発，航空機致落による火災及び敷地内の危険物貯蔵施設等の火災と航空機墜落による火災が同時に発生した場合の重畳火災を想定し，火災源からの外部事象防護対象施設への熱影響を評価する。 なお，発電所敷地内には屋外で爆発する可能性のある設備を設置していないことからガス爆発によって評価対象施設の安全機能が損なわれることはない。 外部事象防護対象施設の評価条件を以下のように設定し，評価する。評価結果より火災源ごとに輻射強度，燃焼継続時間等 を求め，外部事象防護対象施設を内包する建屋（垂直外壁面及 び天井スラブから選定した，火災の輻射に対して最も厳しい箇所）の表面温度が許容温度（ $200^{\circ} \mathrm{C}$ ）となる危険距離及び屋外 の外部事象防護対象施設の温度が許容温度（排気筒の表面温度 $325^{\circ} \mathrm{C}$ 並びに復水貯蔵タンクの貯留水を使用する補給水系の系統最高使用温度 $66^{\circ} \mathrm{C}$ 並びに原子炉補機冷却海水ポンプの冷却空気温度を上部軸受の機能維持に必要な $40^{\circ} \mathrm{C}$ 及び下部軸受の機能維持に必要な $55^{\circ} \mathrm{C}$ 並びに高圧炉心スプレイ補機冷却海水 ポンプの泠却空気温度を上部軸受及び下部軸受の機能維持に必要な温度である $55^{\circ} \mathrm{C}$ ）となる危険距離を算出し，その危険距離を上回る離隔距離を碓保する設計，又は建屋表面温度及び屋外の外部事象防護対象施設の温度を算出し，その温度が許容温度を満足する設計とする。 －森林火災については，発電所周辺の植生を碓認し，作成した	

植生データ等を基に求めた防火帯の外縁（火災側）における火炎輻射発散度（建屋及び復水貯蔵タンク評価においては $477 \mathrm{~kW} / \mathrm{m}^{2}$ ，排気筒評価においては $367 \mathrm{~kW} / \mathrm{m}^{2}$ ，その他評価にお いては $408 \mathrm{~kW} / \mathrm{m}^{2}$ ）を用いて危険距離を求め評価する。
－発電所敷地内に設置する危険物貯蔵施設等の火災について は，貯蔵量等を勘案して火災源ごとに建屋表面温度及び屋外 の外部事象防護対象施設の温度を求め，評価する。

また，燃料補充用のタンクローリ火災が発生した場合の影響については，燃料補充時は監視人が立会を実施することを保安規定に定めて管理し，万一の火炏発生時は速やかに消火活動が可能とすることにより，外部事象防護対象施設に影響 がない設計とする。
－航空機墜落による火災については，「実用発電用原子炉施設 への航空機落下確率の評価基準について」（平成 $21 \cdot 06$ •25原院第 1 号（平成 21 年 6 月 30 日原子力安全•保安院一部改正））により墜落確率が 10^{-7}（回／炉•年）となる面積及び離隔距離を算出し，外部事象防護対象施設への影響が最も厳 しくなる地点で火災が起こることを想定し，建屋表面温度及 び屋外の外部事象防護対象施設の温度を求め，評価する。
－敷地内の危険物貯蔵施設等の火災と航空機墜落火災の重畳 については，各々の火災の評価条件により算出した輻射強度，燃焼継続時間等により，外部事象防護対象施設の受熱面 に対し，最も厳しい条件となる火災源と外部事象防護対象施設を選定し，建屋表面温度及び屋外の外部事象防護対象施設

変更前	変更後
の温度を求め評価する。 （c）発電所敷地外の火災•爆発源に対する設計方針 発電所敷地外での火災•爆発源に対して，必要な離隔距離を確保することで，外部事象防護対象施設の安全機能を損なわな い設計とする。 －発電所敷地外 10 km 以内の範囲において，火災により発電用原子炉施設に影響を及ぼすような石油コンビナート施設は存在しないため，火災による発電用原子炉施設への影響につ いては考慮しない。 －発電所敷地外半径 10 km 以内の産業施設，燃料輸送車両及び漂流船舶の火災については，外部事象防護対象施設を内包す る建屋（垂直外壁面及び天井スラブから選定した，火災の輻射に対して最も厳しい箇所）の表面温度が許容温度となる危険距離及び屋外の外部事象防護対象施設の温度が許容温度 となる危険距離を算出し，その危険距離を上回る離隔距離を確保する設計とする。 なお，漂流船舶の火災については，発電所敷地外半径 10 km を主要航路とする船舶が存在しないことから，発電所内の港湾施設に入港する船舶の中で燃料の積載量が最大である船舶の火災を想定する。 －発電所敷地外半径 10 km 以内の産業施設，燃料輸送車両及び漂流船舶の爆発については，ガス爆発の爆風圧が 0.01 MPa と なる危険限界距離を算出し，その危険限界距離を上回る離隔距離を確保する設計とする。また，ガス爆発による容器破損	

変更前	変更後
発電機を含む。） 非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）については，フィルタを設置することによ りばい煙が侵入しにくい設計とする。 また，ばい煙が侵入したとしてもばい煙が流路に溜まりに くい構造とし，ばい煙により閉塞しない設計とする。 二．原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水ポンプ 原子炉補機冷却海水ポンプ用電動機及び高圧炉心スプレ イ補機冷却海水ポンプ用電動機については，モータ部を全閉構造とすることにより，ばい煙により閉塞しない設計とす る。 原子炉補機冷却海水ポンプ用電動機の空気冷却部は，ばい煙が侵入した場合においてもばい煙が流路に溜まりにくい構造とし，ばい煙により閉塞しない設計とする。 （e）有毒ガスに対する設計方針 外部火災起因を含む有毒ガスが発生した場合には，中央制御室内に滞在する人員の環境劣化を防止するために設置した外気取入ダンパを閉止し，中央制御室内の空気を事故時運転モー ドへ切替えの実施及び必要に応じ中央制御室以外の空調ファ ンを停止することにより，有毒ガスの侵入を防止する設計とす る。 なお，外気取入ダンパの閉止及び事故時運転モードへ切替え による外気の遮断及び空調ファンの停止による外気流入の抑	

	変更前	変更後
$\begin{aligned} & 0 \\ & \stackrel{1}{7} \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	制を保安規定に定めて管理する。 主要道路，鉄道線路，一般航路及び石油コンビナート施設は離隔距離を確保することで事故等による火災に伴う発電所へ の有毒がスの影響がない設計とする。 d．風（台風） 外部事象防護対象施設は，風荷重を「建築基準法」に基づき設定し，外部事象防護対象施設及び外部事象防護対象施設を内包す る建屋の構造健全性を確保することで，外部事象防護対象施設の安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することによ り，設計基準事故対処設備等の安全機能と同時にその機能を損な わない設計とする。 e．凍結 外部事象防護対象施設は，設計基準温度による凍結に対して，屋内施設については換気空調系により環境温度を維持し，屋外施設については保温等の涷結防止対策を必要に応じて行らことに より，安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することによ り，設計基準事故対処設備等の安全機能と同時にその機能を損な わない設計とする。	

f．降水
外部事象防護対象施設は，降水による浸水に対して，設計基準降水量を上回る排水能力を有する構内排水路による海域への排水及び建屋止水処置を行ら設計とする。

降水による荷重に対して，排水口及び構内排水路による海域へ の排水により，外部事象防護対象施設及び外部事象防護対象施設 を内包する建屋の構造健全性を確保することで，外部事象防護対象施設の安全機能を損なわない設計とする。

重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することによ り，設計基準事故対処設備等の安全機能と同時にその機能を損な わない設計とする。
g．積雪
外部事象防護対象施設は，発電所の最寄りの気象官署である石巻特別地域気象観測所の観測記録に基づき設定した設計基準積雪量による積雪荷重に対して，機械的強度を有すること，また，閉塞に対して，非常用換気空調系の給排気口を設計基準積雪量よ り高所に設置することにより，安全機能を損なわない設計とす る。

重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮すること，及び除雪の実施により，設計基準事故対処設備等の安全機能と同時に

変更前	変更後
その機能を損なわない設計とする。 なお，除雪を適宜実施することを保安規定に定めて管理する。 h．落雷 外部事象防護対象施設は，発電所の雷害防止対策として，原子炉建屋等への避雷針の設置を行うとともに，設計基準電流値によ る雷サージに対して，接地網の敷設による接地抵抗の低減等及び安全保護装置への雷サージ侵入の抑制を図る回路設計を行うこ とにより，安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，必要に応じ避雷設備又は接地設備 により防護することにより，設計基準事故対処設備等の安全機能 と同時にその機能を損なわない設計とする。 i．生物学的事象 外部事象防護対象施設は，生物学的事象に対して，海生生物で あるクラゲ等の発生を考慮して除塵装置及び海水ストレーナを設置し，必要に応じて塵芥を除去する設計とする。また，小動物 の侵入に対して，屋内施設は建屋止水処置等により，屋外施設は，端子箱貫通部の閉止処置を行うことにより，安全機能を損なわな い設計とする。 重大事故等対処設備は，生物学的事象に対して，小動物の侵入 を防止し，海生生物に対して，侵入を防止する又は予備を有する ことにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。	

	変更前	変更後
$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{1} \\ & \stackrel{1}{\tau} \\ & \stackrel{\rightharpoonup}{c} \end{aligned}$	j．高潮 外部事象防護対象施設及び重大事故等対処設備（非常用取水設備を除く。）は，高潮の影響を受けない敷地高さ（0．P．＋ 3.5 m ）以上に設置することにより，高潮により影響を受けることがない設計とする。 （2）人為事象 a．船舶の衝突 外部事象防護対象施設は，航路からの離隔距離を確保するこ と，小型船舶が発電所近傍で漂流した場合でも，防波堤等に衝突 して止まること及び呑み口が広く，取水性を損なわないことか ら，船舶の衝突により安全機能を損なわない設計とする。 重大事故等対処設備は，航路からの離隔距離を確保すること，小型船舶が発電所近傍で漂流した場合でも，防波堤等に衝突して止まること及び設計基準事故対処設備等と位置的分散を図り設置することにより，船舶の衝突により取水性を損なわない設計と する。 b．電磁的障害 外部事象防護対象施設及び重大事故等対処設備のうち電磁波 に対する考慮が必要な機器は，電磁波によりその機能を損なうこ とがないよう，ラインフィルタや絶縁回路の設置，又は鋼製筐体 や金属シールド付ケーブルの適用等により，電磁波の侵入を防止 する設計とする。 c．航空機の墜落 重大事故等対処設備は，建屋内に設置するか，又は屋外におい	

R 1

変更前	変更後
て設計基準事故対処設備等と位置的分散を図り設置する。	
3．火災 3.1 火災による損傷の防止 原子炉冷却系統施設の火災による損傷の防止の基本設計方針につい ては，火災防護設備の基本設計方針に基づく設計とする。	3．火災 3.1 火災による損傷の防止 変更なし
4．溢水等 4.1 溢水等による損傷の防止 原子炉冷却系統の溢水等による損傷の防止の基本設計方針について は，浸水防護施設の基本設計方針に基づく設計とする。	4．溢水等 4.1 溢水等による損傷の防止 変更なし
5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．1 通常運転時の一般要求 （1）設計基準対象施設の機能 設計基準対象施設は，通常運転時において発電用原子炉の反応度 を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時に おいても発電用原子炉固有の出力抑制特性を有するとともに，発電用原子炉の反応度を制御することにより，核分裂の連鎖反応を制御 できる能力を有する設計とする。 （2）通常運転時に漏えいを許容する場合の措置 設計基準対象施設は，通常運転時において，放射性物質を含む液体を内包する容器，配管，ポンプ，弁その他の設備から放射性物質	5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．1 通常運転時の一般要求 変更なし

変更前	変更後
を含む液体があふれ出た場合においては，系統外に漏えいさせるこ となく，各建屋等に設けられた機器ドレン，床ドレン等のサンプ又 はタンクに収集し，液体廃棄物処理設備に送水する設計とする。 5．1．2 多様性，位置的分散等 （1）多重性又は多様性及び独立性 設置許可基準規則第 12 条第 2 項に規定される「安全機能を有す る系統のうち，安全機能の重要度が特に高い安全機能を有するも の」は，当該系統を構成する機器に「（2）単一故障」にて記載す る単一故障が発生した場合であって，外部電源が利用できない場合 においても，その系統の安全機能を達成できるよう，十分高い信頼性を確保し，かつ維持し得る設計とし，原則，多重性又は多様性及 び独立性を備える設計とする。 重大事故等対処設備は，共通要因として，環境条件，自然現象，発電所敷地又はその周辺において想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為に よるもの（以下「人為事象」という。），溢水，火災及びサポート系 の故障を考慮する。 発電所敷地で想定される自然現象として，地震，津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮を選定する。 自然現象の組合せについては，地震，津波，風（台風），積雪及 び火山の影響を考慮する。 人為事象として，飛来物（航空機落下），爆発，近隣工場等の火	5．1．2 多様性，位置的分散等変更なし

	変更前	変更後
$\begin{aligned} & \stackrel{\omega}{\stackrel{1}{\leftarrow}} \underset{\stackrel{1}{\circ}}{\stackrel{\rightharpoonup}{\circ}} \end{aligned}$	災，危険物を搭載した車両，有毒ガス，船舶の衝突，電磁的障害及 び故意による大型航空機の衝突その他のテロリズムを選定する。 故意による大型航空機の衝突その他のテロリズムについては，可搬型重大事故等対処設備による対策を講じることとする。 原子炉建屋，制御建屋，緊急用電気品建屋及び緊急時対策建屋（以下「建屋等」という。）については，地震，津波，火災及び外部か らの衝撃による損傷を防止できる設計とする。 重大事故緩和設備についても，共通要因の特性を踏まえ，可能な限り多様性を確保し，位置的分散を図ることを考慮する。 a．常設重大事故等対処設備 常設重大事故防止設備は，設計基準事故対処設備並びに使用済燃料貯蔵槽（使用済燃料プール）の泠却設備及び注水設備（以下「設計基準事故対処設備等」という。）の安全機能と共通要因に よって同時にその機能が損なわれるおそれがないよう，共通要因 の特性を踏まえ，可能な限り多様性，独立性，位置的分散を考慮 して適切な措置を講じる設計とする。ただし，常設重大事故防止設備のうち，計装設備について，重大事故等に対処するために監視することが必要なパラメータの計測が困難となった場合に当該パラメータを推定するために必要なパラメータは，異なる物理量又は測定原理とする等，重大事故等に対処するために監視する ことが必要なパラメータに対して可能な限り多様性を有する方法により計測できる設計とするとともに，可能な限り位置的分散 を図る設計とする。 環境条件に対しては，想定される重大事故等が発生した場合に	

れるおそれがないよう，共通要因の特性を踏まえ，可能な限り多様性，独立性，位置的分散を考慮して適切な措置を講じる設計と する。

また，可搬型重大事故等対処設備は，地震，津波，その他の自然現象又は故意による大型航空機の衝突その他のテロリズム，設計基準事故対処設備等及び重大事故等対処設備の配置その他の条件を考慮した上で常設重大事故等対処設備と異なる保管場所 に保管する設計とする。

環境条件に対しては，想定される重大事故等が発生した場合に おける温度，放射線，荷重及びその他の使用条件において，可搬型重大事故等対処設備がその機能を確実に発揮できる設計とす る。重大事故等時の環境条件における健全性については「5．1．5環境条件等」に基づく設計とする。

可搬型重大事故等対処設備は，風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮し機能が損なわれ ない設計とする。

地震に対して，屋内の可搬型重大事故等対処設備は，「1．地盤等」に基づく地盤に設置された建屋等内に保管する。屋外の可搬型重大事故等対処設備は，転倒しないことを確認する，又は必要により固縛等の処置をするとともに，地震により生ずる敷地下斜面のすべり，液状化又は揺すり込みによる不等沈下，傾斜及び浮き上がり，地盤支持力の不足，地中埋設構造物の損壊等の影響 により必要な機能を喪失しない位置に保管する設計とする。地震及び津波に対して可搬型重大事故等対処設備は，「2．1 地

	変更前	変更後
	震による損傷の防止」及び「2．2 津波による損傷の防止」にて考慮された設計とする。 火災に対して可搬型重大事故等対処設備は，「3．1 火災による損傷の防止」に基づく火災防護を行う。 重大事故等対処設備に期待する機能については，溢水影響を受 けて設計基準事故対処設備等と同時に機能を損ならおそれがな いよう，被水及び蒸気影響に対しては可能な限り設計基準事故対処設備等と位置的分散を図り，没水の影響に対しては溢水水位を考慮した位置に設置又は保管する。 地震，津波，溢水及び火災に対して可搬型重大事故等対処設備 は，設計基準事故対処設備等及び常設重大事故等対処設備と同時 に機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，複数箇所に分散して保管する設計とする。 風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，爆発，近隣工場等の火災，危険物を搭載 した車両，有毒ガス，船舶の衝突及び電磁的障害に対して，可搬型重大事故等対処設備は，外部からの衝撃による損傷の防止が図 られた建屋等内に保管するか，又は設計基準事故対処設備等及び常設重大事故等対処設備と同時に必要な機能を損なうおそれが ないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，防火帯の内側の複数箇所に分散して保管する設計とする。 クラゲ等の海生生物の影響を受けるおそれのある屋外の可搬	

	変更前	変更後
$\begin{aligned} & \stackrel{\sim}{\underset{~}{\underset{~}{~}}} \end{aligned}$	型重大事故等対処設備は，予備を有する設計とする。 高潮に対して可搬型重大事故等対処設備は，高潮の影響を受け ない敷地高さに保管する設計とする。 飛来物（航空機落下）及び故意による大型航空機の衝突その他 のテロリズムに対して，屋内の可搬型重大事故等対処設備は，可能な限り設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り複数箇所に分散して保管する設計とする。 屋外に保管する可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備が設置されている建屋等 から 100 m 以上の離隔距離を確保するとともに，当該可搬型重大事故等対処設備がその機能を代替する屋外の設計基準事故対処設備等及び常設重大事故等対処設備から 100 m 以上の離隔距離を確保した上で，複数箇所に分散して保管する設計とする。 サポート系の故障に対しては，系統又は機器に供給される電力，空気，油及び泠却水を考慮し，可搬型重大事故防止設備は，設計基準事故対処設備等又は常設重大事故防止設備と異なる駆動源，冷却源を用いる設計とするか，駆動源，冷却源が同じ場合 は別の手段が可能な設計とする。また，水源についても可能な限 り，異なる水源を用いる設計とする。 c．可搬型重大事故等対処設備と常設重大事故等対処設備の接続口 原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因によって接続するこ	

変更前	変更後
とができなくなることを防止するため，それぞれ互いに異なる複数の場所に設置する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合に おける温度，放射線，荷重及びその他の使用条件において，その機能を確実に発揮できる設計とするとともに，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔 した位置に複数箇所設置する。重大事故等時の環境条件における健全性については，「5．1．5 環境条件等」に基づく設計とする。風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮し，機能が損なわれない設計とする。 地震に対して接続口は，「1．地盤等」に基づく地盤上の建屋内又は建屋面に複数箇所設置する。 地震，津波及び火災に対して接続口は，「2．1 地震による損傷 の防止」，「2．2 津波による損傷の防止」及び「3．1 火災による損傷の防止」に基づく設計とする。 溢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に設置する。 地震，津波，溢水及び火災に対しては，接続口は，建屋内及び建屋面の適切に離隔した隣接しない位置に複数箇所設置する。 風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び故意による大型航空機 の衝突その他のテロリズムに対して，接続口は，建屋の異なる面 の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置	

変更前
に複数箇所設置する。
生物学的事象のうちネズミ等の小動物に対して，屋外に設置す る場合は，開口部の閉止により重大事故等に対処するために必要 な機能が損なわれるおそれのない設計とする。

高潮に対して接続口は，高潮の影響を受けない敷地高さに設置 する。

また，一つの接続口で複数の機能を兼用して使用する場合に は，それぞれの機能に必要な容量が確保できる接続口を設ける設計とする。同時に使用する可能性がある場合は，合計の容量を確保し，状況に応じて，それぞれの系統に必要な容量を同時に供給 できる設計とする。
（2）単一故障
安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するものは，当該系統を構成する機器に短期間では動的機器の単一故障，長期間では動的機器の単一故障若しくは想定される静的機器の単一故障のいずれかが生じた場合であって，外部電源が利用できない場合においても，その系統の安全機能を達成できる設計とする。
短期間と長期間の境界は 24 時間とする。
ただし，非常用ガス処理系の配管の一部及び非常用ガス処理系フ イルタ装置，中央制御室換気空調系のダクトの一部及び中央制御室再循環フィルタ装置並びに残留熱除去系（格納容器スプレイ泠却モ ード）のドライウェルスプレイ管及びサプレッションチェンバスプ レイ管については，設計基準事故が発生した場合に長期間にわたつ

変更前	変更後
て機能が要求される静的機器であるが，単一設計とするため，個別 に設計を行う。 5．1．3 悪影響防止等 （1）飛来物による損傷の防止 設計基準対象施設に属する設備は，蒸気タービン，発電機及び内部発生エネルギの高い流体を内蔵する弁の破損及び配管の破断，高速回転機器の破損に伴ら飛散物により安全性を損なわない設計と する。 発電用原子炉施設の安全性を損なわないよう蒸気タービン及び発電機は，破損防止対策等を行うとともに，原子力委員会原子炉安全審査会「タービンミサイル評価について」により，タービンミサ イル発生時の対象物を破損する確率が 10^{-7} 回／炉•年以下となるこ とを確認する。 高温高圧の配管については，材料選定，強度設計に十分な考慮を払う。さらに，安全性を高めるために，原子炉格納容器内で想定さ れる配管破断が生じた場合，破断口からの原子炉冷却材流出による ジェット噴流による力に耐える設計とする。また，ジェット反力に よるホイッピングで原子炉格納容器が損傷しないよう配置上の考慮を払うとともに，レストレイント等の配管ホイッピング防止対策 を設ける設計とする。 また，その他の高速回転機器が損壊し，飛散物とならないように保護装置を設けること等によりオーバースピードとならない設計 とする。	5．1．3 悪影響防止等 変更なし

変更前	変更後
損傷防止措置を行う場合，想定される飛散物の発生箇所と防護対象機器の距離を十分にとる設計とし，又は飛散物の飛散方向を考慮 し，配置上の配慮又は多重性を考慮した設計とする。 （2）共用 重要安全施設は，発電用原子炉施設間で原則共用しないものとす るが，安全性が向上する場合は，共用することを考慮する。 なお，発電用原子炉施設間で共用する重要安全施設はないことか ら，共用することを考慮する必要はない。 安全施設（重要安全施設を除く。）を共用する場合には，発電用原子炉施設の安全性を損なわない設計とする。 常設重大事故等対処設備の各機器については， 2 以上の発電用原子炉施設において共用しない設計とする。 （3）相互接続 重要安全施設は，発電用原子炉施設間で原則相互に接続しないも のとするが，安全性が向上する場合は，相互に接続することを考慮 する。 なお，発電用原子炉施設間で相互に接続する重要安全施設はない ことから，相互に接続することを考慮する必要はない。 安全施設（重要安全施設を除く。）を相互に接続する場合には，発電用原子炉施設の安全性を損なわない設計とする。 （4）悪影響防止 重大事故等対処設備は，発電用原子炉施設（他号機を含む。）内 の他の設備（設計基準対象施設及び当該重大事故等対処設備以外の重大事故等対処設備）に対して悪影響を及ぼさない設計とする。	

変更前		変更後
他の設備への悪影響としては，重大事故等対処設備使用時及び待機時の系統的な影響（電気的な影響を含む。）並びにタービンミサ イル等の内部発生飛散物による影響を考慮し，他の設備の機能に悪影響を及ぼさない設計とする。 系統的な影響に対しては，重大事故等対処設備は，弁等の操作に よって設計基準対象施設として使用する系統構成から重大事故等対処設備としての系統構成とすること，重大事故等発生前（通常時） の隔離若しくは分離された状態から弁等の操作や接続により重大事故等対処設備としての系統構成とすること，他の設備から独立し て単独で使用可能なこと，設計基準対象施設として使用する場合と同じ系統構成で重大事故等対処設備として使用すること等により，他の設備に悪影響を及ぼさない設計とする。 放水砲については，建屋への放水により，当該設備の使用を想定 する重大事故時において必要となる屋外の他の設備に悪影響を及 ぼさない設計とする。 内部発生飛散物による影響に対しては，内部発生エネルギの高い流体を内蔵する弁及び配管の破断，高速回転機器の破損，ガス爆発並びに重量機器の落下を考慮し，重大事故等対処設備がタービンミ サイル等の発生源となることを防ぐことで，他の設備に悪影響を及 ぼさない設計とする。 5．1．4 容量等 （1）常設重大事故等対処設備 常設重大事故等対処設備は，想定される重大事故等の収束におい	5．1．4 容量等	変更なし

変更前	変更後
て，想定する事象及びその事象の進展等を考慮し，重大事故等時に必要な目的を果たすために，事故対応手段としての系統設計を行 ら。重大事故等の収束は，これらの系統の組合せにより達成する。 「容量等」とは，ポンプ流量，タンク容量，伝熱容量，弁吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，作動信号の設定値等とする。 常設重大事故等対処設備のらち設計基準対象施設の系統及び機器を使用するものについては，設計基準対象施設の容量等の仕様 が，系統の目的に応じて必要となる容量等に対して十分であること を確認した上で，設計基準対象施設の容量等の仕様と同仕様の設計 とする。 常設重大事故等対処設備のらち設計基準対象施設の系統及び機器を使用するもので，重大事故等時に設計基準対象施設の容量等を補う必要があるものについては，その後の事故対応手段と合わせ て，系統の目的に応じて必要となる容量等を有する設計とする。 常設重大事故等対処設備のうち重大事故等への対処を本来の目的として設置する系統及び機器を使用するものについては，系統の目的に応じて必要な容量等を有する設計とする。 （2）可搬型重大事故等対処設備 可搬型重大事故等対処設備は，想定される重大事故等の収束にお いて，想定する事象及びその事象の進展を考慮し，事故対応手段と しての系統設計を行う。重大事故等の収束は，これらの系統の組合 せにより達成する。 「容量等」とは，ポンプ流量，タンク容量，伝熱容量，発電機容	

変更前	変更後
量，蓄電池容量，ボンベ容量，計測器の計測範囲等とする。 可搬型重大事故等対処設備は，系統の目的に応じて必要な容量等 を有する設計とするとともに，設備の機能，信頼度等を考慮し，予備を含めた保有数を確保することにより，必要な容量等に加え，十分に余裕のある容量等を有する設計とする。 可搬型重大事故等対処設備のらち複数の機能を兼用することで，設置の効率化，被ばくの低減が図れるものは，同時に要求される可能性がある複数の機能に必要な容量等を合わせた容量等とし，兼用 できる設計とする。 可搬型重大事故等対処設備のうち，原子炉建屋の外から水又は電力を供給する注水設備及び電源設備は，必要となる容量等を有する設備を 1 基当たり 2 セットに加え，故障時のバックアップ及び保守点検による待機除外時のバックアップとして，発電所全体で予備 を確保する。 また，可搬型重大事故等対処設備のらち，負荷に直接接続する高圧窒素ガスボンベ，主蒸気逃がし安全弁用可搬型蓄電池等は，必要 となる容量等を有する設備を 1 基当たり 1 セットに加え，故障時 のバックアップ及び保守点検による待機除外時のバックアップと して，発電所全体で予備を確保する。 上記以外の可搬型重大事故等対処設備は，必要となる容量等を有 する設備を 1 基当たり 1 セットに加え，設備の信頼度等を考慮し，予備を確保する。	

変更前		変更後
5．1．5 環境条件等 安全施設の設計条件については，材料疲労，劣化等に対しても十分な余裕を持って機能維持が可能となるよう，通常運転時，運転時 の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，放射線，荷重，屋外の天候による影響（凍結及び降水），海水を通水する系統への影響，電磁的障害，周辺機器等からの悪影響及び冷却材の性状を考慮し，十分安全側の条件を与えることによ り，これらの条件下においても期待されている安全機能を発揮でき る設計とする。 重大事故等対処設備は，想定される重大事故等が発生した場合に おける温度，放射線，荷重及びその他の使用条件において，その機能が有効に発揮できるよう，その設置場所（使用場所）又は保管場所に応じた耐環境性を有する設計とするとともに，操作が可能な設計とする。 重大事故等時の環境条件については，重大事故等時における温度 （環境温度及び使用温度），放射線及び荷重に加えて，その他の使用条件として環境圧力，湿度による影響，屋外の天候による影響（凍結及び降水），重大事故等時に海水を通水する系統への影響，自然現象による影響，人為事象の影響，周辺機器等からの悪影響及び冷却材の性状（原子炉冷却材中の破損物等の異物を含む。）の影響を考慮する。 荷重としては，重大事故等が発生した場合における機械的荷重に加えて，環境圧力，温度及び自然現象による荷重を考慮する。 自然現象について，重大事故等時に重大事故等対処設備に影響を	5．1．5 環境条件等	変更なし

	変更前	変更後
$\begin{aligned} & \text { N } \\ & \underset{\sim}{\underset{\sim}{\sim}} \end{aligned}$	与えるおそれがある事象として，地震，風（台風），凍結，降水及 び積雪を選定する。これらの事象のらち，凍結及び降水については，屋外の天候による影響として考慮する。 自然現象による荷重の組合せについては，地震，風（台風）及び積雪の影響を考慮する。 これらの環境条件のらち，重大事故等時における環境温度，環境圧力，湿度による影響，屋外の天候による影響（凍結及び降水），重大事故等時の放射線による影響及び荷重に対しては，重大事故等対処設備を設置（使用）又は保管する場所に応じて，「（1）環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候 による影響（涷結及び降水）並びに荷重」に示すように設備分類ご とに必要な機能を有効に発揮できる設計とする。 （1）環境圧力，環境温度及び湿度による影響，放射線による影響，屋外の天候による影響（涷結及び降水）並びに荷重 安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時における環境圧力，環境温度及び湿度による影響，放射線 による影響，屋外の天候による影響（凍結及び降水）並びに荷重を考慮しても，安全機能を発揮できる設計とする。 原子炉格納容器内の重大事故等対処設備は，想定される重大事故等時における原子炉格納容器内の環境条件を考慮した設計とする。 また，地震による荷重を考慮して，機能を損なわない設計とする。操作は中央制御室から可能な設計とする。 原子炉建屋原子炉棟内の重大事故等対処設備は，想定される重大事故等時における環境条件を考慮した設計とする。また，地震によ	

変更前	変更後
る荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計とする。 原子炉建屋付属棟内，制御建屋内（中央制御室を含む。），緊急用電気品建屋（地下階）内及び緊急時対策建屋内の重大事故等対処設備は，重大事故等時におけるそれぞれの場所の環境条件を考慮した設計とする。また，地震による荷重を考慮して，機能を損なわない設計とするとともに，可搬型重大事故等対処設備は，必要により当該設備の落下防止，転倒防止又は固縛の措置をとる。操作は，中央制御室，異なる区画若しくは離れた場所又は設置場所で可能な設計 とする。 インターフェイスシステム LOCA 時，使用済燃料プールにおける重大事故に至るおそれのある事故又は主蒸気管破断事故起因の重大事故等時に使用する設備については，これらの環境条件を考慮し た設計とするか，これらの環境影響を受けない区画等に設置する。 特に，使用済燃料プール監視カメラは，使用済燃料プールに係る重大事故等時に使用するため，その環境影響を考慮して，カメラと一体の冷却装置により泠却することで耐環境性向上を図る設計と する。 屋外及び緊急用電気品建屋（地上階）の重大事故等対処設備は，重大事故等時における屋外の環境条件を考慮した設計とする。操作 は，中央制御室，離れた場所又は設置場所で可能な設計とする。 また，地震，風（台風）及び積雪の影響による荷重を考慮し，機	

能を損なわない設計とするとともに，可搬型重大事故等対処設備に ついては，必要により当該設備の落下防止，転倒防止，固縛等の措置をとる。
積雪の影響については，必要により除雪の措置を講じることを保安規定に定めて管理する。
屋外の重大事故等対処設備は，重大事故等時において，万が一，使用中に機能を喪失した場合であっても，可搬型重大事故等対処設備によるバックアップが可能となるよう，位置的分散を考慮して可搬型重大事故等対処設備を複数保管する設計とする。
原子炉格納容器内の安全施設及び重大事故等対処設備は，設計基準事故等及び重大事故等時に想定される圧力，温度等に対して，格納容器スプレイ水による影響を考慮してもっその機能を発揮できる設計とする。
安全施設及び重大事故等対処設備において，主たる流路の機能を維持できるよう，主たる流路に影響を与える範囲について，主たる流路と同一又は同等の規格で設計する。
（2）海水を通水する系統への影響
海水を通水する系統への影響に対しては，常時海水を通水する，海に設置する又は海で使用する安全施設及び重大事故等対処設備 は耐腐食性材料を使用する設計とする。常時海水を通水するコンク リート構造物については，腐食を考慮した設計とする。
また，使用時に海水を通水する重大事故等対処設備は，海水の影響を考慮した設計とする。
原則，淡水を通水するが，海水も通水する可能性のある重大事故

等対処設備は，可能な限り淡水を優先し，海水通水を短期間とする ことで，設備への海水の影響を考慮する。また，海から直接取水す る際の異物の流入防止を考慮した設計とする。
（3）電磁的障害
電磁的障害に対しては，安全施設は，通常運転時，運転時の異常 な過渡変化時及び設計基準事故が発生した場合においても，電磁波 によりその機能が損なわれない設計とする。

人為事象のうち重大事故等対処設備に影響を与えるおそれがあ る事象として選定する電磁的障害に対しては，重大事故等対処設備 は，重大事故等時においても電磁波により機能を損なわない設計と する。
（4）周辺機器等からの悪影響
安全施設は，地震，火災，溢水及びその他の自然現象並びに人為事象による他設備からの悪影響により，発電用原子炉施設としての安全機能が損なわれないよう措置を講じた設計とする。

重大事故等対処設備は，事故対応のために配置•配備している自主対策設備を含む周辺機器等からの悪影響により機能を損なわな い設計とする。周辺機器等からの悪影響としては，地震，火災及び溢水による波及的影響を考慮する。

溢水に対しては，重大事故等対処設備は，想定される溢水により機能を損なわないように，重大事故等対処設備の設置区画の止水対策等を実施する。
地震による荷重を含む耐震設計については，「2．1 地震による損傷の防止」に，火災防護については，「3．1 火災による損傷の防止」

変更前	変更後
に基づく設計とし，それらの事象による波及的影響により重大事故等に対処するために必要な機能を損なわない設計とする。 （5）設置場所における放射線の影響 安全施設の設置場所は，通常運転時，運転時の異常な過渡変化時及び設計基準事故が発生した場合においても操作及び復旧作業に支障がないように，遮蔽の設置や線源からの離隔により放射線量が高くなるおそれの少ない場所を選定した上で，設置場所から操作可能，放射線の影響を受けない異なる区画若しくは離れた場所から遠隔で操作可能，又は中央制御室遮蔽区域内である中央制御室から操作可能な設計とする。 重大事故等対処設備は，想定される重大事故等が発生した場合に おいても操作及び復旧作業に支障がないように，放射線量の高くな るおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等により当該設備の設置場所で操作可能な設計，放射線の影響 を受けない異なる区画若しくは離れた場所から遠隔で操作可能な設計，又は中央制御室遮蔽区域内である中央制御室から操作可能な設計とする。 可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても設置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等により，当該設備の設置及び常設設備との接続が可能な設計とする。 （6）冷却材の性状 原子炉冷却材を内包する安全施設は，水質管理基準を定めて水質	

変更前	変更後
を管理することにより異物の発生を防止する設計とする。 安全施設及び重大事故等対処設備は，系統外部から異物が流入す る可能性のある系統に対しては，ストレーナ等を設置することによ り，その機能を有効に発揮できる設計とする。 5．1．6 操作性及び試験•検査性 （1）操作性の確保 重大事故等対処設備は，手順書の整備，訓練•教育により，想定 される重大事故等が発生した場合においても，確実に操作でき，設置変更許可申請書「十 発電用原子炉の炉心の著しい損傷その他の事故が発生した場合における当該事故に対処するために必要な施設及び体制の整備に関する事項」ハ で考慮した要員数と想定時間内で，アクセスルートの確保を含め重大事故等に対処できる設計と する。これらの運用に係る体制，管理等については，保安規定に定 めて管理する。 重大事故等対処設備は，想定される重大事故等が発生した場合に おいても操作を確実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とする。 重大事故等対処設備は，操作する全ての設備に対し，十分な操作空間を確保するとともに，確実な操作ができるよう，必要に応じて操作足場を設置する。また，防護具，可搬型照明等は重大事故等時 に迅速に使用できる場所に配備する。 現場操作において工具を必要とする場合は，一般的に用いられる工具又は専用の工具を用いて，確実に作業ができる設計とする。工	5．1．6 操作性及び試験•検査性 変更なし

変更前	変更後
具は，作業場所の近傍又はアクセスルートの近傍に保管できる設計 とする。可搬型重大事故等対処設備は，運搬，設置が確実に行える ように，人力又は車両等による運搬，移動ができるとともに，必要 により設置場所にてアウトリガの張り出し，輪留めによる固定等が可能な設計とする。 現場の操作スイッチは運転員等の操作性を考慮した設計とする。 また，電源操作が必要な設備は，感電防止のため露出した充電部へ の近接防止を考慮した設計とする。 現場において人力で操作を行う弁は，手動操作が可能な設計とす る。 現場での接続操作は，ボルト・ネジ接続，フランジ接続又はより簡便な接続方式等，使用する設備に応じて接続方式を統一すること により，確実に接続が可能な設計とする。 また，重大事故等に対処するために迅速な操作を必要とする機器 は，必要な時間内に操作できるように中央制御室での操作が可能な設計とする。制御盤の操作器は運転員の操作性を考慮した設計とす る。 想定される重大事故等において操作する重大事故等対処設備の うち動的機器については，その作動状態の確認が可能な設計とす る。 重大事故等対処設備のらち，本来の用途以外の用途として重大事故等に対処するために使用する設備は，通常時に使用する系統から速やかに切替操作が可能なように，系統に必要な弁等を設ける設計 とする。	

	変更前	変更後
$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{1}{\sim} \\ & \stackrel{\sim}{\infty} \end{aligned}$	アクセスルートを確保する設計とする。 船舶の衝突に対しては，カーテンウォールにより船舶の侵入が阻害されることからアクセスルートへの影響はない。 電磁的障害に対しては，道路面が直接影響を受けることはないこ とからアクセスルート～の影響はない。 屋外アクセスルートに対する地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり），その他自然現象に よる影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセスルートの中から状況を確認し，早期 に復旧可能なアクセスルートを確保するため，障害物を除去可能な ブルドーザ（台数 1（予備 1））及びバックホウ（台数 1（予備 1 ）） を保管，使用する。 また，地震による屋外タンクからの溢水及び降水に対しては，道路上への自然流下も考慮した上で，通行への影響を受けない箇所に アクセスルートを確保する設計とする。 津波の影響については，基準津波に対し余裕を考慮した高さの防潮堤及び防潮壁で防護することにより，複数のアクセスルートを確保する設計とする。 また，高潮に対しては，通行への影響を受けない敷地高さにアク セスルートを確保する設計とする。 森林火災については，通行への影響を受けない距離にアクセスル ートを確保する設計とする。 屋外アクセスルートは，人為事象のうち飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両及び有毒ガスに対	

しては，迂回路も考慮した複数のアクセスルートを確保する設計と する。落雷に対しては，道路面が直接影響を受けることはないため， さらに生物学的事象に対しては，容易に排除可能なため，アクセス ルートへの影響はない。
屋外アクセスルートは，地震の影響による周辺斜面の崩壊及び敷地下斜面のすべりで崩壊土砂が広範囲に到達することを想定した上で，可搬型重大事故等対処設備の運搬に必要な幅員を確保するこ とにより通行性を確保できる設計とする。また，不等沈下等に伴う段差の発生が想定される箇所においては，段差緩和対策の実施，迂回又は砕石による段差箇所の仮復旧により対処する設計とする。

屋外アクセスルートは，自然現象のうち，凍結及び積雪に対して，道路については融雪剤を配備し，車両については常時スタッドレス タイヤを装着することにより，並びに急勾配の箇所のすべり止め材配備及びすべり止め舗装を施すことにより通行性を確保できる設計とする。

屋内アクセスルートは，自然現象として選定する津波，風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮による影響に対して，外部からの衝撃による損傷の防止が図られた建屋内に確保する設計とする。

屋内アクセスルートは，人為事象として選定する飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒が ス及び船舶の衝突に対して，外部からの衝撃による損傷の防止が図 られた建屋内に確保する設計とする。
屋内アクセスルートの設定に当たっては，油内包機器による地震

変更前	変更後
随伴火災の影響や，水又は蒸気内包機器による地震随伴溢水の影響 を考慮するとともに，迂回路を含む複数のルート選定が可能な配置設計とする。 （2）試験•検査性 設計基準対象施設は，健全性及び能力を確認するため，発電用原子炉の運転中又は停止中に必要な箇所の保守点検（試験及び検査を含む。）が可能な構造とし，そのために必要な配置，空間等を備え た設計とする。 重大事故等対処設備は，健全性及び能力を確認するため，発電用原子炉の運転中又は停止中に必要な箇所の保守点検，試験又は検査 を実施できるよう，機能•性能の確認，漏えいの有無の確認，分解点検等ができる構造とし，そのために必要な配置，空間等を備えた設計とする。また，接近性を考慮して必要な空間等を備え，構造上接近又は検査が困難である箇所を極力少なくする。 設計基準対象施設及び重大事故等対処設備は，使用前事業者検査及び定期事業者検査の法定検査に加え，保全プログラムに基づく点検が実施可能な設計とする。 重大事故等対処設備は，原則系統試験及び漏えいの有無の確認が可能な設計とする。系統試験については，テストラインなどの設備 を設置又は必要に応じて準備することで試験可能な設計とする。ま た，悪影響防止の観点から他と区分する必要があるもの又は単体で機能•性能を確認するものは，他の系統と独立して機能•性能確認 が可能な設計とする。 発電用原子炉の運転中に待機状態にある重大事故等対処設備は，	

変更前		変更後
発電用原子炉の運転に大きな影響を及ぼす場合を除き，運転中に定期的な試験又は検査が実施可能な設計とする。また，多様性又は多重性を備えた系統及び機器にあっては，各々が独立して試験又は検査ができる設計とする。 代替電源設備は，電気系統の重要な部分として，適切な定期試験及び検査が可能な設計とする。 構造•強度の確認又は内部構成部品の確認が必要な設備は，原則 として分解•開放（非破壊検査を含む。）が可能な設計とし，機能•性能確認，各部の経年劣化対策及び日常点検を考慮することによ り，分解•開放が不要なものについては外観の確認が可能な設計と する。 5.2 材料及び構造等 設計基準対象施設（圧縮機，補助ボイラー，蒸気タービン（発電用の ものに限る。），発電機，変圧器及び遮断器を除く。）並びに重大事故等対処設備に属する容器，管，ポンプ若しくは弁若しくはこれらの支持構造物又は炉心支持構造物の材料及び構造は，施設時において，各機器等 のクラス区分に応じて以下のとおりとし，その際，日本機械学会「発電用原子力設備規格 設計•建設規格」（J S ME 設計•建設規格）等に従い設計する。 ただし，重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の材料及び構造であって，以下によらない場合は，当該機器及び支持構造物が，その設計上要求される強度を確保できるよう J SME 設計•建設規格を参考に同等以上の性能を有することを確認する。	5.2 材料及び構造等	変更なし

$\left.\begin{array}{|c|c|c|}\hline \text { また，重大事故等クラス } 3 \text { 機器であって，完成品は，以下によらず，} \\ \text { 「消防法」に基づく技術上の規格等一般産業品の規格及び基準に適合し } \\ \text { ていることを確認し，使用環境及び使用条件に対して，要求される強度 } \\ \text { を確保できる設計とする。 } \\ \text { 重大事故等クラス } 2 \text { 容器及び重大事故等クラス } 2 \text { 管のらち主要な耐 }\end{array}\right]$ 変更後

変更前	変更後
d．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレー ナ及び残留熱除去系ストレーナは，その使用される圧力，温度，荷重その他の使用条件に対して適切な機械的強度及び化学的成分を有する材料を使用する。 e．重大事故等クラス 3 機器は，その使用される圧力，温度，荷重 その他の使用条件に対して日本産業規格等に適合した適切な機械的強度及び化学的成分を有する材料を使用する。 （2）破壊じん性 a．クラス 1 容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じん性を有する材料 を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 原子炉圧力容器については，原子炉圧力容器の脆性破壊を防止 するため，中性子照射脆化の影響を考慮した最低試験温度を確認 し，適切な破壊じん性を維持できるよう，原子炉冷却材温度及び圧力の制限範囲を設定することを保安規定に定めて管理する。 b．クラス 1 機器（クラス 1 容器を除く。），クラス 1 支持構造物 （クラス 1 管及びクラス 1 弁を支持するものを除く。），クラス 2機器，クラス 3 機器（工学的安全施設に属するものに限る。），原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物及び重大事故等クラス 2 機器は，その最低使用温度に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 重大事故等クラス 2 機器のうち，原子炉圧力容器については，	

変更前	変更後
おそれがあるものは，b．にかかわらず，設計上定める条件におい て，全体的な変形を弾性域に抑える設計とする。 d．クラス 1 容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1 弁，クラス 1 支持構造物，原子炉格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物にあっては，運転状態IIIにお いて，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等により局部的な塑性変形に止まるよう設計する。 e．クラス 1 容器（オメガシールその他のシールを除く。），クラス 1 管，クラス 1 支持構造物，原子炉格納容器（著しい応力が生ず る部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態IVにおいて，延性破断に至る塑性変形が生じない設計とする。 f．クラス 4 管は，設計上定める条件において，延性破断に至る塑性変形を生じない設計とする。 g．クラス 1 容器（ボルトその他の固定用金具，オメガシールその他のシールを除く。），クラス 1 支持構造物（クラス 1 容器に溶接 により取り付けられ，その損壊により，クラス 1 容器の損壊を生 じさせるおそれがあるものに限る。）及び原子炉格納容器（著し い応力が生ずる部分及び特殊な形状の部分に限る。）は，試験状態において，全体的な塑性変形が生じない設計とする。また，応力が集中する構造上の不連続部については，補強等により局部的 な塑性変形に止まるよう設計する。	

	変更前	変更後
$\begin{aligned} & \stackrel{\sim}{\stackrel{~}{\sim}} \\ & \stackrel{\rightharpoonup}{\omega} \\ & \underset{\sim}{\omega} \end{aligned}$	h．高圧炉心スプレイ系ストレーナ，低圧炉心スプレイ系ストレー ナ及び残留熱除去系ストレーナは，運転状態I，運転状態II及び運転状態IV（異物付着による差圧を考慮）において，全体的な変形を弾性域に抑える設計とする。 i．クラス 2 支持構造物であって，クラス 2 機器に溶接により取 り付けられ，その損壊によりクラス 2 機器に損壊を生じさせる おそれがあるものには，運転状態I 及び運転状態IIにおいて，延性破断が生じない設計とする。 j．重大事故等クラス 2 支持構造物であって，重大事故等クラス 2機器に溶接により取り付けられ，その損壊により重大事故等クラ ス 2 機器に損壊を生じさせるおそれがあるものは，設計上定め る条件において，延性破断が生じない設計とする。 （2）進行性変形による破壊の防止 クラス 1 容器（ボルトその他の固定用金具を除く。），クラス 1管，クラス 1 弁（弁箱に限る。），クラス 1 支持構造物，原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I 及び運転状態IIにおいて，進行性変形が生じない設計とする。 （3）疲労破壊の防止 a．クラス 1 容器，クラス 1 管，クラス 1 弁（弁箱に限る。），クラ ス 1 支持構造物，クラス 2 管（伸縮継手を除く。），原子炉格納容器（著しい応力が生ずる部分及び特殊な形状の部分に限る。），原子炉格納容器支持構造物及び炉心支持構造物は，運転状態I 及び運転状態IIにおいて，疲労破壊が生じない設計とする。	

b．クラス 2 機器，クラス 3 機器，原子炉格納容器，重大事故等ク ラス 2 機器の伸縮継手及び重大事故等クラス 2 管（伸縮継手を除く。）は，設計上定める条件で応力が繰り返し加わる場合にお いて，疲労破壊が生じない設計とする。
（4）座屈による破壊の防止
a．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限る。），クラス 1 支持構造物，原子炉格納容器支持構造物及び炉心支持構造物は，運転状態 I，運転状態II，運転状態III及び運転状態IVにおいて，座屈が生じない設計とする。
b．クラス 1 容器（胴，鏡板及び外側から圧力を受ける円筒形又は管状のものに限る。）及びクラス 1 支持構造物（クラス 1 容器に溶接により取り付けられ，その損壊により，クラス 1 容器の損壊 を生じさせるおそれがあるものに限る。）は，試験状態において，座屈が生じない設計とする。
c．クラス 1 管，クラス 2 容器，クラス 2 管，クラス 3 機器，重大事故等クラス 2 容器，重大事故等クラス 2 管及び重大事故等ク ラス 2 支持構造物（重大事故等クラス 2 機器に溶接により取り付けられ，その損壊により重大事故等クラス 2 機器に損壊を生 じさせるおそれがあるものに限る。）は，設計上定める条件にお いて，座屈が生じない設計とする。
d．原子炉格納容器は，設計上定める条件並びに運転状態III及び運転状態IVにおいて，座屈が生じない設計とする。
e．クラス 2 支持構造物であって，クラス 2 機器に溶接により取 り付けられ，その損壊によりクラス 2 機器に損壊を生じさせる

変更前	変更後
おそれがあるものには，運転状態 I 及び運転状態IIにおいて，座屈が生じないよう設計する。 5．2．3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）につ いて クラス 1 容器，クラス 1 管，クラス 2 容器，クラス 2 管，クラス 3 容器，クラス 3 管，クラス 4 管，原子炉格納容器，重大事故等ク ラス 2 容器及び重大事故等クラス 2 管のうち主要な耐圧部の溶接部は，次のとおりとし，使用前事業者検査により適用基準及び適用規格に適合していることを確認する。 - 不連続で特異な形状でない設計とする。 - 溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないことを非破壊試験に より確認する。 - 適切な強度を有する設計とする。 - 適切な溶接施工法，溶接設備及び技能を有する溶接士であること を機械試験その他の評価方法によりあらかじめ確認する。 5.3 使用中の亀裂等による破壊の防止 クラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物，重大事故等クラス 2 機器及び重大事故等ク ラス 2 支持構造物は，使用される環境条件を踏まえ応力腐食割れに対 して残留応力が影響する場合，有意な残留応力が発生すると予想される	5．2．3 主要な耐圧部の溶接部（溶接金属部及び熱影響部をいう。）につ いて 変更なし 5.3 使用中の亀裂等による破壊の防止 変更なし

変更前	変更後
部位の応力緩和を行う。 使用中のクラス 1 機器，クラス 1 支持構造物，クラス 2 機器，クラス 2 支持構造物，クラス 3 機器，クラス 4 管，原子炉格納容器，原子炉格納容器支持構造物，炉心支持構造物，重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物は，亀裂その他の欠陥により破壊が引き起 こされないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈」等に従って検査及び維持管理を行う。 使用中のクラス 1 機器の耐圧部分は，貫通する亀裂その他の欠陥が発生しないよう，保安規定に基づき「実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈」等に従って検査及び維持管理を行う。 5.4 耐圧試験等 （1）クラス 1 機器，クラス 2 機器，クラス 3 機器，クラス 4 管及び原子炉格納容器は，施設時に，次に定めるところによる圧力で耐圧試験を行ったとき，これに耐え，かつ，著しい漏えいがないことを確認する。ただし，気圧により試験を行う場合であって，当該圧力に耐えることが確認された場合は，当該圧力を最高使用圧力（原子炉格納容器にあっては，最高使用圧力の 0.9 倍）までに減じて著しい漏えいがないことを確認する。 なお，耐圧試験は，日本機械学会「発電用原子力設備規格 設計•建設規格」等に従って実施する。 a．内圧を受ける機器に係る耐圧試験の圧力は，機器の最高使用圧	5.4 耐圧試験等 変更なし

	変更前	変更後
$\begin{aligned} & \stackrel{\omega}{\stackrel{\rightharpoonup}{\leftrightarrows}} \underset{\stackrel{\rightharpoonup}{\bullet}}{\stackrel{\rightharpoonup}{\bullet}} \end{aligned}$	力を超え，かつ，機器に生ずる全体的な変形が弾性域の範囲内と なる圧力とする。ただし，クラス 1 機器，クラス 2 管又はクラス 3 管であって原子炉圧力容器と一体で耐圧試験を行う場合の圧力は，燃料体の装荷までの間に試験を行った後においては，通常運転時の圧力を超える圧力とする。 b．内部が大気圧未満になることにより，大気圧による外圧を受け る機器の耐圧試験の圧力は，大気圧と内圧との最大の差を上回る圧力とする。この場合において，耐圧試験の圧力は機器の内面か ら加えることができる。 （2）重大事故等クラス 2 機器及び重大事故等クラス 3 機器に属する機器は，施設時に，当該機器の使用時における圧力で耐圧試験を行 ったとき，これに耐え，かつ，著しい漏えいがないことを確認する。 なお，耐圧試験は，日本機械学会「発電用原子力設備規格 設計•建設規格」等に従って実施する。 ただし，使用時における圧力で耐圧試験を行うことが困難な場合 は，運転性能試験結果を用いた評価等により確認する。 重大事故等クラス 3 機器であって，「消防法」に基づく技術上の規格等を満たす一般産業品の完成品は，上記によらず，運転性能試験や目視等による有害な欠陥がないことの確認とすることもでき るものとする。 （3）使用中のクラス 1 機器，クラス 2 機器，クラス 3 機器及びクラス 4 管は，通常運転時における圧力で，使用中の重大事故等クラス 2機器及び重大事故等クラス 3 機器に属する機器は，当該機器の使用時における圧力で漏えい試験を行ったとき，著しい漏えいがない	

変更前	変更後
ことを確認する。 なお，漏えい試験は，日本機械学会「発電用原子力設備規格 維持規格（J SME S NA1）」等に従って実施する。 ただし，重大事故等クラス 2 機器及び重大事故等クラス 3 機器 に属する機器は使用時における圧力で試験を行うことが困難な場合は，運転性能試験結果を用いた評価等により確認する。 重大事故等クラス 3 機器であって，「消防法」に基づく技術上の規格等を満たす一般産業品の完成品は，上記によらず，運転性能試験や目視等による有害な欠陥がないことの確認とすることもでき るものとする。 （4）原子炉格納容器は，最高使用圧力の 0.9 倍に等しい気圧で気密試験を行ったとき，著しい漏えいがないことを確認する。 なお，漏えい率試験は，日本電気協会「原子炉格納容器の漏えい率試験規程（J E A C 4 2 0 3 ）」 等に従って行う。 ただし，原子炉格納容器隔離弁の単一故障の考慮については，判定基準に適切な余裕係数を見込むか，内側隔離弁を開とし外側隔離弁を閉として試験を実施する。 5.5 安全弁等 蒸気タービン，発電機，変圧器及び遮断器を除く設計基準対象施設及 び重大事故等対処施設に設置する安全弁，逃がし弁，破壊板及び真空破壊弁は，日本機械学会「設計•建設規格」（J S M E S N C 1）及 び日本機械学会「発電用原子力設備規格 設計•建設規格（J S M E S N C 1 －2001）及び（J S ME S N C 1－2005）【事例規格】過圧	5.5 安全弁等 変更なし

変更前	変更後
防護に関する規定（N C－C C－O O 1）」に適合するよう，以下のと おり設計する。 なお，安全弁，逃がし弁，破壊板及び真空破壊弁については，施設時 に適用した告示（通商産業省「発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第 501 号）」）の規定に適合する設計と する。 安全弁及び逃がし弁（以下「5．5 安全弁等」において「安全弁等」 という。）は，確実に作動する構造を有する設計とする。 安全弁等の弁軸は，弁座面からの漏えいを適切に防止できる構造とす る。 安全弁等又は真空破壊弁の材料は，容器及び管の重要度に応じて適切 な材料を使用する。 設計基準対象施設及び重大事故等対処施設に係る安全弁又は逃がし弁（以下「5．5 安全弁等」において「安全弁」という。）のうち，補助作動装置付きの安全弁にあっては，当該補助作動装置が故障しても系統 の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な吹出し容量が得られる構造とする。 設計基準対象施設及び重大事故等対処施設のらち減圧弁を有する管 にあって，その低圧側の設備が高圧側の圧力に耐えられる設計となって いないもののうちクラス 1 管以外のものについては，減圧弁の低圧側 の系統の健全性を維持するために必要な容量を持つ安全弁等を 1 個以上，減圧弁に接近して設置し，高圧側の圧力による損傷を防止する設計 とする。なお，容量は当該安全弁等の吹出し圧力と設置個数を適切に組 み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下	

変更前	変更後
に保持するのに必要な容量を算定する。 また，安全弁は，吹出し圧力を下回った後に，速やかに吹き止まる構造とする。 なお，クラス 1 管には減圧弁を設置しない設計とする。 原子炉圧力容器，補助ボイラー及び原子炉格納容器を除く設計基準対象施設及び重大事故等対処施設に属する容器又は管であって，内部に過圧が生ずるおそれがあるものにあっては，過圧防止に必要な容量を持つ安全弁等を 1 個以上設置し，内部の過圧による損傷を防止する設計と する。なお，容量は当該安全弁等の吹出し圧力と設置個数を適切に組み合わせることにより，系統の圧力をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量を算定する。 また，安全弁は吹出し圧力を下回った後に，速やかに吹き止まる構造 とする。 安全弁等の入口側に破壊板を設ける場合は，当該容器の最高使用圧力以下で破壊し，破壊板の破壊により安全弁等の機能を損なわないよう設計する。 設計基準対象施設及び重大事故等対処施設に属する容器又は管に設置する安全弁等の出口側には，破壊板を設置しない設計とする。 設計基準対象施設及び重大事故等対処設備に属する容器として，液体炭酸ガス等の安全弁等の作動を不能にするおそれのある物質を内包す る容器にあっては，容器の過圧防止に必要な容量を持つ破壊板を 1 個以上設置し，内部の過圧による損傷を防止する設計とする。なお，容量 は吹出し圧力と設置個数を適切に組み合わせることにより，容器の圧力 をその最高使用圧力の 1.1 倍以下に保持するのに必要な容量を算定す	

変更前	変更後
ている場合は，逆流するおそれがないため，逆止め弁の設置を不要とす る。 5.7 内燃機関及びガスタービンの設計条件 5．7．1 設計基準対象施設及び重大事故等対処施設 設計基準対象施設及び重大事故等対処施設に施設する内燃機関 （以下「内燃機関」という。）及び重大事故等対処施設に施設する ガスタービン（以下「ガスタービン」という。）は，非常調速装置 が作動したときに達する回転速度に対して構造上十分な機械的強度を有する設計とする。 ガスタービンは，ガスの温度が著しく上昇した場合に燃料の流入 を自動的に遮断する装置が動作したときに達するガス温度に対し て構造上十分な熱的強度を有する設計とする。 内燃機関及びガスタービンの軸受は運転中の荷重を安定に支持 できるものであって，かつ，異常な摩耗，変形及び過熱が生じない設計とする。 ガスタービンの危険速度は，調速装置により調整可能な最小の回転速度から非常調速装置が作動したときに達する回転速度までの間に発生しないように設計する。 内燃機関及びガスタービンの耐圧部の構造は，最高使用圧力又は最高使用温度において発生する耐圧部分に生じる応力は当該部分 に使用する材料の許容応力以下となる設計とする。 内燃機関を屋内その他酸素欠乏の発生のおそれのある場所に設置するときは，給排気部を設ける設計とする。	5.7 内燃機関及びガスタービンの設計条件 5．7．1 設計基準対象施設及び重大事故等対処施設変更なし

変更前	変更後
内燃機関及びガスタービンは，その回転速度及び出力が負荷の変動により持続的に動揺することを防止する調速装置を設けるとと もに，運転中に生じた過速度その他の異常による設備の破損を防止 するため，その異常が発生した場合に内燃機関及びガスタービンを安全に停止させる非常調速装置その他の非常停止装置を設置する設計とする。 内燃機関及びその附属設備であって過圧が生じるおそれのある ものには，適切な過圧防止装置を設ける設計とする。 内燃機関及びガスタービンには，設備の損傷を防止するために，回転速度，潤滑油圧力及び潤滑油温度等の運転状態を計測する装置 を設ける設計とする。 内燃機関及びガスタービンの附属設備に属する容器及び管は発電用原子炉施設として，「実用発電用原子炉及びその附属施設の技術基準に関する規則」の材料及び構造，安全弁等，耐圧試験等の規定を満たす設計とする。 5．7．2 可搬型重大事故等対処設備 可搬型の非常用発電装置の内燃機関は，流入する燃料を自動的に調整する調速装置及び軸受が異常な摩耗，変形及び過熱が生じない よう潤滑油装置を設ける設計とする。 可搬型の非常用発電装置の内燃機関は，回転速度，潤滑油圧力及 び潤滑油温度等の運転状態を計測する装置を設ける設計とする。 可搬型の非常用発電装置の内燃機関は，回転速度が著しく上昇し た場合及び泠却水温度が著しく上昇した場合等に自動的に停止す	5．7．2 可搬型重大事故等対処設備 変更なし

変更前	変更後
る設計とする。 可搬型の非常用発電装置の強度については，完成品として一般産業品規格で規定される温度試験等を実施し，定格負荷状態において十分な強度を有する設計とする。 5.8 電気設備の設計条件 5．8．1 設計基準対象施設及び重大事故等対処施設 設計基準対象施設及び重大事故等対処施設に施設する電気設備 （以下「電気設備」という。）は，感電又は火災のおそれがないよ うに接地し，充電部分に容易に接触できない設計とする。 電気設備は，電路を絶縁し，電線等が接続部分において電気抵抗 を増加させないように端子台等により接続するほか，期待される使用状態において断線のおそれがない設計とする。 電気設備における電路に施設する電気機械器具は，期待される使用状態において発生する熱に耐えるものとし，高圧又は特別高圧の電気機械器具については，可燃性の物と隔離する設計とする。 電気設備は，電流が安全かつ確実に大地に通じることができるよ う，適切な箇所に接地を施す設計とする。 電気設備における高圧の電路と低圧の電路とを結合する変圧器 には，適切な箇所に接地を施し，変圧器により特別高圧の電路に結合される高圧の電路には，避雷器を施設する設計とする。 電気設備は，電路の必要な箇所に過電流遮断器又は地絡遮断器を施設する設計とする。 電気設備は，他の電気設備その他の物件の機能に電気的又は磁気	5.8 電気設備の設計条件 5．8．1 設計基準対象施設及び重大事故等対処施設変更なし

変更前	変更後
的な障害を与えない設計とする。 電気設備のうち高圧又は特別高圧の電気機械器具及び母線等は，取扱者以外の者が容易に立ち入るおそれがないよう発電所にフェ ンス等を設ける設計とする。 電気設備における架空電線は，接触又は誘導作用による感電のお それがなく，かつ，交通に支障を及ぼすおそれがない高さに施設す る設計とする。 電気設備における電力保安通信線は，他の電線等を損傷するおそ れがなく，かつ，接触又は断線によって生じる混触による感電又は火災のおそれがない設計とする。 電気設備のうちガス絶縁機器は，最高使用圧力に耐え，かつ，漏 えいがなく，異常な圧力を検知するとともに，使用する絶縁ガスは可燃性，腐食性及び有毒性のない設計とする。 電気設備のうち開閉器又は断路器に使用する圧縮空気装置は，最高使用圧力に耐え，かつ，漏えいがなく，異常な圧力を検知すると ともに，圧力が上昇した場合に最高使用圧力に到達する前に圧力を低下させ，空気タンクの圧力が低下した場合に圧力を自動的に回復 できる機能を有し，空気タンクは耐食性を有する設計とする。 電気設備のうち水素冷却式発電機は，水素の漏えい又は空気の混入のおそれがなく，水素が大気圧で爆発する場合に生じる圧力に耐 える強度を有し，異常を早期に検知し警報する機能を有する設計と する。 電気設備のらち水素冷却式発電機は，軸封部から漏えいした水素 を外部に放出でき，発電機内への水素の導入及び発電機内からの水	

変更前	変更後
素の外部への放出が安全にできる設計とする。 電気設備のらち発電機又は特別高圧の変圧器には，異常が生じた場合に自動的にこれを電路から遮断する装置を施設する設計とす る。 電気設備のうち発電機及び変圧器等は，短絡電流により生じる機械的衝撃に耐え，発電機の回転する部分については非常調速装置及 びその他の非常停止装置が動作して達する速度に対し耐える設計 とする。 また，蒸気タービンに接続する発電機は，軸受又は軸に発生しう る最大の振動に対して構造上十分な機械的強度を有した設計とす る。 電気設備においては，運転に必要な知識及び技能を有する者が発電所構内に常時駐在し，異常を早期に発見できる設計とする。 電気設備において，発電所の架空電線引込口及び引出口又はこれ に近接する箇所には，避雷器を施設する設計とする。 電気設備における電力保安通信線は，機械的衝撃又は火災等によ り通信の機能を損ならおそれがない設計とする。 電気設備において，電力保安通信設備に使用する無線通信用アン テナを施設する支持物の材料及び構造は，風圧荷重を考慮し，倒壊 により通信の機能を損ならおそれがない設計とする。 5．8．2 可搬型重大事故等対処設備 可搬型の非常用発電装置の発電機は，電気的•機械的に十分な性能を持つ絶縁巻線を使用し，耐熱性及び耐湿性を考慮した絶縁処理	5．8．2 可搬型重大事故等対処設備 変更なし

変更前	変更後
を施す設計とする。 可搬型の非常用発電装置の発電機は，電源電圧の著しく低下した場合及び過電流が発生した場合等に自動的に停止する設計とする。 可搬型の非常用発電装置の発電機は，定格出力のもとで 1 時間運転し，安定した運転が維持されることを確認した設備とする。	
6．その他 6． 1 立ち入りの防止 発電所には，人がみだりに管理区域内に立ち入らないように壁，柵，塀等の人の侵入を防止するための設備を設け，かつ，管理区域である旨 を表示する設計とする。 保全区域と管理区域以外の場所との境界には，他の場所と区別するた め，壁，柵，塀等の保全区域を明らかにするための設備を設ける設計，又は保全区域である旨を表示する設計とする。 発電所には，業務上立ち入る者以外の者がみだりに周辺監視区域内に立ち入ることを制限するため，柵，塀等の人の侵入を防止するための設備を設ける設計，又は周辺監視区域である旨を表示する設計とする（た だし，当該区域に人が立ち入るおそれがないことが明らかな場合は除 く。）。 管理区域，保全区域及び周辺監視区域における立ち入りの防止につい ては，保安規定に基づき，その措置を実施する。	6．その他 6.1 立ち入りの防止 変更なし
6.2 発電用原子炉施設への人の不法な侵入等の防止 発電用原子炉施設への人の不法な侵入を防止するための区域を設定	6.2 発電用原子炉施設への人の不法な侵入等の防止変更なし

変更前	変更後
明用の電源が䨖失した場合においても機能を損なわない避難用照明と して，非常用ディーゼル発電機又は灯具に内蔵した蓄電池により電力を供給できる非常灯（「第 2 号機設備」，「第 1 号機設備，第 $1,2,3$ 号機共用」及び「第1号機設備，第1，2号機共用」）及び誘導灯（「第 2 号機設備」，「第 1 号機設備，第 $1,2,3$ 号機共用」及び「第 1 号機設備，第 1 ， 2 号機共用」）を設置し，安全に避難できる設計とする。 設計基準事故が発生した場合に用いる作業用照明として，非常用照明，直流照明兼非常用照明及び直流照明を設置する設計とする。 非常用照明は非常用高圧母線又は非常用低圧母線，直流照明兼非常用照明は非常用低圧母線及び $125 V$ 蓄電池，並びに直流照明は $125 V$ 蓄電池に接続し，非常用ディーゼル発電機からも電力を供給できる設計とす る。 直流照明兼非常用照明及び直流照明は，全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備 から開始されるまでの間，点灯可能な設計とする。 設計基準事故が発生した場合に用いる可搬型の作業用照明として，内蔵電池を備える可搬型照明（懐中電灯，ランタンタイプ LED ライト及び ヘッドライト（ヘルメット装着用））を配備する設計とする。 可搬型照明（ヘッドライト（ヘルメット装着用））は全交流動力電源喪失時における緊急時対策所内の可搬型照明保管場所への移動時の照度を確保するために，発電所対策本部要員及び重大事故等対応要員が持参し，作業開始前に準備可能なように事務建屋に配備する設計とする。 可搬型照明（ランタンタイプ LED ライト及びヘッドライト（ヘルメッ ト装着用））は全交流動力電源喪失時における緊急時対策所内の照度を	

変更前	変更後
第2章 個別項目 1．原子炉冷却材 原子炉冷却材は，通常運転時における圧力，温度及び放射線によって起 こる最も厳しい条件において，核的性質として核反応断面積が核反応維持 のために適切であり，熱水力的性質として冷却能力が適切であることを保持し，かつ，燃料体及び構造材の健全性を妨げることのない性質であり，通常運転時において放射線に対して化学的に安定であることを保持する設計とする。	第2章 個別項目 1．原子炉冷却材 変更なし
2．原子炉冷却材再循環設備 2.1 原子炉再循環系 原子炉再循環系は，原子炉再循環ポンプ及び原子炉圧力容器内に設け られたジェットポンプにより，原子炉冷却材を原子炉圧力容器内に循環 させて，炉心から熱除去を行う。 原子炉再循環ポンプの 1 台が急速停止又は電源喪失の場合でも，燃料棒が十分な熱的余裕を有し，かつ，タービン・トリップ又は負荷遮断直後の原子炉出力を抑制できるように，原子炉再循環系は適切な慣性を有する設計とする。	2．原子炉冷却材再循環設備 2． 1 原子炉再循環系 変更なし
3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等 炉心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気タービンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付	3．原子炉冷却材の循環設備 3.1 主蒸気系，復水給水系等 変更なし

変更前	変更後
ける設計とする。 蒸気タービンを出た蒸気は復水器で復水する。復水は，復水ポンプ，復水浄化系及び給水加熱器を通り，給水ポンプにより発電用原子炉に戻 す設計とする。主蒸気管には，タービンバイパス系を設け，蒸気を復水器へバイパスできる設計とする。 復水給水系には復水中の核分裂生成物及び腐食生成物を除去するた めに復水浄化系を設け，高純度の給水を発電用原子炉へ供給できる設計 とする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できる設計とする。 タービンバイパス系は，原子炉起動時，停止時，通常運転時及び過渡状態において，原子炉蒸気を直接復水器に導き，原子炉定格蒸気流量の約 25% を処理できる設計とする。 3.2 原子炉冷却材圧力バウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時 の異常な過渡変化時及び設計基準事故時に生ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成す る機器に加わる負荷に耐える設計とする。 設計における衝撃荷重として，冷却材喪失事故に伴らジェット反力等，安全弁等の開放に伴ら荷重を考慮するとともに，反応度が炉心に投入されることにより原子炉冷却系の圧力が増加することに伴う荷重の増加（浸水燃料の破損に加えて，ペレット／被覆管機械的相互作用を原因とする破損による衝撃圧力等に伴う荷重の増加を含む。）を考慮した設計とする。	3.2 原子炉冷却材圧力バウンダリ 変更なし

変更前	変更後
原子炉冷却材圧力バウンダリは，次の範囲の機器及び配管とする。 （1）原子炉圧力容器及びその付属物（本体に直接付けられるもの及び制御棒駆動機構ハウジング等） （2）原子炉冷却系を構成する機器及び配管（主蒸気管及び給水管のう ち発電用原子炉側からみて第二隔離弁を含むまでの範囲） （3）接続配管 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （二）通常時又は設計基準事故時に開となるおそれがある通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （三）通常時閉及び設計基準事故時閉となる弁を有するもののう ち，（二）以外のものは，発電用原子炬側からみて，第一隔離弁 を含むまでの範囲とする。 （四）通常時閉及び冷却材喪失時開となる弁を有する非常用炉心冷却系等も（一）に準ずる。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁のうち個別に施錠管理を行ら弁は，開となるおそれがなく，上記（三）に該当する。 また，原子炉冷却材圧力バウンダリは，以下に述べる事項を十分満足 するように設計，材料選定を行う。 通常運転時において出力運転中，原子炉圧力制御系により原子炉圧力 を一定に保持する設計とする。原子炉起動，停止時の加熱•冷却率を一	

変更前	変更後
定の値以下に抑える等の配慮をする。 タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等の原子炉スクラ ム信号を発する安全保護装置を設けること，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力の 1.1 倍の圧力（ 9.48 MPa ）を超えない設計とする。 設計基準事故時のらち原子炉冷却材圧力バウンダリの健全性が問題 となる可能性がある制御棒落下事象については，「原子炉周期（ペリオ ド）短」，「中性子束高」等の原子炉スクラム信号を発する安全保護装置 を設け，制御棒落下速度リミッタ，制御棒価値ミニマイザなどの対策と相まって，設計基準事故時の燃料の二酸化ウランの最大エンタルピを抑 え，原子炉冷却材圧力バウンダリの健全性を確保できる設計とする。 原子炉冷却材圧力バウンダリを構成する配管及び機器の材料は，耐食性を考慮して選定する。 3.3 原子炉冷却材圧力バウンダリの隔離装置等 原子炉冷却材圧力バウンダリには，原子炉冷却材圧力バウンダリに接続する配管等が破損することによって，原子炉冷却材の流出を制限する ために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁 を設ける設計とする。 なお，原子炉冷却材圧力バウンダリの隔離弁の対象は，以下のとおり とする。 （一）通常時開及び設計基準事故時閉となる弁を有するものは，発	3.3 原子炉冷却材圧力バウンダリの隔離装置等変更なし

変更前	変更後
電用原子炉側からみて，第一隔離弁及び第二隔離弁を対象とす る。 （二）通常時開又は設計基準事故時に開となるおそれがある通常時閉及び設計基準事故時閉となる弁を有するものは，発電用原子炉側からみて，第一隔離弁及び第二隔離弁を対象とする。 （三）通常時閉及び設計基準事故時閉となる弁を有するもののう ち，（二）以外のものは，発電用原子炉側からみて，第一隔離弁 を対象とする。 （四）通常時閉及び冷却材喪失時開となる弁を有する非常用炉心冷却系等も，発電用原子炉側からみて第一隔離弁及び第二隔離弁を対象とする。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁のらち個別に施錠管理を行う弁は，開となるおそれがなく，上記（三）に該当することから，発電用原子炉側からみて第一隔離弁を対象とする。 3.4 主蒸気逃がし安全弁の機能 3．4．1 系統構成 主蒸気逃がし安全弁は，バネ式安全弁に，外部から強制的に開閉 を行うアクチュエータを取付けたもので，排気はサプレッションチ ェンバのプール水面下に導き，原子炉冷却系の過度の圧力上昇を防止できる設計とする。 自動減圧系は，中小破断の泠却材喪失事故時に原子炉蒸気をサプ	3.4 主蒸気逃がし安全弁の機能 3．4．1 系統構成 変更なし

変更前	変更後
レッションチェンバのプール水中へ逃がし，原子炉圧力を速やかに低下させて，残留熱除去系（低圧注水モード）又は低圧炉心スプレ イ系による注水を可能とし，炉心冷却を行らことができる設計とす る。 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合にお いても炉心の著しい損傷及び原子炉格納容器の破損を防止するた め，原子炉冷却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を設ける設計とする。 主蒸気逃がし安全弁の自動減圧機能が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作により，主蒸気逃がし安全弁逃がし弁機能用アキュムレー タ又は主蒸気逃がし安全弁自動減圧機能用アキュムレータに蓄圧 された窒素をアクチュエータのピストンに供給することで作動し，蒸気を排気管によりサプレッションチェンバのプール水面下に導 き凝縮させることで，原子炉冷却材圧力バウンダリを減圧できる設計とする。 原子炉冷却材圧力バウンダリを減圧するための設備のらち，炉心損傷時に原子炉冷却材圧力バウンダリが高圧状態である場合にお いて，高圧溶融物放出及び格納容器雰囲気直接加熱による原子炉格納容器の破損を防止するための重大事故等対処設備として，主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作により，主蒸気逃 がし安全弁逃がし弁機能用アキュムレータ又は主蒸気逃がし安全弁自動減圧機能用アキュムレータに蓄圧された窒素をアクチュエ	

変更前	変更後
度の圧力上昇を抑えるため，吹出し圧力と設置個数とを適切に組み合わせることにより，原子炉圧力容器の過圧防止に必要な容量以上 を有する設計とする。 なお，容量は運転時の異常な過度変化時に，原子炉冷却材圧力バ ウンダリの圧力を最高使用圧力の 1.1 倍以下に保持するのに必要 な容量を算定する。 3．4．4 代替自動減圧回路（代替自動減圧機能） 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の減圧機能が喪失した場合にお いても炉心の著しい損傷及び原子炉格納容器の破損を防止するた め，原子炉泠却材圧力バウンダリを減圧するために必要な重大事故等対処設備として，主蒸気逃がし安全弁を作動させる代替自動減圧回路（代替自動減圧機能）を設ける設計とする。 主蒸気逃がし安全弁の自動減圧機能が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁は，代替自動減圧回路（代替自動減圧機能）からの信号により，主蒸気逃がし安全弁自動減圧機能用アキュムレータに蓄圧された窒素をアクチュエータのピス トンに供給することで作動し，蒸気を排気管によりサプレッション チェンバのプール水面下に導き凝縮させることで，原子炉冷却材圧 カバウンダリを減圧できる設計とする。	3．4．4 代替自動減圧回路（代替自動減圧機能）変更なし
3． 4.5 主蒸気逃がし安全弁の機能回復 原子炉冷却材圧力バウンダリを減圧するための設備のうち，主蒸	3．4．5 主蒸気逃がし安全弁の機能回復変更なし

気逃がし安全弁の機能回復のための重大事故等対処設備として，主蒸気逃がし安全弁の作動に必要な窒素ガスが喪失した場合におい ても，高圧窒素ガス供給系（非常用）及び代替高圧窒素ガス供給系 を使用できる設計とする。
原子炉冷却材圧力バウンダリを減圧するための設備のらち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，可搬型代替直流電源設備及び主蒸気逃がし安全弁用可搬型蓄電池を使用できる設計とする。
原子炉冷却材圧力バウンダリを減圧するための設備のうち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，可搬型代替直流電源設備は，主蒸気逃がし安全弁の作動に必要な常設直流電源系䖻が喪失した場合においても， 125 V 直流電源切替盤を切り替えることにより，主蒸気逃がし安全弁（11 個）の作動に必要な電源を供給できる設計とする。
原子炉冷却材圧力バウンダリを減圧するための設備のらち，主蒸気逃がし安全弁の機能回復のための重大事故等対処設備として，主蒸気逃がし安全弁用可搬型蓄電池は，主蒸気逃がし安全弁の作動に必要な常設直流電源系統が喪失した場合においても，主蒸気逃がし安全弁の作動回路に接続することにより，主蒸気逃がし安全弁（2個）を一定期間にわたり連続して開状態を保持できる設計とする。全交流動力電源又は常設直流電源が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁は，可搬型代替直流電源設備 により作動に必要な直流電源が供給されることにより機能を復旧 し，原子炉冷却材圧力バウンダリを減圧できる設計とする。

変更前	変更後
全交流動力電源又は常設直流電源が喪失した場合の重大事故等対処設備として，主蒸気逃がし安全弁は，常設代替交流電源設備又 は可搬型代替交流電源設備により所内常設蓄電式直流電源設備を受電し，作動に必要な直流電源が供給されることにより機能を復旧 し，原子炉冷却材圧力バウンダリを減圧できる設計とする。 3．4．6 原子炉冷却材の漏えい量抑制 インターフェイスシステム LOCA 発生時の重大事故等対処設備と して，主蒸気逃がし安全弁は，中央制御室からの手動操作によって作動させ，原子炉冷却材圧力バウンダリを減圧させることで原子炉冷却材の漏えいを抑制できる設計とする。	3．4．6 原子炉冷却材の漏えい量抑制変更なし
4．残留熱除去設備 4． 1 残留熱除去系 4． 1.1 低圧注水モード 残留熱除去系（低圧注水モード）は，大破断の冷却材喪失事故時 には低圧炉心スプレイ系及び高圧炉心スプレイ系と連携して，中小破断の冷却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプー ル水を直接炉心シュラウド内に注水する設計とする。 4．1．2 原子炉停止時冷却モード （1）系統構成	4．残留熱除去設備 4． 1 残留熱除去系 4．1．1 低圧注水モード 変更なし 4．1．2 原子炉停止時冷却モード 変更なし

発電用原子炉を停止した場合において，燃料要素の許容損傷限界及び原子炉冷却材圧力バウンダリの健全性を維持するために必要 なパラメータが設計値を超えないようにするため，原子炉圧力容器内において発生した残留熱を除去することができる設備として残留熱除去系を設ける設計とする。

残留熱除去系の冷却速度は，原子炉冷却材圧力バウンダリの加熱•冷却速度の制限値（ $55^{\circ} \mathrm{C} / \mathrm{h}$ ）を超えないように制限できる設計 とする。
原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する ための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（原子炉停止時冷却モード）が使用 できる場合は，重大事故等対処設備（設計基準拡張）として使用で きる設計とする。
最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系 （原子炉停止時冷却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。
発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポ ート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（原子炉停止時冷却モード）を復旧で きる設計とする。残留熱除去系（原子炉停止時冷却モード）は，常設代替交流電源設備からの給電により機能を復旧し，原子炉冷却材

変更前	変更後
を原子炉圧力容器から残留熱除去系ポンプ及び残留熱除去系熱交換器を経由して原子炉圧力容器に戻すことにより炉心を冷却でき る設計とする。本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。 残留熱除去系（原子炉停止時冷却モード）の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 （2）多様性，位置的分散等 残留熱除去系（原子炉停止時冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただ し，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針の らち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しな い。	
4．1．3 格納容器スプレイ冷却モード （1）系統構成 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炉格納容器内の圧力及び温度の上昇により原子炉格納容器の安全性を損なうことを防止するため，原子炉格納容器内にお いて発生した熱を除去する設備として，残留熱除去系（格納容器ス	4．1．3 格納容器スプレイ冷却モード 変更なし

変更前	変更後
プレイ冷却モード）を設ける設計とする。 残留熱除去系（格納容器スプレイ冷却モード）は，冷却材喪失事故時に，サプレッションチェンバのプール水をドライウェル内及び サプレッションチェンバ内にスプレイすることにより，環境に放出 される放射性物質の濃度を減少させる設計とする。 残留熱除去系（格納容器スプレイ冷却モード）は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出さ れるエネルギによる設計基準事故時の原子炉格納容器内圧力，温度 が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炉格納容器の内圧を速やかに下げて低く維持することにより，放射性物質の外部への漏えいを少なくする設計とする。 残留熱除去設備のうち，サプレッションチェンバのプール水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに原子炉冷却材中の異物の影響につ いて「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置 の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成20年2月27日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 残留熱除去系（格納容器スプレイ冷却モード）の仕様は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とす る。 残留熱除去系（格納容器スプレイ冷却モード）は，テストライン を構成することにより，発電用原子炉の運転中に試験ができる設計	

変更前	変更後
とする。また，設計基準事故時に動作する弁については，残留熱除去系ポンプが停止中に開閉試験ができる設計とする。 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系 （格納容器スプレイ冷却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。 残留熱除去系（格納容器スプレイ冷却モード）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備とし て使用することから，流路に係る機能について重大事故等対処設備 としての設計を行う。 （2）多様性，位置的分散等 残留熱除去系（格納容器スプレイ冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。 ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用 しない。	
4．1．4 サプレッションプール水冷却モード （1）系統構成 残留熱除去系（サプレッションプール水冷却モード）は，サプレ ッションチェンバのプール水温度を所定の温度以下に冷却できる設計とする。	4．1． 4 サプレッションプール水冷却モード変更なし

変更前	変更後
最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系 （サプレッションプール水冷却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。 残留熱除去系（サプレッションプール水冷却モード）の流路とし て，設計基準対象施設である原子炉格納容器を重大事故等対処設備 として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 （2）多様性，位置的分散等 残留熱除去系（サプレッションプール水冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用する ため，重大事故等対処設備としての基本方針に示す設計方針を適用 する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針 は適用しない。 4．1．5 燃料プール泠却 残留熱除去系は，使用済燃料からの崩壊熱を除去できる設計とす る。残留熱除去系熱交換器で除去した熱は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）を経て，最終ヒートシンクである海 へ輸送できる設計とする。 4．2 原子炉格納容器フィルタベント系	4．1．5 燃料プール泠却 変更なし 4．2 原子炉格納容器フィルタベント系

変更前		変更後
4．2．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送す る機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。） を防止するため，最終ヒートシンクへ熱を輸送するために必要な重大事故等対処設備として，原子炉格納容器フィルタベント系を設け る設計とする。 残留熱除去系の故障等により最終ヒートシンクへ熱を輸送する機能が喪失した場合に，炉心の著しい損傷及び原子炉格納容器の破損を防止するための重大事故等対処設備として，原子炉格納容器フ ィルタベント系は，フィルタ装置（フィルタ容器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィルタ），フィルタ装置出口側 ラプチャディスク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィ ルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設 ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$（ 1 Pd において））す ることで，排気中に含まれる放射性物質の環境への放出量を低減し つつ，原子炬格納容器内に蓄積した熱を最終的な熱の逃がし場であ る大気へ輸送できる設計とする。 原子炉格納容器フィルタベント系を使用した場合に放出される放射性物質の放出量に対して，設置（変更）許可において敷地境界 での線量評価を行い，実効線量が 5 mSv 以下であることを確認して おり，原子炉格納容器フィルタベント系はこの評価条件を満足する設計とする。	4．2．1 系統構成	変更なし

	変更前	変更後
$\begin{aligned} & \text { c } \\ & \stackrel{1}{\leftrightharpoons} \\ & \underset{\partial}{1} \end{aligned}$	フィルタ装置は3台を並列に設置し，排気中に含まれる粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去できる設計 とする。また，無機よう素をスクラバ溶液中に捕集•保持するため にアルカリ性の状態（待機状態において pH 13 以上）に維持する設計とする。 原子炬格納容器フィルタベント系は，サプレッションチェンバ及 びドライウェルと接続し，いずれからも排気できる設計とする。サ プレッションチェンバ側からの排気ではサプレッションチェンバ の水面からの高さを確保し，ドライウェル側からの排気では，ドラ イウェル床面からの高さを確保するとともに有効燃料棒頂部より も高い位置に接続䈯所を設けることで長期的にも溶融炉心及び水没の悪影響を受けない設計とする。 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガ スによる爆発を防ぐため，可搬型窒素ガス供給系により，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器べ ント開始後においても不活性ガス（窒素）で置換できる設計とする とともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ イパスラインを設け，可燃性ガスを連続して排出できる設計とする ことで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。 可搬型窒素ガス供給系は，可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用い て原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とす る。	

変更前	変更後
可搬型窒素ガス供給装置は，車両内に搭載された可搬型窒素ガス供給装置発電設備により給電できる設計とする。 原子炉格納容器フィルタベント系は，他の発電用原子炉施設とは共用しない設計とする。また，原子炉格納容器フィルタベント系と他の系統•機器を隔離する弁は，直列で 2 個設置（ベント用非常用 ガス処理系側隔離弁（T48－F020）と格納容器排気非常用ガス処理系側止め弁（T48－F045）（原子炉格納施設のらち「3．6．1 原子炉格納容器フィルタベント系」の設備を原子炉冷却系統施設のらち 「4．2 原子炉格納容器フィルタベント系」の設備として兼用）， ント用換気空調系側隔離弁（T48－F021）と格納容器排気換気空調系側止め弁（T48－F046）（原子炉格納施設のらち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炉冷却采統施設のらち 「4．2 原子炉格納容器フィルタベント系」の設備として兼用），原子炉格納容器耐圧強化ベント用連絡配管隔離弁（T48－F043）（原子炉格納施設のらち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炉冷却系統施設のらち「4．2 原子炉格納容器フィルタ ベント系」の設備として兼用）と原子炉格納容器耐圧強化ベント用連絡配管止め弁（T48－F044）（原子炉格納施設のうち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炉冷却系統施設のう ち「4．2 原子炬格納容器フィルタベント系」の設備として兼用）） し，原子炉格納容器フィルタベント系と他の系統•機器を確実に隔離することで悪影響を及ぼさない設計とする。 原子炉格納容器フィルタベント系の使用に際しては，原子炉格納容器が負圧とならないよう，原子炉格納容器代替スプレイ椧却系等	

変更前	変更後
による原子炉格納容器内へのスプレイを停止する運用を保安規定 に定めて管理する。原子炉格納容器フィルタベント系の使用後に再度，原子炉格納容器内にスプレイする場合においても，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炉格納容器内 へのスプレイを停止する運用を保安規定に定めて管理する。 原子炉格納容器フィルタベント系使用時の排出経路に設置され る隔離弁は，遠隔手動弁操作設備（個数 4）（原子炉格納施設のう ち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炉冷却系統施設のらち「4．2 原子炉格納容器フィルタベント系」の設備として兼用）によって人力により容易かつ確実に操作が可能な設計とする。 排出経路に設置される隔離弁の電動弁については，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電に より，中央制御室から操作が可能な設計とする。 系統内に設けるフィルタ装置出口側ラプチャディスクは，原子炉格納容器フィルタベント系の使用の妨げにならないよう，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計 とする。 原子炉格納容器フィルタベント系は，代替淡水源から，大容量送水ポンプ（タイプ I ）によりフィルタ装置にスクラバ溶液を補給で きる設計とする。 原子炉格納容器フィルタベント系使用時の排出経路に設置され る隔離弁に設ける遠隔手動弁操作設備の操作場所は，原子炉建屋付	

変更前	変更後
属棟内とし，サプレッションチェンバベント用出口隔離弁 F022）の操作を行う原子炉建屋地下 1 階及びドライウェルベント用出口隔離弁（T48－F019）の操作を行ら原子炉建屋地上 1 階に遮蔽体（遠隔手動弁操作設備遮蔽（原子炉格納施設のうち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炉冷却系統施設のう ち「4．2 原子炉格納容器フィルタベント系」の設備として兼用） （以下同じ。））を設置し，放射線防護を考慮した設計とする。遠隔手動弁操作設備遮蔽は，炉心の著しい損傷時においても，原子炉格納容器フィルタベント系の隔離弁操作ができるよう，どちらの遮蔽体においても鉛厚さ 2 mm の遮蔽厚さを有する設計とする。 原子炉格納容器フィルタベント系に使用するホースの敷設等は， ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設のらち「4．2 原子炉格納容器フィルタベント系」の設備として兼用）により行ら設計とする。 原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用するこ とから，流路に係る機能について重大事故等対処設備としての設計 を行う。 4．2．2 多重性又は多様性及び独立性，位置的分散 原子炉格納容器フィルタベント系は，残留熱除去系（格納容器ス プレイ冷却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよう，ポ	4．2．2 多重性又は多様性及び独立性，位置的分散変更なし

変更前	変更後
ンプ及び熱交換器を使用せずに最終的な熱の逃がし場である大気 へ熱を輸送できる設計とすることで，残留熱除去系及び原子炉補機泠却水系（原子炉補機泠却海水系を含む。）に対して，多様性を有 する設計とする。 原子炉格納容器フィルタベント系は，排出経路に設置される隔離弁の電動弁を常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電による遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作を可能とすること で，非常用交流電源設備からの給電により駆動する残留熱除去系 （格納容器スプレイ椧却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有する設計とする。 原子炉格納容器フィルタベント系のフィルタ装置及びフィルタ装置出口側ラプチャディスクは，原子炉建屋原子炉棟内に設置し，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び残留熱除去系熱交換器，原子炉建屋付属棟内の原子炉補機冷却水ポンプ及び原子炉補機冷却水系熱交換器並びに屋外の海水ポンプ室の原子炉補機冷却海水ポンプと異なる区画に設置することで，残留熱除去系及び原子炉補機泠却水系（原子炉補機泠却海水系を含む。）と共通要因に よって同時に機能を損なわないよう位置的分散を図った設計とす る。 原子炉格納容器フィルタベント系は，除熱手段の多様性及び機器 の位置的分散によって，残留熱除去系及び原子炬補機冷却水系（原子炉補機冷却海水系を含む。）に対して独立性を有する設計とする。	

変更前	変更後
4． 3 耐圧強化ベント系 4．3．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送す る機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。） を防止するため，最終ヒートシンクへ熱を輸送するために必要な重大事故等対処設備として，耐圧強化ベント系を設ける設計とする。残留熱除去系の故障等により最終ヒートシンクへ熱を輸送する機能が喪失した場合に，炉心の著しい損傷及び原子炉格納容器の破損を防止するための重大事故等対処設備として，耐圧強化ベント系 は，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由 して，排気筒を通して原子炉建屋外に放出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$ （ 1 Pd において））することで，原子炉格納容器内に蓄積した熱を最終的な熱の逃がし場である大気へ輸送できる設計とする。 最終ヒートシンクへ熱を輸送するための設備として使用する場合の耐圧強化ベント系は，炉心損傷前に使用するため，排気中に含 まれる放射性物質及び可燃性ガスは微量である。 耐圧強化ベント系は，使用する際に弁により他の系統•機器と隔離することにより，悪影響を及ぼさない設計とする。 耐圧強化ベント系は，想定される重大事故等時において，原子炉格納容器が負圧とならない設計とする。耐圧強化ベント系の使用に際しては，原子炉格納容器代替スプレイ冷却系等による原子炉格納容器内へのスプレイを停止する運用を保安規定に定めて管理する。	4． 3 耐圧強化ベント系 4．3．1 系統構成 変更なし

変更前	変更後
と接続し，いずれからも排気できる設計とする。サプレッションチ ェンバ側からの排気ではサプレッションチェンバの水面からの高 さを確保し，ドライウェル側からの排気では，ドライウェルの床面 からの高さを確保するとともに有効燃料棒頂部よりも高い位置に接続箇所を設けることで長期的にも溶融炉心及び水没の悪影響を受けない設計とする。 耐圧強化ベント系を使用した場合に放出される放射性物質の放出量に対して，設置（変更）許可において敷地境界での線量評価を行い，実効線量が 5 mSv 以下であることを確認しており，耐圧強化 ベント系はこの評価条件を満足する設計とする。 耐圧強化ベント系の流路として，設計基準対象施設である排気筒及び原子炉格納容器を重大事故等対処設備として使用することか ら，流路に係る機能について重大事故等対処設備としての設計を行 う。 4．3．2 多重性又は多様性及び独立性，位置的分散 耐圧強化ベント系は，残留熱除去系（格納容器スプレイ冷却モー ド）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよう，ポンプ及び熱交換器を使用せずに最終的な熱の逃がし場である大気へ熱を輸送でき る設計とすることで，残留熱除去系及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有する設計とする。耐圧強化ベント系の排出経路に設置される隔離弁のうち電動弁 （直流）は，所内常設蓄電式直流電源設備，常設代替直流電源設備	4．3．2 多重性又は多様性及び独立性，位置的分散変更なし

変更前	変更後
若しくは可搬型代替直流電源設備からの給電による遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作が可能な設計とし，排出経路に設置される隔離弁のうち電動弁 （交流）は常設代替交流電源設備若しくは可搬型代替交流電源設備 からの給電による遠隔操作を可能とすること又は操作ハンドルを用いた人力による操作が可能な設計とすることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ冷却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）に対して，多様性を有する設計とする。 耐圧強化ベント系は，原子炉建屋原子炉棟内に設置し，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び残留熱除去系熱交換器，原子炉建屋付属棟内の原子炉補機冷却水ポンプ及び原子炉補機冷却水系熱交換器並びに屋外の海水ポンプ室の原子炉補機泠却海水ポ ンプと異なる区画に設置することで，残留熱除去系及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよう位置的分散を図った設計とする。 耐圧強化ベント系は，除熱手段の多様性及び機器の位置的分散に よって，残留熱除去系及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して独立性を有する設計とする。 4．4重大事故等の収束に必要となる水源 設計基準事故の収束に必要な水源とは別に，重大事故等の収束に必要 となる十分な量の水を有する水源を確保することに加えて，発電用原子灲施設には，設計基準事故対処設備及び重大事故等対処設備に対して重	4.4 重大事故等の収束に必要となる水源変更なし

変更前	変更後
大事故等の収束に必要となる十分な水の量を供給するために必要な重大事故等対処設備として，サプレッションチェンバを重大事故等の収束 に必要となる水源として設ける設計とする。 また，これら重大事故等の収束に必要となる水源とは別に，代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽（No．2）を設ける設計とす る。 サプレッションチェンバ（容量 $2800 \mathrm{~m}^{3}$ ，個数 1）は，想定される重大事故等時において，重大事故等対処設備（設計基準拡張）である残留熱除去系（格納容器スプレイ冷却モード）及び残留熱除去系（サプレッシ ョンプール水冷却モード）の水源として使用できる設計とする。 代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）は，想定される重大事故等時において，原子炉格納容器フィルタベント系への水補給の水源として使用できる設計とする。	
5．非常用炉心冷却設備その他原子炉注水設備 5.1 非常用炉心冷却設備その他原子炉注水設備の機能 非常用炉心冷却設備は，工学的安全施設の一設備であって，高圧炉心 スプレイ系，低圧炉心スプレイ系，残留熱除去系（低圧注水モード）及 び自動減圧系から構成する。 これらの各系統は，冷却材喪失事故等が起こったときに，サプレッシ ョンチェンバのプール水又は復水貯蔵タンクの水を原子炉圧力容器内 に注水し，又は原子炉蒸気をサプレッションチェンバのプール水中に逃 がし原子炉圧力を速やかに低下させるなどにより，炉心を冷却し，燃料被覆管の温度が燃料材の溶融又は燃料体の著しい破損を生ずる温度を	5．非常用炉心冷却設備その他原子炉注水設備 5.1 非常用炉心冷却設備その他原子炉注水設備の機能変更なし

変更前	変更後
超えて上昇することを防止できる設計とするとともに，燃料の過熱によ る燃料被覆管の大破損を防ぎ，さらにこれに伴うジルコニウムと水との反応を無視しらる程度に抑え，著しく多量の水素を生じない設計とす る。 非常用炉心冷却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件を満足する設計とする。 非常用炉心冷却設備又は残留熱除去設備のらち，サプレッションチェ ンバのプール水を水源として原子炉圧力容器へ注水するために運転す るポンプは，原子炉圧力容器内又は原子炉格納容器内の圧力及び温度並 びに，原子炉泠却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，設計基準事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計 とする。 非常用炉心泠却設備その他原子炉注水設備のらち，サプレッションチ ェンバのプール水を水源として原子炉圧力容器へ注水するために運転 するポンプは，原子炉格納容器内の圧力及び温度並びに，原子炉冷却材中の異物の影響について「非常用灲心冷却設備又は格納容器熱除去設備 に係るろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第5号（平成20年2月27日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 非常用炉心冷却設備のらち，復水貯蔵タンクを水源として原子炉圧力	

変更前	変更後
容器へ注水するために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さい有効吸込水頭においても，正常に機能 する能力を有する設計とする。 非常用炉心冷却設備その他原子炉注水設備のうち，復水貯蔵タンク， ほう酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海を水源として原子炉圧力容器へ注水するために運転するポンプ は，復水貯蔵タンク，ほう酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最も小さ い有効吸込水頭においても，正常に機能する能力を有する設計とする。自動減圧系を除く非常用炉心冷却設備については，作動性を確認する ため，発電用原子炉の運転中に，テストラインを用いてポンプの作動試験ができる設計とするとともに，弁については単体で開閉試験ができる設計とする。 自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁 の駆動用窒素供給圧力の確認を行うことで，非常用炉心冷却設備の能力 の維持状況を確認できる設計とする。なお，発電用原子炉停止中に，主蒸気逃がし安全弁の作動試験ができる設計とする。 5．2 高圧炉心スプレイ系 5．2．1 系統構成 高圧炉心スプレイ系は，大破断の泠却材喪失事故時には低圧炉心 スプレイ系及び残留熱除去系（低圧注水モード）と連携し，中小破断の冷却材喪失事故時には単独で炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，復水貯蔵タン	5． 2 高圧炉心スプレイ系 5．2．1 系統構成 変更なし

変更前	変更後
クの水又はサプレッションチェンバのプール水を炉心上部に取付 けられた高圧炉心スプレイスパージャのノズルから炉心にスプレ イする設計とする。 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却する ための設備として，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプレイ系が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。 高圧炉心スプレイ系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 インターフェイスシステム LOCA 発生時の重大事故等対処設備と して，高圧炉心スプレイ系注入隔離弁（E22－F003）は，現場で弁 を操作することにより原子炉冷却材の漏えい箇所を隔離できる設計とする。 なお，設計基準事故対処設備である高圧炉心スプレイ系注入隔離弁（E22－F003）を重大事故等対処設備（設計基準拡張）として使用できる設計とする。 また，インターフェイスシステム LOCA 発生時の重大事故等対処設備として，原子炉建屋ブローアウトパネル（設置枚数 1，開放差圧 4.4 kPa ）（原子炉格納施設の設備を原子炉冷却系統施設のうち「5．2 高圧炉心スプレイ系」の設備として兼用）は，高圧の原子炉冷却材が原子炉建屋原子炉棟内へ漏えいして蒸気となり，原子炉建屋原子炉棟内の圧力が上昇した場合において，外気との差圧によ	

変更前	変更後
り自動的に開放し，原子炉建屋原子炉棟内の圧力及び温度を低下さ せることができる設計とする。 5．2．2 多様性，位置的分散等 高圧炉心スプレイ系は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備として の基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はな いことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 5.3 低圧炉心スプレイ系 5．3．1 系統構成 低圧炉心スプレイ系は，大破断の冷却材喪失事故時には残留熱除去系（低圧注水モード）及び高圧炉心スプレイ系と連携して，中小破断の冷却材喪失事故時には高圧炉心スプレイ系あるいは自動減圧系と連携して炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，サプレッションチェンバのプー ル水を，炉心上部に取付けられた低圧炉心スプレイスパージャのノ ズルから炉心にスプレイする設計とする。 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する ための設備として，想定される重大事故等時において，設計基準事故対処設備である低圧炉心スプレイ系が使用できる場合は，重大事故等対処設備（設計基準拡張）として使用できる設計とする。	5．2．2 多様性，位置的分散等 変更なし 5.3 低圧炉心スプレイ系 5．3．1 系統構成 変更なし

変更前	変更後
全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，低圧炉心 スプレイ系が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，低圧炉心スプレイ系を復旧できる設計 とする。低圧炉心スプレイ系は，常設代替交流電源設備からの給電 により機能を復旧し，低圧炉心スプレイ系ポンプによりサプレッシ ョンチェンバのプール水を原子炉圧力容器ヘスプレイすることで炉心を冷却できる設計とする。本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。 低圧炉心スプレイ系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 5．3．2 多様性，位置的分散等 低圧炉心スプレイ系は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備として の基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はな いことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 5． 4 高圧代替注水系	5．3．2 多様性，位置的分散等 変更なし 5． 4 高圧代替注水系

変更前	変更後
原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合においても炉心の著しい損傷を防止するために必要な重大事故等対処設備として，高圧代替注水系を設ける設計とする。 また，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失により起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，高圧代替注水系を現場操作により起動できる設計と する。 高圧炉心スプレイ系及び原子炉隔離時冷却系が機能喪失した場合の重大事故等対処設備として，高圧代替注水系は，蒸気タービン駆動ポン プにより復水貯蔵タンクの水を高圧炉心スプレイ系等を経由して，原子炉圧力容器へ注水することで炉心を冷却できる設計とする。 高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備又は所内常設蓄電式直流電源設備からの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電が可能な設計とし，中央制御室 からの操作が可能な設計とする。 高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができない場合に おいても，現場での人力による原子炉隔離時冷却系蒸気供給ライン分離弁（E51－F082）（原子炉冷却系統施設のうち「5．5 原子炉隔離時冷却系」の設備を原子炉冷却系統施設のうち「5．4 高圧代替注水系」の設	変更なし

変更前	変更後
備として兼用），高圧代替注水系注入弁（E61－F003），高圧代替注水系 タービン止め弁（E61－F050）及び燃料プール補給水系ポンプ吸込弁（P15 －F001）の操作により，原子炉冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の冷却対策の準備が整うまでの期間 にわたり，発電用原子炉の冷却を継続できる設計とする。なお，人力に よる措置は現場にハンドルを設置することで容易に行える設計とする。高圧代替注水系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 5． 5 原子炉隔離時冷却系 5．5．1 系統構成 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却する ための設備として，想定される重大事故等時において，設計基準事故対処設備である原子炉隔離時冷却系が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合にお いても炉心の著しい損傷を防止するために必要な重大事故等対処設備として，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失により起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，原子炉隔離時冷却系を現場操	5.5 原子炉隔離時冷却系 5．5．1 系統構成 変更なし

変更前	変更後
作により起動できる設計とする。 原子炉隔離時冷却系は，全交流動力電源及び常設直流電源系統が機能喪失した場合においても，現場で原子炉隔離時冷却系注入弁 （E51—F003），原子炉隔離時冷却系タービン入口蒸気ライン第二隔離弁（E51－F008）（原子炉冷却系統施設のうち「6．1 原子炉隔離時冷却系」の設備を原子炉冷却系統施設のうち「5．5 原子炉隔離時冷却系」の設備として兼用），原子炉隔離時冷却系タービン止め弁（E51－F009），原子炉隔離時冷却系冷却水ライン止め弁（E51— F017），原子炉隔離時冷却系蒸気供給ライン分離弁（E51—F082）（原子炉冷却系統施設のらち「5．4 高圧代替注水系」の設備と兼用），原子炉隔離時冷却系真空タンクドレン弁（E51－F536）及び高圧代替注水系蒸気供給ライン分離弁（E61－F064）を人力操作すること により起動し，蒸気タービン駆動ポンプにより復水貯蔵タンクの水 を原子炉圧力容器へ注水することで原子炉冷却材圧力バウンダリ の減圧対策及び原子炉冷却材圧力バウンダリ低圧時の冷却対策の準備が整うまでの期間にわたり，発電用原子炉の泠却を継続できる設計とする。なお，人力による措置は現場にハンドルを設置するこ とで容易に行える設計とする。 全交流動力電源が喪失し，原子炉隔離時冷却系の起動又は運転継続に必要な直流電源を所内常設蓄電式直流電源設備により給電し ている場合は，所内常設蓄電式直流電源設備の蓄電池が枯渇する前 に常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備により原子炉隔離時冷却系の運転継続に必要な直流電源を確保する設計とする。	

変更前	変更後
原子炉隔離時冷却系は，常設代替交流電源設備，可搬型代替交流電源設備又は可搬型代替直流電源設備からの給電により機能を復旧し，蒸気タービン駆動ポンプにより復水貯蔵タンクの水を原子炉圧力容器へ注水することで炉心を冷却できる設計とする。 原子炉隔離時冷却系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 5．5．2 多様性，位置的分散等 原子炉隔離時冷却系は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備として の基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はな いことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 5． 6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合にお いても炉心の著しい損傷及び原子炉格納容器の破損を防止するた め，発電用原子炉を冷却するために必要な重大事故等対処設備とし て，炉心の著しい損傷に至るまでの時間的余裕のない場合に対応す	5．5． 2 多様性，位置的分散等 変更なし 5.6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水変更なし

変更前	変更後
るための低圧代替注水系（常設）（復水移送ポンプ）を設ける設計 とする。 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能 が喪失した場合並びに全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炉心スプレ イ系による発電用原子炉の冷却ができない場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由し て原子炉圧力容器へ注水することで炉心を冷却できる設計とする。 炉心の著しい損傷，溶融が発生した場合において，原子炉圧力容器内に溶融炉心が存在する場合に，溶融炉心を冷却し，原子炉格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで原子炉圧力容器内に存在する溶融炉心を冷却でき る設計とする。 発電用原子炉停止中において残留熱除去系（原子炉停止時冷却モ ード）の機能が喪失した場合及び発電用原子炉停止中において全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（原子炉停止時冷却モード）が起動できない場合の重大事故等対処設備 として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送 ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原	

変更前	変更後
子炉圧力容器へ注水することで炉心を冷却できる設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま た，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 5．6．2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による原子炉注水 原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合にお いても炉心の著しい損傷及び原子炉格納容器の破損を防止するた め，発電用原子炉を冷却するために必要な重大事故等対処設備とし て，炉心の著しい損傷に至るまでの時間的余裕のない場合に対応す るための低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）を設ける設計とする。 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能 が喪失した場合並びに全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炉心スプレ	5．6．2 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による原子炉注水 変更なし

変更前	変更後
イ系による発電用原子炉の冷却ができない場合の重大事故等対処設備として，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） は，直流駆動低圧注水系ポンプにより，復水貯蔵タンクの水を高圧炉心スプレイ系等を経由して原子炉圧力容器へ注水することで炉心を冷却できる設計とする。 直流駆動低圧注水系ポンプは，常設代替直流電源設備からの給電 が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電が可能な設計とする。なお，系統構成に必要な電動弁（交流）は，全交流動力電源が機能喪失した場合においても設置場所にて手動操作できる設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の流路と して，設計基準対象施設である原子炉圧力容器，炉心支持構造物及 び原子炉圧力容器内部構造物を重大事故等対処設備として使用す ることから，流路に係る機能について重大事故等対処設備としての設計を行う。 5．6．3 低圧代替注水系（可搬型）による原子炉注水 原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合にお いても炉心の著しい損傷及び原子炉格納容器の破損を防止するた め，発電用原子炉を冷却するために必要な重大事故等対処設備とし て，低圧代替注水系（可搬型）を設ける設計とする。 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能	5．6．3 低圧代替注水系（可搬型）による原子炉注水変更なし

変更前	変更後
ポンプ（タイプ I ）により海を利用できる設計とする。 低圧代替注水系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。 大容量送水ポンプ（タイプI）は，空冷式のディーゼルエンジン により駆動できる設計とする。 低圧代替注水系（可搬型）に使用するホースの敷設等は，ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設のうち「5．6 低圧代替注水系」の設備として兼用）により行 ら設計とする。 低圧代替注水系（可搬型）の流路として，設計基準対象施設であ る原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物 を重大事故等対処設備として使用することから，流路に係る機能に ついて重大事故等対処設備としての設計を行う。 5．6．4 多重性又は多様性及び独立性，位置的分散 低圧代替注水系（常設）（復水移送ポンプ）は，残留熱除去系（低圧注水モード及び原子炉停止時冷却モード）及び低圧炉心スプレイ系と共通要因によって同時に機能を損なわないよう，復水移送ポン プを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動す る残留熱除去系ポンプを用いた残留熱除去系（低圧注水モード及び	5．6．4 多重性又は多様性及び独立性，位置的分散変更なし

変更前	変更後
原子炉停止時冷却モード）及び低圧炉心スプレイ系ポンプを用いた低圧炉心スプレイ系に対して多様性を有する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は， ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流） は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の電動弁（直流）は， ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設）（復水移送ポンプ）の電動弁（直流）は， 125 V 蓄電池から 125 V 直流主母線盤までの系統に おいて，独立した電路で系統構成することにより，非常用ディーゼ ル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。さらに，常設代替直流電源設備からの給電も可能であり， 125 V 代替蓄電池から 125 V 直流主母線盤までの系統において，独立 した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵タンク を水源とすることで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系に対して異なる水源を有する設計とする。	

復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び低圧炝心スプレイ系ポンプと異なる区画に設置することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。
復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によって同時に機能を損 なわないよう位置的分散を図る設計とする。
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系と共通要因に よって同時に機能を損なわないよう，直流駆動低圧注水系ポンプを常設代替直流電源設備からの給電により駆動することで，非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用い た残留熱除去系（低圧注水モード）及び低圧灲心スプレイ系ポンプ を用いた低圧炝心スプレイ系に対して多様性を有する設計とする。
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の電動弁 （直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電に よる遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の電動弁（直流）は， 125 V 蓄電池から 125 V 直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。さらに， 125 V 代替蓄電池から 125 V 直流主母線盤までの系統において，独立 した電路で系統構成することにより，非常用ディーゼル発電機の交

	変更前	変更後
$\begin{aligned} & \stackrel{4}{7} \\ & \stackrel{1}{8} \\ & \hline 8 \end{aligned}$	流を直流に変換する電路に対して，独立性を有する設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェンバを水源と する残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系に対 して異なる水源を有する設計とする。 直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設置するこ とで，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び低圧炉心ス プレイ系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によって同時に機能を損 なわないよう位置的分散を図る設計とする。 低圧代替注水系（可搬型）は，残留熱除去系（低圧注水モード及 び原子炬停止時冷却モード），低圧炬心スプレイ系及び低圧代替注水系（常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプ I ）を空冷式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系 （低圧注水モード及び原子炉停止時冷却モード），低圧炉心スプレ イ系及び低圧代替注水系（常設）に対して多様性を有する設計とす る。 低圧代替注水系（可搬型）の電動弁は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。 また，低圧代替注水系（可搬型）の電動弁は，代替所内電気設備	

変更前	変更後
を経由して給電する系統において，独立した電路で系統構成するこ とにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 低圧代替注水系（可搬型）は，代替淡水源を水源とすることで， サプレッションチェンバを水源とする残留熱除去系（低圧注水モー ド）及び低圧炉心スプレイ系並びに復水貯蔵タンクを水源とする低圧代替注水系（常設）に対して異なる水源を有する設計とする。 大容量送水ポンプ（タイプ I）は，原子炉建屋から離れた屋外に分散して保管することで，原子炉建屋原子炉棟内の残留熱除去系ポ ンプ，低圧炉心スプレイ系ポンプ及び復水移送ポンプ並びに原子炉建屋付属棟内の直流駆動低圧注水系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所 に設置する設計とする。 低圧代替注水系（常設）（復水移送ポンプ）及び低圧代替注水系 （可搬型）は，残留熱除去系及び低圧炉心スプレイ系と共通要因に よって同時に機能を損なわないよう，水源から残留熱除去系配管と の合流点までの系統について，残留熱除去系に対して独立性を有す る設計とする。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，残留熱除去系及び低圧炉心スプレイ系と共通要因によって同時に機能 を損なわないよう，流路を独立することで独立性を有する設計とす る。	

変更前	変更後
これらの多様性及び系統の独立性並びに位置的分散によって，低圧代替注水系（常設）及び低圧代替注水系（可搬型）は，設計基準事故対処設備である残留熱除去系（低圧注水モード及び原子炉停止時冷却モード）及び低圧炉心スプレイ系に対して重大事故等対処設備としての独立性を有する設計とする。 5．7 代替循環冷却系 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するため の設備として，炉心の著しい損傷及び溶融が発生した場合において，原子炉圧力容器内に溶融炉心が存在する場合の重大事故等対処設備とし て代替循環冷却系を設ける設計とする。 炉心の著しい損傷及び溶融が発生した場合において，原子炉圧力容器内に溶融炉心が存在する場合の重大事故等対処設備として代替循環冷却系は，代替循環冷却ポンプにより，残留熱除去系熱交換器にて冷却さ れた，サプレッションチェンバのプール水を残留熱除去系を経由して原子炉圧力容器へ注水することで原子炉圧力容器内に存在する溶融炉心 を冷却できる設計とする。 また，本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計 とする。 代替循環冷却系は，非常用交流電源設備に加えて，代替所内電気設備 を経由した常設代替交流電源設備からの給電が可能な設計とする。 代替循環冷却系の流路として，設計基準対象施設である残留熱除去系熱交換器，原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構	5.7 代替循環冷却系変更なし

Abstract

変更前 全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）が起動できない場合の重大事故等対処設備 として，常設代替交流電源設備を使用し，残留熱除去系（低圧注水 モード）を復旧できる設計とする。残留熱除去系（低圧注水モード） は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプによりサプレッションチェンバのプール水を原子炉圧力容器へ注水することで炉心を冷却できる設計とする。本系統に使用する泠却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。残留熱除去系（低圧注水モード）の流路として，設計基準対象施設である残留熱除去系熱交換器，原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用 することから，流路に係る機能について重大事故等対処設備として の設計を行う。

5．9．2 多様性，位置的分散等
残留熱除去系（低圧注水モード）は，設計基準事故対処設備であ るとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。

5．9．2 多様性，位置的分散等
変更なし

変更後

変更前	変更後
5． 10 水源，代替水源移送系 5．10．1 重大事故等の収束に必要となる水源 設計基準事故の収束に必要な水源とは別に，重大事故等の収束 に必要となる十分な量の水を有する水源を確保することに加え て，発電用原子炉施設には，設計基準事故対処設備及び重大事故等対処設備に対して重大事故等の収束に必要となる十分な水の量 を供給するために必要な重大事故等対処設備として，復水貯蔵夕 ンク，サプレッションチェンバ及びほう酸水注入系貯蔵タンクを重大事故等の収束に必要となる水源として設ける設計とする。 また，これら重大事故等の収束に必要となる水源とは別に，代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽（No．2）を設 ける設計とする。 また，淡水が枯渇した場合に，海を水源として利用できる設計 とする。 復水貯蔵タンクは，想定される重大事故等時において，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失し た場合の代替手段である高圧代替注水系，低圧代替注水系（常設） （復水移送ポンプ）及び低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）並びに重大事故等対処設備（設計基準拡張）である原子炉隔離時冷却系及び高圧炉心スプレイ系の水源として使用で きる設計とする。 サプレッションチェンバ（容量 $2800 \mathrm{~m}^{3}$ ，個数 1）は，想定され る重大事故等時において，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である代替循	5． 10 水源，代替水源移送系 5．10．1 重大事故等の収束に必要となる水源変更なし

	変更前		変更後
$\begin{aligned} & 0 \\ & \stackrel{1}{ث} \\ & \stackrel{1}{N} \\ & \stackrel{\sim}{0} \end{aligned}$	環冷却系並びに重大事故等対処設備（設計基準拡張）である高圧炉心スプレイ系，低圧炉心スプレイ系及び残留熱除去系（低圧注水モード）の水源として使用できる設計とする。 ほう酸水注入系貯蔵タンクは，想定される重大事故等時におい て，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段であるほう酸水注入系の水源として使用できる設計とする。 代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2） は，想定される重大事故等時において，復水貯蔵タンクへ水を供給するための水源であるとともに，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段であ る低圧代替注水系（可搬型）の水源として使用できる設計とする。 海は，想定される重大事故等時において，淡水が枯渇した場合 に，復水貯蔵タンクへ水を供給するための水源であるとともに，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型）の水源 として利用できる設計とする。 5．10．2 代替水源移送系 設計基準事故対処設備及び重大事故等対処設備に対して，重大事故等の収束に必要となる十分な量の水を供給するために必要な設備及び海を利用するために必要な設備として，大容量送水ポン プ（タイプ I ）及び大容量送水ポンプ（タイプII）を設ける設計 とする。	5．10．2 代替水源移送系	変更なし

	変更前	変更後
	重大事故等の収束に必要な水源である復水貯蔵タンクへ淡水を供給するための重大事故等対処設備として，大容量送水ポンプ（タ イプ I ）は，代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽 （No．2）の淡水を補給水系等を経由して復水貯蔵タンクへ供給でき る設計とする。 また，淡水が枯渇した場合に，重大事故等の収束に必要な水源で ある復水貯蔵タンクへ海水を供給するための重大事故等対処設備 として，大容量送水ポンプ（タイプ I ）は，海水を補給水系等を経由して復水貯蔵タンクへ供給できる設計とする。 さらに，代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽 （No．2）の淡水が枯渇した場合に，海水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプII）は，海水を淡水貯水槽（No．1）及び淡水貯水槽（No．2）へ供給できる設計とする。 大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII） は，空冷式のディーゼルエンジンにより駆動できる設計とする。 代替水源及び代替淡水源からの移送ルートを確保するとともに，可搬型のホース，大容量送水ポンプ（タイプI）及び大容量送水ポ ンプ（タイプ II）については，複数箇所に分散して保管する。 水源への水の供給に使用するホースの敷設等は，ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設及び貯蔵施設のうち「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設のう ち「5．10．2 代替水源移送系」の設備として兼用）により行う設計 とする。	

変更前	変更後
6．原子炉冷却材補給設備 6． 1 原子炉隔離時冷却系 原子炉隔離時冷却系は，発電用原子炉停止後，何らかの原因で給水が停止した場合等に原子炉水位を維持するため，発電用原子炉で発生する蒸気の一部を用いたタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炉圧力容器に注入し，水位を維持できる設計とする。 また，冷却材喪失事故に至らない原子炉冷却材圧力バウンダリからの小さな漏えい及び原子炉冷却材圧力バウンダリに接続する小口径配管 の破断又は小さな機器の損傷による原子炉冷却材の漏えいに対し，原子炉冷却材を補給する能力を有する設計とする。 原子炉隔離時冷却系は，全交流動力電源喪失時から重大事故等に対処 するために必要な電力の供給が常設代替交流電源設備から開始される までの間，炉心を冷却する機能を有する設計とする。 6． 2 補給水系 通常運転中の原子炉冷却系統への補給水，高圧炉心スプレイ系及び原子炉隔離時冷却系の原子炉への注入水を貯留するため，復水貯蔵タンク を設置する設計とする。	6．原子炉冷却材補給設備 6.1 原子炉隔離時冷却系 変更なし 6.2 補給水系
7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備である原子	7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成 変更なし

変更前	変更後
炉補機冷却水系（原子炉補機冷却海水系を含む。）は，発電用原子炉停止時に残留熱除去系により除去された原子炉圧力容器内にお いて発生した残留熱及び重要安全施設において発生した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力電源喪失時を除いて，最終的な熱の逃がし場である海へ輸送が可能な設計とする。 また，津波，溢水又は発電所敷地若しくはその周辺において想定 される発電用原子炉施設の安全性を損なわせる原因となるおそれ がある事象であって人為によるものに対して安全性を損なわない設計とする。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）は，淡水 ループである原子炉補機冷却水系と，海水系である原子炉補機冷却海水系から構成する設計とする。 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却する ための設備，最終ヒートシンクへ熱を輸送するための設備，原子炉格納容器内の泠却等のための設備，原子炉格納容器の過圧破損を防止するための設備又は原子炉格納容器下部の溶融炉心を冷却する ための設備として，想定される重大事故等時において，設計基準事	

変更前	変更後
故対処設備である原子炉補機冷却水系（原子炉補機冷却海水系を含 む。）が使用できる場合は，重大事故等対処設備（設計基準拡張） として使用できる設計とする。 7．1．2 多様性，位置的分散等 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）は，設計基準事故対処設備であるとともに，重大事故等時においても使用す るため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備 の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 7．2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。） 7．2．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備である高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，重要安全施設において発生した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力電源喪失時を除いて，最終的な熱の逃がし場である海へ輸送が可能な設計と する。 また，津波，溢水又は発電所敷地若しくはその周辺において想定 される発電用原子炉施設の安全性を損なわせる原因となるおそれ	7．1．2 多様性，位置的分散等 変更なし 7.2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。） 7．2．1 系統構成

変更前	変更後
がある事象であって人為によるものに対して安全性を損なわない設計とする。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含 む。）は，非常用炉心冷却系の区分に対応した 3 系統構成とするこ とにより，非常時に動的機器の単一故障及び外部電源喪失を仮定し た場合でも，非常用炉心冷却設備等の機器から発生する熱を最終的 な熱の逃がし場である海へ輸送が可能な設計とする。 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，淡水ループである高圧炉心スプレイ補機冷却水系 と，海水系である高圧炉心スプレイ補機冷却海水系から構成する設計とする。 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプ レイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用 できる設計とする。 7．2．2 多様性，位置的分散等 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことか	7．2．2 多様性，位置的分散等 変更なし

変更前	変更後
ら，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 7．3 原子炉補機代替冷却水系 7．3．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送す る機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生する前に生ずるものに限る。） を防止するため，最終ヒートシンクへ熱を輸送するために必要な重大事故等対処設備として，原子炉補機代替冷却水系を設ける設計と する。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）の故障又 は全交流動力電源の喪失により，最終ヒートシンクへ熱を輸送する機能が喪失した場合の重大事故等対処設備として，原子炉補機代替冷却水系は，サプレッションチェンバへの熱の蓄積により原子炉冷却機能が確保できる一定の期間内に，原子炉補機代替冷却水系熱交換器ユニットを原子炉補機冷却水系に接続し，大容量送水ポンプ （タイプI）により原子炉補機代替冷却水系熱交換器ユニットに海水を送水することで，十分な余裕を持って残留熱除去系等の機器で除去した熱を最終的な熱の逃がし場である海へ輸送できる設計と する。 原子炉補機代替冷却水系は，原子炉補機代替冷却水系熱交換器ユ ニットを原子炉補機冷却水系に接続し，大容量送水ポンプ（タイプ I）により取水口又は海水ポンプ室から海水を取水し，原子炉補機	7．3 原子炉補機代替冷却水系 7．3．1 系統構成 変更なし

変更前	変更後
代替冷却水系熱交換器ユニットに海水を送水することで，残留熱除去系熱交換器又は燃料プール冷却浄化系熱交換器で除去した熱を最終的な熱の逃がし場である海へ輸送できる設計とする。 原子炉補機代替冷却水系熱交換器ユニット及び大容量送水ポン プ（タイプ I ）は，空冷式のディーゼルエンジンにより駆動できる設計とする。 原子炉補機代替冷却水系に使用するホースの敷設は，ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設及び貯蔵施設の らち「4．2 燃料プール代替注水系」の設備を原子炉冷却系統施設 のらち「7．3 原子炉補機代替冷却水系」の設備として兼用）によ り行う設計とする。 原子炉補機代替冷却水系の流路として，設計基準対象施設である残留熱除去系熱交換器を重大事故等対処設備として使用すること から，流路に係る機能について重大事故等対処設備としての設計を行う。 7．3．2 多重性又は多様性及び独立性，位置的分散 原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよ う，原子炉補機代替冷却水系熱交換器ユニット及び大容量送水ポン プ（タイプ I ）を空冷式のディーゼルエンジンにより駆動すること で，電動機駆動ポンプにより構成される原子炉補機冷却水采（原子炉補機冷却海水系を含む。）に対して多様性を有する設計とする。 また，原子炉補機代替冷却水系は，原子炉格納容器フィルタベント	7．3．2 多重性又は多様性及び独立性，位置的分散変更なし

変更前	変更後
系及び耐圧強化ベント系に対して，除熱手段の多様性を有する設計 とする。 原子炉補機代替冷却水系熱交換器ユニット及び大容量送水ポン プ（タイプ I ）は，原子炉建屋，海水ポンプ室及び排気筒から離れ た屋外に分散して保管することで，原子炉建屋内の原子炉補機冷却水ポンプ，原子炉補機冷却水系熱交換器，耐圧強化ベント系及び原子炉格納容器フィルタベント系並びに屋外の原子炉補機冷却海水 ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。 原子炉補機代替冷却水系熱交換器ユニットの接続口は，共通要因 によって接続できなくなることを防止するため，位置的分散を図っ た複数箇所に設置する設計とする。 原子炉補機代替冷却水系は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）と共通要因によって同時に機能を損なわないよ う，原子炉補機冷却海水系に対して独立性を有するとともに，原子炉補機代替冷却水系熱交換器ユニットから原子炉補機冷却水系配管との合流点までの系統について，原子炉補機冷却水系に対して独立性を有する設計とする。 これらの多様性及び系統の独立性並びに位置的分散によって，原子炉補機代替冷却水系は，設計基準事故対処設備である原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して重大事故等対処設備としての独立性を有する設計とする。 7． 4 重大事故等の収束に必要となる水源	7．4 重大事故等の収束に必要となる水源

変更前	変更後
海は，想定される重大事故等時において，原子炉補機代替冷却水系の水源として利用できる設計とする。	変更なし
8．原子炉冷却材浄化設備 8． 1 原子炉冷却材浄化系 原子炉冷却材浄化系は，原子炉冷却材の純度を高く保つために設置す るもので，原子炉再循環系配管及び原子炉圧力容器底部から原子炉冷却材を一部取り出し，原子炉冷却材浄化系ろ過脱塩器によって浄化脱塩し て復水給水系へ戻すことにより，原子炉冷却材中の不純物及び放射性物質の濃度を発電用原子炉施設の運転に支障を及ぼさない値以下に保つ ことができる設計とする。 放射性物質を含む原子炉冷却材を，原子炉起動時，停止時及び高温待機時において，原子炉冷却系統外に排出する場合は，原子炉冷却材浄化系により原子炉冷却材を浄化して，液体廃棄物処理系へ導く設計とす る。	8．原子炉冷却材浄化設備 8．1 原子炉冷却材浄化系 変更なし
9．原子炉格納容器内の原子炉冷却材漏えいを監視する装置 原子炉冷却材圧力バウンダリからの原子炉冷却材の漏えいに対して，ド ライウェル送風機冷却コイルドレン流量測定装置，ドライウェル床ドレン サンプ水位測定装置，ドライウェル機器ドレンサンプ水位測定装置及び格納容器内ダスト放射線濃度測定装置を設ける設計とする。 このうち，漏えい位置を特定できない原子炉格納容器内の漏えいに対し ては，ドライウェル床ドレンサンプ水位測定装置により，1時間以内に $0.23 \mathrm{~m}^{3} / \mathrm{h}$ の漏えい量を検出する能力を有する設計とするとともに，自動的に中央制御室に警報を発信する設計とする。	9．原子炉格納容器内の原子炉冷却材漏えいを監視する装置変更なし

変更前	変更後
また，測定値は，中央制御室に指示する設計とする。 ドライウェル床ドレンサンプ水位測定装置は，ドライウェル床ドレンサ ンプに設ける設計とする。 原子炉冷却材圧力バウンダリからの原子炉冷却材の漏えいは，ドライウ エル床ドレンサンプ水位測定装置にて検出できる設計とする。 ドライウェル床ドレンサンプ水位測定装置が故障した場合は，これと同等の機能を有するドライウェル送風機冷却コイルドレン流量測定装置及 び格納容器内ダスト放射線濃度測定装置により，漏えい位置を特定できな い原子炉格納容器内の漏えいを検知可能な設計とする。	
10．流体振動等による損傷の防止 原子炉冷却系統，原子炉冷却材浄化系及び残留熱除去系（原子炉停止時冷却モード）に係る容器，管，ポンプ及び弁は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生じる流体振動又は温度差のあ る流体の混合その他の原子炉冷却材の挙動により生じる温度変動により損傷を受けない設計とする。 管に設置された円柱状構造物で耐圧機能を有するものに関する流体振動評価は，日本機械学会「配管内円柱状構造物の流力振動評価指針」（ J SME S O 1 2）の規定に基づく手法及び評価フローに従った設計 とする。 温度差のある流体の混合等で生じる温度変動により発生する配管の高 サイクル熱疲労による損傷防止は，日本機械学会「配管の高サイクル熱疲労に関する評価指針」（J S M E S O 1 7 ）の規定に基づく手法及 び評価フローに従った設計とする。	10．流体振動等による損傷の防止 変更なし

変更前		変更後
11．主要対象設備 原子炉冷却系統施設（蒸気タービンを除く。）の対象となる主要な設備 について，「表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト」に示す。 本施設の設備として兼用する場合に主要設備リストに記載されない設備については，「表2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト」に示す。	11．主要対象設備	変更なし

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（1／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（2／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（3／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（4／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{\sim} \\ & \stackrel{1}{1} \\ & \underset{\sim}{v} \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 护 } \\ & \text { 炩 } \\ & \text { 却 } \\ & \text { 材 } \\ & \text { 循 } \\ & \text { 譞 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 蒸 } \\ & \text { 采 } \end{aligned}$	主配管			B21－F001G 分岐点～B21－F001G	S	クラス1	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
					B21－F001G～T－クエンチャ		－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
					B21－F001H 分岐点～B21－F001H	S	クラス 1	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					B21－F001H～T－クエンチャ	B－1	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					原子炉圧力容器～原子炉隔離時冷却系蒸気配管分岐点	S	クラス 1	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					原子炉隔離時冷却系蒸気配管分岐点～B21－ F001L 分岐点	S	クラス 1	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				－	B21－F001L 分岐点～原子炉格納容器配管貫通部（X－10D）	S	クラス1	－		変更なし					
				－	原子炉格納容器配管貫通部（X－10D）～主蒸気ヘッダ	B－1	クラス 2	－		変更なし					
					B21－F001J 分岐点～B21－F001J	S	クラス 1	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					B21－F001J～T－クエンチャ	B－1	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					B21－F001K 分岐点～B21－F001K	S	クラス 1	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					B21－F001K～T－クエンチャ	－		常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					B21－F001L 分岐点～B21－F001L	S	クラス 1	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					B21－F001L～T－クエンチャ	B－1	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（5／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（6／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{1} \\ & \stackrel{1}{1} \\ & \stackrel{\rightharpoonup}{\bullet} \end{aligned}$	原炬泠却材の循環設備	$\begin{aligned} & \text { 靖 } \\ & \text { 鼡 } \\ & \text { 系 } \end{aligned}$	主配管			主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（J）～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（J）出口配管合流点	S	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
					主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（L）～主蒸気逃がし安全弁自動減圧機能用アキュムレータ（L）出口配管合流点	S	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（A）出口配管合流点～B21－F001A	S	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（C）出口配管合流点～B21－F001C	S	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（E）出口配管合流点～B21－F001E	S	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（H）出口配管合流点～B21－F001H	S	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（J）出口配管合流点～B21－F001J	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				－	主蒸気逃がし安全弁自動減圧機能用アキュ ムレータ（L）出口配管合流点～B21－F001L	S	クラス 3	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					B21－F022A～主蒸気逃がし安全开逃がし弁機能用アキュムレータ（A）出口配管合流点	S	クラス 3	－		変更なし					
					B21－F022B～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（B）出口配管合流点	S	クラス 3	－		変更なし					
					B21－F022C～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（C）出口配管合流点	S	クラス 3	－		変更なし					
					B21－F022D～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（D）出口配管合流点	S	クラス 3	－		変更なし					
					B21－F022E～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（E）出口配管合流点	S	クラス 3	－		変更なし					
					B21－F022F～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（F）出口配管合流点	S	クラス 3	－		変更なし					
					B21－F022G～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（G）出口配管合流点	S	クラス 3	－		変更なし					
					B21－F022H～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（H）出口配管合流点	S	クラス 3	－		変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（7／49）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 炃 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				$\begin{aligned} & \begin{array}{l} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{array} . \begin{array}{l} \end{array}{ }^{2} \\ & \hline \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
原炉掵却材循镮備	$\begin{aligned} & \text { 龳 } \\ & \text { 気 } \\ & \text { 系 } \end{aligned}$	主配管			B21－F022J～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（J）出口配管合流点	S	クラス 3	－		変更なし				
				B21－F022K～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（K）出口配管合流点	S	クラス 3	－		変更なし					
				B21－F022L～主蒸気逃がし安全弁逃がし弁機能用アキュムレータ（L）出口配管合流点	S	クラス 3	－		変更なし					
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（A）～B21－F001A	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（B）～B21－F001B	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（C）～B21－F001C	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（D）～B21－F001D	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（E）～B21－F001E	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
			－	主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（F）～B21－F001F	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（G）～B21－F001G	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（H）～B21－F001H	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（J）～B21－F001J	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				主蒸気逃がし安全并逃がし弁機能用アキュ ムレータ（K）～B21－F001K	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				主蒸気逃がし安全弁逃がし弁機能用アキュ ムレータ（L）～B21－F001L	S	クラス 3	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				B21－F001A，L～原子炉格納容器配管貫通部 （X－106B）		－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				原子炉格納容器配管貫通部（X－106B）		－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				$\begin{array}{\|l\|} \text { 原子炉格納容器配管貫通部 }(\mathrm{X}-106 \mathrm{~B}) \sim \text { 代替 } \\ \text { 高圧窒素ガス供給系 A 系窒素供給配管分岐 } \\ \text { 点 } \end{array}$		－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（8／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（9／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（10／49）

表1原子炉洽却系統施設（蒸気タービンを除く。）の主要設借リスト（11／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（12／49）

表1原子炉泠却系統施設（蒸気タービンを除く。）の主要設備リスト（13／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爻 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綵 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊＊		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊＊		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		残貿除䒬	安全弁及び逃がし弁	－		E11－F048C	S	－	－		変更なし				
					E11－F050A，B	S	－	常設／防止 （DB 拡張）	－	変更なし					
					E11－F054A，B	S	－	常設／防止 （DB 拡張）	－	変更なし					
			主要弁	－	E11－F003A，B	S	クラス 2	－		変更なし					
					E11－F004A，B，C	S	クラス1	－		変更なし					
					E11－F005A，B，C	S	クラス 1	－		変更なし					
$\stackrel{\rightharpoonup}{1}$					E11－F008A，B	S	クラス 2	－		変更なし					
σ					E11－F010A，B	S	クラス 2	－		変更なし					
					E11－F011A，B	S	クラス 2	－		変更なし					
					E11－F012A，B	S	クラス 2	－		変更なし					
					E11－F015A，B	S	クラス 1	－		変更なし					
					E11－F016A，B	S	クラス 1	－		変更なし					
					E11－F018A，B	S	クラス 1	－		変更なし					
					E11－F019A，B	S	クラス 1	－		変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（14／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（15／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（16／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
						原子炉格納容器配管貫通部（X－32A）～E11－ F020A	S	クラス 1	常設／防止 （DB 拡張）	SAクラス 2			更なし		
					E11－F020A～残留熱除去系原子炬停止時冷却モードA系注入配管合流点		－	常設／防止 （DB 拡張）	SAクラス 2			更なし			
					残留熱除去系原子炉停止時冷却モード A 系注入配管合流点～原子炬圧力容器		－	常設／防止 （DB 拡張）	SAクラス 2			更なし			
					ドライウェルスプレイ注入配管 A 系分岐点 ～原子炉格納容器代替スプレイ泠却系 A 系注入配管合流点	S	クラス 2	常設／防止 （DB 拡張）	SAクラス 2			更なし			
					原子炉格納容器代替スプレイ冷却系 A 系注 入配管合流点～原子炉格納容器配管貫通部 $(\mathrm{X}-30 \mathrm{~A})$	S	クラス 2	常設／防止 （DB 拡張）	SAクラス 2			更なし			
$\begin{aligned} & \omega \\ & \stackrel{\rightharpoonup}{\bullet} \end{aligned}$					原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~A}$ ）		－	常設／防止 （DB 拡張）	SAクラス 2			更なし			
$\begin{aligned} & 1 \\ & 1 \\ & 0 \\ & 0 \end{aligned}$	残 留 葲	$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \end{aligned}$	主配管	－	ドライウェルスプレイ管		－	常設／防止 （DB 拡張）	SAクラス 2			更なし			
	$\begin{aligned} & \text { 除 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 筡 } \\ & \text { 亲 } \end{aligned}$			ドライウェルスプレイ管入口配管 A 系分岐点～原子炉格納容器配管貫通部（X－37）	S	クラス 2					更なし			
					原子炉格納容器配管貫通部（X－37）～E11－ F022	S	クラス1					更なし			
					E11－F022～原子炬圧力容器	S	クラス 1					更なし			
					$\begin{array}{\|l\|} \hline \text { サプレッションプール水冷却モードA系戻 } \\ \text { り配管分岐点~原子炉格納容器配管貫通部 } \\ \text { (X-215A) } \\ \hline \end{array}$	S	クラス 2	常設／防止 （DB 拡張）	SAクラス 2			更なし			
					原子炉格納容器配管貫通部（ X －215A）		－	常設／防止 （DB 拡張）	SA クラス 2			更なし			
					原子炉格納容器配管貫通部（X－215A）～サプ レッションプール水泠却配管 A 系開放端	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2			更なし			
					$\begin{array}{\|l\|} \hline \text { サプレッションチェンバスプレイ注入配管 } \\ \text { A系分岐点~原子炬格納容器配管貫通部 } \\ (\mathrm{X}-213 \mathrm{~A}) \end{array}$	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2			更なし			

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（17／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \omega \\ & \stackrel{\omega}{1} \\ & \vdots \\ & 1 \\ & 0 \\ & 0 \end{aligned}$			主配管			原子炉格納容器配管貫通部（X－213A）		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
					サプレッションチェンバスプレイ管		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					E11－F029A～残留熱除去系ポンプ（A）入口配管合流点	S	クラス 2	－		変更なし					
					使用済燃料プール A 系入口配管分岐点～ E11－F030A	S	クラス 2	－		変更なし					
					E11－F014B～原子炉格納容器配管貫通部（X－ 33B）	S	クラス 1	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					原子炉格納容器配管貫通部（ $\mathrm{X}-33 \mathrm{~B}$ ）		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					原子炉格納容器配管貫通部（X－33B）～サプ レッションチェンバ出口配管 B 系合流点	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2	変更なし					
				－	残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B）	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2	変更なし					
					原子炉格納容器配管貫通部（X－214B）	－		常設／防止 （DB 拡張）	SA クラス 2	変更なし					
					原子炉格納容器配管貫通部（X－214B）～サプ レッションチェンバ出口配管 B 系合流点	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2	変更なし					
					サプレッションチェンバ出口配管B系合流点～残留熱除去系ポンプ（B）	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2	変更なし					
					残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2	変更なし					
					残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2	変更なし					
					残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（18／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（19／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（ $20 / 49$ ）

	$\begin{aligned} & \text { 称 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基漼效象施設＊1		重大事故等対処設㩦＊1		名称	設計基漼対象施設＊1		重大事故等対処設備＊1		
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \hline \text { 分類 } \end{gathered}$		機器クラス	設備分類	重大事故等機器クラス		
		ポンプ	－		大容量送水ポンプ（タイプ I）		－	可搬防止	SAクラス 3	変更なし				
		安全弁及び逃がし弁	－	T63－F006		－	常設耐震／防止	－	変更なし					
				T48－F019		－	常設而震／防止	SAクラス 2	変更なし					
				T48－F022		－	常設而震／防止	SAクラス 2	変更なし					
				T63－F001		－	常設耐震／防止	SAクラス2	変更なし					
				T63－F002		－	常設耐震／防止	SAクラス2	変更なし					
				原子炉格納容器配管貫通部（ X －230）		－	常設耐震／防止	SAクラス2	変更なし					
				原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点		－	常設耐震／防止	SA クラス 2	変更なし					
				原子炬格納容器配管貫通部（ X －81）		－	常設耐震／防止	SAクラス 2	変更なし					
		主配管	－	原子炉格納容器配管貫通部（X－81）～ドライ ウェル出口配管分岐点		－	常設耐震／防止	SAクラス 2	変更なし					
				サプレッションチェンバ出口配管分岐点 3 ～フィルタ装置		－	常設耐震／防止	SAクラス 2	変更なし					
				フィルタ装置～フィルタ装置出口側ラプチ ャディスク		－	常設耐震／防止	SAクラス 2	変更なし					
				$\begin{array}{\|l\|} \hline \text { フィルタ装置出口側ラプチャディスク~排\| } \\ \text { 気管 } \end{array}$		－	常設耐震／防止	SAクラス 2	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（21／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（22／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（23／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（24／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \end{aligned}$		機器クラス	設備分類	重大事故等機器クラス		
			主配管			E22－F001～高圧炉心スプレイ系ポンプ	S	クラス 2	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
					高圧炬心スプレイ系ストレーナ～原子炉格納容器配管貫通部（X－219）	S	クラス 2	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					原子炉格納容器配管貫通部（X－219）		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					原子炉格納容器配管貫通部（X－219）～高圧炬心スプレイ系ポンプ入口配管合流点	S	クラス 2	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					高圧炉心スプレイ系ポンプ～直流駆動低圧注水系ポンプ吐出配管合流点	S	クラス 2	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					直流駆動低圧注水系ポンプ吐出配管合流点 ～原子炉格納容器配管貫通部（X－35）	S	クラス 2	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					原子炉格納容器配管貫通部（X－35）	－		常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					原子炬格納容器配管貫通部（X－35）～原子炉圧力容器	S	クラス1	常設／防止 （DB 拡張）	SA クラス 2	変更なし					
					復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	B－1	クラス 2	－		変更なし					
					低圧代替注水系吸込配管分岐点～高圧代替注水系吸込配管分岐点	B－1	クラス 2	－		変更なし					
					高圧代替注水系吸込配管分岐点～E51－F001	B－1	クラス 2	－		変更なし					
		低	ポンプ	－	低圧炉心スプレイ系ポンプ	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2	変更なし					
		憂	万過装置	－	低圧炉心スプレイ系ストレーナ	S	クラス 2	常設／防止 （DB 拡張）	SA クラス 2	変更なし					
		年	安全弁及び逃がし弁	－	E21－F017	S	－	常設／防止 （DB 拡張）	－	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（ $25 / 49$ ）

$\begin{aligned} & \omega \\ & \stackrel{1}{1} \\ & \stackrel{1}{N} \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 雞 } \\ & \text { 森 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対处設件＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1		
				$\begin{gathered} \text { 震 } \\ \text { 重要度 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 袻震 } \\ \text { 要分類 } \end{gathered}$		機器クラス	設備分類	重大事故等機器クラス		
					E21－F003	S	クラス1					更なし		
				E21－F004	S	クラス 1					更なし			
	低			低圧炬心スプレイ系ストレーナ～原子炬格納容器配管貫通部（X－217）	s	クラス2	常設／防止 （DB 拡張）	SAクラス 2			更なし			
	$\begin{aligned} & \text { 塋 } \\ & \hline \text { 竼 } \end{aligned}$			原子炉格納容器配管貫通部（X－217）		－	常設／防止 （DB 拡張）	SAクラス 2			更なし			
	$\begin{aligned} & \text { 조 } \\ & \text { K } \end{aligned}$			原子炉格納容器配管貫通部（X－217）～低圧炬心スプレイ系ポンプ	S	クラス2	常設／防止 （DB 拡張）	SAクラス 2			更なし			
	系	主配管	－	低圧灲心スプレイ系ポンプ～原子炉格納容器配管貫通部（X－34）	S	クラス2	常設／防止 （DB 拡張）	SAクラス 2			更なし			
				原子炉格納容器配管貫通部（ X －34）		－	常設／防止 （DB 拡張）	SAクラス 2			更なし			
				原子炉格納容器配管貫通部（X－34）～原子炬圧力容器	S	クラス1	常設／防止 （DB 拡張）	SAクラス 2			更なし			
	高	ポンプ	－	高圧代替注水系タービンポンプ		－	常設耐震／防止常設／緩和	SAクラス 2			更なし			
	替	容器	－	復水貯蔵タンク		－	常設耐震／防止常設／緩和	SAクラス 2			更なし			

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（26／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（27／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
						低圧代替注水系吸込配管分岐点～高圧代替注水系吸込配管分岐点		－	常設耐震／防止常設／緩和	SAクラス 2			更なし		
					高圧代替注水系吸込配管分岐点～高圧代替注水系タービンポンプ		－	常設耐震／防止常設／緩和	SA クラス 2			更なし			
		高			高圧代替注水系タービンポンプ～高圧代替注水系注入配管合流点		－	常設耐震／防止常設／緩和	SAクラス 2			更なし			
	非	$\begin{aligned} & \text { 䒫 } \\ & \text { 替 } \\ & \text { 淮 } \end{aligned}$	主配管	－	高圧代替注水系注入配管合流点～原子炉泠却材浄化系 A 系注入配管合流点		－	常設耐震／防止常設／緩和	SA クラス 2			更なし			
	$\begin{aligned} & \text { 常 } \\ & \text { 炉 } \end{aligned}$	$\begin{aligned} & \text { 永 } \\ & \text { 系 } \end{aligned}$			原子炉冷却材浄化系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－12A）		－	常設耐震／防止常設／緩和	SAクラス 2			更なし			
ω	$\begin{aligned} & \text { 泠 } \\ & \text { 却 } \end{aligned}$				原子炉格納容器配管貫通部（ $\mathrm{X}-12 \mathrm{~A}$ ）		－	常設耐震／防止常設／緩和	SAクラス 2			更なし			
$\underset{\stackrel{\rightharpoonup}{\bullet}}{\stackrel{\rightharpoonup}{*}}$	$\begin{aligned} & \text { 備 } \\ & \vdots \\ & \text { の } \end{aligned}$				原子炬格納容器配管貫通部（X－12A）～原子炉圧力容器		－	常設耐震／防止常設／緩和	SAクラス 2			更なし			
Δ	$\begin{aligned} & \text { 他 } \\ & \text { 原 } \\ & \text { 子 } \end{aligned}$		ポンプ	－	原子炬隔離時冷却系ポンプ		－	常設／防止 （DB 拡張）	SAクラス 2			更なし			
	$\begin{aligned} & \text { 注 } \\ & \text { 永 } \\ & \text { 設 } \end{aligned}$		容器	－	復水貯蔵タンク		－	常設／防止 （DB 拡張）	SA クラス 2			更なし			
		$\begin{aligned} & \text { 子 } \\ & \text { 炉 } \\ & \text { 隔 } \end{aligned}$	安全弁及び逃がし弁	－	E51－F059		－	常設／防止 （DB 拡張）	－			更なし			
		$\begin{aligned} & \text { 雞 } \\ & \text { 邻 } \end{aligned}$			原子炉圧力容器～原子炉隔離時冷却系蒸気配管分岐点		－	常設／防止 （DB 拡張）	SA クラス 2			更なし			
			主配管	－	原子炉隔離時冷却系蒸気配管分岐点～原子炉格納容器配管貫通部（X－36）		－	常設／防止 （DB 拡張）	SA クラス 2			更なし			
					原子炉格納容器配管貫通部（X－36）		－	常設／防止 （DB 拡張）	SAクラス 2			更なし			

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（28／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（29／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト $(30 / 49)$

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（31／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		$\begin{aligned} & \text { 低 } \\ & \text { 底 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$	主配管			E11－F026B～低圧代替注水系 B 系注入配管合流点		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
					低圧代替注水系 B 系注入配管合流点～原子炬格納容器配管貫通部（X－31B）		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					原子炬格納容器配管貫通部（X－31B）		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					原子炉格納容器配管貫通部（X－31B）～原子炉圧力容器		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					原子炉•格納容器下部注水接続口（北）～低圧代替注水系注入配管 A 系分岐点		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					原子炬•格納容器下部注水接続口（東）～低圧代替注水系注入配管合流点 1		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				－	復水貯蔵タンク出口配管分岐点～直流駆動低圧注水系ポンプ吸込配管分岐点		－	常設耐震／防止	SA クラス 2	変更なし					
					直流駆動低圧注水系ポンプ吸込配管分岐点 ～直流駆動低圧注水系ポンプ		－	常設耐震／防止	SAクラス 2	変更なし					
					直流駆動低圧注水系ポンプ～直流駆動低圧注水系ポンプ吐出配管合流点		－	常設耐震／防止	SA クラス 2	変更なし					
					直流駆動低圧注水系ポンプ吐出配管合流点 ～原子炉格納容器配管貫通部（ $\mathrm{X}-35$ ）		－	常設耐震／防止	SA クラス 2	変更なし					
					原子炉格納容器配管貫通部（X－35）		－	常設耐震／防止	SA クラス 2	変更なし					
					原子炬格納容器配管貫通部（X－35）～原子炬圧力容器		－	常設耐震／防止	SA クラス 2	変更なし					
					取水用ホース（250A ：5m，10m，20m）		－	可搬／防止可搬／緩和	SA クラス 3	変更なし					
					送水用ホース（300A ： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）		－	可搬／防止可搬／緩和	SA クラス 3	変更なし					

表1 原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（32／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（33／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（34／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（35／49）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 解 } \\ & \text { 俍 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊${ }^{*}$		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
	$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \\ & \text { 除 } \\ & \text { 系 } \end{aligned}$	主配管			残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				残留熱除去系熱交換器代替循環冷却系出口配管分岐点～残留熱除去系熱交換器（A）バ イパス配管合流点		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）バイパス配管合流点		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				残留熱除去系熱交換器（A）バイパス配管合流点～原子炉停止時冷却モード A 系注入配管分岐点		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				原子炉停止時冷却モードA系注入配管分岐点～ドライウェルスプレイ注入配管 A 系分岐点		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				ドライウェルスプレイ注入配管 A 系分岐点 ～低圧代替注水系 A 系注入配管合流点		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－31A）		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				原子炬格納容器配管貫通部（X－31A）～原子炉圧力容器		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B）		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（36／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（37／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（38／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（39／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（40／49）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 采 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備 ${ }^{1}$		
				$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$		機器クラス	設備分類	重大事故等機器クラス		
$\begin{aligned} & \text { 原 } \\ & \text { 補 } \\ & \text { 給 } \\ & \text { 備却 } \\ & \text { 材 } \end{aligned}$	$\begin{aligned} & \text { 補 } \\ & \text { 緰 } \\ & \text { 水 } \end{aligned}$	主配管	－		N21－F041～復水貯蔵タンク	B－1	クラス 3	－		変更なし				
$\begin{aligned} & \text { 原 } \\ & \text { 烺 } \\ & \text { 補 } \\ & \text { 朎 } \\ & \text { 却 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$		熱交換器	－	原子炬補機冷却水系熱交換器（A），（C）	S	クラス 3	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					
				原子炬補機冷却水系熱交換器（B），（D）	S	クラス 3	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					
		ポンプ	－	原子炉補機冷却水ポンプ（ A ），（C）	S	Non＊${ }^{*}$	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					
				原子炉補機冷却水ポンプ（ B ），（ D ）	S	Non＊4	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					
				原子炉補機冷却海水ポンプ（A），（C）	S	Non＊4	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					
				原子炉補機冷却海水ポンプ（B），（D）	S	Non＊4	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					
			－	原子炉補機冷却水サージタンク（A）	S	クラス 3	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					
		容器		原子炉補機冷却水サージタンク（B）	S	クラス 3	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					
		3過装置	－	原子炬補機冷却海水系ストレーナ（A），（C）	S	クラス 3	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					
				原子炬補機冷却海水系ストレーナ（B），（D）	S	クラス 3	常設／防止 （DB 拡張）常設／緩和 （DB 拡張）	SA クラス 2	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（41／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（42／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（43／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（44／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（45／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（46／49）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 繵 } \\ & \text { 俍 } \end{aligned}$	機器区分		変更前					変更後					
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
					$\begin{gathered} \begin{array}{c} \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \end{array} . \begin{array}{l} \text { a } \\ \hline \end{array} \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \begin{array}{c} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{array} . \begin{array}{l} \\ \hline \end{array} \\ \hline \end{gathered}$		機器クラス	設備分類	重大事故等機器クラス		
	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 榑 } \\ & \text { 泠 } \\ & \text { 却 } \\ & \text { 備 } \end{aligned}$		（ ${ }^{\text {主配管 }}$	－			S	クラス 3	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
						S	クラス 3	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					高圧炬心スプレイ補機冷却海水ポンプ～高圧炉心スプレイ補機泠却海水系ストレーナ	S	クラス 3	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					高圧炉心スプレイ補機冷却海水系ストレー 大～高圧炬心スプレイ補機泠却水系熱交換 器	S	クラス 3	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
					高圧鿉心スプレイ補機冷却水系熱交換器～放水槽	S	クラス 3	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
		原炉楮機替泠却水系	熱交換器	－	原子炉補機代替冷却水系熱交換器ユニット （熱交換器）		－	可搬／防止可搬／緩和	SAクラス 3	変更なし					
			ポンプ	－	原子炉補機代替冷却水系熱交換器ユニット （ポンプ）		－	可搬／防止可搬／緩和	SAクラス 3	変更なし					
					大容量送水ポンプ（タイプI）		－	可搬／防止可搬／緩和	SAクラス 3	変更なし					
			容器	－	原子炉補機冷却水サージタンク（A）		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
			容器		原子炉補機冷却水サージタンク（B）		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
			万過装置	－	原子炉補機代替冷却水系熱交換器ユニット （ストレーナ）		－	可搬／防止可搬／緩和	SA クラス 3	変更なし					
			主配管	－	原子炬補機代替冷却水系熱交換器ユニット接続口（残留熱除去系供給）（北）～残留熱除去系熱交換器（A）入口配管合流点		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					原子炬補機代替冷却水系熱交換器ユニット接続口（屋内）（残留熱除去系供給）～原子炉補機代替冷却水系熱交換器ユニット接続口 （屋内）（残留熱除去系供給）合流点		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
					残留熱除去系熱交換器（A）入口配管合流点 ～残留熱除去系熱交換器（A）		－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
					残留熱除去系熱交換器（A）～残留熱除去系熱交換器（A）出口配管分岐点		－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
					 卜接続口（残留熱除去系戻り）（北）		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（47／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（48／49）

表1原子炉冷却系統施設（蒸気タービンを除く。）の主要設備リスト（49／49）

注記＊1：表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。
2 ：本設備は記載の適正化のみ行うものであり，手続き対象外である。
＊3 ：水室側がクラス 2 ，胴体側がクラス 3
＊4：「J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格」における「クラス 3 ポンプ」である。

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（ $1 / 10$ ）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 總 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \begin{array}{c} \text { 耐震 } \\ \text { 重要度 } \end{array} \text { 俍 } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス
				炬心シュラウド		－	常設／防止 （DB 拡張）	－			変更なし		
				シュラウドサポート		－	常設／防止 （DB 拡張）	－			変更なし		
				炬心シュラウド支持ロッド		－	常設／防止 （DB 拡張）	－			変更なし		
			原子炉本体	上部格子板		－	常設／防止 （DB 拡張）	－			変更なし		
			炬心支持構造物	炉心支持板		－	常設／防止 （DB 拡張）	－			変更なし		
	$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \end{aligned}$	－		中央燃料支持金具		－	常設／防止 （DB 拡張）	－			変更なし		
	$\begin{aligned} & \text { 梌 } \\ & \text { 系 } \end{aligned}$	－		周辺燃料支持金具		－	常設／防止 （DB 拡張）	－			変更なし		
				制御棒案内管		－	常設／防止 （DB 拡張）	－			変更なし		
$\begin{aligned} & \text { 残 } \\ & \text { 塯 } \end{aligned}$			原子炉本体原子炉圧力容器	原子炬圧力容器		－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
$\begin{aligned} & \text { 徐 } \\ & \text { 呓 } \end{aligned}$			原子炉本体原子炉圧力容器内部構造物	ジェットポンプ		－	常設／防止 （DB 拡張）	－			変更なし		
			原子炬格納施設	原子炬格納容器（ドライウェル）		－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
			原子炉格納容器	原子炉格納容器（サプレッションチェン バ）		－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
			原子炉格納施設原子炬格納容器	原子炬格納容器		－	常設耐震／防止	SAクラス 2			変更なし		
	$\begin{aligned} & \text { 原 } \\ & \text { 僱 } \end{aligned}$		原子炉格納施設	T48－F020		－	常設耐震／防止	SAクラス 2			変更なし		
	絤		原子炉格納容器調気設備	T48－F021		－	常設耐震／防止	SA クラス 2			変更なし		
	$\begin{aligned} & \text { 器 } \\ & 1 \\ & 1 \\ & \text { 多 } \\ & \text { 心 } \end{aligned}$	－	原子炬格納施設 放射性物質濃度制御設備及び可燃 性ガス浱度制御設備並びに格納容 器再循環設備	可搬型窒素ガス供給装置		－	可搬／防止	－			変更なし		
	莅		原子炉格納施設	フィルタ装置出口側ラプチャディスク		－	常設耐震／防止	－			変更なし		
			圧力逃がし装置	フィルタ装置		－	常設耐震／防止	SAクラス 2			変更なし		

表 2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト $(2 / 10)$

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 离 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1	
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
	耐		放射性廃重物の廃棄施設気体，液体又は固体廃葉物処理設備	排気筒（支持構造物（鉄塔及び基礎）は第 2， 3 号機共用）		－	常設耐震／防止	－			変更なし		
$\begin{aligned} & \text { 㽣 } \\ & \text { 涂 } \end{aligned}$	$\begin{aligned} & \text { 辟 } \\ & \text { 强 } \\ & \text { 俋 } \end{aligned}$		原子炬格納施設原子炬格納容器	原子炬格納容器		－	常設耐震／防止	SA クラス 2			変更なし		
$\begin{aligned} & \text { 际 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ベ } \\ & \stackrel{r}{r} \end{aligned}$		子炬格納施設	T48－F019		－	常設耐震／防止	SA クラス 2			変更なし		
			原子炉格納容器調気設備	T48－F022		－	常設耐震／防止	SA クラス 2			変更なし		
				炬心シュラウド		－	常設／防止 （DB 拡張）	－			変更なし		
				シュラウドサポート		－	常設／防止 （DB 拡張）	－			変更なし		
				炬心シュラウド支持ロッド		－	常設／防止 （DB 拡張）	－			変更なし		
			原子炉本体	上部格子板		－	常設／防止 （DB 拡張）	－			変更なし		
常			炉心支持構造物	烼心支持板		－	常設／防止 （DB 拡張）	－			変更なし		
$\begin{aligned} & \text { 冷 } \\ & \text { 却 } \end{aligned}$	$\begin{aligned} & \text { 高 } \\ & \text { 圧 } \\ & \hline \end{aligned}$			中央燃料支持金具		－	常設／防止 （DB 拡張）	－			変更なし		
$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 熩 } \\ & \text { 중 } \end{aligned}$	－		周辺燃料支持金具		－	常設／防止 （DB 拡張）	－			変更なし		
$\begin{aligned} & \text { 他 } \\ & \text { 愿 } \end{aligned}$	$\begin{aligned} & \text { L } \\ & \frac{1}{n} \end{aligned}$			制御棒案内管		－	常設／防止 （DB 拡張）	－			変更なし		
$\begin{aligned} & \text { 炉 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$			原子炉本体原子炉圧力容器	原子炬圧力容器		－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
$\begin{aligned} & \text { 設 } \\ & \text { 備 } \end{aligned}$			原子炉本体	高圧炉心スプレイ系配管（原子炉圧力容器内部）		－	常設／防止 （DB 拡張）	－			変更なし		
			原子炉圧力容器内部構造物	高圧炉心スプレイスパージャ		－	常設／防止 （DB 拡張）	－			変更なし		
			原子炉冷却系統施設 非常用炉心冷設設備をの他原子炉 注水設備 㳑	E22－F003		－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
			原子炬格納施設原子炬格納容器	原子炉格納容器（サプレッションチェン バ）		－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		

表 2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト $(3 / 10)$

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爻 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
						$\begin{gathered} \begin{array}{c} \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{array}{ }^{2} \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\omega$$\stackrel{1}{\digamma}$$\stackrel{1}{1}$000		$\begin{aligned} & \text { 低 } \\ & \text { 坆 } \\ & \text { 心 } \\ & \text { K } \\ & \text { L } \\ & \text { 系 } \end{aligned}$	－	原子炉本体炬心支持構造物	炬心シュラウド		－	常設／防止 （DB 拡張）	－	変更なし				
					シュラウドサポート		－	常設／防止 （DB 拡張）	－	変更なし				
					炬心シュラウド支持ロッド		－	常設／防止 （DB 拡張）	－	変更なし				
					上部格子板		－	常設／防止 （DB 拡張）	－	変更なし				
					炉心支持板		－	常設／防止 （DB 拡張）	－	変更なし				
					中央燃料支持金具		－	常設／防止 （DB 拡張）	－	変更なし				
					周辺燃料支持金具		－	常設／防止 （DB 拡張）	－	変更なし				
					制御棒案内管		－	常設／防止 （DB 拡張）	－	変更なし				
				原子炉本体原子炉圧力容器	原子炬圧力容器		－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				原子炉本体	低圧炉心スプレイ系配管（原子炉圧力容器内部）		－	常設／防止 （DB 拡張）	－	変更なし				
				原子炉圧力容器内部構造物	低圧炉心スプレイスパージャ		－	常設／防止 （DB 拡張）	－	変更なし				
				原子炉格納施設原子炬格納容器	原子炉格納容器（サプレッションチェン バ）		－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（4／10）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 器 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備 ${ }^{* 1}$	
						$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要 } \\ & \text { 分類 } \\ & \hline \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \begin{array}{c} \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \end{array} . \begin{array}{l} \text { a } \end{array} \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
		高䒫替乼水采	－	原子炉本体炬心支持構造物	炬心シュラウド		－	常設耐震／防止常設／緩和	－	変更なし				
					シュラウドサポート		－	常設耐震／防止常設／緩和	－			変更なし		
					炬心シュラウド支持ロッド		－	常設耐震／防止常設／緩和	－			変更なし		
					上部格子板		－	常設耐震／防止常設／緩和	－			変更なし		
					炉心支持板		－	常設耐震／防止常設／緩和	－			変更なし		
ω					中央燃料支持金具		－	常設耐震／防止常設／緩和	－			変更なし		
$\begin{aligned} & \stackrel{\rightharpoonup}{\sim} \\ & \vdots \end{aligned}$					周辺燃料支持金具		－	常設耐震／防止常設／緩和	－			変更なし		
8					制御棒案内管		－	常設耐震／防止常設／緩和	－			変更なし		
				原子炉本体原子炉圧力容器	原子炬圧力容器		－	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉本体 原子炉圧力容器内部構造物	給水スパージャ		－	常設耐震／防止常設／緩和	－			変更なし		

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト $(5 / 10)$

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
					耐震 重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \begin{array}{c} \text { 耐震 } \\ \text { 重要度 } \end{array} \text {. } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス
韭常炉岕泠設備\vdots他他原炉注設備	$\begin{aligned} & \text { 原 } \\ & \text { 子 } \\ & \text { 炉 } \\ & \text { 欋 } \\ & \text { 泠 } \\ & \text { 等 } \end{aligned}$		原子炉本体炬心支持構造物	炬心シュラウド		－	常設／防止 （DB 拡張）	－	変更なし				
				シュラウドサポート		－	常設／防止 （DB 拡張）	－	変更なし				
				炬心シュラウド支持ロッド		－	常設／防止 （DB 拡張）	－	変更なし				
				上部格子板		－	常設／防止 （DB 拡張）	－	変更なし				
				彷心支持板		－	常設／防止 （DB 拡張）	－	変更なし				
		－		中央燃料支持金具		－	常設／防止 （DB 拡張）	－	変更なし				
				周辺燃料支持金具		－	常設／防止 （DB 拡張）	－	変更なし				
				制御棒案内管		－	常設／防止 （DB 拡張）	－	変更なし				
			原子炉本体原子炬圧力容器	原子炉圧力容器		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
			原子炉本体 原子炉圧力容器内部構造物	給水スパージャ		－	常設／防止 （DB 拡張）	－	変更なし				
			原子炉冷却系統施設原子炉冷却材補給設備	E51－F008		－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（6／10）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 离 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊${ }^{\text {＊}}$		重大事故等対処設備＊1	
					$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要度 } \end{aligned}$ 分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { 低 } \\ & \text { 庄 } \\ & \text { 僣 } \\ & \text { 乼 } \\ & \text { 水 } \end{aligned}$	－	原子炉本体炬心支持構造物	炬心シュラウド		－	常設耐震／防止常設／緩和	－	変更なし				
				シュラウドサポート		－	常設耐震／防止常設／緩和	－	変更なし				
				炉心シュラウド支持ロッド		－	常設耐震／防止常設／緩和	－	変更なし				
				上部格子板		－	常設耐震／防止常設／緩和	－	変更なし				
				炉心支持板		－	常設耐震／防止常設／緩和	－	変更なし				
				中央燃料支持金具		－	常設耐震／防止常設／緩和	－	変更なし				
				周辺燃料支持金具		－	常設耐震／防止常設／緩和	－	変更なし				
				制御棒案内管		－	常設耐震／防止常設／緩和	－	変更なし				
			原子炉本体原子炉圧力容器	原子炉圧力容器		－	常設耐震／防止常設／緩和	SA クラス 2	変更なし				
				残留熱除去系配管（原子炉圧力容器内部）		－	常設耐震／防止常設／緩和	－	変更なし				
			原子炉本体 原子炉圧力容器内部構造物	高圧炉心スプレイ系配管（原子炉圧力容器内部）		－	常設耐震／防止	－	変更なし				
				高圧炉心スプレイスパージャ		－	常設耐震／防止	－	変更なし				

表 2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（7／10）

表 2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（ $8 / 10$ ）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 炃 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 器 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
					耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { ほ } \\ & \text { 酸 } \\ & \text { 水 } \\ & \text { 乼 } \\ & \text { 系 } \end{aligned}$		原子炉本体炬心支持構造物	炉心シュラウド		－	常設耐震／防止	－	変更なし				
				シュラウドサポート		－	常設耐震／防止	－	変更なし				
				炉心シュラウド支持ロッド		－	常設耐震／防止	－	変更なし				
				上部格子板		－	常設耐震／防止	－	変更なし				
				炉心支持板		－	常設耐震／防止	－	変更なし				
		－		中央燃料支持金具		－	常設耐震／防止	－	変更なし				
				周辺燃料支持金具		－	常設耐震／防止	－	変更なし				
				制御棒案内管		－	常設耐震／防止	－	変更なし				
			原子炉本体原子炉圧力容器	原子炉圧力容器		－	常設耐震／防止	SA クラス 2	変更なし				
			原子炉本体 原子炉圧力容器付属構造物	差圧検出・ほう酸水注入系配管（ティーよ り N11ノズルまでの外管）		－	常設耐震／防止	SA クラス 2	変更なし				
			原子炉本体 原子炉圧力容器内部構造物	差圧検出・ほう酸水注入系配管（原子炬圧力容器内部）		－	常設耐震／防止	－	変更なし				

表2原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト $(9 / 10)$

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
				炉ふシュラウド		－	常設／防止 （DB 拡張）	－			変更なし		
				シュラウドサポート		－	常設／防止 （DB 拡張）	－			変更なし		
				炬心シュラウド支持ロッド		－	常設／防止 （DB 拡張）	－			変更なし		
			原子炉本体	上部格子板		－	常設／防止 （DB 拡張）	－			変更なし		
			炉心支持構造物	炉心支持板		－	常設／防止 （DB 拡張）	－			変更なし		
				中央燃料支持金具		－	常設／防止 （DB 拡張）	－			変更なし		
虽	$\begin{aligned} & \text { 㰊 } \\ & \text { 除 } \end{aligned}$	－		周辺燃料支持金具		－	常設／防止 （DB 拡張）	－			変更なし		
$\begin{aligned} & \text { 炬岕会 } \\ & \text { 清 } \end{aligned}$	幸			制御棒案内管		－	常設／防止 （DB 拡張）	－			変更なし		
$\begin{aligned} & \text { 却 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			原子炉本体原子炉圧力容器	原子炉圧力容器		－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
$\begin{aligned} & \text { そ } \\ & \text { D } \\ & \text { 他 } \end{aligned}$			原子炉本体 原子炉圧力容器内部構造物	残留熱除去系配管（原子炉圧力容器内部）		－	常設／防止 （DB 拡張）	－			変更なし		
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \end{aligned}$			原子炉冷却系統施設	残留熱除去系熱交換器（A）		－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
$\begin{aligned} & \text { 注 } \\ & \text { 水 } \\ & \text { 設 } \end{aligned}$			残留熱除去設備	残留熱除去系熱交換器（B）		－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
備			原子炉格納施設原子炬格納容器	原子炉格納容器（サプレッションチェン バ）		－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
	$\begin{aligned} & \text { 代 } \\ & \text { 替 } \\ & \text { 永 } \\ & \text { 源 } \\ & \text { 送 } \\ & \text { 系 } \end{aligned}$	－	原子炉冷却系統施設原子炉冷却材補給設備	復水貯蔵タンク		－	常設／防止常設／緩和	SA クラス 2			変更なし		

O 2 変二（1）II R 1

表2 原子炉冷却系統施設（蒸気タービンを除く。）の兼用設備リスト（10／10）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 機 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	主たる機能の施設／設備区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
					$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類	機器クラス	設備分類	重大事故等機器クラス
原子炉榑機洽却設備	原㭚機代替却水采	－	原子炬冷却系統施設残留熱除去設備	残留熱除去系熱交換器（A）		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				残留熱除去系熱交換器（B）		－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 原子炉冷却系統施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 なお，以下に示す原子炉冷却系統施設に適用する共通項目の基準及び規格を適用する個別の施設区分については，「表1．施設共通の適用基準及 び適用規格（該当施設）」に示す。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） - 高圧ガス保安法（昭和 26 年 6 月 7 日法律第204号） - 消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する構造等の技術基準（平成 6 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成2年8月30日原子力安全委員会決定）	第1章 共通項目 変更なし

変更前	変更後
－発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成21年3月9日原子力安全委員会一部改訂） －BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針（昭和 62 年 11月5日原子力安全委員会決定） －実用発電用原子炉及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈（平成 26 年 8 月 6 日原規技発第 1408063 号原子力規制委員会） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） －実用発電用原子炉施設への航空機落下確率の評価基準について（平成 $21 \cdot 06 \cdot 25$ 原院第 1 号平成 21 年 6 月 30 日原子力安全•保安院一部改正） －ISES7607－3 軽水炉構造機器の衝撃荷重に関する調査 その 3 ミサイル の衝突による構造壁の損傷に関する評価式の比較検討（昭和51年10月高温構造安全技術研究組合） －タービンミサイル評価について（昭和 52 年 7 月 20 日原子力委員会原子炉安全専門審査会） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号）	

変更前	変更後
－J I S B 1 0 5 1－2014 炭素鋼及び合金鋼製締結用部品の機械的性質－強度区分を規定したボルト，小ねじ及び植込みボルト一並目ねじ及び細目ねじ - NEGA C 3 3 1－2005 可搬形発電設備技術基準 - J S ME S NC 1－2001 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －【事例規格】過圧防護に関する規定（NC－CC－001）発電用原子力設備規格設計•建設規格 －【事例規格】発電用原子力設備における応力腐食割れ発生の抑制に対する考慮（NC－CC－002）発電用原子力設備規格 設計•建設規格 - J S ME S O 1 2－1998 配管内円柱状構造物の流力振動評価指針 - J SME S NB1－2007 発電用原子力設備規格 溶接規格 - J S ME S N A 1－2008 発電用原子力設備規格 維持規格 - J S ME S NC 1－2012 発電用原子力設備規格 設計•建設規格 - J S ME S NE 1－2003 発電用原子力設備規格 コンクリート製原子炉格納容器規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 原子力発電所用機器に対する破壊勒性の確認試験方法（J E A C 4 2 0 6－2007）	

変更前	変更後
- 土木学会 2002年 コンクリート標準示方書［構造性能照査編］ - 土木学会 2007 年 コンクリート標準示方書［設計編］ - 土木学会 2012 年 コンクリート標準示方書［設計編］ - 土木学会 2017 年 コンクリート標準示方書［設計編］ - 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル - 土木学会 2006 年 トンネル標準示方書 - 土木学会 2015 年 トンネル・ライブラリー第 27 号シールド工事用立坑の設計 - 土木学会 2016年 トンネル標準示方書［開削工法編］•同解説 - 一般財団法人土木研究センター 建設技術審査証明報告書 後施工セラ ミック定着型せん断補強鉄筋「セラミックキヤップバー（CCb）」 －鉄道総合技術研究所 平成 13 年 3 月 鉄道構造物等設計標準•同解説 （開削トンネル） - 日本建築学会 1980 年 塔状鋼構造設計指針•同解説 - 日本建築学会 1988 年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 1991年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 1996 年 容器構造設計指針•同解説 - 日本建築学会 1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－ - 日本建築学会 1990 年 建築耐震設計における保有耐力と変形性能 - 日本建築学会 2001年 鉄骨鉄筋コンクリート構造計算規準•同解説 －許容応力度設計と保有水平耐力－	

変更前	変更後
- 日本建築学会 2010 年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 2004 年 建築物荷重指針•同解説 - 日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 2001 年 建築基礎構造設計指針 - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－ - 日本建築学会 2019 年 鋼構造許容応力度設計規準 - 日本建築学会 2007 年 煙突構造設計指針 - 日本建築学会 2010 年 各種合成構造設計指針•同解説 - 日本建築学会 2010 年 容器構造設計指針•同解説 - 日本建築学会 2010 年 鋼構造限界状態設計指針•同解説 - 日本建築学会 2010 年 鋼構造塑性設計指針 - 日本建築学会 2012 年 鋼構造接合部設計指針 - 日本建築学会 2013 年 建築工事標準仕様書•同解説 JASS 5N 原子力発電所施設における鉄筋コンクリート工事 - 日本建築センター 1982年 煙突構造設計施工指針 - 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編 －日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編 －日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V 耐震設計編	

変更前	変更後
－日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 II鋼橋編•IV下部構造編 - 日本道路劦会 平成 20 年 8 月 小規模吊橋指針•同解説 - 日本水道協会 1997 年 水道施設耐震工法指針•解説 - 日本下水道協会 2014 年 下水道施設の耐震対策指針と解説 - 日本溶接協会 2003 年 動的繰返し大変形を受ける溶接鋼構造物の脆性破壊性能評価方法，WES2808 - JCAS 1600－2017 クレーン用フック規格 - クレーン構造規格（平成 7 年 12 月 26 日労働省告示第 134 号） - 2015 年版 建築物の構造関係技術基準解説書（国土交通省国土技術政策総合研究所•国立研究開発法人建築研究所） －Methodology for Performing Aircraft Impact Assessments for New Plant Designs（Nuclear Energy Institute 2011 Rev8（NEI07－13）） －U．S．NUCLEAR REGULATORY COMMISSION：STANDARD REVIEW PLAN 3．6．2 determination of rupture locations and dynamic effects associated WITH THE POSTULATED RUPTURE OF PIPING（SRP 3．6．2 R3） －U．S．NUCLEAR REGULATORY COMMISSION：REGULATORY GUIDE 1．76，DESIGN－ basis tornado and tornado missiles for nuclear power PLANTS，Revision1，March 2007	

上記の他「原子力発電所の火山影響評価ガイド」，「原子力発電所の竜巻影響評価ガイド」，「原子力発電所の外部火災影響評価ガイド」，「耐震設計に係る工認審査ガイド」を参照する。

表1．施設共通の適用基準及び適用規格（該当施設）

	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 茠 } \\ & \text { 俗 } \end{aligned}$				計測篽菜維設		放射線玟施設	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
									韭 常 震 源 諎 備	雷 震 源 備	$\begin{aligned} & \text { 補 } \\ & \text { 昭 } \\ & \text { 1 } \\ & \bar{ラ} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 炎 } \\ & \text { 篗 } \\ & \text { 戳 } \end{aligned}$	$\begin{aligned} & \text { 泳 } \\ & \text { 水 } \\ & \text { 護 } \\ & \text { 設 } \end{aligned}$			$\begin{aligned} & \text { 䭆 } \\ & \text { 対 } \\ & \text { 䉒 } \end{aligned}$
発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成 2 年 8 月 30 日原子力安全委員会決定）	\bigcirc	\bigcirc		\bigcirc												
発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2年8月30日原子力安全委員会決定）	\bigcirc	\bigcirc		\bigcirc												
発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成 21 年 3 月 9 日原子力安全委員会一部改訂）	\bigcirc	\bigcirc		\bigcirc												
BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針 （昭和62年11月5日原子力安全委員会決定）	－	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
実用発電用原子炬及びその附属施設における破壊を引き起こす亀裂その他の欠陥の解釈（平成26年8月6日原規技発第1408063号原子力規制委員会）	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	－	－
非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定）	－	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
実用発電用原子炬施設への航空機落下確率の評価基準について （平成 $21 \cdot 06 \cdot 25$ 原院第 1 号平成 21 年 6 月 30 日原子力安全•保安院一部改正）	\bigcirc	\bigcirc		\bigcirc												

	$\begin{aligned} & \text { 原 } \\ & \text { 僱 } \\ & \text { 茠 } \end{aligned}$			$\begin{aligned} & \text { 蒸 } \\ & \text { 多 } \\ & \text { ビ } \\ & \text { ジ } \end{aligned}$	$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 制 } \\ & \text { 卸 } \\ & \text { 維 } \\ & \text { 設 } \end{aligned}$		$\begin{aligned} & \text { 放 } \\ & \text { 牃 } \\ & \text { 管 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 原 } \\ & \text { 煸 } \\ & \text { 格 } \\ & \text { 葹 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
										$\begin{aligned} & \text { 㘊 } \\ & \text { 霫 } \\ & \text { 烲 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 補 } \\ & \text { 昐 } \\ & \text { } \\ & \text { ラ } \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 火 } \\ & \text { 炎 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 浸 } \\ & \text { 泳 } \\ & \text { 讙 } \\ & \text { 蔎 } \end{aligned}$		$\begin{aligned} & \text { 幚 } \\ & \text { 䚡 } \\ & \text { 泉 } \\ & \text { 設 } \end{aligned}$	$\begin{aligned} & \text { 掔 } \\ & \text { 時 } \\ & \text { 㽫 } \\ & \text { 所 } \end{aligned}$
ISES7607－3 軽水炉構造機器の衝撃荷重に関する調査 その 3 ミサイルの衝突による構造壁の損傷に関する評価式の比較検討 （昭和51年10月高温構造安全技術研究組合）	\bigcirc	\bigcirc		\bigcirc												
タービンミサイル評価について（昭和 52 年 7 月 20 日原子力委員会原子炉安全專門審査会）	\bigcirc	\bigcirc		\bigcirc												
発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507経済産業省商局第2号）	\bigcirc	\bigcirc		\bigcirc	－	\bigcirc	\bigcirc									
J I S B 1 0 5 1－2014 炭素鋼及び合金鋼製締結用部品 の機械的性質－強度区分を規定したボルト，小ねじ及び植込みボ ルト－並目ねじ及び細目ねじ	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	－	－	－
N E G A C 3 3 1－2005 可搬形発電設備技術基準	\bigcirc	\bigcirc		\bigcirc	－	\bigcirc	\bigcirc									
J S ME S NC 1－2001 発電用原子力設備規格 設計•建設規格	－	\bigcirc		\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－
J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格	\bigcirc	－		\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	－	－	－	－	－
J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格	\bigcirc	\bigcirc		\bigcirc												

	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 条 } \\ & \text { 体 } \end{aligned}$		$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 洽 } \\ & \text { 那 } \\ & \text { 禿 } \\ & \text { 施 } \end{aligned}$	䉞タ1ビシ				$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 格 } \\ & \text { 蒇 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
										唃 需 源 設 備	$\begin{aligned} & \text { 補 } \\ & \text { 桓 } \\ & \text { } \\ & \bar{ラ} \\ & \text { I } \end{aligned}$					
【事例規格】過圧防護に関する規定（NC－CC－001）発電用原子力設備規格 設計•建設規格	－	－		\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	－	\bigcirc	－	－	－	－	－
【事例規格】発電用原子力設備における応力腐食割れ発生の抑制に対する考慮（NC－CC－002）発電用原子力設備規格 設計•建設規格	\bigcirc	－		－	\bigcirc	－	－	\bigcirc	－	－	－	－	－	－	－	－
J S ME S 0 1 2－1998 配管内円柱状構造物の流力振動評価指針	\bigcirc	\bigcirc		\bigcirc	－	－	\bigcirc	\bigcirc								
J S M E S NB1－2007 発電用原子力設備規格 溶接規格	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	－	－
J S ME S NA1－2008 発電用原子力設備規格 維持規格	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	\bigcirc	－	－
J S ME S NC 1－2012 発電用原子力設備規格 設計•建設規格	－	\bigcirc		\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	－	－	\bigcirc	－	－	－	－
J S ME S NE 1－2003 発電用原子力設備規格 コンク リート製原子炉格納容器規格	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	－	－	－
原子力発電所耐震設計技術指針 重要度分類•許容応力編（J EAG4601•補－1984）	\bigcirc	\bigcirc		\bigcirc												

	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 㮅 } \\ & \hline \end{aligned}$			$\begin{aligned} & \text { 䕄 } \\ & \text { 1 } \\ & \text { ビ } \\ & \text { ジ } \end{aligned}$					その他発電用原子炉の附属施設							
									$\begin{aligned} & \text { 韭 } \\ & \text { 常 } \\ & \text { 霫 } \\ & \text { 犦 } \end{aligned}$	雷 震 源 備	$\begin{aligned} & \text { 補 } \\ & \text { 架 } \\ & \text { 1 } \\ & ラ \\ & \text { । } \end{aligned}$	$\begin{aligned} & \text { 炎 } \\ & \text { 災 } \\ & \text { 謢 } \\ & \text { 㲓 } \end{aligned}$	$\begin{aligned} & \text { 泳 } \\ & \text { 水 } \\ & \text { 護 } \\ & \text { 設 } \end{aligned}$		$\begin{aligned} & \text { 弾 } \\ & \text { 䖭 } \\ & \text { 聚 } \\ & \text { 設 } \end{aligned}$	
土木学会 2016 年 トンネル標準示方書［開削工法編］•同解説	－	－		－	－	－	－	－	－	－	－	－	\bigcirc	－	－	－
一般財団法人土木研究センター 建設技術審査証明報告書 後施工セラミック定着型せん断補強鉄筋「セラミックキヤップバ $-(\mathrm{CCb}) 」$	－	－		－	－	－	－	－	\bigcirc	－	－	－	\bigcirc	－	\bigcirc	－
鉄道総合技術研究所 平成 13 年 3 月 鉄道構造物等設計標準•同解説（開削トンネル）	－	－		－	－	－	－	－	－	－	－	－	\bigcirc	－	－	－
日本建築学会 1980年 塔状鋼構造設計指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 1988年 鉄筋コンクリート構造計算規準•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 1991年 鉄筋コンクリート構造計算規準•同解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	－	－
日本建築学会 1996年 容器構造設計指針•同解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
日本建築学会 1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 1990 年 建築耐震設計における保有耐力と変形性能	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc

	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 森 } \\ & \text { 信 } \end{aligned}$		$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 椧 } \\ & \text { 峦 } \\ & \text { 誰 } \end{aligned}$	$\begin{aligned} & \text { 蒸 } \\ & \text { 多 } \\ & 1 \\ & \text { ビ } \\ & \text { シ } \end{aligned}$				$\begin{aligned} & \text { 原 } \\ & \text { 烸 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
										常 䨋 源 復 備		$\begin{aligned} & \text { 火炎 } \\ & \text { 防 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 浔 } \\ & \text { 水 } \\ & \text { 謢 } \\ & \text { 施 } \end{aligned}$		倳 㛚 聚 水 備	穮 时 就 䉒 所
日本建築学会 2010 年 鋼構造限界状態設計指針•同解説	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2010 年 鋼構造塑性設計指針	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2012 年 鋼構造接合部設計指針	\bigcirc	\bigcirc		\bigcirc												
日本建築学会 2013 年 建築工事標準仕様書•同解説 JASS 5 N 原子力発電所施設における鉄筋コンクリート工事	\bigcirc	－		－	－	－	－	\bigcirc	－	－	－	－	－	－	－	－
日本建築センター 1982年 煙突構造設計施工指針	\bigcirc	\bigcirc		\bigcirc												
日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	－	－	－
日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	\bigcirc	\bigcirc	\bigcirc	－
日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V耐震設計編	\bigcirc	\bigcirc		\bigcirc												
日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 II 鋼橋編•IV下部構造編	\bigcirc	\bigcirc		\bigcirc												
日本道路協会 平成 20 年 8 月 小規模吊橋指針•同解説	\bigcirc	\bigcirc		\bigcirc												

	$\begin{aligned} & \text { 原 } \\ & \text { 炇 } \\ & \text { 茠 } \\ & \text { } \end{aligned}$				$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 製 } \\ & \text { 采 } \\ & \text { 蓢 } \end{aligned}$			$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 烙 } \\ & \text { 納 } \\ & \text { 䛌 } \end{aligned}$	その他発電用原子炉の附属施設							
										雷 霫 源 備	$\begin{aligned} & \hline \text { 補 } \\ & \text { 架 } \\ & \text { } \\ & \vdots \\ & 广 \end{aligned}$	$\begin{aligned} & \text { 火火火 } \\ & \text { 㑾 } \\ & \text { 護 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 浸 } \\ & \text { 水 } \\ & \text { 讙 } \\ & \text { 設 } \end{aligned}$			
日本水道協会 1997年 水道施設耐震工法指針•解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
日本下水道協会 2014 年 下水道施設の耐震対策指針と解説	\bigcirc	\bigcirc		－	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	－	－	－	－	－
日本溶接協会 2003 年 動的繰返し大変形を受ける溶接鋼構造物の脆性破壊性能評価方法，WES2808	\bigcirc	\bigcirc		\bigcirc												
J C A S $16000-2017$ クレーン用フック規格	－	\bigcirc		－	\bigcirc	－	\bigcirc	\bigcirc	－	－	－	－	－	－	－	－
クレーン構造規格（平成 7年12月26日労働省告示第134号）	\bigcirc	\bigcirc		\bigcirc												
2015年版 建築物の構造関係技術基準解説書（国土交通省国土技術政策総合研究所•国立研究開発法人建築研究所）	\bigcirc	\bigcirc		\bigcirc												
Methodology for Performing Aircraft Impact Assessments for New Plant Designs（Nuclear Energy Institute 2011 Rev8 （NEI07－13））	\bigcirc	\bigcirc		\bigcirc												
U．S．NUCLEAR REGULATORY COMMISSION：STANDARD REVIEW PLAN 3．6．2 DETERMINATION OF RUPTURE LOCATIONS AND DYNAMIC EFFECTS ASSOCIATED wITH THE POSTULATED RUPTURE OF PIPING （SRP 3．6．2 R3）	\bigcirc	\bigcirc		\bigcirc	－	\bigcirc	\bigcirc									

	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 湘 } \\ & \text { 俗 } \end{aligned}$		原炉洽枎菜施設	$\begin{aligned} & \text { 蒸 } \\ & \text { 多 } \\ & \text { ビ } \\ & \text { ジ } \end{aligned}$	$\begin{aligned} & \text { 計 } \\ & \text { 測 } \\ & \text { 製 } \\ & \text { 系 } \\ & \text { 施 } \\ & \text { 設 } \end{aligned}$		放雅築理施設	$\begin{aligned} & \text { 原 } \\ & \text { 钬 } \\ & \text { 格 } \\ & \text { 㨅 } \\ & \text { 設 } \end{aligned}$	その他発電用原子炉の附属施設							
									蹚 筩 霫 設 備	$\begin{aligned} & \hline \text { 震 } \\ & \text { 霫 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 補 } \\ & \text { 㷊 } \\ & 1 \\ & \underset{ラ}{1} \end{aligned}$	$\begin{aligned} & \text { 炎 } \\ & \text { 昉 } \\ & \text { 謢 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 洆 } \\ & \text { 防 } \\ & \text { 謢 } \\ & \text { 䛌 } \end{aligned}$		$\begin{aligned} & \text { 嫦 } \\ & \text { 聚 } \\ & \text { 設 } \\ & \text { 鼡 } \end{aligned}$	
U．S．NUCLEAR REGULATORY COMMISSION：REGULATORY GUIDE 1．76，DESIGN－BASIS TORNADO AND TORNADO MISSILES FOR NUCLEAR POWER PLANTS，Revision1，March 2007	\bigcirc			\bigcirc												

変更前	変更後
第2章 個別項目 原子炉冷却系統施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17年12月16日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －軽水型動力炉の非常用炉心冷却系の性能評価指針（平成 4 年 6 月 11 日原子力安全委員会一部改訂） －BWR MARK I 型格納容器圧力抑制系に加わる動荷重の評価指針（昭和 62 年 11月5日原子力安全委員会決定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） - J S ME S O 1 2－1998 配管内円柱状構造物の流力振動評価指針 - J S ME S 0 1 7－2003 配管の高サイクル熱疲労に関する評価指針 - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 土木学会 2016年 トンネル標準示方書［開削工法編］•同解説 - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法	第2章 個別項目 変更なし

申請に係る原子炉冷却系統施設の基本設計方針「第1章 共通項目」として火災防護設備の基本設計方針，適用基準及び適用規格を以下に示す。
（1）基本設計方針

変更前	変更後
用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」，「実用発電用原子炉及びその附属施設の技術基準に関 する規則」並びにこれらの解釈並びに「実用発電用原子炉及びその附属施設 の火災防護に係る審査基準」（平成 25 年 6 月 19 日原子力規制委員会）によ る。	変更なし
第1章 共通項目 火災防護設備の共通項目である「1．地盤等，2．自然現象（2．2 津波 による損傷の防止を除く。），5．設備に対する要求（5．5 安全弁等，5． 6 逆止め弁，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針 については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基 づく設計とする。	第1章 共通項目 変更なし
第2章 個別項目 1．火災防護設備の基本設計方針 設計基準対象施設は，火災により発電用原子炉施設の安全性を損なわな いよう，火災防護上重要な機器等を設置する火災区域及び火災区画に対し て，火災防護対策を講じる。 発電用原子炉施設は，火災によりその安全性を損なわないように，適切 な火災防護対策を講じる設計とする。火災防護対策を講じる対象として「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」の クラス 1 ，クラス 2 及び安全評価上その機能を期待するクラス 3 に属する	第2章 個別項目 1．火災防護設備の基本設計方針 変更なし

変更前	変更後
構築物，系統及び機器とする。 火災防護上重要な機器等は，上記構築物，系統及び機器のらち原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器とする。 原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器は，発電用原子炉施設において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な以下の機能を確保するための構築物，系統及び機器とする。 （1）原子炉冷却材圧力バウンダリ機能 （2）過剰反応度の印加防止機能 （3）炉心形状の維持機能 （4）原子炉の緊急停止機能 （5）未臨界維持機能 （6）原子炉冷却材圧力バウンダリの過圧防止機能 （7）原子炉停止後の除熱機能 （8）炉心冷却機能 （9）工学的安全施設及び原子炉停止系への作動信号の発生機能 （10）安全上特に重要な関連機能 （11）安全弁及び逃がし弁の吹き止まり機能 （12）事故時のプラント状態の把握機能 （13）制御室外からの安全停止機能 放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器は，発電用原子炉施設において火災が発生した場合に，放射性物質の貯蔵又は	

変更前	変更後
閉じ込め機能を碓保するために必要な構築物，系統及び機器とする。 重大事故等対処施設は，火災により重大事故等に対処するために必要な機能が損なわれないよう，重大事故等対処施設を設置する火災区域及び火災区画に対して，火災防護対策を講じる。 建屋等の火災区域は，耐火壁により囲まれ，他の区域と分離されている区域を，火災防護上重要な機器等及び重大事故等対処施設の配置を系統分離も考慮して設定する。 建屋内のらち，火災の影響軽減の対策が必要な原子炉の高温停止及び低温停止を達成し，維持するための安全機能を有する構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器 を設置する火災区域は，3時間以上の耐火能力を有する耐火壁として，3時間耐火に設計上必要なコンクリート壁厚である 150 mm 以上の壁厚を有 するコンクリート壁や火災耐久試験により3時間以上の耐火能力を有す ることを碓認した耐火壁（貫通部シール，防火扉，防火ダンパ）により隣接する他の火災区域と分離するように設定する。 火災区域又は火災区画のファンネルは，煙等流入防止装置の設置によっ て，他の火災区域又は火災区画からの煙の流入を防止する設計とする。 屋外の火災区域は，他の区域と分離して火災防護対策を実施するため に，火災防護上重要な機器等を設置する区域及び重大事故等対処施設の配置を考慮するとともに，延焼防止を考慮した管理を踏まえた区域を火災区域として設定する。 この延㳣防止を考慮した管理については，保安規定に定めて，管理する。火災区画は，建屋内及び屋外で設定した火災区域を系統分離の状況及び壁の設置状況並びに重大事故等対処施設と設計基準事故対処設備の配置	

変更前		変更後
に応じて分割して設定する。 設定する火災区域及び火災区画に対して，以下に示す火災の発生防止，火災の感知及び消火並びに火災の影響軽減のそれぞれを考慮した火災防護対策を講じる設計とする。 なお，発電用原子炉施設のうち，火災防護上重要な機器等又は重大事故等対処施設に含まれない構築物，系統及び機器は，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策を講じる設計とする。 発電用原子炉施設の火災防護上重要な機器等は，火災の発生防止，火災 の早期感知及び消火並びに火災の影響軽減の 3 つの深層防護の概念に基 づき，必要な運用管理を含む火災防護対策を講じることを保安規定に定め て，管理する。 重大事故等対処施設は，火災の発生防止，火災の早期感知及び消火の必要な運用管理を含む火災防護対策を講じることを保安規定に定めて，管理 する。 重大事故等対処施設の弓ち，可搬型重大事故等対処設備に対する火災防護対策についても保安規定に定めて，管理する。 その他の発電用原子炉施設については，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策を講 じることを保安規定に定めて，管理する。 外部火災については，設計基準対象施設及び重大事故等対処施設を外部火災から防護するための運用等について保安規定に定めて，管理する。 1.1 火災発生防止	1.1 火災発生防止	

変更前	変更後
1．1．1 火災の発生防止対策 火災の発生防止における発火性又は引火性物質に対する火災の発生防止対策は，火災区域又は火災区画に設置する潤滑油又は燃料油を内包する設備並びに水素を内包する設備を対象とする。 潤滑油又は燃料油を内包する設備は，溶接構造，シール構造の採用による漏えいの防止及び防爆の対策を講じるとともに，堰等を設置し，漏えいした潤滑油又は燃料油が拡大することを防止する設計 とし，潤滑油又は燃料油を内包する設備の火災により発電用原子炉施設の安全機能及び重大事故等に対処する機能を損なわないよう，壁の設置又は離隔による配置上の考慮を行う設計とする。 潤滑油又は燃料油を内包する設備を設置する火災区域又は火災区画は，空調機器による機械換気又は自然換気を行ら設計とする。 潤滑油又は燃料油を貯蔵する設備は，貯蔵量を一定時間の運転に必要な量にとどめる設計とする。 水素を内包する設備のらち気体廃棄物処理系設備及び発電機水素ガス供給設備の配管等は水素の漏えいを考慮した溶接構造とし，弁グランド部から水素の漏えいの可能性のある弁は，ベローズ弁等 を用いて防爆の対策を行う設計とし，水素を内包する設備の火災に より，発電用原子炉施設の安全機能及び重大事故等に対処する機能 を損なわないよう，壁の設置による配置上の考慮を行う設計とす る。 水素を内包する設備である蓄電池，気体廃棄物処理系設備，発電機水素ガス供給設備及び水素ボンベを設置する火災区域又は火災区画は，送風機及び排風機による機械換気を行い，水素濃度を燃焼	1．1．1 火災の発生防止対策 変更なし

また，放射性物質を含んだ使用済イオン交換樹脂，チャコールフ ィルタ及び HEPAフィルタは，固体廃棄物として処理を行うまでの間，金属容器や不燃シートに包んで保管することを保安規定に定め て，管理する。
放射性廃棄物処理設備及び放射性廃棄物貯蔵設備を設置する火災区域又は火災区画の換気設備は，火災時に他の火災区域又は火災区画や環境への放射性物質の放出を防ぐために，換気設備の停止及 び風量調整ダンパの閉止により，隔離ができる設計とする。

火災の発生防止のため，火災区域又は火災区画において有機溶剤 を使用する場合は必要量以上持ち込まない運用として保安規定に定めて，管理するとともに，可燃性の蒸気が滞留するおそれがある場合は，使用する作業場所において，換気，通風，拡散の措置を行 うとともに，建屋の送風機及び排風機による機械換気により滞留を防止する設計とする。

火災区域又は火災区画において，発火性又は引火性物質を内包す る設備は，溶接構造の採用及び機械換気等により，「電気設備に関 する技術基準を定める省令」及び「工場電気設備防爆指針」で要求 される爆発性雰囲気とならない設計とするとともに，当該の設備を設ける火災区域又は火災区画に設置する電気•計装品の必要な箇所 には，接地を施す設計とする。

火災の発生防止のため，可燃性の微粉を発生する設備及び静電気 が溜まるおそれがある設備を火災区域又は火災区画に設置しない ことによって，可燃性の微粉及び静電気による火災の発生を防止す る設計とする。

変更前	変更後
火災の発生防止のため，発火源への対策として，設備を金属製の筐体内に収納する等，火花が設備外部に出ない設備を設置するとと もに，高温部分を保温材で覆うことによって，可燃性物質との接触防止や潤滑油等可燃物の過熱防止を行う設計とする。 火災の発生防止のため，発電用原子炉施設内の電気系統は，保護継電器及び遮断器によって故障回路を早期に遮断し，過電流による過熱及び焼損を防止する設計とする。 電気品室は，電源供給のみに使用する設計とする。 火災の発生防止のため，放射線分解により水素が発生する火災区域又は火災区画における，水素の蓄積防止対策として，社団法人火力原子力発電技術協会「BWR 配管における混合ガス（水素•酸素）蓄積防止に関するガイドライン（平成 17 年 10 月）」等に基づき，原子炉の安全性を損なうおそれがある場合には水素の蓄積を防止 する設計とする。 重大事故等時の原子炉格納容器内及び建屋内の水素については，重大事故等対処施設にて，蓄積防止対策を行ら設計とする。 1．1．2 不燃性材料又は難燃性材料の使用 火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能 を有するもの（以下「代替材料」という。）を使用する設計，若し くは，当該構築物，系統及び機器の機能を確保するために必要な代替材料の使用が技術上困難な場合は，当該構築物，系統及び機器に	1．1．2 不燃性材料又は難燃性材料の使用変更なし

変更前	変更後
おける火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止するための措置を講じる設計とする。 火災防護上重要な機器等及び重大事故等対処施設のうち，機器，配管，ダクト，トレイ，電線管，盤の筐体及びこれらの支持構造物 の主要な構造材は，ステンレス鋼，低合金鋼，炭素鋼等の金属材料又はコンクリート等の不燃性材料を使用する設計とする。 ただし，配管のパッキン類は，その機能を確保するために必要な代替材料の使用が技術上困難であるため，金属で覆われた狭隘部に設置し直接火炎に晒されることのない設計とする。 金属に覆われたポンプ及び弁等の駆動部の潤滑油並びに金属に覆われた機器躯体内部に設置する電気配線は，発火した場合でも他 の火災防護上重要な機器等及び重大事故等対処施設に延焼しない ことから，不燃性材料又は難燃性材料でない材料を使用する設計と する。 火災防護上重要な機器等及び重大事故等対処施設に使用する保温材は，原則，「平成 12 年建設省告示第 1400 号」に定められたも の又は「建築基準法」で不燃性材料として認められたものを使用す る設計とする。 火災防護上重要な機器等及び重大事故等対処施設を設置する建屋の内装材は，「建築基準法」で不燃性材料として認められたもの を使用する設計とする。 ただし，管理区域の床や，原子炉格納容器内の床や壁に使用する耐放射線性のコーティング剤は，不燃性材料であるコンクリート表	

面に塗布すること，難燃性が確認された塗料であること，加熱源を除去した場合はその燃焼部が広がらないこと，原子炉格納容器内を含む建屋内に設置する火災防護上重要な機器等及び重大事故等対処施設は，不燃性又は難燃性の材料を使用し，その周辺には可燃物 がないことから，難燃性材料を使用する設計とする。

また，中央制御室の床面は，防炎性能を有するカーペットを使用 する設計とする。

火災防護上重要な機器等及び重大事故等対処施設に使用するケ ーブルは，実証試験により自己消火性（UL 垂直燃焼試験）及び耐延焼性（I E E E 3 8 3（光ファイバケーブルの場合は I E E E 1 202）垂直トレイ燃焼試験）を確認した難燃ケーブルを使用する設計とする。
ただし，実証試験により耐延焼性が確認できない核計装ケーブル及び放射線モニタケーブルは，原子炉格納容器外については専用電線管に収納するとともに，電線管の両端は，耐火性を有するシール材を処置することにより，難燃ケーブルと同等以上の性能を有する設計とするか，代替材料の使用が技術上困難な場合は，当該ケーブ ルの火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止するための措置を講 じる設計とする。

火災防護上重要な機器等及び重大事故等対処施設のうち，換気空調設備のフィルタはチャコールフィルタを除き，「 J I S L 1
O 91（繊維製品の燃焼性試験方法）」又は「J A C A No．11A－2003 （空気清浄装置用ろ材燃焼性試験方法指針（公益社団法人日本空気

変更前	変更後
清浄協会））」を満足する難燃性材料を使用する設計とする。 火災防護上重要な機器等及び重大事故等対処施設のうち，屋内の変圧器及び遮断器は，可燃性物質である絶縁油を内包していないも のを使用する設計とする。 1．1．3 自然現象による火災の発生防止 自然現象として，地震，津波，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災及び高潮を考慮する。 これらの自然現象のうち，火災を発生させるおそれのある落雷，地震，竜巻（風（台風）を含む。）及び森林火災について，これら の現象によって火災が発生しないように，以下のとおり火災防護対策を講じる設計とする。 落雷によって，発電用原子炉施設内の構築物，系統及び機器に火災が発生しないよう，避雷設備の設置及び接地網の敷設を行う設計 とする。 火災防護上重要な機器等は，耐震クラスに応じて十分な支持性能 をもつ地盤に設置する設計とするとともに，「実用発電用原子炉及 びその附属施設の技術基準に関する規則の解釈」（平成 25 年 6 月 19日原子力規制委員会）に従い，耐震設計を行ら設計とする。 重大事故等対処施設は，施設の区分に応じて十分な支持性能をも つ地盤に設置する設計とするとともに，「実用発電用原子炉及びそ の附属施設の技術基準に関する規則の解釈」（平成 25 年 6 月 19 日原子力規制委員会）に従い，耐震設計を行う設計とする。	1．1．3 自然現象による火災の発生防止 変更なし

変更前	変更後
火災防護上重要な機器等及び重大事故等対処施設は，森林火災に よる発電用原子炉施設への延焼防止対策として発電所敷地内に設置した防火帯で囲んだ内側に配置することで，火災発生防止を講じ る設計とし，竜巻（風（台風）を含む。）から，竜巻防護対策設備 の設置，固縛等により，火災の発生防止を講じる設計とする。 1．2 火災の感知及び消火 火災区域又は火災区画の火災感知設備及び消火設備は，火災防護上重要な機器等及び重大事故等対処施設に対して火災の影響を限定し，早期 の火災感知及び消火を行う設計とする。 火災感知設備及び消火設備は，「1．1．3 自然現象による火災の発生防止」で抽出した自然現象に対して，火災感知及び消火の機能，性能が維持できる設計とする。 火災感知設備及び消火設備については，火災区域及び火災区画に設置 された火災防護上重要な機器等の耐震クラス及び重大事故等対処施設 の区分に応じて，地震に対して機能を維持できる設計とする。 1．2．1 火災感知設備 火災感知設備の火災感知器は，火災区域又は火災区画における放射線，取付面高さ，温度，湿度，空気流等の環境条件，予想される火災の性質を考慮し，火災感知器を設置する火災区域又は火災区画 の火災防護上重要な機器等及び重大事故等対処施設の種類に応じ，火災を早期に感知できるよう，固有の信号を発するアナログ式の煙感知器及びアナログ式の熱感知器の異なる種類の火災感知器を組	1．2 火災の感知及び消火 変更なし 1．2．1 火災感知設備 変更なし

変更前	変更後
み合わせて設置する設計とする。 ただし，発火性又は引火性の雰囲気を形成するおそれのある場所及び屋外等は，環境条件や火災の性質を考慮し，非アナログ式の炎感知器，アナログ式の屋外仕様の熱感知カメラ，非アナログ式の屋外仕様の炎感知器，非アナログ式の防爆型の煙感知器及び非アナロ グ式の防爆型の熱感知器も含めた組み合わせで設置する設計とす る。 火災感知器については，消防法施行規則に従い設置する，又は火災区域内の感知器の網羅性及び火災報知設備の感知器及び発信機 に係る技術上の規格を定める省令に定める感知性能と同等以上の方法により設置する設計とする。 非アナログ式の火災感知器は，環境条件等を考慮することにより誤作動を防止する設計とする。 なお，アナログ式の屋外仕様の熱感知カメラ及び非アナログ式の屋外仕様の炎感知器は，監視範囲に火災の検知に影響を及ぼす死角 がないように設置する設計とする。 また，発火源となるようなものがない火災区域又は火災区画は，可燃物管理により可燃物を持ち込まない運用として保安規定に定 めて，管理することから，火災感知器を設置しない設計とする。 火災感知設備のらち火災受信機盤は中央制御室に設置し，火災感知設備の作動状況を常時監視できる設計とする。また，火災受信機盤は，構成されるアナログ式の受信機により作動した火災感知器を 1 つずつ特定できる設計とする。屋外の海水ポンプ室（補機ポンプ エリア）及びガスタービン発電設備燃料移送ポンプを監視するアナ	

災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起き た場合においても，原子炉を安全に停止させるための機能又は重大事故等に対処するために必要な機能を有する電気及び機械設備に影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響 により消火活動が困難となるところは，自動消火設備又は手動操作 による固定式消火設備であるハロンガス消火設備及びケーブルト レイ消火設備を設置して消火を行う設計とする。

火災発生時の煙の充満又は放射線の影響により消火活動が困難 とならないところは，消火器，移動式消火設備又は消火栓により消火を行ら設計とする。

なお，消火設備の破損，誤作動又は誤操作に伴う溢水による安全機能及び重大事故等に対処する機能への影響については，浸水防護設備の基本設計方針にて確認する。

原子炉格納容器は，運転中は窒素に置換され火災は発生せず，内部に設置された火災防護上重要な機器等が火災により機能を損な うおそれはないことから，原子炉起動中並びに低温停止中の状態に対して措置を講じる設計とし，消火については，消火器又は消火栓 を用いた消火ができる設計とする。火災の早期消火を図るために原子炉格納容器内の消火活動の手順を定めて，自衛消防隊（運転員，初期消火要員）の訓練を実施する。
なお，原子炉格納容器内において火災が発生した場合，原子炉格納容器の空間体積（約 $7650 \mathrm{~m}^{3}$ ）に対してパージ用排風機の容量が約 $24000 \mathrm{~m}^{3} / \mathrm{h}$ であることから，煙が充満しないため，消火活動が可能 であることから，消火器又は消火栓を用いた消火ができる設計とす

る。
中央制御室は，消火器で消火を行う設計とし，中央制御室制御盤内の火災については，電気機器への影響がない二酸化炭素消火器で消火を行う設計とする。また，中央制御室床下ケーブルピットにつ いては，自動消火設備であるハロンガス消火設備（局所）を設置す る設計とする。

トーラス室において火災が発生した場合，トーラス室の空間体積 （約 $11000 \mathrm{~m}^{3}$ ）に対して換気風量の容量が約 $21600 \mathrm{~m}^{3} / \mathrm{h}$ であることか ら，煙が充満しないため，消火活動が可能であることから，消火器 を用いた消火ができる設計とする。

火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，以下の設計を行う。
（1）消火設備の消火剤の容量
a．消火設備の消火剤は，想定される火災の性質に応じた十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。
b．消火用水供給系は， 2 時間の最大放水量を確保する設計とす る。
c．屋内，屋外の消火栓は，「消防法施行令」に基づく容量を確保 する設計とする。
（2）消火設備の系統構成
a．消火用水供給系の多重性又は多様性
屋内水消火系の水源は，消火水槽（第 1，2号機共用（以下同 じ。）），消火水タンクを設置し，屋外水消火系は，屋外消火系

消火水タンクを2基設置し多重性を有する設計とする。
屋内水消火系の消火ポンプは，電動機駆動消火ポンプ（第 1，
2 号機共用（以下同じ。））を 2 台設置し，多重性を有する設計 とする。
屋外水消火系の消火ポンプは，屋外消火系電動機駆動消火ポン プ，屋外消火系ディーゼル駆動消火ポンプを設置し，多様性を有 する設計とする。

屋外消火系ディーゼル駆動消火ポンプの駆動用燃料は，屋外消火系ディーゼル駆動消火ポンプに付属する燃料タンクに貯蔵す る。
b．系統分離に応じた独立性
原子炉の高温停止及び低温停止を達成し，維持するために必要 な構築物，系統及び機器の相互の系統分離を行うために設けられ た火災区域又は火災区画に設置されるハロンガス消火設備及び ケーブルトレイ消火設備は，以下に示すとおり，系統分離に応じ た独立性を備えた設計とする。
（a）動的機器である選択弁は多重化する。
（b）容器弁及びボンベを必要数より 1 つ以上多く設置する。重大事故等対処施設は，重大事故に対処する機能と設計基準事故対処設備の安全機能が単一の火災によって同時に機能喪失しないよう，区分分離や位置的分散を図る設計とする。重大事故等対処施設のある火災区域又は火災区画，及び設計基準事故対処設備のある火災区域又は火災区画に設置する八 ロンガス消火設備は，上記の区分分離や位置的分散に応じた独

変更前	変更後
立性を備えた設計とする。 c．消火用水の優先供給 消火用水供給系は，飲料水系や所内用水系等と共用する場合に は，隔離弁を設置して遮断する措置により，消火用水の供給を優先する設計とする。 （3）消火設備の電源確保 屋内水消火系の電動機駆動消火ポンプは，外部電源喪失時でも起動できるように非常用電源から受電する設計とする。 屋外水消火系のらち屋外消火系ディーゼル駆動消火ポンプは，外部電源喪失時にもディーゼル機関を起動できるように蓄電池を設 け，電源を確保する設計とする。 ハロンガス消火設備は，外部電源喪失時にも消火ができるよう に，非常用電源から受電するとともに，設備の作動に必要な電源を供給する蓄電池も設け，全交流動力電源喪失時にも電源を確保する設計とする。 ケーブルトレイ消火設備については，作動に電源が不要な設計と する。 （4）消火設備の配置上の考慮 a．火災による二次的影響の考慮 ハロンガス消火設備（全域）のボンベ及び制御盤は，火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない よう消火対象となる機器が設置されている火災区域又は火災区画と別の区画に設置する設計とする。 また，ハロンガス消火設備（全域）は，電気絶縁性の高いガス	

変更前

を採用し，火災の火炎，熱による直接的な影響のみならず，煙，流出流体，断線及び爆発等の二次的影響が，火災が発生していな い火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。

ハロンガス消火設備（局所）及びケーブルトレイ消火設備は，電気絶縁性の高いガスを採用するとともに，ケーブルトレイ消火設備及び電源盤用のハロンガス消火設備（局所）については，ケ ーブルトレイ内又は電源盤周囲の隔壁内に消火剤を留める設計 とする。

また，消火対象と十分離れた位置にボンベ及び制御盤を設置す ることで，火災の火炎，熱による直接的な影響のみならず，煙，流出流体，断線及び爆発等の二次的影響が，火災が発生していな い火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。

消火設備のボンベは，火災による熱の影響を受けても破損及び爆発が発生しないよう，ボンベに接続する安全弁によりボンベの過圧を防止する設計とする。

また，防火ダンパを設け，煙の二次的影響が火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とす る。
b．管理区域からの放出消火剤の流出防止
管理区域内で放出した消火剤は，放射性物質を含むおそれがあ ることから，管理区域外への流出を防止するため，管理区域と非管理区域の境界に堰等を設置するとともに，各フロアの建屋内排

水系により液体廃棄物処理設備に回収し，処理する設計とする。
c．消火栓の配置
火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画に設置する屋内，屋外の消火栓は，「消防法施行令」に準拠し，全ての火災区域又は火災区画の消火活動に対処できるように配置する設計とする。
（5）消火設備の警報
a．消火設備の故障警報
電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケ ーブルトレイ消火設備は，電源断等の故障警報を中央制御室に発 する設計とする。
b．ハロンガス消火設備の職員退避警報
固定式消火設備であるハロンガス消火設備は，作動前に職員等 の退出ができるように警報又は音声警報を発する設計とする。 ケーブルトレイ消火設備は，消火剤に毒性がなく，消火時に生成されるフッ化水素は延焼防止シートを設置したケーブルトレ イ内に留まり，外部に有意な影響を及ぼさないため，消火設備作動前に退避警報を発しない設計とする。
（6）消火設備に対する自然現象の考慮
a．凍結防止対策
屋外消火設備の配管は，保温材により配管内部の水が凍結しな い設計とする。

屋外消火栓は，凍結を防止するため，自動排水機構により消火

栓内部に水が溜まらないような構造とする設計とする。
b．風水害対策
消火用水供給系の消火設備を構成する電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，風水害に対してその性能が著しく阻害されることのないよう，建屋内に設置する設計とする。
c．地盤変位対策
地震時における地盤変位対策として，水消火配管のレイアウ
ト，配管支持長さからフレキシビリティを考慮した配置とするこ とで，地盤変位による変形を配管系統全体で吸収する設計とす る。

さらに，屋外消火配管が破断した場合でも移動式消火設備を用 いて屋内消火栓へ消火用水の供給ができるよう，建屋に給水接続口を設置する設計とする。
（7）その他
a．移動式消火設備
移動式消火設備は，恒設の消火設備の代替として消火ホース等 の資機材を備え付けている化学消防自動車を 2 台及び泡原液搬送車を 1 台配備する設計とする。
b．消火用の照明器具
建屋内の消火栓，消火設備現場盤の設置場所及び設置場所まで の経路には，移動及び消火設備の操作を行うため，消防法で要求 される消火継続時間 20 分に現場への移動等の時間も考慮し，8

変更前	変更後
時間以上の容量の蓄電池を内蔵する照明器具を設置する設計と する。 c．ポンプ室の煙の排気対策 火災発生時の煙の充満により消火活動が困難となるポンプ室 には，消火活動によらなくとも迅速に消火できるように固定式消火設備を設置し，鎮火の確認のために自衛消防隊がポンプ室に入 る場合については，再発火するおそれがあることから，十分に冷却時間を確保した上で扉の開放，換気空調系及び可搬型排煙装置 により換気が可能な設計とする。 d．使用済燃料貯蔵設備及び新燃料貯蔵設備 使用済燃料貯蔵設備は，水中に設置されたラックに燃料を貯蔵 することで未臨界性が確保される設計とする。 新燃料貯蔵設備については，消火活動により消火水が噴霧さ れ，水分雰囲気に満たされた状態となっても未臨界性が確保され る設計とする。 e．ケーブル処理室 ケーブル処理室は，自動消火設備であるハロンガス消火設備に より消火する設計とする。区分 I ケーブル処理室及び区分IIケー ブル処理室については，消火活動のため 2 箇所の入口を設置す る設計とする。 なお，区分IIIケーブル処理室は，消火活動のための入口は 1 箇所であるが，部屋の大きさが狭く，室内の可燃物は少量のケーブ ルトレイのみであるため，火災が発生した場合においても，入口 から消火要員による当該室全域の消火活動を行うことが可能な	

変更前	変更後
設計とする。 1.3 火災の影響軽減 1．3．1 火災の影響軽減対策 火災の影響軽減対策の設計に当たり，発電用原子炉施設において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な火災防護対象機器及び火災防護対象ケーブ ルを火災防護対象機器等とする。 火災が発生しても原子炉の高温停止及び低温停止を達成し，維持 するためには，プロセスを監視しながら原子炉を停止し，冷却を行 うことが必要であり，このためには，手動操作に期待してでも原子炉の高温停止及び低温停止を達成し，維持するために必要な機能を少なくとも 1 つ確保するように系統分離対策を講じる必要がある。 このため，火災防護対象機器等に対して，以下に示す火災の影響軽減対策を講じる設計とする。 （1）火災防護対象機器等の系統分離による影響軽減対策 中央制御室及び原子炉格納容器を除く火災防護対象機器等は，原則として安全系区分 I と安全系区分II，IIIを境界とし，以下のいず れかの系統分離によって，火災の影響を軽減するための対策を講じ る。 a． 3 時間以上の耐火能力を有する隔壁等 互いに相違する系列の火災防護対象機器等は，火災耐久試験に より 3 時間以上の耐火能力を確認した隔壁等で分離する設計と する。	1．3 火災の影響軽減 1．3．1 火災の影響軽減対策 変更なし

変更前	変更後
b． 6 m 以上離隔，火災感知設備及び自動消火設備 互いに相違する系列の火災防護対象機器等は，仮置きするもの を含めて可燃性物質のない水平距離 6 m 以上の離隔距離を確保す る設計とする。 火災感知設備は，自動消火設備を作動させるために設置し，自動消火設備の誤作動防止を考慮した火災感知器の作動信号によ り自動消火設備を作動させる設計とする。 c． 1 時間耐火隔壁等，火災感知設備及び自動消火設備 互いに相違する系列の火災防護対象機器等は，火災耐久試験に より 1 時間以上の耐火能力を確認した隔壁等で分離する設計と する。 また，火災感知設備及び消火設備は，上記 b．と同様の設計と する。 （2）中央制御室の火災の影響軽減対策 a．中央制御室制御盤内の火災の影響軽減 中央制御室制御盤内の火災防護対象機器等は，以下に示すとお り，実証試験結果に基づく離隔距離等による分離対策，高感度煙検出設備の設置による早期の火災感知及び常駐する運転員によ る早期の消火活動に加え，火災により中央制御室制御盤の1つ の区画の安全機能が全て喪失しても，他の区画の制御盤は機能が維持されることを確認することにより，原子炉の高温停止及び低温停止の達成，維持ができることを確認し，上記（1）と同等の火災の影響軽減対策を講じる設計とする。 離隔距離等による分離として，中央制御室制御盤については，	

変更前	変更後
安全系区分ごとに別々の盤で分離する設計とし，1 つの制御盤内 に複数の安全系区分のケーブルや機器を設置しているものは，安全系区分間に金属製の仕切りを設置する。ケーブルは，当該ケー ブルに火災が発生しても延焼せず，また，周囲へ火災の影響を与 えない耐熱ビニル電線，難燃仕様のフッ素樹脂（ETFE）電線及び難燃ケーブルの使用，電線管への敷設，操作スイッチの離隔等に より系統分離する設計とする。 中央制御室内には，異なる 2 種類の火災感知器を設置する設計とするとともに，火災発生時には常駐する運転員による早期の消火活動によって，異なる安全系区分への影響を軽減する設計と する。これに加えて盤内へ高感度煙検出設備を設置する設計とす る。 火災の発生箇所の特定が困難な場合も想定し，サーモグラフィ カメラ等，火災の発生箇所を特定できる装置を配備する設計とす る。 b．中央制御室床下ケーブルピットの影響軽減対策 中央制御室の火災防護対象機器等は，運転員の操作性及び視認性向上を目的として近接して設置することから，中央制御室床下 ケーブルピットに敷設する火災防護対象ケーブルは，互いに相違 する系列の 3 時間以上の耐火能力を有する隔壁による分離，又 は水平距離を 6 m 以上確保することが困難である。このため，中央制御室床下ケーブルピットについては，下記に示す分離対策等 を行ら設計とする。 （a）分離板等による分離	

変更前	変更後
中央制御室床下ケーブルピットに敷設する互いに相違する系列の火災防護対象ケーブルについては，1時間以上の耐火能力を有するコンクリート壁，分離板又は障壁で分離する設計と する。 （b）火災感知設備 中央制御室床下ケーブルピットには，固有の信号を発する異 なる 2 種類の火災感知器として，煙感知器と熱感知器を組み合わせて設置する設計とする。これらの火災感知設備は，アナ ログ機能を有するものとする。 また，火災感知設備は，外部電源喪失時においても火災の感知が可能となるように，非常用電源から受電するとともに，火災受信機盤は中央制御室に設置し常時監視できる設計とする。火災受信機盤は，作動した火災感知器を 1 つずつ特定できる機能を有する設計とする。 （c）消火設備 中央制御室床下ケーブルピットには，系統分離の観点から自動消火設備であるハロンガス消火設備（局所）を設置する設計 とする。 この消火設備は，故障警報及び作動前の警報を中央制御室に発するとともに，時間遅れをもってハロンガスを放出する設計 とする。また，外部電源喪失時においても消火が可能となるよ うに，非常用電源から受電する。 （3）原子炉格納容器内の火災の影響軽減対策 原子炉格納容器内は，プラント運転中は窒素が封入され，火災の	

発生は想定されない。窒素が封入されていない期間のほとんどは原子炉が低温停止期間であるが，わずかに低温停止に到達していない期間もあることを踏まえ，上記（1）と同等の火災の影響軽減対策を講じる設計とする。

また，原子炉格納容器内への持込み可燃物は，持込み期間，可燃物量等，運用について保安規定に定めて，管理する。
a．原子炉格納容器内の火災防護対象機器等の系統分離は以下の とおり対策を行う設計とする。
（a）火災防護対象機器等は，難燃ケーブルを使用するとともに，電線管及び蓋付ケーブルトレイの使用等により火災の影響軽減対策を行ら設計とする。
（b）原子炉格納容器内の火災防護対象機器は，系統分離の観点か ら安全系区分 I と安全系区分II機器の水平距離を 6 m 以上確保 し，異なる安全系区分の機器間にある介在物（ケーブル，電磁弁）については，金属製の筐体に収納することで延焼防止対策 を行ら設計とする。
（c）原子炉格納容器内の火災防護対象ケーブルは，可能な限り位置的分散を図る設計とする。
（d）原子炉圧力容器下部においては，火災防護対象機器である起動領域モニタの核計装ケーブルを露出して敷設するが，火災の影響軽減の観点から，起動領域モニタはチャンネルごとに位置的分散を図って設置する設計とする。
b．火災感知設備については，アナログ式の異なる 2 種類の火災感知器（煙感知器及び熱感知器）を設置する設計とする。

変更前	変更後
c．原子炉格納容器内の消火については，運転員及び初期消火要員 による消火器又は消火栓を用いた速やかな消火活動により消火 ができる設計とする。 起動中又は停止過程の空気環境において，原子炬格納容器内が広範囲な火災となり原子炉格納容器内への入域が困難な場合に は，原子炉格納容器内を密閉状態とし内部の窒息消火を行う設計 とする。 なお，原子炉格納容器内点検終了後から窒素置換完了までの間 で原子炉格納容器内の火災が発生した場合には，火災による延焼防止の観点から窒素封入作業の継続による窒息消火又は窒素封入作業を中止し，早期の消火活動を実施する。 （4）換気設備に対する火災の影響軽減対策 火災防護上重要な機器等を設置する火災区域又は火災区画に設置する換気設備には，他の火災区域又は火災区画の境界となる箇所 に 3 時間耐火性能を有する防火ダンパを設置する設計とする。 換気設備のフィルタは，チャコールフィルタを除き難燃性のもの を使用する設計とする。 （5）火災発生時の煙に対する火災の影響軽減対策 運転員が常駐する中央制御室には，火災発生時の煙を排気するた め，「建築基準法」に準拠した容量の排煙設備を設置する設計とす る。 火災防護上重要な機器等を設置する火災区域又は火災区画のう ち，電気ケーブルや引火性液体が密集する火災区域又は火災区画に ついては，ハロンガス消火設備による早期の消火により火災発生時	

変更前		変更後
の煙の発生が抑制されることから，煙の排気は不要である。 （6）油タンクに対する火災の影響軽減対策 火災区域又は火災区画に設置される油タンクは，換気空調設備に よる排気又はベント管により屋外に排気する設計とする。 （7）ケーブル処理室に対する火災の影響軽減対策 ケーブル処理室のケーブルトレイ間は，互いに相違する系列間を水平方向 0.9 m ，垂直方向 1.5 m の最小離隔距離を確保する設計とす る。最小分離距離を確保できない場合は，隔壁等で分離する設計と する。 1．3．2 原子炉の安全確保 （1）原子炉の安全停止対策 a．火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定した設計 発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，当該火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定しても，火災の影響軽減のための系統分離対策によって，多重化されたそれぞれの系統が同時に機能を失 らことなく，原子炉の高温停止及び低温停止が達成できる設計と する。 b．設計基準事故等に対処するための機器に単一故障を想定した設計 発電用原子炉施設内の火災によって運転時の異常な過渡変化	1．3．2 原子炉の安全確保	変更なし

又は設計基準事故が発生した場合に，「発電用軽水型原子炉施設 の安全評価に関する審査指針」に基づき，運転時の異常な過渡変化又は設計基準事故に対処するための機器に単一故障を想定し ても，制御盤間の離隔距離，盤内の延焼防止対策又は現場操作に よって，多重化されたそれぞれの系統が同時に機能を失うことな く，原子炉の高温停止及び低温停止を達成できる設計とする。
（2）火災の影響評価
a．火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定した設計 に対する評価

設備等の設置状況を踏まえた可燃性物質の量等を基に想定さ れる発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，火災による影響を考慮して も，多重化されたそれぞれの系統が同時に機能を失うことなく，原子炉の高温停止及び低温停止を達成し，維持できることを，以下に示す火災影響評価により確認する。
（a）隣接する火災区域又は火災区画に影響を与えない場合当該火災区域又は火災区画に設置される不燃性材料で構成 される構築物，系統及び機器を除く全機器の機能喪失を想定し ても，原子炉の高温停止及び低温停止の達成，維持が可能であ ることを確認する。
（b）隣接する火災区域又は火災区画に影響を与える場合
当該火災区域又は火災区画と隣接火災区域又は火災区画の 2 区画内の火災防護対象機器等の有無の組み合わせに応じて，

変更前		変更後
火災区域又は火災区画内に設置される不燃性材料で構成され る構築物，系統及び機器を除く全機器の機能喪失を想定して も，原子炉の高温停止及び低温停止の達成，維持が可能である ことを確認する。 b．設計基準事故等に対処するための機器に単一故障を想定した設計に対する評価 内部火災により原子炉に外乱が及び，かつ，安全保護系及び原子炉停止系の作動が要求される運転時の異常な過渡変化又は設計基準事故が発生する可能性があるため，「発電用軽水型原子炉施設の安全評価に関する審査指針」に基づき，運転時の異常な過渡変化又は設計基準事故に対処するための機器に対し単一故障 を想定しても，多重化されたそれぞれの系統が同時に機能を失う ことなく，原子炉の高温停止及び低温停止を達成できることを火災影響評価により確認する。 1.4 設備の共用 屋内水消火系の電動機駆動消火ポンプ及び消火水槽は，第1号機と共用す るが，各号機に必要な容量を確保するとともに，接続部の弁を閉操作するこ とにより隔離できる設計とすることで，共用により安全性を損なわない設計 とする。	1.4 設備の共用	変更なし
2．主要対象設備 火災防護設備の対象となる主要な設備について，「表1 火災防護設備の主要設備リスト」に示す。	2．主要対象設備	変更なし

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト（ $1 / 69$ ）

表1 火災防護設備の主要設備リスト $(2 / 69)$

表1 火災防護設備の主要設備リスト $(3 / 69)$

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 䍃 } \\ & \text { 名 } \\ & \text { 妳 } \end{aligned}$		機器区分	変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1			
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$	水消設設備	$\begin{aligned} & \text { 屋 } \\ & \text { 外 } \\ & \text { 水 } \\ & \text { 萷 } \\ & \text { 系 } \end{aligned}$		主配管	No． 2 屋外消火系消火水タンク～屋外消火系電動機駆動消火ポンプ入口配管合流点	C	Non	－	－	変更なし				
				No． 1 屋外消火系消火水タンク～屋外消火系ディーゼル駆動消火ポンプ		C	Non	－	－		変更なし				
				No． 2 屋外消火系消火水タンク～屋外消火系ディーゼル駆動消火ポンプ入口配管合流点		C	Non	－	－		変更なし				
				屋外消火系電動機駆動消火ポンプ～海水ポンプ室及び復水貯蔵タンク／軽油 タンクエリア供給配管分岐点		C	クラス 3	－	－		変更なし				
				屋外消火系ディーゼル駆動消火ポンプ ～屋外消火系電動機駆動消火ポンプ出口配管合流点		C	クラス 3	－	－		変更なし				
		$\begin{aligned} & \text { 八 } \\ & \text { 号 } \\ & \text { 分 } \\ & \text { 采 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$		容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
				主配管	ハロン 1301 貯蔵容器～RHR ポンプ（B）室	C－2	クラス 3	－	－	変更なし					
					RHR ポンプ (A) 室分岐点～RHR ポンプ (A)室	C－2	クラス 3	－	－	変更なし					
					B3F 南側通路，R／A HCW•LCW サンプ室分岐点～B3F 南側通路，R／A HCW•LCW サン プ室	C－2	クラス 3	－	－	変更なし					

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト（4／69）

$\begin{aligned} & \text { 設 } \\ & \text { 晋 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基	対象施設＊1	重大事故等対处設備＊1		名称	設計基涂対象施設＊		重大事故等対处設備＊${ }^{\text {¹ }}$			
			$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \hline \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$	備			容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし				
				ハロン 1301 貯蔵容器～LPCS ポンプ室， LPCS 計装ラック室	C－2	クラス 3	－	－	変更なし					
				HPCS ポンプ室，HPCS 計装ラック室分岐点～HPCS ポンプ室，HPCS 計装ラック室	C－2	クラス 3	－	－	変更なし					
			容器	ハロン1301貯蔵容器	C－2	クラス 3	－	－	変更なし					
		$\begin{aligned} & \text { K } \\ & \text { C } \\ & \text { W } \end{aligned}$	主配管	ハロン 1301 貯蔵容器～HPCW 熱交換器• ポンプ室	C－2	クラス 3	－	－	変更なし					
		H		B2F ハッチ室分岐点～B2F ハッチ室	C－2	クラス3	－	－	変更なし					
		$\begin{array}{ll} \mathrm{B} \\ \mathrm{~B} \\ 2 \end{array}$		$\underset{\substack{\text { R／B NSD サンプ室 }}}{\substack{\text { サi分分岐点 }} \text { R／B NSD サン }}$	C－2	クラス 3	－	－	変更なし					
				RCW 熱交換器（B）（D）室，RCWポンプ （B）（D）室分岐点～RCW 熱交換器（B）（D）室，RCW ポンプ（B）（D）室	C－2	クラス 3	－	－	変更なし					

表1 火災防護設備の主要設備リスト（5／69）

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト（6／69）

	覾森相		機器区分	変更前					変更後					
			名称	設計甚准詨象施設＊＊		重大事故等対处設備＊＊${ }^{*}$		名称	設計甚㕠対象施設＊1		重大事故等対処設備＊1			
			$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
				容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし				
				ハロン 1301 貯蔵容器～IA•SA 空気圧縮機（A）（B）室	C－2	クラス 3	－	－		変更なし				
				B2F 東側通路分岐点 \sim B2F 東側通路	C－2	クラス3	－	－		変更なし				
		$\begin{aligned} & \hline \text { C } \\ & \text { R } \\ & \text { D } \\ & \hline \end{aligned}$	容器	ハロン1301貯蔵容器	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & \text { 容 } \\ & \text { 消 } \\ & \text { 等 } \\ & \hline \end{aligned}$	主配管	ハロン 1301 賏蔵容器～CRD ポンプ室	C－2	クラス 3	－	－		変更なし				
		M	容器	ハロン 1301 貯蔵容器＊5	－	－	－	－		変更なし				
		$\begin{aligned} & \text { 消寺 } \\ & \text { 灾室 } \\ & \text { 等 } \end{aligned}$	主配管	ハロン1301貯蔵容器～MUWC ポンプ室＊5	－	－	－	－		変更なし				

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(7 / 69)$

表1 火災防護設備の主要設備リスト（8／69）

表1 火災防護設備の主要設備リスト（9／69）

$\begin{aligned} & \text { 哄 } \\ & \text { 芬 } \end{aligned}$	$\begin{aligned} & \text { 䧽 } \\ & \text { 程 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基漼詨象施設＊1		重大事故等対处設備＊＊${ }^{\text {¹ }}$		名称	設計甚睪洨対象施設＊${ }^{\text {a }}$		重大事故等対処設備＊1			
			$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{gathered}$		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 䧿 } \end{aligned}$		$\begin{gathered} \hline \text { 区 } \\ \text { 分 } \\ \text { 翡 } \end{gathered}$		容器	ハロン1301貯蔵容器	C－2	クラス 3	－	－		変更なし			
			主配管	ハロン 1301 貯蔵容器～区分 I 非常用電気品室	C－2	クラス 3	－	－		変更なし				
		$\frac{\mathrm{D}}{\mathrm{D}}$	容器	ハロン 1301 販蔵容器	C－2	クラス3	－	－		変更な				
		室		ハロン 1301 眝蔵容器～D／G 補機（B）室	C－2	クラス3	－	－		変更な				
				ディーゼル発電機（B）室分岐点～ディー ゼル発電機（B）室	C－2	クラス 3	－	－		変更なし				
	$\begin{aligned} & \text { 分 } \\ & \text { 㴰 } \end{aligned}$			ディーゼル発電機（ A ）室分吱点～ディー ゼル発電機（A）室	C－2	クラス 3	－	－		変更なし				
	備			D / G 禣機 (A) 室分岐点 $\sim D / G$ 補機（ A ）室	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & \mathrm{B} \\ & 1 \\ & \mathrm{~F} \end{aligned}$	容器	ハロン1301貯蔵容器	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & \text { 消秷 } \\ & \text { 学采 } \end{aligned}$	主配管	ハロン 1301 眝蔵容器～B1F ハッチ室	C－2	クラス 3	－	－		変更なし				
		$\begin{array}{r} \text { 坌 } \\ \text { 電III } \end{array}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
			主配管	ハロン 1301 貯蔵容器～区分IIHPCS 電気品室	C－2	クラス 3	－	－		変更なし				

表1 火災防護設備の主要設備リスト $(10 / 69)$

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 多 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
				名称	設計基漼対象施設＊1		重大事故等対処設備＊${ }^{*}$		名称	設計基淮対象施設＊1		重大事故等対処設備＊1			
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$		$\begin{aligned} & \hline \text { c 区 } \\ & \text { C } \\ & \text { C I } \\ & \text { 室㐟 } \\ & \text { 消 } \\ & \text { 系 M } \end{aligned}$		容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし				
				主配管	ハロン 1301 貯蔵容器～区分II非常用 MCC 室	C－2	クラス 3	－	－		変更なし				
			䆃	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
			$\begin{aligned} & \text { ラ } \\ & \text { 消 } \\ & \text { 少 } \\ & \text { 采室 } \end{aligned}$	主配管	ハロロン 1301 貯蔵容器～導電率計ラック	C－2	クラス 3	－	－		変更なし				
				容器	ハロン 1301 貯蔵容器＊5	－	－	－	－		変更なし				
			$\begin{gathered} \text { 系 } \underset{\text { B ポ }}{\text { B }} \text { 室ン゙ } \end{gathered}$	主配管	ハロン 1301 貯蔵容器～FPC ポンプ （A）（B）室＊5	－	－	－	－		変更なし				
				容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
			$\begin{gathered} \text { 系室榘 } \\ \text { 換 } \end{gathered}$	主配管	ハロン 1301 貯蔵容器～HWH 熱交換器・ポ ンプ室	C－2	クラス 3	－	－		変更なし				
			緊	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
					ハロン 1301 貯蔵容器～緊急用電気品室 （2）	C－2	クラス 3	－	－		変更なし				
			消／		緊急用電気品室（1）分岐点～緊急用電気品室（1）	C－2	クラス 3	－	－		変更なし				
			$\begin{aligned} & \text { D 区 } \\ & \text { 分 } \\ & \text { I } \end{aligned}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
				主配管	ハロン 1301 貯蔵容器～区分 I 非常用 D／G制御盤室	C－2	クラス 3	－	－		変更なし				

表1 火災防護設備の主要設備リスト $(11 / 69)$

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 妳 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {¹ }}$			
			耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
$\begin{aligned} & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 㕣 } \\ & \text { 齐 } \\ & \text { 爻 } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし				
			主配管	ハロン 1301 貯蔵容器～区分III非常用 D／G 制御盤室	C－2	クラス 3	－	－	変更なし					
		$\begin{aligned} & \text { T } \\ & \hline \mathrm{H} \\ & \mathrm{P} \end{aligned}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし					
		$\begin{aligned} & \text { 寍発 } \\ & \text { 消機 } \\ & \hline \end{aligned}$	主配管	ハロン 1301 貯蔵容器～ディーゼル発電機（HPCS）室	C－2	クラス 3	－	－	変更なし					
		室 区	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし					
		$\begin{aligned} & 2 \text { 2 } \begin{array}{l} \text { 階 } \end{array} . \end{aligned}$		ハロン 1301 貯蔵容器 $\sim \mathrm{R}-12$ 階段室	C－2	クラス 3	－	－	変更なし					
			主配管	区分II非常用 D／G 制御盤室，窒素ボン －設置スペース分岐点～区分II非常用 D／G 制御盤室，窒素ボンべ設置スペース	C－2	クラス 3	－	－	変更なし					
		$\begin{array}{r} \text { 区 } \\ \text { 炃 } \\ \text { 消 } \mathrm{III} \end{array}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし					
		$\begin{gathered} \text { 系 学 } \\ \text { 咥 } \end{gathered}$	主配管	ハロン 1301 貯蔵容器～区分IIIバッテリ室	C－2	クラス 3	－	－	変更なし					
		$\begin{array}{r} \text { 送 } \\ \text { 品 } \\ \text { 品機 } \end{array}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし					
		$\begin{gathered} \text { 炎急 } \\ \text { 鼠 } \\ \hline \end{gathered}$	主配管	ハロン 1301 貯蔵容器～送風機•緊急用電気品室	C－2	クラス 3	－	－	変更なし					

表1 火災防護設備の主要設備リスト $(12 / 69)$

表1 火災防護設備の主要設備リスト（13／69）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 妳 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊${ }^{*}$		名称	設計基漼対象施設＊1		重大事故等対処設備＊1			
			耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
$\begin{aligned} & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 八 } \\ & \text { 荈 } \\ & \text { 分 } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし				
				ハロン 1301 貯蔵容器～DC125V バッテリ （A）-1 室	C－2	クラス 3	－	－		変更なし				
				250 V 直流主母線盤室分岐点～250V 直流 主母線盤室	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & \text { バD } \\ & \text { 学 } \mathrm{C} \end{aligned}$	容器	ハロン 1301 貯蔵容器＊5	－	－	－	－		変更なし				
		$\begin{aligned} & \text { 消 } \\ & \text { 労 } V \\ & \hline \end{aligned}$	主配管	ハロン 1301 貯蔵容器～DC250V バッテリ室＊5	－	－	－	－		変更なし				
			容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & \text { 消御 } \\ & \text { 霫 } \\ & \hline \end{aligned}$	主配管	ハロン 1301 貯蔵容器～計測制御電源 （B）室	C－2	クラス 3	－	－		変更なし				
		$\begin{array}{ll} \hline \text { D 岱 } \\ C & \text { 替 } \end{array}$	容器	ハロン 1301 眝蔵容器	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & 1 \text { 電 } \\ & 2 \text { 器 } \\ & 5 \text { 㩜 } \end{aligned}$		ハロン 1301 貯蔵容器～DC125V バッテリ （B）室	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & \overparen{A}_{A}^{\mathrm{A}} \mathrm{R} \end{aligned}$		125 V 代替充電器盤室分岐点～125V代替充電器盤室	C－2	クラス 3	－	－		変更なし				
		©		RSS 盤室分岐点～RSS 盤室	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & \text { 書 } \\ & \text { 炎 } \end{aligned}$		DC125V バッテリ（A）室分岐点～DC125V バッテリ（A）室	C－2	クラス 3	－	－		変更なし				
		$\begin{gathered} \mathrm{M} \\ \text { 室 } \\ \text { 嫦 } \end{gathered}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
		$\begin{gathered} \text { 炎 } \begin{array}{c} \text { P 共 } \\ \text { C } \end{array}{ }^{\text {an }} \end{gathered}$	主配管	ハロン 1301 貯蔵容器～常用•共通 M／C• P／C 室	C－2	クラス 3	－	－		変更なし				

表1 火災防護設備の主要設備リスト $(14 / 69)$

設 備 区分 （ 	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 您 } \\ & \text { 俍 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設備＊${ }^{\text {¹ }}$			
			耐震 重要度分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{gathered} \text { 耐震 } \\ \text { 重要度 } \end{gathered}$ 分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
		$\begin{array}{r} \text { 計 } \\ \text { 測 } \\ \text { 室制 } \end{array}$		容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし			
		$\frac{\text { 孫霫 }}{\underset{A}{A}}$	主配管	ハロン 1301 貯蔵容器～計測制御電源 （A）室	C－2	クラス 3	－	－		変更なし				
			容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
		$\begin{gathered} \text { 亚測 } \\ \text { 消 } \\ \text { 掣 } \\ \hline \end{gathered}$	主配管	ハロン 1301 貯蔵容器～T．S（計測制御電源（B）室北）	C－2	クラス 3	－	－		変更なし				
		$\begin{gathered} \text { T } \\ \text { 北 } \end{gathered}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
	$\begin{aligned} & \text { 吕 } \\ & \text { 岦 } \end{aligned}$	$\begin{gathered} \text { 系更 } \\ \text { 荎 } \end{gathered}$	主配管	ハロン 1301 貯蔵容器～T．S（更衣室北）	C－2	クラス 3	－	－		変更なし				
	甭	$\text { 消衣 }{ }_{\text {T }}^{\text {T }}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\text { 炎赤 } \frac{\text { S }}{\text { S }}$	主配管	ハロン 1301 貯蔵容器～T．S（更衣室西）	C－2	クラス 3	－	－		変更なし				
		区	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－		変更なし				
		II		ハロン 1301 貯蔵容器～常用系ケーブル処理室	C－2	クラス 3	－	－		変更なし				
		$$		区分 I ケーブル処理室分岐点 1～区分I ケーブル処理室	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & \text { 処 } \\ & \text { 现 } \end{aligned}$		区分 I ケーブル処理室分岐点2～区分I ケーブル処理室	C－2	クラス 3	－	－		変更なし				
		$\begin{aligned} & \text { 消 } \\ & \text { 系 } \end{aligned}$		区分 II ケーブル処理室分岐点～区分 II ケーブル処理室	C－2	クラス 3	－	－		変更なし				

表1 火災防護設備の主要設備リスト（15／69）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 斧 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 䋁 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊${ }^{\text {c }}$		重大事故等対処設備＊＊		名称	設計基準対象施設＊1		重大事故等対処設備＊1			
			耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
$\begin{aligned} & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 㕣 } \\ & \text { 労 } \\ & \text { 叒 } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 処区 } \\ & \text { 理分 } \\ & \text { 票 } \\ & \text { 消 } \\ & \text { 光ブ } \\ & \text { 系 ル } \end{aligned}$		容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし				
			主配管	ハロン 1301 貯蔵容器～区分IIIケーブル処理室	C－2	クラス 3	－	－	変更なし					
		$\begin{aligned} & \text { 代 }{ }^{D} \\ & \text { 替 } \end{aligned}$	容器	ハロン 1301 貯蔵容器＊5	－	－	－	－	変更なし					
		$\begin{array}{r} \text { 系 } \boldsymbol{y}^{2} 5 \\ \text { 室V } \end{array}$	主配管	ハロン 1301 貯蔵容器～DC125V 代替バッ テリ室＊5	－	－	－	－	変更なし					
		$\stackrel{1}{\mathrm{I}_{\text {I }} .}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし					
		$\begin{aligned} \text { 系䏁分 } \\ \text { 北 } \\ \text { II } \end{aligned}$	主配管	ハロン 1301 貯蔵容器～T．S（区分 II ケー ブル処理室北）	C－2	クラス 3	－	－	変更なし					
		$\begin{array}{r} P \\ \text { 돕 } \\ C \end{array}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし					
		$\begin{gathered} \text { 熋 爻 } \\ \text { 系 分 } \\ \text { I } \end{gathered}$	主配管	ハロン 1301 貯蔵容器～PCPS 区分 I エリ ア	C－2	クラス 3	－	－	変更なし					
		$\begin{array}{r} P \\ \text { 듭 } \\ C \end{array}$	容器	ハロン 1301 眝蔵容器	C－2	クラス 3	－	－	変更なし					
		$\begin{gathered} \text { 啖区 区 } \\ \text { 系分 } \\ \text { II } \end{gathered}$	主配管	ハロン 1301 貯蔵容器～PCPS 区分IIエリ ア	C－2	クラス 3	－	－	変更なし					
		$\begin{array}{r} P \\ \text { ㄷ } \\ \text { C } \\ \hline \end{array}$	容器	ハロン 1301 貯蔵容器	C－2	クラス 3	－	－	変更なし					
			主配管	ハロン 1301 貯蔵容器～PCPS 区分IIIエリ ア	C－2	クラス 3	－	－	変更なし					

表1 火災防護設備の主要設備リスト（16／69）

表1 火災防護設備の主要設備リスト $(17 / 69)$

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 名 } \end{aligned}$		機器区分	変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1			
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 㕣 } \\ & \text { 齐 } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$			容器	ハロン 1301 貯蔵容器 ${ }^{5}$	－	－	－	－	変更なし				
				主配管	ハーロン 1301 貯蔵容器～軽油タンク（A）	－	－	－	－		変更なし				
			$\begin{aligned} & \text { ン婜 } \\ & \text { ク学 } \end{aligned}$	容器	ハロン 1301 貯蔵容器＊5）	－	－	－	－		変更なし				
			$\begin{aligned} & \text { 室乴 } \\ & \text { 消 } \\ & \text { 軽 } \\ & \text { 油 } \end{aligned}$	主配管	ハヘロン 1301 貯蔵容器～軽油タンク（B）	－	－	－	－		変更なし				
				容器	ハロン 1301 貯蔵容器＊5	－	－	－	－		変更なし				
			$\begin{aligned} & \text { 宵所 } \\ & \text { 軽 } \\ & \text { 系油 } \end{aligned}$	主配管	ハヘロン 1301 貯蔵容器～軽油タンク（C）	－	－	－	－		変更なし				
			$\begin{aligned} & \hline \mathrm{E} \\ & \hline \\ & \text { B } \\ & \hline \text { 䨗 } \end{aligned}$	容器	ハロン 1301 貯蔵容器 ${ }^{\text { }}$	－	－	－	－		変更なし				
			$\begin{aligned} & \text { 吕 } \\ & \text { 空 } \\ & \text { 消 } \\ & \hline 火 火 \\ & \hline \end{aligned}$	主配管	ハロン 1301 貯蔵容器 $\sim \mathrm{E} / \mathrm{B}$ 電気品室＊5	－	－	－	－		変更なし				

表1 火災防護設備の主要設備リスト（18／69）

表1 火災防護設備の主要設備リスト（19／69）

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト（20／69）

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(21 / 69)$

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト（22／69）

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(23 / 69)$

表1 火災防護設備の主要設備リスト（24／69）

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(25 / 69)$

$\begin{array}{l\|l\|} \hline \text { 謜 } \\ \text { 畕 } \end{array}$		$\begin{aligned} & \text { 雞 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基淮詨象施舤＊1		重大事故等対处設備＊${ }^{*}$		名称	設計基淮效象施設＊1		重大事故等対処設備＊1	
					$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
消炎設備				FK－5－1－12 貯蔵容器（C5014），${ }^{\text {a }}$（202（2）用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P502（5），P503 （7，P202（5）用）	C－2	クラス 3	－	－		変更な			
				FK－5－1－12 貯蔵容器（P502（4），P503 （6），P202（4）用）	C－2	クラス 3	－	－		変更な			
				FK－5－1－12 眝蔵容器（C501®）， 2024 （4） ）	C－2	クラス3	－	－		変更なし			
	ブ	ブ		FK－5－1－12 時蔵容器（S2024）用）	C－2	クラス 3	－	－		変更なし			
	$\begin{array}{\|l\|} \text { 消 } \\ \hline \end{array}$	将		FK－5－1－12 貯蔵容器（S202①用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 眝蔵容器（C501（7），C202（5）${ }^{\text {成）}}$	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P502 © ，P503 （8，P202（6）用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 眝蔵容器（P769 用）	C－2	クラス 3	－	－		変更な			
				FK－5－1－12 眝蔵容器（C501－1 用）	C－2	クラス3	－	－		変更なし			

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(26 / 69)$

$\begin{aligned} & \text { 謜 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 雞 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基漼詨象施設＊1		重大事故等対処設備＊＊		名称	設計甚㕠対象施設＊1		重大事故等対処設備＊1	
					$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 而震 } \\ & \text { 要度 } \\ & \text { 分類 } \end{aligned}$	$\begin{aligned} & \text { 機哭 } \\ & \text { クラ } \end{aligned}$	設備分類	重大事故等機器クラス
消炎羬			容器	FK－5－1－12 貯蔵容器（S703 用）	C－2	クラス3	－	－	変更なし				
		FK－5－1－12 貯蔵容器（C736 用）		C－2	クラス3	－	－		変更なし				
		FK－5－1－12 貯蔵容器（C729 用）		C－2	クラス3	－	－		変更なし				
		FK－5－1－12 貯蔵容器（S704 用）		C－2	クラス3	－	－		変更なし				
		FK－5－1－12 貯蔵容器（S2023用）		C－2	クラス3	－	－		変更なし				
		FK－5－1－12 眝蔵容器（C501®，C202®用）		C－2	クラス3	－	－		変更なし				
		FK－5－1－12 販蔵容器（P5034（4，P202（2） 成）		C－2	クラス3	－	－		変更なし				
		FK－5－1－12 貯蔵容器（C300（1）用）		C－2	クラス3	－	－		変更なし				
		FK－5－1－12 貯藏容器（S300（1）用）		C－2	クラス3	－	－		変更なし				
		FK－5－1－12 貯蔵容器（S101（1）用）		C－2	クラス3	－	－		変更なし				

表1 火災防護設備の主要設備リスト $(27 / 69)$

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(28 / 69)$

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(29 / 69)$

	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊＊		名称	設計基漼対象施設＊1		重大事故等対処設備＊1			
			耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { r } \\ & \text { ノ } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { L } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$		容器	FK－5－1－12 貯蔵容器（C5018，C202⑥用）	C－2	クラス 3	－	－	変更なし				
			FK－5－1－12 貯蔵容器（S202⑥用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P503（11）${ }^{\text {咸）}}$		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（P503（10，P2028）用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（C5019，${ }^{\text {a }}$（202 7 ） 用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（S202（7）用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（C50111，${ }^{\text {c }}$（202（9） 用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（P503＾12，P202（11）${ }^{\text {成）}}$		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（S2028）用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（P202 © ，C501 （10），C202（8）用）		C－2	クラス 3	－	－		変更なし				

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト（30／69）

$\begin{array}{c}\text { 設 } \\ \text { 備 } \\ \text { 区分 }\end{array}$ 	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1			
			$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { r } \\ & \text { ノ } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { L } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$		容器	FK－5－1－12 貯蔵容器（P202（11），C501 （12），C202（11）用）	C－2	クラス 3	－	－	変更なし				
			FK－5－1－12 貯蔵容器（S709（1）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（S708 用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（C403 24，C809 用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P101 © ，C403 （23），C100（22）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P101（10），C403 （22，C100（21）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（S101（13），S709（2）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P201①，C201用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P701 © ，P700 （9），P610 ${ }^{(6)}$ 用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（K7028，K7068）用）		C－2	クラス 3	－	－	変更なし					

表1 火災防護設備の主要設備リスト $(31 / 69)$

	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1			
			$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { ケ } \\ & \text { ノ } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { K } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$		容器	FK－5－1－12 貯蔵容器（K602（2）用）	C－2	クラス 3	－	－	変更なし				
			FK－5－1－12 貯蔵容器（P602（6），C606 （4），C601（2）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P701 8），P700 （8），P610（5）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（C606③用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（S6023用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（K702（7），K706 （7，P701（7）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P700（7），P610 （4），P602（4）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P602⑤用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（K702 ©（6），K706 （6），P701（6）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P700 ©（6），P610 （3），P602③用）		C－2	クラス 3	－	－	変更なし					

表1 火災防護設備の主要設備リスト（32／69）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基漼対象施設＊1		重大事故等対処設備＊${ }^{* 1}$		名称	設計基淮対象施設＊1		重大事故等対処設備＊1	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$	$\begin{gathered} \text { ケ } \\ 1 \\ \text { ブ } \\ \text { ル } \\ \text { ト } \\ \text { ィ } \\ \text { 消 } \\ \text { 設 } \\ \text { 備 } \end{gathered}$	$\begin{gathered} \text { ケ } \\ 1 \\ \text { ブ } \\ \text { r } \\ \text { r } \\ \text { r } \\ \text { 消 } \\ \text { 火 } \end{gathered}$	容器	FK－5－1－12 貯蔵容器（C606（2）用）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（S602（2）用）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（K702（5），K706 （5），P701（5）用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯 蔵容器（P700（5），P610 （2），P602（2）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K601，P600，P601用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S601（2）用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K702（4），K706 $\begin{aligned} & \text {（4），P701（4）用）}\end{aligned}$	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P700（4），P610 （1），P602（1）用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P201⑥用）	C－2	クラス 3	－	－		変更なし			
					C－2	クラス 3	－	－		変更なし			

表1 火災防護設備の主要設備リスト（33／69）

設 備 分 分 	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊＊		名称	設計基準対象施設＊1		重大事故等対処設備＊1			
			$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { ケ } \\ & \text { 1 } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { K } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$		容器	FK－5－1－12 貯蔵容器（P700（1），P500 （1），P501（1）用）	C－2	クラス 3	－	－	変更なし				
			FK－5－1－12 貯蔵容器（K702（2），K706 （2，P701（2）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P700（2），P500 （2），P501（2）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（C606①用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（K702（3），K706 （3），P701（3）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P700 ③），P500 （3），P501（3）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（S602（1）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（C602（1）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（C603（2）用）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（S600（1）用）		C－2	クラス 3	－	－	変更なし					

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(34 / 69)$

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(35 / 69)$

$\begin{array}{\|l\|} \hline \text { 謜 } \\ \text { 爻 } \end{array}$		$\begin{aligned} & \text { 綾 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
					設計基淮詨象施設＊1		重大事故等対处設犕＊${ }^{*}$		名称	設計基淮效象施設＊1		重大事故等対処設備＊1	
				名称	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
消炎設備			容器	FK－5－1－12 貯蔵容器（P3002，C300（6）用）	C－2	クラス3	－	－	変更なし				
					C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K1003），P4023）用）	C－2	クラス 3	－	－		変更な			
				FK－5－1－12 貯蔵容器（P1025］，C100（2）用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 的蔵容器（S1003）用）	C－2	クラス3	－	－		変更な			
				FK－5－1－12 貯蔵容器（K100＠，P402＠1）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 眝蔵容器（P102®（ C10082用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S100＠4用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K100（7），P402（7）用）	C－2	クラス 3	－	－		変更な			
				FK－5－1－12 貯蔵容器（P102（7，C100（2）用）	C－2	クラス3	－	－		変更な			

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト $(36 / 69)$

$\begin{array}{\|l\|} \hline \text { 謜 } \\ \text { 爻 } \end{array}$		$\begin{aligned} & \text { 綾 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
					設け樭基淮詨象施設＊1		重大事故等対处設犕＊${ }^{*}$		名称	設計基鹪詨象施設＊1		重大事故等対処設備＊1	
				名称	$\begin{aligned} & \text { 而震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
消炎設備			容器	FK－5－1－12 販藏容器（K2012），P5028）用）	C－2	クラス3	－	－	変更なし				
				FK－5－1－12 販蔵容器（P2013），C200②用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 販蔵容器（P20144，C200（3）用）	C－2	クラス 3	－	－		変更な			
				FK－5－1－12 販蔵容器（K2013），P5029）${ }^{\text {（ }}$ ）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S2002 2 $^{\text {成）}}$	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（C200¢4）用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P201（5）用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S100＠用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 販藏容器（P1022）， C100（2）用）$^{\text {a }}$	C－2	クラス 3	－	－		変更な			
				FK－5－1－12 貯蔵容器（K1000，P402（2）用）	C－2	クラス3	－	－		変更な			

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト（37／69）

O 2 変二（1）II R 4

表1 火災防護設備の主要設備リスト（38／69）

$\begin{array}{\|l\|} \hline \text { 謜 } \\ \text { 爻 } \end{array}$		$\begin{aligned} & \text { 綾 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
					設計基淮詨象施設＊1		重大事故等対处設犕＊${ }^{*}$		名称	設計基淮效象施設＊1		重大事故等対処設備＊1	
				名称	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
消炎設備			容器		C－2	クラス3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（K100®4，P402（4）用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S100（6）${ }^{\text {齎）}}$	C－2	クラス 3	－	－		変更な			
				FK－5－1－12 貯蔵容器（K1008，P4028）用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P1028， Cl 100 ®0用）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S1009用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 眝蔵容器（S1008）用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 貯藏容器（P102＠，C100®用）	C－2	クラス3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K100＠，P4029）用）	C－2	クラス 3	－	－		変更な			
				FK－5－1－12 貯歲容器（P502（1）用）	C－2	クラス3	－	－		変更な			

表1 火災防護設備の主要設備リスト $(39 / 69)$

表1 火災防護設備の主要設備リスト（40／69）

表1 火災防護設備の主要設備リスト（41／69）

表1 火災防護設備の主要設備リスト $(42 / 69)$

表1 火災防護設備の主要設備リスト（43／69）

表1 火災防護設備の主要設備リスト $(44 / 69)$

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊＊		名称	設計基漼対象施設＊1		重大事故等対処設備＊1			
			$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
$\begin{aligned} & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ノ } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { K } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$		容器	FK－5－1－12 貯蔵容器（P400®3用）	C－2	クラス 3	－	－	変更なし				
			FK－5－1－12 貯蔵容器（P603（2）用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（C4004）用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（C4012）用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（S603 用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（P603®用）		C－2	クラス 3	－	－		変更なし				
			FK－5－1－12 貯蔵容器（P401（2）用）		C－2	クラス 3	－	－		変更なし				
				FK－5－1－12 貯蔵容器（P800用）～ケーブル トレイ（P800）	C－2	クラス 3	－	－		変更なし				
			主配管	$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(P401 } \\ & \text { (1), P404, P01, P803 用)~ケーブルトレ } \\ & \text { イ (P401(1), P404, P801, P803) } \end{aligned}$	C－2	クラス 3	－	－		変更なし				
				$\left\lvert\, \begin{aligned} & \text { FK-5-1-12貯蔵容器(P802用)~ケーブル } \\ & \text { トレイ } \end{aligned}\right.$	C－2	クラス 3	－	－		変更なし				

表1 火災防護設備の主要設備リスト $(45 / 69)$

表1 火災防護設備の主要設備リスト（46／69）

表1 火災防護設備の主要設備リスト（47／69）

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1			
				$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$	ケケブル$卜$L亿消設設備	$\begin{aligned} & \text { r } \\ & 1 \\ & \text { ブ } \\ & \text { ル } \\ & \text { ト } \\ & \downarrow \\ & \text { 个 } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$		主配管	FK－5－1－12 貯蔵容器（S101（5）用）～ケーブ ルトレイ（S1015）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（C40366，C100⑥用） ～ケーブルトレイ（C40366，C100⑥）		C－2	クラス 3	－	－		変更なし				
				FK－5－1－12 貯蔵容器（P403⑥，P101（4）用） ～ケーブルトレイ（P403⑥，P101④）		C－2	クラス 3	－	－		変更なし				
				FK－5－1－12 貯蔵容器（S101（2）用）～ケーブ ルトレイ（S1012）		C－2	クラス 3	－	－		変更なし				
				FK－5－1－12 貯蔵容器（C100（5）用）～ケーブ ルトレイ（C100（5））		C－2	クラス 3	－	－		変更なし				
				FK－5－1－12 貯蔵容器（C403（5）用）～ケーブ ルトレイ（C403（5））		C－2	クラス 3	－	－		変更なし				
				FK－5－1－12 貯蔵容器（P101（3）用）～ケーブ ルトレイ（P101（3）		C－2	クラス 3	－	－		変更なし				
				FK－5－1－12 貯蔵容器（P403（5）用）～ケーブ ルトレイ（P403（5）		C－2	クラス 3	－	－		変更なし				
				FK－5－1－12 貯蔵容器（S101（1）用）～ケーブ ルトレイ（S101（1））		C－2	クラス 3	－	－		変更なし				
				FK－5－1－12 貯蔵容器（P403（4），C403 （4），C100（4）用）～ケーブルトレイ（P403 （4），C403（4），C100（4）		C－2	クラス 3	－	－		変更なし				

表1 火災防護設備の主要設備リスト（48／69）

	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設備＊1	
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { ケ } \\ & \text { 1 } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { K } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$	主配管	FK－5－1－12 貯蔵容器（P403（3），C403 （3），C100③）用）～ケーブルトレイ（P403 （3），C403（3），C100（3）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（C403（2），C100（2）用） ～ケーブルトレイ（C403（2），C100②）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯 蔵 容 器（P403（2），P101 （2），C749 用）～ケーブルトレイ（P403 （2），P101（2），C749）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P403（1），P101（1）用） ～ケーブルトレイ（P403①，P101①）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（C403①，C100①用） ～ケーブルトレイ（C403①，C100①）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P503①，C501（1）用） ～ケーブルトレイ（P503（1），C501①）	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S202(1)用)~ケーブ } \\ & \text { ルトレイ (S202(1) } \end{aligned}$	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P502（1），P503 （2），C501（2）用）～ケーブルトレイ（P502 （1），P503（2），C501（2）	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S300(4)用)~ケーブ } \\ & \text { ルトレイ }(\text { S300 4) }) \end{aligned}$	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C30044)用)~ケーブ } \\ & \text { ルトレイ }(\mathrm{C} 300 \oplus 4) \end{aligned}$	C－2	クラス 3	－	－		変更なし			

表1 火災防護設備の主要設備リスト（49／69）

		$\begin{aligned} & \text { 奚 } \\ & \text { 綵 } \\ & \text { 相 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス			$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
				FK－5－1－12 貯蔵容器（P202（1）用）～ケーブ ルトレイ（P202①）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（C202（1）用）～ケーブ ルトレイ（C202①）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P502（2）用）～ケーブ ルトレイ（P502（2））	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P503（3）用）～ケーブ ルトレイ（P503（3））	C－2	クラス 3	－	－		変更なし			
	$\begin{aligned} & \text { l } \\ & \text { ブ } \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \\ & 7 \end{aligned}$		FK－5－1－12 貯蔵容器（C5013）用）～ケーブ ルトレイ（C501③）	C－2	クラス 3	－	－		変更なし			
	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \end{aligned}$	$\begin{aligned} & \text { 消 } \\ & \text { 消 } \end{aligned}$		FK－5－1－12 貯蔵容器（S202（2）用）～ケーブ ルトレイ（S202②）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P502（3），P503 （5），P202（3）用）～ケーブルトレイ（P502 （3），P503（5），P202（3）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（C5014），C202（2）用） ～ケーブルトレイ（C50144，C202②）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P502（5），P503 （7），P202（5）用）～ケーブルトレイ（P502 （5），P503（7，P202（5）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P502（4），P503 （6），P202（4）用）～ケーブルトレイ（P502 （4），P503（6），P202（4）	C－2	クラス 3	－	－		変更なし			

表1 火災防護設備の主要設備リスト（50／69）

3－11－添付 81	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1			
			$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { ケ } \\ & \text { 1 } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { K } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$		主配管	FK－5－1－12 貯蔵容器（C501⑥，C2024）${ }^{(4)}$ ） ～ケーブルトレイ（C501⑥，C2024）	C－2	クラス 3	－	－	変更なし				
			$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S2024)用)~ケーブ } \\ & \text { ルトレイ (S202(4)) } \end{aligned}$		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（S202⑤）用）～ケーブ ルトレイ（S2025）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（C501（7），C202（5） 用） ～ケーブルトレイ（C50177，C202⑤）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P502（6），P503 （8），P202⑥用）～ケーブルトレイ（P502 （6），P503（8），P202（6）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12貯蔵容器（P769用）～ケーブル トレイ（P769）		C－2	クラス 3	－	－	変更なし					
			$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(C501-1用)~ケーブ } \\ & \text { ルトレイ (C501-1) } \end{aligned}$		C－2	クラス 3	－	－	変更なし					
			FK-5-1-12貯蔵容器 (S703用)~ケーブル\| トレイ (S703)		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（C736用）～ケーブル トレイ（736）		C－2	クラス 3	－	－	変更なし					
			FK-5-1-12 貯蔵容器 (C729用)~ケーブル\| トレイ (C729)		C－2	クラス 3	－	－	変更なし					

表1 火災防護設備の主要設備リスト（51／69）

表1 火災防護設備の主要設備リスト（52／69）

		$\begin{aligned} & \text { 奚 } \\ & \text { 綵 } \\ & \text { 相 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊＊		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス			$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
				FK－5－1－12 貯蔵容器（P101（12），C403 （20），C100（20）用）～ケーブルトレイ（P101 （12），C403（20），C100（20）	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S101(10)用)~ケーブ } \\ & \text { ルトレイ }(\text { S101 (10) } \end{aligned}$	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（C40318用）～ケーブ ルトレイ（C403（18）	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C100®18用)~ケーブ } \\ & \text { ルトレイ }(\mathrm{C} 100 \text { (18) } \end{aligned}$	C－2	クラス 3	－	－		変更なし			
	$\begin{aligned} & 1 \\ & \text { ブ } \\ & \text { ル } \end{aligned}$	$\begin{aligned} & 7 \\ & 1 \\ & 7 \end{aligned}$		FK－5－1－12 貯蔵容器（S1019）用）～ケーブ ルトレイ（S1019）	C－2	クラス 3	－	－		変更なし			
	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \end{aligned}$	$\begin{aligned} & \text { 亿 } \\ & \text { 消 } \end{aligned}$		FK－5－1－12 貯蔵容器（C10017）用）～ケーブ ルトレイ（C100（17）	C－2	クラス 3	－	－		変更なし			
				FK-5-1-12 貯蔵容器 (C403(17)用)~ケーブ\| ルトレイ (C403(17)	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S101（7）用）～ケーブ ルトレイ（S10177）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S1018）用）～ケーブ ルトレイ $(S 1018)$	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P403（13），C403 （15），C100（15）用）～ケーブルトレイ（P403 （13），C403（15），C100（15）	C－2	クラス 3	－	－		変更なし			

表1 火災防護設備の主要設備リスト（53／69）

	系続称	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊${ }^{*}$		名称	設計基淮対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {¹ }}$	
					$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \begin{array}{c} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{array} . \begin{array}{l} \text { a } \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
		$\begin{aligned} & \text { ケ } \\ & 1 \\ & \text { ブ } \\ & \text { ル } \\ & \text { ト } \\ & \text { K } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$	主配管	FK－5－1－12 貯蔵容器（P403（11），C403 （13），C100（13）用）～ケーブルトレイ（P403 （11），C403（13），C100（B）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯 蔵 容 器（P403（12），C403 （14），C100（14）用）～ケーブルトレイ（P403 （12），C403（14），C100（14））	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（C403（16），C100（16） 用） ～ケーブルトレイ（C403⑯），C100（16）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P403（9），C403 （11），C100（11）用）～ケーブルトレイ（P403 （9），C403（11），C100（11）	C－2	クラス 3	－	－		変更なし			
				$\left\lvert\, \begin{aligned} & \text { FK-5-1-12 貯蔵容器(S1016)用)~ケーブ } \\ & \text { ルトレイ (S1016) } \end{aligned}\right.$	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P403（10），C403 （12），C100（12）用）～ケーブルトレイ（P403 （10），C403（12），C100（12）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P503⑨，P202（7）用） ～ケーブルトレイ（P503⑨，P202⑦）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（C5018 8，C202⑥用） ～ケーブルトレイ（C5018，C202⑥）	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S2026用)~ケーブ } \\ & \text { ルトレイ (S2026) } \end{aligned}$	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P503（11）用）～ケーブ ルトレイ ${ }^{\text {P503（11）})}$	C－2	クラス 3	－	－		変更なし			

表1 火災防護設備の主要設備リスト（54／69）

	系続称	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {¹ }}$	
					$\begin{gathered} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
			主配管	FK－5－1－12 貯蔵容器（P503（10），P2028）用） ～ケーブルトレイ（P503（10），P2028）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（C5019），C202（7） 用） ～ケーブルトレイ（C5019，C2027）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（S202（7）用）～ケーブ ルトレイ（S2027）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（C501⑪，C202（9）用） ～ケーブルトレイ（C501111，C202（9）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P503（12），P202（11）用） ～ケーブルトレイ（P50312，P202（11）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S2028）用）～ケーブ ルトレイ（S2028）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P202（9），C501 （11），C202（8）用）～ケーブルトレイ（P202 （9），C501（10），C202（8）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P202（11），C501 （12），C202（11）用）～ケーブルトレイ（P202 （11），C501（12），C202（10）	C－2	クラス 3	－	－		変更なし			
				$\begin{array}{\|l\|} \text { FK-5-1-12 貯蔵容器(S709(1)用)~ケーブ } \\ \text { ルトレイ(S79⑴ } \end{array}$	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S708用）～ケーブル トレイ（S708）	C－2	クラス 3	－	－		変更なし			

表1 火災防護設備の主要設備リスト（55／69）

$98 \text { 籿步-I I-E }$	奚名称	奚名	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊＊		名称	設計基淮対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {¹ }}$	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
		$\begin{gathered} \text { ケ } \\ \text { L } \\ \text { ブ } \\ \text { ル } \\ \text { ト } \\ \text { K } \\ \text { 消 } \\ \text { 系 } \end{gathered}$	主配管	FK－5－1－12貯蔵容器（C403 24），C809用）～ ケーブルトレイ（C40324，C809）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（P101（9），C403 （23），C100（22）用）～ケーブルトレイ（P101 （9），C403（23， C 100 （22）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（P101（10），C403 （22），C100（21）用）～ケーブルトレイ（P101 （10），C403（22， C 100 （21））	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（S101（13），S709（2）用） ～ケーブルトレイ（S101 13 ，S709②）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12貯蔵容器（P20111，C201用）～ ケーブルトレイ（P2011ㄹ，C201）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（P701（9），P700 （9），P610⑥用）～ケーブルトレイ（P701 （9），P700（9），P610（6）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（K70288，K7068）用） ～ケーブルトレイ（K702 8 8，K7068）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（K602②用）～ケーブ ルトレイ（K602（2））	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（P602（6），C606 （4），C601（2）用）～ケーブルトレイ（P602 （6），C606（4），C601（2）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（P701 8），P700 （8），P610（5）用）～ケーブルトレイ（P701 （8），P700（8），P610（5）	C－2	クラス 3	－	－	変更なし				

表1 火災防護設備の主要設備リスト（56／69）

$\text { 3-11-添付 } 87$	奚名称	奚名	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {¹ }}$	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \\ \hline \end{gathered}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
		$\begin{gathered} \text { ケ } \\ \text { L } \\ \text { ブ } \\ \text { ル } \\ \text { ト } \\ \text { K } \\ \text { 消 } \\ \text { 系 } \end{gathered}$	主配管	FK－5－1－12 貯蔵容器（C606③）用）～ケーブ ルトレイ（C606（3）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（S602（3）用）～ケーブ ルトレイ（S602（3）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯 蔵 容 器（K702（7），K706 （7），P701（7）用）～ケーブルトレイ（K702 （7），K706（7），P701（7）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（P700 © 7 ，P610 （4），P602（4）用）～ケーブルトレイ（P700 （7），P610（4），P602（4）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（P602⑤）用）～ケーブ － ルトレイ（P60255）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（K702（6），K706 （6），P701（6）用）～ケーブルトレイ（K702 （6），K706（6），P701（6）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（P700（6），P610 （3），P602（3）用）～ケーブルトレイ（P700 （6），P610（3），P602（3）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（C606（2）用）～ケーブ ルトレイ（C606（2））	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（S602（2）用）～ケーブ ルトレイ I602（2）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（K702（5），K706 （5），P701（5）用）～ケーブルトレイ（K702 （5），K706（5），P701（5）	C－2	クラス 3	－	－	変更なし				

表1 火災防護設備の主要設備リスト（57／69）

表1 火災防護設備の主要設備リスト（58／69）

	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊＊		名称	設計基漼対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {² }}$	
					$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス			$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { ケ } \\ & \text { 1 } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { K } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { ィ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$	主配管	$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C606(1)用)~ケーブ } \\ & \text { ルトレイ (C606①) } \end{aligned}$	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（K702（3），K706 （3），P701（3）用）～ケーブルトレイ（K702 （3），K706（3），P701（3）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P700 ③），P500 （3），P501（3）用）～ケーブルトレイ（P700 （3），P500（3），P501（3）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S602（1）用）～ケーブ ルトレイ $(S 6011)$	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C602①)用)~ケーブ } \\ & \text { ルトレイ (C602①) } \end{aligned}$	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C603②用)~ケーブ } \\ & \text { ルトレイ } \end{aligned}$	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S600(1)用)~ケーブ } \\ & \text { ルトレイ (S600①) } \end{aligned}$	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C601①用)~ケーブ } \\ & \text { ルトレイ } \mathrm{C} \text { (C601①) } \end{aligned}$	C－2	クラス 3	－	－		変更なし			
				$\left\lvert\, \begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C602@)用)~ケーブ } \\ & \text { ルトレイ (C622) } \end{aligned}\right.$	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S6004)用)~ケーブ } \\ & \text { ルトレイ }(\text { S600@ } 4) \end{aligned}$	C－2	クラス 3	－	－		変更なし			

表1 火災防護設備の主要設備リスト（59／69）

表1 火災防護設備の主要設備リスト（60／69）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$		$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 妳 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基淮対象施設＊1		重大事故等対処設備＊1	
					耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \begin{array}{c} \text { 耐震 } \\ \text { 重度 } \\ \text { 分類 } \end{array} . \begin{array}{l} \text { a } \end{array} \\ \hline \end{gathered}$	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 備 } \end{aligned}$		$\begin{aligned} & \text { ケ } \\ & 1 \\ & \text { ブ } \\ & \text { ル } \\ & \text { ト } \\ & \text { K } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$	主配管	FK－5－1－12 貯蔵容器（P102（5），C100（27）用） ～ケーブルトレイ（P102（5），C100（27）	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯蔵容器（S100③）用）～ケーブ ルトレイ（S100（3）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K100⑥），P402（6） 用） ～ケーブルトレイ（K100⑥，P402⑥）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P10266，C100（8）用） ～ケーブルトレイ（P10266，C100（8）	C－2	クラス 3	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S100(4)用)~ケーブ } \\ & \text { ルトレイ } \end{aligned}$	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K100（7），P402（7）用） ～ケーブルトレイ（K10077，P402（7）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P102（7），C100（29）用） ～ケーブルトレイ（P10277，C10029）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K201（2），P502（8） 用） ～ケーブルトレイ（K201②，P5028）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P2013），C200②用） ～ケーブルトレイ（P201③，C200②）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（P20144，C200③） ～ケーブルトレイ（P201（4），C200③）	C－2	クラス 3	－	－		変更なし			

表1 火災防護設備の主要設備リスト（61／69）

表1 火災防護設備の主要設備リスト $(62 / 69)$

3－11－添付 93	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1			
			$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { ケ } \\ & \text { 1 } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { K } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { ィ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$		主配管	$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S601(1)用)~ケーブ } \\ & \text { ルトレイ } \mathrm{S} \text {) } \end{aligned}$	C－2	クラス 3	－	－	変更なし				
			FK－5－1－12 貯蔵容器（K602（1），P603 （1），C603（1）用）～ケーブルトレイ （K602（1），P603（1），C603（1）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P201（2），C200（1）用） ～ケーブルトレイ（P201②，C200①）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（K201（1），P502（7） 用） ～ケーブルトレイ（K201①，P502⑦）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P102（4），C100（26） 用） ～ケーブルトレイ（P102（4），C10026）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（K100（5），P402（5）用） ～ケーブルトレイ（K100（5），P402⑤）		C－2	クラス 3	－	－	変更なし					
			FK-5-1-12 貯蔵容器(S100(7)用)~ケーブ\| ルトレイ(S1007)		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P102③），C100（25）用） ～ケーブルトレイ（P102③，C100（25））		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（K100（4），P402④） ～ケーブルト		C－2	クラス 3	－	－	変更なし					
			$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(S1006用)~ケーブ } \\ & \text { ルトレイ (S100@) } \end{aligned}$		C－2	クラス 3	－	－	変更なし					

表1 火災防護設備の主要設備リスト（63／69）

3－11－添付 94	$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 妳 } \end{aligned}$		機器区分	変更前					変更後					
			名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1			
			$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { ケ } \\ & \text { 1 } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { K } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$		主配管	FK－5－1－12 貯蔵容器（K10088，P40288用） ～ケーブルトレイ（K10088，P4028）	C－2	クラス 3	－	－	変更なし				
			FK－5－1－12 貯蔵容器（P10288，C100（30）${ }^{\text {（ }}$ ） ～ケーブルトレイ（P10288，C100®）		C－2	クラス 3	－	－	変更なし					
			$\begin{aligned} & \mathrm{FK}-5-1-12 \text { 貯蔵容器 (S1009用)~ケーブ } \\ & \text { ルトレイ } \mathrm{S} 1009 \text {) } \end{aligned}$		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（S1008）用）～ケーブ ルトレイ （S1008）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（P102⑨，C100（31）用） ～ケーブルトレイ（P102⑨，C100（31）		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（K100＠9，P4029）用） ～ケーブルトレイ（K100（9），P402⑨）		C－2	クラス 3	－	－	変更なし					
			FK-5-1-12 貯蔵容器(P502(11)用)~ケーブ\| ルトレイ(P502(10)		C－2	クラス 3	－	－	変更なし					
			FK-5-1-12 貯蔵容器(K2014)用)~ケーブ\| ルトレイ(K20144)		C－2	クラス 3	－	－	変更なし					
			FK－5－1－12 貯蔵容器（S30077用）～ケーブ ルトレイ $(S 3007$ ）		C－2	クラス 3	－	－	変更なし					
			$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C3009)用)~ケーブ } \\ & \text { ルトレイ (C300@) } \end{aligned}$		C－2	クラス 3	－	－	変更なし					

表1 火災防護設備の主要設備リスト（64／69）

	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基漼対象施設＊1		重大事故等対処設備＊1	
						機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { r } \\ & \text { ノ } \\ & \text { ブ } \\ & \text { ル } \\ & 卜 \\ & \text { L } \\ & \text { 消 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { ケ } \\ & \text { ブ } \\ & \text { ブ } \\ & \text { ル } \\ & \text { L } \\ & \text { イ } \\ & \text { 消 } \\ & \text { 系 } \end{aligned}$	主配管	FK－5－1－12 貯蔵容器（K610（3），K611 （3），K612（3）用）～ケーブルトレイ（K610 （3），K611（3），K612（3））	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12 貯 蔵 容 器（K610（2），K611 （2），K612（2）用）～ケーブルトレイ（K610 （2），K611（2），K612（2））	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K610（1），K611 （1），K612（1）用）～ケーブルトレイ（K610 （1），K611（1），K612（1）	C－2	クラス 3	－	－		変更なし			
				FK－5－1－12 貯蔵容器（K003（1）用）～ケーブ ルトレイ（K003（1）＊5	－	－	－	－		変更なし			
				FK-5-1-12 貯蔵容器(K003(2)用)~ケーブ\| ルトレイ(K003(2) *5	－	－	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(K003(3)用)~ケーブ } \\ & \text { ルトレイ }{ }^{\text {K003(3) }} \text { *5 } \end{aligned}$	－	－	－	－		変更なし			
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器 (S003(3)用)~ケーブ } \\ & \text { ルトレイ }\left(\text { S003(3) }{ }^{* 5}\right. \end{aligned}$	－	－	－	－		変更なし			
				$\left\lvert\, \begin{aligned} & \mathrm{FK}-5-1-12 \text { 貯蔵容器 (C008(3)用)~ケーブ } \\ & \text { ルトレイ }\left(\mathrm{C} 008(3){ }^{* 5}\right. \end{aligned}\right.$	－	－	－	－		変更なし			
				FK－5－1－12 貯蔵容器（S003（2）用）～ケーブ ルトレイ $(\mathrm{S} 032 \mathrm{C})$	－	－	－	－		変更なし			
				$\left\lvert\, \begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C008(2)用)~ケーブ } \\ & \text { ルトレイ }(\mathrm{C0008}(2))^{* 5} \end{aligned}\right.$	－	－	－	－		変更なし			

表1 火災防護設備の主要設備リスト（65／69）

表1 火災防護設備の主要設備リスト $(66 / 69)$

表1 火災防護設備の主要設備リスト（67／69）

表1 火災防護設備の主要設備リスト（68／69）

表1 火災防護設備の主要設備リスト $(69 / 69)$

	$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$		機器区分	変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊＊		名称	設計基淮対象施設＊1		重大事故等対処設備＊1 ${ }^{\text {¹ }}$			
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	$\begin{aligned} & \text { 耐震 } \\ & \text { 重要度 } \\ & \text { 分類 } \end{aligned}$		$\begin{aligned} & \text { 機器 } \\ & \text { クラス } \end{aligned}$	設備分類	重大事故等機器クラス			
	$\begin{aligned} & \text { 消 } \\ & \text { 炎 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$				主配管	$\left\lvert\, \begin{aligned} & \text { FK-5-1-12 貯蔵容器 (C401(2)用)~ケーブ } \\ & \text { ルトレイ (C4012) } \end{aligned}\right.$	C－2	クラス 3	－	－	変更なし				
				FK－5－1－12貯蔵容器（S603用）～ケーブル トレイ（ C 603 ）		C－2	クラス 3	－	－	変更なし					
				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(P603(3)用)~ケーブ } \\ & \text { ルトレイ(P033) } \end{aligned}$		C－2	クラス 3	－	－	変更なし					
$\underset{\sim}{\stackrel{\rightharpoonup}{\rightleftharpoons}}$				$\begin{aligned} & \text { FK-5-1-12 貯蔵容器(P401(2)用)~ケーブ } \\ & \text { ルトレイ(P4012) } \end{aligned}$		C－2	クラス 3	－	－	変更なし					
	注記＊1：表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1原子炉本体の主要設備リスト 付表1」による。 注記 $* 2$ ：重大事故等対処設備を防護する火災区域構造物及び火災区画構造物である。 注記 $* 3$ ：消火設備における消火系ポンプのらち，ポンプを示す。 注記 $* 4$ ：消火設備における消火系ポンプのらち，原動機を示す。 注記 $* 5$ ：常設耐震重要重大事故防止設備•常設重大事故緩和設備を防護する消火設備である。														

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 火災防護設備に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 なお，以下に示す火災防護設備に適用する共通項目の基準及び規格を適用する個別の施設区分については，「表 1．施設共通の適用基準及び適用規格（該当施設）」に示す。 －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈 （平成 25 年 6 月 19 日原規技発第 1306194 号） －実用発電用原子炉及びその附属施設の火災防護に係る審査基準（平成 25年6月19日原規技発第1306195号） －発電用軽水型原子炉施設の火災防護に関する審査指針（平成 19 年 12 月 27日原子力安全委員会一部改訂） - J I S A 4201－1992 建築物等の避雷設備（避雷針） - J I S A 4 401 －2003 建築物等の雷保護 - 原子力発電所の火災防護規程（J E A C $4626-2010$ ） - 原子力発電所の火災防護指針（J E A G 4 6 0 7－2010）	第1章 共通項目 変更なし

上記の他「原子力発電所の内部火災影響評価ガイド」を参照する。

表1．施設共通の適用基準及び適用規格（該当施設）

変更前	変更後
第2章 個別項目 火災防護設備に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －高圧ガス保安法（昭和 26 年 6 月 7 日法律第 204 号） 高圧ガス保安法施行令（平成 9 年 2 月 19 日政令第 20 号） －消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） 消防法施行規則（昭和 36 年 4 月 1 日自治省令第 6 号） 危険物の規制に関する政令（昭和 34 年 9 月 26 日政令第 306 号） －発電用火力設備の技術基準の解釈（平成 25 年 5 月 17 日 20130507 経済産業省商局第2号） －平成 12 年建設省告示第 1400 号（平成 16 年 9 月 29 日国土交通省告示第 1178 号による改定） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成21年3月9日原子力安全委員会一部改訂） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 13 年 3 月 29日原子力安全委員会一部改訂） - J I S L 1 0 9 1－1999 繊維製品の燃焼性試験方法 - J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984）	第2章 個別項目 変更なし

変更前	変更後
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 公益社団法人日本空気清浄協会 空気清浄装置用ろ材燃焼性試験方法指針（J A C A No． $11 \mathrm{~A}-2003$ ） －独立行政法人産業安全研究所技術指針 工場電気設備防爆指針（ガス蒸気防爆2006） - I E E E S t d 383－1974 垂直トレイ燃焼試験 - I EEE S t d $1202-1991$ 垂直トレイ燃焼試験 - UL1581（Fourth Edition） 1080 ．VW－1 垂直燃焼試験 －社団法人電池工業会 蓄電池室に関する設計指針（SBA G 0603－ 2001） －＂Fire Dynamics Tools（FDTs）：Quantitative Fire Hazard Analysis Methods for the U．S．Nuclear Regulatory Commission Fire Protection Inspection Program，＂NUREG－1805，December 2004	

申請に係る「表1 主要設備リスト」の略語の定義に用いる「原子炉本体」の「8 原子炉本体 の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」 を以下に示す。

付表1 略語の定義（ $1 / 3$ ）

		略語	定義
	$\begin{aligned} & \text { 而 } \\ & \text { 震 } \\ & \text { 要 } \\ & \text { 類 } \end{aligned}$	S	耐震重要度分類におけるSクラス（津波防護施設，浸水防止設備及び津波監視設備を除く）
		S＊	Sクラス施設のうち，津波防護施設，浸水防止設備及び津波監視設備。 なお，基準地震動による地震力に対して，それぞれの施設及び設備に要求される機能（津波防護機能，浸水防止機能及び津波監視機能をいう）を保持するものとする。
		B	耐震重要度分類におけるBクラス（ $\mathrm{B}-1$ ， $\mathrm{B}-2$ 及び $\mathrm{B}-3$ を除く）
		B－ 1	Bクラスの設備のらち，共振のおそれがあるため，弾性設計用地震動 S_{d} に2分の1を乗じたものによる地震力に対して耐震性を保持できる設計とするもの
		B－ 2	Bクラスの設備のうち，波及的影響によって，耐震重要施設がそ の安全機能を損なわないように設計するもの
		B－ 3	Bクラスの設備のらち，基準地震動による地震力に対して使用済燃料プールの泠却，給水機能を保持できる設計とするもの
		C	耐震重要度分類におけるCクラス（ $\mathrm{C}-1, \mathrm{C}-2$ 及び $\mathrm{C}-3$ を除 く）
		C -1	Cクラスの設備のらち，波及的影響によって，耐震重要施設がそ の安全機能を損なわないように設計するもの
		C -2	Cクラスの設備のらち，基準地震動による地震力に対して火災感知及び消火の機能並びに地震時の溢水伝播を防止する機能を保持 できる設計とするもの
		C -3	Cクラスの設備のらち，基準地震動による地震力に対して非常時 における海水の取水機能を保持できる設計とするもの
		－	当該施設において設計基準対象施設として使用しないもの

付表1 略語の定義（2／3）

付表1 略語の定義（3／3）

注記＊1：「J S ME S NC 1－2005／2007 発電用原子力設備規格 設計•建設規格」 における「クラスMC」である。
3.12 原子炉冷却系統施設（蒸気タービンを除く。）に係る工事の方法

変更前	変更後
原子炉冷却系統施設（蒸気タービンを除く。）に係る工事の方法は，「原子炉本体」	
における「1．9 原子炉本体に係る工事の方法」（「1．3 燃料体に係る工事の手順と使	
用前事業者検査」，「2．1．3 燃料体に係る検査」及び「3．2 燃料体の加工に係る工事	
上の留意事項」を除く。）に従う。	

申請に係る工事の方法として，原子炉本体に係る工事の方法を以下に示す。

変更前	変更後
発電用原子炉施設の設置又は変更の工事並びに主要な耐圧部の溶接部における工事の	

1.2 主要な耐圧部の溶接部に係る工事の手順と使用前事業者検査

主要な耐圧部の溶接部に係る工事の手順を使用前事業者検査との関係を含め図 1－2 に示す。
1.3 燃料体に係る工事の手順と使用前事業者検査燃料体に係る工事の手順を使用前事業者検査との関係を含め図 $1-3$ に示す。

2．使用前事業者検査の方法
構造，強度及び漏えいを確認するために十分な方法，機能及び性能を確認するために十分な方法，その他発電用原子炉施設が設計及び工事の計画に従って施設されたもので あることを確認するために十分な方法により，使用前事業者検査を図 1－1，図 1－2 及び図 1－3 のフローに基づき実施する。使用前事業者検査は「設計及び工事に係る品質マネ ジメントシステム」に記載したプロセスにより，抽出されたものの検査を実施する。

また，使用前事業者検査は，検査の時期，対象，方法，検査体制に加えて，検査の内容と重要度に応じて立会，抜取り立会，記録確認のいずれかとすることを要領書等で定 め実施する。
2.1 構造，強度又は漏えいに係る検査

2．1．1 構造，強度又は漏えいに係る検査
構造，強度又は漏えいに係る検査ができるようになったとき，表2－1に示す検査を実施する。

変更前				変更後
表 2－1 構造，強度又は漏えいに係る検査（燃料体を除く）＊1				
検査項目		検査方法	判定基準	
「設計及び工事 に係る品質マネ ジメントシステ ム」に記載した プロセスによ り，当該工事に おける構造，強度又は漏えいに係る確認事項と して次に掲げる項目の中から抽出されたもの。 - 材料検査 - 寸法検査 - 外観検査 - 組立て及び据付け状態 を確認する検査（据付検査） －状態確認検査 - 耐圧検査 - 漏えい検査 - 原子炉格納施設が直接設置される基盤の状態 を確認する検査 －建物•構築物の構造を確認する検査	材料検査	使用されている材料の化学成分，機械的強度等が工事計画の とおりであることを確認する。	設工認のとおり であること，技術基準に適合する ものであること。	
	寸法検査	主要寸法が工事計画のとおり であり，許容寸法内であること を確認する。	設工認に記載さ れている主要寸法の計測値が，許容寸法を満足す ること。	
	外観検査	有害な欠陥がないことを確認 する。	健全性に影響を及ぼす有害な欠陥がないこと。	
	組立て及び据付け状態を確認する検査 （据付検査）	組立て状態並びに据付け位置及び状態が工事計画のとおり であることを確認する。	設工認のとおり に組立て，据付け されていること。	
	状態確認検査	評価条件，手順等が工事計画の とおりであることを確認する。	設工認のとおり であること。	
	耐圧検査＊2	技術基準の規定に基づく検査圧力で所定時間保持し，検査圧力に耐え，異常のないことを確認する。耐圧検査が構造上困難 な部位については，技術基準の規定に基づく非破壊検査等に より確認する。	検査圧力に耐え， かつ，異常のない こと。	変更 なし
	漏えい検査＊2	耐圧検査終了後，技術基準の規定に基づく検査圧力により漏 えいの有無を確認する。なお，漏えい検査が構造上困難な部位については，技術基準の規定 に基づく非破壊検査等により確認する。	$\begin{aligned} & \text { 著しい漏えいの } \\ & \text { ないこと。 } \end{aligned}$	
	原子炉格納施設が直接設置 される基盤の状態を確認す る検査	地盤の地質状況が，原子炉格納施設の基盤として十分な強度 を有することを確認する。	設工認のとおり であること。	
	建物•構築物 の構造を確認 する検査	主要寸法，組立方法，据付位置及び据付状態等が工事計画の とおり製作され，組み立てられ ていることを確認する。	設工認のとおり であること。	
注記 $* 1$ ：基本設計方針のうち適合性確認対象に対して実施可能な検査を含む。 ＊2：耐圧検査及び漏えい検査の方法について，表 2－1によらない場合は，基本設計方針の共通項目として定めた「耐圧試験等」の方針によるものとする。				

2．1．2 主要な耐圧部の溶接部に係る検査
主要な耐圧部の溶接部に係る使用前事業者検査は，技術基準第 17 条第 15 号，第 31 条，第 48 条第 1 項及び第 55 条第 7 号，並びに実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（以下「技術基準解釈」という。）に適合 するよう，以下の（1）及び（2）の工程ごとに検査を実施する。
（1）あらかじめ確認する事項
次の① 及び（2）については，主要な耐圧部の溶接をしようとする前に，「日本機械学会 発電用原子力設備規格 溶接規格（J S M E S N B 1－2007）又は（J SME S N B 1－2012／2013）」（以下「溶接規格」という。）第 2 部 溶接施工法認証標準及び第 3 部 溶接士技能認証標準に従い，表2－2，表 2－3に示す検査を行う。その際，以下のいずれかに該当する特殊な溶接方法は，その確認事項 の条件及び方法の範囲内で①溶接施工法に関することを確認する。
－平成 12 年 6 月以前に旧電気工作物の溶接に関する技術基準を定める省令（昭和 45 年通商産業省令第 81 号）第 2 条に基づき，通商産業大臣の認可を受けた特殊な溶接方法。
－平成 12 年 7 月以降に，一般社団法人日本溶接協会又は一般財団法人発電設備技術検査協会による確性試験により適合性確認を受けた特殊な溶接方法。
（1）溶接施工法に関すること
（2）溶接士の技能に関すること

なお，（1）又は（2）について，既に，以下のいずれかにより適合性が確認されてい るものは，主要な耐圧部の溶接をしようとする前に表 2－2，表 2－3 に示す検査は要さないものとする。
（1）溶接施工法に関すること
－平成 12 年 6 月 30 日以前に電気事業法（昭和 39 年法律第 170 号）に基づき国の認可証又は合格証を取得した溶接施工法。
－平成 12 年 7 月 1 日から平成 25 年 7 月 7 日に，電気事業法に基づく溶接事業者検査において，各設置者が技術基準への適合性を確認した溶接施工法。
－平成 25 年 7 月 8 日以降，核原料物質，核燃料物質及び原子炉の規制に関 する法律（昭和 32 年法律第 166 号）に基づき，各設置者が技術基準への適合性を確認した溶接施工法。
－前述と同等の溶接施工法として，核原料物質，核燃料物質及び原子炉の規制に関する法律（昭和 32 年法律第 166 号）における他の施設にて，認可を受けたもの，溶接安全管理検査，使用前事業者検査等で溶接施工法の確認 を受けたもの又は客観性を有する方法により確認試験が行われ判定基準

変更前	
に適合しているもの。ここで，他の施設とは，加工施設，試験研究用等子炉施設，使用済燃料貯蔵施設，再処理施設，特定第一種廃棄物埋設施設，特定廃棄物管理施設をいう。 （2）溶接士の技能に関すること －溶接規格第 3 部 溶接士技能認証標準によって認定されたものと同等と められるものとして，技術基準解釈別記 -5 に示されている溶接士が溶接 を行う場合。 －溶接規格第 3 部 溶接士技能認証標準に適合する溶接士が，技術基準解別記 -5 の有効期間内に溶接を行う場合。 表 2－2 あらかじめ確認すべき事項（溶接施工法）	
検査項目	検査方法及び判定基準
溶接施工法の内容確認	計画している溶接施工法の内容が，技術基準に適合する方法で あることを確認する。
材料確認	試験材の種類及び機械的性質が試験に適したものであることを確認する。
開先確認	試験をする上で，健全な溶接が施工できることを確認する。
溶接作業中確認	溶接施工法及び溶接設備等が計画どおりのものであり，溶接条件等が溶接検査計画書のとおりに実施されることを確認する。
外観確認	試験材について，目視により外観が良好であることを確認する。
溶接後熱処理確認	溶接後熱処理の方法等が技術基準に基づき計画した内容に適合 していることを確認する。
浸透探傷試験確認	技術基準に適合した試験の方法により浸透探傷試験を行い，表面における開口した欠陥の有無を確認する。
機械試験確認	溶接部の強度，延性及び靭性等の機械的性質を確認するため，継手引張試験，曲げ試験及び衝撃試験により溶接部の健全性を確認する。
断面検査確認	管と管板の取付け溶接部の断面について，技術基準に適合する方法により目視検査及びのど厚測定により確認する。
（判定）＊	以上の全ての工程において，技術基準に適合していることが確認された場合，当該溶接施工法は技術基準に適合するものとす る。

特定廃棄物管理施設をいう。
（2）溶接士の技能に関すること
－溶接規格第 3 部 溶接士技能認証標準によって認定されたものと同等と認 められるものとして，技術基準解釈別記 -5 に示されている溶接士が溶接 を行う場合。
－溶接規格第 3 部 溶接士技能認証標準に適合する溶接士が，技術基準解釈別記 -5 の有効期間内に溶接を行う場合。

表 2－2 あらかじめ確認すべき事項（溶接施工法）

変更前						変更後
表 2－5 溶接施工した構造物に対して確認する事項（テンパービード溶接を適用する場合）						変更 なし
$\begin{aligned} & \text { 検 } \\ & \text { 頚 } \\ & \text { 相 } \end{aligned}$	検査方法及び判定基準	同種材 の溶接	$\begin{aligned} & \text { クラッ } \\ & \text { ド材の } \\ & \text { 溶接 } \end{aligned}$	異種材 の溶接	$\begin{aligned} & \text { バタリ } \\ & \text { ング材 } \\ & \text { の溶接 } \end{aligned}$	
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \\ & \text { 梌 } \end{aligned}$	1．中性子照射 $10^{19} \mathrm{nvt以上}$ 受ける設備を溶接する場合に使用する溶接材料の銅含有量は， 0.10% 以下であることを碓認する。	適用	適用	適用	適用	
	2．溶接材料の表面は，錆，油脂付着及び汚れ等がないことを確認する。	適用	適用	適用	適用	
$\begin{aligned} & \text { 䦩 } \\ & \text { 検 } \\ & \text { 俍 } \end{aligned}$	1．当該施工部位は，溶接規格に規定する溶接後熱処理が困難な部位で あることを図面等で確認する。	適用	適用	適用	適用	
	2．当該施工部位は，過去に当該溶接施工法と同一又は類似の溶接後熱処理が不要な溶接方法を適用した経歴を有していないことを確認す る。	適用	適用	適用	適用	
	3．溶接を行ら機器の面は，浸透探傷試験又は磁枌探傷試験を行い，こ れに合格することを確認する。	適用	適用	適用	適用	
	4．溶接深さは，母材の厚さの2分の1以下であること。	適用	－	適用	－	
	5．個々の溶接部の面積は $650 \mathrm{~cm}^{2}$ 以下であることを確認する。	適用	－	適用	－	
	6．適用する溶接施工法に，クラッド材の溶接開先底部とフェライト系母材との距離が規定されている場合は，その寸法が規定を満足して いることを確認する。	－	適用	－	－	
	7．適用する溶接施工法に，溶接開先部がフェライト系母材側へまたが って設けられ，そのまたがりの距離が規定されている場合は，その寸法が規定を満足していることを確認する。	－	－	適用	－	
$\begin{aligned} & \text { 溶 } \\ & \text { 接 } \\ & \text { 䍹 } \end{aligned}$	自動ティグ溶接を適用する場合は，次によることを確認する。	\bigcirc	\bigcirc			
	1．自動ティグ溶接は，溶加材を通電加熱しない方法であることを確認 する。	適用	適用	適用	適用	
	2．溶接は，適用する溶接施工法に規定された方法に適合することを確認する。				\square	
	（1）各層の溶接入熱が当該施工法に規定する範囲内で施工されてい ることを確認する。	適用	適用	適用	適用	
	② 2 層目端部の溶接は， 1 層目溶接端の母材熱影響部（1層目溶接に よる粗粒化域）が適切なテンパー効果を受けるよう，1層目溶接端 と2層目溶接端の距離が 1 mm から 5 mm の範囲であることを確認する。	適用	－	適用	－	
	（3）予熱を行ら溶接施工法の場合は，当該施工法に規定された予熱範囲及び予熱温度を満足していることを確認する。	適用	適用	適用	適用	
	（4）当該施工法にパス間温度が規定されている場合は，温度制限を満足していることを確認する。	適用	適用	適用	適用	
	（5）当該施工法に，溶接を中断する場合及び溶接終了時の温度保持範囲と保持時間が規定されている場合は，その規定を満足している ことを確認する。	適用	適用	適用	適用	
	⑥ 余盛り溶接は，1層以上行われていることを確認する。	適用	－	適用	－	
	（7）溶接後の温度保持終了後，最終層ビードの除去及び溶接部が平滑 となるよう仕上げ加工されていることを確認する。	適用	－	適用	－	
	溶接部の非破壊検查は，次によることを確認する。	－	－		－	
	1．1層目の溶接終了後，磁粉探偒試験又は浸透探偒試験を行い，これ に合格することを確認する。	適用	－	－	－	
	2．溶接終了後の試験は，次によることを確認する。	－	\bigcirc	，	－	
	①溶接終了後の非破壊試験は，室温状態で48時間以上経過した後に実施していることを確認する。	適用	適用	適用	適用	
	（2）予熱を行った場合はその領域を含み，溶接部は磁枌探傷試験又は浸透探傷試験を行い，これに合格することを確認する。	適用	適用	適用	適用	
	（3）超音波探隹試験を行い，これに合格することを確認する。	－	適用	適用	－	
	（4）超音波探傷試験又は2層目以降の各層の磁粉探傷試験若しくは浸透探傷試験を行い，これに合格することを碓認する。	適用	－	－	－	
	（5）放射線透過試験又は超音波探傷試験を行い，これに合格すること を確認する。	－	－	－	適用	
	3．温度管理のために取り付けた熱電対がある場合は，機械的方法で除去し，除去した面に欠陥がないことを確認する。	適用	適用	適用	適用	

	変更前	変更後
2.1 .3 燃料体に係る検查		

燃料体については，以下 $(1) \sim(3)$ の加工の工程ごとに表 2－6に示す検査を実施 する。なお，燃料体を発電用原子炉に受け入れた後は，原子炉本体として機能又 は性能に係る検査を実施する。
（1）燃料材，燃料被覆材その他の部品については，組成，構造又は強度に係 る試験をすることができる状態になった時
（2）燃料要素の加工が完了した時
（3）加工が完了した時
また，燃料体については構造，強度又は漏えいに係る検査を実施することによ り，技術基準への適合性が確認できることから，構造，強度又は漏えいに係る検査の実施をもつて工事の完了とする。

表2－6 構造，強度又は漏えいに係る検査（燃料体）＊

注記＊：基本設計方針のうち適合性確認対象に対して実施可能な検査を含む。

| 変更前 |
| :---: | :---: | :---: |
| 2.2 機能又は性能に係る検査 |
| 機能又は性能を確認するため，以下のとおり検査を行う。 |
| ただし，表 $2-1$ の表中に示す検査により機能又は性能に係る検査を実施する場合 |
| は，表 $2-7$, 表 $2-8$ 又は表 $2-9$ の表中に示す検査を表 $2-1$ の表中に示す検査に替えて |
| 実施する。 |
| また，改造，修理又は取替えの工事であって，燃料体を挿入できる段階又は臨界反 |
| 応操作を開始できる段階と工事完了時が同じ時期の場合，工事完了時の検査として実 |
| 施することができる。 |
| 構造，強度又は漏えいを確認する検査と機能又は性能を確認する検査の内容が同じ |
| 場合は，構造，強度又は漏えいを確認する検査の記録確認をもつて，機能又は性能を |
| 確認する検査とすることができる。 |

2．2．1 燃料体を挿入できる段階の検査

発電用原子炉に燃料体を挿入することができる状態になったとき表 2－7 に示 す検査を実施する。

表2－7 燃料体を挿入できる段階の検査＊

検査項目	検査方法	判定基準
発電用原子炉に燃	発電用原子炉に燃料体を挿入するにあた	原子炉に燃料体
料体を挿入した状	り，核燃料物質の取扱施設及び貯蔵施設に	を挿入するにあ
態において必要な	係る機能又は性能を試運転等により確認	たり，確認が必
もの確認する検	するほか，発電用原子炉施設の安全性確保	要な範囲につい
査及び工程上発電	の観点から，発電用原子炉に燃料を倲入	て，設工認のと
用原子炉に燃料体	した状態において必要な工学的安全施設，	おりであり，技
を挿入する前でな	安全設備等の機能又は性能を当該各系統	術基準に適合す
ければ実施できな	の試運転等により確認する。	るものであるこ
い検査		と。

変更
なし

2．2．2 臨界反応操作を開始できる段階の検査

発電用原子炉の臨界反応操作を開始することができる状態になったとき，表2－ 8 に示す検査を実施する。

変更前		
表2－8 臨界反応操作を開始できる段階の検査＊＊		
検査項目	検査方法	判定基準
発電用原子炉が臨	発電用原子炉の出力を上げるにあたり，発	原子炉の臨界反
界に達する時に必	電用原子炉に燃料体を挿入した状態での	応操作を開始す
要なものを確認す	確認項目として，燃料体の炉内配置及び原	るにあたり，確
る検査及び工程上	子炉の核的特性等を確認する。また，工程	認が必要な範囲
発電用原子炉が臨	上発電用原子炉が臨界に達する前でなけ	について，設工
界に達する前でな	れば機能又は性能を確認できない設備に	認のとおりであ
ければ実施できな	ついて，機能又は性能を当該各系統の試運	り，技術基準に
い検査	転等により確認する。	適合するもので あること

注記 $~: ~$ 基本設計方針のうち適合性確認対象に対して実施可能な検査を含む。

2．2．3 工事完了時の検査

全ての工事が完了したとき，表 2－9 に示す検査を実施する。

表 2－9 工事完了時の検査＊

検査項目	検査方法	判定基準
発電用原子炉の出	工事の完了を確認するために，発電用原子	当該原子炉施設
力運転時における	炉で発生した蒸気を用いる施設の試運転	の供用を開始す
発電用原子炉施設	等により，当該各系統の機能又は性能の最	るにあたり，原
の総合的な性能を	終的な確認を行う。	子炉施設の安全
確認する検查，そ	発電用原子炉の出力を上げた状態におけ	性を碓保するた
の他工事の完了を	る確認項目として，プラント全体での最終	めに必要な範囲
確認するために必	的な試運転により発電用原子炉施設の総	について，設工
要な検査	合的な性能を確認する。	認のとおりであ
		り，技術基準に
		適合するもので
		あること。

注記＊：基本設計方針のうち適合性確認対象に対して実施可能な検査を含む。

2.3 基本設計方針検査

基本設計方針のうち「構造，強度又は漏えいに係る検査」及び「機能又は性能に係 る検査」では確認できない事項について，表 2－10に示す検査を実施する。

表 2－10 基本設計方針検査

検査項目	検査方法	判定基準
基本設計方針検査	基本設計方針のうち表2－1，表2－7，表2－8，	「基 本 設 計 方
	表2－9では確認できない事項について，基	針」のとおりで
	本設計方針に従い工事が実施されたこと	あること。
	を工事中又は工事完了時における適切な	
	段階で確認する。	

図 1－3 工事の手順と使用前事業者検査のフロー（燃料体）

表 2－11 品質マネジメントシステムに係る検査

検査項目	検査方法	判定基準
品質マネジメント システムに係る検査	工事が設工認の「工事の方法」及び「設計及び工事に係る品質マネジメントシステ ム」に示すプロセスのとおり実施している ことを品質記録や聞取り等により確認す る。この確認には，検査における記録の信頼性確認として，基となる記録採取の管理方法の確認やその管理方法の遵守状況の確認を含む。	設工認で示す 「設計及び工事 に係る品質マネ ジメントシステ ム」及び「工事の方法」のとおり に工事管理が行 われているこ と。

3．工事上の留意事項
3.1 設置又は変更の工事に係る工事上の留意事項

発電用原子炉施設の設置又は変更の工事並びに主要な耐圧部の溶接部における工事の実施にあたつては，発電用原子炉施設保安規定を遵守するとともに，従事者及び公衆の安全確保や既設の安全上重要な機器等への悪影響防止等の観点から，以下に留意し工事を進める。
（1）設置又は変更の工事を行う発電用原子炉施設の機器等について，周辺資機材，他 の発電用原子炉施設及び環境条件からの悪影響や劣化等を受けないよう，隔離，作業環境維持，異物侵入防止対策等の必要な措置を講じる。
（2）工事にあたつては，既設の安全上重要な機器等へ悪影響を与えないよう，現場状況，作業環境及び作業条件を把握し，作業に潜在する危険性又は有害性や工事用資機材から想定される影響を確認するとともに，隔離，火災防護，溢水防護，異物侵入防止対策，作業管理等の必要な措置を講じる。
（3）設置又は変更の工事を行う発電用原子炉施設の機器等について，必要に応じて，供用後の施設管理のための重要なデータを採取する。
（4）プラントの状況に応じて，検査•試験，試運転等の各段階における工程を管理す る。
（5）設置又は変更の工事を行う発電用原子炉施設の機器等について，供用開始後に必要な機能性能を発揮できるよう製造から供用開始までの間，維持する。

変更前
（6）放射性廃育物の発生量低減に努めるとともに，その種類に応じて保管及び処理を
行う。

（7）現場状況，作業環境及び作業条件を把握し，放射線業務従事者に対して防護具の着用や作業時間管理等適切な被ばく低減措置と，被ばく線量管理を行う。 また，公衆の放射線防護のため，気体及び液体廃棄物の放出管理については，周辺監視区域外の空気中•水中の放射性物質濃度が「線量限度等を定める告示」に定める値を超えないようにするとともに，放出管理目標値を超えないように努める。
（8）修理の方法は，基本的に「図 1－1 工事の手順と使用前事業者検査のフロー（燃料体を除く）」の手順により行うこととし，機器等の全部又は一部について，撤去，切断，切削又は取外しを行い，据付，溶接又は取付け，若しくは同等の方法により，同等仕様又は性能•強度が改善されたものに取替えを行う等，機器等の機能維持又 は回復を行う。また，機器等の一部撤去，一部撤去の既設端部について閉止板の取付け，熱交換器又は冷却器の伝熱管への閉止栓取付け若しくは同等の方法により適切な処置を実施する。
（9）特別な工法を採用する場合の施工方法は，技術基準に適合するよう，安全性及び信頼性について必要に応じ検証等により十分確認された方法により実施する。
3.2 燃料体の加工に係る工事上の留意事項燃料体の加工に係る工事の実施にあたつては，以下に留意し工事を進める。
（1）工事対象設備について，周辺資機材，他の加工施設及び環境条件から波及的影響 を受けないよう，隔離等の必要な措置を講じる。
（2）工事を行うことにより，他の供用中の加工施設が有する安全機能に影響を与えな いよう，隔離等の必要な措置を講じる。
（3）工事対象設備について，必要に応じて，供用後の施設管理のための重要なデータ を採取する。
（4）加工施設の状況に応じて，検査•試験等の各段階における工程を維持する。
（5）工事対象設備について，供用開始後に必要な機能性能を発揮できるよう維持す る。
（6）放射性廃棄物の発生量低減に努めるとともに，その種類に応じて保管及び処理を行う。
（7）放射線業務従事者に対する適切な被ばく低減措置と，被ばく線量管理を行う。

変更前	変更後
【凡例】 〈逨〉：品質マネジメントシステムに係る検査以外の使用前事業者検査の検査項目 （適切な時期に以下のうち必要な検査を実施） a．構造，強度又は漏えいに係る検查 - 材料検査 - 寸法検査 - 耐圧，漏えい検査 - 外観検査 - 据付検査 - 状態確認検査 - 原子炉格納施設が直接設置される基盤の状態 を確認する検査 －建物•構築物の構造を確認する検査 b．機能又は性能に係る検査 - 状態確認検査 - 特性検査 - 機能検査 - 性能検査 c．基本設計方針検査 ：品質マネジメントシステムに係る検査 図 1－1 工事の手順と使用前事業者検査のフロー（燃料体を除く）	変更

7．原子炉格納施設
7.3 圧力低減設備その他の安全設備
（6）原子炉格納容器安全設備
e．高圧代替注水系
．高圧代替注水系

変 更 前									変 更 後						
名 称			$\begin{array}{\|l} \text { 最高使用 } \\ \text { 圧 } \\ (\mathrm{MPa}) \end{array}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \\ & (\mathrm{MPa}) \end{aligned}$	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{aligned} & \text { 高 } \\ & \text { 圧 } \\ & \text { 岱 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	原 灯 炧 隔 離 時 泠 却 系	$* 4$ 原子炬隔離時冷却系夕 ービン排気配管合流点 原子炉格納容器配管貫通部（X－222）	3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．1 原子炬隔離時冷却系 （5）主配管 に記載する。						$\begin{aligned} & \text { 高 } \\ & \text { 垈 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	変更なし					
	原子炉格納容器配管貫通部(X-222)		7．原子炬格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。							変更なし					
		原子炉格納容器配管貫通部（X－222） 原子炬隔離時冷却系ス パージャ	3．原子炉冷却系統施設 3.7 原子炉冷却材補給設備 3．7．1 原子炉隔離時冷却系 （5）主配管 に記載する。							変更なし					
	$\begin{aligned} & \text { 補 } \\ & \text { 給 } \\ & \text { 水 } \end{aligned}$	$\begin{aligned} & \text { 復水貯蔵タンク } \\ & \underset{\text { E22-F014 }}{ } \end{aligned}$	3．原子炉冷却系統施設 3．7原子炉冷却材補給設備 3．7．2 補給水系 （5）主配管 に記載する。							変更なし					
	$\begin{aligned} & \text { 高 } \\ & \text { 圧 } \\ & \text { 炬 } \end{aligned}$	$\begin{aligned} & \text { E22-F014 } \\ & \text { ~補給水よりの第一アン } \\ & \text { 力 } \end{aligned}$	3．原子炉冷却系統施設 3.6 非常用炉心冷却設備その他原子炉注水設備 3．6．1 高圧炉心スプレイ系 （7）主配管（常設） に記載する。							変更なし					
	$\begin{aligned} & \text { 주 } \\ & \text { ㄴ } \\ & \text { 系 } \end{aligned}$	$\begin{aligned} & \text { 補給水よりの第一アン } \\ & \text { 力 } \\ & \text { ~ } \\ & \text { 復水貯蔵タンク出口配 } \\ & \text { 管分岐点 } \end{aligned}$							変更なし						

変 更 前									変 更 後								
	名	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \end{aligned}$	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$		料			称		最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \text { 径*1 }^{*} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料
$\begin{aligned} & \text { 高 } \\ & \text { 垈 } \\ & \text { 替 } \\ & \text { 乼 } \\ & \text { 水 } \end{aligned}$	$\begin{aligned} & \text { 復 } \\ & \text { 水 } \\ & \text { 給 } \\ & \text { 水 } \end{aligned}$	原子炉格納容器配管貫通部（X－12A） 原子炉圧力容器	3．原子炉冷却系統施設 3.4 原子炉冷却材の循環設備 3．4．2 復水給水系 （8）主配管 に記載する。								変更なし						

注記＊1：外径は公称値を示す。
＊2：（ ）内は公称値を示す。
＊3：本設備は，既存の原子炉冷却系統施設のらち原子灲冷却材の循環設備（主蒸気系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
 ＊5 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
 とする。
＊7 ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材補給設備（補給水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
計画で兼用とする。
 ＊ 10 ：本設備は，既存の原子炉冷却系統施設のうち原子炉冷却材の循環設備（復水給水系）であり，圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）として本工事計画で兼用とする。
（7）放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備
a．非常用ガス処理系

注記 $* 1$ ：記載の適正化を行う。既工事計画書には「－23．5～13．7」と記載。
＊2：主蒸気管破断事故時において非常用ガス処理系排風機起動前に原子炉棟内の圧力が正圧として作用することを考慮した場合の圧力の最大値を示す。
＊3：主烝気管破断事故時において非常用ガス処理系排風機起動後に原子炉棟内の圧力及び非常用ガス処理系排風機締切静圧が負圧として作用することを考慮した場合の圧力の最大値を示す。
＊ 4 ：設計確認値を示す。
＊5 ：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による。

			変 更 前			変 更 後
名		称	T46－F003A，B			
種	類	－	止め弁			変更なし
	高 使 用 圧 力	kPa	23.5			
	高 使 用 温 度	${ }^{\circ} \mathrm{C}$	140			
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \\ & \text { 法 } \end{aligned}$	呼び 径	－	300A			
	弁 箱 厚 さ	mm		＊1＊2		
	弁ふた厚さ	mm				変更なし
$\begin{aligned} & \text { 材 } \\ & \text { 料 } \end{aligned}$	弁 箱	－	SCPH2			
	弁 ふ た	－	S25C＊2			
駆	動 方 法	－	電気作動			
個 数		－	2			
		－	T46－F003A 非常用ガス処理系A系	T46－F003B 非常用ガス処理系B系		
付	設 置 床	－	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & 0 . \text { P. } 22.50 \mathrm{~m} \end{aligned}$	$\begin{aligned} & \hline \text { 原子炉建屋 } \\ & 0 . P .22 .50 \mathrm{~m} \end{aligned}$		
箇	$\begin{array}{\|lccc} \hline \text { 溢 } & \text { 水 } & \text { 訪 } & \text { 上 } \\ \text { 区 } & \text { 画 } & \text { の } & \text { 番 } \end{array}$	－	R－2F－1－1	R－2F－1－1		
所	溢水防護上の配慮 が必要な高さ	－	床上 0.13 m 以上	床上 0.13 m 以上		

注記＊1 ：設計確認値を示す。
＊2：既工事計画書に記載がないため記載の適正化を行う。記載内容は，設計図書による

[^1]7－3－（7）－a－3
g．原子炉格納容器フィルタベント系

変 更 前									変 更 後								
名 称			$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 }{ }_{(\mathrm{MPa})}^{\text {力 }} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	材	料		名	称	$\begin{aligned} & \text { 最高使 用 } \\ & \text { 圧 } \begin{array}{c} \text { 力 } \\ (\mathrm{MPa}) \end{array} \\ & \hline \end{aligned}$	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径*1 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	$\begin{gathered} \text { 厚 さ*2 } \\ (\mathrm{mm}) \end{gathered}$	材	料
	原子炉格納容器配管貫通部 （X－281）		7．原子炉格納施設 7.1 原子炉格納容器 （4）原子炉格納容器配管貫通部及び電気配線貫通部 に記載する。							変更なし							
			7．原子炉格納施設 7.3 圧力低減設備その他の安全設備 （9）圧力逃がし装置 a．原子炉格納容器フィルタベント系二主配管（常設） に記載する。							変更なし							

注記 $* 1$ ：外径は公称値を示す。
 して本工事計画で兼用とする
器再循環設備（原子灲格納容器フィルタベント系）として本工事計画で兼用とする。
循環設偄（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）として本工事計画で兼用とする。
（8）原子炉格納容器調気設備
a．原子炉格納容器調気系

注記 $* 1$ ：外径は公称値を示す。
＊2：（ ）内は公称値を示す
＊3 ：エルボを示す
素ガス供給系，原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊5 ：差込継手の差込部内径及び最小厚さ。
＊6 ：重大事故等時の使用時の値。
循環設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）と兼用。
＊ 8 ：既工事計画書では既設設備の一部厚肉化を新設として記載。
（9）圧力逃がし装置
a．原子炉格納容器フィルタベント系

注記 $* 1$ ：重大事故等時における使用時の値。
＊2 ：外径は公称値を示す。
＊3：（ ）内は公称値を示す。
＊4 ：本設備は，既存の原子炉格納容器（配管貫通部）であり，圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタベント系）として本工事計画書で兼用とする。
計画書で兼用とする。
容器フィルタベント系）と兼用。
＊7 ：エルボを示す。
＊8 ：差込継手の差込部内径及び最小厚さ
＊9 ：フルカップリングを示す。
装置（原子炉格納容器フィルタベント系）として本工事計画書で兼用とする。

7． 4 原子炉格納施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。	変更なし
第1章 共通項目 原子炉格納施設の共通項目である「1．地盤等， 2 ．自然現象， 3 ．火災， 4．溢水等，5．設備に対する要求（5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針 については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基 づく設計とする。	第1章 共通項目 変更なし
第2章 個別項目 1．原子炉格納容器 1． 1 原子炉格納容器本体等 原子炉格納施設は，設計基準対象施設として，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に漏えいする放射性物質が公衆 に放射線障害を及ぼすおそれがない設計とする。 原子炉格納容器にはドライウェル内のガスを循環冷却するための設備として，冷却装置及び送風機からなるドライウェル泠却系（個数 4（予備2））を設ける設計とする。 原子炉格納容器は，残留熱除去系（格納容器スプレイ冷却モード）と	第2章 個別項目 1．原子炉格納容器 1．1 原子炉格納容器本体等 変更なし

変更前	変更後
あいまって原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定 し，これにより放出される原子炉冷却材のエネルギによる冷却材喪失時 の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，冷却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器 に生じる動荷重に耐える設計とする。 原子炉格納容器の開口部である出入口及び貫通部を含めて原子炉格納容器全体の漏えい率を許容値以下に保ち，冷却材喪失時及び主蒸気逃 がし安全弁作動時において想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保 つ設計とする。 通常運転時，運転時の異常な過渡変化時及び設計基準事故時におい て，原子炉格納容器バウンダリを構成する機器は脆性破壊及び破断が生 じない設計とする。脆性破壊に対しては，最低使用温度を考慮した破壊 じん性試験を行い，規定値を満足した材料を使用する設計とする。 原子炉格納容器を貫通する箇所及び出入口は，想定される漏えい量そ の他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」 （J E A C 4 2 0 3 ）に定める漏えい試験のうち B 種試験ができる設計とする。 サプレッションチェンバは，設計基準対象施設として容量 $2800 \mathrm{~m}^{3}$ ，個数 1 個を設置する。 原子炉格納容器は，想定される重大事故等時において，設計基準対象施設としての最高使用圧力及び最高使用温度を超える可能性があるが，設計基準対象施設としての最高使用圧力の 2 倍の圧力及び $200^{\circ} \mathrm{C}$ の温度	

変更前		変更後
で閉じ込め機能を損なわない設計とする。		
1.2 原子炉格納容器隔離弁	1.2 原子炉格納容器隔離弁 変更	
原子炉格納容器を貫通する各施設の配管系に設ける原子炉格納容器		
隔離弁（以下「隔離弁」という。）は，安全保護装置からの信号により，		
自動的に閉鎖する動力駆動弁，チェーンロックが可能な手動弁，キーロ		
ックが可能な遠隔操作弁又は隔離機能を有する逆止弁とし，原子炉格納		
容器の隔離機能の確保が可能な設計とする。		
原子炉冷却材圧力バウンダリに接続するか，又は原子炉格納容器内に		
開口し，原子炉格納容器を貫通している各配管は，冷却材喪失事故時に		
必要とする配管及び計測制御系統施設に関連する小口径配管を除いて，		
原則として原子炉格納容器の内側に 1 個，外側に 1 個の自動隔離弁を		
原子炉格納容器に近接した箇所に設ける設計とする。		
ただし，原子炉冷却系統に係る発電用原子炉施設内及び原子炉格納容		
器内に開口部がなく，かつ，原子炉冷却系統に係る発電用原子炉施設の		
損壊の際に損壊するおそれがない管，又は原子炉格納容器外側で閉じた		
系を構成した管で，原子炉冷却系統に係る発電用原子炉施設の損壊その		
他の異常の際に，原子炉格納容器内で水封が維持され，かつ，原子炉格		
納容器外へ導かれた漏えい水による放射性物質の放出量が，冷却材喪失		
事故の原子炉格納容器内気相部からの漏えいによる放出量に比べ十分		
小さい配管については，原子炉格納容器の外側又は内側に少なくとも 1		
個の隔離弁を原子炉格納容器に近接した箇所に設ける設計とする。		
原子炉格納容器の内側で閉じた系を構成する管に設置する隔離弁は，		
遠隔操作にて閉止可能な弁を設置することも可能とする。		

変更前

貫通箇所の内側又は外側に設置する隔離弁は，一方の側の設置箇所に おける管であって，湿気や水滴等により駆動機構等の機能が著しく低下 するおそれがある箇所，配管が狭隘部を貫通する場合であって貫通部に近接した箇所に設置できないことによりその機能が著しく低下するよ うな箇所には，貫通箇所の外側であって近接した箇所に 2 個の隔離弁 を設ける設計とする。

原子炉格納容器を貫通する配管には，圧力開放板を設けない設計とす る。

設計基準事故及び重大事故等の収束に必要な非常用炉心冷却設備及 び残留熱除去系（格納容器スプレイ冷却モード）で原子炉格納容器を貫通する配管，その他隔離弁を設けることにより安全性を損ならおそれが あり，かつ，当該系統の配管により原子炉格納容器の隔離機能が失われ ない場合は，自動隔離弁を設けない設計とする。

ただし，原則遠隔操作が可能であり，設計基準事故時及び重大事故等時に容易に閉鎖可能な隔離機能を有する弁を設置する設計とする。

また，重大事故等時に使用する原子炉格納容器調気系の隔離弁につい ては，設計基準事故時の隔離機能の確保を考慮し自動隔離弁とし，重大事故等時に容易に開弁が可能な設計とする。

原子炉格納容器を貫通する計測制御系統施設又は制御棒駆動装置に関連する小口径配管であって特に隔離弁を設けない場合には，隔離弁を設置したものと同等の隔離機能を有する設計とする。

原子炉冷却材圧力バウンダリに接続される原子炉格納容器を貫通す る計測系配管に隔離弁を設けない場合は，オリフィス又は過流量防止逆止弁を設置し，流出量抑制対策を講じる設計とする。

変更前	変更後
隔離弁は，閉止後に駆動動力源が喪失した場合においても閉止状態が維持され隔離機能が喪失しない設計とする。また，隔離弁のうち，隔離信号で自動閉止するものは，隔離信号が除去されても自動開とはならな い設計とする。 隔離弁は，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏え い試験のらち C 種試験ができる設計とする。また，隔離弁は動作試験が できる設計とする。	
2．原子炉建屋 2.1 原子炉建屋原子炉棟等 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関する審査指針 （平成2年8月30日原子力安全委員会）」に規定する線量を超えない よう，当該放射性物質の濃度を低減する設備として原子炉建屋原子炉棟 を設置する。 原子炉建屋原子炉棟は，原子炉格納容器を収納する建屋であって，非常用ガス処理系等により，内部の負圧を確保し，原子炉格納容器から放射性物質の漏えいがあっても発電所周辺に直接放出されることを防止 する設計とする。 原子炉建屋原子炉棟に開口部を設ける場合には，気密性を確保する設計とする。	2．原子炉建屋 2． 1 原子炉建屋原子炉棟等 変更なし

変更前	変更後
新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼすおそ れがある場合において，放射性物質による敷地外への影響を低減するた め，原子炉建屋原子炉棟内に設置する設計とする。 原子炉建屋原子炉棟は，重大事故等時においても，非常用ガス処理系 により，内部の負圧を確保することができる設計とする。原子炉建屋原子炉棟の気密バウンダリの一部として原子炉建屋原子炉棟に設置する原子炉建屋ブローアウトパネル（原子炉冷却系統施設のうち「5．2 高圧炉心スプレイ系」，浸水防護施設と兼用）（以下同じ。）は，閉状態の維持又は開放時に容易かつ確実に原子炉建屋ブローアウトパネル閉止装置により開口部を閉止可能な設計とする。	
3．圧力低減設備その他の安全設備 3.1 真空破壊装置 冷却材喪失事故後，ドライウェル圧力がサプレッションチェンバ圧力 より低下した場合に，ドライウェルとサプレッションチェンバ間に設置 された 6 個の真空破壊弁が，圧力差により自動的に働き，サプレッショ ンチェンバのプール水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしてい ることなどから，原子炉格納容器外面に受ける圧力が設計を超えること はない。 想定される重大事故等時において，ドライウェル圧力がサプレッショ ンチェンバ圧力より低下した場合に，ドライウェルとサプレッションチ	3．圧力低減設備その他の安全設備 3.1 真空破壊装置 変更なし

変更前	変更後
ェンバ間に設置された 6 個の真空破壊弁が，圧力差により自動的に働 き，サプレッションチェンバのプール水のドライウェルへの逆流及びド ライウェルの破損を防止できる設計とする。 3．2 原子炉格納容器安全設備 3．2．1 原子炉格納容器スプレイ冷却系 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として残留熱除去系（格納容器スプレイ冷却モード）を設置する。 重要度が特に高い安全機能を有する系統において，設計基準事故 が発生した場合に長期間にわたって機能が要求される静的機器の らち，単一設計とする残留熱除去系（格納容器スプレイ冷却モード） のドライウェルスプレイ管及びサプレッションチェンバスプレイ管については，想定される最も過酷な単一故障の条件として，配管 1 箇所の全周破断を想定した場合においても，原子炉格納容器の冷却機能を達成できる設計とする。 ここで，単一故障時には，残留熱除去系 1 系統による格納容器ス プレイ冷却モードは，スプレイ効果に期待できない状態となり，ス プレイ液滴による除熱を考慮しないこと及び泠却水が破断箇所か ら落下してサプレッションチェンバのプール水に移行することを想定する。このような場合においても，他の残留熱除去系 1 系統を	3.2 原子炉格納容器安全設備 3．2．1 原子炉格納容器スプレイン冷却系変更なし

変更前	変更後
サプレッションプール水冷却モードで運転することで原子炉格納容器の冷却機能を代替できる設計とする。 3．2．2 原子炉格納容器下部注水系 炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した炉心 を冷却するために必要な重大事故等対処設備として，原子炉格納容器下部注水系（常設）（復水移送ポンプ），原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び原子炉格納容器下部注水系 （可搬型）を設ける設計とする。 （1）原子炉格納容器下部注水系（常設）（復水移送ポンプ）による原子炉格納容器下部への注水 原子炉格納容器下部に落下した溶融炉心の冷却を行うための重大事故等対処設備として，原子炉格納容器下部注水系（常設）（復水移送ポンプ）は，復水移送ポンプにより，復水貯蔵タンクの水を補給水系配管等を経由して原子炉格納容器下部へ注水し，溶融炉心 が落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確保するとともに，落下した溶融炉心を泠却できる設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計 とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ）の流路と	3．2．2 原子炉格納容器下部注水系変更なし

して，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。
原子炉格納容器安全設備のうち，復水貯蔵タンクを水源として原子炉格納容器冷却のために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さい有効吸込水頭において も，正常に機能する能力を有する設計とする。
（2）原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）によ る原子炉格納容器下部への注水

原子炉格納容器下部に落下した溶融炉心の冷却を行うための重大事故等対処設備として，原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）は，代替循環冷却ポンプにより，サプレッショ ンチェンバのプール水を残留熱除去系等を経由して原子炉格納容器下部へ注水し，溶融炉心が落下するまでに原子炉格納容器下部に あらかじめ十分な水位を確保するとともに，落下した溶融炉心を泠却できる設計とする。

原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備からの給電が可能な設計とする。
原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）の流路として，設計基準対象施設である残留熱除去系熱交換器及び原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。
原子炉格納容器安全設備のうち，サプレッションチェンバのプー

ル水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係る ろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第5号（平成20年2月27日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。
（3）原子炉格納容器下部注水系（可搬型）による原子炉格納容器下部 への注水
原子炉格納容器下部に落下した溶融炉心の冷却を行うための重大事故等対処設備として，原子炉格納容器下部注水系（可搬型）は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水をあらかじ め敷設した補給水系配管を経由して原子炉格納容器下部へ注水し，落下した溶融炉心を泠却できる設計とする。

原子炉格納容器下部注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用できる設計とする。

原子炉格納容器下部注水系（可搬型）は，非常用交流電源設備に加えて代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。

また，大容量送水ポンプ（タイプI）は，空冷式のディーゼルエ ンジンにより駆動できる設計とする。

原子炉格納容器下部注水系（可搬型）に使用するホースの敷設等 は，ホース延長回収車（台数 4 （予備 1））（核燃料物質の取扱施設

Abstract

原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプ レイ冷却系（可搬型）と共通要因によって同時に機能を損なわない よう，原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ） の代替循環冷却ポンプを代替所内電気設備を経由した常設代替交流電源設備からの給電による電動機駆動とし，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ冷却系（可搬型） の大容量送水ポンプ（タイプI）を空冷式のディーゼルエンジンに よる駆動とすることで，多様性を有する設計とする。 原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ冷却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系は，共通要因によって同時に機能を損なわないよう，非常用所内電気設備 を経由した非常用交流電源設備からの給電に対して，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替 スプレイ冷却系（常設）の復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炉格納容器下部注水系（常設）（代替循環冷却ポン プ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備 を経由した常設代替交流電源設備からの給電とすることで，多様性 を有する設計とする。

原子炉格納容器下部注水系（常設）（復水移送ポンプ）の電動弁 （交流）は，ハンドルを設けて手動操作を可能とすることで，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とし，原子炉格納容器下部注

	変更前	変更後
$\frac{\stackrel{\rightharpoonup}{t}}{\stackrel{\rightharpoonup}{\omega}}$	水系（常設）（代替循環冷却ポンプ）の電動弁（交流）は，ハンド ルを設けて手動操作を可能とすることで，常設代替交流電源設備か らの給電による遠隔操作に対して多様性を有する設計とする。ま た，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炬格納容器下部注水系（常設）（代替循環冷却ポンプ）の電動弁 （交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 原子炬格納容器下部注水系（常設）（復水移送ポンプ）の電動卉 （直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器下部注水系（常設） （復水移送ポンプ）の電動弁（直流）は， 125 V 蓄電池から 125 V 直流主母線盤までの系統において，独立した電路で系統構成すること により，非常用ディーゼル発電機の交流を直流に変換する電路に対 して，独立性を有する設計とする。さらに，常設代替直流電源設備 からの給電も可能であり， 125 V 代替蓄電池から 125 V 直流主母線盤 までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。 また，原子炬格納容器下部注水系（可搬型）は代替淡水源を水源 とすることで，復水貯蔵タンクを水源とする原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炬格納容器代替スプレイ泠却系（常設）並びにサプレッションチェンバを水源とする原子炉	

	変更前	変更後
$\begin{aligned} & \stackrel{\rightharpoonup}{4} \\ & \stackrel{\rightharpoonup}{\leftrightarrows} \end{aligned}$	格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環泠却系に対して，異なる水源を有する設計とする。 復水移送ポンプは，原子炉建屋原子炉棟内，代替循環冷却ポンプ は原子炉建屋付属棟内に設置し，大容量送水ポンプ（タイプ I ）は原子炉建屋から離れた屋外に分散して保管することで，共通要因に よって同時に機能を損なわないよう位置的分散を図る設計とする。原子炬格納容器下部注水系（可搬型）の電動弁は，ハンドルを設 けて手動操作を可能とすることで，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器下部注水系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由 して給電する系統に対して独立性を有する設計とする。 大容量送水ポンプ（タイプI）の接続口は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所 に設置する設計とする。 これらの多様性及び系統の独立性並びに位置的分散によって，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ椧却系（常設）並びに原子炬格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系並びに原子炉格納容器下部注水系（可搬型）及び原子炬格納容器代替スプレイ泠却系（可搬型）は，それぞれ互いに重大事故等対処設備としての独立性を有する設計とする。	

変更前	変更後
3．2．3 原子炉格納容器代替スプレイ冷却系 原子炉格納容器内の冷却等のための設備のうち，設計基準事故対処設備が有する原子炉格納容器内の泠却機能が喪失した場合にお いて炉心の著しい損傷を防止するために原子炉格納容器内の圧力及び温度を低下させるため，また，炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するために原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させるための重大事故等対処設備として，原子炉格納容器代替スプレイ冷却系 （常設）及び原子炉格納容器代替スプレイ泠却系（可搬型）を設け る設計とする。 炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した炉心 を冷却するために必要な重大事故等対処設備として，原子炉格納容器代替スプレイ冷却系（常設）及び原子炉格納容器代替スプレイ冷却系（可搬型）を設ける設計とする。 （1）原子炉格納容器代替スプレイ冷却系（常設）による代替格納容器 スプレイ 炉心の著しい損傷防止のための原子炉格納容器内冷却に用いる設備のうち，残留熱除去系（格納容器スプレイ冷却モード）が機能喪失した場合及び全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障に より，残留熱除去系（格納容器スプレイ冷却モード）及び残留熱除去系（サプレッションプール水冷却モード）が起動できない場合の重大事故等対処設備として，原子炉格納容器代替スプレイ冷却系	3．2．3 原子炉格納容器代替スプレイ冷却系変更なし

	変更前	変更後
$\begin{aligned} & \stackrel{\rightharpoonup}{1} \\ & \stackrel{1}{6} \end{aligned}$	（常設）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炬格納容器内のドライウェルスプレイ管 からドライウェル内にスプレイすることで，原子炉格納容器内の圧力及び温度を低下させることができる設計とする。 炉心の著しい損傷が発生した場合において，残留熱除去系（格納容器スプレイ泠却モード）が機能喪失した場合及び全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器ス プレイ泠却モード）及び残留熱除去系（サプレッションプール水泠却モード）が起動できない場合の重大事故等対処設備として，原子炉格納容器代替スプレイ泠却系（常設）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由してドライウェルス プレイ管からドライウェル内にスプレイすることで，原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させることが できる設計とする。 原子炉格納容器下部に落下した溶融炉心の泠却を行うための重大事故等対処設備として，原子炉格納容器代替スプレイ泠却系（常設）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除去系配管等を経由して原子灲格納容器内のドライウェルスプレイ管 からドライウェル内にスプレイレ，スプレイした水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入することで，溶融炉心が落下するまでに原子炉格納容器下部にあらかじめ十分な水位を確保するとともに，落下した溶融炉心を冷却できる設計とする。	

原子炉格納容器代替スプレイ冷却系（常設）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま た，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。
原子炉格納容器代替スプレイ冷却系（常設）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備と しての設計を行ら。
原子炉格納容器代替スプレイ冷却系（常設）は，炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として兼用す る設計とする。

原子炉格納容器安全設備のらち，復水貯蔵タンクを水源として原子炉格納容器冷却のために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さい有効吸込水頭において も，正常に機能する能力を有する設計とする。
（2）原子炉格納容器代替スプレイン冷却系（可搬型）による代替格納容器スプレイ
炉心の著しい損傷防止のための原子炉格納容器内冷却に用いる設備のらち，残留熱除去系（格納容器スプレイ冷却モード）の機能 が喪失した場合及び全交流動力電源喪失又は原子炉補機冷却水系 （原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ冷却モード）及び残留熱除去系（サプレッションプール水冷却モード）が起動できない場

	変更前	変更後
$\frac{\stackrel{\rightharpoonup}{1}}{\stackrel{\rightharpoonup}{\infty}}$	合の重大事故等対処設備として，原子炉格納容器代替スプレイ冷却系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉格納容器内のドライウ ェルスプレイ管からドライウェル内にスプレイすることで，原子炉格納容器内の圧力及び温度を低下させることができる設計とする。 炉心の著しい損傷が発生した場合において，残留熱除去系（格納容器スプレイ冷却モード）の機能が喪失した場合及び全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器 スプレイ冷却モード）及び残留熱除去系（サプレッションプール水冷却モード）が起動できない場合の重大事故等対処設備として，原子炉格納容器代替スプレイ冷却系（可搬型）は，大容量送水ポンプ （タイプ I ）により，代替淡水源の水を残留熱除去系等を経由して ドライウェルスプレイ管からドライウェル内にスプレイすること で，原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させることができる設計とする。 原子炉格納容器代替スプレイ冷却系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I ）により海を利用できる設計 とする。 原子炉格納容器下部に落下した溶融炉心の冷却を行らための重大事故等対処設備として，原子炉格納容器代替スプレイ冷却系（可搬型）は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水 を残留熱除去系配管等を経由して原子炉格納容器内のドライウェ	

ルスプレイ管からドライウェル内にスプレイレ，スプレイした水が ドライウェル床面に溜まり，原子炉格納容器下部開口部を経由して原子炉格納容器下部へ流入することで，落下した溶融炉心を泠却で きる設計とする。
原子炉格納容器代替スプレイ冷却系（可搬型）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。

また，大容量送水ポンプ（タイプI）は，空冷式のディーゼルエ ンジンにより駆動できる設計とする。
原子炉格納容器代替スプレイ冷却系（可搬型）に使用するホース の敷設等は，ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のうち「4．2 燃料プール代替注水系」の設備を原子炉格納施設のうち「3．2．3 原子炉格納容器代替スプレイ冷却系」の設備として兼用）により行う設計とする。
原子炉格納容器代替スプレイ冷却系（可搬型）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備とし て使用することから，流路に係る機能について重大事故等対処設備 としての設計を行う。
原子炉格納容器代替スプレイ冷却系（可搬型）は，炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として兼用 する設計とする。
原子炉格納容器安全設備のうち，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海を水源として原子炉格納容器泠却のために運転す るポンプは，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧

変更前	変更後
らの給電による遠隔操作に対して多様性を有する設計とする。ま た，原子炉格納容器代替スプレイ冷却系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 原子炉格納容器代替スプレイ冷却系（可搬型）は，代替淡水源を水源とすることで，サプレッションチェンバを水源とする残留熱除去系（格納容器スプレイ冷却モード）及び復水貯蔵タンクを水源と する原子炉格納容器代替スプレイ冷却系（常設）に対して異なる水源を有する設計とする。 大容量送水ポンプ（タイプ I ）は，原子炉建屋から離れた屋外に分散して保管することで，原子炉建屋原子炉棟内の残留熱除去系ポ ンプ及び復水移送ポンプと共通要因によって同時に機能を損なわ ないよう位置的分散を図る設計とする。 大容量送水ポンプ（タイプ I ）の接続口は，共通要因によって接続できなくなることを防止するため，位置的分散を図った複数箇所 に設置する設計とする。 原子炉格納容器代替スプレイ冷却系（常設）及び原子炉格納容器代替スプレイ冷却系（可搬型）は，残留熱除去系と共通要因によっ て同時に機能を損なわないよう，水源から残留熱除去系配管との合流点までの系統について，残留熱除去系に対して独立性を有する設計とする。 これらの多様性及び系統の独立性並びに位置的分散によって，原子炉格納容器代替スプレイン冷却系（常設）及び原子炉格納容器代替	

	変更前	変更後
$\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{1}{\top} \\ & \stackrel{N}{4} \end{aligned}$	スプレイ冷却系（可搬型）は，設計基準事故対処設備である残留熱除去系（格納容器スプレイ冷却モード）に対して重大事故等対処設備としての独立性を有する設計とする。 原子炉格納容器代替スプレイ泠却系（常設）は，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ泠却系（可搬型）と共通要因によって同時に機能を損なわないよう，原子炉格納容器代替スプレイ泠却系（常設）の復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電による電動機駆動とし，原子炉格納容器下部注水系 （可搬型）及び原子炉格納容器代替スプレイ泠却系（可搬型）の大容量送水ポンプ（タイプ I ）を空冷式のディーゼルエンジンによる駆動とすることで，多様性を有する設計とする。 原子炬格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ冷却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系は，共通要因によって同時に機能を損なわないよう，非常用所内電気設備 を経由した非常用交流電源設備からの給電に対して，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替 スプレイ泠却系（常設）の復水移送ポンプを代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電とし，原子炉格納容器下部注水系（常設）（代替循環冷却ポン プ）及び代替循環冷却系の代替循環冷却ポンプを代替所内電気設備 を経由した常設代替交流電源設備からの給電とすることで，多様性 を有する設計とする。	

変更前	変更後
原子炉格納容器代替スプレイ冷却系（常設）の電動弁（交流）は， ハンドルを設けて手動操作を可能とすることで，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対 して多様性を有する設計とする。また，原子炉格納容器代替スプレ イ冷却系（常設）の電動弁（交流）は，代替所内電気設備を経由し て給電する系統において，独立した電路で系統構成することによ り，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計とする。 原子炉格納容器代替スプレイ冷却系（常設）の電動弁（直流）は， ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器代替スプレイ冷却系（常設）の電動弁（直流）は， 125 V 蓄電池から 125 V 直流主母線盤までの系統に おいて，独立した電路で系統構成することにより，非常用ディーゼ ル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。さらに，常設代替直流電源設備からの給電も可能であり， 125 V 代替蓄電池から 125 V 直流主母線盤までの系統において，独立 した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。 また，原子炉格納容器代替スプレイ冷却系（可搬型）は代替淡水源を水源とすることで，復水貯蔵タンクを水源とする原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替 スプレイ冷却系（常設）並びにサプレッションチェンバを水源とす る原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び	

変更前		変更後
代替循環冷却系に対して，異なる水源を有する設計とする。 復水移送ポンプは，原子炉建屋原子炉棟内，代替循環冷却ポンプ は原子炉建屋付属棟内に設置し，大容量送水ポンプ（タイプ I ）は原子炉建屋から離れた屋外に分散して保管することで，共通要因に よって同時に機能を損なわないよう位置的分散を図る設計とする。原子炉格納容器代替スプレイ冷却系（可搬型）の電動弁は，ハン ドルを設けて手動操作を可能とすることで，常設代替交流電源設備又は可搬型代替交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，原子炉格納容器代替スプレイ冷却系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電する系統に対して独立性を有する設計 とする。 これらの多様性及び系統の独立性並びに位置的分散によって，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ冷却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系並びに原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ冷却系（可搬型）は，それぞれ互いに重大事故等対処設備としての独立性を有する設計とする。 3．2．4 代替循環冷却系 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を防止するために必要な重大事故等対処設備のうち，	3．2．4 代替循環冷却系	変更なし

変更前

原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下させるための設備として，代替循環冷却系を設け る設計とする。
炉心の著しい損傷が発生した場合に溶融炉心の原子炉格納容器下部への落下を遅延•防止するための重大事故等対処設備として，代替循環冷却系を設ける設計とする。なお，溶融炉心の原子炉格納容器下部への落下を遅延•防止する場合は，ほう酸水注入系による原子炉圧力容器へのほう酸水注入と並行して行う。

炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，溶融し，原子炉格納容器の下部に落下した炉心 を冷却するために必要な重大事故等対処設備として，代替循環冷却系を設ける設計とする。
（1）系統構成
代替循環冷却系は，代替循環冷却ポンプによりサプレッションチ エンバのプール水を残留熱除去系熱交換器にて冷却し，残留熱除去系等を経由して原子炉圧力容器へ注水及び原子炉格納容器内ヘス プレイすることで，原子炉格納容器バウンダリを維持しながら原子炉格納容器内の圧力及び温度を低下できる設計とする。

また，本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給で きる設計とする。

代替循環冷却系は，代替循環冷却ポンプにより，サプレッション チェンバのプール水を残留熱除去系配管を経由して原子炉圧力容器へ注水することで，原子炉圧力容器内に存在する溶融炉心を冷却

変更前	変更後
できる設計とする。 また，本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給で きる設計とする。 代替循環冷却系は，代替循環冷却ポンプによりサプレッションチ エンバのプール水を残留熱除去系熱交換器にて泠却し，残留熱除去系配管を経由して，原子炉格納容器内ヘスプレイレ，スプレイした水がドライウェル床面に溜まり，原子炉格納容器下部開口部を経由 して原子炉格納容器下部へ流入することで，溶融炬心が落下するま でに原子炉格納容器下部にあらかじめ十分な水位を確保するとと もに，落下した溶融炉心を泠却できる設計とする。 また，本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給で きる設計とする。 原子炉圧力容器に注水された水は，原子炉圧力容器又は原子炉格納容器内配管の破断口等から流出し，原子炉格納容器内ヘスプレイ された水とともに，ベント管を経てサプレッションチェンバに戻る ことで循環できる設計とする。 代替循環冷却系は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備からの給電が可能な設計と する。 代替循環冷却系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物並びに原子炉格納容器を重大事故等対処設備として使用することから，流路に	

係る機能について重大事故等対処設備としての設計を行ら。
原子炉格納容器安全設備のうち，サプレッションチェンバのプー ル水を水源として原子灲格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係る ろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第5号（平成20年2月27日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。
（2）多重性又は多様性及び独立性，位置的分散
代替循環冷却系及び原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，原理の異なる冷却手段及 び原子炉格納容器内の減圧手段を用いることで多様性を有する設計とする。

代替循環冷却系は，非常用交流電源設備に対して多様性を有する常設代替交流電源設備からの給電により駆動できる設計とする。ま た，原子炉格納容器フィルタベント系は，非常用交流電源設備に対 して多様性を有する常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により駆動できる設計とする。原子炉格納容器フィルタベント系は，人力により排出経路に設置される隔離弁を操作できる設計とすることで，代替循環冷却系に対して駆動源の多様性を有する設計とする。

代替循環冷却系に使用する原子炉補機代替冷却水系熱交換器ユ

変更前	変更後
ニット及び大容量送水ポンプ（タイプ I ）は，原子炉建屋から離れ た屋外に分散して保管することで，原子炉建屋内の原子炉格納容器 フィルタベント系と共通要因によって同時に機能を損なわないよ ら位置的分散を図る設計とする。 原子炉補機代替冷却水系熱交換器ユニットの接続口は，共通要因 によって接続できなくなることを防止するため，互いに異なる複数箇所に設置し，かつ原子师格納容器フィルタベント系と異なる区画 に設置する設計とする。 代替循環冷却系の代替循環冷却ポンプは原子炉建屋付属棟内に，残留熱除去系熱交換器及びサプレッションチェンバは原子炉建屋原子炉棟内に設置し，原子炉格納容器フィルタベント系のフィルタ装置及びフィルタ装置出口側ラプチャディスクは原子炉建屋原子炉棟内の代替循環冷却系と異なる区画に設置することで共通要因 によって同時に機能を損なわないよう位置的分散を図る設計とす る。 代替循環冷却系と原子炉格納容器フィルタベント系は，共通要因 によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。 これらの多様性及び流路の独立性並びに位置的分散によって，代替循環冷却系と原子炉格納容器フィルタベント系は，互いに重大事故等対処設備として，可能な限りの独立性を有する設計とする。 代替循環冷却系は，原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ椧却系（可搬型）と共通要因によって同時に機能を損なわないよう，代替循環冷却系の代替循環冷却ポンプ	

代替スプレイ冷却系（可搬型）は代替淡水源を水源とすることで，復水貯蔵タンクを水源とする原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ冷却系（常設）並 びにサプレッションチェンバを水源とする原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系に対して，異なる水源を有する設計とする。
代替循環冷却系に使用する原子炉補機代替冷却水系熱交換器ユ ニット及び大容量送水ポンプ（タイプ I ）は，原子炉建屋から離れ た屋外に分散して保管することで，共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。
原子炉補機代替冷却水系熱交換器ユニット及び大容量送水ポン プ（タイプ I ）の接続口は，共通要因によって接続できなくなるこ とを防止するため，位置的分散を図った複数箇所に設置する設計と する。

これらの多様性及び系統の独立性並びに位置的分散によって，原子炉格納容器下部注水系（常設）（復水移送ポンプ）及び原子炉格納容器代替スプレイ冷却系（常設）並びに原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）及び代替循環冷却系並びに原子炉格納容器下部注水系（可搬型）及び原子炉格納容器代替スプレイ冷却系（可搬型）は，それぞれ互いに重大事故等対処設備としての独立性を有する設計とする。

3．2．5 高圧代替注水系
炉心の著しい損傷が発生した場合に溶融炉心の原子炉格納容器
3．2．5 高圧代替注水系

変更前		変更後
下部への落下を遅延•防止するための重大事故等対処設備として，高圧代替注水系を設ける設計とする。なお，この場合は，ほう酸水注入系による原子炉圧力容器へのほう酸水注入と並行して行う。 高圧代替注水系は，蒸気タービン駆動ポンプにより復水貯蔵タン クの水を高圧灲心スプレイ系等を経由して，原子炉圧力容器へ注水 することで溶融炉心を冷却できる設計とする。 高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備又は所内常設蓄電式直流電源設備からの給電が可能な設計と し，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により中央制御室からの操作が可能な設計とする。 高圧代替注水系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 3．2．6 低圧代替注水系 （1）低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水炉心の著しい損傷が発生した場合に溶融炉心の原子炉格納容器下部への落下を遅延•防止するための重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）を設ける設計とする。 なお，この場合は，ほう酸水注入系による原子炉圧力容器へのほう酸水注入と並行して行う。 低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプ	3．2．6 低圧代替注水系	変更なし

変更前	変更後
により，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで溶融炉心を冷却できる設計とする。 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。ま た，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 低圧代替注水系（常設）（復水移送ポンプ）の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 （2）低圧代替注水系（可搬型）による原子炉注水 炉心の著しい損傷が発生した場合に溶融炉心の原子炉格納容器下部への落下を遅延•防止するための重大事故等対処設備として，低圧代替注水系（可搬型）を設ける設計とする。なお，この場合は， ほう酸水注入系による原子炉圧力容器へのほう酸水注入と並行し て行う。 低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）に より，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器 へ注水することで溶融炉心を冷却できる設計とする。 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合におい て，重大事故等の収束に必要となる水の供給設備である大容量送水 ポンプ（タイプ I ）により海を利用できる設計とする。 低圧代替注水系（可搬型）は，非常用交流電源設備に加えて，代	

替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計とする。

大容量送水ポンプ（タイプI）は，空冷式のディーゼルエンジン により駆動できる設計とする。
低圧代替注水系（可搬型）に使用するホースの敷設等は，ホース延長回収車（台数 4 （予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉格納施設 のらち「3．2．6 低圧代替注水系」の設備として兼用）により行う設計とする。

低圧代替注水系（可搬型）の流路として，設計基準対象施設であ る原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物 を重大事故等対処設備として使用することから，流路に係る機能に ついて重大事故等対処設備としての設計を行う。

3．2．7 ほう酸水注入系
炉心の著しい損傷が発生した場合に溶融炉心の原子炉格納容器

3．2．7 ほう酸水注入系
変更なし
る。 変更前

ほう酸水注入系は，非常用交流電源設備に加え，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備 からの給電が可能な設計とする。

ほう酸水注入系の流路として，設計基準対象施設である原子炉圧力容器，炉心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。

3．2．8 残留熱除去系（格納容器スプレイ冷却モード）
（1）系統構成
原子炉格納容器内の冷却等のための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（格納容器スプレイ冷却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。
炉心の著しい損傷防止のための原子炉格納容器内冷却に用いる設備のうち，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（格納容器スプレイ冷却モード）が起動できない場合 の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（格納容器スプレイ冷却モード）を復旧できる設計とす る。

炉心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪

3．2．8 残留熱除去系（格納容器スプレイ冷却モード）
変更なし

失によるサポート系の故障により，残留熱除去系（格納容器スプレ イ冷却モード）が起動できない場合の重大事故等対処設備として，常設代替交流電源設備を使用し，残留熱除去系（格納容器スプレイ冷却モード）を復旧できる設計とする。

残留熱除去系（格納容器スプレイ冷却モード）は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポンプ及び残留熱除去系熱交換器によりサプレッションチェンバのプール水 をドライウェル内及びサプレッションチェンバ内にスプレイする ことで原子炉格納容器を冷却できる設計とする。
本系統に使用する冷却水は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計 とする。

残留熱除去系（格納容器スプレイ冷却モード）の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備とし て使用することから，流路に係る機能について重大事故等対処設備 としての設計を行う。
原子炉格納容器安全設備のうち，サプレッションチェンバのプー ル水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係る ろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。

変更前	変更後
（2）多様性，位置的分散等 残留熱除去系（格納容器スプレイ冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。 ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針は適用 しない。	
3．2．9 残留熱除去系（サプレッションプール水冷却モード） （1）系統構成 原子炉格納容器内の冷却等のための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（サ プレッションプール水冷却モード）が使用できる場合は重大事故等対処設備（設計基準拡張）として使用できる設計とする。 炉心の著しい損傷防止のための原子炉格納容器内冷却に用いる設備のうち，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（サプレッションプール水冷却モード）が起動できな い場合の重大事故等対処設備として，常設代替交流電源設備を使用 し，残留熱除去系（サプレッションプール水冷却モード）を復旧で きる設計とする。 炉心の著しい損傷が発生した場合において，全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪	3．2．9 残留熱除去系（サプレッションプール水泠却モード）変更なし

失によるサポート系の故障により，残留熱除去系（サプレッション プール水冷却モード）が起動できない場合の重大事故等対処設備と して，常設代替交流電源設備を使用し，残留熱除去系（サプレッシ ョンプール水冷却モード）を復旧できる設計とする。
残留熱除去系（サプレッションプール水冷却モード）は，常設代替交流電源設備からの給電により機能を復旧し，残留熱除去系ポン プ及び残留熱除去系熱交換器により，サプレッションチェンバのプ ール水を冷却することで原子炉格納容器を冷却できる設計とする。本系統に使用する冷却水は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）又は原子炬補機代替冷却水系から供給できる設計とする。

残留熱除去系（サプレッションプール水冷却モード）の流路とし て，設計基準対象施設である原子炉格納容器を重大事故等対処設備 として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。

原子炉格納容器安全設備のうち，サプレッションチェンバのプー ル水を水源として原子炉格納容器除熱のために運転するポンプは，原子炉格納容器内の圧力及び温度並びに，原子炉冷却材中の異物の影響について「非常用炉心冷却設備又は格納容器熱除去設備に係る ろ過装置の性能評価等について（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号（平成 20 年 2 月 27 日原子力安全•保安院制定））によるろ過装置の性能評価により，重大事故等時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。
（2）多様性，位置的分散等

変更前	変更後
残留熱除去系（サプレッションプール水冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用する ため，重大事故等対処設備としての基本方針に示す設計方針を適用 する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のうち「5．1．2 多様性，位置的分散等」に示す設計方針 は適用しない。 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に原子炉格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炉施設の安全評価に関 する審査指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備として非常用ガス処理系を設置する。 非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガ ス処理系排風機及び高性能エアフィルタ，チャコールエアフィルタ を含む非常用ガス処理系フィルタ装置等から構成される。 放射性物質の放出を伴ら設計基準事故時には，常用換気系を閉鎖 し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フィルタ装置を通して除去•低減した	3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 変更なし

	変更前	変更後
$\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{1}{0} \end{aligned}$	後，排気筒から放出する設計とする。 非常用ガス処理系は，冷却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去し，環境に放出され る放射性物質の濃度を減少させる設計とする。 非常用ガス処理系のらち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可 を受けた設計基準事故の評価の条件を満足する設計とする。 新燃料貯蔵庫及び使用済燃料プールは，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及 ぼすおそれがある場合において，放射性物質による敷地外への影響 を低減するため，非常用ガス処理系により放射性物質の放出を低減 できる設計とする。 重要度が特に高い安全機能を有する系統において，設計基準事故 が発生した場合に長期間にわたつて機能が要求される静的機器の らち，単一設計とする非常用ガス処理系の配管の一部及び非常用ガ ス処理系フィルタ装置については，当該設備に要求される原子炉格納容器内又は放射性物質が原子炉格納容器内から漏れ出た場所の雰囲気中の放射性物質の濃度低減機能が喪失する単一故障のうち，想定される最も過酷な条件として，配管の全周破断及び非常用ガス処理系フィルタ装置の閉塞を想定しても，単一故障による放射性物質の放出に伴う被ばくの影響を最小限に抑えるよう，安全上支障の ない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定しない。 想定される単一故障の発生に伴う周辺公衆に対する放射線被ば	

変更前	変更後
電源設備からの給電が可能な設計とする。 非常用がス処理系の流路として，設計基準対象施設である非常用 ガス処理系空気乾燥装置，非常用ガス処理系フィルタ装置，排気筒，原子炉建屋原子炉棟，原子炉建屋大物搬入口及び原子炉建屋エアロ ックを重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。	
3．3．2 可燃性ガス濃度制御系 冷却材喪失事故時に原子炉格納容器内で発生する水素及び酸素 の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあい まって，可燃限界に達しないための制限値である水素濃度 4vol\％未満又は酸素濃度 $5 \mathrm{vol} \%$ 未満に維持できる設計とする。	3．3．2 可燃性ガス濃度制御系変更なし
3．3．3 原子炉建屋水素濃度抑制系 炉心の著しい損傷が発生した場合において原子炬建屋等の水素爆発による損傷を防止するために原子炉建屋原子炉棟内の水素濃度上昇を抑制し，水素濃度を可燃限界未満に制御するための重大事故等対処設備として，水素濃度制御設備である静的触媒式水素再結合装置を設ける設計とする。 水素濃度制御設備である静的触媒式水素再結合装置は，運転員の起動操作を必要とせずに，原子炉格納容器から原子炉建屋原子炉棟内に漏えいした水素と酸素を触媒反応によって再結合させること で，原子炉建屋原子炉棟内の水素濃度の上昇を抑制し，原子炉建屋	3．3．3 原子炉建屋水素濃度抑制系 変更なし

原子炉棟の水素爆発を防止できる設計とする。また評価に用いる性能を満足し，試験により性能及び耐環境性が確認された型式品を設置する設計とする。静的触媒式水素再結合装置は，原子炉建屋原子炉棟内に漏えいした水素が滞留すると想定される原子炉建屋原子炉棟 3 階に設置することとし，静的触媒式水素再結合装置の触媒反応時の高温ガスの排出が重大事故等時の対処に重要な計器•機器 に悪影響がないよう離隔距離を設ける設計とする。
静的触媒式水素再結合装置の流路として，設計基準対象施設であ る原子炉建屋原子炉棟，原子炉建屋大物搬入口及び原子炉建屋エア ロックを重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。

3．3．4 放射性物質拡散抑制系
炉心の著しい損傷及び原子炉格納容器の破損に至った場合にお

3．3．4 放射性物質拡散抑制系
変更なし

変更前	変更後
3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火） 原子炉建屋周辺における航空機衝突による航空機燃料火災に対応できる設備として，放水設備（泡消火設備）を設ける設計とする。 原子炉建屋周辺における航空機衝突による航空機燃料火災に対応するための重大事故等対処設備として，放水設備（泡消火設備） は，大容量送水ポンプ（タイプII）により泡消火薬剤混合装置を通 して，海水を泡消火薬剤と混合しながらホースを経由して放水砲か ら原子炉建屋周辺へ放水できる設計とする。 泡消火薬剤混合装置 1 個の泡消火薬剤の保有量は，必要な容量 である 646L に対し余裕をみた 1000Lを保管する。 泡消火薬剤混合装置は，航空機燃料火災に対応するため，大容量送水ポンプ（タイプII）及び放水砲に接続することで，泡消火薬剤 を混合して放水できる設計とする。また，泡消火薬剤混合装置の保有数は，航空機燃料火災に対応するため， 1 個と故障時及び保守点検時の予備として 1 個の合計 2 個を保管する。 放水設備（泡消火設備）に使用するホースの敷設は，ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設 のうち「4．2 燃料プール代替注水系」の設備を原子炉格納施設の らち「3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火）」 の設備として兼用）により行ら設計とする。	3．3．5 放射性物質拡散抑制系（航空機燃料火災への泡消火）変更なし
3．3．6 可搬型窒素ガス供給系 可搬型窒素ガス供給系は，可燃性ガスによる爆発及び原子炉格納	3．3．6 可搬型窒素ガス供給系

変更前	変更後
容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用い て原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とす る。また，原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガスによる爆発を防ぐため，可搬型窒素ガス供給系により，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器ベント後においても不活性ガス（窒素）で置換できる設計と する。 炉心の著しい損傷が発生した場合において，原子炉格納容器内に おける水素爆発による破損を防止するために必要な重大事故等対処設備のうち，原子炉格納容器内を不活性化するための設備とし て，可搬型窒素ガス供給装置を設ける設計とする。 可搬型窒素ガス供給装置は，原子炉格納容器内に窒素を供給する ことで，ジルコニウム一水反応，水の放射線分解等により原子炉格納容器内に発生する水素及び酸素の濃度を可燃限界未満にできる設計とする。 可搬型窒素ガス供給装置は，車両内に搭載された可搬型窒素ガス供給装置発電設備により給電できる設計とする。 可搬型窒素ガス供給系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用することから，流路 に係る機能について重大事故等対処設備としての設計を行う。 3．3．7 原子炉格納容器フィルタベント系 炉心の著しい損傷が発生した場合において原子炉格納容器内に おける水素爆発による破損を防止できるように，原子炉格納容器内	3．3．7 原子炉格納容器フィルタベント系変更なし

	変更前	変更後
$\begin{aligned} & \stackrel{1}{1} \\ & \stackrel{\rightharpoonup}{\wedge} \\ & \stackrel{\rightharpoonup}{4} \end{aligned}$	に滞留する水素及び酸素を大気へ排出するための設備として，原子炉格納容器フィルタベント系を設ける設計とする。 原子炉格納容器内に滞留する水素及び酸素を大気へ排出するた めの重大事故等対処設備として，原子炉格納容器フィルタベント系 は，フィルタ装置（フィルタ容器，スクラバ溶液，金属繊維フィル タ，放射性よう素フィルタ），フィルタ装置出口側ラプチャディス ク，配管•弁類，計測制御装置等で構成し，炉心の著しい損傷が発生した場合において，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減さ せた後に原子炉建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$（ 1 Pd において））することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，ジルコニウム一水反応，水の放射線分解等により発生する原子炉格納容器内の水素及び酸素を大気に排出できる設計とする。 フィルタ装置は3台を並列に設置し，排気中に含まれる粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去できる設計 とする。また，無機よう素をスクラバ溶液中に捕集•保持するため にアルカリ性の状態（待機状態において pH 13 以上）に維持する設計とする。 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガ スによる爆発を防ぐため，可搬型窒素ガス供給系により，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器べ ント開始後においても不活性ガス（窒素）で置換できる設計とする とともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ	

変更前	変更後
イパスラインを設け，可燃性ガスを連続して排出できる設計とする ことで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。 可搬型窒素ガス供給装置は，車両内に搭載された可搬型窒素ガス供給装置発電設備により給電できる設計とする。 原子炉格納容器フィルタベント系使用時の排出経路に設置され る隔離弁は，遠隔手動弁操作設備（個数 4）（原子炉格納施設のう ち「3．5．1 原子炉格納容器フィルタベント系」の設備を原子炉格納施設のうち「3．3．7 原子炉格納容器フィルタベント系」の設備 として兼用）によって人力により容易かつ確実に操作が可能な設計 とする。 排出経路に設置される隔離弁の電動弁については，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電に より，中央制御室から操作が可能な設計とする。 原子炉格納容器フィルタベント系は，代替淡水源から，大容量送水ポンプ（タイプ I ）によりフィルタ装置にスクラバ溶液を補給で きる設計とする。 原子炉格納容器フィルタベント系使用時の排出経路に設置され る隔離弁に設ける遠隔手動弁操作設備の操作場所は，原子炉建屋付属棟内とし，サプレッションチェンバベント用出口隔離弁（T48－ F022）の操作を行う原子炉建屋地下 1 階及びドライウェルベント用出口隔離弁（T48－F019）の操作を行う原子炉建屋地上 1 階に遮蔽体（遠隔手動弁操作設備遮蔽（原子炉格納施設のうち「3．5．1 原	

変更前	変更後
子炉格納容器フィルタベント系」の設備を原子炉格納施設のらち「3．3．7 原子炉格納容器フィルタベント系」の設備として兼用） （以下同じ。））を設置し，放射線防護を考慮した設計とする。遠隔手動弁操作設備遮蔽は，炉心の著しい損傷時においても，原子炉格納容器フィルタベント系の隔離弁操作ができるよう，どちらの遮蔽体においても鉛厚さ 2 mm の遮蔽厚さを有する設計とする。 原子炉格納容器フィルタベント系に使用するホースの敷設等は， ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を原子炉格納施設のうち「3．3．7 原子炉格納容器フィルタベント系」の設備 として兼用）により行ら設計とする。 原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用するこ とから，流路に係る機能について重大事故等対処設備としての設計 を行う。 3.4 原子炉格納容器調気設備 3．4．1 原子炉格納容器調気系 原子炉格納容器調気系は，水素及び酸素の反応を防止するため， あらかじめ原子炉格納容器内に窒素を充填することにより，水素濃度及び酸素濃度を可燃限界未満に保つ設計とする。 炉心の著しい損傷が発生した場合において原子炉格納容器内に おける水素爆発による破損を防止できるように，発電用原子炉の運転中は，原子炉格納容器内を原子炉格納容器調気系により常時不活	3.4 原子炉格納容器調気設備 3．4．1 原子炉格納容器調気系変更なし

変更前	変更後
性化する設計とする。 3.5 圧力逃がし装置 3．5．1 原子炉格納容器フィルタベント系 炉心の著しい損傷が発生した場合において，原子炉格納容器の過圧による破損を防止するために必要な重大事故等対処設備のうち，原子炉格納容器内の圧力を大気中に逃がすための設備として，原子炉格納容器フィルタベント系を設ける設計とする。 （1）系統構成 原子炉格納容器フィルタベント系は，フィルタ装置（フィルタ容器，スクラバ溶液，金属繊維フィルタ，放射性よう素フィルタ）， フィルタ装置出口側ラプチャディスク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲気ガスを原子炉格納容器調気系等を経由して，フィルタ装置へ導き，放射性物質を低減させた後に原子炉建屋屋上に設ける放出口から排出（系統設計流量 $10.0 \mathrm{~kg} / \mathrm{s}$ （1Pd において））することで，排気中に含まれる放射性物質の環境への放出量を低減しつつ，原子炉格納容器内の圧力及び温度を低下できる設計とする。 フィルタ装置は3台を並列に設置し，排気中に含まれる粒子状放射性物質，ガス状の無機よう素及び有機よう素を除去できる設計 とする。また，無機よう素をスクラバ溶液中に捕集•保持するため にアルカリ性の状態（待機状態において pH 13 以上）に維持する設計とする。 原子炉格納容器フィルタベント系は，サプレッションチェンバ及	3.5 圧力逃がし装置 3．5．1 原子炉格納容器フィルタベント系変更なし

	変更前	変更後
$$	びドライウェルと接続し，いずれからも排気できる設計とする。サ プレッションチェンバ側からの排気ではサプレッションチェンバ の水面からの高さを確保し，ドライウェル側からの排気では，ドラ イウェル床面からの高さを確保するとともに有効燃料棒頂部より も高い位置に接続箇所を設けることで長期的にも溶融炉心及び水没の悪影響を受けない設計とする。 原子炉格納容器フィルタベント系は，排気中に含まれる可燃性ガ スによる爆発を防ぐため，可搬型窒素ガス供給系により，系統内を不活性ガス（窒素）で置換した状態で待機させ，原子炉格納容器べ ント開始後においても不活性ガス（窒素）で置換できる設計とする とともに，系統内に可燃性ガスが蓄積する可能性のある箇所にはバ イパスラインを設け，可燃性ガスを連続して排出できる設計とする ことで，系統内で水素濃度及び酸素濃度が可燃領域に達することを防止できる設計とする。 原子炉格納容器フィルタベント系は，他の発電用原子炉施設とは共用しない設計とする。また，原子炉格納容器フィルタベント系と他の系統•機器を隔離する弁は，直列で 2 個設置（ベント用非常用 ガス処理系側隔離弁（T48－F020）と格納容器排気非常用ガス処理系側止め弁（T48－F045）（原子炉冷却系統施設のうち「4．2 原子炉格納容器フィルタベント系」の設備と兼用），ベント用換気空調系側隔離弁（T48－F021）と格納容器排気換気空調系側止め弁（T48 －F046）（原子炉冷却系統施設のらち「4．2 原子炉格納容器フィル タベント系」の設備と兼用），原子炉格納容器耐圧強化ベント用連絡配管隔離弁（T48－F043）（原子炉冷却系統施設のうち「4．2 原	

変更前	変更後
子炉格納容器フィルタベント系」，原子炉冷却系統施設のらち「4．3耐圧強化ベント系」の設備と兼用）と原子炉格納容器耐圧強化ベン ト用連絡配管止め弁（T48－F044）（原子灲冷却系統施設のうち「4．2原子炉格納容器フィルタベント系」，原子炉冷却系統施設のうち 「4．3 耐圧強化ベント系」の設備と兼用））し，原子炉格納容器フ イルタベント系と他の系統•機器を確実に隔離することで悪影響を及ぼさない設計とする。 原子炉格納容器フィルタベント系の使用に際しては，原子炉格納容器が負圧とならないよう，原子炉格納容器代替スプレイ冷却系等 による原子炉格納容器内へのスプレイを停止する運用を保安規定 に定めて管理する。原子炉格納容器フィルタベント系の使用後に再度，原子炉格納容器内にスプレイする場合においても，原子炉格納容器内圧力が規定の圧力まで減圧した場合には，原子炉格納容器内 へのスプレイを停止する運用を保安規定に定めて管理する。 可搬型窒素ガス供給系は，可燃性ガスによる爆発及び原子炉格納容器の負圧破損を防止するために，可搬型窒素ガス供給装置を用い て原子炉格納容器内に不活性ガス（窒素）の供給が可能な設計とす る。 可搬型窒素ガス供給装置は，車両内に搭載された可搬型窒素ガス供給装置発電設備により給電できる設計とする。 原子炉格納容器フィルタベント系使用時の排出経路に設置され る隔離弁は，遠隔手動弁操作設備（個数 4）（原子炉冷却系統施設 のうち「4．2 原子炉格納容器フィルタベント系」，「4． 3 耐圧強化 ベント系」，原子炉格納施設のらち「3．3．7 原子炉格納容器フィル	

タベント系」と兼用）によって人力により容易かつ確実に操作が可能な設計とする。
排出経路に設置される隔離弁の電動弁については，常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電に より，中央制御室から操作が可能な設計とする。

系統内に設けるフィルタ装置出口側ラプチャディスクは，原子炉格納容器フィルタベント系の使用の妨げにならないよう，原子炉格納容器からの排気圧力と比較して十分に低い圧力で破裂する設計 とする。
原子炉格納容器フィルタベント系は，代替淡水源から，大容量送水ポンプ（タイプ I ）により，フィルタ装置にスクラバ溶液を補給 できる設計とする。
原子炉格納容器フィルタベント系使用時の排出経路に設置され る隔離弁に設ける遠隔手動弁操作設備の操作場所は，原子炉建屋付属棟内とし，サプレッションチェンバベント用出口隔離弁（T48－ F022）の操作を行う原子炉建屋地下 1 階及びドライウェルベント用出口隔離弁（T48－F019）の操作を行う原子炉建屋地上 1 階に遮蔽体（遠隔手動弁操作設備遮蔽（原子炉冷却系統施設のうち「4．2 原子炉格納容器フィルタベント系」，原子炉格納施設のらち「3．3．7原子炉格納容器フィルタベント系」と兼用）（以下同じ。））を設置 し，放射線防護を考慮した設計とする。遠隔手動弁操作設備遮蔽は，炉心の著しい損傷時においても，原子炉格納容器フィルタベント系 の隔離弁操作ができるよう，どちらの遮蔽体においても鉛厚さ 2 mm

の遮蔽厚さを有する設計とする。
原子炉格納容器フィルタベント系に使用するホースの敷設等は， ホース延長回収車（台数 4（予備 1））（核燃料物質の取扱施設及び貯蔵施設のうち「4．2 燃料プール代替注水系」の設備を原子炉格納施設のうち「3．5．1 原子炉格納容器フィルタベント系」の設備 として兼用）により行う設計とする。

原子炉格納容器フィルタベント系の流路として，設計基準対象施設である原子炉格納容器を重大事故等対処設備として使用するこ とから，流路に係る機能について重大事故等対処設備としての設計 を行う。
（2）多重性又は多様性及び独立性，位置的分散
代替循環冷却系及び原子炉格納容器フィルタベント系は，共通要因によって同時に機能を損なわないよう，原理の異なる冷却手段及 び原子炉格納容器内の減圧手段を用いることで多様性を有する設計とする。

代替循環冷却系は，非常用交流電源設備に対して多様性を有する常設代替交流電源設備からの給電により駆動できる設計とする。ま た，原子炉格納容器フィルタベント系は，非常用交流電源設備に対 して多様性を有する常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により駆動できる設計とする。
原子炉格納容器フィルタベント系は，人力により排出経路に設置 される隔離弁を操作できる設計とすることで，代替循環冷却系に対 して駆動源の多様性を有する設計とする。

代替循澴冷却系の代替循噮冷却ポンプは原子炉建屋付属棟内に，残留熱除去系熱交換器及びサプレッションチェンバは原子炉建屋原子炉棟内に設置し，原子炉格納容器フィルタベント系のフィルタ装置及びフィルタ装置出口側ラプチャディスクは原子炉建屋原子炉棟内の代替循環冷却系と異なる区画に設置することで共通要因 によって同時に機能を損なわないよう位置的分散を図る設計とす る。

代替循環冷却系と原子炉格納容器フィルタベント系は，共通要因 によって同時に機能を損なわないよう，流路を分離することで独立性を有する設計とする。

これらの多様性及び流路の独立性並びに位置的分散によって，代替循環冷却系と原子炉格納容器フィルタベント系は，互いに重大事故等対処設備として，可能な限りの独立性を有する設計とする。
3.6 重大事故等の収束に必要となる水源

設計基準事故の収束に必要な水源とは別に，重大事故等の収束に必要 となる十分な量の水を有する水源を確保することに加えて，発電用原子炉施設には，設計基準事故対処設備及び重大事故等対処設備に対して重大事故等の収束に必要となる十分な水の量を供給するために必要な重大事故等対処設備として，復水貯蔵タンク，サプレッションチェンバ及 びほう酸水注入系貯蔵タンクを重大事故等の収束に必要となる水源と して設ける設計とする。

また，これら重大事故等の収束に必要となる水源とは別に，代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽（No．2）を設ける設計とす
3.6 重大事故等の収束に必要となる水源

変更なし

変更前	変更後
る。 また，淡水が枯渴した場合に，海を水源として利用できる設計とする。復水貯蔵タンクは，想定される重大事故等時において，原子炉圧力容器への注水及び原子炉格納容器へのスプレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段である高圧代替注水系，低圧代替注水系（常設）（復水移送ポンプ），原子炉格納容器代替スプレイ椧却系（常設）及び原子炉格納容器下部注水系（常設）（復水移送ポンプ） の水源として使用できる設計とする。 サプレッションチェンバ（容量 $2800 \mathrm{~m}^{3}$ ，個数 1）は，想定される重大事故等時において，原子炉圧力容器への注水及び原子炉格納容器へのス プレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段である代替循環冷却系及び原子炉格納容器下部注水系（常設）（代替循環冷却ポンプ）並びに重大事故等対処設備（設計基準拡張）である残留熱除去系（格納容器スプレイ冷却モード）及び残留熱除去系（サプレ ッションプール水冷却モード）の水源として使用できる設計とする。 ほう酸水注入系貯蔵タンクは，想定される重大事故等時において，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失し た場合の代替手段であるほう酸水注入系の水源として使用できる設計 とする。 代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）は，想定される重大事故等時において，原子炉圧力容器への注水及び原子炉格納容器へのスプレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型），原子炉格納容器代替 スプレイ冷却系（可搬型），原子炉格納容器フィルタベント系への水補	

表1原子炉格納施設の主要設備リスト（1／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 緩 } \\ & \text { } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
	－	原子炬格納容器本体	－		原子炉格納容器	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
	－	機器搬出入口	－	機器搬出入用ハッチ	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				逃がし安全弁搬出入口	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				制御棒駆動機構搬出入口	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				サプレッションチェンバ出入口	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
	－	エアロック	－	所員用エアロック	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（ $\mathrm{X}-5$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{~B}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{C}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（ $\mathrm{X}-10 \mathrm{D}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（ X －11）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（ $\mathrm{X}-12 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（ $\mathrm{X}-12 \mathrm{~B}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					

表1原子炉格納施設の主要設備リスト（2／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 絔 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 蓉 } \\ & \text { 器 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（ $\mathrm{X}-13 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-13 \mathrm{~B}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－14）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－20）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－21）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－22）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －30A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~B}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －31B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －31C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-32 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-32 \mathrm{~B}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-33 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －33B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－34）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（3／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 絔 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 烙 } \\ & \text { 納 } \\ & \text { 囍 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（X－35）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－36）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－37）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－50）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－51）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－52）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－60）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －61A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －61B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －62A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －62B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－63）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－64）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－70）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－71）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-72 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（4／42）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 烙 } \\ & \text { 納 } \\ & \text { 囍 } \end{aligned}$	－	原子炬格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（ $\mathrm{X}-72 \mathrm{~B}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－73）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－80）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－81）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-82 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-82 \mathrm{~B}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－90）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－91）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－92）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－93）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －106B ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －130A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －130B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －130C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－130D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-131$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（5／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 絔 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 烙 } \\ & \text { 納 } \\ & \text { 囍 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（ X －132A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －132B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －132C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－132D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（ X －133A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －133B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －133C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－133D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －134A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －134B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －134C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－134D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －135A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －135B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －135C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－135D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（6／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絽 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス
	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炬格納容器配管貫通部（X－136A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（X－136B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（X－137A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－137B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（X－137C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－137D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（X－138）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（X－139A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（X－139B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（ X －140A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（X－140B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（ X －150）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（ X －151A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（X－151B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（ X －152A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（X－152B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		

表1原子炉格納施設の主要設備リスト（7／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 絔 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 蓉 } \\ & \text { 器 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（X－152C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－152D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-153$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-154$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －155）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －160A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －160B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－160C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－160D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －161）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －190A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－190B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －191A ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－191B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－205A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－205B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（8／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 烙 } \\ & \text { 納 } \\ & \text { 谽 } \end{aligned}$		原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（X－212）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（X－213A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（X－213B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（X－214A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（ X －214B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－214C）	S	格納容器	常設耐震／防止常設／緩和	SA クラス 2	変更なし				
				原子炬格納容器配管貫通部（ $\mathrm{X}-215 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
	－			原子炬格納容器配管貫通部（X－215B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －217）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－218）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－219）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－220）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-221$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－222）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －223）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（9／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絽 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（X－230）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－231）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（X－232A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－232B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－233）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－240）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －241）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（ X －242）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（ X －243）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（X－260A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（X－260B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（X－261A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（X－261B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（X－262A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（X－262B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（X－263）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		

表1原子炉格納施設の主要設備リスト（10／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 緬 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 蓉 } \\ & \text { 器 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	配管貫通部	原子炉格納容器配管貫通部（X－270A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－270B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－270C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－270D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－270E）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－270F）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-271 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－271B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-272 \mathrm{~A}$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－272B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －272C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－272D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－272E）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－272F）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-280$ ）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －281）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（11／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 蒳 } \\ & \text { 䠢 } \end{aligned}$	－	原子炉格納容器配管貫通部及び電気配線貫通部	電気配線貫通部	原子炉格納容器電気配線貫通部（X－ 100A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器電気配線貫通部（X－ 100B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器電気配線貫通部（X－ 100C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器電気配線貫通部（X－ 100D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器電気配線貫通部（X－ 101A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器電気配線貫通部（X－ 101B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器電気配線貫通部（X－ 101C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器電気配線貫通部（X－ 101D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器電気配線貫通部（X－ 102A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器電気配線貫通部（X－ 102B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器電気配線貫通部（X－ 102C）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器電気配線貫通部（X— 102D）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器電気配線貫通部（X－ 102E）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器電気配線貫通部（X－ 103A）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
				原子炬格納容器電気配線貫通部（X－ 103B）	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2			変更なし		

表1原子炉格納施設の主要設備リスト（12／42）

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（13／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
原烺建屋	－	エアロック	－		原子炉建屋エアロック	S	－	常設／緩和	－	変更なし				
		原子炉建屋基礎 スラブ		原子炉建屋基礎版＊2	－	－	－		変更なし					
	－	真空破壊装置	－	真空破壊弁	S	－	常設耐震／防止常設／緩和	－	変更なし					
		ダウンカマ		ダウンカマ	S	クラス 2	常設耐震／防止 常設／緩和	SAクラス 2	変更なし					
				ベント管	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				ベント管ベローズ	S	格納容器	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
		ベントヘッダ		ベントヘッダ	S	クラス 2	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
	$\begin{array}{r} \text { 器原 } \\ \text { 却 } \\ \text { 万o 㚸 } \end{array}$	原子炉格納容器	主配管	ドライウェルスプレイ管	S	クラス 2	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
	$\begin{gathered} \text { 系工笿 } \\ \text { 泠綌 } \end{gathered}$	安全設備		サプレッションチェンバスプレイ管	S	クラス 2	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
		原子炉格納容器安全設備	ポンプ	復水移送ポンプ	－	－	常設／緩和	SAクラス 2	変更なし					
				代替循環冷却ポンプ	－	－	常設／緩和	SA クラス 2	変更なし					
				大容量送水ポンプ（タイプ I）	－	－	可搬／緩和	SA クラス 2	変更なし					
			容器	復水貯蔵タンク	－	－	常設／緩和	SA クラス 2	変更なし					
			万過装置	残留熱除去系ストレーナ（A）	－	－	常設／緩和	SA クラス 2	変更なし					

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（14／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
圧方澸設犕\vdots○他安全備	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 納 } \\ & \text { 谽 } \\ & \text { 部 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$	原子炉格納容器安全設備	安全弁及び逃 がし弁	E11－F048A	－	－	常設／緩和	－	変更なし				
				E11－F084	－	－	常設／緩和	－	変更なし				
				E11－F085	－	－	常設／緩和	－	変更なし				
			主配管	復水貯蔵タンク～E22－F014	－	－	常設／緩和	SAクラス 2	変更なし				
				E22－F014～補給水よりの第一アンカ	－	－	常設／緩和	SAクラス 2	変更なし				
				補給水よりの第一アンカ～復水貯蔵夕 ンク出口配管分岐点	－	－	常設／緩和	SA クラス 2	変更なし				
				復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系吸込配管分岐点～P13－ F072	－	－	常設／緩和	SAクラス 2	変更なし				
				P13－F072～補給水系配管合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				補給水系配管合流点～復水移送ポンプ	－	－	常設／緩和	SAクラス 2	変更なし				
				復水移送ポンプ～低圧代替注水系注入配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系注入配管分岐点～低圧代替注水系注入配管 B 系分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系注入配管 B 系分岐点～低圧代替注水系注入配管合流点 2	－	－	常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（15／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
圧低減設備$¿$他他安全設備	$\begin{aligned} & \text { 原 } \\ & \text { 饰 } \\ & \text { 格 } \\ & \text { 綌 } \\ & \text { 器 } \\ & F \\ & \text { 部 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$	原子炉格納容器安全設備	主配管	低圧代替注水系注入配管合流点 2～原子炉格納容器下部注水系注入配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器下部注水系注入配管分岐点～原子炬格納容器配管貫通部（X－92）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-92$ ）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－92）～原子炉格納容器下部注水配管開放端	－	－	常設／緩和	SAクラス 2	変更なし				
				残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{~A}$ ）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部 $(\mathrm{X}-214 \mathrm{~A}) ~$ サプレッションチェンバ出口配管 A 系 合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				サプレッションチェンバ出口配管 A 系合流点～代替循環冷却系吸込配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				代替循環冷却系吸込配管分岐点～代替循環冷却ポンプ	－	－	常設／緩和	SAクラス 2	変更なし				
				代替循環冷却ポンプ～代替循環冷却系注入配管合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）	－	－	常設／緩和	SAクラス 2	変更なし				
				残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				残留熱除去系熱交換器代替循環冷却系出口配管分岐点～残留熱除去系熱交換器（A）バイパス配管合流点	－	－	常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（16／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { 原 } \\ & \text { 炉 } \\ & \text { 格 } \\ & \text { 纙 } \\ & \text { 部 } \\ & \text { 注 } \\ & \text { 水 } \end{aligned}$	原子炉格納容器安全設備	主配管	残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）バイ パス配管合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				残留熱除去系熱交換器代替循環冷却系出口配管分岐点～E11－F088	－	－	常設／緩和	SAクラス 2	変更なし				
				E11－F088～低圧代替注水系注入配管合流点 2	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉•格納容器下部注水接続口（北）～低圧代替注水系注入配管 A 系分岐点	－	－	常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器下部注水系注入配管分岐点～低圧代替注水系注入配管 A 系分岐点	－	－	常設／緩和	SAクラス 2			変更なし		
				原子炉•格納容器下部注水接続口（東）～低圧代替注水系注入配管合流点 1	－	－	常設／緩和	SAクラス 2			変更なし		
				取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬／緩和	SA クラス 3			変更なし		
				送水用ホース（300A： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	－	－	可搬／緩和	SA クラス 3			変更なし		
				注水用ヘッダ	－	－	可搬／緩和	SAクラス 3			変更なし		
				送水用ホース（150A：1m，2m，5m，10m，20m）	－	－	可搬／緩和	SA クラス 3			変更なし		
	$\begin{aligned} & \text { 原 } \\ & \text { 哣 } \end{aligned}$			復水移送ポンプ	－	－	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
			プ	大容量送水ポンプ（タイプI）	－	－	可搬／防止可搬／緩和	SAクラス 3			変更なし		
	$\begin{aligned} & \text { 却器 } \\ & \text { 潫 } \\ & \text { 替 } \end{aligned}$	安全設備	容器	復水貯蔵タンク	－	－	常設耐震／防止常設／緩和	SAクラス 2			変更なし		
	$\begin{aligned} & \text { Z } \\ & \text { र } \\ & \text { Y } \end{aligned}$		万過装置	可搬型ストレーナ	－	－	可搬／防止可搬／緩和	SAクラス 3			変更なし		

表1原子炉格納施設の主要設備リスト（17／42）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 梦 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		原子炬格納容器安全設備	主配管	復水貯蔵タンク～E22－F014	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				E22－F014～補給水よりの第一アンカ	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				補給水よりの第一アンカ～復水貯蔵夕 ンク出口配管分岐点	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし				
				復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系吸込配管分岐点～P13－ F072	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				P13－F072～補給水系配管合流点	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし				
				補給水系配管合流点～復水移送ポンプ	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし				
				復水移送ポンプ～低圧代替注水系注入配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系注入配管分岐点～低圧代替注水系注入配管 B 系分岐点	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし				
				低圧代替注水系注入配管 B 系分岐点～低圧代替注水系注入配管合流点 2	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系注入配管合流点 $2 \sim$ 原子炉格納容器下部注水系注入配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炬格納容器下部注水系注入配管分岐点～低圧代替注水系注入配管 A 系分岐点	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし				
				低圧代替注水系注入配管 A 系分岐点～ E11－F041	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				E11－F041～低圧代替注水系A系注入配管合流点	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし				
				ドライウェルスプレイ注入配管 A 系分岐点～低圧代替注水系 A 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（18／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 絔 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
圧低澸設備\succsim他他安恚備		原子炉格納容器安全設備	主配管	ドライウェルスプレイ注入配管 A 系分 岐点～原子炉格納容器代替スプレイ泠 却系 A 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器代替スプレイ冷却系 A 系注入配管合流点～原子炉格納容器配 管貫通部 $(\mathrm{X}-30 \mathrm{~A})$	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－30A）	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				ドライウェルスプレイ管	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系注入配管 B 系分岐点～ E11－F026B	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				E11－F026B～低圧代替注水系 B 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				ドライウェルスプレイ注入配管 B 系分岐点～低圧代替注水系 B 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				ドライウェルスプレイ注入配管 B 系分 岐点～原子炉格納容器代替スプレイ冷 却系 B 系注入配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器代替スプレイ冷却系 B 系注入配管合流点～原子炉格納容器配 管貫通部 $(X-30 B)$	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~B}$ ）	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				格納容器スプレイ接続口（北）～原子炉 格納容代替スプレイ冷却系 A 系注入 配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				$\begin{array}{\|l\|} \hline \text { 格納容器スプレイ接続口 (東) ~原子炉 } \\ \text { 格納容器代替スプレイ椧却系 B 系注入 } \\ \text { 配管合流点 } \end{array}$	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				取水用ホース（250A ：5m， $10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬／防止可搬／緩和	SAクラス 3	変更なし				
				送水用ホース（300A： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	－	－	可搬／防止可搬／緩和	SAクラス 3	変更なし				

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（19／42）

$\begin{aligned} & \text { 霍 } \\ & \text { 爻 } \end{aligned}$	$\begin{aligned} & \text { 綵 } \\ & \text { 森 } \end{aligned}$			変更前					変更後				
		機器区分			設計基淮対象施設＊1		重大事故等対処設備＊＊			設計基漼対象施設＊1		重大事故等対処設備＊1	
				名称	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器ソラス	設備分類	重大事故等機器クラス	名称	$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
		原子炉格納容器	主酲管	注水用ヘッダ	－	－	可搬／防止可搬／緩和	SAクラス 3	変更なし				
		安全設備	雨	送水用ホース（150A ：1m， $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬／防止可搬／緩和	SAクラス 3	変更なし				
		$\begin{aligned} & \text { 原子炉格納容器 } \\ & \text { 安全設備 } \end{aligned}$	熱交换器	残留熱除去系熱交換器（ A ）	－	－	常設／緩和	SAクラス 2	変更なし				
			ポンプ	代替循睘洽却ポンプ	－	－	常設／緩和	SAクラス 2	変更なし				
			万渦装置	残留熱除去系ストレーナ（A）	－	－	常設／緩和	SAクラス2	変更なし				
			安全弁及び逃 がし弁	E11－F084	－	－	常設／緩和	－	変更なし				
				E11－F085	－	－	常設／（緩和	－	変更なし				
				E11－F048A	－	－	常設／緩和	－	変更なし				
				E11－F048B	－	－	常設／緩和	－	変更なし				
			主配管	残留熱除去系ストレーナ (A)～原子炉格納容器配管貫通部（ $\mathrm{X}-214 \mathrm{~A}$ ）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X － 214 A ）	－	－	常設 ／緩和 $^{\text {a }}$	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－214A）～ サプレッションチェンバ出口配管 A 采合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				サプレッションチェンバ出口配管A系合流点～代替循澴冷却系吸込配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				代替循環冷却系吸込配管分岐点～代替循環冷却ポンプ	－	－	常設／緩和	SAクラス 2	変更なし				
				代替循環冷却ポンプ～代替循環冷却系注入配管合流点	－	－	常設／綬和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（20／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { 岱 } \\ & \text { 替 } \\ & \text { 鱞 } \\ & \text { 却 } \\ & \text { 手 } \end{aligned}$	原子炉格納容器安全設備	主配管	代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	－	－	常設／緩和	SA クラス 2	変更なし				
				残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）	－	－	常設／緩和	SAクラス 2	変更なし				
				残留熱除去系熱交換器 $(A) \sim$ 残留熱除去 系熱交換器代替循環冷却系出口配管分岐点	－	－	常設／緩和	SA クラス 2	変更なし				
				残留熱除去系熱交換器代替循環冷却系 出口配管分岐点～残留埶除系熱交換 器（A）バイパス配管合流点	－	－	常設／緩和	SA クラス 2	変更なし				
				残留熱除去系窫交換器（A）バイパス配管 合流点～原子㚘停止時泠却モード A 系 注入配管分岐点	－	－	常設／緩和	SA クラス 2	変更なし				
				原子炉停止時冷却モード A 系注入配管分岐点～ドライウェルスプレイ注入配管 A 系分岐点	－	－	常設／緩和	SA クラス 2	変更なし				
				ドライウェルスプレイ注入配管 A 系分 岐点～原子炉格納容器代替スプレイ泠 却系 A 系注入配管合流点	－	－	常設／緩和	SA クラス 2	変更なし				
				原子炉格納容器代替スプレイ冷却系 A 系注入配管合流点～原子炉格納容器配 管貫通部 $(\mathrm{X}-30 \mathrm{~A})$	－	－	常設／緩和	SA クラス 2	変更なし				
				原子炉格納容器配管貫通部（X－30A）	－	－	常設／緩和	SA クラス 2	変更なし				
				ドライウェルスプレイ管	－	－	常設／緩和	SA クラス 2	変更なし				
				残留熱除去系熱交換器代替循環冷却系出口配管分岐点～E11－F088	－	－	常設／緩和	SA クラス 2	変更なし				
				E11－F088～低圧代替注水系注入配管合流点 2	－	－	常設／緩和	SA クラス 2	変更なし				
				低圧代替注水系注入配管 B 系分岐点～低圧代替注水系注入配管合流点 2	－	－	常設／緩和	SA クラス 2	変更なし				
				低圧代替注水系注入配管 B 系分岐点～ E11－F026B	－	－	常設／緩和	SA クラス 2	変更なし				

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（21／42）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 梸 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備 ${ }^{* 1}$	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
圧低減設備\succsim他他安全設備		原子炉格納容器安全設備	主配管	E11－F026B～低圧代替注水系 B 系注入配管合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－31B）	－	－	常設／緩和	SA クラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~B}$ ）	－	－	常設／緩和	SA クラス 2	変更なし				
				原子炬格納容器配管貫通部（X－31B）～原子炉圧力容器	－	－	常設／緩和	SAクラス 2	変更なし				
				ドライウエルスプレイ注入配管 A 系分岐点～低圧代替注水系 A 系注入配管合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）	－	－	常設／緩和	SA クラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）	－	－	常設／緩和	SA クラス 2	変更なし				
				原子炬格納容器配管貫通部（X－31A）～原子炬圧力容器	－	－	常設／緩和	SA クラス 2	変更なし				
	高䒫替乼水系	原子炉格納容器安全設備	ポンプ	高圧代替注水系タービンポンプ	－	－	常設／緩和	SA クラス 2			変更なし		
			容器	復水貯蔵タンク	－	－	常設／緩和	SA クラス 2			変更なし		
			主配管	原子炉圧力容器～原子炉隔離時冷却系蒸気配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉隔離時冷却系蒸気配管分岐点～原子炉格納容器配管貫通部（X－36）	－	－	常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（22／42）

$\begin{aligned} & \text { 設 } \\ & \text { 犕 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 厓 } \\ & \text { 方 } \\ & \text { 澸 } \\ & \text { 備 } \\ & \text { 毋 } \\ & \text { 他 } \\ & \text { O } \\ & \text { 安 } \\ & \text { 設 } \\ & \text { 備 } \end{aligned}$	$\begin{aligned} & \text { 高 } \\ & \text { 底 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 永 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器安全設備	主配管	原子炉格納容器配管貫通部（X－36）	－	－	常設／緩和	SA クラス 2			変更なし		
				原子炬格納容器配管貫通部（X－36）～原子炉格納容器外側アンカ	－	－	常設／緩和	SA クラス 2			変更なし		
				原子炉格納容器外側アンカ～高圧代替注水系蒸気入口配管分岐点	－	－	常設／緩和	SA クラス 2			変更なし		
				高圧代替注水系蒸気入口配管分岐点～高圧代替注水系タービンポンプ	－	－	常設／緩和	SA クラス 2			変更なし		
				高圧代替注水系タービンポンプ～原子炬隔離時冷却系タービン排気配管合流点	－	－	常設／緩和	SA クラス 2			変更なし		
				原子炉隔離時冷却系夕ービン排気配管 合流点～原子炉格納容器配管貫通部（X－ 222 ）	－	－	常設／緩和	SA クラス 2			変更なし		
				原子炉格納容器配管貫通部（ $\mathrm{X}-222$ ）	－	－	常設／緩和	SA クラス 2			変更なし		
				原子炉格納容器配管貫通部（ $\mathrm{X}-222$ ）～原子炬隔離時冷却系スパージャ	－	－	常設／緩和	SA クラス 2			変更なし		
				復水貯蔵タンク～E22－F014	－	－	常設／緩和	SA クラス 2			変更なし		
				E22－F014～補給水よりの第一アンカ	－	－	常設／緩和	SA クラス 2			変更なし		
				補給水よりの第一アンカ～復水貯蔵夕 ンク出口配管分岐点	－	－	常設／緩和	SA クラス 2			変更なし		
				復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	－	－	常設／緩和	SAクラス 2			変更なし		
				低圧代替注水系吸込配管分岐点～高圧代替注水系吸込配管分岐点	－	－	常設／緩和	SA クラス 2			変更なし		
				高圧代替注水系吸込配管分岐点～高圧代替注水系タービンポンプ	－	－	常設／緩和	SA クラス 2			変更なし		

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（23／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 采 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
圧货減設備\succsim〇他O安全備	$\begin{aligned} & \text { 高 } \\ & \text { 庄 } \\ & \text { 代 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	原子炬格納容器安全設備	主配管	高圧代替注水系タービンポンプ～高圧代替注水系注入配管合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				高圧代替注水系注入配管合流点～原子炉冷却材浄化系 A 系注入配管合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉冷却材浄化系 A 系注入配管合流点 ～原子炉格納容器配管貫通部（X－12A）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-12 \mathrm{~A}$ ）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－12A）～原子炬圧力容器	－	－	常設／緩和	SAクラス 2	変更なし				
	$\begin{aligned} & \text { 低 } \\ & \text { 庄 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	ポンプ		復水移送ポンプ	－	－	常設／緩和	SAクラス 2	変更なし				
				大容量送水ポンプ（タイプI）	－	－	可搬／緩和	SA クラス 3	変更なし				
		原子炉格納容器安全設備	容器	復水貯蔵タンク	－	－	常設／緩和	SAクラス 2	変更なし				
			主配管	復水貯蔵タンク～E22－F014	－	－	常設／緩和	SA クラス 2	変更なし				
				E22－F014～補給水よりの第一アンカ	－	－	常設／緩和	SAクラス 2	変更なし				
				補給水よりの第一アンカ～復水貯蔵夕 ンク出口配管分岐点	－	－	常設／緩和	SA クラス 2	変更なし				
				復水貯蔵タンク出口配管分岐点～低圧代替注水系吸込配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（24／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爻 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 絔 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { 低 } \\ & \text { 㕍 } \\ & \text { 替 } \\ & \text { 注 } \\ & \text { 水 } \\ & \text { 系 } \end{aligned}$	原子炉格納容器安全設備	主配管	低圧代替注水系吸込配管分岐点～P13－ F072	－	－	常設／緩和	SA クラス 2			変更なし		
				P13－F072～補給水系配管合流点	－	－	常設／緩和	SA クラス 2			変更なし		
				補給水系配管合流点～復水移送ポンプ	－	－	常設／緩和	SA クラス 2			変更なし		
				復水移送ポンプ～低圧代替注水系注入配管分岐点	－	－	常設／緩和	SAクラス 2			変更なし		
				低圧代替注水系注入配管分岐点～低圧代替注水系注入配管 B 系分岐点	－	－	常設／緩和	SA クラス 2			変更なし		
				低圧代替注水系注入配管 B 系分岐点～低圧代替注水系注入配管合流点 2	－	－	常設／緩和	SAクラス 2			変更なし		
				低圧代替注水系注入配管合流点 $2 \sim$ 原子炉格納容器下部注水系注入配管分岐点	－	－	常設／緩和	SA クラス 2			変更なし		
				原子炉格納容器下部注水系注入配管分 $\left.\begin{array}{l}\text { 岐点～低圧代替注水系注入配管 A 系分 } \\ \text { 岐点 }\end{array} \right\rvert\,$	－	－	常設／緩和	SA クラス 2			変更なし		
				低圧代替注水系注入配管 A 系分岐点～ E11－F041	－	－	常設／緩和	SA クラス 2			変更なし		
				E11－F041～低圧代替注水系A系注入配管合流点	－	－	常設／緩和	SA クラス 2			変更なし		
				低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）	－	－	常設／緩和	SA クラス 2			変更なし		
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~A}$ ）	－	－	常設／緩和	SA クラス 2			変更なし		
				原子炉格納容器配管貫通部（X－31A）～原子炬圧力容器	－	－	常設／緩和	SA クラス 2			変更なし		
				低圧代替注水系注入配管 B 系分岐点～ E11－F026B	－	－	常設／緩和	SA クラス 2			変更なし		

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（25／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 圧 } \\ & \text { 方 } \\ & \text { 低 } \\ & \text { 墭 } \\ & \text { 備 } \\ & \text { D } \\ & \text { 他 } \\ & \text { 安 } \\ & \text { 坴 } \\ & \text { 備 } \end{aligned}$	低底荴濉水采	原子炉格納容器安全設備	主配管	E11－F026B～低圧代替注水系 B 系注入配管合流点	－	－	常設／緩和	SAクラス 2	変更なし				
				低圧代替注水系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－31B）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ $\mathrm{X}-31 \mathrm{~B}$ ）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－31B）～原子炬圧力容器	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炬•格納容器下部注水接続口（北）～低圧代替注水系注入配管 A 系分岐点	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉•格納容器下部注水接続口（東）～低圧代替注水系注入配管合流点 1	－	－	常設／緩和	SAクラス 2	変更なし				
				取水用ホース（ $250 \mathrm{~A}: 5 \mathrm{~m}, 10 \mathrm{~m}, 2 \mathrm{~m}$ ）	－	－	可搬／緩和	SA クラス 3	変更なし				
				送水用ホース（300A： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	－	－	可搬／緩和	SAクラス 3	変更なし				
				注水用ヘッダ	－	－	可搬／緩和	SAクラス 3	変更なし				
				送水用ホース（150A：1m，2m，5m，10m，20m）	－	－	可搬／緩和	SAクラス 3	変更なし				
	$\begin{array}{r} \hline \text { ほ } \\ \text { 而 } \\ \text { 系酸 } \\ \text { 惟 } \\ \text { 入 } \\ \hline \end{array}$	原子炉格納容器安全設備	ポンプ	ほう酸水注入系ポンプ	－	－	常設／緩和	SA クラス 2	変更なし				
			容器	ほう酸水注入系貯蔵タンク	－	－	常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（26／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
	ほ俊酸水注系	原子炉格納容器安全設備	安全弁及び逃 がし弁		C41－F003A，B	－	－	常設／緩和	－	変更なし				
				C41－F022	－	－	常設／緩和	－	変更なし					
			主配管	ほう酸水注入系貯蔵タンク～ほう酸水注入系ポンプ	－	－	常設／緩和	SAクラス 2	変更なし					
				ほう酸水注入系ポンプ～原子炉格納容器配管貫通部（X－22）	－	－	常設／緩和	SAクラス 2	変更なし					
				原子炬格納容器配管貫通部（ $\mathrm{X}-22$ ）	－	－	常設／緩和	SAクラス 2	変更なし					
				$\begin{array}{\|l\|} \hline \text { 原子炬格納容器配管貫通部 (X-22)~差 } \\ \text { 圧検出・ぼ酸水注人系配管 (ティーよ } \\ \text { りN11ノズルまでの外管) } \end{array}$	－	－	常設／緩和	SA クラス 2	変更なし					
		熱交換器		残留熱除去系熱交換器（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし			
				残留熱除去系熱交換器（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし			
		原子炉格納容器安全設備	ポンプ	残留熱除去系ポンプ（A），（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				残留熱除去系ストレーナ（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
				残留熱除去系ストレーナ（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
			安全弁及び逃 がし弁	E11－F048A	－	－	常設／防止 （DB 拡張）	－	変更なし					
				E11－F048B	－	－	常設／防止 （DB 拡張）	－	変更なし					
			主配管	残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					

表1原子炉格納施設の主要設備リスト（27／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 䋁 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震 重要度 分類	機器クラス	設備分類	重大事故等機器クラス
圧低減設備\succsim他他安全設備		原子炉格納容器安全設備	主配管	原子炉格納容器配管貫通部（ X －214A）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（X－214A）～ サプレッションチェンバ出口配管 A 系合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
				サプレッションチェンバ出口配管 A 系合流点～代替循環冷却系吸込配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
				残留熱除去系ポンプ（A）～代替循環冷却系注入配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
				代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
				残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）	－	－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
				$\begin{aligned} & \text { 残留熱除去系熱交換器 (A) ~残留熱除去 } \\ & \text { 熱交換器代替循環冷却系出口配管分 } \end{aligned}$岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				残留熱除去系熱交換器代替復環冷却系 出口配管分岐点～残留熱除去系熱交換 器（A）バイパス配管合流点	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				残留熱除去系熱交換器（A）バイパス配管 合流点～原子炉停止時冷却モード A 采 注入配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
				原子炉停止時冷却モード A 系注入配管 分岐点～ドライウェルスプレイ注入配 管 A 系分岐点管 A 系分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				ドライウェルスプレイ注入配管 A 系分 岐点～原子炉格納容器代替スプレイ泠 却系 A 系注入配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
				原子炉格納容器代替スプレイ冷却系 A 系注入配管合流点～原子炉格納容器配 管貫通部 $(\mathrm{X}-30 \mathrm{~A})$	－	－	常設／防止 （DB 拡張）	SA クラス 2			変更なし		
				原子炉格納容器配管貫通部（ $\mathrm{X}-30 \mathrm{~A}$ ）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		

表1原子炉格納施設の主要設備リスト（28／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		原子炉格納容器安全設備	主配管	ドライウェルスプレイ管	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				原子炬停止時冷却モード A 系注入配管分岐点～サプレッションプール水泠却 モードA系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				サプレッションプール水冷却モード A 系戻り配管分岥点～サプレッションチ エンバスフフレイ注入配管 A 系分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				サプレッションチェンバスプレイ注入配管 A 系分岐点～原子炉格納容器配管貫通部（X－213A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（ $\mathrm{X}-213 \mathrm{~A}$ ）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				サプレッションチェンバスプレイ管	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －214B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（X－214B）～ サプレッションチェンバ出口配管 B 系合流点	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				サプレッションチェンバ出口配管 B 系合流点～残留熱除去系ポンプ（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（29／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
圧低澸設備\vdotsD他晏坴設備				残留熱除去系熱交換器（B）バイパス配管合流点～原子炉停止時冷却モード B 系注入配管分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				原子炬停止時冷却モード B 系注入配管 分岐点～ドライウェルスプレイ注入配 管 B 系分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				$\begin{array}{\|l\|} \hline \text { ドライウェルスプレイ注入配管 B 系分 } \\ \text { 岐点~原子炉格納容器代替スプレイ泠 } \\ \text { 却系 } \mathrm{B} \text { 系注入配管合流点 } \end{array}$	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				原子炉格納容器代替スプレイ冷却系 B 系注入配管合流点～原子炉格納容器配 管貫通部（X－30B）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
		原子炉格納容器安全設備	主配管	原子炉格納容器配管貫通部（X－30B）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				原子炬停止時冷却モード B 系注入配管 分岐点～サプレッションプールレ水泠却 モード B 系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				サプレッションプール水冷却モード B 系戻り配管分岐点～サプレッシンチ エンバスフフレレイ注入配管 B 系分岐点	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				$\begin{aligned} & \text { サプレッションチェンバスプレイ注入 } \\ & \text { 配管 B 系分岐点~原子炉格納容器配管 } \\ & \text { 貫通部 (X-213B) } \\ & \hline \end{aligned}$	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
				原子炬格納容器配管貫通部（X－213B）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
	$\begin{aligned} & \text { 残 } \\ & \text { 熱 } \end{aligned}$		埶交掹器	残留熱除去系熱交換器（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
	$\begin{aligned} & \text { 涂 } \\ & \text { 水炫 } \end{aligned}$			残留熱除去系熱交換器（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
	$\begin{aligned} & \text { 苓永 } \\ & \text { 却 } \end{aligned}$	原子炉格納容器安全設備	ポンプ	残留熱除去系ポンプ（A），（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
	$\underset{ョ}{\text { 上゙ シ }}$		3渦壮置	残留熱除去系ストレーナ（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		
	シプ		万過衣早	残留熱除去系ストレーナ（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2			変更なし		

表1原子炉格納施設の主要設備リスト（30／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 統 } \\ & \text { 梦 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		原子炉格納容器安全設備	安全弁及び逃 がし弁	E11－F048A	－	－	常設／防止 （DB 拡張）	－	変更なし				
				E11－F048B	－	－	常設／防止 （DB 拡張）	－	変更なし				
			主配管	残留熱除去系ストレーナ（A）～原子炉格納容器配管貫通部（X－214A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（ X －214A ）	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				$\begin{array}{\|l\|} \text { 原子炬格納容器配管貫通部 }(\mathrm{X}-214 \mathrm{~A}) \text { ~ } \\ \text { サプレッションチェンバ出口配管 A 系 } \end{array}$合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				サプレッションチェンバ出口配管 A 系合流点～代替循環冷却系吸込配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				残留熱除去系ポンプ（A）～代替循環冷却系注入配管合流点	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				代替循環冷却系注入配管合流点～残留熱除去系熱交換器（A）バイパス配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				残留熱除去系熱交換器（A）バイパス配管分岐点～残留熱除去系熱交換器（A）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				残留熱除去系熱交換器（A）～残留熱除去系熱交換器代替循環冷却系出口配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				$\begin{array}{\|l\|} \hline \text { 残留熱除去系熱交換器代替循環冷却系 } \\ \text { 出口配管分岐点~残熱除去系熱交換 } \\ \text { 器(A)バイパス配管合流点 } \end{array}$	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				$\begin{aligned} & \text { 残留熱除去系驇交換器 (A) バイパス配管 } \\ & \text { 合流点~原子炉停止時椧却モード A 系 } \\ & \text { 注入配管分岐点 } \end{aligned}$	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				原子炉停止時冷却モード A 系注入配管 分岐点～サプレッションプールレ水泠却 モード A 系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（31／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 爻 } \end{aligned}$	$\begin{aligned} & \text { 系 } \\ & \text { 絔 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備 ${ }^{* 1}$	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		原子炉格納容器安全設備	主配管	$\begin{array}{\|l\|} \hline \text { サプレッションプール水泠却モード A } \\ \text { 系戻り配管分岐点~原子炉格納容器配 } \\ \text { 管費通部 (X-215A) } \end{array}$	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（ $\mathrm{X}-215 \mathrm{~A}$ ）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－215A）～ サプレッションプール水冷却配管 A 系開放端	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				残留熱除去系ストレーナ（B）～原子炉格納容器配管貫通部（X－214B）	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				原子炬格納容器配管貫通部（X－214B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				原子炬格納容器配管貫通部（X－214B）～ サプレッションチェンバ出口配管 B 系 合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				サプレッションチェンバ出口配管 B 系合流点～残留熱除去系ポンプ（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				残留熱除去系ポンプ（B）～残留熱除去系熱交換器（B）バイパス配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				残留熱除去系熱交換器（B）バイパス配管分岐点～残留熱除去系熱交換器（B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				残留熱除去系熱交換器（B）バイパス配管 合流点～原子护停止時泠却モード B 系 注入配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
				原子炉停止時冷却モード B 系注入配管 分岐点～サプレッションプールレ水泠却 モード B 系戻り配管分岐点	－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				
					－	－	常設／防止 （DB 拡張）	SA クラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（32／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器安全設備	主配管		原子炉格納容器配管貫通部（X－215B）	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－215B）～サ プレッションプール水泠却配管 B 系開放端	－	－	常設／防止 （DB 拡張）	SAクラス 2	変更なし					
圧方澸設備\succsim○他安全備		放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	加熱器	非常用ガス処理系空気乾燥装置	S	－	－		変更なし					
			主要弁	T46－F001A，B	S	クラス $2^{* 6}$	－		変更なし					
				T46－F003A，B	S	クラス $2^{* 6}$	－				変更なし			
			主配管	T48－F045～非常用ガス処理系空気乾燥装置入口配管合流点	S	クラス 4	－				変更なし			
				非常用ガス処理系空気乾燥装置入口配管合流点～非常用ガス処理系排風機	S	クラス 4	常設／緩和	SAクラス 2			変更なし			
				原子炉建屋内～非常用ガス処理系排風機入口配管合流点	S	クラス 4	常設／緩和	SAクラス 2			変更なし			
				非常用ガス処理系排風機～非常用ガス処理系フィルタ装置	S	クラス 4	常設／緩和	SAクラス 2			変更なし			
				非常用ガス処理系フィルタ装置～非常用ガス処理系フィルタ装置出口配管合 流点	S	クラス 4	常設／緩和	SAクラス 2			変更なし			
				非常用ガス処理系フィルタ装置出口配管合流点～排気筒	S	クラス 4	常設／緩和	SAクラス 2			変更なし			

表1原子炉格納施設の主要設備リスト（33／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 統 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
	$\begin{aligned} & \text { 幚 } \\ & \text { 㽞 } \\ & \text { 芣 } \\ & \text { 理 } \\ & \text { 奚 } \end{aligned}$	放射性物質浱度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	排風機	非常用ガス処理系排風機	S	－	常設／緩和	－	変更なし				
			フィルタ－	非常用ガス処理系フィルタ装置	S	－	－		変更なし				
		放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	加熱器	可燃性ガス濃度制御系再結合装置加熱器	S	$\stackrel{-}{\text { クラス } 3^{* 3}}$	－		変更なし				
			安全弁及び逃 がし弁	T49－F007A，B	S	－	－		変更なし				
			主要弁	T49－F001A，B	S	クラス 2	－		変更なし				
				T49－F003A，B	S	クラス 2	－		変更なし				
			主配管	ドライウェル～可燃性ガス濃度制御系再結合装置	S	クラス 3	－		変更なし				
				可燃性ガス濃度制御系再結合装置～ T49－F003A，B	S	クラス 3	－		変更なし				
				T49－F003A，B～サプレッションチェンバ	S	クラス 2	－		変更なし				
			ブロワ	可燃性ガス濃度制御系再結合装置ブロ $ワ$	S	－	－		変更なし				
			再結合装置	可燃性ガス濃度制御系再結合装置	S	$\text { クラス } 3^{* 3}$	－		変更なし				
		放射性物質濃度 制御設備及び可 燃性ガス濃度制 御設備並びに格 納容器再循環設 備	再結合装置	静的触媒式水素再結合装置	－	－	常設／緩和	－	変更なし				
	放抑抑制物系質摭散	放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	ポンプ	大容量送水ポンプ（タイプII）	－	－	可搬／緩和	SAクラス 3	変更なし				
			主配管	取水用ホース（250A ： $5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬／緩和	SAクラス 3	変更なし				

表1原子炉格納施設の主要設備リスト（34／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
$\begin{aligned} & \text { 圧 } \\ & \text { 务 } \\ & \text { 低 } \\ & \text { 諴 } \\ & \text { 備 } \\ & \text { D } \\ & \text { 他 } \\ & \text { 安 } \\ & \text { 全 } \\ & \text { 備 } \end{aligned}$	放抑射制物系㑭拡散	放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	主配管	送水用ホース（300A： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	－	－	可搬／緩和	SA クラス 3	変更なし				
				放水砲	－	－	可搬／緩和	SA クラス 3			変更なし		
	機放		ポンプ	大容量送水ポンプ（タイプII）	－	－	可搬／緩和	SA クラス 3			変更なし		
	$\begin{aligned} & \text { 科芴 } \\ & \text { 縓 } \end{aligned}$	制御設備及び可		取水用ホース（250A： $5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}$ ）	－	－	可搬／緩和	SA クラス 3			変更なし		
	$\begin{aligned} & \text { o抑 } \\ & \text { 泡制 } \end{aligned}$	納容器再循環設	主配管	送水用ホース（300A： $2 \mathrm{~m}, 5 \mathrm{~m}, 10 \mathrm{~m}, 20 \mathrm{~m}, 50 \mathrm{~m}$ ）	－	－	可搬／緩和	SAクラス 3			変更なし		
	$\begin{gathered} \text { 炎航 } \\ \text { 空 } \end{gathered}$			放水砲	－	－	可搬／緩和	SA クラス 3			変更なし		
			圧縮機	可搬型窒素ガス供給装置	－	－	可搬／緩和	－			変更なし		
				可搬型窒素ガス供給装置接続口（屋外） ～T48－F011 入口側合流点	－	－	常設／緩和	SA クラス 2			変更なし		
	可			可搬型窒素ガス供給装置接続口（屋内） ～ドライウェル窒素供給配管合流点	－	－	常設／緩和	SA クラス 2			変更なし		
	$\begin{aligned} & \text { 型 } \\ & \text { 䁃 } \end{aligned}$	制御設備及び可燃性ガス濃度制		ドライウェル窒素供給配管分岐点 $2 \sim$ 原子炉格納容器配管貫通部（X－281）	－	－	常設／緩和	SA クラス 2			変更なし		
	供	納容器再循環設	主配管	原子炉格納容器配管貫通部（ X －281）	－	－	常設／緩和	SAクラス 2			変更なし		
				T48－F011 入口側合流点～T48－F002 出口側合流点	－	－	常設／緩和	SA クラス 2			変更なし		
				T48－F002 出口側合流点～原子炬格納容器配管貫通部（X－80）	－	－	常設／緩和	SA クラス 2			変更なし		
				原子炬格納容器配管貫通部（ $\mathrm{X}-80$ ）	－	－	常設／緩和	SA クラス 2			変更なし		

表1原子炉格納施設の主要設備リスト（35／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 旈 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊＊		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
	$\begin{array}{r} \text { 可 } \\ \text { 搬 } \\ \text { 型 } \\ \text { 系 } \\ \text { 素 } \\ \text { 不 } \\ \text { 供 } \\ \text { 給 } \end{array}$	放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	主配管	窒素供給用ホース（50A：5m）	－	－	可搬／緩和	SA クラス 3	変更なし				
				窒素供給用ヘッダ	－	－	可搬／緩和	SAクラス 3	変更なし				
				可搬型空素がス供給装置接続管	－	－	可搬／緩和	SAクラス 3	変更なし				
		放射性物質濃度制御設備及び可燃性ガス浱度制御設備並びに格納容器再循環設備	ポンプ	大容量送水ポンプ（タイプI）	－	－	可搬／緩和	SAクラス 3	変更なし				
			圧縮機	可搬型空素がス供給装置	－	－	可搬／緩和	－	変更なし				
			容器	フィルタ装置＊＊	－	－	常設／緩和	SAクラス 2	変更なし				
			安全弁及び逃 がし弁	T63－F006	－	－	常設／緩和	－	変更なし				
			主要弁	T48－F019	－	－	常設／緩和	SAクラス 2	変更なし				
				T48－F022	－	－	常設／緩和	SAクラス 2	変更なし				
				T63－F001	－	－	常設／緩和	SAクラス 2	変更なし				
				T63－F002	－	－	常設／緩和	SAクラス 2	変更なし				
			主配管	原子炉格納容器配管貫通部（ X －230）	－	－	常設／緩和	SAクラス 2	変更なし				
				原子炉格納容器配管貫通部（X－230）～ド ライウェル出口配管分岐点	－	－	常設／緩和	SAクラス 2	変更なし				

表1原子炉格納施設の主要設備リスト（36／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基漼対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備	主配管	原子炬格納容器配管貫通部（ $\mathrm{X}-81$ ）	－	－	常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（X－81）～ド ライウェル出口配管分岐点	－	－	常設／緩和	SA クラス 2			変更なし		
				サプレッションチェンバ出口配管分岐点3～フィルタ装置	－	－	常設／緩和	SAクラス 2			変更なし		
				フィルタ装置～フィルタ装置出口側ラ プチャディスク	－	－	常設／緩和	SAクラス 2			変更なし		
				フィルタ装置出口側ラプチャディスク ～排気管	－	－	常設／緩和	SAクラス 2			変更なし		
				フィルタ装置（A）～フィルタ装置（B）	－	－	常設／緩和	SA クラス 2			変更なし		
				フィルタ装置（B）～フィルタ装置（C）	－	－	常設／緩和	SA クラス 2			変更なし		
				フィルタ装置連結管	－	－	常設／緩和	SA クラス 2			変更なし		
				可搬型窒素ガス供給装置接続口（屋外） ～T48－F011 入口側合流点	－	－	常設／緩和	SAクラス 2			変更なし		
				可搬型窒素ガス供給装置接続口（屋内） ～ドライウェル窒素供給配管合流点	－	－	常設／緩和	SAクラス 2			変更なし		
				T48－F011 入口側合流点～T48－F002 出口側合流点	－	－	常設／緩和	SAクラス 2			変更なし		
				T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80）	－	－	常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（ $\mathrm{X}-80$ ）	－	－	常設／緩和	SA クラス 2			変更なし		
				ドライウェル窒素供給配管分岐点 $2 \sim$ 原子炉格納容器配管貫通部（X－281）	－	－	常設／緩和	SAクラス 2			変更なし		
				原子炉格納容器配管貫通部（X－281）	－	－	常設／緩和	SAクラス 2			変更なし		

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（37／42）

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（38／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震 重要度 分類		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器調気設備	主要弁		T48－F001	S	クラス 2	－		変更なし				
				T48－F002	S	クラス 2	－		変更なし					
				T48－F003	S	クラス 2	－		変更なし					
				T48－F010	S	クラス 2	－		変更なし					
				T48－F011	S	クラス 2	－		変更なし					
				T48－F012	S	クラス 2	－		変更なし					
				T48－F016	S	クラス 2	－		変更なし					
				T48－F019	S	クラス 2	－		変更なし					
				T48－F020	S	クラス 2	－		変更なし					
				T48－F021	S	クラス 2	－		変更なし					
				T48－F022	S	クラス 2		－	変更なし					
			主配管	T48－F001～T48－F002 出口側合流点	S	クラス 2	－		変更なし					
				T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80）	S	クラス 2	－		変更なし					

表1原子炉格納施設の主要設備リスト（39／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 統 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後				
					設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				名称	耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		原子炉格納容器調気設備	主配管	ドライウェル入口配管分岐点～サプレ ッションチェンバ	S	クラス 2					変更なし		
				原子炉建屋内～サプレッションチェン バ入口配管合流点 1	S	クラス 2					変更なし		
				原子炉建屋内～サプレッションチェン バ入口配管合流点 2	S	クラス 2					変更なし		
				T48－F016～ドライウェル入口配管合流点	S	クラス 2					変更なし		
				T48－F010～T48－F011 入口側合流点	S	クラス 2					変更なし		
				T48－F011 入口側合流点～T48－F002 出口側合流点	S	クラス 2					変更なし		
				ドライウェル補給用窒素配管分岐点～原子炉建屋内吸入配管合流点	S	クラス 2					変更なし		
				原子炉格納容器配管貫通部（X－81）～ド ライウェル出口配管分岐点	S	クラス 2					変更なし		
				ドライウェル出口配管分岐点～T48－ F046	S	クラス 2					変更なし		
				原子炉格納容器配管貫通部（X－230）～ド ライウェル出口配管分岐点	S	クラス 2					変更なし		
				サプレッションチェンバ出口配管分岐点 1～T48－F045	S	クラス 2					変更なし		
				液体窒素貯槽～パージ用液体窒素蒸発器＊2	C	クラス 3					変更なし		
				パージ用液体窒素蒸発器＊2	C	クラス 3					変更なし		
				パージ用液体窒素蒸発器～T48－F016＊2	C	クラス 3					変更なし		
				液体窒素貯槽出口配管分岐点～常時補給用液体窒素蒸発器（送ガス用）＊2	C	クラス 3					変更なし		

表1原子炉格納施設の主要設備リスト（40／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊${ }^{* 1}$		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		原子炉格納容器調気設備	主配管		常時補給用液体窒素蒸発器（送ガス用）＊2	C	クラス 3	－		変更なし				
				常時補給用液体窒素蒸発器（送ガス用）～ T48－F010＊2	C	クラス 3	－		変更なし					
				常時補給用液体窒素蒸発器出口配管分岐点～T48－F030＊2	C	クラス 3	－		変更なし					
		圧力逃がし装置	容器	フィルタ装置＊＊	－	－	常設耐震／防止常設／緩和	SAクラス 2			変更なし			
			主要弁	T63－F001	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				T63－F002	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				T48－F019	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				T48－F022	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
			圧力開放板	フィルタ装置出口側ラプチャディスク	－	－	常設耐震／防止常設／緩和	－	変更なし					
			主配管	原子炉格納容器配管貫通部（ X －230）	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部 $(X-230) ~ ト ゙ ~$ ライウエルル出口配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（X－81）	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				原子炉格納容器配管貫通部（X－81）～ド ライウェル出口配管分岐点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				サプレッションチェンバ出口配管分岐点3～フィルタ装置	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				フィルタ装置～フィルタ装置出口側ラ プチャディスク	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					

表1原子炉格納施設の主要設備リスト（41／42）

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 区爻 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 奚 } \\ & \text { 綂 } \\ & \text { 称 } \end{aligned}$	機器区分		変更前					変更後					
				名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1		
				耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス	耐震重要度分類		機器クラス	設備分類	重大事故等機器クラス		
		圧力逃がし装置	主配管		フィルタ装置出口側ラプチャディスク ～排気管	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし				
				フィルタ装置（A）～フィルタ装置（B）	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				フィルタ装置（B）～フィルタ装置（C）	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				フィルタ装置連結管	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				可搬型窒素ガス供給装置接続口（屋外） ～T48－F011 入口側合流点	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				可搬型窒素ガス供給装置接続口（屋内） ～ドライウェル窒素供給配管合流点	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				T48－F011 入口側合流点～T48－F002 出口側合流点	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				T48－F002 出口側合流点～原子炉格納容器配管貫通部（X－80）	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				原子炉格納容器配管貫通部（X－80）	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				ドライウェル窒素供給配管分岐点2～原子炉格納容器配管貫通部（X－281）	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				原子炉格納容器配管貫通部（ X －281）	－	－	$\begin{gathered} \text { 常設耐震/防止 } \\ \text { 常設/緩和 } \end{gathered}$	SAクラス 2	変更なし					
				ドライウェル窒素供給配管分岐点 1～ T48－F066	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				T48－F066～フィルタ装置入口配管合流点	－	－	常設耐震／防止常設／緩和	SAクラス 2	変更なし					
				フィルタ装置水補給接続口（屋外）～フ ィルタ装置	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				フィルタ装置水補給接続口（屋内）～フ ィルタ装置	－	－	常設耐震／防止常設／緩和	SA クラス 2	変更なし					
				窒素供給用ホース（50A：5m）	－	－	可搬／防止可搬／緩和	SA クラス 3	変更なし					

O 2 変二（1）II R 2

表1原子炉格納施設の主要設備リスト（42／42）

注記 $* 1$ ：表 1 に用いる略語の定義は「原子炉本体」の「 8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1 原子炉本体の主要設備リスト 付表1」による。
＊2：本設備は記載の適正化のみ行うものであり，手続き対象外である。
$* 3$ ：装置内配管がクラス3，それ以外はクラスなし。
＊ 4 ：本設備は，フィルターとして使用するフィルタ装置と同一機器である
＊5 ：本設備は，容器として使用するフィルタ装置と同一機器である。
＊6：既工事計画書にはクラス 4 と記載。従来よりクラス 2 で設計していることから記載の適正化を行う。

表2原子炉格納施設の兼用設備リスト（1／5）

00 Iーワーム

表2原子炉格納施設の兼用設備リスト $(2 / 5)$

表2原子炉格納施設の兼用設備リスト $(3 / 5)$

表2原子炉格納施設の兼用設備リスト $(4 / 5)$

		$\begin{aligned} & \text { 奚 } \\ & \text { 名 } \\ & \text { 称 } \end{aligned}$	$\begin{array}{\|l\|l} \\ \text { 機 } \\ \text { 爻 } \\ \text { 分 } \end{array}$	主たる機能の施設／設備区分	変更前					変更後				
					名称	設計基準対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
						耐震 重要度 正分類	機器クラス	設備分類	重大事故等機器クラス		耐震重要度分類	機器クラス	設備分類	重大事故等機器クラス
		$\begin{aligned} & \text { 処蹚 } \\ & \text { 理 } \\ & \text { 采劦 } \\ & \text { ス } \end{aligned}$		放射性廃棄物の廃棄施設気体，液体又は固体廃重物処理設備	排気筒（支持構造物（鉄塔及び基礎）は第 2，3号機共用）		－	常設／緩和	－			変更なし		
			－	原子炉格納施設原子炉建屋	原子炉建屋原子炉棟（二次格納施設）		－	常設／緩和	－	変更なし				
					原子炉建屋大物搬入口		－	常設／緩和	－	変更なし				
					原子炉建屋エアロック		－	常設／緩和	－	変更なし				
		原		原子炉格納施設原子炉建屋	原子炉建屋原子炉棟（二次格納施 設）		－	常設／緩和	－	変更なし				
		制建	－		原子炉建屋大物搬入口		－	常設／緩和	－	変更なし				
		素			原子炉建屋エアロック		－	常設／緩和	－	変更なし				
			－	原子炉格納施設原子炬格納容器	原子炉格納容器		－	常設／緩和	SAクラス 2	変更なし				
				原子炬格納施設原子炉格納容器	原子炉格納容器		－	常設／緩和	SA クラス 2	変更なし				
			－	原子炉格納施設圧力逃がし装置	フィルタ装置出口側ラプチャデ ィスク		－	常設／緩和	－	変更なし				
					フィルタ装置	－		常設／緩和	SA クラス 2	変更なし				

O 2 変二（1）II R 2

表2原子炉格納施設の兼用設備リスト（5／5）

（2）適用基準及び適用規格

変更前	変更後
第1章 共通項目 原子炉格納施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備，浸水防護施設の「（2）適用基準及び適用規格 第1章 共通項目」に示す。	第1章 共通項目 変更なし
第2章 個別項目 原子炉格納施設に適用する個別項目の基準及び規格は以下のとおり。 －発電用原子力設備に関する構造等の技術基準（昭和 55 年通商産業省告示第501号） －発電用原子力設備に関する技術基準を定める省令の解釈について（平成 17 年 12 月 16 日 平成 $17 \cdot 12 \cdot 15$ 原院第 5 号） －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －非常用炉心冷却設備又は格納容器熱除去設備に係るろ過装置の性能評価等について（内規）（平成 $20 \cdot 02 \cdot 12$ 原院第 5 号平成 20 年 2 月 27 日原子力安全•保安院制定） －J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984）	第2章 個別項目 変更なし

	変更前	
•原子炉格納容器の漏えい率試験規程（J E A C 4 2 O 3－2008）	変更後	
•日本建築学会 1987年 鉄骨鉄筋コンクリート構造計算規準•同解説		
•日本建築学会 2001年 建築基礎構造設計指針		
•日本建築学会 2005年 鋼構造設計規準－許容応力度設計法－		
•J I S B 8 2 4 3－1981	圧力容器の構造	

7.5 原子炉格納施設に係る工事の方法

変更前	変更後
原子炉格納施設に係る工事の方法は，「原子炉本体」における「1．9原子炉本体に係る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3燃料体に係る検查」及び「3．2燃料体の加工に係る工事上の留意事項」を除く。）に従 う。	変更なし

8．その他発電用原子炉の附属施設

8.5 浸水防護施設

8．5．1 外郭浸水防護設備

注記＊1：構造境界部に止水ジョイントを設置する。
＊2：公称値を示す。
＊ 3 ：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

注記＊1：公称値を示す。
＊2：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

（次頁へ続く）
（前頁からの続き）

						変 更 前	変 更 後
	鋼製遮水壁	鋼		板	－	SM570	変更なし
	（ 鋼 板）	鋼	管	杭	－	SM570	
		鋼		桁	－	SM570	
	鋼製遮水壁	鋼	管	杭	－	SM570，SKK490	
	（鋼桁）（1）		リ	ち 杭	－	鉄筋コンクリート	
材	鋼製遮水壁	鋼		桁	－	SM490Y	
料	（鋼桁）（2）	鋼	管	杭	－	SM570	
		鋼	製	扉	－	SM570	
		鋼	管	杭	－	SM570	
	防 潮 堤	鋼		板	－	SM570	
	取り 合い部	R	C	壁	－	鉄筋コンクリート	
	背面補強工部	R	C	壁	－	鉄筋コンクリート	

注記＊1：構造境界部に止水ジョイント，シール材を設置する。
＊2：公称値を示す。
＊3：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

（次頁へ続く）
（前頁からの続き）

						変 更 前	変 更 後
材 料	鋼製遮水壁 （鋼板（1））	鋼		板	－	SM570	変更なし
		鋼	管	杭	－	SM570	
	鋼製遮水壁 （鋼板（2））	鋼		板	－	SM570	
		鋼	管	杭	－	SM570	
	鋼製遮水壁 （鋼板（3）	鋼		板	－	SM570	
		鋼	管	杭	－	SM570	
	鋼製遮水壁 （鋼桁）	鋼		桁	－	SM490Y	
		鋼	管	杭	－	SM570	
	鋼製扉	鋼	製	扉	－	SM570	
		鋼	管	杭	－	SM570	
	遮 水		鋼	板	－	SM570	

注記＊1：構造境界部に止水ジョイントを設置する。
＊2：公称値を示す。
＊3：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

（次頁へ続く）
（前頁からの続き）

注記＊1：構造境界部に止水ジョイント，シール材を設置する。
＊2：公称値を示す。
＊3：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

注記＊1：構造境界部に止水ジョイントを設置する。
＊ 2 ：公称値を示す。
＊3：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

				変 更 前	変 更 後
名			称	防潮壁 （第3号機海水熱交換器建屋）	
種		穎	－	防潮壁	
主要	天 端 高	\pm	m	0．P．20． $0^{* 1,}$＊2	変更なし
寸 法	鋼製遮水壁 （鋼板）	厚 さ	mm	上段： 9.0 以上（ $9.0^{* 1}$ ） 中段： 12.0 以上 $\left(12.0^{* 1}\right)$ 下段： 16.0 以上（ $16.0^{* 1}$ ）	
材	鋼製遮水壁（鋼板）		－	SM490	

注記＊1：公称値を示す。
＊2：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した高さを示す。

注記＊1：公称値を示す。
＊2 ：設計確認値（下限値）については，第 1 号機の性能維持施設である第 1 号機原子炉補機冷却海水ポンプ並びに第 1 号機非常用補機冷却海水ポンプ運転時の取水機能に影響を及ぼさない値とし，貫通部径は \square m以上とする。
＊3 ：設計確認値（上限値）については，基準津波の流入による第 1 号機海水ポンプ室で の津波高さが，第 1 号機海水ポンプ室の天端高さを上回らない値とし，貫通部径は $\square \mathrm{m}$ 以下とする。

注記＊1 ：公称値を示す。
＊2 ：設計確認値（下限値）については，第 1 号機の性能維持施設である第 1 号機原子炉補機冷却海水ポンプ並びに第 1 号機非常用補機冷却海水ポンプ運転時の放水機能に影響を及ぼさない値とし，貫通部径は \square m以上とする。
＊3 ：設計確認値（上限値）については，基準津波の流入による第 1 号機放水立坑での津波高さが，第 1 号機放水立坑の天端高さを上回らない値とし，貫通部径は $\square \mathrm{m}$ 以下とする。

注記＊1：非常用取水設備であり，浸水防護施設の外郭浸水防護設備として兼用する。
＊2：公称値を示す。
＊3：引き波時に非常用海水ポンプの継続運転に必要な水量であり，貯留堰，取水口，取水路及び海水ポンプ室で確保する水量の合計値を示す。
＊ 4 ：平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した施設高さを記載する。

枠囲みの内容は防護上の観点から公開できません。

注記＊：公称値を示す。

注記＊：公称値を示す。

注記＊：公称値を示す。

				変 更 前	変 更 後
名		称		水密扉（第3号機海水熱交換器建屋海水ポンプ設置エリア）（No．1）	変更なし
種		類	－	片開き扉	
$\begin{aligned} & \text { 主 } \\ & \text { 要 } \end{aligned}$	た	て	mm	2055＊	
法			mm	900＊	
	扉	板	－	SUS304	
料	芯	材	－	SUS304	

注記＊：公称値を示す。

				変 更 前	変 更 後
名		称		水密扉（第 3 号機海水熱交換器建屋海水ポンプ設置エリア）（No．2）	変更なし
種		類	－	片開き扉	
主 要	た	て	mm	2055＊	
法			mm	900＊	
	扉	板	－	SUS304	
	芯	材	－	SUS304	

注記＊：公称値を示す。

O 2 変二（1）II R 1
注記＊：公称値を示す。

注記＊：公称値を示す。

				変 更 前	変 更 後
名			称	浸水防止蓋（第 3 号機補機冷却海水系放水ピット）	
種		類	－	浸水防止蓋	
		たて	mm	2150＊	
要		横	mm	11100＊	変更なし
，		高 さ	mm	3674＊	
	$\begin{aligned} & \text { スキン } \\ & \text { プレート } \end{aligned}$	厚 さ	mm	16．0以上（16．0＊）	
材		料	－	SUS304	

注記＊：公称値を示す。

注記＊：公称値を示す。

				変 更 前	変 更 後
	名	称		第 2 号機原子炉補機冷却海水 ポンプ（A）（C）室逆止弁付ファ ンネル（No．1），（No．2），（No．3）	
種		類	－	逆止弁付ファンネル	
主要	外	径	mm		更なし
法	高	さ	mm		
材		料	－		

注記＊：公称値を示す。

				変 更 前	変 更 後
	名	称		第2号機原子炉補機冷却海水 ポンプ（B）（D）室逆止弁付ファ ンネル（No．1），（No．2），（No．3）	変更なし
種		類	－	逆止弁付ファンネル	
主 要 寸 法	外	径	mm		
法	高	さ	mm		
材		料	－		

注記＊：公称値を示す。

				変 更 前	変 更 後
	名	称		第 2 号機高圧灲心スプレイ補機冷却海水ポンプ室逆止弁付 ファンネル（No．1），（No．2）	
種		類	－	逆止弁付ファンネル	
主 要	外	径	mm		変更なし
法	高	さ	mm		
材		料	－		

注記＊：公称値を示す。

				変 更 前	変 更 後
	名	称		第2号機タービン補機冷却海水ポンプ室逆止弁付ファンネ ル（No．1），（No．2），（No．3）	
種		類	－	逆止弁付ファンネル	
主要	外	径	mm		し
法	高	\pm	mm		
材		料	－		

注記＊：公称値を示す。

				変 更 前	変 更 後
	名			第 3 号機原子炉補機冷却海水 ポンプ（A）（C）室逆止弁付ファ ンネル（No．1），（No．2）	
		類	－	逆止弁付ファンネル	
主 要	外	径	mm		変更なし
法	高	さ	mm		
材		料	－		

注記＊：公称値を示す。

注記＊：公称値を示す。

				変 更 前	変 更 後
	名	称		第 3 号機高圧炉心スプレイ補機冷却海水ポンプ室逆止弁付 ファンネル(No. 1), (No. 2)	
種		類	－	逆止弁付ファンネル	
主 要	外	径	mm		変更なし
法	高	さ	mm		
材		料	－		

注記＊：公称値を示す。

注記＊：公称値を示す。

8．5． 3 浸水防護施設の基本設計方針，適用基準及び適用規格
（1）基本設計方針

変更前	変更後
用語の定義は「実用発電用原子炉及びその附属施設の位置，構造及び設備 の基準に関する規則」及び「実用発電用原子炉及びその附属施設の技術基準 に関する規則」並びにこれらの解釈による。	変更なし
第1章 共通項目 浸水防護施設の共通項目である「1．地盤等， 2 ．自然現象（ 2.2 津波 による損傷の防止を除く。），3．火災，5．設備に対する要求（5．3 使用中の亀裂等による破壊の防止，5．4 耐圧試験等，5．5安全弁等，5．6逆止め弁，5．7 内燃機関及びガスタービンの設計条件，5．8 電気設備の設計条件を除く。），6．その他」の基本設計方針については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」に基づく設計とする。	第1章 共通項目 変更なし
第2章 個別項目 1．津波による損傷の防止 1．1耐津波設計の基本方針 設計基準対象施設及び重大事故等対処施設が設置（変更）許可を受け た基準津波によりその安全性又は重大事故等に対処するために必要な機能が損なわれるおそれがないよう，遡上への影響要因及び流入経路等 を考慮して，設計時にそれぞれの施設に対して入力津波を設定するとと もに津波防護対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講じる設計とする。 なお，「1．津波による損傷の防止」の耐津波設計においては，平成	第2章 個別項目 1．津波による損傷の防止 1.1 耐津波設計の基本方針 変更なし

変更前		変更後
23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴 い，牡鹿半島全体で約 1 m の地盤沈下が発生していることを考慮した設計とし，地盤沈下量を考慮した敷地高さや施設高さ等を記載する。 1．1．1 津波防護対象設備 設計基準対象施設が，基準津波により，その安全性が損なわれる おそれがないよう，津波から防護を検討する対象となる設備は，ク ラス 1 ，クラス 2 及びクラス 3 設備並びに耐震 S クラスに属する設備（津波防護施設，浸水防止設備及び津波監視設備を除く。）とす る。このうち，クラス 3 設備については，安全評価上その機能を期待する設備は，津波に対してその機能を維持できる設計とし，その他の設備は損傷した場合を考慮して，代替設備により必要な機能を確保する等の対応を行ら設計とする。これより，津波から防護すべ き施設は，設計基準対象施設のうち「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されているクラス 1及びクラス 2 に該当する構築物，系統及び機器（以下「津波防護対象設備」という。）とする。 津波防護対象設備の防護設計においては，津波により津波防護対象設備に波及的影響を及ぼすおそれのある津波防護対象設備以外 の施設についても考慮する。 また，重大事故等対処施設及び可搬型重大事故等対処設備につい ても，設計基準対象施設と同時に必要な機能が損なわれるおそれが ないよう，津波防護対象設備に含める。 さらに，津波が地震の随伴事象であることを踏まえ，耐震S クラ	1．1．1 津波防護対象設備	変更なし

1．2 入力津波の設定
各施設•設備の設計又は評価に用いる入力津波として，敷地への遡上 に伴ら津波（以下「遡上波」という。）による入力津波と取水路，放水路等の経路からの流入に伴ら津波（以下「経路からの津波」という。） による入力津波を設定する。

入力津波の設定の諸条件の変更により，評価結果が影響を受けないこ とを確認するために，評価条件変更の都度，津波評価を実施する運用を保安規定に定めて管理する。

1．2．1 遡上波による入力津波
遡上波による入力津波については，遡上への影響要因として，敷地及び敷地周辺の地形及びその標高，河川等の存在，設備等の設置状況並びに地震による広域的な隆起•沈降を考慮して，遡上波の回 り込みを含め敷地への遡上の可能性を評価する。
遡上する場合は，基準津波の波源から各施設•設備の設置位置に おいて算定される津波高さとして設定する。また，地震による変状又は繰返し来襲する津波による洗掘•堆積により地形又は河川流路 の変化等が考えられる場合は，敷地への遡上経路に及ぼす影響を評価する。

1．2 入力津波の設定
変更なし

1．2．1 遡上波による入力津波変更なし

変更前	変更後
1．2．2 経路からの津波による入力津波 経路からの津波による入力津波については，流入経路を特定し，基準津波の波源から各施設•設備の設置位置において算定される時刻歴波形及び津波高さとして設定する。	1．2．2 経路からの津波による入力津波変更なし
1．2．3 水位変動 「1．2．1 遡上波による入力津波」及び「1．2．2 経路からの津波 による入力津波」においては，水位変動として，朔望平均満潮位 0. P．+1.43 m ，朔望平均干潮位 0. P．-0.14 m を考慮する。上昇側の水位変動に対しては，潮位のばらつきとして 0.16 m を考慮して設定す る。下降側の水位変動に対しては，潮位のばらつきとして 0.10 m を考慮して設定する。 地殻変動については，基準津波の波源である東北地方太平洋沖型 の地震による広域的な地殻変動及び平成 23 年（2011 年）東北地方太平洋沖地震による広域的な地殻変動を考慮する。 東北地方太平洋沖型の地震による広域的な地殻変動については，基準津波の波源モデルを踏まえて，Mansinha and Smylie（1971） の方法により算定し，水位上昇側で考慮する波源で 0.72 m の沈降，水位下降側で考慮する波源で 0.77 m の沈降を考慮する。また，平成 23 年（2011 年）東北地方太平洋沖地震による地殻変動については，発電所構内の水準点を用いた水準測量結果から 1 m と設定する。な お，平成 23 年（2011 年）東北地方太平洋沖地震後の余効変動とし て平成 29 年 4 月時点で約 0.3 m 隆起していることを確認している。上昇側及び下降側の水位変動に対する安全性評価を実施する際	1．2．3 水位変動 変更なし

には，平成 23 年（2011 年）東北地方太平洋沖地震による 1 m の沈降を考慮する。

以上のことから，上昇側の水位変動に対して安全性評価を実施す る際には，水位上昇側で考慮する波源による 0.72 m の沈降を考慮 する。

一方，下降側の水位変動に対して安全性評価を実施する際には，水位下降側で考慮する波源による 0.77 m の沈降は考慮しない。 ただし，下降側の水位変動に対する安全性評価を実施する際に は，平成 29 年 4 月までに確認された余効変動による約 0.3 m の隆起の影響を考慮する。また，今後も余効変動が継続することを想定 し，平成 23 年（2011 年）東北地方太平洋沖地震による広域的な地殻変動の解消により約 1 m 隆起した場合の影響も考慮する。

また，基準津波による入力津波が有する数値計算上の不確かさを考慮することを基本とする。

なお，防潮壁の詳細設計に伴う平面配置等の変更及び 2011 年東北地方太平洋沖地震に伴い被災した地域における復旧•改修工事に伴ら地形改変による影響も考慮し，変更前後のそれぞれについて算定された数値を安全側に評価する。
1.3 津波防護対策

「1．2 入力津波の設定」で設定した入力津波による津波防護対象設
1.3 津波防護対策

変更なし備への影響を，津波の敷地への流入の可能性の有無，漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無，津波の流入等による重要な安全機能及び重大事故等に対処するために

1．3．1 敷地への流入防止（外郭防護 1）
（1）遡上波の地上部からの到達，流入の防止
遡上波による敷地周辺の遡上の状況を加味した浸水高さの分布 を基に，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地において，遡上波の地上部からの到達，流入の可能性の有無を評価する。

流入の可能性に対する裕度評価において，高潮ハザードの再現期間100年に対する期待値と，入力津波で考慮した朔望平均満潮位及び潮位のばらつきを踏まえた水位の合計との差を参照する裕度 として，設計上の裕度の判断の際に考慮する。
評価の結果，遡上波が地上部から到達し流入するため，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画（緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1 保管エリア，第2保管エリア及び第4保管エリア，緊急時対策建屋並 びにガスタービン発電設備軽油タンク室を除く。）の設置された敷

1．3．1 敷地への流入防止（外郭防護 1）
変更なし

地に，遡上波の流入を防止するための津波防護施設として，防潮堤 を設置する設計とする。

また，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画のうち，緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1 保管エリア，第 2 保管エリア及び第 4 保管 エリア，緊急時対策建屋並びにガスタービン発電設備軽油タンク室 は，津波による遡上波が地上部から到達，流入しない十分高い場所 に設置する設計とする。
（2）取水路，放水路等の経路からの津波の流入防止
津波の流入の可能性のある経路につながる循環水系，海水系及び屋外排水路の標高に基づき，許容される津波高さと経路からの津波高さを比較することにより，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地への津波の流入 の可能性の有無を評価する。流入の可能性に対する裕度評価におい て，高潮ハザードの再現期間 100 年に対する期待値と，入力津波で考慮した朔望平均満潮位及び潮位のばらつきを踏まえた水位の合計との差を参照する裕度とし，設計上の裕度の判断の際に考慮す る。

評価の結果，流入する可能性のある経路が特定されたことから，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地並びに建屋及び区画への流入を防止するた め，津波防護施設として防潮壁及び取放水路流路縮小工を設置する設計とする。また，浸水防止設備として逆流防止設備，水密扉，浸水防止蓋及び逆止弁付ファンネルを設置並びに貫通部止水処置を

変更前	変更後
実施する設計とする。 防潮壁鋼製扉，水密扉及び浸水防止蓋については，原則閉運用と することを保安規定に定めて管理する。また，取放水路流路縮小工 については，津波防護機能及び第 1 号機の取水•放水機能を維持す る運用を保安規定に定めて管理する。 上記（1）及び（2）において，外郭防護として設置する津波防護施設及び浸水防止設備については，各地点の入力津波に対し，設計上の裕度を考慮する。 1．3．2 漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（外郭防護 2） （1）漏水対策 経路からの津波が流入する可能性のある取水•放水設備の構造上 の特徴を考慮し，取水•放水施設，地下部等において，津波による漏水が継続することによる浸水範囲を想定（以下「浸水想定範囲」 という。）するとともに，当該範囲の境界における浸水想定範囲外 に流出する可能性のある経路（扉，開口部，貫通口等）について，浸水防止設備を設置することにより，浸水範囲を限定する設計とす る。さらに，浸水想定範囲及びその周辺にある津波防護対象設備（非常用取水設備を除く。）に対しては，浸水防止設備として，防水区画化するための設備を設置するとともに，防水区画内への浸水によ る重要な安全機能及び重大事故等に対処するために必要な機能へ の影響の有無を評価する。 評価の結果，浸水想定範囲における長期間の浸水が想定される場	1．3．2 漏水による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（外郭防護 2）変更なし

合は，重要な安全機能及び重大事故等に対処するために必要な機能 への影響がないよう，排水設備を設置する設計とする。

1．3．3 津波の流入等による重要な安全機能及び重大事故等に対処する ために必要な機能への影響防止（内郭防護）
（1）浸水防護重点化範囲の設定津波防護対象設備（非常用取水設備を除く。）を内包する建屋及 び区画を浸水防護重点化範囲として設定する。
（2）浸水防護重点化範囲の境界における浸水対策経路からの津波の流入を考慮した浸水範囲及び浸水量を基に，浸水防護重点化範囲に流入する可能性の有無を評価する。浸水範囲及 び浸水量については，地震による溢水の影響も含めて確認する。地震による溢水については，「2．発電用原子炉施設内における溢水等による損傷の防止」に示す内部溢水にて評価している溢水事象を考慮する。

評価の結果，浸水防護重点化範囲への流入の可能性のある経路が特定されたことから，地震による設備の損傷箇所からの津波の流入 を防止するための浸水防止設備として，浸水防止壁，水密扉及び浸水防止蓋の設置並びに貫通部止水処置を実施する設計とする。 また，浸水防止設備として設置する水密扉及び浸水防止蓋につい ては，津波の流入を防止するため，扉及び蓋の閉止運用を保安規定 に定めて管理する。

内郭防護として設置及び実施する浸水防止設備については，貫通口，開口部等の一部分のみが浸水範囲となる場合においても貫通

1．3．3 津波の流入等による重要な安全機能及び重大事故等に対処する ために必要な機能への影響防止（内郭防護）

変更なし

口，開口部等の全体を浸水防護することにより，浸水評価に対して裕度を確保する設計とする。

1．3．4 水位変動に伴う取水性低下及び津波の二次的な影響による重要 な安全機能及び重大事故等に対処するために必要な機能への影響防止
（1）非常用海水ポンプ，大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII）の取水性

原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機冷却海水 ポンプ（以下「非常用海水ポンプ」という。）については，評価水位としての海水ポンプ室での下降側水位と非常用海水ポンプの取水可能水位を比較し，評価水位が非常用海水ポンプ取水可能水位を下回る可能性の有無を評価する。
評価の結果，海水ポンプ室の下降側の評価水位が非常用海水ポン プの取水可能水位を下回ることから，津波防護施設として，海水を貯留するための貯留堰を設置することで，取水性を確保する設計と する。

なお，大津波警報が発表された場合又は引き波による水位低下が確認された場合に，非常用海水ポンプの取水性を確保するため，循環水ポンプを停止する運用を保安規定に定めて管理する。

非常用海水ポンプについては，津波による上昇側の水位変動に対 しても，取水機能が保持できる設計とする。

大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タイプII） についても，入力津波の水位に対して，取水性を確保できるものを

1．3．4 水位変動に伴う取水性低下及び津波の二次的な影響による重要 な安全機能及び重大事故等に対処するために必要な機能への影響防止

変更なし

変更前	変更後
用いる設計とする。 （2）津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ （タイプ I ）及び大容量送水ポンプ（タイプ II）の機能保持確認基準津波による水位変動に伴ら海底の砂移動•堆積に対して，取水口，取水路及び海水ポンプ室が閉塞することなく取水口，取水路及び海水ポンプ室の通水性が確保できる設計とする。 非常用海水ポンプは，取水時に浮遊砂が軸受に混入した場合にお いても，軸受部の異物逃がし溝から浮遊砂を排出することで，機能 を保持できる設計とする。 大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII） は，浮遊砂の混入に対して，取水性能が保持できるものを用いる設計とする。 漂流物に対しては，発電所敷地内及び敷地外で漂流物となる可能性のある施設•設備を抽出し，抽出された漂流物となる可能性のあ る施設•設備が漂流した場合に，非常用海水ポンプへの衝突並びに取水口，取水路及び海水ポンプ室の閉塞が生じることがなく，非常用海水ポンプの取水性確保並びに取水口，取水路及び海水ポンプ室 の通水性が確保できる設計とする。 また，漂流物化させない運用を行う施設•設備については，漂流物化防止対策の運用を保安規定に定めて管理する。 発電所敷地内及び敷地外の人工構造物については，設置状況を定期的に確認し評価する運用を保安規定に定めて管理する。さらに，従前の評価結果に包絡されない場合は，漂流物となる可能性，非常用海水ポンプ等の取水性及び浸水防護施設の健全性への影響評価	

変更前	変更後
を行い，影響がある場合は漂流物対策を実施する。 1．3．5 津波監視 津波監視設備として，敷地への津波の繰返しの来襲を察知し，津波防護施設及び浸水防止設備の機能を確実に確保するため，津波監視カメラ（計測制御系統施設の中央制御室機能と兼用（以下同じ。））及び取水ピット水位計を設置する。 1.4 津波防護対策に必要な浸水防護施設の設計 1．4．1 設計方針 津波防護施設，浸水防止設備及び津波監視設備については，「1．2入力津波の設定」で設定している繰返しの来襲を想定した入力津波 に対して，津波防護対象設備の要求される機能を損なうおそれがな いよう以下の機能を満足する設計とする。 （1）津波防護施設 津波防護施設は，津波の流入による浸水及び漏水を防止する設計 とする。 津波防護施設のうち防潮堤及び防潮壁については，入力津波高さ を上回る高さで設置し，止水性を保持する設計とする。 津波防護施設のうち取放水路流路縮小工については，第 1 号機 の取水路及び放水路からの津波の流入を抑制し，入力津波に対して浸水を防止する設計とする。また，第 1 号機の廃止措置期間中に性能を維持すべき施設（以下「性能維持施設」という）に影響を与え ない設計とする。	1．3．5 津波監視 変更なし 1.4 津波防護対策に必要な浸水防護施設の設計 1．4．1 設計方針 変更なし

津波防護施設のうち貯留堰については，津波による水位低下に対 して，非常用海水ポンプの取水可能水位を保持し，かつ，冷却に必要な海水を確保する設計とする。

主要な構造体の境界部には，想定される荷重の作用及び相対変位 を考慮し，試験等にて止水性を確認した止水ジョイント等を設置 し，止水処置を講じる設計とする。
（2）浸水防止設備
浸水防止設備は，浸水想定範囲等における浸水時及び浸水後の波圧等に対する耐性を評価し，津波の流入による浸水及び漏水を防止 する設計とする。

また，津波防護対象設備を内包する建屋及び区画に浸水時及び浸水後に津波が流入することを防止するため，当該区画への流入経路 となる開口部に浸水防止設備を設置し，止水性を保持する設計とす る。

浸水防止設備として，逆流防止設備，水密扉，浸水防止蓋，浸水防止壁，逆止弁付ファンネルを設置するとともに，貫通部止水処置 を実施する設計とする。

軽油タンクエリアの浸水に対する浸水防止設備については，内郭防護として流入経路となる開口部に設置する設計とする。
浸水防止設備は，耐性を評価又は試験等により止水性を確認した方法により，止水性を保持する設計とする。
（3）津波監視設備
津波監視設備は，津波の来襲状況を監視可能な設計とする。津波監視カメラは，波力及び漂流物の影響を受けない位置，取水ピット

変更前	変更後
水位計は波力及び漂流物の影響を受けにくい位置に設置し，津波監視機能が十分に保持できる設計とする。また，基準地震動S s に対 して，機能を喪失しない設計とする。設計に当たつては，自然条件 （積雪，風荷重）との組合せを適切に考慮する。 津波監視設備のうち津波監視カメラは，非常用電源から給電し，赤外線撮像機能を有したカメラにより，昼夜にわたり中央制御室か ら監視可能な設計とする。 津波監視設備のうち取水ピット水位計は，非常用電源から給電 し， 0. P．$-11.25 \mathrm{~m} \sim 0$. P．+19.00 m を測定範囲として，非常用海水ポ ンプが設置された海水ポンプ室補機ポンプエリアの上昇側及び下降側の水位を中央制御室から監視可能な設計とする。 1．4．2 荷重の組合せ及び許容限界 津波防護施設，浸水防止設備及び津波監視設備の設計に当たって は，津波による荷重及び津波以外の荷重を適切に設定し，それらの組合せを考慮する。また，想定される荷重に対する部材の健全性や構造安定性について適切な許容限界を設定する。 （1）荷重の組合せ 津波と組み合わせる荷重については，原子炉冷却系統施設の基本設計方針「第1章 共通項目」のうち「2．3 外部からの衝撃によ る損傷の防止」で設定している自然条件（積雪，風荷重）及び余震 として考えられる地震に加え，漂流物による荷重を考慮する。津波 による荷重の設定に当たっては，各施設•設備の機能損傷モードに対応した荷重の算定過程に介在する不確かさを考慮し，余裕の程度	1．4．2 荷重の組合せ及び許容限界 変更なし

変更前	変更後
を検討した上で安全側の設定を行う。 （2）許容限界 津波防護施設，浸水防止設備及び津波監視設備の許容限界は，地震後，津波後の再使用性や，津波の繰返し作用を想定し，施設•設備を構成する材料がおおむね弾性状態にとどまることを基本とす る。	
2．発電用原子炉施設内における溢水等による損傷の防止 2.1 溢水防護等の基本方針 設計基準対象施設が，発電用原子炉施設内における溢水が発生した場合においても，その安全性を損なうおそれがない設計とする。 そのために，溢水防護に係る設計時に発電用原子炉施設内で発生が想定される溢水の影響を評価（以下「溢水評価」という。）し，運転状態 にある場合は発電用原子炉施設内における溢水が発生した場合におい ても，発電用原子炉を高温停止及び，引き続き低温停止することができ，並びに放射性物質の閉じ込め機能を維持できる設計とする。また，停止状態にある場合は，引き続きその状態を維持できる設計とする。さらに，使用済燃料プールにおいては，使用済燃料プールの泠却機能及び使用済燃料プールへの給水機能を維持できる設計とする。 これらの機能を維持するために必要な設備（以下「溢水防護対象設備」 という。）が発生を想定する没水，被水及び蒸気の影響を受けて，その安全機能を損なうおそれがない設計（多重性又は多様性を有する設備が同時にその機能を損ならおそれがない設計）とする。 また，溢水の影響により原子灲に外乱が及び，かつ，安全保護系，原	2．発電用原子炉施設内における溢水等による損傷の防止 2.1 溢水防護等の基本方針 変更なし

変更前	変更後
審査指針」（以下「重要度分類審査指針」という。）における分類のクラ ス 1 ，クラス 2 及びクラス 3 に属する構築物，系統及び機器とする。 この中から，溢水防護上必要な機能を有する構築物，系統及び機器を選定する。 具体的には，運転状態にある場合には発電用原子炉を高温停止，引き続き低温停止することができ，並びに放射性物質の閉じ込め機能を維持 するため，停止状態にある場合は引き続きその状態を維持するため，及 び使用済燃料プールの冷却機能及び給水機能を維持するために必要と なる，重要度分類審査指針における分類のクラス 1,2 に属する構築物，系統及び機器に加え，安全評価上その機能を期待するクラス 3 に属す る構築物，系統及び機器を抽出する。 以上を踏まえ，防護すべき設備のうち溢水防護対象設備として，重要度の特に高い安全機能を有する構築物，系統及び機器，並びに，使用済燃料プールの泠却機能及び給水機能を維持するために必要な構築物，系統及び機器を抽出する。 また，重大事故等対処設備は，重大事故に至るおそれがある事故が発生した場合において，炉心，使用済燃料プール内の燃料体等，及び，運転停止中における原子炉の燃料体の著しい損傷を防止するために，ま た，重大事故が発生した場合においても，原子炉格納容器の破損及び発電所外への放射性物質の異常な放出を防止するために必要な設備を防護す心゙き設備として抽出する。	
2.3 溢水源及び溢水量の設定溢水影響を評価するために想定する機器の破損等により生じる溢水	

変更前	変更後
（以下「想定破損による溢水」という。），発電所内で生じる異常状態（火災を含む。）の拡大防止のために設置される系統からの放水による溢水 （以下「消火水の放水による溢水」という。）並びに地震に起因する機器の破損及び使用済燃料プール等のスロッシングにより生じる溢水（以下「地震起因による溢水」という。）を踏まえ，溢水源及び溢水量を設定する。 また，その他の要因による溢水として，地下水の流入，地震以外の自然現象，機器の誤作動等により生じる溢水（以下「その他の溢水」とい う。）の影響も評価する。 想定破損による溢水では，単一の配管の破損による溢水を想定して，配管の破損箇所を溢水源として設定する。 また，破損を想定する配管は，内包する流体のエネルギに応じて，高 エネルギ配管又は低エネルギ配管に分類する。 高エネルギ配管は，「完全全周破断」，低エネルギ配管は，「配管内径 の $1 / 2$ の長さと配管肉厚の $1 / 2$ の幅を有する貫通クラック」（以下「貫通クラック」という。）を想定した溢水量とし，想定する破損箇所は溢水影響が最も大きくなる位置とする。 ただし，高エネルギ配管についてはターミナルエンド部を除き応力評価の結果により，原子炉冷却材圧力バウンダリ及び原子炉格納容器バウ ンダリの配管であれば発生応力が許容応力の 0.8 倍以下であれば破損 を想定せず，原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダ リ以外の配管であれば発生応力が許容応力の 0.4 倍を超え 0.8 倍以下 であれば「貫通クラック」による溢水を想定した評価とし， 0.4 倍以下 であれば破損は想定しない。	

変更前	変更後
また，低エネルギ配管については，発生応力が許容応力の 0.4 倍以下 であれば破損は想定しない。 発生応力と許容応力の比較により破損形状の想定を行う場合は，評価結果に影響するような減肉がないことを確認するために継続的な肉厚管理を実施することとし保安規定に定めて管理する。 高エネルギ配管のうち，高エネルギ配管として運転している割合が当該系統の運転している時間の 2% 又はプラント運転期間の 1% より小さ いことから低エネルギ配管とする系統については，運転時間実績管理を実施することとし保安規定に定めて管理する。 消火水の放水による溢水では，消火活動に伴う消火栓からの放水を溢水量として設定する。発電所内で生じる異常状態（火災を含む。）の拡大防止のために設置されるスプリンクラ及び格納容器スプレイ冷却系 からの溢水については，防護すべき設備が溢水影響を受けない設計とす る。 地震起因による溢水では，流体を内包することで溢水源となり得る機器のらち，基準地震動 S s による地震力により破損するおそれがある機器及び使用済燃料プール等のスロッシングによる漏えい水を溢水源と して設定する。 耐震 S クラス機器については，基準地震動 S s による地震力によっ て破損は生じないことから溢水源として想定しない。また，耐震 B 及び C クラス機器のうち耐震対策工事の実施又は設計上の裕度の考慮によ り，基準地震動 S s による地震力に対して耐震性が確保されているもの については溢水源として想定しない。 溢水源となる配管については破断形状を完全全周破断を考慮した溢	

水量とし，溢水源となる容器については全保有水量を考慮した溢水量と する。

また，使用済燃料プールのスロッシングによる溢水量の算出に当たつ ては，基準地震動 S s により発生する使用済燃料プールのスロッシング にて使用済燃料プール外へ漏えいする溢水量を算出する。

また，施設定期検査中においては，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピットのスロッシングによる漏えい水を溢水源とし溢水量を算出する。

その他の溢水については，地下水の流入，降水，屋外タンクの竜巻に よる飛来物の衝突による破損に伴ら漏えい等の地震以外の自然現象に伴ら溢水，機器の誤作動，弁グランド部及び配管フランジ部からの漏え い事象等を想定する。

溢水量の算出に当たつては，漏水が生じるとした機器のうち防護すべ き設備への溢水の影響が最も大きくなる位置で漏水が生じるものとし て評価する。

また，溢水量の算出において，漏えい検知による漏えい停止を期待す る場合には，漏えい停止までの適切な隔離時間を考慮し，配管の破損箇所から流出した漏水量と隔離後の溢水量として隔離範囲内の系統の保有水量を合算して設定する。なお，手動による漏えい停止の手順は，保安規定に定めて管理する。
2.4 溢水防護区画及び溢水経路の設定

溢水影響を評価するために，溢水防護区画及び溢水経路を設定する。
2.4 溢水防護区画及び溢水経路の設定

変更なし

変更前	変更後
中央制御室及び現場操作が必要な設備へのアクセス通路について設定 する。 溢水防護区画は壁，扉，堰，床段差等，又はそれらの組み合わせによ つて他の区画と分離される区画として設定し，溢水防護区画内外で発生 を想定する溢水に対して，当該区画内の溢水水位が最も高くなるように保守的に溢水経路を設定する。 また，消火活動により区画の扉を開放する場合は，開放した扉からの消火水の伝播を考慮した溢水経路とする。 溢水経路を構成する水密扉に関しては，扉の閉止運用を保安規定に定 めて管理する。 常設している堰の取り外し及びハッチを開放する場合の運用を保安規定に定めて管理する。 2.5 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関 する溢水評価及び防護設計方針 2．5．1 没水の影響に対する評価及び防護設計方針 発生を想定する溢水量，溢水防護区画及び溢水経路から算出され る溢水水位と防護すべき設備が要求される機能を損ならおそれが ある高さ（以下「機能喪失高さ」という。）を評価し，防護すべき設備が要求される機能を損ならおそれがない設計とする。 また，溢水の流入状態，溢水源からの距離，人員のアクセス等に よる一時的な水位変動を考慮し，機能喪失高さは溢水による水位に対して裕度を確保する設計とする。 没水の影響により，防護すべき設備が溢水による水位に対し機能	2.5 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関 する溢水評価及び防護設計方針 2．5．1 没水の影響に対する評価及び防護設計方針 変更なし

変更前	変更後
喪失高さを確保できないおそれがある場合は，溢水水位を上回る高 さまで，溢水により発生する水圧に対して止水性（以下「止水性」 という。）を維持する壁，扉，堰，逆流防止装置及び貫通部止水処置により溢水伝播を防止するための対策を実施する。 止水性を維持する浸水防護施設については，試験又は構造健全性評価にて止水性を確認する設計とする。 2．5．2 被水の影響に対する評価及び防護設計方針 発生を想定する溢水源からの直線軌道及び放物線軌道の飛散に よる被水及び天井面の開口部若しくは貫通部からの被水が，防護す べき設備に与える影響を評価し，防護すべき設備が要求される機能 を損ならおそれがない設計とする。 防護すべき設備は，浸水に対する保護構造（以下「保護構造」と いう。）を有し，被水影響を受けても要求される機能を損ならおそ れがない設計とする。 保護構造を有さない場合は，機能を損なうおそれがない配置設計又は被水の影響が発生しないよう当該設備が設置される溢水防護区画において水消火を行わない消火手段（ハロンガス消火設備によ る消火，ケーブルトレイ消火設備による消火又は消火器による消火）を採用する設計とする。 保護構造により要求される機能を損ならおそれがない設計とす る設備については，評価された被水条件を考慮しても要求される機能を損ならおそれがないことを設計時に確認する。 消火対象以外の設備への誤放水がないよう，消火水放水時に不用	2．5．2 被水の影響に対する評価及び防護設計方針変更なし

意な放水を行わない運用とすることとし保安規定に定めて管理す る。

2．5．3 蒸気影響に対する評価及び防護設計方針
発生を想定する漏えい蒸気，区画間を拡散する漏えい蒸気及び破損想定箇所近傍での漏えい蒸気の直接噴出による影響について，設定した空調条件や解析区画条件により防護すべき設備に与える影響を評価し，防護すべき設備が要求される機能を損なうおそれがな い設計とする。

また，漏えい蒸気による環境条件（温度，湿度及び圧力）を想定 した試験又は机上評価により，防護すべき設備が要求される機能を損ならおそれがない設計又は配置とする。
漏えい蒸気の影響により，防護すべき設備が要求される機能を損 ならおそれがある場合は，漏えい蒸気影響を緩和するための対策を実施する。

具体的には，漏えい蒸気による機器への影響を考慮した試験で性能を確認した保護カバーを設置し，蒸気影響を緩和することにより防護すべき設備が要求される機能を損なうおそれがない設計とす る。

また，主蒸気管破断事故時等には，原子炉建屋原子炉棟内外の差圧による原子炉建屋ブローアウトパネル（設置枚数 1 枚，開放差圧 4． 4 kPa 以下）（原子炉格納施設の設備を浸水防護施設の設備として兼用）の開放により，溢水防護区画内において蒸気影響を軽減する設計とする。

変更後

2．5．3 蒸気影響に対する評価及び防護設計方針変更なし

変更前	変更後
2．5．4 使用済燃料プールのスロッシング後の機能維持に関する溢水評価及び防護設計方針 使用済燃料プールのスロッシングによる溢水量の算出に当たっ ては，基準地震動 S s による地震力によって生じるスロッシング現象を三次元流動解析により評価し，使用済燃料プール外へ漏えいす る水量を考慮する。 その際，使用済燃料プールの初期水位は，スキマサージタンクへ のオーバーフロー水位として評価する。 算出した溢水量からスロッシング後の使用済燃料プールの水位低下を考慮しても，使用済燃料プールの冷却機能及び使用済燃料プ ールへの給水機能を確保し，それらを用いることにより適切な水温及び遮蔽水位を維持できる設計とする。	2．5．4 使用済燃料プールのスロッシング後の機能維持に関する溢水評価及び防護設計方針 変更なし
2.6 防護すべき設備を内包する建屋外及びエリア外で発生する溢水に関 する溢水評価及び防護設計方針 防護すべき設備を内包する建屋外及びエリア外で発生を想定する溢水である循環水系配管等の破損による溢水，屋外タンクで発生を想定す る溢水，地下水等による影響を評価し，防護すべき設備を内包する建屋内及びエリア内へ溢水が流入し伝播しない設計とする。 具体的には，溢水水位に対して止水性を維持する壁，扉，蓋の設置及 び貫通部止水処置を実施し，溢水の伝播を防止する設計とする。 タービン建屋内における循環水系配管の破損による溢水量低減につ いては，破損箇所からの溢水を早期に自動検知し，自動隔離を行うため に，循環水系隔離システム（漏えい検出器，復水器水室出入口弁並びに	2.6 防護すべき設備を内包する建屋外及びエリア外で発生する溢水に関 する溢水評価及び防護設計方針 変更なし

変更前	変更後
漏えい検出制御盤及び監視盤）を設置する。循環水系隔離システムは，隔離信号発信後，約 30 秒で循環水ポンプを停止するとともに，約 3 分 で復水器水室出入口弁を自動閉止する設計とする。 タービン建屋内におけるタービン補機冷却海水系配管の破損による溢水量低減については，破損箇所からの溢水を早期に自動検知し，隔離 を行うために，タービン補機冷却海水系隔離システム（漏えい検出器， タービン補機冷却海水ポンプ出口弁並びに漏えい検出制御盤及び監視盤）を設置する。タービン補機冷却海水系隔離システムは，隔離信号発生後，約 30 秒でタービン補機冷却海水ポンプを停止するとともに，夕 ービン補機冷却海水ポンプ出口弁を自動閉止する設計とする。 また，地下水に対しては，地下水位低下設備のらち揚水ポンプの故障等より建屋周囲の水位が地表面まで上昇することを想定し，建屋外周部 における壁，扉，堰等により溢水防護区画を内包する建屋内への流入を防止するとともに，地震による建屋外周部からの地下水の流入の可能性 を安全側に考慮しても，防護すべき設備が要求される機能を損なわない設計とする。 止水性を維持する浸水防護施設については，試験又は机上評価にて止水性を確認する設計とする。 2.7 管理区域外への漏えい防止に関する溢水評価及び防護設計方針放射性物質を含む液体を内包する容器，配管その他の設備（ポンプ，弁，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピッ ト）からあふれ出る放射性物質を含む液体の溢水量，溢水防護区画及び溢水経路により溢水水位を評価し，放射性物質を内包する液体が管理区	2.7 管理区域外への漏えい防止に関する溢水評価及び防護設計方針変更なし

変更前	変更後
域外に漏えいすることを防止し伝播しない設計とする。なお，地震時に おける放射性物質を含む液体の溢水量の算出については，要求される地震力を用いて設定する。 放射性物質を含む液体が管理区域外に伝播するおそれがある場合に は，溢水水位を上回る高さまで，止水性を維持する堰及び水密扉により管理区域外への溢水伝播を防止するための対策を実施する。 2.8 溢水防護上期待する浸水防護施設の構造強度設計 溢水防護区画及び溢水経路の設定並びに溢水評価において期待する浸水防護施設の構造強度設計は，以下のとおりとする。 浸水防護施設が要求される機能を維持するため，計画的に保守管理，点検を実施するとともに必要に応じ補修を実施する。 止水に期待する壁，堰，扉，蓋，逆流防止装置及び貫通部止水処置の らち，地震に起因する機器の破損等により生じる溢水（使用済燃料プー ル等のスロッシングにより発生する溢水を含む。）から防護する設備に ついては，基準地震動 S s による地震力に対し，地震時及び地震後にお いても，溢水伝播を防止する機能を損ならおそれがない設計とする。た だし，放射性物質を含む液体が管理区域外に伝播することを防止するた めに設置する堰については，要求される地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損なうおそれがない設計とす る。 排水に期待する床ドレン配管の設計については，発生を想定する溢水 に対する排水機能を損ならおそれがない設計とする。 漏えい蒸気影響を緩和する保護カバーの設計においては，配管の破断	2.8 溢水防護上期待する浸水防護施設の構造強度設計変更なし

変更前	変更後
により発生する荷重に対し，蒸気影響を緩和する機能を損なうおそれが ない設計とする。 循環水系配管及びタービン補機冷却海水系配管の破損箇所からの溢水量を低減する循環水系隔離システム及びタービン補機冷却海水系隔離システムの設計においては，基準地震動 S s による地震力に対し，地震時及び地震後においても，溢水量を低減する機能を損なうおそれがな い設計とする。	
3．主要対象設備 浸水防護施設の対象となる主要な設備について，「表 1 浸水防護施設 の主要設備リスト」に示す。	3．主要対象設備 変更なし

O 2 変二（1）II R 2

表1浸水防護施設の主要設備リスト（ $1 / 9$ ）

表1浸水防变施設の主要設備リスト $(2 / 9)$

O 2 変二（1）II R 2

表1浸水防護施設の主要設備リスト $(3 / 9)$

$\begin{aligned} & \text { 設 } \\ & \text { 備 } \\ & \text { 分 } \end{aligned}$	$\begin{aligned} & \text { 雞 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
				設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基鹳対象施設＊1		重大事故等対処設備＊1	
			名称	$\begin{array}{\|l\|} \hline \text { 耐震 } \\ \text { 重度 } \\ \hline \text { 分類 } \end{array}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故等 } \\ & \text { 機器クラス } \end{aligned}$		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
備	－	防水区画構造物	SGTS ヒータコニット（ $)$ 室浸水防止水密扉	c	－		－	変更なし				
			RHR Hx（ A ）室－RHR Hx（ $\mathrm{B}_{\text {）} \text { 室浸水防止水密屝 }}$	C－2	－		－	変更なし				
			原子炉建屋浸水防止水密尿（No．2）	$\begin{aligned} & S *^{* 2} \\ & C-2^{* 3} \end{aligned}$	－		－	変更なし				
			原子炉建屋浸水防止水密尿（No．1）	$\begin{gathered} 5 * * 2 \\ c-2 * * \\ \hline \end{gathered}$	－		－	変更なし				
			原子炬建屋浸水防止水密扉（No．3）	C－2	－		－	変更なし				
			LPCS ポンプ室浸水防止水密扉	c	－		－	変更なし				
			HPCS ポンプ室浸水防止水密扉	c	－		－		なし			
			RHRポンプ（ B ）室浸水防止水密扉	c	－		－		なし			
			RHR ポンプ（ A ）室浸水防止水密扉	c	－		－		なし			
			RHR ポンプ（ ）室－共通通路浸水防止水密扉	C－2	－		－		なし			
			FPMUW ポンプ室浸水防止水密扉	C－2	－		－		なし			
			RCIC タービンポンプ室－共通通路浸水防止水密扉	C－2	－		－		なし			
			HECW 冷涑機（B）（D）室－HECW 冷凍機（A）（C）室浸水防止水密扉	c	－		－		なし			
			制御建屋共通エリア浸水防止水密扉	c	－		－		なして			
			$D / G(B)$ 空－D／G $($ HPCS ）室浸水防止水密屝	c	－		－		なし			

O 2 変二（1）II R 2

表1浸水防護施設の主要設備リスト（4／9）

O 2 変二（1）II R 2

表1浸水防撞施設の主要設備リスト（5／9）

	$\begin{aligned} & \text { 奚 } \\ & \text { 䣋 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故等 } \\ & \text { 機器クラス } \end{aligned}$		$\begin{gathered} \text { 輱 } \\ \text { 重要度 } \\ \text { 分類 } \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
			250 V 直流主母線盤室－制御建屋空調機械（B）室浸水防止水密扉	c	－		－		更なし			
			ISI 室浸水防止水密扉	c	－		－		更なし			
			制御建屋空調機械（ B ）室浸水防止水密扉	$\begin{aligned} & 5 s_{* 2}^{* 2} \\ & c-2^{* 3} \end{aligned}$	－		－		更なし			
			制御建屋空調機械（A）室－制御建屋空調機械（B）室浸水防止水密扉（No．2）	c	－		－		更なし			
			燃料移送ポンプ（H）室－燃料移送ポンプ（A）室浸水防止水密扉	c	－		－		更なし			
			燃料移送ポンプ（A）室一燃料移送ポンプ（B）室浸水防止水密扉	c	－		－		更なし			
			RSW ポンプ（A）（C）室－TSW ポンプ室浸水防止水密扉	c	－		－		更なし			
			HPSW ポンプ室浸水防止水密扉	c	－		－		更なし			
	－	防水区画構造物	TSW ポンプ室－RSW ポンプ（B）（D）室浸水防止水密扉	c	－		－		更なし			
			第 2 号機MCR 浸水防止水密扉	$\begin{gathered} \mathrm{S} * * 2 \\ \mathrm{C}-2^{* 3} \end{gathered}$	－		－		更なし			
			RW 電気品室（ B ）浸水防止水密扉	c	－		－		更なし			
			北西階段室管理区域外伝播防止水密扉	C－2	－		－		更なし			
			原子炬建屋大物般入口	$\begin{gathered} \mathrm{S} *^{* 2} \\ \mathrm{C}-2^{* 3} \end{gathered}$	－		－		更なし			
			原子炉建屋管理区域外伝播防止水密扉（No．3）	C－2	－		－		更なし			
			RW 制御室管理区域外伝播防止水密扉	C－2	－		－		更なし			
			原子炉建屋管理区域外伝播防止水密扉（No．1）	C－2	－		－		更なし			
			原子炉建屋管理区域外伝播防止水密扉（No．2）	C－2	－		－		更なし			

O 2 変二（1）II R 2

表1浸水防護施設の主要設備リスト（6／9）

	$\begin{aligned} & \text { 藧 } \\ & \text { a } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基漼対象施設＊1		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
				$\begin{aligned} & \hline \text { 袻震度 } \\ & \text { 分分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス
	－	防水区画構造物	制御建屋管理区域外伝播防止水密尿（No．1）	c	－		－	変更なし				
			タービン建屋管理区域外伝播防止水密扉	в	－		－	変更なし				
			主排気ダクト連絡トレンチ（2T－5）管理区域外伝播防止水密扉	C－2	－		－	変更なし				
			原子师建屋浸水防止水密扉（No．4）	C－2	－		－	変更なし				
			燃料移送ポンプ（ $)$ ）室浸水防止水密扉	c	－		－	変更なし				
			燃料移送ポンプ（ $)^{\text {室浸水防止水密扉 }}$	c	－		－	変更なし				
			$\mathrm{R}-01$ 階段浸水防止堰（ 地上3階）	C－2	－		－		なし			
			$\mathrm{R}-02$ 階段浸水防止堰（ 地上3階）	C－2	－		－		面なし			
			R－01 階段浸水防止堰（ 地上2階）	c	－		－		なし			
			FCS 再結合装置（A）室浸水防止殹	c	－		－		なし			
			FCS 再結合装置（B）室浸水防止殹	c	－		－		なし			
			R－02 階段浸水防止堰（地上2階）	c	－		－		なし			
			SGTS ヒータコニット（ $)^{\text {室浸水防止殹 }}$	c	－		－		なくし			
			CAMS ラック（ B ）室浸水防止殹	c	－		－		面なし			
			SGTS ヒータコニット (A) 室浸水防止殹	c	－		－		なし			

O 2 変二（1）II R 2

表1浸水防護施設の主要設備リスト（ $7 / 9$ ）

$\begin{aligned} & \text { 箴 } \\ & \text { 畕 } \end{aligned}$	$\begin{aligned} & \text { 雞 } \\ & \text { 森 } \end{aligned}$	機器区分	変更前					変更後				
			名称	設計基淮対象施設＊1		重大事故等対処設備＊1		名称	設計基鹳対象施設＊1		重大事故等対処設備＊1	
				$\begin{aligned} & \text { 耐震 } \\ & \text { 重度 } \\ & \hline \text { 分類 } \end{aligned}$	機器クラス	設備分類	$\begin{aligned} & \text { 重大事故等 } \\ & \text { 機器クラス } \end{aligned}$			機器クラス	設備分類	重大事故等機器クラス
	－	防水区画構造物	CAMS ラック（ A ）室浸水防止殹	c	－		－	変更なし				
			SGTS フィルタコニット室浸水防止堰	c	－		－	変更なし				
			R－01階段浸水防止璟（地上1階）	C－2	－		－	変更なし				
			R－02 階段浸水防止堰（地上 1 階）	C－2	－		－	変更なし				
			バルブ（ B ）室浸水防止堰	c－2	－		－	変更なし				
			バルブ（ A 室浸水防止堰	c－2	－		－		なし			
			FPC ポンプ室浸水防止殹	C－2	－		－		なし			
			R －01 階段浸水防止殹（ 地下 1 階）	C－2	－		－		なし			
			R－02 階段浸水防止殹（ 地下 1 階）	c－2	－		－		なし			
			WSトンネル室浸水防止殹	c－2	－		－		なし			
			RCIC MCC 室浸水防止殹	c－2	－		－		なし			
			TIP 騎動装置室浸水防止殹	C－2	－		－		なし			
			復水補給水ポンプ室浸水防止殹	C－2	－		－		なし			
			CUW配管・バルブ室浸水防止堰	C－2	－		－		なし			

O 2 変二（1）II R 2

表1浸水防護施設の主要設備リスト（ $8 / 9$ ）

O 2 変二（1）II R 2

表1浸水防撞施設の主要設備リスト（9／9）

	$\begin{aligned} & \text { 奚 } \\ & \text { 絡 } \\ & \text { 称 } \end{aligned}$	機器区分	変更前					変更後				
設				設計基準対象施設＊11		重大事故等対処設備＊1		名称	設計基準対象施設＊1		重大事故等対処設備＊1	
$\begin{aligned} & \text { 葆 } \\ & \text { 分 } \end{aligned}$			名称	$\begin{aligned} & \hline \text { 耐震 } \\ & \text { 重要度 } \\ & \text { 分類 } \end{aligned}$	機器クラス	設備分類	重大事故等機器クラス		$\begin{gathered} \hline \text { 耐震 } \\ \text { 重要 } \\ \text { 分類 } \\ \hline \end{gathered}$	機器クラス	設備分類	重大事故等機器クラス
			HNCW 冷凁機・ポンプ室管理区域外伝播防止医	B	－		－		なし			
			CAMS（A）室空調機浸水防止堰	C	－		－		なし			
			CAMS（B）室空調機浸水防止堰	C	－		－		なし			
			中央制御室再循環フィルタ装置浸水防止堰	C	－		－		なし			
$\begin{gathered} \text { 内 } \\ \text { 郭 } \end{gathered}$			制御建屋浸水防止水密扉（No．4）	$\begin{gathered} \mathrm{S} *^{* 2} \\ \mathrm{C}-2^{* 3} \end{gathered}$	－		－		なし			
∞	－	防水区画構造物	制御建屋浸水防止水密扉（No．5）	$\begin{gathered} \mathrm{S} *^{* 2} \\ \mathrm{C}-2^{* 3} \end{gathered}$	－		－		なし			
M 謢 1 備 1			地下軽油タンク燃料移送ポンプ室アクセス用浸水防止䒸（No．1）	$\begin{gathered} \mathrm{S} *^{* 2} \\ \mathrm{C}-2^{* 3} \end{gathered}$	－		－		なし			
ω_{0}^{ω}			地下軽油タンク燃料移送ポンプ室アクセス用浸水防止蓋（No．2）	$\begin{gathered} \mathrm{S} *^{* 2} \\ \mathrm{C}-2^{* 3} \end{gathered}$	－		－		なし			
			地下軽油タンク機器搬出入用浸水防止蓋	$\begin{aligned} & \mathrm{S} * * 2 \\ & \mathrm{C}-2 * 3 \end{aligned}$	－		－		なし			
			ハッチ上部スペース浸水防止堰	C	－		－		なし			
			第2号機海水ポンプ室浸水防止壁	S＊	－		－		更なし			

注記＊1：表1に用いる略語の定義は「原子炉本体」の「8 原子炉本体の基本設計方針，適用基準及び適用規格」の「表1原子炉本体の主要設備リスト 付表1」による。
＊ 2 ：浸水防止設備としての耐震重要度を示す。
＊ 3 ：溢水の伝播を防止する設備としての耐震重要度を示す。
（2）適用基準及び適用規格

変更前	変更後	
第1章 共通項目 浸水防護施設に適用する共通項目の基準及び規格については，以下の基準及び規格並びに，原子炉冷却系統施設，火災防護設備の「（2）適用基準及び適用規格 第1章 共通項目」に示す。 なお，以下に示す浸水防護施設に適用する共通項目の基準及び規格を適用する個別の施設区分については，「表 1．施設共通の適用基準及び適用規格（該当施設）」に示す。 －実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈（平成 25 年 6 月 19 日原規技発第 1306194 号） - 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］ - 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編	第1章 共通項目	変更なし

上記の他「原子力発電所の内部溢水影響評価ガイド」，「耐津波設計に係る工認審査ガイド」を参照する。

表1．施設共通の適用基準及び適用規格（該当施設）

$$
\text { O } 2 \quad \text { 変二(1) II } \quad \text { R } 2
$$

変更前	変更後
第2章 個別項目 浸水防護施設に適用する個別項目の基準及び規格は以下のとおり。 －建築基準法（昭和 25 年 5 月 24 日法律第 201 号） 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号） －消防法（昭和 23 年 7 月 24 日法律第 186 号） 消防法施行令（昭和 36 年 3 月 25 日政令第 37 号） －発電用軽水型原子炉施設の安全評価に関する審査指針（平成 2 年 8 月 30日原子力安全委員会決定） －発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針（平成2年8月30日原子力安全委員会決定） －J I S C 0 9 2 0－2003 電気機械器具の外郭による保護等級（I P コード） - J S ME S NC 1－2005 発電用原子力設備規格 設計•建設規格 - J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 －原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 601 •補－1984） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987） - 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版） - 原子力発電所の火災防護指針（J E A G 4 6 0 7－2010） - 乾式キャスクを用いる使用済燃料中間貯蔵建屋の基礎構造の設計に関す る技術規程（J E A C 4 6 1 6－2009） －土木学会 1986年 構造力学公式集	第2章 個別項目 変更なし

$$
\text { O } 2 \quad \text { 変二 (1) II R } 2
$$

変更前	変更後
- 土木学会 2002年 コンクリート標準示方書［構造性能照査編］ - 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル - 土木学会 2013年 コンクリート標準示方書 ダムコンクリート編 - 土木学会 2016 年 トンネル標準示方書［共通編］•同解説／［山岳工法編］－同解説 - 土木学会 2016 年 トンネル標準示方書［開削工法編］•同解説 - 土木学会 2017年 コンクリート標準示方書［設計編］ - 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編 －日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•V耐震設計編 - 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V 耐震設計編 - 日本道路協会 平成 22 年 3 月 道路土工—カルバート工指針（平成 21年度版） －日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•II鋼橋編 －日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IIIコ ンクリート橋編 －日本道路協会 平成 24 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編 －日本道路協会 平成 29 年 11 月 道路橋示方書•同解説 II鋼橋•鋼部材編 －首都高速道路 2003 年 橋梁構造物設計施工要領 II鋼橋•鋼部材編	

変更前	変更後
－名古屋高速道路公社 平成 15 年 10 月 鋼構造物設計基準 II鋼製橋脚編 －日本港湾協会 平成元年 港湾の施設の技術上の基準•同解説 - 日本港湾協会 2007 年 港湾の施設の技術上の基準•同解説 - 日本建築学会 1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－ - 日本建築学会 2001 年 建築基礎構造設計指針 - 日本建築学会 2004 年 建築物荷重指針•同解説 - 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－ - 日本建築学会 2010 年 各種合成構造設計指針•同解説 - 日本建築学会 2010 年 鉄筋コンクリート構造計算規準•同解説 - 日本建築学会 2012 年 鋼構造接合部設計指針 - 日本建築学会 2014 年 各種合成構造設計指針•同解説 - 日本建築学会 2015 年 原子力施設における建築物の維持管理指針•同解説 - 日本建築学会 2017 年 山留め設計指針 - 日本建築学会 2018 年 鉄筋コンクリート構造計算規準•同解説 - 水門鉄管協会 平成 29 年 水門鉄管技術基準 水圧鉄管•鉄鋼構造物編 - 水門鉄管協会 平成 31 年 水門鉄管技術基準 水門扉編 - 日本水道協会 1997 年 水道施設耐震工法指針•解説 - 日本水道協会 2009 年 水道施設耐震工法指針•解説 - 日本下水道協会 2002 年 下水道施設耐震計算例－処理場・ポンプ場編	

変更前	変更後
•農林水産省農村振興局 平成15年 土地改良事業計画設計基準設計「ダ	
ム」技術書〔コンクリートダム編〕	
・ダム堰施設技術協会 平成 28 年 ダム堰施設技術基準（案）	
•Guidelines for Design of Structures for Vertical Evacuation from	
Tsunamis Second Edition，FEMA P646，Federal Emergency Management	
Agency，2012	
•Minimum Design Loads and Associated Criteria for Buildings and	
Other Structures，American Society of Civil Engineers，2016	

8． 5.4 浸水防護施設に係る工事の方法

変更前	変更後
浸水防護施設に係る工事の方法は，「原子炉本体」における「1．9 原子炉本体に係	
る工事の方法」（「1．3 燃料体に係る工事の手順と使用前事業者検査」，「2．1．3 燃料	変更なし
体に係る検査」及び「3．2燃料体の加工に係る工事上の留意事項」を除く。）に従う。	

III 工事工程表

III 工事工程表
本工事計画に伴う「女川原子力発電所第 2 号機 設計及び工事計画認可申請書本文及び添付書類」（令和4年9月28日付け原規規発第2209283号にて認可）からの変更はない。

${ }^{-}$	2021年			2022年												2023年												2024年			
原子炉本体	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4	5	6	7	8	9	10	11	12	1	2	3	4
								［＊－		－－－																			［＊		
								＊－																		》＊					
								$\triangle *$																					－\triangle＊		
								口＊																							$\square *$
								嫁＊				－－－	－																－$\sim_{\text {c }}$		
								＊＊－																							＊＊
核燃料物質の取扱施設及び貯蔵施設																															
								－＊－																					■＊		
								১＊																－		－＊					
								\triangle＊－																					$\triangle *$		
																													． $3 *$		
																													－\％＊		
								$\star *$－																							＊＊
原子炉冷却系統施設																															
								■＊－	－																				－＊		
								\bigcirc																		১＊					
								\triangle																					－\triangle＊		
								$\square *$																							$\square *$
																													－疗		
																															$\star *$
計測制御系統施設																															
																										১＊					
								$\triangle *-$																					－\triangle＊		
								$\square *-$																							$\square *$
																													－ c＊*		
																															$\star *$

－：構造，強度又は漏えいに係る検査をすることができる状態になった時
機造，強度めは性能に係る検査（燃料体を捙入できる段階の検㭗）をすることができる状能になった時
譏能又は性能に係る検李（臨界反応操作を開始できる段階の検査）をすることができる状能になった時
栰能又は性能に係る涣查（工事完丁時の惟查）ぞすることがでさる状態になった時
基本設計方針検査をすることができる状能になった時

－検査時期は，工事の計画の進捗により変更となる可能性がある。

IV 設計及び工事に係る品質マネジメントシステム

IV 設計及び工事に係る品質マネジメントシステム
1．設計及び工事に係る品質マネジメントシステム
当社は，原子力発電所の安全を達成•維持•向上させるため，健全な安全文化を育成及び維持するための活動を含む原子炉施設の設計，工事及び検査段階から運転段階に係 る保安活動を確実に実施するための品質マネジメントシステムを確立し，「女川原子力発電所原子炉施設保安規定」（以下「保安規定」という。）の品質マネジメントシステム計画（以下「保安規定品質マネジメントシステム計画」という。）に定めている。

「設計及び工事に係る品質マネジメントシステム」（以下「設工認品質管理計画」とい う。）は，保安規定品質マネジメントシステム計画に基づき，設計及び工事に係る具体的 な品質管理の方法，組織等の計画された事項を示したものである。

2．適用範囲•定義

2.1 適用範囲

設工認品質管理計画は，女川原子力発電所第 2 号機原子炉施設の設計，工事及び検査に係る保安活動に適用する。

2.2 定 義

設工認品質管理計画における用語の定義は，以下を除き保安規定品質マネジメン トシステム計画に従う。
（1）実用炉規則
「実用発電用原子炉の設置，運転等に関する規則（昭和53年12月28日通商産業省令第 77 号）」をいう。
（2）技術基準規則
「実用発電用原子炉及びその附属施設の技術基準に関する規則（平成 25 年 6 月 28日原子力規制委員会規則第 6 号）」をいう。
（3）実用炉規則別表第二対象設備
「実用発電用原子炉の設置，運転等に関する規則（昭和53年12月28日通商産業省令第 77 号）」の別表第二「設備別記載事項」に示された設備をいう。
（4）適合性確認対象設備
設計及び工事の計画（以下「設工認」という。）に基づき，技術基準規則等への適合性を確保するために必要となる設備をいう。

3．設計及び工事の計画における設計，工事及び検査に係る品質管理の方法等
設工認における設計，工事及び検査に係る品質管理は，保安規定品質マネジメントシ ステム計画に基づき以下のとおり実施する。
3.1 設計，工事及び検査に係る組織（組織内外の相互関係及び情報伝達含む。）

設計，工事及び検査は，本店組織及び発電所組織で構成する体制で実施する。
設計，工事及び検査に係る組織は，担当する設備に関する設計，工事及び検査につ いて責任と権限を持つ。
3.2 設工認における設計，工事及び検査の各段階とそのレビュー

3．2．1 設計及び工事のグレード分けの適用
設計及び工事のグレード分けは，原子炉施設の安全上の重要性に応じて以下 のとおり行う。

「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」（以下「重要度分類指針」という。）に基づく安全上の機能別重要度と，発電への影響度に応じて設定した重要度に応じて，クラス I～IVに分類する。

別表1 品質に係る重要度分類

重要度分類	定 義
クラス I	- 重要度分類指針のクラス 1 に属する設備•系統等 - その設備•系統等の不具合が発電所の運転停止または出力低下 に直接つながる設備•系統等 －その設備•系統等の不具合が放射性物質の管理区域外への放出 につながる設備•系統等 －保安規定第1編第4章「運転管理」•第3節「運転上の制限」に規定される設備•系統等
クラス II	- 重要度分類指針のクラス 2 に属する設備•系統等 - その設備•系統等の不具合が長時間継続すると，発電所の運転停止または出力低下につながる設備•系統等 －その設備•系統等の不具合が長時間継続すると，放射性物質の管理区域外への放出につながる設備•系統等
クラス III	- 重要度分類指針のクラス 3 に属する設備•系統等 - その設備•系統等の不具合が，発電所の運転停止•出力低下ま たは放射性物質の管理区域外への放出にはつながらない設備•系統等（発電所の付帯設備を除く）
クラス IV	－クラス I ，II，III以外の設備•系統等（発電所の付帯設備）

なお，重大事故等対処設備の重要度分類については，クラスIを原則とする。 ただし，本設工認における設計は，新規制基準施行以前から設置している設備並びに工事を継続又は完了している設備の設計実績等を用いた技術基準規則等 への適合性を確保するために必要な設備の設計である。

したがって，本設工認の設計は，設計及び工事のグレード分けによらず，全て の適合性確認対象設備を，「3．3 設計に係る品質管理の方法」に示す設計で管理する。

なお，「3．4．1 設工認に基づく設備の具体的な設計の実施（設計3）」以降の段階で新たに設計及び工事を実施する場合は，設計及び工事のグレード分けの考え方を適用し，管理を実施する。

3．2．2 設計，工事及び検査の各段階とそのレビュー
設工認のうち，実用炉規則別表第二対象設備に対する設計，工事及び検査の各段階を表3．2－1に示す。

設工認における必要な設計，工事及び検査の流れを図3．2－1 に示す。
（1）実用炉規則別表第二対象設備に対する管理
組織は，設計，工事及び検查の各段階におけるレビューを，表3．2－1 に示す段階において実施するとともに，記録を管理する。

このレビューについては，本店組織及び発電所組織で当該設備の設計に関す る専門家を含めて実施する。
なお，実用炉規則別表第二対象設備のらち，設工認申請（届出）が不要な工事 を行う場合は，設工認品質管理計画のらち，必要な事項を適用して設計，工事及 び検査を実施し，認可された設工認に記載された仕様及びプロセスのとおりで あること，技術基準規則に適合していることを使用前事業者検査により確認す る。
（2）主要な耐圧部の溶接部に対する管理
設工認のらち，主要な耐圧部の溶接部に対する必要な検査は，「3．4 工事に係 る品質管理の方法」，「3．5 使用前事業者検査の方法」及び「3．6 設工認におけ る調達管理の方法」に示す管理（表 3．2－1における「3．4．1 設工認に基づく設備の具体的な設計の実施（設計 3）」～「3．6 設工認における調達管理の方法」） のらち，必要な事項を適用して検査を実施し，認可された設工認に記載された仕様及びプロセスのとおりであること，技術基準規則に適合していることを使用前事業者検查により確認する。

表 3．2－1 設工認における設計，工事及び検査の各段階

各段階			保安規定品質マ ネジメントシス テム計画の対応項目	概 要
$\begin{aligned} & \text { 設 } \\ & \text { 計 } \end{aligned}$	3.3	設計に係る品質管理の方法	7．3． 1 設計開発計画	適合性を確保するために必要な設計を実施するための計画
	3．3．1	適合性確認対象設備に対する要求事項の明確化	7．3．2設計開発に用いる情報	設計に必要な技術基準規則等の要求事項の明確化
	3．3．2	各条文の対応に必要な適合性確認対象設備の選定		技術基準規則等に対応するため の設備•運用の抽出
	$\begin{aligned} & \hline 3.3 .3(1) \\ & * \end{aligned}$	基本設計方針の作成（設計 1）	7．3．3設計開発の結果に係る情報	要求事項を満足する基本設計方針の作成
	$3.3 .3(2)$	適合性確認対象設備の各条文への適合性を確保するた めの設計（設計 2）	7．3．3設計開発の結果に係る情報	適合性確認対象設備に必要な設計の実施
	3．3．3（3）	設計のアウトプッ トに対する検証	7．3．5設計開発の検証	基準適合性を確保するための設計の妥当性のチェック
	3．3．4＊	設計における変更	7．3．7設計開発の変更の管理	設計対象の追加や変更時の対応
$\begin{aligned} & \text { 工 } \\ & \text { 事 } \\ & \text { び } \\ & \text { 検 } \\ & \text { 昷 } \end{aligned}$	3．4．1＊	設工認に基づく設備の具体的な設計 の実施（設計 3 ）	7．3．3設計開発の結果に係る情報 7．3．5設計開発の検証	設工認を実現するための具体的 な設計
	3．4．2	設備の具体的な設計に基づく工事の実施	－	適合性確認対象設備の工事の実 施
	3．5．1	使用前事業者検査 での確認事項	－	適合性確認対象設備が，認可され た設工認に記載された仕様及び プロセスのとおりであること，技術基準規則に適合していること
	3．5．2	使用前事業者検査 の計画	7． 1 個別業務に必要なプロセスの計画	適合性確認対象設備が，認可され た設工認に記載された仕様及び プロセスのとおりであること，技術基準規則に適合していること を確認する計画と方法の決定
	3．5．3	検査計画の管理	－	使用前事業者検査を実施する際 の工程管理
	3．5．4	主要な耐圧部の溶接部に係る使用前事業者検査の管理	－	主要な耐圧部の溶接部に係る使用前事業者検査を実施する際の プロセスの管理
	3．5．5	使用前事業者検査 の実施	7．3． 6 設計開発の妥当性確認 8．2．4 機器等の検査等	適合性確認対象設備が，認可され た設工認に記載された仕様及び プロセスのとおりであること，技術基準規則に適合していること を確認
$\begin{aligned} & \text { 調 } \\ & \text { 達 } \end{aligned}$	3.6	設工認における調達管理の方法	7． 4 調達 8．2． 4 機器等の検査等	適合性確認に必要な，設計，工事及び検査に係る調達管理

注記＊：「3．2．2 設計，工事及び検査の各段階とそのレビュー」でいう，保安規定品質マ ネジメントシステム計画の「7．3．4設計開発レビュー」の対応項目
O 2
変二（1）
（1） R
R 0

図3．2－1 設工認として必要な設計，工事及び検査の流れ

3.3 設計に係る品質管理の方法

3．3．1 適合性確認対象設備に対する要求事項の明確化
組織は，設工認における技術基準規則等への適合性を確保するために必要な要求事項を明確にする。

3．3．2 各条文の対応に必要な適合性確認対象設備の選定
組織は，設工認に関連する工事において，追加•変更となる適合性確認対象設備（運用を含む。）に対する技術基準規則等への適合性を確保するために，実際 に使用する際の系統•構成で必要となる設備•運用を含めて，適合性確認対象設備として抽出する。

3．3．3 設工認における設計及び設計のアウトプットに対する検証
組織は，適合性確認対象設備の技術基準規則等への適合性を確保するための設計を以下のとおり実施する。
（1）基本設計方針の作成（設計1）
「設計 1 」として，技術基準規則等の適合性確認対象設備に必要な要求事項を基に，必要な設計を漏れなく実施するための基本設計方針を明確化する。
（2）適合性確認対象設備の各条文への適合性を確保するための設計（設計 2）
「設計 2 」として，「設計 1 」で明確にした基本設計方針を用いて適合性確認対象設備に必要な詳細設計を実施する。

なお，詳細設計の品質を確保する上で重要な活動となる「調達による解析」及 び「手計算による自社解析」について，個別に管理事項を計画し信頼性を確保す る。
（3）設計のアウトプットに対する検証
組織は，「設計 1」及び「設計 2 」の結果について，原設計者以外の力量を有す る者に検証を実施させる。

3．3．4 設計における変更

組織は，設計の変更が必要となった場合，「3．3．1 適合性確認対象設備に対す る要求事項の明確化」～「3．3．3 設工認における設計及び設計のアウトプット に対する検証」の各設計結果のうち，影響を受けるものについて必要な設計を実施し，影響を受けた段階以降の設計結果を必要に応じ修正する。

3．4 工事に係る品質管理の方法
組織は，工事段階において，設工認に基づく設備の具体的な設計の実施（設計 3 ）， その結果を反映した設備を導入するために必要な工事を以下のとおり実施する。

また，これらの活動を調達する場合は，「3．6 設工認における調達管理の方法」を適用して実施する。

3．4．1 設工認に基づく設備の具体的な設計の実施（設計 3）
組織は，工事段階において，設工認を実現するための設備の具体的な設計（設計3）を実施する。

3．4．2 設備の具体的な設計に基づく工事の実施
組織は，設工認に基づく設備を設置するための工事を，「工事の方法」に記載 された工事の手順並びに「3．6 設工認における調達管理の方法」に従い実施す る。

ただし，適合性確認対象設備のうち，新規制基準施行以前に設置している設備，設置を完了し調達製品の検証段階の設備，既に工事を着手し工事を継続してい る設備については，「3．5 使用前事業者検査の方法」から実施する。
3.5 使用前事業者検査の方法

使用前事業者検查は，適合性確認対象設備が，認可された設工認に記載された仕様及びプロセスのとおりであること，技術基準規則に適合していることを確認するた め，保安規定に基づき使用前事業者検査を計画し，工事を主管する箇所からの独立性 を確保した検査体制の下，実施する。

3．5．1 使用前事業者検査での確認事項

使用前事業者検査では，適合性確認対象設備が，認可された設工認に記載され た仕様及びプロセスのとおりであること，技術基準規則に適合していることを確認するために以下の項目について検査を実施する。
（1）実設備の仕様の適合性確認
（2）実施した工事が，「3．4．1 設工認に基づく設備の具体的な設計の実施（設計 3 ）」及び「3．4．2 設備の具体的な設計に基づく工事の実施」に記載したプロセス並 びに「工事の方法」のとおり行われていること。

これらの項目のらち，（1）を表3．5－1に示す検査として，（2）を品質マネジメ ントシステムに係る検査（以下「 QA 検査」という。）として実施する。

また，QA 検査では上記（2）に加え，上記（1）のうち工事を主管する箇所（供給者を含む。）が採取した記録・ミルシート等の信頼性確認を行い，設工認に基づ く検査の信頼性を確保する。

3．5．2 使用前事業者検査の計画

組織は，適合性確認対象設備が，認可された設工認に記載された仕様及びプロ セスのとおりであること，技術基準規則に適合していることを確認するため，使用前事業者検査を計画する。

使用前事業者検査は，「工事の方法」に記載された使用前事業者検査の項目及 び方法並びに表 3．5－1に定める要求種別ごとに確認項目，確認視点及び主な検査項目を基に計画を策定する。

適合性確認対象設備のうち，技術基準規則上の措置（運用）に必要な設備につ いても，使用前事業者検査を計画する。

個々に実施する使用前事業者検査に加えてプラント運転に影響を及ぼしてい ないことを総合的に確認するため，定格熱出力一定運転時の主要パラメータを確認することによる使用前事業者検査（負荷検査）の計画を必要に応じて策定す る。

また，使用前事業者検査の実施に先立ち，設計結果に関する具体的な検査概要及び判定基準を使用前事業者検査の方法として明確にする。

3．5．3 検査計画の管理
組織は，使用前事業者検査を適切な段階で実施するため，関係箇所と調整のう え使用前事業者検査工程表を作成する。

使用前事業者検査の実施時期及び使用前事業者検査が確実に行われることを適切に管理する。

3．5． 4 主要な耐圧部の溶接部に係る使用前事業者検査の管理
組織は，溶接が特殊工程であることを踏まえ，工程管理等の計画を策定し，溶接施工工場におけるプロセスの適切性の確認及び監視を行う。

また，溶接継手に対する要求事項は，溶接部詳細一覧表（溶接方法，溶接材料，溶接施工法，熱処理条件，検査項目等）により管理し，これに係る関連図書を含 め，業務の実施に当たつて必要な図書を溶接施工工場に提出させ，それを審査，承認し，必要な管理を実施する。

3．5．5 使用前事業者検査の実施

使用前事業者検査は，検査要領書の作成，体制の確立を行い実施する。
（1）使用前事業者検査に係る要員の力量確保及び教育•訓練
使用前事業者検查に従事する者は，あらかじめ教育•訓練を受講し，検査に必要な力量を有する者とする。
（2）使用前事業者検査の独立性確保
使用前事業者検査は，組織的独立を確保して実施する。
（3）使用前事業者検査の体制
使用前事業者検査の体制は，検査要領書で明確にする。
（4）使用前事業者検査の検査要領書の作成
組織は，適合性確認対象設備が，認可された設工認に記載された仕様及びプロ セスのとおりであること，技術基準規則に適合していることを確認するため「3．5．2 使用前事業者検査の計画」で決定した確認方法を基に，使用前事業者検査を実施するための検査要領書を作成する。

実施する検査が代替検査となる場合は，代替による使用前事業者検査の方法 を決定する。
（5）使用前事業者検査の実施
組織は，検査要領書に基づき，確立された検査体制の下で，使用前事業者検査 を実施する。

表 3．5－1 要求種別に対する確認項目，確認視点及び主な検査項目

要求種別			確認項目	確認視点	主な検査項目
設備	設置要求		名称，取付箇所，個数，設置状態，保管状態	設計要求どおりの名称，取付箇所，個数で設置さ れていることを確認す る。	- 据付検査 - 状態確認検査 - 外観検査
	設計要求	系統 構成	系統構成，系統隔離，可搬設備の接続性	実際に使用できる系統構成になっていることを確認する。	－機能•性能検査
		機能要求	容量，揚程等 の仕様（要目表）	要目表の記載どおりであ ることを確認する。	- 材料検査 - 寸法検査 - 建物•構築物構造検査 －外観検查
			上記以外の所要の機能要求事項	目的とする機能•性能が発揮できることを確認す る。	- 状態確認検查 - 耐圧検査 - 漏えい検査 - 特性検査 - 機能•性能検查
		評価要求	評価のインプ ット条件等の要求事項	評価条件を満足している ことを確認する。	－状態確認検查
			評価結果を設計条件とする要求事項	内容に応じて，設置要求，系統構成，機能要求とし て確認する。	－内容に応じて，設置要求，系統構成，機能要求の検查を適用
運用	運用要求		手順確認	（保安規定） 手順化されていることを確認する。	－状態確認検查

3.6 設工認における調達管理の方法

設工認で行う調達管理は，保安規定品質マネジメントシステム計画に基づき以下 に示す管理を実施する。

3．6．1 供給者の技術的評価
組織は，供給者が当社の要求事項に従って調達製品を供給する技術的な能力 を有することを判断の根拠として供給者の技術的評価を実施する。

3．6．2 供給者の選定
組織は，設工認に必要な調達を行う場合，原子力安全に及ぼす影響や供給者の実績等を考慮し，「3．2．1 設計及び工事のグレード分けの適用」に示す重要度に応じてグレード分けを行い管理する。

3．6．3 調達製品の調達管理

業務の実施に際し，原子力安全に及ぼす影響に応じて，調達管理に係るグレー ド分けを適用する。なお，仕様書を作成するに当たり，あらかじめ採用しようと する一般産業用工業品について，その調達の管理の方法と程度を定め，それに基 づき原子炉施設の安全機能に係る機器等として使用するための技術的な評価を行う。
（1）仕様書の作成
組織は，業務の内容に応じ，保安規定品質マネジメントシステム計画に示す調達要求事項を含めた仕様書を作成し，供給者の業務実施状況を適切に管理する。 （「3．6．3（2）調達製品の管理」参照）
組織は，一般産業用工業品を原子炉施設に使用するに当たつて，当該一般産業用工業品に係る情報の入手に関する事項及び組織が供給者先で使用前事業者検査等及び自主検査等を行ら際に原子力規制委員会の職員が同行して工場等の施設に立ち入る場合があることを供給者へ要求する。
（2）調達製品の管理
組織は，仕様書で要求した製品が確実に納品されるよう調達製品が納入され るまでの間，製品に応じた必要な管理を実施する。
（3）調達製品の検証
組織は，調達製品が調達要求事項を満たしていることを確実にするために調達製品の検証を行う。

組織は，供給者先で調達製品の検証を実施する場合，あらかじめ仕様書で検証 の要領及び供給者からの出荷の可否の決定の方法を明確にした上で，検証を行 う。

3． 6.4 供給者に対する品質監査
組織は，供給者の品質保証活動及び健全な安全文化を㕕成し維持するための活動が適切で，かつ，確実に行われていることを確認するために，供給者に対す る品質監査を実施する。

3．6．5 設工認における調達管理の特例
設工認の対象となる適合性確認対象設備は，「3．6設工認における調達管理の方法」を以下のとおり適用する。
（1）新規制基準施行以前に設置している適合性確認対象設備
設工認の対象となる設備のらち，新規制基準施行以前に設置している適合性確認対象設備は，設置当時に調達を完了しているため，「3．6設工認における調達管理の方法」に基づく管理は適用しない。
（2）既に工事を着手し設置を完了し調達製品の検証段階の適合性確認対象設備
設工認の対象となる設備のらち，既に工事を着手し設置を完了し調達製品の検証段階の適合性確認対象設備は，「3．6．1 供給者の技術的評価」から「3．6．3（2）調達製品の管理」まで，調達当時のグレード分けの考え方で管理を完了している ため，「3．6．3（3）調達製品の検証」以降の管理を設工認に基づき管理する。
（3）既に工事を着手し工事を継続している適合性確認対象設備
設工認の対象となる設備のらち，既に工事を着手し工事を継続している適合性確認対象設備は，「3．6．1 供給者の技術的評価」から「3．6．3（1）仕様書の作成」まで，調達当時のグレード分けの考え方で管理を完了しているため，「3．6．3（2）調達製品の管理」以降の管理を設工認に基づき管理する。
3.7 記録，識別管理，トレーサビリティ

3．7．1 文書及び記録の管理
（1）適合性確認対象設備の設計，工事及び検査に係る文書及び記録
組織は，設計，工事及び検査に係る文書及び記録を，保安規定品質マネジメン トシステム計画に示す規定文書に基づき作成し，これらを適切に管理する。
（2）供給者が所有する当社の管理下にない設計図書を設計，工事及び検査に用い る場合の管理

設工認において供給者が所有する当社の管理下にない設計図書を設計，工事及び検査に用いる場合は，供給者の品質保証能力の確認ができ，かつ，対象設備 での使用が可能な場合において，適用可能な設計図書として扱う。
（3）使用前事業者検査に用いる文書及び記録
使用前事業者検查として，記録確認検查を実施する場合に用いる記録は，上記

> (1) , (2)を用いて実施する。

3．7．2 識別管理及びトレーサビリティ

（1）測定機器の管理
組織は，保安規定品質マネジメントシステム計画に従い，設計及び工事，検査 で使用する測定機器について，校正•検証及び識別等の管理を実施する。
（2）機器，弁及び配管等の管理
組織は，保安規定品質マネジメントシステム計画に従い，機器，弁及び配管等 について，刻印，タグ，銘板，台帳，塗装表示等にて管理する。

3.8 不適合管理

設工認に基づく設計，工事及び検査において発生した不適合については保安規定品質マネジメントシステム計画に基づき処置を行う。

4．適合性確認対象設備の施設管理適合性確認対象設備の工事は，保安規定に規定する施設管理に基づき業務を実施する。

$$
\mathrm{O} 2 \quad \text { 変二(1) } \quad \mathrm{V} \quad \mathrm{R} 0
$$

V 変更の理由
（1）残留熱除去系 主要弁（E11－F004A，B）について，弁体の下降を確認したことから，弁体取替を実施する。（残留熱除去設備（原子炉冷却材圧力バウンダリに係るものに限 る。）に係るものの修理（取替））
（2）原子炉冷却材浄化系 主配管（G31－F022～高圧代替注水系注入配管合流点）（高圧代替注水系注入配管合流点～原子炉泠却材浄化系A系注入配管合流点）について，要目表において原子炉冷却材浄化系配管に高圧代替注水系配管を接続するための配管ルー ト変更をする際に，配管の一部を曲げ管から製作管理が容易な継手（エルボ）に変更 した。この際，要目表には，要目表の変更前にエルボの仕様を記載し，要目表の変更後に「変更なし」と記載したことで，変更前（建設時）からエルボがある記載となっ ていたが，エルボの仕様は新たな仕様として要目表の「変更後」に記載すべきであっ たことから，要目表の記載変更を行う。
（3）非常用ガス処理系 主要弁（T46－F001A，B，T46－F003A，B）について，弁箱厚さが公称値で記載されていたことから，他の主要弁と記載の整合を図るため要目表の弁箱厚さ について腐食代を考慮した寸法（設計確認値）へ記載変更を行う。
（4）原子炉格納容器調気系 主配管（原子炬格納容器配管貫通部（X－230）～ドライウェ ル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部を厚肉化することを，要目表に適切に記載していなかったことから，要目表の記載変更を行う。また，原子炉格納容器調気系から原子炉格納容器フィルタベント系へ の分岐点において，J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合しない管継手（以下「JIS 規格外管継手」という。）を採用しており J I S B 2 3 1 2（2 0 01 ）で規定する寸法に適合する管継手（以下「JIS 規格管継手」という。）との評価方法の違いから要目表へ管として記載することとしているが，要目表に適切に記載さ れていなかったことから要目表の記載変更を行う。
（5）外郭浸水防護設備（逆止弁付ファンネル）について，弁本体の材料として管材 （ \quad ）を使用することとしていたが，板材（ \square ）の表記としており，管材（ \square ）を使用することを，要目表に適切に記載していなかったことか ら，要目表の記載変更を行う。

VI 添付書類

VI－1 説明書

VI－2 耐震性に関する説明書
VI－3 強度に関する説明書
VI－4 その他計算書
VI－5 計算機プログラム（解析コード）の概要
VI－6 図面

注：「VI－1 説明書」，「VI－2 耐震性に関する説明書」，「VI－3 強度に関する説明書」，「VI－6 図面」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第 2112231 号及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事 の計画の記載内容に変更はない。

VI－1 説明書

目 次

VI－1－1 各発電用原子炉施設に共通の説明書
VI－1－2 原子炉本体の説明書
VI－1－3 核燃料物質の取扱施設及び貯蔵施設の説明書
VI－1－4 原子炉冷却系統施設の説明書
VI－1－5 計測制御系統施設の説明書
VI－1－6 放射性廃棄物の廃棄施設の説明書
VI－1－7 放射線管理施設の説明書
VI－1－8 原子炉格納施設の説明書
VI－1－9 その他発電用原子炉の附属施設の説明書
VI－1－10 設計及び工事に係る品質マネジメントシステムに関する説明書

注：「VI－1－1 各発電用原子炉施設に共通の説明書」，「VI－1－4 原子炉冷却系統施設の説明書」，「VI－1－8 原子炉格納施設の説明書」，「VI－1－10 設計及び工事に係る品質マネジメントシス テムに関する説明書」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1 各発電用原子炉施設に共通の説明書

目 次

VI－1－1－1 発電用原子炉の設置の許可との整合性に関する説明書
VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書
VI－1－1－3 取水口及び放水口に関する説明書
VI－1－1－4 設備別記載事項の設定根拠に関する説明書
VI－1－1－5 クラス 1 機器及び炉心支持構造物の応力腐食割れ対策に関する説明書
VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書

VI－1－1－7 発電用原子炉施設の火災防護に関する説明書
VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書
VI－1－1－9 発電用原子炉施設の蒸気タービン，ポンプ等の損壊に伴う飛散物による損傷防護に関 する説明書

VI－1－1－10 通信連絡設備に関する説明書
VI－1－1－11 安全避難通路に関する説明書
VI－1－1－12 非常用照明に関する説明書

注：「VI－1－1－1 発電用原子炉の設置の許可との整合性に関する説明書」，「VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書」，「VI－1－1－4 設備別記載事項の設定根拠に関する説明書」，「VI－1－1－5 クラス 1 機器及び炉心支持構造物の応力腐食割れ対策 に関する説明書」，「VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下にお ける健全性に関する説明書」，「VI－1－1－7 発電用原子炉施設の火災防護に関する説明書」，「VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号及び令和 4 年 9 月 28 日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。 なお，「VI－1－1－7 発電用原子炉施設の火災防護に関する説明書」，「VI－1－1－8 発電用原子炉施設の溢水防護に関する説明書」は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1－1 発電用原子炉の設置の許可との整合性に関する説明書

VI－1－1－1－1 発電用原子炉設置変更許可申請書「本文（五号）」との整合性
VI－1－1－1－2 発電用原子炉設置変更許可申請書「本文（十一号）」との整合性

> VI-1-1-1-1 発電用原子炉設置変更許可申請書「本文 (五号)」との整合性

1．発電用原子炉設置変更許可申請書「本文（五号）」との整合性
発電用原子炬設置変更許可申請書「本文（五号）」との整合性は，令和3年12月23日付け原規規発第 2112231 号にて認可された設計及び工事の計画，及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画からの変更箇所について添付する。

なお，添付箇所以外の本申請内容は，「設計及び工事の計画 該当事項」の記載事項に影響を与えるものでないことから，本説明書のらち添付箇所以外は，令和 3 年 12 月 23日付け原規規発第2112231号にて認可された設計及び工事の計画，及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画から変更はない。

2．基本方針
設計及び工事の計画が女川原子力発電所発電用原子炉設置変更許可申請書（以下「設置変更許可申請書」という。）の基本方針に従った詳細設計であることを，設置変更許可申請書との整合性により示す。

設置変更許可申請書との整合性は，設置変更許可申請書「本文（五号）」（以下「本文（五号）」という。）と設計及び工事の計画のらち「基本設計方針」及び「機器等の仕様に関する記載事項」（以下「要目表」という。）について示すとともに，設置変更許可申請書「本文（十号）」（以下「本文（十号）」という。）に記載する解析条件に ついても整合性を示す。

また，設置変更許可申請書「添付書類八」（以下「添付書類八」という。）のうち本文（五号）に係る設備設計を記載している箇所については，本文（五号）の関連情報と して記載する。
なお，設置変更許可申請書の基本方針に記載がなく，設計及び工事の計画において詳細設計を行う場合は，設置変更許可申請書に抵触するものでないため，本資料には記載 しない。

3．記載の基本事項
（1）説明書の構成は比較表形式とし，左欄から「設置変更許可申請書（本文（五号））」，「設置変更許可申請書（添付書類八）該当事項」，「設計及び工事の計画 該当事項」，「整合性」及び「備考」を記載する。
（2）説明書の記載順は，本文（五号）に記載する順とする。
なお，本文（十号）については，「設置変更許可申請書（本文（五号））」内の該当箇所に挿入する。
（3）本文（五号）と設計及び工事の計画の記載が同等の箇所には，実線のアンダーライ ンで明示する。記載等が異なる場合には破線のアンダーラインを引くとともに，設計及び工事の計画が本文（五号）と整合していることを明示する。
（4）本文（十号）との整合性に関する補足説明は一重枠囲みにより記載する。
本文（五号）との整合性に関する補足説明は原則として「整合性」欄に記載するが，欄内に記載しきれないものについては別途，二重枠囲みにより記載する。
（5）添付書類八については，上記（3）において設計及び工事の計画にアンダーラインを引いた箇所について，同等の記載箇所には実線，記載が異なる箇所には破線のアンダ ーラインを引いて明示する。

VI－1－1－1－2 発電用原子炉設置変更許可申請書「本文（十一号）」と の整合性

1．発電用原子炉設置変更許可申請書「本文（十一号）」との整合性
本申請は，設計及び工事に係る品質マネジメントシステムを変更するものではなく，発電用原子炉設置変更許可申請書「本文（十一号）」との整合性の説明書に影響を与える ものではないことから，本説明書は，令和 4 年 9 月 28 日付け原規規発第 2209283 号に て認可された設計及び工事の計画から変更はない。

VI－1－1－2 発電用原子炉施設の自然現象等による損傷の防止に関する説明書

目 次

VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する説明書 VI－1－1－2－2 津波への配慮に関する説明書

VI－1－1－2－3 竜巻への配慮に関する説明書 VI－1－1－2－4 火山への配慮に関する説明書

VI－1－1－2－5 外部火災への配慮に関する説明書
VI－1－1－2－別添 1 屋外に設置されている重大事故等対処設備の抽出

注：「VI－1－1－2－1 発電用原子炬施設に対する自然現象等による損傷の防止に関する説明書」，「VI－1－1－2－2 津波への配慮に関する説明書」，「VI－1－1－2－3 竜巻への配慮に関する説明書」，「VI－1－1－2－4 火山への配慮に関する説明書」，「VI－1－1－2－5 外部火災への配慮に関する説明書」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画，及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画 の記載内容に変更はない。
なお，「VI－1－1－2－3 竜巻への配慮に関する説明書」，「VI－1－1－2－4 火山への配慮に関する説明書」，「VI－1－1－2－5 外部火災への配慮に関する説明書」は，令和 3 年 12月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画，及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1－2－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する説明書

目 次

VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針 VI－1－1－2－1－2 防護対象施設の範囲

VI－1－1－2－1－1 発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針

1．発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針
本申請は，自然現象等に対する設計方針及び防護すべき施設を変更するものではなく，発電用原子炉施設に対する自然現象等による損傷の防止に関する基本方針に影響を与え るものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画，及び令和4年9月28日付け原規規発第2209283号にて認可さ れた設計及び工事の計画から変更はない。

VI－1－1－2－1－2 防護対象施設の範囲

1．防護対象施設の範囲
本申請は，安全機能が自然現象により損なわれないために必要な防護すべき施設を変更するものではなく，防護対象施設の範囲に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－1－1－2－2 津波への配慮に関する説明書

VI－1－1－2－2－1 耐津波設計の基本方針
VI－1－1－2－2－2 基準津波の概要
VI－1－1－2－2－3 入力津波の設定
VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価
VI－1－1－2－2－5 津波防護に関する施設の設計方針

VI－1－1－2－2－1 耐津波設計の基本方針

1．耐津波設計の基本方針
本申請は，外郭浸水防護設備（逆止弁付ファンネル）の弁本体の使用材料を板材

から管材 \square とする要目表の記載の変更であり，本説明書記載事項に該当する項目はなく，耐津波設計の基本方針に影響を与えるものではないこと から，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画，及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画から変更はない。

VI－1－1－2－2－2 基準津波の概要

1．基準津波の概要
本申請は，外郭浸水防護設備（逆止弁付ファンネル）の弁本体の使用材料を板材
 から管材 \qquad とする要目表の記載の変更であり，本説明書記載事項に該当する項目はなく，基準津波の概要に係る事項に影響を与えるものではない ことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

$$
\mathrm{VI}-1-1-2-2-3 \text { 入力津波の設定 }
$$

1．入力津波の設定
本申請は，外郭浸水防護設備（逆止弁付ファンネル）の弁本体の使用材料を板材
 ）から管材 \qquad とする要目表の記載の変更であり，本説明書記載事項に該当する項目はなく，入力津波の設定に係る事項に影響を与えるものではない ことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画，及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可され た設計及び工事の計画から変更はない。

VI－1－1－2－2－4 入力津波による津波防護対象設備への影響評価

1．入力津波による津波防護対象設備への影響評価
本申請は，外郭浸水防護設備（逆止弁付ファンネル）の弁本体の使用材料を板材 （ $~$ ）から管材（ $~$ ）とする要目表の記載の変更であり，本説明書記載事項に該当する項目はなく，入力津波による津波防護対象設備への影響評価が変更と なるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231号にて認可された設計及び工事の計画，及び令和 4 年 9 月 28 日付け原規規発第 2209283号にて認可された設計及び工事の計画から変更はない。

> VI-1-1-2-2-5 津波防護に関する施設の設計方針
R 3

1．津波防護に関する施設の設計方針
本申請は，外郭浸水防護設備（逆止弁付ファンネル）の弁本体の使用材料を板材
\square から管材 \square とする要目表の記載の変更であり，本説明書記載事項に該当する項目はなく，津波防護に関する施設の設計方針に影響を与えるもので はないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可 された設計及び工事の計画，及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画から変更はない。

VI－1－1－4 設備別記載事項の設定根拠に関する説明書

目 次

VI－1－1－4－1 設備別記載事項の設定根拠に関する説明書（原子炉本体）
VI－1－1－4－2 設備別記載事項の設定根拠に関する説明書（核燃料物質の取扱施設及び貯蔵施設）
VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書（原子炉冷却系統施設）
VI－1－1－4－4 設備別記載事項の設定根拠に関する説明書（計測制御系統施設）
VI－1－1－4－5 設備別記載事項の設定根拠に関する説明書（放射性廃棄物の廃棄施設）
VI－1－1－4－6 設備別記載事項の設定根拠に関する説明書（放射線管理施設）
VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書（原子炉格納施設）
VI－1－1－4－8 設備別記載事項の設定根拠に関する説明書（その他発電用原子炉の附属施設）
VI－1－1－4－別添 1 技術基準要求機器リスト
VI－1－1－4－別添 2 設定根拠に関する説明書（別添）

注：「VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書（原子炉冷却系統施設）」，「VI－ 1－1－4－7 設備別記載事項の設定根拠に関する説明書（原子炉格納施設）」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1－4－3 設備別記載事項の設定根拠に関する説明書 （原子炉冷却系統施設）

目 次

VI－1－1－4－3－1 原子炉冷却材再循環設備に係る設定根拠に関する説明書
VI－1－1－4－3－2 原子炉冷却材の循環設備に係る設定根拠に関する説明書
VI－1－1－4－3－3 残留熱除去設備に係る設定根拠に関する説明書
VI－1－1－4－3－4 非常用炉心冷却設備その他原子炉注水設備に係る設定根拠に関する説明書
VI－1－1－4－3－5 原子炉冷却材補給設備に係る設定根拠に関する説明書
VI－1－1－4－3－6 原子炉補機冷却設備に係る設定根拠に関する説明書
VI－1－1－4－3－7 原子炉冷却材浄化設備に係る設定根拠に関する説明書

注：「VI－1－1－4－3－3 残留熱除去設備に係る設定根拠に関する説明書」，「VI－1－1－4－3－4 非常用炉心冷却設備その他原子炉注水設備に係る設定根拠に関する説明書」，「VI－1－1－4－3－7 原子炉冷却材浄化設備に係る設定根拠に関する説明書」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1－4－3－3 残留熱除去設備に係る設定根拠に関する説明書

VI－1－1－4－3－3－1 残留熱除去系
VI－1－1－4－3－3－2 耐圧強化ベント系

VI－1－1－4－3－3－1 残留熱除去系

VI－1－1－4－3－3－1－1 残留熱除去系熱交換器
VI－1－1－4－3－3－1－2 残留熱除去系ポンプ
VI－1－1－4－3－3－1－3 残留熱除去系ストレーナ
VI－1－1－4－3－3－1－4 残留熱除去系 安全弁及び逃がし弁（常設）
VI－1－1－4－3－3－1－5 残留熱除去系 主要弁（常設）
VI－1－1－4－3－3－1－6 残留熱除去系 主配管（常設）

注：「VI－1－1－4－3－3－1－5 残留熱除去系 主要弁（常設）」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1－4－3－3－1－5 設定根拠に関する説明書 （残留熱除去系 主要弁（常設））

－設計基準対象施設
E11－F004A，B，C は，主配管「低圧代替注水系 A 系注入配管合流点～原子炉格納容器配管貫通部（X－31A）」，「低圧代替注水系 B 系注入配管合流点～原子炉格納容器配管貫通部（X－31B）」及び
「残留熱除去系ポンプ（C）～原子炉格納容器配管貫通部（X－31C）」に設置される通常閉の弁であ り，工学的安全施設起動（作動）信号により自動で全開する。

設計基準対象施設としては，残留熱除去系ポンプ（A），（B），（C）によりサプレッションチェン バのプール水を原子炉圧力容器へ供給するための流路として設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する E11－F004A，B，C の最高使用圧力は，原子炉圧力容器の最高使用圧力と同じ 8.62 MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する E11－F004A，B，C の最高使用温度は，原子炉圧力容器の最高使用温度と同じ $302{ }^{\circ} \mathrm{C}$ とする。

3．個数の設定根拠
設計基準対象施設として使用する E11－F004A，B，C は，工学的安全施設起動（作動）信号によ り自動で全開する弁として，残留熱除去系A系，B 系及びC系にそれぞれ 1 個とし，合計 3 個設置する。

名	称	E11－F008A，B
最高使用圧力	MPa	3.73
最高使用温度	${ }^{\circ} \mathrm{C}$	186
個 数	－	2

【設定根拠】
（概要）
－設計基準対象施設
E11－F008A，B は，主配管「残留熱除去系熱交換器（A）～残留熱除去系熱交換器（A）バイパス配管合流点」及び「残留熱除去系熱交換器（B）～残留熱除去系熱交換器（B）バイパス配管合流点」 に設置される通常開の弁であり，工学的安全施設起動（作動）信号により自動で全開する。

設計基準対象施設としては，残留熱除去系熱交換器（A），（B）より原子炉冷却材を原子炉圧力容器へ送水するための流路として設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する E11－F008A，B の最高使用圧力は，残留熱除去系熱交換器 （A），（B）の管側の最高使用圧力と同じ 3.73 MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する E11－F008A，B の最高使用温度は，残留熱除去系熱交換器 （A），（B）の管側の最高使用温度と同じ $186{ }^{\circ} \mathrm{C}$ とする。

3．個数の設定根拠
設計基準対象施設として使用するE11－F008A，B は，工学的安全施設起動（作動）信号により自動で全開する弁として，残留熱除去系A系及びB系にそれぞれ1個とし，合計2個設置す る。

（概要）
－設計基準対象施設
E11－F018A，B は，主配管「サプレッションチェンバスプレイ注入配管 A 系分岐点～原子炉格納容器配管貫通部（X－32A）」及び「サプレッションチェンバスプレイ注入配管 B 系分岐点～原子炉格納容器配管貫通部（X－32B）」に設置される通常閉の弁である。

設計基準対象施設としては，残留熱除去系熱交換器（A），（B）より原子炉冷却材を原子炉圧力容器へ送水するための流路として設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用するE11－F018A，B の最高使用圧力は，主配管「原子炉格納容器配管貫通部（X－32A）～E11－F020A」及び「原子炉格納容器配管貫通部（X－32B）～E11－F020B」と同 じ 10.40 MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用するE11－F018A，B の最高使用温度は，主配管「原子炉格納容器配管貫通部（X－32A）～E11－F020A」及び「原子炉格納容器配管貫通部（X－32B）～E11－F020B」と同 じ $302{ }^{\circ} \mathrm{C}$ とする。

3．個数の設定根拠
設計基準対象施設として使用する E11－F018A，B は，残留熱除去系 A 系及び B 系にそれぞれ 1個とし，合計 2 個設置する。

> VI-1-1-4-3-3-2 耐圧強化ベント系

VI－1－1－4－3－3－2－1 耐圧強化ベント系 主配管（常設）
O 2 変二（1）VI－1－1－4－3－3－2 R 0 E

VI－1－1－4－3－3－2－1 設定根拠に関する説明書 （耐圧強化ベント系 主配管（常設））

1．設定根拠に関する説明書（耐圧強化ベント系 主配管（常設））
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（ $\mathrm{X}-230$ ）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。

また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点におい て J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合しない管継手を採用しており J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合する管継手との評価方法の違い から要目表へ管として記載することとしているが，要目表に適切に記載されていなかっ たことから要目表の記載の変更を行らものである。

本申請範囲の「原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」に ついては，「VI－1－1－4－7－6－1－2 設定根拠に関する説明書（原子炉格納容器調気系 主配管）」に含まれていることから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231号にて認可された設計及び工事の計画から変更はない。

VI－1－1－4－3－4 非常用炉心冷却設備その他原子炉注水設備に係る設定根拠 に関する説明書

VI－1－1－4－3－4－1 高圧炉心スプレイ系
VI－1－1－4－3－4－2 低圧炉心スプレイ系
VI－1－1－4－3－4－3 高圧代替注水系
VI－1－1－4－3－4－4 原子炉隔離時冷却系
VI－1－1－4－3－4－5 低圧代替注水系
VI－1－1－4－3－4－6 代替水源移送系

注：「VI－1－1－4－3－4－3 高圧代替注水系」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

> VI-1-1-4-3-4-3 高圧代替注水系

VI－1－1－4－3－4－3－1 高圧代替注水系タービンポンプ
VI－1－1－4－3－4－3－2 高圧代替注水系 主配管（常設）

注：「VI－1－1－4－3－4－3－1 高圧代替注水系タービンポンプ」は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可され た設計及び工事の計画の記載内容に変更はない。

VI－1－1－4－3－4－3－2 設定根拠に関する説明書 （高圧代替注水系 主配管（常設））

1．設定根拠に関する説明書（高圧代替注水系 主配管（常設））
本申請は，原子炉冷却材浄化系主配管（「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」）につ いて，配管の一部を曲げ管からエルボに変更することが，要目表に適切に記載されてい なかったことから要目表の記載の変更を行うものである。

本申請範囲の「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系 A 系注入配管合流点」については，「VI－1－1－4－3－7－1－1設定根拠に関する説明書（原子炉冷却材浄化系 主配管）」に含まれていることから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事 の計画から変更はない。

VI－1－1－4－3－7 原子炉冷却材浄化設備に係る設定根拠に関する説明書

VI－1－1－4－3－7－1 原子炉冷却材浄化系

VI－1－1－4－3－7－1－1 原子炉冷却材浄化系 主配管

VI－1－1－4－3－7－1－1 設定根拠に関する説明書 （原子炉冷却材浄化系 主配管）

名	称	G31-F022 高圧代替注水系注入配管合流点
最高使用圧力	MPa	8.62
最高使用温度	${ }^{\circ} \mathrm{C}$	302
外 径	mm	165.2

【設定根拠】
（概要）
本配管は，G31－F022 から高圧代替注水系注入配管合流点を接続する配管であり，設計基準対象施設として，原子炉冷却材を原子炉冷却材浄化系ポンプにより原子炉圧力容器へ送水す るために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉圧力容器の最高使用圧力 と同じ 8.62 MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，原子炉圧力容器の最高使用温度 と同じ $302{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，原子炉冷却材浄化系ポンプにより原子炉冷却材を送水できる配管の外径と して，接続する配管「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」の外径に合わせて選定し， 165.2 mm とする。

名	称	高圧代替注水系注入配管合流点原子炉冷却材浄化系 A 系注入配管合流点	＊1
最高使用圧力	MPa	8.62	
最高使用温度	${ }^{\circ} \mathrm{C}$	302	
外 径	mm	165.2	

注記 $* 1$ ：非常用炉心冷却設備その他原子炉注水設備（高圧代替注水系）及び原子炉格納施設の らち圧力低減設備その他の安全設備の原子炉格納容器安全設備（高圧代替注水系）と兼用。
【設定根拠】
（概要）
本配管は，高圧代替注水系注入配管合流点から原子炉冷却材浄化系 A 系注入配管合流点を接続する配管であり，設計基準対象施設としては，原子炉冷却材を原子炉冷却材浄化系ポン プにより原子炉圧力容器へ送水するために設置する。

重大事故等対処設備としては，復水貯蔵タンクを水源として，高圧代替注水系ポンプによ り原子炉圧力容器に注水するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉圧力容器の最高使用圧力 と同じ 8.62 MPa とする。

本配管を重大事故等時において使用する場合の圧力は，設計基準対象施設と同様の使用方法 であるため，設計基準対象施設と同仕様で設計し，8．62 MPaとする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，原子炉圧力容器の最高使用温度 と同じ $302{ }^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の温度は，高圧代替注水系タービンポンプの重大事故等時における使用温度 $66{ }^{\circ} \mathrm{C}$ を上回る $302{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，水源から淡水又は海水を供給するた め，エロージョン，圧力損失•施工性等を考慮し，先行プラントの配管実績に基づいた標準流速を目安に選定し， 165.2 mm とする。

外径 A (mm)	厚さ B (mm)	呼び径		
(A)				流路面積
:---:				
C				
$\left(\mathrm{m}^{2}\right)$		流量		
:---:				
D $\left(\mathrm{m}^{3} / \mathrm{h}\right)$				
165.2				

注記 $* 2$ ：流速及びその他のパラメータとの関係は以下のとおりとする。

$$
\begin{aligned}
& \mathrm{C}=\pi \cdot\left\{\frac{1}{2} \cdot \frac{(\mathrm{~A}-2 \cdot \mathrm{~B})}{1000}\right\}^{2} \\
& \mathrm{E}=\frac{\mathrm{D}}{3600 \cdot \mathrm{C}}
\end{aligned}
$$

注記＊：非常用炉心泠却設備その他原子炉注水設備（原子炉隔離時冷却系）と兼用。
【設定根拠】
（概要）
本配管は，原子炉隔離時冷却系注入配管合流点から原子炉冷却材浄化系 B 系注入配管合流点を接続する配管であり，設計基準対象施設としては，原子炉冷却材を原子炉冷却材浄化系 ポンプにより原子炉圧力容器へ送水するために設置する。

重大事故等対処設備としては，復水貯蔵タンクを水源として，原子炬隔離時冷却系ポンプ により原子炉圧力容器に注水するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉圧力容器の最高使用圧力
と同じ 8.62 MPa とする。
本配管を重大事故等時において使用する場合の圧力は，設計基準対象施設と同様の使用方法 であるため，設計基準対象施設と同仕様で設計し，8．62 MPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，原子炉圧力容器の最高使用温度 と同じ $302{ }^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の温度は，原子炉隔離時冷却系ポンプの重大事故等時における使用温度 $66{ }^{\circ} \mathrm{C}$ を上回る $302{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，重大事故等時に使用する原子炉隔離時冷却系ポンプの容量を基に設定しており，重大事故等時に使用する原子炉隔離時冷却系ポン プの容量が設計基準対象施設として使用する場合の容量と同仕様であるため，本配管の外径 は，メーカ社内基準に基づき定めた標準流速を考慮し選定した設計基準対象施設の外径と同仕様で設計し， $114.3 \mathrm{~mm}, 165.2 \mathrm{~mm}$ とする。

VI－1－1－4－7 設備別記載事項の設定根拠に関する説明書 （原子炉格納施設）

VI－1－1－4－7－1 原子炉格納容器に係る設定根拠に関する説明書
VI－1－1－4－7－2 原子炉建屋に係る設定根拠に関する説明書
VI－1－1－4－7－3 圧力低減設備に係る設定根拠に関する説明書
VI－1－1－4－7－4 原子炉格納容器安全設備に係る設定根拠に関する説明書
VI－1－1－4－7－5 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備に係る設定根拠に関する説明書

VI－1－1－4－7－6 原子炉格納容器調気設備に係る設定根拠に関する説明書
VI－1－1－4－7－7 圧力逃がし装置に係る設定根拠に関する説明書

注：「VI－1－1－4－7－5 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備に係る設定根拠に関する説明書」，「VI－1－1－4－7－6 原子炉格納容器調気設備に係る設定根拠に関する説明書」，「VI－1－1－4－7－7 圧力逃がし装置に係る設定根拠に関する説明書」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3年12月23日付け原規規発第2112231号及び令和4年9月28日付け原規規発第2209283号 にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1－4－7－5 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並び に格納容器再循環設備に係る設定根拠に関する説明書

VI－1－1－4－7－5－1 非常用ガス処理系
VI－1－1－4－7－5－2 可燃性ガス濃度制御系
VI－1－1－4－7－5－3 原子炉建屋水素濃度抑制系
VI－1－1－4－7－5－4 放射性物質拡散抑制系
VI－1－1－4－7－5－5 可搬型窒素ガス供給系
VI－1－1－4－7－5－6 原子炉格納容器フィルタベント系

注：「VI－1－1－4－7－5－1 非常用ガス処理系」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1－4－7－5－1 非常用ガス処理系

目 次

VI－1－1－4－7－5－1－1 非常用ガス処理系空気乾燥装置
VI－1－1－4－7－5－1－2 非常用ガス処理系 主配管（常設）
VI－1－1－4－7－5－1－3 非常用ガス処理系排風機
VI－1－1－4－7－5－1－4 非常用ガス処理系フィルタ装置
VI－1－1－4－7－5－1－5 非常用ガス処理系 主要弁（常設）

注：「VI－1－1－4－7－5－1－5 非常用ガス処理系 主要弁（常設）」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可さ れた設計及び工事の計画の記載内容に変更はない。

VI－1－1－4－7－5－1－5 設定根拠に関する説明書 （非常用ガス処理系 主要弁（常設））

－設計基準対象施設
T46－F001A，B は，主配管「原子炉建屋内～非常用ガス処理系排風機入口配管合流点」に設置 される通常閉の弁であり，工学的安全施設起動（作動）信号により自動で全開する。

設計基準対象施設としては，放射性物質の放出を伴う事故時に原子炉建屋原子炉棟（二次格納施設）の空気を非常用ガス処理系フィルタ装置に通し，排気中の放射性よう素•粒子状放射性物質が直接大気へ放出されることを防止し，原子炉建屋原子炉棟（二次格納施設）内を負圧 に維持するための流路として設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する T46－F001A，B の最高使用圧力は，原子炉建屋原子炉棟内で の主蒸気管破断事故の際に，非常用ガス処理系排風機起動前又は起動後に想定される圧力が正圧又は負圧であることからそれぞれの状態における圧力の最大値を設定する。

非常用ガス処理系排風機起動前は，主蒸気管破断時の原子炉建屋原子炉棟内の圧力が，開放端のある配管上に設置される T46－F001A，B に対し正圧（内圧）に働くものとして 13.7 kPa を考慮する。

非常用ガス処理系排風機起動後は，非常用ガス処理系排風機締切静圧 9.8 kPa に加え，主蒸気管破断時の原子炉建屋原子炉棟内の圧力 13.7 kPa が，T46－F001A，B に対し負圧（外圧）に働 くものとし，それを加味した－23．5kPa を考慮する。

これらより，T46－F001A，B は，正圧又は負圧の最高使用圧力として $13.7 \mathrm{kPa}, ~-23.5 \mathrm{kPa}$ とす る。

2．最高使用温度の設定根拠
設計基準対象施設として使用する T46－F001A，B の最高使用温度は，主配管「原子炉建屋内～非常用ガス処理系排風機入口配管合流点」の最高使用温度と同じ $100^{\circ} \mathrm{C}$ とする。

3．個数の設定根拠
設計基準対象施設として使用する T46－F001A，B は，工学的安全施設起動（作動）信号により自動で全開する弁として，非常用ガス処理系A系及びB系にそれぞれ 1 個とし，合計 2 個設置 する。

名	称	T46－F003A，B
最高使用圧力	kPa	23.5
最高使用温度	${ }^{\circ} \mathrm{C}$	140
個 数	－	2
－－		
【設定根拠】 （概要）		

－設計基準対象施設
T46－F003A，B は，主配管「非常用ガス処理系フィルタ装置～非常用ガス処理系フィルタ装置出口配管合流点」に設置される通常閉の弁であり，工学的安全施設起動（作動）信号により自動で全開する。

設計基準対象施設としては，放射性物質の放出を伴う事故時に非常用ガス処理系フィルタ装置で処理された気体を排気筒へ導くための流路として設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する T46－F003A，B の最高使用圧力は，主配管「非常用ガス処理系フィルタ装置～非常用ガス処理系フィルタ装置出口配管合流点」の最高使用圧力と同じ 23.5 kPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する T46－F003A，B の最高使用温度は，主配管「非常用ガス処理系フィルタ装置～非常用ガス処理系フィルタ装置出口配管合流点」の最高使用温度と同じ $140{ }^{\circ} \mathrm{C}$ とする。

3．個数の設定根拠
設計基準対象施設として使用する T46－F003A，B は，工学的安全施設起動（作動）信号により自動で全開する弁として，非常用ガス処理系A系及びB系にそれぞれ1個とし，合計2個設置 する。

VI－1－1－4－7－6 原子炉格納容器調気設備に係る設定根拠に関する説明書

VI－1－1－4－7－6－1 原子炉格納容器調気系

VI－1－1－4－7－6－1 原子炉格納容器調気系

目 次

VI－1－1－4－7－6－1－1 原子炉格納容器調気系 主要弁
VI－1－1－4－7－6－1－2 原子炉格納容器調気系 主配管

注：「VI－1－1－4－7－6－1－1 原子炉格納容器調気系 主要弁」は，今回の設計及び工事の計画の変更 に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1－4－7－6－1－2 設定根拠に関する説明書

 （原子炉格納容器調気系 主配管）| 名 | 称 | T48－F002 出口側合流点
 原子炉格納容器配管貫通部（X－80） | |
| :---: | :---: | :---: | :---: |
| 最高使用圧力 | kPa | 427， 854 | |
| 最高使用温度 | ${ }^{\circ} \mathrm{C}$ | 171， 200 | |
| 外 径 | mm | 609.6 | |

注記＊：原子炉冷却系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系）並びに圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（可搬型窒素ガス供給系，原子炉格納容器フィルタベン ト系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィル タベント系）と兼用。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，原子炉格納容器の最高使用温度 と同じ $171{ }^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の温度は，重大事故等時における原子炉格納容器の使用温度と同じ $200{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，重大事故等時に使用する窒素供給装置の容量を基に設定しており，重大事故等時に使用する可搬型窒素ガス供給装置の容量が設計基準対象施設として使用するパージ用排風機の容量に包絡されるため，本配管の外径はメーカ一社内基準に基づき定めた標準流速を考慮し選定した設計基準対象施設の外径と同仕様で設計し， 609.6 mm とする。

（概要）
本配管は，ドライウェル入口配管分岐点からサプレッションチェンバを接続する配管であ り，設計基準対象施設として，原子炉格納容器内を空気又は窒素で置換をする際に原子炉格納容器内へ空気又は窒素を供給するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉格納容器の最高使用圧力 と同じ 427 kPa とする。

2．最高使用温度の設定根拠
本配管のらち，T48－F003 からサプレッションチェンバまでを設計基準対象施設として使用す る場合の最高使用温度は，サプレッションチェンバの最高使用温度と同じ $104{ }^{\circ} \mathrm{C}$ とする。

本配管のうち，ドライウェル入口配管分岐点から T48－F003 までを設計基準対象施設として使用する場合の最高使用温度は，原子炉格納容器の最高使用温度と同じ $171{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，パージ用排風機の容量を基に設定しており，先行プラントの空気・ガス配管の配管実績に基づいた標準流速を目安に 609.6 mm とする。

外径 A (mm)	厚さ B (mm)	呼び径	流路面積 (A)	流量 $\left(\mathrm{m}^{2}\right)$	流速＊ $\left(\mathrm{m}^{3} / \mathrm{h}\right)$	標準流速 $(\mathrm{m} / \mathrm{s})$
609.6	9.5	600	0.27395	24000	24.3	\square
609.6	31.0	600	0.23551	24000	28.3	\square

＊：流速及びその他パラメータとの関係は以下のとおりとする。

$$
\begin{aligned}
& \mathrm{C}=\pi \cdot\left\{\frac{1}{2} \cdot \frac{(\mathrm{~A}-2 \cdot \mathrm{~B})}{1000}\right\}^{2} \\
& \mathrm{E}=\frac{\mathrm{D}}{3600 \cdot \mathrm{C}}
\end{aligned}
$$

名	称	原子炉建屋内 サプレッションチェンバ入口配管合流点 2
最高使用圧力	kPa	427
最高使用温度	${ }^{\circ} \mathrm{C}$	104
外 径	mm	609.6
－		

【設定根拠】
（概要）
本配管は，原子炉建屋内からサプレッションチェンバ入口配管合流点 2 を接続する配管であ り，原子炉格納容器を外圧から保護するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉格納容器の最高使用圧力 と同じ 427 kPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として本配管の最高使用温度は，サプレッションチェンバの最高使用温度 と同じ $104{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，原子炉格納容器を外圧から保護するために原子炉建屋とサプレッションチ ェンバの差圧を減少できる流路断面積となる配管の外径として，接続する配管「ドライウェル入口配管分岐点～サプレッションチェンバ」の外径に合わせて選定し， 609.6 mm とする。

名	称	T48-F010 T48－F011 入口側合流点
最高使用圧力	kPa	427
最高使用温度	${ }^{\circ} \mathrm{C}$	171
外 径	mm	60.5
－－－		
【設定根拠】 （概要）		

（概要）
本配管は，T48－F010 から T48－F011 入口側合流点を接続する配管であり，設計基準対象施設 として，原子炉格納容器内に窒素を補給する際に，原子炉格納容器内へ窒素を供給するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉格納容器の最高使用圧力 と同じ 427 kPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，原子炉格納容器の最高使用温度 と同じ $171{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，常時補給用液体窒素蒸発器（送ガス用）により窒素を供給できる流路断面積 となる配管の外径として，接続する配管「T48－F011 入口側合流点～T48－F002出口側合流点」の外径に合わせて選定し， 60.5 mm とする。

名	称	T48－F011 入口側合流点 T48－F002 出口側合流点	＊1
最高使用圧力	kPa	427， 854	
最高使用温度	${ }^{\circ} \mathrm{C}$	171， 200	
外 径	mm	60.5	

注記 $* 1$ ：原子炉冷却系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系）並び に圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（可搬型窒素ガス供給系，原子炉格納容器フィルタベ ント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィ ルタベント系）と兼用。
【設定根拠】
（概要）
本配管は，T48－F011 入口側合流点から T48－F002 出口側合流点を接続する配管であり，設計基準対象施設として，原子炉格納容器内に窒素を補給する際に，原子炉格納容器内へ窒素を供給するために設置する。

重大事故等対処設備としては，重大事故等時に可搬型窒素ガス供給装置により原子炉格納容器内へ窒素を供給するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉格納容器の最高使用圧力 と同じ 427 kPa とする。

本配管を重大事故等時において使用する場合の圧力は，重大事故等時における原子炉格納容器の使用圧力と同じ 854 kPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，原子炉格納容器の最高使用温度 と同じ $171{ }^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の温度は，重大事故等時における原子炉格納容器の使用温度と同じ $200{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，可搬型窒素ガス供給装置から窒素を供給するため，エロージョン，圧力損失•施工性等を考慮し，先行プラントの空気・ガス配管 の配管実績に基づいた標準流速を目安に60．5 mm とする。

外径 A (mm)	厚さ B (mm)	呼び径	流路面積 （A）	流量 $\left(\mathrm{m}^{2}\right)$	流速＊2 $\left(\mathrm{m}^{3} / \mathrm{h}[\mathrm{normal}]\right)$	標準流速 $(\mathrm{m} / \mathrm{s})$
60.5	5.5	50	0.00192	220	$46.9 * 3$	\square

＊2 ：大気圧，かつ重大事故等時の窒素ガス温度（ $130{ }^{\circ} \mathrm{C}$ ）における流速を示す。流速及びその他パラメータとの関係は以下のとおりとする。
$\mathrm{C}=\pi \cdot\left\{\frac{1}{2} \cdot \frac{(\mathrm{~A}-2 \cdot \mathrm{~B})}{1000}\right\}^{2}$
$\mathrm{E}=\frac{\mathrm{D}}{3600 \cdot \mathrm{C}} \cdot \frac{273.15+130}{273.15}$
＊3 ：配管の標準流速を超えるが，流体は可搬型窒素ガス供給装置から供給される窒素であ り，エロ—ジョンや圧力損失の問題はない。

名	称	ドライウェル補給用窒素配管分岐点原子炉建屋内吸入配管合流点
最高使用圧力	kPa	427
最高使用温度	${ }^{\circ} \mathrm{C}$	104， 171
外 径	mm	60.5

【設定根拠】
（概要）
本配管は，ドライウェル補給用窒素配管分岐点から原子炉建屋内吸入配管合流点を接続する配管であり，設計基準対象施設として，原子炉格納容器内に窒素を補給する際に，原子炉格納容器内へ窒素を供給するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉格納容器の最高使用圧力 と同じ 427 kPa とする。

2．最高使用温度の設定根拠
本配管のらち，T48－F012 から原子炉建屋内吸入配管合流点までを設計基準対象施設として使用する場合の最高使用温度は，サプレッションチェンバの最高使用温度と同じ $104{ }^{\circ} \mathrm{C}$ とする。

本配管のうち，ドライウェル補給用窒素配管分岐点から T48－F012 までを設計基準対象施設 として使用する場合の最高使用温度は，原子炉格納容器の最高使用温度と同じ $171{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管の外径は，常時補給用液体窒素蒸発器（送ガス用）により窒素を供給できる流路断面積 となる配管の外径として，接続する配管「T48－F010～T48－F011 入口側合流点」の外径に合わせ て選定し， 60.5 mm とする。

名	称	
原子炉格納容器配管貫通部（X－81）		
ドライウェル出口配管分岐点		

注記＊1 ：原子炉冷却系統施設のうち残留熱除去設備（原子炉格納容器フィルタベント系，耐圧強化ベント系）並びに圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタ ベント系）と兼用。
【設定根拠】
（概要）
本配管は，原子炉格納容器配管貫通部（X－81）からドライウェル出口配管分岐点を接続する配管であり，設計基準対象施設として，原子炉格納容器内を空気又は窒素で置換をする際に原子炉格納容器内の気体を外部に排出するために設置する。

重大事故等対処設備としては，重大事故等時に原子炉格納容器内雰囲気ガスを原子炉格納容器フィルタベント系及び耐圧強化ベント系を経由して外部に排出するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉格納容器の最高使用圧力 と同じ 427 kPa とする。

本配管を重大事故等時において使用する場合の圧力は，重大事故等時における原子炉格納容器の使用圧力と同じ 854 kPa とする。

2．最高使用温度の設定根拠
設計基準対象施設として使用する本配管の最高使用温度は，原子炉格納容器の最高使用温度 と同じ $171{ }^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の温度は，重大事故等時における原子炉格納容器の使用温度と同じ $200{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，原子炉格納容器配管貫通部（X－81）か らドライウェル出口配管分岐点までは低圧蒸気となるため，エロージョン，圧力損失•施工性等を考慮し，先行プラントの配管実績に基づいた標準流速を目安に 609.6 mm とする。

$\begin{gathered} \text { 外径 } \\ \text { A } \\ (\mathrm{mm}) \end{gathered}$	厚さ B （mm）	呼び径 （A）	流路面積 C （m²）	$\begin{gathered} \hline \text { 流量 } \\ \mathrm{D} \\ (\mathrm{~kg} / \mathrm{s}) \end{gathered}$	比容積 $\begin{gathered} E \\ \left(\mathrm{~m}^{3} / \mathrm{kg}\right) \end{gathered}$	流速＊2 F （m／s）	標準流速 $(\mathrm{m} / \mathrm{s})$
609.6	9.5	600	0.27395	10	0.35595	13.0	

＊2 ：ベント開始圧力（427 kPa）時の飽和蒸気条件における流速を示す。流速及びその他パラメータとの関係は以下のとおりとする。
$\mathrm{C}=\pi \cdot\left\{\frac{1}{2} \cdot \frac{(\mathrm{~A}-2 \cdot \mathrm{~B})}{1000}\right\}^{2}$
$F=\frac{D \cdot E}{C}$

名	称	原子炉格納容器配管貫通部（X－230） ドライウェル出口配管分岐点	
最高使用圧力	kPa	427， 854	
最高使用温度	${ }^{\circ} \mathrm{C}$	104，171， 200	
外 径	mm	609.6	

注記 $* 1$ ：原子炉冷却系統施設のらち残留熱除去設備（原子炉格納容器フィルタベント系，耐圧強化ベント系）並びに圧力低減設備その他の安全設備の放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備（原子炉格納容器フィルタベント系）及び圧力低減設備その他の安全設備の圧力逃がし装置（原子炉格納容器フィルタ ベント系）と兼用。
【設定根拠】
（概要）
本配管は，原子炉格納容器配管貫通部（X－230）からドライウェル出口配管分岐点を接続する配管であり，設計基準対象施設として，原子炉格納容器内を空気又は窒素で置換をする際に原子炉格納容器内の気体を外部に排出するために設置する。

重大事故等対処設備としては，重大事故等時に原子炉格納容器内雰囲気ガスを原子炉格納容器フィルタベント系及び耐圧強化ベント系を経由して外部に排出するために設置する。

1．最高使用圧力の設定根拠
設計基準対象施設として使用する本配管の最高使用圧力は，原子炉格納容器の最高使用圧力 と同じ 427 kPa とする。

本配管を重大事故等時において使用する場合の圧力は，重大事故等時における原子炉格納容器の使用圧力と同じ 854 kPa とする。

2．最高使用温度の設定根拠
本配管のうち，原子炉格納容器配管貫通部（X－230）から T48－F022 までを設計基準対象施設 として使用する場合の最高使用温度は，サプレッションチェンバの最高使用温度と同じ $104{ }^{\circ} \mathrm{C}$ とする。

本配管のうち，T48－F022 からドライウェル出口配管分岐点までを設計基準対象施設として使用する場合の最高使用温度は，原子炉格納容器の最高使用温度と同じ $171{ }^{\circ} \mathrm{C}$ とする。

本配管を重大事故等時において使用する場合の温度は，重大事故等時における原子炉格納容器の使用温度と同じ $200{ }^{\circ} \mathrm{C}$ とする。

3．外径の設定根拠
本配管を重大事故等時において使用する場合の外径は，原子炉格納容器配管貫通部（X－230） からドライウェル出口配管分岐点までは低圧蒸気となるため，エロージョン，圧力損失•施工性等を考慮し，先行プラントの配管実績に基づいた標準流速を目安に 609.6 mm とする。

外径 A (mm)	厚さ B (mm)	（A）呼び径	流路面積 C $\left(\mathrm{m}^{2}\right)$	流量 D $(\mathrm{kg} / \mathrm{s})$	比容積 E $\left(\mathrm{m}^{3} / \mathrm{kg}\right)$	流速＊2 F $(\mathrm{m} / \mathrm{s})$	標準流速 $(\mathrm{m} / \mathrm{s})$
609.6	9.5	600	0.27395	10	0.35595	13.0	
609.6	17.5	600	0.25931	10	0.35595	13.7	
609.6	31.0	600	0.23551	10	0.35595	15.1	

＊2：ベント開始圧力（ 427 kPa ）時の飽和蒸気条件における流速を示す。流速及びその他パラメータとの関係は以下のとおりとする。
$\mathrm{C}=\pi \cdot\left\{\frac{1}{2} \cdot \frac{(\mathrm{~A}-2 \cdot \mathrm{~B})}{1000}\right\}^{2}$
$\mathrm{F}=\frac{\mathrm{D} \cdot \mathrm{E}}{\mathrm{C}}$

VI－1－1－4－7－7 圧力逃がし装置に係る設定根拠に関する説明書

VI－1－1－4－7－7－1 原子炉格納容器フィルタベント系

VI－1－1－4－7－7－1 原子炉格納容器フィルタベント系
$\mathrm{VI}-1-1-4-7-7-1-1$ フィルタ装置
VI－1－1－4－7－7－1－2 原子炉格納容器フィルタベント系 主要弁（常設）
$\mathrm{VI}-1-1-4-7-7-1-3$ フィルタ装置出口側ラプチャディスク
VI－1－1－4－7－7－1－4 原子炉格納容器フィルタベント系 主配管（常設）
VI－1－1－4－7－7－1－5 原子炉格納容器フィルタベント系 主配管（可搬型）

注：「VI－1－1－4－7－7－1－4 原子炉格納容器フィルタベント系 主配管（常設）」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－1－4－7－7－1－4 設定根拠に関する説明書
（原子炉格納容器フィルタベント系 主配管（常設））

1．設定根拠に関する説明書（原子炉格納容器フィルタベント系 主配管（常設））
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。

また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点におい て J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合しない管継手（以下「JIS 規格外管継手」という。）を採用しており J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法 に適合する管継手（以下「JIS 規格管継手」という。）との評価方法の違いから要目表へ管として記載することとしているが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。

本申請範囲の「原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」に ついては，「VI－1－1－4－7－6－1－2 設定根拠に関する説明書（原子炉格納容器調気系 主配管）」に含まれていることから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231号にて認可された設計及び工事の計画から変更はない。

VI－1－1－5 クラス 1 機器及び炉心支持構造物の応力腐食割れ対策に関する説明書

1．クラス 1 機器及び炉心支持構造物の応力腐食割れ対策に関する説明書
本申請は，残留熱除去系 主要弁（E11－F004A，B）の弁体を取替えるものであるが，過去の製作図面に基づき同材料の弁体を製作しており，応力腐食割れ発生環境下に対する適切な耐食性を有する材料を従来から使用していることから，本説明書に影響を与える ものではないため，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－1－1－6 安全設備及び重大事故等対処設備が使用される条件の下 における健全性に関する説明書

1．安全設備及び重大事故等対処設備が使用される条件の下における健全性に関する説明書

本申請は，基本設計方針を変更するものではなく，安全設備及び重大事故等対処設備 が使用される条件の下における健全性に関する説明書に影響を与えるものではないこと から，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画，及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画から変更はない。

なお，本説明書の「2．1多重性又は多様性及び独立性並びに位置的分散」，「2．2悪影響防止等」，「 2.3 環境条件等」，「 2.4 操作性及び試験•検査性」に基づき，系統施設ご とに認可された工事計画のとおり設計を行うことから，本申請に当たって，技術基準規則への適合性の内容についても変更はない。

VI－1－4 原子炉冷却系統施設の説明書

目 次

VI－1－4－1 原子炉格納容器内の原子炉冷却材の漏えいを監視する装置の構成に関する説明書並びに計測範囲及び警報動作範囲に関する説明書

VI－1－4－2 流体振動又は温度変動による損傷の防止に関する説明書
VI－1－4－3 非常用炉心冷却設備その他原子炬注水設備のポンプの有効吸込水頭に関する説明書

注：「VI－1－4－2 流体振動又は温度変動による損傷の防止に関する説明書」以外は，今回の設計及 び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号及び令和4年9月 28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－4－2 流体振動又は温度変動による損傷の防止に関する説明書

1．原子炉泠却材浄化系 主配管の要目表の記載の変更に伴ら流体振動又は温度変動による損傷の防止について

「実用発電用原子炉及びその附属施設の技術基準に関する規則」（以下「技術基準規則」 という。）の第十九条における配管内円柱状構造物の流体振動評価については，技術基準規則の解釈により，日本機械学会「配管内円柱状構造物の流体振動評価指針（JSME S012）」に規定する手法を適用することとされているが，評価対象構造物の種類は温度計ウェルなど であり，今回の申請範囲において評価対象は存在しない。

また，技術基準規則第十九条における配管の高サイクル熱疲労に関する評価については，技術基準規則の解釈により，日本機械学会「配管の高サイクル熱疲労に関する評価指針 （JSME S017）」に規定する手法を適用することとされており，下記の高サイクル熱疲労評価が考えられるが，今回の申請範囲において評価対象は存在しない。
（1）高低温水合流部の温度揺らぎによる高サイクル熱疲労評価
（2）閉塞分岐管滞留部の熱成層化による高サイクル熱疲労評価

なお，配管に高サイクル熱疲労を引き起こす熱流動現象のらち，運転操作時に生ずる熱成層化現象及び弁からのシートリークにより発生する熱成層化現象については，運転管理 や弁等の保守管理で対応可能であることから，本説明書では評価対象としていない。＊

注記 $*$ ：配管の高サイクル熱疲労に関する評価指針（JSME S017）において除外されてい る。

2．流体振動又は温度変動による損傷の防止に関する説明書
「1．原子炉冷却材浄化系 主配管の要目表の記載の変更に伴ら流体振動又は温度変動 による損傷の防止について」のとおり，本申請は，流体振動又は温度変動による損傷の防止に関する説明書に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はない。

VI－1－8 原子炉格納施設の説明書

目 次

VI－1－8－1 原子炉格納施設の設計条件に関する説明書
VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書
VI－1－8－3 原子炉格納施設の基礎に関する説明書
VI－1－8－4 圧力低減設備その他の安全設備のポンプの有効吸込水頭に関する説明書

注：「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」，「VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書」以外は，今回の設計及び工事の計画の変更 に関係せず，令和3年12月23日付け原規規発第2112231号及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－8－1 原子炉格納施設の設計条件に関する説明書

1．原子炉格納施設の設計条件に関する説明書
本申請は，原子炉格納施設の基本方針を変更するものではなく，原子炉格納施設の設計条件に関する説明書に影響を与えるものではないことから，本説明書は，令和 3 年 12月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画，及び令和 4 年 9月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画から変更はない。

VI－1－8－2 原子炉格納施設の水素濃度低減性能に関する説明書

1．原子炉格納施設の水素濃度低減性能に関する説明書
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐工事において J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合しない管継手（以下，「JIS 規格外管継手」という。）を採用しており J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合する管継手との評価方法の違いから要目表へ管として記載することとしているが，要目表に適切に記載されていなかったことか ら要目表の記載の変更を行うものである。

既設配管の一部厚肉化及び JIS 規格外管継手に係る要目表の記載の変更は，配管経路，口径等の設計を変更するものではなく本説明書記載事項に該当しないことから，原子炉格納施設の水素濃度低減性能に関する設計方針に影響を与えるものではない。このこと から本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及 び工事の計画から変更はない。

VI－1－10 設計及び工事に係る品質マネジメントシステムに関する説明書

目 次

VI－1－10－1 設計及び工事に係る品質マネジメントシステムに関する説明書 VI－1－10－2 本設工認に係る設計の実績，工事及び検査の計画 原子炉本体 VI－1－10－3 本設工認に係る設計の実績，工事及び検査の計画 核燃料物質の取扱施設及び貯蔵施設

VI－1－10－4 本設工認に係る設計の実績，工事及び検査の計画 原子炉冷却系統施設
VI－1－10－5 本設工認に係る設計の実績，工事及び検査の計画 計測制御系統施設
VI－1－10－6 本設工認に係る設計の実績，工事及び検査の計画 放射性廃棄物の廃棄施設
VI－1－10－7 本設工認に係る設計の実績，工事及び検査の計画 放射線管理施設
VI－1－10－8 本設工認に係る設計の実績，工事及び検査の計画 原子炉格納施設
VI－1－10－9 本設工認に係る設計の実績，工事及び検査の計画 非常用電源設備
VI－1－10－10 本設工認に係る設計の実績，工事及び検査の計画 常用電源設備
VI－1－10－11 本設工認に係る設計の実績，工事及び検査の計画 補助ボイラー
VI－1－10－12 本設工認に係る設計の実績，工事及び検査の計画 火災防護設備
VI－1－10－13 本設工認に係る設計の実績，工事及び検査の計画 浸水防護施設
VI－1－10－14 本設工認に係る設計の実績，工事及び検査の計画 補機駆動用燃料設備（非常用電源設備及び補助ボイラーに係るものを除く。）

VI－1－10－15 本設工認に係る設計の実績，工事及び検査の計画 非常用取水設備
VI－1－10－16 本設工認に係る設計の実績，工事及び検査の計画 緊急時対策所

注：「VI－1－10－1 設計及び工事に係る品質マネジメントシステムに関する説明書」，「VI－1－10－4本設工認に係る設計の実績，工事及び検査の計画 原子炉冷却系統施設」，「VI－1－10－8 本設工認に係る設計の実績，工事及び検査の計画 原子炉格納施設」，「VI－1－10－13 本設工認に係る設計の実績，工事及び検査の計画 浸水防護施設」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－1－10－1 設計及び工事に係る
品質マネジメントシステムに関する説明書

1．設計及び工事に係る品質マネジメントシステムに関する説明書
本申請は，設計に係る品質管理の方法により行った管理の実績又は行おらとしている管理の計画並びに工事及び検査に係る品質管理の方法，組織等についての具体的な計画 を変更するものではなく，設計及び工事に係る品質マネジメントシステムに関する説明書に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第2112231号にて認可された設計及び工事の計画，及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画から変更はない。

VI－1－10－4 本設工認に係る設計の実績，工事及び検査の計画原子炬冷却系統施設

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロセスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事 に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画に ついて説明する。

適合性確認対象設備ごとの調達に係る管理のグレ—ド及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及び工事に係 る品質マネジメントシステムに関する説明書」の様式 -1 は「女川原子力発電所第 2 号機設計及 び工事計画認可申請書本文及び添付書類」（令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可）からの変更はない。

また，適合性確認対象設備ごとの調達に係る管理のグレ—ド及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式 -9 により示す。

	$\begin{aligned} & \text { 㸆 } \\ & \text { 䒝 } \\ & \text { 分 } \end{aligned}$	愻	機器区分	機器名	$\begin{aligned} & \text { グ } \\ & \vdots \\ & \text { ド } \end{aligned}$			備 考
		$\begin{aligned} & \text { 原 } \\ & \text { 焙 } \\ & \text { 渝 } \\ & \text { 晳 } \\ & \text { 花 } \\ & \text { 奚 } \end{aligned}$	主配管	G31－F022～高圧代替注水系注入配管合流点	I	\bigcirc	\bigcirc	

上記以外の原子炉冷却系統施設の適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）については，令和 4 年 9 月 28 日付け原規規発第2209283号にて認可された設計及び工事の計画から変更はない。

VI－1－10－8 本設工認に係る設計の実績，工事及び検査の計画原子炉格納施設

1．概要

本資料は，「設計及び工事に係る品質マネジメントシステム」に基づく設計に係るプロ セスの実績，工事及び検査に係るプロセスの計画について説明するものである。

2．基本方針
女川原子力発電所第 2 号機における設計に係るプロセスとその実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」に示した設計の段階ごとに，組織内外の相互関係，進捗実績及び具体的な活動実績について説明する。

工事及び検査に関する計画として，組織内外の相互関係，進捗実績及び具体的な活動計画について説明する。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績について説明する。

3．設計及び工事に係るプロセスとその実績又は計画
「設計及び工事に係る品質マネジメントシステムに関する説明書」に基づき実施した，女川原子力発電所第 2 号機における設計の実績，工事及び検査の計画について，「設計及 び工事に係る品質マネジメントシステムに関する説明書」の様式 -1 は「女川原子力発電所第 2 号機設計及び工事の計画認可申請書本文及び添付書類」（令和 4 年 9 月 28 日付 け原規規発第 2209283 号にて認可）からの変更はない。

また，適合性確認対象設備ごとの調達に係る管理のグレード及び実績について，「設計及び工事に係る品質マネジメントシステムに関する説明書」の様式－ 9 により示す。

適合性確認対象設備ごとの調達に係る管理のグレード及び実績（設備関係）

上記以外の原子炉格納施設の適合性確認対象設備ごとの調達に係る管理グレード及び実績（設備関係）については，令和 4 年 9 月 28 日付け原規規発第2209283号にて認可された設計及び工事の計画から変更はない。

VI－1－10－13 本設工認に係る設計の実績，工事及び検査の計画浸水防護施設

1．本設工認に係る設計の実績，工事及び検査の計画
本申請は，設計に係るプロセスの実績，工事及び検査に係るプロセスの計画を変更す るものではなく，本設工認に係る設計の実績，工事及び検査の計画の説明書に影響を与 えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231号にて認可された設計及び工事の計画から変更はない。

VI－2 耐震性に関する説明書

VI－2－1 耐震設計の基本方針
VI－2－2 耐震設計上重要な設備を設置する施設の耐震性についての計算書
VI－2－3 原子炉本体の耐震性についての計算書
VI－2－4 核燃料物質の取扱施設及び貯蔵施設の耐震性についての計算書
VI－2－5 原子炉冷却系統施設の耐震性についての計算書
VI－2－6 計測制御系統施設の耐震性についての計算書
VI－2－7 放射性廃棄物の廃棄施設の耐震性についての計算書
VI－2－8 放射線管理施設の耐震性についての計算書
VI－2－9 原子炉格納施設の耐震性についての計算書
VI－2－10 その他発電用原子炉の附属施設の耐震性についての計算書
VI－2－11 波及的影響を及ぼすおそれのある施設の耐震性についての計算書
VI－2－12 水平2方向及び鋁直方向地震力の組合せに関する影響評価
VI－2－13 地下水位低下設備の耐震性についての計算書
VI－2－別添 1 火災防護設備の耐震性についての計算書
VI－2－別添2 溢水防護に係る施設の耐震性に関する説明書
VI－2－別添3 可搬型重大事故等対処設備等の耐震性に関する説明書

注：「VI－2－1 耐震設計の基本方針」，「VI－2－2 耐震設計上重要な設備を設置する施設の耐震性 についての計算書」，「VI－2－5 原子炉冷却系統施設の耐震性についての計算書」，「VI－2－9原子炉格納施設の耐震性についての計算書」，「VI－2－10 その他発電用原子炉の附属施設の耐震性についての計算書」，「VI－2－12 水平2方向及び鉛直方向地震力の組合せに関する影響評価」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－2－1 耐震設計の基本方針

目 次

VI－2－1－1 耐震設計の基本方針
VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要
VI－2－1－3 地盤の支持性能に係る基本方針
VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針
VI－2－1－5 波及的影響に係る基本方針
VI－2－1－6 地震応答解析の基本方針
VI－2－1－7 設計用床応答曲線の作成方針
VI－2－1－8 水平 2 方向及び鉛直方向地震力の組合せに関する影響評価方針
VI－2－1－9 機能維持の基本方針
VI－2－1－10 ダクティリティに関する設計方針
VI－2－1－11 機器•配管の耐震支持設計方針
VI－2－1－12 配管及び支持構造物の耐震計算について
VI－2－1－13 機器•配管系の計算書作成の方法

注：「VI－2－1－3 地盤の支持性能に係る基本方針」は，令和 3 年 12 月 23 日付け原規規発第 2112231号にて認可された設計及び工事の計画の記載内容に変更はない。
$\mathrm{VI}-2-1-1$ 耐震設計の基本方針

1．耐震設計の基本方針
本申請は，発電用原子炉施設の耐震設計を変更するものではなく，耐震設計の基本方針に影響 を与えるものではないことから，本説明書は，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画，及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画から変更はない。

VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要

1．基準地震動 S s 及び弾性設計用地震動 S d の策定概要
本申請は，施設の供用中に耐震重要施設に大きな影響を及ぼすおそれがある地震によ る地震動（以下「基準地震動 S s 」という。）の策定方針及び弾性設計用地震動 S d の設定方針を変更するものではなく，基準地震動 S s 及び弾性設計用地震動 S d の策定概要に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はない。

VI－2－1－4 耐震重要度分類及び重大事故等対処施設の施設区分の基本方針

1．耐震重要度分類及び重大事故等対処施設の施設区分の基本方針
本申請は，設計基準対象施設の耐震設計上の重要度分類及び重大事故等対処施設の施設区分の方針を変更するものではなく，耐震重要度分類及び重大事故等対処施設の施設区分の基本方針に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

> VI-2-1-5 波及的影響に係る基本方針

1．波及的影響に係る基本方針
本申請は，設計基準対象施設及び重大事故等対処施設の耐震設計を行らに際して，波及的影響を考慮した設計を変更するものではなく，波及的影響に係る基本方針に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231号にて認可された設計及び工事の計画，及び令和 4 年 9 月 28 日付け原規規発第 2209283号にて認可された設計及び工事の計画から変更はない。

> VI-2-1-6 地震応答解析の基本方針

1．地震応答解析の基本方針
本申請は，建物•構築物，機器•配管系及び屋外重要土木構造物の耐震設計を行う際 の地震応答解析の手法及び条件等を変更するものではなく，地震応答解析の基本方針に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

> VI-2-1-7 設計用床応答曲線の作成方針

1．設計用床応答曲線の作成方針
本申請は，機器•配管系の動的解析に用いる設計用床応答曲線の作成方針及びその方針に基づき作成した設計用床応答曲線並びに機器•配管系の静的解析に用いる設計用最大応答加速度及び静的震度を変更するものではなく，設計用床応答曲線の作成方針に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－2－1－8 水平2方向及び鉛直方向地震力の組合せに関する影響評価方針

1．水平 2 方向及び鉛直方向地震力の組合せに関する影響評価方針
本申請は，水平 2 方向及び鉛直方向地震力の組合せに関する影響評価の手法及び条件等を変更するものではなく，水平 2 方向及び鉛直方向地震力の組合せに関する影響評価方針に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はない。

1．機能維持の基本方針
本申請は，設計基準対象施設及び重大事故等対処施設の機能維持に関する基本的な考 え方を変更するものではなく，機能維持の基本方針に影響を与えるものではないことか ら，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及 び工事の計画から変更はない。
（1）
0
VI-2-1-10 ダクティリティに関する設計方針

1．ダクティリティに関する設計方針
本申請は，各施設のダクティリティを維持するために必要と考えられる構造計画，材料の選択，耐力•強度等に対する制限及び品質管理上の配慮を変更するものではなく， ダクティリティに関する設計方針に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－2－1－11 機器•配管の耐震支持設計方針

1．機器•配管の耐震支持設計方針
本申請は，機器•配管の支持方法及び支持構造物の耐震設計方針を変更するもので はなく，機器•配管の耐震支持設計方針に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事 の計画から変更はない。

VI－2－1－12 配管及び支持構造物の耐震計算について

目 次

VI－2－1－12－1 配管及び支持構造物の耐震計算について
VI－2－1－12－2 ダクト及び支持構造物の耐震計算について

注：「VI－2－1－12－2 ダクト及び支持構造物の耐震計算について」は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事 の計画の記載内容に変更はない。

VI－2－1－12－1 配管及び支持構造物の耐震計算について

1．配管及び支持構造物の耐震計算について
本申請は，配管及びその支持構造物について，耐震設計上十分安全であるように考慮 すべき事項を変更するものではなく，配管及び支持構造物の耐震計算について影響を与 えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231号にて認可された設計及び工事の計画から変更はない。

VI－2－1－13 機器•配管系の計算書作成の方法

目 次

VI－2－1－13－1 スカート支持たて置円筒形容器の耐震性についての計算書作成の基本方針
VI－2－1－13－2 横置一胴円筒形容器の耐震性についての計算書作成の基本方針
VI－2－1－13－3 平底たて置円筒形容器の耐震性についての計算書作成の基本方針
VI－2－1－13－4 横軸ポンプの耐震性についての計算書作成の基本方針
VI－2－1－13－5 たて軸ポンプの耐震性についての計算書作成の基本方針
VI－2－1－13－6 管の耐震性についての計算書作成の基本方針
VI－2－1－13－7 盤の耐震性についての計算書作成の基本方針
VI－2－1－13－8 計装ラックの耐震性についての計算書作成の基本方針
VI－2－1－13－9 計器スタンションの耐震性についての計算書作成の基本方針

注：「VI－2－1－13－6 管の耐震性についての計算書作成の基本方針」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及 び工事の計画の記載内容に変更はない。

VI－2－1－13－6 管の耐震性についての計算書作成の基本方針

1．管の耐震性についての計算書作成の基本方針
本申請は，耐震性に関する説明書が求められている管（耐震重要度分類Sクラス又は S s 機能維持の計算を行うもの），管に取り付く支持構造物及び管に取り付く弁が十分 な耐震性を有していることを確認するための耐震計算の方法を変更するものではなく，管の耐震性についての計算書作成の基本方針に影響を与えるものではないことから，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はない。

I
\circ

VI－2－2 耐震設計上重要な設備を設置する施設の耐震性についての計算書

目 次

VI－2－2－1 原子炉建屋の地震応答計算書
VI－2－2－2 原子炉建屋の耐震性についての計算書
VI－2－2－3 制御建屋の地震応答計算書
VI－2－2－4 制御建屋の耐震性についての計算書
VI－2－2－5 復水貯蔵タンク基礎の地震応答計算書
VI－2－2－6 復水貯蔵タンク基礎の耐震性についての計算書
VI－2－2－7 海水ポンプ室の地震応答計算書
VI－2－2－8 海水ポンプ室の耐震性についての計算書
VI－2－2－9 第3号機海水ポンプ室の地震応答計算書
VI－2－2－10 第3号機海水ポンプ室の耐震性についての計算書
VI－2－2－11 原子炉機器冷却海水配管ダクト（水平部）の地震応答計算書
VI－2－2－12 原子炉機器冷却海水配管ダクトの耐震性についての計算書
VI－2－2－13 軽油タンク室の地震応答計算書
VI－2－2－14 軽油タンク室の耐震性についての計算書
VI－2－2－15 軽油タンク室（H）の地震応答計算書
VI－2－2－16 軽油タンク室（H）の耐震性についての計算書
VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書
VI－2－2－18 ガスタービン発電設備軽油タンク室の耐震性についての計算書
VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書
VI－2－2－20 軽油タンク連絡ダクトの耐震性についての計算書
VI－2－2－21 緊急用電気品建屋の地震応答計算書
VI－2－2－22 緊急用電気品建屋の耐震性についての計算書
VI－2－2－23 緊急時対策建屋の地震応答計算書
VI－2－2－24 緊急時対策建屋の耐震性についての計算書
VI－2－2－25 排気筒基礎の地震応答計算書
VI－2－2－26 排気筒基礎の耐震性についての計算書
VI－2－2－27 排気筒連絡ダクトの地震応答計算書
VI－2－2－28 排気筒連絡ダクトの耐震性についての計算書
VI－2－2－29 第3号機海水熱交換器建屋の地震応答計算書
VI－2－2－30 第 3 号機海水熱交換器建屋の耐震性についての計算書

注：「VI－2－2－1 原子炉建屋の地震応答計算書」，「VI－2－2－2 原子炉建屋の耐震性についての計算書」，「VI－2－2－7 海水ポンプ室の地震応答計算書」，「VI－2－2－8 海水ポンプ室の耐震性 についての計算書」，「VI－2－2－9 第 3 号機海水ポンプ室の地震応答計算書」及び「VI－2－2－ 10 第 3 号機海水ポンプ室の耐震性についての計算書」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事 の計画の記載内容に変更はない。

VI－2－2－1 原子炉建屋の地震応答計算書

1．原子炉建屋の地震応答計算書
本申請は，原子炉建屋の地震応答計算の手法及び条件を変更するものではなく，原子炉建屋の地震応答計算書に影響を与えるものではないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はな い。

> VI-2-2-2 原子炬建屋の耐震性についての計算書

1．原子炉建屋の耐震性についての計算書
本申請は，原子炉建屋の耐震性についての計算の手法及び条件を変更するものではな く，原子炉建屋の耐震性についての計算書に影響を与えるものではないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

> VI-2-2-7 海水ポンプ室の地震応答計算書

1．海水ポンプ室の地震応答計算書
本申請は，海水ポンプ室の地震応答計算の手法及び条件を変更するものではなく，海水ポンプ室の地震応答計算書に影響を与えるものではないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更 はない。

VI－2－2－8 海水ポンプ室の耐震性についての計算書

1．海水ポンプ室の耐震性についての計算書
本申請は，海水ポンプ室の耐震性についての計算の手法及び条件を変更するものでは なく，海水ポンプ室の耐震性についての計算書に影響を与えるものではないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－2－2－9 第3号機海水ポンプ室の地震応答計算書

1．第 3 号機海水ポンプ室の地震応答計算書
本申請は，第3号機海水ポンプ室の地震応答計算の手法及び条件を変更するものでは なく，第 3 号機海水ポンプ室の地震応答計算書に影響を与えるものではないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。
（1）
∞

VI－2－5－1 原子炉冷却系統施設の耐震性についての計算結果
VI－2－5－2 原子炉冷却材再循環設備の耐震性についての計算書
VI－2－5－3 原子炉冷却材の循環設備の耐震性についての計算書
VI－2－5－4 残留熱除去設備の耐震性についての計算書
VI－2－5－5 非常用炉心冷却設備その他原子炉注水設備の耐震性についての計算書
VI－2－5－6 原子炉泠却材補給設備の耐震性についての計算書
VI－2－5－7 原子炉補機冷却設備の耐震性についての計算書
VI－2－5－8 原子炉冷却材浄化設備の耐震性についての計算書

注：「VI－2－5－1 原子炉泠却系統施設の耐震性についての計算結果」，「VI－2－5－3 原子炉冷却材の循環設備の耐震性についての計算書」，「VI－2－5－4 残留熱除去設備の耐震性についての計算書」，「VI－2－5－5 非常用炉心冷却設備その他原子炉注水設備の耐震性についての計算書」及び「VI－2－5－8 原子炬冷却材浄化設備の耐震性について の計算書」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付 け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－2－2－10 第3号機海水ポンプ室の耐震性についての計算書

1．第 3 号機海水ポンプ室の耐震性についての計算書
本申請は，第 3 号機海水ポンプ室の耐震性についての計算の手法及び条件を変更する ものではなく，第3号機海水ポンプ室の耐震性についての計算書に影響を与えるもので はないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可 された設計及び工事の計画から変更はない。
（1）
10

VI－2－5 原子炉冷却系統施設の耐震性についての計算書

VI－2－5－1 原子灲冷却系統施設の耐震性についての計算結果

1．原子炉冷却系統施設の耐震性についての計算結果
本申請は，原子炉冷却系統施設の耐震計算の手法及び条件を変更するものではなく，原子炉冷却系統施設の耐震性についての計算結果に影響を与えるものではないことから，本説明書は，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画 から変更はない。

VI－2－5－3 原子炉冷却材の循環設備の耐震性についての計算書

目 次

VI－2－5－3－1 主蒸気系の耐震性についての計算書
VI－2－5－3－2 復水給水系の耐震性についての計算書

注：「VI－2－5－3－1 主蒸気系の耐震性についての計算書」は，今回の設計及び工事の計画 の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及 び工事の計画の記載内容に変更はない。

VI－2－5－3－2 復水給水系の耐震性についての計算書

VI－2－5－3－2－1 管の耐震性についての計算書（復水給水系）
$\mathrm{VI}-2-5-3-2-1$ 管の耐震性についての計算書
$($ (復水給水系 $)$

1．管の耐震性についての計算書（復水給水系）
本申請は，原子炉冷却材浄化系 主配管（「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」）につ いて，配管の一部を曲げ管からエルボに変更することが，要目表に適切に記載されてい なかったことから要目表の記載の変更を行うものである。

曲げ管からエルボへの変更について，令和 3 年 12 月 23 日付け原規規発第 2112231 号 にて認可された設計及び工事の計画（以下「既認可」という。）の要目表では，要目表の「変更前」にエルボの仕様を記載し，要目表の「変更後」に「変更なし」と記載してい た。要目表の「変更後」は，既認可時においてもエルボとして設計する記載であったも のの，エルボの仕様は新たな仕様として要目表の「変更後」に記載すべきであったこと から，記載を変更する。

本計算書については，要目表の「変更後」は，既認可時においてもエルボとして設計 する記載であったことから，既認可の計算書よりエルボとして設計することを適切に反映していたため，今回の変更認可申請において本計算書の解析モデル（鳥瞰図）の変更 はない。加えて，本計算書の「3．計算条件」に影響を与えるものではなく評価結果の変更もないことから，本計算書は令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可 された設計及び工事の計画から変更はない。

VI－2－5－4－1 残留熱除去系の耐震性についての計算書
VI－2－5－4－2 耐圧強化ベント系の耐震性についての計算書

VI－2－5－4－1 残留熱除去系の耐震性についての計算書

VI－2－5－4－1－1 残留熱除去系熱交換器の耐震性についての計算書
VI－2－5－4－1－2 残留熱除去系ポンプの耐震性についての計算書
VI－2－5－4－1－3 残留熱除去系ストレーナの耐震性についての計算書
VI－2－5－4－1－4 管の耐震性についての計算書（残留熱除去系）
VI－2－5－4－1－5 ストレーナ部ティーの耐震計算書（残留熱除去系）

注：「VI－2－5－4－1－4 管の耐震性についての計算書（残留熱除去系）」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及 び工事の計画の記載内容に変更はない。

$$
\begin{array}{cc}
\mathrm{VI}-2-5-4-1-4 & \text { 管の耐震性についての計算書 } \\
\text { (残留熱除去系) }
\end{array}
$$

1．管の耐震性についての計算書（残留熱除去系）
本申請は，残留熱除去系 主要弁（E11－F004A，B）の弁体を取替えるものであるが，過去の製作図面に基づき同仕様（材料，寸法，重量）の弁体を製作するものであり，解析条件となる重量等に変更はなく，評価結果の変更もないことから，本計算書は，令和 3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画から変更は ない。

VI－2－5－4－2 耐圧強化ベント系の耐震性についての計算書

目 次

VI－2－5－4－2－1 管の耐震性についての計算書（耐圧強化ベント系）

VI－2－5－4－2－1 管の耐震性についての計算書 （耐圧強化ベント系）

1．管の耐震性についての計算書（耐圧強化ベント系）
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点においてJIS B2312（2001）で規定する寸法に適合しない管継手（以下「JIS 規格外管継手」という。）を採用している。JIS B2312（2001）で規定する寸法に適合する管継手（以下「JIS 規格管継手」という。）との評価方法の違い から要目表へ管として記載することとしているが，要目表に適切に記載されていなかつ たことから要目表の記載の変更を行うものである。

本申請範囲の「原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」 は，原子炉格納容器調気系の解析モデルに含まれていることから，本計算書は，令和 3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はな い。

VI－2－5－5 非常用炬心冷却設備その他原子炉注水設備の耐震性 についての計算書

VI－2－5－5－1 高圧炉心スプレイ系の耐震性についての計算書
VI－2－5－5－2 低圧炉心スプレイ系の耐震性についての計算書
VI－2－5－5－3 高圧代替注水系の耐震性についての計算書
VI－2－5－5－4 低圧代替注水系の耐震性についての計算書
VI－2－5－5－5 代替水源移送系の耐震性についての計算書

注：「VI－2－5－5－3 高圧代替注水系の耐震性についての計算書」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－2－5－5－3 高圧代替注水系の耐震性についての計算書

VI－2－5－5－3－1 高圧代替注水系タービンポンプの耐震性についての計算書
VI－2－5－5－3－2 管の耐震性についての計算書（高圧代替注水系）

注：「VI－2－5－5－3－1 高圧代替注水系タービンポンプの耐震性についての計算書」は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可さ れた設計及び工事の計画の記載内容に変更はない。

VI－2－5－5－3－2 管の耐震性についての計算書（高圧代替注水系）

1．管の耐震性についての計算書（高圧代替注水系）
本申請は，原子炉冷却材浄化系 主配管（「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」） について，配管の一部を曲げ管からエルボに変更することが，要目表に適切に記載され ていなかったことから要目表の記載の変更を行うものである。

本申請範囲の「高圧代替注水系注入配管合流点～原子炉冷却材浄化系 A 系注入配管合流点」は，復水給水系の解析モデルに含まれていることから，本計算書は，令和 3 年 12月23日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はない。

VI－2－5－8 原子炉冷却材浄化設備の耐震性についての計算書

VI－2－5－8－1 原子炉冷却材浄化系の耐震性についての計算書

VI－2－5－8－1 原子炉冷却材浄化系の耐震性についての計算書
$\mathrm{VI}-2-5-8-1-1$ 管の耐震性についての計算書（原子炉冷却材浄化系）

VI－2－5－8－1－1 管の耐震性についての計算書 （原子炉冷却材浄化系）

1．管の耐震性についての計算書
本申請は，原子炬冷却材浄化系 主配管（「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」）につ いて，配管の一部を曲げ管からエルボに変更することが，要目表に適切に記載されてい なかったことから要目表の記載の変更を行うものである。

本申請範囲の「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」は，復水給水系の解析モデル に含まれていることから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号 にて認可された設計及び工事の計画から変更はない。

VI－2－9 原子炉格納施設の耐震性についての計算書

VI－2－9－1 原子炉格納施設の耐震性についての計算結果
VI－2－9－2 原子炉格納容器の耐震性についての計算書
VI－2－9－3 原子炉建屋の耐震性についての計算書
VI－2－9－4 圧力低減設備その他の安全設備の耐震性についての計算書

注：「VI－2－9－1 原子炉格納施設の耐震性についての計算結果」，「VI－2－9－4 圧力低減設備その他の安全設備の耐震性についての計算書」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－2－9－1 原子炉格納施設の耐震性についての計算結果

1．原子炉格納施設の耐震性についての計算結果
本申請は，原子炉格納施設の耐震計算の手法及び条件を変更するものではなく，原子炉格納施設の耐震性についての計算結果に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－2－9－4 圧力低減設備その他の安全設備の耐震性についての計算書

VI－2－9－4－1 ダウンカマの耐震性についての計算書
VI－2－9－4－2 ベント管の耐震性についての計算書
VI－2－9－4－3 原子炉格納容器安全設備の耐震性についての計算書
VI－2－9－4－4 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の耐震性についての計算書

VI－2－9－4－5 原子炉格納容器調気設備の耐震性についての計算書
VI－2－9－4－6 圧力逃がし装置の耐震性についての計算書

注：「VI－2－9－4－4 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の耐震性についての計算書」，「VI－2－9－4－5 原子炉格納容器調気設備の耐震性についての計算書」，「VI－2－9－4－6 圧力逃がし装置の耐震性についての計算書」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－2－9－4－4 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の耐震性についての計算書
O 2 変二（1）VI－2－9－4－4 R 0

目 次

VI－2－9－4－4－1 非常用ガス処理系の耐震性についての計算書
VI－2－9－4－4－2 可燃性ガス濃度制御系の耐震性についての計算書
VI－2－9－4－4－3 原子炉建屋水素濃度制御系の耐震性についての計算書
VI－2－9－4－4－4 可搬型窒素ガス供給系の耐震性についての計算書

注：「VI－2－9－4－4－1 非常用ガス処理系の耐震性についての計算書」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－2－9－4－4－1 非常用ガス処理系の耐震性についての計算書
O 2 変二（1）VI－2－9－4－4－1 R 0

VI－2－9－4－4－1－1 非常用ガス処理系空気乾燥装置の耐震性についての計算書
VI－2－9－4－4－1－2 管の耐震性についての計算書（非常用ガス処理系）
VI－2－9－4－4－1－3 非常用ガス処理系排風機の耐震性についての計算書
VI－2－9－4－4－1－4 非常用ガス処理系フィルタ装置の耐震性についての計算書 VI－2－9－4－4－1－5 原子炉建屋ブローアウトパネル閉止装置の耐震性についての計算書

注：「VI－2－9－4－4－1－2 管の耐震性についての計算書（非常用ガス処理系）」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－2－9－4－4－1－2 管の耐震性についての計算書
（非常用ガス処理系）

1．管の耐震性についての計算書（非常用ガス処理系）
本申請は，非常用ガス処理系主要弁（T46－F001A，B，T46－F003A，B＊）について，要目表 に弁箱厚さが公称値で記載されていたことから，他の主要弁と記載の整合を図るため要目表の弁箱厚さについて腐食代を考慮した寸法（設計確認値）へ記載を変更するもので ある。

弁箱厚さに腐食代を考慮した寸法（設計確認値）への記載変更について，令和 3 年 12月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画の要目表では，要目表の「変更前」に公称値を記載し，要目表の「変更後」に「変更なし」と記載して いた。他の主要弁と記載の整合を図るため要目表の弁箱厚さについて腐食代を考慮した寸法（設計確認値）へ記載を変更する。

本計算書については，公称値を使用して解析モデルを作成していること及び本申請が要目表の記載の変更のみであり実物の変更を伴わないものであることから，当該弁の重量及び設置場所等に変更はない。このことから「3．計算条件」に影響を与えるものでは なく評価結果の変更もないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

注記＊：T46－F003A，B については「VI－2－9－4－5－1－1 管の耐震性についての計算書（原子炉格納容器調気系））」に含む。

VI－2－9－4－5 原子炉格納容器調気設備の耐震性についての計算書

VI－2－9－4－5－1 原子炉格納容器調気系の耐震性についての計算書

VI－2－9－4－5－1 原子炉格納容器調気系の耐震性についての計算書
O 2 変二（1）VI－2－9－4－5－1 R 0

VI－2－9－4－5－1－1 管の耐震性についての計算書（原子炉格納容器調気系）
$\mathrm{VI}-2-9-4-5-1-1$ 管の耐震性についての計算書 （原子炉格納容器調気系）

1．管の耐震性についての計算書（原子炉格納容器調気系）
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行らものである。また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点においてJI S B 2 3 1 2（ 2 0 0 0 1）で規定する寸法に適合しない管継手（以下「JIS 規格外管継手」という。）を採用している。J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合する管継手（以下「JIS 規格管継手」とい う。）との評価方法の違いから要目表へ管として記載することとしているが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。

耐震性強化のための原子炉格納容器調気系の既設配管の一部厚肉化について，令和 3年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画（以下「既認可」という。）の要目表では，要目表の「変更前」に「一」を記載し，要目表の「変更後」に厚肉化した配管仕様を記載していた。既設配管の一部を厚肉化するものであるこ とから要目表の「変更前」に既設配管仕様を記載し，「変更後」に厚肉化した配管仕様と共に「変更なし」を記載すべきであったことから，記載を変更する。また，JIS 規格外管継手の採用について，既認可の要目表では，要目表の「変更後」に JIS 規格管継手とし て 3 行で示し，母管，枝管それぞれの口径，肉厚等を記載していた。JIS 規格外管継手 は，J S ME 設計•建設規格 2005／2007クラス 2 配管の「PPC－3415管継手」により必要 な強度を有することを応力計算によって確認する必要があることから，JIS 規格管継手 との差別化のため要目表に管継手を一行で示し，母管の口径，肉厚等を記載することと しており，これに従い記載を変更する。
本計算書については，既設配管の一部厚肉化に係る要目表の記載の変更内容が適切に反映されていること及び JIS 規格外管継手の採用は，JIS 規格管継手との要目表への記載方法の違いを反映するものであり管継手の仕様を変更するものではなく管継手の仕様 が適切に反映されていることが「2．2鳥瞰図」及び「3．3設計条件」により確認できる。 また，JIS 規格管継手か JIS 規格外管継手かによる設計条件の違いはない。このことか ら本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

また，本計算書には今回要目表の記載の変更を行ら非常用ガス処理系主要弁（T46－ F003A，B）についても含んでいることから，当該弁の記載の変更が本計算書に影響がない ことを以下に示す。

本申請は，非常用ガス処理系主要弁（T46－F003A，B）について，要目表に弁箱厚さが公称値で記載されていたことから，他の主要弁と記載の整合を図るため要目表の弁箱厚さ について腐食代を考慮した寸法（設計確認値）へ記載を変更するものである。

弁箱厚さに腐食代を考慮した寸法（設計確認値）への記載変更について，令和 3 年 12月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画の要目表では，要目表の「変更前」に公称値を記載し，要目表の「変更後」に「変更なし」と記載して いた。他の主要弁と記載の整合を図るため要目表の弁箱厚さについて腐食代を考慮した寸法（設計確認値）へ記載を変更する。

本計算書については，公称値を使用して解析モデルを作成していること及び本申請が要目表の記載の変更のみであり実物の変更を伴わないものであることから当該弁の重量及び設置場所等に変更はない。このことから「3．計算条件」に影響を与えるものではな く評価結果の変更もないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－2－9－4－6 圧力逃がし装置の耐震性についての計算書
O 2 変二（1）VI－2－9－4－6 R 0

目 次

VI－2－9－4－6－1 原子炉格納容器フィルタベント系の耐震性についての計算書

VI－2－9－4－6－1 原子炉格納容器フィルタベント系の耐震性について の計算書

目 次

VI－2－9－4－6－1－1 管の耐震性についての計算書（原子炉格納容器フィルタベント系）
VI－2－9－4－6－1－2 フィルタ装置の耐震性についての計算書（原子炉格納容器フィルタベン卜系）

VI－2－9－4－6－1－3 遠隔手動弁操作設備の耐震性についての計算書
VI－2－9－4－6－1－4 遠隔手動弁操作設備遮蔽の耐震性についての計算書

注：「VI－2－9－4－6－1－1 管の耐震性についての計算書（原子炉格納容器フィルタベント系）」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。
VI-2-9-4-6-1-1 管の耐震性についての計算書
（原子炉格納容器フィルタベント系）

1．管の耐震性についての計算書（原子炉格納容器フィルタベント系）
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点において J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合しない管継手を採用している。 J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合する管継手との評価方法の違いから要目表へ管として記載することとしている が，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものであ る。

本申請範囲の「原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」 は，原子炉格納容器調気系の解析モデルに含まれていることから，本計算書は，令和 3年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更は ない。

VI－2－10 その他発電用原子炉の附属施設の耐震性についての計算書

VI－2－10－1 非常用電源設備の耐震性についての計算書
VI－2－10－2 浸水防護施設の耐震性についての計算書
VI－2－10－3 補機駆動用燃料設備の耐震性についての計算書
VI－2－10－4 非常用取水設備の耐震性についての計算書
VI－2－10－5 緊急時対策所の耐震性についての計算書

注：「VI－2－10－2 浸水防護施設の耐震性についての計算書」以外は，今回の設計及び工事 の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可さ れた設計及び工事の計画の記載内容に変更はない。

VI－2－10－2 浸水防護施設の耐震性についての計算書

VI－2－10－2－1 浸水防護施設の耐震性についての計算結果
VI－2－10－2－2 防潮堤の耐震性についての計算書
VI－2－10－2－3 防潮壁の耐震性についての計算書
VI－2－10－2－4 取放水路流路縮小工の耐震性についての計算書
VI－2－10－2－5 貯留堰の耐震性についての計算書
VI－2－10－2－6 逆流防止設備の耐震性についての計算書
VI－2－10－2－7 水密扉の耐震性についての計算書
VI－2－10－2－8 浸水防止蓋の耐震性についての計算書
VI－2－10－2－9 浸水防止壁の耐震性についての計算書
VI－2－10－2－10 逆止弁付ファンネルの耐震性についての計算書
VI－2－10－2－11 貫通部止水処置の耐震性についての計算書
VI－2－10－2－12 堰の耐震性についての計算書
VI－2－10－2－13 津波監視設備の耐震性についての計算書

注：「VI－2－10－2－1 浸水防護施設の耐震性についての計算結果」，「VI－2－10－2－10 逆止弁付ファンネルの耐震性についての計算書」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－2－10－2－1 浸水防護施設の耐震性についての計算結果

1．浸水防護施設の耐震性についての計算結果
本申請は，浸水防護施設の耐震計算の手法及び条件を変更するものではなく，浸水防護施設の耐震性についての計算結果に影響を与えるものではないことから，本説明書は，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画から変更 はない。

VI－2－10－2－10 逆止弁付ファンネルの耐震性についての計算書

VI－2－10－2－10－1 逆止弁付ファンネル（第2号機）の耐震性についての計算書 VI－2－10－2－10－2 逆止弁付ファンネル（第3号機）の耐震性についての計算書

$$
\begin{array}{ll}
\text { VI-2-10-2-10-1 } & \text { 逆止弁付ファンネル (第2号機) の耐震性につい } \\
& \text { ての計算書 }
\end{array}
$$

1．概 要1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2．3 評価方針 4
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位 8
4．固有値解析 9
4．1 固有振動数の計算方法 9
4．1．1 解析モデル 9
4．1．2 記号の説明 9
4．1．3 固有振動数の計算 10
4．2 固有振動数の計算条件 11
4．3 固有振動数の計算結果 11
5．構造強度評価 12
5.1 構造強度評価方法 12
5．2 荷重及び荷重の組合せ 12
5．2．1 荷重の設定 12
5．2．2 荷重の組合せ 13
5． 3 許容限界 13
5.4 設計用地震力 15
5.5 計算方法 16
5．5．1 弁本体 16
5．5．2 弁体 17
5.6 計算条件 18
6．機能維持評価 19
6． 1 機能維持評価方法 19
7．評価結果 20
7.1 基準地震動 S s に対する評価対象部位の応力評価 20
7.2 基準地震動 S s に対する逆止弁付ファンネルの機能維持評価 20
7． 3 基準地震動 S s に対する評価対象部位の構造健全性評価 21

1．概要

本書類は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度に基づき，浸水防護施設のらち逆止弁付ファンネル（第 2 号機）（以下「逆止弁付ファン ネル」という。）が設計用地震力に対して，主要な構造部材が十分な構造健全性を有す ることを確認するものである。耐震評価は，逆止弁付ファンネルの固有値解析，応力評価，機能維持評価及び構造健全性評価により行う。

逆止弁付ファンネルは，浸水防護施設として S クラス施設に分類される。以下，浸水防護施設としての構造強度評価を示す。

なお，逆止弁付ファンネルの耐震評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生し たことを考慮する。

2．一般事項
2.1 配置概要

逆止弁付ファンネルは，第 2 号機海水ポンプ室の床面に設置する。逆止弁付ファン ネルの設置位置図を図 2－1 に示す。

図 2－1 逆止弁付ファンネルの設置位置図

2.2 構造計画

逆止弁付ファンネルは，圧縮スプリングのばね圧によりサポータを介して弁体を上側に引き上げていることから，常時弁体と弁座が密着している。弁体と弁座が密着し ている状態で津波が逆止弁付ファンネルの下側から流入してきた場合，弁体が更に押上げられ，弁座により密着することで止水する。逆止弁付ファンネルの構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
第2号機海水ポ ンプ室床面の配管にねじ込み継手で固定する。	弁座を含む并本体及び弁体で構成する。弁体は弁本体に取付金具，取付金具ピンで取付けられる。ま た，弁体はサポー タ，ガイド，圧縮 スプリングで保持される。	

[^2]
2． 3 評価方針

逆止弁付ファンネルの耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」に て設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」にて示 す逆止弁付ファンネルの構造を踏まえ，「3．評価対象部位」にて設定する評価対象部位において，「4．固有値解析」にて算出した固有振動数に基づく設計用地震力に より算出した応力等が許容限界内に収まることを「5．構造強度評価」にて示す方法 にて確認する。また，逆止弁付ファンネルの機能維持評価は，逆止弁付ファンネルの固有振動数を考慮して機能維持評価用加速度を設定し，設定した機能維持評価用加速度が機能確認済加速度以下であることを「6．機能維持評価」にて示す方法にて確認 することで実施する。 さらに，構造健全性評価により耐震評価を実施する評価対象部位については，逆止弁付ファンネルの機能維持評価結果に基づき構造健全性を確認す ることで実施する。応力評価，機能維持評価及び構造健全性評価の評価結果を「7．評価結果」にて確認する。

なお，機能確認済加速度には，正弦波加振試験において，止水性の機能の健全性を確認した加振波の最大加速度を適用する。

耐震評価フローを図2－2 に示す。

図2－2 耐震評価フロー
2.4 適用規格•基準等

適用する規格，基準等を以下に示す。
（1）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（3）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補—1984）
（4）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
（以下「JEAG4601」と記載しているものは上記3指針を指す。）
（5）機械工学便覧（日本機械学会）

2.5 記号の説明

逆止弁付ファンネルの応力評価に用いる記号を表2－2に示す。

表 2－2 応力評価に用いる記号

記 号	記号の説明	単 位
C_{H}	基準地震動 S s による水平方向の設計震度	－
$\mathrm{C}_{\text {v }}$	基準地震動 S s による鉛直方向の設計震度	－
A_{1}	弁本体の断面積	mm^{2}
A_{2}	弁体の断面積	mm^{2}
D 1	弁本体の外径	mm
D 2	弁体の外径	mm
d_{1}	弁本体の内径	mm
$\mathrm{F}_{\mathrm{H} 1}$	弁本体の最下端に加わる水平方向地震荷重	N
$\mathrm{F}_{\mathrm{v}} 1$	弁本体に加わる鉛直方向地震荷重	N
$\mathrm{F}_{\mathrm{v} 2}$	弁体に加わる鉛直方向地震荷重	N
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
I_{1}	弁本体の断面二次モーメント	mm^{4}
L_{1}	弁全体の長さ	mm
m_{1}	逆止弁付ファンネルの全質量	kg
m 2	弁体の質量	kg
t	弁体の厚さ	mm
M_{1}	弁本体に発生する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
D	固定荷重	－
S	設計•建設規格の付録材料図表Part5表5鉄鋼材料の各温度における許容引張応力	MPa
$\mathrm{W}_{\mathrm{d} 1}$	逆止弁付ファンネルの自重	N
$\mathrm{W}_{\mathrm{d} 2}$	弁体の自重	N
σ H 1	弁本体に加わる曲げ応力	MPa
σ V 1	弁本体に加わる引張応力	MPa
$\sigma \mathrm{v} 2$	弁体に加わる曲げ応力	MPa

3．評価対象部位

逆止弁付ファンネルは，弁本体及び弁体等で構成されている。耐震評価においては，応力評価による評価対象部位として，弁本体及び弁体を選定し，構造健全性評価による評価対象部位として圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部を選定する。また，機能維持評価による評価対象部位とし て，逆止弁付ファンネルを選定する。逆止弁付ファンネルの評価対象部位について，図 3－1に示す。

図中の（1）～②）は応力評価による評価対象部位を，（3）～⑧は構造健全性評価による評価対象部位をそれぞれ示す。

図 3－1 逆止弁付ファンネルの評価対象部位

枠囲みの内容は商業機密の観点から公開できません。

4．固有値解析

4． 1 固有振動数の計算方法
逆止弁付ファンネルの構造に応じて，保守的に固有振動数が小さく算出されるよう， より柔となるようにモデル化し，固有振動数を算出する。また，その場合においても固有振動数が 20 Hz 以上であることを確認する。
4．1．1 解析モデル
質量の不均一性を考慮し，一方の端を固定端，他方の端を自由端の 1 質点系モ デルとして，自由端に全質量mが集中したモデルを組む。モデル化は，円筒状の弁本体の断面をもつはりとして設定する。モデル化の概略を図 $4-1$ に示す。

図 4－1 モデル化の概略

4．1．2 記号の説明

逆止弁付ファンネルの固有振動数算出に用いる記号を表4－1に示す。

表 4－1 固有振動数算出に用いる記号

記 号	記号の説明	単 位
d_{m}	モデル化に用いる弁本体の内径	mm
D_{m}	モデル化に用いる弁本体の外径	mm
E	弁本体の縦弾性係数	MPa
f	弁本体の一次固有振動数	Hz
I_{m}	弁本体の断面二次モーメント	mm^{4}
k	ばね定数	N / m
ℓ_{1}	弁本体全体の長さ	mm
m	逆止弁付ファンネルルの全質量	kg

[^3]4．1．3 固有振動数の計算
固有振動数の計算に用いる寸法は，公称値を使用する。水平方向の固有振動数 fを以下の式より算出する。なお，鉛直方向の固有振動数については，逆止弁付 ファンネルの構造上，水平方向よりも鉛直方向の方が剛構造となるため，水平方向の固有振動数のみを確認する。

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \\
& \mathrm{k}=\frac{3 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{m}}}{\ell_{1}^{3}} \times 10^{3}
\end{aligned}
$$

弁本体の断面二次モーメント I mの算出過程を以下に示す。モデル化に用いる弁本体の断面二次モーメント I m は，以下の式より算出する。

$$
\mathrm{I}_{\mathrm{m}}=\left(\mathrm{D}_{\mathrm{m}}{ }^{4}-\mathrm{d}_{\mathrm{m}}{ }^{4}\right) \cdot \frac{\pi}{64}
$$

4．2 固有振動数の計算条件

表 4－2に固有振動数の計算条件を示す。

表 4－2 固有振動数の計算条件

弁本体の材質	逆止弁付ファンネル の全質量 $\mathrm{m}(\mathrm{kg})$	モデル化に用いる 弁本体の外径	モデル化に用いる 弁本体の内径
	1.5	$\mathrm{D}_{\mathrm{m}}(\mathrm{mm})$	$\mathrm{d}_{\mathrm{m}}(\mathrm{mm})$
\square	\square	\square	

弁本体全体の長さ $\ell_{1}(\mathrm{~mm})$	弁本体の 縦弾性係数 ${ }^{*}$ $\mathrm{E}(\mathrm{MPa})$
\square	1.94×10^{5}

注記 $~: ~ 「 5.3 ~$ 許容限界」における温度条件での縦弾性係数 E を用いる。

4．3 固有振動数の計算結果

表 4－3 に固有振動数の計算結果を示す。固有振動数は， 20 Hz 以上であることか ら，剛構造である。

表 4－3 固有振動数の計算結果

機器名称	固有振動数 (Hz)
逆止弁付ファンネル	878

5．構造強度評価

5.1 構造強度評価方法

逆止弁付ファンネルの耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」に て設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3。評価対象部位」にて設定する評価対象部位に作用する応力等が「5．3 許容限界」にて示す許容限界以下であることを確認する。

5.2 荷重及び荷重の組合せ

5．2．1 荷重の設定

（1）固定荷重（D）
常時作用する荷重として，逆止弁付ファンネルの自重 $W_{d 1}$ 及び弁体の自重 W_{d} 2を考慮し，以下の式より算出する。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{d} 1}=\mathrm{m}_{1} \cdot \mathrm{~g} \\
& \mathrm{~W}_{\mathrm{d} 2}=\mathrm{m}_{2} \cdot \mathrm{~g}
\end{aligned}
$$

（2）基準地震動 S s による地震荷重（ S s ）
基準地震動 S S による地震荷重 $\mathrm{F}_{\mathrm{H} 1}$ ， $\mathrm{F}_{\mathrm{V}_{1}}$ ， $\mathrm{F}_{\mathrm{V}_{2} \text { を考慮し，以下の式より算 }}$出する。

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H} 1}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{V} 1}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{V}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{V}_{2}}=\mathrm{m}_{2} \cdot \mathrm{C}_{\mathrm{V}} \cdot \mathrm{~g}
\end{aligned}
$$

5．2．2 荷重の組合せ
逆止弁付ファンネルの耐震計算にて考慮する荷重の組合せを表 5－1 に示す。

表 5－1 荷重の組合せ及び許容応力状態

施設区分	機器名称	耐震重要度分類
浸水防護施設 （浸水防止設備）	逆止弁付ファンネル	S

荷重の組合せ＊1＊2	許容応力状態
$\mathrm{D}+\mathrm{S} \mathrm{s}$	III $_{\mathrm{A}} \mathrm{S}$

注記＊1：Dは固定荷重，S s は基準地震動 S s による地震荷重を示す。
＊2：固定荷重（D）及び基準地震動（ S s ）の組合せが荷重を緩和する方向に作用する場合，保守的にこれを組合せない評価を実施する。

5． 3 許容限界

逆止弁付ファンネルの弁本体及び弁体の許容限界を表 5－2 に，許容応力評価条件 を表5－3にそれぞれ示す。また，弁本体及び弁体の許容応力算出結果を表5－4にそ れぞれ示す。

表 5－2 弁本体及び弁体の許容限界

許容応力状態	許容限界＊1		
	一次応力		
$\mathrm{III}_{\mathrm{A}} \mathrm{S} * 3$			

注記＊1：引張及び曲げは，J E A G 4 6 0 1 を準用し，「管」の許容限界のうちクラ ス 2 ， 3 配管に対する許容限界に準じて設定する。
＊2：引張応力と曲げ応力の組合せ応力である。
＊ 3 ：地震後，津波後の再使用性や津波の繰返し作用を想定し，当該構造物全体の変形能力に対して浸水防護機能として十分な余裕を有するよう，設備を構成 する材料が弾性域内に収まることを基本とする。

表 5－3 弁本体及び弁体の許容応力評価条件

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S ＊ (MPa)
弁本体	\square	40	111
弁体	\square		

注記 $*: ~$ 鉄鋼材料（ボルト材を除く）の許容引張応力を示す。

表 5－4 弁本体及び弁体の許容応力算出結果

許容応力状態	評価対象部位	許容限界		
		一次応力		
		$\begin{gathered} \text { 引張 } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 組合せ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$
III ${ }_{\text {A }} \mathrm{S}$	弁本体	133	133	133
	弁体	－	133	－

5.4 設計用地震力

「4．固有値解析」に示したとおり，逆止弁付ファンネルの固有振動数が 20 Hz 以上 であることを確認したため，逆止弁付ファンネルの耐震計算に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す逆止弁付ファンネルにおける設置床の最大応答加速度の 1.2 倍を考慮して設定する。逆止弁付ファンネルの耐震計算に用いる設計震度を表5－5に示す。

表 5－5 逆止弁付ファンネルの設計震度

地震動	床面高さ＊1 0. P. （mm）	場所	設計震度＊2	
基準地震動	1250	海水ポンプ室 （補機ポンプエリア）	水平方向 C ${ }_{H}$	1． 83
S s			鉛直方向 C V	1． 94

注記＊1：基準床レベルを示す。
＊2：「4．固有値解析」より，逆止弁付ファンネルの固有振動数が 20 Hz 以上であ ることを確認したため，海水ポンプ室（補機ポンプエリア）の最大応答加速度の 1.2 倍を考慮した設計震度を設定した。

5.5 計算方法

5．5．1 弁本体
弁本体の発生応力を算出する。弁本体の応力評価に用いる断面積 A_{1} は，図5－ 1 に示すとおり，弁本体のうち最も肉厚が薄い断面を適用する。

図 5－1 弁本体の構造図
（1）鉛直応答加速度負荷時
鉛直応答加速度により，弁本体に加わる引張応力 $\sigma \mathrm{v} 1$ を以下の式より算出する。

$$
\sigma_{\mathrm{v}_{1}}=\frac{\mathrm{W}_{\mathrm{d} 1}+\mathrm{F}_{\mathrm{v}_{1}}}{\mathrm{~A}_{1}}
$$

（2）水平応答加速度負荷時
弁全体の最下端に集中荷重が負荷された片持ちはりとして，水平応答加速度に より，弁本体に加わる曲げ応力 $\sigma{ }_{\mathrm{H} 1} 1$ を以下の式より算出する。

$$
\mathrm{M}_{1}=\mathrm{F}_{\mathrm{H} 1} \cdot \mathrm{~L}_{1}
$$

$$
\mathrm{I}_{1}=\left(\mathrm{D}_{1}{ }^{4}-\mathrm{d}_{1}{ }^{4}\right) \cdot \frac{\pi}{64}
$$

$$
\sigma_{\mathrm{H} 1}=\frac{\mathrm{M}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{2}\right)}{\mathrm{I}_{1}}
$$

5．5．2 弁体

（1）鉛直応答加速度負荷時
鉛直応答加速度により弁体は弁座に押し付けられ，曲げ応力が発生する。 曲げ応力 σV_{2} を以下の式より算出する。ただし，弁体の自重による荷重 $W_{\mathrm{d} 2}$ は曲げ応力 $\sigma \mathrm{V}_{2}$ を緩和する方向に作用するため考慮しない。なお，曲げ応力の算出につい ては，機械工学便覧（日本機械学会）より，円板，周辺単純支持，等分布荷重の応力計算式を用いる。

$$
\sigma_{\mathrm{V}_{2}}=1.24 \cdot \frac{\left(\frac{\mathrm{~W}_{\mathrm{d} 2}+\mathrm{F}_{\mathrm{v} 2}}{\mathrm{~A}_{2}}\right)}{\mathrm{t}^{2}} \cdot\left(\frac{\mathrm{D}_{2}}{2}\right)^{2}
$$

図 5－2 弁体に加わる荷重
5.6 計算条件

逆止弁付ファンネルの応力評価に用いる計算条件を表 5－6に示す。

表 5－6 逆止弁付ファンネルの応力評価に用いる計算条件

	逆止弁付ファンネル	弁全体の長さ	弁本体の外径
弁本体の材質	の全質量	L_{1}	D_{1}
	$\mathrm{~m}_{1}$		
$(\mathrm{~kg})$	(mm)	(mm)	
\square	1.5	\square	\square

弁本体の内径	弁本体の断面積		
d_{1}			
$(\mathrm{~mm})$		$\mathrm{A}_{1} .$	$\left(\mathrm{mm}^{2}\right)$
:---:			

弁体の材質	弁体の質量	弁体の外径 m_{2} $(\mathrm{~kg})$	弁体の厚さ
	0.10	$(\mathrm{~mm})$	t

弁体の断面積	重力加速度		
A_{2}			
$\left(\mathrm{~mm}^{2}\right)$		\quad	g
:---:			
$\left(\mathrm{m} / \mathrm{s}^{2}\right)$			

6．機能維持評価

「3．評価対象部位」にて評価対象部位として設定した逆止弁付ファンネルの地震時及び地震後の機能維持を確認するため，「6．1 機能維持評価方法」に示すとおり，逆止弁付ファンネルの加振試験後に逆止弁付ファンネルの漏えい試験を実施することによ り逆止弁付ファンネルの機能維持評価を実施した。
6.1 機能維持評価方法

逆止弁付ファンネルの固有振動数を考慮して，地震時における逆止弁付ファンネル の機能維持評価用加速度を設定し，設定した機能維持評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には，正弦波加振試験において，止水性の機能の健全性を確認した加振波の最大加速度を適用する。逆止弁付ファンネル の機能確認済加速度を表6－1 に示す。

具体的な機能維持確認として，逆止弁付ファンネルに対して，正弦波により水平方向及び鉛直方向の加振試験を実施後，VI－1－1－2－2－5「津波防護に関する施設の設計方針」に示す地震後の繰返しの襲来を想定した経路からの津波を想定し，0．18MPa の水圧にて漏えい試験を実施し，漏えい量が許容漏えい量以下であることを確認した。ま た，最大漏えい量となる水圧（0．01MPa）においても，漏えい量が許容漏えい量以下で あることを確認した。本漏えい試験の結果により，逆止弁付ファンネルの地震時及び地震後の機能維持を確認した。

なお，固有値解析結果により，逆止弁付ファンネルの固有振動数 20 Hz 以上であるこ とを確認したため，機能維持評価用加速度には設置床の最大応答加速度を使用する。

表 6－1 逆止弁付ファンネルの機能確認済加速度

評価対象部位	機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
	水平方向	鉛直方向
逆止弁付ファンネル	6.0	6.0

7．評価結果

7.1 基準地震動 S s に対する評価対象部位の応力評価

基準地震動 S s に対する評価対象部位の応力評価結果を表 7－1 に示す。発生応力 が許容応力以下であることから構造部材が構造健全性を有することを確認した。

表 7－1 基準地震動 S s に対する評価対象部位の応力評価結果

評価対象部位	発生応力 (MPa)		許容応力 (MPa)
	引 張	1	133
	曲 げ	1	133
	組合せ $*$	2	133
弁体	曲 げ	1	133

注記＊：引張 $\sigma \mathrm{V} 1+$ 曲げ $\sigma \mathrm{H}_{1}$ は，$\quad \sigma \mathrm{V}_{1}+\sigma \mathrm{V}_{1} \leqq 1.2 \mathrm{~S}$ で評価

7． 2 基準地震動 S s に対する逆止弁付ファンネルの機能維持評価
基準地震動 S s に対する逆止弁付ファンネルの機能維持評価結果を表7－2に示す。表 7－2 に示すとおり機能維持評価用加速度が機能確認済加速度以下であることから逆止弁付ファンネルの機能維持を確認した。

表 7－2 逆止弁付ファンネルの機能維持評価結果

評価対象部位	床面高さ 0 ．P． （mm）	場所	機能確認済加速度との比較			
			水平加速度（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）		鉛直加速度（ $\left.\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
			機能維持評価用加速度＊	機能確認済加速度	機能維持 評価用 加速度＊	機能確認済加速度
$\begin{gathered} \text { 逆止弁付 } \\ \text { ファンネル } \end{gathered}$	1250	海水ポン プ室（補 機ポンプ エリア）	1． 53	6． 0	1． 61	6． 0

注記＊：「4．固有値解析」より，逆止弁付ファンネルの固有振動数が 20 Hz 以上である ことを確認したため，機能維持評価用加速度には海水ポンプ室（補機ポンプエ リア）における最大応答加速度を使用した。

7．3 基準地震動 S s に対する評価対象部位の構造健全性評価
「7．2 基準地震動 S S に対する逆止弁付ファンネルの機能維持評価」に示したと おり，逆止弁付ファンネルの機能維持を確認したことにより，評価対象部位である圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部が構造健全性を有することを確認した。

VI－2－10－2－10－2 逆止弁付ファンネル（第3号機）の耐震性につい ての計算書

1．概 要1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2．3 評価方針 4
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位 8
4．固有値解析 9
4． 1 固有振動数の計算方法 9
4．1．1 解析モデル 9
4．1．2 記号の説明 9
4．1．3 固有振動数の計算 10
4．2 固有振動数の計算条件 11
4．3 固有振動数の計算結果 11
5．構造強度評価 12
5.1 構造強度評価方法 12
5.2 荷重及び荷重の組合せ 12
5．2．1 荷重の設定 12
5．2．2 荷重の組合せ 13
5．3 許容限界 13
5.4 設計用地震力 15
5.5 計算方法 16
5．5．1 弁本体 16
5．5．2 弁体 17
5.6 計算条件 18
6．機能維持評価 19
6． 1 機能維持評価方法 19
7．評価結果 20
7.1 基準地震動 S s に対する評価対象部位の応力評価 20
7.2 基準地震動 S s に対する逆止弁付ファンネルの機能維持評価 20
7． 3 基準地震動 S s に対する評価対象部位の構造健全性評価 21

1．概要

本書類は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度に基づき，浸水防護施設のらち逆止弁付ファンネル（第3号機）（以下「逆止弁付ファン ネル」という。）が設計用地震力に対して，主要な構造部材が十分な構造健全性を有す ることを確認するものである。耐震評価は，逆止弁付ファンネルの固有値解析，応力評価，機能維持評価及び構造健全性評価により行う。

逆止弁付ファンネルは，浸水防護施設としてSクラス施設に分類される。以下，浸水防護施設としての構造強度評価を示す。

なお，逆止弁付ファンネルの耐震評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生し たことを考慮する。

2．一般事項
2.1 配置概要

逆止弁付ファンネルは，第3号機海水熱交換器建屋の床面に設置する。逆止弁付フ アンネルの設置位置図を図 $2-1$ に示す。

図 2－1 逆止弁付ファンネルの設置位置図

2.2 構造計画

逆止弁付ファンネルは，圧縮スプリングのばね圧によりサポータを介して弁体を上側に引き上げていることから，常時弁体と弁座が密着している。弁体と弁座が密着し ている状態で津波が逆止弁付ファンネルの下側から流入してきた場合，弁体が更に押上げられ，弁座により密着することで止水する。逆止弁付ファンネルの構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
第 3 号機海水熱交換器建屋床面 の配管にねじ込 み継手で固定す る。	弁座を含む弁本体及び弁体で構成する。弁体は弁本体に取付金具，取付金具ピンで取付けられる。ま た，弁体はサポー タ，ガイド，圧縮 スプリングで保持される。	

2． 3 評価方針

逆止弁付ファンネルの耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」に て設定した荷重及び荷重の組合せ並びに許容限界に基づき，「2．2 構造計画」にて示 す逆止弁付ファンネルの構造を踏まえ，「3．評価対象部位」にて設定する評価対象部位において，「4．固有値解析」にて算出した固有振動数に基づく設計用地震力に より算出した応力等が許容限界内に収まることを「5．構造強度評価」にて示す方法 にて確認する。また，逆止弁付ファンネルの機能維持評価は，逆止弁付ファンネルの固有振動数を考慮して機能維持評価用加速度を設定し，設定した機能維持評価用加速度が機能確認済加速度以下であることを「6．機能維持評価」にて示す方法にて確認 することで実施する。 さらに，構造健全性評価により耐震評価を実施する評価対象部位については，逆止弁付ファンネルの機能維持評価結果に基づき構造健全性を確認す ることで実施する。応力評価，機能維持評価及び構造健全性評価の評価結果を「7．評価結果」にて確認する。

なお，機能確認済加速度には，正弦波加振試験において，止水性の機能の健全性を確認した加振波の最大加速度を適用する。

耐震評価フローを図2－2 に示す。

図2－2 耐震評価フロー
2.4 適用規格•基準等

適用する規格，基準等を以下に示す。
（1）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（3）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 0 1 •補—1984）
（4）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
（以下「JEAG4601」と記載しているものは上記3指針を指す。）
（5）機械工学便覧（日本機械学会）

2.5 記号の説明

逆止弁付ファンネルの応力評価に用いる記号を表2－2 に示す。

表 2－2 応力評価に用いる記号

記 号	記号の説明	単 位
C_{H}	基準地震動 S s による水平方向の設計震度	－
$\mathrm{C}_{\text {v }}$	基準地震動S s による鉛直方向の設計震度	－
A_{1}	弁本体の断面積	mm^{2}
A_{2}	弁体の断面積	mm^{2}
D 1	弁本体の外径	mm
D 2	弁体の外径	mm
d_{1}	弁本体の内径	mm
$\mathrm{F}_{\mathrm{H} 1}$	弁本体の最下端に加わる水平方向地震荷重	N
$\mathrm{F}_{\mathrm{V} 1}$	弁本体に加わる鉛直方向地震荷重	N
$\mathrm{F}_{\mathrm{v} 2}$	弁体に加わる鉛直方向地震荷重	N
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
I_{1}	弁本体の断面二次モーメント	mm^{4}
L_{1}	弁全体の長さ	mm
m_{1}	逆止弁付ファンネルの全質量	kg
m_{2}	弁体の質量	kg
t	弁体の厚さ	mm
M_{1}	弁本体に発生する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
D	固定荷重	－
S	設計•建設規格の付録材料図表Part5表5鉄鋼材料の各温度における許容引張応力	MPa
W ${ }_{\text {d }} 1$	逆止弁付ファンネルの自重	N
W ${ }_{\text {d } 2}$	弁体の自重	N
σ H 1	弁本体に加わる曲げ応力	MPa
$\sigma \vee 1$	弁本体に加わる引張応力	MPa
$\sigma \vee 2$	弁体に加わる曲げ応力	MPa

3．評価対象部位
逆止弁付ファンネルは，弁本体及び弁体等で構成されている。耐震評価においては，応力評価による評価対象部位として，弁本体及び弁体を選定し，構造健全性評価による評価対象部位として圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部を選定する。また，機能維持評価による評価対象部位とし て，逆止弁付ファンネルを選定する。逆止弁付ファンネルの評価対象部位について，図 3－1に示す。

図中の①～②は応力評価による評価対象部位を，（3）～⑧は構造健全性評価による評価対象部位をそれぞれ示す。

図 3－1 逆止弁付ファンネルの評価対象部位

枠囲みの内容は商業機密の観点から公開できません。

4．固有値解析

4． 1 固有振動数の計算方法
逆止弁付ファンネルの構造に応じて，保守的に固有振動数が小さく算出されるよう， より柔となるようにモデル化し，固有振動数を算出する。また，その場合においても固有振動数が 20 Hz 以上であることを確認する。
4．1．1 解析モデル
質量の不均一性を考慮し，一方の端を固定端，他方の端を自由端の 1 質点系モ デルとして，自由端に全質量mが集中したモデルを組む。モデル化は，円筒状の弁本体の断面をもつはりとして設定する。モデル化の概略を図 $4-1$ に示す。

図 4－1 モデル化の概略

4．1．2 記号の説明

逆止弁付ファンネルの固有振動数算出に用いる記号を表4－1に示す。

表 4－1 固有振動数算出に用いる記号

記 号	記号の説明	単 位
d_{m}	モデル化に用いる弁本体の内径	mm
D_{m}	モデル化に用いる弁本体の外径	mm
E	弁本体の縦弾性係数	MPa
f	弁本体の一次固有振動数	Hz
I_{m}	弁本体の断面二次モーメント	mm^{4}
k	ばね定数	N / m
ℓ_{1}	弁本体全体の長さ	mm
m	逆止弁付ファンネルルの全質量	kg

枠囲みの内容は商業機密の観点から公開できません。

4．1．3 固有振動数の計算
固有振動数の計算に用いる寸法は，公称値を使用する。水平方向の固有振動数 fを以下の式より算出する。なお，鉛直方向の固有振動数については，逆止弁付 ファンネルの構造上，水平方向よりも鉛直方向の方が剛構造となるため，水平方向の固有振動数のみを確認する。

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \\
& \mathrm{k}=\frac{3 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{m}}}{{l_{1}^{3}}^{3}} \times 10^{3}
\end{aligned}
$$

弁本体の断面二次モーメント I mの算出過程を以下に示す。モデル化に用いる弁本体の断面二次モーメント Im は，以下の式より算出する。

$$
\mathrm{I}_{\mathrm{m}}=\left(\mathrm{D}_{\mathrm{m}}{ }^{4}-\mathrm{d}_{\mathrm{m}}{ }^{4}\right) \cdot \frac{\pi}{64}
$$

4．2 固有振動数の計算条件

表 4－2に固有振動数の計算条件を示す。

表 4－2 固有振動数の計算条件

弁本体の材質	逆止弁付ファンネル の全質量 m（kg）	モデル化に用いる弁本体の外径 $\mathrm{D}_{\mathrm{m}}(\mathrm{~mm})$	モデル化に用いる弁本体の内径 $\mathrm{d}_{\mathrm{m}}(\mathrm{~mm})$
	1． 5		

弁本体全体の長さ $\ell_{1}(\mathrm{~mm})$	弁本体の 縦弾性係数＊ $\mathrm{E}(\mathrm{MPa})$
\square	1.94×10^{5}

注記＊：「5．3 許容限界」における温度条件での縦弾性係数 E を用いる。

4．3 固有振動数の計算結果

表 4－3 に固有振動数の計算結果を示す。固有振動数は， 20 Hz 以上であることか ら，剛構造である。

表 4－3 固有振動数の計算結果

機器名称	固有振動数 (Hz)
逆止弁付ファンネル	878

[^4]
5．構造強度評価

5.1 構造強度評価方法

逆止弁付ファンネルの耐震評価は，添付書類「VI－2－1－9 機能維持の基本方針」に て設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，「3。評価対象部位」にて設定する評価対象部位に作用する応力等が「5．3 許容限界」にて示す許容限界以下であることを確認する。

5.2 荷重及び荷重の組合せ

5．2．1 荷重の設定

（1）固定荷重（D）
常時作用する荷重として，逆止弁付ファンネルの自重 $W_{d 1}$ 及び弁体の自重 W_{d} 2を考慮し，以下の式より算出する。
$\mathrm{W}_{\mathrm{d} 1}=\mathrm{m}_{1} \cdot \mathrm{~g}$
$\mathrm{W}_{\mathrm{d} 2}=\mathrm{m}_{2} \cdot \mathrm{~g}$
（2）基準地震動 S s による地震荷重（ S s ）
基準地震動 S S による地震荷重 $\mathrm{F}_{\mathrm{H} 1}$ ， $\mathrm{F}_{\mathrm{V}_{1}}$ ， $\mathrm{F}_{\mathrm{V}_{2} \text { を考慮し，以下の式より算 }}$出する。

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H} 1}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{H}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{v}_{1}}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{V}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{V}_{2}}=\mathrm{m}_{2} \cdot \mathrm{C}_{\mathrm{V}} \cdot \mathrm{~g}
\end{aligned}
$$

5．2．2 荷重の組合せ
逆止弁付ファンネルの耐震計算にて考慮する荷重の組合せを表 5－1 に示す。

表 5－1 荷重の組合せ及び許容応力状態

施設区分	機器名称	耐震重要度分類
浸水防護施設 （浸水防止設備）	逆止弁付ファンネル	S

荷重の組合せ＊1＊2	許容応力状態
$\mathrm{D}+\mathrm{Ss}$	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$

注記＊1：Dは固定荷重，S s は基準地震動 S s による地震荷重を示す。
＊2：固定荷重（D）及び基準地震動（S s）の組合せが荷重を緩和する方向に作用する場合，保守的にこれを組合せない評価を実施する。

5.3 許容限界

逆止弁付ファンネルの弁本体及び弁体の許容限界を表 5－2 に，許容応力評価条件 を表5－3にそれぞれ示す。また，弁本体及び弁体の許容応力算出結果を表5－4にそ れぞれ示す。

表 5－2 弁本体及び弁体の許容限界

許容応力状態	許容限界＊1		
	一次応力		
$\mathrm{III}_{\mathrm{A}} \mathrm{S} * 3$			

注記＊1：引張及び曲げは，J E A G 4 6 0 1 を準用し，「管」の許容限界のうちクラ ス 2 ， 3 配管に対する許容限界に準じて設定する。
＊2：引張応力と曲げ応力の組合せ応力である。
＊ 3 ：地震後，津波後の再使用性や津波の繰返し作用を想定し，当該構造物全体の変形能力に対して浸水防護機能として十分な余裕を有するよう，設備を構成 する材料が弾性域内に収まることを基本とする。

表 5－3 弁本体及び弁体の許容応力評価条件

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S (MPa)
弁本体	\square	40	111
弁体	\square		

注記 $*: ~$ 鉄鋼材料（ボルト材を除く）の許容引張応力を示す。

表 5－4 弁本体及び弁体の許容応力算出結果

許容応力状態	評価対象部位	許容限界		
		一次応力		
		$\begin{gathered} \text { 引張 } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 組合せ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$
III ${ }_{\text {A }} \mathrm{S}$	弁本体	133	133	133
	弁体	－	133	－

5.4 設計用地震力

「4．固有値解析」に示したとおり逆止弁付ファンネルの固有振動数が 20 Hz 以上 であることを確認したため，逆止弁付ファンネルの耐震計算に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す逆止弁付ファンネルにおける設置床の最大応答加速度の 1.2 倍を考慮して設定する。逆止弁付ファンネルの耐震計算に用いる設計震度を表5－5に示す。

表 5－5 逆止弁付ファンネルの設計震度

地震動	床面高さ＊1 0. P. （mm）	場所	設計震度＊2	
基準地震動	7000	3 号機海水熱交換器建屋	水平方向 C H	2． 24
S s			鉛直方向 C v	1． 59

注記＊1：基準床レベルを示す。
＊2：「4．固有値解析」より，逆止弁付ファンネルの固有振動数が 20 Hz 以上であ ることを確認したため， 3 号機海水熱交換器建屋の最大応答加速度の 1.2 倍 を考慮した設計震度を設定した。

5.5 計算方法

5．5．1 弁本体
弁本体の発生応力を算出する。弁本体の応力評価に用いる断面積 A_{1} は，図5－ 1 に示すとおり，弁本体のうち最も肉厚が薄い断面を適用する。
\square
図 5－1 弁本体の構造図
（1）鉛直応答加速度負荷時
鉛直応答加速度により，弁本体に加わる引張応力 $\sigma \mathrm{V}_{1}$ を以下の式より算出する。

$$
\sigma_{\mathrm{v}_{1}}=\frac{\mathrm{W}_{\mathrm{d} 1}+\mathrm{F}_{\mathrm{v}_{1}}}{\mathrm{~A}_{1}}
$$

（2）水平応答加速度負荷時
弁全体の最下端に集中荷重が負荷された片持ちはりとして，水平応答加速度に より，弁本体に加わる曲げ応力 $\sigma_{\mathrm{H} 1}$ を以下の式より算出する。

$$
\mathrm{M}_{1}=\mathrm{F}_{\mathrm{H} 1} \cdot \mathrm{~L}_{1}
$$

$$
\mathrm{I}_{1}=\left(\mathrm{D}_{1}{ }^{4}-\mathrm{d}_{1}{ }^{4}\right) \cdot \frac{\pi}{64}
$$

$$
\sigma_{\mathrm{H} 1}=\frac{\mathrm{M}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{2}\right)}{\mathrm{I}_{1}}
$$

[^5]
5．5．2 弁体

（1）鉛直応答加速度負荷時
鉛直応答加速度により弁体は弁座に押し付けられ，曲げ応力が発生する。曲げ応力 σV_{2} を以下の式より算出する。ただし，弁体の自重による荷重 $W_{\mathrm{d} 2}$ は曲げ応力 $\sigma \mathrm{V}_{2}$ を緩和する方向に作用するため考慮しない。なお，曲げ応力の算出につい ては，機械工学便覧（日本機械学会）より，円板，周辺単純支持，等分布荷重の応力計算式を用いる。

$$
\sigma_{\mathrm{v}_{2}}=1.24 \cdot \frac{\left(\frac{\mathrm{~W}_{\mathrm{d} 2}+\mathrm{F}_{\mathrm{v}_{2}}}{\mathrm{~A}_{2}}\right)}{\mathrm{t}^{2}} \cdot\left(\frac{\mathrm{D}_{2}}{2}\right)^{2}
$$

5.6 計算条件

逆止弁付ファンネルの応力評価に用いる計算条件を表 5－6に示す。

表 5－6 逆止弁付ファンネルの応力評価に用いる計算条件

	逆止弁付ファンネル	弁全体の長さ	并本体の外径
弁本体の材質	の全質量	L_{1}	D_{1}
	$(\mathrm{~kg})$	(mm)	(mm)
\square	1.5	\square	\square

弁本体の内径	弁本体の断面積		
d_{1}			
$(\mathrm{~mm})$		$\mathrm{A}_{1} .$	$\left(\mathrm{mm}^{2}\right)$
:---:			

弁体の材質	弁体の質量	弁体の外径	弁体の厚さ
	m_{2} $(\mathrm{~kg})$	D 2	
	0.10	61	$(\mathrm{~mm})$

弁体の断面積	重力加速度
A_{2}	
$\left(\mathrm{~mm}^{2}\right)$	g
$\left(\mathrm{m} / \mathrm{s}^{2}\right)$	

6．機能維持評価

「3．評価対象部位」にて評価対象部位として設定した逆止弁付ファンネルの地震時及び地震後の機能維持を確認するため，「6．1 機能維持評価方法」に示すとおり，逆止弁付ファンネルの加振試験後に逆止弁付ファンネルの漏えい試験を実施することによ り逆止弁付ファンネルの機能維持評価を実施した。
6.1 機能維持評価方法

逆止弁付ファンネルの固有振動数を考慮して，地震時における逆止弁付ファンネル の機能維持評価用加速度を設定し，設定した機能維持評価用加速度が機能確認済加速度以下であることを確認する。機能確認済加速度には，正弦波加振試験において，止水性の機能の健全性を確認した加振波の最大加速度を適用する。逆止弁付ファンネル の機能確認済加速度を表6－1 に示す。

具体的な機能維持確認として，逆止弁付ファンネルに対して，正弦波により水平方向及び鉛直方向の加振試験を実施後，VI－1－1－2－2－5「津波防護に関する施設の設計方針」に示す地震後の繰返しの襲来を想定した経路からの津波を想定し，0．18MPa の水圧にて漏えい試験を実施し，漏えい量が許容漏えい量以下であることを確認した。ま た，最大漏えい量となる水圧（0．01MPa）においても，漏えい量が許容漏えい量以下で あることを確認した。本漏えい試験の結果により，逆止弁付ファンネルの地震時及び地震後の機能維持を確認した。

なお，固有値解析結果により，逆止弁付ファンネルの固有振動数 20 Hz 以上であるこ とを確認したため，機能維持評価用加速度には設置床の最大応答加速度を使用する。

表 6－1 逆止弁付ファンネルの機能確認済加速度

評価対象部位	機能確認済加速度 $\left(\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
	水平方向	鉛直方向
逆止弁付ファンネル	6.0	6.0

7．評価結果

7.1 基準地震動 S s に対する評価対象部位の応力評価

基準地震動 S s に対する評価対象部位の応力評価結果を表 7－1 に示す。発生応力 が許容応力以下であることから構造部材が構造健全性を有することを確認した。

表 7－1 基準地震動 S s に対する評価対象部位の応力評価結果

評価対象部位	発生応力 (MPa)		
	引 張	1	許容応力 (MPa)
	曲 げ	1	133
	組合せ＊	2	133
弁体	曲 げ	1	133

注記＊：引張 $\sigma_{\mathrm{V} 1}+$ 曲げ $\sigma_{\mathrm{H}} 1$ は，$\sigma_{\mathrm{V}}{ }_{1}+\sigma_{\mathrm{V}} 1 \leqq 1.2 \mathrm{~S}$ で評価

7．2 基準地震動 S s に対する逆止弁付ファンネルの機能維持評価
基準地震動 S s に対する逆止弁付ファンネルの機能維持評価結果を表7－2に示す。表 7－2 に示すとおり機能維持評価用加速度が機能確認済加速度以下であることから逆止弁付ファンネルの機能維持を確認した。

表 7－2 逆止弁付ファンネルの機能維持評価結果

評価対象部位	床面高さ 0 ．P． （mm）	場所	機能確認済加速度との比較			
			水平加速度（ $\times 9.8 \mathrm{~m} / \mathrm{s}^{2}$ ）		鉛直加速度（ $\left.\times 9.8 \mathrm{~m} / \mathrm{s}^{2}\right)$	
			機能維持 評価用 加速度＊	機能確認済 加速度	機能維持 評価用加速度＊	機能確認済加速度
$\begin{gathered} \text { 逆止弁付 } \\ \text { ファンネル } \end{gathered}$	7000	3 号機海水熱交換器建屋	1． 87	6． 0	1． 33	6． 0

注記＊：「4．固有値解析」より，逆止弁付ファンネルの固有振動数が 20 Hz 以上である ことを確認したため，機能維持評価用加速度には 3 号機海水熱交換器建屋にお ける最大応答加速度を使用した。

7．3 基準地震動 S s に対する評価対象部位の構造健全性評価
「7．2 基準地震動 S s に対する逆止弁付ファンネルの機能維持評価」に示したと おり，逆止弁付ファンネルの機能維持を確認したことにより，評価対象部位である圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びね じ切り部が構造健全性を有することを確認した。

VI－2－12 水平2方向及び鉛直方向地震力の組合せに関する影響評価

VI－2－12－1 水平2方向及び鉛直方向地震力の組合せに関する影響評価結果

$$
\begin{gathered}
\text { VI-2-12-1 水平 } 2 \text { 方向及び鉛直方向地震力の組合せに関する } \\
\text { 影響評価結果 }
\end{gathered}
$$

1．水平 2 方向及び鉛直方向地震力の組合せに関する影響評価結果
本申請は，水平 2 方向及び鉛直方向地震力の組合せに関する影響評価の手法及び条件を変更するものではなく，影響評価結果に影響を与えるものではないことから，令和 3 年 12月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－3 強度に関する説明書

目 次

VI－3－1 強度計算の基本方針
VI－3－2 強度計算方法
VI－3－3 強度計算書
VI－3－別添1 竜巻への配慮が必要な施設の強度に関する説明書
VI－3－別添 2 火山への配慮が必要な施設の強度に関する説明書
VI－3－別添 3 津波又は溢水への配慮が必要な施設の強度に関する説明書
VI－3－別添 4 発電用火力設備の技術基準による強度に関する説明書
VI－3－別添5 非常用発電装置（可搬型）の強度に関する説明書
VI－3－別添 6 炉心支持構造物の強度に関する説明書
VI－3－別添 7 原子炉圧力容器内部構造物の強度に関する説明書

VI－3－1 強度計算の基本方針

目 次

VI－3－1－1 強度計算の基本方針の概要
VI－3－1－2 クラス 1 機器の強度計算の基本方針
VI－3－1－3 クラス 2 機器の強度計算の基本方針
VI－3－1－4 クラス 3 機器の強度計算の基本方針
VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針

VI－3－1－6 重大事故等クラス 3 機器の強度評価の基本方針
VI－3－1－7 原子炉格納容器の強度計算の基本方針

注：「VI－3－1－1 強度計算の基本方針の概要」，「VI－3－1－2 クラス 1 機器の強度計算 の基本方針」，「VI－3－1－3 クラス 2 機器の強度計算の基本方針」，「VI－3－1－5重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付 け原規規発第 2112231 号及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可 された設計及び工事の計画の記載内容に変更はない。

VI－3－1－1 強度計算の基本方針の概要

1．概要．． 1

1．概要

本資料は，「実用発電用原子炉及びその附属施設の技術基準に関する規則」（平成 25年 6 月 28 日 原子力規制委員会規則第六号）（以下「技術基準規則」という。）第 17 条 に規定されている設計基準対象施設又は第 55 条に規定されている重大事故等対処設備 に属する容器，管，ポンプ，弁若しくはこれらの支持構造物又は設計基準対象施設に属 する炉心支持構造物の材料及び構造について，適切な材料を使用し，十分な構造及び強度を有することを説明するものである。

なお，設計基準対象施設のらち材料及び構造の要求事項に変更がなく，改造を実施し ない機器については，今回の申請において変更は行わない。

今回，新たに材料及び構造の要求が追加又は変更となる以下の機器が十分な強度を有 することを説明するものである。
－クラス 1 機器のらち「原子炉冷却材圧力バウンダリ拡大範囲」及び「残留熱除去設備」 の改造に伴い強度評価が必要な範囲
－クラス 2 機器のらち「残留熱除去設備」，「原子炉冷却材浄化設備」，「放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備」及び「原子炉格納容器調気設備」の改造に伴い強度評価が必要な範囲

- クラス 3 機器のうち「原子炉泠却材補給設備」の改造に伴い強度評価が必要な範囲
- クラス 3 機器のらち「その他発電用原子炉の附属施設（火災防護設備）」
- 重大事故等クラス 2 機器
- 重大事故等クラス 2 支持構造物
- 重大事故等クラス 3 機器
- 原子炉格納容器のうち改造に伴い強度評価が必要な範囲

また，クラス 1 管を支持する支持構造物及び重大事故等クラス 2 管を支持する支持構造物であって，その損壊により重大事故等クラス2管に損壊を生じさせるおそれがある重大事故等クラス 2 支持構造物の強度計算については，計算方法が耐震評価と同じであ り，地震荷重が支配的であることから添付書類「VI－2 耐震性に関する説明書」にて説明する。

上述の機器と評価条件が異なる自然現象等特殊な荷重を考慮した評価が必要な設備の らち竜巻の荷重を考慮した評価を別添 1 に，火山の影響による荷重を考慮した評価を別添 2 に，津波又は溢水の荷重を考慮した評価を別添 3 に示す。

技術基準規則の機器区分に該当しない機器のらち，施設したガスタービン（燃料系含 む）及び内燃機関（燃料系含む）の評価を別添 4 に，非常用発電装置（可搬型）の内燃機関の評価を別添 5 に，重大事故等対処設備としての炉心支持構造物の評価を別添 6 に，重大事故等対処設備としての原子炉圧力容器内部構造物の評価を別添 7 に示す。

VI－3－1 強度計算の基本方針
VI－3－1－1 強度計算の基本方針の概要（本紙）
VI－3－1－2 クラス 1 機器の強度計算の基本方針
$\mathrm{VI}-3-1-3$ クラス 2 機器の強度計算の基本方針
VI－3－1－4 クラス 3 機器の強度計算の基本方針
VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算 の基本方針

VI－3－1－6 重大事故等クラス 3 機器の強度評価の基本方針
VI－3－1－7 原子炉格納容器の強度計算の基本方針

VI－3－2 強度計算方法
VI－3－2－1 強度計算方法の概要
VI－3－2－2 クラス 1 管の強度計算方法
VI－3－2－3 クラス 1 弁の強度計算方法
VI－3－2－4 クラス 2 管の強度計算方法
VI－3－2－5 クラス 2 弁の強度計算方法
VI－3－2－6 クラス 3 容器の強度計算方法
VI－3－2－7 クラス 3 管の強度計算方法
VI－3－2－8 重大事故等クラス 2 容器の強度計算方法
VI－3－2－9 重大事故等クラス 2 管の強度計算方法
VI－3－2－10 重大事故等クラス 2 ポンプの強度計算方法
VI－3－2－11 重大事故等クラス 2 弁の強度計算方法
VI－3－2－12 重大事故等クラス 2 支持構造物（容器）の強度計算方法
VI－3－2－13 重大事故等クラス 2 支持構造物（ポンプ）の強度計算方法
VI－3－2－14 重大事故等クラス 3 機器の強度評価方法

VI－3－1－2 クラス 1 機器の強度計算の基本方針
1．概要 1
2．クラス 1 機器の強度計算の基本方針 2
2.1 クラス 1 機器の構造及び強度． 3

1．概要

クラス 1 機器の材料及び構造については，「実用発電用原子炉及びその附属施設の技術基準に関する規則」（平成 25 年 6 月 28 日 原子力規制委員会規則第六号）（以下「技術基準規則」とい う。）第 17 条第 1 項第 1 号及び第 8 号に規定されており，適切な材料を使用し，十分な構造及び強度を有することが要求されている。

本資料は，「原子炉冷却材圧力バウンダリ拡大範囲」及び「残留熱除去設備」について，クラス 1 機器となる管及び弁が十分な強度を有することを確認するための強度計算の基本方針について説明するものである。

2．クラス 1 機器の強度計算の基本方針
クラス 1 機器の材料及び構造については，技術基準規則第 17 条（材料及び構造）に規定されて おり，「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」（平成 25 年 6 月 19日 原規技発第 1306194 号）第 17 条 10 において「発電用原子力設備規格 設計•建設規格（2005年版（2007 年追補版含む。））＜第1編軽水炉規格＞J S ME S N C 1－2005／2007」（日本機械学会）又は「発電用原子力設備規格 設計•建設規格（2012年版）＜第1編軽水炉規格＞J SME S N C 1－2012」（日本機械学会）によることとされているが，技術基準規則の施行 の際現に施設し，又は着手した設計基準対象施設については，施設時に適用された規格によるこ とと規定されている。同解釈において規定される J S ME S N C 1－2005／2007（以下「設計•建設規格」という。）及び J S ME S N C 1－2012は，いずれも技術基準規則を満たす仕様規定として相違がない。

「原子炉冷却材圧力バウンダリの拡大範囲」及び「残留熱除去設備」は施設時の適用規格が「発電用原子力設備に関する構造等の技術基準」（昭和 55 年 10 月 30 日 通商産業省告示第 501 号
（以下「告示第 5 0 1 号」という。）又は設計•建設規格であることから，適用規格が告示第50 1 号の場合は告示第 5 0 1 号と設計•建設規格の比較を行い，いずれか安全側の規格による評価 を実施するが，既工認における評価結果がある場合はその評価結果の確認による評価を実施する。適用規格が設計•建設規格の場合は設計•建設規格による評価を実施するが，既工認における評価結果があることからその評価結果の確認による評価を実施する。

クラス 1 機器の材料については，告示第 5 0 1 号又は設計•建設規格に規定されている材料を使用する設計とする。
（1）強度計算における適用規格の選定
クラス 1 機器のうち「原子炉冷却材圧力バウンダリ拡大範囲」及び「残留熱除去設備」に ついては，施設時の適用規格が告示第501号又は設計•建設規格である。

施設時の適用規格が告示第 5 O 1 号のものについては設計•建設規格との比較を行い，い ずれか安全側の規格による評価を実施するが，既工認における評価結果がある場合はその評価結果の確認による評価を実施する。適用規格が設計•建設規格のものについては設計•建設規格による評価を実施するが，既工認における評価結果があることからその評価結果の確認による評価を実施する。

安全側の適用規格の選定は，両規格において公式による評価手法と解析による評価手法が規定されていることから，以下「a．公式による評価の比較」及び「b。解析による評価の比較」に示す手法ごとに比較を行い実施する。

a．公式による評価の比較

公式による評価において評価結果に影響を与えるものとしては，評価式，評価式に用いる許容値及び係数並びに材料の物性値がある。このうち係数については評価式を構成するもの であることから評価式として扱う。材料の物性値については，物性値を割下げ率で除して許容値が設定されていることからその影響は許容値に含まれることになる。よって，評価式と許容値の 2 つの項目について比較する。

評価式及び許容値の比較は，評価対象部位ごとに実施する。評価式の比較は，評価式の形 や評価式で用いる係数の比較を行い，評価結果が保守的になる方を安全側とする。許容値の比較は，許容値が小さい方を安全側とする。ただし，許容値のSI 単位化による誤差は，単位換算によるものであり工学的な意味合いはなく，評価結果に影響を与えないため，ここで は相違するものとは見なさない。

上述の 2 つの項目における比較において安全側の規格が容易に判断できる場合は，安全側 の規格として選定した設計•建設規格又は告示第501号のいずれかにて評価を実施する。 また，安全側の規格が異なる場合等で，安全側の規格が容易に判断できない場合は設計•建設規格及び告示第 5 0 1 号の両規格により評価を実施する。両規格に相違がない場合は，設計•建設規格に基づき評価を実施する。

b．解析による評価の比較

解析による評価において安全側の規格が容易に判断できない場合は，告示第501号及び設計•建設規格の両規格により評価を実施する。
（2）規格の相違
施設時の適用規格が告示第501号である場合の設計•建設規格及び告示第501号によ る評価について，評価式及び許容値の 2 つの項目について比較を実施し整理した。以下に，両規格に相違が認められた評価項目例を示す。
a．評価式
（a）弁＊1

評価項目	設計•建設規格	告示第501号	適用する規格	備考
弁箱および弁ふたの肉厚	［VVB－3210（1）］ 弁箱（ネック部内径と弁入口流路内径との比が 1.5 を超えるもののネック部を除く）ま たは弁ふたの厚さは，次の計算式により計算 した値以上であること。 $\mathrm{t}=\mathrm{t}_{1}+\frac{\left(\mathrm{P}-\mathrm{P}_{1}\right)\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}{\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)}$	［第82条第1項第1号］ 弁箱（ネック部内径と弁入口流路内径との比が 1.5 を超えるもののネック部を除く。）又 は弁ふたの厚さは，次の計算式により計算し た値 $\mathrm{t}=\mathrm{t}_{1}+\frac{\left(\mathrm{P}-\mathrm{P}_{1}\right)\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}{\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)}$	設計•建設規格又は 告示第 501 号	＊2
配管反力による 弁箱の二次応力	［VVB－3330］ 次の 3 つの計算式により計算した二次応力 は， $260^{\circ} \mathrm{C}$ の温度における付録材料図表 Part5表1に定める値 S_{m} の 1.5 倍の値を超 えないこと。 $\begin{aligned} & P_{d}=\frac{A_{1} \cdot S_{y}}{A_{2}} \\ & P_{b}=\frac{C_{b} \cdot Z_{1} \cdot S_{y}}{Z_{2}} \\ & P_{t}=\frac{2 \cdot Z_{1} \cdot S_{y}}{Z_{p}} \end{aligned}$	［第81条第1項第1号口］次の 3 つの計算式により計算した応力は，そ れぞれ 260 度の温度における別表第 2 に定め る値の 1.5 倍の値を超えないこと。 $\begin{aligned} P_{d} & =\frac{A_{1} \cdot S_{y}}{A_{2}} \\ P_{b} & =\frac{C_{b} \cdot Z_{1} \cdot S_{y}}{Z_{2}} \\ P_{t} & =\frac{2 \cdot Z_{1} \cdot S_{y}}{Z_{p}} \end{aligned}$	設計•建設規格	$* 3$

注記＊1：評価式に記載の記号は，添付書類「VI－3－2－3クラス 1 弁の強度計算方法」による。
＊2： t （必要肉厚）は計算に用いる t_{1} ， t_{2} の値が規格間で相違があり，設計•建設規格と告示第 501 号で t の値が大きくなる規格 の評価式を適用する。
＊ $3: \mathrm{P}_{\mathrm{d}}, ~ \mathrm{P}_{\mathrm{b}}$ 及び P_{t}（二次応力）は計算に用いる S_{y} 値が規格間で相違があり，設計•建設規格の S_{y} 値が大きく安全側が明確である ため，設計•建設規格の評価式を適用する。 S_{y} 値の代表例については，次頁「b。許容値」にて記載する。

O 2 変二（1）VI－3－1－2 R 3
b．許容値
許容値については，代表例により規格の相違を記載する。
（a）弁＊

機器名	接続管の 材料	評価で使用する温度 $\left({ }^{\circ} \mathrm{C}\right)$	設計•建設規格 (MPa)	告示第501号 (MPa)	適用する規格

注記＊：表中の設計•建設規格の値及び告示第501号の値は設計降伏点 S_{y} 値を示す。
（3）選定規格
施設時の適用規格が告示第501号である場合の設計•建設規格及び告示第501号の比較において，確認された安全側の規格の適用により評価を実施する。クラス 1 機器の計算書に記載する強度評価結果については，安全側の規格による評価結果を記載する。

なお，告示第 5 0 1 号及び設計•建設規格の両規格による評価を実施したものにおいては，両規格による評価結果を計算書に記載する。

$$
\text { VI-3-1-3 クラス } 2 \text { 機器の強度計算の基本方針 }
$$

目次

1．概要 1
2．クラス 2 機器の強度計算の基本方針 1
2．1 クラス 2 機器の構造及び強度 2

1．概要

クラス 2 機器の材料及び構造については，「実用発電用原子炉及びその附属施設の技術基準に関する規則」（平成 25 年 6 月 28 日 原子力規制委員会規則第六号）（以下「技術基準規則」とい ら。）第 17 条第 1 項第 2 号及び第 9 号に規定されており，適切な材料を使用し，十分な構造及び強度を有していることが要求されている。

本資料は，クラス 2 機器のうち「残留熱除去設備」，「原子炉冷却材浄化設備」，「放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備」及び「原子炉格納容器調気設備」の改造に伴い，管及び弁が十分な強度を有することを確認するための強度計算の基本方針 について説明するものである。

2．クラス 2 機器の強度計算の基本方針
クラス 2 機器の材料及び構造については，技術基準規則第 17 条（材料及び構造）に規定され ており，「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」（平成 25 年 6 月 19 日 原規技発第 1306194 号）第 17 条 10 において「発電用原子力設備規格 設計•建設規格 （2005 年版（2007 年追補版含む。））＜第 I 編軽水炉規格＞J S ME S N C 1－2005／2007」 （日本機械学会）又は「発電用原子力設備規格 設計•建設規格（2012 年版）＜第I編軽水炉規格＞J S ME S N C 1－2012」（日本機械学会）によることとされているが，技術基準規則の施行の際現に施設し，又は着手した設計基準対象施設については，施設時に適用された規格 によることと規定されている。同解釈において規定されるJSME S N C 1－2005／2007
（以下「設計•建設規格」という。）及び J S ME S N C 1－2012は，いずれも技術基準規則を満たす仕様規定として相違がない。

よって，クラス 2 機器のうち「残留熱除去設備」，「原子炉冷却材浄化設備」，「放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備」及び「原子炉格納容器調気設備」の改造を実施する機器の評価は，施設時の適用規格が「発電用原子力設備に関する構造等の技術基準」（昭和 55 年 10 月 30 日 通商産業省告示第 5 0 1 号（以下「告示第 5 0 1 号」とい う。）の場合は，今回の設計時において技術基準規則を満たす仕様規定とされている設計•建設規格と告示第 5 0 1 号の比較を行い，いずれか安全側の規格による評価を実施する。施設時の適用規格が設計•建設規格の場合は，設計•建設規格による評価を実施する。

なお，クラス 2 機器を同位クラスである重大事故等クラス 2 機器として兼用し，重大事故等時 の使用条件に設計基準の使用条件が包絡され，重大事故等時における評価結果がある場合は，材料，構造及び強度の要求は同じであることから，設計基準の評価結果の記載は省略する。

クラス 2 機器の材料については，告示第 5 0 1 号又は設計•建設規格に規定されている材料を使用する設計とする。

2.1 クラス 2 機器の構造及び強度

（1）強度計算における適用規格の選定
クラス 2 機器のうち「残留熱除去設備」，「原子炉冷却材浄化設備」及び「放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備」の改造を実施する機器に ついては，施設時の適用規格が告示第501号であるため，設計•建設規格と告示第501号との比較を行い，いずれか安全側の規格による評価を実施する。また，「原子炉格納容器調気設備」の改造を実施する機器ついては設計•建設規格による評価を実施する。

安全側の適用規格の選定は，両規格において公式による評価手法と解析による評価手法が規定されていることから，以下「a．公式による評価の比較」及び「b。解析による評価の比較」に示す手法ごとに比較を行い実施する。
a．公式による評価の比較
公式による評価において評価結果に影響を与えるものとしては，評価式，評価式に用いる許容値及び係数並びに材料の物性値がある。このうち係数については評価式を構成するもの であることから評価式として扱う。材料の物性値については，物性値を割下げ率で除して許容値が設定されていることからその影響は許容値に含まれることになる。よって，評価式と許容値の 2 つの項目について比較する。

評価式及び許容値の比較は，評価対象部位ごとに実施する。評価式の比較は，評価式の形 や評価式で用いる係数の比較を行い，評価結果が保守的になる方を安全側とする。許容値の比較は，許容値が小さい方を安全側とする。ただし，許容値のSI 単位化による誤差は，単位換算によるものであり工学的な意味合いはなく，評価結果に影響を与えないため，ここで は相違するものとは見なさない。

上述の 2 つの項目における比較において安全側の規格が容易に判断できる場合は，安全側 の規格として選定した設計•建設規格又は告示第501号のいずれかにて評価を実施する。 また，安全側の規格が異なる場合等で，安全側の規格が容易に判断できない場合は設計•建設規格及び告示第501号の両規格により評価を実施する。両規格に相違がない場合は，設計•建設規格に基づき評価を実施する。

b．解析による評価の比較

解析による評価において安全側の規格が容易に判断できない場合は，告示第501号及び設計•建設規格の両規格により評価を実施する。
（2）規格の相違
施設時の適用規格が告示第 5 0 1 号である場合の設計•建設規格及び告示第501号によ る評価について，評価式及び許容値の 2 つの項目について比較を実施し整理した。以下に，両規格に相違が認められた評価項目を示す。
a．評価式
（a）弁＊1

評価項目	設計•建設規格	告示第501号	適用する規格	備考
弁箱および弁ふたの肉厚	［VVC－3210（1）］ 弁箱（ネック部を除く）または弁ふたの厚さ は，次の計算式により計算した値以上であるこ と。 ただし，最高使用圧力が最高使用温度におけ る別表1－1に規定する許容圧力の欄に掲げる許容圧力以下の場合は，別表 3 の呼び圧力 1.03 MPa の欄のらち当該弁の弁入口流路内径に対応する値とする。 $\mathrm{t}=\mathrm{t}_{1}+\frac{\left(\mathrm{P}-\mathrm{P}_{1}\right) \cdot\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}{\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)}$	［第85条第1項］ 弁箱（ネック部を除く。）又は弁ふたの厚さ は，次の計算式により計算した値。 ただし，最高使用圧力が最高使用温度におけ る別表第 13 に規定する許容圧力の欄に掲げる許容圧力以下の揚合は，別表第 15 の呼び圧力 10.5 キログラム毎平方センチメートルの欄のらち当該弁の弁入口流路内径に対応する値 $\mathrm{t}=\mathrm{t}_{1}+\frac{\left(\mathrm{P}-\mathrm{P}_{1}\right) \cdot\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}{\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)}$	設計•建設規格	＊2

注記＊1：評価式に記載の記号は，添付書類「VI－3－2－5 クラス 2 弁の強度計算方法」による。
＊2：t（必要肉厚）は計算に用いる t_{1} ， t_{2} の値が規格間で相違があり，設計•建設規格と告示第 501 号で t の値が大きくなる設計•建設規格の評価式を適用する。なお， t_{1} ， $\mathrm{t}{ }_{2}$ の値については次項「 b 。許容値」にて記載する。
b．許容値
（a）弁＊1

評価項目	許容 圧力 P_{1} （MPa）	許容 圧力 P_{2} （MPa）	$\begin{gathered} \mathrm{P}_{1}, \quad \mathrm{P}_{2} \text { に基づく } \\ \text { 最小厚さ }(\mathrm{mm}) \quad * 2 \end{gathered}$				適用する 規格
			設計•建設規格		告示第501号		
			t 1	t 2	t 1	t 2	
弁箱又は弁ふたの厚さ $\mathrm{t}=\mathrm{t}_{1}+\frac{\left(\mathrm{P}-\mathrm{P}_{1}\right) \cdot\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)}{\left(\mathrm{P}_{2}-\mathrm{P}_{1}\right)}$ （残留熱除去系 F008）	2.00	5.17	10.6	16.3	10.3	16.1	設計•建設規格

注記＊\quad ：評価式に記載の記号は，添付書類「VI－3－2－5 クラス 2 弁の強度計算方法」による。 ＊2：設計•建設規格 別表 3 及び告示第 501 号別表 15 による。

（3）選定規格

施設時の適用規格が告示第 5 0 1 号である場合の設計•建設規格及び告示第501号の比較において，確認された安全側の規格の適用により評価を実施し，強度計算書に評価結果 を記載する。なお，設計•建設規格及び告示第 5 0 1 号の両規格による評価を実施したもの においては，両規格による評価結果を計算書に記載する。

VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針

1．重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針本申請は，重大事故等クラス 2 機器である容器，管，ポンプ及び弁並びに重大事故等 クラス 2 支持構造物であって，重大事故等クラス 2 機器に溶接により取り付けられ，そ の損壊により重大事故等クラス 2 機器に損壊を生じさせるおそれがある支持構造物が十分な強度を有することを確認するための強度計算の基本方針を変更するものではなく，重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－3－2 強度計算方法

VI－3－2－1 強度計算方法の概要
VI－3－2－2 クラス 1 管の強度計算方法
VI－3－2－3 クラス 1 弁の強度計算方法
VI－3－2－4 クラス 2 管の強度計算方法
VI－3－2－5 クラス 2 弁の強度計算方法
VI－3－2－6 クラス 3 容器の強度計算方法
VI－3－2－7 クラス3管の強度計算方法
VI－3－2－8 重大事故等クラス 2 容器の強度計算方法
VI－3－2－9 重大事故等クラス 2 管の強度計算方法
VI－3－2－10 重大事故等クラス 2 ポンプの強度計算方法
VI－3－2－11 重大事故等クラス 2 弁の強度計算方法
VI－3－2－12 重大事故等クラス 2 支持構造物（容器）の強度計算方法
VI－3－2－13 重大事故等クラス 2 支持構造物（ポンプ）の強度計算方法
VI－3－2－14 重大事故等クラス 3 機器の強度評価方法

注：「VI－3－2－1 強度計算方法の概要」，「VI－3－2－3 クラス 1 弁の強度計算方法」，「VI $-3-2-4$ クラス 2 管の強度計算方法」，「VI－3－2－5 クラス 2 弁の強度計算方法」，「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号及び令和4年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－3－2－1 強度計算方法の概要

1．強度計算方法の概要
本申請は，クラス 1 機器，クラス 2 機器，クラス 3 機器，重大事故等クラス 2 機器，重大事故等クラス 2 支持構造物及び重大事故等クラス 3 機器が十分な強度を有すること を確認するための方法を変更するものではなく，強度計算方法の概要に影響を与えるも のではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－3－2－3 クラス 1 弁の強度計算方法

1．クラス 1 弁の強度計算方法
本申請は，クラス 1 弁が十分な強度を有することを確認するための方法を変更するも のではなく，クラス 1 弁の強度計算方法に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－3－2－4 クラス 2 管の強度計算方法

1．クラス 2 管の強度計算方法
本申請は，クラス 2 管の強度計算について変更するものではなく，クラス 2 管の強度計算方法に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はない。

VI－3－2－5 クラス 2 弁の強度計算方法

1．クラス 2 弁の強度計算方法
本申請は，クラス2弁が十分な強度を有することを確認するための方法を変更するも のではなく，クラス 2 弁の強度計算方法に影響を与えるものではないことから，本説明書は，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画か ら変更はない。

VI－3－2－9 重大事故等クラス 2 管の強度計算方法

1．重大事故等クラス 2 管の強度計算方法
本申請は，重大事故等クラス 2 管の強度計算について変更するものではなく，重大事故等クラス 2 管の強度計算方法に影響を与えるものではないことから，本説明書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

VI－3－3 強度計算書

目 次

VI－3－3－1 原子炉本体の強度に関する説明書
VI－3－3－2 核燃料物質の取扱施設及び貯蔵施設の強度に関する説明書
VI－3－3－3 原子炉冷却系統施設の強度に関する説明書
VI－3－3－4 計測制御系統施設の強度に関する説明書
VI－3－3－5 放射線管理施設の強度に関する説明書
VI－3－3－6 原子炉格納施設の強度に関する説明書
VI－3－3－7 その他発電用原子炉の附属施設の強度に関する説明書

注：「VI－3－3－3 原子炉冷却系統施設の強度に関する説明書」，「VI－3－3－6 原子炉格納施設の強度に関する説明書」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号及び令和 4 年 9 月 28 日付け原規規発第 2209283 号にて認可された設計及び工事の計画の記載内容に変更はない。

目 次

VI－3－3－3－1 原子炉冷却材再循環設備の強度計算書
VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書
VI－3－3－3－3 残留熱除去設備の強度計算書
VI－3－3－3－4 非常用炉心冷却設備その他原子炉注水設備の強度計算書
VI－3－3－3－5 原子炉冷却材補給設備の強度計算書
VI－3－3－3－6 原子炉補機冷却設備の強度計算書
VI－3－3－3－7 原子炉冷却材浄化設備の強度計算書

注：「VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書」，「VI－3－3－3－3 残留熱除去設備の強度計算書」，「VI－3－3－3－4 非常用炉心冷却設備その他原子炉注水設備の強度計算書」，「VI－3－3－3－7 原子炉冷却材浄化設備の強度計算書」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号及び令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－3－3－3－2 原子炉冷却材の循環設備の強度計算書

VI－3－3－3－2－1 主蒸気系の強度計算書
VI－3－3－3－2－2 復水給水系の強度計算書

注：「VI－3－3－3－2－1 主蒸気系の強度計算書」は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－3－3－3－2－2－1 管の強度計算書（復水給水系）
VI-3-3-3-2-2-1 管の強度計算書 (復水給水系)

VI－3－3－3－2－2－1－1 管の基本板厚計算書（復水給水系）
VI－3－3－3－2－2－1－2 管の応力計算書（復水給水系）

注：「VI－3－3－3－2－2－1－1 管の基本板厚計算書（復水給水系）」は，今回の設計及び工事 の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。
VI-3-3-3-2-2-1-2 管の応力計算書 (復水給水系)

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4 ク ラス 2 管の強度計算方法」並びに「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たって使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

$\begin{aligned} & \text { 応力計算 } \\ & \text { モデルNo. } \end{aligned}$	$\begin{gathered} \text { 既設 } \\ \text { or } \\ \text { 新設 } \end{gathered}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認 における評価結果 の有無	施設時の適用規格	評価区分	$\begin{gathered} \text { 同等性 } \\ \text { 評価 } \\ \text { 区分 } \end{gathered}$	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{array}{\|l\|} \hline \text { クラス } \\ \text { アップ } \\ \text { の有無 } \end{array}$	$\begin{gathered} \hline \text { 施設時 } \\ \text { 機器 } \\ \text { クラス } \\ \hline \end{gathered}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	条件 アップ の有無	DB条件		SA条件						
								$\begin{array}{\|l\|} \hline \text { 圧力 } \\ (\mathrm{MPa}) \\ \hline \end{array}$	$\begin{gathered} \text { 温度 } \end{gathered}$	$\begin{aligned} & \hline \text { 圧力 } \\ & (\mathrm{MPa}) \\ & \hline \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$					
FDW－001	既設	有	無	DB－2	DB－2	SA－2	無	8.62	302	8.62	302	有	S55告示	既工認	－	SA－2
	既設	有	無	DB－1	DB－1	SA－2	有	8.62	302	10． 34	315	－	S55告示	設計•建設規格又は告示	－	SA－2
	新設	－	－	－	－	SA－2	－	－	－	8.62	302	－	－	設計•建設規格	－	SA－2
	新設	－	－	－	DB－2	SA－2	－	8.62	302	8.62	302	－	－	設計•建設規格	－	$\begin{aligned} & \hline \mathrm{DB}-2 \\ & \mathrm{SA}-2 \end{aligned}$
	既設	有	無	DB－2	DB－2	SA－2	無	11．77	66	11．77	66	有	S55告示	既工認	－	SA－2
	新設	－	－	－	DB－2	－	－	8.62	302	－	－	－	－	設計•建設規格	－	DB－2

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 11
3.1 設計条件 11
3．2 材料及び許容応力 13
4．評価結果 15
5．代表モデルの選定結果及び全モデルの評価結果 17

1．概要
本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－3－2－4
ラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。評価結果の記載方法は，以下に示すとおりである。
（1）管
工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全 1 モデルのうち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

\begin{tabular}{|c|c|}
\hline 記号 \& 内容

\hline \multirow[t]{2}{*}{（太線）

（細線）} \& 工事計画記載範囲の管のらち，本計算書記載範囲の管

\hline \& 工事計画記載範囲の管のうち，本系統の管であって他計算書記載範囲の管

\hline －－－－－－－－－－（破線） \& 工事計画記載範囲外の管又は工事計画記載範囲の管の

\hline \& うち，他系統の管であって系統の概略を示すために表記する管

\hline OOO－OOO \& 鳥瞰図番号

\hline $$
0
$$ \& アンカ

\hline
\end{tabular}

2.2 鳥瞰図

鳥㒈図記号凡例
記 号

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 FDW－0 01

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	8.62	302	165.2	14.3	STS410
2	8.62	302	165.2	14.3	SFVC2B
3	8.62	302	165.2	14.3	STS410

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 FDW—001

配管の質量（付加質量含む）
評価点の質量を下表に示す。

評価点	質量（kg）								
627		634		641		646		814	
630		635		642		647		822	
631		639		643		648		823	
633		640		644		649			

3．2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	302	Sh
SFVC2B	302	119
STS410	102	

材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)
	302	S h
SFVC2B	302	120
STS410	103	

4．評価結果
下表に示すとおり最大応力はそれぞれの許容値以下である。

クラス 2 以下の管
告示第501号第56条による評価結果

鳥瞰図	運転状態	最大応力評価点	最大応力 区分 ${ }^{* 1}$	一次応力評価 （MPa）		$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力評価 }}{(\mathrm{MPa})} \text { (Ma) } \end{gathered}$	
				計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\begin{aligned} & \mathrm{S} \mathrm{~h} \\ & 1 . \\ & 2 \cdot \mathrm{~S} \mathrm{~h} \end{aligned}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	許容応力＊2 $\begin{aligned} & \mathrm{S} \text { a (c) } \\ & \mathrm{Sa} \text { (d) } \end{aligned}$
$\mathrm{FDW}-001$	$\begin{aligned} & (\mathrm{I}, \\ & (\mathrm{II}) \\ & (\mathrm{I}, \\ & (\mathrm{II}) \\ & (\mathrm{I}, \\ & \text { II }) \\ & (\mathrm{I}, \\ & \text { III } \end{aligned}$	$\begin{aligned} & 642 \\ & 640 \\ & 642 \\ & 640 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn (a) } \\ \text { Sprm(2) } \\ \text { Sn (b) } \end{gathered}$	$\begin{gathered} 33 \\ - \\ 36 \\ - \end{gathered}$	$\begin{gathered} 102 \\ - \\ 122 \\ - \end{gathered}$	$\begin{aligned} & - \\ & \overline{111} \\ & 114 \end{aligned}$	255 275

 Sn（b）はそれぞれ，告示第 501 号第 56 条第 2 号（イ），（ロ）に基づき計算した一次十二次応力を示す。
＊ 2 ：S a（c），Sa（d）はそれぞれ，告示第501号第56条第2号（ハ），（ニ）に基づき計算した許容応力を示す。

評価結果

下表に示すとおり最大応力はそれぞれの許容値以下である。

クラス 2 以下の管
設計•建設規格 PPC－3500による評価結果

鳥瞰図	供用状態	最大応力 評価点	最大応力区分＊	一次応力評価 （MPa）		一次＋二次応力評価 （MPa）	
				計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$	計算応力 $\begin{aligned} & \operatorname{Sn}(\mathrm{a}) \\ & \mathrm{Sn}(\mathrm{~b}) \end{aligned}$	許容応力＊2 $\begin{aligned} & \text { Sa(c) } \\ & \text { S a (d) } \end{aligned}$
FDW－001	$\left.\begin{array}{l} (\mathrm{A}, \\ (\mathrm{B}) \\ (\mathrm{A}, \\ (\mathrm{B}, \end{array}\right)$	$\begin{aligned} & 642 \\ & 640 \\ & 642 \\ & 640 \end{aligned}$	$\begin{gathered} \text { Sprm(1) } \\ \text { Sn (a) } \\ \text { Sprm(2) } \\ \text { Sn (b) } \end{gathered}$	$\begin{gathered} \hline 41 \\ - \\ 44 \\ - \end{gathered}$	$\begin{aligned} & \hline 154 \\ & - \\ & 185 \\ & - \end{aligned}$	125 128	257 278

注記＊1：S prm（1），S P r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した一次応力，S n（a），
Sn（b）はそれぞれ，設計•建設規格 PPC－3530（1）a，bに基づき計算した一次＋二次応力を示す
＊2：Sa（c），Sa（d）はそれぞれ，設計•建設規格 PPC－3530（1）c，dに基づき計算した許容応力を示す。

5．代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	運転状態（I，II）＊1					運転状態（I，II）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 (MPa)	許容 応力 （ MPa ）	裕度	代表
1	FDW－001	642	33	102	3.09	\bigcirc	642	36	122	3.38	\bigcirc

注記＊1：告示第501号第56条第1号（イ）に基づき計算した一次応力を示す。
＊2：告示第 501 号第 56 条第 1 号（口）に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	運転状態（I，II）＊3					運転状態（ I ，II ）${ }^{* 4}$				
		一次＋二次応力					一次＋二次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 (MPa)	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	裕度	代表
1	FDW－001	640	111	255	2． 29	\bigcirc	640	114	275	2.41	\bigcirc

注記＊3：告示第501号第56条第2号（イ）に基づき計算した一次＋二次応力を示す。
＊4：告示第501号第56条第2号（口）に基づき計算した一次＋二次応力を示す。

代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（A，B）＊1					供用状態（A，B）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表
1	FDW－001	642	41	154	3． 75	\bigcirc	642	44	185	4.20	\bigcirc

注記＊1 ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

代表モデルの選定結果及び全モデルの評価結果（クラス 2 管）

No．	配管モデル	供用状態（A，B）＊3					供用状態（A，B）＊4				
		一次＋二次応力					一次＋二次応力				
		評価 点	計算 応力 （MPa）	許容 応力 (MPa)	裕度	代表	評価点	計算 応力 （MPa）	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & (\mathrm{MPa}) \end{aligned}$	裕度	代表
1	FDW－001	640	125	257	2.05	\bigcirc	640	128	278	2． 17	\bigcirc

注記＊3：設計•建設規格 PPC－3530（1）a に基づき計算した一次十二次応力を示す。
＊4：設計•建設規格 PPC－3530（1）b に基づき計算した一次十二次応力を示す。

目次

1．概要 1
2．概略系統図及び鳥瞰図 2
2.1 概略系統図 2
2.2 鳥瞰図 4
3．計算条件 11
3.1 設計条件 11
3．2 材料及び許容応力 21
\qquad4．評価結果23
5．代表モデルの選定結果及び全モデルの評価結果 27

1．概要
本計算書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づき，管の応力計算を実施した結果を示したものである。
評価結果の記載方法は，以下に示すとおりである。

（1）管

工事計画記載範囲の管のうち，各応力区分における最大応力評価点の評価結果を解析モデ ル単位に記載する。また，全1モデルのらち，各応力区分における最大応力評価点の許容値 ／発生値（以下「裕度」という。）が最小となる解析モデルを代表として鳥瞰図，計算条件及び評価結果を記載する。各応力区分における代表モデルの選定結果及び全モデルの評価結果を5．に記載する。

2．概略系統図及び鳥瞰図
2.1 概略系統図

概略系統図記号凡例

\begin{tabular}{|c|c|}
\hline 記号 \& 内容

\hline \multirow[t]{2}{*}{（太線）

（細線）} \& 工事計画記載範囲の管のらち，本計算書記載範囲の管

\hline \& 工事計画記載範囲の管のうち，本系統の管であって他計算書記載範囲の管

\hline －－－－－－－－－－（破線） \& 工事計画記載範囲外の管又は工事計画記載範囲の管の

\hline \& うち，他系統の管であって系統の概略を示すために表記する管

\hline OOO－OOO \& 鳥瞰図番号

\hline $$
0
$$ \& アンカ

\hline
\end{tabular}

復水給水系概略系統図

記号	内容
－	工事計画記載範囲の管のうち，本計算書記載範囲の管
$\mid \longleftarrow \bigcirc \bigcirc \bigcirc$	工事計画記載範囲外の管
	工事計画記載範囲の管のらち，他系統の管であって解析モデル として本系統に記載する管
－	質点
	アンカ
	レストレイント （矢印は斜め拘束の場合の全体座標系における拘束方向成分を示す。スナッバについても同様とする。）
	スナッバ
	ハンガ
\cdots	ガイド

鳥瞰図 5 FDW－001－6／6
枠囲みの内容は商業機密の観点から公開できません。

3．計算条件
3.1 設計条件

鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。

鳥 瞰 図 FDW－001（クラス1管）

[^6]| 管名称 | 最高使用圧力
 (MPa) | 最高使用温度
 $\left({ }^{\circ} \mathrm{C}\right)$ | 外径
 (mm) | 厚さ
 (mm) | 材料 |
| :---: | :---: | :---: | :---: | :---: | :--- |
| 1 | 10.34 | 315 | 457.2 | 29.4 | STS42
 $($ STS410 $)$ |
| 2 | 10.34 | 315 | 457.2 | 29.4 | SFVC2B |
| 3 | 10.34 | 315 | 318.5 | 21.4 | SFVC2B |
| 4 | 10.34 | 315 | 318.5 | 21.4 | STS42
 $($ STS410 $)$ |

設計条件
管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図
FDW－001（クラス1管）

配管の質量（付加質量含む ）
鳥 瞰 図 FDW－001（クラス1管）
評価点の質量を下表に示す。

評価点	質量（kg）								
18		47		73		141		167	
22		48		74		142		168	
23		49		75		143		169	
24		50		76		144		170	
25		51		77		145		171	
26		52		78		146.		172	
27		53		118		147		173	
28		54		122		148		174	
29		55		123		149		175	
30		56		124		150		176	
31		57		125		151		177	
32		－ 58		126		152		178	
33		59		127		153		803	
34		60		128		154		804	
35		61		129		155		812	
36		62		130		156		813	
37		63		131		157		840	
38		64		132		158		850	
39		65		133		159		912	
40		66		134		160		913	
41		67		135		161		914	
42		68		136		162		915	
43		69		137		163		941	
44		70		138		164		951	
45		71		139		165			
46		72		140		166			

```
鳥 瞰 図 FDW-001 (クラス1管)
```

弁部の質量を下表に示す。

弁1	弁2		弁 3		弁 4		弁 5		
評価点	質量（kg）								
8		15		19		108		115	
9		16		20		109		116	
10		17		21		110		117	

評価点	質量 (kg)
119	
120	
121	

鳥 瞰 図 FDW－001（クラス1管）
弁部の寸法を下表に示す。

弁NO．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)
弁1	9			
弁2	16			
弁3 3	20			
弁4	109			
弁5	116			
弁6	120			

支持点及び貫通部ばね定数
鳥 瞰 図
FDW－001（クラス1管）

支持点部のばね定数を下表に示す。

支持点及び貫通部ばね定数
鳥 瞰 図
FDW－001（クラス1管）

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばね定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
150			．			
＊＊ 159 ＊＊						
167						
＊＊ 175 ＊＊						
＊＊ 177 ＊＊						
＊＊ 912 ＊＊						
＊＊ 913 ＊＊						
＊＊ 914 ＊＊						
＊＊ 915 ＊＊						
＊＊ 941 ＊＊						
＊＊ 951 ＊＊						

設計条件
鳥瞰図番号ごとに設計条件に対応した管名称で区分し，管名称と対応する評価点番号を示す。
鳥 瞰 図 FDW－001（クラス2以下の管）

管名称	最高使用圧力 (MPa)	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	外径 (mm)	厚さ (mm)	材料
1	8.62	302	165.2	14.3	STS410

設計条件

管名称と対応する評価点
評価点の位置は鳥瞰図に示す。
鳥 瞰 図 FDW－001（クラス2以下の管）

管名称	対					応	す		る		価	点			
1	601	602	603	604	605	606	607	608	609	610	611	612	613	614	615
	617	618	619	620	623	624	625	626	627	816	819	820	823		

配管の質量（付加質量含むア）
評価点の質量を下表に示す。

評価点	質量（kg）								
601		607		613		624		820	
602		608		614		625		823	
603		609		618		626			
604		610		619		627			
605		611		620		816			
606		612		623		819			

弁部の質量を下表に示す。
弁 1

評価点	質量 (kg)
615	
616	
617	

弁部の寸法を下表に示す。

弁NO．	評価点	外径 (mm)	厚さ (mm)	長さ (mm)	
弁1	616				

文持点及び貫通部ばね定数
鳥 瞰 図
FDW－001（クラス2以下の管）

支持点部のばね定数を下表に示す。

支持点番号	各軸方向ばき定数（ N / mm ）			各軸回り回転ばね定数（ $\mathrm{N} \cdot \mathrm{mm} / \mathrm{rad}$ ）		
	X	Y	Z	X	Y	Z
601						
608						
611						
614						
618						
620						
623						

3．2 材料及び許容応力

使用する材料の最高使用温度での許容応力を下表に示す。

告示第501号に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 （MPa）	
	315	S m	S h
SFVC2B	302	-	-
STS42 STS410	315	120	-
			-

[^7]材料及び許容応力
使用する材料の最高使用温度での許容応力を下表に示す。

設計•建設規格に規定の応力計算に用いる許容応力

材料	最高使用温度 $\left({ }^{\circ} \mathrm{C}\right)$	許容応力 (MPa)		
		S m	S y	S h
SFVC2B	315	123	184	-
STS42 STS410	302	-	-	103
	315	120	180	-

[^8]$$
\text { O } 2 \text { 変二(1) VI-3-3-3-2-2-1-2 (重) R } 0
$$

4．評価結果
下表に示すとおり最大応力はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 1 管
告示第501号第46条第3号による評価結果

鳥瞰図	最大応力評価点	$\begin{aligned} & \text { 最大底力 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 一次応力評価 } \\ & (\mathrm{MPa}) \end{aligned}$	
			計算応力	許容応力
			Sprm	3．S m
FDW－001	63	Sprm	84	360

$$
\text { O } 2 \text { 変二(1) VI-3-3-3-2-2-1-2 (重) R } 0
$$

評価結果
下表に示すとおり最大応力はそれぞれの許容値以下である。
重大事故等クラス 2 管であってクラス 1 管
設計•建設規格 PPB－3500による評価結果

鳥瞰図	最大応力評価点	最大応力	$\begin{gathered} \text { 一次応力評価 } \\ (\mathrm{MPa}) \end{gathered}$	
			計算応力	許容応力
			Sprm	Min（ $3 \cdot \mathrm{Sm}, 2 \cdot \mathrm{Sy}$ ）
F DW－001	63	Sprm	83	360

評価結果

下表に示すとおり最大応力はそれぞれの許容値以下である。

重大事故等クラス 2 管であってクラス 2 以下の管
告示第501号第56条による評価結果

鳥瞰図	最大応力評価点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 $\text { 1. } \stackrel{\mathrm{S}^{\mathrm{h}}}{2 \cdot \mathrm{~S} \mathrm{~h}}$
F DW－001	623	Sprm（1）	37	102
	623	Sprm（2）	37	122

注記＊：S p r m（1），S p r m（2）はそれぞれ，告示第 5 0 1 号第56条第1号（イ），（ロ）に基づき計算した一次応力を示す。

評価結果
下表に示すとおり最大応力はそれぞれの許容値以下である。

重大事故等クラス 2 管であってクラス 2 以下の管
設計•建設規格 PPC－3500による評価結果

鳥瞰図	最大応力 評 価 点	最大応力区分＊	一次応力評価 （MPa）	
			計算応力 $\begin{aligned} & \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	許容応力 1． $5 \cdot \mathrm{Sh}$ 1． $8 \cdot \mathrm{Sh}$
F DW－0 01	$\begin{aligned} & 623 \\ & 623 \end{aligned}$	$\begin{aligned} & \hline \text { Sprm(1) } \\ & \text { Sprm(2) } \end{aligned}$	$\begin{aligned} & 51 \\ & 51 \end{aligned}$	$\begin{aligned} & 154 \\ & 185 \end{aligned}$

注記＊：S p r m（1），S p r m（2）はそれぞれ，設計•建設規格 PPC－3520（1），（2）に基づき計算した一次応力を示す。

O 2 変二（1）VI－3－3－3－2－2－1－2（重）R

5．代表モデルの選定結果及び全モデルの評価結果
代表モデルは各モデルの最大応力点の応力と裕度を算出し，応力分類ごとに裕度が最小のモデルを選定して鳥瞰図，計算条件及び評価結果を記載している。下表に，代表モデルの選定結果及び全モデルの評価結果を示す。

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 1 管）

No．	配管モデル	運転状態（V）＊				
		一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	FDW－001	63	84	360	4． 28	\bigcirc

注記＊：告示第 501 号第 46 条第 1 号及び第 3 号に基づき計算した一次応力を示す。

O 2 変二（1）VI－3－3－3－2－2－1－2（重）

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 1 管）

No．	配管モデル	供用状態（E）＊				
		一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	FDW－001	63	83	360	4.33	\bigcirc

注記＊：設計•建設規格 PPB－3520 及び PPB－3562 に基づき計算した一次応力を示す。

O 2 変二（1）VI－3－3－3－2－2－1－2（重）R

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	運転状態（V）＊1					運転状態（V）＊2				
		一次応力					一次応力				
		評価点	計算 応力 (MPa)	許容 応力 （MPa）	裕度	代表	評価点	$\begin{aligned} & \text { 計算 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \text { (MPa) } \end{aligned}$	裕度	代表
1	FDW－001	623	37	102	2． 75	\bigcirc	623	37	122	3.29	\bigcirc

注記＊1：告示第501号第56条第1号（イ）に基づき計算した一次応力を示す。 ＊2：告示第 501 号第 56 条第 1 号（口）に基づき計算した一次応力を示す。

O 2 変二（1）VI－3－3－3－2－2－1－2（重）R O E

代表モデルの選定結果及び全モデルの評価結果（重大事故等クラス 2 管であってクラス 2 以下の管）

No．	配管モデル	供用状態（E）＊1					供用状態（E）＊2				
		一次応力					一次応力				
		評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表	評価点	計算 応力 （MPa）	許容 応力 （MPa）	裕度	代表
1	FDW－001	623	51	154	3.01	\bigcirc	623	51	185	3． 62	\bigcirc

注記 $* 1$ ：設計•建設規格 PPC－3520（1）に基づき計算した一次応力を示す。
＊2：設計•建設規格 PPC－3520（2）に基づき計算した一次応力を示す。

VI－3－3－3－3 残留熱除去設備の強度計算書

VI－3－3－3－3－1 残留熱除去系の強度計算書
VI－3－3－3－3－2 耐圧強化ベント系の強度計算書

VI－3－3－3－3－1 残留熱除去系の強度計算書

VI－3－3－3－3－1－1 残留熱除去系熱交換器の強度計算書
VI－3－3－3－3－1－2 残留熱除去系ポンプの強度計算書
VI－3－3－3－3－1－3 残留熱除去系ストレーナの強度計算書
VI－3－3－3－3－1－4 弁の強度計算書（残留熱除去系）
VI－3－3－3－3－1－5 管の強度計算書（残留熱除去系）

注：「VI－3－3－3－3－1－4 弁の強度計算書（残留熱除去系）」，「VI－3－3－3－3－1－5 管の強度計算書 （残留熱除去系）」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付 け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

まえがき

本計算書は，添付書類「VI－3－1－2 クラス 1 機器の強度計算の基本方針」及び「VI－3－2－3 ク ラス 1 弁の強度計算方法」並びに「VI $-3-1-3$ クラス 2 機器の強度計算の基本方針」及び「VI－ 3－2－5 クラス 2 弁の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につ いては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。

```
O 2 変二(1) VI-3-3-3-3-1-4 R 2
```

－評価条件整理表

機器名	既設 or 新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\begin{gathered} \text { DB } \\ \text { クラス } \end{gathered}$	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$	$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	DB 条件		SA 条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$					
E11－F004A，B	既設	有	無	DB－1	DB－1	－	無	8． 62	302	－	－	無	S55告示	設計•建設規格又は告示	－	DB－1
E11－F008A，B	既設	有	無	DB－2	DB－2	－	無	3． 73	186	－	－	無	S55告示	設計•建設規格又は告示	－	DB－2
E11－F016A，B	既設	有	有＊	DB－2	DB－1	－	無	8.62	302	－	－	無	S55告示	設計•建設規格 又は告示	－	DB－1
E11－F018A，B	既設	有	有＊	DB－2	DB－1	－	無	10． 40	302	－	－	無	S55告示	設計•建設規格又は告示	－	DB－1
E11－F021	既設	有	有＊	DB－2	DB－1	－	無	8.62	302	－	－	無	S55告示	設計•建設規格又は告示	－	DB－1

注記 $*$ ：原子炉冷却材圧力バウンダリ範囲の拡大によるクラスアップ。

目次

1．クラス 1 弁 1
1.1 設計仕様 2
1．2 強度計算書 3
2．クラス 2 弁 16
2.1 設計仕様 17
2.2 強度計算書 18

O 2 変二(1) VI-3-3-3-3-1-4 R 0

1．1 設計仕様

系統：残留熱除去系

機器の区分		クラス 1 弁				
弁番号	種類	呼び径	材料			
		（A）	弁箱	弁ふた	弁体	ボルト
E11－F004A，B	止め弁	250	SCPH2	SCPH2	SCPH2	
E11－F016A，B	止め弁	350	SCPH2	SCPH2	SCPH2	
E11－F018A，B	止め弁	300	SCPH2	SCPH2	S25C	
E11－F021	止め弁	100	SCPH2	SCPH2	S25C	

1.2 強度計算書

系統：残留熱除去系

弁番号	E11－F004A，B	シート	1

教

系統：残留熱除去系

弁番号	E11－F016A，B	シート	3

－	設計• 建設規格	告示第501号		設計•建設規格
設計条件			ネック部の厚さ	
最高使用圧力 P （MPa）	8.62		$\mathrm{d}_{\mathrm{n}} \quad(\mathrm{mm})$	
最高使用温度 T_{m} $\left({ }^{\circ} \mathrm{C}\right)$	302		$\mathrm{d}_{\mathrm{n}} / \mathrm{d}_{\mathrm{m}}$	
弁箱又は弁ふたの厚さ			$\mathrm{t}_{\mathrm{m}} \quad(\mathrm{mm})$	21.0
弁箱材料	SCPH2		$\mathrm{t}_{\mathrm{ma}}(\mathrm{mm})$	
弁ふた材料	SCPH2		評価： $\mathrm{tmax}_{\text {ma }} \geqq \mathrm{t}_{\mathrm{m}}$	
P_{1}（MPa）	6.64	－		
P_{2}（MPa）	9.95	－	よって十分である。	
$\mathrm{d}_{\mathrm{m}} \quad(\mathrm{mm})$				
$\mathrm{t}_{1} \quad(\mathrm{~mm})$	18． 7	－		
$\mathrm{t}_{2} \quad(\mathrm{~mm})$	22.5	－		
t （mm）	21.0	－		
$\mathrm{tab} \quad(\mathrm{mm})$				
$\mathrm{t}_{\mathrm{af}} \mathrm{f}$（mm）				
$\begin{aligned} \text { 評価 }: & t_{\mathrm{ab}} \geqq t \\ & \mathrm{t}_{\mathrm{af}} \geqq \mathrm{t} \end{aligned}$	よって十	ある。		

系統：残留熱除去系

弁番号	E11－F016A，B	シート	4

系統：残留熱除去系

系統：残留熱除去系

弁番号	E11－F018A，B	シート	4

O 2 変二(1) VI-3-3-3-3-1-4 R 0
2.1 設計仕様

系統：残留熱除去系

機器の区分		クラス 2 弁			
弁番号	種類	呼び径 （A）	材料		
			弁箱	弁ふた	ボルト
E11－F008A，B	止め弁	350	SCPH2	SCPH2	

2.2 強度計算書

系統：残留熱除去系

弁番号	E11－F008A，B	シート	1

弁番号	E11－F008A，B	シート	2

VI－3－3－3－3－1－5－1 管の基本板厚計算書（残留熱除去系）
VI－3－3－3－3－1－5－2 管の応力計算書（残留熱除去系）
VI－3－3－3－3－1－5－3 ストレーナ部ティーの強度計算書（残留熱除去系）

注：「VI－3－3－3－3－1－5－2 管の応力計算書（残留熱除去系）」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

> VI-3-3-3-3-1-5-2 管の応力計算書 (残留熱除去系)

1．管の応力計算書（残留熱除去系）
本申請は，残留熱除去系 主要弁（E11－F004A，B）の弁体を取替えるものであるが，過去の製作図面に基づき同仕様（材料，寸法，重量）の弁体を製作するものであり，解析条件となる重量等に変更はなく，評価結果の変更もないことから，本計算書は令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はな い。

> VI-3-3-3-3-2 耐圧強化ベント系の強度計算書

VI－3－3－3－3－2－1 管の強度計算書（耐圧強化ベント系）
VI-3-3-3-3-2-1 管の強度計算書 (耐圧強化ベント系)

$$
\begin{array}{ll}
\text { VI-3-3-3-3-2-1-1 } & \text { 管の基本板厚計算書 (耐圧強化ベント系) } \\
\text { VI-3-3-3-3-2-1-2 } & \text { 管の応力計算書 (耐圧強化ベント系) }
\end{array}
$$

VI－3－3－3－3－2－1－1 管の基本板厚計算書（耐圧強化ベント系）

1．管の基本板厚計算書（耐圧強化ベント系）
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。

また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点におい て J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合しない管継手を採用しており J I S B 2 3 1 2（ 2 0 O 1 ）で規定する寸法に適合する管継手との評価方法の違い から要目表へ管として記載することとしているが，要目表に適切に記載されていなかっ たことから要目表の記載の変更を行うものである。

本申請範囲の「原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」 については，「VI－3－3－6－2－9－1－2－1 管の基本板厚計算書（原子炉格納容器調気系）」 に含まれていることから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号 にて認可された設計及び工事の計画から変更はない。
VI-3-3-3-3-2-1-2 管の応力計算書
（耐圧強化ベント系）

1．管の応力計算書（耐圧強化ベント系）
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。

また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点におい て J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合しない管継手を採用している。 J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合する管継手との評価方法の違い から要目表へ管として記載することとしているが，要目表に適切に記載されていなかっ たことから要目表の記載の変更を行うものである。

本申請範囲の「原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」 は，原子炉格納容器調気系の解析モデルに含まれていることから，本計算書は，令和 3年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更は ない。

VI－3－3－3－4 非常用炉心冷却設備その他原子炉注水設備の強度計算書

目 次

VI－3－3－3－4－1 高圧炉心スプレイ系の強度計算書
VI－3－3－3－4－2 低圧炉心スプレイ系の強度計算書
VI－3－3－3－4－3 高圧代替注水系の強度計算書
VI－3－3－3－4－4 原子炉隔離時冷却系の強度計算書
VI－3－3－3－4－5 低圧代替注水系の強度計算書
VI－3－3－3－4－6 代替水源移送系の強度計算書

注：「VI－3－3－3－4－3 高圧代替注水系の強度計算書」以外は，今回の設計及び工事の計画 の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及 び工事の計画の記載内容に変更はない。

VI－3－3－3－4－3 高圧代替注水系の強度計算書

VI－3－3－3－4－3－1 高圧代替注水系タービンポンプの強度計算書
VI－3－3－3－4－3－2 弁の強度計算書（高圧代替注水系）
VI－3－3－3－4－3－3 管の強度計算書（高圧代替注水系）

注：「VI－3－3－3－4－3－1 高圧代替注水系タービンポンプの強度計算書」，「VI－3－3－3－4－3－ 2 弁の強度計算書（高圧代替注水系）」は，今回の設計及び工事の計画の変更に関係 せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画の記載内容に変更はない。
$\mathrm{VI}-3-3-3-4-3-3-1$
$\mathrm{VI}-3-3-3-4-3-3-2$
管の基本板厚計算書 (高圧代替注水系)
管応力計算書 (高圧代替注水系)

VI－3－3－3－4－3－3－1 管の基本板厚計算書（高圧代替注水系）

1．管の基本板厚計算書（高圧代替注水系）
本申請は，原子炉冷却材浄化系 主配管（G31－F022～高圧代替注水系注入配管合流点及び高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点）につい て，配管の一部を曲げ管からエルボに変更することが，要目表に適切に記載されていな かったことから要目表の記載の変更を行うものである。

本申請範囲の「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系 A 系注入配管合流点」については，「VI－3－3－3－7－ 1－1－1 管の基本板厚計算書（原子炉冷却材浄化系）」に含まれていることから，本計算書 は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画 から変更はない。

VI－3－3－3－4－3－3－2 管の応力計算書（高圧代替注水系）

1．管の応力計算書（高圧代替注水系）
本申請は，原子炉冷却材浄化系 主配管（「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」） について，配管の一部を曲げ管からエルボに変更することが，要目表に適切に記載され ていなかったことから要目表の記載の変更を行うものである。

本申請範囲の「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」は，復水給水系の解析モデルに含まれていることから，本計算書は，令和 3 年 12月23日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はない。

VI－3－3－3－7 原子炉冷却材浄化設備の強度計算書

VI－3－3－3－7－1 原子炉冷却材浄化系の強度計算書

VI－3－3－3－7－1 原子炉冷却材浄化系の強度計算書

VI－3－3－3－7－1－1 管の強度計算書（原子炉冷却材浄化系）
VI-3-3-3-7-1-1 管の強度計算書 (原子炉冷却材浄化系)

$$
\begin{array}{ll}
\mathrm{VI}-3-3-3-7-1-1-1 & \text { 管の基本板厚計算書 (原子炉冷却材浄化系) } \\
\mathrm{VI}-3-3-3-7-1-1-2 & \text { 管の応力計算書 (原子炉冷却材浄化系) }
\end{array}
$$

> VI-3-3-3-7-1-1-1 管の基本板厚計算書(原子炉冷却材浄化系)

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」，「VI－3－2－4 クラス 2管の強度計算方法」，「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行 う。
評価条件整理結果を以下に示す。なお，評価条件の整理に当たって使用する記号及び略語につい ては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

管No．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	$\begin{aligned} & \text { 同等性 } \\ & \text { 伻価 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 評価 } \\ & ク ラ ラ \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラス } \end{aligned}$	$\stackrel{\text { DB }}{\text { クラ }}$	$\begin{aligned} & \text { SA } \\ & \text { クラ } \end{aligned}$	$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \end{aligned}$の有無	DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & (\mathrm{C}) \end{aligned}$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & (\mathrm{C}) \end{aligned}$					
1	新設	－	－	－	DB－2	－	－	8.62	302	－	－	－	－	設計•建設規格	－	DB－2
2	新設	－	－	－	DB－2	SA－2	－	8.62	302	8.62	302	－	－	設計•建設規格	－	$\begin{aligned} & \text { DB-2 } \\ & \text { SA-2 } \end{aligned}$
3	新設	－	－	－	DB－2	SA－2	－	8.62	302	8.62	302	－	－	設計•建設規格	－	$\begin{aligned} & \text { DB-2 } \\ & \text { SA-2 } \end{aligned}$
その他 1	既設	有	無	DB－2	DB－2	SA－2	無	8.62	302	8.62	302	有	S55告示	既工認	－	SA－2

－適用規格の選定

管No．	評価項目	評価区分	判定基準	適用規格
1	管の板厚計算	設計•建設規格	-	設計•建設規格
2	管の板厚計算	設計•建設規格	-	設計•建設規格
3	管の板厚計算	設計•建設規格	-	設計•建設規格

目次

1．概略系統図 1
2．管の強度計算書 2

1．概略系統図

2．管の強度計算書（クラス 2 管）
設計•建設規格 PPC－3411

NO．	最高使用圧力 P （MPa）	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 径 } \\ \text { D。 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	公称厚さ （mm）	材	製 法	$\begin{aligned} & \text { ク } \\ & 5 \\ & \text { K } \\ & \hline \end{aligned}$	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	η	Q	$\begin{gathered} \mathrm{t}_{\mathrm{s}} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	算	$\begin{gathered} \mathrm{t}_{\mathrm{r}} \\ (\mathrm{~mm}) \end{gathered}$
1	8.62	302	165． 20	14．30	STS410	S	2	103	1.00	12．5\％	12.51	6.69	A	6． 69

評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}_{\mathrm{r}}$ ，よって十分である。

$$
\mathrm{O} 2 \text { 変二(1) VI-3-3-3-7-1-1-1 R O E }
$$

管の強度計算書（重大事故等クラス 2 管）
設計•建設規格 PPC－3411 準用

NO．	最高使用圧力 P （MPa）	最高使用温 度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \hline \text { 外 径 } \\ \mathrm{D}^{2} \text { 。 } \\ (\mathrm{mm}) \\ \hline \end{gathered}$	公称厚さ （mm）	材	製	ク 今 ス	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	η	Q	$\begin{gathered} \mathrm{t}_{\mathrm{s}} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \end{gathered}$	算 式	$\begin{array}{r} \mathrm{t}_{\mathrm{r}} \\ (\mathrm{~mm}) \\ \hline \end{array}$
2	8.62	302	165． 20	14． 30	SFVC2B	S	2	120	1.00	12．5\％	12． 51	5.77	A	5． 77
3	8.62	302	165.20	14．30	STS410	S	2	103	1.00	12．5\％	12.51	6． 69	A	6． 69

評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}_{\mathrm{r}}$ ，よって十分である。
VI-3-3-3-7-1-1-2 管の応力計算書
（原子炉冷却材浄化系）

1．管の応力計算書（原子炉冷却材浄化系）
本申請は，原子炉冷却材浄化系 主配管（「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」）につ いて，配管の一部を曲げ管からエルボに変更することが，要目表に適切に記載されてい なかったことから要目表の記載の変更を行うものである。

本申請範囲の「G31－F022～高圧代替注水系注入配管合流点」及び「高圧代替注水系注入配管合流点～原子炉冷却材浄化系A系注入配管合流点」は，復水給水系の解析モデル に含まれていることから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号 にて認可された設計及び工事の計画から変更はない。

VI－3－3－6 原子炉格納施設の強度に関する説明書

目 次

VI－3－3－6－1 原子炉格納容器の強度計算書
VI－3－3－6－2 圧力低減設備その他の安全設備の強度計算書

注：「VI－3－3－6－1 原子炉格納容器の強度計算書」は，今回の設計及び工事の計画の変更 に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事 の計画の記載内容に変更はない。

VI－3－3－6－2 圧力低減設備その他の安全設備の強度計算書

VI－3－3－6－2－1 ダウンカマ及びベントヘッダの基本板厚計算書
VI－3－3－6－2－2 ダウンカマの強度計算書
VI－3－3－6－2－3 ベントヘッダの強度計算書
VI－3－3－6－2－4 ベント管の基本板厚計算書
VI－3－3－6－2－5 ベント管の強度計算書
VI－3－3－6－2－6 ベント管ベローズの強度計算書
VI－3－3－6－2－7 原子炉格納容器安全設備の強度計算書
VI－3－3－6－2－8 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の強度計算書

VI－3－3－6－2－9 原子炉格納容器調気設備の強度計算書
VI－3－3－6－2－10 圧力逃がし装置の強度計算書

注：「VI－3－3－6－2－8 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の強度計算書」，「VI－3－3－6－2－9 原子炉格納容器調気設備の強度計算書」，「VI－3－3－6－2－10 圧力逃がし装置の強度計算書」以外は，今回の設計及び工事 の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－3－3－6－2－8 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備の強度計算書

目 次

VI－3－3－6－2－8－1 非常用ガス処理系の強度計算書
VI－3－3－6－2－8－2 放射性物質拡散抑制系の強度計算書
VI－3－3－6－2－8－3 可搬型窒素ガス供給系の強度計算書

注：「VI－3－3－6－2－8－1 非常用ガス処理系の強度計算書」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号及び令和4年9月 28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－3－3－6－2－8－1 非常用ガス処理系の強度計算書

VI－3－3－6－2－8－1－1 非常用ガス処理系空気乾燥装置の強度計算書 VI－3－3－6－2－8－1－2 管の強度計算書（非常用ガス処理系）

VI－3－3－6－2－8－1－3 非常用ガス処理系フィルタ装置の強度計算書 VI－3－3－6－2－8－1－4 弁の強度計算書（非常用ガス処理系）

注：「VI－3－3－6－2－8－1－2 管の強度計算書（非常用ガス処理系）」，「VI－3－3－6－2－8－1－4弁の強度計算書（非常用ガス処理系）」以外は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

目 次

VI－3－3－6－2－8－1－2－1 管の基本板厚計算書（非常用ガス処理系）
VI－3－3－6－2－8－1－2－2 管の応力計算書（非常用ガス処理系）

注：「VI－3－3－6－2－8－1－2－1 管の基本板厚計算書（非常用ガス処理系）」は，今回の設計及び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－3－3－6－2－8－1－2－2 管の応力計算書（非常用ガス処理系）

1．管の応力計算書（非常用ガス処理系）
本申請は，非常用ガス処理系主要弁（T46－F001A，B，T46－F003A，B＊）について，要目表に弁箱厚さが公称値で記載されていたことから，他の主要弁と記載の整合を図るため要目表の弁箱厚さについて腐食代を考慮した寸法（設計確認値）へ記載を変更するもの である。

弁箱厚さに腐食代を考慮した寸法（設計確認値）への記載変更について，令和 3 年 12月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画の要目表では，要目表の「変更前」に公称値を記載し，要目表の「変更後」に「変更なし」と記載して いた。他の主要弁と記載の整合を図るため要目表の弁箱厚さについて腐食代を考慮した寸法（設計確認値）へ記載を変更する。

本計算書については，公称値を使用して解析モデルを作成していること及び本申請が要目表の記載の変更のみであり実物の変更を伴わないものであることから，当該弁の重量及び設置場所等に変更はない。このことから「3．計算条件」に影響を与えるもので はなく評価結果の変更もないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はない。

注記＊：T46－F003A，Bについては「VI－3－3－6－2－9－1－2－2 管の応力計算書（原子炉格納容器調気系）」に含む。

> VI-3-3-6-2-8-1-4 弁の強度計算書 (非常用ガス処理系)

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」及び「VI－ 3－2－5 クラス 2 弁の強度計算方法」に基づいて計算を行う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語については，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用す る。
－評価条件整理表

機器名	既設 or 新設	施設時の技術基準 に対象と する施設 の規定が あるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	同等性 評価 区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
							$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	DB 条件		SA 条件						
			アップ の有無	$\begin{aligned} & \text { 機器 } \\ & \text { クラ } \end{aligned}$	クラス	クラス		$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{kPa}) \end{aligned}$	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 （ $\left.{ }^{\circ} \mathrm{C}\right)$					
T46－F001A，B	既設	有	無	DB－2	DB－2	－	無	$\begin{aligned} & 13.7 \\ & -23.5 \end{aligned}$	100	－	－	無	S55告示	設計•建設規格又は告示	－	DB－2
T46－F003A，B	既設	有	無	DB－2	DB－2	－	無	23.5	140	－	－	無	S55告示	設計•建設規格又は告示	－	DB－2

目次
1．クラス 2 弁 1
1．1 設計仕様 2
1．2 強度計算書 3

1.1 設計仕様

系統：非常用ガス処理系

機器の区分		クラス 2 弁			
弁番号	種類	呼び径 （A）	材料		
		弁箱	弁ふた	ボルト	
T46－F001A，B	止め弁	300	SCPH2	S25C	
T46－F003A，B	止め弁	300	SCPH2	S25C	

1.2 強度計算書

系統：非常用ガス処理系

弁番号	T46－F001A，B	シート	1

注記＊：弁の形状を考慮し強度評価において支配的な圧力となる正圧側の最高使用圧力を設定する。 なお，本評価において正圧及び負圧の絶対値はともに小さくいずれの圧力の絶対値を最高使用圧力として設定しても評価に差はない。

注記 $*: ~$ 最高使用圧力のうち負圧の絶対値を用いて安全側の評価を実施する。

[^9]

弁番号	T46－F003A，B	シート	2

フランジ及びフランジボルトの応力解析				
設計条件		モーメントの計算		
P_{FD}（kPa）	23.5	H_{D}	（N）	46.14
$\mathrm{P}_{\mathrm{eq}} \mathrm{l}$	0.00	h_{D}	（mm）	13.7
$\mathrm{T}_{\mathrm{m}} \quad\left({ }^{\circ} \mathrm{C}\right)$	140	M_{D}	（ $\mathrm{N} \cdot \mathrm{mm}$ ）	632.1
$\mathrm{M}_{\mathrm{e}} \quad(\mathrm{N} \cdot \mathrm{mm})$		H_{G}	（N）	0
F_{e}		h_{G}	（mm）	13.2
フランジの形式	J I S B 8265附属書 3 図 27 ）	M_{G}	（ $\mathrm{N} \cdot \mathrm{mm}$ ）	0
フランジ		H_{T}	（N）	36.46
材料	SCPH2	h_{T}	（mm）	17． 4
$\begin{aligned} & \sigma_{\text {fa }} \text { (MPa) } \\ & \text { 常温 (ガスケット締付時) } \\ & \left(20{ }^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	120	M_{T}	（ $\mathrm{N} \cdot \mathrm{mm}$ ）	635.4
		$\mathrm{M}_{\text {。 }}$	（ $\mathrm{N} \cdot \mathrm{mm}$ ）	1． 268×10^{3}
$\begin{array}{lr} \hline \sigma \\ \\ \\ \text { 最高使用温度 } & (\text { 使用状態) } \end{array}$	120	Mg_{g}	（ $\mathrm{N} \cdot \mathrm{mm}$ ）	3.669×10^{5}
		フランジの厚さと係数		
A （mm）		t （mm）		
B（mm）		K		1． 92
C（mm）		h 。	（mm）	
$\mathrm{g} \mathrm{o}^{\text {a }}$（mm）		f		1.19
g_{1}		F		0.905
h （mm）		V		0.500
ボルト		e	$\left(\mathrm{mm}^{-1}\right)$	0． 03551
材料		d	$\left(\mathrm{mm}^{3}\right)$	29781
$\begin{aligned} & \hline \sigma_{\text {a }} \quad \text { (MPa) } \\ & \text { 常温 (ガスケット締付時) } \\ & \left(20^{\circ} \mathrm{C}\right) \\ & \hline \end{aligned}$	173	L		1． 21
		T		1． 54
$\begin{array}{rr} \hline \sigma & (\mathrm{MPa}) \\ \text { 最高使用温度 (使用状態) } \end{array}$	173	U		3.45
		Y		3.14
n		Z		1． 74
d_{b}（mm）		応力の計算		
ガスケット		$\sigma_{\text {Ho }}$	（MPa）	1
材料		$\sigma_{\text {R }}$ 。	（MPa）	1
ガスケット厚さ（mm）		$\sigma_{\text {T }}$ o	（MPa）	0
G （mm）		σ_{Hg}	（MPa）	23
m		$\sigma_{\text {Rg }}$	（MPa）	38
y （ $\left.\mathrm{N} / \mathrm{mm}^{2}\right)$		$\sigma_{\text {Tg }}$	（MPa）	14
$\mathrm{b}_{\text {o }}$（mm）		$\begin{aligned} \text { 応力の評価 }: & \sigma_{\mathrm{Ho}} \leqq 1.5 \cdot \sigma_{\mathrm{f} \mathrm{~b}} \\ & \sigma_{\mathrm{Ro}} \leqq 1.5 \cdot \sigma_{\mathrm{f} \mathrm{~b}} \\ & \sigma_{\mathrm{To}} \leqq 1.5 \cdot \sigma_{\mathrm{f}} \end{aligned}$		
b （mm）				
N				
G_{s}（mm）				
ボルトの計算		$\begin{aligned} & \sigma_{\mathrm{Hg}} \leqq 1.5 \cdot \sigma_{\mathrm{f} \mathrm{a}} \\ & \sigma_{\mathrm{Rg}} \leqq 1.5 \cdot \sigma_{\mathrm{f} \mathrm{a}} \\ & \sigma_{\mathrm{Tg}} \leqq 1.5 \cdot \sigma_{\mathrm{fa}} \quad \\ & \end{aligned}$		
H（N）	82.61			
H_{p}	0			
$\mathrm{W}_{\mathrm{m} 1}$	82.61			
$\mathrm{W}_{\mathrm{m} 2}$（ $\mathrm{A}^{\text {a }}$	0			
	0.4775			
$\mathrm{A}_{\mathrm{m} 2} \quad\left(\mathrm{~mm}^{2}\right)$	0			
$\mathrm{A}_{\mathrm{m}} \quad\left(\mathrm{mm}^{2}\right)$	0． 4775			
$\mathrm{A}_{\mathrm{b}} \quad\left(\mathrm{mm}^{2}\right)$				
$\mathrm{W}_{\text {o }}$	82.61			
W_{g}	2． 780×10			
評価： $\mathrm{A}_{\mathrm{m}}<\mathrm{A}_{\mathrm{b}}$	よって十分であ			

VI－3－3－6－2－9－1 原子炉格納容器調気系の強度計算書

VI－3－3－6－2－9－1－1 弁の強度計算書（原子炉格納容器調気系）
VI－3－3－6－2－9－1－2 管の強度計算書（原子炉格納容器調気系）

注：「VI－3－3－6－2－9－1－1 弁の強度計算書（原子炉格納容器調気系）」は，今回の設計及 び工事の計画の変更に関係せず，令和3年12月23日付け原規規発第2112231号にて認可 された設計及び工事の計画の記載内容に変更はない。

VI－3－3－6－2－9－1－2 管の強度計算書（原子炉格納容器調気系）

$$
\begin{array}{ll}
\mathrm{VI}-3-3-6-2-9-1-2-1 & \text { 管の基本板厚計算書 (原子炉格納容器調気系) } \\
\mathrm{VI}-3-3-6-2-9-1-2-2 & \text { 管の応力計算書 (原子炉格納容器調気系) }
\end{array}
$$

VI－3－3－6－2－9－1－2－1 管の基本板厚計算書（原子炉格納容器調気系）

まえがき

本計算書は，添付書類「VI－3－1－3 クラス 2 機器の強度計算の基本方針」，「VI－3－2－4 クラス 2管の強度計算方法」，「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「VI－3－2－9 重大事故等クラス 2 管の強度計算方法」に基づいて計算を行 う。

評価条件整理結果を以下に示す。なお，評価条件の整理に当たつて使用する記号及び略語につい ては，添付書類「VI－3－2－1 強度計算方法の概要」に定義したものを使用する。
－評価条件整理表

管No．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか					既工認に おける 評価結果 の有無	施設時の適用規格	評価区分	同等性評価区分	$\begin{aligned} & \text { 評価 } \\ & \text { クラス } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	施設時機器 クラス	クB	$\begin{gathered} \text { SA } \\ \text { クラス } \end{gathered}$		DB条件		SA条件						
								$\begin{aligned} & \text { 圧力 } \\ & (\mathrm{MPa}) \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \text { 圧力 } \\ & \text { (MPa) } \end{aligned}$	温度 $\left({ }^{\circ} \mathrm{C}\right)$					
1	既設	有	無	DB－2	DB－2	SA－2	有	0.427	171	0． 854	200	－	S55告示	設計•建設規格又は告示	－	SA－2
2	既設	有	無	DB－2	DB－2	SA－2	有	0.427	171	0.854	200	－	S55告示	設計•建設規格又は告示	－	SA－2
3	新設	－	－	－	DB－2	－	－	0.427	104	－	－	－	－	設計•建設規格	－	DB－2
4	新設	－	－	－	DB－2	－	－	0.427	171	－	－	－	－	設計•建設規格	－	DB－2
5	新設	－	－	－	－	SA－2	－	－	－	0.854	200	－	－	設計•建設規格	－	SA－2
5	新設	－	－	－	DB－2	SA－2	－	0.427	171	0． 854	200	－	－	設計•建設規格	－	SA－2
6	新設	－	－	－	DB－2	－	－	0.427	104	－	－	－	－	設計•建設規格	－	DB－2
7	新設	－	－	－	DB－2	SA－2	－	0.427	104	0.854	200	－	－	設計•建設規格	－	SA－2
7	新設	－	－	－	DB－2	SA－2	－	0.427	171	0.854	200	－	－	設計•建設規格	－	SA－2
8	新設	－	－	－	DB－2	SA－2	－	0.427	171	0.854	200	－	－	設計•建設規格	－	SA－2
8	既設	有	無	DB－2	DB－2	SA－2	有	0． 427	171	0． 854	200	－	S55告示	設計•建設規格又は告示	－	SA－2

管No．	$\begin{aligned} & \text { 既設 } \\ & \text { or } \\ & \text { 新設 } \end{aligned}$	施設時の技術基準に対象とする施設の規定 があるか	クラスアップするか				条件アップするか						施設時の適用規格	評価区分	$\begin{aligned} & \text { 同等性 } \\ & \text { 評 } \\ & \text { 区分 } \end{aligned}$	$\begin{aligned} & \text { 評価 } \\ & \text { クラ } \end{aligned}$
			$\begin{aligned} & \text { クラス } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	$\begin{aligned} & \text { 施設時 } \\ & \text { 機器 } \\ & \text { クラ } \end{aligned}$	$\begin{aligned} & \text { クB } \\ & \text { グ } \end{aligned}$	$\begin{aligned} & \text { SA } \\ & \text { クラス } \end{aligned}$	$\begin{aligned} & \text { 条件 } \\ & \text { アップ } \\ & \text { の有無 } \end{aligned}$	DB条件		SA条件						
								$\begin{aligned} & \hline \text { 圧力 } \\ & \text { (MPa) } \end{aligned}$	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\circ} \mathrm{C}\right) \end{aligned}$	圧力 （MPa）	$\begin{aligned} & \text { 温度 } \\ & \left({ }^{\mathrm{C})}\right. \end{aligned}$					
9	新設	－	－	－	DB－2	SA－2	－	0． 427	171	0.854	200	－	－	設計•建設規格	－	SA－2
T1	既設	有	無	DB－2	DB－2	SA－2	有	0． 427	171	0.854	200	－	S55告示	設計•建設規格 又は告示又は告示	－	SA－2
T2	新設	－	－	－	－	SA－2	－	－	－	0.854	200	－	－	設計•建設規格	－	SA－2

－適用規格の選定

管No．	評価項目	評価区分	判定基準	適用規格
1	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
2	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
3	管の板厚計算	設計•建設規格	－	設計•建設規格
4	管の板厚計算	設計•建設規格	－	設計•建設規格
5	管の板厚計算	設計•建設規格	－	設計•建設規格
6	管の板厚計算	設計•建設規格	－	設計•建設規格
7	管の板厚計算	設計•建設規格	－	設計•建設規格
8	管の板厚計算	設計•建設規格	－	設計•建設規格
8	管の板厚計算	設計•建設規格又は告示	同等	設計•建設規格
9	管の板厚計算	設計•建設規格	－	設計•建設規格
T1	管の穴と補強計算	設計•建設規格又は告示	同等	設計•建設規格
T2	管の穴と補強計算	設計•建設規格	－	設計•建設規格

目次

1．概略系統図 1
2．管の強度計算書 2
3．管の穴と補強計算書 4

1．概略系統図

2．管の強度計算書（重大事故等クラス 2 管）
設計•建設規格 PPC－3411 準用

NO．	最高使用圧力 P （MPa）	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{aligned} & \hline \text { 外 } \quad \text { 径 } \\ & D_{\circ} \\ & (\mathrm{mm}) \\ & \hline \end{aligned}$	公称厚さ （mm）	材	製	ク ラ ス	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \\ \hline \end{gathered}$	η	Q	$\begin{gathered} \mathrm{t}_{\mathrm{s}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	算 式	$\begin{array}{r} \mathrm{t}_{\mathrm{r}} \\ (\mathrm{~mm}) \\ \hline \end{array}$
1	0． 854	200	60.50	6.10	S25C	S	2	103	1.00			0.25	C	2． 40
2	0． 854	200	609.60	9.50	SM41C	W	2	100	1.00			2． 60	C	3． 80
					SM400C									
5	0． 854	200	60.50	5.50	STS410	S	2	103	1.00	12．5\％	4． 81	0.25	C	2． 40
7	0． 854	200	609.60	31.00	SM400C	W	2	100	1.00			2． 60	C	3． 80
8	0． 854	200	609.60	17． 50	SM400C	W	2	100	1.00			2． 60	C	3． 80
9	0． 854	200	609.60	17.50	STS410	S	2	103	1.00			2.52	C	3． 80

評価： $\mathrm{t}_{\mathrm{s}} \geqq \mathrm{t}_{\mathrm{r}}$ ，よって十分である。

$$
\mathrm{O} 2 \quad \text { 変二① VI-3-3-6-2-9-1-2-1 } \quad \mathrm{R} 2
$$

管の強度計算書（クラス 2 管）
設計•建設規格 PPC-3411

NO．	最高使用圧力 P （MPa）	最高使用温 度 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \text { 外 } \quad \text { 径 } \\ D_{0} \\ (\mathrm{~mm}) \end{gathered}$	公称厚さ （mm）	材 料	製法	$\begin{aligned} & \text { ク } \\ & \text { ラ } \\ & \text { 亿 } \end{aligned}$	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	η	Q	$\begin{gathered} \mathrm{t}_{\mathrm{s}} \\ (\mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{t} \\ (\mathrm{~mm}) \\ \hline \end{gathered}$	算式	$\begin{array}{r} \mathrm{t}_{\mathrm{r}} \\ (\mathrm{~mm}) \\ \hline \end{array}$
3	0.427	104	609.60	31.00	SM400C	W	2	100	1.00			1． 30	C	3.80
4	0.427	171	60.50	5.50	STS410	S	2	103	1.00	12．5\％	4． 81	0.13	C	2． 40
6	0． 427	104	60.50	5.50	STS410	S	2	103	1.00	12．5\％	4． 81	0.13	C	2． 40

評価：t s ミ t r ，よつて十分である。

3．管の穴と補強計算書（重大事故等クラス 2 管）
設計•建設規格 PPC－3420 準用

管の穴と補強計算書（重大事故等クラス 2 管）
設計•建設規格 PPC－3420 準用

VI－3－3－6－2－9－1－2－2 管の応力計算書（原子炉格納容器調気系）

1．管の応力計算書（原子炉格納容器調気系）
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行らものである。また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点においてJ I S B 2 3 1 2（ 2 0 0 1 1）で規定する寸法に適合しない管継手（以下「JIS 規格外管継手」という。）を採用している。J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合する管継手（以下「JIS 規格管継手」とい う。）との評価方法の違いから要目表へ管として記載することとしているが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。

耐震性強化のための原子炉格納容器調気系の既設配管の一部厚肉化について，令和 3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画（以下「既認可」という。）の要目表では，要目表の「変更前」に「一」を記載し，要目表の「変更後」に厚肉化した配管仕様を記載していた。既設配管の一部を厚肉化するものであるこ とから要目表の「変更前」に既設配管仕様を記載し，「変更後」に厚肉化した配管仕様と共に「変更なし」を記載すべきであったことから，記載を変更する。また，JIS 規格外管継手の採用について，既認可の要目表では，要目表の「変更後」に JIS 規格管継手とし て 3 行で示し，母管，枝管それぞれの口径，肉厚等を記載していた。JIS 規格外管継手 は，J S ME 設計•建設規格 2005／2007クラス 2 配管の「PPC－3415管継手」により必要 な強度を有することを応力計算によって確認する必要があることから，JIS 規格管継手 との差別化のため要目表に管継手を一行で示し，母管の口径，肉厚等を記載することと しており，これに従い記載を変更する。
本計算書については，既設配管の一部厚肉化に係る要目表の記載の変更内容が適切に反映されていること及び JIS 規格外管継手の採用は，JIS 規格管継手との要目表への記載方法の違いを反映するものであり管継手の仕様を変更するものではなく管継手の仕様 が適切に反映されていることが「2．2鳥瞰図」及び「3．1設計条件」により確認できる。 また，JIS 規格管継手か JIS 規格外管継手かによる設計条件の違いはない。このことか ら本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

また，本計算書には今回要目表の記載の変更を行ら非常用ガス処理系主要弁（T46－ F003A，B）についても含んでいることから，当該弁の記載の変更が本計算書に影響がない ことを以下に示す。

本申請は，非常用ガス処理系主要弁（T46－F003A，B）について，要目表に弁箱厚さが公称値で記載されていたことから，他の主要弁と記載の整合を図るため要目表の弁箱厚さ について腐食代を考慮した寸法（設計確認値）へ記載を変更するものである。

弁箱厚さに腐食代を考慮した寸法（設計確認値）への記載変更について，令和 3 年 12月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画の要目表では，要目表の「変更前」に公称値を記載し，要目表の「変更後」に「変更なし」と記載して いた。他の主要弁と記載の整合を図るため要目表の弁箱厚さについて腐食代を考慮した寸法（設計確認値）へ記載を変更する。

本計算書については，公称値を使用して解析モデルを作成していること及び本申請が要目表の記載の変更のみであり実物の変更を伴わないものであることから当該弁の重量及び設置場所等に変更はない。このことから「3．計算条件」に影響を与えるものではな く評価結果の変更もないことから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画から変更はない。

目 次

VI－3－3－6－2－10－1 原子炉格納容器フィルタベント系の強度計算書

VI－3－3－6－2－10－1 原子炉格納容器フィルタベント系の強度計算書

目 次

VI－3－3－6－2－10－1－1 フィルタ装置の強度計算書（原子炉格納容器フィルタベント系）
VI－3－3－6－2－10－1－2 弁の強度計算書（原子炉格納容器フィルタベント系）
VI－3－3－6－2－10－1－3 管の強度計算書（原子炉格納容器フィルタベント系）

注：「VI－3－3－6－2－10－1－3 管の強度計算書（原子炉格納容器フィルタベント系）」以外は，今回の設計及び工事の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－3－3－6－2－10－1－3 管の強度計算書
（原子炉格納容器フィルタベント系）

目 次

VI－3－3－6－2－10－1－3－1 管の基本板厚計算書（原子炉格納容器フィルタベント系）
VI－3－3－6－2－10－1－3－2 管の応力計算書（原子炉格納容器フィルタベント系）
VI－3－3－6－2－10－1－3－3 管（可搬型）の強度評価書（原子炉格納容器フィルタベント系）

注：「VI－3－3－6－2－10－1－3－3 管（可搬型）の強度評価書（原子炉格納容器フィルタベント系）」は，今回の設計及び工事の計画の変更に関係せず，令和4年9月28日付け原規規発第2209283号にて認可された設計及び工事の計画の記載内容に変更はない。
VI-3-3-6-2-10-1-3-1 管の基本板厚計算書
（原子炉格納容器フィルタベント系）

1．管の基本板厚計算書（原子炉格納容器フィルタベント系）
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。

また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点におい て J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合しない管継手を採用しており J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合する管継手との評価方法の違い から要目表へ管として記載することとしているが，要目表に適切に記載されていなかっ たことから要目表の記載の変更を行うものである。

本申請範囲の「原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」 については，「VI－3－3－6－2－9－1－2－1 管の基本板厚計算書（原子炉格納容器調気系）」 に含まれていることから，本計算書は，令和 3 年 12 月 23 日付け原規規発第 2112231 号 にて認可された設計及び工事の計画から変更はない。

VI－3－3－6－2－10－1－3－2 管の応力計算書
（原子炉格納容器フィルタベント系）

1．管の応力計算書（原子炉格納容器フィルタベント系）
本申請は，原子炉格納容器調気系 主配管（原子炉格納容器配管貫通部（X－230）～ドラ イウェル出口配管分岐点）について，耐震性強化のため原子炉格納容器調気系の既設配管の一部厚肉化を実施していることが，要目表に適切に記載されていなかったことから要目表の記載の変更を行うものである。

また，原子炉格納容器調気系から原子炉格納容器フィルタベント系への分岐点におい て J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合しない管継手を採用してい

る。 J I S B 2 3 1 2（ 2 0 0 1 ）で規定する寸法に適合する管継手との評価方法の違いから要目表へ管として記載することとしているが，要目表に適切に記載されていな かったことから要目表の記載の変更を行うものである。

本申請範囲の「原子炉格納容器配管貫通部（X－230）～ドライウェル出口配管分岐点」 は，原子炉格納容器調気系の解析モデルに含まれていることから，本計算書は，令和 3年12月23日付け原規規発第2112231号にて認可された設計及び工事の計画から変更はな い。

VI－3－別添3 津波又は溢水への配慮が必要な施設の強度に関する説明書

VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針
VI－3－別添 3－2 津波への配慮が必要な施設の強度計算書
VI－3－別添 3－3 溢水への配慮が必要な施設の強度計算の方針
VI－3－別添 3－4 溢水への配慮が必要な施設の強度計算書

注：「VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針」，「VI－3－別添 3－2津波への配慮が必要な施設の強度計算書」以外は，今回の設計及び工事の計画の変更 に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可された設計及び工事の計画の記載内容に変更はない。

VI－3－別添 3－1 津波への配慮が必要な施設の強度計算の方針

1．津波への配慮が必要な施設の強度計算の方針
本申請は，津波防護に関する浸水防護施設である津波防護施設，浸水防止設備及び津波監視設備が，津波に対して構造健全性を有することを確認するための強度計算方針を変更するものではなく，津波への配慮が必要な施設の強度計算の方針に影響を与えるも のではないことから，本説明書は，令和3年12月23日付け原規規発第2112231号にて認可 された設計及び工事の計画から変更はない。

VI－3－別添 3－2 津波への配慮が必要な施設の強度計算書

VI－3－別添 3－2－1 防潮堤の強度計算書
VI－3－別添 3－2－2 防潮壁の強度計算書
VI－3－別添 3－2－3 取放水路流路縮小工の強度計算書
VI－3－別添 3－2－4 貯留堰の強度計算書
VI－3－別添 3－2－5 逆流防止設備の強度計算書
VI－3－別添 3－2－6 水密扉の強度計算書
VI－3－別添 3－2－7 浸水防止蓋の強度計算書
VI－3－別添 3－2－8 浸水防止壁の強度計算書
VI－3－別添 3－2－9 逆止弁付ファンネルの強度計算書
VI－3－別添 3－2－10 貫通部止水処置の強度計算書

VI－3－別添 3－2－11 津波監視設備の強度計算書

注：「VI－3－別添 3－2－9 逆止弁付ファンネルの強度計算書」以外は，今回の設計及び工事 の計画の変更に関係せず，令和 3 年 12 月 23 日付け原規規発第 2112231 号にて認可さ れた設計及び工事の計画の記載内容に変更はない。

VI－3－別添 3－2－9 逆止弁付ファンネルの強度計算書

VI－3－別添 3－2－9－1 逆止弁付ファンネル（第2号機）の強度計算書 VI－3－別添 3－2－9－2 逆止弁付ファンネル（第3号機）の強度計算書

VI－3－別添 3－2－9－1 逆止弁付ファンネル（第2号機）の強度計算書
1．概要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2．3 評価方針 4
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位 9
4．固有値解析 10
4．1 固有振動数の計算方法 10
4．1．1 解析モデル 10
4．1．2 記号の説明 10
4．1．3 固有振動数の計算 11
4．2 固有振動数の計算条件 12
4．3 固有振動数の計算結果 12
5．構造強度評価 13
5.1 構造強度評価方法 13
5.2 荷重及び荷重の組合せ 13
5．2．1 荷重の設定 13
5．2．2 荷重の組合せ 14
5． 3 許容限界 14
5.4 設計用地震力 16
5.5 計算方法 17
5．5．1 荷重条件 17
5．5．2 応力計算 18
5.6 計算条件 20
6．評価結果 21
6．1 応力評価 21
6．2 構造健全性評価 21

1．概要

本資料は，VI－3－別添 3－1「津波への配慮が必要な施設の強度計算の方針」に基づき，浸水防護施設のうち逆止弁付ファンネル（第 2 号機）（以下「逆止弁付ファンネル」と いう。）が津波荷重及び余震を考慮した荷重に対し，主要な構造部材が構造健全性を有 することを確認するものである。

なお，逆止弁付ファンネルの強度評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生し たことを考慮する。

2．一般事項
2.1 配置概要

逆止弁付ファンネルは，第 2 号機海水ポンプ室の床面に設置する。逆止弁付ファン ネルの設置位置図を図 $2-1$ に示す。

図 2－1 逆止弁付ファンネルの設置位置図

2.2 構造計画

逆止弁付ファンネルの構造計画は，VI－3－別添3－1「津波への配慮が必要な施設の強度計算の方針」の「3．構造強度設計」に示す構造計画を踏まえて，詳細な構造を設定 する。

逆止弁付ファンネルは，圧縮スプリングのばね圧によりサポータを介して弁体を上側に引き上げていることから，常時弁体と弁座が密着している。弁体と弁座が密着し ている状態で津波が逆止弁付ファンネルの下側から流入してきた場合，弁体が更に押上げられ，弁座により密着することで止水する。逆止弁付ファンネルの構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
第2号機海水ポ ンプ室床面の配管にねじ込み継手で固定する。	弁座を含む弁本体及び弁体で構成する。弁体は弁本体に取付金具，取付金具ピンで取付けられる。ま た，弁体はサポー タ，ガイド，圧縮 スプリングで保持される。	

2.3 評価方針

逆止弁付ファンネルの強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要 な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，応力評価及び構造健全性評価により実施する。応力評価では，逆止弁付フ アンネルの評価対象部位に作用する応力等が許容限界以下であることを「5．1構造強度評価方法」に示す方法により，「5．6 計算条件」に示す計算条件を用いて評価し，構造健全性評価により強度評価を実施する評価対象部位については，評価対象部位に作用する圧力が許容限界以下であることを「5．1構造強度評価方法」に示す方法によ り，「5．6 計算条件」に示す計算条件を用いて評価する。応力評価及び構造健全性評価の確認結果を「6．評価結果」にて確認する。

逆止弁付ファンネルの強度評価フローを図 $2-2$ に示す。逆止弁付ファンネルの強度評価においては，その構造を踏まえ，津波荷重及び余震に伴う荷重の作用方向及び伝達過程を考慮し，評価部位を設定する。強度評価に用いる荷重及び荷重の組合せは，津波に伴う荷重作用時（以下「津波時」という。）及び津波に伴う荷重と余震に伴う荷重の作用時（以下「重畳時」という。）を考慮し，評価される最大荷重を設定する。重畳時における余震荷重は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示す津波荷重との重畳を考慮する弾性設計用地震動 S d－D 2 に よる地震力とする。余震荷重の設定に当たっては，弾性設計用地震動 S d－D 2 を入力して得られた設置床の最大応答加速度の最大値を考慮して設定した設計震度を用い る。

図 2－2 強度評価フロー
2.4 適用規格•基準等

適用する規格，基準等を以下に示す。
（1）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（3）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 •補 －1984）
（4）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
（以下「JEAG4601」と記載しているものは上記3指針を指す。）
（5）日本港湾協会 2007 年 港湾の施設の技術上の基準•同解説
（6）機械工学便覧（日本機械学会）

2.5 記号の説明

逆止弁付ファンネルの応力評価に用いる記号を表2－2に示す。

表 2－2 逆止弁付ファンネルの応力評価に用いる記号（1／2）

記 号	記号の説明	単 位
S d	弾性設計用地震動 S d－D 2 による余震荷重	N
$\mathrm{C}_{\mathrm{HSSd}}$	弾性設計用地震動 S d－D 2 による水平方向の設計震度	－
$\mathrm{C}_{\mathrm{Vs} \mathrm{d}}$	弾性設計用地震動 S d－D 2 による鉛直方向の設計震度	－
A_{1}	弁本体の断面積	mm^{2}
A_{2}	突き上げ津波荷重が弁本体に作用する評価に用いる受圧面積	mm^{2}
A_{3}	突き上げ津波荷重が弁体に作用する評価に用いる受圧面積	mm^{2}
C_{d}	抗力係数	－
D_{1}	弁本体の外径	mm
D 2	卉体の外径	mm
d_{1}	弁本体の内径	mm
$\mathrm{F}_{\mathrm{H} 1}$	弁本体の最下端に加わる水平方向地震荷重	N
F v 1	弁本体に加わる鉛直方向地震荷重	N
$\mathrm{F}_{\mathrm{v} 2}$	弁体に加わる鉛直方向地震荷重	N
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
h	津波荷重水位	m
I_{1}	弁本体の断面二次モーメント	mm^{4}
L_{1}	弁全体の長さ	mm
m_{1}	逆止弁付ファンネルの全質量	kg
m 2	弁体の質量	kg
t	弁体の厚さ	mm
M_{1}	弁本体に発生する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
D	固定荷重	－
P_{t}	突き上げ津波荷重	MPa
S	設計•建設規格の付録材料図表 Part5表5鉄鋼材料の各温度における許容引張応力	MPa
U	海水ポンプ室における津波の最大流速（鉛直方向）	m／s
W d 1	逆止弁付ファンネルの自重	N
$\mathrm{W}_{\mathrm{d} 2}$	弁体の自重	N

表 2－2 逆止弁付ファンネルの応力評価に用いる記号（2／2）

記 号	記号の説明	単 位
ρ_{0}	海水の密度	$\mathrm{kg} / \mathrm{m}^{3}$
$\sigma_{\mathrm{H} 1}$	弁本体に加わる曲げ応力	MPa
$\sigma_{\mathrm{V} 1}$	弁本体に加わる圧縮応力（重畳時）	MPa
$\sigma_{\mathrm{V} 2}$	弁体に加わる曲げ応力（重畳時）	MPa
P_{V}	弁体に発生する圧力	MPa
P_{w}	逆止弁付ファンネルに発生する圧力	MPa

3．評価対象部位
逆止弁付ファンネルの評価対象部位は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて示している評価対象部位を踏まえ て，津波荷重及び余震に伴う荷重の作用方向及び伝達過程を考慮し設定する。

津波時は逆止弁付ファンネル上流からの津波荷重により，弁本体に圧縮力が作用する。 また，逆止弁付ファンネル上流からの津波荷重により弁体が弁座に密着し閉弁状態とな る際に弁体に曲げ力が作用する。

重畳時に逆止弁付ファンネル上流からの津波荷重及び鉛直方向の余震荷重が負荷され る場合は，津波時と同様の力が作用する。一方，水平方向の余震荷重が負荷される場合 は，弁本体には曲げモーメントが作用する。

このことから，強度評価においては，応力評価による評価対象部位として，弁本体及 び弁体を選定し，構造健全性評価による評価対象部位として圧縮スプリング，ガイド， サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部を選定する。逆止弁付ファンネルの評価対象部位について，図 3－1に示す。

図中の（1）～②）は応力評価による評価対象部位を，（3）～⑧は構造健全性評価による評価対象部位をそれぞれ示す。

図 3－1 逆止弁付ファンネルの評価対象部位

4．固有値解析

4． 1 固有振動数の計算方法
逆止弁付ファンネルの構造に応じて，保守的に固有振動数が小さく算出されるよう， より柔となるようにモデル化し，固有振動数を算出する。また，その場合においても固有振動数が 20 Hz 以上であることを確認する。
4．1．1 解析モデル
質量の不均一性を考慮し，一方の端を固定端，他方の端を自由端の 1 質点系モ デルとして，自由端に全質量mが集中したモデルを組む。モデル化は，円筒状の弁本体の断面をもつはりとして設定する。モデル化の概略を図 $4-1$ に示す。

図 4－1 モデル化の概略

4．1．2 記号の説明

逆止弁付ファンネルの固有振動数算出に用いる記号を表4－1に示す。

表 4－1 固有振動数算出に用いる記号

記 号	記号の説明	単 位
d_{m}	モデル化に用いる弁本体の内径	mm
D_{m}	モデル化に用いる弁本体の外径	mm
E	弁本体の縦弾性係数	MPa
f	弁本体の一次固有振動数	Hz
I_{m}	弁本体の断面二次モーメント	mm^{4}
k	ばね定数	N / m
ℓ_{1}	弁本体全体の長さ	mm
m	逆止弁付ファンネルルの全質量	kg

枠囲みの内容は商業機密の観点から公開できません。

4．1．3 固有振動数の計算
固有振動数の計算に用いる寸法は，公称値を使用する。水平方向の固有振動数 fを以下の式より算出する。なお，鉛直方向の固有振動数については，逆止弁付 ファンネルの構造上，水平方向よりも鉛直方向の方が剛構造となるため，水平方向の固有振動数のみを確認する。

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \\
& \mathrm{k}=\frac{3 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{m}}}{{l_{1}^{3}}^{3}} \times 10^{3}
\end{aligned}
$$

弁本体の断面二次モーメント I mの算出過程を以下に示す。モデル化に用いる弁本体の断面二次モーメント Im は，以下の式より算出する。

$$
\mathrm{I}_{\mathrm{m}}=\left(\mathrm{D}_{\mathrm{m}}{ }^{4}-\mathrm{d}_{\mathrm{m}}{ }^{4}\right) \cdot \frac{\pi}{64}
$$

4．2 固有振動数の計算条件

表 4－2に固有振動数の計算条件を示す。表 4－2 固有振動数の計算条件

并本体の材質	逆止弁付ファンネル の全質量 $\mathrm{m}(\mathrm{kg})$	モデル化に用いる 弁本体の外径	モデル化に用いる 弁本体の内径
	1.5	$\mathrm{D}_{\mathrm{m}}(\mathrm{mm})$	$\mathrm{d}_{\mathrm{m}}(\mathrm{mm})$
	\square	\square	\square

弁本体全体の長さ $\ell_{1}(\mathrm{~mm})$	弁本体の 縦弾性係数 $*$ $\mathrm{E} \quad(\mathrm{MPa})$
\square	1.94×10^{5}

注記＊：「5．3 許容限界」における温度条件での縦弾性係数 E を用いる。

4．3 固有振動数の計算結果
表 4－3 に固有振動数の計算結果を示す。固有振動数は， 20 Hz 以上であることか ら，剛構造である。

表 4－3 固有振動数の計算結果

機器名称	固有振動数 (Hz)
逆止弁付ファンネル	878

5．構造強度評価

5.1 構造強度評価方法

逆止弁付ファンネルの強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要 な施設の強度計算の方針」の「5．強度評価方法」にて設定している方法を用いて，強度評価を実施する。

逆止弁付ファンネルの強度評価は，「3．評価対象部位」に示す評価対象部位に対し，
「5．2 荷重及び荷重の組合せ」及び「5．3許容限界」に示す荷重及び荷重の組合せ並びに許容限界を踏まえ，「5．5 計算方法」に示す方法を用いて評価を行う。

5.2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを用いる。

5．2．1 荷重の設定
（1）固定荷重（D）
常時作用する荷重として，逆止弁付ファンネルの自重を考慮し，以下の式より算出する。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{d} 1}=\mathrm{m}_{1} \cdot \mathrm{~g} \\
& \mathrm{~W}_{\mathrm{d} 2}=\mathrm{m}_{2} \cdot \mathrm{~g}
\end{aligned}
$$

（2）突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重は，基準津波による津波荷重水位を考慮し，以下の式より算出する。

$$
\mathrm{P}_{\mathrm{t}}=\left(\rho_{\circ} \cdot \mathrm{g} \cdot \mathrm{~h}+\frac{1}{2} \cdot \mathrm{C}_{\mathrm{d}} \cdot \rho_{\mathrm{o}} \cdot \mathrm{U}^{2}\right) / 10^{6}
$$

（3）余震荷重（ S d ）
余震荷重は，添付書類「V－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，弾性設計用地震動 S d－D 2 に伴う地震力及び慣性力 を考慮するものとし，水平方向については，弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う地震力とする。

余震による地震荷重 $\mathrm{F}_{\mathrm{H} 1}$ ， $\mathrm{F}_{\mathrm{V} 1}$ ， $\mathrm{F}_{\mathrm{V}_{2}}$ を以下の式より算出する。
$\mathrm{F}_{\mathrm{H} 1}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{HS}}$－ g
$\mathrm{F}_{\mathrm{v} 1}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{vSd}} \cdot \mathrm{g}+\rho_{\mathrm{o}} \cdot \mathrm{C}_{\mathrm{vs} \mathrm{d}} \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{A}_{2} / 10^{6}$
$\mathrm{F}_{\mathrm{v} 2}=\mathrm{m}_{2} \cdot \mathrm{C}_{\mathrm{vSd}} \cdot \mathrm{g}+\rho_{\mathrm{o}} \cdot \mathrm{C}_{\mathrm{vs}} \cdot \mathrm{g} \cdot \mathrm{H} \cdot \mathrm{A}_{3} / 10^{6}$

5．2．2 荷重の組合せ

逆止弁付ファンネルの強度評価にて考慮する荷重の組合せを表5－1 に示す。

表 5－1 逆止弁付ファンネルの強度評価にて考慮する荷重の組合せ

施設区分	機器名称	荷重の組合せ
浸水防護施設 （浸水防止設備）	逆止弁付ファンネル	$\mathrm{D}+\mathrm{P}_{\mathrm{t}}+\mathrm{Sd} * 1 * 2$

注記＊1：Dは固定荷重， P_{t} は突き上げ津波荷重， Sd は弾性設計用地震動 $\mathrm{S} \mathrm{d}-$ D 2 による余震荷重を示す。
＊2：固定荷重（D）及び弾性設計用地震動 S d－D 2 による余震荷重（S d） の組合せが，強度評価上，突き上げ津波荷重（ P_{t} ）を緩和する方向に作用する場合，保守的にこれらを組合せない評価を実施する。

5.3 許容限界

逆止弁付ファンネルの許容限界は，VI－3－別添3－1「津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて設定している許容限界を踏まえ，「3．評価対象部位」にて設定している評価対象部位毎に，機能損傷モードを考慮し，弁本体及 び弁体については，設計•建設規格に準じた供用状態Cの許容応力を用いる。

圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及び ねじ切り部については，水圧試験により確認した圧力を許容値として用いる。水圧試験では，逆止弁付ファンネルの閉状態に対して，突き上げ津波荷重を模擬した静水圧 1． 2 MPa を圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピ ン及びねじ切り部に負荷し，有意な変形及び著しい漏えいがないことを確認した。

逆止弁付ファンネルの弁本体及び弁体の許容限界を表 5－2 に，許容応力評価条件 を表5－3に，弁本体及び弁体の許容応力算出結果を表5－4にそれぞれ示す。また，圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びね じ切り部の許容限界を表5－5に示す。

表 5－2 弁本体及び弁体の許容限界

供用状態 （許容応力状態）	許容限界＊${ }^{\text {c }}$		
	一次応力		
C	圧縮	曲げ	組合せ＊2
（ III $_{\mathrm{A}} \mathrm{S}$ ）＊${ }^{\text {a }}$	1．2 S	$1.2 \cdot \mathrm{~S}$	$1.2 \cdot \mathrm{~S}$

注記＊1：圧縮及び曲げは，J E A G 4 6 0 1 を準用し，「管」の許容限界のうちクラ ス2，3配管に対する許容限界に準じて設定する。
＊2：圧縮応力と曲げ応力の組合せ応力である。
＊ 3 ：地震後，津波後の再使用性や津波の繰返し作用を想定し，当該構造物全体の変形能力に対して浸水防護機能として十分な余裕を有するよう，設備を構成する材料が弾性域内に収まることを基本とする。

表 5－3 弁本体及び弁体の許容応力評価条件

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	S ＊ (MPa)
弁本体	\square	40	111
弁体	\square		

注記＊：鉄鋼材料（ボルト材を除く）の許容引張応力を示す。

表 5－4 弁本体及び弁体の許容応力算出結果

供用状態 （許容応力状態）	評価対象部位	許容限界		
		一次応力		
		圧縮 $\begin{gathered} 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 組合せ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$
$\begin{gathered} \mathrm{C} \\ \left(\mathrm{III}_{\mathrm{A}} \mathrm{~S}\right) \end{gathered}$	弁本体	133	133	133
	弁体	－	133	－

表 5－5 圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部の許容限界

評価対象部位	水圧試験の圧力 (MPa)
圧縮スプリング，ガイド，サポータ，取付金具 （取付ねじ含む），取付金具ピン及びねじ切り部	1.2

5.4 設計用地震力

「4．固有値解析」に示したとおり，逆止弁付ファンネルの固有振動数が 20 Hz 以上 であることを確認したため，逆止弁付ファンネルの強度計算に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す逆止弁付ファンネルにおける設置床の最大応答加速度の 1.2 倍を考慮して設定する。逆止弁付ファンネルの耐震計算に用いる設計震度を表5－6に示す。

表 5－6 逆止弁付ファンネルの設計震度

| 地震動 | 床面高さ＊1
 $0 . \mathrm{P}$.
 (mm) | 場所 |
| :---: | :---: | :---: | :---: | :---: |

注記＊1：基準床レベルを示す。
＊2：「4．固有値解析」より，逆止弁付ファンネルの固有振動数が 20 Hz 以上であ ることを確認したため，海水ポンプ室（補機ポンプエリア）の最大応答加速度の 1.2 倍を考慮した設計震度を設定した。
5.5 計算方法

逆止弁付ファンネルの強度評価は，構造部材に作用する応力が，「5．3 許容限界」 で設定した許容限界以下であることを確認する。

5．5．1 荷重条件

以下の荷重条件にて応力計算を実施する。
（1）固定荷重（D）
逆止弁付ファンネルの自重は突き上げ津波荷重を緩和する方向に作用すること から，考慮しない。ただし，余震による水平地震力を求めるに当たって，固定荷重として逆止弁付ファンネルの自重を考慮する。
（2）突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重 P_{t} は，逆止弁付ファンネル上流から作用するものとする。
（3）余震荷重（ S d ）
余震荷重S dは，逆止弁付ファンネルの設置位置における水平方向及び鉛直方向の地震荷重を考慮する。

5．5．2 応力計算

（1）弁本体
a．圧縮
鉛直応答加速度による余震荷重及び突き上げ津波荷重により，弁本体に加わ る圧縮応力 σV_{1} を以下の式より算出する。また，突き上げ津波荷重が弁本体に作用する評価に用いる受圧面積 A_{2} は，弁本体のうち突き上げ津波荷重を受け る面積が最も広い箇所を適用する。突き上げ津波荷重が弁本体に作用する評価 に用いる受圧面積は弁本体の外径 D_{1} の円の面積を適用する。弁本体の断面積 A_{1} は，図 5－1 に示すとおり，弁本体のうち最も肉厚が薄い断面を適用する。 ただし，逆止弁付ファンネルの自重 $W_{\mathrm{d} 1}$ は圧縮応力 $\sigma \mathrm{V}_{1}$ を緩和する方向に作用するため考慮しない。
$\sigma_{\mathrm{V}_{1}}=\frac{\mathrm{W}_{\mathrm{d} 1}+\mathrm{F}_{\mathrm{V}_{1}}+\mathrm{P}_{\mathrm{t}} \cdot \mathrm{A}_{2}}{\mathrm{~A}_{1}}$

図 5－1 弁本体の構造図

朹囲みの内容は商業機密の観点から公開できません。
b．曲げ
弁全体の最下端に集中荷重が負荷された片持ちはりとして，水平応答加速度 により，弁本体に加わる曲げ応力 $\sigma_{\mathrm{H} 1}$ を以下の式より算出する。弁全体の長さ L_{1} ，弁本体の外径 D_{1} 及び内径 d_{1} について図5－1 に示す。

$$
\begin{aligned}
& \mathrm{M}_{1}=\mathrm{F}_{\mathrm{H} 1} \cdot \mathrm{~L}_{1} \\
& \mathrm{I}_{1}=\left(\mathrm{D}_{1}{ }^{4}-\mathrm{d}_{1}{ }^{4}\right) \cdot \frac{\pi}{64}
\end{aligned}
$$

$$
\sigma_{\mathrm{H}_{1}}=\frac{\mathrm{M}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{2}\right)}{\mathrm{I}_{1}}
$$

（2）弁体
a．曲げ
鉛直応答加速度による余震荷重及び突き上げ津波荷重により，弁体に加わる曲げ応力 σ V 2 を以下の式より算出する。また，突き上げ津波荷重が弁体に作用 する評価に用いる受圧面積 A_{3} は，図5－2に示すとおり，突き上げ津波荷重が弁体に作用する評価に用いる弁体の外径 D_{2} の円の面積を適用する。ただし，弁体の自重による荷重 $\mathrm{W}_{\mathrm{d} 2}$ は曲げ応力 $\sigma \mathrm{V}_{2}$ を緩和する方向に作用するため考慮 しない。なお，曲げ応力の算出については，機械工学便覧（日本機械学会）よ り，円板，周辺単純支持，等分布荷重の応力計算式を用いる。

$$
\mathrm{P}_{\mathrm{v}}=\frac{\mathrm{W}_{\mathrm{d} 2}+\mathrm{F}_{\mathrm{v}_{2}}}{\mathrm{~A}_{3}}+\mathrm{P}_{\mathrm{t}}
$$

$$
\sigma_{\mathrm{V} 2}=1.24 \cdot \frac{\mathrm{P}_{\mathrm{V} 2}}{\mathrm{t}^{2}} \cdot\left(\frac{\mathrm{D}_{2}}{2}\right)^{2}
$$

図 5－2 弁体の寸法図
（3）弁体，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部突き上げ津波荷重により弁体，取付金具（取付ねじ含む），取付金具ピン及びね じ切り部に発生する圧力 P_{w} は以下の式より算出する。

$$
\mathrm{P}_{\mathrm{w}}=\mathrm{P}_{\mathrm{t}}
$$

5.6 計算条件

逆止弁付ファンネルの応力評価に用いる計算条件を表5－7に示す。

表 5－7 逆止弁付ファンネルの応力評価に用いる計算条件

	逆止弁付ファン ネルの全質量	弁全体の長さ	弁本体の外径
弁本体の材質	m_{1}	$(\mathrm{~mm})$	D_{1}
	$(\mathrm{~kg})$	(mm)	
	1.5		\square

		突き上げ津波荷重が
弁本体の内径	弁本体の断面積	弁本体に作用する評
d_{1}		
$(\mathrm{~mm})$	A_{1}	
$\left(\mathrm{~mm}^{2}\right)$	価に用いる受圧面積	
	336.9	$\left(\mathrm{~mm}^{2}\right)$

弁体の材質	弁体の質量 m_{2} $(\mathrm{~kg})$	弁体の外径	弁体の厚さ
	0.10	D_{2} $(\mathrm{~mm})$	
	61	2	

突き上げ津波荷重が弁体に作用する評価 に用いる受圧面積 $\begin{gathered} \mathrm{A}_{3} \\ \left(\mathrm{~mm}^{2}\right) \end{gathered}$	重力加速度 g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	海水の密度 $\begin{gathered} \rho \circ \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	抗力係数 C d
2.922×10^{3}	9． 80665	1030	1． 2

津波荷重水位	海水ポンプ室におけ る津波の最大流速 （鉛直方向）	慣性力（鉛直方向） 評価高さ $\mathrm{U}(\mathrm{m} / \mathrm{s})$
18.6	1.0	H
(m)		

注記＊：海水ポンプ室における最大鉛直流速に対し，保守的に設定した値。

6．評価結果

6.1 応力評価

逆止弁付ファンネルの強度評価結果を表 6－1 に示す。発生応力が許容応力以下で あることから構造部材が構造健全性を有することを確認した。

表 6－1 逆止弁付ファンネルの応力評価結果

評価対象部位	発生応力 (MPa)		
弁本体	圧 縮	5	許容応力 (MPa)
	曲 げ	1	133
	組合せ＊	6	133
弁体	曲 げ	105	133

注記＊：圧縮 $\sigma_{\mathrm{V} 1}+$ 曲げ $\sigma_{\mathrm{H} 1}$ は，$\sigma_{\mathrm{V}_{1}}+\sigma \mathrm{V}_{1} \leqq 1.2 \mathrm{~S}$ で評価

6．2 構造健全性評価
逆止弁付ファンネルの構造健全性評価結果を表6－2に示す。発生圧力が，有意な変形及び著しい漏えいがないことを確認した水圧試験圧力以下であることから，評価対象部位である圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部が構造健全性を有することを確認した。

表 6－2 圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部の構造健全性評価結果

| 評価対象部位 |
| :---: | :---: | :---: | :---: | | 発生圧力
 (MPa) | | 水圧試験の圧力
 (MPa) |
| :---: | :---: | :---: |
| 圧縮スプリング，ガイド，サポータ，
 取付金具（取付ねじ含む），
 取付金具ピン及びねじ切り部 | | |
| 圧縮 | | |

VI－3－別添 3－2－9－2 逆止弁付ファンネル（第3号機）の強度計算書
1．概 要 1
2．一般事項 2
2.1 配置概要 2
2.2 構造計画 3
2．3 評価方針 4
2.4 適用規格•基準等 6
2.5 記号の説明 7
3．評価対象部位 9
4．固有値解析 10
4．1 固有振動数の計算方法 10
4．1．1 解析モデル 10
4．1．2 記号の説明 10
4．1．3 固有振動数の計算 11
4．2 固有振動数の計算条件 12
4．3 固有振動数の計算結果 12
5．構造強度評価 13
5.1 構造強度評価方法 13
5.2 荷重及び荷重の組合せ 13
5．2．1 荷重の設定 13
5．2．2 荷重の組合せ 14
5.3 許容限界 14
5.4 設計用地震力 16
5.5 計算方法 17
5．5．1 荷重条件 17
5．5．2 応力計算 18
5.6 計算条件 20
6．評価結果 21
6． 1 応力評価 21
6．2 構造健全性評価 21

1．概要

本資料は，VI－3－別添 3－1「津波への配慮が必要な施設の強度計算の方針」に基づき，浸水防護施設のうち逆止弁付ファンネル（第 3 号機）（以下「逆止弁付ファンネル」と いう。）が津波荷重及び余震を考慮した荷重に対し，主要な構造部材が構造健全性を有 することを確認するものである。

なお，逆止弁付ファンネルの強度評価においては，平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震による地殻変動に伴い，牡鹿半島全体で約 1 m の地盤沈下が発生し たことを考慮する。

2．一般事項
2.1 配置概要

逆止弁付ファンネルは，第 3 号機海水熱交換器建屋の床面に設置する。逆止弁付フ アンネルの設置位置図を図 $2-1$ に示す。

図 2－1 逆止弁付ファンネルの設置位置図

2.2 構造計画

逆止弁付ファンネルの構造計画は，VI－3－別添3－1「津波への配慮が必要な施設の強度計算の方針」の「3．構造強度設計」に示す構造計画を踏まえて，詳細な構造を設定 する。

逆止弁付ファンネルは，圧縮スプリングのばね圧によりサポータを介して弁体を上側に引き上げていることから，常時弁体と弁座が密着している。弁体と弁座が密着し ている状態で津波が逆止弁付ファンネルの下側から流入してきた場合，弁体が更に押上げられ，弁座により密着することで止水する。逆止弁付ファンネルの構造計画を表 2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
第 3 号機海水熱交換器建屋床面 の配管にねじ込 み継手で固定す る。	弁座を含む弁本体及び弁体で構成する。弁体は弁本体に取付金具，取付金具ピンで取付けられる。ま た，弁体はサポー タ，ガイド，圧縮 スプリングで保持される。	

枠囲みの内容は商業機密の観点から公開できません。

2． 3 評価方針

逆止弁付ファンネルの強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要 な施設の強度計算の方針」にて設定している荷重及び荷重の組合せ並びに許容限界を踏まえて，応力評価及び構造健全性評価により実施する。応力評価では，逆止弁付フ アンネルの評価対象部位に作用する応力等が許容限界以下であることを「5．1構造強度評価方法」に示す方法により，「5．6 計算条件」に示す計算条件を用いて評価し，構造健全性評価により強度評価を実施する評価対象部位については，評価対象部位に作用する圧力が許容限界以下であることを「5．1 構造強度評価方法」に示す方法によ り，「5．6 計算条件」に示す計算条件を用いて評価する。応力評価及び構造健全性評価の確認結果を「6．評価結果」にて確認する。

逆止弁付ファンネルの強度評価フローを図 $2-2$ に示す。逆止弁付ファンネルの強度評価においては，その構造を踏まえ，津波荷重及び余震に伴う荷重の作用方向及び伝達過程を考慮し，評価部位を設定する。強度評価に用いる荷重及び荷重の組合せは，津波に伴う荷重作用時（以下「津波時」という。）及び津波に伴う荷重と余震に伴う荷重の作用時（以下「重畳時」という。）を考慮し，評価される最大荷重を設定する。重畳時における余震荷重は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示す津波荷重との重畳を考慮する弾性設計用地震動 S d－D 2 に よる地震力とする。余震荷重の設定に当たっては，弾性設計用地震動 S d－D 2 を入力して得られた設置床の最大応答加速度の最大値を考慮して設定した設計震度を用い る。

図 2－2 強度評価フロー
2.4 適用規格•基準等

適用する規格，基準等を以下に示す。
（1）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（3）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 •補 －1984）
（4）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
（以下「JEAG4601」と記載しているものは上記3指針を指す。）
（5）日本港湾協会 2007 年 港湾の施設の技術上の基準•同解説
（6）機械工学便覧（日本機械学会）

2.5 記号の説明

逆止弁付ファンネルの応力評価に用いる記号を表2－2に示す。

表 2－2 逆止弁付ファンネルの応力評価に用いる記号（1／2）

記 号	記号の説明	単 位
S d	弾性設計用地震動 S d－D 2 による余震荷重	N
$\mathrm{C}_{\mathrm{HS} \mathrm{d}}$	弾性設計用地震動 S d－D 2 による水平方向の設計震度	－
$\mathrm{C}_{\mathrm{vs} \mathrm{d}}$	弾性設計用地震動 S d－D 2 による鉛直方向の設計震度	－
A_{1}	弁本体の断面積	mm^{2}
A 2	突き上げ津波荷重が弁本体に作用する評価に用いる受圧面積	mm^{2}
A_{3}	突き上げ津波荷重が弁体に作用する評価に用いる受圧面積	mm^{2}
C_{d}	抗力係数	－
D 1	弁本体の外径	mm
D 2	弁体の外径	mm
d_{1}	弁本体の内径	mm
$\mathrm{F}_{\mathrm{H} 1}$	弁本体の最下端に加わる水平方向地震荷重	N
$\mathrm{F}_{\mathrm{v} 1}$	弁本体に加わる鉛直方向地震荷重	N
F v 2	弁体に加わる鉛直方向地震荷重	N
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
h	津波荷重水位	m
I_{1}	弁本体の断面二次モーメント	mm^{4}
L_{1}	弁全体の長さ	mm
m_{1}	逆止弁付ファンネルの全質量	kg
m 2	弁体の質量	kg
t	弁体の厚さ	mm
M_{1}	弁本体に発生する曲げモーメント	$\mathrm{N} \cdot \mathrm{mm}$
D	固定荷重	－
P_{t}	突き上げ津波荷重	MPa
S	設計•建設規格の付録材料図表 Part5 表 5 鉄鋼材料の各温度における許容引張応力	MPa
U	海水ポンプ室における津波の最大流速（鉛直方向）	m／s
W d 1	逆止弁付ファンネルの自重	N
$\mathrm{W}_{\mathrm{d} 2}$	弁体の自重	N

表 2－2 逆止弁付ファンネルの応力評価に用いる記号（2／2）

記 号	記号の説明	単 位
ρ_{0}	海水の密度	$\mathrm{kg} / \mathrm{m}^{3}$
$\sigma_{\mathrm{H} 1}$	弁本体に加わる曲げ応力	MPa
$\sigma_{\mathrm{V} 1}$	弁本体に加わる圧縮応力（重畳時）	MPa
$\sigma_{\mathrm{V} 2}$	弁体に加わる曲げ応力（重畳時）	MPa
P_{V}	弁体に発生する圧力	MPa
P_{w}	逆止弁付ファンネルに発生する圧力	MPa

3．評価対象部位
逆止弁付ファンネルの評価対象部位は，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて示している評価対象部位を踏まえ て，津波荷重及び余震に伴う荷重の作用方向及び伝達過程を考慮し設定する。

津波時は逆止弁付ファンネル上流からの津波荷重により，弁本体に圧縮力が作用する。 また，逆止弁付ファンネル上流からの津波荷重により弁体が弁座に密着し閉弁状態とな る際に弁体に曲げ力が作用する。

重畳時に逆止弁付ファンネル上流からの津波荷重及び鉛直方向の余震荷重が負荷され る場合は，津波時と同様の力が作用する。一方，水平方向の余震荷重が負荷される場合 は，弁本体には曲げモーメントが作用する。

このことから，強度評価においては，応力評価による評価対象部位として，弁本体及 び弁体を選定し，構造健全性評価による評価対象部位として圧縮スプリング，ガイド， サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部を選定する。逆止弁付ファンネルの評価対象部位について，図 3－1に示す。

図中の（1）～②）は応力評価による評価対象部位を，③）～（8）は構造健全性評価による評価対象部位をそれぞれ示す。

図 3－1 逆止弁付ファンネルの評価対象部位

4．固有値解析

4． 1 固有振動数の計算方法
逆止弁付ファンネルの構造に応じて，保守的に固有振動数が小さく算出されるよう， より柔となるようにモデル化し，固有振動数を算出する。また，その場合においても固有振動数が 20 Hz 以上であることを確認する。
4．1．1 解析モデル
質量の不均一性を考慮し，一方の端を固定端，他方の端を自由端の 1 質点系モ デルとして，自由端に全質量mが集中したモデルを組む。モデル化は，円筒状の弁本体の断面をもつはりとして設定する。モデル化の概略を図 $4-1$ に示す。

図 4－1 モデル化の概略

4．1．2 記号の説明

逆止弁付ファンネルの固有振動数算出に用いる記号を表4－1に示す。

表 4－1 固有振動数算出に用いる記号

記 号	記号の説明	単 位
d_{m}	モデル化に用いる弁本体の内径	mm
D_{m}	モデル化に用いる弁本体の外径	mm
E	弁本体の縦弾性係数	MPa
f	弁本体の一次固有振動数	Hz
Im_{m}	弁本体の断面二次モーメント	mm^{4}
k	ばね定数	N / m
ℓ_{1}	弁本体全体の長さ	mm
m	逆止弁付ファンヌルルの全質量	kg

[^10]4．1．3 固有振動数の計算
固有振動数の計算に用いる寸法は，公称値を使用する。水平方向の固有振動数 fを以下の式より算出する。なお，鉛直方向の固有振動数については，逆止弁付 ファンネルの構造上，水平方向よりも鉛直方向の方が剛構造となるため，水平方向の固有振動数のみを確認する。

$$
\begin{aligned}
& \mathrm{f}=\frac{1}{2 \cdot \pi} \cdot \sqrt{\frac{\mathrm{k}}{\mathrm{~m}}} \\
& \mathrm{k}=\frac{3 \cdot \mathrm{E} \cdot \mathrm{I}_{\mathrm{m}}}{\ell_{1}^{3}} \times 10^{3}
\end{aligned}
$$

弁本体の断面二次モーメント I mの算出過程を以下に示す。モデル化に用いる弁本体の断面二次モーメント Im は，以下の式より算出する。

$$
\mathrm{I}_{\mathrm{m}}=\left(\mathrm{D}_{\mathrm{m}}{ }^{4}-\mathrm{d}_{\mathrm{m}}{ }^{4}\right) \cdot \frac{\pi}{64}
$$

4．2 固有振動数の計算条件

表 4－2に固有振動数の計算条件を示す。

表 4－2 固有振動数の計算条件

并本体の材質	逆止弁付ファンネル の全質量 $\mathrm{m}(\mathrm{kg})$	モデル化に用いる 弁本体の外径	モデル化に用いる 弁本体の内径
	1.5	$\mathrm{D}_{\mathrm{m}}(\mathrm{mm})$	$\mathrm{d}_{\mathrm{m}}(\mathrm{mm})$
	\square	\square	\square

弁本体全体の長さ $\ell_{1}(\mathrm{~mm})$	弁本体の 縦弾性係数 $*$ $\mathrm{E} \quad(\mathrm{MPa})$
\square	1.94×10^{5}

注記＊：「5．3 許容限界」における温度条件での縦弾性係数 E を用いる。

4．3 固有振動数の計算結果
表 4－3 に固有振動数の計算結果を示す。固有振動数は， 20 Hz 以上であることか ら，剛構造である。

表 4－3 固有振動数の計算結果

機器名称	固有振動数 (Hz)
逆止弁付ファンネル	878

[^11]
5．構造強度評価

5.1 構造強度評価方法

逆止弁付ファンネルの強度評価は，添付書類「VI－3－別添3－1 津波への配慮が必要 な施設の強度計算の方針」の「5．強度評価方法」にて設定している方法を用いて，強度評価を実施する。

逆止弁付ファンネルの強度評価は，「3．評価対象部位」に示す評価対象部位に対し，
「5．2 荷重及び荷重の組合せ」及び「5．3許容限界」に示す荷重及び荷重の組合せ並びに許容限界を踏まえ，「5．5 計算方法」に示す方法を用いて評価を行う。

5.2 荷重及び荷重の組合せ

強度評価に用いる荷重及び荷重の組合せは，添付書類「VI－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」の「4．1荷重及び荷重の組合せ」にて示している荷重及び荷重の組合せを用いる。

5．2．1 荷重の設定

（1）固定荷重（D）
常時作用する荷重として，逆止弁付ファンネルの自重を考慮し，以下の式より算出する。

$$
\begin{aligned}
& \mathrm{W}_{\mathrm{d} 1}=\mathrm{m}_{1} \cdot \mathrm{~g} \\
& \mathrm{~W}_{\mathrm{d} 2}=\mathrm{m}_{2} \cdot \mathrm{~g}
\end{aligned}
$$

（2）突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重は，基準津波による津波荷重水位を考慮し，以下の式より算出する。

$$
\mathrm{P}_{\mathrm{t}}=\left(\rho_{\circ} \cdot \mathrm{g} \cdot \mathrm{~h}+\frac{1}{2} \cdot \mathrm{C}_{\mathrm{d}} \cdot \rho_{\circ} \cdot \mathrm{U}^{2}\right) / 10^{6}
$$

（3）余震荷重（S d）
余震荷重は，添付書類「V－3－別添3－1 津波への配慮が必要な施設の強度計算の方針」に示すとおり，弾性設計用地震動 S d－D 2 に伴う地震力及び慣性力 を考慮するものとし，水平方向については，弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ に伴う地震力とする。

余震による地震荷重 $\mathrm{F}_{\mathrm{H} 1}$ ， $\mathrm{F}_{\mathrm{V}_{1}}$ ， $\mathrm{F}_{\mathrm{V}_{2}}$ を以下の式より算出する。

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{H} 1}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{HSd}} \cdot \mathrm{~g} \\
& \mathrm{~F}_{\mathrm{v}_{1}}=\mathrm{m}_{1} \cdot \mathrm{C}_{\mathrm{vsd}} \cdot \mathrm{~g}+\rho_{o} \cdot \mathrm{C}_{\mathrm{vsd}} \cdot \mathrm{~g} \cdot \mathrm{H} \cdot \mathrm{~A}_{2} / 10^{6} \\
& \mathrm{~F}_{\mathrm{v}_{2}}=\mathrm{m}_{2} \cdot \mathrm{C}_{\mathrm{vsd}^{2}} \cdot \mathrm{~g}+\rho_{o} \cdot \mathrm{C}_{\mathrm{vsd}} \cdot \mathrm{~g} \cdot \mathrm{H} \cdot \mathrm{~A}_{3} / 10^{6}
\end{aligned}
$$

5．2．2 荷重の組合せ

逆止弁付ファンネルの強度評価にて考慮する荷重の組合せを表5－1 に示す。

表 5－1 逆止弁付ファンネルの強度評価にて考慮する荷重の組合せ

施設区分	機器名称	荷重の組合せ
浸水防護施設 （浸水防止設備）	逆止弁付ファンネル	$\mathrm{D}+\mathrm{P}_{\mathrm{t}}+\mathrm{Sd} * 1 * 2$

注記＊1：Dは固定荷重， P_{t} は突き上げ津波荷重， Sd は弾性設計用地震動 $\mathrm{S} \mathrm{d}-$ D 2 による余震荷重を示す。
＊2：固定荷重（D）及び弾性設計用地震動 $\mathrm{S} d-\mathrm{D} 2$ による余震荷重（S d） の組合せが，強度評価上，突き上げ津波荷重（ P_{t} ）を緩和する方向に作用する場合，保守的にこれらを組合せない評価を実施する。

5.3 許容限界

逆止弁付ファンネルの許容限界は，VI－3－別添3－1「津波への配慮が必要な施設の強度計算の方針」の「4．2 許容限界」にて設定している許容限界を踏まえ，「3．評価対象部位」にて設定している評価対象部位毎に，機能損傷モードを考慮し，弁本体及 び弁体については，設計•建設規格に準じた供用状態Cの許容応力を用いる。

圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及び ねじ切り部については，水圧試験により確認した圧力を許容値として用いる。水圧試験では，逆止弁付ファンネルの閉状態に対して，突き上げ津波荷重を模擬した静水圧 1． 2 MPa を圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピ ン及びねじ切り部に負荷し，有意な変形及び著しい漏えいがないことを確認した。

逆止弁付ファンネルの弁本体及び弁体の許容限界を表 5－2 に，許容応力評価条件 を表5－3に，弁本体及び弁体の許容応力算出結果を表5－4にそれぞれ示す。また，圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びね じ切り部の許容限界を表5－5に示す。

表 5－2 弁本体及び弁体の許容限界

供用状態 （許容応力状態）	許容限界＊${ }^{\text {c }}$		
	一次応力		
C	圧縮	曲げ	組合せ＊2
（ III $_{\mathrm{A}} \mathrm{S}$ ）＊${ }^{\text {a }}$	1．2 S	$1.2 \cdot \mathrm{~S}$	$1.2 \cdot \mathrm{~S}$

注記＊1：圧縮及び曲げは，J E A G 4 6 0 1 を準用し，「管」の許容限界のうちクラ ス2，3配管に対する許容限界に準じて設定する。
＊2：圧縮応力と曲げ応力の組合せ応力である。
＊ 3 ：地震後，津波後の再使用性や津波の繰返し作用を想定し，当該構造物全体の変形能力に対して浸水防護機能として十分な余裕を有するよう，設備を構成する材料が弾性域内に収まることを基本とする。

表 5－3 弁本体及び弁体の許容応力評価条件

評価対象部位	材料	温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\mathrm{S} *$ (MPa)
弁本体	\square	40	111
弁体	\square		

注記＊：鉄鋼材料（ボルト材を除く）の許容引張応力を示す。

表 5－4 弁本体及び弁体の許容応力算出結果

供用状態 （許容応力状態）	評価対象部位	許容限界		
		一次応力		
		圧縮 $\begin{gathered} 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { 曲げ } \\ 1.2 \cdot \mathrm{~S} \\ (\mathrm{MPa}) \end{gathered}$	組合せ $1.2 \cdot \mathrm{~S}$ （MPa）
$\begin{gathered} \mathrm{C} \\ \left(\text { III }_{\mathrm{A}} \mathrm{~S}\right) \end{gathered}$	并本体	133	133	133
	弁体	－	133	－

表 5－5 圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部の許容限界

評価対象部位	水圧試験の圧力 (MPa)
圧縮スプリング，ガイド，サポータ，取付金具 （取付ねじ含む），取付金具ピン及びねじ切り部	1.2

5.4 設計用地震力

「4．固有値解析」に示したとおり，逆止弁付ファンネルの固有振動数が 20 Hz 以上 であることを確認したため，逆止弁付ファンネルの強度計算に用いる設計震度は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に示す逆止弁付ファンネルにおける設置床の最大応答加速度の 1.2 倍を考慮して設定する。逆止弁付ファンネルの耐震計算に用いる設計震度を表5－6に示す。

表 5－6 逆止弁付ファンネルの設計震度

地震動	床面高さ＊1 0．P．（mm）	場所	余震による設計震度＊1	
弾性設計用地震動$\mathrm{S} d-\mathrm{D} 2$	7000	3 号機海水熱交換器建屋	水平方向 $\mathrm{C}_{\mathrm{HS} \mathrm{d}}$	1． 40
			鉛直方向 $\mathrm{C}_{\mathrm{vs} \mathrm{~d}}$	0.77

注記＊1：基準床レベルを示す。
＊2：「4．固有値解析」より，逆止弁付ファンネルの固有振動数が 20 Hz 以上であ ることを確認したため，設置床の最大応答加速度の 1.2 倍を考慮した設計震度を設定した。
5.5 計算方法

逆止弁付ファンネルの強度評価は，構造部材に作用する応力が，「5．3 許容限界」 で設定した許容限界以下であることを確認する。

5．5．1 荷重条件

以下の荷重条件にて応力計算を実施する。
（1）固定荷重（D）
逆止弁付ファンネルの自重は突き上げ津波荷重を緩和する方向に作用すること から，考慮しない。ただし，余震による水平地震力を求めるに当たって，固定荷重として逆止弁付ファンネルの自重を考慮する。
（2）突き上げ津波荷重（ P_{t} ）
突き上げ津波荷重 P_{t} は，逆止弁付ファンネル上流から作用するものとする。
（3）余震荷重（ S d ）
余震荷重S dは，逆止弁付ファンネルの設置位置における水平方向及び鉛直方向の地震荷重を考慮する。

5．5．2 応力計算

（1）弁本体
a．圧縮
鉛直応答加速度による余震荷重及び突き上げ津波荷重により，弁本体に加わ る圧縮応力 σV_{1} を以下の式より算出する。また，突き上げ津波荷重が弁本体に作用する評価に用いる受圧面積 A_{2} は，弁本体のうち突き上げ津波荷重を受け る面積が最も広い箇所を適用する。突き上げ津波荷重が弁本体に作用する評価 に用いる受圧面積は弁本体の外径 D_{1} の円の面積を適用する。弁本体の断面積 A_{1} は，図 5－1 に示すとおり，弁本体のうち最も肉厚が薄い断面を適用する。 ただし，逆止弁付ファンネルの自重 $W_{\mathrm{d} 1}$ は圧縮応力 $\sigma \mathrm{V}_{1}$ を緩和する方向に作用するため考慮しない。

$$
\sigma_{\mathrm{V}_{1}}=\frac{\mathrm{W}_{\mathrm{d} 1}+\mathrm{F}_{\mathrm{V} 1}+\mathrm{P}_{\mathrm{t}} \cdot \mathrm{~A}_{2}}{\mathrm{~A}_{1}}
$$

図 5－1 弁本体の構造図

枠囲みの内容は商業機密の観点から公開できません。
b．曲げ
弁全体の最下端に集中荷重が負荷された片持ちはりとして，水平応答加速度 により，弁本体に加わる曲げ応力 $\sigma_{\mathrm{H} 1}$ を以下の式より算出する。弁全体の長さ L_{1} ，弁本体の外径 D_{1} 及び内径 d_{1} について図5－1 に示す。

$$
\begin{aligned}
& \mathrm{M}_{1}=\mathrm{F}_{\mathrm{H} 1} \cdot \mathrm{~L}_{1} \\
& \mathrm{I}_{1}=\left(\mathrm{D}_{1}{ }^{4}-\mathrm{d}_{1}{ }^{4}\right) \cdot \frac{\pi}{64}
\end{aligned}
$$

$$
\sigma_{\mathrm{H}_{1}}=\frac{\mathrm{M}_{1} \cdot\left(\frac{\mathrm{D}_{1}}{2}\right)}{\mathrm{I}_{1}}
$$

（2）弁体
a．曲げ
鉛直応答加速度による余震荷重及び突き上げ津波荷重により，弁体に加わる曲げ応力 σ V 2 を以下の式より算出する。また，突き上げ津波荷重が弁体に作用 する評価に用いる受圧面積 A_{3} は，図5－2に示すとおり，突き上げ津波荷重が弁体に作用する評価に用いる弁体の外径 D_{2} の円の面積を適用する。ただし，弁体の自重による荷重 $\mathrm{W}_{\mathrm{d} 2}$ は曲げ応力 $\sigma \mathrm{V}_{2}$ を緩和する方向に作用するため考慮 しない。なお，曲げ応力の算出については，機械工学便覧（日本機械学会）よ り，円板，周辺単純支持，等分布荷重の応力計算式を用いる。

$$
\mathrm{P}_{\mathrm{v}}=\frac{\mathrm{W}_{\mathrm{d} 2}+\mathrm{F}_{\mathrm{v}_{2}}}{\mathrm{~A}_{3}}+\mathrm{P}_{\mathrm{t}}
$$

$$
\sigma_{\mathrm{v}_{2}}=1.24 \cdot \frac{\mathrm{P}_{\mathrm{v}_{2}}}{\mathrm{t}^{2}} \cdot\left(\frac{\mathrm{D}_{2}}{2}\right)^{2}
$$

図 5－2 弁体の寸法図
（3）弁体，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部
突き上げ津波荷重により弁体，取付金具（取付ねじ含む），取付金具ピン及びね じ切り部に発生する圧力 P_{w} は以下の式より算出する。

$$
\mathrm{P}_{\mathrm{w}}=\mathrm{P}_{\mathrm{t}}
$$

5.6 計算条件

逆止弁付ファンネルの応力評価に用いる計算条件を表5－7に示す。

表 5－7 逆止弁付ファンネルの応力評価に用いる計算条件

	逆止弁付ファン ネルの全質量	弁全体の長さ 弁本体の材質	m_{1}
$(\mathrm{~kg})$	(mm)	弁本体の外径	
	1.5	\square	D_{1}
			$(\mathrm{~mm})$
\square			

		突き上げ津波荷重が
弁本体の内径	弁本体の断面積	弁本体に作用する評
d_{1}		
$(\mathrm{~mm})$	A_{1}	
$\left(\mathrm{~mm}^{2}\right)$	価に用いる受圧面積	
	336.9	$\left(\mathrm{~mm}^{2}\right)$

弁体の材質	弁体の質量 m_{2} $(\mathrm{~kg})$	弁体の外径	弁体の厚さ
	0.10	D_{2}	
$(\mathrm{~mm})$			

突き上げ津波荷重が弁体に作用する評価 に用いる受圧面積 A 3 （mm ${ }^{2}$ ）	重力加速度 g $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	海水の密度 $\begin{gathered} \rho \circ \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	抗力係数 C_{d}
2.922×10^{3}	9． 80665	1030	1． 2

津波荷重水位	海水ポンプ室におけ る津波の最大流速 （鉛直方向）	慣性力（鉛直方向） 評価高さ $\mathrm{U}(\mathrm{m} / \mathrm{s})$
19.5	1.0	H (m)

注記＊：海水ポンプ室における最大鉛直流速に対し，保守的に設定した値。

6．評価結果

6.1 応力評価

逆止弁付ファンネルの強度評価結果を表6－1 に示す。発生応力が許容応力以下で あることから構造部材が構造健全性を有することを確認した。

表 6－1 逆止弁付ファンネルの応力評価結果

評価対象部位	発生応力 (MPa)		
弁本体	圧 縮	5	許容応力 (MPa)
	曲 げ	1	133
	組合せ＊	6	133
弁体	曲 げ	97	133

注記＊：圧縮 $\sigma \mathrm{V} 1+$ 曲げ $\sigma_{\mathrm{H} 1}$ は，$\sigma_{\mathrm{V} 1}+\sigma \mathrm{V} 1$ §1．2S で評価
6.2 構造健全性評価

逆止弁付ファンネルの構造健全性評価結果を表6－2に示す。発生圧力が，有意な変形及び著しい漏えいがないことを確認した水圧試験圧力以下であることから，評価対象部位である圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部が構造健全性を有することを確認した。

表6－2 圧縮スプリング，ガイド，サポータ，取付金具（取付ねじ含む），取付金具ピン及びねじ切り部の構造健全性評価結果

| 評価対象部位 |
| :---: | :---: | :---: | :---: | | 発生圧力
 (MPa) | | 水圧試験の圧力
 (MPa) |
| :---: | :---: | :---: |
| 圧縮スプリング，ガイド，サポータ，
 取付金具（取付ねじ含む），
 取付金具ピン及びねじ切り部 | | |
| 圧縮 | | |

O 2 変二（1）VI－6 R O E

O 2 変二(1) VI-6 R O E

3	弁 体	3	SCPH2	
2	弁 ふ た	3	SCPH2	
1	弁 箱	3	SCPH2	
番号	品 名	個数	材 料	
部 品 表				

注1：特記なき寸法はnmを示す。注2：特記なき寸法は公称値を示す。

工事枵画認可申請		第4－3－1－	4－3図
女川原子力発電所		所 第 2	号 機
名	E11－F004A，B，C 構造図		
東北電力林 式 会 社			

4.7 原子炉冷却材浄化設備

4．7．1 原子炉冷却材浄化系

No．	名称	部品	外径＊	厚さ＊	材質
（1）	G31－F022 高圧代替注水系注入配管合流点	管	216.3	18.2	STS42
（2）		ティー	$\begin{aligned} & 216.3 \\ & 216.3 \\ & / \end{aligned}$	$\begin{gathered} 18.2 \\ 18.2 \\ \hline \end{gathered}$	STS42
（3）		エルボ	216.3	18.2	STS42
（4）		ティー	$\frac{216.3}{216.3}$	$\begin{gathered} 18.2 \\ 18.2 \\ 18.2 \end{gathered}$	STS42
（5）		レジューサ	$\stackrel{216.3}{165.2}$	$\begin{gathered} 18.2 \\ 14.3 \end{gathered}$	STS42
（6）		管	165.2	14.3	STS410
（7）		エルボ	165.2	14.3	STS410
（8）	高圧代替注水系注入配管合流点 原子炉冷却材浄化系 A系注入配管合流点	管	165.2	14.3	SFVC2B
（9）		管	165.2	14.3	STS410
（10）		ティー	165.2	$\begin{gathered} 14.3 \\ 14.3 \\ 14.3 \end{gathered}$	STS410

No．	名称	部品	外径＊	厚さ＊	材質
（11）	高圧代替注水系注入配管合流点 原子炉冷却材浄化系 A系注入配管合流点	管	165.2	14.3	STS410
（12）		エルボ	165.2	14.3	STS410
（13）	原子炉冷却材浄化系再生熱交換器（胴側）出口配管分岐点 原子炉離隔時冷却系注入配管合流点	レジューサ	$\stackrel{216.3}{(65.2}$	$\stackrel{18.2}{14.3}$	STS42
（14）		管	165.2	14.3	STS410
（15）	原子炉離隔時冷却系注入配管合流点 原子炉冷却材浄化系 B系注入配管合流点	管	165.2	14.3	SFVC2B
（16）		管	165.2	14.3	STS410
（17）		ティー	165.2	$\begin{gathered} \hline 14.3 \\ 14.3 \\ 11.1 \end{gathered}$	STS42
（18）		エルボ	165.2	14.3	STS410

＊外径及び厚さは公称値（mm）を示す。

工事計画認可申請		第4－7－1－2－2図	
女川原子カ発電所 第2号機			
名 称	原子炉冷却材浄化系 主配管の配置を明示した図面（その2）		
東北 電力株 式 会 社			
	W		3614

第 4－7－1－2－1～2 図 原子炉冷却材浄化系 主配管の配置を明示した図面別紙

工事計画記載の公称値の許容範囲

［主配管］
管NO． $7^{*}, 12^{*}$ 管継手（エルボ）

主要寸法(mm)		許容範囲	根拠
外径	165． 2	$\begin{aligned} & +2.4 \mathrm{~mm} \\ & -1.6 \mathrm{~mm} \end{aligned}$	```【プラス側公差】 J I S B 2 3 1 2 による材料公差 【マイナス側公差】 J I S B 2 3 1 2 による材料公差```
厚さ	14.3	$\begin{aligned} & \text { + 規定しない } \\ & -12.5 \% \end{aligned}$	同上

管NO．8＊

主要寸法 (mm)		許容範囲		
根拠				
外径	165.2			製造能力，製造実績を考慮したメーカ基準値
厚さ	14.3			同上

管NO．9＊

主要寸法 （mm）		許容範囲	根拠
外径	165.2	$\pm 1.6 \mathrm{~mm}$	J I S G 3 4 5 による材料公差
厚さ	14.3	$\pm 12.5 \%$	同上

管NO．10＊管継手（ティー）

$\begin{gathered} \text { 主要寸法 } \\ (\text { (mm) } \end{gathered}$		許容範囲	根拠
外径	165.2	$\begin{aligned} & +2.4 \mathrm{~mm} \\ & -1.6 \mathrm{~mm} \end{aligned}$	
厚さ	14.3	$\begin{aligned} & \text { + 規定しない } \\ & \text {-12.5\% } \end{aligned}$	同上

注：主要寸法は，工事計画記載の公称値。
注記＊：主配管の配置を明示した図面の管NO．を示す。

8．原子炉格納施設

8．3 圧力低減設備その他の安全設備

8．3．3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備

8．3．3．1 非常用ガス処理系

2	弁 ふ た	2	S25C	
1	弁 箱	2	SCPH2	
番号	品 名	個数	材 料	
部 品 表				

8．3．4 原子炉格納容器調気設備

8．3．4．1 原子炉格納容器調気系

工事計画認可申請	第8－3－4－1－4－2図

女川原子力発電所 第2号機

	$\begin{aligned} & \text { U } \\ & \dot{H} \\ & \sum \end{aligned}$	0 0 \vdots \vdots	$\begin{aligned} & 0 \\ & \stackrel{0}{O} \\ & \stackrel{y}{n} \end{aligned}$	0 0 O \vdots	0 0 \vdots \vdots \vdots	0 8 \sum_{i}	0 0 \vdots \vdots	0 0 \vdots \vdots	$$	U 0 \vdots \vdots i	$\begin{aligned} & 0 \\ & 0 \\ & \vdots \\ & \underset{\sim}{i} \end{aligned}$	钅
	$\stackrel{1}{\circ}$	$\stackrel{\circ}{\circ}$	$\left\|\begin{array}{ll} 10 \\ 0 & 10 \\ 0 & -1 \\ 0 \end{array}\right\|$	$\stackrel{\underset{\sim}{1}}{\stackrel{1}{2}}$	$\stackrel{\underset{\sim}{-}}{\stackrel{1}{2}}$	$\stackrel{\stackrel{\rightharpoonup}{-}}{\stackrel{1}{2}}$	$\stackrel{\llcorner }{\leftrightharpoons}$	$\stackrel{\circ}{\leftrightharpoons}$	$\stackrel{1}{\circ}$	$\stackrel{1}{\circ}$	$\stackrel{\sim}{\circ}$	$\stackrel{\square}{\stackrel{\circ}{\square}}$
	$\begin{aligned} & \text { O. } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{8}{0} \end{aligned}$		$\begin{aligned} & 0 \\ & \stackrel{0}{8} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & 0 . \\ & \stackrel{8}{8} \end{aligned}$	$$	$\begin{aligned} & 0 \\ & 0.8 \\ & 0 . \end{aligned}$	$\begin{aligned} & 0 . \\ & \dot{8} . \end{aligned}$	$\stackrel{0}{\mathbf{0}}$	$\begin{aligned} & 0 . \\ & \dot{8} \\ & \hline \mathbf{0} \end{aligned}$	$\left\lvert\, \begin{array}{ccc} 0 & 0 & 0 \\ \dot{0}-\dot{O} & \dot{O} & \dot{O} \end{array}\right.$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \hline \mathbf{O} \end{aligned}$
	埧		$\frac{1}{\mathbb{N}^{2}}$	或何	$\stackrel{\text { 少 }}{\stackrel{1}{H}}$		$\stackrel{\text { 尔 }}{\stackrel{\rightharpoonup}{H}}$	：	戓䁘	$\stackrel{\text { 尔 }}{\stackrel{\rightharpoonup}{H}}$	$\frac{1}{N^{2}}$	
$\dot{8}$	（－）	（1）	（9）	Θ	（2）	（2）	（2）	（2）	（2）	（2）	（2）	（2）

第 8－3－4－1－4－1～6 図 原子炉格納容器調気系 主配管の配置を明示した図面別紙

工事計画記載の公称値の許容範囲
［主配管］
管NO． 1^{*} 管継手（管台）

| 主要寸法
 (mm) | | 許容範囲 | | 根拠 |
| :--- | :--- | :--- | :--- | :--- | :--- |

管NO．2，14，22＊

$\begin{gathered} \text { 主要寸法 } \\ (\mathrm{mm}) \end{gathered}$		許容範囲	根拠
外径	609． 6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	9.5		同上

管NO．3， 6^{*}

主要寸法 （mm）		許容範囲	根拠
外径	609.6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値 【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	31.0		同上

［主配管（続き）］
管NO． 4 ＊管継手（ティー）

主要寸法 （mm）		許容範囲	根拠
外径	609.6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値 【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	31.0		同上

管NO． 5^{*} 管継手（エルボ）

$\begin{gathered} \text { 主要寸法 } \\ (\mathrm{mm}) \end{gathered}$		許容範囲	根拠
外径	609.6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	31.0		同上

管NO．7，10＊管継手（ティー）

$\begin{gathered} \text { 主要寸法 } \\ \text { (mm) } \end{gathered}$		許容範囲	根拠
外径	60.5	$\begin{aligned} & +1.6 \mathrm{~mm} \\ & -0.8 \mathrm{~mm} \end{aligned}$	【プラス側公差】 J I S B 2 3 1 2 による材料公差 【マイナス側公差】 J I S B 2 3 1 2 による材料公差
厚さ	5.5	$\begin{aligned} & \text { + 規定しない } \\ & -12.5 \% \end{aligned}$	同上

管NO．8＊管継手（ティー）

主要寸法 （mm）		許容範囲	根拠
外径	60.5	$\begin{aligned} & +1.6 \mathrm{~mm} \\ & -0.8 \mathrm{~mm} \end{aligned}$	$\begin{aligned} & \text { 【プラス側公差】 } \\ & \text { J I S B } ~ 2 ~ 3 ~ 1 ~ 2 ~ に よ る ~ \end{aligned} \text { 材料公差 }$
厚さ	5.5	$\begin{aligned} & \text { +規定しない } \\ & \text { - } 2.5 \% \end{aligned}$	同上

［主配管（続き）］
管NO． $9,12,13$＊管継手（エルボ）

主要寸法 (mm)		許容範囲		根拠

管NO．11＊

主要寸法 （mm）		許容範囲	根拠
外径	60.5	$\pm 1 \%$	J I S G 3 4 5 による材料公差
厚さ	5.5	$\pm 12.5 \%$	同上

管NO． 15,23 ＊管継手（エルボ）

主要寸法 （mm）		許容範囲	根拠
外径	609.6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値 【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	9． 5		同上

管NO．16，24＊管継手（ティー）

主要寸法 （mm）		許容範囲	根拠
外径	609． 6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	9． 5		同上

［主配管（続き）］
管NO．18＊管継手（エルボ）

主要寸法 (mm)		許容範囲	
外径	609.6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値 【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	31.0		同上

管NO．17，19＊

主要寸法 （mm）		許容範囲	根拠
外径	609.6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値 【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	31.0		同上

管NO．20＊管継手（エルボ）

主要寸法(mm)		許容範囲	根拠
外径	609.6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	17.5		同上

［主配管（続き）］
管NO．21，25＊

主要寸法 （mm）		許容範囲	根拠
外径	609.6		【プラス側公差】 製造能力，製造実績を考慮したメーカ基準値 【マイナス側公差】 製造能力，製造実績を考慮したメーカ基準値
厚さ	17.5		同上

注：主要寸法は，工事計画記載の公称値。
注記＊：主配管の配置を明示した図面の管NO．を示す。

[^0]: 変更前
 い又は貯蔵方式により，その破損により公衆に与える放射線の影響が「実用発電用原子炉の設置，運転等に関する規則（昭和 53 年通商産業省令第 77 号）」第 2 条第 2 項第 6号に規定する「周辺監視区域」外における年間の線量限度 に比べ十分小さいものは除く。）

[^1]: 枠囲みの内容は商業機密の観点から公開できません。

[^2]: 枠囲みの内容は商業機密の観点から公開できません。

[^3]: 枠囲みの内容は商業機密の観点から公開できません。

[^4]: 枠囲みの内容は商業機密の観点から公開できません。

[^5]: 枠囲みの内容は商業機密の観点から公開できません。

[^6]: R 1

[^7]: R 1

[^8]: R 1

[^9]: 枠囲みの内容は商業機密の観点から公開できません。

[^10]: 枠囲みの内容は商業機密の観点から公開できません。

[^11]: 枠囲みの内容は商業機密の観点から公開できません。

