高浜発電所3号炉審査資料					
資料番号	KTN3-PLM40-コンクリート				
提出年月日	令和5年4月25日				

高浜発電所3号炉 高経年化技術評価 (コンクリート構造物および鉄骨構造物)

補足説明資料

令和5年4月25日

関西電力株式会社

本資料のうち、枠囲みの内容は機密に係る 事項ですので公開することはできません。

1.	. 概要	••••	 	••••	••••	 • • • • • •	 	1
2.	. 基本方針	••••	 		••••	 	 	3
3.	. 代表構造物の選定 ・・・	••••	 	••••	••••	 	 	7
4.	. 代表構造物の技術評価	•••	 	••••	••••	 	 	17
5.	. 代表構造物以外の評価	•••	 	••••	••••	 	 	29
6.	. まとめ ・・・・・・・・	••••	 	••••	••••	 	 	30

別紙

別紙1.	社内標準における目視点検の項目、方法および判定基準について・・・・・ 1-1
別紙2.	対象構造物および代表構造物の選定過程について・・・・・・・・・・・・2-1
別紙3.	耐火能力の考え方および耐火能力が要求されている壁の位置について・・・・ 3-1
別紙4.	土木建築設備に係る保全管理の文書体系について・・・・・・・・・・・・ 4-1
別紙5.	炉心領域部および原子炉容器サポート直下部の1次遮蔽壁における
	温度分布解析の方法などについて・・・・・・・・・・・・・・・・・・・・・・・・5-1
別紙6.	放射線照射量の算出方法などについて・・・・・・・・・・・・・・・・・・・・・・ 6-1
別紙7.	中性子照射量に対する耐力評価について・・・・・・・・・・・・・・・・・・・・・・ 7-1
別紙8.	中性化の評価対象および評価点の選定過程について・・・・・ 8-1
別紙9.	中性化深さの推定値の算定過程および結果について・・・・・・・・・・・・・・・ 9-1
別紙10.	塩分浸透の評価対象および評価点の選定過程について・・・・・・ 10-1
別紙11.	塩化物イオン濃度の測定位置、測定方法、測定結果について・・・・・ 11-1
別紙12.	塩分浸透における鉄筋の腐食減量の算定過程および結果について・・・・・ 12-1
別紙13.	機械振動の評価対象の選定過程について・・・・・・・・・・・・・・・・13-1
別紙14.	1985年に実施したモルタルバー法の試験結果について・・・・・・ 14-1
別紙15.	アルカリ骨材反応に関する特別点検手法の選定プロセスおよび
	評価結果の妥当性確認について・・・・・ 15-1
別紙16.	高浜3号炉周辺の地下水による劣化影響について・・・・・・・・・16-1

1. 概要

本資料は、「実用発電用原子炉の設置、運転等に関する規則」第113条の規定に基づき 実施した劣化状況評価のうち、コンクリート構造物および鉄骨構造物の評価結果につい て、補足説明するものである。

コンクリート構造物および鉄骨構造物の経年劣化事象、劣化要因は表1に示すとおり、 多岐にわたるため、それぞれの劣化要因ごとに評価が必要である。

構造物	経年劣化 事象	劣化要因				
		熱	コンクリートが熱を受けると、温度条件によってはコン クリート中の水分の逸散に伴う乾燥に起因する微細なひ び割れ、あるいは水分の移動に起因する空隙の拡大などに より強度が低下する可能性がある。			
		放射線 照射	コンクリートは、中性子照射やガンマ線照射に起因する 内部発熱によるコンクリート中の水分の逸散などによ り、強度が低下する可能性がある。			
	強度低下	中性化	コンクリートは空気中の二酸化炭素の作用を受けると、 徐々にそのアルカリ性を失い中性化する。中性化がコンク リートの内部に進行しアルカリ性が失われると鉄筋周囲 に生成されていた不動態被膜も失われ、鉄筋はコンクリー ト中の水分、酸素の作用により腐食し始める。さらに、鉄 筋の腐食が進行すると酸化生成物による体積膨張からコ ンクリートにひび割れや剥離が生じ、コンクリート構造物 としての健全性が損なわれる可能性がある。			
コンクリート		塩分浸透	コンクリート中に塩化物イオンが浸透して鉄筋位置ま で達すると、鉄筋表面の不動態被膜が破壊されるため、鉄 筋はコンクリート中の水分、酸素の作用により腐食し始め る。腐食が進行すると酸化生成物による体積膨張からコン クリートにひび割れや剥離が生じ、コンクリート構造物と しての健全性が損なわれる可能性がある。			
構造物		機械振動	機械振動により、コンクリート構造物が長期間にわたっ て繰返し荷重を受けると、ひび割れの発生、ひいては損傷 に至る可能性がある。			
				アルカリ 骨材反応	コンクリート中の反応性シリカを含む骨材と、セメント などに含まれるアルカリ(ナトリウムイオンやカリウムイ オン)が、水の存在下で反応してアルカリ珪酸塩を生成し、 この膨張作用によりコンクリートにひび割れが生じ、コン クリート構造物としての健全性が損なわれる可能性があ る。	
		凍結融解	コンクリート中の水分が凍結し、それが気温の上昇や日 射を受けることなどにより融解する凍結融解を繰り返す ことでコンクリートにひび割れが生じ、コンクリート構造 物としての健全性が損なわれる可能性がある。			
	遮蔽能力 低下	熱	コンクリートは、周辺環境からの伝熱および放射線照射 に起因する内部発熱により、コンクリート中の水分が逸散 し、放射線に対する遮蔽能力が低下する可能性がある。			
	耐火能力 低下	火災時 などの熱	コンクリート構造物は、断面厚により耐火能力を確保す る設計であるが、火災時に熱により剥落が生じ、部分的な 断面厚の減少に伴う耐火能力の低下によりコンクリート の健全性が損なわれる可能性がある。			
鉄骨	強度低下	腐食	鉄は一般に大気中の酸素、水分と化学反応を起こして腐 食する。また、海塩粒子などにより、腐食が促進される。 腐食が進行すると鉄骨の断面欠損に至り、鉄骨の強度低下 につながる可能性がある。			
構造物		四皮 化 广	風などに よる疲労	風による振動などの繰返し荷重が継続的に鉄骨構造物 にかかることにより、疲労による損傷が蓄積され、鉄骨の 強度低下につながる可能性がある。		

表1 コンクリート構造物および鉄骨構造物の経年劣化事象および劣化要因

2. 基本方針

コンクリート構造物および鉄骨構造物の経年劣化事象および劣化要因に対する評価 の基本方針は、対象構造物について、表1の経年劣化事象の発生の可能性について評価 し、その可能性が将来にわたって発生することが否定できない場合は、その発生および 進展に係る健全性評価を行い、運転開始後 60 年時点までの期間において「実用発電用原 子炉の運転の期間の延長の審査基準」、「実用発電用原子炉の運転期間延長認可申請に係 る運用ガイド」、「実用発電用原子炉施設における高経年化対策審査ガイド」および「実 用発電用原子炉施設における高経年化対策事項を満たすことを確認 することである。

コンクリート構造物および鉄骨構造物評価についての要求事項を表2に整理する。

表2 コンクリート構造物および鉄骨構造物評価についての要求事項(1/3)

審査基準、 ガイド		要求事項							
	2	 実用炉規 実用切する 況なる たなる たる がる たる し。 し。 し。 し。 し。 	則第113 支術的な評 ・構造物が 又は同評 ようとする、	3条第2項第2号に掲げる原子炉その他の設備の劣化の状 4価の結果、延長しようとする期間において、同評価の対象 ぶ下表に掲げる要求事項(以下「要求事項」という。)に適 価の結果、要求事項に適合しない場合には同項第3号に掲 う期間における原子炉その他の設備に係る施設管理方針の 延長しようとする期間において、要求事項に適合するこ					
	コンクリート構造	<u>ンクリ</u> ートの強 度低下	熱放射線昭射	 ○評価対象部位のコンクリートの温度が制限値(貫通部は90℃、その他の部位は65℃)を超えたことがある場合は、耐力評価を行い、その結果、当該部位を構成する部材又は構造体の耐力が設計荷重を上回ること。 ○評価対象部位の累積放射線照射量が、コンクリート強度に影響を及ぼす可能性のある値を超えている又は超した。 					
	宣物			える可能性が認められる場合は、耐力評価を行い、そ の結果、当該部位を構成する部材又は構造体の耐力が 設計荷重を上回ること。					
			中性化	○評価対象部位の中性化深さが、鉄筋が腐食し始める深 さまで進行しているか又は進行する可能性が認められ る場合は、耐力評価を行い、その結果、当該部位を構 成する部材又は構造体の耐力が設計荷重を上回るこ と。					
実用発電用 原子炉の運 転の期間の		塩分: 透	塩分浸 透	○評価対象部位に塩分浸透による鉄筋腐食により有意な ひび割れが発生しているか又は発生する可能性が認め られる場合は、耐力評価を行い、その結果、当該部位 を構成する部材又は構造体の耐力が設計荷重を上回る こと。					
延長の審査 基準			アルカ リ骨材 反応	○評価対象部位にアルカリ骨材反応による有意なひび割 れが発生している場合は、耐力評価を行い、その結果、 当該部位を構成する部材又は構造体の耐力が設計荷重 を上回ること。					
			機械振動	〇評価対象機器のコングリート基礎への定着部周辺コン クリート表面に機械振動による有意なひび割れが発生 している場合は、耐力評価を行い、その結果、当該部 位を構成する部材又は構造体の耐力が設計荷重を上回 ること。					
							凍結融 解	○評価対象部位に凍結融解による有意なひび割れが発生 している場合は、耐力評価を行い、その結果、当該部 位を構成する部材又は構造体の耐力が設計荷重を上回 ること。	
		コンクリ ートの遮 蔽能力低 下	熱	○中性子遮蔽のコンクリートの温度が 88℃又はガンマ 線遮蔽のコンクリートの温度が 177℃を超えたことが ある場合は、評価を行い、その結果、当該部位を構成 する部材又は構造体の遮蔽能力が原子炉設置(変更) 許可における遮蔽能力を下回らないこと。					
		鉄骨の強 度低下	腐食風など	 ○評価対象部位に腐食による断面欠損が生じている場合 は、耐力評価を行い、その結果、当該部位を構成する 部材又は構造体の耐力が設計荷重を上回ること。 ○評価対象部位に風などの繰り返し荷重による疲労破壊 					
			による 疲労	が発生している又は発生する可能性が認められる場合 は、耐力評価を行い、その結果、当該部位を構成する 部材又は構造体の耐力が設計荷重を上回ること。					

表2 コンクリート構造物および鉄骨構造物評価についての要求事項(2/3)

審査基準、ガイド	要求事項
	3.2(1)「延長しようとする期間における運転に伴い生ずる原子
	炉その他の設備の劣化の状況に関する技術的な評価」(以下「劣化
	状況評価」という。)の記載内容について評価の対象とする機器・
	構造物及び評価手法は、実用炉規則第82条第2項に規定する運転
	開始後40年を迎える発電用原子炉に係る発電用原子炉施設につ
	いての経年劣化に関する技術的な評価におけるものと同様とする。
	特に運転期間延長認可申請に伴うものとして評価を行い、その結果
	の記載が求められる事項は次のとおり。
	①上記3.1の特別点検の結果を踏まえた劣化状況評価。
	④実用発電用原子炉及びその附属施設の技術基準に関する規則(平
実用発電用原子炉	成25年原子力規制委員会規則第6号。以下「技術基準規則」と
の運転期間延長認	いう。)(運転開始以後40年を経過する日において適用されて
可申請に係る運用	いるものに限る。)に定める基準に照らした評価。
ガイド	
	3.3(1)「延長しようとする期間における原子炉その他の設備に
	係る施設管理方針」(以下「施設管理方針」という。)の策定に係
	る手法は、実用炉規則第82条第2項に規定する運転開始後40年
	を迎える発電用原子炉に係る発電用原子炉施設についての施設管
	理に関する方針の策定と同様とする。特に運転期間延長認可申請に
	伴い策定するものとして記載が求められる事項は次のとおり。な
	お、3.2(2)⑯の評価結果を申請の補正として示す場合には、
	当該評価結果に関する施設管理方針について、当該評価結果と合わ
	せて申請の補正として示すことができる。
	①上記3.2の劣化状況評価を踏まえた施設管理方針。
	3. 高経年化技術評価等の審査の視点・着眼点
	(1)高経年化技術評価の審査
	実施ガイド3.1⑤に規定する期間の満了日までの期間につい
	て、 局経年化対策上者目すべき経年劣化事象の発生义は進展に係
ᆃᄪᇔᆂᄪᄙᆿᅝ	る健全性を評価していることを番金する。
実用発電用原子炉	
施設における高経	健全性評価結果から現状の保全策の妥当性か評価されているこ したます トス
年化対策番査ガイ	とを畨金する。
F .	四世加保全東の抽出 明小児への証何は思えこ 明小児へに迫知よる必要のたるがた。
	現状保全の評価結果から、現状保全に迫加りる必要のめる新に れの人類が抽測されていることを定ちます。
	「な休王來が拙田されしいることを眷住する。 (9) 月期歩調笠珊士組の塞木
	(4) 区別地区目埋刀町の番笛 ① 巨期協設管理士組の筆完
	①区 別 肥 取 目 埋 力 到 り 承 足 すべて の 迫 加 児 今 筆 に っ い て 足 期 児 空 塔 理 士 針 し し て 挙 守 そ わ
	9** い 2 小 本 主 不 に つい し 文 別 体 寸 目 垤 万 町 と し し 來 止 さ 化 て い 2 か た 家 本 ナ 2
	しいるがを衝迫する。

審査基準、ガイド	要求事項
	3.1 高経年化技術評価の実施及び見直し
	高経年化技術評価の実施及び見直しに当たっては、以下の要求事
	項を満たすこと。
	⑤ 抽出された高経年化対策上着目すべき経年劣化事象について、
	以下に規定する期間の満了日までの期間について機器・構造物の
	健全性評価を行うとともに、必要に応じ現状の施設管理に追加す
	べき保全策(以下「追加保全策」という。)を抽出すること。
	ロ 美用炉規則第82余第2頃又は第3頃の規定に基づく高経年
	1 11111111111111111111111111111111111
	第2頃又は第3頃に尻足りる延茂りる朔間を加えた朔間3.2 長期協設管理方針の第定及び変更
	民动地铁首星为 <u>到</u> 07米足及0 发文
実用発電用原子炉	3.2 長期施設管理方針の策定及び変更
施設における高経	長期施設管理方針の策定及び変更に当たっては、以下の要求事項
年化対策実施ガイ	を満たすこと。
ド	①高経年化技術評価の結果抽出された全ての追加保全策(発電用
	原子炉の運転を断続的に行うことを前提として抽出されたも
	の及び冷温停止状態が維持されることを前提として抽出され
	たものの全て。)について、発電用原子炉ごとに、施設管理の
	4日及び当該項日ことの美施時期を規定した長期施設官埋方 4.5年安全まであり。
	ゴを 床 し う い こ う い か か い う い か か い う い か か い う い か か い う い か か い う い い か か か か
	なわ、同程中化仅附計価の超未価山された更加保主衆について 必需田原子店の運転を断続的に行うことを前提とした証価
	から抽出されたものと冷温停止状能が維持されることを前提
	とした評価から抽出されたものの間で、その対象の経年劣化事
	象及び機器・構造物の部位が重複するものについては、双方の
	追加保全策を踏まえた保守的な長期施設管理方針を策定する
	こと。

表2 コンクリート構造物および鉄骨構造物評価についての要求事項(3/3)

- 3. 代表構造物の選定
 - 3.1 代表構造物の選定手順
 - コンクリート構造物および鉄骨構造物の強度低下、遮蔽能力低下、耐火能力低下が 想定される構造物は多数存在するため、劣化状況評価では、評価対象となる構造物の 中から代表構造物を選定して評価を行う。評価対象構造物、代表構造物などは、以下 の手順にて選定する。
 - 3.1.1 評価対象構造物の選定とグループ化

多数の構造物の中から、「重要度指針におけるクラス1、2に該当する構造物ま たは該当する機器を支持する構造物」「重要度指針におけるクラス3に該当する 高温・高圧の環境下にある機器を支持する構造物」「浸水防護施設に属する構造物」 「常設重大事故等対処設備、常設重大事故等対処設備を支持する構造物」に該当

する構造物を選定し、コンクリート構造物と鉄骨構造物にグループ化を実施した。 なお、選定した対象構造物には、火災防護設備に属する構造物を含む。 評価対象構造物の選定とグループ化の結果を表3に示す。

3.1.2 代表構造物の選定

グループ化した評価対象構造物について、使用条件などを考慮して代表構造物 を選定した。コンクリート構造物の選定結果を表4に、鉄骨構造物の選定結果を 表5にそれぞれ示す。

3.1.3 劣化要因ごとの評価対象部位などの選定

代表構造物について、劣化要因ごとに使用環境などを考慮して評価対象部位、 評価点を選定した。

対象構造物	重要度分類	コンクリート 構造物	鉄骨構造物
外部遮蔽壁	クラス1支持設備	0	_
外部遮蔽壁(4 号炉)	常設重大事故等 対処設備支持	0	—
内部コンクリート	クラス1支持設備	0	○ (鉄骨部)
原子炉格納施設基礎	クラス1支持設備	0	_
原子炉補助建屋	クラス1支持設備	0	○ (鉄骨部)
原子炉補助建屋 (1・2号炉)	クラス3支持設備	0	○ (鉄骨部)
原子炉補助建屋 (4号炉)	クラス1支持設備	0	○ (鉄骨部)
取水構造物	クラス1支持設備 浸水防護施設	0	○ (浸水防止蓋)
取水構造物 (1・2号炉)	浸水防護施設支持	0	—
タービン建屋	クラス3支持設備	0	○ (鉄骨部)
緊急時対策所建屋	常設重大事故等 対処設備支持	0	_
非常用ディーゼル発電 用燃料油貯油槽基礎 (配管トレンチ含む)	クラス1支持設備	0	_
復水タンク基礎	クラス1支持設備	0	_
防潮ゲート (道路部、水路部)	浸水防護施設	○ (道路部、水路部)	○ (水路部)
放水口側防潮堤 (防潮扉含む)	浸水防護施設	0	0
屋外排水路 逆流防止設備	浸水防護施設	_	0
放水ピット止水板	浸水防護施設	_	0

表3 評価対象構造物のグループ化

			使 用 条 件								122	
	対象構造物	重要度分類等	運転開始後	高温部の	放射線の	振動の	設置	環境	供給	耐火要求	選	選定理由
	(ユンクリード神道物)		経過年数*1	有無	有無	有無	屋内	屋外	塩化物量	の有無	Æ	
1	外部遮蔽壁	クラス1設備支持	37	\diamond	\diamond	_	一部 仕上げ無し	仕上げ有り	\diamond	_	0	屋内で仕上げ無し
2	外部遮蔽壁(4号炉)	常設重大事故等 対処設備	37	\diamond	\diamond	_	一部 仕上げ無し	仕上げ有り	\diamond	_	0	屋内で仕上げ無し
3	内部コンクリート	クラス1設備支持	37	○ (1次遮蔽壁)	○ (1次遮蔽壁)	_	一部仕上げ無し	_	_	_	0	高温部、放射線の影響、 屋内で仕上げ無し
4	原子炉格納施設基礎	クラス1設備支持	37	_	\diamond	_	一部 仕上げ無し	埋設* ²	\diamond		0	代表構造物を支持する構 造物 屋内で仕上げ無し
5	原子炉補助建屋	クラス1設備支持	3 7	\diamond	\diamond	○ (非常用ディーゼル 発電機基礎)	一部 仕上げ無し	仕上げ有り	\diamond	_	0	振動の影響、 屋内で仕上げ無し
6	原子炉補助建屋(1・2号炉)	クラス3設備支持	4 7	\diamond	\diamond	_	一部仕上げ無し	仕上げ有り	\diamond	_	0	屋内で仕上げ無し 運転開始後経過年数
\bigcirc	原子炉補助建屋(4号炉)	クラス1設備支持	37	\diamond	\diamond	-	一部 仕上げ無し	仕上げ有り	\diamond	—	0	屋内で仕上げ無し
8	取水構造物	クラス1設備支持	3 7	_	_	_		仕上げ無し	○ (海水と接触)	_	0	屋外で仕上げ無し、 供給塩化物量の影響 運転開始後経過年数
9	取水構造物(1・2号炉)	浸水防護施設支持	4 7	_	_	-		仕上げ無し	〇 (海水と接触)	-	0	屋外で仕上げ無し、 供給塩化物量の影響 運転開始後経過年数
10	タービン建屋	クラス3設備支持	37	_	_	〇 (タービン架台)	一部 仕上げ無し	埋設* ²	\diamond		\odot	振動の影響、 屋内で仕上げ無し
	緊急時対策所建屋	常設重大事故等 対処設備	3	_	_	_	一部 仕上げ無し	仕上げ有り	\diamond	_		
12	非常用ディーゼル発電用燃料油貯 油槽基礎(配管トレンチ含む)	クラス1設備支持	37	_	_	_		仕上げ無し	\diamond	_		
13	復水タンク基礎	クラス1設備支持	37	-	-			仕上げ無し	\diamond			
14	防潮ゲート(道路部、水路部)	浸水防護施設	6	_	_	_		仕上げ無し	〇 (海水と接触)			
(15)	放水口側防潮堤(防潮扉含む)	浸水防護施設	6	_				仕上げ無し	\diamond			

表4 高浜3号炉 コンクリート構造物における代表構造物選定結果

*1:運転開始後経過年数は、2022年10月時点の年数としている。

*2:環境条件の区分として、土中は一般の環境として区分されることから、他の屋外で仕上げがない構造物で代表させる。

【凡例】

〇:影響大

◇:影響小

-:影響極小、または無し

対象構造物 (鉄骨構造物)			使用条件						
		重要度分類等	運転開始後	設置		選定	選定理由		
			経過年数*1	屋内	屋 外	使用材料			
1	内部コンクリート(鉄骨部)	クラス1設備支持	37	仕上げ有り		炭素鋼	0	使用材料、運転開始後経過年数	
2	原子炉補助建屋(鉄骨部)	クラス2設備支持	37	仕上げ有り		炭素鋼	0	使用材料、運転開始後経過年数	
3	原子炉補助建屋(1・2号炉)(鉄骨部)	クラス3設備支持	4 7	仕上げ有り		炭素鋼	0	使用材料、運転開始後経過年数	
4	原子炉補助建屋(4号炉)(鉄骨部)	クラス2設備支持	37	仕上げ有り		炭素鋼	0	使用材料、運転開始後経過年数	
5	タービン建屋(鉄骨部)	クラス3設備支持	37	仕上げ有り		炭素鋼	0	使用材料、運転開始後経過年数	
6	取水構造物 (浸水防止蓋)	浸水防護施設	6		仕上げ有り	ステンレス鋼			
\bigcirc	防潮ゲート(水路部)	浸水防護施設	6		仕上げ有り	炭素鋼			
8	放水口側防潮堤(防潮扉含む)	浸水防護施設	6		仕上げ有り	炭素鋼 アルミ合金			
9	屋外排水路逆流防止設備	浸水防護施設	6		仕上げ有り	ステンレス鋼			
10	放水ピット止水板	浸水防護施設	6		仕上げ有り	炭素鋼			

表5 高浜3号炉 鉄骨構造物における代表構造物選定結果

*1:運転開始後経過年数は、2022年10月時点の年数としている。

3.2 高経年化対策上着目すべき経年劣化事象の抽出

高経年化対策上着目すべき経年劣化事象を表6に示す。表1に示した経年劣化事象 のうち、後述する①と②以外について、高経年化対策上着目すべき経年劣化事象とし て抽出した。

構造物	経年劣化事象	劣化要因
		熱
		放射線照射
コンクリート	強度低下	中性化
構造物		塩分浸透
		機械振動
	遮蔽能力低下	熱

表6 高経年化対策上着目すべき経年劣化事象

 高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象) 表7に示す経年劣化事象については、想定した劣化傾向等を踏まえ適切な保全活動を行っていることから、高経年化対策上着目すべき経年劣化事象ではない事象と 判断した。なお、コンクリート構造物および鉄骨構造物の保全活動は、「高浜発電所 土木建築業務所則」(以下、「土建業務所則」という。)に基づき実施している。

具体的な点検および補修の実績を表8に示す。また、土建業務所則における目視点 検の項目、方法および判定基準を別紙1に示す。

	経年劣化	少しまり	高経年化対策上着目すべき経年劣化事象ではない
怖 道物	事象	务化安囚	事象とする理由
			使用している骨材については、試験によりコンク
			リート構造物の健全性に影響を与えるような反応性
		アルカリ	がないことを確認しており、また、定期的に土建業務
		骨材反応	所則に基づく目視点検を行っており、アルカリ骨材
			反応に起因すると判断されるひび割れ等は認められ
			ていない。
	改度低下		日本建築学会「建築工事標準仕様書・同解説 JA
	烟度似下		SS5 鉄筋コンクリート工事(2018)」に示さ
コンク		凍結融解	れる凍害危険度の分布図によると高浜3号炉の周辺
リート			地域は凍害危険度が設定されておらず、凍害の予想
構造物			程度が「ごく軽微」とされる凍害危険度1よりさらに
			危険度が低い。また、定期的に土建業務所則に基づく
			目視点検を行っており、凍結融解に起因すると判断
			されるひび割れ等は認められていない。
		火災時 などの熱	コンクリート構造物は通常の使用環境において、
	耐い能力		コンクリート構造物の断面厚が減少することはな
			く、また、定期的に土建業務所則に基づく目視点検を
	144		行っており、火災時などの熱に起因すると判断され
			る断面厚の減少は認められていない。
			定期的に土建業務所則に基づく目視確認を実施し
			ており、強度に支障をきたす可能性のあるような鋼
鉄骨	改度低下	府合	材の腐食は認められていない。また、鉄骨の強度に支
構造物	四度似下		障をきたす可能性があるような鋼材の腐食に影響す
			る塗装の劣化等が認められた場合には、その部分の
			塗装の塗替え等を行うこととしている。

表7 日常劣化管理事象

構造物	経年 劣化 事象	劣化 要因	代表構造物	点検 方法	点検 頻度	点検結果	補修 実績
	強度 低下	アルカリ 骨材反応	外部遮蔽壁 外部遮蔽壁(4号炉) 内部コンクリート 原子炉格納施設基礎 原子炉補助建屋	目視点検	1回 /年	アルカリ骨材反 応に起因すると 判断されるひび 割れは認められ ていない	補修 実績 なし
コンク リート 構造物		凍結 融解	原子炉補助建屋 原子炉補助建屋(1・ 2号炉) 原子炉補助建屋(4	目視 点検	1回 /年	凍結融解に起因 すると判断され るひび割れは認 められていない	補修 実績 なし
	耐火 能力 低下	火災時 などの熱	5 ^{か)} 取水構造物 ^{*1} 取水構造物(1・2号 炉) ^{*1} タービン建屋	目視点検	1回 /年	火災時などの熱 に起因すると判 断される断面厚 の減少は認めら れていない	補 ょ な し
鉄骨 構造物	強度 低下	腐食	 内部コンクリート (鉄骨部) 原子炉補助建屋 (鉄骨部) 原子炉補助建屋(1・ 2号炉)(鉄骨部) 原子炉補助建屋(4 号炉)(鉄骨部) タービン建屋 (鉄骨部) 	目視点検	1回 /年	有害な腐食は認 められていない	補 実 な し

表8 日常劣化管理事象に関する点検および補修の実績

※1 取水構造物(水路部)の点検頻度は1回/4年

② 高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象以外)
 表9 に示す経年劣化事象については、対象となる構造物が無く、高経年化対策上
 着目すべき経年劣化事象ではない事象と判断した。

構造物	経年劣化 事象	劣化要因	高経年化対策上着目すべき経年劣化事象ではない 事象とする理由
鉄骨	強度低下	風などに よる疲労	煙突などの形状の構造物は、比較的アスペクト比 (高さの幅に対する比)が大きく、風の直交方向に振 動が発生する恐れがある(日本建築学会「原子力施設 における建築物の維持管理指針・同解説(201 5)」)。日本建築学会「建築物荷重指針・同解説 (2015)」において、アスペクト比が4以上の構 造物は風による振動の検討が必要とされているが、鉄 骨構造物にアスペクト比が4以上の構造物はない。

表 9 日常劣化管理事象以外

3.3 劣化要因ごとの評価対象部位の選定結果

経年劣化事象に対する劣化要因ごとの評価対象部位について、選定した結果を表 10 に示す。

- 表 10 - 局浜3亏炉 - コンクリート構造物およい鉄宜構造物に想足される経年务化事家と評価対象と	する構造物
--	-------

	構 造 種 別				コン	ノクリート構造	查物				鉄骨椎	冓造物
	経年劣化事象							遮蔽能力低下	耐火能力	強度	低下	
	要 因	熱	放射線照射	中性化	塩分 浸透	機械 振動	アルカリ 骨材反応	凍結融解	熱	低下	腐食	風などに よる疲労
	外部遮蔽壁						\bigtriangleup	\bigtriangleup		\bigtriangleup		
	外部遮蔽壁(4号炉)						\bigtriangleup	\bigtriangleup		\bigtriangleup		
	内部コンクリート	1次遮蔽壁* ○	1 次遮蔽壁* ○				\bigtriangleup	\bigtriangleup	1 次遮蔽壁* ○	\bigtriangleup	鉄骨部 △	鉄骨部
	原子炉格納施設基礎						\bigtriangleup	\bigtriangleup				
代	原子炉補助建屋			内壁及び床* 基礎マット*		非常用ディーゼル 発電機基礎* 〇	\bigtriangleup			Δ	鉄骨部 △	鉄骨部
表	原子炉補助建屋 (1・2号炉)			基礎マット* ○			\bigtriangleup	\bigtriangleup		\bigtriangleup	鉄骨部 △	鉄骨部 ▲
構	原子炉補助建屋 (4号炉)						\bigtriangleup	Δ		\bigtriangleup	鉄骨部 △	鉄骨部 ▲
造 物	取水構造物			気中帯* ○	気中帯* 干満帯* 海中帯* ○		\bigtriangleup			Δ		
	取水構造物 (1・2号炉)			気中帯* ○	気中帯* 干満帯* 海中帯* ○		\bigtriangleup					
	タービン建屋					タービン架台* 〇	タービン架台 △	タービン架台 △			鉄骨部 △	鉄骨部

○:高経年化対策上着目すべき経年劣化事象(表中の○に対応する代表構造物:評価対象とする構造物)

△:高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象)

▲:高経年化対策上着目すべき経年劣化事象ではない事象(日常劣化管理事象以外)

*:評価対象部位

- 4. 代表構造物の技術評価
 - 4.1 コンクリートの強度低下
 - 4.1.1 熱による強度低下
 - (1) 評価の概要

評価対象部位は、代表構造物のうち、運転時に最も高温状態となる内部コンク リートの(1次遮蔽壁)とした。

評価点は、ガンマ発熱の影響の最も大きい炉心領域部および原子炉容器サポート(RVサポート)直下部とした。1次遮蔽壁の概要を図1に示す。

評価については、コンクリートの温度制限値と温度分布解析の結果を比較した。

図1 1次遮蔽壁の概要

(2) 評価結果

解析の結果、コンクリートの最高温度は約56℃であり、制限値¹⁾である65℃ 以下であるため、健全性評価上問題とはならない。 なお、強度・機能に影響を及ぼさない範囲で熱の評価点に最も近い位置から採 取したコアサンプルについて、特別点検において強度試験を行った結果、平均圧 縮強度が設計基準強度を上回っていることを確認した(表 11)。

表 11 熱の評価点近傍におけるコンクリートの強度試験結果

	実施時期 平均圧縮強度		設計基準強度	
内部コンクリート (1次遮蔽壁)	2022 年	39.6 N/mm ²	24.5 N/mm ²	

- 4.1.2 放射線による強度低下
- (1) 評価の概要

評価対象部位を内部コンクリートの1次遮蔽壁、評価点を中性子およびガンマ 線照射量が最大となる1次遮蔽壁炉心側コンクリートとした。

評価については、評価点における運転開始後60年時点で予想される中性子照 射量およびガンマ線照射量と、既往の知見によりコンクリート強度の低下が確認 されている中性子照射量及びガンマ線照射量の閾値を比較した。

- (2) 評価結果
 - a)中性子照射量

中性子照射と強度の関係に関しては、従来 Hilsdorf 他の文献²⁾における「中 性子照射したコンクリートの圧縮強度 (fcu) と照射しないコンクリートの圧縮 強度 (fcuo)の変化」を参照していた。一方、小嶋ほかの試験結果³⁾を踏まえ た最新知見によると、コンクリートの圧縮強度は、およそ1×10¹⁹ n/cm² (E> 0.1 MeV)の中性子照射量から低下する可能性が確認されている。

高浜3号炉の運転開始後60年時点における中性子照射量は約5.62×1 0¹⁹n/cm²(E>0.098MeV)で、照射量が1×10¹⁹n/cm²(E>0.098 MeV)を超える範囲は、1次遮蔽壁の厚さ(最小壁厚279cm)に比べて小さく、 深さ方向に最大でも12cm程度であることを踏まえ、耐力評価として、保守的 に内部コンクリート(1次遮蔽壁)からこの範囲を除いても、コンクリートの 圧縮耐力が地震時の鉛直荷重などの設計荷重を上回ること、また、日本電気協 会「原子力発電所耐震設計技術指針(JEAG 4601-1987)」に基づく内部コンクリ ートの最大せん断ひずみ評価に対して影響がないことを確認している。

b) ガンマ線照射量

ガンマ線照射量と強度の関係に関する Hilsdorf 他の文献²⁾ によると、少な くとも2×10⁸Gy (2×10¹⁰rad) 程度のガンマ線照射量では有意な強度 低下はみられない。

高浜3号炉の運転開始後60年時点におけるガンマ線照射量は約1.75× 10¹⁰radで、照射量が2×10¹⁰radを下回っていることから、内部コンク リート(1次遮蔽壁)の強度への影響はないものと考えられる。

以上から、放射線照射による強度低下に対しては、健全性評価上問題とはならない。

なお、強度・機能に影響を及ぼさない範囲で放射線照射の評価点に最も近い位 置から採取したコアサンプルについて、特別点検において強度試験を行った結果、 平均圧縮強度が設計基準強度を上回っていることを確認した(表 12)。

表 12 放射線照射の評価点近傍におけるコンクリートの強度試験結果

	実施時期	平均圧縮強度	設計基準強度
内部コンクリート (1次遮蔽壁)	2022 年	39.6 N/mm ²	24.5 N/mm ²

- 4.1.3 中性化による強度低下
- (1) 評価の概要

評価対象部位の候補として、代表構造物全て(外部遮蔽壁、内部コンクリート、 原子炉格納施設基礎、原子炉補助建屋、取水構造物およびタービン建屋)が該当 する。

このうち、評価点として、空気環境の違いが中性化の進展に影響を与えること を踏まえ、屋内については空気環境の実測値を踏まえた中性化への影響度が最も 大きい原子炉補助建屋のうち内壁及び床、屋外については空気環境に大きな違い が生じないため空気との接触時間が長い取水構造物のうち気中帯を選定した。加 えて実測値が最大であった原子炉補助建屋のうち基礎マットを選定した。

さらに、運転開始後の経過年が大きい原子炉補助建屋(1・2号炉)および取 水構造物(1・2号炉)についても評価対象とし、高浜1・2号炉における特別 点検の結果を踏まえ、原子炉補助建屋(1・2号炉)(基礎マット)および取水構 造物(1・2号炉)(気中帯)をそれぞれ評価対象として選定した。

評価については、以下の手順にて実施した。

a)運転開始後60年時点における中性化深さの算出

中性化深さの実測値、空気環境測定値などを入力とした中性化速度式((岸谷 式⁴⁾(原子炉補助建屋(1・2号炉)(基礎マット)および取水構造物(1・2 号炉)(気中帯)のみ)、森永式⁵⁾および実測値に基づく√t式⁶⁾)により、運 転開始後60年経過時点の中性化深さを算出

b) 最大中性化深さ推定値の抽出

中性化速度式により得られる中性化深さのうち、最大値となる中性化深さを 抽出

c)鉄筋が腐食し始める時の中性化深さの算出

鉄筋が腐食し始める時の中性化深さとして、屋内はかぶり厚さに2cmを加えた値、屋外はかぶり厚さの値をそれぞれ算出

d) 運転開始後60年経過時点の中性化深さの評価

b)と c)の中性化深さを比較

(2) 評価結果

表 13 に示すとおり、運転開始後60年経過時点における中性化深さが最大と なる評価点において、鉄筋が腐食し始める時点の中性化深さを下回っていること から、健全性評価上問題とはならない。

	調査	時点の中性	も 化深さ	3号炉運転開始後	鉄筋が腐食
	経過年数	実測値 (cm)	推定値 (cm) (推定式)	60年経過時点の 中性化深さ (cm) (推定式)	し始める時の 中性化深さ (cm)
原子炉補助建屋 (基礎マット)	37年	2.4	1.4 (森永式)	3.1 ^{*4} (√t式)	6. 0
原子炉補助建屋 (内壁及び床)	36年	0.3	3.2 (森永式)	4. 0 ^{*4} (森永式)	6. 0
取水構造物 (気中帯)	37年	0.5	0.6 (森永式)	0.7 ^{*4} (√t式)	8.5
原子炉補助建屋 (1・2号炉) (基礎マット)	30年*1	3. 5	4. 4 ^{*3} (岸谷式)	5. 8 ^{* 5 * 6} (岸谷式)	10.0
取水構造物 (1・2号炉) (気中帯)	30年*2	0.4	2. 3 ^{*3} (岸谷式)	3. 0 ^{*5*7} (岸谷式)	8.5

表13 運転開始後60年後時点と鉄筋が腐食し始める時点の中性化深さの比較

*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。

*2:3号炉運転開始後の経過年数を示す。2号炉運転開始後の経過年数は39年。

*3:岸谷式および森永式による評価結果のうち最大値を記載

*4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載

*5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載

*6:1号炉運転開始後の経過年数は71年。

*7:2号炉運転開始後の経過年数は70年。

- 4.1.4 塩分浸透による強度低下
- (1) 評価の概要

評価対象部位の候補として、代表構造物のうち屋外の構造物である外部遮蔽壁、 原子炉補助建屋および取水構造物が該当する。

このうち、海水に接触するため供給塩分量が多い取水構造物を評価対象部位と し、評価点として、最高潮位および最低潮位を考慮したうえで、環境条件が異な る気中帯、干満帯および海中帯を選定した。

評価については、以下の手順にて実施した。

- a) 運転開始後60年時点における鉄筋腐食減量の算出 ①拡散方程式:点検による塩化物イオン濃度の測定結果をもとに、運転開始経 過年ごとの鉄筋位置における塩化物イオン量を算出
 - ②森永式⁵⁾ : 塩化物イオン量を用いて運転開始経過年数ごとの鉄筋腐食減量
 を算出
- b) かぶりコンクリートにひび割れが発生する時点における鉄筋腐食減量の算出
 森永式 :鉄筋径およびかぶり厚さを用いて、かぶりコンクリートにひび
 割れが発生する時点における鉄筋腐食減量を算出
- c) 運転開始後60年時点における鉄筋腐食減量の評価a)とb)の鉄筋腐食減量を比較
- (2) 評価結果

表14に示すとおり、運転開始後60年経過時点における鉄筋腐食減量は、かぶ りコンクリートにひび割れが発生する時点の鉄筋腐食減量を下回っていること から、健全性評価上問題とはならない。

		鉄筋位置での	鉄筋の腐食減量 (×10 ⁻⁴ g/cm ²)			
	経過年数	経過年数 濃度および量 上段(%) 下段(kg/m ³)		3 号炉運転 開始後 6 0 年経過時点	かぶりコンク リートにひび 割れが発生す る時点	
取水構造物 (気中帯)	37年	$ \begin{array}{cccc} 0. & 0 & 2 \\ (0. & 4 & 7) \end{array} $	3.2	6.0	90.1	
取水構造物 (干満帯)	37年	$\begin{array}{ccc} 0. & 0 & 2 \\ (0. & 4 & 7) \end{array}$	7.0	11.0	88.1	
取水構造物 (海中帯)	37年	$ \begin{array}{cccc} 0. & 0 \\ (0. & 2 \\ 0) \end{array} $	0.0	0.0	88.1	
取水構造物 (1・2号炉) (気中帯)	30年*2	$\begin{array}{ccc} 0. & 2 \ 1 \\ (5. & 1 \ 1) \end{array}$	10.7	26.6^{*4}	90.1	
取水構造物 (1・2号炉) (干満帯)	30年*1	$\begin{array}{ccc} 0. & 0 \ 5 \\ (1. & 2 \ 3) \end{array}$	11.4	21.6 ^{*3}	90.1	
取水構造物 (1・2号炉) (海中帯)	30年*1	$\begin{array}{c} 0. & 3 \ 3 \\ (7. & 8 \ 3) \end{array}$	7.2	19.3 ^{*3}	90.1	

表14 運転開始後60年経過時点と かぶりコンクリートにひび割れが発生する時点の鉄筋腐食減量の比較

*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。

*2:3号炉運転開始後の経過年数を示す。2号炉運転開始後の経過年数は39年。

*3:1号炉運転開始後の経過年数は71年。

*4:2号炉運転開始後の経過年数は70年。

- 4.1.5 機械振動による強度低下
- (1) 評価の概要

評価対象部位の候補として、振動の影響を受けるタービン架台(タービン建屋) および非常用ディーゼル発電機基礎(原子炉補助建屋)、評価点として、局部的に 影響を受ける可能性がある基礎ボルト周辺のコンクリートを評価点として選定 した。

(2) 評価結果

60年間の供用を想定すると、基礎ボルト周辺に機械振動によるひび割れが発 生し強度低下が生じる可能性は否定できないが、機械振動により機器のコンクリ ート基礎への定着部の支持力が失われるような場合、機械の異常振動や定着部周 辺コンクリート表面に有害なひび割れが発生するものと考えられる。したがって、 機械振動による荷重が作用してもコンクリートのひび割れ発生には至らないと 考えられるものの、目視確認でひび割れの発生が検知可能である。

定期的に目視確認を実施しているが、機械振動に起因する有害なひび割れなど は発見されていないことから、健全性評価上問題とならない。

4.1.6 コンクリートの強度試験結果

技術的な評価に加え、コンクリート構造物から採取したコアサンプルについて、 特別点検において強度試験を行った結果、表 15 に示すとおり、試験結果(平均圧 縮強度)が設計基準強度を上回っていることを確認した。

化主体生物	宇坛叶期	学校在长发	平均圧縮強度	設計基準強度
八衣伸迫物	<i>夫</i> 他时别	武 厥固	(N/mm^2)	(N/mm^2)
外部遮蔽壁	2022年	3	32.3	24.5
内部コンクリート	2022年	3	39.6	24.5
原子炉格納施設基礎	2022年	3	42.1	24.5
原子炉補助建屋	2022年	1 5	43.0	24.5
タービン建屋	2022年	9	37.5	20.6
取水構造物	2022年	9	49.4	23.5

表 15 コンクリートの強度試験結果

- 4.2 コンクリートの遮蔽能力低下
 - 4.2.1 熱による強度低下
 - (1) 評価の概要

評価対象部位として内部コンクリートの1次遮蔽壁、評価点として運転時に最 も高温となる炉心領域部を選定し、評価については、制限値と温度分布解析の結 果を比較した。

(2) 評価結果

解析の結果、コンクリートの最高温度は炉心領域部で約56℃であり、中性子 遮蔽の88℃、ガンマ線遮蔽の177℃の制限値⁷⁾以下であることから、健全性 評価上問題とはならない。

なお、評価点近傍から採取したコアサンプルについて、特別点検として確認し た乾燥単位容積質量は2.274g/cm³であり、高浜3号機の内部コンクリート (1次遮蔽壁)のコンクリート密度の設計値は2.2g/cm³である。特別点検とし て確認した乾燥単位容積質量が工事計画認可申請書に記載されているコンクリ ート密度を上回っていることから、放射線障害を防止するために必要な遮蔽能力 を有することを確認した。 4.3 現状保全

コンクリートの強度低下については、強度に支障をきたす可能性のあるような有意 な欠陥がないことを目視点検により定期的に確認し、必要に応じて塗装の塗替えなど の補修を実施している。あわせて、強度に急激な経年劣化が生じていないことを、非 破壊試験による点検において、定期的に確認している。

コンクリートの遮蔽能力低下については、遮蔽能力に支障をきたす可能性があるひ び割れなどの有意な欠陥がないことを目視点検により定期的に確認している。

4.4 総合評価

コンクリートの強度低下については、現状において、設計基準強度を上回っており、 強度低下が急激に発生する可能性は極めて小さいと考えられる。また、ひび割れなど については目視確認で検知可能であり、必要に応じて塗装の塗替えなどの補修を実施 していることから、保全方法は適切であり、現状保全を継続することにより健全性の 維持は可能である。

コンクリートの遮蔽能力低下については、現状において要求値を上回っており、今 後遮蔽能力低下が急激に発生する可能性は極めて小さいと考えられる。また、ひび割 れなどについては目視確認で検知可能であり、保全方法として適切であり、健全性の 維持は可能であると考える。

4.5 高経年化への対応

今後も現状の保全方法により健全性を確認していくものとし、現状保全項目に、高 経年化対策の観点から追加すべきものはない。 5. 代表構造物以外の評価

グループ内全構造物への展開

コンクリート構造物および鉄骨構造物の技術評価については、代表構造物について、 各経年劣化事象に影響を及ぼす要因ごとに使用条件などを考慮して実施しており、グ ループ内構造物の使用条件は代表構造物の使用条件に包含されているため、技術評価 結果も代表構造物の評価結果に包含された結果となる。 6. まとめ

6.1 審查基準適合性

以上の評価結果について、原子力規制委員会「実用発電用原子炉の運転の期間の延 長の審査基準」に規定されている延長しようとする期間における要求事項との対比を 表 16 に示す。

審査基準、 ガイド				要求事項	劣化状况評価結果
	2.他よがすは炉延	実設と表こ項のしよ	炉のる掲、3のう規劣期げ又号設と	則第113条第2項第2号に掲げる原子炉その 化の状況に関する技術的な評価の結果、延長し 間において、同評価の対象となる機器・構造物 る要求事項(以下「要求事項」という。)に適合 は同評価の結果、要求事項に適合しない場合に ・に掲げる延長しようとする期間における原子 備に係る施設管理方針の実施を考慮した上で、 する期間において、要求事項に適合すること。	
	コンクリー	コンクリート	熱	○評価対象部位のコンクリートの温度が制限 値(貫通部は90℃、その他の部位は65℃) を超えたことがある場合は、耐力評価を行 い、その結果、当該部位を構成する部材又は 構造体の耐力が設計荷重を上回ること。	「4.1.1 熱による強度低下」に示すとおり、評価対象部位のコンクリート温度が制限値以下であることを確認した。
	∽構造物	-の強度低下	放射線照射	○評価対象部位の累積放射線照射量が、コン クリート強度に影響を及ぼす可能性のある 値を超えている又は超える可能性が認めら れる場合は、耐力評価を行い、その結果、当 該部位を構成する部材又は構造体の耐力が 設計荷重を上回ること。	「4.1.2 放射線による強度低下」に示すとおり、 評価対象部位における中性子照射量がコンクリ ート強度に影響を及ぼす可能性のある値を超え る部分があるため、構造体の耐力が設計荷重を上 回ることを確認した。
			中性化	○評価対象部位の中性化深さが、鉄筋が腐食し始める深さまで進行しているか又は進行する可能性が認められる場合は、耐力評価を行い、その結果、当該部位を構成する部材又は構造体の耐力が設計荷重を上回ること。	「4.1.3 中性化による強度低下」に示すとおり、 評価対象部位の中性化深さが、鉄筋が腐食し始め る深さまで進行する可能性が認められないこと を確認した。
実用発電 用原子炉 の運転の 期間の延 長の審査 基準			塩分浸透	○評価対象部位に塩分浸透による鉄筋腐食により有意なひび割れが発生しているか又は発生する可能性が認められる場合は、耐力評価を行い、その結果、当該部位を構成する部材又は構造体の耐力が設計荷重を上回ること。	「4.1.4 塩分浸透による強度低下」に示すとお り、評価対象部位に塩分浸透による鉄筋腐食によ りひび割れが発生する可能性が認められないこ とを確認した。
查 中			アルカリ骨材反応	○評価対象部位にアルカリ骨材反応による有 意なひび割れが発生している場合は、耐力 評価を行い、その結果、当該部位を構成する 部材又は構造体の耐力が設計荷重を上回る こと。	「3.2 高経年化対策上着目すべき経年劣化事象 の抽出」に示すとおり、アルカリ骨材反応に起因 すると判断されるひび割れ等は認められておら ず、使用している骨材が反応性骨材ではないこと を確認している。また、特別点検においてコンク リート構造物の健全性に影響を与えるような反 応性がないことを確認した。以上から、今後も経 年劣化の進展が考えられない、または進展傾向が 極めて小さいと考えられることから、高経年化対 策上着目すべき劣化事象ではないと判断した。
			機械振動	○評価対象機器のコンクリート基礎への定着 部周辺コンクリート表面に機械振動による 有意なひび割れが発生している場合は、耐 力評価を行い、その結果、当該部位を構成す る部材又は構造体の耐力が設計荷重を上回 ること。	「4.1.5 機械振動による強度低下」に示すとお り、評価対象機器のコンクリート基礎への定着部 周辺コンクリート表面に機械振動による有意な ひび割れが認められていないことを確認した。
			凍結融解	○評価対象部位に凍結融解による有意なひび 割れが発生している場合は、耐力評価を行 い、その結果、当該部位を構成する部材又は 構造体の耐力が設計荷重を上回ること。	「3.2 高経年化対策上着目すべき経年劣化事象 の抽出」に示すとおり、高浜3号炉は凍害危険度 が設定されておらず、当該の予想程度が「ごく軽 微」とされる凍害危険度1よりさらに危険度が低 く、凍結融解に起因すると判断されるひび割れ等 は認められていないことから、今後も経年劣化の 進展が考えられない、または進展傾向が極めて小 さいと考えられるため、高経年化対策上着目すべ き劣化事象ではないと判断した。

表16 延長しようとする期間における要求事項との対比(1/4)

審査基準、ガイド				要求事項	劣化状況評価結果
	コンクリート構造物	遮蔽能力低下 鉄	熱腐	 ○中性子遮蔽のコンクリートの温度が 88℃又はガンマ線遮蔽のコンクリートの温度が 177℃を超えたことがある場合は、評価を行い、その結果、当該部位を構成する部材又は構造体の遮蔽能力が原子炉設置(変更)許可における 遮蔽能力を下回らないこと。 ○評価対象部位に腐食による断面欠損が 	「4.2 コンクリートの遮蔽能力低下」に示すと おり、中性子遮蔽のコンクリートの温度が 88℃ 以下、またガンマ線遮蔽のコンクリート温度が 177℃以下であることを確認した。
実用発電用 原子炉の運 転の期間の 延長の審査 基準		骨の強度低下	食	生じている場合は、耐力評価を行い、 その結果、当該部位を構成する部材又 は構造体の耐力が設計荷重を上回るこ と。	象の抽出」に示すとおり、鉄骨は塗装により腐食 を防止しており、塗膜が健全であれば腐食進行の 可能性は小さい。また、定期的な目視確認により 塗膜の状態を確認し、鋼材の腐食に影響する塗膜 の劣化などが認められた場合は補修を実施する こととしていることから、想定した劣化傾向と実 際の劣化傾向の乖離が考えがたい経年劣化事象 であって、想定した劣化傾向などに基づき適切な 保全活動を行っているため、高経年化対策上着目 すべき劣化事象ではないと判断した。
			風などによる疲労	○評価対象部位に風などの繰り返し荷重 による疲労破壊が発生している又は発 生する可能性が認められる場合は、耐 力評価を行い、その結果、当該部位を 構成する部材又は構造体の耐力が設計 荷重を上回ること。	「3.2 高経年化対策上着目すべき経年劣化事 象の抽出」に示すとおり、煙突などの形状の構造 物は、比較的アスペクト比(高さの幅に対する比) が大きく、風の直行方向に振動が発生する恐れが ある。アスペクト比が4以上の構造物が風による 振動の検討が必要とされているが、鉄骨構造物に アスペクト比が4以上の構造物はないことから、 今後も経年劣化の進展が考えられない、または進 展傾向が極めて小さいと考えられるため、高経年 化対策上着目すべき劣化事象ではないと判断し た。

表16 延長しようとする期間における要求事項との対比(2/4)

審査基準、ガイド	要求事項	劣化状況評価結果
実用発電用原子 炉の運転期間延 長認用ガイド	 3.2(1)「延長しようとする期間における運転に伴い生ずる 原子炉その他の設備の劣化の状況に関する技術的な評価」 (以下「劣化状況評価」という。)の記載内容について評価の 対象とする機器・構造物及び評価手法は、実用炉規則第82 条第2項に規定する運転開始後40年を迎える発電用原子 炉に係る発電用原子炉施設についての経年劣化に関する技 術的な評価におけるものと同様とする。特に運転期間延長認 可申請に伴うものとして評価を行い、その結果の記載が求め られる事項は次のとおり。 ①上記3.1の特別点検の結果を踏まえた劣化状況評価。 ④実用発電用原子炉及びその附属施設の技術基準に関する 規則(平成25年原子力規制委員会規則第6号。以下「技 術基準規則」という。)(運転開始以後40年を経過する日 において適用されているものに限る。)に定める基準に照 らした評価。 	「4. 代表構造物の技術評価」に 示すとおり、代表構造物について 特別点検を踏まえた劣化状況評 価を実施した。
	3.3(1)「延長しようとする期間における原子炉その他の設備に係る施設管理方針」(以下「施設管理方針」という。)の策定に係る手法は、実用炉規則第82条第2項に規定する運転開始後40年を迎える発電用原子炉に係る発電用原子炉施設についての施設管理に関する方針の策定と同様とする。特に運転期間延長認可申請に伴い策定するものとして記載が求められる事項は次のとおり。なお、3.2(2) 50の評価結果を申請の補正として示す場合には、当該評価結果に関する施設管理方針について、当該評価結果と合わせて申請の補正として示すことができる。 ①上記3.20劣化状況評価を踏まえた施設管理方針。	「4.5 高経年化への対応」に示 すとおり、現状保全項目に、高経 年化対策の観点から追加すべき ものはなく、施設管理に関する方 針として策定する事項はなかっ た。
	 3. 高経年化技術評価等の審査の視点・着眼点 (1)高経年化技術評価の審査 (2)健全性の評価 実施ガイド3.1⑤に規定する期間の満了日までの期間に ついて、高経年化対策上着目すべき経年劣化事象の発生又は 進展に係る健全性を評価していることを審査する。 (3)相状保令の評価 	「4. 代表構造物の技術評価」に 示すとおり、代表構造物について 運転開始後60年時点を想定し た健全性評価を実施した。
実用発電用原子 炉施設における 高経年化対策審 査ガイド	健全性評価結果から現状の保全策の妥当性が評価されて いることを審査する。	4.3 死状保主」に示すとおり、 健全性評価結果から、現状の保全 策が妥当であることを確認した。
	④追加保全策の抽出 現状保全の評価結果から、現状保全に追加する必要のあ る新たな保全策が抽出されていることを審査する。	「4.5 高経年化への対応」に示 すとおり、現状保全項目に、高経 年化対策の観点から追加すべき 新たな保全策はなかった。
	 (2)長期施設管理方針の審査 ①長期施設管理方針の策定 すべての追加保全策について長期施設管理方針として策定 されているかを審査する。 	「4.5 高経年化への対応」に示 すとおり、現状保全項目に、高経 年化対策の観点から追加すべき ものはなく、施設管理に関する方 針として策定する事項はなかっ た。

審査基準、ガイド	要求事項	劣化状況評価結果
	 3.1 高経年化技術評価の実施及び見直し 高経年化技術評価の実施及び見直しに当たっては、以下の要求事項を満たすこと。 (5) 抽出された高経年化対策上着目すべき経年劣化事象について、以下に規定する期間の満了日までの期間について機器・構造物の健全性評価を行うとともに、必要に応じ現状の施設管理に追加すべき保全策(以下「追加保全策」という。)を抽出すること。 ロ実用炉規則第82条第2項又は第3項の規定に基づく高経年化技術評価プラントの運転を開始した日から40年間に同条第2項又は第3項に規定する延長する期間を加たためのの方法になる 	「4.5 高経年化への対応」に示 すとおり、現状保全項目に、高経 年化対策の観点から追加する新 たな保全策はなかった。
実用発電用原子 炉施設における 高経年化対策実 施ガイド	 えた期間3.2 長期施設管理方針の策定及び変更 3.2 長期施設管理方針の策定及び変更 長期施設管理方針の策定及び変更に当たっては、以下の要求事項を満たすこと。 ①高経年化技術評価の結果抽出された全ての追加保全策(発電用原子炉の運転を断続的に行うことを前提として抽出されたもの及び冷温停止状態が維持されることを前提として抽出されたものの全て。)について、発電用原子炉ごとに、施設管理の項目及び当該項目ごとの実施時期を規定した長期施設管理方針を策定すること。 なお、高経年化技術評価の結果抽出された追加保全策について、発電用原子炉の運転を断続的に行うことを前提とした評価から抽出されたものの間で、その対象の経年劣化事象及び機器・構造物の部位が重複するものについては、双方の追加保全策を踏まえた保守的な長期施設管理方針を策定すること。 	「4.5 高経年化への対応」に示 すとおり、現状保全項目に、高経 年化対策の観点から追加すべき ものはなく、施設管理に関する方 針として策定する事項はなかっ た。

表16 延長しようとする期間における要求事項との対比(4/4)
6.2 施設管理に関する方針として策定する事項

コンクリート構造物および鉄骨構造物に関する評価について、施設管理に関する方 針として策定する事項は抽出されなかった。 【参考文献】

- 1) 日本建築学会「原子炉建屋構造設計指針・同解説(1988)」
- 2) Hilsdorf, Kropp, an-d Koch, [[]The Effects of Nuclear Radiation on the Mechanical Propert-ies of Concrete], American Concrete Institute Publication, SP 55-10. 1 9 7 8
- 3) 小嶋他、NTEC-2019-1001「中性子照射がコンクリートの強度に及ぼす影響(2019)」
- 4) 日本建築学会「高耐久性鉄筋コンクリート造設計施工指針(案)・同解説(1991)」
- 5) 森永繁「鉄筋の腐食速度に基づいた鉄筋コンクリート建築物の寿命予測に関する研究-東京大学学位論文(1986)」
- 6) 土木学会「コンクリート標準示方書 維持管理編(2013)」
- 7) 「コンクリート遮蔽体設計規準」(R.G.Jaeger et al. 「Engineering Compendium on Radiation Shielding(ECRS) VOL.2」)

別紙1

タイトル	社内標準における目視点検の項目、方法および判定基準について
説明	「原子力発電所 土木設備点検要綱指針」および「原子力発電所 建築設備点検要綱指針」に基づき定期的に実施する目視点検の項目、方法および判定基準を以下に示す。
	 添付1 定期点検標準(土木設備)(抜粋) 添付2 建築設備の定期点検内容一覧表(建築設備)(コンクリート構造物および鉄骨構造物(抜粋)) 添付3 建物設備(部位)と確認内容(建築設備)(コンクリート構造物および鉄骨構造物(抜粋)) 添付4 目視点検によるコンクリート構造物の劣化の評価基準(土木設備・建築設備共通)

定期点検標準(土木設備)(抜粋)

(設備箇所については、他施設にも準用出来る。)

所	点	検	事	項	点検頻度		点	検	方	法		備	考
											L		-
陸上部													
海上部													
水中部													
水路部 (内													
书()													
陸上部													
海上部													
	所 水 海上部 本 本中部 部 正部 第	所 点 陸上部 淋 水 水 水 本	所 点 検 陸上部 - <th>所 点 検 事 陸上部 - 海上部 - 水路部 (內) - 陸上部 - 海上部 - </th> <th>所 点 検 事 項 陸上部 - 海上部 - 水中部 - 水中部 - 水中部 - 水中部 - 水日 - 水中部 - 水中部 - 水中部 - 水中部 - 水中部 - 小市部 - 市 - 水中部 - 市 - 水中部 - ホー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</th> <th>所 点 検 事 項 点検頻度 陸上部 - - - 海上部 - - - - 水中部 - - - - 水中部 - - - - - 水中部 - - - - - - 水中部 - - - - - - - 水中部 -<th>所 点 検 事 項 点検顔度 陸上部 - - - 海上部 - - - 水中部 - - - 水中部 - - - 水中部 - - - 水中部 - - - 市 - - - 市<市 - - - 市<市 - - - 海上部 - - -</th><th>所 点 検 事 項 点検頻度 点 陸上部 - - - - 海上部 - - - - 水中部 - - - - 小市部 - - - - 小市部 - - - - 藤上部 - - - - 海上部 - - - -</th><th>所 点 検 事 項 点検頻度 点 検 陸上部 </th><th>所 点検事項 点検頻度 点検方 陸上部 海上部 水中部 水中部 水中部 水日部 水日部 水日部</th><th>所 点 検 事 項 点検頻度 点 検 方 法 陸上部 水中部 水中部 水中部 水中部 水日部 水日部 水日部 水日部 (N) (P) (P) <</th><th>所 点 検 事 項 点検頻度 点 検 方 法 陳上部</th><th>所 点検事項 点検期度 点検方法 備</th></th>	所 点 検 事 陸上部 - 海上部 - 水路部 (內) - 陸上部 - 海上部 -	所 点 検 事 項 陸上部 - 海上部 - 水中部 - 水中部 - 水中部 - 水中部 - 水日 - 水中部 - 水中部 - 水中部 - 水中部 - 水中部 - 小市部 - 市 - 水中部 - 市 - 水中部 - ホー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	所 点 検 事 項 点検頻度 陸上部 - - - 海上部 - - - - 水中部 - - - - 水中部 - - - - - 水中部 - - - - - - 水中部 - - - - - - - 水中部 - <th>所 点 検 事 項 点検顔度 陸上部 - - - 海上部 - - - 水中部 - - - 水中部 - - - 水中部 - - - 水中部 - - - 市 - - - 市<市 - - - 市<市 - - - 海上部 - - -</th> <th>所 点 検 事 項 点検頻度 点 陸上部 - - - - 海上部 - - - - 水中部 - - - - 小市部 - - - - 小市部 - - - - 藤上部 - - - - 海上部 - - - -</th> <th>所 点 検 事 項 点検頻度 点 検 陸上部 </th> <th>所 点検事項 点検頻度 点検方 陸上部 海上部 水中部 水中部 水中部 水日部 水日部 水日部</th> <th>所 点 検 事 項 点検頻度 点 検 方 法 陸上部 水中部 水中部 水中部 水中部 水日部 水日部 水日部 水日部 (N) (P) (P) <</th> <th>所 点 検 事 項 点検頻度 点 検 方 法 陳上部</th> <th>所 点検事項 点検期度 点検方法 備</th>	所 点 検 事 項 点検顔度 陸上部 - - - 海上部 - - - 水中部 - - - 水中部 - - - 水中部 - - - 水中部 - - - 市 - - - 市<市 - - - 市<市 - - - 海上部 - - -	所 点 検 事 項 点検頻度 点 陸上部 - - - - 海上部 - - - - 水中部 - - - - 小市部 - - - - 小市部 - - - - 藤上部 - - - - 海上部 - - - -	所 点 検 事 項 点検頻度 点 検 陸上部	所 点検事項 点検頻度 点検方 陸上部 海上部 水中部 水中部 水中部 水日部 水日部 水日部	所 点 検 事 項 点検頻度 点 検 方 法 陸上部 水中部 水中部 水中部 水中部 水日部 水日部 水日部 水日部 (N) (P) (P) <	所 点 検 事 項 点検頻度 点 検 方 法 陳上部	所 点検事項 点検期度 点検方法 備

添付1 (2/2)

設備箇	所	・点	検事	項	点検頻度	・点	検 方	法	備	考
10. 防波堤	十十十									
	水中部									
16.津波防 護施設	陸上部									
	土中部									
	水中部									

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	一定/新术队11日 98天 (注水区加) ( • > >	1 11 2 13 4 5 6 5 3 (	
	点検設備(部位)	点検 頻度	点検方法
建物構造	コンクリート躯体		
部分	鉄骨造構造体		

建築設備の定期点検内容一覧表(建築設備)(コンクリート構造物および鉄骨構造物(抜粋))

建物設備(部位)と確認内容(建築設備)(コンクリート構造物および鉄骨構造物(抜粋))

点検設備(部位)	確認内容 (損傷等がある場合はその程度を確認する)	備考
<ul> <li>コンクリート躯体 1)</li> <li>(基礎、壁、柱、床、梁、堰等)</li> <li>鉄骨造構造体</li> <li>(柱、梁、鉄骨架台等)</li> </ul>		

目視点検によるコンクリート構造	物の劣化の評価基準(	土木設備・	建築設備共通)
-----------------	------------	-------	---------

	内容
評価基準	
参照文献	

## 別紙2

タイトル	対象構造物および代表構造物の選定過程について
説明	高浜3号炉におけるコンクリート構造物および鉄骨構造物の技術評価に ついて、対象構造物および代表構造物の選定過程を以下に示す。
	<ol> <li>対象構造物の選定 対象構造物は、安全重要度分類審査指針[*]およびこれを踏まえ具体 的な分類を示した日本電気協会「安全機能を有する電気・機械装置の 重要度分類指針」(JEAG4612-2010)に基づき識別した色塗系統図お よび原子力保全総合システム(M35)等により抽出される機器・構 造物を対象とし、該当する構造物、または該当する機器を支持する構 造物を選定した。 評価対象となる機器および構造物の抽出フローを添付1に示す。</li> </ol>
	※:発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針(平成2年8 月30日原子力安全委員会決定)
	<ol> <li>2.代表構造物の選定 対象構造物の使用条件(高温部の有無、放射線の有無など)の影響 の大きさに基づき、代表構造物を選定した。</li> </ol>
	以上
	添付1 評価対象となる機器および構造物の抽出フロー



- *1 重要度分類クラス1および2^(*3)(耐津波安全性評価が必要な浸水防護施設に属する機器および構造物を含む。)
- *2 重要度分類クラス3のうち、最高使用温度が95℃を超え、または最高使用圧力が1900kPaを超える環境下にある機器 (原子炉格納容器外にあるものに限る)
- *3 「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」(平成2年8月30日原子力安全委員会決定の 重要度分類
- *4 浸水防護施設に属する機器および構造物を含む。

別紙3

タイトル	耐火能力の考え方および耐火能力が要求されている壁の位置について
説明	コンクリート構造物の耐火能力は、コンクリートの断面厚により確保する設計とし ている。耐火能力が要求されている壁の位置については、「高浜発電所3号機工事計 画認可申請書(関原発第152号平成27年8月4日認可)」、「高浜発電所4号機 工事計画認可申請書(関原発第153号平成27年10月9日認可)」、「高浜発電 所1号機工事計画認可申請書(関原発第73号平成28年6月10日認可)」および 「高浜発電所2号機工事計画認可申請書(関原発第74号平成28年6月10日認 可)」に示すとおりである(添付1参照)。
	添付1 火災区域などの位置図




# 別紙4

タイトル	土木建築設備に係る保全管理の文書体系について		
説明	土木建築設備に係る保全管理の文書体系は以下のとおりである。		
	施設管理通達		
	原子力発電所土木建築業務要綱		
		高浜発電所土木建築業務所則	
		高浜発電所土木建築業務所則指針	
		原子力発電所建築設備点検要綱指針	
		原子力発電所土木設備点検要綱指針	
		原子力発電所コンクリート構造物 高経年化に関する点検要綱指針	
		以上	

## 別紙5

タイトル	炉心領域部および原子炉容器サポート直下部の1次遮蔽壁における温度 分布解析の方法などについて		
説明	炉心領域部および原子炉容器サポート(以下「RVサポート」という。 直下部の1次遮蔽壁(コンクリート)における温度分布解析の方法などに いて、以下に示す。		
	<ol> <li>「炉心領域部の温度分布解析</li> <li>1 温度分布解析の方法</li> <li>「炉心領域部の1次遮蔽壁内におけるガンマ発熱による温度分布は、2次</li> <li>元輸送計算コード DORT (Ver.3.2)を用いて、1次遮蔽中のガンマ線束分布</li> <li>を算出し、ガンマ発熱量換算係数を乗じることで温度分布を求めている。</li> </ol>		
	(1)解析モデル 炉心、炉内構造物、原子炉容器および1次遮蔽壁(コンクリート)を2次 元形状(水平断面)でモデル化している。具体的な解析モデルは添付1に示 す。		
	(2)入力条件 DORT コードは、米国のオークリッジ国立研究所で開発された中性子重 方程式を数値的に解くコードであり、入力パラメータは、以下のとおりて る。		
	①物性値(密度,組成) エネルギー吸収係数		
②原子炉、1次遮蔽形状       DORTコード       ガンマ線束         ③原子炉出カ分布 ^{※1} 00RTコード       ガンマ線束         ④核分裂により発生する 中性子スペクトル ^{※2} **1: これまでの運転サイクルにおける原子炉出力分布の平均値を用いて原子炉熱出 分のエネルギー (中性子発生個数) を入力している。         ※2: 燃料の核分裂により発生する中性子発生個数とエネルギー (物性値) を入力して	②原子炉,1次遮蔽形状 DOPT - ド ボンフ約末 ガンマ発熱量		
	③原子炉出力分布 ^{※1} (kcal/(cm ³ ·h))		
	<ul> <li>④核分裂により発生する</li> <li>中性子スペクトル^{※2}</li> </ul>		
	<ul> <li>※1:これまでの運転サイクルにおける原子炉出力分布の平均値を用いて原子炉熱出力に相当する 分のエネルギー(中性子発生個数)を入力している。</li> <li>※2:燃料の核分裂により発生する中性子発生個数とエネルギー(物性値)を入力している。</li> </ul>		
	1.2 解析結果 1次遮蔽壁内のガンマ発熱量分布の計算結果を添付1に示す。添付1を 基に、円筒形状に対する熱伝導方程式を解いて温度分布を算出した結果、1 次遮蔽壁内での最高温度は、1次遮蔽壁内面から約47cmの位置に現れ、約 56℃であり、強度上の熱に対するコンクリートの温度制限値(一般部65℃、 局部90℃)を下回る結果であった。1次遮蔽壁内の温度分布を添付2に示 す。		

2. RVサポート直下部の温度分布解析
2.1 温度分布解析の方法
RVサホート廻りコンクリート部の温度分布解析は、対象範囲を3次元
ソリッド要素でモテル化し、熱流動解析を実施している。熱流動解析では、
冷却空気の流れから、熱伝達面に沿った流速分布、冷却空気温度を解析で求
めることにより各部材温度を算出している。解析コードは ANSYS (Ver. 18.0)
を使用している。
(1) 脾竹セブル 細たエゴルの特色効用は、温度を使の苦しいDNUEノブル如何にし
勝州でアルの対象範囲は、 値及米件の敵しい K ∨ 面ロノ ヘル 部廻りと
し、以下の安系から構成している。共体的な対象範囲と脾例でアルは部内 3 に示す
• R V
<ul> <li>・1次冷却材管(ホットレグ)</li> </ul>
• 保温材
・RVサポート
<ul> <li>・1次冷却材管貫通部</li> </ul>
・1 次遮蔽壁(コンクリート)
(2)入力条件
入力条件は定格出力運転時を前提として下記のとおりとしている。
• 1 次冷却材温度 (R V 内面) $T_{\rm H}$ $C$
・ $I$ 次行却材温度 ( $R$ V 出口管台及ひ $I$ 次行却材管内面) $I_{H}$ :
・カンマ先然:添竹1 図2のカンマ先然重分布 ・材料物性値(魏仁道索)・文静・使用材料に基づき設定(沃付4)
・材料物性値(蒸広等半)、文献、使用材料に基づき設定(称片4)
2.2 解析結果
RVサポート直下は伝熱により温度が上昇する。しかし、温度分布解析
の結果は、約53.2℃であり強度上の熱に対するコンクリートの温度制限値
(一般部65℃、局部90℃)を下回る結果であった(添付5)。また、RV
サポートの外側コンクリート回廊部において、シム及びサポートシュの輻
射による影響から53.4℃を示す箇所があるが、RVサポートからの荷重を
直接支持する部位ではない。
利38~43してめり、美側値度の側足箇所にわける脾性症米(利53.2し)よりまームというに低い値であることから、保守的た証価が行われていると判断し
「いろ(添付6)」
以上

添付1	炉心領域部の1次遮蔽壁(コンクリート)におけるガンマ発熱量
	分布の計算モデルおよび計算結果
添付2	炉心領域部の1次遮蔽壁(コンクリート)内の温度分布
添付3	RVサポート直下部の解析対象範囲および解析モデル
添付4	材料物性値(熱伝導率)
添付 5	R V サポート直下部の 1 次遮蔽壁(コンクリート)の温度分布
添付 6	RVサポート直下部近傍の解析値と実測温度の比較

添付1



炉心領域部の1次遮蔽壁(コンクリート)における ガンマ発熱量分布の計算モデルおよび計算結果

図1 計算モデル



図2 1次遮蔽壁(コンクリート)内のガンマ発熱量分布



炉心領域部の1次遮蔽壁(コンクリート)内の温度分布





RVサポート直下部の解析対象範囲および解析モデル

図4 解析対象範囲



#### 材料物性值 (熱伝導率)

	部位	材質	熱伝導率 (₩/(m・K)) [※]	
	空気	_	0.02572 (20℃) 0.03145 (100℃) 0.03803 (200℃) 0.04708 (350℃)	
R V	上部胴、冷却材出口管台	SFVQ1A	51.2 (300K)	
	下部胴	SFVQ2A	46. 1 (500K) 36. 9 (800K)	
	セーフエンド	SUSF316	16.0 (300K) 19.0 (600K) 25.7 (1000K)	
1次冷却材管	ホットレグ	SCS14A	24.3 (300K)	
R Vサポート	シムプレート	AISI A10相当 (工具鋼相当)	45.1 (300K) 39.2 (600K) 29.9 (1000K)	
	サポートシュ	SFVQ1A	51.2 (300K) 46.1 (500K) 36.9 (800K)	
	サポートブラケット、 ベースプレート、外周プレート	SM50B (SM490B)	51.6 (300K)	
リングフレー	ーム、プレッシャデフレクタ、 バッフルプレート	SS41 (SS400)	47.8 (500K) 38.2 (800K)	
コンクリート		普通コンクリート (珪岩質骨材コン クリート)	1.5 (293K) 1.1 (600K)	
保温材	RV保温材	_		
	1次冷却材管保温材	_		

表1 各部位の材質と熱伝導率

※: (出典)日本機械学会「伝熱工学資料 改訂第5版」(保温材は保温材スペック) 熱伝導率は記載の値(記載の値は一例)を定義し、その間の温度では解析コード内で 線形補完した値を設定している



#### 図6 解析モデル全体の温度分布

### RVサポート直下部近傍の解析値と実測温度の比較

表2 解析値と実測温度の比較

解析值*	実測値	備考
約53.2℃	約38~45℃	実測日は、2021年8月7日

※:解析値は、実測温度の測定箇所における値

別紙6




	S 酸 壁 コングリート内面が 解析結果	<ul> <li>うける照射量の最大 備考</li> </ul>
<ul> <li>         - 甲性子照射量     </li> <li>         ガンマ線昭射量     </li> </ul>	$5.62 \times 10^{1.9}$ (n/cm ² ) 1.75 × 10 ^{1.0} (Rad)	E>0.098MeV

タイトル	中性子照射量に対する耐力評価について							
説明	以下のとおり、中性子照射量に対する耐力評価を行った。 1. 中性子照射量が 1×10 ¹⁹ n/cm ² を超える範囲を添付-1に示す。 中性子照射量が、1×10 ¹⁹ n/cm ² を超える範囲は炉心中心部で最も大きく なり、深さ方向に最大約 12cm である。							
	<ol> <li>原子炉容器の鉛直方向荷重は、シムプレート、サポートシュおよびサポ ートリブを、接線方向荷重は、上記に加えてベースプレート、外周プレ ートおよび埋込補強材(スタッド)を経て1次遮蔽壁に伝わるが、添付 -2に示すとおり、荷重の耐力は既工認の評価にて実施している。 中性子線照射の影響を考慮した鉛直方向荷重および接線方向荷重に 対する耐力評価を説明する。</li> </ol>							
	<ul> <li>(1)鉛直方向荷重に対する評価</li> <li>中性子照射量が 1×10¹⁹ n/cm²を超える範囲は炉心中心部で最も大きくなり、炉心中心部の1×10¹⁹ n/cm²を超える範囲を荷重負担部の1次遮蔽コンクリート上端から下部まで欠損させた状態を保守的に想定する。(添付-3)</li> <li>評価用荷重として基準地震動Ssを用いた耐力評価を行った結果、以下のとおり圧縮耐力は地震時の荷重を十分上回っていることを確認した。</li> <li>原子炉容器支持構造物コンクリート 鉛直方向荷重による圧縮評価</li> </ul>							
	欠損想定 荷重(kN) 耐力(kN) 耐震裕度							
	欠損無 2.20							
	欠損有 2.20							
	<ul> <li>※:欠損面積が僅かであるため、端数処理により欠損無の耐力と同値となる。</li> <li>(2)接線方向荷重に対する評価 接線方向荷重によるベースプレートの浮き上がり防止のために基礎 ボルトが設置されており、基礎ボルトによるコンクリートのコーン状 破壊面の有効投影面積から中性子照射量が 1×10¹⁹ n/cm²を超える範 囲を欠損させた状態を想定して耐力評価を行った。欠損範囲について は1次遮蔽壁の炉心側表面から1×10¹⁹ n/cm²を超える範囲とし、1次 遮蔽壁上端から下端までを欠損させた状態を保守的に想定する。(添付 -4) 評価用荷重として基準地震動Ssを用いた耐力評価を行った結果、 以下のとおり引張耐力は地震時の荷重を十分上回っていることを確認 した。 原子炉容器支持構造物コンクリート 接線方向荷重による引張評価 欠損想定 荷重 (kN) 耐力 (kN) 耐震裕度</li> </ul>							

<ol> <li>9. 中性子線照射量が1×10¹⁹ n/cm²を超える範囲は、炉心中心部の1次遮 蔽壁コンクリート断面において約 m²であり、1次遮蔽壁コンクリ ート断面積全体(約 m²)の約 %である。</li> </ol>
<ol> <li>4. 地震時の構造体の耐力と設計荷重との関係を示す指標の一つとして、基準地震動による地震力を負担する断面に対するせん断ひずみによる評価がある。現状の基準地震動に対する最大せん断ひずみと基準値は以下に示す通りであり、基準値に対して余裕があることが確認できる。</li> <li>3. で示す中性子照射量が1×10¹⁹ n/cm²を超える範囲を考慮しても健全性に影響を及ぼすものではないと判断できる(添付-5)。</li> </ol>
<ul> <li>内部コンクリート(1次遮蔽壁含む)における</li> <li>基準地震動に対する最大せん断ひずみ</li> <li>基準値*1</li> </ul>
約0.565×10 ⁻³ ※2 2.0×10 ⁻³
<ul> <li>※1:(社)日本電気協会 原子力発電所耐震設計技術指針 (JEAG 4601-1987)</li> <li>※2:高浜発電所第3号機 工事計画認可申請書 資料13-16-4 内部コンクリートの耐震計算書 (H27.8.4認可)</li> </ul>
以上を踏まえ、保守的に内部コンクリート(1次遮蔽壁)からこの範囲 を除いても、構造体の耐力が地震時の鉛直荷重などの設計荷重を上回るこ と、地震時のせん断ひずみへの影響が極めて軽微であることを確認してい ることから、内部コンクリート(1次遮蔽壁)の強度への影響はないと考 えられる。
<ul> <li>添付-1 中性子線照射量が1×10¹⁹n/cm²を超える範囲</li> <li>添付-2 原子炉本体の基礎に関する説明書(工事計画認可申請書 H27 8 4認可)</li> </ul>
添付-3 中性子照射量が1×10 ¹⁹ n/cm ² を超える範囲と原子炉容器支持構 造物の支圧面との比較
添付-4 コーン状破壊面の有効投影面積と接線方向荷重による引張評価 においてコンクリートの欠損を想定する範囲との比較
添付−5 中性子照射量が1×10 ¹⁹ n/cm ² を超える範囲を考慮した基準地震 動に対する最大せん断ひずみの確認

図1-1 炉心中心位置での中性子線照射線量当量分布

図1-2 中性子線照射線量当量分布解析結果(解析モデル全体)

添付1 (2/2)



図1-3 中性子線照射量が1×10¹⁹n/cm²を超える範囲のイメージ図(断面)

原子炉本体の基礎に関する説明書

資料15 原子炉本体の基礎に関する説明書



(3)コンクリートに作用する荷重

コンクリートに作用する荷重を第3-1表に示す。

第3-1表 コンクリートに作用する荷重

(単位:kN)

							( ] ] [ ]
		Sd 地震時			Ss 地	震時	
			圧 縮	引 張		圧 縮	引 張
原子炉容器支持構	自重(注4)			_	ſ		_
造物埋込金物より	熱膨張荷重			-			_
加わる荷重(注1、3)	地震荷重			-			_
荷重健心	2、3)						

(注1)荷重は、鉛直上向きを正とする。

(注 2)保守的になるように十の位を端末処理しているため、必ずしも合計は一致しない。

(注3) 資料 13-17-3-23「1 次冷却材管の耐震計算書」に示すループ荷重の値を使用する。

(注4) 自重は、スクラム荷重を含む。

(4) まとめ

第3-2表に示すとおり、コンクリートの圧縮耐力及び引張耐力は、いずれも地震時の荷重を上回っている。

第3-2表 コンクリートの評価結果

(単位:kN)

	Sd 地	也震時	Ss 地震時		
	荷重	耐 力	荷重的	耐 力	
圧 縮					
引 張					

(注)荷重は、絶対値で表示する。

3.1.4 1次遮蔽コンクリート(間接支持構造物)の強度評価

1次遮蔽コンクリートの強度評価については、資料13-17-7-2「原子炉格納施設の地震応答解析」に 示すとおり十分な強度を有している。

- 添15-8 -



中性子照射量が1×10¹⁹n/cm²を超える範囲と原子炉容器支持構造物の支圧面との比較

:原子炉容器支持構造物の支圧面

図3-1 中性子線照射量が1×10¹⁹n/cm²を超える範囲と原子炉容器支持構造物の支圧面との 比較

一部の支圧面に1×10¹⁹ n/cm²を超える範囲が僅かに存在するため、支圧面積を欠損させ、
 mm²とする。

#### コーン状破壊面の有効投影面積と接線方向荷重による引張評価において コンクリートの欠損を想定する範囲との比較



図4-1 コーン状破壊面の有効投影面積と接線方向荷重による引張評価においてコンクリー トの欠損を想定する範囲との比較

ー部の有効投影面積に $1 \times 10^{19}$  n/cm²を超える範囲が僅かに存在するが、端数処理により欠損無の有効投影面積と同値の mm²となる。

<u>中性子照射量が1×10¹⁹n/cm²を超える範囲を考慮し</u>た 基準地震動に対する最大せん断ひずみの確認

高浜発電所3号機の1次遮蔽壁において、中性子照射量が1×10¹⁹n/cm²を超える範囲の コンクリートが欠損したと仮定し、その範囲のコンクリート強度を期待しない場合の、最 大せん断ひずみ量についての検討を実施した。

- (1) 中性子照射を考慮しない場合の最大せん断ひずみ 高浜発電所3号機の内部コンクリート(1次遮蔽壁含む)における、基準地震動に 対する最大せん断ひずみは、0.565×10⁻³である。
   (出典:高浜発電所第3号機 工事計画認可申請書 資料13-16-4 内部コンクリートの耐震 計算書)
- (2) 中性子照射を考慮した場合の最大せん断ひずみ せん断ひずみyは、以下の式で算出される。

γ = τ / G τ: せん断応力 G: せん断弾性係数

ここで、τ: せん断応力については、中性子照射量が1×10¹⁹n/cm²を超える範囲の コンクリートが欠損したと仮定すると、断面積の比に反比例して増加する。

一方、G: せん断弾性係数は、コンクリートの物性値であることから、中性子照射 の影響がない範囲の値は照射後においても変化がないといえる。

仮に中性子照射を考慮した場合の最大せん断ひずみについて、安全側に一次遮蔽壁 のみの断面積比例で検討した場合、以下のとおりとなる。断面積の比率でみても約



タイトル	中性化の評価対象および評価点の選定過程について
説明	中性化の評価対象および評価点の選定過程を以下に示す。
	1. 環境測定 中性化の進展度合いは、使用環境条件(温度、湿度および二酸化炭素 濃度)の影響を受けることから、2020年から2021年に空気環境 測定を実施した。
	<ul> <li>1-1. 測定方法</li> <li>環境測定に使用した機器を添付1「環境測定 使用機器」に示す。</li> <li>温度および湿度は、2020年10月1日から2021年9月30日の期間で、1時間間隔で連続測定を行った。二酸化炭素濃度は、2020年10月から2021年9月の期間で各月ごとに3日間を対象とし、各日当たり1回測定を行った。</li> </ul>
	1-2. 測定位置 温度、湿度および二酸化炭素濃度は、建屋内外で計181箇所にて 測定を実施した。測定位置図を添付2「環境測定 測定位置図」に示 す。
	2. 評価対象の選定過程 中性化の評価対象は、仕上げの状況および上記の環境測定結果などの 空気環境を考慮し、以下のとおり選定した。
	2-1.仕上げ状況 代表構造物のうち、仕上げが無い箇所がある構造物を候補とする。
	<ul> <li>2-2.空気環境 屋外で仕上げが無い構造物は取水構造物のみである。そのうち、海水 によりコンクリート表面が湿潤とならず、空気環境の影響を受ける箇 所を評価対象として選定する。</li> <li>屋内の構造物については、「1.環境測定」のとおり測定した温度、 湿度および二酸化炭素濃度等に基づいて算出した中性化に及ぼす影響 度が、最も大きくなる箇所を評価対象として選定する。なお、中性化に 及ぼす影響度については、各使用環境条件が入力値となる森永式の一 部に相当する。影響度の算出結果のうち代表構造物毎の影響度の最大 値を添付3「環境条件による影響度」に示す。</li> </ul>
	2-3.特別点検の結果 上記に加えて、対象構造物における特別点検結果の値が最も大きい 箇所を評価対象として選定した。特別点検の結果を添付4「特別点検結 果(中性化深さ)」に示す。

<ol> <li>         3. 評価点の選定結果         上記に基づく評価点の選定結果を以下に示す。     </li> </ol>
<ul> <li>・屋外の構造物のうち、仕上げが無い構造物として取水構造物を選定した。そのうち、海水によりコンクリート表面が湿潤とならず、空気環境の影響が大きい「取水構造物(気中帯)」を評価点として選定した。</li> <li>・屋内の構造物で仕上げが無い箇所のうち、中性化に及ぼす影響度が最も大きい「原子炉補助建屋のうち内壁及び床(ペネトレーションエリア)」を評価点として選定した。</li> <li>・対象構造物における特別点検結果の値が最も大きい「原子炉補助 建屋のうち基礎マット(海水管室)」を評価点として選定した。</li> </ul>
<ul> <li>添付1 環境測定 使用機器</li> <li>添付2 環境測定 測定位置図</li> <li>添付3 環境条件による影響度</li> <li>添付4 特別点検結果(中性化深さ)</li> </ul>

#### 環境測定 使用機器

測定場所	測定項目	使用機器	
	温度	温湿度計	
	湿度		
<b>博</b> 內 合	二酸化炭素濃度	二酸化炭素検知管	

添付2 (1/6)

環境測定 測定位置図





添付2 (4/6)



構造物	対象の部位	環境条件に よる影響度 ^{**1, 2}	備考
	外部遮蔽壁	0.339	補正実施※3
原子炉格納施設等	内部コンクリート	0.336	補正実施※3
	基礎マット	0.300	補正実施※3
	外壁	0.076	
原子炉補助建屋	内壁及び床	0.387	補正実施※3
	使用済み燃料プール	0.304	
	基礎マット	0.176	
カードン母目	内壁及び床	0.227	補正実施※3
クービン建屋	基礎マット	0.154	
安全機能を有する系統及び機器又			
は常設重大事故等対処施設設備に	タービン架台	0.292	補正実施※3
属する機器を支持する構造物			

環境条件による影響度

測定期間:2020年10月~2021年9月

※1 対象構造物毎に影響度が最も大きくなったものを示す。

※2 森永式における環境条件による係数(下記赤下線部)から算出

※3 環境条件による影響度の算出に用いている環境データは、運転時の温度上昇などを踏まえた補正を実施

「高浜発電所3号炉 特別点検(コンクリート構造物)補足説明資料 別紙5」を参照

x:中性化深さ( $mm$ )	RH:湿度(%)
T: 温度 (°C)	w/c:水セメント比(%)
<b>t</b> :材齢(日)	R:中性化比率
<b>C</b> :炭酸ガス濃度(%)	
(1%=10,000ppm)	

対象のコンクリート構造物			点		
		対象の部位	平均中性化 深さ(mm) ^{※1}	点検実施日	備考
原子炉格納施設等		外部遮蔽壁	1.1	2022年4月18日	
		内部コンクリート	1.0	2022年4月18日	
		基礎マット	1.0	2022年10月3日	
原子炉補助建屋		外壁	1.0	2022年2月15日	
		内壁及び床	2.6	2021年12月9日	
		使用済み燃料プール	1.1	2021年11月18日	
		基礎マット	23.8	2022年2月15日	
タービン建屋		内壁及び床	22.5	2022年1月13日	
		基礎マット	13.3	2022年1月13日	
<b>取水構造物</b>		海中帯	4.9	2022年3月16日	
		干満帯	7.7	2022年3月19日	
		気中帯	4.9	2022年1月10日	
安全機能を有する系統及 び機器又は常設重大事故	原子炉格納施設内	上記「原子炉格納施設 等」に含む			
等対処設備に属する機器 を支持する構造物	原子炉補助建屋内	上記「原子炉補助建 屋」に含む			
	タービン建屋内 (タービン架台を含む)	タービン架台	8.4	2022年3月8日	
上記以外の構造物(安全機能を有する構造物又は常設		非常用ディーゼル発電用			
重大事故等対処設備に属する構造物・安全機能を有		燃料油タンク基礎	5.2	2022年1月9日	
する系統及び機器又は常設重大事故等対処設備に属		(配管トレンチ含む)			
する機器を支持する構造物	勿に限る。)	復水タンク基礎	3.0	2021年12月15日	

### 特別点検結果(中性化深さ)

する機器を支持する構造物に限る。) ※1:採取孔3箇所の平均値

タイトル	中性化深さの推定値の算定過程および結果について
ジィ ドル 説 明	<ul> <li> TELLは30個産産間の算定適種および結果について </li> <li> 調査時点および運転開始後60年経過時点の中性化深さの推定値の算定 過程(推定式、条件、パラメータ)および結果を以下に示す。 </li> <li> 1. 推定式、条件、パラメータ 次の中性化深さを推定する速度式を用いて評価を実施した。推定式の詳細、条件およびパラメータは、統付1「中性化深さの推定値の算定過程および結果」に示すとおり。 (中性化深さを推定する速度式)・岸谷式 <ul> <li>・岸谷式</li> <li>・森永式</li> <li>・中性化深さの実測値に基づく√t式</li> <li>なお、原子炉補助建屋(1・2号炉)(基礎マット)および取水構造物(1・2号炉)(気中帯)を除き、高浜3号炉ではコンクリートの材料(混和材)としてフライアッシュを使用していることから、適用性を考慮し、環境条件の影響を適切に考慮できる森永式および実測値に基づく√t式を用いている。</li> </ul> </li> <li> 2. 実測値 特別点検における中性化深さの実測値を添付2に示す。 </li> <li> 3. 結果 <ul> <li>中性化深さの推定値の算定結果を、以下に示す。</li> <li>運転開始後60年経過時点の中性化深さの推定値が、鉄筋が腐食し始めるときの中性化深さを下回っていることを確認した。</li> </ul> </li> </ul>

経過 年数集測値 (cm)推定値 (cm)後60年経過時 点の中性化深さ の中性化深さ の中性化深さ の推定値 (cm) (推定式)し始める時の 中性化深さ の世化深さ (定m)原子炉補助建屋 (基礎マット)37年2.41.43.1*4 (承永式)6.0原子炉補助建屋 (内壁及び床)36年0.33.24.0*46.0原子炉補助建屋 (気中帯)37年0.50.60.7*48.5原子炉補助建屋 (気中帯)30年*13.54.4*3 (F4式)5.8*5*6 (岸谷式)10.0取水構造物 (1・2号炉) (気中帯)30年*13.54.4*3 (岸谷式)10.0取水構造物 (1・2号炉) (気中帯)30年*20.42.3*3 (岸谷式)3.0*5*7 (岸谷式)8.5*1:3号炉運転開始後の経過年数を示す。 (気中帯)19炉運転開始後の経過年数は39年。*3:岸谷式および森永式による評価結果のうち最大値を記載*4:森永式および実測値に基づく√t t式による評価結果のうち最大値を記載*4:森永式および実測値に基づく√t t式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√t t式による評価結果のうち最大値を記載 *7:2号炉運転開始後の経過年数は70年。*7:2号炉運転開始後の経過年数は70年。添付1中性化深さの推定値の算定過程および結果 添付2中性化深さの実測値	経過 年数実測値 (m)推定値 (m)後60年経過時 点の中性化深さ の伸生化深さ の推定値(cm) (推定式)し始める時の 中性化深さ (推定式)原子炉補助建屋 (基礎マット) $37年$ $2.4$ $1.4$ $3.1^{*4}$ $6.0$ 原子炉補助建屋 (内壁及び床) $36年$ $0.3$ $3.2$ $4.0^{*4}$ $6.0$ 取木構造物 (気中帯) $37年$ $0.5$ $0.6$ $0.7^{*4}$ $8.5$ 原子炉補助建屋 (気中帯) $30 \pm *1$ $3.5$ $4.4^{*3}$ $5.8^{*5*6}$ $10.0$ 取木構造物 (1・2号炉) $30 \pm *1$ $3.5$ $4.4^{*3}$ $5.8^{*5*6}$ $10.0$ 取木構造物 (気中帯) $30 \pm *1$ $3.5$ $4.6^{*3}$ $6^{*5*7}$ $8.5$ * 1:3号炉運転開始後の経過年数を示す。 (気中帯) $30 \pm *2$ $0.4$ $2.3^{*3}$ (岸谷式) $3.0^{*5*7}$ (岸谷式) $8.5$ * 1:3号炉運転開始後の経過年数を示す。 (気中帯) $19$ 戶運転開始後の経過年数は40年。 * 2:3号炉運転開始後の経過年数な示す。 (月台) $8.5$ * 1:5岸谷式および森永式による評価結果のうち最大値を記載 * 4: 森永式および実測値に基づく√ t 式による評価結果のうち最大値を記載 * 5: 岸谷式、森永式および実測値に基づく√ t 式による評価結果のうち最大値を記載 * 7:2号炉運転開始後の経過年数は70年。 * 7:2号炉運転開始後の経過年数は70年。添付 1中性化深さの推定値の算定過程および結果 添付 2中性化深さの実測値	経過 年数実測値 (m)推定値 (cm)後60年経過時 点の中性化深さ の推定値(cm)し始める時ん 中性化深さ の推定値(cm)原子炉補助建屋 (基礎マット) $37年$ $2.4$ $1.4$ $3.1^{*4}$ $6.0$ 原子炉補助建屋 (内壁及び床) $36年$ $0.3$ $3.2$ $4.0^{*4}$ $6.0$ 取水構造物 (1・2号炉) $37\mp$ $0.5$ $(\bar{\alpha}x, \chi)$ $(\bar{\chi}x, \chi)$ $(\bar{\kappa}x, \chi)$ 取水構造物 (1・2号炉) $30 \pm *1$ $3.5$ $4.4^{*3}$ $5.8^{*5*6}$ $10.0$ 取水構造物 (1・2号炉) $30 \pm *1$ $3.5$ $4.4^{*3}$ $5.8^{*5*6}$ $10.0$ 水構造物 (1・2号炉) $30 \pm *2$ $0.4$ $2.3^{*3}$ $3.0^{*5*7}$ $8.5$ * 1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。 * 2:3号炉運転開始後の経過年数な示す。1号炉運転開始後の経過年数は39年。 * 3:岸谷式および森永式による評価結果のうち最大値を記載 * 4: 森永式および実測値に基づく「t式による評価結果のうち最大値を記載 * 5:岸谷式、森永式および実測値に基づく「t式による評価結果のうち最大値を記載 * 7:2号炉運転開始後の経過年数は71年。 * 7:2号炉運転開始後の経過年数は70年。添付 1中性化深さの推定値の算定過程および結果 添付 2中性化深さの実測値	経過 年数実測値 (m)推定値 (m)後60年経過時 点の中性化深さ の推定値(cm) (推定式)し始める日 中性化深さ (中性化深さ)原子炉補助建屋 (基礎マット) $37年$ $2.4$ $1.4$ $3.1*4$ ( $₹ k x x$ ) $6.0$ ( $₹ k x x$ )原子炉補助建屋 (気中帯) $36年$ $0.3$ $3.2$ $4.0^{*4}$ $6.0$ ( $₹ k x x$ )取水構造物 ( $$ g + # )$ $37 \mp$ $0.5$ $0.6$ $0.7^{*4}$ $8.5$ 原子炉補助建屋 ( $$ (1 \cdot 2 5 µ )$ ) $30 \mp *1$ $3.5$ $4.4^{*3}$ $5.8^{*5*6}$ $10.0$ 取水構造物 ( $$ (1 \cdot 2 5 µ )$ ) $30 \mp *2$ $0.4$ $2.3^{*3}$ $3.0^{*5*7}$ ( $$ (Р А x)$ ) $8.5$ * 1 : $35 µ = km b \& 0 8 @ 4 8 b 5 \pi + 5 = 1 5 µ = km b \& 0 8 @ 4 b 0 = k 8 b 5 \pi + 5 = 1 5 µ = km b \& 0 8 @ 4 b 0 = k 8 b 5 = k^{2} x 3 h 0 = k^{2} 0 + 4$ $2.3^{*3}$ ( $$ (P A x)$ ) $(P A x)$ * 1 : $35 µ = km b \& 0 8 @ 4 8 b 5 \pi + 5 = 1 5 µ = km b \& 0 8 @ 4 8 b 5 \pi + 5 = k^{2} x 3 h 0 = k^{2} 0 + 4 2 + 2 h 2 h 3 h 5 = k^{2} x 3 h 0 = k^{2} 0 + 4 2 h 3 h 3 h 5 = k^{2} x 3 h x 3 h x 5 = k^{2} x 3 h x 3 k x 5 x 1 h 5 + k^{2} x 3 h x 5 = k^{2} x 3 k 5 x 4 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h 2 h$		調査	時点の中性	主化深さ	3号炉運転開始	鉄筋が腐食
原子炉補助建屋 (基礎マット)37年2.41.4 (森永式)3.1*4 ( $\sqrt{t}$ 式)6.0原子炉補助建屋 (內壁及び床)36年0.33.24.0*4 ( $\overline{x}$ 永式)6.0取水構造物 (気中帯)37年0.50.60.7*4 ( $\overline{x}$ 永式)8.5原子炉補助建屋 (1・2号炉) (基礎マット)30年*1 3.53.54.4*3 ( $\overline{x}$ A式)5.8*5*6 ( $\overline{\mu}$ 谷式)10.0取水構造物 (1・2号炉) (氢0年*130年*20.42.3*3 ( $\overline{\mu}$ 谷式)3.0*5*7 ( $\overline{\mu}$ 谷式)8.5*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。 *3:岸谷式および森永式による評価結果のうち最大値を記載*4: 森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *7:2号炉運転開始後の経過年数は70年。添付1中性化深さの推定値の算定過程および結果添付1中性化深さの推定値の算定過程および結果	原子炉補助建屋 (基礎マット)37年2.41.4 (森永式)3.1*4 (√t式)6.0原子炉補助建屋 (内壁及び床)36年0.33.24.0*4 (森永式)6.0取水構造物 (気中帯)37年0.50.6 (森永式)0.7*48.5原子炉補助建屋 (気中帯)30年*13.54.4*3 (岸谷式)5.8*5*6 (岸谷式)10.0取水構造物 (1・2号炉) (気中帯)30年*13.54.4*3 (岸谷式)5.8*5*7 (岸谷式)10.0取水構造物 (気中帯)30年*20.42.3*3 (岸谷式)3.0*5*7 (岸谷式)8.5*1:3号炉運転開始後の経過年数を示す。 (気中帯)19炉運転開始後の経過年数を示す。 1号炉運転開始後の経過年数は39年。 *3:岸谷式はび森永式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√t t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は70年。 *7:2号炉運転開始後の経過年数は70年。%付1中性化深さの推定値の算定過程および結果 系付2中性化深さの実測値	原子炉補助建屋 (基礎マット)37年2.41.4 (森永式)3.1*4 ( $\sqrt{r}$ t式)6.0原子炉補助建屋 (內壁及び床)36年0.33.24.0*46.0取水構造物 (気中帯)37年0.50.60.7*48.5原子炉補助建屋 (1・2号炉)30年*13.54.4*35.8*5*6 ( $\#$ 谷式)10.0取水構造物 ((気中帯))30年*20.42.3*3 ( $\#$ 谷式)3.0*5*7 ( $\#$ 谷式)8.5*1:3号炉運転開始後の経過年数を示す。 (気中帯)30年*20.42.3*3 ( $\#$ 谷式)3.0*5*7 ( $\#$ 谷式)8.5*1:3号炉運転開始後の経過年数を示す。 (気中帯)1号炉運転開始後の経過年数は39年。 *3: #谷式および森永式による評価結果のうち最大値を記載*4: 森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *5: #谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *7:2号炉運転開始後の経過年数は70年。*7:2号炉運転開始後の経過年数は70年。森村1中性化深さの推定値の算定過程および結果 系付2森付2中性化深さの実測値	原子炉補助建屋 (基礎マット)37年2.41.4 (森永式)3.1*4 ( $\sqrt[4]{k}$ 大式)6.0 ( 原子炉補助建屋 ( ( ( ( 穴中帯))36年0.33.24.0*4 ( ( ( な水式))6.0 ( ( な水式))0.50.6 ( ( な水式))0.7*4 ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( ( <b< th=""><th></th><th>経過 年数</th><th>実測値 (cm)</th><th>推定値 (cm) (推定式)</th><th>後60年経過時 点の中性化深さ の推定値(cm) (推定式)</th><th>し始める時の 中性化深さ (cm)</th></b<>		経過 年数	実測値 (cm)	推定値 (cm) (推定式)	後60年経過時 点の中性化深さ の推定値(cm) (推定式)	し始める時の 中性化深さ (cm)
原子炉補助建屋 (內壁及び床)3 6年0.3 $3.2$ (森永式) $4.0^{*4}$ (森永式)6.0取水構造物 (気中帯) $3.7 \pm$ 0.5 $0.6$ $0.7^{*4}$ (森永式) $8.5$ 原子炉補助建屋 (1 · 2号炉) (氢 0 年*1 $3.5$ $4.4^{*3}$ (岸谷式) $5.8^{*5*6}$ (岸谷式) $10.0$ 取水構造物 (1 · 2号炉) (気中帯) $3.9 \pm *2$ $0.4$ $2.3^{*3}$ (岸谷式) $3.0^{*5*7}$ (岸谷式) $8.5$ * 1 : 3号炉運転開始後の経過年数を示す。 (気中帯) $3.0 \pm *2$ (上谷式) $0.4$ $2.3^{*3}$ (岸谷式) $3.0^{*5*7}$ (岸谷式) $8.5$ * 1 : 3号炉運転開始後の経過年数を示す。 (気中帯) $1.9$ 炉運転開始後の経過年数は $3.9 \pm 6.$ * 3 : 岸谷式および森永式による評価結果のうち最大値を記載 * 5 : 岸谷式、森永式および実測値に基づく $\sqrt{t}$ t式による評価結果のうち最大値を記載 * 5 : 岸谷式、森永式および実測値に基づく $\sqrt{t}$ t式による評価結果のうち最大値を記載 * 6 : $1.9$ 炉運転開始後の経過年数は $7.1 \pm 6.$ * 7 : $2.9$ 炉運転開始後の経過年数は $7.0 \pm 6.$ $4.4^{*3}$ (1 中性化深さの推定値の算定過程および結果 系付 2 中性化深さの実測値	原子炉補助建屋 (內壁及び床)3 6年0.33.2 (森永式)4.0*4 (森永式)6.0取水構造物 (気中帯)3 7年0.50.60.7*4 (森永式)8.5原子炉補助建屋 (1・2号炉)3 0年*13.54.4*3 (岸谷式)5.8*5*6 (岸谷式)1 0.0取水構造物 (気中帯)3 0年*20.42.3*3 (岸谷式)3.0*5*7 (岸谷式)8.5*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。 *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。 *3:岸谷式および来氷式による評価結果のうち最大値を記載 *5:岸谷式、森氷式および実測値に基づく√t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は71年。 *7:2号炉運転開始後の経過年数は70年。添付1中性化深さの推定値の算定過程および結果 添付2中性化深さの実測値	原子炉補助建屋 (內壁及び床)3 6年0.3 $3.2$ (森永式) $4.0^{*4}$ (森永式) $6.0$ 取水構造物 (気中帯)3 7年0.50.60.7^{*4} (森永式) $8.5$ 原子炉補助建屋 (1 · 2 号炉) $30 \#^{*1}$ $3.5$ $4.4^{*3}$ (岸谷式) $5.8^{*5*6}$ (岸谷式) $10.0$ 取水構造物 (1 · 2 号炉) $30 \#^{*1}$ $3.5$ $4.4^{*3}$ (岸谷式) $5.8^{*5*6}$ (岸谷式) $10.0$ 取水構造物 (1 · 2 号炉) $30 \#^{*2}$ $0.4$ $2.3^{*3}$ (岸谷式) $3.0^{*5*7}$ (岸谷式) $8.5$ *1:3号炉運転開始後の経過年数を示す。 (気中帯) $30 \#^{*2}$ $0.4$ $2.3^{*3}$ (岸谷式) $3.0^{*5*7}$ (岸谷式) $8.5$ *1:3号炉運転開始後の経過年数を示す。 (気中帯) $19 \#$ 運転開始後の経過年数は39年。 *3: 岸谷式および森永式による評価結果のうち最大値を記載 *5: 岸谷式、森永式および実測値に基づく $\sqrt{1}$ t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は71年。 *7:2号炉運転開始後の経過年数は71年。 *7:2号炉運転開始後の経過年数は70年。添付1中性化深さの推定値の算定過程および結果 添付2中性化深さの実測値	原子炉補助建屋 (內壁及び床)3 6年0.33.2 (森永式)4.0*4 (森永式)6.0 (森永式)取水構造物 (気中帯)3 7年0.50.60.7*4 (森永式)8.5原子炉補助建屋 (1・2号炉)3 0年*13.54.4*3 (岸谷式)5.8*5*6 (岸谷式)10.0取水構造物 (1・2号炉) (気中帯)3 0年*20.42.3*3 (岸谷式)3.0*5*7 (岸谷式)8.5*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は3 9年。 *3:岸谷式および森永式による評価結果のうち最大値を記載*4:森永式および実測値に基づく√ t式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√ t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は7 1年。 *7:2号炉運転開始後の経過年数は7 0年。森付1中性化深さの推定値の算定過程および結果 系付2	原子炉補助建屋 (基礎マット)	37年	2.4	1.4 (森永式)	3. 1 ^{*4} (√t式)	6. 0
取木構造物 (気中帯) $37年$ $0.5$ $0.6$ (森永式) $0.7^{*4}$ ( $\sqrt{tx}$ ) $8.5$ 原子炉補助建屋 (1 · 2号炉) (基礎マット) $30 \pm *1$ $3.5$ $4.4^{*3}$ (岸谷式) $5.8^{*5*6}$ (岸谷式) $10.0$ 取水構造物 (1 · 2号炉) (気中帯) $30 \pm *2$ $0.4$ $2.3^{*3}$ 	取水構造物 (気中帯)37年0.50.6 (森永式)0.7*4 ( $\sqrt{r}$ t式)8.5原子炉補助建屋 (1・2号炉) (基礎マット)30年*13.54.4*3 (岸谷式)5.8*5*6 (岸谷式)10.0取水構造物 (1・2号炉) (気中帯)30年*20.42.3*3 (岸谷式)3.0*5*7 (岸谷式)8.5*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。 *3:岸谷式および森永式による評価結果のうち最大値を記載*4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は71年。 *7:2号炉運転開始後の経過年数は70年。振付1中性化深さの推定値の算定過程および結果 添付2中性化深さの実測値	取水構造物 (気中帯)37年0.50.6 (森永式)0.7*4 ( $\sqrt{rtx}$ )8.5原子炉補助建屋 (1・2号炉)30年*13.54.4*3 (岸谷式)5.8*5*6 (岸谷式)10.0取水構造物 (気中帯)30年*20.42.3*3 (岸谷式)3.0*5*7 (岸谷式)8.5*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。 *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。 *3:岸谷式および泰水式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく $\sqrt{rtx}$ t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は71年。 *7:2号炉運転開始後の経過年数は70年。係付1中性化深さの推定値の算定過程および結果 系付2中性化深さの実測値	取水構造物 (気中帯) 37年 0.5 0.6 0.7 ^{*4} (本永式) 0.7 ^{*4} (水甘式) 8.5 0.4 0.4 2.3 ^{*3} (岸谷式) 0.4 2.3 ^{*3} (岸谷式) 0.4 2.3 ^{*3} (岸谷式) 0.4 2.3 ^{*3} (岸谷式) 0.4 ^{5*7} (岸谷式) 8.5 (岸谷式) 8.5 (岸谷式) 8.5 (岸谷式) 8.5 19万運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。 *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。 *3:岸谷式および森永式による評価結果のうち最大値を記載 *4:森永式および実測値に基づく $\int$ t式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく $\int$ t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は71年。 *7:2号炉運転開始後の経過年数は70年。	原子炉補助建屋 (内壁及び床)	36年	0.3	3.2 (森永式)	4. 0 ^{*4} (森永式)	6. 0
原子炉補助建屋 (1・2号炉) (基礎マット)       30年*1       3.5       4.4*3 (岸谷式)       5.8* ^{5*6} (岸谷式)       10.0         取水構造物 (1・2号炉) (気中帯)       30年*2       0.4       2.3*3 (岸谷式)       3.0* ^{5*7} (岸谷式)       8.5         *1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。         *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。         *3:岸谷式および森永式による評価結果のうち最大値を記載         *4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載         *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載         *6:1号炉運転開始後の経過年数は71年。         *7:2号炉運転開始後の経過年数は70年。         然付1       中性化深さの推定値の算定過程および結果         為付2       中性化深さの実測値	原子炉補助建屋 (1・2号炉)       30年*1       3.5       4.4*3 (岸谷式)       5.8*5*6 (岸谷式)       10.0         取水構造物 (1・2号炉)       30年*2       0.4       2.3*3 (岸谷式)       3.0*5*7 (岸谷式)       8.5         *1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。 *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。 *3:岸谷式および森永式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は71年。 *7:2号炉運転開始後の経過年数は70年。         添付1       中性化深さの推定値の算定過程および結果 添付2	原子炉補助建屋 (1・2号炉)       30年*1       3.5       4.4**3 (岸谷式)       5.8*5*6 (岸谷式)       10.0         取水構造物 (1・2号炉)       30年*2       0.4       2.3*3 (岸谷式)       3.0*5*7 (岸谷式)       8.5         *1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。       *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。       *3:岸谷式および案測値に基づく√t式による評価結果のうち最大値を記載         *4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載       *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載         *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載         *6:1号炉運転開始後の経過年数は71年。         *7:2号炉運転開始後の経過年数は70年。         *6       中性化深さの推定値の算定過程および結果         系付1       中性化深さの実測値	原子炉補助建屋 (1・2号炉)       30年*1       3.5       4.4*3 (岸谷式)       5.8* ^{5,6} (岸谷式)       10.0         取水構造物 (1・2号炉) (気中帯)       30年*2       0.4       2.3*3 (岸谷式)       3.0* ^{5,7} (岸谷式)       8.5         *1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。 *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。 *3:岸谷式および森永式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は71年。 *7:2号炉運転開始後の経過年数は70年。         森付1       中性化深さの推定値の算定過程および結果 添付2	取水構造物 (気中帯)	37年	0.5	0.6 (森永式)	0.7 ^{*4} (√t式)	8.5
取水構造物 (1・2号炉) (気中帯)       30年*2       0.4       2.3*3 (岸谷式)       3.0*5*7 (岸谷式)       8.5         *1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。         *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。         *3:岸谷式および森永式による評価結果のうち最大値を記載         *4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載         *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載         *6:1号炉運転開始後の経過年数は71年。         *7:2号炉運転開始後の経過年数は70年。         条付1       中性化深さの推定値の算定過程および結果         系付2       中性化深さの実測値	取水構造物 (1・2号炉) (気中帯)30年*20.42.3*3 (岸谷式)3.0*5*7 (岸谷式)8.5*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。 *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。 *3:岸谷式および森永式による評価結果のうち最大値を記載 *4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載 *6:1号炉運転開始後の経過年数は70年。8.5	取木構造物 (1・2号炉) (気中帯)         30年*2         0.4         2.3*3 (岸谷式)         3.0*5*7 (岸谷式)         8.5           *1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。           *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。           *3:岸谷式および森永式による評価結果のうち最大値を記載           *4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載           *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載           *6:1号炉運転開始後の経過年数は71年。           *7:2号炉運転開始後の経過年数は70年。           然付1         中性化深さの推定値の算定過程および結果           条付2         中性化深さの実測値	取水構造物 (1・2号炉) (気中帯)       30年*2       0.4       2.3*3 (岸谷式)       3.0*5*7 (岸谷式)       8.5         *1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。         *2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。         *3:岸谷式および森永式による評価結果のうち最大値を記載         *4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載         *5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載         *6:1号炉運転開始後の経過年数は71年。         *7:2号炉運転開始後の経過年数は70年。         条付1       中性化深さの推定値の算定過程および結果         条付2       中性化深さの実測値	原子炉補助建屋 (1・2号炉) (基礎マット)	30年*1	3. 5	4. 4 ^{*3} (岸谷式)	5. 8 ^{* 5 * 6} (岸谷式)	10.0
<ul> <li>*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。</li> <li>*2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。</li> <li>*3:岸谷式および森永式による評価結果のうち最大値を記載</li> <li>*4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載</li> <li>*5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載</li> <li>*6:1号炉運転開始後の経過年数は71年。</li> <li>*7:2号炉運転開始後の経過年数は70年。</li> </ul> 系付1 中性化深さの推定値の算定過程および結果 系付2 中性化深さの実測値	<ul> <li>*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。</li> <li>*2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。</li> <li>*3:岸谷式および森永式による評価結果のうち最大値を記載</li> <li>*4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載</li> <li>*5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載</li> <li>*6:1号炉運転開始後の経過年数は71年。</li> <li>*7:2号炉運転開始後の経過年数は70年。</li> </ul> 系付1 中性化深さの推定値の算定過程および結果 系付2 中性化深さの実測値	<ul> <li>*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。</li> <li>*2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。</li> <li>*3:岸谷式および森永式による評価結果のうち最大値を記載</li> <li>*4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載</li> <li>*5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載</li> <li>*6:1号炉運転開始後の経過年数は71年。</li> <li>*7:2号炉運転開始後の経過年数は70年。</li> </ul> 忝付1 中性化深さの推定値の算定過程および結果 忝付2 中性化深さの実測値	<ul> <li>*1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。</li> <li>*2:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は39年。</li> <li>*3:岸谷式および森永式による評価結果のうち最大値を記載</li> <li>*4:森永式および実測値に基づく√t式による評価結果のうち最大値を記載</li> <li>*5:岸谷式、森永式および実測値に基づく√t式による評価結果のうち最大値を記載</li> <li>*6:1号炉運転開始後の経過年数は71年。</li> <li>*7:2号炉運転開始後の経過年数は70年。</li> </ul>	取水構造物 (1・2号炉) (気中帯)	30年 ^{*2}	0.4	2. 3 ^{*3} (岸谷式)	3. 0 ^{* 5 * 7} (岸谷式)	8.5
				<ul> <li>* 7:2号炉運転開</li> <li>* 7:2号炉運転開</li> <li>* 付 1 中性化浴</li> <li>* 付 2 中性化浴</li> </ul>	始後の経過 始後の経過 架さの推算	⁺ 数は704 年数は704 定値の算う 則値	-。 ^{F。} 室過程およて	「結果	

#### 中性化深さの推定値の算定過程および結果

1. 森永式

- : 中性化深さの推定に必要なパラメータ : 推定結果

	原子炉補助建屋 (基礎マット) 屋内仕上無	原子炉補助建屋 (内壁及び床) 屋内仕上無	取水構造物 (気中帯) 屋外仕上無	原子炉補助建屋 (1・2号炉) (基礎マット) 屋内仕上無	取水構造物 (1・2号炉) (気中帯) 屋外仕上無	備考
W/C:水セメント比(%)	51.0	52.0	48.0	59.0	53.0	
R:仕上材の中性化率	1.0	1.0	1.0	1.0	1.0	打ち放し仕上げ:1.0
二酸化炭素濃度(%)	0.042	0.045	0.041	0.057	0.040	原子伊補助建屋(基礎マット)実測値 原子伊補助建屋(内登及び床):実測値 取水構造物(気中帯):気象庁(修量)の観測(2019年の年平均) 原子伊補助建屋(1・2号炉)(基礎マル):実測値 取水構造物(1・2号炉)(気帯):気象庁(破量)の観測(2013年の年平均)
T:温度(℃)	21.6	36.1	16.0	29.8	14.5	原子伊補助建屋(基礎マット) 実測値 原子伊補助建屋(内登及び床):実測値 取水構造物(気中帯):発電所構内の温度の観測値(2005年1月~2021年12月の17ヵ年平均) 原子伊補助建屋(1・2号伊)(基礎マット):実測値 取水構造構造的(1・2号伊)(名地マネ):実測値(5)(貨幣)の観測値(共用期間平均))
RH:湿度(%)	59.0	20.9	75.9	57.9	77.0	原子伊維助建国(基礎マット):実測値 原子伊維助建国(内豊芝び氏):実測値 取水構造物(気中帯):発電所構内の湿度の観測値(2005年1月~2021年12月の17ヵ年平均) 原子伊維助建屋(1-2号炉)(基礎マット):実測値 取水構造物(1-2号炉)(基本):気象庁(関係)の観測値(共用期間平均)
運転開始後37年 [※] 経過 時点の推定値(cm)	1.4	3.2	0.6	3.2	0.8	※原子炉補助建屋(1・2号炉)(基礎マット)及び取水構造物(1・2号炉)(気中帯)につ いては、運転開始後30年経過時点の推定値。
運転開始後60年経過 時点の推定値(cm)	1.7	4.0	0.7	4.3	1.0	

森永式 
$$x = \sqrt{\frac{C}{5}} \cdot 2.44 \cdot R \cdot (1.391 - 0.017 \cdot RH + 0.022 \cdot T) \cdot (4.6 \cdot w/c/100 - 1.76) \cdot \sqrt{t}$$

x:中性化深さ(mm) R:中性化比率 w/c : 水セメント比(%) t:材齢(日)

c:二酸化炭素濃度(%) RH:相対湿度(%) T:温度(℃)

2. 中性化深さの実測値に基づく√t式

	原子炉補助建屋 (基礎マット)	原子炉補助建屋 (内壁及び床)	取水構造物 (気中帯)	原子炉補助建屋 (1・2号炉) (基礎マット)	取水構造物 (1・2号炉) (気中帯)	備考
	屋内仕上無	屋内仕上無	屋外仕上無	屋内仕上無	屋外仕上無	
中性化深さの実測値(cm)	2.4	0.3	0.5	3.4	0.4	
運転開始後60年経過時点 の中性化深さ推定値(cm)	3.1	0.4	0.7	4.6	0.5	

$$\sqrt{t}$$
 t  $\vec{x}$   $x = A \cdot \sqrt{t}$ 

x:中性化深さ(mm)

t:中性化期間(年)

A:中性化速度係数(中性化深さの実測値と中性化期間により算出)

3. 岸谷式

	原子炉補助建屋 (1・2号炉) (基礎マット) 屋内仕上無	取水構造物 (1・2号炉) (気中帯) 屋外仕上無	備考
W/C:水セメント比(%)	59.0	53.0	
α:劣化外力係数	1.37	1.00	原子炉補助建屋(1・2号炉)(基礎マット):実測値に基づく補正値 取水構造物(1・2号炉)(気中帯):1.00
β:仕上げ材による係数	1.0	1.0	仕上げなし:1.0
γ:セメントによる係数	1.4	1.4	フライアッシュセメント:1.4
運転開始後29年経過 時点の推定値(cm)	4.4	2.3	
運転開始後60年経過 時点の推定値(cm)	5.8	3.0	

岸谷式 
$$t = \frac{7.2}{R^2 \cdot (4.6 \cdot w - 1.76)^2} \cdot x^2$$

x:中性化深さ(mm) w:水セメント比(%)

t:深さxまで中性化する期間(年) R:中性化比率(R= $\alpha \times \beta \times \gamma$ ) α:劣化外力の区分による係数 β:仕上げ材による係数 γ:セメントによる係数

岸谷式の原子炉補助建屋(1・2号炉)(基礎マット)に用いた劣化外力係数の算出 にあたっては、岸谷式の根拠となっている屋外二酸化炭素濃度データは「高耐久性鉄筋 コンクリート造設計施工指針(案)・同解説(日本建築学会)」を参照し、最低値であ る 300ppm を基準として、当該部位での二酸化炭素濃度の実測値を 300ppm で除した値の 平方根で算出した。

- ・原子炉補助建屋(1・2号炉)(基礎マット) 劣化外力係数  $\alpha = \sqrt{(C \land C_0)} = 1.37$ 
  - C₀:屋外二酸化炭素濃度データの最低値(300ppm)
  - C : 原子炉補助建屋(1・2号炉)(基礎マット)における二酸化炭素濃度の
     実測値(567ppm)

#### 中性化深さの実測値

#### 中性化深さの実測値は測定点近傍の3箇所の測定値を平均して算出している。

	測定値 1 (cm)	測定值 2 (cm)	測定值 3 (cm)	実測値(平均値) (cm)
原子炉補助建屋 (基礎マット)	2. 1	2. 3	2.8	2. 4
原子炉補助建屋 (内壁及び床)	0.4	0.3	0.2	0. 3
取水構造物 (気中帯)	0.5	0.3	0.8	0.5
原子炉補助建屋 (1・2号炉) (基礎マット)	3.6	3. 5	3.3	3. 5
取水構造物 (1・2号炉) (気中帯)	0.5	0.4	0.3	0.4

タイトル	塩分浸透の評価対象および評価点の選定過程について
説明	塩分浸透の代表構造物の取水構造物について、高経年化技術評価審査 マニュアル(JNES-RE-2013-9012)に基づき、環境条件が異なる気中 帯、干満帯および海中帯をそれぞれ評価点として選定した。 なお、最高潮位および最低潮位は、高浜発電所内において、2005年1 月から2021年12月の17年間で観測を実施したデータにより設定してい る。観測を実施したデータについては、高浜発電所のOPMS(運転状 態管理システム)において記録している値である。 それぞれの評価点については、以下に示すとおりであり、2005年1月 ~2021年12月の期間の潮位変化を添付1に示す。 気中帯:最高潮位 T.P.+0.42mを超える位置 王満帯:最高潮位 T.P.+0.42mを超える位置
	海南: 最高潮位 1.F. +0.42m以上、 最低潮位 1.F2.00m以上の位置 海中帯: 最低潮位 T.P2.00m未満の位置
	添付1 2005年1月~2021年12月までの潮位変化
	以上





添付1

タイトル	塩化物イオン濃度の測定位置、測定方法、測定結果について
説明	塩化物イオン濃度の測定位置、測定方法、測定結果を以下に示す。 1. 測定位置 添付1「塩化物イオン濃度の測定位置図」に示すとおり。 なお、干満帯は、潮が干満を繰り返す領域ではあるが、潮位の傾向が 低い時期(季節)では干満帯に位置するコンクリート表面は海水面より 上に長時間現れていることが多い状況であることから、海水の飛沫を受 けてコンクリート表面が乾湿を繰り返している環境である。 (詳細は、添付2「海水の飛沫環境を対象とした場合の塩化物イオンの 浸透(塩分浸透)の整理」参照)
	<ol> <li>2. 測定方法 JIS A 1154「硬化コンクリート中に含まれる塩化物イオンの試験方法」による。</li> <li>3. 測定結果 添付3「塩化物イオン濃度および量の測定結果」に示すとおり。</li> </ol>
	<ul> <li>添付1 塩化物イオン濃度の測定位置図</li> <li>添付2 海水の飛沫環境を対象とした場合の塩化物イオンの浸透(塩分浸透)の整理</li> <li>添付3 塩化物イオン濃度および量の測定結果</li> </ul>

添付1

#### 塩化物イオン濃度の測定位置図

凡例

▼:塩化物イオン濃度試験位置(試験実施年)

高浜3号炉 取水構造物 平面図

断面図

海水の飛沫環境を対象とした場合の塩化物イオンの浸透(塩分浸透)の整理

代表構造物のうち、取水構造物は海水に接触するため供給塩分量が多い構造物であり、飛 来塩分および海水とその飛沫の影響を多く受ける環境下にある。

以下において、海水の飛沫環境を対象とした場合の塩化物イオンの浸透(塩分浸透)について示す。

①「気中帯・干満帯・海中帯」の海水の飛沫環境について

塩化物イオン濃度を測定位置(気中帯、干満帯および海中帯)の環境の違いについて、 表11-1において整理した。

なお、干満帯は潮が干満を繰り返す領域であるが、別紙10のうち添付1「2005年1月 ~2021年12月までの潮位変化」に示すとおり、時期(季節)によって潮位変化の傾向が異 なるため、潮位変化の傾向別に分割して整理を行った。

塩化物イオン	気中帯	=	<b>千満帯</b>	海中帯
濃度測定位置	T. P. +1. 55m	No. 1 : T. P0. 27m, No. 2 :	T. P. −6. 45m	
	最高潮位	【時期:各年1月~6月】	【時期:各年7月~12月】	最低潮位
潮位変化	T. P. +0. 42m	・平均潮位T.P.−0.56m	・平均潮位T.P0.42m(+0.14m)※	T. P2. 00m
(2005年1月~		・最高潮位T.P.+0.32m	・最高潮位T.P.+0.42m(+0.10m)*	
2021年12月)		・最低潮位T.P.−1.82m	・最低潮位T.P2.00m(-0.18m)*	
			※()は、左記潮位との差	
	外気環境に	1月~6月は潮位が低い傾向に	左記の期間に比べて潮位が高い傾	常時海水に
理由	ある	あることから、コンクリート	向であり、1月~6月の期間より干	浸かる環境
<b>垛</b> 児		表面が海面より上に長期間現	満の影響を繰り返し受けている。	にある。
		れていることが多い。		

表11-1 塩化物イオン濃度を測定した「気中帯・干満帯・海中帯」の環境の違い

表11-1および図11-1に示すとおり、「気中帯」である頂版は最高潮位 (T.P.+0.42m)から 1.13m 高い位置ではあるが、外気環境であるため潮風による飛沫塩 分を受けてコンクリート表面が乾湿を繰り返している環境である。

また、「干満帯」については、1月~6月の潮位傾向が7月~12月の潮位傾向よりも 各年で同様に低い傾向であることから、干満帯に位置するコンクリート表面は海水面 より上に長時間現れていることが多い状況であり、海水の飛沫を受けてコンクリート 表面が乾湿を繰り返している環境である。なお、海面は取水構造物内の天井 (T.P.+0.05m)を超えることもあり、波浪の跳ね返りによって海水の飛沫を多く受けて いる環境であると考える。

一方、7月~12月の潮位傾向は、1月~6月の潮位傾向よりも各年で同様に比較的高 く、干満帯に位置するコンクリート表面は干満の影響を繰り返し受けることによりほ ぼ飽和状態にあると考えられる。

以上から、「干満帯」は、時期(季節)によっては海水の飛沫を受けてコンクリート 表面が乾湿を繰り返している環境である。

②海水の飛沫環境を対象とした場合の塩化物イオンの浸透(塩分浸透)について

表11-2に、「気中帯」および「干満帯」の海水の飛沫環境における塩化物イオン の浸透(塩分浸透)の状況を示す。

なお、塩化物イオンの浸透は、コンクリートの乾湿の繰り返しによる水の移動(移流) が関係すること、および特に海洋環境では、乾湿の繰り返しの影響が大きい飛沫帯のよ うに、常に海水に接してはいないが乾湿が繰り返し起きるとコンクリート表層部分に 塩化物イオンが浸透しやすいと、コンクリート診断技術(公益社団法人 日本コンクリ ート工学会)に示されている。

		海水の飛沫を受けるエリア
	気中帯	干満帯
海水の飛	潮風のみによる飛沫塩分を受	時期(季節)によっては、コンクリート表面が海面より上に長時
沫環境	ける環境。	間現れていることが多い状況であり、また波浪が取水構造物内で跳
		ね返ることにより、海水の飛沫を多く受ける環境。
塩化物イ	供給される塩化物イオン量	供給される塩化物イオン量は、気中帯と同様に海水の飛沫の影響
オンの浸	は、海水の飛沫の影響に左右さ	により左右されるが、左記の気中帯と比べて海水の飛沫量は多い環
透(塩分	れるが、飛沫した海水の他に雨	境である。
浸透)の	水によるコンクリート表面の乾	また、海水の飛沫によるコンクリート表面の乾湿繰り返しによっ
状況	湿繰り返しによって、コンクリ	て、コンクリートの水分が移動(移流)して塩化物イオンが浸透す
	ートの水分が移動(移流)して塩	る。
	化物イオンが浸透する。	一方、海中帯は常時海水に浸かっている環境でありコンクリート
		表面の乾湿繰り返しはされない環境である。
		このことから、海水の飛沫を受ける環境である干満帯は、気中帯
		および海中帯より多く塩化物イオンがコンクリート表層に浸透し易
		い環境である。

表11-2	「気中帯」】	および「干満帯	「」の塩化物イ	オンの浸透	(塩分浸透)	の状況
-------	--------	---------	---------	-------	--------	-----

以上の環境を考慮し、別紙12で示す「塩分浸透における鉄筋の腐食減量の算定」に おいて鉄筋の腐食減量の推定値を算定する。

"Yr + +、 #+		実施	武称	+1 <del>//</del>		塩化物~	(オン濃度 (%	() および量	$(kg/m^3)$	
侢逗物	前红	時期 (年)	番号	中位	$0\sim 20 \mathrm{mm}$	$20\!\sim\!40\text{mm}$	$40\!\sim\!60\mathrm{mm}$	$60\!\sim\!80\mathrm{mm}$	$80 \sim 100 \mathrm{mm}$	$100\!\sim\!120\mathrm{mm}$
			F IN	%	0.30	0.17	0.10	0.04	0.02	0.01
			No. 1	kg/m ³	7.07	3.95	2.37	0.88	0.55	0.24
			o IV	%	0.34	0.26	0.13	0.05	0.02	0.01
取水構造物	14 1-		No. 2	kg/m ³	7.96	6.05	3.14	1.25	0.38	0.19
気中帯	供部	2702	c V	%	0.33	0.26	0.13	0.07	0.02	0.01
			NO. 3	kg/m ³	7.70	6.08	3.00	1.60	0.47	0.32
			计估试	%	0.32	0.23	0.12	0.05	0.02	0.01
			十必進	kg/m ³	7.58	5.36	2.84	1.24	0.47	0.25
			;	%	0.15	0.12	0.07	0.04	0.02	0.01
			No. I	kg/m ³	3.59	2.81	1.54	0.88	0.57	0.33
			o N	%	0.19	0.13	0.07	0.04	0.02	0.01
取水構造物	2011년		NO. 2	kg/m ³	4.53	3.14	1.73	0.96	0.43	0.34
十満寺	測壁	2202	c N	%	0.15	0.12	0.06	0.03	0.02	0.01
			NO. 3	kg/m ³	3.54	2.87	1.40	0.72	0.40	0.26
			世代正	%	0.16	0.12	0.07	0.04	0.02	0.01
			十必進	kg/m ³	3.89	2.94	1.56	0.85	0.47	0.31
			;	%	0.17	0.08	0.04	0.01	0.01	0.00
			No. I	kg/m ³	4.00	1.85	1.00	0.28	0.12	0.08
			C N	%	0.16	0.10	0.04	0.02	0.01	0.01
取水構造物	44 74	0000	NO. 2	kg/m ³	3.72	2.31	0.85	0.50	0.21	0.17
海中帯	医管	7707	C N	%	0.18	0.12	0.06	0.02	0.01	0.01
			NO. 3	kg/m ³	4.34	2.73	1.35	0.57	0.27	0.24
			计为信	%	0.17	0.10	0.05	0.02	0, 01	0.01
			十約個	kg/m ³	4.02	2.30	1.07	0.45	0.20	0.16
			- : 鉄魚	5位置付近	の塩化物イオ	-ン濃度および	<b>》</b>			

塩化物イオン濃度および量の測定結果※

添付 3

※塩化物イオン濃度の測定結果のグラフ表示については、別紙12のうち添付2「拡散方

程式の回帰分析と鉄筋腐食減量の算定について」に示す。

タイトル	塩分浸透における鉄筋の腐食減量の算定過程および結果について
説明	鉄筋の腐食減量の算定過程(方法、条件、パラメータ)および結果を以 下に示す。
	<ol> <li>方法         <ol> <li>(1) 拡散方程式により、コンクリート表面からの塩化物イオンの浸透を予測                 <ul></ul></li></ol></li></ol>
	<ol> <li>条件およびパラメータ 評価対象(気中帯、干満帯、海中帯)の条件およびパラメータをそれ ぞれ、添付1「塩分浸透による鉄筋の腐食減量の推定値算定の過程およ び結果」および添付2「拡散方程式の回帰分析と鉄筋腐食減量の算定に ついて」に示す。 なお、干満帯は、潮が干満を繰り返す領域ではあるが、潮位の傾向が 低い時期(季節)では干満帯に位置するコンクリート表面は海水面より 上に長時間現れていることが多い状況であることから、海水の飛沫を受 けてコンクリート表面が乾湿を繰り返している環境である。 このことから、添付1における干満帯の推定値算出に必要なパラメー タのうち酸素濃度については、コンクリート表面の乾湿の繰り返しの程 度を考慮して気中帯と同様の外気環境に曝される状態であると想定して 設定をした。 (詳細は、別紙11添付2「海水の飛沫環境を対象とした場合の塩化物 イオンの浸透(塩分浸透)の整理」参照)</li> </ol>

	3. 結果 運転開始60年時点の鉄筋腐食減量が、かぶりコンクリートにひび割 れが発生する時点の鉄筋腐食減量を下回っていることを確認した。 鉄筋の腐食減量の算定結果は、以下に示す。 なお、「調査時点、運転開始後60年経過時点およびひび割れが発生 する時点の前後5年の鉄筋の腐食減量」については、添付2に示す。						
	表12-1 評価結果						
			鉄筋の腐食減	县. 里			
			$(\times 10^{-4} \mathrm{g/cm}^2)$				
	対象の部位 	調査時点	3 号炉運転 開始後 6 0 年 経過時点	かぶりコンクリー トにひび割れが 発生する時点 ^{*1}			
	取水構造物 (気中帯)	3.2	6. 0	90.1			
	取水構造物 (干満帯) ^{※2}	7.0	11.0	88.1			
	取水構造物 (海中帯)	0. 0	0.0	88.1			
	取水構造物 (1・2号炉) (気中帯)	10.7	$26.6^{*4}$	90.1			
	取水構造物 (1・2号炉) (干満帯) ^{*2}	11.4	$2 \ 1. \ 6^{*3}$	90.1			
	取水構造物 (1・2号炉) (海中帯)     7.2     19.3 ^{*3} 90.1       **1かぶりコンクリートにひび割れが発生する時点の鉄筋腐食減量 推定値(Q _{CR} )     **2別紙11のうち添付2の考察により、気中帯と同様の酸素濃度とし 推定値を算定。       **31号炉運転開始後の経過年数は71年。       **42号炉運転開始後の経過年数は70年。						
	添付1 塩分浸透に。 添付2 拡散方程式の	よる鉄筋の腐食洞 の回帰分析と鉄筋	战量の推定値算定○ 5腐食減量の算定○	の過程および結果 について			
### 塩分浸透による鉄筋の腐食減量の推定値算定の過程および結果

鉄筋の腐食減量の算定に用いる諸元とその結果を表12-2に示す。

			取水構造物		
		気中帯	干満帯	海中帯	備考
x:暴露面から塩化物イオン濃度を測定した箇所まで 距離 (mm)	Ø	0~120	0~120	0~120	
t:共用年数(年)		37	37	37	塩分浸透の点検実施時点
C(x,t):距離x(mm)、共用期間t(年)において測定	%	0.01~0.33	0.01~0.15	0.01~0.18	気中帯:塩分浸透の点検結果 - 干満帯・塩分浸透の点検結果
された塩化物イオン濃度および量	$kg/m^3$	0.32~7.70	0.26~3.54	0.24~4.34	海中带:塩分浸透の点検結果
Co・コンクリート表面の塩化物イオン濃度および量	%	0.404	0.226	0.232	拡散方程式の回帰分析により算出
	$kg/m^3$	9.50	5.37	5.47	塩化物イオン量(kg/m ³ )=単位容積質量(kg/m ³ )×塩化物イオン濃度(%)/100
<ul> <li>D:コンクリート中の塩化物イオンの見かけ上の</li> <li>拡散係数(mm²/年)</li> </ul>		36.4	29.8	26.0	拡散方程式の回帰分析により算出
CI:鉄筋位置における塩化物イオン濃度および量	%	0.00~0.08	0.00~0.03	0.00~0.03	「「「「「「「」」」」である「「」」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、「」」では、」」では、
(推定值)	kg/m3	0.00~1.86	0.00~0.77	0.00~0.64	1年転用船から00年経過時点までの各年の推定値
c:かぶり厚さ(mm)		85.5	87.5	87.5	
d:鉄筋径(mm)		29	25	25	
W:単位水量(kg/m ³ )		169	169	169	
W/C:水セメント比(比)		48	48	48	
T : 温度 (℃)		16.0	18.7	18.7	気中帯・発電所構内の温度の親謝値(2005年1月~2021年12月の17ヵ年平均) 干満帯・海中帯:発電所構内の海水温度の観測値(2005年1月~2021年12月の17ヵ年平均)
RH:相対湿度(%)		75.9	100	100	気中帯:発電所構内の湿度の観測値(2005年1月〜2021年12月の17ヵ年平均) 干満帯・海中帯:海水の接触により100%とする
0:酸素濃度(比)		21	21	0.6	気中帯:理科年表 干満帯:別紙12のうち添付2の考察により、気中帯と同様のパラメータとした。 海中帯:森永氏の鉄筋腐食に関する研究論文引用
N:練り混ぜ水の塩分濃度(%)		0.00~1.81	0.00~0.75	0.00~0.63	運転開始から60年経過時点までの各年の推定値
Q ₃₇ :調査時点(37年経過)の鉄筋の腐食減量 (×10 ⁻⁴ g/cm ² )		3.2	7.0	0.0	
Q ₆₀ :運転開始後60年経過時点の鉄筋の 腐食減量 (×10 ⁻⁴ g/cm ² )		6.0	11.0	0.0	
Q _{CR} :かぶりコンクリートにひび割れが発生する 時点の鉄筋の腐食減量 推定値(×10 ⁻⁴ g/cm ² )		90.1	88.1	88.1	
				:(1)拡散方和 コンクリート	程式により、 ト表面からの塩化物イオンの浸透を予測するの必要なパラメータ

表12-2 算定に用いる諸元と評価結果(1/2)

:(1)の予測結果 :(2)森永式により、鉄筋の腐食減量の評価を実施するのに必要なパラメータ



拡散方程式

$$C(x,t) = C_0 \left\{ 1 - erf\left(\frac{x}{2\sqrt{D \cdot t}}\right) \right\}$$

森永式

$$q = q_1 \cdot \frac{q_2}{q_2},$$

$$q_{1} = \frac{d}{c^{2}} \left[ -0.51 - 7.60N + 44.97 \left( \frac{W}{C} \right)^{2} + 67.95N \left( \frac{W}{C} \right)^{2} \right]$$

 $q_2 = 2.59 - 0.05T - 6.89H - 22.87O - 0.99N + 0.14TH + 0.51TO$ +0.01TN+60.81HO+3.36HN+7.32ON

$$q_2' = 0.56528 + 1.4304 N$$

$$Q_{CR} = 0.602(1+2c/d)^{0.85} \times d$$

:(2)の推定結果

C(x, t): 距離x (m)、先用期間t (年)において原定された塩化物イオン濃度および量(%)  $C_0$ : コンクリート表面の塩化物イオン濃度(%) erf: 誤差関数

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t^2} dt$$

x: 暴露面から塩化物イオン濃度を測定した箇所までの距離 (mm)

- D: コンクリート中の塩化物イオンの見かけの拡散係数(mm²/年)
   t: 材齢(年)

- q:鉄筋の腐食速度(×10⁻⁴g/cm²/年)
   ql: 塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
   q2: 寿命予測対象部位で、塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
   q2: 寿命予測対象部位で、
   標準環境下(温度15℃、湿度69%、酸素濃度20%) での腐食速度(×10⁻⁴g/cm²/年)
   Qa: かぶりコンクリートにひび割れが発生する時点の腐食減量(×10⁻⁴g/cm²/4)
   Qa: かぶりコンクリートにひび割れが発生する時点の腐食減量(×10⁻⁴g/cm²/4)
   Qa: かぶりゴンクリートにひび割れが発生する時点の腐食減量(×10⁻⁴g/cm²/4)
   Qa: かぶり厚さ(m)
   ※ 練り見せ木に対する塩分濃度(%)
   W/C: 木セメント比(比)
   T: 温度(C)
   UB: 温度に関する項 H=(RH-45)/100
   MF: 相対温度(%)
   O: 酸素濃度(比)

		取水	構造物(1·2·	号炉)	
		気中帯	干満帯	海中帯	備考
x:暴露面から塩化物イオン濃度を測定した箇所まで 距離(mm)	Ø	0~120	0~120	0~120	
t:共用年数(年)		30 ^{%2}	30 ^{%1}	30 ^{**1}	塩分浸透の点検実施時点 ※1:3号炉運転開始後の経過年数を示す。1号炉運転開始後の経過年数は40年。 ※2:3号炉運転開始後の経過年数を示す。2号炉運転開始後の経過年数は39年。
	%	0.15~0.38	0.03~0.12	0.27~0.81	気中帯:塩分浸透の点検結果
された塩化物イオン濃度および量	kg/m ³	3.60~9.12	0.72~2.88	6.53~19.54	1 十満帝: 垣分浸透の点枝結果 海中帯: 塩分浸透の点検結果
	%	0.599	0.132	0.831	拡散方程式の回帰分析により算出
60:コングリート 衣面の 温化初イオン 濃度 および 重	kg/m ³	14.38	3.17	19.94	塩化物イオン量(kg/m ³ )=単位容積質量(kg/m ³ )×塩化物イオン濃度(%)/100
D:コンクリート中の塩化物イオンの見かけ上の 拡散係数(mm ² /年)		120.2	115.4	133.9	拡散方程式の回帰分析により算出
CI:鉄筋位置における塩化物イオン濃度および量 (推定値) % kg/m3		0.00~0.31	0.00~0.07	0.00~0.45	1日持ちもは0日持定に開始した0日持定に開始後の左梁道はようてのがたのがつけ
		0.00~7.33	0.00~1.60	0.00~10.67	「ラゲまたは2ラゲ連転開始から3ラゲ連転開始後00年発過時点までの各年の推定値
c:かぶり厚さ(mm)		85.5	85.5	85.5	
d:鉄筋径(mm)		29	29	29	
W:単位水量(kg/m ³ )		142	142	142	
W/C:水セメント比(比)		53	53	53	
T:温度(°C)		14.5	18.7	18.7	気 気中帯:気象庁(舞鶴)の観測値(1975~2014年の39ヵ年平均) 干満帯 海中帯:発電所構内の海水温度の測定記録(2005~2014年の10ヵ年平均) 非常用海水路:発電所構内の海水温度の測定記録(2005~2014年の10ヵ年平均)
RH:相対湿度(%)		78	100	100	気中帯:気象庁(舞鶴)の観測値(2014年)) 干満帯・海中帯:海水の後触により100%とする
O:酸素濃度(比)		21	21	0.6	気中帯:理科年麦 干満帯:別紙12のうち添付2の考察により、気中帯と同様のパラメータとした。 海中帯:森永氏の鉄筋腐食に関する研究論文引用
N:練り混ぜ水の塩分濃度(%)		0.00~8.52	0.00~1.86	0.00~12.40	1号炉または2号炉運転開始から3号炉運転開始後60年経過時点までの各年の推定値
Q ₂₉ :調査時点(29年経過)の鉄筋の腐食減量 (×10 ⁻⁴ g/cm ² )		10.7	11.4	7.2	
Q ₆₀ :3号炉運転開始後60年経過時点の鉄筋の 腐食減量(×10 ⁻⁴ g/cm ² )		26.6	21.6	19.3	
Q _{CR} :かぶりコンクリートにひび割れが発生する 時点の鉄筋の腐食減量 推定値(×10 ⁻⁴ g/cm ² )		90.1	90.1	90.1	

## 表12-2 算定に用いる諸元と評価結果(2/2)



:(1)拡散方程式により、 コンクリート表面からの塩化物イオンの浸透を予測するの必要なパラメータ :(1)の予測結果

:(2)森永式により、鉄筋の腐食減量の評価を実施するのに必要なパラメータ :(2)の推定結果

<u> 拡散方程式</u>

$$C(x,t) = C_0 \left\{ 1 - erf\left(\frac{x}{2\sqrt{D \cdot t}}\right) \right\}$$

C(x, t): 距離 (m)、共用期間 (年)において飯店された塩化物イオン濃度および量(%)  $C_0$ : コンクリート表面の塩化物イオン濃度(%) erf: 誤差関数  $-t^{2}$ 

$$erf(x) = \frac{2}{\sqrt{\pi}} \int_{0}^{x} e^{-t} dt$$

x:暴露面から塩化物イオン濃度を測定した箇所までの距離(mm)
 D:コンクリート中の塩化物イオンの見かけの拡散係数(mm²/年)
 t:材齢(年)

- q: 鉄筋の腐食速度(×10⁻⁴g/cm²/年)
   q/: 塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
   2: 寿命予測対象部位で、塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
   2²: 寿命予測対象部位で、塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
   (2²: 寿命予想対象部位で、塩分環境下での腐食速度(×10⁻⁴g/cm²/年)
   (2³: 寿命予想対象部位で、塩皮69%、酸素濃度20%)での腐食速度(×10⁻⁴g/cm²/年)
   (2³: s², s²,
- (×10⁻⁴g/cm²)
   (5) (×50) 厚さ(mm)
   (x) ぶり厚さ(mm)
   (x) 決り厚さ(mm)
   (x) 決り 足ざ(x) 式した
   (x) ジリアン(x) ないたい
   (x) ジリン(x)
   (x) マン(x)
   (x) マン(x)

森永式

$$\begin{split} q &= q_1 \cdot \frac{q_2}{q_2}, \\ q_1 &= \frac{d}{c^2} \bigg[ -0.51 - 7.60N + 44.97 \big( \frac{W}{C} \big)^2 + 67.95N \big( \frac{W}{C} \big)^2 \bigg] \\ q_2 &= 2.59 - 0.05T - 6.89H - 22.87O - 0.99N + 0.14TH + 0.51TO \\ &+ 0.01TN + 6081HO + 3.36HN + 7.32ON \end{split}$$

 $q_2' = 0.56528 + 1.4304 N$ 

 $Q_{CR} = 0.602(1+2c/d)^{0.85} \times d$ 

#### 拡散方程式の回帰分析と鉄筋腐食減量の算定について

鉄筋の腐食減量を評価するには、まず、塩化物イオン濃度(コア測定)の回帰分析から 拡散方程式(コンクリート中の塩化物イオンの見かけの拡散係数(D)およびコンクリー ト表面の塩化物イオン濃度(Co))を求め、それを森永式に展開することから評価され る。ここでは、拡散方程式の回帰分析(最小二乗法)と、それを踏まえた鉄筋の腐食減量 について示す。

(1) 拡散方程式の回帰分析

塩化物イオン濃度は、気中帯、干満帯および海中帯のそれぞれに対して、3箇所(No.1、 No.2、No.3)のコア採取により測定している。測定位置および測定結果は、「別紙11添 付1 塩化物イオン濃度の測定位置図」および「別紙11添付3 塩化物イオン濃度およ び量の測定結果」に示す。

拡散方程式(D、Co)は、気中帯、干満帯および海中帯のそれぞれに対して、測定された塩化物イオン濃度を回帰分析することで評価する。

評価はコア(No.1、No.2、No.3)の平均値を用いる場合と、コア(No.1、No.2、No.3)の単独値を用いる場合の双方について実施した。

回帰分析に当たっては、土木学会規準(案)*に示された「隣接する前後の深さ位置での測定結果と著しく異なる結果についても、回帰分析用のデータから除外するほうがよい。」との記載を参考に、除外する測定結果を選定している。

また、土木学会規準(案)に示された中性化の影響の可能性を考慮し、コンクリート表面に近い領域(0~20mm)の測定値を用いる場合と用いない場合の検討を実施した。

以上の通り検討し、最も影響の大きい回帰分析結果を図12-1に示す。

※:土木学会規準「実構造物におけるコンクリート中の全塩化物イオン分布の測定方法(案) (JSCE-G 573-2018)」(以下、土木学会規準(案)と言う。)



図12-1 拡散方程式の回帰分析結

なお、回帰分析において初期含有全塩化物イオン濃度(Ci)は、土木学会規準(案) で「初期含有全塩化物イオン濃度が不明な場合には、十分に深く構造物表面からの塩分浸 透の影響を受けていないと考えられる位置から採取された試料の全塩化物イオン濃度で 代用する。」とされており、深い位置での塩化物イオン濃度測定結果が概ね0であること から、Ci=0としている。

## (2) 鉄筋の腐食減量

1)評価結果

上記、拡散方程式の回帰分析で求めたコンクリート中の塩化物イオンの見かけの拡 散係数(D)およびコンクリート表面の塩化物イオン濃度(Co)を森永式に展開し、 鉄筋の腐食減量(気中帯、干満帯、海中帯)を算定した。「調査時点」、「運転開始後 60年経過時点」および「かぶりコンクリートにひび割れが発生する時点」のそれぞれ の算定結果を比較して採用した結果を表12-3に示す。

運転開始60年時点の鉄筋の腐食減量が、かぶりコンクリートにひび割れが発生する時点の鉄筋腐食減量(気中帯:90.1×10⁻⁴g/cm²、干満帯・海中帯:88.1×10⁻⁴g/cm²)を下回っていることを確認した。

なお、上記結果(気中帯、干満帯、海中帯)は、3本のコア単独の測定値を用いた場合、およびその平均値を用いた場合のそれぞれにおいて中性化の影響有無を考慮した 結果、最も影響の大きいケースである。その選定過程については後述する。

气中	<b>\#</b> ^{%1}	干湯	<b>#</b> ^{*2}	海中	<b>#</b> ^{**3}
データ: No.3=	アの測定結果	データ: No 3=	アの測定結果	データ: No.3=	アの測定結果
, , ,		, , ,		, , ,	
運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量
(年)	$(\times 10^{-4} {\rm g/cm}^2)$	(年)	$(\times 10^{-4} \mathrm{g/cm}^2)$	(年)	$(\times 10^{-4} {\rm g/cm}^2)$
32	2.7	32	6.2	32	0.0
33	2.8	33	6.3	33	0.0
34	2.9	34	6.5	34	0.0
35	3.0	35	6.7	35	0.0
36	3.1	36	6.9	36	0.0
調査時点 37	3.2	調査時点 37	7.0	<u>調査時点 37</u>	0.0
38	3.3	38	7.2	38	0.0
39	3.4	39	7.4	39	0.0
40	3.6	40	7.5	40	0.0
41	3.7	41	7.7	41	0.0
42	3.8	42	7.9	42	0.0
r				r	
55	5.3	55	10.1	55	0.0
56	5.5	56	10.3	56	0.0
57	5.6	57	10.5	57	0.0
58	5.7	58	10.6	58	0.0
59	5.8	59	10.8	59	0.0
運転開始後 60年経過時点	6.0	<mark>運転開始後</mark> 60年経過時点	11.0	<mark>運転開始後</mark> 60年経過時点	0.0
61	6.1	61	11.1	61	0.0
62	6.3	62	11.3	62	0.0
63	6.4	63	11.5	63	0.0
64	6.5	64	11.7	64	0.0
65	6.7	65	11.8	65	0.0
410	88.6	396	86.7	1393	87.7
411	88.9	397	86.9	1394	87.8
412	89.2	398	87.2	1395	87.9
413	89.5	399	87.4	1396	88.0
414	89.8	400	87.7	1397	88.1
415 ^{×4}	90.0	<b>401^{%4}</b>	87.9	1398 ^{×4}	88.1
416	90.3	402	88.2	1399	88.2
417	90.6	403	88.5	1400	88.3
418	90.9	404	88.7	1401	88.4
419	91.2	405	89.0	1402	88.5
420	91.5	406	89.2	1403	88.5
				· · · · · · · · · · · · · · · · · · ·	

表12-3 鉄筋の腐食減量の結果

※1 0~20mmの塩化物イオン濃度のデータを用いる場合での鉄筋の腐食減量(ケース: 2-3)

※2 0~20mmの塩化物イオン濃度のデータを用いない場合での鉄筋の腐食減量(ケース:①-3) ※3 0~20mmの塩化物イオン濃度のデータを用いない場合での鉄筋の腐食減量(ケース:①-3)

### 2)影響の大きいケースの選定

①気中帯について

回帰分析は、前述したようにコア(No.1、No.2、No.3)の平均値を用いる場合と、 コア(No.1、No.2、No.3)の単独値を用いる場合の双方について実施している。

気中帯は、コンクリートが空気に曝される状況下にあり、中性化の作用を受けている可能性があることから、土木学会規準(案)に示された「中性化した領域およびそこから1cm以内の深部で採取された試料から得られた結果は、回帰分析を行う際には用いないほうがよい。(中略)同様に、隣接する前後の深さ位置での測定結果と著しく異なる結果についても、回帰分析用のデータから除外するほうがよい。」を参考に、気中帯の中性化深さ測定結果(0.5cm)+1cmの領域を含む『0~20mmの塩化物イオン 濃度のデータ』を用いないで回帰分析を実施した。

なお、『0~20mmの塩化物イオン濃度のデータ』を用いる場合での検討も実施し、 用いない場合と用いる場合の影響を検討して影響の大きな方を採用した。

■コア(3箇所)の塩化物イオン濃度測定結果

塩化物イオンの測定結果を表12-4に示す。赤字の測定結果が、中性化の影響の可能性が考えられる領域のデータ(0~20mm)である。また、青字の測定結果については、回帰曲線を塩化物イオン濃度測定値にフィッティングさせるため回帰分析には用いていないデータである。

なお、回帰分析結果については割愛する。

試料	畄佔	塩化物イオン濃度(%)および量(kg/m ³ )							
番号	中位	0~20mm	20~40mm	40~60mm	60~80mm	80~100mm	100~120mm		
NL 1	%	0.30	0.17	0.10	0.04	0.02	0.01		
INO. I	$kg/m^3$	7.07	3.95	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.55	0.24			
No.2	%	0.34	0.26	0.13	0.05	0.02	0.01		
	$kg/m^3$	7.96	6.05	3.14	1.25	0.38	0.19		
N. 2	%	0.33	0.26	0.13	0.07	0.02	0.01		
INO.3	$kg/m^3$	7.70	6.08	3.00	1.60	0.47	0.32		
亚均仿	%	0.32	0.23	0.12	0.05	0.02	0.01		
十均恒	kg/m ³	7.58	5.36	2.84	1.24	0.47	0.25		

表12-4 コアの塩化物イオン濃度測定値(気中帯:3箇所)

■影響の大きいケースの選定

塩化物イオン濃度測定結果が鉄筋の腐食減量結果に及ぼす影響について、「調査 時点」、「運転開始後60年経過時点」および「かぶりコンクリートにひび割れが 発生する時点」を比較して表12-5~12-6に示す。

運転開始後経過60年時点の鉄筋の腐食減量が最も大きい値は、②-3(0~20mmのデータを用いる場合、No.3コアの測定結果)であったため、このケースを採用した。

# 表12-5 鉄筋の腐食減量の算定結果(気中帯) 【0~20mmのデータを用いない場合】

①-1		<u>(</u> )-	-2	(1)·	-3	(1)-4		
データ: No.1コ	アの測定結果	データ: No.2コ	アの測定結果	データ: No.3コ	アの測定結果	データ:	平均值	
運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	
(年)	$(\times 10^{-4} \text{g/cm}^2)$	(年)	$(\times 10^{-4} \text{g/cm}^2)$	(年)	$(\times 10^{-4} \text{g/cm}^2)$	(年)	$(\times 10^{-4} \text{g/cm}^2)$	
•	<u> </u>			_				
32	2.7	32	2.7	32	2.7	32	2.7	
33	2.8	33	2.8	33	2.8	33	2.8	
34	2.9	34	2.9	34	2.9	34	2.9	
35	3.0	35	2.9	35	3.0	35	2.9	
36	3.1	36	3.0	36	3.1	36	3.0	
調査時点 37	3.2	調査時点 37	3.1	調査時点 37	3.1	調査時点 37	3.1	
38	3.3	38	3.2	38	3.2	38	3.2	
39	3.4	39	3.3	39	3.3	39	3.3	
40	3.5	40	3.4	40	3.4	40	3.4	
41	3.6	41	3.5	41	3.5	41	3.5	
42	3.6	42	3.6	42	3.6	42	3.6	
55	5.0	55	5.0	55	5.1	55	5.0	
56	5.1	56	5.1	56	5.2	56	5.1	
57	5.3	57	5.2	57	5.3	57	5.2	
58	5.4	58	5.3	58	5.4	58	5.3	
59	5.5	59	5.4	59	5.6	59	5.4	
運転開始後 60年経過時点	5.6	<mark>運転開始後</mark> 60年経過時点	5.6	運転開始後 60年経過時点	5.7	運転開始後 60年経過時点	5.6	
61	5.7	61	5.7	61	5.8	61	5.7	
62	5.8	62	5.8	62	5.9	62	5.8	
63	6.0	63	5.9	63	6.1	63	5.9	
64	6.1	64	6.1	64	6.2	64	6.1	
65	6.2	65	6.2	65	6.3	65	6.2	
481	88.9	393	88.4	392	88.3	415	88.5	
482	89.2	394	88.8	393	88.7	416	88.8	
483	89.4	395	89.1	394	89.0	417	89.1	
484	89.6	396	89.4	395	89.3	418	89.4	
485	89.9	397	89.7	396	89.6	419	89.7	
486 ^{×1}	90.1	398 ^{%1}	90.0	397 ^{%1}	89.9	420 ^{×1}	89.9	
487	90.3	399	90.4	398	90.2	421	90.2	
488	90.6	400	90.7	399	90.5	422	90.5	
489	90.8	401	91.0	400	90.9	423	90.8	
490	91.0	402	91.3	401	91.2	424	91.1	
491	91.3	403	91.6	402	91.5	425	91.4	

# 表12-6 鉄筋の腐食減量の算定結果(気中帯) 【0~20mmのデータを用いる場合】

(2)-	-1	( <u>2</u> )-	-2	<u>(2</u> )-3		<u>(2</u> )-4	
データ: No.1コ	アの測定結果	データ: No.2コ	アの測定結果	データ: No.3⊐	アの測定結果	データ:	平均值
運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量
(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} \text{g/cm}^2)$	(年)	$(\times 10^{-4} g/cm^2)$
		•	· · · · · · · · · · · · · · · · · · ·				
32	2.7	32	2.7	32	2.7	32	2.7
33	2.8	33	2.8	33	2.8	33	2.8
34	2.8	34	2.9	34	2.9	34	2.9
35	2.9	35	3.0	35	3.0	35	3.0
36	3.0	36	3.1	36	3.1	36	3.1
調査時点 37	3.1	<u>調査時点 37</u>	3.2	調査時点 37	3.2	<u>調査時点 37</u>	3.2
38	3.2	38	3.3	38	3.3	38	3.3
39	3.3	39	3.4	39	3.4	39	3.4
40	3.4	40	3.5	40	3.6	40	3.5
41	3.5	41	3.6	41	3.7	41	3.6
42	3.6	42	3.7	42	3.8	42	3.7
55	4.9	55	5.2	55	5.3	55	5.1
56	5.0	56	5.3	56	5.5	56	5.2
57	5.1	57	5.5	57	5.6	57	5.4
58	5.2	58	5.6	58	5.7	58	5.5
59	5.3	59	5./	59	5.8	59	5.6
運転開始後 60年経過時点	5.4	運転開始後 60年経過時点	5.8	理転開始後 60年経過時点	6.0	理転開始後 60年経過時点	5.7
61	5.5	61	6.0	61	6.1	61	5.9
62	5.6	62	6.1	62	6.3	62	6.0
63	5.7	63	6.2	63	6.4	63	6.1
64	5.8	64	6.4	64	6.5	64	6.2
65	6.0	65	6.5	65	6.7	65	6.4
468	88.7	410	88.4	410	88.6	427	88.7
469	89.0	411	88.7	411	88.9	428	89.0
470	89.2	412	89.0	412	89.2	429	89.2
4/1	89.5	413	89.3	413	89.5	430	89.5
4/2	89.8	414	89.6	414	89.8	431	89.8
473*	90.0	415**	89.9	415~	90.0	432**	90.1
474	90.3	416	90.1	416	90.3	433	90.3
475	90.5	417	90.4	417	90.6	434	90.6
4/6	90.8	418	90.7	418	90.9	435	90.9
477	91.0	419	91.0	419	91.2	436	91.2
4/8	91.3	420	91.3	420	91.5	437	91.5

:採用ケース

②千満帯について

回帰分析は、前述したようにコア(No.1、No.2、No.3)の平均値を用いる場合と、 コア(No.1、No.2、No.3)の単独値を用いる場合の双方について実施している。

干満帯は、気中帯と同様に外気環境に曝される状態であると想定し、土木学会規準 (案)に示された「中性化した領域およびそこから1cm以内の深部で採取された試料 から得られた結果は、回帰分析を行う際には用いないほうがよい。(中略)同様に、 隣接する前後の深さ位置での測定結果と著しく異なる結果についても、回帰分析用 のデータから除外するほうがよい。」を参考に、気中帯の中性化深さ測定結果(0.5cm) +1cmの領域を含む『0~20mmの塩化物イオン濃度のデータ』を用いないで回帰分析を 実施した。

なお、『0~20mmの塩化物イオン濃度のデータ』を用いる場合での検討も実施し、 用いない場合と用いる場合の影響を検討して影響の大きな方を採用した。

■コア(3箇所)の塩化物イオン濃度測定結果

塩化物イオンの測定結果を表12-7に測定結果を示す。なお、赤字の測定結果が、中性化の影響の可能性が考えられる領域のデータ(0~20mm)である。

なお、回帰分析結果については割愛する。

試料	畄佔	<u>塩化物イオン濃度(%)および量(kg/m³)</u>								
番号	甲位	0~20mm	20~40mm	40~60mm	60~80mm	80~100mm	100~120mm			
	%	0.15	0.12	0.07	0.04	0.02	0.01			
INO.1	$kg/m^3$	3.59	2.81	1.54	0.88	0.57	0.33			
No.2	%	0.19	0.13	0.07	0.04	0.02	0.01			
	$kg/m^3$	4.53	3.14	1.73	0.96	0.43	0.34			
N - 2	%	0.15	0.12	0.06	0.03	0.02	0.01			
NO.3	$kg/m^3$	3.54	2.87	1.40	< <td>0.26</td>	0.26				
ᅲᇥᇉ	%	0.16	0.12	0.07	0.04	0.02	0.01			
十均恒	$kg/m^3$	3.89	2.94	1.56	0.85	0.47	0.31			

表12-7 コアの塩化物イオン濃度測定値(干満帯:3箇所)

## ■影響の大きいケースの選定

塩化物イオン濃度測定結果が鉄筋の腐食減量結果に及ぼす影響について、「調査時点」、「運転開始後60年経過時点」および「かぶりコンクリートにひび割れが 発生する時点」を比較して表12-8~12-9に示す。

運転開始後経過60年時点の鉄筋の腐食減量が最も大きい値は、①-3(0~20mmのデータを用いない場合、No.3コアの測定結果)であったため、このケースを採用した。

# 表12-8 鉄筋の腐食減量(干満帯) 【0~20mmのデータを用いない場合】

<u>(1)</u> .	-1	1)-	-2	(1)·	-3	(1)-4	
データ: No.1⊐	アの測定結果	データ: No.2コ	アの測定結果	データ: No.3⊐	アの測定結果	データ:	平均值
, , , , , , , , , , , , , , , , , , , ,				/ / ////		. , , , ,	
運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量
(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$
32	6.0	32	6.1	32	6.2	32	6.1
33	6.2	33	6.2	33	6.3	33	6.2
34	6.4	34	6.4	34	6.5	34	6.4
35	6.5	35	6.6	35	6.7	35	6.6
36	6.7	36	6.7	36	6.9	36	6.8
<u>調査時点 37</u>	6.9	·調査時点 37	6.9	調査時点 37	7.0	·調査時点 37	6.9
38	7.0	38	7.1	38	7.2	38	7.1
39	7.2	39	7.2	39	7.4	39	7.3
40	7.4	40	7.4	40	7.5	40	7.4
41	7.6	41	7.6	41	7.7	41	7.6
42	7.7	42	7.8	42	7.9	42	7.8
						-	1
55	10.0	55	10.0	55	10.1	55	10.0
56	10.2	56	10.2	56	10.3	56	10.2
57	10.3	57	10.4	57	10.5	57	10.4
58	10.5	58	10.5	58	10.6	58	10.5
59	10.7	59	10.7	59	10.8	59	10.7
_ 理転開始後 60年経過時点	10.9	理転開始後 60年経過時点	10.9	理転開始後 60年経過時点	11.0	理転開始後 60年経過時点	10.9
61	11.0	61	11.1	61	11.1	61	11.1
62	11.2	62	11.3	62	11.3	62	11.3
63	11.4	63	11.4	63	11.5	63	11.4
64	11.6	64	11.6	64	11.7	64	11.6
65	11.8	65	11.8	65	11.8	65	11.8
	1						
396	86.6	382	86.7	396	86.7	391	86.6
397	86.9	383	87.0	397	86.9	392	86.9
398	87.1	384	87.3	398	87.2	393	87.1
399	87.4	385	87.5	399	87.4	394	87.4
400	87.6	386	87.8	400	87.7	395	87.6
401	87.9	387**	88.1	401	87.9	396~	87.9
402	88.1	388	88.3	402	88.2	397	88.2
403	88.4	389	88.6	403	88.5	398	88.4
404	88.7	390	88.9	404	88.7	399	88.7
405	88.9	391	89.1	405	89.0	400	88.9
406	89.2	392	89.4	406	89.2	401	89.2

:採用ケース

## 表12-9 鉄筋の腐食減量(干満帯) 【0~20mmのデータを用いる場合】

(2)-	-1	(2)-	-2	( <u>2</u> )-	-3	(2)-	)-4	
データ: No.1コ	アの測定結果	データ: No.2コ	アの測定結果	データ: No.3コ	アの測定結果	データ:	平均値	
運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	
(年)	$(\times 10^{-4} \text{g/cm}^2)$							
	, ,, ,, ,,				, ··· 8, ···· /		, , , , , , , , , , , , , , , , , , , ,	
32	6.0	32	6.0	32	6.0	32	6.0	
33	6.1	33	6.2	33	6.2	33	6.2	
34	6.3	34	6.4	34	6.4	34	6.4	
35	6.5	35	6.5	35	6.6	35	6.5	
36	6.6	36	6.7	36	6.7	36	6.7	
·調査時点 37	6.8	調査時点 37	6.9	調査時点 37	6.9	調査時点 37	6.9	
38	7.0	38	7.1	38	7.1	38	7.0	
39	7.2	39	7.2	39	7.2	39	7.2	
40	7.3	40	7.4	40	7.4	40	7.4	
41	7.5	41	7.6	41	7.6	41	7.5	
42	7.7	42	7.7	42	7.7	42	7.7	
55	9.9	55	10.0	55	10.0	55	10.0	
56	10.1	56	10.2	56	10.2	56	10.1	
57	10.3	57	10.4	57	10.3	57	10.3	
58	10.5	58	10.5	58	10.5	58	10.5	
59	10.6	59	10.7	59	10.7	59	10.7	
運転開始後	10.8	運転開始後	10.9	運転開始後	10.9	運転開始後	10.9	
60年経過時点	10.0	60年経過時点	10.0	60年経過時点	10.0	60年経過時点	10.0	
61	11.0	61	11.1	61	11.0	61	11.0	
62	11.2	62	11.2	62	11.2	62	11.2	
63	11.4	63	11.4	63	11.4	63	11.4	
64	11.5	64	11.6	64	11.6	64	11.6	
65	11.7	65	11.8	65	11.7	65	11.8	
402	86.8	383	86.6	407	86.8	397	86.7	
403	87.0	384	86.8	408	87.0	398	86.9	
404	87.3	385	87.1	409	87.3	399	87.2	
405	87.5	386	87.4	410	87.5	400	87.4	
406	87.7	387	87.6	411	87.7	401	87.7	
407 ^{×1}	88.0	388 ^{×1}	87.9	412 ^{×1}	88.0	402 ^{×1}	87.9	
408	88.2	389	88.2	413	88.2	403	88.2	
409	88.5	390	88.4	414	88.5	404	88.4	
410	88.7	391	88.7	415	88.7	405	88.7	
411	89.0	392	89.0	416	89.0	406	88.9	
412	89.2	393	89.2	417	89.2	407	89.2	

③海中帯について

回帰分析は、前述したようにコア(No.1、No.2、No.3)の平均値を用いる場合と、 コア(No.1、No.2、No.3)の単独値を用いる場合の双方について実施している。

海中帯は、常に海水に浸かっている状況下であるが、土木学会規準(案)に示された「全く中性化が生じていない場合においても、構造物表面から深さ1cm以内で採取された試料から得られた結果は、回帰分析を行う際には用いないほうがよい。同様に、隣接する前後の深さ位置での測定結果と著しく異なる結果についても、回帰分析用のデータから除外するほうがよい。」を参考に、『深さ1cmの領域を含む0~20mmの塩化物イオン濃度のデータ』を用いないで回帰分析を実施した。

なお、『0~20mmの塩化物イオン濃度のデータ』を用いる場合での検討も実施し、 用いない場合と用いる場合の影響を検討して影響の大きな方を採用した。

■コア(3箇所)の塩化物イオン濃度測定結果

塩化物イオンの測定結果を表12-10に測定結果を示す。なお、赤字の測定結果が構造物表面から深さ1cmの領域を含むデータ(0~20mm)である。

なお、回帰分析結果については割愛する。

表12-10 コアの塩化物イオン濃度測定値(海中帯:3箇所)

試料	玉字	塩化物イオン濃度(%)および量(kg/m ³ )							
番号	甲世	0~20mm	20~40mm	40~60mm	60~80mm	80~100mm	100~120mm		
	%	0.17	0.08	0.04	0.01	0.01	0.00		
INO. I	$kg/m^3$	4.00	1.85 1.00	0.28	0.12	0.08			
No.2	%	0.16	0.10	0.04	0.02	0.01	0.01		
	$kg/m^3$	3.72	2.31	0.85	0.50	0.21	0.17		
NI- 2	%	0.18	0.12	0.06	0.02	0.01	0.01		
NO.3	kg/m ³	4.34	2.73	1.35	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.24			
亚坎佐	%	0.17	0.10	0.05	0.02	0.01	0.01		
千均恒	kg/m ³	4.02	2.30	1.07	0.45	0.20	0.16		

## ■影響の大きいケースの選定

塩化物イオン濃度測定結果が鉄筋の腐食減量結果に及ぼす影響について、「調査時点」、「運転開始後60年経過時点」および「かぶりコンクリートにひび割れが発生する時点」を比較して表12-11~12-12に示す。

運転開始後経過60年時点の鉄筋の腐食減量は、すべてのデータで同値(0.0 ×10⁻⁴g/cm²)となったことから、かぶりコンクリートにひび割れが発生する時点の鉄筋腐食減量に最も早く達する①-3(0~20mmのデータを用いない場合、No.3コアの測定結果)を採用した。

## 表12-11 鉄筋の腐食減量(海中帯) 【0~20mmのデータを用いない場合】

1)-	-1	<u>(</u> )-	-2	1)-	-3	①-4	
データ: No.1コ	アの測定結果	データ: No.2コ	アの測定結果	データ: No.3コ	アの測定結果	データ:	平均値
運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量
(年)	$(\times 10^{-4} \text{g/cm}^2)$						
						•	
32	0.0	32	0.0	32	0.0	32	0.0
33	0.0	33	0.0	33	0.0	33	0.0
34	0.0	34	0.0	34	0.0	34	0.0
35	0.0	35	0.0	35	0.0	35	0.0
36	0.0	36	0.0	36	0.0	36	0.0
·調査時点 37	0.0	調査時点 37	0.0	調査時点 37	0.0	·調査時点 37	0.0
38	0.0	38	0.0	38	0.0	38	0.0
39	0.0	39	0.0	39	0.0	39	0.0
40	0.0	40	0.0	40	0.0	40	0.0
41	0.0	41	0.0	41	0.0	41	0.0
42	0.0	42	0.0	42	0.0	42	0.0
55	0.0	55	0.0	55	0.0	55	0.0
56	0.0	56	0.0	56	0.0	56	0.0
57	0.0	57	0.0	57	0.0	57	0.0
58	0.0	58	0.0	58	0.0	58	0.0
59	0.0	59	0.0	59	0.0	59	0.0
運転開始後	0.0	運転開始後	0.0	運転開始後	0.0	運転開始後	0.0
60年経過時点	0.0	60年経過時点		60年経過時点		60年経過時点	0.0
61	0.0	61	0.0	61	0.0	61	0.0
62	0.0	62	0.0	62	0.0	62	0.0
63	0.0	63	0.0	63	0.0	63	0.0
64	0.0	64	0.0	64	0.0	64	0.0
65	0.0	65	0.0	65	0.0	65	0.0
1050	07.0	1555	07.7	1000	07.7	1504	07.0
1050	87.8 97.0	1000	δ/./ 07.0	1393	<u>٥/./</u>	1034	<u>δ/.δ</u>
1859	87.9	1000	<u>δ/.</u> δ	1394	<u>87.8</u>	1030	<u>δ/.δ</u>
1860	87.9	1557	87.9	1395	87.9	1530	87.9
1001	88.U	1550	88.U 99.0	1390	88.U 00.1	1537	88.U
1002	00.1	1009	00.U	1397	00.1	1000	00.1
1863	00.1	1560	00.1	1398	00.1	1539	00.1
1864	88.2	1561	88.2	1399	88.2	1540	88.2
1865	88.2	1562	88.3	1400	88.3	1541	88.3
1866	88.3	1563	88.3	1401	88.4	1542	88.4
1007	88.4	1004	<u>88.4</u>	1402	88.0	1543	88.4
1868	88.4	1565	88.5	1403	88.5	1544	88.5

※1 かぶりコンクリートにひび割れが発生する時点

:採用ケース

## 表12-12 鉄筋の腐食減量(海中帯) 【0~20mmのデータを用いる場合】

(2)-	-1	(2)-	-2	(2)-	-3	( <u>2</u> )-	-4
データ・No 1コ	アの測定結果	データ・No 2コ	アの測定結果	データ・No 3コ	アの測定結果	データ・	平均值
/ /		, , , , , , , , , , , , , , , , , , ,		/ /////		. , , , .	
運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量	運転開始後 経過年数	鉄筋の腐食減量
(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$	(年)	$(\times 10^{-4} g/cm^2)$
32	0.0	32	0.0	32	0.0	32	0.0
33	0.0	33	0.0	33	0.0	33	0.0
34	0.0	34	0.0	34	0.0	34	0.0
35	0.0	35	0.0	35	0.0	35	0.0
36	0.0	36	0.0	36	0.0	36	0.0
調査時点 37	0.0	調査時点 37	0.0	調査時点 37	0.0	調査時点 37	0.0
38	0.0	38	0.0	38	0.0	38	0.0
39	0.0	39	0.0	39	0.0	39	0.0
40	0.0	40	0.0	40	0.0	40	0.0
41	0.0	41	0.0	41	0.0	41	0.0
42	0.0	42	0.0	42	0.0	42	0.0
55	0.0	55	0.0	55	0.0	55	0.0
56	0.0	56	0.0	56	0.0	56	0.0
57	0.0	57	0.0	57	0.0	57	0.0
58	0.0	58	0.0	58	0.0	58	0.0
59	0.0	59	0.0	59	0.0	59	0.0
運転開始後	0.0	運転開始後	0.0	運転開始後	0.0	運転開始後	0.0
60年経過時点	0.0	60年経過時点	0.0	60年経過時点	0.0	60年経過時点	0.0
61	0.0	61	0.0	61	0.0	61	0.0
62	0.0	62	0.0	62	0.0	62	0.0
63	0.0	63	0.0	63	0.0	63	0.0
64	0.0	64	0.0	64	0.0	64	0.0
65	0.0	65	0.0	65	0.0	65	0.0
						r	
1652	87.8	1650	87.7	1416	87.7	1546	87.7
1653	87.8	1651	87.8	1417	87.8	1547	87.8
1654	87.9	1652	87.9	1418	87.9	1548	87.9
1655	88.0	1653	87.9	1419	88.0	1549	88.0
1656	88.1	1654	88.0	1420	88.0	1550	88.0
1657 ^{%1}	88.1	1655 ^{%1}	88.1	1421 ^{×1}	88.1	1551 ^{×1}	88.1
1658	88.2	1656	88.1	1422	88.2	1552	88.2
1659	88.3	1657	88.2	1423	88.3	1553	88.2
1660	88.3	1658	88.3	1424	88.4	1554	88.3
1661	88.4	1659	88.4	1425	88.4	1555	88.4
1662	88.5	1660	88.4	1426	88.5	1556	88.5

# 別紙13

カニズムまとめ表』の記載ならびに機器の定格出力および重量より、ター ビン架台および非常用ディーゼル発電機基礎を選定した。主要な機器の定 格出力および重量は表-1の通り。 表-1 主要な機器の定格出力および重量									
	連续	足怕山刀(KW)	里里(Kg)						
ー 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	連続	870,000	1 500 200						
したクーレン 	連結	420	1, 399, 200						
格納容器 スプレイポンプモータ		700	14, 900						
余熱除去ポンプモータ	連続 (余熱除去時) 一時 (低圧注入時)	250	10, 000						
非常用ディーゼル発電機	一時	6,750	131,000						
電動 補助給水ポンプモータ	電動一時4補助給水ポンプモータ4		4,000						
充てん/高圧注入 ポンプモータ	連続 (充てん時) 一時 (高圧注入時)	- 780	16, 150						
タービン動 主給水ポンプタービン	連続	7,400	61, 700						
タービン動 補助給水ポンプタービン	一時	810	3, 500						
添付1 評価対象部位平面図 添付2 日本原子力学会 原子力発電所の高経年化対策実施基準:202 付属書C 経年劣化メカニズムまとめ表									

図1 評価対象部位平面図 (タービン架台)

図2 評価対象部位平面図(非常用ディーゼル発電機基礎)

# 日本原子力学会 原子力発電所の高経年化対策実施基準:2021

# 付属書C 経年劣化メカニズムまとめ表

#### P005:2021

P11-01 コンクリート構造物及び鉄骨構造物(コンクリート構造物及び鉄骨構造物)										
No.	機能達成に 必要な項目	部位	材料	経年劣化事象	高経年化 技術評価 不要の条 件	<ul> <li>耐震安</li> <li>機能別調</li> <li>静的</li> <li>機能</li> </ul>	全上の 平価項目 動的 機能	耐震上 の影響		
1	コンクリート強度の 維持	外部途へい壁,内部コンクリー ト、原子炉格納施設基礎,原子 炉補助建屋,取木構造物,ター ビン建屋(タービン架台)、復 木タンク基礎(回管基礎含 (配管基礎含む),緊急時対策 所、タービン建屋,アスファル ト固化建屋	コンクリート	中性化による強度低 下		*		•		
2		外部遮へい壁, 取水構造物, 非 常用海水路	コンクリート	塩分浸透による強度 低下		*		•		
3		外部遮へい壁、内部コンクリー ト、原子炉格納施設基礎、原子 炉補助建屋、取木構造物、ター ビン建屋、タービン建屋(ター ビン建設、タービン建屋( に ビン果台)、称高開閉所、脱気 器基礎、非常用ディーゼル発電 品で皆基礎含む)、燃料取替用水タンク 基礎(配管基礎含む)、燃料取替用水タンク 基礎(配管基礎含む)、燃料取 構成生産」非常用海水路、海水ボ ンプエリア(防護壁)、緊急時 対策所、原子炉建屋、アスファ ルト国化建屋	コンクリート	アルカリ骨材反応に よる強度低下		*		•		
4		外部遮へい壁、内部コンクリー ト、原子炉格納施設基礎、原子 炉補助建屋、取木構造物、クー ビン建屋、タービン建屋(ター ビン建築台)、非常用ディーゼル、 発電用燃料タンク基礎(配管基 電舎むり、復水タンク基礎(配管基 常基置含む)、復水タンク基礎(配 管基置合む)、彼水タンク基礎(配 管基置合む)、 料取扱建屋、非常用海水路、海 木ポンブエリア(防護壁)、緊 之時対策所、原子炉建屋、アス ファルト固化建屋	コンクリート	凍結쪲解による強度 低下		*		•		
5		外部進へい壁、内部コンクリー ト、原子炉格納施設基礎、原子 炉補助建屋、取木構造物、ター ビン建屋、タービン建屋(ター ビン架台)、燃料取扱建屋、海 水ポンプエリア(防護壁)	コンクリート	化学的侵食による強 度低下	0	*				
6		内部コンクリート(1次遮へい 壁)	コンクリート	熱による強度低下		*		•		
7		内部コンクリート(1次遮へい 壁)	コンクリート	放射線照射による強 度低下		*	$\square$	•		
8		原子炉補助建屋(非常用ディー ゼル発電機基礎),タービン建 屋(タービン架台)	コンクリート	機械振動による強度 低下		*		•		
9	コンクリート遮へい 能力の維持	内部コンクリート (1次遮へい 腔)	コンクリート	熱による遮へい能力 低下		*		•		

#### 経年劣化メカニズムまとめ表-PWR

(1/2)