資料3

安全研究成果報告(案)

RREP-20XX-XXXX

安全研究成果報告

S/NRA/R Research Report

原子カプラントの熱流動最適評価に関する 安全研究

Study on best-estimate thermal-hydraulic evaluation for nuclear power plants

TSUKAMOTO Naofumi, KANEKO Junichi, SEKINE Masashi, ONO Hiroshi, and MASUHARA Yasuhiro

シビアアクシデント研究部門

Division of Research for Severe Accident

江口 裕 EGUCHI Hiroshi

システム安全研究部門

Division of Research for System Safety

原子力規制庁 長官官房技術基盤グループ

Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R)

> 令和 XX 年 XX 月 Month 20XX

本報告は、原子力規制庁長官官房技術基盤グループが行った安全研究プロジェクトの活動内容・成果をとりまとめたものです。

なお、本報告の内容を規制基準、評価ガイド等として審査や検査に活用する場合には、別途原子 カ規制委員会の判断が行われることとなります。

本報告の内容に関するご質問は、下記にお問い合わせください。

原子力規制庁 長官官房 技術基盤グループ シビアアクシデント研究部門 〒106-8450 東京都港区六本木 1-9-9 六本木ファーストビル 電話:03-5114-2224 ファックス:03-5114-2234 原子力プラントの熱流動最適評価に関する安全研究

原子力規制庁 長官官房技術基盤グループ

シビアアクシデント研究部門

塚本 直史 金子 順一 関根 将史 小野 寛 増原 康博 システム安全研究部門

江口 裕

要 旨

現在の規制制度においては、軽水炉に対して「運転時の異常な過渡変化」(AOO)、「設計 基準事故」(DBA)及び「重大事故に至るおそれがある事故又は重大事故」(重大事故等) における原子炉の安全性を示すことが要求されている。事業者は設置許可申請において AOO及びDBAに対して保守的な評価手法を採用してきた。しかし、最近、事故時のプラ ント挙動を現実的に予測できる最適評価コードを用いた最適評価の導入に向けた動きがみ られる。

最適評価を行うにあたっては事故時の挙動に影響を与える重要現象を適切に考慮する 必要があるが、全ての重要現象に対して十分な知見があるとはいえない。また、最適評価 コードを適用するには、その信頼性を示すための検証及び妥当性確認(V&V)を適切に行 う必要がある。さらに、最適評価を用いて安全性を評価するためには、最適評価の中に含 まれる不確かさを考慮した最適評価(BEPU)手法が不可欠となる。

本安全研究プロジェクト「原子力プラントの熱流動最適評価に関する安全研究」は、令 和元年度から令和4年度にかけて、炉心損傷前までの事故を対象とした最適評価手法に関 して三つの項目を実施した。項目①「事故時の物理現象の把握及びモデル高度化」では、 軽水炉の事故解析を行う上で重要となる現象に対して、実験データの取得、物理現象の把 握、モデル高度化等に取り組んだ。項目②「システム解析コードのV&V」では、システム 解析コードを対象に妥当性確認のための試験選定と試験の模擬解析を行うことでV&Vの プロセスを実践し、その課題について検討を行った。実施項目③「BEPU 手法の高度化及 び安全解析への適用」では、BEPU 手法の課題の一つである不確かさの定量化に関する検 討や米国における BEPU 手法の適用状況の調査等を行った。実施項目①で実施した熱流動 実験は、国立研究開発法人日本原子力研究開発機構、一般財団法人電力中央研究所及び国 立大学法人電気通信大学への委託事業、並びに学校法人早稲田大学との共同研究により実 施したものである。

i

RREP-20XX-XXXX

Study on best-estimate thermal-hydraulic evaluation for nuclear power plant

TSUKAMOTO Naofumi, KANEKO Junichi, SEKINE Masashi, ONO Hiroshi, and MASUHARA Yasuhiro Division of Research for Severe Accident EGUCHI Hiroshi Division of Research for System Safety Regulatory Standard and Research Department, Secretariat of Nuclear Regulation Authority (S/NRA/R)

Abstract

The current regulation requires utilities of light water rector (LWR) to demonstrate reactor safety in "anticipated operational occurrence" (AOO), "design basis accidents" (DBA), and "accidents with the potential to cause a major accident". The utilities have applied conservative evaluation methods for AOO and DBA in their establishment permission applications. Recently, however, there has been a movement toward the introduction of best-estimate evaluation using best-estimate codes that can realistically predict plant behavior during accidents.

Although it is necessary to appropriately consider important phenomena that affect accident behavior when performing best-estimate evaluation, there are some important phenomena for which there is a lack of knowledge. In addition, in order to apply a best-estimate code, it is necessary to conduct verification and validation (V&V) to demonstrate its reliability. Furthermore, in order to evaluate safety using the best-estimate evaluation, it is essential to use BEPU (Best Estimation Plus Uncertainty) method that takes into account the uncertainties included in the best-estimate evaluation.

In this study, three items were carried out from FY 2019 to FY 2022 regarding the bestestimate method for accidents before severe core damage. In item (1), "Understanding and model improvement of physical phenomena important in accidents", we worked on acquisition of experimental data and numerical simulations of experiments to understand mechanics of physical phenomena and improve evaluation models for accident analysis. In item (2), "V&V of system analysis codes," the V&V process was practiced by selecting tests for validation of system analysis codes and conducting simulated analyses of the tests, and the issues involved were discussed. In item (3), "Advancement of BEPU method and its application to safety analysis," we studied the quantification of uncertainty, which is one of the issues of the BEPU method, and investigated the application of the BEPU method in the United States. The thermal-hydraulic experiments conducted in item (1) were commissioned to Japan Atomic Energy Agency, Central Research Institute of Electric Power Industry and University of Electro-Communications, and were conducted in collaboration with Waseda University.

1. 序論	1
1.1 背景	1
1.2 目的	2
1.3 全体行程	2
2. 本論	4
2.1 事故時の物理現象の把握及びモデルの高度化	4
2.1.1 BWR ATWS 条件下での液膜ドライアウト及びリウェット	4
2.1.2 BWR RIA 条件下でのボイド挙動	55
2.1.3 LOCA 等における現象の把握及びモデルの高度化	78
2.1.4 総合効果試験による事故時のプラント挙動の把握	87
2.1.5 プール内の温度成層化に係る現象把握及びモデルの高度化	104
2.2 原子炉システム解析コードの V&V	110
2.2.1 妥当性確認に向けた試験の選定	110
2.2.2 個別効果試験の解析	115
2.2.3 まとめ	123
2.3 BEPU 手法の高度化及び安全解析への適用	123
2.3.1 米国の規制動向調査	124
2.3.2 逆解析手法による解析コード入力パラメータ不確かさの定量化	129
2.3.3 実機 BEPU 解析に向けた環境整備	130
3. 結論	134
3.1 成果の要点	134
3.1.1 事故時の物理現象の把握及びモデルの高度化	134
3.1.2 原子炉システム解析コードの V&V	136
3.1.3 BEPU 手法の高度化及び安全解析への適用	136
3.2 目的の達成状況	136
3.3 成果の公表等	137
3.3.1 原子力規制庁の職員が著者に含まれる公表	137
3.3.2 委託先による公表	138
3.4 成果の活用等	139
3.5 今後の課題等	139
参考文献一覧	141
執筆者一覧	149

表 目 次

表	2.1.1	ATWS 模擬実験の条件(高圧単管試験)10
表	2.1.2	ATWS 模擬実験の条件(4×4 バンドル試験)11
表	2.1.3	装置仕様及び実験条件21
表	2.1.4	熱伝達実験の条件
表	2.1.5	実験条件(スペーサ乱流促進効果試験)32
表	2.1.6	実験条件(スペーサランオフ効果試験-模擬燃料棒への液滴付着試験)35
表	2.1.7	実験条件(スペーサランオフ効果試験-スペーサ構造物への液滴付着)38
表	2.1.8	COBRA-TF に導入した液膜ドライアウト及びリウェットに関するモデル47
表	2.1.9	OECD/NEA RBHT プロジェクトのオープン試験の試験条件
表	2.1.10	本研究で実施した総合効果試験
表	2.1.11	MSGTR シリーズ実験の条件と結果の概要92
表	2.2.1	事故時の BWR における重要現象の分析 (1/2)111
表	2.2.2	事故時の BWR における重要現象の分析(2/2)112
表	2.2.3	事故時の PWR における重要現象の分析 (1/2)113
表	2.2.4	事故時の PWR における重要現象の分析(2/2)114
表	2.2.5	妥当性確認の対象として選定した試験115
表	2.3.1	BFBT 試験の模擬解析で感度の大きな TRACE 入力パラメータ130
表	2.3.2	プラント解析データの整備状況131

凶	目	次
---	---	---

义	1.3.1	安全研究プロジェクトの全体行程3
义	2.1.1	HIDRA 系統図
义	2.1.2	4×4 バンドル試験体
义	2.1.3	3×3 バンドル試験体の断面図8
义	2.1.4	高圧単管試験装置9
义	2.1.5	圧力+出力変動過渡実験における測定パラメータの時刻歴11
义	2.1.6	リウェット領域平均温度とリウェット速度の関係(出力変動過渡実験)13
义	2.1.7	リウェット領域平均温度とリウェット速度の関係(圧力変動実験、2 MPa) …14
义	2.1.8	リウェット領域平均温度とリウェット速度の関係(圧力変動実験、7 MPa)…14
义	2.1.9	リウェット位置の時間変化例(圧力変動過渡実験)15
义	2.1.10	リウェット領域平均温度とリウェット速度の関係(複合変動過渡実験)15
义	2.1.11	限界出力の測定値と予測値との比較17
义	2.1.12	限界熱流束へのスペーサの影響(高圧単管実験)18
义	2.1.13	リウェット速度へのスペーサの影響(高圧単管実験)18
义	2.1.14	先行冷却熱伝達モデル開発に向けた要因分類
义	2.1.15	先行冷却試験装置
义	2.1.16	液膜先端近傍の乾き面の熱伝達係数24
义	2.1.17	温度成層化未発達効果による加熱部入口効果
义	2.1.18	飛散液滴可視化結果
义	2.1.19	飛散液滴の空間頻度分布
义	2.1.20	液膜先端挙動の可視化図
义	2.1.21	ドライパッチ概略図
义	2.1.22	ドライパッチ発生時のドライパッチ深さの確率密度分布
义	2.1.23	液滴流動計測の実験装置
义	2.1.24	液滴付着計測の実験装置
义	2.1.25	模擬スペーサの基本型
义	2.1.26	液滴流動計測結果(スペーサ乱流促進効果試験)34
义	2.1.27	液滴付着計測結果(スペーサ乱流促進効果試験)34
义	2.1.28	模擬スペーサ(スペーサランオフ効果試験-模擬燃料棒への液滴付着試験)
•••••		
义	2.1.29	液滴流動計測結果(スペーサランオフ効果試験-模擬燃料棒への液滴付着)
••••		
义	2.1.30	液滴付着計測結果(スペーサランオフ効果試験-模擬燃料棒への液滴付着)

义	2.1.31	模擬スペーサ(スペーサランオフ効果試験-スペーサ構造物への液滴付着)
			38
义	2.1.32	液滴付着計測結果(スペーサランオフ効果試験-スペーサ構造物への液滴付	着)
			39
义	2.1.33	スペーサ効果モデル案(液滴付着分布の定型化)	40
义	2.1.34	HIDRA 4×4 バンドル限界出力試験の結果	42
义	2.1.35	ドライアウト領域の比較(測定値、MCHNC、CISE)	44
义	2.1.36	ATWS 模擬実験における被覆管温度の計算値と測定値との比較	45
义	2.1.37	液膜厚さに基づく液膜ドライアウト及びリウェット判定モデル	47
义	2.1.38	COBRA-TF による単管試験体の解析モデル	49
义	2.1.39	限界出力に関する試験結果と解析結果の比較	49
义	2.1.40	単管試験リウェット速度に関する試験結果と解析結果の比較	50
义	2.1.41	COBRA-TF による 4×4 バンドル試験体のサブチャンネル分割	52
义	2.1.42	COBRA-TF による 4×4 バンドル試験体の軸方向セル分割	52
义	2.1.43	4×4 バンドル試験におけるロッド内構造	53
义	2.1.44	4×4 バンドル試験における限界出力試験の結果	53
义	2.1.45	4×4 バンドル出力振動試験の結果	54
义	2.1.46	ガンマ線密度計及びボイドプローブによるボイド率の計測結果	57
义	2.1.47	OSV 前における典型的な気泡挙動	60
义	2.1.48	サブクール度の低下に伴う気泡挙動変化の観察結果	61
义	2.1.49	相変化率を用いたボイド率の計算結果と計測結果との比較	62
义	2.1.50	開発した機構論的 OSV モデルと Saha-Zuber の経験式との比較	65
义	2.1.51	OSV 点における熱平衡クオリティの実験値と計算値の比較	66
义	2.1.52	出力急昇ボイド挙動に関する単ピン試験体	68
义	2.1.53	COBRA-TF を用いた単ピン試験体の解析モデル	69
义	2.1.54	ボイド挙動の試験結果及び COBRA-TF 解析結果(SN2f3s54:流入水流速 0.3 m/	s,
流	入水サフ	「クール度 54 K、ヒーターピン最大出力 23 kW)	69
义	2.1.55	ボイド挙動の試験結果及び COBRA-TF 解析結果(SN2f3s05:流入水流速 0.3 m/	s,
流	入水サフ	「クール度 5 K、ヒーターピン最大出力 23 kW)	70
义	2.1.56	2×2 バンドル試験体及び COBRA-TF によるサブチャンネル分割	71
义	2.1.57	COBRA-TF による 2×2 バンドル試験体の軸方向セル分割	72
义	2.1.58	ボイド挙動の試験結果及び COBRA-TF 解析結果(LW2f3s54:流入水流速 0.3 m/	's、
流	入水サフ	「クール度 54 K、ヒーターピン最大出力 23 kW)	72
义	2.1.59	ボイド挙動の試験結果及び COBRA-TF 解析結果(LW2f3s05:流入水流速0.3 m/	's、
流	入水サフ	「クール度 5 K、ヒーターピン最大出力 23 kW)	73
义	2.1.60	出力急昇時横方向ボイド挙動に関する 5×5 バンドル試験体	74

义	2.1.61	COBRA-TF による 5×5 バンドル試験体のサブチャンネル分割	75
义	2.1.62	ボイド挙動の試験結果及び COBRA-TF 解析結果(No.2)	75
义	2.1.63	TRACE/PARCS の解析体系 (4 リング)	77
义	2.1.64	ABWR RIA 解析の結果	77
义	2.1.65	TRACE と FRAPTRAN の間でやり取りされる変数	79
义	2.1.66	IFA-650.4 試験の周方向歪みの軸方向分布の計算結果と測定値の比較	81
义	2.1.67	3 ループ PWR プラントの解析モデル	82
义	2.1.68	TRACE 及び COBRA-TF による RBHT 試験体の解析モデル	85
义	2.1.69	クエンチプロファイルに関する試験結果と解析結果の比較	86
义	2.1.70	L2-5 試験における燃料温度	87
义	2.1.71	大型実験装置 LSTF	90
义	2.1.72	LSTF における SGTR の破断ユニット	92
汊	2.1.73	1 次系圧力及び SG2 次側圧力(S,B-SG-18 と SB-SG-21 の比較)	94
义	2.1.74	SG2 次側水位(SB-SG-18 と SB-SG-21 の比較)	94
义	2.1.75	SB-SG-18と SB-SG-20の実験結果の比較	95
义	2.1.76	低温側配管流体温度と1次系ループ流量	96
义	2.1.77	SB-SG-18の実験結果と解析結果の比較	97
义	2.1.78	TR-LF-19 実験の結果	99
义	2.1.79	SG 出入口間差圧と DC と炉心の水位差の関係	101
义	2.1.80	大型実験装置 PKL	102
义	2.1.81	i6 Run1 の実験結果及び解析結果の比較	103
义	2.1.82	小型実験装置の概要	105
义	2.1.83	プール水温度の熱電対による測定結果	106
义	2.1.84	PIV による垂直断面の流速と流線	107
义	2.1.85	圧力抑制室の解析モデル	108
义	2.1.86	ドライウェルの圧力挙動	109
义	2.2.1	PSBT サブチャンネル定常ボイド率試験体 ⁷⁸ 及び解析体系	118
义	2.2.2	PSBT サブチャンネル定常ボイド率試験の実験結果 ⁷⁸ 及び解析結果の比較	119
义	2.2.3	PSBT バンドル定常ボイド率試験体 ⁷⁸	119
义	2.2.4	PSBT バンドル定常ボイド率試験の実験結果 ⁷⁸ 及び解析結果の比較	120
义	2.2.5	Christensen の高圧サブクール沸騰実験 ⁸² 及び解析モデル	121
义	2.2.6	Christensen の高圧サブクール沸騰実験の実験結果 ⁸² 及び解析結果の比較	121
义	2.2.7	Zeitoun ら低圧サブクールボイド実験 ⁸³ 及び解析体系	122
X	2.2.8	Zeitoun ら低圧サブクールボイド実験に関する実験結果 ⁸³ 及び解析結果の	比較
			123
义	231	逆解析手法により算出した TRACE 入力パラメータの不確かさ	130

図 2.3.2	入力作成部の概要	133
図 2.3.3	結果集計部によるアウトプット例	134

略語表

ACC	ACCumulator(蓄圧注入系)		
AFW	Auxiliary FeedWater (補助給水)		
AMAGI	Advanced Multi-fluid Analysis code for Generation of thermal-hydraulic		
	Information (解析コード名)		
AOO	Anticipated Operational Occurrence (運転時の異常な過渡変化)		
ASTRUM	Automated Statistical Treatment of Uncertainty Method (BEPU 手法の名称)		
ATRIUM	Application Tests for Realization of Inverse Uncertainty quantification and		
	validation Methodologies in thermal-hydraulics (プロジェクト名)		
ATWS	Anticipated Transient Without Scram (原子炉停止機能喪失事象)		
BEPU	Best Estimate Plus Uncertainty (不確かさを考慮した最適評価)		
BFBT	BWR Full-size fine-mesh Bundle Test (試験名)		
BT	Boiling Transition (沸騰遷移)		
BWR	Boiling Water Reactor (沸騰水型原子炉)		
CFD	Computational Fluid Dynamics (数值流体力学)		
CFR	Code of Federal Regulations (連邦規則)		
CSAU	AU Code Scaling, Applicability and Uncertainty Evaluation Methodology (厉		
	力施設の安全解析における不確かさ定量化のための手法の名称)		
COBRA-TF	COolant Boiling in Rod Arrays-Three Field (解析コード名)		
DBA	Design Basis Accident (設計基準事故)		
DC	DownComer (ダウンカマ)		
DNBR	Departure from Nucleate Boiling Ratio(限界熱流束と実際の熱流束の比)		
D/W	Dry Well(ドライウェル)		
ECCS	Emergency Core Coolant System (非常用炉心冷却系)		
ECR	Equivalent Clad Reacted(被覆管の化学量論的酸化量)		
FLECHT-	Full-Length Emergency Cooling Heat Transfer Systems Effects and Separate		
SEASET	Effects Tests(試験名)		
EPRI	Electric Power Research Institute(米国電力研究所)		
EMDAP	Evaluation Model Development and Assessment Process (評価モデルの開発		
	及び評価プロセス)		
ETHARINUS	Experimental Thermal Hydraulics for Analysis, Research and Innovations in		
	Nuclear Safety (プロジェクト名)		
F&B	Feed and Breed (フィードアンドブリード)		
FEA	Finite Element Analysis(有限要素法を利用した解析)		
FFRD	Fuel Fragmentation, Relocation and Dispersal (燃料ペレット細片化、移動		

	及び放出)
FRAPTRAN	Fuel Rod Analysis Program TRANsient (解析コード名)
FSAR	Final Safety Analysis Report(最終安全解析書)
FSLOCA	Full Spectrum Loss-of-Coolant-Accident (BEPU 手法の名称)
GEXL	GE Critical Quality Boiling Length Correlation (米国 GE 社が開発した沸騰
	遷移相関式)
HIDRA	HIgh pressure thermal hyDRAulic loop(高圧熱流動ループ)
HPI	High Pressure Injection (高圧注入系)
IAEA	International Atomic Energy Agency (国際原子力機関)
JAEA	Japan Atomic Energy Agency(日本原子力研究開発機構)
LAR	License Amendment Request(認可修正要求)
LBLOCA	Large Break LOCA(大破断 LOCA)
LHGR	Linear Heat Generation Rate(線出力密度)Loss Of Coolant Accident(冷却
LOCA	材喪失事故)
LOFT	Loss-Of-Fluid Test (試験名)
LSTF	Large Scale Test Facility(大型非定常試験装置)
MCPR	Minimum Critical Power Ratio (最小限界出力比)
MELLA+	Maximum Extended Load Line Limit Plus(パワーアップレートに伴って
	拡大された運転領域)
MSGTR	Multiple Steam Generator Tube Rupture(蒸気発生器伝熱管複数本破損)
NEA	Nuclear Energy Agency(原子力機関)
NMP	Nine Mile Point(ナインマイルポイント原子力発電所)
NRC	U.S. Nuclear Regulatory Commission(米国原子力規制委員会)
NUPEC	Nuclear Power Engineering Corporation (原子力発電技術機構)
OECD	Organisation for Economic Co-operation and Development(経済協力開発機
	構)
OSV	Onset of Significant Void (ボイド率急昇開始)
PARCS	Purdue Advanced Reactor Core Simulator (解析コード名)
РСТ	Peak Cladding Temperature(被覆管最高温度)
PIE	Post Irradiation Examination (照射後試験)
PIRT	Phenomena Identification Ranking Table (現象重要度ランク表)
PIV	Particle Image Velocimetry(粒子画像流速測定法)
PKL	Primary coolant loop test facility (原子炉冷却材ループ試験装置)
PSBT	PWR Subchannel and Bundle Tests (試験名)
PTV	Particle Tracking Velocimetry(粒子追跡法)
PVM	Parallel Virtual Machine (仮想並列計算機)

PWR	Pressurized Water Reactor (加圧水型原子炉)
RBHT	Rod Bundle Heat Transfer(燃料集合体熱伝達装置)
RCIC	Reactor Core Isolation Cooling System (原子炉隔離時冷却系)
RIA	Reactivity-Initiated Accident(反応度事故)
SB	Steam Binding (スチームバインディング)
S/C	Suppression Chamber (圧力抑制室)
SE	Safety Evaluation (安全評価)
SFP	Spent Fuel Pool (使用済燃料プール)
SRV	Safety Relief Valve (逃がし安全弁)
THTF	Thermal Hydraulic Test Facility(熱流動実験装置)
TMI	Three Mile Island (スリーマイルアイランド原子力発電所)
TR	Topical Report (トピカルレポート)
TRACE	TRAC/RELAP Advanced Computational Engine (解析コード名)
UFSAR	Updated Final Safety Analysis Report(最終安全解析書更新版)
UPI	Upper Plenum Injection(上部プレナム注水)
V&V	Verification and Validation (検証及び妥当性確認)
WCAP	Westinghouse Commercial Atomic Power (Westinghouse 社 TR)
YAG	Yttrium/Aluminum/Garnet (イットリウム・アルミニウム・ガーネット)

用語の定義

運転時の異常な過渡変	通常運転時に予想される機械又は器具の単一の故障若しくはそ
化注1)	の誤作動又は運転員の単一の誤操作及びこれらと類似の頻度で
	発生すると予想される外乱によって発生する異常な状態であっ
	て、当該状態が継続した場合には発電用原子炉の炉心又は原子
	炉冷却材圧力バウンダリの著しい損傷が生ずるおそれがあるも
	のとして安全設計上想定すべきもの
設計基準事故(注1)	発生頻度が運転時の異常な過渡変化より低い異常な状態であっ
	て、当該状態が発生した場合には発電用原子炉施設から多量の
	放射性物質が放出するおそれがあるものとして安全設計上想定
	すべきもの
重大事故(注2)	炉心の著しい損傷又は核燃料物質貯蔵設備に貯蔵する燃料体若
	しくは使用済燃料の著しい損傷
クオリティ	気液二相流において、流路断面を通過する全質量流量に対する
	各相の質量流量の割合。相を指定しないときは気相のクオリテ
	ィを指す
沸騰遷移	核沸騰から膜沸騰への沸騰モードの遷移。沸騰遷移が生じると、
	燃料棒等の表面温度が急昇する
限界クオリティ	沸騰遷移が生じるときのクオリティ
限界出力	沸騰遷移が生じるときの燃料集合体出力
限界熱流束	沸騰遷移が生じるときの熱流束
サブクール度	液体と同じ圧力の飽和温度と液体の温度との差
サブクール沸騰	液体が飽和温度未満の温度にある場合の沸騰
3 流体場モデル	熱流動解析手法の一つであり、分散液相(液滴)、連続液相(液
	膜等)及び気相の三つの場について基礎式(質量、運動量等の
	保存式)を別々に解く手法

⁽注1) 実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則第二条 (注2) 実用発電用原子炉の設置、運転等に関する規則第四条

1. 序論

1.1 背景

発電用軽水型原子炉(軽水炉)施設において重大事故が生じると、環境に多大な影響を 与えることは東京電力福島第一原子力発電所の事故で示されたとおりである。その教訓を 受けて、新規制基準の下で重大事故に至るおそれがある事故及び重大事故(以下「重大事 故等」という。)の発生防止、影響緩和の対策が強化され、その有効性については事故時の プラント挙動の予測解析により評価されている。

現在の規制制度においては、軽水炉に対して「運転時の異常な過渡変化」(以下「AOO」 という。)、「設計基準事故」(以下「DBA」という。)及び「重大事故等」に対して原子炉の 安全性を示すことが要求されている。事業者は設置許可申請において AOO 及び DBA に対 しては、軽水炉導入当時から変わらず、実機の詳細な体系や複雑な現象を単純化した評価 モデル及び仮想的な条件設定を用いた保守的な評価手法を採用してきた。しかし、最近、 実機の体系及び事故時の物理現象を詳細に模擬することで事故時のプラント挙動を現実的 に予測できる最適評価手法の導入に向けた動きがみられる^{1,2}。重大事故等の評価において は最適評価手法と保守的な評価手法とが採用されている。また、最近の安全性向上の取組 において、事業者は対策の有効性を示すために最適評価手法の適用を進めている^{3,4}。

最適評価を行うにあたっては事故時の挙動に影響を与える重要現象を適切に模擬でき る最適評価コードが必要となるが、全ての重要現象に対して十分な知見があるとはいえず、 また、最適評価コードの検証及び妥当性確認(以下「V&V」という。)により十分な予測性 能を有することを示す必要がある。日本原子力学会では、最適評価コードの V&V 及び不 確かさを考慮した最適評価(以下「BEPU」という。)手法に関する標準の策定・改訂が進 められており^{5,6}、また、熱水力ロードマップ⁷を策定して熱流動分野に対して最適評価手 法の適用を含め今後取り組むべき重要課題の抽出がなされている。IAEA の安全基準ガイ ド⁸においては、知見が十分ではない状況又は過去から継続して使用している場合を除き、 決定論的安全評価に最適評価手法を用いることを推奨している。

炉心損傷前の事故の最適評価手法に関しては、原子力規制庁の過去の安全研究プロジェ クトの中で検討を進めてきており、重大事故等のプラント解析について「多重故障事象の 影響評価に関する研究」(平成 25 年度~平成 28 年度),プラント解析に係る最適評価手 法について「詳細解析手法の導入に向けた熱流動・核特性安全解析手法の整備 (Phase-2)」

(平成 25 年度~平成 29 年度)¹⁰、最適評価コードの開発について「国産システム解析コ ードの開発」(平成 24 年度~平成 30 年度)¹¹、事故時の重要現象の実験的知見について「事 故時等の熱流動評価に係る実験的研究」(平成 24 年度~平成 30 年度)¹¹を実施してきた。 本安全研究プロジェクトは、それら過去のプロジェクトで抽出した課題に継続して取り組 むものである。

1

1.2 目的

炉心損傷前までの軽水炉の事故時熱流動挙動に対して最適評価を適用するための技術 基盤として、事故時の重要現象及びその評価モデルの高度化、最適評価への原子炉システ ム解析コードの適用性を示すための V&V、並びに AOO 及び DBA への適用が見込まれる BEPU 手法に対して技術的知見を拡充する。

上記を実施することで、適合性審査等において事業者の最適評価の技術的妥当性の確認 に活用可能な技術基盤を構築することを目的とする。

1.3 全体行程

本研究は、令和元年度から令和4年度にかけて、図 1.3.1 に示す全体行程に従って実施 したものである。三つの実施項目「事故時の物理現象の把握及びモデル高度化」、「原子炉 システム解析コードの V&V」、「BEPU 手法の高度化及び安全解析への適用」に同時並行し て取り組んだ。

「事故時の物理現象の把握及びモデル高度化」では、軽水炉の事故解析を行う上で重要 となる現象に関して、実験データの取得、物理現象の把握、モデル高度化等に取り組んだ。 「原子炉システム解析コードのV&V」では、システム解析コードを対象にV&Vのプロセ スを実践し、個別効果試験及び総合効果試験の模擬解析を行うことでその課題について検 討を行った。「BEPU 手法の高度化及び安全解析への適用」では、BEPU 手法の課題の一つ である不確かさの定量化に関する検討や米国における BEPU 手法の適用状況の調査等を行 った。

本研究のうち、高圧ループ試験、先行冷却可視化試験及びLSTF 試験は国立研究開発法 人日本原子力研究開発機構(以下「JAEA」という。)、燃料集合体内液滴付着挙動解明試験 は一般財団法人電力中央研究所(以下「電中研」という。)、並びに低圧時サブクール沸騰 挙動解明試験は国立大学法人電気通信大学(以下「電通大」という。)への委託により実施 し、使用済燃料プール(以下「SFP」という。)における温度成層化に係る検討は学校法人 早稲田大学(以下「早稲田大」という。)との共同研究により実施した。

2

年度 (令和)	元年度	2年度	3年度	4年度
 事故時の物理現象の把握及びモデルの高度化 BWR ATWS に対する検討 	高圧ル- 実験(J	 ´ープ試験、先行冷却可視化 ´JAEA)		
			燃料集合 滴付着 試験(電	合体内液 塗動解明 官中研)
	評	価手法の樹	食討(NRA	()
(2) BWR RIA に対する検討		低圧時 動解明詞	ナブクーハ 弌験(電通	ン沸騰挙 大)
	評	価手法の権	翁討(NRA	A)
(3) LOCA に対する検討				
	FFI	RD モデル	検討(NR	A)
		再冠水モ	デル検討	(NRA)
(4) 多重故障事故を想定した総合効果試験		LSTF 実騎) (JAEA)	
	総合効	果試験の権	莫擬解析	(NRA)
(5) プール内の温度成層化に対する検討		SFP	温度成層化 (早稲田大	2検討)
	S/C 温 化検討	度成層 (NRA)		
2. 原子炉システム解析コードの V&V				<i>/</i>)
	システム	解析コー	ドの V&V	(NRA)
	不確フ	いさ評価手	法検討(1	NRA)
		米国調査	É(NRA)	

図 1.3.1 安全研究プロジェクトの全体行程

Fig. 1.3.1 Overall	schedule of safety	research project
--------------------	--------------------	------------------

2. 本論

2.1 事故時の物理現象の把握及びモデルの高度化

事故時のプラント挙動に影響を及ぼす重要な物理現象に対して、実験と解析の両面から 取り組むことで、メカニズムの把握及びモデルの高度化を行う。本プロジェクトで研究対 象とした物理現象は、過去のプロジェクト「事故時等の熱流動評価に係る実験的研究」¹¹で 作成した現象重要度ランク表(以下「PIRT」という。)や熱水力ロードマップ⁷等を参考に 選定したものである。新規制基準で評価対象となった事故シーケンスでの重要現象(BWR ATWSの液膜ドライアウト及びリウェット)、最適評価の適用により新たに考慮すべき重 要現象(BWR RIA のボイド挙動)、近年国際的に注目されている現象(FFRD)及び新規制 基準で追加された事故シーケンスのプラント挙動(総合効果試験)については、過去のプ ロジェクト^{9,10,11}からの継続として実施した。国際的に注目されている重要現象(再冠水) 並びに福島第一原子力発電所事故及び SFP の実機試験で生じたとされる温度成層化は、本 プロジェクトで新たに検討を行ったものである。

2.1.1 BWR ATWS 条件下での液膜ドライアウト及びリウェット

事故時の BWR では、燃料被覆管表面の液膜が消失して急激な温度上昇をもたらす液膜 ドライアウト、及び液膜ドライアウト後に燃料被置管表面が液膜によって再び覆われるリ ウェットの発生が想定される。これらの現象は燃料被覆管温度に著しい影響を及ぼすが、 液膜先端近傍の熱伝達挙動やスペーサによる液滴付着効果等、それら機構の詳細には不明 な点が多い。さらに、BWR の原子炉停止機能喪失(ATWS)においては、出力、流量及び 圧力が振動する条件の下で液膜ドライアウト及びリウェットが発生することが予測されて いるが、このような振動条件下における液膜ドライアウト及びリウェットについて実験的 知見はない。

過去のプロジェクト「事故時等の熱流動評価に係る実験的研究」¹¹において、BWR ATWS に関し、現象の重要度と知見の充実度から研究すべき重要現象として、液膜ドライアウト、 リウェット及び集合体内の詳細な熱水力挙動を特定した。それらの知見を取得するために 高圧ループ(高圧熱流動ループ(以下「HIDRA」という。)及び高圧単管試験装置)の整 備、高圧ループによる熱流動実験(以下「高圧ループ試験」という。)、先行冷却可視化実 験及びスペーサ液滴付着効果実験を実施した。

本プロジェクトにおいては、BWR ATWS における被覆管最高温度(以下「PCT」という。) 挙動を現実的に評価することを目指して、過去のプロジェクト¹¹の実験研究を継続して実 験データの拡充を行うとともに、それら実験データを用いて評価モデルの高度化を検討し た。実験として、JAEA に委託して BWR ATWS を想定した振動条件を含めて液膜ドライア ウト及びリウェット挙動を測定した高圧ループ試験を実施した。また、液膜ドライアウト 及びリウェットの評価モデルの高度化のため、これらに影響する二つの詳細現象に着目し た実験を実施した。一つは JAEA に委託して実施した液膜先端近傍における熱伝達に着目 した先行冷却可視化試験であり、もう一つは電中研に委託して実施したスペーサによる液 滴付着の促進効果に着目した燃料集合体内液滴付着挙動解明試験である。また、システム 解析コード TRACE¹² による試験解析により既存評価手法の予測性能の確認及び 3 流体場 モデルに基づくサブチャンネル解析コード COBRA-TF^{13,14} を用いた液膜ドライアウト及び リウェットの機構論的な評価手法の構築を行った。

(1) 高圧ループ試験

本検討は、令和元年度から令和4年度にかけて国立研究開発法人日本原子力研究開発機構 (JAEA) に委託して実施したものである^{13,16,17,18}。過去のプロジェクトで整備した HIRDA 及び高圧単管試験装置を用いて、ATWS の振動条件を模擬した ATWS 模擬実験及びスペー サ効果実験を実施した。

試験装置

a HIDRA

HIDRA の系統図を図 2.1.1 に示す。HIDRA のループ内に 4×4 バンドル試験体と 3×3 バンドル試験体が設置されている。いずれの試験体も実機 BWR の 9×9 燃料集合体を模擬しており、模擬燃料棒の直径、ピッチ、最外周燃料棒及びチャンネル壁間距離は実機 9×9 燃料集合体と等しい。図 2.1.2 に 4×4 バンドル試験体、図 2.1.3 に 3×3 バンドル試験体を示す。

4×4 バンドル試験体の加熱長は実機 9×9 燃料集合体と等しい 3.71 m であり、ATWS 模 擬実験に用いた。軸方向出力分布はチョップドコサイン、径方向出力分布は一様とした。 16 本の模擬燃料棒は 7 個のグリッドスペーサで正方格子状に保持されており、実機 9×9 燃料集合体の丸セルスペーサを模擬したグリッドスペーサでフロータブの無いタイプを用 いた (図 2.1.2(c)のフロータブを除去して使用)。

3×3 バンドル試験体は、発熱長が 1.5 m と短い模擬燃料棒で構成されており、スペーサ 交換が比較的容易な設計とし、スペーサ効果実験に用いた。9 本の模擬燃料棒は 2 個のグ リッドスペーサで保持されており、フロータブ付き丸セル型スペーサ又はフロータブなし 丸セル型スペーサとしている。バンドル内の出力分布は軸方向と径方向いずれも一様分布 とした。また、3×3 バンドル試験体の上流に 4×4 バンドル試験体が接続されており、4× 4 バンドル試験体の出力を制御することで 3×3 バンドル試験体の入口クオリティを制御 した。

5

出典)国立研究開発法人日本原子力研究開発機構、「平成31年度原子力施設等防災対策等 委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、令和2年(以下「参考文献15」 という。)

図 2.1.1 HIDRA 系統図

```
Fig. 2.1.1 Schematic diagram of HIDRA
```


(c) 丸セル型スペーサ
出典)参考文献 15
図 2.1.2 4×4バンドル試験体
Fig.2.1.2 4×4 bundle test assembly

出典)参考文献 15

図 2.1.3 3×3バンドル試験体の断面図

Fig.2.1.3 Cross section of 3×3 bundle test assembly

b 高圧単管試験装置

図 2.1.4(a)に示す高圧単管試験装置を ATWS 模擬実験及びスペーサ効果実験に用いた。 試験体は内径 12.2mm、厚さ 2.3mm のインコロイ 800HT 製の直管であり、直列に接続した 3本の予熱助走部およびその下流側に位置する測定部で構成される。測定部の長さ 690mm

(有効発熱部はフランジ部除く長さ 500mm)、予熱助走部の長さ 1130mm (有効発熱部 1000mm)であり、図 2.1.4(b)に示す位置に温度計測のためシース径 φ 1.0mm の K 型熱電対 を設置した。

スペーサは、予熱助走部中段と上段の間、予熱助走部上段と測定部の間の2ヶ所に設置 可能である。ATWS 模擬試験ではスペーサを設置せず、スペーサ効果試験では旋回羽根型 スワールスペーサを用いた。なお、過去のプロジェクト「事故時等の熱流動評価に係る実 験的研究」¹¹においても旋回羽根型スワールスペーサを用いた実験を少数行ったが、流路 内の圧損が高くなり高質量流束条件での実験が困難であったことから、OECD/NEA の CFD benchmark¹⁹で用いられたスワールスペーサを参考に、必要な実験条件内で強度が保たれる 範囲で薄肉とした旋回羽根型スペーサを新たに製作した。

出典)参考文献 15

図 2.1.4 高圧単管試験装置

Fig.2.1.4 High pressure single-tube test facility

② ATWS 模擬実験

東京電力柏崎刈羽原子力発電所6,7号機の設置許可変更申請において、事業者が実施 した ATWS の有効性評価の解析において、次のような圧力と出力の振動状態が予測されて いた。

- ・ 高圧状態において給水加熱喪失が生じ、さらに熱出力が増加傾向となって圧力が上昇。
- ・ 8 MPa に達すると逃し安全弁(以下「SRV」という。)が開となり圧力が減少し、これ に伴い熱出力も減少。
- ・ 7 MPa まで低下すると SRV が閉となり、圧力と熱出力が増加に転じる。

この繰り返しにより、原子炉圧力がおよそ 7~8 MPa の間で 10 秒程度の周期で変動し、それに伴い熱出力の変動も生じる。

上記の解析結果を参考に、BWR ATWS における熱水力条件が振動する状況を実験的に模擬し、液膜ドライアウト及びリウェットに関する実験データを取得した。実験においては、 上述の ATWS 解析において周期的な変動が現れた熱出力及び圧力に加え、入口流量を振動 する実験パラメータとした。入口流量は上記解析においては変動していなかったが、種々の原因によって変動しうるパラメータであり、実験パラメータとして加えたものである。

a 実験方法

BWR ATWS を模擬するために、試験体の熱出力、入口流量及び系圧力の内、一つ又二つ のパラメータを周期的に変動させたときの温度を測定することで、液膜ドライアウト・リ ウェットの挙動に関するデータを取得した。境界条件の変動として、単独パラメータを変 動させる過渡実験及び二つのパラメータを同時に変動させた過渡実験を実施した。この実 験は高圧単管試験装置と4×4バンドル試験装置を用いて実施し、表 2.1.1 及び表 2.1.2 に 示す条件で実験データを取得した。

熱出力の変動はヒーター出力を矩形波で時間的に変化させることで、炉心流量の変動は 循環ポンプの駆動周波数を矩形波で変化させることで、また、圧力の変動はブローダウン ラインのバルブを開閉することで模擬した。なお、単管試験の熱出力の変動は、試験体助 走部(上流部)の出力のみ変化させた。

上記の振動操作により、図 2.1.5 に示すようにヒーターロッド表面の温度が大きく振動 し、液膜ドライアウトとリウェットが繰り返し発生したことが分かる。しかし、測定点が 多いことから、以降、温度の時系列データから「リウェット速度」を算出して整理した結 果を示す。実験においては、ヒーター表面温度が飽和温度+50K以上となった後に、最高 温度を 100K 下回った場合にリウェットが生じたとし、その時間範囲の中で温度の低下速 度が最大(熱流束が最大)となった時刻をその測定点におけるリウェット時刻とし、その 時刻と測定点の位置から算出した速度を「リウェット速度」と定義する。

表 2.1.1 ATWS 模擬実験の条件(高圧単管試験)

 Table 2.1.1
 Conditions for ATWS simulated experiment (high pressure single-tube test)

ATWS模擬変動過渡実験		初期条件	変動量、周波数				変動量、周波数			
	圧力 (MPa)	質量流束 (kg/m ² s)	圧力変動幅(バルブ 開閉圧力差) ΔP(Mpa)	出力or流量の 変動周波数 (Hz)	出力or流量変動量 の入口クオリティ 換算変動幅Δx					
圧力変動過渡	2,7	500~1500	0.165~0.9							
出力変動過渡	2,7	500~1500		0.07~0.4	0.1~0.4(片振幅)					
流量変動過渡	2,7	500~1500		0.07~0.2	0.05~0.2(片振幅)					
圧力+出力複合変動過渡	2,7	500,1000	0.165~0.9		0.1~0.6					
圧力+流量複合変動過渡	2,7	1000	0.33,0.9		0.1					
圧力+出力+流量複合変動過渡	2,7	1000	0.33,0.9		0.1					

出典)国立研究開発法人日本原子力研究開発機構、「令和3年度原子力施設等防災対策等委 託費(軽水炉の事故時熱流動調査)事業に関する報告書」、令和4年(以下「参考文献17」 という。)

表	2.1.2	ATWS 模擬実験	の条件	(4×4 バ)	ンドル試験)
---	-------	-----------	-----	---------	--------

ATWS模擬変動過渡実験	実験 初期条件				変動量、周波数			
	圧力 (MPa)	質量流束 (kg/m ² s)	初期状態	圧力変動幅 (バルプ開閉 圧力差) ΔP(Mpa)	出力変動幅 ΔW(kW)	質量流束 変動幅ΔG (kg/m2s)	出力or流量の 変動周波数(Hz)	出力or流量変動量の 出口クオリティ 換算変動幅Δx
圧力変動過渡	2,4,7	200,500,1000,1500	CHF、Post-BT	0.165~0.9				
出力変動過渡	2,7	500,1000	CHF		100~1000		0.07~0.4	0.05~0.3(片振幅)
流量変動過渡	2,7	500,1000	CHF			10~200	0.07~0.4	0.05~0.3(片振幅)
圧力+出力複合変動過渡	2,7	500,1000	CHF、Post-BT	0.33,0.9	100~1000			0.1~0.6
圧力+流量複合変動過渡	2,7	500,1000	CHF、Post-BT	0.33,0.9	/	50~150	/	0.062~0.39

Table 2.1.2 Conditions for ATWS simulated experiment (4×4 bundle test)

出典) 参考文献 17

(ロッド上流側) (ロッド下流側)

出典)参考文献 17

図 2.1.5 圧力+出力変動過渡実験における測定パラメータの時刻歴 (7 MPa、1000 kg/m²s、ΔP=0.9 MPa、Δx=0.6、ROD1)

Fig.2.1.5 Time series of measured parameters in pressure+power variation experiment (7 MPa, 1000 kg/m²s, Δ P=0.9 MPa, Δ x=0.6, ROD1)

b 実験結果

図 2.1.6 に、圧力 7 MPa、質量流束 500 kg/m²s の出力変動過渡実験の結果を示す。リウ エットが生じた領域におけるリウェット前最高温度の領域平均の値(リウェット領域平均 温度)とリウェット速度との関係をプロットした。グラフ中のシンボルの中塗りと白抜き の違いは出力変動周波数の違い、色は領域(赤:6-7スペーサ間、青:5-6スペーサ間、 緑:4-5スペーサ間)の違いを表すが、それらに関係なく、リウェット速度がリウェット 領域平均温度でほぼ決まる結果となっている。流量変動過渡実験においても、この出力変 動過渡実験の傾向とほぼ同じ結果となった。

図 2.1.7 及び図 2.1.8 に示すように、圧力変動過渡実験では若干傾向が異なった。横軸の リウェット領域平均温度が低いときにはリウェット速度はリウェット領域平均温度に依存 する傾向を示す。一方、高いときには明確な依存性がない結果となった。さらに、分析を 進めたところ、図 2.1.9 に示すように図 2.1.5 に示す圧力上昇フェーズと圧力低下フェー ズとでリウェット速度の傾向が異なるケースがあることが分かった。

図 2.1.10 に、複合変動過渡実験(出力+圧力、流量+圧力)の結果を示す。図中の凡例 において最後にFを付加したデータは流量と圧力の複合変動過渡実験のデータ、それ以外 は出力と圧力の複合変動過渡実験のデータであり、図中でオレンジの実線で囲んだデータ は圧力低下フェーズのものである。なお、条件やロッド位置によってはどちらかのフェー ズでのみリウェットが生じるケースもあり、一般的な傾向として示すことは難しいものの、 全般的に圧力低下フェーズの方がリウェット速度が速い結果となっている。

出典)国立研究開発法人日本原子力研究開発機構、「令和4年度原子力施設等防災対策等委 託費(軽水炉の事故時熱流動調査)事業に関する報告書」、令和5年(以下「参考文献18」 という。)

図 2.1.6 リウェット領域平均温度とリウェット速度の関係(出力変動過渡実験) Fig. 2.1.6 Relationship between area-average rewetting temperature and rewetting speed

出典)参考文献17

図 2.1.7 リウェット領域平均温度とリウェット速度の関係(圧力変動実験、2 MPa)

Fig. 2.1.7 Relationship between area-average rewetting temperature and rewetting speed

図 2.1.8 リウェット領域平均温度とリウェット速度の関係 (圧力変動実験、7 MPa) Fig. 2.1.8 Relationship between area-average rewetting temperature and rewetting speed

図 2.1.9 リウェット位置の時間変化例(圧力変動過渡実験)

Fig. 2.1.9 Example of rewetting in pressure rise phase and pressure drop phase

出典)参考文献17

図 2.1.10 リウェット領域平均温度とリウェット速度の関係(複合変動過渡実験) Fig. 2.1.10 Relationship between area-average rewetting temperature and rewetting speed

③ スペーサ効果実験

BWR の燃料集合体には、燃料棒同士の間隔を適切に保持しつつバンドルとして結束す るためにスペーサが設置されている。スペーサは、液膜ドライアウト及びドライアウト後 の熱伝達に影響を及ぼすことが知られている。従来の BWR 燃料集合体においては丸セル 型のスペーサ(フェルールスペーサ)が設置されてきたが、今後導入される新型の燃料集 合体には限界出力向上のため旋回羽根を有するスペーサが用いられる見込みである。スペ ーサの形状により、液滴付着効果や液膜進展挙動等が変わるためと考えられる。

本研究では、3×3バンドル試験体と高圧単管試験体を用いて、スペーサが液膜ドライア

ウト及びその後のリウェット速度に与える影響(スペーサ効果)を調べる実験を実施した。 3×3バンドル試験体では丸セルスペーサを調査対象とし、フロータブの効果についてのデ ータを取得した。高圧単管試験体では、旋回羽根を有するスワールスペーサを模擬した障 害物を流路に挿入した実験を行い、その効果を検証した。

a 3×3 バンドル実験

3×3 バンドル試験体に、フロータブ付き丸セル型スペーサ又はフロータブなし丸セル型 スペーサを設置し、圧力を 2,4,7 MPa、質量流束を 250-1500 kg/m²s に設定して、限界出力 試験を実施した。図 2.1.11 に限界出力(CP)の測定値と予測値との比較を示す。ここで、 予測値として TRACE で採用されている CISE-GE 式(2.1.1(4)にて後述)と修正 Biasi 式を 用いた。全体的な傾向として、圧力が高いケースで測定値と予測値との一致が良い結果と なった。

この試験の目的であるスペーサ形状の差異に関しては、フロータブの有無による顕著な 差異が見られない結果となった。

Fig. 2.1.11 Comparison of measured and predicted critical powers

b 高圧単管実験

高圧単管実験では、スペーサなし("No spacer")、丸セル型スペーサ("Ferrule")、又は 旋回羽根を有するスワールスペーサ("Swirl"又は"Swirl2")を設置し、圧力を2,4,7 MPa、 質量流束を250-1500 kg/m²s に設定して、限界熱流束実験、液滴伝達係数実験及びリウェッ ト実験を実施した。スワールスペーサとして、過去のプロジェクト¹¹で製作したスワール スペーサ("Swirl")と、圧損の低減のために肉厚と閉塞率を変えたスワールスペーサ ("Swirl2")と用いた。

図 2.1.12 にスペーサを変えたときの限界熱流束実験の結果を示す。スペーサなしと比べ て、丸セル型スペーサの限界熱流束は若干高く、スワールスペーサではそれらより有意に 限界熱流束が向上する結果となった。スワールスペーサ間でも相違が見られ、Swirl2 の方 が限界熱流束の向上が大きい。 図 2.1.13 に Swirl2 (SS2 と表記) とスペーサなしのときのリウェット速度の比較を示す (圧力 2 MPa、質量流束 500 kg/m²s、1000 kg/m²s)。両者で有意な差異は見られなかった。 過去のプロジェクト¹¹においてもスペーサなし、Ferrule、Swirl の間でリウェット速度への 差異は見られておらず、スペーサタイプがリウェット速度に影響しないことを示唆する結 果となった。

出典) 参考文献 18

図 2.1.12 限界熱流束へのスペーサの影響(高圧単管実験)

Fig. 2.1.12 Effect of spacers on critical heat flux (high pressure single tube experiment)

(2) 先行冷却可視化試験

本検討は、令和元年度から令和 4 年度にかけて JAEA に委託して実施したものである 13,16,17,18 液膜ドライアウトが発生後に過熱した燃料棒表面が再び濡れるリウェット過程におい ては、液膜先端での急激な冷却効果である先行冷却が重要な役割を果たしていることが従 来研究²⁰から知られているが、その機構については十分に解明されていない。過去のプロ ジェクト¹¹においては、リウェット挙動の観察が可能な試験装置を整備し、先行冷却の素 現象に着目した実験を実施した。JAEA への委託において実施された実験から得られた知 見に基づく先行冷却に係るモデル化の検討及び今後のモデル開発に向けて必要となる実験 データの拡充について以下に示す。

先行冷却熱伝達モデルの検討

液膜先端近傍での先行冷却による熱伝達を適切に評価することが重要である。そこで、 液膜先端近傍の熱伝達において考慮すべき機構やそれに影響する諸現象を階層的に考察し、 その要因を図 2.1.14 のように整理した。

液膜の可視化実験の観察結果から、液膜先端においては乾き領域と濡れ・乾き共存領域 で構成されていることが明らかとなっており、両者の熱伝達を評価する必要がある。乾き 領域では、乾き面を通過する気相による熱伝達と、液膜先端で生じる液滴・液塊による除 熱効果が考えられる。また、濡れ・乾き共存領域においては、液膜先端における液膜流の 振動的挙動により濡れ・乾き領域の時間的な変動が生じる。

上記の検討すべき諸現象の内、熱伝達係数に与える影響が大きいと考えられる要因を下 記に示す。

a)気相熱伝達における温度境界層未発達の効果(入口効果)

b)液滴・液塊衝突熱伝達における液滴濃度不均一分布の効果

c)濡れ・乾き共存領域における濡れ熱伝達と乾き熱伝達の組み合わせの効果

上記の各項目に対する実験的な検討結果について、次節以降に示す。a)については伝熱 実験、b), c)については可視化実験においてその検討を行った。

出典)参考文献17

図 2.1.14 先行冷却熱伝達モデル開発に向けた要因分類

Fig. 2.1.14 Factor classification for developing an advance cooling heat transfer model

② 試験装置と実験方法

図 2.1.15 に先行冷却試験装置を示す。また、表 2.1.3 に先行冷却試験装置の仕様と実験 条件を示す。試験部は円形又は矩形の流路内に外径 11.2 mm の模擬燃料棒を設置した構造 であり、円形試験部は内径 17.0 mm のガラス管が試験流路、矩形試験部では 1 辺 15 mm の 正方形流路により構成される。矩形流路の一つの対面にはテンパックスガラスを設置し、 液膜等の可視化ができるような設計とした。模擬燃料棒表面温度は模擬燃料棒表面に埋め 込まれた内径 0.5 mm のシース型熱電対 12 本を用いて測定する。

実験時には、試験部に設定流量の空気又は蒸気を供給し、ヒーターロッド出力を調整す ることによりロッド表面温度を上昇させ、所定の温度に到達して定常状態となったところ を初期条件とし、データ収録を開始する。その後、規定の流量の水を供給し環状液膜流を 形成させ、リウェットの伝播を記録する。ヒーターロッドの出力は実験を通して初期設定 値に保ち、加熱部全面がリウェットした後、ロッド表面温度の安定を確認し、データ収録 を終了する。
装置仕様		
模擬燃料棒外径	11.2 mm	
矩形試験部の1辺の長さ	15.0 mm	
模擬燃料棒最大出力	6.2 kW	
加熱部長さ	600 mm	
入口長さ	100 mm	
と見てしていた。	200 mm	
	加熱開始位置から 5,60,110,165,	
熱電対位置	225, 285, 335, 385, 435, 485, 535 及	
	び 585 mm の位置	
実験	条件	
蒸気流量	4 - 30 g/s	
試験体出口圧力	0.1 - 0.5 MPa	
供給蒸気温度	飽和温度 +~30 K	
水流量	0.11-2.00 L/min (1.8-33 g/s)	
供給水温度	~90 °C	
初期伝熱面温度(第2熱電対)	150~400 °C	

表 2.1.3 装置仕様及び実験条件

 Table 2.1.3
 Equipment specifications and experimental conditions

出典)参考文献 17

図 2.1.15 先行冷却試験装置

Fig. 2.1.15 Advance cooling test equipment

③ 熱伝達実験

乾き領域の先行冷却熱伝達モデルの検討として、リウェット時の熱伝達係数を測定した 実験について以下に示す。熱伝達係数の代表的なパラメータ依存性(リウェット液膜先端 からの距離依存性、水流量依存性)について整理して伝熱促進メカニズムを考察した。

水-蒸気系として、蒸気を最大で 30 K 程度過熱させた状態で試験部に注入し、水の注入 温度を 90 ℃、系圧力 0.1 MPa とし、蒸気流量、液膜流量、初期伝熱面温度をパラメータ としたときのリウェット実験を実施した。実験条件を表 2.1.4 に、乾き面の熱伝達係数の 空間分布をロッド表面温度の計測結果から算出した結果を図 2.1.16 ("Measured"が測定結 果)に示す。Case 1~Case 3 は、蒸気流量と壁面温度がほぼ同一で水流量を変えた実験と なっており、水流量の影響を見るための設定としている。

実験結果との比較として、気相単相熱伝達予測式である修正 Dougall-Rohsenow の式²¹に 対して、二重管補正、物性値の温度補正、入口効果を加味した式(1)を用いた。

ここで、物性値の下付き添字 s は飽和温度における物性値、f は膜温度(壁面温度と気相バルク温度の平均値)を用いることを表す。d は二重管流れにおける管直径の差、L はリウェ

ット液膜先端からの距離(単相熱伝達実験では、加熱部先端からの距離)を用いる。*d*_iは 模擬燃料棒直径、*d*_oはガラス管内径である。*T*_b,*T*_wは気相流のバルク温度と壁面温度で、式 (1)中の物性値の温度補正量の計算では絶対温度を用いる。

図 2.1.16 の赤色実線は式(1)の気相熱伝達相関式による予測結果、青色破線は式(1)内の 入口効果(EE)を考慮しない場合の結果を示す。いずれの条件においても式(1)は測定値よ りも過小評価するが、入口効果を考慮することで液膜先端近くの熱伝達係数が著しく増加 し、計測値に近い傾向を予測できることが確認された。気相単相熱伝達における入口効果 は液膜先端近くの乾き面での冷却効果を適切に評価するうえで重要な因子となると考えら れる。ここで、入口効果は、図 2.1.17に示すように、液膜先端近傍で温度境界層が薄く未 発達であることの影響を受ける効果と説明できる。以上のとおり、気相熱伝達における入 口効果については式(1)の導入により、液膜先端近くの熱伝達係数が著しく増加する計測値 の傾向を良好に予測できることが確認された。

Table 2.1.4Conditions of heat transfer experiments					
	$W_v[g/s]$	$W_w[g/s]$	T _{ini} [°C]	$G_{tot} \left[kg/m^2s \right]$	x _{in} [-]
Case 1	5.6	2.3	407	61	0.71
Case 2	4.7	6.2	419	85	0.43
Case 3	4.3	14.9	427	150	0.22

表 2.1.4 熱伝達実験の条件

出典)参考文献17

Fig. 2.1.16 Heat transfer coefficient of dry surface near the tip of the liquid film

出典)参考文献17

図 2.1.17 温度成層化未発達効果による加熱部入口効果

④ 可視化実験

図 2.1.16 では、水流量が大きくなるほど熱伝達係数について計測結果と予測結果の差が 広がる結果となった。これは、水流量の増加により飛散液滴量が増加し、液膜先端近傍の 乾き面に液滴・液塊等が衝突して熱伝達が大きくなったと考えられる。式(1)にはこの効果 が含まれないことから、水流量の増加に伴う液滴・液塊等の衝突に由来する熱伝達の効果 を評価することが必要であると考える。これを踏まえて、液滴・液塊等の衝突に関する検 討として、次節の可視化実験にて液滴濃度分布について検討した。

図 2.1.14 に示した液膜・液塊衝突熱伝達及びドライパッチ生成時面積について実験デー タを取得するために、リウェット実験の可視化実験により液滴・液膜を撮影して、その画 像分析を行った。リウェット実験では試験部の内壁表面に液膜が形成されるが、水流量が 大きい場合には液滴の可視化が困難であるため、低水流量の条件で可視化実験を実施した。

a 実験条件及び撮影条件

可視化実験における実験条件は以下のとおりとした。

- · 液滴挙動
 - ▶ 蒸気流量:5g/s
 - ▶ 水流量:0.11 L/min
 - ▶ 初期壁面温度(第2熱電対温度):400 ℃
- 濡れ・乾き挙動
 - ▶ 空気流量:30,50,70 m³/h (断面平均速度:64,109,151 m/s)
 - ▶ 水流量: 0.013 L/min
 - ▶ 初期壁面温度(第2熱電対温度):400℃

撮影条件は以下のとおりとした。

- · 液滴举動
 - ▶ 撮影方法:逆光撮影
 - ▶ 画素数:512×1024
 - ▶ フレームレート: 22500 frame/s
 - ▶ シャッタースピード:1/2700000秒
 - ▶ 空間分解能:約 6.5 μ m/pixel
- · 液膜先端举動
 - ▶ 撮影方法:順光撮影
 - ▶ 画素数:512×1024
 - ▶ フレームレート: 2160 frame/s
 - シャッタースピード:1/2160 秒
 - ▶ 空間分解能:約 32 μ m/pixel
- b 液滴举動可視化結果

図 2.1.18 に液膜先端近傍での飛散液滴可視化画像を示す。加熱部入口から約 124~130 mm の範囲を撮影した。図の横軸は水平方向位置、縦軸は鉛直方向位置を表し、画像の下

から上に向かってリウェット液膜が進展する。図 2.1.18 は、縦軸 1~2 mm 程度の位置に 液膜先端が到達した際の可視化結果であり、左図・中央図・右図はそれぞれ、元画像・背 景抽出画像・液滴等抽出画像を表す。右図中の赤色実線は壁面及び液膜位置を表す。図か らわかるように液膜先端では液膜が盛り上がり、液膜先端から液滴・液塊が気流中に離脱 する挙動が確認される。図 2.1.19 は図 2.1.18 の飛散液滴抽出画像に基づいて検出した液 滴の面積から等価直径を算出し、液滴径ごとの空間頻度分布をプロットした結果を示す。 カラーバーは青いほど存在頻度が低く、黄色になるほど存在頻度が高いことを表す。いず れの液滴径においても、液膜先端近傍の壁面近くで最も液滴の存在頻度が高いことが分か る。

以上により、液滴・液塊衝突熱伝達における液滴濃度不均一分布の効果については、気 相中の液滴は過熱面の冷却に寄与すること、リウェット液膜先端近傍で液滴濃度が高い分 布となったことから、液滴・液塊の衝突による熱伝達モデルを検討するに当たってはこの ような液滴分布を考慮する必要があると考えられる。

Fig. 2.1.18 Result of scattered droplet visualization

Fig. 2.1.19 Spatial frequency distribution of scattered droplets

c 濡れ・乾き挙動可視化結果

図 2.1.20 に液膜先端近傍での可視化結果を示す。図は左から右に時刻が進んでおり、液 膜先端挙動の時間変化を可視化した結果を表している。図中の明部が乾き領域、暗部が濡 れ領域を表し、液膜先端で一時的に乾き領域が出現し、再び液膜で覆われる挙動を可視化 しており、この挙動をドライパッチの生成・消滅と呼ぶ。ここで、ドライパッチとは、図 2.1.21 に示すように液膜の進展により一度濡れた領域が再び乾くこととして定義する。

ドライパッチの生成・消滅は、濡れ・乾き共存領域を特徴づける現象と考えられる。そ こで、リウェットフロントから濡れ領域先端までの距離(液膜先端の後退長さ)をドライ パッチ深さと定義し、図 2.1.22 に空気流量条件を変えた3実験でのドライパッチ発生時の ドライパッチ深さの確率密度分布を示す。空気流量j_gが大きくなるとドライパッチ深さが 短くなっており、空気流量が増加したことで液膜先端に液相が供給される量が多くなり、 液膜先端が局所的に後退しにくくなったものと考えられる。濡れ・乾き共存領域における 濡れ熱伝達と乾き熱伝達の組み合わせの効果については、遷移沸騰領域の熱伝達モデルに、 ライパッチ深さに応じた濡れ・乾き挙動を適切に反映することにより、液膜先端近傍での 熱伝達予測性能を向上させることができると考えられる。

27

Fig. 2.1.20 Visualization of liquid film tip behavior

出典)参考文献 17図 2.1.21 ドライパッチ概略図Fig. 2.1.21 Schematic of dry patch

出典)参考文献17

(3) 燃料集合体内液滴付着举動解明試験

本検討は、令和3年度及び令和4年度に電中研に委託して実施したものである^{22,23}。 液膜ドライアウト及びリウェットに影響を及ぼす支配因子の一つとして、BWR 燃料集 合体の構成部品であるスペーサによる燃料棒表面への液滴付着の促進効果が知られている。 その効果に関するメカニズムを解明して予測精度の向上を図るためには、様々なスペーサ タイプごとに液滴挙動に関する高い分解能の実験データベースを蓄積し、それを評価モデ ルに反映することが重要である。

過去のプロジェクト「事故時等の熱流動評価に係る実験的研究」¹¹のスペーサ液滴付着 効果実験では、スペーサ下流における液滴付着の効果について調べるため、燃料集合体内 流路及びスペーサを模擬したサブチャンネル試験体を用いて、スペーサ下流における液滴 挙動の可視化データの取得、及び液滴付着により模擬燃料棒表面に生じた液膜の厚さ分布 の計測を行った。その結果、スペーサタイプごとの液滴付着効果の特徴等を明らかにした が、その特徴に基づき機構論的なモデル化を検討するには、既往研究²²でも抽出された乱 流促進効果やランオフ効果等の更に個別要素の影響についてスペーサタイプごとに知見を 拡充することが重要である。ここで、乱流促進効果とはスペーサの下流における流れの乱 れの増加による燃料棒表面への液滴付着が促進されることであり、ランオフ効果とはスペ ーサ構造物表面に形成された液膜が気相流により表面上を移動し液滴として引き剥がされ、 その近傍の燃料棒表面への付着が促進されることである。本試験では乱流促進効果及びラ ンオフ効果に着目した計測が実施された。 ① 試験装置

本研究では、過去のプロジェクトのスペーサ液滴付着効果実験と同じ試験装置を用いた。 スペーサによる乱流促進効果及びランオフ効果に関するデータを取得するために、スペー サ通過後の液滴流動の計測(以下「液滴流動計測」という。)及びスペーサ通過後の燃料棒 表面への液滴付着の計測(以下「液滴付着計測」という。)に関する実験を行った。

液滴流動計測の実験装置を図 2.1.23 に示す。鉛直上向き流路であり、断面は燃料集合体 の一部を模擬したセンターサブチャンネルとサイドサブチャンネルを含む形状としている。 この最下方から気相流の作動流体として空気を供給し、同位置のノズルから水を作動流体 とした液滴を射出する。テスト部中央にスペーサを模擬した構造物を配置し、通過直後の 液滴を YAG レーザのバックライトにより高速度カメラで撮影し、シャドウイメージング による PTV を用いて液滴流動(径及び速度ベクトル)を計測する。

液滴付着計測の実験装置を図 2.1.24 に示す。テスト部流路の形状、作動流体の供給及び射 出方法、並びに模擬スペーサの配置は液滴流動計測と同様である。模擬スペーサ上方の下流 域における模擬燃料棒やスペーサ構造物の表面に高集積の多点電極基板を貼付し、通過した 液滴が付着した箇所における電極の電位変化を検知することにより、液滴付着の頻度及び分 布を計測する。

出典)一般財団法人電力中央研究所、令和3年度原子力規制庁委託報告書 燃料集合体内 液滴付着挙動解明試験」、令和4年(以下「参考文献22」という。)

図 2.1.23 液滴流動計測の実験装置

Fig. 2.1.24 Experimental apparatus for droplet deposition measurement

② 実施内容

本試験における具体的な実施項目は以下のとおりである。

・スペーサ乱流促進効果試験

- ・スペーサランオフ効果試験 模擬燃料棒への液滴付着試験
- ・スペーサランオフ効果試験-スペーサ構造物への液滴付着試験

各項目の実施内容を以下に述べる。

a スペーサ乱流促進効果試験

電中研に委託して実機への実装が想定される複数スペーサタイプにおける乱流促進効 果について試験を実施した。本試験では、過去のプロジェクトの結果を踏まえて、旋回羽 の投影面積や傾斜角等、各スペーサタイプにおける幾何形状パラメータの違いによる液滴 挙動への影響が着目された。基本となる模擬スペーサタイプを図 2.1.25 に示し、各々の幾 何形状パラメータを含めた実験条件を表 2.1.5 に示す。ここで気相流速については、運転 状態からポンプトリップにより炉心流量が減少した状態を想定して設定された。

代表例としてグリッド型+旋回羽の模擬スペーサについて、気相流速 16 m/s における液 滴流動計測の結果を図 2.1.26 に示す。液滴流動計測では模擬スペーサを通過した液滴の径 と速度ベクトルとの関係で整理した。旋回羽型では鉛直方向液滴流速は液滴径が小さいほ ど広がる分布となり、水平方向液滴流速は液滴径の小さい領域で他のスペーサタイプと比 較して 4 倍程度に速度分布が広がる特徴を有する。投影面積の変化により、鉛直方向液滴 流速及び水平方向液滴流速について、液滴径に応じた速度分布にわずかに変化が見られた。 液滴付着計測の結果を図 2.1.27 に示す。液滴付着計測では模擬スペーサ下流域の多点電極 基板で得られた液滴付着分布をコンター及び模擬スペーサ上端からの高さに対する頻度で 整理している。ここでは投影面積の変更に応じて、液滴付着頻度のスペーサからの距離に 対する分布が変化していることが示される。

表 2.1.5 実験条件(スペーサ乱流促進効果試験)

スペーサ型	幾何形状パラメータ	気相流速	サブチャンネル
丸セル型	◆肉厚 0.5mm (ベースケース) 0.3mm / 0.7mm / 0.9mm		センター サイド
グリッド型	◆肉厚 0.5mm (ベースケース) 0.7mm / 0.9mm		センター サイド
グリッド型 +旋回羽	 ◆投影面積 ベースケース比 80% / 120% ◆傾斜角 60°(ベースケース) 45°/70° 	10 m/s 16 m/s	センター
丸セル型 +フロータブ	 ◆投影面積 ベースケース比 80% / 120% ◆傾斜角 45°(ベースケース) 30°/60° 		サイド

 Table 2.1.5
 Experimental conditions (turbulence-enhancement effect test)

出典)参考文献 22、一般財団法人電力中央研究所、「令和 4 年度原子力規制庁委託報告書 燃料集合体内液滴付着挙動解明試験」、令和 5 年(以下「参考文献 23」という。)

図 2.1.26 液滴流動計測結果(スペーサ乱流促進効果試験)

Fig. 2.1.26 Result of droplet flow measurement (turbulence-enhancement effect test)

図 2.1.27 液滴付着計測結果(スペーサ乱流促進効果試験)

Fig. 2.1.27 Result of droplet deposition measurement (turbulence-enhancement effect test)

b スペーサランオフ効果試験

(a) 模擬燃料棒への液滴付着試験

電中研に委託してランオフ効果に着目した試験を実施した。ここで気相流速については、 乱流促進効果試験で設定した流速ではスペーサ構造物表面から液膜が引き剥がされないこ とが分かったため、より高流速の条件を設定して現象を把握することとした。この液滴を 生成するために改良を施した模擬スペーサを図 2.1.28 に示し、実験条件を表 2.1.6 に示す。 本試験では液滴の生成に液滴流動計測の説明で述べたノズルを用いず、模擬スペーサ構造 物内に極細流路を設けて液相を供給し、構造物表面のスリットから漏洩させて表面上に液 膜を形成することで、液滴の発生源が模擬される。

代表例として丸セル型の模擬スペーサについて、気相流速 32m/s における液滴流動計測 の結果を図 2.1.29 に示す。ここでは、スペーサ構造物上端からランオフした液滴の射出速 度、射出角、流動径の3要素でデータが整理された。射出速度と流動径の関係は、径が小 さくなるに従い指数関数的な速度上昇が見られ、低速側にも広範に分布している。射出角 と流動径の関係は、射出角が大きくなるほど流動径の分布は小さくなるが、10°から15° 程度までは大きい流動径にも分布が広がっている。射出速度と射出角 θ の関係は、射出角 は 0°から 15°程度、射出速度は 10から 40 m/s 程度の領域に分布が集中している。これ らの傾向は乱流促進効果試験には見られず、ランオフ効果特有である。液滴付着計測の結 果を図 2.1.30 に示す。前述のスペーサ乱流促進効果試験と比べて更にスペーサ通過後の直 下流(上流側 050 mm)に顕著な高頻度領域が現れているが、スペーサから離脱した液滴 が近傍のロッドに付着しているためと考えられる。

表 2.1.6 実験条件(スペーサランオフ効果試験-模擬燃料棒への液滴付着試験) Table 2.1.6 Experimental conditions (run-off effect-droplet deposition on simulated fuel rod)

スペーサ型	気相流速	サブチャンネル
丸セル型	32 m/s	センター
グリッド型	35 m/s	センター
グリッド型+旋回羽	37 m/s	センター

出典)参考文献 22、参考文献 23

(平面図)

(側面図)

出典)参考文献 22、参考文献 23

図 2.1.28 模擬スペーサ (スペーサランオフ効果試験-模擬燃料棒への液滴付着試験) Fig. 2.1.28 Simulated spacers (run-off effect - droplet deposition on simulated fuel rod)

図 2.1.29 液滴流動計測結果(スペーサランオフ効果試験-模擬燃料棒への液滴付着) Fig. 2.1.29 Result of droplet flow measurement (run-off effect - droplet deposition on simulated

fuel rod)

出典)参考文献 22

図 2.1.30 液滴付着計測結果(スペーサランオフ効果試験-模擬燃料棒への液滴付着) Fig. 2.1.30 Result of droplet deposition measurement (run-off effect - droplet deposition on simulated fuel rod)

(b) スペーサ構造物への液滴付着試験

電中研に委託して、上流域から気相流に随伴される液滴がスペーサ通過の際に構造物表 面に捕捉される液滴に着目した試験を実施した。この計測を可能とするために改良を施し た模擬スペーサを図 2.1.31 に示し、実験条件を表 2.1.7 に示す。本試験では液滴付着計測 の説明で述べた多点電極基板をスペーサ構造物表面に貼付することで、同様の原理で液滴 付着の頻度及び分布が計測された。

代表例として各種スペーサタイプについて、気相流速 10 m/s における液滴付着計測の結

果を図 2.1.32 に示す。全てのスペーサタイプで上流側のスペーサ下端付近で液滴の付着回数が多くなることが共通であるが、丸セル型とグリッド型では高さ方向における分布が異なっている。一方、グリッド型とグリッド型+旋回羽ではほぼ分布は同等であり、旋回羽の影響はほぼないことが分かった。

表 2.1.7 実験条件 (スペーサランオフ効果試験-スペーサ構造物への液滴付着) Table 2.1.7 Experimental conditions (run-off effect - droplet deposition on spacer structure)

スペーサ型	気相流速	サブチャンネル
丸セル型	10 /	センター
グリッド型	10 m/s 16 m/s	センター
グリッド型+旋回羽		センター

出典)参考文献 22、参考文献 23

図 2.1.31 模擬スペーサ (スペーサランオフ効果試験-スペーサ構造物への液滴付着) Fig. 2.1.31 Simulated spacers (run-off effect - droplet deposition on spacer structure)

出典)参考文献 22、参考文献 23

図 2.1.32 液滴付着計測結果 (スペーサランオフ効果試験-スペーサ構造物への液滴付着) Fig. 2.1.32 Result of droplet deposition measurement (run-off effect - droplet deposition on spacer structure)

③ スペーサ効果モデルの高度化検討

過去のプロジェクト及び上述の試験から、グリッド型と丸セル型では、乱流促進及びラ ンオフについて液滴挙動やその付着分布が異なることが示された。また、グリッド型+旋 回羽ではグリッド型のみと比べて液滴流速のばらつきが大きくなり、これにより液滴の付 着が促進されると考えられる。これら知見に基づいて、スペーサによる燃料棒表面への液 滴付着挙動、特に乱流促進効果の影響についてモデルを検討した。以下にその考え方と手 順について述べる。

一般に、環状噴霧流などの液滴分散流における加熱面上の液滴付着率は、下式のように 液滴濃度に比例する形で表され、スペーサによる液滴付着促進効果はさらに増倍係数を乗 じる形で表される。

$$d = \varphi \cdot k \cdot C \qquad \cdots \qquad \cdots \qquad (2)$$

ここで、*d*:液滴付着率[kg/m²s]、*C*:液滴濃度[kg/m³]、*k*:液滴付着係数[m/s]、*φ*:スペー サ効果による増倍係数[-]である。増倍係数について、例えば既往研究²⁴では、スペーサ上 端(直下流)からの距離 z の関数として下式のように定式化されている。

$$\varphi = 1 + C_1 \cdot \beta^2 \cdot e^{-C_2 \cdot \frac{2}{D}} \quad \dots \quad \dots \quad \dots \quad \dots \quad (3)$$

ここで、βはスペーサの流路閉塞率[-]、Dは流路等価直径[m]、C1及び C2はスペーサの形 状や実験から求められる定数である。ところが、図 2.1.33 に示す液滴付着計測の結果から、 各種スペーサ型に対して必ずしも(3)式のような指数関数的な減少傾向とならないことが 実験的に確認された。そこで、それら分布形状を以下の Johnson の SU 分布で表現した。

$$f(z,\xi,\lambda,\gamma,\delta,C) = C \cdot \frac{\delta}{\lambda\sqrt{2\pi}} \cdot \frac{1}{\sqrt{1 + \left(\frac{z-\xi}{\lambda}\right)^2}} \cdot \exp\left[-\frac{1}{2}\left\{\gamma + \delta \sinh^{-1}\left(\frac{z-\xi}{\lambda}\right)\right\}^2\right]$$
(4)

ここで、*ξ*,*λ*,*γ*,*δ*,*C* は分布の形状を特徴づけるパラメータであり、実験データのフィッティングにより決めれば、図 2.1.33 に示すように、実験データのピーク位置を含む分布形状をおおむね再現することができ、いずれのスペーサ型に対しても同一の式形で表現可能である。したがって、スペーサ効果モデルとして、式(4)により液滴付着率の軸方向分布を与えることができる。なお、液滴付着計測だけではなく、液滴流動計測の実験データの分析等により各種スペーサ型の幾何形状特性等をパラメータに反映することが今後の課題である。

上記のモデルが確立されれば、3 流体場モデルに基づく解析コード COBRA-TF にスペー サ近傍の液滴付着率を評価するモデルとして組み込む予定である。後述のとおり、本研究 では COBRA-TF による液膜厚さに基づいて液膜ドライアウト及びリウェットを判定する 評価手法を整備しており、その評価において本スペーサ効果モデルは液滴付着による液膜 厚さの増加要因として考慮される。また、スペーサ液滴付着効果のモデル及び整備した評 価手法は、2.1.1(1)に示した JAEA の高圧ループ試験等の実験解析を通じて、評価手法の妥 当性を確認できる。

Fig. 2.1.33 Modelling of spacer effect (formulation of droplet deposition distribution)

(4) 液膜ドライアウト・リウェットのモデル高度化

過去のプロジェクトと本プロジェクトにおいて、高圧ループ試験により液膜ドライアウ ト及びリウェットに関する実験データを蓄積してきた。それら試験データを活用して、液 膜ドライアウト及びリウェットのモデル高度化の検討を行った。

① 液膜ドライアウトの機構論的モデル

国内 BWR において、液膜ドライアウトの評価には実験データに基づく GEXL 相関式等 が用いられている。その詳細は非公開のため、ATWS 模擬試験等の実験データにより直接 ベンチマーク解析をすることができない。GEXL 相関式と類似した公開の実験相関式とし て、TRACE で採用されている CISE-GE 式がある。CISE-GE 式と GEXL 相関式に共通する 特徴として、限界クオリティを沸騰長さの関数として表しており、CISE-GE 式では以下の とおりとなる。

$$X_c = \frac{A(G, P)L_B}{B(G) + L_B} \frac{1.24}{R_f} \qquad \cdots \qquad \cdots \qquad (5)$$

ここで、Gは質量流束、Pは圧力、 R_f は出力ピーキング、 L_B は沸騰長さである。A,BはG,Pの 多項式であり、その係数は実験データに基づき設定され、燃料集合体のタイプ等に依存す る。例えば、NUPECの燃料集合体信頼性実証試験のデータを用いて CISE-GE 式と同形の CISE 型相関式の九つの係数をフィッティングすることで実験結果を良好に再現できるこ とが確認されている。

以上の相関式は実験データベースに基づき作成される。適用範囲を超えた条件での評価 や実験データのない対象に対して有効となるのが物理現象に基づく機構論モデルである。 限界クオリティX_cを蒸気と液膜のクオリティの和と解釈すれば、液膜が喪失するときにX_c が蒸気のクオリティと一致するため限界クオリティの定義と合致する。その解釈の下で、 液滴及び液膜の質量保存式を流れ方向に積分操作等することにより、以下の限界クオリテ ィに関する半機構論的なモデル(MCHNC-CISE)を導出した。

$$X_c = \frac{1 - b_2 \exp\left(-\frac{b_1 K_D}{D_H u_D} L_B\right)}{b_3 R_f} \qquad (6)$$

ここで、 K_D は液滴付着係数であり Sugawara のモデルで評価する。 u_D は液滴速度であり、 沸騰遷移近傍での流量と u_D に関する解析結果に基づき作成したテーブルより与える。また、 b_1, b_2, b_3 は実験データでフィッティングする係数であり、 b_1 は液滴付着効果の補正係数、 b_2 は縮約過程における仮定に基づく補正係数、 b_3 は出力ピーキングの補正係数である。CISE 型相関式にはフィッティング係数が九つあるが、半理論的な導出により三つに減少してお り、 b_1 についてはスペーサ等による液滴付着の効果を表す係数として物理的な意味が与え られ、 b_2, b_3 はフィッティング結果からほぼ 1.0 となり、補正としての効果は限定的な係数 となっている。

NUPEC 試験及び JAEA 高圧ループ試験(単管試験、4×4 バンドル試験)における限界 出力試験に対して、実験データから係数をフィッティングした計算値(CISE 型相関式及び MCHNC-CISE)と実験値との比較を図 2.1.34 に示す。いずれの試験に対しても実験値との 良好な一致を示しており、MCHNC-CISE の三つのフィッティング係数の設定により、液膜 ドライアウトを予測できることを示している。

JAEA 高圧ループ試験の単管試験においては、スペーサタイプごとにフィッティングを 行った。その結果、スペーサなし、丸セルスペーサ、旋回翼スペーサに対し、液滴付着効 果の補正係数*b*₁がそれぞれ 1.05, 1.15, 1.47 となった。これは、スペーサなしでは液滴付 着を促進する効果がほとんど見られず、丸セルスペーサ、旋回翼スペーサの順に液滴付着 が促進されていることを示している。これは、燃料集合体内液滴付着挙動解明試験の結果 とも合致している。

以上より、MCHNC-CISE が CISE 型相関式よりも少ないフィッティング係数で限界出力 試験の測定値を再現できることを確認し、さらに、フィッティング係数の大小から液滴付 着効果を間接的に分析できることを示唆する結果を得た。今後の課題として、モデルの導 出過程やその際に仮定した内容の妥当性について検討するとともに、より広い範囲の測定 結果に適用して、その予測性能の確認を行いたい。

図 2.1.34 HIDRA 4×4 バンドル限界出力試験の結果 Fig. 2.1.34 Result of 4×4 bundle critical power tests

② ATWS 模擬試験との比較

TRACEの液膜ドライアウトモデルとして MCHNC-CISE(限界出力試験で決めたフィッ ティング係数を使用)、リウェットモデルとして日本原子力学会標準で推奨されている Kudo-Hara モデルを追加し、JAEA 高圧ループ試験の ATWS 模擬試験の模擬解析を行った。 なお、燃料集合体内液滴付着挙動解明試験で観測されたスペーサによる液滴付着促進効果 を模擬するため、スペーサ位置で液膜が増加する効果を取り入れた。MCHNC-CISE では限 界クオリティは蒸気クオリティと液膜クオリティの和と定義しているため、スペーサ位置 で液滴付着による液膜増加に相当する値を限界クオリティに加算し、その効果が減衰する とした補正を行った。ここで、限界クオリティへの加算値は、HIDRA4×4バンドル試験の 限界出力試験におけるスペーサ位置での出力と沸騰遷移の状況から推定した。

図 2.1.35 に、ATWS 模擬試験(出力変動、7 MPa、質量流束 1000 kg/m²、クオリティ変 化量 0.2、変動周波数 0.1 Hz)の実験結果(シンボル)と TRACE の解析結果(赤実線)と の比較を示す。実験、解析ともに、ヒーターロッド表面の温度が飽和温度より 50 K 高い温 度を上回るときをドライアウト、下回るときをリウェットが生じたと判定し、その判定し た場所と位置をプロットしている。振動条件下であってもドライアウトとリウェットが繰 り返す挙動、スペーサ位置の直下流ではドライアウトしない挙動が再現された。なお、 TRACE のオリジナルモデル(CISE-GE 式、スペーサ位置の液膜付着促進効果を考慮せず) の解析(図 2.1.35 青破線)においては、出力振動に伴うドライアウトとリウェットの繰り 返しは再現されるが、スペーサによる液滴付着促進効果を考慮していないことから、ドラ イアウト判定された位置の下流は全てドライアウトと判定された点が実験結果とは異なる。

図 2.1.36 に、被覆管温度の計算値と測定値との比較を示す。今回の実験条件、評価手法 (MCHNC-CISE、CISE-GE) での比較においては、計算値が測定値よりも温度を高く評価 し、保守的な評価結果となった。今後、その他の実験ケースに対しても解析を行い、測定 値と比較・分析し、評価手法の予測性能を確認したい。

図 2.1.35 ドライアウト領域の比較(測定値、MCHNC、CISE) Fig. 2.1.35 Comparison of dryout areas (measured, MCHNC, CISE)

図 2.1.36 ATWS 模擬実験における被覆管温度の計算値と測定値との比較

Fig. 2.1.36 Comparison of calculated and measured cladding temperatures in ATWS-simulated experiment

(5) COBRA-TF コードを用いた液膜ドライアウト及びリウェット評価手法の検討

液膜ドライアウト及びリウェットの機構論的な評価手法を構築することを目的として、 3 流体場モデルに基づく熱流動解析コード COBRA-TF^{13,14}を用いた評価手法を整備した²²。 COBRA-TF は蒸気(気相)、液滴及び液膜の挙動を保存式により別々に取り扱うとともに、 燃料集合体のサブチャンネル単位で熱流動挙動を評価できる解析コードであり、現バージ ョンはノースカロライナ州立大学及びオークリッジ国立研究所により開発されている。こ れを用いた評価手法では、液膜の喪失及び再形成を直接取り扱うことで液膜ドライアウト 及びリウェットをより機構論的に評価できる。

① 液膜厚さに基づく液膜ドライアウト及びリウェット判定モデル 22

図 2.1.37 に COBRA-TF における従来のオリジナルの液膜ドライアウト及びリウェット 判定モデル並びに本研究で整備したモデルを示す。現バージョンの COBRA-TF では、壁面 温度*T*_wが限界熱流束(CHF)に対応する温度*T*_{CHF}に達した時に液膜ドライアウトが発生す ると想定される¹³。ここで、限界熱流束は Groeneveld の Look-up table や W3 相関式²⁷、修 正 Zuber の式²⁸等の低クオリティ条件下やプール沸騰条件下に対して開発された経験的な モデルにより評価されている。一方、リウェットについては、壁面温度が最小安定膜沸騰 温度*T*_{MIN}を下回るときに発生すると想定される。これらの判定に基づいて、液膜ドライア ウトが発生した場合には壁面熱伝達として遷移沸騰や逆環状流膜沸騰、分散流膜沸騰に対 応する熱伝達係数が評価され、リウェットが発生した場合には核沸騰等に対応する熱伝達

本研究では、液膜ドライアウト及びリウェットの機構を踏まえて、COBRA-TF によって 評価される液膜厚さが限界液膜厚さを上回ったとき又は下回ったときに液膜ドライアウト 又はリウェットが発生すると想定した。また、既往の知見から液膜ドライアウトが高クオ リティ条件下で発生することから、液膜ドライアウトと判定された場合に壁面熱伝達とし て分散流膜沸騰に対応する熱伝達係数が評価されることとした。限界液膜厚さについては Chun らの式²⁹により評価した。

表 2.1.8 に COBRA-TF 従来のモデル及び本研究で整備したモデルを示す。なお、本研究 では、液膜ドライアウト及びリウェット判定モデルの他、既往研究での知見を踏まえて液 膜からの液滴の飛散(エントレインメント)及び液膜への液滴の付着(ディポジション) の評価について Sugawara の式^{30,31}を用いた。

表 2.1.8 COBRA-TF に導入した液膜ドライアウト及びリウェットに関するモデル

	CTF original model	Implemented model	
Criteria of dryout	When $T_w > T_{CHF}$;	When $\delta_f < \delta_{crit}$;	
	T_{CHF} is evaluated by the	δ_{crit} is evaluated by the Chun et al.	
	modified Zuber correlation.	correlation	
Criteria of rewetting	When $T_w \leq T_{CHF}$;	When $\delta_f \geq \delta_{crit}$;	
	T_{CHF} is evaluated by the	δ_{crit} is evaluated by the Chun et al.	
	modified Zuber correlation.	correlation.	
Entrainment	Wurtz correlation	Sugawara correlation	
Deposition	Whalley correlation	Sugawara correlation	

Table 2.1.8 Model on liquid film dryout and rewetting introduced into COBRA-TF

出典) J. Kaneko, A. Satou, M. Sekine and Y. Masuhara, "Validation of mechanistic dryout and rewetting model based on the three-field model with single tube experiments", Journal of Nuclear Science and Technology, Vol. 58, No. 8, pp. 918-932, 2021 (以下「参考文献 25」という。)

出典)参考文献 25

図 2.1.37 液膜厚さに基づく液膜ドライアウト及びリウェット判定モデル Fig. 2.1.37 Criteria model on liquid film dryout and rewetting based on liquid film thickness

② 単管試験を用いた妥当性確認²²

COBRA-TF を用いた評価手法の妥当性を確認するために、JAEA の高圧単管試験¹³を用いた液膜ドライアウト及びリウェットの試験を対象に解析を実施した。単管試験体は、図

2.1.4 に示すとおり長さ 500mm の測定部と三つの加熱領域を組み合わせた予熱部から構成 され、これらの出力を独立に制御することで液膜ドライアウト及びリウェットを発生させ ている。単管試験体を模擬した COBRA-TF による解析モデルを図 2.1.38 に示す。熱水力 計算のための計算セルの軸方向長さは各々25 mm 程度である。また、単管壁の厚さは 2.3mm であり、熱伝導計算のためこれを 4 つのノードに分割した。

液膜ドライアウトに関しては COBRA-TF で限界出力試験の模擬解析を行った。限界出力 試験では、出力を軸方向一様に上昇させて液膜ドライアウトを発生させて、その時の出力 を限界出力とした。液膜ドライアウトの判定は熱電対で計測されたロッド表面温度が飽和 温度を 50K 上回った場合とした。図 2.1.39 に限界出力試験の試験結果及び解析結果の比 較を示す。限界出力は入口質量流量の増加とともに増加するが、入口流量の増加とともに COBRA-TF の従来モデルの解析結果は試験結果を過小評価した。液膜厚さに基づく判定モ デルを用いた解析は COBRA-TF 従来のモデルを用いた解析よりも、試験結果について良好 に予測することが示された。

リウェットに関しては COBRA-TF でリウェット試験の模擬解析を行った。この試験で は、まず測定部のみの出力を上昇させて液膜ドライアウトが発生した状態から、助走部の 出力を低下させて試験体内のクオリティを所定分だけ低下させる。その時に測定部で各熱 電対により計測されたロッド表面温度の推移から液膜の下流への進展速度をリウェット速 度として評価した。図 2.1.40 に各圧力及び入口質量流量条件におけるリウェット速度の試 験結果及び COBRA-TF の解析結果を示す。図中には Kudo-Hara の式 ³² で評価されたリウ ェット速度も示す。ただし、Kudo-Hara の式は単管試験体のリウェット試験結果ではなく 4×4 バンドル試験体のリウェット試験結果に基づいて提案されたモデルである。ここで横 軸の最大ロッド表面温度は予熱部の出力を低下させる前のロッド表面温度の最大値であり、 COBRA-TF の解析結果では液膜ドライアウト判定モデル等の不確かさから試験値と差が 生じる、又は液膜ドライアウトが発生しないケースもある。図 2.1.40のとおり、試験結果 及び解析結果ともに、ロッド表面最大温度が大きく入口質量流量が小さいほどリウェット 速度は低い結果となった。ここで、Kudo-Haraの式は高質量流量及び高ロッド表面温度に おいて試験結果を過大に評価する結果となった。COBRA-TFの解析については、従来のモ デルを用いた解析結果は全体的に試験結果を過大評価した。一方、液膜厚さに基づく判定 モデルを用いた解析結果と試験結果との差はロッド表面温度や質量流量に依存して大きく 変わることが示された。特に低流量条件では試験結果を過小評価する一方、高流量条件で は試験結果を過大に評価した。

以上から液膜厚さに基づく判定モデルは COBRA-TF における従来モデルや Kudo-Hara の式よりもおおむね試験結果と良好に一致したが、更にリウェット速度に関する予測性能 を向上させることが重要である。本研究で液膜厚さに基づく判定に用いた Chun らの式に よる限界液膜厚さ評価は液膜ドライアウトの試験に基づいて提案されたモデルであり、リ ウェット判定への適用にはその試験結果に基づく検討が必要であると考える。

図 2.1.38 COBRA-TF による単管試験体の解析モデル

Fig. 2.1.38 Analytical model of single-tube experimental apparatus using COBRA-TF

Fig. 2.1.39 Comparison between experimental and calculated results of critical powers

出典)参考文献 25

図 2.1.40 単管試験リウェット速度に関する試験結果と解析結果の比較

Fig. 2.1.40 Comparison between experimental and calculated results of rewetting velocities

③ 4×4 バンドル試験を用いた妥当性確認

前節では単純な単管体系の試験体を対象とした液膜ドライアウト及びリウェット試験 により COBRA-TF を用いた評価手法の妥当性を確認した。本節では、より実機の現象につ いて手法の適用性を確認するため、4×4バンドル試験体を用いた液膜ドライアウトに関す る試験や ATWS を模擬した振動試験を対象として試験解析を実施した。

4×4 バンドル試験体は図 2.1.2 に示したものである。図 2.1.41 に COBRA-TF を用いた 4×4 バンドル試験体の解析体系の径方向ノーディングを示す。本解析ではロッド間のサブ チャンネルを個々に分割する一方で、1/4 の部分を模擬することとした。ここで、模擬しな かった他の 3/4 の部分との境界は壁として取り扱っており両者の間の流体移動を考慮して いない。図 2.1.42 に解析体系の軸方向ノーディングを示す。また、4×4 バンドル試験体の ロッド内構造は図に示すとおり絶縁体を構成する窒化ほう素、発熱体を構成するニッケル クロム1種(NCH-1)及び被覆管を構成するニッケル基合金(NAS600)の4層構造である が、ロッド内の熱伝導に関するノーディングとして、それぞれの層を径方向に3分割とし た。ここでは、それぞれのノードに材料に対応した物性値を設定するとともに、発熱体を 模擬するノードに出力を与えた。

4×4 バンドル限界出力試験を対象に COBRA-TF を用いた解析を実施した。4×4 バンド ル限界出力試験では、所定の圧力及び入口流入流量の各条件において 4×4 バンドル試験 体において出力を増加させて、ロッド表面温度が急上昇して飽和温度を 50 K 上回った場 合に液膜ドライアウトが発生したとして、その出力を限界出力としている。COBRA-TF の 解析でも同様に限界出力を求めた。本試験ではスペーサとしてフロータブありとなしのも のを設置した試験体を用いた試験データを取得しているが、解析ではフロータブなしのス ペーサを設置した試験のみを対象とした。図 2.1.44 の 4 MPa 及び 7 MPa の圧力条件にお ける限界出力の試験結果及び解析結果を示す。液膜ドライアウト及びリウェット判定には 液膜厚さに基づくモデルを用いた。試験及び解析において液膜ドライアウトとは中央のロ ッド (解析では図におけるロッド 4) で発生した。入口質量流量が高くなるにつれて限界 出力が高くなるが、液膜厚さに基づく判定モデルを用いた解析結果はおおむね試験結果と 一致した。

有効性評価の ATWS 事象で想定される液膜ドライアウト及びリウェットを繰り返すよ うな現象について COBRA-TF の妥当性を確認するために、4×4 バンドル試験の ATWS 模 擬出力変動試験を対象に解析を実施した。液膜ドライアウト及びリウェット判定には液膜 厚さに基づくモデルを用いた。対象とした試験ケースの試験条件は図に示したものと同じ である。図 2.1.45 に第7スペーサ及び第6スペーサ上流位置でのロッド温度について試験 結果と解析結果を示す。第7スペーサ上流でのロッド温度について、COBRA-TFの解析で は試験と同様に温度の振動挙動が見られた。コーナーロッドの温度については、液膜ドラ イアウト及びリウェットによる温度の上昇及び下降は見られるものの、その温度上昇幅は 試験結果より小さい結果となった。中央ロッドの温度については、出力上昇過程で液膜ド ライアウトは発生するものの、出力下降過程でのリウェットは見られずに次の出力上昇過 程に移行した。一方、第6スペーサ上流でのロッド温度については COBRA-TF を用いた解 析では、試験のような温度の振動挙動が見られなかった。本解析では、スペーサに下流に おける液滴付着効果やスペーサ上流における液滴飛散効果は考慮されていない。そのため、 試験で見られたスペーサの上流側での液膜ドライアウトの発生を模擬できなかったと考え る。また、単管試験での妥当性確認で示された通り、リウェット速度の予測には未だ大き な不確かさがあることも、試験結果と大きな差が生じた理由と考える。 以上より、COBRA-TF による液膜ドライアウト及びリウェットの評価手法は、試験における単純な挙動はおお むね正確に模擬できるものの、液膜ドライアウト及びリウェットを繰り返す振動挙動につ いては課題があることが示された。

図 2.1.41 COBRA-TF による 4×4 バンドル試験体のサブチャンネル分割 Fig. 2.1.41 Subchannel nodding on 4×4 bundle experimental apparatus using COBRA-TF

図 2.1.42 COBRA-TF による 4×4 バンドル試験体の軸方向セル分割

Fig. 2.1.42 Axial noding on 4×4 bundle experimental apparatus using COBRA-TF

図 2.1.43 4×4 バンドル試験におけるロッド内構造 Fig. 2.1.43 Structure inside rod in 4×4 bundle experiment

図 2.1.44 4×4 バンドル試験における限界出力試験の結果 Fig. 2.1.44 Results of critical powers in 4×4 bundle experiment

図 2.1.45 4×4 バンドル出力振動試験の結果 Fig. 2.1.45 Results of 4×4 bundle power oscillation experiment

(6) まとめ

BWR ATWS の最適評価手法による解析に必要な知見として、BWR ATWS で想定される パラメータ(圧力、出力、流量)が振動する条件を含む、液膜ドライアウト及びリウェッ トに関する実験を行った。また、取得した実験データに基づき、液膜ドライアウト及びリ ウェットに関する現象把握及び評価モデルの高度化を検討した。

高圧ループ試験による試験データベースの拡充として、圧力、熱出力及び流量を単独又 は複数同時に振動させた ATWS 模擬実験を行い、幅広いパラメータ範囲での実験データを 取得した。温度測定の結果から振動条件下において液膜ドライアウトとリウェットが繰り 返し生じることを確認し、その特徴をリウェット速度の形で整理・分析した。特に、圧力 変動条件においては、圧力の上昇速度がリウェット速度に影響すること、圧力の上昇過程 と低下過程ではリウェット挙動が異なることを示唆する結果が得られた。また、スペーサ の形状を変えた実験により、その形状が液膜ドライアウト・リウェットに与える影響につ いて確認したところ、旋回羽根型のスペーサは他の形状のスペーサと比べて限界出力及び 液滴伝達を有意に向上させる結果が得られた。

液膜ドライアウト及びリウェットの挙動を決める重要な個別現象の検討として、液膜先 端近傍に着目した熱伝達試験及び液膜挙動可視化試験を実施し、気相熱伝達における入口 効果や液滴・液塊衝突熱伝達における液滴濃度不均一分布の効果、濡れ・乾き共存領域に おける壁面熱伝達等についての知見を整理した。

また、スペーサによる燃料棒表面への液滴付着の促進効果について、乱流による効果と ランオフ効果に着目した各試験を実施し、スペーサタイプごとの液滴付着挙動に関する実 験データを拡充し、実験データの分析に基づき液滴付着の促進効果の評価モデルを検討し た。

54

上記の実験的知見を最適評価に反映するための準備として、液膜ドライアウトの既存モ デルと機構論的モデルを用いて高圧ループ試験の実験結果と比較を行い、それら評価モデ ルの予測性能等を確認した。また、3 流体場モデルに基づくサブチャンネル解析コード COBRA-TF による機構論的な評価手法を整備し、高圧ループ試験の模擬解析によりその妥 当性を確認した。

2.1.2 BWR RIA 条件下でのボイド挙動

BWR RIA において燃料集合体内でボイドが発生すれば、ボイド反応度フィードバック を通じて炉心出力を変動させ、RIA 時の燃料破損評価に用いる燃料エンタルピに多大な影響を与える。そのため、BWR RIA に対する最適評価を実施する上では、出力急昇時のボイ ド挙動に係る現象を把握し、それらを適切に評価できるモデルが必要となる。

過去のプロジェクト「事故時等の熱流動評価に係る実験的研究」¹¹においては、BWR RIA を想定して、ボイド挙動に関して実験データを取得し、最適評価を実施する上での課題の 抽出を行ってきた。この研究プロジェクトでは、実験データを拡充しつつ、実験データを 活用して BWR RIA 条件を想定してのボイド挙動に係る現象把握及びモデルの高度化を進 めた。

(1) 低圧時サブクール沸騰挙動解明試験

① はじめに

本検討は、令和 2 年度から令和 4 年度において電通大に委託して実施したものである 33,34,35

ボイド反応度フィードバックの評価では、流路断面内における平均ボイド率を正確に予 測することがきわめて重要である。特に、サブクール沸騰域においては、加熱壁における 蒸気生成と飽和温度未満のバルク液中における蒸気凝縮とが同一流路断面内で生じて、熱 的に強い非平衡状態となる。この影響は、相変化に伴う比体積の変化が大きい低圧条件で 特に顕著となるため、BWR RIA の低圧条件下におけるサブクール沸騰時のボイド率の評 価モデルが要求される予測性能を満たすかが課題となる。

そこで、過去のプロジェクト¹¹では、低圧サブクール沸騰の機構論的なモデル化に向け て、定常時の気泡挙動に関する可視化実験を実施し、沸騰核密度、気泡生成周期、離脱気 泡分布、離脱気泡速度等の基礎データを取得し、また、取得した基礎データに基づく相関 式を用いた気泡追跡法によるサブクール沸騰時のボイド率の解析により、気泡の合体によ る凝縮の緩和効果がボイド率の上昇に重要であることを明らかにした。さらに、これら知 見をプラントの安全解析に適用するためには、解明したメカニズムをボイド率急昇開始(以 下「OSV」という。)やサブクール沸騰時の壁面熱伝達等を機構論的にモデル化することが 必要との結論を得た。 本研究では、引き続き可視化実験を実施して OSV モデルの高度化に必要となるデータ を拡充し、実験データを用いてサブクール沸騰時の物理現象を適切に反映した機構論的な モデルの開発を行った。

② 可視化実験 33,34

過去のプロジェクト¹¹と同じく、水を作動流体とする低圧強制対流サブクール沸騰実験 装置を用いて、流量、熱流束、液サブクール度等の変化に伴うボイド率の変化を調べた。 ここで、試験流路は幅 14 mm、高さ 10 mm の矩形で、流動方向は鉛直上向きとし、幅 14 mm の流路壁の片方の幅 10 mm の領域に透明の導電性薄膜(ITO 膜)を成膜するとともに、 ここに直接通電することで流体の加熱を行った。

代表的な計測結果として、大気圧下で質量流束 $G = 300 \text{ kg/m}^2 \text{s}$ 、熱流束 $q_w = 1 \text{ MW/m}^2$ 、加熱長 $L_h = 170 \text{ mm}$ で一定とし、入口サブクール度 $\Delta T_{\text{sub,in}}$ を段階的に減少させたときのボ イド率の計測結果を図 2.1.46 に示す。ここで、図 2.1.46(a)はガンマ線密度計による流路内 平均ボイド率 a、図 2.1.46(b)は光学式ボイドプローブによる時間平均局所ボイド率 a_{loc} の 計測結果である。本図より、試験部におけるサブクール度 ΔT_{sub} が 20 K より大きい条件で は、aは無視し得るほど小さく、また a_{loc} は ΔT_{sub} の低下、すなわち液温の上昇とともに上 昇傾向ではあるものの、正の値が計測されるのは加熱壁の近傍のみであることが分かる。 一方、 ΔT_{sub} が 20 K よりも小さくなると、この傾向が大きく変化して、 ΔT_{sub} の低下に従っ て aが急増するとともに、 a_{loc} が正の値をとる領域が加熱壁から離れたバルク域に及んで いることが分かる。

強制対流サブクール沸騰において、サブクール度が十分に低下するとボイド率の急昇が 開始する現象は古くから知られており、OSV の名で呼ばれている。ボイド反応度フィード バックの評価におけるボイド率予測では、OSV 条件を満足しない領域では有意なボイドが 存在しないとしてボイドをゼロとし、OSV 条件を満足する領域では蒸発率と凝縮率のバラ ンスによりボイド率を計算することで、おおむね妥当な精度で流路断面内ボイド率を評価 できる。したがって、ボイド率の高精度予測を可能とするためには、強制対流サブクール 沸騰中で生じる物理現象を合理的に反映することで、OSV 条件を適切に予測可能な手法を 開発することが最も重要と言える。

56

出典)国立大学法人電気通信大学、「令和3年度原子力規制庁委託成果報告書 低圧時サブ クール沸騰挙動解明試験」、令和4年(以下「参考文献34」という。)

図 2.1.46 ガンマ線密度計及びボイドプローブによるボイド率の計測結果

 $(G = 300 \text{ kg/m}^2 \text{s}, q_w = 1 \text{ MW/m}^2)$

Fig. 2.1.46 Void fraction measured by gamma-ray densitometer and void probe

③ OSV メカニズムの検討³⁴

OSV を機構論的にモデル化するためには、OSV を生じるメカニズムを理解する必要が ある。OSV に関する機構論的なモデルとしては、加熱壁に付着している蒸気泡が壁面離脱 を開始すると OSV を生じると仮定するものが有名で、気泡離脱モデルと呼ばれている。こ の仮定を採用するに至った経緯に関する明瞭な記述は、公開文献には見当たらないが、お よそ次のように推測される。気泡が壁面に付着した状態では、ボイド率は壁面近傍でのみ 正の値をとるため、αは低い値に抑えられる。したがって、αの急増を生じるためには、気 泡が壁面を離脱して、バルク液中でもボイド率が正の値をとる必要があると考えたものと 推定される。しかし、この仮定は、十分に合理的とは思われない。すなわち、気泡が壁面 を離脱すると、サブクール液中に移動するため、蒸気凝縮が促進される。また、主流中に 移動することから、上昇流の場合、気泡の上昇速度も増加する。これは、いずれもボイド 率の低下要因となる。したがって、気泡の壁面離脱は、むしろボイド率の低下要因であり、 合理的な仮定とは思われない。

上記の考察に基づき、強制対流サブクール沸騰中の気泡挙動を詳細に観察することで、 OSV を生じるメカニズムについて検討する。適切なモデル化のためには、OSV 前にボイド 率が低く抑えられる理由と、OSV に至るとボイド率の急上昇を開始するメカニズムを解明 する必要がある。まず、可視化実験において OSV に至る前に観察される典型的な気泡挙動 を図 2.1.47 に示す。本図に示すように、発泡核で生成された小気泡は急速に体積を増加す るが、その後伝熱面を離脱して、サブクール液との熱交換により速やかに凝縮・消滅した。 本観察結果より、OSV に至る前にボイド率が低く抑えられる原因は、壁面で蒸気生成が活 発に行われても、全ての気泡は壁面離脱により速やかに凝縮・消滅するため、常に蒸発量 と凝縮量が釣り合った状態が維持されるためと理解できる。また、OSV に至る前から気泡 の伝熱面離脱は頻繁に生じること、また気泡が伝熱面を離脱するとボイド率の低下を招く ことが確認できたことから、少なくとも本実験体系における OSV 条件は、気泡離脱モデル により説明できないことも確認できる。

次に、ΔT_{sub}が十分に低下するとボイド率の急上昇を開始するメカニズムについて考察す るため、ΔT_{sub}の低下に伴う試験部内の気泡状況の変化を図 2.1.48 に示す。まず、OSV 前 の図 2.1.48(a)-(d)では、小気泡のみが存在している。これは、図 2.1.47 の観察結果より、 壁面で生成された気泡がその直後に凝縮・消滅するためと解釈できる。次に、OSV 条件に 近い図 2.1.48(e)では、気泡サイズの顕著な増加がみられ、さらにΔT_{sub}を減少させると、気 泡サイズが急速に増加することが分かる。ここで、蒸気凝縮は気泡の界面で生じ、また気 泡径の増加に伴って単位体積当たりの界面積(界面積濃度)は低下する。したがって、気 泡サイズが増加すれば、凝縮量は低下するから、OSV は、気泡サイズの増加に伴う凝縮量 の急速な低下により引き起こされた可能性がある。

上記に示す OSV メカニズムの妥当性を検証するため、可視化実験の結果より推定され る蒸発率と凝縮率を質量保存式に代入してボイド率を評価し、実験データと比較する。ま ず、均質流モデルを仮定して気液の速度を u、また気液の圧縮性を無視すると、定常状態 における蒸気相の質量保存式は次式で与えられる。

ここで、 ρ は密度、zは軸方向座標、 Γ_{VAP} は蒸発率、 Γ_{CON} は凝縮率、添え字のVは蒸気相を 表す。また、入口での平均速度を u_{in} とすれば、質量保存より次式が成立する。

ここで、添え字のLは液相を表す。上式より、uは α の関数となることがわかる。式(8)を式(7)に代入してuを消去するとともに、dzをdTに置き換えれば、

$$\frac{\rho_{\rm v}\rho_{\rm L}u_{\rm in}}{\alpha\rho_{\rm v}+(1-\alpha)\rho_{\rm L}}\frac{\mathrm{d}\alpha}{\mathrm{d}T}+\alpha\rho_{\rm v}\rho_{\rm L}u_{\rm in}\frac{\mathrm{d}}{\mathrm{d}T}\left[\frac{1}{\alpha\rho_{\rm v}+(1-\alpha)\rho_{\rm L}}\right]=\frac{GAc_{\rm pL}}{q_{\rm w}P_{\rm H}}\left[\Gamma_{\rm vAP}-\Gamma_{\rm CON}\right] \quad . \quad . \quad (9)$$

が得られる。ここで、Tは混合平均温度、Gは質量流束、Aは流路断面積、 c_p は比熱、 q_w は 熱流束、 P_H は伝熱面の濡れ縁長さである。 Γ_{VAP} と Γ_{CON} を与えれば、上式を積分すること で、 ΔT_{sub} の減少に伴う α の増加を評価できる。

まず、Γ_{CON}を評価するため、図 2.1.48 で視認できる個々の気泡について、凝縮率 γ_{CON}を 次式で計算する。

$$\gamma_{\rm CON} = \frac{\pi d_{\rm B}^2 h_{\rm CON} \Delta T_{\rm SUB}}{\Delta h_{\rm VAP}} \qquad \dots \qquad (10)$$

ここで、 $d_{\rm B}$ は気泡径、 $h_{\rm CON}$ は凝縮熱伝達率、 $\Delta h_{\rm VAP}$ は蒸発熱である。 $h_{\rm CON}$ の評価には広く受け入られている Ranz-Marshall の式 ³⁶を用いる。 $\gamma_{\rm CON}$ を用いれば、 $\Gamma_{\rm CON}$ は次式で計算できる。

$$\Gamma_{\rm CON} = \frac{\sum_{i=1}^{N} \gamma_{\rm CON,i}}{V} = \frac{1}{V} \sum_{i=1}^{N} \frac{\pi d_{\rm B,i}^2 h_{\rm CON,i} \Delta T_{\rm SUB}}{\Delta h_{\rm VAP}} \qquad (11)$$

ここで、Nは計測領域内に存在する気泡の総数である。 Γ_{CON} の評価結果を図 2.1.49(a)に青線で示す。本図より、 ΔT_{sub} の減少に伴って Γ_{CON} は徐々に増加するが、 ΔT_{sub} = 20K を超過 すると Γ_{CON} は急減することが分かる。図 2.1.48(e)と(f)の比較より類推されるように、これ は大気泡の生成による気液界面積の減少によるものである。

次に、 Γ_{VAP} の算出であるが、実験データから直接評価することは困難であるため、以下の方法により算出する。図 2.1.46(a)に示す α の計測結果より、 $\Delta T_{sub} > 20K$ の高サブクール度条件では、 α の増加が無視できる程度であることから、次式が成立すると考えられる。

$$\Gamma_{\rm VAP} \approx \Gamma_{\rm CON} \qquad \cdots \qquad \cdots \qquad \cdots \qquad (12)$$

また、OSV の前後で蒸気生成量は連続的に変化すると考えられることから、 $\Delta T_{sub} > 20K$ に おける Γ_{CON} の評価結果を多項式でフィッティングし、その多項式を $\Delta T_{sub} < 20K$ の領域に まで外挿することで Γ_{VAP} の値を推定した。推定結果は図 2.1.49(a)の赤線で示すとおりであ る。

上記のとおり評価した Γ_{VAP} と Γ_{CON} を式(9)に代入して得られる α の計算結果を図 2.1.49(b)に示す。本図より、 $\Delta T_{sub} < 20K$ の領域で α が急上昇する傾向をよく再現できる。 このことから、強制対流サブクール沸騰中で OSV を生じるメカニズムが大気泡生成時の 界面積の減少に伴う凝縮率の急低下と考えることの妥当性が示されたと考える。

3 ms

5 ms

(b) 伝熱面の側面からの観察結果

出典)国立大学法人電気通信大学、「令和2年度原子力規制庁委託成果報告書 低圧時サブ クール沸騰挙動解明試験」、令和3年(以下「参考文献33」という。)

図 2.1.47 OSV 前における典型的な気泡挙動

Fig. 2.1.47 Typical bubble behavior before OSV

図 2.1.48 サブクール度の低下に伴う気泡挙動変化の観察結果

Fig. 2.1.48 Observed changes in bubble behavior with decreasing subcooling

図 2.1.49 相変化率を用いたボイド率の計算結果と計測結果との比較

Fig. 2.1.49 Comparison of calculated void fraction using phase change rate with measurements

④ OSV モデルの開発³⁷

前節までの検討により、OSV を評価する上で、サブクール沸騰中での大気泡の形成条件 を正確に予測する必要があることが分かった。気液二相流では、低ボイド率条件における 流動様式は、多数の小気泡が存在する気泡流から、ボイド率が増加すると小気泡の合体に より大気泡が形成されて流動様式がスラグ流に遷移することが知られている。スラグ流へ の遷移時におけるボイド率は幾何学的な考察により 0.3 程度と評価されており、この値は 実験的に得られる遷移条件ともよく一致することが知られている。一方、OSV が生じる前 の強制対流サブクール沸騰では、気泡は加熱壁の近傍のみに存在する。

以上の知見を踏まえ、強制対流サブクール沸騰中では、 ΔT_{sub} の低下とともに加熱壁近く に形成される気泡層内のボイド率 α_{BL} が徐々に増加し、 α_{BL} が 0.3 程度に達すると、大局的 な気泡合体を生じて大気泡が生成されると考える。それにより凝縮率が低下し OSV を引 き起こすと仮定することで、OSV 条件を予測する機構論的なモデルを開発する。

まず、上述の議論に基づき OSV 条件を次式で与える。

 $\alpha_{\rm BL} = 0.3 \qquad \cdots \qquad \cdots \qquad \cdots \qquad \cdots \qquad (13)$

次に、上記条件を満足するときの ΔT_{sub} の値を考える。まず、OSV 点の上流では、式(12) が成立する。 Γ_{VAP} は、蒸気生成に消費される壁面熱流束を q_{VAP} とすれば、次式で表される。

$$\Gamma_{\rm VAP} = \frac{q_{\rm VAP} P_{\rm H}}{\Delta h_{\rm VAP} A} \qquad (14)$$

一方、Γ_{CON}の表式は、次式で表される。

$$\Gamma_{\rm CON} = \frac{C_{\rm I} \alpha_{\rm BL} h_{\rm CON} \Delta T_{\rm sub, BL} P_{\rm H}}{\Delta h_{\rm VAP} A} \qquad (15)$$

ここで、 C_1 は凝縮を生じる気液界面積に関する O(1)のオーダーのモデル定数である。式 (14)と式(15)を式(12)に代入して α_{BL} について解き、式(13)に代入すれば、OSV 条件におけ るサブクール度 ΔT_{sub} を次式で計算できる。

$$\frac{q_{\rm VAP}}{C_1 C_2 h_{\rm CON} \Delta T_{\rm sub}} = 0.3 \qquad \dots \qquad (16)$$

ここで、気泡層のサブクール度 $\Delta T_{sub,BL}$ がバルクのサブクール度の定数倍 $C_2 \Delta T_{sub}$ と等しい と仮定した。 C_2 は O(1)のモデル定数である。

強制対流沸騰の熱伝達率評価式として著名な Chen の式では、壁面熱流束 q_w を強制対流 の寄与分 q_{FC} と核沸騰の寄与分 q_{NB} の線形和として記述する。また、 q_{NB} として蒸気生成の 寄与分 q_{VAP} と気泡による撹乱効果(ポンプ効果)の寄与分 q_{PUMP} の線形和と考える。 q_{FC} と q_{NB} は Chen の方法により評価し、ポンプ効果の項は生成気泡と同程度の体積のサブクール 液が飽和温度まで昇温されるとして次式で与える。

$$q_{\rm VAP} = \frac{q_{\rm NB,Chen}}{1 + C_3 \rho^* \Delta \theta_{\rm SUB}} \qquad (17)$$

$$\Delta \theta_{\rm SUB} = -\frac{1}{2C_3\rho^*} + \sqrt{\left(\frac{1}{2C_3\rho^*}\right)^2 + \frac{h^* \Delta \theta_{\rm W}}{0.3C_1C_2C_3\rho^*}} \quad (18)$$

ここで、 $q_{\text{NB,Chen}}$ は Chen の式により計算される q_{NB} 、 C_3 はポンプ効果により昇温されるサブ クール液の体積に関する O(1)のモデル定数、 $\rho^* = \rho_L/\rho_V$ は気液の密度比、 $h^* = Sh_{\text{NB}}/h_{\text{CON}}$ は熱 伝達率比、 $\Delta\theta_W = c_{\text{pL}}\Delta T_W/\Delta h_{\text{VAP}}$ は無次元過熱度である。

 h_{CON} はRanz-Marshallの式³⁶を用いて計算する。この計算の中で必要な気泡径 d_B はLaplace 長さの定数倍、

$$d_B = C_4 \sqrt{\frac{\sigma}{g\Delta\rho}} \qquad \cdots \qquad \cdots \qquad \cdots \qquad (19)$$

で与えられると仮定する。 C_4 はO(1)のモデル定数、 $\Delta \rho = \rho_L - \rho_V$ である。

式(17)で計算される q_{VAP} と Ranz-Marshall の式で計算される h_{CON} を式(16)に代入すれば、 OSV を生じるときのサブクール度 $\Delta T_{sub,OSV}$ を計算でき、これが新たに開発した OSV の予測 モデルとなる ³⁷。なお、モデルには四つのモデル定数 C_1 , C_2 , C_3 , C_4 が含まれ、実験データ との比較等により調整可能である。調整しない場合は、最も基本的な値として $C_1 = C_2 = C_3$ = $C_4 = 1$ とする。

⑤ OSV モデルの検証^{37,38}

OSV の予測手法として、Stanton 数 $St = q_W/Gc_{pL}\Delta T_{SUB}$ と Peclet 数 $Pe = GDc_{pL}/k_L$ を用いた 次の Saha-Zuber による経験式が有名である。

$$St = \max\left[\frac{455}{Pe}, 0.0065\right] \qquad (20)$$

本研究で開発した機構論的 OSV モデルの検証として、作動流体を水、圧力 1-15MPa、流 路径 10-25 mm、熱流束 250-1000 kW/m²、質量流束 100-1900 kg/m²s の範囲で変化させ、モ デル定数の調整をしない本モデルの計算結果と Saha-Zuber の相関式による計算結果とを比 較した。結果を図 2.1.50 に示す。本モデルによる計算結果は、Saha-Zuber の相関式で予測 される OSV 条件の変化傾向を再現していることが確認できた。

また、OSV 条件における熱平衡クオリティの実験値と計算値の比較を図 2.1.51 に示す。 流路形状の影響を把握するため、比較対象には円管、二重円管、矩形管を用いた実験デー タを使用した。著名な相関式である Saha-Zuber の相関式と Levy の相関式による再現結果 を見ると、非円形流路で特に誤差が大きくなっており、全 232 データに対する平均絶対誤 差(MAE)は Saha-Zuber で 45.2%、Levy で 52.4%となっている。一方、調整なしでの開発 モデルの MAE は 47.8%であり、Saha-Zuber や Levy と比較して遜色のない結果となってい る。また、最も不確定要素が大きいモデル定数であるポンプ効果に関する*C*3を実験データ を用いて調整したところ、開発モデルの MAE は 21.6%となり、さらに特定の流路形状で 予測性能が劣化しない結果となっている ³⁸。

以上より、開発した OSV モデルは、沸騰時の物理現象を適切に反映できていると考えられ、また、既存の相関式と比較して強制対流サブクール沸騰中のボイド率をより精度良く 予測できる可能性が示された。

(a) St と Pe の関係
(b) OSV 時における ΔT_{SUB} の計算値の比較
出典) 国立大学法人電気通信大学、「令和4年度原子力規制庁委託成果報告書 低圧時サブ
クール沸騰挙動解明試験」、令和5年(以下「参考文献 35」という。)

図 2.1.50 開発した機構論的 OSV モデルと Saha-Zuber の経験式との比較 Fig. 2.1.50 Comparison of the developed mechanistic OSV model with Saha-Zuber model

図 2.1.51 OSV 点における熱平衡クオリティの実験値と計算値の比較

Fig. 2.1.51 Comparison of experimental/calculated thermal equilibrium quality at OSV point

⑥ まとめ

強制対流サブクール沸騰において OSV を生じるメカニズムを実験的に解明するととも に、ボイド率予測手法の高度化として、得られた知見を用いて機構論的な OSV 予測モデル を開発した。開発したモデルと既存の相関式との比較、公開の実験データベースの再現性 確認を通じて検証し、既存の OSV モデルよりも精度良くボイド率を予測できる可能性を 示した。 (2) COBRA-TF を用いた出力急昇試験の模擬解析

BWR の RIA 事象においては、核熱結合挙動として制御棒落下による出力急昇時の局所 的なボイドの発生、横方向への伝播、凝縮等が生じ、その結果としてボイド反応度フィー ドバックによる出力抑制が生じる。この予測においては、BWR の RIA 事象で想定される 低圧サブクール条件下でのボイド挙動を適切に評価することが重要となる。

燃料集合体のサブチャンネルスケールでボイド率を評価可能な COBRA-TF^{13,14} を用いて、 出力急昇時のボイド挙動に関する三つの試験の模擬解析を行い、その予測性能の確認を行 った。一つ目は出力急昇時の局所的なボイドの発生に着目した単ピン出力急昇ボイド試験 ³⁹、二つ目はバンドル体系の形状効果に着目した 2×2 バンドル出力急昇ボイド試験 ³⁹、三 つ目は燃料集合体内の局所的な出力急昇で生じたボイドの横方向伝播に着目した 5×5 バ ンドル出力急昇ボイド横方向伝播試験 ⁴⁰である。

単ピン出力急昇ボイド試験

JAEA が実施した単ピン体系での出力急昇ボイド試験の試験装置の概要を図 2.1.52 に示 す³⁹。試験体においてピンの内径は9行9列A型燃料集合体相当であり、ヒーターピンの 加熱部において RIA 時の局所的な出力急昇が模擬された。試験体には、高さ7点における ボイド率の他、流体温度、圧力及びヒーターピンの内外壁の温度の計測装置を備える。冷 温停止時の RIA における燃料集合体内の熱水力挙動を模擬する試験条件として、流入水流 速は自然循環及び 0.0 m/s から 0.5 m/s、流入水サブクール度を5Kから74Kであった。ま た、出力急昇時の最大出力は11.9 kW、23.9 kW 及び33.1 kW であった。図 2.1.53 に単ピ ン試験体を模擬した COBRA-TF の解析体系を示す。COBRA-TF では本試験体系を一次元 で模擬して、下部に入口流入境界、上部に圧力境界を設定するとともに、加熱部に試験条 件に応じた出力を加えた。

図 2.1.54 及び図 2.1.55 に COBRA-TF の試験解析例を示す。図 2.1.54 は入口サブクール 度が 54 K と大きい SN2f3s54 ケースにおけるボイド率挙動の試験結果と COBRA-TF 解析 結果の比較である。ヒーターピンに与えた出力の時系列挙動も併せて示す。図 2.1.54 では 加熱部下端から 85 mm 及び 285 mm における結果を示すが、両者において COBRA-TF の 解析では 0.1 近傍でボイド率が上昇を開始しており、試験結果よりも早い結果となってい る。この理由として、COBRA-TF のモデルではサブクール沸騰による OSV を壁面温度が 飽和温度に達した時と判定しているが、サブクール度が高い条件ではサブクール沸騰の開 始を早く評価するためと考えられる。一方、加熱部下端から 85 mm では COBRA-TF の解 析は試験でみられる 0.3 以降のボイド率の急激な上昇を再現できず、また、加熱部下端か ら 285 mm でも急上昇が遅れている。COBRA-TF では、サブクール沸騰時に壁面からの伝 熱量のうち蒸気生成に費やされる割合を評価するとともに、Hancox-Nicoll の式で評価した 壁面近傍の凝縮熱伝達を考慮している¹³。サブクール度が高い条件では、これらモデルの 不確かさが大きいと考えられる。図 2.1.55 に入口サブクール度が 5 K と小さい SN2f3s05 ケースにおけるボイド率挙動の試験結果と COBRA-TF 解析結果の比較を示す。サブクール 度が高い実験ケースと異なり、COBRA-TF の解析における OSV は試験よりもやや早いも ののおおむね試験結果と一致している。COBRA-TF の解析におけるボイド率上昇の度合い についても、試験結果よりもやや傾きが小さいが大きな差はない。以上より、COBRA-TF には、サブクール度が高い条件における出力急昇時のボイド挙動の予測に課題があること が示された。

出典) 独立行政法人日本原子力研究開発機構、「平成 19 年度燃料等安全高度化対策事業(高 精度熱水力安全評価技術調査) に関する報告書」、平成 20 年 ³⁹

図 2.1.52 出力急昇ボイド挙動に関する単ピン試験体

Fig. 2.1.52 Single-pin experimental apparatus on void behaviors at the power rise

図 2.1.53 COBRA-TF を用いた単ピン試験体の解析モデル

Fig. 2.1.53 Analytical model of single-pin experimental apparatus using COBRA-TF

加熱部下端から 285 mm

Fig. 2.1.54 Experimental results and COBRA-TF calculated results of void behaviors (SN2f3s54: inlet water velocity 0.3m/a, inlet water subcooling 54 K, heater pin max. power 23 kW)

図 2.1.55 ボイド挙動の試験結果及び COBRA-TF 解析結果(SN2f3s05:流入水流速 0.3 m/s、流入水サブクール度 5 K、ヒーターピン最大出力 23 kW)

Fig. 2.1.55 Experimental results and COBRA-TF calculated results of void behaviors (SN2f3s05: inlet water velocity 0.3m/a, inlet water subcooling 5 K, heater pin max. power 23 kW)

② 2×2 バンドル出力急昇ボイド試験

JAEA の 2 行 2 列バンドル出力急昇ボイド試験では、9 行 9 列 A 型燃料集合体及び 9 行 9 列 B 型燃料集合体を模擬したヒーターピンの外径及びピッチが異なる 2 種類の試験体を 用いて、局所的な出力急昇時のボイド挙動について実験データが取得された 39。試験体に は、ボイド率、流体温度、圧力及びヒーターピンの内外壁の温度の計測装置を備える。試 験条件としては、冷温停止時の RIA を模擬するため、試験体の種類の他、流入水流速は自 然循環及び 0.0 m/s から 0.5 m/s、流入水サブクール度は 5 K から 74 K であった。また、ヒ ーターピン 1 本あたりの出力急昇時の最大出力は 11.9 kW、23.9 kW 及び 33.1 kW であっ た。ロッドごとの出力分布は一様である。図 2.1.56 に試験体の横方向断面図及びそれに対 応した COBRA-TF の解析体系におけるチャンネル分割について示す。本節では 9 行 9 列 A 型燃料集合体の加熱等価直径相当を模擬した試験体を対象とする。試験において、ボイド 率はバンドル中央部(Center)、ヒーターピン間(Pin)及びヒーターピンと流路壁面の間 (Side)について計測し平均化した。COBRA-TF の解析体系では、ヒーターピン間及びヒ ーターピンと流路壁面の間をそれぞれ一つのチャンネルとして分割し、図 2.1.57 に示す軸 方向セル分割とした。

図 2.1.58 及び図 2.1.59 に COBRA-TF の試験解析例を示す。図 2.1.58 は入口サブクール 度が 54 K と大きい LW2f3s54 ケースでの加熱部下端から 50 mm 及び 250 mm におけるボイ ド率挙動の試験結果と COBRA-TF 解析結果の比較である。ヒーターピンに与えた出力の時 系列挙動も併せて示す。前述の単ピン試験の解析結果と同様な傾向であり、加熱部下端か ら 50 mm の COBRA-TF 解析では、試験よりもボイド率が上昇を開始する時刻が早いにも かかわらず、その後のボイド率の急上昇は再現できなかった。加熱部下端から 250 mm で は、Center ではボイド率の上昇を過大に評価する一方、Side では過小に評価した。ロッド ごとの出力分布は一様のため、試験におけるチャンネル毎のボイド率分布は横方向流れが 影響していると考えられる。解析において、チャンネルごとのボイド率分布を精度良く評 価するには、これらの影響を取り入れることが重要と考える。図 2.1.59 に入口サブクール 度が 5 K と小さい LW2f3s05 ケースにおけるボイド率挙動の試験結果と COBRA-TF 解析結 果の比較を示す。本ケースでも解析結果と試験結果の差は LW2f3s54 と同様であるが、ボ イド率の急上昇の過小評価の度合いやチャンネルごとのボイド率分布の差は LW2f3s54 よ りも小さい結果となった。

出典) 独立行政法人日本原子力研究開発機構、「平成 19 年度燃料等安全高度化対策事業(高 精度熱水力安全評価技術調査) に関する報告書」、平成 20 年 ³⁹

図 2.1.56 2×2 バンドル試験体及び COBRA-TF によるサブチャンネル分割 Fig. 2.1.56 2×2 bundle experimental apparatus and its subchannel nodding using COBRA-TF

図 2.1.57 COBRA-TF による 2×2 バンドル試験体の軸方向セル分割

Fig. 2.1.57 Axial noding on 2×2 bundle experimental apparatus using COBRA-TF

図 2.1.58 ボイド挙動の試験結果及び COBRA-TF 解析結果(LW2f3s54:流入水流速0.3 m/s、流入水サブクール度54K、ヒーターピン最大出力23kW)

Fig. 2.1.58 Experimental results and COBRA-TF calculated results of void behaviors (LW2f3s54: inlet water velocity 0.3m/a, inlet water subcooling 54 K, heater pin max. power 23

kW)

図 2.1.59 ボイド挙動の試験結果及び COBRA-TF 解析結果(LW2f3s05:流入水流速 0.3 m/s、流入水サブクール度 5 K、ヒーターピン最大出力 23 kW)

Fig. 2.1.59 Experimental results and COBRA-TF calculated results of void behaviors

(LW2f3s05: inlet water velocity 0.3m/a, inlet water subcooling 5 K, heater pin max. power 23 kW)

③ 5×5バンドル出力急昇ボイド横方向伝播試験の実験解析

図 2.1.60 に電中研で実施された 5 行 5 列バンドル出力急昇横方向ボイド挙動試験の試験 体の概要を示す⁴⁰。試験体は直接通電ヒーターロッド 9 本及び非加熱ロッド 16 本から構 成され、ヒーターロッドを急加熱することで、RIA 時の非均質な出力急昇を模擬して、そ のボイド挙動の実験データが取得された。図 2.1.60 には 9 本のヒーターロッドの出力比を 示す。試験体には、加熱部 0.45m のロッド間のサブチャンネル毎にボイド率を計測するた めのワイヤメッシュセンサ、ロッド温度及び流体温度を計測できる熱電対、差圧計等が備 わる。試験条件としては、冷温停止時の RIA を模擬するため、流入水流速は 0.3 m/s 及び 0.5 m/s、冷却水温度は 293 K、313 K 及び 333 K であった。試験体にスペーサを設置した試 験及びスペーサなしの試験が実施されたが、本解析ではスペーサなしの試験を対象とする。 図 2.1.61 に試験体の COBRA-TF の解析体系におけるチャンネル分割について示す。ここ では、一つのロッド間のサブチャンネルやロッドと壁とのサブチャンネルを個別に分割し た。なお、後述の試験結果と解析結果の比較ではボイド挙動の傾向を理解しやすいように、 図 2.1.61 に示すように加熱領域三つ、非加熱領域二つについてそれぞれ平均化した。

図 2.1.62 に COBRA-TF の試験解析例を示す。本解析では、流入水流速を 0.3 m/s、冷却 水温度を 313 K (サブクール度 60 K 程度)、最大出力 238 kW の No.2 ケースを対象とした。 図 2.1.62 にはヒーターピンに与えた出力の時系列挙動も併せて示すが、ここでは出力が最 大に達した時を 0 秒と定義した。局所的な出力急昇時の横方向ボイド挙動について、試験 結果と解析結果には大きな差があることが示された。前述の単ピンの試験等と同様にサブ クール度が高い条件では、解析において加熱チャンネルの OSV は試験よりも早いが、その 後のボイド率の急上昇は非常に小さい。これは前述のとおり COBRA-TF のサブクール沸騰 に関連するモデルの不確かさも一因と考えられるが、その結果としてのロッド表面温度上 昇の差も影響すると考えられる。試験では、解析よりもサブクール沸騰開始が遅れること により、液単相壁面熱伝達が続くことから壁面からの熱流束は低く、それに伴いロッド温 度はより上昇していると考えられる。その結果、サブクール沸騰開始した後はよりボイド 率が上昇すると考えられる。また、非加熱チャンネルにおいても、試験ではボイド率の上 昇がみられるが、解析ではボイド率はほとんど上昇しなかった。試験では、加熱チャンネ ルにおいてボイド率が短時間に急上昇するため、その結果として横流れが発生し非加熱チ ャンネルにもボイドが流入する。一方、解析では、加熱ロッドでボイドが緩やかに上昇し、 その間に凝縮するため、非加熱チャンネルでボイド率は上昇しなかったと考えられる。以 上より、RIA 時に想定される局所的な出力急昇に伴う横方向ボイド挙動を模擬するために は、サブクール沸騰の開始時刻やボイド率の上昇、それに伴う壁面熱伝達を適切に予測す ることが重要であると考えられる。

出典)一般財団法人電力中央研究所、「平成30年度原子力規制庁委託成果報告書事故時ボイド挙動解明試験、平成31年40

図 2.1.60 出力急昇時横方向ボイド挙動に関する 5×5 バンドル試験体 Fig. 2.1.60 5 x 5 bundle experimental apparatus on lateral void behaviors at the power rise

図 2.1.61 COBRA-TF による 5×5 バンドル試験体のサブチャンネル分割

Fig. 2.1.62 Experimental results and COBRA-TF calculated results of void behaviors (No.2)

(3) 実機 RIA 解析

事業者の自主的な取組として、デジタル安全保護系の共通原因故障を前提とした対策等 の検討が実施されている³。その中で、BWR 事業者は、RIA 時にスクラムが失敗する事象 に対して、最適評価コードによる予備評価結果を示している。従来許認可における制御棒 落下事故は、断熱ドップラかつボイドフィードバックを考慮しない解析としているが、最 適評価においては非断熱ドップラかつボイドフィードバックを考慮した解析である。ボイ ドフィードバックの考慮において、RIA 時のボイド挙動を適切に評価することが重要となる。

本研究では、スクラム失敗時の RIA の解析に最適評価を適用性に関する検討として、 TRACE/PARCS コードを用いてボイドフィードバックを考慮した解析を実施し、解析上の 課題等を整理した。TRACE/PARCS では、システム解析コード TRACE と 3 次元炉心動特 性解析コード PARCS を核熱結合した解析を行う。

① 解析条件

ABWR、9×9A 型燃料の平衡炉心を対象に、低温待機時の制御棒落下事故の解析を行った。制御棒1本が落下し、RPS(APRM 高)によるスクラムに失敗するが、反応度バランスにより出力が静定するシナリオとする。図 2.1.63 に示すように、TRACE においては燃料集合体 872 体を 81 チャンネルでモデル化し、PARCS においては燃料集合体ごとに径方向1ノードでモデル化した。核定数及び平衡炉心の計算は CASMO/SIMULATE により行った。また、落下制御棒価値を 1.0% Δk/k、制御棒落下速度を 70 cm/s とした。

TRACE で JAEA の出力急昇試験 ³⁹の模擬解析を行うと、実験結果よりボイド率の発生 を早めに評価することから、ボイド発生の時刻が試験結果と合うように OSV モデルの係 数調整した上で、実機の解析を行った。なお、RIA 解析においては燃料エンタルピが評価 パラメータとなるが、本検討においてはボイド挙動やプラントの熱流動挙動に注目するこ とから、エンタルピ評価は行っていない。

② 解析結果

図 2.1.64 に RIA 解析の結果を示す。事象発生から約 1.6 秒後に 1 \$ を超えた反応度が投入され炉心出力が急昇するが、燃料温度上昇による負の反応度が加わることで約 2 秒後に 出力ピークが抑えられ、その後、ボイド発生による負の反応度も加わり出力は静定した。 また、事象発生後 3~5 秒において、圧力スパイクが生じた。制御棒落下による出力急昇で 発生したボイドが燃料集合体の上部で凝縮して消失する際の水撃現象と考えられるが、計 算で生じた圧力スパイクが実現象を適切に予測できているか、また、それによる計算エラ ーの発生を回避できるかが課題である。

解析結果を分析したところ、上部プレナム部から炉心部への落水により圧力スパイクが 生じていることが分かった。そこで、その効果を緩和させるため、上部プレナムを模擬す る3次元コンポーネントの VESSEL の径方向ノード分割を詳細化したところ、上部プレナ ム内の横流れが生じ、図 2.1.64 に示すように圧力スパイクのピークを緩和することができ た。また、ノード分割の変更によって炉心出力への影響がないことを確認した。

VESSELのノード分割により圧力スパイクを緩和できるものの、実現象として生じ得る 圧力スパイクの適切な評価方法については引き続き検討が必要である。また、燃料エンタ ルピに対してボイド反応度フィードバック及び沸騰遷移の発生の影響は大きいため、ボイ ド率の不確かさの安全解析への反映方法、沸騰遷移の評価方法等についても今後の課題で ある。さらに、今回の解析では OSV モデルの係数を調整して解析を行ったが、2.1.2(1)で 開発した OSV モデルの適用検討をできることが望ましい。

2.1.3 LOCA 等における現象の把握及びモデルの高度化

冷却材喪失事故(LOCA)においては大量の原子炉冷却材が喪失されることで、炉内の状況が大きく変動して多様な現象が生じる。長年研究されてきた代表的な事故シーケンスであるが、近年、LOCA 試験において高燃焼度燃料で燃料ペレットの細片化、移動及び放出(以下「FFRD」という。)現象が観測され、その安全性について世界的に検討がなされている。また、LOCA の炉心再冠水時には複雑な熱流動挙動が見られ、現在でも新たな測定方法を用いての精度向上の取組が国際的になされており、さらに、新規制基準の下で導入された代替冷却水注入設備を想定した低速度の再冠水時の挙動については実験的知見がない。そのため、この研究プロジェクトでは、FFRD 及び炉心再冠水を対象に検討を行った。

(1) FFRD に関する検討⁴¹

① はじめに

炉内 LOCA 試験において、高燃焼度の燃料ペレットが細片化し、細片化した燃料が軸方 向に再配置して被覆管から放出される現象が観察されており、FFRD と呼ばれている^{42,43}。 LOCA の安全解析への影響として、燃料の再配置により線出力密度(LHGR)が局所的に増 加することによる PCT の増大、被覆管の膨れによる流路閉塞等が生じる可能性がある。

過去のプロジェクト¹⁰においては、被覆管の破損時にユーザーが指定した範囲のペレットが微細化し、被覆管の膨れに沿って再配置する簡易的なモデルを燃料挙動解析コード FRAPTRAN⁴⁴に組込み、熱流動解析コード TRACE¹²と結合して LOCA 時の FFRD の影響 を評価する手法を検討した。

本研究では、LOCA 時の PCT への FFRD の影響をより現実的に評価するために、FFRD を機構論的に評価するモデルを FRAPTRAN に実装して TRACE と結合した TRACE/FRAPTRAN-NRA コードを開発し、ハルデン LOCA 試験の模擬解析による性能評価を行った。TRACE と FRAPTRAN を結合することにより、LOCA 等におけるプラントの熱水力挙動及びより詳細な燃料棒の挙動を解析することが可能になった。また、開発したコードを用いて 3 ループ PWR プラントの大破断 LOCA 解析を行い、実機に本コードが適用できること、それにより今後 FFRD の影響評価が可能となったことを示す。

② TRACE/FRAPTRAN-NRA $\neg - ert$

a コード結合方法

TRACE/FRAPTRAN-NRA コードにおいては、TRACE v5.0 patch 4 と FRAPTRAN 1.5 を Parallel Virtual Machine (PVM) で結合し、両者の間で変数のやり取りをしながら各コード の解析を交互に行う。TRACE と FRAPTRAN との間でやり取りされる変数を図 2.1.65 に 示す。両コードで時間ステップと燃料のノード分割は同一とし、TRACE と FRAPTRAN は 各々で時間ステップを一つ進めた後に変数データの授受を行う。結合コードでは、TRACE と FRAPTRAN の間で、被覆管表面温度を互いに授受するが、これは TRACE で放射熱流束 を計算する際の被覆管表面温度と FRAPTRAN での被覆管表面温度の差が計算の進展につれて大きくならないように保証するためである。

TRACE においては、FRAPTRAN から渡された燃料被覆管の半径を用いて流路面積を変 更して燃料被覆管の膨れが炉心内の水の流動に与える影響を、渡された線出力密度(以下 「LHGR」という。)を用いて燃料の再配置の影響を反映し、また、渡された燃料被覆管の 表面温度を用いて流体と燃料との間の熱伝達計算を行う。FRAPTRAN においては、TRACE から渡された被覆管外部の流体の温度・圧力、熱伝達係数、輻射熱流束、被覆管表面温度、 燃料の熱出力を境界条件に燃料挙動解析を行う。

図 2.1.65 TRACE と FRAPTRAN の間でやり取りされる変数 Fig.2.1.65 Variables exchanged between TRACE and FRAPTRAN

b FFRD モデル

TRACE/FRAPTRAN-NRA においては、FFRD を被覆管変形、被覆管破損、ペレットの微細化再配置及び微細化ペレットの放出の四つの現象のモデル化により模擬する。

被覆管変形に関しては、変位量を一般化されたフックの法則及び Prandtl-Reuss の流れ則 で与える方法(解析モデル)と有限要素法(FEA)で計算する方法を選択可能とした。解 析モデルにおいては変位量の関数として FRACAS-I/BALON-2^{44,45,46}のモデルを用いる。ま た、FEA においては FRAPTRAN1.5 に実装されている弾性モデルと塑性モデルのセットと、 弾塑性モデル⁴⁷及び弾性クリープモデルとして Ashby-Verrall モデル⁴⁸のセットのいずれ かを選択可能である。

被覆管破損に関しては、被覆管変形として解析モデルを選択した場合には FRAPTRAN1.5に実装されている BALON2の応力、歪み制限を用いた破損判定がなされる。 これは温度に依存した応力、歪みの経験的な相関式である⁴⁴。一方、被覆管変形として FEA を選択した場合は、破損判定として、温度上昇とともに指数関数的に小さくなる応力制限 値⁴⁹、又は NUREG-630 に基づいた歪み制限値⁵⁰を選択できる。

ペレットの微細化再配置モデルは、参考文献⁵¹のモデルをベースに、ペレット放出を考 慮できるよう修正を行った。ベースとしたモデルにおいては局所燃焼度と温度から燃料の 微細化が生じるかの判定を行い、ギャップ幅が閾値より大きくなったセグメントにおいて 微細化されたペレット断片が下方に再配置されるとして燃料の分布が計算される。その結 果を用いて LHGR が再計算される。ペレット放出の効果は、入力で指定したペレット放出 割合を再配置燃料から差し引くことで考慮している。

放出燃料割合は入力データで設定し、被覆管破損が起きたときに入力データで設定した 割合のペレットを燃料棒から除外した上で微細化したペレット再配置後の LHGR を算出 する。また、放出モデルでは放出したペレット片について、炉内における挙動は考慮しな い。以下の解析においては、放出割合の値はデータフィッティング ⁵²に基づき設定してい る。

ハルデン LOCA 解析

PWR、BWR 等の商用炉で照射された高燃焼度燃料の LOCA 時の挙動を観察するために ハルデン LOCA 試験が実施されている。商用炉の燃料棒を直径 4 cm の圧力フラスコ内に 装荷し、隣接燃料棒からの熱を模擬するために燃料棒の周りを電気ヒータで囲んでいる。 圧力フラスコはブローダウン前の定常状態を実現するために冷却ループに接続されている。 LOCA 時のブローダウンはブローダウン弁を開くことにより実施する。燃料棒と冷却材に 関するデータは試験中測定されている。被覆管の状態とペレット断片化を詳細に観察する ために LOCA 試験後に PIE が実施される。

TRACE/FRAPTRAN-NRA コードの検証は、ハルデン LOCA 試験のうち FFRD 現象が顕 著に見られた IFA-650.4 試験及び IFA-650.9 試験を用いて実施した。TRACE/FRAPTRAN-NRA の初期値となる軸方向燃焼度分布のような燃焼度依存のパラメータは、定常の燃料挙 動解析コード FRAPCON3.5⁵³ を用いた照射計算を実施して求めている。 TRACE/FRAPTRAN-NRA の解析においては、試験装置の圧力フラスコ、弁のついた冷却材 配管、ブローダウン及び重水タンクを含んだシステムを模擬している。

図 2.1.66 に IFA-650.4 試験の測定値と計算結果との比較例を示す。被覆管変形として解 析モデル (FRACAS-I/BALON2)を用いると、周方向歪みの軸方向分布において局所的なピ ークを示し、弾塑性 FEA モデルの計算では膨れの挙動が実験結果に近いことが分かる。被 覆管温度、燃料棒圧力等についても計算結果と測定値との比較を行い、解析モデルよりも FEA の方が測定値との一致が良好であることを確認した。また、IFA-650.9 試験においても 比較を行ったが、その傾向は同様であった。

以上より TRACE/FRAPTRAN-NRA によりハルデン LOCA 試験の FFRD 挙動について解

析モデルよりも FEA の方が良好に模擬できることを示した。

図 2.1.66 IFA-650.4 試験の周方向歪みの軸方向分布の計算結果と測定値の比較 Fig. 2.1.66 Comparison of calculation and measurement for IFA-650.4 test

④ 3 ループ PWR の LOCA 解析

FFRD を考慮した LOCA 解析が実施可能であることを確認するために、 TRACE/FRAPTRAN-NRA コードを用いて3ループPWRのLOCA 解析を実施した。3ルー プPWRの解析モデルを図 2.1.67 に示す。原子炉容器を二つのVESSEL コンポーネントで 炉心とそれ以外とに分けてモデル化し、両者を PIPE コンポーネントで接続している。炉 心を表す VESSEL コンポーネントは直交座標系を用いて燃料集合体ごとにノード分割し、 炉心以外を表す VESSEL コンポーネントは円筒座標系でノード分割している。炉心は 157 体の燃料集合体から構成され、各燃料集合体の燃料棒をホットロッドと平均ロッドの2グ ループでモデル化するため、全部で 314 の FRAPTRAN プロセスが TRACE と結合される。 各ロッドの照射条件は、FRAPCON3.5 を用いて評価を行う。

上記の解析モデルを用いて、大破断 LOCA(低温側配管のギロチン破断)の解析を行った。試行した解析条件においては、燃料の破損が生じず FFRD が LOCA 解析に与える影響 は確認できなかったが、FRAPTRAN との結合しない計算との一致を確認するとともに、実機プラントを対象に解析可能なことが確認できた。

図 2.1.67 3 ループ PWR プラントの解析モデル Fig.2.1.67 Analytical model of 3-loop PWR plant

⑤ まとめ

LOCA 時の FFRD が安全解析に与える影響を評価するために、FFRD モデルを備えた TRACE/FRAPTRAN-NRA 結合コードを開発した。FFRD の適切な評価モデルを検討するた めに複数の評価モデルを選択可能としている。FFRD モデルの妥当性確認のために、 TRACE/FRAPTRAN-NRA を用いたハルデン試験の模擬解析を行い、計算モデル間でベンチ マークを行った結果、被覆管変形を FEA で評価するモデルで測定値に近い結果が得られる ことを確認した。また、本コードを用いて 3 ループ PWR を詳細にノード分割して LOCA 解析を実施し、実機 PWR 解析を実行できることを確認した。今後、FFRD モデルの妥当性 確認を継続して予測性能の評価、不確かさの定量化等を進めるとともに、実機 LOCA 解析 で FFRD が生じた場合の影響について確認する予定である。

(2) 再冠水に関する検討

事故時に炉心水位が低下して燃料棒が露出すると、燃料被覆管温度が上昇する。その後 の非常用炉心冷却系(以下「ECCS」という。)等による注水で高温化した燃料が再冠水す る過程を適切に評価することが、燃料被覆管の健全性評価において重要となる。再冠水過 程においては、燃料露出により高温化した燃料が冠水し急冷(クエンチ)する中で、燃料 集合体内において非常に複雑な熱水力挙動を示す。液滴の燃料棒への付着及び蒸発による 冷却、スペーサ等の構造物の影響等の再冠水の詳細については十分な知見があるとは言え ない。また、高圧及び低圧注水機能喪失事象における炉心損傷防止対策として代替注水が 準備されているが、低水頭のポンプにより注水される場合、事業者の解析結果では水位が 振動するとともに非常に低速度の条件で再冠水が生じるが、これまで実験的知見がなかっ た。一方、OECD/NEA は、再冠水モデルの高度化のために、最先端の測定装置を備えたペ ンシルベニア州立大学の RBHT 装置を用いた再冠水試験を行う RBHT プロジェクト ⁵⁴を 立ち上げた。規制庁は、RBHT プロジェクトに当初から参加して上述した非常に低速度条 件での再冠水試験を提案した。

本研究では、RBHT プロジェクトから非常に低速度の条件を含む RBHT 再冠水試験の実 験データを取得し、その挙動の分析を行った。また、再冠水過程に対する解析コードの予 測性能を確認するために、TRACE 及び COBRA-TF を用いて RBHT 再冠水試験の模擬解析 を実施した⁵⁵。また、TRACE の再冠水モデルが再冠水過程以外の評価に与える影響を確認 するために、ブローダウンを対象とした LOFT 試験の模擬解析を実施した。

① RBHT 再冠水試験 56

RBHT 試験装置の概要を以下に示す。PWR の 17×17 燃料集合体の一部を模擬した 7×7 ロッドバンドル試験体は、45本の加熱ロッド及びコーナーに位置する4本非加熱ロッドで 構成され、スペーサグリッドで束ねられている。加熱ロッドは中央ピークの軸方向出力分 布を持ち、加熱ロッドの出力は全て等しい。試験体の複数の高さと径方向位置におけるロ ッド表面、蒸気、ハウジング壁の温度が計測されている。

RBHT プロジェクトでは、参加機関に実験の条件及び測定値を提示した上でベンチマー ク解析を行うオープン試験と、実験条件だけ提示してベンチマーク解析を行うブラインド 試験の2種類のベンチマーク解析が実施された。表 2.1.9 にオープン試験の試験条件を示 す。再冠水速度等の実験パラメータの組合せ以外に、再冠水速度が振動するケース(O-7 試験)やステップ状に変化するケース(O-8 試験)、崩壊熱の減衰挙動を模擬した出力ケ ース(O-10 試験)が含まれる。オープン試験で提示された実験データは、ロッド表面温 度、集合体内蒸気温度、ハウジング壁温度、バンドル差圧、出口蒸気流量等である。

O-9 試験は、原子力規制庁の提案により実施された試験であり、高圧及び低圧注水機能 喪失事象を想定して再冠水速度は 0.5 cm/s、バンドル出力は 35 kW である。O-9 試験では 再冠水速度が非常に低いため、他のケースと比べて同じ高さにおけるクエンチは遅いもの の、他のケースよりもバンドル出力が低いため、ロッドの発熱部上端まで着実にクエンチ する結果となった。各ケースでバンドル差圧が再冠水過程を通して振動しており、バンド ル内水位が振動していた可能性を示唆した。

83

表 2.1.9	OECD/NEA RBHT	プロジェ	クトのオ	ープン	/ 試験の試験条件
---------	---------------	------	------	-----	-----------

Case Number (Test Number)	Reflood velocity (cm/s)	Inlet subcooling (K)	Upper plenum pressure (kPa)	Bundle power (kW)	Initial peak rod temperature (K)
O-1 (9021)	2.5	10	275.8	144	1000
O-2 (9026)	2.5	80	275.8	144	1000
O-3 (9015)	15	10	275.8	252	1144
O-4 (9014)	15	80	275.8	252	1144
O-5 (9005)	5.0	10	275.8	144	1000
O-6 (9027)	2.5	30	275.8	144	1000
O-7 (9012)	$\begin{array}{c} 2.5\\ (\pm 2.5 \text{ cm/s}\\ \text{oscillatory}) \end{array}$	10	275.8	144	1000
O-8 (9011)	8,5,3,1.2 (Variable- Stepped)	25	275.8	144	1000
O-9 (9043)	0.5	2.8	275.8	35	922
O-10 (9029)	2.54	47	275.8	222 (decay power simulation)	1000

Table 2.1.9 Experimental condition of open tests in OECD/NEA RBHT project

出典) B.R Lowery, M.K. Hanson, G. R. Garrett, D.J. Miller, T. Almudhhi, F.B. Cheung, S.M. Bajorek, K. Tien and C.L. Hoxie, "BENCHMARK DATA ON REFLOOD TRANSIENTS MEASURED USING THE NRC-PSU ROD BUNDLE HEAT TRANSFER (RBHT) TEST FACILITY", Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), 2022⁵⁶

② RBHT 試験の模擬解析 55

RBHT のオープン試験のベンチマーク解析を TRACE 及び COBRA-TF で実施した。図 2.1.68 に TRACE 及び COBRA-TF による RBHT 試験装置の解析モデルを示す。COBRA-TF のノード分割は TRACE と合わせて試験体を 1 次元で模擬し、燃料棒間の輻射やスペーサ リッドモデルは使用していない。試験では加熱部を露出してロッド温度を上昇させ所定の 温度に達した時に再冠水を開始しているため、解析においても試験と同様の手順を行った。 しかし、計算オプションの設定等により再冠水開始時のロッドや蒸気の軸方向温度分布に 有意な差が生じており、初期状態に不確かさのある解析となっている。

図 2.1.69 にロッド表面温度から評価したクエンチプロファイルに関する試験結果と解 析結果の比較を示す。ここで COBRA-TF の解析結果を "CTF4.0" として示し、それ以外の 解析結果は TRACE によるものである。TRACE の解析においては、"Base" として再冠水 関連のモデルを使用せず、"Sensitivity 1" として再冠水モデル(軸方向熱伝導、動的ファイ ンメッシュ機能等)を使用、"Sensitivity 2" としてこれに加えてグリッドスペーサモデルを 使用、"Sensitivity 3" としてこれらに加えて構造物間の輻射熱伝達モデルを使用した感度計 算を行ったところ、クエンチプロファイルに関しては、再冠水モデルにより試験結果の再 現性が大きく向上することが示された。しかし、O-8 試験においては、これらのモデルを 使用しても加熱部上端までクエンチしない等、試験結果と大きな差があることから、予測 精度向上のためには更なる検討が必要と考える。なお、非常に低い再冠水速度の O-9 試験 では、モデル間の解析結果の差異が小さく試験結果との一致が良好であった。

COBRA-TF に関しては、TRACE のような再冠水モデルを用いていないため、大半の試 験ケースにおいて、高さの低い位置において試験よりクエンチが早く、高い位置に進むつ れて試験よりクエンチが遅れる結果となった。この傾向は再冠水モデルをオフとした TRACE でも同様であったが、COBRA-TF の方が顕著であった。一方、非常に低い再冠水 速度の O-9 試験では、試験結果と解析結果とが比較的一致する結果であった。なお、試験 結果と同様に TRACE 及び COBRA-TF による解析結果でもバンドル差圧が再冠水過程を通 して振動した。

出典) J. Kaneko and M. Sekine, "SIMULATION ON THE OECD/NEA RBHT REFLOOD OPEN TEST BENCHMARK USING TRACE AND COBRA-TF", Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), 2022 (以下「参考文献 55」という。)

図 2.1.68 TRACE 及び COBRA-TF による RBHT 試験体の解析モデル Fig. 2.1.68 Analytical model of RBHT experimental apparatus using TRACE and COBRA-TF

図 2.1.69 クエンチプロファイルに関する試験結果と解析結果の比較

Fig. 2.1.69 Comparisons between experimental and calculated results of quench profiles

③ LOFT 試験の模擬解析による TRACE 再冠水モデルの影響確認

RBHT のオープン試験のベンチマーク解析を通じて、TRACE の再冠水モデルが有効であ

ることが分かった。このモデルは温度勾配に応じて動的に軸方向の熱伝導ノードを詳細化 するとともに、再冠水向けに相関式の切替えを行うモデルである。しかし、再冠水とは逆 に燃料上部からクエンチされるスプレイ冷却の TRACE 解析に再冠水モデルを用いると、 燃料下部からクエンチされる結果が得られており、このモデルの適用対象について注意す る必要がある。

大破断 LOCA では再冠水以外にブローダウン時にも燃料被覆管温度のピークが生じる。 ブローダウン時の PCT の上昇・下降のメカニズムは再冠水時とは異なっており、ブローダ ウン時の PCT 予測に再冠水モデルが与える影響を確認するため、加圧水型実験用原子炉 (LOFT)を用いた代表的な LOCA 実験である L2-5 実験⁵⁸の模擬解析を行った。L2-5 実験 は、低温側配管が両端破断する大破断 LOCA を模擬した総合効果試験であり、破断後に ECCS を起動させて炉心冷却されるシナリオである。

図 2.1.70 に再冠水モデルの有無による解析結果の比較を示す。約 20 秒までのブローダ ウンフェイズでは再冠水モデルをオンとした方が燃料温度を高く評価する傾向にあり、実 験に近い結果となった。今回確認した結果からは、ブローダウンフェイズも含め、TRACE による LOCA 解析においては再冠水モデルを用いるべきとの結論となるが、他の LOCA 試 験でも同様の分析を行い、再冠水モデルの予測性能についてさらに検証を進めたい。

Fig. 2.1.70 Fuel temperature in L2-5 test

2.1.4 総合効果試験による事故時のプラント挙動の把握

PWR の事故時の熱水力挙動を模擬する大型実験装置 LSTF 及び PKL による総合効果試験として、多重故障事故を対象に熱流動実験を実施した。総合効果試験においては、事故

時の PWR プラントのシステム挙動を把握するとともに、安全対策としての機器及び運転 員操作に対するプラント応答について実験的知見を得ることを目的としている。また、原 子炉システム解析コード RELAP5 を用いて LSTF 及び PKL で実施した蒸気発生器伝熱管 複数本破損(MSGTR)実験の模擬解析を行うことで MSGTR 事象に対する RELAP の予測 性能を確認し、地震 PRA のために実施した実機の MSGTR 解析の妥当性について確認を行 った。

過去のプロジェクト「事故時等の熱流動評価に係る実験的研究」¹¹ と同様に、本研究に おいては以下 2 点を考慮して実験対象とする事象選定を行った。

・ PRA において発生頻度は小さいが炉心損傷直結事象と評価される事象

・ 重大事故に至るおそれがある事故に対する安全対策の有効性に係る審査ガイドにおい て PWR の評価対象となる事故シーケンスグループに関連する事象

前者からは、過去のプロジェクト¹¹からの継続として、事業者が地震レベル 1PRA におい て炉心損傷直結事象と評価している MSGTR を対象とし、過去のプロジェクト¹¹よりも厳 しい条件設定を含む実験を実施した。また、後者からは、2 次冷却系からの除熱機能喪 失、ECCS 再循環機能喪失、ECCS 注水機能喪失を選定し、PWR プラントの緩和操作を考 慮した実験を実施することとした。

表 2.1.10 に本プロジェクトで実施した実験の一覧を示す。MSGTR の総合効果試験に関 しては、JAEA の LSTF だけでなく、OECD/NEA プロジェクトの PKL-4、及びその後継プ ロジェクトの ETHARINUS にて実験提案を行い、LSTF では実施できない実験条件での実 験データを取得した。

表 2.1.10 本研究で実施した総合効果試験

T 11 A 1 10	T ' . O' . 1	00			
	I act at intermol	attact toota	a a mere a di a sut	1 10 that a 10	accomple machaot
Table / LTU	I ISLOFINIEORAL	effect lesis	carried on	in ints r	esearch project
14010 2.1.10	List of mogiui		curred out	III UIIIO I	cocuren project

事象	内容		
MSGTR	・ SG 伝熱管の複数本同時破損を想定した試験		
	・ 主蒸気管破断(MSLB)との重畳の有無		
	・ ECCS・1 次系減圧・補助給水(AFW)の作動の有無		
	・ 複数ループでの MSGTR(PKL のみ)		
	LSTF : SB-SG-18、SB-SG-19、SB-SG-20、SB-SG-21 (4 ケース)		
	PKL-4: i6.1 Run1, Run2 (2 ケース)		
	ETHARINUS : J5.1 Run1, Run2 (2 ケース)		
	※過去のプロジェクト 11		
	・1 次系減圧・補助給水(AFW)は作動		
	・高圧注入系(HPI)の有無に着目		
	LSTF: SB-SG-16、SB-SG-17 (2ケース)		
2 次冷却系からの除熱機	・補助給水(AFW)の不作動を仮定した1次系フィードアン		
能喪失	ドブリード(F&B)を伴う給水喪失		
	LSTF: TR-LF-19 (1ケース)		
ECCS 再循環機能喪失	・ 大破断 LOCA		
	・ ECCS の起動及び停止を考慮		
	・代替再循環を模擬		
	LSTF: LB-CL-07、LB-CL-08、LB-CL-09(3 ケース)		
ECCS 注水機能喪失	・高圧注入系 (HPI) の不作動を仮定した 2 次系冷却を伴う中		
	小破断 LOCA		
	LSTF: SB-CL-51 (1ケース)		

(1) LSTF を用いた総合効果試験

図 2.1.71 に示す大型非定常ループ実験装置 LSTF は、参照プラントであるウェスチング ハウス社型の4ループ PWR を同一高さ、体積比 1/48、2ループで模擬しており、実機の定 格圧力から大気圧までの広範な圧力条件下で実験を実施することができる世界最大の総合 効果試験のための熱流動実験設備である。LSTF は 1985 年に実験を開始し、これまでに 200 回以上の実験を実施して多くの成果を挙げてきた。

実機に近い規模である LSTF で取得された実験データは、解析コードの実機への適用性 を確認する上で貴重なデータとなることから、知見が十分ではない多重故障事象を模擬し た総合効果試験を実施し、実験的知見の拡充を図った。

出典)国立研究開発法人日本原子力研究開発機構、「平成29年度原子力施設等防災対策等 委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、平成30年(以下「参考文献 59」という。)

図 2.1.71 大型実験装置 LSTF

Fig.2.1.71 Large scale test facility, LSTF

① 蒸気発生器伝熱管複数本破損実験

本項目は、平成 31 年度から令和 4 年度にかけて実施した JAEA への委託 ^{15,16,17,18} により 実施した。

地震レベル 1PRA において、MSGTR は炉心損傷に直結する事故シーケンスに分類され ており、炉心損傷を回避できるシナリオの特定は地震 PRA の高度化において有用である。 過去のプロジェクト¹¹で実施した LSTF による MSGTR 実験では、1 次系減圧及び 2 次系 冷却に成功した条件下で高圧注入系(以下「HPI」という。)の作動有無によるプラント応 答を確認し、いずれも炉心露出には至らない結果が得られており、対策設備の状況によっ て炉心損傷しないことを示唆する結果が得られていた。

MSGTR に関連した実験は少なく、回復操作等に対するプラント応答に関する知見が十 分ではないため、この研究においては、過去のプロジェクト¹¹と異なる条件として、MSLB との重畳の有無、ECCS・1 次系減圧・補助給水(以下「AFW」という。)の作動の有無を 変えた条件で MSGTR のシリーズ実験を実施し、各種条件下でのプラント状態及び回復操 作等に対するプラント応答について実験的知見の拡充を図った。

a 実験条件

過去のプロジェクト¹¹と同じく、図 2.1.72 に示す破断ユニットにより MSGTR として実 機の SG 伝熱管 6 本に相当するギロチン破断を模擬した。MSGTR シリーズ実験(SB-SG-16~SB-SG-21)では、MSLB との重畳、ECCS(HPI 及び蓄圧注入系(以下「ACC」とい う。))・AFW・1 次系減圧の作動の有無を変えた実験を行っており、それら実験条件を表 2.1.11 に示す。過去のプロジェクト¹¹で実施した SB-SG-16 と SB-SG-17 は、1 次系減圧及 び 2 次系への補助給水(AFW)の作動が成功するとの条件下において HPI の作動有無によ る 1 次系の減圧挙動に着目した実験であった。本プロジェクトにおいては、1 次系減圧、 AFW の作動の有無によるプラント挙動の違い(SB-SG-18 及び SB-SG-21)、MSLB が重畳 した場合のプラント応答(SB-SG-19 及び SB-SG-20)を見るための条件設定とした。

回復操作として、スクラム信号発信から所定の時間で健全ループ SG 逃し弁開放による 2 次側減圧操作、1 次系と破断ループの 2 次側圧力が均圧した場合に加圧器逃し弁の開放 による1 次系減圧操作を行った。ACC の作動圧力は 4.51 MPa であるが、SB-SG-16 以外の 実験では作動しない設定とした。試験体の破損防止のために、炉心出口温度が 623 K に到 達した場合に炉心冷却のための HPI を手動で作動し、両ループの低温側配管へと冷却材を 注入した。

MLSB との重畳ケースにおいては、MSGTR は起因事象ではなく MSLB により破断 SG の水位がゼロとなったときに MSGTR が生じるとした。これは 2 次系の伝熱管が露出して ヒートアップすることで MSGTR が生じることを想定したものである。MSLB として主蒸 気管 1 本の 12%の面積に相当する破断が生じるとした。

91

出典)参考文献 15 図 2.1.72 LSTF における SGTR の破断ユニット Fig. 2.1.72 Break unit of SGTR in LSTF

表 2.1.11 MSGIR ンリース美験の余件と結果	:の硪要
-----------------------------	------

Table 2.1.11 Summary of conditions and results of MSGTR series experiments

実験番号	MSLB (有無)	HPI 作動 (有無)※	ACC 作動 (有無)	AFW 作動 (有無)	1 次系減圧 (有無)	炉心露出 (有無)	温度成層 (有無)
SB-SG-16*	×	×	0	0	0	×	×
SB-SG-17*	×	0	×	0	0	×	0
SB-SG-18	×	×	×	×	0	0	×
SB-SG-19	0	0	×	0	×	×	0
SB-SG-20	0	×	×	×	×	0	×
SB-SG-21	×	×	×	0	×	×	×

*SB-SG-16と SB-SG-17 は過去のプロジェクト¹¹で実施した実験

※SI 信号による HPI の自動起動の有無を表す。炉心露出した SB-SG-18 及び SB-SG-20 は 設備の損傷防止のため HPI を手動で起動している。

出典)参考文献18

b 実験結果

本プロジェクトで実施した4ケース(SB-SG-18~SB-SG-21)及び過去のプロジェクト¹¹ で実施した2ケース(SB-SG-16及びSB-SG-17)の測定データを用いて、異なる条件の結
果を比較することで、回復操作等によるプラント応答の傾向を確認した。

MSLB が重畳しない条件でのプラント挙動の比較結果を図 2.1.73 及び図 2.1.74 に示す。 いずれのケースにおいても、健全ループ 2 次側減圧・AFW 注水に対して 1 次系の減圧に与 える影響が小さい結果となった。これは、2 次側減圧の開始時点において、MSGTR 破断に より 1 次系圧力が破断 SG の圧力を若干上回る状態で維持され、1 次系が破断ループとほ ぼ均圧化されたことで、健全ループの影響が小さくなったと考えられる。なお、健全 SG の 2 次側減圧操作により破断 SG の逃し弁の開閉が止まる結果となっており、放射性物質放 出量低減の観点で健全 SG の 2 次側減圧が有効な対策となり得ることが分かった。

MSGTRがMSLBと重畳する条件でのプラント挙動の比較結果を図 2.1.75 に示す。MSLB が重畳したケースでは、破断 SG の水位がゼロとなって MSGTR が発生する設定である。 そのため、MSGTR 発生時点において、MSLB により破断 SG2 次側は減圧され1次系との 圧力差が大きく、MSLB が重畳しないケースと比べて、MSGTR 発生後の1次系圧力が急 減する結果となった。そのため、健全ループ SG2 次側減圧と AFW 注水が1次系減圧へ与 える影響は、この実験データからは不明であるが、その効果に期待する必要がない状況と なっている。

また、回復操作の効果を示す指標として、表 2.1.11 に各ケースでの炉心露出の有無を示 した。炉心露出したケースは SB-SG-18, SB-SG-20 の 2 ケースであった。SB-SG-21 に注目 すれば、ECCS 及び 1 次系減圧が作動しなくても、AFW が作動すれば炉心露出が生じない 結果が得られている。今回の実験結果が実機に適用できるかについては検討が必要である が、地震 PRA において MSGTR で炉心損傷に至るかどうかの判定条件の検討に資する実験 的な知見が得られたと考える。

なお、MSLB においては ECCS 注入による低温側配管内の温度成層化の発生有無が問題 となり得るため、表 2.1.11 に各ケースでの低温側配管内の温度成層化の発生有無を示した。 温度成層化は MSLB の重畳の有無に依らず HPI が作動したケースでのみ観測されており、 MSLB が重畳しないケースでは温度成層化が生じるのは破断ループ側のみ、MSLB の重畳 したケースでは健全ループ側のみで生じており、温度成層化が生じるループが逆になる結 果となった。

93

図 2.1.74 SG2 次側水位 (SB-SG-18 と SB-SG-21 の比較)

(c)上部プレナム・炉心水位
 (d)炉心出口・燃料被覆管表面温度
 出典)参考文献 15、国立研究開発法人日本原子力研究開発機構、「令和2年度原子力
 施設等防災対策等委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、令和3年(以下「参考文献 16」という。)

図 2.1.75 SB-SG-18 と SB-SG-20の実験結果の比較 Fig.2.1.75 Comparison of results of SB-SG-18 and SB-SG-20

(a) SB-SG-17

(b) SB-SG-19

出典)参考文献 16、国立研究開発法人日本原子力研究開発機構、「平成 30 年度原子力 施設等防災対策等委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、平成 31 年(以下「参考文献 60」という。)

> 図 2.1.76 低温側配管流体温度と1次系ループ流量 Fig. 2.1.76 Cold leg fluid temperature and primary loop flow rate

c RELAP5 による実験解析

MSGTR に対する既存の解析コードの予測性能を確認するために、RELAP5 による MSGTR 実験の模擬解析を行った。JAEA は RELAP5 を用いた LSTF 実験の模擬解析の経験 があることから、今回の解析でも RELAP5 を用いた。SG 伝熱管用破断ユニットは、接続 配管や破断オリフィス等の形状を考慮してモデリングを行った。

SB-SG-18 における実験結果と解析結果との比較を図 2.1.77 に示す。その他の試験ケースも含めて、主要なパラメータにおいて RELAP5 は実験結果を良好に再現した。これまでに実施してきた LSTF の実験解析と比較して、再現度に大きな差がないことから、MSGTRに対してもその他事象と同程度の予測性能を有すると考えられる。

なお、RELAP5の方が実験と比べて1次系減圧後の圧力低下を大きく評価したこと、炉 心水位を過小評価したことから、加圧器逃し弁からの放出量を過大評価したと考えられる。 そのため、RELAP5のさらなる予測性能向上を図るためには、逃し弁開放による放出量評 価が課題と考える。

Fig. 2.1.77 Comparison of experimental and analytical results of SB-SG-18

② 2 次冷却系からの除熱機能喪失実験

本項目は、令和2年度に実施した JAEA への委託¹⁶により実施した。

PWR の炉心損傷防止対策の有効性評価事象のうち、2 次冷却系からの除熱機能喪失事象時の対策として、加圧器逃し弁の開放による1次系フィードアンドブリード(以下「F&B」という。)運転が行われる。事業者の有効性評価においては、対策が遅れた場合の影響を評価しており、条件によって炉心露出するとの解析結果が報告されている。

1 次系 F&B 運転に関しては、1992 年に LSTF で実施した TR-LF-07 実験において、HPI が作動し補助給水系が不作動とした条件下で 2 次系給水喪失時における 1 次系 F&B 運転 を行った。炉心露出しない結果となったことから、炉心冷却に対する 1 次系 F&B 運転の有 効性が確認されたといえるが、対策の遅れ等の影響を確認するための実験データが十分で はないことから、TR-LF-07 実験よりも厳しい条件とした給水喪失実験 TR-LF-19 を実施した。

a 実験条件

TR-LF-07 実験と同様に、TR-LF-19 実験においても時刻ゼロで両 SG の主給水停止し、スクラム信号が発信したとして事象を開始させた。

TR-LF-07 実験においては、SG2 次側初期水位を 5.4 m とし、SG 主給水停止後に 2 次側 水位が 3 m まで低下した時点で SI 信号を発信した。通常運転条件とは異なり、SI 信号発 信後 12 秒で加圧器のあるループの HPI を作動し、SI 信号から 30 分後に 1 次系 F&B とし て加圧器逃し弁を開放した。さらに、1 次系圧力が 10.7 MPa まで低下した時点で加圧器の ないループの HPI を作動し、4.51 MPa まで低下した時点で ACC を作動した。

今回実施した TR-LF-19 実験では、2 次側水位が喪失したタイミングで1 次系 F&B を開始し、また、1 次系圧力が 12.27 MPa まで低下したときに HPI が作動するとしており、TR-LF-07 実験と比較して1 次系 F&B と HPI の開始タイミングが遅い設定とした。さらに、 HPI の単一故障を仮定して流量を半分としており、炉心冷却の観点で TR-LF-07 実験より も厳しい条件としている。

b 実験結果

TR-LF-19の実験結果を図 2.1.78 に示す。事象開始後、給水が停止して加熱された SG の 逃し弁の周期的開閉により、SG2 次側圧力は約 8 MPa に維持されるとともに、SG2 次側水 位は振動を伴いつつ低下した。SG2 次側水位が約 3 m を下回ると、2 次系からの除熱能力 が低下することから、1 次系圧力は加圧器水位とともに徐々に上昇したが、約 15.8 MPa ま での上昇にとどまった。加圧器逃し弁を開放すると1 次系が減圧されると同時に高温側配 管と低温側配管に水位が形成された。HPI と ACC の作動により、加圧器や高温側配管の水 位は徐々に回復し、実験を終了した。TR-LF-07 と同様に、事象中に炉心露出が生じなかっ たことから、1 次系 F&B 運転が炉心冷却に有効であることが示された。

なお、図 2.1.78(d)に示すように、SG 伝熱管水位を喪失することでループ流量がほぼゼロとなり、また、蓄圧注入系流量の増加に伴い低温側配管水位が回復すると、低温側配管内の流体温度が頂部で高く底部で低くなる温度成層化が生じた。

98

図 2.1.78 TR-LF-19 実験の結果

③ スチームバインディング現象に係る実験

本項目は、令和3年度から令和4年度にかけて実施した国立研究開発法人日本原子力研 究開発機構への委託^{17,18}により実施した。

ECCS 再循環機能喪失シーケンスにおいて、炉心から SG 伝熱管へと流入した液滴が SG2 次側からの加熱により蒸発することで、SG 伝熱管での圧力損失が大きくなるスチームバインディング(以下「SB」という。)現象が発生し得る。SB 現象が生じると炉心水位が押し下げられるため、代替再循環による炉心注水を実施しても燃料が露出して燃料温度の過度な上昇を引き起こす可能性がある。

これまで大破断LOCAを模擬した先行実験でSB現象が生じることは確認されているが、

SB 現象に着目して系統的に調べた実験はない。そこで、本実験では大破断 LOCA における ECCS 再循環機能喪失を想定に入れながら、実験パラメータを変えて ECCS を停止させ、 注水を再開する単純な実験を行った。この実験では、SB 現象の評価手法の検討に資する実 験データを取得するために、SB 現象と密接に関連するパラメータである SG 出入口間差圧 とダウンカマ(以下「DC」という。)と炉心の水位差を測定した。

a 実験条件

ECCS 再循環機能喪失における ECCS 再循環切替失敗とその後の代替再循環の作動を簡 易的に模擬するため、低温側配管 33%水平破断によって大破断 LOCA を起こし、燃料被覆 管表面温度が約 50K 上昇することを確認した時点で、代替再循環を想定して ECCS 注水を 行い、全炉心のクエンチと炉心水位が所定の水位に到達したことを確認して実験を終了し た。SB 現象に影響を与える SG2 次側水位、SG2 次側圧力、炉心出力、及び ECCS 注水流 量をパラメータとし、事象中の SG 出入口間差圧と DC と炉心の水位差の測定を行った。 なお、SB 現象が生じさせるために、SG2 次側水位を約 12m、SG2 次側圧力を約 5 MPa に 維持して SG2 次側から伝熱管内を加熱させた。

炉心出力は 1 MW~3 MW の範囲で設定して事象中一定とした。炉心出力と代表的な 1 次系圧力(0.25 MPa)を基に高温側配管入口蒸気流速を換算すると、5~15 m/s となる。1 ループ当たりの ECCS 注水流量は 0.5 kg/s~2 kg/s の範囲で一定とした。炉心出力と ECCS 注水流量を変えて実験を行った。

b 実験結果

図 2.1.79 に異なる実験条件で測定した SG 出入口間差圧と DC と炉心の水位差の関係を 示す。SG 出入口間差圧と DC と炉心の水位差はほぼ比例関係にあり、また、高出力や高流 量で SG 出入口間差圧や DC と炉心の水位差が大きくなる傾向を示した。これらのパラメ ータの大小や変動は SB 現象に影響を受けると考えられることから、今後、実験データを 整理・分析し、SB 現象に関して考察を進める予定である。

100

出典)参考文献 17

図 2.1.79 SG 出入口間差圧と DC と炉心の水位差の関係

Fig. 2.1.79 Relation between SG inlet/outlet differential pressure and water level difference between DC and core

(2) PKL を用いた総合効果試験

図 2.1.80 に示すドイツ Framatome 社の PKL (Primärkreisläufe versuchsanlage) 装置は、電気出力 1300 MW 級のコンボイ型 4 ループ PWR (ただし、炉心上部構造等はウェスチング ハウス型 PWR)を模擬した実験装置である。同炉を同一高さ、体積 1/145 の 4 ループで構成される。圧力容器ダウンカマは、上部はアニュラス、下部は配管で模擬している。炉 心は 314 本の電熱棒の束からなり、軸方向に均一な出力分布を持っている。最大炉心出力 は 2.5 MW であり、体積スケールの PWR の公称炉心出力の 10%に相当する。

PKL 装置は、4 ループの組合せの自由度が高く、ほう素濃度の測定ができる等、LSTF に はない特徴を有している。そのため、LSTF による実験データを補完し、知見が十分ではな い多重故障事象の総合効果試験の実験データの拡充のため、OECD/NEA プロジェクトの PKL-4 (2016~2020) 及びその後継の ETHARINUS (2021~2024) に参画し、PKL 装置での 総合効果試験の実験データを取得してきた。

出典) K. Umminger, L. Dennhardt, S. Schollenberger and B. Schoen, "Integral Test Facility PKL: Experimental PWR Accident Investigation", Science and Technology of Nuclear Installations, Vol. 2012, 891056, 2012.

図 2.1.80 大型実験装置 PKL

Fig. 2.1.80 Large scale test facility, PKL

① MSGTR 実験

PKL 装置での MSGTR 実験では、複数ループで SG 伝熱管が破損する実験がなされた。 PKL-4 の i6 Run1 においては、4 ループのうち 3 ループで MSGTR の発生を模擬した。破断 サイズの内径は 3.7 mm であり、実機の SG 伝熱管 2 本の両端ギロチン破断に相当する。 ECCS の HPI の全故障を仮定し、複数ループの MSGTR に対する回復操作として、健全 SG の主蒸気逃がし弁による SG2 次側減圧、健全 SG 及び破損 SG の AFW 注入、加圧器逃が し弁 (PRZ-PORV)開放による 1 次系減圧を実施した。初期条件として、1 次系圧力 4.7 MPa、 SG2 次側圧力 4.3 MPa、炉心の冷却は二相自然循環とし、炉心出力は LSTF での実験を参考 に出力減衰曲線に基づき設定した。

図 2.1.81 に i6 Run1 の実験結果を示す。健全 SG2 次側の減圧と AFW の注入によって 1 次系圧力が若干低下しており、健全 SG による除熱が促進されたことを示している。また、 3 基ある破損 SG のうち 1 基への AFW 注入のみでは 1 次系が十分に減圧できず、加圧器逃し弁を開くことで 1 次系が減圧され、破損 SG2 次側もそれに追随して減圧された。また、 1 次系と 2 次系の圧力が等しくなった後、水位がゼロとなった破損 SG に AFW を注入する

ことで、1次系圧力はさらに低下し、また、炉心露出には至らなかった。この結果により、 3ループで MSGTR が発生した場合、AFW 注入と加圧器逃し弁開放による減圧が炉心冷却 に有効であることを確認できた。また、PKL 装置の MSGTR 実験でも ECCS 及び AFW を 不作動とすると、LSTF での実験と同様に炉心露出する結果が得られた。

また、RELAP5 を用いて PKL の i6 Run1 実験の模擬解析を実施した。図 2.1.81 に示すよ うに、RELAP5 解析が実験結果を全体的に良好に再現することを確認した。しかし、LSTF の MSGTR 解析同様に、加圧器逃し弁開放による一次系圧力の低下、及び主蒸気逃し弁開 放による健全 SG2 次側圧力の低下が実験結果と比べて過大評価となっており、健全 SG 水 位が過小評価となった。これらはいずれも放出量の過大評価しているためと考えられる。 以上より、LSTF 実験の模擬解析と同じく、逃し弁からの放出量評価に課題があることが分 かった。

(a) 1 次系圧力と SG2 次側圧力に対する実 (b) SG2 次側水位に対する実験及び解析結 験及び解析結果 果

出典) M. Sekine, J. Kaneko and T. Takeda, "RELAP5 CODE ANALYSES OF PKL-4 PROJECT TEST ON PWR MULTIPLE STEAM GENERATOR TUBE RUPTURE ACCIDENT WITH RECOVERY ACTIONS", Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28), Virtual Conference, 2021

図 2.1.81 i6 Run1 の実験結果及び解析結果の比較

Fig. 2.1.81 Comparison of experimental and analytical results of i6 Run1

② その他実験

OECD/NEA PKL-4 及び ETHARINUS では、MSGTR 実験以外にも多様な総合効果試験が 実施されており、それら実験データを入手したため、今後活用する予定である。また、ス ケーリングを考慮した他の熱水力実験装置との相互参照実験を行うことになり、JAEA を 通じて LSTF 実験のデータを提供して、PKL による相互参照実験が実現した。両実験の比 較を通じて、LSTF 実験で観察された主な熱水力現象が PKL 実験でも再現されることが確 認されるとともに、両実験の設定等の違いが与える影響について整理・分析がなされた。 (3) 3 ループ PWR プラントにおける MSGTR の予測解析

地震レベル 1PRA の高度化のために、3 ループ PWR プラントを対象に RELAP5 を用いた MSGTR 解析を実施した。過去のプロジェクト「詳細解析手法の導入に向けた熱流動・ 核特性安全解析手法の整備 (Phase-2)」¹⁰において、3 ループ PWR プラントを対象に RELAP5 で MSGTR 解析を行い、高圧注入系の不作動を仮定すると、健全 SG2 次側減圧による除熱 では 1 次系の減圧がなされないこと等を示したが、LSTF の SB-SG-21 実験でも同様の傾向 を確認できた。

また、この研究プロジェクトでも同様に、RELAP5 を用いて 3 ループ PWR プラントを 対象に MSLB 重畳を含む MSGTR 解析を行い、MSLB が重畳しない場合は F&B が炉心損 傷を回避するために有効な手段であること、MSLB が重畳した場合は低圧の注入系に接続 可能であることを示し、研究プロジェクト「規制への PRA の活用のための手法開発及び 適用に関する研究」⁶¹におけるレベル 1 地震 PRA の高度化の検討の支援を行った。LSTF の実験においても、MSLB が重畳しない場合に F&B が 1 次系減圧に有効であること、MSLB が重畳すると 1 次系が減圧されて直ちに SG2 次側圧力と均圧し漏えいが少なくなる場合 があることが示されており、実機解析の結果と共通した挙動を示すことを確認することが できた。

今回の研究において、LSTF 及び PKL により MSGTR を模擬した総合効果試験の実験デ ータを多数取得することができた。今後、解析コードを用いて実機プラントの MSGTR の 予測解析を行う場合には、これら実験データを活用してその妥当性を確認するとともに、 新たな対策が考案された際にはその有効性の確認等に活用したい。

2.1.5 プール内の温度成層化に係る現象把握及びモデルの高度化

SFP 及び BWR の圧力抑制室(以下「S/C」という。)のプール水温度の評価は、プール内の温度が一様と仮定した集中定数による評価が一般的である。しかし、SFP の冷却機能喪失、S/C への長期間に亘る蒸気流入等が生じると、低密度の高温流体と高密度の低温流体が分離して温度成層化が生じる。温度成層化が生じると水面の温度が高くなるため、水面蒸発が多くなり作業環境や圧力に影響を及ぼす。熱流動ロードマップ⁷の基盤 R&D 技術マップにおいて、BWR S/C の温度成層化は格納容器圧力への影響が大きく評価手法が成熟していないとして、研究実施の優先度は高とされている。

この研究プロジェクトにおいては、(1)小型実験装置を用いた温度成層化実験による機構 解明に着目した検討と、(2)BWR S/C の温度成層化の評価手法の検討を行った。両者が対象 とする物理現象は共通しており、互いの検討結果を補完し合うことが可能と考えるが、今 回は独立した検討にとどまっている。(1)については、令和2年度から令和5年度にかけて 実施している早稲田大との共同研究として実施した。 (1) 小型実験装置による温度成層化実験

廃止措置中プラントにおいて SFP の冷却機能を停止させた試験が実施され、プール水の 温度成層化が観測された⁶²。温度成層化はプール温度の上昇が継続する間は維持されたが、 崩壊熱と放熱とがバランスし温度上昇が収まった後に温度成層化が解消する結果となった。 小型実験装置においても同様の現象が観測されており、CFD コードを用いた再現解析がな されたが、おおよその傾向は模擬できるものの、測定結果と比べて高温層と低温層とが早 く混合され、有意に差の出る結果となった⁶³。温度成層化は良く知られた現象ではあるが、 流体解析による予測の信頼性には課題があると考えられる。

そこで、温度成層化の発生と消散についてメカニズムを明らかにし、流体解析による予 測性能を向上させることを目指して、上記の SFP での冷却停止試験及び小型実験装置によ る実験を参考に、小型実験装置を製作して実験を行った⁶⁴。

実験方法

図 2.1.82 に実験装置を示す。320 mmH×160 mmW×30 mmD のポリカーボネート製の矩形 容器に純水を入れ、容器内のヒーターロッドを直流安定化電源により加熱できる。ヒータ ーロッドの下側には非加熱部が設けられ、それより上方が加熱部となっている。図 2.1.82 の R1~R5 の高さの青丸の位置に K 型熱電対を設置して温度を測定し、加えて装置正面か ら日本アビオニクス社製サーモグラフィ InfRec R550Pro を用いてプール面の温度分布を計 測した。また、15 µm のナイロン粒子を用いた粒子画像流速測定 (PIV) によりプール内の 速度を計測した。実験は、矩形容器に室温の純水を入れてヒーターロッドの電源をつけて 加熱することで開始する。

図 2.1.82 小型実験装置の概要

Fig. 2.1.82 Schematic of small experimental apparatus

2 実験結果

図 2.1.83 に熱電対によるプール水温度の測定結果を示す。プールの底部位置(R5)以外 の高さではヒーター加熱により昇温し、底部位置では元の温度がほぼ保たれ、温度成層化 が生じた。また、ヒーターロッドの出力が 100 W のときは底部の温度は 50℃以上に昇温さ れず、温度成層化が長時間維持された。他方、125 W のときは上部の温度が沸点に到達す ると、底部の温度も急昇し、温度成層化の解消が見られた。両ケースともに高温層が沸点 に到達しており、ヒーター近傍において気液 2 相流となっていたものと推測されるが、高 出力ケースでは相変化量が大きく、それがプール内の混合を促進して温度成層化を解消さ せたと考えられる。

また、図 2.1.84 のように、PIV による流速と流線の測定を行い、温度成層化の解消前後 の流れの構造に関する実験データを取得した。温度成層化に関して CFD 等のベンチマー クに活用可能なデータであり、温度成層化の発生・消滅の機構解明に資するデータと考え る。

Fig. 2.1.83 Thermocouple measurements of pool water temperature

図 2.1.84 PIV による垂直断面の流速と流線 Fig. 2.1.84 Flow velocity and streamline of vertical section with PIV

③ 温度・流速同時計測センサーの開発

今回の実験では流れ場を PIV で測定するために透明な容器としたが、壁面からの放熱の 効果が温度成層化に影響を及ぼす可能性がある。しかし、放熱の効果を確認するためには 容器に保温材を取り付ける必要があり、PIV による流れ場の計測ができないため、光ファ イバーを用いた温度・流速同時計測センサーを開発し、空気流に対して実証試験を実施し て計測性能を確認した⁶⁵。このセンサーは透明ではない容器内の温度と流速を同時に計測 できる技術であり、放熱の効果を確認する実験等に活用可能である。

(2) BWR S/C における温度成層化の評価手法の検討⁶⁶

① はじめに

東京電力福島第一原子力発電所3号機(以下「1F3」という。)の事故において、格納容 器圧力の上昇速度が解析による予測よりも大きい結果が得られており、S/Cのプール水中 の温度成層化がその原因と考えられている⁶⁷。

この研究では、格納容器解析に広く使用されている GOTHIC コード⁶⁸を用いて 1F3 の事 故時を想定した格納容器挙動の解析を行った。S/C のノード分割、蒸気注入高さ等を変え た解析をすることにより、温度成層化の評価手法について検討した。

2 解析内容

温度成層化の評価方法について検討するために、GOTHIC コードにより 1F3 の事故時の 格納容器圧力挙動の評価を行った。GOTHIC 解析においては、1F3 の格納容器のドライウ ェル(D/W)、S/C、ベント管、真空破壊弁等をモデル化し、RCIC、SRV 等から S/C への蒸 気流入による圧力上昇過程と、ベント作動による減圧過程を解析した。

S/C の解析モデルを図 2.1.85 に示す。トーラスの周方向(x 方向)に 48 分割、径方向(y 方向)に 5 分割、高さ方向(z 方向)に 20 分割とした。比較のため、S/C を 1 ノード(集 中定数モデル)とした計算も行った。図 2.1.85 に示す S/C のノード分割は、Monticelloの 混合試験⁶⁹の模擬解析による検討及び EPRI が設定した条件⁷⁰を参考に決定した。

解析条件として、スクラム(時刻ゼロ)から蒸気が S/C へと流入し、圧力がベントの作動圧力(ゲージ圧 0.3 MPa と仮定)に到達した時点でベントが作動するとした。図 2.1.85 の右下図の A, B 又は C の断面位置に崩壊熱相当の蒸気が流入したと仮定し、また、蒸気泡は十分に小さくプール流入後に直ちに凝縮するとして、計算上は流入ノードに飽和水と 潜熱を加えている。

また、蒸気流入位置の影響を確認するために、流入位置をA,B,Cと変えた解析を行った。 SRVの蒸気流出口は高さA、RCICの蒸気流出口は高さCに相当する。

図 2.1.85 圧力抑制室の解析モデル

Fig. 2.1.85 Analytical model of suppression chamber

③ 解析結果

図 2.1.86 に D/W 圧力の解析結果と 1F3 の実測値との比較を示す。

ベントまでの圧力上昇過程を見ると、S/C を集中定数モデルで評価した結果(青線)は 圧力の計算値が実測値(〇印)を下回る結果となるが、図 2.1.85のノード分割とし蒸気流 入位置を C とした計算(赤線)では実測値と近い圧力上昇となった。S/C を詳細にノード 分割したことで、温度成層化が再現され格納容器圧力が適切に評価されたことを表している。なお、S/Cを詳細にノード分割した計算としても、蒸気の流入点を底部に近いA点及びB点とした場合は、S/Cを集中定数モデルで表した青線にほぼ重なる結果となった。これらの計算ではプール内で水が強く混合されて温度成層化が生じず、温度成層化の評価においては蒸気の流入高さが影響を与えることを示している。

また、圧力がベント作動圧力(ゲージ圧 0.3 MPa)に達すると、ベントにより圧力が減少 した。詳細計算では集中定数モデルと比べて急速な圧力減少が生じた。1F3 ではスクラム から約 21 時間後にスプレイによる減圧操作が行われた一方で、今回の解析ではスプレイ を考慮していない。そのため、実測値と比べて解析結果では圧力の低下傾向が小さくなっ たと考えられる。

図 2.1.86 ドライウェルの圧力挙動 Fig. 2.1.86 Drywell pressure behavior

④ まとめ

GOTHIC コードを用いた 1F3 の事故解析により、格納容器圧力挙動について検討を行った。S/C の詳細なモデル化により温度成層化が考慮可能であること、温度成層化により圧力上昇が早くなること、ベント後に急速な圧力減少が生じることを確認した。また、蒸気流入位置を変えた感度解析により、温度成層化の発生の有無が異なることが分かった。温度成層化が生じた解析ケースにおいて 1F3 の圧力上昇の測定データを良好に模擬できており、今回用いた解析モデルにより S/C の温度成層化を考慮した格納容器圧力の評価が可能

と考える。

なお、BWR プラントの重大事故等の解析においては、SRV からの蒸気流入による S/C 内の混合により温度成層化が発生しない等の前提に基づき S/C を集中定数モデルで評価し温度成層化を模擬しないことが多い。しかし、1F3 のように RCIC 及び SRV の動作状況等に依っては温度成層化が生じて圧力挙動に影響し得るため、温度成層化の発生状況が明確でない場合には、ここで示したような解析等を通じて適切に判断することが重要である。

2.2 原子炉システム解析コードの V&V

原子炉システム解析コードが事故時に発生する複雑な物理現象を現実的に予測できる ことを示すためには、V&Vにより解析コードの信頼性を確保することが必要である。一般 社団法人日本原子力学会によって策定されたガイドライン^{5,6}等において V&V のプロセス が定められている。一方、OECD/NEA で実施されたベンチマークにおいて、実機規模の事 象進展評価では未だコード間の差や不確かさが大きいことが知られている⁷¹。

過去のプロジェクト「国産システム解析コードの開発」¹¹において、原子炉システム解 析コード AMAGI を開発し、動作確認を行ってきた⁷²。本研究では、最適評価コードであ る原子炉システム解析コードの不確かさについて知見を取得するとともに、解析コードの V&V の実施手順についてノウハウを蓄積するために、原子炉システム解析コードを用い た実験解析を実施した。

2.2.1 妥当性確認に向けた試験の選定

過去のプロジェクト「国産システム解析コードの開発」¹¹において、BWR と PWR にお ける AOO、DBA 及び炉心損傷前の重大事故等を評価対象として、原子炉システム解析コ ード AMAGI の開発を行った。その開発の中で、解析機能への要求定義のため解析コード の系統的なモデル開発、妥当性確認等のための方法論として提唱される PIRT (Phenomena Identification Ranking Table)⁷³を作成し、表 2.2.1~表 2.2.4 に示すように評価対象事象で 想定される重要現象を抽出した。ただし、ここでは熱流動の重要現象に限定し、核特性等 については含めていない。

AMAGIには重要現象の評価モデルがおおむね実装されているが、V&Vにおいては、それら評価モデルに対して実験データとの比較による妥当性確認が必要であり、また、BEPUの実施基準。においては、個別効果試験の測定データと計算結果との比較から評価モデルのランダムな不確かさ及び推定誤差を定量化することを要求している。

そこで、TRACE で実施された妥当性確認⁷⁴を参考に、表 2.2.5 に示すように妥当性確認 用の個別効果試験の選定を行った。理想的には全ての重要現象を適切に評価できることが 望ましいが、実験データを入手可能な試験を調査し選定する中で、入手可能な実験データ とその実験範囲、実験と対象事象の関係、実験データが不足している事象等について知見

Table 2.2.1 Investigation on important phenomena in BWR during accidents (1/2)								
			設計基準事故			重大事故に至るお それがある事故		
物理領域	事象現象	運転時の異常な過渡変	制御棒落下事故	大破断 LOCA	小破断 LOCA	原子炉停止機能喪失	高圧低圧注水機能喪失	全交流電源喪失
		MCPR	燃料 エンタルピ	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR
	気液界面熱伝達	-	-	0	0	-	0	0
下部プレナ	2 相水位	-	-	0	0	-	0	-
ム・ダウン	温度成層化(流体混合)	0	-	0	0	\bigcirc	0	0
カマ	気液対向流制限	-	-	0	0	\bigcirc	\bigcirc	0
	壁面熱伝達	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
	バイパス流量割合	\bigcirc	-	0	\bigcirc	0	0	-
チャンネル	圧力損失	\bigcirc	-	0	0	\bigcirc	0	\bigcirc
バイパス	減速材直接発熱	-	\bigcirc	-	-	\bigcirc	-	-
	壁面熱伝達	-	-	0	0	-	0	0
	2 相流流動様式	\bigcirc	\bigcirc	-	-	\bigcirc	\bigcirc	-
	気液界面摩擦	\bigcirc	\bigcirc	\bigcirc	0	0	0	0
	気液界面熱伝達	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0
	壁面せん断力	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	0
火心(裁えも)	2 相水位	-	\bigcirc	\bigcirc	0	-	0	0
(熱水刀)	自然循環流	\bigcirc	-	\bigcirc	0	0	0	0
	気液対向流制限	-	\bigcirc	0	\bigcirc	0	0	0
	3 次元効果(多チャンネル効果)	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc	-	-
	液滴飛散、液滴付着(スペーサ効果)	\bigcirc	-	\bigcirc	0	\bigcirc	\bigcirc	0
	単相流・核/サブクール沸騰壁面熱伝達	\bigcirc	\bigcirc	\bigcirc	0	0	0	-
有い	沸騰遷移	0	\bigcirc	0	0	0	-	-
炉心 (熱伝達)	沸騰遷移後壁面熱伝達	-	\bigcirc	0	0	\bigcirc	\bigcirc	0
	最小安定膜沸騰温度・リウェット	-	0	0	0	0	0	0
	輻射熱伝達	_	-	0	0	-	0	-
	2 相水位	-	-	0	0	-	0	0
上部プレナ	圧力波伝播	0	0	-	-	0	-	-
Д	気液対向流制限	-	-	0	0	0	0	0
	スプレイ挙動	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc

表 2.2.1 事故時の BWR における重要現象の分析 (1/2)

	事象現象		設言	+基準事	軍故	重大事故に至るお それがある事故			
物理領域			制御棒落下事故	Y破断 LOCA	YDCA 小破船 LOCA	原子炉停止機能喪失	高圧低圧注水機能喪失	全交流電源喪失	
			燃料 エンタルピ	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR	
気 水 分 離 器	キャリーアンダー/キャリーオーバー 圧力損失 圧力波伝播	0	-	- 0 -	-	- 0 0	-		
蒸 気 乾 燥 器	液滴除去	0	-	0	0	0	0	-	
蒸気ドー	压力波伝播 時二劫にま	0	-	-	-	0	-	-	
4	空面然伍连 压力波伝播	-	-	-	0	-	0	0	
	臨界流(逃し安全弁等)	0	-	-	0	0	0	0	
主蒸気配	液滴の飛散	-	-	0	0	-	0	-	
官	圧力損失	0	-	0	0	0	0	-	
	逃し安全弁等の開閉・流量特性	\bigcirc	-	-	-	0	0	0	
	M比、N比	0	-	0	0	0	-	-	
	流配及び圧力損失(損失係数)	0	-	0	0	0	-	-	
ジェット	コーストダウン特性	0	-	0	-	0	-	-	
ポンプ	気液界面熱伝達	-	-	0	0	-	0	0	
	2 相流による性能劣化	-	-	\bigcirc	\bigcirc	-	-	-	
	2 阳水业 复游社员法制阻	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	
再 循 環 ポ ンプ・再循 環ループ	X版刈円加制限 コーストダウン性性	-	-			-	\cup	\cup	
	- ハークソン 何圧 キャビテーション		-	\bigcirc	\bigcirc		-	-	
	下力指失	_	_	\bigcirc	\bigcirc	-	_	_	
	フラッシング	-	-	$\overline{\bigcirc}$	$\overline{\bigcirc}$	-	\bigcirc	\bigcirc	
破断口等	臨界流	-	-	Õ	0	-	Õ	-	
	圧力損失	-	-	0	-	-	-	-	

 Table 2.2.2
 Investigation on important phenomena in BWR during accidents (2/2)

表 2.2.2 事故時の BWR における重要現象の分析(2/2)

	8 1 1				0		()		
		变化	設計基準事故				重大事故に至るお それのある事故		
物理領域	事象現象		制御棒飛出し事故	原子炉冷却材流量の喪失	大破断 LOCA	小破断 LOCA	全交流電源喪失	ECCS 注水機能喪失	原子炉停止機能喪失
		DNBR	燃料 エンタルピ	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR
	2 相水位	-	-	-	\bigcirc	0	\bigcirc	\bigcirc	-
	フラッシング	-	-	-	-	0	0	-	-
	気液界面熱伝達	-	-	-	0	-	0	0	-
下部プレ	温度成層化	0	-	0	0	-	0	0	0
ナム・ダウ ンカマ	破断口露出後の2相破断流	-	-	-	0	-	0	-	-
	気液対向流制限	-	-	-	0	\bigcirc	-	0	-
	液滴飛散、液滴付着	-	-	-	0	-	-	0	-
	ECCS バイパス	-	-	-	\bigcirc	0	-	0	-
	壁面熱伝達	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-
	2 相流流動様式	\bigcirc	0	0	-	-	-	-	\bigcirc
	気液界面摩擦、仮想質量力	\bigcirc	\bigcirc	0	\bigcirc	0	0	0	0
	気液界面熱伝達	\bigcirc	0	0	0	0	0	0	0
后心。	壁面せん断力	0	0	0	0	0	-	0	0
(執水力)	2 相水位	-	0	-	0	0	0	0	-
	自然循環流	\bigcirc	-	0	0	0	0	0	0
	気液対向流制限	-	-	-	0	\bigcirc	0	0	0
	3 次元効果	0	0	0	0	\bigcirc	0	0	0
	液滴飛散、液滴付着(スペーサ効果)	-	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
炉心 (熱伝達)	単相・核/サブクール沸騰壁面熱伝達	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	沸騰遷移	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc	\bigcirc
	沸騰遷移後壁面熱伝達	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	最小安定膜沸騰温度・リウェット	-	0	-	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	輻射熱伝達	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-
	2 相水位	-	-	-	-	0	-	0	-
ト部プレ	2 相対流	-	-	_	\bigcirc	\bigcirc	\bigcirc	\bigcirc	-

表 2.2.3 事故時の PWR における重要現象の分析 (1/2) Table 2.2.3 Investigation on important phenomena in PWR during accidents (1/2)

-

_

-

-

-

-

 \bigcirc

 \bigcirc

 \bigcirc

-

-

-

 \bigcirc

 \bigcirc

-

 \bigcirc

 \bigcirc

 \bigcirc

-

-

-

-

-

 \bigcirc

ナム・上部気液対向流制限

壁面熱伝達

液滴飛散、液滴付着

ヘッド

表 224	事故時のPWR	における	重要現象の分析	(2/2)
衣 2.2.4	争 取時の PWF	こちこう	里安呪豕の刀別	(Z/Z)

		51L	設計基準事故重大事故に おそれのあ 故						至る っる事
物理領域	事象現象		制御棒飛出し事故	原子炉冷却材流量の喪失	大破断 LOCA	小破断 LOCA	全交流電源喪失	ECCS 注水機能喪失	原子炉停止機能喪失
		DNBR	燃料 エンタルピ	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR	PCT/ECR
	スチームバインディング	-	-	-	0	-	0	-	-
世日秋川	U 子管での熱伝達(1 次側・2 次側)	-	-	-	$\left \begin{array}{c} O \\ O \end{array} \right $	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	\bigcirc	\bigcirc	-
蒸 気 発 生 器	気液对问流制限 1.26 (m)法制机性(2.41 F相)	-	-	-	0	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	0	\bigcirc	-
	Ⅰ	-	-	-	-		-	0	-
	2 び側水位	-	-	-	-		-	-	-
	土奈丸迎し井・女王井がらの加山	-	-	-	\bigcirc	0	\bigcirc	\bigcirc	-
加圧器	与····································	_	_	_	\cap	\cap	\bigcirc	\bigcirc	_
	ボイド率分布	-	-	-	\bigcirc	-	\bigcirc	\bigcirc	-
	液滴飛散、液滴付着	-	-	-	0	_	-	0	-
1 次系配	安全注入水との混合・凝縮	-	-	-	0	0	0	0	-
管	水平成層化及び流動様式	-	-	-	-	0	0	0	-
	蓄圧タンクの非凝縮性ガスの放出	-	-	-	0	-	0	0	-
	ループシール形成及び解除	-	-	-	-	0	0	0	-
	コーストダウン特性	0	-	0	0	0	0	0	0
1 次冷却	キャビテーション	-	-	-	0	-	0	-	-
材ポンプ	気液対向流制限	-	-	-	0	0	0	0	-
	軸シール部からのリーク水	-	-	-	-	-	0	0	-
	圧力波の伝播	0	-	-	-	-	-	-	0
主蒸気管	臨界流	0	-	-	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	$\left \begin{array}{c} 0 \\ 0 \end{array} \right $	0	0	0
	液滴飛散	-	-	-	$ $ \bigcirc	$ $ \bigcirc	-	\bigcirc	-
	上損	\bigcirc	-	-	\bigcirc	\bigcirc	-	\bigcirc	\bigcirc
	品が流	-	-	-	$ \bigcirc$		\cup	\cup	-
破断口		-	-	-	$ \bigcirc$	$ \bigcirc$	-	\bigcirc	-
	上刀狽矢	-	-	-	$ \bigcirc$		\bigcirc	\bigcirc	-
	気液界面烈伝達(フフッシング)	-	-	-	\cup	\bigcirc	\bigcirc	\bigcirc	-

Table 2.2.4Investigation on important phenomena in PWR during accidents (2/2)

表	2.2.5	妥当性確認の対象と	して選定	ミした試験
---	-------	-----------	------	-------

実験名	現象	領域	対象炉
NUPEC 管群ボイド試験/BFBT ^{76,77}	界面せん断力、壁面熱伝達	炉心・燃料	BWR、PWR
NUPEC 管群ボイド試験/PSBT ^{77,78}	界面せん断力、壁面熱伝達	炉心・燃料	BWR、PWR
GE 二相水位スウェル試験 ⁷⁹	2相水位、界面熱伝達	炉心・燃料	BWR,PWR
THTF 露出バンドル試験 ⁸⁰	2相水位、壁面熱伝達	炉心・燃料	BWR,PWR
RBHT 露出試験 ⁸¹	2相水位、壁面熱伝達	炉心・燃料	BWR,PWR
Christensen の高圧サブクールボ イド率実験 ⁸²	壁面熱伝達(サブクール沸 騰)	炉心・燃料	BWR、PWR
Zeitone らの低圧サブクール沸騰 実験 ⁸³	壁面熱伝達(サブクール沸 騰)、界面熱伝達	炉心・燃料	BWR、PWR
JAEA 反応度投入事象ボイド試験 39	壁面熱伝達(サブクール沸 騰)	炉心・燃料	BWR、PWR
NUPEC 管群二相圧損試験 ⁷⁷	壁面せん断力	炉心・燃料	BWR、PWR
Wilson 気泡上昇試験 ⁸⁴	界面せん断力	炉心・燃料	BWR、PWR
NUPEC 沸騰遷移/PSBT ^{77,78}	沸騰遷移(DNB)	炉心・燃料	BWR、PWR
NUPEC 沸騰遷移/BFBT ^{76,77}	沸騰遷移(液膜ドライアウト)	炉心・燃料	BWR、PWR
JAEA 単管ポスト BT 試験 ⁸⁵	沸騰遷移(液膜ドライアウ ト)、壁面熱伝達(噴霧流)、 リウェット	炉心・燃料	BWR、PWR
JAEA バンドルポスト BT 試験 ⁸⁵	沸騰遷移(液膜ドライアウト)、壁面熱伝達(噴霧流)、 リウェット	炉心・燃料	BWR、PWR
THTF ブローダウン時熱伝達試験	壁面熱伝達 (ブローダウン)	炉心・燃料	BWR、PWR
FLECHT-SEASET 再冠水試驗 ⁸⁷	壁面熱伝達 (再冠水)、クエ ンチ	炉心・燃料	BWR、PWR
RBHT 再冠水実験 ⁸⁸	壁面熱伝達 (再冠水)、クエ ンチ	炉心・燃料	BWR、PWR
RBHT 蒸気/液滴冷却試験 ^{89,90}	壁面熱伝達(噴霧流、蒸気単 相)	炉心・燃料	BWR、PWR
GOTA 輻射試験 91	輻射熱伝達	炉心・燃料	BWR、PWR
Bankoffの多孔板 CCFL 実験 ⁹²	気液対向流	炉心・燃料、上 部プレナム	BWR、PWR
Marviken 臨界流実験 93	臨界流	破断口	BWR、PWR
FLECHT-SESET 蒸気発生器試験 94	1次系と2次系との熱伝達	蒸気発生器	PWR

Table 2.2.5 Experiments targeted in validation

2.2.2 個別効果試験の解析

AMAGIの妥当性確認として表 2.2.5 に示す個別効果試験の解析を行った。また、同一条件にて TRACE の解析を行い、実験データとコード間の計算結果の差異等を整理しているが、試験によっては計算が正常終了しない、TRACE や実験データとの乖離が大きい、計算

結果が振動する等の問題が生じている。そのため、AMAGIのコード検証作業を並行して 実施しており、AMAGIの妥当性確認として結果を取りまとめることは今後の課題である。 この節では、個別効果試験の解析をする中で見出した知見として、ポンピング因子の影響 について示す。

(1) ポンピング因子

AMAGI は TRACE の評価モデル¹²を参考として開発してきたが、界面せん断モデル等 においては最新知見を取り入れたモデルを採用し、最新モデルの性能評価を並行して実施 している。サブクール沸騰モデルにおいては、TRACE 及び AMAGI ではサブクール沸騰に よる蒸気発生量*Γ_{w,sub}を*次式のとおり Lahey の式⁷²等により評価する。

$$f_{sub} = \frac{h_l - h_{ld}}{h_{l,sat} - h_{ld}} \approx \frac{T_l - T_{ld}}{T_{l,sat} - T_{ld}} \qquad (22)$$

ここで、 $q_{wl,b}$ はサブクール沸騰時に壁面から受ける熱量であり、 f_{sub} はその中で蒸気発生 に費やす割合を示す。 h_l 、 $h_{l,sat}$ 、 $h_{g,sat}$ 、 T_l 、 $T_{l,sat}$ は、それぞれ液相エンタルピ、飽和液相 エンタルピ、飽和蒸気エンタルピ、液相温度、飽和液相温度である。また、 h_{ld} 及び T_{ld} はサ ブクール沸騰の開始点となる OSV 時の液相のエンタルピ及び流体温度であり、Saha-Zuber の式で評価される¹²。 ε はポンピング因子であり、壁面から離脱した気泡が温度境界層から 離れサブクール水に接したときの凝縮効果を示す。Lahey の式において、これはサブクー ル水に輸送される熱量と蒸気発生に費やされる熱量の比率と仮定され、次式のとおり表さ れる。

$$\varepsilon = \frac{\rho_l (h_f - h_l)}{\rho_g h_{fg}} \qquad \dots \qquad (23)$$

TRACE ではポンピング因子が考慮されていない一方で、AMAGI ではデフォルトとして ポンピング因子を考慮している。以下の節では、ポンピング因子の影響が顕在化する個別 効果試験として、4つのボイド試験の解析の結果を示す。

(2) PSBT 定常ボイド率実験

1987 年から 1995 年にかけて NUPEC により、PWR 燃料集合体内気液二相流を対象にサ ブチャンネル体系及び 5×5 バンドル体系の試験体を用いて幅広い実験条件の定常ボイド 率が測定された ⁷⁷。ここで取得された実験データの一部は OECD/NRC が実施したベンチ マーク活動を通してデータバンクより提供されている ⁷⁷。PWR 燃料集合体の運転時から事 故時までのボイド挙動を想定した試験であり、主に界面せん断力(気泡流等)及び壁面熱 伝達(液単相やサブクール沸騰、核沸騰等)の影響を強く受けることから、それら現象に 対する妥当性確認となる。 図 2.2.1 に本実験の試験体及びその解析モデルを示す。実験では断面形状が異なる S1 から S3 の試験体を用いており、それぞれ中央サブチャンネル、非加熱ロッド近傍、サイドサブチャンネルを模擬している。実験では試験体下部から特定のサブクール度で流入させた冷却水は一様な軸方向出力分布に従って加熱されて沸騰し、試験上部において X 線 CT により断面内平均ボイド率が計測される。

解析においては試験体を1次元の熱水力コンポーネント(Hyd1D)で模擬し、その下部 に流入境界条件(Fill)を接続して実験ごとの入口質量流束及び入口流体温度を設定し、 また、上部に圧力境界条件(Break)を接続して実験ごとの圧力条件を設定した。模擬燃 料棒等の構造物を熱伝導コンポーネントで模擬して、各実験における出力及び加熱面積を 設定した。

気泡流からスラグ・チャーン流領域の気液界面せん断力について、TRACE 及び AMAGI では、断面平均の界面抗力係数や気液相対速度をボイド率及び流速の流路内分布を表す分 布定数 C_0 やドリフト速度 V_{gj} を導入して定式化するドリフトフラックスモデルを用いて評 価している。この評価方法は既往研究において十分な実績があるが、一方で近年上記の定 式化で省略された断面平均におけるボイド率のばらつき C_{α} を考慮したモデルが提案され、 流動様式や幾何形状(単管・バンドル)毎に様々な C_{α} 、 C_0 及び V_{gj} の構成式が開発されてい る。本解析では、AMAGI(デフォルト)として TRACE 同様に従来のドリフトフラックス モデルに基づく評価を行うとともに、上記 C_{α} を考慮したモデルによる評価を行った。

図 2.2.2 に PSBT サブチャンネル定常ボイド率実験における実験結果及び解析結果の比較を示す。縦軸は AMAGI 及び TRACE の解析結果、横軸は実験結果である。ここで、TRACE 及び AMAGI (デフォルト)では、 C_0 に Ishii の式及び V_{gj} に Kataoka-Ishii の式等の構成式セットを使用している。AMAGI (Brooks らの式等)では、 C_{α} に単管体系を対象とする Brooks らの式、 C_0 に Ishii の式及び V_{gj} に Hibiki-Ishii の式等を用いている。

TRACE の解析結果は特に低ボイド率の実験結果に対して差が大きく、そのばらつきも 大きい。これは、TRACE では AMAGI と異なりサブクール沸騰モデルのポンピング因子を 考慮していないためであると考えられる。一方、AMAGI (デフォルト)と AMAGI (Brooks らの式等)では、解析結果について実験結果との統計的な差やばらつきに大きな違いはな かった。

図 2.2.3 に PSBT 定常ボイド率実験におけるバンドル体系の試験体を示す。実験では軸 方向一様出力分布とした B5、軸方向コサイン出力分布とした B6、中央ロッドを非加熱ロ ッドとした B7 の試験体を用いている。また、実験では試験体下部から特定のサブクール 度で流入させた冷却水は軸報告一様出力分布に従って加熱され沸騰し、三つの高さの中央 4 サブチャンネル内の平均ボイド率が計測される。解析体系は前述のサブチャンネル実験 の解析と同様であり、1 次元の熱水力コンポーネント(Hyd1D)の下部及び上部に流入境 界条件(Fill)及び圧力境界条件(Break)を接続して実験毎の条件を設定した。

図 2.2.4 に PSBT バンドル定常ボイド率実験の中部および上部で計測されたボイド率に

ついて実験結果及び解析結果の比較を示す。縦軸は AMAGI 及び TRACE の解析結果、横 軸は実験結果である。ここで、TRACE 及び AMAGI (デフォルト)では、気泡流からスラ グ・チャーン流領域の気液界面せん断力モデルとして用いた構成式は前述の PSBT サブチ ャンネル定常ボイド率実験の解析と同じである。AMAGI (尾崎らの式等)では、 C_{α} にバン ドル体系を対象とする尾崎らの式、 C_0 に尾崎らの式及び V_{gj} に Hibiki らの式を用いた。加熱 部下端からの距離が短い中部計測位置では、特に低ボイド率となる実験ケースについて TRACE と AMAGI 両方の解析結果は実験結果に対して差が大きく、そのばらつきも大き い。TRACE 及び AMAGI で用いられる界面せん断力モデルはサブクール沸騰条件下におい てその気泡分布を考慮しているが、その構成式の予測性能に改良の余地があることがわか る。

バンドル実験においては、AMAGIと TRACE の差異は小さく、ポンピング因子の有無の 影響が小さい結果となった。ポンピング因子を考慮しない場合、低い圧力条件のサブクー ル沸騰下でボイド率を過大に評価する傾向にあるが、サブチャンネル体系はバンドル体系 と比べて加熱長さが短いことから、その差が顕著に表れたと考えられる。

PSBT 定常ボイド率実験の模擬解析を通して、AMAGI 及び TRACE ともに全体的に試験 結果を良く再現したが、低ボイド率領域でばらつきが大きい傾向にあり、特に TRACE に 関してはサブチャンネル実験で測定値との差異が大きい結果となった。これは TRACE で ポンピング因子が考慮されていないためである。また、AMAGI に導入した界面せん断力 モデルの改良モデルの結果は既存モデルと差異は小さく、その影響は小さいことが分かっ た。

図 2.2.1 PSBT サブチャンネル定常ボイド率試験体 ⁷⁸及び解析体系 Fig. 2.2.1 PSBT subchannel steady-state void fraction experiment and analytical system

図 2.2.2 PSBT サブチャンネル定常ボイド率試験の実験結果 ⁷⁸及び解析結果の比較 Fig. 2.2.2 Comparison between experimental and calculated results on PSBT subchannel steadystate void fraction experiment

Fig. 2.2.3 PSBT bundle steady-state void fraction experiment section

図 2.2.4 PSBT バンドル定常ボイド率試験の実験結果 ⁷⁸及び解析結果の比較 Fig. 2.2.4 Comparison between experimental and calculated results on PSBT bundle steady-state void fraction experiment

(3) Christensen 高圧サブクールボイド率実験

Christensen らは高圧条件における加熱矩形管内の定常ボイド率の軸方向分布をガンマ線 密度計により計測した。本実験ではボイド率の上昇が開始する高さ近傍におけるボイド率 分布が取得されていることから、サブクール沸騰の開始とサブクール沸騰下におけるボイ ド率上昇について解析コードの妥当性を確認することを目的として実験の模擬解析を実施 した。

図 2.2.5 に Christensen 高圧サブクールボイド率実験の試験体及びそれを模擬した解析体 系を示す。本実験では試験体下部から特定のサブクール度で流入させた冷却水は軸方向一 様出力分布に従って加熱され沸騰し、上部より流出する。解析体系は前述の PSBT 定常ボ イド率実験の解析と同様であり、1 次元の熱水力コンポーネント(Hyd1D)の下部及び上 部に流入境界条件(Fill)及び圧力境界条件(Break)を接続して実験毎の条件を設定した。

本解析においては、TRACE 及び AMAGI (デフォルト)の結果とともに、AMAGI において TRACE と同様にポンピング因子を考慮しなかった結果も示す。

図 2.2.6 に Christensen 高圧サブクールボイド率実験の圧力、出力等が2つの異なる実験ケースにおけるボイド率分布について実験結果及び解析結果の比較を示す。縦軸はボイド率の実験及び解析結果、横軸は加熱部下端からの高さである。左図は運転時よりやや低い圧力条件、右図はほぼ BWR の運転条件の結果である。ここでは、TRACE と AMAGI

(ポンピング因子なし)の解析結果はほぼ一致している。一方、AMAGI(デフォルト) は低ボイド率となる高さにおいて、これらの結果よりボイド率をやや過小評価おり、この 差はサブクール沸騰モデルにおけるポンピング因子の有無の影響と考えられる。しかし、 この差は実験結果のばらつきに比較して大きくはなく、高圧条件ではモデルの差はほとん どボイド率評価に影響しない結果となった。

図 2.2.5 Christensen の高圧サブクール沸騰実験⁸²及び解析モデル

Fig. 2.2.5 Christensen high pressure subcooled boiling experiment and analytical model

図 2.2.6 Christensen の高圧サブクール沸騰実験の実験結果 ⁸²及び解析結果の比較 Fig. 2.2.6 Comparison between experimental and calculated results on Christensen high pressure subcooled boiling experiment

(4) Zeitoun ら低圧サブクールボイド実験

Zeitoun らは大気圧近傍における二重円管内の内側管を加熱し、その定常ボイド率の軸方 向分布をガンマ線密度計により計測した。本実験で冷温停止時の RIA の解析の対象となる 低圧条件におけるボイド率の上昇が開始する高さ近傍におけるボイド率分布が取得されて いることから、サブクール沸騰の開始とサブクール沸騰下におけるボイド率上昇について 解析コードの妥当性を確認するために実験解析を実施した。 図 2.2.7 に Zeitoun 低圧サブクールボイド率実験の試験体及びそれを模擬した解析体系 を示す。本実験では試験体下部から特定のサブクール度で流入させた冷却水は加熱部にお いて軸方向一様出力分布に従って加熱され沸騰し、その上部の非加熱部で凝縮し流出する。 解析体系は2か所の非加熱部と加熱部を模擬する1次元の熱水力コンポーネント(Hyd1D) の下部及び上部に流入境界条件(Fill)及び圧力境界条件(Break)を接続して実験毎の条 件を設定した。

図 2.2.8 に Zeitoun 低圧サブクールボイド率実験の圧力、出力等が 2 つの異なる実験ケ ースにおけるボイド率分布について実験結果及び解析結果の比較を示す。縦軸はボイド率 の実験及び解析結果、横軸は加熱部下端からの高さである。ここでは圧力、入口流量、入 ロサブクール度等が異なる二つの実験に関する結果を示す。前述の Christensen の高圧サ ブクール沸騰率実験の解析と異なり、ポンピング因子なし(TRACE 及び AMAGI)の解 析結果とポンピング因子あり(AMAGI)の解析結果は全く異なる軸方向ボイド率分布と なった。ポンピング因子を考慮しない解析はボイド率の上昇過程を著しく過大評価する が、ポンピング因子を考慮した解析はボイド率の上昇が抑制され、定性的に実験結果のボ イド率分布と一致する傾向となった。しかし、定量的に、大気圧条件では高圧条件に比べ て試験結果との差は未だ大きいため、ボイド率の予測性能の向上を更に検討することが重 要である。

図 2.2.7 Zeitoun ら低圧サブクールボイド実験⁸³及び解析体系

Fig. 2.2.7 Zeitoun et al. low pressure subcooled boiling experiment and analytical system

図 2.2.8 Zeitoun ら低圧サブクールボイド実験に関する実験結果⁸³及び解析結果の比較 Fig. 2.2.8 Comparison between experimental and calculated results on Zeitoun et al. low pressure subcooled boiling experiment

2.2.3 まとめ

最適評価コードのV&Vの実施手順についてノウハウを蓄積し、コードの不確かさに関 する知見を取得するため、様々な実験を対象に原子炉システム解析コードを用いた解析を 実施した。原子炉システム解析コード AMAGIの開発時に作成した AOO、DBA 及び炉心 損傷前の重大事故等を対象とした PIRT を用いて重要現象を抽出するとともに、妥当性確 認のための個別効果試験を選定することにより、入手可能な既存実験データとその実験範 囲やその対象事象の関係等、妥当性確認に必要な実験データについて知見を取得した。

AMAGI の妥当性確認として、選定した個別効果試験を解析しているが、試験によって 実験データ及び TRACE の解析結果との乖離、計算の異常終了等が見られたことから、 AMAGI のコード検証作業を並行して実施しており、AMAGI の妥当性確認の結果を取りま とめることは今後の課題である。

上記の妥当性確認の中で、TRACE 及び AMAGI の界面せん断力やサブクール沸騰に関す る構成式の違いに着目して、ボイド率評価に関する個別効果試験の模擬解析を実施し、両 コードの界面せん断力の構成式やサブクール沸騰モデルにおけるポンピング因子の取り扱 いの違い等によるボイド率評価への影響について知見を取得した。

2.3 BEPU 手法の高度化及び安全解析への適用

BEPU 手法とは、現実的に予測可能な最適評価手法を用いた上で、これに不確かさの影響を統計処理等によって定量化し加算する(Plus Uncertainty)ものである。

過去のプロジェクト「詳細解析手法の導入に向けた熱流動・核特性安全解析手法の整備 (Phase-2)」¹⁰において、PWR プラントの大破断 LOCA を対象に日本原子力学会標準⁶の 手順を参考に BEPU 解析を実施した。この作業を通して、以下の項目について BEPU 手法 を高度化する必要があることを抽出した。 ・個々のモデルの不確かさ(幅、分布等)についての正確な定量化

・特定パラメータの不確かさを考慮した場合の他パラメータへの影響の把握

これらの課題解決に向けて、不確かさを評価するための逆解析手法について検討するとも に、海外の最新知見の収集として BEPU 手法の規制導入が進む米国における BEPU 手法に 関する規制動向調査を行った。さらに、BEPU 手法の実機解析を実施するための環境整備 を継続的に実施してきた。

2.3.1 米国の規制動向調査

(1) BEPU 手法に関する米国規制

1974年に公表された ECCS 規則(10CFR50.46 Appendix K)⁹⁵では、ECCS 挙動への疑問 や ECCS 性能の評価や基準に含まれる保守性が指摘されていた。NRC は、規則制定後の多 くの研究によって新たな知見が得られ、許認可上の経験も蓄積されたことから規制の見直 しに着手し、1978年12月には「ECCS 許容基準に関する規則改定の事前通達」⁹⁶を公示し、 見直しの作業を開始した。1979年3月の TMI 事故による見直し作業の大幅な縮小があっ たものの、最終的に ECCS 最終改定規則が 1988年9月に公示された⁹⁷。その骨子は以下の とおりである。

- 不確かさを考慮した現実的な ECCS 評価モデルの使用を認める。
- 見直し前の ECCS 評価モデル基準「10CFR50 Appendix K」の使用も認める。
- ECCS 承認基準(PCT、被覆材の酸化率)は変更しない。

見直した解析手法を用いるためのガイドとして、NRC は Reg. Guide 1.157「ECCS 性能の 最適評価計算」(1989 年 5 月公表)を作成した。また、過渡事象/事故の解析モデルに関 する指針 10CFR50.34「申請書の内容;技術情報」を公表した。10CFR50.34 では、10CFR50.46 「ECCS 要件」に従い、想定 LOCA 後における ECCS 冷却性能の解析・評価結果を提供す ることを要求している。NRC は過渡事象及び事故解析で用いられる評価モデルを作成・評 価する際に用いるべきプロセス(以下「EMDAP」という。)を Reg. Guide 1.203 (2005 年 12 月公表)⁹⁸にまとめた。

冒頭でも述べたように、BEPU 手法とは最適評価手法を用いた上で不確かさの影響を加 算する評価法である。最適評価手法と不確かさの扱いに対して特定の解析コードや方法が 指摘されているわけではないことから、さまざまな評価法が考案されてトピカルレポート

(以下「TR」という。)として発行され、NRCによる安全評価(以下「SE」という。)と承認を受けている。

既存の運転プラントにおける BEPU 手法を巡る許認可の手続きとしては、狭義的には運転認可証(Operating License)の認可修正要求(以下「LAR」という。)から始まって、その改訂版(以下「LA」という。)が発行されるまでの過程があるが、より広義的には、定期的に更新される FSAR(以下「UFSAR」という。)への反映や、運転サイクル毎の炉心評価書の提出も含まれると見做すこともできる。

代表的な BEPU 手法が適用されるケースとしては、10CFR50 Appendix K "ECCS Evaluation Models" に替わる RG 1.157⁹⁹(1989 年 5 月)における手法がある。この場合 の BEPU 手法は、同 RG の A. INTRODUCTION にも以下のとおり述べられているように、 1988 年 9 月 16 日改正の 10CFR50.46 "Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors" と 10CFR50 Appendix K の趣旨に基づき、LOCA に対 する ECCS の性能確認として新たに追加された評価手法のことである。この改正により、 認可事業者や申請者には、Appendix K の規定にしたがった従来の解析手法による他にも、 現実的評価モデルの適用が認められるようになった。ただし、NRC はそのような新しい評 価モデルが十分に精度の高いものであり、かつ、不確定さが適切に定量化されていること の確認を審査プロセスにおいて入念に確認することになる。

LOCA/ECCS の評価に対する BEPU 手法は、PWR プラントに対しても BWR プラントに 対しても採用されているが、多様な BEPU 手法の用途の中には、PWR プラントと BWR プ ラントのそれぞれに特有なものもある。これは、たとえば燃料の安全制限(Safety Limit) が、PWR プラントの燃料に対しては、DNBR(限界熱流束と実際の局所熱流束の比)と燃 料ペレットの中心温度として与えられるのに対し、BWR プラントの燃料に対しては、 MCPR(最小限界出力比 Minimum Critical Power Ratio 限界出力と燃料集合体発生熱出力 の比(CPR)のうち、最小となる燃料集合体に対する値)として与えられるといった基本 的な違いに由来する。

(2) 米国 PWR の動向

ウェスチングハウス型のプラントに対しては、2000 年以前から Best-Estimate LBLOCA の解析法(WCAP-12945¹⁰⁰、WCAP-14449¹⁰¹)が登場していたが、やがて ASTRUM のよう な新しい統計処理法を取り入れた Realistic Evaluation LBLOCA の解析法(WCAP-16009¹⁰²、WCAP-16996¹⁰³)が現れた。

その結果、2021 年 2 月 28 日現在で現役のプラントでは、多くの PWR プラントに BEPU 手法が適用されていることが確認された。

以下に、それぞれの BEPU 手法について述べる。

① BE LBLOCA (WCAP-12945 及び WCAP-14449)

WCAP-12945 は、Westinghouse が、3 ループと 4 ループの PWR プラント向けに、EPRI と Consolidated Edison 社の支援を受けて作成した LOCA に対する評価法をまとめたものであ る。その原版は 1992 年 6 月に NRC に提出されて審査を受け、1996 年 6 月 28 日付けの NRC からの安全評価 (SE) と書簡により、各 PWR プラントにおける認可書での引用が認 められた。Westinghouse は、これを受けて 1998 年 3 月 19 日に承認版を発行し、以来、構 成コードの改良や新知見を反映しつつ改訂を重ねている。

また、2ループの上部プレナム注水(UPI)型 PWR プラント向けとしては、別途 WCAP-

14449 "Application of Best Estimate Large Break LOCA Methodology to Westinghouse PWRs With Upper Plenum injection" (1995 年 8 月)を提出し、1999 年 5 月 21 日付けの SE によって承認されている。

2 Realistic LBLOCA (WCAP-16009-P-A)

本 TR は、2003 年 6 月 2 日に提出され、2004 年 11 月 5 日、NRC が FSE を発行した。本 トピカルレポートは Westinghouse 炉 (2、3、4 ループの全炉型) 及び CE 炉に適用される。 NRC はトピカルレポートの審査の中で、NUREG/CR-5249¹⁰⁴の Section 2 に示された 14 ス テップと比較することで、WCAP-16009 の統計的評価手法が Reg.Guide 1.157 に示されてい る CSAU 手法に適合していることを確認した。

ECCS EM として使われている解析コードは、WCOBRA/TRAC であり、同コードは、前述の WCAP-12945-P-A と WCAP-14449-P-A, Rev.1 でも、それらの構成コードとして使われているが、ASTRUM という不確かさ取り扱い手法を取り入れた。ASTRUM 手法は、出力値のランダムサンプリングにおいてノンパラメトリック統計手法を採用し、WCOBRA/TRAC 計算の入力値に対して Monte Carlo 手法を適用して出力値(被覆管最高温度、局所酸化率、炉心酸化率)を算出していると述べている。

③ FSLOCATM

FULL SPECTRUM[™] Loss-of-Coolant-Accident (FSLOCA[™]) Evaluation Model とは、BEPU 手法の解析法で、従来の Appendix K の評価に対して幾つかの保守性を緩和した評価法であ る。その技術的概要を解説した TR は、WCAP-16996-NP-A, Rev.1 (2016 年 11 月、タイト ル: Realistic LOCA Evaluation Methodology Applied to the Full Spectrum of Break Sizes (FULL SPECTRUMTM LOCA Methodology)) である。

FSLOCA[™]は、WCAP-16009-P-A を基盤にその上に構築されたコードである。WCAP-16009-P-A における ASTRUM EM は、WCOBRA/TRAC コードに基づいているが、これは、1ft2 (0.09m²)を最小配管破断サイズとする LBLOCA シナリオに対してのみ適用されるものであった。これに対して FSLOCA[™]は、1ft² (0.09m²)未満も含む SBLOCA、IBLOCA、LBLOA の全領域に対して適用できる点が大きな利点である。これにより、従来 SBLOCA に対しては、Appendix K の保守的な評価モデルに基づいて評価を行っていたのが、より精度の高いモデルで解析できるようになった。

④AREVA(Framatome)による LOCA/ECCS 性能評価

AREVA が PWR プラントにおける ECCS 性能評価のために開発した BEPU 手法の評価モ デルに関する TR は、EMF-2103-NP-A, Rev.3¹⁰⁵であり、Rev.0 の NRC 承認版は 2003 年 4 月 に発行された。その後の改良を反映し、Rev.3 が 2016 年 6 月 17 日に NRC から承認を得て いる。本評価法が BEPU 手法であることは、NRC による FSE においても明言されている。 (3) 米国 BWR の動向

BWR プラントへの BEPU 手法の適用については、いくつかの事業者がパワーアップレート及びパワーアップレートに伴って拡大した運転領域の安定性評価手法について LAR を提出している。それらの LAR の内、一部に対しては NRC により SE が発行されている。これらの評価には、TRACG、TRACG-LOCA 及び AURORA/RODEX4 コードが使われている。

以下、それぞれのコードについて記載する。

① TRACG

TRACG は、BWR における AOO、DBA (特に LOCA)、制御棒落下事故 (CRDA)、安定 性評価、ATWS などの様々な事象を解析する熱水力コードである。また、TRACG を ESBWR の①異常な過渡事象、②低頻度事象 (IE) 及び③特別事象 (SE) について適用したトピカ ルレポート (NEDE-33083P, Supplement 3, Revision 1¹⁰⁶) もある。NRC は同トピカルレポー トの審査において、前述の WCAP-16009 と同様に、NEDE-33083P に対しても NUREG/CR-5249 の Section 2 に示された 14 ステップと比較することで Reg.Guide 1.157 との適合性を 確認している。NEDE-33083P, Supplement 3, Revision 1 の SER¹⁰⁷によれば、NEDE-33083P の 審査中に、NRC が追加情報要求 (RAI 21.6-63, Supplement 1¹⁰⁸及び RAI 21.6-65, Supplement 2¹⁰⁹) を GE 日立に送付したこと、並びに GE 日立がこの RAI に対応するために NEDE-33083P, Supplement 3, Revision 1 が提出されたことが記されている。

以下は NRC による追加情報の要求例である。

- GEXL(GE 沸騰長さ・ドライアウト相関式)は準定常状態の沸騰長さ相関式で、 CPR を予測するために TRACG で用いられている。バイパスなしの負荷遮断のような急速な加圧過渡事象のために沸騰長さの準定常状態相関式を用いる根拠を提出すること。(RAI 21.6.56)
- バイパスなしの負荷遮断に関する追加情報を提出すること(例:表 4.7-1 では過渡時 0.08 秒でタービン弁閉止スクラム開始としているが、原子炉スクラム開始時の弁の開放度(%)はどの程度か、等)。(RAI 21.6.57)
- 急速な加圧事象に関する TRACG の不確かさ解析で圧力波の数値的拡散をどのように定量化しているか説明すること。(RAI 21.6-58)
- TRACG が二相混合の圧力波伝播を計算できることを示す追加情報を提出すること。(RAI 21.6-59)
- NEDE-33083P では不確かさ解析に高影響の PIRT パラメータしか含まれていない ように思える。中影響のパラメータを除外した根拠を提出すること。(RAI 21.6-64)

他に、BWR プラントへの TRACG の適用例として、Grand Gulf、Monticello、NMP 2、Peach 127 Bottom 2/3、Dresden 2/3 に対しては、パワーアップレートに伴って拡大された運転領域に 対する炉心の安定性評価などに関連して LAR を提出しており、それらのうちのいくつか に対しては、NRC の審査を経て SE と LA が発行されている。以下はパワーアップレート に伴って拡大された運転領域(MELLLA+)に対する炉心性能評価を実施した例である。

• Peach Bottom 2/3 号機

事業者(Exelon)は、同プラント 2/3 号機の出力を精度よく計測し、計測の不確かさが 小さくなった分の出力を増強(3951MW t から 4016MW t に増強)に対する認可変更 申請(LAR)を 2017 年 2 月 17 日に提出し、同年 11 月 15 日に NRC がこれを承認して LA を発行している。この MELLLA+に対する評価に TRACG コードが適用されている。

• Brunswick 1/2 号機

同プラントでは、1996 年 11 月に 5%のパワーアップレートが認可され、さらに 2002 年 5 月にも 15%のパワーアップレートが認可されて、以来、MELLLA の範囲での運転 が認められてきたが、これをさらに MELLLA+ の範囲に拡大する変更申請(LAR)が 2016 年 9 月に提出され、2018 年 9 月に認可を受けている。評価の解析には TRACG が 使われている。当時同プラントの炉心には、GE 製と AREVA 製の燃料が混在しており、 解析は両社の別々のコードで行う必要があり、GE 製燃料に対しては TRACG が、 AREVA 製燃料には AURORA/RODEX が使われている。

②TRACG-LOCA

GE は、BWR プラントにおける ECCS の性能を評価するため、BEPU 評価モデルとして TRACG-LOCA を開発して TR NEDO-33005-A, Rev.2 (2018 年 5 月)をまとめ、NRC は、 10CFR50.46 に定めている評価基準の 5 項目中 4 項目に対し、本 TR の BWR/2~BWR/6 へ の適用を承認している。これら 4 項目とは、

- 1) PCT < 2200F
- 2) 局所最大酸化量(MLO) < 17%
- 3) 全炉心酸化量(CWO) < 1%
- 4) 冷却可能形状 (Coolable Geometry)

のことであり、1)~3)に対しては、95%の信頼度、95%の確率(95% Probability with 95%
 Confidence)で満足される。4)は1)~3)が満足されることで適合するとみなされている。
 評価基準5番目の項目である長期冷却(Long Term Cooling)は、TRACG-LOCAの評価対象
 外とされている。

TRACG-LOCA コードの採用プラントについては、NMP、Hatch 2、LaSalle 1/2 及び Fermi 2 号機が評価コードを従来の保守的コードから TRACG-LOCA に変更している。

③AURORA-B

AURORA-B は AREVA (Framatome) 社製の燃料を導入している BWR プラントにおける
過渡事象、想定事故及び過酷事故に対して用いられ、熱水力コード S-RELAP5、中性子動 特性コード MB2-K、燃料挙動解析コード RODEX4 から構成されている。

AURORA-B が使われている AREVA (Framatome) 燃料を装荷したプラントの例として、 Brunswick 1/2 号機において、ATRIUM 11 の新燃料を装荷する際の炉心運転制限 (Core Operating Limits) を設定する解析を AURORA/RODEX4 に基づいて行うことについての LAR を申請した例がある。

2.3.2 逆解析手法による解析コード入力パラメータ不確かさの定量化

解析コードの入力パラメータの不確かさを定量化するために、逆解析による不確かさ定 量化手法を用いた試解析を実施した。ここで、逆解析とは、実験データが与えられたとき に、解析コードによる計算値が実験値と一致するように解析コードの入力パラメータの不 確かさを定量化することである。ここで、本作業では、実験データには旧 NUPEC で行わ れ、垂直管を流れる冷却水をヒーターで熱した際の、軸方向におけるボイド率を測定した NUPEC の BWR 管群ボイド試験の定常ボイド分布試験の測定結果を用い、解析コードには TRACE コードを選定し、ボイド率を予測する際の TRACE コードにおける入力パラメータ の不確かさを推定した。逆解析手法として、Wu の学位論文の手法¹¹⁰を用いた。この手法 では、推定したいパラメータの確率分布(事後確率分布)が測定値及び TRACE 解析結果 から設定した尤度関数並びに事前確率の積に比例するとするベイズの手法を用い、パラメ ータを確率変数としてパラメータの不確かさを事後確率分布として算出した。

不確かさを求める解析コード入力パラメータの選定にあたり、TRACE による BWR 管 群ボイド試験の感度解析を実施し、TRACE の解析結果に対して感度の大きいパラメータ として、表 2.3.1 に示すように 5 つ特定した。そして、上記ベイズの手法により、各パラ メータ不確かさの分布を事後確率分布として算出した。結果を図 2.3.1 に示す。なお、図 2.3.1 の横軸は不確かさを推定するパラメータの値を表し、横軸の値 1.0 が TRACE コード に組み込まれているモデルパラメータのデフォルト値を表す。また、図 2.3.1 の縦軸はパ ラメータの出現頻度を表し確率密度に比例する。各パラメータの確率分布は釣鐘状の分布 を示すが、各パラメータ分布の平均値は TRACE コードにおけるデフォルト値である 1.0 から大きくずれるものがあり、これら確率分布や今回用いた逆解析手法の妥当性について は更に検討が必要である。

現在、OECD/NEA の ATRIUM タスクに参加し、逆解析手法による解析コード入力パラ メータ不確かさの定量化についての検討を引き続き行っている。

Table 2.3.1 TRACE input parameters with high sensitivity in BFBT simulation		
パラメータ ID	内容の説明	
p1008	液相-壁面間の熱伝達率	
p1012	サブクール沸騰熱伝達率	
p1022	壁面摩擦係数	
p1028	バンドル内気泡流及びスラグ流時の界面せん断係数	
p1029	ベッセル内気泡流及びスラグ流時の界面せん断係数	

表 2.3.1 BFBT 試験の模擬解析で感度の大きな TRACE 入力パラメータ

図 2.3.1 逆解析手法により算出した TRACE 入力パラメータの不確かさ Fig. 2.3.1 Uncertainty of TRACE input parameters calculated by inverse analysis1 method

2.3.3 実機 BEPU 解析に向けた環境整備

(1) プラント解析データの整備

解析コードを用いた事故時等のプラント挙動の予測解析は、事業者が実施する安全解析 の技術的妥当性を判断するための基盤技術であり、また、本プロジェクトが目指す最終的 な成果反映先でもある。BEPU 解析の実施においてもプラント解析データは必須である。

旧(独)原子力安全基盤機構では、クロスチェック解析等のためにプラント解析データの整備を継続して実施してきた。原子力規制庁統合後においても、過去のプロジェクト「多重故障事象の影響評価に関する研究」。では、炉心損傷防止対策の有効性評価の代表事故シーケンスの解析を実施し、各シーケンスにおける事象進展の分析等を実施してきた。しかし、これら解析においてはプラントタイプや事象に応じて SKETCH-INS/TRACE、RELAP5、

CONTEMPT-LT 等の解析コードを使い分けてきた。RELAP5 と TRACE の開発元である米 国 NRC は、今後 RELAP5 については保守作業のみとし、TRACE の開発に注力する方針と していることから、使用コードを TRACE に統一してプラント解析データを整備すること とした。ただし、RELAP5 のプラント解析データは参照データとして引き続き維持してい く。

TRACE のプラント解析データの整備状況を表 2.3.2 に示す。なお、特定のプラントを 対象として整備するものではなく、複数の設置変更許可申請書等の公開データを参考に代 表的なプラントのデータとなるようインプット設定を行った。整備データの確認作業とし て、事業者の申請解析、過去のプロジェクト⁹等で実施した解析と比較を行っている。

引き続き、データの品質向上、対象(プラントタイプ、燃料タイプ及びシーケンス)の 拡充、解析コードのバージョンアップ対応等を実施するとともに、モデルの高度化等の新 知見が得られた場合に、その影響の定量化等、今後の安全研究に活用していく予定である。

プラントタイプ	燃料タイプ	シーケンス
ABWR	9×9A	● AOO、DBA:発電機負荷遮断、給水加熱喪
110 万 kWe 級 BWR5(格		失、冷却材流量喪失
納容器 Mark-Ⅱ改良型)		● 重大事故等:高圧・低圧注水機能喪失、高
80 万 kWe 級 BWR5(格		圧注水・減圧機能喪失、全交流電源喪失、
納容器 Mark- I 改良型)		ATWS、LOCA 時注水機能喪失
3ループ PWR	17×17	● AOO、DBA:給水流量喪失、LOCA
		● 重大事故等:2 次冷却系からの除熱機能喪
		失、ECCS 再循環機能喪失、ECCS 注水機能
		喪失

表 2.3.2 プラント解析データの整備状況

 Table 2.3.2
 Status of plant analysis data

(2) 統計解析ツールの整備

BEPU 手法においては、入力パラメータを統計的にサンプリングして多数回の解析を実施し、その結果を集計する作業が必要となる。そこで、Sandia National Laboratory が開発したラテン超立方体サンプリングソフトウェア LHS 及び TRACE/PARCS の感度解析機能を利用して統計解析を実施するツールを python で整備した。

①入力作成部

TRACE/PARCS の感度解析機能を用いれば、指定した感度パラメータの評価値を内部で 定数倍して解析を実行することができる。また、LHS では分布を指定することで疑似乱数 によりサンプリングを行うことができる。

入力作成部においては、LHS によって乱数生成によるサンプリングが実行され、各サン プルの値を TRACE/PARCS の感度解析機能のインプットに反映することで、複数のサンプ ルインプットを生成する。図 2.3.2 に示すように、ひな形となる TRACE/PARCS の解析イ ンプット (base_inp フォルダに格納)、統計的に変化させるパラメータや分布等を指定した 入力ファイル uq.inp を準備し、python スクリプト make.py を実行することで、所定フォル ダ uq_dir にサンプリング数 N のフォルダが自動生成され、LHS によるサンプル値を反映 した TRACE/PARCS の入力ファイルが格納される。また、それら解析を実行するためのシ ェルスクリプト ex.sh、及び LHS によるサンプリング結果である乱数出力値を uq.xlsx が出 力される。

図 2.3.2 入力作成部の概要

Fig. 2.3.2 Schematic diagram of input generator

②結果集計部

TRACE/PARCS の解析により出力されたバイナリデータから評価パラメータを抽出する プログラムを利用して、その結果を集計するツールを python で作成した。

入力作成部で生成した N(サンプル数)ケースの TRACE/PARCS 解析を実行した後、結 果集計部の python スクリプト plot.py を実行することで、N 個の計算結果(バイナリデー タ)から評価パラメータをテキストファイルに出力し、それらを集計して図 2.3.3 に示す ようにエクセルファイルに出力して散布図を作成することができる。

Fig. 2.3.3 Example of output of result aggregator

3. 結論

3.1 成果の要点

3.1.1 事故時の物理現象の把握及びモデルの高度化

最適評価手法の信頼性向上及びさらなる高度化に向けて、事故時の挙動に影響するが知 見が十分ではない重要現象に対して、実験データを拡充したこと、メカニズムの解明及び モデルの高度化を進めたことが成果であり、以下にその内容を示す。

(1) BWR ATWS 条件下での液膜ドライアウト及びリウェット

JAEA に委託して、高圧ループを用いて BWR ATWS 時に想定される振動状態を模擬した ATWS 模擬実験を行い、幅広いパラメータ範囲で液膜ドライアウト及びリウェットに係る 実験データを取得することができた。さらに、JAEA に委託してリウェット時に重要とな る液膜先端近傍に着目した先行冷却可視化試験で得た詳細データを分析することでて気相 熱伝達における入口効果等について実験的知見を整理した。また、電中研に委託して、液 滴付着の促進効果に関してスペーサタイプごとに詳細な実験データを取得し、液滴付着に 係る評価モデルを検討した。さらに、機構論的な液膜ドライアウトモデルである MCHNC-CISE を開発し、また、COBRA-TF による機構論的な液膜ドライアウト及びリウェットの 評価手法を検討し、高圧ループ試験の模擬解析によりその妥当性を確認した。 (2) BWR RIA 条件下でのボイド挙動

BWR RIA において重要な燃料集合体内のボイド挙動について実験的知見を取得すると ともに、そのモデルの高度化を検討した。電通大に委託して、低圧時サブクール沸騰挙動 解明試験を実施して OSV が生じるメカニズムを解明するとともに、機構論的な OSV モデ ルを開発して、既存の OSV モデルよりも精度良くボイド率を予測できる可能性を示した。 また、COBRA-TF による燃料集合体サブチャンネル毎のボイド率評価の予測性能を確認し、 TRACE による実機 BWR の RIA 解析を実施して課題抽出を行った。

(3) LOCA 時における FFRD

FFRD が LOCA の安全解析に与える影響を評価するために、FFRD モデルを備えた TRACE/FRAPTRAN-NRA 結合コードを開発し、ハルデン試験の模擬解析により妥当性を確 認した。また、3 ループ PWR を詳細にノード分割した LOCA 解析を実施し、今回の解析 条件では FFRD が生じない結果となったものの、実機 PWR に対して FFRD を考慮した解 析を適用できることを確認した。

(4) LOCA 時等における再冠水過程

OECD/NEA RBHT プロジェクトに参加して再冠水に関する実験的知見を取得するととも に、TRACE 及び COBRA-TF を用いて RBHT のオープン試験のベンチマーク解析により再 冠水の評価方法について検討した。また、高圧及び低圧注水機能喪失事象における代替注 水を想定した非常に低速度の再冠水実験を RBHT プロジェクトに提案し、実験データを取 得してその挙動を確認した。

(5) 総合効果試験による事故時のプラント挙動

事故時の PWR プラントのシステム挙動を把握するために、JAEA に委託して LSTF を用 いた総合効果試験を実施するとともに、OECD/NEA の PKL-4 プロジェクト及び ETHARINUS プロジェクトに参加して PKL を用いた総合効果試験の実験データを取得し、 安全対策としての機器及び運転員操作に対するプラント応答を確認した。LSTF を用いた 試験として、これまで実験的知見の少ない MSGTR 及び 2 次冷却系からの除熱機能喪失事 象を模擬した総合効果試験を実施し、また、ECCS 再循環機能喪失時に想定される SB 現象 に係る実験データとして SG 出入口間差圧等を測定した。PKL を用いた試験では、LSTF で は模擬できない複数ループでの MSGTR 等、LSTF 試験を補完する実験データを取得でき た。

(6) プール内の温度成層化

SFP において冷却系停止時に温度成層化の発生と消散が観測されており、そのメカニズ

ムを明らかにするため、小型の実験装置を用いた温度成層化実験を実施し、実験パラメー タによる温度成層化の影響を温度・流速の測定データにより確認した。また、放熱の影響 を考慮した実験等に適用可能な温度・流速同時計測センサーの開発を行った。

GOTHIC コードを用いて S/C のプール内への蒸気放出時の解析を行い、S/C の詳細なモ デル化により温度成層化が考慮可能であること、蒸気放出高さによって温度成層化の発生 有無が異なること、温度成層化が生じた場合に 1F3 事故における圧力上昇過程をおおむね 再現する結果となることを確認した。

3.1.2 原子炉システム解析コードの V&V

最適評価コードの不確かさやその V&V の実施手順について知見を蓄積するため、原子 炉システム解析コードの個別効果試験を用いた妥当性確認を実施した。

原子炉システム解析コード AMAGI の開発用に作成した PIRT から抽出された重要現象 に基づき、妥当性確認のための個別効果試験を選定し、入手可能な実験データとその実験 範囲、実験と対象事象の関係等を確認することができた。また、それら個別効果試験の解 析インプットを作成し、AMAGI の妥当性確認として解析を行った。試験によって実験デ ータ及び TRACE 結果との乖離、計算の異常終了等が見られたことから、AMAGI のコード 検証作業を並行して実施している。さらに、個別効果試験の解析検討の中で、TRACE 及び AMAGI を用いた解析の結果の比較から、界面せん断力やサブクール沸騰に関する構成式 の違いの影響について知見を蓄積した。

3.1.3 BEPU 手法の高度化及び安全解析への適用

海外の最新知見の収集として米国の BEPU 手法に関する規制動向を調査するとともに、 個々のモデルの不確かさの正確な定量化等の現行手法の課題解決に向けて、逆解析手法に よる解析コード入力パラメータの不確かさ定量化の検討及び実機 BEPU 解析のための解析 環境を構築した。

3.2 目的の達成状況

本研究の目的は、炉心損傷前までの軽水炉の事故時熱流動挙動を対象に、適合性審査等 において事業者の最適評価の技術的妥当性の確認に活用可能な技術基盤を構築することで あった。本研究では、事故時の重要現象の把握及びモデルの高度化、原子炉システム解析 コードの V&V、並びに BEPU 手法の高度化及び安全解析への適用について検討を進め、 3.1 に示すようにそれぞれにおいて技術的知見を拡充することができた。これら知見は審 査等に活用し得るものであり、当初の目的を満たす成果が得られた。

3.3 成果の公表等

3.3.1 原子力規制庁の職員が著者に含まれる公表

- (1) NRA 技術ノート
- 江口裕、塚本直史、「PWR サンプスクリーン及び BWR ECCS ストレーナの下流側影響 に関する米国規制活動の調査」、NTEN-2022-1001、令和4年3月
- (2) 論文(査読付)
- 金子順一、塚本直史、「原子炉システム解析コード AMAGI の解析機能と開発状況」、日本原子力学会和文論文誌、19巻、3号、pp.167-177、令和2年
- ② J. Kaneko, A. Satou, M. Sekine and Y. Masuhara, "Validation of mechanistic dryout and rewetting model based on the three-field model with single tube experiments", Journal of Nuclear Science and Technology, Vol. 58, No. 8, pp. 918-932, 2021 (JAEA との共著).
- ③ M. Sekine and M. Furuya, "Development of measurement method for temperature and velocity field with optical fiber sensor", Sensors, Vol. 23, Issue 3, 1627, 2023 (早稲田大との共著).
- (3) 国際会議のプロシーディング(査読付)
- ① M. Sekine, J. Kaneko and T. Takeda, "RELAP5 CODE ANALYSES OF PKL-4 PROJECT TEST ON PWR MULTIPLE STEAM GENERATOR TUBE RUPTURE ACCIDENT WITH RECOVERY ACTIONS", Proceedings of 28th International Conference on Nuclear Engineering (ICONE 28), Virtual Conference, 2021 (JAEA との共著).
- ② H. Eguchi, H. Uehara and H. Ono, "DEVELOPMENT OF TRACE/FRAPTRAN-NRA COUPLED CODE AND INCORPORATION OF FFRD MODELS FOR LOCA ANALYSIS", Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Virtual Meeting, 2022.
- ③ J. Kaneko and M. Sekine, "SIMULATION ON THE OECD/NEA RBHT REFLOOD OPEN TEST BENCHMARK USING TRACE AND COBRA-TF", Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Virtual Meeting, 2022.
- (4) 表彰·受賞
- ① 金子順一、塚本直史、「システム解析コード AMAGI の開発」、第55回(2022 年度)原 子力学会賞 技術賞、令和5年
- (5) その他
- 小西秀雄、江口裕、関根将史、「GOTHIC コードによる BWR 事故時の圧力抑制室挙動 解析」、日本原子力学会 2020 年春の年会、令和2年
- ② 増原康博、関根将史、金子順一、「機構論的な沸騰遷移相関モデルの開発(その1)」、

日本原子力学会2020年春の年会、令和2年

- ③ 関根将史、増原康博、金子順一、「機構論的な沸騰遷移相関モデルの開発(その2)」、 日本原子力学会2020年春の年会、令和2年
- ④ 江口裕、藤岡一治、小野寛、上原宏明、「TRACE/FRAPTRAN 結合コードによるハルデンLOCA 実験解析」、日本原子力学会 2020 年春の年会、令和2年
- ⑤ 金子順一、塚本直史、「原子炉システム解析コードの開発(3) ボイド率測定試験に基づく妥当性確認」、日本原子力学会 2021 年春の大会、令和 3 年
- ⑥ 関根将史、古谷正裕、「加熱源出力及び配置が水プール内の温度成層化過程に与える影響」、日本機械学会2022年度年次大会、令和4年

3.3.2 委託先による公表

- (1) 論文(査読付)
- A. Satou, Y. Wada, Y. Sibamoto and T. Yonomoto, "Study on Dryout and Rewetting during Accidents including ATWS for the BWR at JAEA", Nuclear Engineering and Design, Vol. 354, 110164, 2019.
- ② Y. Wada, T. D. Le, A. Satou, Y. Sibamoto and T. Yonomoto, "Liquid Film Behavior and Heat Transfer Mechanism near the Rewetting Front in a Single Rod Air-Water System", Journal of Nuclear Science and Technology, Vol. 57, No. 1, pp.100-113, 2020.
- ③ S. Abe, Y. Okagaki, A. Satou and Y. Sibamoto, "A numerical investigation on the heat transfer and turbulence production characteristics induced by a swirl spacer in a single-tube geometry under single-phase flow condition", Annals of Nuclear Energy, Vol. 159, 108321, 2021.
- ④ T. Takeda, Y. Wada, Y. Sibamoto, "Major Outcomes through Recent ROSA/LSTF Experiments and Future Plans", World Journal of Nuclear Science and Technology, Vol. 11, No. 1, pp.17-42, 2021.
- (5) T. Okawa, "On the mechanism of onset of significant void in subcooled flow boiling", International Journal of Heat and Mass Transfer, Vol. 181, 121835, 2021.
- (6) T. Okawa, "Developing a semi-mechanistic correlation for the onset of significant void in subcooled flow boiling", International Communications in Heat and Mass Transfer, Vol. 134, 106047, 2022.
- (2) 国際会議のプロシーディング(査読付)
- ① S. Abe, Y. Obi, A. Satou, Y. Okagaki and Y. Sibamoto, "Implementation of the heat and mass transfer models for BT and post-BT regions in three-field two-fluid CFD", Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Virtual Meeting, 2022.
- ② T. Okawa, Y. Endo and R. Tsujimura, "VISUALIZATION STUDY FOR THE MECHANISMS

TO CAUSE OSV AND DNB IN SUBCOOLED FLOW BOILING", Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Virtual Meeting, 2022.

- (3) その他
- ① 大川富雄、"強制対流サブクール沸騰における OSV 条件のモデル化に関する一考察"
 日本機械学会 2021 年度年次大会、令和3年.
- ② T. Okawa, "A mechanistic modeling of OSV in subcooled flow boiling", Asian Conference on Thermal Sciences 2020, Fukuoka, 2021.
- ③ 大川富雄、遠藤祐哉、辻村玲摩、"強制対流サブクール沸騰中での CHF 状態移行時にお ける壁面温度分布と気泡挙動の同期観察"、日本機械学会熱工学コンファレンス 2021、 令和3年.
- ④ 辻村玲摩、遠藤祐哉、大川富雄、"強制対流サブクール沸騰における発泡核間干渉による気泡生成頻度の変化"、日本機械学会熱工学コンファレンス 2021、令和3年.

3.4 成果の活用等

審査等において国内事業者が適用する最適評価手法を確認する場合、最適評価コードの 信頼性、安全解析への適用方法等について幅広く適切性を確認することになるが、3.1 に示 したように最適評価に関して多角的に検討を進めてきており、審査支援等を通じて本研究 で得られた知見を活用することが可能である。

また、サンプスクリーン閉塞に係る下流側影響について、事業者からの意見聴取会 ⁴に 同席し、事業者が提示した熱流動実験、最適評価コードによる解析等に対して、本研究プ ロジェクト及び過去のプロジェクトで蓄積した技術的知見に基づきコメントを行い、本件 の規制活動に貢献した。なお、米国の規制動向を調査し、技術情報検討会で規制課題とし て取り上げたことが上記意見聴取会のきっかけとなっており、米国の規制動向の調査結果 については熱流動評価に係る技術的内容も含めて NRA 技術ノート¹¹¹ として取りまとめて いる。

さらに、本研究プロジェクト及び過去のプロジェクトで蓄積した最適評価に係る知見を 活用し、1F事故分析の調査チーム構成員として 1,2 号機耐圧強化ベント配管内における 1 号機ベントガスの流動解析を RELAP5 により実施した。解析の結果を分析することで測定 された汚染分布に至る原因を推定し、その旨の報告¹¹²を行うとともに、当該検討内容につ いて中間取りまとめ¹¹³に取りまとめた。

3.5 今後の課題等

本研究では、事故時の重要現象の把握及びモデルの高度化、原子炉システム解析コードの V&V、並びに BEPU 手法の高度化及び安全解析への適用について研究を進め、一定の成

果を上げたことは上述のとおりである。各テーマにおける今後の課題等について以下に示 す。

事故時の重要現象の把握及びモデルの高度化の検討において、各現象のメカニズムを考 察した上で評価モデルを構築し、実験との比較によりモデルの妥当性、課題等を示せたこ とが成果であるが、これらの検討は主に実験データとの比較でなされたものであり、今回 抽出した課題に加えて、実機への適用性については引き続き検討が必要である。また、対 象とする物理現象のメカニズムを完全に把握できたとはいえず、メカニズムの解明のため に実験データのさらなる分析を進め、未解明だった点についてはモデルへの反映も必要で ある。

原子炉システム解析コードの V&V において AMAGI の妥当性確認を進めてきたが、 TRACE 等の他の解析コードは開発した後も継続して改良が続けられており、AMAGI につ いても継続して整備することが重要である。また、継続的に更新されている TRACE であ っても、評価モデルの最新知見の反映は必ずしもなされていないことから、最新の評価モ デルを積極的に AMAGI に取り組み、評価モデル間のベンチマークが可能なプラットフォ ームとするなど AMAGI を活用していきたい。さらに、AMAGI を使うことのメリットを提 示した上でコードの公開等を進め、新たなユーザーを獲得することが今後の発展のために は必要となる。

BEPU 手法の高度化及び安全解析への適用について、米国の BEPU の規制動向について 調査したが、審査時の論点等、公開されていない情報が多いことが分かった。今後、BEPU に係る審査を進めることになれば、米国 NRC を通じたさらなる情報収集が必要かもしれ ない。また、逆解析手法による入力パラメータの不確かさ評価の試解析を行ったが、想定 された解析結果が得られなかった。数学的に難解な手法であることから、より理解を深め て適切な評価をできるよう検討しつつ、引き続き OECD/NEA ATRIUM タスクに参加して 情報収集を行う。実機 BEPU 解析に向けた環境整備として国内プラントを想定したデータ 整備を進めてきたが、プラント解析技術のノウハウを絶やさないよう継続的にデータ整備 を行い活用していきたい。

140

参考文献一覧

- 安全性向上評価届出書
 <u>https://www.nra.go.jp/activity/regulation/reactor/unten/koujouhyouka.html</u>(2023年1月 24日確認)
- 2 原子力エネルギー協議会、「10×10燃料導入に向けた対応」、第16回主要原子力施 設設置者の原子力部門の責任者との意見交換会、資料2、令和4年12月.
 https://www.nra.go.jp/data/000413505.pdf (2023年1月24日確認)
- 3 原子力エネルギー協議会、「デジタル安全保護回路のソフトウェア CCF の影響評価 と対策」、第4回発電用原子炉施設におけるデジタル安全保護系の共通要因故障対 策等に関する検討チーム、資料1、令和2年 https://www.nra.go.jp/data/000299352.pdf (2023 年 1 月 24 日確認)
- 4 関西電力(株)、北海道電力(株)、四国電力(株)、九州電力(株)、日本原子力発電(株)、三 菱重工業(株)、「サンプスクリーン下流側炉内影響 LOCA 後の炉心長期冷却に係る 検討 国内 PWR における検討状況」、第 19 回新規制要件に関する事業者意見の聴 取に係る会合、資料 19-1、令和4年
 https://www.nra.go.jp/data/000393695.pdf (2023 年 1 月 24 日確認)
- 5 一般社団法人日本原子力学会、「シミュレーションの信頼性確保に関するガイドラ イン:2015」、日本原子力学会標準 AESJ-SC-A008:2015、平成 27 年
- 6 一般社団法人日本原子力学会、「統計的安全評価の実施基準:2021」、日本原子力学
 会標準 AESJ-SC-S001:2021、令和4年
- 7 一般社団法人日本原子力学会 熱流動部会 熱水力安全評価基盤技術高度化戦略 マップ検討ワーキンググループ、「熱水力安全評価基盤技術高度化戦略マップ 2020」、2020年度版 Rev.1、令和4年
- 8 IAEA, "Deterministic Safety Analysis for Nuclear Power Plants", Specific Safety Guide No. SSG-2 (Rev. 1), 2019.
- 9 上原宏明、小西秀雄、「多重故障事象の影響評価に関する研究」、RREP-2018-1001、
 平成 30 年
- 10 江口裕、上原宏明、酒井友宏、柴茂樹、藤田達也、岩橋大希、江畑茂男、笠原文雄、 小西秀雄、藤岡一治、増原康博、山本徹、「詳細解析手法の導入に向けた熱流動・ 核特性安全解析手法の整備(Phase-2)」、RREP-2019-1002、平成 31 年
- 11 金子順一、塚本直史、藤田達也、上原宏明、「国産システム解析コードの開発及び 事故時等の熱流動評価に係る実験的研究」、RREP-2019-1005、令和元年
- 12 U. S. Nuclear Regulatory Commission, "TRACE THEORY MANUAL, Field Equations, Solution Methods, and Physical Models".
- 13 R.K. Salko and M.N. Avramova, "CTF Theory Manual", U.S. Department of Energy,

CASL-U-2016-1110-000, 2016.

- 14 R.K. Salko, T.S. Blyth, C.A. Dances, J.W. Magedanz, C. Jernigan, J. Kelly, A. Toptan, M. Gergar, C. Gosdin, M.N. Avramova, S. Palmtag and J.C. Gehin, "CTF Validation and Verification", U.S. Department of Energy, CASL-U-2016-1113-000, 2016.
- 15 国立研究開発法人日本原子力研究開発機構、「平成 31 年度原子力施設等防災対策
 等委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、令和2年
- 16 国立研究開発法人日本原子力研究開発機構、「令和2年度原子力施設等防災対策等 委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、令和3年
- 17 国立研究開発法人日本原子力研究開発機構、「令和3年度原子力施設等防災対策等
 委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、令和4年
- 18 国立研究開発法人日本原子力研究開発機構、「令和4年度原子力施設等防災対策等 委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、令和5年
- 19 OECD/NEA/CSNI, "Report of the OECD/NEA KAERI Rod Bundle CFD Benchmark Exercise", NEA/CSNI/R(2013)5, 2013.
- 20 T. Yonomoto, Y. Sibamoto, A. Satou and Y. Okagaki, "Heat conduction analyses on rewetting front propagation during transients beyond anticipated operational occurrences for BWRs", Journal of Nuclear Science and Technology, Vol. 53, pp. 1342-1352, 2016.
- 21 井口正、岩城智香子、安濃田良成、「BWR 定常ポスト CHF 試験結果 ―限界熱流束
 及びポスト CHF 熱伝達率―」、JAERI-Research 2001-060、平成 14 年
- 22 一般財団法人電力中央研究所、「令和3年度原子力規制庁委託成果報告書 燃料集合体内液滴付着挙動解明試験」、令和4年
- 23 一般財団法人電力中央研究所、「令和4年度原子力規制庁委託成果報告書 燃料集合体内液滴付着挙動解明試験」、令和5年
- 24 宋明良、有冨正憲、三島嘉一郎、二ノ方寿、薮下幸久、原貴、「非定常サブチャン ネル解析コード NASCA の開発・改良(2) コード内容とスペーサー効果」、日本機械 学会 2000 年度年次大会講演論文集、平成 12 年
- 25 J. Kaneko, A. Satou, M. Sekine, Y. Masuhara, "Validation of Mechanistic Dryout and Rewetting Model Based on the Three-field Model with Single-tube Experiments", Journal of Nuclear Science and Technology, Vol 58, pp. 918-932, 2021.
- D.C. Groenveld, J.Q. Shan, A.Z. Vasic, L.K.H. Leung, A. Durmayaz, J. Yang, S.C. Cheng and A. Tanase, "The 2006 look-up table", Nuclear Engineering and Design, 237, 1909-1922, 2007.
- 27 L.S. Tong, "Prediction of departure from nucleate boiling for an axially non-uniform heat flux distribution", Journal of Nuclear Energy, 21, 241-247, 1967.
- 28 N. Zuber, M. Tribus and J.W. Westwater, "The hydrodynamic crisis in pool boiling of saturated and subcooled liquids", International Developments in Heat Transfer, Proceeding

of the 1961-62 Heat Transfer Conference, Boulder, Colorado U.S.A, Aug 28-Sep 1, 1961.

- 29 J.H. Chun, W.J. Lee, C. Park and U.C. Lee, "Development of the critical film thickness correlation for an advanced annular film mechanistic dryout model applicable to MARS code", Nuclear Engineering and Design, 223, 315-328, 2003.
- 30 S. Sugawara and Y. Miyamoto, "FIDAS: detailed subchannel analysis code based on the three-fluid and three-filed model", Nuclear Engineering and Design, 120, 147-161, 1990.
- 31 S. Sugawara, "Droplet deposition and entrainment modeling based on the three-field model", Nuclear Engineering and Design, 122, 67-84, 1990.
- 32 工藤義朗、原貴、「BWR 燃料集合体の現象論的リウェット相関式の開発」、日本原
 子力学会和文論文誌、2巻、2号、pp. 41-49、平成 15 年
- 33 国立大学法人電気通信大学、「令和2年度原子力規制庁委託成果報告書 低圧時サ ブクール沸騰挙動解明試験」、令和3年
- 34 国立大学法人電気通信大学、「令和3年度原子力規制庁委託成果報告書 低圧時サ ブクール沸騰挙動解明試験」、令和4年
- 35 国立大学法人電気通信大学、「令和4年度原子力規制庁委託成果報告書 低圧時サ ブクール沸騰挙動解明試験」、令和5年
- 36 F. P. Incropera, D. P. DeWitt, T. L. Bergman and A. Lavine, "Fundamentals of Heat and Mass Transfer, 6-th edition", Wiley, New York, 2006.
- T. Okawa, "On the mechanism of onset of significant void in subcooled flow boiling", International Journal of Heat and Mass Transfer, Vol. 181, 121835, 2021.
- T. Okawa, "Developing a semi-mechanistic correlation for the onset of significant void in subcooled flow boiling", International Communications in Heat and Mass Transfer, Vol. 134, 106047, 2022.
- 39 独立行政法人日本原子力研究開発機構、「平成 19 年度燃料等安全高度化対策事業 (高精度熱水力安全評価技術調査)に関する報告書」、平成 20 年
- 40 一般財団法人電力中央研究所、「平成 30 年度原子力規制庁委託成果報告書 事故時ボイド挙動解明試験」、平成 31 年
- 41 H. Eguchi, H. Uehara and H. Ono, "DEVELOPMENT OF TRACE/FRAPTRAN-NRA COUPLED CODE AND INCORPORATION OF FFRD MODELS FOR LOCA ANALYSIS", Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Virtual Meeting, 2022.
- 42 W. Wiesenack, "Summary of the Halden Reactor Project LOCA Test Series IFA-650.", OECD HRP (2013).
- 43 M. Flanagan, "Post-test examination results from integral, high-burnup, fueled LOCA tests at Studsvik Nuclear Laboratory", NUREG-2160 (2013).
- 44 K.J. Geelhood, W.G. Luscher and J.M. Cuta, "FRAPTRAN 1.5: A Computer Code for the

Transient Analysis of Oxide Fuel Rods", NUREG-CR-7023, Vol.1 Rev.1, (2014).

- D. L. Hagrman, G. A. Reymann and G. E. Mason. "A Handbook of Materials Properties for Use in the Analysis of Light Water Reactor Fuel Rod Behavior. MATPRO Version 11 (Revision 2)". NUREG/ CR-0479 (TREE-1280), prepared by EG&G Idaho, Inc., Idaho Falls, Idaho for the U.S. Nuclear Regulatory Commission, Washington, D.C.
- 46 D. L. Hagrman, "Zircaloy Cladding Shape at Failure (BALON2)", EGG-CDAP-5379, EG&G Idaho, Inc., Idaho Falls, (1981).
- 47 A. Knuutila, "A. Improvements on FRAPCON-3/FRAPTRAN Improvements on FRAPCON-3/FRAPTRAN Mechanical Modeling", VTT-R-11337-06, VTT, Finland. (2006).
- 48 A.R. Massih, "High-temperature creep and superplasticity in zirconium alloys", Journal of Nuclear Science and Technology, 2013, 50(1), (2013).
- A.R. Massih, L.O. Jernkvist "Assessment of data and criteria for cladding burst in loss-of-coolant accidents", SSM 2015:46 Report: TR14-001v1 (2015).
- 50 D.A. Powers, and R.O. Meyer, "Cladding Swelling and Rupture Models for LOCA Analysis, in NUREG-0630", (1980).
- 51 L.O. Jernkvist, A.R. Massih "Models for axial relocation of fragmented and pulverized fuel pellets in distending fuel rods and its effects on fuel rod heat load" SSM 2015:37 Report TR14-002V1, September 1, (2015).
- 52 A. Concejal, P.J. Garcia Sedano, and A. Crespo, "Impact of the Potential High Burnup Fuel Dispersal During a Large Break LOCA in a BWR-6 NPP", TopFuel (2012).
- 53 K.J. Geelhood and W.G. Luscher, "FRAPCON-3.5: A Computer Code for the Calculation of Steady-State, Thermal-Mechanical Behavior of Oxide Fuel Rods for High Burnup", NUREG-CR-7022, Vol.1 Rev.1, (2014).
- 54 OECD/NEA, "Rod Bundle Heat Transfer (RBHT) Project", <u>https://www.oecd-nea.org/jcms/pl_25253/rod-bundle-heat-transfer-rbht-project</u> (2023 年 1月 24 日確認)
- 55 J. Kaneko and M. Sekine, "SIMULATION ON THE OECD/NEA RBHT REFLOOD OPEN TEST BENCHMARK USING TRACE AND COBRA-TF", Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Virtual Meeting, 2022.
- B.R. Lowery, M.K. Hanson, G.R. Garrett, D.J. Miller, T. Almudhhi, F.B. Cheung, S.M. Bajorek, K. Tien and C.L. Hoxie, "BENCHMARK DATA ON REFLOOD TRANSIENTS MEASURED USING THE NRC-PSU ROD BUNDLE HEAT TRANSFER (RBHT) TEST FACILITY", Proceedings of 19th International Topical Meeting on Nuclear Reactor Thermal Hydraulics (NURETH-19), Virtual Meeting, 2022.
- 57 N. Tsukamoto, "Study on modeling of spray cooling for spent fuel pool accidents", Journal

of Nuclear Science and Technology, Vol. 56, No. 11, pp.945-952, 2019.

- 58 EG&G Idaho, Inc., "International Standard Problem 13 (LOFT Experiment L2-5) Final Comparison Report", NUREG/CR-4115 EGG-2369, 1984.
- 59 国立研究開発法人日本原子力研究開発機構、「平成 29 年度原子力施設等防災対策 等委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、平成 30 年
- 60 国立研究開発法人日本原子力研究開発機構、「平成 30 年度原子力施設等防災対策等委託費(軽水炉の事故時熱流動調査)事業に関する報告書」、平成 31 年
- 61 濱口義兼、出井千善、久保光太郎、上田治明、城島洋紀、川口秀雄、西小野華乃子、
 伊東智道、下崎敬明、「規制への PRA の活用のための手法開発及び適用に関する
 研究」、RREP-2022-2002、令和4年
- 62 関西電力株式会社、「美浜発電所 1,2 号炉の廃止措置計画変更申請について(審査 会合における指摘事項の回答)」、第 8 回実用発電用原子炉施設の廃止措置計画に 係る審査会合 資料 3-1、令和元年
 https://www.da.nra.go.jp/file/NR000066958/000281742.pdf(2023 年 3 月 9 日確認)
- 63 S. Kim, D.E. Kim, S.U, Ryu, S.T. Lee and D.J. Euh, "Experimental investigation on the natural convection flow in pool boiling", Nuclear Engineering and Design, Vol. 280, pp.349-361, 2014.
- 64 関根将史、古谷正裕、「加熱源出力及び配置が水プール内の温度成層化過程に与える影響」、日本機械学会 2022 年度年次大会、令和4年
- 65 M. Sekine and M. Furuya, "Development of measurement method for temperature and velocity field with optical fiber sensor", Sensors, Vol. 23, Issue 3, 1627, 2023.
- 66 小西秀雄、江口裕、関根将史、「GOTHIC コードによる BWR 事故時の圧力抑制室 挙動解析」、日本原子力学会 2020 年春の年会 1K01、令和 2 年
- 67 東京電力株式会社、「福島原子力事故発生後の詳細な進展メカニズムに関する未確
 認・未解明事項の調査・検討結果のご報告~第4回~」、平成27年
 https://www.tepco.co.jp/decommission/information/accident_unconfirmed/pdf/2015/1512
 https://www.tepco.co.jp/decommission/information/accident_unconfirmed/pdf/2015/1512
 https://www.tepco.co.jp/decommission/information/accident_unconfirmed/pdf/2015/1512
- 68 GOTHIC ホームページ (Numerical Advisory Solutions 社) https://www.numerical.com/software/gothic/ (2023 年 1 月 24 日確認)
- B. J. Patterson, "Mark I Containment Program, Monticello T-Quencher Thermal Mixing Test, Final Report", NEDO-24542, August 1979.
- 70 EPRI, "Fukushima Technical Evaluation, Phase2 -Revised GOTHIC Analysis", 3002005295, 2015.
- 71 OECD/NEA, "BEMUSE Phase VI report: Simulation of a LB-LOCA in ZION Nuclear Power Plant", NEA/CSNI/R(2011)4, 2011.
- 72 金子順一、塚本直史、「原子炉システム解析コード AMAGI の解析機能と開発状況」、

日本原子力学会和文論文誌、19卷、3号、pp.167-177、令和2年

- B. E. Boyack and G. E. Wilson, "Lessons Learned in Obtaining Efficient and Sufficient Applications of the PIRT Process," ANS International Meeting on Updates in Best Estimate Methods in Nuclear Installation Safety Analysis (BE-2004), Washington, D.C., Nov.14-18, 2004, 222-230, 2004.
- 74 U. S. Nuclear Regulatory Commission, "TRACE ASSESSMENT MANUAL Appendix B: Sperate Effects Tests".
- 75 R.T. Lahey et al., The Thermal-hydraulics of a Boiling Water Nuclear Reactor, ANS.
- B. Neykov et al., "NUPEC BWR Full-size Fine-mesh Bundle Test (BFBT) Benchmark", NEA/NSC/DOC(2005)5, 2005.
- 77 財団法人原子力発電技術機構、燃料集合体信頼性実証試験、1989年~2000年
- A. Rubin et al., "OECD/NRC Benchmark based on NUPEC PWR Subchannel and Bundle Tests (PSBT)", NEA/NSC/DOC(2010)1, 2010.
- B.R. Bandini et al., "A new assessment of the large-tank GE swell problem using RELAP5-3D", 2002 RELAP5 Users Seminar, September 2002.
- 80 T.M. Anklam, R.J. Miller and M.D. White, "Experimental Investigations of Uncovered-Bundle Heat Transfer and Two-Phase Mixture-Level Swell Under High-Pressure Low Heat-Flux Conditions", NUREG/CR-2456, ORNL-5848, March 1982.
- U. S. Nuclear Regulatory Commission, "Rod Bundle Heat Transfer Facility Two-Phase Mixture Level Swell and Uncovery Test Experiments Data Report", NUREG/CR-7218, 2016.
- H. Christensen, Power-to-Void Transfer Functions, Argonne national laboratory, ANL-6385, 1961.
- 83 O.M Zeitoun, "Subcooled Flow Boiling Condensation", McMaster University, Ph.D Thesis, 1994.
- 84 U.S. Atomic Energy Commission, "Steam Separation Technology Under the Euratom Program TOPICAL REPORT - Part I: Primary Separation of Steam from Water by Natural Separation", Joint US/Euroatom R&D Program at (11-1)-1186, Allis-Chalmers, Atomic Energy Division, Milwaukee, Wisconsin, April 15, 1965.
- A. Satou, Y. Wada, Y. Sibamoto and T. Yonomoto, "Study on Dryout and Rewetting during Accidents including ATWS for the BWR at JAEA", Nuclear Engineering and Design, Vol. 354, 110164, 2019.
- C. B. Mullins, et. al., "ORNL Rod Bundle Heat Transfer Test Data Volume 7. Thermal-Hydraulic Test Facility Experimental Data Report for Test 3.07.9 – Steady-State Film Boiling in Upflow", NUREG/CR-2525, Vol. 7, ORNL/NUREG/TM-407/V7, 1982.
- 87 Loftus, M.J. et al., "PWR FLECHT SEASET Unblocked Bundle, Forced and Gravity 146

Reflood Task Data Report", Vol. 1 and 2, NUREG/CR-1532, June 1980.

- 88 U. S. Nuclear Regulatory Commission, "RBHT Reflood Heat Transfer Experiments Data and Analysis", NUREG/CR-6980, 2012.
- 89 U. S. Nuclear Regulatory Commission, "Rod Bundle Heat Transfer Facility Steam Cooling with Droplet Injection Experiments Data Report", NUREG/CR-7192, 2015.
- U. S. Nuclear Regulatory Commission, "Rod Bundle Heat Transfer Facility Steady-State
 Steam Cooling Experiments", NUREG/CR-7152, 2014.
- 91 Nilsson, L., L. Gustafson and R. Harju, "Experimental Investigation of Cooling by Top Spray and Bottom Flooding of a Simulated 64 Rod Bundle for a BWR", STUDSVIC/RL-78/59, 1978.
- 92 S. G. Bankoff, R. S. Tankin, M. C. Yuen and C. L. Hsieh, "Countercurrent Flow of Air/Water and Steam/Water Through a Horizontal Perforated Plate", Int. J. Heat Mass Transfer, 24, 8, 1381-1395, 1981.
- 93 U. S. Nuclear Regulatory Commission, "The Marviken Full Scale Critical Flow Tests Summary Report", NUREG/CR-2671, 1982.
- 94 R. C. Howard, L. E. Hochreiter, "PWR FLECHT SEASET Steam Generator Separate Effects Task data Analysis and Evaluation Report, NRC/EPRI/Westinghouse Report No. 9", NUREG/CR-1534, 1982.
- 95 USNRC, "Acceptance Criteria for Emergency Core Cooling Systems for Light Water-Cooled Nuclear Power Reactors", Federal Register, 39FR1001, January 4, 1974.
- 96 USNRC, "Acceptance criteria for emergency core cooling systems (ECCS) in light water nuclear reactors (10CFR 50.46)," Appendix K to Part 50 "ECCS Evaluation Models", Federal Register, 43FR57157, December 6, 1978.
- 97 USNRC, "Emergency Core Cooling Systems; Revisions to Acceptance Criteria", Federal Register, 53FR35996, August 16, 1988.
- 98 USNRC," Transient and Accident Analysis Methods", Federal Register, Reg. Guide 1.203, December, 2005.
- 99 USNRC," Best-Estimate Calculations of Emergency Core Cooling System Performance", Reg. Guide 1.157, August 16, 1989.
- Bajorek, S. M., et al., "Code Qualification Document for Best Estimate LOCA Analysis",
 WCAP-12945-P-A, Volume 1, Revision 2, and Volumes 2 through 5, Revision 1, and
 WCAP-14747 (Non-Proprietary), March 1998.
- 101 Dederer, S. I., et al., "Application of Best Estimate Large Break LOCA Methodology to Westinghouse PWRs with Upper Plenum Injection", WCAP-14449-P-A, Revision 1, 1999.
- 102 M. E. Nissley, C. Frepoli, K. Ohkawa and K. Muftuoglu, "Realistic large-break LOCA evaluation methodology using the automated statistical treatment of uncertainty method

(ASTRUM)", WCAP-16009-NP, 2003.

- 103 Westinghouse Electric Company, "Realistic LOCA Evaluation Methodology Applied to Full Spectrum of Break Sizes (FULL SPECTRUM LOCA Methodology)", WCAP-16996-NP-A, 2016.
- B. E. Boyack, R. B. Duffey, P. Griffith, et al., "Quantifying Reactor Safety Margins", NUREG/CR-5249, December 1989.
- 105 AREVA, "Realistic Large Break LOCA Methodology for Pressurized Water Reactors", EMF-2103NP Rev.3, September, 2013.
- 106 GE Hitachi Nuclear Energy, "MFN 09-589, Licensing Topical Report NEDO-33083, TRACG Application for ESBWR Transient Analysis Supplement 3, Revision 1, Non-Proprietary Version", NEDE-33083NP, Supplement 3, Revision 1, October 6, 2009.
- 107 USNRC, "Safety Evaluation for the TRACG Application for ESBWR Transient Analysis
 NEDE-33083P, Supplement 3, Revision 1", Safety Evaluation Report for NEDE-33083P,
 Supplement 3, Revision 1, September 14, 2010.
- Letter from J.C. Kinsey (GE) to NRC, "Response to Portion of NRC Request for Additional Information Letter No. 116 – Related to ESBWR Design Certification Application – RAI Numbers 21.6-63 S01 and 21.6-65 S02", MFN 08-124, February 15, 2008.
- 109 Letter from J.C. Kinsey to NRC, "Response to Portion of NRC Request for Additional Information Letter No. 106 – Related to ESBWR Design Certification Application – RAI Number 21.6-65 Supplement 1", MFN 08-340, April, 2008.
- 110 X. Wu, "Metamodel-based inverse uncertainty quantification of nuclear reactor simulations under the Bayesian framework", University of Illinois, Ph.D Thesis, 2017.
- 111 江口裕、塚本直史、「PWR サンプスクリーン及び BWR ECCS ストレーナの下流側
 影響に関する米国規制活動の調査」、NTEN-2022-1001、令和4年
- 112 原子力規制庁技術基盤グループシビアアクシデント研究部門、「1,2 号機 SGTS 配
 管内汚染の分析」、第 32 回東京電力福島第一原子力発電所における事故の分析に
 係る検討会 資料3、令和4年

<u>https://www.nra.go.jp/data/000408673.pdf</u> (2023 年 1 月 24 日確認)

 113 東京電力福島第一原子力発電所における事故の分析に係る検討会、「東京電力福島
 第一原子力発電所事故の調査・分析に係る中間取りまとめ(2023年版)」、令和 5年

執筆者一覧

- 原子力規制庁 長官官房 技術基盤グループ シビアアクシデント研究部門
 - 塚本 直史 主任技術研究調查官
 - 金子 順一 主任技術研究調查官
 - 関根 将史 技術研究調查官
 - 小野 寛 技術参与
 - 增原 康博 技術参与
- 原子力規制庁 長官官房 技術基盤グループ システム安全研究部門
 - 江口 裕 主任技術研究調查官