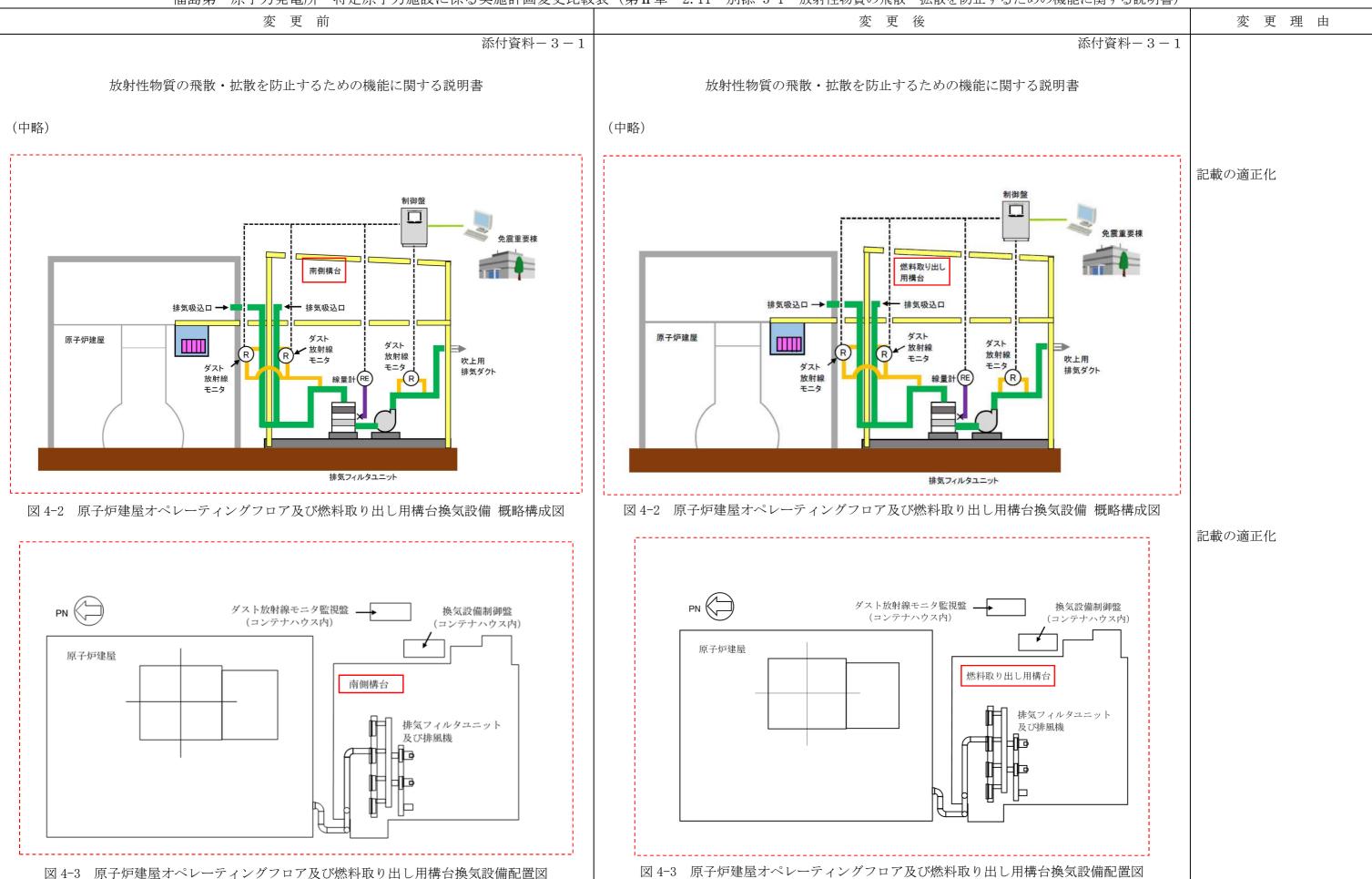
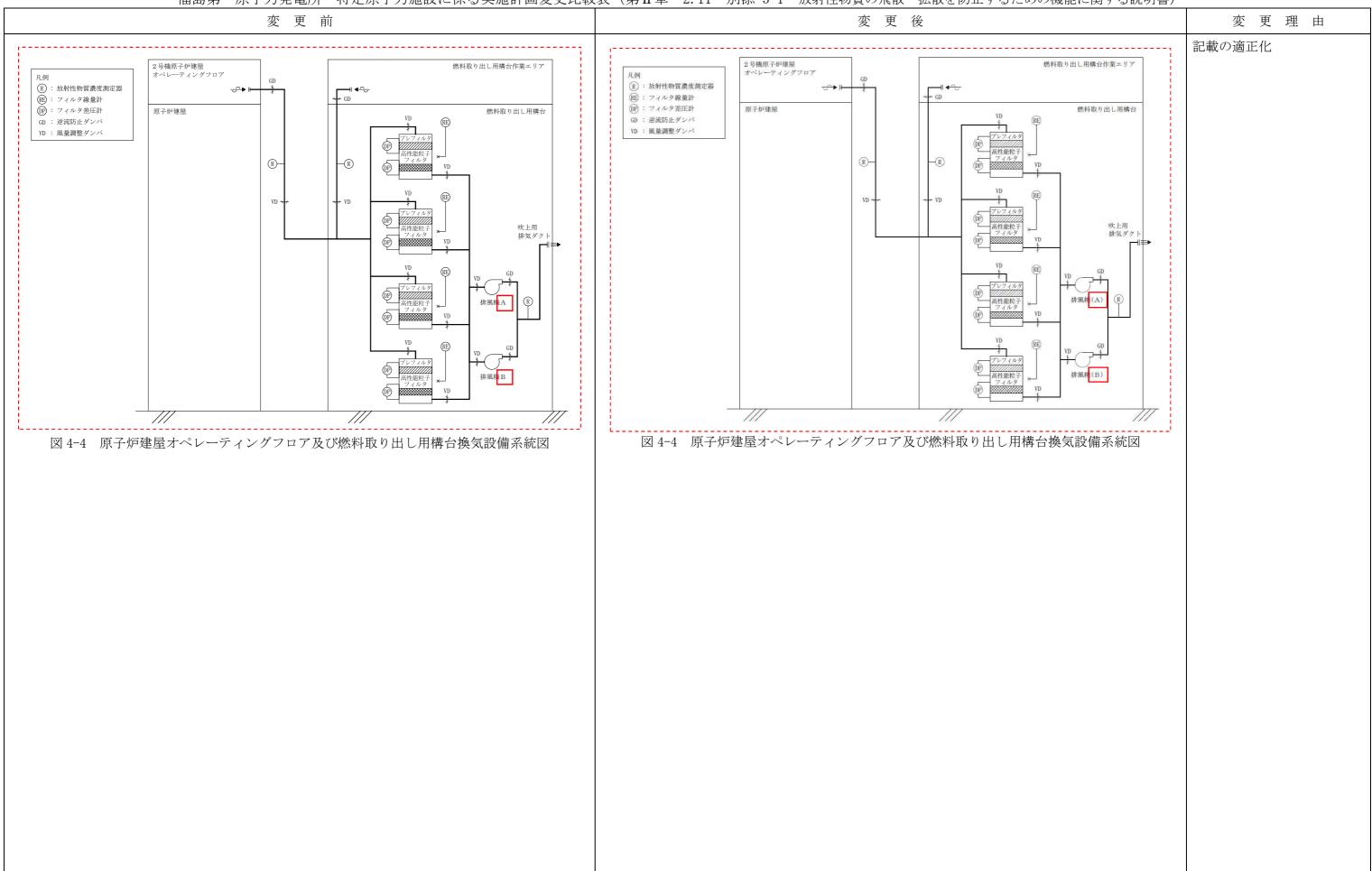
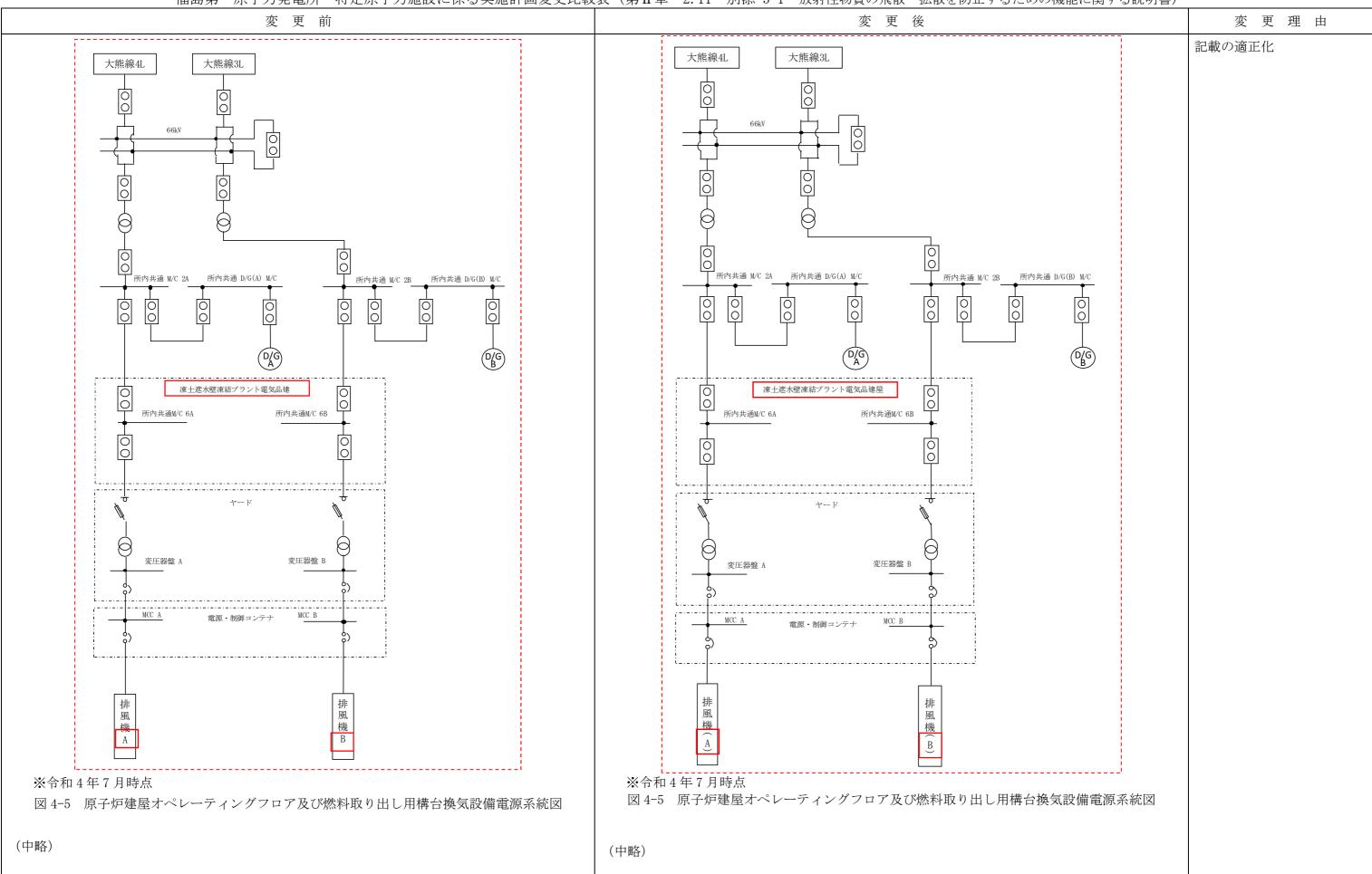
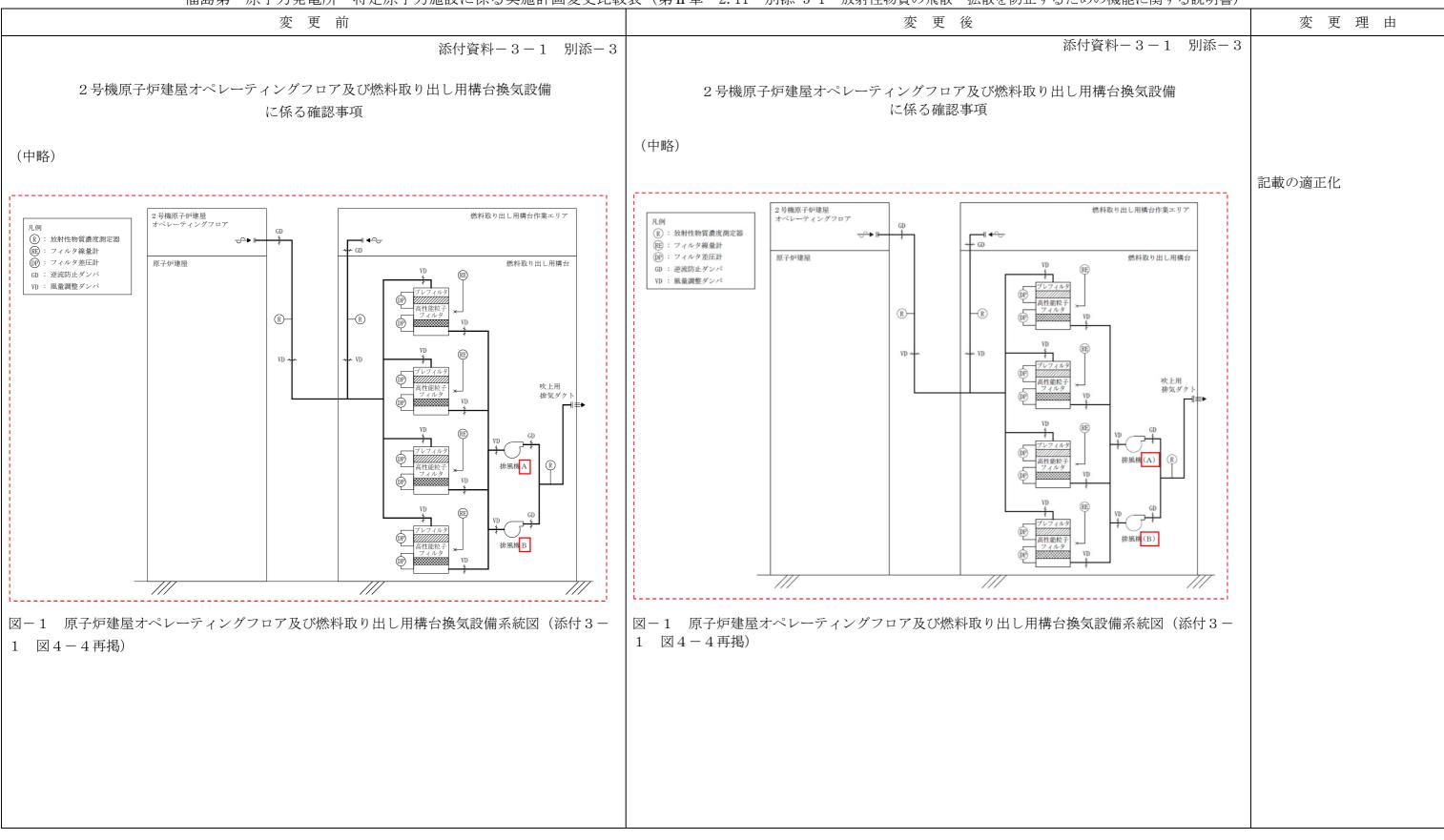
福島第一原子力発電所 特定原子力施設に係る実施	西計画変更比較表(第Ⅱ章 2.11 使用済燃料プールからの燃料取り出し設備)	
変更前	変更後	変更理由
2.11 使用済燃料プールからの燃料取り出し設備 2.11.1 基本設計 2.11.1.1 設置の目的 使用済燃料プールからの燃料取り出しは、燃料取り出し用カバー <u>(又はコンテナ)</u> の設置による作業環境の整備、燃料等を取り扱う燃料取扱設備の設置を行い、燃料を使用済燃料プール内の使用済燃料貯蔵ラックから取り出し原子炉建屋から搬出することを目的とする。使用済燃料プールからの燃料取り出し設備は、燃料取扱設備、構内用輸送容器、燃料取り出し用カバーで構成される。燃料取扱設備は、燃料取扱機、クレーンで構成され、燃料取り出し用カバーにより支持される。なお、燃料の原子炉建屋外への搬出には、構内用輸送容器を使用する。また、クレーンはオペレーティングフロア上での資機材運搬や揚重等にも使用する。	2.11 使用済燃料プールからの燃料取り出し設備 2.11.1 基本設計 2.11.1.1 設置の目的 使用済燃料プールからの燃料取り出しは、燃料取り出し用カバー <u>(構台及び換気設備含む)</u> の設置による作業環境の整備、燃料等を取り扱う燃料取扱設備の設置を行い、燃料を使用済燃料プール内の使用済燃料貯蔵ラックから取り出し原子炉建屋から搬出することを目的とする。使用済燃料プールからの燃料取り出し設備 <u>(以下,「燃料取り出し設備」という。)</u> は、燃料取扱設備、構内用輸送容器、燃料取り出し用カバーで構成される。燃料取扱設備は、燃料取扱機、クレーンで構成され、燃料取り出し用カバーにより支持される。なお、燃料の原子炉建屋外への搬出には、構内用輸送容器を使用する。また、クレーンはオペレーティングフロア上での資機材運搬や揚重等にも使用する。	記載の適正化記載の適正化
(中略)	(中略)	
2.11.1.3 設計方針 (現行記載なし)	2.11.1.3 設計方針 燃料取り出し設備は、「特定原子力施設への指定に際し東京電力株式会社福島第一原子力発電所に対して求める措置を講ずべき事項について(平成24年11月7日原子力規制委員会決定。以下、「措置を講ずべき事項」という。)」等の規制基準を満たす設計とする。 その上で、燃料取り出し設備の設計において特に留意すべき点は、以下のとおり。	「措置を講ずべき事項」への適 合性を示すため
(中略)	(中略)	
(3)燃料取り出し用カバー	(3)燃料取り出し用カバー	
(中略)	(中略)	
b. 放射性物質の飛散・拡散防止 燃料取り出し用カバーは、 <mark>隙間を低減するとともに</mark> 、換気設備を設け、排気はフィルタユニットを 通じて大気へ放出することにより、カバー内の放射性物質の大気への放出 <mark>を抑制できる設計とす る。</mark>	b. 放射性物質の飛散・拡散防止 燃料取り出し用カバーは、 <u>原子炉建屋から大気への開放部分を低減するとともに</u> 、換気設備を設け、 排気はフィルタユニットを通じて大気へ放出することにより、カバー内の放射性物質の大気への放 出 <u>を抑制し、敷地周辺の線量への影響を達成できる限り低減できる設計とする。</u>	記載の適正化記載の適正化
<u>(現行記載なし)</u>	(4)大型カバー(燃料取り出し用カバー) 大型カバーは、その必要な安全機能について、十分に高い信頼性を確保し、かつ、維持し得る設計とする。 大型カバーは、その健全性及び能力を確認するため、適切な方法により、その必要な安全機能を検査ができる設計とする。	大型カバーの設置に伴い新規 記載

変更前	施計画変更比較表(第Ⅱ章 2.11 使用済燃料プールからの燃料取り出し設備) 変 更 後	変更理由
2.11.1.6 自然災害対策等	2.11.1.6 自然災害対策等	
(中略)	(中略)	
(4) 火災 燃料取り出し用カバー及び燃料取り出し用カバー内外の主要構成機器は不燃性のものを使用し、電源 盤については不燃性又は難燃性、ケーブルについては難燃性のものを可能な限り使用し、火災が発生することを防止する。火災の発生が考えられる箇所について、火災の早期検知に努めるとともに、消火器 を設置することで初期消火活動を可能にし、火災により安全性を損なうことのないようにする。	盤については不燃性又は難燃性、ケーブルについては難燃性のものを可能な限り使用し、火災が発生す	記載の適正化 記載の適正化
(中略)	(中略)	
2.11.1.8 構造強度及び耐震性	2.11.1.8 構造強度及び耐震性	
(中略)	(中略)	
(2) 耐震性	(2) 耐震性	
(中略)	(中略)	
	b. 燃料取り出し用カバー 燃料取り出し用カバーは、2021年9月8日及び2022年11月16日の原子力規制委員会で示された耐震設計の考え方を踏まえ、その安全機能の重要度、地震によって機能の喪失を起こした場合の安全上の影響(公衆への被ばく影響)や廃炉活動への影響等を考慮した上で、核燃料物質を非密封で扱う燃料加工施設や使用施設等における耐震クラス分類を参考にして適切な耐震設計上の区分を行うとともに、適切と考えられる設計用地震力に十分耐えられる設計とする。 ただし、2021年9月8日以前に認可された設備については、「発電用原子炉施設に関する耐震設計審査指針」を参考にして耐震クラスを分類している。	制委員会で耐震設計の考え方 が示されたことによる記載の

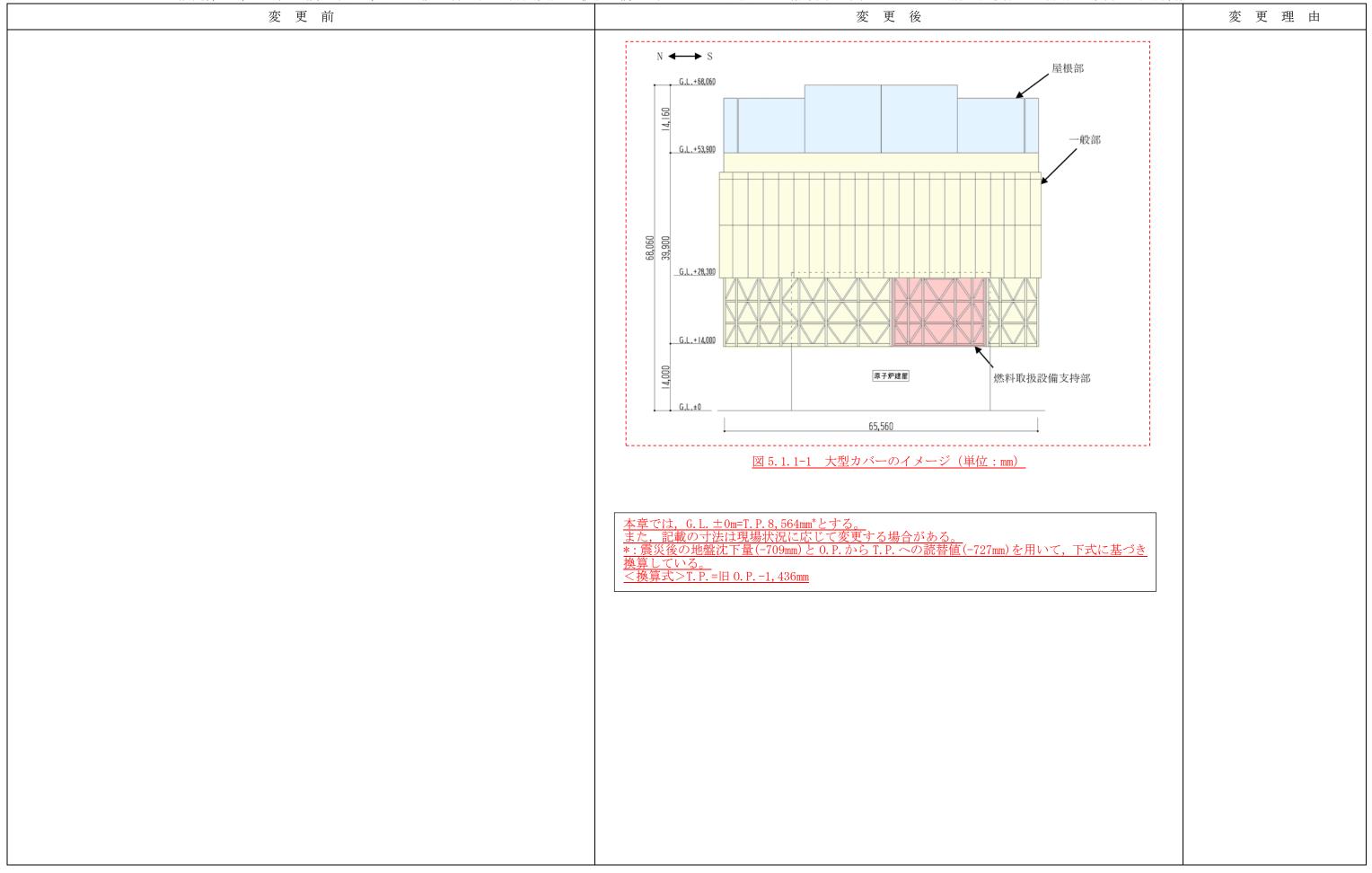

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表 (第Ⅱ章 2.11 使用済燃料プールからの燃料取り出し設備)

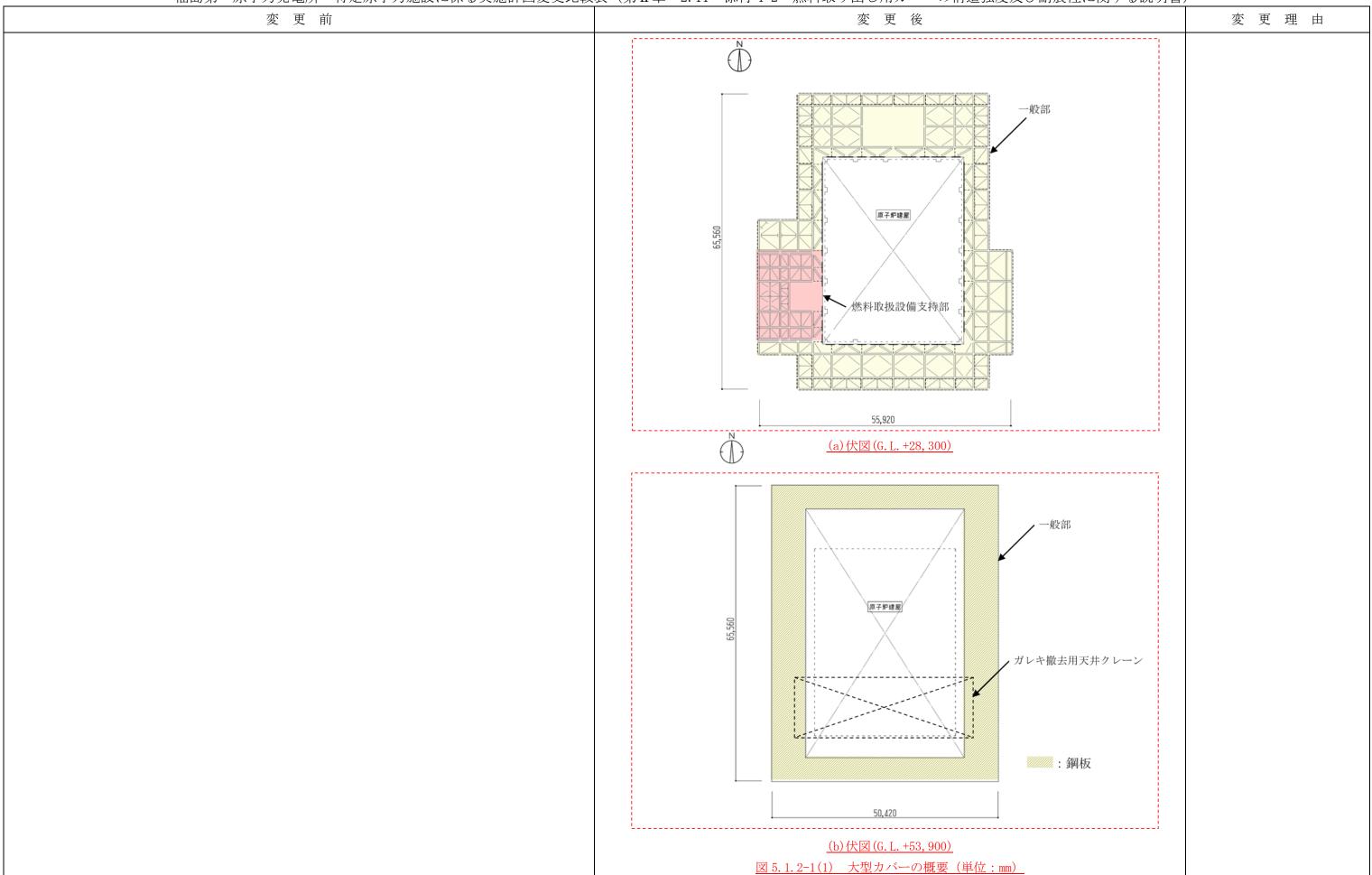

変更前	施計画変更比較表 (第Ⅱ章 2.11 使用済燃料プールからの燃料取り出し設備) 変 更 後	変更理由
2.11.2 基本仕様	2.11.2 基本仕様	
2.11.2.1主要仕様	2. 11. 2. 1主要仕様	
(中略)	(中略)	
(3) 燃料取り出し用カバー(換気設備含む)	(3) 燃料取り出し用カバー (<mark>構台及び</mark> 換気設備含む)	記載の適正化
(中略)	(中略)	
(1号機)	(1号機)	
(現行記載なし)	a. 大型カバー種類 鉄骨造寸法 約 66m (南北) ×約 56m (東西) ×約 68m (地上高)(作業環境整備区画)約 66m (南北) ×約 56m (東西) ×約 40m (オペレーティングフロア上部高さ)個数 1 個	大型カバーの設置に伴い新規 記載
<u>a</u> . 排風機	<u>b</u> . 排風機	大型カバー追記に伴う記載の 適正化
(中略)	(中略)	
<u>b</u> . プレフィルタ(排気フィルタユニット)	<u>c</u> . プレフィルタ (排気フィルタユニット)	
(中略)	(中略)	
<u>c</u> . 高性能粒子フィルタ (排気フィルタユニット)	<u>d</u> . 高性能粒子フィルタ (排気フィルタユニット)	
(中略)	(中略)	
d. 放射性物質濃度測定器(排気フィルタユニット出入口) (中略)	e. 放射性物質濃度測定器(排気フィルタユニット出入口) (中略)	
<u>e</u> . ダクト (中略)	<u>f</u> . ダクト (中略)	

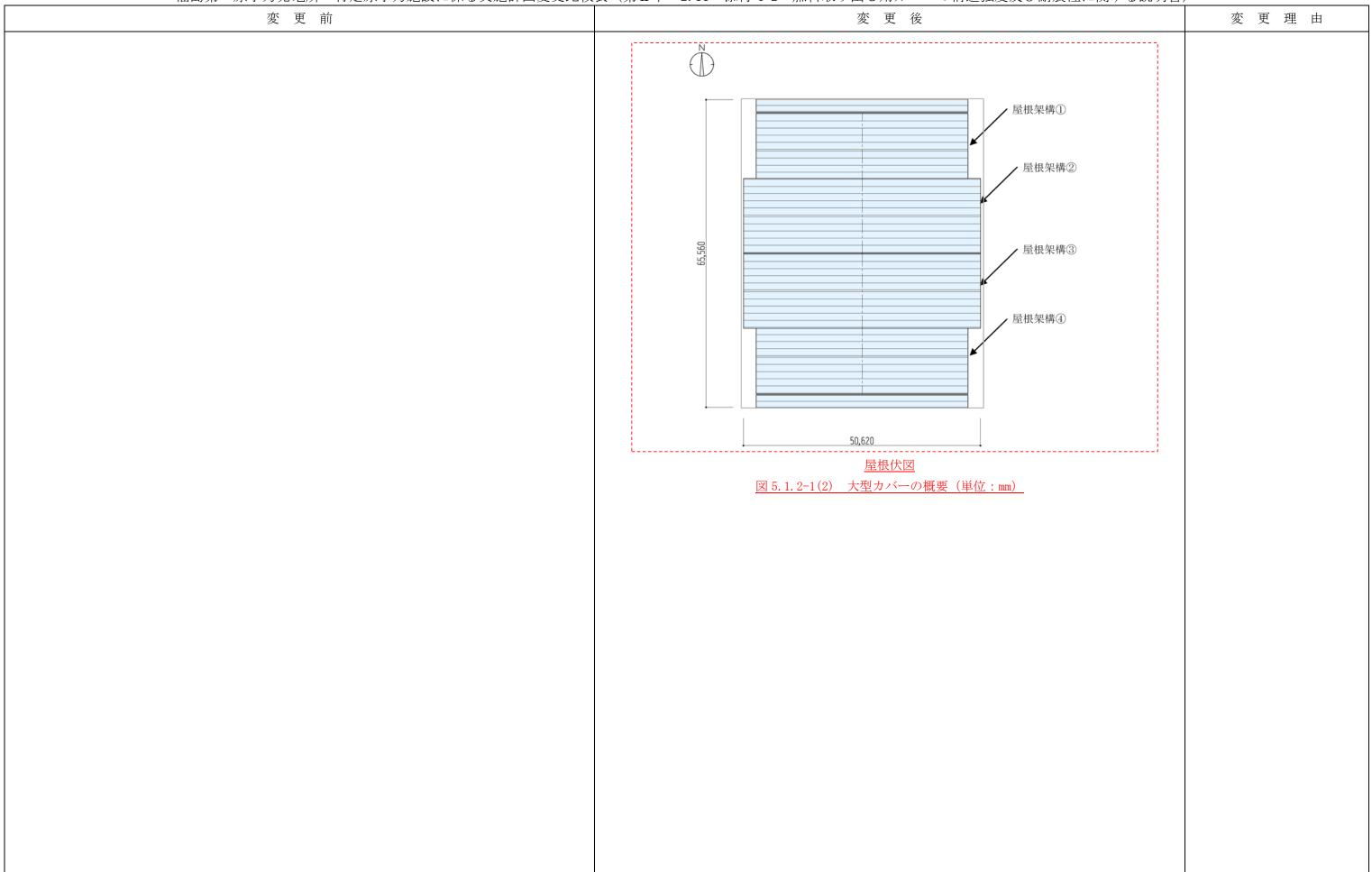

11.3 添付資料 添付資料-1 燃料取扱設備の設計等に関する説明書 添付資料-1-1 燃料の落下防止, 臨界防止に関する説明書**1 添付資料-1-2 放射線モニタリングに関する説明書**1 添付資料-1-3 燃料の健全性確認及び取り扱いに関する説明書**2 添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書**2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書**2 添付資料-2-3 構内輸送時の措置に関する説明書**2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下**1 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書	2.11.3 添付資料 添付資料-1 燃料取扱設備の設計等に関する説明書 添付資料-1-1 燃料の落下防止, 臨界防止に関する説明書**1 添付資料-1-2 放射線モニタリングに関する説明書**1 添付資料-1-3 燃料の健全性確認及び取り扱いに関する説明書**2 添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書**2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書**2 添付資料-2-3 構内輸送時の措置に関する説明書**2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書 添付資料-4-3 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	大型カバー設置に伴う,記載の 適正化
添付資料-1 燃料取扱設備の設計等に関する説明書 添付資料-1-1 燃料の落下防止, 臨界防止に関する説明書*1 添付資料-1-2 放射線モニタリングに関する説明書*1 添付資料-1-3 燃料の健全性確認及び取り扱いに関する説明書*2 添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-3 構内輸送時の措置に関する説明書*2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-1 燃料取扱設備の設計等に関する説明書 添付資料-1-1 燃料の落下防止、臨界防止に関する説明書*1 添付資料-1-2 放射線モニタリングに関する説明書*1 添付資料-1-3 燃料の健全性確認及び取り扱いに関する説明書*2 添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-3 構内輸送時の措置に関する説明書*2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書*1 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-1-1 燃料の落下防止,臨界防止に関する説明書*1 添付資料-1-2 放射線モニタリングに関する説明書*1 添付資料-1-3 燃料の健全性確認及び取り扱いに関する説明書*2 添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-3 構内輸送時の措置に関する説明書*2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-1-1 燃料の落下防止,臨界防止に関する説明書*1 添付資料-1-2 放射線モニタリングに関する説明書*1 添付資料-1-3 燃料の健全性確認及び取り扱いに関する説明書*2 添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-3 構内輸送時の措置に関する説明書*2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書*1 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-1-2 放射線モニタリングに関する説明書** ¹ 添付資料-1-3 燃料の健全性確認及び取り扱いに関する説明書** ² 添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書** ² 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書** ² 添付資料-2-3 構内輸送時の措置に関する説明書** ² 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下* ¹ 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-1-2 放射線モニタリングに関する説明書**1 添付資料-1-3 燃料の健全性確認及び取り扱いに関する説明書**2 添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書**2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書**2 添付資料-2-3 構内輸送時の措置に関する説明書**2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下**1 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書**1 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
派付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書 ^{※2} 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書 ^{※2} 添付資料-2-3 構内輸送時の措置に関する説明書 ^{※2} 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下 ^{※1} 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-2 構内用輸送容器の設計等に関する説明書 添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書*1 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書*2 添付資料-2-3 構内輸送時の措置に関する説明書*2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-2-1 構内用輸送容器に係る安全機能及び構造強度に関する説明書**2 添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書**2 添付資料-2-3 構内輸送時の措置に関する説明書**2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下**1 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書**1 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書 ^{※2} 添付資料-2-3 構内輸送時の措置に関する説明書 ^{※2} 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下 ^{※1} 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-2-2 破損燃料用輸送容器に係る安全機能及び構造強度に関する説明書**2 添付資料-2-3 構内輸送時の措置に関する説明書**2 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下**1 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書**1 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-2-3 構内輸送時の措置に関する説明書 ^{※2} 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下 ^{※1} 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-2-3 構内輸送時の措置に関する説明書** ² 添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下** ¹ 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書* ¹ 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-3 燃料取り出し用カバーの設計等に関する説明書 添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書 添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書*1 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書添付資料-3-2 がれき撤去等の手順に関する説明書添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-3-1 放射性物質の飛散・拡散を防止するための機能に関する説明書添付資料-3-2 がれき撤去等の手順に関する説明書添付資料-3-3 移送操作中の燃料集合体の落下 ^{※1} 添付資料-4 構造強度及び耐震性に関する説明書添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書 ^{※1} 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下 ^{※1} 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-3-2 がれき撤去等の手順に関する説明書 添付資料-3-3 移送操作中の燃料集合体の落下 ^{※1} 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書 ^{※1} 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書	添付資料-3-3 移送操作中の燃料集合体の落下*1 添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書*1 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付資料-4 構造強度及び耐震性に関する説明書	添付資料-4 構造強度及び耐震性に関する説明書 添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書 ^{※1} 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
	添付資料-4-1 燃料取扱設備の構造強度及び耐震性に関する説明書*1 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	
添付容料-4-1 燃料取扱設備の構造強度及び耐雲性に関する説明書※!	添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	適正化
が17 頁 1		i
添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書 <u>*1</u>	添付資料-4-3 燃料取り出し用カバー換気設備の構造強度及び耐震性に関する説明書	換気設備は申請済みのため
添付資料-4-3 燃料取り出し用カバー換気設備の構造強度及び耐震性に関する説明書 <mark>2</mark>		載の適正化
添付資料-5 使用済燃料プールからの燃料取り出し工程表 ^{※1}	添付資料-5 使用済燃料プールからの燃料取り出し工程表 ^{※1}	戦 ジ) 直 北 1 に
添付資料-6 福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書	添付資料-6 福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書	
系付資料-7 福島第一原子力発電所第1号機原子炉建屋カバー解体について	添付資料-7 福島第一原子力発電所第1号機原子炉建屋カバー解体について	
添付資料-8 福島第一原子力発電所第1·2号機原子炉建屋作業エリア整備に伴う干	添付資料-8 福島第一原子力発電所第1・2号機原子炉建屋作業エリア整備に伴う干	
渉物解体撤去について	渉物解体撤去について	
添付資料-9 福島第一原子力発電所第2号機原子炉建屋西側外壁の開口設置について	添付資料-9 福島第一原子力発電所第2号機原子炉建屋西側外壁の開口設置について	
添付資料-10 福島第一原子力発電所1号機原子炉建屋オペレーティングフロアのガ レキの撤去について	添付資料-10 福島第一原子力発電所1号機原子炉建屋オペレーティングフロアのガレキの撤去について	
添付資料-10-1 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア 北側のガレキの撤去について	添付資料-10-1 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア 北側のガレキの撤去について	
添付資料-10-2 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア 中央および南側のガレキの一部撤去について	添付資料-10-2 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア 中央および南側のガレキの一部撤去について	
添付資料−10−3 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア	添付資料-10-3 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア	
外周鉄骨の一部撤去について 添付資料-10-4 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア	外周鉄骨の一部撤去について 添付資料-10-4 福島第一原子力発電所1号機原子炉建屋オペレーティングフロア	
床上のガレキの一部撤去について	床上のガレキの一部撤去について	
添付資料-11 福島第一原子力発電所1号機及び2号機非常用ガス処理系配管の一部 撤去について	添付資料-11 福島第一原子力発電所1号機及び2号機非常用ガス処理系配管の一部 撤去について	
※1(2号機,3号機及び4号機を除く)及び※2(3号機及び4号機を除く)の説明書については,別途申請する。	※1(2号機,3号機及び4号機を除く)及び※2(3号機及び4号機を除く)の説明書については、別途申請する。	

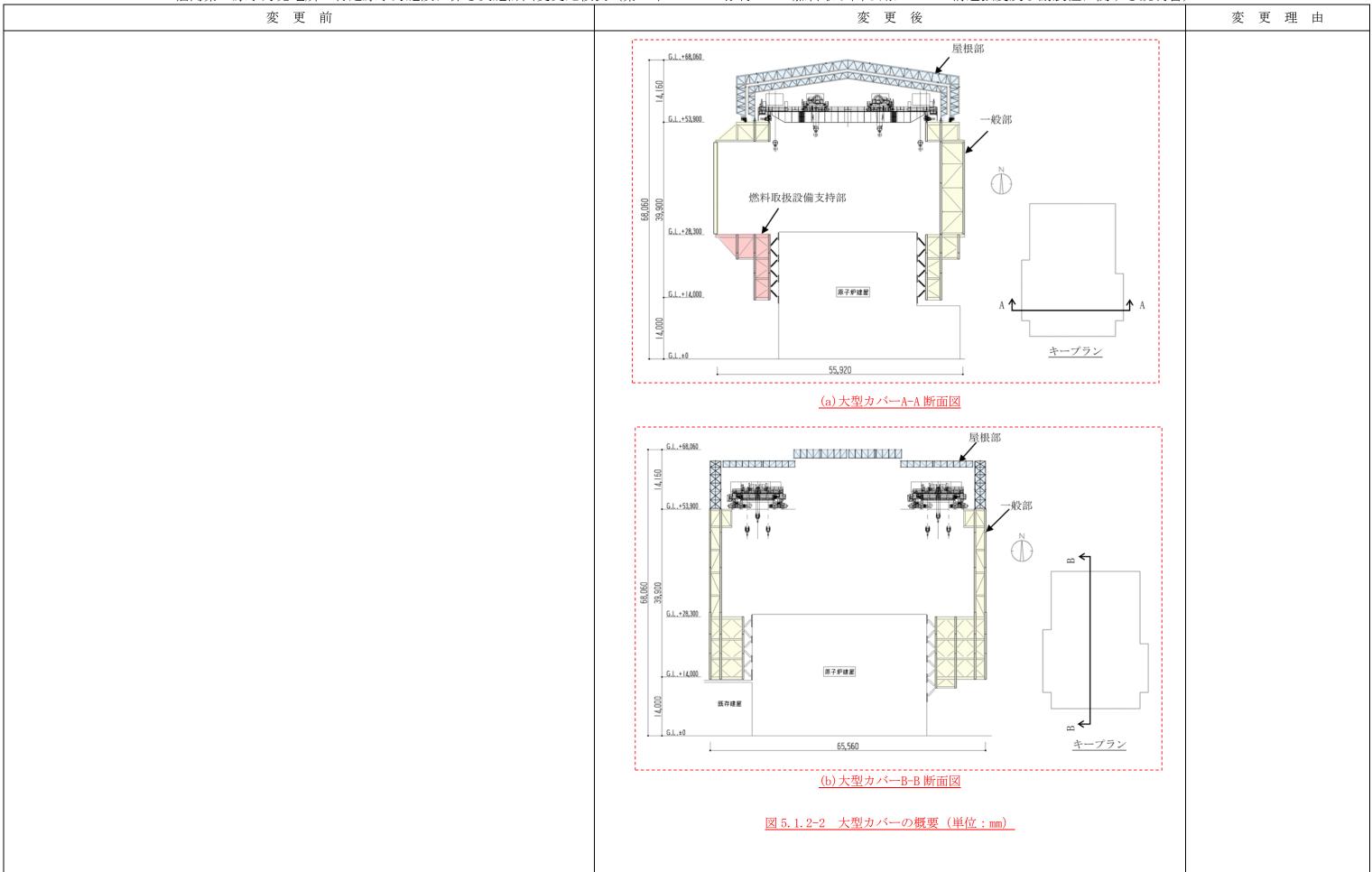

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表 (第Ⅱ章 2.11 添付3 燃料取り出し用カバーの設計等に関する説明書)

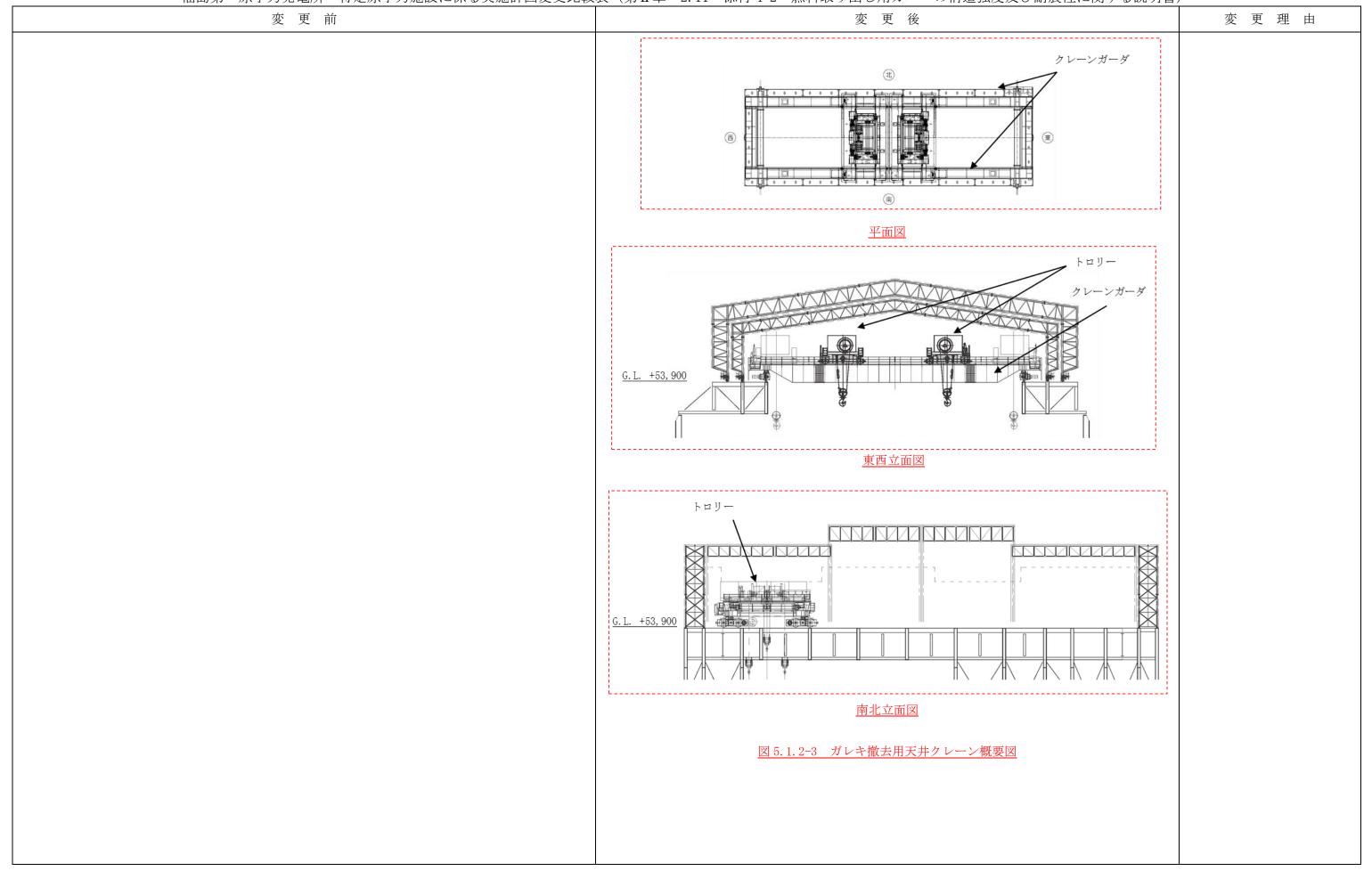
変更前	変更後	変更理由
(現行記載なし)	<u>添付資料—3</u>	
	燃料取り出し用カバーの設計等に関する説明書	措置を講ずべき事項への適合 性を示すため追加
	(新規記載)	
	(以下,省略)	

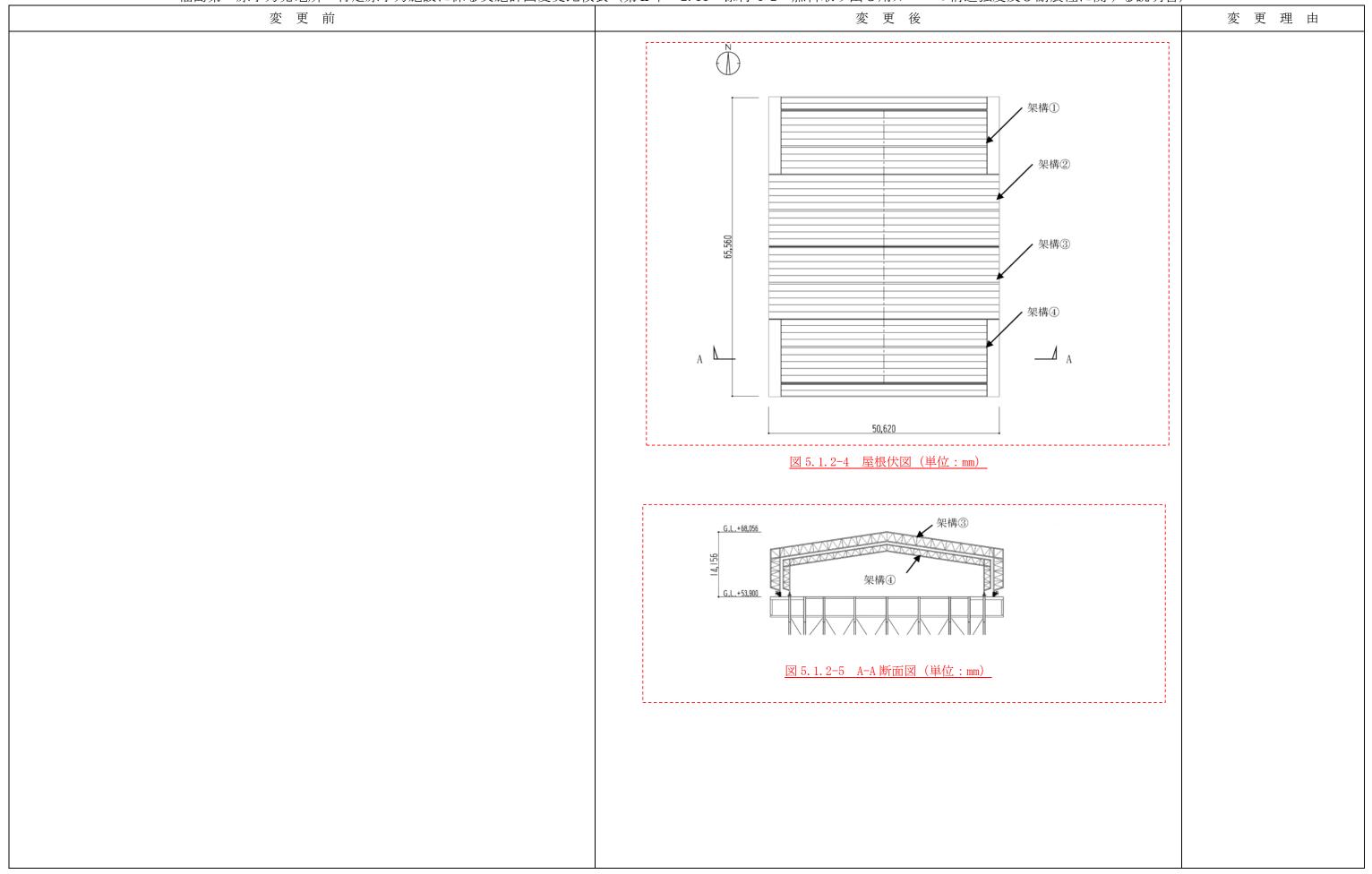


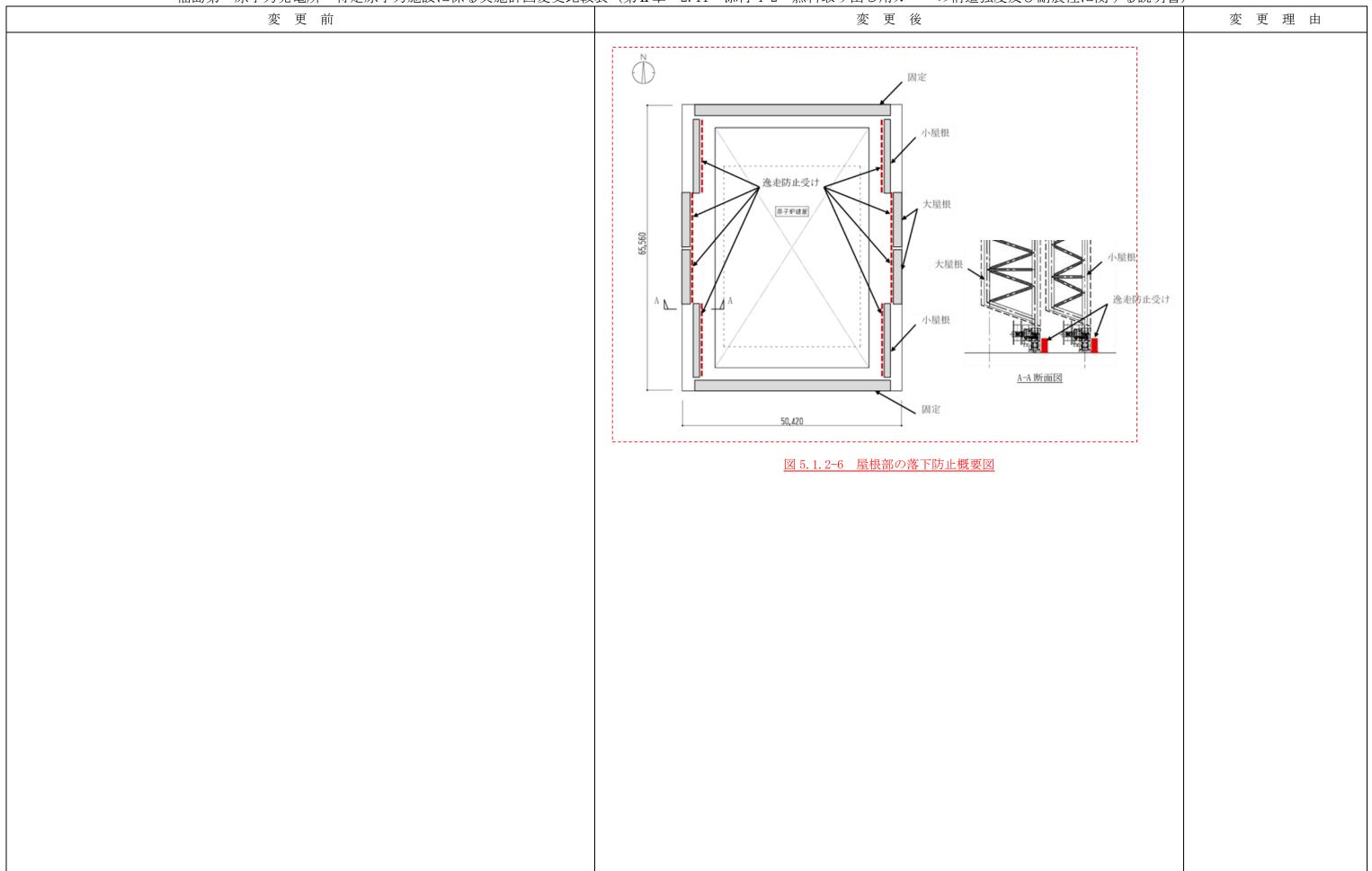

	実施計画変更比較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明	
変 更 前 	変更後	変更理由
燃料取り出し用カバーの構造強度及び耐震性に関する説明書	添付資料-4-2 添付資料-4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書	2
然何以う田し川及び・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	が行政プロンボックト VAIR 国及及及O III 展出に関する配列目	
1. 本説明書の記載範囲	1. 本説明書の記載範囲	大型カバーの設置に伴う記
本説明書は、2号機、3号機及び4号機燃料取り出し用カバーの構造強度及び耐力である。		い の追加
るものである。 <u>なお、2号機、3号機及び4号機以外については、別途申請する。</u>	て記載するものである。	
(中略)	(中略)	
<u>5. 別添</u> 別添-1 福島第一原子力発電所 3号機燃料取り出し用カバーの構造強度及び耐	雲性について(東京	
電力株式会社,平成25年2月21日,特定原子力施設監視·評価検討会		1号機大型カバー設置に伴い
別添-2 福島第一原子力発電所 3号機燃料取り出し用カバーの構造強度及び耐		載位置変更
ント回答)(東京電力株式会社,平成25年3月8日,特定原子力施設監	2.視・評価検討会(第	
6回)資料5) 別添-3 4号機燃料取り出し用カバーに係る確認事項		
別添一4 3号機燃料取り出し用カバーに係る確認事項		
別添-5 3号機原子炉建屋の躯体状況調査結果を反映した使用済燃料プール等の	の耐震安全性評価結	
<u>果</u>		
<u>別添-6 3号機原子炉建屋 遮へい体設置における滑動対策について</u> 別添-7 2号機燃料取り出し用構台に係る確認事項		
<u> 別添 1 2 7 機燃料取り出し用借口に係る確認事項</u> 別添-8 2 号機原子炉建屋 オペレーティングフロア床面に設置する遮蔽体の落	下防止について	
<u> </u>		


変更前	変更後	変更理由
(現行記載なし)	5. 1号機燃料取り出し用カバーの構造強度及び耐震性について	
	<u>5.1 概要</u>	大型カバーの設置に伴い新規
	5.1.1 一般事項	記載
	1 号機燃料取り出し用カバーは、大型カバーと内部カバーから構成されている。ここでは、大型カバ	
	一の構造強度と機能維持及び波及的影響の防止について検討を行う。	
	大型カバーは,原子炉建屋オペレーティングフロアを覆う構造としており,屋根部,一般部及び燃料	
	<u>取扱設備支持部から構成され、オペレーティングフロア上にあるガレキを撤去するガレキ撤去用天井ク</u>	
	レーンを有する。また、大型カバーの燃料取扱設備支持部は燃料取扱設備(燃料取扱機及びクレーン)	
	<u>を支持する。</u>	
	<u>大型カバーおよびガレキ撤去用天井クレーンの耐震クラス分類は,2021 年9月8日及び2022 年11</u>	
	月 16 日の原子力規制委員会で示された耐震設計の考え方を踏まえ、安全機能の重要度、地震によって	
	機能の喪失を起こした場合における公衆への被ばく影響を評価した結果、Cクラスとなる。なお、燃料	
	取扱設備支持部が燃料取扱設備の間接支持構造物であることから、大型カバーに適用する地震力は B+	
	<u>クラス相当とする。</u>	
	大型カバーの構造強度は、B+クラスの設備に要求される静的地震力に対して許容応力度設計を実施	
	し、耐震性のうち機能維持の検討は、基準地震動 Ss(最大加速度 900gal。以下、「Ss900」という。)	
	の 1/2 の最大加速度 450gal の地震動 (以下, 「1/2Ss450」という。) に対する地震応答解析を実施し,	
	燃料取扱設備の間接支持機能が維持されることを確認する。	
	ガレキ撤去用天井クレーンの構造強度は、C クラスの設備に要求される静的地震力に対して許容応力	
	度設計を実施する。	
	大型カバーとガレキ撤去用天井クレーンの耐震性のうち波及的影響の防止の検討は, Ss900 に対する	
	地震応答解析を実施し、大型カバーおよびガレキ撤去用天井クレーンの損傷が原子炉建屋、使用済燃料	
	プール及び使用済燃料ラックに波及的影響を及ぼさないことを確認する。ここで、波及的影響の確認は、	
	大型カバー及びガレキ撤去用天井クレーンが崩壊機構に至らないことを確認する。図 5.1.1-1 に大型カ	
	バーのイメージを示す。_	




変更前	変更後	変更理由
	大型カバーの検討は原則として下記の法規及び基規準類に準拠して行う。	
	(1) 建築基準法・同施行令及び関連告示	
	(2) 原子力施設鉄筋コンクリート構造計算規準・同解説 (日本建築学会,改定版 2013 年)	
	(3) 鉄筋コンクリート構造計算規準・同解説 (日本建築学会, 2018年)	
	(4) 鋼構造設計規準-許容応力度設計法-(日本建築学会,2005年)	
	(5) 2015 年版 建築物の構造関係技術基準解説書(国土交通省住宅局建築指導課・国土交通省国土技術	
	政策総合研究所・独立行政法人建築研究所・日本建築行政会議, 2015年)	
	(6) 各種合成構造設計指針・同解説 (日本建築学会, 2010年)	
	(7) クレーン等安全規則(昭和47年9月30日労働省令第34号)	
	(8) クレーン構造規格 (平成7年12月26日労働省令第134号)	
	(9) 日本産業規格 (JIS)	
	また,原子力施設の設計において参照される下記の指針及び規程を参考にして検討を行う。	
	(10) 原子力発電所耐震設計技術指針(JEAG 4601-1987) (日本電気協会 電気技術基準調査委員会, 昭	
	和 62 年)	
	(11) 原子力発電所耐震設計技術指針(JEAG 4601-1991 追補版)(日本電気協会 電気技術基準調査委員	
	会 <u>,平成3年)</u>	
	(12) 原子力発電所耐震設計技術規程(JEAC 4601-2015) (日本電気協会 原子力規格委員会, 平成 27	
	年)	

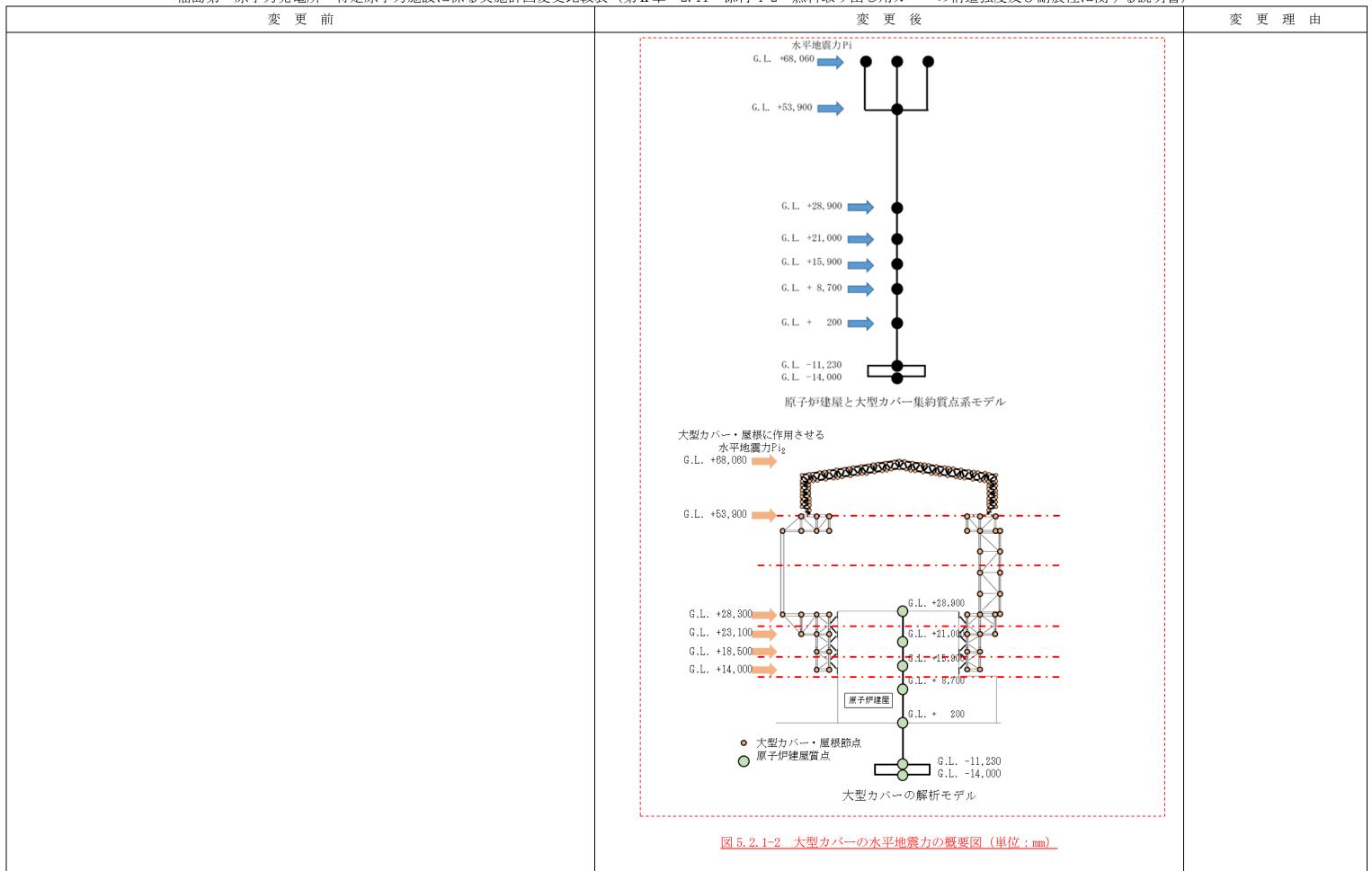

変更前	変更後	変更理由
	5.1.2 構造概要	
	大型カバーは,東西方向 55.92m,南北方向 65.56m,高さ 68.06m の構造物で,構造形式はトラス構造,	
	構造種別は鉄骨造である。また,一般部と燃料取扱設備支持部は構造的に分離している。大型カバー頂	
	部付近は、水平剛性を高めるため、鋼板による箱桁架構とし、屋根は可動式としている。	
	大型カバーは、原子炉建屋に支持される構造物である。原子炉建屋との取り合い部においては、アン	
	カーボルトにより接続している。	
	屋根は,4つの架構(中央の2つを「大屋根」,大屋根の外側の2つを「小屋根」という。また,小	
	屋根の外側の稼働しない部分を「妻壁」という。)から構成され、それぞれが可動する構造である。屋	
	根と大型カバーは構造的に分離されており、屋根は通常時、固定ピンを介して大型カバーに固定されて	
	いる。また、屋根は固定ピンを外すことによって、南北方向へ動くことが可能となる。なお、屋根の逸	
	走を防止するための逸走防止受けを大型カバー頂部にある鋼板部(以下,「箱桁架構」という)に設置	
	し、屋根が動く際には屋根の落下防止材として機能する。_	
	大型カバー内部にあるガレキ撤去用天井クレーンは、箱桁架構を南北方向に走行する。また、ガレキ	
	撤去用天井クレーンを構成する2本のクレーンガーダ上に2台のトロリーがあり、これらが東西方向に	
	<u>移動する。</u>	
	<u>大型カバーの概要図を図 5.1.2-1 及び図 5.1.2-2 に示す。ガレキ撤去用天井クレーンの概要図を図</u>	
	5.1.2-3 に示す。屋根伏図を図 5.1.2-4 に、断面図を図 5.1.2-5 に示す。屋根部の落下防止の概要図を	
	<u>図 5. 1. 2-6 に示す。</u>	



	較表 (第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書)	कंट का ला ं
変 更 前	変更後	変更理由
	<u>5.1.3 検討フロー</u>	
	大型カバーの構造強度及び耐震性の検討フローを図 5.1.3-1~2 に示す。検討に当たっては、大型カ	
	バーを設置し、原子炉建屋上のガレキを撤去しようとする状態(以下,「ガレキ撤去時」という)と,	
	ガレキを撤去した後に、燃料取扱設備を設置した状態(以下、「燃料取り出し時」という)を評価する。	
	5.2 構造強度(一次設計:許容応力度設計)	
	5.2.1 設計方針	
	5.2.2 大型カバーの構造強度に対する検討	
	5.2.3 屋根の構造強度に対する検討	
	1	
	▼ 5.2.4 建屋取り合い部の構造強度に対する検討	
	0. 2. 1	
	▼ 5.2.5 天井クレーンの構造強度に対する検討	
	5.2.5 人弁グレーンの特追強度に対する傾向	
	5.2.6 外装材の構造強度に対する検討	
	5.3 耐震性(機能維持の検討)	
	5.3.1 検討方針	
	5.3.2 大型カバーの耐震性に対する検討	
	1	
	5.3.3 屋根の耐震性に対する検討	
	1	
	▼ 5.3.4 建屋取り合い部の耐震性に対する検討	
	5.5.4 建産収り日で印砂川及圧に対する機的	
	→	
	5.3.5 原子炉建屋の耐震性に対する検討	
	図 5. 1. 3-1 大型カバーの検討フロー	
	<u>図の1.01 八生が、 ▽/映門ノロー</u>	

変更前	変更後	変更理由
	[
	5.4 耐震性(波及的影響の検討)	
	5.4.1 検討方針	
	↓	
	<u>5.4.2 大型カバーの耐震性に対する検討</u> ■	
	▼ 5.4.3 屋根の耐震性に対する検討	
	5. T. 5 全体与间及任代内,多换的	
	<u>5.4.4 建屋取り合い部の耐震性に対する検討</u>	
	↓	
	<u>5.4.5 天井クレーンの耐震性に対する検討</u>	
	5.4.6 原子炉建屋の耐震性に対する検討	
	図 5.1.3-2 大型カバーの検討フロー	

変更前	変更後	変更理由
	5.2 構造強度	
	5.2.1 設計方針	
	構造強度の検討は、大型カバー、屋根、建屋取り合い部、天井クレーン及び外装材について許容応力	
	度設計を実施する。	
	(1) 使用材料及び許容応力度	
	使用材料の物性値及び許容応力度を表 5.2.1-1 に示す。	


変更前	施計画変更比較表(第Ⅱ章 2 □			変更				変更理
		<u></u>	表 5. 2. 1-1 传		性値及び許額	容応力度		
	材料定数							
	<u> 部位</u>	<u>材</u>	· <u>料</u>	<u>ヤング係</u> E(N/mm ²		<u>ポアソン比</u> <u>ν</u>	<u>単位体積重量</u> γ (kN/m³)_	
	<u>大型カバー</u>		· <u>骨</u>	2. 05×1		0.3	77.0	
	原子炉建屋	コンク	リート	2.57×10)4*	<u>0. 2</u>	24.0	
							*:実強度に基づく剛性	
	コンクリート	の許容応力度					(単位:N/mm²)	
				<u>長期</u>				
	22	. 1	圧縮	<u>引張</u>	せん断	圧縮	<u>引張</u> <u>せん断</u>	
	(22	<u>. 1</u> 5) *	<u>7. 4</u>	_	<u>0.71</u>	<u>14. 8</u>	<u> </u>	
						*:建設時の設計	上基準強度(単位:kgf/cm2)	
	鉄筋の許容応	力在					<u>(単位:N/mm²)</u>	
				<u>長期</u>			短期	
	<u>記号</u>	<u>鉄筋径</u>	引張及び		ん断補強	引張及び圧		
	<u>SD345</u>	<u>D29 未満</u>	<u>215</u>		<u>195</u>	345	345	
	<u> </u>	<u>D29 以上</u>	<u>195</u>		<u>100</u>	<u> </u>		
		許容応力度					(単位:N/mm²)	
	<u>板厚</u> T≦40mm		<u>材料</u> SS400, SN40		<u>基</u>	<u>準強度 F</u> 235	許容応力度*3	
	<u>T ≥ 40mm</u>		<u>SN40</u>	<u>0B</u>		215	建築基準法及び国土交	
	<u>T≦40mm</u>	<u>SI</u>	M490A, SN490 STK490,		3		通省告示に従い, 左記 F	
	<u>T>40mm</u>		TMCP3	25B		325*1	の値より求める	
	<u> </u>			— 国土交通大臣指定	E書(国住指第 3		月7日又は国住指第	
				208-2, 1209-2, JIS G 4051-200	平成 15 年 7 月 3 5」による	1日) による		
			<u>*3:</u> #	<u> 冬局強度は許容原</u>	芯力度を 1.1 倍と	<u>:する</u>		

変 更 後 変 更 前 変 更 理 由 (2) 解析モデル 大型カバーの解析モデルは、原子炉建屋を質点系とし、一般部、燃料取扱設備支持部及び屋根部を構 成する主要な鉄骨部材をモデル化した立体架構モデルとする。また、ガレキ撤去用天井クレーンもモデ <u>ル化する。図 5.2.1-1 に立体解析モデルを示す。</u> G. L. +53, 900 G. L. +49, 850 ガレキ撤去用 天井クレーン G. L. +28, 900 G. L. +28, 300 G. L. +21, 000 G. L. +14, 000 G. L. +15, 900 G. L. +8, 700 G. L. +200 G. L. -11, 230 G. L. -14, 000 bN ΑΥ 図 5.2.1-1 解析モデル

福島第一原子力発電所 特定原子力施設に係る実施計画変更比		2.11 添付 4-2			皮及い耐震性に	.関する説明 <u>書)</u> 	
変更前			変	更後			変更理由
	(3) 荷重及び	荷重組合せ					
	設計で考慮で	する荷重を以下に示	<u>す。</u>				
	1) 鉛直荷重	(VL)					
	大型カバー	及び原子炉建屋に作	用する鉛直方向の	の荷重で,固定荷重,	機器荷重,配管	荷重及び積載荷	
	重とする。主	な鉛直荷重を表 5.2.	1-2 及び表 5.2.	1-3 に示す。			
		<u>表 5. 2. 1</u> -	-2 大型カバーに	作用する主な鉛直荷	<u> </u>		
			<u>ガ</u>	レキ撤去時	燃料取り出し時	<u> </u>	
	屋根	<u> </u>		<u>3800</u>		3800	
	<u>外</u> 装			<u>5800</u>		4360	
	遮蔽	<u>————————————————————————————————————</u>		1050		6430	
	ガレ	・キ撤去用天井クレー	<u>-ン</u>	4200		4200	
	遠隔	解体重機		<u>2600</u>		<u>0</u>	
	<u>配管</u>	-		<u>500</u>		<u>830</u>	
		<u>表 5. 2. 1</u> -	-3 原子炉建屋に	作用する主な鉛直荷	<u> </u>		
			<u> ガ</u>	ンキ撤去時	燃料取り出し時	<u> </u>	
	ガレ	/丰		12130		0	
	機器	 等		4260	<u>4</u>	13540	
	遮蔽	<u>t</u> 体		<u>0</u>	<u>2</u>	21110	
	2) 積雪荷重	(SL)					
	積雪荷重は	建築基準法施行令第	86 条及び福島県	<u> </u>	川細則に準拠し,」	以下の条件とす	
	<u>る。</u>						
	なお, 国土を	を通省告示第 594 号	こよる多雪区域以	<u> 从外の区域における種</u>	責雪後の降雨を見る	込んだ割増係数	
	を乗じた積雪	<u> 苛重を考慮する。</u>					
		<u> 1</u>	責雪量:30cm,単	位荷重:20N/m2/cm			
	3) 風圧力(VL)					
	風圧力は建	築基準法施行令第87	′条および建設省	告示第 1454 号に基 [、]	づき,基準風速を	30m/s, 地表面	
	粗度区分Ⅱと	して算定する。速度	圧の算定結果を表	長 5. 2. 1-4 に示す。			
				医 度圧の算定結果			
	建物高さ*	平均風速の	<u>ガスト</u> 影響な数	建物高さと粗度区	· <u>基準風速</u>	速度圧	
	H (m)	<u>鉛直分布係数</u> <u>Er</u>	<u>影響係数</u> <u>Gf</u>	<u>分による係数</u> F	Vo(m/s)	$q(N/m^2)$	
	66. 2	1. 32	<u>2. 00</u>	3. 51	<u>yo (m/ s)</u> <u>30</u>	1900	
	00. 2	1.02		<u>3.31</u> 奸高さ(64.3m)と最高			
	1		- 74 177 164 C 166) T	(32.32.) CAKIN			

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前		用ガバーの構造強度 <i>。</i> 更 後	火い胴展性に関りる説明書/	
久 入 Pil	4) 地震荷重 (K)_	X (X		
	<u>4) 地展何里(K)</u> 大型カバーに作用させる地震荷重は, G. L. +0. 2	Om (原子恒建层 1 陛床)	を其淮而とした水巫地震力の	
	算定結果より設定する。水平地震力は下式より算		と基中間としたが「地域がい	
	<u> </u>	/C / 30		
	Qi = i	n • Ci • Wi		
		Rt • Ai • Co		
	<u> </u>			
	Qi : 層せん断力(kN)			
	n :施設の重要度に応じた係数			
	建築基準法で定める地震力の 1.5 倍を	考慮する。		
	なお、天井クレーンに関しては 1.2 倍	を考慮する。		
	Ci:地震層せん断力係数			
	Wi:当該部分が支える重量(kN)			
	ここに、大型カバーの設計で考慮する原子			
	等を新規に設置する影響を考慮した。原子	炉建屋の全体重量を表 5	5.2.1-5に示す。	
	表 5. 2. 1-5 <u>房</u>	(子炉建屋の全体重量(k)		
	E7.标中 0.人比季目	<u>ガレキ撤去時</u>	燃料取り出し時	
	原子炉建屋の全体重量	701430	701430	
	ガレキ撤去による軽減重量 + 利力 バー 記署第の仕加重量	<u>0</u> +82500	<u>-12130</u> +143000	
	<u>大型カバー設置等の付加重量</u> 大型カバー設計用原子炉建屋全体重量	783930	<u>+143090</u> <u>832390</u>	
	八至四八、以前用原丁州是在王州里里	10000	<u> </u>	
	Z : 地震地域係数 (Z=1.0)			
	Rt:振動特性係数 (Rt=0.8)			
	Ai:地震層せん断力係数の高さ方向の分布	係数で 原子恒建屋のB	有値を用いたモーダル解析法	
	(二乗和平方根法)により求める。	<u> </u>	THE COUNTRY OF THE PROPERTY OF	
	C ₀ :標準せん断力係数 (C ₀ =0.2)			
	_ <u>vv</u>			
	i 層の水平震度 ki は,下式によって算定する。	_		
	Pi=Qi-Qi-1			
	<u>ki=Pi/wi</u>			
	<u>ここで,</u>			
	Pi: 当該階とその直下階の水平地震荷重の	差(kN)		
	wi:各階重量(kN)			

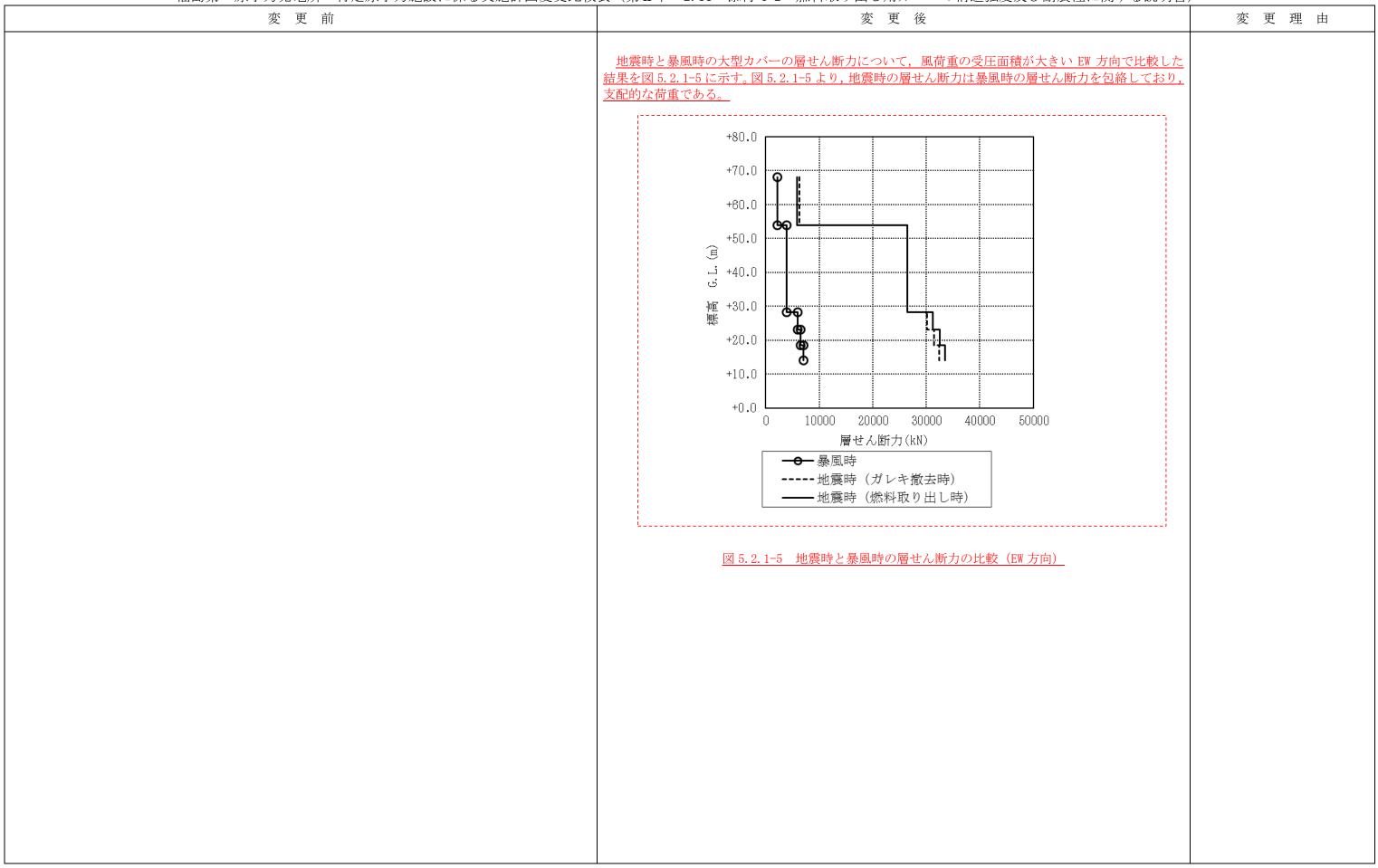
	較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書)	
変 更 前 	変更後	変更理由
	算定した水平地震力を原子炉建屋,大型カバー一般部,燃料取扱設備支持部及び屋根の重量比に基づいて分配し、それぞれに作用させる水平地震力を算定する。屋根については各架構が構造的に分離され	
	ていることから、大屋根、小屋根、妻壁の3種類に分けて水平地震力を算定する。なお、高さ方向に関	
	しては、原子炉建屋の各階の高さと大型カバーの節点の高さが異なるため、高さ毎に区分けを行った上	
	で重量比を計算する。図 5.2.1-2 に大型カバーに作用させる水平地震力の概要図を示す。	
	Pi ₂ =Pi×(i 層の大型カバー(一般部又は燃料取扱設備支持部)の重量/i 層の原子炉建屋及	
	<u>び大型カバーの重量)</u> Pi2: 当該階とその直下階の大型カバー(一般部又は燃料取扱設備支持部)に作用させる水平	
	地震荷重の差(kN)	
	n=1.5 とした算定結果を表 5.2.1-6 及び表 5.2.1-7 に示し, n=1.2 とした算定結果を表 5.2.1-8 及び	
	表 5. 2. 1-9 に示す。	

福島弟一原十刀発電所 特足原十刀施設に係る夫旭計画変更比較 変 更 前	X () v	<u>n — </u>	11 /// 1 1 2		変更後				O Mr./1 目 /	
		表 5. 2. 1-	6(1) ガレキ撤	去時の水平地	也震力の算定	Z結果(大型	カバー検討り	用)(NS 方向	<u>])</u>	
			各階重量	<u>Wi</u>	<u>Ai</u>	<u>n•Ci</u>	<u>Qi</u>	<u>Pi</u>	水平震度	
	<u>G. I</u>	<u>. (m)</u>	wi (kN)	<u>(kN)</u>			<u>(kN)</u>	(kN)	<u>ki</u>	
		大屋根	<u>1800</u>	_	<u>5. 473</u>	<u>1.314</u>	_	<u>2365</u>	1.314	
	<u>+68.06</u>	小屋根	1400	_	<u>5. 283</u>	<u>1. 268</u>	_	<u>1775</u>	1. 268	
		妻壁	<u>600</u>		<u>5. 220</u>	<u>1. 253</u>	_	<u>752</u>	<u>1. 253</u>	
	+68.06	<u>5∼+53. 9</u>	<u>21050</u>	<u>3800</u>		_	<u>4892</u>	20828	0. 989	
	<u>+53. 9</u>	<u>~+28.9</u>	<u>88990</u>	24850	<u>4.314</u>	<u>1. 035</u>	<u>25720</u>	<u>11506</u>	0. 129	
	<u>+28. 9</u>	<u>~+21. 0</u>	<u>83750</u>	113840	<u>1.360</u>	<u>0.327</u>	<u>37226</u>	<u>18494</u>	<u>0. 221</u>	
	+21.0	<u>~+15. 9</u>	88690	197590	<u>1. 172</u>	<u>0. 282</u>	<u>55720</u>	18570	0. 209	
	+15.9)∼+8. <u>7</u>	87240	286280	<u>1. 082</u>	0.260	<u>74290</u>	<u>15355</u>	0. 176	
	+8.7	~ +0. 2	_	373520	1.000	0.240	89645	<u>=</u>	_	
			•	'			*: n=1.5	とした算定結	果を示す	
		表 5. 2. 1-6	6(2) ガレキ撤	大時の水平地	h震力の箟定	マ結果 (大型	カバー検討に	目) (EW 方向	1)	
		20.0.1	各階重量	Wi	Ai	n·Ci	Qi	<u>Pi</u>	水平震度	
	<u>G. L</u>	. (m)	wi(kN)	<u>(kN)</u>			<u>(kN)</u>	<u>(kN)</u>	<u>ki</u>	
		大屋根	<u>1800</u>	<u>–</u>	<u>6. 617</u>	<u>1.589</u>	_	<u>2859</u>	<u>1. 588</u>	
	<u>+68.06</u>	小屋根	<u>1400</u>	<u>–</u>	<u>7. 115</u>	<u>1.707</u>	_	<u>2390</u>	<u>1. 707</u>	
		妻壁	<u>600</u>	_	<u>6. 441</u>	1.547	_	<u>928</u>	<u>1.547</u>	
	+68.06	<u>~+53.9</u>	<u>21050</u>	3800	_	_	6177	20027	<u>0. 951</u>	
	+53.9	~+28.9	88990	24850	4. 391	<u>1. 055</u>	<u>26204</u>	13071	0. 147	
	+28.9	~+21. <u>0</u>	83750	113840	<u>1. 437</u>	<u>0.345</u>	<u>39275</u>	<u>17631</u>	0. 211	
	+21.0	~+15. <u>9</u>	88690	197590	<u>1. 200</u>	<u>0. 288</u>	<u>56906</u>	<u>17813</u>	0. 201	
	+15.9	∼ +8. 7	87240	286280	1. 089	<u>0. 261</u>	74719	14926	<u>0. 171</u>	
	+8.7	∼ +0. 2	_	373520	1.000	0.240	89645		_	
							*: n=1.5	とした算定結		

福島弟一原十刀発竜所 特定原十刀施設に係る美旭計画変更比較 変 更 前	X (9) II	+ 2,11	19// 1 1 7	MWTTHA	変更後		K/X/X O III.			変更理由
	基	₹ 5. 2. 1-6 (3) ガレキ撤	法時の大型	カバーの地質	震荷重の算定	結果(大型	カバー検討	用)	
					(NS・EW 方向	句)				
			<u>各階重量</u>		NS 方向 屋相	(本本) E- 打A		EW 方向	社会 12444	
	<u>G. L.</u>	(m)	wi(kN)	<u>Pi</u> (kN)	<u>屋根</u> 一般部	燃料取扱 設備支持部	<u>Pi</u> (kN)	<u>屋根</u> 一般部	燃料取扱 設備支持部	
		<u>大屋根</u>	<u>1800</u>	2400	Pi ₂ (kN) 2400	<u>Pi₂ (kN)</u> —	2900	Pi ₂ (kN) 2900	<u>Pi₂ (kN)</u> <u>—</u>	
	+68.06	小屋根	1400	<u>1800</u>	<u>1800</u>		<u>2400</u>	<u>2400</u>	<u> </u>	
		<u>妻壁</u>	<u>600</u>	800	800		1000	1000	_	
	+53		<u>21050</u>	21000	<u>21000</u>	<u> </u>	20100	20100		
	+28		88990	11900	3300		13500	3700	<u>700</u>	
	<u>+23</u>	<u> 8. 1</u>	83750	18600	<u>1300</u>		17900	<u>1300</u>		
	+18	3 <u>. 5</u>	00100	10000	<u>1000</u>	<u>200</u> ·	11300	1000	200	
			88690	<u> 18700</u> -			<u>18000</u>			
	+14	<u>t. 0</u>			1100	<u>250</u>	*: n=1.5	<u>1100</u> らとした算定約		

電岡界 原丁万光电所 特定原丁万旭畝に係る天旭計画変更比較 変 更 前		<u> </u>			更 後		1,50,500 11,447.	<u> </u>	0 10 2 7 3 11 7	変更理由
		表 5. 2. 1-7	· 7(1) 燃料取り出					月) (NS_ <u>方</u> 向)_	
			各階重量	<u>Wi</u>	<u>Ai</u>	<u>n•Ci</u>	<u>Qi</u>	<u>Pi</u>	水平震度	
	<u>G. I</u>	L. (m)	wi(kN)	<u>(kN)</u>			<u>(kN)</u>	<u>(kN)</u>	<u>ki</u>	
		大屋根	<u>1800</u>		<u>5. 901</u>	<u>1. 416</u>	<u> </u>	<u>2549</u>	1.416	
	<u>+68. 06</u>	小屋根	<u>1400</u>	_	<u>5. 650</u>	<u>1.356</u>	<u>=</u>	<u>1898</u>	<u>1.356</u>	
		<u>妻壁</u>	<u>600</u>	_	<u>5. 602</u>	<u>1.344</u>	_	<u>806</u>	1.343	
	+68.06	<u>3∼+53. 9</u>	<u>20510</u>	3800	<u> </u>	=	<u>5253</u>	22023	<u>1.074</u>	
	+53. 9	<u>~+28.9</u>	137080	24310	4. 678	1. 122	27276	24530	<u>0. 179</u>	
	+28.9	~+21. <u>0</u>	83750	161390	1. 338	<u>0.321</u>	<u>51806</u>	18427	0. 220	
	+21.0	<u>~+15. 9</u>	<u>88680</u>	245140	<u>1. 191</u>	<u>0. 287</u>	70233	<u>16894</u>	<u>0. 191</u>	
	+15. 9	9∼+8. <u>7</u>	<u>87810</u>	333820	<u>1. 090</u>	<u>0. 261</u>	87127	14064	<u>0. 160</u>	
	+8. 7	~+0.2	=	421630	1.000	0.240	101191		_	
								ー とした算定結り		
		表 5. 2. 1-7	7(2) 燃料取り出	1						
	0.1	. (.)	<u>各階重量</u>	<u>Wi</u>	<u>Ai</u>	<u>n•Ci</u>	$\frac{Qi}{(1N)}$	<u>Pi</u>	水平震度	
	<u>G. 1</u>	L. (m)	wi (kN)	<u>(kN)</u>	G E46	1 571	<u>(kN)</u>	(kN)	<u>ki</u> 1. 571	
		大屋根	<u>1800</u>		<u>6. 546</u>	1. 571	_	<u>2827</u>	1. 436	
	+68.06		1400	_	<u>5. 982</u>	<u>1. 436</u>		<u>2010</u>	1. 388	
		<u>妻壁</u>	<u>600</u>		<u>5. 788</u>	<u>1.389</u>		833	0. 995	
	+68.06	<u>6∼+53. 9</u>	<u>20510</u>	3800	_	_	<u>5670</u>	20402		
	+53. 9	<u>~+28.9</u>	<u>137080</u>	24310	4. 466	<u>1. 073</u>	<u>26072</u>	27429	0. 200	
	+28.9	<u>~+21.0</u>	<u>83750</u>	<u>161390</u>	1. 384	<u>0.332</u>	<u>53501</u>	<u>18202</u>	0.217	
	<u>+21. 0</u>	<u>∼+15. 9</u>	<u>88680</u>	245140	<u>1. 216</u>	<u>0. 293</u>	71703	<u>16425</u>	0. 185	
	+15. 9	<u>9∼+8. 7</u>	<u>87810</u>	333820	1.099	<u>0. 264</u>	88128	<u>13063</u>	<u>0. 149</u>	
	<u>+8. 7</u>	~+0.2	_	421630	1.000	0.240	101191	_	_	
			<u> </u>	<u>l</u>	<u> </u>	<u> </u>	*: n=1.5 d	とした算定結り	<u> 果を示す</u>	

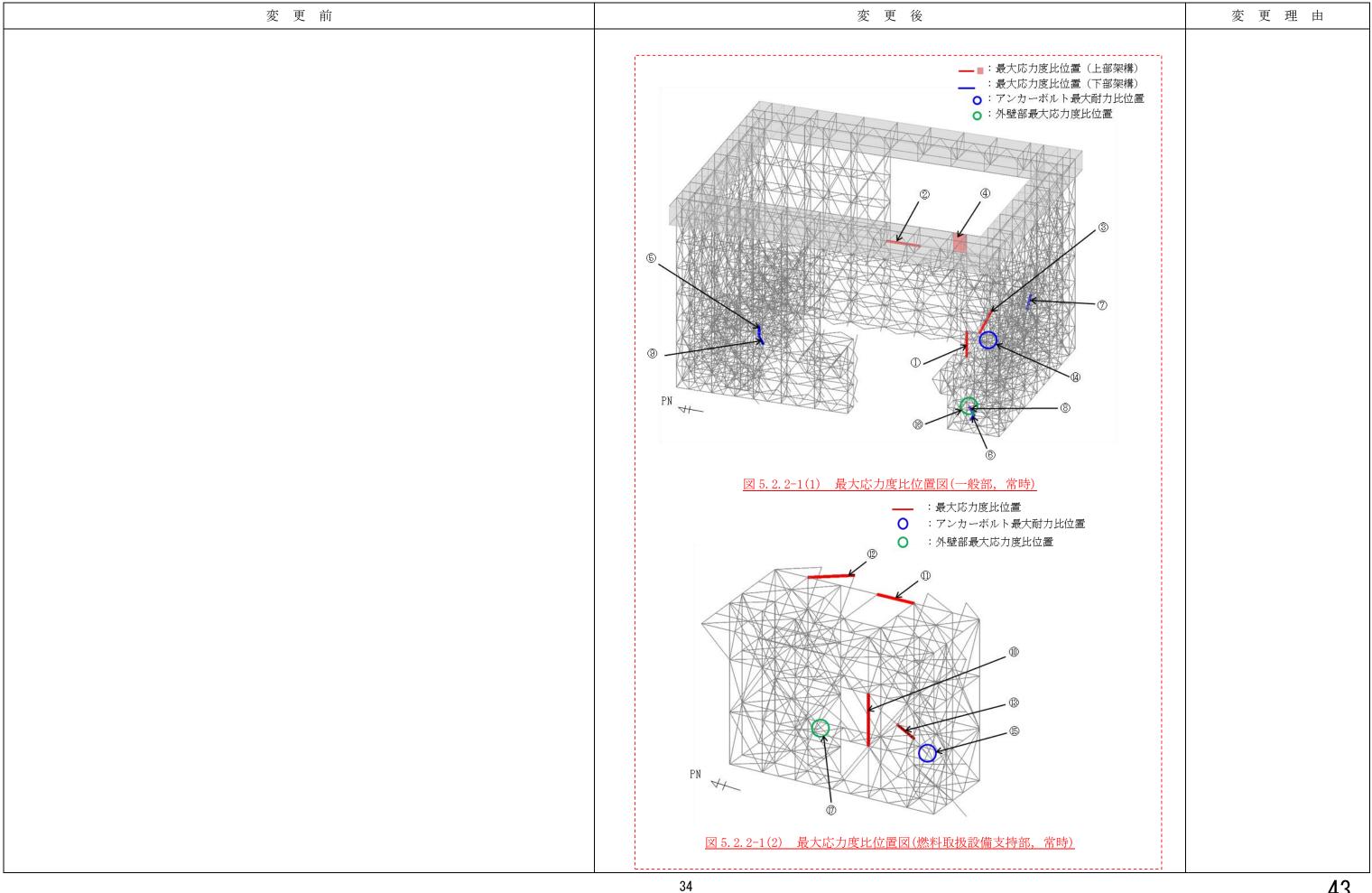
個局界一原十刀発電所 特定原十刀施設に係る美施計画変更比較 変 更 前	X (M)		W/1 1 2	MN1714X	変更後		型/文/文 ○ III]	成正に肉		変更理由
	<u>表</u>	5. 2. 1-7(3)燃料取りと	出し時の大力	型カバーの地	!震荷重の算点	E結果(大 型	型カバー検討	<u> </u>	
					(NS・EW 方)	句)				
			<u>各階重量</u>		NS 方向 屋相		T	EW 方向	AH (平48)	
	<u>G. L</u> .	(m)	wi(kN)	<u>Pi</u> (kN)	<u>屋根</u> 一般部	燃料取扱 設備支持部	<u>Pi</u> (kN)	<u>屋根</u> 一般部 Pi ₂ (kN)	燃料取扱 設備支持部	
		1. 🖂 🛺	<u>1800</u>		Pi ₂ (kN)	<u>Pi₂ (kN)</u> 	<u>2900</u>	Pi ₂ (kN) 2900	<u>Pi₂ (kN)</u> <u>—</u>	
	.00.00	大屋根	1400	<u>2600</u>	<u>2600</u>		<u>2100</u>	2100	<u> </u>	
	<u>+68. 06</u>	小屋根	600	<u>1900</u>	<u>1900</u>		900	900		
		<u>妻壁</u>	<u>20510</u>	900 22300	900	<u> </u>				
		3. 9	137080	<u>24800</u>	22300		20600	20600		
		3. 3 3. 1	101000	21000	<u>4300</u> <u>1300</u>	900	<u>27600</u>	<u>4700</u> <u>1300</u>	1000	
	+2.	<u>3. 1</u>	83750	<u> 18600</u> -	<u>1300</u>	300	<u>18400</u>	<u>1300</u>	300	
	<u>+18</u>	<u>8. 5</u>			<u>1000</u>	<u>200</u>		1000	200	
	<u>+1</u> .	<u>4. 0</u>	<u>88680</u>	<u>17200</u>	1100	<u>250</u>	<u>16700</u> -	1000	<u>250</u>	
							*: n=1.5	とした算定編		
		0.4								00


福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比較 変 更 前	X (N)	<u> </u>	11 4///1 4 7		変更後		以 以 及 (受工(C内)	の1001日)	
		表 5. 2. 1-8					<u>クレ</u> ーン検詞	<u> </u>	前)_	
			各階重量	<u>Wi</u>	<u>Ai</u>	<u>n•Ci</u>	<u>Qi</u>	<u>Pi</u>	水平震度	
	<u>G. I</u>	<u>. (m)</u>	wi (kN)	<u>(kN)</u>			<u>(kN)</u>	<u>(kN)</u>	<u>ki</u>	
		大屋根	<u>1800</u>	_	<u>5. 473</u>	<u>1. 051</u>	_	<u>1892</u>	1.051	
	<u>+68. 06</u>	小屋根	<u>1400</u>	_	<u>5. 283</u>	<u>1. 014</u>	<u>–</u>	<u>1420</u>	<u>1. 014</u>	
		<u>妻壁</u>	<u>600</u>	_	<u>5. 220</u>	<u>1.002</u>	=	<u>601</u>	<u>1. 002</u>	
	<u>+68. 06</u>	<u>5∼+53. 9</u>	<u>21050</u>	<u>3800</u>	<u>=</u>	=	<u>3913</u>	<u>16663</u>	<u>0.792</u>	
	+53. 9	<u>~+28.9</u>	88990	24850	4.314	<u>0.828</u>	<u>20576</u>	9205	<u>0. 103</u>	
	<u>+28. 9</u>	~+21. <u>0</u>	83750	113840	1. 360	0.262	29781	14795	0. 177	
	+21.0	∼ +15. 9	88690	<u>197590</u>	1. 172	0. 226	44576	14856	0. 168	
	+15. 9	<i>9</i> ∼+8. 7	87240	286280	1. 082	0.208	<u>59432</u>	12284	0. 141	
	+8. 7	~+0. <u>2</u>	_	<u>373520</u>	<u>1.000</u>	0. 192	<u>71716</u>	_	_	
			1	<u>'</u>			*: n=1.2	とした算定結り	果を示す	
		表 5 2 1-8	(2) ガレキ撤っ	た時の水平地:	震力の質定線	吉果(天井ク	フレーン給討	 田) (田 方	台)	
		<u> </u>	各階重量	Wi Wi	Ai	<u>n • Ci</u>	Qi	<u>Pi</u>	<u>水平震度</u>	
	<u>G. L</u>	(m)	wi(kN)	<u>(kN)</u>			<u>(kN)</u>	<u>(kN)</u>	<u>ki</u>	
		大屋根	<u>1800</u>	<u>=</u>	<u>6. 617</u>	<u>1. 271</u>	=	<u>2287</u>	<u>1. 271</u>	
	<u>+68. 06</u>	小屋根	1400	=	<u>7. 115</u>	<u>1.366</u>	=	<u>1912</u>	<u>1. 366</u>	
		<u>妻壁</u>	<u>600</u>	_	<u>6. 441</u>	<u>1. 237</u>	=	<u>742</u>	<u>1. 237</u>	
	+68.06	<u>~+53.9</u>	<u>21050</u>	<u>3800</u>	_	=	<u>4941</u>	<u>16022</u>	0.761	
	+53.9	~+28.9	88990	24850	4. 391	0.844	20963	10457	0.118	
	+28.9	~+21. <u>0</u>	83750	113840	<u>1. 437</u>	0. 276	31420	<u>14105</u>	0. 168	
	+21.0	~+15. <u>9</u>	88690	197590	<u>1. 200</u>	0. 230	45525	14250	0. 161	
	+15.9	<u>~+8.7</u>	87240	286280	<u>1. 089</u>	0. 209	<u>59775</u>	11941	<u>0. 137</u>	
	+8.7	~+0. <u>2</u>	<u>=</u>	373520	1.000	0. 192	71716		_	
							*: n=1.2 d	とした算定結り		

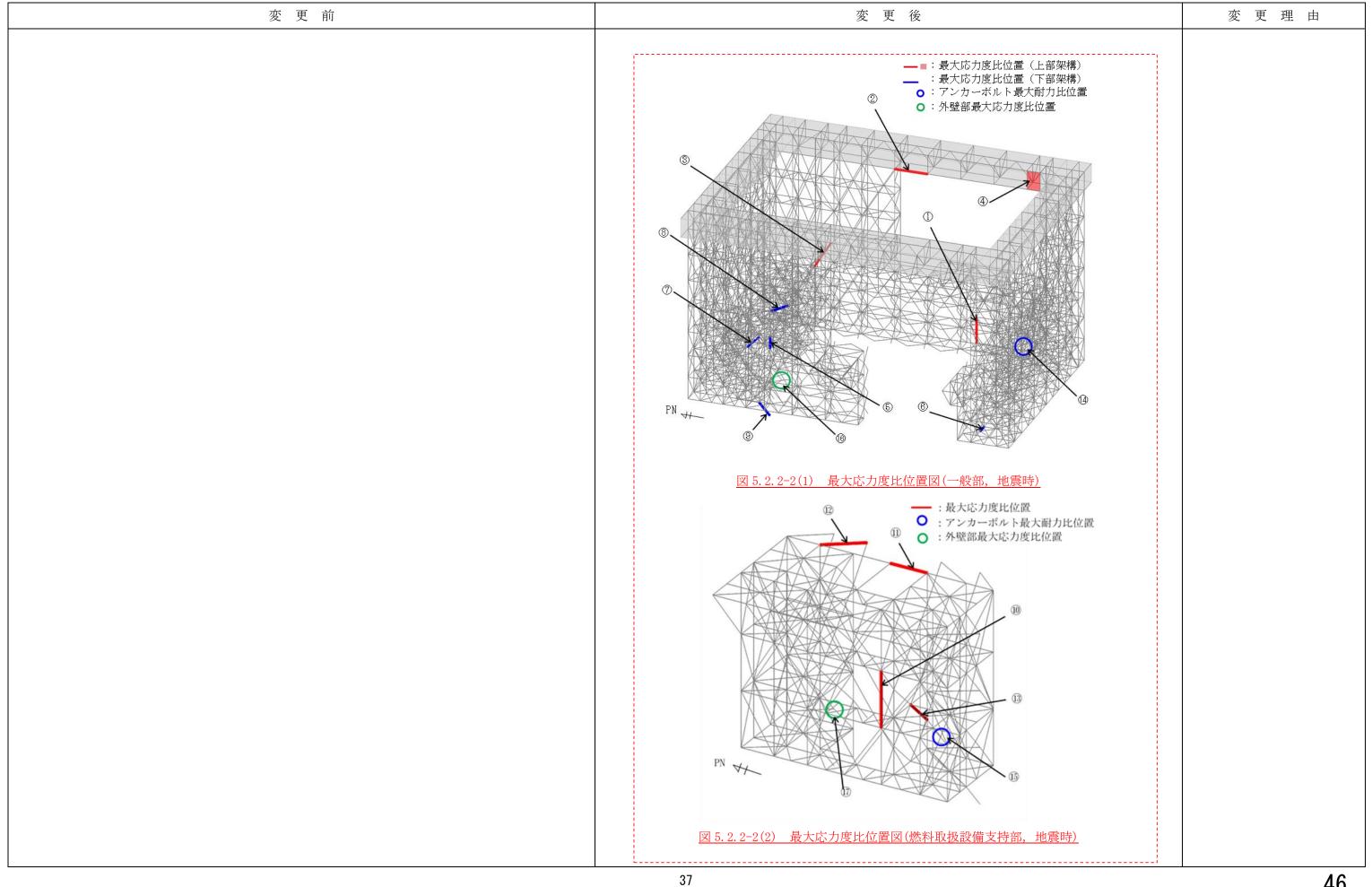
個局界一原十刀発電所 特定原十刀飑設に係る夫施計画変更比較 変 更 前	X (MI	+ 2.11	MW 1.1 II Z	MATHA D	変更後			及正に肉		変更理由
	<u>表</u>	5. 2. 1-8(3))ガレキ撤っ	去時の大型	カバーの地震	荷重の算定約	吉果(天井ク	ケレーン検言	付用)	
					(NS・EW 方[句)				
			<u>各階重量</u>		NS 方向			EW 方向		
	<u>G. L.</u>	(m)	wi(kN)	<u>Pi</u> (kN)		燃料取扱 設備支持部	<u>Pi</u> (kN)	<u>屋根</u> 一般部 Pi ₂ (kN)	燃料取扱 設備支持部	
					Pi ₂ (kN)	<u>Pi₂ (kN)</u>	<u>2300</u>	Pi ₂ (kN) 2300	<u>Pi₂ (kN)</u> —	
		大屋根	<u>1800</u>	<u>1900</u>	<u>1900</u>		<u>2000</u>	<u>2000</u>		
	<u>+68. 06</u>	小屋根	<u>1400</u>	<u>1500</u>	<u>1500</u>	<u> </u>				
		妻壁	<u>600</u>	<u>700</u>	<u>700</u>		800	800		
	<u>+53</u>		21050	<u>16800</u>	<u>16800</u>	<u> </u>	<u>16100</u>	<u>16100</u>		
	+28		88990	9500	<u>2600</u>	<u>500</u>	10800	3000		
	<u>+23</u>	<u>3. 1</u>	83750	14900	1100	200	14300	1100	200	
	<u>+18</u>	<u>3. 5</u>			<u>800</u>	<u>150</u>		800	<u>150</u>	
	<u>+1</u> 4	1. 0	<u>88690</u>	<u>15100</u>	1000	<u>200</u>	14400	900	200	
						<u> </u>	*: n=1.2	とした算定約		
		0.0								0.5

一	- () v -		1 13/// 1 2		変更後	17 III VE 12		<u> </u>	2 hg 3 1 g 3	変更理由
		長 5. 2. 1-9(1) 燃料取り出	出し時の水平	震度の算定結	果(天井ク	レーン検討	用)(NS 方[句)	
			<u>各階重量</u>	<u>Wi</u>	<u>Ai</u>	<u>n•Ci</u>	<u>Qi</u>	<u>Pi</u>	水平震度	
	<u>G. L</u>	. (m)	wi(kN)	<u>(kN)</u>			<u>(kN)</u>	<u>(kN)</u>	<u>ki</u>	
		大屋根	<u>1800</u>	_	<u>5. 901</u>	<u>1. 133</u>	_	<u>2039</u>	1. 133	
	<u>+68. 06</u>	小屋根	<u>1400</u>	<u>=</u>	<u>5. 650</u>	<u>1. 085</u>	_	<u>1519</u>	<u>1. 085</u>	
		<u>妻壁</u>	<u>600</u>	_	<u>5. 602</u>	1.075	_	<u>645</u>	<u>1. 075</u>	
	+68.06	<u>~+53. 9</u>	20510	3800	_	_	4203	17618	0.859	
	+53. 9	<u>~+28.9</u>	137080	24310	4. 678	<u>0.898</u>	21821	19624	0. 143	
	+28.9	<u>~+21.0</u>	83750	<u>161390</u>	<u>1. 338</u>	<u>0. 257</u>	41445	14741	0.176	
	+21.0	~+15.9	<u>88680</u>	245140	<u>1. 191</u>	0. 229	<u>56186</u>	<u>13516</u>	0.152	
	+15.9	<u>~+8.7</u>	87810	333820	<u>1. 090</u>	<u>0. 209</u>	69702	11251	0.128	
	+8.7	<u>~+0. 2</u>	_	<u>421630</u>	<u>1.000</u>	<u>0. 192</u>	80953	_	_	
							*: n=1.2 &	とした算定結り	果を示す	
	<u> </u>	長 5. 2. 1-9(2) 燃料取り出	し時の水平	震度の算定結	果(天井ク	レーン検討	用)(EW 方[<u>句)</u>	
			各階重量	<u>Wi</u>	<u>Ai</u>	<u>n•Ci</u>	<u>Qi</u>	<u>Pi</u>	水平震度	
	<u>G. L</u>	<u>. (m)</u>	wi(kN)	<u>(kN)</u>			<u>(kN)</u>	<u>(kN)</u>	<u>ki</u> 1. 257	
		大屋根	<u>1800</u>	_	<u>6. 546</u>	<u>1. 256</u>	_	2262		
	+68.06	小屋根	1400	_	<u>5. 982</u>	1. 148	_	<u>1608</u>	1.149	
		<u>妻壁</u>	<u>600</u>	_	<u>5. 788</u>	<u>1. 111</u>	<u>=</u>	<u>667</u>	<u>1. 112</u>	
	<u>+68.06</u>	<u>~+53.9</u>	<u>20510</u>	<u>3800</u>	<u>–</u>	_	<u>4537</u>	<u>16321</u>	0.796	
	+53.9	<u>~+28.9</u>	137080	24310	4. 466	<u>0.858</u>	20858	21943	0.160	
	+28.9	~+21. <u>0</u>	83750	<u>161390</u>	<u>1. 384</u>	<u>0. 265</u>	42801	14562	0.174	
	+21.0	~+15.9	<u>88680</u>	245140	<u>1. 216</u>	<u>0. 234</u>	<u>57363</u>	<u>13140</u>	0.148	
	<u>+15. 9</u>	<u>∼+8. 7</u>	<u>87810</u>	333820	<u>1. 099</u>	<u>0. 211</u>	70503	10450	0.119	
	+8.7	<u>~+0.2</u>	<u>=</u>	<u>421630</u>	<u>1. 000</u>	<u>0. 192</u>	80953	_	_	
							*: n=1.2 &	とした算定結り	果を示す	

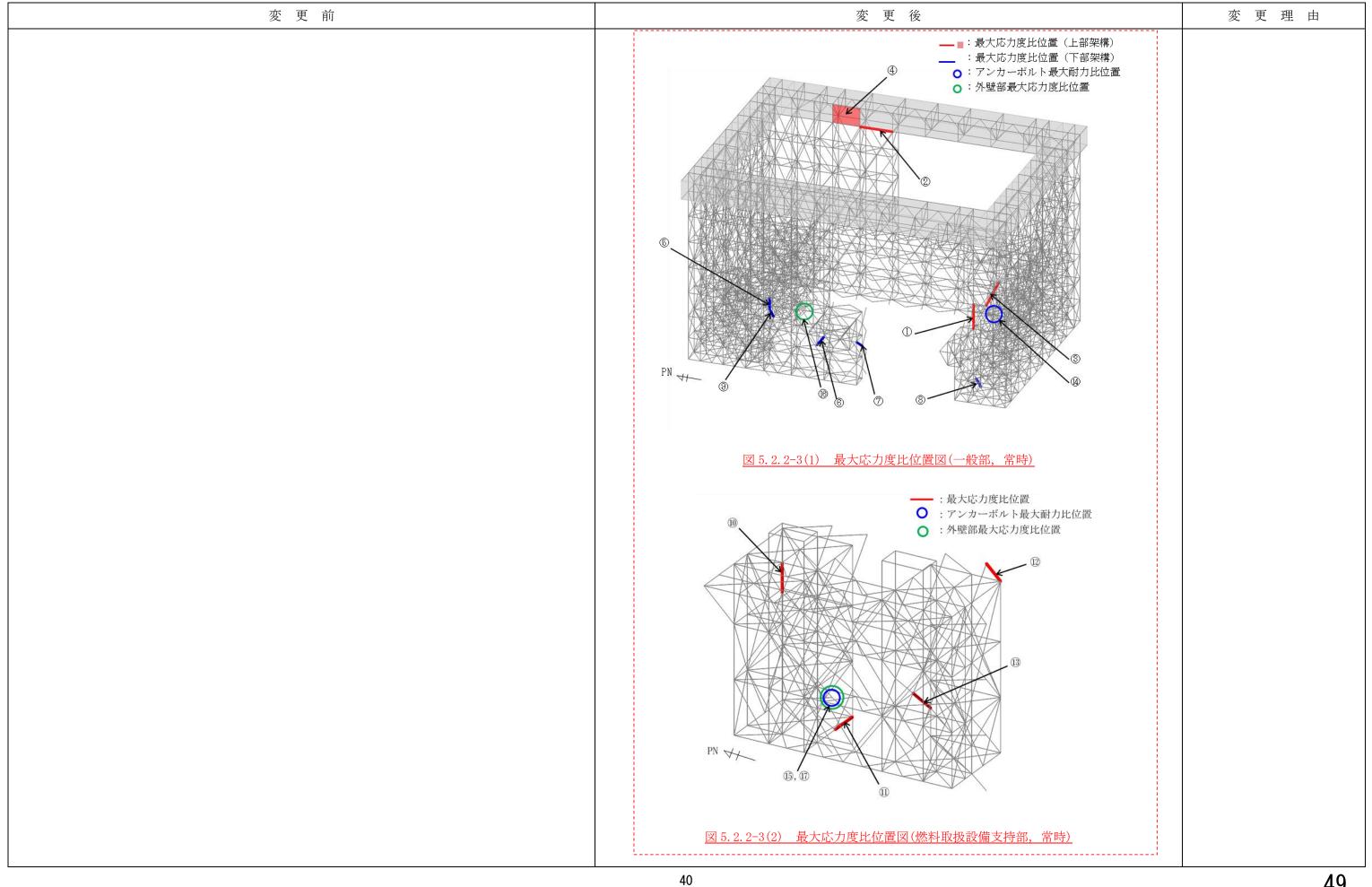
福島弟一原十刀発竜所 特定原十刀施設に係る美施計画変更比較 変 更 前	.X (71 11	平 2.11	10/11 4 7	XX17 4X >	変更後		式/文/ 人 〇 iiii	及正に因	1 の助[2]目)	変更理由
	表 :	5. 2. 1-9(3)	燃料取り出	し時の大型	カバーの地類	震荷重の算定	結果(天井	クレーン検	討用)_	
					(NS・EW 方向	句)				
			<u>各階重量</u>		NS 方向 BH		1	EW 方向		
	G. L.	(m)	wi(kN)	<u>Pi</u> (kN)	<u>屋根</u> 一般部	燃料取扱 設備支持部	<u>Pi</u> (kN)	<u>屋根</u> 一般部	燃料取扱 設備支持部	
			1900		Pi ₂ (kN)	<u>Pi₂(kN)</u>		<u>Pi₂ (kN)</u>	<u>Pi₂ (kN)</u>	
		大屋根	<u>1800</u>	<u>2100</u>	<u>2100</u>	=	2300	2300		
	+68.06	小屋根	1400	<u>1600</u>	<u>1600</u>		<u>1700</u>	<u>1700</u>		
		<u>妻壁</u>	<u>600</u>	<u>700</u>	<u>700</u>	_	<u>700</u>	<u>700</u>		
		<u>3. 9</u>	20510	<u>17700</u>	<u>17700</u>	<u> </u>	<u>16400</u>	<u>16400</u>		
		<u>3. 3</u>	137080	20000	<u> </u>		22200	3900	800	
	+23	<u>3. 1</u>	83750	<u>14900</u>	1100	<u>200</u>	14700	1100	<u>200</u>	
	<u>+18</u>	<u>3. 5</u>			<u>800</u>	<u>150</u> ·		<u>800</u>	<u>150</u>	
	+1/	1 0	<u>88680</u>	<u>13800</u>	900	200	13400	900	<u>200</u>	
		<u>1. 0</u>			<u>300</u>	<u>200</u>	*: n=1.2	<u>300</u> ! とした算定約		
]	00								07


変更前 変更後 変 更 理 由 5) 荷重組合せ 設計で考慮する荷重組合せを表 5.2.1-10 に示す。また、ガレキ撤去時におけるガレキ撤去用天井ク レーンの位置を図 5.2.1-3 に, 燃料取り出し時における燃料取扱設備の位置を図 5.2.1-4 に示す。 なお, 燃料取り出し時にはガレキ撤去用天井クレーンの位置は北側とする。 表 5.2.1-10 荷重組合せ 許容応力度 想定する状態 荷重ケース*1 荷重組合せ内容 常時 VL長期 C 積雪時*2 VL+SL 暴風時*2 W VL+WL E1 VL+K(+NS)短期 E2 VL+K(-NS) 地震時 E3 VL+K(+EW)E4 VL+K(-EW) *1:ガレキ撤去時は case1 及び case2,燃料取り出し時は case3 及び case4 の状態とする。 *2:短期事象では地震時が支配的であることから、積雪時及び暴風時の検討は省略する。ただし、外装材の検討は暴風 時が支配的であることから暴風時に対して検討を行う。 ■ :ガレキ撤去用天井クレーン case1:プール上部 case2:北側 (北) (南) 使用済燃料プール 図 5.2.1-3 ガレキ撤去用天井クレーンの位置 ■ :燃料取扱機 :クレーン case3:原子炉建屋内 case4:燃料取扱設備 支持部上 (西) (東) 使用済燃料プール 燃料取扱設備支持部 ※:原子炉建屋オペレーティングフロア上で、燃料取扱機及びクレーンを用い燃料をキャスクに入れる。その後、ク <u>レーンを用いキャスクを燃料取扱設備支持部に移動させ地上に下ろす。従って、燃料取扱機とクレーンの両方が</u> 原子炉建屋内にいるケースと燃料取扱機が原子炉建屋内、クレーンが燃料取扱設備支持部上にいるケースの2ケ ースとなる。 ※:燃料取り出し時のガレキ撤去用天井クレーン位置は北側とする。 図 5. 2. 1-4 燃料取扱設備の位置

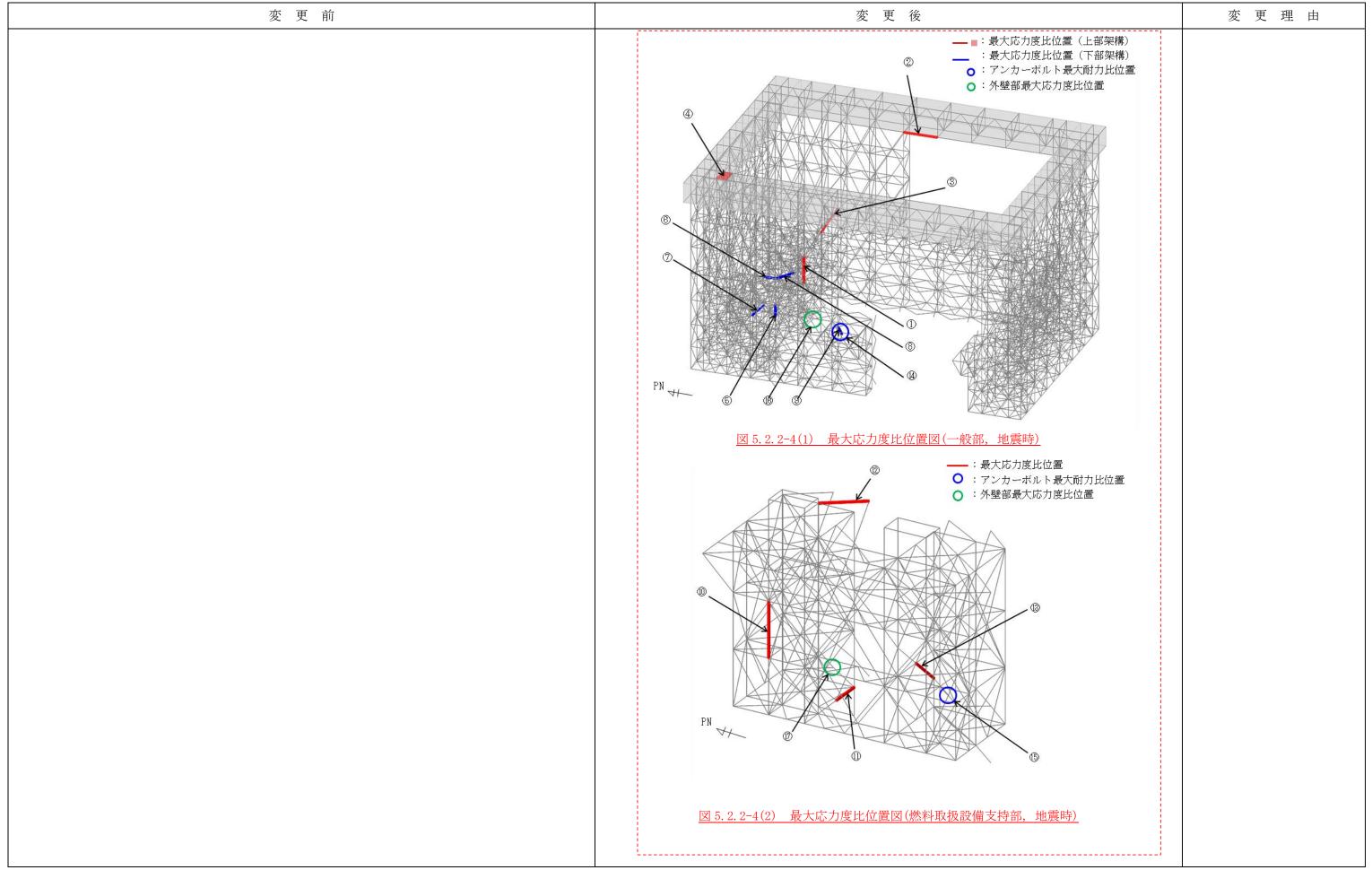
	計画変更比較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明	
変更前	変更後	変更理由
	5.2.2 大型カバーの構造強度に対する検討	
	<u>1) 柱,梁,水平・鉛直ブレース</u>	
	部材の応力度比は、「鋼構造設計規準」に従い、軸力に対して下式にて検討を行う。	
	・軸圧縮の場合 $\frac{\sigma_c}{f_c} \leq 1$	
	・軸引張の場合 $\frac{\sigma_t}{f_t} \le 1$	
	ここで、 σ _c : 圧縮応力度 (N/A) (N/mm²) : 引張応力度 (T/A) (N/mm²) N: 圧縮力(N), T: 引張力(N), A: 断面積(mm²) : 許容日張応力度 (N/mm²) : 許容引張応力度 (N/mm²)	
	2) 大型カバー頂部鋼板部	
	<u>応力度比の検討は、「鋼構造設計規準」に従い、面内力に対し下式にて検討を行う。</u>	
	<u>・</u> 組合せ応力の場合 $\frac{\sigma_x^2 + \sigma_y^2 - \sigma_x \cdot \sigma_y + 3\tau_{xy}^2}{f_t^2} \le 1$	
	ここで、	


3)		変更後								
3) ガレキ撤去時 表 5. 2. 2-1 及び表 5. 2. 2-2 に応力度比が最大となる部位の断面検討結果を示す。										
<u></u> 断	断面検討の結果,全ての部材に対する応力度比が1以下になることを確認した。									
		表 5. 2. 2-1(1) 断記	面検討結果(-	一般部,	常時)_	上部架	<u>構</u>			
	<u>部位*1</u>	<u>部材形状 (mm)</u> 〈使用材料*²〉	<u>荷重</u> <u>ケース</u> (位置) *³	応	力度	<u>応</u>	力度	<u>応力</u> <u>度比</u>	<u>判定</u>	
1	<u>柱</u>	H-400×400×13×21	<u>C</u> (case1)	<u>σ</u> _c	<u>96. 1</u>	$\underline{\mathbf{f}_{\mathrm{c}}}$	<u>170. 9</u>	<u>0. 57</u>	<u>O. K.</u>	
2	<u>梁</u>	$\frac{B[-300\times220\times16\times}{25}$	<u>C</u> (case1)	<u>σ</u> <u>t</u>	<u>47. 8</u>	$\underline{\mathbf{f}}_{ ext{t}}$	<u>216. 6</u>	0.23	<u>O. K.</u>	
3	<u>鉛直</u> <u>ブレース</u>	<u>φ-267. 4×6. 6</u>	<u>C</u> (case2)	<u> </u>	<u>61. 6</u>	$\underline{\mathbf{f}_{\mathrm{c}}}$	<u>173. 0</u>	0.36	<u>O. K.</u>	
<u>4</u>	<u>鋼板</u>	PL-16 <sn400b></sn400b>	<u>C</u> (case1)	<u>σ_x</u> <u>σ_y</u> τ_xv	1. 9 4. 1 27. 2	$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$	<u>156. 0</u>	0.31	<u>O. K.</u>	
				67 1-	Mr. a. I. V.					
	部位*1	表 5. 2. 2-1(2) 断回	面検討結果(- 荷重 <u>ケース</u> (位置)*3	<u>火</u> <u>応</u>	<u> </u>	<u>京</u>	<u>許容</u> 5力度	<u>応力</u> <u>度比</u>	<u>判定</u>	
<u>5</u>	<u>柱</u>	H-400×400×13×21	<u>C</u> (case2)	<u>σ</u> <u>c</u>	<u>102. 4</u>	$\underline{\mathbf{f}}_{\underline{c}}$	<u>202. 7</u>	<u>0.51</u>	<u>O. K.</u>	
<u>⑥</u>	<u>梁</u>	<u>H-588×300×12×20</u>	<u>C</u> (case1)	<u>σ</u> c	<u>52. 9</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	<u>201. 1</u>	0.27	<u>O. K.</u>	
<u> </u>	<u>鉛直</u> ブレース	<u>φ -267. 4×6. 6</u>	<u>C</u> (case1)	<u>σ</u> _c	<u>153. 7</u>	$\underline{\mathbf{f}}_{\mathrm{c}}$	203.0	0.76	<u>O. K.</u>	
0	<u>接続部</u> 水平ブレース	<u>+字PL(PL-28×210</u> +2PL-28×91)	<u>C</u> (case1)	<u>σ</u> _c	110.8	$\underline{\mathbf{f}}_{\mathbf{c}}$	<u>187. 5</u>	0.60	<u>O. K.</u>	
8	244 2									
	(a) (b) (c) (d) (d) (d) (d) (e) (d)	部位*1 ① 柱 ② 梁 ③ ブレース ④ 鉛直ス ⑤ 楽 ① 強直ス 「	遊位*1 表 5. 2. 2-1(1) 断元 部位*1 部材形状 (mm) (使用材料*2) ① 柱 H-400×400×13×21 ② 梁 B[-300×220×16×25 ② 鉛直 か-267. 4×6. 6 ④ 鋼板 PL-16 (SN400B) 部位*1 部材形状 (mm) (使用材料*2) ⑤ 柱 H-400×400×13×21 ⑥ 梁 H-588×300×12×20 ⑦ 鉛直 か-267. 4×6. 6	表 5. 2. 2-1(1) 断面検討結果 (・	表 5. 2. 2-1(1) 断面検討結果 (一般部、	表 5. 2. 2-1 (1) 断面検討結果 (一般部、常時)。 部位*1 部材形状 (mm) 〈使用材料**〉 ケース (位置)*3 作用 応力度 (N/mm²) ① 柱 H-400×400×13×21 C (case1) σε 96.1 ② 梁 B[-300×220×16× 25 C (case1) σε 47.8 ③ 鉛直 ブレース φ-267.4×6.6 C (case2) σε 61.6 ④ 鋼板 PL-16 (case1) C (case1) σν 4.1 ★ 5. 2. 2-1 (2) 断面検討結果 (一般部、常時) セカ度 (N/m²) ※ 数付のおよいでは、 (位置) **3 (N/m²) ⑤ 柱 H-400×400×13×21 C (case2) σε 102.4 ⑥ 梁 H-588×300×12×20 C (case1) σε 52.9 ⑦ 鉛直 ブレース φ-267.4×6.6 C (case1) σε 52.9 ⑦ 鉛直 ブレース φ-267.4×6.6 C (case1) σε 153.7	表 5. 2. 2-1(1) 断面検討結果 (一般部、常時) 上部架 部が形状 (mm) (位置)**3 (N/mm²)	表 5. 2. 2-1(1) 断面検討結果 (一般部、常時) 上部架構 部が形状 (mm)	表 5. 2. 2-1(1) 断面検討結果 (一般部、常時) 上部架構	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前	文衣 (月Ⅱ 早 2.1	1	り出し用ガク 変 更 â		苒 道强度	更及い	・耐農性に	- 関する	<u>説明書)</u> 	
											22 23 17
			表 5. 2. 2-1(3) 断面								
		<u>部位*1</u>	<u>部材形状 (mm)</u> <使用材料* ² >	<u>荷重</u> <u>ケース</u> (位置)*³	作用 応力度 (N/mm²)		<u> </u>	<u>許容</u> 5力度 1/mm²)	<u>応力</u> <u>度比</u>	判定	
	10	<u>柱</u>	H-400×400×13×21	<u>C</u> (case1)	<u></u> <u>c</u>	<u>15. 1</u>	$\underline{\mathbf{f}}_{\mathrm{c}}$	<u>183. 1</u>	<u>0.09</u>	<u>O. K.</u>	
	<u>11</u>	<u>梁</u>	H-800×300×14×26	<u>C</u> (case1)	<u>σ</u> <u>c</u>	<u>20. 3</u>	$\underline{\mathbf{f}}_{\mathrm{c}}$	<u>175. 8</u>	0.12	<u>O. K.</u>	
	<u>12</u>	<u>水平</u> <u>ブレース</u>	<u>十字 PL</u> _(PL-28×210 +2PL-28×91)	<u>C</u> (case1)	<u>σ</u> <u>t</u>	40.8	<u>f</u> t	<u>216. 6</u>	0.19	<u>O. K.</u>	
	<u>13</u>	<u>鉛直</u> ブレース	<u>φ</u> –355. 6×7. 9	<u>C</u> (case1)	<u>σ</u> <u>c</u>	<u>58. 7</u>	$\underline{\mathbf{f}}_{\mathrm{c}}$	207. 7	0. 29	0. K.	
			*1:①~⑬の *2:各部材の *3:図5.2.1-	符号は図 5.2.2- 使用材料は,特 ·3 にガレキ撤去	 -1 の応力 記なき限 用天井ク	検討箇所る り,鋼管 レーンの(を示す : STKN4 立置をえ	.90B,そのf 示 <u>す</u>	也 SN490B		


福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前	(衣(.弗Ⅱ早 4.11		<u>グロし用ガク</u> 変 更 後		再迈烟皮	及い	展性に	- 男りる	<u> </u>	
			表 5. 2. 2-2(1) 断面			地震時)	上部架	 			
		部位*1	<u>部材形状(mm)</u> <使用材料* ² >	<u>荷重</u> ケース (位置)*³	<u>作</u> 応	<u>用</u> 力度 mm ²)	<u></u> 远	<u>許容</u> :力度 :/mm²)	<u>応力</u> <u>度比</u>	<u>判定</u>	
	1	柱	H-400×400×13×21	<u>E4</u> (case1)	<u>σ</u> <u>c</u>	<u>142. 0</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{c}}}$	<u>256. 4</u>	<u>0. 56</u>	<u>O. K.</u>	
	2	<u>梁</u>	$\underline{B[-300\times220\times16\times25]}$	<u>E1</u> (case1)	<u>σ</u> <u>c</u>	<u>85. 4</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	<u>269. 9</u>	<u>0.32</u>	<u>0. K.</u>	
	<u>3</u>	<u>鉛直</u> ブレース	<u>φ -355. 6×9. 5</u>	<u>E1</u> (case1)	<u>σ</u> <u>c</u>	<u>259. 5</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	<u>282. 0</u>	0.93	<u>O. K.</u>	
	<u>4</u>	<u>鋼板</u>	PL-16 <sn400b></sn400b>	<u>E2</u> (case1)	<u>σ_x</u> <u>σ_y</u> _{τ_{xy}}	1.9 9.2 46.9	$\underline{f}_{\underline{t}}$	<u>235. 0</u>	0.35	<u>O. K.</u>	
			表 5. 2. 2-2(2) 断面	給計 結里 (一	eee ee	州雲時)	下郊边	卫 構			
		<u> </u>	部材形状 (mm) <使用材料*2>	<u>荷重</u> ケース (位置)* ³	<u>作</u>	三用 力度 (mm²)	<u>.</u> <u>.</u>	<u>許容</u> 5力度 1/mm²)	<u>応力</u> <u>度比</u>	<u>判定</u>	
	<u>5</u>	<u>柱</u>	<u>H-400×400×13×21</u>	<u>E1</u> (case2)	<u>σ</u> c	<u>179. 6</u>	<u>f_c</u>	<u>304. 1</u>	0.60	<u>O. K.</u>	
	<u>6</u>	<u>梁</u>	H-588×300×12×20	<u>E4</u> (case1)	<u>σ</u> <u>c</u>	<u>136. 9</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{c}}}$	<u>301. 6</u>	<u>0. 46</u>	<u>O. K.</u>	
	7	<u>鉛直</u> ブレース	φ-267. 4×6. 6	<u>E1</u> (case2)	<u>σ</u> t	301.3	<u>f</u> t	<u>325. 0</u>	<u>0. 93</u>	<u>O. K.</u>	
	8	<u>接続部</u> 水平ブレース	<u>+字PL (PL-28×210</u> +2PL-28×91)	<u>E4</u> (case2)	<u>σ</u> <u>t</u>	<u>306. 2</u>	$\underline{\mathbf{f}}_{ ext{t}}$	<u>325. 0</u>	<u>0. 95</u>	<u>O. K.</u>	
	9	<u>接続部</u> 鉛直ブレース	十字 PL (PL-28×210 +2PL-28×91)	<u>E1</u> (case2)	<u>σ</u> _c	<u>266. 8</u>	$\underline{\mathrm{f}_{\mathrm{c}}}$	<u>297. 4</u>	0.90	0. K.	
				•		•			•		

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前	女 (5	弗Ⅱ早 2.1	1 旅竹 4-2 燃料取	9 出し用カッ 変 更 🦻		博 宣独员	を 及い	・耐農性に	- 関する	<u> </u>	
			表 5. 2. 2-2(3) 断面検				1				
		<u> </u>	部材形状 (mm) 〈使用材料* ² 〉	<u>荷重</u> ケース (位置)*³	<u>応</u>	F用 力度 (mm²)	<u>元</u> (N	<u>許容</u> 5力度 1/mm²)	<u>応力</u> <u>度比</u>	判定	
	10	<u>柱</u>	H-400×400×13×21	<u>E4</u> (case1)	<u>σ</u> <u>c</u>	<u>15. 9</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	<u>274. 7</u>	<u>0. 06</u>	<u>O. K.</u>	
	<u>(11)</u>	<u>梁</u>	H-800×300×14×26	<u>E4</u> (case1)	<u>σ</u> c	<u>23. 5</u>	$\underline{\mathbf{f}}_{\mathrm{c}}$	<u>263. 7</u>	0.09	<u>O. K.</u>	
	12	<u>水平</u> ブレース	<u> </u>	<u>E1</u> (case1)	<u>σ</u> <u>t</u>	<u>56. 0</u>	$\underline{\mathbf{f}}_{\mathtt{t}}$	325.0	<u>0. 18</u>	<u>O. K.</u>	
	13	<u>鉛直</u> ブレース	<u>φ -355. 6×7. 9</u>	<u>E1</u> (case1)	<u>σ</u> c	<u>68. 4</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	<u>311. 5</u>	0. 22	<u>O. K.</u>	
			*1:①~⑬の/ *2:各部材の/ *3:図5.2.1-	符号は図 5. 2. 2- 使用材料は,特 3 にガレキ撤去	-2 の応力 記なき限 用天井ク	 検討箇所 り,鋼管 レーンの(を示す : STKN4 位置を表	.90B,そのf <u>示す</u>	也 SN490B		


変更前				変更						変更
	4)	燃料取り出し	<u>時</u>							
			表 5. 2. 2-4 に応力度比が							
	<u> </u>	断面検討の結果	,全ての部材に対する応	力度比が1以	下になることを	確認した	た。_			
			表 5. 2. 2-3(1) 断	面検討結果(-	一般部,常時)	上部架構	토 <u>구</u>			
		Jet / Lev1	部材形状 (mm)	荷重	<u>作用</u>	<u>許</u>	· <u>容</u> 力度	応力	Mari et	
		<u>部位*1</u>	〈使用材料*2〉	<u>ケース</u> (位置)*³	<u>応力度</u> (N/mm²)	<u>)心</u> (N/i	<u>刀度</u> mm ²)	<u>応力</u> <u>度比</u>	<u>判定</u>	
		<u>柱</u>	H-400×400×13×21	<u>C</u>	68 8	f	<u>170. 9</u>	0.41	<u>O. K.</u>	
	<u> </u>	15.	<u>II 400×400×13×21</u>	(case4)	<u>σ</u> <u>68. 8</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	170. 9	0.41	<u>0. K.</u>	
	2	<u>梁</u>	$\underline{B[-300\times220\times16\times25]}$	<u>C</u> (case4)	<u>σ</u> _c <u>17.9</u>	$\underline{\mathbf{f}}_{\mathrm{c}}$	<u>179. 9</u>	<u>0. 10</u>	<u>O. K.</u>	
		<u>鉛直</u>	1 007 420 0	<u>C</u>	57.0	C	170 0	0.00	0 V	
	<u> </u>	ブレース	ϕ -267. 4×6. 6	(case4)	<u>σ</u> _c <u>57. 0</u>	$\underline{\mathbf{f}}_{\mathrm{c}}$	<u>173. 0</u>	0.33	<u>O. K.</u>	
	4	<u>鋼板</u>	<u>PL-16</u>	<u>C</u>	$\begin{array}{c c} \underline{\sigma}_{x} & \underline{0.0} \\ \underline{\sigma}_{y} & \underline{9.5} \end{array}$	$\underline{\mathbf{f}}_{\mathtt{t}}$	<u>156. 0</u>	0. 17	<u>O. K.</u>	
	_		<u><sn400b></sn400b></u>	(case4)	<u>τ_{xy}</u> 13.8					
			表 5. 2. 2-3(2) 断			1				
		<u>部位*1</u>	部材形状 (mm)	<u>荷重</u> ケース	<u>作用</u> <u>応力度</u>		· <u>容</u> 力度	<u>応力</u>	<u>判定</u>	
		<u> </u>	<u>〈使用材料*²〉</u>	(位置) *3	(N/mm ²)		<u>mm²)</u>	度比	<u>177C</u>	
	<u>5</u>	<u>柱</u>	<u>H-400×400×13×21</u>	<u>C</u> (case4)	<u>σ</u> 93.1	$\underline{\mathbf{f}}_{\mathrm{c}}$	<u>202. 7</u>	<u>0. 46</u>	<u>O. K.</u>	
				<u>(case4)</u>						
	<u>6</u>	<u>柱</u> 梁	$\frac{\text{H-}400 \times 400 \times 13 \times 21}{\text{H-}350 \times 350 \times 12 \times 19}$		<u>σ</u> _c 93.1 <u>σ</u> _c 49.5		202. 7 183. 8	<u>0. 46</u> <u>0. 27</u>	O. K.	
		<u>梁</u> <u>鉛直</u>		(case4) <u>C</u> (case4) <u>C</u>	10.5	<u>f</u> c				
	<u>6</u>	梁 <u>鉛直</u> ブレース		(case4) C (case4) C (case4)	<u>σ</u> _c 49.5	<u>f</u> c	183.8	0. 27 0. 63	<u>O. K.</u>	
	<u>6</u>	<u>梁</u> <u>鉛直</u>	H-350×350×12×19 φ-267. 4×6. 6 +字 PL (PL-28×210	(case4) <u>C</u> (case4) <u>C</u>	<u>σ</u> _c 49.5	<u>f_c</u>	183.8	0. 27	<u>O. K.</u>	
	<u>6</u>	梁 <u>鉛直</u> ブレース <u>接続部</u> 水平ブレース	H-350×350×12×19 φ-267. 4×6. 6 +字 PL (PL-28×210 +2PL-28×91) +字 PL (PL-28×210	C (case4) C (case4) C (case4) C (case4)	$\frac{\sigma_{c}}{\sigma_{c}} = \frac{49.5}{122.8}$ $\frac{\sigma_{c}}{\sigma_{c}} = \frac{90.1}{100.00}$	$\frac{\mathbf{f_c}}{\mathbf{f_c}}$	183. 8 196. 2	0. 27 0. 63	0. K. 0. K.	
	<u>6</u> <u>7</u> <u>8</u>	梁 <u>鉛直</u> ブレース 接続部 水平ブレース	H-350×350×12×19 ϕ -267. 4×6. 6 +字 PL (PL-28×210 +2PL-28×91)	C (case4) C (case4) C (case4)	<u>σ</u> _c <u>49.5</u> <u>σ</u> _c <u>122.8</u>	$\frac{\mathbf{f_c}}{\mathbf{f_c}}$	183. 8 196. 2 187. 5	0. 27 0. 63 0. 49	0. K. 0. K.	
	<u>6</u> <u>7</u> <u>8</u>	梁 <u>鉛直</u> ブレース 接続部 水平ブレース	H-350×350×12×19 φ-267. 4×6. 6 +字 PL (PL-28×210 +2PL-28×91) +字 PL (PL-28×210	C (case4) C (case4) C (case4)		$rac{\mathbf{f_c}}{\mathbf{f_c}}$	183. 8 196. 2 187. 5	0. 27 0. 63 0. 49	O. K. O. K.	
	<u>6</u> <u>7</u> <u>8</u>	梁 <u>鉛直</u> ブレース <u>接続部</u> 水平ブレース	H-350×350×12×19 φ-267. 4×6. 6 +字 PL (PL-28×210 +2PL-28×91) +字 PL (PL-28×210	C (case4) C (case4) C (case4) C (case4)	$\frac{\sigma_{c}}{\sigma_{c}} = \frac{49.5}{122.8}$ $\frac{\sigma_{c}}{\sigma_{c}} = \frac{90.1}{100.00}$	$rac{\mathbf{f_c}}{\mathbf{f_c}}$	183. 8 196. 2 187. 5	0. 27 0. 63 0. 49	O. K. O. K.	

福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比較 変 更 前		カ II 早 2. I		変更後		书(旦) \$(5)	Z/X U·		- 因りる	北り音)	変更理由
			表 5. 2. 2-3(3) 断面	検討結果(燃料	料取扱割	设備支持部	部,常	時)_			
		部位*1	<u>部材形状(mm)</u> <u><使用材料*²></u>	<u>荷重</u> ケース (位置)*³	応	三 <u>用</u> 力度 (mm²)	<u>応</u> (N	<u>許容</u> :力度 [/mm²)	<u>応力</u> <u>度比</u>	判定	
	10	柱	H-400×400×13×21	<u>C</u> (case4)	<u>σ</u> c	<u>34. 7</u>	<u>f</u> c	<u>202. 7</u>	0.18	<u>O. K.</u>	
	11)	<u>梁</u>	<u>H-350×350×12×19</u>	<u>C</u> (case4)	<u>σ</u> c	<u>29. 1</u>	<u>f</u> c	<u>201. 5</u>	<u>0. 15</u>	<u>O. K.</u>	
	12	<u>水平</u> ブレース	<u>十字 PL</u> <u>(PL-28×210</u> +2PL-28×91)	<u>C</u> (case4)	<u>σ</u> <u>t</u>	42.9	$\underline{\mathbf{f}}_{\mathtt{t}}$	<u>216. 6</u>	<u>0.20</u>	<u>O. K.</u>	
	<u>13</u>	<u>鉛直</u> ブレース	<u>φ -355. 6×7. 9</u>	<u>C</u> (case4)	<u>σ</u> _c	93.6	$\underline{\mathbf{f}_{\mathrm{c}}}$	<u>207. 7</u>	<u>0. 46</u>	<u>O. K.</u>	
			*2:各部材の	符号は図 5.2.2- 使用材料は,特 -4 に燃料取扱設	記なき限	り,鋼管		90B, そのf	也 SN490B		

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前	XX (5	村Ⅱ 早	你们 4-2 然外似	変更後		书 坦强没		民任に	-ぼりる	<u> </u>	変更理由
			表 5. 2. 2-4(1) 断面	検討結果(一	般部,	地震時)	上部架構				
		部位*1	<u>部材形状 (mm)</u> <u>〈使用材料*²〉</u>	荷重 <u>ケース</u> (位置)*³	<u>応</u>	三用 力度 (mm²)	<u>許</u> 容 <u>応力</u> (N/mn	<u>度</u>	<u>応力</u> <u>度比</u>	<u>判定</u>	
	1	柱	H-400×400×13×21	<u>E2</u> (case4)	<u>σ</u> c	<u>136. 8</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{c}}}$ $\underline{2}$	<u>56. 4</u>	<u>0.54</u>	<u>O. K.</u>	
	2	12,51	$\frac{B[-300 \times 220 \times 16 \times}{25}$	<u>E1</u> (case4)	<u>o</u> c	<u>67. 5</u>	<u>f</u> c 2	<u>69. 9</u>	<u>0. 26</u>	<u>O. K.</u>	
	3	<u>鉛直</u> ブレース	<u>φ -355. 6×9. 5</u>	<u>E1</u> (case4)	<u></u> <u>o</u> <u>c</u>	245.5	$\underline{\mathbf{f}}_{\mathbf{c}}$ $\underline{2}$	82.0	<u>0.88</u>	<u>O. K.</u>	
	<u>4</u>	<u>鋼板</u>	<u>PL-16</u> < <u>SN400B></u>	<u>E4</u> (case4)	$ \begin{array}{c c} \sigma_x \\ \hline \sigma_y \\ \hline \tau_{xy} \end{array} $	28. 0 9. 1 41. 6	$\underline{\mathbf{f}}_{\mathbf{t}}$ $\underline{2}$	<u>35. 0</u>	<u>0.33</u>	<u>O. K.</u>	
			表 5. 2. 2-4(2) 断面	検討結果(一	般部,	地震時)	下部架構	<u>.</u>			
		部位*1	<u>部材形状(mm)</u> 〈使用材料* ² 〉	<u>荷重</u> <u>ケース</u> (位置) *3	応	F用 力度 (mm²)	<u>許</u> 名 <u>応力</u> (N/m	<u>度</u>	<u>応力</u> <u>度比</u>	<u>判定</u>	
	<u>5</u>	<u>柱</u>	H-400×400×13×21	<u>E1</u> (case4)	<u>σ</u> c	<u>176. 0</u>	<u>f</u> _c 3	04. 1	<u>0. 58</u>	<u>O. K.</u>	
	<u>⑥</u>	<u>梁</u>	H-588×300×12×20	<u>E1</u> (case4)	<u>σ</u> t	<u>138. 0</u>	<u>f</u> _t 3	<u>25. 0</u>	0.43	<u>O. K.</u>	
	7	<u>鉛直</u> ブレース	<u>φ-267. 4×6. 6</u>	<u>E1</u> (case4)	<u></u> <u> </u>	<u>298. 9</u>	<u>f</u> _t 3	<u>25. 0</u>	0.92	<u>O. K.</u>	
	8	<u>接続部</u> 水平ブレース	<u>十字 PL</u> (PL-28×210 +2PL-28×91)	<u>E4</u> (case4)	<u></u> <u>o</u> <u>t</u>	<u>298. 8</u>	<u>f</u> _t 3	<u>25. 0</u>	0.92	<u>O. K.</u>	
	9	<u>接続部</u> 鉛直ブレース	<u>十字 PL</u> (PL-28×210 +2PL-28×91)	<u>E2</u> (case4)	<u>σ</u> <u>c</u>	<u>269. 3</u>	$\frac{\mathbf{f}_{\mathrm{c}}}{2}$	96. 6	<u>0. 91</u>	<u>O. K.</u>	

変更前	変更後変更後
	表 5. 2. 2-4(3) 断面検討結果 (燃料取扱設備支持部, 地震時)
	部位*1 一部材形状 (mm) (位置)*3 一方一ス (位置)*3 「下用 (下用 に力度 に力度 (N/mm²) (N/mm²) 立力度 (N/mm²) 上型 (N/mm²) 当定 (N/mm²)
	⑩ 柱 H-400×400×13×21 E4 (case4) σ_c 33.0 fc 274.7 0.13 0. K.
	⑪ 梁 $H-350\times350\times12\times19$ $\underline{\underline{E1}}$ $\underline{\sigma_c}$ 38.7 $\underline{f_c}$ 302.3 0.13 0.K.
	① $\mbox{ $
	③ <u>鉛直</u> <u>ϕ-355.6×7.9</u> <u>E1</u> <u>(case4)</u> <u>σ_c</u> 106.1 <u>f_c</u> 311.5 <u>0.35</u> <u>0. K.</u>
	*1:①~⑬の符号は図 5. 2. 2-4 の応力検討箇所を示す *2:各部材の使用材料は、特記なき限り、鋼管:STKN490B, その他 SN490B *3:図 5. 2. 1-4 に燃料取扱設備の位置を示す

変 更 前	変更後	変更理由
	5.2.3 屋根の構造強度に対する検討	
	 <u>1) 弦材,斜材,ブレース</u> 	
	部材の応力度比は、「鋼構造設計規準」に従い、下記にて検討を行う。	
	・軸圧縮の場合 $\frac{\sigma_c}{f_c} \le 1$	
	・軸引張の場合 $\frac{\sigma_t}{f_t} \le 1$	
	<u>ここで,</u> σ_{c} : 圧縮応力度 (N/A) (N/mm^{2})	
	<u>σ_t:引張応力度 (T/A) (N/mm²)</u> <u>N:圧縮力(N), T:引張力(N), A:断面積(mm²)</u>	
	f_c : 許容圧縮応力度 f_c :	
	$f_{ t t}$: 許容引張応力度 $(t N/mm^2)$	
	2) 検討結果	
	表 5. 2. 3-1 に応力度比が最大となる部位の断面検討結果を示す。	
	断面検討の結果,全ての部材に対する応力度比が1以下になることを確認した。	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前	X 1X (<u> </u>	11 祝竹 4 2 然初		ロルノ、 更 後	V / 1 件 / LL / 15	以文人	八顺反注《	- 因り (Ji	ルツ(音)	変更理由
			表 5. 2. 3-1(1)				撤去時)			
		<u>部位*1</u>	<u>部材形状</u> _(mm)_	<u>荷重</u> ケース (位置)*2	<u>/</u> / <u>応</u>	<u>≒用</u> 力度 ′mm²)	<u></u>	<u>許容</u> 5力度 [/mm²)	<u>応力</u> 度比	<u>判定</u>	
	<u>①</u>	<u>弦材</u>	$\frac{P-216.3 \phi \times 7.0t}{\langle STK490 \rangle}$	<u>C</u> (case1)	<u>σ</u> _c	48. 2	$\underline{\mathbf{f}_{\mathrm{c}}}$	213. 1	0.23	<u>O. K.</u>	
	2	<u>斜材</u>	<u>P-89.1 φ × 3.2t</u> <u><stk400></stk400></u>	<u>C</u> (case1)	<u>σ</u> <u>t</u>	<u>42. 3</u>	$\underline{\mathbf{f}}_{\mathtt{t}}$	<u>156. 7</u>	0.27	<u>O. K.</u>	
	3	ブレース	<u>1-M30</u> < <u>SNR490B></u>	<u>C</u> (case1)	<u>σ</u> _t	107.7	<u>f</u> t	216.7	0.50	<u>O. K.</u>	
				<u>*1 :</u> *2 :	<u>(1)~(3)の</u> 2 図 5. 2. 1-3	9号は図 5.2 3 にガレキ撤	2.3-1 の原 女去用天井	5.力検討箇所 ‡クレーンの	<u>「を示す</u>)位置を示す	-	
	r									7	
			_		À						
								•			
		•						② /			
		① -)		
			3								

			— _							i	
			<u>図</u> 5.	. 2. 3-1 最	大応力度	比位置図					

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前	(X) (月	p Ⅱ 早	II 初时 4 ⁻²		<u> </u>	∨ノ1再、巨児	以及以い言	はた性に	·戌りるi	ル切 <i>音)</i>	変更理由
ر کر ایاء مرکز ایاء			表 5. 2. 3-1(2)			. 燃料取	り出し時)				
	拉	<u> 郑位*1</u>	<u>部材形状</u> (mm)	荷重 ケース (位置)*2	<u>作</u> <u>応</u>	<u>≓用</u> 力度 ′mm²)	許容 <u>応力</u> (N/mn	<u>室</u> <u>度</u>	<u>応力</u> 度比	判定	
	1	<u>弦材</u>	P-216.3 φ × 6.0t <stk490></stk490>	<u>C</u> (case4)	<u>σ</u> _c	23. 4		214. 1	<u>0. 11</u>	<u>O. K.</u>	
	2	<u>斜材</u>	<u>P-89. 1 φ × 3. 2t</u> <u><stk400></stk400></u>	<u>C</u> (case4)	<u>o</u> t	<u>32. 6</u>	$\underline{\mathbf{f}_{\mathrm{t}}}$	<u>156. 7</u>	<u>0. 21</u>	<u>O. K.</u>	
	<u>3</u>	ブレース	<u>1-M27</u> < <u>SNR490B></u>	<u>C</u> (case4)	<u>σ</u> _t	<u>75. 0</u>		216. 7	0.35	<u>O. K.</u>	
				<u>*1 :</u> *2 :	①~③の名 図 5. 2. 1-4	符号は図 5.2 に燃料取扱	2.3-2 の応力 放設備の位置	1検討箇所を <u>を示す</u>	<u>を示す</u>		
			⊻ 5.	. 2. 3-2 最					© 3		

福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比較 変 更 前	(五)	Ⅱ 毕			更後	V 271件 (旦 1)虫	交及ひ	前辰圧に	- 医リンプロ		変更理由
			表 5. 2. 3-1(3)			時, ガレキ	治散去時)	<u> </u>			
	部位	<u>\frac{1}{M}*1</u>	<u>部材形状</u> _(mm)_	<u>荷重</u> <u>ケース</u> (位置)*2	<u>作</u> 応力 (N/n	<u> </u>	<u>許</u> 応力 (N/n	<u>カ度</u>	<u>応力</u> <u>度比</u>	判定	
	<u>①</u>	弦材	<u>P-216.3 φ × 7.0t</u> <u><stk490></stk490></u>	<u>E2</u> (case1)	<u>σ</u> _c	99. 2		319.7	<u>0.32</u>	<u>O. K.</u>	
	2	斜材	<u>P-89.1 φ × 3.2t</u> <u><stk400></stk400></u>	<u>E3</u> (case2)	<u>σ</u> <u>t</u>	<u>159. 2</u>	$\underline{\mathbf{f}}_{\mathtt{t}}$	<u>235. 0</u>	0.68	<u>O. K.</u>	
	<u>③</u> ブ	ブレース	<u>1-M27</u> < <u>SNR490B></u>	<u>E1</u> (case1)	_	299.7		<u>325.0</u>	<u>0.93</u>	<u>O. K.</u>	
						F号は図 5.2. にガレキ撤				-	
				2.3-3 最力							

福島第一原子力発電所・特定原子力施設に係る実施計画変更比較	爻衣 (男Ⅱ早 2 	.11			博宣强及	及い耐震性	に関する説明	
変更前		≠ F 0 0 1 (4)	変更					変更理由
		表 5. 2. 3-1(4)	<u> </u>	<u>作用</u>		<u> </u>		_
	部位*1	<u>部材形状</u> _(mm)_	<u>ケース</u> (位置)*2	応力度 (N/mm²	<u> </u>	<u>応力度</u> (N/mm²)	<u>応力</u> 度比	Ē
	① <u>弦材</u>	$\frac{P-216.3 \phi \times 7.0t}{\langle STK490 \rangle}$	<u>E2</u> (case4)	<u>\sigma_t</u> <u>8</u>	81.6	$\underline{\mathbf{f}}_{\mathtt{t}}$ 325. 0	<u>0. 26</u> <u>0. F</u>	<u> </u>
	<u>②</u> 斜材	$\frac{P-89.1 \phi \times 3.2t}{\langle STK400 \rangle}$	<u>E3</u> (case4)	<u>σ</u> _t <u>1</u>	154. 2	<u>f</u> _t <u>235. 0</u>	<u>0.66</u> <u>0.1</u>	<u> </u>
		<u>1-M30</u> <snr490b></snr490b>	<u>E1</u> (case4)			$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$ 325. 0		<u>-</u>
			<u>*2 : 🗵</u>	3 5. 2. 1-4 に火	燃料取扱設位	-4 の応力検討箇 備の位置を示す		
	•							

変 更 前 変 更 後 変 更 理 由 5.2.4 建屋取り合い部の構造強度に対する検討 (1) アンカーボルトの検討(引抜き,せん断) 大型カバーはアンカーボルトにより原子炉建屋外壁に取り付く。アンカーボルトの仕様は、M33 大型カバーはアンカーボルトにより原子炉建屋外壁に取り付く。アンカーボルトの仕様は、M33

大型カバーはアンカーボルトにより原子炉建屋外壁に取り付く。アンカーボルトの仕様は、M33 (SNR490B) の接着系アンカーボルトとし、許容耐力は「あと施工アンカー施工指針(案)(一般社団法人日本建築あと施工アンカー協会)」、「各種合成構造設計指針・同解説」に従い、原子炉建屋の設計基準強度を用いて下式によって求める。表 5.2.4-1 にアンカーボルトの許容耐力を、図 5.2.4-1 にアンカー標準図を示す。

 $pa = \min(\phi_1 \cdot pa_1, \phi_2 \cdot pa_2, \phi_3 \cdot pa_3)$ $qa = \min(\phi_1 \cdot qa_1, \phi_2 \cdot qa_2)$

<u>φ₁~φ₃:低減係数(長期,短期)</u>

pa :接着系アンカーボルトの許容引張力(kN/本)

pa₁ : アンカーボルトの降伏により決まる許容引張力(kN/本)

pa₂ : 躯体のコーン状破壊により決まる許容引張力(kN/本)

<u>pa3</u>:付着力により決まる許容引張力(kN/本)

qa :接着系アンカーボルトの許容せん断力 (kN/本)

qa₁ :アンカーボルトのせん断強度により決まる許容せん断力(kN/本)

qa₂ : 躯体の支圧強度により決まる許容せん断力(kN/本)

表 5. 2. 4-1 接着系アンカーボルトの許容耐力

	如 /士		燃料取扱記	<u> </u>
	<u>部位</u> 	<u>一般部</u>	GL+1	13. 7
	<u>タイプ</u>	標準	<u>標</u>	準
	<u>鋼材種類</u>	M33 SNR490B	MS SNR4	33 490B
	<u>埋め込み長さ</u> <u>(mm)</u>	345	34	<u>45</u>
	アンカーボルト間隔 (mm)	400	40	<u>)0</u>
巨田	許容引張力(pa _L) (kN/本)	<u>78</u>	<u>106</u>	<u>92</u>
<u>長期</u>	<u>許容せん断力(qa_L) (kN/本)</u>	<u>76</u>	<u>76</u>	<u>76</u>
短期	許容引張力(pas) (kN/本)	<u>156</u>	212	<u>185</u>
<u> </u>	許容せん断力(qas) (kN/本)	<u>152</u>	<u>152</u>	<u>152</u>

変 更 前	長(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 後	変更理由
	アンカーボルトの検討は,建屋取り合い部に生じる最大支点反力に対し,下式にて検討を行う。 $\frac{\frac{P}{P_a}}{\frac{Q}{Q_a}} \leq 1 \qquad \qquad Pa: アンカーボルトの許容引張耐力(kN) \\ Qa: アンカーボルトの許容せん断耐力(kN) \\ P: アンカーボルトの引張力(kN) \\ Q: アンカーボルトのせん断力(kN) \\ Q: アンカーボルトのせん断力(kN)$	
	ベースプレート	
	図 5. 2. 4-1 アンカー標準図	

福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比較 変 更 前	(州平 2.1)	1 40/1.1 4 7	MX17 4X 7	変更後		(文/文 U 1117) 辰		2 Dr. 2.1 目 1	
	<u>1) ガレキ撤去時</u>								
	表 5.2.4-2 に耐		なる部位の枚	検討結果を示っ	<u>す。</u>				
	検討の結果、ア	ンカーボルトの	の最大耐力は	とは1以下にな	よることを確	認した。_			
		表 5. 2. 4-2	(1) アンカ	ーボルトの検	討結果(一角	股部,常時)			
	<u>部位*1</u>	<u>荷重</u>	<u>作月</u>	月応力	<u>許</u> 容	<u>容耐力</u>			
	<u> </u>	<u>ケース</u> (位置)*2	<u>引張力</u> <u>P</u>	<u>せん断力</u> <u>Q</u>	<u>許容</u> <u>引張力</u>	<u>許容</u> せん断力	耐力比	<u>判定</u>	
	<u>アンカー</u> ボルト (12)	<u>C</u> (case1)	(kN) 36	<u>(kN)</u> <u>749</u>	<u>Pa (kN)</u> <u>936</u>	<u>Qa (kN)</u> <u>912</u>	<u>0.83</u>	<u>O. K.</u>	
		2. 4-2(2)	アンカーボル	/トの検討結果	- (燃料取扱	設備支持部.	常時)		
	部位*1	荷重		月応力		序耐力			
	<u> </u>	<u>ケース</u> (位置)*2	<u>引張力</u> <u>P</u> (kN)	<u>せん断力</u> <u>Q</u> (kN)	<u>許容</u> <u>引張力</u> Pa(kN)	<u>許容</u> せん断力 Qa(kN)	耐力比	<u>判定</u>	
	アンカー <u>ボルト</u> <u>(12)</u>	<u>C</u> (case1)	<u>0</u>	349	1272	912	<u>0.39</u>	<u>O. K.</u>	
				*1:図5.2.2 *2:図5.2.1	2-1 に応力検言 1-3 にガレキ指	付 <u>箇所を示す</u> 放去用天井クレー	ーンの位置をテ	<u> </u>	

福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比較 変 更 前	又 (1 10/11 1 2	KN11 4X 9	変更後		成文/文 〇 前 1 成 1	工(C)为 7 公	M.01 = /	変更理由
		表 5. 2. 4-2(3	3) アンカー	ボルトの検討	対結果(一 般	战部,地震時)	1		
	<u>部位*¹</u> <u>(アンカー本数)</u>	<u>荷重</u> ケース (位置)* ²	<u>作用</u> <u>引張力</u> <u>P</u> (kN)	月応力 せん断力 Q (kN)	<u>許容</u> 引張力 Pa(kN)	<u>許容</u> <u>せん断力</u> Qa (kN)	耐力比	<u>判定</u>	
	<u>アンカー</u> ボルト <u>(34)</u>	<u>E3</u> (case1)	0	3412	5304	5168	0. 67	<u>O. K.</u>	
	表 5. 3	2.4-2(4) アン	ンカーボルト	の検討結果	(燃料取扱部	设備支持部,地 類	雲時)_		
		<u>荷重</u>	<u>作</u> 月	月応力	<u>許</u> 名	<u>容耐力</u>			
	<u>部位*1</u> <u>(アンカー本数)</u>	<u>ケース</u> (位置)* ²	<u>引張力</u> <u>P</u> (kN)	<u>せん断力</u> Q (kN)	<u>許容</u> 引張力 Pa (kN)	<u>許容</u> せん断力 Qa(kN)	耐力比	判定	
	<u>アンカー</u> <u>ボルト</u> <u>(12)</u>	<u>E1</u> (case1)	<u>0</u>	474	<u>2544</u>	1824	0. 26	<u>O. K.</u>	
				*1: 図 5.2.2 *2: 図 5.2.1	2−2 に応力検記 L−3 にガレキ <u>f</u>	対 <u>箇所を示す</u> 敬去用天井クレー	ンの位置を示	<u>す</u>	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前	※衣(第Ⅱ早 2.1 	1 4079 4-2	然外収り	変更後		B及及UIIII展	:1生(に)対 9 4	<u> 3 説明音/</u>	
文 火 III	2) 燃料版り口			夕 义 俊					<u> </u>
	2) 燃料取り出し 表 5.2.4-3 に耐		なる部位の橋	金討結果を示る	-				
	検討の結果,ア					認した。_			
		表 5. 2. 4-3	(1) アンカ	ーボルトの検	討結果(一	般部,常時)			
		農	<u>作</u> 月	用応力	<u>許</u> 名	<u>字耐力</u>			
	<u>部位*1</u> (アンカー本数)	<u>荷重</u> ケース (位置)*²	引張力	せん断力	<u>許容</u>	<u>許容</u>	耐力比	<u>判定</u>	
	() > 八 平妖)	<u>(位置)*2</u>	<u>P</u>	\underline{Q}	引張力	<u>せん断力</u>			
	アンカー		<u>(kN)</u>	<u>(kN)</u>	<u>Pa (kN)</u>	Qa (kN)			
	<u>ボルト</u> (12)	<u>C</u> (case4)	<u>0</u>	<u>744</u>	<u>936</u>	<u>912</u>	<u>0.82</u>	<u>O. K.</u>	
	(12)								
	表 5	5. 2. 4-3(2) \mathcal{T}	· ンカーボル	トの給討結果	(燃料取扱)	設備支持部 (常時)		
	<u> </u>	(1)					117-17		
	<u> </u>	荷重		<u> 応力</u>		<u> </u>		and also	
	<u>(アンカー本数)</u>	<u>荷重</u> ケース (位置)*²	<u>引張力</u>	<u>せん断力</u>	<u>許容</u> 리正力	<u>許容</u> サノギカ	耐力比	<u>判定</u>	
		(124)	<u>P</u> (kN)	<u>Q</u> (kN)	<u>引張力</u> Pa(kN)	<u>せん断力</u> Qa(kN)			
	アンカー	<u>C</u>	0	770	1.479	1916	0.64	O V	
	<u>アンカー</u> <u>ボルト</u> _(16)	<u>(case4)</u>	0	<u>770</u>	<u>1472</u>	<u>1216</u>	<u>0. 64</u>	<u>O. K.</u>	
	·			*1:図5.	2.2-3 に応力	<u>検討箇所を示す</u> 取扱設備の位置を	を示す		
				<u>**2.因 5.</u>	2.1 年 (年)(年)	以 及以 佣 少 世	<u> </u>		

福島弟一原十刀発竜所 特足原十刀施設に係る夫施計画変更比較 変 更 前	(水 (州中 2.1	1 W/1 I Z	KN111 HX 7	変更後		成文/人〇 1] 辰	工(C)为 ?		変更理由
		表 5. 2. 4-3 (3	3) アンカー	ーボルトの検診	 	治, 地震時)			
	<u>部位*¹</u> (アンカー本数)	<u>荷重</u> ケース	<u>作用</u> <u>引張力</u>	<u> 世ん断力</u>	<u>許容</u>	<u>容耐力</u> <u>許容</u>	<u>耐力比</u>	<u>判定</u>	
		<u>ケース</u> (位置)* ²	<u>P</u> (kN)	Q (kN)	引張力 Pa(kN)	せん断力 Qa(kN)			
	<u>アンカー</u> ボルト (36)	<u>E2</u> (case4)	0	<u>3537</u>	<u>5616</u>	5472	<u>0. 65</u>	<u>O. K.</u>	
	表 5.	2.4-3(4) アン	ンカーボルト	の検討結果	(燃料取扱設	战 <u>備支持部,地</u>	震時)		
	<u>部位*1</u>	<u>荷重</u>	<u>作</u> 月	月応力	<u>許</u> 容	<u>容耐力</u>			
	(アンカー本数)	<u>ケース</u> (位置)*²	<u>引張力</u> <u>P</u> <u>(kN)</u>	<u>せん断力</u> Q <u>(kN)</u>	<u>許容</u> 引張力 Pa(kN)	<u>許容</u> せん断力 Qa(kN)	耐力比	<u>判定</u>	
	<u>アンカー</u> <u>ボルト</u> <u>(12)</u>	<u>E1</u> (case4)	<u>0</u>	<u>695</u>	<u>2544</u>	<u>1824</u>	0.39	<u>O. K.</u>	
				*1:図5. *2:図5.	2. 2-4 に応力権 2. 1-4 に燃料耳	検討箇所を示す 取扱設備の位置を	<u>シ示す</u>		
	F.4								00

変更前	変 更 後	変更理由
	(2) 原子炉建屋外壁部の検討 原子炉建局外壁部に生じる最大圧縮反力に対し、下式にて検討を行う。 図5.2.4-2 にペースプレート標準図を示す、	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比戦 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	父衣 (男 Ⅱ 早 - 2 	2.11			順農性に関す	○説明書)	
変更前			変更	後 ————————————————————————————————————			変更理由
	1) ガレキ撤去	<u> </u>					
	表 5. 2. 4-4 及	とび表 5.2.4-5 に	応力度比が最大となる語	8位の検討結果を示す。	<u>. </u>		
	検討の結果,	原子炉建屋外壁	部の最大応力度比は11	以下になることを確認し	した。_		
		表 5.2	. 4-4(1) 外壁部の検討	結果 (一般部, 常時)			
	<u>部位*1</u>	荷重ケース	作用応力度	<u>許容応力度</u>	<u>応力度比</u>	<u>判定</u>	
	<u> </u>	(位置)*2	(N/mm^2)	(N/mm^2)	<u>/心ノノ/支レし</u>	<u>+1/C</u>	
	<u>⑥</u> <u>外壁</u>	<u>C</u> (case1)	<u>0. 3</u>	<u>7. 4</u>	<u>0. 05</u>	<u>O. K.</u>	
			L) 外壁部の検討結果(燃料取扱設備支持部,	常時)_		
		荷重ケース	作用応力度	許容応力度			
	部位*1	(位置)*2	(N/mm ²)	(N/mm ²)	<u>応力度比</u>	<u>判定</u>	
	<u>①</u> <u>外壁</u>	<u>C</u> (case2)	0.3	<u>7. 4</u>	<u>0. 05</u>	<u>0. K.</u>	
				5.2.2-1 に応力検討箇所を			
			<u>*2 : 🗵</u>	5.2.1-3 にガレキ撤去用ヲ	天井クレーンの位置	置を示す	
		表 5.2.	4-5(1) 外壁部の検討約	古果(一般部,地震時)	<u> </u>		
	部位*1	荷重ケース	作用応力度	許容応力度	<u>応力度比</u>	<u>判定</u>	
		(位置)*2 <u>E1</u>	(N/mm ²)	<u>(N/mm²)</u>			
	<u>⑩</u> <u>外壁</u>	(case2)	<u>0. 6</u>	<u>14. 8</u>	<u>0. 05</u>	<u>O. K.</u>	
		表 5. 2. 4-5(2)	外壁部の検討結果(炊	然料取扱設備支持部,均	地震時)_		
	₩7/₩1	荷重ケース	作用応力度	<u>許容応力度</u>	大力在以	<u>判定</u>	
	部位*1	(位置)*2	<u>(N/mm²)</u>	<u>(N/mm²)</u>	<u>応力度比</u>	<u>刊</u>	
	<u>①</u> <u>外壁</u>	<u>E1</u> (case2)	<u>0.3</u>	<u>14. 8</u>	<u>0. 03</u>	<u>O. K.</u>	
		<u> </u>		5.2.2-2 に応力検討箇所を 5.2.1-3 にガレキ撤去用ヲ		異な示す	
			<u>*4. </u>	0.2.1 5 (Cルレコ)取五用ノ	ヘカ ノ マー マ ♥ン71年間	<u> </u>	

変更前			変更	後			変更理
	2) 燃料取り出	出し時の検討					
	表 5. 2. 4-6 及	とび表 5.2.4-7 に	応力度比が最大となる部	『位の検討結果を示す。	<u>) </u>		
	検討の結果,	原子炉建屋外壁	部の最大応力度比は10	人下になることを確認	した。		
		<u>表 5. 2</u>	.4-6(1) 外壁部の検討	結果(一般部,常時)	_		
	<u>部位*¹</u>	<u>荷重ケース</u> (位置)*2	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> (N/mm²)	<u>応力度比</u>	判定	
	<u>⑥</u> <u>外壁</u>	<u>C</u> (case4)	0.3	<u>7. 4</u>	0.05	<u>O. K.</u>	
		表 5. 2. 4-6(2) 外壁部の検討結果(燃料取扱設備支持部、	常時)		
	<u> </u>	<u>荷重ケース</u> (位置)*2	作用応力度 (N/mm²)	<u>許容応力度</u> (N/mm²)	応力度比	判定	
	<u> </u>	<u>C</u> (case4)	<u>0. 4</u>	<u>7. 4</u>	0.06	<u>0. K.</u>	
			*1 : 🗵 *2 : 🗵	5.2.2-3 に応力検討箇所を 5.2.1-4 に燃料取扱設備の	<u>を示す</u> の位置を示す		
		表 5. 2.	4-7(1) 外壁部の検討約	告果(一般部,地震時))		
	<u> </u>	<u>荷重ケース</u> (位置)*2	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> (N/mm²)	<u>応力度比</u>	判定	
	<u>⑥</u> <u>外壁</u>	<u>E1</u> (case4)	<u>0. 6</u>	<u>14. 8</u>	<u>0. 05</u>	<u>O. K.</u>	
		表 5. 2. 4-7(2)	外壁部の検討結果(燃	然料取扱設備支持部, 」	地震時)_		
	<u>部位*¹</u>	<u>荷重ケース</u> (位置)*2	<u>作用応力度</u> <u>(N/mm²)</u>	<u>許容応力度</u> (N/mm²)	<u>応力度比</u>	<u>判定</u>	
	<u>⑩ 外壁</u>	<u>E1</u> (case4)	<u>0. 5</u>	<u>14. 8</u>	0.04	<u>O. K.</u>	
				5.2.2-4 に応力検討箇所を 5.2.1-4 に燃料取扱設備の			

	及表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書)	
変更前	変更後	変更理由
	5.2.5 天井クレーンの構造強度に対する検討	
	(1) 断面検討	
	1) クレーンガーダ	
	部材の応力度比は,「鋼構造設計規準」に従い,曲げモーメントに対して下式にて検討を行う。	
	$\frac{\sigma_b}{f_b} \le 1$	
	<u>ここで,</u> <u>σ_b:曲げ応力度(M/Z)(N/mm²)</u>	
	$\underline{\mathbf{f}_{\mathrm{b}}}$: 許容曲げ応力度 ($\mathrm{N/mm^2}$)	
	2) 検討結果	
	2.1) ガレキ撤去時 	
	表 5. 2. 5-1 に断面検討結果を示す。	
	断面検討の結果、全応力度比が1以下になることを確認した。	
	ま E O E 1 (1)	
	表 5. 2. 5-1(1) 断面検討結果(常時) 作用 許容	
	一	
	クレーン □=1500×2700 C (N/mm²)	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	*1:図5.2.1-3にガレキ撤去用天井クレーンの位置を示す	
	表 5. 2. 5-1(2) 断面検討結果 (地震時)	
	<u>作用</u> <u> </u>	
	<u> </u>	
	<u>(1\(\) \) \) \(</u>	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	*1:図5.2.1-3にガレキ撤去用天井クレーンの位置を示す	

では、	を表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 後				
Д Д III	2.2) 燃料取り出し時	<u> </u>			
	表 5. 2. 5-2 に断面検討結果を示す。				
	断面検討の結果、全応力度比が1以下になることを確認した。				
	表 5. 2. 5-2(1) 断面検討結果(常時) 点面 作用				
	部位 一部材形状 (mm) 一点 (公面) (N/mm²) 一流 (N/mm²) 一流 (N/mm²) N/mm²) N/mm²				
	*1:図 5.2.1-4 に燃料取扱設備の位置を示す				
	表 5. 2. 5-2(2) 断面検討結果 (地震時)				
	部位 一部材形状 (mm) 一点 (公司) (N/mm²) 一点 (公司) (N/mm²)				
	*1:図5.2.1-4 に燃料取扱設備の位置を示す				

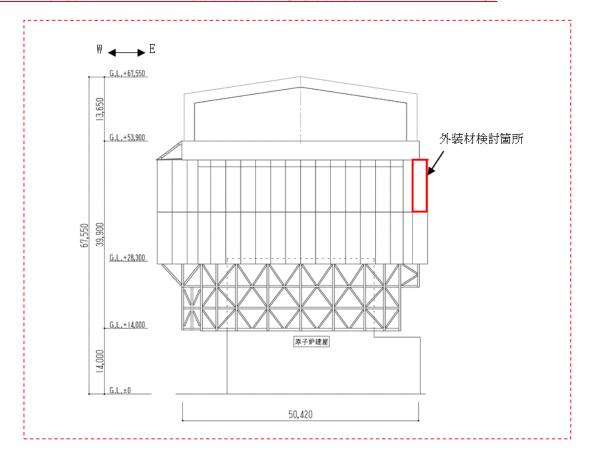
5.2.6 外装材の構造強度に対する検討

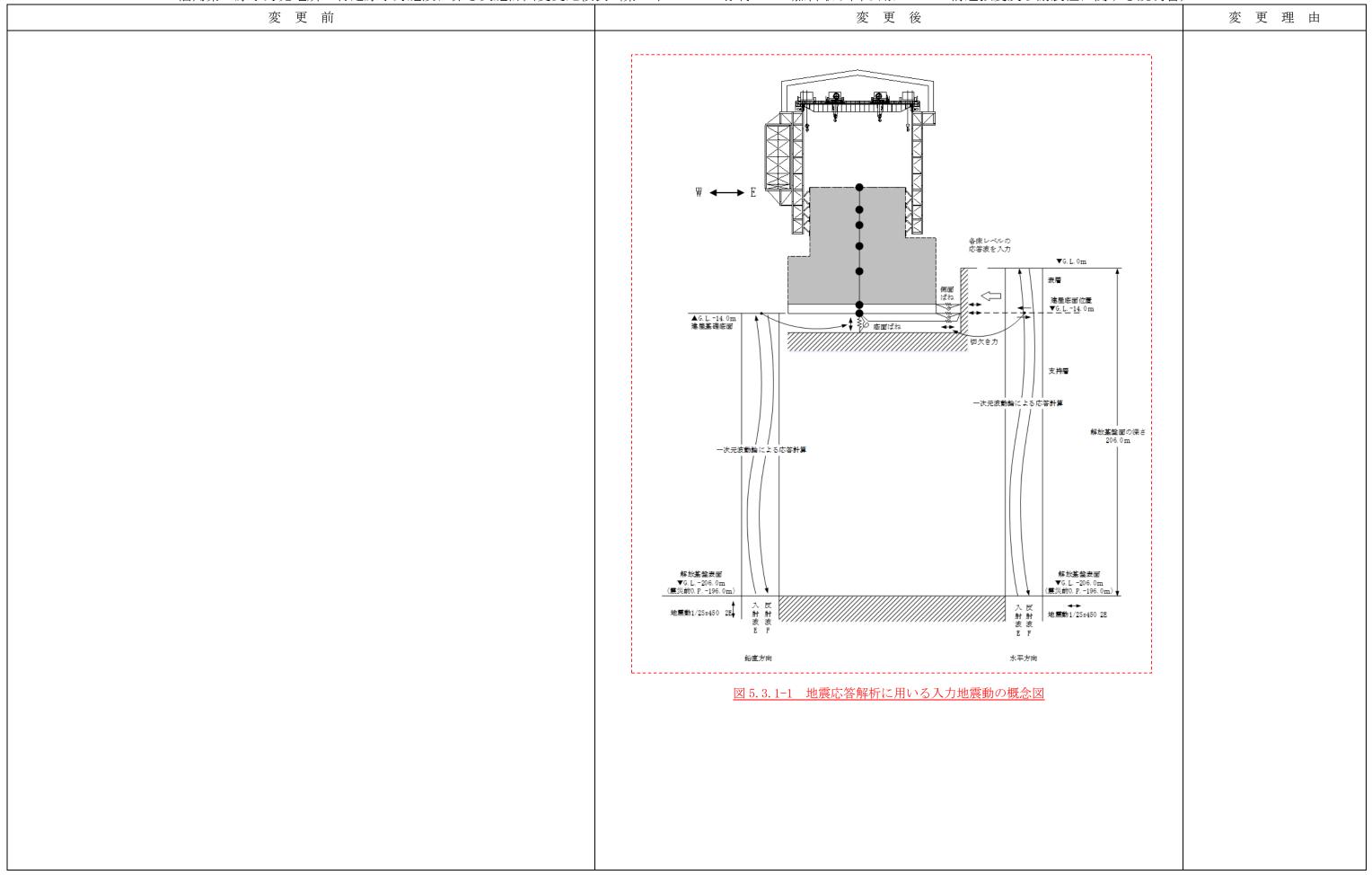
(1) 検討箇所

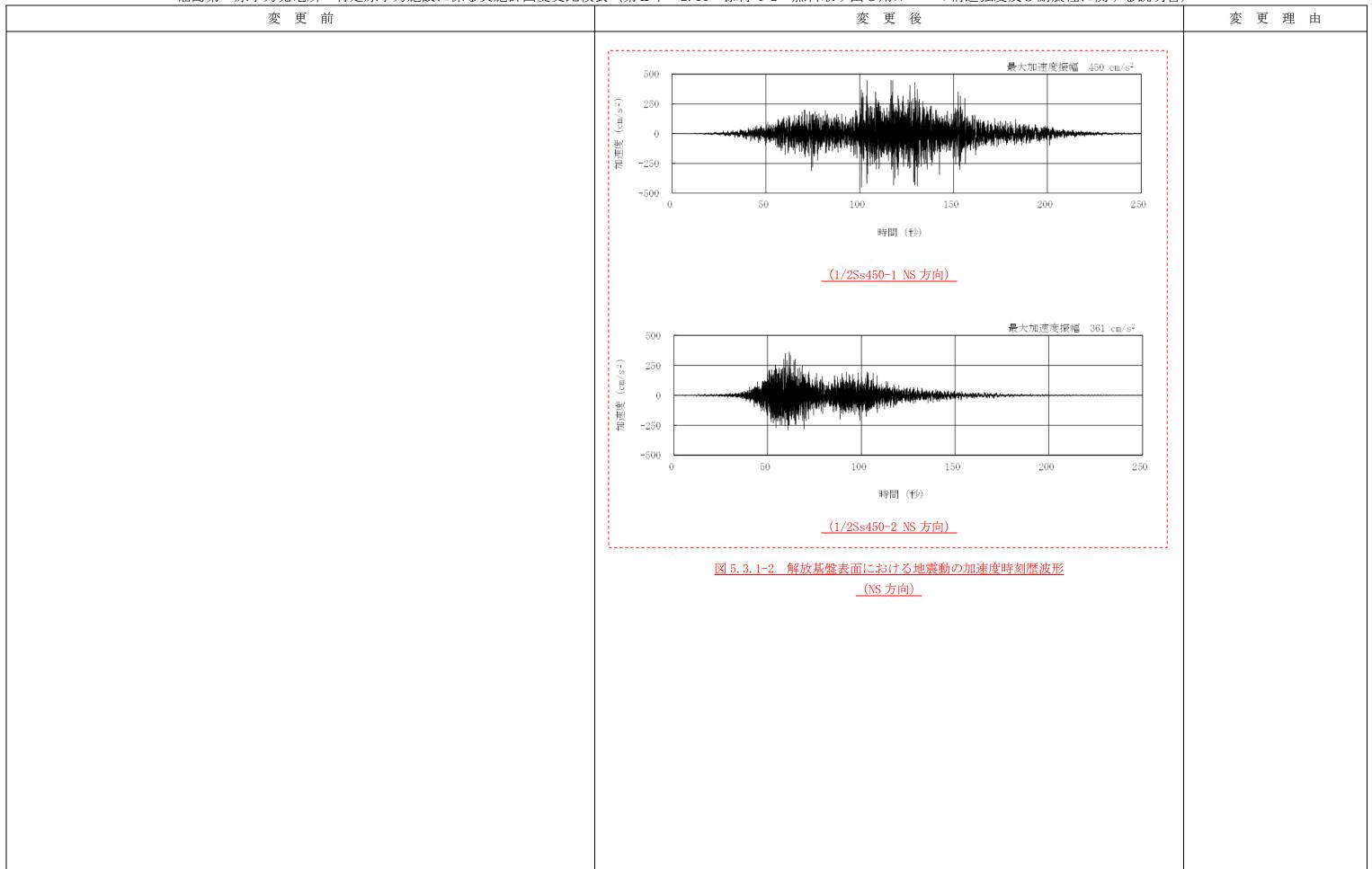
変 更 前

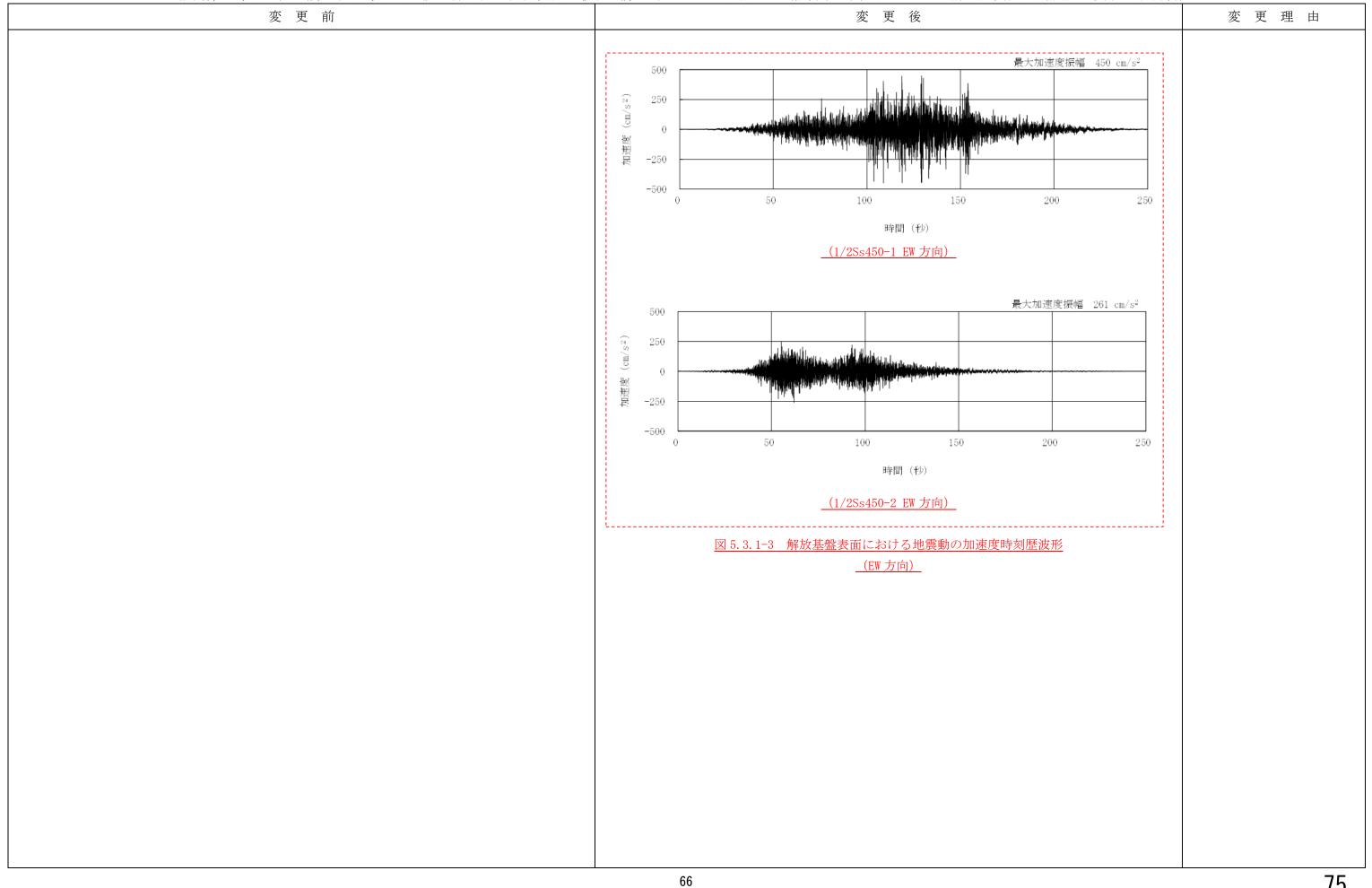
大型カバーの側面を覆う外装材は、折板を用いる。強度検討は、外装材に風圧力により生じる応力度 が短期許容応力度以下であることを確認する。なお、短期事象においては、暴風時の影響が支配的であ ることから、積雪時及び地震時の検討は省略する。検討箇所を図 5. 2. 6-1 に示す。

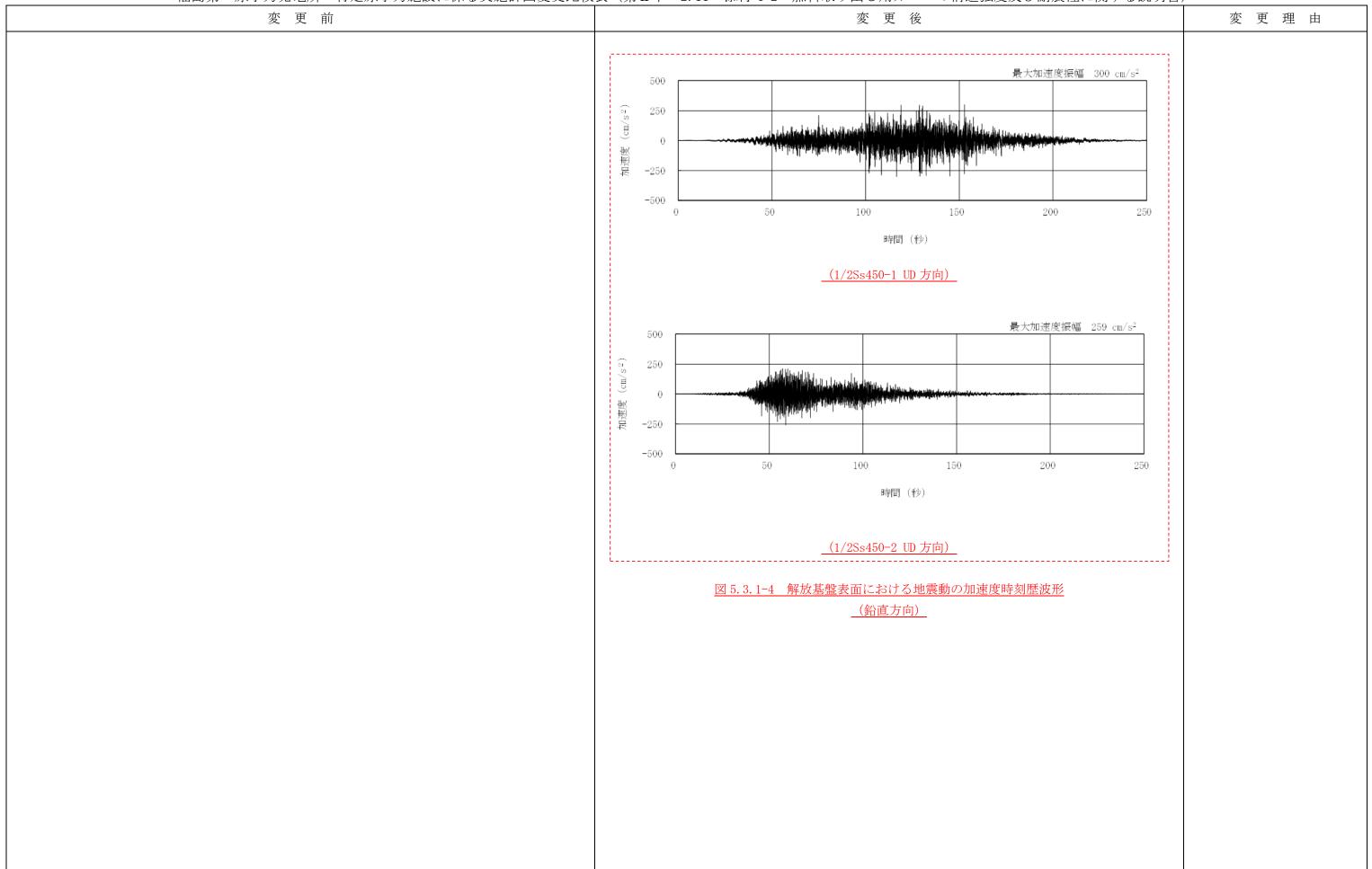
変 更 後



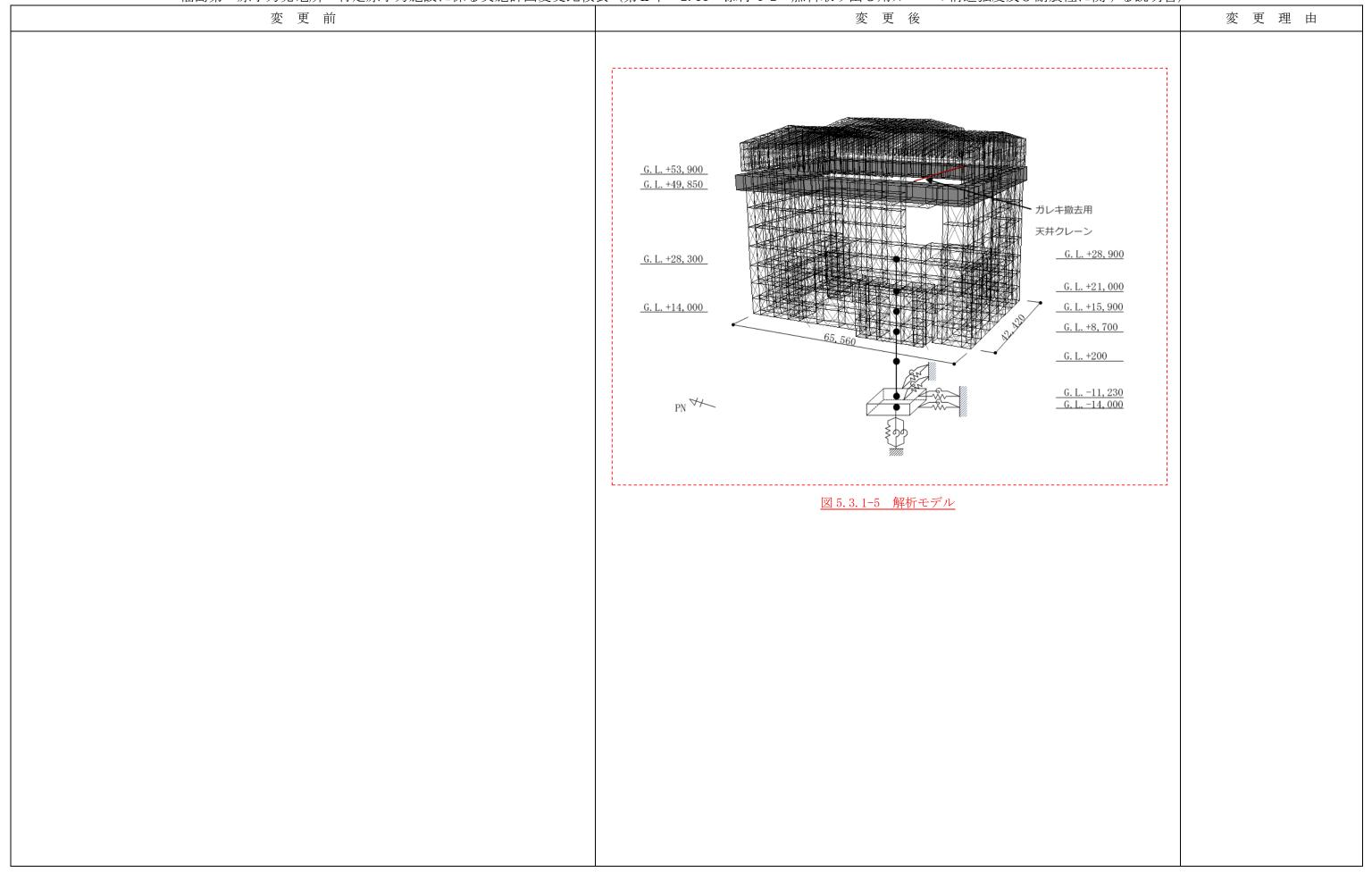

図 5.2.6-1 外装材検討箇所(単位:mm)


変 更 理 由

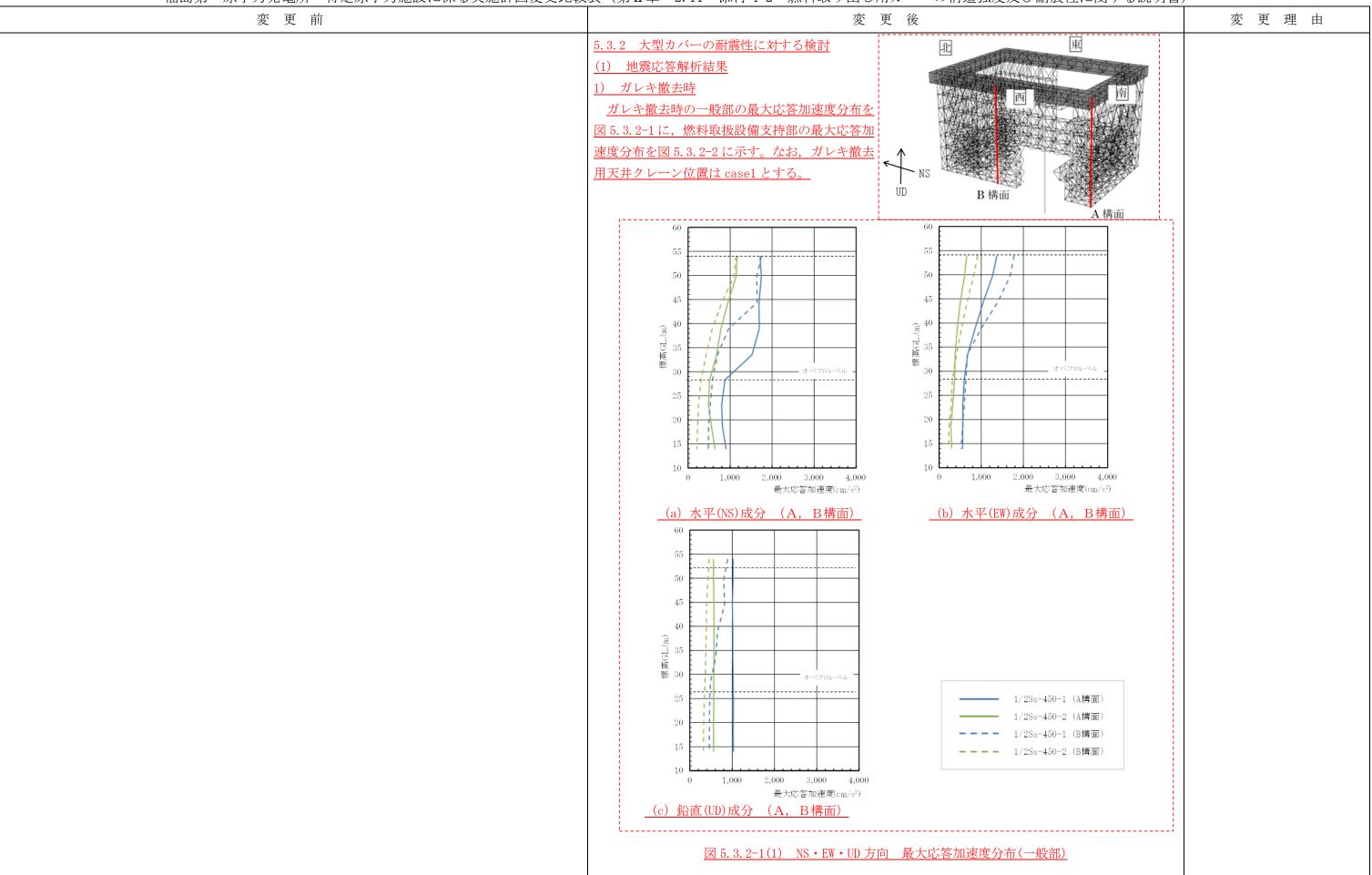

変 更 前 変 更 後 変 更 理 由 (2) 設計用荷重の算定 設計用風圧力は、建築基準法施行令第82条の4及び建設省告示第1458号に基づき、基準風速30m/s、 地表面粗度区分Ⅱとして算定する。速度圧の算定結果を表 5.2.6-1 に,ピーク風力係数を表 5.2.6-2 に, 風力係数の算定箇所を図 5.2.6-2 に示す。 表 5. 2. 6-1 速度圧の算定結果 平均風速の高さ方向の 基準風速 高さ* 平均速度圧 分布を表す係数 $\underline{\mathbf{E}}_{\mathbf{r}}$ (N/m^2) (m/s)(m)945 <u>49. 9</u> <u>1.32</u> 30 *: 高さは外装材の最頂部の高さとした 表 5.2.6-2 ピーク風力係数 高さ* 壁面 負圧(一般部) 負圧(隅角部) 正圧 (m)49.9 2.43 -2.40-3.00*: 高さは外装材の最頂部の高さとした a'は平面の短辺の長さとHの2倍の数値のうちいずれか小さな数値 (30 を超えるときは、30 とする) (単位:m) 図 5.2.6-2 風力係数の算定箇所のイメージ

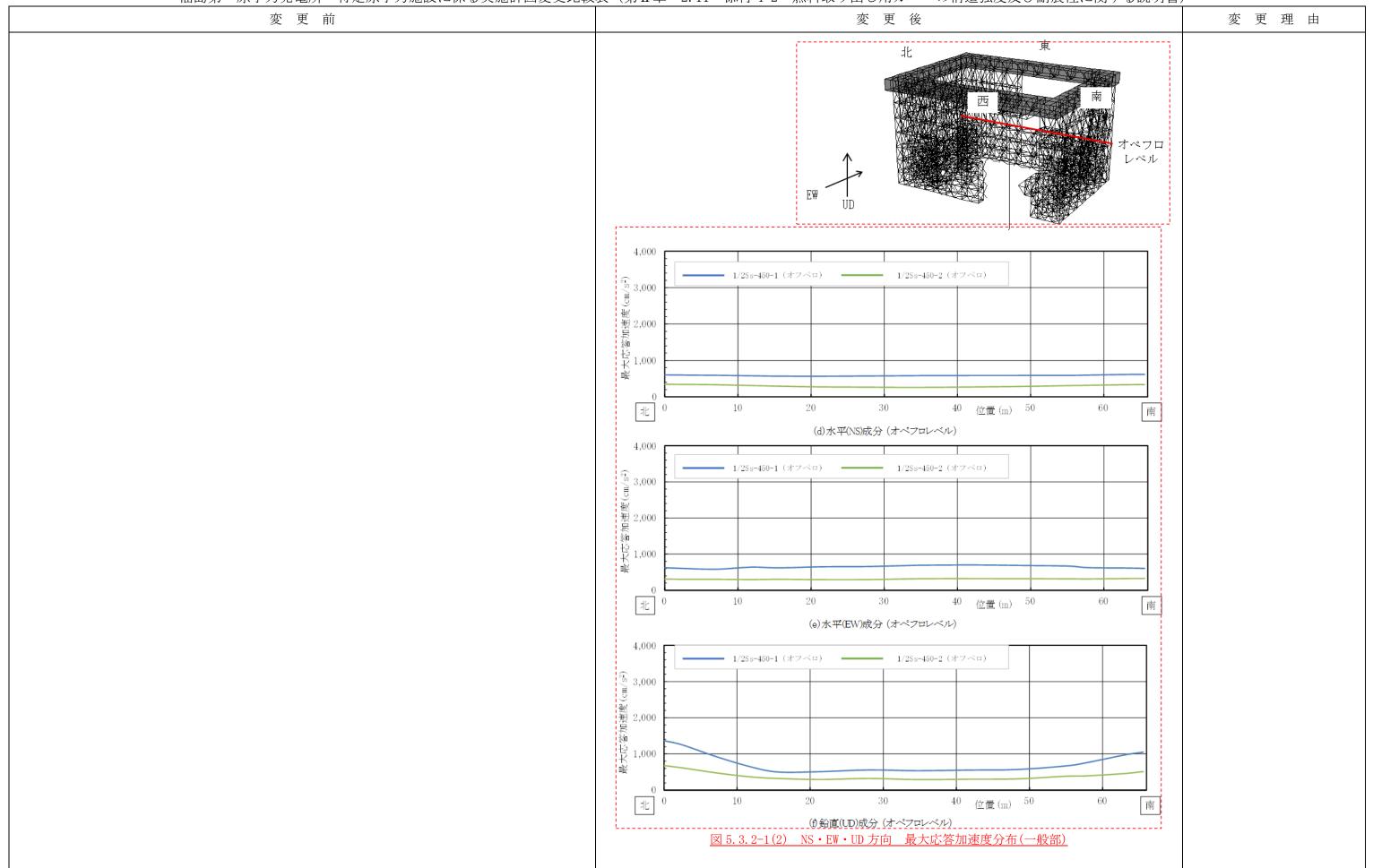

変更前	交表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 後				変更理由		
友 火 III	(3) 外掛材の	<u>(3) 外装材の強度検討</u>				及 义 性 田	
			よる部位について行	う。ここでは. 折板	の自重は考慮しない。	 	
			されているものと仮		<u> </u>	0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 - 0 -	
			5.2.6-3 に示す。ま		. 2. 6-4 に示す <u>。</u>		
	断面検討の紹	断面検討の結果、全ての外装材に対する応力度比が1以下になることを確認した。					
	<u>表 5. 2. 6−3 外装材の材料諸元</u>						
		正曲げ方向			げ方向		
	<u>板厚</u>	<u>自重</u>	<u>断面 2 次</u> モーメン	断面係数	<u>断面 2 次</u> モーメント	断面係数	
	<u>t</u> (mm)	$\frac{G}{(N/m^2)}$	$\frac{I_x}{(cm^4/m)}$	$\frac{Z_{\rm x}}{({\rm cm}^3/{\rm m})}$	$\frac{\underline{I}_{x}}{(\operatorname{cm}^{4}/\operatorname{m})}$	$\frac{\underline{Z}_{x}}{(\operatorname{cm}^{3}/\operatorname{m})}$	
	<u>0. 6</u>	<u>59</u>	<u>2. 31</u>	<u>1.67</u>	<u>2. 31</u>	<u>1. 67</u>	
		表 5. 2. 6-4 応力度に対する検討結果 作用点力度 <u>許容</u>					
	部位		<u>作用応力度</u> (N/mm²)	応力度* (N/mm²)	<u>応力度比</u>	<u>判定</u>	
	<u>外装材</u>		<u>78</u>	<u>137</u>	<u>0. 57</u>	<u>O. K.</u>	
	*:「JIS G 3321-2010」による						
	$\underline{\underline{M} = (1)}_{\underline{\sigma}_{\underline{b}} = \underline{m}}$	$5 \times (-3.00)$ $/8) \times_{W} \times_{L^{2}}$ $M/Z = 0.13$	$=-2835 (N/m^2)$ $= (1/8) \times (-2835) \times \times 10^6 / (1.67 \times 10^3) = 0.57 \le 1.0 $ 0. K.	$78 (\mathrm{N/mm^2})$	kNm/m)		

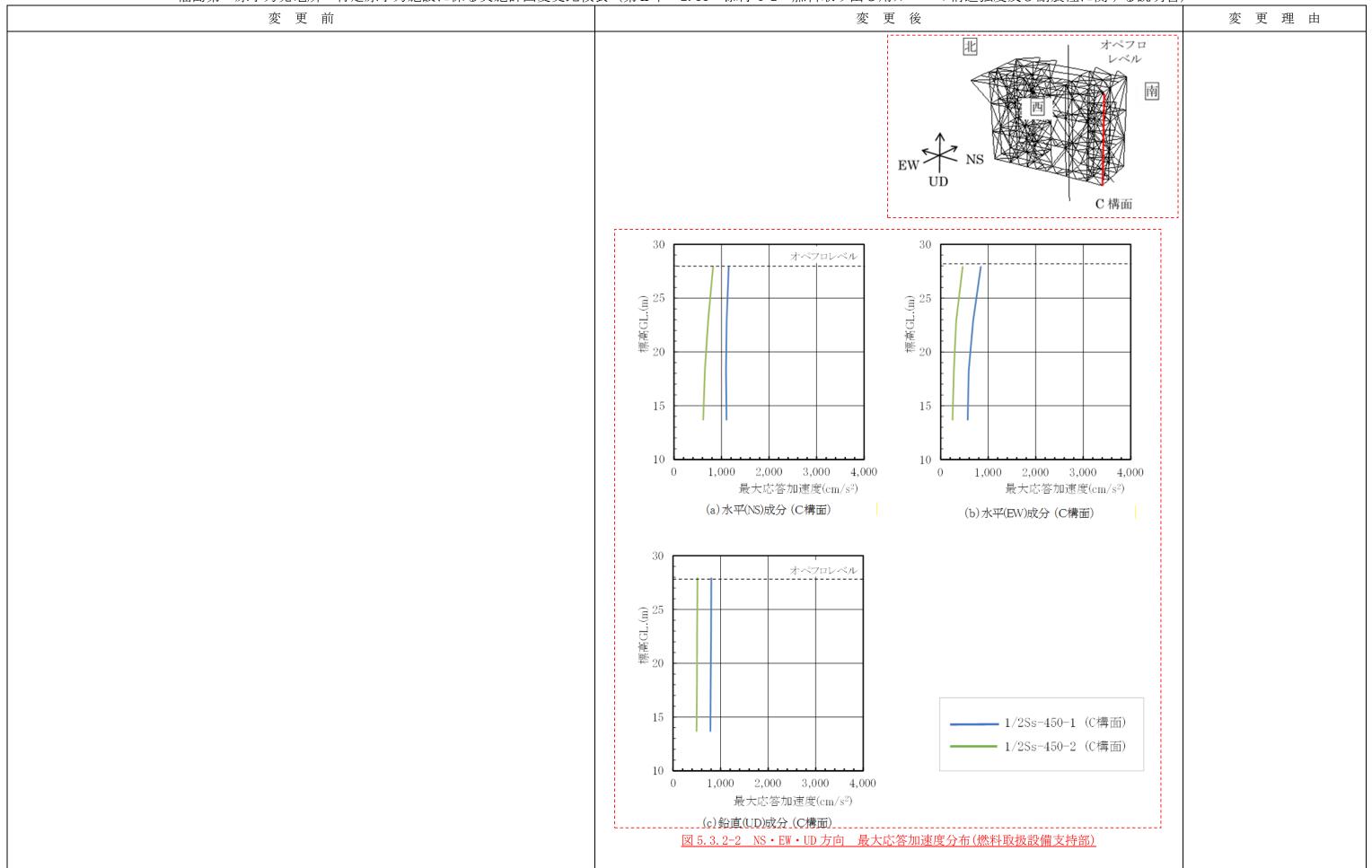
電局第一原丁刀光电角 - 特定原丁刀旭段に係る美旭計画変更比較 変 更 前	逐表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 後	変更理由
Д Д III	5.3 耐震性 (機能維持の検討)	~ ^ ' 1 I
	5. 3. 1 検討方針	
	耐震性のうち機能維持の検討は、大型カバー、屋根、建屋取り合い部及び原子炉建屋について行い、	
	1/2Ss450 に対して、これらの応答性状を適切に表現できる地震応答解析を用いて評価する。なお、地震	
	応答解析は水平2方向及び鉛直方向の3方向の地震動を同時に入力する。	
	7-1-1/1 VI 1003-1 - 201-12/0 21 E2/0 1 3 - 2/0 1 3 - 2/0 2 - 2 - 2/0 2	
	(1) 解析に用いる入力地震動	
	地震応答解析に用いる入力地震動の概念図を図 5.3.1-1 に示す。モデルに入力する地震動は一次元波	
	動論に基づき、解放基盤表面で定義される地震動 1/2Ss450 に対する地盤の応答として評価する。解放	
	<u>基盤表面位置 (G. L206. 0m (震災前 0. P196. 0m)</u>) における地震動 1/2Ss450 Ss-1 及び Ss-2 の加速度	
	時刻歴波形を図 5. 3. 1-2~図 5. 3. 1-4 に示す。	
	地震波の入力方向は下記のように表し、3方向の組合せを表現する。	
	+NS:建屋北側から南側方向への地震入力	
	-NS:建屋南側から北側方向への地震入力	
	+EW:建屋東側から西側方向への地震入力	
	-EW:建屋西側から東側方向への地震入力	
	+UD:建屋上側から下側方向への地震入力	
	-UD:建屋下側から上側方向への地震入力	

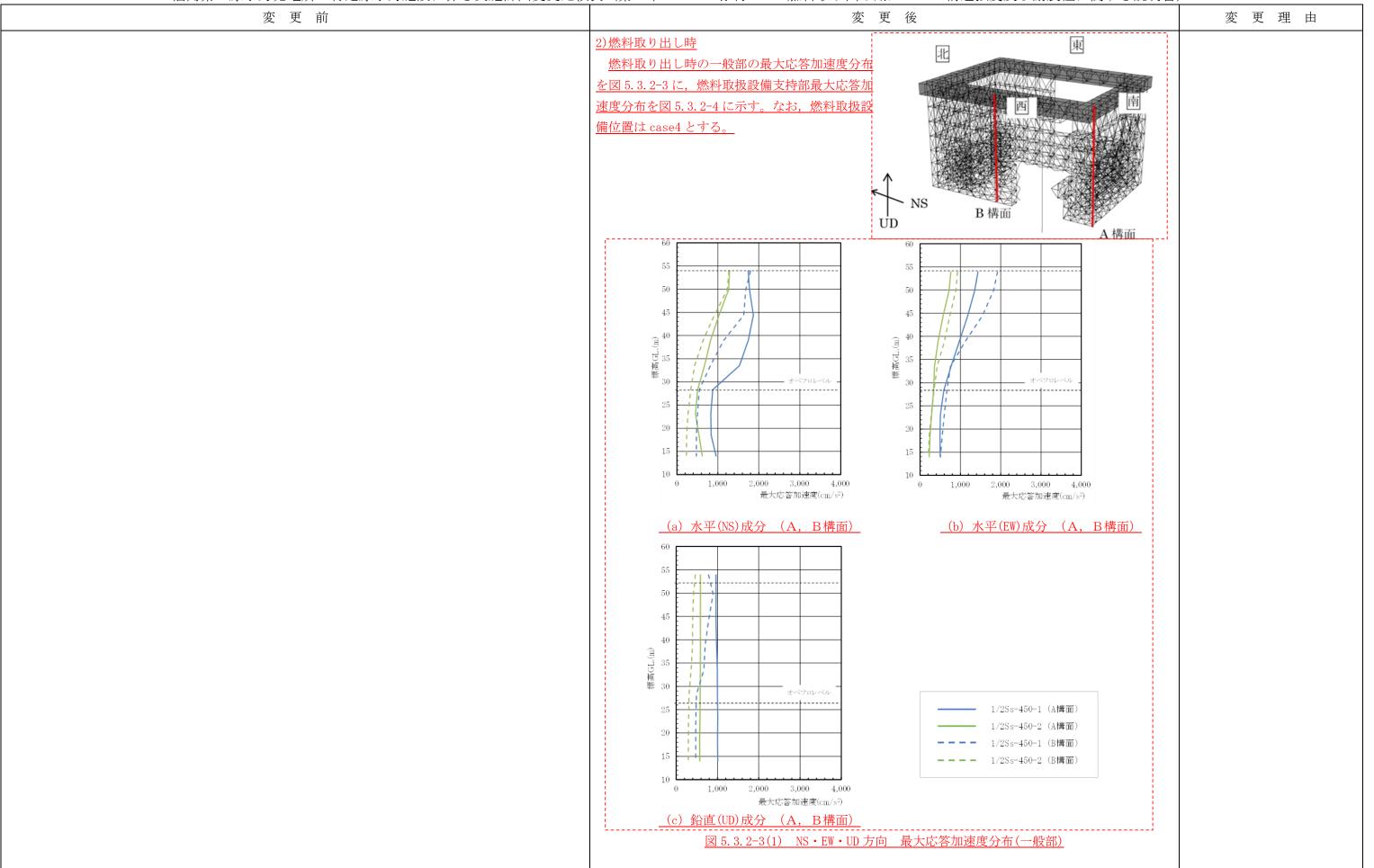


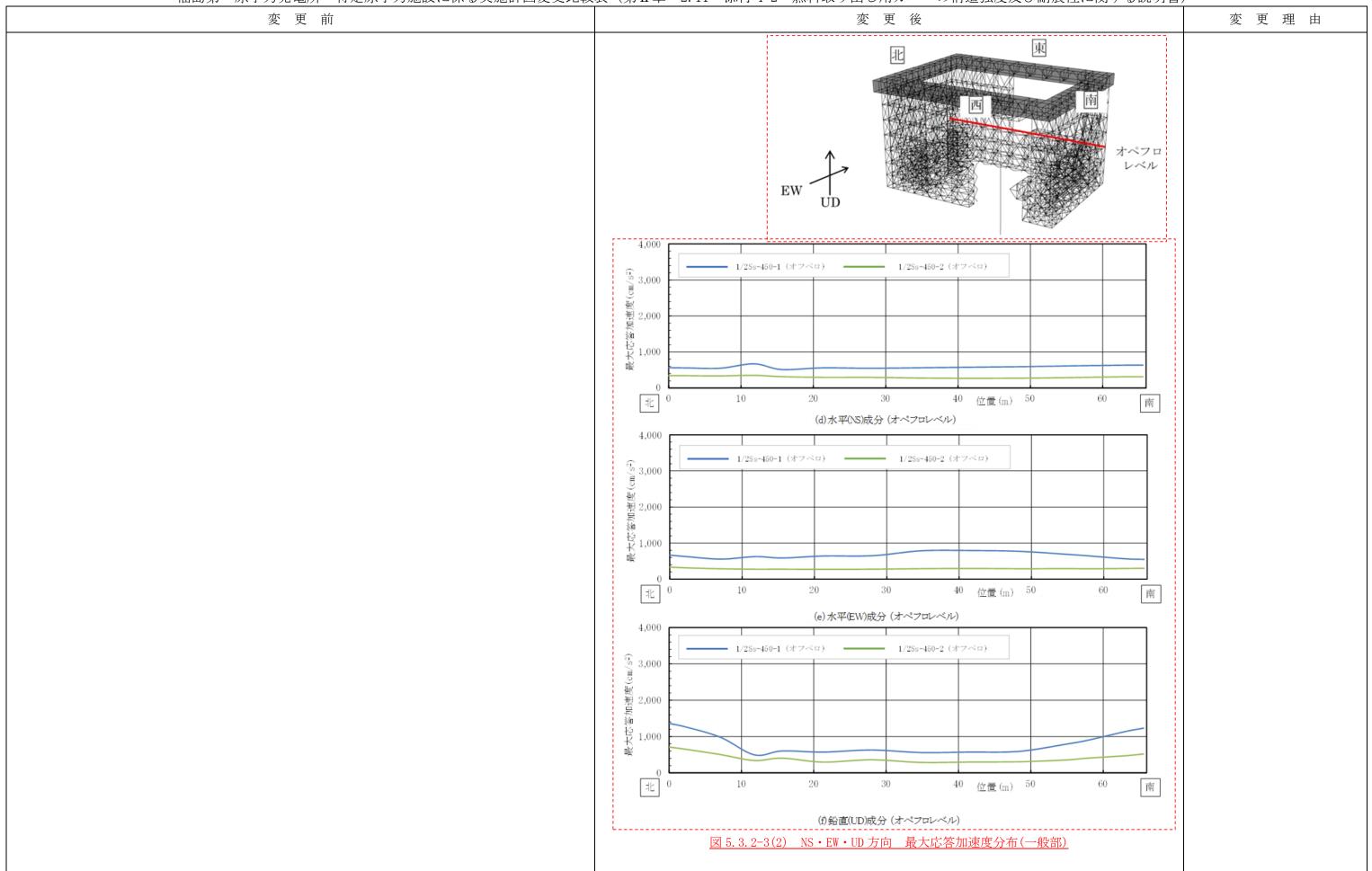
福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比較 変 更 前	(五	11 早 2,11	机门生乙 旅行	変更後		及び間展出に関する配別音	 理由	1
	(2) ±	也震応答解析モラ	 デル					
				「剛性及び軸剛性を考	考慮した原子炉	「建屋の質点系モデルの質点に, 「		
	-	構でモデル化し						
	する。	なお,原子炉建						
						ーの部材接合部の節点は機器荷		
	重・仕	上げ材等を考慮	てした重量とし、	原子炉建屋の諸元は	表 5.3.1-2~	表 5.3.1-3 に示す諸元とする。		
	大型カ	バーの柱・梁・	鋼板は弾性部材	とし、大型カバーの	ブレースは「タ	跌骨 X 型ブレース架構の復元力		
	特性に	関する研究」(日本建築学会構造	造工学論文集 37B 号	1991年3月)(こ示されている修正若林モデル		
	による	。また,原子炉	5建屋の質点系モ	デルは, 軸方向は弾	単性とし,曲げ	とせん断に「JEAG4601-1991 <u>」</u>		
	に示さ	れている非線形	特性を考慮する	<u>o</u>				
	大型	カバーの地盤定	三数は,「福島第-	一原子力発電所 『発	電用原子炉施調	設に関する耐震設計審査指針 <u>』</u>		
	の改訂	に伴う耐震安全	性評価結果 中間]報告書」(東京電力	株式会社,平原	<u> </u>		
	その結	果を表 5.3.1-4	に示す。					
	原子炉	建屋の地盤ばね	uは、「JEAG4601-	1991」に示されてい	る手法を参考	にして,底面地盤を成層補正し		
	振動ア	ドミッタンス理	論によりスウェ	イ及びロッキングは	だねを, 側面地	盤を Novak の方法により建屋側		
	面ばね	として評価する	。NS 方向,EW 力	5向,UD 方向の 3 方	向全ての地盤	ずねが取り付いた解析モデルを		
	用いる	<u>o</u>						
			表 5. 3. 1	-1 地震応答解析に	ご用いる物性値			
	材料	ヤング係数	<u>ポアソン比</u>	単位体積重量	減衰定数	<u>備考</u>		
	1311	$E(N/mm^2)$	<u>v</u>	$\gamma (kN/m^3)$	<u>h (%)</u>	<u>VIII V</u>		
	<u>鉄骨</u>	2.05×10^{5}	<u>0. 3</u>	<u>77. 0</u>	<u>2</u>	SS400, SN400B, SM490A, SN490B, STKN490B, TMCP325B, S45C		
			l	I				

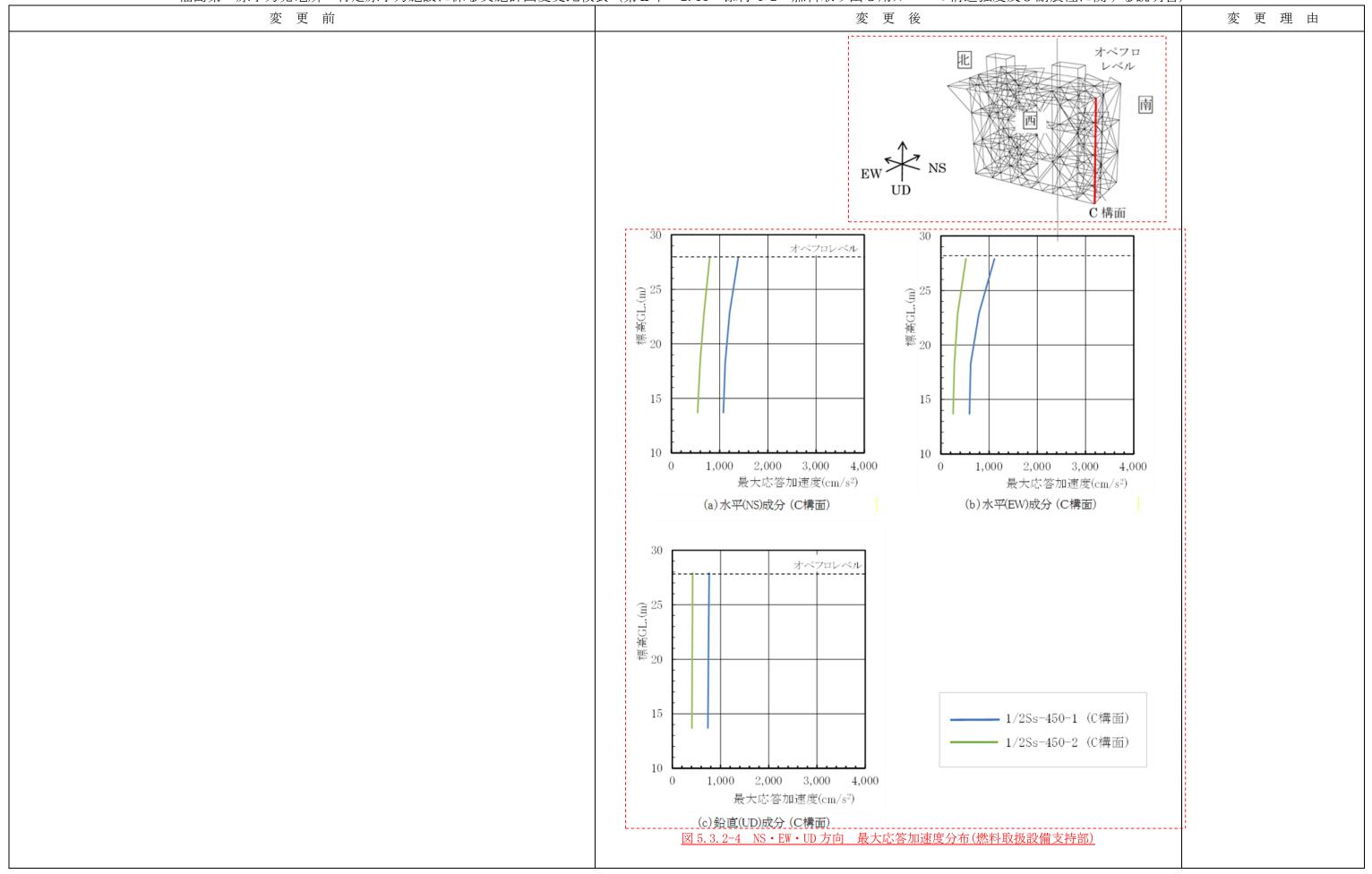

変更前			変更後		展性に関する説明書)	変更理
		表 5. 3. 1-2(1)	ガレキ撤去時の原子炉建園	屋の地震応答解析モデノ	レの諸元	
			(a) 水平 (NS)			
	<u>G. L. (m)</u>	<u>質点重量*</u> W (kN)_	<u>回転慣性重量</u> <u>I₆ (×10⁵ kN·m²)</u>	<u>せん断断面積</u> <u>As (m²)</u>	<u>断面二次モーメント</u> <u>I (m⁴)</u>	
	+28.90	<u>58690</u>	84. 43	<u>115 (III)</u>	<u>1 (m /</u>	
	+21.00	72170	103. 90	<u>135. 0</u>	<u>16012</u>	
	+15. 90	77220	111.11	<u>160. 8</u>	21727	
	<u>+8.70</u>	87200	125. 53	<u>132. 8</u>	24274	
	+0. 20	162800	234. 31	<u>155. 6</u>	<u>36481</u>	
	<u>-11. 23</u>	<u>185210</u>	<u>266. 64</u>	<u>294. 0</u>	<u>52858</u>	
	-14. 00	<u>62400</u>	89. 83	<u>1914. 3</u>	<u>275530</u>	
	<u> </u>	705690	<u>ヤング係数 Ec</u>	$2.57 \times 10^7 (\text{kN/m}^2)$		
			<u>せん断弾性係数 G</u> ポアソン比 v	$\frac{1.07 \times 10^7 (\text{kN/m}^2)}{0.20}$		
			<u>減衰 h</u>	<u>0. 20</u> <u>5%</u>		
			(1.) → \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	⊢ , <u>⊬</u> ,		
		質点重量*	(b) 水平 (EW) つ 回転慣性重量	<u>プロ</u> せん断断面積	断面二次モーメント	
	<u>G. L. (m)</u>	W (kN)	$\underline{I_6 \ (\times 10^5 \ \text{kN} \cdot \text{m}^2)}$	<u>As (m²)</u>	<u>I (m⁴)</u>	
	<u>+28. 90</u>	<u>58690</u>	48. 33	100 5	0.500	
	+21.00	<u>72170</u>	<u>59. 41</u>	<u>102. 7</u>	9702	
	+15.90	77220	63. 55	<u>163. 9</u>	<u>13576</u>	
				<u>131. 6</u>	<u>14559</u>	
	<u>+8. 70</u>	87200	<u>125. 53</u>	<u>197. 8</u>	36427	
	<u>+0. 20</u>	162800	234. 31	<u>294. 0</u>	<u>52858</u>	
	<u>-11.23</u>	185210	327. 39	<u>1914. 3</u>	338428	
	<u>-14.00</u>	62400	110.32			
	<u>合計</u>	705690	<u>ヤング係数 Ec</u> せん断弾性係数 <u>G</u>	$\frac{2.57 \times 10^7 (\text{kN/m}^2)}{1.07 \times 10^7 (\text{kN/m}^2)}$		
			ポアソン比 ν <u>減衰 h</u> 5 (滞留している場合を含む) 建屋	0. 20 5%		
	*:「Ⅱ.2.	6 滞留水を貯留しているの耐震安全評価)」におい	<u>19,42 日</u> 5 (滞留している場合を含む) 建原 て用いた久陛重島	<u>□//</u> ≧ 添付資料−2 構造強度及	及び耐震性(地下滞留水を考慮	
	<u>した</u> 建産り	▽ 03 灰 久 土	<u> </u>			

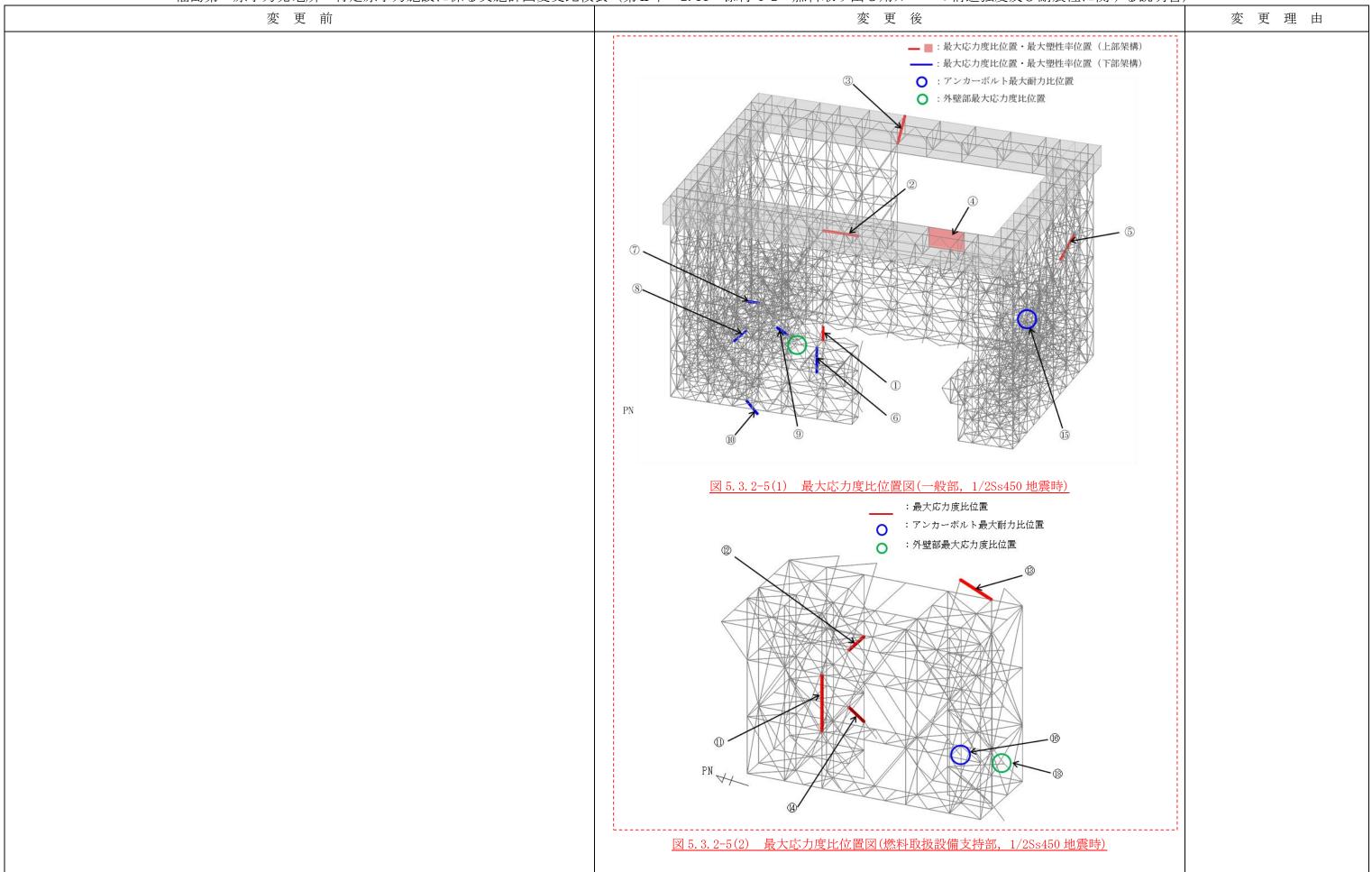

電岡第一原丁乃光电角 特定原丁乃旭設に係る美旭計画変更比較変更 前			変更理由		
		表 5.3.1-2(2) ガレキ撤去時	手の原子炉建屋の地震応答解析モ	デルの諸元	
			(c)鉛直方向		
	<u>G. L. (m)</u>	<u>質点重量*</u> <u>W(kN)</u>	<u>軸断面積</u> <u>A_N (m²)</u>	<u>軸ばね剛性</u> <u>K_A(×10⁸ kN/m)</u>	
	<u>+28. 90</u>	<u>58690</u>	151 1	4.00	
	<u>+21.00</u>	<u>72170</u>	<u>151. 1</u>	4.92	
	<u>+15. 90</u>	77220	<u>205. 0</u>	10. 33	
	<u>+8. 70</u>	<u>87200</u>	221.7	7.91	
	<u>+0. 20</u>	<u>162800</u>	301.0	9. 10	
	<u>-11. 23</u>	<u>185210</u>	495. 7	11. 15	
	<u>-14.00</u>	62400	<u>1914. 3</u>	<u>177. 61</u>	
	<u>合計</u>	705690	<u>ヤング係数 Ec</u> せん断弾性係数 G	$\frac{2.57 \times 10^7 (\text{kN/m}^2)}{1.07 \times 10^7 (\text{kN/m}^2)}$	
			ポアソン比ッ	0. 20	
	*: [] . 2. (6 滞留水を貯留している (滞留してい	世代朝年日宗教 6 ポアソン比 v	5 <u>%</u> 造強度及び耐震性(地下滞留水を考	
	<u>慮した建度</u>	፩の耐農安全評価)」 (こおいて用いた各)	<u>俗里重</u>		


電 選		1/X X C (A)	変更理由			
		表 5. 3. 1-3(1) 燃	変更後半取り出し時の原子炉建		ブルの諸元	
			<u>(a)水平 (NS) フ</u>	<u>方向</u>		
	<u>G. L. (m)</u>	質点重量*	回転慣性重量	せん断断面積	断面二次モーメント	
		<u>W (kN)</u>	$\underline{I_{G} (\times 10^{5} \text{ kN} \cdot \text{m}^{2})}$	As (m ²)	<u>I (m⁴)</u>	
	+28.90	106080	152.60	<u>135. 0</u>	<u>16012</u>	
	+21.00	72170	103. 90	160.8	21727	
	<u>+15. 90</u>	77220	<u>111. 11</u>	<u>132. 8</u>	24274	
	<u>+8. 70</u>	87730	<u>126. 29</u>	<u>155. 6</u>	36481	
	<u>+0. 20</u>	<u>163140</u>	<u>234. 80</u>	<u>294. 0</u>	<u>52858</u>	
	<u>-11. 23</u>	<u>185210</u>	<u>266. 64</u>			
	<u>-14. 00</u>	62400	89.83	<u>1914. 3</u>	<u>275530</u>	
	<u>合計</u>	<u>753950</u>	ヤング係数 Ec	$\frac{2.57 \times 10^{7} (kN/m^{2})}{1.07 \times 10^{7} (kN/m^{2})}$		
			<u>せん断弾性係数 G</u> ポアソン比 ν	$\frac{1.07 \times 10^7 (kN/m^2)}{0.20}$		
			<u>ポアソン比ν</u> <u>減衰 h</u>	<u>0. 20</u> <u>5%</u>		
			(b)水平 (EW) フ	<u> </u>		
	G. L. (m)	質点重量*	回転慣性重量	せん断断面積	断面二次モーメント	
		<u>W (kN)</u>	$I_{\underline{G}}$ (×10 ⁵ kN·m ²)	<u>As (m²)</u>	<u>I (m⁴)</u>	
	<u>+28. 90</u>	<u>106080</u>	<u>87. 35</u>	<u>102. 7</u>	9702	
	+21.00	72170	<u>59. 41</u>	<u>163. 9</u>	<u>13576</u>	
	<u>+15. 90</u>	77220	<u>63. 55</u>	131. 6	14559	
	<u>+8.70</u>	<u>87730</u>	<u>126. 29</u>			
	+0.20	<u>163140</u>	234. 80	<u>197. 8</u>	36427	
	<u>-11.23</u>	<u>185210</u>	<u>327. 39</u>	<u>294. 0</u>	<u>52858</u>	
	<u>-14.00</u>	62400	110. 32	<u>1914. 3</u>	338428	
	<u>合計</u>	753950	ヤング係数 Ec	$2.57 \times 10^{7} (kN/m^{2})$		
	<u> </u>		<u>せん断弾性係数 G</u> ポアソン比 v	$\frac{1.07 \times 10^7 (\text{kN/m}^2)}{0.20}$		
	* · [1	T 96	<u>減衰 h</u> る (滞留している場合を含む) 類	0.20 <u>5%</u> #屋 添付資料-2 構造确E	 東及び耐雲性(地下港辺水を考	
			おいて用いた各階重量にガレキ撤			


電岡第一原丁乃光电灯 特定原丁乃旭畝に係る天旭計画を交比事 変 更 前			変更理由		
		表 5.3.1-3(2) 燃料取り出し時	持の原子炉建屋の地震応答解析	モデルの諸元	
			(c)鉛直方向		
	<u>G. L. (m)</u>	<u>質点重量*</u> <u>W(kN)</u>	<u>軸断面積</u> <u>A_N(m²)</u>	<u>軸ばね剛性</u> <u>K_A (×10⁸ kN/m)</u>	
	<u>+28. 90</u>	<u>106080</u>	151 1	4.02	
	<u>+21. 00</u>	<u>72170</u>	<u>151. 1</u>	4. 92	
	<u>+15. 90</u>	77220	<u>205. 0</u>	10.33	
	<u>+8. 70</u>	<u>87730</u>	<u>221. 7</u>	7.91	
	<u>+0. 20</u>	<u>163140</u>	301.0	9. 10	
	<u>-11. 23</u>	<u>185210</u>	<u>495. 7</u>	<u>11. 15</u>	
	<u>-14. 00</u>	<u>62400</u>	<u>1914. 3</u>	<u>177. 61</u>	
	<u>合計</u>	<u>753950</u>	<u>ヤング係数 Ec</u> せん断弾性係数 <u>G</u>	$\frac{2.57 \times 10^7 (\text{kN/m}^2)}{1.07 \times 10^7 (\text{kN/m}^2)}$	
			ポアソン比 ν		
	*: []	.2.6 滞留水を貯留している (滞留して た建屋の耐震安全評価)」において用いた	<u>減衰 h</u> いる場合を含む) 建屋 添付資料 - 2	<u>5%</u> 構造強度及び耐震性(地下滞留水を	
	<u>考慮し</u>	た建屋の耐農安全評価)」 において用いた	<u>と各階重量にガレキ撤去等による重量増</u>	減を考慮した数値	

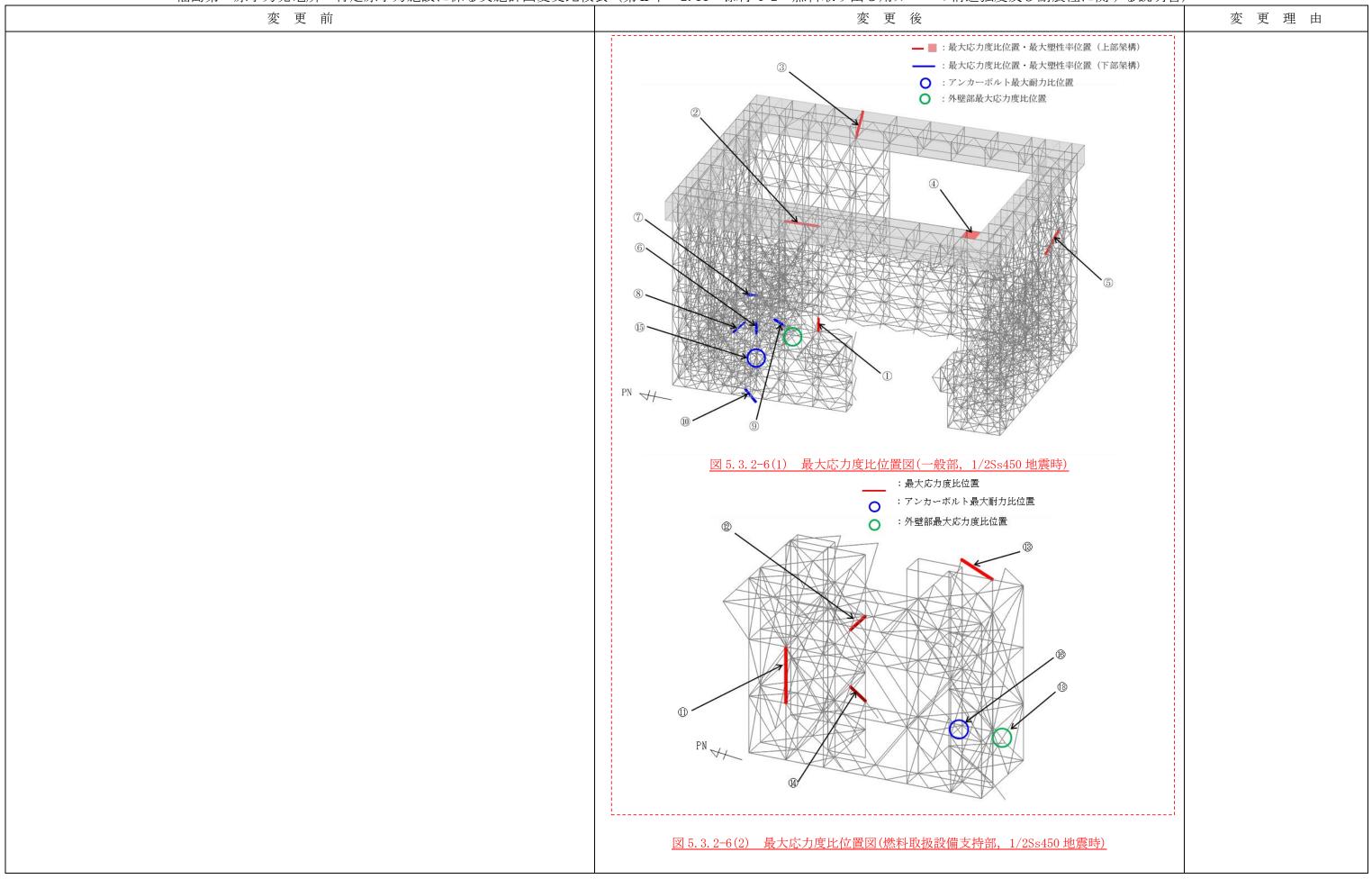

変更前						変 更 後						変更理由
		表 5.3.1-4 地盤定数の設定結果										
						(a) 1/2Ss450-			1	1		
			<u>せん断波</u> <u>速度</u>	<u>単位体</u> <u>積重量</u>	<u>ポアソン</u> <u>比</u>	<u>せん断</u> 弾性係数	<u>初期せん断</u> <u>弾性係数</u>	<u>剛性</u> 低下率	<u>ヤング</u> <u>係数</u>	<u>減衰</u> 定数	層厚	
	<u>G. L.</u>	<u>地質</u>	<u>Vs</u>	<u>γ</u>	\underline{v}	<u>G</u>	$\underline{G}_{\underline{0}}$	G/G_0	$(\times \frac{E}{10^5 \text{kN}})$	<u>h</u>	<u>H</u>	
	<u>(m)</u>		<u>(m/s)</u>	(kN/m³)		$\frac{(\times 10^5 \text{kN/m}^2)}{}$	$\frac{(\times 10^{\circ} \text{kN/m}^2)}{}$		<u>/m²)</u>	<u>(%)</u>	<u>(m)</u>	
	0.0	砂岩	<u>380</u>	<u>17. 8</u>	0. 473	<u>2. 23</u>	<u>2. 62</u>	0.85	6. 57	3	<u>8. 1</u>	
	<u>-8. 1</u>		450	<u>16. 5</u>	0.464	2.73	<u>3. 41</u>	0.80	7. 99		<u>11. 9</u>	
	<u>-20. 0</u> —		<u>500</u>	<u>17. 1</u>	0. 455	3.49	4. 36	0.80	10. 16		70. 0	
	<u>-90. 0</u> —	<u>泥岩</u>	<u>560</u>	17. 6	0. 446	4. 50	<u>5. 63</u>	0.80	13. 01	3	28.0	
	<u>118. 0</u> —										88.0	
	<u>206. 0</u> —	<u>(解放</u> 基盤)	<u>600</u>	<u>17. 8</u>	0. 442	5. 22	6. 53	0.80	<u>15. 05</u>			
		基盤)	<u>700</u>	<u>18. 5</u>	0. 421	9. 24	<u>9. 24</u>	<u>1. 00</u>	<u>26. 26</u>	_	=	
						(b) 1/2Ss450-	ก					
			せん断波	単位体 積重量	ポアソン	(b) 1/ 238430- せん断 弾性係数	<u>初期せん断</u> 弾性係数	<u>剛性</u> 低下率	ヤング	<u>減衰</u> 定数	層厚	
	<u>G. L.</u>	<u>地質</u>	<u>速度</u> Vs	<u>積重量</u> <u>γ</u>	<u>比</u> <u>ν</u>	<u>弾性係数</u> <u>G</u>	<u>弾性係数</u> <u>Go</u>	低下率 G/G ₀	<u>ヤング</u> <u>係数</u> <u>E</u>	<u>定数</u> <u>h</u>	<u>用</u>	
	<u>(m)</u>		(m/s)	(kN/m ³)	_	$\frac{-}{(\times 10^5 \text{kN/m}^2)}$		<u> </u>	$\frac{(\times \overline{10^5} \text{kN})}{/\text{m}^2}$	<u>(%)</u>	<u>(m)</u>	
	0.0											
	<u>-8. 1</u>	<u>砂岩</u>	<u>380</u>	<u>17. 8</u>	<u>0. 473</u>	<u>2. 33</u>	<u>2. 62</u>	<u>0.89</u>	<u>6.86</u>	<u>3</u>	<u>8. 1</u>	
	-20. 0 <i></i>		<u>450</u>	<u>16. 5</u>	<u>0. 464</u>	3.03	3.41	<u>0.89</u>	8.87	<u>3</u>	<u>11. 9</u>	
	<u>-90. 0</u>		<u>500</u>	<u>17. 1</u>	0.455	<u>3.88</u>	<u>4. 36</u>	<u>0.89</u>	11. 29	<u>3</u>	<u>70. 0</u>	
	118. 0		<u>560</u>	<u>17. 6</u>	<u>0. 446</u>	<u>5. 01</u>	<u>5.63</u>	<u>0.89</u>	<u>14. 49</u>	<u>3</u>	<u>28. 0</u>	
			<u>600</u>	<u>17. 8</u>	<u>0. 442</u>	<u>5.81</u>	<u>6. 53</u>	<u>0.89</u>	<u>16. 76</u>	3	<u>88. 0</u>	
	206. 0	<u>(解放</u> 基盤)	<u>700</u>	<u>18. 5</u>	0.421	9.24	9.24	<u>1.00</u>	<u>26. 26</u>	=	_	





変更前 変 更 後 変 更 理 由 (2) 機能維持の検討 地震応答解析結果が、JSCA 性能設計説明書 2017 年版(社団法人日本建築構造技術者協会、2018 年) を参考に定めたクライテリア(「層間変形角は1/75以下,層の塑性率は4以下,部材の塑性率は5以下」 *を満足することを確認する。なお、大型カバーは立体架構による検討のため、JSCA 性能メニューのう ち層の塑性率の評価を省略する。 また、主要架構(柱、梁)の解析結果が「時刻歴応答解析建築物性能評価業務方法書」(財団法人日 本建築センター, 平成19年7月20日) に示されるクライテリア (層間変形角は1/100以下, 層の塑性 率は2以下、部材の塑性率は4以下)を超える場合には水平変形に伴う鉛直荷重の付加的影響を考慮し た解析を実施し、安全性を確認する。 *:北村春幸,宮内洋二,浦本弥樹「性能設計における耐震性能判断基準値 に関する研究」、日本建築学会構造系論文集、第604号、2006年6月 1) 層間変形角の検討 a) ガレキ撤去時 最大応答層間変形角を表 5.3.2-1 に示す。 検討の結果、最大応答層間変形角は 1/75 以下となりクライテリアを満足することを確認した。 表 5.3.2-1 一般部の最大応答層間変形角の検討結果 地震波 検討箇所 応答値 クライテリア <u>判定</u> <u>方向</u> (位置)*1 南北側 G. L. +53. 9 (m) 1/2Ss450-11/1671/75<u>O. K.</u> NS \sim G. L. +28. 3 (m) (case1) h = 25.6 (m)東西側 G. L. +53. 9 (m) 1/2Ss450-1<u>EW</u> 1/1761/750. K. \sim G. L. +28. 3 (m) (case1) h = 25.6 (m)*1:図5.2.1-3にガレキ撤去用天井クレーンの位置を示す

変更前	変 更 後	変更理由
	b) 燃料取り出し時	
	<u>最大応答層間変形角を表 5.3.2-2 に示す。</u>	
	検討の結果、最大応答層間変形角は1/75以下となりクライテリアを満足することを確認した。	
	表 5. 3. 2-2 一般部の最大応答層間変形角の検討結果	
	州 電体	
	<u>検討箇所</u> <u>応長板</u> <u>方向</u> <u>応答値</u> <u>クライテリア 判定</u>	
	<u>南北側</u> G. L. +53. 9 (m) 1/2Ss450-1	
	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	h=25.6 (m)	
	<u>東西側</u> G. L. +53. 9 (m) 1/2Ss450-1 PW 1/162 1/75 0. V	
	$ \frac{\frac{\text{d. E. } +33.3 \text{ (m)}}{\sim \text{G. L. } +28.3 \text{ (m)}}}{\frac{\text{c. case 4}}{\text{c. case 4}}} \qquad \frac{\text{EW}}{\text{EW}} \qquad \frac{1/163}{1/163} \qquad \frac{1/75}{1/163} \qquad \frac{0. \text{ K.}}{1/163} $	
	<u>h=25.6(m)</u> *1:図 5.2.1-4 に燃料取扱設備の位置を示す	
	2) 断面検討	
	部材の応答結果が塑性化する箇所があるため、断面検討結果は応力度比または塑性率で示す。	
	部材の応力度比は、軸力と各許容応力度との比で表される。部材の塑性率は、引張及び圧縮に対して 最大軸力時のひずみを引張耐力又は座屈耐力時のひずみで除した値で表される。表 5.3.2-3 及び	
	5.3.2-4 に断面検討結果を示す。なお、各許容応力度、引張耐力及び座屈耐力算定時の材料強度は「平	
	成 12 年建設省告示第 2464 号」に定められた基準強度 F 値の 1.1 倍を用いる。	


変更前	実施計画変更比較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 後 変 更 理
	<u>a) ガレキ撤去時</u>
	表 5. 3. 2-3 に応力度比が最大となる部位の断面検討結果を示す。断面検討の結果、全ての部材の応力
	度比が1以下または、塑性率が5以下になることを確認した。
	表 5. 3. 2-3(1) 断面検討結果(一般部, 1/2Ss450 地震時, 応力度比)上部架構
	部位*1 一部材形状(mm) 地震波 (位置)*3 入力 (应置)*3 点力度 (N/mm²) 成力度 (N/mm²) 点力度 (N/mm²) 単定
	(IV) IIIII) (IV) IIIII)
	① 性 \underline{H} — $428 \times 407 \times 20 \times 35$ $\underline{0-1}$ $\underline{O-1}$ O
	$\frac{\text{(case1)}}{1/2S_845}$
	② \underline{x} $\underline{B[-300 \times 220 \times 16 \times 25]}$ $\underline{0-1}$ $\underline{\sigma_c}$ $\underline{\sigma_c}$ $\underline{175.1}$ $\underline{f_c}$ 322.9 $\underline{0.55}$ 0. K.
	1/2Sc45
	$PI-16$ $1/2Ss45$ $+NS+FW+II$ σ_x 45.9
	表 5. 3. 2-3(2) 断面検討結果(一般部, 1/2Ss450 地震時, 塑性率)上部架構
	<u>部位*1</u>
	$\frac{1/2\text{Ss}45}{\text{+NS-FW-II}}$
	⑤ 鉛直ブレース ϕ -267. 4×6 . 6 $0 - 1$ $(case 1)$ D $2. 15$ 0 . K .
	表 5. 3. 2-3 (3) 断面検討結果 (一般部, 1/2Ss450 地震時, 応力度比) 下部架構
	部位*1 部材形状(mm) 地震波(位置)*3 入力 応力度 応力度 応力度 上方力度 上方向 上方力度 上方向
	<u>NE用材料 (NED) </u>
	⑥ 柱 $H-400 \times 400 \times 13 \times 21$ $O-1$
	1/2Se45
	$ \bigcirc $
	(case1)

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前	XX ()	₩ 4 2	. 11 - 构态门	4-4 深冷		用カハー 更 後	∨ノ(再)辽	当民及及し	ノ`川!] 月	式江に送	ョッ つ む	心切音)	
		表 :	5. 3. 2-3 (4)	断面検討	結果(一般		s450 地震	<u> </u>	<u> </u>	下部架構	<u> </u>		
		部位*1			形状 (mm) [用材料* ² >	<u>+</u> ()	地震 <u>波</u> 位置)*³	<u>入力</u> <u>方向</u>		<u>塑性率</u>	<u>×</u>	判定	
	8	鉛直ブ	`レース	φ-2	267. 4×6. 6		/2Ss45 0-1 case1)	+NS+EW- <u>D</u>	<u>-U</u>	2.42		<u>O. K.</u>	
	9		:平ブレ <u>ー</u> ス		(PL-28×2 L-28×91)		/2Ss45 0-1 case1)	+NS-EW- <u>D</u>	<u>-U</u>	<u>2. 82</u>		<u>O. K.</u>	
	10		<u>直ブレー</u> ス		(PL-28×2 L-28×91)		/2Ss45 0-1 case1)	+NS+EW+ <u>D</u>	<u>+U</u>	1. 96		<u>O. K.</u>	
		<u>表 5. 3.</u>	2-3(5)	断面検討結り	果(燃料取扱 「	<u> </u>	_				比)		
	<u>.</u>	告队 <u>位*1</u>		犬 (mm) 材料* ² >	<u>地震波</u> (位置)*3	<u>入力</u> <u>方向</u>	応	<u>作用</u> 5力度 I/mm²)	<u>元</u>	<u>許容</u> 公力度 N/mm²)	<u>応力</u> 度比	<u>判定</u>	
	<u>11</u>	<u>柱</u>	<u>H-400×40</u>	00×13×21	$ \begin{array}{r} 1/2Ss45 \\ \hline 0-1 \\ (case1) \end{array} $	<u>-NS-EW+I</u> <u>D</u>	<u> </u>	<u>37. 9</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{c}}}$	<u>326. 1</u>	0. 12	<u>O. K.</u>	
	<u>12</u>	<u>梁</u>	<u>H-350×35</u>	50×12×19	1/2Ss45 0-1 (case1)	+NS-EW-I	<u> </u>	<u>77. 5</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$	<u>357. 5</u>	0. 22	<u>O. K.</u>	
	<u>13</u>	<u>水平</u> ブレー <u>ス</u>	<u>+字PL()</u> +2PL-2	PL-28×210 8×91)	1/2Ss45 0-1 (case1)	+NS-EW-I	<u> </u>	<u>167. 1</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$	<u>357. 5</u>	0.47	<u>O. K.</u>	
	<u>14</u>	<u>鉛直</u> ブレー ス	<u>φ</u> –355	. 6×7. 9	1/2Ss45 0-1 (case1)	+NS-EW-I	<u> </u>	<u>144. 2</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{c}}}$	<u>349. 6</u>	0. 42	<u>O. K.</u>	
					5. 3. 2-5 O						•		
					<u>部材の使用</u> キ撤去用天				その	他はSN49	90 <u>B</u>		
								· <u> </u>					

変更前	変更後	変 更 理 由
	b) 燃料取り出し時	
	表 5. 3. 2-4 に応力度比が最大となる部位の断面検討結果を示す。断面検討の結果、全ての部材の応力	
	度比が1以下又は、塑性率が5以下になることを確認した。	
	表 5. 3. 2-4(1) 断面検討結果(一般部, 1/2Ss450 地震時, 応力度比)上部架構	
	部位*1 部材形状 (mm) 地震波 (位置)*3 入力 方向 応力度 応力度 (N/mm²) 応力度 (N/mm²) 単定	
	① 柱 $H-428 \times 407 \times 20 \times 35$ $O-1$	
	② $\frac{B[-300 \times 220 \times 16 \times 25]}{D} = \frac{\frac{1/2Ss45}{D-1}}{\frac{(case4)}{D}} = \frac{-NS+EW-U}{D} = \frac{\sigma_c}{D} = \frac{142.2}{D} = \frac{142.2}{D} = \frac{322.9}{D} = \frac{0.45}{D} = \frac{0.K}{D}$	
	$\frac{\text{PL}-16}{\langle \text{SN400B} \rangle}$ $\frac{\frac{1}{2}\text{Ss}45}{\frac{0-1}{(\text{case4})}}$ $\frac{+\text{NS}+\text{EW}-\text{U}}{\frac{D}}$ $\frac{\sigma_x}{\sigma_y}$ $\frac{88.4}{56.9}$ $\frac{f_t}{\tau_{xy}}$ $\frac{258.0}{72.4}$ $\frac{0.58}{2}$ $\frac{0.58}{2$	
	表 5. 3. 2-4(2) 断面検討結果(一般部, 1/2Ss450 地震時, 塑性率)上部架構	
	部位*1 部材形状 (mm) 地震波 (位置)*3 力 方向 判定	
	⑤ 鉛直ブレース ϕ -267. 4×6 . 6 $\frac{1/2Ss45}{0-1}$ $\frac{+NS-EW-U}{\underline{D}}$ $\underline{2.23}$ $\underline{0. K.}$	
	表 5. 3. 2-4(3) 断面検討結果 (一般部, 1/2Ss450 地震時, 応力度比) 下部架構	
	部位**1 部材形状 (mm) 地震波 (位置)*3 入力 方向 作用 応力度 応力度 (N/mm²) 応力度 (N/mm²) 応力度 度比 判定	
	⑥ 柱 $\frac{\text{H-400} \times 400 \times 13 \times 21}{\text{(case4)}}$ $\frac{\frac{1}{2}\text{Ss}45}{\underline{D}}$ $\frac{-\text{NS-EW-U}}{\underline{D}}$ $\underline{\sigma}_{c}$ $\frac{309.6}{\text{f}_{c}}$ $\frac{f_{c}}{345.1}$ $\frac{0.90}{0.90}$ $\frac{0. \text{K.}}{0.90}$	

変更前	交表 (第Ⅱ章 2.11									701 🖹	変 更 理 由		
		<u>表 5.</u>											
		<u>部位*1</u>			形状 (mm) 用材料* ² >		<u>地震波</u> (位置)* ³	<u>入力</u> <u>方向</u>		<u>塑性率</u>	<u>×</u>	判定	
	8	鉛直ブリ	レース	<u>φ-2</u>	267. 4×6. 6		1/2Ss45 0-1 (case4)	+NS+EW+	<u>+U</u>	2.86		<u>O. K.</u>	
	9	接続部水 ^ュ			(PL-28×2 L-28×91)	10	1/2Ss45 0-1 (case4)	+NS-EW- <u>D</u>	<u>-U</u>	<u>3. 20</u>	!	<u>O. K.</u>	
	10	接続部鉛ご			(PL-28×2 L-28×91)	10	1/2Ss45 0-1 (case4)	<u>-NS-EW-</u> <u>D</u>	<u>-U</u>	2. 20		<u>O. K.</u>	
		表 5. 3. 2	2-4(5)	<u>新面検討結</u>	果(燃料取技	<u> </u>	1	1			胜)_		
	<u>部(</u>	位*1	<u>部材形物</u> 〈使用机		<u>地震波</u> (位置)*3	<u>入力</u> <u>方向</u>	<u> </u>	<u>作用</u> 5力度 N/mm²)	<u>元</u>	<u>許容</u> 公力度 N/mm²)	<u>応力</u> <u>度比</u>	判定	
	<u>(1)</u>	<u>柱</u>	<u>H-400×40</u>	0×13×21	1/2Ss45 0-1 (case4)	<u>-NS-EW+</u> <u>D</u>	<u>σ</u> c	<u>70. 4</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{c}}}$	<u>326. 1</u>	0. 22	<u>O. K.</u>	
	<u>12</u>	<u>梁</u>	<u>H-350×35</u>	0×12×19	1/2Ss45 0-1 (case4)	<u>+NS-EW+</u> <u>D</u>	$\frac{U}{\sigma_t}$	<u>116. 3</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$	<u>357. 5</u>	0.33	<u>O. K.</u>	
	<u>13</u>	<u>水平</u> ブレー ス	十字 PL(F +2PL-28	PL-28×210 8×91)	1/2Ss45 0-1 (case4)	+NS-EW- <u>D</u>	<u>\sigma_t</u>	<u>199. 0</u>	$\underline{\mathbf{f}}_{\underline{\mathbf{t}}}$	<u>357. 5</u>	0.56	<u>O. K.</u>	
	<u>14</u>	<u>鉛直</u> ブレー ス	<u>φ-355.</u>	6×7.9	1/2Ss45 0-1 (case4)	<u>-NS-EW+</u> <u>D</u>	<u>σ</u> _c	<u>222. 0</u>	$\underline{\mathbf{f}}_{\mathbf{c}}$	349.6	0.64	<u>O. K.</u>	
		<u> </u>	<u>*1</u> :		<u></u> は図 5.3.2-6					!	•		
					, 各部材の使			「KN490B, そ	の他	はSN490B			
			<u>*3 :</u>	<u>図</u> 5. 2. 1-4 (C	燃料取扱設備	の仕直を7	<u> </u>						

変更前	画変更比較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 後	変更理由
	5.3.3 屋根の耐震性に対する検討	
	(1) 断面検討	
	部材の塑性率は、引張及び圧縮に対して最大軸力時のひずみを引張耐力または座屈耐力時のひずみで	
	除した値で表される。表 5.3.3-1 及び表 5.3.3-2 に断面検討結果を示す。なお、各許容応力度、引張耐	
	力及び座屈耐力算定時の材料強度は「平成 12 年建設省告示第 2464 号」に定められた基準強度 F 値の 1.1	
	<u>倍を用いる。</u>	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表 (第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 前 変 更 後 変 更 理 由 1) ガレキ撤去時 表 5.3.3-1 に塑性率が最大となる部位の断面検討結果を示す。断面検討の結果,全ての部材の塑性率 が5以下になることを確認した。 表 5.3.3-1 断面検討結果 (屋根部, 1/2Ss450 地震時) 部材形状 (mm) 地震波 部位*1 <u>判定</u> 塑性率 〈使用材料〉 (位置) *2 P-190. 7 $\phi \times 5$. 3t 1/2Ss450-1弦材 0.62 <u>O. K.</u> <STK490> (case1)

斜材

ブレース

3

*1:①~③の符号は図 5.3.3-1 の応力検討箇所を示す

P-89. 1 $\phi \times 3.2t$

<STK400>

<u>1-M16</u>

<SNR400B>

*2:図5.2.1-3にガレキ撤去用天井クレーンの位置を示す

1/2Ss450-1

(case1)

1/2Ss450-1

(case1)

<u>4. 22</u>

<u>2.61</u>

O. K.

<u>0. K.</u>

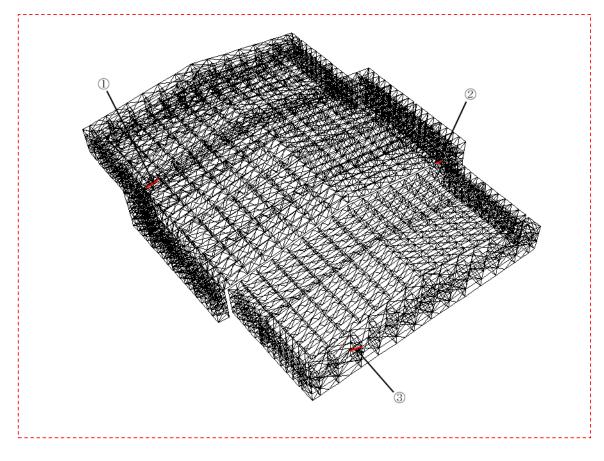


図 5.3.3-1 最大塑性率位置図

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表 (第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 前 変 更 後 変 更 理 由 2) 燃料取り出し時 表 5.3.3-2 に塑性率が最大となる部位の断面検討結果を示す。断面検討の結果,全ての部材の塑性率 が5以下になることを確認した。 表 5. 3. 3-2 断面検討結果 (屋根部, 1/2Ss450 地震時)

X ** ** * * * * * * * * * * * * * * * *								
部位*1		部材形状 (mm) (使用材料>	<u>地震波</u> _(位置) * ²	塑性率	判定			
<u>①</u>	<u>弦材</u>	$\frac{P-190.7 \phi \times 5.3t}{\langle STK490 \rangle}$	1/2Ss450-1 (case4)	0.60	<u>O. K.</u>			
2	<u>斜材</u>	$\frac{P-89.1 \phi \times 3.2t}{\langle STK400 \rangle}$	1/2Ss450-1 (case4)	4.47	<u>O. K.</u>			
3	ブレース	<u>1-M16</u> <snr400b></snr400b>	1/2Ss450-1 (case4)	<u>2. 59</u>	<u>O. K.</u>			

*1:①~③の符号は図 5.3.3-2の応力検討箇所を示す *2:図 5.2.1-4に燃料取扱設備の位置を示す

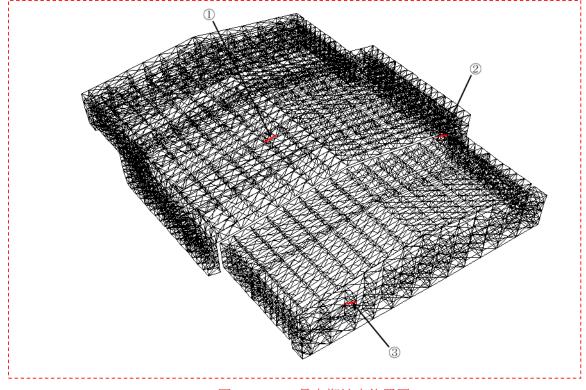


図 5.3.3-2 最大塑性率位置図

変 更 前 変更後 変 更 理 由 5.3.4 建屋取り合い部の耐震性に対する検討 (1) アンカーボルトの検討(引抜き, せん断) 大型カバーはアンカーボルトにより原子炉建屋外壁に取り付く。アンカーボルトの仕様は、M33 (SNR490B) の接着系アンカーボルトとし、終局耐力は「あと施工アンカー施工指針(案)(一般社団法 人日本建築あと施工アンカー協会)」に従い、原子炉建屋の設計基準強度を用いて下式によって求める。 表 5.3.4-1 にアンカーボルトの終局耐力を示す。 $pu = min(pu_1, pu_2, pu_3)$ $qu = min(qu_1, qu_2)$ pu :接着系アンカーボルトの終局引張力(kN/本) pu_1 : アンカーボルトの降伏により決まる終局引張力 (kN/4)pu2 : 躯体のコーン状破壊により決まる終局引張力(kN/本) pu3 : 付着力により決まる終局引張力(kN/本) qu :接着系アンカーボルトの終局せん断力(kN/本) qu₁ : アンカーボルトのせん断強度により決まる終局せん断力(kN/本) qu₂:躯体の支圧強度により決まる終局せん断力(kN/本) <u>表 5.3.4-1 接着系アンカー</u>ボルトの終局耐力 燃料取扱設備 支持部 部位 一般部 <u>GL+13.7</u> タイプ 標準 標準 M33M33鋼材種類 <u>SNR490B</u> SNR490B 埋め込み長さ (mm) 345 <u>345</u> アンカーボルト間隔 (mm) <u>400</u> 400 (kN/本) 許容引張力(pu) 318 234 終局 <u>許容せん断力(qu) (kN/本)</u> <u>193</u> <u>193</u>

変更前	・施計画変更比較表 (第11章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書 変 更 後	変 更 理 由
	アンカーボルトの検討は、建屋取り合い部に生じる最大支点反力に対し、下式にて検討を行う。	
	<u>P</u> <1	
	$\frac{\underline{\mathbf{p}}}{\underline{\mathbf{p}}_{\mathbf{u}}} \underline{\leq 1}$	
	$\frac{Q}{Q_{u}} \leq 1$	
	$\frac{\left(\frac{P}{P_{u}}\right)^{2}+\left(\frac{Q}{Q_{u}}\right)^{2}\leq 1}{}$	
	<u>Pu:アンカーボルトの終局引張耐力(kN)</u>	
	Qu:アンカーボルトの終局せん断耐力(kN)	
	<u>P : アンカーボルトの引張力 (kN)</u>	
	Q : アンカーボルトのせん断力 (kN)_	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前	※衣(弗Ⅱ早 2	2.11 6%17 4	4-2 烷、科以	.り出し用 変 更		菲 這独	.い肥農性(△関する記	況 <u>明</u> 書)	
22 22 11										
<u>1) ガレキ撤去時</u>										
<u>表 5.3.4-2 に耐力比が最大となる部位の検討結果を示す。</u>										
	検討の結果、アンカーボルトの最大耐力比は1以下になることを確認した。									
	表 5.3.4-2(1) アンカーボルトの検討結果(一般部, 1/2Ss450 地震時)									
	作用応力 終局耐力									
	<u>部位*1</u>	<u>地震波</u>	<u>入力</u> <u>方向</u>	引張力	せん断力	<u>引張</u>	せん断	耐力比	<u>判定</u>	
	アンカー本数)	(位置)*2	<u>力问</u>	<u>P</u>	<u>Q</u>	<u>耐力</u>	<u>耐力</u>			
	アンカー	1/00 450 1		(kN)	(kN)	Pu (kN)	Qu (kN)			
	<u>助</u> ボルト	1/2Ss450-1 (case1)	-NS+EW+UD	<u>565</u>	<u>5056</u>	<u>7956</u>	<u>6562</u>	<u>0.78</u>	<u>O. K.</u>	
	(34)									
	表 5. 3.	. 4-2(2) アン	/カーボルトの)検討結果	(燃料取扱設	设備支持部,	1/2Ss450 ±	也震時)_		
				<u>作</u> 月	<u>用応力</u>	終局	<u>局耐力</u>			
	<u>部位*¹</u> アンカー本数)	<u>地震波</u> (位置)* ²	<u>入力</u> <u>方向</u>	引張力	せん断力	<u>引張</u> 耐力	<u>せん断</u>	<u>耐力比</u>	<u>判定</u>	
	/ / / / / / / / / / / / / / / / / / /		<u> 73 [H]</u>	<u>P</u> (kN)	<u>Q</u> (kN)	<u>耐力</u> Pu(kN)	<u>耐力</u> Qu (kN)			
	アンカー	1/2Ss450-1								
	<u>低</u> ボルト (12)	(case1)	<u>-NS-EW-UD</u>	<u>354</u>	<u>1191</u>	<u>3816</u>	<u>2316</u>	<u>0.52</u>	<u>O. K.</u>	
				<u>*1 : 🗵</u>	」 3 5. 3. 2-5 に応	力検討箇所を	ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト ト	- // m » = 3		
				<u>*2: </u>	【 5. 2. 1−3 にガ	レキ撤去用力	大井クレーンの	り位置を示す	_	

変 更 前	[比較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 後	変更理由
<u> </u>		
	2) 燃料取り出し時 表 5.3.4-3 に耐力比が最大となる部位の検討結果を示す。	
	検討の結果、アンカーボルトの最大耐力比は1以下になることを確認した。	
	表 5.3.4-3(1) アンカーボルトの検討結果 (一般部, 1/2Ss450 地震時)	
	<u>作用応力</u> 終局耐力	
	部位*1 地震波 入力 アンカー本数) (位置)*2 引張力 世ん断力 引張 付力 耐力 耐力 利定	
	<u>アンガー本数) (位直) 2 </u>	
	アンカー 1/95 450 1	
	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	<u>(03)</u>	
	表 5. 3. 4-3(2) アンカーボルトの検討結果 (燃料取扱設備支持部, 1/2Ss450 地震時)	
	作用応力	
	部位*1 地震波 入力 引張力 引張力 世ん断力 引張力 耐力比 判定 アンカー本数) (位置)*2 方向 月張力 ロ 可力 耐力 耐力 一村力 一村力 一村力	
	<u> </u>	
	アンカー	
	値	
	*1:図 5.3.2-6 に応力検討箇所を示す	
	*2:図 5.2.1-4 に燃料取扱設備の位置を示す	

変 更 前	更比較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 後	変更理由					
	(2) 原子炉建屋外壁部の検討						
	<u>確認する。</u>						
	1) ガレキ撤去時						
	表 5.3.4-4 に応力度比が最大となる部位の検討結果を示す。						
	検討の結果、原子炉建屋外壁部の最大応力度比は1以下になることを確認した。						
	表 5. 3. 4-4(1) 外壁部の検討結果(一般部, 1/2Ss450 地震時)						
	地震波 <u>入力</u> 作用応力度 <u>許容応力度</u> <u>応力</u> Nate						
	\(\frac{1}{2}\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\frac{1}2\) \(\fra						
	① 外壁 1/2Ss450-1 (case1) +NS-EW-UD 1.0 22.1 0.05 0.K.						
	表 5. 3. 4-4(2) 外壁部の検討結果 (燃料取扱設備支持部, 1/2Ss450 地震時)						
	部位*1 地震波 (位置)*2 入力 方向 作用応力度 (N/mm²) 許容応力度 (N/mm²) 応力 度比 判定						
	18						
	<u>(case1)</u>						
	*2:図5.2.1-3にガレキ撤去用天井クレーンの位置を示す						

	表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する記						
変更前	変更後	変更理由					
	2) 燃料取り出し時						
表 5. 3. 4-5 に応力度比が最大となる部位の検討結果を示す。							
	検討の結果,原子炉建屋外壁部の最大応力度比は1以下になることを確認した。						
	表 5. 3. 4-5(1) 外壁部の検討結果(一般部, 1/2Ss450 地震時)						
	<u> 地震波</u>	定					
	(2) (1) (2) (2) (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4						
	① 外壁 $\frac{1/2\text{Ss}450-1}{(\text{case4})}$ $\frac{+\text{NS-EW+UD}}{(\text{sase4})}$ $\frac{1.1}{(\text{case4})}$ $\frac{22.1}{(\text{case4})}$ $\frac{0.05}{(\text{case4})}$	<u>X.</u>					
	<u>(Case4)</u>						
	表 5.3.4-5(2) 外壁部の検討結果 (燃料取扱設備支持部, 1/2Ss450 地震時)						
	$\frac{\text{当位}^{*1}}{\text{当(位置)}^{*2}}$	定					
	1/900/450 1						
		<u> </u>					
	*1:図5.3.2-6 に応力検討箇所を示す						
	<u>*2:図5.2.1-4に燃料取扱設備の位置を示す</u>						

5.3.5 原子炉建屋の耐震性に対する検討

変更前

(1) 検討方針

大型カバーの設置に伴う原子炉建屋の耐震性の評価は、燃料取扱設備の間接支持機能維持の観点から、地震応答解析により得られる耐震壁のせん断ひずみが鉄筋コンクリート造耐震壁の許容限界に対応した評価基準値(2.0×10⁻³)以下になることを確認する。また、最大接地圧が地盤の許容限界を超えないことを確認する。

変更後

(2) 原子炉建屋の地震応答解析

1) 解析に用いる入力地震動

検討に用いる地震動は、「5.3.1 検討方針」で示した 1/2Ss450 とする。 地震応答解析に用いる入力地震動の概念図は図 5.3.1-1 と同様である。

2) 地震応答解析モデル

原子炉建屋の地震応答解析モデルは、図 5.3.5-1 に示すように質点系でモデル化し、地盤を等価なばねで評価した建屋-地盤連成系モデルとする。

地震応答解析モデルの諸元は、「II.2.6 滞留水を貯留している(滞留している場合を含む)建屋 添付資料-2 構造強度及び耐震性(地下滞留水を考慮した建屋の耐震安全評価)」に示される内容に、ガレキ撤去等による重量増減及び新規に設置する大型カバー、燃料取扱設備等の重量を考慮した。地震応答解析モデルの諸元の質点重量および回転慣性重量を表 5.3.5-1 に示す。

地盤定数は、「5.3.1 検討方針」で示した地盤定数と同一である。

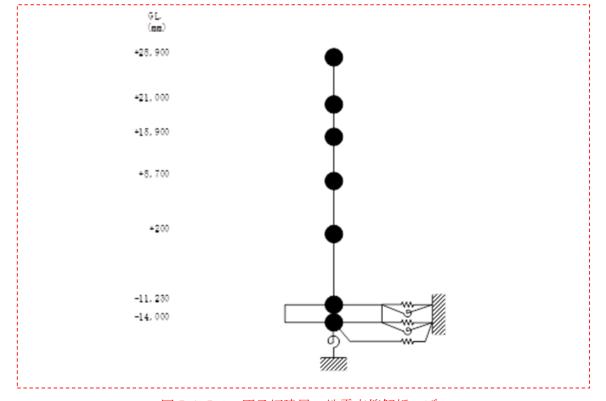
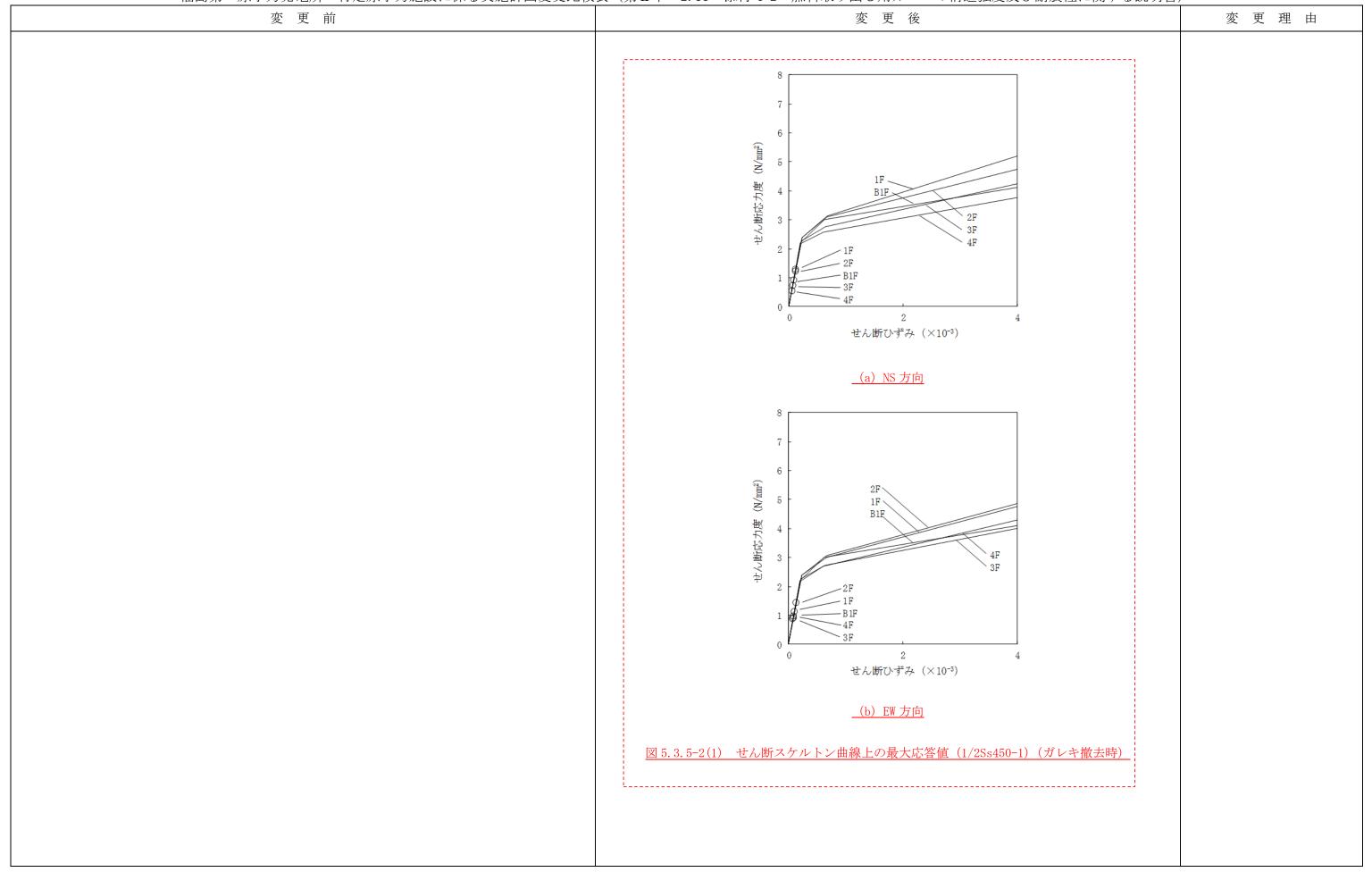
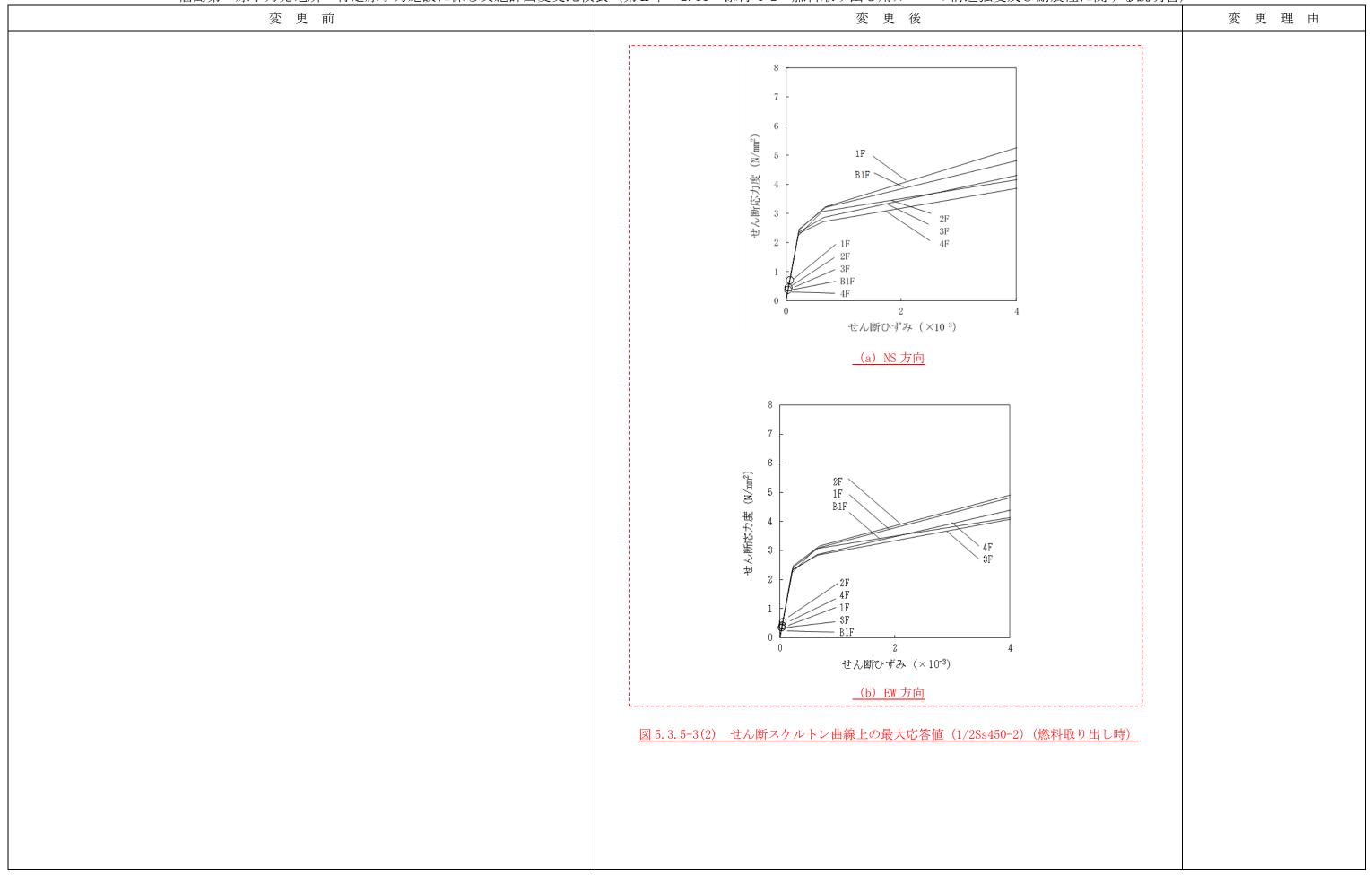
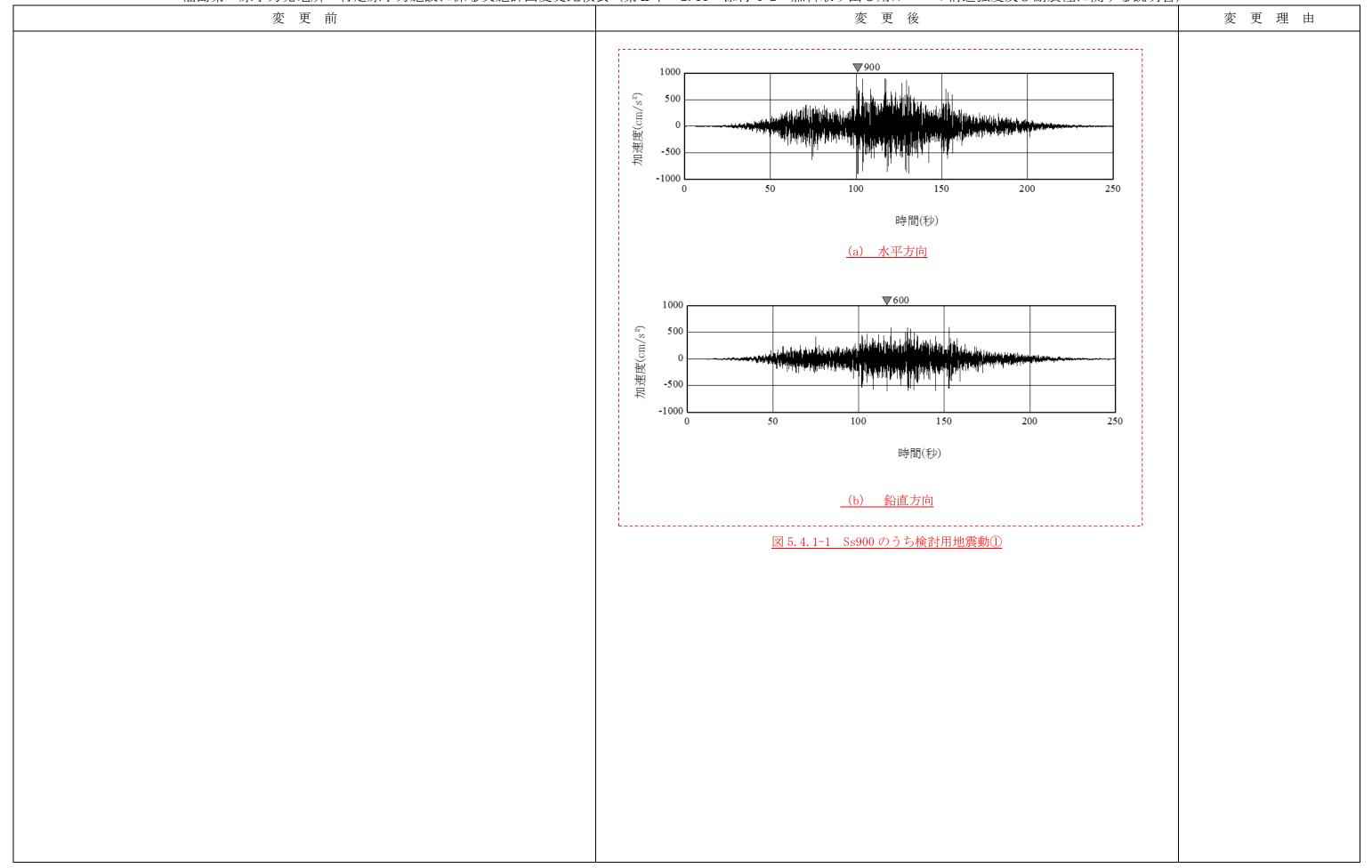
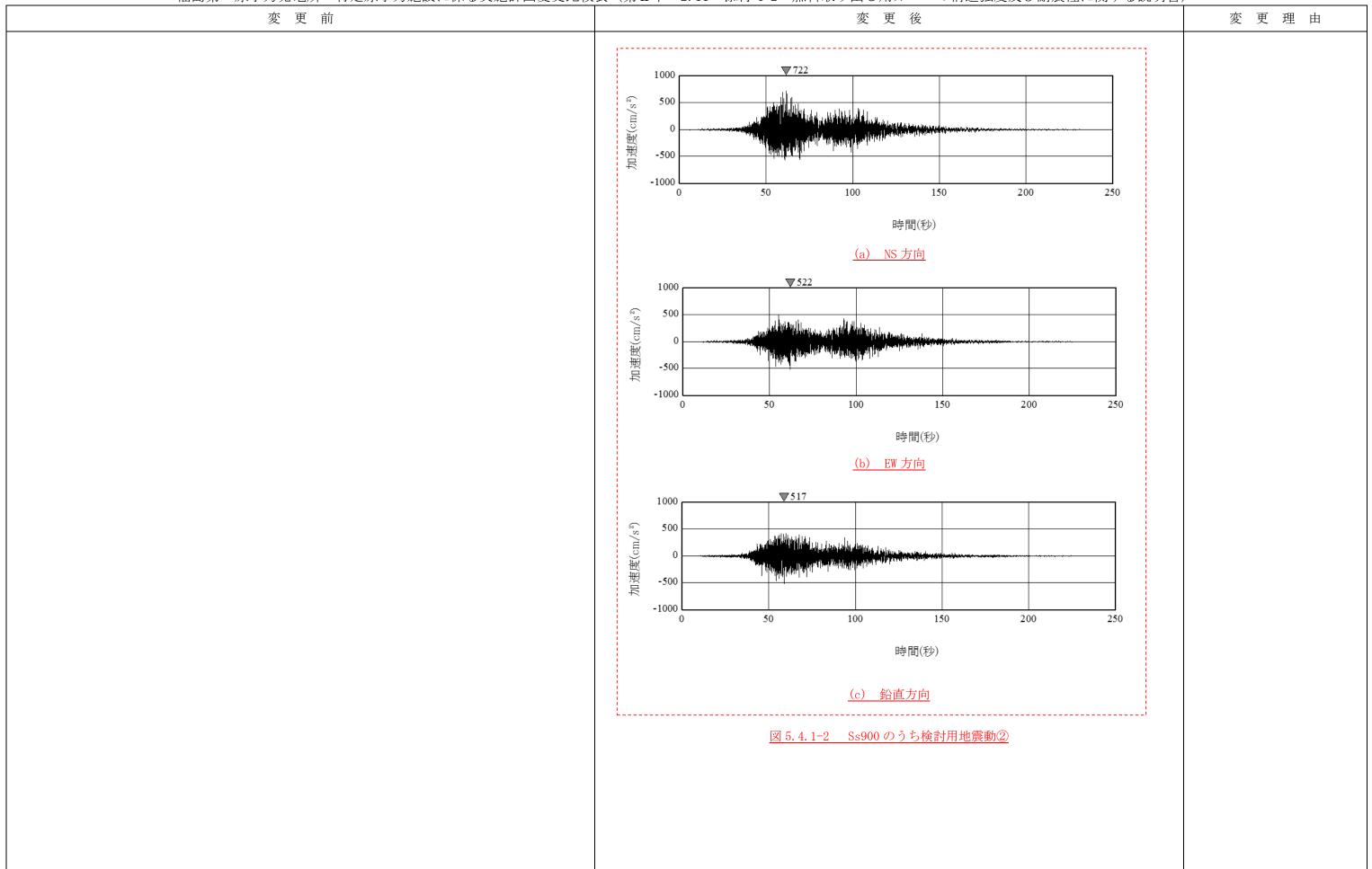



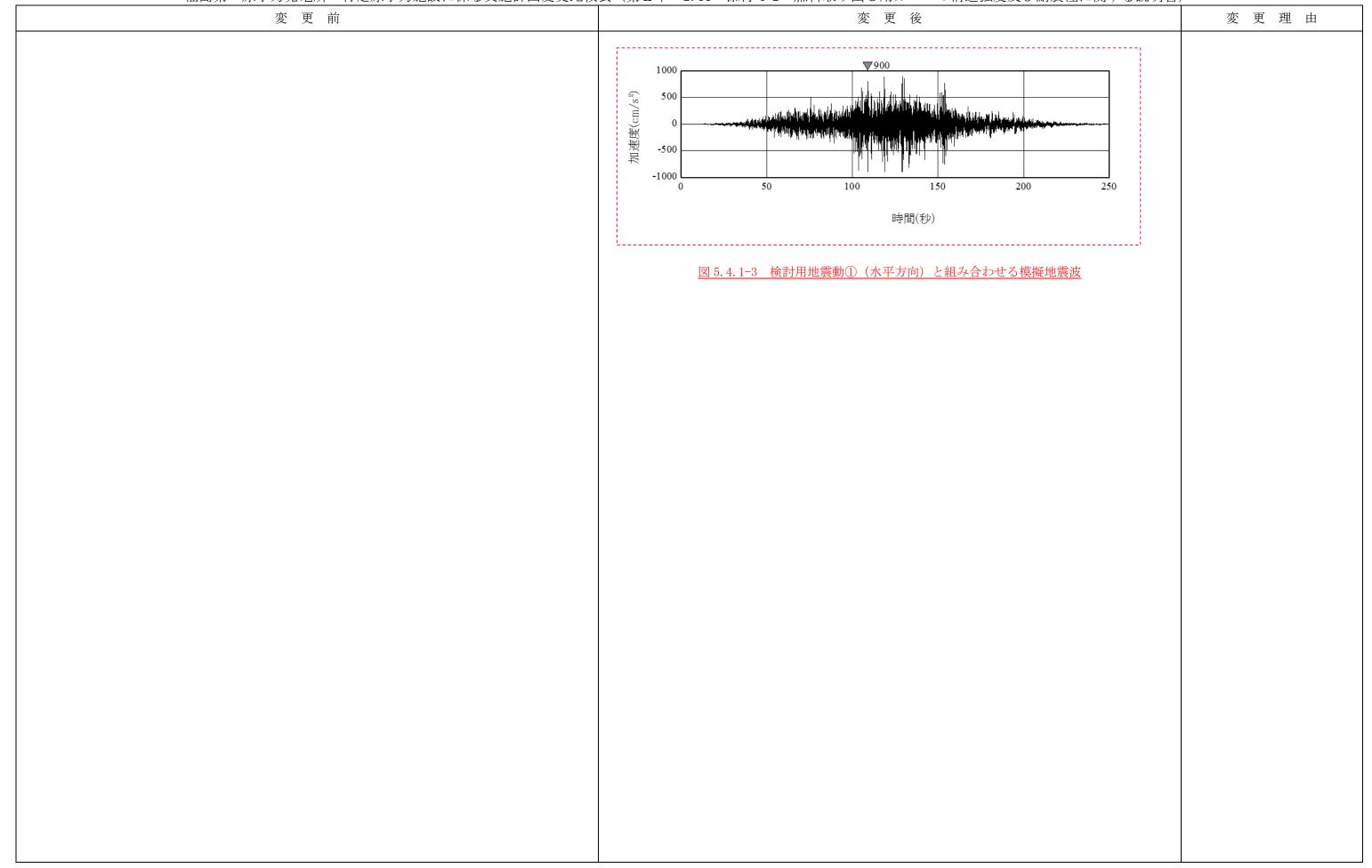
図 5.3.5-1 原子炉建屋の地震応答解析モデル


変 更 理 由

福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比 変 更 前	秋久(为11年	変更理由				
	変 更 後 <u>表 5. 3. 5-1(1) 原子炉建屋の地震応答解析モデルの諸元(水平方向, ガレキ撤去時)</u>					
	(C. L. (w.) <u>質点重量</u>	<u>回転慣</u> <u>I_G(×1</u> 0				
	<u>G. L. (m)</u>	W (kN)	水平(NS)方向	水平(EW 方向)		
	+28.90	<u>113830</u>	<u>163. 75</u>	93. 73		
	+21.00	81500	<u>117. 34</u>	<u>67. 09</u>		
	<u>+15. 90</u>	90680	<u>130. 48</u>	<u>74. 63</u>		
	<u>+8. 70</u>	<u>87510</u>	<u>125. 98</u>	<u>125. 98</u>		
	<u>+0. 20</u>	<u>162800</u>	<u>234. 31</u>	<u>234. 31</u>		
	<u>-11.23</u>	<u>185210</u>	<u>266. 64</u>	<u>327. 39</u>		
	<u>-14.00</u>	62400	<u>89. 83</u>	<u>110. 32</u>		
	<u>合計</u>	783930				
	<u>表 5. 3.</u>	5-1(2) 原子炉建屋の地震応	答解析モデルの諸元(水平方向	可,燃料取り出し時)		
	婚占重量	質点重量	<u>回転慣</u> <u>I_G(×10</u>			
	<u>G. L. (m)</u>	<u>W (kN)</u>	水平(NS)方向	水平(EW 方向)		
	<u>+28. 90</u>	<u>161390</u>	<u>232. 17</u>	<u>132. 90</u>		
	<u>+21.00</u>	81500	<u>117. 34</u>	<u>67. 09</u>		
	<u>+15. 90</u>	90670	<u>130. 46</u>	<u>74. 62</u>		
	<u>+8. 70</u>	<u>88080</u>	<u>126. 80</u>	<u>126. 80</u>		
	<u>+0. 20</u>	<u>163140</u>	234. 80	<u>234. 80</u>		
	<u>-11.23</u>	<u>185210</u>	<u>266. 64</u>	<u>327. 39</u>		
	<u>-14. 00</u>	62400	89. 83	<u>110. 32</u>		
	<u>合計</u>	832390				


福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比較 変 更 前	XX (知 中 2.11 称 1 年 2	変更後	旦送及及び剛展注に関する説明音)	
Д Д IP	(3) 検討結果	~ ~ W		~ ~ · · · ·
		を,「JEAG4601-1991」に基づき設策	Eした耐震壁のせん断スケルトン曲線	
	上にプロットした結果を、図 5.3			
			基準値 (2.0×10⁻³) 以下となり, クラ	
	<u>イテリアを満足することを確認し</u>	<u>t.</u>		
	<u>また, 1/2Ss450 に対する最大</u>	接地圧を,表 5.3.5-2 に示す。	最大接地圧は、地盤の極限支持力度	
	_(9800kN/m²) を超えないことを	<u>・確認した。</u>		
	表 5. 3. 5-2(1	<u>) 1/2Ss450 に対する最大接地原</u>	王 (ガレキ撤去時)	
		NS 方向	EW 方向	
	<u>地震波</u>	<u>1/2Ss450-1</u>	<u>1/2Ss450-1</u>	
	<u>鉛直力N</u> (×10 ⁵ kN)	9.1	9.1	
	<u>転倒モーメントM</u> <u>(×10⁶kN·m)</u>	8.0	9. 1	
	<u>最大接地圧</u> (kN/m²)	<u>1210</u>	<u>1310</u>	
	表 5. 3. 5-2(2)	1/2Ss450 に対する最大接地圧	<u>(燃料取り出し時)</u>	
		NS 方向	EW 方向	
	<u>地震波</u>	<u>1/2Ss450-1</u>	<u>1/2Ss450-1</u>	
	<u>鉛直力N</u> (×10⁵kN)	9.7	9.7	
	<u>転倒モーメントM</u> <u>(×10⁶kN·m)</u>	9.2	10.0	
	<u>最大接地圧</u> (kN/m²)	<u>1380</u>	1440_	




変更前	(衣(弗 11 早 2.11 称刊 4-2 燃料取り出し用刀ハーの構造短度及び胴震性に関する説明書 変 更 後	変更理由
	8 7 6 6 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

変更前	変更後	変 更 理 由
	5.4 耐震性(波及的影響の検討)	
	5.4.1 検討方針	
	耐震性のうち波及的影響の検討は、大型カバー、屋根、建屋取り合い部、ガレキ撤去用天井クレーン	
	及び原子炉建屋について行い、Ss900 に対して、これらの応答性状を適切に表現できる地震応答解析を	
	用いて評価する。なお、地震応答解析は水平2方向及び鉛直の3方向の地震動を同時に入力する。	
	(1) 解析に用いる入力地震動	
	地震応答解析に用いる入力地震動の概念図は図 5.3.1-1 と同一である。モデルに入力する地震動は,	
	2 波ある Ss900 のうち振幅の大きな検討用地震動①を用いる。Ss900 の加速度時刻歴波形を図 5.4.1-1	
	<u>~図 5. 4. 1−2 に示す。</u>	
	Ss900 を用いた地震応答解析は水平 2 方向及び鉛直方向を同時に入力するが、全く同じ地震動が同時	
	に水平2方向に入力されることは現実的に考えにくい。このため、応答スペクトルに基づく検討用地震	
	動①を作成した方法と同一の方法で、目標とする応答スペクトルに適合し、Ss900-1 と直交する位相を	
	用いた模擬地震波を利用する。検討用地震動①と組み合わせる模擬地震波の加速度時刻歴波形を図	
	5.4.1-3 に示す。	

変 更 前 変 更 後 変 更 理 由 (2) 地震応答解析モデル 地震応答解析モデル, 地震応答解析に用いる鉄骨の物性値及び原子炉建屋の諸元は, 「5.3.1(2) 地震 応答解析モデル」と同一である。 大型カバーの地盤定数は、「福島第一原子力発電所『発電用原子炉施設に関する耐震設計審査指針』 の改訂に伴う耐震安全性評価結果 中間報告書」(東京電力株式会社,平成20年3月31日)と同様とし、 その結果を表 5.4.1-1 に示す。 表 5.4.1-1 等価地盤物性 <u>せん断</u> 初期せん断 層厚 弾性係数 本積重量 弹性係数 <u>係数</u> <u>速度</u> G. L. 地質 Vs G/G_0 <u>H</u> $\times \overline{10^5}$ kN $(\times 10^5 \text{kN/m}^2) \quad (\times 10^5 \text{kN/m}^2)$ (%) (m) (m/s) (kN/m^3) (m) $/\mathrm{m}^2$) 0.0 -<u>砂岩</u> <u>0.473</u> <u>380</u> <u>17.8</u> <u>2.04</u> <u>2.62</u> <u>0.78</u> <u>6.01</u> <u>4</u> <u>8. 1</u> <u>-8.1</u>-<u>16. 5</u> 11.9 <u>450</u> 0.464 2.32 6.79 3 3.41 -20.0- 0.455 2.96 0.68 8.61 <u>70.0</u> <u>500</u> <u>17. 1</u> 4.36 3 -90. 0 --- 泥岩 28.0 11.08 <u>3</u> 560 <u>17. 6</u> 0.446 3.83 5.63 0.68 118.0- <u>600</u> <u>17.8</u> <u>0.442</u> <u>6.53</u> <u>0.68</u> 12.80 <u>3</u> <u>88. 0</u> <u>4.44</u> 206.0— 700 18.5 26. 26 0.421 9.24 1.00 9.24 (3) 解析ケース ガレキ撤去時と燃料取り出し時の2ケースについて地震応答解析を行う。 ガレキ撤去時は、使用済み燃料プール上部にガレキ撤去用天井クレーンを配置し、定格荷重相当のガ レキを吊った状態を想定する。 燃料取り出し時は、ガレキ撤去用天井クレーンの使用頻度は低いため、北側配置で吊り荷なしの状態 を想定する。

電岡第一原丁万光电所 特定原丁万元政(三原る天旭市画変叉比較変 更 前	, , , , , ,			更 後			変更理由		
			表 5. 4. 1	1-2 解析ケー	<u>ス</u>				
	ケーフ	ケース	ケース		(1	入力地震動 2 大点目時 7 +	,)	ガレキ撤去用	
	<u>ケース</u> <u>No.</u>	<u>状態</u>			<u>UD 方向</u>	天井クレーン状態			
			Ss900	Ss900	Ss900	プール上部配置			
	<u>1</u>	ガレキ撤去時	<u>+NS</u>	$\frac{(E \rightarrow W)}{+EW}$	<u>+UD</u>	吊り荷考慮			
			<u>(N→S)</u>	<u>(F→M)</u>	$(\Pi \rightarrow D)$	<u>(case1)</u> 北側配置			
	<u>2</u>	燃料取り出し時	同上	同上	同上	<u>吊り荷なし</u>			
						<u>(case2)</u>			
						ガレキ撤去用天井クレーン			
				_					
	i	(:プール上部		_					
	case2	2:北側							
		(\$)	X		(北)			
				使用済燃料:					
	L			 ·撤去用天井ク		i			
					<u> </u>				

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較	(衣 (男Ⅱ早 Z.11		<u> </u>	र्मा क्र
変更前		変更後		変更理由
	(4) 評価項目とクライ	<u>テリア</u>		
	波及的影響の検討は、	表 5.4.1-3 に示す項目について評価を行う。		
		表 5.4.1-3(1) 大型カバーのクライテリア	-	
	<u>部位</u>	<u>考え方</u>	許容限界	
	<u>大型カバー架構</u> <u>(一般部)</u>	最大層間変形角が波及的影響を及ぼさないた めの許容限界を超えないことを確認	<u>層間変形角</u> <u>1/30^{※1}</u>	
	<u>大型カバー架構</u> <u>(柱梁・鋼板)</u> <u>(屋根弦材)</u>	部材に生じる応力が許容限界を超えないこと を確認,超える場合はエネルギー一定則によ る評価を実施し、塑性率の許容限界を超えな いことを確認	<u>弾性限界強度または</u> <u>塑性率 5.0^{※2}</u>	
	大型カバー架構 <u>(ブレース)</u> (<u>屋根斜材・</u> <u>屋根ブレース)</u>	部材に生じる塑性率が許容限界を超えないことを確認、超える場合は応答による繰り返し回数が許容限界に対して十分な裕度を有することを確認	塑性率 5.0 または 評価最大ひずみ度に対する 破断寿命 1.0	
	<u>大型カバー架構</u> アンカーボルト	引張とせん断の二乗累加則により検定し許容 限界に至らないことを確認	終局強度に対する検定比 <u>1.0</u>	
		区分判定基準及び復旧技術指針 ((財) 日本建築防災協会		
	る。なお、彼炎度区分 的に最大層間変形角を	判定基準においては,柱の残留傾斜角が 1/30 を超えた場 用いて評価を行う。	<u> 合に大破と判定しているか、保守</u>	
	<u>※</u> 2: JSCA 性能メニュー(社	:団法人日本建築構造技術者協会,2002年)を参考に定め		
	<u>(北村他:「性能設計に</u> 2006. 6)	おける耐震性能判断基準値に関する研究」,日本建築学会	菁追糸論又集,第 604 号, PP183−191,	
	表	5.4.1-3(2) ガレキ撤去用天井クレーンのクラ	イテリア	
	<u>部位</u>	考え方	許容限界	
	<u>ガレキ撤去用</u>	東西レール間の最大相対水平変位がクレーン の水平かかり代に比べ小さいことを確認	東西レール間相対変位 2300mm	
	<u>天井クレーン</u> <u>クレーンガーダ</u>	クレーンガーダの最大応答値が全塑性モーメ ントを超える不安定状態に至らないことを確	<u>全塑性モーメント</u> <u>Mp</u>	
	ガレキ撤去用 天井クレーン	クレーンガーダの最大応答変位がトロリ脱落 防止材の鉛直かかり代に比べ小さいことを確 認	<u>鉛直変位</u> 259mm	
	<u> </u>	トロリの水平力による脱落防止材の発生応力 が弾性限界強度を超えないことを確認	<u>弾性限界せん断強度</u> 149N/mm ² (SS400)	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較	₹表(第Ⅱ草 2	2.11			及び耐震性に	<u> </u>	
変更前			変更	後			変更理由
	5.4.2 大型カ	バーの耐震性に対す	トる検討				
	(1) 層間変形	角の検討結果					
	大型カバー-	一般部の層間変形角	を表 5.4.2-1 に示	<u>†.</u>			
	ガレキ撤去時	<u> 持及び燃料取り出し</u>	時の最大層間変形	角は、許容限界である	る 1/30 を超え	ないことを確認	
	<u>した。</u>						
		表 5.4.2-	1(1) 最大応答層	間変形角(ガレキ撤号	<u>去時)</u>		
	<u>方向</u>	地震条件	<u>検討箇所</u>	最大層間変形角	許容限界	<u>判定</u>	
	-		G. L. +53. 9 (m)				
	南北方向	<u>Ss900</u> (+NS+EW+UD)	\sim +28.3 (m)	<u>1/87</u>	<u>1/30</u>	<u>O. K.</u>	
		(+NS+EW+0D)	h=25.6(m)				
	<u>東西方向</u>	<u>Ss900</u>	$\frac{\text{G. L. +53. 9 (m)}}{\sim +28.3 \text{ (m)}}$	<u>1/84</u>	1/30	<u>O. K.</u>	
	<u>来四万円</u>	<u>(+NS+EW+UD)</u>	h=25.6 (m)	1/04	1/30	<u>0. K.</u>	
						•	
		表 5. 4. 2-1	(2) 最大応答層間	変形角(燃料取り出	し時)		
	<u> </u>	地震条件	検討箇所	最大層間変形角	許容限界	<u>判定</u>	
	2010	<u>PEIXZKII</u>	G. L. +53. 9 (m)	<u> </u>	#1*H1X/I	137.5	
	南北方向	<u>Ss900</u>	<u>~+28.3(m)</u>	<u>1/73</u>	1/30	<u>O. K.</u>	
		(+NS+EW+UD)	h=25.6(m)		<u>.</u>		
	-1	<u>Ss900</u>	<u>G. L. +53. 9 (m)</u>	. /=-			
	東西方向	(+NS+EW+UD)	$\frac{\sim +28.3 (\text{m})}{\text{h=}25.6 (\text{m})}$	<u>1/78</u>	<u>1/30</u>	<u>O. K.</u>	
			<u>11-29. 0 (III)</u>				

福島界一原十刀発電所 特定原十刀施設に係る美旭計画変更比較	表 (第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書)	
変更前	変更後	変更理由
	(2) 断面検討結果	
	1) 一般部	
	大型カバー一般部の断面検討結果を表 5.4.2-2 に示す。	
	柱,梁は一部で弾性限界を超えるものの,エネルギー一定則による評価で最大塑性率が5を超えない	
	ことを確認した。なお、弾性限に対する検定比は()内に示す。また、ブレース、鋼板の最大塑性率は	
	5を超えないことを確認した。	
	接続部ブレース及び下部ブレースは最大塑性率が5を超えることから、破断寿命評価を実施し、部材	
	が破断しないことを確認した。	
	表 5.4.2-2(1) 断面検討結果 (一般部, ガレキ撤去時)	
	部位 部材形状 (mm) 地震条件 最大応力度 (N/mm²) 許容応力度 (N/mm²) 最大塑性率 判定	
	柱 $H-400\times400\times13\times21$ $Ss900$ $+NS+EW+UD$ σ_c 343.0 f_c 320.4 $1.08(1.08)$ $0.K.$	
	<u> </u>	
	鋼板 PL-12 $\frac{Ss900}{\tau_{xy}}$ $\frac{+NS+EW+UD}{\tau_{xy}}$ $\frac{\sigma_y}{19.8}$ $\frac{256.6}{\tau_{xy}}$ $\frac{f_t}{19.8}$ $\frac{258.0}{\tau_{xy}}$ $\frac{0.97}{\tau_{xy}}$ $\frac{0. K.}{\tau_{xy}}$	
	表 5.4.2-2(2) 断面検討結果(一般部,燃料取り出し時)	
	部位 部材形状 (mm) 地震条件 最大応力度 (N/mm²) 許容応力度 (N/mm²) 最大塑性率 判定	
	柱 $\underline{\text{H-400} \times 400 \times 13 \times 21}$ $\underline{\text{Ss900}}$ $\underline{\text{+NS+EW+UD}}$ $\underline{\sigma}_{c}$ $\underline{\text{423.5}}$ $\underline{\text{f}}_{c}$ $\underline{\text{345.1}}$ $\underline{\text{1.26(1.23)}}$ $\underline{\text{0. K.}}$	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	$\frac{\sigma_x}{\sigma_x} = \frac{17.3}{12.3}$	
	鋼板 PL-12 Ss900 +NS+EW+UD σ_y 239. 5 f_t 258. 0 0. 91 0. K. τ_{xy} 19. 5	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較 変 更 前			<u> </u>	/再延迟及/	又い胴展性に関す	○説明音/	変更理由
		表 5. 4. 2-2(3) 断面検討		,ガレキ撤	<u>去時)</u>		
	部位	部材形状 (mm)	地震条	<u>条件</u>	最大塑性率 (破断寿命評価)	<u>判定</u>	
	接続部ブレース	<u>十字PL(PL-28×210</u> +2PL-28×91)	<u>Ss900</u> +N	NS+EW+UD	19. 40 (0. 37)	<u>O. K.</u>	
	下部ブレース	<u>φ -267. 4×6. 6</u>	<u>Ss900</u> +N	NS+EW+UD	15.84 (0.69)	<u>O. K.</u>	
		表 5.4.2-2(4) 断面検討約	吉果(一般部,	燃料取り出	はし時)		
	<u>部位</u>	部材形状 (mm)	地震条	<u>条件</u>	<u>最大塑性率</u> (破断寿命評価)	<u>判定</u>	
	接続部ブレース	<u>十字PL(PL-28×210</u> +2PL-28×91)	<u>Ss900</u> +N	NS+EW+UD	10. 64 (0. 04)	<u>O. K.</u>	
	下部ブレース	$\phi -318.5 \times 6.9$	<u>Ss900</u> +N	-NS+EW+UD	16. 57 (0. 86)	<u>O. K.</u>	
	なお、大型カバー	と燃料取扱設備支持部との地	也震時の干渉に	こついて, 一	般部と燃料取扱設備	支持部の	
	クリアランス 30cm しないことを確認し	こ対して最大相対変位が 18.9 <u>ている。</u>	9cm (燃料取り	出し時 で	あることから, 地震	時に衝突	

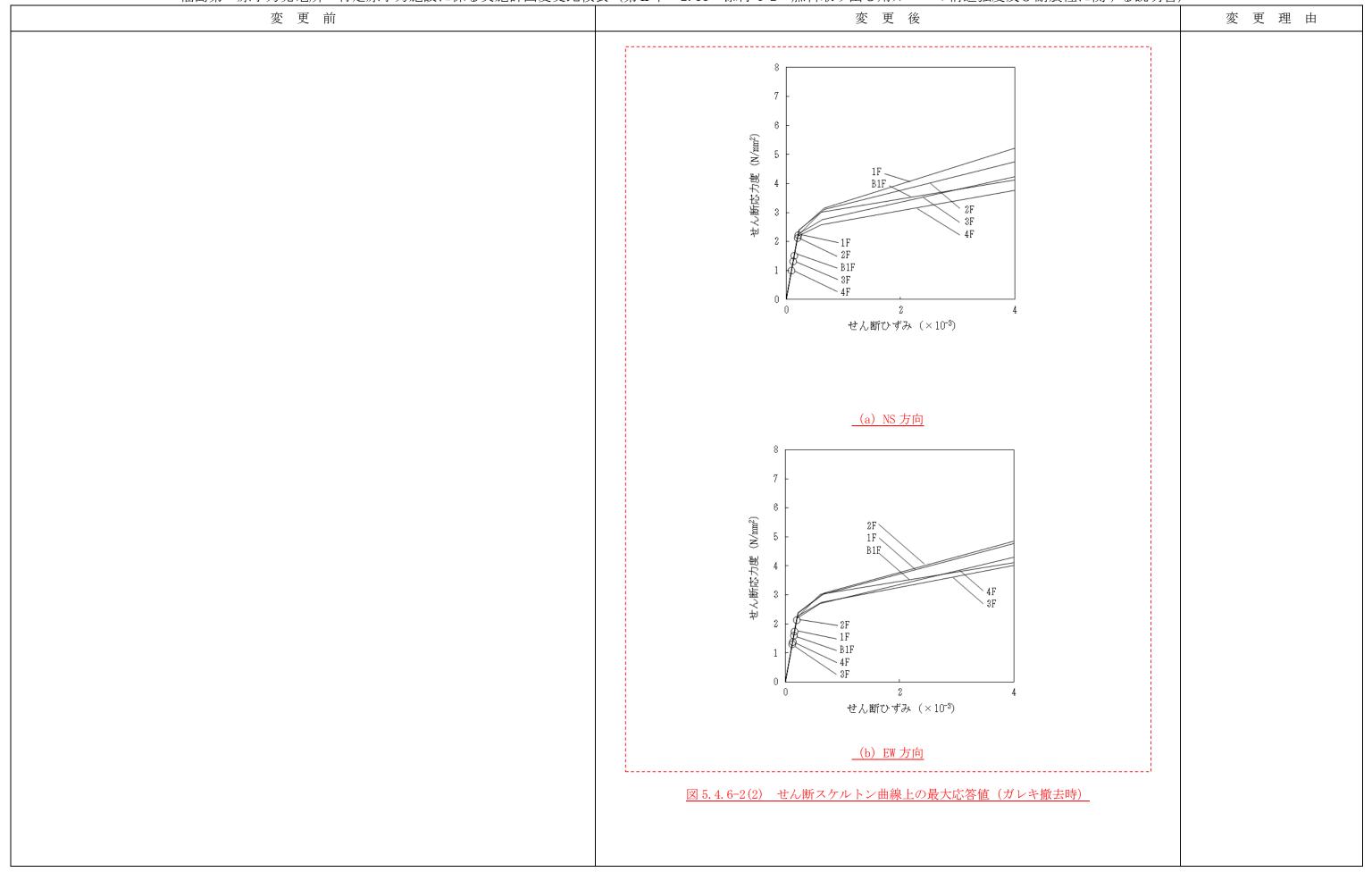
114

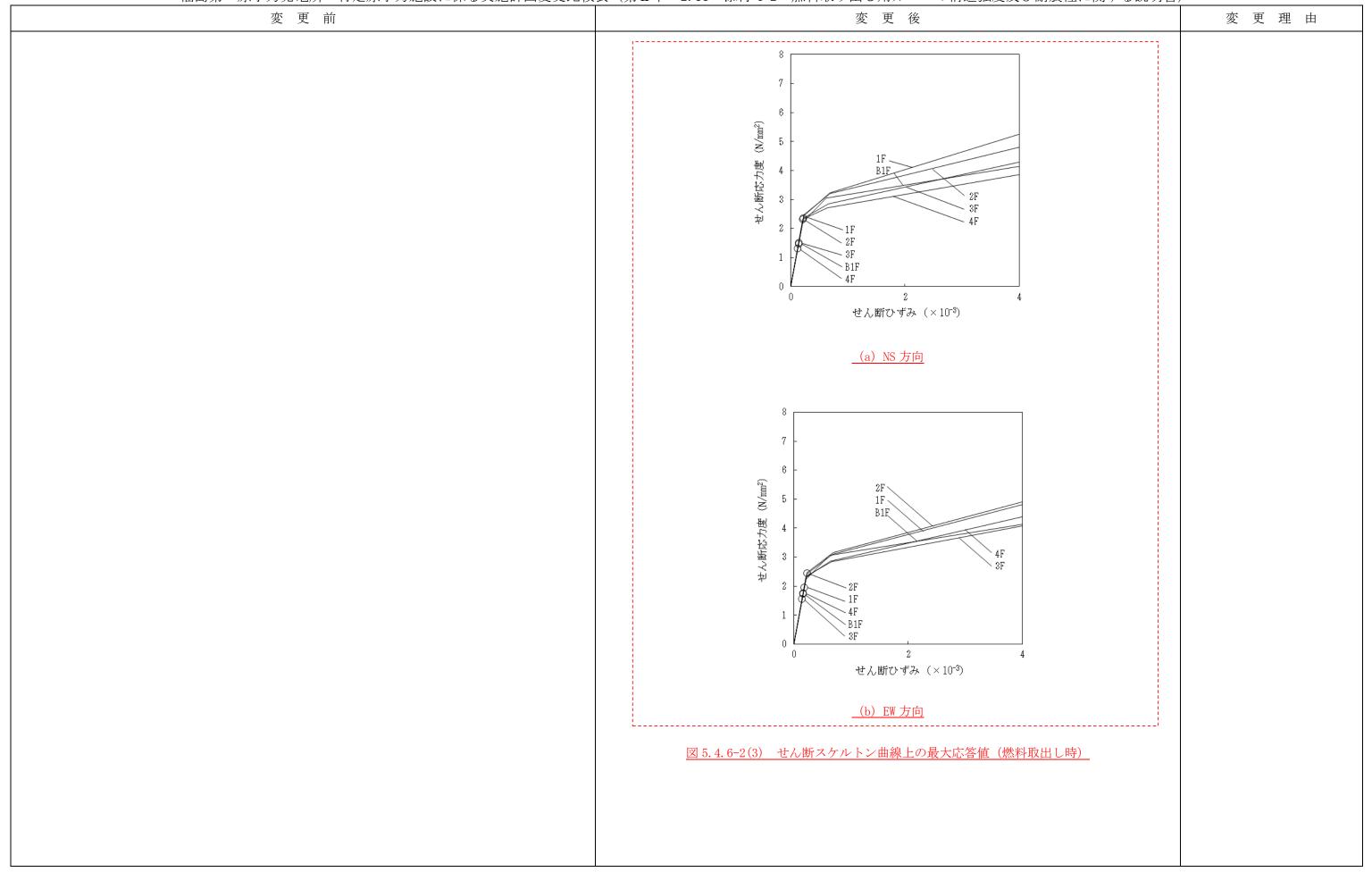
福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比較 変 更 前				<u> </u>	/分骨延强及		反圧には	日子の形	<u> </u>	変更理由
	2) 燃料取									
		 バー燃料取扱設備支持部の	断面検討結	果を表 5.4.2	-3 に示す。					
	ガレキ捕	放去時,燃料取り出し時共	に,応力度	比 1.0 を超え	ないことを	を認した	<u>-</u>			
		±	ニト◇⇒ト√+ ⊞		二十十二 十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	*1 . と 松-	++ n+:\			
		表 5. 4. 2-3(1) 断面			#又持部,ル 作用	1	左时) 許容	ا مك		
	<u>部位</u>	部材形状 (mm) 〈使用材料〉	<u>地震波</u> (位置)	<u>入力</u> <u>方向</u>	<u>応力度</u> (N/mm²)	<u> </u>	<u>5力度</u> N/mm²)	<u>応力</u> <u>度比</u>	判定	
	<u>柱</u>	$\underline{\text{H400}\times 400\times 13\times 21}$	<u>Ss900</u>	+NS+EW+UD	<u>σ</u> _c <u>51.</u>	$\underline{\underline{f}}$ $\underline{\underline{f}}_{\underline{c}}$	<u>326. 1</u>	<u>0. 16</u>	<u>O. K.</u>	
	<u>梁</u>	$\underline{\text{H}350\times350\times12\times19}$	<u>Ss900</u>	<u>+NS+EW+UD</u>	<u>σ</u> _c 102.	$\underline{2}$ $\underline{\mathbf{f}_{\mathbf{c}}}$	<u>344. 0</u>	<u>0.30</u>	<u>O. K.</u>	
	<u>接続部</u> ブレース	<u> </u>	<u>Ss900</u>	+NS+EW+UD	σ_{t} 240.	$\frac{3}{\underline{\mathbf{f}}_{\underline{\mathbf{t}}}}$	<u>357. 5</u>	<u>0. 68</u>	<u>O. K.</u>	
	<u>下部</u> ブレース	<u>φ -355. 6×7. 9</u>	<u>Ss900</u>	+NS+EW+UD	<u>σ</u> _c 202.	$\underline{4}$ \underline{f}_{c}	349.6	<u>0. 58</u>	<u>O. K.</u>	
		表 5. 4. 2-3(2) 断面	検討結果(燃料取扱設備	支持部,燃	斗取り出	<u> はし時)</u>			
	<u>部位</u>	<u>部材形状 (mm)</u> <使用材料>	<u>地震波</u> <u>(位置)</u>	<u>入力</u> <u>方向</u>	<u>作用</u> <u>応力度</u> (N/mm²)	<u>点</u> (1	<u>許容</u> 公力度 N/mm²)	<u>応力</u> <u>度比</u>	<u>判定</u>	
	<u>柱</u>	<u>H-400×400×13×21</u>	<u>Ss900</u>	+NS+EW+UD	<u>σ</u> _c 89.	1 1	<u>326. 1</u>	0.28	<u>O. K.</u>	
	<u>梁</u>	$\underline{\text{H350} \times 350 \times 12 \times 19}$	<u>Ss900</u>	+NS+EW+UD	<u>σ</u> _t <u>135.</u>	$\frac{5}{1}$	<u>357. 5</u>	0.38	<u>O. K.</u>	
	<u>接続部</u> ブレース	<u>+字PL (PL-28×10</u> +2PL-28×91)	<u>Ss900</u>	<u>+NS+EW+UD</u>	<u>σ</u> _t 246.	$\frac{2}{\underline{\mathbf{f}}_{\underline{\mathbf{t}}}}$	<u>357. 5</u>	0.69	<u>O. K.</u>	
	<u>下部</u> ブレース	<u>φ</u> -406. 4×9. 5	<u>Ss900</u>	+NS+EW+UD	<u>σ</u> _c <u>279.</u>	8 <u>f</u> c	<u>351. 3</u>	0.80	<u>O. K.</u>	
					l l	l l		l		

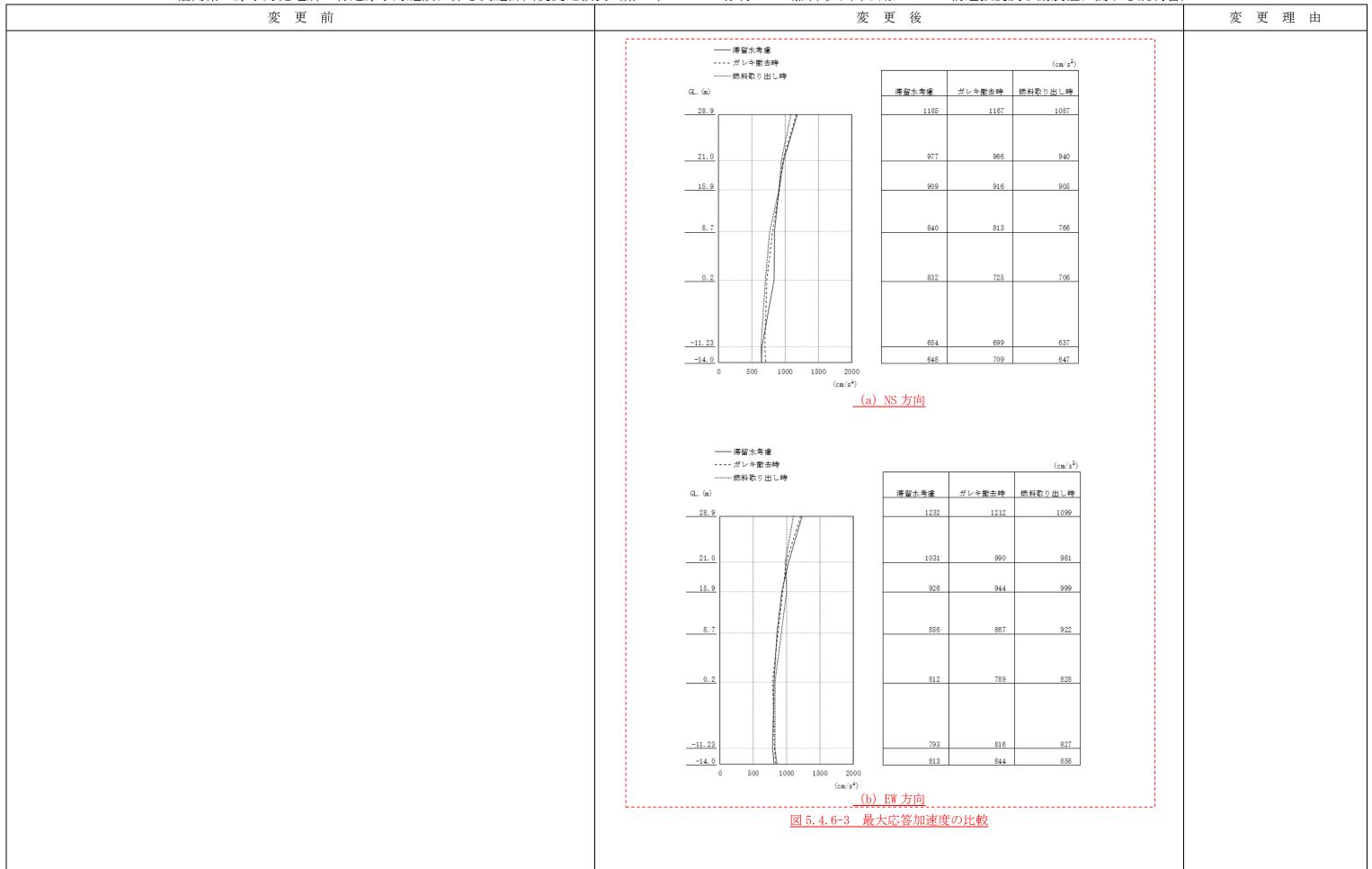
115

福島第一原子刀発電所 特定原子刀施設に係る実施計画変更比較 変 更 前	XX (3) H = 2.1			更後	三四文次 〇 响展工作		更 理	曲
	5.4.3 屋根の耐煙	 雲性に対する検討		* *			 	
		と部の断面検討結果を表	ŧ 5. 4. 3−1 <i>l</i> 3	示す。弦材,フ	・ レースは最大塑性率	5を超えないこ		
	とを確認した。斜	材は最大塑性率が5を	:超えること	から、破断寿命	う評価を実施し、部材	が破断しないこ		
	とを確認した。							
		表 5. 4. 3-1()	1) 断面検	討結果(ガレキ	-			
	<u> </u>	部材形状 (mm)	<u>地</u>)	<u> </u>	最大塑性率 (破断寿命評価)	<u>判定</u>		
	<u>弦材</u>	<u>P-190. 7 $\phi \times 5.3t$</u>	<u>Ss900</u>	+NS+EW+UD	<u>0.80</u>	<u>O. K.</u>		
	<u>斜材</u>	<u>P-89. 1 φ × 3. 2t</u>	<u>Ss900</u>	<u>+NS+EW+UD</u>	15. 72 (0. 26)	<u>O. K.</u>		
	ブレース	<u>1-M30</u>	<u>Ss900</u>	+NS+EW+UD	4. 12	<u>O. K.</u>		
		# F 4 0 1 (0)) bkc 77.4A=		o III	_		
		<u>表 5. 4. 3-1(2)</u>) 断面恢訂					
	<u>部位</u> ————————————————————————————————————	部材形状 (mm)	<u>地</u>	<u> </u>	最大塑性率 (破断寿命評価)	<u>判定</u> —————		
	<u>弦材</u>	<u>P-261. 3 $\phi \times 7.0t$</u>	<u>Ss900</u>	+NS+EW+UD	<u>0. 94</u>	<u>O. K.</u>		
	<u>斜材</u> ————————————————————————————————————	<u>P-89. 1 φ ×3. 2t</u>	<u>Ss900</u>	<u>+NS+EW+UD</u>	<u>20. 90</u> (0. 39)	<u>O. K.</u>		
	ブレース	<u>1-M27</u>	<u>Ss900</u>	+NS+EW+UD	<u>4. 69</u>	<u>O. K.</u>		

変更前	変更後
	5.4.4 建屋取り合い部の耐震性に対する検討
	大型カバーのアンカーボルトの終局強度に対する検定比を表 5.4.4-1 に示す。ガレキ撤去時及び燃料
	取り出し時ともに、検定比1.0を超えないこと確認した。
	表 5. 4. 4-1(1) アンカーボルトの検討結果(一般部,ガレキ撤去時)
	<u>最大反力</u> 終局強度 副立
	<u>地震条件</u> <u>引張力</u> <u>せん断力</u> <u>引張</u> <u>世ん断</u> <u>耐力比</u> <u>判定</u> <u> 11度</u> <u> 11度</u>
	<u>アンカー</u> ボルト Ss900 +NS+EW+UD 1860 2329 3744 3088 0.83 0.K.
	<u>(16)</u>
	表 5.4.4-1(2) アンカーボルトの検討結果(一般部,燃料取り出し時)
	<u>最大反力</u> 終局強度
	地震条件 引張力 せん断力 引張 せん断力 付水 付水 付水 一十 一十 </td
	アンカー ボルト Ss900 +NS+EW+UD 1802 2350 3744 3088 0.84 0. K.
	表 5.4.4-1(3) アンカーボルトの検討結果(燃料取扱設備支持部,ガレキ撤去時)
	<u>最大反力</u> 終局強度 部位
	地震条件 引張力 せん断力 引張 せん断力 耐力比 判定 (kN) (kN) (kN) (kN) (kN)
	アンカー ボルト Ss900 +NS+EW+UD 906 1606 3816 2316 0.70 0. K. (12)
	表 5. 4. 4-1(4) アンカーボルトの検討結果 (燃料取扱設備支持部, 燃料取り出し時)
	<u>最大反力</u> 終局強度
	部位 アンカー本数) 地震条件 引張力 (kN) せん断力 (kN) 引張 (kN) せん断 (kN) 耐力比 判定
	<u>アンカー</u>
	<u>ボルト Ss900 +NS+EW+UD 3577 2964 5832 4632 0.8 0.K.</u>


福島第一原子力発電所 特定原子力施設に係る実施計画変更比較	耿衣(男Ⅱ早 2. □	11			強度及び耐震性	に関する)		
変更前			変り	更 後				変更理由	
	5.4.5 天井クレ	ーンの耐震性に対する	6検討						
	地震応答解析。	より得られた東西レー	ル間の最大相	対水平変位は,	ガレキ撤去時 39mm	,燃料取	り出し時		
	41mm で, クレー	ン端部の水平かかり代	:2300mm に比	ベ小さく,ガレ	キ撤去用天井クレー	ーンが落っ	下する危		
	険性はないこと	を確認した。							
	地震応答解析。	より得られたガレキ撤	去用天井クレ	ーンガーダの水	平方向 (NS 方向) :	および鉛値	直方向の		
	最大応答曲げモ	ーメントを表 5.4.5-1	に示す。						
	ガレキ撤去時,	燃料取り出し時とも	に,クレーン	ガーダの全塑性	曲げモーメント M	oを超える	る不安定		
	<u>状態には至らないことを確認した。</u>								
	表 5. 4.	5-1(1) ガレキ撤去用	天井クレー			放去時)			
		サロナナエンハア	共壬	最大応答曲げ		 			
	<u>部位</u>	<u>部材形状</u> _(mm)_	<u>荷重</u> ケース	<u>モーメント</u> <u>(鉛直)</u>	<u>モーメント</u> <u>(鉛直)</u>	<u>応力</u> <u>度比</u>	<u>判定</u>		
		<u> </u>		$\frac{(\times 10^6 \text{Nm})}{(\times 10^6 \text{Nm})}$	(×10 ⁶ Nm)	~~~			
	① <u>クレーン</u> ガーダ	<u>□-1500×2700</u> <sm490></sm490>	<u>Ss900</u>	<u>M</u> <u>149. 2</u>	Mp 168.0	0.89	<u>O. K.</u>		
	<u> </u>	<u> </u>					<u> </u>		
	表 5. 4.	5-1(2) ガレキ撤去用	天井クレー		1	<u> はし時)</u>			
		部材形状	<u>荷重</u>	<u>最大応答曲げ</u> <u>モーメント</u>	<u>全塑性</u> モーメント	成力			
	<u>部位</u>	(mm)	<u> </u>	(鉛直)	(鉛直)	<u>応力</u> <u>度比</u>	<u>判定</u>		
	① <u>クレーン</u> ガーダ	<u>□-1500×2700</u> <sm490></sm490>	<u>Ss900</u>	(×10 ⁶ Nm) <u>M</u> 107.9	$(\times 10^6 \text{Nm})$ $\underline{\text{Mp}}$ $\underline{168.0}$	<u>0. 65</u>	<u>O. K.</u>		
	<u> </u>	10.11007							


福島第一原子力発電所・特定原子力施設に係る実施計画変更比較	【衣 (弗 Ⅱ 早				<u> </u>)	
変更前			変更後				変更理由
	地震応答解析より得	られたクレーンガーダ	の最大鉛直変位は,ガ	レキ撤去時 174mm,	燃料取り	出し時	
	119mm となり、トロリの	の脱落防止材の鉛直かた	かり代 259mm に比べ小さ	さいことを確認した	<u>-</u>		
	ガレキ撤去用天井ク	レーンの最大応答水平	加速度にトロリ重量(8	56ton)を乗じ求めた	を水平力し	<u>こ対し,</u>	
	トロリの脱落防止材に	生じるせん断応力度を	求めた結果を表 5.4.5 -	<u>2に示す。</u>			
	ガレキ撤去時,燃料]	取り出し時ともに,トロ	コリの脱落防止材に発生	上する応力は弾性 限	界強度を	と超えな	
	いことを確認した。						
		5.4.5-2(1) 脱落防止		ブレキ撤去時)			
	<u>天井クレーン</u>	トロリー脱落防止材	トロリー脱落防止材	弾性限界応力度	松台山。	Mail 🖶	
	最大水平応答加速度 (m/s²)	<u>水平力</u> (kN)	<u>せん断応力度</u> (N/mm²)	<u>(N/mm²)</u>	検定比	判定	
	45.7	2559	94.8	<u>149</u>	0.64	O. K.	
			<u> </u>	<u> </u>			
	表!	5.4.5-2(2) 脱落防止	材の断面検討結果(燃	料取り出し時)			
	天井クレーン	トロリー脱落防止材	トロリー脱落防止材				
	最大水平応答加速度	<u>水平力</u>	せん断応力度	<u>弹性限界応力度</u>	検定比	<u>判定</u>	
	<u>(m/s²)</u>	(kN)	(N/mm ²)	<u>(N/mm²)</u>			
	<u>42. 0</u>	<u>2352</u>	<u>87. 1</u>	<u>149</u>	0.58	<u>O. K.</u>	


変 更 前 変更後 変 更 理 由 5.4.6 原子炉建屋の耐震性に対する検討 (1) 検討方針 大型カバー設置に伴う原子炉建屋の耐震性の評価は、耐震安全上重要な設備への波及的影響防止の観 点から、地震応答解析により得られる耐震壁のせん断ひずみが鉄筋コンクリート造耐震壁の終局限界に 対応した評価基準値(4.0×10⁻³)以下になることを確認する。最大接地圧が地盤の許容限界を超えない ことを確認する。 また、大型カバーを設置する前後でのオペフロでの最大応答加速度を比較する。 (2) 原子炉建屋の地震応答解析 1) 解析に用いる入力地震動 検討に用いる地震動は、「5.4.1 検討方針」で示した Ss900 とする。 地震応答解析に用いる入力地震動の概念図は図 5.3.1-1 と同様である。 2) 地震応答解析モデル 地震応答解析に用いるモデルは、図5.4.6-1に示すように建屋を質点系とし地盤を等価なばねで評価 した建屋一地盤連成系モデルとする。 地震応答解析モデルの諸元は、「5.3.5 原子炉建屋の耐震性に対する検討」と同一である。 大型カバー設置前の原子炉建屋の建屋の諸元は「1/2Ss450gal 検討」に示す。また,地盤定数は,「5.3.1 検討方針」で示した地盤定数と同一である。 +28,900 +21,000 +15,900 +8,700 +200 -11,200 図 5.4.6-1 原子炉建屋の地震応答解析モデル

変 更 前 変 更 後 変 更 理 由 (3) 検討結果 大型カバー設置後の Ss900 に対する最大応答値を,「JEAG4601-1991」に基づき設定した耐震壁のせん 断スケルトン曲線上にプロットした結果を図5.4.6-2に示す。 検討の結果,地震応答解析により得られる最大応答値は,評価基準値(4.0×10⁻³)以下となり,クラ イテリアを満足することを確認した。 Ss900 に対する最大接地圧を,表 5.4.6-1 に示す。最大接地圧は,地盤の極限支持力度 (9800kN/m²) を超えないことを確認した。 また、カバー設置前とカバー設置後のガレキ撤去時及び燃料取り出し時の最大応答加速度の比較を図 5.4.6-3に示す。各階の最大応答加速度は大きな違いが見られず、大型カバーを設置した影響は小さい。 表 5.4.6-1(1) Ss900 に対する最大接地圧 (ガレキ撤去時) NS 方向*1 EW 方向*1 地震波 <u>Ss900-1</u> Ss900-1 鉛直力N 10.4 10.4 $(\times 10^5 \text{kN})$ 転倒モーメントM <u>13. 2</u> 13.4 $(\times 10^6 \text{kN} \cdot \text{m})$ 最大接地圧 3000 3480 (kN/m^2) *1:誘発上下動考慮の結果を示す。 表 5.4.6-1(2) Ss900 に対する最大接地圧 (燃料取り出し時) NS 方向*1 EW 方向*1 地震波 Ss900-1 Ss900-1 鉛直力N 11.0 11.0 $(\times 10^5 \text{kN})$ 転倒モーメントM 13. 2 14.8 $(\times 10^6 \text{kN} \cdot \text{m})$ 最大接地圧 2950 3680 (kN/m^2) *1:誘発上下動考慮の結果を示す。

変更前	変更後	変更理由
	·	
	8	
	7	
	6 -	
	(N/mm ²)	
	17 /	
	2F	
	型 4 - 2F 注	
	2 1F	
	1 B1F	
	$0 \stackrel{\text{or}}{\longleftarrow} 4F$	
	0 2 4 せん断ひずみ(×10 ⁻³)	
	(d) 100 (J) [A]	
	8	
	7 -	
	6 -	
	2F 1F 1F R1F	
	B1F	
	振 3	
	2 2F 1F	
	1 B1F 3F	
	$0 \bigvee_{0} 4F$	
	せん断ひずみ (×10 ⁻³)	
	(b) DW 七点	
	<u>(b) EW 方向</u> 図 5. 4. 6−2(1) せん断スケルトン曲線上の最大応答値(大型カバー設置前)	

変更前	画変更比較表(第Ⅱ章 2.11 添付 4-2 燃料取り出し用カバーの構造強度及び耐震性に関する説明書) 変 更 後	変更理由
	<u>6. 別添</u>	
	別添-1 福島第一原子力発電所 3号機大型カバーの構造強度及び耐震性について(東京電力株式会	
	社, 平成25年2月21日, 特定原子力施設監視・評価検討会(第4回)資料4)	
	別添-2 福島第一原子力発電所 3号機大型カバーの構造強度及び耐震性について (コメント回答)	
	(東京電力株式会社,平成25年3月8日,特定原子力施設監視・評価検討会(第6回)資料	
	5)	
	別添一3 4号機燃料取り出し用カバーに係る確認事項	
	別添一4 3 号機燃料取り出し用カバーに係る確認事項	
	別添-5 3号機原子炉建屋の躯体状況調査結果を反映した使用済燃料プール等の耐震安全性評価結	
	果	
	- 別添-6 3号機原子炉建屋 遮へい体設置における滑動対策について	
	別添一7 2号機燃料取り出し用構台に係る確認事項	
	別添-8 2号機原子炉建屋 オペレーティングフロア床面に設置する遮蔽体の落下防止について	
	別添-9 1号機大型カバーに係る確認事項	
	別添-10 水平2方向及び鉛直方向地震力の同時入力時に用いる模擬地震波について	
	別添一11 1号機大型カバーの構造強度及び耐震性に関する補足説明	
	別添-12 1号機原子炉建屋外壁の3次元 FEM 解析による耐震安全性評価	
L		

126

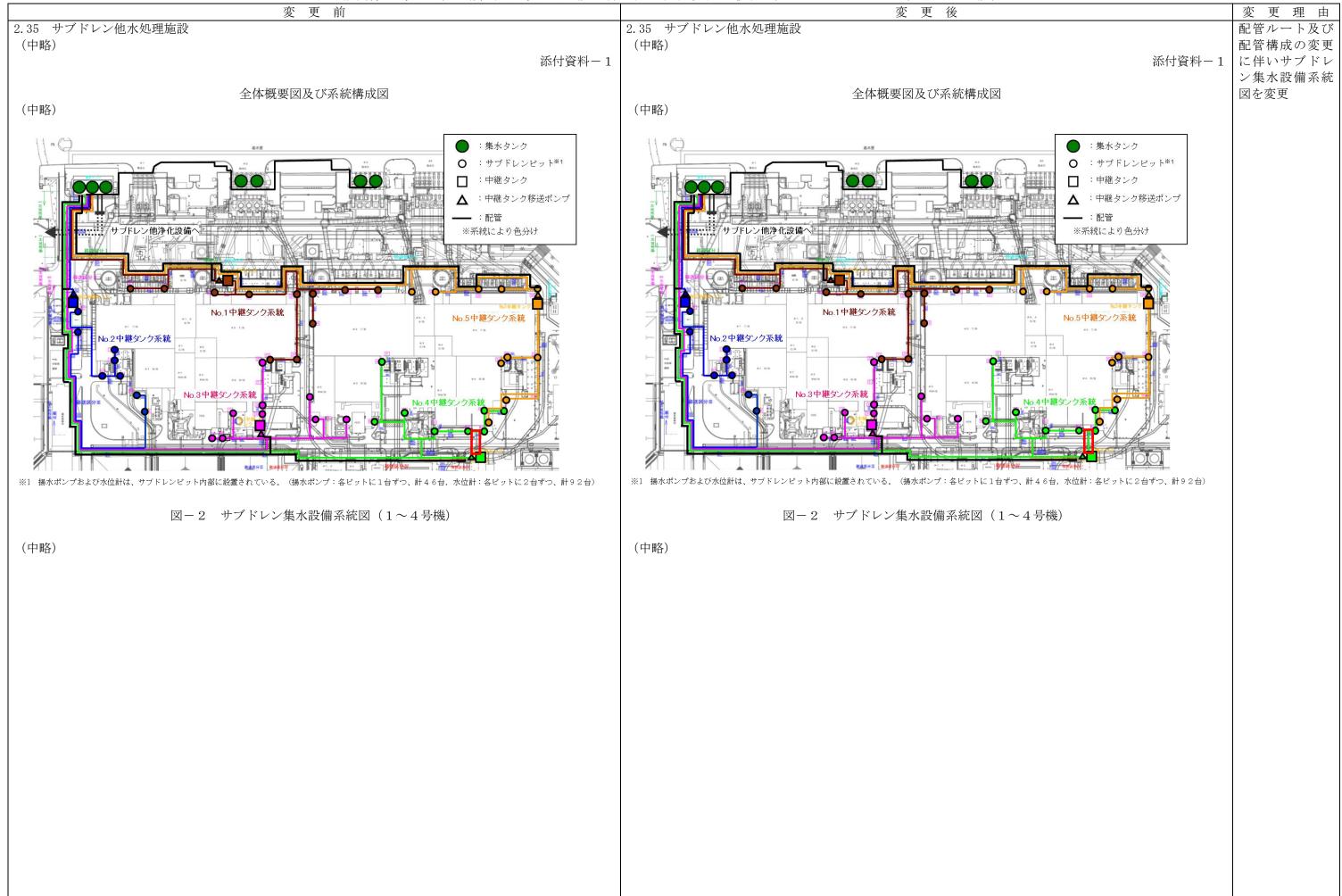
福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章 2.11 添付 4-2 別添─9 1号機大型カバーに係る確認事項)

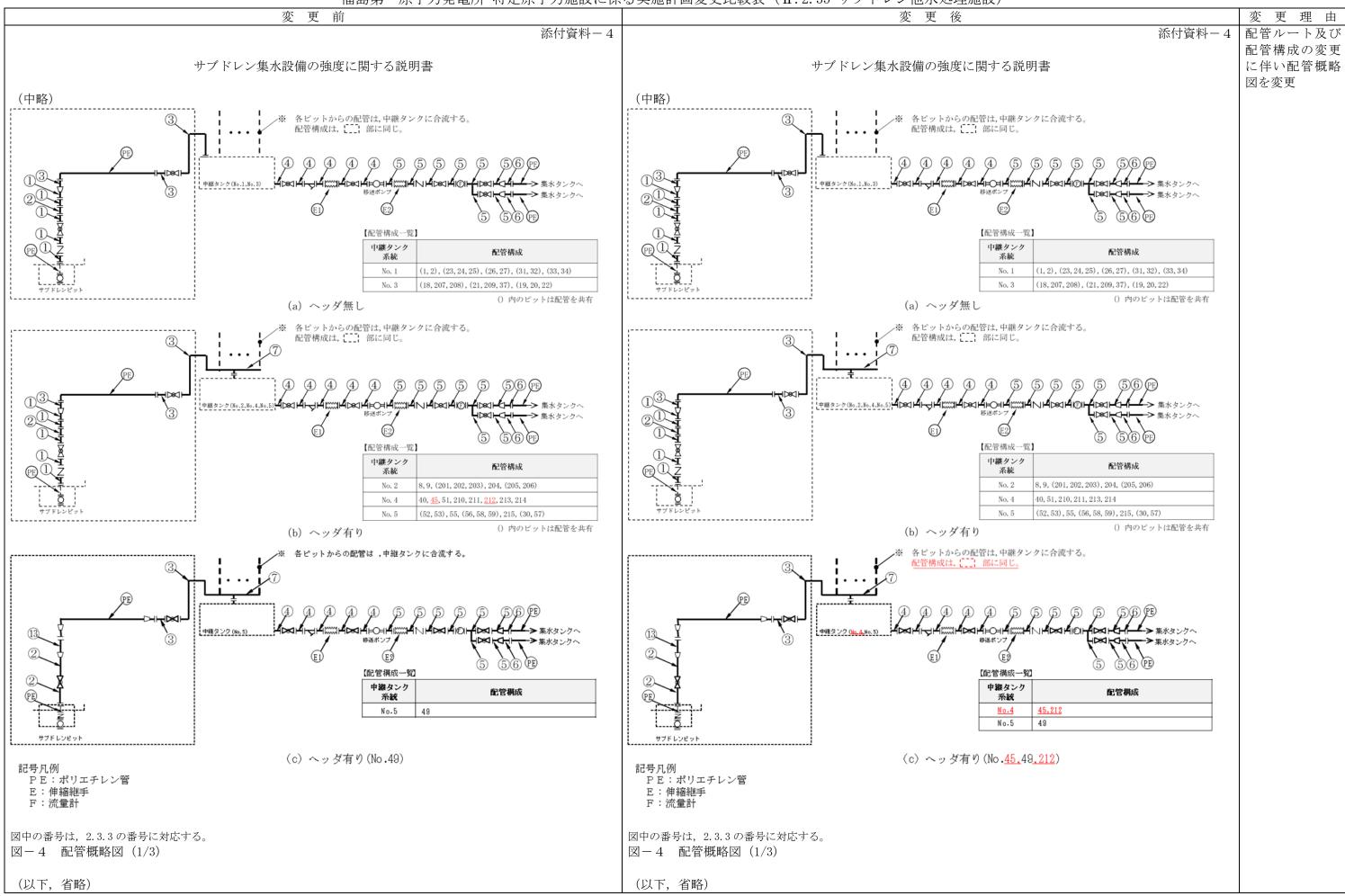
変更前	変 更 後	変更理由
(現行記載なし)	別添一9 1号機大型カバーに係る確認事項	
	(新規作成)	大型カバーの設置に伴い新規
	(以下,省略)	記載

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章 2.11 添付4-2 別添一10 水平2方向及び鉛直方向地震力の同時入力時に用いる模擬地震波について)

変更前	2.11 旅刊 4-2 別称―10 水平 2 万円及い新旦万円地展力の同時八万時に用いる模擬地原変 更 後	変更理由
(現行記載なし)	別添一10 水平2方向及び鉛直方向地震力の同時入力時に用いる模擬地震波について	
	(新規作成)	大型カバーの設置に伴い新規 記載
	(以下,省略)	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章 2.11 添付 4-2 別添─11 1 号機燃料取り出し用カバーの構造強度及び耐震性に関する補足説明)


変更前	夫旭計画変更比較表(第Ⅱ章 2.11 係的 4-2 別称─11 1 万機燃料取り出し用ガハーの構造 変 更 後	変更理由
(現行記載なし)	別添一11 1号機燃料取り出し用カバーの構造強度及び耐震性に関する補足	<u> </u>
		大型カバーの設置に伴い新規
	(新規作成)	記載
	(以下,省略)	


福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章 2.11 添付4-2 別添一12 1号機原子炉建屋外壁の3次元 FEM 解析による耐震安全性評価)

変更前	加早 2.11 称刊 4-2 別称─12 1 号機原子炉建屋外壁の3次ルFEM 解例による胴展女主 変 更 後	変更理由
(現行記載なし)	<u>別添一12 1 号機原子炉建屋外壁の3次元 FEM 解析による耐震安全性評価</u>	
	(新規作成)	大型カバーの設置に伴い新規
	(利以近下以入)	記載
	(以下,省略)	

変更前	変更後	変更理由
添付資料-6	添付資料-6	
福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書	福島第一原子力発電所第1号機原子炉建屋カバーに関する説明書	
1. 適用範囲 本書は、第1号機原子炉建屋カバー <u>排気設備停止前まで</u> の機能について記載するものである。 なお、原子炉建屋カバー <u>排気設備停止以降については、添付資料-7「福島第一原子力発電所第1号</u> 機原子炉建屋カバー解体について」を参照。	1. 適用範囲 本書は、第1号機原子炉建屋カバー <u>設置中</u> の機能について記載するものである。 なお、原子炉建屋カバーは <u>1号機大型カバーの設置に伴い解体した。</u>	1 号機原子炉建屋カバー解体 に伴う記載変更
(以下,省略)	(以下,省略)	

		変更前					変更後		変更理由
2.16 放射性液体	· 廃棄物処理施			2. 10	6 放射性液位	上 上廃棄物処理協	型設及び関連施設 で設及び関連施設		<u> </u>
2.16.1 多核種		THE COLOR DUNCTION			6.1 多核種		- PAVENERA		
(L m 6)					L m fr				
(中略)				(中略)				
			添付資料-9	9				添付資料-9	
		多核種除去設備に係る確認事					多核種除去設備に係る確認		
(-L m/z)				/ -	L m/r \				
(中略)				(4	中略)				
		表-1 確認事項					表-1 確認事項		
		沈タンク、供給タンク、バッチを			(デカン	/トタンク, 井	は沈タンク、供給タンク、バッチ	処理タンク,循環タンク <u>,</u>	記載の適正化
		入口バッファタンク,吸着塔1~	~14, 処理カラム,				・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・	~14, 処理カラム,	
高性能 確認事項	経容器(タイフ 確認項目	(2)) 確認内容	判定基準		<u>高性節</u> 確認事項	<u>総容器(タイプ</u> 確認項目	<u>プ1),</u> 高性能容器(タイプ2)) 確認内容	判定基準	高性能容器(タイプ1)を追加
惟祕爭填	惟恥垻目	実施計画に記載した主な材料			惟恥事垻	性 配切日	実施計画に記載した主な材料		
	材料確認	について、材料証明書等により	実施計画の記載とおりであるこ			材料確認	について、材料証明書等により	実施計画の記載とおりであるこ	
		確認する。	۷.				確認する。	٤.	
		実施計画に記載した主要寸法					実施計画に記載した主要寸法		
	寸法確認	について,記録または材料証明	実施計画の記載とおりであるこ			寸法確認	について,記録または材料証明	実施計画の記載とおりであるこ	
		書により確認する。	<u></u>				書により確認する。	と。	
		夕如の月知に こいで刊句に ト					タポの外知に のいて到母校に		外観確認に関する記載を追記
	外観確認	各部の外観について記録によ り確認する。	有意な欠陥がないこと。			外観確認	各部の外観について記録 <u>等</u> により確認する。	有意な欠陥がないこと。	
		7 4年407 年 の。					よ ソ 作用的 ケ の。		
		機器が系統構成図とおり据付					│ │機器が系統構成図とおり据付		
構造強度	据付確認	ていることを記録等により確	実施計画のとおり施工・据付て		構造強度	据付確認	ていることを記録等により確	実施計画のとおり施工・据付て	
・耐震性		認する。	いること。		・耐震性		認する。	いること。	
1101/12/12		①確認圧力で一定時間保持し			101/22/12		①確認圧力で一定時間保持し		
		た後、確認圧力に耐えている	 確認圧力に耐え, かつ構造物の				た後、確認圧力に耐えている	確認圧力に耐え、かつ構造物の	
		こと、また耐圧部からの漏え					こと、また耐圧部からの漏え	変形等がないこと。また、耐圧部	
		いがないことを記録等により	から著しい漏えいがないこと。				いがないことを記録等により	から著しい漏えいがないこと。	
	 耐圧・	確認する。				耐圧・	確認する。		
	漏えい確	②運転圧力で耐圧部からの漏	耐圧部から著しい漏えいがない			漏えい確	②運転圧力で耐圧部からの漏	耐圧部から著しい漏えいがない	
	認		こと。			認		こと。	
							③浸透探傷検査記録または外		
		観検査記録による代替検査を	耐圧部に有意な欠陥等がないこ				観検査記録による代替検査を	耐圧部に有意な欠陥等がないこ	
		実施し,耐圧部に異常の無いこ	と。				実施し,耐圧部に異常の無いこ	と。	
), h				¥ 000), b 1 1 1 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	1		
<u> </u>	ツルよ, V ドタ オしか	1C 9 00			注:①② ⑤	シルス, いっぱんか	¹ ⊂ 9 ⊙ ₀		
(以下,省略)				(以	下,省略)				
		えいのないことを記録等により確認する。 ③浸透探傷検査記録または外観検査記録による代替検査を実施し,耐圧部に異常の無いことを確認する。	こと。 耐圧部に有意な欠陥等がないこ	(以		漏えい確	えいのないことを記録等により確認する。 ③浸透探傷検査記録または外 観検査記録による代替検査を 実施し,耐圧部に異常の無いことを確認する。	こと。 耐圧部に有意な欠陥等がないこ	

福島第一原子力発電所 特定原子力施設に係る実施計画変更比較表(第Ⅱ章 2.46 減容処理設備)

		変更前			変更後							
2.46 減容処	1理設備			2.46 减容処理設備								
(中略)				(中略)								
			添付資料	}−8				添付資料-8				
		減容処理設備に係る確	認事項			減容処理設備に係る確	超事項					
(中略)				(中略)								
₹-5 減容ダ	処理建屋の工	事に係る確認事項		表一5 減容处	処理建屋の工	事に係る確認事項						
確認事項	確認項目	確認内容	判定基準	確認事項	確認項目	確認内容	判定基準					
遮へい機能	材料確認	コンクリートの乾燥単位容積 質量を確認する。	2.15g/cm³ 以上であること。		材料確認	コンクリートの乾燥単位容積 質量を確認する。	2.15g/cm³ 以上であること。					
煺╯╲Ⅴ馈线屉	寸法確認	遮へい部材の断面寸法を確認 する。	遮へい部材の断面寸法が,実 施計画に記載されている寸法 以上であること。	遮へい機能 -	47 个十年前心	鉄の材質、強度、化学成分を 確認する。	JIS G 3101 に適合すること。	_	記載の適正化			
	材料確認	コンクリートの圧縮強度を確 認する。	コンクリートの強度が、実施 計画に記載されている設計基 準強度に対して、JASS 5N の		寸法確認	遮へい部材の断面寸法を確認 する。	遮へい部材の断面寸法が,実 施計画に記載されている寸法 以上であること。					
構造強度	471 个字单生部公	装筋の材質、強度、化学成分を確認する。基準を満足すること。JIS G 3112 に適合すること。		材料確認	コンクリートの圧縮強度を確 認する。	コンクリートの強度が、実施計画に記載されている設計基準強度に対して、JASS 5Nの						
	寸法確認	コンクリート部材の断面寸法 を確認する。	が, JASS 5N の基準を満足す	が, JASS 5N の基準を満足す			構造強度		鉄筋の材質,強度,化学成分 を確認する。	基準を満足すること。 JIS G 3112 に適合すること。		
	据付確認	鉄筋の径、間隔を確認する。	鉄筋の径,間隔が JASS 5N の 基準を満足すること。	(特足)以及				寸法確認	コンクリート部材の断面寸法を確認する。	コンクリート部材の断面寸法 が、JASS 5N の基準を満足す ること。		
					据付確認	鉄筋の径、間隔を確認する。	鉄筋の径, 間隔が JASS 5N の 基準を満足すること。)				
(以下,省略	\$)			(以下,省略)							