平成 29 年度
 原子力施設等防災対策等委託費
 （海洋環境における放射能調査及び総合評価）事業

調査報告書

平成 30 年 3 月

公益財団法人海洋生物環境研究所

ま え が き

原子力施設等防災対策等委託費（海洋環境における放射能調査及び総合評価）事業は，我が国の原子力施設沖合に位置する主要漁場等を調査海域として海産生物，海底土及び海水の放射能調査を実施し，調査海域における海洋中の放射能の移行挙動を定性•定量的に把握•評価を行い，漁場の安全の確認等に資することを目的に，国において昭和 58 年度 に開始され，今日に至っている。その間，平成2年度には核燃料サイクル施設沖合海域が調査海域に追加され，平成 22 年度からは東京電力ホールディングス株式会社福島第一原子力発電所（以下「東電福島第一原発」という。）事故に伴う同発電所周辺海域のモニタリン グが開始された。

本事業は，当初（旧科学技術庁）から平成 24 年度までは文部科学省が担ってきたが，平成 25 年度からは原子力規制庁において実施されている。平成 29 年度は，公益財団法人海洋生物環境研究所が原子力規制庁から「海洋環境における放射能調査及び総合評価」を受託し，次の調査等を実施した。

I 海洋放射能調査
II 東京電力ホールディングス株式会社福島第一原子力発電所周辺の海域モニタリング
III 調査結果の評価
IV 調査結果等の報告•説明
V 本事業で得られた関連試料の保管•管理

海洋放射能調査では，原子力発電所等周辺海域及び核燃料サイクル施設沖合海域の主要漁場から漁獲された海産生物試料の収集及び海底土試料，海水試料の採取を行い，これら の放射能濃度を調査するとともに，解析調査として，海洋放射能調査を補完するための支援•解析を行う調查研究を実施した。

東電福島第一原発周辺の海域モニタリングでは，東電福島第一原発事故による放射性物質の影響について，宮城県から茨城県沿岸沖に設けた沖合海域及び外洋海域，東電福島第一原発前面に設けた近傍•沿岸海域において，海域モニタリングを実施し，海水及び海底土試料中の放射性核種濃度を把握した。

調査結果の評価では，調査の実施，結果の解析•評価について，環境放射能の専門家等 からなる「海洋放射能検討委員会」及び「データ解析専門部会」を設け，指導•助言を得 て，総合的に取りまとめた。

さらに，調査結果等の報告•説明として，事業開始時及び中間取りまとめ時にそれぞれ関係機関への説明を行うとともに，海洋放射能調査の総合評価に必要な評価資料等を作成 し，関係機関等に調査結果の報告•配布を実施した。本事業で得られた関連試料について は，過去の同調査で採取した試料とあわせて，倉庫にて保管•管理した。

本報告書は，上記の委託業務の成果をとりまとめたものでものである。本業務の実施に当たりご指導，ご助言を賜った委員各位，多大なご協力を賜った関係機関ならびに関係漁協等に深く感謝致します。

平成 30 年 3 月
公益財団法人海洋生物環境研究所理事長 香川 謙二

目 次

I 海洋放射能調査 1
1．海洋放射能調査海域周辺での調査
1）はじめに 1
2）調査海域 1
3）調査試料の採取 1
（1）海産生物試料 1
（2）海底土試料及び海水試料 2
4）放射性核種の分析 12
（1）分析対象放射性核種 12
（2）海産生物，海底土及び海水試料の前処理及び分析法 12
（3）計数誤差 14
（4）検出下限値 14
5）分析結果 17
（1）海産生物試料の分析結果 17
（2）海底土試料の分析結果 21
（3）海水試料の分析結果 23
6）海洋環境試料中の放射性核種濃度レベルの経年変化 27
（1）発電所海域における経年変化 27
（2）核燃海域における経年変化 31
2．解析調査 71
1）対照海域放射能調査 71
（1）対照海域における海水•海底土試料の放射能調査 71
（2）対照海域における海産生物試料の放射能調査 90
2）変動要因•移行挙動調査 99
（1）海洋環境における ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 及び ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比モニタリング 99
（2）海水及び海産生物の ${ }^{129} \mathrm{I}$ 濃度 108
（3）海洋放射能調査海域周辺における放射性 Cs の形態別分布に関わる詳細 調査 118
（4）原子力発電所等周辺海域における海水及び海産生物の ${ }^{3} \mathrm{H}$ 濃度調査 178
3）海洋環境関連調査報告書等の収集•整理 186
II 東京電力ホールディングス株式会社福島第一原子力発電所周辺の海域モニタリング191
1．はじめに 191
2．モニタリング方法 191
1）調査経過 191
2）調査試料の採取 191
（1）近傍•沿岸海域 191
（2）沖合海域 191
（3）外洋海域 192
3）放射性核種の分析 195
3．モニタリング結果 198
1）海水試料 198
（1）近傍•沿岸海域 198
（2）沖合海域 200
（3）外洋海域 203
2）海底土試料 206
4．まとめ 209
III 調査結果の評価 211
IV 調査結果等の報告•説明 215
1．報告資料の作成 215
2．関係機関•団体等への調査結果の報告•配布 215
V 本事業で得られた関連試料の保管•管理 217
資 料 219
I 海洋放射能調査
資料1－1 平成 29 年度 発電所海域 海産生物試料の放射性核種濃度 221
資料1－2 平成 29 年度 核燃海域 海産生物試料の放射性核種濃度 236
資料2－1 平成 29 年度 発電所海域 海底土試料の放射性核種濃度 244
資料2－2 平成 29 年度 核燃海域 海底土試料の放射性核種濃度 259
資料 3－1 平成 29 年度 発電所海域 海水試料の放射性核種濃度 265
資料 3－2 平成 29 年度 核燃海域 海水試料の放射性核種濃度 280
資料 4－1 平成 29 年度 解析調査 海底土の性状 302
II 東京電力ホールディングス株式会社福島第一原子力発電所周辺の海域モニタリ ング
資料 5－1－1 海水中の放射性核種濃度 近傍•沿岸海域 310
資料5－1－2 海水中の放射性核種濃度 沖合海域 313
資料 5－1－3 海水中の放射性核種濃度 外洋海域 326
資料 5－2－1 海底土中の放射性核種濃度 沖合海域 330
資料 5－2－2 海底土中の放射性核種濃度（ α 線放出核種）沖合海域 334
資料 5－2－3 海底土の色•質•生物種等 335

I 海洋放射能調査

1．海洋放射能調査海域周辺での調査

1）はじめに

我が国の原子力施設沖合に位置する主要漁場の放射能水準を把握するため，海産生物，海底土及び海水の放射能調査を実施した。実施に当たつては，昭和 58 年度から継続的に実施してきた調査との継続性に留意した。

2）調査海域

調査海域は，図 I－2－1 に示すとおり，全国の原子力発電所等周辺海域（以下「発電所海域」という。）及び核燃料サイクル施設沖合海域（以下「核燃海域」という。）に設定した。 なお，発電所海域は，北海道，青森，宮城，福島第一，福島第二，茨城，静岡，新潟，石川，福井第一，福井第二，島根，愛媛，佐賀及び鹿児島海域を指す。

3）調査試料の採取

各調査海域で，海産生物試料の種類並びに海底土試料及び海水試料を採取する測点の選定に当たつては，海洋放射能検討委員会による技術的•専門的立場からの指導•助言を得 るとともに，地方公共団体，水産関係団体，原子力関係事業者団体等の意見を聴取し，別途実施されている原子力施設周辺放射線監視事業（電気事業者等が実施しているものも含 む）との重複を避けるよう配慮した。

（1）海産生物試料

海産生物試料は，特に次の事項に留意して選定した。

- 当該漁場における漁獲量が多い種であること
- 当該漁場における生活期間が長い種であること

選定した試料は，当該漁場に主として出漁している漁業協同組合の協力を得て，漁獲し た月日と場所を確認して，発電所海域では1魚種当たり生鮮重量約 20 kg ，核燃海域では生鮮重量約 30 kg を 1 試料として年 2 回にわけて収集した。平成 29 年度に試料として収集し た海産生物を表 I－3－1 及び表 I－3－2に示す。

なお，本事業の過年度における調査対象の海産生物試料について，原子力災害対策特別措置法（平成 11 年法律第 156 号）第 20 条（原子力災害対策本部長の権限）第 2 項＊に基 づく原子力災害対策本部の出荷制限等の指示に該当するものも含まれるが，あくまで放射性物質に関する検査の実施のため試料入手したものである（指示内容を逸脱しているもの ではない）。
＊原子力災害対策本部長は，当該原子力災害対策本部の緊急事態応急対策実施区域における緊急事態応急対策を的確かつ迅速に実施するため特に必要があると認めるときは，その必要な限度において，関係指定行政機関の長及び関係指定地方行政機関の長並びに前条の規定により権限を委任された当該指定行政機関の職員及び当該指定地方行政機関の職員，地方公共団体の長その他の執行機関，指定公共機関及び指定地方公共機関並びに原子力事業者に対し，必要な指示をすることができる。

（2）海底土試料及び海水試料

海底土試料及び海水試料の採取測点は，発電所海域については 4 測点，核燃海域について は 22 測点を，次の事項に留意して図 I－3－1 から図 I－3－14に示すとおり選定した。

- 当該施設沖合における主要漁場であること
- 海底（底質）ができるだけ砂泥質の場所であること

海底土試料は，平成 29 年 5 月 5 日から 6 月 25 日（核燃海域では平成 29 年 5 月 6 日から 5 月 23 日）にかけて各調査海域の採取測点で年 1 回，海底土の表面から深さ 3 cm までの層 を湿重量約 2 kg ずつ採取した。

海水試料は，発電所海域では平成 29 年 5 月 5 日から 6 月 25 日にかけてそれぞれ各採取測点で年 1 回，核燃海域では平成 29 年 5 月 6 日から 5 月 23 日及び平成 29 年 10 月 26 日か ら11月8日の年2回，海底土と同じ採取測点で表層（海面から 1 m 下）と下層（海底から $10 \sim 40 \mathrm{~m}$ 上）の 2 層から発電所海域では約 100L，核燃海域では約 300L 採取した。
（凡例）

- 原子力発電所等周辺海域
- 原子力発電所
- 核然料サイクル施設

鹿児島海域 1
08

茨城海域

図 I－2－1 調査海域

表 I－3－1 発電所海域における海産生物試料

調査海域	第1回収集試料	第2回収集試料
	漁獲期間： 平成 29 年 4 月 1 日 ~ 10 月 2 日	漁獲期間： 平成 29 年 10 月 3 日 ~ 12 月 22 日
北海道	ホッケ，ソウハチ，ミズダコ	ホッケ，ヒラメ，スケトウダラ
青森	クロソイ，アイナメ，ゴマサバ	クロソイ，ヒラメ，ヤリイカ
宮城	マダラ，アイナメ，マアナゴ	マダラ，アイナメ，マアナゴ
福島第一	ババガレイ，ヒラメ，マガレイ	ヒラメ，マダイ，ムシガレイ
福島第二	マダラ，マガレイ，ヤナギダコ	マコガレイ，マガレイ，マダコ
茨城	マルアオメエソ，スルメイカ，ミズダコ	ヒラメ，ムシガレイ，ヤナギダコ
静岡	マゴチ，ニベ，アカカマス	マゴチ，カサゴ，シタビラメ類
新潟	マダイ，ソウハチ，ミズダコ	マダイ，ソウハチ，ミズダコ
石川	マガレイ，マダラ，アカガレイ	ニギス，マガレイ，マダラ
福井第一	ハタハタ，アカガレイ，スルメイカ	ノロゲンゲ，アカガレイ，スルメイカ
福井第二	アカガレイ，スズキ，マアナゴ	アカガレイ，マダイ，マアナゴ
島根	マダイ，マアジ，ムシガレイ	マダイ，ホウボウ，ムシガレイ
愛媛	カナガシラ類，ハモ類，エビ類	イゴダカホデリ，コウイカ，シログチ
佐賀	スズキ，マダイ，メジナ	スズキ，マダイ，メジナ
鹿児島	チダイ，カイワリ，アカエイ	チダイ，ヘダイ，アカエイ

表 I－3－2 核燃海域における海産生物試料

第1回収集試料	第2回収集試料
漁獲期間： 平成 29 年 4 月 6 日～ 7 月 26 日	漁獲期間： 平成 29 年 10 月 6 日 ~ 12 月 18 日
ミズダコ, ヒラメ, スルメイカ（2試料），ブリ， キアンコウ，アンコウ類 マダラ（2試料）， スケトウダラ，サバ類（2 試料）， ウスメバル，イカナゴ， アイナメ	$\begin{gathered} \text { ミズダコ, ヒラメ, } \\ \text { シロザケ (雌) (2 試料) , } \\ \text { シロザケ (雄) (2 試料) , } \\ \text { キアンコウ, ムシガレイ, } \\ \text { マダラ (} 2 \text { 試料) , } \\ \text { スルメイカ (2 試料), スケトウダラ, } \\ \text { カタクチイワシ, サンマ } \end{gathered}$

測点1
北緯 43 度10分
東経 140 度 16 分

測点2

測点3
北緯 43 度02分
東経 140 度 18 分

測点4
北緯 42 度59分

図 I－3－1 北海道海域における海底土•海水試料採取測点

測点1
北䋨東経 141 度 35 分

測点 2
北緯 41度13分
東経 141 度 40 分

測点3

測点4

図 I－3－2 青森海域における海底土•海水試料採取測点

測点1	北緯	38 度30分
	東経	141度40分
測点2	北緯	38 度25分
	東経	141度45分
測点3	北緯	38 度20分
	東経	141度40分
測点4	北緯	38 度15分
	東経	141度45分

図 I－3－3 宮城海域における海底土•海水試料採取測点

第一海域
測点1
北緯 37度40分東経 141度20分

測点2
北緯 37度35分
東経 141度25分
測点3
北緯 37度30分
東経 141度20分
$\begin{array}{rrrr}\text { 測点 } 4 & \text { 北緯 } & \text { 37度23分 } \\ & \text { 東経 } & 141 \text { 度20分 }\end{array}$
第二海域
測点1 北緯 37度16分東経 141度25分
測点2 北緯 37 度12分
東経 141度20分
測点3
北緯 37度06分
東経 141 度19分
$\begin{array}{rrr}\text { 測点4 } & \text { 北緯 } & 37 \text { 度00分 } \\ & \text { 東経 } & 141 \text { 度20分 }\end{array}$

図 I－3－4 福島第一•第二海域における海底土•海水試料採取測点

測点1

測点2

測点3

測点4

北緯 36 度 05 分
北緯 36度36分
東経 140 度52分
北緯 36 度25分
東経 140 度51分
北緯 36度14分
東経 140 度48分

東経 140 度52分

図 I－3－5 茨城海域における海底土•海水試料採取測点

測点4

北緯 34度34分
東経 138 度 18 分
北緯 34度31分
東経 138度15分
北緯 34度30分
東経 138度05分
北緯 34度31分

東経 137 度59分

図 I－3－6 静岡海域における海底土•海水試料採取測点

	北緯	37 度56分
測点1	東経	138 度37分
測点2	北緯	37 度50分
	東経	138 度35分
	北緯	37 度44分
測点3	東経	138 度27分
測点4	北緯	37度37分
	東経	138 度23分

図 I－3－7 新潟海域における海底土•海水試料採取測点

測点1	北緯	37 度17分
	東経	136度27分
測点2	北緯	37度08分
	東経	136度26分
測点3	北緯	37 度00分
	東経	136度28分
測点4	北緯	36 度52分
	東経	136度28分

図 I－3－8 石川海域における海底土•海水試料採取測点

第一海域
測点1
北緯 36度05分東経 135 度50分

測点2北緯 35度57分東経 135 度50分

測点3
北緯 35 度50分東経 135度50分

測点4 北緯 35度58分東経 135度42分

第二海域
測点1
北緯 35 度45分東経 135度40分

測点2 北緯 35度50分東経 135 度 35 分

測点3
北緯 35度55分
東経 135 度 30 分

測点4
北緯 35度45分
東経 135度30分

図 I－3－9 福井第一•第二海域における海底土•海水試料採取測点

測点1
北緯 35度47分
東経 133度12分

測点 2
北緯 35度41分
東経 133度04分

測点 3
北緯 35度48分
東経 132度56分

測点 4
北緯 35 度40分

東経 132度52分

図 I－3－10 島根海域における海底土•海水試料採取測点

北緯 33度36分
東経 132 度 14 分

測点4
北緯 33度33分
北緯 33度39分
東経 132 度22分
北緯 33度38分
東経 132 度17分

図 I－3－11 愛媛海域における海底土•海水試料採取測点

北緯 33度35分
東経 132 度 10 分

東経 129度59分

測点2

測点3
北緯 33度37分東経 129 度46分

測点4
測点1

北緯 33 度37分
東経 129 度53分

北緯 33 度 34 分
東経 129 度 44 分

図 I－3－12 佐賀海域における海底土•海水試料採取測点

測点1	北緯	31 度56分
	東経	130度02分
測点2	北緯	31度45分
	東経	130度01分
測点3	北緯	31度41分
	東経	130度04分
測点4	北緯	31度35分
	東経	130度09分

図 I－3－13 鹿児島海域における海底土•海水試料採取測点

図 I－3－14 核燃海域における海底土•海水試料採取測点

4）放射性核種の分析

（1）分析対象放射性核種

分析対象放射性核種は，次の観点に基づいて表 I－4－1 に示すとおり人工放射性核種と自然放射性核種を選定した。
［人工放射性核種］
－原子力施設由来の排水，放射性降下物等に含まれる放射性物質中に占める比率が高く，物理的半減期が比較的長い核種であること
－海産生物あるいは海底土に蓄積される性質が強い核種であること

［自然放射性核種］

－海産生物や海底土から検出される例が比較的多い核種であること

（2）海産生物，海底土及び海水試料の前処理及び分析法

海産生物，海底土及び海水に含まれる放射性核種の分析は，全て放射能測定法シリーズ＊1 に基づいて行った。

海産生物試料は，凍結して送付された試料を半解凍して表面の水分をふき取った後，各個体について全長及び体重を測定し，平均全長及び平均体重を算出した。全長及び体重の測定が終了した試料は筋肉（肉部），内臓等に分割し，分析供試部位である筋肉を $105{ }^{\circ} \mathrm{C}$ で乾燥後， $450^{\circ} \mathrm{C}$ で 24 時間灰化した。灰化した試料を 0.35 mm のふるいに通し，混入した小骨等を取 り除いたものをよく混合して分析試料とした。但し，カタクチイワシ等の魚体が極めて小さ く，全体を食す魚種に関しては魚体全体を分析に供した。

海底土試料は，凍結して送付された試料を解凍後よく混合して，ブフナーロートでろ過 して分析試料とした。また，分析試料から一部分取し， $105^{\circ} \mathrm{C}$ で乾燥し含水率を求めた。

海水試料は，採取直後に海水 1 L 当たり 2 mL の 6 M 塩酸を添加したものを分析試料とした。但し，核燃海域で調査対象核種としている ${ }^{3} \mathrm{H}$ 用海水試料には 6 M 塩酸を添加せず，採取した海水をそのまま分析試料とした。

海産生物及び海底土試料は，発電所海域のものは，ガンマ線放出核種をガンマ線スペク トロメトリーにより定量した。核燃海域のものは，${ }^{90} \mathrm{Sr}, ~{ }^{239+240} \mathrm{Pu}^{* 2}$ 及びガンマ線放出核種 をそれぞれベータ線計測，アルファ線スペクトロメトリー及びガンマ線スペクトロメトリ ーにより定量した。なお，海底土は，求めた含水率に基づき，乾燥重量当たりの放射性核
＊1放射能測定法シリーズ

- 放射性ストロンチウム分析法：文部科学省（平成15年，4訂）
- 放射性セシウム分析法：文部科学省（昭和 51 年， 1 訂）
- ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー：文部科学省（平成 4 年， 3 訂）
- トリチウム分析法：文部科学省（平成 14 年， 2 訂）
- プルトニウム分析法：文部科学省（平成2年，1訂）
- 環境試料採取法：文部科学省（昭和58年）
＊2 プルトニウム $-239\left({ }^{239} \mathrm{Pu}\right)$ とプルトニウム $-240\left({ }^{240} \mathrm{Pu}\right)$ は放出するアルファ線のエネルギーがほぼ等しく，通常のアルファ線スペクトロメトリーでは区別して定量できないので，両核種の合計量と して定量する方法がとられている。このためプルトニウム $-239+240\left({ }^{239+240} \mathrm{Pu}\right)$ と表す。

表 I－4－1 分析対象放射性核種

放射性核種			半減期＊1	海産生物		海底土		海水		
			発電所海域	核燃海域	発電所海域	核燃 海域	発電所海域	核燃 海域		
$\begin{aligned} & \text { 人 } \\ & \text { I } \\ & \text { 放 } \\ & \text { 射 } \\ & \text { 栍 } \\ & \text { 種 } \end{aligned}$	トリチウム＊2	${ }^{3} \mathrm{H}$		12．33年	－	－	－	－	－	\bigcirc
	マンガン－ 54	${ }^{54} \mathrm{Mn}$	312.1 日	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	
	コバルト－ 60	${ }^{60} \mathrm{Co}$	5． 271 年	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	
	ストロンチウム－ 90	${ }^{90} \mathrm{Sr}$	28．74年	－	\bigcirc	－	\bigcirc	\bigcirc	\bigcirc	
	ルテニウム－ 106	${ }^{106} \mathrm{Ru}$	373.6 日	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	
	セシウム－ 134	${ }^{134} \mathrm{Cs}$	2． 065 年	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	セシウム－137	${ }^{137} \mathrm{Cs}$	30．04年	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	\bigcirc	
	セリウム－144	${ }^{144} \mathrm{Ce}$	284.9 日	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	
	$\begin{gathered} \text { プルトニウム } \\ -239+240 \end{gathered}$	${ }^{239+240} \mathrm{Pu}$	－＊3	－	\bigcirc	－	\bigcirc	－	\bigcirc	
	$\begin{aligned} & \text { その他の } \\ & \gamma \text { 線放出核種 }{ }^{* 4} \end{aligned}$			\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	\bigcirc	
$\begin{aligned} & \text { 自 } \\ & \text { 然 } \\ & \text { 放 } \\ & \text { 性 } \\ & \text { 核 } \end{aligned}$	ベリリウム－ 7	${ }^{7} \mathrm{Be}$	53.29 日	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	
	カリウム－ 40	${ }^{40} \mathrm{~K}$	12.77 億年	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	
	タリウム－ $208^{* 5}$	${ }^{208} \mathrm{~T} 1$	3.053 分	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	
	ビスマス－ $214^{* 6}$	${ }^{214} \mathrm{Bi}$	19.9 分	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	
	アクチニウム－ $228{ }^{* 5}$	${ }^{228} \mathrm{Ac}$	6． 15 時間	\bigcirc	\bigcirc	\bigcirc	\bigcirc	－	－	

＊1 半減期は「アイソトープ手帳 11 版（社団法人日本アイソトープ協会編集発行，2011年）」より引用 した。

＊3 プルトニウム－239の半減期は2．411万年，プルトニウム－240の半減期は6564年である。
＊4 半減期約 1 年以下の核種で，クロム－51（ ${ }^{51} \mathrm{Cr}$ ），コバルト $-58 ~\left({ }^{58} \mathrm{Co}\right)$ ，鉄 $-59 ~\left({ }^{59} \mathrm{Fe}\right)$ ，亜鉛 $-65 ~\left({ }^{65} \mathrm{Zn}\right)$ ， ジルコニウム－95（ $\left.{ }^{95} \mathrm{Zr}\right)$ ，ニオブ $-95\left({ }^{95} \mathrm{Nb}\right)$ ，ルテニウム－103（ ${ }^{103} \mathrm{Ru}$ ），銀 $-110 \mathrm{~m}\left({ }^{110 \mathrm{~m}} \mathrm{Ag}\right)$ ，アンチモン －125（ ${ }^{125} \mathrm{Sb}$ ）などがある。
＊5 トリウム－232（ ${ }^{232} \mathrm{Th}$ ，半減期：140．5億年）を親核種とするトリウム系列に属する子孫核種である。 ＊6 ウラン－238（ ${ }^{238} \mathrm{U}$ ，半減期：44． 68 億年）を親核種とするウラン系列に属する子孫核種である。

種濃度を算出した。
海水試料は，発電所海域のものは化学分離した後，${ }^{90} \mathrm{Sr}$ をベータ線計測により，また ${ }^{134} \mathrm{Cs}$及び ${ }^{137} \mathrm{Cs}$ をガンマ線スペクトロメトリーにより定量した。核燃海域のものは電解濃縮し た後，${ }^{3} \mathrm{H}$ を液体シンチレーション計測により，また，化学分離した後 ${ }^{99} \mathrm{Sr}, ~{ }^{239+240} \mathrm{Pu}$ 及びガ ンマ線放出核種をそれぞれベータ線計測，アルファ線スペクトロメトリー及びガンマ線ス ペクトロメトリーにより定量した。

（3）計数誤差

放射性核種の壊変は統計的事象であり，放射能測定に際しても放射性核種の揺らぎを考慮した計数誤差を付すことが放射能測定法シリーズ（例えば，放射能測定法シリーズ 7「ゲルマニウム半導体検出器によるガンマ線スペクトロメトリー（3訂）」解説資料参照）に示されている。本事業においても，放射能分析の際に得られた正味の計数値から算出した計数誤差を付して解析等に資することとした。

（4）検出下限値

環境試料の放射性核種分析において，放射能が有意に検出できなくなる濃度を検出下限値という。本事業では，正味の計数値が計数誤差の 3 倍を超えた場合に放射性核種が検出さ れたと判定し，計数誤差の 3 倍に等しい時の放射性核種濃度を検出下限値としている。しか しながら，検出下限値は測定環境，分析供試量，検出器の計数効率等が変わるため試料毎に異なり，一つの値として示すことが困難である。そこで，検出下限値の目安として，各試料 の検出下限値の平均から求めた検出目標レベルを一連の分析方法とともに表 I－4－2 及び表 I－4－3 に示す。

表 I－4－2 発電所海域における各試料の分析方法及び検出目標レベル

試料名			海産生物試料	海底土試料		海水試料
分析対象核種			γ 線放出核種 $\begin{aligned} & \left({ }^{54} \mathrm{Mg}, ~{ }^{60} \mathrm{Co}, ~{ }^{106} \mathrm{Ru}, ~{ }^{110 \mathrm{mg}}\right. \text {, } \\ & { }^{134} \mathrm{Cs}, ~{ }^{137} \mathrm{Cs}, ~, ~ 144 \mathrm{Ce} \text { 等) } \end{aligned}$	γ 線放出核種 $\begin{aligned} & \left({ }^{54} \mathrm{Mm}, ~{ }^{60} \mathrm{Co}, ~{ }^{106} \mathrm{Ru}, ~{ }^{110 \mathrm{~m}} \mathrm{~A}, ~\right. \\ & { }^{134} \mathrm{Cs}, ~{ }^{137} \mathrm{Cs}, ~{ }^{144} \mathrm{Ce} \text { 等) } \end{aligned}$	${ }^{90} \mathrm{Sr}$	${ }^{134} \mathrm{Cs}, ~{ }^{137} \mathrm{Cs}$
$\begin{aligned} & \text { 分 } \\ & \text { 析 } \\ & \text { 方 } \\ & \text { 法 } \end{aligned}$	分析供試量		約 80 g （灰）	約 100 g （湿土）		50L
	前処理		灰化	水分吸引ろ過		化学分離
	放射線計測		γ 線スペクトロメトリー	γ 線スペクトロメトリー	β 線計測	γ 線スペクトロメトリー
	計測時間		70， 000 秒	70， 000 秒	$\begin{gathered} 3600 \sim \\ 7,200 \text { 秒 } \end{gathered}$	70， 000 秒
検 出 目 標 レ ベ ル	単位		$\mathrm{Bq} / \mathrm{kg}$－生鮮物	$\mathrm{Bq} / \mathrm{kg}$－乾燥土 ${ }^{* 1}$		$\mathrm{mBq} / \mathrm{L}$
	$\begin{aligned} & \gamma^{* 3} \\ & \text { 線 } \\ & \text { 放 } \\ & \text { 出 } \\ & \text { 核 } \\ & \text { 種 } \end{aligned}$	${ }^{54} \mathrm{Mn}$	0.03	0.9	－＊2	－
		${ }^{60} \mathrm{Co}$	0.05	0.9	－	－
		${ }^{106} \mathrm{Ru}$	0.2	7	－	－
		${ }^{134} \mathrm{Cs}$	0.03	1	－	0.9
		${ }^{137} \mathrm{Cs}$	0.02	0． 7	－	0.5
		${ }^{144} \mathrm{Ce}$	0.2	4	－	－
	${ }^{90} \mathrm{Sr}$		－	－	0.4	－

＊1 湿土で相当量を供したのち，その含水率で乾燥土あたりの放射能に換算した。
＊2 分析対象外核種について「一」で示した。
＊3 ガンマ線放出核種は，分析対象放射性核種のうち半減期が数十日以下のものを除いた代表的な人工放射性核種について記載した。

表 I－4－3 核燃海域における各試料の分析方法及び検出目標レベル

試 料 名			海産生物試料			海底土試料			海水試料			
分析対象核種			${ }^{90} \mathrm{Sr}$	${ }^{239+240} \mathrm{Pu}$	γ 線放出核種	${ }^{90} \mathrm{Sr}$	${ }^{239+240} \mathrm{Pu}$	γ 線放出核種	${ }^{3} \mathrm{H}$	${ }^{90} \mathrm{Sr}$	${ }^{239+240} \mathrm{Pu}$	γ 線放出核種
$\begin{aligned} & \text { 分 } \\ & \text { 析 } \\ & \text { 方 } \\ & \text { 法 } \end{aligned}$	分析供試量		$\begin{gathered} \text { 約30g } \\ \text { (灰) } \end{gathered}$	$\begin{gathered} \text { 約 } 20 \mathrm{~g} \\ \text { (灰) } \end{gathered}$	$\begin{gathered} \text { 約 } 80 \mathrm{~g} \\ \text { (灰) } \end{gathered}$	約150g (湿土)	約50g （湿土）	$\begin{aligned} & \text { 約 } 100 \mathrm{~g} \\ & \text { (湿土) } \end{aligned}$	0．6L	50L	100L	50L
	前 処 理		灰化後， 化学分離		灰化	湿土	分取後，	水分吸引万過	電解濃縮	化学分離		
	放射線計測		$\begin{gathered} \beta \\ \text { 線 } \\ \text { 計 } \\ \text { 測 } \end{gathered}$		$\begin{gathered} \gamma \\ \text { 線 } \\ \text { トス } \\ \text { ト } \\ \text { へ } \\ \text { ク } \\ \text { ト } \\ \text { 口 } \end{gathered}$	$\begin{aligned} & \beta \\ & \text { 線 } \\ & \text { 計 } \\ & \text { 測 } \end{aligned}$	$\begin{gathered} \alpha \\ \text { 線 } \\ \text { トス } \\ \text { ト } \\ \text { ペ } \\ \text { ク } \\ \text { ト } \\ \text { ロ } \end{gathered}$	$\begin{gathered} \gamma \\ \text { 線 } \\ \text { トス } \\ \text { ト } \\ \text { ペ } \\ \text { ク } \\ \text { ト } \\ \text { ロ } \end{gathered}$	$\begin{aligned} & L^{* 1} \\ & \mathrm{~S} \\ & \mathrm{C} \end{aligned}$	$\begin{aligned} & \beta \\ & \text { 線 } \\ & \text { 計 } \\ & \text { 測 } \end{aligned}$		$\begin{gathered} \gamma \\ \text { 線 } \\ \text { ト } \\ \text { ト } \\ \text { ヘ } \\ \text { ク } \\ \text { ト } \\ \text { 口 } \\ \hline \end{gathered}$
	計測時間		$\begin{aligned} & 3,600 ~ \\ & 7,200 \text { 秒 } \end{aligned}$	160，000秒	70，000秒	3，600秒	80，000秒	70，000秒	30，000秒	$\begin{aligned} & 3,600 \sim \\ & 7,200 \text { 秒 } \end{aligned}$	160，000秒	70，000秒
検 出 目 標 レ ル	単 位		$\mathrm{Bq} / \mathrm{kg}$－生鮮物			$\mathrm{Bq} / \mathrm{kg}$－乾燥土 ${ }^{* 2}$			Bq／L	mBq／L		
	$\begin{aligned} & \gamma * 4 \\ & \text { 線 } \\ & \text { 放 } \\ & \text { 出 } \\ & \text { 核 } \\ & \text { 種 } \end{aligned}$	${ }^{54} \mathrm{Mn}$	－＊3	－	0.03	－	－	0.9	－	－	－	0.8
		${ }^{60} \mathrm{Co}$	－	－	0.05	－	－	0.9	－	－	－	0.9
		${ }^{106} \mathrm{Ru}$	－	－	0.2	－	－	7	－	－	－	7
		${ }^{134} \mathrm{Cs}$	－	－	0.03	－	－	1	－	－	－	0.9
		${ }^{137} \mathrm{Cs}$	－	－	0.02	－	－	0． 7	－	－	－	0.5
		${ }^{144} \mathrm{Ce}$	－	－	0.2	－	－	4	－	－	－	4
	${ }^{3} \mathrm{H}$		－	－	－	－	－	－	0.1	－	－	－
	${ }^{90} \mathrm{Sr}$		0.008	－	－	0.2	－	－	－	0.4	－	－
	${ }^{239+240} \mathrm{Pu}$		－	0． 0007	－	－	0.03	－	－	－	0． 007	－

＊1 液体シンチレーション計測を示す。
＊2 湿土で相当量を供したのち，その含水率で乾燥土あたりの放射能に換算した。
＊3 分析対象外核種について「一」で示した。
＊4 ガンマ線放出核種は，分析対象放射性核種のうち半減期が数十日以下のものを除いた代表的な人工放射性核種について記載した。

5）分析結果

（1）海産生物試料の分析結果

（1）発電所海域

平成 29 年 4 月 1 日から 10 月 2 日， 10 月 3 日から 12 月 22 日までの年 2 回収集した海産生物試料の魚類，イカ・タコ類及びエビ類（計 90 試料）に含まれる放射性核種の濃度範囲 を表 I－5－1 に示す。また，各海域の海産生物試料に含まれる放射性核種の濃度を資料1－1－1 から資料1－1－15に示す。

平成 29 年度に海産生物試料から検出された人工放射性核種は ${ }^{134} \mathrm{Cs}$ 及び ${ }^{137} \mathrm{Cs}$ であり，こ れら放射性核種の濃度は，東電福島第一原発事故後に実施した平成 $23 \sim 27$ 年度よりも全体的に低くなっていたものの，平成 28 年度と同程度であった。また，事故前に実施した過去 5 年間（平成 18 ～ 22 年度）（以下「事故前 5 年間」という。）の範囲と比較すると，一部の試料では依然として上回っていた。
${ }^{110 \mathrm{~m}} \mathrm{Ag}$ は，東電福島第一原発事故後の平成 23 年度から平成 24 年度まで魚類，平成 23 年度から平成 25 年度までイカ・タコ類の一部の試料から検出されたが，平成 29 年度は調査対象海域の試料から検出されなかった。
${ }^{134} \mathrm{Cs}$ は，平成 28 年度には青森，宮城，福島第一，福島第二及び茨城の 5 海域で収集し た 18 試料（魚類 18 試料）から検出されたが，平成 29 年度では福島第一，福島第二及び茨城の 3 海域で収集した 12 試料（魚類 12 試料）から検出された。
${ }^{137} \mathrm{Cs}$ は，平成 28 年度には北海道（第1回収集試料），青森（第2回収集試料），新潟（第 1 回収集試料，第 2 回収集試料），石川（第 1 回収集試料）及び愛媛海域（第 2 回収集試料） で収集したエビ類 1 試料（ホッコクアカエビ），イカ・タコ類 5 試料（ミズダコ，ヤリイカ， コウイカ）を除いた 84 試料から検出されたが，平成 29 年度には北海道（第 1 回収集試料），青森（第2回収集試料），茨城（第2回収集試料）及び新潟海域（第2回収集試料）で収集 したイカ・タコ類 4 試料（ミズダコ（2試料），ヤリイカ，ヤナギダコ）を除いた 86 試料 から検出された。平成 29 年度試料のらち，事故前 5 年間の最大値（ $0.24 \mathrm{~Bq} / \mathrm{kg}$－生鮮物） を超えた試料は，宮城，福島第一，福島第二及び茨城の 4 海域で収集した魚類 16 試料であ った。全体的な濃度は減少していたものの，魚類では依然として高い濃度の試料も見られ，最も高い値を示したのは福島第二海域で採取された試料の $1.8 \mathrm{~Bq} / \mathrm{kg}$－生鮮物（事故前 5 年間の最大値の 7.5 倍）であった。なお，この試料からは $0.25 \mathrm{~Bq} / \mathrm{kg}$－生鮮物の ${ }^{134} \mathrm{Cs}$ も検出 されており，同試料の放射性セシウム（ ${ }^{134} \mathrm{Cs}$ 及び ${ }^{137} \mathrm{Cs}$ との合計）は， $2.05 \mathrm{~Bq} / \mathrm{kg}$－生鮮物 であった。この値は，国の定める基準値（水産物の放射性セシウム） $100 \mathrm{~Bq} / \mathrm{kg}$ と比べて十分に低い値（ $1 / 48$ 以下）である。

表 I－5－1 発電所海域海産生物試料に含まれる放射性核種の濃度範囲

年度	試料名	$\begin{aligned} & \text { 試料 } \\ & \text { 数 } \\ & \hline \end{aligned}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	その他の γ 線放出核種
平成 29 年度	魚類	77	ND ~ 0.25	$0.031 \sim 1.8$	ND
	仂•名類	12	ND	ND ~ 0.12	ND
	エビ類	1	ND	0． 057	ND
平成 28 年度	魚類	76	ND ~ 0.49	$0.032 \sim 3.0$	ND
	仂・タコ類	11	ND	ND ~ 0.14	ND
	エビ類	3	ND	ND ~ 0.083	ND
平成 27 年度	魚類	76	ND ~ 0.90	$0.046 \sim 3.8$	ND
	仂•名類	11	ND	ND ~ 0.10	ND
	エビ類	3	ND	$0.046 \sim 0.065$	ND
平成 26 年度	魚類	75	ND ~ 2.0	$0.028 \sim 5.8$	ND
	仂・ダ類	12	ND ~ 0.048	ND ~ 0.16	ND
	エビ類	3	ND	$0.052 \sim 0.11$	ND
平成 25 年度	魚類	75	ND ~ 7.7	$0.057 \sim 18$	ND
	仂•吅類	12	ND ~ 0.22	ND ~ 0.49	$\begin{gathered} { }^{110 \mathrm{~m} \mathrm{Ag}}: \\ \mathrm{ND} \sim 0.080 \\ \hline \end{gathered}$
	エビ類	3	ND	$0.046 \sim 0.070$	ND
平成 24 年度	魚類	77	ND ~ 69	$0.057 \sim 120$	$\begin{gathered} { }^{110 \mathrm{~m} \mathrm{Ag}} \quad: \\ \mathrm{ND} \quad \sim 0.17 \\ \hline \end{gathered}$
	仂•吅類	10	ND ~ 0.65	ND ~ 0.88	$\begin{gathered} { }^{110 \mathrm{~m}} \mathrm{Ag} \quad: \\ \mathrm{ND} \sim 0.11 \end{gathered}$
	エビ類	3	ND	$0.046 \sim 0.082$	ND
平成 23 年度	魚類	77	$N D \sim 110$	$0.092 \sim 140$	$\begin{gathered} { }^{110 \mathrm{~m}} \mathrm{Ag}: \\ \mathrm{ND} \quad \sim 0.62 \end{gathered}$
	仂・ダ類	10	ND ~ 8.7	$0.031 \sim 9.4$	$\begin{gathered} { }^{{ }^{110 \mathrm{~m}} \mathrm{Ag}}: \\ \mathrm{ND} \stackrel{1}{\sim} \end{gathered}$
	エビ類	3	ND ~ 0.10	$0.079 \sim 0.13$	ND

事故前：	魚類	375	ND	$0.034 \sim 0.24$	ND
平成 $18 \sim 22$	仂・タコ類	60	ND	ND ~ 0.045	ND
年度	エビ類	15	ND	$0.031 \sim 0.071$	ND

ND は検出下限値以下を示す。

（2）核燃海域

平成 29 年 4 月 6 日から 7 月 26 日， 10 月 6 日から 12 月 18 日までの年 2 回収集した海産生物試料の魚類及びイカ・タコ類（計 30 試料）に含まれる放射性核種の濃度範囲を表 I－5－2 に示す。また，各海産生物試料に含まれる放射性核種の濃度を資料 1－2－1 から資料1－2－8 に示す。

平成 29 年度に検出された人工放射性核種は ${ }^{134} \mathrm{Cs}$ 及び ${ }^{137} \mathrm{Cs}$ で，${ }^{239+240} \mathrm{Pu}, ~{ }^{90} \mathrm{Sr}$ 及びその他の γ 線核種は未検出であった。 ${ }^{134} \mathrm{Cs}$ の濃度は，東電福島第一原発事故後に実施した平成 23～27年度に比べ減少傾向にあつたが，平成28年度と同程度であり，魚類1試料から検出された。また，${ }^{137} \mathrm{Cs}$ もイカ・タコ類 3 試料（ミズダコ（2試料），スルメイカ）を除く 27 試料から検出されており，このうち，事故前 5 年間の最大値（魚類： $0.18 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，イカ・タコ類：0．041 Bq／kg－生鮮物）を超えた試料は，魚類で 5 試料，イカ・タコ類 では最大値を超えた試料はなかつた。事故前 5 年間の最大値を超えた試料からのみ ${ }^{134} \mathrm{Cs}$ が検出されたことから，依然として一部試料では，東電福島第一原発事故の影響が残存し ていると考えられる。

表 I－5－2 核燃海域海産生物試料に含まれる放射性核種の濃度範囲

（単位：Bq／kg－生鮮物）							
年度	試料名	試料数	${ }^{90} \mathrm{Sr}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	その他の γ 線放出 核種	${ }^{239+240} \mathrm{Pu}$
平成 29 年度	魚類	24	ND	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.029 \end{aligned}$	$\begin{gathered} 0.059 \sim \\ 0.31 \end{gathered}$	ND	ND
	仂・タコ類	6	ND	ND	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.036 \end{aligned}$	ND	ND
平成 28 年度	魚類	24	ND	$\begin{gathered} \text { ND } \sim \\ 0.10 \end{gathered}$	$\begin{gathered} 0.044 \sim \\ 0.65 \end{gathered}$	ND	$\begin{gathered} \text { ND ~ } \\ 0.00074 \end{gathered}$
	仂・タコ類	6	ND	ND	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.048 \end{aligned}$	ND	ND
平成 27 年度	魚類	24	ND	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.059 \end{aligned}$	$\begin{gathered} 0.035 \sim \\ 0.32 \end{gathered}$	ND	ND
	仂・タコ類	6	ND	ND	$\begin{aligned} & \text { ND ~ } \\ & 0.049 \end{aligned}$	ND	ND
平成 26 年度	魚類	24	$\begin{gathered} \mathrm{ND} \sim \\ 0.0067 \end{gathered}$	$\begin{gathered} \mathrm{ND} ~ \sim \\ 0.56 \end{gathered}$	$\begin{gathered} 0.056 \sim \\ 1.7 \\ \hline \end{gathered}$	ND	ND
	仂・タコ類	6	ND	ND	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.096 \end{aligned}$	ND	$\begin{gathered} \mathrm{ND} \sim \\ 0.00048 \end{gathered}$
平成 25 年度	魚類	24	ND	$\begin{gathered} \text { ND } \sim \\ 1.9 \end{gathered}$	$\begin{gathered} 0.052 \\ 4.1 \end{gathered}$	ND	ND
	仂・タコ類	6	ND	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.029 \end{aligned}$	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.075 \end{aligned}$	ND	$\begin{aligned} & \text { ND ~ } \\ & 0.00037 \end{aligned}$
平成 24 年度	魚類	24	$\begin{aligned} & \text { ND } \sim \\ & 0.0062 \end{aligned}$	$\begin{gathered} \mathrm{ND} \underset{\sim}{\sim} \\ 5.2 \end{gathered}$	$\begin{gathered} 0.089 \sim \\ 7.6 \end{gathered}$	ND	$\begin{gathered} \mathrm{ND} \sim \\ 0.00094 \end{gathered}$
	仂・タコ類	6	ND	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.053 \end{aligned}$	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.092 \end{aligned}$	ND	$\begin{gathered} \mathrm{ND} \sim \\ 0.00033 \end{gathered}$
平成 23 年度	魚類	24	$\begin{aligned} & \text { ND ~ } \\ & 0.0098 \end{aligned}$	$\begin{gathered} 0.069 \\ 10 \end{gathered}$	$\begin{gathered} 0.12 \sim \\ 11 \end{gathered}$	$\begin{gathered} { }^{110 \mathrm{~m}} \mathrm{Ag} \quad: \\ \mathrm{ND} \sim \\ 0.23 \end{gathered}$	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.00053 \end{aligned}$
	仂・タコ類	6	ND	$\begin{gathered} 0.042 \sim \\ 0.24 \end{gathered}$	$\begin{gathered} 0.064 \sim \\ 0.32 \end{gathered}$	$\begin{gathered} { }^{110 \mathrm{~m}} \mathrm{Ag} \quad: \\ 0.080 \sim \\ 0.44 \end{gathered}$	$\begin{aligned} & \text { ND } \sim \\ & 0.00058 \end{aligned}$

事故前 $:$ 平成 $18 \sim 22$ 年度	魚類	110	ND \sim 0.010	仂・タD	$N D \sim$ 0.18	ND	$N D \sim$ 0.0010

ND は検出下限値以下を示す。

（2）海底土試料の分析結果

（1）発電所海域

平成 29 年 5 月 5 日から 6 月 25 日に 60 測点で採取した海底土試料（計 60 試料）に含ま れる放射性核種の濃度範囲を表 I－5－3に示す。また，各海域の海底土試料に含まれる放射性核種の濃度を資料2－1－1 から資料 2－1－15に示す。

平成 29 年度に検出された人工放射性核種は ${ }^{134} \mathrm{Cs}$ 及び ${ }^{137} \mathrm{Cs}$ であり，これらの濃度は，事故後に実施した平成 $23 \sim 28$ 年度の範囲よりも減少傾向にあったものの，東電福島第一原発事故前5年間と比較すると，依然として高い濃度であった。 ${ }^{134} \mathrm{Cs}$ が検出された海域及び測点は，宮城（測点 4），福島第一（全測点），福島第二（全測点）及び茨城（全測点）の 4海域（13 測点）であった。また，${ }^{137} \mathrm{Cs}$ は，${ }^{134} \mathrm{Cs}$ が検出された測点に新潟海域（測点 1 ，2， 3）を加えた 16 測点で，事故前 5 年間の最大値（ $7.7 \mathrm{~Bq} / \mathrm{kg}$－乾燥土）よりも高い濃度であつ た。そのため，これらの海域は東電福島第一原発事故の影響が残存していると考えられる。

表 I－5－3 発電所海域海底土試料に含まれる放射性核種の濃度範囲

年度	試料数	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$
平位： $\mathrm{Bq} / \mathrm{kg}-$ 乾燥土）			
平成 28 年度	60	$\mathrm{ND} \sim 10$	$\mathrm{ND} \sim 80$
平成 27 年度	60	$\mathrm{ND} \sim 17$	$\mathrm{ND} \sim 93$
平成 26 年度	60	$\mathrm{ND} \sim 71$	$\mathrm{ND} \sim 320$
平成 25 年度	60	$\mathrm{ND} \sim 120$	$\mathrm{ND} \sim 310$
平成 24 年度	60	$\mathrm{ND} \sim 45$	$\mathrm{ND} \sim 94$
平成 23 年度	60	$\mathrm{ND} \sim 180$	$\mathrm{ND} \sim 280$

事故前： 平成 $18 \sim 22$ 年度	300	ND	ND ~ 7.7

ND は検出下限値以下を示す。

（2）核燃海域

平成 29 年 5 月 6 日から 5 月 23 日に 22 測点で採取した海底土試料（計 22 試料）に含ま れる放射性核種の濃度範囲を表 I－5－4に示す。また，各測点の海底土試料に含まれる放射性核種の濃度を資料 2－2－1 から資料2－2－6に示す。

平成 29 年度に検出された人工放射性核種は ${ }^{90} \mathrm{Sr}, ~{ }^{137} \mathrm{Cs}$ 及び ${ }^{239+240} \mathrm{Pu}$ であった。これらの核種は，事故前 5 年間の範囲内かそれ以下であった。

表 I－5－4 核燃海域海底土試料に含まれる放射性核種の濃度範囲

（単位： $\mathrm{Bq} / \mathrm{kg}$－乾燥土）					
年度	試料数	${ }^{90} \mathrm{Sr}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	${ }^{239+240} \mathrm{Pu}$
平成 29 年度	22	$\mathrm{ND} \sim 0.37$	ND	$\mathrm{ND} \sim 4.4$	$0.31 \sim 5.0$
平成 28 年度	22	$\mathrm{ND} \sim 0.39$	ND	$\mathrm{ND} \sim 4.6$	$0.41 \sim 4.7$
平成 27 年度	22	$\mathrm{ND} \sim 0.50$	ND	$\mathrm{ND} \sim 5.3$	$0.37 \sim 4.9$
平成 26 年度	22	$\mathrm{ND} \sim 0.54$	ND	$\mathrm{ND} \sim 6.1$	$0.39 \sim 5.0$
平成 25 年度	22	$\mathrm{ND} \sim 0.43$	ND	$\mathrm{ND} \sim 6.1$	$0.42 \sim 5.3$
平成 24 年度	22	$\mathrm{ND} \sim 0.40$	ND	$\mathrm{ND} \sim 6.2$	$0.38 \sim 4.8$
平成 23 年度	22	$\mathrm{ND} \sim 0.51$	ND	$\mathrm{ND} \sim 4.6$	$0.37 \sim 4.1$

事故前： 平成 $18 \sim 22$ 年度	104	$\mathrm{ND} \sim 0.78$	ND	$\mathrm{ND} \sim 5.2$	$0.39 \sim 5.1$

ND は検出下限値以下を示す。

（3）海水試料の分析結果

（1）発電所海域

平成 29 年 5 月 5 日から 6 月 25 日に 60 測点で採取した表層水と下層水，各 60 試料（計 120 試料）に含まれる放射性核種の濃度範囲を表 I－5－5に示す。また，各海域の海水試料に含まれる放射性核種の濃度を資料3－1－1 から資料3－1－15に示す。

平成 29 年度に検出された人工放射性核種は ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ で，${ }^{90} \mathrm{Sr}$ は事故前 5 年間の範囲内であったが，${ }^{137} \mathrm{Cs}$ は，事故後に実施した平成 $23, ~ 24$ 年度に比べ減少傾向にあるもの の，平成 28 年度と同程度で，一部の試料では，事故前 5 年間の範囲を上回っていた。

表層水と下層水中の ${ }^{134} \mathrm{Cs}$ は，いずれの海域でも検出されなかった。
表層水中の ${ }^{137} \mathrm{Cs}$ は，福島第一（測点 3，4），福島第二（全測点），茨城（全測点）及び静岡（測点1，2）の 4 海域 12 測点で，下層水中の ${ }^{137} \mathrm{Cs}$ は，福島第一（測点 $1, ~ 2, ~ 4$ ），福島第二（測点 $2, ~ 3$ ），茨城（全測点），静岡（測点 $1, ~ 2$ ），石川（測点 3 ），島根（測点 1 ），愛媛（測点 3 ）及び鹿児島（測点 4 ）の 8 海域 15 測点で事故前 5 年間の最大値（表層： $2.4 \mathrm{mBq} / \mathrm{L}$ ，下層： $2.3 \mathrm{mBq} / \mathrm{L}$ ）を上回った。これらの海域における表層水の最大値は福島第一海域の測点 $4(4.0 \mathrm{mBq} / \mathrm{L})$ であり，事故前 5 年間の最大値の約 1.7 倍，下層水の最大値は茨城海域 の測点1，3及び静岡海域の測点 $2(2.9 \mathrm{mBq} / \mathrm{L})$ であり，同約 1.3 倍であった。なお，その他の海域では，事故前 5 年間の範囲内であった。

表層水及び下層水の ${ }^{90} \mathrm{Sr}$ を見ると，事故前 5 年間の範囲内かそれ以下であった。

表 I－5－5 発電所海域海水試料に含まれる放射性核種の濃度範囲
（単位： $\mathrm{mBq} / \mathrm{L}$ ）

年度	試料名	試料数	${ }^{90} \mathrm{Sr}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$
平成 29 年度	表層水	60	$0.50 \sim 1.1$	ND	$1.3 \sim 4.0$
	下層水	60	$0.29 \sim 1.1$	ND	$0.66 \sim 2.9$
平成 28 年度	表層水	60	$0.66 \sim 1.1$	$\mathrm{ND} \sim 0.98$	$1.6 \sim 5.0$
	下層水	60	$0.41 \sim 1.2$	ND	$0.69 \sim 3.2$
平成 27 年度	表層水	60	$0.67 \sim 1.2$	$\mathrm{ND} \sim 0.77$	$1.7 \sim 4.0$
	下層水	60	$0.30 \sim 1.1$	ND	$0.52 \sim 3.9$
平成 26 年度	表層水	60	$0.70 \sim 1.3$	ND ~ 1.6	$1.3 \sim 5.3$
	下層水	60	$0.29 \sim 1.2$	$\mathrm{ND} \sim 2.2$	$0.77 \sim 6.5$
平成 25 年度	表層水	60	$0.77 \sim 5.8$	ND ~ 9.6	$1.2 \sim 17$
	下層水	60	$0.30 \sim 1.3$	$\mathrm{ND} \sim 1.5$	$0.7 \sim 3.9$
平成 24 年度	表層水	60	$0.63 \sim 13$	ND ~ 29	$1.0 \sim 41$
	下層水	60	$0.36 \sim 9.2$	ND ~ 14	$0.61 \sim 21$
平成 23 年度	表層水	60 （15）	$0.84 \sim 24$	$N D \sim 520$	$1.4 \sim 1400 \%$
	下層水	60	$0.24 \sim 3.6$	－	$0.47 \sim 360 \%$

事故前 $:$ 平成 $18 \sim 22$ 年度	表層水	$300(75)$	$0.85 \sim 1.8$	ND	$1.1 \sim 2.4$
	下層水	300	$0.33 \sim 2.0$	-	$0.49 \sim 2.3$

（ ）内は，${ }^{134} \mathrm{Cs}$ の試料数を示す。一は調査対象外を示す。ND は検出下限値以下を示す。
※：平成 23 年度の表層水 45 試料及び下層水 60 試料については，ベータ線計測のため，${ }^{134} \mathrm{Cs}$ の影響を含んでいる可能性がある（27頁の注1参照のこと）。

（2）核燃海域

平成 29 年 5 月 6 日から5月23日，10月26日から11月8日の年2回に22測点で採取 した表層水と下層水の各 44 試料（計 88 試料）に含まれる放射性核種の濃度範囲を表 I－5－6 に示す。また，各測点の海水試料に含まれる放射性核種の濃度を資料3－2－1 から資料3－2－22 に示す。

平成 29 年度に検出された ${ }^{3} \mathrm{H}, ~{ }^{90} \mathrm{Sr}, ~{ }^{137} \mathrm{Cs}$ 及び ${ }^{239+240} \mathrm{Pu}$ は，平成 28 年度と同程度の濃度範囲であった。

表層水中の ${ }^{137} \mathrm{Cs}$ の最大値は $2.3 \mathrm{mBq} / \mathrm{L}$ ，下層水中の ${ }^{137} \mathrm{Cs}$ の最大値は $2.2 \mathrm{mBq} / \mathrm{L}$ で事故前 5 年間の最大値（表層：2． $4 \mathrm{mBq} / \mathrm{L}$ ，下層 ： $2.1 \mathrm{mBq} / \mathrm{L}$ ）と同程度であった。

表層水及び下層水に含まれる ${ }^{3} \mathrm{H}$ の濃度は，当該海域のバックグラウンドと考えられる平成18年度より日本原燃株式会社が六ヶ所村再処理施設において実施したアクティブ試験 （使用済み核燃料を用いた再処理施設の操業前試験）開始前の期間（平成 $13 \sim 17$ 年度）に行った調査結果で得られた濃度範囲（表層：ND～0． $24 \mathrm{~Bq} / \mathrm{L}$ ，下層：ND～0．21 Bq／L）にあっ た。また，東電福島第一原発事故以降（平成 23 年度及び平成 24 年度）に一部の測点で検出されていた ${ }^{134} \mathrm{Cs}$ は，平成 29 年度はいずれの測点においても検出されなかった。

表 I－5－6 核燃海域海水試料に含まれる放射性核種の濃度範囲

年度	試料名	試料数	${ }^{3} \mathrm{H}$	${ }^{90} \mathrm{Sr}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	${ }^{239+240} \mathrm{Pu}$
平成 29 年度	表層水	44	$\begin{gathered} \hline \mathrm{ND} \sim \\ 0.17 \end{gathered}$	$\begin{gathered} 0.53 \sim \\ 1.0 \end{gathered}$	ND	$\begin{gathered} 1.4 \sim \\ 2.3 \end{gathered}$	$\begin{aligned} & \hline \mathrm{ND} \sim \\ & 0.0058 \end{aligned}$
	下層水	44	$\begin{gathered} \hline \text { ND } \sim \\ 0.13 \end{gathered}$	$\begin{gathered} \mathrm{ND} \sim \\ 1.1 \end{gathered}$	ND	$\begin{gathered} \hline \mathrm{ND} \sim \\ 2.2 \end{gathered}$	$\begin{aligned} & \hline N D \sim \\ & 0.023 \end{aligned}$
平成 28 年度	表層水	44	$\begin{gathered} \mathrm{ND} \sim \\ 0.14 \end{gathered}$	$\begin{gathered} 0.61 ~ \\ 1.3 \end{gathered}$	ND	$\begin{gathered} 1.5 \sim \\ 2.8 \end{gathered}$	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.0058 \end{aligned}$
	下層水	44	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.15 \end{aligned}$	$\begin{gathered} \mathrm{ND} \sim \\ 1.1 \end{gathered}$	ND	$\begin{gathered} \text { ND } \sim \\ 2.4 \end{gathered}$	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.026 \end{aligned}$
平成 27 年度	表層水	44	$\begin{gathered} \mathrm{ND} \sim \\ 0.17 \end{gathered}$	$\begin{gathered} 0.62 \sim \\ 1.2 \end{gathered}$	ND	$\begin{gathered} 1.0 \sim \\ 2.7 \end{gathered}$	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.0052 \end{aligned}$
	下層水	44	$\begin{gathered} \mathrm{ND} \sim \\ 0.12 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{ND} \sim \\ 1.1 \\ \hline \end{gathered}$	ND	$\begin{gathered} \mathrm{ND} \sim \\ 2.4 \\ \hline \end{gathered}$	$\begin{aligned} & \hline \mathrm{ND} \sim \\ & 0.024 \end{aligned}$
平成 26 年度	表層水	44	$\begin{gathered} \mathrm{ND} \sim \\ 0.18 \\ \hline \end{gathered}$	$\begin{gathered} 0.57 \sim \\ 1.1 \\ \hline \end{gathered}$	ND	$\begin{gathered} 0.82 \sim \\ 2.4 \\ \hline \end{gathered}$	$\begin{gathered} 0.0011 \sim \\ 0.0054 \\ \hline \end{gathered}$
	下層水	44	$\begin{gathered} \hline \text { ND } \sim \\ 0.15 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{ND} \sim \\ 1.2 \\ \hline \end{gathered}$	ND	$\begin{gathered} \mathrm{ND} \sim \\ 2.3 \\ \hline \end{gathered}$	$\begin{gathered} 0.0014 \sim \\ 0.023 \end{gathered}$
平成 25 年度	表層水	44	$\begin{gathered} \mathrm{ND} \sim \\ 0.16 \end{gathered}$	$\begin{gathered} \text { ND } \sim \\ 1.1 \\ \hline \end{gathered}$	ND	$\begin{gathered} 0.97 \sim \\ 2.4 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.0064 \end{aligned}$
	下層水	44	$\begin{gathered} \hline \mathrm{ND} \sim \\ 0.16 \end{gathered}$	$\begin{gathered} \mathrm{ND} \sim \\ 1.3 \end{gathered}$	ND	$\begin{gathered} \mathrm{ND} \sim \\ 2.3 \end{gathered}$	$\begin{gathered} 0.0023 \sim \\ 0.027 \end{gathered}$
平成 24 年度	表層水	44	$\begin{gathered} \mathrm{ND} \sim \\ 0.15 \\ \hline \end{gathered}$	$\begin{gathered} 0.68 \sim \\ 1.2 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{ND} \sim \\ 4.3 \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{ND} \sim \\ 6.5 \end{gathered}$	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.0076 \end{aligned}$
	下層水	44	$\begin{gathered} \hline \mathrm{ND} \sim \\ 0.16 \end{gathered}$	$\begin{gathered} \hline \mathrm{ND} \sim \\ 1.3 \end{gathered}$	$\begin{gathered} \hline \mathrm{ND} \sim \\ 6.1 \end{gathered}$	$\begin{gathered} \mathrm{ND} \text { ~ } \\ 11 \end{gathered}$	$\begin{aligned} & \hline N D \sim \\ & 0.022 \end{aligned}$
平成 23 年度	表層水	44	$\begin{gathered} \mathrm{ND} \sim \\ 0.15 \end{gathered}$	$\begin{gathered} 0.78 \sim \\ 13 \end{gathered}$	$\begin{gathered} \mathrm{ND} \sim \\ 360 \end{gathered}$	$\begin{gathered} 2.3 \sim \\ 370 \end{gathered}$	$\begin{aligned} & \mathrm{ND} \sim \\ & 0.0095 \end{aligned}$
	下層水	44	$\begin{gathered} \mathrm{ND} \sim \\ 0.15 \end{gathered}$	$\begin{gathered} \mathrm{ND} \sim \\ 1.3 \end{gathered}$	$\begin{gathered} \mathrm{ND} \sim \\ 5.4 \end{gathered}$	$\begin{gathered} \text { ND } \sim \\ 7.8 \end{gathered}$	$\begin{gathered} 0.0024 \sim \\ 0.03 \end{gathered}$

事故前：平成 $18 \sim 22$年度	表層水	208	$\begin{gathered} \hline \mathrm{ND} \sim \\ 1.3 \end{gathered}$	$\begin{gathered} 0.73 \sim \\ 1.6 \end{gathered}$	ND	$\begin{gathered} 0.81 ~ \\ 2.4 \end{gathered}$	$\begin{aligned} & \hline N D \sim \\ & 0.013 \end{aligned}$
	下層水	208	$\begin{gathered} \text { ND } \sim \\ 0.27 \end{gathered}$	$\begin{gathered} \text { ND } \sim \\ 1.7 \end{gathered}$	ND	$\begin{gathered} \text { ND } \sim \\ 2.1 \\ \hline \end{gathered}$	$\begin{aligned} & \mathrm{ND} \quad \sim \\ & 0.029 \end{aligned}$

【参考 アクティブ試験開始前の ${ }^{3} \mathrm{H}$ 濃度】

年度	試料名	試料数	${ }^{3} \mathrm{H}$
平成 $13 \sim$ 17 年度	表層水	160	$\mathrm{ND} \sim 0.24$
	下層水	160	$\mathrm{ND} \sim 0.21$

ND は検出下限値以下を示す。

6）海洋環境試料中の放射性核種濃度レベルの経年変化

（1）発電所海域における経年変化

調査開始から平成 29 年度の発電所海域の主要な漁場における海産生物，海底土及び海水試料に含まれる ${ }^{137} \mathrm{Cs}$ 等の人工放射性核種濃度の経年変化を図 I－6－1～13，図 I－6－14～ 27 及び図 I－6－28～57（注1）に示す。

（1）海産生物試料

発電所海域で継続的に採取することができた海産生物試料（魚種）の筋肉部位に含まれ る ${ }^{137} \mathrm{Cs}$ 濃度の経年変化をみると，調査開始から昭和 60 年度までは漸減傾向にあったが，昭和 61 年度は，海域や魚種によってはチェルノブイリ原子力発電所事故（昭和61（1986）年 4 月 26 日未明に発生）に起因するとみられる濃度上昇が確認された。しかし，昭和 63年度までには事故前（昭和 60 年度）の濃度水準と同程度となり，以降は魚種や海域間でば らつきはあるものの，平成 22 年度までは漸減傾向が認められた。

平成 23 年 3 月 11 日に発生した東北地方太平洋沖地震を契機とした東電福島第一原発事故により，新たな人工放射性核種が環境中へ放出された。この結果，平成 23 年度の調査で は，北海道，青森，宮城，福島第一，福島第二，茨城，静岡，島根，愛媛，佐賀及び鹿児島海域で採取された海産生物試料から東電福島第一原発事故に起因するとみられる ${ }^{137} \mathrm{Cs}$濃度の上昇が確認され，福島第一及び第二海域を中心とする太平洋側の海域で過去の最大値を大幅に超える濃度上昇が確認された。

平成 $24 \sim 28$ 年度の調査では，全体的に ${ }^{137} \mathrm{Cs}$ 濃度の減少が確認されたが，青森，宮城，福島第一，福島第二及び茨城海域の一部の試料は依然として高かった。

平成 29 年度の調査でも，${ }^{137} \mathrm{Cs}$ 濃度の減少は確認されたが，宮城，福島第一，福島第二及び茨城海域の一部の試料は，その他の海域の試料の濃度水準に比べ高かった。

なお，後述する2．解析調査 の「2）（4）原子力発電所等周辺海域における海水及び海
（注1）
発電所海域の海水試料については，従来，各海域に設けた 4 つの測点のうち測点 1 の表層に ついてのみ，${ }^{134} \mathrm{Cs}$ と ${ }^{137} \mathrm{Cs}$ を区別できるガンマ線計測によって分析し，測点 1 の下層，測点 2 ～4の表層及び下層の試料については，事実上，これまで試料中に ${ }^{134} \mathrm{Cs}$ が含まれていなかった ことから，検出下限値のより小さいベータ線計測によって分析されてきた。ベータ線計測では ${ }^{134} \mathrm{Cs}$ と ${ }^{137} \mathrm{Cs}$ を区別できないことから，同様の方法で実施された平成 23 年度の測点 1 の表層以外の分析結果は，事故由来の ${ }^{134} \mathrm{Cs}$ と ${ }^{137} \mathrm{Cs}$ を合わせた放射性セシウムの値になっている。その ため，経年変化図にはそれらの和 ${ }^{134} \mathrm{Cs}+{ }^{137} \mathrm{Cs}$ 」として＂\triangle＂で図示している（但し，平成 23年度のベータ線計測においては，${ }^{137} \mathrm{Cs}$ 測定のための計数効率を使用しているため，${ }^{134} \mathrm{Cs}$ の値 がやや低めにでており，厳密な意味での ${ }^{134} \mathrm{Cs}$ と ${ }^{137} \mathrm{Cs}$ の合計値ではない）。なお，平成 24 年度 からは，すべての測点の表層及び下層においてガンマ線計測によって分析している。

産生物の ${ }^{3} \mathrm{H}$ 濃度調査」では，核燃料サイクル施設及び東電福島第一原発事故による影響が懸念される，青森，宮城，福島第一，福島第二及び茨城海域の 5 海域で採取し，ガンマ線核種を分析した海産生物と同一筋肉試料の一部を分取して，${ }^{3} \mathrm{H}$ 濃度を分析した。その結果，同調查で測定された海水の ${ }^{3} \mathrm{H}$ 濃度と同程度であり，バックグラウンドレベルであることが確認された。

また，後述する 2．解析調査の「1）対照海域放射能調査」において実施した原子力発電所等，核燃料サイクル施設及び東電福島第一原発の影響が及ばない海域で採取された海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度との比較を行ったところ，事故前 5 年間の濃度範囲とほぼ同程度で あった海域と対照海域で採取された海産生物の放射性Cs濃度は同レベルであったことか ら，これらの海域における放射性 Cs 濃度は，東電福島第一原発事故前の 1950～60 年代の大気圏内核実験の影響であると考えられる。

（2）海底土試料

発電所海域の海底土試料に含まれる ${ }^{137} \mathrm{Cs}$ 濃度の経年変化をみると，調査開始から平成 22 年度までは，採取した海域の底質の違い（砂質あるいは泥質）によってばらつきが認め られた。底質が主に砂質の場合には，検出下限値レベルの低濃度水準となり，経年変化が把握し難い傾向にあったが，泥質あるいはシルト質の場合には経年とともに漸減傾向が認 められた。

平成 23 年度の調査では，宮城，福島第一，福島第二，茨城及び新潟海域において，事故前の濃度水準を明らかに超える濃度上昇が認められた。特に，福島第一海域では $220 \mathrm{~Bq} / \mathrm{kg}-$乾燥土であった。

平成 24 年度の調査でも，宮城，福島第一及び福島第二海域は，平成 23 年度と同様の濃度水準であることが確認され，茨城海域では平成 23 年度の値を超える濃度であった。

平成 25 年度の調查では，北海道，福島第二及び新潟海域において平成 24 年度の濃度水準をわずかに超えたものの，青森，宮城，福島第一，茨城及び静岡海域では平成 24 年度の濃度水準を下回る結果となった。

平成 26 年度の調査では，福島第一海域（測点 3 ）で $310 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，平成 27 年度の調査では，福島第一海域（測点 2）で $320 \mathrm{~Bq} / \mathrm{kg}$－乾燥土となる東電福島第一原発事故以降で最 も高い値となった。平成 28 年度の調查では，福島第二海域（測点 1）で $93 \mathrm{~Bq} / \mathrm{kg}$－乾燥土で あった。平成 29 年度の調査において，事故前 5 年間の最大値より高い ${ }^{137} \mathrm{Cs}$ が検出された宮城，福島第一，福島第二，茨城及び新潟海域の海底土試料の内，最大値は茨城海域（測点1）で得られた $80 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であった。この最大値を示した茨城海域は，2．解析調査 の「2）（1）海洋環境における ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 及び ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比モニタリング」において東電福島第一原発事故に由来する放射性 Cs が示す ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比が見られた。更に上記の 2．解析調查の「2）（3）海洋放射能調查海域周辺における放射性 Cs の形態別分布に関わる詳細調査」においても ${ }^{134} \mathrm{Cs}$ が検出されていることから，過去 5 年間の最大値より高

い ${ }^{137} \mathrm{Cs}$ が検出されたのは，東電福島第一原発事故の影響のためであると考えられる。
その他の海域（北海道，青森，静岡，石川，福井第一，福井第二，島根，愛媛，佐賀，鹿児島）の海底土試料では，事故前の過去5年間の測定値の範囲内であった。また，後述 する 2．解析調査の「1）対照海域放射能調査」において実施した原子力発電所等，核燃料 サイクル施設及び東電福島第一原発の影響が及ばない海域で採取された海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度との比較を行ったところ，これらの海域は対照海域と同レベルであった。このこ とから，その他の海域において検出された放射性 Cs 濃度は東電福島第一原発事故前の1950 ～60年代の大気圏内核実験による影響であると考えられる。ただし，${ }^{137} \mathrm{Cs}$ 濃度は ND～ 4． $8 \mathrm{~Bq} / \mathrm{kg}$－乾燥土の範囲で海域による変動が見られた。その要因として海底土の粒径，有機物等の違い，すなわち海底土の性状の違いによることがこれまでの調査の結果からわかつ ている ${ }^{1)}$ 。その詳細は 2．解析調査の「2）（3）海洋放射能調査海域周辺における放射性 Cs の形態別分布に関わる詳細調査」に示している。

（3）海水試料

i．表層水

発電所海域の海水試料に含まれる ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化を表層水についてみる と，${ }^{90} \mathrm{Sr}$ 濃度は調査開始から平成 22 年度まで全国の海域において漸減傾向を示した。 ${ }^{137} \mathrm{Cs}$濃度も昭和 60 年度までは漸減傾向を示したが，昭和 61 年度にはチェルノブイリ原子力発電所事故に起因するとみられる濃度上昇が認められた海域があったものの，昭和 62 年度 には概ね昭和 60 年度の濃度水準と同程度まで低下し，平成 22 年度まで漸減傾向が認めら れた。

平成 23 年度の調査では，いずれの核種濃度も平成 22 年度までの漸減傾向が一変し，${ }^{90} \mathrm{Sr}$濃度は福島第一及び福島第二海域で，${ }^{137} \mathrm{Cs}$ 濃度は北海道，青森，宮城，福島第一，福島第二，茨城，静岡及び新潟海域で大幅な上昇が認められた。

平成 24 年度は，平成 23 年度に ${ }^{90} \mathrm{Sr}$ 濃度の大幅な上昇が認められた福島第一及び福島第二海域では事故前の濃度水準に低下したものの，茨城海域では事故後最も濃度が高くなっ た（最大値： $13 \mathrm{mBq} / \mathrm{L}$ ）。一方，${ }^{137} \mathrm{Cs}$ 濃度は平成 23 年度に大幅な上昇が確認されたいずれ の海域でも減少が確認され，とりわけ，北海道，静岡及び新潟海域では，事故前の濃度水準と同程度になった。

平成 25 年度は，福島第二海域の一部の測点で ${ }^{90} \mathrm{Sr}$ 濃度が平成 24 年度と比較して約 3 倍 の濃度上昇が認められたが，茨城海域では，平成 24 年度の概ね半分の濃度水準にまで低下 した。一方，${ }^{137} \mathrm{Cs}$ 濃度は青森，福島第一及び福島第二海域で平成 24 年度と同水準，宮城及び茨城海域で平成 24 年度からの濃度減少が認められた。また，静岡，新潟，石川，福井第一，福井第二及び愛媛海域ではわずかな濃度上昇が認められたが，事故前の濃度水準を超えるものではなかった。

平成 $26, ~ 27, ~ 28$ 年度では，${ }^{90} \mathrm{Sr}$ 濃度は全海域でほぼ事故前の濃度水準にまで減少した。

一方で，${ }^{137} \mathrm{Cs}$ 濃度は濃度レベルが他の海域と比ベ高い福島第一，福島第二海域で濃度の減少が認められたが，その他の海域では濃度しベルは横ばいか若干の上昇が認められた。

平成 29 年度の調査において，事故前の過去 5 年間の最大値より高い ${ }^{137} \mathrm{Cs}$ が検出された海水試料（表層水）が，福島第一，福島第二，茨城，静岡海域から得られた。これらの海域における最大値は，福島第一海域（測点4）で得られた $4.0 \mathrm{mBq} / \mathrm{L}$ であった。その他の海域の海水試料では，事故前の過去 5 年間の測定値の範囲内であった。

ただし，西日本及び日本海の表層海水（北海道，静岡，新潟，石川，福井第一，福井第二，島根，愛媛，佐賀及び鹿児島の 10 海域）を中心に，東電福島第一原発事故以降，海水中 ${ }^{137} \mathrm{Cs}$ 濃度が事故前（平成 22 年度調査結果）に比較して高い状況が確認されている。こ の原因は，東電福島第一原発事故によって海洋に付加された放射性 Cs が海流に乗って西日本及び日本海に到達したと考えられる ${ }^{2)}$ 。平成 29 年度の 2．解析調査の「2）（3）海洋放射能調査海域周辺における放射性 Cs の形態別分布に関わる詳細調査」において，日本海及 び西日本の表層海水（北海道，静岡，新潟，石川，福井第二，島根，愛媛，佐賀及び鹿児島の 9 海域）においてゲルマニウム半導体検出器による長時間測定から ${ }^{134} \mathrm{Cs}$ が検出され た。しかしながら，各年度の平均値を比較したところ，平成 29 年度においては，これまで の上昇傾向は見られなかった。また，発電所海域の ${ }^{90} \mathrm{Sr}$ について，2．解析調査の「1）対照海域放射能調査」において比較検討を行ったところ，すべての海域において対照海域と同じ濃度範囲であったことから，東電福島第一原発事故の影響は検出されなかったと考え られる。

なお，後述する2．解析調査の「2）（2）海水及び海産生物の ${ }^{129} \mathrm{I}$ 濃度」では，東電福島第一原発事故による影響が懸念される，青森，宮城，福島第一，福島第二及び茨城海域 の 5 海域で海水試料を採取し ${ }^{129}$ I 濃度の分析を行っており，その結果，いずれの海域でも同事故の影響は見られなかった。

ii ．下層水

海水試料に含まれる ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化を下層水についてみると，${ }^{99} \mathrm{Sr}$ 濃度 は調査開始から平成 22 年度まで全国の発電所海域において漸減傾向を示したが，平成 23年度には東電福島第一原発事故の影響と見られる若干の濃度上昇が福島第一及び茨城海域 で認められた。

平成 24 年度には福島第一海域の濃度水準は事故前に戻ったものの，茨城海域の測点で は平成 23 年度と比較して 3 倍程度の濃度上昇が認められた。しかしながら，平成 25 年度以降では茨城海域を含めたすべての海域で事故前の濃度水準に戻った。

一方，${ }^{137} \mathrm{Cs}$ 濃度は，昭和 61 年度に若干の濃度上昇が認められる海域があるものの，そ れ以降は平成 22 年度まですべての海域で漸減傾向を示したが，平成 23 年度に宮城，福島第一，福島第二，茨城，静岡及び新潟海域で濃度上昇が認められた。これらの海域では平成 24 年度に濃度の減少が確認されたが，平成 25 年度以降は平成 29 年度を含め全海域で

ほぼ横ばいであった。
なお，下層水における ${ }^{137} \mathrm{Cs}$ 濃度上昇は，2．解析調査の「2）（3）海洋放射能調査海域周辺における放射性 Cs の形態別分布に関わる詳細調査」において詳述しているが，平成 24年度の表層より深い層から ${ }^{134} \mathrm{Cs}$ が検出されたことから，東電福島第一原発事故によって付加されたと考えられる。また，表層から下層まで水温塩分が一様な海域（採水層の浅い海域）で ${ }^{134} \mathrm{Cs}$ が検出されたことから，表層海水が海流や海底地形の影響等による鉛直方向 の混合によって下層の濃度も上昇したと考えられる。

（2）核燃海域における経年変化

調査を開始した平成3年度から平成29年度までの核燃海域の主要な漁場における海産生物，海底土及び海水試料に含まれる ${ }^{90} \mathrm{Sr}, ~{ }^{137} \mathrm{Cs}, ~{ }^{239+240} \mathrm{Pu}$ 及び ${ }^{3} \mathrm{H}$（海水のみ）濃度の経年変化をそれぞれ図 I－6－58～60，図 I－6－61～63 及び図 I－6－64～71 に示す。

なお，平成 19 年度から調査海域を拡張（ $(1 \sim 16$ 」測点を「1～22」測点へ 6 測点増加） し，海産生物試料数は年間 20 から 30 へ，海底土試料数は年間 16 から 22 へ，海水試料数 は年間 64 から 88 へ増加となった。

（1）海産生物試料

核燃海域の海産生物試料の筋肉（一部の魚種については全体）に含まれる ${ }^{90} \mathrm{Sr}$ 濃度の経年変化をみると，${ }^{90} \mathrm{Sr}$ は，容易に検出できないほど低い濃度水準にあり，平成 26 年度まで の調査でほとんどの試料で検出下限値以下であった。平成 27 ～ 29 年度の調査では，全試料 が検出下限値以下であった。
${ }^{137} \mathrm{Cs}$ の濃度は平成 3 年度から平成 22 年度までほぼ同じ濃度水準あるいは漸減傾向を示 したが，平成 23 年度は東電福島第一原発事故の影響を受け，すべての海産生物試料で比較的高い濃度水準（最大値： $11 \mathrm{~Bq} / \mathrm{kg}$－生鮮物）であった。

平成 24 年度も平成 23 年度と同程度の濃度水準（最大値：7．6Bq／kg－生鮮物）であった が，平成 25 年度には若干減少が認められたものの，依然として高い濃度水準（最大値 4． $1 \mathrm{~Bq} / \mathrm{kg}$－生鮮物）であった。平成 $26 \sim 29$ 年度では濃度の減少傾向は継続し，${ }^{137} \mathrm{Cs}$ の最大値は平成 26 年度で $1.7 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，平成 27 年度で $0.32 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，平成 28 年度で $0.65 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，平成 29 年度で $0.31 \mathrm{~Bq} / \mathrm{kg}$－生鮮物であった。
${ }^{239+240} \mathrm{Pu}$ は平成 27 年度までの調査で，骨を含む試料全体を分析したコウナゴやカタクチ イワシ及びイカ・タコ類を中心として極めて低い濃度水準ではあるものの検出されている。平成 28 年度も極めて低い濃度水準であったが，キアンコウ，スケトウダラ，ヒラメの 3 試料で ${ }^{239+240} \mathrm{Pu}$ が検出された。平成 29 年度の調査では，全試料が検出下限値以下であった。

また，後述する 2．解析調査の「1）対照海域放射能調査」において実施した原子力発電所等，核燃料サイクル施設及び東電福島第一原発の影響が及ばない海域で採取された海産生物試料の一部の ${ }^{137} \mathrm{Cs}$ 濃度レベルと核燃海域で採取された海産生物試料の濃度レベルは

同程度であった。
なお，核燃海域はコンブ等の産地であるため，2．解析調査の「2）（2）海水及び海産生物の ${ }^{129}$ I 濃度」において，コンブ類に対する影響についても検討を行ったが，平成 29 年度 の ${ }^{129} \mathrm{I}$ 濃度は，平成 $19, ~ 20$ 年度のアクティブ試験による影響を除く，事故前の調査時のレ ベル ${ }^{3)}$ と同じであった。

さらに，後述する2．解析調査の「2）（4）原子力発電所等周辺海域における海水及び海産生物の ${ }^{3} \mathrm{H}$ 濃度調査」では，核燃料サイクル施設及び東電福島第一原発事故による影響 が懸念される核燃海域で採取し，ガンマ線核種を分析した海産生物と同一筋肉試料の一部 を分取して，${ }^{3} \mathrm{H}$ 濃度を分析した。その結果から，同事故の影響は見られなかった。

（2）海底土試料

核燃海域の海底土試料の ${ }^{90} \mathrm{Sr}, ~{ }^{137} \mathrm{Cs}$ 及び ${ }^{239+240} \mathrm{Pu}$ 濃度は，これまでの調査結果から発電所海域と同様に，採取を行った海域の底質の性状によってその濃度が変化する傾向が認め られた。これら 3 種の放射性核種濃度は，底質が砂質の場合には比較的低くなり，泥質あ るいはシルト質などの場合には比較的高くなる傾向がある。この傾向は，特に ${ }^{90} \mathrm{Sr}$ で顕著 であり，砂質の場合はほとんどで検出されなかった。平成 29 年度の調査でも，いずれの核種濃度も事故前 5 年間の範囲内かそれ以下であった。

また，後述する2．解析調査の「1）対照海域放射能調査」において実施した原子力発電所等，核燃料サイクル施設及び東電福島第一原発の影響が及ばない海域で採取された海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度との比較を行ったところ，核燃海域は対照海域と同しベルであった。こ のことから，検出された放射性 Cs 濃度は東電福島第一原発事故前の 1950～60年代の大気圏内核実験による影響であると考えられる。ただし，${ }^{137} \mathrm{Cs}$ 濃度は変動が見られ，その要因 として海底土の粒径，有機物等の違い，すなわち海底土の性状の違いによることがこれま での調查の結果からわかっている ${ }^{1)}$ 。その詳細は 2．解析調査の「2）（3）海洋放射能調査海域周辺における放射性 Cs の形態別分布に関わる詳細調査」に示している。

このほか，2．解析調查の「1）対照海域放射能調查」において，核燃海域における海底土の ${ }^{239+240} \mathrm{Pu}$ 濃度について比較検討を行った結果から，核燃海域の海底土中の ${ }^{239+240} \mathrm{Pu}$ 濃度は対照海域と同程度の濃度レベルであること，さらに2．解析調查の「2）（1）海洋環境 における ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 及び ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比モニタリング」において検討した日本全国の海底土の ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比が事故前の値と一致していることから，東電福島第一原発事故の影響は見られなかったと考えられる。

（3）海水試料

核燃海域の海水試料の ${ }^{3} \mathrm{H}, ~{ }^{90} \mathrm{Sr}, ~{ }^{137} \mathrm{Cs}$ 及び ${ }^{239+240} \mathrm{Pu}$ 濃度の経年変化をみると，${ }^{3} \mathrm{H}$ 濃度は，表層水及び下層水とも平成 3 年度からほぼ一定の濃度水準で推移してきたが，平成 19 年度及び平成 20 年度には表層水試料の一部に一時的な濃度上昇が確認された（最大値：

1． $3 \mathrm{~Bq} / \mathrm{L}$ ）。これは，青森県六ケ所村に建設が進む使用済み核燃料再処理施設のアクティブ試験に伴ら管理放出によるものと推定され，平成 21 年度には同試験開始前（平成 13 年度 から平成17年度）の濃度水準に戻っており，平成29年度の濃度水準も同試験開始前に得 られた調査結果の変動範囲内であった。
${ }^{90} \mathrm{Sr}$ 濃度は，平成 23 年度前期調査の 1 測点（福島県沖合に近い測点 22）で採水した表層水が東電福島第一原発事故に起因するとみられる濃度（ $13 \mathrm{mBq} / \mathrm{L}$ ）であったが，表層水及 び下層水とも平成 3 年度から平成 28 年度まで漸減傾向を示しており，平成 29 年度も平成 28 年度と同程度の濃度水準であった。
${ }^{137} \mathrm{Cs}$ 濃度は，表層水及び下層水とも平成 3 年度から平成 22 年度までは漸減傾向を示し てきたが，平成 23 年度は東電福島第一原発事故を受けて顕著な濃度上昇が確認され，測点 22 の表層水で $370 \mathrm{mBq} / \mathrm{L}$ であった。

平成 24 年度は，表層水及び下層水とも濃度水準は平成 23 年度に比心減少傾向にあり，平成 $25 \sim 29$ 年度は表層水及び下層水とも一部を除きほぼ事故前 5 年間の濃度水準となっ た。
${ }^{239+240} \mathrm{Pu}$ 濃度は，表層水及び下層水とも平成 3 年度から平成 22 年度まで穏やかな漸減傾向を示しており，平成 29 年度もその傾向は維持され，平成 28 年度と同程度の濃度水準で あった。

また，核燃海域の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{239+240} \mathrm{Pu}$ について， 2 。解析調査の「1）対照海域放射能調査」 において比較検討を行ったところ，すべての海域において対照海域と同程度の濃度レベル であったことから，東電福島第一原発事故の影響はないと考えられる。
なお，後述する2．解析調査の「2）（2）海水及び海産生物の ${ }^{129} \mathrm{I}$ 濃度」では，東電福島第一原発事故並びに核燃料サイクル施設の本格稼働による影響が懸念される核燃海域で海水試料を採取し ${ }^{129} \mathrm{I}$ 濃度の分析を行った結果，いずれの海域でも同事故の影響は見られ なかった。

引用文献

1）Tsukada，H．，Takeda，A．，Hisamatsu，S．and Inaba，J．（2008）．Concentration and specific activity of fallout ${ }^{137} \mathrm{C}$ s in extracted and particle－size fractions of cultivated soils．J．Environ．Radioact．，99，875－881．
2）Takata，H．，Kusakabe，M．，Inatomi，N．and Ikenoue，T．（2018）．Appearances of Fukushima Daiichi Nuclear Power Plant Derived ${ }^{137} \mathrm{Cs}$ in the Coastal Waters Around Japan：Results from the Marine Monitoring off Nuclear Power Plants and Facilities in Japan（1983 to 2016）．Environ．Sci．Technol．，52，2629－ 2637.

3）海洋生物環境研究所（2017）。平成 28 年度原子力施設等防災対策等委託費（海洋環境に おける放射能調査及び総合評価）事業 調査報告書。

図 I－6－1 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（北海道海域）

図 I－6－2 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（青森海域）

図 I－6－3 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（宮城海域）

図 I－6－4 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（福島第一海域•福島第二海域）

図 I－6－5 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（茨城海域）

図 I－6－6 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（静岡海域）

図 I－6－7 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（新潟海域）

図 I－6－8 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（石川海域）

図 I－6－9 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（福井第一海域•福井第二海域）

図 I－6－10 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（島根海域）

図 I－6－11 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（愛媛海域）

図 I－6－12 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（佐賀海域）

図 I－6－13 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（鹿児島海域）

昭和60年度以降，新潟，福井第一及び福井第二海域において採取点を変更した。

図 I－6－14 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（全海域）

図 I－6－15 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（北海道海域）

図 I－6－16 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（青森海域）

図 I－6－17 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（宮城海域）

図 I－6－18 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（福島第一海域•福島第二海域）

図 I－6－19 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（茨城海域）

図 I－6－20 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（静岡海域）

図 I－6－21 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（新潟海域）

図 I－6－22 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（石川海域）

図 I－6－23 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（福井第一海域•福井第二海域）

試料採取年度
注）ND：検出下限値以下を示す。
図 I－6－24 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（島根海域）

図 I－6－25 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（愛媛海域）

図 I－6－26 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（佐賀海域）

図 I－6－27 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（鹿児島海域）

図 I－6－28 海水試料の ${ }^{90} \mathrm{Sr}$ 濃度経年変化（全海域•表層水）

図 I－6－29 海水試料の ${ }^{90} \mathrm{Sr}$ 濃度経年変化（全海域•下層水）

図 I－6－30 海水試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（全海域•表層水）

図 I－6－31 海水試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（全海域•下層水）

図 I－6－32 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（北海道海域•表層水）

図 I－6－33 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（北海道海域•下層水）

図 I－6－34 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（青森海域•表層水）

図 I－6－35 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（青森海域•下層水）

図 I－6－36 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（宮城海域•表層水）

図 I－6－37 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（宮城海域•下層水）

図 I－6－38 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化 （福島第一海域•福島第二海域•表層水）

図 I－6－39 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化 （福島第一海域•福島第二海域•下層水）

図 I－6－40 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（茨城海域•表層水）

図 I－6－41 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（茨城海域•下層水）

図 I－6－42 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（静岡海域•表層水）

図 I－6－43 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（静岡海域•下層水）

図 I－6－44 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（新潟海域•表層水）

図 I－6－45 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（新潟海域•下層水）

図 I－6－46 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（石川海域•表層水）

図 I－6－47 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（石川海域•下層水）

図 I－6－48 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化 （福井第一海域•福井第二海域•表層水）

図 I－6－49 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化 （福井第一海域•福井第二海域•下層水）

図 I－6－50 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（島根海域•表層水）

図 I－6－51 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（島根海域•下層水）

図 I－6－52 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（愛媛海域•表層水）

図 I－6－53 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（愛媛海域•下層水）

図 I－6－54 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（佐賀海域•表層水）

図 I－6－55 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（佐賀海域•下層水）

図 I－6－56 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（鹿児島海域•表層水）

図 I－6－57 海水試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の経年変化（鹿児島海域•下層水）

図 I－6－58 海産生物試料の ${ }^{90} \mathrm{Sr}$ 濃度経年変化（核燃海域）

図 I－6－59 海産生物試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（核燃海域）

図 I－6－60 海産生物試料の ${ }^{239+240} \mathrm{Pu}$ 濃度経年変化（核燃海域）

図 I－6－61 海底土試料の ${ }^{90} \mathrm{Sr}$ 濃度経年変化（核燃海域）

図 I－6－62 海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（核燃海域）

図 I－6－63 海底土試料の ${ }^{239+240} \mathrm{Pu}$ 濃度経年変化（核燃海域）

図 I－6－64 海水試料の ${ }^{3} \mathrm{H}$ 濃度経年変化（核燃海域•表層水）

図 I－6－65 海水試料の ${ }^{3} \mathrm{H}$ 濃度経年変化（核燃海域•下層水）

図 I－6－66 海水試料の ${ }^{90} \mathrm{Sr}$ 濃度経年変化（核燃海域•表層水）

図 I－6－67 海水試料の ${ }^{90} \mathrm{Sr}$ 濃度経年変化（核燃海域•下層水）

図 I－6－68 海水試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（核燃海域•表層水）

図 I－6－69 海水試料の ${ }^{137} \mathrm{Cs}$ 濃度経年変化（核燃海域•下層水）

図 I－6－70 海水試料の ${ }^{239+240} \mathrm{Pu}$ 濃度経年変化（核燃海域•表層水）

図 I－6－71 海水試料の ${ }^{239+240} \mathrm{Pu}$ 濃度経年変化（核燃海域•下層水）

2．解析調査

1）対照海域放射能調査
（1）対照海域における海水•海底土試料の放射能調査
（1）はじめに
本調査は原子力発電所等，核燃料サイクル施設及び東電福島第一原発の影響が及ばない海域において放射性核種濃度を把握することにより，海洋放射能調査等で得られた結果と の比較評価を行う。そこで，日本海中央部に位置する大和堆海域，黒潮の影響がある四国沖海域，親潮の影響がある襟裳沖海域（核燃沖及び釧路沖の海域を含む）に原子力施設の影響を受けない海域（以下「対照海域」という。）を設け，海水•海底土試料を採取し放射性核種濃度等を調査した。

（2）方法

i．試料採取

対照海域の調查測点を図 I－2－1－1－1に示す。また，採取位置及び採取日等を表 I－ $2-1-1-$ 1 に示す。平成 29 年度は大和堆海域（測点YR1及びYR4），四国沖海域（測点KC1），襟裳沖海域（5月：襟裳沖（E11），核燃沖（T2），釧路沖（K2）；10月：襟裳沖，核燃沖）にお いて，海水試料はすべての海域で，海底土試料は大和堆海域（測点YR4）と四国沖海域で採取した（図 I－ $2-1-1-1$ ）。海水採取には大量採水器（容量360L）を用いた。採取後，${ }^{90} \mathrm{Sr}$ ，放射性Cs（以下 ${ }^{134} \mathrm{Cs}, ~{ }^{137} \mathrm{Cs}$ の両核種を指す。）及び ${ }^{239+240} \mathrm{Pu}$ 分析用にポリエチレン容器に分取した。この海水 1 L に対して濃硝酸 2 mL を添加し，分析まで泠暗所にて保存した。海底土採取にはボックス型採泥器（ $45 \mathrm{~cm} \times 45 \mathrm{~cm} \times 50 \mathrm{~cm}$ ）を用いた。採取後，表面から 3 cm までの層を切り出し，試料に供した。

表 I－2－1－1－1 対照海域の測点，調査日，採取位置及び水深

海域	測点	調査日	採取位置				水深
				N		E	（m）
襟裳沖	E11	平成 29 年 5 月 20 日	41°	12．0＇	143°	20．0＇	2，090
		平成 29 年10月27日					
	T2	平成 29 年 5 月 8 日	41°	34．0＇	141°	24．0＇	250－257
		平成 29 年10月28日					
	K2	平成 29 年 5 月 21 日	42°	00．0＇	144°	30．0＇	1，669
四国沖	KC1	平成 29 年 5 月 7 日	32°	13．0＇	132°	26．0＇	1，733
大和堆	YR1	平成 29 年 6 月 17 日	40°	50.0 ＇	$138{ }^{\circ}$	00．0＇	3， 564
	YR4	平成 29 年 6 月 18 日	39°	50．0＇	135°	50．0＇	1，208

ii．分析

放射能測定法シリーズに基づいて海水•海底土試料の ${ }^{90} \mathrm{Sr}$ ，${ }^{239+240} \mathrm{Pu}$ ，放射性 Cs の分析 （ γ 線計測による ${ }^{134} \mathrm{Cs}$ と ${ }^{137} \mathrm{Cs}$ の弁別分析）を行った。なお， 1000 m 以深から採取された海

水の ${ }^{90} \mathrm{Sr}$ ，放射性 Cs の分析は，より高い精度を求めるため，「1．海洋放射能調査海域周辺 での調査」では 50 L の供試量を 100 L 以上とし，更に計測時間を延長した。

図 I－2－1－1－1 対照海域における調査測点。襟裳沖海域（襟裳沖：E11，核燃沖：T2，釧路沖：K2），大和堆海域（YR1，YR4），四国沖海域（KC1）。

（3）結果

i．海水試料

平成 29 年度の対照海域における放射性核種濃度の鉛直分布について，海域毎にまとめ た結果を表 I－2－1－1－2に，東電福島第一原発事故前の平成 $18 \sim 22$ 年度の放射性核種の結果も併せて図 I－ $2-1-1-2 \sim 4$ にそれぞれ示す。なお，事故前における放射性 Cs の分析は， より高い精度を求めるため β 線計測で定量しているため，${ }^{137} \mathrm{Cs}$ と ${ }^{134} \mathrm{Cs}$ との弁別は行って いない。しかし，事故前の平成 22 年度までは ${ }^{134} \mathrm{Cs}$ は検出されていないため，検出された放射性Cs は全て ${ }^{137} \mathrm{Cs}$ と見なせる。したがって，本調査では事故前の放射性 Cs を ${ }^{137} \mathrm{Cs}$ と して，平成 29 年度の結果との比較に用いた。なお，平成 29 年度において ${ }^{134} \mathrm{Cs}$ が検出され た海水試料は全 36 検体のうち 4 検体であった。

（i）放射性Cs

大和堆海域において，${ }^{134} \mathrm{Cs}$ 濃度が検出されたのは測点 YR1 の表層であった。その濃度は $0.063 \mathrm{mBq} / \mathrm{L}$ であった。 ${ }^{137} \mathrm{Cs}$ 濃度は測点 YR1 が $0.23 \sim 1.5 \mathrm{mBq} / \mathrm{L}$ ，YR4 が $0.58 \sim 1.4 \mathrm{mBq} / \mathrm{L}$ の範囲であった。平均値は， $0.97 \mathrm{mBq} / \mathrm{L}$（YR1）， $1.1 \mathrm{mBq} / \mathrm{L}$（YR4）であった。 両測点において ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布は表層で最大値を取った後，海底直上の深度まで緩やかに減少した。

両測点における各深度の ${ }^{137} \mathrm{Cs}$ 濃度を比較したところ， 250 m 層では測点 YR1 及び YR4 で $1.2 \mathrm{mBq} / \mathrm{L}, ~ 500 \mathrm{~m}$ 層でそれぞれ $1.1 \mathrm{mBq} / \mathrm{L}$ と，同じであった。これらのことから，大和堆海域の測点間の違いは確認されなかった。

襟裳沖海域において，${ }^{134} \mathrm{Cs}$ 濃度が検出されたのは測点 E11 及び T2 の表層であった。そ の濃度は測点 E11が $0.077 \mathrm{mBq} / \mathrm{L}$（5月）T2 が $0.075 \mathrm{mBq} / \mathrm{L}$（ 10 月）であった。 5 月における ${ }^{137} \mathrm{Cs}$ 濃度は，測点 E11 が $0.016 \sim 1.6 \mathrm{mBq} / \mathrm{L}, ~ \mathrm{~T} 2$ が $1.2 \mathrm{mBq} / \mathrm{L}$（表層のみ），K2 が $0.028 ~$ $1.1 \mathrm{mBq} / \mathrm{L}$ の範囲であった。 平均値は， $0.58 \mathrm{mBq} / \mathrm{L}$（E11）， $0.37 \mathrm{mBq} / \mathrm{L}$（K2）であった。 10月における ${ }^{137} \mathrm{Cs}$ 濃度は，測点 E11 が $0.030 \sim 1.5 \mathrm{mBq} / \mathrm{L}, ~ T 2$ が $1.6 \mathrm{mBq} / \mathrm{L}$（表層のみ）の範囲であった。平均値は， $0.53 \mathrm{mBq} / \mathrm{L}$（E11）であった。襟裳沖海域における全測点での ${ }^{137} \mathrm{Cs}$濃度は，平均値が $0.53 \mathrm{mBq} / \mathrm{L}$（5月）， $0.68 \mathrm{mBq} / \mathrm{L}$（ 10 月）であった。また，測点 E 11 及び K2 において ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布は大和堆海域と同様に5月及び 10 月ともに深さ方向に減少 した。
襟裳沖海域での5月における各深度の ${ }^{137} \mathrm{Cs}$ 濃度を比較したところ，表層の 3 測点では $1.1 \sim 1.6 \mathrm{mBq} / \mathrm{L}$ であり $0.5 \mathrm{mBq} / \mathrm{L}$ の差があった。これは表層の水塊の違いによると考えられ る。一方， 250 m 層では測点 E11 及び K2 で $1.1 \mathrm{mBq} / \mathrm{L}$ 及び $0.71 \mathrm{mBq} / \mathrm{L}$ であり $0.39 \mathrm{mBq} / \mathrm{L}$ の差 があった。 750 m 層以深の濃度は同程度であった。加えて，各調査時期で ${ }^{137} \mathrm{Cs}$ 濃度を比較 すると，表層において測点 E11 が $1.6 \mathrm{mBq} / \mathrm{L}$（5月）及び $1.5 \mathrm{mBq} / \mathrm{L}$（ 10 月），測点 T 2 が 1． $2 \mathrm{mBq} / \mathrm{L}$（ 5 月）及び $1.6 \mathrm{mBq} / \mathrm{L}$（ 10 月）であり $0.1 \sim 0.4 \mathrm{mBq} / \mathrm{L}$ の差があった。 250 m 層以深 において，測点 E11 における各深度での差は無かった。

四国沖海域の測点 KC1 において，${ }^{134} \mathrm{Cs}$ 濃度が検出されたのは 250 m 層で， $0.17 \mathrm{mBq} / \mathrm{L}$ であ った。また，${ }^{137} \mathrm{Cs}$ 濃度は $0.027 ~ 2.3 \mathrm{mBq} / \mathrm{L}$ の範囲であり，平均値は， $0.83 \mathrm{mBq} / \mathrm{L}$ であった。測点 KC1 における ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布は， 250 m 層で極大値（ $2.3 \mathrm{mBq} / \mathrm{L}$ ）を示し，それ以深で減少した。なお，このように 250 m 層で極大値を示す現象は，昨年度も同様にみられて いる。
（ ii ）${ }^{90} \mathrm{Sr}$
大和堆海域において，${ }^{90} \mathrm{Sr}$ 濃度は測点 YR1 が $0.17 \sim 1.1 \mathrm{mBq} / \mathrm{L}, ~ Y R 4$ が $0.44 \sim 1.2 \mathrm{mBq} / \mathrm{L}$ の範囲であった。平均値は， $0.80 \mathrm{mBq} / \mathrm{L}$（YR1）， $0.87 \mathrm{mBq} / \mathrm{L}$（YR4）であった。大和堆海域にお ける全測点での ${ }^{90} \mathrm{Sr}$ 濃度の平均値は $0.83 \mathrm{mBq} / \mathrm{L}$ であった。 ${ }^{90} \mathrm{Sr}$ 濃度の鉛直分布は深さ方向 に減少した。また，両測点における各深度の ${ }^{90} \mathrm{Sr}$ 濃度を比較したところ，表層では $1.1 \mathrm{mBq} / \mathrm{L}$（ YR 1 ）及び $1.2 \mathrm{mBq} / \mathrm{L}$（YR4）であり $0.1 \mathrm{mBq} / \mathrm{L}$ の差があり， 250 m 層では $1.1 \mathrm{mBq} / \mathrm{L}$（ YR 1 ）及び $0.94 \mathrm{mBq} / \mathrm{L}$（YR4）であり $0.16 \mathrm{mBq} / \mathrm{L}$ の差があったものの，また 500 m 層ではそれぞれ $0.93 \mathrm{mBq} / \mathrm{L}$ 及び $0.89 \mathrm{mBq} / \mathrm{L}$ であり，その差は $0.1 \mathrm{mBq} / \mathrm{L}$ 以下であり，大和堆海域の測点間の違いは確認されなかった。

襟裳沖海域において， 5 月における ${ }^{90} \mathrm{Sr}$ 濃度は，測点 E11 が ND～0．83mBq／L，T2 が $0.75 \mathrm{mBq} / \mathrm{L}$（表層のみ），K2 が ND～0． $79 \mathrm{mBq} / \mathrm{L}$ の範囲であった。 NDを除いた平均値は，
$0.41 \mathrm{mBq} / \mathrm{L}(\mathrm{E} 11), ~ 0.37 \mathrm{mBq} / \mathrm{L}$（K2）であった。 10 月における ${ }^{90} \mathrm{Sr}$ 濃度は，測点 E11 が ND $~ 0.75 \mathrm{mBq} / \mathrm{L}, ~ \mathrm{~T} 2$ が $0.93 \mathrm{mBq} / \mathrm{L}$（表層のみ）の範囲であった。ND を除いた平均値は， $0.35 \mathrm{mBq} / \mathrm{L}$ （E11）であった。襟裳沖海域における全測点での ${ }^{90} \mathrm{Sr}$ 濃度は，NDを除いた平均値が $0.42 \mathrm{mBq} / \mathrm{L}$（5月）， $0.45 \mathrm{mBq} / \mathrm{L}$（10月）であった。また，測点 E11及びK2において ${ }^{90} \mathrm{Sr}$ 濃度 の鉛直分布は大和堆海域と同様に5月及び10月ともに深さ方向に減少した。

襟裳沖海域での5月の3測点における各深度の値を比較したところ，表層では $0.75 \sim$ $0.83 \mathrm{mBq} / \mathrm{L}$ であり $0.08 \mathrm{mBq} / \mathrm{L}$ の差があった。 250 m 層では測点 E 11 及び K 2 で $0.61 \mathrm{mBq} / \mathrm{L}$ 及 び $0.77 \mathrm{mBq} / \mathrm{L}$ であり $0.16 \mathrm{mBq} / \mathrm{L}$ の差があった。 750 m 層では測点 E 11 及び K2 でそれぞれ $0.32 \mathrm{mBq} / \mathrm{L}$ 及び $0.16 \mathrm{mBq} / \mathrm{L}$ であり，それ以深においても同程度であった。加えて，調査時期で値を比較すると，表層において測点 E11 が $0.83 \mathrm{mBq} / \mathrm{L}$（ 5 月）及び $0.75 \mathrm{mBq} / \mathrm{L}$（ 10 月），測点 T 2 が $0.75 \mathrm{mBq} / \mathrm{L}$（5月）及び $0.93 \mathrm{mBq} / \mathrm{L}$（ 10 月）であり $0.08 ~ 0.18 \mathrm{mBq} / \mathrm{L}$ の差があっ たものの， 1000 m 層以深では測点 E 11 が各深度での差は $0.1 \mathrm{mBq} / \mathrm{L}$ 以下であった。

四国沖海域において，${ }^{90} \mathrm{Sr}$ 濃度は ND $\sim 0.93 \mathrm{mBq} / \mathrm{L}$ の範囲であり，平均値が $0.55 \mathrm{mBq} / \mathrm{L}$ で あった。 ${ }^{90} \mathrm{Sr}$ 濃度は表層から下層にかけて減少し，${ }^{137} \mathrm{Cs}$ 濃度で観測された 250 m 層での極大値は確認されなかった。海水中でのSrはCs と同様な性質を持っていることから，両者 は同様な海洋循環過程を有しているが ${ }^{1)}$ ，濃度変化を観測する程の下層への ${ }^{90} \mathrm{Sr}$ 輸送が確認されなかったと考えられる。すなわち，事故前は ${ }^{137} \mathrm{Cs}$ 濃度と ${ }^{90} \mathrm{Sr}$ 濃度の比が約 1 であ った ${ }^{1)}$ が，東電福島第一原発事故による海洋への ${ }^{90} \mathrm{Sr}$ 放出量が $90 \sim 900 \times 10^{12} \mathrm{~Bq}^{2)}$ と，${ }^{137} \mathrm{Cs}$放出量に比べて 2 桁以上低いことから，${ }^{137} \mathrm{Cs}$ と同様に冬季鉛直混合によって下層へ運ばれ たとしても，計算上は事故前 $(1.6 \mathrm{mBq} / \mathrm{L})^{1)}$ に対して， $0.01 \mathrm{mBq} / \mathrm{L}$ 程度の濃度上昇となるた め，極大値形成に対してほとんど無視できることに起因していると考えられる。
（iii）${ }^{239+240} \mathrm{Pu}$
大和堆海域において，${ }^{239+240} \mathrm{Pu}$ 濃度は，測点 YR1 が $0.0051 \sim 0.029 \mathrm{mBq} / \mathrm{L}$ ，YR4 が 0.0030 $~ 0.031 \mathrm{mBq} / \mathrm{L}$ の範囲であった。平均値は測点 YR1 が $0.022 \mathrm{mBq} / \mathrm{L}$ ，YR4 が $0.018 \mathrm{mBq} / \mathrm{L}$ であ つた。大和堆海域における全測点での ${ }^{239+240} \mathrm{Pu}$ 濃度の平均値は $0.020 \mathrm{mBq} / \mathrm{L}$ であった。 ${ }^{239+240} \mathrm{Pu}$ 濃度の鉛直分布は，測点 YR1 が 1000 m 層で極大値（ $0.029 \mathrm{mBq} / \mathrm{L}$ ）を示し，それ以深 で減少したほか，測点 YR4 で深さ方向に増加した。PuはCs やSrとは，海洋では異なる振 る舞いをすることが分かっている ${ }^{3)}$ 。同核種は海水中の粒子に吸着しやすい性質を有して おり，また，沈降粒子とともに下層へと運ばれるため，深度方向に対しては増加する傾向 が見られ，500～1，000m層で極大値を示したのち，徐々に減少すると考えられる。

襟裳沖海域において，5月における ${ }^{239+240} \mathrm{Pu}$ 濃度は，測点 E11 が ND～0． $025 \mathrm{mBq} / \mathrm{L}$ ，K2 が $0.0035 \sim 0.027 \mathrm{mBq} / \mathrm{L}$ の範囲であった。NDを除いた平均値は， $0.018 \mathrm{mBq} / \mathrm{L}$（E11）， $0.017 \mathrm{mBq} / \mathrm{L}$ （K2）であった。10月における ${ }^{239+240} \mathrm{Pu}$ 濃度は，測点 E11 が ND～0． $027 \mathrm{mBq} / \mathrm{L}$ の範囲であっ た。NDを除いた平均値は， $0.020 \mathrm{mBq} / \mathrm{L}$（E11）であった。襟裳沖海域における全測点での ${ }^{239+240} \mathrm{Pu}$ 濃度は，NDを除いた平均値が $0.018 \mathrm{mBq} / \mathrm{L}$（5月，測点 E 11 および K 2 ）， $0.020 \mathrm{mBq} / \mathrm{L}$（ 10

月，測点 E11のみ）であった。また，測点E11 及びK2において ${ }^{239+240} \mathrm{Pu}$ 濃度の鉛直分布は，大和堆海域と同様に5月及び10月ともに $750 \sim 1,000 \mathrm{~m}$ 層に極大値を示しそれ以深で減少 した。更に，5月の 2 測点における各深度の値を比較したところ，表層では ND～0． $0035 \mathrm{mBq} / \mathrm{L}$ と，両者とも検出下限値（ $0.003 \sim 0.004 \mathrm{mBq} / \mathrm{L}$ ）付近であり，有意な差が確認されなかった。深度 250 m 以深においてはほぼ同じであった。加えて，調査時期で比較すると，表層におい て測点E11が5月及び10月ともにNDであった。表層より深い採水層では各深度での差は $0.1 \mathrm{mBq} / \mathrm{L}$ 以下であったことから，襟裳沖海域において，測点間及び調査時期の違いは確認出来なかった。

四国沖海域において，${ }^{239+240} \mathrm{Pu}$ 濃度は $\mathrm{ND} \sim 0.028 \mathrm{mBq} / \mathrm{L}$ の範囲であり，平均値が $0.020 \mathrm{mBq} / \mathrm{L}$ であった。濃度は表層から下層にかけて増加し，750m 層で極大値を示した後，減少した。

表 I－2－1－1－2 対照海域における放射性核種濃度結果

ND は検出下限値以下を示す。また空欄は分析対象外を示す。

図 I－2－1－1－2 対照海域における海水試料の ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布

図 I－2－1－1－3 対照海域における海水試料の ${ }^{90} \mathrm{Sr}$ 濃度の鉛直分布

図 I－2－1－1－4 対照海域における海水試料の ${ }^{239+240} \mathrm{Pu}$ 濃度の鉛直分布

ii．海水試料における海洋放射能調査との比較

平成 29 年度に実施した海洋放射能調査（発電所海域（5月）及び核燃海域（5，10月）） で得られた海水試料の ${ }^{137} \mathrm{Cs}$ 及び ${ }^{90} \mathrm{Sr}$ 濃度範囲について，各対照海域の結果と比較した。 その際，対照海域では，表層と表層よりも深い層の 2 つに分けたほか，海洋放射能調査で の調査海域を以下のように区別した。
－親潮の影響がある海域として東日本海域（襟裳沖海域との比較）：
青森，宮城，福島第一，福島第二，茨城，核燃
－日本海側に位置する海域として日本海海域（大和堆海域との比較）：
北海道，新潟，石川，福井第一，福井第二，島根
－黒潮の影響がある海域として西日本海域（四国沖海域との比較）：
静岡, 愛媛, 佐賀, 鹿児島

また，海水試料の ${ }^{239+240} \mathrm{Pu}$ は核燃海域でのみ観測を行っているため，すべての対照海域 と比較を行った。海域毎にまとめた結果について，${ }^{137} \mathrm{Cs}$ 及び ${ }^{90} \mathrm{Sr}$ を表 $\mathrm{I}-2-1-1-3$ に，${ }^{239+240} \mathrm{Pu}$ を表 I－2－1－1－4に示す。

表 I－2－1－1－3 発電所海域，核燃海域及び対照海域における海水試料の ${ }^{137} \mathrm{Cs}$ 及び ${ }^{90} \mathrm{Sr}$濃度範囲及び平均値

調査海域			採取層	${ }^{137} \mathrm{Cs} \quad(\mathrm{mBq} / \mathrm{L})$			${ }^{90} \mathrm{Sr} \quad(\mathrm{mBq} / \mathrm{L})$			
			最小	最大	平均	最小	最大	平均		
東日本海域	発電所海域及び核燃 海域（5－6月）	青森，宮城，福島第 一，福島第二，茨城，核燃		表層	1.4	4.0	2.1	0.50	1.0	0.82
			下層	0.66	2.9	1． 8	0.24	1.1	0.68	
	対照海域	襟裳沖（5月）	表層	1.1	1.6	1． 3	0.75	0.83	0．79	
			表層より深い層	0.016	1.1	0.30	ND	0.77	0.29	
	核燃海域（10月）		表層	1.6	2.2	1.9	0.65	1.0	0.81	
			下層	ND	2.2	1． 5	ND	0.96	0.59	
	対照海域	襟裳沖（10 月）	表層	1.5	1.6	1.55	0.75	0.93	0.84	
			表層より深い層	0.030	1.1	0.34	ND	0.61	0.25	
日本海海域	発電所海域	北海道，新潟，石川，福井第一，福井第二，島根	表層	1.6	2.4	2.0	0.66	1.1	0.84	
			下層	1.1	2.4	1． 7	0.57	1.0	0.79	
	対照海域	大和堆	表層	1.4	1.5	1.5	1.1	1.2	1.2	
			表層より深い層	0.23	1． 2	0.90	0.17	1.1	0.75	
西日本海域	発電所海域	静岡，愛媛，佐賀，鹿児島	表層	1.3	2.9	2.1	0.68	1.1	0.84	
			下層	1.4	2.9	2． 2	0.52	1.1	0.80	
	対照海域	四国沖	表層＊	1.5			0.93			
			表層より深い層	0.027	2.3	0． 70	ND	0.88	0． 46	

ND は検出下限値以下を示す。
＊測点 KC1 の表層のみの結果であるため，最小，最大及び平均値は求めなかった。

表 I－2－1－1－4 核燃海域及び対照海域における海水試料の ${ }^{239+240} \mathrm{Pu}$ 濃度範囲及び平均値

調査海域		採取層	${ }^{239+240} \mathrm{Pu} \quad(\mathrm{mBq} / \mathrm{L})$			
		最小	最大	平均		
核燃海域（5－6 月）			表層	0.0025	0.0058	0.0037
		下層	0.0024	0.021	0.011	
核燃海域（10月）		表層	0.0026	0.0045	0.0030	
		下層	0.0027	0． 023	0.011	
対照海域	襟裳沖（5月）	表層	ND	0.0035	0.0035	
		表層より深い層	0.011	0.027	0.019	
	襟裳沖（10月）	表層	ND			
		表層より深い層	0.011	0.027	0.020	
	大和堆	表層	0.0030	0.0051	0.0041	
		表層より深い層	0.015	0.031	0.025	
	四国沖	表層	ND			
		表層より深い層	0.010	0.028	0.020	

ND は検出下限値以下を示す。

（i）放射性Cs

東日本海域の表層における海水試料の ${ }^{137} \mathrm{Cs}$ 濃度は，発電所海域が $1.4 \sim 4.0 \mathrm{mBq} / \mathrm{L}$（5－6月）および $1.6 \sim 2.2 \mathrm{mBq} / \mathrm{L}$（10月：核燃海域のみ），対照海域（襟裳沖）が $1.1 \sim 1.6 \mathrm{mBq} / \mathrm{L}$
（5月）及び $1.5 \sim 1.6 \mathrm{mBq} / \mathrm{L}$（10月）であり，発電所海域が比較的高かった。平均値は，発電所海域が $2.1 \mathrm{mBq} / \mathrm{L}$（5－6月）及び $1.9 \mathrm{mBq} / \mathrm{L}$（10月：核燃海域のみ），対照海域（襟裳沖）が $1.3 \mathrm{mBq} / \mathrm{L}$（5月）及び $1.6 \mathrm{mBq} / \mathrm{L}$（10月）であり，発電所海域が $0.5 \sim 0.8 \mathrm{mBq} / \mathrm{L}$ 高か った。発電所海域で高い ${ }^{137} \mathrm{Cs}$ 濃度が見られたのは宮城，福島第一，福島第二及び茨城海域 であり，東電福島第一原発周辺の海域であることから，同原発事故由来の放射性 Cs による影響であると考えられる。

日本海海域及び西日本海域の表層における海水試料の ${ }^{137} \mathrm{Cs}$ 濃度は，発電所海域が $1.6 \sim$ 2． $4 \mathrm{mBq} / \mathrm{L}$（日本海海域）及び $1.3 \sim 2.9 \mathrm{mBq} / \mathrm{L}$（西日本海域），対照海域が $1.4 \sim 1.5 \mathrm{mBq} / \mathrm{L}$（大和堆）及び $1.5 \mathrm{mBq} / \mathrm{L}$（四国沖）であり，発電所海域が比較的高かった。平均値は，発電所海域が $2.0 \mathrm{mBq} / \mathrm{L}$（日本海海域）及び $2.1 \mathrm{mBq} / \mathrm{L}$（西日本海域），対照海域（大和堆）が $1.5 \mathrm{mBq} / \mathrm{L}$ であり，発電所海域が $0.5 \sim 0.6 \mathrm{mBq} / \mathrm{L}$ 高かった。その要因は，事故由来の放射性 Cs が日本海海域及び西日本海域沿岸部に到達し，事故前よりも僅かではあるが上昇しているためで あると考えられる ${ }^{4)}$ 。また，大和堆海域の表層においては，事故の影響を示す ${ }^{134} \mathrm{Cs}$ の検出 は平成 28 年度では見られなかったが，平成 29 年度は検出されたことから，日本海におい ては事故の影響が及ぶ海域の広がりが確認された。

東日本海域の下層あるいは表層より深い層における海水試料の ${ }^{137} \mathrm{Cs}$ 濃度は，発電所海

域が $0.66 \sim 2.9 \mathrm{mBq} / \mathrm{L}$（5－6月）および ND～2． $4 \mathrm{mBq} / \mathrm{L}$（10月：核燃海域のみ）であり，対照海域（襟裳沖）が $0.016 \sim 1.1 \mathrm{mBq} / \mathrm{L}$（5月）及び $0.030 \sim 1.1 \mathrm{mBq} / \mathrm{L}$（ 10 月）であり，発電所海域が比較的高かった。NDを除いた平均値は，発電所海域が $1.8 \mathrm{mBq} / \mathrm{L}$（5－6月）及び $1.5 \mathrm{mBq} / \mathrm{L}$ （10月：核燃海域のみ），対照海域が $0.30 \mathrm{mBq} / \mathrm{L}$（ $5-6$ 月）及び $0.34 \mathrm{mBq} / \mathrm{L}$（ 10 月）であり，発電所海域が対照海域に比べて $1.2 \sim 1.5 \mathrm{mBq} / \mathrm{L}$ 高かった。高い ${ }^{137} \mathrm{Cs}$ 濃度が見られたのは表層と同様に宮城，福島第一，福島第二及び茨城海域である。これらの海域における下層 の深度は 200 m 未満であり，また事故による放射性 Cs 存在の指標である ${ }^{134} \mathrm{Cs}$ が見られた （本報告書「II 東電福島第一原発周辺海域のモニタリング」の章を参照）。一方，対照海域では表層より深い層における採取深度が $250 \mathrm{~m} \sim 2125 \mathrm{~m}$ であり発電所海域に比べて深く， これらの採取層においては事故前から ${ }^{137} \mathrm{Cs}$ 濃度が低い傾向にある。一方，平成 29 年度調査では ${ }^{134} \mathrm{Cs}$ 濃度が検出された（表 I $-2-1-1-2$ ）。 5 月における測点 E 11 の表層は，${ }^{134} \mathrm{Cs}$ を含んだ津軽暖流の影響を受けた水塊の可能性がある。一方，測点K2 及び 10 月における測点E11の表層は親潮の影響をうけた表層水であるため，${ }^{134} \mathrm{Cs}$ が検出されなかったと考えら れる。これらのことから，事故の影響が及ばない海域として，本調査で行った対照海域の親潮の影響の強い襟裳沖海域が発電所海域及び核燃海域の比較検討として重要なバックグ ラウンドを得られる海域であることが分かった。

日本海海域及び西日本海域の下層あるいは表層より深い層における海水試料の ${ }^{137} \mathrm{Cs}$ 濃度は，発電所海域が $1.1 \sim 2.4 \mathrm{mBq} / \mathrm{L}$（日本海海域）及び $1.4 \sim 2.9 \mathrm{mBq} / \mathrm{L}$（西日本海域），対照海域が $0.23 \sim 1.2 \mathrm{mBq} / \mathrm{L}$（大和堆）及び $0.027 ~ 2.3 \mathrm{mBq} / \mathrm{L}$（四国沖）であった。また，ND を除いた平均値は，発電所海域が $1.7 \mathrm{mBq} / \mathrm{L}$（日本海海域）及び $2.2 \mathrm{mBq} / \mathrm{L}$（西日本海域）と，対照海域（大和堆： $0.90 \mathrm{mBq} / \mathrm{L}$ ，四国沖： $0.70 \mathrm{mBq} / \mathrm{L}$ ）に比べ $0.8 \sim 1.5 \mathrm{mBq} / \mathrm{L}$ 高かった。そ の要因は，東日本海域の下層あるいは表層より深い層における ${ }^{137} \mathrm{Cs}$ 濃度と同様に，発電所海域では下層の採取深度が対照海域に比べて浅いことにより事故の影響が見られた（後述「I 2．2）（3）（3）海水中の放射性 Cs」）が，一方，対照海域では採取深度が 250 m 以深と深く，同事故前から ${ }^{137} \mathrm{Cs}$ 濃度が低い傾向にあること（図 I－2－1－1－2），更に四国沖海域の 250 m 層 を除いて事故由来の ${ }^{134} \mathrm{Cs}$ が検出されなかったことにあると考えられる。

（ ii ）${ }^{90} \mathrm{Sr}$

東日本海域の表層における海水試料の ${ }^{90} \mathrm{Sr}$ 濃度は，発電所海域が $0.50 \sim 1.0 \mathrm{mBq} / \mathrm{L}$（5－6月）および $0.65 \sim 1.0 \mathrm{mBq} / \mathrm{L}$（10月：核燃海域のみ），対照海域（襟裳沖）が $0.75 \sim 0.83 \mathrm{mBq} / \mathrm{L}$ （5月）及び $0.75 \sim 0.93 \mathrm{mBq} / \mathrm{L}$（10月）であり，発電所海域及び対照海域の ${ }^{90} \mathrm{Sr}$ 濃度範囲 は同程度であった。平均値は，発電所海域が $0.82 \mathrm{mBq} / \mathrm{L}$（ $5-6$ 月）及び $0.81 \mathrm{mBq} / \mathrm{L}$（ 10 月：核燃海域のみ），対照海域が $0.79 \mathrm{mBq} / \mathrm{L}$（5月）及び $0.84 \mathrm{mBq} / \mathrm{L}$（10月）であり，発電所海域と対照海域との平均値の差は $0.1 \mathrm{mBq} / \mathrm{L}$ 以下であった。

日本海海域及び西日本海域の表層における海水試料の ${ }^{90} \mathrm{Sr}$ 濃度は，発電所海域が $0.66 \sim$ $1.1 \mathrm{mBq} / \mathrm{L}$（日本海海域）及び $0.68 \sim 1.1 \mathrm{mBq} / \mathrm{L}$（西日本海域），対照海域が $1.1 \sim 1.2 \mathrm{mBq} / \mathrm{L}$
（大和堆）及び $0.93 \mathrm{mBq} / \mathrm{L}$（四国沖）であり，発電所海域及び対照海域の ${ }^{90} \mathrm{Sr}$ 濃度範囲は同程度であった。平均値は，発電所海域が $0.84 \mathrm{mBq} / \mathrm{L}$（日本海海域）及び $0.84 \mathrm{mBq} / \mathrm{L}$（西日本海域），対照海域（大和堆）が $1.2 \mathrm{mBq} / \mathrm{L}$ であり，対照海域が発電所海域に比べ $0.36 \mathrm{mBq} / \mathrm{L}$高かった。対照海域の表層における ${ }^{90} \mathrm{Sr}$ 濃度の平均値は（図 I $-2-1-1-6$ ），東電福島第一原発事故前の5年間（平成 $18 \sim 22$ 年度）及び同事故後の 5 年間（平成 $23 \sim 27$ 年度）にか けて，漸減傾向を示すほか，平成 28 年度は，この濃度範囲内であったことから，同事故に よる影響は見られなくなったと考えられる。さらに，発電所海域においても同様な結果を示すことから，平成 29 年度調査で見られた発電所海域及び対照海域における ${ }^{90} \mathrm{Sr}$ 濃度の違いは，自然変動の範囲内であると考えられる。

東日本海域の下層あるいは表層より深い層における海水試料の ${ }^{90} \mathrm{Sr}$ 濃度は，発電所海域 が $0.24 \sim 1.1 \mathrm{mBq} / \mathrm{L}$（5－6月）およびND～0． $96 \mathrm{mBq} / \mathrm{L}$（ 10 月：核燃海域のみ）であり，対照海域（襟裳沖）が $\mathrm{ND} \sim 0.77 \mathrm{mBq} / \mathrm{L}$（5月）及び $\mathrm{ND} \sim 0.61 \mathrm{mBq} / \mathrm{L}$（10月）であった。その平均値は，発電所海域が $0.68 \mathrm{mBq} / \mathrm{L}$（ 5 月）及び $0.59 \mathrm{mBq} / \mathrm{L}$（ 10 月：核燃海域のみ），対照海域 が $0.29 \mathrm{mBq} / \mathrm{L}$（5月）及び $0.25 \mathrm{mBq} / \mathrm{L}$（10月）と，発電所海域が対照海域に比べて $0.39 ~$ $0.43 \mathrm{mBq} / \mathrm{L}$ 高かった。この要因として，${ }^{137} \mathrm{Cs}$ 濃度の結果と同様に，発電所海域及び核燃海域では下層の深度は， 200 m 未満が多い一方，東日本海域では表層より深い層の採取層が 250 $~ 2125 \mathrm{~m}$ と深く，これらの採取層における ${ }^{90} \mathrm{Sr}$ 濃度がいまだに低い（図 I $-2-1-1-3$ ）こと によると考えられた。

日本海海域及び西日本海域の下層あるいは表層より深い層における海水試料の ${ }^{90} \mathrm{Sr}$ 濃度 は，発電所海域が $0.57 \sim 1.0 \mathrm{mBq} / \mathrm{L}$（日本海海域）及び $0.52 \sim 1.1 \mathrm{mBq} / \mathrm{L}$（西日本海域），対照海域が $0.17 \sim 1.1 \mathrm{mBq} / \mathrm{L}$（大和堆）及び $\mathrm{ND} \sim 0.88 \mathrm{mBq} / \mathrm{L}$（四国沖）であった。平均値は，発電所海域が $0.84 \mathrm{mBq} / \mathrm{L}$（日本海海域）及び $0.80 \mathrm{mBq} / \mathrm{L}$（西日本海域），対照海域が $0.75 \mathrm{mBq} / \mathrm{L}$ （大和堆）及び $0.46 \mathrm{mBq} / \mathrm{L}$（四国沖）であり，発電所海域が $0.04 \sim 0.34 \mathrm{mBq} / \mathrm{L}$ 高かった。 その要因として，東日本海域と同じく対照海域では表層よりも深い層の採取層が発電所海域に比べて深く，${ }^{90} \mathrm{Sr}$ 濃度が東電福島第一原発事故の影響は及んでいないためである。

以上より，発電所及び核燃海域の ${ }^{90} \mathrm{Sr}$ 濃度は対照海域よりも高いが，濃度分布は事故前 と同じである ${ }^{1)}$ ことから，両海域の ${ }^{90} \mathrm{Sr}$ は過去の核実験由来の Sr であり，東電福島第一原発事故の影響がないことが分かった。従って，対照海域及び核燃海域は重要なバックグ ラウンドを得られる海域であることが明らかとなった。

（iii）${ }^{239+240} \mathrm{Pu}$

表層における海水試料の ${ }^{239+240} \mathrm{Pu}$ 濃度は，核燃海域が $0.0025 \sim 0.0058 \mathrm{mBq} / \mathrm{L}$（5月）及び $0.0026 \sim 0.0045 \mathrm{mBq} / \mathrm{L}$（10月），対照海域が ND～0．0035mBq／L（襟裳沖：5月），ND（襟裳沖： 10 月）， $0.0030 \sim 0.0051 \mathrm{mBq} / \mathrm{L}$（大和堆）及び ND（四国沖）であった。NDを除いた平均値 は，核燃海域が $0.0037 \mathrm{mBq} / \mathrm{L}$（5月）及び $0.0030 \mathrm{mBq} / \mathrm{L}$（10月），対照海域が 0.0035 （襟裳沖）$\sim 0.0041 \mathrm{mBq} / \mathrm{L}$（大和堆）であり，発電所海域と対照海域との差は見られなかった。

下層あるいは表層より深い層における ${ }^{239+240} \mathrm{Pu}$ 濃度は，核燃海域が $0.0024 ~ 0.021 \mathrm{mBq} / \mathrm{L}$ （5月）及び ND $\sim 0.021 \mathrm{mBq} / \mathrm{L}$（ 10 月），対照海域が $0.011 \sim 0.027 \mathrm{mBq} / \mathrm{L}$（襟裳沖： 5 月）， $0.015 \sim 0.027 \mathrm{mBq} / \mathrm{L}$（襟裳沖： 10 月）， $0.015 \sim 0.031 \mathrm{mBq} / \mathrm{L}$（大和堆）及び $0.010 \sim 0.028 \mathrm{mBq} / \mathrm{L}$ （四国沖）であった。平均値は，核燃海域が $0.011 \mathrm{mBq} / \mathrm{L}$（5月）及び $0.012 \mathrm{mBq} / \mathrm{L}$（ 10 月），対照海域が $0.019 \mathrm{mBq} / \mathrm{L}$（襟裳沖：5月）， $0.020 \mathrm{mBq} / \mathrm{L}$（襟裳沖： 10 月）， $0.025 \mathrm{mBq} / \mathrm{L}$（大和堆）及び $0.020 \mathrm{mBq} / \mathrm{L}$（四国沖）であり，対照海域が発電所海域に比べて $0.0060 \sim 0.013 \mathrm{mBq} / \mathrm{L}$高かった。対照海域において高い値が見られたのは，上述した ${ }^{137} \mathrm{Cs}$ や ${ }^{90} \mathrm{Sr}$ の濃度傾向と は異なり，表層より深い層における ${ }^{239+240} \mathrm{Pu}$ 濃度が深度方向に対して増加することが挙げ られる。この要因として，核燃海域では 22 測点のらち，下層の大半の深度が 200 m 未満で ある一方，対照海域では表層よりも深い層の採取層が 250 m 以上と核燃海域に比べて深く， これらの採取層における ${ }^{239+240} \mathrm{Pu}$ 濃度が高いことから，両海域における ${ }^{239+240} \mathrm{Pu}$ 濃度に違 いが見られたと考えられる。ただし，核燃海域及び全ての対照海域における下層あるいは表層よりも深い層の濃度分布は事故前と同じである ${ }^{3,5)}$ ことから，両海域の ${ }^{239+240} \mathrm{Pu}$ は過去の核実験由来の Pu であり，東電福島第一原発事故の影響がないことが分かった。従っ て，対照海域及び核燃海域は重要なバックグラウンドを得られる海域であることが明らか となった。

採取年度
図 I－2－1－1－6 対照，西日本及び日本海海域における表層海水の ${ }^{90} \mathrm{Sr}$ 濃度平均値の時采列分布

iii．海底土試料

対照海域の大和堆及び四国沖海域の海底土中の放射性核種濃度を図 I－2－1－1－7 に示す。平成 29 年度の対照海域では ${ }^{134} \mathrm{Cs}$ 濃度が不検出であった。 ${ }^{137} \mathrm{Cs}$ 濃度は大和堆海域（測点 YR4）が $3.1 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，四国沖海域（測点 KC1）が $3.6 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であった。 ${ }^{90} \mathrm{Sr}$ 濃度 は大和堆海域（測点 YR4）が $0.40 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，四国沖海域（測点 KC1）が $0.41 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であった。 ${ }^{239+240} \mathrm{Pu}$ 濃度は大和堆海域（測点 YR4）が $0.71 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，四国沖海域
（測点 KC1）が $2.1 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であった。両海域において ${ }^{137} \mathrm{Cs}$ 濃度，${ }^{90} \mathrm{Sr}$ 濃度及び ${ }^{239+240} \mathrm{Pu}$濃度に約 1 桁の違いが見られたが，これは採取場所による濃度の違いが考えられる。

Zheng and Yamada ${ }^{3}$ によると，大和堆海域の測点 YR4よりおよそ北東に位置する測点 CM19（北緯 41 度 21 分，東経 137 度 20 分）において，平成 10 年 8 月に採取した海底土中 （表層 3 cm まで）の ${ }^{239+240} \mathrm{Pu}$ 濃度が $0.43 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であり，本調査の結果とほぼ同じ値 であったのに対して，測点 YR4 から南に位置する測点 CM20（北緯 37 度 44 分，東経 135 度 14 分）において採取した海底土中（表層 3 cm まで）の ${ }^{239+240} \mathrm{Pu}$ 濃度が $1.2 \sim 2.6 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であり，本調査の測点 YR4 の結果に比べ数倍高い値を示した。

四国沖海域においては，平成 18 年度の測点（KC2，KC4，KC6）において ${ }^{239+240} \mathrm{Pu}$ 濃度が $1.2 \sim 3.2 \mathrm{~Bq} / \mathrm{kg}$－乾燥土 ${ }^{4}$ ）と，本調查での KC1 における ${ }^{239+240} \mathrm{Pu}$ 濃度と同程度であった。一方，平成 $20 \sim 22$ 年度における測点 KC1 と同じ西日本海域に位置する静岡，愛媛及び鹿児島海域における ${ }^{239+240} \mathrm{Pu}$ 濃度が $0.8 \mathrm{~Bq} / \mathrm{kg}$－乾燥土未満であることから ${ }^{4)}$ ，採取場所が大き く変わることによって ${ }^{239+240} \mathrm{Pu}$ 濃度が変動することが分かった。なお，調査を開始した平成 15 年度以降，両海域において，${ }^{137} \mathrm{Cs}, ~{ }^{90} \mathrm{Sr}$ 及び ${ }^{239+240} \mathrm{Pu}$ 濃度の大きな変化は認められな かった。これらのことから，海底土においても大和堆海域及び四国沖海域は，核燃料サイ クル施設及び東電福島第一原発事故の影響が及んでいないことが分かった。

図 I－2－1－1－7 対照海域における海底土中の ${ }^{90} \mathrm{Sr}, ~{ }^{137} \mathrm{Cs}, ~{ }^{239+240} \mathrm{Pu}$ 濃度の時系列変化。 ${ }^{90} \mathrm{Sr}$ は平成19年度より開始。YR4：大和堆海域，KC1：四国沖海域。
iv．海底土における海洋放射能調査との比較
平成 29 年度における海底土の ${ }^{137} \mathrm{Cs}$ 濃度範囲について，発電所海域及び核燃海域の結果 を海水同様に東日本海域，日本海海域及び西日本海域に区分して，大和堆海域及び四国沖海域と比較した。また ${ }^{90} \mathrm{Sr}$ 及び ${ }^{239+240} \mathrm{Pu}$ は核燃海域でのみ観測を行っているため，両対照

海域と比較した。海域毎にまとめた結果について，放射性 Cs を表 I $-2-1-1-5$ に，${ }^{90} \mathrm{Sr}$ 及 び ${ }^{239+240} \mathrm{Pu}$ を表 I－ $2-1-1-6$ に示す。

東電福島第一原発事故以降，東日本海域及び日本海海域の一部（新潟海域）においては， ${ }^{134} \mathrm{Cs}$ 濃度が検出されていること（後述「I 2．2）（3）（2）海底土中の放射性 Cs 」），また，対照海域に比べて高い ${ }^{137} \mathrm{Cs}$ 濃度範囲及び平均値であり，これらは東電福島第一原発事故の影響のためであると考えられる。西日本海域においては，対照海域の値に比べて低かった。西日本海域の海底土の多くは砂質であり放射性 Cs を含みにくい性質である一方，対照海域は泥質であり放射性 Cs を含みやすい性質 ${ }^{5)}$ であることから，海底土の性状の違いによ り ${ }^{137} \mathrm{Cs}$ 濃度に差が生じたと考えられる。一方，核燃海域の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{239+240} \mathrm{Pu}$ 濃度範囲及び平均値は，対照海域と同程度であった。

表 I－2－1－1－5 発電所海域，核燃海域及び対照海域における海底土試料の ${ }^{134} \mathrm{Cs}$ 及び ${ }^{137} \mathrm{Cs}$濃度の範囲及び平均値

調査海域		${ }^{134} \mathrm{Cs}$			${ }^{137} \mathrm{Cs}$		
		（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）					
		最小	最大	平均	最小	最大	平均
東日本海域	青森，宮城，福島第一，福島第二，茨城，核燃	ND	10	4． 3	ND	80	12
日本海海域	北海道，新潟，石川，福井第一，福井第二，島根	ND	ND	ND	ND	8.6	3.1
西日本海域	静岡，愛媛，佐賀，鹿児島	ND	ND	ND	ND	2.2	1.4
対照海域	大和堆＊1	ND			3.1		
	四国沖＊2	ND			3.6		

＊1 測点 YR4のみの結果であるため，最小，最大及び平均値は求めなかった。
＊2測点 KC1 のみの結果であるため，最小，最大及び平均値は求めなかった。
ND は検出下限値以下を示す。

表 I－2－1－1－6 発電所海域，核燃海域及び対照海域における海底土試料の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{239+240} \mathrm{Pu}$ 濃度の範囲及び平均値

調査海域		${ }^{90} \mathrm{Sr}$			${ }^{239+240} \mathrm{Pu}$		
		（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）					
		最小	最大	平均	最小	最大	平均
東日本海域	核燃	ND	0.37	0.28	0.31	5.0	1.5
対照海域	大和堆	0． 40			0.71		
	四国沖	0． 41			2.1		

ND は検出下限値以下を示す。

（4）まとめ

大和堆，四国沖及び襟裳沖海域で採取した海水試料と，大和堆及び四国沖海域で採取し た海底土試料について，放射性 Cs，${ }^{90} \mathrm{Sr}$ 及び ${ }^{239+240} \mathrm{Pu}$ の人工放射性核種濃度を分析した。 その結果から，発電所海域及び核燃海域における当該海域のバックグラウンドの放射性核種濃度を把握した。

対照海域における海水中の放射性 Cs 濃度及び ${ }^{90} \mathrm{Sr}$ 濃度は，一部（四国沖海域における 250 m 層の放射性 Cs 濃度）を除き，東電福島第一原発事故前の5年間（平成 $18 \sim 22$ 年度）

の範囲内であり，また，これらの核種の平均値は発電所海域及び核燃海域の調査結果と同程度となった。対照海域における海水の ${ }^{239+240} \mathrm{Pu}$ 濃度は，表層が核燃海域の値と同程度か それよりも低く，表層より深い層が核燃海域の値よりも高かった。これは，事故前 5 年間 の範囲内にあり同程度の鉛直分布を示していることから，過去の核実験由来の Pu である と示唆される。一方，対照海域における海底土中の放射性核種濃度は，事故前 5 年間の範囲内であった。

以上のことから，本調査で設置した対照海域は，発電所海域及び核燃海域における海水及び海底土の放射性核種濃度について，そのバックグラウンドを把握するうえで有効であ ることが示唆される。

また，発電所海域及び核燃海域における海水中の放射性 Csを比較した結果から，東電福島第一原発事故による影響のあった海域においても対照海域と同じ濃度レベルに近づきつ つあることが分かった。海水中の ${ }^{90} \mathrm{Sr}$ 及び ${ }^{239+240} \mathrm{Pu}$ については，すべての海域において対照海域と同程度であった。このほか，海底土において，宮城，福島第一，福島第二，茨城及び新潟海域で東電福島第一原発事故の影響による放射性 Cs 濃度が検出されており，対照海域に比べ高い値であった。しかし，それ以外の海域，並びに核燃海域の海底土中の ${ }^{90} \mathrm{Sr}$及び ${ }^{239+240} \mathrm{Pu}$ 濃度は対照海域と同じ濃度範囲であることから，東電福島第一原発事故の影響はないことが分かった。

引用文献

1）及川真司•渡部輝久•高田兵衛•鈴木千吉•中原元和•御園生 淳（2013）。日本周辺の海水，海底土，海産生物に含まれる ${ }^{90} \mathrm{Sr}$ 及び ${ }^{137} \mathrm{Cs}$ 濃度の長期的推移一チェルノブ イリ事故前から福島第一原子力発電所事故後まで一。分析化学，62，455－474．
2）Casacuberta，N．，Masqué，P．，Garcia－Orellana，J．，Garcia－Tenorio，R．and Buesseler．K．O．（2013）．${ }^{90} \mathrm{Sr}$ and ${ }^{89} \mathrm{Sr}$ in seawater off Japan as a consequence of the Fukushima Dai－ichi nuclear accident．Biogeosciences 10，3649－3659．
3）Zheng，J．，and Yamada，M．（2005）．Vertical distributions of ${ }^{239+240} \mathrm{Pu}$ activities and ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ atom ratios in sediment cores：implications for the sources of Pu in the Japan Sea．Sci．Total．Environ．，340，199－211．
4）Takata，H．，Kusakabe，M．，Inatomi，N．and Ikenoue，T．（2018）．Appearances of Fukushima Daiichi Nuclear Power Plant Derived ${ }^{137}$ Cs in the Coastal Waters Around Japan：Results from the Marine Monitoring off Nuclear Power Plants and Facilities in Japan（1983 to 2016）．Environ．Sci．Technol．，52，2629－2637．

5）Oikawa，S．，Watabe，T．and Takata，H．（2015）．Distributions of Pu isotopes in seawater and bottom sediments in the coast of the Japanese archipelago before and soon after the Fukushima Dai－ichi Nuclear Power Station accident．J． Environ．Radioact．，142，113－123．
6) Tsukada, H., Takeda, A., Hisamatsu, S. and Inaba, J. (2008). Concentration and specific activity of fallout ${ }^{137} \mathrm{C}$ s in extracted and particle-size fractions of cultivated soils. J. Environ. Radioact., 99, 875-881.
（2）対照海域における海産生物試料の放射能調査

（1）はじめに

日本海中央部に位置する大和堆海域，黒潮の影響がある四国沖海域，親潮の影響がある襟裳沖海域（核燃沖及び釧路沖の海域を含む）に原子力施設の影響を受けない海域（以下「対照海域」という。）を設け，海産生物試料を採取し放射性核種濃度等を調查するととも に，海洋放射能調査で得られた結果との比較を行った。対照海域の調査測点を図 I－2－1－1－ 1 に示す。

平成 29 年度は，大和堆海域ではスルメイカ，ホッコクアカエビ，四国沖海域ではスルメ イカ，ゴマサバ，襟裳沖海域ではマイワシ，シロザケを収集して分析試料に供した。

（2）方法

スルメイカは個体ごとに生殖器の形状により雌雄を確認した後，部位別に分け，筋肉（外套膜，腕足，頭部）と肝臓を分析に供した。漁獲された時期が 4～9月の試料を前期，10～ 12 月の試料を後期と区分し，以降の文中で記載した。ホッコクアカエビは腹肢に卵を抱え ていた雌を分析対象とし，頭胸部，腹部，卵に分け，側甲，腹肢，尾肢及び尾節を取り除 き，筋肉のみとした腹部を分析に供した。マイワシ，シロザケは三枚に下ろし，筋肉を分析に供した。それぞれを乾燥，灰化し，ガンマ線放出核種及び ${ }^{239+240} \mathrm{Pu}$ の分析を行った。

（3）結果

i．スルメイカ

平成 29 年度の分析結果を表 I－2－1－2－1 及び表 I－2－1－2－2 に示す。
対照海域の 3 海域，海洋放射能調査の福井第一海域及び核燃海域で採取されたスルメイ カ筋肉中の ${ }^{137} \mathrm{Cs}$ 濃度の経年変化を図 I－2－1－2－1に示す。平成 29 年度のスルメイカ筋肉中 の ${ }^{137} \mathrm{Cs}$ 濃度は大和堆海域で $0.052 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，四国沖海域で $0.039 \mathrm{~Bq} / \mathrm{kg}$－生鮮物であり， ${ }^{134} \mathrm{Cs}$ は検出されなかった。平成 29 年度のスルメイカ筋肉中の ${ }^{137} \mathrm{Cs}$ 濃度は東電福島第一原発事故前の濃度と同程度であった。襟裳沖海域では，不漁のためスルメイカを入手できな かった。
平成 23 年度は東電福島第一原発事故の影響を受けて，いずれの海域においても事故前の最大値を超える ${ }^{137} \mathrm{Cs}$ 濃度が観測されたが，対照海域においては事故後に観測された最大值が事故前の最大値と同程度であり，大きな変化は認められなかった。核燃海域では，平成 15 年度から事故前までの最大値は四国沖海域で $0.045 \mathrm{~Bq} / \mathrm{kg}-$ 生鮮物，大和堆海域で $0.065 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，福井第一海域で $0.060 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，核燃海域で $0.041 \mathrm{~Bq} / \mathrm{kg}$－生鮮物 であり，襟裳沖海域では全ての試料で検出下限値以下であった。海洋放射能調查の調査海域である福井第一海域及び核燃海域では事故後に $0.1 \mathrm{~Bq} / \mathrm{kg}$－生鮮物を超える値が観測され た。
対照海域及び核燃海域で採取したスルメイカ筋肉中の ${ }^{239+240} \mathrm{Pu}$ 濃度の経年変化を図 I－2－

1－2－2に示す。平成29年度では，スルメイカ筋肉中の ${ }^{239+240} \mathrm{Pu}$ 濃度は大和堆海域と四国沖海域で検出下限値以下であった。核燃海域では平成 27，28，29年度のスルメイカ筋肉中の ${ }^{239+240} \mathrm{Pu}$ 濃度は検出下限値以下であったため，平成 29 年度の対照海域との比較は出来なか ったが，平成 26 年度の核燃海域におけるスルメイカ筋肉中の ${ }^{239+240} \mathrm{Pu}$ 濃度との間には差は認められなかった。

図 I－2－1－2－1 対照海域，福井第一海域及び核燃海域におけるスルメイカ筋肉中の ${ }^{137} \mathrm{Cs}$濃度の比較

図 I－2－1－2－2 対照海域と核燃海域におけるスルメイカ筋肉中の ${ }^{239+240} \mathrm{Pu}$ 濃度の比較

表 I－2－1－2－1 対照海域（大和堆海域）における海産生物試料の放射性核種濃度
（単位： $\mathrm{Bq} / \mathrm{kg}$－生鮮物）

＊1 外套長の計測値を示す。
＊2 ND は検出下限値以下を示す。
＊3－は未測定を示す。
＊4 試料の放射性核種濃度は，漁獲日に補正した値で，誤差は計数誤差である。

表 I－2－1－2－2 対照海域（四国沖海域）における海産生物試料の放射性核種濃度
（単位： $\mathrm{Bq} / \mathrm{kg}$－生鮮物）

調	査		海 域	対	海 域（	国沖海域）
試 料				スルメイカ		ゴマサバ
漁獲 年 月 日				平成 29 年 9 月 11 日		平成 29 年 9 月 13 日
	獲	㖪	場 所	室戸岬東沿岸		高知市沖（土佐湾中央部）
漁 法				定置網		一本釣り
試 料 の個体 数				73		35
平均全長 士標準偏差最小／最大（ cm ）				$\begin{gathered} 23.0 \pm 1.2^{* 1} \\ 20.5 / 25.6 \end{gathered}$		$\begin{aligned} & 39.6 \pm 1.3 \\ & 36.2 / 42.0 \end{aligned}$
平均体重士標準偏差最小／最大（g）				$\begin{aligned} & 277.5 \pm 47.9 \\ & 180.1 / 411.6 \end{aligned}$		$\begin{aligned} & \text { 607. } 1 \pm 56.6 \\ & 462.5 / 709.1 \end{aligned}$
供	試		部 位	筋 肉	肝臓	筋 肉
灰			分（\％）	1.93	1． 62	1． 38
分 析 供 試 量 （g）			γ 核種	70.65	－	82.08
			${ }^{239+240} \mathrm{Pu}$	19．31	16． 25	13． 83
$\begin{array}{lll} \text { 測 } & & \text { 定 } \\ \text { 年 } & \text { 日 } & \text { 日 } \end{array}$			γ 核種	平成 29 年 10 月 4 日	－	平成29年10月5日
			${ }^{239+240} \mathrm{Pu}$	平成 29 年 10 月 10 日	平成 29 年 10 月 31	平成 29 年 10 月 10 日
放 射 性 核 種 濃 度	γ		$\begin{aligned} & { }^{134} \mathrm{Cs} \\ & { }^{137} \mathrm{Cs} \end{aligned}$	$\begin{gathered} \mathrm{ND}^{* 2} \\ 0.039 \pm 0.011 \end{gathered}$	$\begin{aligned} & -* 3 \\ & - \end{aligned}$	$\begin{gathered} \text { ND } \\ 0.13 \pm 0.0094 \end{gathered}$
			その他の γ 核種	${ }^{51} \mathrm{Cr}, ~{ }^{54} \mathrm{Mn}, ~{ }^{58} \mathrm{Co}, ~{ }^{60} \mathrm{Co}, ~{ }^{59} \mathrm{Fe}, ~{ }^{65} \mathrm{Zn}, ~{ }^{95} \mathrm{Zr}, ~{ }^{95} \mathrm{Nb}, ~{ }^{103} \mathrm{Ru}, ~{ }^{106} \mathrm{Ru}, ~{ }^{110 \mathrm{~m}} \mathrm{Ag}, ~$ ${ }^{125} \mathrm{Sb}, ~{ }^{140} \mathrm{Ba} お よ ひ ゙{ }^{144} \mathrm{Ce}$ は，すべて計数誤差の 3 倍以下であった。		
	種	α	${ }^{239+240} \mathrm{Pu}$	ND	0.0010 ± 0.00017	ND
	$\begin{array}{l\|l\|} \hline \text { 自 } \\ \text { 然 } \\ \text { 放 } \\ \text { 射 } & \gamma \\ \text { 性 } \\ \text { 核 } \\ \text { 種 } & \end{array}$		${ }^{7} \mathrm{Be}$	ND	－	ND
			${ }^{40} \mathrm{~K}$	90 ± 0.68	－	120 ± 0.63
		γ	${ }^{208} \mathrm{~T} 1$	ND	－	ND
			${ }^{214} \mathrm{Bi}$	ND	－	ND
			${ }^{228} \mathrm{Ac}$	ND	－	ND

＊1 外套長の計測値を示す。
＊2 ND は検出下限値以下を示す。
＊3－は未測定を示す。
＊4 試料の放射性核種濃度は，漁獲日に補正した値で，誤差は計数誤差である。

表 I－2－1－2－3 対照海域（襟裳沖海域）における海産生物試料の放射性核種濃度
（単位： $\mathrm{Bq} / \mathrm{kg}$－生鮮物）

＊1 漁獲高減少によりスルメイカをマイワシに変更した。
＊2 NDは検出下限値以下を示す。
＊3試料の放射性核種濃度は，漁獲日に補正した値で，誤差は計数誤差である。

対照海域及び核燃海域で採取したスルメイカ肝臓中の ${ }^{239+240} \mathrm{Pu}$ 濃度の経年変化を図 I－2－ 1－2－3に示す。また，海洋放射能調査の核燃海域で得られたスルメイカ肝臓の ${ }^{239+240} \mathrm{Pu}$ 濃度 を表 I－2－1－2－4に示す。

平成 29 年度のスルメイカ肝臓中の ${ }^{239+240} \mathrm{Pu}$ 濃度は，大和堆海域で $0.027 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，四国海域で $0.0010 \mathrm{~Bq} / \mathrm{kg}$－生鮮物であった。この値は平成 $13 \sim 28$ 年度の調査結果の範囲内 であり，対照海域と核燃海域（ $0.00046 \sim 0.0058 \mathrm{~Bq} / \mathrm{kg}$－生鮮物）との間に濃度差は認められ なかった。スルメイカ肝臓中の ${ }^{239+240} \mathrm{Pu}$ 濃度はスルメイカ筋肉中の ${ }^{239+240} \mathrm{Pu}$ 濃度に比べ 1 桁以上高く，最大値は大和堆海域で認められ，平成13年度に調査を開始して以来，同じ傾向 が見られた。また，核燃海域におけるスルメイカ肝臓中の ${ }^{239+240} \mathrm{Pu}$ 濃度は前期に漁獲され た群の濃度が後期に比べて高く，この傾向は平成 13 年度に調査を開始して以来続いてい ることから，漁期の違いによるものと考えられる。

表 I－2－1－2－4 核燃海域におけるスルメイカ肝臓の ${ }^{239+240} \mathrm{Pu}$ 濃度

採取海域	漁期	試料採取日	${ }^{239+240} \mathrm{Pu}$	
核燃海域	前期	平成 29 年 7 月 14 日	0.0058	\pm
核燃海域	前期	平成 29 年 6 月 9 日	0.0033	\pm
核燃海域	後期	平成 29 年 11 月 15 日	0.00035	
核燃海域	後期	平成 29 年 10 月 21 日	0.0013	\pm

図 I－2－1－2－3 対照海域と核燃海域におけるスルメイカ肝臓中の ${ }^{239+240} \mathrm{Pu}$ 濃度の比較

ii ．ホッコクアカエビ

分析結果を表 I－2－1－2－1に示す。
平成 29 年度における大和堆海域試料の ${ }^{137} \mathrm{Cs}$ 濃度は $0.049 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，${ }^{239+240} \mathrm{Pu}$ 濃度は検出下限値以下であった（図 I－2－1－2－4）。平成 29 年度は石川海域では，不漁のためホッ コクアカエビを入手できなかった。平成 29 年度の大和堆海域試料の ${ }^{137} \mathrm{Cs}$ 濃度は平成 28 年度以前の石川海域試料の ${ }^{137} \mathrm{Cs}$ 濃度と同程度であった（図 I－2－1－2－4）。

- 大和堆海域 ${ }^{137} \mathrm{Cs}$ Δ 石川海域 ${ }^{137} \mathrm{Cs}$ ■ 大和堆海域 ${ }^{239+240} \mathrm{Pu}$

図 I－2－1－2－4 対照海域（大和堆海域）と石川海域におけるホッコクアカエビの放射性核種濃度

iii．ゴマサバ

分析結果を表 I－2－1－2－2 に示す。
平成 29 年度における四国沖海域試料の ${ }^{137} \mathrm{Cs}$ 濃度は $0.13 \mathrm{~Bq} / \mathrm{kg}$－生鮮物で，${ }^{134} \mathrm{Cs}$ は検出さ れず，${ }^{137} \mathrm{Cs}$ 濃度は平成 27 年度に核燃海域で採取されたゴマサバおよび平成 29 年度に青森海域で採取されたゴマサバと同程度であった。四国沖海域におけるゴマサバの ${ }^{137} \mathrm{Cs}$ 濃度 は東電福島第一原発事故後の平成 24 年度にわずかに上昇が見られたが，大きな変化は無 く，平成 29 年度は事故前の値と同程度であった（図 I－2－1－2－5）。

－四国沖海域 ${ }^{137} \mathrm{Cs}$ －核燃海域 ${ }^{137} \mathrm{Cs}$ \triangle 青森海域 ${ }^{137} \mathrm{Cs}$

図 I－2－1－2－5 対照海域（四国沖海域），核燃海域，青森海域におけるゴマサバの ${ }^{137} \mathrm{Cs}$ 濃度

iv．シロザケ

分析結果を表 I－2－1－2－3 に示す。
平成 29 年度における襟裳沖海域試料の ${ }^{137} \mathrm{Cs}$ 濃度は $0.12 \mathrm{~Bq} / \mathrm{kg}$－生鮮物で，${ }^{134} \mathrm{Cs}$ は検出さ れなかった。平成19年度の調査開始以来，襟裳沖海域におけるシロザケの放射性Cs は核燃海域のそれに比べ低いか同程度で推移しており，東電福島第一原発事故後の濃度の上昇 は核燃海域に比べ小さかった（図 I－2－1－2－6）。

図 I－2－1－2－6 対照海域（襟裳沖海域）と核燃海域におけるシロザケの放射性 Cs 濃度

v．マイワシ

分析結果を表 I－2－1－2－3に示す。
平成 29 年度における襟裳沖海域試料の ${ }^{137} \mathrm{Cs}$ 濃度は $0.067 \mathrm{~Bq} / \mathrm{kg}$－生鮮物で，${ }^{134} \mathrm{Cs}$ は検出 されなかった。平成 29 年度は核燃海域試料の採取はなかったが，平成 28 年度の核燃海域試料の ${ }^{137} \mathrm{Cs}$ 濃度（ $0.18 \mathrm{~Bq} / \mathrm{kg}$－生鮮物）に比べて低い値であった。

（4）まとめ

大和堆海域で漁獲されたスルメイカ及びホッコクアカエビ，四国沖海域で漁獲されたス ルメイカ及びゴマサバ，襟裳沖海域で漁獲されたマイワシ及びシロザケを用いて，ガンマ線放出核種及び ${ }^{239+240} \mathrm{Pu}$ の分析を行った。また，スルメイカ肝臓の ${ }^{239+240} \mathrm{Pu}$ 分析を行った。

その結果，平成 29 年度に採取した各海産生物の筋肉中 ${ }^{137} \mathrm{Cs}$ 濃度は $0.039 \sim 0.13 \mathrm{~Bq} / \mathrm{kg}-$生鮮物であり，同じく筋肉中の ${ }^{134} \mathrm{Cs}$ 及び ${ }^{2399240} \mathrm{Pu}$ 濃度は検出されなかった。また，スルメ イカ肝臓中の ${ }^{239+240} \mathrm{Pu}$ 濃度は， $0.027 \mathrm{~Bq} / \mathrm{kg}$－生鮮物（大和堆）及び $0.0010 \mathrm{~Bq} / \mathrm{kg}$－生鮮物（四国沖）であった。これらの結果は，いずれも平成 28 年度と同程度であった。これら対照海域における各海産生物の ${ }^{137} \mathrm{Cs}$ 濃度の経年変化から，対照海域は東電福島第一原発事故の影響をわずかに受けたものの，平成 29 年度は平成 28 年度と同様に事故前の濃度まで戻っ ていることが確認された。

平成 29 年度海洋放射能調查の発電所海域の内，事故前過去 5 年間の最大値より高い ${ }^{137} \mathrm{Cs}$ が検出された 4 海域を除いた 11 海域の海産生物試料中の ${ }^{137} \mathrm{Cs}$ 濃度範囲は，ND～0．21Bq／kg－生鮮物であり，同じく核燃海域では，ND～0． $22 \mathrm{~Bq} / \mathrm{kg}$－生鮮物（ ${ }^{134} \mathrm{Cs}$ が検出されたブリ $0.31 \mathrm{~Bq} / \mathrm{kg}$－生鮮物を除く）であった。対照海域の ${ }^{137} \mathrm{Cs}$ 濃度範囲は，これらの範囲内に収ま っていた。

以上のことから，対照海域は，発電所海域及び核燃海域における海産生物試料の放射性核種濃度について，そのバックグラウンドを把握するらえで有効な海域であることが示唆 された。

2）変動要因•移行挙動調査

（1）海洋環境における ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 及び ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比モニタリング
（1）はじめに
海洋環境中の放射性 Cs 及び Pu の起源を探るらえで，${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比及び ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$原子数比が有用である。それらの原子数比は起源によって異なる。放射性 Cs の ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$原子数比は $1950 \sim 60$ 年代の大気圏内核実験由来と東電福島第一原発事故由来では異なる ことが，平成 $27, ~ 28$ 年度の本調査で明らかとなった。同様に，Puにおいても，大気圏内核実験由来と使用済み核燃料由来の ${ }^{240} \mathrm{Pu} /{ }^{2339} \mathrm{Pu}$ 原子数比が異なる。これらの原子数比の違 いは，海底土試料においてよく見られることが分かっている ${ }^{1,2)}$ 。一方，海産魚類の筋肉中に ${ }^{239+240} \mathrm{Pu}$ が検出されることは稀であるが，スルメイカではしばしば検出されており，部位別には肝臓中の濃度が最も高いが，濃度変動も見られることから，海産生物中の Pu を調査する上で重要な種である。

そこで，海底土の ${ }^{135} \mathrm{Cs} / /^{137} \mathrm{Cs}$ 原子数比，ならびに海底土及びスルメイカの肝臓について ${ }^{239+240} \mathrm{Pu}$ 濃度及びその原子数比を把握し，放射性 Cs 及び Pu の起源を特定する上で必要と なる情報を取得する。

（2）方法

i．${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比

（i）採取海域及び採取測点

海洋放射能調查の発電所海域海底土については，以下の海域の測点（計 14 試料）にお いて表層から 3 cm までの海底土を採取し，分析に供した。

- 福島第一，福島第二，新潟海域：測点 $1 \sim 4$（計 12 測点： 3 海域 $\times 4$ 測点）
- 茨城海域：測点 1 及び 2 （計 2 測点）

（ii）前処理

泠涷保存した試料を解凍した後，重量を測定し， $105^{\circ} \mathrm{C}$ で乾燥した。その後， 2 mm 孔径の ふるいにかけ，プラスチック容器（ $30 \sim 50 \mathrm{cc}$ ）に詰め，測定用試料とした。

（iii）${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ の原子数比分析

分析については，Zheng et al．${ }^{1-3)}$ に基づき，平成 27 年度の本調査で検討した方法で行 った。乾燥土に濃硝酸を加え，マイクロウェーブ分解装置によって加温加圧した後，ろ過 して残留物を除去し，1．6M硝酸溶液（溶解液）とした。次に，この溶解液にリンモリブデ ン酸アンモニウム（AMP）を加え，CsをAMPに吸着させるため，2時間程度擋汼させた後， しばらく静置させた。その後，AMPを含んだ溶解液をろ過し，ろ紙上に残った AMPに 200 mL の 0.5 M 硫酸アンモニウム溶液で洗浄した後，1．5Mアンモニウム溶液で溶かした。このア ンモニウム溶液を事前にコンディショニングを行った陰イオン交換樹脂カラムー陽イオン

交換樹脂カラムに通じ，1．5Mアンモニウム溶液，純水を順次通液させて，${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比測定の際に妨害元素となる Na，Ca，Mo，Sn，Sb を分離した後，陽イオン交換樹脂に吸着したCsを1．5M 塩酸 60 mL で溶離させた。この溶離液を蒸発乾固させ，乾固物を 1.5 M ア ンモニウム溶液にて再溶解させた。上述の陽イオン交換樹脂カラム通液から再溶解までの操作を合計 3 回繰り返し，蒸発乾固物を約 $1 \sim 2 \mathrm{~mL}$ の 0.5 M 硝酸に完全溶解させ，測定用溶液（最終溶液）とした。 ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比の測定には，四重極型の誘導結合プラズマ質量分析計（ICP－MS）（Agilent 社製，8800 ICP－QQQ）を用い，m／z 135 及び 137 についてス キャンを行った。これら試料に含まれる ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比は，一秒当たりのカウント値 （CPS）を計測して求めた。なお，測定においてはリアクションセルに 20% 亜酸化窒素と 80% ヘリウムの混合ガスを用いて，最終溶液に残存する妨害元素を除外した。

ii．${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比

（i）採取海域及び採取測点

本調查において肝臓の ${ }^{239+240} \mathrm{Pu}$ 分析に供する試料の詳細を表 I $-2-2-1-1$ に示す。
スルメイカは個体ごとに解剖し，外套膜，頭部，腕足，肝臓及び肝臓以外の内臓（生殖器官を含む）に分け，外套膜，頭部及び腕足は灰化して保存，肝臓以外の内臓，胃内容物，上下顎（烏口）及び軟甲は廃棄した。なお，核燃，福井第一及び対照海域で採取されたスル メイカ等の筋肉部の放射性Cs分析は「1，海洋放射能調査海域周辺での調査」並びに「2．解析調査 1）対照海域放射能調査」にて行っている。

海底土については以下の海域の測点において泥の表層から 3 cm までの層を採取した。
－北海道，青森，宮城，福島第一，福島第二，茨城，新潟，石川，福井第一，福井第二，島根，愛媛，佐賀及び鹿児島海域：測点 2 （計 14 測点）
－静岡海域：測点 4

（ii）分析

${ }^{239+240} \mathrm{Pu}$ 濃度の測定は核燃及び対照海域におけるスルメイカ等について行った。これまで の調査では，同一海域で同時期に漁獲された試料であれば，${ }^{239+240} \mathrm{Pu}$ 濃度はイカの大きさ・雌雄の別によらず，同程度の値となったので，${ }^{239+240} \mathrm{Pu}$ 分析に供した肝臓試料は，雌雄を分 けることなく統合し，乾燥，灰化して分析に供した。

分析は放射能測定法シリーズ「放射性セシウム分析法」及び文部科学省放射能測定法シ リーズ「プルトニウム分析法」に準拠して行い，放射性Csはゲルマニウム半導体検出器に て 70， 000 秒間，${ }^{239+240} \mathrm{Pu}$ はシリコン半導体検出器で 160,000 秒間測定した。

また，${ }^{239+240} \mathrm{Pu}$ 濃度測定済みの電着板から酸により Puを溶離し，硝酸一フッ化水素酸の混酸溶液に数分浸し，電着板表面のPuを溶離させた。溶離液を蒸発乾固させたのち，乾固

表 I－2－2－1－1 ${ }^{239+240} \mathrm{Pu}$ 分析に供した試料一覧

調査海域	種名	漁獲場所	漁獲年月日	部位
対照（大和堆）	スルメイカ	大和堆	平成 29 年 6 月 15 日	肝臓
対照（四国沖）	スルメイカ	室戸岬東沿岸	平成 29 年 9 月 11 日	肝臓
核燃	スルメイカ（1）	泊前沖	平成 29 年 7 月 14 日	肝臓
核燃	スルメイカ（2）	泊前沖	平成 29 年 11 月 15 日	肝臓
核燃	スルメイカ（3）	山田湾沖	平成 29 年 6 月 9 日	肝臓
核燃	スルメイカ（4）	山田沖	平成 29 年 10 月 21 日	肝臓

物に 8 M 硝酸を加えて溶解させた。溶解液をろ過して残留物を除去したのち， 8 M 硝酸系と した陰イオン交換樹脂カラムに通じ，8M 硝酸，2M 塩酸で順次 Fe ， Th 及び U 等を分離し，樹脂に吸着した Pu をヨウ化アンモニウム一塩酸溶液で溶離させた。溶離液を蒸発乾固させ たのち，乾固物を約 3.2 M 酢酸に溶解させ，約 3.2 M 酢酸系とした陰イオン交換樹脂カラム に通じ，さらに 3.2 M 酢酸で洗浄した。通過液及び洗浄液を合わせて蒸発乾固させ，乾固物 を約 5 mL の 1 M 硝酸に完全溶解させ，測定用溶液とした。 ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比の測定には，二重収束型の誘導結合プラズマ質量分析計（ICP－MS）を用い，m／z 239，240 及び 242 につ いてスキャンを行った。これら試料に含まれる ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比は，同位体希釈法にて求めた。

海底土については，放射能測定法シリーズ「環境試料採取法」に準じて前処理を行った のち，スルメイカ同様に放射能測定法シリーズ「プルトニウム分析法」に準じて行った。 なお，通常， $105^{\circ} \mathrm{C}$ で一昼夜乾燥させた後，土塊を磁製乳鉢で摩砕して細かくし，2mmのふ るいを通して乾燥細土を得るが，分析環境の汚染（とりわけ，134 $\mathrm{Cs}, ~{ }^{137} \mathrm{Cs}$ ）を防ぐため，湿土試料から分析を行った。測定はアルファ線スペクトロメトリーで，原則80， 000 秒の計測により ${ }^{239+240} \mathrm{Pu}$ を定量した。また，${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比の測定には，放射化学分析法によ る ${ }^{239+240} \mathrm{Pu}$ の定量を終えた海底土試料の電着板について，スルメイカ同様に，二重収束型 の ICP－MS にて ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比を求めた。

（3）結果

i ．発電所海域における海底土中の ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比

発電所周辺海域における海底土中の ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比を表 I $-2-2-1-2$ に示す。東電福島第一原発事故の影響を受けた調査海域である，福島第一及び茨城海域での試料について は，${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比が $0.323 \sim 0.567$ であり，平成 27 年度（ $0.300 \sim 0.456$ ）及び平成 28年度（ $0.459 \sim 0.555) ~ の$ 本調査の結果と同程度の値であった。また，これらの東電福島第一原発事故由来の放射性 Cs の影響を強く受けた環境試料中の範囲 $0.333 \sim 0.375^{4)}$ より

も高い比であった。これは事故前に存在する高い ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比（約 2．7）の影響 ${ }^{5)}$ を受けていると考えられる。

表 I－2－2－1－2 海底土中の ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比及び事故前の ${ }^{137} \mathrm{Cs}$ 濃度

海域	測	${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}(\mathrm{Bq} / \mathrm{kg} \text {－乾燥土）})^{* 1}$	事故前 ${ }^{137} \mathrm{Cs}$ $(\mathrm{Bq} / \mathrm{kg} \text {－乾燥土）})^{* 2}$
	点	原子数比（cps／cps）		
福島第一	1	－	23	0.9
	2	0.567 ± 0.162	69	1． 2
	3	－	60	0.9
	4	0.488 ± 0.144	28	0.9
福島第二	1	－	20	0.9
	2	0.323 ± 0.074	17	1.1
	3	－	23	1． 2
	4	0.393 ± 0.108	13	1.1
茨城	1	0.426 ± 0.060	80	1． 2
	2	0.330 ± 0.065	29	1.1
新潟	1	－	8.6	5.6
	2	－	8.1	7.0
	3	－	8.6	6.5
	4	－	2.8	2.5

－ICP－MSによる ${ }^{135} \mathrm{Cs}$ もしくは ${ }^{137} \mathrm{Cs}$ の測定値（CPS）に妨害元素の影響が認められた， もしくは誤差が 30% 以上であった。
＊1 平成 29 年度の結果
＊2 平成 $18 \sim 22$ 年度海洋環境放射能総合評価事業成果報告書の結果の平均値

ii ．スルメイカ肝臓の ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比

平成29年度に分析したスルメイカ等の肝臓等の ${ }^{239+240} \mathrm{Pu}$ 濃度及び ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 比を表 I $-2-2-1-3$ に示す。肝臓について ${ }^{239+240} \mathrm{Pu}$ 濃度は $0.0005 \sim 0.0269 \mathrm{~Bq} / \mathrm{kg}$－生鮮物の範囲であり，平均値は $0.0065 \mathrm{~Bq} / \mathrm{kg}$－生鮮物であった。これらは平成 13 年度から開始した核燃海域及び対照海域で得られた濃度と同程度であった。また，2．解析調査の「1）－（2）対照海域における海産生物の放射能調査」において得られた時系列的な核燃海域等のスルメイカ肝臓の ${ }^{239+240} \mathrm{Pu}$ 濃度推移から，漁期である $4 \sim 9$ 月の試料が $10 \sim 12$ 月の試料に比べて高く，この傾向 は平成13年度に調査を開始して以来続いていることから，漁期の違いによるものと考えら れる。更に漁獲された海域の違いもあり，特に対照海域（大和堆）では，平成13年度に調査を開始して以来，他の海域に比べて高い傾向である。

前述の通り，スルメイカ等肝臓等の ${ }^{239+240} \mathrm{Pu}$ 濃度は漁期あるいは海域により違いが見ら れるが，${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比はほぼ一定であり，平成 29 年度の全海域の平均値は $0.231 \pm$ 0.011 となった。これらは，過去のスルメイカの原子数比 0.226 ± 0.010（平成 20 年度）， 0.222 ± 0.009（平成 21 年度）， 0.228 ± 0.011（平成 22 年度）， 0.226 ± 0.006（平成 23 年度）， 0.228 ± 0.008（平成 24 年度）， 0.214 ± 0.015（平成 25 年度）， 0.224 ± 0.008（平成 26 年度）及び 0.233 ± 0.016（平成 27 年度）， 0.228 ± 0.0126（平成 28 年度）と同程度であった。

図 I－2－2－1－1 に示す海域別のスルメイカ等の肝臓等の ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比の，平成 15 ～29年度での平均値と標準偏差は，核燃海域が 0.227 ± 0.019 ，津軽海峡が 0.230 ± 0.011 （平成 $15 \sim 28$ 年度のみ），羅臼沖が 0.220 ± 0.018（平成 $15 \sim 28$ 年度のみ），福井第一海域 が 0.228 ± 0.018（平成 $15 \sim 28$ 年度のみ），対照海域（四国沖）が 0.224 ± 0.020 ，対照海域 （大和堆）が 0.233 ± 0.005 であり，海域によらず同程度であった。これらの数値は，平成 19年度に釧路等全国9港に水揚げされたスルメイカを調べて得られた肝臓の ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比である $0.216 \pm 0.021^{5)}$ ともよく合っていたことから，平成 28 年度の調査で検出され たスルメイカ肝臓の Pu も過去の核実験によるものと考えられる。

表 I－2－2－1－3 スルメイカ等の肝臓等の ${ }^{239+240} \mathrm{Pu}$ 濃度，${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比

調査海域	漁獲年月日	種名	部位	$\begin{gathered} { }^{239+240} \mathrm{Pu} \\ (\mathrm{~Bq} / \mathrm{kg}-\text { 生鮮物) } \end{gathered}$	${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比
大和堆	平成 29 年 6 月 15 日	スルメイカ	肝臓	0.0269 ± 0.0011	0.234 ± 0.016
			筇肉	ND	－
四国沖	平成 29 年 9 月 11 日	スルメイカ	肝臓	0.0010 ± 0.0002	0.237 ± 0.023
			筋肉	ND	－
核燃沖	平成 29 年7月14日	スルメイカ（1）	肝臓	0.0058 ± 0.0004	0.229 ± 0.008
	平成 29 年 11 月 15 日	スルメイカ（2）	肝臓	0.0005 ± 0.0001	－
	平成 29 年 6 月 9 日	スルメイカ（3）	肝臓	0.0033 ± 0.0003	0.229 ± 0.008
	平成 29 年10月21日	スルメイカ（4）	肝臓	0.0013 ± 0.0002	0.228 ± 0.021

ND 検出下限値以下を示す。

図 I－2－2－1－1 スルメイカ肝臓の ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比

iii．海底土試料に含まれる ${ }^{239+240} \mathrm{Pu}$ 濃度

平成 29 年度の分析結果を表 I $-2-2-1-4$ に示す。 ${ }^{239+240} \mathrm{Pu}$ 濃度は， $0.29 \sim 3.31 \mathrm{~Bq} / \mathrm{kg}$－乾燥土の範囲にあった。このうち，青森海域（測点2）で最高値となった。平成 29 年度の濃度範囲は，平成 3 年度から核燃海域で継続的に調査している海底土中 ${ }^{239+240} \mathrm{Pu}$ 濃度の範囲と比較して，同程度であった。

iv．海底土試料の ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比

平成 29 年度の ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比は，0．220～0．265 の範囲にあり，平成 $20 \sim 28$ 年度の調査結果と同じ範囲であった。また，東電福島第一原発由来の ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比（ 0.303 ～0．330）${ }^{6)}$ よりも低いことから，東電福島第一原発由来の ${ }^{239+240} \mathrm{Pu}$ の海底土への沈着は確認されなかった。

（4）まとめ

本調査において，${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 原子数比は ${ }^{137} \mathrm{Cs}$ 濃度が低い試料（ $100 \mathrm{~Bq} / \mathrm{kg}$－乾燥土未満）で の分析となり，いくつかは不検出であったが，平成28年度と同様な結果であったことから，東電福島第一原発事故由来の放射性Csを特定するための非常に有用な方法として活用でき る。

核燃海域で得られたスルメイカの肝臓中の ${ }^{239+240} \mathrm{Pu}$ 濃度は漁期によって変化したもので， その範囲は他の海域と同程度であった。また，${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比においては，核燃海域と他の海域と同じであったことから，本調査で得られたスルメイカの肝臓中のPuは過去の核実験由来と考えられる。また，海洋放射能調査で実施している発電所海域で得られた海底土においても，${ }^{239+240} \mathrm{Pu}$ 分析及び ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比とも，東電福島第一原発事故前と同程度の濃度及び原子数比であったことから，過去の核実験由来以外のPuは確認されなかった。

表 I－2－2－1－4 発電所海域における海底土試料中 ${ }^{239+240} \mathrm{Pu}$ 濃度及び ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比

採取海域	測点	採取日	${ }^{239+240} \mathrm{Pu}$	${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ 原子数比
			（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	
北海道	2	平成 29 年 5 月 10 日	2.18 ± 0.35	0.231 ± 0.026
青森	2	平成 29 年5月5日	3.31 ± 0.43	0.220 ± 0.019
宮城	2	平成29年6月3日	0.45 ± 0.08	0.237 ± 0.032
福島第一	2	平成 29 年 6 月 2 日	0.55 ± 0.02	0.243 ± 0.009
福島第二	2	平成29年6月1日	0.49 ± 0.07	0.247 ± 0.026
茨城	2	平成 29 年 5 月 30 日	0.60 ± 0.09	0.248 ± 0.024
静岡	4	平成 29 年 5 月 9 日	1.32 ± 0.05	0.249 ± 0.007
新潟	2	平成 29 年 6 月 16 日	1.68 ± 0.15	0.223 ± 0.012
石川	2	平成 29 年 6 月 19 日	0.66 ± 0.10	0.237 ± 0.025
福井第一	2	平成 29 年 6 月 21 日	2.26 ± 0.45	0.226 ± 0.031
福井第二	2	平成 29 年 6 月 22 日	1.71 ± 0.37	0.236 ± 0.036
島根	2	平成 29 年 6 月 23 日	0.29 ± 0.03	0.254 ± 0.022
愛媛	2	平成 29 年 6 月 25 日	0.30 ± 0.03	0.247 ± 0.017
佐賀	2	平成 29 年 5 月 5 日	0.42 ± 0.05	0.265 ± 0.021
鹿児島	2	平成 29 年 5 月 6 日	0.60 ± 0.08	0.263 ± 0.025

引用文献

1）Zheng，J．，Bu，W．，Tagami，K．，Shikamori，Y．，Nakano，K．，Uchida，S．and Ishii， N．（2014）．Determination of ${ }^{135} \mathrm{Cs}$ ，and ${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ atomic ratio in environmental samples by combining ammonium molybdophosphate（AMP）－selective Cs adsorption and ion－exchange chromatographic separation to triple－quadrupole coupled plasma－mass spectorometry．Anal．Chem．，86，7103－7110．
2）Zheng，J．，Tagami，K．，Bu，W．，Uchida，S．，Watanabe，Y．，Kubota，Y．，Fuma，S．and Ihara，S．（2014）．${ }^{135} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ isotopic ratio as a new tracer of radiocesium released from the Fukushima nuclear accident．Environ．Sci．Technol．，48，5433－ 5438.

3）Zheng，J．，Cao，L．，Tagami，K．and Uchida．（2016）．Triple－quadrupole inductively coupled plasma－mass spectrometry with a high－efficiency sample introduction system for ultratrace determination of ${ }^{135} \mathrm{C}$ s and ${ }^{137} \mathrm{C}$ s in environmental samples at femtogram levels．Anal．Chem．，88，8772－8779．

4）Russell，B．C．，Cdoudace，I．W．and Warwick，P．E．（2015）．Determination of ${ }^{135} \mathrm{Cs}$ and ${ }^{137} \mathrm{Cs}$ in environmental samples：A review．Anal．Chim．Acta，890，7－20．
5) Oikawa, S. and Yamamoto, M. (2007). Plutonium concentration and ${ }^{240} \mathrm{Pu} /{ }^{239} \mathrm{Pu}$ atomic ratio in liver of squid collected in the coastal sea areas of Japan. J. Environ. Radioact., 93, 170-180.
6) Zheng, J., Tagami, K., Watanabe, Y., Uchida, S., Aono, T., Ishii, N., Yoshida, S., Kubata, Y., Fuma, S. and Ihara, S. (2012) Isotopic evidence of plutonium release into the environment from the Fukushima DNPP accident. Sci. Rep., 2, 304, doi: 10. 1038/srep00304.

（2）海水及び海産生物の ${ }^{129} \mathrm{I}$ 濃度

（1）はじめに

核燃海域では，再処理施設の稼働に伴い ${ }^{129}$ I の濃度レベルが変動することが予想され るため，この ${ }^{129} \mathrm{I}$ 濃度の変動を把握することを目的に，核燃海域等で採水し，加速器質量分析計（Accelerator Mass Spectrometer。以下「AMS」という。）を用いて ${ }^{129}$ I 及び安定ヨウ素の濃度を調査した。また，東電福島第一原発事故により，新たに大気中に放出された ${ }^{129} \mathrm{I}$ が核燃海域等へ到達した状況を調査するとともに，核燃海域はコンブ等の産地であるため，コンブ類に対する影響についても検討を行った。

（2）方法

i．試料

海水試料は発電所海域，核燃海域及び対照海域で採取した。測点のリストを表 I－2－2－ 2－1 に示す。測点の位置は図 $\mathrm{I}-3-2 \sim 5$ ， $\mathrm{I}-3-14$ 及び図 I－2－1－1－1 にまとめた。

表 I－2－2－2－1 海水試料採取測点

発電所海域（青森，宮城，福島第一，福島第二，茨城）では，平成 29 年 $5 \sim 6$ 月に各測点で表層水を採取した。核燃海域では，平成 29 年 5 月（前期）及び 10 月（後期）の 2 回，各測点で表層水を採取した。対照海域（大和堆，四国沖，襟裳沖）では平成 29 年 5 月に，表層から底層まで複数層で採水した。

海藻は，再処理施設の排水が到達する可能性のある下北沖海域及び岩手県三陸沖海域に おいてマコンブを収集した。また，比較として津軽海峡のマコンブ及び根室海峡のオニコ

ンブをあわせて収集した。なお平成 26 年度まで，根室海峡で採集した試料にエナガオニコ ンブの名称を用いてきたが，現在は標準和名として用いられないため，吉田ら ${ }^{1)}$ の分類体系に従い，平成 27 年度よりエナガオニコンブの標準和名であるオニコンブに変更した。

ii ．分析

海水中の ${ }^{129} \mathrm{I}$ の分析には AMSを用い，試料の前処理等は賀佐ら ${ }^{2)}$ の方法に従った。安定 ヨウ素はアスコルビン酸還元法を用いたイオンクロマトグラフィー3）で測定した。
海藻については，凍結させた後，真空凍結乾燥機で乾燥し，乾燥させた試料から抽出し たヨウ素をヨウ化銀とした後，AMS 分析を行った。なお，試料中の安定ヨウ素の定量は， インジウムを内標準とした ICP－MS により行った。

（3）結果

i．核燃海域の海水の安定ヨウ素及び ${ }^{129} \mathrm{I}$ の濃度

核燃海域で採取した表層水の安定ヨウ素及び ${ }^{129} \mathrm{I}$ の濃度を表 I－2－2－2－2，表 I－2－2－2－3 に示す。なお，青森海域の測点はAM11～AM13 及び AM14，AM15 で囲まれた海域に存在する ので，ここでは青森海域も核燃海域に含める。平成 29 年度の安定ヨウ素濃度の平均値と標準偏差は，前期が（ $52.1 \pm 0.3) \times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，後期が（ 51.7 ± 0.3 ）$\times 10^{-6} \mathrm{~g} / \mathrm{L}$ であった。平成 18 ~ 22 年度の安定ヨウ素濃度の平均値と標準偏差は前期が（51．6 $\pm 0.4) \times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，後期が （ 51.9 ± 0.6 ）$\times 10^{-6} \mathrm{~g} / \mathrm{L}$ であり，平成 29 年度の値は過去の分析値と有意の差はない。

平成 $18 \sim 29$ 年度の各測点における表層水の ${ }^{129}$ I 濃度の推移を図 I－2－2－2－1（上段）に示 す。平成 19 年度と 20 年度に一部の測点で際だった濃度の上昇が見られた（図中，色付け されたマーカーの測点）。これらは再処理施設のアクティブ試験の影響と考えられる。平成 23 年度前期の AM4，AM5，AM22 で ${ }^{129}$ I 濃度の上昇が見られた。調查期間中に再処理施設 からの ${ }^{129} \mathrm{I}$ の放出はなく，東電福島第一原発事故の影響と考えられる。

平成 29 年度における表層水の ${ }^{129} \mathrm{I}$ 濃度の平均値と標準偏差は前期が $(26.5 \pm 2.5) \times 10^{-}$ ${ }^{9} \mathrm{~Bq} / \mathrm{L}$ ，後期が（ 22.7 ± 1.4 ）$\times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ であった。図 $\mathrm{I}-2-2-2-1$（上段）に示すように，これ らの値はアクティブ試験が中断されていた平成 20 年後期～22年度までの値と同程度であ った。

表 I－2－2－2－2 核燃海域＊1 における表層水の安定ヨウ素及び ${ }^{129}$ I濃度（前期）

測点	採取日	安定ヨウ素$\left(\times 10^{-6} \mathrm{~g} / \mathrm{L}\right)$		$\begin{aligned} & { }^{129} \mathrm{I} \\ & \left.10^{-9} \mathrm{~Bq} / \mathrm{L}\right) \end{aligned}$		
AM1	平成 29 年 5 月 12 日	$51.7 \pm$	0.07	23.2	\pm	1． 3
AM3	平成 29 年 5 月 22 日	$51.8 \pm$	0.03	28.3	\pm	1.9
AM4	平成29年5月7日	$51.3 \pm$	0.02	27.9	\pm	5.0
AM6	平成 29 年 5 月 22 日	$51.8 \pm$	0.06	29.5	\pm	1． 2
AM7	平成 29 年 5 月 18 日	$52.4 \pm$	0.05	24.9	\pm	1.9
AM10	平成 29 年 5 月 22 日	$52.2 \pm$	0． 07	27．1	\pm	1． 0
AM11	平成 29 年 5 月 18 日	$52.1 \pm$	0.05	24.6	\pm	1.9
AM13	平成 29 年 5 月 17 日	$52.3 \pm$	0.05	33.5	\pm	0.7
AM14	平成29年5月6日	$52.1 \pm$	0.05	27.6	\pm	1.5
AM15	平成 29 年 5 月 17 日	$52.6 \pm$	0.06	27．1	\pm	1． 3
AM16	平成 29 年 5 月 16 日	$52.1 \pm$	0． 12	23.4	\pm	1． 2
AM17	平成 29 年 5 月 15 日	$52.2 \pm$	0． 12	25.5	\pm	1． 4
AM18	平成 29 年 5 月 23 日	$51.9 \pm$	0． 15	25.0	\pm	1.2
AM19	平成 29 年 5 月 13 日	$52.2 \pm$	0． 13	24.4	\pm	1.1
AM20	平成 29 年 5 月 23 日	$52.1 \pm$	0． 15	26． 1	\pm	2． 2
AM2 1	平成 29 年 5 月 13 日	$51.4 \pm$	0． 12	24.6	\pm	1． 2
AM22	平成 29 年 5 月 13 日	$52.2 \pm$	0． 12	23.3	\pm	2． 4
HG1	平成 29 年 5 月 6 日	$52.2 \pm$	0． 13	26.7	\pm	2． 7
HG2	平成 29 年 5 月 5 日	$52.4 \pm$	0． 12	28.2	\pm	3.1
HG3	平成 29 年 5 月 6 日	$52.0 \pm$	0.03	29.0	\pm	1.8
HG4	平成 29 年 5 月 6 日	$52.5 \pm$	0.03	29.4	\pm	0． 4
	平均＊2	$52.1 \pm$	0.3	26.5	\pm	2.5

＊1 青森海域は核燃海域の測点に囲まれた海域に存在するので，ここでは核燃海域に含める。
＊2 全 21 測点における安定ヨウ素及び ${ }^{129}$ I 濃度の平均値土標準偏差を示す。

表 I－2－2－2－3 核燃海域＊1 における表層水の安定ヨウ素及び ${ }^{129} \mathrm{I}$ 濃度（後期）

測点	採取日	安定ヨウ素 $\left(\times 10^{-6} \mathrm{~g} / \mathrm{L}\right)$		$\begin{gathered} { }^{129} \mathrm{I} \\ \left.10^{-9} \mathrm{~Bq} / \mathrm{L}\right) \end{gathered}$		
AM1	平成 29 年11月8日	$51.3 \pm$	0.08	24． 4	\pm	0.3
AM3	平成 29 年 11 月 7 日	$52.0 \pm$	0.07	21.7	\pm	2.0
AM4	平成 29 年 11 月 8 日	$51.3 \pm$	0.10	23． 2	\pm	1.1
AM6	平成 29 年 11 月 7 日	$51.8 \pm$	0.08	23.4	\pm	2.1
AM7	平成 29 年 11 月6日	$51.6 \pm$	0.06	24． 3	\pm	0.9
AM10	平成 29 年 11 月 3 日	$51.8 \pm$	0.09	21.7	\pm	1.9
AM11	平成29年10月28日	$51.7 \pm$	0.08	24． 9	\pm	0.6
AM13	平成29年11月2日	$52.0 \pm$	0.08	21.2	\pm	1． 2
AM14	平成29年11月2日	$51.9 \pm$	0.08	21.5	\pm	0． 4
AM15	平成 29 年 11 月 3 日	$52.2 \pm$	0.08	21.0	\pm	0.8
AM16	平成 29 年10月28日	$51.6 \pm$	0.09	24． 1	\pm	1.9
AM17	平成 29 年 11 月 1 日	$51.9 \pm$	0． 12	21.7	\pm	0.8
AM18	平成 29 年 11 月 1 日	$52.0 \pm$	0． 11	21.7	\pm	1.9
AM19	平成 29 年 10 月 26 日	$51.8 \pm$	0.10	24． 9	\pm	1． 2
AM20	平成 29 年 10 月 26 日	$51.2 \pm$	0.06	23.0	\pm	1.0
AM2 1	平成 29 年 11 月 1 日	$51.7 \pm$	0.06	21.9	\pm	2． 6
AM22	平成 29 年 10 月 26 日	$51.8 \pm$	0.07	20.8	\pm	1.7
	平均＊2	$51.7 \pm$	0.3	22． 7	\pm	1.4

＊1 青森海域は核燃海域の測点に囲まれた海域に存在するので，ここでは核燃海域に含める。
＊2 全 17 測点における安定ヨウ素及び ${ }^{129}$ I 濃度の平均値士標準偏差を示す。

図 I－2－2－2－1 核燃海域，発電所海域及び対照海域における表層水の ${ }^{129}$ I 濃度の推移

ii ．発電所海域の安定ヨウ素及び ${ }^{129} \mathrm{I}$ 濃度

核燃海域を南下する海流が到達する可能性のある宮城，福島第一•第二及び茨城海域で表層海水を採取し，分析に供した。それぞれの測点で得られた安定ヨウ素及び ${ }^{129} \mathrm{I}$ 濃度を表 I－2－2－2－4に示す。また，同海域における ${ }^{129} \mathrm{I}$ 濃度の時系列変化を図 I－2－2－2－1（中段） に示す。

表 I－2－2－2－4 発電所海域に於ける表層水の安定ヨウ素及び ${ }^{129} \mathrm{I}$ 濃度

測点	採取日	安定ヨウ素 （ $\times 10^{-6} \mathrm{~g} / \mathrm{L}$ ）	$\begin{gathered} { }^{129} \mathrm{I} \\ \left(\times 10^{-9} \mathrm{~Bq} / \mathrm{L}\right) \end{gathered}$
宮城海域			
MI1	平成 29 年 6 月 3 日	51.3 ± 0.07	25.2 ± 1.0
MI4	平成 29 年 6 月 4 日	51.6 ± 0.09	23.8 ± 1.7
平均＊1		51.5 ± 0.2	24.5 ± 9.7
福島第一•第二海域 FSN3 FSN4 FSS1 FSS2			
	平成 29 年 6 月 2 日	50.5 ± 0.06	28.7 ± 0.7
	平成 29 年 6 月 1 日	51.3 ± 0.06	51.7 ± 3.8
	平成 29 年 6 月 1 日	51.8 ± 0.07	34.3 ± 2.0
	平成 29 年 5 月 31 日	52.8 ± 0.08	25.6 ± 0.9
平均＊1		51.6 ± 0.8	35.1 ± 10.1
茨城海域			
IB1	平成 29 年 5 月 31 日	53.7 ± 0.07	19.3 ± 2.2
IB2	平成 29 年 5 月 30 日	54.3 ± 0.06	18.2 ± 1.1
IB3	平成 29 年 5 月 30 日	54.3 ± 0.07	18.0 ± 1.6
IB4	平成 29 年 5 月 30 日	54.4 ± 0.06	16.8 ± 1.0
平均＊1		54.2 ± 0.3	18.1 ± 0.9

$* 1$ 各海域の測点における安定ヨウ素及び ${ }^{129} \mathrm{I}$ 濃度の平均値士標準偏差を示す。

平成 29 年度の安定ヨウ素濃度は，宮城海域が（51．3～51．6）$\times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，福島第一•第二海域が（50．5～52．8）$\times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，茨城海域が（53．7～54．4）$\times 10^{-6} \mathrm{~g} / \mathrm{L}$ であった。平成 $18 \sim 22$ 年度の各海域の安定ヨウ素濃度の範囲は，宮城海域が $(47.7 \sim 53.7) \times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，福島第一•第二海域が（49．8～54．1）$\times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，茨城海域が $(47.3 \sim 54.9) \times 10^{-6} \mathrm{~g} / \mathrm{L}$ であり，平成 29 年度 の測定値は事故前の変動幅に収まっている。

平成 $18 ~ 29$ 年度の発電所海域における ${ }^{129} \mathrm{I}$ 濃度の時系列変化は核燃海域のそれと大き く異なるほか， 3 つの海域での変動パターンは東電福島第一原発事故の影響の程度により各々が異なっている。平成 23 年度は，福島第一•第二海域での 4 測点すべてで東電福島第一原発事故により，${ }^{129} \mathrm{I}$ 濃度の上昇が見られ，特に南側の 3 測点（FSN4，FSS1 及び FSS2） で上昇の度合いが大きかった。また平成 24 年度は，FSN3 では ${ }^{129} \mathrm{I}$ 濃度にあまり変化がな かったのに対し，FSN4，FSS1 及び FSS2 では減少し，特に FSS1 及び FSS2 ではほぼ事故前

のレベルに戻っている。しかしながら平成 25 年度は，FSN3，FSN4 及び FSS1 が前年度と大差なかったのに対し，FSS2 は約 8 倍に上昇した（図 I－2－2－2－1（中段））。なお，平成 26 ～29年度は，いずれの測点でも概ね事故前のレベルに戻った。
宮城海域でも平成 23 年度に東電福島第一原発事故の影響は見られたが，影響の程度は平成19年度の再処理施設稼働に伴う ${ }^{129} \mathrm{I}$ 濃度の上昇と同程度ないし，それ以下であった。平成 24 年度には平成 20 ， 21 年度のレベルまで低下し，平成 29 年度は平成 $24 \sim 28$ 年度と同程度であった。

茨城海域では，平成 23 年度はIB1を除き，${ }^{129} \mathrm{I}$ 濃度の上昇が見られなかった。しかしな がら，平成 24 年度は各測点で ${ }^{129} \mathrm{I}$ 濃度が平成 23 年度の $10 \sim 20$ 倍に上昇した。平成 25 年度はIB2，IB3，IB4 で平成 24 年度の値の約 20% 相当まで低下したが，それでも FSS 2 を除 く福島海域の測点より高いレベルにあった。茨城海域で平成 24 年度に見られた ${ }^{129} \mathrm{I}$ 濃度 の上昇は平成 23 年度の東電福島第一原発事故に起因すると考えられる。平成 $26 \sim 29$ 年度 はいずれの測点でも事故前のレベルに戻った。

iii．対照海域における安定ヨウ素及び ${ }^{129}$ I 濃度

対照海域3海域における海水中の安定ヨウ素及び ${ }^{129}$ I 濃度を表I－2－2－2－5 に示す。

表層

平成 $18 \sim 22$ 年度の表層水の安定ヨウ素濃度の平均値と標準偏差は，四国沖海域（KC1） が（53．4 40.6$) \times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，大和堆海域（YR1）が（52．7 $\left.\pm 1.4\right) \times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，襟裳沖海域（E11） の前期が（ $52.3 \pm 1.1) \times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，後期が（ $\left.52.5 \pm 1.4\right) \times 10^{-6} \mathrm{~g} / \mathrm{L}$ であった。平成 29 年度の表層水の安定ヨウ素濃度は，四国沖海域（KC1）が $55.2 \times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，大和堆海域（YR1）が 52.3 $\times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，襟裳沖海域（E11）の前期が $52.5 \times 10^{-6} \mathrm{~g} / \mathrm{L}$ ，後期が $51.5 \times 10^{-6} \mathrm{~g} / \mathrm{L}$ であり，いず れも事故前の値と同程度であった。

平成 $18 \sim 22$ 年度の表層水の ${ }^{129} \mathrm{I}$ 濃度の平均値と標準偏差は四国沖海域が $(15.5 \pm 2.6) \times$ $10^{-9} \mathrm{~Bq} / \mathrm{L}$ ，大和堆海域の YR1 が（ 33.2 ± 3.8 ）$\times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ であった。平成 29 年度における表層水の ${ }^{129} \mathrm{I}$ 濃度は，四国沖海域（KC1）が $14.6 \times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ ，大和堆海域（YR1）が $28.5 \times 10^{-}$ ${ }^{9} \mathrm{~Bq} / \mathrm{L}$ であり，いずれも事故前の値と同程度であった。

平成 $18 \sim 29$ 年度における対照海域の表層水中の ${ }^{129} \mathrm{I}$ 濃度の推移を図 $\mathrm{I}-2-2-2-1$（下段） に示す。襟裳沖海域（E11）では，平成 23 年度に東電福島第一原発事故の影響がわずかに見 られるが，他の海域ではその影響は見られず，ほぼ一定の値で推移している。襟裳沖海域 における平成 $18 \sim 22$ 年度の表層水の ${ }^{129} \mathrm{I}$ 濃度の平均値と標準偏差は，前期が（26．6 $\mathbf{6}$ 3．9） $\times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ ，後期が（ 24.1 ± 3.4 ）$\times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ であった。また，平成 $18, ~ 19$ 年度に試料を採取 した E9 及びE13 の表層水の ${ }^{129} \mathrm{I}$ 濃度の平均値と標準偏差は，それぞれ $(24.4 \pm 3.0) \times 10^{-}$ ${ }^{9} \mathrm{~Bq} / \mathrm{L}$ 及び $(26.8 \pm 3.8) \times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ であり，この海域の表層水の ${ }^{129} \mathrm{I}$ 濃度はおよそ $25 \times 10^{-}$ ${ }^{9} \mathrm{~Bq} / \mathrm{L}$ であった。平成 23 年度の E11 の ${ }^{129} \mathrm{I}$ 濃度（約 $40 \times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ ）は，東電福島第一原発事故の影響が見られた。これに対して平成 29 年度の E11の表層水の ${ }^{129} \mathrm{I}$ 濃度（前期： 23.1
$\times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ ，後期： $24.7 \times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ ）は襟裳沖海域（ T 2 ）（ $25.9 \times 10^{-9} \mathrm{~Bq} / \mathrm{L}$ ）を含めて，襟裳沖海域の事故前の値と同程度であった（図 I－2－2－2－1下段）。なお，表層水の ${ }^{129} \mathrm{I}$ 濃度は対照海域の中では四国沖海域が最も低いレベルで推移していた。

鉛直分布

対照海域の四国沖海域，大和堆海域及び襟裳沖海域において多層採水を行い，安定ヨウ素及び ${ }^{129} \mathrm{I}$ 濃度の鉛直分布を調べた。安定ヨウ素は，平成 29 年度においても，これまでと同程度，いずれの海域でも水深とともに濃度が増す傾向を示し，どの海域でも底層では約 $60 \times 10^{-6} \mathrm{~g} / \mathrm{L}$ となった（表 $\mathrm{I}-2-2-2-5$ ）。一方，${ }^{129} \mathrm{I}$ は全ての海域で水深とともに濃度が減 る傾向を示した（図 I－2－2－2－2）。しかし，その深さによる減少率は観測海域ごとに異な っており，大和堆では最も深くまで ${ }^{129} \mathrm{I}$ が入り込んでいることがわかる。

表 I－2－2－2－5 対照海域における海水中の安定ヨウ素及び ${ }^{129}$ I濃度

測点	採取日	採取深度 （m）	安定ヨウ素 $\left(\times 10^{-6} \mathrm{~g} / \mathrm{L}\right)$	$\begin{gathered} { }^{129} \mathrm{I} \\ \left(\times 10^{-9} \mathrm{~Bq} / \mathrm{L}\right) \\ \hline \end{gathered}$
大和堆海域 YR1 YR1 YR1 YR1 YR1 YR1	平成 29 年 6 月 17 日平成 29 年 6 月 17 日	$\begin{aligned} & 1 \\ & 250 \\ & 500 \\ & 750 \\ & 1000 \\ & 3500 \\ & \hline \end{aligned}$	$\begin{array}{lll} 52.3 & \pm 0.04 \\ 55.0 & \pm 0.06 \\ 56.3 & \pm 0.08 \\ 56.9 & \pm 0.05 \\ 57.3 & \pm 0.05 \\ 57.9 & \pm 0.05 \end{array}$	$\begin{array}{lll} 28.5 & \pm & 1.8 \\ 24.7 & \pm & 1.2 \\ 23.2 & \pm & 1.1 \\ 17.5 & \pm & 1.1 \\ 15.0 & \pm & 2.0 \end{array}$ 定量下限値 ${ }^{* 1}$ 未満
四国沖海域 KC1 KC1 KC1 KC1 KC1 KC1	平成 29 年 5 月 7 日平成 29 年 5 月 7 日	$\begin{aligned} & 1 \\ & 250 \\ & 500 \\ & 750 \\ & 1000 \\ & 1700 \end{aligned}$	$\begin{array}{ll} 55.2 & \pm 0.09 \\ 56.1 & \pm 0.07 \\ 57.7 & \pm 0.07 \\ 59.0 & \pm 0.09 \\ 59.5 & \pm 0.12 \\ 59.0 & \pm 0.11 \end{array}$	$\begin{array}{rc} 14.6 & \pm \\ 16.6 & \pm \\ 8.1 & \pm 1.8 \\ & \pm \end{array}$ 定量下限値 ${ }^{* 1}$ 未満 ND ND
襟裳沖海域 E11	平成 29 年 5 月 20 日平成29年5月20日平成29年5月20日平成 29 年 5 月 20 日平成 29 年 5 月 20 日平成 29 年 5 月 20 日平成 29 年 10 月 27 日	$\begin{aligned} & 1 \\ & 250 \\ & 750 \\ & 1000 \\ & 1250 \\ & 2050 \\ & 1 \end{aligned}$	$\begin{array}{ccc} 52.5 & \pm 0.06 \\ 54.2 & \pm 0.08 \\ 58.1 & \pm 0.10 \\ 59.0 & \pm 0.07 \\ 59.5 & \pm 0.07 \\ 60.0 & \pm 0.07 \\ 51.5 & \pm 0.07 \end{array}$	$\begin{aligned} 23.1 & \pm 1.3 \\ 20.7 & \pm 0.9 \\ 7.9 & \pm 1.3 \end{aligned}$ 定量下限値 ${ }^{* 2}$ 未満定量下限値＊2 未満 ND 24.7 ± 2.5
襟裳沖海域 T2 T2	平成 29 年 5 月 8 日平成 29 年 10 月 28 日	1	$\begin{aligned} & 51.1 \pm 0.03 \\ & 51.3 \pm 0.08 \end{aligned}$	$\begin{aligned} & 28.1 \pm 1.0 \\ & 22.0 \pm 1.0 \end{aligned}$

$* 1$ 定量下限値 $=7.2 \times 10^{-9} \mathrm{~Bq} / \mathrm{L}, ~ * 2$ 定量下限値 $=5.3 \times 10^{-9} \mathrm{~Bq} / \mathrm{L}$
ND 検出下限値以下を示す。

図 I－2－2－2－2 対照海域における海水中 ${ }^{129} I$ 濃度の鉛直分布

iv．海藻の安定ヨウ素と ${ }^{129} \mathrm{I}$ 濃度

分析結果を表 I－2－2－2－6に示す。安定ヨウ素及び ${ }^{129} \mathrm{I}$ 濃度は海域間で大きく変動してい た。平成 29 年度の安定ヨウ素濃度の範囲は（890～2800）$\times 10^{-6} \mathrm{~g} / \mathrm{g}$－乾物，${ }^{129} \mathrm{I}$ 濃度は $(0.32$ $\sim 1.0) \times 10^{-6} \mathrm{~Bq} / \mathrm{g}$－乾物の範囲にあった。両者の原子数比は（ $0.346 \sim 0.882$ ）$\times 10^{-12}$ の範囲に あり，両者の濃度の間には有意な相関（ $\mathrm{r}=0.95$ ）が見られた。

表I－2－2－2－6 海藻中の安定ヨウ素（ $\left.{ }^{127} \mathrm{I}\right)$ と ${ }^{129} \mathrm{I}$ 濃度及び ${ }^{129} \mathrm{I} /{ }^{127} \mathrm{I}$ 比

採取地	$\frac{\text { 採取日 }}{\text { 平成 } 29 \text { 年 }}$	安定ヨウ素 $\left(\times 10^{-6} \mathrm{~g} / \mathrm{g}-\right.$ 乾物）	$\begin{gathered} { }^{129} \mathrm{I} \\ \left(\times 10^{-6} \mathrm{~Bq} / \mathrm{g} \text {-乾物 }\right) \end{gathered}$	$\begin{aligned} & { }^{129} \mathrm{I} /{ }^{127} \mathrm{I} \\ & \left(\times 10^{-12}\right) \end{aligned}$
北海道＊1	8月26日	2000 ± 20	0.86 ± 0.03	0.709 ± 0.03
津軽海峡＊2	9月24日	1700 ± 20	0.49 ± 0.03	0.467 ± 0.03
下北沖＊2	8 月1日	2800 ± 20	1.02 ± 0.05	0.882 ± 0.06
岩手沖＊2	7 月 25 日	890 ± 3	0.32 ± 0.04	0.346 ± 0.04

＊1 オニコンブ，＊2マコンブ

（4）まとめ

平成 18 年度より，核燃沖海域から茨城沖海域に至る海域及び対照海域から採水し，AMS を使って海水中の ${ }^{129} \mathrm{I}$ 濃度の分析を行った。表層水において，平成 23 年度は東電福島第一原発事故に由来すると考えられる ${ }^{129} \mathrm{I}$ の濃度上昇が，核燃，宮城，福島及び茨城海域と対照海域の襟裳沖海域で観測された。平成 24 年度の ${ }^{129} \mathrm{I}$ 濃度は福島及び茨城海域以外では，事故前の濃度レベルとなった。平成 25 年度は福島及び茨城海域において，事故前の濃度レ ベルを超える ${ }^{129} \mathrm{I}$ が引き続き観測され，この他の海域では事故前の濃度レベルであった。平成 $26 \sim 29$ 年度は事故前の濃度レベルに戻った。

引用文献

1）吉田忠生•鈴木雅大•吉永一男（2015）。日本産海藻目録（2015 年改訂版）。藻類，63， 129－189．

2）賀佐信一•釜本真琴•河村日佐男（2004），イオンクロマトグラフによる海水中の安定 ヨウ素の定量．第41回理工学における同位元素•放射線研究発表会要旨集，p． 164.

3）Gasa，S．，Sawafuji，N．，Kabuto，S．，Kinoshita，N．，Amano，H．and Kawamura，H． （2007）．Determination of ${ }^{129} \mathrm{I}$ in seawater by accelerator mass spectrometry with solventextraction method．Radioisotopes，56，155－162．
（3）海洋放射能調査海域周辺における放射性 Cs の形態別分布に関わる詳細調査 （1）はじめに

「1．海洋放射能調査海域周辺での調査」では，海底土の放射性 Cs（以下 ${ }^{134} \mathrm{Cs}, ~{ }^{137} \mathrm{Cs}$ の両核種を指す。）の測定は表面から深さ 3 cm までの層に限られており， 3 cm より深い層にお ける放射性Cs の有無や濃度，また海底土の性状に関する情報が乏しい。また，同調查の海底土表面から 3 cm までの層における時系列及び測点間での放射性 Cs 濃度変動要因を解析 する上で，海底土の性状による影響なのか，近年その存在が明らかとなった放射性粒子に よる影響なのか ${ }^{1)}$ ，それとも表層以深への移行による影響なのか，各要因による影響の程度を把握するため，各パラメータを取得し検討する必要がある。一方，海水中においては放射性 Cs 濃度の変化について，海水中の溶存態や微小生物等の粒状態によるものなのか について把握するとともに，放射性 Cs の濃度変化が東電福島第一原発事故由来によるも のかも把握する必要がある。

そこで本詳細調查では，海洋放射能調查海域周辺での調查結果を補完すべく，原子力発電所等周辺海域において，海底土中の性状，放射性Cs の鋁直分布，並びに海水中における形態別（溶存態又は粒子としての微小生物）の放射性 Cs の現在の存在状況を把握するとと もに，これらの変動要因及び蓄積量等について検討を行った。

（2）海底土中の放射性Cs

i．放射性 Cs 濃度変動と性状との関係

海底土中の放射性 Cs の時空間的な変動は，海水から海底土に移行する機構と堆積後の動態によりコントロールされ，どちらも海底土の性状が密接に関わっている ${ }^{2)}$ 。本調査で は放射性 Cs の変動要因を解析するための基礎データとするため，海洋放射能調査海域で の調査で得られた海底土試料の性状を分析し，海底土の性状と放射性核種，特に ${ }^{137} \mathrm{Cs}$ の濃度分布との比較検討を行った。

（i）調査分析法

平成 29 年 $5 \sim 6$ 月において，発電所海域の 60 測点で採取した海底土試料（計 60 試料）並びに核燃海域の 22 測点で採取した海底土試料（計 22 試料）について性状分析を行った。分析項目と分析法を表 I－2－2－3－1 に示す。

表 I－2－2－3－1 海底土試料の分析項目と分析法

分析項目	分析法
粒度分析	JIS A 1204 に基づき粒径加積曲線を求める
有機態炭素•有機態窒素	酸処理の後，CHNコーダーにより分析
見かけ比重及び水分含量	JIS A 1225 に基づく土の湿潤密度試験方法
元素分析	酸分解処理後，ICP－MSによる測定

（ii）結果

「1．海洋放射能調査海域周辺での調查」で得られた各測点の海底土試料の性状結果の詳細データを資料4－1に示す。それら詳細データのらち，粒子径スケールに対する積算質量率が 50% に位置する粒子径（ 50% 粒径），海底土中のシルト及び粘土質の質量率（ $75 \mu \mathrm{~m}$ 通過質量率），有機態炭素及び窒素濃度，主要元素（A1，Mn，Fe）濃度及びそれぞれの放射性 Cs 濃度を表 I－ $2-2-3-2$ に示した。なお，数値を見やすくするため誤差は除いた。

a．粒径

「1．海洋放射能調査海域周辺での調査」で得られた海底土中の粒度については，碩，粗砂，細砂，泥のように見かけ上の区分のみであるが，本調査で粒度分析を行ったところ，海底土の粒度分布について数値の範囲は 50% 粒径が $0.008 \sim 0.66 \mathrm{~mm}, ~ 75 \mu \mathrm{~m}$ 通過質量率が 1． $8 \sim 99.9 \%$ であった。平均値はそれぞれ 0.16 mm 及び 40% であった。本調査で得られた海底土の粒度分布は広範囲であった。これらの数値は見かけ上の区分との比較を行ったとこ ろ，泥では 50% 粒径が $0.0079 \sim 0.071 \mathrm{~mm}$ で， $75 \mu \mathrm{~m}$ 通過質量率が $54 \sim 99 \%$ の広範囲となっ た。これらの結果は平成 28 年度も同様の傾向を示したことから，本調査の沈降分析によ り，粒度について精度の高い数値が得られ，海底土中の放射性核種との定量的な評価に用 いることが可能であることが分かった。

b．見かけ比重及び水分含量

海底土中の放射性核種の存在量を求めるには，見かけ比重及び水分含量と放射性核種濃度を用いて計算する必要があるため，これらは重要なパラメータである。分析処理から求 めた見かけ比重は $1.1 \sim 1.9 \mathrm{~g} / \mathrm{cm}^{3}$ ，水分含量は $49 \sim 93 \%$ の範囲であった。平均値は，見か け比重が $1.5 \mathrm{~g} / \mathrm{cm}^{3}$ ，水分含量が 70% であった。

c．有機物含量及び元素濃度

海底土中の有機物含量範囲は有機炭素が $0.5 \sim 34.4 \mathrm{mg} / \mathrm{g}-$ 乾燥土有機窒素が $0.05 \sim$ 4． $4 \mathrm{mg} / \mathrm{g}$－乾燥土であった。平均値は，それぞれ $9.6 \mathrm{mg} / \mathrm{g}$－乾燥土及び $1.3 \mathrm{mg} / \mathrm{g}$－乾燥土であっ た。

海底土中の元素濃度分布を図 I $-2-2-3-1$ に示した。本調査で対象としたのは，海底土の起源や酸化還元状態を探るうえで有用な元素（A1，Sr，Cd，Mo，希土類，U），有機物との関連性のある元素（Co，Ni，Cu，Pb）と放射性 Cs との関連性を評価する際に重要な元素 （Mn，Fe，Rb，安定核種の $\left.{ }^{133} \mathrm{Cs}, ~ \mathrm{Ba}\right)$ である。各元素の濃度範囲において，最大値と最小値の比が 10 倍を超えた元素は Mn（最大値／最小値：10，以下同様），Ni（11），Cu（14），Sr （13），Mo（14），Cd（30）であった。各元素の平均値はTakata et al。 ${ }^{2)}$ で報告された日本沿岸域における海底土中の値と一致した。

本調査で得られた海底土中の元素で最も高い濃度であったのはA1 であり，その濃度範囲を最大値と最小値の比にすると 5.1 であった。最も高かったのは核燃海域の測点 5（100 $\times 10^{3} \mu \mathrm{~g} / \mathrm{g}$－乾燥土もしくは 10% ）であった。他の海域では，最大値とは濃度の差は小さい が，最も低かった静岡海域の測点 $1 ~\left(21 \times 10^{3} \quad \mu \mathrm{~g} / \mathrm{g}\right.$－乾燥土もしくは $\left.2.1 \%\right) ~ は 1$ 桁程の違 いが見られた。また，酸化還元状態を確認する上でMo 及びUが用いられており 3，4），Mo 濃度が $3.8 \mu \mathrm{~g} / \mathrm{g}$－乾燥土以上かつ U 濃度が $2.7 \mu \mathrm{~g} / \mathrm{g}$－乾燥土以上である場合，還元状態であ ることが報告されている。核燃海域の測点 16 において U 濃度が $2.8 \mu \mathrm{~g} / \mathrm{g}$－乾燥土であった が，Mo 濃度が $2.7 \mu \mathrm{~g} / \mathrm{g}$－乾燥土であったことから，還元状態ではないと考えられる。その他の海域においては Mo 及び U 濃度が上記以下であったことから，酸化状態であることが分かった。以上のように，多種の元素を測定することで調査海域の海底土の組成や起源や存在状態等把握できることが分かった。

図 I－2－2－3－1 海底土中の元素濃度範囲

d．放射性Cs と性状との関係

「1．海洋放射能調查海域周辺での調査」における放射性 Cs 濃度範囲は，${ }^{134} \mathrm{Cs}$ が ND～ $10 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，${ }^{137} \mathrm{Cs}$ が $\mathrm{ND} \sim 80 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であった。これらの海域には東電福島第一原発事故の影響のある海域と，そうでない海域が存在する。そこで，ここでは東電福島第一原発事故以降，同事故由来の放射性 Cs として ${ }^{134} \mathrm{Cs}$ が検出されなかった海域（北海道，青森，静岡，石川，福井第一，福井第二，島根，愛媛，鹿児島，佐賀，核燃）と，検出され た海域（宮城，福島第一，福島第二，茨城，新潟）とに分けて詳述する。

－東電福島第一原発事故由来の放射性 Cs として ${ }^{134} \mathrm{Cs}$ が検出されなかった海域

「1．海洋放射能調査海域周辺での調査」で得られた北海道，青森，静岡，石川，福井第一，福井第二，島根，愛媛，鹿児島，佐賀及び核燃海域では，海底土中 ${ }^{137} \mathrm{Cs}$ 濃度が $\mathrm{ND} \sim$ 4． $8 \mathrm{~Bq} / \mathrm{kg}$－乾燥土の範囲であった。この濃度変動は海底土の粒径に依存することがこれま での研究で明らかになっている ${ }^{2}$ ，${ }^{5)}$ 。本調査において，海底土中の 50% 粒径または $75 \mu \mathrm{~m}$通過質量率と ${ }^{137} \mathrm{Cs}$ 濃度との関係をそれぞれ，図 I－2－2－3－2 及び図 I－2－2－3－3 に示す。 50%粒径が $0.1 \sim 0.5 \mathrm{~mm}$ である場合，${ }^{137} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 1.9 \mathrm{~Bq} / \mathrm{kg}-$ 乾燥土の低い範囲で推移して いるものの， 0.1 mm 末満である場合には粒径の減少に伴い，${ }^{137} \mathrm{Cs}$ 濃度が増加する傾向であ る。同様に， $75 \mu \mathrm{~m}$ 通過質量率と ${ }^{137} \mathrm{Cs}$ 濃度との関係について， $75 \mu \mathrm{~m}$ 通過質量率が増加す るに伴い ${ }^{137} \mathrm{Cs}$ 濃度も増加し，両者は強い相関関係（ $\mathrm{r}=0.87$ ）を示した。 ${ }^{137} \mathrm{Cs}$ 濃度は有機物濃度の間にも強い相関関係が得られた（図 I－2－2－3－4）が，海底土の粒径は有機物濃度と の相関関係が強いことも分かっており（図 I $-2-2-3-5$ ），${ }^{137} \mathrm{Cs}$ 濃度は海底土の粒径と有機物濃度の両者によって左右されていることが分かった。

平成 29 年度において，佐賀及び鹿児島海域において ${ }^{137} \mathrm{Cs}$ 濃度が低いまたは不検出が多 いのは，海底土の粒径が大きく有機物濃度が低いことが要因となると考えられる。従って，海底土の粒径が大きく有機物濃度が低い海域では ${ }^{137} \mathrm{Cs}$ 濃度が低い，もしくは検出下限値以下となる傾向があり，粒径及び有機物濃度は ${ }^{137} \mathrm{Cs}$ 濃度変動を把握する上で重要なパラ メータである。

また，他の元素との関係について，強い相関関係（ $\mathrm{r}>0.7$ ）を示したのは $\mathrm{Cu}, ~ \mathrm{~Pb}, ~ \mathrm{U}$ であ った。この傾向は平成 28 年度での結果と同じであるが，${ }^{137} \mathrm{Cs}$ とこれらの元素とが強い相関関係を示した要因は不明であるものの，これらの元素は粒径，有機物濃度と同様に ${ }^{137} \mathrm{Cs}$濃度変動を把握する上で有用なパラメータであることが分かった。一方，安定核種である ${ }^{133} \mathrm{Cs}$ 濃度と ${ }^{137} \mathrm{Cs}$ 濃度とは弱い相関関係（ $\mathrm{r}=0.43$ ）を示した。これは，${ }^{133} \mathrm{Cs}$ は海底土中の粒子生成過程において元来含まれていると考えられる。一方，${ }^{137} \mathrm{Cs}$ は粒子表面を中心に吸着しており，両者の存在形態が異なることが要因である ${ }^{5)}$ 。

－東電福島第一原発事故由来の放射性 Cs として ${ }^{134} \mathrm{Cs}$ が検出された海域

「1．海洋放射能調査海域周辺での調査」で得られた宮城，福島第一，福島第二，茨城及 び新潟海域では，海底土中 ${ }^{137} \mathrm{Cs}$ 濃度が $2.8 \sim 80 \mathrm{~Bq} / \mathrm{kg}$－乾燥土の範囲であった。この濃度変動を解析するために，海底土中の 50% 粒径または $75 \mu \mathrm{~m}$ 通過質量率と ${ }^{137} \mathrm{Cs}$ 濃度との関係 をそれぞれ，図 I－2－2－3－6 及び図 I－2－2－3－7 に示す。これらの海域においては，粒径と ${ }^{137} \mathrm{Cs}$ 濃度との関係性は見られなかった。また，${ }^{137} \mathrm{Cs}$ 濃度と有機物濃度の間に相関関係がな かったものの（図 I－ $2-2-3-8$ ），粒径は有機物濃度との負の相関関係が強かった（図 I－2－ 2－3－9）。また，他の元素との関係について，強い相関関係（ $r>0.7$ ）を示した元素は無かっ た。これらの結果は，平成 28 年度の本調査結果と同じであった。

これらの海域における放射性 Cs 濃度は，東電福島第一原発事故直後に漏洩した放射性 Cs の時空間的な変動に左右され，必ずしも ${ }^{137} \mathrm{Cs}$ 濃度と海底土の性状に密接な関連性は見 られなかった。この要因として，事故当初の海洋への放射性Cs 放出の履歴（海底土への沈着量の違い）が未だに影響を与えていると考えられる。それに加えて，海底土中で起こる生物攪乱，再縣濁や海流による水平移動，化学的性状を反映して複雑な挙動を示している ${ }^{5,6,7,8)}$ 。次項の ii 。高放射能微粒子では，近年明らかとなった高放射能微粒子の ${ }^{137} \mathrm{Cs}$ 濃度 への寄与について述べる。

表 I－2－2－3－2（1）海底土の性状

海域	測点	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	泥質	$75 \mu \mathrm{~m}$ 通過質量	50\％粒径	有機炭素	有機窒素	A1	Mn	Fe
		（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）			（\％）	（mm）	（mg／g）	（mg／g）	（\％）	（\％）	（\％）
北海道	1	ND	1.9	中細砂混じり泥	68.6	0.028	12.0	1.5	5.8	0.54	3.1
北海道	2	ND	4.5	泥	95.9	0． 020	25.3	3.0	4.6	0.37	2.6
北海道	3	ND	4． 8	泥	96.9	0.015	28.0	3.3	4． 3	0.36	2.5
北海道	4	ND	1.1	礫混じり粗砂	25.1	0.334	6.1	0.9	4.9	1.11	4． 4
青森	1	ND	2.8	中細砂混じり泥	65.6	0.031	19.0	2.6	4． 7	0.38	2.6
青森	2	ND	3.3	中細砂混じり泥	74.3	0.028	23.4	3.3	4． 2	0.36	2.4
青森	3	ND	0.5	礫混じり粗砂	7.3	0． 210	2.7	0.5	4.7	0.89	3.5
青森	4	ND	3.6	中細砂混じり泥	81.5	0.019	24.7	3.4	4． 8	0.40	2.7
宮城	1	ND	4.6	中細砂混じり泥	32.9	0． 255	4.8	0.6	4.7	1.28	4.1
宮城	2	ND	3.6	中細砂混じり泥	22.3	0.192	3.5	0.5	5.0	0.97	3.4
宮城	3	ND	5.5	中細砂混じり泥	23.4	0． 198	4． 8	0.7	4． 3	1． 42	4． 8
宮城	4	1.2	9.5	泥混じり中細砂	16.1	0.273	3.5	0.5	4.8	0.98	3.6
福島第一	1	3.0	23.3	泥まじり粗砂	14.9	0． 409	4.9	0.8	4． 1	0.55	2.5
福島第一	2	9.9	69.1	中細砂混じり泥	35.8	0.145	4． 9	0.7	4.3	0.66	3.7
福島第一	3	8.2	60.2	中細砂混じり泥	31.4	0.153	5.8	0.9	4.5	0.73	3.6
福島第一	4	3.3	27.6	中細砂混じり泥	54.7	0.058	10.1	1.4	4.1	0.63	4.0
福島第二	1	2.9	19.6	泥	53.6	0.071	5.5	0.8	4． 6	0.54	3.1
福島第二	2	2.9	17.4	中細砂混じり泥	50.1	0.076	6.0	0.9	4.4	0.59	3.3
福島第二	3	2.9	22.7	中細砂混じり泥	44.0	0.110	7． 8	1.1	3.6	0.74	4.5
福島第二	4	1.4	12.9	中細砂混じり泥	21.2	0． 288	3.3	0.6	3.9	0.78	4． 2
茨城	1	10.0	79.6	泥	80.1	0.032	12.6	1.5	3.7	0.40	2.7
资城	2	3.8	28.6	中細砂混じり泥	34.6	0.145	3.8	0.6	3.8	0.71	4.0
资城	3	3.3	28.0	中細砂混じり泥	20.0	0.161	4.4	0.7	3.5	0.55	3.4
乲城	4	3.5	27.7	中細砂混じり泥	28.9	0.137	5.6	0.7	4.7	0.47	3.3
静岡	1	ND	ND	中細砂混じり粗砂	2.9	0.661	1.1	0.3	2.1	0.32	2.4
静岡	2	ND	1.0	泥混じり中細砂	22.7	0.166	5.4	0.5	4.0	0.44	3.1
静岡	3	ND	2.2	中細砂混じり泥	79.8	0.028	8． 8	1． 3	4.5	0.41	2.8
静岡	4	ND	1.9	泥	86.6	0.030	7.1	1.1	4.9	0.42	2.6
新潟	1	ND	8.6	泥	99.7	0．202	22.6	2.9	5.8	0.52	3.3
新潟	2	ND	8.1	泥	98.2	0.022	26． 2	3.4	5.3	4.25	3.6
新潟	3	ND	8.6	泥	99.2	0． 020	25.9	3.4	5.2	3.42	3.5
新潟	4	ND	2.8	泥混じり中細砂	26.5	0．302	7.5	1.1	4.4	0.55	6.7
石川	1	ND	2.0	中細砂混じり泥	63.7	0． 045	5.3	0.8	3.8	0.30	3.2
石川	2	ND	1.7	中細砂混じり泥	70.5	0． 044	4.4	0.7	3.6	0.32	3.1
石川	3	ND	1.6	中細砂混じり泥	47.4	0.080	5.6	0.8	4． 2	0.35	3.1
石川	4	ND	1.1	泥混じり中細砂	25.8	0． 377	0.9	0.2	4.6	0.30	2.5
福井第一	1	ND	2.9	泥	81.8	0.023	23.6	3.0	5.6	0.33	3.6
福井第一	2	ND	4.5	泥	99.9	0.014	34.4	4.4	5.3	0.32	3.0
福井第一	3	ND	0.9	中細砂混じり泥	17.0	0.193	16.6	2.1	5.1	0.33	2.9
福井第一	4	ND	3.8	泥	97.7	0． 020	32.5	4． 1	4.5	0.27	2.2
福井第二	1	ND	1.4	中細砂混じり泥	42.2	0.106	6.8	0.5	5.9	0.42	2.9
福井第二	2	ND	3.8	泥	95.2	0.020	22.7	2.5	3.9	0.47	3.1
福井第二	3	ND	2.0	泥	93.8	0.023	4.6	0.7	4． 6	0.40	2.7

ND は検出下限以下を示す。

表 I－2－2－3－2（2）海底土の性状

海域	測点	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	泥質	$75 \mu \mathrm{~m}$ 通過質量	50\％粒径	有機炭素	有機窒素	A1	Mn	Fe
		（Bq／kg－乾	燥土）		（\％）	（mm）	（mg／g）	（mg／g）	（\％）	（\％）	（\％）
福井第二	4	ND	2.2	中細砂混じり泥	79.4	0.028	16.0	1.4	5.9	0.48	3.3
島根	1	ND	ND	粗砂混じり中細砂	5.3	0.385	0.5	0.1	2.5	0.17	1.0
島根	2	ND	0.8	粗砂混じり中細砂	13.5	0.217	1.8	0.2	3.2	0.21	1.6
島根	3	ND	0.8	粗砂混じり中細砂	16.0	0.332	4.8	0.5	3.2	0.30	1.6
島根	4	ND	1.1	泥混じり中細砂	40.9	0.104	8.6	0.9	3.3	0.28	1.7
愛媛	1	ND	1.4	泥混じり中細砂	13.3	0.182	4.3	0.6	3.6	0.70	4.1
愛媛	2	ND	0.9	泥混じり中細砂	21.1	0.134	6.1	0.8	4.5	0.68	3.4
愛媛	3	ND	ND	泥混じり中細砂	10.3	0.158	9.4	1.3	4． 7	0.77	3.2
愛媛	4	ND	ND	泥混じり中細砂	3.8	0.181	2.9	0.4	3.9	0.89	3.1
佐賀	1	ND	ND	泥混じり中細砂	12.8	0.165	5.7	0.8	3.4	0.25	1.5
佐賀	2	ND	ND	粗砂混じり中細砂	2.1	0.413	0.5	0.1	3.3	0.24	1.3
佐賀	3	ND	ND	粗砂混じり中細砂	7． 3	0.587	1.7	0.3	2． 7	0.12	0.8
佐賀	4	ND	ND	泥混じり中細砂	22． 1	0.165	10.9	1.5	2.9	0.21	1.4
鹿児島	1	ND	ND	泥混じり中細砂	2.5	0． 283	0.8	0.2	5.3	0.31	1.9
鹿児島	2	ND	ND	泥混じり中細砂	1.8	0.298	0.9	0.2	6.4	0.44	2.7
鹿児島	3	ND	ND	中細砂混じり泥	34.0	0.128	8.0	1.0	6.1	0.39	2.2
鹿児島	4	ND	1.2	中細砂混じり泥	27.2	0.146	6.4	0.8	6.0	0.35	2.0
核燃	1	ND	0.8	中細砂混じり粗砂	3.0	0.597	0.9	0.2	5.4	0.47	3.5
核燃	2	ND	0.8	泥混じり中細砂	3.1	0． 219	1.6	0.3	6.0	0.95	3.9
核燃	3	ND	ND	粗砂混じり中細砂	10.3	0.192	2.0	0.5	8.1	0.84	3.9
核燃	4	ND	0.8	中細砂	2.5	0． 175	1.0	0.3	8.5	0.86	4.4
核燃	5	ND	0.7	中細砂混じり粗砂	3.0	0.300	1.4	0.3	10.3	0.85	4.0
核燃	6	ND	1.0	粗砂混じり中細砂	3.5	0.246	1.8	0.4	9.6	0.79	4.3
核燃	7	ND	ND	粗砂混じり中細砂	5.3	0． 203	2.4	0.5	8.6	0.79	4.0
核燃	8	ND	1.1	泥混じり中細砂	10.8	0.197	4.0	0.7	8． 1	0.76	4.3
核燃	9	ND	2.4	泥	79.4	0.020	19.6	2.7	6.1	0.41	3.1
核燃	10	ND	3.1	泥	88.6	0.008	30.2	4.1	5.5	0.33	2.9
核燃	11	ND	0.6	泥混じり中細砂	7． 7	0． 179	2.6	0.6	6.9	0.92	4． 3
核燃	12	ND	3.2	泥	81.8	0.015	24.4	3.3	5.6	0.39	2.9
核燃	13	ND	4.4	泥	91.5	0.008	30.9	4.0	4.4	0.33	2.7
核燃	14	ND	1.9	中細砂混じり泥	37.6	0.109	13．1	1.7	6.1	0.47	3.2
核燃	15	ND	2.1	泥	78.8	0.010	25.5	3.4	5.1	0.37	2.8
核燃	16	ND	4． 3	中細砂混じり泥	75.3	0.017	24.4	3.2	5.5	0.38	2.8
核燃	17	ND	1.1	泥混じり中細砂	6.1	0.169	2.2	0.5	6.8	0.56	3.0
核燃	18	ND	1.1	粗砂混じり中細砂	10.9	0.161	3.4	0.6	7.0	0.63	3.3
核燃	19	ND	0.7	泥混じり中細砂	7.4	0.177	2.2	0.5	6.3	0.61	3.1
核燃	20	ND	0.8	泥混じり中細砂	20.2	0.104	4.6	0.7	5.2	0.50	2.4
核燃	21	ND	0.7	粗砂混じり中細砂	4． 1	0．219	2.0	0.4	3.5	1． 07	3.2
核燃	22	ND	1.0	泥混じり中細砂	14．3	0.139	4.9	0.8	4． 7	0.53	2.5

ND は検出下限以下を示す。

図 I－2－2－3－2 海底土中の 50% 粒径と ${ }^{137} \mathrm{Cs}$ 濃度の関係

図 I－2－2－3－3 海底土中の $75 \mu \mathrm{~m}$ 通過質量率と ${ }^{137} \mathrm{Cs}$ 濃度の関係

図 I－2－2－3－4 海底土中の有機炭素濃度と ${ }^{137} \mathrm{Cs}$ 濃度の関係

図 I－2－2－3－5 海底土中の $75 \mu \mathrm{~m}$ 通過質量率と有機炭素濃度の関係

図 I－2－2－3－6 海底土中の 50% 粒径と ${ }^{137} \mathrm{Cs}$ 濃度の関係

図 I－2－2－3－7 海底土中の $75 \mu \mathrm{~m}$ 通過質量率と ${ }^{137} \mathrm{Cs}$ 濃度の関係

図 I－2－2－3－8 海底土中の有機炭素濃度と ${ }^{137} \mathrm{Cs}$ 濃度の関係

図 I－2－2－3－9 海底土中の $75 \mu \mathrm{~m}$ 通過質量率と有機炭素濃度の関係

ii．海底土中の放射性粒子

原子力発電所等周辺海域のらち，宮城，福島，茨城，新潟海域では海底土中の ${ }^{137} \mathrm{Cs}$ 濃度 は，東電福島第一原発事故後に上昇したものの，その後は減少傾向にある。しかしながら， これらの海域の海底土中 ${ }^{137} \mathrm{Cs}$ 濃度は，測点間に大きな違いが見られたほか，同じ測点でも時系列的に上下している。また，平成 27 年度には，福島海域において，東電福島第一原発事故以降，最も高い値が観測された。このような地理的及び時系列的なばらつきは，曳航式 γ 線計測装置を用いて海底面の放射性物質を連続的に計測した調査において，海底土の ${ }^{137} \mathrm{Cs}$ 濃度が周囲より局所的に高い場所が数 m ～数百 m 単位の範囲内で観測されている ${ }^{9)}$ 。東電福島第一原発事故直後の各海域の海底土の放射性 Cs 濃度の分布は，事故直後の活染水の経路（放射性 Cs を多量に含む汚染水が海底土の上を通ったかどうか）と各海域の海底土の粒径に応じていたと考えられる ${ }^{10,11, ~}{ }^{22)}$ 。その後の放射性 Cs 濃度分布は，海底土の再懸濁と水平移動，海底土からの溶出•脱着など海底土の性状の違いに起因することが分 かってきているが ${ }^{13)}$ ，海底土の性状の違いのみで説明できるわけではない。最近，東電福島第一原発事故後の大気中の浮遊塵や陸域の土壌粒子からは周りの粒子に比べて，放射性 Cs を多く含む粒子の存在が報告されている ${ }^{14, ~}{ }^{15)}$ 。このような粒子は，イメージングプレ ート（放射線写真法）を用いて確認しており，放射能の総量が微量であっても局所的な点状放射能分布の計測に適している。この方法により放射線を黒点として確認された粒子は「radioactive particles（放射性粒子）」と言われている ${ }^{14,15) ~ 。 ~}$ 海洋環境中にもこのよ らな放射性粒子が存在する可能性が示唆されている ${ }^{1)}$ 。また，これまで確認されたもので も， 1 粒子あたりの放射性 Cs は数 Bq 程度であることが分かっている ${ }^{14)}$ 。そこで，平成 29年度は海洋放射能調查海域周辺でのモニタリング結果を補完するため，原子力発電所等周辺海域の海底土試料を調査し，地理的及び時系列的な ${ }^{137} \mathrm{Cs}$ 濃度のばらつきに，放射性粒子 が関与しているかを検討した。

本調查では，試料中の放射性粒子の有無を確認するため，イメージングプレートを用い た計測を行った。イメージングプレートは，通常のX線フィルムの千倍にも及ぶ高い感度 を有する。なお，本調查においても，イメージングプレートに反応した試料中の放射性粒子のことを放射性粒子と呼ぶことにする。

（i）方法

平成 29 年 5～6月に原子力発電所等周辺海域で採取した海底土を分析した結果から比較的濃度の高い福島第一海域，茨城海域及び濃度の低い宮城海域，静岡海域の各試料を選択 し，放射性粒子の有無を調査した。また，比較検討用に，東電福島第一原発周辺沖合海域 で採取した試料のうち，${ }^{137} \mathrm{Cs}$ 濃度が高い平成 25 年 5 月の試料についても調査した。

海底土中の放射性粒子の取り出し方法を図 I－ $2-2-3-10$ に示す。放射性 Cs 濃度測定済み の海底土試料について，イメージングプレートを用いたオートラジオグラフィーを行い，試料中に確認された放射性粒子を取り出し，残った海底土試料を放射性粒子の混在しない

バックグラウンド試料とした。オートラジオグラフィーで得た画像を基に，判別がしやす いよう任意にコントラストを調整し，図 I－2－2－3－10 でみられる黒点部分（中段の写真） を放射性粒子と判別した。判別した放射性粒子は，取り残しのないように周囲の海底土試料も含め小型の匙を用いて取り出した。

バックグラウンド試料は5分割（沖合海域は10分割）し，それぞれ U8 容器に分け，ゲ ルマニウム半導体検出器を用いて放射性 Cs 濃度を測定した。バックグラウンド試料の平均値からバックグラウンド試料中の放射性 Cs 存在量を求め，海底土試料全体の放射性 Cs存在量から引くことで，放射性粒子中の放射性 Cs 存在量を求めた。

図 I－2－2－3－10 海底土試料からの放射性粒子の取り出し

（ii）結果

a．バックグラウンド試料の放射性 Cs 濃度

バックグラウンド試料の放射性 Cs 測定結果を表 I－2－2－3－3 に示す。5 分割して測定し

たバックグラウンド試料の ${ }^{137} \mathrm{Cs}$ 濃度の平均値と標準偏差は，宮城海域測点 2 で $2.8 \pm$ $0.8 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，福島第一海域測点 1 で $16 \pm 3 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，福島第一海域測点 2 で $57 \pm$ $6 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，茨城海域測点 2 で $26 \pm 2 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，静岡海域測点 4 で $1.8 \pm 0.3 \mathrm{~Bq} / \mathrm{kg}-$乾燥土であった。

表 I－2－2－3－3 バックグラウンド試料の放射性 Cs 濃度

採取海域と測点	採取日		試料量 （g）	測定時間 （秒）	$\begin{gathered} { }^{134} \mathrm{Cs} \\ (\mathrm{~Bq} / \mathrm{kg}-\text { 乾燥土) } \end{gathered}$	$\begin{gathered} { }^{137} \mathrm{Cs} \\ (\mathrm{~Bq} / \mathrm{kg}-\text { 乾燥土) } \end{gathered}$		
宮城海域 測点 2採取層 $0-1.5 \mathrm{~cm}$	平成 29 年 6月3日	（1）	22.9	60000	ND＊	3.3	\pm	0.4
		（2）	23.5	56000	ND	2.4	\pm	0.4
		（3）	22.4	60000	ND	3.8	\pm	0.5
		（4）	22.2	54000	ND	2.8	\pm	0.6
		（5）	22.3	54000	ND	1． 8	\pm	0.5
福島第一海域 測点 1採取層 $0-1.5 \mathrm{~cm}$	平成 29 年 6月2日	（1）	26.4	65000	2.3 ± 0.5	14	\pm	1
		（2）	26.4	65000	2.4 ± 0.4	19	\pm	1
		（3）	20.6	63000	2.0 ± 0.5	15	\pm	1
		（4）	24.3	67000	3.0 ± 0.5	21	\pm	1
		（5）	24.8	67000	2.4 ± 0.5	14	\pm	1
福島第一海域 測点 2採取層 $1.5-3 \mathrm{~cm}$	平成 29 年 6 月 2 日	（1）	25.9	65000	10．± 0.6	67	\pm	1
		（2）	26.4	65000	7.7 ± 0.5	53	\pm	1
		（3）	21.2	58000	7.9 ± 0.8	52	\pm	1
		（4）	19.3	58000	8.3 ± 0.7	53	\pm	1
		（5）	21.6	254000	8.4 ± 0.3	60	\pm	1
茨城海域 測点 2 採取層 $0-1.5 \mathrm{~cm}$	平成 29 年 5月30日	（1）	21.7	60000	3.3 ± 0.6	24	\pm	1
		（2）	24.3	60000	3.5 ± 0.4	24	\pm	1
		（3）	24.1	60000	3.2 ± 0.5	27	\pm	1
		（4）	22.1	60000	3.3 ± 0.5	27	\pm	1
		（5）	22.0	60000	4.5 ± 0.6	28	\pm	1
静岡海域 測点 4採取層 $0-1.5 \mathrm{~cm}$	平成 29 年 5月 9 日	（1）	19.8	254000	ND	1． 3	\pm	0.2
		（2）	19.2	249000	ND	2.0	\pm	0.2
		（3）	20.5	249000	ND	2.1	\pm	0.2
		（4）	18.8	234000	ND	1.9	\pm	0.3
		（5）	18.0	234000	ND	1.9	\pm	0.2
沖合海域 測点 I1採取層 $0-1.5 \mathrm{~cm}$	平成 25 年 5月20日	（1）	15.8	58000	87 ± 5	171	\pm	3
		（2）	15.3	58000	82 ± 4	165	\pm	3
		（3）	12.9	66000	81 ± 5	167	\pm	3
		（4）	12.6	66000	92 ± 5	179	\pm	3
		（5）	17.2	67000	94 ± 4	178	\pm	2
		（6）	14.5	63000	87 ± 5	183	\pm	3
		（7）	12.0	63000	88 ± 5	171	\pm	3
		（8）	14.3	324000	88 ± 2	169	\pm	1
		（9）	14.4	61000	82 ± 5	164	\pm	3
		（10）	12.2	61000	78 ± 5	171	\pm	3

＊NDは検出下限値以下を示す。

また，10分割して測定した沖合海域測点I1のバックグラウンド試料の ${ }^{137} \mathrm{Cs}$ 濃度の平均値と標準偏差は $172 \pm 6 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であった。バックグラウンド試料の ${ }^{137} \mathrm{Cs}$ 濃度の平均値は，海域により異なる値を示したが，同一海域の分割試料の間で値のばらつきは小さく，各測点で概ね一定の値を示した。ここでは，バックグラウンド試料の平均値と標準偏差を バックグラウンド試料の測定値とその誤差として定義することにより，以下の解析を行っ た。

b．海底土試料中の放射性粒子の存在

放射性粒子を除く前と後の海底土試料中の ${ }^{137} \mathrm{Cs}$ 濃度の変化を図 I－ $2-2-3-11$ に示す。

図 I－2－2－3－11 放射性粒子を除く前と後の海底土試料中の ${ }^{137} \mathrm{Cs}$ 濃度の変化

放射性粒子を除いた後，宮城海域測点 2 以外の測点で ${ }^{137} \mathrm{Cs}$ 濃度の減少が見られた。その減少量は，福島第一海域測点 1 が $2.9 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，福島第一海域測点 2 が $8.2 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，茨城海域測点 2 が $46 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，静岡海域測点 4 が $0.06 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，沖合海域測点 I1 が $52 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であった。このうち，顕著な ${ }^{137} \mathrm{Cs}$ 濃度の減少が茨城海域測点 2 と沖合海域測点 I1 で見られたが，その他の測点では，前後で大きな変化は見られなかっ た。宮城海域測点2，福島第一海域測点 1 及び静岡海域測点 4 では，誤差範囲を考慮すれ ば，放射性粒子の取り出し前後で ${ }^{137} \mathrm{Cs}$ 濃度に差はなく，実質的な放射性粒子は存在しなか ったことが推測される。

各測点の海底土試料中の放射性 Cs 存在量と，それらをバックグラウンド並びに放射性粒子に分けた場合の放射性 Cs 存在量を表 I－ $2-2-3-4$ に示す。 ${ }^{137} \mathrm{Cs}$ 存在量に占める放射性粒子の寄与率は，福島第一海域測点 2 が $13 \pm 10 \%$ ，茨城海域測点 2 が $64 \pm 10 \%$ ，沖合海域測点 I1 が $23 \pm 6 \%$ であった。 ${ }^{137} \mathrm{Cs}$ 存在量として放射性粒子の寄与が高かったのは，茨城海域測点 2 と沖合海域測点 I1 であり，福島第一海域測点 2 では，寄与は比較的小さく，宮城海域測点2，福島第一海域測点 1 及び静岡海域測点 4 では，寄与は見られなかった。

表 I－2－2－3－4（1）放射性粒子取り出し前後の海底土試料中の放射性 Cs の比較

	宮城海域測点 2	福島第一海域測点 1	福島第一海域測点 2
試料量（g）	115.4	111.6	121.7
試料全体の ${ }^{137} \mathrm{Cs}$ 濃度（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	2.63 ± 0.23	19.3 ± 0.5	65 ± 1
試料全体の ${ }^{137} \mathrm{Cs}$ 存在量（ Bq$)$	0.30 ± 0.03	2.2 ± 0.1	7.9 ± 0.1
バックグラウンド試料中の平均 ${ }^{137} \mathrm{Cs}$ 濃度（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	2.79 ± 0.78	16 ± 3	57 ± 6
$\text { バックグラウンド試料中の }{ }^{137} \mathrm{Cs}$ 存在量（Bq）	0.32 ± 0.09	1.8 ± 0.4	6.9 ± 0.8
放射性粒子中の ${ }^{137} \mathrm{Cs}$ 存在量 （Bq）	－＊	－＊	1.0 ± 0.8
試料全体の ${ }^{137} \mathrm{Cs}$ 存在量に対する放射性粒子の寄与率（\％）	－	－	13 ± 10

＊放射性粒子の取り出し前後で，${ }^{137} \mathrm{Cs}$ 濃度の差が無かったため，定量しなかった。

表 I－2－2－3－4（2）放射性粒子取り出し前後の海底土試料中の放射性 Cs の比較

	茨城海域測点 2	静岡海域測点 4	沖合海域測点 I1	
試料量（g）	117.0	97.1	315.7	
試料全体の ${ }^{137} \mathrm{Cs}$ 濃度（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	72 ± 1	1.9 ± 0.3	$224 \pm$	2
試料全体の ${ }^{137} \mathrm{Cs}$ 存在量（Bq）	8.4 ± 0.1	0.18 ± 0.03	$71 \pm$	1
バックグラウンド試料中の平均 ${ }^{137} \mathrm{Cs}$ 濃度（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	26 ± 2	1.8 ± 0.3	$172 \pm$	6
$\begin{aligned} & \text { バックグラウンド試料中の }{ }^{137} \mathrm{Cs} \\ & \text { 存在量 }(\mathrm{Bq}) \end{aligned}$	3.0 ± 0.2	0.18 ± 0.03	$54 \pm$	2
放射性粒子中の ${ }^{137} \mathrm{Cs}$ 存在量（Bq）	5.4 ± 0.2	－＊	$17 \pm$	2
試料全体の ${ }^{137} \mathrm{Cs}$ 存在量に対する放射性粒子の寄与率（\％）	64 ± 10	－	$23 \pm$	6

＊放射性粒子の取り出し前後で，${ }^{137} \mathrm{Cs}$ 濃度の差が無かったため，定量しなかった。

茨城海域測点 2 と福島第一海域測点 2 は，平成 29 年度の採取試料の中で，放射性粒子取り出し前の試料全体の ${ }^{137} \mathrm{Cs}$ 濃度（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）が高く，それぞれ $72 \pm 1 \mathrm{~Bq} / \mathrm{kg}$－乾燥土 と $65 \pm 1 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であり，両者は比較的近い値であった。しかし，放射性粒子取り出 し後の ${ }^{137} \mathrm{Cs}$ 濃度はそれぞれ $26 \pm 2 \mathrm{~Bq} / \mathrm{kg}$－乾燥土， $57 \pm 6 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であり，茨城海域測点 2 では ${ }^{137} \mathrm{Cs}$ 濃度の顕著な減少が見られたのに対し，福島第一海域測点 2 では ${ }^{137} \mathrm{Cs}$ 濃度 に大きな減少は見られなかった。これは，福島第一海域測点 2 の海底土試料中の ${ }^{137} \mathrm{Cs}$ のほ とんどが事故後の汚染水から海底土中の有機物や粘土鉱物に移行•吸着した ${ }^{137} \mathrm{Cs}$ に由来 し，放射性粒子の ${ }^{137} \mathrm{Cs}$ に因らなかったためと考えられる。
沖合海域測点 I1 は，測定した試料の中では茨城海域測点 2 に地理的にもっとも近い測点であり，平成29年5月に採取した両測点の海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度は，それぞれ沖合海域測点 I1 が $83 \pm 1 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，茨城海域測点 2 が $72 \pm 1 \mathrm{~Bq} / \mathrm{kg}$－乾燥土であり，比較的近 い値であった。そこで，海底土中の ${ }^{137} \mathrm{Cs}$ に対する放射性粒子の寄与の時間的変化を見るた め，平成 25 年 5 月の沖合海域測点 I1 と平成 29 年 5 月の茨城海域測点 2 とで比較を行っ た。平成 29 年 5 月の茨城海域測点 2 のバックグラウンドの ${ }^{137} \mathrm{Cs}$ 濃度は，平成 25 年 5 月 の沖合海域測点 I1 の試料に比べて大きく減少している。しかし，放射性粒子取り出し前後 の ${ }^{137} \mathrm{Cs}$ 濃度の減少量は，両測点ともに $50 \mathrm{~Bq} / \mathrm{kg}$－乾燥土前後であった。すなわち，海底土 のバックグラウンドの ${ }^{137} \mathrm{Cs}$ 濃度は，事故後から全国的に大きく下がってきているが，海域 によっては，放射性粒子が沖側に拡散せず留まる，もしくは陸域から河川等を通じて新た に流入しているために ${ }^{137} \mathrm{Cs}$ 濃度が下がりにくくなっている可能性がある。

本調査で放射性粒子の存在量を確認したのはわずか 6 試料であり， 1 測点で得られた試

料が各海域の放射性粒子の存在量を代表するものではない。そのため，各海域の放射性粒子の存在量や分布は未だ明らかではないが，本調査により，放射性粒子が海底土試料の ${ }^{137} \mathrm{Cs}$ 濃度を決める無視できない要因の一つであることが確認された。

バックグラウンド試料中の ${ }^{137} \mathrm{Cs}$ には海底土中の無機物粒子と有機物粒子に吸着した ${ }^{137} \mathrm{Cs}$ が含まれる。福島県沖と茨城県沖の海底土中の有機物に含まれる放射性 Cs は海底土全体の 10% 程度であり，ほとんどは海底土中の無機物粒子に吸着していることが知られて いる ${ }^{16)}$ 。そのため，事故から数年たつた各海域の海底土中の ${ }^{137} \mathrm{Cs}$ の分布の違いは，これ まで主に無機物粒子の粒径の違いに起因するものと考えられていたが，本調査の結果から放射性粒子の存在の有無も，考慮すべき新たな要因として加わった。

平成 29 年度の海洋放射能調査海域における海底土試料で観測された ${ }^{137} \mathrm{Cs}$ 濃度の最大値 $80 \mathrm{~Bq} / \mathrm{kg}$－乾燥土は，茨城海域の 4 測点のらち，測点 1 において見られたが，その他の 3 測点では，${ }^{137} \mathrm{Cs}$ 濃度は $30 \mathrm{~Bq} / \mathrm{kg}-$ 乾燥土以下であった。このように，同じ海域の海底土におい て観測される ${ }^{137} \mathrm{Cs}$ 濃度の大きな差は，海底土中の放射性粒子の存在が要因である可能性 が高い。したがって，放射性粒子の調査は，海洋放射能調査海域のモニタリングの結果を補完する上で有効な手段の一つであると言える。

iii．放射性 Cs の鉛直分布

「1．海洋放射能調査海域周辺での調査」による海底土の表面から 3 cm までの層におけ る放射性 Cs 濃度は時空間的な変動を示している ${ }^{4)}$ 。放射性 Cs の表層における分布からも水平的には把握できるが，深度方向のデータが乏しい。ここでは，全国の発電所海域にお ける放射性 Cs の鉛直分布を示し，その傾向を明らかにするとともに，海底土中の蓄積量を見積もる際の補完データとする。

（i）方法

海底土の柱状試料は，福島第一，福島第二海域及び新潟海域においては全測点，静岡海域は測点 4，その他の海域においては測点 2 において採取を行った（表 I $-2-2-3-5$ ）。採取にはマルチプルコアラーもしくはボックスコアラーを用いた。放射能測定用に充分な量 を確保するために，採取は $2 \sim 3$ 回行った。採取後の海底土は表面から深さ 6 cm までの層 では 1.5 cm 毎， $6 \sim 10 \mathrm{~cm}$ の層では 2 cm 毎， 10 cm 以深の層では 3 cm 毎の厚さで試料を分割•採取した。核種測定用の試料は，それぞれ約 $2 \sim 2.5 \mathrm{~kg}$ ずつ採取し，分析まで泠涷保存し た。試料はその後 $105^{\circ} \mathrm{C}$ で乾燥し 2 mm 孔径のふるいにかけ，プラスチック容器（ $390 \sim 400 \mathrm{cc}$ ） に詰めゲルマニウム半導体検出器で $80,000 ~ 200,000$ 秒間，放射性 Cs を測定した。 ${ }^{134} \mathrm{Cs}$及び ${ }^{137} \mathrm{Cs}$ の目標検出下限値は，それぞれ $0.3 \mathrm{~Bq} / \mathrm{kg}$ 以下である。

（ii）結果

柱状試料の放射性 Cs 分析結果を表 I－2－2－3－6に，${ }^{137} \mathrm{Cs}$ の鉛直分布を図 I－ $2-2-3-12$ に示す。また，結果については東日本海域（青森，宮城，福島第一，福島第二，茨城），西日本海域（静岡，愛媛，鹿児島，佐賀）及び日本海海域（島根，福井第一，福井第二，石川，新潟，北海道）に分けて詳述する。

東日本海域において，いくつかの海域で ${ }^{134} \mathrm{Cs}$ 濃度が 10 cm 以上の深度を超えて検出され た。また，宮城，福島第一，福島第二及び茨城海域において，${ }^{134} \mathrm{Cs}$ と ${ }^{137} \mathrm{Cs}$（平成 23 年 3月11日に補正）の放射能比が表層から最深部まで約 1 であったことから，これらの海域の海底土で検出された放射性 Cs のほとんどは東電福島第一原発事故由来であることが分か った。これらの鉛直分布は測点によって大きく異なっていた。これは各測点での海底土の性状によるものと考えられる。一方，青森海域では ${ }^{134} \mathrm{Cs}$ 濃度は検出されなかったが，${ }^{137} \mathrm{Cs}$濃度は表層から最深部まで検出された。これらの値は同海域の調査開始時（平成 15 年度） から東電福島第一原発事故前（平成 22 年度）の濃度範囲内（ $3.1 \sim 4.2 \mathrm{~Bq} / \mathrm{kg}$－乾燥土）また はそれ以下であった。これらのことから，青森海域で検出された放射性Csは同事故前の影響であることが明らかとなった。西日本海域においては，134 Cs 濃度は検出されなかったが， ${ }^{137} \mathrm{Cs}$ 濃度については静岡，愛媛及び鹿児島海域で表層 3 cm 以上の深さまで検出された。一方，佐賀海域は ${ }^{137} \mathrm{Cs}$ 濃度が検出されなかった。その要因として，「i。放射性 Cs 濃度変動と性状との関係」にて述べたが，放射性 Cs 濃度は海底土の粒径に依存しており，50\％粒径は

佐賀海域が最も大きいことから，海域による ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布が異なるのは，海底土の粒径によるものであることが分かった。

日本海海域においては，北海道，石川，福井第一，福井第二及び島根海域において ${ }^{134} \mathrm{Cs}$濃度が検出されておらず，新潟海域で ${ }^{134} \mathrm{Cs}$ 濃度が表層 3 cm よりも深い層でも検出された。 この海域では猪苗代湖に沈着した東電福島第一原発事故由来の放射性 Cs が阿賀野川を経由して，その河口付近まで到達していることがわかっている ${ }^{7}$ 。 。本調査における新潟海域も測点 $1 \sim 3$ は同河川の河口から数十 km 圏内に位置し，Inoue et al．${ }^{8)}$ において ${ }^{134} \mathrm{Cs}$濃度が検出された海域内でもある。また，${ }^{134} \mathrm{Cs}$ 濃度が平成 27,28 年度の調査において既 に 10 cm 以上の深さまで検出されていることから ${ }^{17,18)}$ ，同事故数年後には表層から 3 cm よ りも深い深度まで同事故由来の放射性 Cs が到達していることが分かった。 ${ }^{137} \mathrm{Cs}$ 濃度につ いては，すべての海域で検出されており，表層 3 cm 以上の深さ（最大深度 25 cm ）まで検出 された。また，新潟海域においては，${ }^{134} \mathrm{Cs}$ と ${ }^{137} \mathrm{C}$ s の放射能比が表層から最深部まで約 0.5 であり，この値は東日本海域に比べて低いことから，表層 3 cm 以深で検出された ${ }^{137} \mathrm{Cs}$ は同事故前の 1950～60年代の大気圏内核実験の影響と考えられる。

表 I－2－2－3－5 海底土試料の採取測点，位置及び採取水深

海域	測点	採取日	緯度（N）		経度（E）		水深（m）
北海道	2	平成 29 年 5 月 10 日	43	5.0	140	16.0	408
青森	2	平成 29 年 5 月 5 日	41	13.1	141	40.2	646
宮城	2	平成 29 年 6 月 3 日	38	24.9	141	45.3	164
福島第一	1	平成 29 年 6 月 2 日	37	40.1	141	20.2	103
福島第	2	平成 29 年 6 月 2 日	37	34.9	141	24.9	134
福島第	3	平成 29 年 6 月 2 日	37	29.9	141	20.0	122
福島第一	4	平成 29 年 6 月 1 日	37	23.0	141	20.0	131
福島第二	1	平成 29 年 6 月 1 日	37	16.1	141	25.1	155
福島第二	2	平成 29 年 6 月 1 日	37	11.9	141	20.1	143
福島第二	3	平成 29 年 5 月 31 日	37	6.0	141	19.0	149
福島第二	4	平成 29 年 5 月 31 日	36	59.9	141	20.4	164
茨城	2	平成 29 年 5 月 30 日	36	25.1	140	51.1	120
静岡	4	平成 29 年5月9日	34	31.0	137	59.0	569
新潟	1	平成 29 年 6 月 16 日	37	55.8	138	37.2	366
新潟	2	平成 29 年 6 月 16 日	37	50.0	138	35.2	485
新潟	3	平成 29 年 6 月 15 日	37	44.1	138	26.9	517
新潟	4	平成 29 年 6 月 15 日	37	37.1	138	22.9	232
石川	2	平成 29 年 6 月 19 日	37	7． 9	136	26.2	182
福井第一	2	平成 29 年 6 月 21 日	35	57.0	135	50.0	252
福井第二	2	平成 29 年 6 月 22 日	35	50.0	135	35.0	197
島根	2	平成 29 年 6 月 23 日	35	41.0	133	4． 0	77
愛媛	2	平成 29 年 6 月 25 日	33	38.0	132	16．9	61
佐賀	2	平成 29 年 5 月 5 日	33	37.0	129	52.9	54
鹿児島	2	平成 29 年 5 月 6 日	31	45.2	130	1． 1	83

表 I－2－2－3－6（1）海底土の採取深度及び放射性Cs 濃度の鉛直結果

海域	測点	採取深度	${ }^{134} \mathrm{Cs}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$
		（cm）	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	誤差	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	誤差
北海道	2	0．0－1．5	ND	－	3.29	0． 14
		1．5－3．0	ND	－	3.78	0.12
		3．0－4．5	ND	－	4． 23	0.16
		4．5－6．0	ND	－	2． 37	0.14
		6．0－8．0	ND	－	1.08	0． 12
		8．0－10．0	ND	－	0.42	0.09
		10．0－13．0	ND	－	0． 47	0.08
		13．0－16．0	ND	－	0． 42	0.09
		16．0－19．0	ND	－	0.51	0.07
青森	2	0．0－1．5	ND	－	0.76	0.09
		1．5－3．0	ND	－	0． 46	0.07
		3．0－4． 5	ND	－	0.87	0.10
		4．5－6．0	ND	－	0． 77	0.10
		6．0－8．0	ND	－	0． 79	0.08
		8． $0-10.0$	ND	－	1． 01	0.11
		10．0－13．0	ND	－	0． 77	0.10
		13．0－16．0	ND	－	0． 74	0.09
		16．0－19．0	ND	－	0.64	0.09
宮城	2	0．0－1．5	ND	－	2.63	0． 23
		1．5－3．0	0.62	0.13	4． 70	0.24
		3．0－4． 5	ND	－	4． 78	0． 27
		4．5－6．0	0.76	0． 14	6． 73	0． 26
		6．0－8．0	0.99	0.09	7． 24	0.17
福島第一	1	0．0－1．5	2.49	0.21	19．31	0.49
		1．5－3．0	2． 88	0.19	21.49	0.42
		3．0－4． 5	3． 17	0． 22	27． 58	0.55
		4．5－6．0	3.65	0． 22	25． 23	0． 46
		6．0－8．0	2.79	0.20	20.37	0.43
福島第一	2	0．0－1．5	6． 42	0.30	46． 89	0.71
		1．5－3．0	8.67	0． 28	65.07	0.70
		3． $0-4.5$	8． 22	0． 35	57.40	0.78
		4．5－6．0	4． 74	0． 23	36.30	0.55
		6．0－8．0	5.99	0． 30	45.06	0． 72
		8．0－10．0	2． 55	0． 19	21．49	0． 44
		10．0－13．0	1． 78	0． 10	13． 39	0.21
		13．0－16．0	2.15	0.10	16． 53	0． 20

ND は検出下限以下を示す。

表 I－2－2－3－6（2）海底土の採取深度及び放射性Cs 濃度の鉛直結果

海域	測点	採取深度	${ }^{134} \mathrm{Cs}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	${ }^{137} \mathrm{CS}$
		（cm）	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	誤差	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	誤差
福島第一	3	0．0－1．5	6.38	0.30	45.09	0.71
		1．5－3．0	7.93	0．29	58.67	0.68
		3．0－4．5	7.50	0.32	54.56	0.78
		4．5－6．0	1.84	0.23	15.50	0.38
		6． $0-8.0$	2． 48	0.21	17.94	0.41
		8． $0-10.0$	2.69	0.18	21.69	0.39
		10．0－13．0	2.14	0.20	16． 12	0.40
		13．0－16．0	1.09	0．19	6.87	0.24
福島第一	4	0．0－1．5	3.38	0.27	22.76	0.56
		1．5－3．0	3.23	0.23	20.83	0.47
		3．0－4．5	4.06	0．28	30.59	0.64
		4．5－6．0	3． 70	0.24	26． 48	0.52
		6． $0-8.0$	2.66	0．29	19.53	0.51
		8．0－10．0	0.87	0． 19	8.10	0．29
		10．0－13．0	0.82	0． 18	8.07	0.38
		13．0－16．0	ND	－	2.96	0．23
		16．0－19．0	ND	－	2.58	0.23
福島第二	1	0．0－1．5	2.78	0．24	20.10	0.53
		1．5－3．0	3.58	0.25	24.20	0.55
		3．0－4．5	4.31	0.25	32.94	0.56
		4．5－6．0	3.68	0.26	28.88	0.61
		6． $0-8.0$	5.71	0．27	47.03	0.67
福島第二	2	0．0－1．5	2.56	0.27	15． 32	0.47
		1．5－3．0	3． 44	0． 26	24.14	0.54
		3．0－4．5	2.99	0.21	22.66	0.44
		4．5－6．0	2.69	0．22	19.65	0.50
		6． $0-8.0$	1.91	0． 19	15.98	0.39
		8． $0-10.0$	1.66	0.19	10．33	0.39
福島第二	3	0．0－1．5	3． 16	0． 22	23.55	0．48
		1．5－3．0	3.98	0． 23	28.80	0.49
		3．0－4．5	3． 46	0.24	26.31	0.54
		4．5－6．0	3.06	0． 24	22．22	0.52
		6．0－8．0	2． 39	0.21	16． 75	0．45
		8．0－10．0	2． 33	0.21	15． 23	0.36
		10．0－13．0	2.13	0．16	15． 44	0.36

ND は検出下限以下を示す。

表 I－2－2－3－6（3）海底土の採取深度及び放射性 Cs 濃度の鉛直結果

海域	測点	採取深度	${ }^{134} \mathrm{Cs}$	${ }^{134} \mathrm{CS}$	${ }^{137} \mathrm{CS}$	${ }^{137} \mathrm{CS}$
		（cm）	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	誤差	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	䛊差
福島第二	4	0．0－1．5	3.56	0.21	26.53	0．47
		1．5－3．0	2． 00	0.16	14.17	0.31
		3．0－4．5	2.05	0． 20	17.08	0.45
		4．5－6．0	2． 37	0． 20	18.95	0.42
		6．0－8．0	1.61	0.17	9.87	0.30
		8． $0-10.0$	0.93	0.15	8.31	0.30
		10．0－13．0	ND	－	2． 78	0.17
茨城	2	0．0－1．5	9.38	0.37	71.94	0.96
		1．5－3．0	4.27	0.28	33.03	0.60
		3．0－4．5	3.86	0.22	26.54	0.47
		4．5－6．0	2.52	0.22	18.98	0.46
		6．0－8．0	1． 75	0.19	11.94	0.35
静岡	4	0．0－1．5	ND	－	1.90	0.27
		1．5－3．0	ND	－	1． 52	0.22
		3．0－4．5	ND	－	2.35	0.25
		4．5－6．0	ND	－	1.88	0.26
		6．0－8．0	ND	－	1.78	0.25
		8．0－10．0	ND	－	1.13	0.18
		10．0－13．0	ND	－	0.85	0.13
		13．0－16．0	ND	－	1． 09	0.11
新潟	1	0．0－1．5	0.57	0.15	6.09	0.19
		1．5－3．0	ND	－	6.90	0.21
		3．0－4．5	0.71	0．14	10．32	0.27
		4．5－6．0	0.90	0.12	11.33	0.22
		6．0－8．0	1． 07	0.14	11.87	0.26
		8．0－10．0	0.57	0.13	8.36	0.20
		10．0－13．0	0.65	0.11	8.56	0.19
		13．0－16．0	ND	－	4． 42	0.19
		16．0－19．0	ND	－	3． 75	0.13
新潟	2	0．0－1．5	1． 25	0． 19	9.88	0.26
		1．5－3．0	ND	－	9.25	0.23
		3． $0-4.5$	0.59	0.14	9． 40	0.21
		4．5－6．0	0.86	0.14	10.80	0.23
		6．0－8．0	0.54	0.13	8.78	0.22
		8．0－10．0	ND	－	7.72	0.21
		10．0－13．0	ND	－	5.86	0.18
		13．0－16．0	0.32	0.08	3.70	0.12
		16．0－19．0	ND	－	2． 16	0.11

ND は検出下限以下を示す。

表 I－2－2－3－6（4）海底土の採取深度及び放射性 Cs 濃度の鉛直結果

海域	測点	採取深度	${ }^{134} \mathrm{Cs}$	${ }^{134} \mathrm{CS}$	${ }^{137} \mathrm{Cs}$	${ }^{137} \mathrm{CS}$
		（cm）	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	誤差	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	誤差
新潟	3	0．0－1．5	0.45	0.15	6.19	0.19
		1．5－3．0	ND	－	7.28	0.22
		3．0－4．5	0.50	0.15	8． 46	0.24
		4．5－6．0	0.41	0.13	8． 48	0.20
		6．0－8．0	ND	－	6.98	0.17
		8． $0-10.0$	ND	－	5.36	0.19
		10．0－13．0	ND	－	4． 87	0.16
		13．0－16．0	ND	－	3.68	0.17
		16．0－19．0	ND	－	1． 47	0.12
新潟	4	0．0－1．5	ND	－	2.02	0.12
		1．5－3．0	ND	－	2.50	0.10
		3．0－4．5	ND	－	2.09	0.11
		4．5－6．0	ND	－	1． 57	0.11
		6．0－8．0	ND	－	0.60	0.07
		8． $0-10.0$	ND	－	ND	－
		10．0－13．0	ND	－	ND	－
		13．0－16．0	ND	－	ND	－
石川	2	0．0－1．5	ND	－	1． 19	0.11
		1．5－3．0	ND	－	1． 59	0.12
		3． $0-4.5$	ND	－	1． 74	0.12
		4．5－6．0	ND	－	1． 96	0.11
		6．0－8．0	ND	－	1． 37	0.10
		8． $0-10.0$	ND	－	1． 23	0.10
		10．0－13．0	ND	－	0． 72	0.10
福井第一	2	0．0－1．5	ND	－	3.74	0.19
		1．5－3．0	ND	－	3． 88	0.16
		3． $0-4.5$	ND	－	4． 17	0.18
		4．5－6．0	ND	－	4． 39	0.16
		6．0－8．0	ND	－	4.65	0.15
		8． $0-10.0$	ND	－	4.90	0.16
		10．0－13．0	ND	－	4.60	0.18
		13．0－16．0	ND	－	4.85	0.18
		16．0－19．0	ND	－	4． 21	0.15
福井第二	2	0．0－1．5	ND	－	2． 49	0.15
		1．5－3．0	ND	－	3.08	0.12
		3． $0-4.5$	ND	－	3.32	0.12
		4．5－6．0	ND	－	3.20	0.13
		6．0－8．0	ND	－	3.29	0.14
		8． $0-10.0$	ND	－	3.78	0.12
		10．0－13．0	ND	－	4． 23	0.16
		13．0－16．0	ND	－	2.37	0.14
		16．0－19．0	ND	－	1.08	0.12

ND は検出下限以下を示す。

表 I－2－2－3－6（5）海底土の採取深度及び
放射性 Cs 濃度の鉛直結果

海域	測点	採取深度	${ }^{134} \mathrm{Cs}$	${ }^{134} \mathrm{CS}$	${ }^{137} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$
		（cm）	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	誤差	（ $\mathrm{Bq} / \mathrm{kg}$－乾燥土）	誤差
島根	2	0．0－1．5	ND	－	0． 42	0.09
		1．5－3．0	ND	－	0． 47	0.08
		3．0－4． 5	ND	－	0． 42	0.09
		4．5－6． 0	ND	－	0.51	0.07
		6．0－8．0	ND	－	0． 76	0.09
		8． $0-10.0$	ND	－	0.46	0．07
愛媛	2	0．0－1．5	ND	－	0.87	0.10
		1．5－3．0	ND	－	0． 77	0.10
		3．0－4． 5	ND	－	0． 79	0.08
		4．5－6． 0	ND	－	1． 01	0.11
		6．0－8．0	ND	－	0． 77	0.10
		8．0－10．0	ND	－	0． 74	0.09
		10．0－13．0	ND	－	0.64	0.09
		13．0－16．0	ND	－	0． 74	0． 07
		16．0－19．0	ND	－	0.57	0.06
佐賀	2	0．0－1．5	ND	－	ND	－
		1．5－3．0	ND	－	ND	－
		3．0－4． 5	ND	－	ND	－
鹿児島	2	0．0－1．5	ND	－	0.33	0.09
		1．5－3．0	ND	－	0． 41	0.10
		3． $0-4.5$	ND	－	0． 29	0.09

ND は検出下限以下を示す。

図 I－2－2－3－12（1）海底土中の ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布（東日本海域）

図 I－2－2－3－12（2）海底土中の ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布（東日本海域）

図 I－2－2－3－12（3）海底土中の ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布（西日本海域）

図 I－2－2－3－12（4）海底土中の ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布（日本海海域）

図 I－2－2－3－12（5）海底土中の ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布（日本海海域）

（3）海水中の放射性 Cs

i。表層における放射性 Cs 濃度変動

海洋放射能調査の原子力発電所周辺 15 海域のうち，西日本並びに日本海の表層海水を中心に，東電福島第一原発事故以降，海水中 ${ }^{137} \mathrm{Cs}$ 濃度が事故前（平成 22 年度調査結果） に比べ高いことが確認されている。平成 28 年度の本調査により，西日本海域及び日本海海域の表層海水での ${ }^{137} \mathrm{Cs}$ 濃度上昇分は，${ }^{134} \mathrm{Cs}$ 濃度付加分と一致することから，東電福島第一原発事故によって海洋環境へ放出された放射性 Cs が，同海域に到達していることが明 らかとなった。

平成 29 年度では東電福島第一原発事故によって放出された放射性 Cs の上昇傾向を確認 するため，同海域での表層海水の ${ }^{134} \mathrm{Cs}$ 濃度の検出を試みた。

（i）試料採取及び分析

発電所海域のらち，分析を行った平成 29 年度の表層 9 試料（AMP 吸着試料：9海域から 1 測点）を表 I－2－2－3－7に示す。なお，試料は下記の方法で選定している。
${ }^{137} \mathrm{Cs}$ 濃度が事故前（平成 22 年度）の平均値に比べ高いと考えられる海域の内，東電福島第一原発からの直接流入による影響を受けやすい海域（青森，核燃，宮城，福島第一，福島第二，茨城海域）を除く。
－平成 29 年度において，各海域（福井第一，福井第二は 1 海域とする）で事故前よりも高い ${ }^{137} \mathrm{Cs}$ 濃度が検出された測点のうち，1測点における表層海水。
平成 29 年度の海洋放射能調査において測定済み試料について，金沢大学低レベル放射能実験施設の高感度 γ 線スペクトロメーターによる長時間測定を行って ${ }^{134} \mathrm{Cs}$ 濃度を求め た（目標検出下限値： $0.2 \mathrm{mBq} / \mathrm{L}$ ）。

（ii）結果

測定結果を表 I－2－2－3－7 に示す。なお，測定結果は東北地方太平洋沖地震とそれに伴っ て発生した津波発生時（平成 23 年 3 月 11 日）に補正した。

対象とした海域表層の ${ }^{134} \mathrm{Cs}$ の平均値は，平成 24 年度から平成 28 年度にかけて 0.22 か ら $0.82 \mathrm{mBq} / \mathrm{L}$ と上昇していたが，平成 29 年度は $0.82 \mathrm{mBq} / \mathrm{L}$ であった（図 I $-2-2-3-13$ ）。西日本海域及び日本海海域の表層海水において，平成 29 年度も東電福島第一原発事故由来 の ${ }^{134} \mathrm{Cs}$ は確認されたが，これまでのような年度毎の ${ }^{134} \mathrm{Cs}$ 濃度上昇は見られなかった。

表 I－2－2－3－7 長時間測定による海水中の放射性 Cs 濃度

海域	測点	採取深度	${ }^{134} \mathrm{Cs}^{*}$	${ }^{134} \mathrm{Cs}^{*}$	${ }^{137} \mathrm{Cs}^{*}$	${ }^{137} \mathrm{Cs}^{*}$
		$(\mathrm{~m})$	$(\mathrm{mBq} / \mathrm{L})$	誤差	$(\mathrm{mBq} / \mathrm{L})$	誤差
北海道	3	1	0.74	0.19	2.07	0.06
静岡	3	1	1.21	0.19	2.49	0.07
新潟	2	1	0.84	0.14	2.41	0.06
石川	4	1	0.85	0.13	2.17	0.05
福井第二	3	1	0.55	0.15	2.24	0.06
島根	3	1	0.69	0.17	2.27	0.07
愛媛	3	1	0.99	0.13	2.22	0.05
佐賀	3	1	0.74	0.15	2.41	0.05
鹿児島	3	1	0.76	0.15	2.28	0.05

＊平成23年3月11日に値を補正。

図 I－2－2－3－13 日本海海域及び西日本海域における表層中 ${ }^{134} \mathrm{Cs}$ 濃度平均値の経年変化（平成 23 年 3 月 11 日に値を補正）

ii．海水中の溶存態放射性 Cs 濃度

「1．海洋放射能調査海域周辺での調査」の原子力発電所周辺 15 海域のうち，西日本並 びに日本海の表層海水を中心に，近年 ${ }^{137} \mathrm{Cs}$ 濃度が上昇しており，東電福島第一原発事故に よって海洋環境へ放出された放射性 Cs が，同海域に到達していることが明らかとなった。 その放射性 Cs 濃度の変化について，どのような形態（溶存態や微小生物等の粒状態）によ るものなのかを把握する必要がある。海洋放射能調査海域周辺での調査では海水試料は全 て未ろ過であるため，その形態別の違いが明らかとなっていない。

そこで，「1．海洋放射能調査海域周辺での調査」の海水試料のろ過を行い，溶存態放射性Cs濃度を測定し，海洋放射能調査海域周辺での調査で得られた未ろ過海水中の ${ }^{137} \mathrm{Cs}$ 濃度（全 ${ }^{137} \mathrm{Cs}$ ）に対する溶存態の寄与を把握する。

（i）試料採取及び分析

海水試料は，発電所海域の測点 2 において表層から約 60L 採取し，カートリッジフィル ターでろ過を行った。この海水1Lに対して 15 M 硝酸 2 mL を添加し，分析まで冷暗所にて保存した。海水試料の溶存態 ${ }^{134} \mathrm{Cs}$ 及び溶存態 ${ }^{137} \mathrm{Cs}$ の分析は，化学分離した後，ガンマ線 スペクトロメトリーにより定量した。

（ii）結果

測定結果について表 I－2－2－3－8 に示す。溶存態 ${ }^{134} \mathrm{Cs}$ 濃度はすべての測点で検出限界値以下（ND），溶存態 ${ }^{137} \mathrm{Cs}$ 濃度は $1.38 \sim 2.52 \mathrm{mBq} / \mathrm{L}$ であったため，結果については溶存態 ${ }^{137} \mathrm{Cs}$ 濃度について示す。

宮城，福島第二，福井第一及び福井第二を除いた海域では溶存態 ${ }^{137} \mathrm{Cs}$ 濃度が海水中の全 ${ }^{137} \mathrm{Cs}$ 濃度に比べ低くなった。本調査におけるこれらの海域の海水中の全 ${ }^{137} \mathrm{Cs}$ 濃度に対す る溶存態の比は $0.73 \sim 1.15$（平均 0.93 ± 0.12 ）であり，海水中の ${ }^{137} \mathrm{Cs}$ 濃度の大部分が溶存態であることが示された。

各海域で比較したところ，目立つた傾向や特徴はみられなかった。宮城，福島第二，福井第一及び福井第二海域では溶存態 ${ }^{137} \mathrm{Cs}$ 濃度が海水中の全 ${ }^{137} \mathrm{Cs}$ 濃度に比べ高くなり，海水中の全 ${ }^{137} \mathrm{Cs}$ 濃度に対する溶存態の比は $1.01 \sim 1.15$ であった。福島第二海域は濃度比や誤差から全 ${ }^{137} \mathrm{Cs}$ 濃度と溶存態 ${ }^{137} \mathrm{Cs}$ 濃度が同等であると推測できるが，宮城，福井第一及 び福井第二海域では全 ${ }^{137} \mathrm{Cs}$ 濃度と溶存態 ${ }^{137} \mathrm{Cs}$ 濃度が誤差範囲以内ではあるものの溶存態 が 1 割程度高い値をとった。ただし，全 ${ }^{137} \mathrm{Cs}$ 濃度と溶存態 ${ }^{137} \mathrm{Cs}$ 濃度について，両者の値 に違いがあるかを解析（ $\mathrm{t}-$ 検定）したところ，有意な差が無いことが示された。このこと から，本調査での岸から離れた海域では海水中の放射性 Cs は溶存態で存在することが分 かつた。

表 I－2－2－3－8 海水中の溶存態放射性 Cs 濃度

海域	測点	採取層 （m）	溶存態 ${ }^{137} \mathrm{Cs}$（mBq／L）			全 ${ }^{137} \mathrm{Cs}$ 濃度／溶存態 ${ }^{137} \mathrm{Cs}$ 濃度比
			測定値	誤差	検出下限値	
北海道	2	1	1． 59	0． 20	0． 52	0． 73
青森	2	1	1． 38	0.15	0． 48	0． 98
宮城	2	1	1． 79	0.17	0.53	1． 15
福島第一	2	1	1． 89	0.18	0． 56	0． 87
福島第二	2	1	2． 52	0． 22	0． 43	1.01
茨城	2	1	2． 48	0． 19	0． 47	0． 97
静岡	2	1	2． 27	0． 10	0． 26	0.91
新潟	2	1	1． 76	0.17	0． 45	0． 88
石川	2	1	1． 71	0.18	0． 47	0.93
福井第一	2	1	1． 93	0.12	0.31	1． 09
福井第二	2	1	1． 75	0.17	0． 56	1． 11
島根	2	1	1． 78	0.16	0.51	0． 80
愛媛	2	1	1． 84	0.15	0． 45	0． 89
佐賀	2	1	1． 84	0.08	0． 23	0． 92
鹿児島	2	1	1． 67	0.08	0． 23	0． 76

iii．放射性 Cs 濃度の鉛直分布

海洋放射能調査による海水中の表層並びに下層での放射性 Cs 濃度は時空間的な変動を示している。放射性Cs の表層及び下層における分布からも水平的には把握できるが，海流 による水塊の変化が激しい海水においては，鉛直的分布でのデータがない。本調査では，全国の発電所海域における放射性 Cs の海水中の鉛直分布を示し，その傾向を明らかにす ると共に，海水中の蓄積量を見積もる際のデータとする。

（i）試料採取及び分析

海水試料は，各海域において，表層及び下層（海底から $10 \sim 30 \mathrm{~m}$ 上）以外の採水層（ 10 m ， $20 \mathrm{~m}, ~ 50 \mathrm{~m}, ~ 100 \mathrm{~m}, ~ 200 \mathrm{~m}, ~ 300 \mathrm{~m}$ ：表 I－ $2-2-3-9$ ）から約 $60 ~ 80 \mathrm{~L}$ 採取した。この海水 1 L に対 して 15 M 硝酸 2 mL を添加し，分析まで泠暗所にて保存した。海水試料の ${ }^{134} \mathrm{Cs}$ 及び ${ }^{137} \mathrm{Cs}$ の分析は，化学分離した後，ガンマ線スペクトロメトリーにより定量した。

表 I－2－2－3－9 各海域における中間層採取を行った測点，採取層，水深及び層数

海域	測点	採取層（m）＊	水深（m）	層数
北海道	2	20，50， 100	408	3
青森	2	20，50，100， 300	645	4
宮城	2	20， 50	164	2
福島第一	$1 \sim 4$	20， 50	101－134	8
福島第二	$1 \sim 4$	20， 50	143－160	8
茨城	2	20， 50	119	2
静岡	4	20，50，100， 300	564	4
新潟	2	20，50，100， 300	487	4
石川	2	20， 50	184	2
福井第一	2	20，50， 100	252	3
福井第二	2	20， 50	197	2
島根	2	20	76	1
愛媛	2	20	61	1
佐賀	2	10， 20	53	2
鹿児島	2	20， 50	83	2

＊海洋放射能調査において採取された表層及び下層を除く。

（ii）結果

海水試料の中間層で得られた分析結果を表 I－2－2－3－10に示す。 ${ }^{134} \mathrm{Cs}$ については，検出された採取層が全体の半分に満たず，鉛直分布の傾向が把握できないため，各海域にお ける ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布を議論する。

各海域における ${ }^{137} \mathrm{Cs}$ 濃度及び塩分の鉛直分布について，「1。海洋放射能調査海域周辺で の調査」で得られた表層及び下層の結果を併せて図 I－2－2－3－14 に示す。東日本海域，西日本海域及び日本海海域に分けて詳述する。

東日本海域では必ずしも表層から下層まで深度毎の減少が観測されなかった。青森海域 の ${ }^{137} \mathrm{Cs}$ 濃度は表層から 50 m 層にかけて $1.4 \mathrm{mBq} / \mathrm{L}$ から $1.7 \mathrm{mBq} / \mathrm{L}$ まで増加し，深度 100 m で $1.6 \mathrm{mBq} / \mathrm{L}$ と若干増加した後，下層まで緩やかに減少した。一方，その他の海域では ${ }^{137} \mathrm{Cs}$ 濃度が表層で極大値を示し，中間層（ $10 \sim 100 \mathrm{~m}$ 層）で極小値を示し，下層で僅かに増加する鉛直分布を示した。

このように詳細な ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布，また図 I－2－2－3－15に示す東日本海域での塩分 と ${ }^{137} \mathrm{Cs}$ 濃度の関連性が見られないことから，各海域における ${ }^{137} \mathrm{Cs}$ 濃度分布は一様では無 いことが明らかとなった。特に水深の浅い海域（宮城，福島第一，福島第二及び茨城）に おいては，沿岸流や潮汐及び鉛直混合等の物理的な要因によって分布が複雑となるため詳細な鉛直分布からの解析が必要となる。例えば「1．海洋放射能調査海域周辺での調查」の福島第一海域の測点4の表層及び福島第二海域の測点1 の表層で観測された高い ${ }^{137} \mathrm{Cs}$ 濃度がどれほどの深度まで及んでいるか，もしくは表層のみであるかを検討する際，中間層 での詳細なデータからの解析が重要となる。以上のように，中間層による詳細な鉛直分布 を解析することで，各海域の海水中の ${ }^{137} \mathrm{Cs}$ 濃度の状況が把握できることとなった。

日本海海域では水深が 300 m を超える北海道及び新潟海域において ${ }^{137} \mathrm{Cs}$ 濃度は，表層か ら下層まで減少した。石川，福井第一及び福井第二海域においては表層から下層まで ${ }^{137} \mathrm{Cs}$濃度は $1.5 \sim 1.9 \mathrm{mBq} / \mathrm{L}$ の範囲で変動した。島根海域では， 20 m 層で極小値（ $1.6 \mathrm{mBq} / \mathrm{L})$ を示し，下層（ $2.2 \mathrm{mBq} / \mathrm{L}$ ）まで増加した。西日本海域の静岡海域における ${ }^{137} \mathrm{Cs}$ 濃度は，表層 で低いものの $(2.2 \mathrm{mBq} / \mathrm{L})$ ， 50 及び 100 m 層で極大値 $(2.5 \mathrm{mBq} / \mathrm{L})$ をとり，その後緩やかに減少した。一方，水深が 100 m 以浅の佐賀及び鹿児島海域においては塩分の鉛直分布がほとん ど変化していないものの，表層において ${ }^{137} \mathrm{Cs}$ 濃度は極大値を示し， 10 及び 20 m 層で極小値を示した後，下層で増加した。愛媛海域では表層で極大値を示し，それよりも深い層で は $2 \mathrm{mBq} / \mathrm{L}$ であった。ただし，水深が浅い海域においても ${ }^{137} \mathrm{Cs}$ 濃度の詳細な鉛直分布から，愛媛海域のように表層のみに塩分の低い水塊が入り込んでいると考えられる。
以上，各海域における ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布の詳細調查を行ったところ，東電福島第一原発に近い東日本海域において，${ }^{137} \mathrm{Cs}$ 濃度は鉛直的にばらつきが確認されたが同事故の影響 は表層と下層に限られていることが分かった。また，西日本海域及び日本海海域において は水深が深い海域において塩分との関連性を示す鉛直分布であったが，水深の浅い海域で は塩分変化とは関係性のない鋁直分布であった。このように詳細な鉛直分布を解析するこ

とで，「1，海洋放射能調査海域周辺での調查」で示された結果に海流等物理的影響の及ぼ す程度が明らかとなり，同調查結果の補完データとして有用であることも同時に明らかと なった。

表 I－2－2－3－10（1）中間層における海水中の放射性 Cs 濃度

海域	測点	調査日	採取層（m）	${ }^{134} \mathrm{Cs}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$
				（mBq／L）	（誤差）	（mBq／L）	（誤差）
北海道	2	平成 29 年 5 月 10 日	1	ND	－	2.16	0.18
北海道	2	平成 29 年 5 月 10 日	20	0.09	0.03	1． 60	0.05
北海道	2	平成 29 年 5 月 10 日	50	ND	－	1． 70	0.05
北海道	2	平成 29 年 5 月 10 日	100	0.08	0.03	1． 60	0.04
北海道	2	平成 29 年 5 月 10 日	390	ND	－	1.51	0.19
青森	2	平成 29 年 5 月 5 日	1	ND	－	1． 41	0.21
青森	2	平成 29 年 5 月 5 日	20	0.11	0.03	1． 70	0.04
青森	2	平成 29 年 5 月 5 日	50	ND	－	1． 60	0.04
青森	2	平成 29 年 5 月 5 日	100	0.07	0.02	1． 60	0.04
青森	2	平成 29 年 5 月 5 日	300	ND	－	1． 30	0.03
青森	2	平成 29 年 5 月 5 日	626	ND	－	0.90	0.18
宮城	2	平成 29 年 6 月 3 日	1	ND	－	1． 55	0.19
宮城	2	平成 29 年 6 月 3 日	20	0.09	0.03	1． 50	0.04
宮城	2	平成29年6月3日	50	ND	－	1． 60	0.04
宮城	2	平成 29 年 6 月 3 日	154	ND	－	1.86	0.20
福島第一	1	平成 29 年 6 月 2 日	1	ND	－	2.02	0.19
福島第一	1	平成 29 年 6 月 2 日	20	0.09	0.03	1． 70	0.05
福島第一	1	平成 29 年 6 月 2 日	50	ND	－	1． 70	0.04
福島第一	1	平成 29 年 6 月 2 日	91	ND	－	2． 70	0.19
福島第一	2	平成 29 年 6 月 2 日	1	ND	－	2.18	0.18
福島第一	2	平成 29 年 6 月 2 日	20	ND	－	1． 60	0.04
福島第一	2	平成 29 年 6 月 2 日	50	ND	－	1． 70	0.04
福島第一	2	平成 29 年 6 月 2 日	124	ND	－	2.61	0.25
福島第一	3	平成 29 年 6 月 2 日	1	ND	－	3.07	0． 20
福島第一	3	平成 29 年 6 月 2 日	20	ND	－	1.80	0.05
福島第一	3	平成 29 年 6 月 2 日	50	ND	－	1． 70	0.04
福島第一	3	平成 29 年 6 月 2 日	110	ND	－	2.14	0.18
福島第一	4	平成 29 年 6 月 1 日	1	ND	－	3.96	0.22
福島第一	4	平成 29 年 6 月 1 日	20	0.24	0.04	3.10	0.07
福島第一	4	平成 29 年 6 月 1 日	50	ND	－	1． 60	0.04
福島第一	4	平成 29 年 6 月 1 日	121	ND	－	2． 67	0.19
福島第二	1	平成 29 年 6 月 1 日	1	ND	－	3.10	0.25
福島第二	1	平成 29 年 6 月 1 日	20	0.18	0.03	2.30	0.05

ND は検出下限以下を示す。

表 I－2－2－3－10（2）中間層における海水中の放射性 Cs 濃度

海域	測点	調査日	採取層（m）	${ }^{134} \mathrm{Cs}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$
				（mBq／L）	（誤差）	（mBq／L）	（誤差）
福島第二	1	平成29年6月1日	50	ND	－	1.90	0.04
福島第二	1	平成 29 年 6 月 1 日	145	ND	－	2.08	0.23
福島第二	2	平成29年5月31日	1	ND	－	2.51	0.24
福島第二	2	平成29年5月31日	20	0.10	0.03	2． 10	0.05
福島第二	2	平成 29 年5月31日	50	ND	－	1． 80	0.05
福島第二	2	平成 29 年5月31日	133	ND	－	2.41	0.23
福島第二	3	平成29年5月31日	1	ND	－	2.86	0.24
福島第二	3	平成 29 年5月31日	20	0.23	0.05	2． 80	0.08
福島第二	3	平成 29 年5月31日	50	ND	－	1． 80	0.05
福島第二	3	平成 29 年5月31日	139	ND	－	2.60	0.22
福島第二	4	平成 29 年5月31日	1	ND	－	3.45	0.25
福島第二	4	平成 29 年5月31日	20	0.34	0.04	3.00	0.07
福島第二	4	平成 29 年5月31日	50	0.15	0.03	2.20	0.05
福島第二	4	平成29年5月31日	150	ND	－	1． 92	0． 22
茨城	2	平成 29 年5月30日	1	ND	－	2． 57	0．20
茨城	2	平成 29 年5月30日	20	0.16	0.03	2.20	0.05
茨城	2	平成 29 年5月30日	50	0.13	0.03	2． 30	0.05
茨城	2	平成 29 年5月30日	109	ND	－	2． 46	0.19
静岡	4	平成 29 年5月9日	1	ND	－	2.15	0.23
静岡	4	平成 29 年5月9日	20	0.10	0.03	2． 00	0.05
静岡	4	平成 29 年5月9日	50	0.22	0.05	2． 50	0.07
静岡	4	平成 29 年5月9日	100	0.12	0.03	2.50	0.06
静岡	4	平成 29 年5月9日	300	0.09	0.02	1． 60	0.03
静岡	4	平成 29 年5月9日	545	ND	－	1.45	0.21
新潟	2	平成 29 年 6 月 16 日	1	ND	－	2.00	0.20
新潟	2	平成 29 年 6 月 16 日	20	0.09	0.02	1． 80	0.04
新潟	2	平成29年6月16日	50	ND	－	1． 80	0.04
新潟	2	平成 29 年 6 月 16 日	100	0.12	0.02	1.60	0.04
新潟	2	平成 29 年 6 月 16 日	300	ND	－	1．10	0.02
新潟	2	平成29年6月16日	477	ND	－	1.32	0.18
石川	2	平成29年6月19日	1	ND	－	1.85	0.21
石川	2	平成 29 年 6 月 19 日	20	0.11	0.03	1． 80	0.04
石川	2	平成29年6月19日	50	0.08	0.03	1． 80	0.04

ND は検出下限以下を示す。

表 I－2－2－3－10（3）中間層における海水中の放射性 Cs 濃度

海域	測点	調査日	採取層（m）	${ }^{134} \mathrm{Cs}$	${ }^{134} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$	${ }^{137} \mathrm{Cs}$
				（mBq／L）	（誤差）	（mBq／L）	（誤差）
石川	2	平成 29 年 6 月 19 日	176	ND	－	1.88	0.21
福井第一	2	平成 29 年 6 月 21 日	1	ND	－	1． 77	0.20
福井第一	2	平成 29 年 6 月 21 日	20	0.09	0.02	1． 70	0.04
福井第一	2	平成 29 年 6 月 21 日	50	0.08	0.03	1． 80	0.04
福井第一	2	平成 29 年 6 月 21 日	100	0． 10	0． 03	1． 80	0.05
福井第一	2	平成 29 年 6 月 21 日	242	ND	－	1． 46	0.18
福井第二	2	平成 29 年 6 月 22 日	1	ND	－	1． 58	0.20
福井第二	2	平成 29 年 6 月 22 日	20	0.09	0.02	1． 70	0.04
福井第二	2	平成 29 年 6 月 22 日	50	ND	－	1． 80	0.05
福井第二	2	平成 29 年 6 月 22 日	188	ND	－	1． 70	0.19
島根	2	平成 29 年 6 月 23 日	1	ND	－	2.23	0.21
島根	2	平成 29 年 6 月 23 日	20	0.09	0.02	1． 60	0.04
島根	2	平成 29 年 6 月 23 日	67	ND	－	2.19	0.21
愛媛	2	平成 29 年 6 月 25 日	1	ND	－	2.07	0.17
愛媛	2	平成 29 年 6 月 25 日	20	0.11	0.03	1． 80	0.04
愛媛	2	平成 29 年 6 月 25 日	52	ND	－	1． 94	0.17
佐賀	2	平成 29 年 5 月 5 日	1	ND	－	2.01	0.19
佐賀	2	平成 29 年 5 月 5 日	10	0.11	0.03	1． 80	0.04
佐賀	2	平成 29 年 5 月 5 日	20	0.13	0.03	1． 80	0.04
佐賀	2	平成 29 年 5 月 5 日	44	ND	－	2.20	0.20
鹿児島	2	平成 29 年 5 月 6 日	1	ND	－	2.19	0.22
鹿児島	2	平成 29 年 5 月 6 日	20	ND	－	1． 60	0.04
鹿児島	2	平成 29 年 5 月 6 日	50	ND	－	1． 80	0.04
鹿児島	2	平成 29 年 5 月 6 日	74	ND	－	2.12	0.21

ND は検出下限以下を示す。

図 I－2－2－3－14（1）東日本海域における ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布図

図 I－2－2－3－14（2）東日本海域における ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布図

図 I－2－2－3－14（3）日本海海域における ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布図

図 I－2－2－3－14（4）西日本海域における ${ }^{137} \mathrm{Cs}$ 濃度の鉛直分布図

図 I－2－2－3－15 東日本海域の塩分と ${ }^{137} \mathrm{Cs}$ 濃度の関係

iV．動物プランクトン中の放射性 Cs

海水中の放射性 Cs が減少し，東電福島第一原発事故前の一定の値に近づきつつある現在，これからは食物連鎖の移行濃縮過程に起因する濃度変化が主要な変動要因になると考 えられる ${ }^{199}$ 。動物プランクトンは食物連鎖の低次に位置しており，高次への放射性 Cs 移行に関する機構解明において重要なパラメータとなる。加えて，海洋環境内全体の放射性 Cs の現況把握のためにはこれらの放射性 Cs 濃度並びに種組成との関係が重要となる。そ こで，海洋放射能調查の発電所海域のらち，基礎生産量が高いと考えられる北海道，青森，宮城，福島第一，福島第二及び茨城海域における動物プランクトン中の放射性 Cs 濃度及び種組成について解析を行った。また，動物プランクトン中の放射性 Cs 濃度の変遷及び現況把握のため，東電福島第一原発事故前と平成 $24 \sim 29$ 年度の結果についての比較を行った。

（i）方法

動物プランクトン試料は発電所海域の 6 海域（北海道，青森，宮城，福島第一，福島第二，茨城）の測点 2 で採取した。採取方法は各測点の深度約 50 m において， 0.5 mm メッシ ユのプランクトンネット（口径 1.6 m ）を用いて，数十分間の水平曳きを 3 回行った。得ら れた試料のらち，放射能分析用は凍結保存し，残りは種組成分析のためにホルマリン固定 して冷暗所にて保存した。調査の概要を表 I－2－2－3－11に示す。

表 I－2－2－3－11 動物プランクトン調査の概要

試料採取時期	海域＿測点	頻度	採集層	測定項目
平成 29 年 $5 \sim 6$ 月	北海道＿測点 2，青森＿測点 2，宮城＿測点2，福島第一＿測点 2，福島第二＿測点 2，茨城＿測点 2	1 回 実施	約 50 m	種組成
				${ }^{137} \mathrm{Cs}$

放射能分析用試料は解凍後，生重量を秤量し， $105^{\circ} \mathrm{C}$ に設定した乾燥機内で恒量になるま で乾燥し，重量を測定した。その後，乾燥試料を粉砕し，プラスチック容器に充填し，充填重量の秤量及び試料充填高さを計測した。放射能測定は放射能測定法シリーズにしたが って，ゲルマニウム半導体検出器による γ 線スペクトロメトリー法により放射性核種を定量（測定時間約 22 万～25 万秒）した。動物プランクトン試料中の安定 Cs $\left({ }^{133} \mathrm{Cs}\right)$ につい ては，放射能分析用試料の一部を用いて ICP 質量分析法により定量した。また，イメージ ングプレートを用いたオートラジオグラフィー法により，動物プランクトン試料中の放射性粒子の有無を調査した。

（ii）結果

a．平成 29 年度の発電所海域における動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度

発電所海域の動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度の結果を図 I－2－2－3－16 及び表 I－2－2－3－12 に示す。平成 29 年度における動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度は， $0.33 \sim 1.04 \mathrm{~Bq} / \mathrm{kg}$－乾物の範囲であり，福島第二海域測点 2 において最大値（ $1.04 \mathrm{~Bq} / \mathrm{kg}$－乾物）が観測された。また，全測点の平均値は， $0.61 \mathrm{~Bq} / \mathrm{kg}$－乾物であった。海水 $1 \mathrm{~m}^{3}$ 当たりの動物プランクトンの ${ }^{137} \mathrm{Cs}$存在量（ $\mu \mathrm{Bq} / \mathrm{m}^{3}$ ）は福島第二海域測点 2 で他の測点と比較して高い値を観測した。平成 29年度における動物プランクトンの ${ }^{134} \mathrm{Cs}$ 濃度は，すべての測点で検出下限値以下であった。

平成 29 年度の動物プランクトンの綱のレベルの組成を表 I－2－2－3－13に示す。いずれの測点においても顎脚綱が高い割合を占めた（ $48.0 \sim 92.4 \%$ ，全平均で 75.7% ）。また，北海道海域測点 2，福島第一海域測点 2，福島第二海域測点 2 で軟甲綱が高い割合を占めた（そ れぞれ 30.1% ， 16.9% ， 51.2% ）。宮城海域測点2，福島第一海域測点 2 では尾虫綱（それぞ れ 11.7% ， 7.5% ）が比較的多く見られた。平成 29 年度は動物プランクトンの放射性 Cs 濃度と種組成との間に関連性は見られなかった。

b．平成 29 年度と平成 28 年度の動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度の比較

平成 28 年度の動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度は北海道海域測点 2 で $0.31 \mathrm{~Bq} / \mathrm{kg}$－乾物，青森海域測点 2 で $3.29 \mathrm{~Bq} / \mathrm{kg}$－乾物，宮城海域測点 2 で $2.47 \mathrm{~Bq} / \mathrm{kg}$－乾物，福島第一海域測点 2 で $0.71 \mathrm{~Bq} / \mathrm{kg}$－乾物，福島第二海域測点 2 で $2.79 \mathrm{~Bq} / \mathrm{kg}$－乾物，茨城海域測点 2 で $11.27 \mathrm{~Bq} / \mathrm{kg}$－乾物であった。各測点で平成 $28, ~ 29$ 年度の ${ }^{137} \mathrm{Cs}$ 濃度を比較すると，平成 29 年度は，北海道海域測点 2 で平成 28 年度よりやや高い値を観測したが，その他の測点では平成 28 年度 よりも低い値であった。

図 I－2－2－3－16 各海域の測点における動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度

表 I－2－2－3－12 動物プランクトン試料の概要，動物プランクトンの放射性Cs，及び同時期に採取した海水の放射性 Cs 濃度

海域と測点	北海道測点 2	青森測点 2	宮城測点 2	福島第一測点 2	福島第二測点 2	茨城測点 2
採取日	平成 29 年 5月10日	平成 29 年 5 月 5 日	平成 29 年 6 月 3 日	平成 29 年 6月2日	平成 29 年 6月1日	平成 29 年 5 月 30 日
採取深度（m）	52－75	50	53－91	42－66	50－53	47－52
$105^{\circ} \mathrm{C}$ 乾燥重量（g）	163.1	196.2	49． 2	30.7	122.9	48.7
水分含量（\％）	92.90	89． 42	92.67	90． 42	88.37	90.36
現存量（mg－乾物 $/ \mathrm{m}^{3}$ ）	4.6	6． 6	1． 9	1.0	10.3	1.8
動物プランクトンの ${ }^{134} \mathrm{Cs}$ （ $\mathrm{Bq} / \mathrm{kg}$－乾物）	ND	ND	ND	ND	ND	ND
動物プランクトンの ${ }^{137} \mathrm{Cs}$ （ $\mathrm{Bq} / \mathrm{kg}$－乾物）	0.36 ± 0.07	0.33 ± 0.05	0.46 ± 0.14	ND	1.04 ± 0.16	0.88 ± 0.15
海水 $1 \mathrm{~m}^{3}$ 当たりの動物プ ランクトンの ${ }^{137} \mathrm{Cs}$ 存在量 $\left(\mu \mathrm{Bq} / \mathrm{m}^{3}\right)$	1.6 ± 0.3	2.2 ± 0.3	0.9 ± 0.3	－	10.7 ± 1.6	1.6 ± 0.3
海水の ${ }^{134} \mathrm{Cs}$（ $\left.\mathrm{mBq} / \mathrm{L}\right)$	ND	ND	ND	ND	ND	0.13
海水の ${ }^{137} \mathrm{Cs}(\mathrm{mBq} / \mathrm{L})$	1． 7	1.6	1.6	1． 7	1.8	2． 3
見かけの ${ }^{137} \mathrm{Cs}$ の濃縮係数	15	22	21	－	67	37

ND は検出下限値以下を示す。—は対象外を示す。

表 I－2－2－3－13 動物プランクトンの個体数密度及び種組成結果一覧

海域と測点	北海道測点 2	青森測点 2	宮城測点 2	福島第一測点 2	福島第二測点 2	茨城測点 2
動物プランクトン	92.8	39.0	53.3	30.8	289.5	35.4
腹足綱（\％）	1． 4	2.1	3.2	1． 9	0.8	1． 4
頭足綱（\％）	0.0	0.0	0.0	0.0	0.0	0.0
鰓脚綱（\％）	0.0	0.0	0.0	0.5	0.0	1． 4
顎脚綱（\％）	66.2	92.1	83.1	72.3	48.0	92.4
軟甲綱（\％）	30.1	2.9	1．9	16． 9	51.2	3.5
ヤムシ綱（\％）	1． 4	1． 4	0.0	0.5	0.0	0.0
ヒトデ綱（\％）	0.0	0.0	0.0	0.5	0.0	0.0
タリア綱（\％）	0.0	0.0	0.0	0.0	0.0	0.7
尾虫綱（\％）	0.5	0.0	11.7	7.5	0.0	0.0

c．平成 29 年度と東電福島第一原発事故前の動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度の比較

東電福島第一原発事故前の動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度は $0.09 \sim 0.4 \mathrm{~Bq} / \mathrm{kg}$－乾物の範囲であり ${ }^{20)}$ ，平成 29 年度は，北海道海域測点 2 ，青森海域測点 2 ，福島第一海域測点 2 で事故前の濃度の範囲内であった。宮城海域測点2，福島第二海域測点2，茨城海域測点2で は事故前の最大値（ $0.4 \mathrm{~Bq} / \mathrm{kg}$－乾物）よりも高い値が観測された。濃縮係数は対象とする放射性核種濃度が一定の環境に生息し，環境と生物の間で平衡状態が成立し，取り込みと排泄が均衡していることを前提とする ${ }^{21)}$ 。平成 29 年度において，海水の ${ }^{137} \mathrm{Cs}$ は事故前のレ ベルに戻りつつあるが，未だ一定ではないため，ここでは，Kaeriyama et al．${ }^{22)}$ の定義に従い，「見かけの濃縮係数」を用いた。動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度と動物プランクトン の採集深度周辺で同時期に採取した海水の ${ }^{137} \mathrm{Cs}$ 濃度との比について，動物プランクトン の「見かけの ${ }^{137} \mathrm{Cs}$ 濃縮係数」として表 I $-2-2-3-12$ に示す。動物プランクトンの見かけの濃縮係数は， $15 \sim 67$（平均 32）であり，事故前の濃縮係数（ $6.3 \sim 14.2$ ，平均 10.2 ）${ }^{20)}$ よ り高かった。海水の ${ }^{137} \mathrm{Cs}$ 濃度は $1.6 \sim 2.3 \mathrm{mBq} / \mathrm{L}$ の範囲であり，事故前 5 年間の濃度範囲 （ $1.1 \sim 2.4 \mathrm{mBq} / \mathrm{L}$ ）まで下がってきている。そのため，動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度も今後は事故前の濃度範囲に落ち着いていくと考えられる。

d．動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度の時系列変化（平成 $24 \sim 29$ 年度）

平成 24 年度から平成 27 年度まで実施した東電福島第一原発周辺の海域における動物プ ランクトンの ${ }^{137} \mathrm{Cs}$ 濃度の時系列変化と平成 $28, ~ 29$ 年度で実施している発電所海域におけ る動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度，${ }^{137} \mathrm{Cs}$ 存在量，${ }^{134} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 放射能比の時系列変化を合わせ て図 I－2－2－3－17 に示す。期間中の動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度の最大値は，東電福島第一原発事故から432日後（平成 24 年 5 月 16 日）の測点 J1 で見られ， $184 \mathrm{~Bq} / \mathrm{kg}$－乾物であ った。その後は，事故から1929日後（平成28年6月21日）まで $10 \mathrm{~Bq} / \mathrm{kg}$－乾物を超える比較的高い濃度が採取時期や測点によらず散発的に見られる傾向にあった。しかし，事故 から $2247 \sim 2276$ 日後（平成 29 年 5 月 5 日から 6 月 3 日）に ${ }^{137} \mathrm{Cs}$ 濃度が $1 \mathrm{~Bq} / \mathrm{kg}$－乾物を超 えたのは，福島第二海域測点 2 のみであった。海水 $1 \mathrm{~m}^{3}$ 当たりの動物プランクトンの ${ }^{137} \mathrm{Cs}$存在量についても同様の減少傾向が見られた。動物プランクトンの ${ }^{134} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 放射能比は，減衰曲線（東電福島第一原発事故当時の ${ }^{134} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 放射能比を 1 とした場合の理論曲線） に概ね従っており，動物プランクトン中の放射性 Cs のほとんどが東電福島第一原発事故 に由来することを示している。

e．動物プランクトンと海水の ${ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}$ 原子数比の比較

表 I－2－2－3－14 に動物プランクトンの ${ }^{133} \mathrm{Cs}$ 濃度の測定結果，表 I $-2-2-3-15$ に動物プラ ンクトン採取深度周辺の海水中の ${ }^{133} \mathrm{Cs}$ 濃度の測定結果を示す。また，図 I－2－2－3－17 に東電福島第一原発周辺海域及び発電所海域で採集した動物プランクトンの安定 Cs（ ${ }^{133} \mathrm{Cs}$ ）

図 I－2－2－3－17 東電福島第一原発事故後の動物プランクトンの放射性 Cs 濃度と ${ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}$ 原子数比の時系列変化。（a）動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度（ $\mathrm{Bq} / \mathrm{kg}$－乾物），（b）海水 $1 \mathrm{~m}^{3}$ 当たりの動物プランクトンの ${ }^{137} \mathrm{Cs}$ 存在量 $\left(\mu \mathrm{Bq} / \mathrm{m}^{3}\right)$ ，（c）動物プランクトンの ${ }^{134} \mathrm{Cs} /{ }^{137} \mathrm{Cs}$ 放射能比，（d）動物プランクトンの ${ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}$ 原子数比

表 I－2－2－3－14 動物プランクトンの ${ }^{133} \mathrm{Cs}$ 濃度（ ng / g－乾物）

表 I－2－2－3－15 海水中の ${ }^{133} \mathrm{Cs}$ 濃度

平成 26 年 11 月				平成 27 年 1－2月			
測点	採取層（m）	濃度	（ ng / L ）	測点	採取層（m）	濃度	（ ng / L ）
B3	50	325	± 2	B3	50	319	± 10
E1	50	329	± 24	E1	50	310	± 1
E5	50	315	± 5	E5	50	307	± 0.3
G0	50	310	± 1	G0	50	315	± 6
J1	33	315	± 11	J1	37	317	± 6

と ${ }^{137} \mathrm{Cs}$ の原子数比 $\left({ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}\right.$ 比），及び動物プランクトンの採取深度周辺で採取した海水中の ${ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}$ 比の採取時期ごとの平均を示す。 ${ }^{133} \mathrm{Cs}$ と ${ }^{137} \mathrm{Cs}$ とは，海水から動物プラ ンクトン体内への取り込みと排出の過程において，同様にふるまい，同位体分別は無視で きるほど小さい。平成 26 年 11 月と平成 27 年 1－2 月に動物プランクトンの採取深度周辺 で採取した海水中の ${ }^{133} \mathrm{Cs}$ 濃度の平均値と標準偏差は， $316 \pm 7 \mathrm{ng} / \mathrm{L}$ であり，東電福島第一原発事故前の北太平洋の海水中の ${ }^{133} \mathrm{Cs}$ 濃度（ $306 \mathrm{ng} / \mathrm{L}$ ）${ }^{23)}$ と比較すると事故の前後で変化 が無いことが確かめられた。そのため，海水中の ${ }^{137} \mathrm{Cs}$ 濃度が動物プランクトンの世代時間 を超える十分に長い間一定であれば，${ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}$ 比は海水と動物プランクトンで一致する ことになる。事故から 432 日後から1929日後までに採取した海水と動物プランクトンの ${ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}$ 比は，ほとんどの試料において一致しなかった。すなわち，平成 28 年 6 月まで は，動物プランクトンの ${ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}$ 比は，ほとんどの測点で，海水に比べて 1 桁以上高く，明らかな差異が見られた。しかし，事故から $2247 \sim 2276$ 日後（平成 29 年 $5 \sim 6$ 月）には， 1 桁以上の差異は見られなくなり，海水と動物プランクトンの間の ${ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}$ 比は，事故前の安定した状態に近づきつつあると見られた。

f．動物プランクトン試料中の放射性粒子

東電福島第一原発事故後の大気エアロゾル，陸域の土壌においては，放射性粒子の存在 が，数多く報告されている ${ }^{14,15)}$ 。このような放射性粒子が海域にも存在し，動物プランク トンが取り込んだ場合，動物プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度に，大きな影響を与える可能性があ る。そこで，動物プランクトン試料中の放射性粒子の有無を確認するため，イメージング プレートを用いた計測を行った。測点 J1 の平成 24 年 5 月の試料については 19 時間，測点G4の平成 24 年 8 月の試料については 24 時間の計測で図 I－2－2－3－18のようにそれぞれ 3 個の放射性粒子が検出された。Adachi et al．${ }^{14)}$ が報告した事故直後の大気エアロゾル から検出された放射性粒子の放射能は 1 粒子あたり $0.66 \sim 3.27 \mathrm{~Bq}$ の範囲であった。動物 プランクトンの ${ }^{137} \mathrm{Cs}$ 濃度と試料量から計算した動物プランクトン試料中の放射能は，0．02 $\sim 4.83 \mathrm{~Bq}$（平均 $0.49 \pm 0.80 \mathrm{~Bq}$ ）の範囲であることから，仮に動物プランクトン試料に含まれ

計測前

計測後

図 I－2－2－3－18 動物プランクトンの乾燥試料（A1，B1，C1，D1）及びイメージングプレー トを用いた計測により検出された試料中の放射性粒子の斑点画像（A2，B2，C2，D2）。斑点画像の中の矢印は，放射性粒子が検出された位置を示す。A1，A2：測点 J1 において平成 24年 5 月に採取された動物プランクトン試料及び計測の結果，B1，B2：測点 G4において平成 24 年 8 月に採取された動物プランクトン試料及び計測の結果，C1，C2：茨城海域測点2，福島第二海域測点 2 において平成 29 年に採取された動物プランクトン試料及び計測の結果，D1，D2：北海道海域測点 2，青森海域測点 2，宮城海域測点 2，福島第一海域測点 2 に おいて平成 29 年に採取された動物プランクトン試料及び計測の結果。

る放射性粒子の放射能が，Adachi et al ${ }^{14)}$ の報告した粒子と同じ程度だと仮定した場合，最も放射能の総量の高い試料でも，数個の放射性粒子の存在で総量を説明できることにな る。したがって，動物プランクトン試料で散発的に見られた ${ }^{137} \mathrm{Cs}$ 濃度の上昇や海水よりも高い ${ }^{137} \mathrm{Cs} /{ }^{133} \mathrm{Cs}$ 原子数比は，試料に含まれる放射性粒子が原因であった可能性が高い。一方で，平成 29 年度に採取された動物プランクトン試料については，イメージングプレート を用いた 3 日間の計測でも図 I $-2-2-3-18$ のように放射性粒子は検出されなかった。その ため，事故からの時間の経過とともに，動物プランクトン試料への放射性粒子の影響は小 さくなりつつあると見られた。

動物プランクトンに取り込まれた放射性粒子が食物連鎖を通して，魚類等の高次栄養段階の海産生物にどのように影響するかが懸念される。そのため，今後も調査を続け，現状 を把握する必要がある。

（4）発電所周辺海域における放射性 Cs の蓄積量把握

本調査では，海洋放射能調査の原子力発電所 15 海域で採取した海水及び海底土を用い，放射性Csの詳細な鉛直分布から放射性Cs の現状の存在量（以下，インベントリーという。） を求め「1．海洋放射能調査海域周辺の調査」における放射性 Cs の変動要因解明に必要な デー夕に資するとともに，海域間における放射性Cs の蓄積量を求め，平成 28 年度と比較 する。

i．海底土中の ${ }^{137} \mathrm{Cs}$ インベントリー

各海域において柱状採泥を行った測点の ${ }^{137} \mathrm{Cs}$ インベントリーを図 I－2－2－3－19 に示す。東電福島第一原発事故由来の ${ }^{134} \mathrm{Cs}$ が検出されなかった海域（北海道，青森，静岡，石川，福井第一，福井第二，島根，愛媛，佐賀，鹿児島）では，${ }^{137} \mathrm{Cs}$ インベントリーが $0 \sim 173 \mathrm{~Bq} / \mathrm{m}^{2}$ であった。最も高かったのは福井第二海域の測点 2，最も低かったのは佐賀海域の測点 2
（全てND）であり，平成 28 年度と同じ傾向であった。平均値は $56 \mathrm{~Bq} / \mathrm{m}^{2}$ であり，平成 28年度（ $73 \mathrm{~Bq} / \mathrm{m}^{2}$ ）に比べて減少した。

東電福島第一原発事故由来の放射性 Cs（ ${ }^{134} \mathrm{Cs}$ ）が検出された海域（宮城，福島第一，福島第二，茨城，新潟）では ${ }^{137} \mathrm{Cs}$ インベントリーが $70 \sim 2514 \mathrm{~Bq} / \mathrm{m}^{2}$ であった。最も高かった のは福島第一海域の測点 2 ，最も低かったのは新潟海域の測点 4 であった。平均値は $835 \mathrm{~Bq} / \mathrm{m}^{2}$ であり，平成 28 年度（ $1199 \mathrm{~Bq} / \mathrm{m}^{2}$ ）に比べて減少した。しかしながら，東電福島第一原発事故由来の放射性 Cs（ ${ }^{134} \mathrm{Cs}$ ）が検出されなかった海域に比べて 1 桁以上の違いが見られた。

ii ．海水中の ${ }^{137} \mathrm{Cs}$ インベントリー

海水中の ${ }^{137} \mathrm{Cs}$ インベントリーは水深によって大きく異なるため，表層～ 50 m 層までの ${ }^{137} \mathrm{Cs}$ インベントリーを図 I－2－2－3－20 に示す。 ${ }^{137} \mathrm{Cs}$ インベントリーは $0.076 \sim 0.14 \mathrm{kBq} / \mathrm{m}^{2}$ （平成 28 年度： $0.088 \sim 0.16 \mathrm{kBq} / \mathrm{m}^{2}$ ）の範囲であった。平均値は $0.103 \mathrm{kBq} / \mathrm{m}^{2}$（平成 28 年度： $0.112 \mathrm{kBq} / \mathrm{m}^{2}$ ）であり，平成 28 年度に比べて減少した。また，事故前の平成 22 年度の海水中の ${ }^{137} \mathrm{Cs}$ インベントリーは $0.075 \mathrm{kBq} / \mathrm{m}^{2}$（事故前の海水中 ${ }^{137} \mathrm{Cs}$ 濃度が表層～ 50 m 層ま で $1.6 \mathrm{mBq} / \mathrm{L}$ と仮定）と見積もった場合，全ての海域でこの値をわずかではあるが上回って いる。しかし，表層～ 50 m 層までの ${ }^{137} \mathrm{Cs}$ インベントリーは海底土に比べて，数桁以上低く， また海域の差が見られなかった。特に東電福島第一原発周辺の海域では平成 28 年度に比 べて減少した。これらのことから，東電福島第一原発事故によって漏洩した放射性 Cs によ って，海水中の ${ }^{137} \mathrm{Cs}$ インベントリーは事故前に比ベ，未だに高いものの，海水中の同事故由来の ${ }^{137} \mathrm{Cs}$ はほぼ均一に希釈拡散され，減少していることが分かった。

図 I－2－2－3－19 各海域における海底土の ${ }^{137} \mathrm{Cs}$ インベントリー

図 I－2－2－3－20 各海域における海水の ${ }^{137} \mathrm{Cs}$ インベントリー

（5）まとめ

「1．海洋放射能調査海域周辺での調査」における海底土表層下における放射性核種の分布や海底土の性状，海水中放射性 Cs の挙動を調査した。

平成29年度に得られた結果から，東電福島第一原発事故による放射性 Cs の影響のある海域では同事故直後に漏洩した放射性 Cs の時空間的な変動は，海水から海底土に移行す る機構と堆積後の動態，更には高放射能微粒子の存在が影響していると考えられる。動物 プランクトン中の放射性 Cs 濃度は，同事故から数年間は，変動が大きかった。しかしなが ら，平成 29 年度の調査では，放射性 Cs 濃度が同事故前と同程度となった。海水中につい て，平成 $24 \sim 28$ 年度以降，日本海海域及び西日本海域で微増傾向にあったが，平成 29 年度に実施した長時間測定から，同事故由来の放射性 Cs の影響による増加傾向は見られな かった。これは ${ }^{137} \mathrm{Cs}$ 存在量の平成 28 年度との比較からも明らかである。

引用文献

1）Ikenoue，T．，Takata，H．，Kusakabe，M．，Kudo，N．，Hasegawa，K．and Ishimaru，T． （2017）．Temporal variation of cesium isotope concentrations and atom ratios in zooplankton in the Pacific off the east coast of Japan．Sci．Rep．，7， 39874.

2）Takata，H．，Aono，T．，Tagami，K．and Uchida，S．（2016）．A new approach to evaluate factors controlling elemental sediment－seawater distribution coefficients（Kd）in coastal regions，Japan．Sci．Total Environ．，543，315－ 325.

3）Chaillou，G．，Anschutz，P．，Lavaux，G．，Schäfer，J．and Blanc，G．（2002）．The distribution of Mo，U，and Cd in relation to major redox species in muddy sediments of the Bay of Biscay．Mar．Chem．，80，41－59．
4）Thornton，S．F．and McManus，J．（1994）．Application of organic carbon and nitrogen stable isotope and C／N ratios as source indicators of organic matter provenance in estuarine systems：evidence from the Tay estuary，Scotland． Estuar．Coast．Shelf Sci．，38，219－233．
5）Kusakabe，M．，Oikawa，S．，Takata，H．and Misonoo，J．（2013）．Spatiotemporal distributions of Fukushima derived radionuclides in nearby marine surface sediments．Biogeosci．，10，5019－5030．
6）Takata，H．，Hasegawa，K．，Oikawa，S．，Kudo，N．，Ikenoue，T．，Isono，S．R．and Kusakabe，M．（2015）．Remobilization of radiocesium on riverine particles in seawater：the contribution of desorption to the export flux to the marine environment．Mar．Chem．，176，51－63．
7）Otosaka，S．and Kobayashi，T．（2013）．Sedimentation and remobilization of
radiocesium in the coastal area of Ibaraki， 70 km south of the Fukushima Dai－ichi Nuclear Power Plant．Environmen．Monitor．Assess．，185，5419－5433．

8）Inoue，M．，Yoneoka，S．，Ochiai，S．，Oikawa，S．，Fujimoto，K．，Yagi，Y．，Honda， N．，Nagao，S．，Yamamoto，M．，Hamajima，Y．，Murakami，T．，Kofuji，H．and Misonoo，J．（2015）．Lateral and temporal variations in Fukushima DNPP－derived ${ }^{134} \mathrm{C}$ s and ${ }^{137} \mathrm{C}$ s in marine sediments in／around the Sado Basin，Sea of Japan．J． Radioana1．Nuc1．Chem．，303，1313－1316， 2015.
9）Thornton，B．，Ohnishi，S．，Ura，T．，Odano，N．，Sasaki，S．，Fujita，T．，Watanabe， T．，Nakata，K．，Ono，T．and Ambe，D．（2013）．Distribution of local 137 Cs anomalies on the seafloor near the Fukushima Dai－ichi Nuclear Power Plant． Mar．Poll．Bull．，74（1），344－350．

10）Kusakabe，M．，Oikawa，S．，Takata，H．and Misonoo，J．（2013）．Spatiotemporal distributions of Fukushima－derived radionuclides in nearby marine surface sediments．Biogeosci．， 10 （7），5019－5030．

11）Ambe，D．，Kaeriyama，H．，Shigenobu，Y．，Fujimoto，K．，Ono，T．，Sawada，H．， Saito，H．，Miki，S．，Setou，T．，Morita，T．and Watanabe，T．（2014）．Five－ minute resolved spatial distribution of radiocesium in sea sediment derived from the Fukushima Dai－ichi Nuclear Power Plant．J．Environ．Radioact．，138， 264－275．

12）Otosaka，S．and Kato，Y．（2014）．Radiocesium derived from the Fukushima Daiichi Nuclear Power Plant accident in seabed sediments：initial deposition and inventories．Environ．Sci．：Processes Impacts，16，978－990．

13）Kusakabe，M．，Inatomi，N．，Takata，H．and Ikenoue，T．（2017）．Decline in radiocesium in seafloor sediments off Fukushima and nearby prefectures．J． 0ceanogr．，73，529－545．
14）Adachi，K．，Kajino，M．，Zaizen，Y．and Igarashi，Y．（2013）．Emission of spherical cesium－bearing particles from an early stage of the Fukushima nuclear accident．Sci．Rep．，3，2554，doi：10．1038／srep02554．

15）Itoh，S．，Eguchi，T．，Kato，N．and Takahashi，S．（2014）．Radioactive particles in soil，plant，and dust samples after the Fukushima nuclear accident．Soil Sci．Plant Nutr．，60，540－550．

16）Ono，T．，Ambe，D．，Kaeriyama，H．，Shigenobu，Y．，Fujimoto，K．，Sogame，K．， Nishiura，N．，Fujikawa，T．，Morita，T．and Watanabe，T．（2015）．Concentration of ${ }^{134} \mathrm{Cs}+{ }^{137} \mathrm{Cs}$ bonded to the organic fraction of sediments offshore Fukushima， Japan．Geochem．J．，49，219－227．
17）海洋生物環境研究所（2016）。平成 27 年度原子力施設等防災対策等委託費（海洋環境

における放射能調査及び総合評価）事業調査報告書。
18）海洋生物環境研究所（2017）。平成 28 年度原子力施設等防災対策等委託費（海洋環境 における放射能調査及び総合評価）事業調査報告書。

19）高田兵衛•帰山秀樹•喜多村稔•横田瑞郎•池上隆仁•日下部正志（2015）。海洋環境 における動物プランクトン中の東電福島第一原発由来放射性 Cs の動態．海洋と生物， 37，310－318．

20）Kaeriyama，H．，Watabe，T．，and Kusakabe，M．（2008）．${ }^{137}$ Cs concentration in zooplankton and its relation to taxonomic composition in the western North Pacific Ocean．J．Environ．Radioact．，99，1838－1845．

21）IAEA．（2004）．IAEA technical report series No 422．International Atomic Energy Agency，Vienna．

22）Kaeriyama，H．，Fujimoto，K．，Ambe，D．，Shigenobu，Y．，Ono，T．，Tadokoro，K．， Okazaki，Y．，Kakehi，S．，Ito，S．，Narimatsu，Y．，Nakata，K．，Morita，T．and Watanabe，T．（2015）．Fukushima－derived radionuclides ${ }^{134} \mathrm{Cs}$ and ${ }^{137} \mathrm{Cs}$ in zooplankton and seawater samples collected off the Joban－Sanriku coast，in Sendai Bay，and in the Oyashio region．Fish．Sci．，81，139－153．

23）Spencer，D．W．，Robertson，D．E．，Turekian，K．K．and Folsom，T．R．（1970）． Trace element calibrations and profiles at the GEOSECS test station in the northeast Pacific 0cean．J．Geophys．Res．，75，7688－7696．

（4）原子力発電所等周辺海域における海水及び海産生物の ${ }^{3} \mathrm{H}$ 濃度調査

 （1）はじめに東電福島第一原発事故後，平成24年度からの解析調査によって，福島第一及び福島第二海域で漁獲される海産生物の ${ }^{3} \mathrm{H}$ 濃度の調査を行ってきたが，事故の影響を示す調査結果は出ていない。また，${ }^{3} \mathrm{H}$ は海水中では拡散しやすく，核燃料サイクル施設及び東電福島第一原発周辺海域において海水中の ${ }^{3} \mathrm{H}$ 濃度の確認をしているが，「1。海洋放射能調查海域周辺 での調査」のうち，発電所海域では海水及び海産生物試料中の ${ }^{3} \mathrm{H}$ こついては，分析対象核種とはなっておらず，広範囲での影響調査並びに各発電所海域でのバックグラウンドデー タが無く，複数海域に及ぶような広範囲での影響評価ができない。

そこで，平成 29 年度は「1，海洋放射能調査海域周辺での調査」において採取•収集し た海水及び海産生物試料のらち，海水試料については，各発電所海域で採取した表層の海水試料について ${ }^{3} \mathrm{H}$ の測定を行い，バックグラウンド把握をする。また海産生物については，核燃料サイクル施設沖合及び東電福島第一原発の影響を監視することを想定し，核燃料サ イクル施設沖合，青森，宮城，福島第一•第二，及び茨城の各発電所海域から収集した海産生物の ${ }^{3} \mathrm{H}$ 濃度調査を広範囲に行い，そのバックグラウンドを把握した。

（2）方法

i．試料

海水試料は表層の海水とし，「1。海洋放射能調査海域周辺での調査」における発電所海域の 15 海域各 4 測点及び対照海域の 3 海域 6 測点で合計 66 試料を，平成 29 年 5 月 5 日か ら6月25日に採取した。採取後，褐色ポリ容器に2Lを分取し，この海水試料には酸の添加は行わず，分析まで冷暗所にて保存した。

「海洋放射能調査」の核燃料サイクル施設沖合，青森，宮城，福島第一，福島第二及び茨城海域の 6 海域で，平成 29 年度第 1 回収集時に漁獲された各 3 種の海産生物のうち 2種ずつを選び，合計 12 試料の海産生物について ${ }^{3} \mathrm{H}$ 分析を行った。各試料は可食筋肉部位 のみを細断処理後，全個体分をよく混合したものから約 1 kg 程度を採取し凍結保存して， ${ }^{3} \mathrm{H}$ 分析用に供した。いずれの試料も「海洋放射能調査」の一環として，灰化後ガンマ線放出核種等の分析を行っており，一部の試料は ${ }^{137} \mathrm{Cs}$ 濃度等に東電福島第一原発事故の影響が見られている。

ii．分析

${ }^{3} \mathrm{H}$ は水素の放射性同位元素であり，環境中ではそのほとんどが水（ ${ }^{3} \mathrm{HHO}$ ）の形で存在し ている。一般に ${ }^{3} \mathrm{H}$ 濃度は河川水より海水の方が低く，沿岸から離れる程に，また深度が増 すごとに低くなる傾向がある。本調査では，放射能測定法シリーズ ${ }^{1)}$ の ${ }^{3} \mathrm{H}$ 分析法マニュア ルに則して，海水中の ${ }^{3} \mathrm{H}$ を電解濃縮法にて分離濃縮し，液体シンチレーションカウンター による ${ }^{3} \mathrm{H}$ 濃度測定を行った。
${ }^{3} \mathrm{H}$ は水素の放射性同位元素として，物理•化学•生物学的に水（ ${ }^{3} \mathrm{HHO}$ ）と同じ挙動をす るため，海産生物中に取り込まれて体内で代謝された ${ }^{3} \mathrm{H}$ は，特定の臓器に集中せず生物体全体の組織水分や有機成分中に分布する。そのため，${ }^{3} \mathrm{H}$ 濃度分析は，海産生物の組織自由水型 ${ }^{3} \mathrm{H}$（TFWT）と，有機物中の有機結合型 ${ }^{3} \mathrm{H}$（ OBT）とに分けて行われる。従来，国内の OBT 分析は，放射能測定法シリーズのマニュアルに従い行われる。しかし ${ }^{3} \mathrm{H}$ は常温におい て試料周りの大気中水蒸気の吸収，及び試料自身のTFWTとOBT 間の同位体交換などが非常 に速く起こり易い核種であるため，近年諸外国では，生物が試料として採取される前に体内代謝によって有機成分に取り込んだ ${ }^{3} \mathrm{H}$ のみを分析することを目的に国際標準法 ${ }^{2)}$ ，${ }^{3)}$ ，4） が行われている。従って本調査では，OBT について両方の分析方法を比較並行的に行うこ ととした。

図 I－2－2－4－1に分析法フローを示す。放射能測定法シリーズに従って分析を行う OBTは，試料保存•分析作業の環境中 ${ }^{3} \mathrm{H}$ 濃度や試料自身の TFWT 濃度に影響を受ける「交換型 OBT」 も含まれる「全 OBT」として評価される。国際標準法では，凍結乾燥した試料を ${ }^{3} \mathrm{H}$ を含ま ない水に浸漬し凍結乾燥を行う過程を 3 回繰り返すことによって「交換型 OBT」を洗浄除去できるので，生物代謝の同化•異化作用によって有機分子中に取り込まれ，生物体内の滞留時間も長い，炭素原子に結合した「非交換型 OBT」だけを分析することができる。

図 I－2－2－4－1 放射能測定法シリーズ及び国際標準法による海産生物 TFWT 及び OBT 分析フロー

（3）結果

i ．海水中 ${ }^{3} \mathrm{H}$ 濃度

表 I－2－2－4－1 に分析結果を示す。 ${ }^{3} \mathrm{H}$ 濃度は東日本海域（青森，宮城，福島第一，福島第二，茨城）と西日本海域（静岡，愛媛，鹿児島，佐賀），日本海海域（島根，福井第一，福井第二，石川，新潟，北海道）及び対照海域（襟裳沖，大和堆，四国沖）に分けて詳述す る。 ${ }^{3} \mathrm{H}$ 濃度は，東日本海域が $0.06 \sim 0.11 \mathrm{~Bq} / \mathrm{L}$ ，西日本海域が $0.06 \sim 0.16 \mathrm{~Bq} / \mathrm{L}$ ，日本海海域が $0.06 \sim 0.13 B q / L$ ，対照海域が $0.06 \sim 0.09 B q / L$ であった。各海域間で比較しても有意 な違いはみられず，海域の違いによる海水への事故の影響は確認できなかった。図 I－2－2 －4－2 に平成 3 年度から平成 28 年度に核燃海域の表層で測定された ${ }^{3} \mathrm{H}$ 濃度と平成 29 年度調査の結果の比較を示す。核燃海域の表層 ${ }^{3} \mathrm{H}$ 濃度は事故後 5 年間で $0.05 \sim 0.18 \mathrm{~Bq} / \mathrm{L}$ であ り，平成 29 年度調査の結果はその範囲内にあった。事故前 5 年間では，アクティブ試験の影響が観測された平成 $19-20$ 年度を除いて $0.06 \sim 0.21 \mathrm{~Bq} / \mathrm{L}$ であり，平成 29 年度調査の結果はその範囲内にあった。事故から6年後の現在では海水の ${ }^{3} \mathrm{H}$ 濃度への影響は確認できず， バックグラウンドレベルであることが確認できた。

表 I－2－2－4－1（1）海水の ${ }^{3} \mathrm{H}$ 濃度分析結果

海域	測点	試料採取日	採取層 （m）	$\begin{gathered} { }^{3} \mathrm{H} \\ (\mathrm{~Bq} / \mathrm{L}) \end{gathered}$	$\begin{gathered} { }^{3} \mathrm{H} \\ \text { (誤差) } \end{gathered}$	検出下限値 （Bq／L）
北海道	1	平成 29 年5月9日	1	0.11	0.02	0.07
	2	平成 29 年5月10日	1	0.08	0.02	0.06
	3	平成 29 年 5 月 9 日	1	0.09	0.02	0.06
	4	平成 29 年 5 月 9 日	1	0.08	0.02	0.06
青森	1	平成 29 年 5 月 6 日	1	0.08	0.02	0.05
	2	平成 29 年 5 月 5 日	1	0.09	0.02	0.05
	3	平成 29 年5月6日	1	0.06	0.02	0.05
	4	平成 29 年5月6日	1	0.09	0.02	0.05
宮城	1	平成 29 年6月3日	1	0.10	0.02	0.06
	2	平成 29 年 6 月 3 日	1	0.08	0.02	0.05
	3	平成 29 年 6 月 4 日	1	0.07	0.02	0.05
	4	平成 29 年 6 月 4 日	1	0.09	0.02	0.05
福島第一	1	平成 29 年 6 月 2 日	1	0.08	0.02	0.05
	2	平成 29 年6月2日	1	0.08	0.01	0.04
	3	平成 29 年 6 月 2 日	1	0． 10	0.02	0.05
	4	平成 29 年 6 月 1 日	1	0.09	0． 02	0.05

表 I－2－2－4－1（2）海水の ${ }^{3} \mathrm{H}$ 濃度分析結果

海域	測点	試料採取日	採取層 （m）	$\begin{gathered} { }^{3} \mathrm{H} \\ (\mathrm{~Bq} / \mathrm{L}) \end{gathered}$	$\begin{gathered} { }^{3} \mathrm{H} \\ (\text { (誤差) } \end{gathered}$	検出下限値 $(\mathrm{Bq} / \mathrm{L})$
福島第二	1	平成29年6月1日	1	0.10	0.02	0.05
	2	平成 29 年 5 月 31 日	1	0.11	0.02	0.06
	3	平成 29 年5月31日	1	0.08	0.02	0.05
	4	平成 29 年5月31日	1	0． 10	0.02	0.05
茨城	1	平成 29 年 5 月 31 日	1	0.09	0.02	0.06
	2	平成 29 年5月30日	1	0.09	0.02	0.05
	3	平成 29 年5月30日	1	0.08	0.02	0.05
	4	平成 29 年5月30日	1	0． 10	0.02	0.05
静岡	1	平成 29 年 5 月 9 日	1	0.06	0． 02	0.05
	2	平成 29 年 5 月 9 日	1	0.16	0.02	0.05
	3	平成 29 年 5 月 9 日	1	0.08	0.02	0.05
	4	平成 29 年5月9日	1	0． 07	0.02	0.05
新潟	1	平成 29 年 6 月 16 日	1	0.09	0.01	0.04
	2	平成 29 年 6 月 16 日	1	0.08	0.02	0.05
	3	平成 29 年 6 月 15 日	1	0． 10	0.02	0.05
	4	平成 29 年 6 月 15 日	1	0.13	0.02	0.06
石川	1	平成29年6月19日	1	0.08	0.02	0.05
	2	平成29年6月19日	1	0． 07	0.01	0.04
	3	平成29年6月19日	1	0.10	0.02	0.05
	4	平成 29 年 6 月 19 日	1	0.09	0.02	0.06
福井第一	1	平成 29 年 6 月 21 日	1	0.08	0.02	0.06
	2	平成 29 年 6 月 21 日	1	0.08	0.02	0.05
	3	平成 29 年 6 月 22 日	1	0.08	0． 02	0.05
	4	平成 29 年 6 月 21 日	1	0.08	0． 02	0.06
福井第二	1	平成 29 年 6 月 22 日	1	0． 10	0.01	0． 04
	2	平成 29 年 6 月 22 日	1	0.09	0.02	0.04
	3	平成 29 年 6 月 22 日	1	0.06	0.01	0.04
	4	平成 29 年 6 月 22 日	1	0.07	0.02	0.04
島根	1	平成 29 年 6 月 23 日	1	0.08	0.02	0.06
	2	平成 29 年 6 月 23 日	1	0． 10	0.02	0.05
	3	平成 29 年 6 月 23 日	1	0.08	0.02	0.05
	4	平成 29 年 6 月 23 日	1	0． 10	0． 02	0.05

表 I－2－2－4－1（3）海水の ${ }^{3} \mathrm{H}$ 濃度分析結果

海域	測点	試料採取日	採取層 （m）	${ }^{3} \mathrm{H}$ （ Bq / L ）	${ }^{3} \mathrm{H}$ （誤差）	検出下限値 （ Bq / L ）
愛媛	1	平成 29 年 6 月 25 日	1	0.11	0.02	0.05
	2	平成 29 年 6 月 25 日	1	0.13	0.01	0.04
	3	平成 29 年 6 月 25 日	1	0.09	0.02	0.06
	4	平成 29 年 6 月 25 日	1	0． 12	0.02	0.05
佐賀	1	平成 29 年 5 月 5 日	1	0.07	0.02	0.06
	2	平成 29 年 5 月 5 日	1	0.09	0.02	0.07
	3	平成 29 年 5 月 5 日	1	0.11	0.02	0.06
	4	平成 29 年 5 月 5 日	1	0.10	0.02	0.06
鹿児島	1	平成 29 年 5 月6日	1	0.06	0.02	0.05
	2	平成 29 年 5 月 6 日	1	0.07	0.02	0.06
	3	平成 29 年 5 月 6 日	1	0.12	0.02	0.05
	4	平成 29 年 5 月 6 日	1	0.09	0.02	0.05
襟裳沖	E11	平成 29 年 5 月 20 日	1	0.09	0.02	0.05
	K2	平成 29 年 5 月 21 日	1	0.06	0.02	0.05
	T2	平成 29 年 5 月 8 日	1	0.07	0.01	0.04
四国沖	KC1	平成 29 年 5 月 7 日	1	0.07	0.02	0.05
大和堆	YR1	平成 29 年 6 月 17 日	1	0.08	0.02	0.05
	YR4	平成 29 年 6 月 18 日	1	0.09	0.02	0.06

＊誤差は 1σ 計数誤差を示す。

図 I－2－2－4－2 核燃海域表層海水中 ${ }^{3} \mathrm{H}$ 濃度（H3～H28）と本調査結果（H29） ＊横軸上のプロットはすべて検出下限値以下を示す。

ii．海産生物中 ${ }^{3} \mathrm{H}$ 濃度

表 I－2－2－4－2 に分析結果を示す。TFWT 濃度は $0.06 ~ 0.12$（ $\mathrm{Bq} / \mathrm{L}-$ 水）， $0.05 \sim 0.09$（ $\mathrm{Bq} / \mathrm{kg}-$生鮮物）の範囲にあり過去の東日本近海の海水濃度と同レベルであった。アクティブ試験開始前の核燃料サイクル施設沖合海域の海産生物のTFWT 濃度は，平成 13 年度が $0.19 \pm$ $0.05 \mathrm{~Bq} / \mathrm{L}$－水 $(0.11 \sim 0.33 \mathrm{~Bq} / \mathrm{L}-$ 水），平成 17 年度が $0.19 \pm 0.04 \mathrm{~Bq} / \mathrm{L}-$ 水 $(0.06 \sim 0.26 \mathrm{~Bq} / \mathrm{L}-$水）であった。また平成 14 年度の茨城海域の海産生物 TFWT 濃度は $0.18 \pm 0.06 \mathrm{~Bq} / \mathrm{L}$－水，平成 24 年度が $0.14 \mathrm{~Bq} / \mathrm{L}$－水であった。平成 29 年度調査の 6 海域で収集された海産生物の測定値は，これらと同程度の濃度レベルである。全 OBT 及び非交換型OBT は全て検出下限値以下の濃度であり，平成 $24 \sim 28$ 年度に引き続き，${ }^{3} \mathrm{H}$ を海産生物の有機成分中に見出す ことはなかった。そのため全 OBT 濃度と非交換型 OBT 濃度の比較分析についてその差異を考察することはできなかったが，検出下限値をみると全 OBT が $0.26 \sim 0.28 \mathrm{~Bq} / \mathrm{L}$－水，非交換型 0 BT が $0.27 \sim 0.32 B q / L-$ 水であり，分析法としては国際的にも遜色のない精度良い分析が行われた。

表 I－2－2－4－2 海産生物の ${ }^{3} \mathrm{H}$ 濃度分析結果

海 域	試料	漁獲日	漁獲場所	細断個体数	TFWT			全 OBT	$\begin{aligned} & \text { 㻗交換 } \end{aligned}$
					上段は（ $\mathrm{Bq} / \mathrm{L}-$ 水） 下段は（Bq／kg－生鮮物）＊1				
$\begin{aligned} & \text { 核 } \\ & \text { 燃 } \end{aligned}$	ミズダコ	平成 29 年	東通村	3	0.10	\pm	0．01＊2	ND＊3	ND
		4月24日	尻屋沖		0.08	\pm	0.01	ND	ND
	サバ類	平成 29 年 7月18日	三沢市 六川目沖	84	0.12	\pm	0.01	ND	ND
					0.09	\pm	0.01	ND	ND
青森	アイナメ	平成 29 年 5月9日	東通村白糠 ～小田野沢沖	47	0．09	\pm	0． 01	ND	ND
					0.07	\pm	0.01	ND	ND
	ゴマサバ	平成 29 年 10月2日	東通村沖	49	0.11	\pm	0.01	ND	ND
					0． 07	\pm	0.01	ND	ND
宮城	マダラ	平成 29 年 4月3日	女川町 江の島沖	6	0.08	\pm	0.01	ND	ND
					0.06	\pm	0.01	ND	ND
	アイナメ	平成 29 年 4月10日	女川町 尾裏浜沖	60	0.08	\pm	0.01	ND	ND
					0．07	\pm	0.01	ND	ND
福	ババガレイ	平成 29 年 5月29日	南相馬市沖	41	0.09	\pm	0.01	ND	ND
島					0.07	\pm	0.01	ND	ND
第	ヒラメ	平成 29 年 5月29日	南相馬市沖	17	0．08	\pm	0.01	ND	ND
					0.06	\pm	0.01	ND	ND
福	マダラ	平成 29 年 4月10日	いわき市久之浜沖	14	0．06	\pm	0.01	ND	ND
島					0.05	\pm	0.01	ND	ND
第	マガレイ	平成 29 年 4月10日	いわき市久之浜沖	74	0.09	\pm	0.01	ND	ND
二					0.08	\pm	0.01	ND	ND
茨城	マル	平成29年	日立雨沖	約	0.07	\pm	0.01	ND	ND
	アオメエソ	6月29日	立而哏	626	0.05	\pm	0.01	ND	ND
	ミズダコ	平成 29 年 5月12日	日立市沖	8	0．09	\pm	0.01	ND	ND
					0.08	\pm	0.01	ND	ND

＊ 1 海産生物による ${ }^{3} \mathrm{H}$ 核種の取り込みは，水 $\left({ }^{3} \mathrm{H}^{1} \mathrm{HO}_{2}\right)$ として海水から吸収され，体内で水の代謝によ つて有機物へ移行するため，濃度レベルを比較評価するために，${ }^{1} \mathrm{H}$ に対する比放射能値に統一して評価するのが適している。従って濃度の表示単位は，（ $\mathrm{Bq} / \mathrm{kg}$－生鮮物）と共に比放射能値にほぼ等し い（ Bq / L－水）によっても示した。
＊2 誤差は 1σ 計数誤差を示す。
$* 3$ 検出下限値：TFWT（ $0.03 \sim 0.04 \mathrm{~Bq} / \mathrm{L}-$ 水， $0.02 \sim 0.03 \mathrm{~Bq} / \mathrm{kg}$－生鮮物），全 $0 \mathrm{BT}(0.26 \sim 0.28 \mathrm{~Bq} / \mathrm{L}-$ 水， $0.03 \sim 0.08 \mathrm{~Bq} / \mathrm{kg}$－生鮮物），非交換型 $0 \mathrm{BT}(0.27 \sim 0.32 \mathrm{~Bq} / \mathrm{L}-$ 水， $0.03 \sim 0.09 \mathrm{~Bq} / \mathrm{kg}$－生鮮物）。

（4）まとめ

核燃，青森，宮城，福島第一，福島第二，茨城海域の海水中の ${ }^{3} \mathrm{H}$ 濃度と海産生物の TFWT濃度を海域ごとに比較すると，平成 29 年度は同程度でありバックグラウンドレベルである ことが確認できた 。海産生物は水の取り込み速度が速いため，TFWT 濃度は海水中 ${ }^{3} \mathrm{H}$ 濃度 に追従して大きく変化し，交換型 OBT も TFWT 濃度の影響を受けてやや遅れて追従する。し かし非交換型 OBT は，体内代謝で ${ }^{3} \mathrm{H}$ 核種が内部に取り込まれるまで時間がかかるので，濃度の追従は遅れる。従って試料の TFWT 濃度と全 OBT 濃度が高い場合でも，非交換型 OBT濃度は高くならない場合がある。TFWT 濃度と OBT 濃度それぞれの線量係数は 2.4 倍異なる ため，海産生物を摂取した時の被ばく線量を求め，より現実的な環境影響を評価するため には，非交換型の OBT 濃度を用いることが国際的には勧められている。

引用文献

1）放射能測定法シリーズ9（2003），トリチウム分析法，平成15年改訂。文部科学省，東京，1－127．

2）Pointurier，F．，Baglan，N．，Alanic，G．and Chiappini，R．（2003）．Determination of organically bound tritium background level in biological samples from a wide area in the south－west of France．J．Environ．Radioact．，68，171－189．

3）Pointurier，F．，Baglan，N．and Alanic，G．（2004）．A method for the determination of low－level organic－bound tritium activities in environmental samples．Appl． Radiat．Isot．，61，293－298．

4）Vichot，L．，Boyer，C．，Boissieux，T．，Losset，Y．and Pierrat，D．（2008）． Organically bound tritium（OBT）for various plants in the vicinity of a continuous atmospheric tritium release．J．Environ．Radioact．，99，1636－1643．

3）海洋環境関連調査報告書等の収集•整理

（1）はじめに

原子力発電所立地道県及び核燃料サイクル施設立地県は原子力施設等周辺放射線監視事業を実施し，その結果を公表している ${ }^{1-14)}$ 。海上保安庁海洋情報部 ${ }^{15)}$（以下「海上保安庁」という。），農林水産省農林水産技術会議事務局 ${ }^{16) ~(以 下 「 ~}$ 農水省」という。）及び国立研究開発法人日本原子力研究開発機構 ${ }^{17)}$（以下「原子力機構」という。）は日本近海の海水，海底土及び海産生物に関する放射能調査を実施，公表している（以下，上記全ての機関を総称し「自治体等機関」 という。）。

平成 28 年度に実施，公表された自治体等機関の調査結果より，海産生物，海底土及び海水試料に含まれる ${ }^{137} \mathrm{Cs}$ 等の放射性核種濃度分析値をデータベース化（以下「自治体データベース」 という。）するとともに，海産生物，海底土及び海水試料に含まれる ${ }^{137} \mathrm{Cs}$ 等の放射性核種濃度分析値を，本事業において実施された海洋放射能調査結果と比較し評価するための資料として整理した。

（2）海洋放射能調査結果と自治体等機関の調査結果の比較

「1．海洋放射能調査海域周辺での調査」及び自治体等機関データベースより，平成 28 年度の放射性核種濃度範囲を，表 I－2－2－5－1～3に示し，自治体等機関と本事業の調査結果の比較を行 った。なお，海上保安庁 ${ }^{15)}$ ，農水省 ${ }^{16)}$ 及び原子力機構 ${ }^{17)}$ は，調査結果公表の時期により，そ れぞれ，平成 27 年度，平成 25 年度，平成 27 年度の調査結果を比較に用いた。

海産生物試料を調査対象としている機関は 13 道県，農水省，原子力機構である。 ${ }^{90} \mathrm{Sr}$ は 12道県，原子力機構が調査しており，その濃度は $\mathrm{ND} \sim 0.14 \mathrm{~Bq} / \mathrm{kg}$－生鮮物の範囲であった。本調査 の ${ }^{90} \mathrm{Sr}$ 濃度はすべてNDであり，これら自治体等機関の濃度範囲内であった。

放射性 Cs は13道県，農水省，原子力機構が調査しており，${ }^{134} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 34.5 \mathrm{~Bq} / \mathrm{kg}$－生鮮物の範囲であり，13道県のうち，宮城県，福島県，茨城県，静岡県で認められ，福島県におい て最大値が認められた。 ${ }^{137} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 74.1 \mathrm{~Bq} / \mathrm{kg}$－生鮮物の範囲であり，${ }^{134} \mathrm{Cs}$ 濃度と同様に福島県において最大値が認められた。本調査の海産生物試料の結果から，${ }^{134} \mathrm{Cs}$ 濃度は ND～ $0.50 \mathrm{~Bq} / \mathrm{kg}$－生鮮物，${ }^{137} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 3.0 \mathrm{~Bq} / \mathrm{kg}$－生鮮物の範囲であり，何れも前述の自治体等機関の範囲内にあるほか，宮城県，福島県，茨城県において高めの値である傾向も同様であった。 ${ }^{239+240} \mathrm{Pu}$ は青森県，茨城県，福井県，愛媛県の4県と原子力機構が調査しており，その濃度は $\mathrm{ND} \sim 0.043 \mathrm{~Bq} / \mathrm{kg}$－生鮮物の範囲であり，福井県において最大値が認められた。本調査の ${ }^{239+240} \mathrm{Pu}$濃度はすべて ND～0． $0007 \mathrm{~Bq} / \mathrm{kg}$－生鮮物の範囲であり，これら自治体等機関の濃度範囲内であっ た。

海底土試料を調査対象としている機関は13道県，海上保安庁，農水省，原子力機構である。 ${ }^{90} \mathrm{Sr}$ は 9 道県，海上保安庁及び原子力機構が調査しており，その濃度は ND～2．6Bq／kg－乾燥土 の範囲であった。本調査では核燃海域において海底土試料の ${ }^{90} \mathrm{Sr}$ を分析しており，その濃度は ND $\sim 0.39 \mathrm{~Bq} / \mathrm{kg}$－乾燥土の範囲にあり，これら自治体等機関の濃度範囲内であった。放射性 Cs

は 13 道県，海上保安庁，農水省及び原子力機構が調査しており，${ }^{134} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 110 \mathrm{~Bq} / \mathrm{kg}-$乾燥土，${ }^{137} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 630 \mathrm{~Bq} / \mathrm{kg}$－乾燥土の範囲であり，各濃度とも福島県が最高値であった。本調査の ${ }^{134} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 17 \mathrm{~Bq} / \mathrm{kg}$－乾燥土，${ }^{137} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 93 \mathrm{~Bq} / \mathrm{kg}$－乾燥土の範囲であり，こ れら自治体等機関の濃度範囲内であり宮城県，福島県，茨城県において高い傾向であった。 ${ }^{239+240} \mathrm{Pu}$ は 6 県，海上保安庁及び原子力機構が調査しており，その濃度は ND $\sim 1.40 \mathrm{~Bq} / \mathrm{kg}$－乾燥土の範囲で，福井県が最高値を示した。本調査の ${ }^{239+240} \mathrm{Pu}$ 濃度は $0.41 \sim 4.7 \mathrm{~Bq} / \mathrm{kg}$－乾燥土の範囲であり，これら自治体等機関の ${ }^{239+240} \mathrm{Pu}$ 濃度範囲よりも高かった。海底土中の ${ }^{239+240} \mathrm{Pu}$ 濃度 は採取した水深が深いほど濃度が高くなる傾向があることが分かっている ${ }^{18)}$ 。本調査では，自治体等機関よりも深い水深で海底土を採取している測点があり（例えば核燃海域の測点 10 及び 15），${ }^{239+240} \mathrm{Pu}$ 濃度が高かったのは，深い水深場所で採取されたためである。

海水試料を調査対象としている機関は13道県，海上保安庁，原子力機構である。 ${ }^{3} \mathrm{H}$ は 13 道県，原子力機構が調査しており，その濃度はND～3．5Bq／L の範囲で，福井県が最高値を示した。本調査では核燃海域において ${ }^{3} \mathrm{H}$ を分析対象としており，その濃度は ND～0．15Bq／L の範囲にあ り，これら自治体等機関の濃度範囲内であった。 ${ }^{90} \mathrm{Sr}$ は 10 道県，海上保安庁，原子力機構が調査しており，その濃度は福島県以外が ND～2．7mBq／L の範囲，福島県が ND～ $87 \mathrm{mBq} / \mathrm{L}$ の範囲であ り，福島県で突出した値であった。本調査の ${ }^{90} \mathrm{Sr}$ 濃度は ND～1．3mBq／L の範囲であり，福島県以外のこれら自治体等機関と同程度の値であった。放射性Cs は13道県，海上保安庁，原子力機構が調査しており，${ }^{134} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 200 \mathrm{mBq} / \mathrm{L}, ~{ }^{137} \mathrm{Cs}$ の濃度は $\mathrm{ND} \sim 1100 \mathrm{mBq} / \mathrm{L}$ の範囲であり，何れも福島県が最高値であった。本調査の ${ }^{134} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 0.98 \mathrm{mBq} / \mathrm{L}, ~{ }^{137} \mathrm{Cs}$ 濃度は $\mathrm{ND} \sim 5.0 \mathrm{mBq} / \mathrm{L}$ の範囲であり，これら自治体等機関の濃度範囲内にあり，福島県で高い傾向も同様であった。 ${ }^{239+240} \mathrm{Pu}$ は福島県，愛媛県及び原子力機構が調査しており，その濃度は ND $\sim 0.016 \mathrm{mBq} / \mathrm{L}$ の範囲で あった。本調査の ${ }^{239+240} \mathrm{Pu}$ 濃度は ND～0．026mBq／L の範囲であり，3機関の濃度範囲よりも高い値 が確認された。本調査では，自治体等機関よりも深い層で海水を採取している測点があり（例 えば核燃海域の測点 10 及び 15 ），${ }^{239+240} \mathrm{Pu}$ 濃度が高かったのは，海底土と同様に深い深度によ つて採取されたためである ${ }^{18)}$ 。

（3）まとめ

原子力発電所立地道県及び核燃料サイクル施設立地県における原子力施設等周辺放射線監視事業の結果と，本事業において実施された海洋放射能調査結果を比較し評価するための資料と して整理した。東電福島第一原発事故後は，福島県，茨城県及び宮城県において，それ以外の道県との間で海洋環境試料中の放射性核種濃度に差が見られた。この傾向は，本調査で得られ た結果と同じであった。このことから，自治体等機関における結果を対照することで，本調査 の測定値の妥当性が確認された。

表 I－2－2－5－1 平成 28 年度 道県原子力発電所周辺環境放射能調查結果等による放射性核種濃度範囲（海産生物試料）

自治体等機関	年度	$\mathrm{Cs}-134$（ $\mathrm{Bq} / \mathrm{kg}$－生鮮物）				Cs－137（ $\mathrm{Bq} / \mathrm{kg}$－生鮮物）				Sr－90（ $\mathrm{Bq} / \mathrm{kg}$－生鮮物）				Pu－239＋240（ $\mathrm{Bq} / \mathrm{kg}$－生鮮物）			総検 体数
		検体数	最小	\sim	最大	検体数	最小	\sim	最大	検体数	最小	\sim	最大	検体数	最小	\sim 最大	
北海道	H28	71			ND ${ }^{* 1}$	71	ND	\sim	0． 20	19			ND			－	71
青森県	H28	32			ND	32	ND	\sim	0.6	32	ND	\sim	0.05	19	ND	~ 0.014	32
宮城県	H28	17	ND	\sim	0． 072	17	ND	\sim	0.25	9	ND	\sim	0.036			－	17
宮城県 （指標海産生物）	H28	27	ND	\sim	0．032	27	ND	\sim	0.33	4	ND	\sim	0.040			－	27
福島県	H28	8781	ND	\sim	34.5	8781	ND	\sim	74.1			－				－	8781
茨城県	H28	62	ND	\sim	0． 25	62	ND	\sim		62			ND	46	ND	~ 0.0043	62
静岡県	H28	28	ND	\sim	0.026	28	ND	\sim	0.23	14			ND			－	28
新潟県	H28	10			ND	10			0． 18	2	ND	\sim	0.012			－	10
新潟県 （指標海産生物）	H28	20			ND	20	ND	\sim	0.081	5	0.035		0.057			－	20
石川県	H28	51			ND	51			ND	14			ND			－	51
福井県	H28	149			ND	149	ND	\sim		33	ND		0． 14	42	ND	~ 0.043	149
島根県	H28			－＊2		44	ND	\sim	0． 10	4			ND			－	44
愛媛県	H28	38			ND	38		\sim	0.15	4	ND	\sim	0． 057	3	ND	~ 0.0129	38
佐賀県	H28	23			ND	23		\sim	0.15	9	ND		0． 067			－	23
鹿児島県	H28			－		20		\sim	0．13	11			ND			－	20
日本原子力研究開発機構	H27	28	ND		0.71	28				28	ND		0．033	28	ND	~ 0.0031	28
農林水産省	H25	217	ND	\sim	2.9	217						－				－	217
海洋放射能調査	H28	120	ND	\sim	0.5	120	ND	\sim	3.0	30			ND	30		~ 0.0007	120

＊1 ND は検出下限値以下を示す。 $* 2$ 分析対象外核種について「一」で示した。

表 I－2－2－5－2 平成 28 年度 道県原子力発電所周辺環境放射能調査結果等による放射性核種濃度範囲（海底土試料）

自治体等機関	年度	Cs－134（Bq／kg乾土）			Cs－137（Bq／kg乾土）				Sr－90（Bq／kg乾土）				Pu－239＋240（Bq／kg乾土）				$\begin{aligned} & \text { 総検 } \\ & \text { 体数 } \end{aligned}$
		検体数	最小値	\sim 最大值	検体数	最小値	\sim 最	最大値	検体数	最小値	\sim 最	最大値	検体数	最小値	\sim 最	最大值	
北海道	H28	12		ND ${ }^{* 1}$	12			ND	4			ND			－		12
青森県	H28	9		ND	9			ND	4			ND	7	0． 25	\sim	0.54	9
宮城県	H28	13	ND	~ 7.7	13	ND	\sim	47.2	1			ND			－		13
福島県	H28	31	6． 4	~ 110	31	33	\sim	630	25	ND	\sim	2.6	25	0． 10	\sim	0.57	31
茨城県	H28	26	ND	~ 3.1	26	2.1	\sim	17	26			ND	20	0． 19	\sim	0.66	26
静岡県	H28	64		ND		ND	\sim	2.6			－				－		64
新潟県	H28	14		ND	14			ND			－		4	0． 091	\sim	0.23	14
石川県	H28	19		ND	19			ND	16			ND			－		19
福井県	H28	92		ND		ND	\sim	8.0			－		14	0． 034	\sim	1． 40	92
島根県	H28			$-{ }^{* 2}$	3			ND			－				－		3
愛媛県	H28	14		ND	14	ND	\sim	1.0	8			ND	8	0． 18	\sim	0.56	14
佐賀県	H28	16		ND	16			ND	8			ND			－		16
鹿児島県	H28			－	8	ND	\sim	1.4	4			ND			－		8
海上保安庁	H27	9	ND	~ 82	17	0.12	\sim	330	17	ND	\sim	0． 47	8	ND	\sim	2.2	17
農林水産省	H25	153	ND	~ 41	153	ND	\sim				－				－		153
日本原子力研究開発機構	H27	8	1.4	~ 3.5	8	2． 9	\sim		8	ND	\sim	0． 092	8	0． 14		0.49	8
海洋放射能調査	H28	82	ND	~ 17	82	ND	\sim		22	ND	\sim	0.39	22	0． 41	\sim	4.7	82

＊1 ND は検出下限値以下を示す。 $* 2$ 分析対象外核種について「 $-」$ で示した。

表 I－2－2－5－3 平成 28 年度 道県原子力発電所周辺環境放射能調査結果等による放射性核種濃度範囲（海水試料）

＊1 ND は検出下限値以下を示す。＊2 分析対象外核種について「一」で示した。

引用文献

1）北海道．泊発電所周辺環境放射線監視結果報告書：環境放射線．平成 28 年度第 1 四半期 \sim 平成 28 年度第 4 四半期．
2）青森県．原子力施設環境放射線調査報告書 平成 28 年度年度報．
3）宮城県．女川原子力発電所環境放射能調查結果．平成 28 年度 36 （5）．
4）福島県．原子力発電所周辺環境放射能測定結果．平成 26 年度第 1 四半期 \sim 平成 27 年度第 4 四半期．
5）福島県．福島県各種放射線モニタリング結果一覧。
（http：／／www．pref．fukushima．lg．jp／sec／01010d／monitoring－all．html）
6）茨城県．環境放射線監視季報．第 176 報（平成 28 年度第 1 四半期）\sim 第 179 報（平成 28 年度第 4四半期）。
7）静岡県．浜岡原子力発電所周辺環境放射能調查結果．第 173 号（調查期間 平成 28 年 4 月～平成 29年 3 月）。
8）新潟県．平成 28 年度柏崎刈羽原子力発電所周辺環境放射線監視調査結果報告書．
9）石川県．志賀原子力発電所周辺環境放射線監視結果報告書．平成 28 年度年報．
10）福井県．原子力発電所周辺の環境放射能調査．平成 28 年度年報（2016）．
11）島根県．平成 28 年度 島根原子力発電所周辺環境放射線等調查結果．
12）愛媛県．平成 28 年度 伊方原子力発電所周辺環境放射線等調査結果．

13）佐賀県．玄海原子力発電所の運転状況及び周辺環境調査結果（年報）（平成 28 年度）。
14）鹿児島県．川内原子力発電所周辺環境放射線調査結果報告書（平成 28 年度 年報）。
15）海上保安庁。放射能調査報告書．平成 27 年調査結果。
16）農林水産省。平成 25 年度農林水産省関係放射能調査研究年報 C水産関係．
17）日本原子力研究開発機構．東海再処理施設周辺の環境放射線モニタリング結果—2015年度一。
18）Oikawa，S．，Watabe，T．and Takata，H．（2015）．Distributions of Pu isotopes in seawater and bottom sediments in the coast of the Japanese archipelago before and soon after the Fukushima Dai－ichi Nuclear Power Station accident．J．Environ．Radioact．，142， 113－123．

