泊発電所3号炉 基準地震動の策定について

令和5年1月20日 北海道電力株式会社

No.	指摘事項	指摘 時期	回答方針	ページ
1	断層モデルを用いた手法による基準地震動の策定にお いて、Ss1を一部周期帯で上回る39ケースの地震動に ついては、検討用地震毎にSs1との応答スペクトルの 関係を整理した上で、それぞれの検討用地震の地震動 評価ケースから代表を選定できることについて、選定理 由とともに科学的・技術的な説明を行うこと。	令和4年 10月21日 第1084回 審査会合	断層モデルを用いた手法による基準地震動の策定にあ たり,検討用地震毎に基準地震動Ss1との応答スペク トルの関係を整理したうえで,代表ケースを選定し基準 地震動とすることについて,選定結果を選定理由ととも に明示する。	24~78
2	2008年岩手・宮城内陸地震(KiK-net一関東)の一関 東評価用地震動(鉛直方向)の設定については,設定 にあたって用いる数値等の根拠を明確にして説明を行 うこと。	令和4年 10月21日 第1084回 審査会合	2008年岩手・宮城内陸地震(KiK-net一関東)の一関 東評価用地震動(鉛直方向)を設定する際に用いた数 値の参考として用いる文献等を明示する。	104

	•	3	

	次

1. 検討概要 ••••••••••••••••••••••••••••••••••••	4
2. 基準地震動の策定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	18
2.1 応答スペクトルに基づく手法による基準地震動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
2.2 断層モデルを用いた手法による基準地震動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
2.2.1 断層モデルを用いた手法による基準地震動の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
2.2.2 尻別川断層による地震 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	36
2.2.3 F _s -10断層~岩内堆東撓曲~岩内堆南方背斜による地震 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	48
2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)・・・・・・・・	62
2.2.5 積丹半島北西沖の断層による地震(走向40°ケース) ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	72
2.2.6 断層モデルを用いた手法による基準地震動 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	80
2.3 震源を特定せず策定する地震動による基準地震動 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	94
2.4 基準地震動の策定 まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	100
2.5 一関東評価用地震動の設定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	104

参考文献	•••••••••••••••••••••••••••••••••••••••	108
ッうへう		

1. 検討概要

■審査会合の経緯と指摘事項対応方針

第1084回審査会合(2022年10月21日)における説明

- 応答スペクトルに基づく手法による基準地震動は、検討用地震ごとに評価した応答スペクトルを上回るように基準地震動Ss1として設定する
- 断層モデルを用いた手法による基準地震動は,施設に与える影響を考慮し,基準地震動Ss1を上回るケースから,いずれかの方向,周期で基準地震動 Ss1を上回る部分が最も大きいケースを基準地震動の候補として選定する
- 震源を特定せず策定する地震動による基準地震動も同様に, 基準地震動Ss1を上回るケースから, いずれかの方向, 周期で基準地震動Ss1を上回る 部分が最も大きいケースを基準地震動の候補として選定する
- 選定した基準地震動の候補を比較検討し、施設に与える影響が大きいと考えられるケースを基準地震動として設定する

第1084回審査会合(2022年10月21日)における指摘事項

■ 断層モデルを用いた手法による基準地震動の策定において、Ss1を一部周期帯で上回る39ケースの地震動については、検討用地震毎にSs1との応答スペクトルの関係を整理した上で、それぞれの検討用地震の地震動評価ケースから代表を選定できることについて、選定理由とともに科学的・技術的な説明を行うこと

指摘事項対応方針

- 第1084回審査会合における指摘事項を踏まえ、断層モデルを用いた手法による基準地震動の評価方針を以下の通り変更する。
- 基準地震動の設定にあたっては、施設に与える影響を考慮して応答スペクトルに基づく手法による基準地震動を上回るケースから検討用地震の地震動の 諸特性を踏まえたうえで、検討用地震ごとの代表ケースを基準地震動として設定する
- 検討用地震ごとの代表ケースの選定にあたっては,検討用地震の地震動の特徴を踏まえ,相対的に地震動レベルが大きい周期帯に着目して選定する
- なお、震源を特定せず策定する地震動による基準地震動についても、上記と同様に施設に与える影響を考慮して基準地震動Ss1を上回る全てのケース を基準地震動として設定する

1. 検討概要(2/12)

■第1084回審査会合からの変更概要

- 断層モデルを用いた手法による基準地震動の設定に関する評価方針の変更に伴って、資料を修正している。
- 以下に前回会合からの評価方針の変更,基準地震動の策定結果の相違を示す。
- なお、断層モデルを用いた基準地震動は、前回会合においてご説明した選定方法から、検討用地震の地震動の諸特性を踏まえたうえで、検討用地震ごとの代表ケースを基準地震動として設定する方法に変更したため、基準地震動の設定数が増加している。
- 前回会合と同様に基準地震動Ss1を大きく上回る地震動は、今回も選定されている。また、前回候補としていた地震動のうち、基準地震動Ss1を若干上回る地震動について、着目する周期帯での地震動レベルが大きい他の地震動で代表できると判断した場合には、今回検討では選定していない。

	第1084回審査会合	今回
	【応答スペクトルに基づく手法による基準地震動】 検討用地震ごとに評価した応答スペクトルを上回るように設定	同左
	【断層モデルを用いた手法による基準地震動】 基準地震動Ss1を上回るケースから, いずれかの方向, 周期 で基準地震動Ss1を上回る部分が最も大きいケースを基準地 震動の候補として選定	【断層モデルを用いた手法による基準地震動】 基準地震動Ss1を上回るケースから,検討用地震の地震 動の諸特性を踏まえたうえで,検討用地震ごとの代表ケー スを基準地震動として設定
評価方針	【震源を特定せず策定する地震動による基準地震動】 基準地震動Ss1を上回るケースから, いずれかの方向, 周期 で基準地震動Ss1を上回る部分が最も大きいケースを基準地 震動の候補として選定	【震源を特定せず策定する地震動による基準地震動】 基準地震動Ss1を上回るケースを基準地震動として設定
	【基準地震動の策定】 選定した基準地震動の候補を比較検討し,施設に与える影響 が大きいと考えられるケースを基準地震動として設定	断層モデルを用いた手法による基準地震動と震源を特定せ ず策定する地震動による基準地震動の候補の比較は実施 しない
	応答スペクトルに基づく手法による基準地震動 Ss1	同左
基準地震動の 策定結果	断層モデルを用いた手法による基準地震動 Ss2-1~Ss2-5	断層モデルを用いた手法による基準地震動 Ss2-1~Ss2-14
	震源を特定せず策定する地震動による基準地震動 Ss3-1~Ss3-5	同左

1. 検討概要(3/12)

【敷地ごとに震源を特定して策定する地震動】 【検討用地震の選定】

【内陸地殼内地震】

- ▶尻別川断層による地震
- ▶F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震
- ▶積丹半島北西沖の断層による地震

【断層モデルの設定】

【尻別川断層による地震】

○地震規模

·M7.2(武村(1990))

○断層モデルの設定

・地震調査委員会(2009,2020)に基づき設定

○不確かさの考慮

・傾斜角,応力降下量,アスペリティ位置,破壊開始点

【F_s-10断層~岩内堆東撓曲~

岩内堆南方背斜による地震】

○地震規模

·M8.2(松田(1975)および武村(1990))

○断層モデルの設定

·地震調査委員会(2009), Starr(1928), Somerville et al.(1999)に基づき設定

○不確かさの考慮

・傾斜角,応力降下量,破壊伝播速度,アスペリティ位 置.破壊開始点

【積丹半島北西沖の断層による地震】 ○地震規模

▶F_B-2断層による地震

·M7.2(武村(1990))

○断層モデルの設定

・地震調査委員会(2009,2020)に基づき設定

○不確かさの考慮

・傾斜角,応力降下量,アスペリティ位置,破壊開始点

【F_B-2断層による地震】

○地震規模

·M8.2(松田(1975))

○断層モデルの設定

·地震調査委員会(2020), Murotani et al.(2015), Fujii and Matsu'ura(2000). Somerville et al.(1999)に基づき 設定

○不確かさの考慮

・傾斜角,応力降下量,破壊伝播速度,アスペリティ位 置.破壞開始点

【地震動評価】

○応答スペクトルに基づく地震動評価	〇断層モデルを用いた手法による地震動評価
≻Noda et al.(2002)により評価	▶短周期領域は統計的グリーン関数法,長周期領域は理論的手法
	(波数積分法)を用いて評価し,それぞれを組み合わせることに
	よって評価するハイブリッド合成法により評価
	▶経験的グリーン関数法による評価も実施(F _B -2断層による地震)

再揭(R4.10.21審査会合資料)

【震源を特定せず策定する 地震動】 【内陸地殻内地震(日本海東縁部の地震)】 【全国共通に考慮すべき 地震動】 (Mw6.5程度未満の地震) ·2004年北海道留萌支庁南部地震 におけるHKD020(港町)の観測記録 に基づく基盤波の検討結果を踏ま え、震源を特定せず策定する地震動 に設定 ・標準応答スペクトルを考慮した地震 動の検討結果を踏まえ、震源を特定 せず策定する地震動に設定 【地域性を考慮する地震動】 (Mw6.5程度以上の地震) ・2000年鳥取県西部地震の震源域と 敷地周辺は、地域差が認められるこ とから,観測記録収集対象外 ・2008年岩手・宮城内陸地震におけ る栗駒ダム, KiK-net金ヶ崎, KiK -net-関東(水平)の観測記録に 基づく検討結果を震源を特定せず策 定する地震動に設定

7

■基準地震動策定の基本的な考え方

「実用発電所原子炉及びその附属施設の位置,構造及び設備の基準に関する規則の解釈」

▶基準地震動は、「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」について、解放基盤表面における水平方向及び鉛直方向の地震動としてそれぞれ策定すること。

「基準地震動及び耐震設計方針に係る審査ガイド」

- ▶応答スペクトルに基づく手法による基準地震動は、検討用地震ごとに評価した応答スペクトルを下回らないように作成する必要があり、その際の振幅包絡線は、地震動の継続時間に留意して設定されていることを確認する。
- ▶断層モデルを用いた手法による基準地震動は、施設に与える影響の観点から地震動の諸特性(周波数特性、継続時間、位相特性等)を考慮して、別途評価した応答スペクトルとの関係を踏まえつつ複数の地震動評価結果から策定されていることを確認する。なお、応答スペクトルに基づく基準地震動が全周期帯にわたって断層モデルを用いた基準地震動を有意に上回る場合には、応答スペクトルに基づく基準地震動で代表させることができる。
- ▶震源を特定せず策定する地震動による基準地震動は、設定された応答スペクトル(地震動レベル)に対して、地震動の継続時間及び振幅包絡線の経時的 変化等の特性が適切に考慮されていることを確認する。また、設定された応答スペクトルに基づいて模擬地震動を作成する場合には、複数の方法(例えば、 正弦波の重ね合わせによる位相を用いる方法、実観測記録の位相を用いる方法等)により検討が行われていることを確認する。

【泊発電所の基準地震動策定にあたっての基本的な考え方】

▶応答スペクトルに基づく手法による基準地震動は、検討用地震ごとに評価した応答スペクトルを上回るように設定する。

▶断層モデルを用いた手法による基準地震動および震源を特定せず策定する地震動による基準地震動は、施設に与える影響を考慮して、応答スペクトルに 基づく手法による基準地震動を上回るものを個別波として考慮することを基本とする。

▶断層モデルを用いた手法による基準地震動の設定にあたっては、応答スペクトルに基づく手法による基準地震動を上回るケースから検討用地震の地震動の諸特性(応答スペクトルの傾向,時刻歴波形の傾向および主要動の継続時間)を踏まえたうえで、検討用地震ごとの代表ケースを基準地震動として設定する。

※水平方向の地震動のみ設定していることから、施設評価において用いる一関東評価用地震動(鉛直方向)を水平方向の応答スペクトルに基づき設定

1. 検討概要(6/12)

■断層モデルを用いた手法による基準地震動(選定方法の整理)

選定方法の整理

① 断層モデルを用いた手法による地震動評価結果(104ケース)のうち、基準地震動Ss1を上回るケースが39ケースあり、それらのケースが施設に 与える影響が大きい。

② 地震動評価結果全体の傾向について、以下の地震動の諸特性を確認した結果、基本的に検討用地震ごとにその特徴が概ね同様であることから、検討用地震ごとに応答スペクトルの地震動レベルに基づき、基準地震動として設定する代表ケースを選定可能である。 なお、積丹半島北西沖の断層による地震の走向40°ケースについては、応答スペクトルのUD方向の長周期側で走向0°ケースおよび走向 20°ケースと傾向が若干異なることから、走向0°ケースおよび走向20°ケースと走向40°ケースについては、区分して整理する。

確認項目	応答スペクトルの傾向	時刻歴波形の傾向	主要動の継続時間
確認事項	応答スペクトルの形状(凹 凸, ピーク位置)が概ね同様 であること	時刻歴波形の振幅形状が概ね 同様であること	主要動の継続時間が概ね同程 度であること

③ 代表ケースの選定にあたって,検討用地震の応答スペクトルの相対的に地震動レベルが大きい周期帯に着目して代表ケースを選定することで,施設に与える影響が大きいケースが選定される。

【着目する周期帯】

【断層モデルを用いた手法による基準地震動の選定方法】 → 断層モデルを用いた手法による基準地震動は, 基準地震動Ss1を上回るケースを対象に検討用地震ごとに着目する周期帯の地震 動レベルの比較等を行い, 施設に与える影響が大きいと考えられる地震動を代表ケースとして選定する。 → 代表ケースの選定にあたっては, 検討用地震ごとに次頁に示すフローに基づき選定する。

P26 P28~P33

1. 検討概要(7/12)

■断層モデルを用いた手法による基準地震動(代表ケース選定フロー)

【代表ケースの選定】

○検討用地震ごとの代表ケースは,施設に与える影響を考慮し,着目する周期帯で地震動レベルが大きいケースを選定する。なお,施設に与える影響が大きいと考えられる地震動を全て代表ケースとして選定するため,代表ケースで他のケースを代表させることができるか確認する。

1. 検討概要(8/12)

■断層モデルを用いた手法による基準地震動(代表ケースの選定結果) (尻別川断層による地震)

1. 検討概要(9/12)

13

■断層モデルを用いた手法による基準地震動(代表ケースの選定結果) (F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震)

■断層モデルを用いた手法による基準地震動(代表ケースの選定結果) (積丹半島北西沖の断層による地震(走向O゜ケース,走向2O゜ケース))

■断層モデルを用いた手法による基準地震動(代表ケースの選定結果) (積丹半島北西沖の断層による地震(走向40°ケース))

■断層モデルを用いた手法による基準地震動の設定結果概要(代表ケースの選定結果)

【尻別川断層による地震】 (9ケース⇒2ケース)

16

Ss1を超過するケース		代表ケースの 選定結果	備考
甘木霊酒エデル	破壞開始点2	②で代表	3 方向の全周期帯で地震動レベルが概ね大きくSs1を上回る部分で包絡
埜平展 応 し / ル	破壞開始点4	②で代表	3方向の全周期帯で地震動レベルが大きくSs1を上回る部分で包絡
	破壞開始点1	①で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で包絡
転展の傾斜角	破壞開始点2	①で代表	3 方向で地震動レベルが大きく S s1を上回る部分で包絡
町層の限が円	破壞開始点3	①で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で包絡
	破壞開始点4	代表ケース①	
	破壞開始点2	②で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で包絡
応力降下量	破壞開始点3	②で代表	3方向で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡
	破壞開始点4	代表ケース②	

【F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震】 (15ケース⇒5ケース)

Ss1を超過するケース		代表ケースの 選定結果	備考
基本震源モデル	破壞開始点1	⑤で代表	3 方向の全周期帯で地震動レベルが大きくSs1を上回る部分で包絡
	破壞開始点1	代表ケース①	
	破壞開始点2	②で代表	3方向で地震動レベルが大きくSs1を上回る部分で包絡
断層の傾斜角	破壞開始点3	①で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で包絡
町層の頃が円	破壞開始点4	代表ケース②	
	破壊開始点5	④で代表	3方向で地震動レベルが概ね大きくSs1を上回る部分で包絡
	破壞開始点6	③で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡
	破壊開始点1	代表ケース⑤	
応力降下量	破壞開始点3	④で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡
	破壊開始点5	④で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡
	破壞開始点1	代表ケース③	
	破壞開始点3	③で代表	3方向で地震動レベルが概ね大きくSs1を上回る部分で包絡
破壊伝播速度	破壞開始点4	②で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡
	破壞開始点 5	代表ケース④	
	破壞開始点6	③で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡

【積丹半島北西沖の断層による地震(走向0°ケースおよび走向20°ケース)】 (10ケース⇒4ケース)

Ss	Ss1を超過するケース		代表ケースの 選定結果	備考
		破壞開始点1	①で代表	3 方向で地震動レベルが概ね大きく S s1を上回る部分で概ね包絡
	新屋の傾斜角	破壞開始点2	代表ケース①	
走向0°ケーマ	的值切候种内	破壞開始点3	3 代表ケース② 4 ①で代表 3方向で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡 1 ①で代表 3方向の全周期帯で地震動レベルが概ね大きくSs1を上回る部分で包絡	
		破壞開始点4		3 方向で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡
	広力際下量	破壞開始点1		
	心刀杆工里	破壞開始点3	①で代表	3 方向の全周期帯で地震動レベルが概ね大きくSs1を上回る部分で包絡
	断層の傾斜角	破壞開始点2	①で代表	3方向で地震動レベルが概ね大きくSs1を上回る部分で包絡
+−7	的值切候种内	破壞開始点4	4 代表ケース③	
	応力降下量	破壊開始点1	①で代表	3 方向の全周期帯で地震動レベルが概ね大きく S s 1 を上回る部分で包絡
		破壊開始点 2	代表ケース④	

【積丹半島北西沖の断層による地震(走向40°ケース)】 (5ケース⇒3ケース)

Ss1を超過するケース		代表ケースの 選定結果	備考	
		破壞開始点1	③で代表	3 方向で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡
	断層の傾斜角	破壞開始点2	代表ケース②	
走向40°ケース	10°ケース 破壊開始点 破壊開始点	破壞開始点3	代表ケース①	
		破壞開始点4	代表ケース③	
	応力降下量	破壞開始点2	②で代表	3方向の全周期帯で地震動レベルが概ね大きくSs1を上回る部分で概ね包絡

代表ケースの選定結果一覧

検討用地震		代表ケース	代表としないケース
尻別川断層による地震		2ケース	7ケース
F _S -10断層~岩内堆東撓曲~岩内	1堆南方背斜による地震	5ケース	10ケース
港口水白水市 池の米岡に トス地画	走向0°ケースおよび 走向20°ケース	4ケース	6ケース
1度/1十四40四/戸の町層による地展	走向40°ケース	3ケース	2ケース

○代表ケース(14ケース)は、基準地震動Ss1を上回るケース(39ケース)から地震動の諸特性を踏まえたうえで施設への影響が大きい地震動が検討用地震ごとに複数選定されていることから、適切な代表ケースとなっている。

2. 基準地震動の策定

2. 基準地震動の策定

2.1 応答スペクトルに基づく手法による基準地震動

再揭(R4.10.21審査会合資料)

応答スペクトルに基づく手法による基準地震動

○敷地ごとに震源を特定して策定する地震動による基準地震動のうち応答スペクトルに基づく手法による基準地震動として,検討用地 震の応答スペクトルに基づく手法による地震動評価結果を上回るように基準地震動Ss1の設計用応答スペクトルを設定する。

2 基準地震動の策定

応答スペクトルに基づく手法による基準地震動 2.1

再揭(R4.10.21審査会合資料)

140

140

368

設計用応答スペクトル「基準地震動Ss1」の模擬地震波

○基準地震動Ss1の設計用応答スペクトルに適合する模擬地震波は、一様乱数の位相をもつ正弦波の重ね合わせによって作成する。 ○振幅包絡線の経時的変化については, Noda et al.(2002)に基づき, 継続時間が最も長くなるように「F_B−2断層による地震の不確 かさ考慮モデル(断層の傾斜角)の諸元を参考に設定する。

Ss1-V

※検討用地震のうち、継続時間が最も長くなるF_B-2断層による地震の不確かさ考慮 モデル(断層の傾斜角)を参考に設定

2.1 応答スペクトルに基づく手法による基準地震動

設計用応答スペクトル「基準地震動Ss1」の模擬地震波

再揭(R4.10.21審査会合資料)

2. 基準地震動の策定 2.1 応答スペクトルに基づく手法による基準地震動

再揭(R4.10.21審查会合資料)

○作成した模擬地震波は、日本電気協会(2015)に記載された以下の判定基準を満足していることを確認した。
・目標とする応答スペクトル値に対する模擬地震波の応答スペクトル値の比が0.85以上

・応答スペクトル強さの比(SI比が1.0以上)

設計用応答スペクトル「基準地震動Ss1」に対する模擬地震波の応答スペクトル値の比

応答スペクトル比(Ss1-H)

応答スペクトル比(Ss1-V)

応答スペクトル強さの比(SI比)

$$SI \nvDash = \frac{\int_{0.1}^{2.5} S_V(T) dt}{\int_{0.1}^{2.5} \overline{S}_V(T) dt} \ge 1.0$$

ここで,

SI:応答スペクトル強さ

 S_V :設計用模擬地震波の応答スペクトル(cm/s)

 S_V :目標とする設計用応答スペクトル(cm/s)

T :固有周期(s)

応答スペクトル	SI比
Ss1-H	1.00
Ss1-V	1.01

2.2 断層モデルを用いた手法による基準地震動

2.2.1 断層モデルを用いた手法による基準地震動の設定

■断層モデルを用いた手法による基準地震動(選定方法の整理)

選定方法の整理

 ① 断層モデルを用いた手法による地震動評価結果(104ケース)のうち、基準地震動Ss1を上回るケースが39ケースあり、それらのケースが施設に 与える影響が大きい。

② 地震動評価結果全体の傾向について、以下の地震動の諸特性を確認した結果、基本的に検討用地震ごとにその特徴が概ね同様であることから、 検討用地震ごとに応答スペクトルの地震動レベルに基づき、基準地震動として設定する代表ケースを選定可能である。 なお、積丹半島北西沖の断層による地震の走向40°ケースについては、応答スペクトルのUD方向の長周期側で走向0°ケースおよび走向 20°ケースと傾向が若干異なることから、走向0°ケースおよび走向20°ケースと走向40°ケースについては、区分して整理する。

確認項目	応答スペクトルの傾向	時刻歴波形の傾向	主要動の継続時間
確認事項	応答スペクトルの形状(凹 凸, ピーク位置)が概ね同様 であること	時刻歴波形の振幅形状が概ね 同様であること	主要動の継続時間が概ね同程 度であること

③ 代表ケースの選定にあたって,検討用地震の応答スペクトルの相対的に地震動レベルが大きい周期帯に着目して代表ケースを選定することで,施設に与える影響が大きいケースが選定される。

【着目する周期帯】

【断層モデルを用いた手法による基準地震動の選定方法】 → 断層モデルを用いた手法による基準地震動は, 基準地震動Ss1を上回るケースを対象に検討用地震ごとに着目する周期帯の地震 動レベルの比較等を行い, 施設に与える影響が大きいと考えられる地震動を代表ケースとして選定する。 → 代表ケースの選定にあたっては, 検討用地震ごとに後段に示すフローに基づき選定する。

P26 P28~P33

断層モデルを用いた手法による地震動評価結果

○断層モデルを用いた手法による地震動評価結果において,施設に与える影響を考慮し,基準地震動Ss1を上回るケース(39ケース) から基準地震動を設定する。なお,F_B−2断層による地震については,全ての地震動評価結果が基準地震動Ss1に包絡されている。

検討用地震ごとの地震動評価結果全体の傾向に対する諸特性の確認

- ○基準地震動の設定にあたって,検討用地震ごとの地震動評価結果全体の傾向に対して,以下の諸特性を確認した結果,基本的に検 討用地震ごとにその特徴が概ね同様である。
- ・応答スペクトルの傾向
 - ▶応答スペクトルの形状(凹凸, ピーク位置)が検討用地震ごとに概ね同様の傾向であること
- ・時刻歴波形の傾向
 - ▶時刻歴波形の振幅形状が検討用地震ごとに概ね同様の傾向であること
- ・主要動の継続時間
 - ▶主要動の継続時間が概ね同程度であること
- ○地震動評価においては、地震動の特徴が異なる要因となる傾斜角、応力降下量等の不確かさを検討用地震ごとに考慮しているが、 上記の地震動の諸特性を確認した結果、基本的に検討用地震ごとにその特徴が概ね同様であることから、基準地震動の選定は、応 答スペクトルの地震動レベルに基づき、検討用地震ごとに基準地震動として設定する代表ケースを選定する。
- ○なお,積丹半島北西沖の断層による地震の走向40°ケースについては,応答スペクトルのUD方向の長周期側で走向0°ケースおよび走向20°ケースと傾向が若干異なることから,走向0°ケースおよび走向20°ケースと走向40°ケースについては,区分して整理する。

検討用地震ごとの着目する周期帯の設定

- ○検討用地震ごとの代表ケースの選定にあたって、検討用地震の応答スペクトルには相対的に地震動レベルが大きい周期帯があること から、それらの周期帯に着目して代表ケースを選定する。
- ○検討用地震ごとに基準地震動Ss1を上回るケースを比較し,応答スペクトルの傾向が同様で,着目する周期帯の地震動レベルが大き いケースを代表ケースとして選定し,基準地震動に設定する。

【尻別川断層による地震】

- > 鉛直方向の周期1秒~5秒程度で基準地震動Ss1を上回り,相対的にも長周期側の地震動レベルが大きい。
- 【F_S-10断層~岩内堆東撓曲~岩内堆南方背斜による地震】
- 水平方向の周期2秒~5秒程度および鉛直方向の周期1秒~5秒程度で基準地震動Ss1を上回り、相対的にも水平方向および 鉛直方向の長周期側の地震動レベルが大きい。
- 【積丹半島北西沖の断層による地震(走向0°ケースおよび走向20°ケース)】
- ▶水平方向の周期0.1秒~0.4秒程度で基準地震動Ss1を上回り,相対的にも水平方向および鉛直方向の短周期側の地震動レベルが大きい。
- 【積丹半島北西沖の断層による地震(走向40°ケース)】
- ▶ 水平方向の周期0.1秒~0.4秒程度および鉛直方向の周期1秒~3秒程度で基準地震動Ss1を上回り、相対的にも水平方向および鉛直方向の短周期側および長周期側の地震動レベルが大きい。

2.2.1 断層モデルを用いた手法による基準地震動の設定

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震(加速度時刻歴波形)

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震(加速度時刻歴波形)

2.2 断層モデルを用いた手法による基準地震動 2.2.1 断層モデルを用いた手法による基準地震動の設定

○代表ケースの選定にあたっては、検討用地震ごとに以下のフローに基づき選定する。

|断層モデルを用いた手法による基準地震動(代表ケース選定フロー)

【代表ケースの選定】

○検討用地震ごとの代表ケースは,施設に与える影響を考慮し,着目する周期帯で地震動レベルが大きいケースを選定する。なお,施設に与える影響が大きいと考えられる地震動を全て代表ケースとして選定するため,代表ケースで他のケースを代表させることができるか確認する。

2.2.2 尻別川断層による地震

■断層モデルを用いた手法による基準地震動(代表ケースの選定結果) (尻別川断層による地震)

尻別川断層による地震

○尻別川断層による地震の断層モデルを用いた手法による地震動評価結果において、基準地震動Ss1を上回るケース(9ケース)から 基準地震動を設定する。

○尻別川断層による地震の断層モデルを用いた手法による地震動評価結果は、鉛直方向の長周期側の地震動レベルが大きい特徴を 持つことから、長周期側(周期1秒~5秒)に着目し、尻別川断層による地震の代表ケースを選定する。

尻別川断層による地震

 ○尻別川断層による地震の断層モデルを用いた手法による地震動評価結果において、基準地震動Ss1を上回るケース(9ケース)から 着目する周期帯である長周期側(周期1秒~5秒)の地震動レベルがいずれかの方向で明確に大きい地震動を代表ケースとして選定 する。
 ○尻別川断層による地震の断層モデルを用いた手法による地震動評価結果のうち、「断層の傾斜角、破壊開始点4」は、UD方向の長

周期側の地震動レベルが大きいことから,尻別川断層による地震の代表ケース①として選定する。

尻別川断層による地震

○尻別川断層による地震の断層モデルを用いた手法による地震動評価結果において、代表ケースとして選定した「断層の傾斜角、破壊開始点4」と応答スペクトルの傾向が異なるケースのうち、着目する周期帯である長周期側(周期1秒~5秒)の地震動レベルがいずれかの方向で明確に大きい地震動を代表ケースとして選定する。
 ○尻別川断層による地震の断層モデルを用いた手法による地震動評価結果のうち、「応力降下量、破壊開始点4」は、UD方向の長周期側の地震動レベルが大きいことから、尻別川断層による地震の代表ケース②として選定する。

尻別川断層による地震

○「基本震源モデル,破壊開始点2」については、「応力降下量,破壊開始点4」(代表ケース②)と比較すると、水平方向、鉛直方向ともに代表ケース②の地震動レベルが3方向の全周期帯で概ね大きくなっており、基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース②を「基本震源モデル、破壊開始点2」の代表ケースとする。なお、時刻歴波形は同様の傾向となっている。

尻別川断層による地震

○「基本震源モデル,破壊開始点4」については、「応力降下量,破壊開始点4」(代表ケース②)と比較すると、水平方向、鉛直方向ともに代表ケース②の地震動レベルが3方向の全周期帯で大きくなっており、基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース②を「基本震源モデル、破壊開始点4」の代表ケースとする。なお、時刻歴波形は同様の傾向となっている。

尻別川断層による地震

- ○「応力降下量, 破壊開始点3」については, 「応力降下量, 破壊開始点4」(代表ケース②)と比較すると, 水平方向, 鉛直方向ともに 応答スペクトルが同様の傾向となっている。
- ○着目する周期帯である長周期側(周期1秒~5秒)のうち、UD方向において基準地震動Ss1を上回る一部で応答スペクトルが逆転しているものの、代表ケース②が概ね包絡しており、着目する周期帯(周期1秒~5秒)全体では代表ケース②の方が3方向で地震動レベルが概ね大きくなっている。
- ○以上を踏まえ,代表ケース②を「応力降下量,破壊開始点3」の代表ケースとする。なお,時刻歴波形は同様の傾向となっている。

○尻別川断層による地震の断層モデルを用いた手法による地震動評価結果のうち、基準地震動Ss1を上回る9ケースから代表ケースとして選定した「断層の傾斜角,破壊開始点4」および「応力降下量,破壊開始点4」を基準地震動として設定する。
 ○基準地震動として設定した2ケースについては、応答スペクトルの傾向が同様なケースの中から着目する周期帯の地震動レベルが3方向で大きいケースがそれぞれ選定されていることから、施設に与える影響が大きいケースが選定されていると考えている。

2.2.3 F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

■断層モデルを用いた手法による基準地震動(代表ケースの選定結果) (F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震)

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

○F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震の断層モデルを用いた手法による地震動評価結果において、基準地震動Ss1を上回るケース(15ケース)から基準地震動を設定する。
 ○F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震の断層モデルを用いた手法による地震動評価結果は、水平方向および鉛直方向の長周期側の地震動レベルが大きい特徴を持つことから、長周期側(周期1秒~5秒)に着目し、F_s-10断層~岩内堆東

撓曲~岩内堆南方背斜による地震の代表ケースを選定する。 (h=0.05) (h=0.05)(h=0.05)着目する周期帯 着目する周期帯 着目する周期帯 100 100 100 (cm/s) (cm/s) (cm/s) 度 寠 度 阓 阓 阓 NS方向 **EW**方向 **UD**方向 0.1 0.1 0.1 0.1 0.01 0.1 0.01 0.1 周期(s) 周期(s) 周期(s) 準地震動Ss1 不確かさ考慮モデル(断層の傾斜角). 破壊開始点3 不確かさ考慮モデル(応力降下量).破壊開始点1 不確かさ考慮モデル(破)

 基準地震動Ss1
 不確かさ考慮モデル(断層の傾斜角),破壊開始点3
 不確かさ考慮モデル(応力降下量),破壊開始点1
 不確かさ考慮モデル(破壊伝播速度),破壊開始点3

 本確かさ考慮モデル(断層の傾斜角),破壊開始点1
 不確かさ考慮モデル(断層の傾斜角),破壊開始点5
 不確かさ考慮モデル(応力降下量),破壊開始点3
 不確かさ考慮モデル(応力降下量),破壊開始点3

 不確かさ考慮モデル(断層の傾斜角),破壊開始点5
 不確かさ考慮モデル(断層の傾斜角),破壊開始点6
 不確かさ考慮モデル(応力降下量),破壊開始点3
 不確かさ考慮モデル(破壊伝播速度),破壊開始点4

49

2.2 断層モデルを用いた手法による基準地震動

2.2.3 F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

○F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震の断層モデルを用いた手法による地震動評価結果において、基準地震動Ss1を上回るケース(15ケース)から着目する周期帯である長周期側(周期1秒~5秒)の地震動レベルがいずれかの方向で明確に大きい地震動を代表ケースとして選定する。
 ○F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震の断層モデルを用いた手法による地震動評価結果のうち、NS方向の「断層の傾斜角、破壊開始点1」、「破壊伝播速度、破壊開始点1」および「破壊伝播速度、破壊開始点5」、EW方向の「断層の傾斜角、破壊開始点5」、EW方向の「断層の傾斜角、破壊開始点4」および「破壊伝播速度、破壊開始点5」、UD方向の「断層の傾斜角、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「低壊気播速度、破壊開始点1」なよび「破壊伝播速度、破壊開始点1」、「断層の傾斜角、破壊開始点1」、「低零の傾斜角、破壊開始点1」、「、低零回の傾斜角、破壊開始点1」、「低零の傾斜角、破壊開始点1」、「低零回の傾斜角、破壊開始点1」、「低零回の傾斜角、破壊開始点1」、「低零回の傾斜角、破壊開始点5」、「し、として選定する。

2.2.3 F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

○「断層の傾斜角,破壊開始点3」については、「断層の傾斜角,破壊開始点1」(代表ケース①)と比較すると、水平方向、鉛直方向ともに応答スペクトルが同様の傾向となっている。
 ○着目する周期帯である長周期側(周期1秒~5秒)において代表ケース①の方が3方向で地震動レベルが概ね大きくなっており、基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース①を「断層の傾斜角、破壊開始点3」の代表ケースとする。なお、時刻歴波形は同様の傾向となっている。

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

○「断層の傾斜角,破壊開始点2」については「断層の傾斜角,破壊開始点4」(代表ケース②)と比較すると,水平方向,鉛直方向ともに応答スペクトルが同様の傾向となっている。
 ○着目する周期帯である長周期側(周期1秒~5秒)において代表ケース②の方が3方向で地震動レベルが大きくなっており,基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ.代表ケース②を「断層の傾斜角.破壊開始点2」の代表ケースとする。なお,時刻歴波形は同様の傾向となっている。

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

- ○「破壊伝播速度,破壊開始点4」については、「断層の傾斜角,破壊開始点4」(代表ケース②)と比較すると、水平方向,鉛直方向と もに応答スペクトルが同様の傾向となっている。
 ○着目する周期帯である長周期側(周期1秒~5秒)のうち、NS方向について基準地震動Ss1を上回る一部で応答スペクトルが逆転し
- ○着日9 る周期帝である長周期側(周期1 秒~5秒)のうら, NS方向について基準地震動SS1を上回る一部で応告スペクトルが逆転し ているものの, EW方向, UD方向含めて基準地震動Ss1を上回る部分は, 代表ケース②が概ね包絡しており, 着目する周期帯(周期 1秒~5秒)全体では代表ケース②の方が3方向で地震動レベルが概ね大きくなっている。
- ○以上を踏まえ,代表ケース②を「破壊伝播速度,破壊開始点4」の代表ケースとする。なお,時刻歴波形は同様の傾向となっている。

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

- ○「断層の傾斜角,破壊開始点6」については、「破壊伝播速度,破壊開始点1」(代表ケース③)と比較すると、水平方向,鉛直方向ともに応答スペクトルが同様の傾向となっている。
 ○着目する周期帯である長周期側(周期1秒~5秒)のうち、UD方向について基準地震動Ss1を上回る一部で応答スペクトルが逆転し
- ○着日9る周期帝である長周期側(周期) 秒~5秒)の55,00万向について基準地震動557を上回る一部で応告スペクドルが逆転し ているものの,NS方向を含めて基準地震動Ss1を上回る部分は,代表ケース③が概ね包絡しており,着目する周期帯(周期1秒~5 秒)全体では代表ケース③の方が3方向で地震動レベルが概ね大きくなっている
- ○以上を踏まえ,代表ケース③を「断層の傾斜角,破壊開始点6」の代表ケースとする。なお,時刻歴波形は同様の傾向となっている。

2.2.3 F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

○「破壊伝播速度,破壊開始点3」については、「破壊伝播速度,破壊開始点1」(代表ケース③)と比較すると、水平方向、鉛直方向ともに応答スペクトルが同様の傾向となっている。
 ○着目する周期帯である長周期側(周期1秒~5秒)において代表ケース③の方が3方向で地震動レベルが概ね大きくなっており、基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース③を「破壊伝播速度、破壊開始点3」の代表ケースとする。なお、時刻歴波形は同様の傾向となっている。

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

- ○「破壊伝播速度,破壊開始点6」については、「破壊伝播速度,破壊開始点1」(代表ケース③)と比較すると、水平方向、鉛直方向ともに応答スペクトルが同様の傾向となっている。
 ○着目する周期帯である長周期側(周期1秒~5秒)のうち、NS方向およびUD方向について基準地震動Ss1を上回る一部で応答ス
- ペクトルが逆転しているものの,代表ケース③が概ね包絡しており,着目する周期帯(周期1秒~5秒)全体では代表ケース③の方が3
 方向で地震動レベルが概ね大きくなっている。
- ○以上を踏まえ,代表ケース③を「破壊伝播速度,破壊開始点6」の代表ケースとする。なお,時刻歴波形は同様の傾向となっている。

2.2.3 F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

○「断層の傾斜角,破壊開始点5」については、「破壊伝播速度,破壊開始点5」(代表ケース④)と比較すると、水平方向、鉛直方向ともに応答スペクトルが同様の傾向となっている。
 ○着目する周期帯である長周期側(周期1秒~5秒)において代表ケース④の方が3方向で地震動レベルが概ね大きくなっており、基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース④を「断層の傾斜角、破壊開始点5」の代表ケースとする。なお、時刻歴波形は同様の傾向となっている。

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

- ○「応力降下量, 破壊開始点3」については,「破壊伝播速度, 破壊開始点5」(代表ケース④)と比較すると, 水平方向, 鉛直方向ともに応答スペク トルが同様の傾向となっている。
- ○着目する周期帯である長周期側(周期1秒~5秒)のうち、UD方向について、基準地振動Ss1を上回る一部で応答スペクトルが逆転しているものの、NS方向、EW方向含めて基準地震動Ss1を上回る部分は、代表ケース④が概ね包絡しており、着目する周期帯(周期1秒~5秒)全体では、 代表ケース④の方が3方向で地震動レベルが概ね大きくなっている。
- ○以上を踏まえ, 代表ケース④を「応力降下量, 破壊開始点3」の代表ケースとする。なお, 時刻歴波形の傾向は若干異なっているものの, 主要動の 継続時間は代表ケースの方が長くなっており, 応答スペクトルの大小関係から代表ケースを選定することとしている。

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

- ○「応力降下量, 破壊開始点5」については,「破壊伝播速度, 破壊開始点5」(代表ケース④)と比較すると, 水平方向, 鉛直方向ともに応答スペク トルが同様の傾向となっている。
- ○着目する周期帯である長周期側(周期1秒~5秒)のうち、UD方向について基準地震動Ss1を上回る一部で応答スペクトルが逆転しているものの、NS方向、EW方向含めて基準地震動Ss1を上回る部分は代表ケース④が概ね包絡しており、着目する周期帯(周期1秒~5秒)全体では代表ケース④の方が3方向で地震動レベルが概ね大きくなっている。
- ○以上を踏まえ,代表ケース④を「応力降下量,破壊開始点5」の代表ケースとする。なお,時刻歴波形の傾向は若干異なっているが,主要動の継続 時間は同程度であり,応答スペクトルの大小関係から代表ケースを選定することとしている。

2.2 断層モデルを用いた手法による基準地震動

2.2.3 F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

○F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震の断層モデルを用いた手法による地震動評価結果において、代表ケースとして選定した4ケースと応答スペクトルの傾向が異なるケースのうち、着目する周期帯である長周期側(周期1秒~5秒)のNS方向およびUD方向で地震動レベルが大きい「応力降下量、破壊開始点1」を代表ケース⑤として選定する。
 ○「基本震源モデル、破壊開始点1」については、「応力降下量、破壊開始点1」(代表ケース⑤)と比較すると、水平方向、鉛直方向ともに代表ケース⑤の地震動レベルが3方向の全周期帯で大きくなっており、基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース⑤を「基本震源モデル、破壊開始点1」の代表ケースとする。なお、時刻歴波形は同様の傾向となっている。

F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震

 ○F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震の断層モデルを用いた手法による地震動評価結果のうち、基準地震動 Ss1を上回る15ケースから代表ケースとして選定した以下の5ケースを基準地震動として設定する。
 ○基準地震動として設定した5ケースについては、応答スペクトルの傾向が同様なケースの中から着目する周期帯の地震動レベルが3 方向で大きいケースがそれぞれ選定されていることから、施設に与える影響が大きいケースが選定されていると考えている。

<u>61</u>

2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)

■断層モデルを用いた手法による基準地震動(代表ケースの選定結果) (積丹半島北西沖の断層による地震(走向O゜ケース,走向2O゜ケース))

2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)

積丹半島北西沖の断層による地震 走向0°ケースおよび20°ケース

 ○積丹半島北西沖の断層による地震(走向0°ケースおよび20°ケース)の断層モデルを用いた手法による地震動評価結果において、 基準地震動Ss1を上回るケース(10ケース)から基準地震動を設定する。
 ○積丹半島北西沖の断層による地震(走向0°ケースおよび20°ケース)の断層モデルを用いた手法による地震動評価結果は、水平 方向および鉛直方向の短周期側の地震動レベルが大きい特徴を持つことから、短周期側(周期0.1秒~0.4秒)に着目し、積丹半島 北西沖の断層による地震(走向0°ケースおよび20°ケース)の代表ケースを選定する。

63

2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)

積丹半島北西沖の断層による地震 走向0°ケースおよび20°ケース

 ○積丹半島北西沖の断層による地震(走向0°ケースおよび20°ケース)の断層モデルを用いた手法による地震動評価結果において、基準地震動 Ss1を上回るケース(10ケース)から着目する周期帯である短周期側(周期0.1秒~0.4秒)の地震動レベルがいずれかの方向で明確に大きい地 震動を代表ケースとして選定する。
 ○積丹半島北西沖の断層による地震(走向0°ケースおよび20°ケース)の断層モデルを用いた手法による地震動評価結果のうち、NS方向の「走 向0°ケース(断層の傾斜角、破壊開始点2)」、「走向0°ケース(断層の傾斜角、破壊開始点3)」および「走向20°ケース(応力降下量、破壊 開始点2)」、EW方向の「走向0°ケース(断層の傾斜角、破壊開始点3)」および「走向20°ケース(断層の傾斜角、破壊開始点4)」は、短周期 側の地震動レベルが大きいことから、「走向0°ケース(断層の傾斜角、破壊開始点2)」、「走向0°ケース(断層の傾斜角、破壊開始点3)」、「走 向20°ケース(断層の傾斜角、破壊開始点4)」および「走向20°ケース(応力降下量、破壊開始点2)」を積円半島北西沖の断層による地震 (走向0°ケースおよび20°ケース)の代表ケース①~④として選定する。

2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)

積丹半島北西沖の断層による地震 走向0°ケースおよび20°ケース

○「走向O[®] ケース(断層の傾斜角,破壊開始点1)」については、「走向O[®] ケース(断層の傾斜角,破壊開始点2)」(代表ケース①)と比較すると、 水平方向,鉛直方向ともに応答スペクトルが同様の傾向となっている。

- ○着目する周期帯である短周期側(周期0.1秒~0.4秒)のうち、NS方向およびEW方向について基準地震動Ss1を上回る一部で応答スペクトルが 逆転しているものの、代表ケース①が概ね包絡しており、着目する周期帯(周期0.1秒~0.4秒)全体では代表ケース①の方が3方向で地震動レベ ルが概ね大きくなっている。
- ○以上を踏まえ, 代表ケース①を「走向O[°] ケース(断層の傾斜角, 破壊開始点1)」の代表ケースとする。なお, 時刻歴波形は同様の傾向となっている。

2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)

積丹半島北西沖の断層による地震 走向0°ケースおよび20°ケース

○「走向O[°] ケース(断層の傾斜角,破壊開始点4)」については、「走向O[°] ケース(断層の傾斜角,破壊開始点2)」(代表ケース①)と比較すると、 水平方向、鉛直方向ともに応答スペクトルが同様の傾向となっている。

- ○着目する周期帯である短周期側(周期0.1秒~0.4秒)のうち、NS方向およびEW方向について基準地震動Ss1を上回る一部で応答スペクトルが 逆転しているものの、代表ケース①が概ね包絡しており、着目する周期帯(周期0.1秒~0.4秒)全体では代表ケース①の方が3方向で地震動レベ ルが概ね大きくなっている。
- ○以上を踏まえ, 代表ケース①を「走向O[°] ケース(断層の傾斜角, 破壊開始点4)」の代表ケースとする。なお, 時刻歴波形は同様の傾向となってい る。

2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)

積丹半島北西沖の断層による地震 走向0°ケースおよび20°ケース

○「走向O°ケース(応力降下量,破壊開始点1)」については、「走向O°ケース(断層の傾斜角,破壊開始点2)」(代表ケース①)と比較すると、水平方向、鉛直方向ともに代表ケース①の地震動レベルが3方向の全周期帯で概ね大きくなっており、基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース①を「走向O°ケース(応力降下量,破壊開始点1)」の代表ケースとする。なお、時刻歴波形は同様の傾向となっている。

2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)

積丹半島北西沖の断層による地震 走向0°ケースおよび20°ケース

○「走向O°ケース(応力降下量,破壊開始点3)」については、「走向O°ケース(断層の傾斜角,破壊開始点2)」(代表ケース①)と比較すると、水平方向、鉛直方向ともに代表ケース①の地震動レベルが3方向の全周期帯で概ね大きくなっており、基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース①を「走向O°ケース(応力降下量,破壊開始点3)」の代表ケースとする。なお、時刻歴波形は同様の傾向となっている。

2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)

積丹半島北西沖の断層による地震 走向0°ケースおよび20°ケース

 ○「走向20°ケース(断層の傾斜角,破壊開始点2)」については、「走向0°ケース(断層の傾斜角,破壊開始点2)」(代表ケース①)と 比較すると、水平方向,鉛直方向ともに応答スペクトルが同様の傾向となっている。
 ○着目する周期帯である短周期側(周期0.1秒~0.4秒)において代表ケース①の方が3方向で地震動レベルが概ね大きくなっており、 基準地震動Ss1を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース①を「走向20°ケース(断層の傾斜角,破壊開始点2)」の代表ケースとする。なお、時刻歴波形は同様の

2.2.4 積丹半島北西沖の断層による地震(走向0°ケース,20°ケース)

積丹半島北西沖の断層による地震 走向0°ケースおよび20°ケース

 ○「走向20°ケース(応力降下量,破壊開始点1)」については、「走向0°ケース(断層の傾斜角,破壊開始点2)」(代表ケース①)と 比較すると、水平方向、鉛直方向ともに代表ケース①の地震動レベルが3方向の全周期帯で概ね大きくなっており、基準地震動Ss1 を上回る部分については包絡している。
 ○以上を踏まえ、代表ケース①を「走向20°ケース(応力降下量,破壊開始点1)」の代表ケースとする。なお、時刻歴波形は同様の傾向となっている。

70

71 2.2 断層モデルを用いた手法による基準地震動 2.2.4 積丹半島北西沖の断層による地震(走向0°ケース.20°ケース) 積丹半島北西沖の断層による地震 走向0°ケースおよび20°ケース ○積丹半島北西沖の断層による地震(走向0°ケースおよび20°ケース)の断層モデルを用いた手法による地震動評価結果のうち. 基準地震動Ss1を上回る10ケースから代表ケースとして選定した以下の4ケースを基準地震動として設定する。 ○基準地震動として設定した4ケースについては、応答スペクトルの傾向が同様なケースの中から着目する周期帯の地震動レベルが3 方向で大きいケースがそれぞれ選定されていることから、施設に与える影響が大きいケースが選定されていると考えている。 (h=0.05) (h=0.05) 1000 1000 1000 THIE Gall 2000 000 100 100 100

71

(h=0.05)

2.2.5 積丹半島北西沖の断層による地震(走向40°ケース)

■断層モデルを用いた手法による基準地震動(代表ケースの選定結果) (積丹半島北西沖の断層による地震(走向40°ケース))

2.2.5 積丹半島北西沖の断層による地震(走向40°ケース)

積丹半島北西沖の断層による地震 走向40°ケース

─ 走向40°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点1)
─ 走向40°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点2)

走向40°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点3) 走向40°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点4) 走向40。ケース(不確かさ考慮モデル(応力降下量),破壊開始点2)

2.2.5 積丹半島北西沖の断層による地震(走向40°ケース)

積丹半島北西沖の断層による地震 走向40°ケース

74

 ○積丹半島北西沖の断層による地震(走向40°ケース)の断層モデルを用いた手法による地震動評価結果において、基準地震動Ss 1を上回るケース(5ケース)から着目する周期帯である短周期側(周期0.1秒~0.4秒)および長周期側(周期1秒~3秒)の地震動レベルがいずれかの方向で明確に大きい地震動を代表ケースとして選定する。
 ○積丹半島北西沖の断層による地震(走向40°ケース)の断層モデルを用いた手法による地震動評価結果のうち、「走向40°ケース (断層の傾斜角,破壊開始点3)」は、UD方向の長周期側の地震動レベルが大きいことから、積丹半島北西沖の断層による地震(走向40°ケース)の代表ケース①として選定する。

2.2.5 積丹半島北西沖の断層による地震(走向40°ケース)

積丹半島北西沖の断層による地震 走向40°ケース

○積丹半島北西沖の断層による地震(走向40°ケース)の断層モデルを用いた手法による地震動評価結果において,代表ケースとして選定した「走向40°ケース(断層の傾斜角,破壊開始点3)」と応答スペクトルの傾向が異なるケースのうち,着目する周期帯である短周期側(周期0.1秒~0.4秒)および長周期側(周期1秒~3秒)の地震動レベルがいずれかの方向で明確に大きい地震動を代表ケースとして選定する。

○積丹半島北西沖の断層による地震(走向40°ケース)の断層モデルを用いた手法による地震動評価結果のうち,「走向40°ケース (断層の傾斜角,破壊開始点2)」および「走向40°ケース(断層の傾斜角,破壊開始点4)」は,UD方向の長周期側の地震動レベル が大きいことから,積丹半島北西沖の断層による地震(走向40°ケース)の代表ケース②~③として選定する。

2.2 断層モデルを用いた手法による基準地震動

2.2.5 積丹半島北西沖の断層による地震(走向40°ケース)

積丹半島北西沖の断層による地震 走向40°ケース

 ○「走向40°ケース(応力降下量,破壊開始点2)」については、「走向40°ケース(断層の傾斜角,破壊開始点2)」(代表ケース②)と 比較すると、着目する周期帯である短周期側(周期0.1秒~0.4秒)および長周期側(周期1秒~3秒)のうち、EW方向について基準 地震動Ss1を上回る一部で応答スペクトルが逆転しているものの、水平方向、鉛直方向ともに代表ケース②の地震動レベルが3方向 の全周期帯で概ね大きくなっており、基準地震動Ss1を上回る部分については概ね包絡している。
 ○以上を踏まえ、代表ケース②を「走向40°ケース(応力降下量、破壊開始点2)」の代表ケースとする。なお、時刻歴波形は同様の傾 向となっている。

2.2.5 積丹半島北西沖の断層による地震(走向40°ケース)

積丹半島北西沖の断層による地震 走向40°ケース

○「走向40°ケース(断層の傾斜角,破壊開始点1)」については、「走向40°ケース(断層の傾斜角,破壊開始点4)」(代表ケース③)と比較すると、水平方向、鉛直方向ともに応答スペクトルが同様の傾向となっている。
 ○着目する周期帯である短周期側(周期0.1秒~0.4秒)および長周期側(周期1秒~3秒)のうち、EW方向については、基準地震動Ss1を上回る一部で応答スペクトルが逆転しているものの、着目する周期帯(周期0.1秒~0.4秒および周期1秒~3秒)全体では代表ケース③の方が3方向で地震動レベルが概ね大きくなっており、基準地震動Ss1を上回る部分については概ね包絡している。

○以上を踏まえ, 代表ケース③を「走向40°ケース(断層の傾斜角, 破壊開始点1)」の代表ケースとする。なお, 時刻歴波形は同様の傾向となって いる。

2.2.5 積丹半島北西沖の断層による地震(走向40°ケース)

基準地震動Ss2-12~Ss2-14

2.2.6 断層モデルを用いた手法による基準地震動 まとめ

断層モデルを用いた手法による基準地震動

○断層モデルを用いた手法による地震動評価結果において、基準地震動Ss1を上回るケース(39ケース)のうち、地震動の諸特性を踏まえたうえで、検討用地震ごとに代表ケースを選定し、以下の14ケースを断層モデルを用いた手法による基準地震動(Ss2−1~Ss2−14)として設定する。
 ○設定した基準地震動Ss2−1~Ss2−14は、基準地震動Ss1を上回るケースから地震動の諸特性を考慮したうえで、施設に与える影響が大きい地震動が検討用地震ごとに複数選定されていることから、適切な基準地震動が設定できていると考えている。

(h=0.05) (h=0.05) (h=0.05) 1000 THIR Call THIR Call HILE CAL 100 100 100 (cm/s) 度(cm/s) (cm/s) 度 度 阓 颲 阓 NS方向 **EW**方向 **UD**方向 0.1 - 0.01 0.1 0.1 0.01 0.1 10 0.1 10 0.01 0.1 周期(s) 周期(s) 周期(s) 基準地震動Ss1 基準地震動Ss2-1~Ss2-2 尻別川断層による地震 基準地震動Ss2-3~Ss2-7 F。-10断層~岩内堆東撓曲~岩内堆南方背斜による地震 積丹半島北西沖の断層による地震 走向0°ケース,走向20°ケース 基準地震動Ss2-8~Ss2-11

積丹半島北西沖の断層による地震 走向40°ケース

2.2 断層モデルを用いた手法による基準地震動

2.2.6 断層モデルを用いた手法による基準地震動 まとめ

● 基準地震動Ss2−1 尻別川断層による地震(不確かさ考慮モデル(断層の傾斜角),破壊開始点4)
 ● 基準地震動Ss2−2 尻別川断層による地震(不確かさ考慮モデル(応力降下量),破壊開始点4)

2.2.6 断層モデルを用いた手法による基準地震動 まとめ

断層モデルを用いた手法による基準地震動(F_s-10断層~岩内堆東撓曲~岩内堆南方背斜による地震)

── 基準地震動Ss1	
│ ━━ 基準地震動Ss2-3 F _s -10断層〜岩内堆東撓曲〜岩内堆南方背斜による地震(不確かさ考慮モデル(断層の傾斜角), 破壊開始	点1)
│ ━━ 基準地震動Ss2-4 F _s -10断層~岩内堆東撓曲~岩内堆南方背斜による地震(不確かさ考慮モデル(断層の傾斜角), 破壊開始	点4)
│ ━━ 基準地震動Ss2-5 F _s -10断層~岩内堆東撓曲~岩内堆南方背斜による地震(不確かさ考慮モデル(応力降下量),破壊開始点	1)
│ ━━ 基準地震動Ss2-6 F _s -10断層~岩内堆東撓曲~岩内堆南方背斜による地震(不確かさ考慮モデル(破壊伝播速度),破壊開始	点1)
│ ── 基準地震動Ss2-7 F _s -10断層~岩内堆東撓曲~岩内堆南方背斜による地震(不確かさ考慮モデル(破壊伝播速度),破壊開始	点5)

2.2 断層モデルを用いた手法による基準地震動 2.2.6 断層モデルを用いた手法による基準地震動 まとめ

断層モデルを用いた手法による基準地震動(積丹半島北西沖の断層による地震 走向O[®] ケースおよび2O[®] ケース)

基準地震動Ss2-11 積円半島北西沖の断層による地震 走向20°ケース(不確かさ考慮モデル(応力降下量),破壊開始点2)

2.2 断層モデルを用いた手法による基準地震動 2.2.6 断層モデルを用いた手法による基準地震動 まとめ

断層モデルを用いた手法による基準地震動(積丹半島北西沖の断層による地震 走向40°ケース)

金半地震動532 13 横口十串山口穴の町層による地震 走向40°ケース(不確かさ考慮モアル(断層の傾斜角)、吸気開始点3)

EW方向

NS方向

UD方向

94

2.3 震源を特定せず策定する地震動による基準地震動

一部加筆修正(R4.10.21審査会合資料)

震源を特定せず策定する地震動による基準地震動

○震源を特定せず策定する地震動として設定した地震動において,施設に与える影響を考慮し,基準地震動Ss1を上回る全てのケース (5ケース)を基準地震動(Ss3−1~Ss3−5)として設定する。

※2008年岩手・宮城内陸地震(KiK-net一関東)については,鉛直方向の信頼性の高い基盤波を評価することが困難なことから,基準地震動として設定することができないと考えら れるが,可能な限り知見を反映させることとし,水平方向のみ震源を特定せず策定する地震動による基準地震動として設定する。

 ■ 基準地震動Ss1 ■ 基準地震動Ss3-1 2008年岩手・宮城内陸地震(栗駒ダム[右岸地山]) ■ 基準地震動Ss3-2 2008年岩手・宮城内陸地震(KiK-net金ヶ崎) 	- 基準地震動Ss3-3 2008年岩手・宮城内陸地震(KiK-net一関東) - 基準地震動Ss3-4 2004年北海道留萌支庁南部地震(K-NET港町) - 基準地震動Ss3-5 標準応答スペクトルを考慮した地震動
--	---

2.3 震源を特定せず策定する地震動による基準地震動 (再掲 (R4.10.21審査会合資料)

「基準地震動Ss3-5」の加速度時刻歴波形

基準地震動Ss3-5(標準応答スペクトルを考慮した地震動)

96

<u>96</u>

2.3 震源を特定せず策定する地震動による基準地震動 (再調 (R4.10.21審査会資料)

「基準地震動Ss3-5」の速度時刻歴波形

基準地震動Ss3-5(標準応答スペクトルを考慮した地震動)

2.4 基準地震動の策定 まとめ

基準地震動の策定 まとめ

- ---- 基準地震動Ss3-1 2008年岩手・宮城内陸地震(栗駒ダム[右岸地山])
- —— 基準地震動Ss3-2 2008年岩手・宮城内陸地震(KiK-net金ヶ崎)
- 基準地震動Ss3-3 2008年岩手・宮城内陸地震(KiK-netー関東)

- 基準地震動Ss3-4 2004年北海道留萌支庁南部地震(K-NET港町)
- ── 基準地震動Ss3−5 標準応答スペクトルを考慮した地震動

2.4 基準地震動の策定 まとめ

	基準地震動Ss1 基準地震動Ss2-1 尻別川断層(断層の傾斜角,破壊開始点4) 基準地震動Ss2-2 尻別川断層(応力降下量,破壊開始点4) 基準地震動Ss2-3 F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜(断層の傾斜角,破壊開始点1) 基準地震動Ss2-4 F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜(断層の傾斜角,破壊開始点4) 基準地震動Ss2-5 F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜(応力降下量,破壊開始点1) 基準地震動Ss2-6 F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜(破壊伝播速度,破壊開始点1) 基準地震動Ss2-7 F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜(破壊伝播速度,破壊開始点5)		基準地震動Ss2-8 積丹半島北西沖の断層 走向0°ケース(断層の傾斜角,破壊開始点2) 基準地震動Ss2-9 積丹半島北西沖の断層 走向0°ケース(断層の傾斜角,破壊開始点3) 基準地震動Ss2-10 積丹半島北西沖の断層 走向20°ケース(断層の傾斜角,破壊開始点4) 基準地震動Ss2-11 積丹半島北西沖の断層 走向20°ケース(応力降下量,破壊開始点2) 基準地震動Ss2-12 積丹半島北西沖の断層 走向40°ケース(断層の傾斜角,破壊開始点2) 基準地震動Ss2-13 積丹半島北西沖の断層 走向40°ケース(断層の傾斜角,破壊開始点3) 基準地震動Ss2-14 積丹半島北西沖の断層 走向40°ケース(断層の傾斜角,破壊開始点3)
=	基準地震動Ss3-1 2008年岩手・宮城内陸地震(栗駒ダム[右岸地山]) 基準地震動Ss3-2 2008年岩手・宮城内陸地震(KiK-net金ヶ崎) 基準地震動Ss3-3 2008年岩手・宮城内陸地震(KiK-net-関東)	—	基準地震動Ss3-4 2004年北海道留萌支庁南部地震(K-NET港町) 基準地震動Ss3-5 標準応答スペクトルを考慮した地震動

2.4 基準地震動の策定 まとめ

基準地震動の最大加速度

		最大加速度(Gal)					
	基準地震動	NS方向 (ダム軸方向)	EW方向 (上下流方向)	UD方向 (鉛直方向)			
Ss1	設計用模擬地震波	550		368			
Ss2-1	尻別川断層(不確かさ考慮モデル(断層の傾斜角),破壊開始点4)	272	228	112			
Ss2-2	尻別川断層(不確かさ考慮モデル(応力降下量),破壊開始点4) 274 248						
Ss2-3	F _S -10断層~岩内堆東撓曲~岩内堆南方背斜(不確かさ考慮モデル(断層の傾斜角),破壊開始点1) 187 129						
Ss2-4	F _S -10断層~岩内堆東撓曲~岩内堆南方背斜(不確かさ考慮モデル(断層の傾斜角),破壊開始点4)	136	87				
Ss2-5	F _S -10断層~岩内堆東撓曲~岩内堆南方背斜(不確かさ考慮モデル(応力降下量),破壊開始点1) 203 220						
Ss2-6	F _s -10断層~岩内堆東撓曲~岩内堆南方背斜(不確かさ考慮モデル(破壊伝播速度),破壊開始点1) 154 158						
Ss2-7	F _S -10断層~岩内堆東撓曲~岩内堆南方背斜(不確かさ考慮モデル(破壊伝播速度),破壊開始点5)	153	141	92			
Ss2-8	積丹半島北西沖の断層 走向0°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点2)	448	384	216			
Ss2-9	積丹半島北西沖の断層 走向0°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点3)	371	361	152			
Ss2-10	積丹半島北西沖の断層 走向20°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点4) 314 322						
Ss2-11	積丹半島北西沖の断層 走向20°ケース(不確かさ考慮モデル(応力降下量),破壊開始点2) 292 227 227						
Ss2-12	積丹半島北西沖の断層 走向40°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点2) 349 307						
Ss2-13	積丹半島北西沖の断層 走向40°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点3)	282	305	207			
Ss2-14	積丹半島北西沖の断層 走向40°ケース(不確かさ考慮モデル(断層の傾斜角),破壊開始点4)	267	381	181			
Ss3-1	2008年岩手・宮城内陸地震(栗駒ダム[右岸地山])	450	490	320			
Ss3-2	2008年岩手·宮城内陸地震(KiK-net金ヶ崎)	430	400	300			
Ss3-3	2008年岩手·宮城内陸地震(KiK-net-関東)	540	500	—			
Ss3-4	2004年北海道留萌支庁南部地震(K-NET港町)	62	320				
Ss3-5	標準応答スペクトルを考慮した地震動	69	93	490			

2.4 基準地震動の策定 まとめ

設置変更許可申請時との比較

設置変更許可申請時(H25.7)				 審査結果を反映					
基準地震動		最大加速度(Gal)				最大加速度(Gal)			
		NS方向 (ダム軸方向)	EW方向 (上下流方向)	UD方向 (鉛直方向)	基準地震動		NS方向 (ダム軸方向)	EW方向 (上下流方向)	UD方向 (鉛直方向)
Ss	設計用模擬地震波		550		Ss1	Ss1 設計用模擬地震波		50	368
—	_	_	—	—	Ss2-1	尻別川断層 (不確かさ考慮モデル(断層の傾斜角),破壊開始点4)	272	228	112
—	—	-	_	—	Ss2-2	尻別川断層 (不確かさ考慮モデル(応力降下量),破壊開始点4)	274	248	125
_	—	—	_	—	Ss2-3	F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜 (不確かさ考慮モデル(断層の傾斜角),破壊開始点1)	187	129	95
_	—	—	_	—	Ss2-4	F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜 (不確かさ考慮モデル(断層の傾斜角),破壊開始点4)	170	136	87
—	—	—	_	—	Ss2-5	F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜 (不確かさ考慮モデル(応力降下量),破壊開始点1)	203	220	110
_	_	-	_	—	Ss2-6	F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜 (不確かさ考慮モデル(破壊伝播速度),破壊開始点1)	154	158	91
—	_	_	—	—	Ss2-7	F _S -10断層〜岩内堆東撓曲〜岩内堆南方背斜 (不確かさ考慮モデル(破壊伝播速度),破壊開始点5)	153	141	92
_	_	_	_	—	Ss2-8	積丹半島北西沖の断層 走向0°ケース (不確かさ考慮モデル(断層の傾斜角),破壊開始点2)	448	384	216
_	_	_	—	—	Ss2-9	積丹半島北西沖の断層 走向0°ケース (不確かさ考慮モデル(断層の傾斜角),破壊開始点3)	371	361	152
_	_	-	_	—	Ss2-10	積丹半島北西沖の断層 走向20°ケース (不確かさ考慮モデル(断層の傾斜角),破壊開始点4)	314	322	187
_	—	—	_	—	Ss2-11	積丹半島北西沖の断層 走向20°ケース (不確かさ考慮モデル(応力降下量),破壊開始点2)	292	227	117
_	—	—	_	—	Ss2-12	積丹半島北西沖の断層 走向40°ケース (不確かさ考慮モデル(断層の傾斜角),破壊開始点2)	349	307	169
_	_	—	_	—	Ss2-13	積丹半島北西沖の断層 走向40°ケース (不確かさ考慮モデル(断層の傾斜角),破壊開始点3)	282	305	207
—	_	—	—	—	Ss2-14	積丹半島北西沖の断層 走向40°ケース (不確かさ考慮モデル(断層の傾斜角),破壊開始点4)	267	381	181
_	-	—	—	—	Ss3-1	2008年岩手・宮城内陸地震(栗駒ダム[右岸地山])	450	490	320
_	_	—	—	_	Ss3-2	2008年岩手·宮城内陸地震(KiK-net金ヶ崎)	430	400	300
_		—	—	—	Ss3-3	2008年岩手·宮城内陸地震(KiK-net-関東)	540	500	—
_	_	—	—	—	Ss3-4	2004年北海道留萌支庁南部地震(K-NET港町)	62	20	320
_	_	_	_	_	Ss3-5	標準応答スペクトルを考慮した地震動	69	93	490

2.5 一関東評価用地震動の設定

一部加筆修正(R4.10.21審査会合資料)

ー関東評価用地震動(鉛直方向)の設定

- ○基準地震動Ss3−3は,鉛直方向の信頼性の高い基盤波を評価することが困難なことから,水平方向の地震動のみ設定しているものであり,鉛直 方向の地震動については,基準地震動を設定していない。
- ○基準地震動Ss3-3は,水平方向の地震動のみであることから,水平方向および鉛直方向の同時入力評価が必要となる基礎地盤および周辺斜面 の安定性評価並びに施設評価において,以降に示す地震動(以下,「一関東評価用地震動(鉛直方向)」という)を用いる。

一関東評価用地震動(鉛直方向)の設定方法

- ①一関東観測点のNS方向及びEW方向のはぎとり解析により算定した基盤地震動の応答スペクトルを平均し、平均スペクトルを作成する。
 ②岩手・宮城内陸地震の各地点の地震動がNoda et al.(2002)により概ね評価可能である*ことを踏まえ、Noda et al.(2002)における水平方向と鉛 直方向の応答スペクトル比を参考に、一般的な水平方向の地震動に対する鉛直方向の地震動の比2/3を考慮し、平均スペクトルを2/3倍した応答 スペクトルを作成する。[※令和4年10月21日審査会合資料にて確認(次頁以降に示す。)]
- ③一関東観測点における岩手・宮城内陸地震の鉛直方向地中記録の位相を用いて、設定した応答スペクトルに適合する模擬地震波を作成する。
 ④基準地震動Ss3-3の最大加速度は、NS方向540Gal、EW方向500Galであり、これらの2/3がそれぞれ360Gal、333Galとなることから、作成した模擬地震波の最大加速度を360Galとした地震動を一関東評価用地震動(鉛直方向)とする。なお、一関東評価用地震動(鉛直方向)は、次頁に示すとおり、設定した基準地震動を一部周期帯で上回るものとなっている。

2.5 一関東評価用地震動の設定

岩手・宮城内陸地震のNoda et al.(2002)適用性に関する検討

岩手・宮城内陸地震の観測記録について,電力共通研究ではぎとり解析を行った結果を照合し,本地震がNoda et al.(2002)*で評価可能か確認を行う。

※等価震源距離の算定のための震源モデルとしては、JNES(2014)シナリオ3を用いる。

100

50

pSv(cm/s) 20

2. 基準地震動の策定 2.5 一関東評価用地震動の設定

Horizontal

0.2 0.5

Period(s)

Horizontal

pSv(cm/s)

一部加筆修正(R4.10.21審査会合資料)

106

岩手・宮城内陸地震のNoda et al.(2002)適用性に関する検討

10

5

arren trester

0.05

SA 2

Ratio of

0.5

0.2

0.1 0.02

10

Vertical

0.5 1

0.2

Period(s)

Vertical

0.02 0.05

IWTH26

0.1

0.2

Period(s)

水平方向

0.5

and an and a state of the second

a Yunter

2

2

○岩手・宮城内陸地震については、ばらつきはあ るものの, Noda et al.(2002)で概ね評価可能。

2.5 一関東評価用地震動の設定

【参考】一関東評価用地震動(鉛直方向)と基準地震動(鉛直方向)との比較

基準地震動Ss3-3 2008年岩手·宮城内陸地震(KiK-net一関東)

- ・ 武村雅之(1990):日本列島およびその周辺に起こる浅発地震のマグニチュードと地震モーメントの関係, 地震, 第2報, 第43
 巻,257-265
- 地震調査委員会(2009):「全国地震動予測地図」技術報告書, 地震調査研究推進本部
- ・ 地震調査委員会(2020):震源断層を特定した地震の強震動予測手法(「レシピ」)(令和2年3月6日), 地震調査研究推進本部
- ・ 松田時彦(1975):活断層から発生する地震の規模と周期について、地震第2輯、第28巻、269-283
- Starr,A.T.(1928): Slip in a crystal and rupture in a solid due to shear, Proceedings of the Cambridge Philosophical Society, Vol.24, 489-501
- Paul Somerville, Kojiro Irikura, Robert Graves, Sumio Sawada, David Wald, Norman Abrahamson, Yoshinori Iwasaki, Takao Kagawa, Nancy Smith, and Akira Kowada(1999): Characterizing Crustal Earthquake Slip Model for the Prediction of Strong Ground Motion. Seismological Research Letters, Vol.70, No.1, pp.59–80
- Murotani,S., S.Matsushima, T.Azuma, K.Irikura, and S.Kitagawa (2015): Scaling relations of source parameters of earthquakes occurring on inland crustal mega-fault systems, Pure and Applied Geophysics, 172, 1371-1381
- Fujii,Y. and M.Matsu' ura, (2000) : Regional Difference in Scaling Laws for Large Earthquakes and its Tectonic Implication, Pure and Applied Geophysics, 157, 2283-2302
- S.Noda, K.Yashiro, K.Takahashi, M.Takemura, S.Ohno, M.Tohdo and T.Watanabe(2002):RESPONSE SPECTRA FOR DESIGN PURPOSE OF STIFF STRUCTURES ON ROCK SITES, OECD Workshop on the Relations Between Seismological DATA and Seismic Engineering, Oct. 16–18, Istanbul, 399–408
- 加藤研一・宮腰勝義・武村雅之・井上大榮・上田圭一・壇一男(2004):震源を事前に特定できない内陸地殻内地震による地震動レベルー地質学的調査による地震の分類と強震観測記録に基づく上限レベルの検討一,日本地震工学会論文集,第4巻,第4号,46-86.
- 原子力発電所耐震設計技術指針 JEAG4601-2015:一般社団法人日本電気協会
- ・ 独立行政法人原子力安全基盤機構(2014):基準地震動策定のための地震動評価手引き:震源極近傍の地震動評価