IV-5-2-3 波及的影響を及ぼすおそれのある 下位クラス施設の耐震評価結果 IV-5-2-3建物・構築物

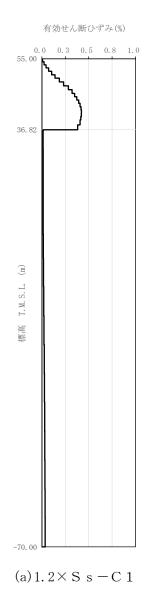
IV-5-2-3-1-1 分析建屋の耐震性に関する計算書

目 次

		ページ
1.	概	要1
2.	位	置及び構造概要1
3.	地	震応答解析モデルの設定結果2
3.	1	地盤モデルの設定結果2
3.	2	地震応答解析モデルの設定結果5
3.	3	地盤ばねの設定結果8
4.	入	力地震動の設定結果10
5.	許	容限界13
6.	波	及的影響の評価結果14
6.	1 :	最大応答せん断ひずみ度の評価結果15
6.	2	相対変位の評価結果17

1. 概要

2. 位置及び構造概要

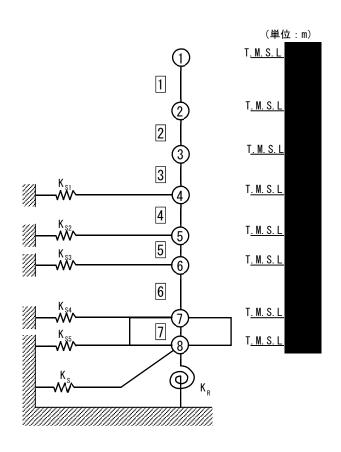

分析建屋の設置位置及び構造概要については、「W-2-2-2-1-1-1 分析建屋の耐震性に関する計算書」に示すとおりである。

3. 地震応答解析モデルの設定結果

3.1 地盤モデルの設定結果

分析建屋の地盤モデルは、「W-2-2-2-1-1-1 分析建屋の耐震性に関する計算書」に示すものを用いる。

1.2×Ssに対して、ひずみ依存特性を考慮した地盤の等価線形解析による基本ケースの有効せん断ひずみ分布を第3.1-1図に、地盤の等価線形解析で得られる等価物性値に基づき設定した地盤定数を第3.1-1表に示す。


第 3.1-1 図 有効せん断ひずみ分布

第3.1-1表 地盤定数 (1.2×Ss−C1)

標高 T. M. S. L. (m)	地層区分	層厚 (m)	単位 体積重量 γ _t (kN/m³)	せん断 弾性係数 G $(\times 10^4 {\rm kN/m}^2)$	等価 S波速度 (m/s)	等価 P波速度 (m/s)	等価 減衰定数 h	ポアソン比
55. 00		2. 335	17.8	4. 97	165	390	0.04	
52. 665		2. 635	17. 9	3. 39	136	321	0.10	
50. 03		1. 955	18.0	2. 62	119	281	0.13	
48. 075	埋戻し土	1. 955	18.0	2. 34	113	266	0.14	0.39
46. 12 - 42. 72 -	生灰も土	3. 40	18. 1	2.40	114	269	0.14	0.00
39. 32		3.40	18. 2	2. 69	120	284	0.14	
38. 07 -		1. 25	18. 2	3. 03	128	301	0.14	
36. 82		1.25	18.3	3. 35	134	316	0.14	
22.00 -		14.82	18. 2	108	760	1910	0.03	0.41
4.00 -	鷹架層	18.00	18. 2	119	800	1950	0.03	0.40
-70. 00 -		74.00	17.8	123	820	1950	0.03	0.39
	解放基盤表面		17. 0	116	820	1950	0.03	0.39

3.2 地震応答解析モデルの設定結果

分析建屋の地震応答解析モデルは、「W-2-2-2-1-1-1 分析建屋の耐震性に関する計算書」に示すものを用いる。地震応答解析モデルを第 3.2-1 図に、解析モデルの諸元を第 3.2-1 表に示す。

注記 1:○数字は質点番号を示す。

2:□数字は要素番号を示す。

 $3: K_{S1} \sim K_{S5}$ は側面スウェイばねを示す。

4: K_Sは底面スウェイばねを示す。

 $5: K_R$ は底面ロッキングばねを示す。

第3.2-1図 地震応答解析モデル (水平方向)

第3.2-1表 地震応答解析モデル諸元

(a) NS 方向

質点番号	質点位置 T. M. S. L. (m)	重量 W (kN)	回転慣性 重量 I _g (×10 ⁶ kN·m ²)	要素番号	要素位置 T. M. S. L. (m)	断面二次 モーメント I (×10 ⁴ m ⁴)	せん断 断面積 A _S (m²)
1		31780	0.8	1		0. 16	44.6
2		257330	45. 2	2		4. 43	204. 9
3		182500	32. 0	3		4. 22	203. 4
4		195400	34. 3	4		4. 42	215. 5
5		164920	28. 9	5		4.50	239. 3
6		262360	46. 1	6		4. 52	243. 4
7		240510	42. 2	7		83. 90	4791.3
8		162240	28. 4	_	_	_	_
	建物総重量	1497040	_		_	_	_

3.3 地盤ばねの設定結果

地盤ばね定数及び減衰係数を第3.3-1表に示す。

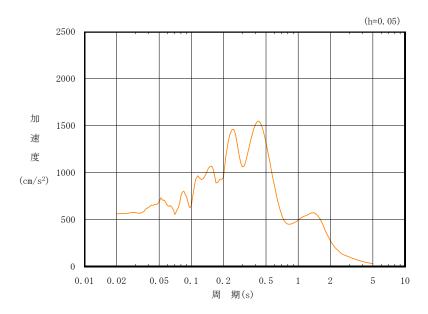
基礎底面地盤ばねは、「W-2-2-2-1-1-1 分析建屋の耐震性に関する計算書」に示す方法により算定する。

第 3.3-1 表 地盤ばね定数と減衰係数(1.2×S s -C 1)

(a) NS 方向

		質点 番号	ばね定数	減衰係数
側面スウェイばね	K_{S1}	4	5.14×10^{-5}	2.28×10^{5}
	K_{S2}	5	6.21×10^{-5}	3. 57 $ imes$ 10 5
	K_{S3}	6	5. 67 \times 10 5	3. 70 $ imes$ 10 5
	K_{S4}	7	5. 74×10^{-5}	3. 49 $ imes$ 10 5
	K_{S5}	8	1.87 $ imes$ 10 5	1.03 $ imes$ 10 5
底面スウェイばね	K_S	9	2. 44 \times 10 8	7.78×10^{-6}
底面ロッキングばね	K_R	9	1.84×10^{-11}	9. 49 \times 10 8

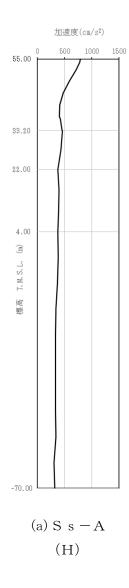
注記 : スウェイばね:ばね定数(kN/m),減衰係数(kN·s/m)


ロッキングばね:ばね定数(kN·m/rad),減衰係数(kN·m·s/rad)

4. 入力地震動の設定結果

分析建屋の $1.2\times S$ s に対する地震応答解析は、「IV-2-2-2-1-1-1 分析建屋の耐震性に関する計算書」において、基準地震動S s -C 1 による耐震壁のせん断ひずみ度及び最大応答変位が建屋全体において最大となっていることから、 $1.2\times S$ s -C 1 を対象として実施する。

1 次元波動論により算定した基礎底面位置 (T. M. S. L. 36.82m) における地盤応答の加速度応答スペクトルを第 4-1 図に示す。また、地盤応答の各深さの最大加速度分布を第 4-2 図に示す。


入力地震動は、「IV-2-2-2-1-1-1 分析建屋の耐震性に関する計算書」に示す方法により算定する。

凡例

 $= : 1.2 \times S \text{ s} - C 1 \text{ (N S E W)}$

第 4-1 図 入力地震動の加速度応答スペクトル (1.2×Ss, NS方向, T.M.S.L. 36.82m)

第 4-2 図 最大加速度分布 (1.2×Ss)

5. 許容限界

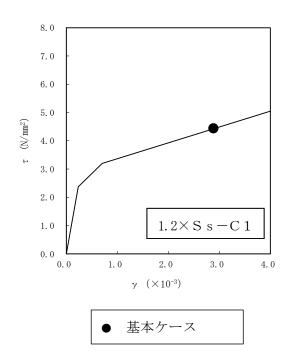
分析建屋の上位クラス施設に対する波及的影響の評価における許容限界は、「IV-1-1-4-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に記載の許容限界に基づき、第5-1表のとおり設定する。

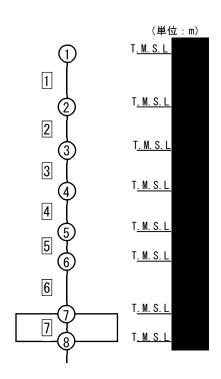
第5-1表 波及的影響の評価における許容限界

(a)制御建屋に対する許容限界

機能設計上の 性能目標	地震力	部位	機能維持の考え方	許容限界
地震を要因と する重大事故 等に対処する 重大事故等対	1. 2×	耐震壁	最大せん断ひずみ度 が波及的影響を及ぼ さないための許容限 界を超えないことの 確認	最大せん断 ひずみ度 4.0×10 ⁻³
型人事収等が 処施設に波及 的影響を及ぼ さないこと	S s	分析建屋 及び 制御建屋	建屋間の最大相対変 位が波及的影響を及 ぼさないための許容 限界を超えないこと の確認	最大相対変位 100mm

6. 波及的影響の評価結果


波及的影響の評価として、分析建屋の終局点に対応するせん断ひずみ度の評価及び上 位クラス施設との相対変位の評価を行った。


地震応答解析は、「IV-2-2-2-1-1-1 分析建屋の耐震性に関する計算書」に示す方法により実施する。

6.1 最大応答せん断ひずみ度の評価結果

分析建屋の NS 方向におけるせん断応力度 (τ) ーせん断ひずみ度 (γ) 関係と最大 応答値を第 6. 1-1 図に示す。NS 方向における最大応答せん断ひずみ度は, 2.88×10^{-3} (要素番号 6),であり,許容限界 (4.0×10^{-3}) を超えないことを確認した。

上記を踏まえ、地震を要因とする重大事故等に対処する重大事故等対処施設である 制御建屋に波及的影響を与えないことを確認した。

第 6. 1-1 図 せん断応力度 (τ) -せん断ひずみ度 (γ) 関係と最大応答値 (要素番号 6, NS 方向)

6.2 相対変位の評価結果

 $1.2\times S$ s 地震時に対する分析建屋と制御建屋の最大相対変位の評価結果を第 6.2-1 表に示す。制御建屋の $1.2\times S$ s 地震時に対する最大応答変位については,「IV -5 -2-1-1-6-1 制御建屋の基準地震動 S s e 1.2 倍した地震力に対する地震応答計算書」に基づく値を用いる。

分析建屋と制御建屋との 1.2×S s 地震時に対する相対変位は、いずれの質点においても建屋間のクリアランスを超えないことを確認した。

上記を踏まえ、地震を要因とする重大事故等に対処する重大事故等対処施設である 制御建屋に波及的影響を与えないことを確認した。

第6.2-1表 分析建屋と制御建屋の最大相対変位の評価結果

分	析建屋	制名	御建屋	最大	クリアランス
質点番号	高さ T. M. S. L. (m)	質点番号	高さ T.M.S.L.(m)	相対変位 ^{*2} (mm)	(mm)
1		1	73. 24	66. 4	100
2		2, 3 *1	66. 24	60.6	100
3		3, 4 *1	60. 57	55. 1	100
4		3, 4 *1	55. 30	49. 9	100
5		4, 5 *1	50.03	42.3	100
6		5, 6 *1	46. 12	32.0	100
7		6, 7 *1	39. 32	7. 21	100
8		7	36.82	6.77	100

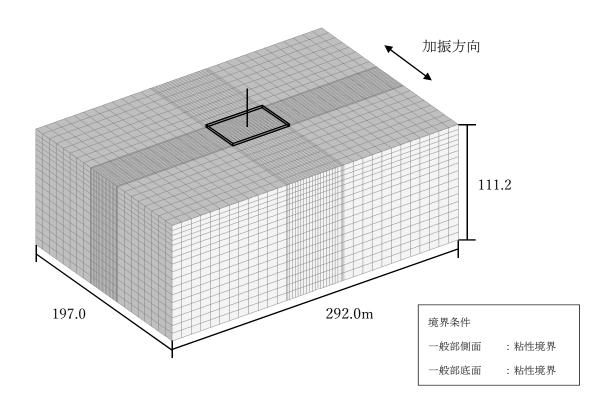
注記 *1:制御建屋の当該高さにおける応答変位は、質点番号に示す2つの質点における応答変位を線形補完して算定する。

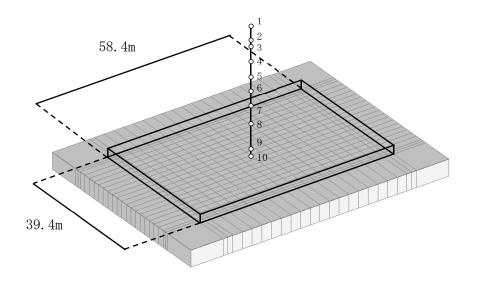
*2:基本ケース及び地盤物性のばらつきを考慮したケースの最大値から求めた相対変位を示す。

IV-5-2-3-1-2 出入管理建屋の耐震性に関する計算 書

目 次

	~-	・シ
1.	概要	1
2.	位置及び構造概要	1
3. 3. 1	地震応答解析モデルの設定結果	
4.	入力地震動の設定結果	5
5.	許容限界	8
6.	波及的影響の評価結果	9
6.	1 最大応答せん断ひずみ度の評価結果1	0
6. 2	2 相対変位の評価結果1	2


1. 概要


2. 位置及び構造概要

出入管理建屋の設置位置及び構造概要については、「W-2-2-2-1-1-2 出入管理建屋の耐震性に関する計算書」に示すとおりである。

- 3. 地震応答解析モデルの設定結果
- 3.1 地震応答解析モデルの設定結果

出入管理建屋の地震応答解析モデルは、「W-2-2-2-1-1-2 出入管理建屋の耐震性に関する計算書」に示すものを用いる。地震応答解析モデルを第 3.1-1 図に、解析モデルの諸元を第 3.1-1 表に示す。

注記 : 建屋モデルの数字は質点番号を示す。

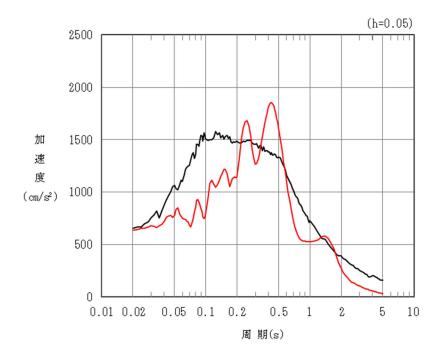
第3.1-1図 地震応答解析モデル (EW 方向)

第3.1-1表 地震応答解析モデル諸元

(a)EW 方向

質」	質点位置	重量	回転慣性	要	要素位置	断面二次	せん断
質点番号	T. M. S. L. (m)	W (kN)	重量 I _g (×10 ⁶ kN·m ²)	要素番号	T. M. S. L. (m)	モーメント I (×10 ⁴ m ⁴)	断面積 A _S (m²)
1	77. 80	3830	0. 08	1	77.80~73.80	0. 016	11. 7
2	73. 80	13340	1. 73	2	73.80~71.85	0. 378	22. 0
3	71.85	38760	5. 02	3	71.85~67.80	0. 713	40. 7
4	67. 80	42160	5. 46	4	67.80~63.60	0.890	45. 2
5	63. 60	42560	5. 51	5	63.60~59.45	0.888	44. 2
6	59. 45	44930	5. 81	6	59. 45~55. 30	1. 377	80.0
7	55. 30	62810	8. 13	7	55. 30~50. 30	2. 646	114. 3
8	50. 30	75220	9. 74	8	50.30~42.80	2. 758	88. 7
9	42. 80	77730	10. 07	9	42.80~41.20	29. 766	2301.0
10	41. 20	48570	6. 29	_	_	_	_
建	屋総重量	449910	_		_	_	_

(b)鉛直方向

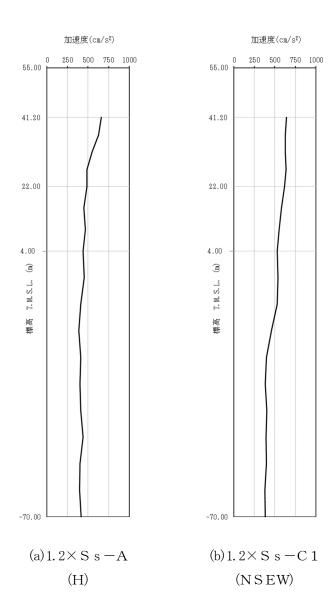

(~/ »h ==>/ · · · ·							
質山	質点位置	重量	要	要素位置	軸断面積		
質点番号	T. M. S. L. (m)	W (kN)	要素番号	T. M. S. L. (m)	A (m ²)		
1	77. 80	3830	1	77.80~73.80	19. 1		
2	73. 80	13340	2	73.80~71.85	40. 9		
3	71.85	38760	3	71.85~67.80	91. 3		
4	67.80	42160	4	67.80~63.60	97. 4		
5	63. 60	42560	5	63.60~59.45	101. 5		
6	59. 45	44930	6	59. 45~55. 30	165. 0		
7	55. 30	62810	7	55. 30~50. 30	248.8		
8	50. 30	75220	8	50.30~42.80	223. 0		
9	42.80	77730	9	42.80~41.20	2301.0		
10	41. 20	48570	_		_		
建	屋総重量	449910			_		

4. 入力地震動の設定結果

出入管理建屋の $1.2\times S$ s に対する地震応答解析は、「IV-2-2-2-1-1-2 出入管理建屋の耐震性に関する計算書」において、基準地震動 S s -A 及び S s -C 1 による耐震壁のせん断ひずみ度及び最大応答変位が建屋全体において最大となっていることから、 $1.2\times S$ s -A 及び $1.2\times S$ s -C 1 を対象として実施する。

1次元波動論により算定した基礎底面位置 (T.M.S.L. 41.20m) における地盤応答の加速度応答スペクトルを第4-1図に示す。また、地盤応答の各深さの最大加速度分布を第4-2図に示す。

入力地震動は、「IV-2-2-2-1-1-2 出入管理建屋の耐震性に関する計算書」に示す方法により算定する。



凡例

$$= : 1.2 \times S \text{ s} - A \quad (H)$$

 $----: 1.2 \times S \text{ s} - C 1 \text{ (N S E W)}$

第 4-1 図 入力地震動の加速度応答スペクトル (1.2×Ss, EW方向, T.M.S.L. 41.20m)

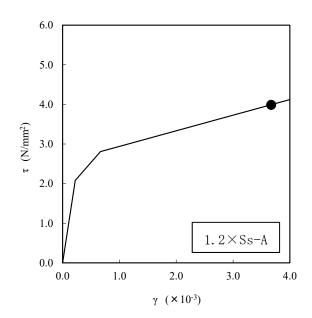
第 4-2 図 最大加速度分布 (1.2×Ss)

5. 許容限界

出入管理建屋の上位クラス施設に対する波及的影響の評価における許容限界は、 VI-1-1-4-2-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に記載の許容限界に基づき、第 5-1 表のとおり設定する。

第5-1表 波及的影響の評価における許容限界 (a)制御建屋に対する許容限界

機能設計上の 性能目標	地震力	部位	機能維持の考え方	許容限界
地震を要因と する重大事故 等に対処する 重大事故等対	1. 2×	耐震壁	最大せん断ひずみ度 が波及的影響を及ぼ さないための許容限 界を超えないことの 確認	最大せん断 ひずみ度 4.0×10 ⁻³
型人事取等別 処施設に波及 的影響を及ぼ さないこと	S s	出入管理建屋 及び 制御建屋	建屋間の最大相対変 位が波及的影響を及 ぼさないための許容 限界を超えないこと の確認	最大相対変位 100mm


6. 波及的影響の評価結果

波及的影響の評価として、出入管理建屋の終局点に対応するせん断ひずみ度の評価及び上位クラス施設との相対変位の評価を行った。

地震応答解析は、「 $\mathbb{N}-2-2-2-1-1-2$ 出入管理建屋の耐震性に関する計算書」に示す方法により実施する。

6.1 最大応答せん断ひずみ度の評価結果

出入管理建屋の EW 方向におけるせん断応力度 (τ) ーせん断ひずみ度 (γ) 関係と最大応答値を第 6.1-1 図に示す。 EW 方向における最大応答せん断ひずみ度は,3.67× 10^{-3} (要素番号 5)であり,許容限界 (4.0×10^{-3}) を超えないことを確認した。上記を踏まえ、地震を要因とする重大事故等に対処する重大事故等対処施設である制御建屋に波及的影響を与えないことを確認した。

第 6. 1-1 図 せん断応力度 (τ) -せん断ひずみ度 (γ) 関係と最大応答値 (要素番号 5, EW 方向)

6.2 相対変位の評価結果

 $1.2\times S$ s 地震時に対する出入管理建屋と制御建屋の最大相対変位の評価結果を第 6.2 – 1 表に示す。制御建屋の $1.2\times S$ s 地震時に対する最大応答変位については,「IV -5-2-1-1-6 制御建屋の基準地震動 S s を 1.2 倍した地震力に対する地震応答計算書」に基づく値を用いる。

出入管理建屋と制御建屋との 1.2×S s 地震時に対する相対変位は、いずれの質点においても建屋間のクリアランスを超えないことを確認した。

上記を踏まえ、地震を要因とする重大事故等に対処する重大事故等対処施設である 制御建屋に波及的影響を与えないことを確認した。

第6.2-1表 出入管理建屋と制御建屋の最大相対変位の評価結果

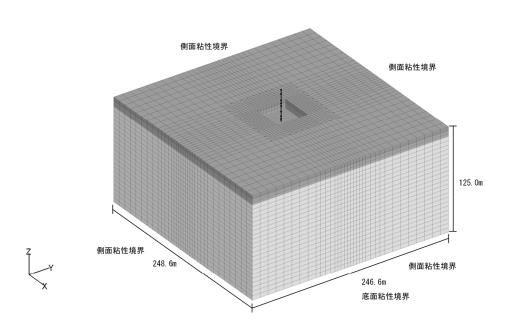
出入领	· 管理建屋	制征	卸建屋	最大	クリアランス
質点番号	高さ T.M.S.L.(m)	質点番号	高さ T.M.S.L.(m)	相対変位* ² (mm)	(mm)
1	77.80	1	77.80	54. 7	100
2	73.80	1	73.80	52. 6	100
3	71.85	1, 2*1	71.85	51.4	100
4	67. 80	1, 2*1	67. 80	48. 2	100
5	63.60	2, 3*1	63. 60	41.7	100
6	59. 45	3, 4*1	59. 45	26.8	100

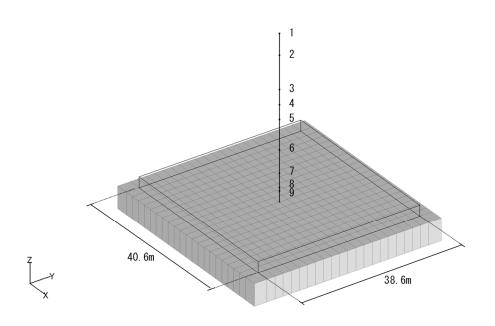
注記 *1:制御建屋の当該高さにおける応答変位は、質点番号に示す2つの質点における応答変位を線形補間して算定する。

*2:基本ケース及び地盤物性のばらつきを考慮したケースの最大値から求めた 相対変位を示す。 IV-5-2-3-1-3ウラン脱硝建屋の耐震性に関する計算書

目 次

	ページ	
1.	概要1	
2.	位置及び構造概要1	
3. 3. i	地震応答解析モデルの設定結果2 1 地震応答解析モデルの設定結果2	
4.	入力地震動の設定結果5	
5.	許容限界8	
6. 6. 1	波及的影響の評価結果9 1 最大応答せん断ひずみ度の評価結果10	


1. 概要


2. 位置及び構造概要

ウラン脱硝建屋の設置位置及び構造概要については、「IV-2-2-2-1-1-3 ウラン脱硝建屋の耐震性に関する計算書」に示すとおりである。

- 3. 地震応答解析モデルの設定結果
- 3.1 地震応答解析モデルの設定結果

ウラン脱硝建屋の地震応答解析モデルは、「W-2-2-2-1-1-3 ウラン脱硝建屋の耐震性に関する計算書」に示すものを用いる。地震応答解析モデルを第3.1-1図に、解析モデルの諸元を第3.1-1表に示す。

注記 : 建屋モデルの数字は質点番号を示す。

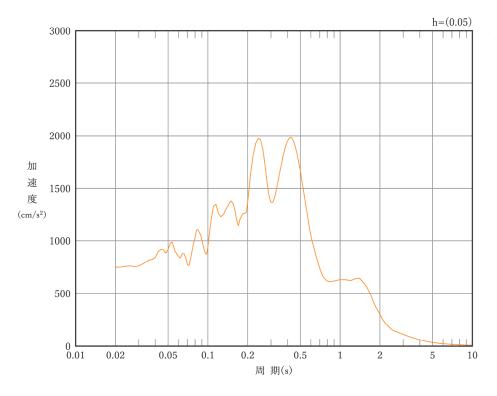
第3.1-1図 地震応答解析モデル(水平方向)

第3.1-1表 地震応答解析モデル諸元

(a)EW 方向

質占	質点位置	重量	回転慣性 重量	要素	要素位置	断面二次 モーメント	せん断 断面積
質点番号	T. M. S. L. (m)	W (kN)	I_{g} $(\times 10^{6} \text{kN} \cdot \text{m}^{2})$	要素番号	T. M. S. L. (m)	$I \times 10^4 \text{m}^4)$	$A_{\rm S}$ (m ²)
1	81. 7	15172	2. 09	1	81.7~76.7	1. 417	59. 4
2	76. 7	81938	11. 29	2	76.7~68.9	3. 851	113. 4
3	68. 9	64361	8.86	3	68.9~65.5	3. 837	111. 7
4	65. 5	31195	4. 29	4	65. 5~62. 1	3. 837	111.7
(5)	62. 1	67901	9. 35	5	62. 1~55. 3	3. 975	111.7
6	55. 3	71236	9. 81	6	55. 3~50. 0	3. 624	104.8
7	50.0	43385	5. 96	7	50.0~46.8	3. 624	104.8
8	46.8	37569	5. 17	8	46.8~46.0	3. 624	104.8
9	46. 0	54172	7. 45	9	46.0~43.5	21. 527	1567. 2
10	43. 5	46072	6. 34	ı	_	_	_
建	物総重量	513001	_		_	_	_

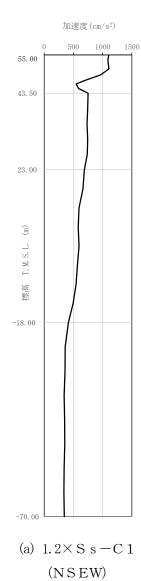
(b)鉛直方向


質」	質点位置	重量	要	要素位置	軸断面積
質点番号	T. M. S. L. (m)	W (kN)	要素番号	T. M. S. L. (m)	A (m²)
1	81. 7	15172	1	81.7~76.7	88.8
2	76. 7	81938	2	76.7~68.9	253. 4
3	68. 9	64361	3	68.9~65.5	250. 3
4	65. 5	31195	4	65. 5~62. 1	250. 3
5	62. 1	67901	5	62. 1~55. 3	273. 7
6	55. 3	71236	6	55.3~50.0	263. 7
7	50. 0	43385	7	50.0~46.8	263. 7
8	46.8	37569	8	46.8~46.0	263. 7
9	46. 0	54172	9	46.0~43.5	1567. 2
10	43. 5	46072		_	
建屋総重量		513001		_	_

4. 入力地震動の設定結果

ウラン脱硝建屋の $1.2\times S$ s に対する地震応答解析は、「IV-2-2-2-1-1-3 ウラン脱硝建屋の耐震性に関する計算書」において、基準地震動S s -C 1 による耐震壁のせん断ひずみ度が建屋全体において最大となっていることから、 $1.2\times S$ s -C 1 を対象として実施する。

1 次元波動論により算定した基礎底面位置 (T. M. S. L. 43.50m) における地盤応答の加速度応答スペクトルを第 4-1 図に示す。また、地盤応答の各深さの最大加速度分布を第 4-2 図に示す。


入力地震動は、「IV-2-2-2-1-1-3 ウラン脱硝建屋の耐震性に関する計算書」に示す方法により算定する。

凡例

 $----: 1.2 \times S \text{ s} - C 1 \text{ (N S EW)}$

第 4-1 図 入力地震動の加速度応答スペクトル (1.2×Ss, EW方向, T.M.S.L. 43.50m)

第 4-2 図 最大加速度分布 (1.2×Ss)

5. 許容限界

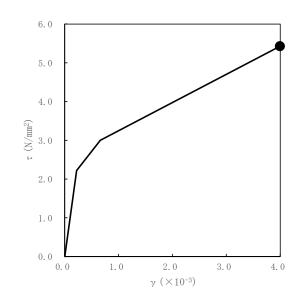
ウラン脱硝建屋の上位クラス施設に対する波及的影響の評価における許容限界は、 VI-1-1-4-2-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に記載の許容限界に基づき、第 5-1 表のとおり設定する。

第5-1表 波及的影響の評価における許容限界

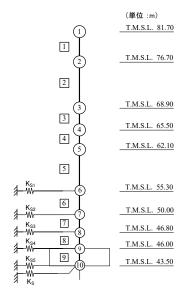
(a) ウラン・プルトニウム混合脱硝建屋に対する許容限界

機能設計上の 性能目標	地震力	部位	機能維持の考え方	許容限界
地震を要因と する重大事故 等に対事故等 重大事故に が影響を が さないこと	1.2× S s	耐震壁	最大せん断ひずみ度 が波及的影響を及ぼ さないための許容限 界を超えないことの 確認	最大せん断 ひずみ度 4.0×10 ⁻³

6. 波及的影響の評価結果


波及的影響の評価として、ウラン脱硝建屋の終局点に対応するせん断ひずみ度の評価 を行った。

地震応答解析は、「IV-2-2-2-1-1-3 ウラン脱硝建屋の耐震性に関する計算書」に示す方法により実施する。


6.1 最大応答せん断ひずみ度の評価結果

ウラン脱硝建屋の EW 方向におけるせん断応力度(τ) — せん断ひずみ度(γ)関係 と最大応答値を第 6.1-1 図に示す。 EW 方向における最大応答せん断ひずみ度は, 3.996×10⁻³(要素番号 8)であり,許容限界(4.0×10^{-3})を超えないことを確認した。

上記を踏まえ、地震を要因とする重大事故等に対処する重大事故等対処施設である ウラン・プルトニウム混合脱硝建屋に波及的影響を与えないことを確認した。

● 基本ケース

第 6. 1-1 図 せん断応力度 (τ) -せん断ひずみ度 (γ) 関係と最大応答値 (要素番号 8, EW 方向)

IV-5-2-3-1-4 ウラン酸化物貯蔵建屋の耐震性に 関する計算書

目 次

	ページ
1.	概要1
2.	位置及び構造概要1
3.3.3.3.	2 地震応答解析モデルの設定結果5
4.	入力地震動の設定結果10
5.	許容限界
6. 6.	波及的影響の評価結果

1. 概要

2. 位置及び構造概要

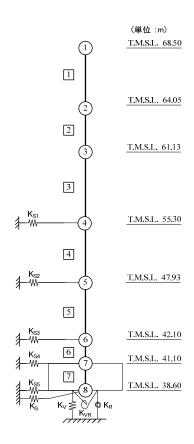
ウラン酸化物貯蔵建屋の設置位置及び構造概要については、「IV-2-2-1-11-4 ウラン酸化物貯蔵建屋の耐震性に関する計算書」に示すとおりである。

3. 地震応答解析モデルの設定結果

3.1 地盤モデルの設定結果

ウラン酸化物貯蔵建屋の地盤モデルは、「W-2-2-2-1-1-4 ウラン酸化物貯蔵建屋の耐震性に関する計算書」に示すものを用いる。

1.2×Ssに対して、ひずみ依存特性を考慮した地盤の等価線形解析による基本ケースの有効せん断ひずみ分布を第3.1-1図に、地盤の等価線形解析で得られる等価物性値に基づき設定した地盤定数を第3.1-1表に示す。


第 3.1-1 図 有効せん断ひずみ分布

第3.1-1表 地盤定数 (1.2×Ss−C1)

標高 T. M. S. L. (m)	地層区分	層厚 (m)	単位 体積重量 ッ _t (kN/m³)	せん断 弾性係数 G (×10 ⁴ kN/m ²)	等価 S波速度 (m/s)	等価 P波速度 (m/s)	等価 減衰定数 h	ポアソン比
55. 00		3. 54	17.8	4. 32	154	363	0.06	
51. 47		3. 54	17. 9	2. 36	114	268	0. 13	
47. 93		2. 92	18.0	1.82	99. 6	234	0.14	
45. 02	ım⇒) I	2. 92	18. 1	1. 84	99.8	235	0. 15	0.39
42. 10		0. 50	18. 2	1. 99	104	244	0. 15	0.00
41. 60 41. 10		0. 50	18. 2	2.05	105	247	0. 15	
39. 85		1. 25	18. 2	2. 15	108	253	0. 15	
38, 60		1. 25	18. 2	2.38	113	267	0. 15	
23. 00 		15. 60	15. 7	53.8	580	1710	0.03	0.44
-18, 00	鷹架層	41. 00	15. 3	85. 5	740	1870	0.03	0.41
-70, 00 -		52. 00	17. 4	140	890	2030	0.03	0.38
10.00	解放基盤表面	_	18.1	160	930	2050	0.03	0. 37

3.2 地震応答解析モデルの設定結果

ウラン酸化物貯蔵建屋の地震応答解析モデルは、「IV-2-2-2-1-1-4 ウラン酸化物貯蔵建屋の耐震性に関する計算書」に示すものを用いる。地震応答解析モデルを第 3.2-1 図に、解析モデルの諸元を第 3.2-1 表に示す。

注記 1:○数字は質点番号を示す。

2:□数字は要素番号を示す。

 $3: K_{S1} \sim K_{S5}$ は側面スウェイばねを示す。

4: Ks は底面スウェイばねを示す。

5: K_R は底面ロッキングばねを示す。

 $6:K_V$ は底面鉛直ばねを示す。

7: KvR は底面回転・鉛直連成ばねを示す。

第3.2-1図 地震応答解析モデル (水平方向)

第3.2-1表 地震応答解析モデル諸元

(a)EW 方向

質点番号	質点位置 T. M. S. L. (m)	重量 W (kN)	回転慣性 重量 I _g (×10 ⁶ kN·m ²)	要素番号	要素位置 T. M. S. L. (m)	断面二次 モーメント I (×10 ⁴ m ⁴)	せん断 断面積 A _S (m²)
1	68. 50	113767	26. 46	1	68.50~64.05	6. 651	126. 7
2	64. 05	34931	8. 12	2	64. 05~61. 13	6. 651	126. 7
3	61. 13	80954	18.82	3	61. 13~55. 30	6. 352	119. 2
4	55. 30	203527	47. 44	4	55. 30~47. 93	8. 169	159.9
(5)	47. 93	115003	26. 74	5	47. 93~42. 10	8. 871	188. 9
6	42. 10	142108	33. 07	6	42. 10~41. 10	8.871	188. 9
7	41. 10	96949	22. 54	7	41. 10~38. 60	65. 503	2819. 5
8	38. 60	88328	20. 54	_	_	_	_
建	物総重量	875567	_		_		_

(b)鉛直方向

質	質点位置	重量	要	要素位置	軸断面積
質点番号	T. M. S. L. (m)	要 W (kN)	T. M. S. L. (m)	A (m ²)	
1	68. 50	113767	1	68.50~64.05	366. 6
2	64. 05	34931	2	64. 05~61. 13	366. 6
3	61. 13	80954	3	61. 13~55. 30	357. 9
4	55. 30	203527	4	55. 30~47. 93	427. 7
5	47. 93	115003	5	47. 93~42. 10	452.8
6	42. 10	142108	6	42. 10~41. 10	452.8
7	41. 10	96949	7	41. 10~38. 60	2819. 5
8	38. 60	88328	_	_	_
建	屋総重量	875567	_	_	_

3.3 地盤ばねの設定結果

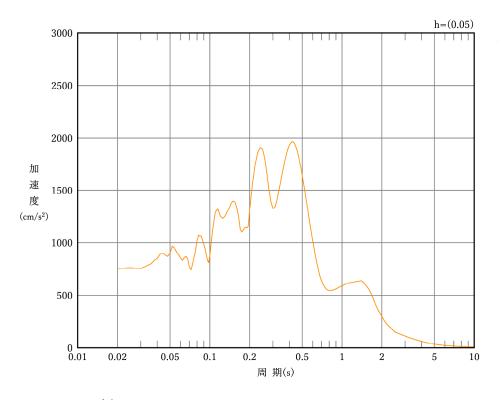
地盤ばね定数及び減衰係数を第3.3-1表に示す。

基礎底面地盤ばねは、「W-2-2-2-1-1-4 ウラン酸化物貯蔵建屋の耐震性に関する計算書」に示す方法により算定する。

第 3. 3-1 表 地盤ばね定数と減衰係数 $(1.2 \times S \text{ s} - C \text{ 1})$ (a) EW 方向

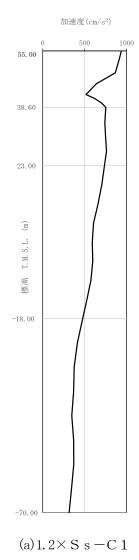
		質点 番号	ばね定数	減衰係数
側面スウェイばね	K_{S1}	4	6.36×10^{5}	3.16×10^{5}
	K_{S2}	5	5.63×10^{5}	4.01×10^{5}
	K_{S3}	6	2.63×10^{5}	2.01×10^{5}
	K_{S4}	7	1.55×10^{5}	1.11×10^{5}
	K_{S5}	8	1.24×10^{5}	8. 36 $\times 10^4$
底面スウェイばね	K_{S}	8	1.09×10^{8}	2.96×10^{6}
底面ロッキングばね	K_R	8	9.49×10^{10}	6. 76 $\times 10^8$

注記 : スウェイばね:ばね定数(kN/m),減衰係数(kN·s/m)


ロッキングばね:ばね定数(kN·m/rad),減衰係数(kN·m·s/rad)

4. 入力地震動の設定結果

ウラン酸化物貯蔵建屋の $1.2\times S$ s に対する地震応答解析は、「IV-2-2-2-1 -1-4 ウラン酸化物貯蔵建屋の耐震性に関する計算書」において、基準地震動 S s -C 1 による耐震壁のせん断ひずみ度が建屋全体において最大となっていることから、 $1.2\times S$ s -C 1 を対象として実施する。


1次元波動論により算定した基礎底面位置 (T.M.S.L. 38.60m) における地盤応答の加速度応答スペクトルを第4-1図に示す。また、地盤応答の各深さの最大加速度分布を第4-2図に示す。

入力地震動は、「IV-2-2-2-1-1-4 ウラン酸化物貯蔵建屋の耐震性に関する計算書」に示す方法により算定する。

凡例 ———: 1.2×Ss-C1 (NSEW)

第 4-1 図 入力地震動の加速度応答スペクトル (1.2×Ss, NS方向, T.M.S.L. 38.60m)

(NSEW)

第 4-2 図 最大加速度分布 (1.2×Ss)

5. 許容限界

ウラン酸化物貯蔵建屋の上位クラス施設に対する波及的影響の評価における許容限界は、「VI-1-1-4-2-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に記載の許容限界に基づき、第 5-1 表のとおり設定する。

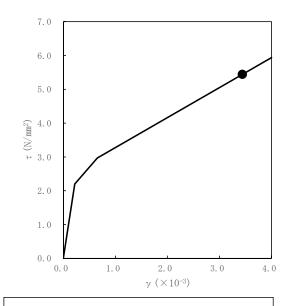
第5-1表 波及的影響の評価における許容限界

(a) ウラン・プルトニウム混合脱硝建屋に対する許容限界

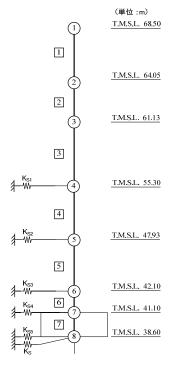
機能設計上の 性能目標	地震力	部位	機能維持の考え方	許容限界
地震を要因と する重大事故等 重大事故等 が影響を がと がと がと がと がと がと がと がと がと がと がと がと が	1. 2× S s	耐震壁	最大せん断ひずみ度 が波及的影響を及ぼ さないための許容限 界を超えないことの 確認	最大せん断 ひずみ度 4.0×10 ⁻³

(b) ウラン・プルトニウム混合酸化物貯蔵建屋に対する許容限界

機能設計上の 性能目標	地震力	部位	機能維持の考え方	許容限界
地震を要因と する重大事故 等に対事故等 重大事故に が影響を がと さないこと	1.2× S s	耐震壁	最大せん断ひずみ度 が波及的影響を及ぼ さないための許容限 界を超えないことの 確認	最大せん断 ひずみ度 4.0×10 ⁻³


6. 波及的影響の評価結果

波及的影響の評価として、ウラン酸化物貯蔵建屋の終局点に対応するせん断ひずみ度 の評価を行った。


地震応答解析は、「 $\mathbb{N}-2-2-2-1-1-4$ ウラン酸化物貯蔵建屋の耐震性に関する計算書」に示す方法により実施する。

6.1 最大応答せん断ひずみ度の評価結果

ウラン酸化物貯蔵建屋の EW 方向におけるせん断応力度 (τ) ーせん断ひずみ度 (γ) 関係と最大応答値を第 6.1-1 図に示す。EW 方向における最大応答せん断ひずみ度は、3.44×10⁻³ (要素番号 (0) であり、許容限界 (4.0×10^{-3}) を超えないことを確認した。上記を踏まえ、地震を要因とする重大事故等に対処する重大事故等対処施設であるウラン・プルトニウム混合脱硝建屋及びウラン・プルトニウム混合酸化物貯蔵建屋に波及的影響を与えないことを確認した。

● 基本ケース

第 6.1 -1 図 せん断応力度(τ) -せん断ひずみ度(γ)関係と最大応答値(要素番号 6 , EW 方向)

IV-5-2-3-1-5 ガラス固化体受入れ建屋の耐震性に 関する計算書

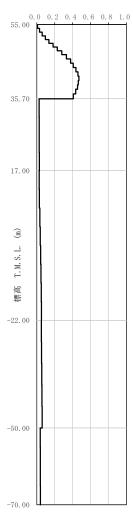
目 次

	ページ	
1.	概要1	
2.	位置及び構造概要1	
3. 3. 3. 3. 2		
4.	入力地震動の設定結果9	
5.	許容限界12	
6. 6. 3	波及的影響の評価結果	

1. 概要

2. 位置及び構造概要

ガラス固化体受入れ建屋の設置位置及び構造概要については、「IV-2-2-2-1 -1-5 ガラス固化体受入れ建屋の耐震性に関する計算書」に示すとおりである。


3. 地震応答解析モデルの設定結果

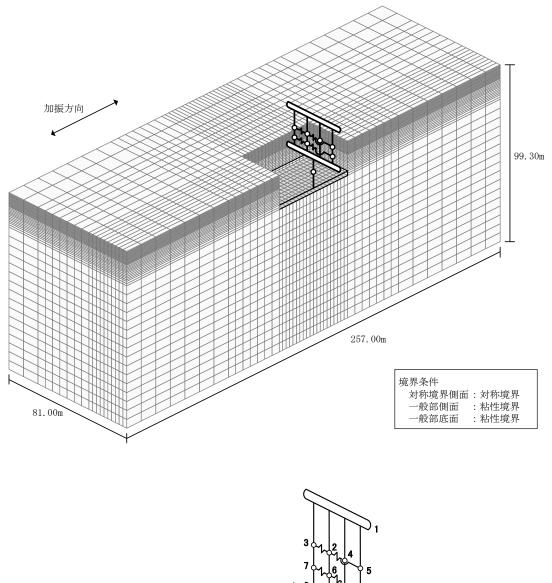
3.1 地盤モデルの設定結果

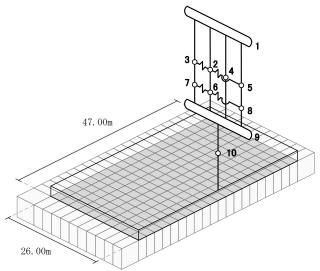
ガラス固化体受入れ建屋の地盤モデルは、「W-2-2-2-1-1-5 ガラス 固化体受入れ建屋の耐震性に関する計算書」に示すものを用いる。

1.2×Ssに対して、ひずみ依存特性を考慮した地盤の等価線形解析による基本ケースの有効せん断ひずみ分布を第3.1-1図に、地盤の等価線形解析で得られる等価物性値に基づき設定した地盤定数を第3.1-1表に示す。

有効せん断ひずみ(%)

 $1.2 \times S s - C 1$


第3.1-1図 有効せん断ひずみ分布


第3.1-1表 地盤定数 (1.2×Ss-C1)

標高 T. M. S. L. (m)	地層区分	層厚 (m)	単位体積重量 γ _t (kN/m³)	せん断弾性係数 G (×10 ⁴ kN/m ²)	等価 S波速度 (m/s)	等価 P波速度 (m/s)	等価減衰定数 h	ポアソン比
55. 00	埋戻し土	3. 90	17. 9	4. 50	157	370	0.06	0.39
51. 10 47. 20		3. 90	18. 0	2. 80	124	291	0.12	
42. 70		4. 50	18. 1	2. 28	111	262	0. 14	
38. 20		4. 50	18. 2	2. 50	116	273	0.14	
36. 20		1. 25	18. 3	2. 98	126	298	0.14	
35. 70		1. 25	18. 3	3. 29	133	313	0.14	
17. 00	鷹架層	18. 70	15. 9	52. 7	570	1720	0.03	0.44
-22. 00		39. 00	15. 6	53. 5	580	1680	0.03	0. 43
-50, 00		28.00	16. 4	58. 2	590	1690	0.03	0. 43
-70, 00 -		20.00	17. 0	92. 3	730	1860	0.03	0. 41
10.00	解放基盤表面		15.9	98. 7	780	1940	0.03	0.40

3.2 地震応答解析モデルの設定結果

ガラス固化体受入れ建屋の地震応答解析モデルは、「IV-2-2-2-1-1-5 ガラス固化体受入れ建屋の耐震性に関する計算書」に示すものを用いる。地震応答解析モデルを第 3.2-1 図に、解析モデルの諸元を第 3.2-1 表に示す。

注記 : 建屋モデルの数字は質点番号を示す。

第3.2-1図 地震応答解析モデル (NS 方向)

第3.2-1表 地震応答解析モデル諸元 (1/2)

(a) NS 方向 (1/2)

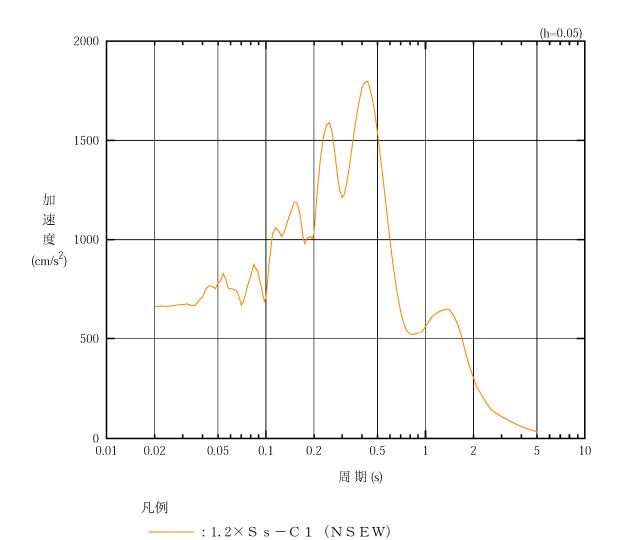
質点番号	質点位置 T. M. S. L. (m)	重量 W (kN)	回転慣性 重量 I _g (×10 ⁶ kN·m ²)	要素番号	要素位置 T. M. S. L. (m)	断面二次 モーメント I (×10 ⁴ m ⁴)	せん断 断面積 A _S (m²)
1	77. 70	68220	5. 84	1	77. 70~66. 30	0.001	15. 0
2	66. 30	30640	4. 40	2	66. 30~60. 80	0.08	30. 2
3	66. 30	11010	2.04	3	60.80~55.30	0.07	28. 7
4	66. 30	18870	0.07	4	77. 70~66. 30	0.73	22. 4
(5)	66. 30	11780	2. 18	5	66. 30~60. 80	1.39	28. 7
6	60.80	24670	3. 55	6	60.80~55.30	0.84	23. 3
7	60.80	7240	1. 34	7	77. 70~66. 30	0.001	15. 0
8	60.80	8440	1. 56	8	66. 30~55. 30	0.001	15. 0
9	55. 30	151660	28. 01	9	77. 70~66. 30	0.73	22. 4
10	47. 20	126400	23. 32	10	66. 30~60. 80	1.38	28. 7
(11)	38. 20	133100	24. 56	11	60.80~55.30	0.95	29.8
12	35. 70	71870	13. 24	12	55. 30~47. 20	6.70	178. 4
建具	星総重量	663900	_	13	47. 20~38. 20	6.37	175. 3
_	_	_	_	14	38. 20~35. 70	44. 99	2444. 0

(a) NS 方向 (2/2)

要素番号	ばね定数 (kN/m)			
15	2.35×10^{6}			
16	3.06×10^6			
17	2.05×10^{6}			
18	2.07×10^{6}			

第3.2-1表 地震応答解析モデル諸元 (2/2)

(b)鉛直方向


質	質点位置	重量	要	要素位置	軸断面積
質点番号	T. M. S. L. (m)	W (kN)	要素番号	T. M. S. L. (m)	A (m ²)
1	77. 70	68220	1	77.70~66.30	144. 0
2	66. 30	75430	2	66. 30~60. 80	198. 2
3	60.80	34510	3	60. 80~55. 30	194. 5
4	55. 30	154370	4	55. 30~47. 20	375. 6
5	47. 20	126400	5	47. 20~38. 20	379. 4
6	38. 20	133100	6	38. 20~35. 70	2444. 0
7	35. 70	71870		_	_
建屋総重量		663900	_	_	_

4. 入力地震動の設定結果

ガラス固化体受入れ建屋の $1.2\times S$ s に対する地震応答解析は、「IV-2-2-2-1-1-5 ガラス固化体受入れ建屋の耐震性に関する計算書」において、基準地震動 S s -C 1 による耐震壁のせん断ひずみ度が建屋全体において最大となっていることか S c

1次元波動論により算定した基礎底面位置 (T.M.S.L. 35.70m) における地盤応答の加速度応答スペクトルを第4-1図に示す。また、地盤応答の各深さの最大加速度分布を第4-2図に示す。

入力地震動は、「IV-2-2-2-1-1-5 ガラス固化体受入れ建屋の耐震性に関する計算書」に示す方法により算定する。

第 4-1 図 入力地震動の加速度応答スペクトル (1.2×Ss, NS方向, T.M.S.L. 35.70m)

 $1.2 \times S \text{ s} - C 1$ (NSEW)

第 4-2 図 最大加速度分布 (1.2×Ss)

5. 許容限界

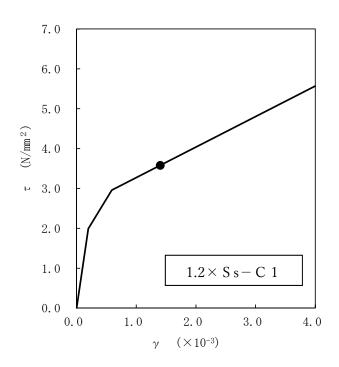
ガラス固化体受入れ建屋の上位クラス施設に対する波及的影響の評価における許容限界は、「VI-1-1-4-2-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に記載の許容限界に基づき、第 5-1 表のとおり設定する。

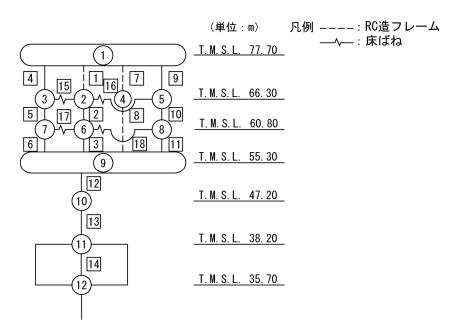
第5-1表 波及的影響の評価における許容限界

(a) 第1ガラス固化体貯蔵建屋に対する許容限界

機能設計上の 性能目標	地震力	部位	機能維持の考え方	許容限界
地震を要大事を要因と 事では 事に対する対 を を が を が と 数 を と 数 の 影響 を と 数 を と 数 と の と り と り と り と り と り と り と り と り と り	1.2× S s	耐震壁	最大せん断ひずみ度 が波及的影響を及ぼ さないための許容限 界を超えないことの 確認	最大せん断ひずみ 度 4.0×10 ⁻³

6. 波及的影響の評価結果


波及的影響の評価として、ガラス固化体受入れ建屋の終局点に対応するせん断ひずみ 度の評価を行った。


地震応答解析は、「IV-2-2-2-1-1-5 ガラス固化体受入れ建屋の耐震性に関する計算書」に示す方法により実施する。

6.1 最大応答せん断ひずみ度の評価結果

ガラス固化体受入れ建屋の NS 方向におけるせん断応力度(τ) — せん断ひずみ度 (γ) 関係と最大応答値を第 6. 1–1 図に示す。NS 方向における最大応答せん断ひずみ 度は, 1.40×10^{-3} (要素番号 13 , $1.2\times S$ s -C 1)であり,許容限界(4.0×10^{-3})を超えないことを確認した。

上記を踏まえ、地震を要因とする重大事故等に対処する重大事故等対処施設である 第1ガラス固化体貯蔵建屋に波及的影響を与えないことを確認した。

注記 1:○数字は質点番号を示す。 2:□数字は要素番号を示す。

第 6. 1-1 図 せん断応力度 (τ) -せん断ひずみ度 (γ) 関係と最大応答値 (要素番号 13 , NS 方向)

IV-5-2-3-1-6 飛来物防護板(主排気筒接続用 屋 外配管及び屋外ダクト 主排気筒周 り)(東西ブロック)の耐震性に関す る計算書 IV-5-2-3-1-6-1 飛来物防護板(主排気筒接続用 屋 外配管及び屋外ダクト 主排気筒周 り)(東ブロック)及び(西ブロック)の 地震応答計算書

目 次

	ページ
	2
針	
及び概要	
方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
法······	
応答解析に用いる地震動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
地震動	3
方法	3
条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
果······	4
值解析結果·····	4
東ブロックの固有値解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
西ブロックの固有値解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	15
応答解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
東ブロックの地震応答解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
西ブロックの地震応答解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	116

1. 概要

本資料は、「IV-1-1-4-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に基づき、飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気 筒周り)(東ブロック)及び飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り)(西ブロック)(以下、「飛来物防護板架構」という。)の基準地震動Ssを1.2倍した地震力を用いた地震応答解析について説明するものである。

2. 基本方針

2.1 位置及び概要

飛来物防護板架構の設置位置及び構造概要については、「IV-2-2-2-1-1-8-1 飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り) (東ブロック)及び(西ブロック)の地震応答計算書」(以下、「東西ブロックの応答計算書」という)に示すとおりである。

2.2 解析方針

飛来物防護板架構の地震応答解析は、「W-1-1-4-2-3 地震を起因とする重大事故等に対する施設の耐震設計」に基づき、「W-1-1-5 地震応答解析の基本方針」に示す内容を踏襲して実施することから、東西ブロックの応答計算書に示した方法と同じ方法に基づいて行う。地震応答解析については、「3. 解析方法」に示す解析モデル、入力地震動及び解析方法により実施し、その結果を「4. 解析結果」に示す。

3. 解析方法

3.1 地震応答解析に用いる地震動

3.2 解析モデル

地震動を入力する地震応答解析モデルは,東西ブロックの応答計算書の「3.2 解析モデル」と同一の地盤2次元FEMモデルを用いる。

3.3 入力地震動

解析モデルへの入力地震動は、水平方向、鉛直方向ともに、東西ブロックの応答計算書の「3.3 入力地震動」と同じ方法により入力する。

3.4 解析方法

飛来物防護板架構の地震応答解析は、東西ブロックの応答計算書の「3.4 解析方法」 と同じ方法により実施する。

3.5 解析条件

飛来物防護板架構の地震応答解析は、東西ブロックの応答計算書の「3.6 材料物性 のばらつき」に示す基本ケースに対する解析のみを行い、材料物性のばらつきは考慮 しないものとする。

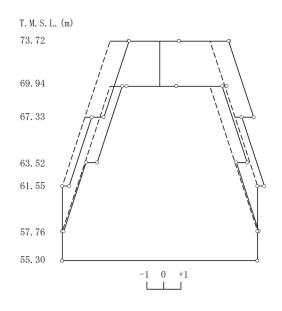
4. 解析結果

4.1 固有值解析結果

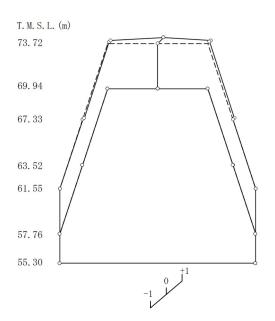
4.1.1 東ブロックの固有値解析結果

支持架構の固有値解析結果(固有周期,固有振動数及び刺激係数)を第4.1.1-1表に示す。刺激関数図を第4.1.1-1図~第4.1.1-3図に示す。

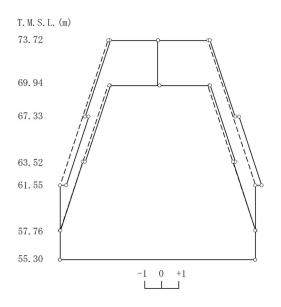
なお、刺激係数は、各次の固有ベクトル(u)に対し、最大振幅が1.0となるように基準化した値を示す。

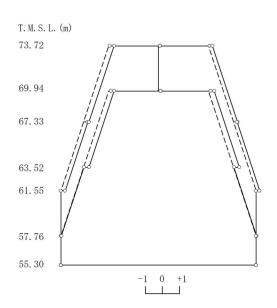

第4.1.1-1表 支持架構の固有値解析結果(1/2)

NS方向モデル(NS断面②)					
次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考	
1	0. 311	3. 22	5. 480	水平1次	
2	0. 152	6. 58	1. 523	鉛直1次	
3	0. 145	6. 90	1. 171	水平2次	
4	0. 127	7.85	1.511	水平3次	
5	0. 120	8. 36	-0. 121	水平4次	
6	0. 109	9. 13	0.794	鉛直2次	

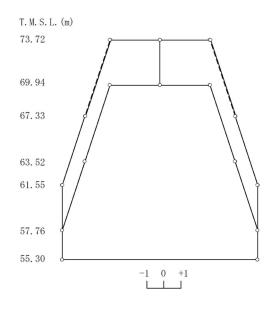

第4.1.1-1表 支持架構の固有値解析結果(2/2)

	EW方向モデル(EW断面③)					
次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考		
1	0. 312	3. 20	4. 663	水平1次		
2	0. 181	5. 51	0. 504	水平2次		
3	0. 125	7. 98	1. 262	水平3次		
4	0. 117	8. 52	-0.331	水平4次		
5	0. 113	8.85	0.715	鉛直1次		
6	0. 100	10.03	-0.801			
7	0.061	16. 44	1. 489			
8	0. 057	17. 65	-0. 978			
9	0.055	18. 14	1.917	鉛直2次		
10	0. 035	28. 39	2.654			
		EW方向モデル(F	EW断面④)			
次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考		
1	0.312	3. 21	4. 052	水平1次		
2	0. 180	5. 55	0. 421	水平2次		
3	0. 127	7.86	1.061	水平3次		
4	0.118	8. 47	-0.460	水平4次		
5	0. 113	8.85	0. 621	鉛直1次		
6	0. 100	10.00	-0. 647			
7	0.061	16. 50	1. 295			
8	0. 057	17. 65	-0.849			
9	0.055	18. 13	1. 672	鉛直2次		
10	0. 036	28. 12	2. 337			

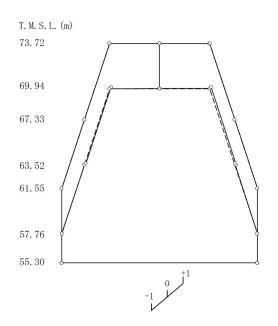

1次モード 固有周期 T_1 =0.311(s) 固有振動数 f_1 =3.22(Hz) 刺激係数 β_1 =5.480


2次モード 固有周期 T_2 =0.152(s) 固有振動数 f_2 =6.58(Hz) 刺激係数 β_2 =1.523

3次モード 固有周期 T_3 =0.145(s) 固有振動数 f_3 =6.90(Hz) 刺激係数 β_3 =1.171

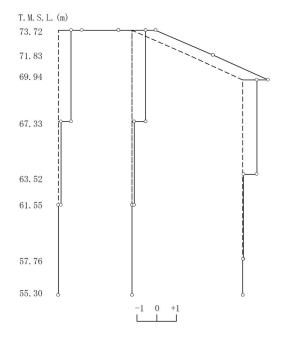


4次モード 固有周期 T_4 =0.127(s) 固有振動数 f_4 =7.85(Hz) 刺激係数 β_4 =1.511

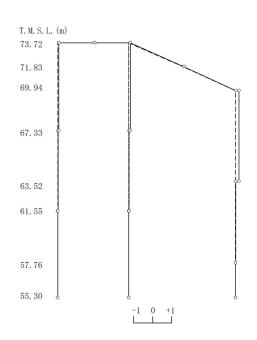


第4.1.1-1 図 刺激関数図 (NS 方向モデル, NS 断面②) (1/2)

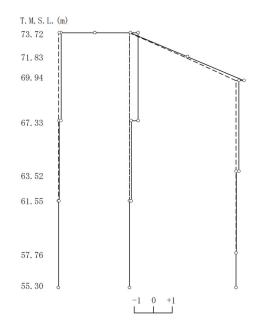
5次モード 固有周期 T_5 =0.120(s) 固有振動数 f_5 =8.36(Hz) 刺激係数 β_5 =-0.121

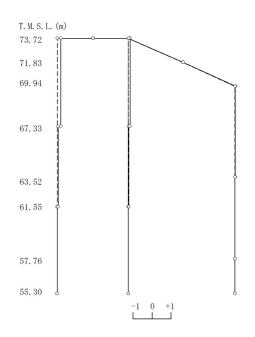


6次モード 固有周期 T_6 =0.109(s) 固有振動数 f_6 =9.13(Hz) 刺激係数 β_6 =0.794

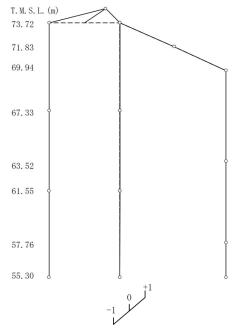


第4.1.1-1図 刺激関数図 (NS方向モデル, NS断面②) (2/2)

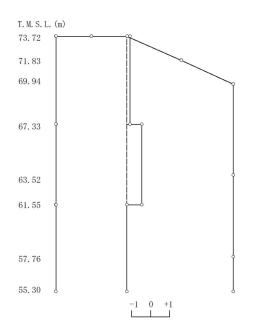

1次モード 固有周期 T_1 =0.312(s) 固有振動数 f_1 =3.20(Hz) 刺激係数 β_1 =4.663


2次モード 固有周期 T_2 =0.181(s) 固有振動数 f_2 =5.51(Hz) 刺激係数 β_2 =0.504

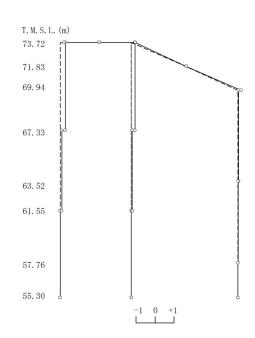
3次モード 固有周期 T_3 =0.125(s) 固有振動数 f_3 =7.98(Hz) 刺激係数 β_3 =1.262

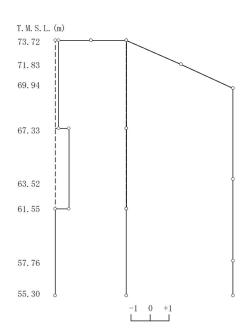


4次モード 固有周期 T_4 =0.117(s) 固有振動数 f_4 =8.52(Hz) 刺激係数 β_4 =-0.331

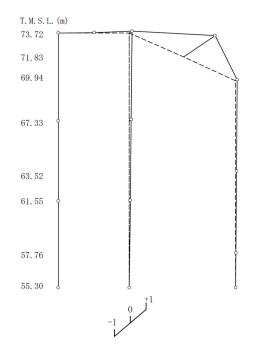


第4.1.1-2図 刺激関数図(EW方向モデル, EW断面③)(1/3)

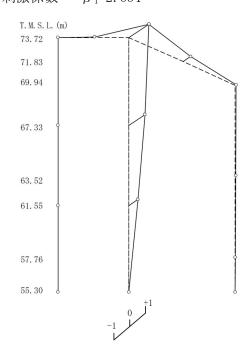

5次モード 固有周期 T_1 =0.113(s) 固有振動数 f_1 =8.85(Hz) 刺激係数 β_1 =0.715


7次モード 固有周期 T_3 =0.061(s) 固有振動数 f_3 =16.44(Hz) 刺激係数 β_3 =1.489

6次モード 固有周期 T_2 =0.100(s) 固有振動数 f_2 =10.03(Hz) 刺激係数 β_2 =-0.801

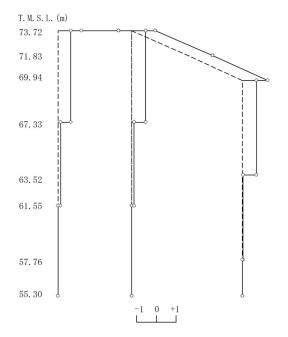


8次モード 固有周期 T_4 =0.057(s) 固有振動数 f_4 =17.65(Hz) 刺激係数 β_4 =-0.978

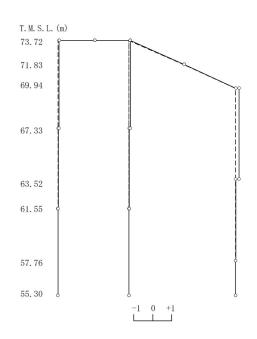


第4.1.1-2図 刺激関数図(EW方向モデル, EW断面③)(2/3)

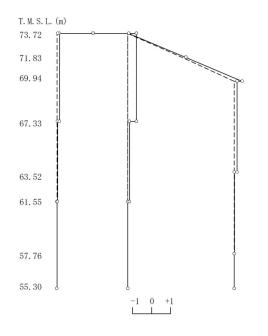
9次モード 固有周期 T_1 =0.055(s) 固有振動数 f_1 =18.14(Hz) 刺激係数 β_1 =1.917

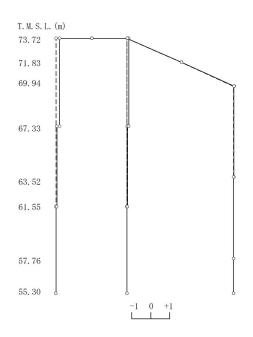


10次モード 固有周期 T_1 =0.035(s) 固有振動数 f_1 =28.39(Hz) 刺激係数 β_1 =2.654



第4.1.1-2図 刺激関数図(EW方向モデル, EW断面③)(3/3)

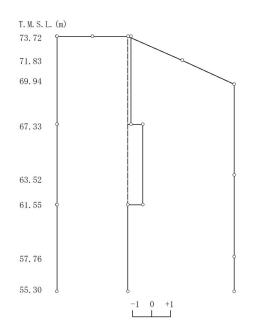

1次モード 固有周期 T_1 =0.312(s) 固有振動数 f_1 =3.21(Hz) 刺激係数 β_1 =4.052


2次モード 固有周期 T_2 =0.180(s) 固有振動数 f_2 =5.55(Hz) 刺激係数 β_2 =0.421

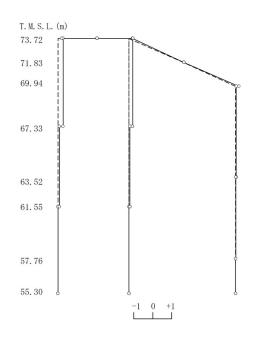
3次モード 固有周期 T_3 =0.127(s) 固有振動数 f_3 =7.86(Hz) 刺激係数 β_3 =1.061

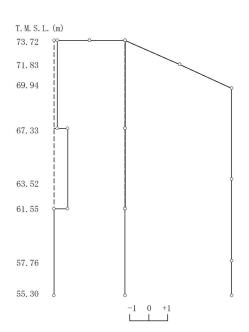


4次モード 固有周期 T_4 =0.118(s) 固有振動数 f_4 =8.47(Hz) 刺激係数 β_4 =-0.460

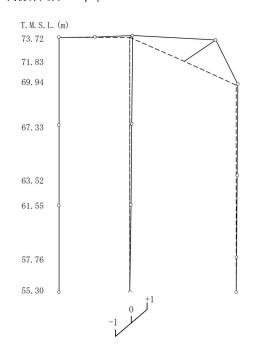


第4.1.1-3図 刺激関数図(EW方向モデル, EW断面④)(1/3)

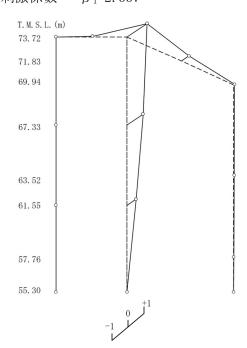

5次モード 固有周期 T_1 =0.113(s) 固有振動数 f_1 =8.85(Hz) 刺激係数 β_1 =0.621


7次モード 固有周期 T_3 =0.061(s) 固有振動数 f_3 =16.50(Hz) 刺激係数 β_3 =1.295

6次モード 固有周期 T_2 =0.100(s) 固有振動数 f_2 =10.00(Hz) 刺激係数 β_2 =-0.647



8次モード 固有周期 T_4 =0.057(s) 固有振動数 f_4 =17.65(Hz) 刺激係数 β_4 =-0.849



第4.1.1-3図 刺激関数図(EW方向モデル, EW断面④)(2/3)

9次モード 固有周期 T_1 =0.055(s) 固有振動数 f_1 =18.13(Hz) 刺激係数 β_1 =1.672

10次モード 固有周期 T_1 =0.036(s) 固有振動数 f_1 =28.12(Hz) 刺激係数 β_1 =2.337

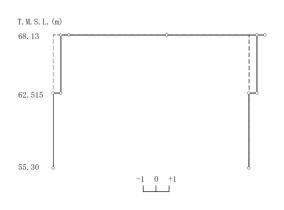
第4.1.1-3図 刺激関数図(EW方向モデル, EW断面④)(3/3)

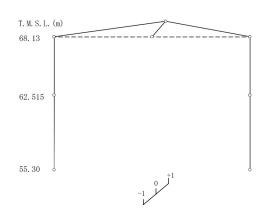
4.1.2 西ブロックの固有値解析結果

支持架構の固有値解析結果(固有周期,固有振動数及び刺激係数)を第4.1.2-1表に示す。刺激関数図を第4.1.2-1図~第4.1.2-3図に示す。

なお、刺激係数は、各次の固有ベクトル(u)に対し、最大振幅が1.0となるように基準化した値を示す。

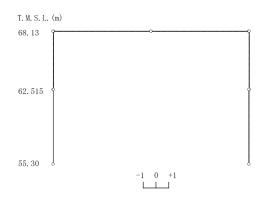
第4.1.2-1表 支持架構の固有値解析結果(1/2)

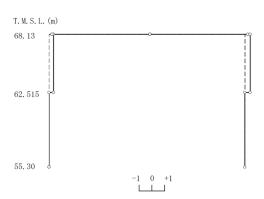

NS方向モデル (NS断面①)					
次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考	
1	0. 321	3. 12	5. 702	水平1次	
2	0. 161	6. 20	1.722	鉛直1次	
3	0. 154	6. 50	0. 124	水平2次	
4	0. 139	7. 20	-1.980	水平3次	
5	0. 035	28. 74	3. 983	鉛直2次	


第4.1.2-1表 支持架構の固有値解析結果(2/2)

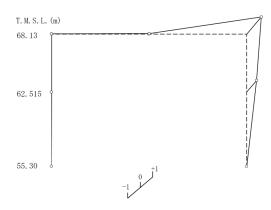
EW方向モデル(EW断面③)					
次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考	
1	0. 339	2. 95	5. 188	水平1次	
2	0. 161	6. 20	0. 437	水平2次	
3	0. 161	6. 21	1. 537	鉛直1次	
4	0. 138	7. 24	-1.388	水平3次	
5	0. 038	26. 36	3. 893	鉛直2次	
		EW方向モデル(E	EW断面④)		
次数	固有周期 (s)	固有振動数 (Hz)	刺激係数	備考	
1	0. 336	2. 97	4. 509	水平1次	
2	0. 164	6. 08	0. 427	水平2次	
3	0. 161	6. 21	1. 334	鉛直1次	
4	0. 137	7. 28	-1.160	水平3次	
5	0. 038	26. 06	3. 442	鉛直2次	

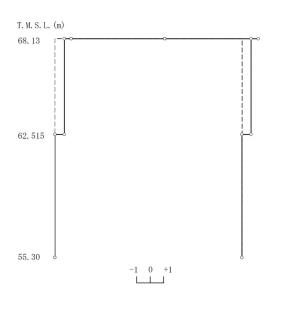
1次モード 固有周期 T_1 =0.321(s) 固有振動数 f_1 =3.12(Hz) 刺激係数 β_1 =5.702

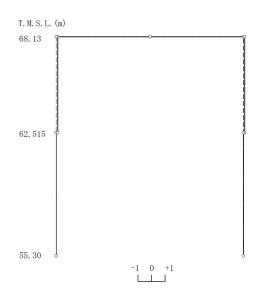

2次モード 固有周期 T_2 =0.161(s) 固有振動数 f_2 =6.20(Hz) 刺激係数 β_2 =1.722



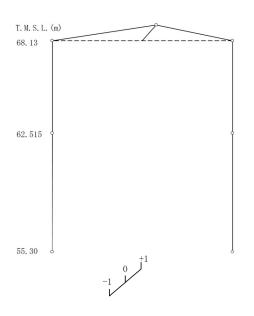
3次モード 固有周期 T_3 =0.154(s) 固有振動数 f_3 =6.50(Hz) 刺激係数 β_3 =0.124

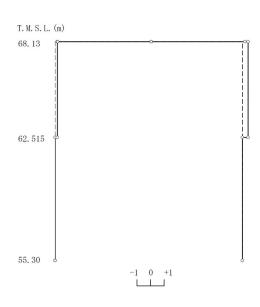

4次モード 固有周期 $T_4 = 0.139$ (s) 固有振動数 $f_4 = 7.20$ (Hz) 刺激係数 $\beta_4 = -1.980$


第4.1.2-1 図 刺激関数図 (NS 方向モデル, NS 断面①) (1/2)


5次モード 固有周期 T_5 =0.035(s) 固有振動数 f_5 =28.74(Hz) 刺激係数 β_5 =3.983

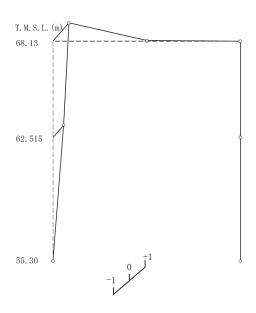
1次モード 固有周期 T_1 =0.339(s) 固有振動数 f_1 =2.95(Hz) 刺激係数 β_1 =5.188


2次モード 固有周期 T_2 =0.161(s) 固有振動数 f_2 =6.20(Hz) 刺激係数 β_2 =0.437



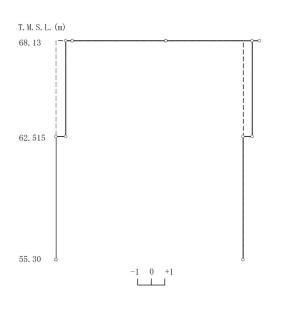
3次モード 固有周期 T_3 =0.161(s) 固有振動数 f_3 =6.21(Hz) 刺激係数 β_3 =1.537

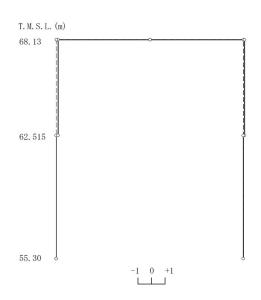
4次モード 固有周期 $T_4 = 0.138$ (s) 固有振動数 $f_4 = 7.24$ (Hz) 刺激係数 $\beta_4 = -1.388$



第4.1.2-2図 刺激関数図(EW方向モデル, EW断面③)(1/2)

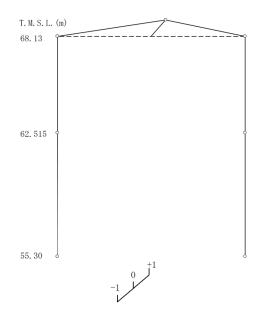
5次モード

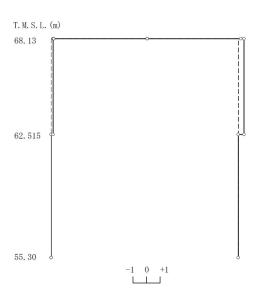

固有周期 T_5 =0.038(s) 固有振動数 f_5 =26.36(Hz) 刺激係数 β_5 =3.893



第4.1.2-2図 刺激関数図(EW方向モデル, EW断面③)(2/2)

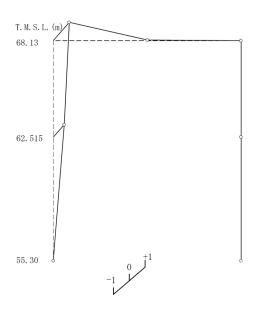
1次モード 固有周期 T_1 =0.336(s) 固有振動数 f_1 =2.97(Hz) 刺激係数 β_1 =4.509


2次モード 固有周期 T_2 =0.164(s) 固有振動数 f_2 =6.08(Hz) 刺激係数 β_2 =0.427



3次モード 固有周期 T_3 =0.161(s) 固有振動数 f_3 =6.21(Hz) 刺激係数 β_3 =1.334

4次モード 固有周期 T_4 =0.137(s) 固有振動数 f_4 =7.28(Hz) 刺激係数 β_4 =-1.160

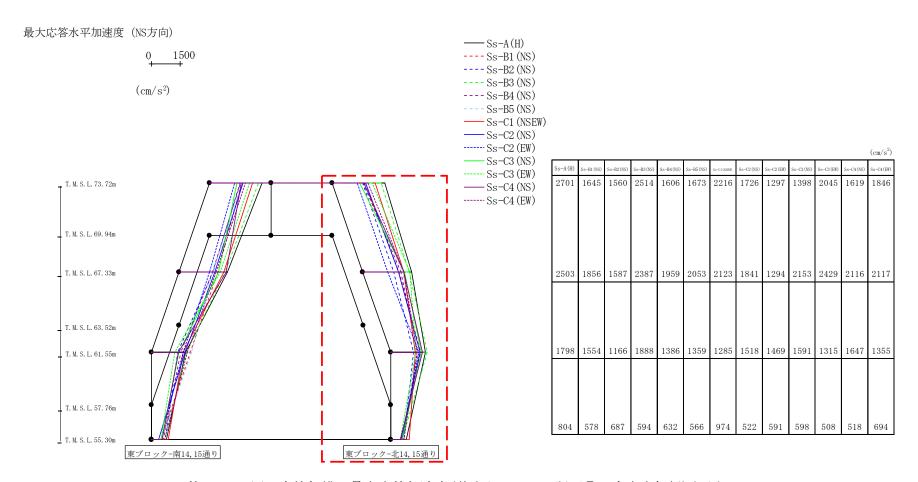


第4.1.2-3 図 刺激関数図(EW 方向モデル, EW 断面④)(1/2)

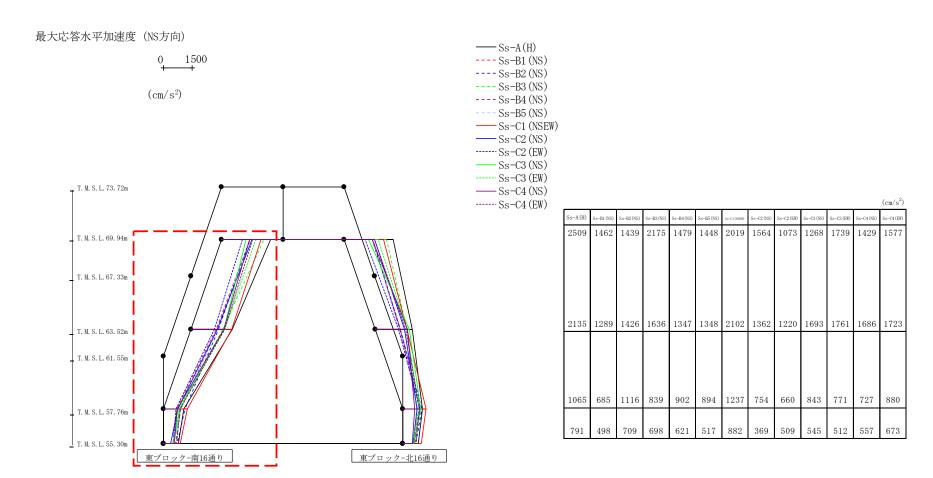
5次モード

固有周期 T_5 =0.038(s) 固有振動数 f_5 =26.06(Hz) 刺激係数 β_5 =3.442

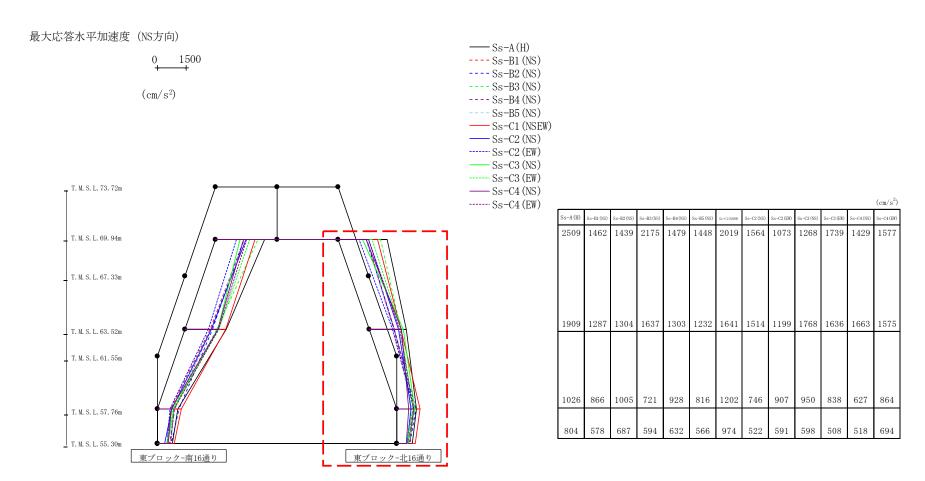
第4.1.2-3 図 刺激関数図(EW 方向モデル, EW 断面④)(2/2)

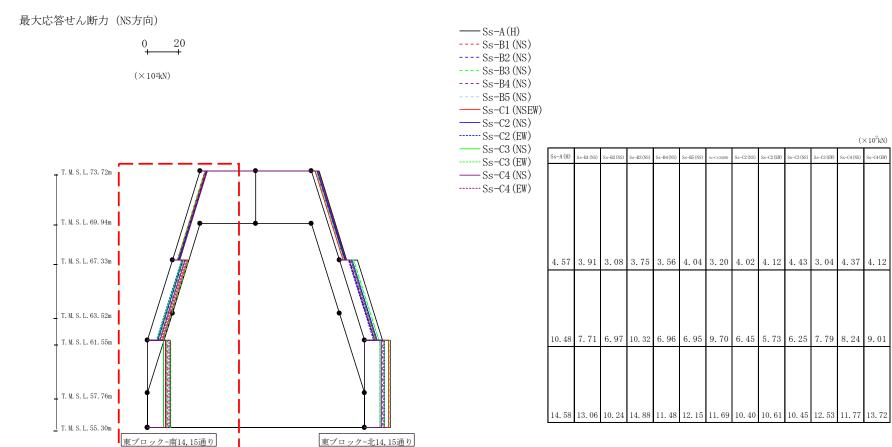

4.2 地震応答解析結果

- 4.2.1 東ブロックの地震応答解析結果
 - (1) 全応力解析


全応力解析結果のうち,支持架構の最大応答値(加速度,せん断力,曲げモーメント)を第4.2.1-1図~第4.2.1-12図に,杭の最大応答値(曲げモーメント及びせん断力)を第4.2.1-1表~第4.2.1-2表に,基礎位置における地盤変位*を第4.2.1-3表及び第4.2.1-4表に示す。

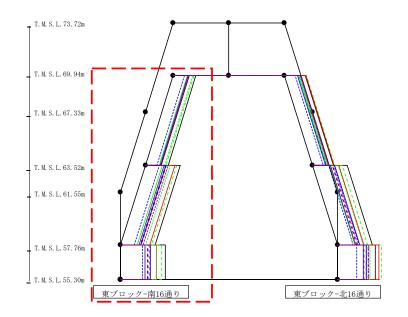
注記 *:応答変位は、改良地盤下端と基礎上端との相対変位とし、各レベルで の節点変位の平均値として算定する。最大応答変位は、応答変位の時 刻歴における最大値を示す。


第4.2.1-1図 支持架構の最大応答加速度(基本ケース, NS断面②, 全応力解析)(1/4)


第4.2.1-1図 支持架構の最大応答加速度(基本ケース, NS断面②, 全応力解析)(2/4)

第4.2.1-1図 支持架構の最大応答加速度(基本ケース, NS断面②, 全応力解析)(3/4)

第4.2.1-1図 支持架構の最大応答加速度(基本ケース, NS断面②, 全応力解析)(4/4)



第4.2.1-2図 支持架構の最大応答せん断力(基本ケース, NS断面②, 全応力解析)(1/4)

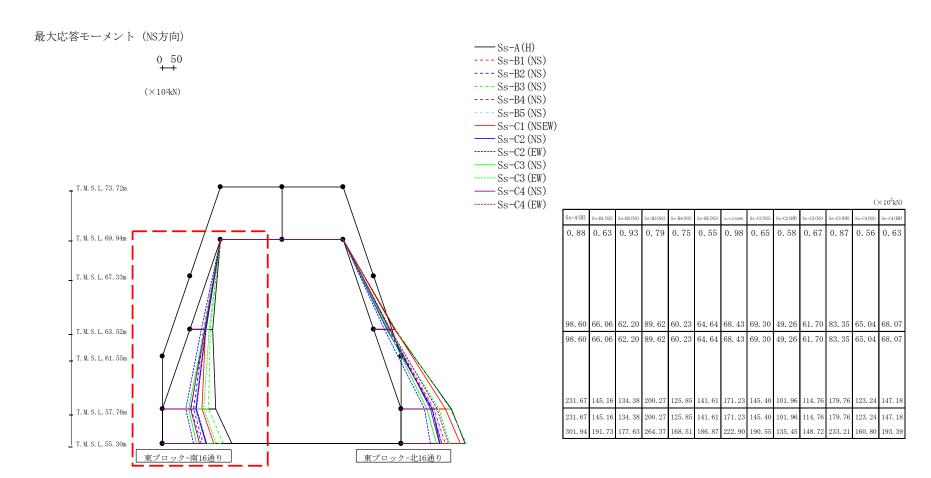
最大応答せん断力 (NS方向)

第4.2.1-2図 支持架構の最大応答せん断力(基本ケース, NS断面②, 全応力解析)(2/4)

 $(\times 10^2 kN)$

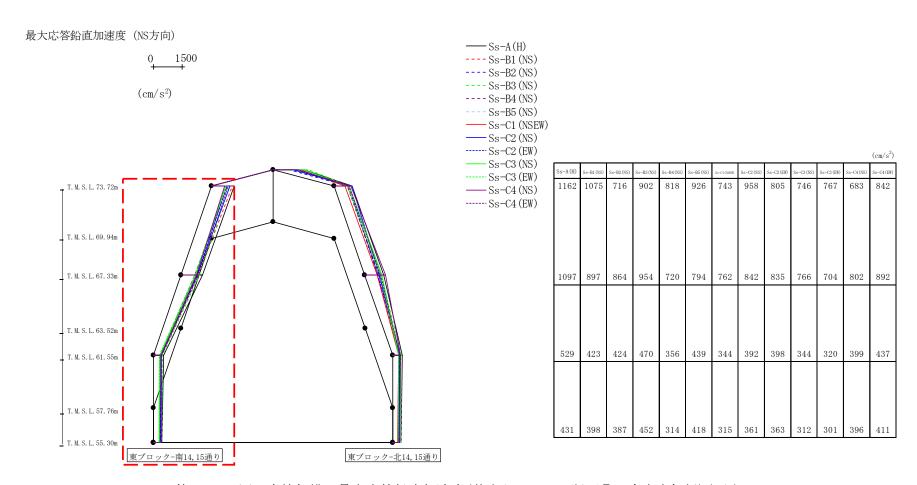
— Ss-A(H)
---- Ss-B1 (NS)
---- Ss-B2 (NS)
---- Ss-B3 (NS)
---- Ss-B4 (NS)
---- Ss-B5 (NS)
---- Ss-C1 (NSEW)
---- Ss-C2 (NS)
---- Ss-C2 (EW)
---- Ss-C3 (NS)
---- Ss-C4 (NS)
---- Ss-C4 (EW)

$(\times 10^2 \mathrm{kN})$												
Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	So-C1 (NSER)	Ss-C2 (NS)	Ss-C2 (EW)	Ss-C3 (NS)	Ss-C3 (EW)	Ss-C4(NS)	Ss-C4(EW)
14. 53	9. 73	9. 17	13. 19	8. 88	9. 54	10.09	10. 25	7.29	9.09	12. 30	9. 59	10. 03
		13. 04										
28. 57	18. 87	17. 55	26. 51	17. 30	18. 38	23. 12	19. 27	14. 30	15. 57	22. 88	15. 86	19. 07


第4.2.1-2図 支持架構の最大応答せん断力(基本ケース, NS断面②, 全応力解析)(3/4)

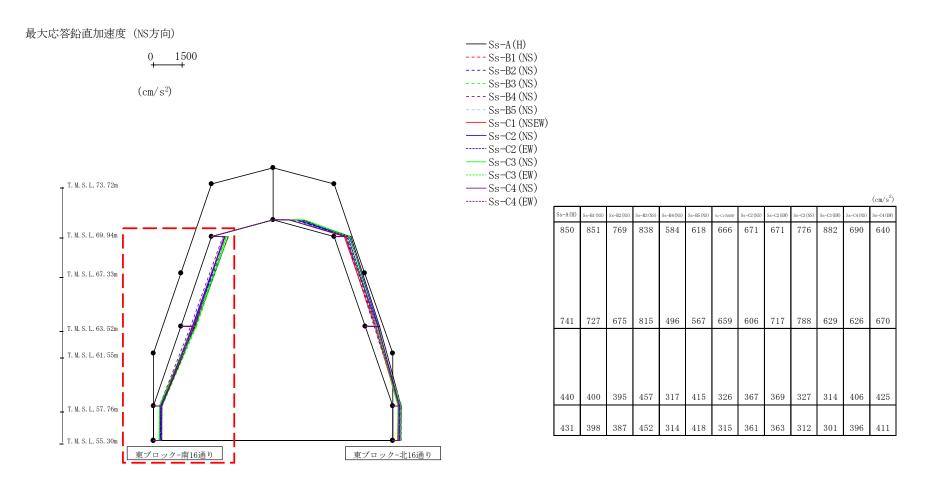
最大応答せん断力 (NS方向)

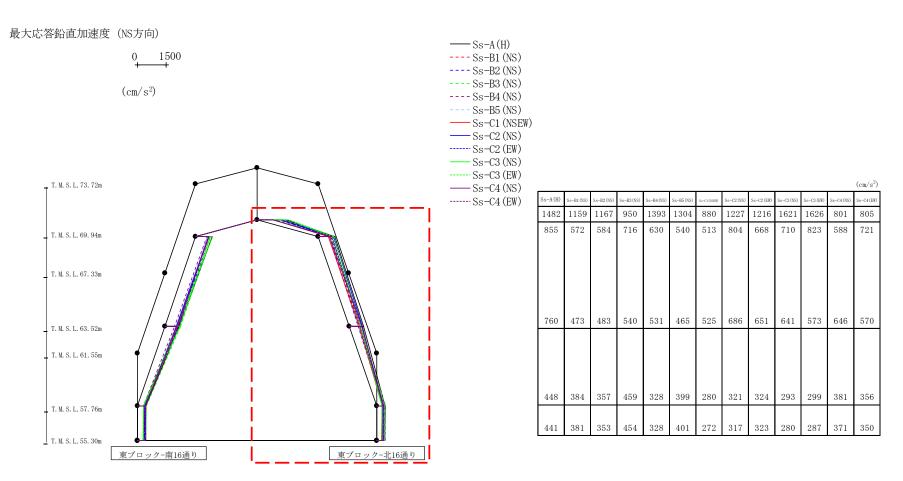
第4.2.1-2図 支持架構の最大応答せん断力(基本ケース, NS断面②, 全応力解析)(4/4)


第4.2.1-3図 支持架構の最大応答曲げモーメント(基本ケース, NS断面②, 全応力解析)(1/4)

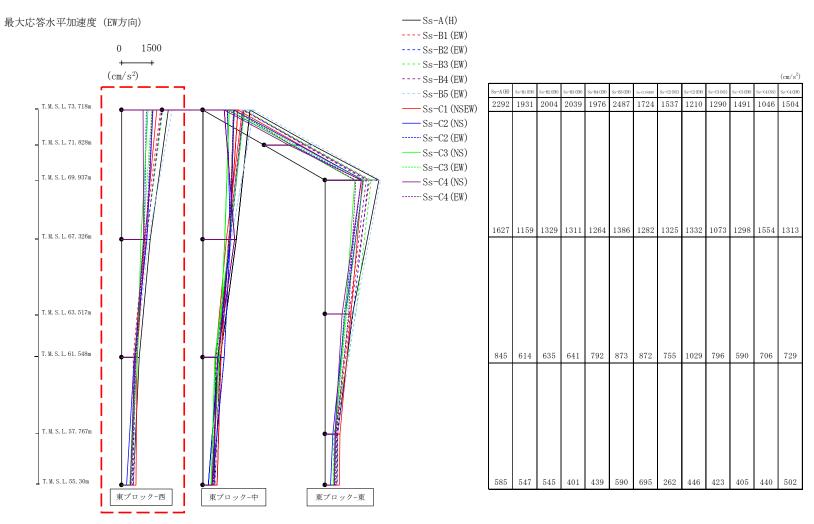
第4.2.1-3図 支持架構の最大応答曲げモーメント(基本ケース, NS断面②, 全応力解析)(2/4)

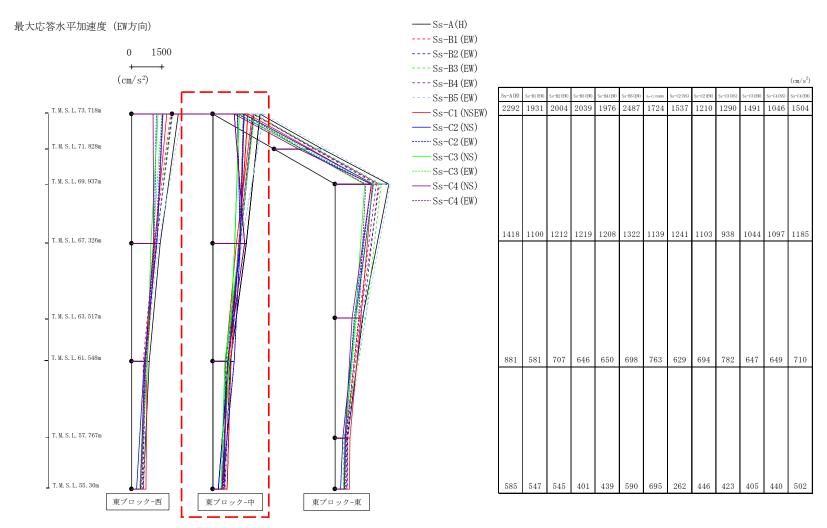
第4.2.1-3図 支持架構の最大応答曲げモーメント(基本ケース, NS断面②, 全応力解析)(3/4)

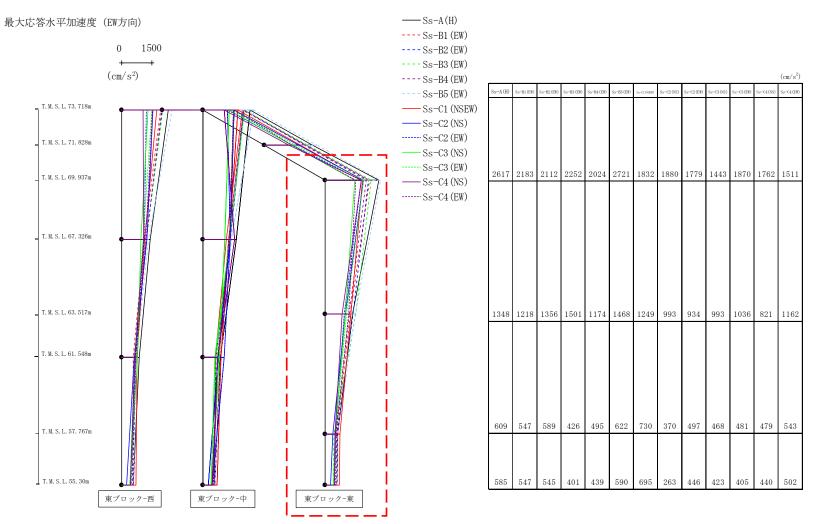

第4.2.1-3図 支持架構の最大応答曲げモーメント(基本ケース, NS断面②, 全応力解析)(4/4)

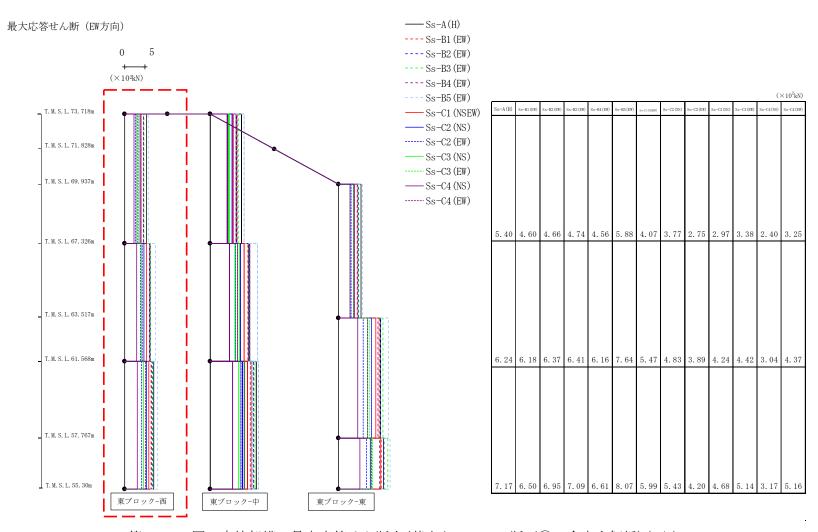

第4.2.1-4図 支持架構の最大応答鉛直加速度(基本ケース, NS断面②, 全応力解析)(1/4)

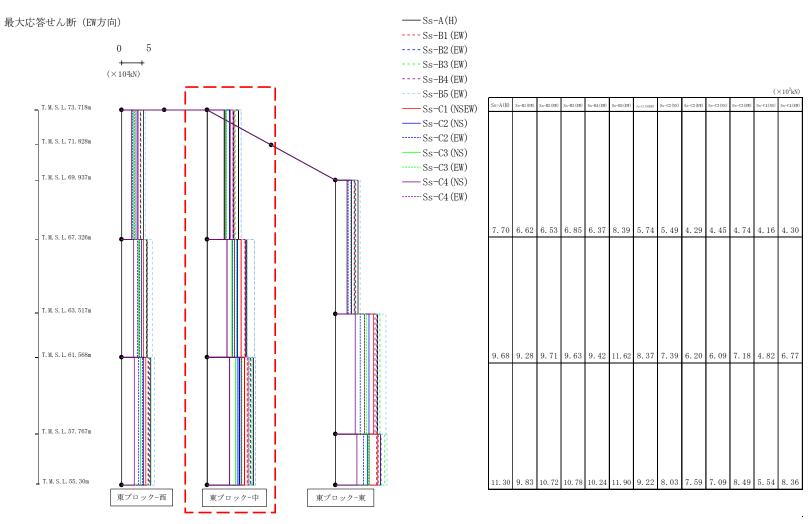
最大応答鉛直加速度(NS方向)

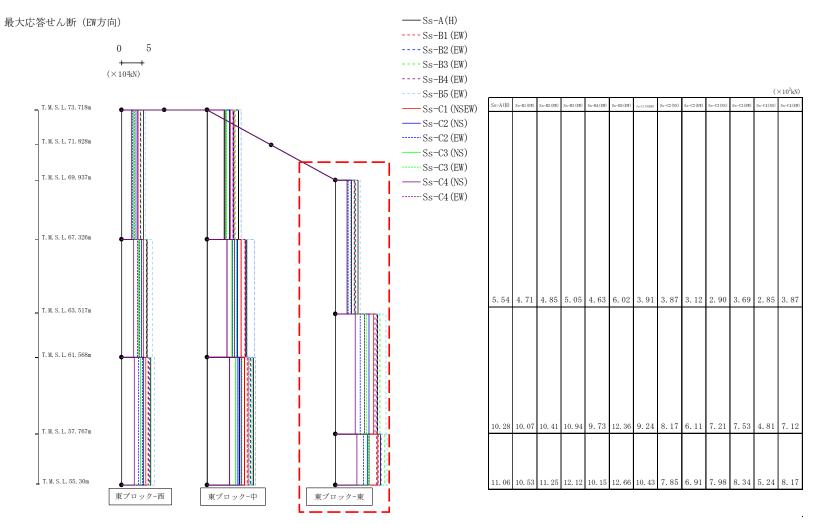

第4.2.1-4図 支持架構の最大応答鉛直加速度(基本ケース, NS断面②, 全応力解析)(2/4)

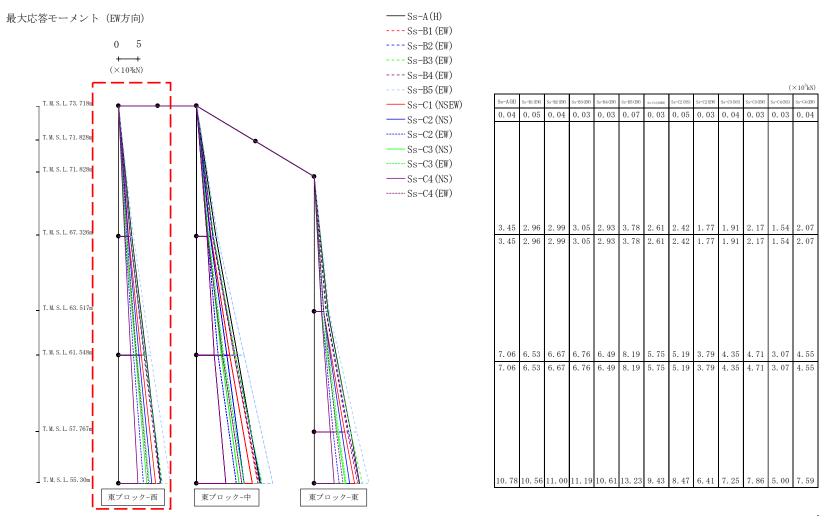

第4.2.1-4図 支持架構の最大応答鉛直加速度(基本ケース, NS断面②, 全応力解析)(3/4)

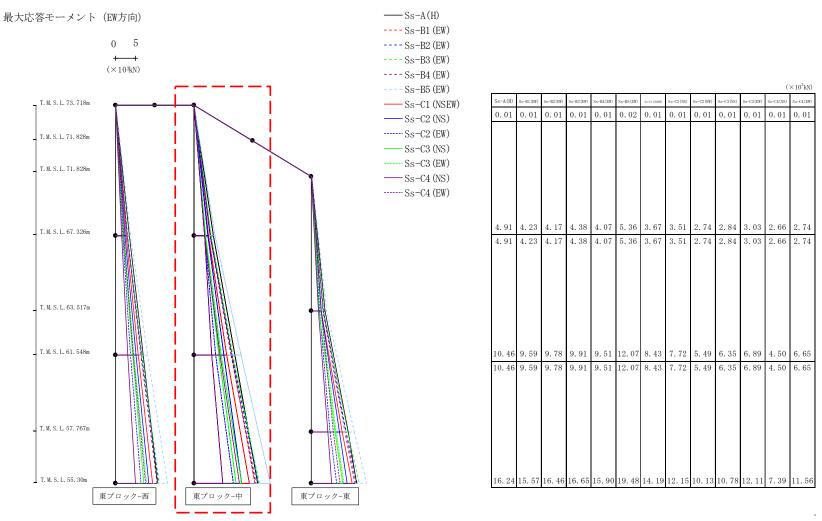

第4.2.1-4図 支持架構の最大応答鉛直加速度(基本ケース, NS断面②, 全応力解析)(4/4)


第4.2.1-5図 支持架構の最大応答加速度(基本ケース, EW断面③, 全応力解析)(1/3)

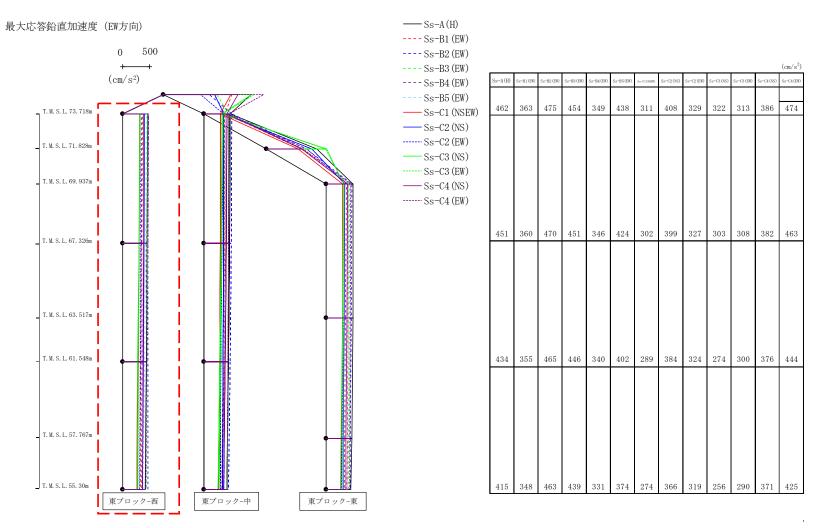

第4.2.1-5図 支持架構の最大応答加速度(基本ケース, EW断面③, 全応力解析)(2/3)

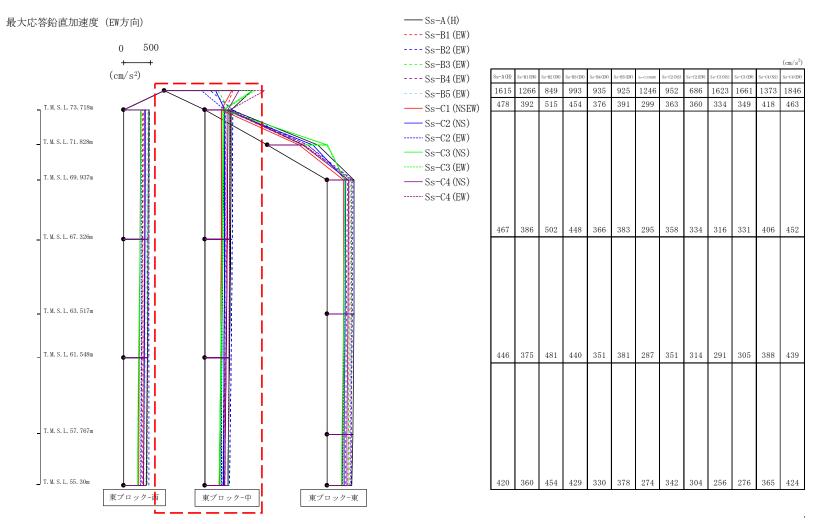

第4.2.1-5図 支持架構の最大応答加速度(基本ケース, EW断面③, 全応力解析)(3/3)

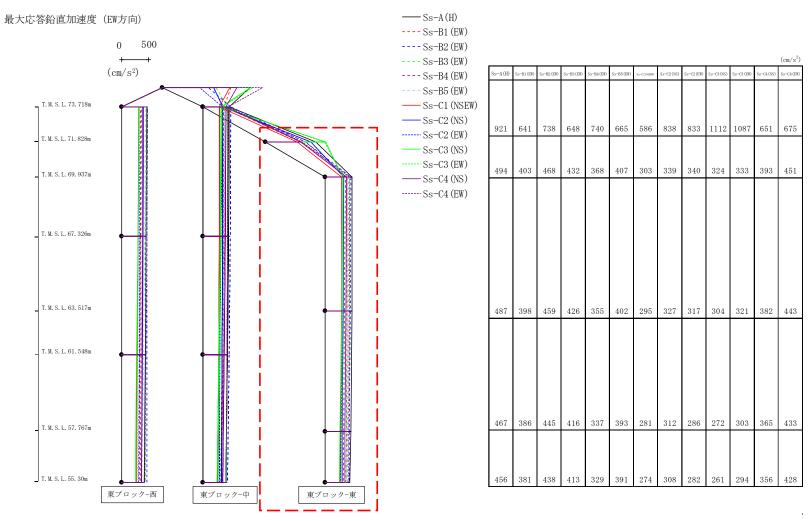

第4.2.1-6図 支持架構の最大応答せん断力(基本ケース, EW断面③, 全応力解析)(1/3)

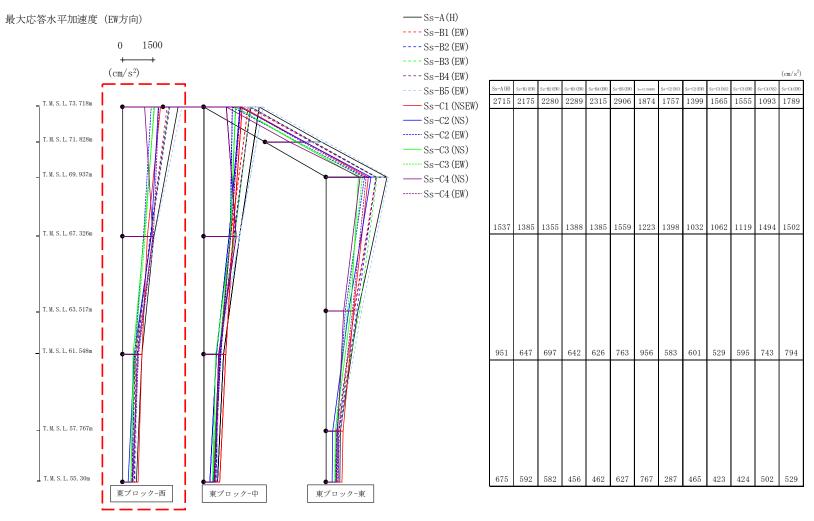

第4.2.1-6図 支持架構の最大応答せん断力(基本ケース, EW断面③, 全応力解析)(2/3)

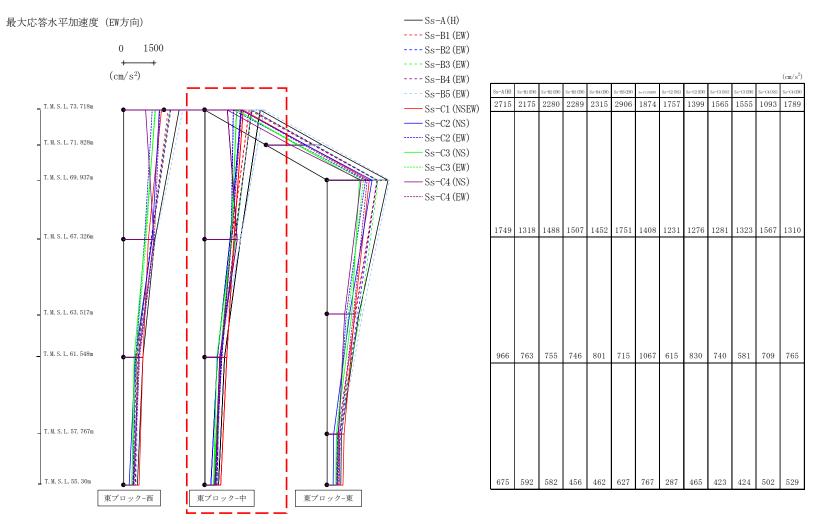

第4.2.1-6図 支持架構の最大応答せん断力(基本ケース, EW断面③, 全応力解析)(3/3)

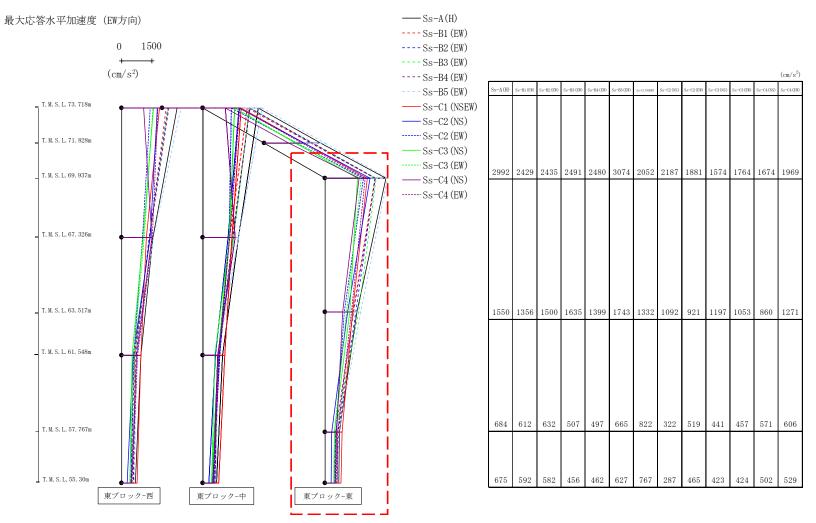

第4.2.1-7図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 全応力解析)(1/3)

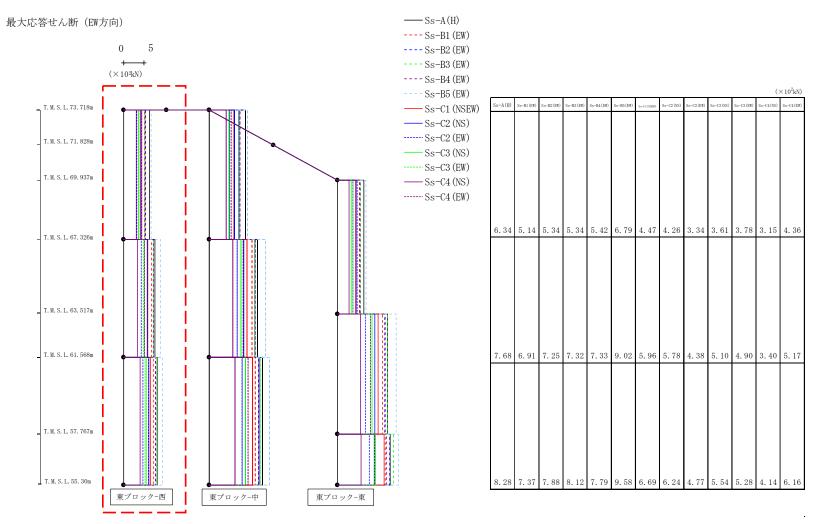

第4.2.1-7図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 全応力解析)(2/3)

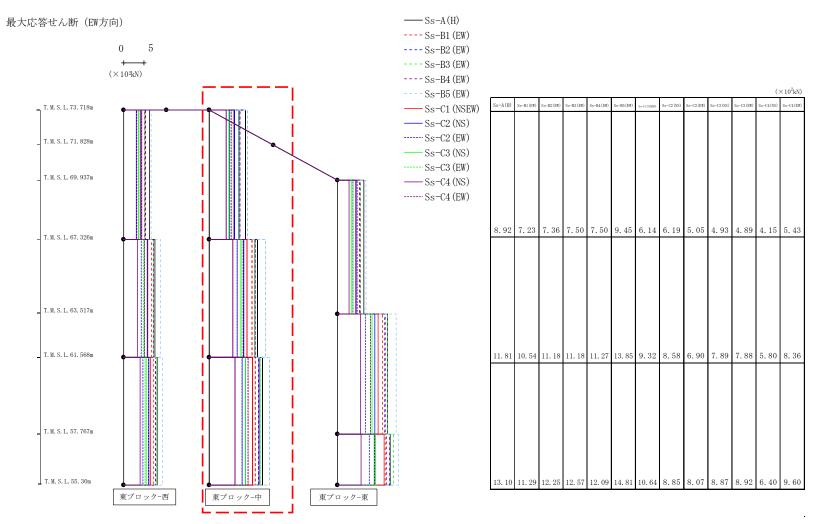

第4.2.1-7図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 全応力解析)(3/3)

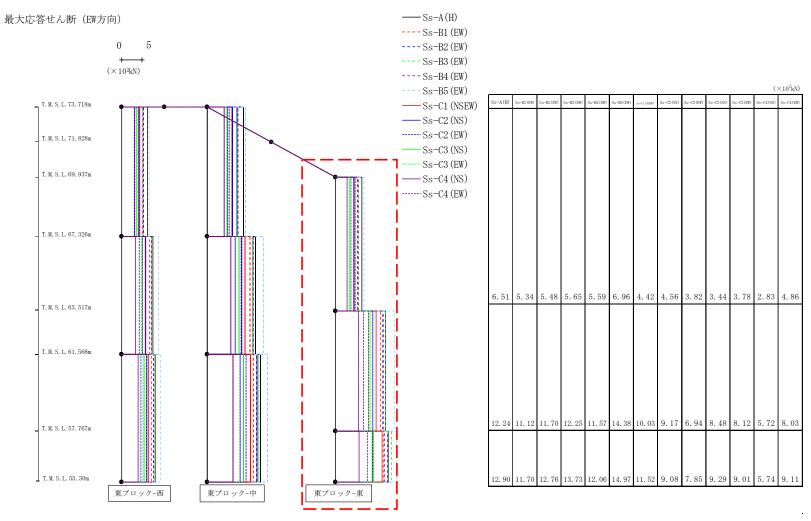

第4.2.1-8図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 全応力解析)(1/3)

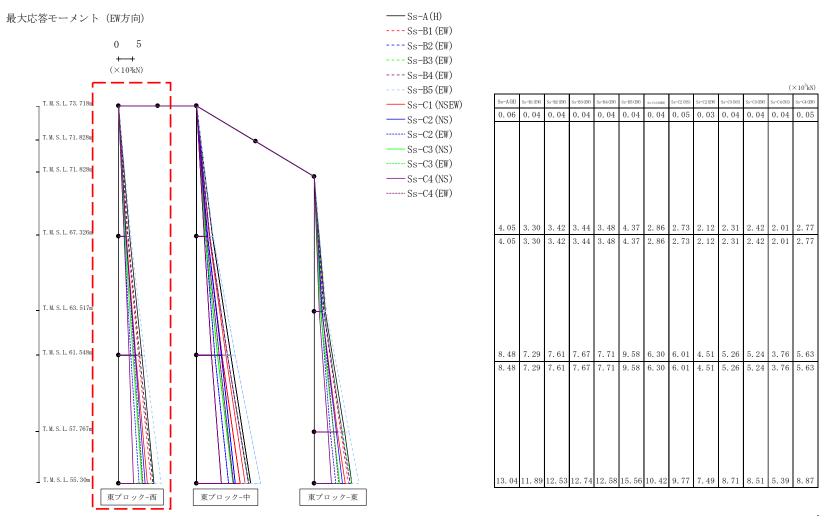

第4.2.1-8図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 全応力解析)(2/3)

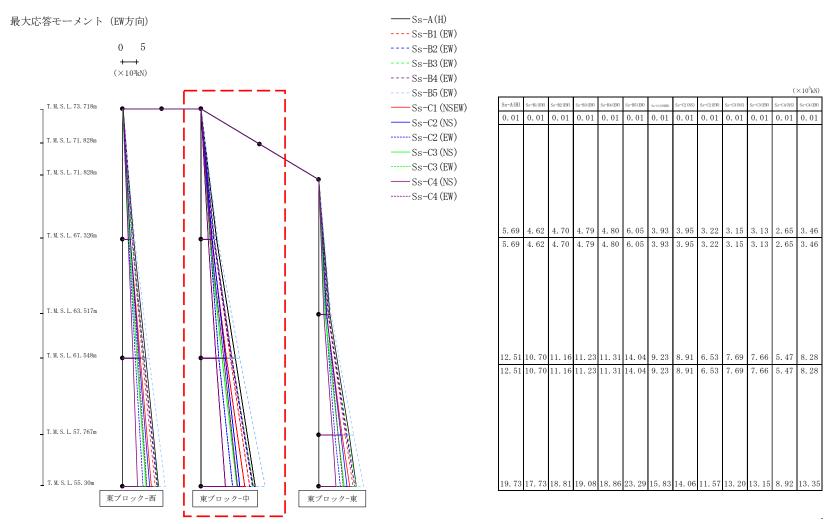

第4.2.1-8図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 全応力解析)(3/3)

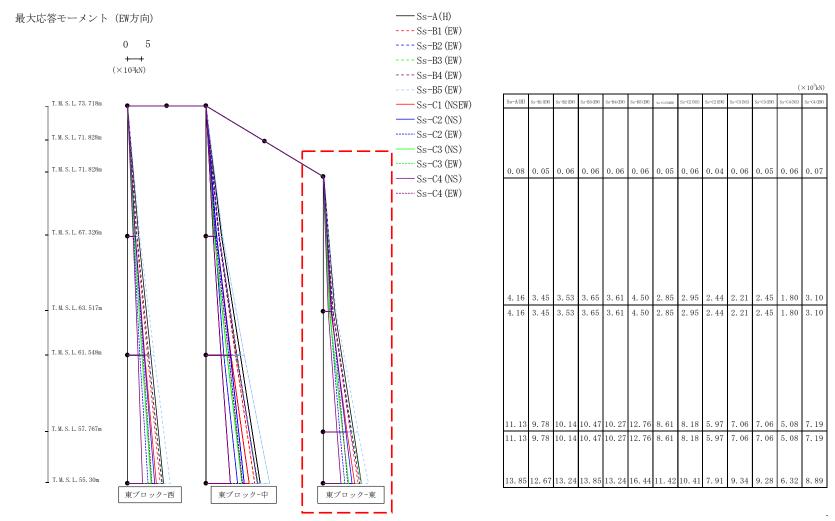

第4.2.1-9図 支持架構の最大応答加速度(基本ケース, EW断面④, 全応力解析)(1/3)

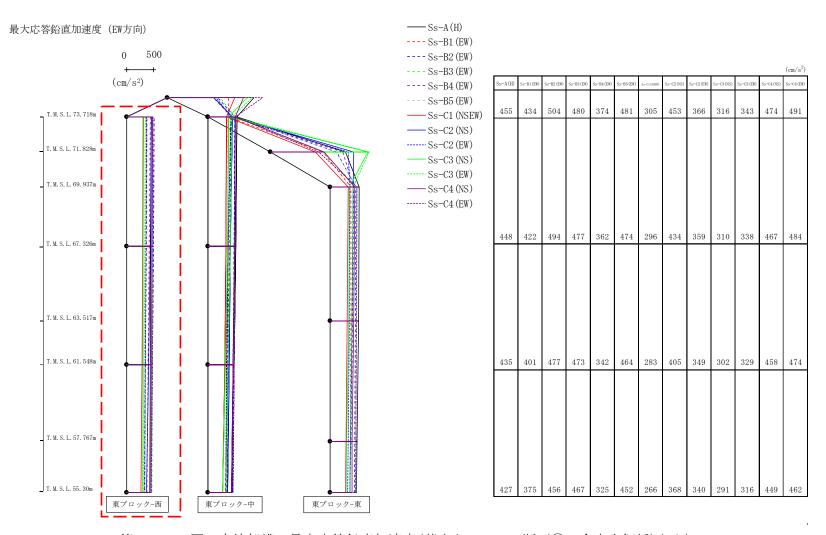

第4.2.1-9図 支持架構の最大応答加速度(基本ケース, EW断面④, 全応力解析)(2/3)

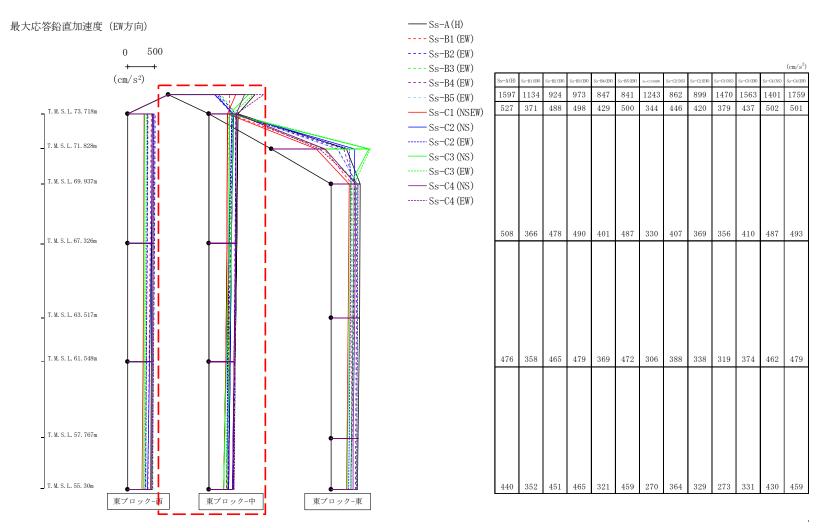

第4.2.1-9図 支持架構の最大応答加速度(基本ケース, EW断面④, 全応力解析)(3/3)

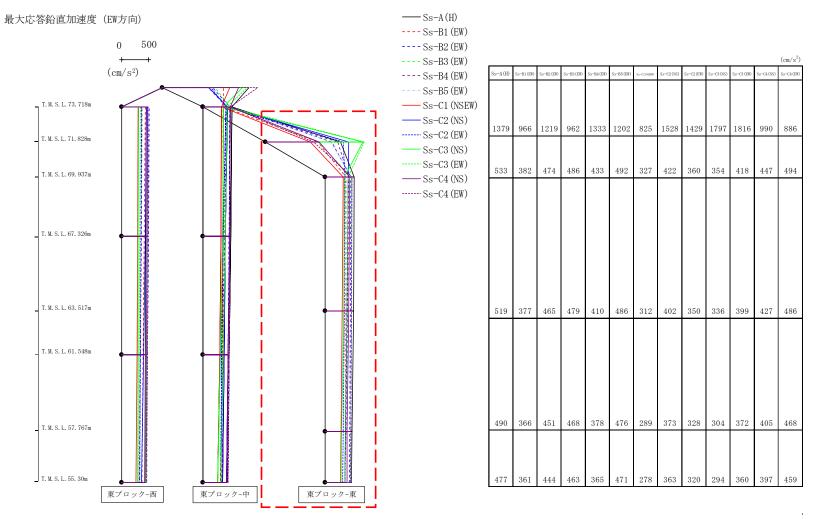

第4.2.1-10図 支持架構の最大応答せん断力(基本ケース, EW断面④, 全応力解析)(1/3)


第4.2.1-10図 支持架構の最大応答せん断力(基本ケース, EW断面④, 全応力解析)(2/3)


第4.2.1-10図 支持架構の最大応答せん断力(基本ケース, EW断面④, 全応力解析)(3/3)


第4.2.1-11図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 全応力解析)(1/3)


第4.2.1-11図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 全応力解析)(2/3)


第4.2.1-11図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 全応力解析)(3/3)

第4.2.1-12図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 全応力解析)(1/3)

第4.2.1-12図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 全応力解析)(2/3)

第4.2.1-12図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 全応力解析)(3/3)

第4.2.1-1表 杭の最大応答値(基本ケース, NS方向, 全応力解析)

(a) NS断面②

		曲げモーメント		せん断力	
杭符号	地震動	杭番号	最大応答 曲げモーメント* (kN·m)	杭番号	最大応答 せん断力* (kN)
	Ss-A(H)	F3-2	1412	F3-2	4706
	Ss-B1(NS)	F3-2	1123	F3-2	3743
	Ss-B2(NS)	F3-2	1000	F3-2	3201
	Ss-B3 (NS)	F3-2	1655	F3-2	5516
	Ss-B4(NS)	F3-2	963	F3-2	2972
	Ss-B5 (NS)	F3-2	1063	F3-2	3428
P2	Ss-C1(NSEW)	F3-2	1557	F3-2	5190
	Ss-C2(NS)	F3-2	892	F3-2	2973
	Ss-C2(EW)	F3-2	804	F3-2	2455
	Ss-C3(NS)	F3-2	883	F3-2	2945
	Ss-C3(EW)	F3-2	1287	F3-2	4289
	Ss-C4(NS)	F4-1	940	F4-1	2949
	Ss-C4(EW)	F3-2	1160	F3-2	3865
F3-1 F3-2 F4-1 F4-2					
	P2	P2	P2	P2	
(杭番号位置)					

注記 *: 杭一本当たりの応答値を示す。

第4.2.1-2表 杭の最大応答値(基本ケース, EW方向, 全応力解析)(1/2)

(a) EW断面③

		曲げモーメント		 せん断力	
杭符号	地震動	杭番号	最大応答 曲げモーメント* (kN·m)	杭番号	最大応答 せん断力* (kN)
	Ss-A(H)	F4-3	553	F4-3	634
	Ss-B1(EW)	F4-3	524	F4-1	555
	Ss-B2(EW)	F4-3	409	F4-1	534
	Ss-B3(EW)	F4-3	426	F4-1	634
	Ss-B4(EW)	F4-3	406	F4-1	555
	Ss-B5(EW)	F4-3	536	F4-1	745
P2	Ss-C1(NSEW)	F4-3	507	F4-1	433
	Ss-C2(NS)	F4-3	260	F4-3	559
	Ss-C2(EW)	F4-3	289	F4-3	395
	Ss-C3(NS)	F4-3	408	F4-3	424
	Ss-C3(EW)	F4-3	332	F4-1	403
	Ss-C4(NS)	F4-3	377	F4-3	420
	Ss-C4(EW)	F4-3	528	F4-3	472
	F2-1 F2-2 P2	F2-3 P1	F4-1	F4-2 F4	-3 P2
(杭番号位置)					

注記 *: 杭一本当たりの応答値を示す。

第4.2.1-2表 杭の最大応答値(基本ケース, EW方向, 全応力解析)(2/2)

(b) EW断面④

		曲げモーメント		 せん断力	
杭符号	地震動	杭番号	最大応答 曲げモーメント* (kN·m)	杭番号	最大応答 せん断力* (kN)
	Ss-A(H)	F3-1	447	F3-2	1302
	Ss-B1(EW)	F3-1	345	F3-2	1022
	Ss-B2(EW)	F3-1	382	F3-2	1085
	Ss-B3(EW)	F3-1	467	F3-2	1009
	Ss-B4(EW)	F3-1	387	F3-2	1155
	Ss-B5(EW)	F3-2	414	F3-2	1382
P2	Ss-C1(NSEW)	F3-1	534	F3-1	788
	Ss-C2(NS)	F3-2	305	F3-2	1015
	Ss-C2(EW)	F3-2	238	F3-2	793
	Ss-C3(NS)	F3-2	261	F3-2	872
	Ss-C3(EW)	F3-1	324	F3-2	736
	Ss-C4(NS)	F3-1	270	F3-2	862
	Ss-C4(EW)	F3-2	312	F3-2	1038
F1-1 F1-2 F1-3 F3-1 F3-2 F3-3 P1 P1 P2 P2 P2 P2					
(杭番号位置)					

注記 *: 杭一本当たりの応答値を示す。

第4.2.1-3表 基礎位置における地盤変位(NS方向,全応力解析)

(a) NS断面②

(=// ===HTM ()				
	地盤変位(mm)			
地震動	基本ケース			
Ss-A(H)	7. 23			
Ss-B1 (NS)	4. 65			
Ss-B2 (NS)	5. 42			
Ss-B3 (NS)	7. 15			
Ss-B4 (NS)	6. 22			
Ss-B5 (NS)	5. 53			
Ss-C1(NSEW)	9. 33			
Ss-C2 (NS)	2.92			
Ss-C2 (EW)	4. 09			
Ss-C3 (NS)	4. 20			
Ss-C3 (EW)	5. 80			
Ss-C4 (NS)	4. 63			
Ss-C4(EW)	7. 27			

第4.2.1-4表 基礎位置における地盤変位(EW方向,全応力解析)

(a) EW断面③

- Hu (電話)	地盤変位(mm)		
地震動	基本ケース		
Ss-A(H)	2.38		
Ss-B1 (EW)	2. 10		
Ss-B2(EW)	2.24		
Ss-B3(EW)	2.04		
Ss-B4(EW)	1.58		
Ss-B5(EW)	1.99		
Ss-C1(NSEW)	3. 17		
Ss-C2(NS)	1.07		
Ss-C2(EW)	1.45		
Ss-C3 (NS)	1.40		
Ss-C3(EW)	1. 43		
Ss-C4(NS)	1.66		
Ss-C4(EW)	1.96		

(b) EW断面④

地震新	地盤変位(mm)		
地震動	基本ケース		
Ss-A(H)	3. 27		
Ss-B1 (EW)	2.87		
Ss-B2(EW)	2.60		
Ss-B3(EW)	2. 91		
Ss-B4(EW)	2. 23		
Ss-B5(EW)	3.00		
Ss-C1(NSEW)	4. 48		
Ss-C2 (NS)	1.09		
Ss-C2(EW)	1.77		
Ss-C3 (NS)	1.82		
Ss-C3(EW)	2. 28		
Ss-C4 (NS)	2. 43		
Ss-C4(EW)	2. 50		

(2) 有効応力解析

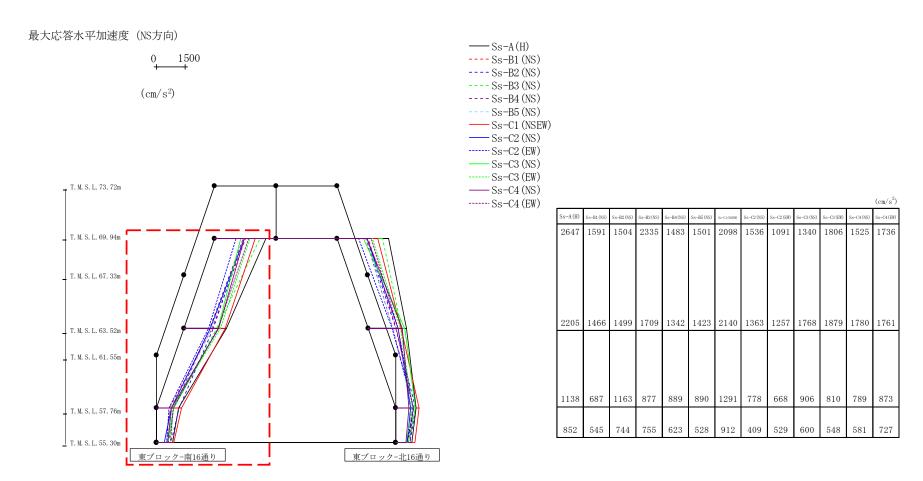
有効応力解析結果のうち,支持架構の最大応答値(加速度,せん断力,曲げモーメント)を第4.2.1-13図~第4.2.1-24図に,杭の最大応答値(曲げモーメント及びせん断力)を第4.2.1-5表~第4.2.1-6表に,基礎位置における地盤変位*を第4.2.1-表及び第4.2.1-8表に示す。

注記 *:応答変位は、改良地盤下端と基礎上端との相対変位とし、各レベルで の節点変位の平均値として算定する。最大応答変位は、応答変位の時 刻歴における最大値を示す。

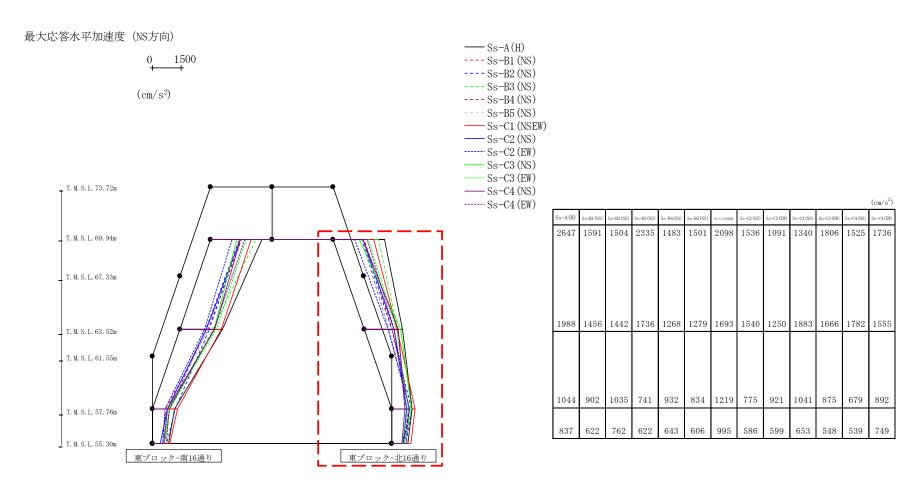
東ブロック-北14,15通り

最大応答水平加速度(NS方向)

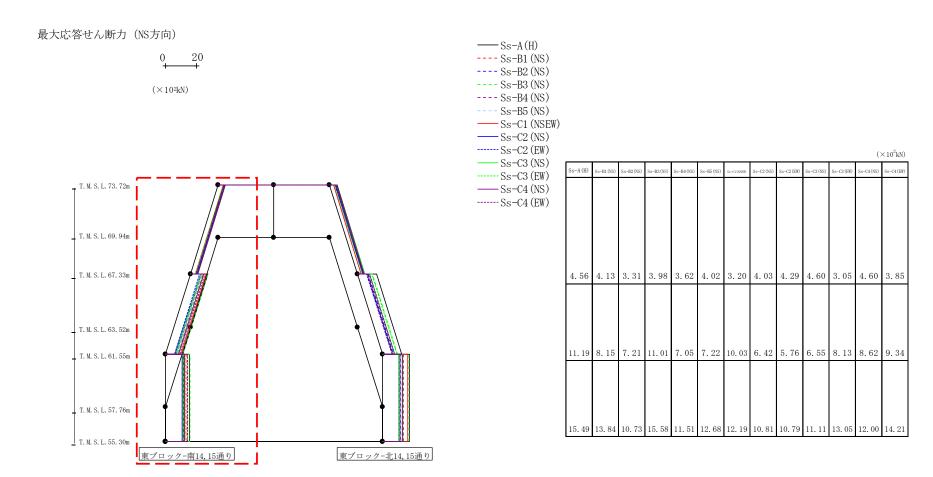
東ブロック-南14,15通り

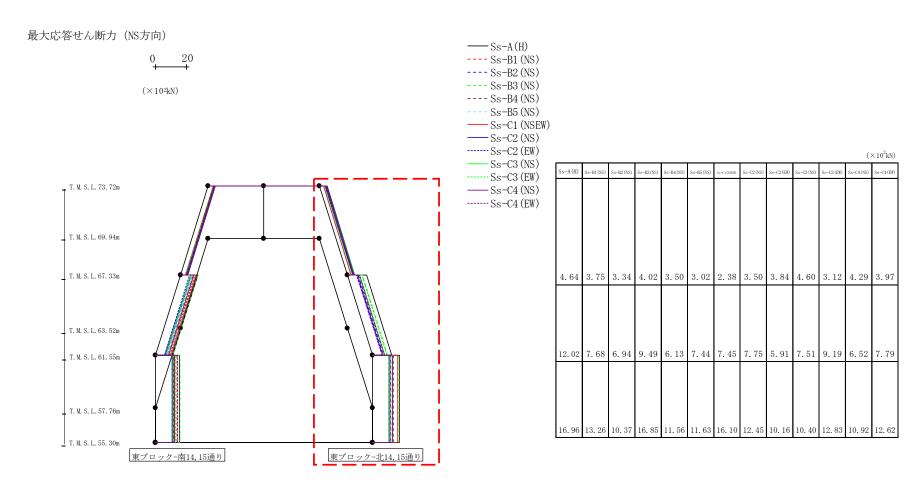

第4.2.1-13図 支持架構の最大応答加速度(基本ケース, NS断面②, 有効応力解析)(1/4)

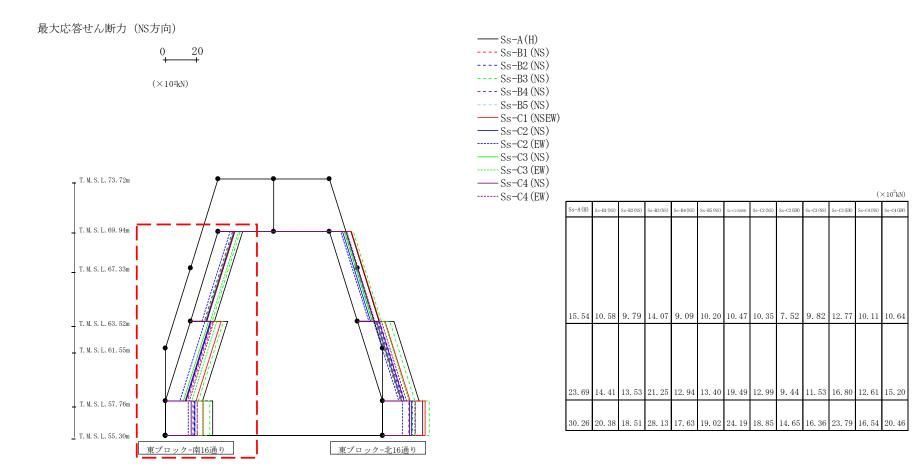
—— Ss-A(H)

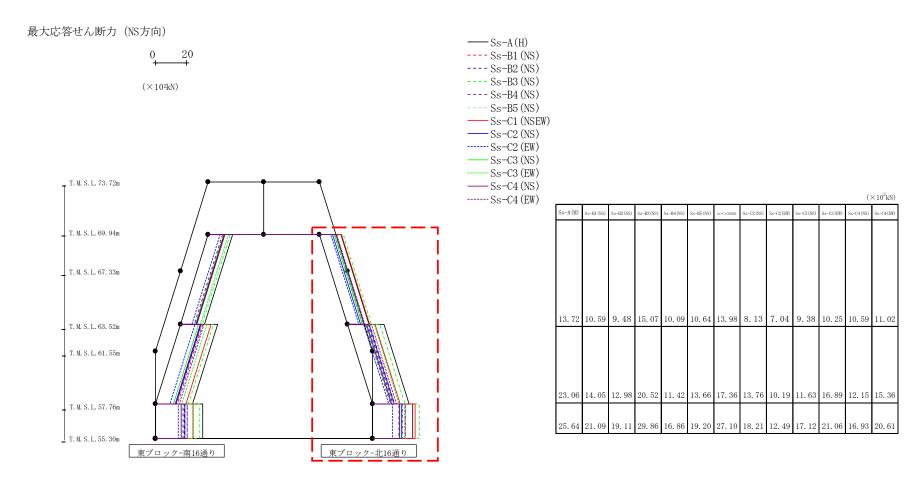

 (cm/s^2)

529 600 548 581 727

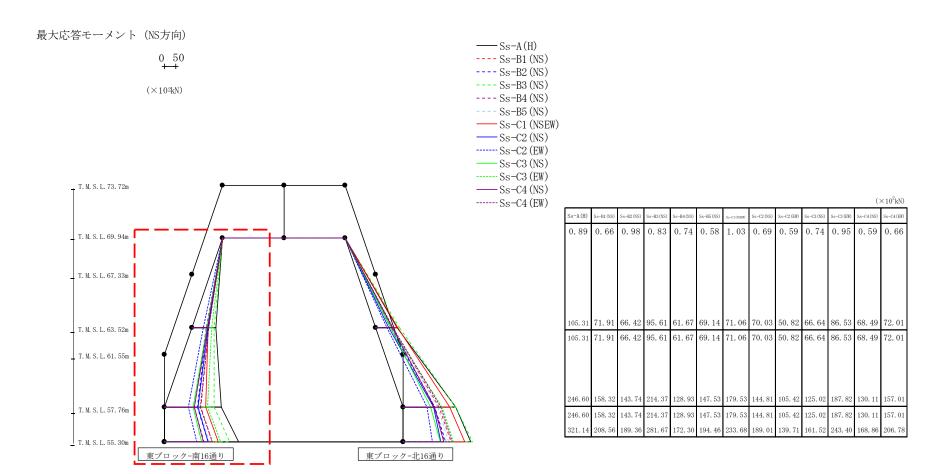

第4.2.1-13図 支持架構の最大応答加速度(基本ケース, NS断面②, 有効応力解析)(2/4)

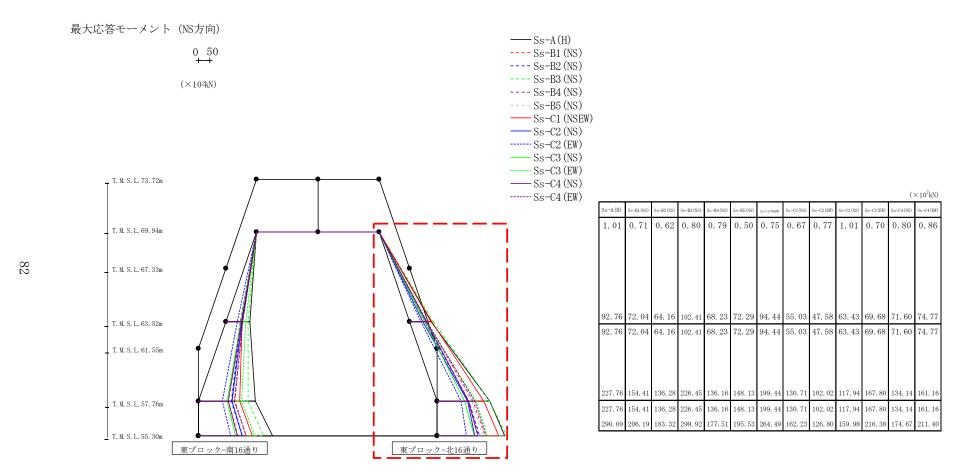

第4.2.1-13図 支持架構の最大応答加速度(基本ケース, NS断面②, 有効応力解析)(3/4)


第4.2.1-13図 支持架構の最大応答加速度(基本ケース, NS断面②, 有効応力解析)(4/4)

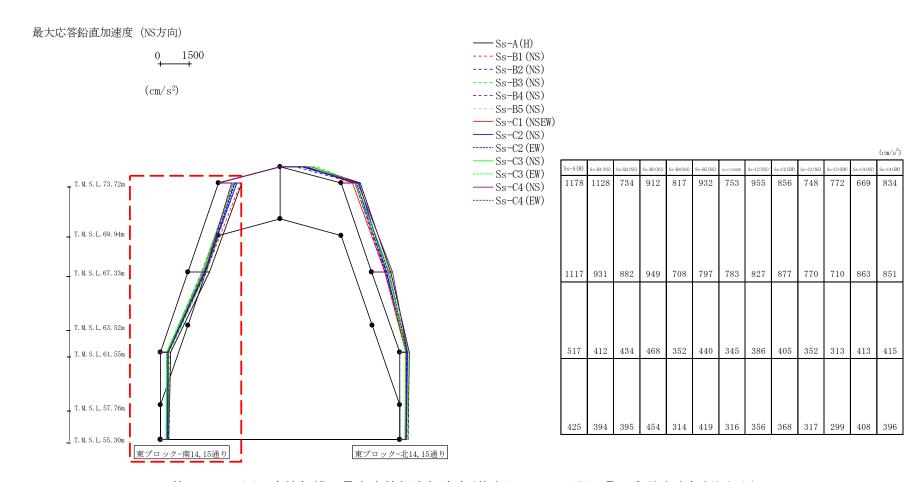

第4.2.1-14図 支持架構の最大応答せん断力(基本ケース, NS断面②, 有効応力解析)(1/4)

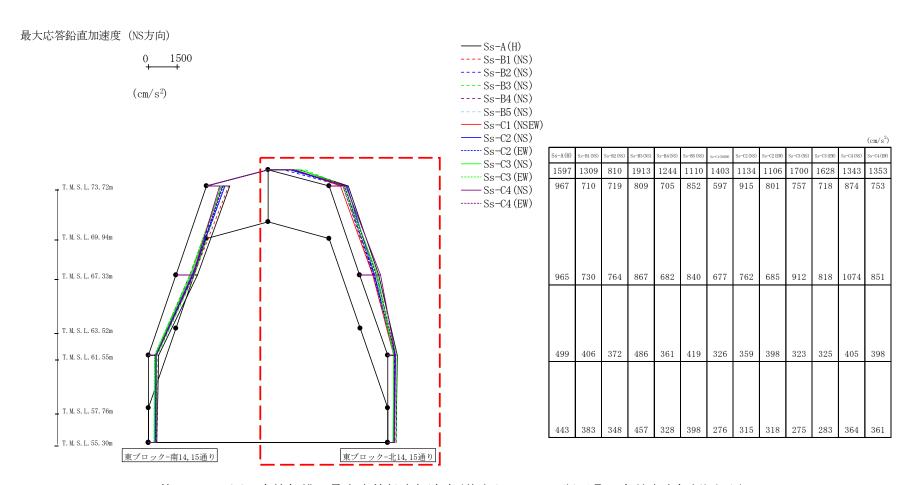
第4.2.1-14図 支持架構の最大応答せん断力(基本ケース, NS断面②, 有効応力解析)(2/4)

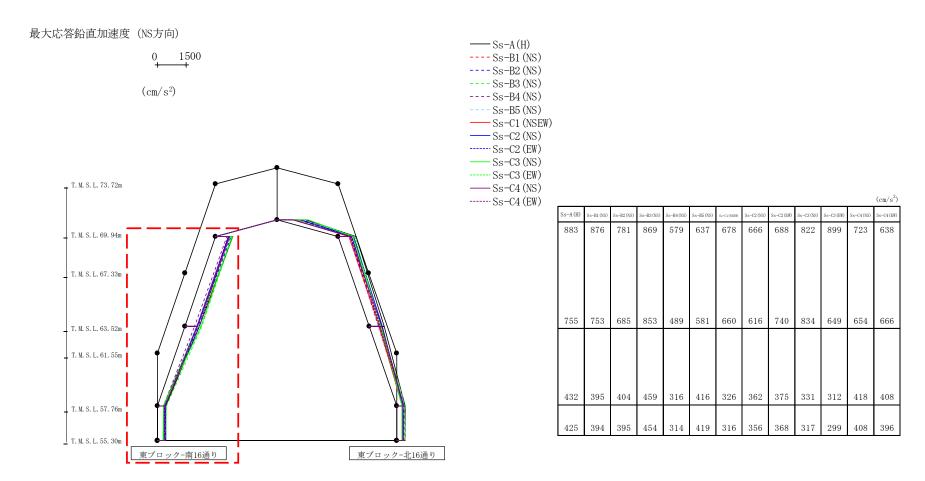

第4.2.1-14図 支持架構の最大応答せん断力(基本ケース, NS断面②, 有効応力解析)(3/4)

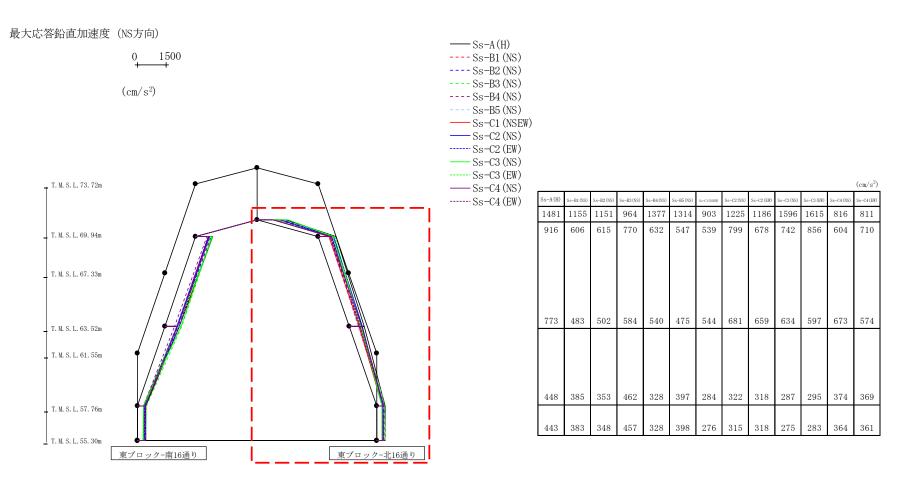

第4.2.1-14図 支持架構の最大応答せん断力(基本ケース, NS断面②, 有効応力解析)(4/4)

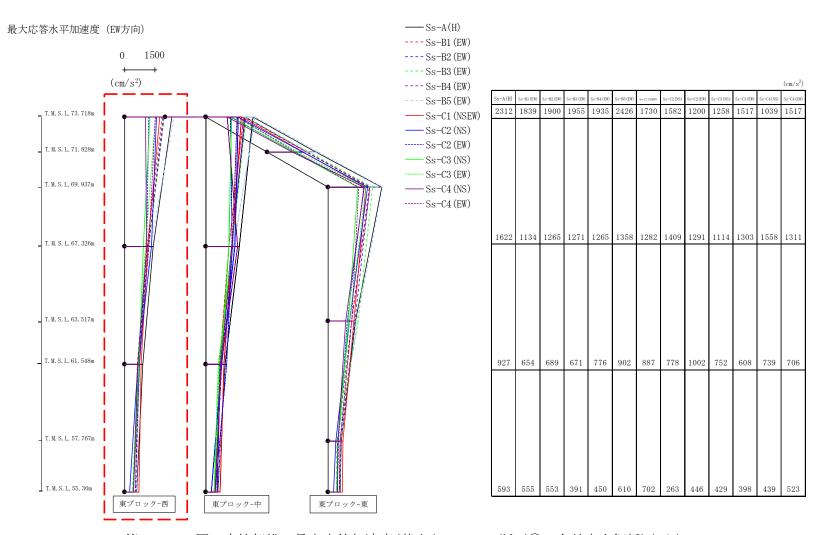
第4.2.1-15図 支持架構の最大応答曲げモーメント(基本ケース, NS断面②, 有効応力解析)(1/4)

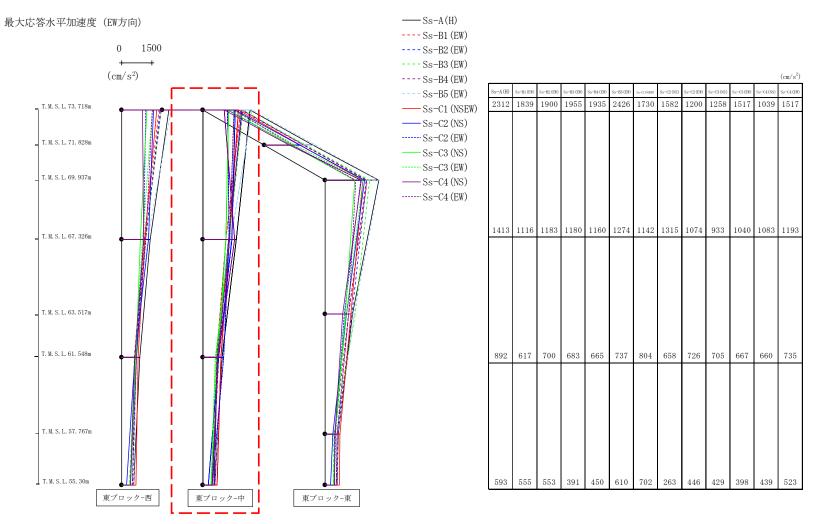

第4.2.1-15図 支持架構の最大応答曲げモーメント(基本ケース, NS断面②, 有効応力解析)(2/4)

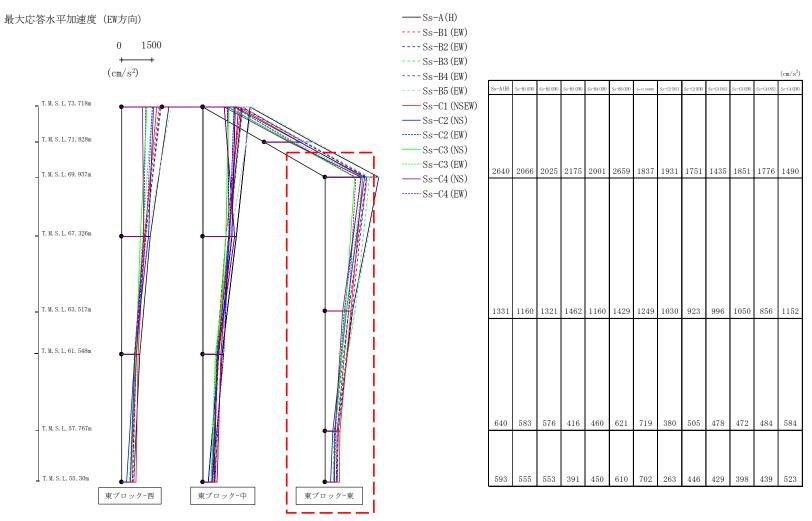

第4.2.1-15図 支持架構の最大応答曲げモーメント(基本ケース, NS断面②, 有効応力解析)(3/4)

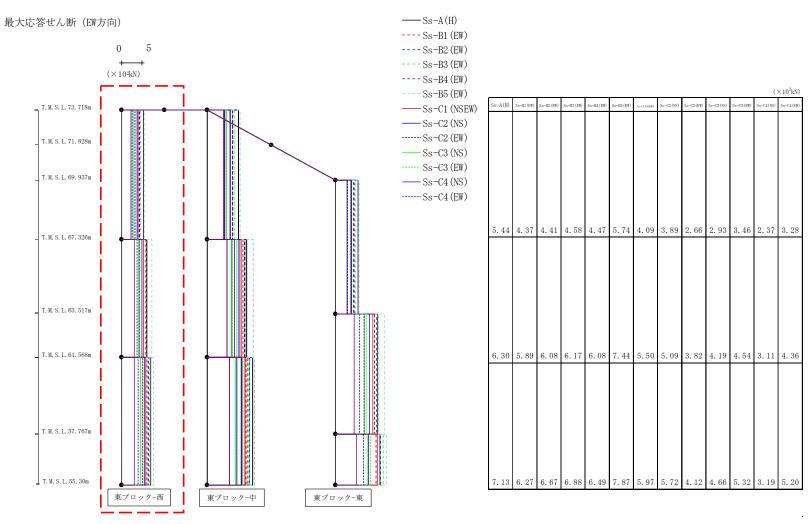

第4.2.1-15図 支持架構の最大応答曲げモーメント(基本ケース, NS断面②, 有効応力解析)(4/4)

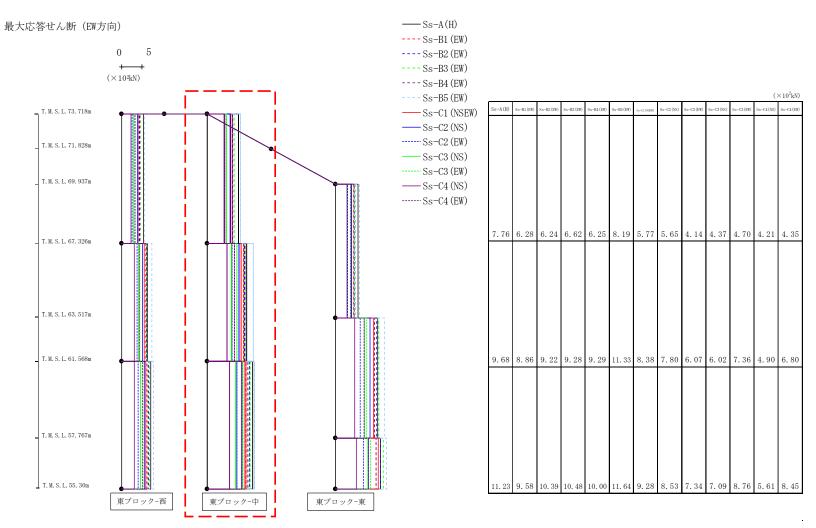

第4.2.1-16図 支持架構の最大応答鉛直加速度(基本ケース, NS断面②, 有効応力解析)(1/4)

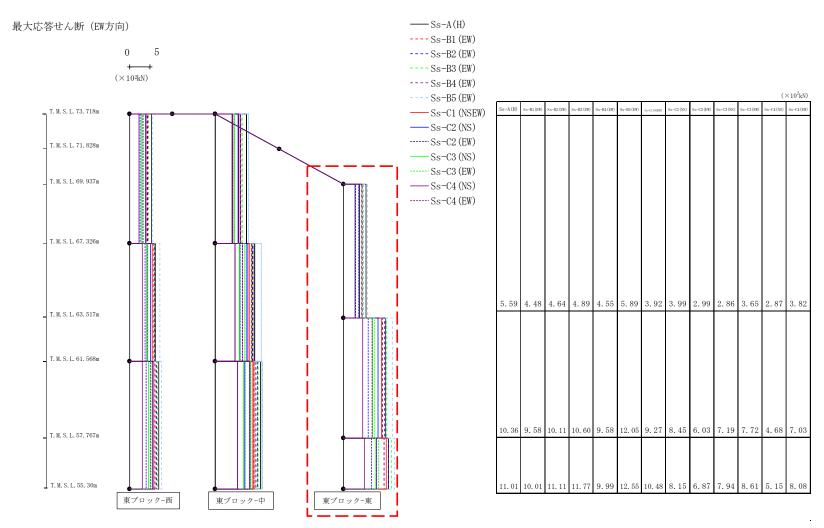

第4.2.1-16図 支持架構の最大応答鉛直加速度(基本ケース, NS断面②, 有効応力解析)(2/4)

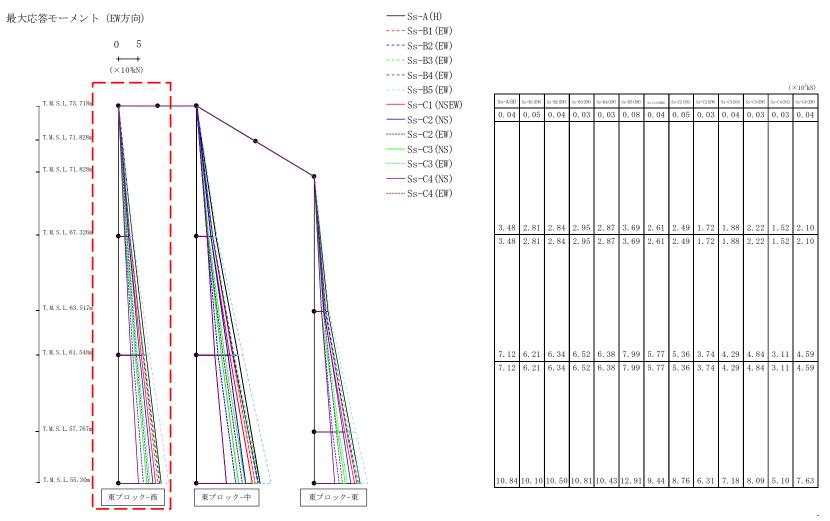

第4.2.1-16図 支持架構の最大応答鉛直加速度(基本ケース, NS断面②, 有効応力解析)(3/4)

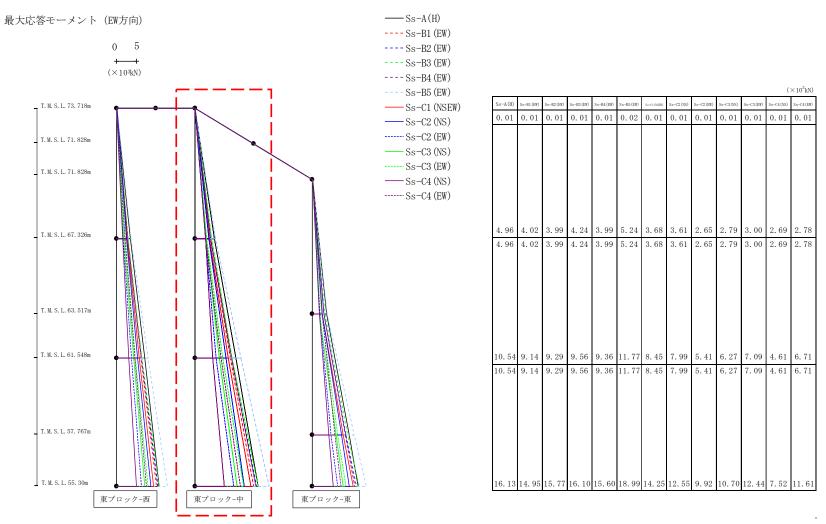

第4.2.1-16図 支持架構の最大応答鉛直加速度(基本ケース, NS断面②, 有効応力解析)(4/4)

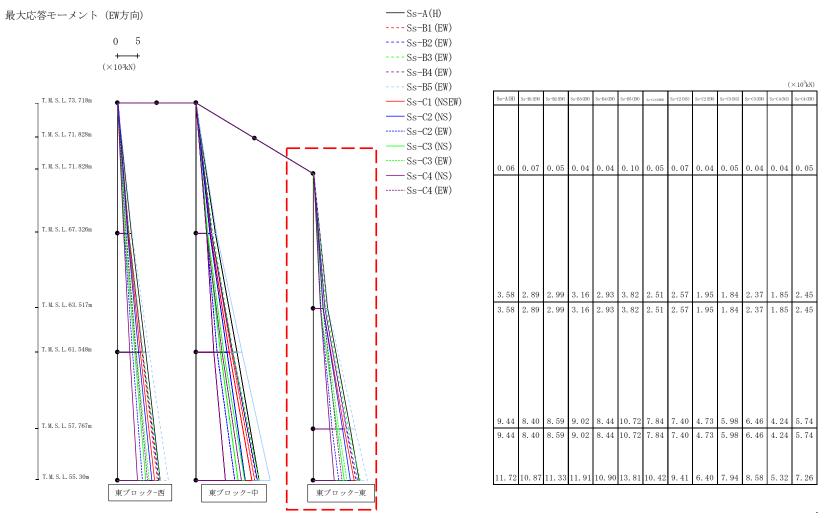

第4.2.1-17図 支持架構の最大応答加速度(基本ケース, EW断面③, 有効応力解析)(1/3)

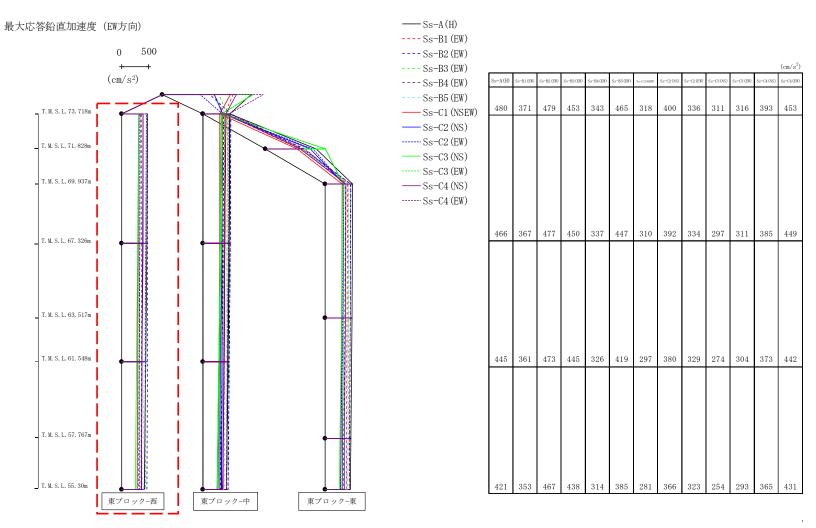

第4.2.1-17図 支持架構の最大応答加速度(基本ケース, EW断面③, 有効応力解析)(2/3)

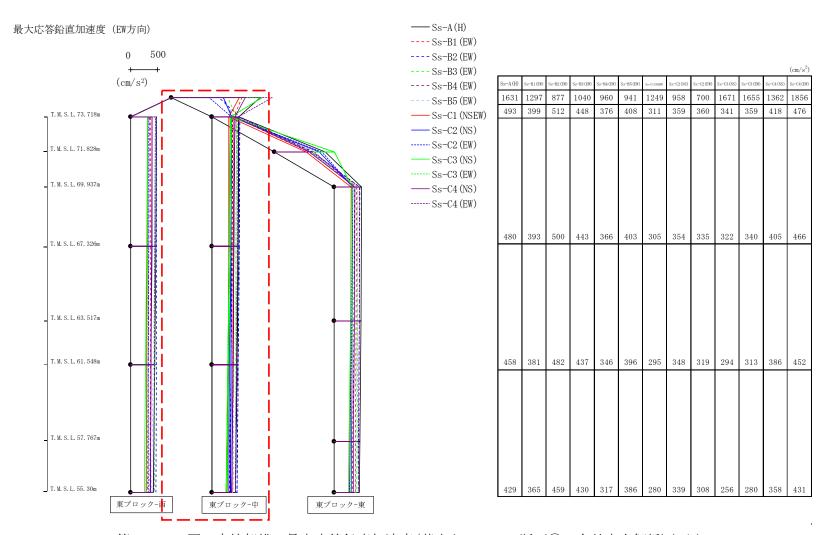

第4.2.1-17図 支持架構の最大応答加速度(基本ケース, EW断面③, 有効応力解析)(3/3)

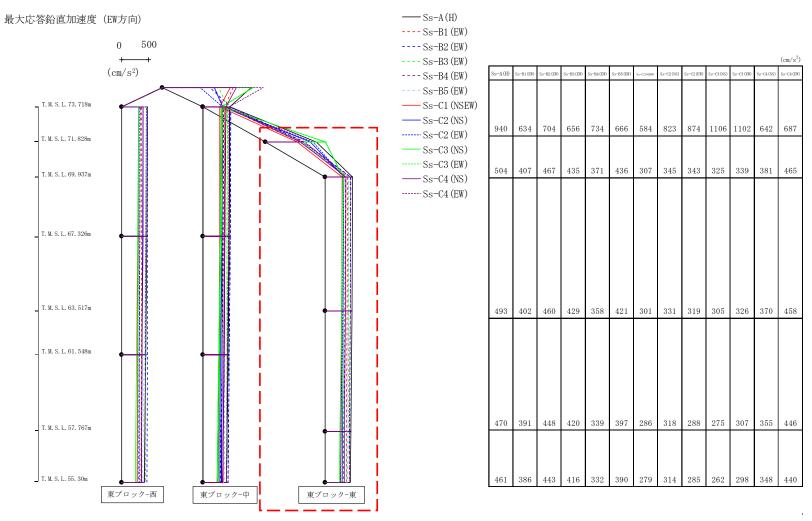

第4.2.1-18図 支持架構の最大応答せん断力(基本ケース, EW断面③, 有効応力解析)(1/3)

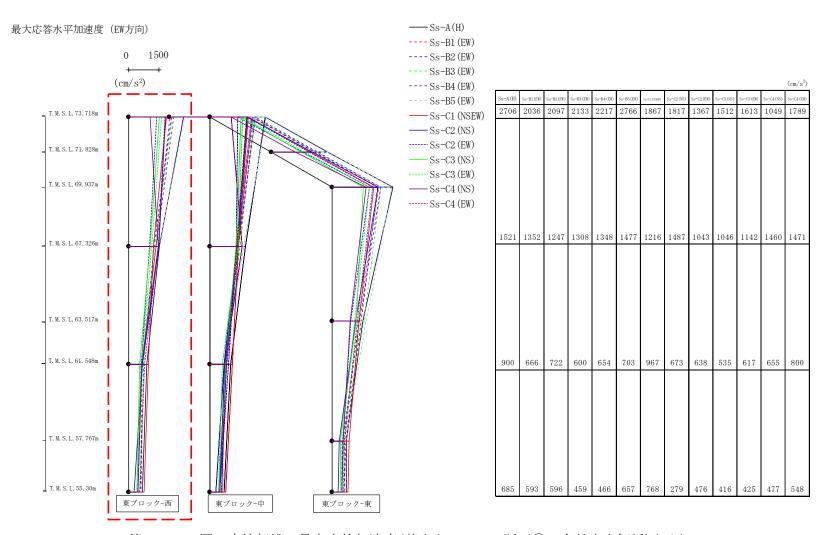

第4.2.1-18図 支持架構の最大応答せん断力(基本ケース, EW断面③, 有効応力解析)(2/3)

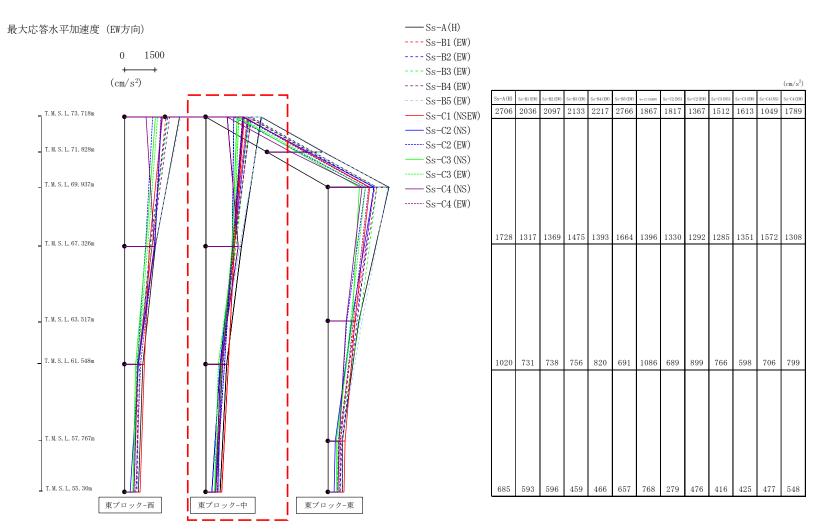

第4.2.1-18図 支持架構の最大応答せん断力(基本ケース, EW断面③, 有効応力解析)(3/3)

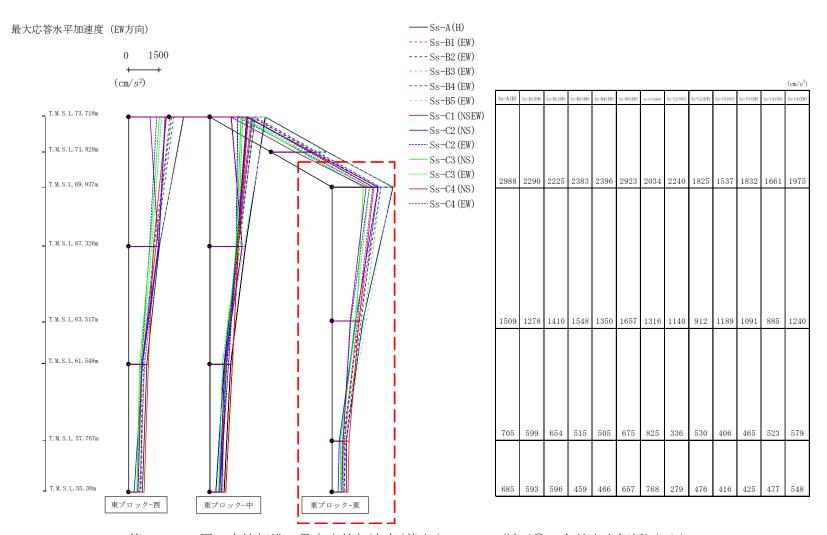

第4.2.1-19図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 有効応力解析)(1/3)

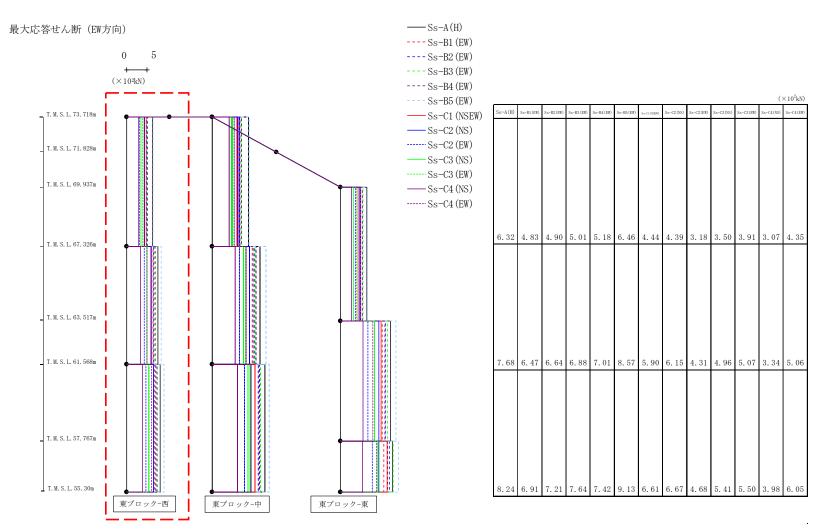

第4.2.1-19図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 有効応力解析)(2/3)

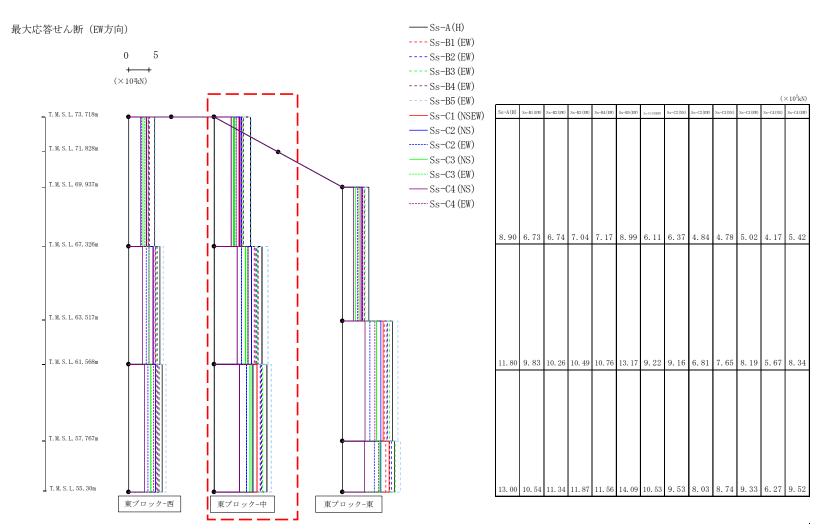

第4.2.1-19図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 有効応力解析)(3/3)

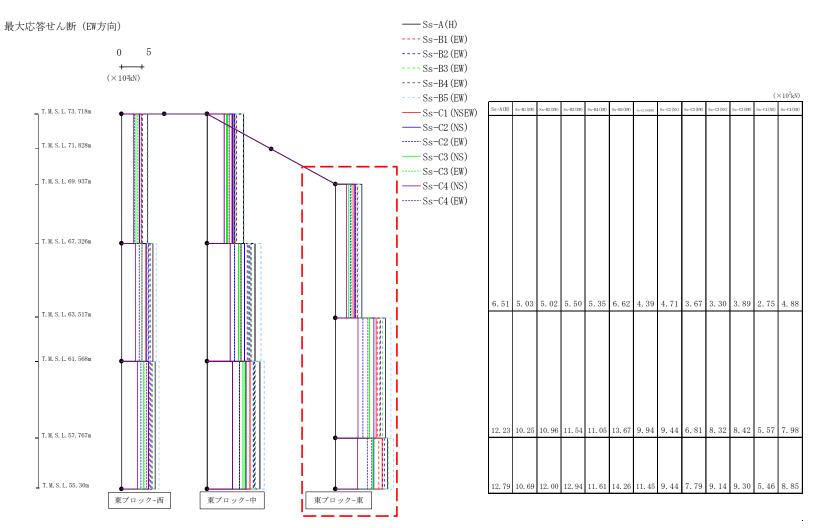

第4.2.1-20図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 有効応力解析)(1/3)

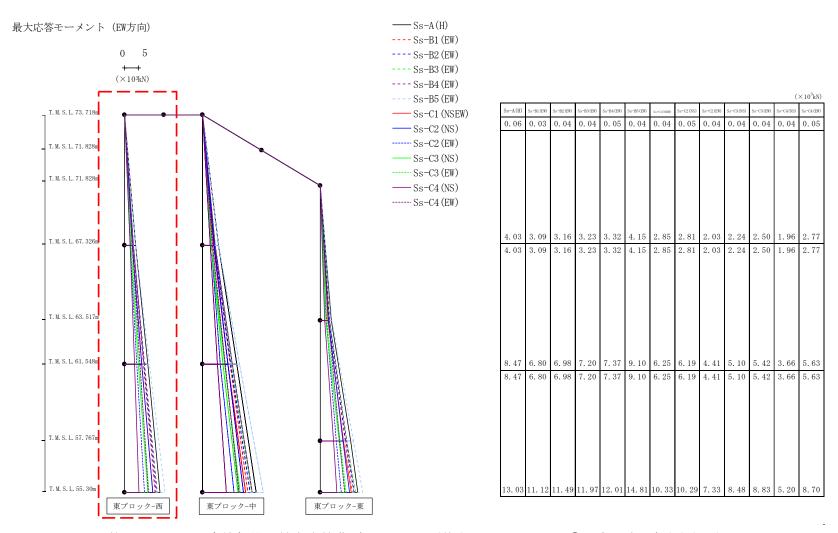

第4.2.1-20図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 有効応力解析)(2/3)

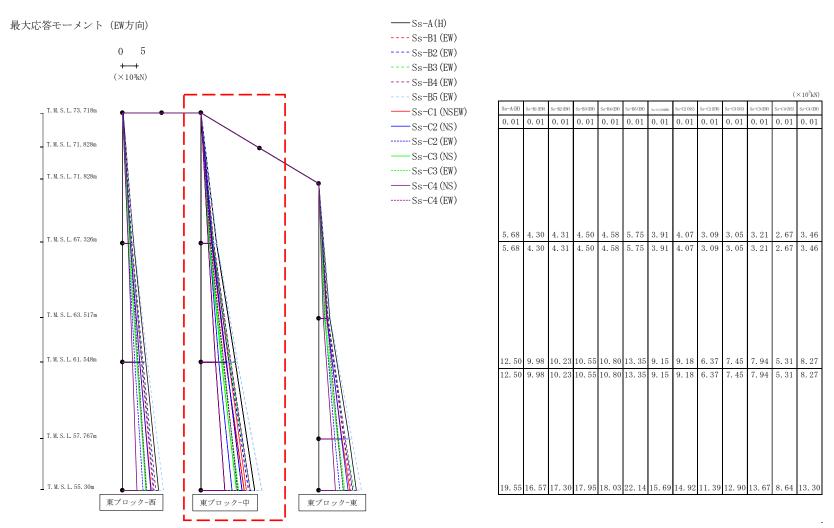

第4.2.1-20図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 有効応力解析)(3/3)


第4.2.1-21図 支持架構の最大応答加速度(基本ケース, EW断面④, 有効応力解析)(1/3)

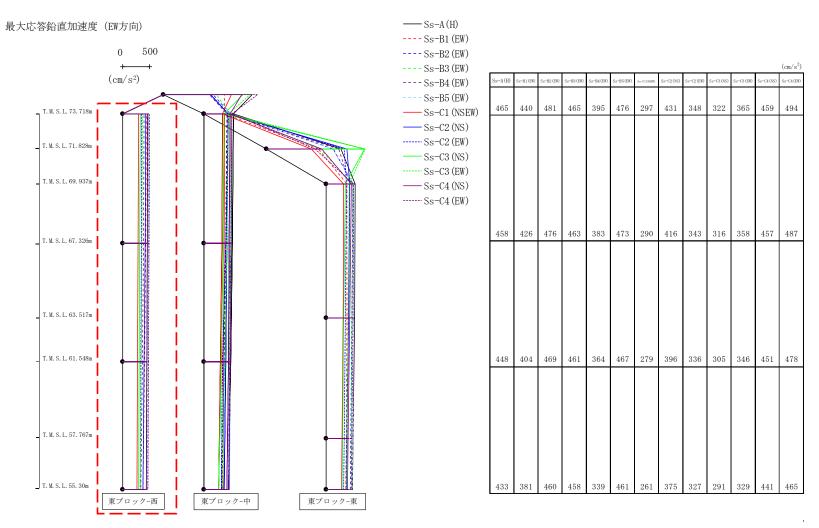

第4.2.1-21図 支持架構の最大応答加速度(基本ケース, EW断面④, 有効応力解析)(2/3)

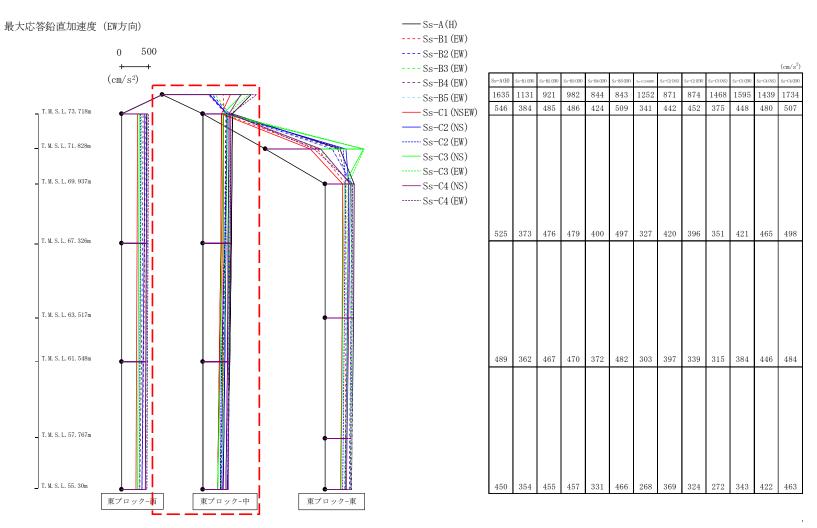

第4.2.1-21図 支持架構の最大応答加速度(基本ケース, EW断面④, 有効応力解析)(3/3)

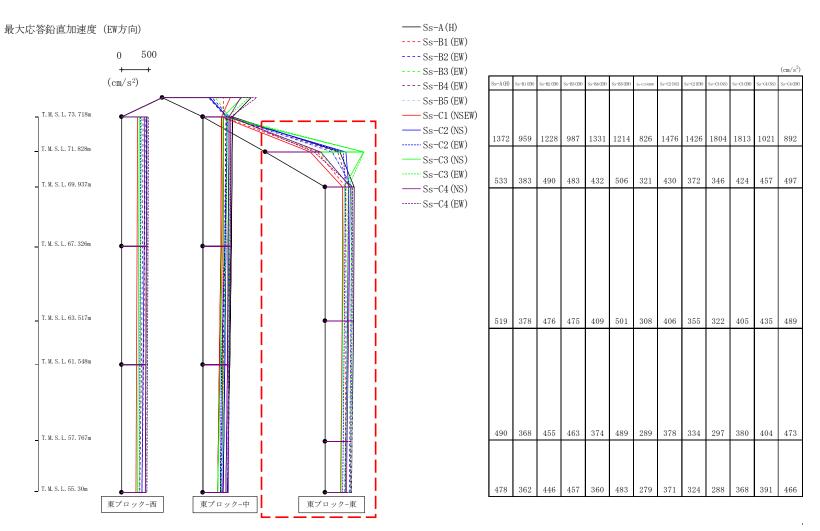

第4.2.1-22図 支持架構の最大応答せん断力(基本ケース, EW断面④, 有効応力解析)(1/3)


第4.2.1-22図 支持架構の最大応答せん断力(基本ケース, EW断面④, 有効応力解析)(2/3)


第4.2.1-22図 支持架構の最大応答せん断力(基本ケース, EW断面④, 有効応力解析)(3/3)


第4.2.1-23図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 有効応力解析)(1/3)


第4.2.1-23図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 有効応力解析)(2/3)


第4.2.1-23図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 有効応力解析)(3/3)

第4.2.1-24図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 有効応力解析)(1/3)

第4.2.1-24図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 有効応力解析)(2/3)

第4.2.1-24図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 有効応力解析)(3/3)

第4.2.1-5表 杭の最大応答値(基本ケース, NS方向, 有効応力解析)

(a) NS断面②

			ザモーメント		せん断力	
杭符号	地震動	杭番号	最大応答 曲げモーメント* (kN·m)	杭番号	最大応答 せん断力* (kN)	
	Ss-A(H)	F3-2	1568	F3-2	5225	
	Ss-B1 (NS)	F3-2	1257	F3-2	4191	
	Ss-B2(NS)	F3-2	1071	F3-2	3525	
	Ss-B3(NS)	F3-2	1828	F3-2	6091	
P2	Ss-B4(NS)	F4-1	930	F3-2	3012	
	Ss-B5(NS)	F3-2	1138	F3-2	3700	
	Ss-C1 (NSEW)	F3-2	1652	F3-2	5507	
	Ss-C2(NS)	F3-2	911	F3-2	3036	
	Ss-C2(EW)	F3-2	867	F3-2	2511	
	Ss-C3(NS)	F3-2	936	F3-2	3118	
	Ss-C3(EW)	F3-2	1355	F3-2	4517	
	Ss-C4(NS)	F4-1	1044	F4-1	3154	
	Ss-C4(EW)	F3-2	1220	F3-2	4066	
	F3-1	F3-2	F4-1	F4-2		
	 P2	 F2	P2	 P2		
		l	(杭番号位置)			

注記 *: 杭一本当たりの応答値を示す。

第4.2.1-6表 杭の最大応答値(基本ケース, EW方向, 有効応力解析)(1/2)

(a) EW断面③

		曲に	 ずモーメント		せん断力
杭符号	Ss-A (H) F4-3 573 Ss-B1 (EW) F4-3 460 Ss-B2 (EW) F4-3 458 Ss-B3 (EW) F4-3 520 Ss-B4 (EW) F4-3 419 Ss-B5 (EW) F4-3 644 Ss-C1 (NSEW) F4-3 518 Ss-C2 (NS) F4-3 279 Ss-C2 (EW) F4-3 301 Ss-C3 (NS) F4-3 449 Ss-C3 (EW) F4-3 391 Ss-C4 (EW) F4-3 577	杭番号	最大応答 せん断力* (kN)		
	Ss-A(H)	F4-3	573	F4-3	648
P2	Ss-B1(EW)	F4-3	460	F4-1	597
	Ss-B2(EW)	F4-3	458	F4-1	602
	Ss-B3(EW)	F4-3	520	F4-1	652
	Ss-B4(EW)	F4-3	419	F4-1	588
	Ss-B5(EW)	F4-3	644	F4-1	806
	Ss-C1(NSEW)	F4-3	518	F4-1	447
	Ss-C2(NS)	F4-3	279	F4-3	586
	Ss-C2(EW)	F4-3	301	F4-3	437
	Ss-C3(NS)	F4-3	449	F4-3	411
	Ss-C3(EW)	F4-3	383	F4-1	470
	Ss-C4(NS)	F4-3	391	F4-3	422
	Ss-C4(EW)	F4-3	577	F4-3	471
	P			F4-2 F4	P2
		(┗ ─ ─ ─ (杭番号位置)		

注記 *: 杭一本当たりの応答値を示す。

第4.2.1-6表 杭の最大応答値(基本ケース, EW方向, 有効応力解析)(2/2)

(b) EW断面④

		曲に	 ずモーメント		 せん断力
杭符号	地震動	杭番号	最大応答 曲げモーメント* (kN·m)	杭番号	最大応答 せん断力* (kN)
	Ss-A(H)	F3-1	455	F3-2	1346
	Ss-B1(EW)	F3-2	297	F3-2	991
	Ss-B2(EW)	F3-2	318	F3-2	1061
	Ss-B3(EW)	F3-1	399	F3-2	1014
	Ss-B4(EW)	F3-1	366	F3-2	1169
P2	Ss-B5(EW)	F3-2	421	F3-2	1403
	Ss-C1(NSEW)	F3-1	512	F3-1	823
	Ss-C2(NS)	F3-2	310	F3-2	1034
	Ss-C2(EW)	F3-2	250	F3-2	833
	Ss-C3(NS)	F3-2	245	F3-2	817
	Ss-C3(EW)	F3-1	302	F3-2	757
	Ss-C4(NS)	F3-2	272	F3-2	906
	Ss-C4(EW)	F3-2	319	F3-2	1065
	F1-1 F1-2 P1	F1-3	F3-1	F3-2 F3	3-3 P2
		((杭番号位置)		

注記 *: 杭一本当たりの応答値を示す。

第4.2.1-7表 基礎位置における地盤変位(NS方向, 有効応力解析)

(a) NS断面②

地震動	地盤変位(mm)
地展到	基本ケース
Ss-A(H)	8. 10
Ss-B1 (EW)	5. 01
Ss-B2(EW)	5. 88
Ss-B3(EW)	7.46
Ss-B4(EW)	5. 72
Ss-B5(EW)	5. 11
Ss-C1(NSEW)	9.82
Ss-C2 (NS)	3. 20
Ss-C2(EW)	4. 25
Ss-C3 (NS)	4.83
Ss-C3(EW)	6.09
Ss-C4 (NS)	5. 41
Ss-C4(EW)	7. 40

第4.2.1-8表 基礎位置における地盤変位(EW方向, 有効応力解析)

(a) EW断面③

地雷乱	地盤変位(mm)
地震動	基本ケース
Ss-A(H)	2.37
Ss-B1 (EW)	2.14
Ss-B2 (EW)	2.35
Ss-B3 (EW)	2.09
Ss-B4 (EW)	1.60
Ss-B5 (EW)	2.03
Ss-C1 (NSEW)	3. 11
Ss-C2 (NS)	1.00
Ss-C2 (EW)	1.51
Ss-C3 (NS)	1.32
Ss-C3 (EW)	1.38
Ss-C4 (NS)	1.49
Ss-C4 (EW)	2.03

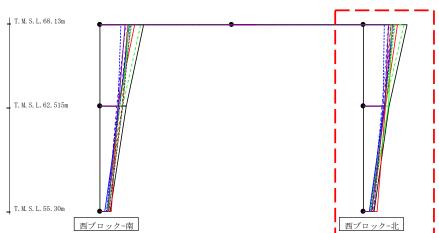
(b) EW断面④

地震動	地盤変位(mm)
地長期	基本ケース
Ss-A(H)	3. 09
Ss-B1 (EW)	2.76
Ss-B2(EW)	2. 68
Ss-B3(EW)	2.87
Ss-B4(EW)	2. 24
Ss-B5(EW)	3. 07
Ss-C1(NSEW)	4. 36
Ss-C2 (NS)	1. 13
Ss-C2(EW)	1.85
Ss-C3 (NS)	1.75
Ss-C3(EW)	2.09
Ss-C4 (NS)	2. 17
Ss-C4(EW)	2.66

4.2.2 西ブロックの地震応答解析結果

(1) 全応力解析

全応力解析結果のうち,支持架構の最大応答値(加速度,せん断力,曲げモーメント)を第4.2.2-1図~第4.2.2-12図に,杭の最大応答値(曲げモーメント及びせん断力)を第4.2.2-1表~第4.2.2-2表に,基礎位置における地盤変位*を第4.2.2-3表及び第4.2.2-4表に示す。

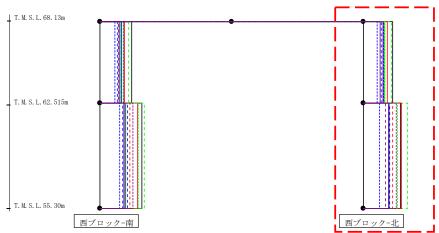

注記 *:応答変位は、改良地盤下端と基礎上端との相対変位とし、各レベルで の節点変位の平均値として算定する。最大応答変位は、応答変位の時 刻歴における最大値を示す。

⊥ T. M. S. L. 68. 13m		
_ T. M. S. L. 62, 515m		
T. M. S. L. 55. 30m	▲ ■ 西ブロック-南	★-M 西ブロック−北

												(cm/s^2)
Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2(NS)	Ss-C2(EW)	Ss-C3 (NS)	Ss-C3 (EW)	Ss-C4 (NS)	Ss-C4 (EW)
3029	1912	1770	2808	1923	1721	2385	2034	1455	1983	2202	1744	2111
1828	1517	1153	1577	1344	1251	1236	1354	1238	1577	1355	1266	1560
686	456	537	574	597	456	773	319	436	543	464	517	605

第4.2.2-1図 支持架構の最大応答加速度(基本ケース, NS断面①, 全応力解析)(1/2)

												(cm/s^2)
Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2(NS)	Ss-C2(EW)	Ss-C3 (NS)	Ss-C3 (EW)	Ss-C4 (NS)	Ss-C4 (EW)
3029	1912	1770	2808	1923	1721	2385	2034	1455	1983	2202	1744	2111
1803	1480	1306	1497	1389	1319	1537	1443	1391	1727	1511	1479	1461
758	555	616	582	691	549	959	428	484	556	483	588	710


第4.2.2-1図 支持架構の最大応答加速度(基本ケース, NS断面①, 全応力解析)(2/2)

<u> 1</u> T. M. S. L. 68. 13m			
T. M. S. L. 62, 515m		•	
T. M. S. L. 55. 30m	西ブロック-南		西ブロックー北

											(.	×10°kN)
Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2(NS)	Ss-C2(EW)	Ss-C3 (NS)	Ss-C3 (EW)	Ss-C4 (NS)	Ss-C4 (EW)
3.06	1.96	1.67	2.74	1. 77	1.86	2. 33	2.04	1.43	1.96	2. 22	1.81	2.20
3. 99	2.86	2.62	4. 22	2. 19	2. 48	3. 61	2. 29	1.88	2. 48	3. 64	2.42	3. 13

第4.2.2-2図 支持架構の最大応答せん断力(基本ケース, NS断面①, 全応力解析)(1/2)

120

											(:	× 10 ³ kN)
Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2(NS)	Ss-C2(EW)	Ss-C3(NS)	Ss-C3 (EW)	Ss-C4 (NS)	Ss-C4 (EW)
2.82	1. 93	1. 75	2. 72	1. 92	1. 68	2. 29	1. 90	1.35	2.01	2. 07	1.62	1.94
3. 59	2. 81	2. 54	4. 25	2. 13	2. 50	3. 67	2. 45	1.59	2.46	3. 31	2.46	3. 15

第4.2.2-2図 支持架構の最大応答せん断力(基本ケース, NS断面①, 全応力解析)(2/2)

 $(\times 10^3 \text{kN} \cdot \text{m})$

⊥ T. M. S. L. 68. 13m		•	•
_ T. M. S. L. 62. 515m			
1. M. S. L. 02. 515m			
T. M. S. L. 55. 30m	西ブロック-南		西ブロックー北

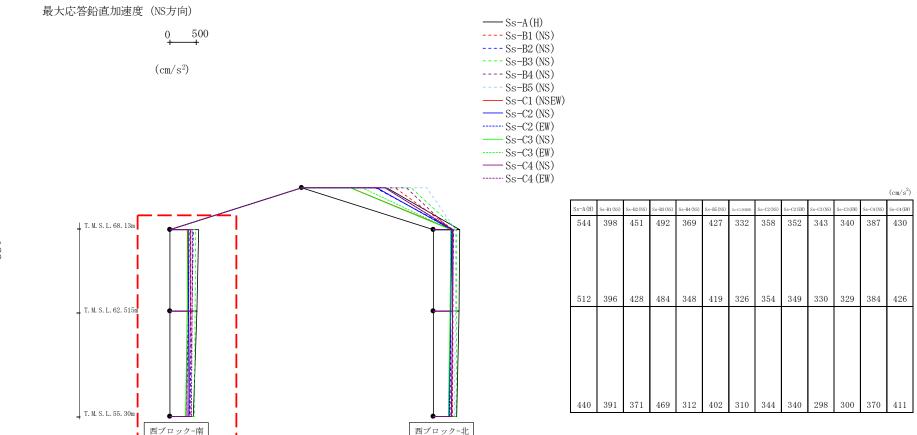
121

Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2(NS)	Ss-C2(EW)	Ss-C3(NS)	Ss-C3(EW)	Ss-C4 (NS)	Ss-C4 (EW)
1.13	0.64	1.02	0.88	0.84	0.52	0.98	0.93	0.80	0.86	0.89	0.61	0.88
17 35	11. 26	9 59	16. 04	9 90	10.75	13.06	11.66	8 44	11 36	13 15	10. 56	12 81
17.35	11.26	9.59	16.04	9.90	10.75	13.06	11.66	8.44	11.36	13. 15	10.56	12.81
45.31	31.05	27.94	46.09	23. 53	28. 16	39.03	25.67	21.17	25.82	39. 36	27.46	31.27

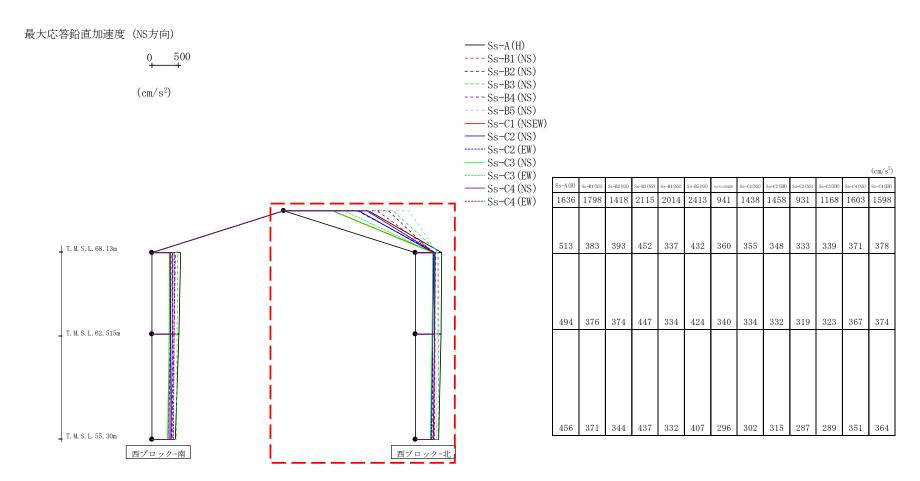
第4.2.2-3図 支持架構の最大応答曲げモーメント(基本ケース, NS断面①, 全応力解析)(1/2)

122

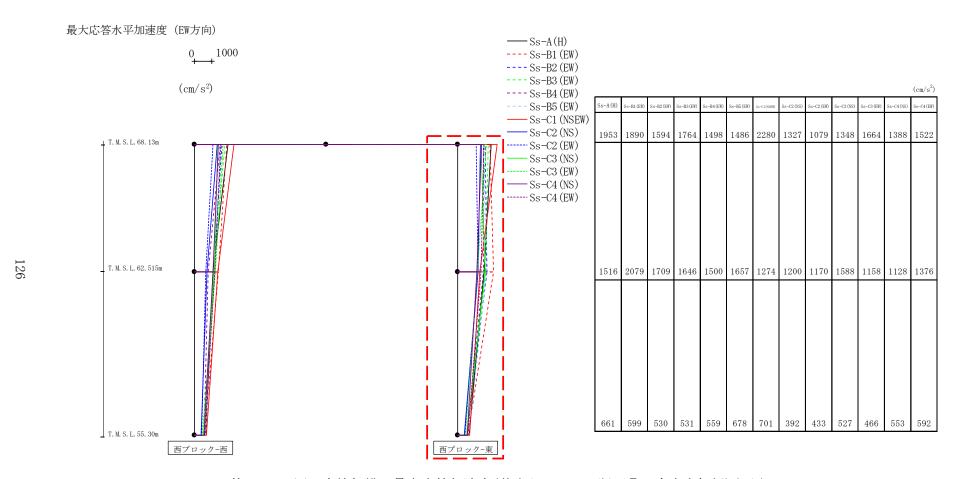
T. M. S. L. 55. 30m


西ブロック-南

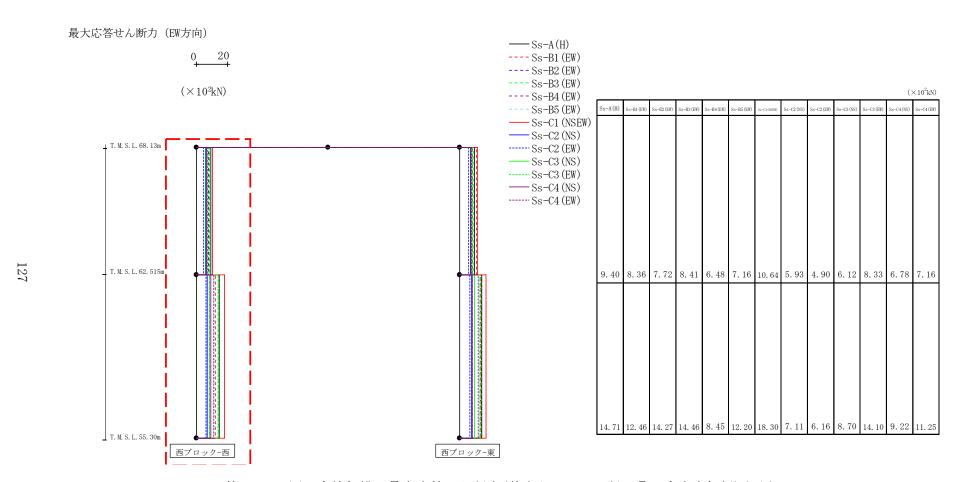
第4.2.2-3図 支持架構の最大応答曲げモーメント(基本ケース, NS断面①, 全応力解析)(2/2)


西ブロック-北

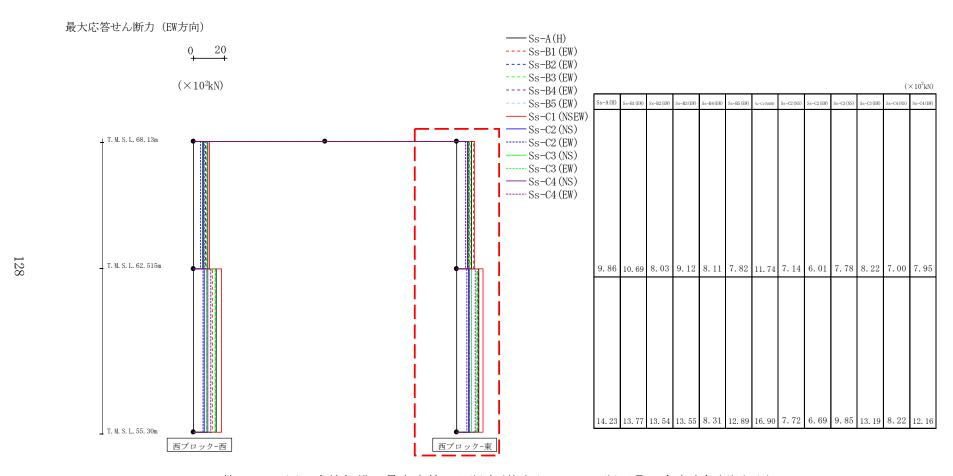
 $(\times 10^3 kN \cdot m)$

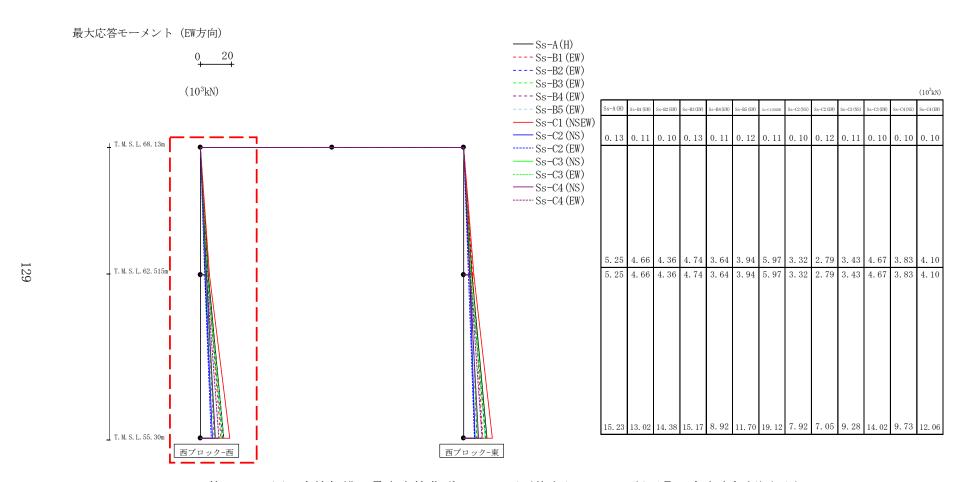


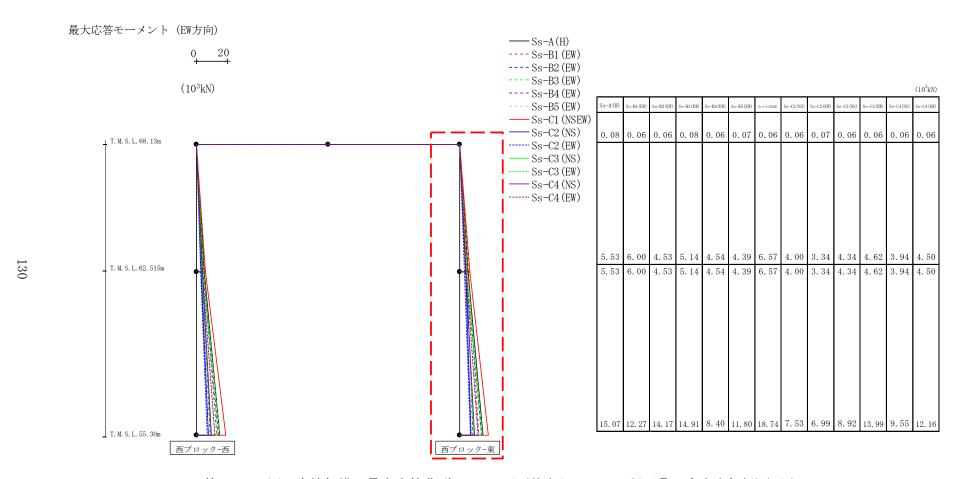
第4.2.2-4図 支持架構の最大応答鉛直加速度(基本ケース, NS断面①, 全応力解析)(1/2)

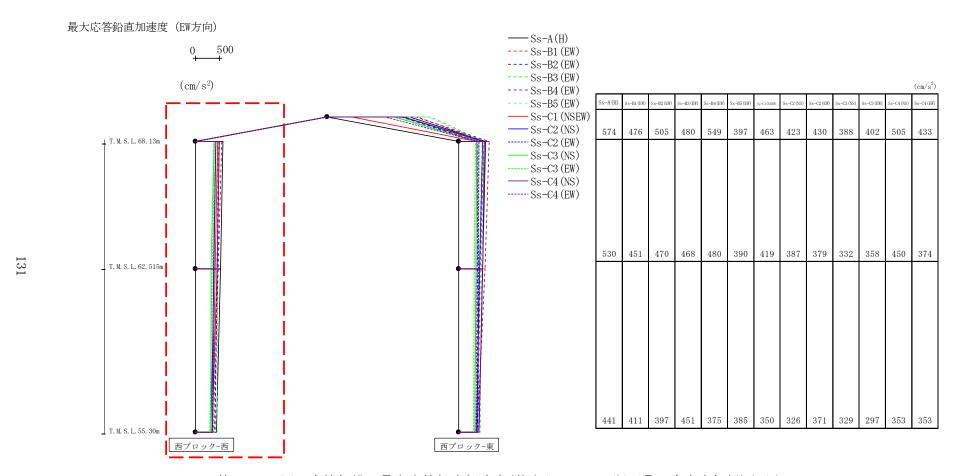


第4.2.2-4図 支持架構の最大応答鉛直加速度(基本ケース, NS断面①, 全応力解析)(2/2)

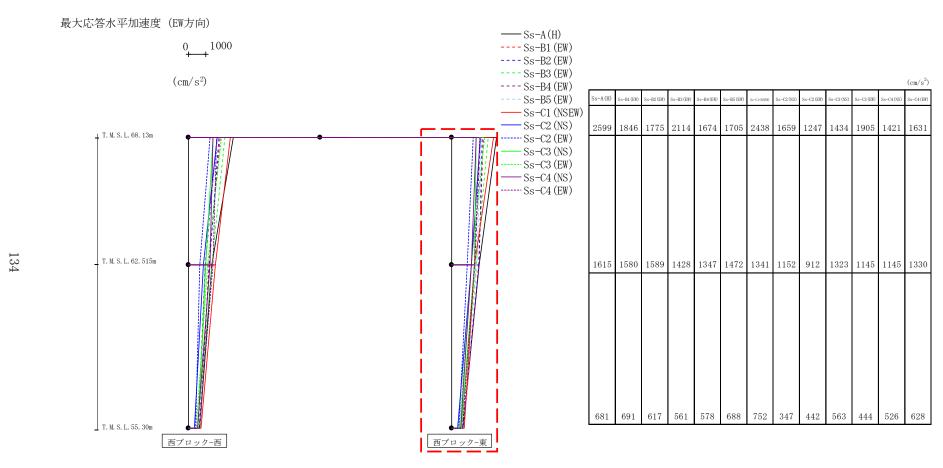

第4.2.2-5図 支持架構の最大応答加速度(基本ケース, EW断面③, 全応力解析)(1/2)

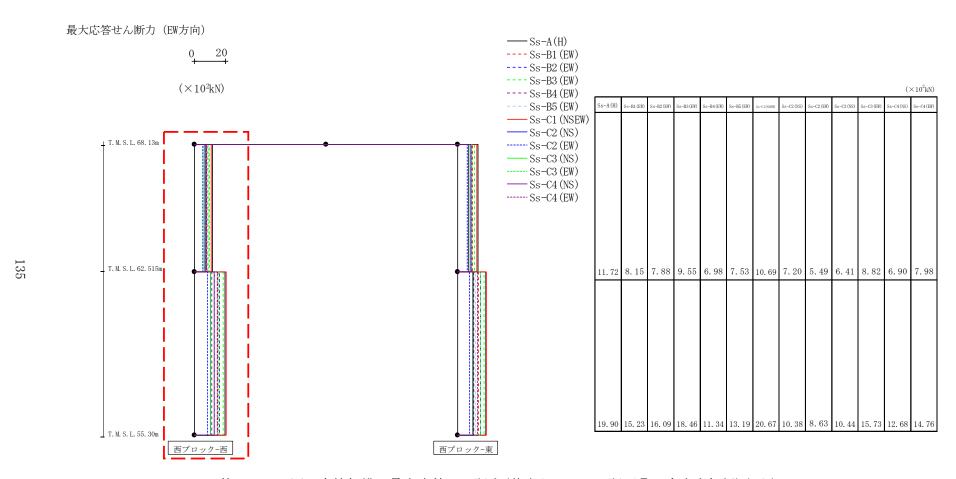

第4.2.2-5図 支持架構の最大応答加速度(基本ケース, EW断面③, 全応力解析)(2/2)


第4.2.2-6図 支持架構の最大応答せん断力(基本ケース, EW断面③, 全応力解析)(1/2)

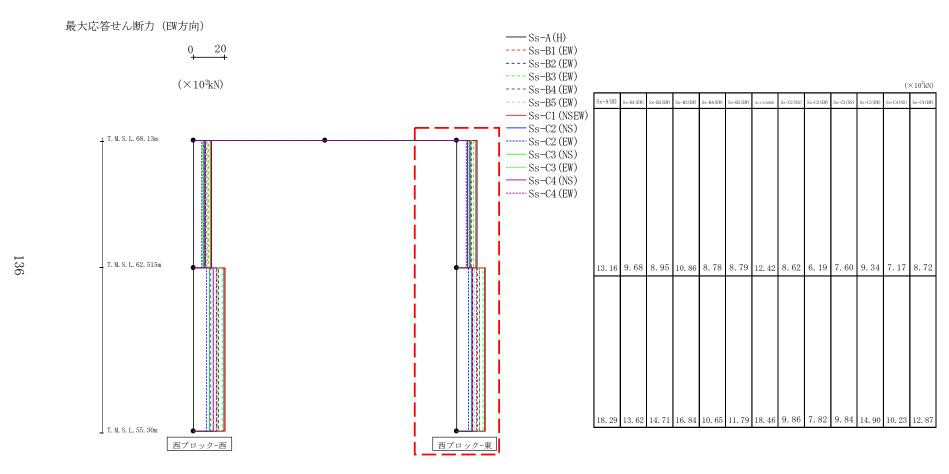

第4.2.2-6図 支持架構の最大応答せん断力(基本ケース, EW断面③, 全応力解析)(2/2)

第4.2.2-7図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 全応力解析)(1/2)

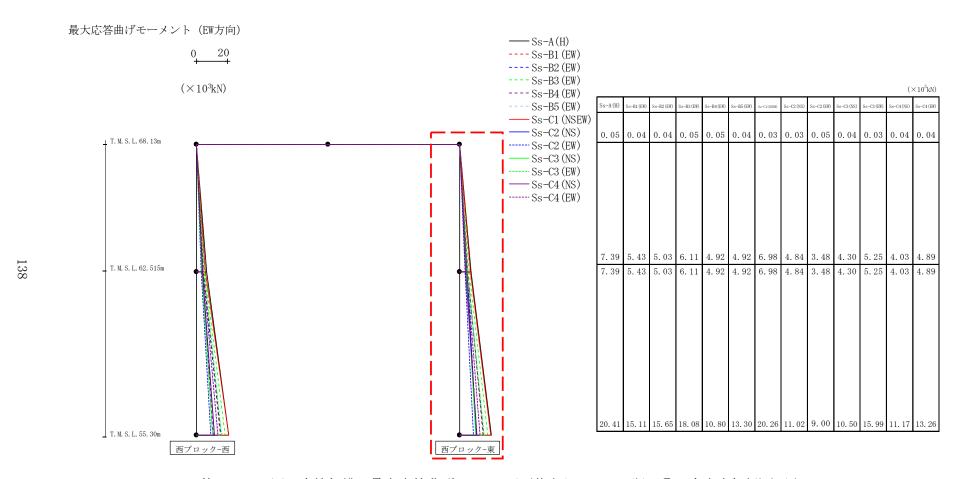

第4.2.2-7図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 全応力解析)(2/2)


第4.2.2-8図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 全応力解析)(1/2)

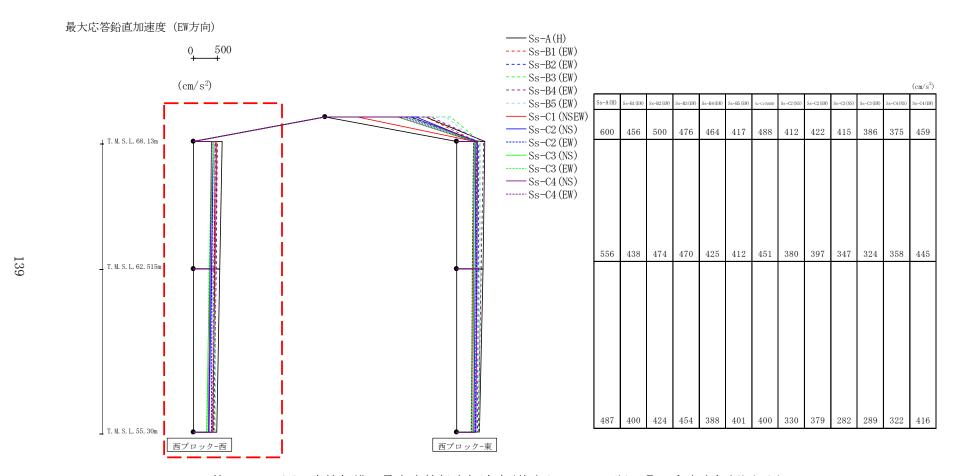
第4.2.2-8図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 全応力解析)(2/2)


第4.2.2-9図 支持架構の最大応答加速度(基本ケース, EW断面④, 全応力解析)(1/2)

第4.2.2-9図 支持架構の最大応答加速度(基本ケース, EW断面④, 全応力解析)(2/2)



第4.2.2-10図 支持架構の最大応答せん断力(基本ケース, EW断面④, 全応力解析)(1/2)



第4.2.2-10図 支持架構の最大応答せん断力(基本ケース, EW断面④, 全応力解析)(2/2)

第4.2.2-11図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 全応力解析)(1/2)

第4.2.2-11図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 全応力解析)(2/2)

第4.2.2-12図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 全応力解析)(1/2)

第4.2.2-12図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 全応力解析)(2/2)

第4.2.2-1表 杭の最大応答値(基本ケース, NS方向, 全応力解析)

(a) NS断面①

		(a) NS的面①				
		曲に	 ずモーメント	せん断力			
杭符号	地震動	杭番号	最大応答 曲げモーメント* (kN·m)	杭番号	最大応答 せん断力* (kN)		
	Ss-A(H)	F2-2	1104	F2-1	3573		
	Ss-B1(NS)	F2-1	787	F2-1	2625		
	Ss-B2(NS)	F1-1	747	F2-1	2486		
	Ss-B3(NS)	F2-1	1307	F2-1	4356		
	Ss-B4(NS)	F1-1	766	F2-1	2050		
	Ss-B5(NS)	F2-1	710	F2-1	2367		
P1	Ss-C1(NSEW)	F1-1	1391	F2-1	2524		
	Ss-C2(NS)	F2-1	559	F2-1	1863		
	Ss-C2(EW)	F2-1	620	F2-1	1673		
	Ss-C3(NS)	F2-1	743	F2-1	2332		
	Ss-C3(EW)	F2-1	996	F2-1	3318		
	Ss-C4(NS)	F2-1	803	F2-1	2530		
	Ss-C4(EW)	F2-2	886	F2-1	2817		
	F1-1 F1-2	F1-3	F2-	·1 F2	2-2		
	$ P_1 $	1 P1		P1	P1		
			(杭番号位置)				

注記 *: 杭一本当たりの応答値を示す。

第4.2.2-2表 杭の最大応答値(基本ケース, EW方向, 全応力解析)(1/2)

(a) EW断面③

		曲り	_{ゲモーメント}	ન	 せん断力	
杭符号	地震動	杭番号	最大応答 曲げモーメント* (kN·m)	杭番号	最大応答 せん断力* (kN)	
	Ss-A(H)	F2-3	1125	F2-3	1610	
	Ss-B1(EW)	F2-3	1063	F2-3	1598	
	Ss-B2(EW)	F2-3	829	F2-3	1648	
	Ss-B3 (EW)	F2-3	1007	F2-3	1738	
	Ss-B4(EW)	F2-3	772	F2-3	1263	
	Ss-B5 (EW)	F2-3	1104	F2-3	1699	
P1	Ss-C1 (NSEW)	F2-3	1460	F2-3	2384	
	Ss-C2(NS)	F2-3	769	F2-3	958	
	Ss-C2 (EW)	F2-3	830	F2-3	750	
	Ss-C3(NS)	F2-3	845	F2-3	1011	
	Ss-C3 (EW)	F2-3	1006	F2-3	1926	
	Ss-C4(NS)	F2-3	850	F2-3	1098	
	Ss-C4(EW)	F2-3	886	F2-3	1505	
	Ss-A(H)	F2-1	582	F2-1	1474	
	Ss-B1(EW)	F2-1	478	F2-1	1296	
	Ss-B2(EW)	F2-1	540	F2-1	1250	
	Ss-B3(EW)	F2-1	502	F2-1	1488	
	Ss-B4(EW)	F2-1	401	F2-1	881	
	Ss-B5(EW)	F2-1	567	F2-1	1311	
P2	Ss-C1 (NSEW)	F2-1	995	F2-1	2180	
	Ss-C2(NS)	F2-1	320	F2-1	827	
	Ss-C2(EW)	F2-1	344	F2-1	642	
	Ss-C3(NS)	F2-1	443	F2-1	953	
	Ss-C3(EW)	F2-1	612	F2-1	1430	
	Ss-C4(NS)	F2-1	466	F2-1	788	
	Ss-C4(EW)	F2-1	423	F2-1	1070	
	F2-1 F2-	2 F2-3 P1 P1	F4-1	F4-2 F	4-3 P2	
			(杭番号位置)			

注記 *: 杭一本当たりの応答値を示す。

第4.2.1-2表 杭の最大応答値(基本ケース, EW方向, 全応力解析)(2/2)

(b) EW断面④

		曲に	 げモーメント	J	 せん断力
杭符号	地震動		最大応答		最大応答
机付方	地長期	杭番号	曲げモーメント*	杭番号	せん断力*
			(kN⋅m)		(kN)
	Ss-A(H)	F1-3	882	F1-3	997
	Ss-B1(EW)	F1-3	689	F1-3	769
	Ss-B2(EW)	F1-3	715	F1-3	916
	Ss-B3(EW)	F1-3	647	F1-3	896
	Ss-B4(EW)	F1-3	656	F1-3	823
	Ss-B5(EW)	F1-3	629	F1-3	789
P1	Ss-C1(NSEW)	F1-3	958	F1-3	833
	Ss-C2(NS)	F1-3	428	F1-3	635
	Ss-C2(EW)	F1-3	551	F1-3	684
	Ss-C3(NS)	F1-3	525	F1-3	684
	Ss-C3 (EW)	F1-3	681	F1-3	747
	Ss-C4(NS)	F1-3	637	F1-3	747
	Ss-C4(EW)	F1-3	746	F1-3	847
	Ss-A(H)	F1-1	532	F1-1	787
	Ss-B1(EW)	F1-1	428	F1-1	544
	Ss-B2(EW)	F1-1	556	F1-1	464
	Ss-B3 (EW)	F1-1	488	F1-1	632
	Ss-B4(EW)	F1-1	456	F1-1	434
	Ss-B5(EW)	F1-1	485	F1-1	473
P2	Ss-C1 (NSEW)	F1-1	598	F1-1	544
	Ss-C2(NS)	F1-1	276	F1-1	405
	Ss-C2(EW)	F1-1	438	F1-1	386
	Ss-C3 (NS)	F1-1	361	F1-1	363
	Ss-C3(EW)	F1-1	362	F1-1	627
	Ss-C4(NS)	F1-1	428	F1-1	399
	Ss-C4(EW)	F1-1	543	F1-1	584
			<u> </u>	<u>l</u>	
	F1-1 F1-	-2 F1-3	F3-1	F3-2	F3-3
					T
			; I		
	1		1		
	;	P1 P1			
	'	11 11			
	P2		P2	P2	P2
	'		J		
			(杭番号位置)		
		<u> </u>			

注記 *: 杭一本当たりの応答値を示す。

第4.2.2-3表 基礎位置における地盤変位(NS方向,全応力解析)

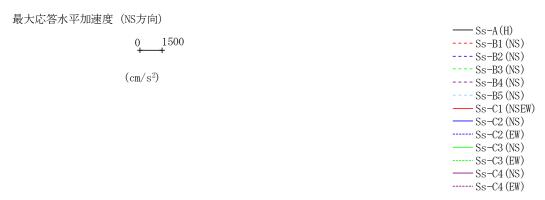
(a) NS断面①

批電制	地盤変位(mm)
地震動	基本ケース
Ss-A(H)	6. 02
Ss-B1 (NS)	3. 79
Ss-B2 (NS)	4. 14
Ss-B3 (NS)	5. 63
Ss-B4 (NS)	3. 76
Ss-B5 (NS)	3. 58
Ss-C1(NSEW)	5. 74
Ss-C2 (NS)	2. 21
Ss-C2(EW)	3. 30
Ss-C3 (NS)	3. 71
Ss-C3(EW)	4.80
Ss-C4 (NS)	4. 12
Ss-C4(EW)	5. 41

第4.2.2-4表 基礎位置における地盤変位(EW方向,全応力解析)

(a) EW断面③

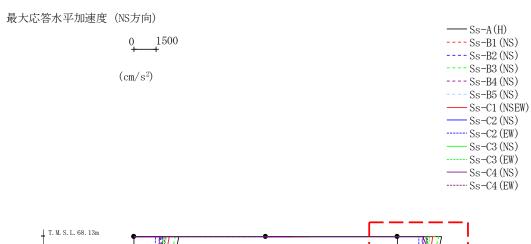
地雷乱	地盤変位(mm)
地震動	基本ケース
Ss-A(H)	2.80
Ss-B1 (EW)	2.52
Ss-B2 (EW)	2.42
Ss-B3 (EW)	2.34
Ss-B4(EW)	2. 24
Ss-B5 (EW)	2. 91
Ss-C1(NSEW)	4. 05
Ss-C2 (NS)	2. 16
Ss-C2 (EW)	2. 24
Ss-C3 (NS)	2. 51
Ss-C3(EW)	2. 29
Ss-C4 (NS)	2. 36
Ss-C4(EW)	2. 14


(b) EW断面④

小電影	地盤変位(mm)
地震動	基本ケース
Ss-A(H)	3. 92
Ss-B1 (EW)	3. 73
Ss-B2(EW)	3. 38
Ss-B3(EW)	3. 09
Ss-B4(EW)	3. 50
Ss-B5(EW)	3. 93
Ss-C1(NSEW)	5. 38
Ss-C2 (NS)	1.98
Ss-C2(EW)	2.87
Ss-C3 (NS)	2.75
Ss-C3(EW)	2. 53
Ss-C4(NS)	2.84
Ss-C4(EW)	3.86

(2) 有効応力解析

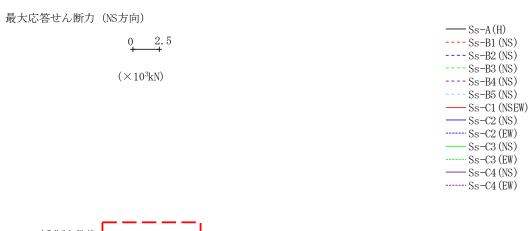
有効応力解析結果のうち,支持架構の最大応答値(加速度,せん断力,曲げモーメント)を第4.2.2-13図~第4.2.2-24図に,杭の最大応答値(曲げモーメント及びせん断力)を第4.2.2-5表~第4.2.2-6表に,基礎位置における地盤変位*を第4.2.2-7表及び第4.2.2-8表に示す。


注記 *:応答変位は、改良地盤下端と基礎上端との相対変位とし、各レベルで の節点変位の平均値として算定する。最大応答変位は、応答変位の時 刻歴における最大値を示す。

T. M. S. L. 68. 13m		•	† 14/7
T. M. S. L. 62. 515m			
_ T. M. S. L. 55. 30m			
	百ブロック-南		西ブロック-北

												(cm/s^2)
Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2(NS)	Ss-C2(EW)	Ss-C3(NS)	Ss-C3 (EW)	Ss-C4 (NS)	Ss-C4 (EW)
3083	1981	1846	2865	1919	1704	2440	2036	1486	2036	2233	1780	2129
1927	1598	1218	1666	1388	1303	1332	1388	1298	1577	1389	1288	1604
706	484	567	593	614	473	776	330	455	574	480	518	641

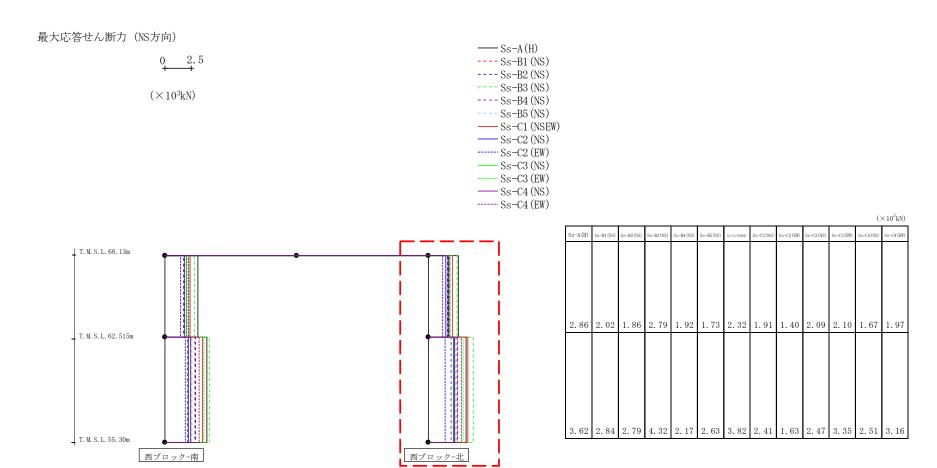
第4.2.2-13図 支持架構の最大応答加速度(基本ケース, NS断面①, 有効応力解析)(1/2)



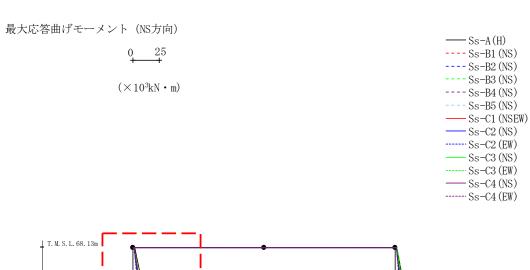
												(cm/s^2)
Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2 (NS)	Ss-C2(EW)	Ss-C3 (NS)	Ss-C3 (EW)	Ss-C4 (NS)	Ss-C4 (EW)
3083	1981	1846	2865	1919	1704	2440	2036	1486	2036	2233	1780	2129
1857	1609	1354	1476	1389	1374	1662	1453	1471	1828	1554	1553	1533
795	584	665	598	690	573	981	472	493	595	518	623	788

T. M. S. L. 68, 13m		•	
T. M. S. L. 62. 515m	†		
T. M. S. L. 55. 30m			
	西ブロック-南		西ブロック-北

第4.2.2-13図 支持架構の最大応答加速度(基本ケース, NS断面①, 有効応力解析)(2/2)



⊥ T. M. S. L. 68. 13m			
T. M. S. L. 62. 515m		 	
T. M. S. L. 55. 30m			
'	西ブロック-南		西ブロック-北


											(.	×10°kN)
Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2(NS)	Ss-C2(EW)	Ss-C3 (NS)	Ss-C3 (EW)	Ss-C4 (NS)	Ss-C4 (EW)
3. 12	2.07	1.82	2. 78	1. 76	1. 85	2. 42	2.04	1.45	2. 03	2. 25	1.86	2. 22
4.04	2. 88	2.90	4. 25	2. 19	2. 56	3. 62	2. 24	1.94	2. 48	3. 73	2.47	3. 25

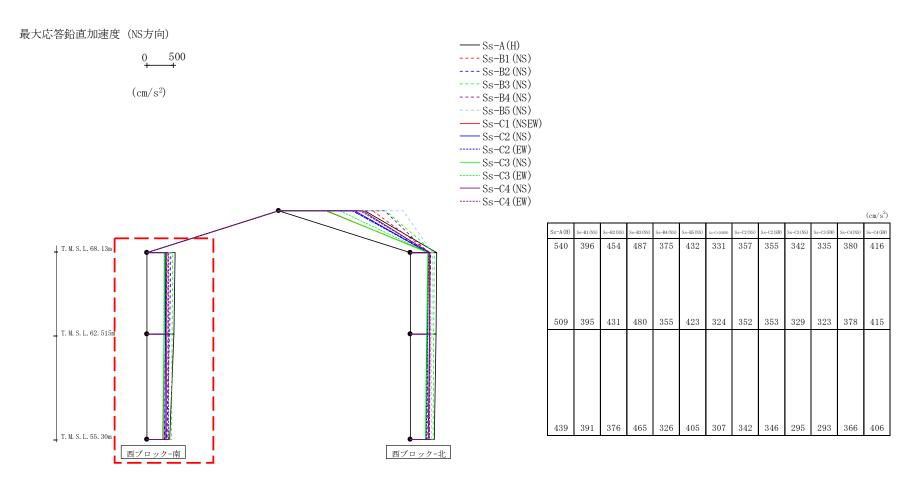
第4.2.2-14図 支持架構の最大応答せん断力(基本ケース, NS断面①, 有効応力解析)(1/2)

第4.2.2-14図 支持架構の最大応答せん断力(基本ケース, NS断面①, 有効応力解析)(2/2)

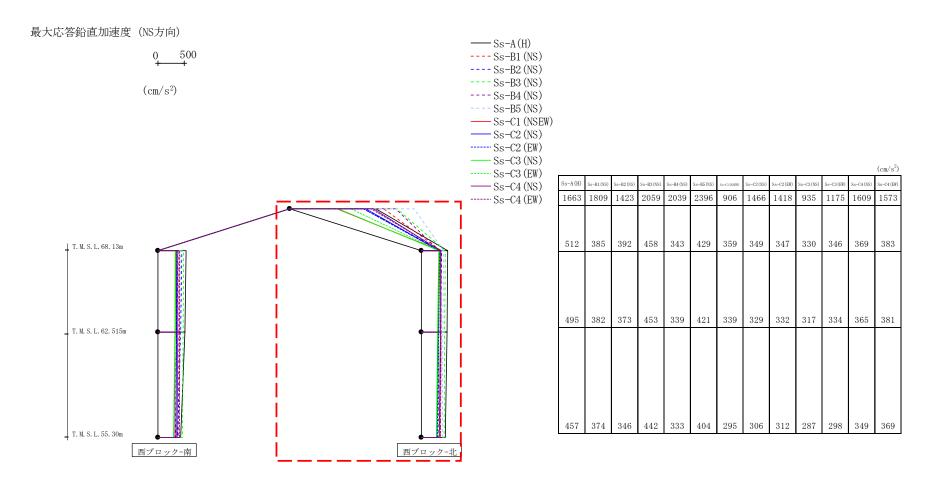
											(×10	°kN • m)
Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2(NS)	Ss-C2(EW)	Ss-C3 (NS)	Ss-C3 (EW)	Ss-C4 (NS)	Ss-C4 (EW)
1.20	0.67	1.05	0.95	0.82	0.57	0.94	0.96	0.84	0.92	1.00	0.67	0.98
17. 62	11.91	10.69	16. 29	9.80	10.69	13.62	11.61	8. 57	11.63	13. 42	10.82	12. 92
17.62	11.91	10.69	16. 29	9.80	10.69	13.62	11.61	8.57	11.63	13. 42	10.82	12. 92
45. 97	31. 46	30. 96	46. 93	24. 04	28. 06	39. 62	25. 23	21. 46	26. 54	40. 21	28. 03	33. 01

T. M. S. L. 68. 13m	1	•
		\
T. M. S. L. 62. 515m	→ \ \\	
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	
T. M. S. L. 55. 30m		
	西ブロック-南	西ブロック-北

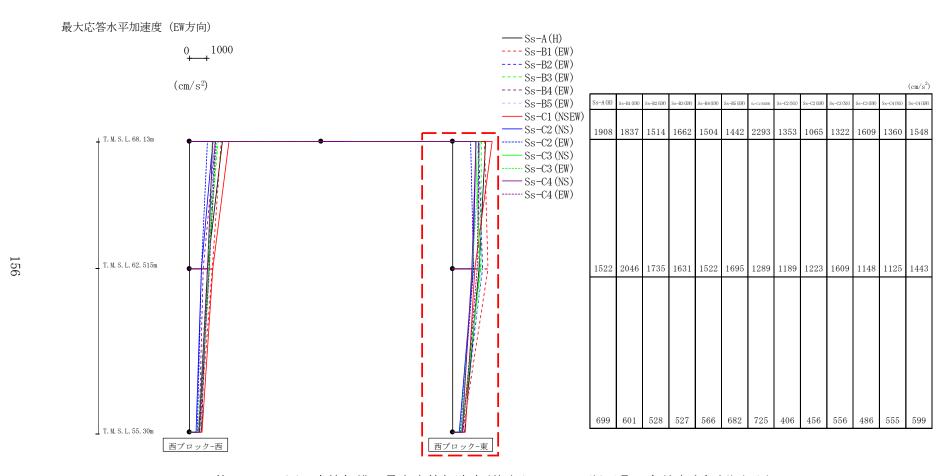
第4.2.2-15図 支持架構の最大応答曲げモーメント(基本ケース, NS断面①, 有効応力解析)(1/2)


(X	10	ľkl	٧·	m)

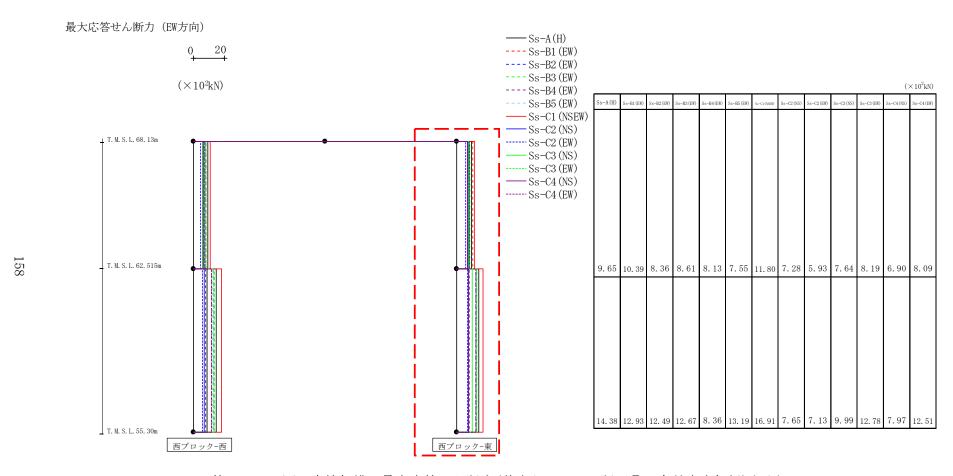
T. M. S. L. 68. 13m	•	•		₁
T. M. S. L. 62, 515m				
T. M. S. L. 55, 30m				
ı	西ブロック-南		西ブロ	ュック-北


Ss-A(H)	Ss-B1 (NS)	Ss-B2 (NS)	Ss-B3 (NS)	Ss-B4 (NS)	Ss-B5 (NS)	Sa-C1 (NSEW)	Ss-C2(NS)	Ss-C2(EW)	Ss-C3 (NS)	Ss-C3(EW)	Ss-C4 (NS)	Ss-C4(EW)
1.60	1.03	0.96	1. 28	0.91	1.01	0.90	1.04	0.97	1.45	1. 13	1.13	1.16
16. 08	12. 02	10. 92	16. 63	10. 41	9. 98	13. 36	10. 58	7. 89	11. 57	12. 32	9. 58	11. 41
16.08	12.02	10. 92	16.63	10.41	9. 98	13.36	10.58	7.89	11.57	12. 32	9.58	11.41
41. 98	32. 46	30. 65	47. 74	23. 07	27. 52	40.05	22. 60	19. 01	25. 93	36. 46	25. 41	34. 14

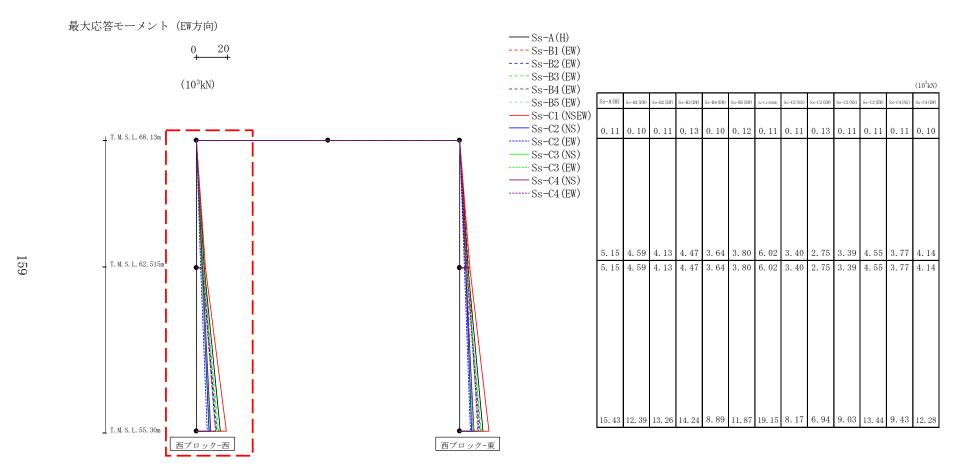
第4.2.2-15図 支持架構の最大応答曲げモーメント(基本ケース, NS断面①, 有効応力解析)(2/2)



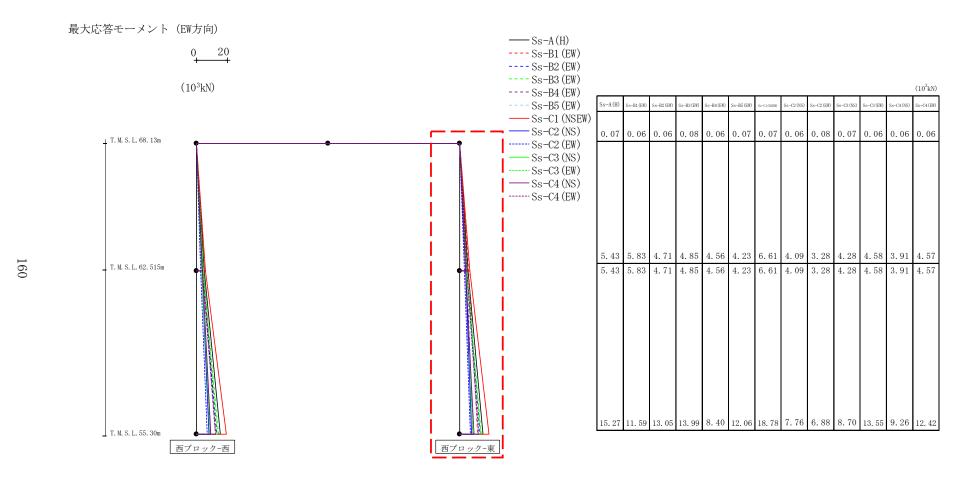
第4.2.2-16図 支持架構の最大応答鉛直加速度(基本ケース, NS断面①, 有効応力解析)(1/2)

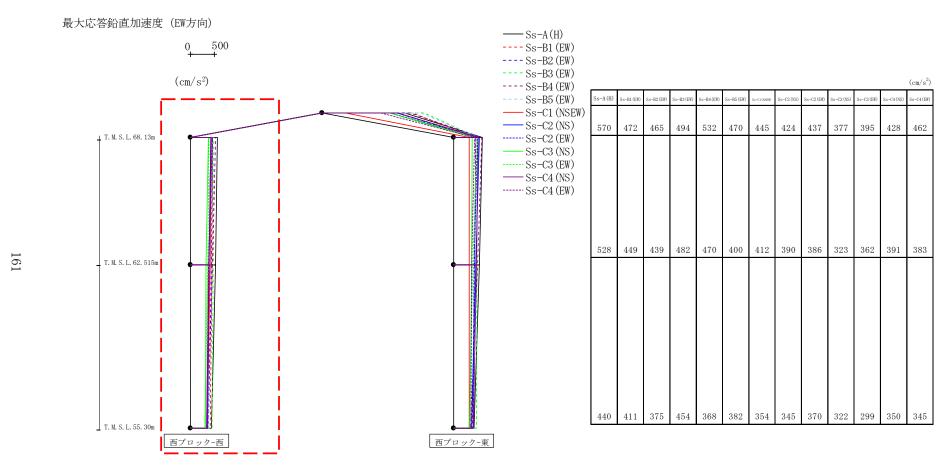

第4.2.2-16図 支持架構の最大応答鉛直加速度(基本ケース, NS断面①, 有効応力解析)(2/2)

第4.2.2-17図 支持架構の最大応答加速度(基本ケース, EW断面③, 有効応力解析)(1/2)

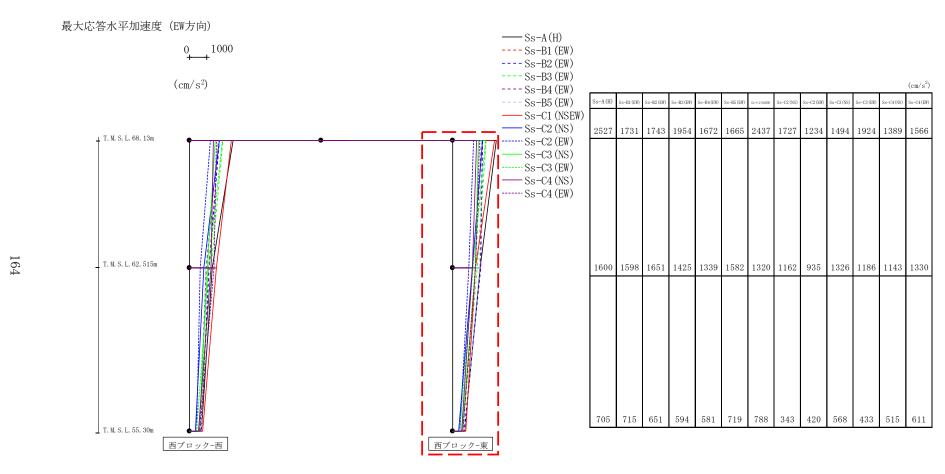


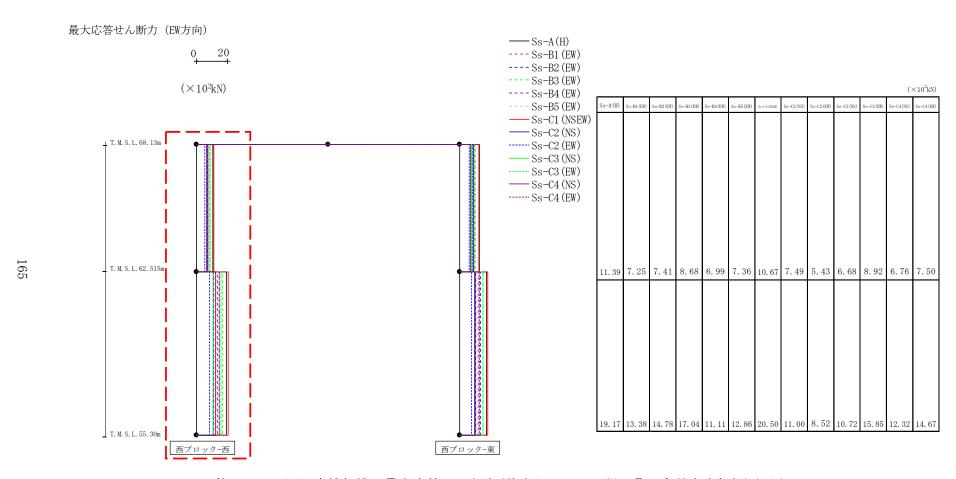
第4.2.2-17図 支持架構の最大応答加速度(基本ケース, EW断面③, 有効応力解析)(2/2)


第4.2.2-18図 支持架構の最大応答せん断力(基本ケース, EW断面③, 有効応力解析)(1/2)

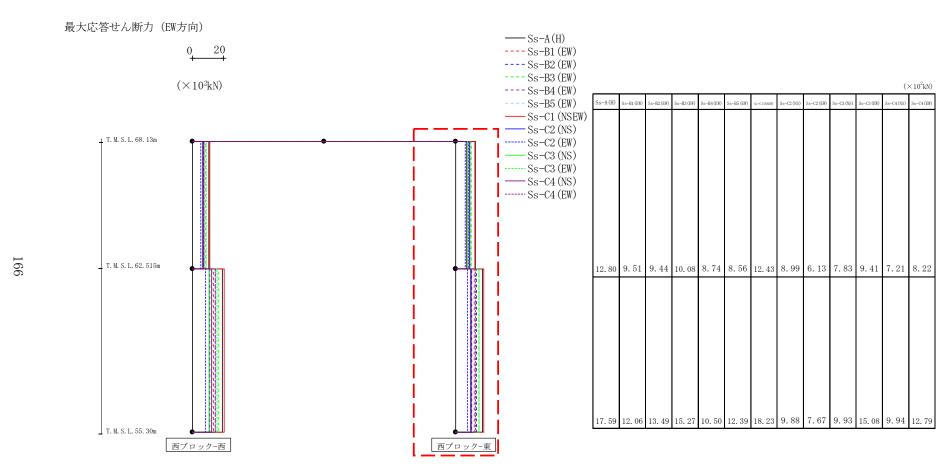

第4.2.2-18図 支持架構の最大応答せん断力(基本ケース, EW断面③, 有効応力解析)(2/2)

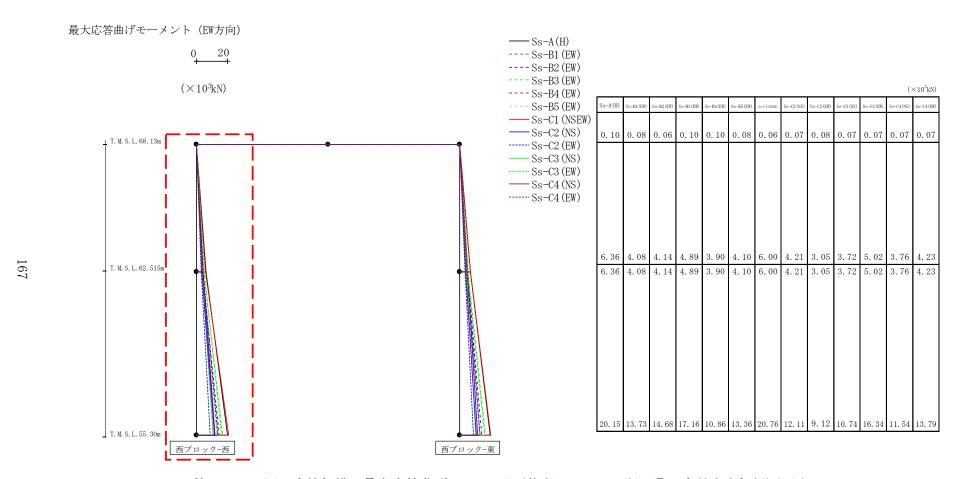
第4.2.2-19図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 有効応力解析)(1/2)

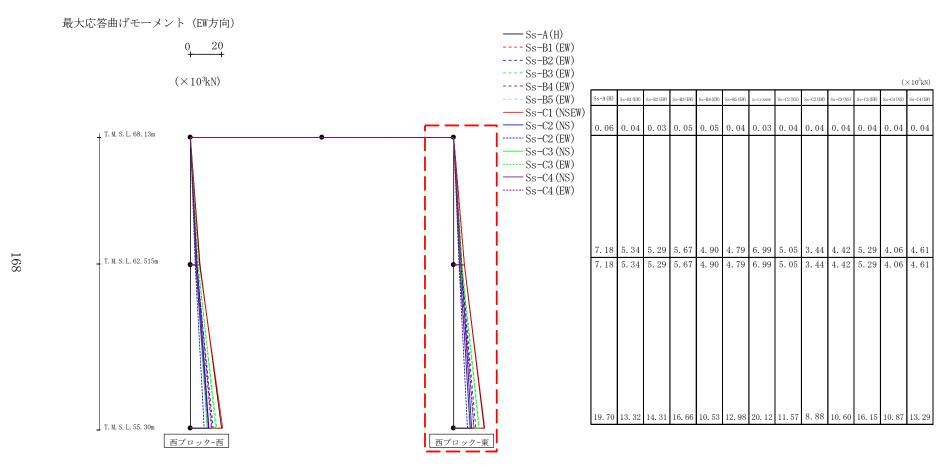

第4.2.2-19図 支持架構の最大応答曲げモーメント(基本ケース, EW断面③, 有効応力解析)(2/2)

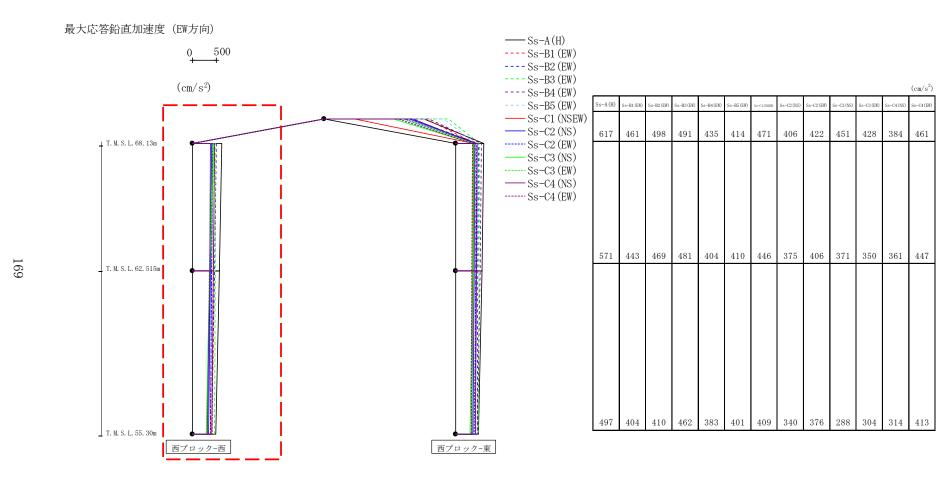

第4.2.2-20図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 有効応力解析)(1/2)

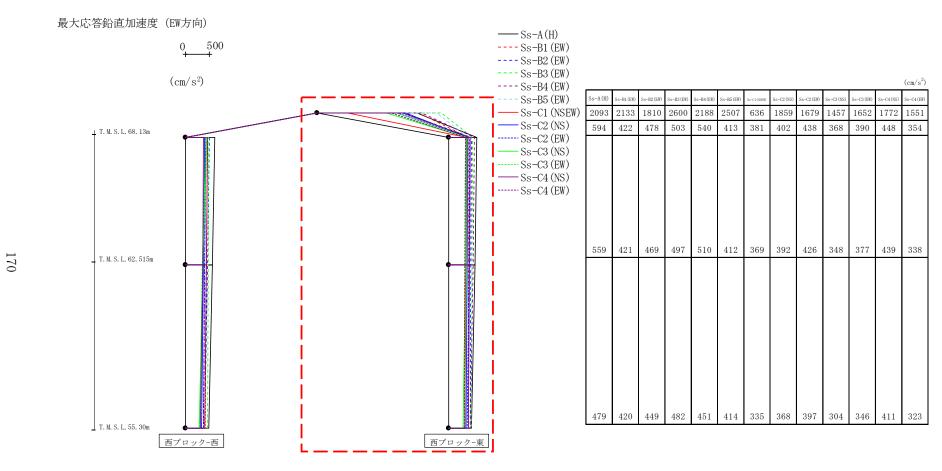
第4.2.2-20図 支持架構の最大応答鉛直加速度(基本ケース, EW断面③, 有効応力解析)(2/2)


第4.2.2-21図 支持架構の最大応答加速度(基本ケース, EW断面④, 有効応力解析)(1/2)


第4.2.2-21図 支持架構の最大応答加速度(基本ケース, EW断面④, 有効応力解析)(2/2)


第4.2.2-22図 支持架構の最大応答せん断力(基本ケース, EW断面④, 有効応力解析)(1/2)


第4.2.2-22図 支持架構の最大応答せん断力(基本ケース, EW断面④, 有効応力解析)(2/2)


第4.2.2-23図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 有効応力解析)(1/2)

第4.2.2-23図 支持架構の最大応答曲げモーメント(基本ケース, EW断面④, 有効応力解析)(2/2)

第4.2.2-24図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 有効応力解析)(1/2)

第4.2.2-24図 支持架構の最大応答鉛直加速度(基本ケース, EW断面④, 有効応力解析)(2/2)

第4.2.2-5表 杭の最大応答値(基本ケース, NS方向, 有効応力解析)

(a) NS断面①

			げモーメント		せん断力
杭符号	地震動	杭番号	最大応答 曲げモーメント* (kN·m)	杭番号	最大応答 せん断力* (kN)
	Ss-A(H)	F2-1	1177	F2-1	3923
	Ss-B1(NS)	F2-1	878	F2-1	2926
	Ss-B2(NS)	F2-1	864	F2-1	2879
	Ss-B3(NS)	F2-1	1388	F2-1	4625
	Ss-B4(NS)	F1-1	830	F2-1	2119
	Ss-B5(NS)	F1-1	811	F2-1	2581
P1	Ss-C1 (NSEW)	F1-1	1426	F2-1	2663
	Ss-C2(NS)	F2-1	580	F2-1	1932
	Ss-C2(EW)	F2-1	666	F2-1	1724
	Ss-C3(NS)	F2-1	844	F2-1	2554
	Ss-C3(EW)	F2-1	1090	F2-1	3633
	Ss-C4(NS)	F2-1	895	F2-1	2730
	Ss-C4(EW)	F2-2	913	F2-1	3001
	F1-1 F1-2	F1-3	F2-	·1 F2	2-2
	P1 P		·	P1	P1
		((杭番号位置)		

注記 *: 杭一本当たりの応答値を示す。

第4.2.2-6表 杭の最大応答値(基本ケース, EW方向, 有効応力解析)(1/2)

(a) EW断面③

		曲心	 げモーメント	せん断力				
杭符号	地震動	杭番号	最大応答 曲げモーメント* (kN·m)	杭番号	最大応答 せん断力* (kN)			
	Ss-A(H)	F2-3	1139	F2-3	1601			
	Ss-B1 (EW)	F2-3	1071	F2-3	1622			
	Ss-B2(EW)	F2-3	863	F2-3	1560			
	Ss-B3 (EW)	F2-3	1022	F2-3	1753			
	Ss-B4(EW)	F2-3	917	F2-3	1417			
	Ss-B5(EW)	F2-3	1141	F2-3	1779			
P1	Ss-C1 (NSEW)	F2-3	1456	F2-3	2376			
	Ss-C2(NS)	F2-3	801	F2-3	987			
	Ss-C2(EW)	F2-3	840	F2-3	853			
	Ss-C3(NS)	F2-3	1028	F2-3	1034			
	Ss-C3(EW)	F2-3	1052	F2-3	2016			
	Ss-C4(NS)	F2-3	897	F2-3	1174			
	Ss-C4(EW)	F2-3	896	F2-3	1477			
	Ss-A(H)	F2-1	662	F2-1	1513			
	Ss-B1 (EW)	F2-1	521	F2-1	1364			
	Ss-B2(EW)	F2-1	556	F2-1	1318			
	Ss-B3 (EW)	F2-1	574	F2-1	1553			
	Ss-B4(EW)	F2-1	474	F2-1	1072			
	Ss-B5 (EW)	F2-1	656	F2-1	1408			
P2	Ss-C1 (NSEW)	F2-1	1052	F2-1	2246			
	Ss-C2(NS)	F2-1	358	F2-1	889			
	Ss-C2(EW)	F2-1	419	F2-1	712			
	Ss-C3(NS)	F2-1	535	F2-1	1068			
	Ss-C3(EW)	F2-1	683	F2-1	1562			
	Ss-C4(NS)	F2-1	548	F2-1	919			
	Ss-C4(EW)	F2-1	488	F2-1	1084			
	F2-1 F2-	2 F2-3 P1 P1	F4-1 P2	F4-2 F	4-3 P2			
			(杭番号位置)					

注記 *: 杭一本当たりの応答値を示す。

第4.2.1-6表 杭の最大応答値(基本ケース, EW方向, 有効応力解析)(2/2)

(b) EW断面④

		曲り		Ç	 せん断力			
杭符号 杭符号	地震動		最大応答		最大応答			
17/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	地展到	杭番号	曲げモーメント*	杭番号	せん断力*			
	2 (11)	7.4	(kN·m)	71.0	(kN)			
	Ss-A(H)	F1-3	1005	F1-3	1120			
	Ss-B1 (EW)	F1-3	792	F1-3	879			
	Ss-B2 (EW)	F1-3	837	F1-3	1028			
	Ss-B3 (EW)	F1-3	755	F1-3	1049			
	Ss-B4(EW)	F1-3	742	F1-3	880			
	Ss-B5(EW)	F1-3	719	F1-3	839			
P1	Ss-C1 (NSEW)	F1-3	1079	F1-3	884			
	Ss-C2(NS)	F1-3	504	F1-3	720			
	Ss-C2(EW)	F1-3	583	F1-3	713			
	Ss-C3(NS)	F1-3	628	F1-3	696			
	Ss-C3(EW)	F1-3	839	F1-3	1005			
	Ss-C4(NS)	F1-3	714	F1-3	760			
	Ss-C4(EW)	F1-3	849	F1-3	962			
	Ss-A(H)	F1-1	552	F1-1	748			
	Ss-B1(EW)	F1-1	448	F1-1	532			
	Ss-B2(EW)	F1-1	586	F1-1	499			
	Ss-B3(EW)	F1-1	496	F1-1	613			
	Ss-B4(EW)	F1-1	492	F1-1	405			
	Ss-B5(EW)	F1-1	507	F1-1	430			
P2	Ss-C1 (NSEW)	F1-1	612	F1-1	555			
	Ss-C2(NS)	F1-1	284	F1-1	414			
	Ss-C2(EW)	F1-1	462	F1-1	405			
	Ss-C3(NS)	F1-1	358	F1-1	374			
	Ss-C3(EW)	F1-1	350	F1-1	661			
	Ss-C4(NS)	F1-1	433	F1-1	401			
	Ss-C4(EW)	F1-1	529	F1-1	597			
			_	<u> </u>				
	F1-1 F1-	-2 F1-3	F3-1	F3-2	F3-3			
								
	!							
			; I					
			1					
		P1 P1						
	'	11 11	i					
	P2		P2	P2	P2			
	'		J					
			(杭番号位置)					

注記 *: 杭一本当たりの応答値を示す。

第4.2.2-7表 基礎位置における地盤変位(NS方向, 有効応力解析)

(a) NS断面①

地震動	地盤変位(mm)
地展到	基本ケース
Ss-A(H)	6. 56
Ss-B1 (NS)	4. 54
Ss-B2 (NS)	4. 47
Ss-B3 (NS)	5. 81
Ss-B4 (NS)	3. 32
Ss-B5 (NS)	3. 92
Ss-C1(NSEW)	5. 94
Ss-C2 (NS)	2. 52
Ss-C2(EW)	3. 58
Ss-C3 (NS)	4. 19
Ss-C3(EW)	5. 21
Ss-C4 (NS)	4. 66
Ss-C4(EW)	5. 54

第4.2.2-8表 基礎位置における地盤変位(EW方向, 有効応力解析)

(a) EW断面③

地震動	地盤変位(mm)
地長期	基本ケース
Ss-A(H)	3.00
Ss-B1 (EW)	2.62
Ss-B2 (EW)	2.30
Ss-B3(EW)	2.41
Ss-B4(EW)	2.35
Ss-B5 (EW)	2.96
Ss-C1(NSEW)	4.06
Ss-C2 (NS)	2. 17
Ss-C2(EW)	2. 25
Ss-C3 (NS)	2.58
Ss-C3(EW)	2. 26
Ss-C4 (NS)	2.59
Ss-C4(EW)	2. 17

(b) EW断面④

地震動	地盤変位(mm)
10.反到	基本ケース
Ss-A(H)	4. 22
Ss-B1 (EW)	3. 90
Ss-B2(EW)	3. 63
Ss-B3(EW)	3. 29
Ss-B4(EW)	3. 77
Ss-B5(EW)	4. 03
Ss-C1(NSEW)	5. 51
Ss-C2 (NS)	1.96
Ss-C2(EW)	2. 97
Ss-C3 (NS)	2. 93
Ss-C3(EW)	2.81
Ss-C4 (NS)	3.08
Ss-C4(EW)	4. 10

IV-5-2-3-1-6-2 飛来物防護板(主排気筒接続用 屋 外配管及び屋外ダクト 主排気筒周 り)(東ブロック)の耐震計算書

目 次

																										~°	_	・ジ
1.	根	₹要…		• •								 	•	 	 	•	 	 •		 		 •	 		 			1
2.	差	基本方	針・・				. 		. 			 		 	 		 			 			 		 			2
2.	1	位置	及び	'構	造机	死要	į.,		·			 		 	 		 			 			 		 		٠.	2
2. 2	2	評価	方針	 -								 		 	 	•	 	 •	•	 			 		 	٠.	٠.	2
3.	音	呼価結	果…	• •								 ٠.		 	 	•	 			 			 		 	٠.	٠.	4
3.	1	崩壊	しな	: ()	ے ک	- O.	確	認	ļ			 		 	 	•	 			 	٠.		 		 	٠.	٠.	4
3. 2	2	相対	変位	こに	対る	ナる	語	ӣ	話	拝	₹.	 		 	 		 			 			 		 			4

1. 概要

2. 基本方針

2.1 位置及び構造概要

飛来物防護板架構の設置位置及び構造概要は、添付書類「IV-2-2-2-1-1-8-1 飛来物防護ネット(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り)(東ブロック)及び(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り)(西ブロック)の地震応答計算書」に示す。

2.2 評価方針

飛来物防護板架構の地震を要因とする重大事故等に対処する重大事故等対処施設への波及的影響の評価においては、基準地震動Ssを1.2倍した地震力(以下,「1.2×Ss」という。)に対する評価を行うこととする。なお、飛来物防護板架構の波及的上位クラス施設である主配管(廃ガス処理系)及び主配管(建屋換気系)(以下,「屋外配管等」という)への評価を行う。

施設の損傷、転倒及び落下に対する評価として、支持架構の評価を行う。

評価は「IV-2-2-2-1-1-8-2 飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り)(東ブロック)の耐震計算書」(以下,「耐震計算書」という。)と同様とし、以下の添付書類の結果を踏まえたものとする。

- ・「IV-5-2-3-1-6-1 飛来物防護板(主排気筒接続用 屋外配管及び屋 外ダクト 主排気筒周り)(東ブロック)及び飛来物防護板(主排気筒接続用 屋 外配管及び屋外ダクト 主排気筒周り)(西ブロック)の地震応答計算書|
- ・「W-5-2-1-1-8-2 主排気筒(鉄塔・塔身)の基準地震動 S s を1.2倍 した地震力に対する耐震計算書」
- 「Ⅳ-1-1-1 1-1 別紙2-7 主排気筒(基礎)の直管部標準支持間隔」

なお、荷重及び荷重の組合せは耐震計算書の「3.1.2 荷重及び荷重の組合せ」の基準地震動 $S s & 51.2 \times S s$ に読み替えて設定し、支持架構の評価における許容限界は、「IV-1-1-4-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に記載の構造強度上の制限及び機能維持の方針に基づき、第2.2-1表のとおり設定する。

第2.2-1表 支持架構の評価における許容限界

設計の観点	地震力	部位	許容限界設定の考え方	許容限界 (評価基準値)
損傷, 転倒 及び落下	1.2×S s	支持架構	施設の構造を保つために支 持架構が崩壊しないことを 確認	崩壊メカニズムが 形成されないこと
相対変位	1. 2× S s	支持架構	施設間の離隔による防護を 講じるための許容限界を超 えないことを確認	施設間の 離隔距離

3. 評価結果

「2.2 評価方針」に基づいた評価結果を以下に示す。

3.1 崩壊しないことの確認

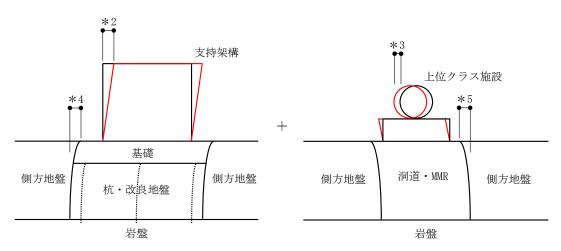
崩壊しないことの確認として、支持架構の部材について、全ての鉄骨部材が塑性 化していないことから、支持架構に崩壊メカニズムが形成されていないことを確認 した。

3.2 相対変位に対する評価結果

水平方向の相対変位に対する評価結果を第3.2-1表に示す。支持架構と屋外配管等との相対変位が、許容限界を超えないことを確認した。

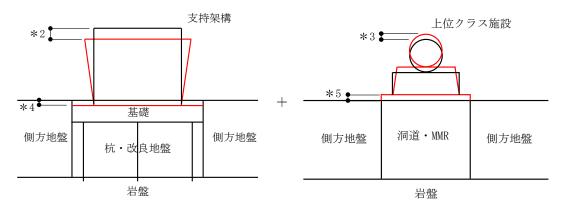
第3.2-1表 相対変位に対する評価結果

上位クラス施設	方向	相対変位*1 (mm)	許容限界 (mm)	検定比	判定
屋外配管等	水平方向		450		OK
座が配官寺	鉛直方向		_		_


注記 *1:支持架構と上位クラス施設との相対変位(*2+*4)+(*3+*5)(第3.2-1図 参照)。

*2:支持架構の応力解析における全節点の最大変位。

*3:上位クラス施設の最大変位。


*4:地震応答解析における改良地盤・基礎の最大変位。

*5:洞道の最大変位。

支持架構の変位(水平)

上位クラス施設の変位(水平)

支持架構の変位(鉛直)

上位クラス施設の変位(鉛直)

第3.2-1図 相対変位のイメージ図

IV-5-2-3-1-6-3 飛来物防護板(主排気筒接続用 屋 外配管及び屋外ダクト 主排気筒周 り)(西ブロック)の耐震計算書

目 次

	^°-	ージ
1.	f要· · · · · · · · · · · · · · · · · · ·	1
2.	· 本方針·····	2
2.	位置及び概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
2.	評価方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2
3.	· 在結果·····	4
3.	崩壊しないことの確認・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4
3.	相対変位に対する評価結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4

1. 概要

本資料は、「IV-1-1-4-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に基づき、基準地震動S s & s & 1.2 倍した地震力を考慮しない施設である飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り)(西ブロック)(以下、「飛来物防護板架構」という)が地震を要因とする重大事故等に対処する重大事故等対処施設である上位クラス施設に対して波及的影響を及ぼさないことを確認するものである。

2. 基本方針

2.1 位置及び概要

飛来物防護板架構の設置位置及び概要は、「W-2-2-2-1-1-9-1 飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り)(東ブロック)及び飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り)(西ブロック)の地震応答計算書」に示す。

2.2 評価方針

飛来物防護板架構の地震を要因とする重大事故等に対処する重大事故等対処施設への波及的影響の評価においては、基準地震動Ssを1.2倍した地震力(以下,「1.2×Ss」という。)に対する評価を行うこととする。なお、飛来物防護板架構の波及的上位クラス施設である主配管(廃ガス処理系)及び主配管(建屋換気系)(以下,「屋外配管等」という)への評価を行う。

施設の損傷、転倒及び落下に対する評価として、支持架構の評価を行う。

評価は「IV-2-2-2-1-1-8-3 飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り)(西ブロック)の耐震計算書」(以下,「耐震計算書」という。)の評価方法と同様とし、以下の添付書類の結果を踏まえたものとする。

- ・「IV-5-2-3-1-6-1 飛来物防護板(主排気筒接続用 屋外配管及び屋 外ダクト 主排気筒周り)(東ブロック)及び飛来物防護板(主排気筒接続用 屋 外配管及び屋外ダクト 主排気筒周り)(西ブロック)の地震応答計算書」
- ・「W-5-2-1-1-8-2 主排気筒(鉄塔・塔身)の基準地震動 S s を1.2倍 した地震力に対する耐震計算書」
- 「Ⅳ-1-1-1 1-1 別紙2-7 主排気筒(基礎)の直管部標準支持間隔」

なお、荷重及び荷重の組合せは耐震計算書の「3.1.2 荷重及び荷重の組合せ」の基準地震動 $S s & 51.2 \times S s$ に読み替えて設定し、支持架構の評価における許容限界は、「IV-1-1-4-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に記載の構造強度上の制限及び機能維持の方針に基づき、第2.2-1表のとおり設定する。

第2.2-1表 支持架構の評価における許容限界

設計の観点	地震力	部位	許容限界設定の考え方	許容限界 (評価基準値)
損傷, 転倒 及び落下	1.2×S s	支持架構	施設の構造を保つために支 持架構が崩壊しないことを 確認	崩壊メカニズムが 形成されないこと
相対変位	1. 2×S s	支持架構	施設間の離隔による防護を 講じるための許容限界を超 えないことを確認	施設間の 離隔距離

3. 評価結果

「2.2 評価方針」に基づいた評価結果を以下に示す。

3.1 崩壊しないことの確認

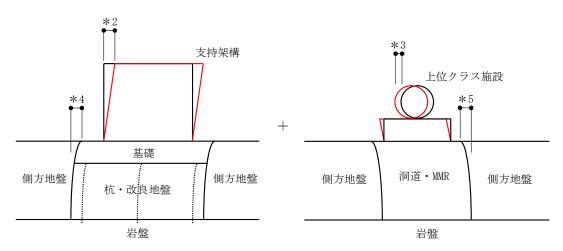
崩壊しないことの確認として,支持架構の部材について,全ての鉄骨部材が塑性化していないことから,支持架構に崩壊メカニズムが形成されていないことを確認した。

3.2 相対変位に対する評価結果

水平方向の相対変位に対する評価結果を第3.2-1表に示す。支持架構と上位クラス施設との相対変位が、許容限界を下回ることを確認した。

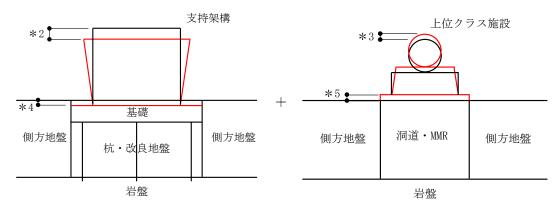
第3.2-1表 相対変位に対する評価結果

上位クラス施設	方向	相対変位*1 (mm)	許容限界 (mm)	検定比	判定
屋外配管等	水平方向		650		OK
座外配官寺	鉛直方向				_


注記 *1:支持架構と上位クラス施設との相対変位(*2+*4)+(*3+*5)(第3.2-1図 参照)。

*2:支持架構の応力解析における全節点の最大変位。

*3:上位クラス施設の最大変位。


*4:地震応答解析における改良地盤・基礎の最大変位。

*5:洞道の最大変位。

支持架構の変位(水平)

上位クラス施設の変位(水平)

支持架構の変位(鉛直)

上位クラス施設の変位(鉛直)

第3.2-1図 相対変位のイメージ図

IV-5-2-3-1-7 飛来物防護板(主排気筒接続用 屋 外配管及び屋外ダクト 主排気筒周 り)(中央ブロック)の耐震性に関す る計算書 IV-5-2-3-1-7-1 飛来物防護板(主排気筒接続用 屋 外配管及び屋外ダクト主排気筒周 り)(中央ブロック)の地震応答計算 書

目 次

		~~-	ーシ
1.	想	要·····	• 1
2.	基	本方針・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.	1	立置及び概要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
2.	2	解析方針	• 1
3.	角	折方法·····	• 2
3.	1	地震応答解析に用いる地震動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.	2	解析モデル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	• 2
3.	3	入力地震動・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.	4	解析方法	
3.	5	解析条件・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	. 6
4.	角	折結果·····	
4.	1	固有値解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.	2	地震応答解析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	12

1. 概要

本資料は、「IV-1-1-4-2-3 地震を要因とする重大事故等に対する施設の耐震設計」に基づき、飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り(中央ブロック))(以下、「飛来物防護板架構」という。)の基準地震動Ss Ss Ss

2. 基本方針

2.1 位置及び概要

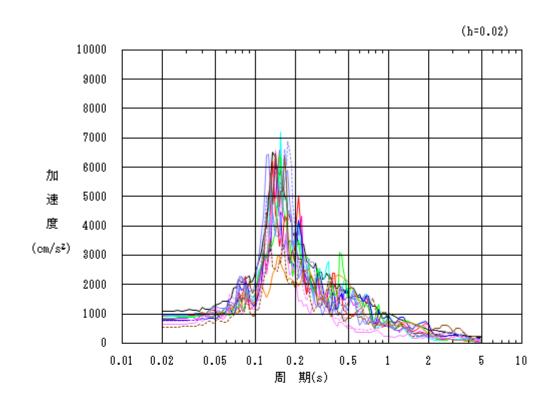
飛来物防護板架構の設置位置及び構造概要については、「IV-2-2-2-1-1 -10-1 飛来物防護板(主排気筒接続用 屋外配管及び屋外ダクト 主排気筒周り)(中央ブロック)の地震応答計算書」(以下、「中央ブロックの地震応答計算書」という。)に示すとおりである。

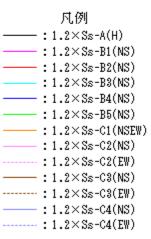
2.2 解析方針

飛来物防護板架構の地震応答解析は、「W-1-1-4-2-3 地震を起因とする重大事故等に対する施設の耐震設計」に基づき、「W-1-1-5 地震応答解析の基本方針」に示す内容を踏襲して実施することから、中央ブロックの応答計算書に示した方法と同じ方法に基づいて行う。地震応答解析については、「3. 解析方法」に示す解析モデル、入力地震動及び解析方法により実施し、その結果を「4. 解析結果」に示す。

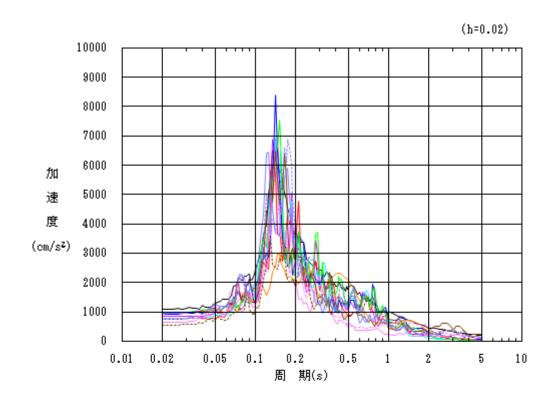
3. 解析方法

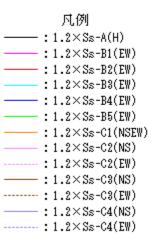
3.1 地震応答解析に用いる地震動

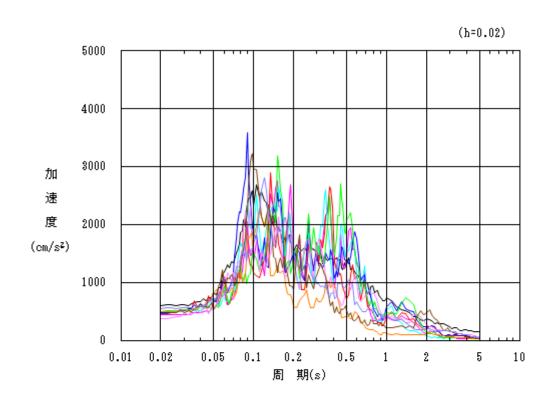

地震応答解析に用いる地震動については、「IV-5-1 基準地震動S s ε 1. 2倍した地震力による重大事故等対処施設に係る耐震計算に関する基本方針」に基づく解放基盤表面レベルで定義された基準地震動S s の加速度時刻歴波形の振幅 ε 1. 2倍した地震動(以下、「 $1.2\times S$ s」という。)とする。


3.2 解析モデル

地震動を入力する地震応答解析モデルは、中央ブロックの応答計算書の「3.2 解析 モデル」と同一の3次元フレームモデルを用いる。


3.3 入力地震動


解析モデルへの入力地震動は、水平方向、鉛直方向ともに、中央ブロックの応答計算書の「3.3 荷重の入力方法」と同じ方法により入力し、「IV-5-2-1-1-8-1 主排気筒の地震応答計算書」により得られた主排気筒基礎上端部 (I.M.S.L.55.50m)の応答加速度を用いる。主排気筒基礎上端部の応答加速度のうち、基本ケースにおける加速度応答スペクトルを第3.3-1図に示す。



(a) NS方向 第3.3-1図 主排気筒基礎上端部の加速度応答スペクトル(1/3)

(b) EW方向 第3.3-1図 主排気筒基礎上端部の加速度応答スペクトル(2/3)

凡例

---: 1.2×Ss-A(V)

___:1.2×Ss-B1(UD)

——:1.2×Ss-B2(UD)

—: 1.2×Ss-B3(UD)

——:1.2×Ss-B4(UD)

— :1.2×Ss-B5(UD)

— : 1.2×S≲-C1(UD)

— : 1.2×Ss-C2(UD)

——:1.2×Ss-C3(UD)

-:一関東評価用地震動(鉛直)

(c) 鉛直方向

第3.3-1図 主排気筒基礎上端部の加速度応答スペクトル(3/3)

3.4 解析方法

飛来物防護板架構の地震応答解析は、中央ブロックの応答計算書の「3.4 解析方法」 と同じ方法により実施する。

3.5 解析条件

飛来物防護板架構の地震応答解析は、中央ブロックの応答計算書の「3.6 材料物性 のばらつき」に示す基本ケースに対する解析のみを行い、材料物性のばらつきは考慮 しないものとする。

4. 解析結果

4.1 固有值解析結果

飛来物防護板架構の固有値解析結果(固有周期,固有振動数及び刺激係数)を第4.1-1表に示す。刺激関数図を第4.1-1図~第4.1-3図に示す。なお、刺激係数は、各次の固有ベクトル(u)に対し、最大振幅が1.0となるように基準化した値を示す。

第4.1-1表 固有值解析結果

(a) NS方向

次数	固有周期	固有振動数	刺激係数			備考
(人) 数	(s)	(Hz)	β x	β _у	β z	佣石
1	0.410	2. 44	-0.007	1. 291	-0.005	全体1次
2	0. 274	3. 64	-0. 106	0. 597	0.001	全体2次
3	0. 196	5. 11	-0. 081	0. 299	0.012	全体4次
4	0. 173	5. 77	-0.042	-0. 196	0. 013	全体5次

(b) EW方向

次数	固有周期 固有振動数		刺激係数			備考
公 教	(s)	(Hz)	βх	β y	β z	佣石
1	0. 263	3. 80	1. 114	0.071	0.044	全体3次
2	0. 153	6. 54	0. 920	0.036	0.064	全体7次
3	0. 139	7. 18	-0. 351	0. 093	0. 191	全体9次
4	0. 123	8. 15	0. 272	0. 149	-0. 083	全体12次

(c) 鉛直方向

次数	固有周期	固有振動数		刺激係数		備考		
(人) 数	(s)	(Hz)	β _x	β _у	βz	加布		
1	0.116	8. 65	0.003	0.024	-0. 486	全体13次		
2	0.098	10. 17	0.033	-0.079	-0. 330	全体17次		

1次モード 固有周期

 $T_1 = 0.410 (s)$

刺激係数 β_x=-0.007

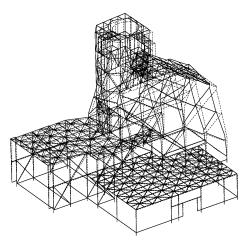
固有振動数 f₁ =2.44(Hz)

 $\beta_y = 1.291$ $\beta_z = -0.005$

> 構造スケール 0. 5000.(mm) 病薬値スケール 0. 2.0

2次モード

固有周期 T₂ =0.274(s)


固有振動数 f₂ =3.64(Hz)

刺激係数 β x=-0.106

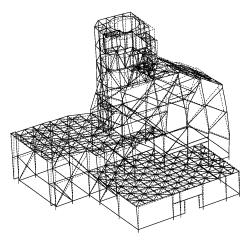
 $\beta_y = 0.597$

 $\beta_z = 0.001$

構造スケール 0. 5000.(mm

3次モード

固有周期 T₃ =0.196(s)


固有振動数 f₃ =5.11(Hz)

刺激係数 β_x=-0.081

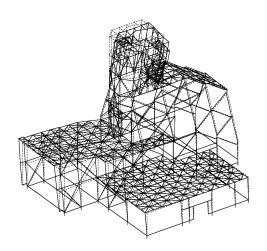
 $\beta_y = 0.299$

 β_z =0.012

スケール 0<u>. 5</u>000.(mm 催スケール 0<u>. 5</u>.0

4次モード

固有周期 T₄ =0.173(s)

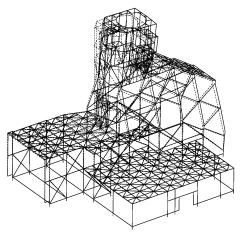

固有振動数 f₄ =5.77(Hz)

刺激係数 $\beta_x=-0.042$

 $\beta_{y} = -0.196$

 β_z =0.013

応答値スケール O. 5

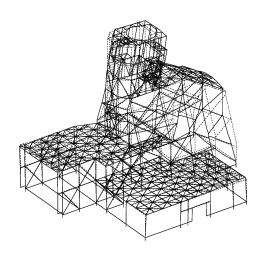


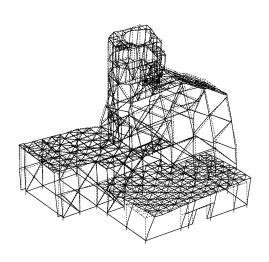
第4.1-1図 刺激関数図(NS方向)

1次モード 固有周期 $T_1 = 0.263 (s)$ 固有振動数 $f_1 = 3.80 (Hz)$ 刺激係数 $\beta_x = 1.114$ $\beta_y = 0.071$ $\beta_z = 0.044$

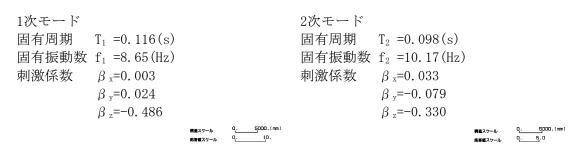
2次モード 固有周期 T_2 =0.153(s) 固有振動数 f_2 =6.54(Hz) 刺激係数 β_x =0.920 β_y =0.036 β_z =0.064

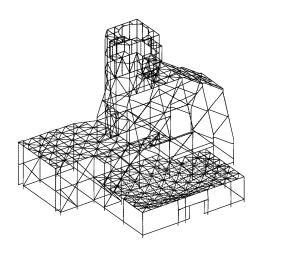
構造スケール 0<u>. 5</u>000.(m

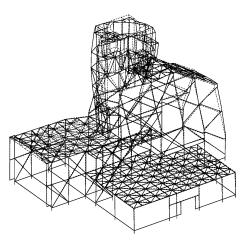

3次モード 固有周期 T_3 =0.139(s) 固有振動数 f_3 =7.18(Hz) 刺激係数 β_x =-0.351 β_y =0.093 β_z =0.191


固有周期

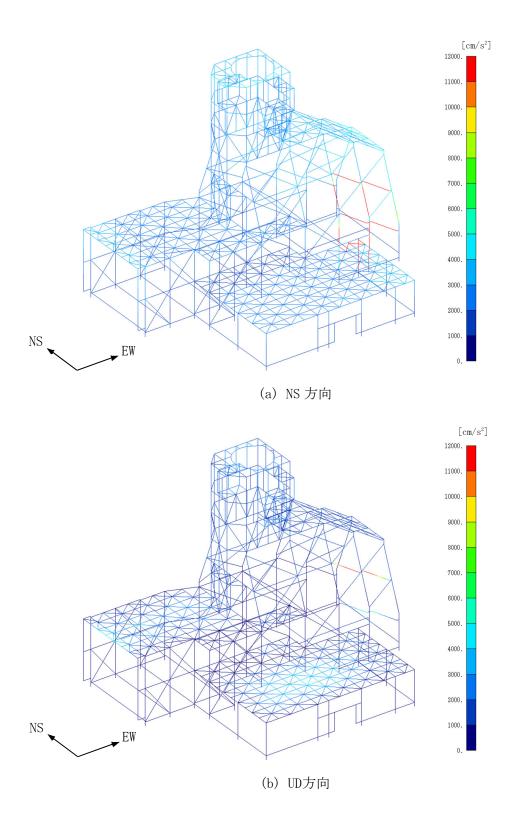
4次モード

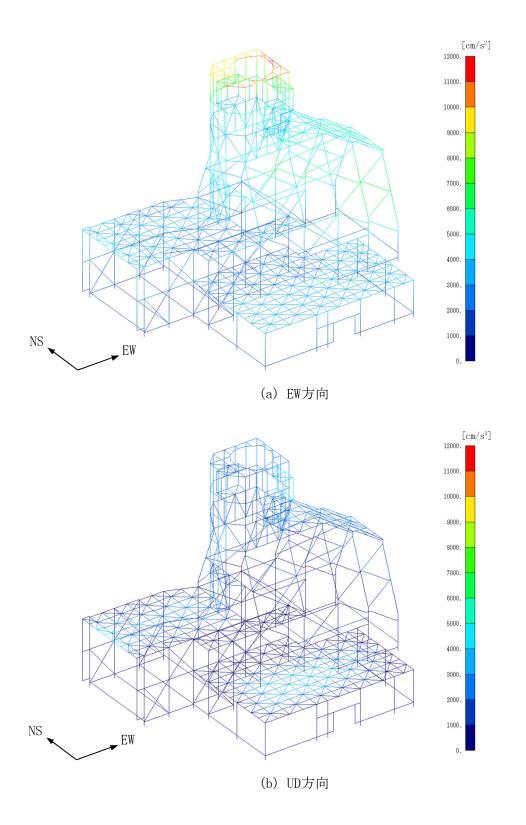

 $T_4 = 0.123(s)$


構造スケール ロ<u>. 5</u>000・1 素質者スケール ロ. 5・

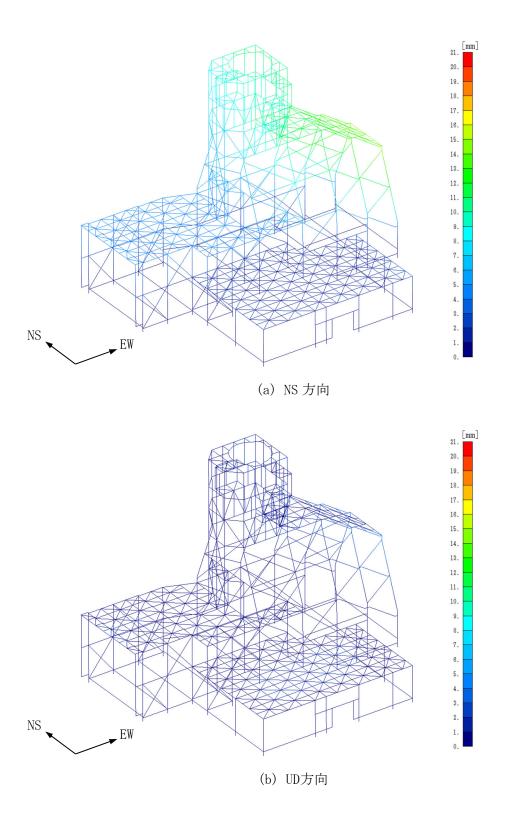


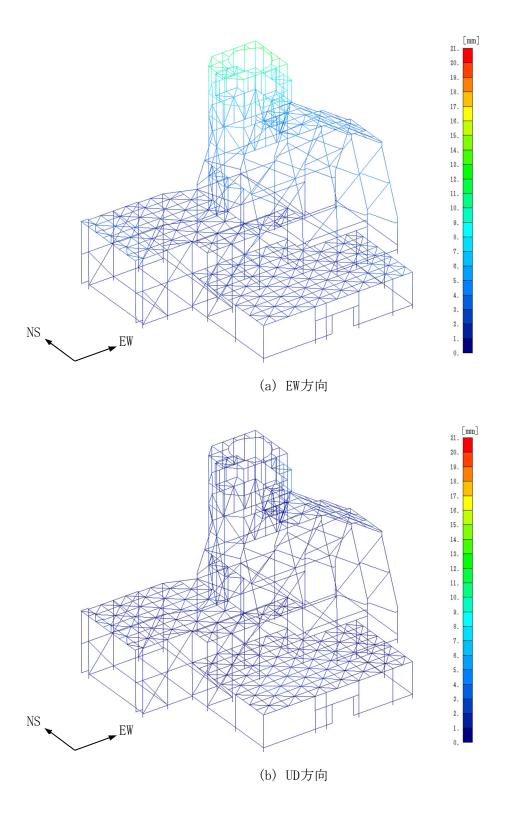
第 4.1-2 図 刺激関数図(EW 方向)

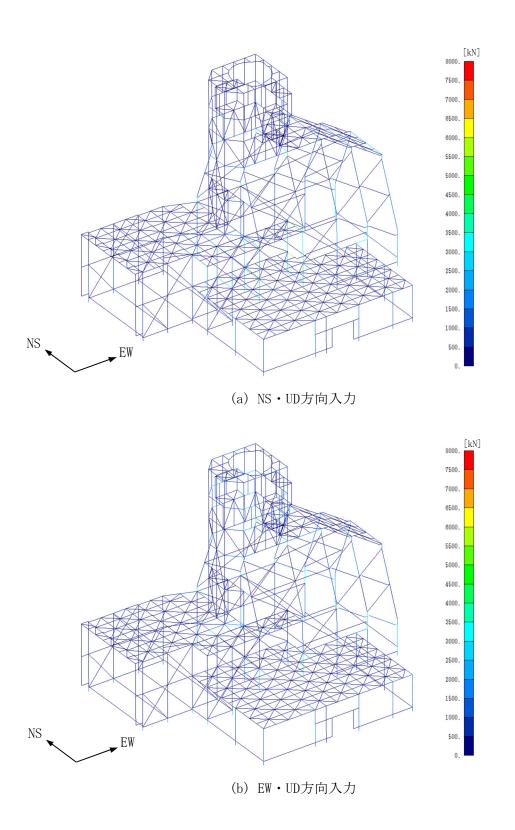


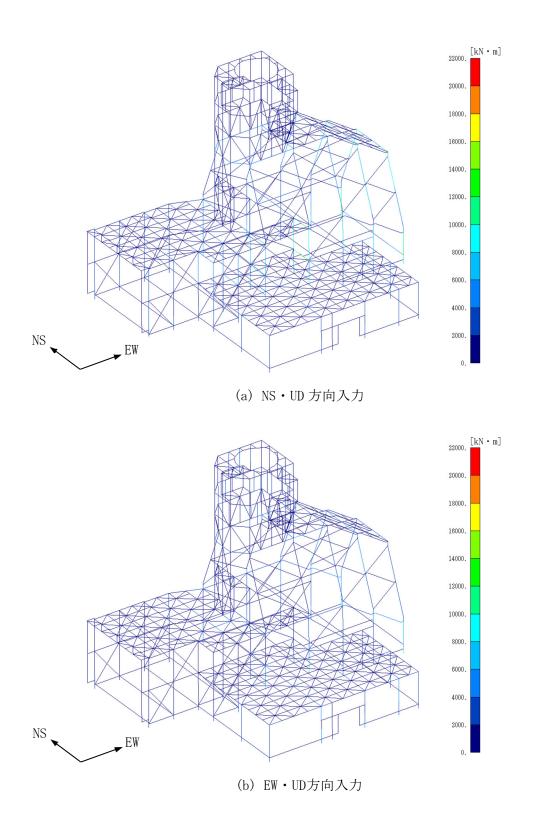

第4.1-3図 刺激関数図(鉛直方向)

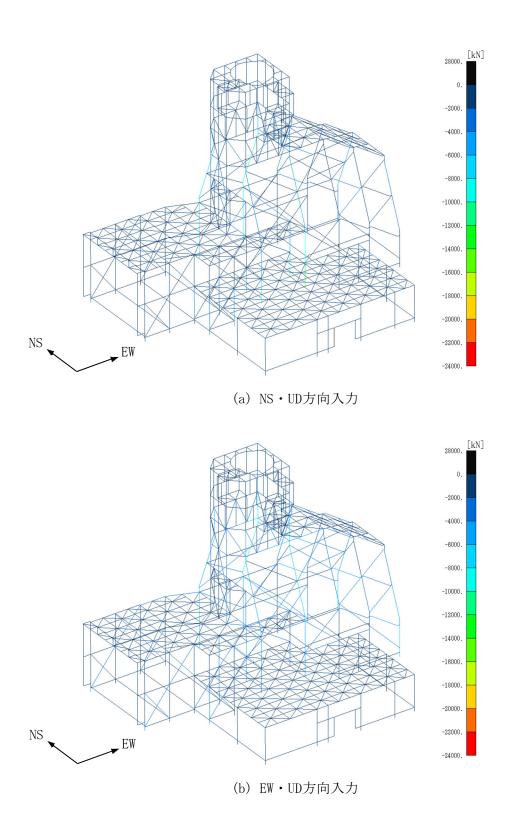
4.2 地震応答解析結果

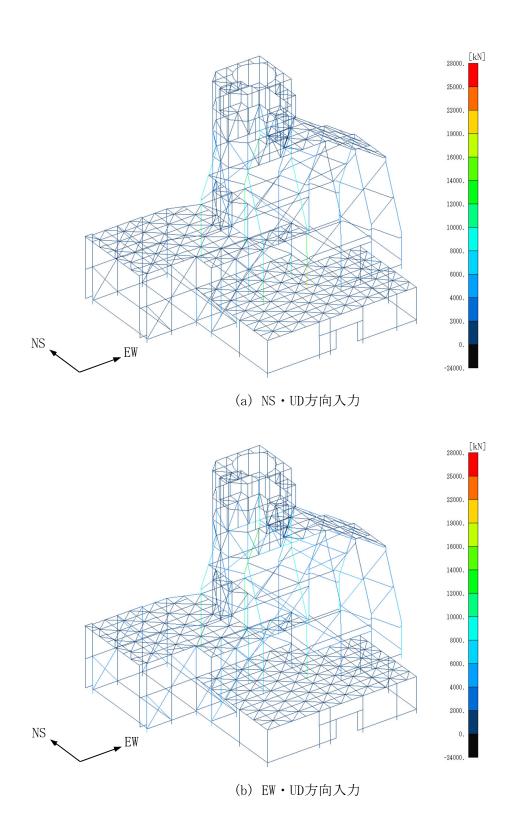

飛来物防護板架構の最大応答値(加速度,変位,せん断力,曲げモーメント,引張力及び圧縮力)を第4.2-1図~第4.2-104図に示す。

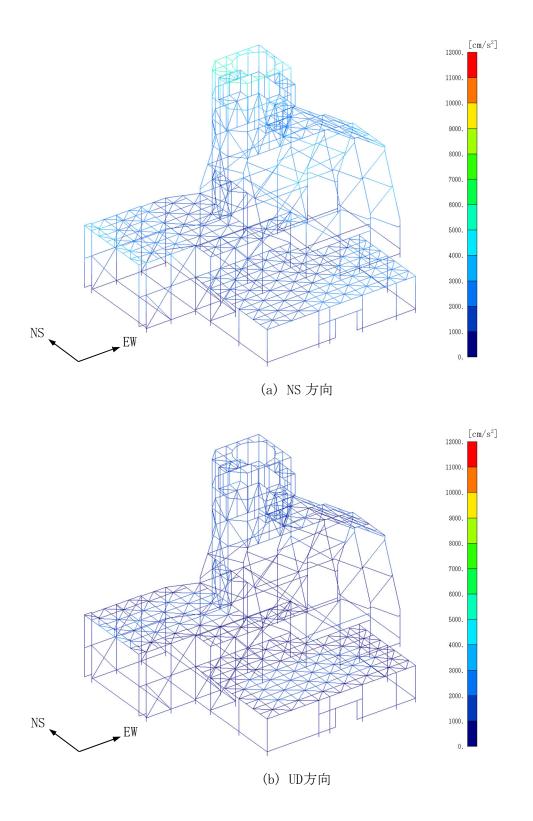

第4.2-1 図 最大応答加速度(基本ケース, 1.2Ss-A, NS・UD 方向入力)

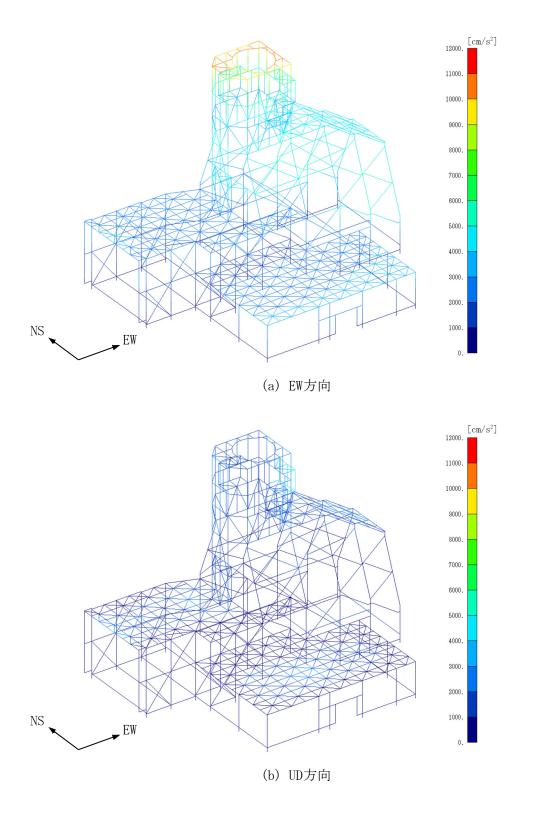

第4.2-2図 最大応答加速度(基本ケース, 1.2Ss-A, EW・UD方向入力)

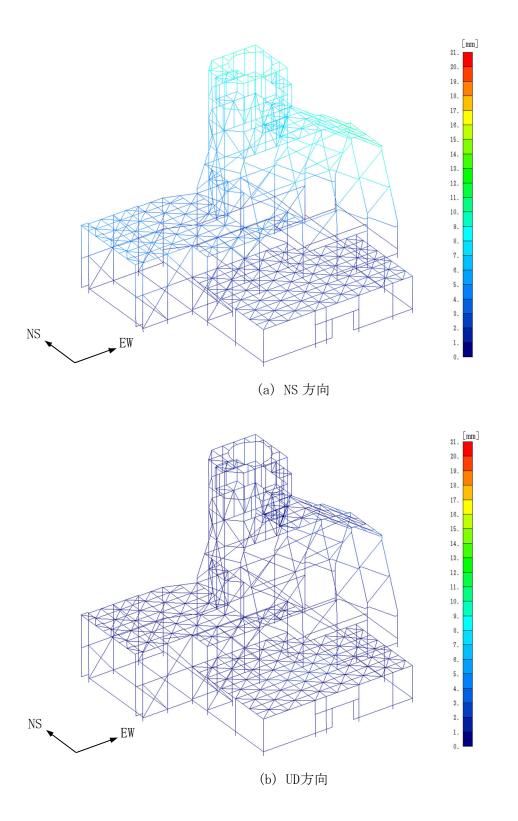

第4.2-3 図 最大応答変位(基本ケース, 1.2Ss-A, NS・UD 方向入力)

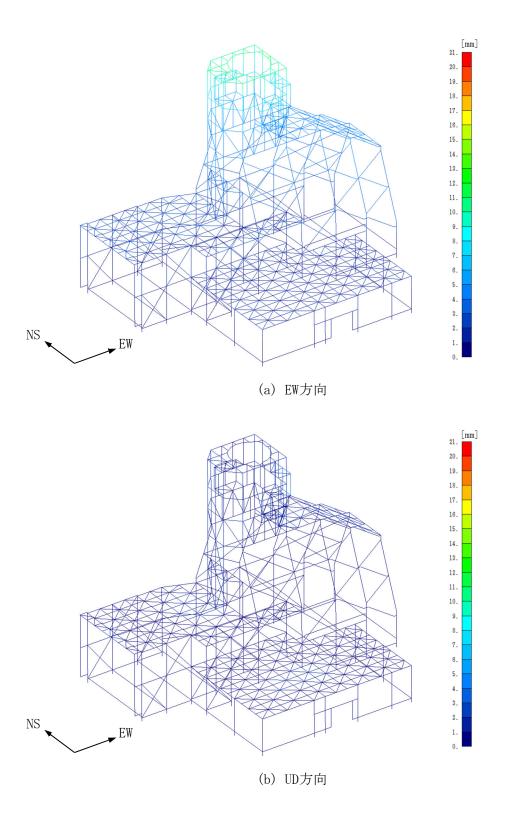

第4.2-4 図 最大応答変位(基本ケース, 1.2Ss-A, EW・UD 方向入力)

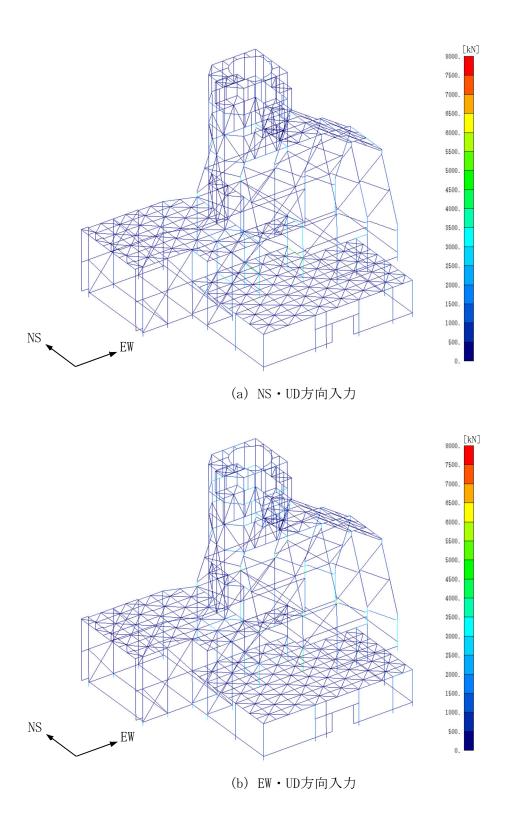

第4.2-5 図 最大応答方向せん断応力(基本ケース, 1.2Ss-A)

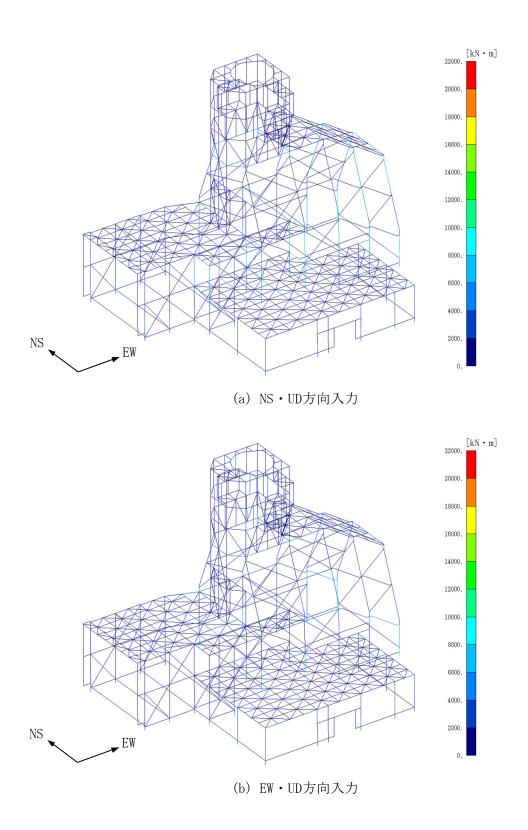

第4.2-6図 最大応答方向曲げモーメント(基本ケース, 1.2Ss-A)

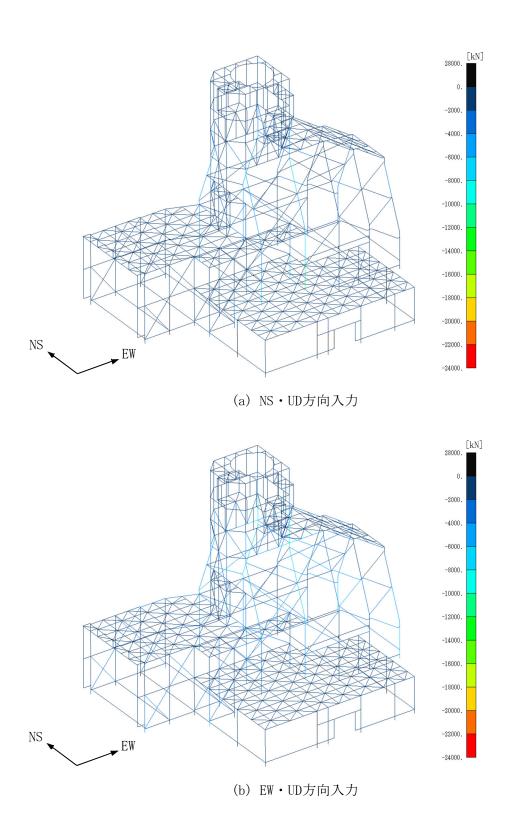

第 4.2-7 図 最大応答軸力引張力(基本ケース, 1.2Ss-A)

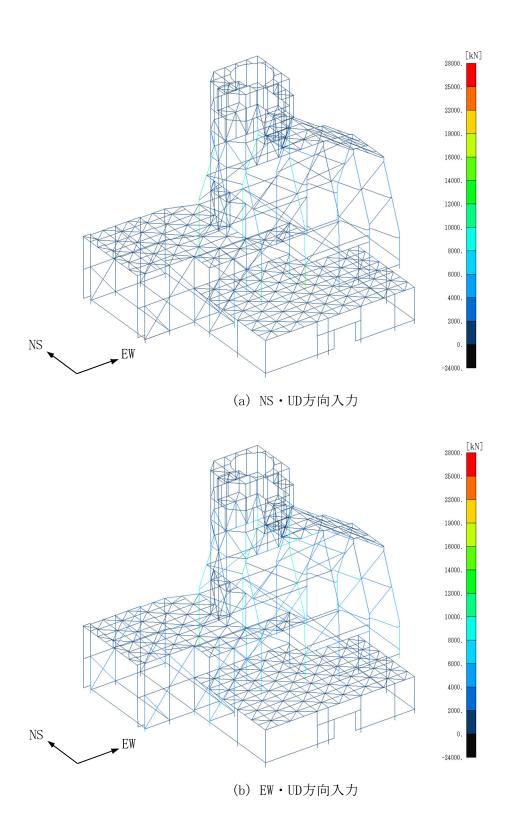

第4.2-8図 最大応答軸力圧縮力(基本ケース, 1.2Ss-A)

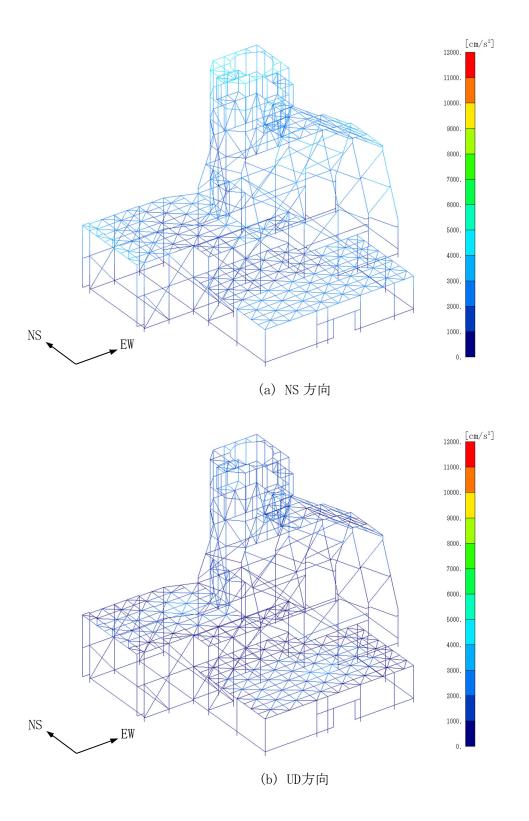

第4.2-9 図 最大応答加速度(基本ケース, 1.2Ss-B1, NS・UD 方向入力)

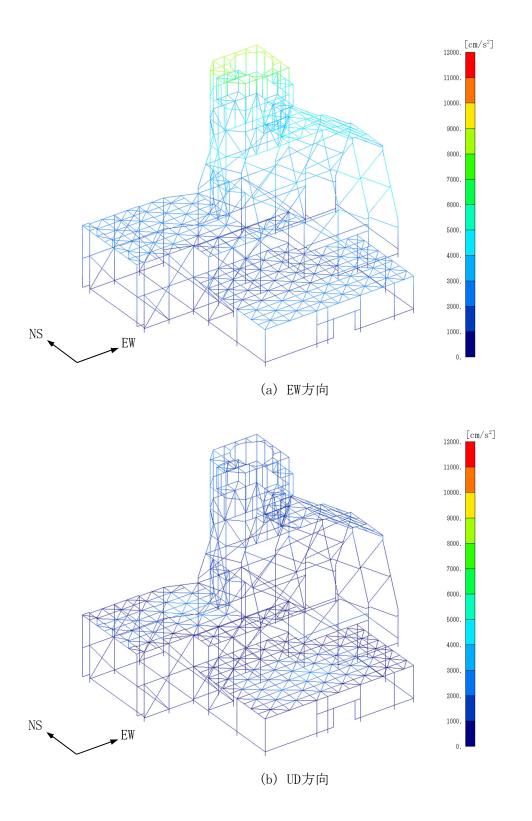

第4.2-10図 最大応答加速度(基本ケース, 1.2Ss-B1, EW・UD方向入力)

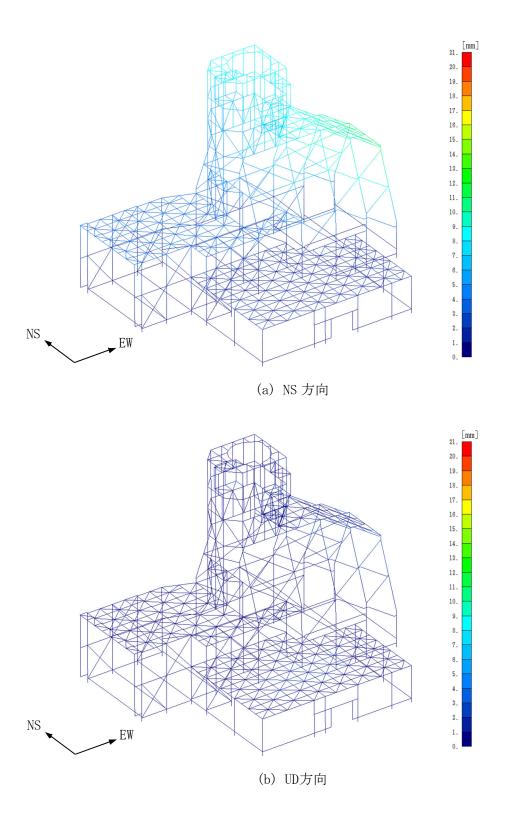

第4.2-11 図 最大応答変位(基本ケース, 1.2Ss-B1, NS・UD 方向入力)

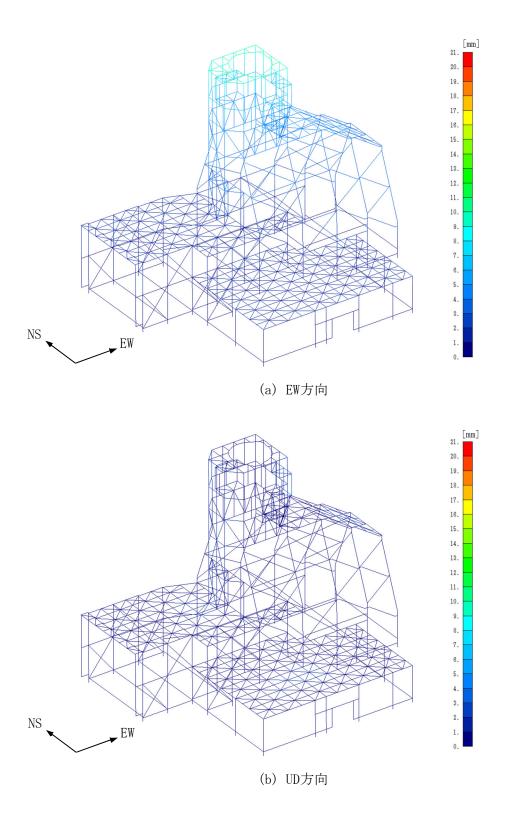

第4.2-12 図 最大応答変位(基本ケース, 1.2Ss-B1, EW・UD 方向入力)

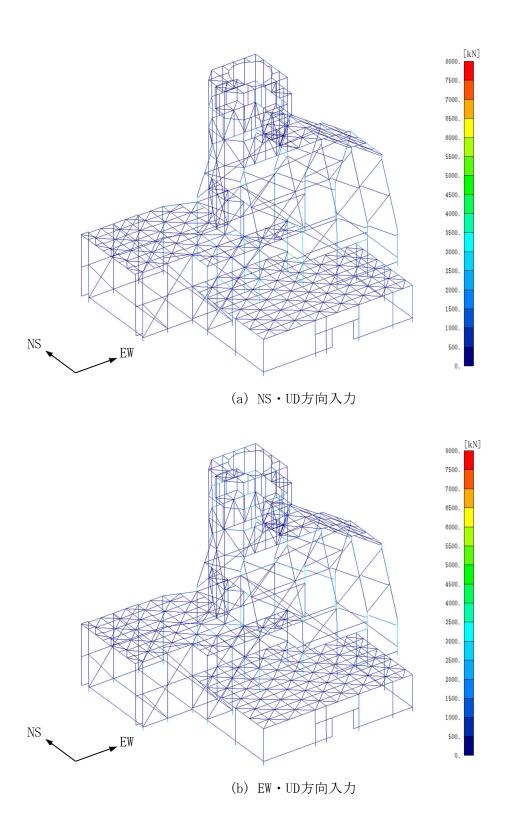

第4.2-13 図 最大応答方向せん断応力(基本ケース, 1.2Ss-B1)

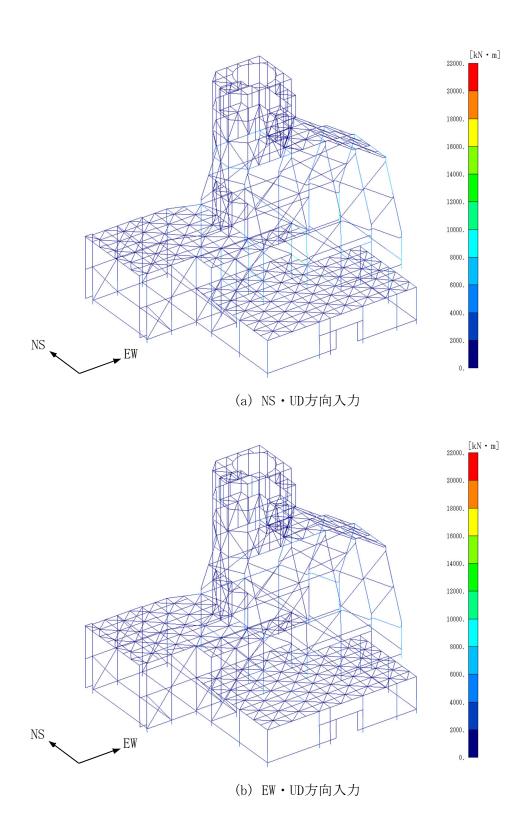

第4.2-14図 最大応答方向曲げモーメント(基本ケース, 1.2Ss-B1)

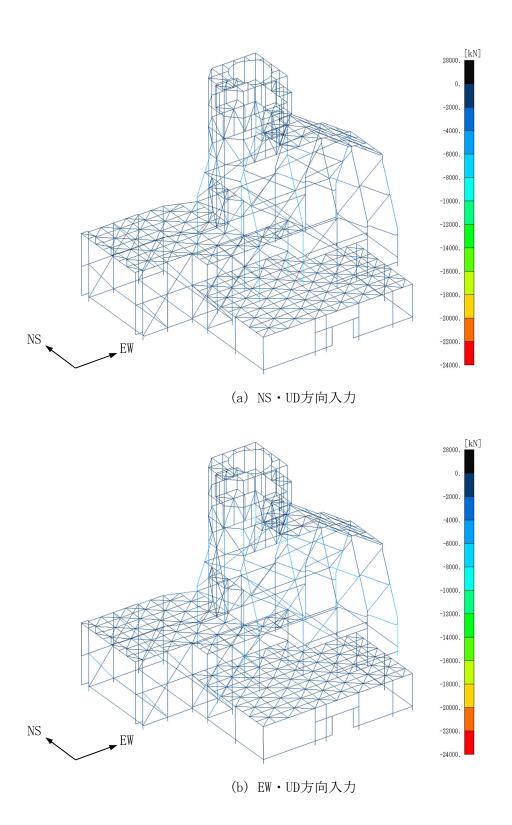

第4.2-15図 最大応答引張力(基本ケース, 1.2Ss-B1)

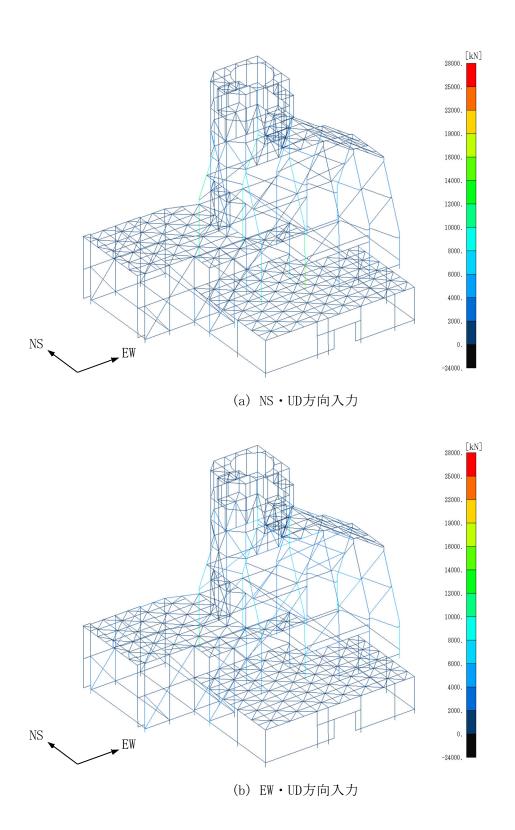

第4.2-16図 最大応答圧縮力(基本ケース, 1.2Ss- B1)

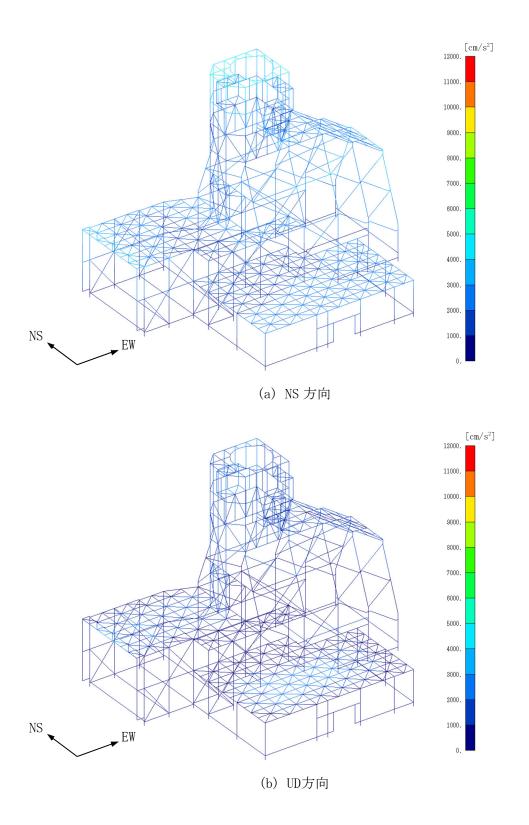

第4.2-17 図 最大応答加速度(基本ケース, 1.2Ss-B2, NS・UD 方向入力)

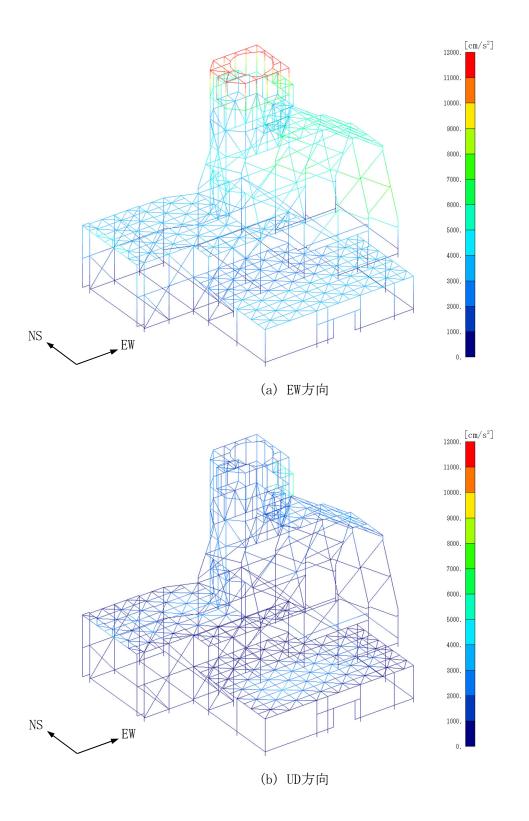

第4.2-18図 最大応答加速度(基本ケース, 1.2Ss-B2, EW・UD方向入力)

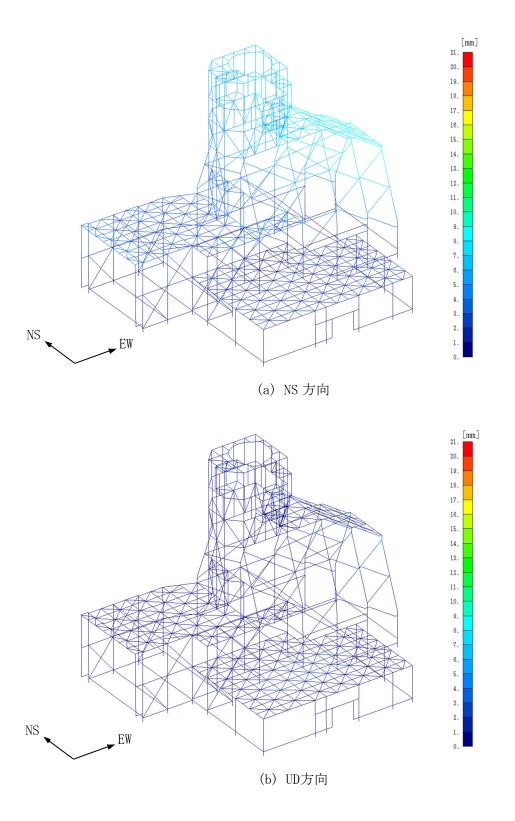

第4.2-19 図 最大応答変位(基本ケース, 1.2Ss-B2, NS・UD 方向入力)

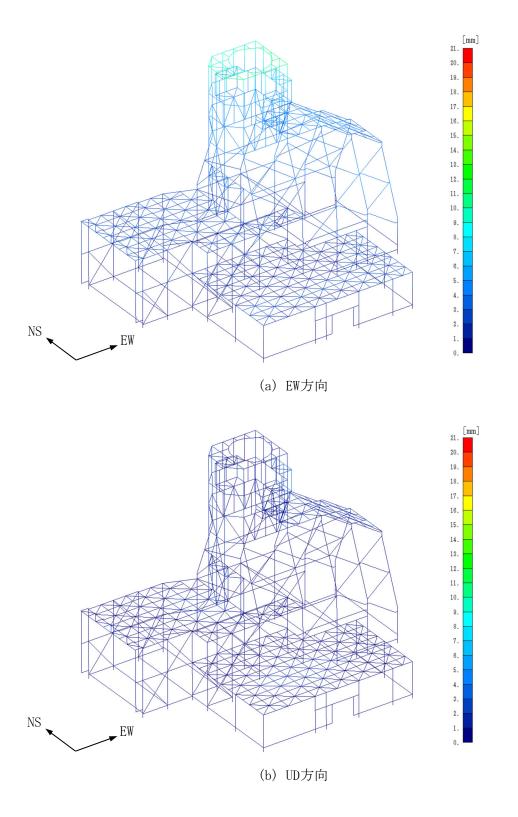

第4.2-20 図 最大応答変位(基本ケース, 1.2Ss-B2, EW・UD 方向入力)

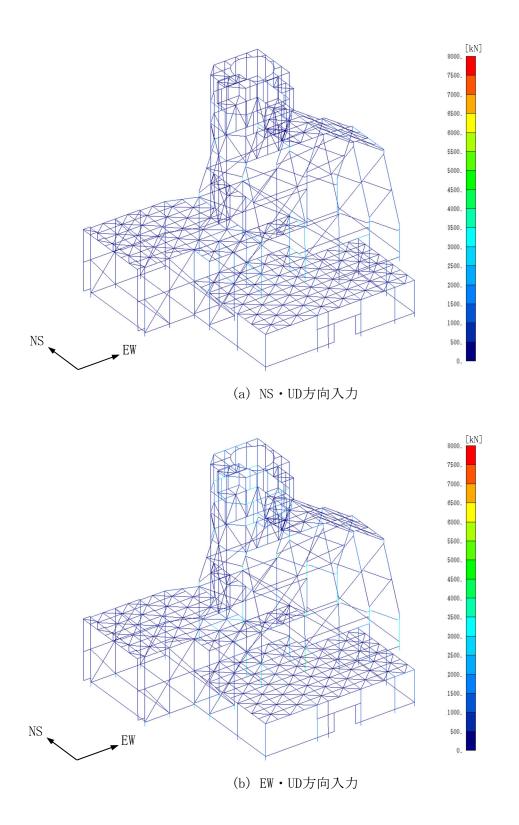

第4.2-21図 最大応答方向せん断応力(基本ケース, 1.2Ss-B2)

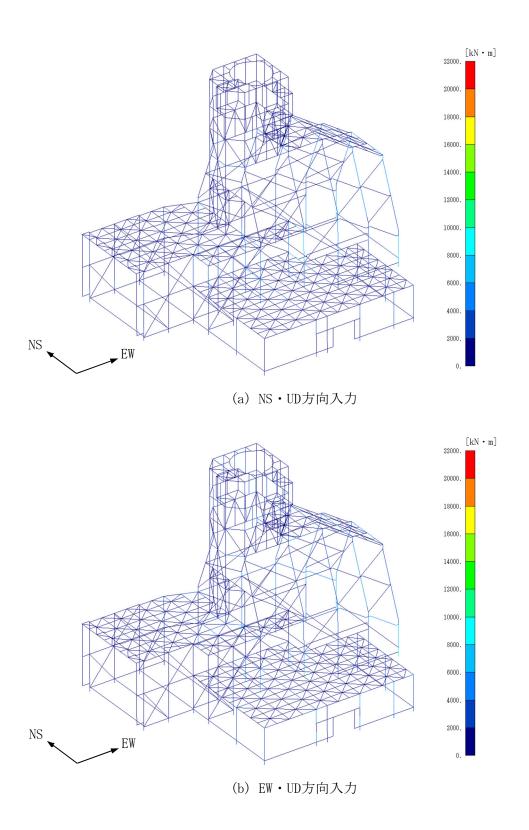

第4.2-22 図 最大応答方向曲げモーメント(基本ケース, 1.2Ss-B2)

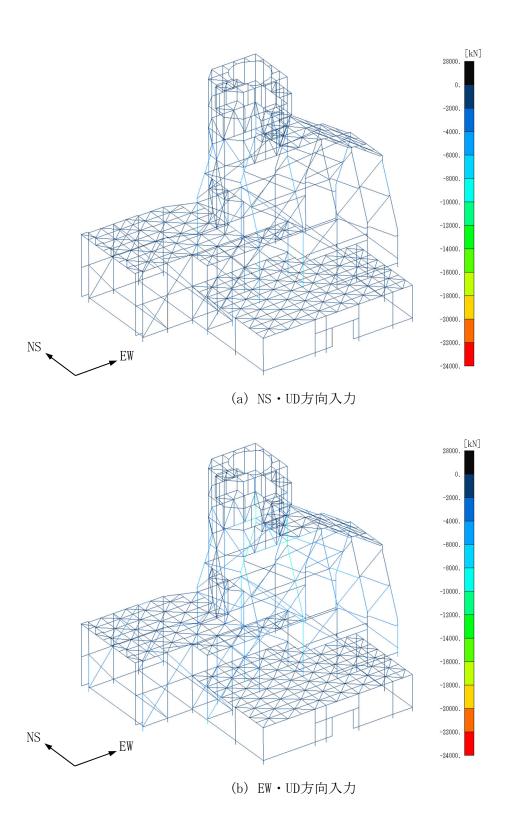

第4.2-23図 最大応答引張力(基本ケース, 1.2Ss-B2)

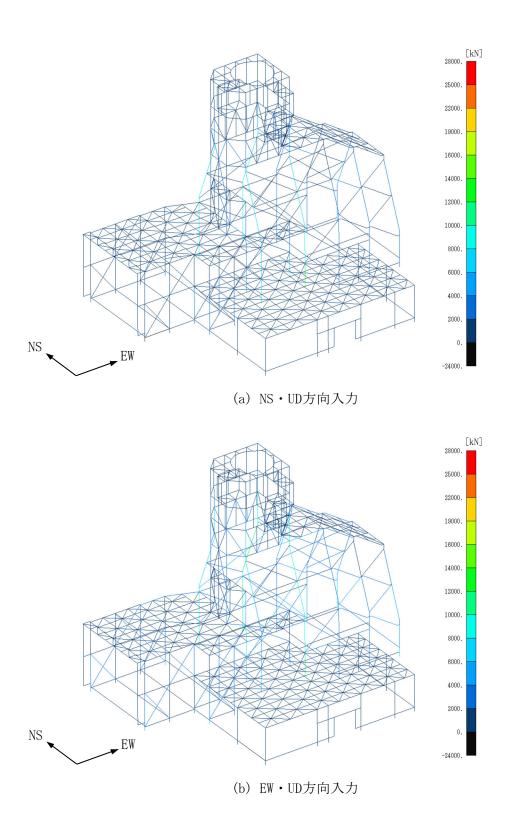

第4.2-24図 最大応答圧縮力(基本ケース, 1.2Ss-B2)

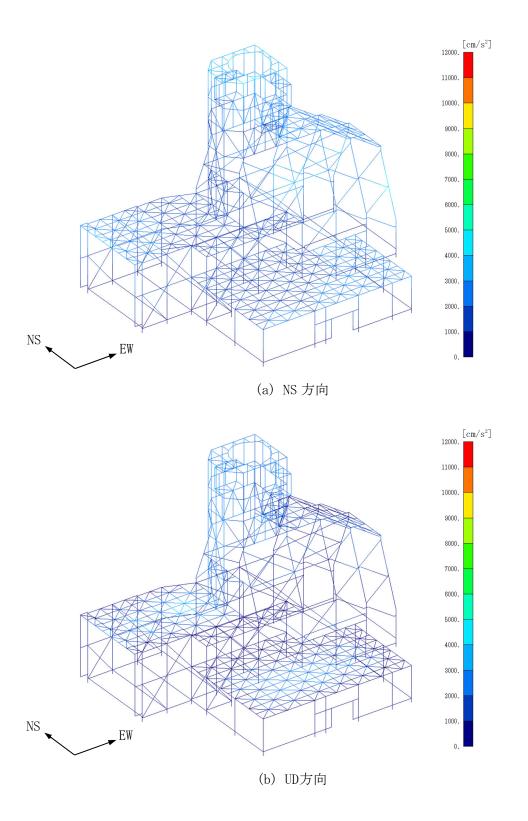

第4.2-25 図 最大応答加速度(基本ケース, 1.2Ss-B3, NS・UD 方向入力)

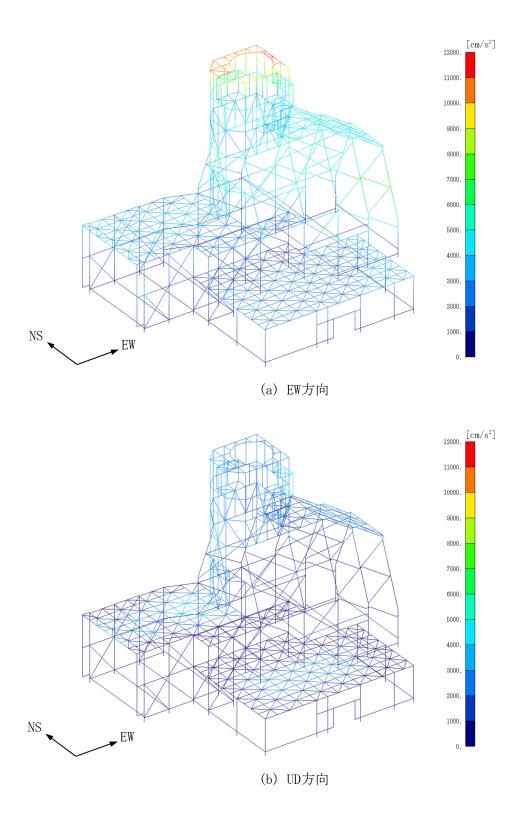

第4.2-26図 最大応答加速度(基本ケース, 1.2Ss-B3, EW・UD方向入力)

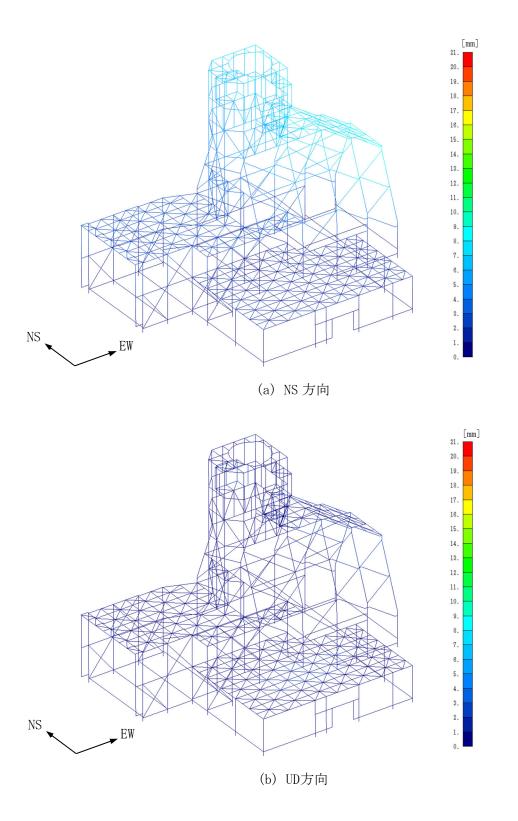

第4.2-27 図 最大応答変位(基本ケース, 1.2Ss-B3, NS・UD 方向入力)

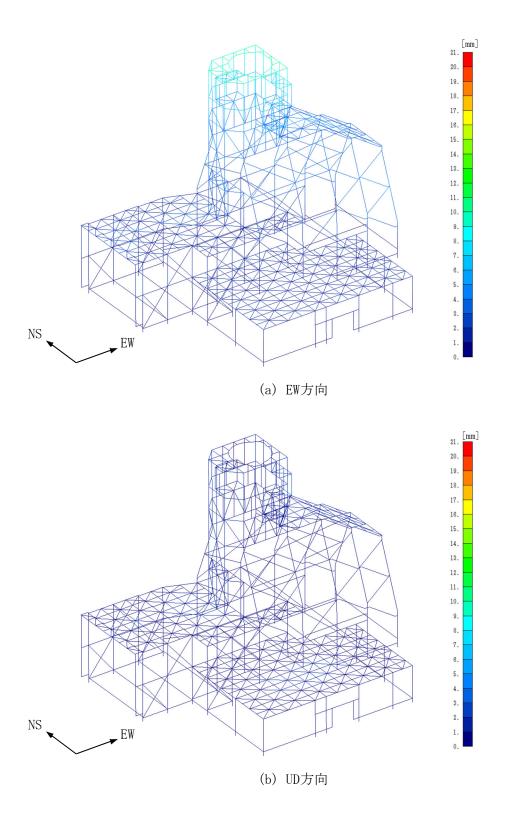

第4.2-28 図 最大応答変位(基本ケース, 1.2Ss-B3, EW・UD 方向入力)

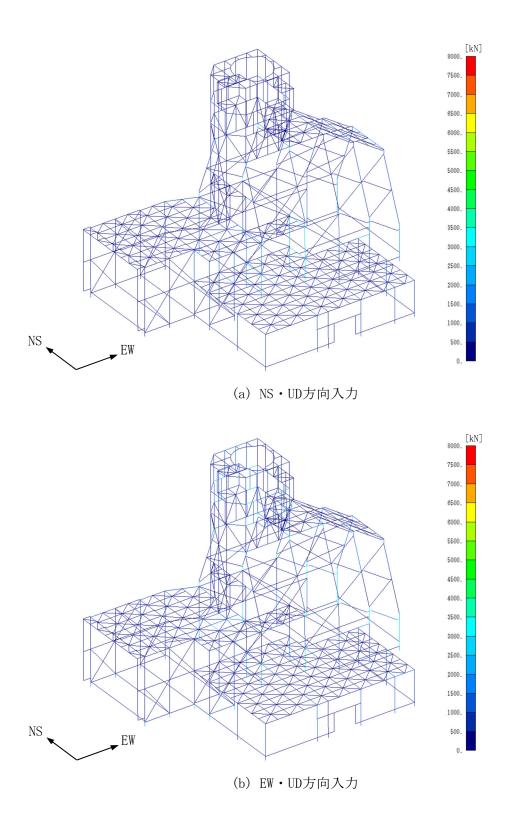

第4.2-29 図 最大応答方向せん断応力(基本ケース, 1.2Ss-B3)

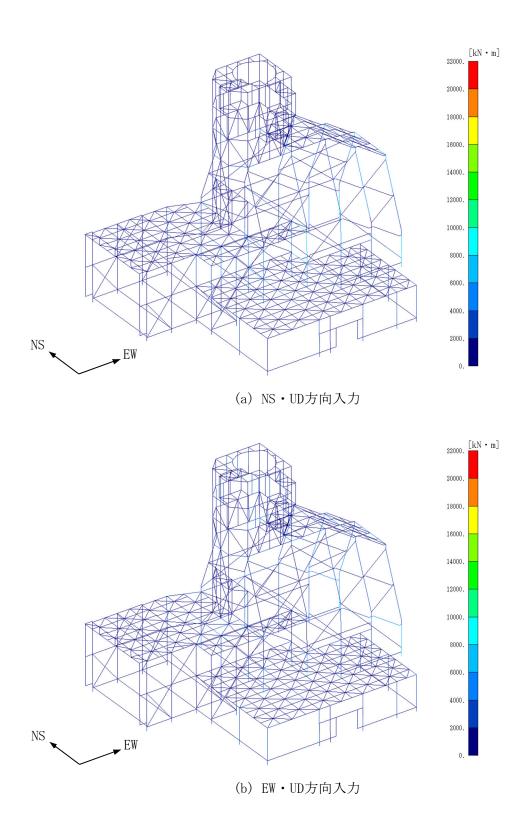

第4.2-30図 最大応答方向曲げモーメント(基本ケース, 1.2Ss-B3)

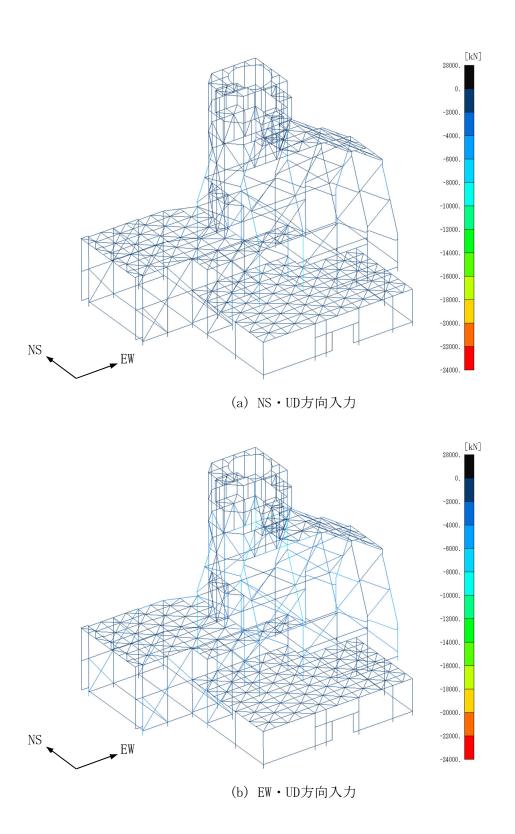

第4.2-31図 最大応答引張力(基本ケース, 1.2Ss-B3)

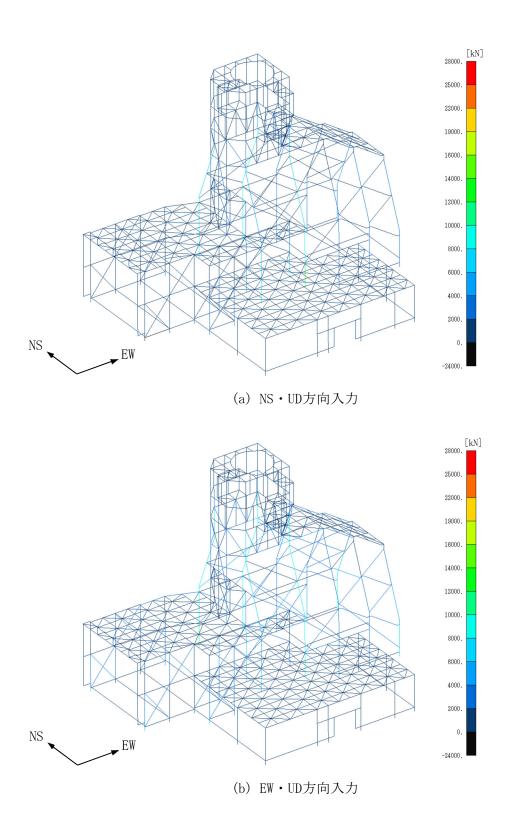

第4.2-32図 最大応答圧縮力(基本ケース, 1.2Ss-B3)

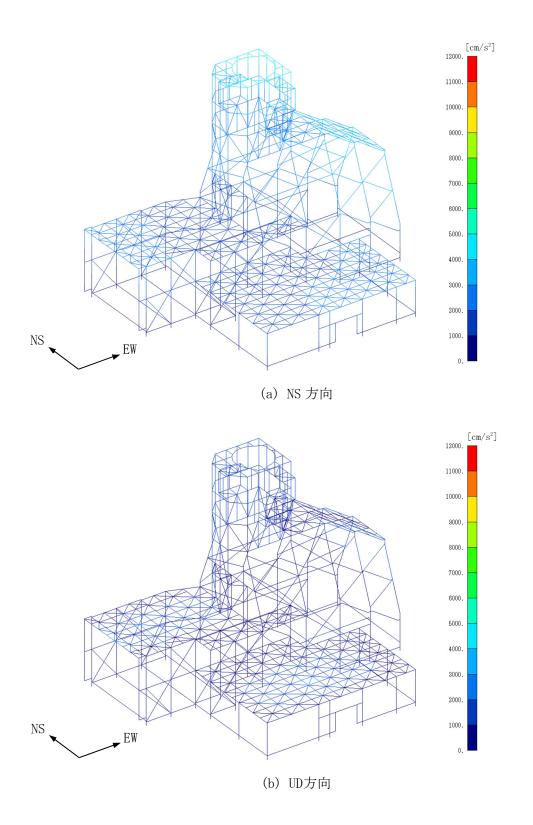

第4.2-33 図 最大応答加速度(基本ケース, 1.2Ss-B4, NS・UD 方向入力)

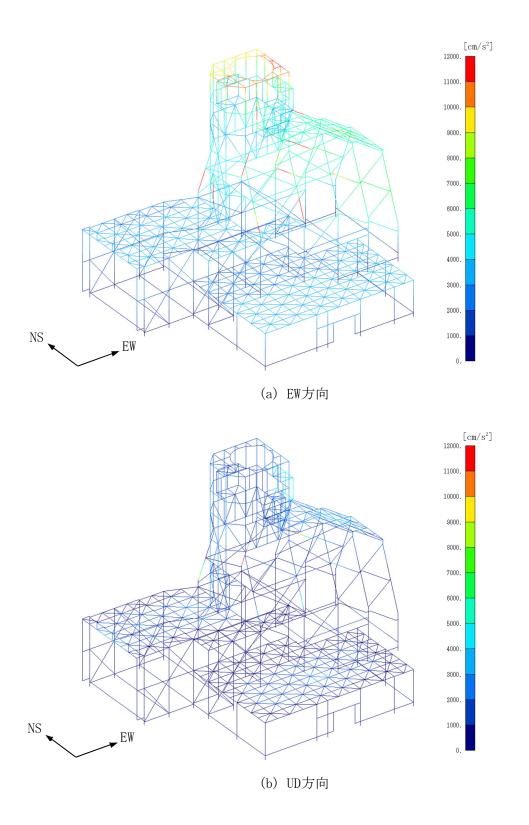

第4.2-34図 最大応答加速度(基本ケース, 1.2Ss-B4, EW・UD方向入力)

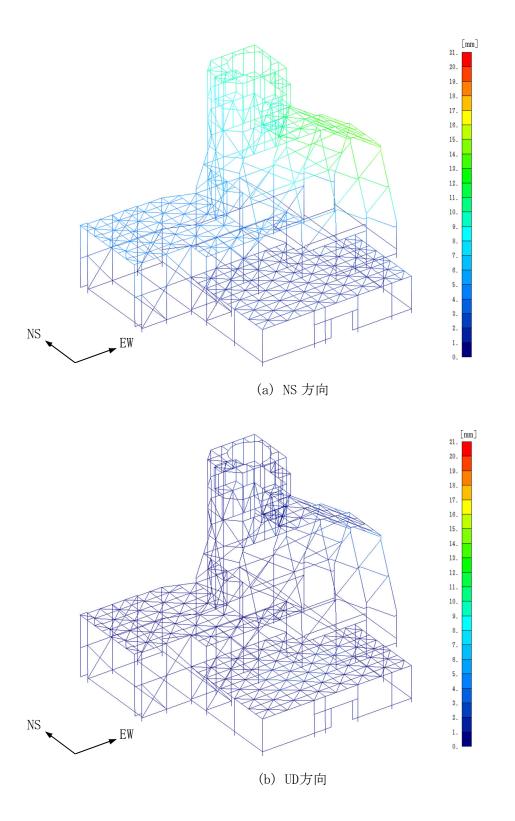

第4.2-35 図 最大応答変位(基本ケース, 1.2Ss-B4, NS・UD 方向入力)

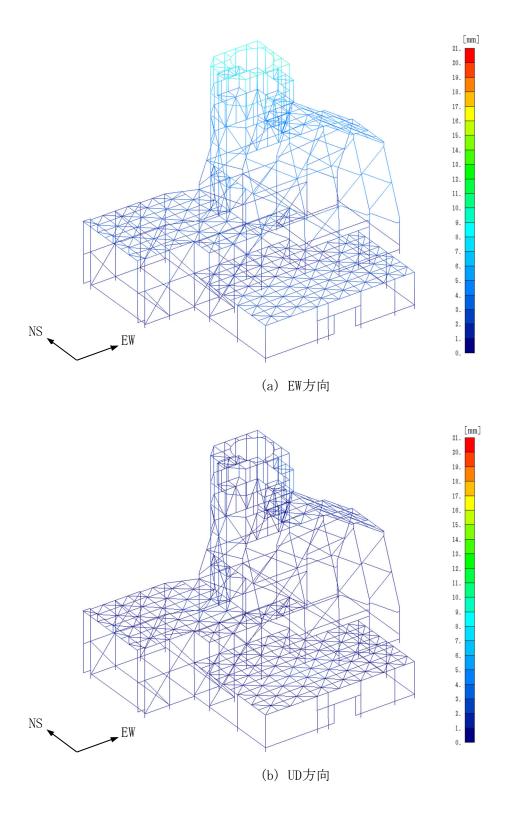

第4.2-36 図 最大応答変位(基本ケース, 1.2Ss-B4, EW・UD 方向入力)

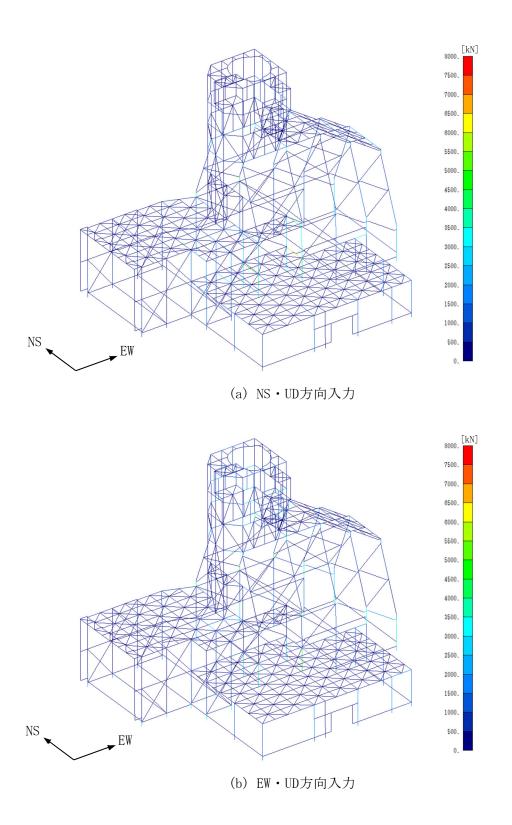

第4.2-37 図 最大応答方向せん断応力(基本ケース, 1.2Ss-B4)

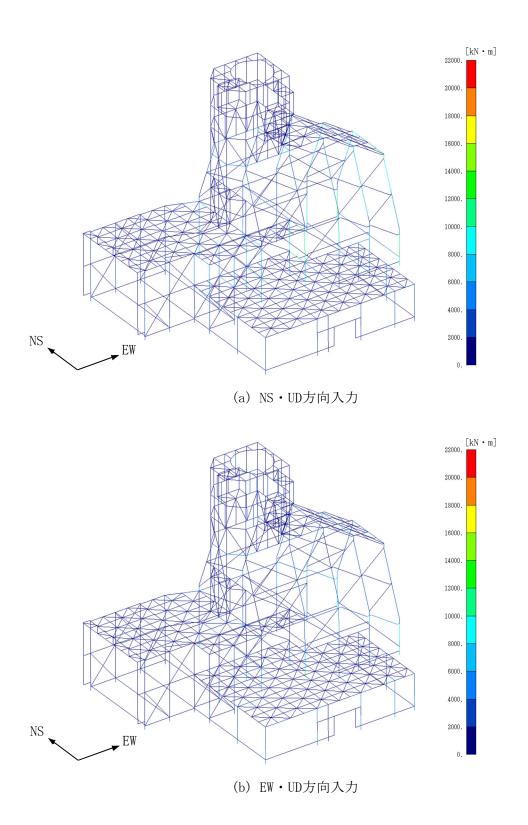

第4.2-38 図 最大応答方向曲げモーメント(基本ケース, 1.2Ss-B4)

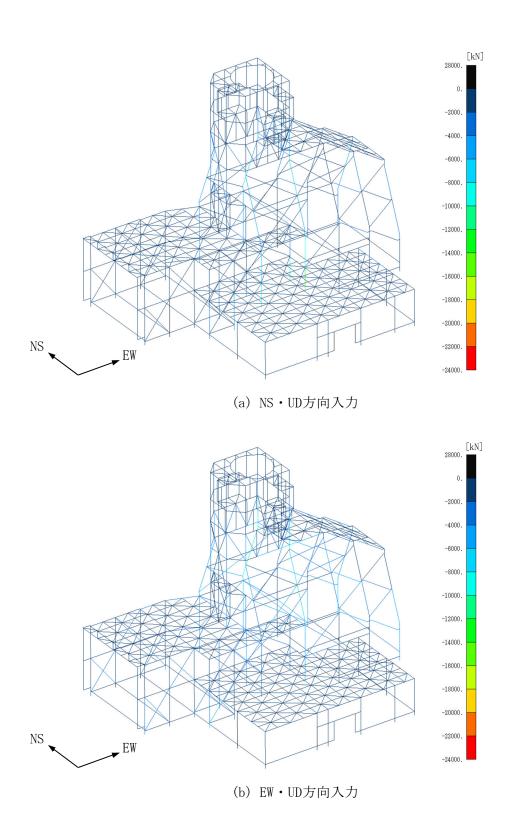

第4.2-39図 最大応答引張力(基本ケース, 1.2Ss-B4)

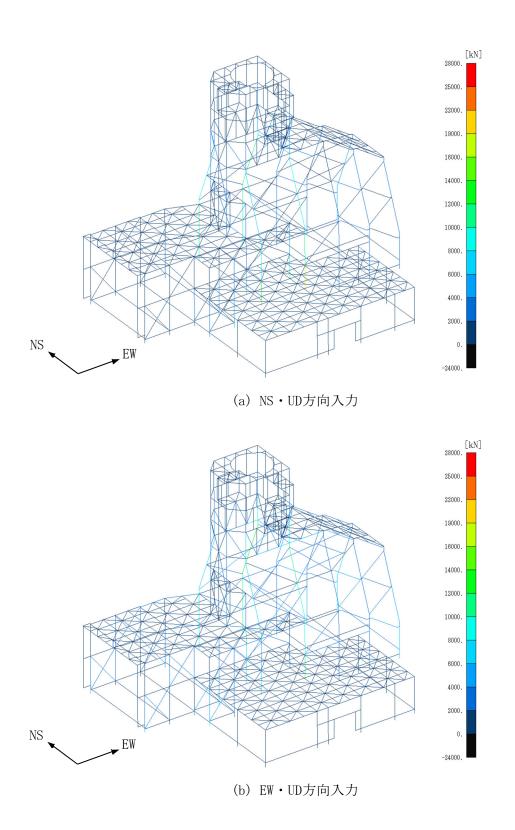

第4.2-40図 最大応答圧縮力(基本ケース, 1.2Ss-B4)

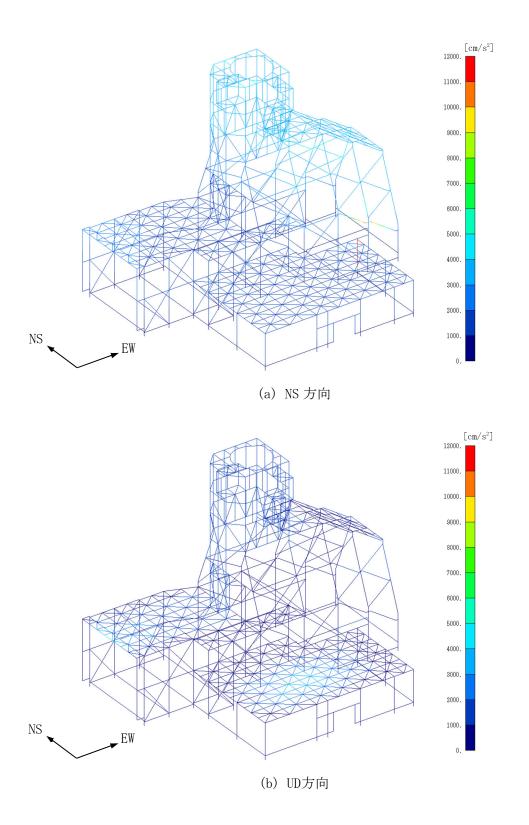

第4.2-41 図 最大応答加速度(基本ケース, 1.2Ss-B5, NS・UD 方向入力)

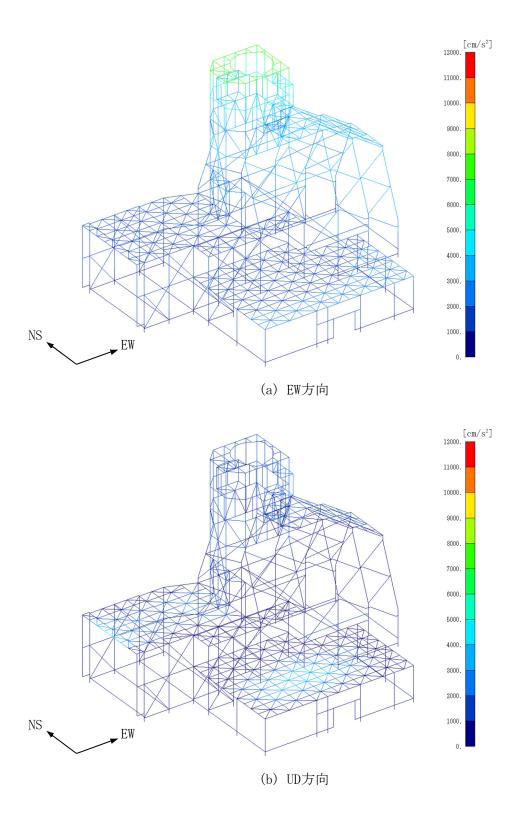

第4.2-42図 最大応答加速度(基本ケース, 1.2Ss-B5, EW・UD方向入力)

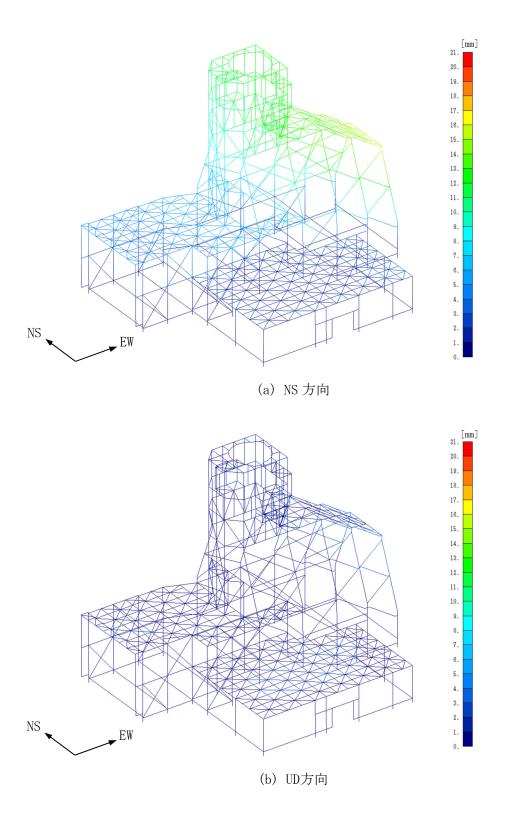

第4.2-43 図 最大応答変位(基本ケース, 1.2Ss-B5, NS・UD 方向入力)

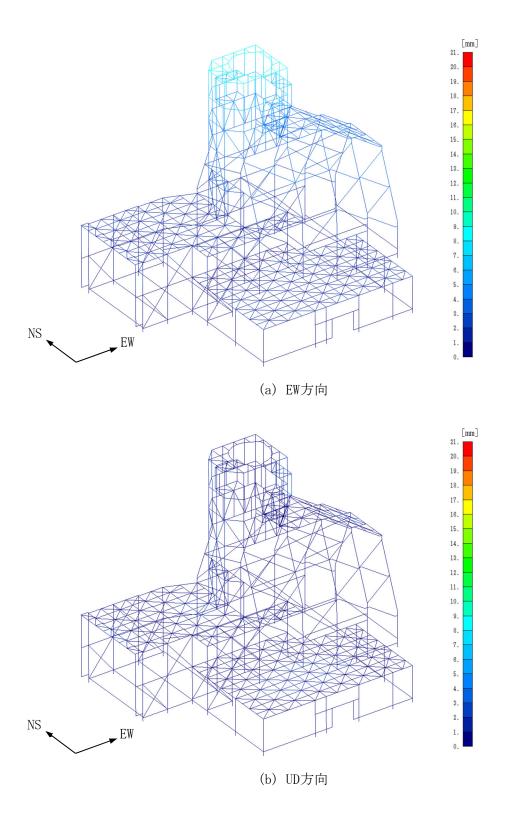

第4.2-44図 最大応答変位(基本ケース, 1.2Ss-B5, EW・UD 方向入力)

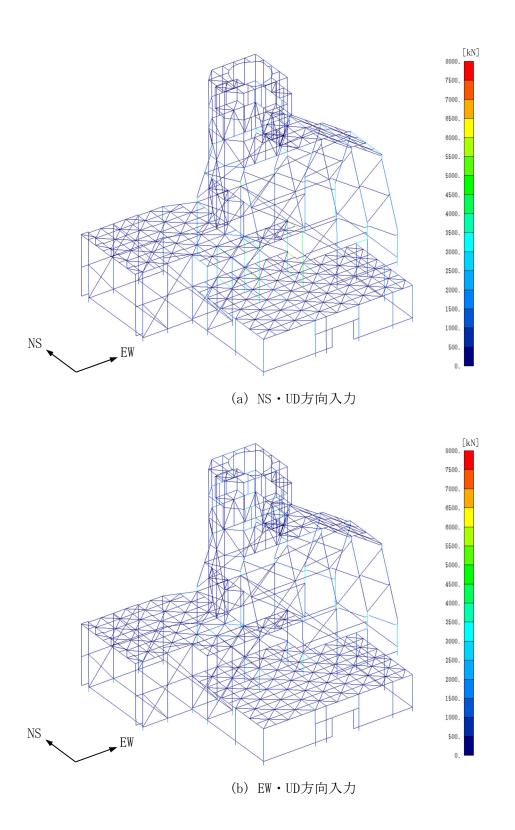

第4.2-45 図 最大応答方向せん断応力(基本ケース, 1.2Ss-B5)

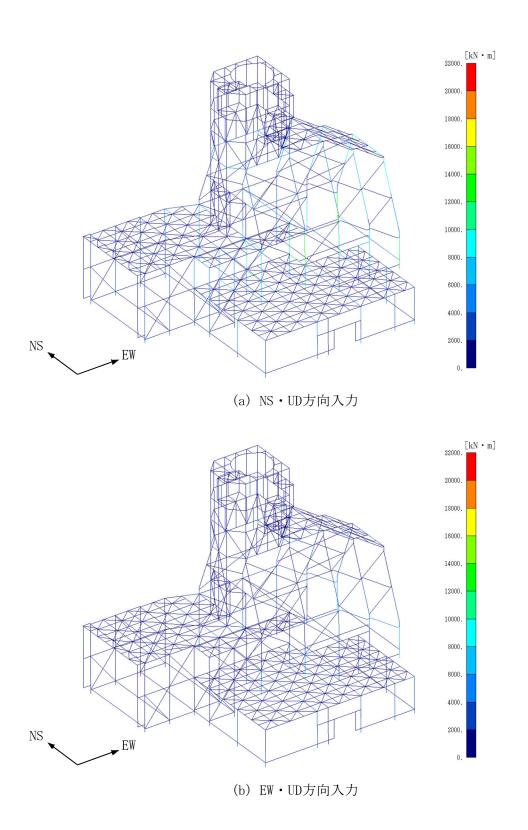

第4.2-46 図 最大応答方向曲げモーメント(基本ケース, 1.2Ss-B5)

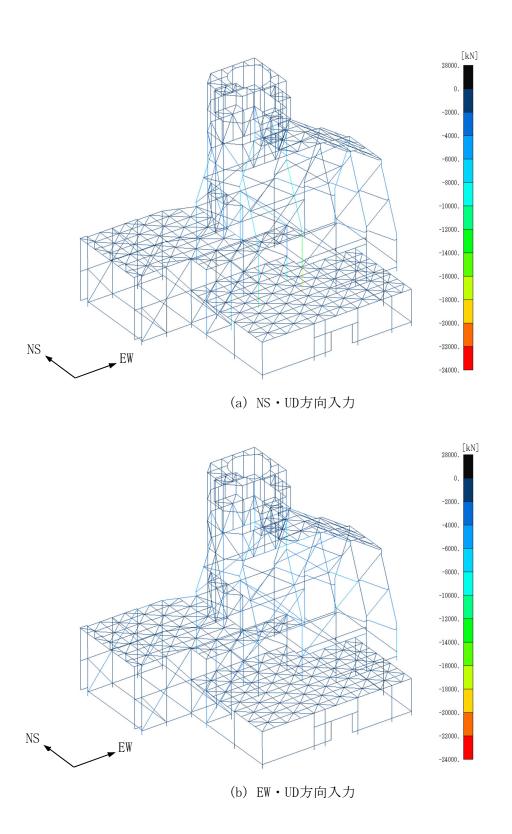

第4.2-47図 最大応答引張力(基本ケース, 1.2Ss-B5)


第4.2-48図 最大応答圧縮力(基本ケース, 1.2Ss-B5)


第4.2-49 図 最大応答加速度(基本ケース, 1.2Ss-C1, NS・UD 方向入力)


第4.2-50図 最大応答加速度(基本ケース, 1.2Ss-C1, EW・UD方向入力)


第4.2-51 図 最大応答変位(基本ケース, 1.2Ss-C1, NS・UD 方向入力)


第4.2-52 図 最大応答変位(基本ケース, 1.2Ss-C1, EW・UD 方向入力)

第4.2-53 図 最大応答方向せん断応力(基本ケース, 1.2Ss-C1)

第4.2-54図 最大応答方向曲げモーメント(基本ケース, 1.2Ss-C1)

第4.2-55 図 最大応答引張力(基本ケース, 1.2Ss-C1)