目 次

1. 火山影響評価の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 17
2. 立地評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 22
2. 1 文献調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 25
2.2 原子力発電所に影響を及ぼし得る火山の抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 35
2.3 運用期間中の火山の活動可能性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 43
2.3.1 過去に巨大噴火が発生した火山・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 47
2.3.2 巨大噴火の可能性評価方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.127
2.3.3 巨大噴火の可能性評価(支笏カルデラ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.141
2. 3. 4 巨大噴火の可能性評価(倶多楽・登別火山群)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.181
2.3.5 巨大噴火の可能性評価(洞爺カルデラ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.223
2. 4 設計対応不可能な火山事象に関する個別評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.265
2. 5 立地評価まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.333
3. 影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
3.1 地理的領域内の火山による火山事象の影 ① 活動履歴	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価 3.2.1 降下火砕物の層厚評価の概要・・・。 3.2.2 敷地周辺で確認される降下火砕物 ① 活動履歴 ②-1 地球物理学的調査(地下構造:地震波速度構造) ②-2 地球物理学的調査(地下構造:比抵抗構造) ②-3 地球物理学的調査(地下構造:重力異常) ②-4 地球物理学的調査(地下構造:まとめ) 	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価 3.2.1 降下火砕物の層厚評価の概要 3.2.2 敷地周辺で確認される降下火砕物 3.2.3 降下火砕物シミュレーション 1 活動履歴 2-1 地球物理学的調査(地下構造:地震波速度構造) 2-2 地球物理学的調査(地下構造:比抵抗構造) 2-3 地球物理学的調査(地下構造:重力異常) 2-4 地球物理学的調査(地下構造:まとめ) 2-5 地球物理学的調査(火山性地震) 	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価 3.2.1 降下火砕物の層厚評価の概要 3.2.2 敷地周辺で確認される降下火砕物 3.2.3 降下火砕物シミュレーション 3.2.4 設計に用いる降下火砕物の層厚 1 活動履歴 2-1 地球物理学的調査(地下構造:地震波速度構造) 2-2 地球物理学的調査(地下構造:主力異常) 2-4 地球物理学的調査(地下構造:まとめ) 2-5 地球物理学的調査(火山性地震) 2-6 地球物理学的調査(地下体験) 	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価 3.2.1 降下火砕物の層厚評価の概要・ 3.2.2 敷地周辺で確認される降下火砕物 3.2.3 降下火砕物シミュレーション・・・・・ 3.2.4 設計に用いる降下火砕物の層厚 3.2.5 降下火砕物の密度・粒径 1 活動履歴 2-1 地球物理学的調査(地下構造:地震波速度構造) 2-2 地球物理学的調査(地下構造:まとあ) 2-4 地球物理学的調査(地下構造:まとめ) 2-5 地球物理学的調査(地下構造:まとめ) 2-6 地球物理学的調査(地設変動) 2-7 地球物理学的調査(まとめ) 	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価 3.2.1 降下火砕物の層厚評価の概要 3.2.2 敷地周辺で確認される降下火砕物 3.2.3 降下火砕物シミュレーション 3.2.4 設計に用いる降下火砕物の層厚 3.2.5 降下火砕物の密度・粒径 3.3 影響評価まとめ 1 活動履歴 (2-1 地球物理学的調査(地下構造:地震波速度構造) (2-2 地球物理学的調査(地下構造:重力異常) (2-4 地球物理学的調査(地下構造:まとめ) (2-5 地球物理学的調査(火山性地震) (2-6 地球物理学的調査(地殻変動) (2-7 地球物理学的調査(まとめ) 	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価 3.2.1 降下火砕物の層厚評価の概要 3.2.2 敷地周辺で確認される降下火砕物 3.2.3 降下火砕物シミュレーション 3.2.5 降下火砕物の密度・粒径 3.3 影響評価まとめ 1 活動履歴 2-1 地球物理学的調査(地下構造:地震波速度構造) 2-2 地球物理学的調査(地下構造:ま) 2-4 地球物理学的調査(地下構造:まとめ) 2-5 地球物理学的調査(地下構造:まとめ) 2-6 地球物理学的調査(地下構造:まとめ) 2-7 地球物理学的調査(まとめ) 	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価 3.2.1 降下火砕物の層厚評価の概要・ 3.2.2 敷地周辺で確認される降下火砕物 3.2.3 降下火砕物シミュレーション・・・・・ 3.2.4 設計に用いる降下火砕物の層厚 3.2.5 降下火砕物の密度・粒径・・・・・ 3.3 影響評価まとめ 4. モニタリング 4.1 監視対象火山の抽出 	
 3.1 地理的領域内の火山による火山事象の影 3.2 降下火砕物の影響評価 3.2.1 降下火砕物の層厚評価の概要・・・ 3.2.2 敷地周辺で確認される降下火砕物 3.2.3 降下火砕物シミュレーション・・・ 3.2.4 設計に用いる降下火砕物の層厚 3.2.5 降下火砕物の密度・粒径 3.3 影響評価まとめ 4.1 監視対象火山の抽出 4.2 モニタリングの実施方法及び火山の状態に応じた対処方針 	
 3.1 地理的領域内の火山による火山事象の託 3.2 降下火砕物の影響評価 3.2.1 降下火砕物の層厚評価の概要・1 3.2.2 敷地周辺で確認される降下火砕物 3.2.3 降下火砕物シミュレーション 3.2.5 降下火砕物の密度・粒径 3.3 影響評価まとめ 4.1 監視対象火山の抽出 4.2 モニタリング 4.1 監視対象火山の抽出 4.2 モニタリングの実施方法及び火山の状態に応じた対処方針 	P.338

「3. 影響評価」及び「4. モニタリング」については今後説明予定

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

泊発電所における火山影響評価のうち立地評価の流れ

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

【評価結果】倶多楽・登別火山群の巨大噴火の可能性評価

 ○倶多楽・登別火山群起源のKt-7は、確認地点は少ないものの北東方向に60km程度の地点で火砕流堆積物が認められ、約9万年前にKt-7を噴出した噴火は、噴出規模が「VEI7 class」とされていることから、巨大噴火であった可能性が否定できない。
 ○活動履歴及び地球物理学的調査(地下構造(地震波速度構造、比抵抗構造及び重力異常)、火山性地震及び地殻変動)の結果から、 倶多楽・登別火山群の現在の活動状況は巨大噴火が差し迫った状態ではないと評価でき、運用期間中における巨大噴火の可能性を 示す科学的に合理性のある具体的な根拠が得られていないことから、運用期間中における巨大噴火の可能性は十分に小さいと評価 される。

検討項目		検討結果			
①活動履歴		 ○倶多楽・登別火山群の巨大噴火であった可能性が否定できない噴火は1回であり、巨大噴火であった可能性が否定できない噴火が発生した先アヨロステージ並びに珪長質火砕噴火が発生したアヨロステージ及びクッタラステージと、現在の活動期である登別ステージは、噴火の頻度及び噴出物体積が異なることから、現状では先アヨロステージ、アヨロステージ及びクッタラステージのような状態には至っていないと考えられる。 ○網羅的な文献調査の結果、倶多楽・登別火山群については、現状、巨大噴火が起こる可能性があるとする知見は認められない。 			
地球物理学的調査	② <mark>地下構造</mark>	 ○倶多楽・登別火山群直下の上部地殻内(約20km以浅)には、現状、巨大噴火が可能な量のマグマ溜まりを示唆する構造は認められない。 【2-1 地震波速度構造】 ・地震波トモグラフィ解析結果からは、倶多楽・登別火山群直下の上部地殻内には、メルトの存在を示唆する顕著な低 Vpかつ高Vp/Vs領域は認められない。 ・倶多楽・登別火山群直下の上部地殻内には、マグマや熱水等の流体の移動を示唆する低周波地震群は認められない。 【2-2 比抵抗構造】 	P188~ P189		
		・倶多楽・登別火山群直下の浅部(4km以浅)には熱水, 高温及び熱水変質帯によると考えられる低比抵抗領域が部 分的に認められるが, 巨大噴火が可能な量のマグマ溜まりを示唆する低比抵抗領域は認められない。 【②−3 <mark>重力異常</mark> 】 ・重力異常を踏まえマグマ溜まりに関して考察されている文献は認められない。	P1907 P197 P198~ P202		
	③火山性地震	○低周波地震活動は、ほとんど認められない。	P204~ P208		
	④地殻変動	○地殻変動は,地獄谷周辺の局所的な沈降傾向又はより広域の北海道南部(東北日本弧延長部)規模の隆起傾向は 認められるが, 倶多楽・登別火山群規模の顕著な変位の累積は認められない。	P209~ P219		
		○俱多楽・登別火山群直下の上部地殻内には,現状,巨大噴火が可能な量のマグマ溜まりが存在する可能性は十分小 さく,大規模なマグマの移動・上昇等の活動を示す兆候も認められない。			

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

① 活動履歴(1/3)

○活動履歴から, 倶多楽・登別火山群の現在の活動状況について検討を実施した。

- ○俱多楽・登別火山群の活動履歴を次頁~P187に示すとおり整理し、その概要を以下に示す。
- ○なお、活動履歴の整理は、R3.10.14審査会合以降に実施した網羅的な文献調査結果(2.1章参照)も踏まえ実施している。
 - ・倶多楽・登別火山群は、約9万年前に最大規模の噴火であるKt-7を噴出した噴火が発生した後、複数の珪長質マグマの活動(アヨロステージ:Kt-6、Kt-4及びKt-3、クッタラステージ:Kt-2及びKt-1)等が発生し、最後の珪長質火砕噴火(Kt-1)により現在のクッタラカルデラが形成された。
 - ・倶多楽・登別火山群は, クッタラカルデラを形成したKt-1の噴火を最後に, その後4万年間は火山活動度が低下したままであり, 現在の噴火活動は, 登別ステージである。
 - ・Kt-7は確認地点は少ないものの北東方向に60km程度の地点で火砕流堆積物が認められ、Kt-7を噴出した噴火は、噴出規模が「VEI7 class」とされていることから(P94~P96参照),巨大噴火であった可能性が否定できない。
 - ・登別ステージ以前においては, Kt-7を除く火砕流を含む火山噴出物については, 噴出物ごとの分布境界は明確ではないが, Kt-7を除く火砕流堆 積物の分布は山体近傍であることから(P96参照), 巨大噴火に該当しない。
 - ・なお、これらの火砕流のうち、最大の噴出物体積は、Kt-1の7.1km3である(下表参照)。
 - ・登別ステージ以降の、最大規模の降下火砕物を伴う噴火は、約200年前のNb-aを噴出した噴火であり、その噴出物体積は約0.00046km3である。

○倶多楽・登別火山群の巨大噴火であった可能性が否定できない噴火は1回であり、巨大噴火であった可能性が否定できない噴火が発生した先アヨロステージ並びに巨大噴火に該当する噴火は発生しないものの珪長質火砕噴火が発生したアヨロステージ及びクッタラステージと、現在の活動期である登別ステージは、噴火の頻度及び噴出物体積が異なることから、現状では先アヨロステージ、アヨロステージ及びクッタラステージのような状態には至っていないと考えられる。

()カッコ内はマグマ体積(DRE)

○網羅的な文献調査の結果, 倶多楽・登別火山群については, 現状, 巨大噴火が起こる可能性があるとする知見は認められない。

西山山かった	噴出物体積 (km ³)		商山物々	噴出物体積 (km ³)	
唄屲初石		火砕流 (km ³)	唄冚彻石		火砕流 (km ³)
Kt-1	25.4 (14.4)	7.1 (3.4)	Kt-4	18.8 (11)	2.1 (1)
Kt−3	34.4 (20.1)	4.7 (2.3)	Kt-6	28.9 (16.8)	4.2 (2)
Kt-Hy	9.2~10.5 (7~8)	0.8 (0.4) **2	Kt-8	≤VEI5 class	≤VEI5 class

登別ステージ以前の噴出物体積*1

※1 噴出物体積は、P187の活動履歴に示すマグマ体積を山元 (2014) に基づき、当社 が換算した。

※2 Miura et al. (2022) によれば、Kt-Hyの火砕密度流は、サブユニット (Lpdc, Mpdc 及びUpdc) に区分できるとされ、マグマ体積については、Updcの0.4km³ (DRE) のみ 推定されている。

なお、同文献によれば、Lpdc及びMpdcの規模については、分布に不確実性がある ため正確に決定できないものの、谷埋め型及び局所的な堆積物であることから、 Updcよりも小さくなる可能性があるとされている。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

① 活動履歴(2/3)

倶多楽・登別火山群の概要

火山名*1	C17 俱多楽·登別火山群
敷地からの距離	80.5km
火山の形式*2	成層火山-カルデラ, 溶岩ドーム
活動年代*2	約8万年前以降 カルデラ形成は約4万年前
評価	約1万年前以降に活動しており, 完新世に 活動した火山として抽出する。

※1 産業技術総合研究所「日本の火山(DB)」2022年10月確認。

※2 西来ほか編(2012)「第四紀火山岩体・貫入岩体データベース」2022年10月確認。

俱多楽・登別火山群の位置図 (産業技術総合研究所地質調査総合センター編(2020)より作成)

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

① 活動履歴(3/3)

一部修正(H28/2/5審査会合)

俱多楽·登別火山群活動履歷^{*1}

年代		噴出物名	マグマ体積 DRE (km ³)	火山体体積 (km ³)	参考文献
	完新世 A.D.1800頃 A.D.1800頃 8.5ka-A.D.1663 更新世	(裏地獄) (大湯沼) Nb−a~l ^{※2}	(水蒸気爆発) (水蒸気爆発) (水蒸気爆発) (水蒸気爆発)		
第四紀	登別 14.5ka ステージ 不明 ケッタラ 44.1ka ステージ ca.50ka 竹浦ステージ 不明 (episode Kt-Tk) 不明 episode Kt-Kt 不明 ca.54ka アヨロ ステージ ステージ 59-55ka ca.75ka ca.84ka 90-85ka 106-85ka ステージ 不明 マヨロ ステージ マヨロ ステージ ステージ 不明	日和山溶岩ドーム 橘湖アグルチネート Kt-1:pfa,pfl,ps,sfa Kt-2:pfa Kt-Tk* ³ :sfa 東山 北山溶岩類 472m峰 Kt-3:pfa,afa,ps,pfl Kt-4:pfa,ps,afa,pfl Kt-6(+Kt-5): pfa,ps,pfl Kt-6(+Kt-5): pfa,ps,pfl Kt-7:pfa,pfl Kt-8:pfl 石山溶岩流 地獄谷火砕丘	0.04 不明 14.4 10.2 0.4 ^{**3} 0.2 0.5 0.2 20.1 7~8 ^{**5} 11 Kt-5:不明 Kt-6:16.8 [VEI7 class ^{**6}] [≤VEI5 class ^{**7}] 不明 不明	76.5	山縣 (1994) 森泉 (1998) 第四紀火山 カタログ委員 会編 (2000) 山元 (2014) Amma- Miyasaka et al. (2020) Miura et al. (2022)

- ※0 Allinita Windsand et al. (2020)によれは4、N=7の頃山焼装は、WAF20で、VEI7 Class」とそれでいるところう、呼出量-年代階段ダイアグラムにおいては、マグマ体積(DRE)を100km3として図示している。 ※2 Niure et al. (2020)によれば、V=2の噴出増増に、標質セレーズ[/(EIE class)とされている。
- ※7 Miura et al. (2022) によれば、Kt-8の噴出規模は、概算として「≤VEI5 class」とされていることから、噴出量-年代 階段ダイアグラムにおいては、マグマ体積 (DRE)を1km³として図示している。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-1 地球物理学的調査(地下構造:地震波速度構造)(1/2)

○防災科学技術研究所HP上では、「日本列島下の三次元地震波速度構造(海域拡大2019年度版)」として、Hi-net、F-net及びS-netの 観測網による地震記録を用いた、海域を含む日本全国を対象とした地震波トモグラフィ解析結果を公開している(解析手法等の詳細は Matsubara et al. (2019)に記載)。その公開データを用いて、当社が倶多楽・登別火山群における水平・鉛直断面図を作成した。

○防災科学技術研究所HP上の公開データを基に作図した地震波トモグラフィ解析結果からは、倶多楽・登別火山群直下の上部地殻内
 (約20km以浅)には、メルトの存在を示唆する顕著な低Vpかつ高Vp/Vs領域は認められない。
 ○倶多楽・登別火山群直下の上部地殻内(約20km以浅)には、マグマや熱水等の流体の移動を示唆する低周波地震群は認められない。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-2 地球物理学的調査(地下構造:比抵抗構造)(1/6)

○倶多楽・登別火山群の比抵抗構造について検討するため,文献レビューを実施した。
【Goto and Johmori (2015) (P193参照)】 ○倶多楽・登別火山群において、CSAMT法による電磁気探査を実施しているGoto and Johmori (2015) をレビューした。 ・Goto and Johmori (2015) によれば、倶多楽湖直下の柱状の低比抵抗領域 (P193図Bの「zone C」),登別地熱域直下の柱状の低 比抵抗領域 (P193図Bの「zone D」) 及びクッタラ火山東部の地下に広がる低比抵抗領域 (P193図Bの「zone E」) が認められるとさ れている。 ・「zone C」は、クッタラカルデラ直下に位置していることから、カルデラ崩壊時に沈降した溶岩塊や火砕物が熱水変質を受けた領域と 解釈しているとされている。 ・「zone D」は、地熱域の直下に位置することから、高温流体の湧出によって生じた熱水変質帯であると解釈しているとされている。 ・「zone E」は、当該領域における掘削データがないため、適切な解釈を行うことはできないが、熱水変質を受けた可能性が考えられる とされている。
(次頁へ続く)

2.3 運用期間中の火山の活動可能性評価

2.3.4 巨大噴火の可能性評価(俱多楽·登別火山群)

2-2 地球物理学的調查(地下構造:比抵抗構造)(2/6)

(前頁からの続き)
 【Hashimoto et al. (2019) (P194~P195参照)】 ○俱多楽・登別火山群において、MT法による電磁気探査を実施しているHashimoto et al. (2019) をレビューした。 ・Hashimoto et al. (2019) によれば、倶多楽湖を横切る東西断面の浅部において、Goto and Johmori (2015) と同様な結果が得られたとされている。 ・登別温泉直下の深度1km以浅において、低比抵抗領域(1~10Ωm、P195右図「C1」)が認められる。 ・既往調査において堆積物中に熱水変質鉱物が多く含まれること及び温泉水中の酸素と水素の同位体比が深部起源を示唆することが報告されていることを踏まえると、低比抵抗領域C1は、深部から上昇する熱水、熱水または火山ガスによる高温並びに熱水変質鉱物による複合作用により低比抵抗を示すと考えられるとされている。 ・クッタラカルデラの北東部から南側の浅部において、パッチ状の低比抵抗領域(1~10Ωm、P195右図「C2」及びP187左下図)が認められる。 ・深部の掘削データはないものの、低比抵抗領域C2が地下水によるものとすると、大気由来または倶多楽湖の湖水由来の水はそこまで比抵抗が低くないことから、火山性流体が注入されたために低比抵抗を示す水が存在すると考えられるとされている。 ・倶多楽湖直下の深度4km以浅(P195右図「M」)において、1Ωmオーダーの比抵抗値を示しマグマ溜まりを示唆するような低比抵抗領域は認められないとされている。 ・しかし、領域Mの数十Ωmという比抵抗値を考慮すると、メルト分率が低く冷えたマッシュ状マグマ或いは気液が混合した熱水貯留層の存在を否定するものではないとされている。
 ○Hashimoto et al. (2019)に基づくと、登別温泉及び倶多楽湖(クッタラカルデラ)の北東部から南側の浅部には、熱水、高温及び熱水 変質帯によると考えられる低比抵抗領域が認められ、倶多楽湖直下には低比抵抗領域は認められない。 ○なお、倶多楽湖直下に認められる数十Ωmの領域については、メルト分率が低く冷えたマッシュ状マグマの存在を否定するものではない とされており、このことは、深度4km以深に広がるマグマ溜まり*の縁辺部を捉えている可能性を示唆していると考えられるが、以下のこ とからマッシュ状マグマである可能性は小さいものと判断される。 ・当社が作成した地震波速度構造断面においては、深度4km程度までの表層付近は信頼度が高くない範囲であり(P197図中①)、当 該領域に関する直接的な評価はできないものの、その直下の深度5~20km付近には、水の存在を示唆すると考えられる低Vpかつ低 Vp/Vs領域が認められる。 ・通常の地震が深度10kmから地表付近まで分布していることから(P197図中②)、この深度では脆性的な破壊が生じていると考えられる。
※"magma chamber"と"crystal mush"を合わせた領域, P121参照
つ文献(Goto and Johmori 2015: Hashimoto at al. 2010)に其づくと 但名本,登明火山群直下の注如(Almい注)には執水 宣温及

○文献(Goto and Johmori, 2015; Hashimoto et al., 2019)に基づくと,俱多楽・登別火山群直下の浅部(4km以浅)には熱水,高温及 び熱水変質帯によると考えられる低比抵抗領域が部分的に認められるが,巨大噴火が可能な量のマグマ溜まりを示唆する低比抵抗領 域は認められない。

<u>191</u>

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-2 地球物理学的調查(地下構造:比抵抗構造)(3/6)

[Goto and Johmori (2015)]

- ○倶多楽・登別火山群において、CSAMT法による電磁気 探査を実施しているGoto and Johmori (2015) をレ ビューした。
- ・Goto and Johmori (2015) によれば、倶多楽湖直下の 柱状の低比抵抗領域(右図Bの「zone C」),登別地熱 域直下の柱状の低比抵抗領域(右図Bの「zone D」)及 びクッタラ火山東部の地下に広がる低比抵抗領域(右 図Bの「zone E」)が認められるとされている。
- 「zone C」は、クッタラカルデラ直下に位置していること から、カルデラ崩壊時に沈降した溶岩塊や火砕物が熱 水変質を受けた領域と解釈しているとされている。
- •「zone D」は, 地熱域の直下に位置することから, 高温 流体の湧出によって生じた熱水変質帯であると解釈して いるとされている。
- •「zone E」は, 当該領域における掘削データがないため, 適切な解釈を行うことはできないが, 熱水変質を受けた 可能性が考えられるとされている。

 Goto and Johmori (2015) に基づくと、 倶多楽・登別火 山群直下の浅部には、 熱水変質帯によると考えられる低 比抵抗領域が認められる。

クッタラ火山直下の比抵抗構造 (図A:注釈なし、図B:注釈あり) (Goto and Johmori (2015) に加筆)

MT観測点位置図 (Goto and Johmori (2015) に加筆)

2.3 運用期間中の火山の活動可能性評価

2.3.4 巨大噴火の可能性評価(俱多楽·登別火山群)

2-2 地球物理学的調査(地下構造:比抵抗構造)(4/6)

[Hashimoto et al. (2019)]

- ○俱多楽・登別火山群において、MT法による電磁気探査を実施しているHashimoto et al. (2019) をレビューした。
- ・Hashimoto et al. (2019) によれば、 倶多楽湖を横切る東西断面の浅部において、 Goto and Johmori (2015) と同様な結果が得られた とされている。
- ・登別温泉直下の深度1km以浅において、低比抵抗領域(1~10Ωm,次頁右図「C1」)が認められる。
- ・既往調査において堆積物中に熱水変質鉱物が多く含まれること及び温泉水中の酸素と水素の同位体比が深部起源を示唆することが 報告されていることを踏まえると、低比抵抗領域C1は、深部から上昇する熱水、熱水または火山ガスによる高温並びに熱水変質鉱物 による複合作用により低比抵抗を示すと考えられるとされている。
- ・クッタラカルデラの北東部から南側の浅部において,パッチ状の低比抵抗領域(1~10Ωm,次頁右図「C2」及び次頁左下図)が認められる。
- ・深部の掘削データはないものの,低比抵抗領域C2が地下水によるものとすると,大気由来または倶多楽湖の湖水由来の水はそこまで 比抵抗が低くないことから,火山性流体が注入されたために低比抵抗を示す水が存在すると考えられるとされている。
- ・倶多楽湖直下の深度4km以浅(次頁右図「M」)において、1Ωmオーダーの比抵抗値を示しマグマ溜まりを示唆するような低比抵抗領域 は認められないとされている。
- ・しかし, 領域Mの数十Ωmという比抵抗値を考慮すると, メルト分率が低く冷えたマッシュ状マグマ或いは気液が混合した熱水貯留層の 存在を否定するものではないとされている。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-2 地球物理学的調査(地下構造:比抵抗構造)(5/6)

(Hashimoto et al. (2019) に加筆)

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-2 地球物理学的調查(地下構造:比抵抗構造)(6/6)

2.3 運用期間中の火山の活動可能性評価

2.3.4 巨大噴火の可能性評価(俱多楽·登別火山群)

2-3 地球物理学的調査(地下構造:重力異常)(1/4)

○倶多楽・登別火山群周辺の重力異常について検討するため、文献レビューを実施した。 【森泉(1998)(次頁参照)】 ○俱多楽・登別火山群周辺における地形と重力測定の結果から火口位置の推定を行っている枩泉(1998)をレビューした。 ・森泉 (1998) によれば、アヨロステージのKt-6.4.3テフラの噴火では噴出体積が10km³ (D.R.E.) を超えることから、 クッタラステージのKt-1と同 様にカルデラが形成された可能性があるとされている。 ・クッタラカルデラを給源とするKt−1火砕流の分布地域に比べるとアヨロステージの火砕流がクッタラカルデラの東側に偏って分布することから. 低重力異常地域はアヨロステージの火口である可能性があるとされている。 ○重力異常を踏まえたマグマ溜まりに関する考察はされていない。 【畠山ほか(2005)(P200~P201参照)】 ○地形. 重力異常等から現在のクッタラカルデラを取り巻く先クッタラカルデラを提唱している畠山ほか (2005)をレビューした。 ・畠山ほか(2005)によれば、衛星画像でこの地域を見てみると、倶多楽カルデラの北方から西方にかけて環状構造が確認できるとされている。 ・新エネルギー・産業技術総合開発機構(1990)による等重力線図では. 環状構造の内側(成層火山により埋積されていない部分)に複数の低重 力異常域が見られ、これらの低重力異常域の存在から、この環状構造はカルデラに伴うものであると考えられるとされている。 ・森泉(1998)は、これらの低重力異常域それぞれが火口であると推定したが、これらの低重力異常域はひとつひとつの火口を示しているのでは なく、大きな低重力異常型カルデラを示すものであると想定できるとされている。 ・環状構造の存在を考えると. 現在のクッタラカルデラよりも大きいカルデラが成層火山により埋められ. カルデラ壁と成層火山体との間に低重力 異常域が残っていると考えたほうが合理的であるとされている。 ・クッタラ火山の噴出量は100km3を優に超えたと考えられ. 洞爺カルデラ(径11×12km. 噴出量118km3). 支笏カルデラ(径14×18km. 噴出 量120km³)に匹敵する噴出量であるが、クッタラカルデラは径3kmであり、その量を噴出したと考えるのは難しいとされている。 ・今回発見した環状構造が成層火山の形成以前にできた古いカルデラであると考えれば. 噴出量とカルデラのサイズは合理的に説明できるとされ ている。 ○畠山ほか (2005) に基づくと、 倶多楽・登別火山群周辺においては、 現在のクッタラカルデラより大きい低重力異常型カルデラが存在していたことを 示唆する可能性も考えられる低重力異常域が認められる。 ○重力異常を踏まえたマグマ溜まりに関する考察はされていない。 i T

 ○文献 (森泉, 1998; 畠山ほか, 2005)に基づくと, 倶多楽・登別火山群においては, 過去の火口又はより大きいカルデラの存在を示唆している可能 性が考えられる低重力異常域が認められる。
 ○重力異常を踏まえたマグマ溜まりに関する考察はされていない。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-3 地球物理学的調査(地下構造:重力異常)(2/4)

【森泉(1998)】

○倶多楽・登別火山群周辺における地形と重力測定の結果から火口位置の推定を行っている森泉(1998)をレビューした。

・森泉 (1998) によれば、アヨロステージ[※]のKt-6、4、3テフラの噴火では噴出体積が10km³ (D.R.E.) を超えることから、クッタラステージ[※]のKt-1と同様にカルデラが形成された可能性があるとされている。

・クッタラカルデラを給源とするKt-1火砕流の分布地域に比べるとアヨロステージの火砕流がクッタラカルデラの東側に偏って分布することから、下図の1~3の低重力異常地域はアヨロステージの火口である可能性があるとされている。

※各活動ステージについてはP179参照。

○森泉 (1998) に基づくと、 倶多楽・登別火山群周辺には、 アヨロ ステージ以前の火口位置を示唆する可能性も考えられる低重 力異常域が認められる。

○重力異常を踏まえたマグマ溜まりに関する考察はされていない。

クッタラ火山群周辺の重力異常及び推定火口位置(森泉(1998)に加筆)

2.3 運用期間中の火山の活動可能性評価

2.3.4 巨大噴火の可能性評価(俱多楽·登別火山群)

2-3 地球物理学的調査(地下構造:重力異常)(3/4)

【畠山ほか(2005)】

- ○地形, 重力異常等から現在のクッタラカルデラを取り巻く先クッタラカルデラを提唱している畠山ほか (2005) をレビューした。
- ・畠山ほか(2005)によれば, 衛星画像でこの地域を見てみると, 倶多楽カルデラの北方から西方にかけて環状構造(下図矢印)が確認 できるとされている。
- ・新エネルギー・産業技術総合開発機構(1990)による等重力線図(次頁参照)では,環状構造の内側(成層火山により埋積されていない部分)に複数の低重力異常域が見られ,これらの低重力異常域の存在から,この環状構造はカルデラに伴うものであると考えられるとされている。
- ・森泉(1998)(前頁参照)は, これらの低重力異常域それぞれが火口であると推定したが, これらの低重力異常域はひとつひとつの火 ロを示しているのではなく, 大きな低重力異常型カルデラを示すものであると想定できるとされている。
- ・環状構造の存在を考えると、現在のクッタラカルデラよりも大きいカルデラが成層火山により埋められ、カルデラ壁と成層火山体との間 に低重力異常域が残っていると考えたほうが合理的であるとされている。
- ・クッタラ火山の噴出量は100km³を優に超えたと考えられ, 洞爺カルデラ(径11×12km, 噴出量118km³), 支笏カルデラ(径 14×18km, 噴出量120km³)に匹敵する噴出量であるが, クッタラカルデラは径3kmであり, その量を噴出したと考えるのは難しいとさ れている。
- ・今回発見した環状構造が成層火山の形成以前にできた古いカルデラであると考えれば, 噴出量とカルデラのサイズは合理的に説明で きるとされている。

○畠山ほか(2005)に基づくと、倶多楽・登別火山群周辺においては、現在のクッタラカルデラより大きい低重力異常型カルデラが存在していたことを示唆する可能性も考えられる低重力異常域が認められる。
 ○重力異常を踏まえたマグマ溜まりに関する考察はされていない。

先クッタラカルデラ周辺の3D地図画像(畠山ほか(2005)に加筆)

<u>200</u>

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-3 地球物理学的調査(地下構造:重力異常)(4/4)

高・低:新エネルギー・産業技術総合開発機構 (1990) における主な高重 力域又は主な低重力域を示す 二>:前頁図中で環状構造 (矢印) が示される位置付近を示す

俱多楽・登別火山群周辺の等重力線図 (新エネルギー・産業技術総合開発機構(1990)に加筆)

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-4 地球物理学的調査(地下構造:まとめ)

【地震波速度構造(P188~P189参照)】

○防災科学技術研究所HP上の公開データを基に作図した地震波トモグラフィ解析結果からは、俱多楽・登別火山群直下の上部地殻内 (約20km以浅)には、メルトの存在を示唆する顕著な低Vpかつ高Vp/Vs領域は認められない。

○また, 倶多楽・登別火山群直下の上部地殻内(約20km以浅)には, マグマや熱水等の流体の移動を示唆する低周波地震群は認められ ない。

【比抵抗構造(P190~P197参照)】

○文献 (Goto and Johmori, 2015; Hashimoto et al., 2019) に基づくと, 倶多楽・登別火山群直下の浅部 (4km以浅) には熱水, 高温及 び熱水変質帯によると考えられる低比抵抗領域が部分的に認められるが, 巨大噴火が可能な量のマグマ溜まりを示唆する低比抵抗領 域は認められない。

【重力異常(P198~P201参照)】

○文献(森泉, 1998; 畠山ほか, 2005)に基づくと, 倶多楽・登別火山群においては, 過去の火口又はより大きいカルデラの存在を示唆している可能性が考えられる低重力異常域が認められる。

○重力異常を踏まえたマグマ溜まりに関する考察はされていない。

○地下構造に関する調査の結果, 倶多楽・登別火山群直下の上部地殻内(約20km以浅)には, 現状, 巨大噴火が可能な量のマグマ溜ま りを示唆する構造は認められない。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-5 地球物理学的調査(火山性地震)(1/5)

【気象庁編(2013)】 〇倶多楽・登別火山群周辺には、公的機関の地震計が設置されている。 〇気象庁編(2013)「日本活火山総覧(第4版)」に地震活動及び深部低周波地震活動の時空間分布が取りまとめられている。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-5 地球物理学的調査(火山性地震)(2/5)

【気象庁編(2013)】 ○倶多楽・登別火山群周辺の地震活動(1997年10月~2012年6月)を下図に示す。 ○倶多楽・登別火山群周辺においては、日和山の西側に震央の分布が認められる。 ○浅部の地震活動は、日和山の西側に認められるが、規模・位置の時空間分布に変化の兆候は認められない。 ○深部低周波地震活動は、ほとんど認められない。

倶多楽・登別火山群周辺の地震活動 (1997年10月~2012年6月30日、「日本活火山総覧(第4版)」に加筆)

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-5 地球物理学的調査(火山性地震)(3/5)

【気象庁地震月報(カタログ編)及び気象庁一元化処理検測値データ】

○過去約20年間における倶多楽・登別火山群周辺の深さ40km以浅の地震活動の震央分布を示す。震央のデータは気象庁地震月報(カタログ編)(2001年10月~2020年3月)及び気象庁一元化処理検測値データ(2020年4月~2021年9月)を使用した。

○俱多楽・登別火山群周辺においては、日和山の西側に震央が集中している。

○マグニチュード0以上の地震は2020年及び2021年に増加が認められるが、当該年のうち限られた期間に増加したものであり、その他の期間では地震活動は低調に経過している(次頁参照)。

○低周波地震の発生は少なく,近年発生数が増加しているような傾向は認められない。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-5 地球物理学的調査(火山性地震)(4/5)

【気象庁, 2020; 気象庁, 2022】 ○「第147回火山噴火予知連絡会資料」(気象庁, 2020)及び「火山活動解説資料(令和3年年報)」(気象庁, 2022)では, 倶多楽・登別 火山群について, 地震の発生状況を示している。 ○日和山の西側を震源とする地震活動は, 2020年10月10日及び11月17から21日にかけて並びに2021年5月1日に一時的に地震が 増加したとされているが, いずれの年においても, その他の期間では火山性地震は少なく, 地震活動は低調に経過している。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-5 地球物理学的調査(火山性地震-まとめ-)(5/5)

○倶多楽・登別火山群周辺の地震活動について文献調査を行った。
 ○公的機関の観測結果を取りまとめた気象庁編(2013)「日本活火山総覧(第4版)」並びに気象庁地震月報(カタログ編)(2001年10月~2020年3月)及び気象庁一元化処理検測値データ(2020年4月~2021年9月)について検討した。
 ○調査・検討の結果は以下のとおり。
 ・浅部の地震活動及び深部低周波地震活動は、規模・位置の時空間分布に変化の兆候は認められない。

- ・倶多楽・登別火山群周辺の地震活動は、日和山の西側に集中している。
- ・深部低周波地震活動は、ほとんど認められない。

・マグニチュード0以上の地震は2020年及び2021年に増加が認められるが、当該年のうち限られた期間に増加したものであり、その他の期間では地震活動は低調に経過している。

○低周波地震活動は、ほとんど認められない。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

②-6 地球物理学的調査(地殻変動)(1/10)

【上下変動】

○俱多楽・登別火山群付近の4基準点^{※1}(登別, 白老, 大滝及び伊達)について, 各電子基準点設置以降から2020年までの年間上下変動量を示す。 ○固定局は, 俱多楽・登別火山群と同様に東北日本弧延長部に位置し, 第四紀火山から離隔があること等を踏まえ, 小樽1地点とした。

○俱多楽・登別火山群付近の上下変動は, 白老地点においては継続的な隆起又は沈降が認められず, 登別, 大滝及び伊達地点は隆起傾向が概ね継続して いる。

○文献 (P246~P251参照)を踏まえると、北海道南部 (東北日本弧延長部) はプレート間の固着効果、周辺で発生した地震^{※2}の余効変動等の様々な効果に より総じて隆起傾向であり、登別、大滝及び伊達地点の隆起傾向は、小樽1地点との上下変動量の相対的な差異を捉えているものと考えられる。

○2000年有珠山噴火の影響による不連続が一部の基線で認められる。

○なお,年間上下変動量のうち,東北地方太平洋沖地震発生前後(下表赤枠部)及び北海道胆振東部地震発生前後(下表青枠部)の年間変動ベクトル図 (上下)を一例として次頁~P213に示す。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-6 地球物理学的調査(地殻変動)(2/10)

○東北地方太平洋沖地震発生前,2010年1年間の変動ベクトル図(上下)を示す。 ○倶多楽・登別火山群付近における当該期間の最大変動量は,小樽1-大滝間の+2.9mmである。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

②-6 地球物理学的調査(地殻変動)(3/10)

○東北地方太平洋沖地震発生後,2012年1年間の変動ペクトル図(上下)を示す。 ○倶多楽・登別火山群付近における当該期間の最大変動量は,小樽1-大滝間の-9.4mmである。

(対象期間:2012年1月~2012年12月)

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-6 地球物理学的調査(地殻変動)(4/10)

○北海道胆振東部地震発生前,2017年1年間の変動ベクトル図(上下)を示す。 ○倶多楽・登別火山群付近における当該期間の最大変動量は、小樽1-白老間の-9.0mmである。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-6 地球物理学的調査(地殻変動)(5/10)

○北海道胆振東部地震発生後,2019年1年間の変動ベクトル図(上下)を示す。 ○倶多楽・登別火山群付近における当該期間の最大変動量は、小樽1-大滝間の+8.2mmである。

電子基準点の変動ベクトル図(上下) (対象期間:2019年1月~2019年12月) <u>213</u>

2.3 運用期間中の火山の活動可能性評価

2.3.4 巨大噴火の可能性評価(俱多楽·登別火山群)

2-6 地球物理学的調査(地殻変動)(6/10)

【基線長変化】

- ○俱多楽・登別火山群付近の4基準点(登別,白老,大滝,及び伊達)を結んだ4基線について,各電子基準点設置以降から2021年9月 までの基線長変化を示す。
- ○俱多楽・登別火山群付近の基線長変化は、2003年十勝沖地震、2011年東北地方太平洋沖地震等の前後に不連続が認められるが、 継続的な膨張又は収縮は認められない。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

②-6 地球物理学的調査(地殻変動)(7/10)

【干涉SAR】

第149回火山噴火予知連絡会資料(俱多楽)(気象庁, 2021)

○倶多楽・登別火山群周辺における"2020年9月~2021年9月(南行:左図,北行:右図)"の干渉SAR解析結果について,「ノイズレベルを超える変動は見られません」とされている。

俱多楽・登別火山群周辺における干渉SAR解析結果(国土地理院) (気象庁(2021)に加筆)

2.3 運用期間中の火山の活動可能性評価

2.3.4 巨大噴火の可能性評価(俱多楽·登別火山群)

②-6 地球物理学的調査(地殻変動)(8/10)

【干涉SAR時系列解析】

○第149回火山噴火予知連絡会資料(倶多楽)(気象庁,2021)によると,「地獄谷の地点A周辺に,衛星から遠ざかる方向の変動が見られる」とされている。

【干渉SAR時系列解析(最新版)】 ○2014年8月から2021年11月を対象とした干渉SAR時系列解析(国土地理院, 2022)*によれば, 倶多楽・登別火山群規模の顕著な 地殻変動は認められない。

※国土地理院(2022)では、宇宙航空研究開発機構(JAXA)が運用する衛星「だいち2号(ALOS-2)」のSARデー タを使用し、全国を対象とした地表変動の監視を行っている。2022年6月に北海道地域の干渉SAR時系列解析 結果をHP上で先行公開し、2022年度中に全国の解析結果を公表するとされている。ここで示す干渉SAR時系 列解析結果は大規模な地震に伴う地殻・地盤変動及びプレート運動等に伴う広い範囲に生じる地殻変動は除 去されている。

地獄谷の地点A周辺に、衛星から遠ざかる変動が見られます。

○俱多楽・登別火山群周辺においては,地獄谷周辺の局所的な沈降傾向が認められるものの, 倶多楽・登別火山群規模の顕著な地殻変 動は認められない。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

②-6 地球物理学的調査(地殻変動)(9/10)

218

【水準測量】

○過去約100年間における支笏カルデラ周辺及び倶多楽・登別火山群周辺の水準点の上下変動を示す。水準測量のデータは国土地理院一等水準点検測成果集録を使用した。
 ○当該検測成果集録においては、白老町に局所的な変動が認められるものの、倶多楽・登別火山群付近での顕著な隆起又は沈降は認められない。

水準路線(水準点番号:7216-7246)沿いの期間内変動量(固定点:7223)

2.3 運用期間中の火山の活動可能性評価

2.3.4 巨大噴火の可能性評価(俱多楽·登別火山群)

2-6 地球物理学的調査(地殻変動-まとめ-)(10/10)

【地殻変動(上下変動及び基線長変化)】

○俱多楽・登別火山群付近の上下変動は, 白老地点においては継続的な隆起又は沈降が認められず, 登別, 大滝及び伊達地点は隆起 傾向が概ね継続している。

- ○文献を踏まえると、北海道南部(東北日本弧延長部)はプレート間の固着効果、周辺で発生した地震の余効変動等の様々な効果により総じて隆起傾向であり、登別、大滝及び伊達地点の隆起傾向は、小樽1地点との上下変動量の相対的な差異を捉えているものと考えられる。
- ○倶多楽・登別火山群付近の基線長変化は、2003年十勝沖地震、2011年東北地方太平洋沖地震等の前後に不連続が認められるが、 継続的な膨張又は収縮は認められない。
- ○2000年有珠山噴火の影響による不連続が一部の基線で認められる。
- 【地殼変動(干渉SAR)】
- ○俱多楽・登別火山群周辺においては, 地獄谷周辺の局所的な沈降傾向が認められるものの, 倶多楽・登別火山群規模の顕著な地殻 変動は認められない。
- 【地殻変動(水準測量)】
- ○国土地理院一等水準点検測成果集録においては、白老町に局所的な変動が認められるものの、 倶多楽・登別火山群付近での顕著な 隆起又は沈降は認められない。

○地殻変動は、地獄谷周辺の局所的な沈降傾向又はより広域の北海道南部(東北日本弧延長部)規模の隆起傾向は認められるが、倶多 楽・登別火山群規模の顕著な変位の累積は認められない。

2.3 運用期間中の火山の活動可能性評価 2.3.4 巨大噴火の可能性評価(俱多楽・登別火山群)

2-7 地球物理学的調査(まとめ)

220

○倶多楽・登別火山群直下の上部地殻における巨大噴火[※]が可能な量のマグマ溜まりが存在する可能性及び大規模なマグマの移動・上昇等の活動に着目して、地球物理学的調査(地下構造(地震波速度構造、比抵抗構造及び重力異常)、火山性地震及び地殻変動)から、現在のマグマ溜まりの状況を検討した。

俱多楽・登別火山群における地球物理学的調査結果

【地下構造(P188~P202参照)】				
地震波速度構造	比抵抗構造	重力異常	<u>地下構造の解釈</u>	
 ○防災科学技術研究所HP上の公開データを基に作図した地震波トモグラフィ解析結果からは、倶多楽・登別火山群直下の上部地殻内(約20km以浅)には、メルトの存在を示唆する顕著な低Vpかつ高Vp/Vs領域は認められない。 ○倶多楽・登別火山群直下の上部地殻内(約20km以浅)には、マグマや熱水等の流体の移動を示唆する低周波地震群は認められない。 	 ○文献 (Goto and Johmori, 2015: Hashimoto et al., 2019) に基づくと、 倶多 楽・登別火山群直下の浅 部 (4km以浅) には熱水, 高温及び熱水変質帯に よると考えられる低比抵 抗領域が部分的に認め られるが、巨大噴火が可 能な量のマグマ溜まりを 示唆する低比抵抗領域 は認められない。 	 ○文献(森泉, 1998; 畠山ほか, 2005)に基づくと, 倶多楽・ 登別火山群においては, 過 去の火口又はより大きいカル デラの存在を示唆している可 能性が考えられる低重力異 常域が認められる。 ①重力異常を踏まえたマグマ溜 まりに関する考察はされてい ない。 	○地下構造に関する調査の結果、 倶多楽・登別火山群直下の上 部地殻内(約20km以浅)には、 巨大噴火が可能な量のマグマ 溜まりを示唆する構造は認めら れない。	
【火山性地震(P204~P208参照)】		【地殻変動(P209~P219参照)】		
○低周波地震活動は、ほとんど認められない。		○地殻変動は、地獄谷周辺の局所的な沈降傾向又はより広域の北 海道南部(東北日本弧延長部)規模の隆起傾向は認められるが、 俱多楽・登別火山群規模の顕著な変位の累積は認められない。		

○地球物理学的調査の結果, 倶多楽・登別火山群直下の上部地殻内(約20km以浅)には, 現状, 巨大噴火が可能な量のマグマ溜まりが 存在する可能性は十分小さく, 大規模なマグマの移動・上昇等の活動を示す兆候も認められない。

※原子力発電所の火山影響評価ガイドにおいては、巨大噴火について、「地下のマグマが一気に地上に噴出し、大量の火砕流となるような噴火であり、その規模として噴出物の量が数10km3程度を超えるよう なもの」とされている。

目 次

1. 火山影響評価の概要 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 17
2. 立地評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 22
2. 1 文献調査 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 25
2. 2 原子力発電所に影響を及ぼし得る火山の抽出・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 35
2. 3 運用期間中の火山の活動可能性評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 43
2.3.1 過去に巨大噴火が発生した火山・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P. 47
2. 3. 2 巨大噴火の可能性評価方法 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.127
2. 3. 3 巨大噴火の可能性評価(支笏カルデラ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.141
2.3.4 巨大噴火の可能性評価(倶多楽・登別火山群)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.181
2.3.5 巨大噴火の可能性評価(洞爺カルデラ)・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.223
2. 4 設計対応不可能な火山事象に <mark>関する個別評価 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・</mark>	P.265
 2.5 立地評価まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	P.333
3. 影響評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・ 【評価結果】洞爺カルデラの巨大噴火の可能性評価	
3.1 地理的領域内の火山による火山事象の影 ① 活動履歴	
3.2 降下火砕物の影響評価 ・・・・・・・・・ (2-1 地球初埋字的調査(地下構造:地震波速度構造)	
3.2.1 降下火砕物の層厚評価の概要・・・ ②-2 地球物理学的調査(地下構造・比弦抗構造)	
3.2.2 敷地周辺で確認される降下火砕物 ②-4 地球物理学的調査(地下構造:まとめ)	
3.2.3 降下火砕物シミュレーション ・・・・・ 2-5 地球物理学的調査 (火山性地震)	
3.2.4 設計に用いる降下火砕物の層厚 · ②-6 地球物理学的調査(地殻変動)	
3.2.5 降下火砕物の密度・粒径・・・・・・・ (2-7 地球物理学的調査(よとめ)	
3.3 影響評価まとめ ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4. モニタリング ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4.1 監視対象火山の抽出 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
4. 2 モニタリングの実施方法及び火山の状態に応じた対処方針 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
参考資料 ••••••••••••••••••••••••••••••••••••	P.338
参考文献 ••••••••••••••••••••••••••••••••••••	P.351

2.3 運用期間中の火山の活動可能性評価
 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

泊発電所における火山影響評価のうち立地評価の流れ

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

【評価結果】洞爺カルデラの巨大噴火の可能性評価

 ○洞爺カルデラにおいて約11万年前にTp(洞爺火山灰(Toya)及び洞爺火砕流)を噴出し,現在の洞爺カルデラを形成した噴火は,火 砕流堆積物が広範囲に分布し,噴出物体積が354km³となることから,巨大噴火に該当する。
 ○活動履歴及び地球物理学的調査(地下構造(地震波速度構造,比抵抗構造及び重力異常),火山性地震及び地殻変動)の結果から, 洞爺カルデラの現在の活動状況は巨大噴火が差し迫った状態ではないと評価でき,運用期間中における巨大噴火の可能性を示す科 学的に合理性のある具体的な根拠が得られていないことから,運用期間中における巨大噴火の可能性は十分に小さいと評価される。

検討項目		検討結果	
①活動履歴		 ○洞爺カルデラの巨大噴火は1回であり、巨大噴火が発生したカルデラ形成期と現在の活動期である後カルデラ期は、 噴火の頻度及び噴出物体積が異なることから、現状ではカルデラ形成期のような状態には至っていないと考えられる。 ○網羅的な文献調査の結果、洞爺カルデラについては、現状、巨大噴火が起こる可能性があるとする知見は認められな い。 	次頁~ P229
地球物理学的調査	 ②地下構造 〇洞爺カルデラ直下の上部地殻内(約20km以浅)には、現状、巨大噴火が可能な量のマグマ溜まりを示唆する構造は認められない。 【②-1 地震波速度構造】 ・地震波トモグラフィ解析結果からは、洞爺カルデラ直下の上部地殻内には、メルトの存在を示唆する顕著な低Vpかつ高Vp/Vs領域は認められない。 ・洞爺カルデラ直下の上部地殻内には、マグマや熱水等の流体の移動を示唆する低周波地震群は認められない。 【②-2 比抵抗構造】 ・洞爺カルデラ直下の上部地殻内には、巨大噴火が可能な量のマグマ溜まりを示唆する低比抵抗領域は認められない。 【②-3 重力異常】 ・重力異常を踏まえマグマ溜まりに関して考察されている文献は認められない。 		P230~ P231 P232~ P237 P238
	③火山性地震	○低周波地震活動は,有珠山周辺の下部地殻に認められるが,上部地殻にはほとんど認められない。	P240~ P244
	④地殻変動	○地殻変動は、有珠山周辺の局所的な沈降傾向又はより広域の北海道南部(東北日本弧延長部)規模の隆起傾向は 認められるが、洞爺カルデラ規模の顕著な変位の累積は認められない。	P245~ P261
		○洞爺カルデラ直下の上部地殻内には,現状,巨大噴火が可能な量のマグマ溜まりが存在する可能性は十分小さく,大 規模なマグマの移動・上昇等の活動を示す兆候も認められない。	

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

① 活動履歴(1/3)

○活動履歴から、洞爺カルデラの現在の活動状況について検討を実施した。

○洞爺カルデラ,洞爺中島及び有珠山の活動履歴を次頁~P229に示すとおり整理し,その概要を以下に示す。

- 〇なお,活動履歴の整理は,R3.10.14審査会合以降に実施した網羅的な文献調査結果(2.1章参照)も踏まえ実施している。
- ・約11万年前にTp (洞爺火山灰 (Toya) 及び洞爺火砕流)を噴出した噴火により,現在の洞爺カルデラが形成され,その後,洞爺中島及 び有珠山が形成された。
- ・約11万年前にTpを噴出した噴火以降の,洞爺中島の活動から現在までの活動期は後カルデラ期であり,最新の活動は2000年の有 珠山の噴火である。
- ・約11万年前にTpを噴出した噴火は、火砕流堆積物が広範囲に分布し、噴出物体積が354km³ ※ (マグマ体積:170km³ (DRE))となる
 ことから (P98~P125参照)、巨大噴火に該当する。
- ・約11万年前にTpを噴出した噴火以降の後カルデラ期においては、いずれの後カルデラ火山に関しても、火砕流を含む火山噴出物の分 布は山体近傍に限定されることから(P299参照),いずれの噴火も巨大噴火に該当しない。
- ・なお、各後カルデラ火山における最大の噴出物体積は、洞爺中島が14km³(中島-東山ドーム)、有珠山が2.5km³ ※ (1663年噴火 Us-b、マグマ体積:1.5km³ (DRE)) である。
- ○また,町田・新井(2011)によれば,Tp(洞爺火山灰(Toya)及び洞爺火砕流)を噴出した噴火によって現在の姿が形成されたといえるが, この噴火が優れて水蒸気マグマ噴火の性質をもっていること及びこのテフラより古い火砕流堆積物が数枚カルデラの周りに存在すること などから,この噴火以前にもカルデラ様の低地ないし水域の存在が推定されるとされている。
- ○当該カルデラ様の低地ないし水域は,噴火によって形成された可能性が考えられるものの,現況の知見においては,その噴火に伴う噴 出物,噴火規模等は不明である。

※マグマ体積を山元(2014)に基づき,当社が噴出物体積へ換算した値。

○洞爺カルデラの巨大噴火は1回であり、巨大噴火が発生したカルデラ形成期と現在の活動期である後カルデラ期は、噴火の頻度及び噴出物体積が異なることから、現状ではカルデラ形成期のような状態には至っていないと考えられる。
 ○網羅的な文献調査の結果、洞爺カルデラについては、現状、巨大噴火が起こる可能性があるとする知見は認められない。

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

① 活動履歴(2/3)

 ※4 産業技術総合研究所地質調査総合センター編 (2020) においては、洞爺火砕流 堆積物は中期更新世に分類されているが、Amma-Miyasaka et al. (2020) によ れば106kaとされている。

洞爺カルデラ、洞爺中島及び有珠山の噴出物分布図

(産業技術総合研究所地質調査総合センター編(2020)及びGoto et al. (2018)より作成)

Ł	※3 西来ほか編 (2012)「第四紀火山岩体・噴火岩体データベース」及び産業技術総合研究所「日本の火山 (DB)」においては,洞爺カルデラは約14万年前にカルデラ形成とされているが,当該カルデラ形成噴
į.	火は, 以下に示す理由から, 約11万年前にTpを噴出し現在の洞爺カルデラを形成した噴火に対応するものと考えられる。
į.	・李(1993)においては,洞爺カルデラ起源の大規模な珪長質マグマによる噴出物は,火砕流堆積物の間に顕著な風化程度の差が認められることから2回のカルデラ形成期(Toya-1及びToya-2)があった
ł.	と判断されている。
ł	・同一著者によるその後の文献であるLee(1996)においては, <u>従来,4つの異なるフェーズからなるひと続きの噴火であると考えられていた洞爺カルデラでの大規模火砕流噴火について,3回の別個の噴火</u>
Ł	であり,FT法年代測定結果から,その噴火年代は14万年前,10万年前,そして8万年前とされており,2回目の噴火が現在見られる洞爺カルデラを作った最も主要な噴火とされている。
į.	・しかし, 鴈澤ほか (2007) においては, 洞爺火砕流を下位より, Tpfl I / II, TpflIII及びTpflIVユニットに区分しているが, これらのユニット間に堆積間隙を示す堆積物の根拠は見出されず, これらのユニット
į.	を対象に実施したSAR法による平均Red TL年代は, Tpfl I / IIで132ka, Tpfl III及びTpflIVで113-114kaであり, 後者は町田・新井 (2003) が地形, テフラ対比から総合的に推定したToyaの年代 (110
i.	~115ka)と良く一致しているとされている。この年代値の差については,今回の実験では多粒子(40~70粒子)を用いているので,年代の古い石英粒子の混入も否定できないとされている。
ł.	・また, Goto et al. (2018) は, 洞爺カルデラ形成噴火噴出物を大きく6つのユニットに区分しているが, 李 (1993) におけるToya-1及びToya-2は, それぞれGoto et al. (2018) におけるUnit2及びUnit3~
ł	Unit6に対比されている。
Ł	・これらのことから, 洞爺カルデラ形成噴火について, Lee (1996)では3回の別個の噴火とされたが (上記下線箇所), 以降の文献 (鴈澤ほか (2007), Goto et al. (2018)等) では別個の噴火ではなく, 1輪
į.	廻の噴火として扱われており, この噴火年代として, 西来ほか編 (2012) 等のデータベースにおいては, Lee (1996) で示された年代値のうち, 最も古い14万年前が採用されたものと考えられる。
į.	・また, ユニットによる年代測定値の違いに関しては, 実際にユニット毎に噴出年代に違いがあるというよりは, 年代測定試料への古い粒子の混入等が原因ではないかと考えられる。
÷.,	

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

① 活動履歴(3/3)

一部修正(H28/2/5審査会合)

2<u>29</u>

2.3 運用期間中の火山の活動可能性評価
 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-1 地球物理学的調査(地下構造:地震波速度構造)(1/2)

一部修正(R3/10/14審査会合)

○防災科学技術研究所HP上では、「日本列島下の三次元地震波速度構造(海域拡大2019年度版)」として、Hi-net、F-net及びS-netの観測網による地震記録を用いた、海域を含む日本全国を対象とした地震波トモグラフィ解析結果を公開している(解析手法等の詳細はMatsubara et al. (2019)に記載)。その公開データを用いて、当社が洞爺カルデラ周辺における水平・鉛直断面図を作成した。

○防災科学技術研究所HP上の公開データを基に作図した地震波トモグラフィ解析結果からは、洞爺カルデラ直下の上部地殻内(約20km以浅)には、 メルトの存在を示唆する顕著な低Vpかつ高Vp/Vs領域は認められない。

○洞爺カルデラ直下の上部地殻内(約20km以浅)には、マグマや熱水等の流体の移動を示唆する低周波地震群は認められない。

※R3.10.14審査会合資料では、地震の震源について2000年10月1日~2015年12月31日のものを図示していた。一方、防災科学技術研究所「日本 列島下の三次元地震波速度構造(海域拡大2019年度版)」は、上記期間に加えて2016年4月1日~2018年6月30日のデータも解析に使用されてい ることから、震源についても同期間のデータを図示することが適切であり、今回不足期間のデータを追加した。

٥

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-2 地球物理学的調查(地下構造:比抵抗構造)(1/6)

 「ヨ血電磁気味量(以具)の1233を照)」 「洞動力ルデラ直下の上部地殻内(約20km以浅)に、巨大噴火が可能な量のマグマ溜まりを示唆する低比抵抗領域(数Ωm程度の領域)は認められない。 「洞動中島直下の表層から深度2km程度及び有珠山直下の表層から深度3km程度の範囲には、低比抵抗領域(数Ωm程度の領域)が認められる(P235参照)。 〇当社電磁気探査において洞動中島及び有珠山直下の浅部に認められる低比抵抗領域(数Ωm程度の領域)について、文献レビューを実施した。 【Goto and Danhara (2018) (P236参照)】 ○調動力ルデラにおいて、深度1.5km程度までのCSAMT法による電磁気探査を行っているGoto and Danhara (2018)をレビューした。 ・Goto and Danhara (2018) によれば、洞部中島とその周囲の隆起域の地下には低比抵抗領域(幅4500m、厚さ1000m)が存在するとされている。 ・この低比抵抗領域は、熱水鉱物に富む熱水変質帯である可能性があり、また洞部中島の地表面において温泉等の地熱域を示すものが認められないことから、高温帯である可能性は低いとされている。 ○Goto and Danhara (2018) において洞節中島直下に示される低比抵抗領域は、当社電磁気探査において洞節中島直下の表層から深度2km程度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 (Matsushima et al. (2001) (P237参照)】 ○洞動力ルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001)をレビューした。 ・Matsushima et al. (2001) によれば、有珠山の地下(標高:約-1km)には、数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物(スメクタイト)を大量に含む低比抵抗岩であるとされている。 	O)洞爺カルデラの比抵抗構造について検討するため,電磁気探査(MT法)を実施した。 「※社電磁気探査(次頁。D225条昭)】
 れない。 ○洞爺中島直下の表層から深度2km程度及び有珠山直下の表層から深度3km程度の範囲には、低比抵抗領域(数Ωm程度の領域)が認められる (P235参照)。 〇当社電磁気探査において洞爺中島及び有珠山直下の浅部に認められる低比抵抗領域(数Ωm程度の領域)について、文献レビューを実施した。 【Goto and Danhara (2018) (P236参照)】 ○洞爺カルデラにおいて, 深度1.5km程度までのCSAMT法による電磁気探査を行っているGoto and Danhara (2018) をレビューした。 ・Goto and Danhara (2018) によれば、洞爺中島とその周囲の隆起域の地下には低比抵抗領域(幅4500m, 厚さ1000m) が存在するとされて いる。 ・この低比抵抗領域は、熱水鉱物に富む熱水変質帯である可能性があり、また洞爺中島の地表面において温泉等の地熱域を示すものが認め られないことから、高温帯である可能性は低いとされている。 ・この低比抵抗領域は、調爺中島とその周囲の隆起域の形成時に上昇した地下のマグマにより、カルデラフィル堆積物が加熱されて形成された 熱水変質帯と考えられるとされている。 ○Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域は、当社電磁気探査において洞爺中島直下の表層から深度2km程 度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 【Matsushima et al. (2001) (P237参照)】 ○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) をレ ビューした。 ・Matsushima et al. (2001) によれば、有珠山の地下(標高:約-1km)には、数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物 (スメクタイト)を大量に含む低比抵抗岩であると されている。 	L	、ヨ社竜磁気保査(次員~P235多照)】 ○洞爺カルデラ直下の上部地殻内(約20km以浅)に,巨大噴火が可能な量のマグマ溜まりを示唆する低比抵抗領域(数Ωm程度の領域)は認めら
 ○洞爺中島直下の表層から深度2km程度及び有珠山直下の表層から深度3km程度の範囲には、低比抵抗領域(数Ωm程度の領域)が認められる (P235参照)。 ○当社電磁気探査において洞爺中島及び有珠山直下の浅部に認められる低比抵抗領域(数Ωm程度の領域)について、文献レビューを実施した。 【Goto and Danhara (2018) (P236参照)】 ○洞爺カルデラにおいて、深度1.5km程度までのCSAMT法による電磁気探査を行っているGoto and Danhara (2018) をレビューした。 *Goto and Danhara (2018) によれば、洞爺中島とその周囲の隆起域の地下には低比抵抗領域(幅4500m、厚さ1000m)が存在するとされて いる。 *この低比抵抗領域は、熱水鉱物に富む熱水変質帯である可能性があり、また洞爺中島の地表面において温泉等の地熱域を示すものが認め られないことから、高温帯である可能性は低いとされている。 *この低比抵抗領域は、洞爺中島とその周囲の隆起域の形成時に上昇した地下のマグマにより、カルデラフィル堆積物が加熱されて形成された 熱水変質帯と考えられるとされている。 ○Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域は、当社電磁気探査において洞爺中島直下の表層から深度2km程 度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 【Matsushima et al. (2001) (P237参照)】 ○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) によれば、有珠山の地下(標高:約-1km)には、数Ωm程度の領域が存在するとされている。 *Matsushima et al. (2001) によれば、有珠山の地下(標高:約-1km)には、数Ωm程度の領域が存在するとされている。 *Matsushima et al. (2001) によれば、有珠山の地下(標高:約-1km)には、数Ωm程度の領域が存在するとされている。 *当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物(ス×クタイト)を大量に含む低比抵抗岩であると されている。 		れない。
 ○当社電磁気探査において洞爺中島及び有珠山直下の浅部に認められる低比抵抗領域(数Ωm程度の領域)について、文献レビューを実施した。 【Goto and Danhara (2018) (P236参照)】 ○洞爺カルデラにおいて、深度1.5km程度までのCSAMT法による電磁気探査を行っているGoto and Danhara (2018) をレビューした。 ・Goto and Danhara (2018) によれば、洞爺中島とその周囲の隆起域の地下には低比抵抗領域(幅4500m,厚さ1000m)が存在するとされている。 ・この低比抵抗領域は、熱水鉱物に富む熱水変質帯である可能性があり、また洞爺中島の地表面において温泉等の地熱域を示すものが認められないことから、高温帯である可能性は低いとされている。 ・この低比抵抗領域は、洞爺中島とその周囲の隆起域の形成時に上昇した地下のマグマにより、カルデラフィル堆積物が加熱されて形成された熱水変質帯と考えられるとされている。 ○Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域は、当社電磁気探査において洞爺中島直下の表層から深度2km程度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 【Matsushima et al. (2001) (P237参照)】 ○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) をレビューした。 ・Matsushima et al. (2001) によれば、有珠山の地下(標高:約-1km)には、数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物 (スメクタイト) を大量に含む低比抵抗岩であるとされている。 		○洞爺中島直下の表層から深度2km程度及び有珠山直下の表層から深度3km程度の範囲には,低比抵抗領域(数Ωm程度の領域)が認められる (P235参照)。
 【Goto and Danhara (2018) (P236参照)】 ○洞爺カルデラにおいて、深度1.5km程度までのCSAMT法による電磁気探査を行っているGoto and Danhara (2018) をレビューした。 ・Goto and Danhara (2018) によれば、洞爺中島とその周囲の隆起域の地下には低比抵抗領域(幅4500m,厚さ1000m) が存在するとされている。 ・この低比抵抗領域は、熱水鉱物に富む熱水変質帯である可能性があり、また洞爺中島の地表面において温泉等の地熱域を示すものが認められないことから、高温帯である可能性は低いとされている。 ・この低比抵抗領域は、洞爺中島とその周囲の隆起域の形成時に上昇した地下のマグマにより、カルデラフィル堆積物が加熱されて形成された熱水変質帯と考えられるとされている。 ○Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域は、当社電磁気探査において洞爺中島直下の表層から深度2km程度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 ③Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 【Matsushima et al. (2001) (P237参照)】 ○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) をレビューした。 ・Matsushima et al. (2001) によれば、有珠山の地下(標高:約-1km) には、数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物 (スメクタイト) を大量に含む低比抵抗岩であるとされている。 	Ģ)当社電磁気探査において洞爺中島及び有珠山直下の浅部に認められる低比抵抗領域(数Ωm程度の領域)について,文献レビューを実施した。
 ○洞爺カルデラにおいて、深度1.5km程度までのCSAMT法による電磁気探査を行っているGoto and Danhara (2018) をレビューした。 ・Goto and Danhara (2018) によれば、洞爺中島とその周囲の隆起域の地下には低比抵抗領域(幅4500m, 厚さ1000m) が存在するとされている。 ・この低比抵抗領域は、熱水鉱物に富む熱水変質帯である可能性があり、また洞爺中島の地表面において温泉等の地熱域を示すものが認められないことから、高温帯である可能性は低いとされている。 ・この低比抵抗領域は、洞爺中島とその周囲の隆起域の形成時に上昇した地下のマグマにより、カルデラフィル堆積物が加熱されて形成された熱水変質帯と考えられるとされている。 ○Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域は、当社電磁気探査において洞爺中島直下の表層から深度2km程度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 ○Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 ○Goto and Danhara (2010) (P237参照)] ○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) をレビューした。 ・Matsushima et al. (2001) によれば、有珠山の地下(標高:約-1km)には、数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物(スメクタイト)を大量に含む低比抵抗岩であるとされている。 	ļ	【Goto and Danhara (2018) (P236参照)】
 ・この低比抵抗領域は、熱水鉱物に富む熱水変質帯である可能性があり、また洞爺中島の地表面において温泉等の地熱域を示すものが認められないことから、高温帯である可能性は低いとされている。 ・この低比抵抗領域は、洞爺中島とその周囲の隆起域の形成時に上昇した地下のマグマにより、カルデラフィル堆積物が加熱されて形成された熱水変質帯と考えられるとされている。 ○Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域は、当社電磁気探査において洞爺中島直下の表層から深度2km程度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 ○Goto and Danhara (2011) (P237参照)] ○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) をレビューした。 ・Matsushima et al. (2001) によれば、有珠山の地下(標高:約-1km)には、数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物 (スメクタイト)を大量に含む低比抵抗岩であるとされている。 		○洞爺カルデラにおいて, 深度1.5km程度までのCSAMT法による電磁気探査を行っているGoto and Danhara (2018) をレビューした。 ・Goto and Danhara (2018) によれば, 洞爺中島とその周囲の隆起域の地下には低比抵抗領域 (幅4500m, 厚さ1000m) が存在するとされて いる。
 ・この低比抵抗領域は、洞爺中島とその周囲の隆起域の形成時に上昇した地下のマグマにより、カルデラフィル堆積物が加熱されて形成された 熱水変質帯と考えられるとされている。 ○Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域は、当社電磁気探査において洞爺中島直下の表層から深度2km程度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 【Matsushima et al. (2001) (P237参照)】 ○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) をレビューした。 ・Matsushima et al. (2001) によれば、有珠山の地下 (標高:約-1km) には、数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物 (スメクタイト)を大量に含む低比抵抗岩であるとされている。 		・この低比抵抗領域は, 熱水鉱物に富む熱水変質帯である可能性があり, また洞爺中島の地表面において温泉等の地熱域を示すものが認め られないことから, 高温帯である可能性は低いとされている。
 O Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域は、当社電磁気探査において洞爺中島直下の表層から深度2km程度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 【Matsushima et al. (2001) (P237参照)】 ○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) をレビューした。 • Matsushima et al. (2001) によれば、有珠山の地下 (標高:約-1km) には、数Ωm程度の領域が存在するとされている。 • 当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物 (スメクタイト) を大量に含む低比抵抗岩であるとされている。 * キャー3kmを招きるとうなすきさのマグマの貫入による熱水変質により生成された粘土鉱物 (スメクタイト) を大量に含む低比抵抗岩であるとされている。 		・この低比抵抗領域は, 洞爺中島とその周囲の隆起域の形成時に上昇した地下のマグマにより, カルデラフィル堆積物が加熱されて形成された 熱水変質帯と考えられるとされている。
 【Matsushima et al. (2001) (P237参照)】 ○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) をレビューした。 •Matsushima et al. (2001) によれば、有珠山の地下 (標高:約-1km) には、数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物 (スメクタイト) を大量に含む低比抵抗岩であるとされている。 	_	○Goto and Danhara (2018) において洞爺中島直下に示される低比抵抗領域は、当社電磁気探査において洞爺中島直下の表層から深度2km程度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。
○洞爺カルデラの後カルデラ火山である有珠山において,深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001)をレ ビューした。 ・Matsushima et al. (2001)によれば,有珠山の地下(標高:約-1km)には,数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は,繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物(スメクタイト)を大量に含む低比抵抗岩であると されている。 ・また、2kmを招えるような大きさのマグマ湾まりは存在したいと考えられるものの、小さなものについては検出が困難でもるとされている。	ļ	【Matsushima et al. (2001) (P237参照)】
 ・Matsushima et al. (2001)によれば、有珠山の地下 (標高:約-1km)には、数Ωm程度の領域が存在するとされている。 ・当該領域の大部分は、繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物 (スメクタイト)を大量に含む低比抵抗岩であるとされている。 ・また、3kmを招えるとうな大きさのマグマ湾市以け存在したいと考えられるものの、小さなものについては検出が困難でもるとされている。 		○洞爺カルデラの後カルデラ火山である有珠山において, 深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001)をレ ビューした。
・当該領域の大部分は,繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物(スメクタイト)を大量に含む低比抵抗岩であると されている。	ł	・Matsushima et al. (2001) によれば,有珠山の地下 (標高:約-1km) には,数Ωm程度の領域が存在するとされている。
また、3kmを招えるとうな十きさのマグマ湾本UII方在したいと考えられるものの、小さなものについては検出が困難でもるとされている		・当該領域の大部分は, 繰り返されるマグマの貫入による熱水変質により生成された粘土鉱物(スメクタイト)を大量に含む低比抵抗岩であると されている。
よた、5KIIIを超えるような人ととい / * 油よりは什てしないと考えうれるものの、小となものに ノい しは快山が困難 しのるととれしいる。	ļ	・また,3kmを超えるような大きさのマグマ溜まりは存在しないと考えられるものの,小さなものについては検出が困難であるとされている。
○Matsushima et al. (2001)において有珠山直下に示される低比抵抗領域は、当社電磁気探査において有珠山直下の表層から深度3km程度の範囲に認められる低比抵抗領域に相当し、当該低比抵抗領域はマグマではなく、熱水変質帯と考えられる。 ○有珠山直下の浅部には3kmを超えるような大きさのマグマ溜まりは存在しないと考えられる。	<u>'</u>	○Matsushima et al. (2001) において有珠山直下に示される低比抵抗領域は,当社電磁気探査において有珠山直下の表層から深度3km程度の範 囲に認められる低比抵抗領域に相当し,当該低比抵抗領域はマグマではなく,熱水変質帯と考えられる。 ○有珠山直下の浅部には3kmを超えるような大きさのマグマ溜まりは存在しないと考えられる。

○当社探査結果及び文献 (Goto and Danhara (2018) 及びMatsushima et al. (2001))に基づくと、洞爺カルデラ直下の上部地殻内 (約 20km以浅) には、巨大噴火が可能な量のマグマ溜まりを示唆する低比抵抗領域は認められない。

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-2 地球物理学的調查(地下構造:比抵抗構造)(2/6)

【当社電磁気探査】

○洞爺カルデラの地下構造を把握するため, 電磁気探査 (MT法) を行い, 洞爺カルデラ周辺の比抵抗構造解析を実施した^{※1}。

- ○観測点は、洞爺湖、洞爺湖周辺の陸域及び内浦湾に配置した。
- ○洞爺カルデラを中心とした東西20km程度及び南北20km程度の範囲に観測点を数多く配置することにより,洞爺カルデラ付近の比抵 抗構造の信頼性を高めた。

※1 本電磁気探査の結果については、小森ほか(2022)として、地球惑星科学連合2022年大会で発表されている。

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-2 地球物理学的調查(地下構造:比抵抗構造)(3/6)

比抵抗構造(水平断面)

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-2 地球物理学的調查(地下構造:比抵抗構造)(4/6)

比抵抗構造(鉛直断面)

鉛直断面に記載している火山は、断面位置を中心に±5km内の火山を投影した。 なお、感度テストの結果から、洞爺カルデラ直下の深度10~14km程度においては、水平及び鉛直方 向に約4.8km程度、また深度18~28km程度においては水平及び鉛直方向に10km程度の空間分解能を 持つと考えられる。

<u>235</u>

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-2 地球物理学的調查(地下構造:比抵抗構造)(5/6)

[Goto and Danhara (2018)]

 ○洞爺カルデラにおいて、深度1.5km程度までのCSAMT法による電磁気探査を行っているGoto and Danhara (2018)をレビューした。
 ・Goto and Danhara (2018)によれば、洞爺中島とその周囲の隆起域の地下には低比抵抗領域(幅4500m、厚さ1000m、下図D2)が 存在するとされている。

・この低比抵抗領域は,熱水鉱物に富む熱水変質帯である可能性があり,また洞爺中島の地表面において温泉等の地熱域を示すものが 認められないことから,高温帯である可能性は低いとされている。

・この低比抵抗領域は、洞爺中島とその周囲の隆起域の形成時に上昇した地下のマグマにより、カルデラフィル堆積物が加熱されて形成 された熱水変質帯と考えられるとされている。

○Goto and Danhara (2018) において洞爺中島 直下に示される低比抵抗領域は、当社電磁気 探査において洞爺中島直下の表層から深度 2km程度の範囲に認められる低比抵抗領域 (前頁参照)に相当し、当該低比抵抗領域はマ グマではなく、熱水変質帯と考えられる。

探査測線位置図 (Goto and Danhara (2018) に加筆)

D2:洞爺中島とその周囲の隆起域の地下の低比抵抗領域

比抵抗構造 (Goto and Danhara (2018) に加筆)

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-2 地球物理学的調查(地下構造:比抵抗構造)(6/6)

[Matsushima et al. (2001)]

○洞爺カルデラの後カルデラ火山である有珠山において、深度7km程度までのMT法による電磁気探査を行っているMatsushima et al. (2001) をレビューした。

- ・Matsushima et al. (2001)によれば、有珠山の地下(標高:約-1km)には、数Ωm程度の領域が存在するとされている。
- ・当該領域の大部分は,繰り返されるマグマの貫入の熱水変質により生成された粘土鉱物(スメクタイト)を大量に含む低比抵抗岩である とされている。

・また、3kmを超えるような大きさのマグマ溜まりは存在しないと考えられるものの、小さなものについては検出が困難であるとされている。

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

②-3 地球物理学的調査(地下構造:重力異常)

【和田ほか(1988)】

○洞爺カルデラを含む北海道西胆振地域において.重力測定を行っている和田ほか(1988)をレビューした。

- ・和田ほか (1988) によれば, 低異常型カルデラを特徴づける閉じた低異常域が洞爺カルデラ中央部の中島を中心に分布しているとさ れている。
- ・ボーリング調査結果による地質構造の推定に基づくと、上記の低重力異常は、新第三系の地質構造に逆円錐型のホールバック堆積 物 (最大層厚0.5km) が重畳した構造で説明することができるとされている。

○和田ほか (1988) に基づくと、洞爺カルデラにおいては、カルデラ中心部が最も厚い逆円錐型に堆積した密度の低い堆積物によるもの と考えられる低異常域が認められる。

○重力異常を踏まえたマグマ溜まりに関する考察はされていない。

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-4 地球物理学的調査(地下構造:まとめ)

【地震波速度構造(P230~P231参照)】

○防災科学技術研究所HP上の公開データを基に作図した地震波トモグラフィ解析結果からは、洞爺カルデラ直下の上部地殻内(約20km 以浅)には、メルトの存在を示唆する顕著な低Vpかつ高Vp/Vs領域は認められない。

○洞爺カルデラ直下の上部地殻内(約20km以浅)には、マグマや熱水等の流体の移動を示唆する低周波地震群は認められない。

【比抵抗構造(P232~P237参照)】

〇当社電磁気探査結果及び文献 (Goto and Danhara, 2018; Matsushima et al., 2001)に基づくと、洞爺カルデラ直下の上部地殻内
 (約20km以浅)には、巨大噴火が可能な量のマグマ溜まりを示唆する低比抵抗領域は認められない。

【重力異常(前頁参照)】

○文献 (和田ほか, 1988)に基づくと、洞爺カルデラにおいては、カルデラ中心部が最も厚い逆円錐型に堆積した密度の低い堆積物によるものと考えられる低異常域が認められる。

○重力異常を踏まえたマグマ溜まりに関する考察はされていない。

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-5 地球物理学的調査(火山性地震)(1/5)

再揭(H25/11/13審査会合)

【気象庁編(2013)】

 ○洞爺カルデラ周辺には、公的機関の地震計が設置されている。
 ○気象庁編(2013)「日本活火山総覧(第4版)」に地震活動及び深 部低周波地震活動の時空間分布が取りまとめられている。

洞爺カルデラ周辺の地震計位置図 (気象庁編(2013)「日本活火山総覧(第4版)」に基づき作成)

2<u>40</u>

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-5 地球物理学的調査(火山性地震)(2/5)

一部修正(H25/11/13審査会合)

【気象庁編(2013)】

○洞爺カルデラ周辺の地震活動(1997年10月~2012年6月)及び有珠山の火山性地震の震源分布(2002年10月~2012年6月)を下 図に示す。

○洞爺カルデラ周辺においては、有珠山周辺に震央が集中している。

○浅部の地震活動は、2000年の噴火時に最大となり、噴火後は横ばいで変化の兆候は認められない。

○噴火後の火山性地震は、山頂火口原(深さ2km以浅)付近に集中しており、規模・位置の時空間分布に変化の兆候は認められない。 ○深部低周波地震活動は、有珠山の南西付近(深さ20~35km程度)に認められ、規模・位置の時空間分布に変化の兆候は認められない。

(1997年10月~2012年6月30日,「日本活火山総覧(第4版)」に加筆)

有珠山の火山性地震の震源分布 (2002年10月~2012年6月30日,「日本活火山総覧(第4版)」)

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-5 地球物理学的調査(火山性地震)(3/5)

一部修正(H25/11/13審査会合)

【気象庁地震月報(カタログ編)及び気象庁一元化処理検測値データ】 〇過去約40年間における洞爺カルデラ周辺の深さ40km以浅の地震活動の震央分布を示す。震央のデータは気象庁地震月報(カタログ編)(1983年1 月~2020年3月)及び気象庁一元化処理検測値データ(2020年4月~2021年9月)を使用した。 〇洞爺カルデラ周辺においては、有珠山周辺に震央が集中している。

※1 北海道ではHi-netの観測データ使用開始が2001年10月であることから、2001年10月前後でデータ精度が異なる。
※2 2021年は1月1日~9月30日のデータを掲載。

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-5 地球物理学的調査(火山性地震-まとめ-)(5/5)

一部修正(H25/12/18審査会合)

○洞爺カルデラ周辺の地震活動について文献調査を行った。

○公的機関の観測結果を取りまとめた気象庁編(2013)「日本活火山総覧(第4版)」並びに気象庁地震月報(カタログ編)(1983年 1月~2020年3月)及び気象庁一元化処理検測値データ(2020年4月~2021年9月)について検討した。

○調査・検討の結果は以下のとおり。

- ・洞爺カルデラ周辺の地震活動は、有珠山周辺に集中している。
- ・有珠山周辺の浅部の地震活動は、2000年の噴火時に頻度が最大となり、マグニチュード1~4の地震が多く認められる。
- ・噴火後はマグニチュード1以上の地震の発生はほとんど認められず,マグニチュード0~1の地震が横ばいに続いており,変化の兆候は 認められない。

・噴火後の火山性地震は、山頂火口原付近に集中しており、時空間分布に変化の兆候は認められない。

・深部低周波地震活動は,有珠山の南西付近(深さ20~35km程度)に認められ,規模・位置の時空間分布に変化の兆候は認められ ない。

○低周波地震活動は,有珠山周辺の下部地殻に認められるが,上部地殻にはほとんど認められない。

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-6 地球物理学的調査(地殻変動)(1/17)

一部修正(H25/11/13審査会合)

【上下変動】 ○洞爺カルデラ付近の4基準点*1(大滝,洞爺,虻田及び伊達)について、各電子基準点設置以降から2020年までの年間上下変動量を示す。 ○固定局は、洞爺カルデラと同様に東北日本弧延長部に位置し、第四紀火山から離隔があること等を踏まえ、小樽1地点とした。 ○洞爺カルデラ付近の上下変動は、各電子基準点設置以降、0~2cm/年程度の隆起傾向が概ね継続している。 ○文献 (次頁~P251参照)を踏まえると、北海道南部 (東北日本弧延長部)はプレート間の固着効果、周辺で発生した地震^{*2}の余効変動等の様々な 効果により総じて隆起傾向であり、洞爺カルデラ周辺の隆起傾向は、小樽1地点との上下変動量の相対的な差異を捉えているものと考えられる。 ○2000年有珠山噴火の影響による不連続が一部の基線で認められる。 ○なお、年間上下変動量のうち、東北地方太平洋沖地震発生前後(下表赤枠部)及び北海道胆振東部地震発生前後(下表青枠部)の年間変動ベクト ル図 (上下)を一例としてP252~P255に示す。 ※1 洞爺カルデラ付近の4基準点(大滝、洞爺、虻田及び伊達)の位置はP244参照。 ※2 例えば、1993年北海道南西沖地震、2003年十勝沖地震、2011年東北地方太平洋沖地震等がある (m) (m) 0.08 D.08 0.06 0.06 0.04 0.04 0.02 0.02 0.00 0.00 -0.02 D.02 -0.04 D.04 -0.06 0.06 -0.08 0.08 1996 1997 1998 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 1996 1997 1998 2008 2009 2010 2011 2012 2013 2014 2015 2016 小樽1-大滝間の比高変化(対象期間:1996年3月~2021年9月) 小樽1-虻田間の比高変化(対象期間:1997年3月~2021年9月 (m) (m) 0.08 0.08 0.06 0.06 0.04 0.04 0.02 0.02 0.00 0.00 0.02 -0.02 0.04 -0.04 -0.06 0.06 .0.05 -0.08 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 小樽1ー洞爺間の比高変化(対象期間:1996年3月~2021年9月) 2020 2021 2022 2000 2010 小樽1-伊達間の比高変化(対象期間:1997年3月~2021年9月 2003年9月十勝沖地震 年間上下変動量(cm) (固定局:小樽1) 2011年3月東北地方太平洋沖地震 2000年3月有珠山噴火 ---- 伐木 2014年7月胆振地方中東部の地震 1998年 1999年 2000年 2001年 2002年 2003年 2004年 2005年 2006年 2007年 1997年 2008年 2018年9月北海道胆振東部地震 大滝 -0.08 +0.53-1.74 -0.40 -1.05+2.53 -1.56 -0.52 +0.11 -1.67 +0.4 +1.38 8 ◆ 大滝 6 洞爺 +0.20 +0.23 +0.34 -2.45 +0.04 +1.38 +0.06 -0.13 -0.30 -0.85 -0.08 +1.15 뮬(cm) 4 ■洞爺 扩田 +0.11 +0.62 -5.21 -0.96+1.53 -0.53 +0.13 -0.35 -0.87 +0.22 +0.81 2 ▲虻田 愛愛 +0.15 +0.88 -4.45 -0.86 +2.55 -1.32 +0.1 -1.06 +0.24 +0.64 伊達 -0.150 2012年 2017年 2019年 -2 ×伊達 2009年 2010年 2011年 2013年 2014年 2015年 2016年 2018年 2020年 14 4 -4 +1.03 +1.04 +0.88 +1.74 大滝 +1.50+0.29+0.99 -0.94+0.62+1.66 -0.29 +0.82 -6 洞爺 +0.53 -0.49 +0.7 +0.68 +0.81 +0.04 +0.44+0.09 +0.60 +1.57 +1.45 +0.20 -8 2001年 2002年 2008年 2009年 2016年 2017年 2018年 2019年 2020年 **1999年** 2000年 2004年 2007年 2006年 2010年 2011年 2012年 2013年 2014年 2015年 +0.99 +1.56 +0.65 竹田 +1.08 +0.72+1.10 -0.12+0.44+1.66 -0.4 +0.83 +1.0 :266 2003 2005 伊達 +1.27 +0.26 +1.30 +0.54 +0.57 +1.58 +1.54 -0.55 +0.75 +0.61 +0.04 +0.63↑東北地方太平洋沖地震発生 ↑北海道胆振東部地震発生 年間上下変動量のグラフ

2<u>45</u>

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

②-6 地球物理学的調査(地殻変動)(2/17)

[Suito (2018)]

○GNSS連続観測システム (GEONET) 及び海底地殻変動観測 (SGO) を用いて2011年東北地方太平洋沖地震以降の地殻変動について 整理されているSuito (2018) をレビューした。

- ・Suito (2018) によれば、東北地方太平洋沖地震後の6.5年間において、内陸部と日本海沿岸部では10cm程度の累積沈下が、奥羽脊 梁部ではかなり大きな沈下が、関東・中部・北海道南部では10cm程度の累積隆起が観測されたとされている(次頁参照)。
- ・地震後の地殻変動を解釈する際には、一般に余効すべり(afterslip)、粘弾性緩和(viscoelastic relaxation, P248参照)、間隙弾性反発(poroelastic rebound)の3つのメカニズムを考慮する必要があるとされている。
- ・観測された地殻変動には、余効すべり効果やプレート間の固着効果等、様々な効果が含まれているとされている。

・プレート間の固着効果は、東北地方全域で西方への変位、太平洋岸での沈下及び日本海側でのわずかな隆起をもたらすとされている (P241参照)。

○Suito (2018) に基づくと、北海道南部 (東北日本弧延長部) は、プレート間の固着効果、余効変動等様々な効果により総じて隆起傾向 である。

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-6 地球物理学的調査(地殻変動)(3/17)

GEONETによる2011年3月東北地方太平洋沖地震以降6.5年間分の地殻変動 (Suito (2018)に加筆)

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

②-6 地球物理学的調査(地殻変動)(4/17)

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-6 地球物理学的調査(地殻変動)(5/17)

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-6 地球物理学的調査(地殻変動)(6/17)

[Ueda et al. (2003)]

- ○1993年北海道南西沖地震の余効変動について整理されているUeda et al. (2003) をレビューした。
- ・Ueda et al. (2003) によれば、1993年北海道南西沖地震後の地殻変動は、北海道南西部の西進、奥尻島の沈下、渡島半島の隆起 によって特徴づけられるとされている (鉛直変位については、次頁図中の黒矢印参照)。
- ・一般に大地震後の地殻変動は、余効すべり(afterslip)と粘弾性緩和(viscoelastic relaxation)のどちらかが支配的と想定されるとされている。
- ・北海道南西沖地震後の地殻変動は,単純な3層構造における地震時応力変化による粘弾性緩和で説明できることがわかったが,余効 すべりでは,非現実的な仮定を採用しないと変形を説明することができないとされている。
- ・この結果は、地震後の変形のメカニズムとして、明らかに粘弾性緩和が支配的であったことを示しているとされている。
- ・図中に見られるいくつかの差異(次頁図中の観測値(黒矢印)と計算値(白矢印)との差異)は、粘性の横方向の変化や太平洋プレートの沈み込み等、他の効果に起因している可能性があるとされている。

○Ueda et al. (2003) に基づくと、北海道南部 (東北日本弧延長部) は、太平洋プレートの沈み込み、余効変動等様々な効果を受けている と考えられる。

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-6 地球物理学的調査(地殻変動)(7/17)

電子基準点及び奥尻検潮所の鉛直変位速度

(Ueda et al. (2003) に加筆)
2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-6 地球物理学的調査(地殻変動)(8/17)

○東北地方太平洋沖地震発生前,2010年1年間の変動ベクトル図(上下)を示す。 ○洞爺カルデラ付近における当該期間の最大変動量は,小樽1-洞爺間の+8.1mmである。

一部修正(H25/11/13審査会合)

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

②-6 地球物理学的調査(地殻変動)(9/17)

○東北地方太平洋沖地震発生後,2012年1年間の変動ベクトル図(上下)を示す。 ○洞爺カルデラ付近における当該期間の最大変動量は、小樽1-大滝間の-9.4mmである。

(対象期間:2012年1月~2012年12月)

一部修正(H25/11/13審査会合)

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

②-6 地球物理学的調査(地殻変動)(10/17)

○北海道胆振東部地震発生前,2017年1年間の変動ベクトル図(上下)を示す。 ○洞爺カルデラ付近における当該期間の最大変動量は,小樽1-伊達間の-5.5mmである。

電子基準点の変動ベクトル図(上下) (対象期間:2017年1月~2017年12月) 一部修正(R3/10/14審査会合)

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-6 地球物理学的調査(地殻変動)(11/17)

255

○北海道胆振東部地震発生後,2019年1年間の変動ベクトル図(上下)を示す。 ○洞爺カルデラ付近における当該期間の最大変動量は、小樽1-虻田間の+8.3mmである。

ベクトル図(上下) 基準値: 2019年1月1日00時00分~2019年1月10日23時59分(平均) 比較値: 2019年12月22日00時00分~2019年12月31日23時59分(平均) 固定局: 940013 950117 25 50km 積丹2 020875 石利 960516 新篠津 020877 ● 02087 小樽1(固定局) . 小樽2 960517 和起 0208 がりり川 020884 +0.0005 960520 机脲 長沼 940014 950128 +0.0028 恵庭 960522 +0.0044 京極A 171219 +0.0060 间间起 950130 +0.0055 ٨ 寿邵 950131 千贵 0.0030 960523 +0.0056 厚真 950132 洞翁 焉牧 大滝 950135 +0.0082 洞爺 020888 中小牧 950137 +0.0068 950136 -0.0014 虻田 061150 1068 95014 940017 970792 +0.0024 凡例 赤点:固定局 緑点:電子基準点(緑字は電子基準点番号を示す) 赤矢印:上下変動量(赤字は変動量(m)を示す)1cm/ 「この地図の作成にあたっては、国土地理院長の承認を得て、同院発行の300万分の1日本とその周辺 及び100万分の1日本を使用したものである。(承認番号 平20業使、第226号)」 赤: Bernese F3 [IGS] 電子基準点の変動ベクトル図(上下)

(対象期間:2019年1月~2019年12月)

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

②-6 地球物理学的調査(地殻変動)(12/17)

一部修正(H25/11/13審査会合)

【基線長変化】

○洞爺カルデラ付近の4基準点(大滝,洞爺,虻田及び伊達)を結んだ6基線について,各電子基準点設置以降から2021年9月までの基線長変化を示す。 ○洞爺カルデラ付近の基線長変化は,2003年十勝沖地震,2011年東北地方太平洋沖地震等の前後に不連続が認められるが,継続的な膨張又は 収縮傾向は認められない。

○2000年有珠山噴火の影響による不連続が認められる。

2<u>57</u>

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-6 地球物理学的調査(地殻変動)(13/17)

一部修正(R3/10/14審査会合)

【干涉SAR】

第149回火山噴火予知連絡会資料(有珠山)(気象庁. 2021) ○ 有珠山周辺における"2020年7月~2021年7月(左図)"及び"2020年8月~2021年8月(右図)"の干渉SAR解析結果について、 「有珠山の小有珠付近及び昭和新山の山頂付近に収縮とみられる衛星から遠ざかる変動が見られます」とされている。

(a)	(b)
ALOS-2	ALOS-2
2020/07/28 2021/07/27 11:48頃 (364日間)	2020/08/27 2021/08/26 23:26頃 (364日間)
南行	北行
右(西)	右(東)
U-U	H-H
31.8°	33.7°
НН	НН
- 137 m	- 28 m
	(a) ALOS-2 2020/07/28 2021/07/27 11:48頃 (364日間) 南行 右(西) U-U 31.8° HH - 137 m

H:高分解能(6m)モード

258

有珠山周辺における干渉SAR解析結果(国土地理院) (気象庁(2021)に加筆)

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

②-6 地球物理学的調査(地殻変動)(14/17)

【干渉SAR時系列解析】 〇第149回火山噴火予知連絡会資料(有珠山)(気象庁, 2021)によると、「大有珠の地点A及び昭和新山の地点B周辺に, 衛星から遠 ざかる変動が見られる」とされている。

【干涉SAR時系列解析(最新版)】

○2014年8月から2021年11月を対象とした干渉SAR時系列解析(国土地理院, 2022)[※]によれば,昭和新山を含む有珠山周辺に顕著 な沈降傾向が認められるものの,洞爺カルデラ規模の顕著な地殻変動は認められない。

○洞爺カルデラ周辺においては,昭和新山を含む有珠山周辺の局所的な沈降傾向が認められるものの,洞爺カルデラ規模の顕著な地殻 変動は認められない。

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

②-6 地球物理学的調査(地殻変動)(15/17)

一部修正(R3/10/14審査会合)

【水準測量】

- ○過去約100年間における洞爺カルデラ周辺の水準点の上下変動を示す。水準測量のデータは国土地理院一等水準点検測成果集録を 使用した。
- ○洞爺カルデラ周辺のデータは「交6」を境に測量実施時期が異なるものが多いことから、左図に示す水準路線①, ②及び③に分けて、データ 数の多い「交6」又は「交13」を固定点とした変動量を示している。
- ○また、「交6」は有珠山に比較的近接し、有珠山の活動に伴う地殻変動の影響を受ける可能性があることから、データ数が少なくなるものの「交6」を越えて測量実施時期が同一なデータについて、有珠山から比較的離れた「7188」を固定点とした変動量をあわせて示した(次頁④参照)。
- ○当該検測成果集録においては、2000年の有珠山噴火による有珠山周辺の局所的な変動が認められるものの、洞爺カルデラ付近での顕 著な隆起又は沈降は認められない。

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

②-6 地球物理学的調査(地殻変動)(16/17)

水準路線

※R3.10.14審査会合資料においては、変動量の算出期間について、下図の通り水準路線①と③で不整合があったため、変動量の算出期間を今回 修正し, 2000年のデータについては, 5月と8月の2回測量が実施されていることから, それぞれ2000年 (a), 2000年 (b)と呼称することとした。

261

261

2.3 運用期間中の火山の活動可能性評価

2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-6 地球物理学的調査(地殻変動-まとめ-)(17/17)

一部修正(H25/12/18審査会合)

262

【地殻変動(上下変動及び基線長変化)】

○洞爺カルデラ付近の上下変動は,各電子基準点設置以降,0~2cm/年程度の隆起傾向が概ね継続している。

○文献を踏まえると、北海道南部 (東北日本弧延長部) はプレート間の固着効果、周辺で発生した地震の余効変動等の様々な効果により総じて隆起傾向であり、洞爺カルデラ周辺の隆起傾向は、小樽1地点との上下変動量の相対的な差異を捉えているものと考えられる。
 ○洞爺カルデラ付近の基線長変化は、2003年十勝沖地震、2011年東北地方太平洋沖地震等の前後に不連続が認められるが、継続的な膨張又は収縮傾向は認められない。

○2000年有珠山噴火の影響による不連続が一部の基線で認められる。

【地殼変動(干渉SAR)】

○洞爺カルデラ周辺においては,昭和新山を含む有珠山周辺の局所的な沈降傾向が認められるものの,洞爺カルデラ規模の顕著な地 殻変動は認められない。

【地殻変動(水準測量)】

○国土地理院一等水準点検測成果集録においては、2000年の有珠山噴火による有珠山周辺の局所的な変動が認められるものの、洞 爺カルデラ付近での顕著な隆起又は沈降は認められない。

○地殻変動は、有珠山周辺の局所的な沈降傾向又はより広域の北海道南部(東北日本弧延長部)規模の隆起傾向は認められるが、洞爺 カルデラ規模の顕著な変位の累積は認められない。

2.3 運用期間中の火山の活動可能性評価 2.3.5 巨大噴火の可能性評価(洞爺カルデラ)

2-7 地球物理学的調査(まとめ)

○洞爺カルデラ直下の上部地殻における巨大噴火^{*}が可能な量のマグマ溜まりが存在する可能性及び大規模なマグマの移動・上昇等の活動に着目して、地球物理学的調査(地下構造(地震波速度構造、比抵抗構造及び重力異常)、火山性地震及び地殻変動)から、現在のマグマ溜まりの状況を検討した。

洞爺カルデラにおける地球物理学的調査結果

【地下構造(P230~P239参照)】			
地震波速度構造	比抵抗構造	重力異常	<u>地下構造の解釈</u>
 ○防災科学技術研究所HP上の公開 データを基に作図した地震波トモグラ フィ解析結果からは、洞爺カルデラ直 下の上部地殻内(約20km以浅)には、 メルトの存在を示唆する顕著な低Vpか つ高Vp/Vs領域は認められない。 ○洞爺カルデラ直下の上部地殻内(約 20km以浅)には、マグマや熱水等の 流体の移動を示唆する低周波地震群 は認められない。 	 〇当社電磁気探査結果及び文献(Goto and Danhara, 2018; Matsushima et al., 2001)に基づくと、洞爺カルデラ直下の上部地殻内(約20km以浅)には、巨大噴火が可能な量のマグマ溜まりを示唆する低比抵抗領域は認められない。 	 ○文献(和田ほか, 1988)に 基づくと、洞爺カルデラにおいては、カルデラ中心部が最も厚い逆円錐型に堆積した密度の低い堆積物によるものと考えられる低異常域が認められる。 ①重力異常を踏まえたマグマ溜まりに関する考察はされていない。 	○地下構造に関する調査 の結果、洞爺カルデラ 直下の上部地殻内(約 20km以浅)には、現状、 巨大噴火 [*] が可能な量 のマグマ溜まりを示唆す る構造は認められない。
【火山性地震(P240~P244参照)】 【地殻変動(P24)		~P261参照)】	
○低周波地震活動は,有珠山周辺の下部地殻に認められるが,上部地殻にはほとんど認められない。		○地殻変動は、有珠山周辺の局所的な沈降傾向又はより 広域の北海道南部(東北日本弧延長部)規模の隆起傾 向は認められるが、洞爺カルデラ規模の顕著な変位の累 積は認められない。	

○地球物理学的調査の結果,洞爺カルデラ直下の上部地殻内(約20km以浅)には,現状,巨大噴火が可能な量のマグマ溜まりが存在す る可能性は十分小さく,大規模なマグマの移動・上昇等の活動を示す兆候も認められない。

※原子力発電所の火山影響評価ガイドにおいては、巨大噴火について、「地下のマグマが一気に地上に噴出し、大量の火砕流となるような噴火であり、その規模として噴出物の量が数10km3程度を超えるよう なもの」とされている。