泊発電所3号	号炉審査資料
資料番号	DB062T r.4.0
提出年月日	令和4年8月31日

泊発電所3号炉

設置許可基準規則等への適合状況について (設計基準対象施設等)

第6条 外部からの衝撃による損傷の防止(竜巻)

令和4年8月 北海道電力株式会社

枠囲みの内容は機密情報に属しますので公開できません。

第6条:外部からの衝撃による損傷の防止(竜巻)

<目 次>

- 1. 基本方針
 - 1.1 要求事項の整理
 - 1.2 追加要求事項に対する適合性(手順等含む)
 - (1) 位置,構造及び設備
 - (2) 安全設計方針
 - (3) 適合性説明
 - 1.3 気象等
 - 1.4 設備等
- 2. 外部からの衝撃による損傷の防止(竜巻)
 (別添1)設置許可基準規則等への適合状況説明資料(竜巻影響評価結果)
- 3. 技術的能力説明資料

(別添2)外部からの衝撃による損傷の防止(竜巻)

4. 現場確認プロセス

(別添3) 竜巻影響評価における飛来物発生防止対策を実施する対象物の選定プロセスについて

<概 要>

1. において,設計基準対象施設の設置許可基準規則,技術基準規則の追加要求事項を明確化する とともに,それら要求に対する泊発電所3号炉における適合性を示す。

2. において,設計基準対象施設について,追加要求事項に適合するために必要となる機能を達成 するための設備又は運用等について説明する。

3. において,追加要求事項に適合するための技術的能力(手順等)を抽出し,必要となる運用対 策等を整理する。

4. において,設計にあたって実施する各評価に必要な入力条件等の設定を行うため,設備等の設置状況を現場にて確認した内容について整理する。

1. 基本方針

1.1 要求事項の整理

外部からの衝撃による損傷の防止について,設置許可基準規則第6条及び技術基準規則第7 条において,追加要求事項を明確化する(表1)。

要求事項 set we deni	準規則 (備老)		・マスクを除く。)が想定さ 追加要求事項	\波を除く。)によりその安	場合は、防護措置、基礎地	皆置を講じなければならな 追加要求事項			 周辺監視区域に隣接する地域に事業所、鉄道、道 追加要求事項	きが発生するおそれがある	所における火災又は爆発事	、船舶又は航空機の事故そ	3状況から想定される事象	故意によるものを除く。以	いう。) により発電用原子炉	。)の安全性が損なわれな	適切な措置を講じなければ		航空機の墜落により発電用原子炉施設(兼用キャ		なうおそれがある場合は、
		第6条(外部からの衝撃による損傷の防止) 第7条(外部からの衝撃による損傷の防止)	安全施設(兼用キャスクを除く。)は、想定される自然現象(地震及 設計基準対象施設(兼用キャスクを除く。)	び津波を除く。次項において同じ。)が発生した場合においても安全 れる自然現象(地震及び津波を除く。)によりその安	機能を損なわないものでなければならない。	重要安全施設は、当該重要安全施設に大きな影響を及ぼすおそれ 盤の改良その他の適切な措置を講じなければならな	があると想定される自然現象により当該重要安全施設に作用する衝 い。	撃及び設計基準事故時に生ずる応力を適切に考慮したものでなけれ		おいて想定される発電用原子炉施設の安全性を損なわせる原因とな 路その他の外部からの衝撃が発生するおそれがある	るおそれがある事象であって人為によるもの(故意によるものを除 要因がある場合には、事業所における火災又は爆発事	く。以下「人為による事象」という。)に対して安全機能を損なわな 故、危険物を搭載した車両、船舶又は航空機の事故そ	の他の敷地及び敷地周辺の状況から想定される事象	であって人為によるもの(故意によるものを除く。以	下「人為による事象」という。)により発電用原子炉	施設(兼用キャスクを除く。)の安全性が損なわれな	いよう、防護措置その他の適切な措置を講じなければ	ならない。		スクを除く。)の安全性を損なうおそれがある場合は、	に満井置々の角の通辺な井置を難じたければたらた

- 1.2 追加要求事項に対する適合性(手順等含む)
- (1) 位置,構造及び設備
 - ロ. 発電用原子炉施設の一般構造
 - (3) その他の主要な構造
 - (i)本原子炉施設は、(1)耐震構造、(2)耐津波構造に加え、以下の基本的方針のもとに安 全設計を行う。
 - a. 設計基準対象施設
 - (a) 外部からの衝撃による損傷の防止

安全施設は,発電所敷地で想定される洪水,風(台風),竜巻,凍結,降水, 積雪,落雷,地滑り,火山の影響,生物学的事象,森林火災及び高潮の自然現象 (地震及び津波を除く。)又はその組合せに遭遇した場合において,自然現象そ のものがもたらす環境条件及びその結果として施設で生じ得る環境条件におい ても,安全機能を損なうことのない設計とする。

なお,発電所敷地で想定される自然現象のうち,洪水については,立地的要因 により設計上考慮する必要はない。

また,自然現象の組合せにおいては,風(台風),積雪及び火山の影響による 荷重の組合せを設計上考慮する。

上記に加え,重要安全施設は,科学的技術的知見を踏まえ,当該重要安全施設 に大きな影響を及ぼすおそれがあると想定される自然現象により当該重要安全 施設に作用する衝撃及び設計基準事故時に生ずる応力をそれぞれの因果関係及 び時間的変化を考慮して,適切に組み合わせる。

また,安全施設は,発電所敷地又はその周辺において想定される飛来物(航空 機落下等),ダムの崩壊,爆発,近隣工場等の火災,有毒ガス,船舶の衝突又は 電磁的障害により原子炉施設の安全性を損なわせる原因となるおそれがある事 象であって人為によるもの(故意によるものを除く。)に対して安全機能を損な うことのない設計とする。

なお,発電所敷地又はその周辺において想定される人為事象のうち,飛来物(航 空機落下等)については,確率的要因により設計上考慮する必要はない。また, ダムの崩壊については,立地的要因により設計上考慮する必要はない。

ここで、想定される自然現象及び原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)に対して、

安全施設が安全機能を損なわないために必要な安全施設以外の施設又は設備等 (重大事故等対処設備を含む。)への措置を含める。

(a-2) 竜巻

安全施設は、竜巻が発生した場合においても、最大風速 100m/s の竜巻による風 圧力による荷重、気圧差による荷重及び飛来物の衝撃荷重を組合せた設計竜巻荷重、 並びに安全施設に常時作用する荷重,運転時荷重,その他竜巻以外の自然現象によ る荷重等を適切に組合せた設計荷重に対して,安全機能を損なうことのない設計と する。また,安全施設は,過去の竜巻被害の状況及び泊発電所のプラント配置から 想定される竜巻随伴事象に対して安全機能を損なうことのない設計とする。

安全施設の安全機能を損なうことのないようにするため,安全施設に影響を及ぼ す飛来物の発生防止対策を実施するとともに,作用する設計荷重に対する安全施設 の構造健全性の維持,安全施設を内包する区画の構造健全性の確保若しくは飛来物 による損傷を考慮し安全上支障のない期間での修復等の対応又はそれらを適切に 組み合わせた設計とする。

【別添1(4.(3)~(4)),(5.)】

飛来物の発生防止対策として、資機材等の設置状況を踏まえ、飛来物となる可能 性のある物のうち、飛来した場合の運動エネルギ又は貫通力が設定する設計飛来物 である鋼製材(長さ4.2m×幅0.3m×奥行0.2m,質量135kg,飛来時の水平速度57m/s, 飛来時の鉛直速度38m/s)よりも大きな物の固縛や竜巻襲来が予想される場合の車 両の退避等を実施する。また、防護ネットや防護鋼板等の竜巻飛来物防護対策設備 により、飛来物の衝撃荷重による影響から防護する対策を行う。

【別添1(6.)】

(2) 安全設計方針

1. 安全設計

1.8 外部からの衝撃による損傷の防止に関する基本方針

安全施設は、想定される自然現象(地震及び津波を除く。)及び想定される発電用原子炉施 設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意による ものを除く。)に対して、安全機能を損なわない設計とする。安全機能が損なわれないことを 確認する必要がある施設を、「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査 指針」で規定されている重要度分類(以下 1.8 では「安全重要度分類」という。)のクラス 1、クラス2及びクラス3に属する構築物、系統及び機器とする。

その上で、上記構築物、系統及び機器の中から、発電用原子炉を停止するため、また、停 止状態にある場合は引き続きその状態を維持するために必要な異常の発生防止の機能又は異 常の影響緩和の機能を有する構築物、系統及び機器並びに使用済燃料プールの冷却機能及び 給水機能を維持するために必要な異常の発生防止の機能又は異常の影響緩和の機能を有する 構築物、系統及び機器として安全重要度分類のクラス1、クラス2に属する構築物、系統及 び機器を外部事象から防護する対象(以下「外部事象防護対象施設」という。)とし、機械的 強度を有すること等により、安全機能を損なわない設計とする。

また,外部事象防護対象施設を内包する建屋は,機械的強度を有すること等により,内包 する外部事象防護対象施設の安全機能を損なわない設計及び外部事象防護対象施設へ波及的 影響を及ぼさない設計とする。ここで,外部事象防護対象施設及び外部事象防護対象施設を 内包する建屋を併せて,外部事象防護対象施設等という。

上記に含まれない構築物,系統及び機器は,機能を維持すること若しくは損傷を考慮して 代替設備により必要な機能を確保すること,安全上支障のない期間での修復等の対応を行う こと又はそれらを適切に組み合わせることにより,その安全機能を損なうことのない設計と する。

1.8.2 竜巻防護に関する基本方針

- 1.8.2.1 設計方針
- 1.8.2. 1.1 竜巻に対する設計の基本方針

安全施設は、竜巻に対して、原子炉施設の安全性を確保するために必要な機能(以下「安全機能」という。)を損なうことのないよう、基準竜巻、設計竜巻及び設計荷 重を適切に設定し、以下の事項に対して、対策を行い、建屋による防護、構造健全 性の維持及び代替設備の確保等によって、安全機能を損なうことのない設計とする。

また,安全施設が設計竜巻による波及的影響によって,その安全機能を損なうこ とのない設計とする。

(1) 飛来物の衝突による施設の貫通及び裏面剥離

- (2) 設計竜巻荷重及びその他組合せ荷重(常時作用している荷重,運転時荷重,竜巻 以外の自然現象による荷重及び設計基準事故時荷重)を適切に組合せた設計荷重
- (3) 竜巻による気圧の低下
- (4) 外気と繋がっている箇所への風の流入
- (5) 砂等の粒子状の飛来物による目詰まり、閉塞及び噛み込み

設計竜巻によってその安全機能が損なわれないことを確認する必要がある施設を, 安全重要度分類のクラス1,クラス2及びクラス3に属する構築物,系統及び機器 とする。

設計竜巻から防護する施設としては、「原子力発電所の竜巻影響評価ガイド」にて、 「基準地震動及び耐震設計方針に係る審査ガイド」の重要度分類における耐震 S ク ラスの設計を要求される設備(系統,機器)及び建屋・構築物とされている。

以上より,耐震Sクラスの設計を要求される設備(系統,機器),建屋及び構築物 並びに外部事象防護対象施設を竜巻防護施設として竜巻による影響を評価し設計す る。また,竜巻防護施設を内包する施設についても同様に竜巻による影響を評価し 設計する。

なお、クラス3に属する施設は損傷する場合を考慮して、代替設備により必要な 機能を確保する、安全上支障のない期間に修復する等の対応が可能な設計とするこ とにより、安全機能を損なうことのない設計とする。

竜巻防護施設の安全機能を損なうことのないようにするため、竜巻防護施設に影響を及ぼす飛来物の発生防止対策を実施するとともに、作用する設計荷重に対する 竜巻防護施設の構造健全性の維持、竜巻防護施設を内包する区画の構造健全性の確 保,若しくは、飛来物による損傷を考慮し安全上支障のない期間での修復等の対応、 又は、それらを適切に組み合わせた設計とする。

竜巻防護施設の構造健全性の維持又は竜巻防護施設を内包する区画の構造健全性 の確保において、それらを防護するために設置する防護ネットや防護鋼板等の竜巻 飛来物防護対策設備により、飛来物から竜巻防護施設を防護できる設計とする。

【別添1(1.~2.), (4.(3)), (4.(4)b.), (4.(4)d.), 補足説明資料 32.】

1.8.2.1.2 設計竜巻の設定

「添付書類六 9. 竜巻」において設定した設計竜巻の最大風速は 92m/s とする。

ただし、竜巻に対する設計に当たっては、設計竜巻の最大風速 92m/s を安全側に数 字を切り上げて、最大風速 100m/s の竜巻の特性値に基づく設計荷重に対して、安全施 設が安全機能を損なうことのない設計とする。 なお,設計竜巻については,今後も継続的に観測データや増幅に関する新たな知見 等の収集に取り組み,必要な事項については適切に反映を行う。

【別添1(3.(4)d.), (3.(5))】

1.8.2.1.3 竜巻防護施設

竜巻防護施設は、建屋又は構築物(以下「建屋等」という。)に内包され、設計竜 巻の風圧力による荷重及び設計飛来物による衝撃荷重の影響から防護される施設(外 気と繋がっている施設を除く。以下「建屋等に内包され防護される施設(外気と繋が っている施設を除く。)」という。)、建屋等に内包されるが、設計竜巻の風圧力による 荷重及び設計飛来物による衝撃荷重の影響から防護が期待できない施設(以下「建屋 等に内包されるが防護が期待できない施設」という。)、建屋等に内包され、設計竜巻 の風圧力による荷重及び設計飛来物による衝撃荷重の影響から防護される施設のう ち、外気と繋がっており設計竜巻による気圧差による荷重の影響を受ける施設(以下

「建屋内の施設で外気と繋がっている施設」という。),設計竜巻の風圧力による荷重 及び設計飛来物による衝撃荷重の影響を受ける屋外施設(以下「屋外施設」という。) に分類する。

なお、津波防護施設、浸水防止設備及び津波監視設備については、竜巻は気象現象、 津波は地震、地滑り等を原因とする事象であり、同時に発生することは考えられず、 事象の組合せは考慮しないことから、竜巻防護施設として抽出しない。

- 建屋等に内包され防護される施設(外気と繋がっている施設を除く。)
- ・ 建屋等に内包されるが防護が期待できない施設
- ・ 屋外施設及び建屋内の施設で外気と繋がっている施設

竜巻防護施設のうち,屋外施設及び建屋内の施設で外気と繋がっている主な施設を, 以下のとおり抽出する。

<屋外施設>

<建屋内の施設で外気と繋がっている施設>

- 排気筒(建屋内)
- 換気空調設備(アニュラス空気浄化設備,格納容器空調装置,補助建屋空 調装置,試料採取室空調装置,中央制御室空調装置,電動補助給水ポンプ 室換気装置,制御用空気圧縮機室換気装置,ディーゼル発電機室換気装置 及び安全補機開閉器室空調装置の外気と繋がるダクト・ファン・空調ユニ ット及び外気との境界となるダンパ・バタフライ弁)

【別添1(2.(1))】

1.8.2.1.4 竜巻防護施設を内包する施設

竜巻防護施設を内包する主な施設を、以下のとおり抽出する。

- 原子炉建屋(外部遮へい建屋)(原子炉容器他を内包する施設)
- 原子炉建屋(周辺補機棟)(主蒸気管他を内包する施設)
- 原子炉建屋(燃料取扱棟)(使用済燃料ピット他を内包する施設)
- ・ 原子炉補助建屋(余熱除去ポンプ他を内包する施設)
- ディーゼル発電機建屋(ディーゼル発電機他を内包する施設)
- A1, A2-燃料油貯油槽タンク室(A1, A2-ディーゼル発電機燃料油貯油槽を内包 する施設)
- B1, B2-燃料油貯油槽タンク室(B1, B2-ディーゼル発電機燃料油貯油槽を内包 する施設)
- 取水ピットポンプ室(原子炉補機冷却海水ポンプ他を内包する施設)
- ストレーナ室(原子炉補機冷却海水ポンプ出口ストレーナ他を内包する施設)
 【別添1(2.(1))】

1.8.2.1.5 竜巻防護施設に波及的影響を及ぼし得る施設

竜巻防護施設に波及的影響を及ぼし得る施設は,当該施設の破損により竜巻防護施 設に波及的影響を及ぼして安全機能を損なわせる可能性が否定できない施設,又はそ の施設の特定の区画とする。

具体的には, 竜巻防護施設に機械的影響を及ぼし得る施設及び竜巻防護施設に機能 的影響を及ぼし得る施設を以下のとおり抽出する。

竜巻防護施設に機械的影響を及ぼし得る施設としては、施設の高さと、竜巻防護施 設及び竜巻防護施設を内包する施設との距離を考慮して、竜巻防護施設を内包する施 設に隣接している施設、倒壊により竜巻防護施設を損傷させる可能性がある施設を竜 巻防護施設に波及的影響を及ぼし得る施設として抽出する。

また, 竜巻防護施設に機能的影響を及ぼし得る施設としては, 屋外にある竜巻防護 施設の附属施設及び竜巻防護施設を内包する区画の外気と繋がっている換気空調設 備を竜巻防護施設に波及的影響を及ぼし得る施設として抽出する。

(1) 竜巻防護施設に機械的影響を及ぼし得る主な施設

< 竜巻防護施設を内包する施設に隣接している施設>

- タービン建屋(原子炉建屋に隣接する施設)
- ・ 電気建屋(原子炉建屋,原子炉補助建屋に隣接する施設)

出入管理建屋(原子炉補助建屋に隣接する施設)

< 倒壊により竜巻防護施設を損傷させる可能性がある施設

・ 循環水ポンプ建屋

6条(竜巻)-8

(2) 竜巻防護施設に機能的影響を及ぼし得る主な施設

<屋外にある竜巻防護施設の附属施設>

- ・ ディーゼル発電機排気消音器(ディーゼル発電機の附属施設)
- 主蒸気逃がし弁消音器(主蒸気逃がし弁の附属施設)
- 主蒸気安全弁排気管(主蒸気安全弁の附属施設)
- タービン動補助給水ポンプ排気管(タービン動補助給水ポンプの附属施
 設)
- ディーゼル発電機燃料油貯油槽ベント管(ディーゼル発電機燃料油貯油
 槽の附属施設)
- < 竜巻防護施設を内包する区画の外気と繋がっている換気空調設備>
 - 換気空調設備(蓄電池室排気装置の外気と繋がるダクト・ファン及び外気との境界となるダンパ)

【別添1(2.(1))】

1.8.2.1.6 設計飛来物の設定

プラントウォークダウンによる敷地全体を俯瞰した調査・検討を行い,発電所構内 の資機材等の設置状況を踏まえ,竜巻防護施設等に衝突する可能性のある飛来物を抽 出する。抽出した飛来物の寸法,重量及び形状から飛来の有無を判断し,設計飛来物 のうち最も高い運動エネルギ及び貫通力を考慮して,竜巻防護対策によって防護がで きない可能性がある物は固縛,固定,竜巻防護施設からの離隔又は撤去等の対策を実 施する。

竜巻防護施設等に衝突する可能性がある飛来物のうち,「原子力発電所の竜巻影響 評価ガイド」(平成25年6月19日 原規技発第13061911号 原子力規制委員会決定) を参考にして,鋼製材(長さ4.2m×幅0.3m×奥行0.2m,質量135kg,飛来時の水平 速度57m/s,飛来時の鉛直速度38m/s)を設計飛来物として設定する。さらに,防護 ネットや防護鋼板等の竜巻飛来物防護対策設備の形状,寸法を考慮して,鋼製材より 小さく竜巻飛来物防護対策設備を通過する可能性がある砂利及び竜巻飛来物防護対 策設備を通過しないが,竜巻防護施設である使用済燃料ピット等に侵入した場合に燃 料集合体に直接落下する可能性がある鋼製パイプを設計飛来物として設定する。

なお、砂利の寸法は、防護ネットの網目の寸法を考慮して設定する。

第1.8.2.1 表に泊発電所における設計飛来物を示す。

【別添1(4.(3)a.)】

- 1.8.2.1.7 荷重の組合せと許容限界
 - (1) 竜巻防護施設等に作用する設計竜巻荷重
 設計竜巻により竜巻防護施設等に作用する荷重を以下に示す。

6条(竜巻)-9

a. 設計竜巻の風圧力による荷重

設計竜巻の最大風速による荷重であり、「建築基準法施行令」(昭和 25 年 11 月 16日政令第 338 号)及び「日本建築学会建築物荷重指針・同解説(2004)」に準拠 して、下式により算定する。

 $W_{W} = q \cdot G \cdot C \cdot A$

ここで,

- Ww :設計竜巻の風圧力による荷重
- q :設計用速度圧 (= $(1/2) \cdot \rho \cdot V_D^2$)
- G : ガスト影響係数 (=1.0)
- C :風力係数(施設の形状や風圧力が作用する部位(屋根,壁等)に応じて 設定する。)
- A :施設の受圧面積
- ρ : 空気密度
- V_D:設計竜巻の最大風速

ただし, 竜巻による最大風速は, 一般的には水平方向の風速として算定されるが, 鉛直方向の風圧力に対して脆弱と考えられる竜巻防護施設等が存在する場合には, 鉛直方向の最大風速等に基づいて算出した鉛直方向の風圧力についても考慮した 設計とする。

【別添1(4.(3)a.)】

b. 設計竜巻による気圧差による荷重

外気と隔離されている区画の境界部が気圧差による圧力影響を受ける設備及び 竜巻防護施設を内包する施設の建屋壁,屋根等においては,設計竜巻による気圧低 下によって生じる竜巻防護施設等の内外の気圧差による圧力荷重が発生し,保守的 に「閉じた施設」を想定し,下式により算定する。

- $W_P = \Delta P_{max} \cdot A$
- ここで,
- W_P :設計竜巻による気圧差による荷重
- ΔPmax :最大気圧低下量
- A :施設の受圧面積

【別添1(4.(3)a.)】

c. 設計飛来物による衝撃荷重

衝撃荷重が大きくなる向きで設計飛来物である砂利,鋼製パイプ又は鋼製材が竜 巻防護施設等に衝突した場合の衝撃荷重を算定する。

また,貫通評価においても,設計飛来物の貫通力が大きくなる向きで衝突するこ とを考慮して評価を行う。

【別添1(4.(3)a.)】

(2) 設計竜巻荷重の組合せ

竜巻防護施設等の設計に用いる設計竜巻荷重は,設計竜巻の風圧力による荷重 (Ww),設計竜巻の気圧差による荷重(Wp)及び設計飛来物による衝撃荷重(Wm)を 組合せた複合荷重とし,複合荷重 WT1及び WT2 は米国原子力規制委員会の基準類を参 考として,下式により算定する。

 $W_{T1} = W_P$

 $W_{T2} = W_W + 0.5 \cdot W_P + W_M$

なお、竜巻防護施設等にはWr1及びWr2の両荷重をそれぞれ作用させる。

【別添1(4.(3)a.)】

(3) 設計竜巻荷重と組合せる荷重の設定設計竜巻荷重と組合せる荷重は以下のとおりとする。

a. 竜巻防護施設等に常時作用する荷重,運転時荷重 竜巻防護施設等に作用する荷重として,自重等の常時作用する荷重及び運転時荷 重を適切に組合せる。

【別添1(4.(3)b.)】

b. 竜巻以外の自然現象による荷重

竜巻は積乱雲や積雲に伴って発生する現象であり⁽⁹⁾,積乱雲の発達時に竜巻と同 時に発生する可能性がある自然現象は雷,雪,雹及び大雨である。これらの自然現 象の組合せにより発生する荷重は,以下のとおり設計竜巻荷重に包絡される。

なお, 竜巻と同時に発生する自然現象については, 今後も継続的に新たな知見等 の収集に取り組み, 必要な事項については適切に反映を行う。

①雷

竜巻と雷が同時に発生する場合においても, 雷によるプラントへの影響は, 雷撃 であるため雷による荷重は発生しない。

②雪

泊発電所が立地する地域においては、冬期、竜巻が襲来する場合は竜巻通過前後 に降雪を伴う可能性はあるが、上昇流の竜巻本体周辺では、竜巻通過時に雪は降ら ない。また、下降流の竜巻通過時や竜巻通過前に積もった雪の大部分は竜巻の風に より吹き飛ばされるため、雪による荷重は十分小さく、設計竜巻荷重に包絡される。 ③雹

電は積乱雲から降る直径 5mm 以上の氷の粒であり,仮に直径 10cm 程度の大型の 雹を想定した場合でも,その重量は約 0.5kg である。

竜巻と雹が同時に発生する場合においても、10cm 程度の雹の終端速度は59m/s⁽¹⁰⁾、 運動エネルギは約 0.9kJ であり、設計飛来物の運動エネルギと比べて十分小さく、 雹の衝突による荷重は設計竜巻荷重に包絡される。 ④大雨 竜巻と大雨が同時に発生する場合においても、雨水により屋外施設に荷重の影響 を与えることはなく、また降雨による荷重は十分小さいため、設計竜巻荷重に包絡 される。

【別添1(4.(3)b.)】

c. 設計基準事故時荷重

設計竜巻は設計基準事故の起因とはならない設計とするため,設計竜巻と設計基 準事故は独立事象となる。

設計竜巻と設計基準事故が同時に発生する頻度は十分小さいことから,設計基準 事故時荷重と設計竜巻との組合せは考慮しない。

仮に,風速が低く発生頻度が高い竜巻と設計基準事故が同時に発生する場合,竜 巻防護施設等のうち設計基準事故時荷重が生じる設備としては,動的機器である原 子炉補機冷却海水ポンプが考えられるが,設計基準事故時においても海水ポンプの 圧力,温度が変わらず,機械的荷重が変化することはないため,設計基準事故によ り考慮すべき荷重はなく,竜巻と設計基準事故時荷重の組合せは考慮しない。

【別添1(4.(3)b.)】

(4) 許容限界

建屋及び構築物の設計において,設計飛来物の衝突による貫通及び裏面剥離の有 無の評価については,貫通及び裏面剥離が発生する限界厚さと部材の最小厚さを比 較することにより行う。さらに,設計荷重により,発生する変形又は応力が以下の 法令,規格,規準及び指針類等に準拠し算定した許容限界を下回る設計とする。

- 建築基準法
- 日本工業規格
- 日本建築学会及び土木学会等の規準・指針類
- 原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)
- 日本機械学会の規準・指針類
- ・ 原子力エネルギー協会 (NEI)の規準・指針類

【別添1(4.(4)b.~c.)】

系統及び機器の設計において,設計飛来物の衝突による貫通の有無の評価につい ては,貫通が発生する限界厚さと部材の最小厚さを比較することにより行う。設計 飛来物が貫通することを考慮する場合には,設計荷重に対して防護対策を考慮した 上で,系統及び機器に発生する応力が以下の規格,規準及び指針類に準拠し算定し た許容限界を下回る設計とする。

- 日本工業規格
- 日本機械学会の規準・指針類
- 原子力発電所耐震設計技術指針 JEAG4601-1987(日本電気協会)

【別添1(4.(4)d.)】

1.8.2.1.8 竜巻防護設計

竜巻防護施設, 竜巻防護施設を内包する施設及び竜巻防護施設に波及的影響を及ぼ し得る施設の設計竜巻からの防護設計方針を以下に示す。

(1) 竜巻防護施設のうち,建屋等に内包され防護される施設(外気と繋がっている施設を除く。)

竜巻防護施設のうち,建屋等に内包され防護される施設(外気と繋がっている施 設を除く。)は,建屋等による防護により設計荷重及び設計飛来物の衝突による影 響を受けない設計とする。

ただし、建屋等による防護が期待できない場合には(2)のとおりとする。

【別添1(2.(1))】

(2) 竜巻防護施設のうち、建屋等に内包されるが防護が期待できない施設 建屋等に内包される竜巻防護施設のうち、建屋等が設計竜巻による影響により損 傷する可能性があるために、設計竜巻による影響から防護できない可能性のある施 設は、設計荷重又は設計飛来物の衝突による影響に対して安全機能を損なうことの ない設計とするが、安全機能を損なう可能性がある場合には、設備又は運用による 竜巻防護対策を実施することにより、安全機能を損なうことのない設計とする。

【別添1(4.(4)b.)】

(3) 竜巻防護施設のうち、屋外施設及び建屋内の施設で外気と繋がっている施設 屋外の竜巻防護施設は、設計荷重又は設計飛来物の衝突による影響により安全機 能を損なうことのない設計とする。安全機能を損なう場合には、設備又は運用によ る竜巻防護対策を実施することにより、安全機能を損なうことのない設計とする。 建屋等に内包され防護される竜巻防護施設のうち、外気と繋がっている施設は、 設計荷重の影響を受けても、安全機能を損なうことのない設計とする。

【別添1(4.(4)d.)】

(4) 竜巻防護施設を内包する施設 竜巻防護施設を内包する施設は,設計荷重に対して主架構の構造健全性が維持されるとともに,個々の部材の破損により施設内の竜巻防護施設が安全機能を損なうことのない設計とする。また,設計飛来物の衝突に対しては,貫通及び裏面剥離の 発生により施設内の竜巻防護施設が安全機能を損なうことのない設計とする。

【別添 1 (4. (4)b)】

(5) 竜巻防護施設に波及的影響を及ぼし得る施設 竜巻防護施設に波及的影響を及ぼし得る施設は,設計荷重又は設計飛来物の衝突 による影響により,竜巻防護施設の安全機能を損なうことのない設計とする。

【別添1(4.(4)c.~d.)】

なお、竜巻飛来物防護対策設備を設置するものについて、防護ネットは鋼製材の運 動エネルギを吸収し貫通しない設計とし、防護鋼板は鋼製材又は鋼製パイプが、防護 コンクリートは鋼製材が貫通しない厚みとする。

以上の竜巻防護設計を考慮して,設計竜巻から防護する施設及び竜巻対策等を第 1.8.2.2表に,竜巻防護施設に波及的影響を及ぼし得る施設及び竜巻対策等を第 1.8.2.3表に,竜巻防護施設を内包する施設及び竜巻対策等を第1.8.2.4表に,竜巻 飛来物防護対策設備の概念図を第1.8.2.1図に示す。

【別添1(4.(4)b.~d.)】

1.8.2.1.9 竜巻防護施設を内包する施設の設計

竜巻防護施設を内包する施設の設計は,設計竜巻の風圧力による荷重,設計竜巻に よる気圧差による荷重,設計飛来物による衝撃荷重及び自重等の常時作用する荷重に 対して,主架構の構造健全性が維持されるとともに,個々の部材の破損により施設内 の竜巻防護施設が安全機能を損なうことのない設計とする。また,設計飛来物の衝突 時においても,貫通及び裏面剥離の発生により施設内の竜巻防護施設が安全機能を損 なうことのない設計とする。

【別添1(4.(4)b.)】

(1) 原子炉建屋(外部遮へい建屋・周辺補機棟),原子炉補助建屋,ディーゼル発電 機建屋

設計竜巻の風圧力による荷重,設計竜巻による気圧差による荷重,設計飛来物に よる衝撃荷重及び自重等の常時作用する荷重に対して,主架構の構造健全性が維持 されるとともに,個々の部材の破損により当該建屋内の竜巻防護施設が安全機能を 損なうことのない設計とする。また,設計飛来物の衝突時においても,貫通及び裏 面剥離の発生により当該建屋内の竜巻防護施設が安全機能を損なうことのない設 計とする。

ただし,設計荷重又は設計飛来物の衝突による影響を受け,開口部建具等が損傷 し当該建屋内の竜巻防護施設が安全機能を損なう可能性がある場合には,当該建屋 内の竜巻防護施設が安全機能を損なわないかを評価し,安全機能を損なう可能性が ある場合には,設備又は運用による竜巻防護対策を実施する。

【別添1(4.(4)b.)】

(2) 原子炉建屋(燃料取扱棟)

設計竜巻の風圧力による荷重,設計竜巻による気圧差による荷重,設計飛来物に よる衝撃荷重及び自重等の常時作用する荷重に対して,主架構の構造健全性が維持 されるとともに,個々の部材の破損により当該建屋内の竜巻防護施設が安全機能を 損なうことのない設計とする。

ただし,設計荷重又は設計飛来物の衝突による影響を受け,壁及び開口部建具が 損傷し当該建屋内の竜巻防護施設が安全機能を損なう可能性がある場合には,当該

6条(竜巻)-14

建屋内の竜巻防護施設が安全機能を損なわないかを評価し,安全機能を損なう可能 性がある場合には,設備又は運用による竜巻防護対策を実施する。

【別添1(4.(4)b.)】

(3) A1, A2-燃料油貯油槽タンク室, B1, B2-燃料油貯油槽タンク室 設計飛来物が衝突した際に,設計飛来物の貫通を防止するとともに,当該施設内 の竜巻防護施設が安全機能を損なうことのない設計とする。

【別添1(4.(4)b.)】

(4) 取水ピットポンプ室、ストレーナ室 設計飛来物が衝突した際に、設計飛来物の貫通を防止するとともに、当該施設内 の竜巻防護施設が安全機能を損なうことのない設計とする。

ただし、取水ピットポンプ室、ストレーナ室は上部に開口を設けた設計とするた め、設計飛来物の侵入に対して、当該室内の竜巻防護施設が安全機能を損なう可能 性がある場合には、当該室内の竜巻防護施設が安全機能を損なわないかを評価し、 安全機能を損なう可能性がある場合には、設備又は運用による竜巻防護対策を実施 する。

【別添1(4.(4)b.)】

1.8.2.1.10 竜巻防護施設及び竜巻防護施設に波及的影響を及ぼし得る施設の設計 竜巻防護施設は、構造健全性を損なわないこと又は取替・補修が可能なことにより、 安全機能を損なうことのない設計とする。また、竜巻防護施設に波及的影響を及ぼし 得る施設は、構造健全性を維持すること、設計上の要求を維持すること又は安全上支 障のない期間に修復することにより、竜巻防護施設が安全機能を損なうことのない設 計とする。

【別添1(6.(3))】

(1) 竜巻防護施設のうち、建屋等に内包され防護される施設(外気と繋がっている施設を除く。) 建屋等に内包される竜巻防護施設(外気と繋がっている施設を除く。)は、原子 炉建屋、原子炉補助建屋、ディーゼル発電機建屋、A1、A2-燃料油貯油槽タンク室、 B1、B2-燃料油貯油槽タンク室に内包され、設計荷重又は設計飛来物の衝突から防護

されることによって、安全機能を損なうことのない設計とする。

【別添1(4.(4)b.),(6.(3))】

(2) 竜巻防護施設のうち、建屋等に内包されるが防護が期待できない施設

原子炉建屋(燃料取扱棟)は,設計飛来物の衝突に対して壁及び開口部建具に貫 通が発生することを考慮し,当該建屋内部の竜巻防護施設のうち,設計飛来物の衝 突により安全機能を損なう可能性がある使用済燃料ピット,使用済燃料ラック,新 燃料ラック,燃料移送装置,使用済燃料ピットクレーンが,安全機能を損なうこと のない設計とする。 原子炉建屋(周辺補機棟)は、設計飛来物の衝突による影響により、開口部建具 及び開口部である換気口周りのガラリに貫通が発生することを考慮し、開口部建具 付近等の竜巻防護施設のうち、設計飛来物の衝突により安全機能を損なう可能性が ある原子炉補機冷却水サージタンク他、配管・弁(主蒸気管室内)が、安全機能を 損なうことのない設計とする。

原子炉補助建屋は,設計飛来物の衝突による影響により,開口部建具に貫通が発 生することを考慮し,開口部建具付近の竜巻防護施設のうち,設計飛来物の衝突に より安全機能を損なう可能性がある制御用空気系統配管が,安全機能を損なうこと のない設計とする。

ディーゼル発電機建屋は,設計飛来物の衝突による影響により,開口部建具及び 開口部である換気口周りの換気フードに貫通が発生することを考慮し,開口部建具 付近等の竜巻防護施設のうち,設計飛来物の衝突により安全機能を損なう可能性が ある蓄熱室加熱器が,安全機能を損なうことのない設計とする。

取水ピットポンプ室及びストレーナ室は上部に開口を設けた設計とするため,設 計飛来物の侵入を考慮し,当該室内部の竜巻防護施設のうち,設計荷重又は設計飛 来物の衝突による影響により安全機能を損なう可能性がある原子炉補機冷却海水 ポンプ,原子炉補機冷却海水ポンプ出口ストレーナ,配管・弁(原子炉補機冷却海 水系統)が,安全機能を損なうことのない設計とする。

【別添1(4.(4)b.),(6.(3))】

a. 使用済燃料ピット

設計飛来物である鋼製材及び鋼製パイプが原子炉建屋(燃料取扱棟)の壁を貫通 し使用済燃料ピットに侵入する場合でも,設計飛来物である鋼製材及び鋼製パイプ の衝撃荷重により,使用済燃料ピットのライニング及びコンクリートの一部が損傷 して,ピット水が漏えいすることはほとんどなく,使用済燃料ピットの冷却機能及 び遮蔽機能が維持されることにより,安全機能を損なうことのない設計とする。

【別添1(4.(4)d.)】

b. 使用済燃料ラック

設計飛来物である鋼製材及び鋼製パイプが原子炉建屋(燃料取扱棟)の壁を貫通 して,使用済燃料ピットに侵入し使用済燃料ラックに衝突する場合でも,設計飛来 物である鋼製材及び鋼製パイプが,使用済燃料ラックに貯蔵している燃料の燃料有 効部に達することはなく,使用済燃料ラックに貯蔵している燃料の構造健全性が維 持されることにより,安全機能を損なうことのない設計とする。

【別添 1(4. (4)d.)】

c. 新燃料ラック

設計飛来物である鋼製材及び鋼製パイプが原子炉建屋(燃料取扱棟)の壁を貫通 して,新燃料貯蔵庫に侵入し新燃料ラックに衝突する場合でも,設計飛来物である 鋼製材及び鋼製パイプが,新燃料ラックに貯蔵している燃料の燃料有効部に達する ことはなく,新燃料ラックに貯蔵している燃料の構造健全性が維持されることによ り,安全機能を損なうことのない設計とする。

また,設計飛来物である鋼製パイプが新燃料ラックに貯蔵している燃料に直接衝 突し,燃料の構造健全性が損なわれることを考慮して,竜巻飛来物防護対策設備に よる竜巻防護対策を行い,設計飛来物である鋼製パイプが燃料に直接衝突すること を防止することにより,燃料の構造健全性が維持され安全機能を損なうことのない 設計とする。

【別添1(4.(4)d.),(6.(3))】

d. 燃料移送装置

設計飛来物である鋼製材及び鋼製パイプが原子炉建屋(燃料取扱棟)の壁を貫通 して燃料移送装置に衝突し安全機能を損なうことを考慮して,竜巻襲来が予想され る場合には,燃料取扱棟における燃料取扱作業を中断することにより,燃料の構造 健全性が維持され安全機能を損なうことのない設計とする。

【別添1(6.(3))】

e. 使用済燃料ピットクレーン

設計飛来物である鋼製材及び鋼製パイプが原子炉建屋(燃料取扱棟)の壁又は開 口部建具である扉を貫通して使用済燃料ピットクレーンに衝突し安全機能を損な うことを考慮して,竜巻襲来が予想される場合には,燃料取扱棟における燃料取扱 作業を中断することにより,燃料の構造健全性が維持され安全機能を損なうことの ない設計とする。

【別添1(6.(3))】

f. 原子炉補機冷却海水ポンプ

設計飛来物である鋼製材及び鋼製パイプが取水ピットポンプ室の上部開口部か ら侵入して原子炉補機冷却海水ポンプに衝突し安全機能を損なうことを考慮して, 竜巻飛来物防護対策設備による竜巻防護対策を行う。竜巻防護対策を行う原子炉補 機冷却海水ポンプが設計竜巻の風圧力による荷重,設計竜巻による気圧差による荷 重,竜巻飛来物防護対策設備によって防護できない砂利による衝撃荷重及び自重に 対して,構造健全性が維持され安全機能を損なうことのない設計とする。

【別添1(4.(4)d.),(6.(3))】

g. 原子炉補機冷却海水ポンプ出口ストレーナ

設計飛来物である鋼製材及び鋼製パイプがストレーナ室の上部開口部から侵入 して原子炉補機冷却海水ポンプ出口ストレーナに衝突し安全機能を損なうことを 考慮して,竜巻飛来物防護対策設備による竜巻防護対策を行う。竜巻防護対策を行 う原子炉補機冷却海水ポンプ出口ストレーナが設計竜巻の風圧力による荷重,設計 竜巻による気圧差による荷重,竜巻飛来物防護対策設備によって防護できない砂利 による衝撃荷重及び活荷重に対して,構造健全性が維持され安全機能を損なうこと のない設計とする。

【別添1(4.(4)d), (6.(3))】

h. 配管·弁(原子炉補機冷却海水系統)

設計飛来物である鋼製材及び鋼製パイプが取水ピットポンプ室及びストレーナ 室の上部開口部から侵入して配管・弁(原子炉補機冷却海水系統)に衝突し安全機 能を損なうことを考慮して,竜巻飛来物防護対策設備による竜巻防護対策を行う。 竜巻防護対策を行う配管・弁(原子炉補機冷却海水系統)が設計竜巻の風圧力によ る荷重,設計竜巻による気圧差による荷重,竜巻飛来物防護対策設備によって防護 できない砂利による衝撃荷重,自重及び活荷重に対して,構造健全性が維持され安 全機能を損なうことのない設計とする。

【別添1(4.(4)d.), (6.(3))】

i. 原子炉補機冷却水サージタンク他

設計飛来物である鋼製材及び鋼製パイプが原子炉建屋の開口部建具である扉を 貫通して原子炉補機冷却水サージタンク他に衝突し安全機能を損なうことを考慮 して, 竜巻飛来物防護対策設備による竜巻防護対策を行うことにより, 設計飛来物 の原子炉補機冷却水サージタンク他への衝突を防止し, 原子炉補機冷却水サージタ ンク他の構造健全性が維持され安全機能を損なうことのない設計とする。

【別添1(6.(3))】

j. 配管·弁(主蒸気管室内)

設計飛来物である鋼製材及び鋼製パイプが原子炉建屋の開口部建具であるブロ ーアウトパネル又は開口部である換気口周りのガラリを貫通して配管・弁(主蒸気 管室内)に衝突し安全機能を損なうことを考慮して,竜巻飛来物防護対策設備によ る竜巻防護対策を行うことにより,設計飛来物の配管・弁(主蒸気管室内)への衝 突を防止し,配管・弁(主蒸気管室内)の構造健全性が維持され安全機能を損なう ことのない設計とする。

【別添1(6.(3))】

k. 制御用空気系統配管

設計飛来物である鋼製材及び鋼製パイプが原子炉補助建屋の開口部建具である 扉を貫通して制御用空気系統配管に衝突し安全機能を損なうことを考慮して, 竜巻 飛来物防護対策設備による竜巻防護対策を行うことにより, 設計飛来物の制御用空 気系統配管への衝突を防止し, 制御用空気系統配管の構造健全性が維持され安全機 能を損なうことのない設計とする。

【別添1(6.(3))】

1. 蓄熱室加熱器

設計飛来物である鋼製材及び鋼製パイプがディーゼル発電機建屋の開口部建具 である扉又は開口部である換気口周りの換気フードを貫通して蓄熱室加熱器に衝 突し安全機能を損なうことを考慮して, 竜巻飛来物防護対策設備による竜巻防護対 策を行うことにより, 設計飛来物の蓄熱室加熱器への衝突を防止し, 蓄熱室加熱器 の構造健全性が維持され安全機能を損なうことのない設計とする。

【別添1(6.(3))】

- (3) 竜巻防護施設のうち,屋外施設及び建屋内の施設で外気と繋がっている施設
- a. 排気筒

排気筒は竜巻防護施設を内包する施設である原子炉建屋に内包されている部分 と、原子炉建屋に内包されていない部分がある。原子炉建屋に内包されている部分 については、原子炉建屋に内包されていることを考慮すると、設計竜巻の風圧力に よる荷重及び設計飛来物による衝撃荷重は作用しないため、設計竜巻による気圧差 による荷重に対して、構造健全性が維持され安全機能を損なうことのない設計とす る。また、原子炉建屋に内包されていない部分については、設計飛来物である鋼製 材及び鋼製パイプが衝突により貫通し構造健全性を損なうことを考慮して、補修が 可能な設計とすることにより、設計基準事故時における安全機能を損なうことのな い設計とする。

【別添1(4.(4)d.), (6.(3)~(4)), (6.(6))】

b.換気空調設備(アニュラス空気浄化設備,格納容器空調装置,補助建屋空調装 置,試料採取室空調装置,中央制御室空調装置,電動補助給水ポンプ室換気装置, 制御用空気圧縮機室換気装置,ディーゼル発電機室換気装置,安全補機開閉器室空 調装置の外気と繋がるダクト・ファン・空調ユニット及び外気との境界となるダン パ・バタフライ弁)

換気空調設備が竜巻防護施設を内包する原子炉建屋等に内包されていることを 考慮すると,設計竜巻の風圧力による荷重及び設計飛来物による衝撃荷重は作用し ないため,設計竜巻による気圧差による荷重に対して,構造健全性が維持され安全 機能を損なうことのない設計とする。

【別添1(4.(4)d.)】

(4) 竜巻防護施設に波及的影響を及ぼし得る施設

a. 循環水ポンプ建屋,タービン建屋,電気建屋及び出入管理建屋

循環水ポンプ建屋,タービン建屋,電気建屋及び出入管理建屋は,設計竜巻の風 圧力による荷重,設計竜巻による気圧差による荷重,設計飛来物による衝撃荷重及 び自重等の常時作用する荷重に対して,倒壊により竜巻防護施設へ波及的影響を及 ぼさない設計とする。

【別添1(4.(4)c.)】

b. ディーゼル発電機排気消音器

ディーゼル発電機排気消音器は,設計飛来物である鋼製材及び鋼製パイプの衝突 により損傷することを考慮して,補修が可能な設計とする。また,設計竜巻の風圧 力による荷重及び設計竜巻による気圧差による荷重に対して,構造健全性が維持さ れることにより,竜巻防護施設であるディーゼル発電機に機能的影響を及ぼさず, ディーゼル発電機の安全機能を損なうことのない設計とする。

【別添1(4.(4)d.)】

c. 主蒸気逃がし弁消音器

主蒸気逃がし弁消音器は、設計飛来物である鋼製材及び鋼製パイプの衝突により 損傷することを考慮して、補修が可能な設計とする。また、設計竜巻の風圧力によ る荷重及び設計竜巻による気圧差による荷重に対して、構造健全性が維持されるこ とにより、竜巻防護施設である主蒸気逃がし弁に機能的影響を及ぼさず、主蒸気逃 がし弁の安全機能を損なうことのない設計とする。

【別添1(4.(4)d.)】

d. 主蒸気安全弁排気管

主蒸気安全弁排気管は,設計飛来物である鋼製材及び鋼製パイプの衝突により損 傷することを考慮して,補修が可能な設計とする。また,設計竜巻の風圧力による 荷重及び設計竜巻による気圧差による荷重に対して,構造健全性が維持されること により,竜巻防護施設である主蒸気安全弁に機能的影響を及ぼさず,主蒸気安全弁 の安全機能を損なうことのない設計とする。

【別添1(4.(4)d.)】

e. タービン動補助給水ポンプ排気管

タービン動補助給水ポンプ排気管は,設計飛来物である鋼製材及び鋼製パイプの 衝突により損傷することを考慮して,補修が可能な設計とする。また,設計竜巻の 風圧力による荷重及び設計竜巻による気圧差による荷重に対して,構造健全性が維 持されることにより,竜巻防護施設であるタービン動補助給水ポンプに機能的影響 を及ぼさず,タービン動補助給水ポンプの安全機能を損なうことのない設計とする。 【別添1(4.(4)d.)】

f. ディーゼル発電機燃料油貯油槽ベント管

ディーゼル発電機燃料油貯油槽ベント管は,設計飛来物である鋼製材及び鋼製パ イプの衝突により損傷することを考慮して,補修が可能な設計とする。また,設計 竜巻の風圧力による荷重及び設計竜巻による気圧差による荷重に対して,構造健全 性が維持されることにより,竜巻防護施設であるディーゼル発電機燃料油貯油槽に 機能的影響を及ぼさず,ディーゼル発電機燃料油貯油槽の安全機能を損なうことの ない設計とする。

【別添1(4.(4)d.)】

g.換気空調設備(蓄電池室排気装置の外気と繋がるダクト・ファン及び外気との境 界となるダンパ)

換気空調設備が竜巻防護施設を内包する原子炉補助建屋に内包されていること を考慮すると,設計竜巻の風圧力による荷重及び設計飛来物による衝撃荷重は作用 しないため,設計竜巻による気圧差による荷重に対して,構造健全性が維持される ことにより,竜巻防護施設である蓄電池に機能的影響を及ぼさず,蓄電池の安全機 能を損なうことのない設計とする。

【別添1(4.(4)d.)】

1.8.2.1.11 竜巻随伴事象に対する設計

竜巻随伴事象は,過去の竜巻被害状況及び泊発電所のプラント配置から想定される 以下の事象を抽出し,これらの事象が発生する場合においても,竜巻防護施設が安全 機能を損なうことのない設計とする。

(1) 火災

竜巻防護施設を内包する建屋内については,設計竜巻により飛来物が侵入する場 合でも,建屋開口部付近に飛来物が衝突し原子炉施設の安全性を損なう可能性のあ る発火性又は引火性物質を内包する機器はなく,火災防護計画により適切に管理す ることから,建屋内の竜巻防護施設が安全機能を損なうことはない。

建屋外については,設計竜巻により危険物タンク等に火災が発生する場合でも, 外部火災防護施設の安全機能を損なうことのない設計とすることを「1.10 外部火 災防護に関する基本方針」にて考慮する。

なお,建屋外の火災については,消火用水,化学消防自動車及び水槽付き消防ポ ンプ自動車等による消火活動を行う。

【別添1(5.)】

(2) 溢水

竜巻防護施設を内包する建屋内については、設計竜巻により飛来物が侵入する場合でも、建屋開口部付近に飛来物が衝突し原子炉施設の安全性を損なう可能性のある溢水源はないことから、建屋内の竜巻防護施設が安全機能を損なうことはない。 建屋外については、設計竜巻により屋外タンク等に溢水が発生する場合でも、溢水に対する防護対象設備の安全機能を損なうことのない設計とすることを「1.7 溢水防護に関する基本方針」にて考慮する。

【別添1(5.)】

(3) 外部電源喪失

設計竜巻と同時に発生する雷又はダウンバーストの影響により外部電源喪失が 発生する場合でも,設計竜巻に対して,ディーゼル発電機の構造健全性を維持する ことにより,外部電源喪失の影響がなく竜巻防護施設が安全機能を損なうことのな い設計とする。

【別添1(5.)】

- 1.8.2.2 手順等
 - (1) 飛来物となる可能性のある物のうち,飛来時の運動エネルギ又は貫通力が設計飛来 物である鋼製材よりも大きな物については,管理規定を定め,設置場所等に応じて 固縛,固定,竜巻防護施設からの離隔又は撤去により飛来物とならない管理を行う 手順等を整備し,的確に実施する。
 - (2) 車両については入構を管理するとともに、上記(1)項に加え、竜巻襲来が予想され る場合の退避又は固縛により飛来物とならない管理を行う手順等を整備し、的確に 実施する。
 - (3) 竜巻飛来物防護対策設備の取付け・取外し手順,飛来物発生防止対策に使用する資 機材の操作手順等を整備し,的確に実施する。
 - (4) 竜巻襲来が予想される場合には、原子炉建屋及びディーゼル発電機建屋の扉を閉止 する、又は閉止状態を確認する手順等を整備し、的確に実施する。
 - (5) 竜巻襲来が予想される場合には、換気空調系統のダンパ等を閉止する、又は閉止状態を確認する手順等を整備し、的確に実施する。
 - (6) 竜巻襲来が予想される場合の原子炉建屋(燃料取扱棟)における燃料取扱作業中断 については、手順等を整備し、的確に実施する。
 - (7) 安全施設のうち, 竜巻に対して構造健全性が維持できない場合の代替設備又は予備 品の確保においては, 運用等を整備し, 的確に実施する。
 - (8) 竜巻飛来物防護対策設備に要求される機能を維持するため, 適切に保守管理を実施 するとともに, 必要に応じ補修を行う。
 - (9) 建屋開口部付近に飛来物が衝突し、原子炉施設の安全性を損なう可能性がある発火 性又は引火性物質を内包する機器の設置については、火災防護計画により適切に管 理するとともに、必要に応じ防護対策を行う。
 - (10) 竜巻襲来後においては、巡視点検により損傷の有無を確認する手順等を整備し、的 確に実施する。
 - (11) 竜巻襲来後の巡視点検により, 排気筒に損傷を確認した場合には, プラントを停止 して補修する手順等を整備し, 的確に実施する。
 - (12) 竜巻の襲来後,建屋外において火災を発見した場合,消火用水,化学消防自動車及び水槽付き消防ポンプ自動車等による消火活動を行う手順等を整備し,的確に実施する。
 - (13) 竜巻に対する運用管理を確実に実施するために必要な技術的能力を維持・向上させることを目的とし、竜巻に対する運用管理に関する教育及び訓練を実施する。

【別添1(6.)】

飛来物の種類	砂利	鋼製パイプ	鋼製材
サイズ(m)	長さ×幅×奥行	長さ×直径	長さ×幅×奥行
	$0.04 \times 0.04 \times 0.04$	2×0.05	$4.2 \times 0.3 \times 0.2$
質量(kg)	0.17	8.4	135
最大水平速度(m/s)	62	49	57
最大鉛直速度(m/s)	42	33	38

第1.8.2.1 表 泊発電所における設計飛来物

【別添1(4.(3)a.)】

	界 1.8.2.2	Ķ	設計電をからい護する施設及い電を対束寺	有寺	
	竜巻の最大			想定する	
設計竜巻から防護する施設	風速条件	飛来物発生防止対策	防護施設	設計飛来物	手順等
・ 原子炉補機冷却海水ポンプ					
・ 原子炉補機冷却海水ポンプ					
出口ストレーナ			• 电仓旅术物则设入	・砂利	Γ
・ 配管・弁(原子炉補機冷却海			兎訍倗		
水系統)					
- 西乙后盆藤珍古水中一ジカ		・ 飛来物となる可能	・ 施設を内包する施		
・京上を集成日本ペッーンクンション		性のある物(車両	設		
ノノ后		含む)の固縛,固	 ・ 竜巻飛来物防護対 	l	I
・即昔・廾(土糸入茸玉内)		定,竜巻防護施設	策設備		
	. 100.	からの離隔又は撤	・ 施設を内包する施		
重要になる。	- 10001 S	共	設		
• 即伸用至风术称配官		・ 車両の入構管理	 ・ 竜巻飛来物防護対 	l	I
		・ 竜巻襲来が予想さ	策設備		
		れる場合の車両の		• 鋼製材	
・ 排気筒 (建屋外)		退避又は固縛	I	・ 鋼製ペイプ	・補修
				• 砂利	
			・ 施設を内包する施		
・挟靴会加熱男			設	I	I
			 ・ 竜巻飛来物防護対 		
			策設備		

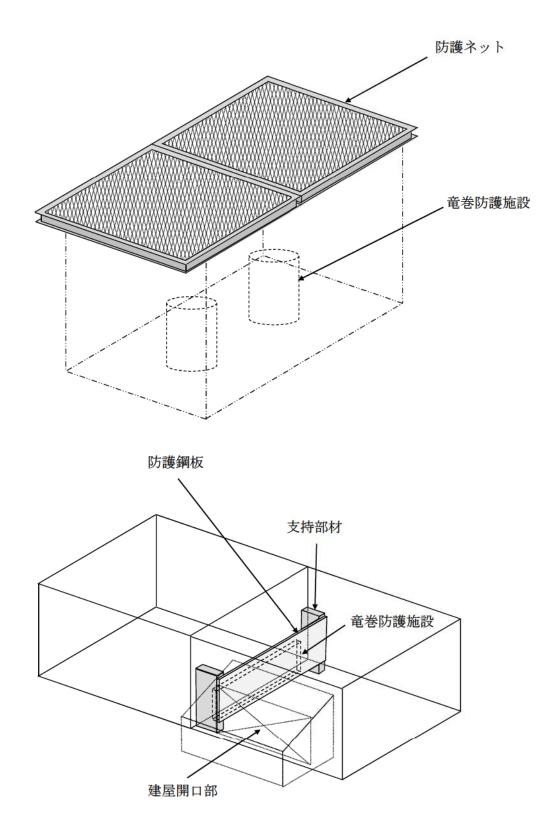
第1.8.2.2 表 設計竜巻から防護する施設及び竜巻対策等

	竜巻の最大			想定する	
設計竜巻から防護する施設	風速条件	飛来物発生防止対策	奶 護施設	設計飛来物	手順等
・ 毎田 弦象 乳 プット			・ 椿艶を内白子ろ椿	・鋼製材	
大石石系さっと「住田茶香港」			- MERX C L 1 C 2 / O/ME	・ 鋼製ペイプ	J
・ 使用済旅程フツク			取	• 砂利	
			・ 施設を内包する施	• 4昭伟以大士	
			殼	刺来で	
・ 新燃料ラック		・ 悪味物となる可能	 ・ ・ ・	・ 鋼製ペイプ	l
			策設備	・砂利	
면 나가 가 아파		含む)の固縛、固		・鋼製材	大法権士にした。こことにく(
・ 際种移达装直		定,竜巻防護施設	・ 施設を囚迫する商	・ 鋼製ペイプ	・ 東巻襲米か丁想される場合の
・ 使用済燃料ピットクレーン		からの離隔又は撤	殼	・砂利	燃料取扱作業の中断
・ 排気筒 (建屋内)	• 1000 S	垥			
・ 換気空調設備(アニュラス空		・ 車両の入構管理			
気浄化設備,格納容器空調装		・ 竜巻襲来が予想さ			
置,補助建屋空調装置,試料		れる場合の車両の			
採取室空調装置,中央制御室		退避又は固縛	・ 施設を内包する施		
空調装置、電動補助給水ポン			殼	I	I
プ室換気装置,制御用空気圧					
縮機室換気装置、ディーゼル					
発電機室換気装置及び安全					
補機開閉器室空調装置)					

6条(竜巻)-26

	- - 				
記当て十時日に、今来年前記	竜巻の最大	東大物政不民亡社会		想定する	王言卒
設計电をひらり渡り つ她設	風速条件	胱米物先生 的止药束	り遷她設	設計飛来物	于順等
		・ 飛来物となる可能			本法をよいたようではくの
・ 安全機能の重要度分類クラ		性のある物(車両	また中である		・ 电を맞米か丁地される場合の 「「「」」、 ゴーズ
ス1及びクラス2に属する		含む)の固縛、固	・「「「「「「」」の「「」」。	I	原士が速度及びノイーでが先
施設のうち上記以外の施設		定,竜巻防護施設	斑		电機建産の逓肉止入は肉止沢 ぬ です
	- 1001	からの離隔又は撤			恐惟耏
	• 100m/s	Ŧ			
		・ 車両の入構管理			1244当年 文法口公路口公司
・ クラス3に属する施設		・ 竜巻襲来が予想さ	I	I	・ 1114 114 114 114 114 114 114 114 114 1
		れる場合の車両の			伸修,取管寺
		退避又は固縛			
					「日茶 1 (0) (1) (6)]

【別添1(2.), (4.), (6.)】


415	十屆卒	才順守			I					・補修						I	【別茶1(2.), (4.), (6.)】
設及び竜巻対策等	想定する	設計飛来物	十十 11年 西公	「割炭内」の書い、して	・割炭イイノ	• 他沙不明			・ 鋼製材	・ 鋼製ペイプ	・砂利					l	
竜巻防護施設に波及的影響を及ぼし得る施設及び竜巻対策等	几十三年十七三小	的唛她政			I					Ι					・ 施設を内包する施	設	
竜巻防護施設に波及り	<u> </u>	派不物先生的业利来		・ 壊来物となる可能	なのやろ物(車面)	全なのの困難、困		からの離隔又は撤	#	・ 市而の λ 雄徳祖	・中国シン市市は	・ 竜巻襲来が予想さ	れる場合の車両の		退避又は固縛		
第1.8.2.3表	竜巻の最大	風速条件					-		• 100m/s								
	竜巻防護施設に波及的影響を及	ぼし得る施設	・ 循環水ポンプ建屋	・ タービン建屋	・ 電気建屋	 出入管理建屋 	・ ディーゼル発電機排気消音	器	・ 主蒸気逃がし弁消音器	 主蒸気安全弁排気管 	・ タービン動補助給水ポンプ	排気管	・ ディーゼル発電機燃料油貯	油槽ベント管	 換気空調設備(蓄電池室排気 	装置)	

6条(竜巻)-28

1 International	竜巻の最大	感 去 物 数 子氏 こ 社 筆	小手 站在 十八一	想定する	子 間始
μ	風速条件	派禾物先生的止め承	则喂她取	設計飛来物	十順寺
		・ 飛来物となる可能			
		性のある物(車両			
		含む)の固縛,固			
		定,竜巻防護施設		な日本ニート	
	/	からの離隔又は撤		・増装とる	
	T UUM/ S	#	I	・響影へイン	I
		・ 車両の入構管理		• #2/41]	
		・ 竜巻襲来が予想さ			
		れる場合の車両の			
		退避又は固縛			
I 1					【111 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

第1.8.2.4表 竜巻防護施設を内包する施設及び竜巻対策等

【別添1(2.), (4.), (6.)】

第1.8.2.1 図 竜巻飛来物防護対策設備概念図

【別添1(6.(3)a.)】

(3) 適合性説明

第六条 外部からの衝撃による損傷の防止

- 1 安全施設(兼用キャスクを除く。)は、想定される自然現象(地震及び津波を除く。次項 において同じ。)が発生した場合においても安全機能を損なわないものでなければならない。
- 2 重要安全施設は、当該重要安全施設に大きな影響を及ぼすおそれがあると想定される自 然現象により当該重要安全施設に作用する衝撃及び設計基準事故時に生ずる応力を適切に 考慮したものでなければならない。
- 3 安全施設(兼用キャスクを除く。)は、工場等内又はその周辺において想定される発電用 原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの (故意によるものを除く。以下「人為による事象」という。)に対して安全機能を損なわな いものでなければならない。

適合のための設計方針

第1項について

発電所敷地で想定される自然現象(地震及び津波を除く。)については,敷地及び敷地 周辺の自然環境を基に洪水,風(台風),竜巻,凍結,降水,積雪,落雷,地滑り,火山 の影響,生物学的事象,森林火災及び高潮を選定し,設計基準を設定するに当たっては, 発電所の立地地域である泊村に対する規格・基準類による設定値及び発電所の最寄りの気 象官署である小樽特別地域気象観測所で観測された過去の記録並びに寿都特別地域気象観 測所で観測された過去の記録をもとに設定する。また,これらの自然現象ごとに関連して 発生する可能性がある自然現象も含める。

なお,自然現象を網羅的に抽出するために,国内外の基準等や文献^{(18)~(30)}に基づき事象 を収集し,海外の選定基準⁽²⁰⁾も考慮の上,敷地又はその周辺の自然環境を基に,発電所敷 地で想定される自然現象を選定する。

安全施設は,発電所敷地で想定される自然現象が発生した場合においても安全機能を損 なうことのない設計とする。ここで,発電所敷地で想定される自然現象に対して,安全施 設が安全機能を損なわないために必要な安全施設以外の施設又は設備等(重大事故等対処 設備を含む。)への措置を含める。また,発電所敷地で想定される自然現象又はその組合 せに遭遇した場合において,自然現象そのものがもたらす環境条件及びその結果として安 全施設で生じ得る環境条件を考慮する。

原子炉施設のうち安全施設は,以下のとおり条件を設定し,自然現象によって発電用原 子炉施設の安全機能を損なわない設計とする。 (3) 竜巻

安全施設は,最大風速 100m/s の竜巻が発生した場合においても,竜巻による風圧力 による荷重,気圧差による荷重及び飛来物の衝撃荷重を組合せた荷重等に対して安全 機能を損なわないために,飛来物の発生防止対策及び竜巻防護対策を行う。

【別添1(3.(5)),(6.)】

a. 飛来物の発生防止対策

竜巻により発電所敷地内の資機材等が飛来物となり, 竜巻防護施設が安全機能を損 なわないために, 以下の対策を行う。

- ・ 飛来物となり竜巻防護施設に影響を及ぼす可能性のある物の固縛、固定、竜巻
 防護施設からの離隔又は撤去を行う。
- 車両については上記に加え、車両の入構管理、竜巻襲来が予想される場合の車
 両の退避又は固縛を行う。

【別添1(6.(2)), (6.(4)~(5))】

b. 竜巻防護対策

固縛等による飛来物の発生防止対策ができない物が飛来し,安全施設が安全機能を 損なわないために,以下の対策を行う。

- ・ 竜巻防護施設を内包する施設及び竜巻飛来物防護対策設備により、竜巻防護施 設を防護し構造健全性を維持し安全機能を損なうことのない設計とする。
- ・ 竜巻防護施設の構造健全性が維持できない場合には、代替設備又は予備品の確保、損傷した場合の取替又は補修が可能な設計とすることにより、安全機能を 損なうことのない設計とする。

竜巻の発生に伴い, 雹の発生が考えられるが, 雹による影響は竜巻防護設計にて想 定している設計飛来物の影響に包絡される。

さらに、竜巻の発生に伴い、雷の発生も考えられるが、雷は電気的影響を及ぼす一 方、竜巻は機械的影響を及ぼすものであり、竜巻と雷が同時に発生するとしても、個 別に考えられる影響と変わらないことから、各々の事象に対して安全施設が安全機能 を損なうことのない設計とする。

【別添1($(6.(3) \sim (4))$), ((6.(6))】

- 1.10 参考文献
 - (1)「実用発電用原子炉施設への航空機落下確率に対する評価基準について」
 総合資源エネルギー調査会 原子力安全・保安部会 原子炉安全小委員会,平成14年7月22日
 - (2)「静的地震力の見直し(建築編)に関する調査報告書(概要)」(社)日本電気協会 電気技術調査委員会原子力発電耐震設計特別調査委員会建築部会 平成6年3月
 - (3)「原子力発電所の火災防護指針 JEAG4607-2010」(社)日本電気協会 2010
 - (4)「電気盤内機器の防火対策実証試験(その1)」 MHI-NES-1061,三菱重工業,平成25年5月
 - (5)「電気盤内機器の防火対策実証試験(その2)」MHI-NES-1062,三菱重工業,平成25年5月
 - (6)「原子カプラント安全系監視操作システム火災防護実証試験報告書」 JEJP-3101-6024, 三菱電機,平成28年1月
 - (7)「難燃性制御・計装ケーブルのトレイ内分離性実証試験」MHI-NES-1058, 三菱重工業, 平成25年5月
 - (8)「原子カプラント常用系監視操作システム火災防護実証試験報告書」 JEJS-H3AM89,三菱電機,平成29年3月
 - (9) 「雷雨とメソ気象」大野久雄 東京堂出版 2001 年
 - (10) 「一般気象学」小倉義光 東京大学出版会 1984 年
 - (11) 「広域的な火山防災対策に係る検討会(第3回)(資料2)」 平成24年
 - (12) 「シラスコンクリートの特徴とその実用化の現状」 武若耕司, コンクリート工学, vol. 42, 2004
 - (13)「新編火山灰アトラス[日本列島とその周辺]. 第2刷」町田洋ほか, 東京大学出版会, 2011
 - (14) 「理科年表(2017)」国立天文台編
 - (15) 「火山環境における金属材料の腐食」出雲茂人,末吉秀一他,防食技術 Vol. 39, 1990
 - (16) 「建築火災のメカニズムと火災安全設計」
 - 原田和典 財団法人 日本建築センター 平成 19 年
 - (17)「石油コンビナートの防災アセスメント指針」 消防庁特殊災害室,平成25年3月
 - (18) Specific Safety Guide (SSG-3)" Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants" IAEA, April 2010
 - (19)NUREG/CR-2300 "PRA Procedures Guide", NRC, January 1983
 - (20) ASME/ANS RA-Sa-2009 "Addenda to ASME/ANS RA-S-2008 Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant

Applications"

- (21) DIVERSE AND FLEXIBLE COPING STRATEGIES (FLEX) IMPLEMENTATION GUIDE (NEI-12-06 August 2012)
- (22)「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する規則の解釈」 (制定:平成 25 年 6 月 19 日)
- (23)「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(制定:平成 25 年6月19日)
- (24)「日本の自然災害」国会資料編纂会 1998 年
- (25)B.5.b Phase 2 & 3 Submittal Guideline (NEI-06-12 December 2006) -2011.5 NRC 公表
- (26) Safety Requirements No.NS-R-3"Site Evaluation for Nuclear Installations", IAEA, November 2003
- (27) NUREG -1407

"Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities", NRC, June 1991

(28)「産業災害全史」

日外アソシエーツ,2010年1月

- (29)「日本災害史辞典 1868-2009」 日外アソシエーツ,2010年9月
- (30)「航空機落下事故に関するデータ」原子力規制委員会,平成28年6月

1.3 気象等

9. 竜巻

9.1 竜巻

竜巻影響評価は「原子力発電所の竜巻影響評価ガイド」(平成25年6月19日原規技発第13061911 号原子力規制委員会決定) (以下「ガイド」という。)に基づき実施する。

基準竜巻及び設計竜巻の設定は、竜巻検討地域の設定、基準竜巻の最大風速の設定及び設計竜 巻の最大風速の設定の流れで実施する。

【別添1(3.(1))】

9.1.1 竜巻検討地域の設定

泊発電所が立地する地域と, 竜巻発生に関する気象条件の類似性の観点及び局所的な地域性の 観点から検討を行い, 竜巻検討地域を設定する。

(1) 竜巻総観場の出現数に関する相関係数を用いた類似性の抽出

気象庁の予報区分図を基に国内全域を 16 に分類した地域区分ごとの竜巻が発生した際の 気象条件(総観場)の出現頻度を整理したのち,泊発電所が立地する「北海道日本海側」と 他の地域区分間の総観場出現頻度に関する相関係数から 2 つの地域区分間の総観場出現に関 する関連性を評価し,泊発電所と類似の地域を抽出する。第 9.1.1 表に地域区分ごとの総観 場の集計結果を,また,第 9.1.2 表に北海道日本海側と他の地域区分との間の各総観場の出 現頻度に関する相関係数を示す。求めた相関係数については無相関検定を行い,有意水準 1% で無相関について確認した。

評価の結果,「北海道日本海側」と相関が認められた地域区分は,「北海道太平洋側」,「東 北日本海側」,「北陸地方」,「近畿日本海側」及び「山陰地方」となった。

【別添1(3.(2)a.(a))】

(2) 抽出した地域を対象とした竜巻の発生頻度の分析

北海道日本海側と相関が認められた地域区分のうち,北海道太平洋側の襟裳岬から東側の 海岸線及び陸奥湾の海岸線においては,竜巻がほとんど発生していない。このため,この地 域を竜巻検討地域に含めた場合には,ハザード曲線評価において,竜巻発生個数の増加に比 ベリスク評価対象面積の増加の割合が大きくなり,ハザードが過小評価されることになるた め,この地域を竜巻検討地域から除く。更に,日本海側は同様の気候区分に分類されること を考慮し,「山陰地方」を山口県の日本海側までとする。これにより,北海道から本州の日 本海側及び北海道太平洋側の襟裳岬以西の海岸線を竜巻検討地域の候補地とする。第9.1.3 表に北海道太平洋側の襟裳岬から東側及び陸奥湾から竜飛岬にかけての海岸線における竜巻 発生数を示す。

【別添1(3.(2)a.(b))】

(3) 集中地域における竜巻発生頻度の確認

泊発電所は,第9.1.1 図に示すように,独立行政法人原子力安全基盤機構が東京工芸大学 に委託した研究の成果「竜巻による原子力施設への影響に関する調査研究」(以下「東京工 芸大学委託成果」という。)⁽¹⁾に記載のある竜巻集中地域に位置していることから,この 地域の竜巻の年発生頻度を,(2)で設定した竜巻検討地域候補地の年発生頻度と比較する。竜 巻集中地域と竜巻検討地域候補地それぞれの竜巻発生頻度を第9.1.4 表に示す。両地域の竜 巻発生頻度はほぼ同一と見なせることから,竜巻発生個数を多く確保できる竜巻検討地域候 補地の方が,竜巻検討地域に適していると判断できる。

【別添1(3.(2)b.)】

(4) 竜巻検討地域

気象条件の類似性の観点と局所的な地域性の観点から検討した結果, 竜巻検討地域は, 北 海道から本州の日本海側及び北海道の襟裳岬以西の海岸に沿った海側 5km と陸側 5km を竜巻 検討地域に設定する(面積 38,895km²)。第9.1.2 図に竜巻検討地域を示す。

【別添1(3.(2)c.)】

9.1.2 基準竜巻の最大風速の設定

基準竜巻の最大風速は、過去に発生した竜巻による最大風速(V_{B1})及び竜巻最大風速のハ ザード曲線による最大風速(V_{B2})のうち、大きな風速を設定する。

(1) 過去に発生した竜巻による最大風速 (V_{B1})

過去に発生した竜巻による最大風速(V_{B1})の設定に当たっては,現時点で竜巻検討地域で 過去に発生した竜巻の最大風速を十分な信頼性のあるデータ等に基づいて評価できるだけの 知見を有していないことから,日本で過去に発生した竜巻の観測データを用いて設定する。 なお,今後も地域特性に関する検討,新たな知見の収集やデータの拡充等に取り組み,より 信頼性のある評価が可能なように努力する。

日本で過去(1961年から2012年6月)に発生した最大の竜巻は,F3スケールである。F3 スケールにおける風速は,70m/s~92m/sであることから,過去に発生した竜巻の最大風速 V_{B1} を92m/sとする。第9.1.5表に日本におけるF3の竜巻リスト(1961年~2012年6月)を示 す。

【別添1(3.(3)a.)】

(2) 竜巻最大風速のハザード曲線による最大風速(V_{B2})

竜巻最大風速のハザード曲線は,ガイドに従い,既往の算定方法に基づき,具体的には, 東京工芸大学委託成果を参照して算定する。本評価は,竜巻データの分析,竜巻風速,被害 幅及び被害長さの確率密度分布及び相関係数の算定並びにハザード曲線の算定によって構成 される。 竜巻最大風速のハザード曲線の算定は、竜巻検討地域(海岸線から陸側及び海側それぞれ 5km 全域の範囲)での評価及び竜巻検討地域を海岸線に沿って1km 範囲ごとに細分化した評 価の2通りで算定し、そのうち大きな風速を設定する。

【別添1(3.(3)b.)】

a. 海岸線から陸側及び海側それぞれ 5km 全域の評価

本評価では、竜巻検討地域外で発生して竜巻検討地域内に移動した陸上発生竜巻も発 生数にカウントする。被害幅及び被害長さは、それぞれ被害全幅及び被害全長を用いる。 【別添1(3,(3)c.)】

b. 竜巻の発生頻度の分析

気象庁の「竜巻等の突風データベース」⁽²⁾をもとに、1961年から2012年6月までの 51.5年間の統計量をFスケール別に算出する。第9.1.3図に気象庁の「竜巻等の突風デ ータベース」による1961年~2012年までの竜巻年別発生確認数を示す。なお、観測体 制の変遷による観測データ品質のばらつきを踏まえ、以下の(a)~(c)の基本的な考え方 に基づいて整理を行う。

- (a) 被害が小さくて見過ごされやすい F0 及びF スケール不明竜巻に対しては, 観測体 制が強化された 2007 年以降の年間発生数や標準偏差を用いる。
- (b) 被害が比較的軽微な F1 竜巻に対しては, 観測体制が整備された 1991 年以降の年間発生数や標準偏差を用いる。
- (c) 被害が比較的大きく見逃されることがないと考えられる F2 竜巻は, 観測データが 整備された 1961 年以降の全期間の年間発生数や標準偏差を用いる。

また、F スケール不明竜巻については、以下の取扱いを行う。

陸上で発生した竜巻(以下「陸上竜巻」という。)については,被害があって初めて そのFスケールが推定されるため,陸上でのFスケール不明竜巻は,被害が少ないF0竜 巻と見なす。

海上で発生した竜巻(以下「海上竜巻」という。)については、その竜巻のスケール を推定することは困難であることから、「海岸線から海上 5km の範囲における海上竜巻 の発生特性が、海岸線から内陸 5km の範囲における陸上竜巻の発生特性と同様である。」 という仮定に基づいて各Fスケールに分類する。

上記の考え方に基づく各年代別の竜巻発生数の分析結果を第9.1.6表に示す。

また,同表の分析結果に基づき竜巻最大風速のハザード曲線の算出に使用する竜巻の 発生数を第9.1.7表に示す。

なお,分析結果はFスケール不明の海上竜巻の取扱いにより,観測実績に対して保守 性を高めた評価としている。

【別添1(3.(3)d.)】

c. 年発生数の確率密度分布の設定

ガイドにて、V_{B2} 算定の参考になるとされている東京工芸大学委託成果によれば、Wen and Chu⁽³⁾が、竜巻に遭遇しかつ竜巻風速がある値以上となる確率モデルの推定法を提案し、竜巻の発生がポアソン過程に従うと仮定した場合、竜巻の年発生数の確率分布はポアソン分布若しくはポリヤ分布に従うとしている。

ポアソン分布は,生起確率が正確に分からないが稀な現象の場合に有用な分布である。 一方,ポリヤ分布は,発生状況が必ずしも独立でない稀現象(ある現象が生ずるのは稀 であるが,一旦ある現象が発生するとその周囲にもその現象が生じやすくなる性質)の 場合に有用な分布である(例えば伝染病の発生件数)。台風や前線により竜巻が発生し た場合,同時多発的に複数の竜巻が発生する状況が考えられるため,ポリヤ分布の方が 実現象をより反映できると考えられる。

なお,国内を対象とした竜巻の年発生数の分布の適合性に関する検討結果は,東京工 芸大学委託成果に示されており,陸上竜巻及び海上竜巻の両方の発生数について,ポリ ヤ分布の適合性がポアソン分布に比べて優れているとしている。

今回, 竜巻検討地域で発生した竜巻を対象に, 発生数に関するポアソン分布及びポリ ヤ分布の適合性を検討した結果を第9.1.4 図に示す。同図より竜巻検討地域においても, ポリヤ分布の適合性がポアソン分布に比べて優れている。

以上より,ハザード曲線の評価に当たって使用する竜巻の年発生数の確率密度分布は, ポリヤ分布を採用する。

【別添1(3.(3)d.)】

d. 竜巻風速, 被害幅及び被害長さの確率分布並びに相関係数

竜巻検討地域における 51.5 年間の竜巻の発生数,被害幅及び被害長さを基に,確率密 度分布については,ガイド及びガイドが参考としている東京工芸大学委託成果を参照し, 対数正規分布に従うものとする。第 9.1.5 図~第 9.1.7 図にそれぞれ風速,被害幅,被 害長さの確率密度分布と超過確率を示す。

なお、擬似的な竜巻の作成に伴う被害幅又は被害長さの情報がない竜巻には、被害幅 又は被害長さを有する竜巻の観測値を与えている。その際は、被害幅又は被害長さが大 きいほうから優先的に用いることで、被害幅又は被害長さの平均値が大きくなるように 工夫しているとともに、被害幅又は被害長さ0のデータについては計算に用いておらず、 保守的な評価を行っている。

このように、前述のFスケール不明の竜巻の取扱い等も含め、データについては保守的 な評価となる取扱いを行っている。また、1961年以降の観測データのみを用いて、竜巻 風速、被害幅及び被害長さについて相関係数を求める。その結果を第9.1.8表に示す。 【別添1(3.(3)e.)】 e. 竜巻影響エリアの設定

竜巻影響エリアは,保守的に竜巻防護施設を包絡する円形エリアを竜巻影響エリアの 面積及び評価対象施設を包絡する円形エリア(直径425m,面積約142,000m²)として設定 する。第9.1.9表に評価対象施設の面積,第9.1.8図に評価対象施設を包絡する竜巻影響 エリアを示す。

なお、竜巻影響エリアを円形とするため、竜巻の移動方向には依存性は生じない。

【別添1(3.(3)f.)】

f.ハザード曲線の設定

東京工芸大学委託成果によれば、Wen and Chuが竜巻に遭遇し、かつ竜巻風速がある値 以上となる確率モデルの推定法を提案している。竜巻の発生がポアソン過程に従うと仮 定した場合、竜巻の年発生数の確率分布は、(a)式に示すポリヤ分布の適合性が良いとさ れている。本ハザード曲線の算定においても、東京工芸大学委託成果にならって適合性 の良いポリヤ分布により設定する。

$$P_T(N) = \frac{(\nu T)^N}{N!} (1 + \beta \nu T)^{-(N+1/\beta)} \prod_{k=1}^{N-1} (1 + \beta k)$$
(a)

ここで、N は竜巻の年発生数、 ν は竜巻の年平均発生数、T は年数である。 β は分布 パラメータであり、式(b)で示される。

$$\beta = \left(\frac{\sigma^2}{\nu} - 1\right) \times \frac{1}{\nu} \tag{b}$$

ここで, σは竜巻の年発生数の標準偏差である。

Dを対象とする構造物が風速V₀以上の竜巻風速に遭遇する事象と定義し、竜巻影響評価の対象構造物が1つの竜巻に遭遇し、その竜巻の風速がV₀以上となる確率をR(V₀)とした時、 T年以内にいずれかの竜巻に遭遇し、かつ竜巻風速がV₀以上となる確率は、以下の式(c) となる。

$$P_{V_0,T}(D) = 1 - \left[1 + \beta \nu R(V_0)T\right]^{-1/\beta}$$
(c)

このR(V₀)は、竜巻影響評価の対象地域の面積をA₀(つまり竜巻検討地域の面積 =38,895km²),1つの竜巻に遭遇し、竜巻風速がV₀以上となる面積をDA(V₀)とすると、式 (d)で示される。

$$R(V_0) = \frac{E[DA(V_0)]}{A_0} \tag{d}$$

ここで、E[DA(V₀)]はDA(V₀)の期待値を意味する。

本評価では、以下のようにして、DA(Vo)の期待値を算出し、式(d)により、R(Vo)を推定

して,式(c)により, $P_{v_0,r}(D)$ を求める。風速をV,被害幅をw,被害長さを1,移動方向 を α ,及び構造物の寸法をA,Bとし,f(V,w,1)等の同時確率密度関数を用いると,DA(V₀) の期待値は式(e)で示される(Garson et al.⁽⁴⁾)。

$$E[DA(V_0)] = \int_{0}^{\infty} \int_{0}^{\infty} W(V_0) l f(V, w, l) dV dw dl$$

+
$$\int_{0}^{2\pi\infty} \int_{0}^{\infty} H(\alpha) l f(V, l, \alpha) dV dl d\alpha$$

+
$$\int_{0}^{2\pi\infty} \int_{0}^{\infty} W(V_0) G(\alpha) f(V, w, \alpha) dV dw d\alpha$$

+
$$AB \int_{0}^{\infty} f(V) dV$$
 (e)

ここで,式(e)の右辺第1項は,竜巻の被害幅と被害長さの積,つまり被害面積を表し ており,いわゆる点構造物に対する被害,第2項及び第3項は,被害長さ・被害幅と構造 物の寸法の積,つまり構造物の被害面積を示す。第4項は構造物面積ABに依存する項を示 す。

また, H(α)及びG(α)はそれぞれ, 竜巻の被害長さ及び被害幅方向に沿った面に竜巻 影響評価対象構造物を投影した時の長さである。e項にて竜巻影響エリアを円形で設定し ているため, H, Gともに竜巻影響エリアの直径425mで一定(竜巻の移動方向に依存しな い)となる。Sは第9.1.8図に示す竜巻影響エリアの面積(直径425mの円の面積:約 142,000m²)を表す。円の直径をLとした場合の計算式は式(f)で示される。

$$E[DA(V_0)] = \int_{0}^{\infty} \int_{0}^{\infty} W(V_0) l f(V, w, l) dV dw dl$$

+ $L \int_{0}^{\infty} \int_{V_0}^{\infty} lf(V, l) dV dl + L \int_{0}^{\infty} \int_{V_0}^{\infty} W(V_0) f(V, w) dV dw + S \int_{V_0}^{\infty} f(V) dV$ (f)

なお,風速の積分範囲の上限値は,ハザード曲線の形状が不自然にならない程度に大きな値として120m/sに設定する。

また、 $W(V_0)$ は、竜巻の被害幅のうち風速が V_0 以上となる幅であり、式(g)で示される。 この式により、被害幅内の風速分布に応じて被害様相に分布があることが考慮されている (Garson et al.⁽⁴⁾, Garson et al.⁽⁵⁾)。

$$W(V_0) = \left(\frac{V_{\min}}{V_0}\right)^{1/1.6} w \tag{g}$$

ここで、係数の1.6について、既往の研究で例えば0.5や1.0等の値も提案されている。

ガイドにて参照しているGarson et al.⁽⁵⁾では,観測値が不十分であるため1.6を用いる ことが推奨されており,本検討でも1.6を用いる。また,泊発電所の竜巻影響評価では, ランキン渦モデルによる竜巻風速分布に基づいて設計竜巻の特性値等を設定している。 ランキン渦モデルは高さ方向によって風速及び気圧が変化しないため,地表から上空ま で式(g)を適用できる。なお,式(g)において係数を1.0とした場合がランキン渦モデルに 該当する。

また、V_{min}は、Gale intensity Velocityと呼ばれ、被害が発生し始める風速に位置付 けられる。米国気象局NWS (National Weather Service)では、34~47ノット(17.5~24.2m/s) とされている。なお、日本の気象庁が使用している風力階級では、風力8が疾強風(gale: 17.2~20.7m/s)、風力9は大強風(strong gale:20.8~24.4m/s)と分類されており、 風力9では「屋根瓦が飛ぶ。人家に被害が出始める。」とされている。

以上を参考に、V_{min}=25m/sとする。なお、この値はF0(17~32m/s)のほぼ中央値に相当する。

海岸線から陸側及び海側それぞれ5km全域を対象に算定したハザード曲線より,年超過 確率10⁻⁵における竜巻風速V_{E2}を求めると,59m/sとなる。第9.1.9図に海岸線から陸側及 び海側それぞれ5km全域における竜巻最大風速のハザード曲線を示す。

【別添1(3.(3)g.)】

g. 1km範囲ごとに細分化した評価

1km範囲ごとの評価は、1km幅は変えずに順次ずらして移動するケース(短冊ケース) を設定して評価する。評価の条件として、竜巻検討地域外で発生して竜巻検討地域内に 移動した竜巻である通過竜巻も発生数としてカウントしている。また、Fスケール不明の 上陸竜巻はF0としている。被害幅及び被害長さは、それぞれ1km範囲内の被害幅及び被害 長さを用いている。上記評価条件に基づいて、海岸線から陸側及び海側それぞれ5km全域 の評価と同様の方法で算定したハザード曲線より、年超過確率10⁻⁵における竜巻風速V_{B2} を求めると、海側0~1kmを対象とした場合の65m/sが最大となる。第9.1.10図に1km範囲 ごとに細分化した評価における竜巻最大風速のハザード曲線を示す。

【別添1(3.(3)h.)】

h. 竜巻最大風速のハザード曲線による最大風速 (V_{B2})

海側及び陸側それぞれ5km全域の評価と、1km範囲ごとの評価を比較して、竜巻最大風 速のハザード曲線により設定する最大風速V_{B2}は、ガイドを参考に年超過確率10⁻⁵に相当 する風速とし、65m/sとする。第9.1.11図に海岸線から陸側及び海側それぞれ5km全域に おける竜巻最大風速のハザード曲線と1km範囲ごとに細分化した評価における竜巻最大 風速のハザード曲線のうち、最も風速が大きくなる海側0~1kmのハザード曲線を示す。 【別添1(3.(3)i.)】 (3) 基準竜巻の最大風速

過去に発生した竜巻による最大風速V_{B1}=92m/s及び竜巻最大風速のハザード曲線による最 大風速V_{B2}=65m/sより, 泊発電所における基準竜巻の最大風速V_Bは92m/sとする。

【別添1(3.(3)j.)】

9.1.3 設計竜巻の最大風速の設定

泊発電所が立地する地形の特性として,周辺の地形や竜巻の移動方向を考慮して,基準竜 巻の最大風速の割り増しを検討し,設計竜巻の最大風速を設定する。

【別添1(3.(4))】

(1) 泊発電所周辺の地形

泊発電所敷地の形状は、おおむね半円状であり、敷地前面(北西~南西方向)は日本海に 面し、背後は積丹半島中央部の山嶺に続く標高 40m から 130m の丘陵地である。泊発電所周辺 の地形図を第 9.1.12 図に示す。

竜巻の渦は地表面粗度の影響を受けやすい。力学的な知見からは、風洞を用いた竜巻状流 れ場の可視化実験(松井・田村⁽⁶⁾)等において、旋回流のパラメータの一つであるスワール 比(上昇流の運動量に対する角運動量の比)に応じて、地表面粗度が旋回流速度の低下に影 響を与えることが分かっている。

最近の知見として、ラージ・エディー・シミュレーション(LES)による非定常乱流解 析(Lewellen. D. C., and Lewellen W. S.⁽⁷⁾)で得られたスワール比に依存した竜巻の渦構 造に関する知見が妥当であることが実際の竜巻近くで行った観測結果から示唆されている (Karstens et al.⁽⁸⁾)。LESを用いた非定常乱流場の数値解析結果では、スワール比が下が るのと同様の効果として、地表面粗度が旋回流の接線風速を弱める効果を有することが示唆 されている(Natarajan and Hangan⁽⁹⁾)。

したがって、地表面粗度が大きい丘陵地を通過する際、竜巻旋回流の強さは粗度の影響を 受けて減衰するため、泊発電所の立地する地域では、竜巻が発生したとしても竜巻が増幅す ることを考慮する必要はないと考えられる。

一方,斜面における竜巻の増幅については,下り斜面で増幅するという知見と,上り斜面 で増幅するという知見の両方が存在しており,現時点で,地形効果による竜巻の増幅を十分 に評価できるだけの信頼性を有する知見は存在しない。泊発電所の場合,背後に急峻な傾斜 地をもつ地形に立地しており,山側から進入する竜巻については,Forbes⁽¹⁰⁾が増幅すると している下り斜面に該当する。

そこで,敷地東側の山側から竜巻が泊発電所に進入することについては,地表面粗度が大きい丘陵地を越えてくることになるので考えにくいものの,下り斜面で増幅する可能性があることから,竜巻の移動方向について分析を行う。

【別添1(3.(4)a.~b.)】

(2) 泊発電所の竜巻検討地域における竜巻の移動方向

泊発電所の竜巻検討地域における過去の発生竜巻について,移動方向の傾向を整理した。 観測されている発生竜巻の実績は全206個であり,そのうち143個の竜巻について移動方 向が判明しており,これらを整理した結果を第9.1.13図に示す。

その結果,東側方向に向けて移動する竜巻が大半を占めており,北東〜南東までの範囲に 121 個が集中している。これは全個数のおよそ 85%である。

特に, 泊発電所が位置する北海道後志支庁沿岸部の発生竜巻については, すべて東側(北 東〜南東までの範囲) 方向への移動が確認されている。

これらを踏まえると, 泊発電所における竜巻の到来方向の傾向としては, 海側から進入し てくる可能性が高く, 山側から進入してくる可能性は低いと考えられる。

【別添1(3.(4)c.)】

(3) 設計竜巻の最大風速

泊発電所では竜巻は地形が平坦な海側から発電所敷地に進入してくる可能性が高く,発電 所を含む敷地も平坦なため,地形効果による竜巻風速の増幅を考慮する必要はないと考えら れることから,基準竜巻の最大風速に対する割り増しは行わず,設計竜巻の最大風速 V_Dは 92m/sとする。

なお,今後も継続的に新たな知見等の収集に取組み,必要な事項については適切に反映を 行う。

【別添1(3.(4)d.)】

地域区分	台風		日本海 低気圧		気圧の 谷	局地性 じょう乱	東シナ 海低気 圧	その他 低気圧	温暖前 線	寒冷前 線	閉塞前 線	停滞前線	不安定線	梅雨前線	太平洋高気圧	その他高気圧	季節風	雷雨 (熱雷)	雷雨 (熱雷 を除く)	寒気の 移流	暖気の 移流	計	藤田ス ケール の最大
北海道日本海側	0	0	3	0	29	1	0	0	1	7	2	0	0	0	0	0	1	1	0	34	3	82	F2
北海道オホーツク海側	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	2	F3
北海道太平洋側	0	0	2	0	12	2	0	0	1	13	2	0	2	0	0	1	0	1	1	7	4	48	F2
東北日本海側	0	0	14	0	35	7	0	4	2	28	0	5	0	0	1	0	1	3	0	17	3	120	(F2)
東北太平洋側	2	0	1	1	2	2	0	1	0	10	1	1	2	1	0	1	0	3	1	8	4	41	(F2)
関東甲信地方	49	16	11	0	17	15	0	8	7	22	2	14	2	5	0	0	1	6	7	39	22	243	F3
北陸地方	0	0	12	1	27	3	0	2	0	27	0	3	4	0	0	0	8	0	2	82	2	173	F2
東海地方	27	4	11	9	7	3	0	1	7	10	2	11	1	3	0	0	1	0	0	5	10	112	F3
近畿日本海側	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	7	1	10	FO
近畿太平洋側	3	4	5	0	1	1	0	0	0	6	0	3	0	1	0	0	1	1	0	3	5	34	F1~F2
山陰地方	0	0	5	0	5	5	0	1	0	9	0	0	0	0	0	0	. 1	1	1	28	7	63	F1
山陽地方	0	0	0	0	0	0	0	0	0	0	0	2	0	2	2	0	0	0	0	0	2	8	F2
四国地方	18	3	9	2	2	0	0	4	1	1	2	10	0	3	1	1	0	0	0	9	26	92	F2
九州北部地方	11	0	1	0	8	18	0	8	2	22	0	10	2	7	2	0	1	5	1	8	13	119	F2
九州南部地方	45	3	1	0	4	6	15	11	4	22	0	7	5	3	2	0	0	1	0	1	22	152	F2~F3
沖縄地方	20	0	0	0	39	2	13	6	1	26	0	22	0	10	17	8	0	5	0	2	30	201	F2
全地域	175	30	75	13	188	65	28	46	26	204	11	89	19	35	25	11	15	27	13	250	155	1500	F3
(注) 総観	場の)分类	頃は	,攴	象周	亍(出典	ŧ:∮	気象	庁HI	Pī	竜巻	等の)突	風デ	- 3	マベ・	ース	(2	013	年9丿]))	に

第9.1.1表 地域区分毎の総観場の集計

従った。

全地域の出現が10個未満の総観場は集計から除外し、35種類の総観場の中から21種類を対 象とした。

【別添1(3.(2)a.(a))】

	北海道日	日本海側との相関
地域区分	相関係数	有意水準1%
		相関の有O、無×
北海道日本海側	1.00	-
北海道オホーツク海側	0.04	×
北海道太平洋側	0.73	0
東北日本海側	0.75	0
東北太平洋側	0.54	×
関東甲信地方	0.47	×
北陸地方	0.90	0
東海地方	0.07	×
近畿日本海側	0.70	0
近畿太平洋側	0.20	×
山陰地方	0.81	0
山陽地方	-0.17	×
四国地方	0.10	×
九州北部地方	0.22	×
九州南部地方	-0.10	×
沖縄地方	0.32	×

第9.1.2表 北海道日本海側と他地域区分間の相関係数一覧

【別添1(3.(2)a.(a))】

第9.1.3 表 襟裳岬から東側の海岸線等における竜巻発生数

・襟裳岬から知床半島までの海岸線における竜巻の発生実績

番号	発生日時	発生場所	藤田スケール			
1	1969/10/11 09:25	北海道根室支庁(海上)	不明			

・竜飛岬までの陸奥湾西側海岸線における竜巻の発生実績

番号	発生日時	発生場所	藤田スケール
1	1966/10/05 16:02	青森県 青森市	_

※詳細な発生場所データがないことから、海岸10km範囲での発生かどうか不明

(出典:気象庁 HP 竜巻等の突風データベース(2013 年 9 月))

【別添1(3.(2)a.(b))】

第9.1.4表 竜巻集中地域及び竜巻検討地域候補地の竜巻発生頻度の比較

	対象面積(km ²)	竜巻発生個数(個)	発生頻度(個/km²/年)
		(観測期間 51.5 年)	
竜巻集中地域	3, 850	19	9.6×10 ⁻⁵
竜巻検討地域候補地	38, 895	206	1. 1×10^{-4}

【別添1(3.(2)b.)】

第9.1.5表 F3の竜巻発生リスト(1961年~2012年6月)

発生日時	発生場所緯度	発生場所経度	発生場所
1971年07月07日07時50分	35度52分45秒	139度40分13秒	埼玉県 浦和市
1990年12月11日19時13分	35度25分27秒	140度17分19秒	千葉県 茂原市
1999年09月24日11時07分	34度42分4秒	137度23分5秒	愛知県 豊橋市
2006年11月07日13時23分	43度58分39秒	143度42分12秒	北海道網走支庁 佐呂間町
2012年05月06日12時35分	36度6分38秒	139度56分44秒	茨城県 常総市

【別添1(3.(3)a.)】

竜巻検討地域 発生数		小計		竜巻スケ	ール		不	明	総数
(沿岸±5km)	の統計	小矸	F0	F1	F2	F3	陸上	海上	含む不明
	期間内総数	90	30	47	13	0	3	113	206
1961~ 2012/6	平均値 (年)	1. 748	0, 583	0. 913	0.252	0	0.058	2. 194	4.000
(51.5年間)	標準偏差 (年)	2. 526	2.003	1.020	0.522	0	0.309	5.862	7.687
	期間内総数	60	30	27	3	0	3	112	175
1991~ 2012/6	平均値 (年)	2. 791	1.395	1.256	0.140	0	0.140	5. 209	8.140
(21.5年間)	標準偏差 (年)	3. 467	2.956	1. 124	0.356	0	0.473	8. 294	10. 683
	期間内総数	32	26	6	0	0	0	93	125
2007~ 2012/6	平均値 (年)	5. 818	4.727	1.091	0.000	0	0	16. 909	22. 727
(5.5年間)	標準偏差 (年)	6. 087	4.814	1.337	0.000	0	0	10. 661	14. 700
	期間内総数	322	244	65	13	0	0	871	1193
疑似 51.5年間	平均値 (年)	6. 236	4. 727	1.256	0.252	0	0	16. 909	23. 145
(陸上竜巻)	標準偏差 (年)	4. 970	4.814	1.124	0.522	0	0	10. 661	11.762
	期間内総数	1195	905	241	49	0	0	0	1195
疑似 51.5年間	平均値 (年)	23, 102	17.514	4.653	0.935	0	0	0	23. 102
(全竜巻)	標準偏差 (年)	9. 567	9.265	2. 163	1.004	0	0	0	9. 567

第9.1.6表 竜巻発生数の分析結果

注1:切り上げの関係で総計数が一致していない箇所がある。

注2:色塗り部分については、竜巻発生頻度の分析に用いるデータを示している。

【別添1(3.(3)d.)】

第9.1.7表 分析結果に基づいて整理した竜巻の発生数

	統計	F0	F1	F2	F3	F不明	小計
疑似	期間内総数	905	241	49	0	0	1195
51.5 年間	平均值(年)	17.573	4.680	0.951	0.000	0.000	23.204
(全竜巻)	標準偏差 (年)	9. 265	2. 163	1.004	0.000	0.000	9.567

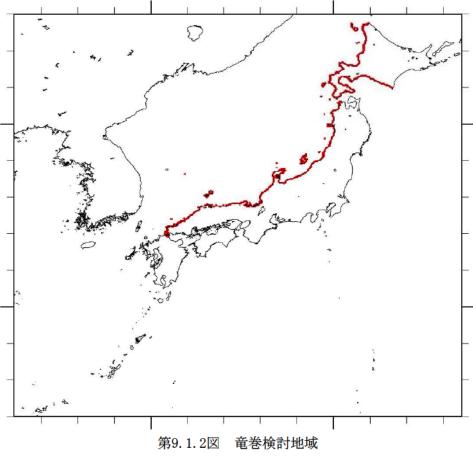
【別添1(3.(3)d.)】

第9.1.8表 竜巻風速,被害幅及び被害長さの相関係数

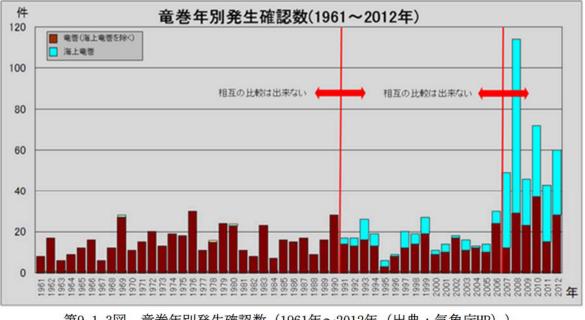
相関係数(対数)	風速 (m/s)	被害幅 (m)	被害長さ (m)
風速 (m/s)	1.000	0	0.301
被害幅 (m)		1.000	0.458
被害長さ (m)	-	-	1.000

【別添1(3.(3)e.)】

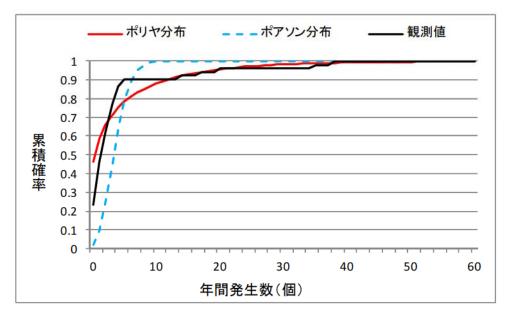
評価対象施設	設置面積 (m ²)
原子炉建屋(R/B)	4, 889
原子炉補助建屋(A/B)	3, 689
ディーゼル発電機建屋 (DG/B)	493
タービン建屋 (T/B)	5, 225
電気建屋 (EL/B)	1, 214
出入管理建屋(AC/B)	1,603
循環水ポンプ建屋 (CWP/B)	2, 748
合 計	19, 861


第9.1.9表 評価対象施設の面積

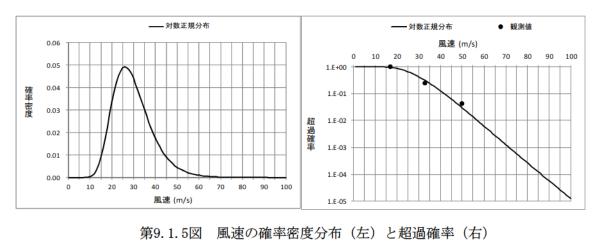
【別添1(3.(3)f.)】



第9.1.1図 竜巻の発生地点と竜巻が集中する19個の地域[※] ※出典:東京工芸大学,「竜巻による原子力施設への影響に関する調査研究(平成22年度)」, 独立行政法人原子力安全基盤機構委託研究


【別添1(3.(2)b.)】

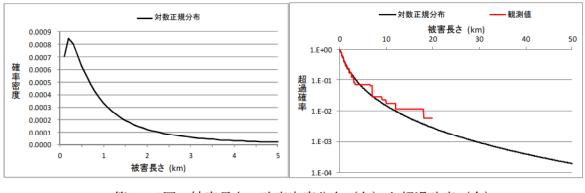
【別添1(3.(2)c.)】



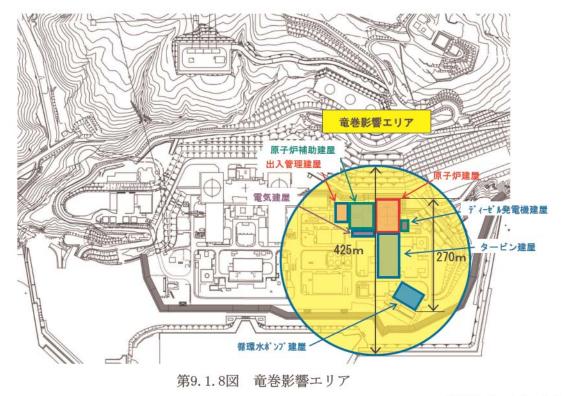
第9.1.3図 竜巻年別発生確認数(1961年~2012年(出典:気象庁HP)) 【別添1(3.(3)d.)】

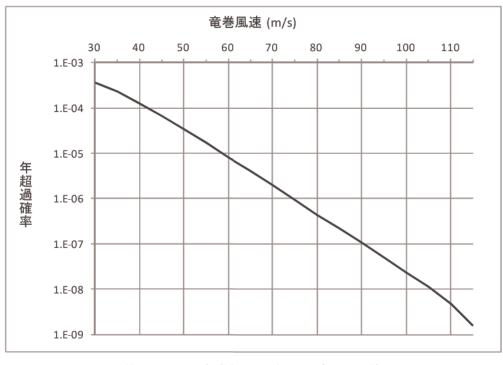


第9.1.4図 竜巻検討地域における竜巻の年発生数の累積頻度


【別添1(3.(3)d.)】

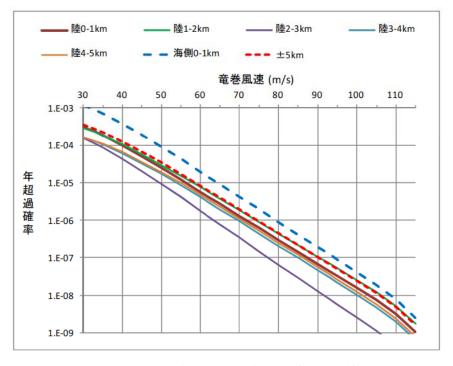
【別添1(3.(3)e.)】


第9.1.6図 被害幅の確率密度分布(左)と超過確率(右)

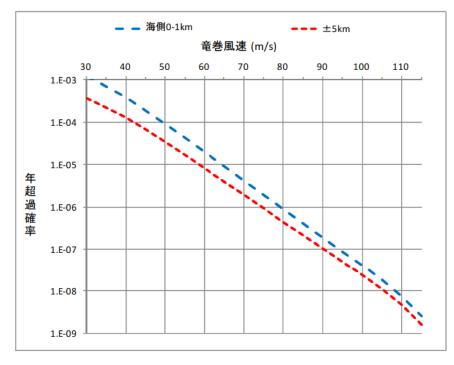

第9.1.7図 被害長さの確率密度分布(左)と超過確率(右)

[【]別添1(3.(3)e.)】

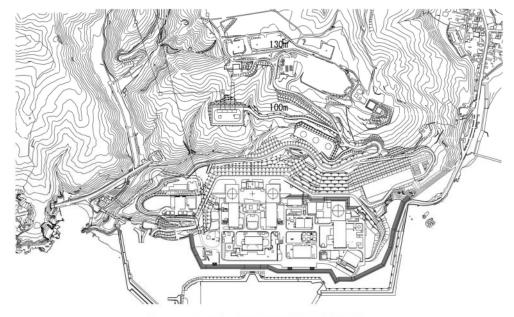
[【]別添1(3.(3)e.)】



【別添1(3.(3)f.)】

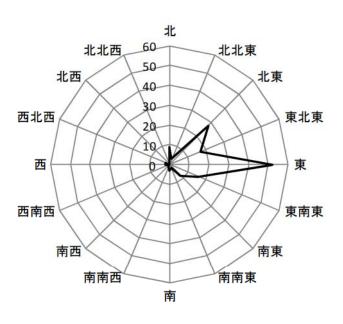

第9.1.9図 竜巻最大風速のハザード曲線 (海側,陸側±5km全域の評価)

【別添1(3.(3)g.)】


第9.1.10図 竜巻最大風速のハザード曲線 (1km範囲ごとの評価)

【別添1(3.(3)h.)】

第9.1.11図 竜巻最大風速のハザード曲線 (海側,陸側±5km全域及び海側0-1kmにおける評価)


【別添1(3.(3)i.)】

第9.1.12 図 泊発電所周辺地形図

【別添1(3.(4)a.)】

	[個]
北	9
北北東	3
北東	28
東北東	17
東	52
東南東	16
南東	8
南南東	2
南	3
南南西	1
南西	0
西南西	0
西	2
西北西	2
北西	0
北北西	0
計	143

第9.1.13図 移動方向別の竜巻発生個数

【別添1(3.(4)c.)】

9.2 参考文献

- (1)東京工芸大学(2011):平成21~22年度原子力安全基盤調査研究
 (平成22年度) 竜巻による原子力施設への影響に関する調査研究, 独立行政法人原子力安全基盤機構委託研究報告書
- (2) 気象庁 竜巻等の突風データベース
- (3) Wen. Y. K and Chu. S. L. (1973) : Tornado Risks and Design Wind Speed. Journal of the Structural Division, ASCE, Vol. 99, No. ST12, pp. 2409-2421.
- (4) Garson. R. C., Morla-Catalan J. and Cornell C. A. (1975) : Tornado Design Winds Based on Risk. Journal of the Structural Division, ASCE, Vol. 101, No. ST9, pp. 1883-1897.
- (5) Garson. R. C., Morla-Catalan J. and Cornell C. A. (1975) : Tornado Risk Evaluation using Wind Speed Profiles. Journal of the Structural Division, ASCE, Vol. 101, No. ST5, pp. 1167-1171.
- (6) 松井正宏,田村幸雄(2005): 竜巻状流れ場の可視化実験および流速計測によるスワール比, 粗度の影響,東京工芸大学工学部紀要,28, pp.113-119.
- (7) Lewellen. D. C., and Lewellen W. S. (2007): Near-surface intensification of tornado vortices. J. Atmos. Sci., 64, 2176-2194.
- (8) Karstens. C. D., Samaras T. M., Lee B. D., Gallus Jr W. A., and Finley C. A. (2010): Near-ground pressure and wind measurements in tornadoes. Mon. Wea. Rev., 138, 2570-2588.
- (9) Natarajan. D., and Hangan H. (2012) : Large eddy simulations of translation and surface roughness effects on tornado-like vortices, journal of wind engineering and industrial aerodynamics, 104-106, pp. 577-584.
- (10) Forbes. G. S. (1998) : Topographic Influences on Tornadoes in Pennsylvania, 19th Conference on Severe Local Storms, American Meteorological Society, Minneapolis, MN, pp. 269-272.
- (11) Lewellen. D. C. (2012) : Effects of Topography on Tornado Dynamics: A Simulation Study, 26th Conference on Severe Local Storms, American Meteorological Society, Nashville, TN, 4B.1.

1.4 設備等

(該当なし)

泊発電所3号炉

設置許可基準規則等への適合状況説明資料 (竜巻影響評価について)

第6条:外部からの衝撃による損傷の防止

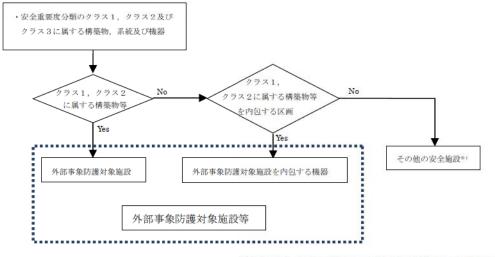
(竜巻)

<目 次>

- 1. はじめに
- 2. 評価の基本方針
- 3. 基準竜巻・設計竜巻の設定
- 4. 竜巻影響評価
- 5. 竜巻随伴事象に対する評価
- 6. 竜巻対策
- (添付資料)
- 1. 泊発電所3号機 竜巻影響評価結果 補足説明資料

1. はじめに

「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する規則」第6条にお いて,外部からの衝撃による損傷の防止として,安全施設は,想定される自然現象(地震及び津 波を除く。)が発生した場合においても安全機能を損なわないものでなければならないと規定さ れており,この自然現象の一つとして竜巻が挙げられている。


このため、原子炉施設の供用期間中に極めてまれに発生する突風、強風を引き起こす自然現象 としての竜巻及びその随伴事象等によって原子炉施設の安全性を損なうことのない設計である ことを確認するための「原子力発電所の竜巻影響評価ガイド」(以下、「評価ガイド」という。) を参照して竜巻影響評価を以下について実施し、竜巻防護施設の安全機能が維持されることを確 認する。

- ・設計竜巻及び設計荷重(設計竜巻荷重及びその他組合せ荷重を適切に組合わせた荷重)の
 設定
- ・ 泊発電所における飛来物に係る調査
- 飛来物発生防止対策
- ・ 飛来物に対する竜巻防護施設の防護対策
- 考慮すべき設計荷重に対する竜巻防護施設の構造健全性等の評価を行い、必要に応じて対策を行うことで安全機能が維持されることの確認

また,第43条の要求を踏まえ,設計竜巻によって,設計基準対象施設の安全機能と重大事故 等対処設備の機能が同時に損なわれることがないことを確認するとともに,重大事故等対処設備 の機能が喪失した場合においても,位置的分散又は頑健性のある外殻となる建屋による防護に期 待できるといった観点から,代替手段により必要な安全機能を維持できることを確認する。(補 足説明資料36参照) 2. 評価の基本方針

(1) 評価対象施設の抽出

以下のa.項~c.項に示す施設を竜巻影響評価の対象施設とする。 外部事象防護対象施設及び評価対象施設の抽出フローを図2.1及び図2.2に示す。

※1 設計竜巻により損傷したとしても、代替設備により必要な機能を確保する、安全上支障のない期間に修復する等の対応が可能とすることにより、 安全機能を損なわない設計とする。

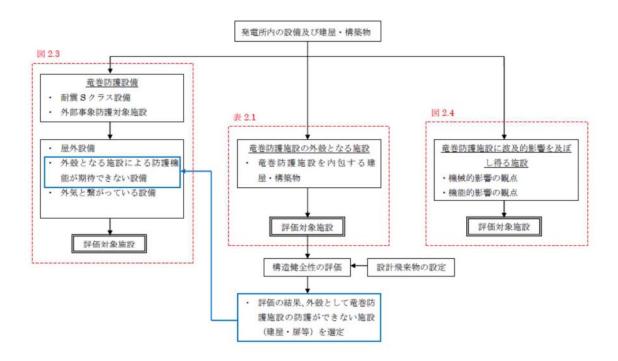


図 2.2 評価対象施設の抽出フロー

6条(竜巻)-別添1-2

a. 竜巻防護施設

想定される自然現象(地震及び津波を除く。)及び想定される発電用原子炉施設の安全性を 損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。) に対して,発電用原子炉を停止するため,また,停止状態にある場合は引き続きその状態を維 持するために必要な異常の発生防止の機能又は異常の影響緩和の機能を有する構築物,系統及 び機器並びに使用済燃料プールの冷却機能及び給水機能を維持するために必要な異常の発生 防止の機能又は異常の影響緩和の機能を有する構築物,系統及び機器として安全重要度分類の クラス1,クラス2に属する構築物,系統及び機器を外部事象から防護する対象(以下「外部 事象防護対象施設」という。)とし,機械的強度を有すること等により,安全機能を損なわな い設計とする。

竜巻に対する防護として,評価ガイドにおいて,竜巻防護施設は「基準地震動及び耐震設計方針に係る審査ガイド」の耐震設計上の重要度分類における耐震 S クラスの設計を要求される設備(系統,機器),建屋及び構築物等とされている。

以上を踏まえ、「基準地震動及び耐震設計方針に係る審査ガイド」の耐震設計上の重要度分 類における耐震 S クラスの設計を要求される設備(系統、機器)及び建屋、構築物に加え、 外部事象防護対象施設を竜巻防護施設とする。

なお、「発電用軽水炉型原子炉施設の安全機能の重要度分類に関する審査指針」で規定され ているクラス3に属する構築物、系統及び機器については、設計竜巻により損傷したとして も、代替設備により必要な機能を確保する、安全上支障のない期間に修復する等の対応が可 能とすることにより、安全機能を損なわない設計としていることから、竜巻防護施設として 抽出しない。

また,耐震 S クラスの設計を要求される設備である津波防護施設,浸水防止設備及び津波 監視設備については,竜巻は気象現象,津波は地震,地滑り等を原因とする事象であり,同 時に発生することは考えられず,事象の組合せは考慮しないことから,竜巻防護施設として 抽出しない。

竜巻防護施設の評価対象施設については,評価ガイドの解説 2.1 において,竜巻防護施設 の外殻となる施設等(竜巻防護施設を内包する建屋・構築物等)による防護機能によって, 設計竜巻による影響を受けないことが確認された施設については,設計対象から除外できる 旨記載されていることを踏まえ,屋外設備,建屋内の施設で外気と繋がっている設備及び外 殻となる施設による防護機能が期待できない設備として,以下を抽出し評価を実施する。

なお,外殻となる施設による防護機能が期待できない設備については,「4.(4)施設の 構造健全性の確認」の結果に基づいて抽出している。

また,原子炉建屋,原子炉補助建屋,ディーゼル発電機建屋,A1,A2-燃料油貯油槽タンク 室,B1,B2-燃料油貯油槽タンク室,取水ピットポンプ室及びストレーナ室については,竜巻 防護施設を内包する建屋・構築物であり,後述の「c. 竜巻防護施設の外殻となる施設」と して抽出する。 竜巻防護施設の評価対象施設抽出フローを図2.3に示す。(補足説明資料10参照)

(屋外設備)

· 排気筒(建屋外)

(外殻となる施設による防護機能が期待できない設備)

- 原子炉補機冷却海水ポンプ
- 蓄熱室加熱器
- ・ 原子炉補機冷却海水ポンプ出口ストレーナ
- 配管および弁(原子炉補機冷却海水系統)
- 原子炉建屋の原子炉補機冷却水サージタンク・空調用冷水膨脹タンク室に設置されている原子炉補機冷却水サージタンクおよび原子炉補機冷却水系統の配管・弁(以下,「原子炉補機冷却水サージタンク他」という。)
- 原子炉建屋の主蒸気管室に設置されている主蒸気系統,主給水系統,補助給水系統 および制御用空気系統の配管・弁(以下,「配管および弁(主蒸気管室内)」という。)
- · 制御用空気系統配管
- ・ 使用済燃料ピット(使用済燃料ラック含む)
- 新燃料ラック
- 燃料移送装置
- ・ 使用済燃料ピットクレーン

(建屋内の施設で外気と繋がっている設備)

- ・換気空調設備(アニュラス空気浄化設備,格納容器空調装置,補助建屋空調装置, 試料採取室空調装置,中央制御室空調装置,電動補助給水ポンプ室換気装置,制御 用空気圧縮機室換気装置,ディーゼル発電機室換気装置,安全補機開閉器室空調装 置の外気と繋がるダクト・ファン・空調ユニット及び外気との境界となるダンパ・ バタフライ弁)

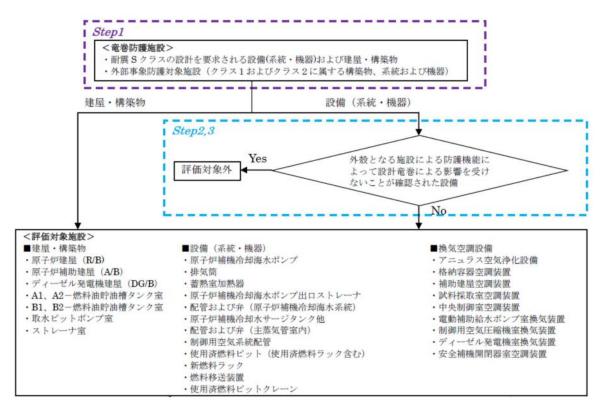


図 2.3 竜巻防護施設の評価対象施設抽出フロー

b. 竜巻防護施設に波及的影響を及ぼし得る施設

評価ガイドにおいて、竜巻防護施設に波及的影響を及ぼし得る施設は「当該施設の破損等 により竜巻防護施設に波及的影響を及ぼして安全機能を喪失させる可能性が否定できない施 設,又はその施設の特定の区画(竜巻防護施設を内包する区画)」とされていることを踏まえ、 以下の(a)項及び(b)項に示す施設を竜巻防護施設に波及的影響を及ぼし得る施設とし て抽出する。

竜巻防護施設に波及的影響を及ぼし得る施設(評価対象施設)抽出フローを図2.4 に示す。 (補足説明資料11参照)

(a) 竜巻防護施設への機械的影響の観点から抽出

竜巻防護施設の外殻となる施設に隣接している施設及び倒壊により竜巻防護施設を損 傷させる可能性がある施設として,以下を抽出し評価を実施する。

(竜巻防護施設の外殻となる施設に隣接している施設)

- ・ タービン建屋(T/B)(原子炉建屋に隣接する施設)
- ・ 電気建屋(EL/B)(原子炉建屋,原子炉補助建屋に隣接する施設)
- 出入管理建屋(AC/B)(原子炉補助建屋に隣接する施設)

(倒壊により竜巻防護施設を損傷させる可能性がある施設)

循環水ポンプ建屋(CWP/B)

(b) 竜巻防護施設への機能的影響の観点から抽出

屋外にある竜巻防護施設の附属設備および竜巻防護施設を内包する区画の外気と繋が っている換気空調設備として、以下を抽出し評価を実施する。

(屋外にある竜巻防護施設の附属設備)

- ・ ディーゼル発電機排気消音器 (ディーゼル発電機の附属設備)
- 主蒸気逃がし弁消音器(主蒸気逃がし弁の附属設備)
- ・ 主蒸気安全弁排気管(主蒸気安全弁の附属設備)
- タービン動補助給水ポンプ排気管(タービン動補助給水ポンプの附属設備)
- ディーゼル発電機燃料油貯油槽ベント管(ディーゼル発電機燃料油貯油槽の附 属設備)

(竜巻防護施設を内包する区画の外気と繋がっている換気空調設備)

 ・ 換気空調設備(蓄電池室排気装置の外気と繋がるダクト・ファン及び外気との 境界となるダンパ)

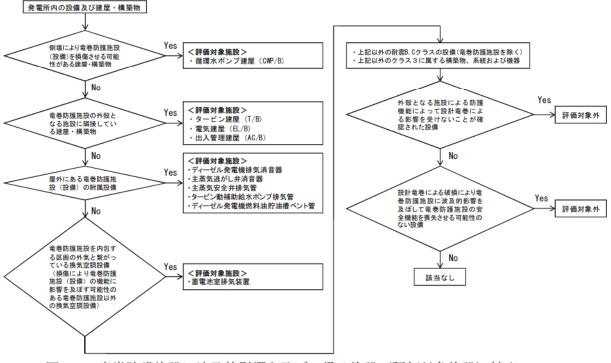


図2.4 竜巻防護施設に波及的影響を及ぼし得る施設(評価対象施設)抽出フロー

c. 竜巻防護施設の外殻となる施設

竜巻防護施設の外殻となり得る施設(竜巻防護施設を内包する建屋・構築物)として,以 下を抽出し評価を実施する。

・原子炉建屋(R/B)

外部遮へい建屋 (O/S)

周辺補機棟 (E/B)

燃料取扱棟(FH/B)

- ・原子炉補助建屋(A/B)
- ・ディーゼル発電機建屋(DG/B)
- ・A1, A2-燃料油貯油槽タンク室
- ・B1, B2-燃料油貯油槽タンク室
- ・取水ピットポンプ室
- ・ストレーナ室

表 2.1 竜巻防護施設の外殻となる施設の抽出

竜巻防護施設の外売	設となる施設(評価対象施設)	内包する竜巻防護施設			
	外部遮へい建屋(0/S)	原子炉容器, 1次冷却材ポンプ他			
原子炉建屋(R/B)	周辺補機棟(E/B)	主蒸気管, 主蒸気安全弁他			
	燃料取扱棟 (FH/B)	使用済燃料ピット、使用済燃料ラック他			
原子炉補助建屋(A	/B)	余熱除去ポンプ、ほう酸タンク他			
ディーゼル発電機類	售屋(DG/B)	ディーゼル発電機, 蓄熱室加熱器他			
A1, A2-燃料油貯油槽	曹タンク室	A1, A2-ディーゼル発電機燃料油貯油槽			
B1, B2-燃料油貯油槽	曹タンク室	B1, B2-ディーゼル発電機燃料油貯油槽			
取水ピットポンプ室		原子炉補機冷却海水ポンプ他			
ストレーナ室		原子炉補機冷却海水ポンプ出口ストレーナ他			

d. 自主的に機能維持のための配慮を行う施設

津波防護施設等は,基準津波の高さや防護対象範囲の広さ等の重要性を鑑み,自主的に機 能維持のための配慮を行う。

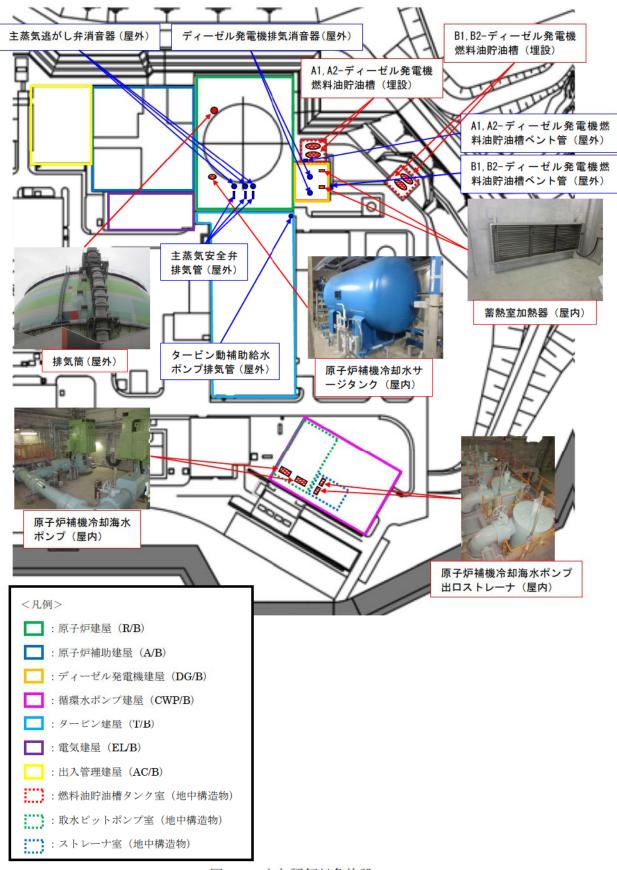


図 2.5 主な評価対象施設

6条(竜巻)-別添1-8

- (2) 評価の基本的な考え方
- a. 評価の基本フロー

基準竜巻,設計竜巻及び設計荷重を適切に設定するとともに評価対象施設を抽出し,考慮 すべき設計荷重に対する評価対象施設の構造健全性について検討を行い,必要に応じて対策 を行うことで竜巻防護施設の安全機能が維持されることを確認する。

b. 評価対象施設に作用する荷重

以下に示す設計荷重を適切に設定する。

(a) 設計竜巻荷重

設計竜巻荷重を以下に示す。

①風圧力

設計竜巻の最大風速による風圧力

②気圧差による圧力

設計竜巻における気圧低下によって生じる評価対象施設内外の気圧差による圧力 ③飛来物の衝撃荷重

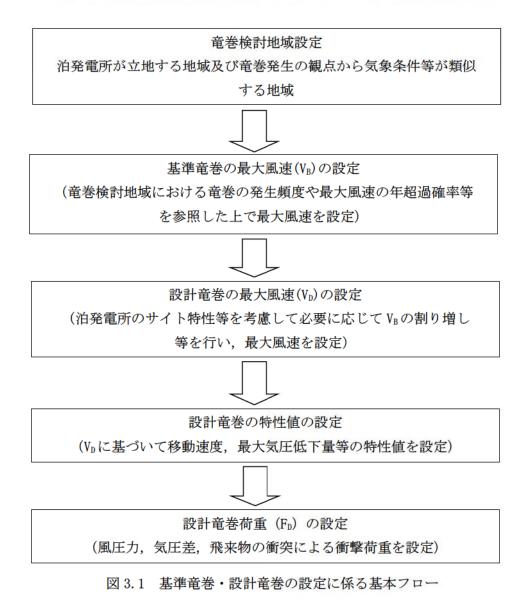
設計竜巻によって評価対象施設に衝突し得る飛来物(以下「設計飛来物」という。) が評価対象施設に衝突する際の衝撃荷重

(b) 設計竜巻荷重と組み合わせる荷重

設計竜巻荷重と組み合わせる荷重を以下に示す。

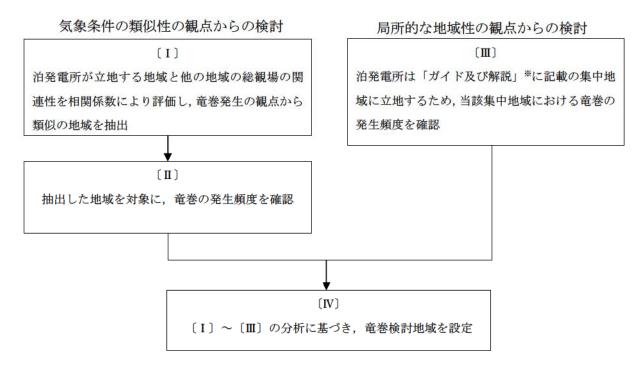
①評価対象施設に常時作用する荷重,運転時荷重等
 ②竜巻以外の自然現象による荷重,設計基準事故時荷重等

なお,上記(b)の②の荷重については,竜巻以外の自然現象及び事故の発生頻度 等を参照して,上記(b)の①の荷重と組み合わせることの適切性や設定する荷重の 大きさ等を判断する。


具体的な荷重については、4.(3) b. に示す。

(3) 施設の安全性の確認方針

設計竜巻荷重及びその他組み合わせ荷重(常時作用している荷重,竜巻以外の自然現象に よる荷重,設計基準事故時荷重等)を適切に組み合わせた設計荷重に対して,評価対象施設, あるいはその特定の区画の構造健全性等の評価を行い,必要に応じて対策を行うことで竜巻 防護施設の安全機能が維持されることを確認する。


- 3. 基準竜巻・設計竜巻の設定
- (1) 概要

ガイドに基づき、設計竜巻荷重を設定するまでの基本的な流れを図3.1に示す。

- (2) 竜巻検討地域の設定

竜巻検討地域は,原子力発電所が立地する地域及び竜巻発生の観点から原子力発電所が立 地する地域と気象条件等が類似の地域から設定する。竜巻検討地域の設定フローを図3.2に示 す。

※原子力発電所の竜巻影響評価ガイド及び解説

(平成 25 年 6 月 19 日原規技発第 13061911 号原子力規制委員会決定)

図 3.2 竜巻検討地域の設定フロー

- a. 気象条件の類似性の観点からの検討
 - (a) 竜巻総観場の出現数に関する相関係数を用いた類似性の抽出

独立行政法人原子力安全基盤機構が東京工芸大学に委託した研究の成果,(以下,「東京 工芸大学委託成果」という。)においては,「竜巻等突風の気象的発生要因はいくつかある が,明らかに地域性が見られる。」としている。また,竜巻の発生分布性状は総観場に大 きく影響を受けることから,総観場による解析は重要であると考えられる。このため,国 内全域を気象の傾向が類似する地域として区分した 16 の地域区分の総観場を解析するこ とにより,竜巻検討地域を設定する。

総観場の地域性の概要を把握するため,国内全域と泊発電所が含まれる北海道日本海側, 東日本の関東甲信地方及び西日本の九州南部地方について比較した。図3.3に示す総観場 の集計結果によると,国内全地域を対象とした集計では「暖気の移流」,「寒気の移流」,

「寒冷前線」,「気圧の谷」,「停滞前線」及び「台風」の総観場の出現頻度が高い。北海道 日本海側では,上記総観場のうち「寒気の移流」及び「気圧の谷」の出現頻度が高いが, 九州南部地方ではこれらの総観場は竜巻発生時の主要な気象特性とはなっていない。一方 で,国内全域で出現頻度の高い総観場である「暖気の移流」,「停滞前線」及び「台風」は 北海道日本海側ではほとんど出現しておらず,関東甲信地方及び九州南部地方で多い傾向 が見られる。一部地域の比較からではあるが, 竜巻の成因となる総観場の出現には地域性 があるものと考える。

このように、竜巻発生に関する総観場には地域特性があると考えられることから、地 域特性について相関係数を用いて検討した。相関係数は、2組のデータがどれだけ関連性 があるかを示す係数で、2組のデータの関連性が強ければ相関係数は1に近づき、関連性 が低ければ0に近づく。相関係数を利用して、2つの地域の総観場の関連性を評価し、関 連性が強ければ、2つの地域は総観場の出現の観点から類似の地域であると判断した。

具体的には、表 3.1 の総観場の集計結果から、北海道日本海側とその他地域間の、総観場の出現数に関する相関係数を求め、出現する総観場の種類及び出現頻度の関連性の強さ を評価した。なお、相関係数については、無相関検定を行い有意水準1%で無相関につい て確認している。

相関係数を算出した結果は、表 3.2 のとおりであり、「北海道日本海側」と相関が認め られる地域は、「北海道太平洋側」、「東北日本海側」、「北陸地方」、「近畿日本海側」及び 「山陰地方」となった。

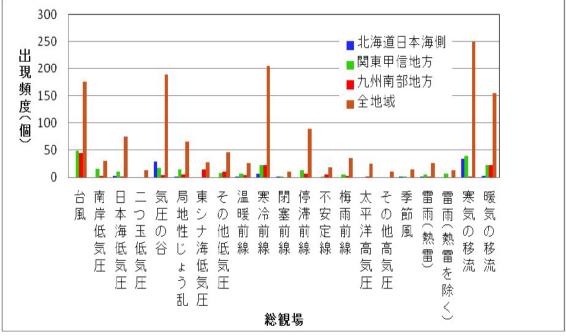


図 3.3 各地域の総観場の出現頻度

(出典:気象庁 HP 竜巻等の突風データベース(2013年9月))

地域区分	台風	南岸低気圧	日本海 低気圧		気圧の谷	局地性 じょう乱		その他 低気圧	温暖前 線	寒冷前線	閉塞前 線	停滞前 線	不安定線		太平洋 高気圧		季節風	雷雨 (熱雷)	雷雨 (熱雷 を除く)	寒気の 移流	暖気の 移流	計	藤田ス ケール の最大
北海道日本海側	0	0	3	0	29	1	0	0	1	7	2	0	0	0	0	0	1	1	0	34	3	82	F2
北海道オホーツク海側	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	1	2	F3
北海道太平洋側	0	0	2	0	12	2	0	0	1	13	2	0	2	0	0	1	0	1	1	7	4	48	F2
東北日本海側	0	0	14	0	35	7	0	4	2	28	0	5	0	0	1	0	1	3	0	17	3	120	(F2)
東北太平洋側	2	0	1	1	2	2	0	1	0	10	1	1	2	1	0	1	0	3	1	8	4	41	(F2)
関東甲信地方	49	16	11	0	17	15	0	8	7	22	2	14	2	5	0	0	1	6	7	39	22	243	F3
北陸地方	0	0	12	1	27	3	0	2	0	27	0	3	4	0	0	0	8	0	2	82	2	173	F2
東海地方	27	4	11	9	7	3	0	1	7	10	2	11	1	3	0	0	1	0	0	5	10	112	F3
近畿日本海側	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	7	1	10	F0
近畿太平洋側	3	4	5	0	1	1	0	0	0	6	0	3	0	1	0	0	1	1	0	3	5	34	F1~F2
山陰地方	0	0	5	0	5	5	0	1	0	9	0	0	0	0	0	0	1	1	1	28	7	63	F1
山陽地方	0	0	0	0	0	0	0	0	0	0	0	2	0	2	2	0	0	0	0	0	2	8	F2
四国地方	18	3	9	2	2	0	0	4	1	1	2	10	0	3	1	1	0	0	0	9	26	92	F2
九州北部地方	11	0	1	0	8	18	0	8	2	22	0	10	2	7	2	0	1	5	1	8	13	119	F2
九州南部地方	45	3	1	0	4	6	15	11	4	22	0	7	5	3	2	0	0	1	0	1	22	152	[F2~F3]
沖縄地方	20	0	0	0	39	2	13	6	1	26	0	22	0	10	17	8	0	5	0	2	30	201	F2
全地域	175	30	75	13	188	65	28	46	26	204	11	89	19	35	25	11	15	27	13	250	155	1500	F3

表 3.1 地域区分毎の総観場の集計※

※総観場の分類は、気象庁(出典:気象庁HP 竜巻等の突風データベース(2013年9月))

に従った。

また,全地域の出現が10個未満の総観場は解析から除外し,35種類の総観場の中から21 種類を解析対象とした。なお,竜巻発生の1事例に対し複数の総観場があるため,合計は 竜巻発生個数より多い。

北海洋ロナン回しの相関									
	北海道日本海側との相関								
地域区分	扣阻反粉	有意水準1%							
	相関係数	相関の有O、無×							
北海道日本海側	1.00	-							
北海道オホーツク海側	0.04	×							
北海道太平洋側	0.73	0							
東北日本海側	0.75	0							
東北太平洋側	0.54	×							
関東甲信地方	0.47	×							
北陸地方	0.90	0							
東海地方	0.07	×							
近畿日本海側	0.70	0							
近畿太平洋側	0.20	×							
山陰地方	0.81	0							
山陽地方	-0.17	×							
四国地方	0.10	×							
九州北部地方	0.22	×							
九州南部地方	-0.10	×							
沖縄地方	0.32	×							

表 3.2 北海道日本海側と他地域区分間の相関係数一覧

注:有意水準1%で、相関が認められるものに黄色を付している。

(b) 抽出した地域を対象とした竜巻の発生頻度の分析

「北海道日本海側」と相関が認められる地域の竜巻発生数を考慮し、ハザード曲線が保 守的なものとなるよう、以下のとおり竜巻検討地域を絞り込む。相関が認められる地域の うち、北海道太平洋側の襟裳岬から東側の海岸線及び陸奥湾の海岸線においては、表 3.3 のとおり竜巻はほとんど発生していない。このため、この地域を竜巻検討地域に含めた場 合には、ハザード曲線評価において竜巻発生個数が極端に少ない割りに、リスク対象評価 面積が大きくなり、ハザードが過小評価されることになるため、北海道太平洋側の襟裳岬 から東側の海岸線及び陸奥湾から竜飛岬にかけての海岸線を竜巻検討地域から除く。更に、 日本海側は同様の気候区分に分類されることを考慮し、「山陰地方」を山口県の日本海側 までとする。

表 3.3 襟裳岬から東側の海岸線等における竜巻発生数

・襟裳岬から知床半島までの海岸線における竜巻の発生実績

1966/10/05 16:02

	番号	発生日時	発生場所	藤田スケール	
	1	1969/10/11 09:25	北海道根室支庁(海上)	不明	
・竜飛岬までの陸奥湾西側海岸線における竜巻の発生実績					

 番号
 発生日時
 発生場所
 藤田スケー

※詳細な発生場所データがないことから,海岸10km範囲での発生かどうか不明

(出典:気象庁 HP 竜巻等の突風データベース(2013年9月))

青森県 青森市

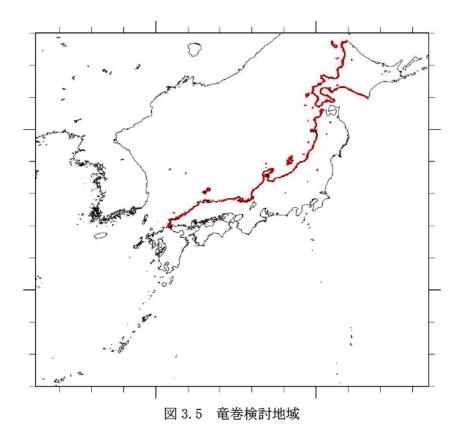
b. 局所的な地域性の観点からの検討

1

独立行政法人原子力安全基盤機構「原子力発電所の竜巻影響評価ガイド(案)及び解説」に おいては、竜巻集中地域に原子力発電所が立地している場合、当該地域の竜巻の年発生頻度 (単位面積当たりの年発生数)を調査して総観スケールの気象条件から設定した地域の年発 生頻度と比較し、発生頻度の高い方を竜巻検討地域とする、としている。

泊発電所は図 3.4 に示すように竜巻集中地域に位置していることから、この地域の竜巻の 年発生頻度を、a. で総観スケールの気象条件から設定した地域の竜巻の年発生頻度と比較す る。

2 つの地域の竜巻発生頻度は,表 3.4 に示すとおりほぼ同一と見なせる。このため,竜巻 発生個数を多く確保できる総観スケールの気象条件から設定した地域の方が,竜巻検討地域 に適しているものと判断される。


図3.4 竜巻の発生地点と竜巻が集中する19個の地域[※] ※出典:東京工芸大学,「竜巻による原子力施設への影響に関する調査研究(平成22 年度)」,独立行政法人原子力安全基盤機構委託研究

	対象面積(km ²)	竜巻発生個数(個) (観測期間 51.5 年)	発生頻度(個/km²/年)
竜巻集中地域	3, 850	19	9.6×10 ⁻⁵
竜巻検討地域候補地	38, 895	206	1.1×10^{-4}

表 3.4 竜巻集中地域及び竜巻検討地域候補地の竜巻発生頻度の比較

c. 竜巻検討地域

竜巻検討地域は、竜巻発生の観点から泊発電所が立地する地域と気象条件が類似する地域 を基に、北海道から本州の日本海側及び北海道の襟裳岬以西の海岸線から陸側及び海側それ ぞれ 5km の範囲を竜巻検討地域(面積約 38,895km²)に設定する。図 3.5 に竜巻検討地域を 示す。

(3) 基準竜巻の最大風速(V_B)の設定

基準竜巻の最大風速は、過去に発生した竜巻による最大風速(V_{B1})及び竜巻最大風速のハ ザード曲線による最大風速(V_{B2})のうち、大きな風速を設定する。

a. 過去に発生した竜巻による最大風速(VBI)

過去に発生した竜巻による最大風速(V_{B1})の設定にあたっては,現時点で当社は竜巻検討地 域で過去に発生した竜巻の最大風速を十分な信頼性のあるデータ等に基づいて評価できるだ けの知見を有していないことから,日本で過去に発生した竜巻の観測データを用いてV_{B1}を設 定する。なお,今後も地域特性に関する検討,新たな知見の収集やデータの拡充などに取り 組み,より信頼性のある評価が可能なように努力する。

日本で過去に発生した最大の竜巻はF3スケールである。F3スケールにおける風速は70m/s ~92m/sであることから、その最大風速を基に過去に発生した竜巻の最大風速VB1を92m/sとする。表3.5に日本におけるF3の竜巻発生リスト(1961年~2012年6月)を示す。

20.0		1 (1001 2012	1 0/1/
発生日時	発生場所緯度	発生場所経度	発生場所
1971年07月07日07時50分	35 度 52 分 45 秒	139度40分13秒	埼玉県 浦和市
1990年12月11日19時13分	35 度 25 分 27 秒	140度17分19秒	千葉県 茂原市
1999年09月24日11時07分	34度42分4秒	137度23分5秒	愛知県 豊橋市
2006年11月07日13時23分	43度58分39秒	143度42分12秒	北海道網走支庁 佐呂間町
2012年05月06日12時35分	36度6分38秒	139度56分44秒	茨城県 常総市

表3.5 F3の竜巻発生リスト(1961年~2012年6月)

b. 竜巻最大風速のハザード曲線による最大風速 (V_{B2})

竜巻最大風速のハザード曲線は、ガイドに従い、既往の算定方法に基づき、具体的には、東 京工芸大学委託成果を参照して算定する。図3.6に算定の流れを示す。

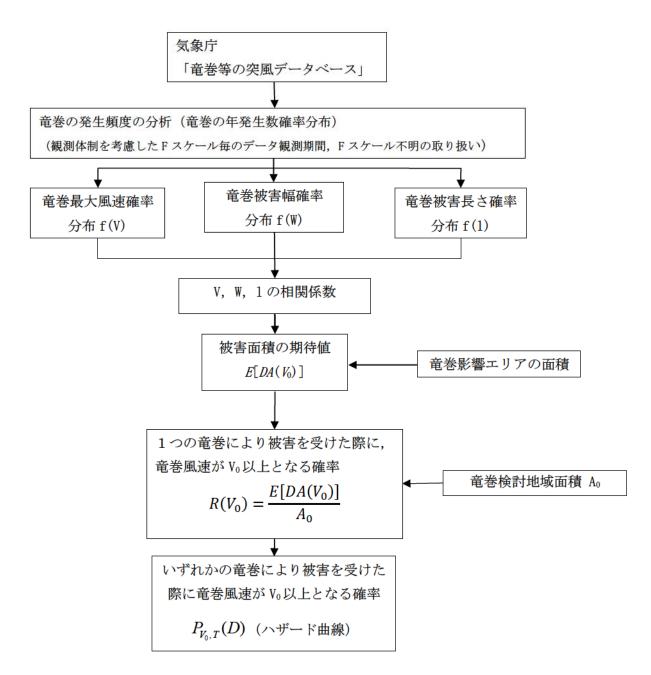


図 3.6 竜巻最大風速のハザード曲線算定フロー

竜巻最大風速のハザード曲線の算定に当たっては、竜巻検討地域(海岸線から陸側及び海側 それぞれ5km全域の範囲)で評価、及び竜巻検討地域を海岸線に沿って1km範囲ごとに細分化 した評価にて算定し、そのうち保守的な設定となるV_{B2}を設定する。 c.海岸線から陸側及び海側それぞれ5km全域の評価 海岸線から陸側及び海側それぞれ5km全域の評価条件を表3.6に示す。 情報の信頼性が高い陸上竜巻も発生数にカウントする。

表3.6 海側陸側それぞれ5kmの評価条件

	·····································			
項目	発生数	被害幅	被害長さ	
評価条件	陸上進入竜巻 [※] もカウント	全 <mark>幅</mark>	全長	

※:今回の検討において、陸上進入竜巻は観測されていない。

d. 竜巻の発生頻度の分析

気象庁「竜巻等の突風データベース」をもとに、1961年~2012年6月までの51.5年間の統計 量をFスケール別に算出した。なお、観測体制の変遷(図3.7参照)による観測データ品質の ばらつきを踏まえ、以下の①~③の基本的な考え方に基づいて整理した。分析結果に基づい て整理した竜巻の発生数を表3.8に示す。

- ①被害が小さくて見過ごされやすいF0及びFスケール不明竜巻に対しては、観測体制が強化 された2007年以降の年間発生数や標準偏差を採用
- ②被害が比較的軽微なF1竜巻に対しては、観測体制が整備された1991年以降の年間発生数 や標準偏差を採用
- ③被害が比較的大きく見逃されることがないと考えられるF2及びF3竜巻に対しては、観測 記録が整備された1961 年以降の全期間の年間発生数や標準偏差を採用
- また,Fスケール不明竜巻については,以下の取扱いを行うこととする。
- ・陸上で発生した竜巻(以下,陸上竜巻)及び海上で発生して陸上へ移動した竜巻につい ては,被害があって初めてそのFスケールが推定されるため,陸上竜巻のFスケール不明 竜巻は,被害が少ないF0竜巻と見なした。
- ・Fスケール不明の海上竜巻については、その竜巻のスケールを推定することは困難であることから、「海岸線から海上5kmの範囲における海上竜巻の発生特性が、海岸線から内陸5kmの範囲における陸上竜巻の発生特性と同様である」という仮定に基づいて各Fスケールに分類した。

その結果,Fスケール不明の海上竜巻の取扱いにより,表3.7のとおり観測実績に対して保 守性を高めた評価としている。

図 3.7 竜巻年別発生確認数(1961 年~2012 年(出典:気象庁 HP))

竜巻検討地域	発生数	1. 21.		竜巻スケ	ール		不	明	総数
(沿岸±5km)	の統計	小計	F0	F1	F2	F3	陸上	海上	含む不明
	期間内総数	90	30	47	13	0	3	113	206
1961~ 2012/6	平均値 (年)	1. 748	0.583	0. 913	0.252	0	0.058	2.194	4.000
(51.5年間)	標準偏差 (年)	2. 526	2.003	1. 020	0.522	0	0. 309	5.862	7.687
	期間内総数	60	30	27	3	0	3	112	175
1991~ 2012/6	平均値 (年)	2. 791	1.395	1.256	0.140	0	0.140	5.209	8.140
(21.5年間)	標準偏差 (年)	3. 467	2.956	1. 124	0.356	0	0. 473	8. 294	10.683
	期間内総数	32	26	6	0	0	0	93	125
2007~ 2012/6	平均値 (年)	5. <mark>8</mark> 18	4.727	1. 091	0.000	0	0	16.909	22.727
(5.5年間)	標準偏差 (年)	6. 087	4.814	1. 337	0.000	0	0	10. 661	14.700
	期間内総数	322	244	65	13	0	0	871	1193
疑似 51.5年間	平均値 (年)	6. 236	4.727	1.256	0.252	0	0	16.909	23.145
(陸上竜巻)	標準偏差 (年)	4. 970	4.814	1. 124	0.522	0	0	10. 661	11.762
	期間内総数	1195	905	241	49	0	0	0	1195
疑似 51.5年間	平均値 (年)	23. 102	17. 514	4.653	0.935	0	0	0	23.102
(全竜巻)	標準偏差 (年)	9. 567	9.265	2. 163	1.004	0	0	0	9. 567

表 3.7 竜巻発生数の分析結果

注1:切り上げの関係で総計数が一致していない箇所がある。

注2: 色塗り部分については、竜巻発生頻度の分析に用いるデータを示している。

Haz (c)	統計	F0	F1	F2	F3	F不明	小計
擬似 51.5年間	期間内総数	905	241	49	0	0	1195
51.5年间 (全竜巻)	平均值(年)	17. 573	4. 680	0.951	0	0	23. 204
(土电谷)	標準偏差(年)	9.265	2.163	1.004	0	0	9.567

表3.8 分析結果に基づいて整理した竜巻の発生数

(参考)ポリヤ分布の適用について(詳細は補足説明資料1, 1.4参考1)

- ・ガイドにて、V_{B2}算定の参考になるとされている東京工芸大学委託成果によれば、Wen and Chu が、竜巻に遭遇しかつ竜巻風速がある値以上となる確率モデルの推定法を提案し、竜巻の発 生がポアソン過程に従うと仮定した場合、竜巻の年発生数の確率分布はポアソン分布もしく はポリヤ分布に従うとしている。
- ・ポアソン分布は、生起確率が正確に分からないが稀な現象の場合に有用な分布である。一方、 ポリヤ分布は、発生状況が必ずしも独立でない稀現象(ある現象が生ずるのは稀であるが、 一旦ある現象が発生するとその周囲にもその現象が生じやすくなる性質)の場合に有用な分 布である(例えば伝染病の発生件数など)。台風や前線により竜巻が発生した場合、同時多 発的に複数の竜巻が発生する状況が考えられるため、ポリヤ分布の方が実現象をより反映で きると考えられる。
- ・なお、国内を対象とした竜巻の年発生数の分布の適合性に関する検討結果は、上述の東京工 芸大学委託成果に示されており、陸上竜巻及び海上竜巻の両方の発生数について、ポリヤ分 布の適合性がポアソン分布に比べて優れているとしている。
- ・今回,竜巻検討地域で発生した竜巻を対象に,発生数に関するポアソン分布及びポリヤ分布の適合性を検討した。その結果,竜巻検討地域においても、ポリヤ分布の適合性がポアソン分布に比べて優れていることを確認した。図3.8に竜巻検討地域における竜巻の年発生数の累積頻度を示す。
- ・以上より、ハザード曲線の評価に当たって使用する竜巻年発生数の確率密度分布は、ポリヤ 分布を採用した。

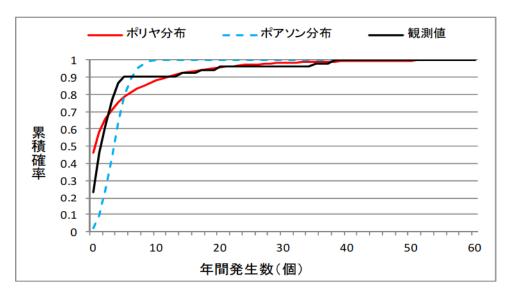


図3.8 竜巻検討地域における竜巻の年発生数の累積頻度

e. 竜巻風速, 被害幅, 被害長さの確率分布及び相関係数

竜巻検討地域における51.5年間の竜巻の発生数,被害幅,被害長さを基に確率密度分布については、ガイド並びにガイドが参考としている東京工芸大学委託成果を参照し、対数正規 分布に従うものとした。

なお、竜巻風速については、観測値であるFスケールの超過確率に適合させるため、表3.9 に記載のFスケールの各区分の中央値により竜巻風速の対数正規分布を算出している。

また,疑似的な竜巻の作成に伴う被害幅・長さの情報がない竜巻には,被害幅・長さを有 する竜巻の観測値を与えている。その際は,被害幅・長さが大きい方から優先的に用いるこ とで,被害幅・長さの平均値が大きくなるように工夫しているとともに,被害幅・長さ0のデ ータについては計算に用いておらず,保守的な評価を行っている。

このように、前述のFスケール不明竜巻の取扱い等も含め、データについては保守的な評価 となる取扱いを行っている。

表3.9に竜巻検討地域における竜巻パラメータ(51.5年間の推定結果)を,表3.10に竜巻風 速,被害幅,被害長さの相関係数を,図3.9~図3.14に風速,被害幅,被害長さの確率密度分 布及び超過確率を示す。

	バラメータ 統計量	수 여러운 사람			竜巻スケール			
	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	枕計重	小計	F0	F1	F2	F3	
초 ₩ ₩ ₩ 태		期間内総数	1195	905	241	49	0	
竜巻検討地域 (沿岸±5km)	発生数	平均値(年)	23.204	17.573	4.680	0.951	0	
		標準偏差(年)	9.567	9.265	2.163	1.004	0	
疑似	被害幅	期間内総数	1195	905	241	49	0	
		平均值 (m)	117.7	116.2	113.5	167.1	0	
51.5年間 (全竜巻)		標準偏差 (m)	130.8	121.5	103.1	303.4	0	
(主电苍)		期間内総数	1195	905	241	49	0	
	被害長	平均值 (km)	1.572	1.084	3.156	2.812	0	
		標準偏差 (km)	2.680	1.427	4.741	3.043	0	

表3.9 竜巻検討地域における竜巻パラメータ(51.5年間の推定結果)

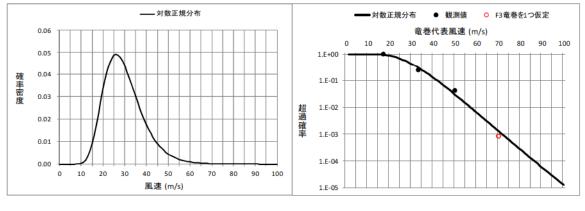
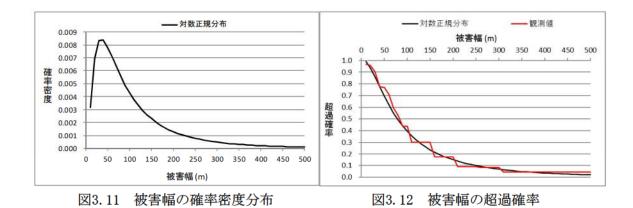




図3.9 風速の確率密度分布

図3.10 風速の超過確率



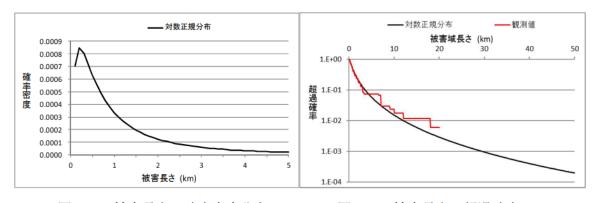



図3.13 被害長さの確率密度分布

図3.14 被害長さの超過確率

相関係数(対数)	風速(m/s)	被害幅(m)	被害長さ(m)
風速(m/s)	1.000	0	0.301
被害幅(m)	2-2	1.000	0. 458
被害長さ(m)	_	·	1.000

表3.10 竜巻風速,被害幅,被害長さの相関係数※

※:観測データのみを用いて算定

なお、竜巻検討地域における風速と被害幅の相関係数は-0.057と弱い負の相関を示していた。風速が大きくなるほど被害幅が小さくなる負の相関をそのまま使用することは非保守的 との判断から、検定を行い、無相関であることが否定されないことを確認した後、相関係数 を0と置いた。

f. 竜巻影響エリアの設定

竜巻影響エリアは,泊発電所3号炉の評価対象施設の面積(表3.11)及び設置位置を考慮 して,図3.15に示すとおり評価対象施設を包絡するエリア(直径425m,面積約142,000m²)と して設定する。なお,竜巻影響エリアを円形とするため,竜巻の移動方向には依存性は生じ ない。

評価対象施設	設置面積(m ² )
原子炉建屋 (R/B)	4, 889
原子炉補助建屋(A/B)	3, 689
ディーゼル発電機建屋 (DG/B)	493
タービン建屋 (T/B)	5, 225
電気建屋 (EL/B)	1, 214
出入管理建屋(AC/B)	1,603
循環水ポンプ建屋 (CWP/B)	2,748
合 計	19, 861

表3.11 評価対象施設の面積

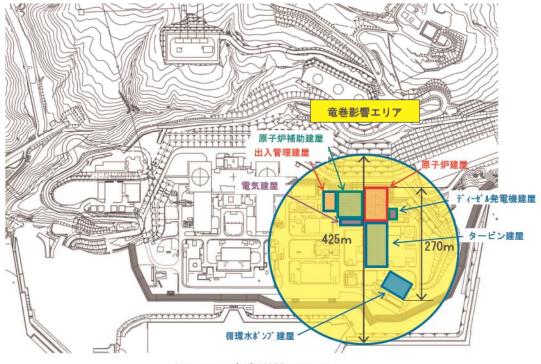



図3.15 竜巻影響エリア

g. ハザード曲線の算定

以下に示す式により、T年以内にいずれかの竜巻に遭遇し、かつ竜巻風速がV₀以上となる確 率を求め、ハザード曲線を求める。海岸線から陸側及び海側それぞれ5km全域を対象に算定し たハザード曲線より、年超過確率10⁻⁵における風速を求めると、58.7m/sとなるため、小数 点を切り上げ、59m/sとした。

図3.16に竜巻検討地域における竜巻最大風速のハザード曲線を示す。

T年以内にいずれかの竜巻に遭遇し、かつ竜巻風速がVo以上となる確率

$$\begin{split} P_{V_0,T}(D) &= 1 - \left[ 1 + \beta v R(V_0) T \right]^{-1/\beta} \\ \beta &= \left( \frac{\sigma^2}{v} - 1 \right) \times \frac{1}{v} \qquad :$$
 竜巻の年発生数の平均値と標準偏差で表されるパラメータ  $R(V_0) &= \frac{E \left[ DA(V_0) \right]}{A_0} \qquad :$  評価対象構造物が 1 つの竜巻に遭遇し、竜巻風速 が V_0以上となる確率  $E \left[ DA(V_0) \right] &= \int_{0}^{\infty} \int_{0}^{\infty} \int_{V_0}^{\infty} W(V_0) l f(V, w, l) dV dw dl \qquad :$  被害面積の期待値  $+ L \int_{0}^{\infty} \int_{V_0}^{\infty} l f(V, l) dV dl + L \int_{0}^{\infty} \int_{0}^{\infty} W(V_0) f(V, w) dV dw + S \int_{V_0}^{\infty} f(V) dV \\ W(V_0) &= \left( \frac{V_{\min}}{V_0} \right)^{1/16} w \end{split}$ 

v: 竜巻の年平均発生数
T: 年数
σ: 竜巻の年発生数の標準偏差
E[·]:期待値
DA(V₀): 1つの竜巻により被害を受け竜巻風速がV₀以上となる面積
V:風速,W:被害幅,0:被害長さ
f(·):確率密度分布
L:円形構造物の直径,S:円形構造物の面積
W(V₀): 竜巻の被害幅のうち風速がV₀以上となる部分の幅

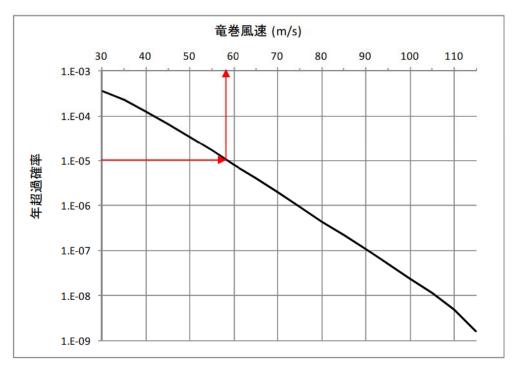



図3.16 竜巻最大風速のハザード曲線

h. 1km範囲ごとに細分化した評価

1km範囲ごとの評価は、1km幅は変えずに順次ずらして移動するケース(短冊ケース)を設定して評価した。その条件を表3.12に示す。

面積	<ul> <li>・竜巻検討地域の内,海側,陸側それぞれ5km範囲内を1kmの範囲に分けて検討を行う。</li> <li>・但し,海側1km以遠の海上竜巻については、全てFスケールが不明であるため、ハザード曲線の算定は不可能。</li> </ul>
竜巻発生数	<ul> <li>・各1km範囲で発生した竜巻</li> <li>・各1km範囲からの進入竜巻</li> <li>・5km以遠からの進入竜巻</li> <li>・5km範囲内での評価と同様に年代による竜巻発生数の違いを考慮して51.5年間の擬似 データを作成する(Fスケール不明上陸竜巻はF0とする。)</li> </ul>
竜巻風速,被害幅,被害長さ	(竜巻被害面積期待値)・1kmエリア内での風速,被害幅,被害長さ (相関係数)・5km範囲内での評価で用いたものと同じ
その他	・他はガイドに従い算定

表3.12 1km範囲の解析条件

上記解析条件に基づいて,海岸線から陸側及び海側それぞれ5km全域の評価と同様の方法で 算定したハザード曲線より,年超過確率10⁻⁵における風速を求めると,海側0~1kmを対象と した場合の64.4m/sが最大となるため,小数点を切り上げ,65m/sとした。図3.17に竜巻検討 地域における1km範囲ごとの竜巻最大風速のハザード曲線を示す。

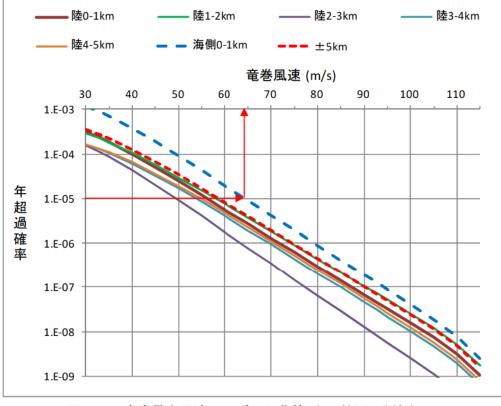



図3.17 竜巻最大風速のハザード曲線(1km範囲の評価)

6条(竜巻)-別添1-27

i. 竜巻最大風速のハザード曲線による最大風速 (V_{B2})

海側及び陸側それぞれ5km全域の評価と、1km範囲ごとの評価を比較して、竜巻最大風速の ハザード曲線により設定する最大風速V_{B2}は、65m/sとする。表3.13及び図3.18に竜巻の最大風 速の算定結果を示す。

ハザード曲線算定範囲	年超過確率10 ⁻⁵ 風速	
海側・陸側5km範囲	59m/s	
1km範囲毎	65m/s	

表3.13 竜巻の最大風速の算定結果

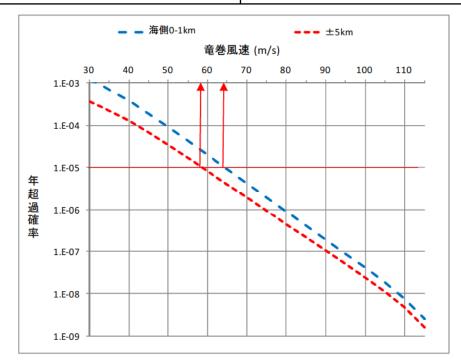



図3.18 竜巻最大風速のハザード曲線(5km範囲と1km範囲の評価の比較)

なお、年超過確率10⁻⁵の根拠については、ガイドを参考とするとともに、設計基準事故の 発生頻度が10⁻³/年~10⁻⁴/年^{*1}であることから、設計基準として考慮する竜巻の最大風速 は10⁻⁴/年に設定することが妥当であると考える。ただし、データ数が十分でないことを踏 まえ保守的に10⁻⁴より1桁下げて、竜巻最大風速のハザード曲線による最大風速の年超過確 率は10⁻⁵とする。

※1:発電用軽水型原子炉施設に係る新安全基準骨子案に対する意見募集の結果について (平成25年4月3日原子力規制庁技術基盤課) j. 基準竜巻の最大風速(V_B)

以上より算定した竜巻の最大風速を表3.14及び図3.19に示す。基準竜巻の最大風速V_Bは, V_{B1}とV_{B2}のうち大きな風速とすることから, 泊発電所における基準竜巻の最大風速V_Bは92m/s とする。

なお、VBの年超過確率は1.4×10⁻⁷となる。

竜巻最大風速のハザード曲線による最大風速(V_{B2})

 表3.14
 竜巻の最大風速の算定結果

 ・

 ・

 過去に発生した竜巻による最大風速(V_{B1})

 92m/s

65m/s

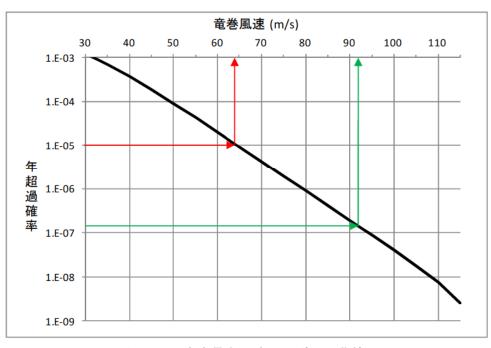



図3.19 竜巻最大風速のハザード曲線

- k. 竜巻データの更新に関する対応
  - (a)評価時点以降のデータ更新分について

上記の基準竜巻の検討には、検討実施時点で最新であった 1961 年 1 月~2012 年 6 月ま での気象庁竜巻データベースを用いているが、その後、気象庁により継続的にデータベー スが更新されている^{*1}。本状況においても、以下の理由より、最新データを参照した場 合でも基準竜巻の最大風速は上記の評価結果を上回るものではなく、現時点での見直しは 不要と判断している。

・2012 年 6 月以降, 現時点での V_{B1} の風速 92m/s を超える竜巻の報告はない。

・2012 年 6 月以降, 竜巻検討地域で観測された竜巻はF0若しくはF1相当のものが

6条(竜巻)-別添1-29

ほとんどであり, 竜巻強度の分布はハザードを下げる方向に変化していると考えられるため, 現時点での V_{B2} が更新されることはない。

- ※1 : 2021 年 9 月末時点で,2016 年 3 月までのデータ及び 2016 年 4 月以降の速報デ ータが掲載されている。
- (b) 将来の気候変動について

将来的な気候変動として予測される地球温暖化により竜巻の規模や発生数が増加する 可能性も否定できない。

しかしながら,将来的な気候変動を完全に予測することは難しいため,最新のデータ, 知見をもって気候変動の影響に注視し,竜巻検討地域や基準竜巻の最大風速は,必要に応 じ見直しを実施していくものとする。 (4) 設計竜巻の最大風速(V_D)の設定

発電所のサイト特性(地形効果や竜巻の移動方向)を考慮してV_Bの割り増しを検討し,設 計竜巻の最大風速を設定する。

a. 地形効果による竜巻の増幅の可能性

泊発電所敷地の形状は、おおむね半円状であり、敷地前面(北西〜南西方向)は日本 海に面し、背後は積丹半島中央部の山嶺に続く標高 40m から 130m の丘陵地である。泊発 電所周辺の地形図を図 3.20 に示す。

竜巻の渦は地表面粗度の影響を受けやすい。内陸・山岳部での竜巻発生数が海岸線付 近に比べて少ないのは、この影響によるところが大きいと考えられる。

力学的な知見からは、風洞を用いた竜巻状流れ場の可視化実験(松井・田村2005)等 において、旋回流のパラメータの一つであるスワール比に応じて、地表面粗度が旋回流 速度の低下に影響を与えることが分かっている。

最近の知見として、ラージ・エディー・シミュレーション(LES)による非定常乱 流解析(例えば,Lewellen,D.C., and W.S.Lewellen 2007)で得られたスワール比 に依存した竜巻の渦構造に関する知見が妥当であることが実際の竜巻近くで行った観測 結果から示唆されている(Karstens et al.2010)。

したがって、竜巻が地表面粗度の大きい丘陵地を越えてくることは考えにくい。

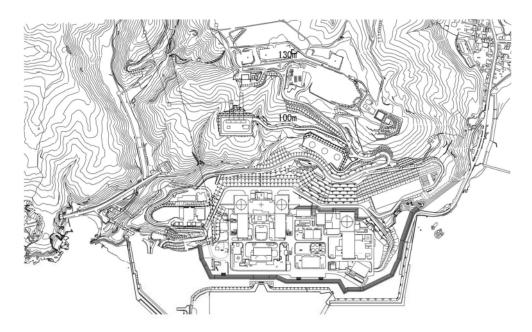



図 3.20 泊発電所周辺地形図

b. 地形効果による竜巻増幅に関する知見 これまでの地形効果による竜巻増幅に関する知見等を収集し, 泊発電所が立地する地

6条(竜巻)-別添1-31

域の周辺地形による竜巻の増幅の可能性について検討を行う。

主な知見として, Fujita(1989)やForbes(1998)の被害調査に関する文献に,下り斜面において竜巻の強さが増す傾向が見られたという報告がある。

この他にも、上りの斜面で増幅するという知見も存在しており、現時点で、地形効果 による竜巻増幅を十分に評価できるだけの信頼性を有する知見は存在しない。

今後も継続的に新たな知見等の収集に取組み,必要な事項については適切に反映を行 う。

c. 泊発電所の竜巻検討地域における竜巻の移動方向

泊発電所の竜巻検討地域における過去の発生竜巻について,移動方向の傾向を整理した。

観測されている発生竜巻の実績は全 206 個であり,そのうち 143 個の竜巻について移動方向が判明しており,これらを整理した結果を図 3.21 に示す。

143 個の発生竜巻のうち,東側方向に向けて移動する竜巻が大半を占めており,北東 ~南東までの範囲に 121 個が集中している。これは全個数のおよそ 85%である。

特に, 泊発電所が位置する北海道後志支庁沿岸部の発生竜巻については, 全て東側(北 東〜南東までの範囲) 方向への移動が確認されている。

以上より、泊発電所付近の竜巻は、海上から陸側へ向かう方向が卓越している。

er 10	[個]
北	9
北北東	3
北東	28
東北東	17
東	52
東南東	16
南東	8
南南東	2
南	3
南南西	1
南西	0
西南西	0
西	2
西北西	2
北西	0
北北西	0
計	143

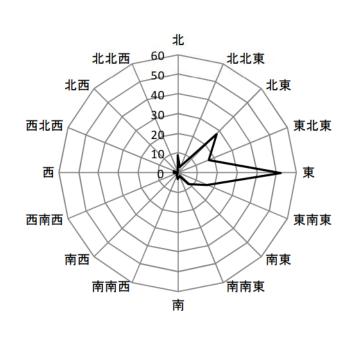



図 3.21 移動方向別の竜巻発生個数

d. 設計竜巻の最大風速

泊発電所では竜巻は地形が平坦な海側から発電所敷地に進入してくる可能性が高く, 発電所を含む敷地も平坦なため、地形効果による竜巻風速の増幅を考慮する必要はない と考えられることから、基準竜巻の最大風速に対する割り増しは行わず、設計竜巻の最 大風速V_Dは 92m/s とする。

なお,設計竜巻については,今後も継続的に観測データや地形効果による竜巻風速の 増幅に関する新たな知見等の収集に取り組み,必要な事項については適切に反映を行う。

(5) 評価に用いる設計竜巻の設定

設計竜巻の特性値は、原則として十分な信頼性を有した観測記録等に基づいて設定する必要があるが、現状では設定に足る十分な信頼性を有した観測記録等が無いため、評価ガイド に示される方法に基づいて設定する。具体的には、ランキン渦モデルを仮定し、①~⑤に従 い設定する。設定した特性値を表 3.15 に示す。 なお、竜巻影響評価にあたっては、竜巻の観測数のデータ数が少ないこと、観測体制の変 遷により観測データの品質が一貫していないこと、また竜巻の直接的な観測が現状困難であ るため竜巻後の被害状況を調査・分析して観測結果としていることや観測の内容(Fスケー ル、被害長さ、被害幅、移動方向)が部分的に揃っていないという不確実性があることから、 保守性を十分に確保するため、設計竜巻の最大風速( $V_D$ )は $V_D$ =92m/sを安全側に数字を 切り上げて、 $V_D$ =100m/sの竜巻の特性値に基づく設計荷重に対して、竜巻防護施設が安全 機能を損なわない設計とする。なお、 $V_D$ =100m/sの年超過確率はハザード曲線より4.1×10 -8に相当する。

①設計竜巻の移動速度(V_T)

V_T=0.15・V_D ここで, V_D(m/s) : 設計竜巻の最大風速

② 設計竜巻の最大接線風速(V_{Rm})

V_{Rm}= V_D-V_T
 ここで、V_D(m/s) : 設計竜巻の最大風速、V_T(m/s) : 設計竜巻の移動速度

③設計竜巻の最大接線風速が生じる位置での半径(R_m)

 $R_m = 30 (m)$ 

④設計竜巻の最大気圧低下量(Δ Pmax)

 $\Delta P_{max} = \rho \cdot V_{Rm}^{2}$ ここで、 $\rho$ :空気密度 (1.22 (kg/m³))、 $V_{Rm}$  (m/s):設計竜巻の最大接線風速

⑤設計竜巻の最大気圧低下率((dp/dt)max)

 $(dp/dt)_{max} = (V_T/R_m) \cdot \Delta P_{max}$ 

ここで、V_T(m/s):設計竜巻の移動速度、R_m(m/s):設計竜巻の最大接線風速半径

最大風速	移動風速	最大接線風速	最大接線 風速半径	最大気圧低下量	最大気圧低下率
V _D	V _T	V _{Rm}	R _m	$\Delta P_{max}$	$(dp/dt)_{max}$
(m/s)	(m/s)	(m/s)	(m)	(hPa)	(hPa/s)
100	15	85	30	89	45

表 3.15 設計竜巻の特性値(V_D=100m/s)

- 4. 竜巻影響評価
  - (1) 概要
    - 評価の概要は以下のとおりとする。
    - ①設計竜巻及び設計荷重(設計竜巻荷重及びその他の組み合わせ荷重を適切に組み合わせた荷重)の設定
    - ②泊発電所における飛来物に係る調査
    - ③飛来物発生防止対策
    - ④飛来物に対する竜巻防護施設の防護対策
    - ⑤考慮すべき設計荷重に対する評価対象施設の構造健全性等の評価を行い,必要に応じ て対策を行うことで竜巻防護施設の安全機能が維持されることを確認
  - (2) 評価対象施設

「2.(1)評価対象施設」に示したとおりとする。

- (3) 設計荷重の設定
  - a. 設計竜巻荷重の設定 設計竜巻の最大風速V_D等に基づき,「風圧力」,「気圧差による圧力」及び「飛来物の衝撃 荷重」について,以下のとおり設定する。
  - (a) 設計竜巻による風圧力の設定

設計竜巻の水平方向の最大風速によって評価対象施設(屋根を含む)に作用する風圧力 (P_D)すなわち風圧力による荷重(W_w)は、「建築基準法施行令」及び「日本建築学会 建築物荷重指針・同解説(2004)」に準拠して、下式により算定する。

なお,ガスト影響係数(G)はG=1.0,風力係数(C)は施設の形状や風圧が作用する 部位(屋根,壁等)に応じて設定する。

 $W_W (= P_D) = q \cdot G \cdot C \cdot A$ 

ここで,

- q : 設計用速度圧 (=  $(1/2) \cdot \rho \cdot V_D^2$ )
- G : ガスト影響係数 (=1.0)
- C : 風力係数
- A :施設の受圧面積
- ρ : 空気密度
- V_D:設計竜巻の最大風速

(b) 設計竜巻による鉛直方向の風圧力

建屋の庇部や屋根スラブについて、鉛直方向の風圧力の影響を受けると考える。

庇については,評価対象施設のうち, 竜巻防護施設の外殻として機能する部分には存在 しない。

屋根スラブについては,鉄筋コンクリート造であることから,鉄筋コンクリート造につ いて,鉛直方向の風圧力に対する健全性の確認を行う。

設備については、評価対象としている屋外設備には庇状の形状はないため、鉛直方向の 風圧力に対して特に脆弱と考えられる部位はないことから、鉛直方向の最大風速等に基づ いて算定した鉛直方向の風圧力の考慮は行わない。

(c)設計竜巻における気圧低下によって生じる評価対象施設内外の気圧差による圧力の設定 評価対象施設内外の気圧差による圧力は、最大気圧低下量(Δ Pmax)に基づき設定する。

①建屋・構築物等

建屋については、気圧差による圧力荷重が最も大きくなる「閉じた施設」を想定し、 内外気圧差による圧力荷重( $W_P$ )を以下の式により設定する。

 $W_{P} = \Delta P_{max} \cdot A$ 

ここで,

Δ P_{max} :最大気圧低下量

A:施設の受圧面積

竜巻防護施設を内包する建屋・構築物等について,建屋壁,屋根等の影響評価を実施 し、当該施設が破損した場合には安全機能維持への影響について確認を行う。

②設備(系統,機器)

設備についても、上記と同様に圧力荷重(W_P)を設定する。なお、外気と隔離されて いる区画の境界部等気圧差による圧力影響を受ける設備について、圧力影響により作用 する応力が許容値内であるか確認し、許容値を上回る場合には設備が破損した場合の安 全機能維持への影響について確認を行う。

(d) 設計竜巻による飛来物が評価対象施設に衝突する際の衝撃荷重の設定

①泊発電所における飛来物に係る現地調査結果及び設計飛来物の妥当性について 竜巻影響評価における設計飛来物については、泊発電所における飛来物に係る現地調 査結果と、評価ガイドの解説表 4.1 に示されている設計飛来物の設定例を参照し設定し ている。以下に、泊発電所にて実施(平成25年6月24~25日,平成27年7月~11月) した飛来物の現地調査の結果と、その結果を元に抽出した設計飛来物の妥当性を示す。

イ. 評価に用いる設計竜巻の特性

評価に用いる竜巻の最大風速は、100m/sとする。(表 3.14 参照)

ロ. 飛来物に対する考え方

飛来物のうち,後述する設計飛来物に選定した鋼製材より運動エネルギー又は貫 通力が大きなもの(コンテナ等)については,固縛等を行うことで飛散させないも のとする。また,衝突時に防護施設に与えるエネルギーが鋼製材の運動エネルギー より小さいものについては,適切な飛散防止対策を行う。

ハ. 設計飛来物の選定

上記の考え方に基づき, 泊発電所の飛来物になりえる物品の調査を行い, 設計飛 来物の選定を行った。

飛来物に係る調査の結果, 泊発電所において飛来物となる可能性があるものから, 浮き上がりの有無, 運動エネルギー及び貫通力の大きさから鋼製材を設計飛来物と して抽出した。選定した鋼製材のサイズ, 質量については, 評価ガイドを参考にし て設定した。

さらに、後述する竜巻防護対策として設置する防護ネットをすり抜ける飛来物と して砂利を選定した。なお、砂利のサイズはネットの網目のサイズ(5cm)を考慮し て設定した。また、防護ネットは通過しないが使用済燃料ピット及び新燃料貯蔵庫 に侵入した場合に燃料集合体に直接落下するものとして、鋼製パイプを選定した。

図4.1に泊発電所における設計飛来物の選定フロー,表4.1に抽出された泊発電所 における設計飛来物を示す。

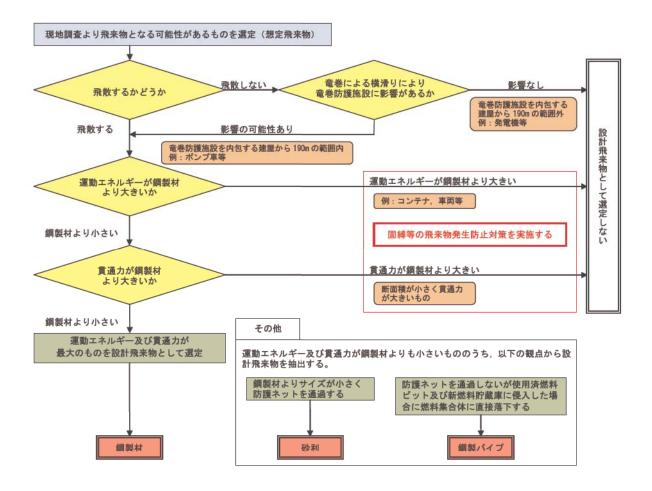



図 4.1 設計飛来物選定フロー

表 4.1 泊発電所における設計飛来物

飛来物の種類	砂利	鋼製パイプ	鋼製材
サイズ (m)	長さ×幅×奥行 0.04×0.04×0.04	長さ×直径 2×0.05	長さ×幅×奥行 4.2×0.3×0.2
質量(kg)	0.17	8.4	135

②設計飛来物の速度の設定

設計竜巻による設計飛来物の最大水平速度及び最大鉛直速度は、衝撃荷重による影響 を保守的に評価するため、評価ガイドに示される竜巻の最大風速V_D=100m/s の場合と 同じ値とする。なお、評価ガイドにおける鋼製材の最大水平速度及び最大鉛直速度につ いては、平成26年9月17日に改正(最大水平速度が57m/sから51m/sに、最大鉛直速 度が38m/sから34m/sに改正)されているが、竜巻防護設計に当たっては、より保守的 な改正前の値を用いるものとし、表4.2のとおりとする。

6条(竜巻)-別添1-38

ただし、ガイドに記載のない設計飛来物である砂利の速度については、文献*を参考に して、ランキン渦を仮定し風速場の中での速度を算出した。

飛来物の種類	砂利	鋼製パイプ	鋼製材
サイズ (m)	長さ×幅×奥行 0.04×0.04×0.04	長さ×直径 2×0.05	長さ×幅×奥行 4.2×0.3×0.2
質量 (kg)	0.17	8.4	135
最大水平速度(m/s)	62	49	57
最大鉛直速度(m/s)	42	33	38

表 4.2 設計飛来物及び最大速度

※: 竜巻による原子力施設への影響に関する調査研究(東京工芸大学)

E. Simiu and M. Cordes, NBSIR76-1050. Tornado-Borne Missile Speeds, 1976

③設計竜巻荷重の組み合わせ

評価対象施設の評価に用いる設計竜巻荷重は,設計竜巻による風圧力による荷重(Ww), 気圧差による荷重(W_P)及び設計飛来物による衝撃荷重(W_M)を組み合わせた複合荷 重とし、下式により算定する。

 $W_{T1} = W_P$  $W_{T2} = W_W + 0.5 \cdot W_P + W_M$ 

ここで,

WT1, WT2:設計竜巻による複合荷重

Ww:設計竜巻の風圧力による荷重

W_P:設計竜巻による気圧差による荷重

W_M:設計飛来物による衝撃荷重

なお,評価対象施設にはWT1及びWT2の両荷重をそれぞれ作用させる。

- b. 設計竜巻荷重と組み合わせる荷重の設定 設計竜巻荷重と組み合わせる荷重は以下のとおりとする。
- (a)評価対象施設に常時作用する荷重,運転時荷重等
   評価対象施設に常時作用する荷重,運転時荷重を適切に組み合わせる。(補足説明資料1 3参照)

(b) 竜巻以外の自然現象による荷重

竜巻は積乱雲や積雲に伴って発生する現象であり^{*},積乱雲の発達時に竜巻と同時に発生 する可能性がある自然現象は雷,雪,雹及び大雨である。これらの自然現象の組合せによ り発生する荷重は,以下のとおり設計竜巻荷重に包絡される。

なお, 竜巻と同時に発生する自然現象については, 今後も継続的に新たな知見等の収集 に取り組み, 必要な事項については適切に反映を行う。

①雷

竜巻と雷が同時に発生する場合においても、雷によるプラントへの影響は、雷撃で あるため雷による荷重は発生しない。

②雪

泊発電所が立地する地域においては、冬期、竜巻が襲来する場合は竜巻通過前後に 降雪を伴う可能性はあるが、上昇流の竜巻本体周辺では、竜巻通過時に雪は降らない。 また、下降流の竜巻通過時や竜巻通過前に積もった雪の大部分は竜巻の風により吹き 飛ばされるため、雪による荷重は十分小さく設計竜巻荷重に包絡される。

3雹

電は積乱雲から降る直径 5mm 以上の氷の粒であり, 仮に直径 10cm 程度の大型の雹を 想定した場合でも, その重量は約 0.5kg である。

竜巻と雹が同時に発生する場合においても、10cm 程度の雹の終端速度は 59m/s,運動エネルギは約 0.9kJ であり、設計飛来物の運動エネルギと比べて十分小さく、雹の衝突による荷重は設計竜巻荷重に包絡される。

④大雨

竜巻と大雨が同時に発生する場合においても、雨水により屋外施設に荷重の影響を 与えることは無く、また降雨による荷重は十分小さいため、設計竜巻荷重に包絡され る。

(c)設計基準事故時荷重

設計竜巻は設計基準事故の起因とはならない設計とするため、設計竜巻と設計基準事故 は独立事象となる。また、設計竜巻と設計基準事故が同時に発生する頻度は十分小さいこ とから、設計基準事故時荷重との組み合わせは考慮していない。

仮に,風速が低く発生頻度が高い竜巻と設計基準事故が同時に発生する場合,評価対象 施設のうち設計基準事故時荷重が生じる設備としては,動的機器である原子炉補機冷却海 水ポンプが考えられるが,設計基準事故時においても海水ポンプの圧力,温度が変わらず, 機械的荷重が変化することはないため,設計基準事故により考慮すべき荷重はなく,竜巻 と設計基準事故時荷重の組合せは考慮しない。(補足説明資料15参照)

※: 雷雨とメソ気象 大野久雄, 東京堂出版

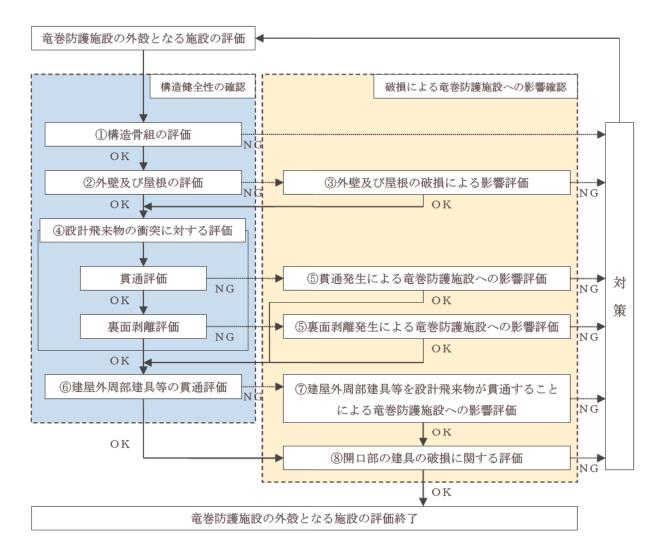
- (4) 施設の構造健全性の確認
- a. 概要

設計竜巻荷重及びその他組み合わせ荷重を適切に組み合わせた設計荷重に対して,評価 対象施設,あるいはその特定の区画の構造健全性が維持されて安全機能が維持されること を確認する。

- b. 竜巻防護施設の外殻となる施設の構造健全性の確認結果
- (a) 概要

竜巻防護施設の外殻となる施設に求められる機能は,防護機能及び破損により竜巻防護 施設へ影響を与えないことである。

防護機能については、竜巻防護施設の外殻となる施設の構造健全性を確認することにより、内包する竜巻防護施設が影響を受けないことを確認する。構造健全性の確認は、複合 荷重(W_{T1}, W_{T2})に対する建屋の構造骨組、部位の評価及び設計飛来物の衝突による貫 通・裏面剥離評価を行う。


外壁や屋根など竜巻防護施設の外殻となる施設の各部に破損が生じる場合は,破損によ り竜巻防護施設へ影響を与えないことを確認する。

竜巻防護施設への影響がある場合は、竜巻防護対策を実施する。

竜巻防護施設の外殻となる施設の概略配置図を図 4.2 に示す。また,評価フローを図 4.3 に,評価に関する対象荷重及び評価内容を表 4.3 に示す。



図 4.2 竜巻防護施設の外殻となる施設の概略配置図



※: A1, A2-燃料油貯油槽タンク室, B1, B2-燃料油貯油槽タンク室, 取水ピットポンプ室及びストレーナ室につい ては,地中構造物であることから,「④設計飛来物の衝突に対する評価」及び「⑥建屋外周部建具等の貫通評 価」のみ実施。

図 4.3 竜巻防護施設の外殻となる施設の評価フロー

## 表4.3 竜巻防護施設の外殻となる施設の構造健全性の評価方法(1/2)

$\setminus$	新年百日		井 舌	評価	内容
$  \setminus$	評価項目	対象部位	荷重	評価対象	評価基準値
1	推進の初辺に	鉄筋コンクリート造	W W	せん断ひずみ	2.0×10 ⁻³ 以下 ^{**1}
	構造骨組の評価	鉄骨造	$W_{T1}, W_{T2}$	層間変形角	1/120 以下**2
			$W_{T1}, W_{T2}$	発生応力,ひずみ	許容限界以下
2	② 外壁及び屋根の評価 外壁及び屋根		W _{T1} , W _{T2} ^{*3}	発生応力	終局耐力以下
	設計飛来物の				貫通限界厚さ
4			設計飛来物 ^{※4}	部材厚さ	裏面剥離限界厚さ
	衝突に対する評価	外壁(波板)	の衝突	貫通するものとし, を実施	破損による影響評価
6	建屋外周部建具等の 貫通評価	扉,シャッター等 ^{**5}	設計飛来物 ^{**4} の衝突	建具等の厚さ	貫通限界厚さ

※1:原子力発電所耐震設計技術指針(JEAG4601-1987)に示されている,鉄筋コンクリート耐震壁のせん断ひず みに関する許容限界の目安値

※2:建築基準法施行令第82条の2に示されている、当該層間変位の当該各階の高さに対する割合の許容限界値

※3:衝撃荷重W_Mと逆向きの荷重に対し検討を実施するため、設計飛来物による衝撃荷重W_Mは考慮しない

※4:設計飛来物のうち鋼製材

※5:扉,シャッター,ブローアウトパネル, A1, A2-ディーゼル発電機燃料油貯油槽及び B1, B2-ディーゼル発電 機燃料油貯油槽のプロテクター蓋

## 表4.3 竜巻防護施設の外殻となる施設の構造健全性の評価方法(2/2)

$\square$	評価項目	評価内容
3	外壁及び屋根の破損による影響評価	破損により建屋内の竜巻防護施設に影響を及ぼさ ないことを確認
	貫通発生による竜巻防護施設への影響評価	貫通した飛散物及び飛散コンクリートが竜巻防護 施設に衝突しないことを確認
5   裏面剥離(	裏面剥離による竜巻防護施設への影響評価	飛散コンクリートが竜巻防護施設に衝突しないこと, 衝突したとしても竜巻防護施設に影響がないことを確認
7	建屋外周部建具等を設計飛来物が貫通することに よる竜巻防護施設への影響評価	貫通した飛散物が竜巻防護施設に衝突しないこと を確認
8	開口部の建具の破損に関する評価	建屋内開口部周辺の竜巻防護施設の有無により,開 口部の建具が破損したとしても建屋内の竜巻防護 施設に影響を及ぼさないことを確認

- (b) 構造骨組の評価
  - イ.評価方針

鉄筋コンクリート造部分については、複合荷重により耐震壁に発生するせん断ひずみ を、地震応答解析モデルにおける各部材のせん断力の復元力特性(Q-γ関係)により 算定し、鉄筋コンクリート造耐震壁の最大応答せん断ひずみの評価基準値(2.0×10⁻³) を下回ることを確認する。

鉄骨造部分については、複合荷重により発生する層間変形角を、地震応答解析モデル における各部材の荷重変形関係(Q-δ関係)から得られる水平変位より算定し、評価 基準値(1/120)を下回ることを確認する。

D. 評価結果

鉄筋コンクリート造部分については、表 4.4 に示すとおり、複合荷重により耐震壁に 発生するせん断ひずみが評価基準値を下回ることを確認した。評価結果は、各建屋につ いて、最も応答せん断ひずみが大きくなった部材について示している。なお、評価結果 には、各部材に作用するせん断力と各部材の終局耐力との比較による裕度を併記する。

鉄骨造部分については,表4.5に示すとおり,複合荷重により発生する層間変形角が 評価基準値を下回ることを確認した。評価結果は,最も層間変形角が大きくなった部材 について示している。なお,評価結果には,各部材に作用するせん断力と各部材の終局 耐力との比較による裕度を併記する。

表 4.4 竜巻防護施設の外殻となる施設のうち鉄筋コンクリート造部分の 構造骨組の健全性評価結果

建屋	位置 (T.P.)	荷重**	複合荷重	せん断ひずみ	裕度
原子炉建屋(外部遮へい建屋)	41.0~47.6m	$W_{T2}$	16, 149kN	2. 28×10 ⁻⁵	25.3
原子炉建屋(燃料取扱棟・周辺補機棟) (NS方向)	41.0~47.6m	W _{T2}	12, 552kN	2. 45×10 ⁻⁵	22.7
原子炉補助建屋 (EW方向)	38. 1∼42. 2m	W _{T2}	4, 847kN	3. 16×10 ⁻⁵	16.7
ディーゼル発電機建屋 (NS方向)	10.3~18.8m	$W_{T2}$	5, 096kN	5. 21×10 ⁻⁵	11.0

※:W₁及びW₁を算出し、大きい荷重にて評価を実施

表4.5 竜巻防護施設の外殻となる施設のうち鉄骨造部分の構造骨組の健全性評価結果

建屋	位置 (T.P.)	荷重**	複合荷重	層間変形角	裕度
原子炉建屋(燃料取扱棟) (NS方向)	47.6∼55.0m	$W_{T2}$	6, 170kN	1/694	6. 7

※:W_{T1}及びW_{T2}を算出し、大きい荷重にて評価を実施

(c) 外壁及び屋根の評価

(c-1) 複合荷重(WT1, WT2) に対する評価

イ.評価方針

外壁及び屋根について部材厚が特に薄い箇所を検討対象とし, 複合荷重により各部材 に発生する応力, ひずみが許容限界以下であることを確認する。

口. 評価結果

評価結果については、工認審査の場において説明を行う。

- (c-2)風圧力による荷重(Ww)及び気圧差による荷重(WP)に対する評価
- イ.評価方針

外壁及び屋根は、設計竜巻の風圧力による荷重Ww及び気圧差による荷重Wpが衝撃荷 重WMとは逆向きの建屋の内側から外側方向に作用する。これらの荷重に対し、鉄骨造建 屋の外壁及び屋根が破損の恐れがあると考えられるため、鉄骨造である燃料取扱棟の外 壁及び屋根について検討を実施する。

外壁については、構成部材である波板(厚さ0.8mm),間柱及び胴縁を、屋根については、屋根スラブ及び鉄骨梁を対象に検討を行い、(部材の終局耐力から算定される許容荷重)/(竜巻による荷重)を部材の裕度とし、1.0以上あることを確認する。

口. 評価結果

外壁及び屋根に対する評価結果を表 4.6 に示す。いずれの部材も裕度が 1.0 を上回る ことから飛散しないことを確認した。

なお,外壁に飛来物等により開口部が発生した場合,屋根に対し建屋内側から外側へ 吹上げ荷重が作用することが考えられるが,その影響は評価結果における裕度に包絡さ れる。

部	位	竜巻による荷重	許容荷重	裕度
	波板		30.8 (kN/m ² )	3.4
外壁	胴縁	8.9 (kN/m²)	11.1 (kN/m ² )	1.2
	間柱		13.6 (kN/m ² )	1.5
	スラブ		70.3 (kN/m ² )	6.6
屋根	大梁	10.55 (kN/m ² )	65.2 (kN/m ² )	6.1
	小梁		39.5 (kN/m ² )	3. 7

## 表 4.6 外壁及び屋根に対する影響評価

- (d) 外壁及び屋根の破損による影響評価
  - イ.評価方針

「(c)外壁及び屋根の評価」を踏まえ,外壁及び屋根が破損する場合について,破損 による建屋内の竜巻防護施設への影響評価を実施する。

口. 評価結果

評価結果については、工認審査の場において説明を行う。

- (e) 設計飛来物の衝突に対する評価
  - イ.評価方針

鉄筋コンクリート造部分については,設計飛来物の外壁及び屋根への衝突に対し,貫 通評価及び裏面剥離によるコンクリート片の飛散の評価を実施する。

設計飛来物が鉄骨造部分の外壁(波板)に衝突した場合は、貫通するものとする。

鉄筋コンクリート造部分の外壁及び屋根における貫通または裏面剥離の有無は,設計 飛来物の衝突に対し貫通及び裏面剥離が発生する限界厚さ(貫通及び裏面剥離を生じな いために必要な最小厚さ)をそれぞれ算出し,評価部材の最小厚さと比較することで確 認する。屋根に裏面剥離が発生する場合は,剥離したコンクリートが飛散しないことを デッキプレートの有無により確認する。貫通及び裏面剥離が発生する限界厚さの評価に ついては,以下の式を用いる。

<貫通及び裏面剥離評価式>

修正 NDRC 式 (①式), Deg	en 式(②式)及び Chang 式(③元	式) に基づいて評価を実
施する。このうち、貫通評価	話については, ①式を用いて貫入	深さ x。を求め,②式によ
り貫通限界厚さを求める。		
また、裏面剥離評価は③元	により裏面剥離限界厚さを求め	る。
$x_c = \alpha_c \sqrt{4KWND}(\frac{V}{1000D})$	$(x_c)^{1.8}$ , for $\frac{x_c}{\alpha_c D} < 2.0$	••••①
$t_p = \alpha_p D \left\{ 2.2 \left(\frac{x_c}{\alpha_c D}\right) - 0.3 \left(\frac{x_c}{\alpha_c D}\right) \right\}$	$\left\{\frac{x_c}{\alpha_c D}\right\}^2$ , for $\frac{x_c}{\alpha_c D} \le 1.52$	••••2
$t_{s} = \alpha_{s} 1.84 \left\{ \frac{200}{V} \right\}^{0.13} \frac{1}{(D/T)^{0.13}}$	$\frac{(MV^2)^{0.4}}{12)^{0.2}(144Fc)^{0.4}}$	••••3
ここで、		
x _c :貫入深さ (in)	$\alpha_{\circ}:$ 飛来物低減係数	K :180/√Fc
₩ :飛来物重量(1b)	N :形状係数	D:飛来物直径 (in)
V :衝突速度(ft/s)	Fc :コンクリート強度(psi)	
t _P : 貫通厚さ (in)	α _P :飛来物低減係数	
t _s :裏面剥離厚さ (ft)	$\alpha_s:$ 飛来物低減係数	M:質量 (lb/ (ft/s²))

D. 評価結果

各建屋の外壁及び屋根スラブ等への設計飛来物の衝突に対して貫通及び裏面剥離の発 生に関する評価結果を表 4.7 に示す。

6条(竜巻)-別添1-47

: る貫通及び裏面剥離評価結果
רז רל
設計飛来物位
4.7

表

		必要最小厚さ	№厚さ※1	評価対象部材	邸材	評価	評価結果	
建 屋	方向	貫通 (cm)	裏面剥離 (cm)	位置 T. P. (m)	最小厚さ (cm)	貫通	寁面剥離	舗 兆
原子炉建屋	水平	28	45	41.0~60.5 (シリンダー部)	100	0	0	
(外部進へい建屋)	鉛直	20	34	60.5~83.1 (ドーム部)	30	0	0	デッキプレートにより剥離コンクリートは飛散しない
原子炉建屋	水	29	49	10.3~49.0 (外壁)	40	0	0	建屋内壁に施工されている鋼板によ り剥離コンクリートは飛散しない
(周辺補機棟)	鉛直	21	37	49.0 (屋根スラブ)	48	0	0	
原子炉建屋	水	I	I	47. 6~55. 0 (鉄骨部)	I	×	I	貫通を前提とし、使用済燃料ピット 及び新燃料貯蔵庫内への設計飛来物 の侵入について影響評価を実施
(燃料取扱棟)	鉛直	21	37	47.6, 55.0	26	0	0	デッキプレートにより剥離コンクリ ートは飛散しない
国大学生	水平	29	49	10.3~47.6 (外壁)	35	0	0	建屋内壁に施工されている鋼板によ り剥離コンクリートは飛散しない
<b>师</b> 士炉 <b>借</b> 助建度	鉛直	21	37	33.1 (屋根スラブ)	38	0	0	
日世が豊なったし、ゴ	水平	29	49	18.8~22.8 (塔屋部外壁)	29*2	0	0	建屋内壁に施工されている鋼板により剥離コンクリートは飛散しない
ノイービル光电磁準度	鉛直	21	37	18.8 (屋根スラブ)	26	0	0	デッキプレートにより剥離コンクリ ートは飛散しない
AI, A2-燃料油貯油槽タン ク室	鉛直	21	37	地中構造物	02	0	0	
B1, B2-燃料油貯油槽タン ク室	鉛直	20	34	地中構造物	70	0	0	
取水ピットポンプ室	鉛直	I	I	地中構造物	I	×	I	当該室の上屋(外壁及び屋根)の貫 通を前提とし、当該室上部の開口部
ストレーナ室	鉛直	-	I	地中構造物	I	×	I	から当該室への設計飛来物の侵入に ついて影響評価を実施
※1 :小数点以下を切り上げており,数値以上の部材厚さがあれば,貫通または裏面 ※2 :最小厚さ 29㎝(コンクリート 18㎝+鋼板 16㎜(コンクリート換算 11㎝ 以上))	げており, ^クリート	数値以上の音 18cm+鋼板 16	13村厚さがあれば, Smm(コンクリート	/ぱ, 貫通または裏面剥離を生じない厚さ。 一ト換算 11cm 以上))	剥離を生じな  	い厚さ。		

## 6条(竜巻)-別添1-48

- (f)貫通及び裏面剥離発生による竜巻防護施設への影響評価
  - イ.評価方針

「(e)設計飛来物の衝突に対する評価」のとおり,燃料取扱棟(鉄骨造部分)の外壁 に対しては設計飛来物の貫通を想定し,当該建屋内に設置されている使用済燃料ピット 及び新燃料貯蔵庫内に設計飛来物が侵入した場合の影響評価を実施する。また,取水ピ ットポンプ室及びストレーナ室の上屋(循環水ポンプ建屋)の外壁及び屋根に対しては 設計飛来物の貫通を想定し,当該室の上部開口部から当該室内に設計飛来物が侵入した 場合の影響評価を実施する。

口. 評価結果

使用済燃料ピット及び新燃料貯蔵庫内に設計飛来物が侵入した場合の影響評価を実施 し、安全機能の維持に影響を与えないよう、新燃料貯蔵庫内の新燃料ラック(貯蔵して いる燃料集合体)に対する竜巻防護対策を実施する。評価結果は、「d.設備の構造健全 性の確認」に示す。

また,取水ピットポンプ室及びストレーナ室内に設計飛来物が侵入した場合の影響評価を実施し,安全機能の維持に影響を与えないよう竜巻防護対策を実施する。

- (g) 建屋外周部建具等の貫通評価
  - イ.評価方針

建屋外周部建具等(扉,シャッター,ブローアウトパネル,A1,A2-ディーゼル発電機 燃料油貯油槽及びB1,B2-ディーゼル発電機燃料油貯油槽のプロテクター蓋)は鋼製であ る。建屋外周部建具等の貫通評価は,設計飛来物の貫通を生じないために必要な鋼板の 最小厚さをタービンミサイル評価等で用いられているBRL式^{**}を用いて算出し,各建具 等の板厚と比較することで健全性を確認する。

※:原子炉施設のタービンミサイルの評価に用いられている評価式

< B R L 式>

 T^{3/2} = 0.5MV² 17400K²D^{3/2}

 ここで、

 T:鋼板貫通厚さ(in)
 M:ミサイル質量(lb·s²/ft)
 V:ミサイル速度(ft/s)

 D:ミサイル直径(in)
 K:鋼板の材質に関する定数(≒1)

 参考文献:ISES7607-3「軽水炉構造機器の衝撃荷重に関する調査その3ミサイルの衝突に よる構造壁の損傷に関する評価式の比較検討」(高温構造安全技術研究組合)

「タービンミサイル評価について(昭和52年7月20日原子炉安全専門審査会)」 の中で、鋼板に対する貫通厚さの算出厚さの算出式に使用されている。

口. 評価結果

建屋外周部建具等の貫通評価結果を表 4.8 に示す。建屋の開口部の扉(一部を除く), シャッター及びブローアウトパネルについては,設計飛来物の衝突により貫通が発生す る。A1,A2-ディーゼル発電機燃料油貯油槽及び B1,B2-ディーゼル発電機燃料油貯油槽の プロテクター蓋については,鋼板製の蓋で覆われており,設計飛来物がプロテクター蓋 を貫通することはない。

表 4.8 設計飛来物の衝突による建屋外周部建具等の貫通評価結果

評価部位	必要最小厚さ	評価結果	備考
扉(ディーゼル発電機室)	37 (mm)	0	
シャッター, ブローアウトパネル, 扉(上記を除く)	37 (mm)	×	竜巻防護施設への影響評価を実施
A1, A2-ディーゼル発電機燃料油貯油 槽及び B1, B2-ディーゼル発電機燃料 油貯油槽のプロテクター蓋	22 (mm)	0	

- (h) 建屋外周部建具等を設計飛来物が貫通することによる竜巻防護施設への影響評価
  - イ.評価方針

「(g)建屋外周部建具等の貫通評価」のとおり、建屋開口部の扉(一部を除く)、シ ャッター及びブローアウトパネルは、設計飛来物の衝突により貫通が発生するため、貫 通した設計飛来物が竜巻防護施設に衝突しないことを確認する。

口. 評価結果

A, B吸気ガラリ室扉, 原子炉補機冷却水サージタンク・空調用冷水膨脹タンク室扉, トラックアクセスエリア(2)扉及び主蒸気管室ブローアウトパネル部については,開 ロ部を貫通し建屋内に侵入した設計飛来物が建屋内の竜巻防護施設に衝突する可能性が あるため, 竜巻防護対策を実施する。

A, B吸気ガラリ室扉, 原子炉補機冷却水サージタンク・空調用冷水膨脹タンク室扉, トラックアクセスエリア(2) 扉及び主蒸気管室ブローアウトパネル以外の開口部につ いては, 竜巻防護施設が当該開口部周辺にないこと等から, 設計飛来物が建屋内部に進 入したとしても, 竜巻防護施設に衝突することはないため竜巻防護施設への影響はない。

- (i)建屋外周部建具の破損に関する評価
  - イ.評価方針

建屋外周部建具である扉,シャッター及びブローアウトパネルのうち,複合荷重(W_T 1,W_T2)により破損するものについては,建屋内開口部周辺の竜巻防護施設の有無に より,当該建具が破損したとしても建屋内の竜巻防護施設へ影響を及ぼさないことを確 認する。

口. 評価結果

A, B吸気ガラリ室扉, 原子炉補機冷却水サージタンク・空調用冷水膨脹タンク室扉, トラックアクセスエリア(2)扉及び主蒸気管室ブローアウトパネル部については, 開 口部周辺に竜巻防護施設があるため, 竜巻防護対策を実施する。

A, B吸気ガラリ室扉, 原子炉補機冷却水サージタンク・空調用冷水膨脹タンク室扉, トラックアクセスエリア(2) 扉及び主蒸気管室ブローアウトパネル以外の開口部につ いては, 竜巻防護施設が当該開口部周辺にないこと等から, 開口部の建具が破損したと しても竜巻防護施設への影響はない。 c. 竜巻防護施設に波及的影響を及ぼし得る施設の構造健全性の確認結果

(a) 概要

竜巻防護施設に波及的影響を及ぼし得る施設のうち,建屋である循環水ポンプ建屋,タ ービン建屋,電気建屋及び出入管理建屋について評価を行う。

循環水ポンプ建屋は,建屋の倒壊が竜巻防護施設に直接影響するため,また,タービン 建屋,電気建屋及び出入管理建屋は,竜巻防護施設の外殻となる施設に隣接するため,波 及的影響の評価として設計竜巻により建屋が倒壊しないことを構造骨組の評価により確認 する。

評価フローを図4.4に、評価に関する対象荷重及び評価内容を表4.9に示す。

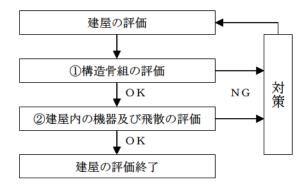



図 4.4 竜巻防護施設に波及的影響を及ぼし得る建屋の評価フロー

表 4.9	竜巻防護施設に波及的影響を及ぼし得る建屋の評価方法

$\setminus$	評価項目	対象建屋	荷重	評価内容		
	計画項目	<b>刈</b> 家建座	191 里	評価対象	評価基準値	
1	構造骨組の評価	循環水ポンプ建屋 タービン建屋	$W_{T1}$ , $W_{T2}$	せん断力	保有水平耐力	
		電気建屋 出入管理建屋		せん <mark>断</mark> ひずみ	2.0×10-3以下**	
2	建屋内の機器及び 飛散物に関する評価	循環水ポンプ建屋 タービン建屋	_	建屋内機器の飛散の可能性の検討,建屋 屋根,外壁の飛散の影響評価及び建屋内 飛散物の影響評価を実施		

※:原子力発電所耐震設計技術指針(JEAG4601-1987)に示されている,鉄筋コンクリート耐震壁のせん断ひずみ に関する許容限界の目安値 (b) 構造骨組の評価

波及的影響の評価として設計竜巻により建屋が倒壊しないことを構造骨組の評価により 確認した。

循環水ポンプ建屋及びタービン建屋については,複合荷重によるせん断力が保有水平耐 力を下回ることを確認した。

電気建屋及び出入管理建屋については、複合荷重により耐震壁に発生するせん断ひずみ を、地震応答解析モデルにおける各部材のせん断力の復元力特性(Q-γ関係)により算 定し、鉄筋コンクリート造耐震壁の最大応答せん断ひずみの評価基準値(2.0×10⁻³)を 下回ることを確認した。

(c) 建屋内の機器及び飛散物に関する評価

窓等が破損した場合,建屋内に風圧力が作用するが,建屋内の重量機器については,建 屋にボルト等で固定されており,重量が受圧面積に対して十分に大きいため飛散しない。 また,その他の建屋内の飛散の可能性があるものについては,設計飛来物による影響評価 で包絡できる。 d. 設備の構造健全性の確認

設計荷重に対して、評価対象施設の構造健全性が維持され安全機能が維持できることを確 認する。また、設計飛来物による影響を評価し、評価対象施設の安全機能が維持できること を確認する。

評価対象施設の評価フローの概要を図4.5に示す。

評価フローに従って、以下の評価を実施する。

- ・設計飛来物による影響評価として、設計飛来物の貫通が発生する限界厚さ(貫通を生) じないために必要な鋼板の最小厚さ)と評価対象施設の最小板厚を比較することによ り,設計飛来物の貫通有無を確認する(貫通評価)。また,使用済燃料ピット内または 新燃料貯蔵庫内へ侵入した設計飛来物による影響評価としては、使用済燃料ラックま たは新燃料ラックに貯蔵される燃料集合体の燃料被覆管の健全性が維持されること及 び当該ラックセルの損傷範囲(貫入量)が燃料有効部に達しないことを確認する。
- ・竜巻防護対策を考慮して、評価対象施設の特徴に従い、竜巻荷重の組合せを設定し、 強度評価を実施する。

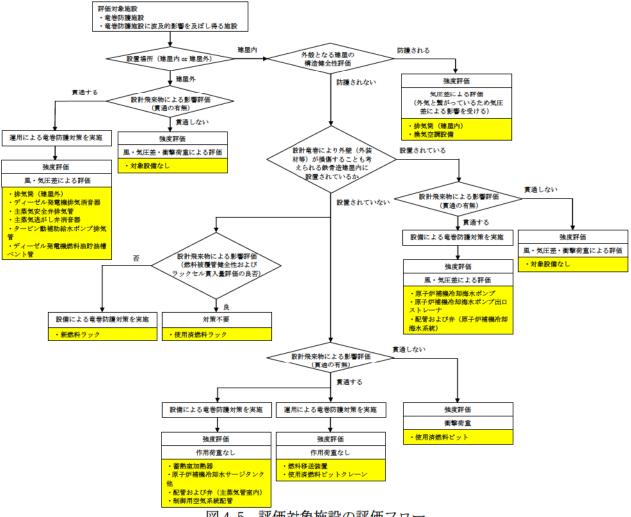



図 4.5 評価対象施設の評価フロー

6条(竜巻)-別添1-54

- (a)貫通評価(補足説明資料19~21,25参照)
- イ.評価方針

設計飛来物が評価対象施設(鋼板部分)に衝突した場合の影響評価として、タービン ミサイル評価で用いられている以下の BRL 式*を用いて算出した,設計飛来物の貫通を生 じないために必要な鋼板の最小厚さと,評価対象施設の最小板厚を比較することにより, 設計飛来物の貫通有無を確認する。

 $T^{3/2} = \frac{0.5MV^2}{17400K^2D^{3/2}}$ ここで、 T:鋼板貫通厚さ(in) M:ミサイル質量(lb·s²/ft) V:ミサイル速度(ft/s) D:ミサイル直径(in) K:鋼板の材質に関する定数≒1

※:「タービンミサイル評価について(昭和52年7月20日 原子炉安全専門審査会)」 の中で、鋼板に対する貫通厚さの算出式として使用する旨規定されており、本書に おいて、BRL式については、「ISES7607-3 軽水炉構造機器の衝撃荷重に関する調 査 その3 ミサイルの衝突による構造壁の損傷に関する評価式の比較検討(高温 構造安全技術研究組合)」を引用している。

D. 評価結果

設計飛来物の貫通を生じないために必要な鋼板の最小厚さは表 4.10 のとおりであり, 砂利については,表 4.11 に示す評価対象施設の最小板厚と比較して一部を除き貫通しな いことを確認した。

また,鋼製パイプ及び鋼製材については,後述する竜巻飛来物防護対策設備により防 護する。

	砂利		鋼製パイプ		鋼製材	
	水平	鉛直	水平	鉛直	水平	鉛直
最大飛来物速度(m/s)	62	42	49	33	57	38
必要最小厚さ (mm)	1	1	18	11	37	22

表 4.10 鋼板の必要最小厚さ

注:必要最小厚さは計算結果を切り上げた値

	最小板厚	評価結果			竜巻対
評価対象施設	(mm)	砂利	鋼製パイプ	鋼製材	策等
原子炉補機冷却海水ポンプ (モータ含む)	3.2mm (モータ部ケーシング)	0	×		
蕃熱室加熱器	<ol> <li>0mm 以下(ヒータエレ メント発熱管:厚さ1mm の素管を絞り加工)</li> </ol>		×		
原子炉補機冷却海水ポンプ出 ロストレーナ	14. 0mm	0	×		₩1
配管及び弁(原子炉補機冷却海 水系統)	3. 2mm	0	×		
原子炉補機冷却水サージタン ク他	6. Omm	0	×		
配管及び弁(主蒸気管室内)	3. Omm	0	×		
制御用空気系統配管	3. 4mm	0	×		
排気筒(建屋外)	4. Omm	0	×		₩2
燃料移送装置	9. Omm	0	×		₩3
使用済燃料ピットクレーン	16. 0mm	0	×		*3
ディーゼル発電機排気消音器	6. Omm	0	×		
主蒸気逃がし弁消音器	4.5mm	0	×		
主蒸気安全弁排気管	9. 5mm	0	×		
タービン動補助給水ポンプ排 気管	7.8mm	0	×		₩4
A1, A2-ディーゼル発電機燃料 油貯油槽ベント管	8. 6mm	0	×		
B1, B2-ディーゼル発電機燃料 油貯油槽ベント管	8. 6mm	0	×		

表 4.11 貫通評価結果

※1:設計飛来物が当該施設に衝突した場合,貫通等の損傷により安全機能を喪失する可能性があることから,設備による竜巻防護対策(竜巻飛来物防護対策設備による防護)を実施する。
 ※2:設計飛来物が当該施設に衝突した場合,貫通等の損傷が生じる可能性があるが,竜巻を起因として当該施設にその安全機能を期待する放射性物質の放出を伴う事故(LOCA 等)は発生しないため,竜巻襲来時において当該施設に求められる安全機能要求はないと考える。また,設計飛来物による当該施設の損傷を確認した場合は,運用による竜巻防護対策(プラントを停止して補修)を実施する。(補足説明資料27参照)

- ※3:設計飛来物が評価対象施設に衝突した場合,貫通等の損傷により安全機能を喪失する可能性があることから,運用による竜巻防護対策(燃料取扱棟における燃料取扱作業中断)を実施する。(補足説明資料24参照)
- ※4:設計飛来物が当該施設に衝突した場合,貫通等の損傷により,竜巻防護施設の安全機能に影響を与える可能性があることから,運用による竜巻防護対策(補修)を実施する。

(b) 使用済燃料ピット内へ侵入した設計飛来物による影響評価

(補足説明資料19,20,22参照)

イ.評価方針

設計飛来物が使用済燃料ピットが設置されている建屋の上屋(燃料取扱棟)の壁を貫 通することを想定して,使用済燃料ピットに対して,設計飛来物の影響を評価する。

評価においては、燃料取扱棟の屋根を考慮せずに、設計飛来物が鉛直方向と斜め方向 の2方向から直接使用済燃料ピット内へ侵入するものとし、燃料集合体、使用済燃料ラ ック及び使用済燃料ピット(躯体)に衝突した場合の影響評価を実施する。

ただし,砂利については,鋼製材及び鋼製パイプの評価に包絡されるため,評価対象 外とする。

なお,斜め方向から侵入した場合の影響評価において,設計飛来物はラックセルに衝 突し,直接燃料集合体に衝突することはないが,保守的に直接燃料集合体(上部ノズル 上端)に衝突するものとする。また,鋼製パイプについては,鋼製材の評価に包絡され るため評価対象外とする。

- 口. 評価条件
  - (イ)評価部位
    - 燃料集合体の燃料被覆管
    - ・使用済燃料ラック(ラックセル)
    - ・使用済燃料ピットライニング
  - (ロ) 設計飛来物の衝突速度

設計飛来物の衝突速度は,設計飛来物が最大速度で使用済燃料ピット水面に到達 するものとして,水中抵抗等を考慮した値とする。

設計飛来物の衝突速度を表 4.12 に示す。

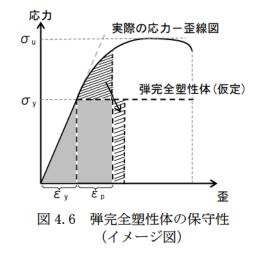

設計飛来物	侵入方向	使用済燃料ピット	燃料集合体又は使用済燃	影響評価に用いる	
<b></b>	设八万问	水面到達時(m/s)	料ラック衝突時(m/s)	衝突速度(m/s)	
鋼製パイプ	。  鉛直	水平:0	水平:0	18.82	
判殺ハイ ノ		鉛直:33	鉛直:18.82	10.02	
	鉛直	水平:0	水平:0	24.03	
公司告日十十		鉛直:38	鉛直:24.03	24.03	
鋼製材	斜め	水平:57	水平:22.54	00.54	
		鉛直:38	鉛直:16.82	22. 54	

表 4.12 設計飛来物の衝突速度

(ハ) 燃料被覆管への影響評価

設計飛来物が鉛直方向から燃料集合体(上部ノズル上端)に衝突した場合と,斜 め方向から衝突した場合の燃料被覆管の歪量を算出し,燃料被覆管の健全性を評価 する。また,評価にあたっては,次の仮定を設ける。

- ・ 設計飛来物の運動エネルギーは燃料集合体の変形エネルギーに等しいものとし、設計飛来物の運動エネルギー全てが燃料被覆管の変形に費やされるものとする(制御棒案内シンブルによる荷重の分担は考慮しない)。
- ・ 燃料被覆管は弾完全塑性体とする(塑性変形に伴う硬化を考慮しない)。(図
   4.6)



なお,設計飛来物が斜め方向から燃料集合体に衝突した場合,燃料被覆管には鉛 直方向の衝突速度成分による発生歪と水平方向の衝突速度成分による発生歪が生じ るが,鉛直方向の衝突速度成分による発生歪については,鉛直方向から衝突した場 合の影響評価に包絡されるため,設計飛来物が斜め方向から燃料集合体に衝突した 場合の燃料被覆管への影響については,水平方向の衝突速度成分による発生歪を算 出して評価する。

(ニ) 燃料被覆管の許容歪の設定

試験により求められる破断歪データを踏まえ,燃料被覆管の許容歪を1%と設定 し,評価値と比較する。

(ホ)使用済燃料ラック(ラックセル)への影響評価

①鉛直方向

設計飛来物が鉛直方向から衝突した場合のラックセルの貫入量(変形量)を算出 し、許容貫入量を満足していること(ラックセルの損傷範囲が燃料有効部に達しな いこと)を確認する(図 4.7)。 なお、ラックセルは近接して設置されているため、設計飛来物は複数のラックセルに同時に衝突することが考えられるが、保守的に1体のラックセルが衝突荷重を 受けるものとする(図 4.8)。

②斜め方向

設計飛来物が斜め方向から衝突した場合のラックセルの歪量を算出し, 塑性歪を 生じた場合であっても, 破断伸びに対して余裕を有することを確認する。

なお、ラックセルは近接して設置されているため、設計飛来物は複数のラックセルに同時に衝突することが考えられるが、保守的に1体のラックセルが衝突荷重を 受けるものとする。

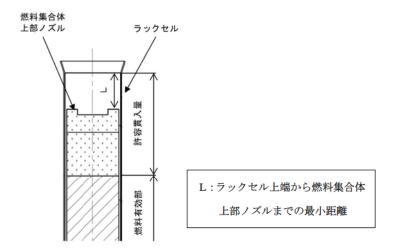



図 4.7 ラックセル概要図

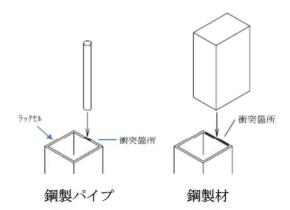



図 4.8 ラックセルの衝突箇所

6条(竜巻)-別添1-59