泊発電所35	号炉審査資料
資料番号	DB061N r.4.0
提出年月日	令和4年8月31日

泊発電所3号炉

設置許可基準規則等への適合状況について (設計基準対象施設等)

第6条 外部からの衝撃による損傷の防止 (自然現象)

令和4年8月 北海道電力株式会社

枠囲みの内容は機密情報に属しますので公開できません。

第6条:外部からの衝撃による損傷の防止 (自然現象)

<目 次>

- 1. 基本方針
- 1.1 要求事項の整理
- 1.2 追加要求事項に対する適合性
- (1) 位置,構造及び設備
- (2) 安全設計方針
- (3) 適合性説明
- 1.3 気象等
- 1.4 設備等
- 2. 外部からの衝撃による損傷の防止

(別添1)

設置許可基準規則等への適合状況説明資料 (外部事象の考慮について)

<概 要>

- 1. において、設計基準対象施設の設置許可基準規則、技術基準規則の追加要求事項を明確化するとともに、それら要求に対する泊発電所3号炉における適合性を示す。
- 2. において、設計基準対象施設について、追加要求事項に適合するために必要となる機能を達成するための設備又は運用等について説明する。

1. 基本方針

1.1 要求事項の整理

外部からの衝撃による損傷の防止について、設置許可基準規則第6条及び技術 基準規則第7条において、追加要求事項を明確化する(第1.1-1表)。

第1.1-1表 設置許可基準規則第6条及び技術基準規則第7条 要求事項

設置許可基準規則第6条(外部からの衝撃による損傷の防止)	技術基準規則第7条(外部からの衝撃び下ろ損傷の防止)	備考
安全施設(兼用キャスクを除く。)は、想定される自然現	設計基準対象施設(兼用キャスクを除く。)が想定される	追加要求事項
象(地震及び津波を除く。次項において同じ。)が発生し	自然現象(地震及び津波を除く。)によりその安全性を損	
た場合においても安全機能を損なわないものでなければ	なうおそれがある場合は, 防護措置, 基礎地盤の改良そ	
ならない。	の他の適切な措置を講じなければならない。	
2 重要安全施設は、当該重要安全施設に大きな影響を		追加要求事項
及ぼすおそれがあると想定される自然現象により当該重		
要安全施設に作用する衝撃及び設計基準事故時に生ずる		
応力を適切に考慮したものでなければならない。		
3 安全施設 (兼用キャスクを除く。) は, 工場等内又は	2 周辺監視区域に隣接する地域に事業所,鉄道,道路	追加要求事項
その周辺において想定される発電用原子炉施設の安全性	その他の外部からの衝撃が発生するおそれがある要因が	
を損なわせる原因となるおそれがある事象であって人為	ある場合には, 事業所における火災又は爆発事故, 危険	
によるもの(故意によるものを除く。以下「人為による	物を搭載した車両,船舶又は航空機の事故その他の敷地	
事象」という。)に対して安全機能を損なわないものでな	及び敷地周辺の状況から想定される事象であって人為に	
ければならない。	よるもの(故意によるものを除く。以下「人為による事	
	象」という。) により発電用原子炉施設 (兼用キャスクを	
	除く。)の安全性が損なわれないよう,防護措置その他の	
	適切な措置を講じなければならない。	
	3 航空機の墜落により発電用原子炉施設(兼用キャス	
	クを除く。) の安全性を損なうおそれがある場合は, 防護	
	措置その他の適切な措置を講じなければならない。	

1.2 追加要求事項に対する適合性

- (1) 位置, 構造及び設備
- 五 原子炉及びその附属施設の位置,構造及び設備
 - ロ. 原子炉施設の一般構造
 - (3) その他の主要な構造
 - (i)本原子炉施設は,(1)耐震構造,(2)耐津波構造に加え,以下の基本的方針のもとに安全設計を行う。
 - a. 設計基準対象施設
 - (a) 外部からの衝撃による損傷の防止

安全施設は、発電所敷地で想定される洪水、風(台風)、竜巻、 凍結、降水、積雪、落雷、地滑り、火山の影響、生物学的事象、 森林火災及び高潮の自然現象(地震及び津波を除く。)又はその 組合せに遭遇した場合において、自然現象そのものがもたらす環 境条件及びその結果として施設で生じ得る環境条件においても 安全機能を損なうことのない設計とする。

なお,発電所敷地で想定される自然現象のうち,洪水については,立地的要因により設計上考慮する必要はない。

上記に加え、重要安全施設は、科学的技術的知見を踏まえ、当該重要安全施設に大きな影響を及ぼすおそれがあると想定される自然現象により当該重要安全施設に作用する衝撃及び設計基準事故時に生じる応力について、それぞれの因果関係及び時間的変化を考慮して、適切に組み合わせる。

また、安全施設は、発電所敷地又はその周辺において想定される飛来物(航空機落下)、ダムの崩壊、爆発、近隣工場等の火災、有毒ガス、船舶の衝突又は電磁的障害の原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)に対して安全機能を損なうことのない設計とする。

なお、発電所敷地又はその周辺において想定される人為事象の うち、飛来物(航空機落下)については、確率的要因により設計 上考慮する必要はない。また、ダムの崩壊については立地的要因 により考慮する必要はない。

自然現象及び発電所敷地又はその周辺において想定される 原子炉施設の安全性を損なわせる原因となるおそれがある事 象であって人為によるもの(故意によるものを除く。)の組合 せについては、地震、津波、風(台風)、竜巻、凍結、降水、 積雪,落雷,地滑り,火山の影響,生物学的事象,森林火災等 を考慮する。事象が単独で発生した場合の影響と比較して,複 数の事象が重畳することで影響が増長される組合せを特定し, その組合せの影響に対しても安全機能を損なわない設計とす る。

ここで、想定される自然現象及び発電所敷地又はその周辺において想定される原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)に対して、安全施設が安全機能を損なわないために必要な安全施設以外の施設又は設備等(重大事故等対処設備を含む。)への措置を含める。

【別添1(3.1及び4.1)】

(a-1) 風 (台風)

安全施設は、設計基準風速による荷重に対し、安全施設及び安全施設を内包する建屋の構造健全性の確保若しくは風(台風)による損傷を考慮して、代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで、その安全機能を損なうことのない設計とする。

【別添1(3.2)】

(a-2) 竜巻

安全施設は、竜巻が発生した場合においても、最大風速 100m/s の竜巻による風圧力による荷重、気圧差による荷重及び 飛来物の衝撃荷重を組合せた設計竜巻荷重、並びに安全施設に 常時作用する荷重、運転時荷重、その他竜巻以外の自然現象に よる荷重等を適切に組合せた設計荷重に対して、安全機能を損 なうことのない設計とする。また、安全施設は、過去の竜巻被 害の状況及び泊発電所のプラント配置から想定される竜巻随伴 事象に対して安全機能を損なうことのない設計とする。

安全施設の安全機能を損なうことのないようにするため,安全施設に影響を及ぼす飛来物の発生防止対策を実施するとともに,作用する設計荷重に対する安全施設の構造健全性の維持,安全施設を内包する区画の構造健全性の確保,若しくは,飛来

物による損傷を考慮し安全上支障のない期間での修復等の対応 又はそれらを適切に組み合わせた設計とする。

飛来物の発生防止対策として、資機材等の設置状況を踏ま え、飛来物となる可能性のある物のうち、飛来した場合の運動 エネルギ又は貫通力が設定する設計飛来物である鋼製材(長さ 4.2m×幅 0.3m×奥行 0.2m、質量 135kg、飛来時の水平速度 57m/s、飛来時の鉛直速度 38m/s)よりも大きな物の固縛や竜巻 襲来が予想される場合の車両の退避等を実施する。また、防護 ネットや防護鋼板等の竜巻飛来物防護対策設備により、飛来物 の衝撃荷重による影響から防護する対策を行う。

【別添1(3.2)】

(a-3) 凍結

安全施設は、設計基準温度による凍結に対し、安全施設及び 安全施設を内包する建屋の構造健全性の確保若しくは凍結を考 慮して、代替設備により必要な機能を確保すること、安全上支 障のない期間での修復等の対応を行うこと又はそれらを適切に 組み合わせることで、その安全機能を損なうことのない設計と する。

【別添1(3.2)】

(a-4) 降水

安全施設は、設計基準降水量による浸水及び荷重に対し、安全施設及び安全施設を内包する建屋の構造健全性の確保若しくは降水による損傷を考慮して、代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで、その安全機能を損なうことのない設計とする。

【別添1(3.2)】

(a-5) 積雪

安全施設は、設計基準積雪量による荷重及び閉塞に対し、安 全施設及び安全施設を内包する建屋の構造健全性の確保若しく は積雪による損傷を考慮して、代替設備により必要な機能を確 保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで、その安全機能を損なうことのない設計とする。

【別添1(3.2)】

(a-6) 落雷

安全施設は、設計基準電流値による雷サージに対し、安全機能を損なうことのない設計とすること若しくは雷サージによる損傷を考慮して、代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで、その安全機能を損なうことのない設計とする。

【別添1(3.2)】

(a-7) 地滑り

安全施設は、地滑りに対し、安全施設及び安全施設を内包する建屋の構造健全性の確保若しくは地滑りによる損傷を考慮して、代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで、その安全機能を損なうことのない設計とする。

【別添1(3.2)】

追而【地震津波側審査の反映】

(a-8) 火山の影響

(下記●については,地震津波側審査結果を受けて反映のため)

安全施設は、発電所の運用期間中において発電所の安全機能 に影響を及ぼし得る火山事象として設定した層厚●cm, 粒径

- ●mm以下,密度●g/cm3 (乾燥状態)~●g/cm3 (湿潤状態)の降下火砕物に対し,以下のような設計とすることにより降下火砕物による直接的影響に対して機能維持すること若しくは降下火砕物による損傷を考慮して,代替設備により必要な機能を確保すること,安全上支障のない期間での修復等の対応又はそれらを適切に組み合わせることで,その安全機能を損なうことのない設計とする。
- ・構造物への静的負荷に対して安全裕度を有する設計とすること

- ・水循環系の閉塞に対して狭隘部等が閉塞しない設計とすること
- ・換気系,電気系及び計測制御系に対する機械的影響(閉塞)に対して降下火砕物が侵入しにくい設計とすること
- ・水循環系の内部における摩耗及び換気系,電気系及び計測制御 系に対する機械的影響(摩耗)に対して摩耗しにくい設計とす ること
- ・構造物の化学的影響(腐食),水循環系の化学的影響(腐食)及び換気系,電気系及び計測制御系に対する化学的影響(腐食)に対して短期での腐食が発生しない設計とすること
- ・発電所周辺の大気汚染に対して中央制御室換気空調系は降下火 砕物が侵入しにくく, さらに外気を遮断できる設計とすること
- ・計装盤の絶縁低下に対して空気を取り込む機構を有する安全系の計装盤等の設置場所の換気空調系は降下火砕物が侵入しにく く, さらに外気を遮断できる設計とすること
- ・降下火砕物による静的負荷や腐食等の影響に対して降下火砕物 の除去や換気空調系外気取入口の平型フィルタの取替え若しく は清掃又は換気空調系の停止若しくは外気との連絡口を遮断し、 閉回路循環運転をすることにより安全機能を損なうことのない 設計とすること

さらに、降下火砕物による間接的影響である7日間の外部電源喪失及び発電所外での交通の途絶によるアクセス制限事象に対し、発電所の安全性を維持するために必要となる電源の供給が継続できることにより安全機能を損なうことのない設計とする。

【別添1(3.2)】

(a-9) 生物学的事象

安全施設は、生物学的事象として海生生物であるクラゲ等の 発生及び小動物の侵入に対し、その安全機能を損なうことのない設計とする。

海生生物であるクラゲ等の発生に対しては、クラゲ等を含む 塵芥による原子炉補機冷却海水系等への影響を防止するため、 除塵装置及び海水ストレーナを設置し、必要に応じて塵芥を除 去すること、小動物の侵入に対しては、屋内施設は建屋止水処 置により、屋外施設は、端子箱貫通部の閉止処置を行うことに より、安全施設の生物学的事象に対する健全性の確保若しくは 生物学的事象による損傷を考慮して,代替設備により必要な機能を確保すること,安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで,その安全機能を損なうことのない設計とする。

【別添 1(3.2)】

(a-10) 外部火災 (森林火災, 爆発及び近隣工場等の火災)

安全施設は、想定される外部火災において、最も厳しい火災 が発生した場合においても安全機能を損なうことのない設計と する。

想定される森林火災の延焼防止を目的として、発電所周辺の植生を確認し、作成した植生データ等を基に求めた火線強度から算出される防火帯 (20m) を敷地内に設ける。ただし、ササ草原かつ斜面に面し火線強度があがりやすい敷地北部の防火帯の一部は約55mにわたって46m、風上に針葉樹を擁し火線強度があがりやすい敷地東部の防火帯の一部は約400mにわたって25mの防火帯幅を確保すること等により安全施設が安全機能を損なうことのない設計とする。

防火帯は延焼防止効果を損なうことのない設計とし,防火帯 に可燃物を含む機器等を設置する場合は必要最小限とする。

また,森林火災による熱影響については,最大火炎輻射強度 の影響を考慮した場合においても離隔距離の確保等により安全 施設の安全機能を損なうことのない設計とする。

発電所敷地又はその周辺で想定される原子炉施設の安全性を 損なわせる原因となるおそれがある事象であって人為によるも の(故意によるものを除く。)として、想定される近隣の産業 施設の火災・爆発については、離隔距離の確保により安全施設 の安全機能を損なうことのない設計とする。

また,想定される発電所敷地内に設置する危険物貯蔵施設等の火災及び航空機墜落による火災については,離隔距離の確保等により安全施設の安全機能を損なうことのない設計とする。

外部火災による屋外施設への影響については、屋外施設の温度を許容温度以下とすることで安全施設の安全機能を損なうことのない設計とする。

また,外部火災の二次的影響であるばい煙及び有毒ガスによる影響については,換気空調設備等に適切な防護対策を講じる

ことで安全施設の安全機能を損なうことのない設計とする。

【別添1(3.2)】

(a-11)高潮

安全施設(取水設備を除く。)は、高潮の影響を受けない敷地高さ (T.P.+10.0m) 以上に設置することで、その安全機能を損なうことのない設計とする。

【別添 1(3.2)】

(a-12)有毒ガス

安全施設は、想定される有毒ガスの発生に対し、中央制御室 換気空調系等により、中央制御室の居住性を損なうことのない 設計とする。

【別添 1(4.1)】

(a-13)船舶の衝突

安全施設は、航路を通行する船舶の衝突に対し、航路からの離隔距離を確保することにより、安全施設の船舶の衝突に対する健全性の確保若しくは船舶の衝突による損傷を考慮して、代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで、その安全機能を損なうことのない設計とする。

【別添 1(4.1)】

(a-14) 電磁的障害

安全施設は、電磁的障害による擾乱に対し、制御盤へ入線する電源受電部へのラインフィルタや絶縁回路の設置、外部からの信号入出力部へのラインフィルタや絶縁回路の設置、鋼製筐体や金属シールド付ケーブルの適用等により、安全施設の電磁的障害に対する健全性の確保若しくは電磁的障害による損傷を考慮して、代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで、その安全機能を損なうことのない設計とする。

【別添1(4.1)】

(2) 安全設計方針

- 1. 安全設計
 - 1.1.1 基本的方針
 - 1.1.1.4外部からの衝撃による損傷の防止

発電所敷地で想定される自然現象(地震及び津波を除く。)については、網羅的に抽出するために、発電所敷地及びその周辺での発生実績の有無に関わらず、国内外の基準や文献等に基づき事象を収集し、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地滑り、火山の影響、生物学的事象、森林火災等を考慮する。また、これらの自然現象について関連して発生する自然現象も含める。

これらの事象について、海外の評価基準を考慮の上、発電所及びその周辺での発生の可能性、安全施設への影響度、発電所敷地及びその周辺に到達するまでの時間余裕及び影響の包絡性の観点から、原子炉施設に影響を与えるおそれがある事象として、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地滑り、火山の影響、生物学的事象、森林火災及び高潮を選定する。

安全施設は、これらの自然現象(地震及び津波を除く。) 又はその組合せに遭遇した場合において、自然事象そのもの がもたらす環境条件及びその結果として施設で生じ得る環境 条件においても安全機能を損なうことのない設計とする。

なお,発電所敷地で想定される自然現象のうち,洪水については,立地的要因により設計上考慮する必要はない。

上記に加え,重要安全施設は,科学的技術的知見を踏ま え,当該重要安全施設に大きな影響を及ぼすおそれがあると 想定される自然現象により当該重要安全施設に作用する衝撃 及び設計基準事故時に生じる応力について,それぞれの因果 関係及び時間的変化を考慮して,適切に組み合わせる。

発電所敷地又はその周辺において想定される原子炉施設の 安全性を損なわせる原因となるおそれがある事象であって人 為によるもの(故意によるものを除く。)は、網羅的に抽出 するために、発電所敷地又はその周辺での発生実績の有無に 関わらず、国内外の基準や文献等に基づき事象を収集し、飛 来物(航空機落下)、ダムの崩壊、爆発、近隣工場等の火 災、有毒ガス、船舶の衝突、電磁的障害等の事象を考慮す る。これらの事象について、海外の評価基準を考慮の上、発電所及びその周辺での発生可能性、安全施設への影響度、発電所敷地及びその周辺に到達するまでの時間余裕及び影響の包絡性の観点から、発電用原子炉施設に影響を与えるおそれがある事象として、飛来物(航空機落下)、ダムの崩壊、爆発、近隣工場等の火災、有毒ガス、船舶の衝突及び電磁的障害を選定する。

安全施設は、これらの原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)に対して安全機能を損なうことのない設計とする。

なお、発電所敷地又はその周辺において想定される原子炉 施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)のうち、飛 来物(航空機落下)については、確率的要因により設計上考 慮する必要はない。また、ダムの崩壊については、立地的要 因により設計上考慮する必要はない。

自然現象、発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)の組合せについては、地震、津波、風(台風)、竜巻、凍結、降水、積雪、落雷、火山の影響、生物学的事象及び森林火災を考慮する。事象が単独で発生した場合の影響と比較して、複数の事象が重畳することで影響が増長される組合せを特定し、その組合せの影響に対しても安全機能を損なうことのない設計とする。

ここで、想定される自然現象及び原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)に対して、安全施設が安全機能を損なわないために必要な安全施設以外の施設又は設備等(重大事故等対処設備を含む。)への措置を含める。

【別添1(3.1及び4.1)】

1.8 外部からの衝撃による損傷の防止に関する基本方針

安全施設は、想定される自然現象(地震及び津波を除く。)及び想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)に対して、安全機能を損なわない設計とする。安全機能が損なわれないことを確認する必要がある施設を、「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されている重要度分類(以下1.8 では「安全重要度分類」という。)のクラス1、クラス2及びクラス3に属する構築物、系統及び機器とする。

その上で、上記構築物、系統及び機器の中から、発電用原子炉を停止するため、また、停止状態にある場合は引き続きその状態を維持するために必要な異常の発生防止の機能又は異常の影響緩和の機能を有する構築物、系統及び機器並びに使用済燃料プールの冷却機能及び給水機能を維持するために必要な異常の発生防止の機能又は異常の影響緩和の機能を有する構築物、系統及び機器として安全重要度分類のクラス1及びクラス2に属する構築物、系統及び機器を外部事象から防護する対象(以下「外部事象防護対象施設」という。)とし、機械的強度を有すること等により、安全機能を損なわない設計とする。

また,外部事象防護対象施設を内包する建屋は,機械的強度を有すること等により,内包する外部事象防護対象施設の安全機能を損なわない設計及び外部事象防護対象施設へ波及的影響を及ぼさない設計とする。ここで,外部事象防護対象施設及び外部事象防護対象施設を内包する建屋を併せて,外部事象防護対象施設等という。

上記に含まれない構築物,系統及び機器は,機能を維持すること若しくは損傷を考慮して代替設備により必要な機能を確保すること,安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより,その安全機能を損なうことのない設計とする。

【別添 1(2.)】

1.8.1 風(台風)防護に関する基本方針

建築基準法及び同施行令第87条第2項及び第4項に基づく建設省告示第1454号より設定した設計基準風速(36m/s,地上高10m,10分間平均)の風によってその安全機能が損なわれないことを確認する必要がある施設を,安全重要度分類のクラス1,クラス2及びクラス3に属する構築物,系統及び機器とする。

その上で,外部事象防護対象施設等は,設計基準風速 (36m/s,地上高 10m,10 分間平均)の風荷重に対し機械的強度を有することにより安全機能を損なうことのない設計とする。

また、上記に含まれない構築物、系統及び機器は、風(台風)により損傷した場合であっても、代替手段があること等により安全機能は 損なわれない。

なお,風(台風)に伴う飛来物による影響は,竜巻影響評価にて想 定する設計飛来物の影響に包絡される。

ここで、風(台風)に関連して発生する可能性がある自然現象としては、落雷及び高潮が考えられる。落雷については、同時に発生するとしても、個々の事象として考えられる影響と変わらない。高潮については、安全施設(取水設備を除く。)は高潮の影響を受けない敷地高さに設置する。

【別添 1(3.2)】

- 1.8.2 竜巻防護に関する基本方針
 - 1.8.2.1 設計方針【「6条(竜巻)」参照】

【別添 1(3.2)】

1.8.3 凍結防護に関する基本方針

小樽特別地域気象観測所での観測記録(1943年~2020年)により設定した設計基準温度である-19.0℃の低温による凍結によってその安全機能が損なわれないことを確認する必要がある施設を、安全重要度分類のクラス1、クラス2及びクラス3に属する構築物、系統及び機器とする。

その上で,外部事象防護対象施設等は,屋内施設については換気空調系により環境温度を維持し,屋外施設については保温等の凍結防止対策を必要に応じて行うことにより,安全機能を損なうことのない設計とする。

また,上記に含まれない構築物,系統及び機器は,凍結した場合で あっても,代替手段があること等により安全機能は損なわれない。

【別添 1(3.2)】

1.8.4 降水防護に関する基本方針

寿都特別地域気象観測所での観測記録(1938年~2020年)により設定した設計基準降水量(57.5mm/h)の降水によってその安全機能が損

なわれないことを確認する必要がある施設を,安全重要度分類のクラス1,クラス2及びクラス3に属する構築物,系統及び機器とする。

その上で,外部事象防護対象施設等は,設計基準降水量(57.5mm/h)による浸水に対し,構内排水設備による海域への排水及び浸水防止のための建屋止水処置により,安全機能を損なうことのない設計とするとともに,外部事象防護対象施設及び機能を喪失することで上位クラスの安全機能に影響を及ぼす可能性のある屋外施設は,設計基準降水量(57.5mm/h)による荷重に対し,構内排水設備による海域への排水により,安全機能を損なうことのない設計とする。

また,上記に含まれない構築物,系統及び機器は,降水により損傷 した場合であっても,代替手段があること等により安全機能は損なわ れない。

【別添 1(3.2)】

1.8.5 積雪防護に関する基本方針

建築基準法及び同施行令第86条第3項に基づく北海道建築基準法施行細則における泊村の垂直積雪量より設定した設計基準積雪量(150cm)の積雪によってその安全機能が損なわれないことを確認する必要がある施設を、安全重要度分類のクラス1、クラス2及びクラス3に属する構築物、系統及び機器とする。

その上で、外部事象防護対象施設等は、設計基準積雪量(150cm)の 積雪荷重に対し機械的強度を有すること、給排気口を閉塞させないこ とにより安全機能を損なうことのない設計とする。

また、上記に含まれない構築物、系統及び機器は、積雪により損傷 した場合であっても、代替手段があること等により安全機能は損なわ れない。

【別添 1(3.2)】

1.8.6 落雷防護に関する基本方針

電気技術指針 JEAG4608-2007「原子力発電所の耐雷指針」を参照し設定した設計基準電流値 (100kA) の落雷によってその安全機能が損なわれないことを確認する必要がある施設を,安全重要度分類のクラス 1,クラス 2 及びクラス 3 に属する構築物,系統及び機器とする。

その上で,外部事象防護対象施設等は,雷害防止対策として,原子 炉建屋等への避雷針の設置,接地網の敷設による接地抵抗の低減等を 行うとともに,安全保護回路への雷サージ侵入の抑制を図る回路設計 を行うことにより、安全機能を損なうことのない設計とする。

また,上記に含まれない構築物,系統及び機器は,落雷により損傷 した場合であっても,代替手段があること等により安全機能は損なわ れない。

【別添 1(3.2)】

1.8.7 地滑り防護に関する基本方針

地滑りによってその安全機能が損なわれないことを確認する必要がある施設を、安全重要度分類のクラス 1、クラス 2 及びクラス 3 に属する構築物、系統及び機器とする。

その上で、外部事象防護対象施設等は、地滑りのおそれがない位置に設置することにより安全機能を損なうことのない設計とする。

また、上記に含まれない構築物、系統及び機器は、地滑りにより損傷した場合であっても、代替手段があること等により安全機能は損なわれない。

【別添 1(3.2)】

- 1.8.8 火山防護に関する基本方針
 - 1.8.8.1 設計方針【「6 条 (火山)」参照】

【別添 1(3.2)】

1.8.9 生物学的事象防護に関する基本方針

生物学的事象として海生生物であるクラゲ等の発生及び小動物の侵入によってその安全機能が損なわれないことを確認する必要がある施設を,安全重要度分類のクラス1,クラス2及びクラス3に属する構築物,系統及び機器とする。

その上で、外部事象防護対象施設等及び機能を喪失することで上位 クラスの安全機能に影響を及ぼす可能性のある屋外施設は、海生生物 であるクラゲ等の発生に対して、塵芥による原子炉補機冷却海水系等 への影響を防止するため、除塵装置及び原子炉補機冷却海水ポンプ出 ロストレーナを設置し、必要に応じて塵芥を除去することにより、安 全機能を損なうことのない設計とする。

小動物の侵入に対しては、屋内施設は建屋止水処置等により、屋外 施設は端子箱貫通部の閉止処置を行うことにより、安全機能を損なう ことのない設計とする。

また、上記に含まれない構築物、系統及び機器は、生物学的事象に

より損傷した場合であっても、代替手段があること等により安全機能は損なわれない。

【別添 1(3.2)】

- 1.8.10 外部火災防護に関する基本方針
 - 1.8.10.1 設計方針【「6 条(外部火災)」参照】

【別添 1(3.2)】

1.8.11 高潮防護に関する基本方針

高潮によってその安全機能が損なわれないことを確認する必要がある施設を、安全重要度分類のクラス1、クラス2及びクラス3に属する構築物、系統及び機器とする。

その上で、外部事象防護対象施設及び機能を喪失することで上位クラスの安全機能に影響を及ぼす可能性のある屋外施設(取水設備を除く。)は、高潮の影響を受けない敷地高さ(T.P.+10.0m)以上に設置することで、安全機能を損なうことのない設計とする。

【別添 1(3.2)】

1.8.12 有毒ガス防護に関する基本方針

有毒ガスの漏えいについては固定施設(石油コンビナート施設等) と可動施設(陸上輸送,海上輸送)からの流出が考えられる。発電所 周辺には、以下の交通運輸状況及び産業施設がある。

発電所敷地境界付近には国道 229 号線があり,発電所に近い鉄道路線には北海道旅客鉄道株式会社函館本線(函館~旭川)がある。

発電所沖合の航路は、中央制御室からの離隔距離が確保されている。 発電所周辺の石油コンビナート施設については、発電所敷地外 10km 以内の範囲において、石油コンビナート施設は存在しない。なお、発 電所に最も近い石油コンビナート地区は東北東約 70km の石狩地区で ある。

これらの主要道路,鉄道路線,主要航路及び石油コンビナート施設 は発電所から離隔距離が確保されており,危険物を積載した車両及び 船舶を含む事故等による発電所への有毒ガスの影響を考慮する必要は ない。 また,中央制御室の換気空調設備ついては,外気との連絡口を遮断 し,閉回路循環運転をすることにより中央制御室の居住性を損なうこ とはない。

【別添 1(4.1)】

1.8.13 船舶の衝突防護に関する基本方針

航路を通行する船舶の衝突に対し、航路からの離隔距離を確保する ことにより、安全施設が安全機能を損なうことのない設計とする。

小型船舶が発電所近傍で漂流した場合でも、敷地前面の防波堤等に衝突して止まることから取水性を損なうことはない。また、万が一防波堤を通過した場合であっても、取水口の呑口高さが十分低いことから、浮遊する小型船舶が海水取水口呑口に到達するおそれはない。また、仮に取水口吞口に到達することを想定しても、取水口に設置されているパイプスクリーンにより侵入は阻害されるため、取水性を損なうことはない。

船舶の座礁により重油流出事故が発生した場合は、オイルフェンス を設置する措置を講じる。

したがって、船舶の衝突によって取水路が閉塞することはなく、安 全施設の安全機能を損なうことはない。

【別添 1(4.1)】

1.8.14 電磁的障害防護に関する基本方針

安全保護系は、電磁的障害による擾乱に対して、制御盤へ入線する 電源受電部へのラインフィルタや絶縁回路の設置、外部からの信号入 出力部へのラインフィルタや絶縁回路の設置、鋼製筐体や金属シール ド付ケーブルの適用等により、影響を受けない設計としている。

したがって、電磁的障害により安全施設の安全機能を損なうことは ない。

【別添 1(4.1)】

(3) 適合性説明

第六条 外部からの衝撃による損傷の防止

- 1 安全施設 (兼用キャスクを除く。) は、想定される自然現象 (地震及び津波を除く。次項において同じ。) が発生した場合においても安全機能を損なわないものでなければならない。
- 2 重要安全施設は、当該重要安全施設に大きな影響を及ぼすおそれ があると想定される自然現象により当該重要安全施設に作用する衝 撃及び設計基準事故時に生ずる応力を適切に考慮したものでなけれ ばならない。
- 3 安全施設(兼用キャスクを除く。)は、工場等内又はその周辺に おいて想定される発電用原子炉施設の安全性を損なわせる原因とな るおそれがある事象であって人為によるもの(故意によるものを 除く。以下「人為による事象」という。) に対して安全機能を損 なわないものでなければならない。

適合のための設計方針

第1項について

発電所敷地で想定される自然現象(地震及び津波を除く。)については、敷地及び敷地周辺の自然環境を基に洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地滑り、火山の影響、生物学的事象、森林火災及び高潮を選定し、設計基準を設定するに当たっては、発電所の立地地域である泊村に対する規格・基準類による設定値及び発電所の最寄りの気象官署である小樽特別地域気象観測所で観測された過去の記録並びに寿都特別地域気象観測所で観測された過去の記録をもとに設定する。また、これらの自然現象ごとに関連して発生する可能性がある自然現象も含める。

なお,自然現象を網羅的に抽出するために,国内外の基準等や文献^{(18)~(30)}に基づき事象を収集し,海外の選定基準⁽²⁰⁾も考慮の上,敷地又はその周辺の自然環境を基に,発電所敷地で想定される自然現象を選定する。

安全施設は、発電所敷地で想定される自然現象が発生した場合に おいても安全機能を損なうことのない設計とする。ここで、発電所 敷地で想定される自然現象に対して、安全施設が安全機能を損なわ ないために必要な安全施設以外の施設又は設備等(重大事故等対処 設備を含む。) への措置を含める。また、発電所敷地で想定される 自然現象又はその組合せに遭遇した場合において、自然現象そのも のがもたらす環境条件及びその結果として安全施設で生じ得る環境 条件を考慮する。

原子炉施設のうち安全施設は,以下のとおり条件を設定し,自然 現象によって発電用原子炉施設の安全機能を損なうことのない設計 とする。

【別添1(3.1及び3.2)】

(1) 洪水

敷地は、敷地の前面は日本海に面し、敷地の背面は丘陵地帯となっている。また、敷地周辺の河川としては、敷地北側に茶津川、敷地東側に堀株川があるが、発電所敷地内へ流入する河川はない。

こうした敷地の地形及び表流水の状況から判断して,敷地 が洪水による被害を受けることは考えられない。

【別添1(3.2)】

(2) 風 (台風)

建築基準法及び同施行令第87条第2項及び第4項に基づく建設省告示第1454号によると、泊村(古宇郡)において建築物を設計する際に要求される基準風速は36m/s(地上高10m, 10分間平均)である。

安全施設は、建築基準法及び同施行令第87条第2項及び第4項に 基づく建設省告示第1454号を参照し、設計基準風速 (36m/s, 地 上高10m, 10分間平均)の風 (台風)が発生した場合において も、安全機能を損なうことのない設計とする。

その上で、外部事象防護対象施設等は、設計基準風速 (36m/s, 地上高10m, 10分間平均)の風荷重に対し機械的強度を 有することにより安全機能を損なうことのない設計とする。

また、上記以外の安全施設については、風(台風)に対して機能を維持すること若しくは風(台風)による損傷を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、その安全機能を損なうことのない設計とする。

なお、寿都特別地域気象観測所での観測記録(1884年~2020年)によれば最大風速は49.8m/s(1952年4月15日)であり、この観測記録は観測所の移転前の局地的な強風の影響を受けやすい場所に設置されていた時の記録であり、移転後の最大風速は20.3m/s(2004年2月23日)である。また、小樽特別地域気象観測所での最大風速は27.9m/s(1954年9月27日)であり、いずれも設計基準風速に包絡される。

ここで、風(台風)に関連して発生する可能性がある自然現象 としては、落雷及び高潮が考えられる。落雷については、同時に 発生するとしても、「(7)落雷」に述べる個々の事象として考 えられる影響と変わらない。

高潮については、「(12)高潮」に述べるとおり、安全施設(取水設備を除く。)は影響を受けることのない敷地高さに設置し、安全機能を損なうことのない設計とする。

なお,風(台風)に伴い発生する可能性のある飛来物による影響については,竜巻影響評価において想定している設計飛来物の 影響に包絡される。

【別添1(3.2)】

(3) 竜巻

安全施設は、最大風速100m/sの竜巻が発生した場合において も、竜巻による風圧力による荷重、気圧差による荷重及び飛来物 の衝撃荷重を組合せた荷重等に対して安全機能を損なわないため に、飛来物の発生防止対策及び竜巻防護対策を行う。

a. 飛来物の発生防止対策

竜巻により発電所敷地内の資機材等が飛来物となり、竜巻防 護施設が安全機能を損なわないために、以下の対策を行う。

- ・飛来物となり竜巻防護施設に影響を及ぼす可能性のある物の固縛、固定、竜巻防護施設からの離隔又は撤去を行う。
- ・車両については上記に加え、車両の入構管理、竜巻襲来が予想される場合の車両の退避又は固縛を行う。

b. 竜巻防護対策

固縛等による飛来物の発生防止対策ができない物が飛来し,安全施設が安全機能を損なわないために,以下の対策を行う。

- ・ 竜巻防護施設を内包する施設及び竜巻飛来物防護対策設備に より、 竜巻防護施設を防護し構造健全性を維持し安全機能を 損なうことのない設計とする。
- ・竜巻防護施設の構造健全性が維持できない場合には、代替設備又は予備品の確保、損傷した場合の取替又は補修が可能な設計とすることにより、安全機能を損なうことのない設計とする。

竜巻の発生に伴い、雹の発生が考えられるが、雹による影響は竜巻防護設計にて想定している設計飛来物の影響に包絡される。

さらに、竜巻の発生に伴い、雷の発生も考えられるが、雷 は電気的影響を及ぼす一方、竜巻は機械的影響を及ぼすもの であり、竜巻と雷が同時に発生するとしても、個別に考えら れる影響と変わらないことから、各々の事象に対して安全施 設が安全機能を損なうことのない設計とする。

【別添1(3.2)】

(4) 凍結

小樽特別地域気象観測所での観測記録(1943年~2020年)によれば、最低気温は-18.0℃(1954年1月24日)である。

安全施設は、設計基準温度 (-19°) の低温が発生した場合においても、安全機能を損なうことのない設計とする。

その上で、外部事象防護対象施設等は、上記観測記録を考慮 し、屋内施設については換気空調系により環境温度を維持し、屋 外施設については保温等の凍結防止対策を必要に応じて行うこと により、安全機能を損なうことのない設計とする。

また、上記以外の安全施設については、低温による凍結に対して機能を維持すること若しくは低温による凍結を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、その安全機能を損なうことのない設計とする。

【別添1(3.2)】

(5) 降水

寿都特別地域気象観測所での観測記録(1938~2015年)によれば,最大1時間降水量は57.5mm(1990年7月25日)である。

安全施設は、設計基準降水量(57.5mm/h)の降水が発生した場合においても、安全機能を損なうことのない設計とする。

その上で、外部事象防護対象施設等は、設計基準降水量 (57.5mm/h) の降水に対して、構内排水設備による海域への排 水、浸水防止のための建屋止水処置等により、安全機能を損なう ことのない設計とする。

また、上記以外の安全施設については、降水に対して機能維持すること若しくは降水による損傷を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、安全機

能を損なうことのない設計とする。

なお、森林法に基づく林地開発許可に関する審査基準等を示した「北海道林地開発許可制度の手引き(令和3年4月)」及び「北海道の大雨資料(第14編)(令和2年6月)」によると、発電所敷地における対象区域の確率雨量強度は「神恵内」及び「共和」に分類され、10年確率で想定される雨量強度は32mm/hであり、設計基準降水量に包絡される。

ここで,降水に関連して発生する可能性がある自然現象としては,土石流,土砂崩れ及び地滑りが考えられるが,安全施設のう

追而

(地滑りについて、当社空中写真判読、公刊の地滑りに関する知 見等を踏まえ、再評価を行うため)

【別添1(3.2)】

(6) 積雪

建築基準法及び同施行令第86条第3項に基づく北海道建築基準 法施行細則によると、建築物を設計する際に要求される垂直積雪 量は、泊村においては150cmである。

安全施設は、建築基準法及び同施行令第86条第3項に基づく北海道建築基準法施行細則を参照し、設計基準積雪量(150cm)の積雪が発生した場合においても、安全機能を損なうことのない設計とする。

その上で、外部事象防護対象施設等は、設計基準積雪量 (150cm) の積雪荷重に対し機械的強度を有することにより安全 機能を損なうことのない設計とする。

また、設計基準積雪量(150cm)に対し給排気口を閉塞させないことにより安全機能を損なうことのない設計とする。

また,上記以外の安全施設については,積雪に対して機能を維持すること若しくは積雪による損傷を考慮して代替設備により必

要な機能を確保すること,安全上支障のない期間での除雪,修復 等の対応を行うこと又はそれらを適切に組み合わせることによ り,安全機能を損なうことのない設計とする。

なお、寿都特別地域気象観測所での観測記録(1884~2020年) によれば、月最深積雪は189cm(1945年3月17日)であるが、除雪 により設計基準積雪量(150cm)を上回らない積雪量に抑えるこ とが可能である。

積雪事象は、気象予報により事前に予測が可能であり、進展も緩やかであるため、建屋屋上等の除雪を行うことで積雪荷重の低減及び給排気口の閉塞防止、構内道路の除雪を行うことでプラント運営に支障をきたさない措置が可能である。

【別添1(3.2)】

(7) 落雷

電気技術指針JEAG4608-2007「原子力発電所の耐雷指針」を参照し設定した最大雷撃電流値は、100kA である。

泊発電所を中心とした標的面積3km²の範囲で観測された雷撃電流の最大値は48kAである。

安全施設は、電気技術指針JEAG4608-2007「原子力発電所の耐雷指針」を参照し、設計基準電流値(100kA)の落雷が発生した場合においても、安全機能を損なうことのない設計とする。

その上で,外部事象防護対象施設等の雷害防止対策として,原 子炉建屋等への避雷針の設置,接地網の敷設による接地抵抗の低 減等を行うとともに,安全保護系への雷サージ侵入の抑制を図る 回路設計を行うことにより,安全機能を損なうことのない設計と する。

また、上記以外の安全施設については、落雷に対して機能を維持すること若しくは落雷による損傷を考慮して、代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、安全機能を損なうことのない設計とする。

【別添1(3.2)】

(8) 地滑り

追而

(地滑りについて、当社空中写真判読、公刊の地滑りに関する 知見等を踏まえ、再評価を行うため)

【別添1(3.2)】

(9) 火山の影響

外部事象防護対象施設等は,降下火砕物による直接的影響及び 間接的影響が発生した場合においても,安全機能を損なうことの ないよう以下の設計とする。

a. 直接的影響に対する設計

外部事象防護対象施設等は,直接的影響に対して,以下により安全機能を損なうことのない設計とする。

- 構造物への静的負荷に対して安全裕度を有する設計とすること
- ・水循環系の閉塞に対して狭隘部等が閉塞しない設計とすること
- ・換気系,電気系及び計測制御系に対する機械的影響(閉塞)に 対して降下火砕物が侵入しにくい設計とすること
- ・水循環系の内部における摩耗及び換気系,電気系及び計測制御系に対する機械的影響(摩耗)に対して摩耗しにくい設計とすること
- ・構造物の化学的影響(腐食),水循環系の化学的影響(腐食)並びに換気系,電気系及び計測制御系に対する化学的影響(腐食)に対して短期での腐食が発生しない設計とすること
- ・発電所周辺の大気汚染に対して中央制御室換気空調系は降下火 砕物が侵入しにくく、さらに外気を遮断できる設計とすること
- 計装盤の絶縁低下に対して空気を取り込む機構を有する安全系

の計装盤等の設置場所の換気空調系は降下火砕物が侵入しにく く, さらに外気を遮断できる設計とすること

・降下火砕物による静的負荷や腐食等の影響に対して降下火砕物の除去や換気空調設備外気取入口の平型フィルタの取替え若しくは清掃又は換気空調系の停止若しくは外気との連絡口を遮断し、閉回路循環運転をすることにより安全機能を損なうことのない設計とすること

また、上記以外の安全施設については、降下火砕物に対して機能を維持すること若しくは降下火砕物による損傷を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、安全機能を損なうことのない設計とする。

b. 間接的影響に対する設計

降下火砕物による間接的影響として考慮する,広範囲にわたる送電網の損傷による7日間の外部電源喪失及び発電所外での交通の途絶によるアクセス制限事象が生じた場合については,降下火砕物に対して非常用ディーゼル発電機の安全機能を維持することで,原子炉の停止及び停止後の発電用原子炉の冷却,並びに使用済燃料ピットの冷却に係る機能を担うために必要となる電源の供給が非常用ディーゼル発電機により継続できる設計とすることにより,安全機能を損なうことのない設計とする。

【別添1(3.2)】

(10)生物学的事象

安全施設は、生物学的事象として海生生物であるクラゲ等の発生及び小動物の侵入が発生した場合においても、安全機能を損な うことのない設計とする。

その上で、外部事象防護対象施設等は、海生生物であるクラゲ等の発生に対しては、海生生物を含む塵芥による原子炉補機冷却海水系等への影響を防止するため、除塵装置及び原子炉補機冷却海水ポンプ出口ストレーナを設置し、必要に応じて塵芥を除去することにより、安全機能を損なうことのない設計とする。

小動物の侵入に対しては,屋内施設は建屋止水処置により,屋 外施設は端子箱貫通部の閉止処置を行うことにより,安全機能を 損なうことのない設計とする。

また、上記以外の安全施設については、生物学的事象に対して 機能を維持すること若しくは生物学的事象による損傷を考慮して 代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせる ことにより、安全機能を損なうことのない設計とする。

【別添1(3.2)】

(11)森林火災

敷地外の森林から出火し、敷地内の植生へ延焼するおそれがある場合は、初期消火要員が出動し、予防散水等の延焼防止措置を行う。また、敷地内の植生へ延焼した場合であっても、森林火災シミュレーション(FARSITE)による影響評価に基づいた防火帯幅(20m)を確保すること等により安全施設が安全機能を損なうことはない。

ただし、ササ草原かつ斜面に面し火線強度があがりやすい敷地 北部の防火帯の一部は約55mにわたって評価上必要とされる防火 帯幅約45.3mに対し46m、風上に針葉樹を擁し火線強度があがりや すい敷地東部の防火帯の一部は約400mにわたって評価上必要とさ れる防火帯幅18mに対し25mの防火帯幅を確保すること等により、 安全施設が安全機能を損なうことのない設計とする。

森林火災に伴うばい煙等発生時の二次的影響に対して,外気を 設備内に取り込む機器,外気を取り込む空調系統,屋外設置機器 に分類し,影響評価を行い,必要な場合は対策を実施することに より,安全施設が安全機能を損なうことのない設計とする。

【別添 1(3.2)】

(12)高潮

安全施設(取水設備を除く。)は、高潮の影響を受けない敷地高さ(T.P.+10.0m)以上に設置することで、安全機能を損なうことのない設計とする。

なお,発電所周辺海域の潮位については,発電所から南方約5km地点に位置する岩内港で観測された最高潮位を設計潮位とする。本地点の最高潮位はT.P.+1.00m,朔望平均満潮位がT.P.+0.26mである。

【別添1(3.2)】

自然現象の組合せについては、発電所敷地で想定される自然現象 (地震、津波を除く。)として抽出された12 事象をもとに、被害 が考えられない洪水及び津波に包含される高潮を除いた10事象に地 震及び津波を加えた12事象を網羅的に検討する。

- ・組み合わせた場合も影響が増長しない(影響が小さくなるも のを含む。)
- ・同時に発生する可能性が極めて低い
- ・増長する影響について、個々の事象の検討で包絡されている 又は個々の事象の設計余裕に包絡されている
- ・上記以外で影響が増長する

以上の観点より、事象が単独で発生した場合の影響と比較して、 複数の事象が重畳することで影響が増長される組合せを特定し、そ の中から荷重の大きさ等の観点で代表性のある、地震、津波、火山 の影響、風(台風)及び積雪の組合せの影響に対し、安全施設は安 全機能を損なうことのない設計とする。組み合わせる事象の規模に ついては、設計基準規模事象同士の組合せを想定する。

ただし、「第四条 地震による損傷の防止」及び「第五条 津波による損傷の防止」の条項において考慮する事項は、各々の条項で考慮し、地震又は津波と組み合わせる自然現象による荷重としては、風(台風)又は積雪とする。

組合せに当たっては、地震又は津波の荷重の大きさ、最大荷重の 継続時間、発生頻度の関係を踏まえた荷重とし、施設の構造等を考 慮する。

【別添 $1(5.1\sim5.4)$ 】

第2項について

重要安全施設は、当該重要安全施設に大きな影響を及ぼすおそれがあると想定される自然現象により当該重要安全施設に作用する衝撃及び設計基準事故時に生じる応力を、それぞれの因果関係及び時間的変化を考慮して、適切に組合せて設計する。

なお,過去の記録及び現地調査の結果を参考にして,必要のある場合には,異種の自然現象を重畳させるものとする。

重要安全施設に大きな影響を及ぼすおそれがあると想定される自 然現象は、第1項において選定した自然現象に含まれる。また、重 要安全施設を含む安全施設は、第1項において選定した自然現象又 はその組合せにより、安全機能を損なうことのない設計としてい る。安全機能が損なわれなければ設計基準事故に至らないため,重 要安全施設に大きな影響を及ぼすおそれがあると想定される自然現 象又はその組合せと設計基準事故に因果関係はない。したがって, 因果関係の観点からは,重要安全施設に大きな影響を及ぼすおそれ があると想定される自然現象により重要安全施設に作用する衝撃及 び設計基準事故時に生じる応力を組合せる必要はなく重要安全施設 は,個々の事象に対して,安全機能を損なうことのない設計とす る。

また,重要安全施設は,設計基準事故の影響が及ぶ期間に発生すると考えられる自然現象により当該重要安全施設に作用する衝撃及び設計基準事故時に生じる応力を適切に考慮する設計とする。

【別添1添付1(補足資料-4)】

第3項について

発電所敷地又はその周辺において想定される原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)は、網羅的に抽出するために、発電所敷地又はその周辺での発生の可能性、安全施設への影響度、発電所敷地及びその周辺に到達するまでの時間余裕及び影響の包絡性の観点から、発電用原子炉施設に影響を与えるおそれがある事象として、飛来物(航空機落下)、ダムの崩壊、爆発、近隣工場等の火災、有毒ガス、船舶の衝突及び電磁的障害を選定する。

なお、想定される原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるものを網羅的に抽出するために国内外の基準等や文献 (18) ~ (30) に基づき事象を収集し、海外の選定基準 (20) も考慮の上、敷地及び敷地周辺の状況を基に、設計上考慮すべき事象を選定する。

安全施設は、発電所敷地又はその周辺において想定される原子炉 施設の安全性を損なわせる原因となるおそれがある事象であって人 為によるもの(故意によるものを除く。)に対して安全機能を損な うことのない設計とする。

ここで,発電所敷地又はその周辺において想定される原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)に対して,安全施設が安全機能を損なわないために必要な安全施設以外の施設又は設備等(重大

事故等対処設備を含む。)への措置を含める。

【別添1(4.1)】

(1) 飛来物 (航空機落下)

原子炉施設への航空機の落下確率は「実用発電用原子炉施設への航空機落下確率の評価基準について」(平成14・07・29原院第4号(平成14年7月30日原子力安全・保安院制定))等に基づき評価した結果、約2.3×10⁻⁸回/炉・年であり、防護設計の要否を判断する基準である10⁻⁷回/炉・年を超えないため、飛来物(航空機落下)による防護について設計上考慮する必要はない。

【別添1(4.1)】

(2) ダムの崩壊

発電所の近くには、崩壊により発電所に影響を及ぼすようなダムはないため、ダムの崩壊による安全施設への影響については考慮する必要はない。

【別添 1(4.1)】

(3) 爆発

発電所敷地外10km以内の範囲において、爆発により安全施設に 影響を及ぼすような石油コンビナート施設はないため、爆発によ る安全施設への影響については考慮する必要はない。

発電所敷地外10km以内の高圧ガス貯蔵施設又は発電所敷地周辺 道路の燃料輸送車両から爆発が発生する場合を想定しても、離隔 距離の確保等により、安全施設が安全機能を損なうことのない設 計とする。

発電所前面の海域には主要航路がなく、発電所から主要航路まで約30km離れていることから、発電所内の港湾施設には液化石油ガス輸送船舶の入港は想定されないため、発電所周辺の海域を航行する燃料輸送船の爆発により評価対象施設の安全機能が損なわれることはない。

【別添1(4.1)】

(4) 近隣工場等の火災

a. 石油コンビナート施設等の火災

発電所敷地外10km以内の範囲において、火災により評価対象施設に影響を及ぼすような石油コンビナート施設はないため、石油コンビナート施設の火災による安全施設への影響については考慮する必要はない。

発電所敷地外 10km 以内の範囲において,石油コンビナート施設以外の危険物施設又は発電所敷地周辺道路の燃料輸送車両から火災が発生した場合を想定しても,離隔距離の確保等により,安全施設が安全機能を損なうことのない設計とする。

発電所港湾内の船舶で火災が発生する場合を想定しても, 離隔距離の確保等により,安全施設が安全機能を損なうこと のない設計とする。

b. 発電所敷地内に存在する危険物貯蔵施設等の火災

発電所敷地内に設置する危険物貯蔵施設等の火災発生時の輻射熱による評価対象施設の建屋(垂直外壁面及び天井スラブから選定した,火災の輻射に対して最も厳しい箇所)の表面温度等を許容温度以下とすることにより,安全施設が安全機能を損なうことのない設計とする。

c. 航空機墜落による火災

原子炉建屋周辺に航空機が墜落し、燃料火災が発生した場合,直ちに公設消防へ通報するとともに、初期消火要員が出動し、速やかに初期消火活動を行う。

航空機が外部事象防護対象施設等である原子炉建屋等の周辺で墜落確率が10⁻⁷回/炉・年以上になる地点へ墜落することを想定しても、火災の影響により安全施設が安全機能を損なうことのない設計とする。

また、上記以外の安全施設については、建屋による防護、 消火活動、代替設備による必要な機能の確保又はそれらを適 切に組み合わせることにより、安全機能を損なうことのない 設計とする。

d. 二次的影響(ばい煙等)

石油コンビナート施設等の火災,発電所敷地内に設置する危 険物貯蔵施設等の火災及び航空機墜落による火災に伴うばい煙 等発生時の二次的影響に対して,外気を設備内に取り込む機器,外気を取り込む空調系統及び屋外設置機器に分類し,影響評価を行い,必要な場合は対策を実施することにより,安全施設が安全機能を損なうことのない設計とする。

【別添1(4.1)】

(5) 有毒ガス

有毒ガスの漏えいについては固定施設(石油コンビナート施設等)と可動施設(陸上輸送、海上輸送)からの流出が考えられる。発電所周辺には周辺監視区域が設定されているため、発電用原子炉施設と近隣の施設や周辺道路との間には離隔距離が確保されていることから、有毒ガスの漏えいを想定した場合でも、有毒ガスの発電所への影響はない。また、発電所周辺の主要航路を移動中の可動施設から有毒ガスの漏えいを想定した場合も同様に、離隔距離が確保されていることから、有毒ガスの発電所への影響はない。

また,中央制御室空調装置については,外気との連絡口を遮断 し,閉回路循環運転をすることにより中央制御室の居住性を損な うことはない。

【別添1(4.1)】

(6) 船舶の衝突

航路を通行する船舶の衝突に対し、航路からの離隔距離を確保 することにより、安全施設が安全機能を損なうことのない設計と する。

小型船舶が発電所近傍で漂流した場合でも、防波堤等に衝突して止まることから取水性を損なうことはない。

また,万が一防波堤を通過した場合であっても,取水口の呑口高さが十分低いことから,浮遊する小型船舶が海水取水口呑口に到達するおそれはない。また,仮に取水口呑口に到達する事を想定しても,取水口に設置されているパイプスクリーンにより侵入は阻害されるため,取水性を損なうことはない。

船舶の座礁により,重油流出事故が発生した場合は,オイルフェンスを設置する措置を講じる。

したがって、船舶の衝突によって取水路が閉塞することはな

く, 安全施設が安全機能を損なうことはない。

【別添1(4.1)】

(7) 電磁的障害

安全保護系は、電磁的障害による擾乱に対して、制御盤へ入線 する電源受電部へのラインフィルタや絶縁回路の設置、外部から の信号入出力部へのラインフィルタや絶縁回路の設置、鋼製筐体 や金属シールド付ケーブルの適用等により、影響を受けない設計 としている。

したがって,電磁的障害により安全施設の安全機能を損なうこ とはない。

【別添 1(4.1)】

追而

(地滑りについて、当社空中写真判読、公刊の地滑りに関する 知見等を踏まえ、再評価を行うため)

第1.12.1図 発電所周辺における地滑り地形分布図

1.10 参考文献

- (18) Specific Safety Guide (SSG-3) "Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants" IAEA, April 2010
- (19) NUREG/CR-2300 "PRA Procedures Guide", NRC, January 1983
- (20) ASME/ANS RA-Sa-2009 "Addenda to ASME/ANS RA-S-2008 Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications"
- (21) DIVERSE AND FLEXIBLE COPING STRATEGIES (FLEX)
 IMPLEMENTATION GUIDE (NEI-12-06 August 2012)
- (22) 「実用発電用原子炉及びその附属施設の位置,構造及び設備の基準に関する規則の解釈」(制定:平成25年6月19日)
- (23) 「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(制定:平成25年6月19日)
- (24) 「日本の自然災害」国会資料編纂会 1998 年
- (25) B. 5. b Phase 2 & 3 Submittal Guideline (NEI-06-12 December 2006) -2011.5 NRC 公表
- (26) 「外部ハザードに対するリスク評価方法の選定に関する実施基準:2014」一般社団法人 日本原子力学会 2014 年 12 月
- (27) Safety Requirements No.NS-R-3 "Site Evaluation for Nuclear Installations", IAEA, November 2003
- (28) NUREG -1407 "Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities", NRC, June 1991
- (29)「産業災害全史」日外アソシエーツ 2010 年 1 月
- (30) 「日本災害史辞典 1868-2009」日外アソシエーツ 2010 年 9 月
- (31)「航空機落下事故に関するデータ」(令和4年3月 原子力規制委員会)

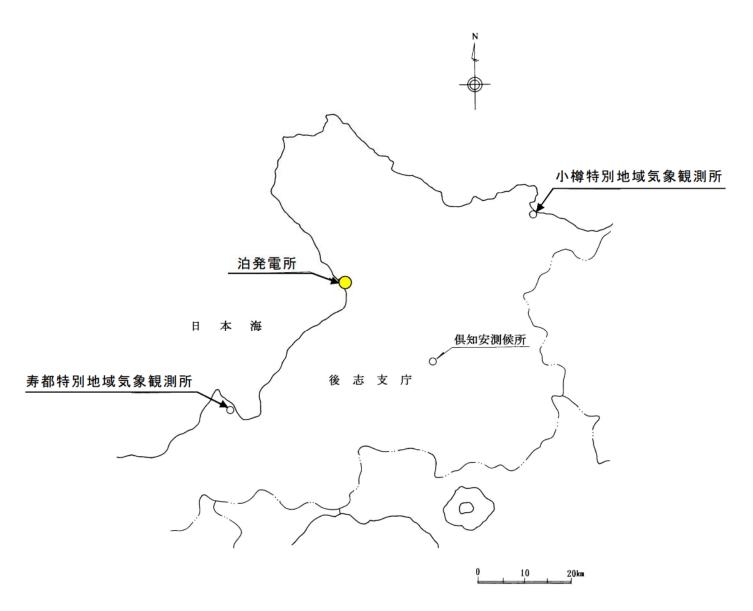
1.3 気象等

2. 気象

- 2.2 最寄りの気象官署等の資料による一般気象
 - 2.2.3 最寄りの気象官署における一般気象(2)(3)

(2)極値

寿都特別地域気象観測所及び小樽特別地域気象観測所における 観測記録の極値を第2.2.4表から第2.2.17表に示す。なお、両気 象観測所の位置については第2.2.1図に示す。


寿都特別地域気象観測所の観測記録によれば、最低気温-15.7℃ (1912年1月3日),日最大降水量206.3mm (1962年8月3日),日最大1時間降水量57.5mm (1990年7月25日),積雪の深さの月最大値189cm (1945年3月17日)及び最大瞬間風速53.2m/s (1954年9月26日)である。

小樽特別地域気象観測所の観測記録によれば、最低気温-18.0℃ (1954年1月24日), 日最大降水量161.0mm (1962年8月3日),日最大1時間降水量50.5mm (2017年7月16日),積雪の深さの月最大値173cm (1945年2月19日)及び最大瞬間風速44.2m/s (2004年9月8日)である。

	77 0. 0. 1 2	人 多 日 名 7 万 压 20	人。民民		
気象官署名	所在地 ^{注1)}	創立年月日	露場の標高 (m)	観測項目	風速計の高さ (地上高)(m)
寿都特別地域 気象観測所 ^{注2)}	寿都郡寿都町 字新栄町 209 ^{注 3)} (南西約 36km)	明治 17年6月1日 (1884年)	33. 4 注 4)	気象全般	17.6 注 5)
小樽特別地域 気象観測所 ^{注6)}	小樽市勝納町 16番13号 (東北東約43km)	昭和 18年1月1日 (1943年)	24. 9	気象全般	13.6 注 7)

第2.2.1表 気象官署の所在地及び観測項目

- 注1) ()内は敷地からの方位と距離
- 注2) 寿都特別地域気象観測所は、2008年10月に寿都測候所から名称変更した。
- 注3) 所在地は、1989年9月までは寿都郡寿都町字開進町65である。
- 注4) 露場の標高は、1989年9月までは15.8mである。
- 注5) 風速計の高さは、1989年9月までは9.9m、1997年12月までは13.5m、2008年9月までは13.4m、2011年9月までは17.4mである。
- 注6) 小樽特別地域気象観測所は、1999年3月に小樽測候所から名称変更した。
- 注7) 風速計の高さは,1999年2月までは12.3m,2000年11月までは12.2m,2012年10月までは13.4mである。

第2.2.1図 気象観測所の位置

(寿都特別地域気象観測所)
気候表[概要] (
第2.2.2表

				第 2.2	2.2表		気(疾表) (概要	罢] (寿都和	铲別 地	蚁 気黎	寿都特別地购気絮觀測別	()		
要素	A	1	2	3	4	5	9	2	8	6	1 0	1 1	1 2	年	統計期間
平均気温	(°C)	-2.3	-1.9	1.2	6.5	11.5	15.4	19.5	21.2	18.1	12. 1	5.6	-0.3	8.9	1991~2020 年
最高気温の平均 (℃)	(元) 体元	-0.2	0.3	3.9	10.2	15.7	19.2	23.0	24.6	21.6	15.6	8.4	2.0	12.0	1991~2020 年
最低気温の平均 (℃)	z均 (℃)	-4.7	-4.6	-1.7	2.8	7.8	12.3	16.8	18.4	14.6	8.4	2.3	-2.8	5.8	1991~2020 年
相対湿度	(%)	69	68	66	68	74	82	85	84	78	72	69	69	74	1991~2020 年
雲量		9. 2	9.0	7.8	6.7	6.9	7.5	7.8	7.3	6.7	6.7	8.3	9.2	7.8	1971~2000 年
日照時間	(時)	27.2	46.7	111.0	170.7	194.6	170.4	155.6	163.1	153.9	121.3	55.3	26.4	1393. 5	1991~2020 年
全天日射量((MJ/m2)	3.7	6.4	11.4	15.7	18.2	18.9	17.9	15.9	13.2	9.0	4.6	3.1	11.5	1973~2000 年
風速	平均	4.4	4.6	4.3	4.5	4.3	4.3	3.8	3.5	3.6	3.8	4.1	4.6	4.2	1991~2020 年
(m/s)	日最大	40.5	37.1	37.9	49.8	39. 5	39.7	32.5	31.2	42.0	32. 4	40.3	37.7	49.8	1888~2000 年
最多風向		北西	北西	北西	南南東	南南東	南南東	南南東	南南東	南南東	南南東	北西	北西	南南東	1991~2020 年
降 水 量 (mm)	m)	120.2	87.4	68.1	59.3	62. 6	60.7	94.5	130.1	149.8	128.0	148.2	138.5	1250.6	1991~2020年
降雪深さの合	の合計 (cm)	146	114	09	3	I	I	1	I	I	I	24	108	454	1991~2020 年
	不照	9. 5	5.1	3.3	3.7	4.1	4.3	3.7	4.4	3.2	2.8	6.8	10.7	62.0	1971~2000年
大気現象	₩m	28.9	25. 5	22.4	6.2	0.1	0.0	0.0	0.0	0.0	1.3	13.0	25.5	122.9	1971~2000 年
(H)	鍪	0.5	0.3	0.0	0.4	1.4	2.0	1.6	0.3	0.0	0.1	0.0	0.3	6.8	1971~2000 年
	出	0.2	0.1	0.2	0.2	0.6	0.6	0.8	1.3	1.9	3.2	1.7	0.4	11.1	1971~2000 年
注) 露場標高	層	33.4m	(1989年9月	4116	では, 15.	15.8m)									
風速計	風速計の高さ	17.6m	(1989年9月	1)16	では 9.9m,	n, 1997 年	年 12 月	416	では13.5m,	2008年	6	月までは 13.4m,		2011年9月ま	ミでは 17.4m)
(超上區)	(e														

(小樽特別地域気象観測所) 気候表[概要] 第2.2.3表

斑素	月	1	67	က	4	2	9	1	∞	6	1 0	1 1	1 2	サ	統計期間
平均気温	温 (℃)	-3.1	-2.7	0.8	6.5	12.1	16.0	20.2	21.7	18.1	11.8	4.9	-1.1	8.8	1991~2020年
最高気温の平均(℃)	平均(℃)	-0.5	0.2	4.1	10.9	16.9	20.4	24.2	25.6	22. 3	15.9	8.3	1.6	12.5	1991~2020年
最低気温の平均(℃)	(の) 体本	-5.8	-5.7	-2.4	2.6	7.9	12.5	17.1	18.4	14.3	7.9	1.6	-3.8	5.4	1991~2020年
相対湿度	度 (%)	71	20	99	64	69	78	81	78	73	69	69	7.1	72	1991~2020年
部	曹	8.3	8.2	7.4	6.6	6.7	7.1	7.4	7.3	6.5	6.4	7.7	8.3	7.3	1961~1990年
日照時間	間 (時)	63.5	78.2	128.8	175.5	200.6	170.4	163.3	167.7	159.8	139. 7	79.6	59.0	1586.2	1991~2020年
全天日射量	(MJ/m2)	_	_	I	_	_	_	1	-	1	_	I	_	_	-
風速	平均	3.3	3.3	3.2	2.8	2.4	2.0	1.9	2.0	2.4	2.8	3.2	3.5	2.7	1991~2020 年
(m/s)	日最大	24.0	20.7	18.0	23.2	24.8	18.8	17.1	17.7	27.9	16.5	18.5	24. 2	27.9	1943~1990 年
最多風向	ij	西南西	西南西	西南西	南西	南西	東北東	東北東	南西	南西	南西	西南西	西南西	西南西	1991~2020年
降水量((mm)	138.1	106.6	87.3	56.4	53.7	55.6	93.6	131.3	131.7	123.0	152.4	151.9	1281.6	$1991 \sim 2020$ 年
降雪深さの合計(cm)	合計(cm)	157	130	80	7	_	_		_	1	0	36	142	556	$1991 \sim 2020$ 年
	不照	5.5	3.5	3.1	3.3	3.7	3.5	3.6	3.5	3.0	2.6	4.2	5.4	44.9	$1971 \sim 2000$ 年
大気現象	ŧт	29.8	25.7	22.8	7.6	0.2	0.0	0.0	0.0	0.0	1.6	14.9	28. 5	131.2	1999~2020 年
(H)	錈	0.2	0.1	0.3	0.3	0.8	0.9	1.5	0.1	0.0	0.0	0.0	0.2	4.5	1999~2020年
	棚田	0.0	0.0	0.1	0.1	0.3	0.5	1.0	1.5	1.3	1.3	0.5	0.0	9.9	1961~1990年
注) 露場標高 風速計の (地上高	露場標高 風速計の高さ (地上高)	24.9m 13.6m (年 6661)	2月までは	は 12.3m,	n, 2000年	11 月	までは 12.2m,		2012年10	10 月まで	では 13.4m	n)		

6 自-39

第2.2.4表 日最高・日最低気温の順位 (寿都特別地域気象観測所)

統計期間:1885年~2021年極値の単位: °C

											極	極値の単位	7		
	順位	月	1	2	3	4	5	9	2	8	6	10	11	12	サ
		極値	12.2	11.2	17.5	27.7	29.0	31.3	33.0	34.0	31.1	25.9	20.6	15.1	34.0
	П	起年	1903	1967	2018	1998	2019	2014	1924	1904	1933	1946	2003	1953	1904
鲁		Н	24	23	28	21	27	4	20	20	1	3	3	1	8月20日
恒		極値	10.6	10.6	14.9	23. 4	28. 2	29. 2	32. 5	33.7	30.8	24.9	20.4	14.7	33.7
1	2	起 年	1903	1960	2015	2018	2019	2010	1924	1894	2020	2021	1944	1890	1894
Ŕ		Ш	25	25	28	21	26	28	28	7	8	4	2	14	8月7日
頭		極値	10.2	10.3	14.2	23. 4	28.0	29. 1	32. 4	33.5	30.1	24.4	20. 2	14.0	33.5
	က	起年	1916	1997	2008	2015	2019	2005	2000	2010	2012	2021	1940	1989	2010
		Ш	6	25	23	27	25	23	31	9	18	10	9	4	8月6日
		極値	-15.7	-15.0	-11.4	-7.7	-1.4	2.7	7.1	10.8	4.8	-3.6	-9.0	-15.0	-15.7
	1	起年	1912	1893	1922	1929	1887	1923	1887	1956	1964	1924	1887	1937	1912
善		Ш	3	13	1	3	4	5	3	22	28	29	30	27	1月3日
魚	•	極値	-15.2	-14.4	-11.3	-5.8	-1.1	3.4	7.7	11.1	5.2	-3.5	-8.7	-13.9	-15.2
Ţ	23	起 年	1902	1933	1922	1885	1935	1906	1925	1889	1898	1904	1971	1937	1902
Ŕ		В	24	11	2	2	9	1	13	7	26	30	29	26	1月24日
赙	•	極値	-15.1	-14.3	-11.0	-5.4	-0.9	3.9	8.1	11.2	5.6	-3.1	-8.2	-13.0	-15.1
	က	起 年	1919	1931	1951	1893	1955	1981	1979	1887	1945	1924	1891	1984	1919
		Ш	5	8	4	8	3	1	6	30	27	30	19	24	1月5日

第2.2.5表 日最高・日最低気温の順位(小樽特別地域気象観測所)

統計期間: 1943年~2021年極値の単位・で

			1																
	年	36.2	2021	7 月 28 日	34.9	2000	8月1日	34.7	1978	8月3日	-18.0	1954	1月24日	-17.2	1978	2月17日	-17.2	1945	1月27日
	12	15.2	1954	1	14.8	2021	1	14.8	1954	2	-13.5	1952	25	-13.2	1984	24	-13.0	1984	25
• •	11	21.8	2003	3	20.8	1962	4	20.5	2002	2	-9. 1	1971	59	-8. 4	1982	24	-8.2	2016	23
極値の単位	10	25.7	1978	2	25. 1	1987	11	25.0	1994	13	-1.4	1955	31	-0.8	1950	24	-0.6	2006	24
	6	33.6	2012	18	33.0	2012	4	32. 4	2011	3	2.6	1964	28	5.4	1992	29	5.6	1981	28
	8	34.9	2000	1	34.7	1978	3	34. 4	1999	3	8.9	1971	19	10.5	1948	30	10.6	1962	25
	7	34.2	2000	31	33.9	2018	29	33.5	1976	26	9.0	1921	2	9.2	1969	10	9.2	1961	1
	9	31.8	2002	23	30.7	1991	6	30.6	2009	25	4.5	1981	1	4.5	1954	9	4.6	1954	6
	5	30.2	2019	25	29.9	2019	26	29. 5	1951	30	0.0	1980	8	0.1	1976	4	0.2	1980	7
	4	27.6	1998	21	25.5	1961	29	24.9	2018	30	-6.4	1964	8	-5.6	1970	2	-5.1	1984	3
	3	16.9	1997	29	16.3	2018	28	15.3	1964	31	-14.1	1970	2	-13.1	1946	18	-12.9	1986	4
	2	12.1	2010	25	11.9	2010	26	11.5	1960	25	-17.2	1978	17	-16.7	1944	12	-16.3	1945	21
	1	11.0	2009	23	9.6	2000	2	9. 5	1988	22	-18.0	1954	24	-17.2	1945	27	-16.4	1945	18
1	月 一	極値	起年	Н	極値	起年	Ш	極値	起年	Ш	極値	起年	Ш	極値	起年	Н	極値	起年	ш
	順位		1			2			က						2			က	
	-			串	恒	7 1	ĸ	頭					串	#	1	ĸ	頭		

第2.2.6表 日最小湿度の順位 (寿都特別地域気象観測所)

統計期間:1950年~2021年

Ш H 田 H ∞ % 極値の単位 Ξ ∞ က က Щ # 争 争 画 湩 画 Ш Ш Ш 働 型 働 起 働 起 順位 က

第2.2.7表 日最小湿度の順位(小樽特別地域気象観測所)

統計期間:1950年~2021年

Ш 月 18 田 H % 極値の単位 ∞ က က Щ # 册 争 画 逥 画 Ш Ш Ш 働 型 働 起 働 起 順位 က

(寿都特別地域気象観測所) 降水量の順位 Ш 表 2.8 8 箫

間:1885年~2021年

統計期

Ш 157.5 206.3 2 19 1962 1975 1961 25 3 173. # 町 H 田 47.3 1925 1935 1944 12 48. ∞ 52. mm : 54.01975 1972 値の単位 Ξ 20 54. 55. 21 1979 2 2 1991 15 19 15 10 87. .92 78. 極 150.0127.0102.02011 1985 18 6 2 114.0173.5က 1962 1975 1981 206. 1923 ∞ က 114.1 2 2010 1950 1961 157. 25 136. 29 157 54.61886 1904 1938 က 28 30 26 9 68. 119.055.7 1998 1909 2 20 17 .99 2 2 54.050.01947 1890 2013 21 50. 9 4 2 2015 2015 2 1935 2 10 46. 25 45. 13 က 62. 42.0 37.2 2 1915 1972 1972 28 27 2 45. 47.0 2006 1915 2 1970 44. 20 43. က 31Щ # 争 重 重 争 重 Ш Ш Ш 働 型 働 型 働 起 順位

က

2

第2.2.9表 日降水量の順位(小樽特別地域気象観測所)

間:1943年~2021年

統計期

Ш 161.0112.02 1962 1975 23 1985 3 129. 中 町 田 H ∞ 6 œ 51.0 2 1989 1977 12 17 51. 45. 6 : mm 2013 2 1972 値の単位 Ξ 20 21 68. ∞ 68. .99 1979 0 2 1957 19 10 17 96. 72. 極 112.01985 91.02015 16 2 6 90. 161.0105.0 2 1962 1975 1981 129. 23 23 ∞ က 88. 1 67.02017 1961 1961 105. 25 24167 95.643.0 2017 19981967 22 20 9 9 58. 58.0 39.01998 2014 2 16 35. 2 2 2 195619821947 16 10 21 48. 46. 46. 4 0 2015 1975 വ 199910 75. 38. 32. က 21 က 44.5 42.0 2 19941972 1972 22 27 2 59. 44.0 2 1970 2 1993 1996 3129 6 60. 46. Щ # 争 重 重 争 重 Ш Ш Ш 働 働 型 働 型 起 順位 2 က

1時間降水量の順位 (寿都特別地域気象観測所) 2.10表 8 無

期 間:1938年~2021年

8月1日 57.5 49.0 月 10 43.5 1990 25 1973 1947 # H ∞ 11.5 1962 1990 2015 12 30 16 13. 8 mm : 統計期間: 極値の単位: 24.0]17.0 2008 2 1938 1987 Ξ 2 ∞ 19. 2 2002 2 2003 1980 10 29 25. 2 24. 22. 2142.0 41.2 34.5 1948 1985 1938 13 16 7 6 2010 0 1973 2 1947 2 10 24 49. 41. ∞ 43. 2010 2 2 1999199025 29 29 57. 34. 7 40. 20.6 16.013.0202019572007 19 15 27 9 2016 20020 19980 2 1 2 15. 0 12. 313111.9 195311.5 20171988 2 14 18 23 4 9. 2 2015 197920025 13 20 က 2113. 12. ∞ 1974 2 19612015 2 22 0 10. ∞ 6 ∞ 0 2000 2006 1997 9.0 19 12. က 0 Щ # 争 # 画 重 画 Ш Ш Ш 型 懣 型 懣 懣 起 順位 0 က

]:資料不足值 凡例

第2.2.11表 1時間降水量の順位(小樽特別地域気象観測所)

間:1943年~2021年

角

統計

Ш 月 11 日 月 16 39.0 2 2017 40.2 1954 18 井 50. 田 6 ∞ 1972 9.0 9.0 1971 12 6 3 6 : mm 13.012.5 1976 2 2006 値の単位 1987 \Box 18 13. 25.0 17.516.02010 2011 26 10 12極 40.2 33.0 31.5 19541992 6 Ξ 39.02010 1973 5 18 37. ∞ ∞ 38. 1970 1946 2 2017 16 23 29 25. _ 32. 50. 20.5 2013 2 1996 196119 27 15. 9 9 18. 11.0 1995 19972 9.5 1987 13 26 10. 2 ∞ 11.5 10.0 195619929.5 18 16 24 4 11.0 2015 1979 9.0 10.0 199910 17 က 3 2 1972 2007 6.5 1981 2 13 14 0 10. 4 ∞; 19962010 19949.0 2 2 13 ∞ 9. ∞. Щ 争 # 争 湩 湩 画 Ш Ш Ш 働 型 働 型 働 起 順位 2 က

積雪の深さの月最大値の順位 (寿都特別地域気象観測所) 2.12表 箫

統計期間:1885年~2021年

Ш П Ш 月 17 月 17 月 10 # 極値の単位: cm Ξ ∞ က $^{\circ}$ щ 画 # 恒 争 画 并 Ш Ш Ш 働 働 働 型 型 型 順位 П က

積雪の深さの月最大値の順位 (小樽特別地域気象観測所) 2.2.13表 箫

統計期間:1943年~2021年

月 10 日 Ш Ш 月 19 # 田 極値の単位: cm Ξ က $^{\circ}$ щ 画 # 恒 争 画 并 Ш Ш Ш 働 働 働 型 型 型 順位

П

က

第2.2.14表 最大瞬間風速の順位(寿都特別地域気象観測所)

											統計極値0	+ 期間: の単位:	1885 年~2021 m/s	~2021年
/	H	1	2	င	4	5	9	7	∞	6	10	11	12	井
	値	46.3	36.4	37.6	41.0	44.9	40.3	33.6	38.7	53.2	40.0	36. 1	38.3	53.2
	向	北西	西南西	西	南東	単単	量量	南東	南東	屋屋	南東	型北	北北	屋屋
						東	東						西	
	年	1965	1973	1970	1974	1955	1945	1956	1970	1954	1956	1975	1965	1954
	В	4	7	17	21	4	3	9	16	26	31	8	16	9月26日
	値	35. 5	35.0	37.0	37.9	39.0	36.1	31.0	33.3	38.5	39.4	35. 4	36.0	46.3
	向	西北	北北	南東	南南	畢	南南	岸岸	岸岸	南東	非非	北西	北西	北西
		西	東		東		東	東	東		西			
	年	1979	2004	1978	1983	1986	1989	1982	1987	1949	1979	1969	1965	1965
	В	19	23	10	29	15	26	17	31	1	20	25	17	1月4日
	値	35.0	34.5	35.0	37.5	37.4	33.3	29. 2	32.7	35.0	37.0	35.3	34.3	44.9
	垣	北西	北西	北北	南南	南南	南南	審	南東	櫮	北西	華	北北	南南東
				西	庫	庫	東					東	西	
	年	1965	1994	1978	1973	1981	1989	1983	2016	2004	1982	1993	1970	1955
	ш	2	22	1	25	11	25	4	30	8	25	14	13	5月4日

第2.2.15表 最大瞬間風速の順位(小樽特別地域気象観測所)

											統計	期 間:	1943年~2021	~2021年
											極値の)単位:	m/s	
順位	A	1	2	3	4	5	9	2	8	6	10	11	12	年
	極値	31. 4	27.0	30.6	32.4	30.3	31.8	22.3	35.2	44.2	31.4	32.5	34.5	44.2
	風向	南西	쓨	西北	摇	南西	南南	展	南西	西南	西	南西	南南	西南西
1				西			西			西			西	
	起年	1983	2004	1991	1974	1952	1969	1992	1981	2004	1984	1982	2012	2004
	Н	27	23	7	21	14	6	18	23	8	28	30	9	9月8日
	極値	31.3	26.9	27.1	30.1	28.8	29. 2	20.7	34.8	37.2	30.3	31.7	31.2	37.2
	風向	南西	南南	囯	西南	極	西南	展	極	南西	西南	南西	国	南西
2			屈		西		垣				西			
	起 年	2003	1966	1970	2002	2007	2003	1982	1970	1954	2002	2002	2000	1954
	Н	28	8	17	18	1	3	17	16	27	2	29	24	9 月 27 日
	極値	30.3	26.3	26.9	28.3	27.6	29.0	20.1	28.1	34.5	29. 7	31.1	29.2	35.2
	風向	南南	西南	南西	南西	南西	南西	南西	西南	南西	南西	南西	国	南西
က		西	西						西					
	起年	1985	2006	2010	1986	1951	1979	1994	1994	1987	1982	1997	1980	1981
	ш	10	27	21	6	9	11	4	7	1	22	27	4	8月23日

第2.2.16表 最大風速の順位 (寿都特別地域気象観測所)

1 2 3 4 5 6 7 8 9 10 11 12 12 13 14 5 6 7 8 9 10 11 11 11 11 11 11		年		南南東		1952	月 15		一田		1954	月 26		쏬		1939	<u>В</u>
1	1885 m/s	12	37.7	南南	東	1924	10	29.7	光光	西	1965	16	28.1	北北	西	1960	18
1	朝 間: 単位:	11		崋		1922	8	31.7	華	東	1923	25		끆		1928	3
極値 1 2 3 4 5 6 7 8 極値 40.5 34.6 36.0 49.8 39.5 35.3 32.5 28.6 風向 北 南南 超 年 1939 1937 1952 1895 1945 1936 1919 周 中 9 17 24 15 18 3 3 3 18 風向 北西 南 西 西 市 市 市 東 東 東 東 展位 32.2 30.9 34.8 33.9 35.1 34.7 27.0 26.4 風向 北西 市 市 市 市 市 市 市 市 超 4 8 27 10 4 2 3 17 極値 32.2 30.6 33.8 32.2 35.0 29.7 26.2 25.6 風 市 東 東 東 東 東 東 東 市 市 市 市 市 東 2 3 17<	統計極値0	10		櫮		1922	26	32.0	南東		1956	31	30.7	華	東	1954	3
極値 40.5 36.0 49.8 39.5 35.3 趣 向 北 南南 南南 南南 南南 南南 南南 南南 起 年 1939 1938 1937 1952 1895 1945 1936 風 向 北西 南南 南南 南南 南南 南南 南南 風 向 北西 東 東 東 東 東 庭 年 1939 1938 1937 1952 1895 1945 1936 風 向 北西 南南 南南 南南 南南 南南 南南 南南 庭 年 1965 1924 1898 1919 1955 1945 1895 日 4 8 27 10 4 2 3 極 値 32.2 30.6 33.8 32.2 35.0 29.7 26.2 風 向 北北 南南 南南 南南 南東 東 東 庭 年 1938 1954 1956 1956 1956 財 北 東 東 東 東 財 東 東 東 東 東 財 東 東 東 東 東 </td <td></td> <td>6</td> <td>42.0</td> <td>単単</td> <td>東</td> <td>1954</td> <td>26</td> <td></td> <td>華</td> <td>東</td> <td>1921</td> <td>26</td> <td></td> <td>南東</td> <td></td> <td>1902</td> <td>28</td>		6	42.0	単単	東	1954	26		華	東	1921	26		南東		1902	28
極値 40.5 34.6 36.0 49.8 39.5 35.3 風向 北 南南 市南 市南 市 東東 東東<		∞	28.6	與與	東	1919	18	26.4	華	東	6161	17	5.	華	東	1939	9
極値 40.5 34.6 36.0 49.8 39.5 風向 北 南南 南南 南南 南南 南南 南南 起年 1939 1938 1937 1952 1895 極値 32.2 30.9 34.8 33.9 35.1 風向 北西 南面 西面 東 東 極値 32.2 30.6 33.8 32.2 35.0 風向 北北 南南 南南 南南 南南 南南 超中 1938 1954 1926 1958 1936 超向 北北 南南 南南 南南 南南 南南 超中 1938 1954 1926 1958 1936 日 26 27 25 20		7		単単	東	1936	3	27.0	華	東	1895	3				1956	9
極値 40.5 34.6 36.0 49.8 風向 北 南南 南南 南南 南南 起母 1939 1938 1937 1952 超 中 9 17 24 15 極値 32.2 30.9 34.8 33.9 超 年 1965 1924 1898 1919 超 右 8 27 10 極値 32.2 30.6 33.8 32.2 風向 北北 南南 南南 南南 東 超 年 1938 1954 1926 1958 世 年 1938 1954 1926 1958 日 26 27 25 25		9	35.3	華	東	1945	3	34.7	墨	東	1945	2	29.7			1945	18
極値 1 2 3 極値 40.5 34.6 36.0 風向 北 南南 南南 超極値 32.2 30.9 34.8 極値 32.2 30.9 34.8 超向 北 市 市 財 4 8 27 極値 32.2 30.6 33.8 風向 北北 南南 南南 超向 北北 南南 東 起 年 1938 1954 1926 日 26 27 25		ರ		単単	単	1895	18	35.1	華	東	1955	4	35.0	櫮		1936	20
極値 1 2 極値 40.5 34.6 風向 北 南南 財 1939 1938 財 1939 117 極値 32.2 30.9 超向 北西南 南 財 4 8 極値 32.2 30.6 風向 北北 南南 超向 北北 南南 超 年 1938 1954 日 26 27		4	49.8	華	東	1952	15	33.9	櫮		1919	10	32.2	垂	東	1958	25
極値 40.5 風向 40.5 超向 北 B 0 B 1939 B 0 R 0 B 0 R 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0 B 0 C 0 C 0 C 0 B 0		က	36.0	単単	東	1937	24	34.8	西南	屈	1898	27	33.8	垂	東	1926	25
極風程極風程甲		2	34.6	與與	東	1938	17	30.9	樫		1924	8	30.6	華	東	1954	22
		1	40.5	羋		1939	6	32. 2	北西		1965	4	32. 2	岩岩	西	1938	26
3 2 章		H					В					В					Ш
		順位			1					63					က		

第2.2.17表 最大風速の順位(小樽特別地域気象観測所)

極値 24.0 風向 南南 超位 23.5 風向 南西 超向 南西 超向 南西 起向 中西 超向 中西 点 年 1958									極値の)単位:	m/s	
恒 回 年 恒 回 年	23	6	4	5	9	2	∞	6	10	=		サ
回 田 画 回 H	20.7	18.0	23.2	24.8	18.8	17.1	17.7	27.9	16.5	18.5	24.2	27.9
サ 型 恒 回 サ	西南	西南	南東	南西	南南	南西	南西	南西	光	西北	西南	南西
# 個 @ #	西	西			西				屈	西	西	
世 恒 回 毋	1944	1951	1949	1952	1969	1950	1970	1954	1949	1921	1944	1954
種 但 サ	25	31	4	14	9	1	16	27	30	26	7	9 月 27 日
但 併	20.0	17.3	20.8	21.1	18.0	14.2	17.2	22. 6	16.3	18.2	19.7	24.8
# "	南西	櫮	華	南西	南西	南西	南西	南西	囯	南西	南西	南西
サ			西									i e
	1948	1946	1954	1952	1955	1949	1981	1959	1944	1945	1950	1952
	21	4	22	13	7	18	23	18	8	7	6	5月14日
極 値 21.7	18.5	17.0	20.7	20.8	16.0	13.7	16.0	20.5	15.5	17.4	18.8	24.2
風向南西	北北	西南	西南	南西	南西	南西	華	南西	光光	മ	北東	西南西
	承	西	西				西		単			
起 年 1948	1956	1947	1947	1951	1951	1959	1960	2004	1955	1956	1945	1944
Д Н	11	3	15	9	24	30	30	8	6	14	18	12月7日

4 水理

4.1 陸水

敷地は、積丹半島西側基部の海沿いに位置した標高 40~130m の丘陵地にあり、地形は海岸へ向かってなだらかに傾斜している。

敷地を含む周辺の表流水のほとんどは、敷地北側の茶津川(流域面積 2.9km2)及び敷地東側の発足川(流域面積 18.2km2)に集まり、日本海へ注 いでいる。

また, 泊発電所の敷地境界から東約 8km に共和ダムが存在するが, 発電所まで距離が離れており, 発電所との間には丘陵地が分布している。

4.2 海象

4.2.1 潮位及び流況

(1) 潮位

当地点近傍における潮位は、北海道開発局による敷地の南約 5 km に位置する岩内港の潮位観測記録(1961 年 9 月~1962 年 8 月,ただし最高潮位及び最低潮位は 1965 年 8 月~1996 年 12 月)によれば、下記のとおりである。

最高潮位 (H. H. W. L) T. P. +1.00m (1987年9月1日)

朔望平均満潮位 (H.W.L) T.P. +0.26m

平均水面 (M.S.L) T.P. +0.21m

朔望平均干潮位 (L. W. L) T. P. -0.14m

最低潮位 (L. L. W. L.) T. P. -0.36m (1979年1月29日)

なお、敷地では過去において高潮による被害を受けた例はみられない。

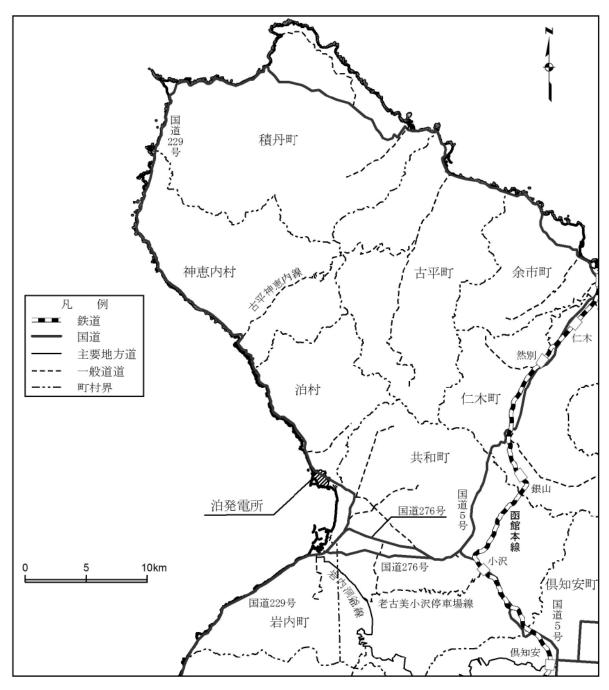
(2) 流況

敷地前面の流況は、当社が行った 1997 年 1 月から 1997 年 12 月までの流況観測記録 (海面下 2m) によれば、流速は、10cm/s 未満の出現頻度が高くなっている。また、流向については、各季節ともほぼ沿岸地形に沿った流れが卓越しており、北流及び南流の傾向がみられる。

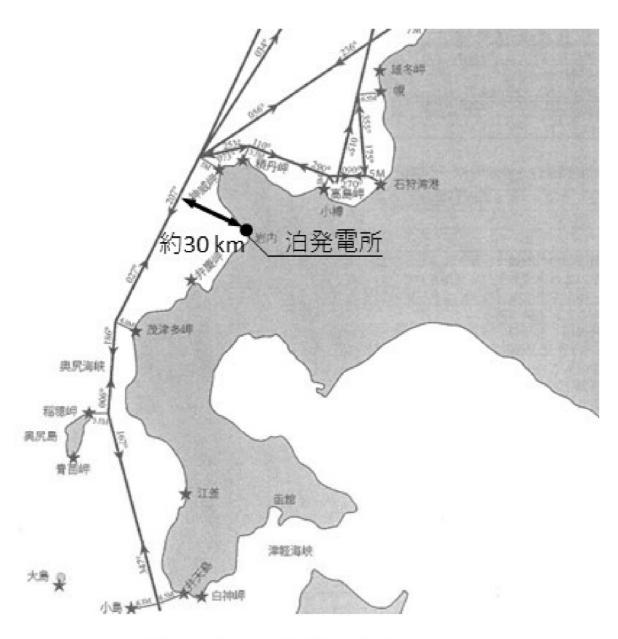
6. 社会環境

6.4 交通運輸

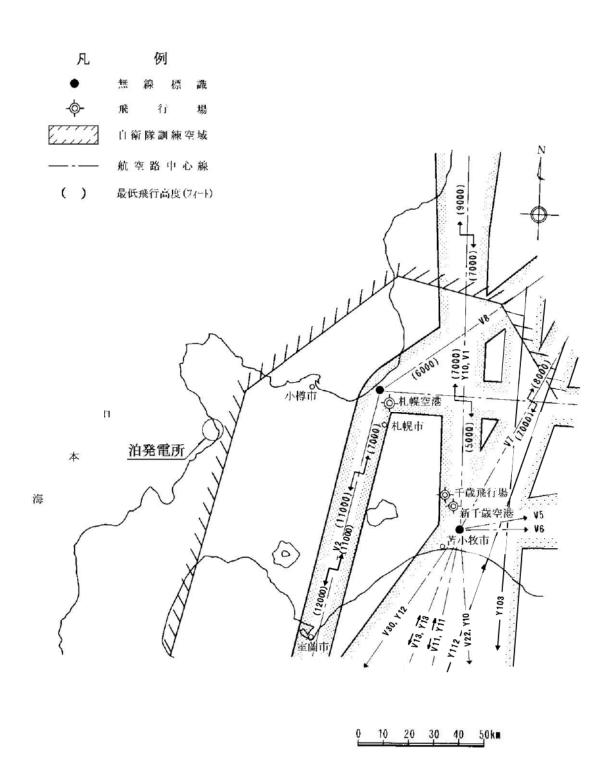
発電所に近い鉄道路線には、北海道旅客鉄道株式会社函館本線(函館~旭川)があり、発電所の最寄りの駅は小沢駅である。


主要な道路としては、国道 5 号(札幌~函館),国道 229 号(小樽~江差) 及び国道 276 号(江差~苫小牧)があり、国道 229 号は国道 276 号及び道道 269 号により国道 5 号に連絡している。

敷地の最寄りの港湾には、地方港湾として南方向約 5km に岩内港がある。 なお、発電所への大型重量物の運搬は発電所前面に設けた荷揚施設により、 海送搬入するが周辺にはフェリー航路はない。


航空関係としては、発電所付近に飛行場はなく、発電所上空に航空路も通っていない。最寄りの飛行場としては東北東方向約 70km に札幌空港、東南東方向約 100km に新千歳空港及び航空自衛隊の千歳飛行場がある。

また,発電所上空域に自衛隊の訓練空域があるが,航空機は原則として原子力関係施設上空を飛行することを規制されている。


発電所周辺の鉄道,主要道路を第 6.4.1 図に示す。また,発電所周辺の主要 航路を第 6.4.2 図に,航空路等を第 6.4.3 図に示す。発電所周辺の石油コン ビナート施設の位置を第 6.4.4 図に示す。



第6.4.1図 発電所周辺の鉄道及び主要道路図

第6.4.2 図 発電所周辺の主要航路図 (北海道沿岸水路誌 2019年3月刊行に加筆)

第6.4.4図 石油コンビナート等特別防災区域の位置

10. 生物

10.1 海生生物

泊発電所3号炉増設に伴う環境影響調査において, 魚等の遊泳動物に 関する漁獲調査を実施している。その結果は以下のとおりである。

底建網調査における四季を通じての総出現種類数は 32 種類であり,季節別には冬季が 12 種類,春季が 15 種類,夏季が 16 種類,秋季が 17 種類である。

主な出現種は、クロソイ、ホッケ、マフグ等である。

さけ定置(小型定置網)調査における平均出現個体数は,前期が63個体/網,中期が893個体/網,後期が114個体/網である。

なお, 泊発電所の前面海域において, クラゲが確認されることがあるが, 出力制限を伴うようなクラゲの大量発生の実績はない。

1.4 設備等

(該当なし)

2. 外部からの衝撃による損傷の防止

(別添1) 設置許可基準規則等への適合状況説明資料 (外部事象の考慮について)

泊発電所3号炉

設置許可基準規則等への適合状況説明資料 (外部事象の考慮について)

第6条:外部からの衝撃による損傷の防止 (自然現象)

<目 次>

- 1. 設計上考慮する外部事象の抽出
 - 1.1 外部事象の収集
 - 1.2 外部事象の選定
 - 1.2.1 除外基準
 - 1.2.2 選定結果
- 2. 基本方針
- 3. 地震, 津波以外の自然現象
 - 3.1 設計基準の設定
 - 3.2 個別評価
- 4. 人為事象
 - 4.1 個別評価
- 5. 自然現象の重畳について
 - 5.1 検討対象
 - 5.1.1 検討対象事象
 - 5.2 事象の特性の整理
 - 5.2.1 相関性のある自然現象の特定
 - 5.2.2 影響モードのタイプ分類
 - 5.3 重畳影響分類
 - 5.3.1 重畳影響分類方針
 - 5.3.2 影響パターン
 - 5.3.3 重畳影響分類結果
 - 5.4 詳細評価
 - 5.4.1 アクセス性・視認性について

添付1: 泊発電所3号炉 外部事象の考慮について補足説明資料

補足資料

- 1. 生物学的事象に対する考慮について
- 2. 航空機落下確率評価について
- 3. 計装盤の主な電磁波等,外部からの外乱(サージ)・ノイズ対策について
- 4. 設計基準事故時に生じる応力の考慮について
- 5. 自然現象、人為事象に対する安全施設の影響評価について
- 6. 旧安全設計審査指針と設置許可基準規則の比較について
- 7. 考慮すべき事象の除外基準と ASME 判断基準との比較について
- 8. 考慮した外部事象についての対応状況について
- 9. 防護すべき安全施設及び重大事故等対処設備への考慮について
- 10. 風(台風)影響評価について
- 11. 凍結影響評価について
- 12. 降水影響評価について
- 13. 積雪影響評価について
- 14. 落雷影響評価について
- 15. 地滑り影響評価について (後日提出)
- 16. 有毒ガス影響評価について
- 17. 比較的短期での気候変動に対する考慮について
- 18. 外部事象に対する津波防護施設,浸水防止設備及び津波監視設備の防護方針について
- 19. 自然現象等に対する監視カメラの扱いについて
- 20. 設計竜巻荷重と積雪荷重の考慮について
- 21. 外部事象防護対象施設の範囲について

1. 設計上考慮する外部事象の抽出

発電所の安全を確保する上で設計上考慮すべき外部事象の抽出に当たっては、国内で一般に発生しうる事象に加え、欧米の基準等で示されている事象を用い網羅的に収集し、類似性、随伴性から整理を行い、地震、津波を含めた78事象(自然現象55事象,人為事象23事象)を抽出した。

その結果及び海外文献を参考に策定した評価基準に基づき、より詳細に検討すべき外部事象について評価及び選定を実施した。

外部事象に対する影響評価のフロー図を参考2に示す。

1.1 外部事象の収集

設置許可基準規則の解釈第六条第2項及び8項において,「想定される自然現象 (地震及び津波を除く。)」と「安全性を損なわせる原因となるおそれがある事象」 として,以下のとおり例示されている。

第六条(外部からの衝撃による損傷の防止) (中略)

2 第1項に想定する「想定される自然現象」とは、敷地の自然現象を基に、洪水、風(台風)、竜巻、凍結、降水、積雪、落雷、地滑り、火山の影響、生物学的事象又は森林火災等から適用されるものをいう。

(中略)

8 第3項に規定する「発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)としては、敷地及び敷地周辺の状況をもとに選択されるものであり、飛来物(航空機落下等)、ダムの崩壊、爆発、近隣工場等の火災、有毒ガス、船舶の衝突又は電磁的障害等をいう。

想定される自然現象及び発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるもの(故意によるものを除く。)(以下,「人為事象」という。)について網羅的に抽出するための基準等については,国外の基準として「Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants(IAEA,April 2010)」を,また,人為事象を選定する観点から「DIVERSE AND FLEXIBLE COPING STRATEGIES (FLEX) IMPLEMENTATION GUIDE (NEI 12-06 August 2012)」,日本の自然現象を網羅する観点から「日本の自然災害(国会資料編纂会 1998 年)」を参考にした。これらの基準等に基づき抽出した想定される自然現象を第1.1-1表に,想定される人為事象を第1.1-2表に示す。

なお、その他に NRC の「NUREG/CR-2300 PRA Procedures Guide (NRC, January 1983)」 等の基準も事象収集の対象としたが、これら追加した基準の事象により、「(3) 設計 上考慮すべき想定される自然現象及び人為事象の選定結果」において選定される事象が増加することはなかった。

第1.1-1 表 考慮する外部ハザードの抽出(想定される自然現象) 丸数字は、次頁に記載した外部ハザードを抽出した文献を示す。

N	b \$112 1 €				外音	Bハサ	ピート	を抽	出出し	た文	献等			
No	外部ハザード	1	2	3	4	(5)	6	7	8	9	10	11)	12	13
1-1	極低温(凍結)	0	0	0	0	0	0	0		0	0	0		
1-2	隕石	0		0		0		0		0		0		
1-3	降水 (豪雨 (降雨))	0	0	0	0	0	0	0		0	0			
1-4	河川の迂回	0				0		0		0	0			
1-5	砂嵐(or 塩を含んだ嵐)	0		0		0		0		0	0	0		
1-6	静振	0	0			0		0		0	0			
1-7	地震活動	0	0	0	0	0	0	0		0	0	0		
1-8	積雪 (暴風雪)	0	0	0	0	0	0	0		0	0	0		
1-9	土壌の収縮又は膨張	0	0			0		0		0	0			
1-10	高潮	0	0			0		0		0	0			
1-11	津波	0	0	0	0	0	0	0		0	0			
1-12	火山 (火山活動・降灰)	0	0	0	0	0	0	0		0	0	0		
1-13	波浪・高波	0	0			0		0		0	0			
1-14	雪崩	0	0	0		0		0		0	0			
1-15	生物学的事象	0			0		0	0		0				
1-16	海岸浸食	0		0		0		0		0				
1-17	干ばつ	0	0	0		0		0		0				
1-18	洪水 (外部洪水)	0	0			0	0	0		0	0	0		
1-19	風 (台風)	0	0	0	0	0	0	0		0	0	0		
1-20	竜巻	0	0	0	0	0	0	0		0	0	0		
1-21	濃霧	0				0		0		0				
1-22	森林火災	0	0	0	0	0	0	0		0		0		
1-23	霜・白霜	0	0	0		0		0		0				
1-24	草原火災	0								0		0		
1-25	ひょう・あられ	0	0	0		0		0		0	0	0		
1-26	極高温	0	0	0		0		0		0	0	0		
1-27	満潮	0				0		0		0				
1-28	ハリケーン	0				0		0						
1-29	氷結	0		0		0		0		0				
1-30	氷晶			0						0				
1-31	氷壁			0						0				
1-32	土砂崩れ(山崩れ、崖崩れ)		0											
1-33	落雷	0	0	0	0	0	0	0		0	0	0		

N-	外部ハザード				外部	ハザ	ード	を抽	出し	た文	献等			
No	外部ハサート	1	2	3	4	(5)	6	7	8	9	10	11)	12	13
1-34	湖又は河川の水位低下	0		0		0		0		0				
1-35	湖又は河川の水位上昇		0	0		0								
1-36	陥没・地盤沈下・地割れ	0	0					,		0	0			
1-37	極限的な圧力 (気圧高低)			0						0	0			
1-38	もや			0										
1-39	塩害・塩雲			0						0				
1-40	地面の隆起		0	0						0	0			
1-41	動物			0						0				
1-42	地滑り	0	0	0		0	0	0		0	0			
1-43	カルスト			0						0	0			
1-44	地下水による浸食			0							0			
1-45	海水面低			0						0				
1-46	海水面高		0	0						0				
1-47	地下水による地滑り			0										
1-48	水中の有機物			0										
1-49	太陽フレア、磁気嵐	0								0				
1-50	高温水 (海水温高)			0						0	0			
1-51	低温水 (海水温低)		0	0						0	0			
1-52	泥湧出		0											
1-53	土石流		0							0				
1-54	水蒸気		0							0				
1-55	毒性ガス	0	0			0		0		0				

- ① DIVERSE AND FLEXIBLE COPING STRATEGIES (FLEX) IMPLEMENTATION GUIDE (NEI-12-06 August 2012)
- ② 「日本の自然災害」国会資料編纂会 1998 年
- ③ Specific Safety Guide(SSG-3) "Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants", IAEA, April 2010
- ④ 「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(制定:平成25年6月19日)
- ⑤ NUREG/CR-2300 "PRA Procedures Guide", NRC, January 1983
- ⑥ 「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則の解 釈」(制定:平成25年6月19日)
- ASME/ANS RA-Sa-2009 "Addenda to ASME/ANS RA-S-2008 Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications"
- ⑧ B. 5. b Phase2&3 Submittal Guideline(NEI-06-12 December 2006) -2011.5 NRC 公表

- ⑨ 「外部ハザードに対するリスク評価方法の選定に関する実施基準:2014」一般社団法 人 日本原子力学会 2014 年 12 月
- ① Safety Requirements No.NS-R-3 "Site Evaluation for Nuclear Installations", IAEA, November 2003
- ① NUREG -1407 "Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities", NRC, June 1991
- ② 「産業災害全史」日外アソシエーツ 2010年1月
- ③ 「日本災害史辞典 1868-2009」日外アソシエーツ 2010 年 9 月

第1.1-2 表 考慮する外部ハザードの抽出(想定される人為事象) 丸数字は、次頁に記載した外部ハザードを抽出した文献を示す。

No	外部ハザード	外部ハザードを抽出した文献等												
		1	2	3	4	(5)	6	7	8	9	10	11)	12	13
2-1	衛星の落下	0		0				0		0		0		
2-2	パイプライン事故 (ガス等) 、パ イ プライン事故によるサイト内爆発 等	0		0		0		0						
2-3	 交通事故(化学物質流出含む)	0		0		0		0		0		0	0	0
2-4	有毒ガス	0			0	0	0	0						
2-5	タービンミサイル	0			0	0	0	0						
2-6	飛来物(航空機衝突)	0		0	0	0	0	0	0	0	0			0
2-7	工業施設又は軍事施設事故	0				0		0		0		0	0	0
2-8	船舶の衝突(船舶事故)	0		0	0		0			0	0			0
2-9	自動車又は船舶の爆発	0		0						0			0	0
2-10	船舶から放出される固体液体 不純物			0						0	0		0	0
2-11	水中の化学物質			0										
2-12	プラント外での爆発			0	0		0			0				
2-13	プラント外での化学物質の流出			0						0	0			
2-14	サイト貯蔵の化学物質の流出	0		0		0		0						
2-15	軍事施設からのミサイル			0										
2-16	掘削工事			0									0	0
2-17	他のユニットからの火災			0										
2-18	他のユニットからのミサイル			0										
2-19	他のユニットからの内部溢水			0							0		0	0
2-20	電磁的障害			0	0		0			0				
2-21	ダムの崩壊			0	0		0			0	0			
2-22	内部溢水				0	0	0	0						
2-23	火災 (近隣工場等の火災)				0	0	0			0	0	0	0	0

- ① DIVERSE AND FLEXIBLE COPING STRATEGIES (FLEX) IMPLEMENTATION GUIDE (NEI-12-06 August 2012)
- ② 「日本の自然災害」国会資料編纂会 1998 年
- ③ Specific Safety Guide(SSG-3) "Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants", IAEA, April 2010
- ④ 「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(制定:平成25年6月19日)
- ⑤ NUREG/CR-2300 "PRA Procedures Guide", NRC, January 1983

- ⑥ 「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則の解釈」(制定:平成25年6月19日)
- ASME/ANS RA-Sa-2009 "Addenda to ASME/ANS RA-S-2008 Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications"
- ⑧ B. 5. b Phase2&3 Submittal Guideline (NEI-06-12 December 2006) -2011.5 NRC 公表
- ⑨ 「外部ハザードに対するリスク評価方法の選定に関する実施基準:2014」一般社団法 人 日本原子力学会 2014 年 12 月
- Safety Requirements No. NS-R-3 "Site Evaluation for Nuclear Installations",
 IAEA, November 2003
- ① NUREG -1407 "Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities", NRC, June 1991
- ② 「産業災害全史」日外アソシエーツ 2010年1月
- ③ 「日本災害史辞典 1868-2009」日外アソシエーツ 2010 年 9 月

1.2 外部事象の選定

1.2.1 除外基準

1.1 で網羅的に抽出した事象について、泊発電所において設計上考慮すべき事象を選定するため、海外での評価手法※を参考とした第1.2-1 表の除外基準のいずれかに該当するものは除外して事象の選定を行った。

第1.2-1表 考慮すべき事象の除外基準(参考1参照)

基準A	プラントに影響を与えるほど接近した場所に発生しない。(例:No.5 砂嵐)
基準B	ハザード進展・襲来が遅く、事前にそのリスクを予知・検知することでハザー
	ドを排除できる。
	(例: No. 16 海岸侵食)
基準C	プラント設計上、考慮された事象と比較して設備等への影響度が同等若しくは
	それ以下,又はプラントの安全性が損なわれることがない。(例: No. 21 濃霧)
基準D	影響が他の事象に包含される。(例: No. 27 満潮)
基準E	発生頻度が他の事象と比較して非常に低い。
	(例:No.2 隕石)
基準F	外部から衝撃による損傷の防止とは別の条項により評価を実施している。又は
	故意の人為事象等外部からの衝撃による損傷の防止の対象外の事項
	(例:人為事象 No. 15 軍事施設からのミサイル)

ASME/ANS RA-Sa-2009 "Addenda to ASME/ANS RA-S-2008 Standard for Level
 1/Large Early Release Frequency Probabilistic Risk Assessment for
 Nuclear Power Plant Applications"

1.2.2 選定結果

1.2.1 で検討した除外基準に基づき,発電所において設計上考慮すべき事象を 選定した結果を第1.2-2 表及び第1.2-3 表に示す。

第六条に該当する「想定される自然現象」として、以下の12事象を選定した。

- ・洪水
- •風(台風)
- 竜巻
- 凍結
- ・降水
- 積雪
- 落雷
- 地滑り
- ・火山の影響
- 生物学的事象

- ·森林火災
- 高潮

また,「想定される人為事象」として,以下の7事象を選定した。

- 飛来物 (航空機落下)
- ダムの崩壊
- 爆発
- ・ 近隣工場等の火災
- 有毒ガス
- ・船舶の衝突
- 電磁的障害

第1.2-2 表 設計上考慮すべき自然現象の選定

No	外部ハザード	除外 基準	選定	備 考
1-1	極低温 (凍結)	i.—	0	地域特性を踏まえ「凍結」としてプラントへの影響 評価を実施する。
1-2	隕石	E(% 1)	×	安全施設の機能に影響を及ぼす隕石等が衝突する可能性は極めて低いと判断し除外する。
1-3	降水 (豪雨 (降雨))	-	0	地域特性を踏まえ「降水」としてプラントへの影響 評価を実施する。
1-4	河川の迂回	A	×	泊発電所周辺において、氾濫することにより安全施 設の機能に影響を及ぼすような河川はないことから 除外する。
1-5	砂嵐(塩を含んだ嵐)	A	×	泊発電所周辺には砂漠がないため発生しないと評価した。 なお、黄砂については、換気空調設備の外気取入口に設置されたフィルタにより大部分を捕集可能であること、また、容易に清掃又は取替が可能であることから、安全施設の機能に影響を及ぼすことはない。
1-6	静振	A, D	×	泊発電所周辺において、安全施設の機能に影響を及ぼすような湖や沼は近隣にないことから除外する。 また、影響は津波と同様と考えられるため,、No.1-11「津波」の影響評価に包含される。
1-7	地震活動	F	×	第四条(地震による損傷の防止)にて評価する。
1-8	積雪(暴風雪)	_	0	地域特性を踏まえ「積雪」としてプラントへの影響 評価を実施する。
1-9	土壌の収縮又は膨張	C, D	×	凍結深度(泊村 60cm) を考慮した設計としており、 土壌の収縮又は膨張によりプラントへ影響を及ぼす 可能性は極めて低いことから除外する また、液状化については、地盤の脆弱性にかかる影響であるため、No. 1-7「地震活動」(地盤)の影響 評価に包含される。
1-10	高潮	_	0	地域特性を踏まえ「高潮」としてプラントへの影響 評価を実施する。
1-11	津波	F	×	第五条(津波による損傷の防止)にて評価する。
1-12	火山(火山活動・降灰)	_	0	地域特性を踏まえ「火山の影響」としてプラントへ の影響評価を実施する。
1-13	波浪・高波	D	×	本事象によるプラントへの影響は、No. 1-11「津 波」の影響評価に包含される。
1-14	雪崩	С	×	安全施設の機能に直接的に影響を与える雪崩が発生する可能性は低い。
1-15	生物学的事象	_	0	地域特性を踏まえ「生物学的事象」としてプラントへの影響評価を実施する。
1-16	海岸侵食	В	×	事象進展が遅く対応のための時間的余裕があり、安全施設の機能を損なうおそれはない。
1-17	干ばつ	С	×	干ばつにより、河川水の影響はあるが、安全施設の機能に影響を及ぼす可能性は極めて低いことから除外する。(海淡装置設置済)
1-18	洪水(外部洪水)	_	0	地域特性を踏まえ「洪水」としてプラントへの影響 評価を実施する。
1-19	風(台風)	_	0	地域特性を踏まえ「風(台風)」としてプラントへの 影響評価を実施する。
1-20	竜巻	_	0	地域特性を踏まえ「竜巻」としてプラントへの影響 評価を実施する。
1-21	濃霧	С	×	濃霧が発生した場合でも安全施設の機能に影響を及 ぼす可能性は極めて低いことから除外する。
1-22	森林火災		0	地域特性を踏まえ「森林火災」としてプラントへの 影響評価を実施する。
1-23	霜・白霜	С	×	霜・白霜が発生した場合でも安全施設の機能に影響 を及ぼす可能性は極めて低いことから除外する。

No	外部ハザード	除外 基準	選定	備 考
1-24	草原火災	D D	×	植生調査を踏まえて森林火災による評価を実施しているため、No1-22.「森林火災」の影響評価に包絡される。
1-25	ひょう・あられ	C, D	×	安全施設の機能に影響を及ぼす可能性は極めて低い が、竜巻評価として想定される設計飛来物による衝撃荷重を考慮するため、「竜巻」の影響評価に包含 される。
1-26	極高温	С	×	過去最高気温(34.9℃:小樽特別地域気象観測所)を踏まえると、空調設計条件を超過するるをと、空調設計条件を超過するるをと、空調設計をであるをと、空調設計をであるをと、気温をであるをとれて、では、では、では、では、では、では、では、では、では、では、では、では、では、
1-27	満潮	D	×	影響は津波と同様と考えられるため、No. 1-11 「津 波」の影響評価に包含される。
1-28	ハリケーン	A, D	×	ハリケーンは大西洋北部及び太平洋北東部において 発生するものであることから、泊発電所及びその周 辺にて発生する可能性は極めて低いことから除外す る。また、台風と同一の気象現象であるため、 No. 1-19「暴風 (台風)」の影響評価に包含される。
1-29	氷結	D	×	影響は極低温(凍結)と同様と考えられるため、 No.1-1「極低温(凍結)」の影響評価に包含され る。
1-30	氷晶	Α	×	取水源(海水)が凍結することはなく、安全施設の 機能に影響を及ぼすことはないため除外する。
1-31	氷壁	A	×	氷壁は南極大陸などにおいて発生するものであることから、泊発電所及びその周辺にて発生する可能性 は極めて低いことから除外する。
1-32	土砂崩れ(山崩れ、崖崩れ)	C, D	×	安全施設の機能に影響を及ぼす土砂崩れ等が発生する可能性はきわめて低く、地盤の脆弱性にかかる影響であるため、No.1-7「地震活動」(地盤)の影響評価に包含される。
1-33	落雷	_	0	地域特性を踏まえ「落雷」としてプラントへの影響 評価を実施する。
1-34	湖又は河川の水位低下	A	×	近隣に発電所に影響を与える湖や河川はないことから除外する。
1-35	湖又は河川の水位上昇	A	×	近隣に発電所に影響を与える湖や河川はないことから除外する。
1-36	陥没・地盤沈下・地割れ	C, D	×	安全施設の機能に影響を及ぼす地割れ等が発生する 可能性はきわめて低く、地盤の脆弱性にかかる影響 であるため、No.1-7「地震活動」(地盤)の影響評 価に包含される。
1-37	極限的な圧力(気圧高低)	D	×	竜巻評価において気圧差による荷重を考慮している ため、No.1-20「竜巻」の影響評価に包含される。
1-38	もや	С	×	もやが発生した場合でも安全施設の機能に影響を及 ぼす可能性は極めて低いことから除外する。
1-39	塩害、塩雲	В	×	腐食の事象進展は遅く、保守管理による不具合防止 が可能であることに加え、防食塗装による発生防止 措置も実施していることから、安全施設の機能に影響を及ぼすことはないため考慮しない。
1-40	地面の隆起	C, D	×	安全施設の機能に影響を及ぼす規模の地面の隆起が発生する可能性はきわめて低く、地盤の脆弱性にかかる影響であるため、No.1-7「地震活動」(地盤)の影響評価に包含される。

No	外部ハザード	除外 基準	選定	備 考
1-41	動物	D	×	生物学的事象において小動物を考慮しているため、 No.1-15「生物学的事象」の影響評価に包含される。
1-42	地滑り	ş-	0	地域特性を踏まえ「地滑り」としてプラントへの影 響評価を実施する。
1-43	カルスト	A	×	発電所の周囲にカルスト地形はないため除外する。
1-44	地下水による浸食	C, D	×	安全施設の機能に影響を及ぼす可能性はきわめて低く、地盤の脆弱性にかかる影響であるため、No. 1-7「地震活動」(地盤)の影響評価に包含される。
1-45	海水面低	D	×	影響は津波と同様と考えられるため、No. 1-11「津 波」の影響評価に包含される。
1-46	海水面高	D	×	影響は津波と同様と考えられるため、No. 1-11「津 波」の影響評価に包含される。
1-47	地下水による地滑り	D	×	地盤の脆弱性に係る影響であるため, No. 1-7「地震 活動」(地盤)の影響評価に包含される。
1-48	水中の有機物	D	×	生物学的事象においてクラゲ等の海生生物を考慮し ているため、No.1-15「生物学的事象」の影響評価 に包含される。
1-49	太陽フレア,磁気嵐	С	×	太陽フレア、磁気嵐により誘導電流が発生する可能性があるが、日本では、磁気緯度、大地抵抗率の条件から地磁気変動が電力系統に影響を及びて無視しりる程度と考えられる。また、上記の通りわが国における影響はでから、上記の通りおが国における影響は、落音やいことを鑑みれば、安皇保護四路等には、遊蔽されているとから、これらの対策に包含される。なおこれまで国内で問題になったことはない。
1-50	高温水(海水温高)	В, С	×	長期間継続することはなく、長期的には水温上昇は 緩慢であることから、出力低下等の措置を講じるこ とができるため、安全施設の機能に影響を及ぼすよ うな海水温高はプラント周辺では発生しない。
1-51	低温水 (海水温低)	A	×	海水が凍結することにより冷却に支障をきたすよう な事象はプラント周辺では発生しない
1-52	泥湧出 (液状化)	D	×	地盤の脆弱性にかかる影響であるため No. 1-7「地 震活動」(地盤) の影響評価に包含される。
1-53	土石流	A, D	×	泊発電所の安全施設は土石流が発生するおそれのある箇所に立地してないことから除外する。また、地滑りの評価において、土石流危険区域等を考慮しているため、No.1-42「地滑り」の影響評価に包含される。
1-54	水蒸気	A, D	×	泊発電所は火山性の水蒸気が発生する恐れのある箇所に立地していないことから除外する。また、火山事象により発生する事象であるため、No.1-12「火山活動・降灰」の影響評価に包含される。
1-55	毒性ガス	D	×	火山及び森林火災により発生する事象であるため、 No. 1-12「火山活動・降灰」及び No. 1-22「森林火 災」の影響評価に包含される。

※1:隕石の考慮について

NUREG-1407 "Procedual and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Volnervilities" によると、隕石や人工衛星については、衝突の確率が 10⁻⁹以下と非常に小さいため、起因事象頻度は低く IPEEE の評価対象から除外する旨が記載されている。

なお、本記載の基になった NUREG/CR-5042, Supplement2 によると、1 ポンド以上の隕石の年間落下数と地表の一定面積に落下する確率を面積比で概算した結果、100 ポンド以上の隕石が 10,000 平方フィートに落下する確率は 7×10^{-10} /炉年、100,000 平方フィ

ートに落下する確率は 6×10^{-8} /炉年,隕石落下による津波の確率は 9×10^{-10} /炉年と評価されている。

その他, IAEA の SAFETY STANDARDS SERIES No. NS-R-1, "Safety of Nuclear Power Plants: Design"では、想定起因事象で考慮しないものとして、自然又は人為の事象であって、極めて起こりにくいもの(隕石や人工衛星の落下)を挙げている。

なお,参考として,隕石が泊発電所に衝突する確率については,概略計算で以下のと おり見積もられる。

地球近傍の天体が地球に衝突する確率及び衝突した際の被害状況を表す尺度として,トリノスケールがあるが,2017年において,今後100年間に衝突する可能性がある全ての天体についてレベル0とされている。

このレベル 0 は、衝突確率が 0 か限りなく 0 に近い、又は、衝突したとしても大気中で燃え尽き被害がほとんど発生しないことを示す。

参考に、NASA のリストにおいて、2017 年時点で最も衝突確率の高い 2010 RF_{12} (今後 100年間での衝突確率: 5.0×10^{-2}) について、今後 100年間の泊発電所への衝突確率を計算すると以下のとおりである。

地球の表面積:510,072,000km² 泊発電所の敷地面積:1.35km²

敷地内に衝突する確率は、概算で以下のとおりとなる。

 $5.0 \times 10^{-2} \times (1.35/510, 072, 000) = 1.3 \times 10^{-10}$

第1.2-3表 設計上考慮すべき人為事象の選定結果

	为1.23 X		J //GX /	この人の事象の歴化和木
No	外部ハザード	抽出基準	選定	備 考
2-1	衛星の落下	E(**2)	×	安全施設の機能に影響が及ぶ規模の隕石等が衝突する 可能性は極めて低いことから除外する。
2-2	n° イプ ライン事故 (ガス等)、パイプ ライン事故によるサイト内爆発 等	A	×	泊発電所周辺にパイプラインはないことから除外す る。
2-3	交通事故(化学物質流出含む)	D	×	影響は爆発又は有毒ガスと同じと考えられるため、 No. 2-12「プラント外での爆発」又は No. 2-4「有毒ガス」 の影響評価に包含される
2-4	有毒ガス	1.—-	0	「有毒ガス」としてプラントへの影響評価を実施す る。
2-5	ターヒ゛ンミサイル	F	×	第十二条(安全設備)にて評価する。
2-6	飛来物(航空機衝突)	_	0	「飛来物(航空機衝突)」としてプラントへの影響評価 を実施する。
2-7	工業施設又は軍事施設事故	A, D	×	近隣における産業で発電所に影響を及ぼす施設はないことから除外する。また、影響は爆発又は近隣工場等の火災と同じと考えられるため、No. 2-12「プラント外での爆発」又はNo. 2-23「火災(近隣工場等の火災)」の影響評価に包含される。
2-8	船舶の衝突(船舶事故)	_	0	「船舶の衝突」としてプラントへの影響評価を実施す る。
2-9	自動車又は船舶の爆発	D	×	No. 2-12 「プラント外での爆発」に包含される。
2-10	船舶から放出される固体液体 不純物	D	×	船舶の衝突において重油流出を想定しているため、 No.2-8「船舶の衝突(船舶事故)」の影響評価に包含さ れる。
2-11	水中の化学物質	A	×	泊発電所周辺には化学プラントは立地していない。
2-12	プラント外での爆発	_	0	「爆発」としてプラントへの影響評価を実施する。
2-13	プラント外での化学物質の流出	A, D	×	泊発電所周辺には化学プラントは立地していないこと から除外する。また、影響は有毒ガスと同じと考えられるため、No. 2-4「有毒ガス」の影響評価に包含され る。
2-14	サイト貯蔵の化学物質の流出	С	×	化学薬品は適切に管理しているが、仮に流出した場合 でも堰等により薬品の拡散防止が図られることから、 安全施設の機能に影響を及ぼす可能性は極めて低いた め除外する。
2-15	軍事施設からのミサイル	F	×	故意の人為事象であることから除外する。
2-16	掘削工事	С	×	敷地内では、事前調査で埋設ケーブル・配管の位置を確認し、損傷は回避できるが、万一損傷させた場合でも、安全系は位置的分散が図られているため、複数の安全機能を同時に喪失することはなく、プラントの安全性が損なわれることはないと判断されるため考慮しない。また、敷地外では、送電鉄塔付近での掘削による斜面崩壊が考えられるが、非常用所内電源があるため、プラントの安全性が損なわれることはないと判断されるため考慮しない。 第八条(火災による損傷の防止)にて評価する。
2-17	他のユニットからの火災	F	×	
2-18	他のユニットからのミサイル	F	×	第十二条(安全設備)にて評価する。
2-19	他のユニットからの内部溢水	F	×	第九条(溢水による損傷の防止等)にて評価する。
2-20	電磁的障害	_	0	「電磁的障害」としてプラントへの影響評価を実施す る。
2-21	ダムの崩壊	_	0	「ダムの崩壊」としてプラントへの影響評価を実施す る。
2-22	内部溢水	F	×	第九条(溢水による損傷の防止等)にて評価する。
2-23	火災 (近隣工場等の火災)	_	0	「近隣工場等の火災」としてプラントへの影響評価を 実施する。

※2 なお、人工衛星が落下した場合については、衛星の大部分が大気圏で燃え尽き、一部破片が落下する可能性があるものの原子炉施設に影響を与えることはないものと考えられる。

<参考1> 選定の基準

基準A:プラントに影響を与えるほど接近した場所に発生しない。

発電所の立地点の自然環境は一様ではなく、発生する自然現象は地域性があるため、発電所立地点において明らかに起こり得ない事象は対象外とする。例えば、干ばつは取水源を河川に頼っている発電所に限定される。

基準B:ハザード進展・襲来が遅く、事前にそのリスクを予知・検知することによりハ ザードを排除できる。

事象発生時の発電所への影響の進展が緩慢であって、影響の緩和又は排除の対策が容易に講じることが出来る事象は対象外とする。例えば、発電所の海岸の侵食の事象が発生しても、進展が遅いことから補強工事等により侵食を食い止めることができる。

基準C:プラント設計上、考慮された事象と比較して設備等への影響度が同等もしくは それ以下、又はプラントの安全性が損なわれることがない。

設計基準事故につながる可能性があるとして考慮した事象と比較して、プラントへの影響が限定的な事象については対象外とする。

例えば、外気温が上昇しても、屋外施設でも故障に至る可能性は小さく、また、冷却海水の温度が直ちに上昇しないことから冷却は維持できるので、影響は限定的である。

基準D:影響が他の事象に包絡される。

プラントに対する影響が同様とみなせる事象については、相対的に影響が大きいと判断される事象に包含して合理的に検討する。例えば、地面の隆起、陥没等は同じ影響を及ぼす事象であり、まとめて検討することができる。

基準E:発生頻度が他の事象と比較して非常に低い。

航空機落下の評価では発生頻度が低い事象(10⁻⁷/年以下)は考慮すべき事象の対象外としており、同様に発生頻度がごく稀な事象は考える。

基準F:外部から衝撃による損傷の防止とは別の条項で評価を実施している。又は故意 の人為事象等外部からの衝撃による損傷の防止の対象外の事項。

第四条 地震による損傷の防止、第五条 津波による損傷の防止、第九条 溢水による損傷の防止、第十二条 安全施設により評価を実施するもの又は故意の人為事象等外部からの衝撃による損傷の防止に該当しないものについては対象外とする。

<参考2>

設計上考慮すべき自然現象の抽出フロー

国内外の基準等に基づ き、考えられる外部ハ ザードを網羅的に抽出

第1.1-1表 考慮する外部ハザードの抽出(想定される自然現象)

No			外部ハザードを抽出した文献等											
	外部ハザード	1	2	3	4	(5)	6	7	8	9	(10)	(11)	12	Œ
1-1	極低温 (凍結)	0	0	0	0	0	0	0		0	0	0		
1-2	隕石	0		0		0		0		0		0		
1-3	降水 (豪雨 (降雨))	0	0	0	0	0	0	0		0	0			
1-4	河川の迂回	0				0		0		0	0			
1-5	砂嵐(or塩を含んだ嵐)	0		0		0		0		0	0	0		
1-6	静振	0				0		0		0	0			
1-7	地震活動	0	0	0	0	0	0	0		0	0	0		

- ① DIVERSE AND FLEXIBLE COPING STRATEGIES (FLEX) IMPLEMENTATION GUIDE (NEI-12-06 August 2012)
- 「日本の自然災害」国会資料編纂会 1998 年
- Specific Safety Guide (SSG-3) "Development and Application of Level 1 Probabilistic Safety Assessment for Nuclear Power Plants", IAEA, April 2010
- 「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(制定:平成25年6月19日)
- ⑤ NURE/CR-2300 *PRA Procedures Guide* , NRC, January 1983
 ⑥ 「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則の解釈」(制定: 平成 25 年 6 月 19
- (予) ASME/ANS RA-Sa-2009 "Addenda to ASME/ANS RA-S-2008 Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications"
 (8) B. 5. b Phase2&3 Submittal Guideline(NEI-06-12 December 2006) -2011. 5 NRC 公表
- ⑨ 「外部ハザードに対するリスク評価方法の選定に関する実施基準:2014」 一般社団法人 日本原子力学会2014年 12月
- Safety Requirements No. NS-R-3 "Site Evaluation for Nuclear Installations", IAEA, November 2003
- Solity Negaltements No.No-K-つ Site Evaluation for Nuclear Installations*, IAEA, November 2003

 NUREG -1407 "Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities*, NRC, June 1991

 「産業災害全史」日外アソシエーツ 2010 年 1 月

 「日本災害史辞典 1868-2009」日外アソシエーツ 2010 年 9 月

第1.2-2 表 設計上考慮すべき自然現象の選定

No	外部ハザード	除外 基準	選定	備考
1-1	極低温 (凍結)	-	0	地域特性を踏まえ「凍結」としてプラントへの影響評価を実施する。
1-2	隕石	E(※1)	×	安全施設の機能に影響を及ぼす隕石等が衝突する 可能性は極めて低いと判断し除外する。
1-3	降水 (豪雨 (降雨))	-	0	地域特性を踏まえ「降木」としてプラントへの影響評価を実施する。
1-4	河川の迂回	A	×	治発電所周辺において、氾濫することにより安全 施設の機能に影響を及ぼすような河川はないこと から除外する。
1-5	砂嵐(塩を含んだ嵐)	A	×	泊発電所周辺には砂漠がないため発生しないと評価した。 価した。 なお、黄砂については、換気空調設備の外気取入 口に設置されたフィルタにより大部分を抽集可能であること。また、容易に清掃又は取替が可能で あることから、安全施設の機能に影響を及ぼすこ とはない。
1-6	静振	A, D	×	泊発電所周辺において、安全施設の機能に影響を 及ぼすような湖や沼は近隣にないことから除外す る。また、影響は津波と同様と考えられるため、、 No.11「津波」の影響評価に包含される。
1-7	地震活動	F	×	第四条 (地震による損傷の防止) にて評価する。

敷地の自然環境を考慮 し、海外での評価手法※ を参考とした除外基準に 基づき,外部ハザードを 網羅的に抽出

第1.2-1 表 表慮すべき事象の除外基準 (参表1参照)

基準A	プラントに影響を与えるほど接近した場所に発生しない。(例: No. 5 砂嵐)
基準B	ハザード進服・襲来が遅く、事前にそのリスクを予知・検知することでハザードを排除できる。 (例:No.16 海岸侵食)
基準C	ブラント設計上、考慮された事象と比較して設備等への影響度が同等若しくはそれ以下、又はブラントの安全性が損なわれることがない。(例: No. 21 濃霧)
基準D	影響が他の事象に包含される。(例: No. 27 満潮)
基準E	発生頻度が他の事象と比較して非常に低い。 (例:No.2 隕石)
基準F	外部から衝撃による損傷の防止とは別の条項により評価を実施している。又は故意の人為事象等 外部からの衝撃による損傷の防止の対象外の事項 (例:人為事象 No. 15 軍事施設からのミサイル)

 ASME/ANS RA-Sa-2009 "Addenda to ASME/ANS RA-S-2008 Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications

選定の結果、設計基準に おいて想定される自然現 象として、12事象を選定 ・洪水 風(台風)

• 竜巻

 凍結 降水 積雪

落雷

地滑り

火山の影響

• 生物学的事象

• 森林火災

高潮

設計上考慮すべき人為事象の抽出フロー

国内外の基準等に基づ き、考えられる外部ハ ザードを網羅的に抽出

第1.1-2表 考慮する外部ハザードの抽出(想定される人為事象)

NT.	Al rher 322 1 0	外部ハザードを抽出した文献等												
No	外部ハザード	1	2	3	4	(5)	6	7	(8)	9	100	11	(12)	(13)
2-1	衛星の落下	0		0				0		0		0		
2-2	パイプライン事故 (ガス等) 、パイ プライン事故によるサイト内爆発等	0		0		0		0						
2-3	交通事故(化学物質流出含む)	0		0		0		0		0		0	0	0
2-4	有毒ガス	0			0	0	0	0						
2-5	タービンミサイル	0			0	0	0	0						
2-6	飛来物 (航空機衝突)	0		0	0	0	0	0	0	0	0			0
2-7	工業施設又は軍事施設事故	0				0		0		0		0	0	0
				_		_		_			_			_

- ① DIVERSE AND FLEXIBLE COPING STRATEGIES(FLEX) IMPLEMENTATION GUIDE(NEI-12-06 August 2012)
- 「日本の自然災害」国会資料編纂会 1998 年
- ③ Specific Safety Guide (SSG-3) "Development and Application of Level 1 Probabilistic Safety Assessm for Nuclear Power Plants", IAEA, April 2010
- ④ 「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」(制定:平成25年6月19日)⑤ NUREG/CR-2300 "PRA Procedures Guide", NRC, January 1983
- 「実用発電用原子炉及びその付属施設の位置、構造及び設備の基準に関する規則の解釈」(制定:平成25年6月
- D ASME/ANS RA-Sa-2009 "Addenda to ASME/ANS RA-S-2008 Standard for Level 1/Large Early Release Freques Probabilistic Risk Assessment for Nuclear Power Plant Applications"

 图 B.5.b Phase2&3 Submittal Guideline(NEI-06-12 December 2006) -2011.5 NRC 公表
- ⑤ 「外部ハザードに対するリスク評価方法の選定に関する実施基準:2014」一般社団法人 日本原子力学会2014 12月
- Safety Requirements No. NS-R-3 "Site Evaluation for Nuclear Installations", IAEA, November 2003
- WUREG -1407 "Procedural and Submittal Guidance for the Individual Plant Examination of External Events (IPEEE) for Severe Accident Vulnerabilities", NRC, June 1991

敷地及び敷地周辺の状況 を考慮し、海外での評価 手法*を参考とした除外基 準に該当するものを除外

第1.2-3表 設計上考慮すべき人為事象の選定結果

No	外部ハザード	抽出基準	選定	備考
2-1	衛星の落下	E(※2)	×	安全施設の機能に影響が及ぶ規模の隕石等が衝突する 可能性は極めて低いことから除外する。
2-2	パイプライン事故(カ゚ス等)、パイプ ライン事故によるサイト内爆発 等	A	×	泊発電所周辺にパイプラインはないことから除外す る。
2-3	交通事故(化学物質流出含む)	D	×	影響は爆発又は有毒ガスと同じと考えられるため、 No. 2-12「ブラント外での爆発」又は No. 2-4「有毒ガス」 の影響評価に包含される
2-4	有毒カ゚ス	-	0	「有毒ガス」としてプラントへの影響評価を実施する。
2-5	ターヒーンミサイル	F	×	第十二条(安全設備)にて評価する。
2-6	飛来物 (航空機衝突)	_	0	「飛来物(航空機衝突)」としてプラントへの影響評価 を実施する。
2-7	工業施設又は軍事施設事故	A, D	×	近隣における産業で発電所に影響を及ぼす施設はない ことから除外する。また、影響は爆発又は近隣工場等 の火災と同じと考えられるため、No. 2-12 「ブラント外 での爆発』又はNo. 2-23 「火災(近隣工場等の火災)」 の影響評価に包含される。

第1.2-1表 考慮すべき事象の除外基準 (参考1参照)

基準A	プラントに影響を与えるほど接近した場所に発生しない。(例:No.5砂嵐)
基準B	ハザード進展・襲来が遅く、事前にそのリスクを予知・検知することでハザードを排除できる。 (例:No.16 海岸侵食)
基準C	ブラント設計上、考慮された事象と比較して設備等への影響度が同等若しくはそれ以下、又はブラントの安全性が損なわれることがない。(例:No.21 濃露)
基準D	影響が他の事象に包含される。(例: No. 27 満潮)
基準E	発生頻度が他の事象と比較して非常に低い。 (例:No.2 隕石)
基準F	外部から衝撃による損傷の防止とは別の条項により評価を実施している。又は故意の人為事象等 外部からの衝撃による損傷の防止の対象外の事項 (例:人為事象 No.15 軍事施設からのミサイル)

 ASME/ANS RA-Sa-2009 "Addenda to ASME/ANS RA-S-2008 Standard for Level 1/Large Early Release Frequency Probabilistic Risk Assessment for Nuclear Power Plant Applications

選定の結果、設計基準にお いて想定される人為事象と して、7事象を選定

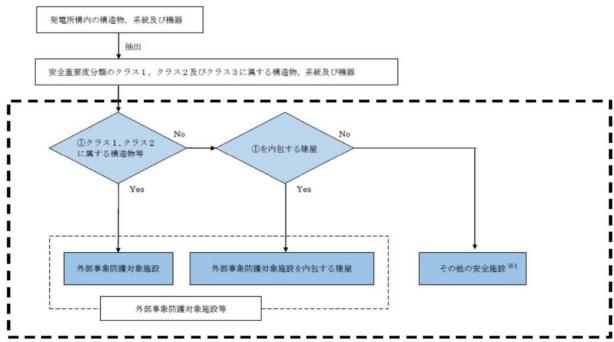
- ・飛来物 (航空機落下)
- ダムの崩壊
- 爆発
- 近隣工場等の火災
- 有毒ガス
- ・船舶の衝突
- ·電磁的障害

2. 基本方針

安全施設は、想定される自然現象(地震及び津波を除く。)及び想定される人為事象に対して、安全機能を損なわない設計とする。

安全機能が損なわれないことを確認する必要がある施設を,「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」で規定されている重要度分類(以下「安全重要度分類」という。)のクラス1,クラス2及びクラス3に属する構築物,系統及び機器とする。

上記構築物,系統及び機器の中から,発電用原子炉を停止するため,また,停止状態にある場合は引き続きその状態を維持するために必要な異常の発生防止の機能又は異常の影響緩和の機能を有する構築物,系統及び機器並びに使用済燃料プールの冷却機能及び給水機能を維持するために必要な異常の発生防止の機能又は異常の影響緩和の機能を有する構築物,系統及び機器として安全重要度分類のクラス1及びクラス2に属する構築物,系統及び機器を外部事象から防護する対象(以下「「外部事象防護対象施設」という。)とし,機械的強度を有すること等により,安全機能を損なわない設計とする。


また,外部事象防護対象施設を内包する建屋は,機械的強度を有すること等により, 内包する外部事象防護対象施設の安全機能を損なわない設計及び外部事象防護対象施 設へ波及的影響を及ぼさない設計とする。ここで,外部事象防護対象施設及び外部事 象防護対象施設を内包する建屋を併せて,外部事象防護対象施設等という。

また、上記に含まれない構築物、系統及び機器は、機能を維持すること若しくは損傷を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、その安全機能を損なうことのない設計とする。

外部事象による外部事象防護対象施設の抽出フローは第 2-1 図のとおり。

自然現象の重畳については、網羅的に組み合わせて評価する。

なお、安全施設への考慮における、根拠となる条文等については、「補足資料 9. 防 護すべき安全施設及び重大事故等対処設備への考慮について」のとおり。

※1 構造健全性の確保、若しくは損傷を考慮して代替設備、修復等で安全機能を確保

第2-1図 外部事象防護対象施設の抽出フロー

3. 地震, 津波以外の自然現象

泊発電所の自然環境を基に、想定される自然現象については、「1. 設計上考慮する外部事象の抽出」により選定しており、選定した事象に対する設計方針及び評価を以下に記載する。

なお、上記の想定される自然現象の設計方針に対しては、安全施設が安全機能を損なわないために必要な安全施設以外の施設又は設備への措置を含めることとし、措置が必要な場合は各事象において整理する。

3.1 設計基準の設定

設計基準を設定するに当たっては、泊発電所の立地地域である泊村に対する設定値が定められている規格・基準類による設定値及び泊発電所の最寄りの気象官署である小樽特別地域気象観測所で観測された過去の記録並びに寿都特別地域気象観測所で観測された過去の記録をもとに設定する。

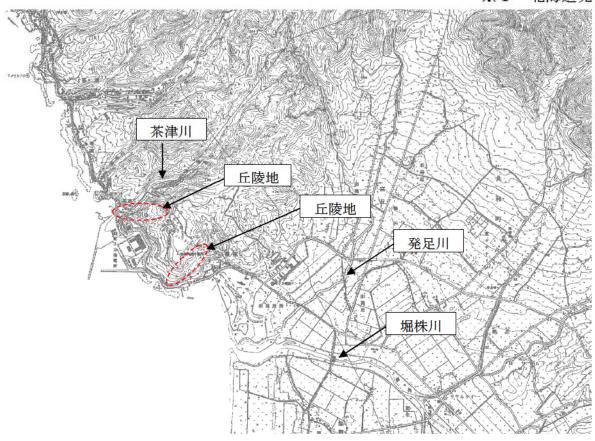
ただし、上記にて設計が行えないものについては、当該事象が発生した場合の安全施設への影響シナリオを検討の上、個別に設計基準の設定を行う。

(例:火山の影響については、上記による設計は困難なため、個別に考慮すべき 事象の特定を実施し設計する。)

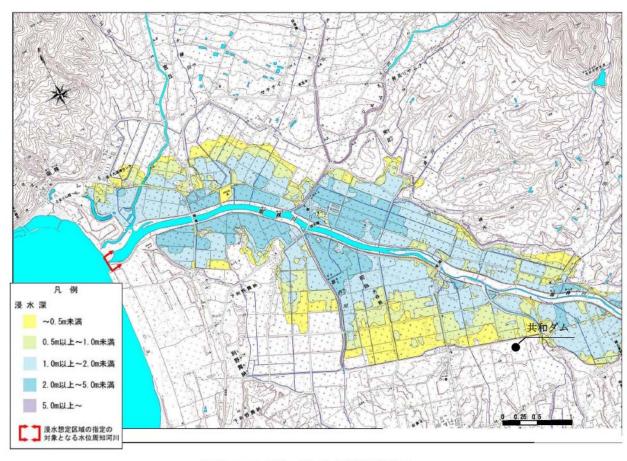
3.2 個別評価

(1) 洪水

泊発電所設置変更許可申請(平成12年11月15日申請)の適合のための設計 方針に同じ。


敷地は、積丹半島西側基部の海沿いに位置した標高 40~130m の丘陵地にあり、地形は海岸へ向かってなだらかに傾斜している。

敷地を含む周辺の表流水のほとんどは、敷地北側の茶津川(流域面積 2.9km²) 及び敷地東側の発足川(流域面積 18.2km², 堀株川の支流)に集まり、日本海へ 注いでいる。(第 3.2-1 図参照)


堀株川,発足川及び茶津川と発電所との間には丘陵地があることから,発電所が堀株川,発足川及び茶津川による洪水の被害を受けることはない。

また、浸水想定区域図*1によると、堀株川が概ね50年に1回程度起こる大雨により氾濫するとしても、泊発電所に影響がないことを確認している。(第3.2-2図参照)

こうした敷地の地形及び表流水の状況から判断して,敷地が洪水による被害を 受けることはない。

第3.2-1 図 泊発電所周辺の河川

第3.2-2 図 浸水想定区域図

(2) 風 (台風)

泊発電所設置変更許可申請(平成12年11月15日申請)の適合のための設計 方針に同じ。

風荷重に対する設計は、建築基準法では地域ごとに定められた基準風速(地上高 10m, 10 分間平均)の風圧力に対する設計が要求されており、泊村(古宇郡)の基準風速は 36m/s である。

設計基準風速は、建築基準法及び同施行令第87条第2項及び第4項に基づく 建設省告示第1454号にて定められた泊村(古宇郡)の基準風速である36m/s (地上高10m, 10分間平均)とする。

安全施設は、設計基準風速 (36m/s 地上高 10m, 10 分間平均) の風(台風) が発生した場合においても、安全機能を損なうことのない設計とする。

その上で、外部事象防護対象施設等は、設計基準風速 (36m/s, 地上高 10m, 10 分間平均) の風荷重に対し機械的強度を有することにより、安全機能を損なうことのない設計とする。

また、上記以外の安全施設については、風(台風)に対して機能を維持すること若しくは風(台風)による損傷を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、その安全機能を損なうことのない設計とする。

なお、最寄りの気象官署である寿都特別地域気象観測所及び小樽特別地域気象観測所での観測記録(気象庁の気象統計情報における観測記録。以下、本資料で同じ。)によると、風速の観測記録史上1位の最大風速は49.8m/s(寿都特別地域気象観測所、1952年4月15日)であり、この観測記録は観測所の移転前の局地的な強風の影響を受けやすい場所に設置されていた時の記録であり、移転後の最大風速は20.3 m/s(2004年2月23日)である。また、小樽特別地域気象観測所での最大風速は27.9m/s(1954年9月27日)であり、いずれも設計基準風速に包絡される。

ここで、風(台風)に関連して発生する可能性がある自然現象としては、落雷 及び高潮が考えられる。落雷については、同時に発生するとしても、「(7)落雷」 に述べる個々の事象として考えられる影響と変わらない。高潮については、

「(12)高潮」に述べるとおり、安全施設(取水設備を除く。)は影響を受けることのない敷地高さに設置し、安全機能を損なうことのない設計とする。

なお、風(台風)に伴い発生する可能性のある飛来物による影響については、 竜巻影響評価にて想定している設計飛来物の影響に包絡される。

なお、評価結果の詳細は「補足資料 10. 風(台風)影響評価について」のとおり。

※ 気象庁 HP (風の強さと吹き方):

http://www.jma.go.jp/jma/kishou/know/yougo_hp/kazehyo.html

(3) 竜巻 六条(竜巻)において説明

設置許可基準規則を参照し、新たに設計方針を追加した事象である。 竜巻に対する規格基準は、国内では策定されていない。

日本で過去に発生した最大の竜巻規模はF3 (風速 70m/s~92m/s) である。

観測記録の統計処理による年超過確率によれば、発電所における 10-5/年値は 風速 65m/s である。

設計竜巻の最大風速は、これらのうち最も保守的な値である F3 の風速範囲の 上限値 92m/s とする。

竜巻特性値(移動速度,最大接線風速,最大接線風速半径,最大気圧低下量,最大気圧低下率)については、設計竜巻の最大風速 92m/s を安全側に切り上げた100m/s に対して、竜巻風速場としてランキン渦モデルを選定した場合における竜巻特性値を適切に設定する。

安全施設は、最大風速 100m/s の竜巻が発生した場合においても、竜巻による 風圧力による荷重, 気圧差による荷重及び飛来物の衝撃荷重を組み合せた荷重等 に対して安全機能を損なわないために、飛来物の発生防止対策及び竜巻防護対策 を行う。

a. 飛来物の発生防止対策

竜巻により発電所敷地内の屋外に保管又は設置されている各種資機材等が飛 来物となり、竜巻防護施設が安全機能を損なわないよう、以下の対策を行う。

- 飛来物となる可能性のある物(車両含む)の固縛又は撤去を行う。
- 車両の入構管理、竜巻襲来のおそれが生じた場合の車両の退避を行う。

b. 竜巻防護対策

固縛等による飛来物の発生防止対策ができないものが飛来し、竜巻防護施設が安全機能を損なわないために、以下の対策を行う。

- 竜巻防護施設を内包する施設及び竜巻飛来物防護対策設備により、竜巻 防護施設を防護し構造健全性を維持し安全機能を損なうことのない設計 とする。
- 竜巻防護施設の構造健全性が維持できない場合には、代替設備及び予備 品の確保、損傷した場合の取替又は補修が可能な設計とすることによ り、安全機能を損なわない設計とする。

竜巻の発生に伴い、雹の発生が考えられるが、雹による影響は竜巻防護設計 にて想定している設計飛来物の影響に包絡される。

さらに、竜巻の発生に伴い、雷の発生も考えられるが、雷は電気的影響を及ぼす一方、竜巻は機械的影響を及ぼすものであり、竜巻と雷が同時に発生するとしても、個別に考えられる影響と変わらないことから、各々の事象に対して安全施設が安全機能を損なわない設計とする。

なお,詳細評価については,「原子力発電所の竜巻影響評価ガイド(平成25 年6月19日原規技発第13061911号原子力規制委員会決定)」に基づく審査資 料「泊発電所3号炉竜巻影響評価について」のとおり。

(4) 凍結

泊発電所設置変更許可申請(平成12年11月15日申請)の適合のための設計 方針に同じ。

最寄りの気象官署である寿都特別地域気象観測所での観測記録(1884 年~2020 年)及び小樽特別地域気象観測所の観測記録(1943 年~2020 年)で−18.0℃

(小樽特別地域気象観測所 1954年1月24日) である。

設計基準温度は上記観測記録より、-19.0℃とする。

安全施設は、設計基準温度 (-19.0°) の低温が発生した場合においても、安全機能を損なうことのない設計とする。

その上で、外部事象防護対象施設等は、上記観測記録を考慮し、屋内施設については換気空調設備により環境温度を維持し、屋外施設については保温等の凍結防止対策を必要に応じて行うことにより、安全機能を損なうことのない設計とする。

また、上記以外の安全施設については、低温による凍結に対して機能を維持すること若しくは低温による凍結を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、その安全機能を損なうことのない設計とする。

なお、評価結果の詳細は「補足資料 11. 凍結影響評価について」のとおり。

(5) 降水

設置許可基準規則を参照し、新たに設計方針を追加した事象である。

降水に対する排水施設の規格・基準として、森林法に基づく林地開発許可に関する審査基準等を示した「森林法に基づく林地開発許可申請の手引き(令和3年4月北海道)」及び「北海道の大雨資料(第14編)」によると、発電所敷地における対象区域の確率雨量強度は「神恵内」及び「共和」に分類され、10年確率で想定される雨量強度は32mm/hである。

寿都特別地域気象観測所での観測記録(1938~2020年)及び小樽特別地域気象観測所での観測記録(1943~2020年)によれば、発電所周辺地域における日最大1時間降水量の最大値は、57.5mm(寿都特別地域気象観測所 1990年7月25日)である。

設計基準降水量は, 寿都特別地域気象観測所での観測記録である 57.5mm/h とする。

安全施設は、設計基準降水量(57.5mm/h)の降水が発生した場合においても、 安全機能を損なうことのない設計とする。

その上で、外部事象防護対象施設等は、設計基準降水量(57.5mm/h)の降水に対し、構内排水設備による海域への排水、浸水防止のための建屋止水処置等により、安全機能を損なうことのない設計とする。

また、上記以外の安全施設については、降水に対して機能を維持すること若しくは降水による損傷を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、安全機能を損なわない設計とする。

ここで,降水に関連して発生する可能性がある自然現象としては,土石流,土砂 崩れ及び地滑りが考えられるが,安全施設のうち,外部事象防護対象施設等付近に

追而

(地滑りについて,当社空中写真判読,公刊の地滑りに関する 知見等を踏まえ,再評価を行うため)

なお、評価結果の詳細は「補足資料12. 降水影響評価について」のとおり。

(6) 積雪

泊発電所設置変更許可申請(平成12年11月15日申請)の適合のための設計 方針に同じ。

建築基準法及び同施行令第86条第3項に基づく北海道建築基準法施行細則によると、建築物を設計する際に要求される基準積雪量は、泊村においては150cmである。

なお、最寄りの気象官署である寿都特別地域気象観測所及び小樽特別地域気象観測所での観測記録によると、積雪の観測記録史上1位の月最深積雪の最大値は、189cm(寿都特別地域気象観測所、1945年3月17日)であるが、発電所構内の除雪体制が確立されていること、さらに積もるまでに一定の時間を要することから、除雪により基準積雪量150cmを上回らない積雪量に抑えることが可能であるため、設計基準積雪量は、建築基準法及び同施行令第86条第3項に基づく北海道建築基準法施行細則に基づく垂直積雪量150cmとする。

安全施設は、設計基準積雪量 (150cm) の積雪が発生した場合においても、安全機能を損なうことのない設計とする。

その上で、外部事象防護対象施設等は、設計基準積雪量(150cm)の積雪荷重に対し機械的強度を有する構造とすることにより安全機能を損なうことのない設計とする。

また,設計基準積雪量(150cm)に対し給排気口を閉塞させないことにより安全機能を損なうことのない設計とする。

積雪事象は、気象予報により事前に予測が可能であり、進展も緩やかであるため、建屋屋上等の除雪を行うことで積雪荷重の低減及び給排気口の閉塞防止、構 内道路の除雪を行うことでプラント運営に支障をきたさない措置が可能である。 また、上記以外の安全施設については、積雪に対して機能を維持すること若しくは積雪による損傷を考慮して、代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、安全機能を損なうことのない設計とする。

なお、評価結果の詳細は「補足資料 13. 積雪影響評価について」のとおり。

(7) 落雷

設置許可基準規則を参照し、新たに設計方針を追加した事象である。

電気技術指針 JEAG4608-2007 においては、275kV 発変電所における送電線並び に電力設備に対して基準電流を100kA としている。また、日本産業規格 JIS A 4201-2003「建築物等の雷保護」、消防庁通知等によると、軽油タンクを地下設置 する原子力発電所の危険物施設に対して基準電流100kA と規定されている。

よって、落雷の設計基準電流値は、JEAG 等の規格・基準類による 100kA とする。

安全施設は、設計基準電流値(100kA)の落雷が発生した場合においても、安全機能を損なうことのない設計とする。

その上で、外部事象防護対象施設等の雷害防止対策として、原子炉建屋等への 避雷針の設置、接地網の敷設による接地抵抗の低減等を行うとともに、安全保護 系への雷サージ侵入の抑制を図る回路設計を行うことにより、安全施設の安全機 能を損なうことのない設計としている。

また、上記以外の安全施設については、落雷に対して機能を維持すること若しくは落雷による損傷を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、安全機能を損なうことのない設計とする。

なお、評価結果の詳細は「補足資料 14. 落電影響評価について」のとおり。

(8) 地滑り

泊発電所設置変更許可申請(平成12年11月15日申請)の適合のための設計 方針に同じ。

追而

(地滑りについて,当社空中写真判読,公刊の地滑りに関する 知見等を踏まえ,再評価を行うため) (地滑りについて、当社空中写真判読、公刊の地滑りに関する 知見等を踏まえ、再評価を行うため)

第3.2-3図 泊発電所周辺における地滑り地形他の分布図

なお、泊発電所周辺の地滑り地形は、北海道公表の土石流危険渓流、急傾斜地崩壊危 険箇所、および当社が調査した地すべり地形の3つであるが、地滑りはこれら、土石流、 急傾斜地崩壊、地すべりを包含したものとして定義する。

土石流: 山腹や川底の土砂が長雨や集中豪雨などによって、土砂と水が一体とな

って一気に下流へと押し流される現象

急傾斜地崩壊: 傾斜度が30°以上で土地が崩壊する現象

地すべり: 地下水などの影響により斜面の一部が動き出す現象

(9) 火山の影響 六条 (火山) において説明

設置許可基準規則を参照し、新たに設計方針を追加した事象である。

発電所に対して考慮すべき火山事象は、敷地の地理的領域に位置する第四紀火山の活動時期や噴出物の種類と分布、敷地との位置関係から、降下火砕物(火山灰)以外にない。

文献調査、地質調査及び降下火砕物シミュレーション解析の結果を踏まえ、層厚は●cm、密度は●g/cm³(乾燥密度)~●g/cm³(湿潤密度)、粒径は●mm以下の降下火砕物を考慮する。荷重については、層厚●cmの湿潤状態の降下火砕物の荷重と積雪の荷重を適切に組み合わせる。

外部事象防護対象施設等は,降下火砕物による直接的影響及び間接的影響が発生した場合においても,安全機能を損なわないよう以下の設計とする。

a. 直接的影響に対する設計

外部事象防護対象施設等は,直接的影響に対して,以下により安全機能を損なわない設計とする。

- 構造物への静的負荷に対して安全裕度を有する設計とすること
- ・水循環系の閉塞に対して狭隘部等が閉塞しない設計とすること
- ・換気系,電気系及び計測制御系に対する機械的影響(閉塞)に対して降下 火砕物が侵入しにくい設計とすること
- ・水循環系の内部における摩耗並びに換気系,電気系及び計測制御系に対する機械的影響(摩耗)に対して摩耗しにくい設計とすること
- ・構造物の化学的影響(腐食),水循環系の化学的影響(腐食)並びに換気系, 電気系及び計測制御系に対する化学的影響(腐食)に対して短期での腐食が 発生しない設計とすること
- ・発電所周辺の大気汚染に対して中央制御室換気空調系は降下火砕物が侵入 しにくく, さらに外気を遮断できる設計とすること
- ・電気系及び計測制御系の盤の絶縁低下に対して空気を取り込む機構を有する計装盤等の設置場所の換気空調系は降下火砕物が侵入しにくく, さらに 外気を遮断できる設計とすること
- ・降下火砕物による静的負荷や腐食等の影響に対して降下火砕物の除去や換気空調設備外気取入口の平型フィルタの取替え若しくは清掃又は換気空調設備の停止若しくは外気との連絡口を遮断し、閉回路循環運転をすることにより安全機能を損なうことのない設計とすること

また、上記以外の安全施設については、降下火砕物に対して機能を維持すること若しくは降下火砕物による損傷を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、安全機能を損なうことのない設計とする。

追而【地震津波側審査の反映】 (上記●については、地震津波側審査結果を受けて反映のため)

b. 間接的影響に対する設計

降下火砕物による間接的影響として考慮する、広範囲にわたる送電網の損傷

による7日間の外部電源喪失及び発電所外での交通の途絶によるアクセス制限 事象が生じた場合については、降下火砕物に対して非常用ディーゼル発電機の 安全機能を維持することで、原子炉の停止及び停止後の発電用原子炉の冷却、 並びに使用済燃料ピットの冷却に係る機能を担うために必要となる電源の供給 が非常用ディーゼル発電機により継続できる設計とすることにより、安全機能 を損なうことのない設計とする。

なお,詳細評価については,「原子力発電所の火山影響評価ガイド(平成25年6月19日原規技発第13061910号原子力規制委員会決定)」に基づく審査資料「泊発電所3号炉火山影響評価について」のとおり。

(10)生物学的事象

設置許可基準規則を参照し、新たに設計方針を追加した事象である。

外部事象防護対象施設は、生物学的事象として海生生物であるクラゲ等の発生及び小動物の侵入が発生した場合においても、安全機能を損なわない設計とする。

その上で、外部事象防護対象施設等は、海生生物であるクラゲ等の発生に対しては、海生生物を含む塵芥による原子炉補機冷却海水系等への影響を防止するため、除塵装置及び原子炉補機冷却海水ポンプ出口ストレーナを設置し、必要に応じて塵芥を除去することにより、安全機能を損なうことのない設計とする。

小動物の侵入に対しては、屋内施設は建屋止水処置により、屋外施設は端子 箱貫通部の閉止処置を行うことにより、安全機能を損なうことのない設計とす る。

また、上記以外の安全施設については、生物学的事象に対して機能を維持すること若しくは生物学的事象による損傷を考慮して代替設備により必要な機能を確保すること、安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることにより、安全機能を損なうことのない設計とする。

なお,評価結果の詳細は「補足資料1.生物学的事象に対する考慮について」のとおり。

(11)森林火災 |六条(外部火災)において説明|

設置許可基準規則を参照し、新たに設計方針を追加した事象である。

敷地外の森林から出火し、敷地内の植生へ延焼するおそれがある場合は、初期消火要員が出動し、予防散水等の延焼防止措置を行う。また、敷地内の植生へ延焼した場合であっても、森林火災シミュレーション(FARSITE)による影響評価に基づいた防火帯幅(20m)を確保すること等により安全施設が安全機能を損なうことはない。

ただし、ササ草原かつ斜面に面し火線強度があがりやすい敷地北部の防火帯

の一部は約55mにわたって評価上必要とされる防火帯幅約45.3mに対し46m, 風上に針葉樹を擁し火線強度があがりやすい敷地東部の防火帯の一部は約400m にわたって評価上必要とされる防火帯幅18mに対し25mの防火帯幅を確保する こと等により、安全施設が安全機能を損なうことのない設計とする。

森林火災に伴うばい煙等発生時の二次的影響に対して、外気を設備内に取り込む機器、外気を取り込む空調系統、屋外設置機器に分類し、影響評価を行い、必要な場合は対策を実施することにより、安全施設が安全機能を損なうことのない設計とする。

なお,詳細評価については,「原子力発電所の外部火災影響評価ガイド(平成25年6月19日原規技発第13061912号原子力規制委員会決定)」に基づく審査資料「泊発電所3号炉外部火災影響評価について」のとおり。

(12)高潮

泊発電所設置変更許可申請(平成 12 年 11 月 15 日申請)の適合のための設計方針に同じ。

発電所周辺海域の潮位については、発電所から南方約 5km地点に位置する岩内港で観測された最高潮位を設計潮位とする。本地点の最高潮位は T.P.+ 1.00m、朔望平均満潮位が T.P.+0.26m である。

安全施設 (取水設備を除く。) は、高潮の影響を受けない敷地高さ (T.P.+10.0m) 以上に設置することで、安全機能を損なうことのない設計とする。

上記の想定される自然現象に対して,安全施設が安全機能を損なわないため に必要な安全施設以外の施設又は設備等(重大事故等対処設備を含む。)への 措置を含める。

なお,新規規制基準に基づき新たな評価等を行い,新たな運用が必要となる 事項については、必要な手順等を整備する。

4. 人為事象

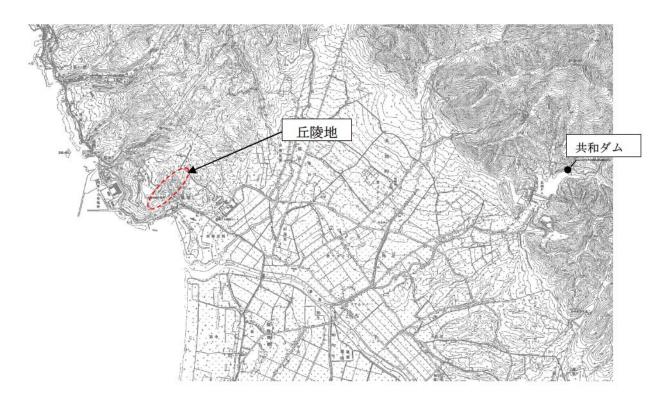
泊発電所の敷地及び敷地周辺の状況をもとに、設計基準において想定される外部人 為事象については、「1. 設計上考慮する外部事象の抽出」により選定しており、選定 した事象に対する設計方針を以下に記載する。

4.1 個別評価

(1) 飛来物 (航空機落下)

泊発電所設置変更許可申請(平成12年11月15日申請)の適合のための設計 方針に同じ。

航空機落下については,「実用発電用原子炉施設への航空機落下確率の評価基準について」(平成14·07·29 原院第4号(平成14年7月30日原子力安全・保安院制定))等に基づき,航空機落下確率を評価し,防護設計の要否について確認を行っている。


航空機落下確率評価を行った結果は、約2.3×10-8回/炉・年であり、防護設計の要否を判断する基準である10-7回/炉・年を超えないため、航空機落下による防護設計を考慮しない。

なお,評価結果の詳細は「補足資料 2. 航空機落下確率評価について」のとおり。

(2) ダムの崩壊

泊発電所設置変更許可申請(平成12年11月15日申請)の適合のための設計 方針に同じ。

泊発電所周辺地域におけるダムとしては、泊発電所敷地境界から東約 8km の地 点に共和ダムが存在するが、発電所まで距離が離れており、発電所との間には丘 陵地が分布していることから、ダムの崩壊による安全施設への影響については考 慮する必要はない。(第 4.1-1 図)

第4.1-1 図 共和ダムの位置

(3) 爆発 六条(外部火災)において説明

泊発電所設置変更許可申請(平成12年11月15日申請)の適合のための設計 方針に同じ。

発電所敷地外 10km 以内の範囲において、爆発により安全施設に影響を及ぼすような石油コンビナート施設はないため、爆発による安全施設への影響については考慮する必要はない。

発電所敷地外 10km 以内の危険物施設又は発電所敷地周辺道路の燃料輸送車両から爆発が発生する場合を想定しても、離隔距離の確保等により、安全施設が安全機能を損なうことのない設計とする。

発電所前面の海域には主要航路がなく、発電所から主要航路まで約30km離れていることから、発電所内の港湾施設には液化石油ガス輸送船舶の入港は想定されないため、発電所周辺の海域を航行する燃料輸送船の爆発により評価対象施設の安全機能が損なわれることはない。

なお,詳細評価については,「原子力発電所の外部火災影響評価ガイド(平成 25年6月19日原規技発第13061912号原子力規制委員会決定)」に基づく審査資料「泊発電所3号炉外部火災影響評価について」のとおり。

(4) 近隣工場等の火災 六条(外部火災) において説明

設置許可基準規則を参照し、想定される人為事象として新たに抽出した事象である。

a. 石油コンビナート施設の火災

発電所敷地外 10km 以内の範囲において、火災により評価対象施設に影響を 及ぼすような石油コンビナート施設はないため、石油コンビナート施設の火災 による安全施設への影響については考慮する必要はない。

発電所敷地外 10km 以内の範囲において,石油コンビナート施設以外の危険物施設又は発電所敷地周辺道路の燃料輸送車両から火災が発生した場合を想定しても,離隔距離の確保等により,安全施設が安全機能を損なうことのない設計とする。

発電所港湾内の船舶で火災が発生する場合を想定しても, 離隔距離の確保等により, 安全施設が安全機能を損なうことのない設計とする。

b. 発電所敷地内に存在する危険物貯蔵施設等の火災

発電所敷地内に設置する危険物貯蔵施設等の火災発生時の輻射熱による評価対象施設の建屋(垂直外壁面及び天井スラブから選定した、火災の輻射に対して最も厳しい箇所)の表面温度等を許容温度以下とすることにより、安全施設が安全機能を損なうことのない設計とする。

c. 航空機墜落による火災

原子炉建屋周辺に航空機が墜落し、燃料火災が発生した場合、直ちに公設消防へ通報するとともに、初期消火要員が出動し、速やかに初期消火活動を行う。

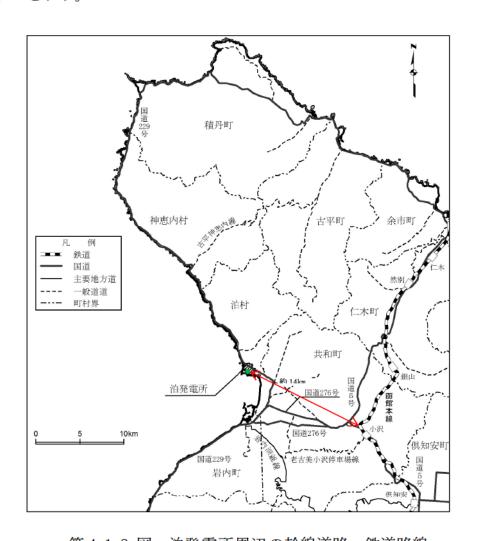
航空機が外部事象防護対象施設等である原子炉建屋等の周辺で墜落確率が 10⁻⁷回/炉・年以上になる地点へ墜落することを想定しても、火災の影響により 安全施設が安全機能を損なうことのない設計とする。

また,上記以外の安全施設については,建屋による防護,消火活動,代替設備による必要な機能の確保又はそれらを適切に組み合わせることにより,安全機能を損なうことのない設計とする。

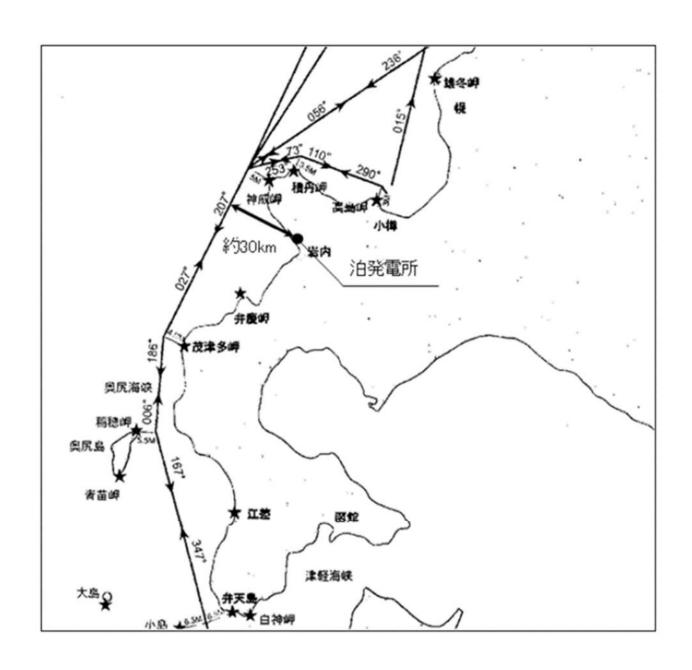
d. 二次的影響(ばい煙等)

石油コンビナート施設等の火災,発電所敷地内に設置する危険物貯蔵施設等の火災及び航空機墜落による火災に伴うばい煙等発生時の二次的影響に対して,外気を設備内に取り込む機器,外気を取り込む空調系統及び屋外設置機器に分類し,影響評価を行い,必要な場合は対策を実施することにより,安全施設が安全機能を損なうことのない設計とする。

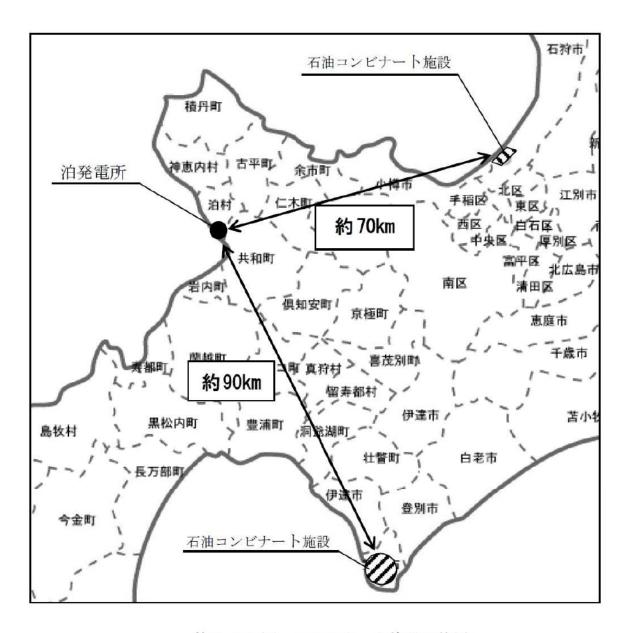
(5) 有毒ガス


設置許可基準規則を参照し、想定される人為事象として新たに抽出した事象である。

有毒ガスの漏えいについては固定施設(石油コンビナート施設等)と可動施設 (陸上輸送、海上輸送)からの流出が考えられる。 発電所周辺には周辺監視区域が設定されているため、発電用原子炉施設との近隣の施設や周辺道路との間には離隔距離が確保されていることから、有毒ガスの漏えいを想定した場合でも、有毒ガスの発電所への影響はない。また、発電所周辺の主要航路を移動中の可動施設から有毒ガスの漏えいを想定した場合も同様に、離隔距離が確保されていることから、有毒ガスの発電所への影響はない。


泊発電所周辺の幹線道路,鉄道路線を第4.1-2 図に,主要航路を第4.1-3 図に,コンビナート施設の位置を第4.1-4 図に示す。

また,中央制御室空調装置については,外気との連絡口を遮断し,閉回路循環 運転をすることにより中央制御室の居住性を損なうことはない。


なお,評価結果の詳細については,「補足資料 15. 有毒ガス影響評価について」のとおり。

第4.1-2 図 泊発電所周辺の幹線道路,鉄道路線

第4.1-3 図 泊発電所周辺の主要航路 (北海道沿岸水路誌 2019年3月刊行に加筆)

第 4.1-4 図 コンビナート施設の位置