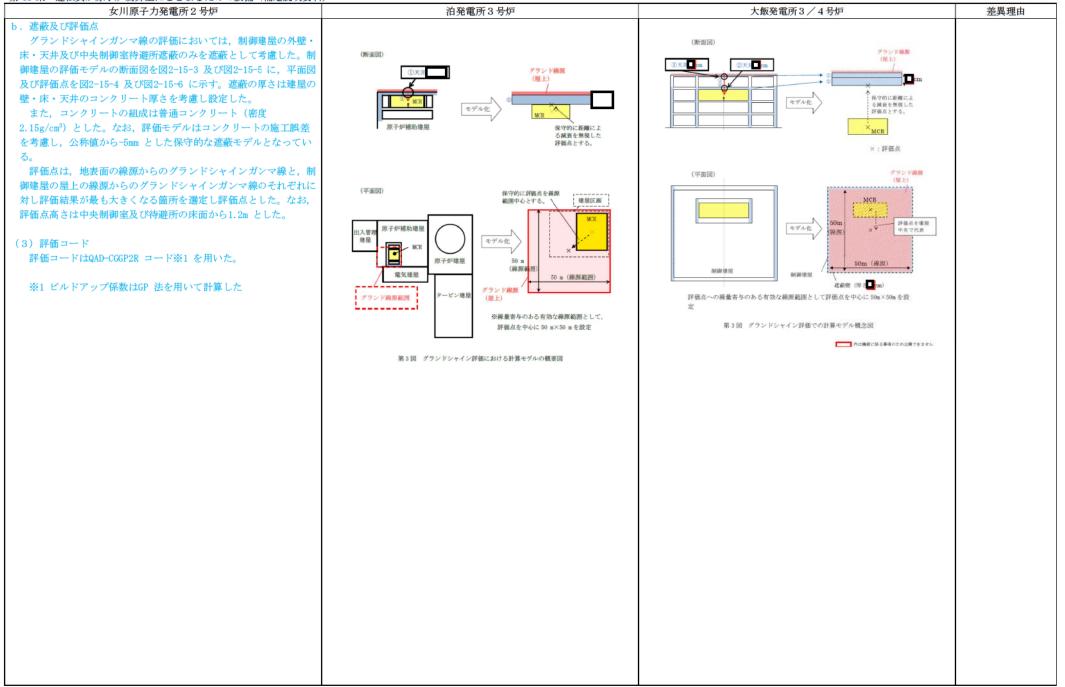

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
$ \begin{array}{c} \textbf{g}_{2} = 15 - 1 & \textbf{f}_{2} > 0 & \textbf{f}_{2} = \textbf{f}_{2} \\ \textbf{f}_{3} = \textbf{f}_{4} = \textbf{f}_{4} > \textbf{f}_{4} > \textbf{f}_{4} \\ \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} > \textbf{f}_{4} > \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} & \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} & \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} > \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} + \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} + \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} + \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} + \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} + \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} + \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} + \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} + \textbf{f}_{4} \\ \hline \textbf{f}_{4} = \textbf{f}_{4} = \textbf{f}_{4} + \textbf{f}_{4} + \textbf{f}_{4} \\ \hline \textbf{f}_{5} = \textbf{f}_{5} = \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} \\ \hline \textbf{f}_{6} = \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} \\ \hline \textbf{f}_{6} = \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} \\ \hline \textbf{f}_{6} = \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} \\ \hline \textbf{f}_{6} = \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} \\ \hline \textbf{f}_{6} = \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} \\ \hline \textbf{f}_{6} = \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} \\ \hline \textbf{f}_{6} = \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} \\ \hline \textbf{f}_{6} = \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} + \textbf{f}_{6} \\ \hline \textbf{f}_{6} = \textbf{f}_{6} + \textbf$			 記載内容の相違 ・式の導出などは異なるものの、いずれも地表に沈着した放射性物質の地表沈着量を評価し、放射線量を評価する方法を説明している。
 (2)評価体系 a.線源領域 出入管理所及び制御建屋出入口周辺の地表面は平坦であるとし、 線源領域範囲は地表面からの影響がほぼ飽和する評価点を中心とした2000m 四方の範囲とした。 なお、この領域に含まれる海面及び斜面も平坦な地表面と仮定し、 線源とした。 線源領域及び評価モデルを図2-15-1 に示す。 b.遮蔽及び評価点 入退域時の評価に当たっては、周囲の建屋による遮蔽効果は保守的に考慮しないものとした。評価点は出入管理所及び制御建屋出入口とし、評価点高さは地面から1.2m とした。 	ここでの,計算モデルはサブマージョンモデル(大きな領域の 中で放射能の均質分布を仮定し,その中心における被ばくを仮定 するモデル)を適用しており,一様線源を仮定し,評価点は地上 1 m としている。線量換算係数計算モデルの概念図を第1 図に示 す。	ここでの計算モデルはサブマージョンモデル(大きな領域の中 で放射能の均質分布を仮定し,その中心における被ばくを仮定す るモデル)を適用しており,一様線源を仮定し,評価点は地上 1m としている。線量換算係数計算モデルの概念図を第1図に示 す。	 記載方針の相違 ・女川のほうがやや 丁寧な記載になって いるが、平坦地形に モデル化する方針は 同じ。
 (3) 評価コード 評価コードはQAD-CGGP2R コード※1 を用いた。 ※1 ビルドアップ係数はGP 法を用いて計算した 			 設計等の相違 ・泊では、入退域時の評価において、評価コードは用いず、 NUREG/CR-4551の実効線量換算係数を用いて評価している。


第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明答料)

 (1)地表面の単位面積当たりの積算線源強度 放射性物質が、中央制御室の中心位置と同じ濃度で、制御建屋 		大飯発電所3/4号炉	差異理由
 (1)地表面の単位面積当たりの積算線源強度 放射性物質が、中央制御室の中心位置と同じ濃度で、制御建屋 			
放射性物質が、中央制御室の中心位置と同じ濃度で、制御建屋	and the start framework in the start and the	2. 中央制御室内でのグランドシャイン線量評価について	記載方針の相違
放射性物質が、中央制御室の中心位置と同じ濃度で、制御建屋	中央制御室は、原子炉建屋に隣接する原子炉補助建屋内に位置	中央制御室は、原子炉建屋に隣接する制御建屋内に位置し、中央	・評価方法が異なる
	し、中央制御室内に影響する可能性のあるグランドシャイン線量	制御室内に影響する可能性のあるグランドシャイン線量は、制御建	ため、記載内容や着
	は、原子炉補助建屋等の屋上や周辺の地表面に沈着した放射性物質	屋の屋上や周辺の地表面に沈着した放射性物質によるものと考えら	目点に差異はある
	によるものと考えられ、建屋内構造壁・床・天井及び建屋外壁・屋	れ、建屋内構造壁・床・天井及び建屋外壁・屋上の遮蔽効果が得ら	が、いずれも評価条
価した。	上の遮蔽効果が得られる。	れる。	件について説明して
評価した地表面の単位面積当たりの積算線源強度を表2-15-5 及	グランドシャイン線量の評価条件比較表を第2表に示す。	グランドシャイン線量の評価条件比較表を第2表に示す。	いることに相違はな
び表2-15-6 に示す。		地表面に沈着した放射性物質からのグランドシャイン線量は中央	V.
on on the service of the second se	地表面に沈着した放射性物質からのグランドシャイン線量は中央	制御室側壁 cmに加えて制御建屋外壁の遮蔽効果 (評価条件の相違
	制御室側壁に加えて、建屋内の構造壁等の遮蔽効果(計	cm以上)が得られる事から、 cmの遮蔽を考慮した屋上面	 泊では、影響が十
表 2-15-5 クランドシャインカンマ線の評価に用いる単位面積当たりの積鼻線源強度	以上)が得られることから、の遮蔽効果を考慮した	からのグランドシャイン線量より更に4桁程度小さな値となると考	分小さいことを説明
(中央制御室中心)(代替循環冷却系を用いて事象を収束する場合)			
	屋上面からのグランドシャイン線量よりさらに3桁程度小さな値	えられる。したがって、屋上面線源からの寄与が支配的であること	した上で、中央制御
- 1.00×10 ⁻² 約6.1×10 ¹³	となると考えられる。したがって、屋上面線源からの寄与が支配的		室を含む建屋構造を
1.00×10 ⁻² 2.00×10 ⁻² 約6.8×10 ¹³	であることから,屋上面線源からのグランドシャイン線量(約	れ約 1.3×10 ⁻⁴ mSv、約 1.0×10 ⁻⁴ mSv)で代表して評価した。	考慮し、140cm を超
2.00×10 ⁻² 3.00×10 ⁻² 約5.1×10 ¹³	9.5×10-4mSv)で代表して評価した。	なお、実際には地表面に沈着したグランドシャイン線源面は中央	える遮へいが見込め
3.00×10 ⁻² 4.50×10 ⁻² 約 2.1×10 ¹³ 4.50×10 ⁻² 6.00×10 ⁻² 約 1.4×10 ¹³		制御室床面に対して水平又は斜面の状態にあるが、いずれの地形状	る範囲は評価対象外
6.00×10 ⁻² 7.00×10 ⁻² 約 9.1×10 ¹²		熊においても中央制御室側壁から入射するグランドシャイン線につ	としている。
7.00×10 ⁻² 7.50×10 ⁻² 約3.9×10 ¹² 7.50×10 ⁻² 1.00×10 ⁻¹ 約1.9×10 ¹³		いては cm 以上のコンクリート壁を透過するため、中央制御室	
7.50×10^{-2} 1.00×10^{-1} $\$9 \times 10^{13}$ 1.00×10^{-1} 1.50×10^{-1} $\$9 \times 7 \times 10^{12}$			
1.50×10 ⁻¹ 2.00×10 ⁻¹ 約 1.9×10 ¹³		屋上面のグランドシャイン線源からの線量と比較して寄与は小さ	
2.00×10^{-1} 3.00×10^{-1} 約 3.7×10^{13} 3.00×10^{-1} 4.00×10^{-1} 約 2.4×10^{14}	なお,第3表にマスク着用を考慮した中央制御室の居住性(重	v.	
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	大事故対策)に係る被ばく線量結果を示すが、室内作業時の大気中	また、第3表に、マスク着用を考慮した中央制御室の居住性	
4.50×10 ⁻¹ 5.10×10 ⁻¹ 約6.7×10 ¹³	へ放出された放射性物質のガンマ線による中央制御室内での被ばく	(重大事故対策)に係る被ばく評価結果を示すが、室内作業時の大	
5,10×10 ⁻¹ 5,12×10 ⁻¹ 約2,2×10 ¹² 5,12×10 ⁻¹ 6,00×10 ⁻⁴ 約9,9×10 ¹⁰	線量としてクラウドシャインの線量を記載しているが、約	気中へ放出された放射性物質のガンマ線による中央制御室内での被	
	1.2×10-2mSv となる。したがって、室内作業時の大気中へ放出さ	ばくとしてクラウドシャインの線量を記載しているが、3号、4号	
7.00×10 ⁻¹ 約 2.6×10 ¹³	れた放射性物質のガンマ線による中央制御室内での被ばくについ	それぞれ約4.0×10 ² mSv、約3.2×10 ⁻² mSv となる。したがって、	
1.33×10 ⁰ 1.34×10 ⁰ 約1.3×10 ¹²	て、グランドシャイン線量は有意な線量とならない。	室内作業時の大気中へ放出された放射性物質のガンマ線による中央	
1.34×10 ⁰ 1.50×10 ⁰ 約2.1×10 ¹³		制御室内での被ばくについて、グランドシャイン線量は有意な線量	
1.50×10^{0} 1.66×10^{0} $\$9.6.6 \times 10^{12}$ 1.66×10^{0} 2.00×10^{0} $\$9.1.4 \times 10^{13}$	屋上面に沈着した放射性物質からのグランドシャイン線量の評価	とならない。	
2.00×10 ⁰ 2.50×10 ⁰ 約 2.1×10 ¹²	モデルを第3図に示す。屋上から中央制御室までは距離が離れて	屋上面に沈着した放射性物質からのグランドシャイン線量の評価	
2.50×10 ⁰ 3.00×10 ⁰ 約 2.0×10 ¹¹ 3.00×10 ⁰ 3.50×10 ⁰ 約 7.4×10 ⁹	いるが、この距離による減衰効果も無視した保守的な評価モデルと	モデルを第3図に示す。屋上から中央制御室までは距離が離れてい	
	している。また、評価点の水平方向位置についても保守的に線源面	るが、この距離による減衰効果も無視した保守的な評価モデルとし	
4.00×10 ⁰ 4.50×10 ⁹ 約 8.4×10 ⁹	の中心とした評価モデルとしている。	ている。また、水平方向位置についても建屋中央とした保守的な評	
4.50×10^{0} 5.00×10^{0} $\$0.8, 4 \times 10^{0}$ 5.00×10^{0} 5.50×10^{0} $\$0.8, 4 \times 10^{0}$			
5.00×10 ⁰ 5.00×10 ⁰ 第18.4×10 ⁰ 5.50×10 ⁰ 6.00×10 ⁰ 約8.4×10 ⁰		価モデルとしている。	
6.00×10 ⁰ 6.50×10 ⁰ 約 9.7×10 ⁻¹		内は機密に係る事項のため公開できません	
6,50×10 ⁰ 7.00×10 ⁰ 約9.7×10 ⁻¹ 7.00×10 ⁰ 7.50×10 ⁰ 約9.7×10 ⁻¹		1. It is a property of the	
$7.50 \times 10^{\circ}$ $7.50 \times 10^{\circ}$ $8.99.7 \times 10^{\circ}$ $7.50 \times 10^{\circ}$ $8.00 \times 10^{\circ}$ $89.7 \times 10^{\circ1}$			
8,00×10 ⁰ 1,00×10 ¹ 約3,0×10 ⁻¹			
1.00×10 ¹ 1.20×10 ¹ 約 1.5×10 ⁻¹ 1.20×10 ¹ 1.40×10 ¹ 約 0.0×10 ⁶			
1.40×10^1 1.40×10^1 10.0×10^1 1.40×10^1 2.00×10^1 10.0×10^0			
2,00×10 ¹ 3,00×10 ¹ 約0,0×10 ⁰			
3.00×10 ¹ 5.00×10 ¹ 約 0.0×10 ⁶			

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

実効線量

約1.1×10°

約1.1×10°

約7.9×10⁻²

約7.9×10⁻²

約1.1

合計

約1.7×10⁻²

約1.2×10⁻²

約2.2×10⁰

約 2.2×10⁰

約1.0×10¹

約1.4×10⁰

約 1.2×10¹

約15*2

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

グランドシャインガンマ線による被ばくの評価結果を表2-15-7

表 2-15-7 グランドシャインガンマ線による被ばくの評価結果

(代替循環冷却系を用いて事象収束に成功する場合)

線源

地表面沈着分

屋上沈着分

合計

合計

合計

表 2-15-8 グランドシャインガンマ線による被ばくの評価結果

(格納容器ベントを実施する場合)

線源

地表面沈着分

屋上沈着分

合計

地表面沈着分

屋上沈着分

合計

合計

合計

積算日数

7日

78

78

7日

7日

積簱日数

7日

78

7日

10時間

10 時間

10時間

7日

7日

実効線量[mSv]

約8.4×10⁰

約2.9×10°

約1.2×101

約4.6×10²

約6.9×10²

実効線量[mSv]

約8.5×10⁰

約2.9×10⁰

約1.2×10¹

約2.9×10⁻¹

約4.3×10⁻³

約2.9×10⁻¹

約 4.7×10²

約7.1×10²

3. 評価結果

入退城時

入退城時

及び表2-15-8 に示す。

評価位置

中央制御室滞在時

評価位置

中央制御室滞在時

中央制御室待避所滞在時

出入管理所

制御建屋出入口

出入管理所

制御建屋出入口

女川原子力発電所2号炉

泊発電所3号炉

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第3表 中央制御室の居住性(重大事故対策)に係る被ばく評価結果 -マスク着月-7日間の実効線量 (mSv) *1 被ばく経路 外部被ばく 内部被ばく 実効線量の による によろ

実効線量

約1.7×10⁻²

約1.2×10⁻²

約11.1×10⁰

約1.2×10⁰

約1.0×10¹

約1.3×10⁰

約1.2×10¹

約13

①原子炉建屋からのガンマ線

こよる中央制御室での被ばく

②大気中へ放出された放射性

③外気から取り込まれた放射

性物質による中央制御室内で

小計 (①+②+③)

④原子炉建屋の放射性物質が

らのガンマ線による被ばく

⑤大気中へ放出された放射性

小計 (④+⑤)

合 計

物質による被ばく

物質による被ぼく

の彼ばく

	被ばく経路	7	日間の実効線量 (mSv)	* 1
	DOLOGIC MALEN	外部被ばく	内部被ばく	合 計
	①建屋からのガンマ線による中央 制御室内での被ばく	約 4.0×10 ⁻⁵	-	約 4.0×10
室内作	②大気中へ放出された放射性物質 のガンマ線による中央制御室内 での被ばく	約 4.0×10 ⁻¹	-	約 4.0×1
業 ③室内に外 時 射性物質	③室内に外気から取り込まれた放射性物質による中央制御室内での被ばく	約 1.9×10°	約 1.1×10°	約 3.0×1
	小 計 (①+②+③)	約 1.9×10º	約 1.1×10 ⁰	約 3.1×1
	④建屋からのガンマ線による入退 城時の被ばく	約 2.7×10°	-	約 2.7×1
人退城時	⑤大気中へ放出された放射性物質 による入退域時の被ばく	約 1.4×10º	約 7.3×10°	約 1.4×1
	小 計 (④+⑤)	約 4.0×10°	約 7.3×10°2	約 4.1×1

大飯発電所3/4号炉

記載内容の相違 泊では本表では③ にクラウドシャイン との合計値として記 載しているが、中央 制御室内でのグラン ドシャインによる線 量は文章中で記載 (約9.5×10-4mSv) している。 また、入退域時の グランドシャインに よる線量は⑤の外部 被ばくによる実効線 量にクラウドシャイ ンとの合計値として 記載している。

差異理由

(1+2+3+4+5) *1 表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は、有効数値3桁目を四 捨五入し2桁に丸めた値

*2 「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に 丸めた値

*2:「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に丸め た値 第3表(2/2) 中央制御室の居住性(重大事故対策)に係る被ばく評価結果(4号機)

五入し2桁に丸めた値

*1:表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は、有効数値3桁目を四捨

外部液ばく内部液ばく合計 ①建屋からのガンマ線による中央 制御室内での液ばく 約4.0×10 ³ - 約4.0×10 ³ ②大気中へ放出された放射性物質 のガンマ線による中央制御室内 での液ばく 約3.2×10 ² - 約3.2×10 ² ③室内に外気から取り込まれた放 射性物質による中央制御室内 の液ばく 約1.5×10 ⁶ 約8.7×10 ⁴ 約2.3×10 ⁴ 小計(①+②+③) 約1.5×10 ⁶ 約8.7×10 ⁴ 約2.4×11 小計(①+②+③) 約1.5×10 ⁶ 約8.7×10 ⁴ 約2.4×11 小計(①+②+③) 約1.5×10 ⁶ 約8.7×10 ⁴ 約2.4×11 ①感星なからのガンマ線による入退 城時の被ばく 約1.5×10 ⁶ 約8.7×10 ⁴ 約2.4×11 ① 小計(①+②+③) 約1.5×10 ⁶ 約8.7×10 ⁴ 約2.4×11 ① 小計(③+⑤) 約1.5×10 ⁶ 約8.7×10 ⁴ 約2.4×11 ① 小計(④+⑤) 約1.5×10 ⁶ 約1.8×10 ⁴ 約7.6×11 ③ 小計(④+⑤) 約1.9×10 ⁶ 約3.8×10 ⁴ 約1.9×10 ⁴		被ばく経路	7	7 日間の実効線± (mSv) *1	ŧ.
制卵室内での被はく 約 4.0×10 ³ - 約 4.0×10 ³ ②大気中へ放出された放射性物質 のガンマ線による中央制卵室内 での被ばく - 約 3.2×10 ² - 約 3.2×10 「つでの被ばく - 約 3.2×10 ² - 約 3.2×10 「ごの被ばく - 約 3.2×10 ² - 約 3.2×10 「の被ばく - 約 1.5×10 ⁶ 約 8.7×10 ⁴ 約 2.3×10 小計(①+②+③) 約 1.5×10 ⁶ 約 8.7×10 ⁴ 約 2.4×11 小量 ①生量量からのガンマ線による入退 約 1.5×10 ⁶ - 約 1.2×10 ⁴ (①建量からのガンマ線による入退 約 1.5×10 ⁶ - 約 1.2×10 ⁴ (③建量からのガンマ線による入退 約 1.5×10 ⁶ - 約 1.8×10 ² (③生気の、放出された放射性物質 による入退域時の被ばく 約 7.3×10 ¹¹ 約 3.8×10 ² 約 7.6×11 小計(④+⑤) 約 1.3×10 ⁹ 約 3.8×10 ² 約 1.9×11		IR18 / MEMI	外部被ばく	内部被ばく	合 計
室 のガンマ線による中央制御室内 約 3.2×10 ² - 約 3.2×10 ² での被ばく - 約 3.2×10 ² - 約 3.2×10 ² (③ 空内に久気から取り込まれた放 射性物質による中央制御室内で 約 1.5×10 ² 約 8.7×10 ⁴ 約 2.3×1 小 計 (①+②+③) 約 1.5×10 ⁹ 約 8.7×10 ⁴ 約 2.4×1 小 計 (①+②+④) 約 1.5×10 ⁹ 約 8.7×10 ⁴ 約 2.4×1 小 計 (①+②+④) 約 1.2×10 ⁹ - 約 1.2×1 ⑤ (⑤大気中へ放出された放射性物質 による入追城時の被ばく 約 7.8×10 ⁴ 約 3.8×10 ² 約 7.6×11 小 計 (④+⑤) 約 1.9×10 ⁹ 約 3.8×10 ² 約 1.9×1			約 4.0×10 ⁻³	-	約 4.0×10 ⁻³
 	室内作	のガンマ線による中央制御室内	約 3.2×10 ⁻²		約 3.2×10°
④建屋からのガンマ線による入退 城時の被ばく 約 1.2×10° - 約 1.2×10° 通 域時の被ばく ⑤大気中へ放出された放射性物質 による入退城時の被ばく 約 7.3×10 ¹ 約 3.8×10 ² 約 7.6×10 ¹ 小 計 (④+⑤) 約 1.9×10 ⁰ 約 3.8×10 ² 約 1.9×10 ¹	下業時	射性物質による中央制御室内で	約 1.5×10°	約 8.7×101	約 2.3×10°
人 速時の被ばく 約 1.2×10° - 約 1.2×1 第 5.7気中へ放出された放射性物質 による入追城時の被ばく 約 7.3×10 ⁻¹ 約 3.8×10 ⁻² 約 7.6×1 小 計 (④+⑤) 約 1.9×10° 約 3.8×10 ⁻² 約 7.6×1		小 計 (①+②+③)	約 1.5×10°	約 8.7×10 ⁻¹	約 2.4×10°
滅 による入追城時の彼ばく 約 7.8×10 ³ 約 3.8×10 ² 約 7.6×1 市 小 計 (④+⑤) 約 1.9×10 ⁹ 約 3.8×10 ² 約 1.9×1		Charles States and States	約 1.2×10°	-	約 1.2×10 ⁸
小 計 (④+⑤) 約 1.9×10 ⁶ 約 3.8×10 ² 約 1.9×1	へ退城時		約 7.3×10 ⁻¹	約 3.8×10 ⁻³	約 7.6×10-1
	PIT	小 許 (④+⑤)	約 1.9×10°	約 3.8×10°	約 1.9×10°
合計(①+②+③+④+⑤)約3.4約0.9約4.3*	1	A At (1+2+3+4+5)	約 3.4	約 0.9	約 4.3**

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
			記載箇所の相違 ・泊では計算モデル を 59-補足-117 等に 記載している。
(日本市) (日本市) (日本市) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) (日本) <			
<complex-block></complex-block>			

<i>第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)</i> 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
□ P.N			
			記載箇所の相違
			・泊では計算モラ
			を 59-補足-117 第
			記載している。
中央制御主			
9-5			
₩位:ram ● 地支訴式者 詳報(2)置 (0.7.24706) **			
○ 現上與沈春 評価位置 (0.P.24700) ⁸¹			
歩1 評価モデルはコンクリートの施工課品を考慮して設定 歩2 床面(フリーアクセスフロア)から1.2mの高さ			
図 2-15-4 評価モデルの平面図及び評価点 (中央制御室滞在時)			
枠囲みの内容は商業機密の観点から公開できません。			
T 2009 AND TA			
- i- - j = = A - A 9 8 8 3			
927.73M			
8-8 ##23			
 ● 地北回北市 評価位置 (0,7.24400)²⁰ ○ 限上回北市 評価位置 (0,7.24400)²⁰ 			
 第1 算幅モデルはコンクリートの端工業用を考慮して設定 第2 非第 (フラーブクモバフロブ) からしたの構成 			
92 Mm (リップアをスフロガ から 189088 2-15-5 評価モデルの断面図及び評価点 (中央制御室待避所滞在時)			
特囲みの内容は商業機密の観点から公開できません。			

第59 条 連転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
			記載箇所の相違
			・泊では計算モデ
			を 59-補足-117 等
			記載している。
2 9 k 1 (p/m) 33			
4			
 ● 地表面化着 評価化置 (0.P.2400)¹⁰ ○ 屋上面化着 評価化置 (0.P.2400)¹⁰ 			
※1 評価モデルはコンクリートの塩工課室を考慮して設定 ※2 床面(フリーアクセスフロブ)から1.2mの高さ			
図 2-15-6 評価モデルの平面図及び評価点(中央制御室待避所滞在時)			
枠囲みの内容は商業機密の観点から公開できません。			

第59条 運転員が原子炉制御室にとどまるための設備(補)		林子, 此代农民、 以偏石和平和墨(天真印尔和墨花)
女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉 差異理由
	添付 1-2-19	
	運転員の勤務体系を踏まえた被ばく評価結果について	記載方針の相違
	重大事故が発生した場合の中央制御室の居住性に係る被ばく評価に	・女川では勤務体
	重大争戦が発生した場合の中央制御室の居住住に係る彼はく計価にあたっては、「実用発電用原子炉に係る重大事故時の制御室及び緊急	を踏まえた評価 評価結果として
	時対策所の居住性に係る被ばく評価に関する審査ガイド」(以下、「審	計画編末として載しているが、
	査ガイド」という。)に基づき事象発生後7日間の線量評価を行って	の場合は感度解
	11以上に「「「「「」」「「「」」「「」」「「」」「「」」「「」」「「」」「」」「「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」「」」」」	結果として添付
	* 2。 審査ガイドにおいては交代要員体制を考慮することが認められてお	でいる。
	り、その考慮の方法として、「原子力発電所中央制御室の居住性に係	・泊の場合は滞在
	る被ばく評価手法について(内規)(平成21・07・27 原院第1号 平	間で配分した場
	成21年8月12日」の考え方に基づき、7日間の評価期間において最	の評価結果
	も中央制御室の滞在時間が長く入退域回数が多い運転員を対象とし	(15mSv)に対し
	て、7日間の積算線量を滞在期間及び入退域に要する時間の割合で配	て、勤務体系を
	分することで、実効線量を評価した。	慮した場合の評
	一方本評価では、より実際に即した評価として、事故時の勤務体系	が 18mSv とほと
	を踏まえた場合の線量評価を実施した。	ど変わらず、ま
		た、日勤直の班
	1. 勤務体系	代わりに勤務さ
	運転員の勤務形態としては5直2.5交替とした。運転員の直交代サ	た場合, 15mSv さ
	イクルを第1表に、勤務スケジュール例を第2表に示す。	下回ることが示
		されたため、感
	第1表 直交代サイクル	解析として示す
	勤務 勤務時刻 勤務時間	ととしている。
	1直 22:00 ~ 8:10 10 時間 10 分	
	2直 8:10 ~ 15:20 7時間 20 分	
	3直 15:00 ~ 22:10 7時間 10 分	
	連直 8:00 ~ 22:10 14 時間 10 分	
	第2表 勤務スケジュール例	
	1日 2日 3日 4日 5日 6日 7日 滞在時 入退城 間 回数	
	A 班 3 直 連直 2 直 1 直 1 直 49:00 10 回	
	B班目勤	
	C班 3直 連直 2直 1直 38:50 8回	
	D班 1直 3直 連直 2直 49:00 10回	
	<u>E 班 2 直 1 直 1 直 3 直 34:50 8 回</u>	
	2. 評価条件	
	2. 評価未計 本評価においては安全側の評価となるよう、A 班の勤務が線量率の	
	るい評価期間の前半に集中し、かつ通算の中央制御室滞在時間が長く	
	高い計価労间の前半に乗中し、から通算の中央制御室滞住時间が安く なるような勤務スケジュールを想定した。具体的には、A 班の3 直勤	
	務の中央制御室滞在開始時に事故が発生するものと想定しそれ以降の	
	7日間(168時間)について、第1表に示す直交代サイクルにて勤務を	
	行った場合の線量評価を行った。	

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

1. 評価結果 期間スケジュールを描えた大な物部ゲークルでの放ばく発量を第3 表示者に示す。なお、第3 まへ第5 表はマスク着用の想定がそれ どれ具なる。 たちに、谷ケースについて放ばく健量の合計が最も大きい死の評価 結果の肉な 径前 愛示 第5 表に示す。 解節の必要 45 愛示 第5 表に示す。 解節の治療、マスク着用を考慮した場合の自動が最も大きい死の評価 は約 1000 となり、 数のとなり、 解かったりニールを描えてが後してあらた場合いご思想にた場合でも、薄 使用間で分配した場合では15000に放けく健量の合計が見たくならないこ とが書かれた。 たお実際の創題においては、個人健量計による放けく管理を実施す ることで、作家の皿に放けくが振る場合には111回(回知 使用でかる るときなどの勿なを行うことで、更なる放けくの平準化が可能であ るときえらえのの加に満分したりたでの放けく発量 (中央制御室内でマスクの着用を考慮した場合)* (単位: sol) 第 第 5 多勝等サイクルでの放けく発量 (中央制御室内でマスクの着用を考慮した場合)* (単位: sol) (単位: sol) 第 100-1 前の: 100 100 101 - 101 101 101 101 102 - 100.0 前の: 101 101 101 102 - 100.0 前の: 101 101 102 - 100.0 前の: 101 101 102 - 101.0 101 102 - 101.0 101 102 - 101.0 101 102 - 101.0 101.0 101.0 101.0 102 - 101.0 101.0 102 - 101.0 101.0 102 - 101.0 101.0 102 -	勤務スケジュールを踏まえた各勤務サイクルでの被ばく線量を第3 表~第5表に示す。なお、第3表~第5表はマスク着用の想定がそれ ぞれ異なる。 さらに、各ケースについて被ばく線量の合計が最も大きい班の評価 結果の内訳を第6表~第8表に示す。 評価の結果、マスク着用を考慮した場合の評価は約18mSvとなり、 勤務スケジュールを被ばくが厳しくなるように想定した場合でも、滞 在時間で分配した場合(約15mSv)に比較して極端に大きくならないこ とが確認された。 なお実際の勤務においては、個人線量計による被ばく管理を実施す ることで、特定の直に被ばくが偏る場合には日勤直の班を代わりに勤 務させるなどの対応を行うことで、更なる被ばくの平準化が可能であ ると考えらえる。 第3表各勤務サイクルでの被ばく線量 (中央制御室内でマスクの着用を考慮した場合) * (単位:mSv) 1日日 2日日 3日日 4日日 5日日 6日日 7日日 8日日 会計**3 本重 約8.8 約4.4 約2.8 - 約2.0 約1.7 - 約18 817 0 218 - 約1.4 約1.2 約9.5 ************************************	
第3表各勤務サイクルでの被ばく線量 (中央制御室内でマスクの着用を考慮した場合) * (単位:mSv) (単位:mSv) 1日日 2日日 3日日 4日日 5日日 6日日 7日日 6日日 6日	第3表各勤務サイクルでの被ばく線量 (中央制御室内でマスクの着用を考慮した場合) * (単位:mSv) 1日日 2日日 3重 3重 3重 3重 3重 3重 3重 3重 3重 3重 3重 3重 31 31 31 31 31 31 31 31 31 31 31 31 32 31 32 31 33 31 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34 34<	
Image: Digit for the system Digit for the system - - - 約1.7 約1.8 - - 約11 Bit for the system Image: Digit for the system Image: Digit for the system Image: Digit for the system - - 約1.3 - - ※011 Bit for the system Image: Digit for the system - - - - - ※011 Bit for the system - - - - - - - - ※011 Bit for the system - - - - - - - - ※011 Bit for the system - - - - - - - ※01.8 Bit for the system - - - - - - Bit for the system - - - - - Bit for the system - - - - Bit for the system - - - </td <td>11直 ※1 11直 21直 21直 21直</td> <td></td>	11直 ※1 11直 21直 21直 21直	
	一 かり.4 - - かり.7 - かり.1.3 - - かり.1 3ai 3ai	

)また号ぶ西スに制御会にしびまえたみの部件(は日が明次を))

59 条 運転員が原子炉制御室にとどまるための設備(補足調 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	第4表 各勤務サイクルでの被ばく線量 (中央制御室内で7時間までマスクの着用を考慮した場合)* (単位:mSv)		
	1日目 2日目 3日目 4日目 5日目 8日目 7日目 8日目 合計*** 注意 3約7.3 約9.5 約5.0 - 約4.4 約3.8 - - 約3.1 B面 0		
	C庫 - **位 **/0 **/0 **/0 */0 <td></td> <td></td>		
	E 2重」*** - 1重」 1重」 3=0 <td></td> <td></td>		
	第5表各勤務サイクルでの被ばく線量 (中央制御室内でマスクの着用を考慮しない場合) ** (単位:mSv)		
	3位 3位 3位 2位 1位 1位 1位 1位 100		
	$\begin{array}{c c c c c c c c c c c c c c c c c c c $		
	 * 評価期間が7日=168時間のため、8日目の途中まで考慮。入退域時においてマスク(PF=50)の着用を考慮。 *1 事象発生前(評価対象外) *2 連直の途中で対象期間終了 *3 合計線量は、有効数値3桁目を切り上げて2桁に丸めた値 		

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料	9					林子,此載改先、設備石が少相違	
女川原子力発電所2号炉			泊発電所3号/	۶ ۶		大飯発電所3/4号炉	差異理由
	第	6表 評価結果の内訳(被ばく線量が量	最大となる班(∦	(班)の合計)		
		(中央制御室内)	でマスクの着用	を考慮した場	合)		
				間の実効線量 (mSv)			
		被ばく経路	外部被ばくによる 実効線量	内部被ばくによる 実効線量	実効線量の		
		①建屋からのガンマ線による 被ばく	关刘禄重 約3.3×10 ⁻²	天刘禄里	合計 約 3.3×10 ⁻²		
	室内	②大気中へ放出された放射性 物質のガンマ線による被ばく	約 2.4×10 ⁻²	_	約 2.4×10 ⁻²		
	作業時	③室内に外気から取り込まれ た放射性物質による被ばく	約1.8×10 ⁰	約 3.0×10 ⁰	約 4.8×10 ⁰		
		小計 (①+②+③)	約 1.9×10 ⁰	約 3.0×10 ⁰	約 4.9×10 ⁰		
		①建屋からのガンマ線による 被ばく	約 1.2×10 ¹	_	約 1.2×10 ¹		
	人退城時	③大気中へ放出された放射性 物質による被ばく	約1.3×10 ⁰	約 5.5×10 ⁻²	約 1.3×10 ⁰		
		小計 (④+⑤)	約1.3×10 ¹	約 5.5×10 ⁻²	約 1.3×10 ¹		
		合 計 (①+②+③+④+⑤)	約 15	約 3.1	約 18 ^{* 2}		
		数値は,有効数値3 「実効線量の合計(値3桁目を切り上げ 7表評価結果の内訳((中央制御室内で7時	(①+②+③+() 『て 2 桁に丸め) (被ばく線量が損	④+⑤)」の数 と値 長大となる班(/	値は, 有効数 (班)の合計)		
		(中天前御里的で(時					
		被ぼく経路		間の実効線量 (mSv) 内部被ばくによる	実効線量の		
		DATE: A SLOPE	実効線量	実効線量	合計		
		①建屋からのガンマ線による 被ばく	約 3.3×10 ⁻²	_	約 3.3×10 ⁻²		
	室内作	②大気中へ放出された放射性 物質のガンマ線による被ぼく	約 2.4×10 ⁻²	-	約 2.4×10 ⁻²		
	業時	③室内に外気から取り込まれ た放射性物質による被ばく	約 1.8×10 ⁰	約1.5×10 ¹	約 1.7×10 ¹		
		小計 (①+②+③)	約 1.9×10 ⁰	約1.5×10 ¹	約 1.7×10 ¹		
	入退	 ④建屋からのガンマ線による 被ばく 	約 1.2×10 ¹	_	約 1.2×10 ¹		
	退城時	⑤大気中へ放出された放射性 物質による被ばく	約 1.3×10 ⁰	約 5.5×10 ⁻²	約1.3×10 ⁰		
		小計 (④+⑤) 合 計	約 1.3×10 ¹	約 5.5×10 ⁻²	約1.3×10 ¹		
		(1+2+3+4+5)	約 15	約15	約 31 ^{* 2}		
		表における「実効線 数値は,有効数値3 「実効線量の合計(値3桁目を切り上け	桁目を四捨五〕 (①+②+③+(へし2桁に丸め ④+⑤)」の数	o た 値		

赤字	;	設備、	運用	又は体	「制の	相違	(設計方針	計の相違))
青字	:	記載箇	所又	は記載	讷容	の相違	亀(記載)	ち針の相)	肁)
緑字	:	記載表	現、	設備名	称の	相違	(実質的)	な相違な	L)

第6字 評価結果の小説(強ばく)業品が考えたなる低(成型)の合計) (1994時)第四(ママスクの音用を考慮しない合う) 1 1 1	第 59 条 運転員が原子炉制御室にとどまるための設備(補足説 女川原子力発電所2号炉			泊発電所3号	F		大飯発電所3/4号炉	i	差異理由
Matrix (ARM) Matrix (ARM) <t< td=""><td></td><td>第83</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>		第83							
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$				7 日間の実効線量 (mSv) *1					
$\frac{kid<}{0} + \frac{kid}{0} + k$			被ばく経路						
$\frac{1}{10} \frac{1}{10} \frac$			A REAL PROPERTY OF A REAL PROPERTY OF A	約 3.3×10 ⁻²	_	約 3.3×10 ⁻²			
第 		西 物		約 2.4×10 ⁻²	_	約 2.4×10 ⁻²			
A 		業 ③		約 1.8×10 ⁰	約1.5×10 ²	約 1.5×10 ²			
$ \frac{1}{2} $			小計 (①+②+③)	約 1.9×10 ⁰	約1.5×10 ²	約 1.5×10 ²			
時時時時時1.3×10 ¹ 小計(①+①)約1.3×10 ¹ 約5.5×10 ⁻² 約1.3×10 ¹ 合計約15約150(①+②+③+④+⑤)約15約150(①+②+③+④+⑤)以外の 数値は、有効数値3桁目を四捨五入し2桁に丸めた値*2「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数		被	ぱく	約 1.2×10 ¹	_	約 1.2×10 ¹			
小計(①+⑤)約1.3×10 ¹ 約5.5×10 ⁻² 約1.3×10 ¹ 合計約15約15(①+②+③+④+⑥)約15約150*1表における「実効線量の合計(①+②+③+④+⑤)」以外の 数値は、有効数値3桁目を四捨五入し2桁に丸めた値*2「実効線量の合計(①+②+③+④+⑥)」の数値は、有効数		へ退 減 時 物		約 1.3×100	約 5.5×10 ⁻⁸	約 1.3×10 ⁰			
(①+2+3+4+5)約151510約170*2*1表における「実効線量の合計(①+2+3+4+5)」以外の 数値は、有効数値3桁目を四捨五入し2桁に丸めた値*2「実効線量の合計(①+2+3+4+5)」の数値は、有効数				約 1.3×10 ¹	約 5.5×10 ⁻²	約 1.3×10 ¹			
 *1 表における「実効線量の合計(①+②+③+④+⑤)」以外の 数値は、有効数値3桁目を四捨五入し2桁に丸めた値 *2 「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数 		0		約 15	約 150	約 170*2			

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
-16 室内に外気から取り込まれた放射性物質による被ばくの評価方 法について	添付1-2-21 室内に外気から取り込まれた放射性物質による被ばくの評価方法について		
中央制御室の居住性評価における,室内に外気から取り込まれた 放射性物質による被ばくの評価方法を以下に示す。なお,中央制御 室換気空調系の再循環フィルタ装置は地下2階に設置されており, 建屋の床による遮蔽や離隔距離を十分に確保していることから,無 視できる程度にまで低減されるものと考え評価対象外とした。	中央制御室の居住性評価における,室内に外気から取り込まれた 放射性物質による被ばくの評価方法を以下に示す。なお,中央制御 室空調装置の中央制御室非常用循環フィルタユニットは原子炉補助 建屋 24.8m に設置されており,建屋の床による遮蔽や離隔距離を 十分に確保していることから,フィルタユニットに蓄積された放射 性物質による線量は無視できる程度にまで低減されるものと考え評 価対象外とした。		記載方針の相違 ・泊では主語を明確 化した。
. 放射性物質の濃度 中央制御室の雰囲気中に浮遊する放射性物質量の時間変化は,中 央制御室換気空調系の効果を考慮し,以下の式で評価した。 なお,保守的な想定として,中央制御室待避所内の放射性物質の 濃度は,中央制御室待避所加圧設備による正圧化が終了した直後に 中央制御室内の放射性物質の濃度と同一になるものとし,かつ加圧 設備からの空気供給に伴う放射性物質濃度の低減効果は見込まない ものとした。	 放射性物質の濃度 中央制御室の雰囲気中に浮遊する放射性物質量の時間変化は、中 央制御室空調装置の効果を考慮し、以下の式で評価した。 		①の相違
【中央制御室に滞在している期間】			
$m_{ii}(t) = \frac{M_{ii}(t)}{V_1}$	$\frac{d}{dt}A_{cr} = \frac{AI_{t} \cdot Q_{2}}{V_{cr} \cdot DF_{cr}} + \frac{AI_{2} \cdot Q_{3}}{V_{cr}} - \frac{A_{cr} \cdot (Q_{2} + Q_{3})}{V_{cr}} - \frac{A_{cr} \cdot Q_{1} \cdot (DF_{cr} - 1)}{V_{cr} \cdot DF_{cr}} - \lambda \cdot A_{cr}$		
$\begin{split} \frac{dM_{lk}(t)}{dt} &= -\lambda_k \cdot M_{lk}(t) - (G_l + \alpha + \frac{G_2 \cdot E_k}{100}) \cdot \frac{M_{lk}(t)}{V_l} + (1 - \frac{E_k}{100}) \cdot G_l \cdot S_k(t) + \alpha \cdot S_k(t) \\ S_k(t) &= (\chi/Q) \cdot Q_k(t) \end{split}$	$= \frac{\mathbf{A}\mathbf{I}_1 \cdot \mathbf{Q}_2}{\mathbf{V}_{\mathrm{CT}} \cdot \mathbf{D}\mathbf{F}_{\mathrm{CT}}} + \frac{\mathbf{A}\mathbf{I}_2 \cdot \mathbf{Q}_3}{\mathbf{V}_{\mathrm{CT}}} - \left\{ \lambda + \frac{(\mathbf{Q}_2 + \mathbf{Q}_3)}{\mathbf{V}_{\mathrm{CT}}} + \frac{\mathbf{Q}_1 \cdot (\mathbf{D}\mathbf{F}_{\mathrm{CT}} - \mathbf{l})}{\mathbf{V}_{\mathrm{CT}} \cdot \mathbf{D}\mathbf{F}_{\mathrm{CT}}} \right\} \cdot \mathbf{A}_{\mathrm{CT}}$		
m _u (t):時刻tにおける核種kの中央制御室内の放射能濃[Bq/m ²] M _u (t):時刻tにおける核種kの中央制御室内の放射能濃[Bq/m ²] M _u (t):時刻tにおける核種kの中央制御室内の放射能濃[Bq/m ²] I:中央制御室(1/s) G:中央制御室換空調系の外気取入量[m ² /s] G:中央制御室換空調系の所有環風量のうちフィルク通過量[m ² /s] E:中央制御室換空調系の非常用再頻量フィルク装置の除去効率[%] S _k (t):時刻tにおける核種kの放射能濃度[Bq/m ²] α:中央制御室(ウンダリへの空気流入量[m ² /s] (c)空気流入率×中央制御室パウンダリ内容積) χ/Q: :相対濃度[s/m ²] Q _k (t):時刻tにおける核種kの放出率[Bq/s]	A _{CT} : 中央制御室内放射能濃度 (Bq/cm ³) AI ₁ : 外気取入口の空気中放射能濃度 (Bq/cm ³) AI ₂ : 中央制御室周辺の空気中放射能濃度 (Bq/cm ³) Q ₁ : フイルタの容量 (m ³ /s) Q ₂ : 外気取入口での外気取入流量 (m ³ /s) Q ₃ : 中央制御室へのインリーク量 (m ³ /s) V _{CT} : 中央制御室エンベローブ体積 (m ³) D F _{CT} : 非常用フィルター・ユニットの DF		

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
【中央制御室待避所に滞在する期間】 $m_{ot}(t) = \frac{M_{ot}(t)}{V_{o}}$ $\frac{dM_{ot}(t)}{dt} = -\lambda_{t} \cdot M_{ot}(t)$			①の相違
$m_{ok}(t)$: 時刻 t における核種 k の中央制御室待避所内の放射能濃度 [Bq/m ³] $M_{ok}(t)$: 時刻 t における核種 k の中央制御室待避所内の放射能量 [Bq] V_{0} : 中央制御室待避所パウンダリ内容積 [m^{3}] λ_{t} : 核種 k の崩壊定数 [$1/s$]			
核種の大気中への放出率[Bq/s]は添付資料2 2-1 の表2-1-1 に基 づき評価した。また,相対濃度は表2-1-5 の値を用いた。	核種の大気中への放出率[Bq/s]は添付 1-2-1 の第1表に基づき評価した。また、相対濃度は添付 1-2-1 の第4表の値を用いた。		
2. 評価体系 室内に外気から取り込まれた放射性物質による被ばくの評価にあ たり想定した評価体系を図2-16-1 に示す。なお,線源領域は中央 制御室及び中央制御室待避所内の空間部とし,室内の放射能濃度は 一様とした。	2. 評価体系 室内に外気から取り込まれた放射性物質による被ばくの評価にあたり想定した評価体系を第1図に示す。なお、線源領域は中央制御 室内の空間部とし、室内の放射能濃度は一様とした。		①の相違
R:室内容積と同じ容積 をもつ半球の半径[10] 室内濃度:一係	R:室内容積と同じ容積をもつ 半球の半径 [m] 室内濃度:一様		
図2-16-1 室内に外気から取り込まれた放射性物質による被ばくの評価モデル図	第1図 室内に外気から取り込まれた放射性物質による被ばくの評 価モデル図		

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料	1/ 泊発電所3号炉	大飯発電所3/4号炉	差異理由
————————————————————————————————————	但光电/// 3 久が	八政光电/月3747/	左共 垤ロ
3. 評価コード 中央制御室及び中央制御室待避所内の放射性物質の吸入摂取によ る内部被ばく及び室内に浮遊している放射性物質からのガンマ線に よる外部被ばくの評価に当たっては、評価コードを使用せず、以下 の式を用いて評価した。	3. 評価コード 中央制御室内の放射性物質の吸入摂取による内部被ばく及び室内 に浮遊している放射性物質からのガンマ線による外部被ばくの評価 に当たっては,評価コードを使用せず,以下の式を用いて評価した。		①の相違
【吸入摂取による内部被ばく】 $H = \frac{1}{PF} \cdot \sum_{s} \int_{0}^{t} R \cdot H_{sn} \cdot C_{s}(t) dt$	【吸入摂取による内部被ばく】 $I_{DI} = \frac{1.0 \times 10^3}{PF} \cdot \sum_k \int_{t_0}^{t_1} R \cdot H_{\infty} \cdot E_{k \to I} \cdot C_k(t) \cdot 1.0 \times 10^6 dt$		
<text><text><text><text><text><text><text><text><text><text><text><text><text></text></text></text></text></text></text></text></text></text></text></text></text></text>	$ = \frac{1.0 \times 10^9}{PF} \cdot \sum_k \int_{t_0}^{t_1} R \cdot H_{\infty} \cdot C_{kl}(t) dt $ $ I_{Dl} : byhtehog の吸入摂取による内部被ばく線量 (mSv) R : 呼吸率 (m2/s) H_{\infty} : I-131 の吸入摂取による線量係数 (Sv/Bq) E_{k-rl} : 核種 k から I-131 等価量への換算係数 (-) (ICRP90 年勧告ペースの成人実効線量係数換算値) C_k(t) : 時刻 t における核種 k の中央制御室内放射能濃度 (Bq/cm3) C_{kl}(t) : 時刻 t における核種 k の中央制御室内放射能濃度 (I-131 等価量) (Bq/cm3) PF : マスクの防護係数 (-) 【外部被ばく】 I_{Dy} = \sum_k \int_{t_0}^{t_1} \frac{1}{2} \cdot \frac{K}{\mu} \left[\frac{A}{1+\alpha_1} \{ 1 - exp(-(1+\alpha_1) \cdot \mu \cdot R_0) \} \right] + \frac{1-A}{1+\alpha_2} \{ 1 - exp(-(1+\alpha_2) \cdot \mu \cdot R_0) \} \right] \cdot \frac{Eyk}{0.5} \cdot A_{CTk}(t) dt I_{Dy} : byhtehog の y 線による外部被ばく線量 (mSv) K : 線量率換算係数 0.5MeV ···8.92 × 10^6 ((mSv/h)/(y/cm2/s)) A, \alpha 1, \alpha 2 : \overline{r} - \overline{r} - \overline{z} U^{T} \nu \overline{r} \overline{r} \overline{r} \overline{r} \delta MeV y \widehat{k}) A = 24.0, \alpha 1 = -0.138, \alpha 2 = 0.0 \mu : : 線 \partial g G \otimes MeX + 0.5 MeV y : 48 R_0 : ! \mathrm{H} m O \mathrm{H} A = \left(\frac{3}{2} \cdot \frac{y}{n} \right)^{1/3} \times 100 (cm) V : A^{m} y : k = 1 \delta 2 \phi s c \lambda r + \tau (MeV/dis) A_{CTk}(t) : = \pi J t c \lambda s r \lambda r + \tau (MeV/dis) A_{CTk}(t) : = \pi J t c \lambda s r \lambda r + \tau (MeV/dis) $		

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

00木 建铅5				受備(補足説明資料	94)		and the second				关用理上
	女川原子	刀発電門	12			旧発	電所3-	专炉		大飯発電所3/4号炉	差異理由
を表2-16-1及	から取り込まれ び表2-16-2 にテ 町に外気から取り込	さす。		破ばくの評価結果 _{皮ばくの評価結果}	を第1表に示	す。		生物質による被ばく と放射性物質による			型式による相違
(代替循環冷却系を用いて事象収束に成功する場合)						価結果				 ・女川ではシナリ: 	
	(運転員の交		1		評価位置	線源	積算	被ばく経路	実効線量		に応じて2パター
評価位置	線源	積算日数	被ばく経路	実効線量[mSv]			日数		[mSv]		の評価を行ってい
中央制御室	中央制御室内浮遊分	7日	外部被ばく 吸入摂取による	約 5.7×10°	中央制御室	中央制御室内	7日	外部被ばく 吸入摂取による	3.9×10°		వం
		7日	内部被ばく※1	約 5.2×10 ²	T XIN F	浮遊分	7日	内部被ばく*1	1.8×10^{2}		1
※1 マスクの着	作用を考慮しない場合				* ¹ マスクの着用	 を考慮したい提	<u> </u>	L THERE'S			
表 2-16-2 室	3内に外気から取り込 (格納容器へ (運転員の交	シトを想	定する場合)	皮ばくの評価結果							
評価位置	線源	積算日数	被ばく経路	実効線量[mSv]							
中央制御室	中央制御室内浮遊分	7日	外部被ばく 吸入摂取による	約 5.8×10°							
		7日	内部被ばくや	約 3.5×10 ³							
中央制御室 待避所	中央制御室待避所内 浮遊分	10 時間 10 時間	外部被ばく 吸入摂取による	約 2. 2×10 ⁻³ 約 2. 5×10 ⁶							
	新用を考慮しない場合	10 1010	内部被ばく*1	102.0110							1

第 <i>59 条 運転員</i>				ための設備(補足	已說明資料	9						
		女川原子力発	電所2号	炉			泊発電	所3号炉		大飯発	電所3/4号炉	差異理由
-17 大気中に放 ばくの評価力			の入退	域時の吸入摂取に	よる被	大気中に放出		入退域時の吸フ まについて	添付1−2−22 入摂取による被ばくの			
				低中に放出されたカ 評価方法を以下にネ			室の居住性評価におけ D吸入摂取による被は		牧出された放射性物質 と以下に示す。			
 放出量及び大 核種の大気中 づき評価した。 	中への	放出率[Bq/s]		₹料2 2-1 の表2-1 の値を用いた。	1-1 に基				Lの第1表に基づき評 長の値を用いた。			
				战時の吸入摂取に。 5を用いて評価し7					D吸入摂取による被ば 用いて評価した。			
	1	$H = \frac{1}{PF} \cdot \sum_{k} \int_{0}^{T} R \cdot H$	H _{k∞} · (χ/Q)	$C_{k}(t)dt$		I _{DI}	$=\frac{1.0\times10^3}{PF}\cdot\sum_k\int_{t_0}^{t_1}R$	$\cdot H_{\infty} \cdot E_{k \to l} \cdot (\chi)$	$(Q) \cdot C_k(t) dt$			
R H _{im} (χ/Q) C _* (r) T PF	: 呼吸 : 核種 : 相対 : 時刻 : 評価 : マス ICRP Pu	^収 (1.2/3600) ^{#3} [m kの吸入摂取時の 費度[s/m ³] tにおける核種 k 期間[s] ケの防護係数[-] sblication71に基づ	P/s] 実効線量 の環境放出 らく成人活動			(χ/Q)	: 放射性物質の吸入 : 呼吸率 (m ³ /s) : I-131 の吸入摂取 : 核種 k から I-131 (ICRP90 年勧告ペー : 相対濃度 (s/m ³) : 時刻 t における核 : マスクの防護係数	による線量係数 等価量への換算 -スの成人実効線 種 k の環境放出	ά(Sv/Bq) 章係数(一) 線量係数換算値)			
 評価結果 大気中に放出 くの評価結果を 				ぱ時の吸入摂取に。 □示す。	よる被ば		こ放出された放射性物 結果を第1表に示す。	質の入退域時の	D吸入摂取による被ば			
				入摂取による入退城時の (象収束に成功する場合)								
		評価位置	積算日数	実効線量[m5v] ^{e1}		弗↓表 大	c気中に放出された放 の被ばく	射性物質の吸入 の評価結果	摂取による人退取時			型式による相違 ・女川ではシナリオ
	10000	出入管理所	7 日™	¥3 7.6×10 ¹			評価位置	積算日数	実効線量[mSv] ^{※2}			に応じて2パターン
	(进城時	制御建屋出入口	7日前	₩3 1. 1×10 ³		入退城時	出入管理建屋入口	7日※1	2.3×10^{2}			の評価を行ってい
		目間帯在するものとして計 使用を考慮しない場合	価				 中央制御室入口 日間滞在するものとし 	7日 ^{※1} イ証研	3.4×10^{2}			る。
							自同福任900000 着用を考慮しない場合					
表 2		大気中に放出された放 の評価結果(格納容器		し入摂取による入退城時の 毎を想定する場合)			with the second sec					
		の評価結果(格納容器 評価位置	ペントの実) 積算日数	^{起を想定する場合)} 実効線量[sdv] ^{#1}								
		出入管理所	7日前	約 5.4×10 ³								
λ	《退城時	制御建屋出入口	7日**	約7.6×10 ³								
		目間帯在するものとして計	- 840									
1012	マスクの家	#用を考慮しない場合										

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
			型式の相違
-18 原子炉格納容器フィルタベント系排気管内の放射性物質からのガンマ線による			・泊では対象外であ
被ばくの評価方法について			り、説明資料はな
格納容器ペント実施に伴いペントラインに流入する放射性物質の大部分は、希ガス			W.
2時時間、シージス通に行い、シージーンに加入する取引注め負の人前方は、加入へ と除き、原子炉格納容器フィルタベント系の排気管内に取り込まれ線源となる。こ			
では、中央制御室の居住性に係る被ばく評価における、当該線源からのガンマ線(直			
ガンマ線)による入退城時の被ばくの評価方法を示す。			
なお、フィルタ装置内(スクラバ水、金属フィルタ及びよう素フィルタ)の放射性			
質からのガンマ線については、十分な遮蔽能力(直接ガンマ線に対しては			
上, スカイシャインガンマ線に対して したのコンクリート連載厚() があるこ 及び線源強度から, 他の被ばく経路からのガンマ線と比較し、十分小さいとして評			
の対象外とした。			
and the second			
. 評価条件			
(1)線源モデル			
無機よう素及び粒子状放射性物質が排気管内に付着するものとし、希ガス及び			
有機よう素は排気管内に付着しないものと想定した。ここで,排気管内の放射性 物質の付着割合としては,原子炉格納容器フィルタベント系のフィルタ装置を通			
過し、大気中に放出される無機よう素及び粒子状放射性物質の総量の10%が排気			
管100mに付着するものとした(付着割合:10%/100m)。大気中に放出される放射			
能量は添付資料22-1の表2-1-3に示す。なお、保守的な想定として、評価期間			
中に屋外に放出される無機よう素及び粒子状放射性物質の総量が格納容器ベン			
ト直後に排気管に移行し、上記の付着割合で付着するものとした。			
直接ガンマ線の線源モデルは体積線源型とした。評価に用いた線源モデルを図			
2-18-1に示す。なお,評価モデルの排気管の長さは、屋外の排気管長さを包給す る長さとした。			
WRECCC.			
※1 排気管 10mの線展強度は、表 2-18-1 を寄照。			
平衡团 空気 (1.2049×10*sp(cm ³)			
配管 (鉄 7.8g/cm ²)			
● : 3F低化			
: #PMIN.			
H GLED			
[図 2-18-1] 評価モデル(直接ガンマ線。排気管)			
枠囲みの内容は商業機密の観点から公開できません。			

女	;川原子力発電所2	号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
2)線源強度					
排気管内の線源強度	「は、格納容器ベン	ト開始時刻に毎機よ	終 乃		型式の相違
び粒子状放射性物質の					
					・泊では対象外で
線源強度を算出した。	格納容器ベント開	始時刻以降において	排		り、説明資料はな
気管内の線源強度は時	時間減衰を考慮する	ものとした。			10
停止時炉内内蔵量に	対する核種ごとの	原子炉格納容器から	2位		
格納容器フィルタベン					
容器フィルタベント系	※に流入する総量)	は, MAAP 解析及び!	G-		
1465 の知見に基づき	評価した。なお,M	AAP コードでは, よ	素の		
化学組成は考慮されな	いため、粒子状よ	う素及び無機よう素			
ては、ベントラインへ					
		TT'2 CAUCAURA			
した。					
以上の条件に基づき	評価した格納容器	ベント開始直後の紡	<u> </u>		
を表2-18-1に示す。					
表 2-18-1 地名	【管の線源強度(格納容	嬰ベント開始直後)			
	(目の)線原油度(柏和)谷 ギー (MeV)				
		線源強度 (photons/(s・10m))			
下限	上限(代表エネルギー) 1.00×10 ⁻²	約 3. 2×10 ⁹			
1.00×10 ⁻²	2.00×10 ⁻²	約 3.6×10 ⁹			
2.00×10 ⁻²	3.00×10 ⁻²	約2.7×10 ⁹			
3.00×10 ⁻²	4.50×10 ⁻²	約1.1×10 ⁹			
4.50×10 ⁻² 6.00×10 ⁻²	6.00×10 ⁻² 7.00×10 ⁻²	約 6.8×10 ⁸ 約 4.5×10 ⁸			
7.00×10 ⁻²	7.50×10 ⁻²	約4.5×10 約2.2×10 ⁸			
7.50×10 ⁻²	1.00×10 ⁻¹	約 1.1×10 ⁹			
1.00×10 ⁻¹	1.50×10 ⁻¹	約3.7×10 ⁸			
1.50×10^{-1} 2.00×10^{-1}	2.00×10 ⁻¹ 3.00×10 ⁻¹	約 9.2×10 ⁴ 約 1.8×10 ⁵			
3.00×10 ⁻¹	4.00×10 ⁻¹	約1.5×10 ¹⁰			
4.00×10 ⁻¹	4.50×10 ⁻¹	約7.6×10 ⁹			
4. 50×10 ⁻¹	5. 10×10 ⁻⁴	約3.6×10 ⁹			
5, 10×10 ⁻¹	5. 12×10 ⁻¹ 6. 00×10 ⁻¹	約 1.2×10 ⁸ 約 5.3×10 ⁹			
5. 12×10 ⁻¹ 6. 00×10 ⁻¹	7.00×10 ⁻¹	約 5. 3×10 ⁻ 約 6. 0×10 ⁰			
7.00×10 ⁻¹	8.00×10 ⁻¹	約 6.1×10 ⁸			
8,00×10 ⁻¹	1.00×10^{6}	約1.2×10 ⁹			
1,00×10 ⁶	1.33×10 ⁰	約7.2×10 ⁸			
1.33×10^{6} 1.34×10^{6}	1.34×10^{0} 1.50×10^{0}	約 2.2×10 ⁷ 約 3.5×10 ⁸			
1. 50×10 ⁰	1.66×10 ⁸	約4.1×10 ⁷			
$1,66 \times 10^{0}$	2.00×10^{6}	約8.7×10 ⁷			
2.00×10 ⁰	2.50×10 ⁶	約1.6×10 ⁷			
2.50×10^{6} 3.00×10^{6}	3.00×10^{0} 3.50×10^{0}	約 1, 9×10 ⁵ 約 5, 1×10 ²			
3, 50×10 ⁰	4.00×10 ⁰	約5.1×10 ²			
4.00×10°	4.50×10 ⁶	約5.6×10 ⁻⁶			
4.50×10 ⁰	5.00×10°	約5.6×10 ⁻⁶			
5.00×10 ⁶ 5.50×10 ⁶	5.50×10^{6} 6.00×10^{6}	約5.6×10 ⁻⁶ 約5.6×10 ⁻⁶			
6,00×10 ^o	6.50×10 ⁰	約 6.4×10 ⁻⁷			
6. 50×10°	7.00×10 ⁶	約-6,4×10 ⁻⁷			
7.00×10 ⁶	7.50×10°	約6.4×10-7			
7.50×10 ⁸	8.00×10 ⁸	約6.4×10 ⁻⁷			
8.00×10^{6} 1.00×10^{1}	1.00×10^{1} 1.20×10^{1}	約 2. 0×10 ⁻⁷ 約 9. 8×10 ⁻⁶			
1.20×10^{1} 1.20×10^{1}	1.40×10^{1}	約 0, 0×10 ⁰			
1.40×10^{1}	$2,00 \times 10^{1}$	約 0.0×10 ⁰			
2.00×10^{1}	3.00×10^{1}	約 0.0×10°			
3.00×10^{1}	5.00×10^{1}	約0.0×10 ⁰			1

			めの設備(補足説明資料)			目違(実質的な相違なし
100 C	女川原子力到	Ě電所2号烷	Ē	泊発電所3号炉	大飯発電所3/4号炉	差異理由
評価点						型式の相違
評価点の						・泊では対象外
			即建屋出入口とした。各			り、説明資料は
曲点の緑沥	原からの距離を表2−1	8-2 に示す。	•			1000
tan bar da ar	1 H H					
評価点の)高さ 5さは排気管の中心位	է 1994, ի, ի, չել				
洋価点の置	るは排気官の中心性	/直とした。				
誕価占居	りの遮蔽					
	」シジジー版 周囲には保守的に遮頼	を除かったいま	しのとした			
-	表 2-18-2 各評価点の	線源からの距	E離(入退城時)			
Г	23 /w Jr	線	源			
	評価点	記管(最近接点	気からの距離)			
	出入管理所	約1	178m			
F						
L	制御建屋出入口	約1	06m			
は時の被は	ぱくの評価結果を表2	-18-3 に示	からのガンマ線による入 す。 気管からのガンマ線による			
入退城時の	被ばくの評価結果(格	納容器ベント	の実施を想定する場合)			
	評価位置	積算日数	実効線量[mSv]			
	出入管理所	7日章2	約1.4×10 ⁻²			
入品給時	制御建屋出入口	7日182	約 5.6×10-2			
入退城時						
	日間滞在するものとして話	平価				
	日間滞在するものとして話	平価				
	日間滞在するものとして話	平価				
	 日間滞在するものとして計	平価				
	 日間滞在するものとして話	子価				
	日間滞在するものとして話	千価				
	日間滞在するものとして	平街				
	日間滞在するものとして話	Y 価				
	日間滞在するものとして話	r 任価				

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
			Дже
19 原子炉運転時の炉心熱出力を定格熱出力に余裕を見た出力とし			記載方針の相違
た場合の影響について			・泊では予め炉心
			出力に余裕を見た
中央制御室の居住性に係る被ばく評価では、審査ガイドに基づき			力での評価を行っ
最適評価手法を採用しており,原子炉運転時の炉心熱出力として定			いる(添付 1-2-1
格熱出力を参照している。以下では、原子炉運転時の炉心熱出力			第1表(1/3)59-補
を、設計基準事故解析と同様に、定格熱出力に余裕を見た出力(定			-39 で記載)。
格熱出力の105%)とした場合の影響を検討した。			
検討の結果、定格熱出力の105%での運転継続を仮定した場合にお			
いても、被ばく線量は最大約54mSv となり、判断基準「運転員の実 が使用がなり、日間で1000 のたね。たれ、たれ日本ステレムが知			
効線量が7 日間で100mSv を超えないこと」を満足することを確認			
した。以下、検討結果を示す。			
<検討>			
中央制御室の居住性に係る被ばく評価において考慮した各被ばく			
経路からの被ばく線量は、線源となる放射性物質の量に比例し、ま			
た、線源となる放射性物質の量は、停止時炉内内蔵量に比例する。			
なお、停止時炉内内蔵量は、以下の式より評価している。			
停止時炉内内蔵量[Bq]=単位出力当たりの停止時炉内内蔵量※			
¹ [Bq/MW]×炉心熱出力[MW]			
※1 電力共通研究「立地審査指針改定に伴うソースタームに関する			
研究 (BWR)」において評価			
and a set of the verdence of the N deb (1) 1. A set of the (1) 1. A set of the (1) 1.			
ここで、原子炉運転時の炉心熱出力を定格熱出力の105%とした場合にいたませいがあります。			
合における放射性物質の環境中への放出割合として添付資料2 2-1 の表2-1-1 に示す値を用いる場合、各被ばく経路からの被ばく線量			
の表2-1-1 に示す値を用いる場合、各数はく経路からの数はく稼重 は炉心熱出力に比例することになる。この場合、炉心熱出力を定格			
熱出力の105%とした場合における被ばく線量は、定格熱出力を用い			
で評価した結果を1.05倍することによって求められる。			
定格熱出力を用いた場合における各被ばく経路からの合計値(最			
新基準「運転員の実効線量が7日間で100mSvを超えないこと」を			
満足している。			
※2 「59-9 原子炉制御室の居住性に係る被ばく評価について2.中			
央制御室の居住性(炉心の著しい損傷)に係る被ばく評価につ			
いて」に示した評価ケースのうち,評価結果が最も厳しくなる			
代替循環冷却系を用いて事象収束に成功する場合の評価結果			

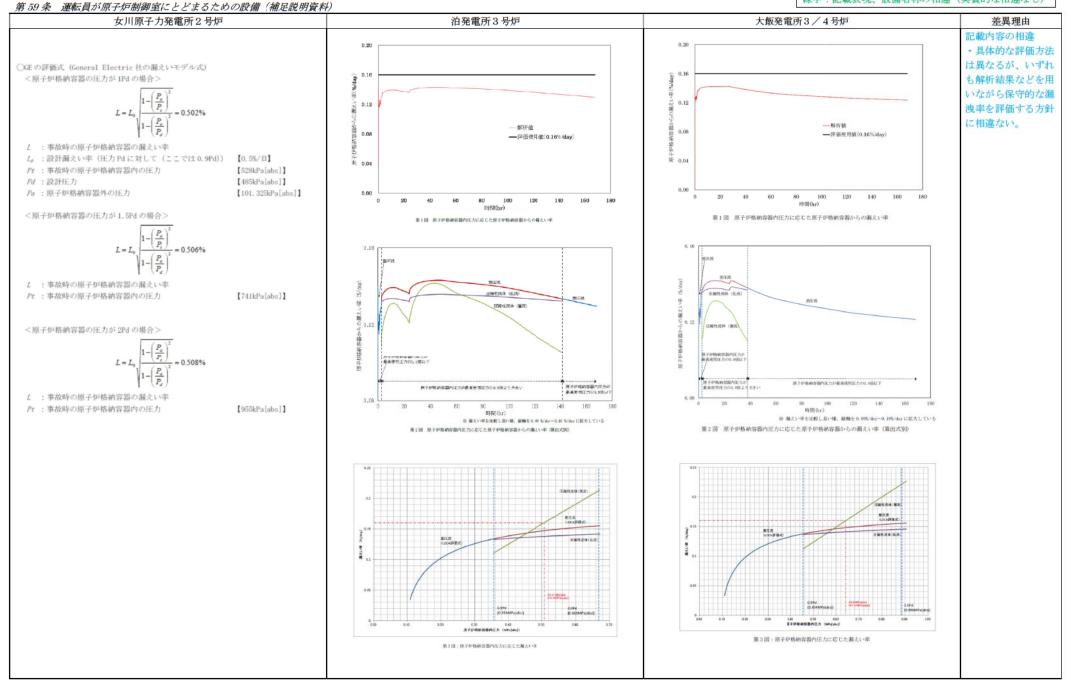
第59条 運転員が原子炉制備	創室にとどまるための	<u> 設備(補足説明</u> 算	(科)		
女川原-	子力発電所2号炉		泊発電所3号炉	大飯発電所3/4号炉	差異理由
					記載箇所の相違
	なし,運転員交替なしの場合(・泊では添付1
	部被ばく 外部被ばく	合計			において事故シ
	5.2×10 ² 約 2.4×10 ¹	約 5.5×10 ²			ンス選定の考え
	4.8×10 ¹ 約 1.1×10 ⁰				示している。
※1 大 LOCA (代替循環): 大破	皮断 LOCA+HPCS 失敗+低圧 EC 失(代替循環冷却系を用いて		L		
源要: ※2 DCH (代替循環): DCH (代					
2. 入退域を考慮した場合の詞	評価結果				
(7 日間積算値(1 班あ7	たりの平均))				
1.のとおり,中央制御師	室内環境としては大LC	CA(代替循環)の	Ī		
が厳しいことを確認したが,					
体制であり、炉心の著しい	損傷が発生した場合に	おいても交替す	5		
ことが想定されるため、交刺	替の際の入退域時に屋	外を通ることに	k l		
る被ばくを含め、平均的な社					
1.同様に,大LOCA(代替					
央制御室内でのマスク着用し	には期待しないが,運	転員の交替を平均	匀		
的に考慮して評価する。5 🛙		中央制御室滞在			
時間及び入退域回数が最大。					
中央制御室滞在時間					
入退域回数 10 回(1	1 回あたり12 分)				
であるため,					
中央制御室内での被け					
	被ばく線量7 日間積算	〔值×(49 時間40			
分/168 時間)入退					
	被ばく線量7 日間積算	[值×(10 回×12			
分/168 時間)					
として評価する。ただし,					
マスク (1 日目はPF1000, 2		・着用するものと			
て評価する。評価結果を表2					
表2-20-2 のとおり、内部					
替循環)が大きい評価結果と					
過影響を考慮した場合におい					
ては大LOCA(代替循環)の方法	が厳しくなることを確	認した。			
表 2-20-2 中央制御室内マスクラ	美田ム」の根本の翌年は田	(りまたりの可約)			
	複ばく 外部被ばく	合計	1		
	6×10 ² 約1.5×10 ¹	約 1.7×10 ²			
	4×10 ¹ 約7.9×10 ⁻¹	約 1. 5×10 ¹	41		
ben (ICHANNA) #91.	4010 #31.3X10.	FU 1. 5 × 10.			
				1	1

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)			
女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
3. 運用面での対策も考慮した場合の評価結果			
1. 及び2. から、中央制御室内環境としては、平均的な運転員			記載箇所の相違
交替を考慮した場合の環境としても、大LOCA(代替循環)の方が厳し			・泊では添付 1-2-2
いことを確認した。このうちDCH(代替循環)については、交替を			において事故シーケ
考慮した平均的な線量として100mSv/7 日間を下回ることを確認し			ンス選定の考え方を
たが、運用面での対策を考慮した場合でも、100mSv/7 日間を下回			示している。
ることを確認する。			
大LOCA(代替循環)については想定事故シナリオとして評価してい			
ることから、ここではDCH 発生時の運転員の被ばく影響について、			
運用面での対策であるマスクの着用及び運転員の交替の両方を考慮			
した場合に100mSv/7 日間を下回ることを確認する。運用面での対			
策については、簡易的に大LOCA(代替循環)において想定していたも			
のと同じ条件とする。			
評価結果を表2-20-3 に示す。また、被ばく線量の合計が最も大			
きい班 (D 班) の評価結果の内訳を表2-20-4 に、中央制御室内に			
てマスク (PF=1000) を用いている班・滞在日のうち代表例としてD			
班の1 日目の評価結果を表2-20-5 に、中央制御室内にてマスク			
(PF=50)を用いている班・滞在日のうち代表例としてA 班の2 日			
目の評価結果を表2-20-6 に示す。			
評価の結果, DCH 発生時においても運転員の被ばく線量は			
100mSv/7 日間を下回ることを確認した。			
表 2-20-3 各勤務サイクルでの被ばく線量 (DCH(代替循環))			
(中央制御室内でマスクの着用を考慮した場合)(単位:mSv) ⁸¹⁸²⁸³ 1日 2日 3日 4日 5日 6日 7日 合計			
2直 23直 3直 1直 1直			
A 班 約 0.44 ⁵⁶⁴ 約 0.72 約 0.31 - 約 0.50 約 0.46 - 約 2.4 3 度 1度 1度 2			
B班 約0.37 ¹⁰⁴ - 約0.59 約0.54 約0.31 約1.8			
C班 0			
<u>1直 1直</u> D班 <u>461</u> g ⁶⁴ 400.65 400.36 400.50 200.19 ⁸⁶ 約3.3			
201 230 330 10			
E 壯 約0.43 約0.59 約0.25 - 約0.45 ¹⁰⁵ 約1.7			
※1 連載モデル上のコンクリート厚を許容される施工線差分だけ薄くした場合の被ぼく締量 ※2 入送城時において、マスク (PF=50)の着用を考慮			
※3 中央制御室滞在時において、マスク(FF=50)の着用を考慮。6時間当たり1時間外すものとして評価			
※4 中央制御室滞在時及び入退城時において、事故後1日目のみマスク(IF=1000)の着用を考慮。中央 制御室滞在時は6時間当たり18分開外すものとして評価			
※5 評価期間終了直前の入域に伴う被ぼく線量は、7日日1直の被ぼく線量に加えて整理。7日日3直の 被ぼく線量は、入域及び中央制御店滞在(評価期間終了まで)に伴う被ぼく線量(彼 6-1-1の示5 を			
参照)			

ンス選定の
において 事 ンス選定の
シス選定のオ

 4. 結論 DCI 発生時の被ばく影響を評価した結果,1.及び2.のとお り、運用面での対策に期待しない場合における中央時期室内環境と しても、平均的な運転員交替を考慮した場合の環境としても、DCI よりも大LCA(代替機関)の方が厳しいことを確認した。このことか ら、中央期期室の居生性評価に当たって、DCI ではなく大LCA(代 著楷觀)を想定事故シナリオとして運生することは妥当であること を確認した。理由は以下のとおり。 ・居住性評価においては運用面での対策も考慮してよいこととな っているが、運用面での対策は考慮見等に応じて決定するも のであり、判断基準(100&5/7 日間)を満足する範囲におい ては、同一事象であっても異なる対策をとことができること 考察を遭定するために必要な設備)の妥当性評価に用いる 事象を遭定するために最低酸しい事象を確認する場合において は、同一事象であっても登場たがしろい、運 転見みととりまく環境としての厳しさを確認する場合において は、同一事象であっても登場かること また、DCH 発生時に運用面での対策を考慮することで運転員の被 ばズ(額量が100&Sv/7 日間を下回ることを確認した。 	
り、運用面での対策に期待しない場合における中央制御室内環境と しても、平均的な運転員交替を考慮した場合の環境としても、DCH よりも大LOCA (代替領票)の方が厳しいことを確認した。このことか ら、中央制御室の居住性評価に当たって、DCH ではなく大LOCA (代 替領環)を想定事故シナリオとして遭定することは妥当であること を確認した。理由は以下のとおり。 ・居居性評価においては運用面での対策も考慮してよいこととな っているが、運用面での対策も考慮してよいこととな っているが、運用面での対策も考慮して決定するも のであり、判断基準 (100mSv/7 日間)を満足する範囲におい ては、同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	記載箇所の相違
しても、平均的な運転員交替を考慮した場合の環境としても、DCH よりも大LOCA(代替循環)の方が厳しいことを確認した。このことか ら、中央制御室の居住性評価に当たって、DCH ではなく大LOCA(代 替循環)を想定事故シナリオとして選定することは妥当であること を確認した。理由は以下のとおり。 ・居住性評価においては運用面での対策も考慮してよいこととな っているが、運用面での対策は事象進展等に応じて決定するも のであり、判断基準(100mSv/7 目間)を満足する範囲におい ては、同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	 ・泊では添付 1-2-2
しても、平均的な運転員交替を考慮した場合の環境としても、DCH よりも大LOCA (代替循環)の方が厳しいことを確認した。このことか ら、中央制御室の居住性評価に当たって、DCH ではなく大LOCA (代 替循環)を想定事故シナリオとして選定することは妥当であること を確認した。理由は以下のとおり。 ・居住性評価においては運用面での対策も考慮してよいこととな っているが、運用面での対策は事象進展等に応じて決定するも のであり、判断基準(100mSv/7 目間)を満足する範囲におい ては、同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	において事故シーケ
よりも大LOCA(代替循環)の方が厳しいことを確認した。このことか ち、中央制御室の居住性評価に当たって、DCH ではなく大LOCA(代 替循環)を想定事故シナリオとして達定することは妥当であること を確認した。理由は以下のとおり。 ・居住性評価においては運用面での対策も考慮してよいこととな っているが、運用面での対策は考象進展等に応じて決定するも のであり、判断基準(100mSv/7 日間)を満足する範囲におい ては、同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	ンス選定の考え方を
 ら、中央制御室の居住性評価に当たって、DCH ではなく大LOCA(代 替循環)を想定事故シナリオとして運定することは妥当であること を確認した。理由は以下のとおり。 ・居住性評価においては運用面での対策も考慮してよいこととな っているが、運用面での対策は事象進展等に応じて決定するも のであり、判断基準(100nSv/7 日間)を満足する範囲におい ては、同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被 	示している。
 替循環)を想定事故シナリオとして運定することは妥当であること を確認した。理由は以下のとおり。 居住性評価においては運用面での対策も考慮してよいこととなっているが、運用面での対策は事象進展等に応じて決定するものであり、判断基準(100mSv/7 日間)を満足する範囲においては、同一事象であっても異なる対策をとることができること 「運転員がとどまるために必要な設備」の妥当性評価に用いる事象を選定するために最も厳しい事象を確認する場合においては、同一事象であっても変動しうるパラメータは除外して、運転員をとりまく環境としての厳しさを確認する必要があることまた、DCH 発生時に運用面での対策を考慮することで運転員の被 	
を確認した。理由は以下のとおり。 ・居住性評価においては運用面での対策も考慮してよいこととな っているが、運用面での対策は事象進展等に応じて決定するも のであり、判断基準(100mSv/7 日間)を満足する範囲におい ては、同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	
 ・居住性評価においては運用面での対策も考慮してよいこととなっているが、運用面での対策は事象進展等に応じて決定するものであり、判断基準(100mSv/7 日間)を満足する範囲においては、同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる事象を選定するために最も厳しい事象を確認する場合においては、同一事象であっても変動しうるパラメータは除外して、運転員をとりまく環境としての厳しさを確認する必要があることまた、DCH 発生時に運用面での対策を考慮することで運転員の被 	
っているが、運用面での対策は事象進展等に応じて決定するも のであり、判断基準(100mSv/7 日間)を満足する範囲におい ては、同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	
のであり,判断基準(100mSv/7 日間)を満足する範囲におい ては,同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は,同一事象であっても変動しうるパラメータは除外して,運 転員をとりまく環境としての厳しさを確認する必要があること また,DCH 発生時に運用面での対策を考慮することで運転員の被	
ては、同一事象であっても異なる対策をとることができること ・「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	
 「運転員がとどまるために必要な設備」の妥当性評価に用いる 事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被 	
事象を選定するために最も厳しい事象を確認する場合において は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	
は、同一事象であっても変動しうるパラメータは除外して、運 転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	
転員をとりまく環境としての厳しさを確認する必要があること また、DCH 発生時に運用面での対策を考慮することで運転員の被	
また, DCH 発生時に運用面での対策を考慮することで運転員の被	
ばく線量が100mSv/7 日間を下回ることを確認した。	

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
(別紙)			
			記載箇所の相違
大LOCA(代替循環)シナリオ及びDCH シナリオの被ばく線量の違いにつ			・泊では添付 1-2-
いての考察			において事故シー
			ンス選定の考え方
運転員がマスクを着用せずに7 日間中央制御室内にとどまった場			示している。
合,大LOCA(代替循環)の方が被ばく線量が大きくなる。これは,表			
2-20-1 に示すとおり大LOCA(代替循環)の内部被ばくの影響が大き			
いことが原因である。			
大LOCA(代替循環)の内部被ばくの影響が大きいことは、各シナリ			
オの放射性物質の放出開始時刻、非常用ガス処理系の起動時刻及び			
中央制御室換気空調系の起動時刻のタイムチャートによって説明す			
ることができ、以下に要因について示す。 (図2-20-1 参照)			
被ばく評価では,運転員の被ばく低減設備である中央制御室換気			
空調系(以下「MCR空調」という。)及び非常用ガス処理系(以下			
「SGTS」という。)の効果を考慮しており、各設備の効果は事象発			
生から30 分後 (MCR 空調) 及び70 分後 (SGTS) から期待している			
※1。これに対して、大LOCA(代替循環)及びDCH の原子炉格納容器			
から原子炉建屋原子炉棟への放射性物質の放出開始時刻は、MAAP			
解析から、事象発生から約5 分後(大L0CA(代替循環))及び約40			
分後 (DCH) となっており、大LOCA (代替循環) の方が早い。			
SGTS の起動時刻と各シナリオの放出開始時刻に着目すると、ど			
ちらもSGTS 起動前に放出が開始している点では同じであるものの			
DCH に対し大LOCA(代替循環)の方がより早く放出が開始するため、			
SGTS の効果に期待できない時間が長い。(図2-20-1要因①)			
また, MCR 空調の起動時刻と各シナリオの放出開始時刻に着目す			
ると、DCH ではMCR 空調の起動後に放出が開始しているのに対し			
て、大LOCA(代替循環)ではMCR 空調の起動前に放出が開始し、MCR			
空調の効果に期待できない時間から放出が開始している。(図2-			
20-1 要因②)			
以上の要因により、大LOCA(代替循環)の方が、事象初期における			
中央制御室内への空調フィルタを経由しない放射性物質の取り込み			
量が多く、内部被ばく及び外部被ばくともに大きくなり、結果とし			
て、運転員がマスクを着用せずに7日間中央制御室内にとどまった			
場合における合計被ばく線量についても大きい結果となる。			
※1 SGTS により原子炉建屋原子炉棟の負圧を維持していない期間			
は、原子炉建屋原子炉棟の換気率は無限大[回/日]と設定して			
いる。また、MCR 空調を運転していない期間は、中央制御室に			
取り込まれた放射性物質が再循環フィルタ装置により低減され			
る効果を考慮していない。			


第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所2号炉	27 泊発電所3号炉	大飯発電所3/4号炉	差異理由
<figure></figure>			記載箇所の相違 ・泊では添付 1-2-: において事故シーク ンス選定の考え方を 示している。

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	添付1-2-9		記載位置の相違 ・比較のため添付 1-2-9 を記載
2-21 原子炉格納容器の漏えい率の設定について	原子炉格納容器漏えい率の設定について	原子炉格納容器漏えい率の設定について	記載内容の相違 ・具体的な評価方法
中央制御室の居住性に係わる被ばく評価及び有効性評価の環境への Cs-137 漏えい評価において,原子炉格納容器からの放射性物質等の 漏えいは,MAAP内で模擬した漏えい孔の等価漏えい面積及び原子炉 格納容器の圧力に応じて漏えい流量を評価している。 模擬する漏えい孔の等価漏えい面積は以下に示す原子炉格納容器の 圧力が1Pd以下の場合,1Pd~1.5Pdの場合及び1.5Pd~2Pdの場合の 3種類を設定する。	重大事故時の居住性に係る被ばく評価において,原子炉格納容器か らの漏えい率については,有効性評価で想定する事故収束に成功した 事故シーケンスのうち,原子炉格納容器内圧力が高く推移する事故シ ーケンスである「大破断LOCA 時にECCS 注入及びCV スプレイ注入を 失敗するシーケンス」における原子炉格納容器内の圧力解析結果に対 応した漏えい率に余裕を見込んだ値を設定している。 原子炉格納容器からの漏えい率は,原子炉格納容器内圧力が最高使 用圧力の0.9 倍の圧力以下の場合は(1)に示す式を,超える場合は(2) に示す式を使用する。	重大事故時の居住性評価に係る被ばく評価において、原子炉格納容 器からの漏えい率については、有効性評価で想定する事故収束に成功 した事故シーケンスのうち、原子炉格納容器内圧力が高く推移する事 故シーケンスである「大破断LOCA 時に ECCS 注入および CV スプレ イ注入を失敗するシーケンス」における原子炉格納容器内の圧力解析 結果に対応した漏えい率に余裕を見込んだ値を設定している。 原子炉格納容器からの漏えい率は、原子炉格納容器内圧力が最高使 用圧力の0.9 倍の圧力以下の場合は(1)に示す式を、超える場合は (2)に示す式を使用する。	は異なるが、いずれ も解析結果などを用 いながら保守的な漏 逸率を評価する方針 に相違ない。 ・なお、泊と大飯で はほぼ同じ資料構成 となっている。
 原子炉格納容器の圧力が1Pd 以下の場合 原子炉格納容器の圧力が1Pd 以下の場合,427kPa[gage]で0.9%/ 日となる等価漏えい面積(ドライウェル及びウェットウェルの総面 積は約5×10⁻⁶ m²)を設定し、MAAP 内で圧力に応じた漏えい量を評 価している。 427kPa[gage]での0.9%/日の設定はAEC の評価式及びGE の評価式 によって評価した漏えい率の結果をもとにさらに保守的な値を設定 した。 	(1) 原子炉格納容器内圧力が最高使用圧力の0.9 倍以下の場合 最高使用圧力の0.9 倍以下の漏えい率を保守的に評価するために 差圧流の式(これまでの設計事象にて使用)より算出する。 $\frac{L_t}{L_d} = \sqrt{\frac{\Delta P_t}{\Delta P_d}} \cdot \frac{\rho_d}{\rho_t}$	(1) 原子炉格納容器内圧力が最高使用圧力の 0.9 倍以下の場合 最高使用圧力の 0.9 倍以下の漏えい率を保守的に評価するため に差圧流の式 (これまでの設計事象にて使用)より算出する。 $\frac{L_t}{L_d} = \sqrt{\frac{\Delta P_t}{\Delta P_d} \cdot \frac{\rho_d}{\rho_t}}$	
	 L : 漏えい率 L_d : 設計漏えい率 ΔP : 原子炉格納容器内外差圧 ρ : 原子炉格納容器内密度 d : 添え字 "d" は漏えい試験時の状態を表す t : 添え字 "t" は事故時の状態を表す 	L : 漏えい率 L _d : 設計漏えい率 ΔP : 原子炉格納容器内外差圧 ρ : 原子炉格納容器内密度 d : 添え字 "d" は漏えい試験時の状態を表す t : 添え字 "t" は事故時の状態を表す	
 原子炉格納容器の圧力が1Pd~1.5Pd の場合 原子炉格納容器の圧力が1Pd~1.5Pd の場合,640kPa[gage]で 1.1%/日となる等価漏えい面積(ドライウェル及びウェットウェル の総面積は約6×10⁶ m²)を設定し、MAAP内で圧力に応じた漏えい 量を評価している。 640kPa[gage]での1.1%/日の設定はAECの評価式及びGEの評価式 によって評価した漏えい率の結果をもとにさらに保守的な値を設定 した。 	(2)原子炉格納容器内圧力が最高使用圧力の0.9倍より大きい場合 圧力が上昇すれば、流体は圧縮性流体の挙動を示すため、原子炉 格納容器内圧力が最高使用圧力の0.9倍より大きい場合は圧縮性流 体の層流・乱流の状態を考慮する。漏えい率は差圧流の式、圧縮性 流体の層流、または乱流を考慮した式の3式から得られる値の内、 最大の値とする。	(2)原子炉格納容器内圧力が最高使用圧力の0.9倍より大きい場合 圧力が上昇すれば、流体は圧縮性流体の挙動を示すため、原子炉 格納容器内圧力が最高使用圧力の0.9倍より大きい場合は圧縮性 流体の層流・乱流の状態を考慮する。漏えい率は差圧流の式、圧縮 性流体の層流、または乱流を考慮した式の3式から得られる値の 内、最大の値とする。	
 原子炉格納容器の圧力が1.5Pd~2Pd の場合 原子炉格納容器の圧力が1.5Pd~2Pd の場合,854kPa[gage]で1.3%/ 日となる等価漏えい面積(ドライウェル及びウェットウェルの総面積 は約7×10⁻⁶ m²)を設定し,MAAP 内で圧力に応じた漏えい量を評価し ている。 			

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料			Affe ITI and L
女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
854kPa[gage]での1.3%/日の設定はAECの評価式及びGEの評価式に よって評価した漏えい率の結果をもとにさらに保守的な値を設定した。 OAECの評価式 ⁶¹ <原子炉格納容器の圧力が1Pdの場合> $L = L_q \sqrt{(P_r - P_s) \times R_s \times T_s}$ = 0.873% L : 事故時の原子炉格納容器の圧力 Fr : 事故時の原子炉格納容器内の圧力 [528kPa[abs]] Pa : 原子炉格納容器内の圧力 [101.325kPa[abs]] Pa : 原子炉格納容器外の圧力 [101.325kPa[abs]] Rt : 事故時の気体定数 ⁸² [437,4]/Kg·K] Rd : 空気の気体定数 [287]/Kg·K] Tt : 事故時の原子炉格納容器内の温度 [47.3.15K] Td : 設計原子炉格納容器内の温度 [47.3.15K]	$\begin{split} & \frac{L_{t}}{L_{d}} = \max \left[\begin{array}{c} \frac{\mu_{d}}{\mu_{t}}, \frac{2k_{t}}{k_{t}-1}, \frac{P_{t}}{P_{d}}, \frac{\left(\left(\frac{P_{inst,t}}{P_{t}}\right)^{\frac{1}{k_{t}}} - \frac{P_{inst,t}}{P_{t}}\right)}{\left(\left(\frac{P_{inst,t}}{P_{d}}\right)^{\frac{1}{k_{t}}} - \frac{P_{inst,t}}{P_{d}}}{p_{d}} \right) \end{array} \right]^{\frac{1}{2}} \\ & \frac{L_{t}}{L_{d}} = \max \left[\left(\frac{2k_{t}}{\frac{k_{t}-1}{2k_{d}}}, \frac{P_{t}}{P_{d}}, \frac{\rho_{d}}{\rho_{t}}, \frac{\left(\left(\frac{P_{inst,t}}{P_{d}}\right)^{\frac{1}{k_{t}}} - \left(\frac{P_{inst,t}}{P_{d}}\right)^{\frac{1}{k_{t}}}\right)}{\left(\left(\frac{P_{inst,t}}{P_{d}}\right)^{\frac{1}{k_{t}}} - \left(\frac{P_{inst,t}}{P_{d}}\right)^{\frac{1}{k_{t}}}\right)} \right]^{\frac{1}{2}} \\ & \frac{E^{intermin}_{intermatical}}{intermatical} \\ & \frac{E^{intermatical}_{intermatical}}{intermatical} \\ & \frac{2k_{t}}{k_{d}-1}, \frac{P_{t}}{P_{d}}, \frac{\rho_{d}}{\rho_{t}}, \frac{\left(\left(\frac{P_{inst,t}}{P_{d}}\right)^{\frac{1}{k_{t}}} - \left(\frac{P_{inst,t}}{P_{d}}\right)^{\frac{k_{t}+1}{k_{t}}}\right)}{\left(\frac{\Delta P_{t}}{\Delta P_{d}}, \frac{\rho_{d}}{\rho_{t}}\right)^{\frac{1}{2}}} \\ & \frac{E^{intermatical}_{intermatical}} \\ & \frac{E^{intermatical}_{intermatical}}{intermatical} \\ & E^{$	$ \begin{split} & L_{t} = \max \left[\begin{array}{cccc} \mu_{d} & \frac{2k_{r}}{k_{r}-1} & P_{r} & \left(\left(\frac{P_{iabl, f}}{P_{r}} \right)^{\frac{1}{k_{r}}} - \frac{P_{iabl, f}}{P_{r}} \\ & \mu_{t} & \frac{2k_{g}}{k_{g}-1} & P_{d} & \left(\left(\frac{P_{iabl, f}}{P_{d}} \right)^{\frac{1}{k_{r}}} - \frac{P_{iabl, f}}{P_{d}} \\ & \left(\frac{2k_{r}}{k_{g}-1} & \frac{P_{r}}{P_{g}} & \rho_{d} & \left(\left(\frac{P_{iabl, f}}{P_{f}} \right)^{\frac{1}{k_{r}}} - \left(\frac{P_{iabl, f}}{P_{f}} \right)^{\frac{1}{k_{r}}} \\ & \frac{2k_{g}}{k_{g}-1} & \frac{P_{r}}{P_{g}} & \rho_{d} & \left(\left(\frac{P_{iabl, f}}{P_{g}} \right)^{\frac{1}{k_{r}}} - \left(\frac{P_{iabl, f}}{P_{g}} \right)^{\frac{1}{k_{r}}} \\ & \frac{2k_{g}}{k_{g}-1} & \frac{P_{r}}{P_{g}} & \rho_{d} & \left(\left(\frac{P_{iabl, f}}{P_{g}} \right)^{\frac{1}{k_{r}}} - \left(\frac{P_{iabl, f}}{P_{g}} \right)^{\frac{1}{k_{r}}} \right) \\ & \left(\frac{\Delta P_{r}}{\Delta P_{g}} & \rho_{r} \right)^{\frac{1}{2}} \\ \end{array} \right] \\ \end{array} \right] \qquad $	記載内容の相違 ・具体的な評価方法 は異なるが、いずれ も解析結果などを用 いながら保守的な漏 浅率を評価する方針 に相違ない。
補欠い体験時の温度(20℃) [293.15K] <原子炉格納容器の圧力が1.5Pd の場合> $L = L_0 \sqrt{\frac{(P_r - P_a) \times R_i \times T_i}{(P_a - P_a) \times R_a \times T_a}} = 1.069\%$ L :事放時の原子炉格納容器の漏えい率 Pt :事放時の原子炉格納容器内の圧力 [741kPa[abs]] Rt : 事放時の気体定数 ⁴² [487.4]/Kg·K]	μ : 原子炉格納容器内の気体の粘性係数 k: 原子炉格納容器内の気体の粘性係数 R : 原子炉格納容器内の気体の比熱比 P_{atm} : 大気圧 P_{dtm} : 大気に P_{dtm} : (1), (2) で	$P_{leak}: 彌えい口出口での圧力 \mu : 原子炉格納容器内の気体の粘性係数 k : 原子炉格納容器内の気体の比熱比 P_{atm}: 大気圧 \frac{P_{leak,d}}{P_d} = \max\left(\frac{2}{k_d+1}\right)^{k_d}, \frac{P_{atm}}{P_d} 原子炉格納容器からの漏えい率を第1 図に示し、上記 (1)、(2)で$	
ア: 事故時の原子炉格納容器内の温度 [473.15K] <原子炉格納容器の圧力が 2Pd の場合> <	述べた各流況の式から得られる漏えい率を第2 図に示す。 原子炉格納容器内の圧力解析結果(最高値約0.360 MPa [gage])に対応した漏えい率(約0.144 %/日)に余裕を見込んだ 値として,原子炉格納容器からの漏えい率を事故期間(7日間)中 0.16 %/日一定に設定している。この時,漏えい率0.16 %に対する 原子炉格納容器圧力は,最も小さい圧縮性流体(層流)を仮定した としても,第3 図に示すとおり約0.40 MPa[gage]であり,原子炉格 納容器内圧解析結果に対して余裕をみこんでいる。 なお,上式には温度の相関は直接表れないが,気体の粘性係数, 比熱比等で温度影響を考慮した上で,得られる値のうち最大値を評 価している。	述べた各流況の式から得られる漏えい率を第2図に示す。 原子炉格納容器内の圧力解析結果(最高値約0.43MPa [gage])に 対応した漏えい率(約0.142%/日)に余裕を見込んだ値として、原 子炉格納容器からの漏えい率を事故期間(7日間)中0.16%/日一定 に設定している。この時、漏えい率0.16%に対する原子炉格納容器圧 力は、最も小さい圧縮性流体(層流)を仮定したとしても、第3図に 示すとおり約0.54 MPa[gage]であり、原子炉格納容器内圧解析結果 に対して余裕をみこんでいる。 なお、上式には温度の相関は直接表れないが、気体の粘性係数、比 熟比等で温度影響を考慮した上で、得られる値のうち最大値を評価し ている。	

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

59 余 連転員が原子炉制御室にとどまるための設備(補延説明資料 女川原子力発電所2号炉		泊発電所3号炉		大飯発電所3/4号炉			差異理由
	(3) 地表沈着率			(3) 地表沈着率			
	上記(1)式と(3)ま	式から,地表沈着率は,」	以下の式で表される。	上記(1)式と(3)式から、地表沈着率は、以下の式で表される。			
	$A = D_{di} + D_{ri} = V_{rd} \cdot \chi/Q$	$Q_0 + \Lambda \cdot \chi/Q_0 \cdot \sqrt{2\pi} \cdot \Sigma z$	(4)	$A = D_{di} + D_{ri} = V_{gd} \cdot \chi/Q_0 + \Lambda \cdot \chi/Q_0 \cdot \sqrt{2\pi} \cdot \Sigma z \dots $ (4)			
			(4)		ったりの地表沈着率[1/m2]		
	A : 単位時間あ7	とりの地表沈着率[1/m ²]		TX · HeltTed into	ne y vneactora + trim'i		
	 1.2 地表面濃度評価時 	の地表沈差率		 1.2 地表面濃度評価時 	の地表沈差率		
		いた でグランドシャイン線量	が大きい評価占につい				
		間を通じて1 時間ごとの			間を通じて1 時間ごとの		
	(1)式及び(3)式から	各時間での沈着率を算出	し、そのうちの年間	(1)式及び(3)式から	各時間での沈着率を算出	し、そのうちの年間	
	97 %積算値を取った	。一方で,乾性沈着のみ	を考慮して年間97 %積	97%積算値を取った	。一方で、乾性沈着のみ	を考慮して年間 97%	
	算値を想定した乾性	沈着率(すなわち χ/Q 0	097 %積算値×沈着速	積算値を想定した乾	性沈着率(すなわちχ/	Q の 97%積算値×沈	
		のようにとると, 第1 表~)式のようにとると、第1		
		と。 地表面沈着率の累積出	出現頻度97 %の求め方		た。地表面沈着率の累積	間出現頻度 97%の求め	個別解析による相違
	については添付1 に			方については添付1			
	$\frac{D_{di} + D_{ri}}{D_{di} + D_{ri}} = \frac{(V_{gd} \cdot \chi/Q_{0t} + I)}{(V_{gd} \cdot \chi/Q_{0t} + I)}$	$\frac{\Lambda \cdot \chi/Q_{0t} \cdot \sqrt{2\pi} \cdot \Sigma z)_{97\%}}{\cdot (\chi/Q_0)_{97\%}} \dots \dots$		$\frac{D_{d} + D_{n}}{D_{di}} = \frac{\left(V_{gd} \cdot \chi/Q_{0t} + V_{gd}\right)}{V_{gd}}$			
	D_{di} V_{gd}	$-(\chi/Q_0)_{97\%}$		D _{di} V _{gd}			
	()97% :年間の 97%	積算値		 ()97% :年間の97%積算値 ² /Qot :時刻tの地上の相対濃度[s/m³](地上放出時の軸上濃度) 			
	χ/Q _{ot} :時刻tの地」	上の相対濃度 [s/m ³](地上放出	出時の軸上濃度)				
	第1表 泊発電所;	3号炉における湿性沈着量評価	f(中央制御室入口)	第1表 大飯 3/4	号炉における湿性沈着量	評価 (MCR 入口)	
		$\chi/Q(s/m^3)$	約 5.7×10 ⁻⁴		χ/Q(s/m ³)	約 7.3×10 ⁻⁴	個別解析による相違
	累積出現頻度 97 %值	① 乾性沈着率(1/m ²)	約 1.7×10 ⁻⁶	累積出現頻度97%值	① 乾性沈着率(1/m²)	約 2.2×10 ⁻⁶	
		② 地表面沈着率(1/m ²)	約 2.2×10 ⁻⁶		②地表面沈着率	約 2.9×10 ⁻⁶	
	累積出現頻度 97 %值	(乾性+湿性)	*92.2~10	累積出現頻度 97% 值	(1/m ²)(乾性+湿性)	#J 2.9×10 °	
		降雨量(mm/h)	2		降雨量(mm/h)	0	
	降雨時と非降雨	時の比(②/①)	約1.3	降雨時と非降雨時の比(②/①) 約1.3			
			(iii a Atomak man	(1) 0 ± 上作 0			
	第2表 泊発電所3	3号炉における湿性沈着量評価		第2表 大飯 3/4 号炉における湿性沈着量評価(事務所入口)			
	累積出現頻度 97 % 值	χ/Q(s/m ³) ① 乾性沈着(1/m ²)	約 3.8×10 ⁻⁴ 約 1.1×10 ⁻⁶	累積出現頻度 97% 值	χ/Q(s/m ³) ① 乾性沈着(1/m ²)	約 3.1×10 ⁻⁴ 約 9.4×10 ⁻⁷	
		① 乾住(1/m ²) ② 地表面沈着率(1/m ²)			② 地表面沈着率(1/m ²)		
	累積出現頻度 97 %値	(乾性+湿性)	約 1.4×10 ⁻⁶	累積出現頻度 97% 値	(乾性+湿性)	約 1.2×10 ⁻⁶	
		降雨量(mm/h)	0		降雨量(mm/h)	0	
	降雨時と非降雨	雨時の比 (②/①)	約1.2	降雨時と非降雨時の比(②/①) 約1.3			
				第3表 大飯 3/4 号炉における湿性沈着量評価(正門)			
				累積出現頻度 97% 值	$\chi/Q(s/m^3)$	約 2.2×10 ⁻⁴	
					①乾性沈着(1/m ²)	約 6.5×10-7	
				田巷山田崎府 070/ 店	②地表面沈着率(1/m ²)	約 9.7×10-7	
				累積出現頻度97%値	(乾1生+碰1生) 降雨量(mm/h)	4	
				隆雨時と北路雨	時の比 (②/①)	4 約 1.5	
					52 - 25		
		着を考慮した沈着率は,		以上より、湿性沈着を考慮した沈着率は、χ/Q 97%積算値を使			
	用した場合の乾性沈	着率に比べ,4 倍を下回	る結果が得られたこと	用した場合の乾性沈着率に比べ、4倍を下回る結果が得られたこと			

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所 2 号炉	2 泊発電所3号炉			大飯発電所3/4号炉			差異理由
	から、今回の評価において湿性沈着を考慮した沈着速度を乾性沈着						
	の4 倍とすることは保守的な評価であると考えられる。					平価であると考えられる。	
	なお、参考として出入管理建屋入口における地表沈着率の算出に						記載方針の相違
	使用する降雨量を、保守的な想定として年間97%積算値の降雨があ						・泊は感度解析結果
	ったものと仮定した場合の同評価結果を添付2 に示す。						を記載
		Gに使用するパラメー		なお、評価に使用するパラメータを第4表に示す。 第4表 地表沈着関連パラメータ			
	0112) HTM		着関連パラメータ				
	パラメータ	値	備考	パラメータ	値	備考	
	乾性沈着速度	0.3 (cm/s)	NUREG/CR-4551 Vol. 2	乾性沈着速度	0.3 (cm/s)	NUREG/CR-4551 Vol.2	
	Vgd			Vgd			
	鉛直拡散幅	気象指針に基づき計算	 時間ごとの値を算出。 	鉛直拡散幅		1時間ごとの値を算出。	
	Σz	$\Sigma_z = \sqrt{(\sigma_z^2 + cA/\pi)}$	 建屋投影面積 A: 2700 (m²) 形状係数 c: 0.5 	Σz	算	・建屋投影面積A: 2800 (m ²)	
			 形状保奴 c: 0.5 σ_a: 鉛直方向の平地の拡散パラメータ (m) 		$\Sigma_z = \sqrt{(\sigma_z^2 + cA/\pi)}$	 形状係数 c: 0.5 σ_z: 鉛直方向の平地の拡散パラメー 	
	洗浄係数	$\Lambda = 9.5E - 5 \times Pr^{0.8} (s^{-1})$	日本原子力学会標準「原子力発電所の確率論的			・ σ _z : 鉛直方向の平地の拡散ハウメー タ (m)	
	Λ		安全評価に関する実施基準(レベル 3PSA 編):	洗浄係数	$\Lambda = 9.5 E \cdot 5 \times Pr^{0.8}$	ア(m) 日本原子力学会標準「原子力発電所の確	
		Pr: 降水強度	2008」(NUREG-1150 解析使用値として引用)	Λ	(s ⁻¹)	率論的安全評価に関する実施基準(レベ	
		(mm/h)				ル 3PSA 編): 2008」(NUREG-1150 解	
	気象条件	1997年	1997年1月~1997年12月の1時間ごとの風向,		Pr: 降水強度	析使用値として引用)	
			風速,降水量を使用		(mm/h)		
				気象条件	2010年	2010年1月~2010年12月の1時間ごと	個別解析による相違
						の風向、風速、降水量を使用	

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

条 運転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所2号炉	約 泊発電所3号炉	大飯発電所3/4号炉	差異理由
	2. 乾性沈着速度の設定について 乾性の沈着速度の3 cm/s はNUREG/CR-4551 (参考文献1) に基づ いて設定している。NUREG/CR-4551 では郊外を対象とし、郊外とは 道路,芝生及び木・潅木の葉で構成されるとしている。原子力発電 所内も同様の構成であるため、郊外における沈着速度が適用できる と考えられる。また、NUREG/CR-4551 では0.5 μ m~5 μ m の粒径 に対して検討されており、種々のシビアアクシデント時の粒子状物 質の粒径の検討 (添付3 参照) から、居住性評価における粒子状物 質の大部分は、この粒径範囲内にあると考えられる。 また、W.G.N. Slinn の検討によると、草や水、小石といった 様々な材質に対する粒径に応じた乾性の沈着速度を整理しており、 これによると0.1 μ m~5 μ m の粒径では沈着速度は0.3 cm/s 程度 である。	2. 乾性沈着速度の設定について 乾性の沈着速度0.3cm/s はNUGEG/CR-4551(参考文献1)に基づ いて設定している。NUREG/CR-4551 では郊外を対象とし、郊外とは 道路、芝生及び木・潅木の葉で構成されるとしている。原子力発電 所内も同様の構成であるため、郊外における沈着速度が適用できる と考えられる。また、NUREG/CR-4551 では0.5 μ mの粒径に 対して検討されており、種々のシビアアクシデント時の粒子状物質 の粒径の検討(添付2参照)から、居住性評価における粒子状物質 の大部分は、この粒径範囲内にあると考えられる。 また、W.G.N. Slinnの検討によると、草や水、小石といった様々 な材質に対する粒径に応じた乾性の沈着速度を整理しており、これ によると0.1 μ m~5 μ mの粒径では沈着速度は0.3cm/s 程度であ る。	本ページ相違なし
	1 0 0 0 0 0 0 0 0 0 0 0 0 0	10 ¹ 10	
	Fig.4 Day deposition valueity as a function of particle size. Data were obtained from a number of publications. ¹⁹⁻³⁴ The characterial euror appropriate for a sucedult nuclease in drawn for comparison. Note that the theoretical arrow also photographication on the value for u-s and that. Be, 20 does not contain a parameterization for nurface roughness. For a preliminary study of the effect of surface roughness and other factors, get Ref. 5. IN Ref. 2. Ref. 2. Ref. 5. IN Ref. 2. Ref. 5. IN Ref. 2. Ref. 5. IN Ref. 2. Ref. 5. IN REf. 5.	Fig. 4 Day deposition velocity as a function of particle size. Data were obtained from a number of publication, ¹¹⁻²¹ The theoretical curve appropriate for a smooth matter is shown for comparison. Note that the theoretical curve is strongly dependent on the rules for u- and that Eq. 22 does not contain a parameterization for surface neighness. For a preliminary study of the effect of various roughness and other factors, see Ref. 5.	
	また,中央制御室における被ばく評価へのシナリオを考慮した場合,エアロゾルの粒径の適用性は以下のとおりである。 シビアアクシデント時に,放射性物質を含むエアロゾルの放出に おいては,以下の除去過程が考えられる。	また、中央制御室及における被ばく評価へのシナリオを考慮した 場合、エアロゾルの粒径の適用性は以下のとおりである。 シビアアクシデント時に、放射性物質を含むエアロゾルの放出に おいては、以下の除去過程が考えられる。	

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所2号炉	2	大飯発電所3/4号炉	差異理由
スパリルトキノオクロモリハ ビ マガ	①格納容器内での沈着による除去過程	①格納容器内での沈着による除去過程	дду др
	格納容器内でのエアロゾルの重力沈降速度は、エアロゾルの粒	格納容器内でのエアロゾルの重力沈降速度は、エアロゾルの粒	
	径の二乗に比例する。例えば,エアロゾル粒径が5 μm の場合,	径の二乗に比例する。例えば、エアロゾル粒径が5µmの場合、	
	その沈着率は,NUPEC 報告書(参考文献3)より現行考慮してい	その沈着率は、NUPEC 報告書(参考文献3)より現行考慮してい	
	るエアロゾルの粒径1μm の場合に比べ25 倍となる。したがっ	るエアロゾルの粒径1µm の場合に比べ、25倍となる。したがっ	
	て,粒径の大きいエアロゾルほど格納容器内に捕獲されやすくな	て、粒径の大きいエアロゾルほど格納容器内に捕獲されやすくな	
	る。	る。	
	②アニュラス空気浄化設備微粒子フィルタによる除去過程	②アニュラス空気浄化設備微粒子フィルタによる除去過程	
	アニュラス空気浄化設備の微粒子フィルタについては、最大透	アニュラス空気浄化設備の微粒子フィルタについては、最大透	
	過粒子径 0.15 μm を考慮した単体試験にて、フィルタ効率性能	過粒子径 0.15µm を考慮した単体試験にて、フィルタ効率性能	
	(99.97 %以上)を確認している。微粒子フィルタは、粒子径	(99.97%以上)を確認している。微粒子フィルタは、粒子径	
	0.15 μm が最も捕獲しにくいことが明らかとなっており (Ref.	0.15 μ m が最も捕獲しにくいことが明らかとなっており (Ref.	
	JIS Z 4812) , 粒子径がこれにより大きくなると, 微粒子フィル タの捕獲メカニズム (慣性衝突効果等) によりフィルタ繊維に粒	JIS Z 4812)、粒子径がこれより大きくなると、微粒子フィルタ の捕獲メカニズム(慣性衝突効果等)によりフィルタ繊維に粒子	
	子が捕獲される割合が大きくなる。以上より,5 µm 以上の粒径	が捕獲される割合が大きくなる。以上より、5μm以上の粒径の	
	の大きいエアロゾルは、最もフィルタを透過しやすい粒子径	大きいエアロゾルは、最もフィルタを透過しやすい粒子径 0.15	
	0.15μm に比べ相対的に捕獲されやすいといえる。	μm に比べ相対的に捕獲されやすいといえる。	
	このため,中央制御室の被ばく評価シナリオにおいては,アニュ	以上より、中央制御室の被ばく評価シナリオにおいては、アニュ	
	ラス空気浄化設備起動前では上記①の除去過程にて,相対的に粒子	ラス空気浄化設備起動前では上記①の除去過程にて、相対的に粒子	
	径の大きいエアロゾルは多く格納容器内に捕獲される。また,アニ	径の大きいエアロゾルは多く格納容器内に捕集される。また、アニ	
	ュラス空気浄化系起動後では,①及び②の除去過程で,5 μm 以上	ュラス空気浄化系起動後では、①及び②の除去過程で、5µm以上	
	の粒径のエアロゾルは十分に捕獲され、それら粒径の大きなエアロ	の粒径のエアロゾルは十分捕集され、それら粒径の大きなエアロゾ	
	ゾルの放出はされにくいと考えられる。	ルの放出はされにくいと考えられる。	
	いしため、毎年のシバママないごとし味の一マーパイの特徴の体	ナキー 新しのシバママケンニン 一味の一マーパンの地位の松着し、	
	以上より, 種々のシビアアクシデント時のエアロゾルの粒径の検 討から粒径の大部分は 0.1 μm~5 μm の範囲にあること, また,	また、種々のシビアアクシデント時のエアロゾルの粒径の検討から粒径の大部分は 0.1 μm~5 μm の範囲にあること、また、沈着速	
	おからね往び入前方は 0.1 μm つ μm の配置にのること, また, 沈着速度が高い傾向にある粒径が大きなエアロゾルは大気へ放出さ	度が高い傾向にある粒径が大きなエアロゾルは大気へ放出されにく	
	れにくい傾向にあることから、居住性評価における乾性沈着速度と	200周にのの福祉が、それ、アビッルは八人、 成田されにくいい傾向にあることから、居住性評価における乾性沈着速度として	
	して 0.3 cm/s を適用できると考えている。	0.3cm/s を適用できると考えている。	
	参考文献1	参考文献1	
	J.L. Sprung 等: Evaluation of severe accident risks:	J.L. Sprung 等: Evaluation of severe accident risks:	
	quantification of major input parameters, NUREG/CR-4451	quantification of major input parameters, NUREG/CR-4451	
	Vol.2 Rev.1 Part 7, 1990	Vol.2 Rev.1 Part 7, 1990	
	参考文献2	参考文献2	
	W.G.N. Slinn : Environmental Effects, Parameterizations	W.G.N. Slinn: Environmental Effects, Parameterizations	
	for Resuspension and for Wet and Dry Deposition of	for Resuspension and for Wet and Dry Deposition of	
	Particles and Gases for Use in Radiation Dose.	Particles and Gases for Use in Radiation Dose. Calculations, Nuclear Safety Vol.19 No.2, 1978	
	Calculations, Nuclear Safety Vol.19 No.2, 1978	Calculations, Nuclear Safety Vol. 19 No. 2, 1978	
	参考文献3	参考文献3	
	◎ マラス m/3 NUPEC「平成9 年度 NUREG-1465 のソースタームを用いた放射性	■マス NO S NUPEC「平成9 年度 NUREG-1465 のソースタームを用いた放射性	
	物質放出量の評価に関する報告書 (平成10 年3 月)」	物質放出量の評価に関する報告書(平成10年3月)」	
	a statistic material contraction of the field and the f	CONSTRUCTION CONTRACTOR A REPORT OF A DAMAGE AND A	

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料	4)	林子, 記載表先、設備名称の拍達(
女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	添付1 地表面沈着率の累積出現頻度97%値の求め方について 地表面沈着について 第1図及び式①に示すように地面への放射性物質の沈着は,乾性 沈着と湿性沈着によって発生する。乾性沈着は地上近くの放射性物 質が,地面状態等によって決まる沈着割合(沈着速度)に応じて地 面に沈着する現象であり,放射性物質の地表面濃度に沈着速度をか けることで計算される。湿性沈着は降水によって放射性物質が雨水 に取り込まれ,地面に落下・沈着する現象であり,大気中の放射性 物質の濃度分布と降水強度及び沈着の割合を示す洗净係数によって 計算される。 	 添付1 地表面沈着率の累積出現頻度 97%の求め方について 1. 地表面沈着について 図1及び式(1)に示すように地面への放射性物質の沈着は、乾 性沈着と湿性沈着によって発生する。乾性沈着は地上近くの放射性 物質が、地面状態等によって決まる沈着割合(沈着速度)に応じて 地面に沈着する現象であり、放射性物質の地表面濃度に沈着速度を かけることで計算される。湿性沈着は降水によって放射性物質が雨 水に取り込まれ、地面に落下・沈着する現象であり、大気中の放射 性物質の濃度分布と降水強度、及び沈着の割合を示す洗净係数によ って計算される。 	女川には比較対象の 資料がないため大飯 との比較を実施
	地表面 注着字の計算式>		
	$\begin{aligned} D = D_d + D_w = \chi/Q_0 V_r + \int \chi/Q_{(r)} \Lambda dz & \cdots & () \\ D & : 地表面沈着率 (1/m2) (単位放出率当たり) \\ D_d & : 乾性沈着率 (1/m2) \\ D_w & : 湿性沈着率 (1/m2) \\ \chi/Q_0 & : 地上の相対濃度 (s/m3) (地上放出時の軸上濃度) \\ \chi/Q_{(r)} & : 鉛直方向の相対濃度分布 (s/m3) \\ V_r & : 沈着速度 (m/s) \\ \Lambda & : 洗浄係数 (1/s) \\ \land : 洗浄係数 (1/s) \\ \land \chi h f f f f f f f f f f f f f f f f f f$	<次者率の計算式> $D = D_d + D_u = \chi/Q_0 V_g + \int \chi/Q_{(z)} \Lambda dz$ (1) D : 合計沈着率 (1/m ²) D_d : 乾性沈着率 (1/m ²) D_w : 湿性沈着率 (1/m ²) χ/Q_0 : 地上の相対濃度 (s/m ³) (地上放出時の軸上濃度) $\chi/Q_{(z)}$: 鉛直方向の相対濃度分布 (s/m ³) V_g : 沈着速度 (m/s) Λ : 洗浄係数 (1/s) ただし、 $\Lambda = aP^b$ a,b : 洗浄係数 ^{\(\'7)-9} (-) P : 降水強度 (mm/hr) z : 鉛直長さ (m)	

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

 (1) 思想出現現在が「配合における表記を確認者であった」のないまた。 (2) 思想出現現在が「配合における表記を認知者であった」のないまた。 (3) 思想出現現在が「配合における表記を認知者であった」のないまた。 (4) 日本にはないまたまた。 (4) 日本にはないまた。 (4) 日本にはないまた。	第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料	/			泊発電所	所3号炉						大	飯発電所:	3/4号炉			差異理由
		(3) 累積出現	見頻度97				た着 率			3) 累利	[出現頻]			-	着率		And State 1
Single status Single								%値付近の値	値を						2012	近の値を	
						- Z SICIPALITS	assure of		ت کم					- 70181412699		ALC: NE C	設計等の相違
Bit # SUBME SUBME <t< td=""><td></td><td>AL 12 10 1</td><td>K 0 974</td><td>acter.</td><td>70</td><td></td><td></td><td></td><td></td><td>201</td><td>010/11/9</td><td>0</td><td></td><td></td><td></td><td></td><td></td></t<>		AL 12 10 1	K 0 974	acter.	70					201	010/11/9	0					
h π R 2 R		節	1表 泊発電	所3号炉に	おける地表面	i沈着率(評価点	:中央制御室)	L□)		14	1 大飯	3/4 号炉に:	おける地表面	面沈着率(評価	i点:MCR入口)	
b b										No	風向	降水量	χ∕Q	地表面沈着率	97% x ∕Q で	累積出現	英 型 定共
$\frac{\left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \left \frac{1}{11} \right \frac{1}{11} \left \frac{1}{11} \left $		No						ALC IN				(mm/hr)	(s/m ³)	(1/m ²)	の沈着率との	頻度	moutoned a to a depart
$\frac{ \nabla u_{1} ^{2}}{ U_{2} ^{2}} \frac{ U_{1} ^{2}}{ U_{1} U_{1} ^{2}} \frac{ U_{1} ^{2}}{ U_{1} U_{1} ^{2}} \frac{ U_{1} ^$			(風向)	(nm/hr)	(s/m ³)	$(1/m^2)$									比率*2	(%)	個別解析による相遅
$ \frac{1}{101} \frac{1}{100} 1$																	
$\frac{1}{100} \frac{1}{100} \frac{1}$		8418		1.5	2.1×10 ⁻⁴	2.1 × 10 ⁻⁶	\$h12	96 993			-				約 1.3		
$\frac{ _{1}}{ _{1}} \frac{ _{1}}{ _{1}} \frac{ _{1}}{ _{1}} \frac{ _{1}}{ _{1}} \frac{ _{1}}{ _{1}} \frac{ _{1}}{ _{1}} \frac{ _{1}}{ _{1}} \frac{ _{1}}{ _{1}} \frac{ _{1}}{ $		0110		1.0	2.1×10	2.1 \ 10	171.2	00, 000									
$\frac{ x_{1} ^{2}}{ x_{1} ^{2}} \frac{ x_{1} ^{2}}{ x_{1} x_{1} x_{1} }} \frac{ x_{1} x_{1} ^{2}}{ x_{1} x_{1} x_{1} $		8419		2.0	1.8×10 ⁻⁴	2.2×10 ⁻⁶	約1.3	97.004									
$\frac{ _{1}}{ _{1}} \frac{ _{1}} _{1}} \frac{ _{1}} _{1}} \frac{ _{1}} _{1}} \frac{ _{1}}{ _{1}} \frac{ _{1}} _{1}} $		0.000			- 5	-1					_	-					
$\frac{1}{10} 11 \text{ Bits dev a standard or size correct (Bits dev)} (Bits dev) ($			0000												#J 1.3		
$\frac{1}{12} \sin^2 \sin 2 \sin 2$														10444	たときの値	5314072	
1.7×0° ⁺ (1/a ¹) 1.7×0° ⁺ (1/a ¹) x1.2 1.7×0° ⁺ (1/a ²) x1.2 1.7×10 ⁺ (1/a ²) x1.2 x1.2 x1.2 x1.2 x1.2 x1.2 x1.2 x1.2 x1.2																速度)で計	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$					120 (140)	(Teleberr 1 - 5)	a participation of	1000017 17-2									
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$																	
$ \frac{5}{10} \frac{5}{100} \frac{5}$		第:	表 泊発電	新3号炉にま	ける地表面波	北着率 (評価点:	出入管理建屋)	人口)			-						
$ \frac{5}{10} \frac{3}{10} \frac{1}{10} \frac{1}{10$				// / // /-/						No	風向						
$ \frac{1}{910^{-5}} \frac{1}{900} \frac{1}{900$		No										(mm/hr)	(s/m ³)	(1/m ²)			
$ \frac{1}{813^{61}} \frac{1}{30} \frac{1}{30} \frac{1}{30} \frac{1}{30} \frac{1}{30} \frac{1}{3} \frac{1}{3}$			(風向)	(nm/hr)	(s/m ³)	(1/m ²)		(%)							S 03 L at a		
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$															約13		
$ \frac{1}{943} \frac{1}{928} \frac{1}{928} \frac{1}{928} \frac{1}{928} \frac{1}{928} \frac{1}{14 \times 10^{-6}} \frac{1}{14 \times 10^{-6}} \frac{1}{12 \times 10^{-6}} \frac{1}{12 \times 10^{-6}} \frac{1}{13.3} \frac{96.966}{97.009} \\ \frac{298}{928} \frac{1}{928} \frac{1}{928} \frac{1}{28} \frac{1}{22 \times 10^{-6}} \frac{1}{14 \times 10^{-6}} \frac{1}{12 \times 10^{-6}} \frac{1}{13.2} \frac{1}{22 \times 10^{-6}} \frac{1}{13.3} \frac{97.069}{97.009} \\ \frac{1}{929} \frac{1}{928} \frac{1}{928} \frac{1}{928} \frac{1}{928} \frac{1}{928} \frac{1}{12 \times 10^{-6}} \frac{1}{14 \times 10^{-6}} \frac{1}{12 \times 10^{-6}} \frac{1}{12 \times 10^{-6}} \frac{1}{12 \times 10^{-6}} \frac{1}{13 \times 10^{-6}} \frac{1}{13 \times 10^{-6}} \frac{1}{12 \times 10^{-6}} \frac{1}{10 \times 10^{-6}} \frac{1}{10 \times 10^{-6}} \frac{1}{10 \times 10^{-6}} \frac{1}{10$		841391	NW	0.5	2 4 × 10-4	1.4×10 ⁻⁶	約12	96.935							#3 1.0		
$ \frac{5418}{(20)} \frac{10}{2} \frac{1}{2} \frac{1}$			1		-					8297	NW	0	4.0×10-4	1.2×10 ⁻⁶	約1.3	96.996	
$ \frac{8418}{(132)} (132) 0 4.7 \times 10^{3} 1.4 \times 10^{5} 191.2 9.699 \\ \frac{8429}{(232)} (232) (24.7 \times 10^{-4} 1.4 \times 10^{-6} 191.2 97.09) \\ \frac{8429}{(232)} (232) (23$										8298	WNW	<u>0</u>	4.0×10 ⁻⁴	1.2×10 ⁻⁶	約1.3	97.007	
$ \frac{943}{(30)} - \frac{9}{(30)} - \frac{4.7 \times 10^{-5}}{(30)} - \frac{1.4 \times 10^{-5}}{1.4 \times 10^{-6}} + \frac{9}{1.2} - \frac{9}{2.004} \\ \frac{8420}{(30)} - \frac{8}{10} - \frac{1.7 \times 10^{-4}}{1.4 \times 10^{-6}} + \frac{1.4 \times 10^{-6}}{91.1} + \frac{9}{1.2} + \frac{9}{1.06} \\ \hline \cdots & \cdots$		8418		0	4.7×10 ⁻⁴	1.4×10 ⁻⁶	約1.2	96.993		8299	NW	0	4.0×104	1.2×10 ⁻⁶	約 1.3	97.019	
$\frac{1}{8420} \frac{1}{(830)} \frac{1}{$		8419		0	4.7×10^{-4}	1.4×10 ⁻⁶	約1.2	97.004									
$\frac{8420 (32)}{(32)} = \frac{1}{(32)} (32) (32) (33) (34) $				-	1.1010	1.1010					-				約1.3	and the second second	
$ \frac{1}{843^{92}} \frac{1}{(530)} $		8420		0	4.7×10^{-4}	1.4×10 ⁻⁶	約1.2	97.016						10000			
$\frac{8433^{82}}{(1520)} \frac{1}{(1520)} \frac{4.0}{(1520)} \frac{7.9\times10^{-5}}{1.4\times10^{-5}} \frac{1.4\times10^{-5}}{1.4\times10^{-5}} \frac{\#1.3}{1.5} \frac{97.166}{1.6\times10}$ $\frac{1}{(1520)} \frac{1}{(1520)} \frac{1}{(15$																	
Image: transmitted by the second		8433 823		4.0	7.9×10 ⁻⁵	1.4×10 ⁻⁶	約1.3	97.166								() 一下計	
第1 97 %から累積出現頻度を下げていき、初めて降木が発生したときの値 第2 97 %から累積出現頻度 97 %値との比率=(他表面沈着率) / (後性沈着率の累積出現頻度 97 %値) =約1.1 第3 乾性沈着率の累積出現頻度 97 %値との比率=(他表面沈着率) / (後性沈着率の累積出現頻度 97 %値) =約1.1 ×10 ⁻⁶ (1/m ²) No 風向 除木量 χ / Q (1/m ²) の沈着率との 第4 97% χ / Q で 累積出現 類度 (1/m ²) 02.5 (1/m ²) 02.5 6(5×10 ⁵ 9.7×10 ⁷ 第1.5 97.9×10 ⁷ 1.5 97.9×10 ⁷ 1.5 97.9×10 ⁷ 1.5 97.9×10 ⁷ 1.5 97.10 ⁷ 1.5 97.9×10 ⁷ 1.5 97.10 ⁷ 1.5 97.9×10 ⁷ 1.5 97.9×10 ⁷ 1.6 1.5 97.9×10 ⁷ 1.5 97.9×10 ⁷ 1.5			(mont)													8/2/ C#1	
※2 97 Sから累積出現無度を上げていき、初めて降水が発生したときの値 ※3 乾性沈着率の累積出現頻度 97 Súl 2										-	and states	and an	HE MAN LONG /				
積出現類度 97 % m		※2 97	%から累積出	現頻度を上げ	げていき,初2	めて降水が発生し	たときの値				表3 ;	大飯 3/4 号炉	における地震	表面沈着率(評	価点:正門)		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $										No	風向				a set of the set of the set of the		
一 一 一 比率1 (%) \cdots \cdots \cdots \cdots \cdots \cdots 8297 N 1.5 8.9×10 ⁵ 9.7×10 ⁷ 約1.5 96.996 <u>8298</u> N 4.0 4.8×10 ⁵ 9.7×10 ⁷ 約1.5 97.007 8299 N 2.5 6.6×10 ⁵ 9.7×10 ⁷ 約1.5 97.019 \cdots \cdots \cdots \cdots \cdots \cdots \cdots *1 97% $_X/Q$ での沈着率との比率= (地表面沈着率) / (97% $_X/Q$ ×沈着速度) で計				して計算し	750 7£25, (W	に比相半の業績	但現頻度 97 M	<u>(1)</u> 二郎J 1.1				(mm/hr)	(s/m ³)	(1/m ²)	and the second sec		
8297 N 1.5 8.9×10 ⁵ 9.7×10 ⁷ 約1.5 96.996 8298 N 4.0 4.8×10 ⁵ 9.7×10 ⁷ 約1.5 97.007 8299 N 2.5 6.6×10 ⁵ 9.7×10 ⁷ 約1.5 97.017 *1 97% χ/Q での沈着率との比率= (地表面沈着率) / (97% χ/Q×沈着速度) で計												-			比率*1		
8298 N 4.0 4.8×10 ⁵ 9.7×10 ⁷ 約1.5 97.007 8299 N 2.5 6.6×10 ⁵ 9.7×10 ⁷ 約1.5 97.019 *1 97% χ / Q での沈着率との比率= (地表面沈着率) / (97% χ / Q×沈着速度) で計															4/2 1 E		
8299 N 2.5 6.6×10 ⁻⁵ 9.7×10 ⁻⁷ 約1.5 97.019 ··· ··· ··· ··· ··· ··· ··· ··· *1 97% χ / Q での沈着率との比率= (地表面沈着率) / (97% χ / Q×沈着速度) で計																	
・・・ ・・・ ・・・ ・・・ *1 97% χ / Q での沈着率との比率=(地表面沈着率) / (97% χ / Q×沈着速度) で計																	
												_				100000000000000000000000000000000000000	
算した。たお (97% χ / Q ×沈着速度) =約 6.5×10 ⁻⁷ (1/m ²)											6x/Q CO		上率=(地表面	0.0	₩x/Q×沈着速!		
										算	た。なお	(97% χ / Q×	沈着速度) =;	約 6.5×10 ⁻⁷ (1/m ²	2)		

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
<u>第59 条 運転員が原子炉制御室にとどまるための設備(補足</u> 女川原子力発電所 2 号炉			差異理由 記載方針等の相違 ・泊は湿性沈着を考 慮した沈着量を乾枯 沈着の4倍とする ことの妥当性を補知している。

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)					-1- AC		記載衣視、取哺名称の相逢	
女川原十刀発電所2号炉		泊発電所3号炉			大敗	発電所3/4号	亏 炉	差異理由 女川では「2-10 エ
			うた (十つ				NEC + 0	アロゾル粒子の乾性
	シレマアカシデ	ノト時のエアロゾ	<u>添付3</u> [*] ルの粒径について		シビアアクシデント	時のエアロン	COMPANY REPORT OF STREET, STREE	沈着速度について」
	J L) / J J J J	ア時のエアロノ	アレの私住について		9C))99977F		アレッ和住について	の参考として記載さ
	シビアアカシデント時間	CV 内で発生す	る放射性物質を含むエアロ	SZE	「アアカシデント時に故	、納茨男内でな	生する放射性物質を含むエ	
			範囲であることは、粒径分				の範囲であることは、粒径	
	「に関して実施されている				関して実施されている			ている。ここでは大
			レイ等による注水が実施さ				スプレイ等による注水が実	
l l l l l l l l l l l l l l l l l l l			な経分布を想定し「CV 内で				の粒径分布を想定し「格納	
			存在の考慮」といった観点				容器内の水の存在の考慮」	
	で実施された第1 表の②.	⑤に示す試験等	を調査した。さらに、シビ	200-	た観点で実施された表	102.50	示す試験等を調査した。さ	
			する共通的な知見とされて	_			の粒径に対する共通的な知	
	いる情報を得るために、 消	毎外の規制機関	(NRCなど) や各国の合同で	見とさ	れている情報を得るた	めに、海外の	規制機関 (NRC など) や各	
			アロゾルの挙動の試験等				ジト時のエアロゾルの挙動	
	(第1表の①, ③, ④)を	調査した。以上の	の調査結果を第1 表に示	の試験	(表1の①、③、④)を調査した	。以上の調査結果を表1に	
-	÷.			示す。				
	この表で整理した試験等	等は, 想定するエ	- アロゾル発生源,挙動範囲	この)表で整理した試験等は	、想定するエ	アロゾル発生源、挙動範囲	
	(CV, RCS 配管等) 及びオ	kの存在等に違い	ヽがあるが, エアロゾル粒径	(格綱	的容器、一次冷却系 配管	等)及び水の	の存在等に違いがあるが、エ	
)範囲に大きな違いはなく	、, CV 内環境での	のエアロゾルの粒径はこれ	アロン	ル粒径の範囲に大きな	違いはなく、	格納容器内環境でのエアロ	
	のエアロゾル粒径と同等	等な分布範囲を持	行つものと推定できる。	ゾルの)粒径はこれらのエアロ	ゾル粒径と同	同等な分布範囲を持つものと	
				推定て	ぎきる。			
			示されている範囲をカバー				示されている範囲をカバー	
		5 μm の範囲の:	エアロゾルを想定すること			nの範囲のエ	アロゾルを想定することは	
1	は妥当であると考える。			妥当て	あると考える。	The state of the	bl. Met in an	
	第1表 シビアアクシラ	「ント時のエアロゾル粒 エアロゾル粒径	径についての文献調査結果	1		時のエアロソル	粒径についての文献調査結果	
	番号 試験名又は報告書名等	(μm)	備考	番号	試験名又は報告書名等	(μ m)	偏考	
	① LACE LA2 ^{⊕1}	約 0.5~5	シビアアクシデント時の評価に使 用されるコードでの格納容器閉じ	D	LACE LA2 ^{*1}	約 0.5~5	シビアアクシデント時の評価に使 用されるコードでの格納容器閉じ	
		(第1図参照)	込め機能喪失を想定した条件とし た比較試験。 CV内に水が存在し,溶融炉心を覆			(図1参照)	込め機能喪失を想定した条件とし た比較試験。 格納容器内に木が存在し、溶融炉心	
	2 NUREG/CR-5901 ^{** 2}	0.25~2.5 (添付-1)	っている場合のスクラビング効果	2	NUREG/CR 5901*1	0.25~2.5	を覆っている場合のスクラビング	
		0.1~3.0	のモデル化を紹介したレポート。 シビアアクシデント時の炉心損傷			(添付-1)	効果のモデル化を紹介したレポート。	
	 AECL が実施した実験^{※3} 	(添付-2)	を考慮した1次系内のエアロゾル 挙動に着目した実験。	(3)	AECL が実施した実験*3	0.1~3.0	シビアアクシデント時の炉心損傷 を考慮した1次系内のエアロゾル	
	(4) PBF-SFD ^{#3}	0.29~0.56	シビアアクシデント時の炉心損傷 を考慮した1次系内のエアロゾル			(添付-2)	挙動に着目した実験。 シビアアクシデント時の炉心損傷	
		(添付-2)	学動に着目した実験。 シビアアクシデント時の FP 単動の	4	PBF-SFD*3	0.29~0.56 (添付-2)	を考慮した1次系内のエアロゾル 挙動に着目した実験。	
	⑤ PHÉBUS FP ^{₩ 3}	0.5~0.65	実験。(左記のエアロゾル粒径は			0.5.0.05	シビアアクシデント時のFP 挙動の 実験。(左記のエアロゾル粒径は	
		(添付-2)	PHEBUS FP実験のCV内のエアロゾル 挙動に着目した実験の結果。)	5	PHÉBUS FP*3	0.5~0.65 (添付-2)	PHÉBUS FP 実験の格納容器内の	
						(111) 27	エアロゾル単動に着目した実験の 結果。)	

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料		秋于 :記載文現、設備名称の相逢	
女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	参考文献 ※1: J. H. Wilson and P. C. Arwood, Summary of Pretest Aerosol Code Calculations for LWR Aerosol Containment Experiments (LACE) LA2, ORNL A. L. Wright, J. H. Wilson and P. C. Arwood, PRETEST AEROSOL CODE COMPARISONS FOR LWR AEROSOL CONTAINMENT TESTS LA1 AND LA2 ※2: D. A. Powers and J. L. Sprung, NUREG/CR-5901, A Simplified Model of Aerosol Scrubbing by a Water Pool Overlying Core Debris Interacting With Concrete ※3: STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS, NEA/CSNI/R (2009)5	 参考文献 * 1: J. H. Wilson and P. C. Arwood, Summary of Pretest Aerosol Code Calculations for LWR Aerosol Containment Experiments (LACE) LA2, ORNL A. L. Wright, J. H. Wilson and P. C. Arwood, PRETEST AEROSOL CODE COMPARISONS FOR LWR AEROSOL CONTAINMENT TESTS LA1 AND LA2 * 2: D. A. Powers and J. L. Sprung, NUREG/CR-5901, A Simplified Model of Aerosol Scrubbing by a Water Pool Overlying Core Debris Interacting With Concrete * 3: STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS, NEA/CSNI/R (2009) 5 	本ページ相違なし
	Онь очо е-7370Image: Colspan="2">Image: Colspan="2">Онь очо е-7370Image: Colspan="2">Image: Colspan="2" Image: Colspan="	Они очис ве-22001L2 PRETEST 	

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所2 号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	添付-1 NUREG/CR-5901 の抜粋	添付-1 NUREG/CR-5901の抜粋	本ページ相違なし
	so-called "quench" temperature. At temperatures below this quench temperature the kinetics of gas phase reactions among CO, CO ₂ , H ₂ , and H ₂ O are too slow to maintain chemical equilibrium on useful time scales. In the sharp temperature drop created by the water pool, very hot gases produced by the core debris are suddenly cooled to temperatures such that the gas composition is effectively "frozen" at the equilibrium composition for the "quench" temperature. Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of the quench temperature was assumed to be uniformly distributed over this temperature range for the calculations done here.	so-called "quench" temperature. At temperatures below this quench temperature the kinetics of gas phase reactions among CO, CO ₂ , H ₂ , and H ₂ O are too slow to maintain chemical equilibrium on useful time scales. In the sharp temperature drop created by the water pool, very hot gases produced by the core debris are suddenly cooled to temperatures such that the gas composition is effectively "frozen" at the equilibrium composition for the "quench" temperature. Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of the quench temperature was assumed to be uniformly distributed over this temperature range for the calculations done here.	
	(6) <u>Solute.Mass</u> . The mass of solutes in water pools overlying core debris attacking concrete has not been examined carefully in the experiments done to date. It is assumed here that the logarithm of the solute mass is uniformly distributed over the range of ln(0.05 g/kilogram H ₂ O) = -3.00 to ln(100 g/kilogram H ₂ O) = 4.61.	(6) <u>Solute Mass</u> . The mass of solutes in water pools overlying core debris attacking concrete has not been examined carefully in the experiments done to date. It is assumed here that the logarithm of the solute mass is uniformly distributed over the range of ln(0.05 g/kilogram H ₂ O) = -3.00 to ln(100 g/kilogram H ₂ O) = 4.61.	
	(7) <u>Volume Fraction Suspended Solids</u> . The volume fraction of suspended solids in the water pool will increase with time. Depending on the available facilities for replenishing the water, this volume fraction could become quite large. Models available for this study are, however, limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is taken to be uniformly distributed over the range of 0 to 0.1.	(7) <u>Volume Fraction Suspended Solids</u> . The volume fraction of suspended solids in the water pool will increase with time. Depending on the available facilities for replenishing the water, this volume fraction could become quite large. Models available for this study are, however, limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is taken to be uniformly distributed over the range of 0 to 0.1.	
	(8) <u>Density of Suspended Solids</u> . Among the materials that are expected to make up the suspended solids are $Ca(OH)_2 (\rho = 2.2 g/cm^3)$ or $SiO_2 (\rho = 2.2 g/cm^3)$ from the corrected and $UO_2(\rho = 10 g/cm^3)$ or $ZiO_2 (\rho = 5.9 g/cm^3)$ the core debris or any of a variety of aerosol materials. It is assumed here that the material density of the suspended solids is uniformly distributed over the range of 2 to 6 g/cm ³ . The upper limit is chosen based on the assumption that suspended UO ₂ will hydrate, thus reducing its effective density. Otherwise, gas sparging will not keep such a dense material suspended.	(8) <u>Density of Suspended Solids</u> . Among the materials that are expected to make up the suspended solids are Ca(OH) ₂ ($p = 2.2 \text{ g/cm}^3$) or SiO ₂ ($p = 2.2 \text{ g/cm}^3$) from the concrete and UO ₂ ($p = 10 \text{ g/cm}^3$) or ZrO ₂ ($p = 5.9 \text{ g/cm}^3$) from the core debris or any of a variety of aerosol materials. It is assumed here that the material density of the suspended solids is uniformly distributed over the range of 2 to 6 g/cm ³ . The upper limit is chosen based on the assumption that suspended UO ₂ will hydrate, thus reducing its effective density. Otherwise, gas sparging will not keep such a dense material suspended.	
	(9) <u>Surface Tension of Water</u> . The surface tension of the water can be increased or decreased by dissolved materials. The magnitude of the change is taken here to be $S\sigma(w)$ where S is the weight fraction of dissolved solids. The sign of the change is taken to be minus or plus depending on whether a random variable ϵ is less than 0.5 or greater than or equal to 0.5. Thus, the surface tension of the liquid is:	(9) Surface Tension of Water. The surface tension of the water can be increased or decreased by dissolved materials. The magnitude of the change is taken here to be So(w) where S is the weight fraction of dissolved solids. The sign of the change is taken to be minus or plus depending on whether a random variable e is less than 0.5 or greater than or equal to 0.5. Thus, the surface tension of the liquid is:	
	$\sigma_{1} = \begin{cases} \sigma(w) \ (1-S) & for \ \epsilon < 0.5 \\ \sigma(w) \ (1+S) & for \ \epsilon \ge 0.5 \end{cases}$	$\sigma_1 = \begin{cases} \sigma(w) \ (1-S) & for \ \epsilon < 0.5 \\ \sigma(w) \ (1+S) & for \ \epsilon \ge 0.5 \end{cases}$	
	where $\sigma(w)$ is the surface tension of pure water. (10) <u>Mean Aerosol Particle Size</u> . The mass mean particle size for aerosols produced during mell/concrete interactions is known only for situations in which no water is present. There is reason to believe smaller particles will be produced if a water pool is present. Examination of	where o(w) is the surface tension of pure water. (10) <u>Mean Aerosol Particle Size</u> . The mass mean particle size for aerosols produced during mell/concrete interactions is known only for situations in which no water is present. There is reason to believe smaller particles will be produced if a water pool is present. Examination of	
	aerosols produced during melt/concrete interactions shows that the primary particles are about 0.1 μ m in diameter. Even with a water pool present, smaller particles would not be expected.	reason to believe smaller particles with the produced in which poor is present. Examination of acrossls produced during mell/concrete interactions shows that the primary particles are about $0.1 \ \mu m$ in diameter. Even with a water pool present, smaller particles would not be expected.	
			1

(年に昌ぶ)百ス后期(御会)にしばまえたみの部件(は日鮮明次率))

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)	but man and much as the form		At III and I
女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
女川原子力発電所2号炉 Consequently, the nature distributed over the range (11) Geometric Standard during core debris-cone Experimentally determine water present vary betwe deviation is positively co- difficult to marshall bec geometric standard devia that data will ever be avai of the size distribution is correlation of the geometric (12) Aerosel Material D UO, with a solid densily on material shar make up the uncertain. The material uncertain. The material uncertain parameter unife Note that the mean across the particle material density or evidence to be considered (13) Initial Bubble. Size equation: where € is assumed to b bubble size is limited by where the contact angle is	泊発電所3 号炉 logarithm of the mean particle size is taken here to be uniformly from In (0.25 µm) = -1.39 to In (2.5 µm) = 0.92. Deviation of the Particle Size Distribution. The aerosols produced is interactions are assumed to have logoromal size distributions, a cometric standard deviations for the distributions in cases with no 1.6 and 3.2. An argument can be made that the geometric standard deviation with the mean size of the aerosol. Proof of this correlation is use of the sparse data base. It can also be argued that smaller ons will be produced in situations with water present. It is unlikely able to demonstrate this contention. The geometric standard deviation sumed to be uniformly distributed over the range of 1.6 to 3.2. Any is standard deviation with the mean size of the aerosol is neglected. mily. Early in the course of core debris interactions with concrete, of around 10 g/cm ³ is the predominant aerosol material. As the products of concrete decomposition such as Na ₂ O, K ₂ O, Al ₂ O SiO, 1.3 to 4 g/cm ³ become the dominant aerosol agacies. Condensation with the species may aller the apparent material densities, olized materials also complicates the prediction of the densities of aerosol. As a result the material density of the aerosol is considered tensity used in the calculation of aerosol trapping is taken to be an mly distributed over the range of 1.5 to 10.0 g/cm ³ . The initial bubble size is calculated from the Davidson-Schular the uncertainty analyzes done here. In a formly distributed over the range of 1 to 1.54. The minimum the Pritz formula to be: $D_{\mu} = (\frac{6}{\pi})^{\mu_3} \frac{V_3^{0.4}}{g^{0.4}} cm$ assumed to be uniformly distributed over the range of 20 to 120°. is limited by the Taylor instability model to be:	<text><text><list-item><list-item><text><text><text><equation-block><equation-block><equation-block></equation-block></equation-block></equation-block></text></text></text></list-item></list-item></text></text>	差異理由 本ページ相違なし

	泊発電所3号炉	5	大飯発電所3/4号炉
阁	統一-2 STATE-OF-THE-ART REPORT ON NUCLEAR	1	标行-2 STATE-OF-THE-ART REPORT ON NUCLEAR
AEROSOL	S NEA/CSNI/R(2009)5 の抜粋及び試験の概要	AEROSOL	S NEA/CSNI/R(2009)5 の抜粋及び試験の概要
composition was not established) the betweet [0.1 and 3.0 µm m size at the be dominated by Cs, Sn and U: while in mass, U was relatively minor in th	herical particles of around 0.1 to 0.3 µm formed (though their n these agglomerated giving rise to a mixture of compact particles point of measurement. The composition of the particles was found to the Cs and Sn mass contributions remained constant and very similar e first hour at 1860 K evolving to be the main contributor in the third n, 33 % C8). Neither break down of composition by particle size nor	composition was not established) the between 0.1 and 3.0 µm in size at the be dominated by Cs, Sn and U: while in mass, U was relatively minor in th	pherical particles of around 0.1 to 0.3 µm formed (though their en these agglomerated giving rise to a mixture of compact particles point of measurement. The composition of the particles was found to the Cs and Sn mass contributions remained constant and very similar e first hour at 1860 K evolving to be the main contributor in the third n_s , 3.5 % CS). Neither break down of composition by particle size nor
about 13 m from the bundle outlet. The to examine particle size (SEM). Based diameter varied over the range 0.29-0.3 to the main transient gives the range 2.06. In the images of filter deposits 1	urposes here were six isokinetic, sequential, filtered samples located see were used to follow the evolution of the aerosol composition and lon these analyses the authors state that particle geometrical-mean (5 µm) elimination of the first filter due to it being early with respect 3.32-0.56 µm) while standard deriation fluctuated between 1.6 and needle-like forms are seen. Turning to composition, if the first filter ection limit" is taken as zero, for the structural components and	about 13 m from the bundle outlet. Th to examine particle size (SE-M), Base diameter varied over the range 0.29-0, to the main transient gives the range 2.06. In the images of filter deposits 1	purposes here were six isokinetic, sequential, filtered samples located ese were used to follow the evolution of the aerosol composition and i on these analyses the authors state that particle geometrical-mean 56 µm elimination of the first filter due to it being early with respect 0.32-0.56 µm) while standard deviation fluctuated between 1.6 and needle-like forms are seen. Turning to composition, if the first filter tection limit' is taken as zero, for the structural components and
volatile fission products we have in ter 9.2.2 Aerosols in the	ms of percentages the values given in Table 9.2-1.	9.2.2 Aerosols in the	rms of percentages the values given in Table 9.2-1.
the end of the 5-hour bundle-degradat size in FPT1 was slightly larger at bet FPT1 was seen to be between [0,5 and tests the geometric standard deviation 2.0. There was clear evidence that an except for the late setting phase of th	rly lognormal with an average size (AMMD) in FPT0 of 2.4 μm at ion phase growing to 3.5 µm before stabilizing at 3.35 µm; acrosol ween 3.5 µm 4.0 µm. Geometri-cenen dismeter (d_{00}) of particles in 0.65 µm] a SEM image of a deposit is shown in Fig. 9.2-2. In both of the lognormal distribution was fairly constant at a value of around rosol composition varied very litle as a function of particle size FPT1 test; during this period, the smallest particles were found to speciation. X-ray techniques were used on some deposits and there	the end of the 5-hour bundle-degrada size in FPT1 was slightly larger the FPT1 was seen to be between 0.5 and tests the geometric standard deviation 2.0. There was clear evidence that a except for the late settling phase of the	irly lognormal with an average size (AMMD) in FPT0 of 2.4 µm at tion phase growing to 3.5 µm before stabilizing at 3.35 µm; aerosol mean-of-paid 40 µm. Genomici-mean diameter (da) of particles in 10.65 µm; a SEM image of a deposit is shown in Fig. 9.2-2. In both of the lognormal distribution was fairly constant at a value of around erosol composition varied very little as a function of particle size ite FPT1 test: during this period, the smallest particles were found to speciation, X-ray techniques were used on some deposits and there
	abut on int my		
試験名又は報告書名等	試験の概要 試験の概要		試験の概要
AECL が実施した実験	CANDUのジルカロイ被覆管然料を使用した、1次系での 核分裂生成物の挙動についての試験。	試験名又は報告書名等 AECL が実施した実験	試験の概要 CANDUのジルカロイ被覆管燃料を使用した、1次系で の核分裂生成物の単動についての試験。
PBF-SFD	米国アイダホ国立工学環境研究所で実施された炉心損傷 状態での燃料棒及び炉心のふるまい、核分裂生成物及び 水素の放出についての試験。	PBF-SFD	米国アイダホ国立工学環境研究所で実施された炉心損傷 状態での燃料体及び炉心のふるまい、核分裂生成物及び 水素の放出についての試験。
PHÉBUS FP	フランスカダラッシュ研究所のPHEBUS 研究炉で実施さ れた、シビアアクシデント条件下での炉心燃料から1次 系を経て格納容器に至るまでの核分裂生成物の単動を調 べる実機燃料を用いた総合試験。	PHÉBUS FP	フランスカダラッシュ研究所の PHÉBUS 研究炉で実施 された、シビアアクシデント条件下での炉心燃料から1 次系を経て格納容器に至るまでの核分裂生成物の単動を 調べる実機燃料を用いた総合試験。

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
2-22 制御建屋における気密性及び遮蔽性に関するひび割れの影響に			記載方針の相違
っいて			・女川では東北地方
			太平洋沖地震の影響
鉄筋コンクリート構造の中央制御室バウンダリ及び中央制御室待			を踏まえ作成してい
避所バウンダリは気密性、並びに鉄筋コンクリート構造の中央制御			る資料のため、泊で
室遮蔽及び中央制御室待避所遮蔽は遮蔽性を維持する必要がある。			は作成不要。
乾燥収縮ひび割れについては、実験結果等から、あらかじめ乾燥			
収縮ひび割れがある躯体と乾燥収縮ひび割れが無い躯体で、地震時			
のひび割れの傾向に大きな差異がないことを確認している。地震時			
については、建屋の機能維持は、建屋の各層の耐震壁が鉄筋コンク			
リート造耐震壁のせん断ひずみ度の許容限界(2.0×10-3)を満足			
していれば基本的な機能は満足されていると考えられるが、地震に			
よらない場合を含めて躯体に生じるひび割れに対して、以下のとお			
り機能を維持する設計とする。			
y house a ment y watching y was			
 気密性の維持 			
気密性の維持に関して、乾燥収縮によるひび割れについては、			
「原子力施設における建築物の維持管理指針((社)日本建築学			
会、2015)」(以下,維持管理指針という。)によると、通常、コ			
云, 2015) 」(以下, 福行管理指針という。)によると, 通常, 1 ンクリート構造物の使用性が確保されていれば, 空調機により機能			
29 9 「構造物の使用性が確保されていれば、空調機により機能 維持できるとしている。そこで、維持管理指針の使用性に影響を与			
福特できるとしている。そこで、福特省理指針の使用性に影響を与 えるひび割れの評価基準(ひび割れ幅が1 mm以上(屋内))を準用			
こるいの割れの計画差単(いの割れ幅か1)===以上(室内))を単用 して補修を行い、定期的な空気流入率試験により、気密性を維持し			
して補厚を11v5、足別的な空気加入学試験により、気留性を維持していることを確認する。			
しいることを確認する。 地震時に生じるひび割れについては、耐震壁のせん断ひずみがお			
地展時に生しるいい割れについては、耐展室のもん間いりみかねおおむね弾性状態にとどまらない場合は、建物・構築物の許容限界で			
わびね弾性状態にとこよらない場合は、建物・構築物の計谷版外であるせん断ひずみを用いて空気漏えい量を算定し、設置する換気設			
あるせん町いりみを用いて空気備えい重を昇圧し、設置りる換気設備の性能以下であることを確認することで、気密性を維持する設計			
とする。また、スラブについては、地震時に生じる応力に対して鉄			
筋が降伏しないことを確認(鉄筋が降伏する場合は別途詳細検討)			
することで、気密性を維持する設計とする。(財)原子力発電技術			
機構は、「原子炉建屋の弾塑性試験に関する報告書(注1)」にお			
いて、耐震壁の残留ひび割れからの通気量の評価式が、十分に実機			
への適用性があることを確認している。更に、開口部の存在による			
通気量割増率の評価式も示されており、「開口部の残留ひび割れ幅			
の割増率がおおよそ推定できる」としている。			
したがって、中央制御室バウンダリ及び中央制御室待避所バウン			
ダリを構成する壁が鉄筋コンクリート造であり、壁厚も「原子炉建			
屋の弾塑性試験に関する報告書」に示される壁厚と同程度であるこ			
とから、同文献にて提案されている各評価式を用い、中央制御室バ			
ウンダリ及び中央制御室待避所バウンダリにおける空気漏えい量の			
算出を行う。以下に評価式を示す。			
(注1) 財団法人 原子力発電技術機構「耐震安全解析コード改良試験			
原子炉建屋の弾塑性試験試験結果の評価に関する報告書 平成5			
年度」			

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
Q=C γ ^{2.67} ΔP/T ここで, Q : 単位面積当たりの流量 (ℓ/min/m ³) C : 定数 (中央値は 2.24×10 ⁶ , 95%非超過値は 1.18×10 ⁷) γ : 最大せん断ひずみ ΔP : 差圧 (mmAq) T : 壁厚 (cm)			記載方針の相違 ・女川では東北地方 太平洋沖地震の影響 を踏まえ作成してい る資料のため、泊で は作成不要。
$\begin{aligned} \Delta_{q} &= \{ (a^{2}-1) \left(\frac{Q'}{Q_{0}} - 1 \right) -1 \} \beta +1 \\ & \square \subset \mathbb{C}^{r}, \\ \Delta_{q} &: 通気量割増範囲 (=3) \\ & \frac{Q'}{Q_{0}} : 定数 \\ & (P+y \ de \ b \rightarrow x \ de \ b \rightarrow x \ de \ $			
 β : 壁の見付け面積に対する関ロの総面積 2. 遮蔽性の維持 維持管理指針によると,乾燥収縮によるひび割れは躯体を直線的 に貫通するものではないため,遮蔽性に与える影響はないこと,地 貫などにより発生した貫通するひび割れの影響については放射線が 直接通過することはないことの研究成果を踏まえ、コンクリート構 造物の使用性が確保されていれば遮蔽性に影響を及ぼさないとして いる。そこで,使用性に影響を与えるひび割れの評価基準(ひび割 れ幅が1mm以上(屋内))を準用して補修を行うことにより,遮蔽 			
性を維持する。 地震時に生じるひび割れについては,設計基準対象施設の耐震重 要度分類及び重大事故等対処施設の施設区分に応じた地震力に対し て構造強度を確保し,遮蔽体の形状及び厚さを確保することで,地 震後における残留ひずみを小さくし,ひび割れがほぼ閉鎖し,貫通 するひび割れが直線的に残留しないこととすることで,遮蔽性を維 持する設計とする。			

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
23 原子炉格納容器からの漏えいに関するエアロゾル粒子の捕集効	1日761120月1日 マル		型式の相違
果の設定について			・PWRでは、格納容
			器からの漏洩は大部
原子炉格納容器からの漏えいに関するエアロゾル粒子の捕集効果			分がアニュラスによ
の設定について、「女川原子力発電所2号炉 重大事故等対策の有			り捕集され、原子類
効性評価について 付録4 原子炉格納容器からの漏えいに関するエ			建屋への拡散は少な
アロゾル粒子の捕集効果の設定について」において説明しており、			いため、保守的にコ
DF=10 を適用できることを確認している。			アロゾルの捕集効果
			を無視して評価を行
(参考)「女川原子力発電所2号炉 重大事故等対策の有効性評価に			っている。
ついて 付録4」抜粋			

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 2-24 原子炉建屋原子炉棟の換気率について 型式の相違 ・ PWR ではアニュラ 放射性物質の放出量については、これまで、事象発生直後から70 ス設備により、格納 分後までの原子炉建屋原子炉棟からの換気率は、無限大とし、非常 容器から漏洩した放 用ガス処理系により負圧が達成した70分以降は、排気筒から換気 射性物質は大部分が 率0.5回/日で放出するとした評価を行っている。 アニュラスを経由し しかしながら、炉心の著しい損傷時における中央制御室運転員に て排気筒から放出さ 対する被ばく影響に対し、原子炉建屋ブローアウトパネル閉止装置 れる。 及び非常用ガス処理系の機能が、線量の基準値を満たすうえで必要 また、アニュラス であるか否かについて、以下の3 通りのケースの評価を行い判断す 部以外の部分から漏 る。この結果、必要な機能について重大事故等対処設備と位置づ 洩した放射物質は保 け、最確条件を適用したベースケースとしての線量評価と位置付け 守的にそのまま環境 に放出するものとし る。 ケース1. 原子炉建屋ブローアウトパネル閉止装置:期待しな て評価しており、原 い、非常用ガス処理系:期待しない(換気率:無限 子炉建屋を通じての 大) 放射性物質の放出パ ケース2. 原子炉建屋ブローアウトパネル閉止装置:期待する, スは仮定していな 非常用ガス処理系:期待しない(換気率:原子炉建屋 V. ブローアウトパネル閉止装置閉止前を無限大、閉止後 よって、原子炉建 屋の換気率について を0.3回/日) ケース3. 原子炉建屋ブローアウトパネル閉止装置:期待する. は評価対象外であ 非常用ガス処理系:期待する(換気率:原子炉建屋ブ 3. ローアウトパネル閉止装置閉止前を無限大,閉止後を 0.5 回/日) 以下にケース2における原子炉建屋ブローアウトパネル閉止装置 閉止後の換気率について最確値の検討結果を示す。 原子炉建屋原子炉棟は、事故時において原子炉建屋ブローアウト パネル又は原子炉建屋ブローアウトパネル閉止装置が閉止してお り、かつ、非常用ガス処理系が運転状態にある場合、建屋内は負圧 に保たれて0.5回/日で換気する設計となっている。しかし、非常 用ガス処理系が停止した場合、建屋周辺の風によって建屋外とは差 圧を生じるため、建屋内の雰囲気は換気されるものと考えられる。 建屋内外に発生する差圧は、外気風速に影響され、風速が大きい ほど差圧も大きくなり、建屋の換気量も増加する。①式に建屋の外 気風速と建屋差圧の関係を、②式に差圧と流量の関係式を示す。 $\Delta P[kg/m^2] = -C \times \rho \times V^2/2$ · · · ① ΔP :風荷重/建屋差圧[kg/m²] (1[kg/m²]=1[mmAq]) C :風力係数 : 空気密度[kg·s²/m⁴]→0.125 (大気圧 101[kPa], 大気温 15[℃]) D : 風速[m/s] V出典:建築学便覧Ⅱ 構造 $Q[m/s] \propto \sqrt{\Delta P[mmAq]}$ (ベルヌーイの定理より)・・・②

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
			型式の相違
			・ PWR ではアニュ
			ス設備により、格
風力係数は建屋の形状に応じて決まる数値であり、原子炉建屋原			容器から漏洩した
炉棟を軒の無い直方体形状とみなすと、建設省告示第1454 号			射性物質は大部分
平成12 年5 月31 日)に基づき、③式により算出することができ			アニュラスを経由
0			て排気筒から放出
			れる。
C = Cpe - Cpi · · · ③			また、アニュラ
C : 風力係数			部以外の部分から
Cpe : 建築物の外圧係数 (風上側 0.8k;,風下側-0.4)			洩した 放射物質に
Cpi : 建築物の内圧係数 (0)			守的にそのまま環
k_z : H>Zb かつ Z>Zb の場合 $k_z = (Z/H)^{2a} = 1.0$			に放出するものと
H : 原子炉建屋原子炉棟の高さ (36[m])			て評価しており、
Z :風力係数を評価する壁面の高さ(36[m])			子炉建屋を通じて
Zb :告示第1454 号第1第2項の表に規定する Zb の数値(5[m])			
a :告示第1454 号第1第2項の表に規定する a の数値(0.15)			放射性物質の放け
			スは仮定していた
したがって風力係数は風上側C1=0.8,風下側C2=-0.4,となるた			1 No.
ΔP は以下のように計算される。			よって、原子炸
			屋の換気率につい
$\Delta P[\text{mmAq}] = -(C_2 - C_1) \times \rho \times V^2 / 2$			は評価対象外であ
$=-\{(-0.4)-0.8\times 1.0\}\times \rho\times V^2/2$			3.
$= 0.6 \times \rho \times V^2$			
され、 原フに注目原フに接いる思想では注意。 (近日を探り) マル			
また、原子炉建屋原子炉棟は設置許可申請書(添付書類八)では			
屋負圧約6mmAqにおいて換気率50%/日(0.5 回/日)とする設			
方針としており、工事計画認可申請書(原子炉建屋の設計条件に			
する説明書)では建屋負圧が6.4mmAq において50%/日(0.5 回			
日)の換気率とする設計を示している。さらに定期検査ごとに原			
戸建屋原子炉棟気密性能試験において,非常用ガス処理系の運転			
態において性能確認を行っている。したがって,実風速による建			
差圧と換気率の関係は④式のようになる。			
A Drum A J			
$f (\exists / \exists) = 0.5 \exists / \exists \times \sqrt{\frac{\Delta P[\text{mmAq}]}{6.4 [\text{mmAq}]}}$			
$= 0.5 \times \sqrt{\frac{0.6 \times \rho \times V^2}{6.4}}$			
$= 0.0541 \times V$ • • • ④			
 			
ΔP : 実風速による建屋内外差圧			

女川原子力発電所2号炉				炉			泊発電所3号炉	大飯発電所3/4号炉	差異理由
所の敷地内るたの 敷が、炉出 した。 以用がにの、3 に にの、3 に にの、3 に にの、3 に に に に に に に に に に に に に	って実際に生じ 観測した気象条 め,安全解析に 著しい損傷時に 度97%)にあた 換気率(f) メイトン 検気率は原子炉 トパネル閉止装 る場合は,建屋に いては,建屋に	件用るてました。 建置のこと ので速 した。 建置の 気る に した。 と の で した。 で で の の の の の の の の の の の の の の の の の	い, 2012 年 2012 年 5 子 ロ 上 性 時 効 果	価前提。 二1 月~ に遭遇-2-2 日屋原 ウてわれる に 期待	の風速を設定 12月の風速を設定 しない気象定 24-1)を選定 算されるため 算け ため 次 の ため や れるため や れるため や ため の 気 の の の の の の の の の の の の の の の の の	す結件し ,は 炉両ののる果下 非保 建設場			型式の相違 ・PWRではアニュラ ス設備により、格納 容器から漏洩したか 射性物質は大部分が アニュラスを経由し て排気筒から放出さ れる。 また、アニュラス 部以外の部分から湖 洩した放射物質は得 守的にそのまま環想 に放出するものとし て評価しており、原 子炉建屋を通じての 放射性物質の放出/ スは仮定していない。
表 2 測定箇所	24-1 累積出現頻度 累積出現頻度[%]	別風速一	覧 (2012 日	年1月~ 時	·12月) 風速[m/s]	1			よって、原子炉類 屋の換気率について
	:	:	:	:	:				は評価対象外。
	25.01%	3	24	23時	1.0	1			
	:	1	:		:				
	50.00%	6	21	14 時	1.6				
	:	:	:	:	:				
地上高 10m	90.00%	11	12	5時	3.4				
	:	:	:	:	:				
	96. 98%	03	19 19	13時 23時	4.6				
	06.000			23 Pd					
	96, 99% 97, 00%			4 時		1			
	96. 99% 97. 00% 97. 01%	03	28 28	4時 9時	4.6 4.6				
	97.00%	03	28	-	4.6				

女川原子	力発電所2号炸	i i	泊発電所3号炉	大飯発電所3/4号炉	差異理由
		(参考1)			THI-HO HO MA
本民海东1、1、北海田北	マームの海太の海太	(型式の相違
建屋漏えいと非常用ガ					・PWR では非常用
放出経路の違いに	よる彼はく影響	れついて			ス処理系は設置し
					おらず、格納容器
炉心の著しい損傷が発生し					ら漏洩した放射性
放出された放射性物質は、 格					質は大部分がアニ
少するが,一部は原子炉格納					ラスを経由して排
いする。漏えいした放射性物					筒から放出される
経由して環境中に放出される。					め、放出経路も大
奥気により建屋の間隙を通じ					くことなる。
この時,環境中に放出され	た放射性物質は	は大気中で拡散し中央制			
御室の外気取りこみ口から室	内に侵入するこ	ことになる。			
大気拡散係数は放出点及び	評価点の位置関	掲係(水平位置と高さ)			
並びに気象条件によって決定	される。				
評価点の放射性物質の濃度	は,放射性物質	夏の放出率と大気拡散係			
数に比例する。屋外の評価点	における放射性	生物質濃度の評価式を以			
下の①式に示す。また,原子	炉建屋原子炉树	東と排気筒からの放出経			
路の違いによる,放射性物質	農度への影響に	こついて表1 に示す。放			
出率は非常用ガス処理系を使	用した排気筒が	女出に比べて,自然換気			
による原子炉建屋原子炉棟放	出の方が小さい	いが、評価点の放射性物			
質の濃度については原子炉建	屋原子炉棟漏え	こいの方が100 倍以上大			
きくなることから,被ばく評	価に与える影響	際は原子炉建屋原子炉棟			
漏えいの方が大きくなる。					
$Q_{out}(t) = Q_{in}(t) \times V \times f \times (\chi/Q)$) [Bq/m ³] ·	••••			
Qou(t):時刻tにおける評価。		n Mertra (1)			
Q _{in} (t):時刻tにおける原子 V:原子炉建屋原子炉棟		(の)震度[Bq/m']			
f :原子炉建屋原子炉楝		/e]			
(x/Q):相対濃度[s/m ³]	A STORAGE TEL	1.91			
v. 20					
		2			
長1 放出経路ごとの放射性物質濃!	度(評価点:中央	制御室換気空調系給気口)			
放出経路 [回/day]	相対濃度	評価点の濃度			
[回/day] 原子炉建屋原子炉楝	[s/m²]	[Bq/m ³]			
原于於建屋原于於4葉 (地上) 0.3	1.3×10-3	4. $5 \times 10^{-9} \cdot Q_{in}(t) \cdot V$			
	-				
排気筒(高所) 0.5	2.8×10 ⁻⁶	$1.6 \times 10^{-11} \cdot Q_{in}(t) \cdot V$			
No.					

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
(参考2)			型式の相違
原子炉建屋原子炉棟の開口部の状況を踏まえた			・PWR ではアニュ
原子が 建 室 原子 が 保 の 開 ロ 部 の れ 化 を 暗 ま え た 負圧 達 成 ま で の 期間 に お け る 換 気 率 の 適 用 性 に つ い て			ス設備により、格
員圧進成よくの労間における換入中の適用性に りゃく			容器から漏洩した
-般の建物の場合は、建物内の圧力の変化に伴い、建物と扉の密			射性物質は大部分
1.6(隙間の大きさ)が変化するため、建物内が正圧時と負圧時			アニュラスを経由
ka (原間の人ささ) が変化することが知られている。そのため、原子			て排気筒から放出
を建物の気温度も変化することが知られている。てのため、尿子			て非気間から放出れる。
このして、「ない」になって、「ない」」では、「ない」」では、「ない」、「ない」、「ない」、「ない」、「ない」、「ない」、「ない」、「ない」			また、アニュラ
EV る状態での気温度を用いるにのにうて、デポポガスの建築 運転に伴い、建物と扉の密閉率が変化しないことを、以下のとお			部以外の部分から
超いた。			渡した放射物質は
■₩0した。 ■常用ガス処理系による負圧達成までの期間における原子炉建屋			彼した放射物質は
- 市市ガスへ延生来による員圧達成までの新聞における赤子が建産 - 炉棟の換気率は、非常用ガス処理系による負圧達成前後で換気			いたとのよよ嫌に放出するものと
- か保の換入率は、非常用ガス処理系による員工運成前後で換入 各の形状が変わらなければ、非常用ガス処理系を運転した場合の			に放出するものとて評価しており、
30万人が変わらなり400%、非常用スス処理末を運転した場合の 1率との比例関係により算出することが可能である。			子炉建屋を通じて
(半この比例例はにより昇山りることが可能でめる。 原子炉建屋原子炉棟の換気経路となり得る開口部として、原子炉			ナ炉運産を通して 放射性物質の放出
RTが建産原ナが保の換え経路となり待る開口部として、原ナが 最大物搬出入口、人員用エアロック、原子炉建屋プローアウトパ			成別性物質の放在 スは仮定していな
ノ、原子炉建屋ブローアウトパネル閉止装置及び配管等の貫通部 たきとれて、このます、原スに建屋大鉄線出ます。			V.
きえられる。このうち,原子炉建屋大物搬出入口,人員用エアロ			よって、原子炉
7,原子炉建屋ブローアウトパネル及び原子炉建屋ブローアウト			屋の換気率につい
ペル閉止装置のシール部は、シール材を建具等で挟み込み密着さい。			は評価対象外。
こ状態で、かんぬき又は止め板等にて固定する構造である。ま			
配管等の貫通部のシール部は、シール材の充填又はブーツラバー			
◇鋼製バンドにより締め付けて固定している。これらのシール部 は常用ポコロ理想にトス会に告ば並後でい、「対理の世能が変わ」			
非常用ガス処理系による負圧達成前後でシール部の状態が変わ			
とはない。原子炉建屋原子炉棟開口部のシール構造概略を表2			
こた、換気率Q と建屋と扉の密閉率(隙間面積A)は②式のとお			
と例関係にあることが知られている。			
Q=Av [m3/s]・・・② (連続の法則)			
A:隙間面積[m2]			
たがって、非常用ガス処理系の運転に伴い、シール部の状態が			
っることはないため、密閉率が変化することはなく、換気率の算			
こ影響しないことを確認した。			

		<i>罰室にとどまるための設備(補足説明資料</i> 子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
表 2 開口部	原子炉建屋原子! シール構造	戸棟の開口部及びシール構造概略 構造図(代表例)			型式の相違
 (F) (F) (F) (F) (F) (F) (F) (F) (F) (F)	シール材を挟み 込み密着させた 状態で,かんぬ き等にて固定				 PWRではアニュラス設備により、格納容器から漏洩したが射性物質は大部分がアニュラスを経由して排気筒から放出される。 また、アニュラスを
配管等質通部	ブーツラバーを 鋼製バンドによ り締め付けて固 定				部以外の部分から約 洩した放射物質は低 守的にそのまま環想 に放出するものとして で評価しており、 プー炉建屋を通じての 放射性物質の広しな
	シール材の充填				スは仮定していな い。 よって、原子炉 屋の換気率につい は評価対象外。

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 2-25 原子炉建屋ブローアウトパネル閉止装置及び非常用ガス処理系 型式の相違 の要否について ・ブローアウトパネ ル閉止装置は、BWR 原子炉建屋ブローアウトパネル閉止装置は、原子炉建屋ブローア の非常用ガス処理系 ウトパネルが開放した状態で非常用ガス処理系に期待する場合に, が機能するように原 原子炉建屋原子炉棟の気密性を確保するために設置する。 子炉建屋の気密性を 炉心の著しい損傷が発生した場合において、中央制御室の運転員 保つ目的で、必要に 等の被ばく低減のために非常用ガス処理系によって原子炉建屋原子 応じて設置すること 炉棟内を負圧に維持するには、原子炉建屋原子炉棟のバウンダリの が要求されている。 一つである原子炉建屋ブローアウトパネルについても閉状態を維持 一方、泊 (PWR) する必要がある。原子炉建屋ブローアウトパネルは、外部事象を考 においては、アニュ 慮した場合、地震等による開放が考えられることから、こうした事 ラス空気浄化設備に 態に対応するために、原子炉建屋ブローアウトパネル閉止装置にて より放射性物質の低 閉止を行うことで対応する。 減を行うが、設備構 ここでは、原子炉格納容器からの漏えいに関する捕集効果等の最 成の相違によりプロ 確条件を踏まえたうえで被ばく評価を実施し、原子炉建屋ブローア ーアウトパネル閉止 ウトパネル閉止装置及び非常用ガス処理系の必要性について検討を 装置の要求はなく、 行った。 設置もしていないた め、対象外。 評価条件について 評価に当たっては、本来プラントが持つ放射性物質の除去効果や 保持機能について、事故時におけるプラントの状態を踏まえ最確条 件を設定し、その上で中央制御室運転員に対する線量影響を評価し た。具体的には、原子炉格納容器からの漏えいに関してはエアロゾ ル粒子に対して捕集効果(以下「DF」という。)が期待できること から、DF=10 を最確条件として設定した(添付資料2 2-23 参 照)。 また、原子炉建屋ブローアウトパネル閉止装置及び非常用ガス処 理系の要否を検討するため、以下のケースについて評価を実施し た。評価条件を表2-25-1 に示す。 ケース1. 原子炉建屋ブローアウトパネル閉止装置: 期待しな い、非常用ガス処理系:期待しない(換気率:無限 大) ケース2. 原子炉建屋ブローアウトパネル閉止装置: 期待する, 非常用ガス処理系:期待しない(換気率:原子炉建屋 ブローアウトパネル閉止装置閉止前を無限大、閉止後 を0.3 回/日) ケース3. 原子炉建屋ブローアウトパネル閉止装置:期待する、 非常用ガス処理系:期待する(換気率:原子炉建屋ブ ローアウトパネル閉止装置閉止前を無限大,閉止後を 0.5 回/日)

女川原子力発電所2号炉					
表 2-25-1 評価	評価条件 (ベースケース(話付資料22-1)からの変更点)				
_		評価条件			
	5-21	ケース2	ケース3 (ペースケース)		
	fガス:1		(~~~,~~,)		
(子炉格納容器か	ニアロジル粒子:10	24010	101-0712		
の備えいに関す	1機よう素:1	間左	開左		
	Y機よう素:1				
	1	原子炉建量プローアウ	原子炉建量プローアク		
「子炉建築ブロー		トパネル閉止装置を用	トパネル閉止装置を用		
ウトパネル閉止 設		00	Nõ		
THE IS IN THE IS INTERNED. INTO IS IN THE IS INTERNED. INTO IS INTERNED. INTO IS INTON		(60 分後までに閉止し	(60 分後までに閉止し		
		建屋の気密性が確保さ れる)	運営の気害性が確保される)		
		(10)	非常用ガス処理系を用		
			No.		
*常用ガス処理系 数	と備に期待しない I	設備に期待しない	(70 分後に建屋は負圧		
			となり非常用ガス処理		
			系から敖闫)		
	·事放発生直後~168				
	特関後:無限大[回/日] (原子炉建量原子炉棟				
		チ炉建屋原子炉棟から の漏えい)	イ炉理運原子炉棟から の漏えい)		
	Contract of	1 m / 1 m	Condition of the		
(子炉建屋原子炉		 事故発生から 60 分後 	 事故発生から70分後 		
の換気率		~168時間後:0.3[回/	~168 時間後:0.5[Ⅲ/		
			日]で歴外に放出(非常		
			用ガス処理系による汝		
		康歴原子炉棟からの漏 えい)	(11)		
		2,81)			
「価結果につい					
大替循環冷却	系を用いて事	象を収束する	場合の評価結算		
2 に、被ばく	線量の合計が	「最も大きい国	Eの評価結果の		
			ルタベント系		
を収束する	場合の評価結	果を表2-25-4	に,被ばく線		
も大きい班	の評価結果の	内訳を表2-25	-5 に示す。		
			循環冷却系を月		
に成功した	場合でケース	1が約1200mS	v, ケース2が		
Sv ケース	3 が約51mSv	レたり 核納	容器ベントを筆		
はケース 17	か新1000mSv,	ゲース2か#	り180mSv, ケー		
iv となった。	。このことか	ら,ケース3	のみが判断基準		
		で100mSv をあ	Bえないことに		
転員の宝林	線量が7 日間	LOOMDY CR			
とを確認し	た。	御室の運転員	等の被ばく低減		
とを確認し の結果を踏	た。 まえ,中央制				
とを確認した の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装	等の被ばく低減 置及び非常用ス		
とを確認した の結果を踏 原子炉建屋	た。 まえ,中央制	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認し の結果を踏 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			
とを確認した の結果を踏ら 原子炉建屋	た。 まえ,中央制 ブローアウト	パネル閉止装			

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	* =
	11元电//13 7/	人敢完电内3/4万炉	差異理由
			査異理由 型式の相違 ・ブローアウトパネ ル閉止ま用づく、BWR の非常常するように使 での非常常するように使 をでで、必要に応じてすること が要することでですること が要えたいては、アニュ ラス空かりたいでは、アニュ ラス空かりたいでは、アニュ ラス空かりが、設備構成の一アウトパネル閉止 装置もしていないため、対象外。
被ばく経路 ケース1 ⁸⁰ ケース2 ⁸¹ ケー (ペー D 原子炉地屋原子炉横内の放 射性動質からのガンマ線に よら中央料理内での彼ば く D </td <td>×) y² ở</td> <td></td> <td></td>	×) y² ở		
時 た放射性物質による中央制 前 L 1×10 ² 約 1. 1×10 ² 約 1. 6×10 ² 約 3 (内限) 内部統式 (約 9. 5×10 ²) (約 1. 5×10 ²) (約 1. 5×10 ²) (約 2. 5×10 ²) (約 5. 5×10 ²) (10 5×10 ²	9) 97		
	pr		
の がかっ響による入港庫 ののかっ響による入港庫 から値ごく 約.4×10 ⁶ 約.2.6×10 ⁻⁴ 約.2 ののがっ響による入港庫 がのが、「なりた数付払物 愛からのガン・幅による入 かり、10 ⁻¹ 約.4×10 ⁶ 約.2.6×10 ⁻⁴ 約.2 ののが、「なりた数付払物 変換時の強化く な中の独立とた数対性 物学の扱入税はされた放射性 物学の扱入税はされた効用性 約.5.2×10 ⁴ 約 1.0×10 ² 約 1.0×10 ²	0'		
小計 (⑤+⑥+⑦+⑧) 約3.9×10 ⁴ 約8.3×10 ⁶ 約5	0'		
(①+②+③+③+⑤+○)・⑦+③・約1200 約180 前 (①+②+③+③+○)・○)・○)・○)・○)・○)・○)・○)・○)・○)・○)・○)・○)・○	ガス約 処理系		

1	r川原子力発	電所2号	炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
表 2-25-4	各勤務サイクルでの著	友ばく線量				
(原子炉格納容器フィルタベン						型式の相違
1 H ⁸⁴ 2 H	8 18	日 6日	7日 合計			・プローアウトバ
A班 約140 約850	約6.7 約	4.8 約4.1	- <u>約 1000</u>			ル閉止装置は、B
B班 約99 -	約7.1 約5.9		約3.4 約120			
C班			- 0			の非常用ガス処理
⁶ D班 <u>1</u> 放 1 放 約 290 約 540		<u>23度</u> 3 4.4 約4.2 月	推 約1.8 ⁸¹ 約830			が機能するように
E班	度 23度 3度 約7.3 約5.9 約	41 - 1	# 105.105 #9.23			子炉建屋の気密性
2 1 20 11	<u>第</u> 約19 - 詳					保つ目的で、必要
	直 1直	2	# <u>180</u>			
#39.2	約18 約33		約7.1 約67			応じて設置するこ
C班		23 # 3	- 0			が要求されている
D班約40約44		<u>21度 3</u> 114 約15 3	約3.9% 約120			一方、泊(PWR
E	直 23直 3直 約31 約31 約	8.9	直 約12 ⁸⁵ 約82			においては、アニ
A班 約6.2 約21	<u>度</u> 約1.4 - 約	1.1 約 0.84	- #9.31			ラス空気浄化設備
B班 約5.3 -	直 約1.8 約1.4	2	前0.65 約9.0			
CH			- 0			より放射性物質の
18 18		23 意 3 0.88 約 0.84 兼				減を行うが、設備
8790 874.0	直 23 液 3 液		11			成の相違によりつ
L 81	Shi a Shi a Sh	0.79	的 0.98 ⁸⁵ 約 4.6			ーアウトパネル
※2 中央影響室内でマスク (PF=) ※3 連載モデル上のコンクリート	 の着目を考慮。6時間当た 事を許容される施工報告分だ 	り1時開外すものとし け薄くした場合の被ば	て評価 く得量			装置の要求はなく
※4 中央制御室内及び入過城時に 内は6時間当たり18分開外	85いて事故後1日日のみマス 「ものとして評価	ク (PF=1,000) の着用き	と考慮。中央制御室			設置もしていない
○1 入送城時においてマスク(月 会2 中央影響会内でマスク(日 つる) 遊園モデル上のロングリート うは、日本の数量のため(刀入送城町) 内2 6時間名たり18 分裂外 号) 野谷取製株丁含約の入場に件 村(村) (日本)(日本)(日本)(日本)(日本)(日本)(日本)(日本)(日本)(日本)	う被ばく緑量は、7日日1直。 同御遠涛在(評価期間終了ま	の被はく器量に加えて置 で)に伴う被ばく線量	整理。7日日3直の (表 6-1-1の奈5を			
※500 分6 ケース1:原子炉建屋ブロー ケース2:原子炉建屋ブロー	アウトバネルが開放しており アウトバネル間止装着により	建屋の気密度に期待し) 建屋の気密度を確保す	ないケース この非常用ガス朝			め、対象外。
ケース2:原子炉電量ブロー 理系の運転には契 ケース3:原子炉電量ブロー	寺しないケース アウトパネル関止装置により	建屋の気密度を確保し、	非常用ガス処理系			
の遅転に期待する						
表 2-25-5 評価結果	の内訳(彼ばく線量が	戦大となる斑の	合計)			
(原子炉格納容器フィルター		を収束する場合) 7日間の実効線量 [®]				
			ケース3部			
被ばく経路	ケース1**	ケース2**	(ベースケース)			
① 原子炉建屋原子炉楝内	A班	A m	D 雜			
射性物質からのガンマ よる中央制御室内での	RIC Ht a second	約1.6×10 ⁻⁴	約4.1×10 ⁻¹			
<	RIA.					
 ② 放射性雲中の放射性物 らのガンマ線による中 	(か) 転制 約2.2×10 ¹	約7.6×10°	約7.0×10 ⁸			
御室内での被ばく ③ 地表面に沈着した放射	Edit					
質のガンマ線による中 御室内での被ばく	N 1.4×10 ¹	約3.4×10°	約 6.7×10 ⁸			
④ 室内に外気から取り込	th .					
 た放射性物質による中 御室内での被ばく 		約1.6×10 ¹	約 3.2×10 ¹			
(内訳) 内部被ばく外部被ばく	(約8.8×10 ²) (約4.1×10 ¹)	(約1.5×10 ²) (約1.3×10 ¹)	(約2.6×10 ³) (約5.6×10 ⁸)			
小計 (①+②+③+④)	約9.5×10 ²	約1.7×10 ²	約4.5×10 ¹			
⑤ 原子炉建屋原子炉楝内	等の					
放射性物質からのガン による入退城時の被ば	P線 約2.7×10-1	約 2.7×10-1	約1.2×10 ⁻¹			
⑥ 放射性雲中の放射性物	電か	約2.9×10 ⁻¹	約1.6×10 ⁻²			
らのガンマ線による入 時の被ばく		#3 2.9×10"	#91.6×10"			
⑦ 地表面に沈着した放射 質からのガンマ線によ	11物 5入 約3.8×10 ¹	約 9.7×10 ⁸	約 5.2×10 ⁸			
 退城時の被ばく ③ 大気中へ放出された放 						
物質の吸入摂取による	·通約3.2×10 ⁰	約 8.3×10 ⁻¹	約5.7×10 ⁻³			
城時の被ばく 小計(⑤+⑥+⑦+⑧)	約4.6×10 ¹	約1.1×10 ²	約5.4×10°			
小計 (5+6+(2+(8)) 合計						
D+0+0+0+0+0+0+	約 約 1000	約 180	約 51			
※1 遮蔽モデル上のコンクリー あ2 ケース1・第子切換量プロ・	プ 厚を約容される施工観量分 - アウトバネルが開放してお - アウトバネルが開放してお	たけ厚くした場合の著 り矯量の気密度に期待	stitく線量 きしないケース			
Ma / Pit - Mill Mag / H		「り爆墨の気密度を確	体するが非常用ガスを			1
ケース2:原子炉準量ブロ 理系の運転には ケース3:原子炉準量ブロ の運転に期待す						

第 59 条	運転員が原-	子炉制御室にと	どまるための設備	(補足説明資料)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
			This was been the
3. 原子炉格納容器からの漏えいに関する捕集効果が被ばく線量に与			型式の相違
える影響について(考察)			・プローアウトパネ
			ル 閉止装置は、 BWR
DF の効果を確認するため、被ばく経路ごと及びDF に対する期待			の非常用ガス処理系
の有無ごとの被ばく線量の評価結果を,表2-25-6 及び表2-25-7 に			が機能するように原
示す。			子炉建屋の気密性を
被ばく経路のうち,線量が大きく支配的な被ばく経路は②,③,			保つ目的で、必要に
④、⑦である。このうち、②は希ガスによる影響が支配的であるた			応じて設置すること
め, DF に期待した場合でも,線量の低減効果はない。一方,③,			が要求されている。
④、⑦は希ガス以外の無機よう素、有機よう素及び粒子状放射性物			一方、泊 (PWR)
質による被ばく線量が支配的となる被ばく経路であるため,DFに期			においては、アニュ
待した場合の評価結果が,数mSv 程度低減される。			ラス空気浄化設備に
次にDF の効果に期待できる粒子状放射性物質の、被ばく線量へ			より放射性物質の低
の寄与について考察した。			減を行うが、設備構
粒子状放射性物質は、原子炉格納容器内において自然沈着やスプ			成の相違によりプロ
レイによる除去効果によって、時間経過とともに原子炉格納容器気			ーアウトパネル閉止
相中から除去されるため、事象初期の放出量が支配的になる。事象			装置の要求はなく、
発生から非常用ガス処理系による原子炉建屋原子炉棟内の負圧達成			設置もしていないた
までの期間である70 分後まで(以下「事象初期」という。)にお			め、対象外。
ける環境への放出量と7 日間の環境への放出量を表2-25-8 に示			
す。粒子状放射性物質の環境中への放出量は、事象初期が支配的で			
あることを確認した。			
したがって、粒子状放射性物質の被ばく線量への寄与の確認にあ			
たっては事象初期における放射性物質の環境への放出量を比較した			
(表2-25-9)。			
DF に期待しない場合の粒子状放射性物質の環境への放出量は,			
無機よう素及び有機よう素の放出量に対して約14%であり、原子炉			
格納容器からの漏えいした放射性物質による被ばく線量の要因の一			
つとなっている。一方, DF に期待した場合においては約1.4%とな			
っており、被ばく線量の主要因にならないことを確認した。			

	女	川原子力發	着電所2号	炉
	表 2-25-6 DF の効			
	(彼ばく病 (代替循環冷却系を用)	量が最大となるB いて事象を収束す		Sv)
		-	7日間の実効線量	
	被ばく経路	(a)DF に期待しな い場合 (DF=1)	(b) DF に期待する 場合 (DF=10)	差 (a) - (b)
	 原子炉建屋原子炉棟内の放 射性物質からのガンマ線に 			
	よる中央制御室内での被ば	約4.2×10 ⁻¹	約4.1×10 ⁻⁶	4
	② 放射性雲中の放射性物質からのガンマ線による中央制	約7.2×10 ⁰	約7.0×10 ⁹	а
1	御室内での彼ばく	BI IL BO IV		
創御	③ <u>地表面に沈着した放射性物</u> 質のガンマ線による中央制	約 1.1×10 ¹	約 6.7×10°	約4
重響在	<u>御室内での被ばく</u> ④ <u>室内に外気から取り込まれ</u>			
14	た放射性物質による中央制 御室内での被ばく		約 3.2×10 ¹	<u>¥96</u>
	 (内訳) <u>内部被ばく</u> 外部被ばく 	(約3.3×10 ³) (約5.8×10 ⁶)	(約2.7×10 ¹) (約5.6×10 ⁹)	<u>約6</u> <1
	小對 (①+②+③+④)	約 5.7×10 ¹	約4.6×10 ¹	約11
	⑤ 原子炉建屋原子炉棟内等の			
	放射性物質からのガンマ線 による入退城時の被ぼく	約1.5×10 ⁻¹	約 1.4×10 ⁻¹	<1
	⑥ 放射性雲中の放射性物質からのガンマ線による入退域	約2.5×10 ⁻²	約 2.5×10 ⁻²	<1
2	時の被ぼく ⑦ <u>地表面に沈薯した放射性物</u>			
遊城時	質からのガンマ線による入 退城時の被ばく	約9.6×10 ⁸	約5.1×10 ⁹	<u>89.4</u>
	⑧ 大気中へ放出された放射性 物質の吸入摂取による入退	約1.2×10 ⁻¹	約1.2×10 ⁻²	4
	城時の被ばく			
	小計 (5+6+0+8)	#3 9, 8×10°	約5.3×10°	約5
	小計 (5+6+(2+8))			
(@+	습카 ②+③+④+⑤+⑦+③)	X 9 66	約 51	約15
	合計 ②+③+④+⑤+⑤+⑦+③) 表 2-25-7 DF の効 (被ばく線	約 66 果に対する期待の: 量が最大となる班	有無による比較 の合計)	
	合計 ②+③+③+③+⑤+③+③+③) 表 2-25-7 DF の効 (被ぼく線 京子炉格納容器フィルタベン 1	約 66 果に対する期待の 量が最大となる班 -系を用いて事象を	有無による比較 の合計)	
	合計 ②+③+④+⑤+⑤+⑦+③) 表 2-25-7 DF の効 (被ばく線	約 66 果に対する期待の 量が最大となる班 -系を用いて事象を	有無による比較 の合計) 2収束する場合)(1	
	合計 ②+③+③+③+⑤+③+③+③) 表 2-25-7 DF の効 (被ぼく線 京子炉格納容器フィルタベン 1	約 66 果に対する期待の 量が最大となる班 - 系を用いて事象を (a) IF に期待しな い場合 (IF=1)	有無による比較 の合計) :収束する場合)(1 7 日間の実効線量 (b)DFに期待する 場合(DF=10)	単位:mSv) 業 (a)-(b)
	合計 ②+③+③+③+③+③+③+③+③ (板ばく線 京子炉格納容器フィルタベン) 数ぼく経路 ① 京子炉種屋京子炉種内の放	約 66 果に対する期待の 量が最大となる振 、系を用いて事象を (a)DFに期待しな	有無による比較 の合計) 2収束する場合)(1 7日間の実効線量 (b)IFに期待する	単位:mSv)
()	合計 ②+③+③+③+③+③+③+③+③+③ 表 2-25-7 LF の 効 (板江く経 家子伊格納容器フィルタベン) 数はく経路 ① 原子伊隆羅原子伊隆内の放 対性動管のガンマ線に とち中央新御室内での被ば く の 20 数特性雪中の放射性数質からのガン	約 66 果に対する期待の 量が最大となる班 - 系を用いて事象を (a) IF に期待しな い場合 (IF=1)	有無による比較 の合計) :収束する場合)(1 7 日間の実効線量 (b)DFに期待する 場合(DF=10)	単位:mSv) 業 (a)-(b)
(R	合計 ②+③+③+③+③+③+③+③+③+③+③+③+③+③+③+③+③+③+	約 66 果に対する期待の 量が最大となる班 - 系を用いて事象を (a)IFに期待した) い場子(IF=1) 約 4.2×10 ⁻² 約 1.2×10 ²	有無による比較 の合計) *収束する場合)(1 7 7間の実効線量 (0.19Fに現時中否 場合(0F=10) 約4.1×10 ⁻⁴ 約7.0×10 ⁴	単位:mSv) 業 (a) - (b) <1 <1
(周	合計 ②+③+③+③+③+③+③+③+③ 表 2-25-7 LF の 効 (板江く経 気子炉格納容器フィルタベン) 数はく経路 ① 原子炉地屋原子炉積内の放 対性動管のガンマ線に とち中央新御室内での被ば く の 20 数料性雪中の放射性数質からのガン	約 66 果に対する期待の 量が最大となる紙 - 茶を用いて事象を (a)EFに期待した い場合 (D#=1) 約 4.2×10 ⁻² 約1.2×10 ²	有無による比較 の合計) :収束する場合)(1 7 日間の実効線量 (b)1Fに期待する 場合(1F=10) 約4.1×10 ⁻²	単位:mSv) (a)-(b) <1
(R	合計 ②+③+③+③+③+③+③+③+③+③+③+③+③+③+③+③+③+③+	約 66 果に対する期待の 量が最大となる紙 - 茶を用いて事象を (a)EFに期待した い場合 (D#=1) 約 4.2×10 ⁻² 約1.2×10 ²	有無による比較 の合計) *収束する場合) (1 7 7間の実効線量 (0.19F に現時中否 場合 (0F=10) 約 4.1×10 ⁻⁴ 約 7.0×10 ⁴	単位:mSy) 差 (a) - (b) く1 く1 <u>約4</u>
() 中央制調		約 66 累に対する期待の 量が最大となる紙 -系を用いて事象者 (a)IF(三期待した い書す(IP=1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ³ 約 1.8×10 ³ (約 5.2×10 ³)	有無による比較 の合計) 7 日間の実効線量 (b)BF に期件する 場合 (De-10) 約 4.1×10 ⁻⁴ 約 7.0×10 ⁴ 約 5.0×10 ⁴ 約 5.7×10 ⁴ 約 3.2×10 ⁴ (約 2.6×10 ⁷)	単位: mSv) 業 (a) - (b) (1 <u>約4</u> <u>約6</u>
() 中央制調	合計 ②+③+③+③+③+③+③+③+③ 束 2-25-7 10F の効 (板ばく報路 家子伊格納容器フィルタベン) 数ばく経路 ① 原子伊羅墨原子伊福内の放 計社物質からのガンマ線に よら中央制御室内での数ば く ② 放射性量中の数は外勤的気が 調査前での数は () ② 広射性量中の数目気動気が 質力ガンマ線による中央制 調査前での数はく () 第20ドン病による中央制 調査前での数はく () 第20ドン病による中央制 調査前での数はく () 第20ドン病による中央制 調査前での数はく () 第20ドン病による中央制 調査前での数はく () 第20ドン病による中央制 調査前での数はく () 第20ドン病による中央制 調査前での数はく () 第20ドン病による中央制 調査前での数はく () 第20ドン病による中央制	約 66 累に対する期待の 量が最大となる紙 -系を用いて事象者 (a)IF(三期待した い書 (DF=1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ³ 約 1.8×10 ² (約 5.2×10 ³)	有無による比較 の合計) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	単位: mSv) (ω-0) (1 約4 約6 約6 約6
() 中央制調	合計 ②+③+③+③+③+③+③+③+③+③+③+④+③+④+③+④ 求 2-25-7 1 E の効 ぼえ 4 (数 1 ≤ 4 m) 家 2-25-7 1 E の効 家 2-25-7 1 E の の 家 2-25-7 1 E の の 歌 2-25-7 1 E の 0 歌 2-25-7 1 E 0 S 2-25-7 1 E 0	約 66 累に対する期待の 量が最大となる紙 -系を用いて事象者 (a)IF(三期待した い書す(IP=1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ³ 約 1.8×10 ³ (約 5.2×10 ³)	有無による比較 の合計) 7 日間の実効線量 (b)BF に期件する 場合 (De-10) 約 4.1×10 ⁻⁴ 約 7.0×10 ⁴ 約 5.0×10 ⁴ 約 5.7×10 ⁴ 約 3.2×10 ⁴ (約 2.6×10 ⁷)	単位:mSv) 差 (a) - (b) く1 約 4 約 6 約 5 5 5 5 5 5 5 5 5 5 5 5 5
() 中央制調	合計 ②十③+③+③+③+④+③+③+③) 来 2-25-7 DF の効 (板ばく報路 ③) 原子伊藤納客語フィルタベン) 数ばく経路 ③) 原子伊建眉原子伊博内の放 対位動質からのガンマ線に えら中央制御室内での数はく ③) 数件性重に改算した設計性動 資源内での数はく ④) 数件性加算により未知性動 調査内での数はく ④) 数件性加算によりまれ た数時間加入の設また 二次時間加算によりまれ の数件性効果になった形もまれ た数時間加入の数はく 小計(①+①+①+①+④) ④) 原子伊建眉原子伊備の声少印時の 数件性効質からのガンマ線	約 66 累に対する期待の 量が最大となる紙 -系を用いて事象者 (a)IF(三期待した い書 (DF=1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ³ 約 1.8×10 ² (約 5.2×10 ³)	有無による比較 の合計) (1) (1) (1) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2	単位: mSv) (ω-0) (1 約4 約6 約6 約6
() 中央制調	合計 ②十③+③+③+③+③+③+③+③・③) 来 2-25-7 DF の効 (板ばく転路 ③) 原子学種屋原子学種内の放 計性物質からのガンマ線に よくロー央制弾曲(下でのなのガンマ線に よくロー央制弾曲(下でのない) 等面ガンマ線による中央制 調査用での設計を数算か のガンマ線による中央制 調査用での設計を数 「」のガンマ線による中央制 調査用での設計を数 「」のガンマ線による中央制 調査用での設計 こと数計1100000000000000000000000000000000000	約 66 累に対する期待の 量が最大となる紙 -系を用いて事象者 (a)IF(に期待しな い番(CIP+1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ³ 約 3.8×10 ³ (約 5.2×10 ³ 約 5.6×10 ³ 約 5.6×10 ³	有無による比較 の合計) 7 日間の実効線量 (b)BF に期件する 場合 (0×10) 約 4.1×10 ⁻⁴ 約 7.0×10 ⁴ 約 7.0×10 ⁴ 約 5.0×10 ⁴ 約 3.2×10 ⁴ 約 3.2×10 ⁴ 約 3.2×10 ⁴ 約 4.5×10 ⁴ 約 4.5×10 ⁴	総(: mSv) (ω) = 00) (1) (1) (1) (1) (1) (1) (1) (1
() 中央制調	合計 ②+③+③+③+④+③+④+③+④・③) 束 2-25-7 DF の効 (板ゴく線) 第二伊格納容器フィルタベン 数式く経路 ③ 原子守健園原子守境内の放 利性物質からのガンマ線に 2-50+火制御室内での放 小型のガンマ線に2-50-火制 調査内での放えて、 ③ 数利性変更にとき中央制 調査内での放えて、 (内容)の放送で、 ③ 数利性変更にとき中央制 調査内での放えて、 小型(1)・外型(2)・分子) の放く、 ③ 数利性変更にとき中央制 調査内での放えて、 小型(1)・中型(2)・分子) の放射性物質からのガンマ線に 2-5,3-28 にまたみ、 2-5,5-28 (内容)の放送で、 小型(2)・28 (力学)を開発してく知道 (内容)の方法の方法の (内容)の放送(2) (内容)の放送(2) (内容)の放送(2) (内容)の放送(2) (内容)の放送(2) (内容)の放送(2) (内容)の方法の一致 (内容)の成式(2) (内容)の放送(2) (内容)の成式(2) (内容) () () () () () () () () () (約 66 累に対する期待の 量が最大となる紙 -系を用いて事象者 (a)IF(に期待しな い番(CIP+1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ³ 約 3.8×10 ³ (約 5.2×10 ³ 約 5.6×10 ³ 約 5.6×10 ³	有無による比較 の合計) 7 (1間の実効機量 (0.)197 に期中する 後合 (0P=10) 約 4.1×10 ⁻⁴ 約 7.0×10 ⁴ 約 5.7×10 ⁴ 約 3.2×10 ⁵ 約 3.2×10 ⁵ 約 4.5×10 ⁷ 約 4.5×10 ⁷	単位:mSv) (ω = 00) (1 (1 約4 約6 (1 約11
() 中央制調	合計 ②十③+④+③+④+③+④+④+④+④ 展 2-25-7 IF の効 (板ばく線 R子伊格納容器フィルタベン 枚ばく経路 ③ 取付を開意すを可構内の放 村付教育からのガンマ線に よら中央制御館へ下の成は 文 文 文 文 取付期間への数付教育からのガンマ線に よる中央制 渡点に正念中央動 選査に工会中央動 選査に工会中央動 選査に工会中央動 選査に工会中央動 選査に工会中央動 選査に工会中央動 選査に工会中央動 選査に工会中央動 選査に工会中央動 プ の オーの抜付教育からのカンマ線 にとるう中央動 プ の ア ア ア マ	約 66 果に対する期待の 量が最大となる原 - 第を用いて事象を (a)IFに期待しな 1) 過 (10 = 1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ¹ 約 3.2×10 ³ (約 5.3×10 ³) 約 1.6×10 ⁻¹ 約 1.6×10 ⁻²	有無による比較 の合計) 7 (間の実効線量 (b)ほどに期中する 働合 (0P+10) 約 4.1×10 ⁴⁴ 約 7.0×10 ⁴⁵ 約 5.0×10 ⁴⁵ 約 5.2×10 ⁴⁵ 約 4.5×10 ⁴⁵ 約 4.5×10 ⁴⁵ 約 1.2×10 ⁴⁴ 約 1.6×10 ⁴⁴ 約 1.6×10 ⁴⁴	単位:mSv) (ω)-(ω) (1) (1) (1) 約4 約6 約6 (1) 約11 (1) (1) (1) (1) (1) (1) (1) (
(民)	合計 ② (数子型・磁・金・低・①・金・①・③) ぼ 2-25-7 IF の効 (数ばく単称) ぼ 2-25-7 IF の効 (数ばく単称) (数ばく単称) 教授をした。 教授をした。 教授をした。 教授をした。 教授をした。 教授をした。 ながられる意見、 など、	約 66 果に対する期待の 量が最大となる原 - 第を用いて事象を (a)IFに期待しな 1) 過 (10 = 1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ¹ 約 3.2×10 ³ (約 5.3×10 ³) 約 1.6×10 ⁻¹ 約 1.6×10 ⁻²	有無による比較 の合計) 7 日間の実効線量 (b)BF に期件する 場合 (0×10) 約 4.1×10 ⁻⁴ 約 7.0×10 ⁴ 約 7.0×10 ⁴ 約 5.0×10 ⁴ 約 3.2×10 ⁴ 約 3.2×10 ⁴ 約 3.2×10 ⁴ 約 4.5×10 ⁴ 約 4.5×10 ⁴	総(: mSv) (ω) = 00) (1) (1) (1) (1) (1) (1) (1) (1
(民)	合計 ②十③+④+③+④+③+④+④+④+④ 展 2-25-7 IF の効 (板ばく線の ネージャーの ネージャー ネージー ネージャー ネージー ネージー ネージャー ネージャー ネージャー ネージャー ネージャー ネージャー ネージャー ネージャー ネージー ネージー ネージャー ネージー ネージー ネージー ネージー ネージー ネージー ネージー ネージー ネ	約 66 累に対する期待の 量が最大となる紙 - 系を用いて事象を (a)10 ⁶ に期待した い番す(DP=1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ¹ 約 1.8×10 ³ (約 1.2×10 ³ 約 5.8×10 ⁹ 約 5.6×10 ³ 約 1.6×10 ⁻² 約 5.7×10 ²	有無による比較 の合計) 7 (間の実効線量 (b)ほどに期中する 働合 (0P+10) 約 4.1×10 ⁴⁴ 約 7.0×10 ⁴⁵ 約 5.0×10 ⁴⁵ 約 5.2×10 ⁴⁵ 約 4.5×10 ⁴⁵ 約 4.5×10 ⁴⁵ 約 1.2×10 ⁴⁴ 約 1.6×10 ⁴⁴ 約 1.6×10 ⁴⁴	単位:mSv) (ω)-(ω) (1) (1) (1) 約4 約6 約6 (1) 約11 (1) (1) (1) (1) (1) (1) (1) (
(民)	会計 ②+③+③+③+④+③+④+③+④+③ ※ 2-25-7 DF の効 ※ 2-25-7 DF の効 ※ 2-25-7 DF の効 ※ 3-25-7 DF の効 ※ 3-25-7 DF の効 ※ 3-25-7 DF のの ※ 3-25-7 DF の ※ 3-25-7 DF 0 ※ 3-25-7 D	約 66 累に対する期待の 量が最大となる紙 - 系を用いて事象を (a)10 ⁶ に期待した い番す(DP=1) 約 4.2×10 ⁻² 約 1.2×10 ² 約 1.1×10 ¹ 約 1.8×10 ³ (約 1.2×10 ³ 約 5.8×10 ⁹ 約 5.6×10 ³ 約 1.6×10 ⁻² 約 5.7×10 ²	府無による比較 の合計) 7 日間の実効線量 (b)BF に期件する 場合 (0+10) 約 4.1×10 ⁴ 約 7.0×10 ⁴ 約 5.0×10 ⁴ 約 5.2×10 ⁴ 約 1.2×10 ⁴ 約 1.2×10 ⁴ 約 1.2×10 ⁴ 約 5.2×10 ⁴	総2: mSy) (ω) = 00) (1) (1) (1) (1) (1) (1) (1) (1
(民)	合計 ②十③+④+③+④+③+④+④+④+④ 展 2-25-7 IF の効 (板ばく線の ネックを発展 ネックを発展 ネックを発展 ネックを発展 ネックを発展 マークを発展 ネックを発展 ネックを発展 ネックを発展 ネック	約 66 果に対する期待の 量が最大となる紙 - 系を用いて事象を (a)IF(:期待しな) 3番 (2×10 ⁻⁴ 約 1, 2×10 ² 約 1, 1×10 ² 約 1, 1×10 ² 約 1, 3×10 ² 約 5, 7×10 ²	府無による比較 の合計) 7 日間の実効勝重 (b)BF に期中する 場合 (0×10) 約 4.1×10 ⁴ 約 5.0×10 ⁴ 約 5.2×10 ⁴ 約 5.2×10 ⁴ 約 5.2×10 ⁴ 約 5.2×10 ⁴ 約 5.2×10 ⁴ 約 5.2×10 ⁴	総2: mSy) 単位: mSy) (ω) = 00) (1) (1) (1) (1) (1) (1) (1) (1
(民) 中央制御室滞在時 入进城時	合計 ②十③+④+③+④+③+④+④+④+④ 展 2-25-7 IF の効 (板ばく線の ネックを発展 ネックを発展 ネックを発展 ネックを発展 ネックを発展 マークを発展 ネックを発展 ネックを発展 ネックを発展 ネック	約 66 果に対する期待の 量が最大となる紙 - 系を用いて事象を (a)IF(:期待しな) 3番 (2×10 ⁻⁴ 約 1, 2×10 ² 約 1, 1×10 ² 約 1, 1×10 ² 約 1, 3×10 ² 約 5, 7×10 ²	有無による比較 の合計) (1) (2) (2) (2) (2) (2) (2) (2) (2) (3) (2) (3) (4) (4) (4) (4) (4) (4) (5) (4) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	単位:mSv) 業 (ω)=00) (1) (1) (1) 約4 約5 (1) 約5 (1) 約5 (1) 約5 (1) 約5 (1) 約5 (1) 約5 (1) 約5 (1) 約5 (1) (1) (1) (1) (1) (1) (1) (1)

	女川原子力発電所2号	炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	5-8 粒子状放射性物質の環境中への				
(代者	循環冷却系を用いて事象を収束する				型式の相違
種グループ	放出放射能量[Bq] (gress 值) (DF=	10.10			・プローアウトバ
	(象初期(0~70分後) ②7日 約7.1×10 ¹³ 約1.2×1				ル閉止装置は、BW
千状放射性物質	約7.1×10"約1.2×1	10 #30.6			の非常用ガス処理
					が機能するように
	事象初期章1における環境中への放				子炉建屋の気密性
(代君	循環冷却系を用いて事象を収束する				保つ目的で、必要
核種グループ	放出放射能量[Bq](DF に期待しない場合	gross 値) DF に期待する場合			応じて設置するこ
 ①無機よう素 	(DF=1)	(DF=10)			が要求されている
 ① 無機よう業 + 有機よう素 	約 5.2×10 ¹⁴	約 5.2×10 ¹⁴			一方、泊 (PWR)
粒子状放射性物質	約7.1×10 ¹³	約7.1×10 ¹²			においては、アニ
比率 (②/①)	約 14%	約 1.4%			ラス空気浄化設備
粒子状放射性物質の	環境への放出量のうち大部分を占める事	象初期の放出量で比較			より放射性物質の
					減を行うが、設備
					成の相違によりつ
					ーアウトパネル間
					装置の要求はなく
					設置もしていない
					め、対象外。

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		学用理由
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	定共理田
		 泊発電所3号炉 1 → 審査ガイド通り ① 評価事象については、「有効性評価で想定する 格納容器破損モードのうち、制御室の運転員の 被ばくの観点から結果が最も厳しくなる事故収 束に成功した事故シーケンス」として、格納容 器破損防止対策に係る有効性評価における雰囲 気圧力・温度による静的負荷のうち、格納容器 過圧の破損モードにおいて想定している、大破 断LOCA 時に ECCS 注入及び格納容器スプレイ注 入に失敗するシーケンスを評価対象としてい る。 ② 運転員はマスクを着用しているとして評価して いる。 	1 b) 審査ガイ ド通り	記載方針の相違 ・とまりも実施のための
	③ 運転員の勤務形態(5直3交替)を考慮して評価しており、実施のための体制を整備している。	③ 運転員の勤務形態(5 直 2.5 交替)を考慮して 評価している。	③ 運転員の勤務形態(5 直 2.5 交替)を考慮して 評価している。	 ・泊も実施のための体(は整備している。 記載方針の相違 ・とまりも実施のため(

i合性 比較表 r.3.0 育子:記録字:記録

実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		差異理由
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	
 ・居住性に係る被ばく評価の標準評価手法 1 居住性に係る被ばく評価の手法及び範囲 〕居住性に係る被ばく評価にあたっては最適評価 手法を適用し、「4.2 居住性に係る被ばく評価の 共通解析条件」を適用する。ただし、保守的な 仮定及び条件の適用を否定するものではない。 	 4.1 → 審査ガイドのとおり ① 最適評価手法を適用し、「4.2 居住性に係る被ばく評価の共通解析条件」に基づいて評価している。 	 4.1 → 審査ガイド通り ①最適評価手法を適用し、「4.2 居住性に係る被ばく評価の共通解析条件」に基づいて評価している。 		
 (したびの味用の通知を日だ)をも少くはない。 (したびの味用の通知を日だ)をしかってはない。 (したびの味用の通知を日だい、適用範囲が適切なモデルを用いる。 (したびの味用の通知を超える場合で検証されたモデルの適用範囲を超える場合には、感度解析結果等を基にその影響を適切に考慮する。 	② 実験等に基づいて検証されたコードやこれまでの許認可で使用したモデルに基づいて評価している。	②実験等に基づいて検証されたコードやこれまでの許認可で使用したモデルに基づいて評価している。	実験等に基づいて検証されたコードやこれまで の許認可で使用したモデルに基づいて評価してい る。	
(1)被ばく経路 原子炉制御室/緊急時制御室/緊急時対策所の 皆住性に係る被ばく評価では、次の被ばく経路に よる被ばく線量を評価する。図1に、原子炉制御 室の居住性に係る被ばく経路を、図2に、緊急時 制御室又は緊急時対策所の居住性に係る被ばく経 路をそれぞれ示す。 ただし、合理的な理由がある場合は、この経路 こよらないことができる。	 4.1(1) → 審査ガイドのとおり 制御室居住性に係る被ばく経路は図1のとお り、①~⑤の経路に対して評価している。 	4.1(1) → 審査ガイド通り 中央制御室の居住性に係る被ばく経路は図1の とおり、①~⑤の経路に対して評価している。	 4.1(1) → 審査ガイド通り 制御室居住性に係る被ばく経路は図1のとおり、①~⑤の経路に対して評価している。 	
)原子炉建屋内の放射性物質からのガンマ線によ る原子炉制御室/緊急時制御室/緊急時対策所 内での被ばく 原子炉建屋(二次格納施設(BWR型原子炉施 設)又は原子炉格納容器及びアニュラス部(PWR 型原子炉施設))内の放射性物質から放射される ガンマ線による原子炉制御室/緊急時制御室/ 緊急時対策所内での被ばく線量を、次の二つの 経路を対象に計算する。	4. 1 (1) ① → 審査ガイドのとおり	4. 1 (1) ① → 審査ガイド通り	4. 1 (1) ① → 審査ガイ ド通り	
 ー 原子炉建屋内の放射性物質からのスカイシャ インガンマ線による外部被ばく 二 原子炉建屋内の放射性物質からの直接ガンマ 線による外部被ばく 	原子炉建屋原子炉棟内の放射性物質からのスカ イシャインガンマ線による中央制御室内での外部 被ばく線量を評価している。 原子炉建屋原子炉棟内の放射性物質からの直接 ガンマ線による中央制御室内での外部被ばく線量 を評価している。	建屋内の放射性物質からのスカイシャインガン マ線による中央制御室内での外部被ばく線量を評価している。 建屋内の放射性物質からの直接ガンマ線による 中央制御室内での外部被ばく線量を評価してい る。	原子炉格納容器及びアニュラス部内の放射性物 質からのスカイシャインガンマ線による中央制御 室内での外部被ばく線量を評価している。 原子炉格納容器及びアニュラス部内の放射性物 質からの直接ガンマ線による中央制御室内での外 部被ばく線量を評価している。	
)大気中へ放出された放射性物質による原子炉制 御室/緊急時制御室/緊急時対策所内での被ば く	4.1(1)② → 審査ガイドのとおり	4.1(1)② → 審査ガイド通り	4.1(1)② → 審査ガイ ド通り	

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

<i>鬲 59 条 連転員か原十炉制御 至にとどまる にのの設</i> 実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		14 PT
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
大気中へ放出された放射性物質から放射され るガンマ線による外部被ばく線量を、次の二つ の経路を対象に計算する。				
 一 放射性雲中の放射性物質からのガンマ線による外部被ばく(クラウドシャイン) 二 地表面に沈着した放射性物質からのガンマ線による外部被ばく(グランドシャイン) 	大気中へ放出された放射性物質からのガンマ線 による中央制御室内での外部被ばくは,事故期間 中の大気中への放射性物質の放出量を基に大気拡 散効果と中央制御室の壁によるガンマ線の遮蔽効 果を踏まえて運転員の外部被ばく(クラウドシャ	大気中へ放出された放射性物質からのガンマ線 による中央制御室内での外部被ばくは,事故期間 中の大気中への放射性物質の放出量を基に大気拡 散効果と中央制御室の壁によるガンマ線の遮蔽効 果を踏まえて運転員の外部被ばく(クラウドシャ	大気中へ放出された放射性物質からのガンマ線 による中央制御室内での外部被ばくは、事故期間 中の大気中への放射性物質の放出量を基に大気拡 散効果と中央制御室の壁によるガンマ線の遮蔽効 果を踏まえて運転員の外部被ばく(クラウドシャ	
	イン)を評価している。 地表面に沈着した放射性物質からのガンマ線に よる外部被ばく(グランドシャイン)についても 考慮して評価している。	イン)を評価している。 地表面に沈着した放射性物質からのガンマ線に よる外部被ばく(グランドシャイン)についても 考慮して評価している。	イン)を評価している。 地表面に沈着した放射性物質からのガンマ線に よる外部被ばく(グランドシャイン)についても 考慮して評価している。	
③ 外気から取り込まれた放射性物質による原子炉 制御室/緊急時制御室/緊急時対策所内での被 ばく 原子炉制御室/緊急時制御室/緊急時対策所	4.1(1)③ → 審査ガイドのとおり	4.1(1)③ → 審査ガイド通り	4.1(1)③ → 審査ガイド通り	
原丁が前御室/ 案急時前御室/ 案急時対象所 内に取り込まれた放射性物質による被ばく線量 を、次の二つの被ばく経路を対象にして計算す る。 なお、原子炉制御室/緊急時制御室/緊急時				
対策所内に取り込まれた放射性物質は、室内に 沈着せずに浮遊しているものと仮定して評価す る。				
一 原子炉制御室/緊急時制御室/緊急時対策所 内へ外気から取り込まれた放射性物質の吸入 摂取による内部被ばく	中央制御室に取り込まれた放射性物質は,中央 制御室に沈着せずに浮遊しているものと仮定して 評価している。	中央制御室に取り込まれた放射性物質は,中央 制御室内に沈着せずに浮遊しているものと仮定し て評価している。	中央制御室に取り込まれた放射性物質は、中央 制御室内に沈着せずに浮遊しているものと仮定し て評価している。	
二 原子炉制御室/緊急時制御室/緊急時対策所 内へ外気から取り込まれた放射性物質からの ガンマ線による外部被ばく	事故期間中に大気中へ放出された放射性物質の 一部は外気から中央制御室内に取り込まれる。中 央制御室内に取り込まれた放射性物質のガンマ線 による外部被ばく及び吸入摂取による内部被ばく の和として実効線量を評価している。	事故期間中に大気中へ放出された放射性物質の 一部は外気から中央制御室内に取り込まれる。中 央制御室内に取り込まれた放射性物質のガンマ線 による外部被ばく及び吸入摂取による内部被ばく の和として実効線量を評価している。	事故期間中に大気中へ放出された放射性物質の 一部は外気から中央制御室内に取り込まれる。中 央制御室内に取り込まれた放射性物質のガンマ線 による外部被ばくおよび吸入摂取による内部被ば くの和として実効線量を評価している。	
④ 原子炉建屋内の放射性物質からのガンマ線による入退域での被ばく 原子炉建屋内の放射性物質から放射されるガンマ線による入退域での被ばく線量を、次の二つの経路を対象に計算する。	4. 1 (1) ④ → 審査ガイドのとおり	4. 1 (1) ④ → 審査ガイド通り	4.1(1)④ → 審査ガイド通り	
一 原子炉建屋内の放射性物質からのスカイシャ インガンマ線による外部被ばく	原子炉建屋原子炉棟内の放射性物質からのスカ イシャインガンマ線による入退域時の外部被ばく 線量を評価している。	建屋内の放射性物質からのスカイシャインガン マ線による入退域時の外部被ばく線量を評価して いる。	原子炉格納容器及びアニュラス部内の放射性物 質からのスカイシャインガンマ線による入退域時 の外部被ばく線量を評価している。	

第59条 運転員が原子炉制御室にとどまるための設 実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
二 原子炉建屋内の放射性物質からの直接ガンマ 線による外部被ばく	原子炉建屋原子炉棟内の放射性物質からの直接 ガンマ線による入退域時の外部被ばく線量を評価 している。	建屋内の放射性物質からの直接ガンマ線による 入退域時の外部被ばく線量を評価している。	原子炉格納容器及びアニュラス部内の放射性物 質からの直接ガンマ線による入退域時の外部被ば く線量を評価している。	
⑤ 大気中へ放出された放射性物質による入退域での被ばく の被ばく 大気中へ放出された放射性物質による被ばく 線量を、次の三つの経路を対象に計算する。	4.1(1)⑤ → 審査ガイドのとおり	4. 1 (1)⑤ → 審査ガイド通り	4. 1 (1) ⑤ → 審査ガイド通り	
 一 放射性雲中の放射性物質からのガンマ線による外部被ばく(クラウドシャイン) 二 地表面に沈着した放射性物質からのガンマ線による外部被ばく(グランドシャイン) 三 放射性物質の吸入摂取による内部被ばく 	大気中へ放出された放射性物質からのガンマ線 による入退域時の被ばくは、中央制御室の壁によ るガンマ線の遮蔽効果を期待しないこと以外は 「4.1(1)②大気中へ放出された放射性物質による 中央制御室内での被ばく」及び「4.1(1)③外気か ら取り込まれた放射性物質による中央制御室内で の被ばく」と同様な手法で、放射性物質からのガ ンマ線による外部被ばく及び吸入摂取による内部 被ばくの和として実効線量を評価している。 地表面に沈着した放射性物質からのガンマ線に ついても考慮して評価している。	大気中へ放出された放射性物質からのガンマ線 による入退域時の被ばくは、中央制御室の壁によ るガンマ線の遮蔽効果を期待しないこと以外は 「4.1(1)②大気中へ放出された放射性物質による 中央制御室内での被ばく」及び「4.1(1)③外気か ら取り込まれた放射性物質による中央制御室内で の被ばく」と同様な手法で、放射性物質からのガ ンマ線による外部被ばく及び吸入摂取による内部 被ばくの和として実効線量を評価している。地表 面に沈着した放射性物質からのガンマ線について も考慮して評価している。	大気中へ放出された放射性物質からのガンマ線 による入退域時の被ばくは、中央制御室の壁によ るガンマ線の遮蔽効果を期待しないこと以外は 「4.1(1)②大気中へ放出された放射性物質による 中央制御室内での被ばく」と同様な手法で、放射 性物質からのガンマ線による外部被ばくおよび吸 入摂取による内部被ばくの和として実効線量を評 価している。地表面に沈着した放射性物質からの ガンマ線についても考慮して評価している。	
 (2)評価の手順 原子炉制御室/緊急時制御室/緊急時対策所 の居住性に係る被ばく評価の手順を図3に示 す。 a. 原子炉制御室/緊急時制御室/緊急時対策 所の居住性に係る被ばく評価に用いるソース タームを設定する。 ・原子炉制御室の居住性に係る被ばく評価で は、格納容器破損防止対策の有効性評価(参 2)で想定する格納容器破損モードのうち、原 子炉制御室の運転員又は対策要員の被ばくの 観点から結果が最も厳しくなる事故収束に成 功した事故シーケンス(この場合、格納容器 破損防止対策が有効に働くため、格納容器は 健全である)のソースターム解析を基に、大 気中への放射性物質放出量及び原子炉施設内 の放射性物質存在量分布を設定する。 ・緊急時制御室又は緊急時対策所の居住性に係 る被ばく評価では、放射性物質の大気中への 放出割合が東京電力株式会社福島第一原子力 発電所事故と同等と仮定した事故に対して、 	4.1(2) → 審査ガイドのとおり 中央制御室の居住性に係る被ばく評価は図3の 手順に基づいて評価している。 4.1(2) a. → 審査ガイドのとおり 中央制御室の居住性に係る被ばく評価における 放射性物質の大気中への放出量は、「有効性評価で 想定する格納容器破損モードのうち、制御室の運 転員の被ばくの観点から結果が最も厳しくなる事 故収束に成功した事故シーケンス」として、格納 容器破損防止対策に係る有効性における雰囲気圧 力・温度による静的負荷のうち、格納容器過圧の 破損モードにおいて想定している、大破断 LOCA+ IPCS 失敗+低圧 ECCS 失敗+全交流動力電源喪失 する事故シーケンスを選定した。当該事故シーケ ンスにおいては第一に代替循環冷却系により事象 を収束するが、被ばく評価においては、代替循環 冷却に失敗し、原子炉格納容器フィルタベント系 を用いた格納容器ベントを実施する場合について も想定した。原子炉格納容器から原子炉格納容器 フィルタベント系への流入量、及び、原子炉格納 容器から原子炉建屋原子炉棟への漏えい量を、 MAP 解析及び NUREG-1465 の知見を用いて評価し	 4.1(2) → 審査ガイド通り 中央制御室居住性に係る被ばくは図3の手順に 基づいて評価している。 4.1(2) a. → 審査ガイド通り 中央制御室居住性に係る被ばく評価における放 射性物質の大気中への放出量は,「有効性評価で 想定する格納容器破損モードのうち,制御室の運 転員の被ばくの観点から結果が最も厳しくなる事 故収束に成功した事故シーケンス」として,格納 容器破損防止対策に係る有効性評価における雰囲 気圧力・温度による静的負荷のうち,格納容器過 圧の破損モードにおいて想定している,大破断 LOCA 時に ECCS 注入及び格納容器スプレイ注入に 失敗するシーケンスを解析することにより設定し ている。また,評価事象が炉心損傷後の事象であ ることを踏まえ,原子炉格納容器内に放出された 放射性物質は NUREG-1465 の被覆管破損放出~晩期 圧力容器内放出までの原子炉格納容器内への放出 割合を基に設定して評価している。 	 4.1(2) → 審査ガイド通り 中央制御室居住性に係る被ばくは図3の手順に 基づいて評価している。 4.1(2) a. → 審査ガイド通り 中央制御室居住性に係る被ばく評価における放 射性物質の大気中への放出量は、「有効性評価で 想定する格納容器破損モードのうち、制御室の運 転員の被ばくの観点から結果が最も厳しくなる事 故収束に成功した事故シーケンス」として、格納 容器破損防止対策に係る有効性評価における雰囲 気圧力・温度による静的負荷のうち、格納容器過 圧の破損モードにおいて想定している、大破断 LOCA 時に ECCS 注入および格納容器スプレイ注入 に失敗するシーケンスを解析することにより設定 している。また、評価事象が炉心損傷後の事象で あることを踏まえ、原子炉格納容器内に放出され た放射性物質は NUREG-1465 の被覆管破損放出〜晩 期圧力容器内放出までの原子炉格納容器内への放 出割合を基に設定して評価している。 	型式の相違

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

実用発電用原子炉に係る重大事故時の制御室及び緊急時対 中央制御室居住性に係る被ばく評価の適合状況 差異理由 策所の居住性に係る被ばく評価に関する審査ガイド 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 蔵量から大気中への放射性物質放出量を計算 考慮されないため、粒子状よう素、無機よう素及 び有機よう素については,大気中への放出量評価 する。 また、放射性物質の原子炉格納容器内への 条件を設定し、放出量を評価した。 放出割合及び炉心内蔵量から原子炉施設内の 放射性物質存在量分布を設定する。 b. 原子炉施設敷地内の年間の実気象データを用 4.1 (2) b. → 審査ガイドのとおり 4.1(2)b. → 審査ガイド通り 4.1(2)b. → 審査ガイド通り いて、大気拡散を計算して相対濃度及び相対 被ばく評価に用いる相対濃度と相対線量は、大 被ばく評価に用いる相対濃度及び相対線量は. 被ばく評価に用いる相対濃度と相対線量は、大 線量を計算する。 気拡散の評価に従い実効放出継続時間を基に計算 大気拡散の評価に従い実効放出継続時間を基に計 気拡散の評価に従い実効放出継続時間を基に計算 した値を年間について小さい方から順に並べた累 算した値を年間について小さい方から順に並べた した値を年間について小さい方から順に並べた累 積出現頻度 97%に当たる値を用いている。評価にお┃累積出現頻度 97 %に当たる値を用いている。評価 積出現頻度 97%に当たる値を用いている。評価に いては、2012 年1 月1 日から 2012 年12 月 31 においては、1997 年1 月から 1997 年 12 月の1 おいては、2010 年1 月~2010 年12 月の1 年間 個別解析による相違 日の1年間における気象データを使用している。 年間における気象データを使用している。 における気象データを使用している。 c. 原子炉施設内の放射性物質存在量分布から原 4.1(2) c. → 審査ガイドのとおり 4.1 (2) c. → 審査ガイド通り 4.1 (2) c. → 審査ガイド通り 子炉建屋内の線源強度を計算する。 原子炉施設内の放射性物質存在量分布を考慮 原子炉施設内の放射性物質存在量分布を考慮 原子炉施設内の放射性物質存在量分布を考慮 し、スカイシャインガンマ線及び直接ガンマ線に し、スカイシャインガンマ線及び直接ガンマ線に し、スカイシャインガンマ線及び直接ガンマ線に よる外部被ばく線量を評価するために、原子炉建 よる外部被ばくの実効線量を評価するために、建 よる外部被ばく線量を評価するために、原子炉格 屋原子炉棟内の線源強度を計算している。 屋内の線源強度を計算している。 納容器及びアニュラス部内の線源強度を計算して いる。 d. 原子炉制御室/緊急時制御室/緊急時対策所 4.1(2) d. → 審査ガイドのとおり 4.1 (2) d. → 審査ガイド通り 4.1(2) d. → 審査ガイド通り 内での運転員又は対策要員の被ばく線量を計 篁する。 上記 c の結果を用いて、原子炉建屋内の放射 上記 c の結果を用いて、原子炉格納容器内の放 前項 c の結果を用いて、建屋内の放射性物質か 前項 c の結果を用いて、原子炉格納容器及びア 性物質からのガンマ線(スカイシャインガン 射性物質からのガンマ線による被ばく線量を計算 らのガンマ線による被ばく線量を計算している。 ニュラス部内の放射性物質からのガンマ線による マ線、直接ガンマ線)による被ばく線量を計 している。 被ばく線量を計算している。 算する。 上記a及びbの結果を用いて、大気中へ放出 上記 a 及び b の結果を用いて、大気中へ放出さ 前項 a 及び b の結果を用いて、大気中へ放出さ 前項 a 及び b の結果を用いて、大気中へ放出さ された放射性物質及び地表面に沈着した放射 れた放射性物質及び地表面に沈着した放射性物質 れた放射性物質及び地表面に沈着した放射性物質 れた放射性物質及び地表面に沈着した放射性物質 性物質のガンマ線による外部被ばく線量を計 のガンマ線による外部被ばく線量を計算してい のガンマ線による外部被ばく線量を計算してい のガンマ線による外部被ばく線量を計算してい 簋する。 る。 る。 る。 上記 a 及び b の結果を用いて、原子炉制御室 /緊急時制御室/緊急時対策所内に外気から 上記 a 及び b の結果を用いて,中央制御室内に 前項 a 及び b の結果を用いて,中央制御室内に 前項 a 及び b の結果を用いて、中央制御室内に 取り込まれた放射性物質による被ばく線量 外気から取り込まれた放射性物質による被ばく線 外気から取り込まれた放射性物質による被ばく線 外気から取り込まれた放射性物質による被ばく線 (ガンマ線による外部被ばく及び吸入摂取に 量(ガンマ線による外部被ばく及び吸入摂取によ 量(ガンマ線による外部被ばく及び吸入摂取によ 量(ガンマ線による外部被ばく及び吸入摂取によ る内部被ばく)を計算している。 る内部被ばく)を計算している。 る内部被ばく)を計算している。 よる内部被ばく)を計算する。 e. 上記 d で計算した線量の合計値が、判断基準 4.1(2) e. → 審査ガイドのとおり 4.1(2)e. → 審査ガイド通り 4.1 (2) e. → 審査ガイド通り を満たしているかどうかを確認する。 上記 d で計算した線量の合計値が、判断基準 前項 d で計算した線量の合計値が、「判断基準 前項d で計算した線量の合計値が、「判断基準 (運転員の実効線量が7 日間で 100mSv を超えな は,運転員の実効線量が7 日間で 100 mSv を超え は、運転員の実効線量が7日間で100mSvを超え いこと)を満足していることを確認している。 ないこと」を満足していることを確認している。 ないこと」を満足していることを確認している。

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		At III and I
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
 2 居住性に係る被ばく評価の共通解析条件 (1) 沈着・除去等 				
 a. 原子炉制御室/緊急時制御室/緊急時対策所 の非常用換気空調設備フィルタ効率 ヨウ素類及びエアロゾルのフィルタ効率は、 使用条件での設計値を基に設定する。 なお、フィルタ効率の設定に際し、ヨウ素類の性状を適切に考慮する。 	ルタ除去効率は90%,高性能エアフィルタ除去効率は99.9%と仮定して評価している。	4.2(1) a. → 審査ガイド通り 中央制御室非常用循環設備のフィルタ除去効率 は、使用条件での設計上、期待できる値として、 よう素フィルタ除去効率は95%、微粒子フィルタ 除去効率は99%と仮定して評価している。運転員 のマスク着用(マスクの除染係数:50)を考慮し ている。	タ除去効率は99%と仮定して評価している。運 転員のマスク着用(マスクの除染係数:50)を 考慮している。	個別解析による相違 記載方針の相違 ・泊ではフィルタ条件に 合わせ、マスクについて
 b. 空気流入率 既設の場合では、空気流入率は、空気流入率 測定試験結果を基に設定する。 	4.2(1)b. → 審査ガイドのとおり 中央制御室待避所を加圧している間は、待避所 への空気の流入は考慮しない。	 4.2(1)b. → 審査ガイド通り 	 4.2(1)b. → 審査ガイド通り 	記載。 設計条件の相違
新設の場合では、空気流入率は、設計値を基 に設定する。(なお、原子炉制御室/緊急時制御 室/緊急時対策所設置後、設定値の妥当性を空 気流入率測定試験によって確認する。)	空気流入率は、1,2 号炉の中央制御室について 空気流入率試験を実施した結果、空気流入量換算 で2,940m3/h であった。仮に2 号炉中央制御室 (空間容積:8,900m3)のみへの空気流入量を 2,940m3/h と仮定すると、換気率換算で0.33 回/h となるため、被ばく評価においては保守的に1.0 回/h として設定した。	空気流入率は,空気流入率測定試験結果を基に 余裕を見込んだ値(0.5 回/h)と設定している。	空気流入率は、空気流入率測定試験結果を基に 余裕を見込んだ値(0.5回/h)と設定している。	個別解析による相違 ・空気流入率測定試験結 果を元に保守的に設定す ることは相違ないが、泊 3号機では、中央制御室 は単独で存在する。
 (2)大気拡散 a.放射性物質の大気拡散 放射性物質の空気中濃度は、放出源高さ及び 気象条件に応じて、空間濃度分布が水平方向 及び鉛直方向ともに正規分布になると仮定し たガウスプルームモデルを適用して計算す る。 	4.2(2)a. → 審査ガイドのとおり 放射性物質の空気中濃度は、ガウスプルームモ デルを適用して計算している。	 4.2(2)a. → 審査ガイド通り 放射性物質の空気中濃度は、ガウスプルームモ デルを適用して計算している。 	4.2(2)a.→ 審査ガイド通り 放射性物質の空気中濃度は、ガウスプルームモ デルを適用して計算している。	
 なお、三次元拡散シミュレーションモデル を用いてもよい。 風向、風速、大気安定度及び降雨の観測項目 を、現地において少なくとも1年間観測して 得られた気象資料を大気拡散式に用いる。 ガウスプルームモデルを適用して計算する場 合には、水平及び垂直方向の拡散パラメータ は、風下距離及び大気安定度に応じて、気象 指針(参3)における相関式を用いて計算す る。 原子炉制御室/緊急時制御室/緊急時対策所 の居住性評価で特徴的な放出点から近距離の 建屋の影響を受ける場合には、建屋による巻 き込み現象を考慮した大気拡散による拡散パ ラメータを用いる。 原子炉建屋の建屋後流での巻き込みが生じる 場合の条件については、放出点と巻き込みが 	女川発電所内で観測して得られた2012年1月1 日から2012年12月31日の1年間の気象資料を 大気拡散式に用いている。また,建屋影響を受け る大気拡散評価を行うため保守的に地上風(地上 約10m)の気象データを使用している。 水平及び垂直方向の拡散パラメータは、風下距 離及び大気安定度に応じて,気象指針における相 関式を用いて計算している。 放出点(原子炉建屋ブローアウトパネル及び原 子炉格納容器フィルタベント系排気管)から近距 離の建屋(原子炉建屋)の影響を受けるため、建 屋による巻き込みを考慮し、建屋の影響がある場 合の拡散パラメータを用いている。	泊発電所内で観測して得られた1997 年1月1 日から1997 年12月31日の1年間の気象資料を 大気拡散式に用いている。また、建屋影響を受け る大気拡散評価を実施している。 水平及び垂直方向の拡散パラメータは、風下距 離及び大気安定度に応じて、気象指針における相 関式を用いて計算している。 放出点(排気筒)から近距離の建屋(原子炉格 納容器)の影響を受けるため、建屋による巻き込 みを考慮し、建屋の影響がある場合の拡散パラメ ータを用いている。	大飯発電所内で観測して得られた2010年1月1 日から2010年12月31日の1年間の気象資料を 大気拡散式に用いている。また、建屋影響を受け る大気拡散評価を行うため保守的に地上風(地上約 10m)の気象データを使用している。 水平及び垂直方向の拡散パラメータは、風下距 離及び大気安定度に応じて、気象指針における相 関式を用いて計算している。 放出点(排気筒)から近距離の建屋(原子炉格納容 器)の影響を受けるため、建屋による巻き込みを考 慮し、建屋の影響がある場合の拡散パラメータを 用いている。	個別解析による相違 記載方針の相違 ・泊でも保守的に地上風 の気象データを用いてい るが、記載は行っていな い。 型式の相違

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

用発電用原子炉に係る重大事故時の制御室及び緊急時対中央制御室居住性に係る被ばく評価の適合状況				Ale III and I
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
て、次に示す条件すべてに該当した場合、放 出点から放出された放射性物質は建屋の風下 側で巻き込みの影響を受け拡散し、評価点に 到達するものとする。	ー〜三のすべての条件に該当するため,建屋に よる巻き込みを考慮して評価している。	ー〜三のすべての条件に該当するため,建屋に よる巻き込みを考慮して評価している。	ー〜三のすべての条件に該当するため、建屋に よる巻き込みを考慮して評価している。	
ー 放出点の高さが建屋の高さの2.5 倍に満たな い場合	放出点(原子炉建屋ブローアウトパネル及び原 子炉格納容器フィルタベント系排気管)と建屋の 高さがほぼ同じであるため、建屋高さの2.5 倍に	放出点(<mark>排気筒)は建屋の高さがほぼ同じであ</mark> るため, 2.5 倍に満たない。	放出点(排気筒)と建屋の高さがほぼ同じであ るため、2.5 倍に満たない。	型式の相違
二 放出点と評価点を結んだ直線と平行で放出点 を風下とした風向 n について、放出点の位置 が風向 n と建屋の投影形状に応じて定まる一 定の範囲(図4の領域 An)の中にある場合	満たない。 放出点(原子炉建屋ブローアウトパネル及び原 子炉格納容器フィルタベント系排気管)の位置 は,図4の領域 An の中にある。	放出点(<mark>排気筒</mark>)の位置は, 図4 の領域 An の 中にある。	放出点(排気筒)の位置は、図4の領域Anの中 にある。	型式の相違
三 評価点が、巻き込みを生じる建屋の風下側に ある場合	評価点(中央制御室等)は,巻き込みを生じる 建屋(<mark>原子炉建屋</mark>)の風下にある。	評価点(中央制御室等)は,巻き込みを生じる 建屋(<mark>原子炉格納容器</mark>)の風下側にある。	評価点(中央制御室等)は、巻き込みを生じる 建屋(原子炉格納容器)の風下側にある。	型式の相違
上記の三つの条件のうちの一つでも該当しな い場合には、建屋の影響はないものとして大気 拡散評価を行うものとする(参 4)。				
 原子炉制御室/緊急時制御室/緊急時対策所の居住性に係る被ばく評価では、建屋の風下後流側での広範囲に及ぶ乱流混合域が顕著であることから、放射性物質濃度を計算する当該着目方位としては、放出源と評価点とを結ぶラインが含まれる1方位のみを対象とするのではなく、図5に示すように、建屋の後流側の拡がりの影響が評価点に及ぶ可能性のあった響います。 	建屋による巻き込みを考慮し,図5に示すよう に,建屋の後流側の拡がりの影響が評価点に及ぶ 可能性のある複数の方位を考慮している。	建屋による巻き込みを考慮し,図5に示すよう に、建屋の後流側の拡がりの影響が評価点に及ぶ 可能性のある複数の方位(5方位)を対象として いる。	建屋による巻き込みを考慮し、図5に示すよう に、建屋の後流側の拡がりの影響が評価点に及ぶ 可能性のある複数の方位(3号炉事故時、4号炉 事故時ともに5方位)を対象としている。	記載方針の相違
る複数の方位を対象とする。 ・放射性物質の大気拡散の詳細は、「原子力発電 所中央制御室の居住性に係る被ばく評価手法 について(内規)」(参1)による。	放射性物質の大気拡散については,「原子力発電 所中央制御室の居住性に係る被ばく評価手法につ いて(内規)に基づいて評価している。	放射性物質の大気拡散については, 「原子力発 電所中央制御室の居住性に係る被ばく評価手法に ついて(内規)」に基づいて評価している。	放射性物質の大気拡散については、「原子力発 電所中央制御室の居住性に係る被ばく評価手法に ついて(内規)」に基づいて評価している。	
b. 建屋による巻き込みの評価条件 ・巻き込みを生じる代表建屋	4.2(2)b. → 審査ガイドのとおり	4.2(2)b. → 審査ガイド通り	4.2(2)b.→ 審査ガイド通り	
 原子炉建屋の近辺では、隣接する複数の建屋の風下側で広く巻き込みによる拡散が生じているものとする。 	建屋の巻き込みによる拡散を考慮している。	建屋巻き込みによる拡散を考慮している。	建屋巻き込みによる拡散を考慮している。	
2)巻き込みを生じる建屋として、原子炉格納容器、原子炉建屋、原子炉補助建屋、タービン 建屋、コントロール建屋及び燃料取り扱い建 屋等、原則として放出源の近隣に存在するす べての建屋が対象となるが、巻き込みの影響	放出源(原子炉建屋ブローアウトパネル及び原 子炉格納容器フィルタベント系排気管)から最も 近く,巻き込みの影響が最も大きい建屋として原 子炉建屋を代表建屋としている。	放出源(<mark>排気筒</mark>)から最も近く,巻き込みの影 響が最も大きい建屋として原子炉格納容器を代表 建屋としている。	放出源(排気筒)から最も近く、巻き込みの影響 が最も大きい建屋として原子炉格納容器を代表建 屋としている。	型式の相違

実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		at III and I
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
が最も大きいと考えられる一つの建屋を代表				
建屋とすることは、保守的な結果を与える。				
・放射性物質濃度の評価点				
1) 原子炉制御室/緊急時制御室/緊急時対策所				
が属する建屋の代表面の選定				
原子炉制御室/緊急時制御室/緊急時対策				
所内には、次の i)又は ii)によって、原子炉制				
御室/緊急時制御室/緊急時対策所が属する				
建屋の表面から放射性物質が侵入するとす				
る。				
i)事故時に外気取入を行う場合は、主に給気口	事故時に外気を取入れる運転としているため,	事故時に外気の取入れを遮断するため,室内へ	事故時に外気の取入れを遮断するため、室内へ	設計方針の相違
を介しての外気取入及び室内への直接流入	給気口を介しての外気取入及び室内への直接流入	直接流入するとして評価している。	直接流入するとして評価している。	
	として評価している。		Party Mark 1997	
ii)事故時に外気の取入れを遮断する場合は、				
室内への直接流入				
2) 建屋による巻き込みの影響が生じる場合、原	評価期間中は給気口から外気を取入れることを	評価期間中は外気を遮断することを前提として	評価期間中は外気を遮断することを前提として	設計方針の相違
子炉制御室/緊急時制御室/緊急時対策所が	前提としているため、給気口が設置されている中	いるため、中央制御室が属する建屋の屋上面を選	いるため、中央制御室が属する建屋の屋上面を選	
属する建屋の近辺ではほぼ全般にわたり、代	央制御室が属する建屋の表面を選定している。具	定するが,具体的には,保守的に放出点と同じ高	定するが、具体的には、保守的に放出点と同じ高	
表建屋による巻き込みによる拡散の効果が及	体的には、保守的に放出点と同じ高さにおける濃	さにおける濃度を評価している。	さにおける濃度を評価している。	
んでいると考えられる。	度を評価している。			
このため、原子炉制御室/緊急時制御室/	また、クラウドシャインの評価には、室内への			記載方針の相違
緊急時対策所換気空調設備の非常時の運転モ	取り込みではないため,中央制御室が属する建屋			・泊はクラウドシャイン
ードに応じて、次の i) 又は ii) によって、原	の屋上面を選定している。具体的には、保守的に			も含め前段落で建屋の屋
子炉制御室/緊急時制御室/緊急時対策所が	放出点と同じ高さにおける濃度を評価している。			上面を選定している旨を
属する建屋の表面の濃度を計算する。				記載しているため、実質
				的な相違なし。
i)評価期間中も給気口から外気を取入れること				
を前提とする場合は、給気口が設置されてい				
る原子炉制御室/緊急時制御室/緊急時対策				
所が属する建屋の表面とする。				
ii)評価期間中は外気を遮断することを前提と				
する場合は、原子炉制御室/緊急時制御室/				
緊急時対策所が属する建屋の各表面(屋上面				
又は側面)のうちの代表面(代表評価面)を				
選定する。				
3)代表面における評価点				
i)建屋の巻き込みの影響を受ける場合には、原	屋上面を代表面としており、評価点は中央制御	屋上面を代表としており、評価点は中央制御室	屋上面を代表としており、評価点は中央制御室	
子炉制御室/緊急時制御室/緊急時対策所の	室中心としている。	中心としている。	中心としている。	
属する建屋表面での濃度は風下距離の依存性				

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 59 米 運転員が原子が前御室にここよるにのの設 実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
は小さくほぼ一様と考えられるので、評価点 は厳密に定める必要はない。 屋上面を代表とする場合、例えば原子炉制 御室/緊急時制御室/緊急時対策所の中心点 を評価点とするのは妥当である。	中央制御室が属する建屋の屋上面を選定する が,具体的には,保守的に放出点と同じ高さにお ける濃度を評価している。	中央制御室が属する建屋の屋上面を選定する が,具体的には,保守的に放出点と同じ高さにお ける濃度を評価している。	中央制御室が属する建屋の屋上面を選定する が、具体的には、保守的に放出点と同じ高さにお ける濃度を評価している。	
時対策所が屋上面から離れている場合は、原 子炉制御室/緊急時制御室/緊急時対策所が 属する建屋の側面を代表評価面として、それ に対応する高さでの濃度を対で適用すること も適切である。				
iii) 屋上面を代表面とする場合は、評価点として原子炉制御室/緊急時制御室/緊急時制御室/緊急時対策所の中心点を選定し、対応する風下距離から拡散パラメータを算出してもよい。またσy=0及びσz=0として、σy0、σz0の値を適用してもよい。	屋上面を代表としており,評価点は中央制御室 中心とし,保守的に放出点と評価点とが同じ高さ として,その間の水平直線距離に基づき,濃度評 価の拡散パラメータを算出している。	屋上面を代表としており,評価点は中央制御室 中心とし,保守的に放出点と評価点とが同じ高さ として,その間の水平直線距離に基づき,濃度評 価の拡散パラメータを算出している。	屋上面を代表としており、評価点は中央制御室 中心とし、保守的に放出点と評価点とが同じ高さ として、その間の水平直線距離に基づき、濃度評 価の拡散パラメータを算出している。	
 着目方位 1)原子炉制御室/緊急時制御室/緊急時対策所 の被ばく評価の計算では、代表建屋の風下後 流側での広範囲に及ぶ乱流混合域が顕著であ ることから、放射性物質濃度を計算する当該 着目方位としては、放出源と評価点とを結ぶ ラインが含まれる1方位のみを対象とするの ではなく、図5に示すように、代表建屋の後 流側の拡がりの影響が評価点に及ぶ可能性の ある複数の方位を対象とする。 評価対象とする方位は、放出された放射性 物質が建屋の影響を受けて拡散すること及び 建屋の影響を受けて拡散された放射性物質が 評価点に届くことの両方に該当する方位とす る。 具体的には、全16方位について以下の三つ の条件に該当する方位を評価対象とする。 	建屋による巻き込みを考慮し、i)~iii)の条件に該当する方位を選定し、建屋の後流側の拡がりの影響が評価点に及ぶ可能性のある複数の方位を対象としている。 建屋による巻き込みを考慮し、「原子力発電所中央制御室の居住性に係る被ばく評価手法について(内規)」に基づき複数方位を対象として評価している。	建屋による巻き込みを考慮し, i) ~ iii)の条 件に該当する方位を選定し,建屋の後流側の拡が りの影響が評価点に及ぶ可能性のある複数の方位 (5 方位)を対象としている。	建屋による巻き込みを考慮し、i) ~iii)の条 件に該当する方位を選定し、建屋の後流側の拡が りの影響が評価点に及ぶ可能性のある複数の方位 (3号炉事故時、4号炉事故時ともに5方位)を 対象としている。	記載方針の相違 記載方針の相違 ・全段落でも複数方位を 対象とすることを記載し ており、再度の記載は行 っていない。
i)放出点が評価点の風上にあること	放出点が評価点の風上にある方位を対象として いる。	放出点が評価点の風上にある方位を対象として いる。	放出点が評価点の風上にある方位を対象として いる。	

実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		<u>به 10 معر</u>
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
ii) 放出点から放出された放射性物質が、建屋	風向の方位m1 の選定には,図6 に示す方法を	放出点は建屋に近接しているため、放出点が評	放出点は建屋に近接しているため、放出点が評	個別解析による相違
の風下側に巻き込まれるような範囲に、評価	用いて選定している。	価点の風上となる180° を対象としている。	価点の風上となる180°を対象としている。	Charles to the card records
点が存在すること。この条件に該当する風向				
の方位m1 の選定には、図6 のような方法を				
用いることができる。図6の対象となる二つ				
の風向の方位の範囲m1A、m1B のうち、放出				
点が評価点の風上となるどちらか一方の範囲				
が評価の対象となる。放出点が建屋に接近				
し、0.5Lの拡散領域(図6のハッチング部分)				
の内部にある場合は、風向の方位m1 は放出				
点が評価点の風上となる180°が対象となる。				
iii)建屋の風下側で巻き込まれた大気が評価点				
に到達すること。この条件に該当する風向の				
方位m2の選定には、図7 に示す方法を用い				
ることができる。評価点が建屋に接近し、0.5				
Lの拡散領域(図7 のハッチング部分)の内部				
にある場合は、風向の方位m2は放出点が評				
価点の風上となる180°が対象となる。				
図6及び図7は、断面が円筒形状の建屋を	図 7 に示す方法により、建屋の後流側の拡がり	図7 に示す方法により、建屋の後流側の拡がり	図7に示す方法により、建屋の後流側の拡がり	
例として示しているが、断面形状が矩形の建屋	の影響が評価点に及ぶ可能性のある複数の方位を	の影響が評価点に及ぶ可能性のある複数の方位(5	の影響が評価点に及ぶ可能性のある複数の方位	記載方針の相違
についても、同じ要領で評価対象の方位を決定	評価方位として選定している。	方位)を評価方位として選定している。	(3号炉事故時、4号炉事故時ともに5方位)を	
することができる。			評価方位として選定としている。	
建屋の影響がある場合の評価対象方位選定手			L D PRES	
順を、図8に示す。				
2) 具体的には、図9のとおり、原子炉制御室/	「着目方位 1)」の方法により、評価対象の方	「着目方位1)」の方法により、評価対象の方位	「着目方位1)」の方法により、評価対象の方位	
2) 具体的には、図9 のとおり、原子炉制御室/ 緊急時制御室/緊急時対策所が属する建屋表	「有日万位 1)」の方法により,詳価対象の方 位を選定している。	「有日万位1)」の方法により、評価対象の方位 を選定している。	「有日万位」)」の方伝により、許価対象の万位 を選定している。	
☆ 忌 時 制 仰 至 / 索 忌 時 対 束 所 か 属 り る 運 産 衣 面 に お い て 定 め た 評 価 点 か ら 、 原 子 炉 施 設 の	位を選定している。	を選定している。	を選定している。	
間においてために評価点から、原子が施設の 代表建屋の水平断面を見込む範囲にあるすべ				
ての方位を定める。				
その万位を定める。 幾何学的に建屋群を見込む範囲に対して、				
愛何子的に建産群を見込む範囲に対して、 気象評価上の方位とのずれによって、評価す				
ス家計画上の方位との970によって、計画9 べき方位の数が増加することが考えられる				
が、この場合、幾何学的な見込み範囲に相当				
か、この場合、幾何子的な兄匹み範囲に相当 する適切な見込み方位の設定を行ってもよ				
りる週90な元込み力12000000000000000000000000000000000000				
▼ ´o				
・ 建屋投影面積	原子炉建屋の垂直な投影面積を大気拡散式の入	原子炉格納容器の垂直な投影面積を大気拡散式	原子炉格納容器の垂直な投影面積を大気拡散式	
 1) 図 10 に示すとおり、風向に垂直な代表建屋 		の入力としている。	の入力としている。	
の投影面積を求め、放射性物質の濃度を求め				
るために大気拡散式の入力とする。				
	1			

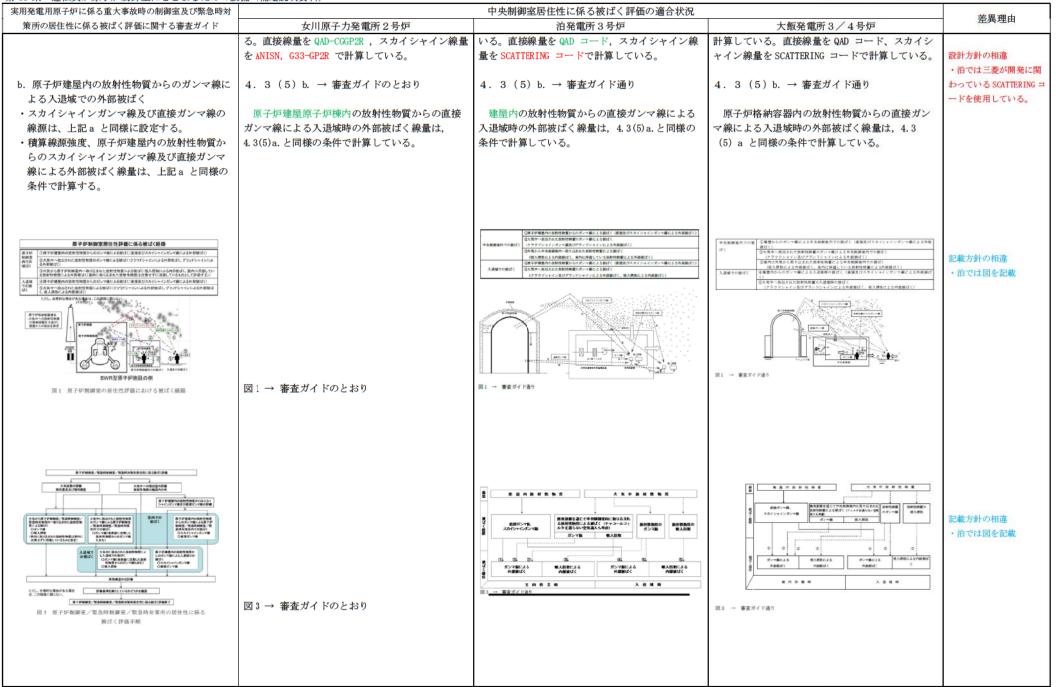
実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		1 mm 101 abr
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
2) 建屋の影響がある場合の多くは複数の風向を 対象に計算する必要があるので、風向の方位 ごとに垂直な投影面積を求める。ただし、対 象となる複数の方位の投影面積の中で、最小 面積を、すべての方位の計算の入力として共 通に適用することは、合理的であり保守的で ある。	原子炉建屋の最小投影面積を用いている。	すべての方位について,原子炉格納容器の最小 投影面積を用いている。	すべての方位について、原子炉格納容器の最小 投影面積を用いている。	
3)風下側の地表面から上側の投影面積を求め大 気拡散式の入力とする。方位によって風下側 の地表面の高さが異なる場合は、方位ごとに 地表面高さから上側の面積を求める。また、 方位によって、代表建屋とは別の建屋が重な っている場合でも、原則地表面から上側の代 表建屋の投影面積を用いる。	原子炉建屋の地表面から上面の投影面積を用い ている。	原子炉格納容器の地表面からの投影面積を用い ている。	原子炉格納容器の地表面からの投影面積を用い ている。	
c.相対濃度及び相対線量	4.2(2)c. → 審査ガイドの趣旨に基づいて 評価	4.2 (2) c. → 審査ガイド通り	4. 2 (2) c.→ 審査ガイド通り	
 相対濃度は、短時間放出又は長時間放出に応じて、毎時刻の気象項目と実効的な放出継続時間を基に評価点ごとに計算する。 相対線量は、放射性物質の空間濃度分布を算出し、これをガンマ線量計算モデルに適用して評価点ごとに計算する。 評価点の相対濃度又は相対線量は、毎時刻の相対濃度又は相対線量を年間について小さい方から累積した場合、その累積出現頻度が97%に当たる値とする。 相対濃度及び相対線量の詳細は、「原子力発電所中央制御室の居住性に係る被ばく評価手法について(内規)」(参1)による。 他表面への沈着放射性物質の地表面への沈着評価では、地表面への乾性沈着及び降雨による湿性沈着を考慮して地表面沈着濃度を計算する。 	相対濃度は、毎時刻の気象項目(風向,風速, 大気安定度)及び実効放出継続時間を基に、短時 間放出の式を適用し、評価している。 相対線量は、放射性物質の空間濃度分布を算出 し、これをガンマ線量計算モデルに適用してい る。 年間の気象データに基づく相対濃度及び相対線 量を小さい方から累積し、97%相当に当たる値を用 いている。 相対濃度及び相対線量の詳細は、「原子力発電所 中央制御室の居住性に係る被ばく評価手法につい て(内規)」に基づいて評価している。 4.2(2)d → 審査ガイドのとおり 地表面への乾性沈着及び降雨による湿性沈着を 考慮して地表面沈着速度を計算している。 沈着速度については線量目標値評価指針を参考 に、湿性沈着を考慮して乾性沈着速度の4倍を設 定。乾性沈着速度はエアロゾル及び無機よう素は NUREG/CR-4551 Vol.2より、有機よう素は NRPB- R322より設定。	相対濃度は、毎時刻の気象項目(風向,風速, 大気安定度)及び実効放出継続時間(保守的に1 時間とする)を基に、短時間放出の式を適用し、 評価している。 相対線量は、放射性物質の空間濃度分布を算出 し、これをガンマ線量計算モデルに適用して計算 している。 年間の気象データに基づく相対濃度及び相対線 量を小さい方から累積し、97%に当たる値を用い ている。 相対濃度及び相対線量の詳細は、「原子力発電 所中央制御室の居住性に係る被ばく評価手法につ いて(内規)」に基づいて評価している。 4.2(2)d.→審査ガイド通り 地表面への乾性沈着及び降雨への湿性沈着を考 慮して地表面沈着濃度を計算している。 沈着速度(1.2 cm/s)については線量目標値評 価指針を参考に、湿性沈着を考慮して乾性沈着速 度(0.3 cm/s)の4倍を設定。乾性沈着速度は NUREG/CR-4651 Vol.2 より設定。	相対濃度は、毎時刻の気象項目(風向、風速、 大気安定度)及び実効放出継続時間(保守的に1 時間とする)を基に、短時間放出の式を適用し、 評価している。 相対線量は、放射性物質の空間濃度分布を算出 し、これをガンマ線量計算モデルに適用して計算 している。 年間の気象データに基づく相対濃度及び相対線 量を小さい方から累積し、97%に当たる値を用い ている。 相対濃度及び相対線量の詳細は、「原子力発電 所中央制御室の居住性に係る被ばく評価手法につ いて(内規)」に基づいて評価している。 4.2(2)d.→ 審査ガイド通り 地表面物質への乾性沈着及び降雨への湿性沈着 を考慮して地表面沈着濃度を計算している。 沈着速度(1.2cm/s)については線量目標値評価指 針を参考に、湿性沈着を考慮して乾性沈着速度 (0.3cm/s)の4倍を設定。乾性沈着速度は NUREG/CR-4551 Vol,2より設定	 記載方針の相違 ・泊は具体的に記載 設計方針の相違 ・泊では有機よう素に いてもエアロゾル・ よう素と同様に設定

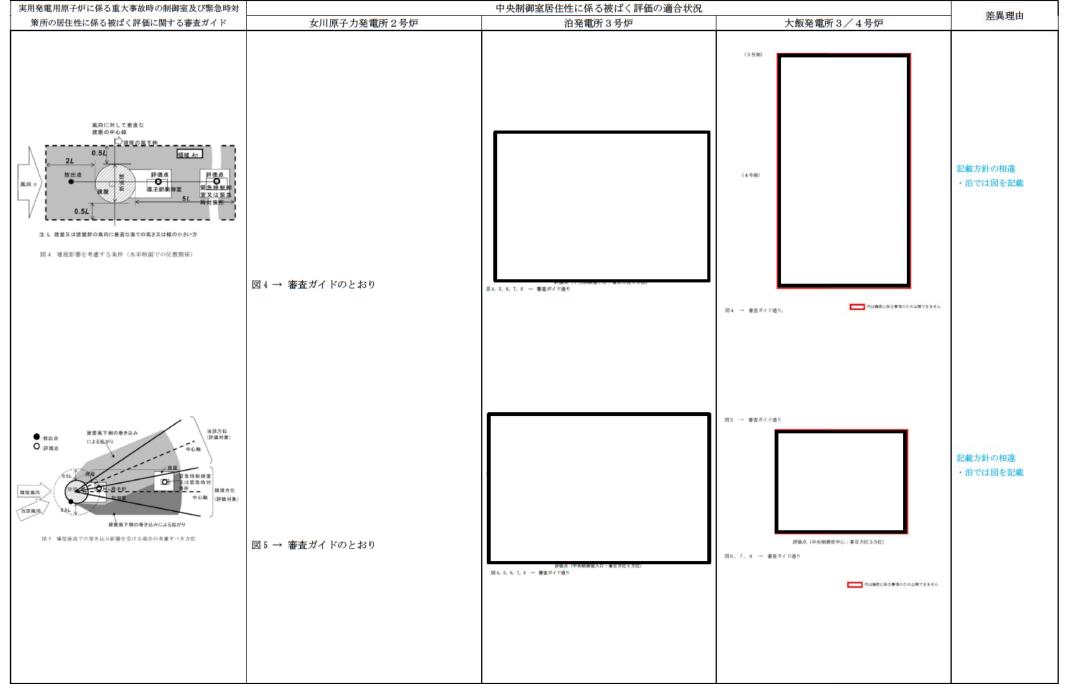
第 59 条 運転員が原子炉制御室にとどまるための談		炉 SA基準適合性 比較衣 1.3.0	緑字:記載表現、設備名称の相違	(実質的な相違なし)
実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		able III and I
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
 e. 原子炉制御室/緊急時制御室/緊急時対策所 内の放射性物質濃度 ・原子炉制御室/緊急時制御室/緊急時対策所 の建屋の表面空気中から、次の二つの経路で 放射性物質が外気から取り込まれることを仮 定する。 	 4.2(2) e. → 審査ガイドの主旨に基づいて 評価 評価期間中は外気を取入れることを前提として いるため,一の経路(外気取入)及び二の経路 (空気流入)で放射性物質が外気から取り込まれ ることを仮定している。 	4.2(2) e. → 審査ガイド通り 評価期間中は外気を遮断することを前提としているため、二の経路(直接流入)で放射性物質が 外気から取り込まれることを仮定している。	4.2(2) e. → 審査ガイド通り 評価期間中は外気を遮断することを前提としているため、二の経路(直接流入)で放射性物質が 外気から取り込まれることを仮定している。	設計方針の相違
一原子炉制御室/緊急時制御室/緊急時対策所 の非常用換気空調設備によって室内に取り入 れること(外気取入)		評価期間中は外気を遮断することを前提として いるため,外気取入れは行わないとして評価して いる。	評価期間中は外気を遮断することを前提として いるため、外気取入れは行わないとして評価して いる。	設計方針の相違
 二 原子炉制御室/緊急時制御室/緊急時対策所内に直接流入すること(空気流入) ・原子炉制御室/緊急時制御室/緊急時対策所内の雰囲気中で放射性物質は、一様混合すると仮定する。 なお、原子炉制御室/緊急時制御室/緊急時制御室/緊急時対策所内に取り込まれた放射性物質は、室内に沈着せずに浮遊しているものと仮定する。 ・原子炉制御室/緊急時制御室/緊急時対策所内への外気取入による放射性物質の取り込みについては、非常用換気空調設備の設計及び運転条件に従って計算する。 ・原子炉制御室/緊急時制御室/緊急時対策所 	中央制御室では放射性物質は一様混合すると し、室内での放射性物質は沈着せず浮遊している ものと仮定している。	中央制御室では放射性物質は一様混合すると し、室内での放射性物質は沈着せず浮遊している ものと仮定している。 評価期間中は外気を遮断することを前提として いるため、外気取入れは行わないとして評価して いる。 空気流入量は空気流入率及び中央制御室バウン	中央制御室では放射性物質は一様混合すると し、室内での放射性物質は沈着せず浮遊している ものと仮定している。 評価期間中は外気を遮断することを前提として いるため、外気取り入れは行わないとして評価し ている。 空気流入量は空気流入率及び中央制御室バウン	設計方針の相違
内に取り込まれる放射性物質の空気流入量 は、空気流入率及び原子炉制御室/緊急時制 御室/緊急時対策所バウンダリ体積(容積) を用いて計算する。 (3)線量評価 a. 放射性雲中の放射性物質からのガンマ線によ る原子炉制御室/緊急時制御室/緊急時対策 所内での外部被ばく(クラウドシャイン) ・放射性雲中の放射性物質からのガンマ線によ る外部被ばく線量は、空気中時間積分濃度及 びクラウドシャインに対する外部被ばく線量 換算係数の積で計算する。 ・原子炉制御室/緊急時制御室/緊急時対策所 内にいる運転員又は対策要員に対しては、原 子炉制御室/緊急時制御室/緊急時対策所の 建屋によって放射線が遮へいされる低減効果 を考慮する。	ダリ体積を用いて計算している。 4.2(3) a. → 審査ガイドのとおり 中央制御室におけるクラウドシャインについて は、放射性物質の放出量、大気拡散の効果及び建 屋によるガンマ線の遮蔽効果を考慮し評価してい る。 中央制御室内の運転員については建屋による遮 蔽効果を考慮している。	ダリ体積を考慮した体積を用いて計算している。 4.2(3) a. → 審査ガイド通り 外部被ばく線量については、空気中濃度及びク ラウドシャインに対する外部被ばく線量換算係数 の積で計算した線量率を積算して計算している。 中央制御室内の運転員については建屋による遮 蔽効果を考慮している。	ダリ体積を用いて計算している。 4.2(3) a → 審査ガイド通り 外部被ばく線量については、空気中濃度及びク ラウドシャインに対する外部被ばく線量換算係数 の積で計算した線量率を積分して計算している。 中央制御室内の運転員については建屋による遮 蔽効果を考慮している。	記載方針の相違 ・泊での記載はガイドの 内容と対応するよう記載 している。

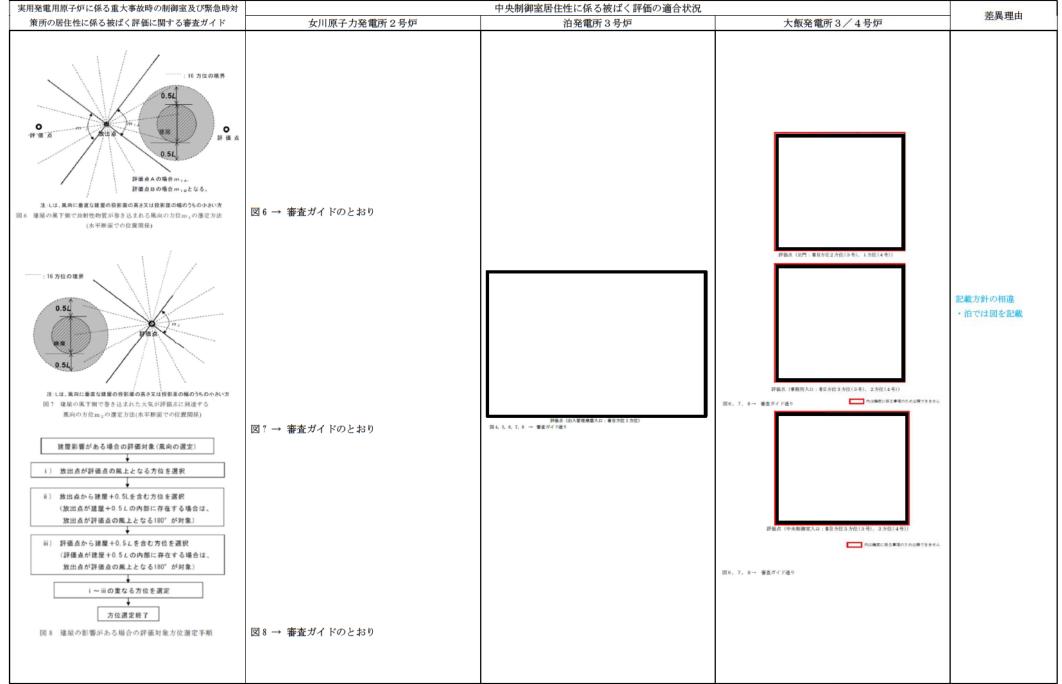
第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

第 39 余 連転員か原ナ炉前側重にどどよるにめの設 実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		
実用発電用原子がに依る重入争放時の前伸至及び究急時対 策所の居住性に係る被ばく評価に関する審査ガイド	上川原スカ改会王の日后		上に改善式の/ARE	差異理由
	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	
b. 地表面に沈着した放射性物質からのガンマ線 による原子炉制御室/緊急時制御室/緊急時 対策所内での外部被ばく(グランドシャイン)	 4.2(3)b. → 審査ガイドのとおり 	4.2 (3) b. → 審査ガイド通り	4. 2 (3)b → 審査ガイド通り	
・地表面に沈着した放射性物質からのガンマ線	中央制御室におけるグランドシャインについて	外部被ばく線量については、地表面沈着濃度及	中央制御室に関しては、グランドシャインによ	記載方針の相違
による外部被ばく線量は、地表面沈着濃度及	は,放射性物質の放出量,大気拡散の効果及び沈	びグランドシャインに対する外部被ばく線量換算	る被ばくは、中央制御室内の運転員については建	・泊での記載はガイドの
びグランドシャインに対する外部被ばく線量	着速度並びに建屋によるガンマ線の遮蔽効果を考	係数の積で計算した線量率を積算して計算してい	屋による遮蔽効果を考慮し全体の線量に比べ十分	内容と対応するよう記載
換算係数の積で計算する。	慮し評価している。	る。	に小さく、評価結果に影響を与えないことを確認	している。
・原子炉制御室/緊急時制御室/緊急時対策所	中央制御室内の運転員については建屋による遮	中央制御室内の運転員については,建屋による	している。	
内にいる運転員又は対策要員に対しては、原	蔽効果を考慮している。	遮蔽効果を考慮している。		
子炉制御室/緊急時制御室/緊急時対策所の				
建屋によって放射線が遮へいされる低減効果				
を考慮する。				
c. 原子炉制御室/緊急時制御室/緊急時対策所 内へ外気から取り込まれた放射性物質の吸入 摂取による原子炉制御室/緊急時制御室/緊 急時対策所内での内部被ばく	 2(3) c. → 審査ガイドのとおり 	4.2 (3) c. → 審査ガイド通り	4. 2 (3)c → 審査ガイド通り	
 原子炉制御室/緊急時制御室/緊急時対策所 	中央制御室における内部被ばく線量について	中央制御室における内部被ばく線量について	中央制御室における内部被ばく線量について	
内へ外気から取り込まれた放射性物質の吸入	は、空気中濃度、呼吸率及び内部被ばく換算係数	は,空気中濃度,呼吸率及び内部被ばく換算係数	は、空気中濃度、呼吸率及び内部被ばく換算係数	
摂取による内部被ばく線量は、室内の空気中	の積で計算した線量率を積算して計算している。	の積で計算した線量率を積算して計算している。	の積で計算した線量率を積算して計算している。	
時間積分濃度、呼吸率及び吸入による内部被				
ばく線量換算係数の積で計算する。		a fa a fan de fan aleman an a stader fa an an de de fait de 1986 a stade a stade		
 なお、原子炉制御室/緊急時制御室/緊急時 対策所内に取り込まれた放射性物質は、室内 	中央制御室では室内での放射性物質は沈着せず に浮遊しているものと仮定している。	中央制御室では室内での放射性物質は沈着せず に浮遊しているものと仮定している。	中央制御室では室内での放射性物質は沈着せず に浮遊しているものと仮定している。	
対策別内に取り込まれに放射性物質は、重内に沈着せずに浮遊しているものと仮定する。	に存近しているものと仮定している。	に存近しているものと仮圧している。	に存近しているものと仮圧している。	
・原子炉制御室/緊急時制御室/緊急時対策所	マスクの着用を考慮して評価している。マスク	マスク着用を考慮している。また、マスクを着	マスクの着用を考慮して評価している。また、	
内でマスク着用を考慮する。その場合は、マ	を着用しない場合についても評価している。	用しない場合についても評価している。	マスクを着用しない場合についても評価してい	
スク着用を考慮しない場合の評価結果も提出			る。	
を求める。				
d. 原子炉制御室/緊急時制御室/緊急時対策所 内へ外気から取り込まれた放射性物質のガン マ線による外部被ばく	4.2(3)d. → 審査ガイドのとおり	4.2(3)d. → 審査ガイド通り	4.2(3)d → 審査ガイド通り	
・原子炉制御室/緊急時制御室/緊急時対策所	中央制御室に取り込まれた放射性物質からのガ	中央制御室内に取り込まれた放射性物質からの	中央制御室に取り込まれた放射性物質からのガ	
内へ外気から取り込まれた放射性物質からの	ンマ線による外部被ばく線量については、空気中	ガンマ線による外部被ばく線量については、空気	ンマ線による外部被ばく線量については、空気中	
ガンマ線による外部被ばく線量は、室内の空	濃度及び建屋によるガンマ線の遮蔽効果を考慮し	中濃度及びクラウドシャインに対する外部被ばく	濃度及びクラウドシャインに対する外部被ばく線	設計等の相違
気中時間積分濃度及びクラウドシャインに対	評価している。	線量換算係数の積で計算した線量率を積算して計	量換算係数の積で計算した線量率を積算して計算	・泊では遮蔽効果は考慮
する外部被ばく線量換算係数の積で計算す		算している。	している。	していない。
る。				記載方針の相違
				・泊での記載はガイドの
				内容と対応するよう記載
				している。

実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		差異理由
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	上 夹 生山
 ・なお、原子炉制御室/緊急時制御室/緊急時 対策所内に取り込まれた放射性物質は、c項の内部被ばく同様、室内に沈着せずに浮遊しているものと仮定する。 	中央制御室では室内での放射性物質は沈着せず に浮遊しているものと仮定している。	中央制御室では室内での放射性物質は沈着せず に浮遊しているものと仮定している。	中央制御室では室内での放射性物質は沈着せず に浮遊しているものと仮定している。	
e. 放射性雲中の放射性物質からのガンマ線に よる入退域での外部被ばく(クラウドシャイ ン)	4.2(3)e. → 審査ガイドのとおり	4.2 (3) e. → 審査ガイド通り	4.2(3)e → 審査ガイド通り	
 ・放射性雲中の放射性物質からのガンマ線による外部被ばく線量は、空気中時間積分濃度及びクラウドシャインに対する外部被ばく線量換算係数の積で計算する。 	入退域におけるクラウドシャインについては, 放射性物質の放出量,大気拡散の効果を考慮し評 価している。	入退域でのクラウドシャイン線量については, 空気中濃度及びクラウドシャインに対する外部被 ばく線量換算係数の積で計算した線量率を積算し て計算している。	入退域でのクラウドシャイン線量については、 空気中濃度及びクラウドシャインに対する外部被 ばく線量換算係数の積で計算した線量率を積算し て計算している。	記載方針の相違 ・泊での記載はガイドの 内容と対応するよう記載 している。
f. 地表面に沈着した放射性物質からのガンマ線 による入退域での外部被ばく(グランドシャ イン)	4.2(3)f. → 審査ガイドのとおり	4. 2 (3) f. → 審査ガイド通り	4. 2 (3) f → 審査ガイド通り	
 ・地表面に沈着した放射性物質からのガンマ線による外部被ばく線量は、地表面沈着濃度及びグランドシャインに対する外部被ばく線量換算係数の積で計算する。 	入退域でのグランドシャイン線量については, 地表面沈着濃度及びグランドシャインに対する外 部被ばく線量換算係数の積で計算した線量率を積 算して計算している。	入退域でのグランドシャイン線量については, 地表面沈着濃度及びグランドシャインに対する外 部被ばく線量換算係数の積で計算した線量率を積 算して計算している。	入退域でのグランドシャイン線量については、 地表面沈着濃度及びグランドシャインに対する外 部被ばく線量換算係数の積で計算した線量率を積 算して計算している。	
 g. 放射性物質の吸入摂取による入退域での内部 被ばく ・放射性物質の吸入摂取による内部被ばく線量 は、入退域での空気中時間積分濃度、呼吸率 及び吸入による内部被ばく線量換算係数の積 で計算する。 ・入退域での放射線防護による被ばく低減効果 を考慮してもよい。 	 4.2(3)g. → 審査ガイドのとおり 入退域での内部被ばくについては空気中濃度, 呼吸率及び内部被ばく換算係数の積で計算した線 量率を積算して計算している。 入退域での放射線防護(マスク着用)による被ばく低減を考慮している。 	 4.2(3)g. → 審査ガイド通り 入退域での内部被ばくについては空気中濃度, 呼吸率及び内部被ばく換算係数の積で計算した線 量率を積算して計算している。 入退域での放射線防護(マスク着用)による被 ばく低減を考慮している。 	 4.2(3)g→審査ガイド通り 入退域での内部被ばくについては空気中濃度、 呼吸率及び内部被ばく換算係数の積で計算した線 量率を積算して計算している。 入退域での放射線防護(マスク着用)による被 ばく低減を考慮している。 	
 h. 被ばく線量の重ね合わせ 同じ敷地内に複数の原子炉施設が設置されている場合、全原子炉施設について同時に事故が起きたと想定して評価を行うが、各原子炉施設から被ばく経路別に個別に評価を実施して、その結果を合算することは保守的な結果を与える。原子炉施設敷地内の地形や、原子炉施設と評価対象位置の関係等を考慮した、より現実的な被ばく線量の重ね合わせ評価を実施する場合はその妥当性を説明した資料の提出を求める。 	 4.2(3)h. →審査ガイドのとおり 新規制基準に基づく複数原子炉の設置変更申請 を実施していないため考慮しない。 	 4.2(3)h. → 3号炉単独発災を想定し,評価している。 	 4.2(3)h. → 審査ガイド通り 3号炉、4号炉それぞれ個別に評価し、その結 果を合算している。 	


第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)


第 59 条 運転員が原子炉制御室にとどまるための設	登備(補足説明資料)			
実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		差異理由
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	庄 夷 庄 田
4.3 原子炉制御室の居住性に係る被ばく評価の 主要解析条件等				
(1) ソースターム	4.3(1) → 審査ガイドのとおり	4.3(1)→ 審査ガイドの趣旨に基づいて設定	4.3(1)→ 審査ガイドの趣旨に基づき設定	
a. 原子炉格納容器内への放出割合				
・原子炉格納容器内への放射性物質の放出割合	4.1 (2) a. で選定した事故シーケンスのソース	評価事象が炉心損傷後の事象であることを踏ま	評価事象が炉心損傷後の事象であることを踏ま	記載内容の相違
は、4.1(2)a で選定した事故シーケンスの	ターム解析結果を基に設定している。	え,原子炉格納容器内に放出された放射性物質は	え、原子炉格納容器内に放出された放射性物質は	・泊では概要を記載して
ソースターム解析結果を基に設定する。		NUREG-1465の被覆管破損放出~晩期圧力容器内放	NUREG-1465 の被覆管破損放出~晩期圧力容器内放	いる。
		出までを考慮した原子炉格納容器内への放出割合	出までを考慮した原子炉格納容器内への放出割合	・詳細は女川の資料 2−3
		を基に設定して評価している。	を基に設定して評価している。	と泊の添付 1-2-4 との比
		核種グループについてはNUREG-1465 で想定され	核種グループについては NUREG-1465 で想定され	較として実施している。
・希ガス類、ヨウ素類、Cs 類、Te 類、Ba 類、	希ガス類,よう素類,Cs 類,Te 類,Ba 類,Ru		たグループ類であり、希ガス類、よう素類、Cs	
Ru 類、Ce 類及びLa 類を考慮する。	類, Ce 類及びLa 類を考慮している。		類、Te 類、Ba 類、Ru 類、Ce 類及びLa 類を考慮	
		している。	している。	
・なお、原子炉格納容器内への放出割合の設定	よう素の性状については, R.G.1.195 を参照し	よう素の性状については、pH によらず保守的に		記載方針の相違
に際し、ヨウ素類の性状を適切に考慮する。	ている。	設定するために R. G. 1. 195 のよう素割合に基づき		・泊では理由を簡潔に記
		設定している。	設定している。	載している。
b. 原子炉格納容器内への放出率				den deb ala sela can den Vela
・原子炉格納容器内への放射性物質の放出率	4.1(2)a. で選定した事故シーケンスのソースタ	NUREG-1465 は、当該シーケンスを含む、早期か		記載内容の相違
は、4.1 (2) a で選定した事故シーケンスの ソースターム解析結果を基に設定する。	ーム解析結果を基に設定している。	らRCS 圧力が低く推移するシーケンスを代表する	ら RCS 圧力が低く推移するシーケンスを代表する よう設定されたものである。また、NUREG-1465 に	・泊では概要を記載して いる。
ノースターム脾机結果を差に設定する。		よう設定されたものである。また、NURD-1405 に 基づく「格納容器に放出される割合」の設定につ	基づく「格納容器に放出される割合」の設定につ	v '@,
			WTCは、MAAP コードによる評価結果に比べて保守	
			的ではない核種があるものの、MAAP コードに内蔵	
		されたエアロゾルの自然沈着等の評価式による低	されたエアロゾルの自然沈着等の評価式による低	
		減効果は本評価での低減効果に比べて大きいた	減効果は本評価での低減効果に比べて大きいた	
		め、被ばく評価に直接寄与する「原子炉格納容器	め、被ばく評価に直接寄与する「原子炉格納容器	
		外に放出される割合」については、本評価は MAAP	外に放出される割合」については、本評価は MAAP	
		コードによる評価よりも保守的な設定となる。	コードによる評価よりも保守的な設定となる。	
(2) 非常用電源	4.3(2) → 審査ガイドのとおり	4.3(2) → 審査ガイド通り	4. 3(2)→ 審査ガイド通り	
非常用電源の作動については、4.1 (2) a で	4.1(2)a.で選定した事故シーケンスのソースタ	全交流動力電源喪失を仮定した評価条件として	全交流動力電源喪失を仮定した評価条件として	記載方針の相違
選定した事故シーケンスの事故進展解析条件を	ーム解析結果を基に設定している。	いるため、電源は代替非常用発電機からの供給と	いるため、電源は空冷式非常用発電機からの供給	・泊はより具体的に記載
基に設定する。		することを仮定している。具体的にはアニュラス	とすることを仮定している。具体的にはアニュラ	している。
ただし、代替交流電源からの給電を考慮する		空気浄化設備及び中央制御室非常用循環設備等の	ス空気浄化設備及び中央制御室非常用循環設備等	
場合は、給電までに要する余裕時間を見込むこ		起動時間については、代替非常用発電機からの受	の起動時間については、空冷式非常用発電機から	
と。		電までに要する余裕時間を見込んでいる。	の受電までに要する余裕時間を見込んでいる。	
(3)沈着・除去等	4.3(3)a. → 審査ガイドのとおり	4.3 (3) a. → 審査ガイド通り	4. 3 (3) a. → 審査ガイド通り	
a. 非常用ガス処理系(BWR)又はアニュラス空	非常用ガス処理系の作動時間については,事故	アニュラス空気浄化設備の作動時間について	アニュラス空気浄化設備の作動時間について	型式の相違
気浄化設備(PWR)	発生から 70 分後(非常用ガス処理系排風機起動	は, 選定した事故シーケンスに基づき全交流電源	は、選定した事故シーケンスに基づき全交流動力	個別解析による相違
非常用ガス処理系 (BWR) 又はアニュラス空	60 分+排風機起動から原子炉建屋原子炉棟負圧達	喪失及び最終ヒートシンク喪失を想定した起動遅	電源喪失および最終ヒートシンク喪失を想定した	
気浄化設備 (PWR) の作動については、4.1	成時間10分)として評価している。	れを見込んだ(起動遅れ 60 分+起動後負圧達成時	起動遅れを見込んだ(起動遅れ60分+起動後負圧	
(2) a で選定した事故シーケンスの事故進展		間18分)評価としている。起動遅れ時間60分	達成時間2分)評価としている。起動遅れ時間60	
解析条件を基に設定する。		は、代替非常用発電機による電源回復操作及びア	分は、空冷式非常用発電装置による電源回復操作	
		ニュラス空気浄化設備空気作動弁代替空気供給等	およびボンベ、コンプレッサーによるアニュラス	


実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		差異理由
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所 3 号炉	大飯発電所3/4号炉	
		によるアニュラス空気浄化設備の復旧までに要す	空気浄化設備ダンパへの作動空気供給操作を想定	
		る時間を想定している。	している。	
b. 非常用ガス処理系(BWR)又はアニュラス空	 4.3(3)b.→非常用ガス処理系による除去	4.3 (3) b. → 審査ガイド通り	 4.3 (3)b. → 審査ガイド通り 	型式の相違
				望式的相連
気浄化設備(PWR)フィルタ効率	効果は考慮していない。	アニュラス空気浄化設備のフィルタ効率は、使	アニュラス空気浄化設備のフィルタ除去効率に	
ヨウ素類及びエアロゾルのフィルタ効率		用条件での設計上期待できる値として、よう素フ	ついては、使用条件での設計上期待できる値とし	
は、使用条件での設計値を基に設定する。		イルタ効率は95%、微粒子フィルタ効率は99%と		
なお、フィルタ効率の設定に際し、ヨウ素		仮定して評価している。	イルタ除去効率は99%と仮定して評価してい	
類の性状を適切に考慮する。		なお、よう素類の性状を適切に考慮し、有機よ	S.	
		う素及び元素状よう素はよう素フィルタで除去さ	なお、よう素類の性状を適切に考慮し、有機よ	
		れ、粒子状よう素は微粒子フィルタで除去される	う素及び元素状よう素はよう素フィルタで除去さ	
		と評価している。	れ、粒子状よう素は微粒子フィルタで除去される	
			と評価している。	
c. 原子炉格納容器スプレイ	 4.3 (3) c. → 審査ガイドのとおり 	 3 (3) c. → 審査ガイド通り 	4.3 (3) c. → 審査ガイド通り	
原子炉格納容器スプレイの作動について	スプレイの作動については、4.1(2) a で選定し	スプレイの作動については、4.1(2)a. で選定し	スプレイの作動については、4.1 (2) a で選定	
は、4.1 (2) a で選定した事故シーケンスの	た事故シーケンスの事故進展解析条件を基に設定	た事故シーケンスの事故進展解析条件を基に設定	した事故シーケンスの事故進展解析条件を基に設	
事故進展解析条件を基に設定する。	している。	している。	定している。	
d. 原子炉格納容器内の自然沈着	4.3(3)d. → 審査ガイドのとおり	4.3 (3) d. → 審査ガイド通り	 4.3 (3) d. → 審査ガイド通り 	9659 BL 31 12
原子炉格納容器内の自然沈着率について		自然沈着率については、実験等から得られた適	自然沈着率については、実験等から得られた適	記載方針の相違
は、実験等から得られた適切なモデルを基に		切なモデルを基に設定している。	切なモデルを基に設定している。	・自然沈着率について
設定する。	原子炉格納容器内の粒子状放射性物質の除去に			MAAP では評価されない
	ついては, MAAP 解析に基づき評価している。			め、実験から得られた
	無機よう素の原子炉格納容器内での自然沈着率	無機よう素の自然沈着率は, CSE 実験に基づ	無機よう素の自然沈着率は、CSE 実験に基づ	デルで設定している旨
	は, CSE 実験に基づき 9.0×10-4[1/s] (上限	き,9.0×10-4 (1/s)と仮定している。	き、9.0×10-4 (1/s) と仮定している。	記載している。
	DF=200) と設定している。	エアロゾルの自然沈着率は、重力沈降速度を用		設計方針の相違
			エアロゾルの自然沈着率は、重力沈降速度を用	設計力計の相連 ・エアロゾルの自然沈
		いた自然沈着率の評価式に基づき,計算してい	いた自然沈着率の評価式に基づき、計算してい	
		る。	S.	率は、 女川では MAAP
				り評価しているが、消
				はMAAPでの評価も踏
				え、評価式に基づき計
				している。
	無機よう素のサプレッションチェンバのプール			型式の相違
	水でのスクラビングによる除去係数は、Standard			
百又居故始於明温高下會	Review Plan6.5.5 に基づき5 と設定している。			
e. 原子炉格納容器漏えい率	4.3 (3) e. →審査ガイドの趣旨に基づき設定		4.3 (3) e. → 審査ガイド通り	
原子炉格納容器漏えい率は、4.1 (2) a で 澤宮した恵林シーケンスの恵林准屋留托は用	4.1(2)a. 選定した事故シーケンスの原子炉格納	4.1(2)a.で選定した事故シーケンスの原子炉格	4.1 (2) a で選定した事故シーケンスの格納容	
選定した事故シーケンスの事故進展解析結果 たまに記字する	容器内圧力に応じた漏えい率を設定している。	納容器内圧力に応じた漏えい率を基に設定してい	器内圧力に応じた漏えい率を基に設定している。	設計方針の相違
を基に設定する。	なお,原子炉格納容器からの漏えいに関するエ アロゾル粒子の捕集効果としてDF=10を考慮して	る。		設計万針の相運 ・泊では、アニュラフ
	アロソル粒子の捕集効果としてDF=10 を考慮している。			 ・ 泪では、 アニュフラン 機能により格納容器の
	0°'Y			機能により格納容器の 集効果が被ばくに与え
				果効果が彼はくに与え 影響は小さいことから
				影響は小さいことから 保守的に捕集効率を無
				the second second second
				して評価している。

第 59 条 運転員が原子炉制御室にとどまるための記		炉 SA基準週合性 比較表 F.3.0	緑字:記載表現、設備名称の相違	(実質的な相違なし)
実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合状況		关用调告
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所2号炉	泊発電所 3 号炉	大飯発電所3/4号炉	差異理由
f.原子炉制御室の非常用換気空調設備 原子炉制御室の非常用換気空調設備の作動 については、非常用電源の作動状態を基に設 定する。	 4.3(3)f. → 審査ガイドのとおり 中央制御室換気設備の作動時間については、全 交流動力電源喪失を想定した起動遅れ(30分)を 考慮した評価としている。 起動遅れ時間30分はガスタービン発電機による 電源回復及び手動による中央制御室換気空調系起 動操作を想定。 	4.3(3)f. → 審査ガイド通り 中央制御室空調装置の作動時間については,全 交流電源喪失及び最終ヒートシンク喪失を想定した起動遅れ(300分)を考慮した評価としている。 起動遅れ時間300分は代替非常用発電機による 電源回復操作及び現場での手動による中央制御室 非常用循環設備ダンパ開操作等での中央制御室非常用循環設備の復旧までに要する時間を想定している。	4.3(3)f. → 審査ガイド通り 中央制御室換気設備の作動時間については、全 交流動力電源喪失および最終ヒートシンク喪失を 想定した起動遅れ(300分)を考慮した評価として いる。 起動遅れ時間 300分は空冷式非常用発電装置に よる電源回復操作および現場での手動による中央 制御室非常用循環設備ダンパ開操作を想定してい る。	設計等の相違 ・泊では最終ヒートシン ク喪失を想定した時刻を 設定。 個別解析による相違 ・具体的な起動遅れ時間 は各社個別解析による。
(4)大気拡散 (4)大気拡散 a.放出開始時刻及び放出継続時間 放射性物質の大気中への放出開始時刻及び 放出継続時間は、4.1 (2) a で選定した事故 シーケンスのソースターム解析結果を基に設 定する。 	 4.3(4) a. → 審査ガイドのとおり 放射性物質の大気中への放出開始時刻は, 4.1(2) a. で選定した事故シーケンスのソースター ム解析結果を基に設定している。実効放出継続時 間は保守的に1時間としている。 	 4.3(4)a. → 審査ガイド通り 放射性物質の大気中への放出開始時刻は, 4.1(2)a.で選定した事故シーケンスのソースター ム解析結果を基に設定している。実効放出継続時 間は保守的に1時間としている。 	 4.3(4)a. → 審査ガイド通り 放射性物質の大気中への放出開始時刻は、4.1 (2) a で選定した事故シーケンスのソースターム 解析結果を基に設定している。実効放出継続時間 は保守的に1時間としている。 	
b. 放出源高さ 放出源高さは、4.1 (2) a で選定した事故 シーケンスに応じた放出口からの放出を仮定 する。4.1 (2) a で選定した事故シーケンス のソースターム解析結果を基に、放出エネル ギーを考慮してもよい。	4.3(4)b. → 審査ガイドのとおり 放出源高さは、ベント放出の場合は原子炉格納 容器フィルタベント系排気管高さ、原子炉建屋原 子炉棟漏えい分は地上高さを仮定している。放出 エネルギーは考慮していない。	 3 (4) b. → 審査ガイド通り 放出源高さは,排気筒放出の場合は排気筒高 さ,地上放出の場合は地上高さを仮定している。 	 3 (4) b. → 審査ガイドの趣旨に基づき設定 放出源高さは、排気筒放出の場合は排気筒高 さ、地上放出の場合は地上高さを仮定している。 	個別解析による相違 ・放出源の相違
 (5)線量評価 a.原子炉建屋内の放射性物質からのガンマ線による原子炉制御室内での外部被ばく 	4.3(5)a. → 審査ガイドのとおり	4.3(5)a. → 審査ガイド通り	4.3(5)a. → 審査ガイド通り	
・4.1 (2) a で選定した事故シーケンスのソー スターム解析結果を基に、想定事故時に原子 炉格納容器から原子炉建屋内に放出された放 射性物質を設定する。この原子炉建屋内の放 射性物質をスカイシャインガンマ線及び直接 ガンマ線の線源とする。	4.1(2) a. で選定した事故シーケンスのソースタ ーム解析結果を基に,想定事故時に原子炉格納容 器から原子炉建屋原子炉棟内に放出された放射性 物質を設定し,スカイシャインガンマ線及び直接 ガンマ線の線源としている。	4.1(2)a.で選定した事故シーケンスの解析結果 を基に,想定事故時に原子炉格納容器内に放出さ れた放射性物質を設定し,スカイシャインガンマ 線及び直接ガンマ線の線源としている。	4.1 (2) a で選定した事故シーケンスの解析結 果を基に、想定事故時に原子炉格納容器内に放出 された放射性物質を設定し、スカイシャインガン マ線及び直接ガンマ線の線源としている。	型式の相違
 ・原子炉建屋内の放射性物質は、自由空間容積 に均一に分布するものとして、事故後7日間の積算線源強度を計算する。 	原子炉建屋原子炉棟内の放射性物質は自由空間 容積に均一に分布しているものとして計算してい る。	建屋内の放射性物質は自由空間容積に均一に分 布しているものとして計算している。具体的に は,原子炉格納容器内の放射性物質はドーム部, 円筒部に均一に分布しているものとしている。	原子炉格納容器内及びアニュラス内の放射性物 質は自由空間容積に均一に分布しているものとし て計算している。具体的には、原子炉格納容器内 の放射性物質はドーム部、円筒部に均一に分布し ているものとし、アニュラス内の放射性物質はア ニュラス内に均一に分布している。	型式の相違
 原子炉建屋内の放射性物質からのスカイシャインガンマ線及び直接ガンマ線による外部被ばく線量は、積算線源強度、施設の位置、遮へい構造及び地形条件から計算する。 	原子炉建屋原子炉棟内の放射性物質からのスカ イシャインガンマ線及び直接ガンマ線による外部 被ばく線量は、上記で評価した積算線源強度、施 設の位置・地形条件(線源位置と評価点との距離	建屋内の放射性物質からのスカイシャインガン マ線及び直接ガンマ線による外部被ばく線量は, 上記で評価した積算線源強度,施設の位置・地形 条件(線源位置と評価点との距離等),遮蔽構造	原子炉格納容器内の放射性物質からのスカイシ ャインガンマ線及び直接ガンマ線による外部被ば く線量は、上記で評価した積算線源強度、施設の 位置・地形条件(線源位置と評価点との距離等)、	
	等),遮蔽構造(原子炉建屋遮蔽構造,制御建屋遮 蔽構造,中央制御室遮蔽構造)から計算してい	(原子炉格納容器外部遮蔽構造若しくはアニュラ ス遮蔽構造,中央制御室遮蔽構造)から計算して	遮蔽構造(原子炉格納容器外部遮蔽構造もしくは アニュラス遮蔽構造、中央制御室遮蔽構造)から	型式の相違

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

実用発電用原子炉に係る重大事故時の制御室及び緊急時対		中央制御室居住性に係る被ばく評価の適合		差異理由
策所の居住性に係る被ばく評価に関する審査ガイド	女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	庄 夷/庄田
		図9 → 奏 <i>室ガイド</i> 通り	页9 → 春重ポイド通9	記載方針の相違 ・ 泊では図を記載
$\sim \cdot \cdot \cdot \cdot \cdot \cdot \cdot$	図 9,10 → 審査ガイドのとおり	図10 → 審査ガイド通り	図10 → 春左ガイド通り 「小山勝郡に戻ら事業のため三第できま	**