第 50 宋 連転員が原士が前卿室にととよるにめの設備「柵足説明資本 女川原子力発電所2号炉		泊発電所3号炉			大飯発電所 3/4号	F	差異理由
	に、結果を第4表に示す	。これより, カットオ		に、結果を第4表に示	す。これより、カット 素の放出割合に対して	実施した。条件を第3表 オフ後の沈着速度は格納 影響が小さいため、現行	・泊はより詳細に記
		第3表 感度解析条件			第3表 感度解析条件		
		ベース条件	感度解析		ベース条件	感度解析	
	等価半減期 (初期)	12 分 (沈着速度 9E-4 s ⁻¹)	同左	等価半減期 (初期)	12 分 (沈着速度 9E-4 s ⁻¹)	同左	
	等価半減期 (カットオフ DF=200 後)	同上	40 時間 (A-5実験結果の34時間(誤 差込み)に余裕を見た値)	等価半減期 (カットオフ DF=200 後)	同上	40時間 (A-5実験結果の34時間(誤 差込み)に余裕を見た値)	
		第4表 感度解析結果			第4表 感度解析結果		
	よう素の CV 外への放出割合	ベース条件	感度解析	1 2 de - 16 de - 15 de	ベース条件	感度解析	
	よう素の CV 外への放出割合 (炉心インベントリ比)	3.6E-4 (1.00) **	3. 7E−4 (1. 03) **	よう素の格納容器外への放 出割合 (炉心インベントリ	3.6E-4 (1.00) ※	3.7E-4 (1.03) **	
	※ カッコ内はベース条件に対	対する割合		比) ※ カッコ内はベース条件に		(1.00) %	
	よう素の濃度減少から対実験において、DF=200 にら自然沈着率を求めた場でと、内の自然沈着率をでいた対してDF=200 に達す然沈着のみの傾きよりもまた、スプレイされた(A-5、A-11 試験)を表のとおり、初期の自然がと大きな違いはない。さ濃度はDF=200 まで一定の自然になお、仮にA-5 試験及びの結果から得られる等価割合について算出した約	なめた自然沈着率を使り に達する時間までの元 場合の影響を以下に示っ 設定した根拠としてい さまでの傾除去め率は る大きく、の結果を用いる ながは、A-5 試験の洗着率には低い には着率を用いることは がA-11 試験のうち等の にが着率を用いることは がA-11 試験のうち等の には現場16 分を用いる には現場16 表に示す。 には現場16 表に示す。 には現場16 表に示す。 には現場16 表に示す。 には現場16 表に示す。 には現場16 表に示す。 には現場16 表に示す。 には現場16 表に示す。 には現場16 表に示す。 には現場16 表に示す。 には、表している。 には、表している。 には、またが、またが、またが、またが、またが、またが、またが、またが、またが、またが	素状よう素の濃度減少かす。 かるA-6 試験については、果があるため、初期濃度自 大きくなる。 に使用している自然については、 使用している自然は、 使用している自然は、 があるため、 に対している自然は、 があるため、 に対している自然は、 があるに、 があるに、 があるため、 に対している自然は、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 があるに、 がある。 に、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	よう素の濃度減少から3 実験において、DF=200 は ら自然沈着率を求めたないないで、DF=200 は 格納ないで、DF=2 している自然沈着であれた。 は、スプレイで、DF=2 している自然沈着であれた。 (A-5、A-11 試験の自然ない。さら おり、違いはない。さら よう素濃度はDF=200 で、DF=200 まで一定のなお、仮に A-5 試験及 験の結果から得られる。 への放出割合について3 表に示す通り、他の試験	求めた自然沈着率を使 大めた自然沈着率を使 に達する時間までに示し と達する影響をしています。 とこのではないでではないででででででででででででででででででででででででいます。 というではないではないでででででででででいます。 はいりではないではないではないではない。 としているではないではないではないではないではないではないではないではないできないではないではないではないではないではないではないではないではないではないでは	こしている A-6 試験につ	

青字:記載箇所又は記載内容の相違(記載方針の相違)

緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉	泊発電所3号炉
-------------	---------

第5表	自然注着率を	変動させた場合のよ	う妻のCV外へ	の放出割合

	申請ケース	感度解析①	感度解析②
等価半減期 (初期)	12分	同左	16 分率1
等価半減期(DF=200 到達後)	同上	40 時間※2	同左
よう素の CV 外への放出割合	約 3.6E-04	約 3.7E-04	約3.7E-04
申請ケースに対する比	1.00	1.03	1.04

※1: A-11 試験の結果より設定した値

※2:A-5試験の結果に余裕を見込んで設定した値

また、自然沈着率は評価する体系の区画体積と内面積の比である比 表面積の影響を受け、比表面積が大きいほど自然沈着率は大きくなる。

そこで、CSE の試験体系と泊発電所3号炉の比表面積について第6 す。CSE 実験と女川2 号炉の比表面積は同程度となっており、CSE 実 表に示す。第6表に示すとおり、CSE 試験体系と泊発電所3号炉は同 等の比表面積となっており、CSE の試験で得られた沈着速度は泊発電 所3号炉に適用可能である。

表 2 CSE 実験と女川 2 号炉の比表面積の比較

	CSE 実験体系	女川 2 号炉
体積(m³)	約 600	約 13,000
表面積(m²)	約 570	約 12,000
比表面積(m-1)	約 0.96	約 0.93

験で得られた自然沈着速度を用いることができると考えられる。

CSE 実験における体系と女川2 号炉の比表面積について表2 に示

第6表 CSE 試験と泊発電所3号炉の比表面積の比較

	CSE 試験体系	泊発電所3号炉
体積(m³)	約 600	約 65,500
表面積(m2)	約 570	約 69,000
比表面積(m-1)	約 0.96	約 1.05

(参考) CSE 試験体系

TABLE I Physical Conditions Common to All Spray Experiments

Volume above deck including drywell Surface area above deck including	21 005 ft ³	595 m ³
drywell	6 140 ft ²	569 m ²
Surface area/volume	0.293/ft	0.958/m
Cross-section area, main vessel	490 ft ²	45.5 m ²
Cross-section area, drywell	95 ft ²	8.8 m ²
Volume, middle room Surface area, middle room	2 089 ft ³ 1 363 ft ²	59 m ³
Volume, lower room	3 384 ft ³	96 m ³
Surface area, lower room	2 057 ft ²	191 m ²
Total volume of all rooms	26 477 ft ³	751 m ³
Total surface area, all rooms	9 560 ft ²	888 m ²
Drop fall height to deck	33.8 ft	10.3 m
Drop fall height to drywell bottom	50.5 ft	15.4 m

Surface coating All interior surfaces coated with phenolic paint*

All exterior surfaces covered with Thermal insulation 1-in. Fiberglas insulationb

大飯発電所 3/4号炉

第5表 自然沈着率を変動させた場合のよう素の格納容器外への放出割合

	申請ケース	感度解析①	感度解析②
等価半減期(初期)	12分	同左	16 分*1
等価半減期 (DF200	同上	40 時間*2	同左
到達後)			
よう素の格納容器	約 3.6E-04	約 3. 7E-04	約3.7E-4
外への放出割合			200000000000000000000000000000000000000
申請ケースに対す	1.00	1. 03	1.04
る比			

*1: A-11 試験の結果より設定した値

*2: A-5 試験の結果に余裕を見込んで設定した値

また、自然沈着率は評価する体系の区画体積と内面積の比である比 表面積の影響を受け、比表面積が大きいほど自然沈着率は大きくなる。

そこで、CSE の試験体系と大飯3, 4号炉の比表面積について第6 表に示す。第6表に示すとおり、CSEの試験体系と大飯3,4号炉は 同等の比表面積となっており、CSE の試験で得られた沈着速度は大飯 3, 4号炉に適用可能である。

第6表 CSE 試験と大飯3, 4号炉の比表面積の比較

	CSE 試験体系	大飯3,4号炉
体積 (m³)	約 600	約 73,000
表面積 (m²)	約 570	約 74,000
比表面積 (m-1)	約 0.96	約 1.01

(参考) CSE 試験体系

TABLE I Physical Conditions Common to All Spray Experiments

Volume above deck including drywell Surface area above deck including	21 005 ft ³	595 m ³
drywell	6 140 ft ²	569 m ²
Surface area/volume	0,293/ft	0.958/m
Cross-section area, main vessel	490 ft ²	45.5 m ²
Cross-section area, drywell	95 ft ²	8.8 m ²
Volume, middle room	2 089 ft ³	59 m ²
Surface area, middle room	1 363 ft ²	127 m ²
Volume, lower room Surface area, lower room	3 384 ft ³ 2 057 ft ²	96 m ²
Total volume of all rooms	26 477 ft ³	751 m ³
Total surface area, all rooms	9 560 ft ²	888 m ²
Drop fall height to deck	33.8 ft	10.3 m
Drop fall height to drywell bottom	50.5 ft	15.4 m

Surface coating All interior surfaces coated with phenolic paint* All exterior surfaces covered with Thermal insulation 1-in. Fiberglas insulationb

ATwo coats Phenoline 302 over one coat Phenoline 300 primer. The Carboline Co., St. Louis, Missouri. bk = 0.027 Btu/(h ft2) (°F/It) at 200°F, Type PF-615, Owens-Corning Fiberglas Corp.

記載方針の相違

差異理由

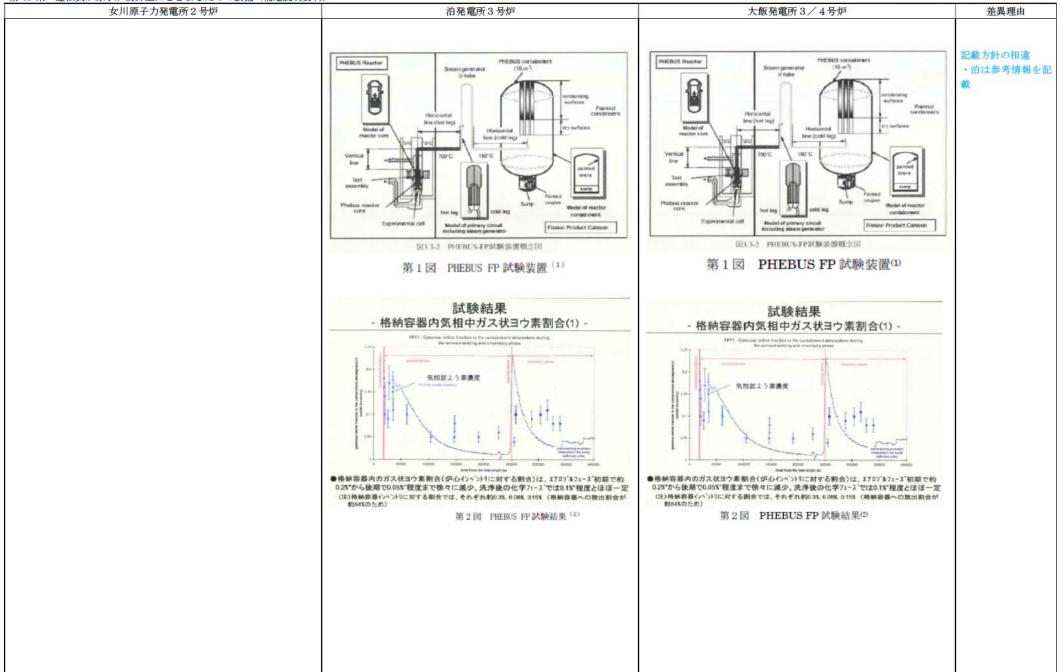
泊は感度解析結果 を記載

個別解析による相違

記載方針の相違

泊は参考情報を記

[&]quot;Two coats Phenoline 302 over one coat Phenoline 300 primer. The Carboline Co., St. Louis, Missouri.


bk = 0.027 Btu/(hft²) (°F/ft) at 200°F, Type PF-615, Owens-

Corning Fiberglas Corp.

第 59 条 連転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
	参考:その他の知見(PHEBUS FP 試験)に対する考察について PHEBUS-FP 計画は、カダラッシュ研究所のPHEBUS 研究炉を用いて、炉心から格納容器に至るFP が移行する過程を、ホットレグ、コールドレグ配管、蒸気発生器等を設置した原子炉システムを模擬した体系で総合的な実験を行ったものである。試験は約23 GWd/t燃焼した使用済み燃料を18本、未照射燃料棒2本等を使用し、十分な水蒸気雰囲気下で1996年7月に実施された。 PHEBUS FP試験装置の概念図を第1図に示す。 試験は出力を上昇させて燃料を損傷させるフェーズの後、1次回路系が閉じられて格納容器が隔離される。この状態で2日程の格納容器が隔離されたエアロゾルフェーズ、約20分の格納容器下部に沈着したFPを下部サンプに洗い流す洗浄フェーズが取られ格納容器内のFP濃度の測定が行われる。その後、2日程度の格納容器のよう素の化学挙動を確	参考:その他の知見(PHEBUS FP 試験)に対する考察について PHEBUS -FP 計画は、カダラッシュ研究所の PHEBUS 研究炉を用いて、炉心から格納容器に至る FP が移行する過程を、ホットレグ、コールドレグ配管、蒸気発生器等を設置した原子炉システムを模擬した体系で総合的な実験を行ったものである。試験は約 23GWd/t 燃焼した使用済み燃料を 18 本、未照射燃料棒 2 本等を使用し、十分な水蒸気雰囲気下で 1996 年 7 月に実施された。 PHEBUS FP 試験装置の概念図を第1図に示す。	記載方針の相違・泊は参考情報を記載
	放出後の時間が経過するにつれて約0.05 % (炉心インベントリ比) まで十分低下することが分かり、また時間の経過とともに濃度低下の傾	る格納容器内のガス状よう素 (元素状よう素及び有機よう素) の割合	
	頼性実証事業)に関する総括報告書,平成15 年	(1) 原子力発電技術機構、重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書、平成15年 (2) 原子力発電技術機構、重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書(要約版)、平成15年	

青字:記載箇所又は記載内容の相違(記載方針の相違)

緑字:記載表現、設備名称の相違(実質的な相違なし) 第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

|--|

第 59 条 運転員が原子炉制御室にとどまるための設化	備(補足説明資料		200 CO	
女川原子力発電所2号炉		泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
2-6 原子炉建屋原子炉棟の負圧達成時間について				
				2000
中央制御室の居住性に係る被ばく評価に使用して	いる原子炉建屋			型式による相違
原子炉棟の負圧達成時間70 分 (=非常用ガス処理系	(以下「SGTS」			・泊は PWR である
という。) 排風機起動60 分+排風機起動から原子炉				ため SGTS は設置し
圧達成時間10分)は、表2-6-1に示すとおり設定し				ていない。
排風機起動から負圧達成までの時間については、原				
ら原子炉建屋原子炉棟への漏えい量,原子炉建屋原				<参考>
インリーク量を考慮して算出している(別紙参照)				アニュラス負圧達
インターク重を与感して昇田している (別級参照)	0			成時間は 78 分と評
表 2-6-1 女川原子力発電所 2 号炉の原子炉建屋原子炉棟負圧通	幸成時間について			
3.2 0 1 S/IM 1777地域 2 7 4 27 M 1 # 定量所 1 # 体系压力	2 号炉			価している。(添付 1-
医7标冲导医7标构自由加朗化弹				2-1 に記載)
原子炉建屋原子炉棟自由空間体積	115, 000m ³			・泊は SBO+LUHS
SGTS 排風機流量	2,500m³/h			を想定し起動時間
原子炉建屋原子炉棟負圧達 事放発生~SGTS 排風機起動	60分			60 分+負圧達成時間
成時間 SGTS 排風機起動~負圧達成	<約10分			18 分の計 78 分とな
	<約70分			っている。
評価において使用する原子炉建屋原子炉棟負圧達成時間	70分			
ı.				1

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)	泊発電所 3 号炉 SA基準適合性 比較表 r.	3.0 青字: 記載箇所又は記載内容の相違(緑字: 記載表現、設備名称の相違((記載方針の相違) 実質的な相違なし)
サ川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
(別紙)			
原子炉建屋原子炉棟負圧達成時間の算出について 原子炉建屋原子炉棟をSGTS 排風機で排気した際に負圧達成まで に要する時間を評価する。			型式による相違 ・泊は PWR である ため SGTS は設置し ていない。
1. 評価モデル 原子炉建屋原子炉棟の圧力評価モデルを図1 に示す。 原子炉建屋原子炉棟圧力は、SGTS 排風機による排気と、原子炉建 屋原子炉棟のインリーク及び原子炉格納容器からの漏えいのバラン スにより決定されるものとする。			
原子炉機量原子炉棟 大気圧: P _{atom} 排気第 インリーク液量: Q _{int} (t) 原子炉建屋原子炉棟 等船機とい面積: A			
図 1 原子炉建屋原子炉棟の圧力評価モデル 2. 評価式 原子炉建屋原子炉棟の圧力変化率は、気体の状態方程式に従い気 体のモル数変化率で表される。			

$$\begin{split} p(t + \Delta t) &= P(t) + \Delta t \frac{RT}{T} \frac{dn}{dt} \\ &\simeq p(t + \Delta t) = P(t) + \Delta t \frac{RT}{T} \left[\frac{p(t)}{RT} (-Q_{nr} + Q_{n}(t) + Q_{rec}(t)) \right] \\ &\simeq p(t + \Delta t) = P(t) + \Delta t \frac{P(t)}{T} \left[(-Q_{nr} + Q_{n}(t) + Q_{rec}(t)) \right] \\ & \cdot \cdot \cdot (2) \end{split}$$

Q_{cur} : SGTS排風機液量[m⁵/s] Q_{ii}(t) : 原子炉速屋原子炉棟インリーク流量[m^{±/s}] $Q_{pcr}(t)$:原子炉格納容器からの漏えい液量 $[m^3/s]$

原子炉建屋原子炉棟インリーク流量 $Q_{at}(t)$ は大気圧と原子炉建屋原子炉棟の圧力 の差により流量が変化し、その流量はベルヌーイ式で規定されることから次式のと おりとなる。

$$Q_{lo}(t) = A \sqrt{\frac{2(p_{alon} - p(t))}{\rho}} \cdot \cdot \cdot (3)$$

A :原子炉建屋原子炉棟等低漏えい面積[m:]

泊発電所3号炉

表 20

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

大飯発電所 3/4号炉

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

原子炉建屋原子炉棟等価漏えい面積A は、原子炉建屋原子炉棟の設計気密度に基づき、式(3)と同じくベルヌーイ式により求められる。

原子炉格納容器からの漏えい流量 は,原子炉格納容器内のガスが 原子炉建屋原子炉棟に漏えいし,体積膨張するものとして求める。 すべての漏えいガスが凝縮せず,理想気体として存在すると仮定す ると,その流量は次式のとおりとなる。

$$Q_{PCV}(t) = V_{PCV} \times \frac{\gamma_{PCV}}{100 \cdot 24 \cdot 3600} \times \frac{p_{PCV}}{T_{PCV}} \times \frac{T}{p(t)} \cdot \cdot \cdot (4)$$

YPCV:原子炉格納容器設計漏えい率[%/日]

したがって、式(2)~(4)より、原子炉建屋原子炉棟の圧力変化量を求める評価式は以下のとおりとなる。

$$p(t + \Delta t) = p(t) + \Delta t \frac{p(t)}{V} \left(-Q_{out} + A\sqrt{\frac{2(p_{atom} - p(t))}{\rho}} + V_{PCV} \times \frac{\gamma_{PCV}}{100 \cdot 24 \cdot 3600} \times \frac{p_{PCV}}{T_{PCV}} \times \frac{T}{p(t)}\right)$$

3. 評価条件

原子炉建屋原子炉棟負圧達成時間の評価に用いる条件を表1 に示す。負圧達成と判断する基準圧力は-6.4mmAa とする。

表 1 原子炉建屋原子炉棟負圧達成時間の評価条件

項目	式中 記号	単位	値	信号
大気圧	Paten	Pa (abs) (kPa (abs))	101, 325 (101, 325)	標準大気圧
大気密度	ρ	kg/m³	1. 127	気服 40℃の密度を設定
原子炉建量原子炉模 圧力	P(t)	Pa (abs)	-	事故発生後、原子が建屋原子 炉 検圧力は大気圧まで戻る と想定し、初期圧力には大気 圧を設定
原子炉建屋原子炉模 容積	v	a2	115,000	設計值
原子炉建量原子炉棟 温度	T	К	313, 15	40℃と仮定
原子炉建屋原子炉棟 等価漏えい面積	A	¥	0, 063	原子炉建量原子炉棟の設計 気密度に基づき、ベルヌーイ 式上り算出 ⁸¹
SGTS 排風機流量	Qou	n³/s (n³/h)	0.694 (2500)	設計値(定格流量)
原子炉格納容器圧力	prev	Pa(gage) (kPa(gage))	384×10 ³ (384)	原子炉格納容器最高使用圧 力の 0.9 倍
原子炉格納容器容積	V_{PCV}	**	13, 100	取計值
原子炉格納容器湿度	T_{PCV}	К	313. 15	保守的に原子炉雑屋原子炉 棟と同じ温度を仮定
原子炉格納容器 設計編えい率	7FCF	%/H	0.5	原子炉格納容器最高使用圧 力の 0.9 倍までの設計漏え い率

^{※1} 原子が確屈原子が様の設計気密度は、「6.4mmAg の負圧状態にあるとき、内部への漏えい率が1日につき内部空間容積の50%以下」である。ここでは、保守的に50[5/日]における等価漏えい面積を使用した。

型式による相違 ・泊は PWR である ため SGTS は設置し ていない。

差異理由

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3/4号炉 4. 評価結果 原子炉建屋原子炉棟圧力の時間変化を図2 に示す。 SGTS 排風機起動後,原子炉建屋原子炉棟圧力は単調に低下し,約 型式による相違 520 秒後に負圧達成と判断する基準値 (-6.4mmAq) を下回る。 ・泊は PWR である 中央制御室の居住性に係る被ばく評価においては負圧達成時間と ため SGTS は設置し して,約520秒を丸めて保守的に10分を使用する。 ていない。 -1 「Ammyd 本様圧力[mmyd] -2 -3 -4 -5 -6 -7 負圧達成基準値(-6.4mmAq) 一8 -9 -10 400 800 1000 200 600 時間[s] 図2 原子炉建屋原子炉棟圧力の時間変化

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0 緑字:記載表現、設備名称の相違(実質的な相違なし) 第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3 / 4 号炉 差異理由 添付1-1-3 記載位置の相違 比較のため添付 1-2-7 被ばく評価に用いた気象資料の代表性について 居住性に係る被ばく評価に用いた気象資料の代表性について 1.3 を記載。 女川原子力発電所敷地内において観測した2012 年1 月から2012 敷地において観測した1997 年1 月から1997 年12 月までの1 年間 個別解析による相違 年12 月までの1年間の気象データを用いて評価を行うにあたり、当 の気象資料により解析を行うに当たり、この1年間の気象資料が長 該1年間の気象データが長期間の気象状態を代表しているかどうか 期間の気象状態を代表しているかどうかの検討を行った結果、代表 の検討をF分布検定により実施した。 性があると判断した。 以下に検定方法及び検討結果を示す。 以下に検定方法及び検定結果を示す。 1. 検定方法 (1) 檢定方法 (1) 検定に用いた観測データ a. 本居住性評価では、保守的に地上風(標高 20 m) の気象デー タを使用して被ばく評価を実施しているが、気象データの代 気象資料の代表性を確認するに当たっては、通常は被ばく評価上 重要な排気筒高風を用いて検定するものの、被ばく評価では保守的 表性を確認するにあたり、標高 20 m の観測点に加えて排気 に地上風を使用することもあることから、排気筒高さ付近を代表す 筒高さ付近を代表する標高 84 m の観測記録を用いて検定を る地上高71m の観測データに加え、参考として地上高10m の観測デ 行った。 ータを用いて検定を行った。 (2) データ統計期間 b. データ統計期間 統計年:2002 年 1 月~2011 年12 月 統計年:2011 年1 月~2020 年12 月(10 年間) 個別解析による相違

統計年:2002 年 1 月~2011 年12 月 検定年:2012 年 1 月~2012 年12 月

(3) 検定方法

不良標本の棄却検定に関するF分布検定の手順に従って検定を行った。

2. 検定結果

検定の結果,排気筒高さ付近を代表する地上高71mの観測データ については,有意水準3%で棄却された項目が0項目であり,地上高 10mの観測データについては1項目であったことから,棄却数が少 なく検定年が長期間の気象状態を代表していると判断した。

検定結果を表2-7-1 から表2-7-4 に示す。◆

統計年:2011 年1 月~2020 年12 月(10 年間 検定年:1997 年1 月~1997 年12 月

c. 検定方法

異常年かどうか、F 分布検定により検定を行った。

(2) 検定結果

→ 第1表に検定結果を示す。また、標高20mでの棄却検定表(風向別出現頻度)及び(風速階級別出現頻度)を第2表及び第3表に、標高84mでの棄却検定表を第4表及び第5表に示す。

標高20 m, 標高84 m での観測点共に27 項目のうち, 有意水準(危険率) 5 %で棄却された項目は, 標高20 m は0 個, 標高84 m は3 個(風向(2 項目)及び風速階級(1 項目))であり, いずれも過去の安全審査において代表性が損なわれないと判断された棄却項目数(1~3 項目)の範囲に入っていることから, 検定年が十分長期間の気象状態を代表していると判断される。

第1表:異常年検定結果

観測点	観測項目	検 定 結 果	
梅草 90	風向別出現頻度	楽却項目なし	
標高 20 m	風速階級別出現頻度	棄却項目なし	
	風向別出現頻度	2 項目棄却	
fot = 04	息间测击现现度	(風向:SSE,V)	
標高 84 m	en sattlikk at en utvardstat et	1 項目棄却	
	風速階級別出現頻度	(風速階級:0.5 m/s~1.4 m/s)	

記載方針の相違

・泊は図表の説明を 丁寧に記載

個別解析による相違

・棄却数の相違はあるが、代表性を確認したという内容に相違なし。

記載方針の相違

・泊は結果を表でも記載。

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
## 2-7-1 薬が検定度 (風舟) (相上高71a) 横元年・東地内日原(福東175a。 地上東71a) 2012 年 1 メー2012 年 1 1 月 2012 年 1 日 2012 年 1 1 月 2012 日 2012 日 2012 日 2012 日 2012 年 1 1 月 2012 日 2012		大飯発電所 3 / 4 号炉	差異理由 個別解析による相違
20 12 12 12 12 12 13 12 13 12 13 13	接信性 接換性 日本		
March 1000 2000	\$\frac{44-14}{34-1} \ \frac{441}{421} \ \frac{450}{341} \ \frac{622}{175} \ \frac{450}{461} \ \frac{530}{342} \ \frac{450}{460} \ \frac{630}{461} \ \frac{640}{560} \ \frac{640}{460} \ \frac{640}{560} \ \frac{640}{460} \ \frac{640}{660} \		

青字:記載箇所又は記載内容の相違(記載方針の相違) 縁字:記載表現、設備名称の相違(実質的な相違なし)

TOOK ZEN.		<i>所典主にここよ。</i> 原子力発電所2		VIII TIII CIUCO
-8 被ばく評価		気拡散評価につ		
中央制御室 放出継続時間 べて整理し、 図2-8-1 から 相対濃度及 ごとの気象条	の居住性評 を基に計算 累積出現頻 図2-8-12, び相対線量 件に対して	価で用いる相対にした値を年間に 度97%に当たる個評価結果を表2~ の評価に当たっで 相対濃度及び相い。評価結果を表表。	農度及び相ついて小さとしている8-1 に示すては、年間対線量を算	い値から順 る。着目方位 。 。 を通じて1 出し,小さ
す。				
	表 2-8-1 各評	価点における相対濃度		
放出源及び 放出源高さ [®]	評価点	着目方位	相対濃度 [s/m³]	相対線量 [Gy/Bq]
	中央制御室 換気空調系給気	SE, SSE, S, SSW,	5.8×10 ⁻⁴	4.6×10 ⁻¹⁸
原子炉格納容器 フィルタベント	中央制御室中	ENE, E, ESE, SE, SSE, S, SSW, SW	8.6×10 ⁻⁴	6.6×10 ⁻¹⁸
系排気管 (地上 36m)	出入管理所	SSW, SW, WSW, W	5. 0×10 ⁻⁴	4.3×10 ⁻¹⁸
	制御建屋出入口	SSE, S, SSW, SW, WSW, W	7. 1×10 ⁻⁴	5.6×10 ⁻¹⁸
	中央制御室換気空調系給気	SE, SSE, S, SSW,	1.3×10 ⁻³	5.0×10 ⁻¹⁸
原子炉建屋ブロ	中央制御室中	ESE, SE, SSE, S, SSW, SW	1.6×10 ⁻³	6.3×10 ⁻¹⁸
ーアウトパネル (地上 0m)	出入管理所	SSW, SW, WSW, W	9.9×10 ⁻⁴	4.4×10 ⁻¹⁸
	制御建屋出入	SSE, S, SSW, SW, WSW, W	1.5×10 ⁻³	6.0×10 ⁻¹⁸
	中央制御室 換気空調系給気	ESE	2.8×10 ⁻⁶	1.0×10 ⁻¹⁹
排気筒	中央制御室中	D- ESE	2.8×10 ⁻⁶	1.0×10 ⁻¹⁹
(地上 80m)	出入管理所	SE	4. 0×10 ⁻⁶	1.4×10 ⁻¹⁹
	制御建屋出入	ESE ESE	2.8×10 ⁻⁶	1.0×10 ⁻¹⁹
※放出源高さは放	女出エネルギーによ	る影響は未考慮		
表 2-8-2	相対濃度及び	日対線量の値(中央制御	軍室換気空調系	給気口)
		相対濃度		対線量
評価点		累積出現 値 頻度[%] [s/m³]	累積出現 頻度[%]	値 [Gy/Bq]
	原子炉格納容	97. 01 5. 8E-04	_	4. 6E-18
	器フィルタベ ント系排気管	97, 00 5, 8E-04 96, 99 5, 8E-04		4. 6E-18 4. 6E-18
		***		***
中央制御室 換気空間系	原子炉建屋ブ	97. 01 1. 3E-03 97. 00 1. 3E-03		5. 0E-18 5. 0E-18
給気口	ローアウトパ ネル	96, 99 1, 3E-03		5. 0E-18
	40.00	97. 02 2. 8E-06		1. 0E-19
	排気筒	97. 01 2. 8E-06 96. 99 2. 8E-06		1. 0E-19 1. 0E-19
		2.62-00	***	
			•	

第 59 条	運転員が原子炉制御室にとどまるための設備	(補足説明資料)

号炉	全電所3号炉 大飯発電所3/4号炉 差異理由
中央制御室中心)	
相対線量	
累積出現 値	and the last of th
頻度[%] [Gy/Bq]	記載方針の相違
	・泊も女川同様に
97. 01 6. 6E-18	積出現頻度 97%に
97. 00 6. 6E-18	たる値を用いると
96. 99 6. 6E-18	
	う評価方法に相違
97. 01 6. 3E-18	いが、その前後の
97. 00 6. 3E-18	について整理をし
96. 99 6. 3E-18	資料は作成してい
	V ₂
	V '8
97. 02 1. 0E-19	
97. 01 1. 0E-19	
96. 99 1. 0E-19	
制御建屋出入口)	
相対線量	
累積出現 値	
頻度[%] [Gy/Bq]	
97. 01 5. 6E-18	
97. 00 5. 6E-18	
96. 99 5. 6E-18	
97. 01 6. 0E-18	
97.00 6.0E-18	
96. 99 6. 0E-18	
07.00	
97. 02 1. 0E-19 97. 01 1. 0E-19	
96. 99 1. 0E-19	
30.35 1.02.15	
(出入管理所)	
相対線量	
累積出現 値	
頻度[%] [Gy/Bq]	
97. 01 4. 3E-18	
97. 00 4. 3E-18	
96. 99 4. 3E-18	
97. 01 4. 4E-18	
97. 00 4. 4E-18	
96, 99 4, 4E-18	
97. 02 1. 4E-19	
97. 01 <u>1. 4E-19</u>	
97. 97. 96.	02 I. 4E-19 01 I. 4E-19 99 I. 4E-19

第50条 運転員が原子短期御室にレジまるための設備(補足説明資料)

女川原子力発電所 2 号炉		大飯発電所 3 / 4 号炉	
第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所2号炉 2-9 地表面への沈着速度の設定について 中央制御室の居住性に係る被ばく評価において、地表面への沈着速度として、乾性沈着及び湿性沈着を考慮した沈着速度(エアロゾル粒子及び無機よう素:1.2cm/s、有機よう素4.0×10-3 cm/s)を用いている。 「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」(昭和51 年9 月28 日 原子力委員会決定、一部改訂 平成13 年3 月29 日)の解説において、葉菜上の放射性よう素の沈着率を考慮するときに、「降水時における沈着率は、乾燥時の2~3 倍大きい値となる」と示されている。これを踏まえ、湿性沈着を考慮した沈着速度は、乾性沈着による沈着も含めて乾性沈着速度(添付資料2 2-10, 2-11 を参照)の4 倍と設定した。湿性沈着を考慮した沈着速度を、乾性沈着速度の4 倍として設定した妥当性の検討結果を以下に示す。 1. 検討手法湿性沈着を考慮した沈着速度の妥当性は、乾性沈着率の累積出現頻度97%値の比が4 倍を超えていないことによって示す。乾性沈着率及び湿性沈着率は以下のように定義される。 (1) 乾性沈着率 乾性沈着率は「日本原子力学会標準原子力発電所の確率論的安全評価に関する実施基準(レベル3FSA 編):2008」(社団法人日	1. 湿性沈着を考慮した地表面沈着速度の設定について 重大事故時の居住性に係る被ばく評価においては、地表面への沈 着を評価する際、降雨による湿性沈着を考慮して地表面沈着濃度を 評価している。 以下に今回、湿性沈着を考慮した地表面沈着速度を乾性沈着の4 倍として設定した妥当性について示す。 1.1 乾性沈着率と湿性沈着率の算定方法について 以下の計算式から乾性沈着率と地表沈着率(単位時間あたりの沈 着量)を求める。ここでは放射性崩壊による減少効果については式 に含んでいないが、別途考慮している。また、放出源からの放出が 継続する時間と沈着を考慮する時間は同じとしている。 (1) 乾性沈着率 単位放出率あたりの乾性沈着率は線量目標値評価指針の式と同 様に以下の式で表される。	大飯発電所 3/4号炉	差異理由 記載位置の相違 ・比較のため。記載表現の相違 ・文乾性、変変を記載。記載表章表現現は異なるが、発生、変変をは、変変を性に、変変をは、変変をは、変変を性が、変変をは、変変をは、変変をは、変変をは、変変をは、変変をは、変変をは、変変を
(1) 乾性沈着率	(1) 乾性沈着率 単位放出率あたりの乾性沈着率は線量目標値評価指針の式と同		
$(\chi/Q)_D(x,y,z)_i = V_{d^+}\chi/Q(x,y,z)_i$			
(2) 湿性沈着率 降雨時には、評価点上空の放射性核種の地表への沈着は、降雨による影響を受ける。湿性沈着率 $(\chi/Q)_{\pi}(x,y)_i$ は「学会標準」解説 4.11 より以下のように表される。	(2) 湿性沈着率 単位放出率当たりの湿性沈着率は評価指針に降水時の沈着量評 価の参考資料として挙げられているChamberlain の研究報告*よ り濃度を相対濃度 (χ/Q) で表現すると以下の式で表される。		

第 50 宋 連転員が原子が制御室にどとよるための設備「相定説好資本 女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
$(\chi/Q)_w(x,y)_v = A \cdot \int_0^\pi \chi/Q(x,y,z)_v dz = \chi/Q(x,y,0)_v \cdot A \sqrt{\frac{\pi}{2}} \sum_u \exp\left[\frac{\hbar^2}{2\sum_u^2}\right] \cdots (2)$ $(\chi/Q)_v(x,y)_v : 時刻 i での湿性沈着率[1/m²]$ $\chi/Q(x,y,0)_v : 時刻 i での地表面高さでの相対濃度[s/n²]$ A $\therefore ウォッシュアウト係数[1/s]$ $(=9.5 \times 10^{-3} \times P_r^{v,3}$ 学会標準より) Pr_i $: 時刻 i での建屋影響を考慮した放射性製の鉛直方向の拡散幅[m] h : 放出高さ[m]$	$D_{ri} = \Lambda \cdot \int_{0}^{\infty} \chi/Q_{(z)} dz$ (2) Dri :単位放出率あたりの湿性沈着率 $[1/n^{2}]$		記載位置の相違 ・比較のため添付 1- 2-18 を記載。 記載表現の相違 ・文章表表現は異なる が、乾世率を具体的に 評価し、湿性沈着率と湿性 沈着率と湿性は4倍す ることをの保守性を説 明する方針に相違な い。
乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度97%値と、乾性沈着率の累積出現頻度97%値の比は以下で定義される。 <u> 乾性沈着率と湿性沈着率を合計した沈着率の累積出現頻度97%値</u> <u> 乾性沈着率の累積出現頻度97%値</u> <u> 乾性沈着率の累積出現頻度97%値</u> <u> 収金・$\chi/Q(x,y,z)_i + \chi/Q(x,y,0)_i \cdot A_i \sqrt{\frac{\pi}{2}} \Sigma_{u} \exp\left[\frac{h^2}{2\Sigma_{u}^2}\right]_{una}$ $(Va \cdot \chi/Q(x,y,z)_i)_{una}$ ($Va \cdot \chi/Q(x,y,z)_i)_{una}$</u>	(3) 地表沈着率 上記(1)式と(3)式から、地表沈着率は、以下の式で表される。 A=D _{4i} +D _{ri} =V _{5d} ·χ/Q ₀ +Λ·χ/Q ₀ ·√2π·Σz (4) A:単位時間あたりの地表沈着率 今回の評価においてグランドシャイン線量が大きい評価点について、地表沈着率は年間を通じて1時間ごとの気象条件に対して、(1)式及び(3)式から各時間での沈着率を算出し、そのうちの年間97 %積算値を想定した乾性沈着率(すなわちχ/Qの97 %積算値×沈着速度)との比を(5)式のようにとると、第1表〜第2表のとおり、約1.2〜1.3倍であった。地表面沈着率の累積出現頻度97%の求め方については添付1に示す。 D _{4i} +D _{ri} = (V _{5d} ·χ/Q ₀ ·+Λ·χ/Q ₀ ·√2π·Σz) ₀ -78. (5) D _{di} = (V _{5d} ·χ/Q ₀ ·+Λ·χ/Q ₀ ·√2π·Σz) ₀ -78. (5) (1) ₉₇₈ : 年間の97%積算値 χ/Q ₀₁ : 時刻tの地上の相対濃度[s/m²](地上放出時の軸上濃度)		

大飯発電所 3/4号炉

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

連転員か原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

2. 評価結果

表2-9-1 に中央制御室滞在時及び入退城時の評価点における検討結果を示す。

乾性沈着率に放出点と同じ高さの相対濃度を用いたこき、乾性沈 着率と湿性沈着率を合計した沈着率の累積出現頻度97%値と、乾性 沈着率の累積出現頻度97%値の比は1.0~1.2 程度となった。

以上より、湿性沈着を考慮した沈着速度を乾性沈着速度の4 倍と 設定することは保守的であるといえる。

表2-9-1 沈着率評価結果

放出源及び 放出源高さ*	評価点	①乾性沈着率 (1/m²)	②乾性沈着率 +湿性沈着率 (1/m²)	比 (②/①)
	中央制御室 換気空調系給気口	約 1.7×10 ⁻⁶	約 2.0×10 ⁻⁶	約1.2
原子炉格納容器 フィルタベント	中央制御室中心	約 2.6×10 ⁻⁶	約 2.7×10-6	約1.0
系排気管 (地上 36m)	出入管理所	約 1.5×10 ⁻⁶	約 1.8×10 ⁻⁶	約1.2
	制御建屋出入口	約2.1×10 ⁻⁴	約 2.6×10 ⁻⁶	約1.2
原子炉達屋ブロ ーアウトパネル - (地上 0m)	中央制御室 換気空調系給気口	約3.9×10 ⁻⁶	約 4.1×10 ⁻⁶	約1.1
	中央制御室中心	₩1 4.8×10 ⁻⁶	約5.5×10 ⁻⁶	#9 1. 1
	出入管理所	₩j 3. 0×10 ⁻⁶	約3.3×10 ⁻⁶	#9 1. 1
	制御建屋出入口	約 4.5×10 ⁻⁶	約5.3×10 ⁻⁶	#9 1. 2
	中央制御室 換気空調系給気口	約 8.4×10 ⁻⁹	約9.0×10 ⁻⁹	#9 1. 1
排気筒 (地上 80m)	中央制御室中心	約 8. 4×10 ⁻⁹	約9.0×10 ⁻⁹	#9 1. 1
	出入管理所	約 1. 2×10 ⁻⁸	約 1.3×10 ⁻⁸	#1 1. 1
	制御建屋出入口	約 8. 4×10 ⁻⁹	約 9. 0×10 ⁻⁹	#3 1. 1

※放出源高さは、放出エネルギーによる影響は未考慮

第1表 泊発電所3号炉における湿性沈着量評価(中央制御室入口)

泊発電所3号炉

累積出現頻度 97 %値	$\chi/Q(s/m^3)$	約 5.7×10 ⁻⁴
条慎山先頻及 91 mill	① 乾性沈着率(1/m²)	約 1.7×10 ⁻⁶
	② 地表面沈着率(1/m²)	約 2. 2×10 ⁻⁶
累積出現頻度 97 %値	(乾性+湿性)	₩J 2. 2×10
	降雨量(mm/h)	2
降雨時と非降雨	約1.3	

第2表 泊発電所3号炉における湿性沈着量評価(出入管理建屋入口)

田林山田松佐 02 8/4	$\chi/Q(s/m^3)$	約3.8×10-4
累積出現頻度 97 %値	① 乾性沈着(1/m²)	約1.1×10 ⁻⁶
	② 地表面沈着率(1/m²)	約 1. 4×10 ⁻⁶
累積出現頻度 97 %値	(乾性+湿性)	#J 1.4×10
	降雨量(mm/h)	0
降雨時と非降雨	時の比 (②/①)	約1.2

以上より、湿性沈着を考慮した沈着率は、 χ/Q 97 %積算値を使用した場合の乾性沈着率に比べ、4 倍を下回る結果が得られたことから、今回の評価において湿性沈着を考慮した沈着速度を乾性沈着の4 倍とすることは保守的な評価であると考えられる。

なお、参考として出入管理建屋入口における地表沈着率の算出に 使用する降雨量を、保守的な想定として年間97%積算値の降雨があっ たものと仮定した場合の同評価結果を添付2に示す。

また、評価に使用するパラメータを第3表に示す。

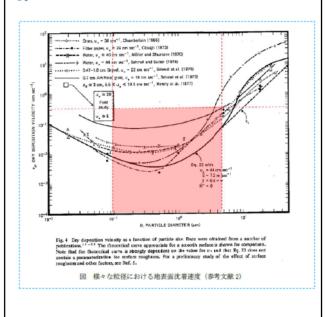
第3表 地表沈着関連パラメータ

パラメータ	値	備考
乾性沈着連度 V _{el}	0.3 (cm/s)	NUREG/CR-4551 Vol. 2
鉛直拡散幅 Σz	気象指針に基づき計算 $\Sigma_z = \sqrt{(\sigma_z^2 + \mathbf{c} \mathbf{A}/\pi)}$	1時間ごとの値を算出。 - 建屋投影面積 A: 2700 (m²) - 形状係数 c: 0.5 - σ _s : 鉛直方向の平地の拡散パラメータ (m)
洗净係数 Λ	Λ=9,5E-5×Pr ^{0.8} (s ⁻¹) Pr : 降水強度 (mm/h)	日本原子力学会標準「原子力発電所の確率論的 安全評価に関する実施基準 (レベル 3PSA 編): 2008」(NUREG-I150 解析使用値として引用)
気象条件	1997年	1997年1月~1997年12月の1時間ごとの風向, 風速,降水量を使用

記載位置の相違 ・比較のため添付 1-2-18 を記載。

差異理由

記載表現の相違

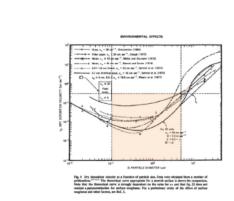

・文章表現は異なる が、乾性沈着率と湿性沈着率を具体的に 評価し、合計の地表 沈着率と湿性沈着率 の比を評価し4倍す ることの保守性を説 明する方針に相違ない。

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0 緑字:記載表現、設備名称の相違(実質的な相違なし) 第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3/4号炉 差異理由 記載位置の相違 2. 乾性沈着速度の設定について 2-10 エアロゾル粒子の乾性沈着速度について ・比較のため添付 1 2-18 を記載。 中央制御室の居住性評価では、地表面へのエアロゾル粒子の沈着 記載方針の相違 速度として乾性沈着及び降水による湿性沈着を考慮した沈着速度 泊の資料構成では 1.2cm/s, 添付資料2 2-9 参照) を用いており, 沈着速度の評価に当 章が変わったポイン たっては、乾性沈着速度として0.3cm/s を用いている。乾性沈着速 トに当たるため、特 度の設定の考え方を以下に示す。 段書き出しの文章は エアロゾル粒子の乾性沈着速度は、NUREG/CR-4551※1に基づき 記載していない。 乾性の沈着速度0.3 cm/s はNUREG/CR-4551 (参考文献1) に基づい 0.3cm/s と設定した。NUREG/CR-4551 では郊外を対象としており、 て設定している。NUREG/CR-4551 では郊外を対象とし、郊外とは道 郊外とは道路、芝生及び木々で構成されるとしている。原子力発電 路,芝生及び木・潅木の葉で構成されるとしている。原子力発電所 所内は舗装面が多く、建屋屋上はコンクリートであるため、この沈 内も同様の構成であるため、郊外における沈着速度が適用できると 着速度が適用できると考えられる。 考えられる。 また、NUREG/CR-4551 では0.5μm~5μmの粒径に対して検討され また、NUREG/CR-4551 では0.5 μm~5μmの粒径に対して検討され ているが、原子炉格納容器内の除去過程で、相対的に粒子径の大き ており、種々のシビアアクシデント時の粒子状物質の粒径の検討 なエアロゾル粒子は原子炉格納容器内に十分捕集されるため、粒径 (添付3参照)から、居住性評価における粒子状物質の大部分は、 この粒径範囲内にあると考えられる。 の大きなエアロゾル粒子は放出されにくいと考えられる。 また、W.G.N.Slinn の検討※2 によると、草や水、小石といった また、W.G.N. Slinn の検討によると、草や水、小石といった様々 様々な材質に対する粒径に応じた乾性の沈着速度を整理しており、 な材質に対する粒径に応じた乾性の沈着速度を整理しており、これ

これによると0.1μm~5μm の粒径では沈着速度は0.3cm/s 程度(図

2-10-1) である。

によると0.1 μm~5 μm の粒径では沈着速度は0.3 cm/s 程度であ

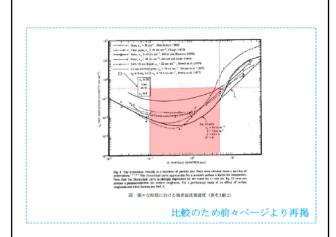

第 59 余 連転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
	また、中央制御室における被ばく評価へのシナリオを考慮した場		記載方針の相違
	合、エアロゾルの粒径の適用性は以下のとおりである。		・泊は、エアロゾル
	CONTROL OF THE CONTRO		粒形の適用性につい
	シビアアクシデント時に、放射性物質を含むエアロゾルの放出に		て記載している。
	おいては、以下の除去過程が考えられる。		記載方針の相違
	①格納容器内での沈着による除去過程		
	格納容器内でのエアロゾルの重力沈降速度は、エアロゾルの粒 径の二乗に比例する。例えば、エアロゾル粒径が5 μm の場合、		
	全の 元素に比例する。例えば、エブログル程在から μm の場合、 その 沈着率は、NUPEC 報告書(参考文献3)より現行考慮している		
	エアロゾルの粒径 1 μm の場合に比べ 25 倍となる。したがって、		
	粒径の大きいエアロゾルほど格納容器内に捕獲されやすくなる。		
	②アニュラス空気浄化設備微粒子フィルタによる除去過程		
	アニュラス空気浄化設備の微粒子フィルタについては、最大透		
	過粒子径 $0.15~\mu\mathrm{m}$ を考慮した単体試験にて、フィルタ効率性能		
	(99.97 %以上)を確認している。		
	微粒子フィルタは、粒子径 0.15 μm が最も捕獲しにくいこと		
	が明らかとなっており (Ref. JIS Z 4812) , 粒子径がこれにより 大きくなると、微粒子フィルタの捕獲メカニズム (慣性衝突効果		
	等)によりフィルタ繊維に粒子が捕獲される割合が大きくなる。以		
	上より, 5 μm 以上の粒径の大きいエアロゾルは, 最もフィルタ		
	を透過しやすい粒子径 0.15μm に比べ相対的に捕獲されやすいと		
	いえる。		
	このため、中央制御室の被ばく評価シナリオにおいては、アニュラ		
	ス空気浄化設備起動前では上記①の除去過程にて、相対的に粒子径		
	の大きいエアロゾルは多く格納容器内に捕獲される。また、アニュラ		
	ス空気浄化系起動後では、①及び②の除去過程で、5 μm 以上の粒		
	径のエアロゾルは十分に捕獲され、それら粒径の大きなエアロゾル の放出はされにくいと考えられる。		
	9000		
以上のことから、中央制御室の居住性に係る線量影響評価におけ	以上より、種々のシビアアクシデント時のエアロゾルの粒径の検		
るエアロゾル粒子の乾性の沈着速度として0.3cm/sを適用できると判断した。	計から粒径の大部分は 0.1 μm~5 μm の範囲にあること, また, 沈 着速度が高い傾向にある粒径が大きなエアロゾルは大気へ放出され		
助した。	にくい傾向にあることから、居住性評価における乾性沈着速度とし		
	て 0.3 cm/s を適用できると考えている。		

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由

大飯発電所 3/4号炉



第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

図2-10-1 様々な粒径における地表沈着速度 (Nuclear Safety Vol. 19 × 2)

※1 J.L. Sprung 等: Evaluation of severe accident risks: quantification of major input parameters, $\mbox{NUREG/CR-4551 Vol.}\ 2$ Rev. 1 Part 7, 1990

※ 2 W. G. N. Slinn : Environmental Effects, Parameterizations for Resuspension and forWet and Dry Deposition of Farticles and Gases for Use in Radiation Dose Calculations, Nuclear Safety Vol. 19 No. 2, 1978

泊発電所3号炉

参考文献1

J.L. Sprung 等: Evaluation of severe accident risks: quantification of major input parameters, NUREG/CR-4451 Vol. 2 Rev. 1 Part 7, 1990

参考文献2

W. G. N. Slinn : Environmental Effects, Parameterizations for Resuspension and for Wet and Dry Deposition of Particles and Gases for Use in Radiation Dose Calculations, Nuclear Safety Vol. 19 No. 2, 1978

参考文献3

NUPEC「平成9 年度 NUREG-1465 のソースタームを用いた放射性 物質放出量の評価に関する報告書 (平成10 年3 月)」

記載方針の相違

泊は、エアロゾル 粒形の適用性につい て記載しており、そ の参考文献を記載し ている。

添付3

大飯発電所 3/4号炉

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

(参考)

炉心の著しい損傷が発生した場合のエアロゾル粒子の粒径について

射性物質を含むエアロゾル粒子の粒径分布として本評価で設定してい | ゾルの粒径分布として0.1 μm~5 μm の範囲であることは、粒径分 る「0.1μm 以上」は、粒径分布に関して実施されている研究を基に設 布に関して実施されている研究を基に設定している。 定している。

炉心の著しい損傷が発生した場合には原子炉格納容器内にスプレイ 等による注水が実施されることから、炉心の著しい損傷が発生した場 | れることから、シビアアクシデント時の粒径分布を想定し「CV 内での 合の粒径分布を想定し、「原子炉格納容器内でのエアロゾルの挙動」 及び「原子炉格納容器内の水の存在の考慮」といった観点で実施され ┃ 施された第1 表の②, ⑤に示す試験等を調査した。さらに、シビアア た表1 の②、⑤に示す試験等を調査した。さらに、炉心の著しい損傷 クシデント時のエアロゾルの粒径に対する共通的な知見とされている が発生した場合のエアロゾル粒子の粒径に対する共通的な知見とされ | 情報を得るために、海外の規制機関 (NRCなど) や各国の合同で実施さ ている情報を得るために、海外の規制機関 (NRC 等) や各国の合同で れているシビアアクシデント時のエアロゾルの挙動の試験等 (第1表の 実施されている炉心の著しい損傷が発生した場合のエアロゾルの挙動 ┃①, ②, ④) を調査した。以上の調査結果を第1表に示す。 の試験等(表1の①、③、④)を調査した。以上の調査結果を表1に 示す。

この表で整理した試験等は、想定するエアロゾル発生源、挙動範囲 (原子炉格納容器、一次冷却材配管等),水の存在等に違いがあるが、 エアロゾル粒子の粒径の範囲に大きな違いはなく、原子炉格納容器内 環境でのエアロゾル粒子の粒径はこれらのエアロゾル粒子の粒径と同 等な分布範囲を持つものと推定できる。

したがって、過去の種々の調査・研究により示されている範囲を包 含する値として、0.1 μm 以上のエアロゾル粒子を想定することは妥当 する値として、0.1 μm~5 μm の範囲のエアロゾルを想定すること である。

番号	試験名又は報告書名等	エアロブル粒径 (μm)	備考
①	LACE LA2®1	約 0,5~5 (図 1 参照)	炉心の著しい損傷が発生した場合の評価に使 用されるコードでの原子炉格納容器閉じ込め 機能喪失を想定した条件で実施した比較試験
2	NUREG/CR-5901 ^{40/2}	0.25~2.5 (参考1-1)	原子炉格納容器内に木が存在し、溶融炉心を 養っている場合のスクラビング効果のモデル 化を紹介したレポート
3	AECL が実施した試験 ^{を3}	0,1~3,0 (参考1-2)	炉心の著しい損傷が発生した場合の炉心損傷 を考慮した1次系内のエアロゾル挙動に着目 した実験
a	PBF-SFD ^{® 3}	0.29~0.56 (参考1-2)	切心の著しい損傷が発生した場合の切心損傷 を考慮した1次系内のエアロゾル挙動に着目 した実験
0	PHEBUS-FP ^{⊕3}	0.5~0.65 (参考1-2)	炉心の著しい損傷が発生した場合のP単動の 実験(左記のエアログル粒子の粒径はPHEBUS FP実験の原子炉格納容器内のエアログル挙動 に着目した実験の結果)

泊発電所3号炉

シビアアクシデント時のエアロゾルの粒径について

炉心の著しい損傷が発生した場合に原子炉格納容器内で発生する放 シビアアクシデント時にCV 内で発生する放射性物質を含むエアロ

シビアアクシデント時にはCV 内にスプレイ等による注水が実施さ | エアロゾルの挙動| 及び「CV 内の水の存在の考慮| といった観点で実

この表で整理した試験等は、想定するエアロゾル発生源、挙動範囲 (CV. RCS 配管等)及び水の存在等に違いがあるが、エアロゾル粒径 の範囲に大きな違いはなく,CV 内環境でのエアロゾルの粒径はこれら のエアロゾル粒径と同等な分布範囲を持つものと推定できる。

従って、過去の種々の調査・研究により示されている範囲をカバー は妥当であると考える。

第1表 シビアアクシデント時のエアロゾル粒径についての文献調査結果

番号	試験名又は報告書名等	エアロゾル粒径 (μm)	備考
1	LACE LA2*1	約 0.5~5 (第 1 図参照)	シピアアクシデント時の評価に使 用されるコードでの格納容器閉じ 込め機能喪失を想定した条件とし た比較試験。
2	$\mathrm{NUREG/CR-5901}^{\#2}$	0.25~2.5 (添付-1)	C V内に水が存在し、溶融炉心を覆っている場合のスクラビング効果 のモデル化を紹介したレポート。
3	AECL が実施した実験 ^{※3}	0.1~3.0 (添付-2)	シビアアクシデント時の炉心損傷 を考慮した1次系内のエアロゾル 挙動に着目した実験。
4	PBF−SFD ^{⊕3}	0.29~0.56 (添付-2)	シピアアクシデント時の炉心損傷 を考慮した1次系内のエアロゾル 挙動に着目した実験。
5	PHÉBUS FP ^{#3}	0.5~0.65 (添付-2)	シピアアクシデント時のFP 挙動の 実験。(左記のエアロゾル粒径は PHÉBUS FP 実験のCV内のエアロゾル 挙動に着目した実験の結果。)

記載位置の相違 ・比較のため添付 1 2-18 を記載。

差異理由

記載表現の相違

・文献調査の上限値 も踏まえ、泊では上 限値も記載してい

記載表現の相違

• 同上

青字:記載箇所又は記載内容の相違(記載方針の相違)

緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
参考文献 ※1 J. H. Wilson and P. C. Arwood, Summary of Pretest Aerosol Code Calculations for LWRAerosol Containment Experiments (LACE) LA2, ORNL ※2 D. A. Powers and J. L. Sprung, NUREG/CR-5901, A Simplified Model of Aerosol Scrubbingby a Water Pool Overlying Core Debris Interacting With Concrete ※3 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS, NEA/CSNI/R (2009)5	参考文献 ※1: J. H. Vilson and P. C. Arwood, Summary of Pretest Aerosol Code Calculations for LWR Aerosol Containment Experiments (LACE) LAZ. OBNL A. L. Bright, J. H. Wilson and P. C. Arwood, PREIEST AEROSOL CODE COMPARISONS FOR LWR AEROSOL CONTAINMENT TESTS LAI AND LAZ ※2: D. A. Powers and J. L. Sprung, NUREC/CR-5901, A Simplified Model of Aerosol Scrubbing by a Water Pool Overlying Core Debris Interacting With Concrete ※3: STATE-OF-THE-ART REPORT ON MUCLEAR AEROSOLS, NEA/CSNI/R (2009)5		
BALLAY PRETEST AEROSIM-M (US) CONTAIN (US) MCT-2 (US) NAULA-5 (PN) NAULA-6 (US) HEMOVAL (JM) HEMOVAL (JM) Fig. 11. LA2 pretest calculations — aerodynamic mass median diameter vs time. 図 1 LACE LA2 でのコード比較試験で得られた エアロゾル粒子の粒径の時間変化グラフ	B ARROSIM M (UK) CONTAIN (UR) CONTAIN (UR) ARAJA (US) MAULA-5 (PH) NAUA-1 (US) MAULA-1 (US)		

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料	汨発電所3号炉 SA基準適合性 比較表 r.	3.0 緑字:記載表現、設備名称の相違(実質的な相違なし)
第30米 連転員が原子を同時至にことよるための欧洲	泊発電所 3 号炉	大飯発電所 3/4号炉	差異理由
参考 1-1 NUREG/CR-5901 の抜粋	添付-1 NUREG/CR-5901 の抜粋		
so-called "quench" temperature. At temperatures below this quench temperature the kinetics of gas phase reactions among CO, CO ₂ . H ₂ , and H ₂ O are too slow to maintain chemical equilibrium on useful time scales. In the sharp temperature drop created by the water pool, very hot gases produced by the core debris are suddenly cooled to temperatures such that the gas composition is effectively "frozen" at the equilibrium composition for the "quench" temperature. Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of the quench temperature was assumed to be uniformly distributed over this temperature range for the calculations done here.	so-called "quench" temperature. At temperatures below this quench temperature the kinetics of gas phase reactions among CO, CO ₂ , H ₂ , and H ₂ O are too slow to maintain chemical equilibrium on useful time scales. In the sharp temperature drop created by the water pool, very hot gases produced by the core debris are suddenly cooled to temperatures such that the gas composition is effectively "frozen" at the equilibrium composition for the "quench" temperature. Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of the quench temperature was assumed to be uniformly distributed over this temperature range for the calculations done here.		
(6) Solute Mass. The mass of solutes in water pools overlying core debris attacking concrete has not been examined carefully in the experiments done to date. It is assumed here that the logarithm of the solute mass is uniformly distributed over the range of ln(0.05 g/kilogram H ₂ O) = -3.00 to ln(100 g/kilogram H ₂ O) = 4.61.	(6) Solute Mass. The mass of solutes in water pools overlying core debris attacking concrete has not been examined carefully in the experiments done to date. It is assumed here that the logarithm of the solute mass is uniformly distributed over the range of ln(0.05 g/kilogram H ₂ O) = -3.00 to ln(100 g/kilogram H ₂ O) = 4.61.		
(7) <u>Volume Fraction Suspended Solids</u> . The volume fraction of suspended solids in the water pool will increase with time. Depending on the available facilities for replenishing the water, this volume fraction could become quite large. Models available for this study are, however, limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is taken to be uniformly distributed over the range of 0 to 0.1.	(7) Yolume Fraction Suspended Solids. The volume fraction of suspended solids in the water pool will increase with time. Depending on the available facilities for replenishing the water, this volume fraction could become quite large. Models available for this study are, however, limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is taken to be uniformly distributed over the range of 0 to 0.1.		
(8) <u>Density of Suspended Solids</u> . Among the materials that are expected to make up the suspended solids are $Ca(OH)_2(\rho = 2.2 g/cm^3)$ or $SiO_2(\rho = 2.2 g/cm^3)$ from the concrete and $UO_2(\rho = 10 g/cm^3)$ or $ZrO_2(\rho = 5.9 g/cm^3)$ from the core debris or any of a variety of acrosol materials. It is assumed here that the material density of the suspended solids is uniformly distributed over the range of 2 to 6 g/cm^3 . The upper limit is chosen based on the assumption that suspended UO_2 will hydrate, thus reducing its effective density. Otherwise, gas sparging will not keep such a dense material suspended.	(8) <u>Density of Suspended Solids</u> . Among the materials that are expected to make up the suspended solids are $Ca(OH_2)$ ($\rho=2.2$ g/cm ³) or SiO_2 ($\rho=2.2$ g/cm ³) or SiO_2 ($\rho=2.2$ g/cm ³) or any of a variety of aerosol materials. It is assumed here that the material density of the suspended solids is uniformly distributed over the range of 2 to 6 g/cm ³ . The upper limit is chosen based on the assumption that suspended SiO_2 the density of the suspended solids is sparging will not keep such a dense material suspended.		
(9) Surface Tension of Water. The surface tension of the water can be increased or decreased by dissolved materials. The magnitude of the change is taken here to be $S\sigma(w)$ where S is the weight fraction of dissolved solids. The sign of the change is taken to be minus or plus depending on whether a random variable ϵ is less than 0.5 or greater than or equal to 0.5. Thus, the surface tension of the liquid is:	(9) Surface Tension of Water. The surface tension of the water can be increased or decreased by dissolved materials. The magnitude of the change is taken here to be Sσ(w) where S is the weight fraction of dissolved solids. The sign of the change is taken to be minus or plus depending on whether a random variable ε is less than 0.5 or greater than or equal to 0.5. Thus, the surface tension of the liquid is:		
$\sigma_1 = \begin{cases} \sigma(\nu) \ (1-S) & for \ \epsilon < 0.5 \\ \sigma(\nu) \ (1+S) & for \ \epsilon \ge 0.5 \end{cases}$	$\sigma_1 = \begin{cases} \sigma(w) \ (1-5) & \text{for } \epsilon < 0.5 \\ \sigma(w) \ (1+5) & \text{for } \epsilon \ge 0.5 \end{cases}$		
where $\sigma(w)$ is the surface tension of pure water.	where $\sigma(w)$ is the surface tension of pure water.		
(10) Mean Aerosol Particle Size. The mass mean particle size for aerosols produced during mel/concrete interactions is known only for situations in which no water is present. There is reason to believe smaller particles will be produced if a water pool is present. Examination of aerosols produced during mel/concrete interactions shows that the primary particles are about 0.1 μm in diameter. Even with a water pool present, smaller particles would not be expected.	(10) Mean Aerosol Particle Size. The mass mean particle size for aerosols produced during melt/concrete interactions is known only for situations in which no water is present. There is reason to believe smaller particles will be produced if a water pool is present. Examination of aerosols produced during melt/concrete interactions shows that the primary particles are about 0.1 μm in diameter. Even with a water pool present, smaller particles would not be expected.		

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

差異理由

大飯発電所 3 / 4 号炉

Consequently, the natural logarithm of the mean particle size is taken here to be uniformly distributed over the range from $\ln (0.25 \, \mu m) = -1.39 \text{ to } \ln (2.5 \, \mu m) = 0.92$.

(11) Geometric Standard Deviation of the Particle Size Distribution. The aerosols produced during core debris-concrete interactions are assumed to have lognormal size distributions. Experimentally determined geometric standard deviations for the distributions in cases with no water present vary between 1.6 and 3.2. An argument can be made that the geometric standard deviation is positively correlated with the mean size of the aerosol. Proof of this correlation is difficult to marshall because of the sparse data base. It can also be argeed that smaller geometric standard deviations will be produced in situations with water present. It is unlikely that data will ever be available to demonstrate this contention. The geometric standard deviation of the size distribution is assumed to be uniformly distributed over the range of 1.6 to 3.2. Any correlation of the geometric standard deviation with the mean size of the aerosol is neglected.

(12) Aerosol Material Density. Early in the course of core debris interactions with concrete, UO₂ with a solid density of around 10 g/cm² is the predominant aerosol material. As the interaction progresses, oxides of iron, manganese and chromium with densities of about 5.5 g/cm² and condensed products of concrete decomposition such as Na₂O, K₂O, Al₂O₃ SiO₂, and CaO with densities of 1.3 to 4 g/cm² become the dominant aerosol species. Condensation and reaction of water with the species may alter the apparent material densities. Coagglomeration of aerosolized materials also complicates the prediction of the densities of materials that make up the aerosol. As a result the material density of the aerosol is considered uncertain. The material density used in the calculation of aerosol trapping is taken to be an uncertain parameter uniformly distributed over the range of 1.5 to 10.0 g/cm².

Note that the mean aerosol particle size predicted by the VANESA code [6] is correlated with the particle material density to the -1/3 power. This correlation of aerosol particle size with particle material density was taken to be too weak and insufficiently supported by experimental evidence to be considered in the uncertainty analyses done here.

(13) Initial Bubble Size. The initial bubble size is calculated from the Davidson-Schular equation:

$$D_b = \epsilon \left(\frac{6}{\pi}\right)^{1/3} \frac{V_5^{0.4}}{g^{0.2}} cm$$

where ϵ is assumed to be uniformly distributed over the range of 1 to 1.54. The minimum bubble size is limited by the Fritz formula to be:

$$D_h = 0.0105 \ \Psi[\sigma_t / g(\rho_t - \rho_s)]^{1/2}$$

where the contact angle is assumed to be uniformly distributed over the range of 20 to 120°. The maximum bubble size is limited by the Taylor instability model to be:

Consequently, the natural logarithm of the mean particle size is taken here to be uniformly distributed over the range from $\ln (0.25 \ \mu m) = -1.39$ to $\ln (2.5 \ \mu m) = 0.92$.

泊発電所3号炉

(11) Geometric Standard Deviation of the Particle Size Distribution. The aerosols produced during core debris-concrete interactions are assumed to have lognormal size distributions. Experimentally determined geometric standard deviations for the distributions in cases with no water present vary between 1.6 and 3.2. An argument can be made that the geometric standard deviation is positively correlated with the mean size of the aerosol. Proof of this correlation is difficult to marshall because of the sparse data base. It can also be argued that smaller geometric standard deviations will be produced in situations with water present. It is unlikely that data will ever be available to demonstrate this contention. The geometric standard deviation of the size distribution is assumed to be uniformly distributed over the range of 1.6 to 3.2. Any correlation of the geometric standard deviation with the mean size of the aerosol is neglected.

(12) <u>Acrosol Material Density</u>. Early in the course of core debris interactions with concrete, UO₂ with a solid density of around 10 g/cm³ is the predominant aerosol material. As the interaction progresses, oxides of iron, manganese and chromium with densities of about 5.5 g/cm³ and condensed products of concrete decomposition such as Na₂O, K₂O, A₂O, S₂O₂, and CaO with densities of 1.3 to 4 g/cm³ become the dominant aerosol species. Condensation and reaction of water with the species may alter the apparent material densities. Coagglomeration of aerosolized materials also complicates the prediction of the densities of materials that make up the aerosol. As a result the material density of the aerosol is considered uncertain. The material density used in the calculation of aerosol trapping is taken to be an uncertain parameter uniformly distributed over the range of 1.5 to 10.9 g/cm³.

Note that the mean aerosol particle size predicted by the VANESA code [6] is correlated with the particle material density to the -1/3 power. This correlation of aerosol particle size with particle material density was taken to be too weak and insufficiently supported by experimental evidence to be considered in the uncertainty analyses done here.

(13) Initial Bubble Size. The initial bubble size is calculated from the Davidson-Schular

$$D_b = \epsilon \left(\frac{6}{\pi}\right)^{1/3} \frac{V_S^{0.4}}{g^{0.2}} cm$$

where ϵ is assumed to be uniformly distributed over the range of 1 to 1.54. The minimum bubble size is limited by the Fritz formula to be:

$$D_k = 0.0105 \ \Psi[\sigma_i / g(\rho_i - \rho_e)]^{1/2}$$

where the contact angle is assumed to be uniformly distributed over the range of 20 to 120° . The maximum bubble size is limited by the Taylor instability model to be:

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

差異理由

大飯発電所 3/4号炉

参考 1-2	STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS.
	NEA/CSNI/R(2009)5 の抜粋及び試験の概要

9.2.1 Aerosals in the RCS

9.2.1.1 AECL

The experimenters conclude that spherical particles of around 0.1 to 0.3 µm formed (though their composition was not established) then these agglomerated giving rise to a mixture of compact particles between [0.1 and 3.0 µm]m in size at the point of measurement. The composition of the particles was found to be dominated by Cs, Sn and U: while the Cs and Sn mass contributions remained constant and very similar in mass, U was relatively minor in the first hour at 1860 K evolving to be the main contributor in the third (very approximately: 42 % U, 26 % Sn, 33 % Cs). Neither break down of composition by particle size nor statistical size information was measured.

9.2.1.2 PBF-SFD

Further interesting measurements for purposes here were six isokinetic, sequential, filtered samples located about 13 m from the bundle outlet. These were used to follow the evolution of the aerosel composition and to examine particle size (SEM). Based on these analyses the authors state that particle geometrical-mean diameter varied over the range[0.29-0.56 µm]elimination of the first filter due to it being early with respect to the main transient gives the range 0.32-0.26 µm] while standard deviation fluctuated between 1.6 and 2.06. In the images of filter deposits needle-like forms are seen. Turning to composition, if the first filter sample is eliminated and "below detection limit" is taken as zero, for the structural components and volatile fission products we have in terms of precentages the values given in Table 9.2-1.

9.2.2 Aerosols in the containment

9.2.2.1 PHÉBUS FP

The acrosol size distributions were fairly lognormal with an average size (AMMD) in PTO of 2.4 µm at the end of the 5-hour bundle-degradation phase growing to 3.5 µm before stabilizing at 3.35 µm; acrosol size in FPT1 was slightly larger at between 3.5 and 4.0 µm. Geometric-mean diameter (4.a) of particles in FPT1 was seen to be between 0.5 and 0.65 µm² a SEM image of a deposit is shown in Fig. 9.2-2. In both tests the geometric standard deviation of the lognormal distribution was fairly constant at a value of around 2.0. There was clear evidence that acrosol composition varied very little as a function of particle size except for the late settling phase of the FPT1 test: during this period, the smallest particles were found to be cesium-rich. In terms of chemical speciation, X-ray techniques were used on some deposits and there also exist many data on the solubilities of the different elements in numerous deposits giving a clue as to the potential forms of some of the elements. However, post-test oxidation of samples cannot be excluded since storage times were long (months) and the value of speculating on potential speciation on the basis of the available information is debatable. Nevertheless, there is clear evidence that some elements reached higher states of oxidation in the containment when compared to their chemical form in the circuit.

試験名又は報告書名等	試験の概要
AECL が実施した試験	CANDU のジルカロイ被覆管燃料を使用した、1 次系での核分裂生成物の挙動についての試験
PBF-SFD	**国のアイダホ国立工学環境研究所で実施された戸心損傷状態での燃料棒をび炉心のふるまい並びに核分裂生成物及び水素の 放出についての試験
PHEBUS-FP	フランスのカダラッシュ研究所の PHEBUS 研究炉で実施された、 炉心の著しい損傷が発生した場合の、炉心燃料から1次系を経て 原子炉格納容器に至るまでの核分裂生成物の挙動を調べる実機 燃料を用いた総合試験

添付-2 STATE-OF-THE-ART REPORT ON NUCLEAR

AEROSOLS NEA/CSNI/R(2009)5 の抜粋及び試験の概要 9.2.1 Aerosols in the RCS

泊発電所3号炉

9.2.1.1 AECL

The experimenters conclude that spherical particles of around 0.1 to 0.3 µm formed (though their composition was not established) then these agglomerated giving rise to a mixture of compact particles between 0.1 and 3.0 µm m size at the point of measurement. The composition of the particles was found to be dominated by Cs. Sn and U: while the Cs and Sn mass contributions remained constant and very similar in mass, U was relatively minor in the first hour at 1860 K evolving to be the main contributor in the third (very approximately: 42 % U, 26 % Sn, 33 % Cs). Neither break down of composition by particle size nor statistical size information was measured.

9.2.1.2 PBF-SFD

Further interesting measurements for purposes here were six isokinetic, sequential, filtered samples located about 13 m from the bundle outlet. These were used to follow the evolution of the aerosol composition and to examine particle size (SEM). Based on these analyses the authors state that particle geometrical-mean diameter varied over the range[0,29-0,56 jim] elimination of the first filter due to it being early with respect to the main transient gives the range 0,32-0,56 jim) while standard deviation fluctuated between 1.6 and 2.06. In the images of filter deposits needle-like forms are seen. Turning to composition, if the first filter sample is eliminated and "below detection limit" is taken as zero, for the structural components and volatile fission products we have in terms of percentages the values gives in Table 9,2-15 in Table 9,2-15.

9.2.2 Aerosols in the containment

9.2.2.1 PHÉBUS FP

The acrosel size distributions were fairly legnormal with an average size (ANMD) in FPTO of 2.4 µm at the end of the 5-hour bundle-degnalation phase growing to 3.5 µm before stabilizing at 3.35 µm; acrosel size in FPT1 was seen to be between 0.5 and 0.65 µm] a SEM image of a deposit is shown in Fig. 9.2-2. In both tests the geometric standard deviation of the lognormal distribution was fairly constant at a value of around 2.0. There was clear evidence that aerosel composition varied very little as a function of particle size except for the late settling phase of the FPT1 test: during this period, the smallest particles were found to be essium-rich. In terms of chemical speciation, X-ray techniques were used on some deposits and there

試験の概要

試験名又は報告書名等	試験の概要
AECL が実施した実験	CANDU のジルカロイ被覆管燃料を使用した、1次系での 核分裂生成物の挙動についての試験。
PBF-SFD	米国アイダホ国立工学環境研究所で実施された炉心損傷 状態での燃料棒及び炉心のふるまい、核分裂生成物及び 水素の放出についての試験。
PHÉBUS FP	フランスカダラッシュ研究所の PHÉBUS 研究炉で実施された、シビアアクシデント条件下での炉心燃料から1次 系を経て格納容器に至るまでの核分裂生成物の挙動を調べる実機燃料を用いた総合試験。

59-補足-103

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	添付1-2-7		女川には比較対象の 資料がないため大飯
	19A 1-11 2 1		と比較
	原子炉格納容器等へのエアロゾルの沈着効果について	原子炉格納容器等へのエアロゾルの沈着効果について	
	重大事故時の居住性に係る被ばく評価において,原子炉格納容器内	重大事故時の居住性に係る被ばく評価において、原子炉格納容器内	
	におけるエアロゾルの自然沈着について,財団法人 原子力発電技術機構(以下,「NUPEC」とする。)による検討「平成9年度 NUREG-	におけるエアロゾルの自然沈着について、財団法人原子力発電技術機構(以下、NUPEC とする。) による検討「平成9 年度 NUREG-1465 の	
	1465 のソースタームを用いた放射性物質放出量の評価に関する報告	ソースタームを用いた放射性物質放出量の評価に関する報告書」(平	
	書」(平成10 年3月)(以下, 「NUPEC 報告書」とする。)において, エアロゾルの重力沈着速度を用いたモデルが検討されている。	成10年3月)(以下「NUPEC報告書」とする。)において、エアロゾルの重力沈着速度を用いたモデルが検討されている。	
	このモデルの概要を以下に示す。	このモデルの概要を以下に示す。	
	原子炉格納容器内での重力沈降速度をVdとすると,原子炉格納容器	原子炉格納容器内での重力沈降速度を Va とすると、原子炉格納容	
	内の核分裂生成物の沈着による減少率は,原子炉格納容器内が一様に 混合されているものとし、以下の式から求められる。なお、泊発電所	器内の核分裂生成物の沈着による減少率は、原子炉格納容器内が一様 に混合されているものとし、以下の式から求められる。なお、大飯発	
	3号炉の原子炉格納容器床面積及び原子炉格納容器自由体積の値を用	電所3号機及び4号機の原子炉格納容器床面積及び原子炉格納容器自	
	いている。	由体積の値を用いている。	個別解析による相違
	$\lambda_{\rm d} = V_{\rm d} \frac{A_{\rm f}}{V_{\rm g}} = 6.65 \times 10^{-3} \ (1/\text{Hz})$	$\lambda_{\rm d} = V_{\rm d} \frac{A_{\rm f}}{V_{\rm g}} = 1.93 \times 10^{-6} (1/{\rm s}) = 6.94 \times 10^{-3} (1/{\rm h})$	III/ MI PIT - ST ST III/E
	え。: 自然沈着率 (1/s)	λ _d : 自然沈着率 (1/s)	
	V _d : 重力沈降速度 (m/s)	V _a : 重力沈降速度 (m/s) A _f : 原子炉格納容器床面積 (m²)	
	A _f : 原子炉格納容器床面積 (m ²) (泊発電所 3 号炉 1, 250 m ²)	(大飯発電所3号機及び4号機 1,452 m²)	
	V _g :原子炉格納容器自由体積 (m ³)	V _g :原子炉格納容器自由体積 (m³)	
	(泊発電所 3 号炉 65,500 m³)	(大飯発電所3号機及び4号機 72,900 m³)	
	ここで、V ₄ の算出については、エアロゾルが沈降する際の終端速度 を求める式であるストークスの式を適用し、以下のように表される。	ここで、V ₄ の算出については、エアロゾルが沈降する際の終端速度 を求める式であるストークスの式を適用し、以下のように表される。	
	EARLY SALVES		
	$V_{d} = \frac{2r_p^2(\rho_p - \rho_g)g}{9\mu_g} \approx \frac{2r_p^2\rho_pg}{9\mu_g}$	$V_{d} = \frac{2r_p^2(\rho_p - \rho_g)g}{9\mu_g} \approx \frac{2r_p^2\rho_pg}{9\mu_g}$	
	$9\mu_g$ $9\mu_g$	rp : エアロゾル半径(m)	
	rp : エアロゾル半径(m)	ρ _p : エアロゾル密度 (kg/m³)	
	ρp : エアロゾル密度(kg/m³)	ρ _g : 気体の密度(kg/m³)	
	ρ _g : 気体の密度(kg/m³)	g : 重力加速度(m/s²) μ _σ : 気体の粘度(Pa・s)	
	g : 重力加速度(m/s²) μ _σ : 気体の粘度(Pa・s)	78	
	各パラメータの値を第1表にまとめる。なお、ここで示したパラメ	各パラメータの値を第1表にまとめる。なお、ここで示したパラ メータはNUPEC 報告書に記載されている値である。	
	ータはNUPEC 報告書に記載されている値である。	The state of the s	

	第 59 差	条 海	郵転員が原	子炉制御室に	とどまるための設備	(補足説明資料)
--	--------	-----	-------	--------	-----------	----------

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所 2 号炉		泊発電所3号	} 炉		大飯	発電所3/4号 炉	差異理由
		第1表 評価に用い	たパラメータ		第1表	評価に用いたパラメータ	
	パラメータ	値	備考		パラメータ	値 備考	
	エアロゾル半径 rp (m)	0.5×10 ⁻⁶	粒径1μmのエアロゾルを想定		1 ゾル半径 r _p (m)	0.5×10 ⁻⁶ 粒径 1μmのエアロゾルを想定	
	エアロゾル密度 pp (kg/m	3. 2×10 ³	NUPEC 報告書より	エアロ	Iゾル密度 ρp (kg/m³)	3.2×10 ³ NUPEC 報告書より	
	気体の密度 ρg (kg/m³)	_	エアロゾル密度と比べ小さいため無 視	気体の)密度 ρg (kg/m³)	_ エアロゾル密度と比べ小さいた め無視	
	重力加速度 g (m/s²)	9.8	理科年表より	重力加	D速度 g (m/s²)	の無視 9.8 理科年表より	
	気体の粘度 μg (Pa・s)	1.8×10 ⁻⁵	NUPEC 報告書より		D粘度 μg (Pa·s)	1.8×10 ⁻⁶ NUPEC 報告書より	
	よって、 $\lambda_d = 9.68 \times 6.649$		00 =1.847×10 ⁻⁶ (1/s) 6.65×10 ⁻³ (1/時)となる。				記載方針の相違 ・泊は計算過程を記 載
	(参考)			(参考)			27/3/4
	1 7		スタームを用いた放射性物質 年3 月)」抜粋	NUPEC「平)		165 のソースタームを用いた放射性物質 (平成 10 年 3 月)」抜粋	
	(1) 自然沈着			(1) 自然沈着			
		金計額及び影響地元中華	書と同様に沈着しない。	(1) 自然込む・希ガス		設置許可申請書と同様に沈着しない。	
			書と同様に沈着しない。	有機ヨウ素		設置許可申請書と同様に沈着しない。	
		1919020公園計9年間 10×10 ⁻⁴ (1/s):自然別		有機コウ素無機ヨウ素		(1/s):自然沈着率 (入。)	
			本年(ハ _d) 素の濃度変化では、時刻0分で濃度10 ⁵	一派(政コン糸		(3)の無機ヨウ素の濃度変化では、時刻0分で濃度10 ⁵	
			特刻30分で1.995×10 ⁴ μ g/m ³ となる。			ったものが、時刻30分で1.995×10 ⁺ μ g/m ³ となる。	
			$10^4 / 10^5 = 9.0 \times 10^{-4} (1 / s)$			$\frac{50}{50} \log \left(1.995 \times 10^4 / 10^5 \right) = 9.0 \times 10^{-4} (1 / s)$	
	λ,	$= -\frac{1}{30 \times 60} \log (1.995 \times 10^{-3})$	$10^{\circ}/10^{\circ}$ = 9.0 × 10 °(1 / s)				
	17	一様に混合していると	「ルの重力沈降速度を用い、雰囲気中 仮定して、格納容器床面積と自由体積	• CsI(エアロ)	1μmの大き に一様に混	1/s) :自然沈奢辛 (λ₀) さのエアロゾルの重力沈降速度を用い、雰囲気中 合していると仮定して、格納容器床面積と自由体積 じて求められる。	
		:の比を乗じて求められ $= \frac{2 r_p^2 (\rho_p - \rho_p) g}{9 \mu_p} \approx \frac{2 r_p}{9 \mu_p}$				$\frac{1}{\mu_{\rm E}} - \rho_{\rm F} \frac{1}{\rm g} \propto \frac{2 r_{\rm p}^2 \rho_{\rm p} g}{9 \mu_{\rm E}}$	
			$\frac{2 \times 10^3 \times 9.8}{-5} = 9.68 \times 10^{-5} (\text{m/s})$		$=\frac{2\times(1\times)}{2}$	$\frac{10^{-6}/2)^2 \times 3.2 \times 10^2 \times 9.8}{9 \times 1.8 \times 10^{-5}} = 9.68 \times 10^{-5} (\text{m/s})$	
	λ	$= V_d \frac{A_F}{V_G} \sim 9.68 \times 10^{-5} \times$	$\frac{\pi \times 21.5^2}{73700} = 1.9 \times 10^{-6} (1 / s)$		$\lambda_d = V_d \frac{\mathbf{A}_F}{V_O}$	$\approx 9.68 \times 10^{-5} \times \frac{\pi \times 21.5^2}{73700} = 1.9 \times 10^{-6} (1 / s)$	
	• Cs,Te,Sr,Ru,Ce,La Cs	sIと同じ扱いとする。		· Cs,Te,Sr,Ru	u,Ce,La CsIと同じ想	せいとする。	

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所 2 号炉	泊発電所 3 号炉	大飯発電所3/4号炉	差異理由
			女川には比較対象の
	添付1-2-8		資料がないため、大 飯との比較を実施
	スプレイによるエアロゾルの除去速度の設定について	スプレイによるエアロゾルの除去速度の設定について	双との比較を美胞
	重大事故時に炉心から格納容器へ放出されるガス状、粒子状の放射性物質は、沈着や拡散だけでなくスプレイによる除去等の効果によっても、原子炉格納容器内での挙動に影響を受ける。従って、NUREG-1465 やMAAP にはこれらの挙動に係る評価式、評価モデル或いは実験に基づき設定された値等が示されており、審査ガイドでもこれら効果の考慮について示されている。このうちエアロゾルに対するスプレイ効果の考慮について、本評価で知見として参考としたNUREG-1465 ではその効果について適切に考慮することとされていることも踏まえ、SRP6.5.2 において示されるエアロゾルに対するスプレイ効果及UNUPEC 実験結果に基づいたスプレイ効率を用いることとする。設定の考え方について以下に整理した。	重大事故時に炉心から格納容器へ放出されるガス状、粒子状の放射性物質は、沈着や拡散だけでなくスプレイによる除去等の効果によっても、原子炉格納容器内での挙動に影響を受ける。従って、NUREG-1465 やMAAP にはこれらの挙動に係る評価式、評価モデル或いは実験に基づき設定された値等が示されており、審査ガイドでもこれら効果の考慮について示されている。このうちエアロゾルに対するスプレイ効果の考慮について、本評価で知見として参考とした NUREG-1465 ではその効果について適切に考慮することとされていることも踏まえ、SRP6.5.2 において示されるエアロゾルに対するスプレイ効果及び NUPEC 実験結果に基づいたスプレイ効率を用いることとしている。設定の考え方について以下に整理した。	
	1. SRP6.5.2 エアロゾルに対するスプレイ効果の式 米国SRP6.5.2 では、スプレイ領域におけるスプレイによるエア ロゾルの除去速度を以下の式により算出している。 この評価式は、米国新設プラント(US-APWR、AP-1000)の設計基準 事象に対する評価においても用いられており、また、シビアアクシ デント解析コードであるMELCOR やMAAP に組み込まれているもので ある。	1. SRP6.5.2 エアロゾルに対するスプレイ効果の式 米国 SRP6.5.2 では、スプレイ領域におけるスプレイによるエア ロゾルの除去速度を以下の式により算出している。 この評価式は、米国新設プラント(US-APWR、AP-1000)の設計基準 事象に対する評価においても用いられており、また、シビアアクシ デント解析コードである MELCOR や MAAP に組み込まれているもの である。	
	$\lambda_{\mathcal{S}} = \frac{3hFE}{2V_{\mathcal{S}}D}$	$\lambda_S = \frac{3hFE}{2V_SD}$	
	λ_S : スプレイ除去速度 h : スプレイ液滴落下高さ V_S : スプレイ領域の体積 F : スプレイ流量 E : 捕集効率 D : スプレイ液滴直径	\(\lambda_S\): スプレイ除去速度 \(h\): スプレイ液滴落下高さ \(V_S\): スプレイ領域の体積 \(F\): スプレイ流量 \(E\): 捕集効率 \(D\): スプレイ液滴直径	
	また、米国R. G. 1. 195 でもエアロゾルのスプレイ効果として、下記のとおり SRP6. 5. 2 が適用可能としていることから、本評価にも用いている。 2.3 Reduction in airborne radioactivity in the containment by containment spray systems that have been designed and are maintained in accordance with Chapter 6.5.2 of the SRP ⁴ (Ref. A-I) may be credited. An acceptable model for the removal of iodine and particulates is described in Chapter 6.5.2 of the SRP.		記載方針の相違・泊は適用性の補足を記載

青字:記載簡所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 2. スプレイ効率 (E/D) の設定について 2. スプレイ効率 (E/D) の設定について 今回の評価では、E/D を7 と設定した。その妥当性について以下 今回の評価では、E/D を 7 と設定した。その妥当性について以 に示す。

(1) NUPEC 試験

「重要構造物安全評価(原子炉格納容器信頼性実証事業)に関 する総括報告書 平成15 年3 月 財団法人 原子力発電技術機構」 において、シビアアクシデント時のスプレイの効果について模擬 試験及び評価が以下の通り実施されている。その結果を適用し, 本評価ではスプレイ効率 (E/D) を7 と設定する。

なお、エアロゾルに対するスプレイ効果については、エアロゾ ルの除染係数 (DF) がある値に達すると除去速度が緩やかになる というNUREG/CR-0009 の結果に基づき、今回の評価では、除去速 度が緩やかになる時点のDF を「カットオフDF」と定義し、 SRP6.5.2 にて提案されているカットオフDF と同じ50 と設定し た。SRP6.5.2 ではDF50 到達以降、E/D を1/10 とするとの考え 方も示されており、その考えに従い、カットオフDF50 を超えた 後のスプレイ効果については、E/D=0.7 として除去凍度を算出し

さらに、同図中には前述のBWRの場合の結果と同様に、NUREG-1465(1)から評価したエ アロゾル湯度計算値を実線及び破線で示した。これから、PWRの場合にもNUREG-1465で 用いているE/D=1の値はスプレイによる除去効果を過小評価し、この場合のE/Dの値は約7 で試験結果とほぼ一致することが分かる。これは、BWRの場合と同様主に蒸気凝縮(拡散 泳動)によるエアロゾル除去効果がスプレイ期間中の予測値よりも大きいことを示してい

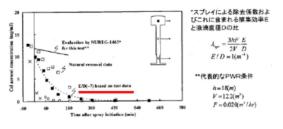


図3.2-12 PWR模擬試験 (基本条件) 結果とNUREG-1465評価値との比較

(2) 泊発電所3号炉への適用

泊発電所3号炉の今回の評価では、NUPEC 模擬試験に基づ き, E/D=7 としている。

NUPEC 模擬試験では、PCCV4 ループプラントのシビアアクシ デント状況を想定し、スプレイによる除去効果を確認した結 果、スプレイ粒径1.5 mm の条件の下で、E/D=7 との結果が得 られている。

下に示す。

(1) NUPEC 試験

「重要構造物安全評価(原子炉格納容器信頼性実証事業)に関 する総括報告書平成15年3月財団法人原子力発電技術機構」に おいて、シビアアクシデント時のスプレイの効果について模擬試 験及び評価が以下の通り実施されている。その結果を適用し、本 評価ではスプレイ効率 (E/D) を7と設定する。

なお、エアロゾルに対するスプレイ効果については、エアロゾ ルの除染係数 (DF) がある値に達すると除去速度が緩やかになる という NUREG/CR-0009 の結果に基づき、今回の評価では、除去 速度が緩やかになる時点の DF を「カットオフ DF」と定義し、 SRP6.5.2 にて提案されているカットオフDF と同じ50 と設定し た。SRP6.5.2 ではDF50 到達以降は、E/D を 1/10 とするとの考 え方も示されており、その考えに従い、カットオフDF50 を超え た後のスプレイ効果については、E/D=0.7 と設定した。

さらに、同図中には前述のBWRの場合の結果と同様に、NUREG-1465⁽¹⁾から評価したエ アロゾル濃度計算値を実線及び破線で示した。これから、PWRの場合にもNUREG-1465で 用いているE/D=1の値はスプレイによる除去効果を過小評価し、この場合のE/Dの値は約7 で試験結果とほぼ一致することが分かる。これは、BWRの場合と同様主に蒸気凝縮(拡散 泳動) によるエアロゾル除去効果がスプレイ期間中の予測値よりも大きいことを示してい 5.

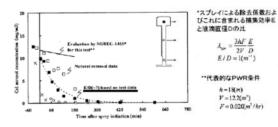


図3.2-12 PWR模擬試験(基本条件) 結果とNUREG-1465評価値との比較

(2) 大飯発電所3号炉及び4号炉への適用

大飯発電所3号炉及び4号炉の今回の評価では、NUPEC 模擬試 験に基づき、E/D=7 としている。

NUPEC 模擬試験では、PCCV4 ループプラントのシビアアクシデ ント状況を想定し、スプレイによる除去効果を確認した結果、ス プレイ粒径 1.5 mm の条件の下で、E/D=7 との結果が得られて いる。

青字:記載箇所又は記載内容の相違(記載方針の相違) 縁字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	PCCV プラントと鋼鉄CV プラントの泊発電所3号炉では,重	CSE 実験での結果から、温度、圧力等の条件の違いがスプレイ	
	大事故時の温度や圧力について若干の差があるものと思われる	効率に与える影響は小さいのに対し、スプレイ粒径は大きく影響	
	が、CSE 実験での結果から、温度、圧力等の条件の違いがスプ	を与えることがわかる(添付-1 参照)。	
	レイ効率に与える影響は小さいのに対し、スプレイ粒径は大き		
	く影響を与えることがわかる(添付-1 参照)。		
	よって、NUPEC の試験結果であるE/D=7 を適用するために	よって、NUPEC の試験結果である E/D=7 を適用するために	
	は,スプレイ粒径が1.5 mm を上回らないことを確認する必要が	は、スプレイ粒径が 1.5 mm を上回らないことを確認する必要が	
	ある。	ある。	
	この試験では、実機条件でのスプレイノズル1 個あたり約1 m	この試験では、実機条件でのスプレイノズル1 個あたり約1	
	³/h を模擬しており、このときのスプレイ液滴径が1.5 mm であ	m³/h を模擬しており、このときのスプレイ液滴径が 1.5mm であ	
	った。泊発電所3号炉では代替格納容器スプレイポンプによる	った。大飯3号機及び4号機では代替低圧注水ポンプによるスプ	
	スプレイで使用するスプレイリングヘッダに100 個のスプレイ	レイで使用するスプレイリングヘッダに 120 個のスプレイノズ	設計等による相違
	ノズルが設置されているため,スプレイ粒径1.5 mm 以下を達成	ルが設置されているため、スプレイ粒径 1.5 mm 以下を達成する	20. 21 6th 1 - 1 - or Les 2th
	するためには、スプレイポンプ流量100 m³/h 以上(スプレイノ	ためには、スプレイポンプ流量 120 ㎡/h 以上(スプレイノズル	設計等による相違
	ズル1 個あたり約1 ms/h) が必要である。今回の評価で用いた	1個あたり約1m3/h以上)が必要である。今回の評価で用いた	=0.=1 Atr 1= 1= 2 do 14
	泊発電所 3 号炉の代替格納容器スプレイ流量は140 m3/h (> 100	大飯発電所3号炉及び4号炉の代替低圧注水ポンプスプレイ流	設計等による相違
	m3/h)であり,スプレイ粒径1.5 mm 以下を達成できているた	量は130 m³/h (> 120 m³/h)であり、スプレイ粒径1.5 mm 以下	設計等による相違
	め, E/D=7 を適用することは妥当である。	を達成できているため、E/D=7 を適用することは妥当である。	
	3. エアロゾル除去速度の算出		記載方針の相違
	1. で示したSRP6. 5.2 のエアロゾルに対するスプレイ領域でのス		・泊はエアロゾル除
	1. CホレたSKPO.5.2 のエアログルに対するスプレイ領域 Cのスプレイ効果の式を用い、2. で示したスプレイ効率 (E/D) 、泊3号		去速度の算出につい
	炉でのスプレイ液滴落下高さ、スプレイ領域の体積及びスプレイ		て記載している
	流量にてエアロゾル除去速度を算出した。		C HEADY C C V 1-2
	ここでの評価では、今回の評価事象を考慮し、スプレイするた		
	めの動的機器を代替格納容器スプレイポンプとする。この場合、		
	代替格納容器スプレイは流量も小さく、そのカバー範囲も小さ		
	い。そのため、評価においては、原子炉格納容器内でスプレイ水		
	がかからない領域(非スプレイ領域)があることを考慮して、エ		
	アロゾル除去速度を算出している。		
	非スプレイ領域においては、スプレイによるエアロゾル除去効		
	果を直接的に見込むことはできないが、原子炉格納容器内空気の		
	対流による混合効果によって、非スプレイ領域内空気がスプレイ		
	領域に移行することで、間接的に除去される。		
	米国Regulatory Guide 1.183 では、スプレイによるエアロゾル		
	の除去効果を評価する際には非スプレイ領域を考慮すること、ス		
	プレイ領域と非スプレイ領域の混合割合は非スプレイ領域が1 時		
	間に2回循環するとしていることから、今回の評価でも、非スプ		
	レイ領域を考慮し、混合割合は非スプレイ領域が1 時間に2 回循		
	環することとする(添付-2 参照)。		
	Land State Control of the Stat		
	評価の概略図を以下に示す。格納容器内全体積Voに対する非ス		
	プレイ領域の体積割合をfとし、非スプレイ領域においてはスプ		
	レイによる除去効果がないものとする。領域i における浮遊エア		
	ロゾル濃度をCiとし、非スプレイ領域とスプレイ領域の間には、		
			1

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第 58 宋 連転員が原士が制御室にととよるにのの政備「棚足説明資料 女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	流量Qの空気循環があり、スプレイ領域へ移行したエアロゾルはス		記載方針の相違
	プレイにより除去されると考える。		・泊はエアロゾル除
			去速度の算出につい
			て記載している
	非スプレイ領域		
	C _N f·V _{CV}		
	' ' ' '		
	C _s (1-f)•V _{cv}		
	スプレイ領域 スプレイ		
	λ_{s}		
	I I		
	このモデルにおける非スプレイ領域及びスプレイ領域のエアロ		
	ゾル濃度の時間変化及び格納容器内の浮遊エアロゾル量は, 次式 で評価した。		
	$\int dC_N = 1$		
	$\left(\frac{dC_{\rm N}}{dt} = -\frac{1}{f \cdot T} \cdot (C_{\rm N} - C_{\rm S}) \right)$		
	$\frac{dC_3}{dt} = \frac{1}{(1-f) \cdot T} \cdot (C_N - C_S) - (\lambda_S \cdot C_S)$		
	$dt = (1-f) \cdot T$		
	$N_{\rm E}(t) = (f \cdot C_{\rm N} + (1 - f) \cdot C_{\rm S}) \cdot V_{\rm CV}$		
	C, : 領域 i における浮遊エアロゾル濃度(Bq/m³)		
	N _E : 非スプレイ領域考慮時の CV 内エアロゾル量 (Bq)		
	f : 非スプレイ領域体積割合 (-) (泊発電所3号炉 93%)		
	T : CV 內空気混合時間(h)		
	$T \equiv \frac{V_{CV}}{C}$: (CV 内の空気が十分に混合するまでの時間)		
	Q		
	V _{CV} : CV 内自由体積(m ³) (泊発電所 3 号炉 65,500 n ³)		
	 (沿発電所3号炉 65,500 m²) ○ : CV 內空気循環流量(m³/h) 		
	(泊発電所3号炉 122,000 m ³)		
	λ_{s} : スプレイ領域のスプレイによるエアロゾル除去係数 (h^{-1})		
	V_{S} : スプレイ領域体積		
	(添字 N: 非スプレイ領域, S: スプレイ領域)		
	4. 10°1		
	ただし、 え。はスプレイ領域における除去係数であり、原子炉格 納容器全体の体積から非スプレイ領域を差し引いた残りの領域で		
	MAGGETAUP権間から非ヘノレイ領域を差し切いた残りの領域で のスプレイ除去係数である。よって、SRP6.5.2 で示されている		
	「V ₈ 」は、スプレイ領域体積として、V ₀ ××(1-f)として考える。		

第 59 条	運転員が原子炉制御室にとどまるための設備	(補足説明資料)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	上記モデルを使用し、非スプレイ領域を考慮した原子炉格納容		記載方針の相違
	器内全体の浮遊エアロゾルのスプレイ除去速度を算出した。		・泊はエアロゾル除
	なお、エアロゾルに対するスプレイ効果については、エアロゾ		去速度の算出につい
	ルの除染係数 (DF) がある値に達すると除去速度が緩やかになる		て記載している
	というNUREG/CR-0009 の結果に基づき、今回の評価では、除去速		
	度が緩やかになる時点のDF を「カットオフDF」と定義し、 SRP6.5.2 にて提案されているカットオフDF と同じ50 と設定し		
	た。SRP6.5.2 ではカットオフDF が50 を到達以降は、E/D を1/10		
	とするとの考え方も示されており、その考えに従い、カットオフ		
	DF50 を超えた後のスプレイ効果については、E/D=0.7 として除去		
	速度を算出した。		
	Dillow to the state of the book of the boo		
	以上のことから、本評価におけるスプレイによるエアロゾル除 去速度として第1表のように設定した。		
	また, 第1 表をグラフで表したスプレイ除去効果のモデルを第1		
	図に示す。		
	21,2-1-76		
	第1表 エアロゾル除去速度		
	カットオフ DF エアロゾル除去速度		
	DF < 50 0.36 (1/時)		
	DF≧50 0.043 (1/時)		
	1.0E-00 () 1.0E-01 () 1.0E-02 () 1.0E-03 () 10 15 20 25 スプレイ開始後 経過時間(h) () 第1図 スプレイ除去効果のモデル		

(添付-1)

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違)

緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉

CSE データ ("Removal of Iodine and Particles by Sprays in
the Containment SystemsExperiment" Nuclear Technology Vol.10,
1971)

泊発電所3号炉

CSE での各試験での条件表を以下に示す。

Expertmental Conditions - CSE Spray Tests

	Run	Run	Run	Run	Run	Pun
	A-3	A-4	A-6	A-T	A-8	A-9
Atmosphere	Air	Air	Steam-air	Steam-air	Steam-air	Steam-air
Tenperature, "F	77	97	250	250	250	250
Pressure, pein	14.6	14.6	44	50	48	44
Nearle type Drep MMD, μ^{d} Geometric standard deviation, o	1210 1.53	1210 1.53	1210 1.53	1210 1.53	770 1.50	1220 1.50
Number of nozzles	3	12	12	12	12	12
Spray rate, gal/mis	12.8	48.8	49	49	50.5	145
Total spray volume, gal	510	1950	1960	1960	2020	2300
Spray solution			1	ŧ	ť	

^{*}Saraying Systems Co. 3/4 703, full cone.

*Saraying Systems Co. 3/8 A20, hollow cone.

*Garaying Systems Co. 3/4 A50, hollow cone.

*Mass median diameter.

また、この条件で得られたスプレイ効率の結果を以下に示す。

TABLE IX Summary of Initial Spray Washout Coefficients

	λ ₅ Observed, min ^{-1 a}						
Run No.	Elemental Iodine	Particulate Iodine	Iodine on Charcoal Paper	Total Inorganica Iodine			
A-3	0.126	0.055	0.058	0.125			
A-4	0.495	0.277	0.063	0.43			
A-6	0.330	0.32	0.154	0.31			
A-7	0.315	0.31	0	0.20			
A-8	1.0-8	0.99	0.365	0.96			
A-9	1.20	1.15	0.548	1.14			

aFor first spray period, corrected for natural removal on vessel surfaces.

この結果から、温度及び圧力を変化させて試験を実施したA-4、A-6 及びA-7 での"Particulate Iodine"の結果を比較すると、数割の範 囲で一致しており、大きな差は生じていない。これに対し、スプレイ 粒径を小さくしたA-8 では、3 倍以上スプレイ効率が向上しているこ とがわかる。

大飯発電所3/4号炉 添付-1

CSE データ ("Removal of Iodine and Particles by Sprays in the Containment Systems Experiment" Nuclear Technology Vol. 10, 1971)

CSE での各試験での条件表を以下に示す。

TABLE II

Experimental Conditions-CSE Spray Tests

	Run	Run	Run	Run	Run	Pun
	A-3	A-4	A-6	A-7	A-8	A-9
Atmosphere	Atr	Air	Steam-air	Steam-air	Steam-air	Steam-ai
Temperature, "F	77	17	250	- 250	250	250
Pressure, psia	14.6	14.6	44	50	48	44
Nozzle type Drop MMD, μ ⁴ Geometric standard deviation, σ	1210 1.53	1210 1,50	1210 1.58	1210 L53	770 1.50	1220 1.50
Number of somites	3	12	12	12	12	12
Spray rate, gal/min	12,8	48.8	49	49	50.5	145
Total spray wokene, gal	510	1950	1950	1960	2020	2300
Spray solution			1		ा	-

^{*}Spraying Systems Co. 3/4 7G3, fell cene.
bSpraying Systems Co. 3/8 A20, hellow cone.
(Spraying Systems Co. 3/4 A50, hellow cone.
bMann median diameter.

また、この条件で得られたスプレイ効率の結果を以下に示す。

TABLE IX

Summary of Initial Spray Washout Coefficients

		ed, min ^{-1a}		
Run No.	Elemental Iodine	Particulate Iodine	Iodine on Charcoal Paper	Total Inorganica Iodine
A-3	0.126	0.055	0.058	0.125
A-4	0.495	0.277	0.063	0.43
A-6	0.330	0.32	0.154	0.31
A-7	0.315	0.31	0	0.20
A-8	1.08	0.99	0.365	0.96
A-9	1.20	1.15	0.548	1.14

^{*}For first spray period, corrected for natural removal on vessel surfaces.

この結果から、温度及び圧力を変化させて試験を実施したA-4、A-6 及び A-7 での"Particulate Iodine"の結果を比較すると、数割の 範囲で一致しており、大きな差は生じていない。これに対し、スプレ イ粒径を小さくした A-8 では、3倍以上スプレイ効率が向上している ことがわかる。

女川には比較対象資 料がないため大飯と の比較を実施。

差異理由

大飯との相違なし

[&]quot;525 ppm boron as H₂BO₂ in NaOH, pH 9.5.
"3000 ppm boron as H₂BO₂ in NaOH, pH 9.5.
"3000 ppm boron as H₂BO₃ in demineralized water pH 5.

bIncludes fodine deposited on Maypack inlet.

[&]quot;525 ppm boron as H_2BO_3 in NaOH, pH 9.5.
[3000 ppm boron as H_2BO_3 in NaOH, pH 9.5.
\$3000 ppm boron as H_2BO_3 in demineralized water pH 5.

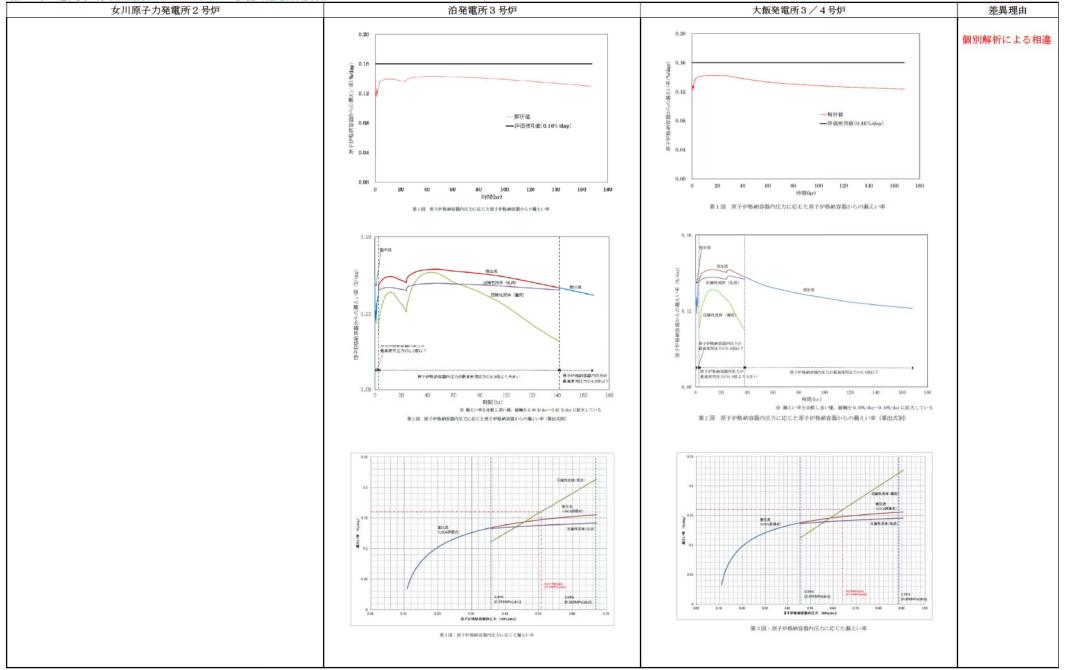
bIncludes iodine deposited on Maypack inlet.

第 59 条	運転員が原子炉制御室にとどまるための設備	(補足説明資料)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
第 59 条 連転員が原子が開発室にどどまるための設備(補足説明質者 女川原子力発電所 2 号炉		大飯発電所3/4号炉	差異理由 記載方針等の相違 ・泊はスプレイ領域の 取り担いについて記 載している。

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

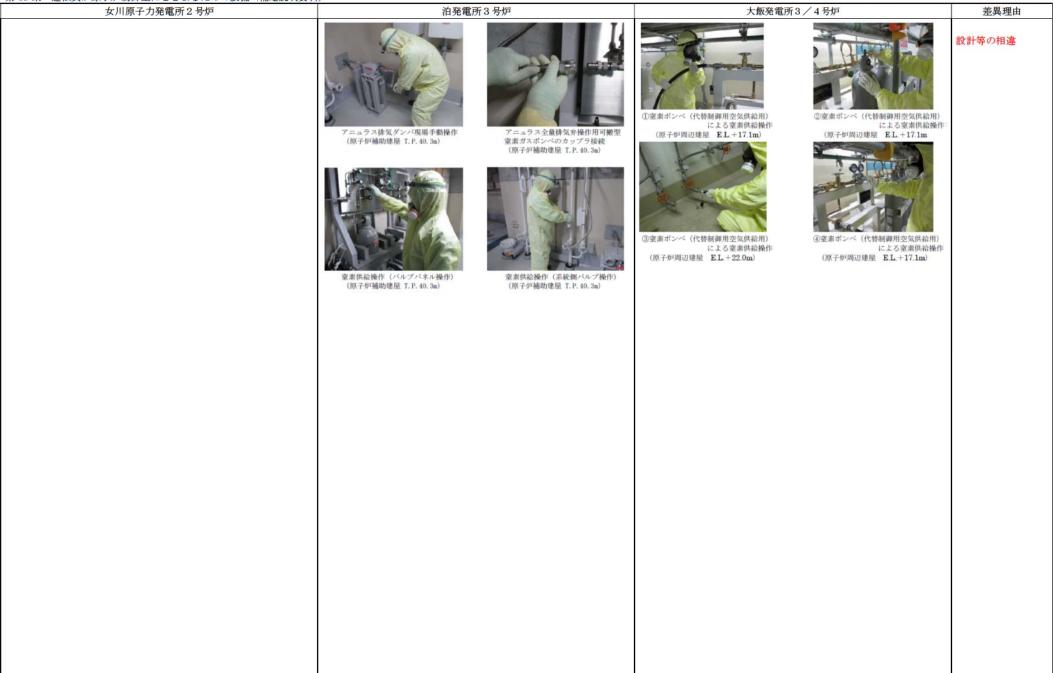
第 50 宋 連転員が原子が制御室にととよるにめの設備「相定説例資料 女川原子力発電所 2 号炉		泊	発電所3号炉		大飯発電所3/4号炉	差異理由
	(別紙) NUPEC					
						記載方針等の相違
		表3.2-3 PV 実機プラント	WR模擬試験条件 本試験	往記		・泊はスプレイ領域
	対象シナリオ	共催ノリント AHF	年 同左	CE BC		
	対象プラント	PWR4ループ炉	同左			と非スプレイ領域の
						取り扱いについて記
	CV体積	71,700m³	12.2m³	初期水量2000m3を減じ る。スケール比1/5877		載している。
	CV高さ	20m	岡左			
	スプレイノズル信数	120	1			
	スプレイ流量	120m³/hr	0.34L/min			
	ノズル型式	新倉EX554L	シミュレータノズル			
	ノズル出口径 スプレイ液満径	10mm 1500ミチョン (†* ケチ径)	1.2mm 1470ミタロン (す [*] タタ径)			
	数布形態	約10hr 連続	同左			
	スプレイ水温	303K	同左			
	スプレイ水質	中性	间左			
	CV初期全圧	0.52MPa	岡左			
	水蒸気分圧	0.52MPa 0.39MPa	同左	-		
	Air分圧	0.12MPa	同左	N₂で代用		
	H ₂ 分圧	0.01MPa	同左	Heで代用		
	CV初期温度	415K	同左			
	CV初期水位	(不明)	100mm	BWR基本ケースに合わ せた		
	エアロゾル種類	CsI	同左			
	Csl濃度	0.01g/m ³	同左			
	CsI較径	1ミクロン	同左	幾何標準偏差は2.0		
	試験中のCsI供給	無し	間左			
	崩纏熱	3,411MWt	4.3 kW	実機は原子炉停止後10時 間の崩壊熱レベル(定格 出力の0.7%)、 試験は一定で供給		
	蒸気の状態	飽和蒸気	同左			
	蒸気供給高さ	CV下部	同左			


第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)	和発電所3万炉 SA基準適合性 比較衣 r.	3.0 緑字:記載表現、設備名称の相違	(実質的な相違なし)
女川原子力発電所 2 号炉	泊発電所 3 号炉	大飯発電所3/4号炉	差異理由
女川原子力発電所2号炉 2-11 有機よう素の乾性沈着速度について 中央制御室の居住性に係る被ばく評価では、原子炉建屋原子炉棟 から放出されるよう素のうち、無機よう素はエアロゾル粒子と同じ 沈着速度を用いた。有機よう素についてはエアロゾル粒子とは別 に、乾性沈着速度として、NRPB-R322 を参照し10-3cm/sと設定し た。以下にその根拠を示す。 1. 英国放射線防護庁 (NRPB) による報告 英国放射線防護庁 大気拡散委員会による年次レポート (NRPB-R322※1) に沈着速度に関する報告がなされている。本レポートで は、有機よう素について、植物に対する沈着速度に関する知見が整理されており、以下のとおり報告されている。 ・植物に対する沈着速度の"best judgement"として10-5 m/s (10-	泊発電所 3 号炉	大飯発電所3/4号炉	差異理由 設計等の相違 ・女川は有機よう素の乾性沈着速度を 別途評価して有機よう素について有機よう素につい粒子と同じ沈着速度を用いており、保守的な扱いとしている。
3cm/s)を推奨 2. 日本原子力学会による報告 日本原子力学会標準レベル 3 PSA 解説4.8 に沈着速度に関する以下の報告がなされている。 ・ヨウ化メチルは非反応性の化合物であり、沈着速度が小さく、実験では10-4~10-2cm/s の範囲である ・ヨウ化メチルの沈着は、公衆のリスクに対し僅かな寄与をするだけであり、事故影響評価においてはその沈着は無視できる 以上のことから、有機よう素の沈着速度はエアロゾルの乾性沈着速度0.3cm/s に比べて小さいことが言える。また、原子力発電所構内は、コンクリート、道路、芝生及び木々で構成されているが、エアロゾルへの沈着速度の実験結果(NUREG/CR-4551)によると、沈着速度が大きいのは芝生や木々であり、植物に対する沈着速度が大きくなる傾向であった。したがって、有機よう素の乾性沈着速度として、NRFB-R322 の植物に対する沈着速度である10-3cm/s を用いるのは妥当と判断した。 ※ 1 NRPB-R322-Atmospheric Dispersion Modelling Liaison Committee Annual Report, 1998-99			

第 39 余 連転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所 2 号炉	泊発電所 3 号炉	大飯発電所3/4号炉	差異理由
NRPB-R322 ANNEX-A 「2.2 Iodine」の抜粋			設計等の相違 ・女川は有機よう素 の乾性沈着速度を 別途評価している
2.2.2 Meadow grass and crops Methyl iodide There are fewer data for methyl iodide than for elemental iodine, but all the data indicate that it is poorly absorbed by vegetation, such that surface resistance is by far the dominant resistance component. The early data have been reviewed elsewhere (Underwood, 1988; Harper et al., 1994) and no substantial body of new data is available. The measured values range between 10° and 10° m s° 1 approximately. Again, there are no strong reasons for taking r _t to be a function of windspeed, so it is recommended that v _d is taken to be a constant. Based on the limited data available, the 'best judgement' value of v _d is taken as 10° m s° 1 and the 'conservative' value as 10° m s° 1. Where there is uncertainty as to the chemical species of the iodine, it is clearly safest to assume that it is all in elemental form from the viewpoint of making a conservative estimate of deposition flux.			が、泊では有機よ う素についてもエ アロゾル粒子と同 じ沈着速度を用い ており、保守的な 扱いとしている。
2.2.3 Urban Methyl iodide There appear to be no data for the deposition of methyl iodide to building surfaces: the deposition velocity will be limited by adsorption processes and chemical reactions (if any) at the surface, for which specific data are required. No recommendations are given in this case For vegetation within the urban area (lawns and parks etc), it is recommended that the values for extended grass surfaces be used.			

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
女川原子力発電所 2 号炉	泊発電所3号炉 添付1-2-9 原子炉格納容器漏えい率の設定について 重大事故時の居住性に係る被ばく評価において,原子炉格納容器からの漏えい率については,有効性評価で想定する事故収束に成功した事故シーケンスのうち,原子炉格納容器内圧力が高く推移する事故シーケンスである「大破断LOCA 時にECCS 注入及びCV スプレイ注入を失敗するシーケンス」における原子炉格納容器内の圧力解析結果に対応した漏えい率に余裕を見込んだ値を設定している。原子炉格納容器からの漏えい率は,原子炉格納容器内圧力が最高使用圧力の0.9倍の圧力以下の場合は(1)に示す式を,超える場合は(2)に示す式を使用する。	原子炉格納容器漏えい率の設定について 重大事故時の居住性評価に係る被ばく評価において、原子炉格納容 器からの漏えい率については、有効性評価で想定する事故収束に成功 した事故シーケンスのうち、原子炉格納容器内圧力が高く推移する事 故シーケンスである「大破断 LOCA 時に ECCS 注入および CV スプレ イ注入を失敗するシーケンス」における原子炉格納容器内の圧力解析 結果に対応した漏えい率に余裕を見込んだ値を設定している。 原子炉格納容器からの漏えい率は、原子炉格納容器内圧力が最高使	差異理由 記載位置の相違 ・女川との比較は女 川の資料 2-21 の記載箇所で実施してい る。ここでは大飯と の比較を実施する。 本ページ相違なし
	(1) 原子炉格納容器内圧力が最高使用圧力の0.9 倍以下の場合最高使用圧力の0.9 倍以下の漏えい率を保守的に評価するために差圧流の式(これまでの設計事象にて使用)より算出する。 $\frac{L_t}{L_d} = \sqrt{\frac{\Delta P_t}{\Delta P_d}} \cdot \frac{\rho_d}{\rho_t}$ $L : 漏えい率 \\ L_d : 設計漏えい率 \\ \Delta P : 原子炉格納容器内外差圧 \\ \rho : 原子炉格納容器内密度 \\ d : 添え字 "d" は漏えい試験時の状態を表す t : 添え字 "t" は事故時の状態を表す (2) 原子炉格納容器内圧力が最高使用圧力の0.9 倍より大きい場合圧力が上昇すれば、流体は圧縮性流体の挙動を示すため、原子炉格納容器内圧力が最高使用圧力の0.9 倍より大きい場合は圧縮性流体の層流・乱流の状態を考慮する。漏えい率は差圧流の式、圧縮性流体の層流・または乱流を考慮した式の3 式から得られる値の内、最大の値とする。$	(1) 原子炉格納容器内圧力が最高使用圧力の 0.9 倍以下の場合最高使用圧力の 0.9 倍以下の漏えい率を保守的に評価するために差圧流の式 (これまでの設計事象にて使用) より算出する。 $\frac{L_t}{L_d} = \sqrt{\frac{\Delta P_t}{\Delta P_d}} \cdot \frac{\rho_d}{\rho_t}$ $L : 漏えい率 \\ L_d : 設計漏えい率 \\ \Delta P : 原子炉格納容器内外差圧 \\ \rho : 原子炉格納容器内密度 \\ d : 添え字 "d" は漏えい試験時の状態を表す t : 添え字 "t" は事故時の状態を表す t : 添え : $	


第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所 2 号炉) 泊発電所 3 号炉	大飯発電所3/4号炉	差異理由
	$ \begin{bmatrix} \frac{\mu_d}{\mu_t} \cdot \frac{2k_t}{k_t - 1} \cdot \frac{P_t}{P_d} \cdot \frac{\left(\left(\frac{P_{lask,r}}{P_t}\right)^{\frac{1}{k_t}} - \frac{P_{lask,r}}{P_t}\right)}{\left(\left(\frac{P_{lask,d}}{P_d}\right)^{\frac{1}{k_t}} - \frac{P_{lask,d}}{P_d}\right)} \\ & (\frac{P_{lask,d}}{P_d})^{\frac{1}{k_t}} \cdot \frac{P_{lask,d}}{P_d} \end{bmatrix} $ [E\text{\text{E\text{if}} \text{\text{\$\tilde{K}\$}}} \text{(\$\text{B\tilde{K}}\$)}	$ \begin{bmatrix} \frac{2k_r}{\mu_d} & \frac{2k_r}{k_r-1} & P_t & \left(\left(\frac{P_{\text{lost},r}}{P_t}\right)^{\frac{1}{k_t}} - \frac{P_{\text{lost},r}}{P_t}\right) \\ \frac{\mu_t}{\mu_t} & \frac{2k_d}{k_d-1} & P_d & \left(\left(\frac{P_{\text{lost},d}}{P_d}\right)^{\frac{1}{k_d}} - \frac{P_{\text{lost},d}}{P_d}\right) \end{bmatrix} $ [E48th $\pm k_d = 1$]	* *************************************
	$\frac{L_{t}}{L_{d}} = \max \left(\frac{2k_{t}}{\frac{k_{t}-1}{2k_{d}}} \cdot \frac{P_{t}}{P_{d}} \cdot \frac{\rho_{d}}{\rho_{t}} \cdot \left(\frac{P_{lask,t}}{P_{t}} \right)^{\frac{2}{k_{t}}} - \left(\frac{P_{lask,t}}{P_{t}} \right)^{\frac{1}{k_{t}}} \right)^{\frac{1}{2}} \\ \left(\frac{P_{lask,t}}{P_{d}} \right)^{\frac{2}{k_{t}}} - \left(\frac{P_{lask,t}}{P_{d}} \right)^{\frac{2}{k_{t}}} - \left(\frac{P_{lask,t}}{P_{d}} \right)^{\frac{2}{k_{t}}} \right)^{\frac{1}{2}} $ $Efficiency of the problem of $	$\frac{L_t}{L_d} = \max \left(\frac{2k_t}{\frac{k_t-1}{k_d-1}} \cdot \underbrace{\frac{P_t}{P_t} \cdot \underbrace{\rho_d}_{-P_d} \cdot \left(\left(\frac{P_{\text{lead},t}}{P_t}\right)^{\frac{2}{k_t}} - \left(\frac{P_{\text{lead},t}}{P_t}\right)^{\frac{k_t-1}{k_t}} \right)^{\frac{1}{2}}}_{k_d} \right) \frac{2}{k_d} - \left(\frac{P_{\text{lead},t}}{P_d}\right)^{\frac{2}{k_t}} - \left(\frac{P_{\text{lead},t}}{P_d}\right)^{\frac{k_t-1}{k_d}} \right)^{\frac{1}{2}} $ $\text{E} \tilde{\mathbf{w}} \tilde{\mathbf{t}} \tilde{\mathbf{w}} \tilde{\mathbf{t}} \tilde{\mathbf{w}} \tilde{\mathbf{t}} \tilde{\mathbf{w}} \tilde{\mathbf{t}} \tilde{\mathbf{w}} \tilde{\mathbf{w}$	
	$\left(\frac{\Delta P_{t}}{\Delta P_{d}},\frac{\rho_{d}}{\rho_{t}}\right)^{\frac{1}{2}}$ 差圧流	$\left(rac{\Delta P_t}{\Delta P_d},rac{ ho_d}{ ho_t} ight)^{rac{1}{2}}$	
	P : 原子炉格納容器内圧力 P_{leak} : 漏えい口出口での圧力 μ : 原子炉格納容器内の気体の粘性係数 k : 原子炉格納容器内の気体の粘性係数 k : 原子炉格納容器内の気体の比熱比 P_{atm} : 大気圧 $\frac{P_{leak,t}}{P_d} = \max \left(\frac{2}{k_t+1}\right)^{k_t-1}, \frac{P_{atm}}{P_d}$	P : 原子炉格納容器内圧力 P_{leak} : 漏えい口出口での圧力 P_{leak} : 漏えい口出口での圧力 P_{leak} : 原子炉格納容器内の気体の粘性係数 P_{leak} : 原子炉格納容器内の気体の比熱比 P_{leak} : 大気圧 P_{leak} : 大気圧 P_{leak} P_{leak} P_{leak} P_{leak} P_{leak} P_{leak} P_{leak}	
	原子炉格納容器からの漏えい率を第1 図に示し、上記(1), (2)で述べた各流況の式から得られる漏えい率を第2 図に示す。	原子炉格納容器からの漏えい率を第1 図に示し、上記 (1)、(2)で 述べた各流況の式から得られる漏えい率を第2 図に示す。	
	原子炉格納容器内の圧力解析結果(最高値約0.360 MPa [gage])に対応した漏えい率(約0.144 %/日)に余裕を見込んだ値として、原子炉格納容器からの漏えい率を事故期間(7 日間)中0.16 %/日一定に設定している。この時、漏えい率0.16 %に対する原子炉格納容器圧力は、最も小さい圧縮性流体(層流)を仮定した	原子炉格納容器内の圧力解析結果(最高値約 0.43MPa [gage])に 対応した漏えい率(約 0.142 %/日)に余裕を見込んだ値として、原 子炉格納容器からの漏えい率を事故期間 (7 日間) 中 0.16 %/日一定 に設定している。この時、漏えい率 0.16%に対する原子炉格納容器圧 力は、最も小さい圧縮性流体(層流)を仮定したとしても、第 3 図に	個別解析による相違個別解析による相違
	としても,第3 図に示すとおり約0.40 MPa[gage]であり,原子炉格 納容器内圧解析結果に対して余裕をみこんでいる。	示すとおり約0.54 MPa[gage]であり、原子炉格納容器内圧解析結果に対して余裕をみこんでいる。	個別解析による相違
	なお,上式には温度の相関は直接表れないが,気体の粘性係数, 比熱比等で温度影響を考慮した上で,得られる値のうち最大値を評 価している。	なお、上式には温度の相関は直接表れないが、気体の粘性係数、比 熱比等で温度影響を考慮した上で、得られる値のうち最大値を評価し ている。	

女川原子力発電所 2 号炉	り 泊発電所3号炉	大飯発電所3/4号炉	差異理由
	添付1-2-10	10000	型式の相違 ・女川には該当する
	アニュラス空気浄化設備 空気作動弁の開放手順の成立性について	アニュラス空気浄化系統空気作動ダンパの開放手順の成立性について	資料がないため、大 飯との比較を実施す る。
	重大事故時の居住性に係る被ばく評価において想定している, アニュラス空気浄化ファン起動のための操作の成立性について, 下記に示す。		<i>∞</i> ∘
	【アニュラス排気ダンパ現場手動開操作,アニュラス全量排気弁代 替空気(窒素)供給操作】		
	1. 操作概要 全交流動力電源喪失時,炉心損傷時の被ばく低減のため,アニュ ラス空気浄化ファンを起動するための排気弁用供給空気の切替え操 作を行う。	1. 操作概要 全交流動力電源喪失時において、炉心損傷時の被ばく低減のた め、アニュラス空気浄化ファンを起動するためのダンパ駆動用の窒 素供給操作を行う。	
	 必要要員数及び操作時間 必要要員数 : 2 名 想定時間(想定):約20 分 操作時間(模擬):約17 分(移動,放射線防護具着用含む) 	 必要要員数及び操作時間 必要要員数: 1名/ユニット 操作時間(想定): 45分 操作時間(実績): 39分(移動含む) 	個別解析による相違 個別解析による相違 個別解析による相違
	3. 操作の成立性 アクセス性: LEDヘッドランプ・LED懐中電灯を携行している ことからアクセスできる。また、アクセスルートに設 置されている照明はバッテリ内蔵型であり、事故環 境下においてもアクセスできる。	3. 操作の成立性 アクセス性: ヘッドライト・懐中電灯等を携行していることか ら、アクセス可能である。	記載方針の相違 ・泊はアクセスルー トの照明についても 記載。
	作業環境:事故環境下における作業エリアの温度は通常運転状態 と同等である。また、操作エリアに設置されている照 明はバッテリ内蔵型であり、事故環境下においても 操作できる。汚染が予想される場合は、個人線量計を 携帯し、放射線防護具等を着用する。	作業環境:事故環境下における室温は通常運転状態と同等である。また、作業エリアに設置されている照明はバッテリ内蔵型であり、事故環境下においても作業可能である。また、汚染が予想されることから個人線量計を携帯し、全面マスク等を着用する	BL 495.0
	操作性:操作場所は通路付近にあり、容易に操作できる窒素 ガスボンベを接続するフレキシブル配管は、カップラ接 続であり容易かつ確実に接続できる。ボンベ元弁を開と するための工具はボンベ付近に設置している。	操作性:通常行う弁操作と同じであり、容易に操作可能である。また、ホース接続についてはクイックカプラ式であり容易に接続可能である。操作専用工具もボンベ付近に設置している。	
	連絡手段:通常時の通信手段として,電力保安通信用電話設備 の携帯電話端末(PHS)を携行しており,連続通 話で約6時間使用可能である。また,事故環境下に おいて,通常の連絡手段が使用不能となった場合で も,携行型通話装置を使用し中央制御室との連絡を行 う。	連 絡 手 段:事故環境下において通常の連絡手段が使用不可となった場合でも、携行型通話装置を携帯しており、確実に連絡可能である。	記載方針の相違 ・泊は通常時の通信 手段について記載。

青字:記載箇所又は記載内容の相違(記載方針の相違)

緑字:記載表現、設備名称の相違(実質的な相違なし)

第 50 宋 連転員が原子が制御主にことよるにあり版補 相定説明資本 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	【試料採取室排気隔離ダンパ閉処置】 1. 操作概要 アニュラス空気浄化ファン起動のため、ダンパの閉処置を行う。		設計方針の相違 ・泊3号炉は、全交 流動力電源又は直 流電源喪失時のア ニュラス空気浄化
	2. 必要要員数及び操作時間 必要要員数: 1名		設備を運転するための系統構成において、試料採取室
	シェン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		隔離ダンパの閉処 置を実施する。
	3. 作業の成立性 アクセス性: LEDヘッドランプ・LED懐中電灯を携行していることからアクセスできる。また、アクセスルートに設置されている照明はバッテリ内蔵型であり、事故環境下においてもアクセスでき		
	る。 作業環境: 事故環境下における室温は通常運転状態と同等である。また、ダンパ閉処置作業エリア周辺には、作業を行う上で支障となる設備はなく、LEDへッドランプ・LED懐中電灯を用いることから事故環境下においても作業できる。 汚染が予想される場合は、個人線量計を携帯し、放射線防護具等を着用する。		
	操作性: ダンパ閉処置作業は、対象ダンパの制御用空気 供給弁閉操作と連結シャフトを閉側へ回す作業 のみであり、容易に実施可能である。		
	連絡手段: 通常時の通信手段として電力保安通信用電話設備の携帯電話端末(PHS)を携行しており連続通話で約6時間使用可能である。また、事故環境下において、通常の連終手段が使用不能となった場合でも、携行型通話装置を使用し中央制御室との連絡を行う。		

筹	59	条	運転員	が原子炉	制御室にと	ーどまる	ろ <i>ための設備</i>	(補足説明資料)
---	----	---	-----	------	-------	------	----------------	----------

女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	ダンパ全景 (原子炉補助建屋T. P. 40.3 m) ① 原子炉補助建屋T. P. 40.3 mへ移動 し、作業準備を行う。 ② 対象ダンパの制御用空気供給弁を閉止する。		設計方針の相違 ・泊3号炉は、全交 流動力電源又は直 流電源喪失時のアニュラス空気浄化 設備を運転するた めの系統構成にお いて、試料採取室 隔離ダンパの閉処 置を実施する。
	(連結シャフト、止めネジイメージ) ② ダンパオペレータの連結シャフトの 止めネジを緩める。 ③ 連結シャフトを関方向へ操作する。 ③ 閉状態を保持したまま止めネジを締 め付ける。		

女川原子力発電所 2 号炉	泊発電所3号	炉	大飯発電所	3 / 4 号炉	差異理由
		添付1-2-11			記載方針の相違
					・女川には比較対象
	フィルタ除去効率の設	定について	フィルタ除去効率	8の設定について	となる資料がないた
	1. 微粒子フィルタについて		1. 微粒子フィルタについて		め大飯と比較を実施
	重大事故時の居住性に係る被ばく評価	五において,中央制御室空調	重大事故時の居住性に係る被は	ばく評価において、中央制御室換気	
	装置及びアニュラス空気浄化設備の微料	立子フィルタによるエアロゾ	設備及びアニュラス空気浄化設備	情の微粒子フィルタによるエアロゾ	
	ル除去効率の評価条件として99 %を用い	いている。上記の微粒子フィ	ル除去効率の評価条件として 99%	6を用いている。上記の微粒子フィ	
	ルタについては、納入前の工場検査に	ないてフィルタ除去効率が確	ルタについては、納入前の工場権	食査においてフィルタ除去効率が確	
	保されていることを確認している。		保されていることを確認している	5.	
	微粒子フィルタのろ材はガラス繊維を	をシート状にしたもので,エ	微粒子フィルタのろ材はガラス	ス繊維をシート状にしたもので、エ	
	アロゾルを含んだ空気がろ材を通過する	5際に, エアロゾルがガラス	アロゾルを含んだ空気がろ材を迫	通過する際に、エアロゾルがガラス	
	繊維に衝突・接触することにより捕集	される。	繊維に衝突・接触することにより)捕集される。	
	(1) 中央制御室空調装置の微粒子フィ	ルタ	(1) 中央制御室換気空調設備の	牧粒子フィルタ	
	a. 温度及び湿度条件について		a. 温度及び湿度条件につい	いて	
	泊発電所3号炉の中央制御室	は,原子炉格納容器から離れ	大飯 3 号炉及び 4 号炉	の中央制御室は、原子炉格納容器	
	た位置にあるために、温度や湿	度が通常時に比べて大きく変	から離れた位置にあるため	りに、温度や湿度が通常時に比べて	
	わることはなく、フィルタの性	能が低下するような環境には	大きく変わることはなく、	フィルタの性能が低下するような	
	ならない。したがって,微粒子	フィルタ除去効率99 %は確保	環境にはならない。したか	ぶって、微粒子フィルタ除去効率	
	できる。		99%は確保できる。		
	b. 保持容量について		b. 保持容量について		
	泊発電所3号炉の中央制御室	空調装置の微粒子フィルタの	大飯 3 号炉及び 4 号炉	の中央制御室換気空調設備の微粒	
	保持容量は約2.9 kg/2 枚 (全4	枚のうち上流側2枚)であ	子フィルタの保持容量は終	内 6.5kg である。中央制御室(重	個別解析による相違
	る。中央制御室(重大事故)居	住性に係る被ばく評価で選定	大事故)居住性に係る被は	ばく評価で選定した評価事象におい	記載方針の相違
	した評価事象において原子炉格	納容器から放出され,中央制	て原子炉格納容器から放出	出され、中央制御室内に流入するエ	・泊は内訳を記載
	御室内に流入するエアロゾル量	は約 <mark>30 mg</mark> である。	アロゾル量は約 0.1g であ	る。	個別解析による相違
	これは,安定核種も踏まえて	,保守的にアニュラスフィル	これは、安定核種も踏ま	まえて、保守的にアニュラスフィル	
	タによる除去効率を無視し,格	納容器から漏えいしてきた微	タによる除去効果を無視し	、格納容器から漏えいしてきた微	
	粒子が全て大気中に放出される	として評価したものである。	粒子が全て大気中に放出さ	されるとして評価したものである。	
	また,漏えいした微粒子は全て		また、漏えいした微粒子に	は全て地上から放出されるとして格	
	納容器から中央制御室までの大	気拡散(希釈効果)を考慮	納容器から中央制御室まで	での大気拡散(希釈効果)を考慮	
	し、中央制御室内に侵入した微	粒子は全量がフィルタに捕集	し、中央制御室内に侵入し	た微粒子は全量がフィルタに捕集	
	されるものとした。なお, よう	素は全て粒子状よう素として	されるものとした。なお、	よう素は全て粒子状よう素として	
	評価した。 (第5 表及び第1 図	参照)	評価した。(第5表及び第	(1 図参照)	
	したがって,中央制御室空調	装置の微粒子フィルタには,	したがって、中央制御室	区換気空調設備の微粒子フィルタに	
	エアロゾルを十分に捕集できる	容量があるので,微粒子フィ	は、エアロゾルを十分に拡	#集できる容量があるので、微粒子	
	ルタ除去効率99 %は確保できる	0	フィルタ除去効率 99 %は		
	第1表 中央制御室空調装置の	微粒子フィルタ保持容量	第1表 中央制御設備換気設備		6 0821480 S 87044
	微粒子フィルタ	中央制御室空調装置	微粒子フィルタ	中央制御設備換気空調設備	個別解析による相違
	フィルタに捕集されるエアロゾル量	約 30 mg	フィルタに捕集されるエアロゾル量 保持容量	約 0.1g 約 6.5kg	
	保持容量	約 2.9 kg	体付谷里	жу о. әкд	
			l		

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

青子:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉	泊発電所3号	炉	大飯発電所	f 3 / 4 号炉	差異理由
女川原子力発電所 2 号炉	(2) アニュラス空気浄化設備の微粒子 a. 温度及び湿度全体性に一個の微粒子で温度を発性に一個の微粒で温度した。 150 で程度となり,度が異常に一般ででは、一点の温度に一般では、一点の温度に一般では、一点の温度に一般である。 評価期間・中に原子が・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	・フィルタ 記さいて、原子炉格納容器内は 認容器からの温度伝播等により。 ・ラス空気浄化設回し上昇であして 温度を大フィルタ 温度なお、フィンを はないなれまり。 ・シスクでであり、湿昇ラスにはないない。 は度上外でであり、湿昇ラスを大力ではないがない。 は度上のではながいない。 ・シスクでがは、ではないがない。 ・シスクでが、ではないがない。 ・シスクでが、ではないがない。 ・シスクでが、ではないがない。 ・シスクでが、ではないがない。 ・シスクでが、ではないが、ではないが、ではないが、ではないが、ではないが、ではないが、ではないが、ではないが、ではないが、ではないが、ではないが、ではないが、ではないが、ではないが、では、一つでは、一つでは、一つでは、一つでは、一つでは、一つでは、一つでは、一	(2) アニュラス空気浄化と、保持ないので、は、スターのでは、大変のでは、大変のでは、大変のでで、大変ので、大変ので、大変ので、大変ので、大変ので、大変ので、大変の	散粒子フィルタ いて 事象において、原子炉格納容器内は 炉格納容器からの温度伝播等により 見高で 70℃程度までの上昇である 号炉のアニュラス空気浄化設備に いタの最高にとはさい。なとはない。はない。なとはない。なとはない。なとはない。なとはないなではながかなとによるきにはがから、それはどとはない。その性能が低下するとはない。 の性能が低下することはない。 のアニュラス空気浄化設備の微粒 イルタ除去効率 99 %は確保できる。まえて、格納容器からて、経済をいしている。などはない。はないのアニュラス空気浄化設備の微粒をする。または全ているの性にはない。	差異理由 記載方針の相違 記載方針の相違 ・泊は内訳を記載 個別解析による相違 ・個別解析による相違
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

2. よう素フィルタについて ・	女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
要認及びアニュラス受気を行政機のとう素フィルタに有限とう素と 近端末とう素の含みが平月格像件として85 を用いている。上記のよう素フィルタに有限とう 素及び売業にきる物の含みが平月格像件として85 を用いている。 (1) 中央制御室空間接回とう素フィルタ a. 温度及び隔度条件について 売のとおり、指発便万多号の中央制御室は、原子炉格納 容粉・砂磨しためたり、したかっ、上表ウィータを含めた ような機能にないた。上ので、よう東フィルタ たりたまり、18変形の中央制御室は、原子炉格 変料にかって、大きく変わることはなく、フィルタの性能が低下するよう 文を機能していて、上ので、よう東フィルタ を見ていて「105 知識保を含る。なお、温度度を特を着まえた協 去効中の受生の資料におい、したかっ、上が、大きカマイルタムの 要者量については、素材に示す。 b. 吸音変量について 治理の所の中央制御室空間接頭のよう素フィルタの 吸着等量について「治理の中央制御室で開業面のよう素フィルタの 吸着等量は、約3.43 ½/10 枚である。 中央制御室(重大事的 居住性に係る被ぼく評価で選定した た評価事象において原子炉格特容器から放出され、中央制御 室内に流入するよう多単土は対して、中央制御室を関連度の破 粒子フィルタ」と関係の手技で評価したものである (安定戦 権も考慮)、ただし、よう海への半形を発生と対 変化に流入するとかまり素とし、中央制御室を開業度の被 粒子フィルタ」と関係の手技で評価したものである (安定戦 権も考慮)、ただし、よう海の中学部総合で流を放けまたままたままたままたままた。 素がと多素とした。と等のを必ずを記しまた。 第2 大ルタールターは高速性に係るを被ぼく評価で選定した。 に成入するとから素はおいて原子の格特を認めるかは出され、中央制御 室内に流入するとか多素とはかで原子の格特を認めるかは出され、中央制御 を対し、ようボトが容量ととが、 第3 医参照) したかって、中央制御室のに優したよう素はな 最がとう素とし、中央制御室の下に侵入したよう素はな 最がとう素と、中央制御室のに侵入したよう素はな 素が、カラスィルタに抽集をしるものとした。(第6 表及び 第3 医参照) したかって、中央制御室的に侵入したよう素はな 素が、カラスィルタに抽集をしるものとした。(第6 表及び 第3 医参照) したがって、中央制御室的に侵入したよう素はな 素が、カラスィルタに結集をしるものとした。(第6 表及び 第3 カラスィルタを企成するとしている 計議像で さる容差があり、よう第フィルタには、 中央制御室的に侵入したよう素としている 計議像で さる容差があり、よう第フィルタに は、中央制御室的に侵入したより表はを 第3 カラスィルタに は、中央制御室のに侵入したより表はを 第3 カラスィルタに構集とう表とした。(第6 を及び第 第3 カース・ルタに対しました。(第6 を及び第 第3 カラスィルタには、中央制御を かり、ようオフィルタに は、中央制御室のに侵入したより表はを を記しているとした。(第6 を及び第 第3 カラスィルタに は、中央制御室のと及び第 を記しているは は、中央制御室を といるのとした。(第6 を及び第 第3 カラスィルタに は、中央制御室のに侵入と対しているは は、中央制御室を を記しているとした。(第6 を及び第 第3 カラスィルタに は、中央制御室を を記しているとしているとした。(第6 を及び第 第3 カラスィルタに は、中央制御室を を記しているとないるとないるとないるとないるとないるとないるとないるとないるとないるとな			Wall to the state of the state	記載方針の相違
び元素状よう素の除去効率の厚格条件として50 名を用いている。上記のよう第フィルタでいることを確認している。 (1) 中央制御宝空開装置のよう素フィルタ a. 直接及び速奏件について 先のとおう。 治理最近3 号炉の中央制御電は、原子炉格納 容器から離れた位置にあるために、道度や速度が通常時に比べて大き、変わることはなる。 (2) 中央制御宝池族交車が海線できていることを確認している。 (3) 中央制御宝施、京子炉格納 容器から離れた位置にあるために、道度や速度が通常時に比べて大き、変わることはなる。 (4) 中央制御金池族交車が海線できていることを確認している。 (4) 中央制御金池族交車が海線できない。 (5) 中央制御金池族交車が海線できない。 (5) 中央制御金池族交車が海線では、原子炉格納容器から離れた位置にあるために、道度や電話が低下さような環境におならない。 したがって、よう妻フィルク除去効車として50 おけばんできた。 (5) 東フィルク解音また所 法の事の実と性でりがは確保できる、10 東京 カイルクの保持者をおり、 10 手がって、 10 第マイルクの受害者を動し、 10 手がって、 10 第マイルクの受害者を動し、 10 手がって、 10 第マイルクの受害者を動し、 10 手がって、 10 第マイルクの受害者を動しまない。 (5) 東京 10 手がった。 10 手がっ				
記のよう素フィルタについては、定期事業者検査で上記除去効率が 確保できていることを確認している。 (1) 中央制御室改職装置のよう素フィルタ				
(1) 中央制育室空間装置のよう素フィルタ a. 温度及び電度条件について				
(1) 中央制御室窓開発電のよう帯フィルタ a. 温度及び温度条件について 先のとおり、接受電所 3 号がの中央制御室は、原子が信約 容器から離れた危壁にあるために、温度や湿度が適常神に比べて大きく変わることはなく、フィルタの性能が低下するような機能にはならない。たがって、ようルマルタトな効率として55 おは確保できる。なお、温度度条件を踏まえた除 表効率の受性を野難については、 治付に示す。 b. 吸着電量について 治発育。3 号がのサルサ映制御室空開度のよう素フィルタの 受着客量は、約0.43 kg/10 枚である。 中央制御室(重大事故)居住住に係る被ばく評価で選定した評価事象においてぼりからから、これは、10 表 を				
a. 温度及び温度条件について 歩のとおり、沿発電所3 号炉の中央制御室は、原子炉格的 容器から離れた位置にあるために、温度や恒度が通常時に比 べて大きく変わることはなく、フィルタの性能が低下するよう企業原にはならなか。 たかって、よう素フィルタの性能が低 すったいとして95 5は確保できる。なお、温度度条件を踏まえた除 去効率の必当性の静緒にでは、添付に示す。 し 版者を量について 治療を指え、着から、35 kg 10 枚である。 安書をは、着から、43 kg 10 枚である。 安書をは、40 cg 20 枚を 20 kg 20		(性体できていることを(性応している。	快生で上記除去効学が健保できていることを確認している。	
a. 温度及び温度条件について 歩のとおり、沿発電所3 号炉の中央制御室は、原子炉格的 容器から離れた位置にあるために、温度や恒度が通常時に比 べて大きく変わることはなく、フィルタの性能が低下するよう企業原にはならなか。 たかって、よう素フィルタの性能が低 すったいとして95 5は確保できる。なお、温度度条件を踏まえた除 去効率の必当性の静緒にでは、添付に示す。 し 版者を量について 治療を指え、着から、35 kg 10 枚である。 安書をは、着から、43 kg 10 枚である。 安書をは、40 cg 20 枚を 20 kg 20		(1) 中央制御室空調装置のよう表フィルタ	(1) 中央制御室施気空調設備のよう表フィルタ	
先のとおり、大阪 3 号の及び4 号呼の中央制御室は、原 等器から離れた位置にあるために、温度や湿度が通常時に比 べて大きく変わることはなく、フィルタの性能が低下するような環境にはならない。したがって、よう素フィルタ 事として95 私は機できる、なお。 海海アイルタ除去効 事として95 私は機できる、なお。 海海アイルタの大きが増加していては、添付に示す。 b. 吸着容量について 治系整所3 号中の中央制御室空間装置のよう素フィルタの 被前容量は2 5 mg (高大事故) 居住性に係る被ばく評価で適定し た評価事象において原子的格納容器から放出され、中央制御 室内に流入するよう素量は約5 mg 程度である。これは、「1. 数をナフィルタ」と同様の手法で評価したものである。とれは、「1. 1 25mg (東大中放) 居住性に係る被ばく評価で適定し た評価事象において原子的格納容器から放出され、中央制御 室内に流入するよう素量は約5 mg 程度である。これは、「1. 数をナフィルタ」と同様の手法で評価したものである(安定核 種も考慮)。ただし、よう素の化学形態は全て元素状よう素は 変内に減入するように、1 中央制御室の機を を対して、よりまの化学形態は全て元素状よう素は 資本は古機よう素と、中央制御室と関連をの数を ヤフィルタに結集されるものとした。 (第5 表及び 第3 図参照) したがって、中央制御室空間装置のよう素フィルタには、中央制御室空間を強したものである (安定核種も 考定して、まりまと、中央制御室では、日本・大田・大田・東京・東京・大田・東京・東京・大田・東京・東京・東京・大田・東京・大田・東京・東京・大田・東京・東京・大田・東京・大田・東京・東京・大田・東京・東京・東京・大田・東京・大田・東京・東京・東京・東京・東京・東京・東京・東京・東京・東京・東京・東京・東京・			0.000	
常味に比べて大きく変わることはなく、フィルタの性能が低下するような環境にはならなか。したがって、よう素フィルタ除去の強しているいは機能できる。なお、温度度条件を踏まえた除去効率の姿皆性の詳細については、活付に示す。 b. 吸着容量について 治発電所3分炉の中央制御室空間装置のよう素フィルタの 吸着容量について 治発電所3分炉の中央制御室空間装置のよう素フィルタの 吸着容量は、約0.43 kg/10 枚である。 中央制御室(重大事故) 居住性に係る被ばく評価で遷定した評価事象において原子炉格制容器から放出され、中央制御室内に流大するよう素量は約25 mg 相度である。これは、「1. 微粒デライルタドについて(1) 中央制御室(東大事故) 居住性に係る被ばく評価で適定した評価事象において原子炉格制容器から放出され、中央制御室内に流大するよう素量は約25 mg 相度である。これは、「1. 微粒デライルタドについて(1) 中央制御室の微粒テフィルタ」と間様の手法で評価したものである(安定核種も考慮)。ただし、よう素の化学系能は全て元素状よう素または有機よう素とし、中央制御室内に流大すると方素量は合ものとした。(第5 表及び第3 図書別) したがって、中央制御室空間接置のに侵入したよう素は全量がよう素フィルタに補集されるものとした。(第5 表及び第3 図書別) したがって、中央制御室空間接置のよう素フィルタには、中央制御室室間に流入する全でのよう素量でも合き容量があり、よう素フィルタに対すて、中央制御室を間に使入したよう素は全量がよう素フィルタに指集されるものとした。(第5 表及び第3 図書別) したがって、中央制御室内に使入したよう素は全量がよう素サインのには、中央制御室を所に流入する全でのよう素量でも合容量があり、よう素フィルタ原と効率と関係を効率として90%は確保できる。 第3 ま 中央制御室空間接置のよう素フィルタ保持容量とかって、中央制御室機械空間破るした。第2 オークルの異者できる容量があり、よう素フィルタ保持の主き素でも含容量があり、よう素フィルタ保持の主き素では多数を変しまって、中央制御室内を効率と加速を対するとでのよう素量でも含容量があり、よう素フィルタの味を効率として90%は確保できる。第3 ま 中央制御室内機気空間設備のよう素フィルタ保持容量とカロマルタと同様を表がまるのようまでは表がまる。第3 ま 中央制御室内機気空間設備のよう素フィルタ保持容量とカロマルタと同様を表がまるのようなと同様を表がまる。まるのようなと同様を表がまるのようなと同様を表がまるのようなどのようなと同様を表がまるのようなどのようなどのようなどのようなどのようなどのようなどのようなどのようなど				
する環境にはならない。したがって、よう素フィルタ除去効率として95%は確保できる。なお、温度度条件を を力率の妥当性の詳細については、溶析に示す。 も、吸着容量について 治発電所3号炉の中央制御室空調装置のよう素フィルタの 吸着容量は、約0.43 kg/10 枚である。 ・ 保持容量について 大筋3 号炉及び4号炉の中央制御室空調装置のよう素フィルタの 大筋3 号炉及び4号炉の中央制御室空調装置の過度のよう カフィルタの保持容量は約1,125g(活性度1g あたり)米国 R.G.L.S. より 方 である。 中央制御室(重大事故)居住性に係る被ばく評価で適定した評価事象において原子炉格精容器から放出され、中央制御 室内に流えするよう素量は対象とより素とよれは、 「1. 微粒子フィルタについて(1)中央制御室空調装置の微 粒子フィルタ」と同様の手法で評価したものである(安定核権も 着も考慮)たたし、よう素の化学配は全て元素がより素また。 または有権よう素とし、中央制御室空調装置の微 を行っれルタ」と同様の手法で評価したものである(安定核権も を変しただし、よう素の化学配は全て元素がより素また。 または有権よう素とし、中央制御室室調装置の高数な子のよりまディルタには、より素の化学総は全て元素がより素また。 は、有機とう素と、中央制御室室調装置のよう素フィルタには、まず素の化学総は全て元素がより素また。 は、自身を発生のである。(第5 表及び 第3 図参解) したがって、中央制御室空調装置のよう素フィルタには、 中央制御室内に流入する全でのよう素音でも十分に吸着できる容量があり、よう素フィルタに 中央制御室内に流入する全でのよう素者でも十分に吸着できる容量があり、よう素フィルタに は、中央制御室内に流入すたまでのより素素をして95 知は確保できる。 第3表 中央制御室内のよりまフィルタ保持容量 よう素フィルタ 東クタの中央制御室空調設置のようまフィルタ保持容量 よう素フィルタ 東クタのと補機されるよう素量 東クタの中央制御室を調設に関のようまフィルタ保持容量 よう素フィルタ 東クタの中央制御室空調設置のようまフィルタ保持容量 よう素フィルタ 東クタの中央制御室空調設置のよりまフィルタ保持容量 よう素フィルタ 東クタの中央制御室を調設に関いる主では、中央制御室機気空間の保険空間の保険でのの機 保持容量 よう素フィルタ 保持容量 約125g 割25g 割25g 初り25g 第35g 第35g 第4125g 第425g 第425g 第425g 第425g 第435g		容器から離れた位置にあるために、温度や湿度が通常時に比	子炉格納容器から離れた位置にあるために、温度や湿度が通	
幸として95 %は確保できる。なお、温速度条件を踏まえた除去が場の妥当性の評解については、路付に示す。 b. 残者を量について 治を電所3号炉の中央制御室空間装置のよう素フィルタの 吸着容量は、約0.43 kg/10 枚である。 中央制御室(重大事故)居住性に係る被ばく評価で選定した評価事象において原子伊格納容器から放出され、中央制御室(重大事故)居住性に係る被ばく評価で選定した評価事象において原子伊格納容器から放出され、中央制御室(重大事故)居住性に係る被ばく評価で選定した評価事象において原子伊格納容器から放出され、中央制御室内に流入するよう素量は約25 mg 程度である。これは、「1、微 インティルタリ」と同様の手なっる。これは、「1、微 インティルタリ」と同様の手なの表。これは、「1、微 インティルタリ」と同様の手法で評価にものである(安定核を 種も考慮)。ただし、よう素の化学形をは全て元素はよう素または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素フィルタに対して、(1) 中央制御室内に侵入したよう素は全量がよう素フィルタに地様まされるものとした。(第5 表及び第 第5 図字版) したがって、中央制御室室間装置のよう素フィルタには、中央制御室内に侵入したよう素は全量がよう素フィルタに捕集されるものとした。(第5 表及び第 第 図字版) したがって、中央制御室室間装置のよう素フィルタには、中央制御室内に侵入したよう素は全量がよう素フィルタに補集されるものとした。(第5 表及び第 第 図字版) したがって、中央制御室室間装置のよう素フィルタに持てきる容量があり、よう素フィルタに接てきる容量があり、よう素フィルタ原音のできる容量があり、よう素フィルタ保持容量と カッスルタ保持容量 よう素フィルタ 中央制御変強機の変機のよう素フィルタ保持容量と カッスルタ保持容量 カッスルタ保持を開発しるエアロゾルタ保持容量 カッスルタ保持を開発しるエアロゾルタに対し、大学など、大学など、大学など、大学など、大学など、大学など、大学など、大学など		べて大きく変わることはなく、フィルタの性能が低下するよ	常時に比べて大きく変わることはなく、フィルタの性能が低	
語まえた除去効率の妥当性の詳細については、添付に示す。 b. 吸着容量について 治発電所、多号の中央制御室空間装置のよう素フィルタの 吸着容量は、約0.43 kg/10 枚である。 中央制御室(重大事故)居住性に係る被ばく評価で適定した評価事象において原子炉格納容器から放出され、中央制御室 室内に流入するよう素量は約25 mg 程度である。これは、「1.微粒子フィルタについて(1)中央制御室空間装置の微 粒子フィルタ」と同様の手法で評価したものである(安定核種も考慮)。ただし、よう素保料を設立した。第6 表及び 種も考慮)。ただし、よう素の化学形態は全て元素状よう素または有機よう素とし、中央制御室室内に浸入したよう素は全量がよう素フィルタに捕集されるものとした。(第6 表及び 第3 図参照) したがって、中央制御室空間装置のよう素フィルタには、中央制御室のに対して、中央制御室室内に浸入したよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 当は確保できる。 第3 表 中央制御室空間装置のよう素フィルタ保持容量 な 1 を 2 図参照) したがって、中央制御室空間装置のよう素フィルタには、中央制御室のに対して、中央制御室のに対して、1 中央制御室を内に対して、1 中央制御室を内に対して、2 で 1 を 3 を 3 と 1 と 1 を 3 を 3 と 2 図参照) したがって、中央制御室空間装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室でに対して、2 で 4 号がの中央制御室を内に対して 3 を 4 中央制御室を内に対して 4 中央制御室を内に対して 4 中央制御室を内に対して 4 中央制御室を内に対して 4 中央制御室を内に対して 4 中央制御室を開放して 4 中央制御室機及空間設備のよう素フィルタ 6 中央制御室を開放して 4 中央制御を関係して 4 中央制御室を開放して 4 中央制御室を開放して 4 中央制御室を開放して 4 中央制御室を開放して 4 中央制御を関係して 4 中央制御室を開放して 4 中央制御室を開放して 4 中、4 中、4 中、4 中、4 中、4 中、4 中、4 中、4 中、4 中		うな環境にはならない。したがって、よう素フィルタ除去効	下するような環境にはならない。したがって、よう素フィル	
b. 吸着容量について		率として95 %は確保できる。なお,温湿度条件を踏まえた除	タ除去効率として95%は確保できる。なお、温湿度条件を	
一		去効率の妥当性の詳細については,添付に示す。	踏まえた除去効率の妥当性の詳細については、添付に示す。	
要名の				
中央制御室(重大事故)居住性に係る被ばく評価で遷定した評価事象において原子炉格納容器から放出され、中央制御室(重大事故)居住性に係る被ばく評価で遷定した評価事象において原子炉格納容器から放出され、中央制御室内に流入するよう素量は約25 mg 程度である。これは、「1. 微粒子フィルタについて(1) 中央制御室空間装置の微粒子フィルタについて(1) 中央制御室空間装置の微粒子フィルタとついて(1) 中央制御室空間装置の微粒子フィルタといいて(1) 中央制御室空間装置の微粒子フィルタと、上り素の化学形態は全て元素状よう素または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素とし、中央制御室内に侵入したよう素は全量がよう素とし、中央制御室空間装置のよう素フィルタに対して(1, 中央制御室空間装置の高速できる容量があり、よう素フィルタに捕集されるものとした。(第5 表及び第2 図参照)したがって、中央制御室空間装置のよう素フィルタには、中央制御室空間装置のよう素フィルタには、中央制御室空間装置のよう素フィルタには、中央制御室空間装置のよう素フィルタには、中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタには、中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタに持て、中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタには、中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタに対して、中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタに対して、中央制御室機気の関係のよう素フィルタに対して、中央制御を機気を関係のよう素フィルタに対して、中央制御を機気を関係のよう素フィルタに対して、中央制御を機気を関係のよう素フィルタに対して、中央制御を機気を関係のよう素フィルタに対して、中央制御を機気を関係のよう素フィルタに指集されるエアコノル量を、サースを対して、中央制御を機気を関係のよう素フィルタに対して、中央制御を機気を関係のよう素では、中央制御を機気を関係のよう素では、中央制御を機気を関係のよう素では、中央制御を機気を関係のよう素として、中央制御を機気を関係のよう素として、中央制御を機気を関係のよう素として、中央制御を機気を関係のよう素として、中央制御を機気を関係のよう素として、中央制御を機気を関係のよう素をは、中央制御を関係など、中央制御を関係など、中央制御を関係など、中央制御を関係など、中央制御を関係など、中央制御を関係など、中央制御を関係など、中央制御を関係など、中央制御を関係など、中央制御を関係など、中、中、中、中、中、中、中、中、中、中、中、中、中、中、中、中、中、中、中				
中央制御室(重大事故)居住性に係る被ばく評価で遷定した評価事象において原子炉格納容器から放出され、中央制御室の間に流入するよう素量は約25 mg 程度である。これは、「1、微粒子フィルタについて(1)中央制御室空間装置の散粒子フィルタについて(1)中央制御室空間装置の散粒子フィルタについて(1)中央制御室空間装置の散粒子フィルタについて(1)中央制御室空間装置の散粒子フィルタにおいて成り、古美かの化学形態は全で元素状よう素または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素フィルタに捕集されるものとした。(第5 表及び第3 図参照) したがって、中央制御室空間装置のよう素フィルタには、中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室空間装置のよう素フィルタ保持容量と、第3表 中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95%は確保できる容量があり、よう素フィルタ除去効率として95%は確保できる。第3表 中央制御政備検知政備のよう素フィルタ保持容量とうまフィルタ保持容量と、カリに指集されるよう素量を対したる相違を対して95%は確保できる。第3表 中央制御政備検知政備のよう素フィルタ保持容量と、カリに対して100円に対し対して100円に対しを100円に対して100円に対しで100円に対しで100円に対して100円に対して100円に対しで100円に対して100円に対して100円に対して100円に対しで100円に対して		吸着容量は、約0.43 kg/10 枚である。		
中央制御室(重大事故)居住性に係る被ばく評価で適定した評価事象において原子炉格納容器から放出され、中央制御室内に流入するよう素量は約25 mg を握するる。これは、「1、微粒子フィルタについて(1)中央制御室空間装置の微粒子フィルタについて(1)中央制御室空間装置の微粒子フィルタについて(1)中央制御室強型で変していて(1)中央制御室換気空間設備の数粒子を持たいまり、大きでは、1、数を大フィルタについて(1)中央制御室換気空間設備の数粒子でルタに、1、1、微粒子フィルタについて(1)中央制御室換気空間設備を数としていた。(第6 表及び、着度)。ただし、よう素の化学形態は全て元素状よう素または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素ティルタに捕集されるものとした。(第6 表及び第3 図参照)したがって、中央制御室空間装置のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3 表中央制御室空間装置のよう素フィルタ保持容量よう素フィルタ 中央制御室空間装置のよう素フィルタ保持容量よう素フィルタ 中央制御室空間装置のよう素フィルタ保持容量よう素フィルタ 中央制御室空間装置のよう素フィルタ保持容量よう素フィルタ 中央制御室空間装置のよう素フィルタ保持容量よう素フィルタ 中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95%は確保できる。 第3 表中央制御室内に流入する全でのよう素型でも十分に吸着できる容量があり、よう素フィルタ除去効率として95%は確保できる。 第3 表中外制変関循気変調を備気変通のよう素フィルタ保持容量よう素フィルタ 中央制御政備換気変通の信のフィルタに指集されるエアロブル量 約 5mg 田別解析による相違と対容を表するといるに対するといるといるといるといるといるといるといるといるといるといるといるといるといる				
た評価事象において原子炉格納容器から放出され、中央制御 室内に流入するよう素量は約25 mg 程度である。これは、「1. 微粒子フィルタについて(1)中央制御室空間接置の微 粒子フィルタについて(1)中央制御室空間接置の微 粒子フィルタ」と同様の手法で評価したものである(安定核 種も考慮)。ただし、よう素の化学形態は全て元素状よう素 または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素 すたは有機よう素とし、中央制御室空間接置の入したよう素は全量がよう素フィルタに捕集されるものとした。(第5 表及び 第3 図参照) したがって、中央制御室空間装置のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3ま 中央制御室空間装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空間装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空間装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空間装置のよう素フィルタ保持容量 よう素フィルタ 中央制御政備機気政備のよう素フィルタ保持容量 よう素フィルタ 中央制御政備機気政備のよう素フィルタ保持容量 よう素フィルタ 中央制御政備機気変調及借 フィルタに捕集されるよう素量 約1125g 倒別解析による相違 例別解析による相違 (個別解析による相違 とう素フィルタ 中央制御政備機気変調及借 フィルタに捕集されるよう素量 約1125g 例別解析による相違 例別解析による相違 (個別解析による相違 とうまフィルタ 中央制御政備機気変調及借 フィルタに捕集されるエアロゾル 自 ・ 中央制御政備機気変調及借 カト1125g りか 1125g りが 112		中中制御会(金七東北)民代州に係る神ばノ部体べ選会)		
室内に流入するよう素量は約25 mg 程度である。これは、「1. 微粒子フィルタについて(1)中央制御室空間装置の微粒子フィルタについて(1)中央制御室空間装置の微粒子フィルタについて(1)中央制御室空間設備の微粒子フィルタについて(1)中央制御室内とものである(安定核種も考慮)。ただし、よう素の化学形態は全て元素状よう素または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素フィルタに捕集されるものとした。(第5 表及び第3 図参照) したがって、中央制御室空間装置のよう素フィルタには、中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室空間装置の人う素フィルタ保持容量よう素フィルタ保持容量よう素フィルタに捕集されるよう素量でも中分に吸着できるの量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室空間装置の (第5 表及び第2 図参照)したがって、中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室空間装置の (第5 表及び第2 図参照)したがって、中央制御室換気空間設備のよう素フィルタには、中央制御室内に流入する全でのよう素型でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。第3表 中央制御室内に流入する全でのよう素型でも大きな機を対していまり、中央制御室内に流入する全でのよう素型でも大きな機を対していまり、中央制御室内に流入するよう素型である。これは、「1. 微粒子フィルタに対している。				
「1. 微粒子フィルタについて(1)中央制御室空調装置の微粒子フィルタ」と同様の手法で評価したものである(安定核種も考慮)。ただし、よう素の化学形態は全て元素状よう素または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素フィルタに捕集されるものとした。(第5 表及び第3 図参照) したがって、中央制御室空調装置のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3 表中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置のよう素型でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3 表中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約25 mg 横別解析による相違 横別解析による相違				The state of the s
粒子フィルタ」と同様の手法で評価したものである(安定核種も 種も考慮)。ただし、よう素の化学形態は全て元素状よう素 または有機よう素とし、中央制御室内に侵入したよう素は全 量がよう素フィルタに捕集されるものとした。(第5 表及び 第3 図参照) したがって、中央制御室空調装置のよう素フィルタには、 中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約25 mg 個別解析による相違 役特容量 約1125g				MANAGE STATE
種も考慮)。ただし、よう素の化学形態は全て元素状よう素または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素フィルタに捕集されるものとした。(第5 表及び第3 図参照) したがって、中央制御室空調装置のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95%は確保できる。 第3表 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約25 mg 個別解析による相違 「個別解析による相違				
または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素フィルタに捕集されるものとした。(第5 表及び第3 図参照) したがって、中央制御室空調装置のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ コィルタに捕集されるよう素量 約25 mg は有機よう素とし、中央制御室室内に侵入したよう素は全量がよう素フィルタに捕集されるものとした。(第5 表及び第2 図参照) したがって、中央制御室換気空調設備のよう素フィルタには、中央制御室内に流入する全でのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95%は確保できる。 第3表 中央制御政備換気設備のよう素フィルタ保持容量 カリルタに捕集されるよう素量 を対している。第3表 中央制御政備機気収置のよう素フィルタ保持容量 カリルタに捕集されるよう素量 を対している。第3表 中央制御政備機気収置のよう素フィルタに対象を関係を関係を関係を関係を関係を関係を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を				
第3 図参照) したがって、中央制御室空調装置のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約 25 mg 2 図参照) したがって、中央制御室換気空調設備のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として 95%は確保できる。 第3表 中央制御政備換気設備のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるエアロブル量 約 8mg 個別解析による相違			は有機よう素とし、中央制御室室内に侵入したよう素は全量	
したがって、中央制御室空調装置のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約25 mg したがって、中央制御室換気空調設備のよう素フィルタに は、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95%は確保できる。 第3表 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるエアロゾル量 約8mg 個別解析による相違		量がよう素フィルタに捕集されるものとした。 (第5 表及び	がよう素フィルタに捕集されるものとした。(第5表及び第	
中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95 %は確保できる。 第3表 中央制御室空調装置のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約25 mg は、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として95%は確保できる。 第3表 中央制御政備換気設備のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるエアロゾル量 約8mg 個別解析による相違		第3 図参照)	2 図参照)	
る容量があり、よう素フィルタ除去効率として95 %は確保できる。 できる容量があり、よう素フィルタ除去効率として95%は確保でまる。 第3表 中央制御室空調装置のよう素フィルタ保持容量 第3表 中央制御政備換気設備のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約25 mg 保持容量 約1.125g		したがって,中央制御室空調装置のよう素フィルタには,	したがって、中央制御室換気空調設備のよう素フィルタに	
きる。 保できる。 第3表 中央制御室空調装置のよう素フィルタ保持容量 第3表 中央制御設備換気設備のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約25 mg 保持容量 約1.125g 個別解析による相違 保持容量 約1.125g		中央制御室内に流入する全てのよう素量でも十分に吸着でき	は、中央制御室内に流入する全てのよう素量でも十分に吸着	
第3表 中央制御室空調装置のよう素フィルタ保持容量 第3表 中央制御設備換気設備のよう素フィルタ保持容量 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約25 mg 第3表 中央制御設備換気設備のよう素フィルタ保持容量 よう素フィルタ 中央制御設備換気空調設備 フィルタに捕集されるエアロゾル量 約8mg 保持容量 約1.125g		る容量があり、よう素フィルタ除去効率として95 %は確保で	できる容量があり、よう素フィルタ除去効率として 95%は確	
第3表 中央制御室空調装置 よう素フィルタ 中央制御室空調装置 よう素フィルタ 中央制御室空調装置 フィルタに捕集されるよう素量 約 25 mg 保持容量 約 1.125g		きる。	保できる。	
よう素フィルタ 中央制御室空調装置 よう素フィルタ 中央制御設備換気空調設備 フィルタに捕集されるよう素量 約 25 mg タ 25 mg 毎 25 mg 1.125g		第3表 中央制御室空調装置のよう素フィルタ保持容量	第3表 中央制御設備換気設備のよう素フィルタ保持容量	
フィルタに捕集されるよう素量 約 25 mg マイルタに捕集されるエアロゾル量 約 8mg IIII が 所 付 による 作連 タンイルタに捕集されるよう素量 ※ 1.125g				MIDI(ANIC) = 1 7 ION
保持容量 約 1.125g				個別解析による相違
			保持容量 約 1,125g	

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第 59 条 運転員が原子炉制御室にとどまるための設備(私 女川原子力発電所 2 号炉	
	(2) アニ
	a.
	分
	ば
	る
	で
	湿
	ア
	が
	b
	去
	た
	b.
	J J
	た
	結
	MA.
	気
	で
	7
	図
	は
	ル
	,,,
	_
	よう フィ 吸着
	- ジイ
	20.18
	ı

- ニュラス空気浄化設備のよう素フィルタ
 - 温度及び湿度条件について

よう素フィルタは、低温条件下での除去性能が低いことが かっており、重大事故時のような温度が高い状態であれ ず、化学反応が進行しやすく除去効率が高くなる傾向があ

泊発電所3号炉

また、湿度に対しては、低湿度の方が高い除去効率を発揮 できるが、先のとおり、格納容器漏えい率に応じたわずかな 显度上昇はあるものの、アニュラス空気浄化設備起動後は、 "ニュラス外からの空気混入もあることから,それほど湿度 が上がることはない。したがって、温度及び湿度の影響によ フィルタの性能が低下することはなく、よう素フィルタ除 5効率として95%は確保できる。なお、温湿度条件を踏まえ 上除去効率の妥当性の詳細については、添付に示す。

吸着容量について

泊発電所3号炉のアニュラス空気浄化設備のよう素フィル の吸着容量は、約1.4 kg/34枚である。

評価期間中に原子炉格納容器からアニュラス部へ漏えいし よう素すべてが吸着されるという保守的な仮定で評価した 吉果が約20 g である。

これは、「1. 微粒子フィルタについて(2) アニュラス空 試浄化設備の微粒子フィルタ」と同様の手法で評価したもの。 である(安定核種も考慮)。ただし、よう素の化学形態は全 「元素状よう素または有機よう素とした。(第5表及び第4 図参昭)

したがって、アニュラス空気浄化設備のよう素フィルタに は、よう素を十分に吸着できる容量があるので、よう素フィ レタ除去効率95%は確保できる。

第4表 アニュラス空気浄化設備のよう素フィルタ吸着容量

よう素フィルタ	アニュラス空気浄化設備
フィルタに捕集されるよう素量	約 20 g
吸着容量	約 1. 4 kg

第5表 炉心内蓄積質量(安定核種を含む)

N10 25 W	CITHINGE (SCINECIO)
核種	炉心内蓄積質量 (kg)
よう素類	2. 1E+01
(よう素)	(2. 0E+01)
Cs 類	3. 0E+02
Te 類	5. 0E+01
Ba 類	2. 1E+02
Ru 類	6. 9E+02
Ce 類	9. 4E+02
La類	1. 0E+03
合計	3. 2E+03

(2) アニュラス空気浄化設備のよう素フィルタ

a. 温度及び湿度条件について

よう素フィルタは、低温条件下での除去性能が低いことが 分かっており、シビアアクシデント時のような温度が高い状 態であれば、化学反応が進行しやすく除去効率が高くなる傾 向がある。

大飯発電所3/4号炉

また、湿度に対しては、低湿度の方が高い除去効率を発揮 できるが、先のとおり、格納容器漏えい率に応じたわずかな 湿度上昇はあるものの、アニュラス空気浄化設備起動後は、 アニュラス外からの空気混入もあることから、それほど湿度 が上がることはない。したがって、温度及び湿度の影響によ りフィルタの性能が低下することはなく、よう素フィルタ除 去効率として95%は確保できる。なお、温湿度条件を踏ま えた除去効率の妥当性の詳細については、添付に示す。

b. 保持容量について

大飯3号炉及び4号炉のアニュラス空気浄化設備のよう 素フィルタの保持容量は、約765g(充てん量約306kg(27 枚)、よう素吸着能力 2.5 mg (活性炭 1g あたり) 米国 R.G. 1.52 より) である。

評価期間中に原子炉格納容器からアニュラス部へ漏えいし たよう素すべてが吸着されるという保守的な仮定で評価した【保持容量を記載 結果が約25g である。

これは、「1. 微粒子フィルタについて(2) アニュラス空気 浄化設備の微粒子フィルタ」と同様の手法で評価したもので ある (安定核種も考慮)。ただし、よう素の化学形態は全て 元素状よう素または有機よう素とした。(第5表及び第4図 参昭)

したがって、アニュラス空気浄化設備のよう素フィルタに は、よう素を十分に吸着できる容量があるので、よう素フィ ルタ除去効率95%は確保できる。

第4表アニュラス空気浄化設備のよう素フィルタ保持容量

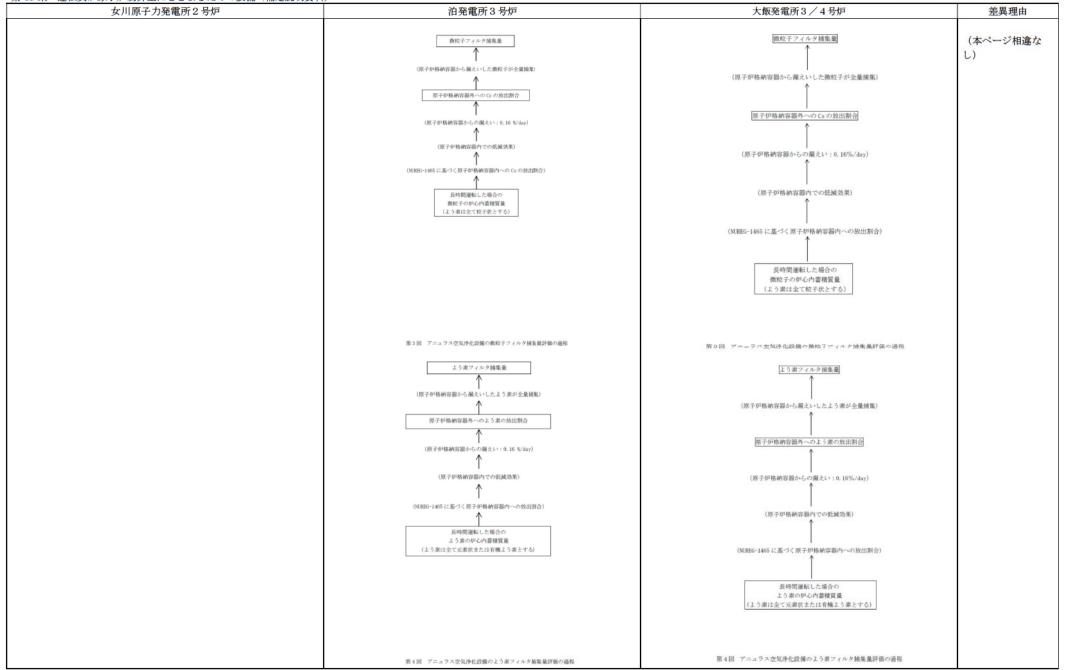
よう素フィルタ	アニュラス空気浄化設備
フィルタに捕集されるエアロゾル量	約 25g
保持容量	約 765g

第5表 炉心内蓄積質量(安定核種を含む)

核種グループ	炉心内蓄積質量 (kg)
よう素類	約 2, 7E+01
(よう素)	(約2.5E+01)
Cs 類	約 4. 0E+02
Te 類	約 7.3E+01
Ba 類	約 3, 0E+02
Ru 類	約 1, 1E+03
Ce 類	約 1, 5E+03
La類	約 1,5E+03
合計	約 4.9E+03

個別解析による相違 記載方針の相違 ・大飯は充てん量と 活性炭 1g あたりの

個別解析による相違


差異理由

個別解析による相違

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

育子:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 微粒子フィルタ捕集量 微粒子フィルタ捕集量 (中央制御室に流入した微粒子が全量捕集) (中央制御室に流入した微粒子が全量捕集) 中央制御室外気の微粒子濃度 中央制御室外気の微粒子濃度 (大気拡散による希釈: x/Q=約5.6E-04 s/m³ (地上放出) *1) 個別解析による相違 (大気拡散による希釈: χ/Q = 約1.3E-03 s/m² (地上放出) *1) (アニュラスフィルタによる除去効果を無視) (アニュラスフィルタによる除去効果を無視) 原子炉格納容器外への放出割合 原子炉格納容器外への放出割合 (原子炉格納容器からの漏えい: 0.16 %/fay) (原子炉格納容器からの漏えい: 0.16%/day) (原子炉格納容器内での低減効果) (原子炉格納容器内での低減効果) (NUREG-1465 に基づく原子炉格納容器内への放出割合) (NUREG-1465 に基づく原子炉格納容器内への放出割合) 長時間運転した場合の 微粒子の炉心内蓄積質量 長時間運転した場合の (よう素は全て粒子状とする) 微粒子の炉心内蓄積質量 *1:補集量が多くなるように地上放出のェ/Qで代表する (よう素は全て粒子状とする) 記載内容の相違 *1:捕集量が多くなるように地上放出のx/Qで代表する 記載値は3号と4号の 2/Qの合計値 泊は単号機申請の ため記載なし。 第1回 中央制御室空調装置の微粒子フィルタ捕集量評価の過程 第1回 中央制御室換気空間設備の微粒子フィルタ捕集量評価の過程 よう素フィルタ捕集量 よう素フィルタ捕集量 (中央制御室に流入したよう素が全量捕集) (中央制御室に流入したよう素が全量指集) 中央制御室外気のよう素濃度 中央制御室外気のよう素濃度 個別解析による相違 (大気拡散による希釈: x/Q=約5.6E-04s/m² (地上放出) *1) (大気拡散による希釈: χ/Q = 約 1.3E-03 s/m² (地上放出) *1) (アニュラスフィルタによる除去効果を無視) (アニュラスフィルタによる除去活業を無限) 原子年格納容器外への放出割合 原子炉格納容器外への放出割合 (原子炉格納容器からの漏えい:0,16 %day) (原子炉格納容器からの漏えい: 0.16%/day) (原子が搭納容器内での低減効果) (原子炉格納容器での低減効果) (NUREG-1465 に基づく原子炉格納容器内への放出割合) (MINEG-1465 に基づく原子炉格納容器内への放出割合) 長時間運転した場合の 長時間運転した場合の よう素の抑心内蓄積質量 よう素の炉心内蓄積質量 (全て元素状主たは有機よう素とする) (全て元素状または有機よう素とする) 記載内容の相違 *1: 捕集量が多くなるように地上放出の χ/Q で代表する *1:捕集量が多くなるように地上放出のx/Qで代表する 記載値は3号と4号のx/Qの合計値 泊は単号機申請の ため記載なし。 第2回 中央制御室操気空間設備のよう素フィルタ抽集量評価の過程 第2回 中央制御室空調装置のよう素フィルク捕集量評価の過程

第59条 運転	妘員が原子炉	制御室にとど	<i>まるための設備</i>	(補足説明資料)
---------	---------------	--------	----------------	----------

女川原子力発電所2号炉		電所3号炉	i			大飯発電所3/4号炉	差異理由
	よう素フィルタの湿度条件等を	踏まえた	余去効率の	の妥当性に	添 付こついて	添付 よう素フィルタの湿度等を踏まえた除去効率の妥当性について	
	(1)よう素フィルタ除去効率試験 よう素フィルタについては、 ルタ除去効率試験を実施し、よ 95 %以上)を満足することを硝 その際の試験条件は、アニュ 用循環系統ともに「温度:30 % なお、よう素フィルタは高温 できる傾向にある。	定期事業 こう素除去・ 重認してい ュラス空気: ℃,湿度:	性能が要素 る。 浄化設備, 95 %RH」	求性能(中央制行 である。	余去効率 卸室非常	(1) よう素フィルタ除去効率試験について よう素フィルタについては、定期検査時の定期事業者検査におい てよう素フィルタ除去効率試験を実施し、よう素除去性能が要求性 能(除去効率 95%以上)を満足することを確認している。 その際の試験条件は、アニュラス空気浄化設備、中央制御室非常 用循環設備ともに「温度:30℃、湿度:95%RH」である。 なお、よう素フィルタは高温、低湿度の方が高い除去効率を発揮 できる傾向にある。	
	(2) 泊発電所の温度状況について 泊発電所の温度状況について の最高温度の平均値, 最低気温 年) によると, 最高値及び最低 る。	ては,設置 温の平均値	(統計期)	間1991年	~2020	(2) 大飯発電所の温度状況について 大飯発電所の温度状況については、既設置許可添付6に記載の月 別の最高温度の平均値、最低気温の平均値によると、最高値及び最 低値はそれぞれ30.9℃、-0.2℃である。	個別解析による相違
	ただし、過去に本評価を行っ び最低値である、25.6 ℃, -6. 年)。以前の評価条件の方が包 した評価条件での検討結果を割	. 1 ℃であ 絡的な評価	った(統計	·期間1981	~2010	したがって、以下で重大事故時の温度・湿度条件を評価するにあたっては、よう素フィルタ除去効率は低温側の方が低くなることから、外気温度を保守的に夏季 30℃、冬季-1℃とする。	値をそのまま用いて 評価している。 ・泊では最新の温度 状況の影響について
	表1 泊発電所周辺の温度状	VD (80等终证	9天(計 R), 1974	批する追儺で	n ###@\		記載している。
		方都特 方都特			別地域	表 1 大飯発電所周辺の温度状況 (既設置許可添付6抜粋) 大飯発電所の最寄りの気象官署 舞鶴海洋気象台 敦賀測候所	Imputer to the second
	泊発電所の最寄りの気象官署	気象征	用测所	気象額	現測時	最高気温月/最低気温月 1月 8月 1月 8月	個別解析による相違
	最高気温月/最低気温月	8月	1月	8月	1月	最高気温の平均値/最低気温の平均値 -0.2℃ 30.6℃ 1.0℃ 30.9℃	
	最高気温の平均値/最低気温 の平均値	24.6 ℃	-4.7 ℃	25.6 ℃	-5.8 ℃		

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

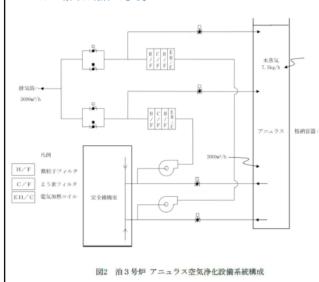
第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 (3) 泊発電所の相対湿度状況について (3) 大飯発電所の相対湿度状況について 2011年及び2012年の1月~12月までの泊発電所内の相対湿度デー 最近2 ヵ年(2010年及び2011年)の1月~12月までの大飯 個別解析による相違 発電所内の相対湿度データに関して日平均として整理した。横軸に (本ページ赤字全 タに関して日平均として整理した。横軸に各日単位で1年間、縦軸 に日平均の相対湿度を示す。この結果, 95 %RH以上の相対湿度の高 1年間の365日、縦軸に日平均の相対湿度を示す。この結果、 い日はなく、相対湿度90 %RH以上は年間13日(2011年),1日 95%RH 以上の相対湿度の高い日は 2010 年には年間 3 日であり、 (2012年)であった。従って、日平均の相対湿度において、フィル 2011 年には年間 1 日であった。相対湿度 90% RH 以上は年間 29 タの性能に影響する日平均の相対湿度95 %RHは年間を通してなく、 日 (2010年)、17日 (2011年) であった。従って、日平均の相対 相対湿度90 %RH以上は年間最大4 %程度である。 湿度において、フィルタの性能に影響する日平均の相対湿度95% なお、2021年においても確認を行ったところ、日平均の相対湿度 RH は年間通して数日しかなく、相対湿度 90%RH 以上は年間最大 記載方針の相違 95 %RHは年間を通して2日間しかなく、相対湿度90 %RH以上となる 8%程度である。 泊では最新データ のは年間20日(5%程度)であった。 での確認結果を記載 泊 日平均相対湿度 (2011年、2012年) 大飯 日平均相対湿度(2010年、2011年) 個別解析による相違 100 90 90 (%) 擬院女母女 計田 60 50 40 30 20 80 80 平均相対湿度 50 40 30 ш 20 7,8 ■2010年 ■2011年 図1 2010年1月~2011年12月の日平均の相対湿度 ■2011年 ■2012年 図1 2011年1月~2012年12月の日平均の相対湿度

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉


(4) 事故時のよう素フィルタ処理空気条件について

a. アニュラス空気浄化設備

アニュラス空気浄化設備の系統構成を図2に示す。重大事故時 のアニュラスには、格納容器から水蒸気が侵入し、格納容器以 外から外気が侵入してくる。具体的には、格納容器からの水蒸 気侵入量が約7.5 kg/h (注1) であり、格納容器以外からの水蒸気 を含む空気の侵入量は、約3000 m³/h (注2) である。

泊発電所3号炉

泊発電所周辺の夏季及び冬季の外気の温度、湿度を(2) 項及 び(3) 項より25.6°C,95 %RH及び-6.1°C,95 %RHとすると、 重大事故時のアニュラス内空気の水蒸気分圧は、それぞれ、約 4.0 kPa, 約0.92 kPa (注3) となる。事故時のアニュラスは、格 納容器からの伝熱により通常時の温度(40℃程度)以下になる ことは考えられないため、アニュラス内温度を40 ℃と想定した 場合、この時の相対湿度は55 %RH以下となり (注4) 、よう素フィ ルタの効率は確保できる。

(4) 事故時のよう素フィルタ処理空気条件について

a. アニュラス空気浄化設備

アニュラス空気浄化設備の系統構成を図2 に示す。重大事 故時のアニュラスには、格納容器から水蒸気が侵入し、格納容 器以外から外気が侵入してくる。具体的には、格納容器からの 水蒸気侵入量が約 9.8kg/h (注1) であり、格納容器以外からの水 個別解析による相違 蒸気を含む空気の侵入量は、約4,260m3/h(注2)である。

大飯発電所3/4号炉

大飯発電所周辺の夏季及び冬季の外気の温度、湿度を(2) 項より30℃、95%RH 及び-1℃、95%RH とすると、重大事故時 のアニュラス内空気の水蒸気分圧は、それぞれ、約 4.6kPa、 約0.81kPa (注3) となる。事故時のアニュラスは、格納容器から るため の伝熱により通常時の温度(40℃程度)以下になることは考え られないため、アニュラス内温度を40℃と想定した場合、こ の時の相対湿度は 65%RH 以下となり(注4)、よう素フィルタの 効率は確保できる。

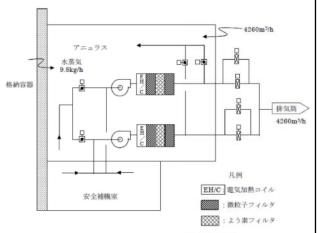


図 2 大飯 3/4 号機 アニュラス空気浄化設備系統構成

(本ページ赤字全

差異理由

記載方針の相違

湿度については (3)にて記載してい

個別解析による相違

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	b. 中央制御室非常用循環系統 中央制御室非常用循環系統の系統構成は図3の通りであり、冷却コイルにより冷却(除湿)され、60 %RH以下に維持されるので、よう素フィルタの効率は確保できる。海水系の機能喪失等により、冷却コイルによる冷却(除湿)ができない状況においては、電気計装盤、照明、ファン等の発熱により、中央制御室内は外気より温度が高くなるため、相対湿度は低くなる。従って、中央制御室内空気の相対湿度は95 %RHを上回ることはなく、よう素フィルタの効率は確保できる。例えば、中央制御室内での昇温が5℃の場合、外気温度25.6℃、95 %RH 及び-6.1℃、95 %RH時のよう素フィルタ入口相対湿度は、それぞれ73 %RH、63 %RHを下回る(注5)こととなる。	b. 中央制御室非常用循環設備 中央制御室非常用循環設備の系統構成は図3の通りであり、冷却コイルにより冷却(除湿)され、50%RH 以下に維持されるので、よう素フィルタの効率は確保できる。海水系の機能喪失等により、冷却コイルによる冷却(除湿)ができない状況においては、電気計装盤、照明、ファン等の発熱により、中央制御室内は外気より温度が高くなるため、相対湿度は低くなる。従って、中央制御室内空気の相対湿度は95%RHを上回ることはなく、よう素フィルタの効率は確保できる。例えば、中央制御室内での昇温が5℃の場合、外気温度30℃、95%RH及び-1℃、95%RH 時のよう素フィルタ入口相対湿度は、それぞれ74%RH、67%RH を下回る(注)こととなる。	(本ページ赤字全
	非常用循環フィルタユニット E E H C H	非常用循環フィルタユニット A	個別解析による相違

泊発電所3号炉 SA基準適合性 比較表 r.3.0

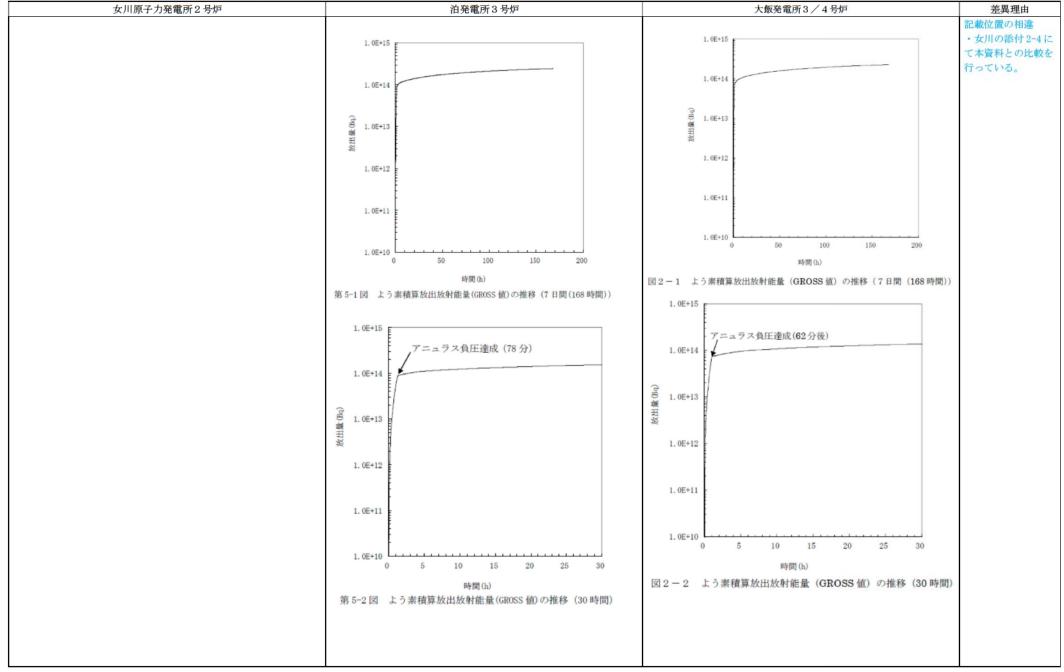
赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転	妘員が原子炉	制御室にとど	<i>まるための設備</i>	(補足説明資料)
---------	---------------	--------	----------------	----------

女川原子力発電所2号炉	Ÿ	泊発電所3号炉		大飯	発電所3/4号炉		差異理由
	気最大質量は解 容器漏えい率は (注2) アニュラス少 (注3) <mark>25.6</mark> ℃,95	とい率より算出してい 解析結果の最大値約 <mark>11</mark> は被ばく評価条件0.16 >量排気量	る。格納容器内水蒸 2000 kgとし,格納 5 %/日としている。 5 %RHの時のアニュラ	大質量は解析結果	率より算出している。 果の最大値約 <mark>147,00</mark> く評価条件 0.16%/ 排気量 とび-1℃,95%RH の時	格納容器内水蒸気 <mark>最</mark> <mark>0</mark> kg とし、格納容器 日としている。	個別解析による相違 (本ページ赤字全 て)
	外気条件	25.6 °C, 95 %RH	-6.1 °C, 95 %RH				
	水蒸気密度【ρ o'】	0.024 kg/m ³	0.0049 kg/m ³	外気条件	30℃、95%RH	-1℃、95%RH	
	空気密度【ρ ο】	1.1 kg/m ³	1.3 kg/m ³	水蒸気密度【ρο'】	$0.029 kg/m^3$	0.0043 kg/m ³	
	アニュラス少量排気量 (L)	3000	m ³ /h	空気密度【ρο】	1.1kg/m ³	1.3kg/m ³	
	CV 以外の水蒸気侵入量 【Mo' = ρ o'×L】	72 kg/h	14.7 kg/h	アニュラス少量排気量(L) CV 以外の水蒸気侵入量)m ³ /h	
	CV 以外の空気侵入量	3300 kg/h	3900 kg/h	【MO'= ρ o'×L】 CV 以外の空気侵入量	124kg/h	18 kg/h	
	【Mo= ρ o×L】 CV からの水蒸気侵入量	3300 kg/II	3500 Kg/II	CV 以外の空気侵入軍 [MO=ρο×L]	4,686kg/h	5,538kg/h	
	(Mcv')	7.5	kg/h	CV からの水蒸気侵入量 (MCV)	9.81	kg/h	
	アニュラス内空気絶対湿度 【X= (Mo' + Mcv') / Mo】	0.025 kg'/kg	0.0057 kg'/kg	アニュラス内空気絶対湿度 【X= (MO'+ MCV') /MO】	0.029kg/kg	0.0050kg/kg	
	アニュラス内水蒸気分圧 【Pw=P×X/ (0.622+X) 】 P=101.3(kPa) (大気圧)	約4.0 kPa	約0.92 kPa	アニュラス内水蒸気分圧 【Pw=P×X/ (0.622+X)】 P=101.3(kPa) (大気圧)	約 4.6kPa	約 0.81kPa	
	気の相対湿度は 25.6℃, 95 %RH時: 4.0 -6.1℃, 95 %RH時: 0.9 (注5) 25.6℃, 95 % それぞれ, 3.2 び-1.1℃の飽; 0.56 kPaである	Eは7.4 kPaであるかけ は、以下の通りとなる 0 kPa/7.4 kPa×100 92 kPa/7.4 kPa×100 RH及び-6.1 ℃, 95 % kPa, 0.35 kPaである 和水蒸気分圧は、それ 5から、中央制御室非 気の相対湿度は、以下 2 kPa/4.4 kPa×100	5, アニュラス内空。。 0=54.1 %RH 0=12.5 %RH GHO小蒸気分圧は, 30.6 ℃及 いぞれ, 4.4 kPa, 常用循環フィルタユ での通りとなる。 =72.8 %RH	対湿度は、以下の 30℃、95%RH 時:4.6kP -1℃、95%RH 時:0.81 (注5) 30℃、95%RH 及で れ、4.1kPa、0.5 水蒸気分圧は、そ	4kPa であるから、7 の通りとなる。 a/7.4kPa×100=62. kPa/7.4kPa×100= ぴ-1℃、95%RH の水 4kPa である。また、 それぞれ、5.6kPa、(目循環フィルタユニー りとなる。 a/5.6kPa×100=73	アニュラス内空気の相 2%RH 11.0.%RH 蒸気分圧は、それぞ 35℃及び4℃の飽和 0.81kPa であるから、 ット取扱空気の相対湿	

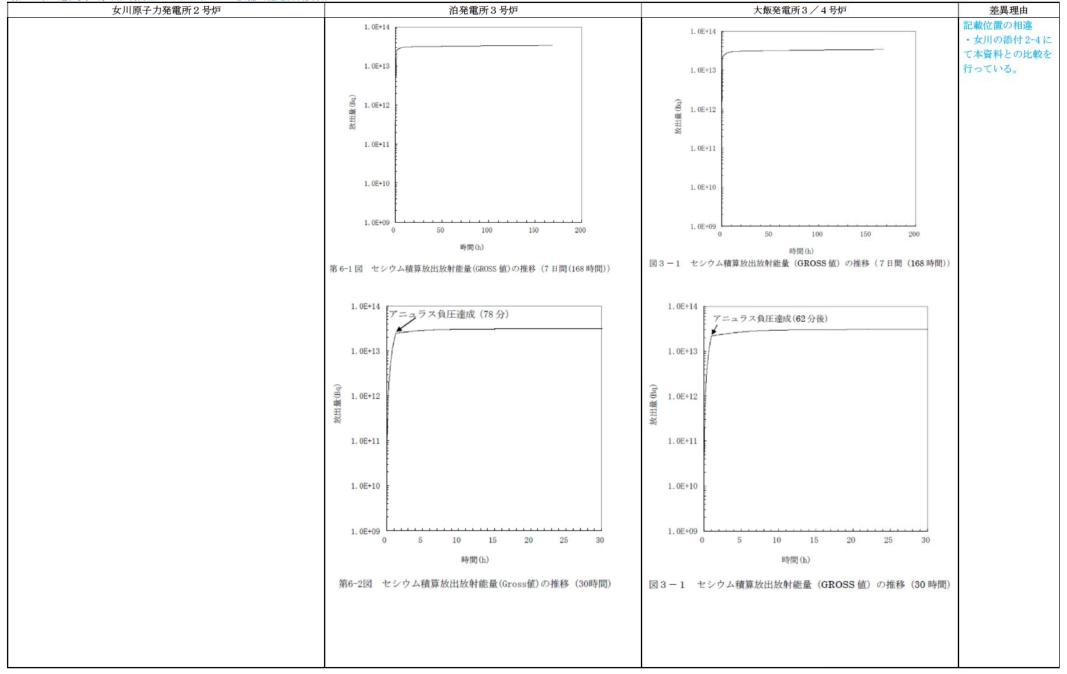
青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

タ川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
			記載位置の相違
	添付1-2-12		・女川の添付 2-4 に
	ナケウェ のたりかり サラック パニック		て本資料との比較を
	大気中への放出放射能量の推移グラフについて		行っている。
	1. 大気中への放出放射能量評価の概略について		
	評価イメージを第1 図に,大気中への放出量算定の概略を第2 図		
	に、解析のクロノロジを第3図に示す。		
	外部進廠		
	原子坦格納容器		
	カー		
	エアロゾル		
	代替スプレイ による除去 アニュラス部 アニュラス空気浄化設備 アニュラス空気浄化 アニュラス空気浄化 アニュラス空気		
	ニュー 元素状よう素 アニュラス部		
	が 放分製 アニーマファンフィルタ		
	エアロゾル ラス		
	/ / / / / / / / / / / / / / / / / / /		
	第1図 評価イメージ		
	第2 図に示す過程にしたがって,大気中への放出放射能量を算出		
	する。炉心に蓄積した核分裂生成物は、炉心溶融に伴って原子炉格		
	納容器内へ放出され、原子炉格納容器内での重力沈降やスプレイに		
	よる除去により放射能量は低減されながら、格納容器内に浮遊す		
	る。さらに、有効性評価の格納容器内圧の変化をもとに設定された		
	格納容器からの漏えい率にしたがって漏えいし、アニュラス空気浄 化設備のフィルタ除去効率を考慮して、各核種の放出放射能量の総		
	を算出する。 最を算出する。		
	== ©7FH4 / °V0		


青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

各核種の炉心内蓄積量の算定 NUREG-1465 に基づく、炉心から原子炉格納容器に放出される割合の決定 原子炉格納容器内での低減効果の算定 ・原子炉格納容器内での重力沈降によるエアロゾルの自然沈着速度の算出	記載位置の相違・女川の添付2-4に て本資料との比較を 行っている。
NUREG-1465 に基づく、炉心から原子炉格納容器に放出される割合の決定 原子炉格納容器内での低減効果の算定	て本資料との比較を
原子炉格納容器内での低減効果の算定	
原子炉格納容器内での低減効果の算定	行っている。
	1
(NUPEC)	
(NUPEC) $\lambda_d = V_d \frac{A_f}{V_g}$	
・原子炉格納容器内での元素状よう素の自然沈着速度の算出(NUPEC)	
$\lambda_d = -\frac{1}{t_1 - t_0} \log \left(\frac{\rho_1}{\rho_0} \right)$	
・原子炉格納容器内のスプレイ領域での代替格納容器スプレイによるエア	
ロゾル除去連度の算出(SRP6. 5. 2)	
$\lambda_S = \frac{3hFE}{2V_zD}$	
2V ₅ D	
原子炉格納容器からの漏えい率の決定	
・MAAP 解析値に基づく漏えい率を包絡する値を設定(0.16 %/日)	
原子炉格納容器からの漏えい割合の算定	
アニュラス空気浄化設備のフィルタ除去効率等を考慮した環境への放出量	
(7 日間) の算出	
第2図 大気中への放出放射能量算定の概略フロー	
第3 図は、放出放射能量評価のクロノロジを示し、図に記載の時間は、その効果を考慮する時間である。	
9分 第7 か	
原子が高齢高易への 魔えい	
78分 アニュラス根での フィルテ検査 ###2.5 株式で乗ぶち乗ぶで乗ぶる	
第2-40減級定義の中の タチャ/ル	
重力仪势 《神经》	
原子が格納容器での スプレイ設立	
第3図 放出放射能量評価のクロノロジ	
第3図 放出放射距離評価のクロノロシ	

青字:記載箇所又は記載内容の相違(記載方針の相違)


緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 記載位置の相違 2. 大気中への放出放射能量の推移 ・女川の添付2-4に 大気中への放出放射能量の推移グラフを第4 図~第6 図に示す。 て本資料との比較を 行っている。 1.0E+18 1. 0E+18 1. 0E+17 1.0E+17 1. 0E+16 1.0E+16 1. 0E+15 1.0E+15 1. 0E+14 1.0E+14 1. 0E+13 時間(h) 1.0E+13 150 200 100 図1-1 希ガス積算放出放射能量 (GROSS 値) の推移 (7日間 (168時間)) 時間(h) 第 4-1 図 希ガス積算放出放射能量(GROSS 値)の推移(7 日間(168 時間)) 1.0E+18 1. 0E+18 1.0E+17 1. 0E+17 放出量(Bq) 1.0E+16 放出量(Bq) 1. 0E+16 1.0E+15 1. 0E+15 1.0E+14 アニュラス負圧達成 (62 分後) 1. 0E+14 アニュラス負圧達成 (78分) 1.0E+13 時間(h) 1. 0E+13 25 図1-2 希ガス積算放出放射能量 (GROSS 値) の推移 (30 時間) 時間(h) 第 4-2 図 希ガス積算放出放射能量(GROSS 値)の推移(30 時間)

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違)

育子:記載箇所又は記載内谷の相違(記載方針の相違)緑字:記載表現、設備名称の相違(実質的な相違なし)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 記載位置の相違 添付1-2-13 ・女川の添付 2-13 にて本資料との比較 中央制御室の直接線、スカイシャイン線評価方法について 中央制御室の直接線、スカイシャイン線評価方法について を行っている。 重大事故時の居住性に係る被ばく評価において、原子炉格納容器か 重大事故時の居住性に係る被ばく評価において、原子炉格納容器及 らの直接線、スカイシャイン線評価では、重大事故時等に原子炉格納 びアニュラス部からの直接線、スカイシャイン線評価では、事故時に 容器内に放出された核分裂生成物を線源としている。 原子炉格納容器内に放出された核分裂生成物及び原子炉格納容器から このため、原子炉格納容器からの直接線、スカイシャイン線評価で アニュラス部内に漏洩した核分裂生成物を線源としている。 は、以下のとおりモデル化を行っている。 このため、原子炉格納容器及びアニュラス部からの直接線、スカイ シャイン線評価では、以下のとおりモデル化を行っている。 (1) 原子炉格納容器のモデル化 (1) 原子炉格納容器のモデル化 原子炉格納容器外部遮蔽の厚さは, ドーム部 原子炉格納容器(外部遮蔽)の厚さは、ドーム部 m~ m、 であるが、線量計算では、安全側にマイナス側許容差 円筒部 m であるが、線量計算では、安全側にドーム部 m、円 簡部 ■ の厚さでモデル化する。また、形状は原子炉格納容器自 を考慮してドーム部 円筒部 の厚さでモ デル化する。また、形状は原子炉格納容器自由体積及び内径を保存 由体積及び内径を保存してモデル化し、直接線量を QAD コード、 してモデル化し、直接線量をQAD コード、スカイシャイン線量を スカイシャイン線量を SCATTERING コードで計算している。 SCATTERING コードで計算している。 なお、原子炉格納容器内の放射性物質は自由空間容積に均一に分 なお、原子炉格納容器内の放射性物質は自由空間容積に均一に分 布しているものとして計算している。具体的には、原子炉格納容器 布しているものとして計算している。具体的には、原子炉格納容器 内の放射性物質はドーム部、円筒部に均一に分布しているものとし 内の放射性物質はドーム部,円筒部に均一に分布しているものとし ている。ただし、代替原子炉格納容器スプレイを使用するため、粒 ている。ただし、代替原子炉格納容器スプレイを使用するため、粒 子状放射性物質の沈降が期待でき、これらは運転床レベル以下の自 子状放射性物質の沈降が期待でき、これらは運転床レベル以下の自 由空間容積に均一に分布しているものとして計算している。 由空間容積に均一に分布しているものとして計算している。 __m , m ドーム部 m m 線凝領域 円筒部 モデル化 運転床レベル m m 内は機能に係る事項のため公開できません 原子炉格納容器 原子炉格納容器モデル化概略図

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

対川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
シハルが1 / Jで 程が	114 7E REJ71 O 17 N°	(2) アニュラス部のモデル化 アニュラス部は、原子炉格納容器外部の原子炉建屋内に位置し、その外側にはアニュラス部を取り囲む補助遮蔽、建屋外壁等がある。線量計算では、これら構築物のうち、下部アニュラス部を取り囲む補助遮蔽のみを最小の厚さで考慮し、上部アニュラス部を取り囲む補助遮蔽については考慮しない。また、形状は円筒型を模擬し、格納容器を取り囲む下部部分と原子炉建屋の上部に一部存在するアニュラス部の2 領域に分けてアニュラス部の自由体積及び高さ等を保存してモデル化し、QAD コードで直接線量を計算している。なお、アニュラス部内の放射性物質は自由空間容積に均一に分	記載位置の相違 ・女川の添付 2-13 にて本資料との比較 を行っている。
		布しているものとして計算している。線際領域 2線際領域 1アニュラス部モデル化概念図	

第 59 余 連転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所 2 号炉	泊発電所 3 号炉	大飯発電所3/4号炉	差異理由
	(2) 中央制御室のモデル化 中央制御室は、原子炉建屋に隣接する原子炉補助建屋内に位置 し、その外側には補助遮蔽、建屋外壁があるが、直接・スカイシャイン線量は様々な方向から原子炉補助建屋内に入射するため、方向により透過する壁が異なってくる。また、原子炉補助建屋内は多くの部屋で区画されており複雑な形状となっている事から、全体の線量寄与も小さいことを考慮して、線量計算では、安全側にこれら構築物の遮蔽効果を無視し、中央制御室遮蔽のみ考慮する。設計基準では、直接線量評価にSCATTERINGコードを用いているが、重大事故時においては、より詳細な評価を実施する目的で、QADコードにて直接線を評価している。中央制御室遮蔽の厚さは、壁 天井 としてモデル化している。なお、中央制御室内の計算点は中央制御室中央の人の高さ(床上1.5 m)としている。	(3) 中央制御室のモデル化 中央制御室は、原子炉建屋に隣接する制御建屋内に位置し、その 外側には補助遮蔽、建屋外壁等があるが、直接・スカイシャイン線 量は様々な方向から制御建屋内に入射するため、方向により透過する壁が異なってくる。また、制御建屋内は多くの部屋で区画されて おり複雑な形状となっている事から、全体の線量寄与も小さいこと を考慮して、線量計算では、安全側にこれら構築物の遮蔽効果を無 視し、中央制御室遮蔽のみ考慮する。中央制御室遮蔽の厚さは、壁 「「「「「「「「「「「「」」」」 「「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「「」」 「「」」 「「「」」 「「」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」」 「「」 「「」」 「「」 「「」」 「「」 「「」 「「」」 「「 「「 「	記載位置の相違・女川の添付2-13 にて本資料との比較を行っている。
	中央制御室モデル化概念図	中央制御室モデル化概念図	

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所 2 号炉

(3) 直接線量評価に使用した評価コードについて

設計基準では、直接線量評価にSCATTERING コードを用いているが、重大事故対策においては、より詳細な評価を実施する目的で、QAD コードにて直接線を評価している。

泊発電所3号炉

QAD コード及びSCATTERING コードとも、ガンマ線の物質による 減衰を考慮した直接線を評価する3 次元形状の遮蔽解析コードであ り、計算手法は同一であるが、エネルギー群等が異なる。各コード の比較概要、使い分け及び各コードの概要をそれぞれ第1 表~第3 表に示す。

第1表 QAD コードと SCATTERING コードの概要比較

	717 - 21	1 - Mendambe
項目	QAD ⊐− ド	SCATTERING =- F
取り扱える体系	線原及び遮蔽体とも多様な計算体系 (立方体,球体,円筒体系等)	同左
エネルギー群	任意のエネルギー群数(今回は14群)	同左 (今回は5群)

第2表 QADコードの概要

項目	QAD-CGGP2R
開発機関	米国ロスアラモス国立研究所及び日本原子力研究開発機構
開発時期	2001年(初版開発時期 1967年)
バージョン	1.04
コードの概要	(汎用コード) 本計算機コードは、米国ロスアラモス国立研究所で開発されたガンマ線の 物質透過を計算するための点減衰核積分法計算機コード「QAD」をベースと し、旧日本原子力研究所が ICRP1990 年勧告の国内関連法令・規制への取り 入れに合わせて、実効線量率等を計算できるように改良したバージョンで ある。 本計算機コードは、線源及び遮蔽体を直方体、円筒、球などの三次元形状 で模擬した計算体系でガンマ線の実効線量率及び空気カーマ率等を計算す ることができる。

(3) 直接線量評価に使用した評価コードについて

設計基準では、直接線量評価に SPAN コード及び SCATTERING コードを用いているが、重大事故対策においては QAD コードを用いる。 SPAN コード、SCATTERING コード及び QAD コードは、ガンマ線の物質による減衰を考慮した直接線を評価する 3 次元形状の遮蔽解析コードであり、計算手法は同一であるが、取り扱える体系、エネルギー群等が異なる。各コードの比較概要、使い分け及び各コードの概要をそれぞれ第1表~第5表に示す。

大飯発電所3/4号炉

第1表 QAD コードと SPAN コードの比較概要

項目	QAD =- F	SPAN =- K	SCATTERING =-
取り扱える体系	線源及び遮蔽体と も多様な計算体系 (立方体、球体、 円筒体系等)	円筒線源に対する 円筒遮蔽体及び平 板遮蔽体	線源及び遮蔽体と も多様な計算体系 (立方体、球体、 円筒体系等)
エネルギー群	任意のエネルギー 群数 (今回は 14 群)	5 群	任意のエネルギー 群数

第2表 各コードの使い分け

BE CENT	格納容	m	
評価対象	円筒部	ドーム部	アニュラス線源
設計事故	SCATTERING	SCATTERING	SPAN
重大事故	QAD	QAD	QAD

第3表 QADコードの概要

項目	QAD-CGGP2R
開発機関	米国ロスアラモス国立研究所及び日本原子力研究開発機構
開発時期	2001年(初版開発時期1967年)
パージョン	1.04
コードの概要	(汎用コード) 本計算機コードは、米国ロスアラモス国立研究所で開発されたガンマ線の物質透過を計算するための点滅衰核積分法計算機コード「QAD」をベースとし、 旧日本原子力研究所が ICRP1990 年勧告の国内関連法令・規則への取り入れに合わせて、実効線量率等を計算できるように改良したバージョンである。 本計算機コードは、線源及び遊蔵体を直方体、円筒、球などの三次元形状で模擬した計算体系でガンマ線の実効線量率及び空気カーマ率等を計算することができる。

記載位置の相違・女川の添付2-13 にて本資料との比較 を行っている。

差異理由

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
カルス (大学の)		大飯発電所3/4号炉 第4表 SPAN コードの概要	差異理由 記載位置の相違 ・女川の添付 2-13 にて本資料との比較 を行っている。

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料		十年交會記 2 / 4 早년	*用理由
女川原子力発電所2号炉	泊発電所 3 号炉 添付1-2-14	大飯発電所3/4号炉	差異理由 女川に比較対象とな る資料がないので大
	中央制御室空調装置の閉回路循環運転時における 空気作動ダンパ強制開放手順の成立性について	中央制御室換気系統の閉回路循環運転時における空気作動ダンパ 強制開放手順の成立性について	飯との比較を実施
	中央制御室空調装置の閉回路循環運転時の空気作動ダンパ開放手順	中央制御室換気系統の閉回路循環運転時における空気作動ダンパ強制 開放手順	
	1. 操作概要 全交流動力電源喪失時において、炉心損傷時の中央制御室における被ばく低減を目的として中央制御室空調装置の閉回路循環運転を 行う。この循環運転を実施するためには、空気作動ダンパを強制的 に開放する必要があるため、次の操作を行う。	1. 操作概要 全交流動力電源喪失時において、炉心損傷時の中央制御室における被ばく低減を目的として中央制御室換気系統の閉回路循環運転を 行う。この循環運転を実施するためには、空気作動ダンパを強制的 に開放する必要があるため、次の操作を行う。	
	2. 必要要員数及び操作時間 必 要 要 員 数 : 2名	2. 必要要員数及び作業時間 必要要員数: 2名/ユニット (現場)	記載方針の相違・泊は単号炉申請のため記載なし。
	操作時間(想定) : 35分 操作時間(模擬) : 29分(移動,放射線防護具着用含む)	作業時間(想定):約60分 作業時間(実績):約41分(移動含む)	個別解析による相違
	3. 操作の成立性 アクセス性: LEDヘッドランプ・LED懐中電灯を携行して いることからアクセスできる。また、アクセスル ートに設置されている照明はバッテリ内蔵型であ り、事故環境下においてもアクセスできる。	3. 作業の成立性 アクセス性:アクセスルートに設置されている照明はバッテリ 内蔵型であり、事故環境下においてもアクセス可 能である。	記載方針の相違 ・泊は個人装備につ いても記載
	作業環境 : 事故環境下における室温は通常運転状態と同等である。また、ダンパ開処置作業エリア周辺には、作業を行う上で支障となる設備はなく、LEDへッドランプ・LED懐中電灯を用いることから事故環境下においても作業できる。汚染が予想される場合は、個人線量計を携帯し、放射線防護具等を着用する。	作業環境:ダンバ開処置作業エリア周辺には、作業を行う上で支障となる設備はなく、また、作業エリアに設置されている照明はバッテリ内蔵型であり、事故環境下においても作業可能である。	記載方針の相違 ・泊は室温について記載。 設計等の相違 ・用いる照明が異なるが作業環境は問題ない。 記載方針の相違 ・汚染が想定される場合について記載
	操作性 : ダンパ開処置作業は、ミニチュア弁操作と連結 シャフトを開側へ回す作業のみであり、容易に 実施可能である。 連絡手段 : 通常時の通信手段として、電力保安通信用電話設 備の携帯電話端末 (PHS)を携行しており、 連続通話で約6時間使用可能である。また、事故 環境下において、通常の連絡手段が使用不能と	作業性:ダンパ開処置作業は、ダンパシャフトを開側へ回す又は手動ハンドルを開方向へ回す作業のみであり、容易に実施可能である。 連絡手段:事故環境下において通常の連絡手段が使用不能となった場合でも、要員は携行型通話装置を携帯しており、確実に連絡可能である。	設備名称の相違・対象設備は異なるが、操作性に相違なし。 記載方針の相違・泊は通常時の通信 手段を記載。
	なった場合でも、携行型通話装置を使用し中央 制御室との連絡を行う。		TAX C HUMRO

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 ダンパ開処置 (駆動軸が露出しているダンパ)] 設計等の相違 ・具体的な設備は異 なる。 ダンパ全景 ① 原子炉補助建屋T.P.24.8 m~移動し,作業 ①ダンパシャフト操作 (原子炉補助建屋T. P. 24.8 m) 準備を行う。 ② 対象ダンパの駆動用制御用空気ミニチュ (開操作対象ダンパの一例) ア弁を閉止する。 【ダンバ開処置 (手動ハンドルで操作が可能なダンバ)】 ③ ダンパオペレータの連結シャフトの止め (空気作動ダンパ開作業イメージ) ネジを緩める。 ④ 連結シャフトを開方向へ操作する。⑤ 開状態を保持したまま止めネジを締め付

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 参考 参考 女川には比較対象と 空気作動ダンパを強制的に開放する手順について 空気作動ダンパを強制的に開放する手順について なる資料がないた め、大飯との比較を 実施。 1. ダンパの開処置方法 1. 駆動軸が露出しているダンパの開処置方法 ダンパは, 駆動部が露出しているため, 止めネジを緩めることで 駆動部が露出しているダンパについては、止めネジを緩めること 表現の相違 手動によりダンパを直接回転させることによりダンパ開とする。 で手動によりダンパを直接回転させることによりダンパ開とする。 本ページを通し て、図の相違などは あるものの表現の相 違程度であり、内容 は相違ない。 駆動制が露出している ダンパ機構図 駆動部が露出しているダンパ機構図 2. 操作方法 【操作方法】 (1) 動作しないオペレータの拘束をフリーにするため、シャフトア ① 動作しないオペレータの拘束をフリーにするため、クランクアー ームと連結シャフトA の連結を緩める。 ムとダンパ駆動軸Aの連結を緩める。 (2) 連結シャフトA を手動で回す。 (連結シャフトB, C に回転力 ② ダンパ駆動軸Aを手動で回す。(ダンパ駆動軸B, Cに回転力が が伝達しダンパ開) 伝達しダンパ開) (3) シャフトアームと連結シャフトA の連結を締める。 (ダンパ開 ③ クランクアームとダンパ駆動軸Aの連結を締める(ダンパ開維 維持) 持)。 止めネジを緩め、連結シャフトを手動で回 させる →ダンパが開となる 止めネジ 止めネジを緩め、駆動動を手動で操作可能とすることにより開放を行った 使、再度止めネジを締め込み、関係 持する。 ーシリンダ胴部 ロリング - ピストン ダンパ開放後、止めネジを締め込み固定 ・シャフト 止めネジを緩め、連結シャフトを手動で操 作可能とすることにより開放を行った後、 再度止めネジを締め込み、関保持する。 連結シャフトAの 回転動作により ダンパ駆動 🌏 🗕 止めネジ シャフトアーム 連結シャフトA 止めネジ ダンパ製動能A ダンパ駆動部写真 ダンパ駆動部模式図 ダンパ駆動部模式図 ダンパ駆動部写真

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 2. 手動ハンドルで操作が可能なダンパの開処置方法 記載方針の相違 手動ハンドルで操作が可能なダンパについては手動ハンルルを開 ・泊では操作対象の 方向に操作させることによりダンパを開とする。 ダンパに手動ハンド ルで操作が可能なダ ンパはないため記載 なし。 手動ハンドルで操作が可能なダンパ機構図 【操作方法】 ① 手動ハンドルを開方向に操作し、ダンパを開とする。 3号機 - 手動ハンドル 手動ハンドルを開方向に操作する ダンパ駆動部写真

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 添付1-2-15

2-12 マスクによる防護係数について

炉心の著しい損傷が発生した場合の居住性に係る被ばく評価にお いて、以下の検討を踏まえ、全面マスクによる防護係数を50、電動フ │ え、全面マスクの防護係数として50を使用している。 ァン付き全面マスクによる防護係数を1000 として使用する。

1. 厚生労働省労働基準局長通知について

「電離放射線障害防止規則の一部を改正する省令の施行等につい て」(基発0412第1号 都道府県労働局長あて厚生労働省労働基準局 長通知)によると、「200万ベクレル毎キログラムを超える事故由来 廃棄物等を取り扱う作業であって、粉じん濃度が10 ミリグラム毎立 方メートルを超える場所における作業を行う場合、内部被ばく線量 を1年につき1ミリシーベルト以下とするため、漏れを考慮しても、 50以上の防護係数を期待できる捕集効率99.9%以上の全面型防じんマ スクの着用を義務付けたものであること」としている。

●以下、電離放射線障害防止規則(最終改正:平成25年7月8日) 抜粋

第三十八条 事業者は、第二十八条の規定により明示した区域内 の作業又は緊急作業その他の作業で、第三条第三項の厚生労働大臣 が定める限度を超えて汚染された空気を吸入するおそれのあるもの に労働者を従事させるときは、その汚染の程度に応じて防じんマス ク、防毒マスク、ホースマスク、酸素呼吸器等の有効な呼吸用保護 具を備え、これらをその作業に従事する労働者に使用させなければ ならない。

●以下, 基発0412 第1号 (平成25 年4月12 日) 抜粋

- キ 保護具 (第38 条関係)
- ① 第1項の「有効な呼吸用保護具」は、次に掲げる作業の区分及び事故由来廃棄 物等の放射能濃度の区分に応じた捕集効率を持つ呼吸用保護具又はこれと同等 以上のものをいうこと。

	放射能濃度 200 万 Bq/kg 超	放射能濃度 50 万 Bq/kg 超 200 万 Bq/kg 以下	放射能濃度 50 万 Eq/kg 以下
高濃度粉じん作業(粉 じん濃度 10mg/m³ 超の 場所における作業)	捕集効率 99.9%以上 (全面型)	捕集効率 95%以上	捕集効率80%以上
高濃度粉じん作業以外 の作業(粉じん濃度 10mg/m³以下の場所 における作業)	捕集効率 95%以上	捕集効率 80%以上	

② 防じんマスクの捕集効率については、200 万ベクレル毎キログラムを超える事 故由来廃棄物等を取り扱う作業であって、粉じん濃度が10ミリグラム毎立方メ ートルを超える場所における作業を行う場合、内部被ばく線量を1年につき1 ミリシーベルト以下とするため、漏れを考慮しても、50以上の防護係数を期待 できる捕集効率 99.9%以上の全面型防じんマスクの着用を義務付けたものであ ること。

マスクによる防護係数について

重大事故時の居住性に係る被ばく評価において、以下の検討を踏ま

1. 厚生労働省労働基準局長通知について

「電離放射線障害防止規則の一部を改正する省令の施行等につい て」(基発0412第1号 都道府県労働局長あて厚生労働省労働基準局 長通知)によると、「200万ベクレル毎キログラムを超える事故由来 廃棄物等を取り扱う作業であって、粉じん濃度が10ミリグラム毎立 方メートルを超える場所における作業を行う場合, 内部被ばく線量 を1年につき1ミリシーベルト以下とするため、漏れを考慮しても、 50以上の防護係数を期待できる捕集効率99.9%以上の全面型防じんマ スクの着用を義務付けたものであること」としている。

●以下、電離放射線障害防止規則(最終改正:平成25年7月8日) 抜粋

第三十八条 事業者は、第二十八条の規定により明示した区域内 の作業又は緊急作業その他の作業で、第三条第三項の厚生労働大臣 が定める限度を超えて汚染された空気を吸入するおそれのあるもの に労働者を従事させるときは、その汚染の程度に応じて防じんマス ク、防毒マスク、ホースマスク、酸素呼吸器等の有効な呼吸用保護 具を備え、これらをその作業に従事する労働者に使用させなければ ならない。

●以下, 基発第0412第1号 (平成25年4月12日) 抜粋

- キ 保護具 (第38条関係)
- ① 第1項の「有効な呼吸用保護具」は、次に掲げる作業の区分及び事故由来廃 棄物等の放射能濃度の区分に応じた捕集効率を持つ呼吸用保護具又はこれと同 等以上のものをいうこと。

	放射能濃度	放射能濃度	放射能濃度
	200 万 Bq/kg 超	50 万 Bq/kg 超	50 万 Bq/kg 以下
		200万 Bo/kg 以下	
高濃度粉じん作業(粉じん	捕集効率 99.9%	捕集効率 95%以上	捕集効率 80%以
濃度 10mg/m ³ 超の場所にお ける作業)	以上 (全面型)		F
高濃度粉じん作業以外の作	捕集効率 95%以	捕集効率80%以上	捕集効率 80%以
業 (粉じん濃度 10mg/m³以下	Ł		上
の場所における作業)			

② 防じんマスクの捕集効率については、200万ベクレル毎キログラムを超える事故由 来廃棄物等を取り扱う作業であって、粉じん濃度が 10 ミリグラム毎立方メートルを 超える場所における作業を行う場合、内部被ばく線量を1年につき1ミリシーベルト 以下とするため、漏れを考慮しても、50以上の防護係数を期待できる捕集効率99.9% 以上の全面型防じんマスクの着用を義務付けたものであること。

マスクによる防護係数について

重大事故時の居住性に係る被ばく評価において、以下の検討を踏ま え、全面マスクの防護係数として50を使用している。

1. 厚生労働省労働基準局長通知について

「電離放射線障害防止規則の一部を改正する省令の施行等につい て」(基発0412第1号都道府県労働局長あて厚生労働省労働基 準局長通知)によると、「200万ベクレル毎キログラムを超える事 故由来廃棄物等を取り扱う作業であって、粉じん濃度が10ミリグ ラム毎立方メートルを超える場所における作業を行う場合、内部被 ばく線量を1年につき1ミリシーベルト以下とするため、漏れを考 慮しても、50 以上の防護係数を期待できる捕集効率99.9%以上の全 面型防じんマスクの着用を義務付けたものであること」としてい

●以下、電離放射線障害防止規則(最終改正:平成25年7月8 日) 抜粋

第三十八条事業者は、第二十八条の規定により明示した区域内 の作業又は緊急作業その他の作業で、第三条第三項の厚生労働大 臣が定める限度を超えて汚染された空気を吸入するおそれのある ものに労働者を従事させるときは、その汚染の程度に応じて防じ んマスク、防毒マスク、ホースマスク、酸素呼吸器等の有効な呼 吸用保護具を備え、これらをその作業に従事する労働者に使用さ せなければならない。

●以下、基発第0412第1号(平成25年4月12日)抜粋

- キ 保護具 (第38 条関係)
- ① 第1項の「有効な呼吸用保護具」は、次に掲げる作業の区分及び事故由来廃 棄物等の放射能濃度の区分に応じた捕集効率を持つ呼吸用保護具又はこれと同 笑以上のものをいうこと。

	放射能濃度 200 万 Bq/kg 超	放射能濃度 50万 Bq/kg 超 200万 Bq/kg 以下	放射能濃度 50万 Bq/kg 以下
高濃度粉じん作業 (粉じん 濃度 10mg/m³ 超の場所にお ける作業)	A STATE OF THE STA	捕集効率 95%以上	捕集効率 80%以 上
高濃度粉じん作業以外の作 業(粉じん濃度 10mg/m³以下 の場所における作業)	捕集効率 95%以 上	捕集効率 80%以上	捕集効率 80%以 上

② 防じんマスクの捕集効率については、200万ペクレル毎キログラムを超える事故由 来廃棄物等を取り扱う作業であって、粉じん濃度が 10 ミリグラム毎立方メートルを 超える場所における作業を行う場合、内部被ばく線量を1年につき1ミリシーベルト 以下とするため、漏れを考慮しても、50以上の防護係数を期待できる捕集効率99.9% 以上の全面型防じんマスクの着用を義務付けたものであること。

設備の相違

泊では評価条件と して電動ファン付き 全面マスクは用いな

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料)							
女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由				
2. 全面マスクの防護係数50 について 空気中の放射性物質の濃度が「核原料物質又は核燃料物質の製錬 の事業に関する規則等の規定に基づく線量限度等を定める告示 別 表第一 第四欄」の十分の一を超える場合,全面マスクを着用す る。	2. マスクメーカーによる除染係数検査結果について	2. マスクメーカーによる除染係数検査結果について	記載方針の相違 ・女川は全面マスク を着用する状況につ いて記載				
全面マスクを納入しているマスクメーカーにおいて、全面マスク (よう素用吸収缶) についての除染係数を検査している。本検査 は、放射性ヨウ化メチルを用い、除染係数を算出したものである。 その結果は、DF≧1.21×10³と十分な除染係数を有することを確認 した。 (フィルタの透過率は0.083%以下)	全面マスクを納入しているマスクメーカーにおいて、全面マスク (よう素用吸収缶) についての除染係数を検査している。本検査 は、放射性ヨウ化メチルを用い、除染係数を算出したものである。 その結果は、≥1,200と十分な除染係数を有することを確認した。 (フィルタ透過率は0.083 %以下) なお、吸収缶の除染係数については10時間後において顕著な低下	全面マスクを納入しているマスクメーカーにおいて、全面マスク (よう素用吸収缶) についての除染係数を検査している。本検査 は、放射性ヨウ化メチルを用い、除染係数を算出したものである。 その結果は、≥1,210 と十分な除染係数を有することを確認した。 (フィルタ透過率は0.083%以下) なお、吸収缶の除染係数については10時間後において顕著な低	記載方針の相違				
表 2-12-1 マスクメーカーによる除染係教検査結果	傾向は確認されないことから、運転員の最長勤務時間(14時間10分)においても、十分な除染係数を有していると考えられる。 第1表 マスクメーカーによる除染係数検査結果	下傾向は確認されないことから、運転員の最長勤務時間 (14 時間 20 分) においても、十分な除染係数を有していると考えられる。 第1表 マスクメーカーによる除染係数検査結果	・泊は除染係数の持続時間について記載				
CA-N4RI (吸収缶) 放射性ヨウ化メチル通気試験 4時間後 10時間後	CA-N4RIのDF値	CA·N4RI の DF 値					
入口濃度 (Bq/cm²) 出口濃度 (Bq/cm²) DF 値 (Bq/cm²) 出口濃度 (Bq/cm²) DF 値 試験条件	DF値 入口濃度 次験流量 4時間後 10時間後 (Bq/cm³) (L/min)	DF 値 入口濃度 試験流量 4 時間後 10 時間後 (Bq/cm³) (L/min)					
9.45×10 ⁻² ND 2.27×10 ⁵ 8.33×10 ⁻⁷ 1.13×10 ⁶ 試験液量: 20L/min	$\ge 230,000$ 113,000 9.5×10 ⁻² $\ge 1,200$ $\ge 2,700$ 7.6×10 ⁻⁵ 20 30°C⋅95%RH	227,000 113,000 9.45×10 ⁻² 20 30°C · 95%RH					
ND	また、同じくマスクメーカーにより全面マスクの漏れ率を試験しており、最大でも0.01 %であった。 この漏れ率と除染係数(フィルタ透過率)から計算される防護係数は約1,000であった。	1,210 2,730 7.56×10 ⁻⁵ また、同じくマスクメーカーにより全面マスクの漏れ率を検査しており、最大でも 0.03%であった。 この漏れ率と除染係数 (フィルタ透過率) から計算される防護係数は約 880 であった。	個別解析による相違				
(フィルタ透過率) から計算される防護係数は約1075 であった。 防護係数(PF) = 100/{漏れ率 (%) +フィルタ透過率 (%) } = 100/(0.01+0.083)≒1075	防護係数 (PF) =100/ {漏れ率(%)+フィルタ透過率(%)} =100/ (0.01+0.083) ≒1,000	防護係数(PF) = 100/{漏れ率(%)+フィルタ透過率(%)} = 100/(0.03+0.083) ≒880	個別解析による相違 ・≒の取扱いの相 違。				
ただし、全面マスクによる防護係数については着用者個人の値であり、実作業時の防護係数は、より低下する可能性があるため、講師による指導のもとフィッティングテスターを使用した全面マスク着用訓練を行い、漏れ率(フィルタ透過率を含む)2%を担保できるよう正しく全面マスクを着用できていることを確認している。 このため、全面マスクによる防護係数は50とする。なお、全面マスク着用訓練については今後ともさらに教育・訓練を進めていき、マスク着用の熟練度を高めていく。	3. 泊発電所におけるマスク着用について 全面マスクによる防護係数については、着用者の熟練度に依存して大きく変化するといわれており、実作業時の防護係数は、より低下する可能性があるため、講師による指導のもとフィッティングテスターを使用した全面マスクの着用訓練を行い、漏れ率(フィルタ透過率を含む)2%を担保できるよう正しく全面マスクを着用できていることを確認している。 このため、全面マスクによる防護係数は50とする。なお、全面マスク着用については今後ともさらに教育・訓練を進めていき、マスク着用の習熟度を高めていく。	3. 大飯発電所におけるマスク着用について 大飯発電所では、定期的にマスク着用が必要な機会があることから、基本的にマスク着用に習熟している。放射線業務従事者指定時 および定期的に放射線防護に関する教育・訓練を行ってきており、 マスク着用については、マスクマンテスト装置やフィッティングテ スターを使用した実技訓練において、正しくマスクを着用すること について、講師が確認してきている。					

青字:記載箇所又は記載内容の相違(記載方針の相違) 泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0 緑字:記載表現、設備名称の相違(実質的な相違なし) 第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由

3. 電動ファン付き全面マスクの防護係数1000 について

空気中の放射性物質の濃度が特に高い環境で作業を行う場合(例え ば、可搬型陽圧化空調機の起動前における中央制御室滞在時等)、電 動ファン付き全面マスクを着用する。

電動ファン付き全面マスクを納入している2 つのマスクメーカーに おいて, 電動ファン付き全面マスク (よう素吸収缶) についての除染 係数を検査している。本検査は、放射性ヨウ化メチルを用い除染係数 を算出したものである。その結果は、DF≥1.71×10³と十分な除染係 数を有することを確認した。 (フィルタの透過率は0.058%以下)

> 表 2-12-2 マスクメーカーA による除染係数検査結果 RDG-72HP (吸収缶) 放射性ヨウ化メチル通気試験

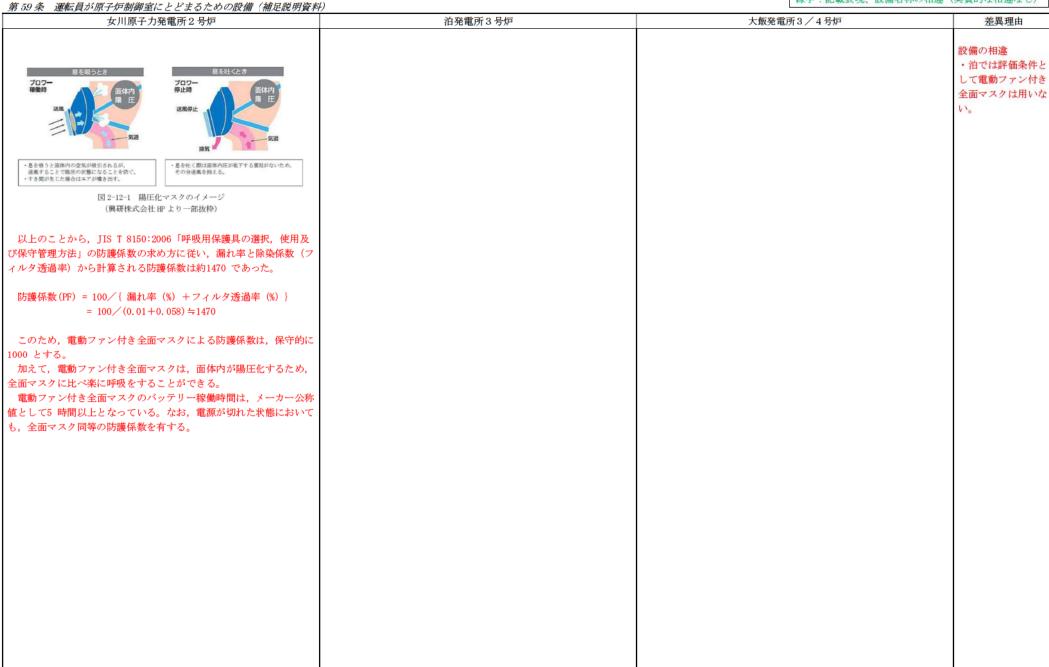
入口濃度 (Bq/cm ³)	4 時間後		10 時間後			
	出口濃度 (Bq/cm ³)	DF 値	出口濃度 (Bq/cm³)	DF 値	試験条件	
8.83×10 ⁻²	1.91×10 ⁻⁵	4. 62×10 ³	2.64×10 ⁻⁵	3.34×10 ³	試験流量: 47L/nin	
8. 08×10 ⁻⁵	ND	1.71×10 ^{3@1}	4. 73×10 ⁻⁶	1.71×10 ³	通気温度: 30℃ 相対湿度: 95%RH	

ND: 検出限界値未満

※1 10 時間試験において最初に検出されたサンプリング時間の DF を示す

表 2-12-3 マスクメーカーBによる除染係数検査結果 CA-V3NRI (吸収缶) 放射性ヨウ化メチル通気試験

		CH TOTAL	(SCANIA) V	Wall I - > I L	The second	PVDC
	入口濃度 (Bq/cm ⁵)	4時間後		10 時間後		
		出口濃度 (Bq/cm³)	DF 值	出口濃度 (Bq/cm³)	DF 值	
	8.84×10 ⁻²	5.04×10 ⁻⁷	1.75×10 ⁵	3.03×10 ⁻⁶	2.92×10 ⁴	試験流量:38L/min
	9.89×10 ⁻⁵	ND (3. 3×10 ⁻⁶)	3. 0×10 ³⁻⁰⁻²	ND (2. 2×10 ⁻⁸)	4. 5×10 ^{3/0 2}	通気温度:30℃ 相対湿度:95%RH


ND: 検出限界値未満 (括弧内が検出限界値)

※2 DF値は、検出限界値より算出した

また、同じくマスクメーカーにより電動ファン付き全面マスクの漏 れ率を検査しており、0.01%未満であった。

電動ファン付き全面マスクは、電動ファンを内蔵しており、図2-12-1 のとおり着用者の呼吸を常に監視しながらフィルタを通した十 分な量の空気を面体に供給することで、面体内を常に陽圧に保つこと ができるため、全面マスクに比べ着用者による防護係数の低下の可能 性は低い。

設備の相違 ・泊では評価条件と して電動ファン付き 全面マスクは用いな

第50条 運転員が原子短期御室にレジまるための設備(補足説明資料)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料	サ/ 泊発電所3号炉	大飯発電所3/4号炉	差異理由
メ川原士刀光 电 房 4 万㎡	何地电/月3万分	八敗兀电/月3/4万/2	左共任口
	添付1-2-13		記載位置の相違
	M.172 2 23		・比較のため添付
2-13 原子炉建屋原子炉棟内の放射性物質からのガンマ線による被ば	中央制御室の直接線、スカイシャイン線評価方法について		1-2-13 を記載し
くの評価方法について	1 Sent a land South Asset Land Land Barrier and Land Land Land Land Land Land Land		た。
A 10 Ht Belief Best = - 1 2			7-0
中央制御室の居住性に係る被ばく評価における、原子炉建屋原子炉	重大事故時の居住性に係る被ばく評価において、原子炉格納容器か		記載内容の相違
棟内の放射性物質からのガンマ線(直接ガンマ線及びスカイシャイン	らの直接線, スカイシャイン線評価では, 重大事故時等に原子炉格納		・説明内容は相違し
ガンマ線) による被ばくは、原子炉建屋原子炉棟内の放射性物質の積	容器内に放出された核分裂生成物を線源としている。		ているが、評価方法
算線源強度,施設の位置,遮蔽構造,地形条件等から評価する。具体	このため、原子炉格納容器からの直接線、スカイシャイン線評価で		を説明する方針は相
的な評価方法を以下に示す。	は、以下のとおりモデル化を行っている。		違ない。
なお,中央制御室の居住性に係る被ばく評価においては,原子炉格			設備設計の相違
納容器フィルタベント系排気管内に取り込まれた放射性物質からのガ			・泊では格納容器フ
ンマ線(直接ガンマ線)による被ばくについても評価しており、評価			ィルタベントは用い
方法については「2-18 原子炉格納容器フィルタベント系排気管内の			ない。
放射性物質からのガンマ線による被ばくの評価方法について」に記載			
する。			
1. 原子炉建屋原子炉棟内の積算線源強度			記載方針の相違
原子炉格納容器から原子炉建屋原子炉棟内に漏えいした放射性物質			・女川では積算線源
の積算線源強度[photons]は、核種ごとの積算崩壊数[Bq・s]に核種ご			強度の算出後、群数
とエネルギーごとの放出率[photons/(Bq・s)]を乗ずることで評価し			を変換しており、そ
た。なお、放射性物質は自由空間内(約1.2×10 ⁵ m³)に均一に分布す			の方法について記載
るものとした。			している。
$S_{_{\mathcal{Y}}} = \sum_{\mathbf{z}} Q_{\mathbf{k}} \cdot s_{\mathbf{k}_{\mathcal{Y}}}$			
S _y : エネルギーyの photon の積算線源強度[photons]			
Q_k : 核種 k の積算崩壊数[$Bq \cdot s$]			
s_k : 核種 k のエネルギーy の photon の放出率[photons/($Bq \cdot s$)]			
核種ごとの積算崩壊数は以下の式により評価した。ここで、核種の			記載方針の相違
原子炉建屋原子炉棟内への漏えい率[Bq/s]は,添付資料2 2-1 の表2-			・泊の資料は遮へい
1-1 に示すとおり、MAAP解析結果及UNUREG-1465 の知見に基づき評			モデルの説明に重点
価した。また、よう素類については、よう素の化学形態に応じた原子			を置いており、エネ
炉格納容器内での除去のされ方の違いを考慮した。			ルギー群の変換につ
			いては記載していな
$Q_k = \int_0^T q_k(t) \cdot \frac{1}{\lambda} \cdot (1 - \exp(-\lambda_k(T - t))) dt$			V.
A _k			・用いる線源強度の
A LANCE I ON CANADA HA HARMAN FOR THE			表は添付 1-2-1 第6
Q_t : 核種 k の積算崩壊数 $[Bq \cdot s]$ $q_k(t)$: 時刻 t における核種 k の原子炉建屋原子炉棟への漏えい率			表にて示している。
(4kU) : 時刻 / における核性 k の所 すが 建能 所 すが 棟への備えい 宇 [Bq/s]			・なお、泊では
λ _k :核種 k の崩壊定数[1/s]			SCATTERING =- F
T :評価期間[s]			の内蔵ライブラリが
			0.1MeV~10MeV であ
			るため, 計算上は

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 核種ごとエネルギーごとの放出率[photons/(Bq·s)]は、制動放射 ORIGEN2 O 0.01MeV (UO2) を考慮したORIGEN2 ライブラリ (gxuo2brm. lib) 値を参照す ~0.085MeV の5 群 分を 0.1MeV に集約 る。また、エネルギー群をORIGEN2 のガンマ線ライブラリの群構造 (18 群)からMATXSLIB-J33 (42 群)に変換した。変換方法は「日本 し, 14 群として取 原子力学会標準 低レベル放射性廃棄物輸送容器の安全設計及び検査 り扱うこととしてい 基準: 2008 (2009 年9 月 (社団法人) 日本原子力学会) の附属書H るが、女川ほど複雑 な処理ではない。 に記載されている変換方法を用いた。(図2-13-1参照) 以上の条件に基づき評価した原子炉建屋原子炉棟内の積算線源強度 は添付資料22-1 の表2-1-7 のとおり。 (18 群構造) E. : 19軽構造の電/群のエネルギー上表 E_{kl} : 18群構造の第+1群のエネルギー上限 N₁ : 18群構造の第7群の住産 AE. : 18穀構造の第7群と第61群エネルギー悩 なお、ガンマ経放出割合データとして18群構 遊に対応した@IWBゼコードの光子ライブラリ ゲータを用いる。 (42 群構造) £ : 紅軽構造の第/前のエネルギー上型 E_{pi} : 42幹構造の第p1群のエネルギー上限 $E_j = E_{j-1}$ $E_{\rm pl}$: 42群構造の第J1部のエネルギー上限 A : 紅野博造の男/野の独皮 $\frac{\Delta E_{j+1}}{\Delta E_i} N_i$ 内山 : 紅谷構造の第541 祭の保定 AF ・紅袋標準の質/終と質い1 荷工タルボー悩 Min: : 42幹構造の第/+1 群と第/群エネレギー幅 E_{i-1} > E_{i-1} の場合 (上限エネルギー不一致) $n_j = \frac{E_{j-1} - E_j}{N_j} N_j$ 図 2-13-1 エネルギー群の変換方法 (1) 原子炉格納容器のモデル化 型式の相違 原子炉格納容器外部遮蔽の厚さは、ドーム部 PWR では線源は原 であるが、線量計算では、安全側にマイナス側許容差 子炉格納容器内にあ を考慮してドーム部 円筒部 るため原子炉格納容 デル化する。また, 形状は原子炉格納容器自由体積及び内径を保存 器の遮蔽効果を考慮 してモデル化し、直接線量をQAD コード、スカイシャイン線量を する。 SCATTERING コードで計算している。 なお、原子炉格納容器内の放射性物質は自由空間容積に均一に分 布しているものとして計算している。具体的には、原子炉格納容器 内の放射性物質はドーム部、円筒部に均一に分布しているものとし ている。ただし、代替原子炉格納容器スプレイを使用するため、粒 子状放射性物質の沈降が期待でき, これらは運転床レベル以下の自 由空間容積に均一に分布しているものとして計算している。

女川原子力発電所 2 号炉	泊発電所 3 号炉	大飯発電所3/4号炉	差異理由
2. 評価体系 直接ガンマ線及びスカイシャインガンマ線の評価体系は添付資料2 2-1 の図2-1-1 のとおり。 中央制御室滞在時の評価に当たっては、制御建屋の外壁、床面及び中央制御室待避所の遮蔽効果のみを考慮した。評価点は中央制御室及び中央制御室待避所の中で直接ガンマ線及びスカイシャインガンマ線の線量の合計が最も高い箇所(原子炉建屋原子炉棟に最も近い壁面付近は壁面に対し斜めに透過するガンマ線が多くなるために遮蔽効果が大きくなり線量が最も高い位置にはならないことから、遮蔽効果が小さくなるように躯体に対し垂直に透過してくるガンマ線が多くなる壁面から離れた評価点を選定)とし、評価点高さは中央制御室の床面から1.2m とした。	(2)中央制御室のモデル化 中央制御室は、原子炉建屋に隣接する原子炉補助建屋内に位置 し、その外側には補助遮蔽、建屋外壁があるが、直接・スカイシャイン線量は様々な方向から原子炉補助建屋内に入射するため、方向 により透過する壁が異なってくる。また、原子炉補助建屋内は多く の部屋で区画されており複雑な形状となっている事から、全体の線 量寄与も小さいことを考慮して、線量計算では、安全側にこれら構築物の遮蔽効果を無視し、中央制御室遮蔽のみ考慮する。設計基準では、直接線量評価にSCATTERINGコードを用いているが、重大事故時においては、より詳細な評価を実施する目的で、QADコードに て直接線を評価している。中央制御室遮蔽の厚さは、壁 フトルモでは、ない、中央制御室内の計算点は		記載方針の相違 ・文章構成は異なる が、遮へい効果が保 守的となるようにモデル化を行っている 方針に相違ない。
	中央制御室中央の人の高さ (床上1.5 m) としている。 中央制御室モデル化概念図		記載方針の相違・文章構成は異なるが、遮へい効果が保守的となるようにモデル化を行っている方針に相違ない。

泊発電所3号炉 SA基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第 59 条	運転員	が原子が	戸制御室にと	·どまる)	ための設備	(補足説明資料
--------	-----	------	--------	-------	-------	---------

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)	減子:記載表現、設備名杯の相違	(美質的な相違なし)
女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
女川原子力発電所2号炉 入退城時の評価に当たっては、周囲の遮蔽壁による遮蔽効果は保守的に考慮しないものとした。評価点は出入管理所及び制弾建屋出入口とし、評価点高さは地面から1.2m とした。なお、直接ガンマ線の評価に当たっては、原子炉建屋原子炉棟の地下階の自由空間中の放射性物質に起因するガンマ線は地下階の外壁及び土壌により十分に遮蔽されると考えられることから、1階から最上階(3階)までの自由空間中の放射性物質に起因するガンマ線の評価に当たっては、下層階の自由空間中の放射性物質に起因するガンマ線は原子炉建屋原子炉棟の床面により十分に遮蔽されると考えられることから、最上階(3階)の自由空間中の放射性物質に起因するガンマ線のみを考慮するものとした。 3.評価コード直接ガンマ線による被ばく評価には、QAD-CGGP2Rコード※1を用いた。また、スカイシャインガンマ線による被ばくの評価には、ANISNコード及びG33-GP2Rコード※1を用いた。 ※1ビルドアップ係数はGP法を用いて計算した。	(3) 直接線量評価に使用した評価コードについて 設計基準では、直接線量評価にSCATTERING コードを用いているが、重大事故対策においては、より詳細な評価を実施する目的で、 QAD コードにて直接線を評価している。 QAD コード及びSCATTERING コードとも、ガンマ線の物質による減衰を考慮した直接線を評価する3次元形状の遮蔽解析コードであり、計算手法は同一であるが、エネルギー群等が異なる。各コードの比較概要、使い分け及び各コードの概要をそれぞれ第1表~第3表に示す。 第1表 QADコードと SCATTERING コードの概要をそれぞれ第1表~第3表に示す。 第1表 QADコードと SCATTERING コードの概要をそれぞれ第1表~第3表に示す。 第2表 QADコードの概要をそれぞれ第1表~第3表に示す。 (立方体、球体、円筒体系等) 国左 (立方体、球体、円筒体系等) 国左 (公方体、球体、円筒体系等) アード名 QAD-CGGP2R 開発機関 米国ロスアラモス国立研究所及び日本原子力研究所及時期 1967年) パージョン 1.04 (汎用コード) 本計算機コードは、米国ロスアラモス国立研究所で開発されたガンマ線の物質透過を計算するための点減衰核積分計計算機コード「QAD」をベースとし、旧日本原子力研究所が「CRP1990年動物の国内間速法令・規制への取り入れに合わせて、実効線量率等を計算できるように改良したパージョンである。本計算機コードは、線測及び連載体を直方体、円筒、球などの主め元形状で構擬した計算体系でガンマ線の実効能量率及び空気カーマ率等を計算す	大飯発電所3/4号炉	差異理由 設計等域に大いでは、大には、大には、大には、大には、大には、大には、大には、大には、大には、大に
	で模擬した計算体系でガンマ線の実効線量率及び空気カーマ率等を計算することができる。		

		女川原-	子力発電所2号	h炉			泊発電所3号炉	大飯発電所3/4号炉	差異理由
			<u> </u>				第3表 SCATTERING コードの概要		
					- 1				記載方針の相違
					- 1	コード名			・泊は QAD コード
						項目	SCATTERING		
						開発機関	米国ロスアラモス国立研究所及び三菱重工業 (株)		SCATTERING =- 1
						開発時期	2002 年 (初版開発時期 1974 年)		の比較を記載。
						使用したパージョン	90m		
							(非公開メーカーコード)		
						コードの概要	スカイシャイン線量の解析コードであり、ガンマ線が空気中で散乱		
							を受けた後、観測点に到達する散乱線量 (スカイシャイン線量) を 計算する。		
							819P 7 Wo		
結果									
ノマ紀	泉及びス	カイシー	ャインガンマ縛	₹による被ばくの評	P価結果				記載方針の相違
3-1及で	び表2−13	-2 に示	す。						・ 泊は評価方法の
	# 0 10 1 22	best III //bas	循環冷却系を用いて事象	(A III v deskribet d					明に留め、評価編
				Rを収束する場合) 開[mSv]					は「59-補足-19」
24	価位置	積算日数	直接ガンマ線	スカイシャインガンマ線					
		1 日	約 5. 0×10 ⁻² 約 5. 3×10 ⁻²	約 1. 4×10 ⁻³ 約 1. 9×10 ⁻³					に記載している。
		2 H 3 H	約 5. 3×10 ⁻² 約 5. 4×10 ⁻²	約 1.9×10 ⁻³ 約 2.2×10 ⁻³					
	央制御室 帯在時	4 H	約 5.5×10 ⁻²	約 2.4×10 ⁻³					
	# II.PT	5 Fl	約 5.5×10 ⁻²	約 2.5×10 ⁻¹					
		6 H	約 5.6×10 ⁻² 約 5.6×10 ⁻²	約 2.6×10 ⁻¹ 約 2.7×10 ⁻¹					
		18	約 3. 7×10°	約 9.7×10 ⁻¹					
		2 日	約 5.0×10°	約 1.7×10°					
1	出入管理所	3 H 4 H	約 5. 7×10 ⁰ 約 6. 1×10 ⁰	約 2. 1×10° 約 2. 3×10°					
	四人管理所	5 H	約 6. 5×10°	約 2.6×10°					
		6 E	#9 6.8×10°	約 2.8×10°					
入退城時		7 H	#9 7. 0×10°	#5 2.9×10°					
		1日2日	約 5. 4×10° 約 7. 3×10°	約 3,5×10° 約 6,1×10°					
	制御建型	3月	₩3 8. 4×10°	₩3 7.5×10°					
	出入口	4日	₩3 9. 1×10°	約 8.6×10°					
		5 H 6 H	約 9. 6×10 ⁰ 約 1. 0×10 ¹	約 9.5×10° 約 1.1×10 ¹					
		7日	約 1. 1×10 ¹	約 1. 1×10 ¹					
					- 1				
	表 2-13		(格納容器ベントを実施	をする場合) 結果[mSv]					
2年	価位置	積算日数	直接ガンマ線	音来[mSv] スカイシャインガンマ線					
		1 日	約 5.0×10 ⁻²	約1.4×10 ⁻³					
		2日	約 5. 4×10 ⁻²	約2.0×10 ⁻²					
	共制御室	3 H 4 H	約 5.4×10 ⁻² 約 5.4×10 ⁻²	約 2, 2×10 ⁻³ 約 2, 2×10 ⁻³					
8	存在時	5 8	約 5. 4×10 ⁻²	#9 2. 3×10 ⁻³					
		6 H	約 5.4×10 ⁻²	約2.3×10 ⁻⁵					
<u> </u>		7 H 1 H	約 5.4×10 ⁻² 約 3.7×10 ⁰	約2.3×10 ⁻³ 約9.7×10 ⁻¹					
		2 H	約 5. 2×10°	約1.8×10°					
		3 H	約5.7×10°	約2.1×10°					
	出入管理所	4 日	約5.8×10 ⁶	約 2. 2×10°					
		5 El	約 5.9×10° 約 5.9×10°	約2.3×10° 約2.3×10°					
入退城時		7日	約5.9×10°	約2.3×10°					
人地坡時		1日	約 5.4×10°	約3.5×10°					
		2 H 3 H	約7.7×10° 約8.4×10°	約6.5×10° 約7.7×10°					
	制御建屋	4 H	#3 8. 6×10°	約8.1×10°					
	出入口	5 H	約8.7×10°	約8.3×10°					
		6日 7日	約8.8×10° 約8.8×10°	約8.4×10° 約8.4×10°					

第 59 宋 連転員が原子が制御室にととよるにめの設備 (相定説明資本 女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	添付1-2-20		
2-14 放射性雲中の放射性物質からのガンマ線による被ばくの評価方法について	放射性雲中の放射性物質からのガンマ線による被ばくの評価方法につ		
中央制御室の居住性に係る被ばく評価における。放射性雲中の放射性物質からのガ	いて		
ヤ大明神至の広社はにかる仮はく計画における。成有社会中の成有社和資からのカ ンマ線(クラウドシャインガンマ線)による被ばくは、放射性物質の放出量、大気拡			
散の効果及び建壁によるガンマ線の遮蔽効果を考慮し評価する。	中央制御室の居住性に係る被ばく評価における、放射性雲中の放射		
具体的な評価方法を以下に示す。	性物質からのガンマ線(クラウドシャインガンマ線)による被ばく		
1. 放出量及び大気拡散	は、放射性物質の放出量、大気拡散の効果及び建屋によるガンマ線の		
大気中への放出放射能量は添付資料22-1の表2-1-2及び表2-1-3の値を用いた。	遮蔽効果を考慮し評価する。		
また、使用する相対線量は添付資料 2 2-1 の表 2-1-5 の値を用いた。	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
2. 評価体系	1. 放出量及び大気拡散 大気中への放出放射能量は添付 1-2-1 の第 2 表の値を用いた。ま		
中央制御室滞在時の評価においては、中央制御室を囲む遮蔽を考慮し、遮蔽厚さ をコンクリート と設定した。また、中央制御室特遍所滞在時の評価におい	大気中への放出放射能量は添付 1-2-1 の第 2 表の値を用いた。また、使用する相対線量は添付 1-2-1 の第 4 表の値を用いた。		
ては、中央制御室待避所を囲む遮蔽を考慮し、遮蔽厚さをコンクリートと	た、使用する作列称重は旅門1-2-1の第4級の値を用すった。		
設定した。評価モデルを図 2-14-1 に示す。	2. 評価体系		
入退城時の評価においては、保守的に周囲に遮蔽壁がないものとした。	中央制御室滞在時の評価においては、中央制御室を囲む遮蔽を考慮		
	し、遮蔽厚さをコンクリートと設定した。		
	入退域時の評価においては、保守的に周囲に遮蔽壁がないものとし		
コンケリート (2.15g/cm²)	た。		
評価点			
中1 評価モデルはコンクリートの施工圏志を考慮して設定			
⊕1 計像セデルはコンクリートの無工商店を考慮して設定			
図 2-14-1 クラウドシャインガンマ線に対する中央制御室滯在時の遮蔽モデル			
枠囲みの内容は商業機密の観点から公開できません。			
11.876-3-3-1 are animized partit - Safettine - A weight at City and a			
3. 評価コード	3. 評価コード		
クラウドシャインガンマ線による被ばくは、以下に示す式を用い	クラウドシャインガンマ線による被ばくは、評価コードを使用せず		
て評価した。遮蔽体の減衰率 の評価にはQAD-CGGP2R を用いた。	以下に示す式を用いて評価した。なお、入退城時の評価では R=1 とし		評価方法の相違
	て評価した。		・女川では遮蔽の影
【中央制御室滞在時】			響をコードにより評
$H = \sum_{i} \int_{0}^{r} h_{i}(t)dt$	$\sum_{i=1}^{t_1} \sum_{i=1}^{t_2} $		価しているが、泊で
$h_k(t) = K \cdot (D/Q) \cdot q_k(t) \cdot \sum_{r} p_{kr} \cdot B_r \cdot \exp(-\mu_r \cdot \mathbf{X})$	$D_c = 1.0 \times 10^3 \cdot \sum_{k} \int_{t_0}^{t_1} K \cdot R \cdot (D/Q) \cdot Q_k(t) \cdot dt$		は内規に示されてい
【入退城時】	Dc:滞在時のクラウドからの外部被ばく線量(mSv)		る評価式により評価 している。
$H = \sum_{i} \int_{0}^{T} K \cdot (D/Q) \cdot q_{i}(t) dt$	D _c : 滞在時のクラウドからの外部被ばく線量 (mSv) K : 空気カーマから全身に対しての線量への換算係数		C (1.0°
$\sum_{i=1}^{k} f_{i} \times (x, x) d^{i} \wedge y$	(Sv/Gy) (1 Sv=1 Gy とする。)		
H :クラウドシャインガンマ線による実効線量[Sv]	R : コンクリートによる y 線の減衰率 (-)		
$h_{s}(t)$: クラウドシャインガンマ線のうち、核種 k からのガンマ線による 単位時間当たりの実効線量 $[Sv/s]$	(2.5MeV に対するコンクリートの減衰率を採用する。)		
 E : 空気カーマから実効線量への換算係数(1)[Sv/Gy] D/O : 相対線量[Gy/Bq] 	D/Q : 気象データに基づくγ線エネルギ 0.5MeV 換算の相対線		
q_t(t) : 時刻 t における核種 k の大気中への放出率[Bq/s] (0.5WeV 換算)	量 (Gy/Bq)		
 p_b: i 核種 k が放出する photon のうち、エネルギーy のphoton の割合[-] B,: エネルギーy の photon におけるビルドアップ係数[-] 	$Q_k(t)$: 時刻 t における核種 k の環境放出率		
μ , : エネルギーyの photon における遮蔽体に対する線滅衰係数[1/n]	(γ線エネルギ 0. 5MeV 換算値) (Bq/s)		
X : 遮蔽体障さ[n] T : 評価期間[s]			
NUMBER OF THE STATE OF THE STAT			

大飯発電所3/4号炉

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

ビルドアップ係数はGP 法を用いて計算した。また、遮蔽効果を ラリの群構造 (18 群) からMATXSLIB-J33 (42 群) に変換した。変 している。 換方法は、直接ガンマ線及びスカイシャインガンマ線による被ばく の評価時と同様、「日本原子力学会標準 低レベル放射性廃棄物輸 送容器の安全設計及び検査基準:2008」(2009年9月社団法人 日本原子力学会)の附属書H に記載されている変換方法を用いた。

4. 評価結果

クラウドシャインガンマ線による被ばくの評価結果を表2-14-1 及び表2-14-2 に示す。

表 2-14-1 クラウドシャインガンマ線による被ばくの評価結果 (代替循環冷却系を用いて事象収束に成功する場合)

評価位置		積算日数	実効線量[mSv]
中央制	制御室滞在時	7日	約7.1×10 ⁶
入退城時	出入管理所	7 H	約 2. 0×10 ⁱ
	制御建屋出入口	7日	約 2.5×10 ¹

表 2-14-2 クラウドシャインガンマ線による被ばくの評価結果 (格納容器ベントを実施する場合)

評価位置 中央制御室滞在時 中央制御室待避所滞在時		積算日数	実効線量[mSv]
		7日	約1.8×10 ³
		10 時間	約7.0×10 ⁶
a 'Blabata	出入管理所	7日	約 2.4×10 ¹
入退城時	制御建屋出入口	7日	約3.1×10 ¹

コンクリートによるγ線の減衰率は,安全側に 2.5 MeV に対する 考慮する際のガンマ線エネルギー群は、ORIGEN2 のガンマ線ライブ コンクリートの減衰率 (テーラー型ビルドアップ係数を考慮) を採用

泊発電所3号炉

 $R = A \cdot e^{-(1+a_1) \cdot \mu \cdot t} + (1-A) \cdot e^{-(1+a_2) \cdot \mu \cdot t}$

A、α1、α2 : ビルドアップファクタ

A = 4.97

 $\alpha_1 = -0.0769$

 $\alpha_2 = 0.1062$

μ : 線減衰係数 (cm⁻¹)

 $\mu = 0.083$

t : 中央制御室遮蔽厚 (em)

4. 評価結果

クラウドシャインガンマ線による被ばくの評価結果を第1表に示

第1表 クラウドシャインガンマ線による被ばくの評価結果

	Ī	評価位置	積算日数	実効線量[mSv]
	中央領	制御室滞在時	7日	4.0×10 ⁻²
Ī	入退城時	出入管理建屋入口	7 日※1	4.0×10^{0}
		中央制御室入口	7 日※1	5.6×10^{0}

^{※1}屋外に7日間滞在するものとして評価

型式による相違

女川ではシナリオ に応じて2パターン の評価を行ってい る。

差異理由

・女川では遮蔽の影

響をコードにより評

価しているが、泊で

は内規に示されてい る評価式により評価

している。

評価方法の相違

第 59 条	運転員為	が原子炉制御	軍にとど	<i>するための設備</i>	(補足説明資料)
--------	------	--------	------	----------------	----------

第 59 条 連転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所 2 号炉	泊発電所3号	lfi	大飯発電所3/45	2·16		差異理由
<u> </u>		y -	人政完电灯3/47	7 N.		を を を が が が が が が が の の の の の の の の の の の の の
		添付1-2-16				資料がないため、大
		初☆17.1 1 − 2 − 1 6				
		* 4.1 * 41 ^ ~ E/40 = - \ -	the de Hall (America Nite do mit) and the America da 12 and the delivery	見りませるの以郷		飯と比較
	中央制御室滞在時に飲食等のためマスク	を外した場合の影響について	中央制御室滞在時に飲食等のためマスクを	外した場合の影響	について	
	運転員は直交替により順次入れ替わる					
	室内の放射性物質濃度が高い場合は、中	央制御室内で飲食せず,直交	室内の放射性物質濃度が高い場合は、中央	制御室内で飲食せ	ず、直交	
	替によって退域した際又は緊急時対策所	に移動して飲食することが可	代によって退域した際又は緊急時対策所に	移動して飲食する	ことが可	
	能であるが、仮に、運転員が中央制御室	滞在時に飲食等のためマスク	能であるが、仮に、運転員が中央制御室滞	在時に飲食等のた	めマスク	
	を外した場合の影響について概略評価を	行った。	を外した場合の影響について概略評価を行	なった。		
	評価では、中央制御室内の放射性物質	農度が高い事故発生後7 時間	評価では、中央制御室内の放射性物質濃	度が高い事故発生	後5時間	設計等の相違
	まではマスクは外さないものとする。		まではマスクは外さないものとする。			・ 泊では 7 時間マス
	事故後7 時間~168 時間の間でのマス	クを考慮しない場合とマスク		クを考慮しない場	合レマス	
	を考慮した場合の線量の差から、飲食等		クを考慮した場合の線量の差から、飲食等			
	時間と仮定すると、吸入による内部被ば		1時間と仮定すると、吸入による内部被ば			BI IM O CA . O.
		をかしにとしても,その影響	り、仮に運転員が飲食等のためにマスクを	クトしたとしても、	ての影響	
	は小さいと考える。		は小さいと考える。			
	第1表 吸入による内部被	ばく線量	第1表 吸入による内部被ばく	線量		
	吸入による内部被ばく線量	中央制御室滞在時の内部被ばく線量	and a second distribution of the man	0.17.16	F7 146	個別解析による相違
	① 7時間以降マスクなしの場合	約1.4×10 ¹ mSv	吸入による内部被ばく線量	3 号機 4	号機	
	② 168 時間 (7 日間) マスクありの場合	約1.1×10° mSv	① 5時間以降マスクなしの場合	約1.8×10 ¹ mSv 約1.	$4 \times 10^1 \text{mSv}$	
	①-② 7時間~168時間中のマスクを外した場合の影響 ③ 1時間マスクを外した場合の内部被ばくの影響	約1.3×10 ¹ mSv 約0.1 mSv	② 168 時間 (7 日間) マスクありの場合	約1.1×100mSv 約8.7		
	③ 1 時間マスクを外した場合の内部飲はくの影響	#3 0.1 mSV	①-② 5時間~168時間中のマスクを外した場合の影響		3×10¹mSv	
			③ 1時間マスクを外した場合の内部被ばくの影響	約 0. 1mSv		

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)	泊発電所 3 号炉 S A 基準適合性 比較表 r.	3.0 緑字:記載表現、設備名称の相違	
女川原子力発電所2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
	添付1-2-17		
2-15 地表面に沈着した放射性物質からのガンマ線による被ばくの評価方法について	中央制御室のグランドシャイン線量の評価方法について	中央制御室のグランドシャイン線量の評価方法について	
中央制御室の居住性に係る被ばく評価における地表面に沈着した放			記載方針の相違

よるガンマ線の遮蔽効果を考慮し評価した。 具体的な評価方法を以下に示す。

- 1. 入退域時における評価方法
- (1) 地表面の単位面積当たりの積算線源強度

入退域時における被ばく線量は、出入管理所及び制御建屋出入口 と同じ濃度で、その周辺の地表面に一様に沈着しているものと仮定 した。

射性物質からのガンマ線(グランドシャインガンマ線)による被ばく

は、放射性物質の放出量、大気拡散の効果及び沈着速度並びに建屋に

地表面の単位面積当たりの積算線源強度[photons/m²]は、核種ご との単位面積当たりの積算崩壊数[Bq·s/m²]に核種ごとエネルギー ごとの放出率[photons/(Bg・s)]を乗ずることで評価した。

$$S_{\gamma} = \sum_{k} Q_{k} \cdot s_{k\gamma}$$

- S : エネルギーy の photon の積算線源強度 [photons/m²]
- Q_k : 核種 k の積算崩壊数 [Bq·s/m²]
- sk : 核種 k のエネルギーy の photon の放出率[photons/(Bq·s)]

ここで、核種kの単位面積当たりの積算崩壊数[Ba・s/m2]は以下の 式により評価した。

$$Q_k = \int_0^T (\chi/Q) \cdot q_k(t) \cdot V_g \cdot \frac{f_1}{\lambda_k} \cdot (1 - \exp(-\lambda_k \cdot (T - t))) dt$$

Q_k : 核種 k の単位面積当たりの積算崩壊数 [Bq · s/m²]

(χ/Q):相対濃度[s/m³]

 $q_k(t)$: 時刻 t における核種 k の大気中への放出率 [Bq/s]

V : 地表面への沈着速度[m/s]

f, : 沈着した放射性物質のうち残存する割合(1)[-]

λ: 核種 k の崩壊定数[1/s]

T : 評価期間[s]

核種の大気中への放出率[Bq/s]は添付資料2 2-1 の表2-1-1 に基づ き評価した。また、相対濃度は、出入管理所及び制御建屋出入口の値 として表2-1-5 の値を用いた。

地表面への沈着速度は乾性沈着及び湿性沈着を考慮した値を用い (添付資料22-9, 2-10, 2-11 を参照)

1. 入退域時のグランドシャイン線量評価について

中央制御室入退域時の運転員に対するグランドシャイン線量評価 は、第1表に示す評価点に対して、以下のとおり評価している。

(1) 地表沈着量

地表沈着量は、次式にて算出する。

$$AG_i(t) = \frac{\text{VG}_i \cdot (\chi/Q) \cdot Q_i}{\lambda_i} \cdot (1 - \exp(-\lambda_i \cdot t))$$

VG, : 時刻 t, 核種 i の沈着速度 (m/s)

(χ/Q):時刻tの相対濃度(s/m³)

: 時刻 t, 核種 i の放射性物質の放出率 (Bq/s)

: 核種 i の崩壊定数 (1/s)

(2) 地表沈着物からのy線による外部被ばくの計算 グランドシャイン線量率は、次式にて算出する。

$$DG_i(t) = KG_i \cdot AG_i(t) \cdot 3600$$

DG_i(t) : 時刻 t, 核種 i に関するグランドシャイン線量率 (Sv/h) KG: 地表沈着核種 i からの実効線量換算係数(Sv/s)/(Bq/m2)

AG,(t): 時刻 t, 核種 i の放射性物質の地表沈着量 (Bq/m²)

積算被ばく線量は、式(2)を対象期間T(h)で積分し、次式で算出 する。

$$DDG_{i} = \frac{VG_{i} \cdot (\chi/Q) \cdot Q_{i} \cdot KG_{i}}{\lambda_{i}} \cdot \left(T \cdot 3600 - \frac{1 - \exp(-\lambda_{i} \cdot T \cdot 3600)}{\lambda_{i}}\right)$$
(2)

核種合計のグランドシャイン線量は、次式で計算する。

$$DDG = \sum_{t} DDG_{t}$$

DDG : 核種合計の積算グランドシャイン線量 (Sv) DDG: :核種iの精算グランドシャイン線量 (Sv)

1. 入退域時のグランドシャイン線量評価について 中央制御室入退域時の運転員に対するグランドシャイン線量評価 は、第1表に示す評価点に対して、以下のとおり評価している。

1) 地表沈着量

地表沈着量は、次式にて算出する。

$$AG_i(t) = \frac{\nabla G_i \cdot (\chi/Q) \cdot Q_i}{\lambda_i} \cdot (1 - \exp(-\lambda_i \cdot t))$$

: 時刻 t, 核種 i の沈着速度 (m/s)

(χ/Q): 時刻 t の相対濃度 (s/m³)

: 時刻 t, 核種 i の放射性物質の放出率 (Bq/s)

: 核種 i の崩壊定数 (1/s)

2) 地表沈着物からのγ線による外部被ばくの計算 グランドシャイン線量率は、次式にて算出する。

$$DG_i(t) = KG_i \cdot AG_i(t) \cdot 3600 \qquad (2)$$

DG(t): 時刻 t, 核種 i に関するグランドシャイン線量率 (Sv/h) : 地表沈着核種 i からの実効線量換算係数(Sv/s)/(Bq/m²)

AG (t) : 時刻 t. 核種 i の放射性物質の地表沈着量 (Bg/m²)

積算被ばく線量は、式(2)を対象期間で積分し、次式で算出す

$$DDG_i = \frac{VG_i \cdot (\chi/Q) \cdot Q_i \cdot KG_i}{\lambda_i} \cdot \left(10 \cdot 3600 - \frac{1 - \exp(-\lambda_i \cdot 10 \cdot 3600)}{\lambda_i}\right)$$

核種合計のグランドシャイン線量は、次式で計算する。

$$DDG = \sum_{i} DDG_{i}$$

DDG: 核種合計の積算グランドシャイン線量 (Sv) DDG, : 核種 i の積算グランドシャイン線量 (Sv)

記載内容の相違 ・式の導出などは異 なるものの、いずれ も地表に沈着した放 射性物質の地表沈着 量を評価し、放射線 量を評価する方法を

説明している。

女川は評価の概要

を記載している。

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉 泊発電所3号炉	大飯発電所3/4号炉	差異理由
接種ごとエネルギーごとの放出単 [photons/ (8g + s)] は、制動放射 (10g) を考慮した(10G) と ラ 変した(10G) と ラ で 変した。変した(10G) と ラ の が いっか(10G) と ラ の で 変した。変した(10G) と ラ の が いっか(10G) と ラ の で 変した。変した(10G) と ラ の (10G) と ラ の (10G) と ラ の (10G) と ラ の (10G) と の		100000000000000000000000000000000000000

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所	2号炉	泊発電所3号炉	大飯発電所3/4号炉	差異理由
Maira Market Commission	2 組み工作はもりの物質物質が成			
表2-15-2 グランドシャインガンマ森の評価に用いる (制御建屋出入口)(代替循環冷却系を用い				the debate of the sale
				記載内容の相違
エネルギー (第47) 単行	位面積当たりの積算線線域度 https://doi.org/10.000/00/00/00/00/00/00/00/00/00/00/00/0			
下限 上限 (代表エネルギー) (ph - 1,00×10*2	#9.5.7×10 ¹³			・式の導出などに
1,00×10 ⁻⁶ 2,00×10 ⁻⁶	#9.6.4×10 ¹³			なるものの、いつ
2.00×10 ^{-c} 3.00×10 ^{-c}	約 4. 8×10 ¹¹			
3, 90 × 10 ⁻⁶ 4, 50 × 10 ⁻⁶ 4, 60 × 10 ⁻⁶ 6, 90 × 10 ⁻⁶	約2.0×10 ²³ 約1.3×10 ²³			も地表に沈着した
3, 00×10 ⁻⁶ 4, 50×10 ⁻⁶ 4, 60×10 ⁻⁶ 6, 00×10 ⁻⁶	約 L 3×10 ⁽⁾			
6.00×10°2 7.00×10°2	#9 8, 5×10 ¹²			射性物質の地表法
7, 50×10 ⁻² 7, 50×10 ⁻² 7, 50×10 ⁻² 1, 00×10 ⁻¹	約 3, 6×10 ¹² 約 1, 8×10 ¹²			
1, 00×10 ⁻¹ 1, 50×10 ⁻¹	約8.1×10 ¹²			量を評価し、放
1,50×10 ⁻¹ 2,00×10 ⁻¹	₱9 1. 8×10 ¹³			
2.00×10 ⁻¹ 3.00×10 ⁻¹	#9 3, 5 × 10 ¹³			量を評価する方
3, 00×10 ⁻¹ 4, 00×10 ⁻¹	約 2, 3×10 ¹⁴			
4,00×10 ⁻¹ 4,50×10 ⁻¹ 4,50×10 ⁻¹ 5,10×10 ⁻¹	約1.1×10 ¹⁴ 約6.3×10 ¹³			説明している。
$4, 50 \times 10^{-6}$ $5, 10 \times 10^{-6}$ $5, 10 \times 10^{-6}$ $5, 12 \times 10^{-6}$	89 2. 1×10 ¹²			And the second second second
5.12×10°4 6.00×10°4	約9.2×10 ¹¹			
6, 00×10 ⁻¹ 7, 00×10 ⁻¹ 7, 00×10 ⁻¹ 8, 00×10 ⁻¹	前 1. 1×10 ¹⁴ 約 2. 5×10 ¹¹			
7, 00×10° 8, 00×10° 8, 00×10° 1, 00×10°	約 4. 9×10 ¹¹			
8,00×10° 1.00×10° 1,00×10° 1.33×10°	約 4. 9×10 ¹¹ 約 4. 0×10 ¹¹			
				- 1
1, 33×10° 1, 34×10° 1, 34×10° 1, 50×10°	約 1. 2×10 ¹² 約 1. 9×10 ¹²			ı
1.50×10 ⁴ 1.66×10 ⁴	約 6, 2×10 ^以			- 1
1, 66×10 ⁹ 2, 00×10 ⁹	#9 1. 3×10 ¹³			1
2.00×10^{9} 2.50×10^{9} 2.50×10^{9} 3.00×10^{9}	#0 2, 0 × 10 ¹² #0 1, 9 × 10 ¹⁴			- 1
$2.50 \times 10^{\circ}$ $3.00 \times 10^{\circ}$ $3.00 \times 10^{\circ}$ $3.50 \times 10^{\circ}$	\$5 1, 9 × 10 ¹¹			1
3.50×10 ⁸ 4.00×10 ⁸	約6.9×10 ⁹			ı
4.00×10 ⁸ 4.50×10 ⁸	#0 7, 9 × 10*			- 1
4, 50×10° 5, 00×10°	89.7.9×100			1
$5,00\times10^9$ $5,50\times10^9$ $6,00\times10^9$	80 7, 9 × 10° 20 7, 9 × 10°			ı
6, 00×10° 6, 50×10°	約 9. 1×10 ⁻¹			ı
6,50×10 ⁹ 7,00×10 ⁹	約9.1×10 ⁻¹			
7, 00×10° 7, 50×10°	₩9 9, 1×10 ⁻¹			
7,50×10 ⁶ 8,00×10 ⁶ 8,00×10 ⁶ 1,00×10 ⁷	的 9, 1×10 ⁻⁴ 的 2. 8×10 ⁻⁵			
1, 00×10 ¹ 1, 20×10 ¹	約1.4×10-1			
1, 20×10 ¹ 1, 40×10 ¹	#3 0.0×10°			
1. 40×10 ¹ 2. 00×10 ¹	#5 0, 0 × 10°			
	87: 0. 0 × 10°			
2.00×10^{1} 3.00×10^{1}	44.50			
3.00×10j 5.00×10j	\$0.0' 0 × 10 ₀ . \$0.0' 0 × 10 ₀ .			
2.00×10 3.00×10 3.00×10 3.00×10 5.00×10 5.00×10 4.00×10 5.00×10 6.00	5単位施積当たりの積器線原強度			
表2-16-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントをす エネルギー (はわ) 単位	5単位振復当たりの積等機関強度 実施する場合) 辺閣当ちの地質等等現度			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを3 エネルギー (M/) 解称 下田 上版 (代表エネルギー)	5単位面積当たりの種等線製強度 実施する場合) 回転でも場合) 回転である。 のをある。 のをする。 のを。 のを。 のを。 のを。 のを。 のを。 のを。 のを。 のを。 のを			
表2-16-3 グランドシャインガン~線の評価に用いる (出入管理所) (格納容易ペントを3 エネルギー (MV) 単位 下限 上版 (代表エルギー) はか	5単位振程当たりの機算機関強度 実施する場合) 近面積高5-9の標質等系換度 2015mg/2 (168 時間間時点) 第3.9×10 ⁹			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを生 エネルギー (Mr) 単位 下型 上間 (代表エネルギー) (4px - 1,00×10° 2,00×10°	5単位価値当たりの機算機関独定 実施する場合 立成場とりの機算神楽規度 totoms dr (108 時間間時点) 再2 9 2 10 ¹⁰ ボルン10 ²¹			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを生 エネルギー (Mr) 単位 下型 上間 (代表エネルギー) (4px - 1,00×10° 2,00×10°	5.単位振程当たりの機算機原独定 実施する場合) 2.面積当5.9.の機算網架後度 2.01回第5.9.5.10P 25.3.5.10P ま.3.3.5.10P ま.3.3.5.10P			
表2-16-3 グランドシャインガン~線の評価に用いる (出入管理所) (格納容器ペントを3 エネルギー (BA) 下限 上班 (代表エルギー) (は本 1,00×10 ⁻² 2,00×10 ⁻³ 2,00×10 ⁻² 4,50×10 ⁻⁴ 4,50×10 ⁻² 4,50×10 ⁻⁵	5単位振程当たりの機算機関強度 実施する場合) 近面積5~9・標質等無機度 近面積5~9・標質等無機度 第4.3×10 ¹³ 終4.3×10 ¹³ 表4.3×10 ¹³ 表4.3×10 ¹³ 表4.3×10 ¹³ 表4.3×10 ¹³ 表4.3×10 ¹³ 表4.3×10 ¹³ 表4.3×10 ¹³			
表2-16-3 グランドシャインガン~線の評価に用いる (出入管理所) (格納容器ペントを3 エネルギー (BA) 下限 上班 (代表エルギー) (は本 1,00×10 ⁻² 2,00×10 ⁻³ 2,00×10 ⁻² 4,50×10 ⁻⁴ 4,50×10 ⁻² 4,50×10 ⁻⁵	5単位面積当たりの標準機関強度 実施する場合) 近端時間 > 9.0の管算機関強度 近端時間 > 9.0の管算機関機 回び600.9年(1600 時間機関係 形 4.3×10 ²² 形 4.3×10 ²² 形 5.1×10 ²²			
表2-16-3 グランドシャインガン~線の評価に用いる (出入管理所) (格納容器ペントを3 エネルギー (MV) 下限 上版 (代表エルギー) はか - 1,00×10 ⁻² 2,00×10 ⁻³ 2,00×10 ⁻³ 2,00×10 ⁻³ 4,50×10 ⁻⁴ 4,50×10 ⁻⁴ 6,00×10 ⁻³ 6,00×10 ⁻³ 7,00×10 ⁻⁴ 7,00×10 ⁻⁵ 7,00×10 ⁻	5 単位面積当たりの積等機額強度 実施する場合) 医面積 15 9 の積算等医機度 の1883 2 1 (189 時間目時点) 表 4.3 × 19 ¹³ 表 4.3 × 19 ¹³ 表 4.3 × 19 ¹³ 表 4.3 × 19 ¹³ 表 5.2 × 19 ¹³			
表2-15-3 グランドシャインガンで線の評価に用いる (出入管理所) (格納容器ペントを主 エネルギー (地入) 下部 上部 (大表エネルギー) (地 1,00×10° 3,00×10° 3,00×10° 4,00×10° 4,00×10° 6,00×10° 4,00×10° 7,00×10° 7,00×10° 7,00×10° 1,00×10° 7,00×10° 1,00×10° 7,00×10° 1,00×10° 7,00×10° 1,00×10° 7,00×10°	5 単位面積当たりの標準機関地度 実施する場合) 近面積等と 9 0.78日 軍等等後度 18 (1885 1977 日 1885 1977 日 18 18 18 1977 日 18 18 1977 日 18 18 18 1977 日 18 18 18 18 18 18 18 18 18 18 18 18 18			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容型ペントを生 エネルギー (地入) 下部 上頭 (大変エネルギー) (地入 1,00×10 ⁻² 3,00×10 ⁻² 3,00×10 ⁻² 3,00×10 ⁻² 4,00×10 ⁻² 4,00×10 ⁻² 4,00×10 ⁻² 5,00×10 ⁻² 7,00×10 ⁻² 7,00×10 ⁻² 1,00×10 ⁻² 7,00×10 ⁻² 1,00×10 ⁻² 7,00×10 ⁻² 1,00×10 ⁻² 7,00×10 ⁻² 1,00×10 ⁻² 1,00×10 ⁻² 1,00×10 ⁻² 1,00×10 ⁻² 1,00×10 ⁻² 1,00×10 ⁻²	5.単位振程当たりの機算機関強度 実施する場合) 定面積5.5 の機算線振機度 定面積5.5 の機算線振機度 第.4 3.5 10 ¹³ 終4.4 3.5 10 ¹³ 終4.4 3.5 10 ¹³ 終4.5 15 10 ¹³ 終5.5 15 10 ¹³			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを3	5.単位面積当たりの積等機関強度 実施する場合) 近面積5.5 の確算線展機度 近面積5.5 の確算線展機度 第.3 次 10 ¹⁰ 終.3 次 10 ¹⁰ 終.3 次 10 ¹⁰ 終.3 次 10 ¹⁰ 終.5 次 10 ¹⁰			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入度理所) (格納容配ペントを1 エネルギー (山木) 単位 下限 上田 (代表エルギー) (山木) 1 - 1,00×10 ⁻¹ 1,00×10 ⁻¹ 1,00×10 ⁻¹ 1,00×10 ⁻¹ 2,00×10 ⁻¹ 2,00×10 ⁻¹ 1,00×10 ⁻¹	5 単位面積当たりの積算機関値度 実施する場合) 位面積当たりの積算機関域度 (188 時間間時点) 前式95 [199 底式3-199] 底式3-199 医 c3-199			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを3 エネルギー(Mr) 下限 上頭 (代表エネルギー) - 1,00×10° 2,00×10° 4,00×10° 4,00×10° 4,00×10° 4,00×10° 7,00×1	5.単位面積当たりの積等機関強度 実施する場合) 近面積5.5 の確算線展機度 近面積5.5 の確算線展機度 第.3 次 10 ¹⁰ 終.3 次 10 ¹⁰ 終.3 次 10 ¹⁰ 終.3 次 10 ¹⁰ 終.5 次 10 ¹⁰			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを3 エネルギー (Mr)	単位 部積 当たりの 韓等 線膜 強度 支援 ** でる場合 **			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを3 ***********************************	5 単位面積当たりの情算機額値度 実施する場合) に面積当たりの機算機構成 所 2 9 × 10 ¹⁰			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを生 エネルギー (Mr)	5 単位面積当たりの情算機額値度 実施する場合) に面積当たりの機算機構成 所 2 9 × 10 ¹⁰			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを3 ***エネルギー (はい) ***アル	5 単位面積当たりの積算機類値度 度能する場合) 位面積当たりの積算機構成 所以至5 100 前以至5 100 前 可 有 可 有 可 有 可 有 可 有 可 有 可 有 可 有 可 有 可			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを3 ***********************************	5 単位面積当たりの情算機額値度 実施する場合) に面積当たりの積算機構成度 が200m2分(168 時間間時点) 再 3.0×10 ¹⁰ 再 3.0×10 ¹⁰ 用 3.0×10 ¹⁰			
模2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを生 エネネギー (bb*)	5 単位 面積 当たり つ 標準 機関 強度 更接 下 5 場合) 立			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容配ペントを3 *** *** *** *** *** *** *** *** *** *	5 単位面積当たりの情算機類値度 実施する場合) 20 面積当たりの積算機構成度 20 (20 時間間時点) 第 2 9 5 10 9 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 8 2 3 2 10 9 9 9 8 2 3 2 10 9 9 8 2 3 2 10 9 9 8 2 3 2 10 9 9 8 2 3 2 10 9 9 8 2 2 10 9 9 8 2 2 10 9 9 8 2 2 10 9 9 8 2 2 10 9 9 8 2 2 10 9 9 8 2 2 10 9 9 8 2 2 10 9 9 8 2 2 10 9 9 8 2 2 10 9 9 8 2 2 10 9 9 9 8 2 2 10 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
製2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを注 エネルギー (Mr)	5 単位 面積 当たり つ 積等 機関 独皮 定量			
製2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを注 エネルギー (Mr)	5単位 節横 当た り の 韓等 線原 強度 支援 ** で も場合) 22 前側 5 ** D の 伊護 線形 強度 25 ** D の 伊護 線形 強度 26 ** D か 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容器ペントを3	5単位 部積 当たりの 韓等 線原 強度 支援 で			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容配-ントを3 エネネギー (Mr)) 下部 上部 (代表エネネギー) (Mr) 1,002-10 ⁻¹ 3,002-10 ⁻¹ 3,002-10 ⁻² 3,002-10 ⁻² 4,002-10 ⁻² 3,002-10 ⁻² 4,002-10 ⁻² 4,002-10 ⁻² 5,002-10 ⁻² 5,002-10 ⁻² 5,002-10 ⁻² 7,002-10 ⁻² 7,002-10 ⁻² 1,002-10 ⁻² 7,002-10 ⁻² 1,002-10 ⁻² 7,002-10 ⁻² 1,002-10 ⁻² 1,002-10 ⁻² 2,002-10 ⁻² 1,002-10 ⁻² 2,002-10 ⁻² 1,002-10 ⁻² 3,002-10 ⁻² 4,002-10 ⁻² 4,002-10 ⁻² 4,002-10 ⁻² 4,002-10 ⁻² 5,122-10 ⁻² 6,002-10 ⁻² 5,122-10 ⁻² 6,002-10 ⁻² 5,122-10 ⁻² 6,002-10 ⁻² 5,122-10 ⁻² 7,002-10 ⁻² 5,122-10 ⁻² 7,002-10 ⁻² 5,102-10 ⁻² 7,002-10 ⁻² 7	5 単位 面積 当たりの 積等 映画 地皮 実施する場合) 位 画情 生 5 9 9 8 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを3 エネルギー(Mr) 下間 上間 (代表エネルギー) 「1,00×10° 1,00×	5単位部積当たりの韓等機関独定 安全でも場合) (2 面積 当くりの 2 の 2 の 2 の 2 の 2 の 2 の 2 の 2 の 2 の 2			
表2-15-3 グランドシャインガンで線の評価に用いる (出入管理所) (格納容配・ントを3 エネネギー (Mr)) 下部 上部 (共変エネルギー) (か) 1,00×10° 3,00×10° 3,00×10° 3,00×10° 4,00×10° 1,10×10° 1,	5 単位 面積 当たり つ 積算 機関 独定 定量 性 下 5 場合) 2 の 有算 機関 独定 2 に			
表2-15-3 グランドシャインガンで線の評価に用いる (出入管理所) (格納容配・ントを3 エネネギー (Mr)) 下部 上部 (共変エネルギー) (か) 1,00×10° 3,00×10° 3,00×10° 3,00×10° 4,00×10° 1,10×10° 1,	5 単位 面積 当たり の 積算 機関 独皮 実施する場合) 位 画標 当たり の 積 算 解			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを3 ***********************************	5 単位 部積 当たり つ 標準 機関 強度 发生 と も場合) 2 面積 当 トリック 2 原 事業 発強 定 2 面積 当 トリック 2 原 事業 発強 定 2			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容配-ントを注 エネネギー Obr) 下部 上田 (代表エネルギー) (か) 1-00-10 ¹⁵ 1-00-10 ¹⁵ 1-00-10 ¹⁵ 2-00-10 ¹⁵ 1-00-10 ¹⁵ 1-10-10 ¹	5 単位 面積 当たり の 標準 映画 地皮 実施する場合) 位 画情 当 5 9 の 個 算 映画 地皮 で 18 10 2 10 10 10 10 10 10 10 10 10 10 10 10 10			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを3 ***********************************	5 単位 部積			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを3 ***********************************	5 単位 面積 当たりつ 標準 機関強度 変化 する場合) 2 面積 当 トリック 2 日本			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを3	単位 部積 当たりの 韓等 線原独立 を指する場合) (2 面積 当くりの 中等 線像 強攻 (2 面積 当くりの 中等 線像 強攻 (3 五 大 10 回 (3 五 大 10 回 (4 五 1 × 10			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを3 ***********************************	5 単位 前横 () た () の () 標準			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを3	5単位 部積 油た かっ 機算 機関 強度 支援 ** でも場合) *** ** ** ** ** ** ** ** ** ** ** **			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを注 本来ネギー (Mr)	5 単位 面積 当たり つ 積算 機関 独皮 更複 下 5 場合)			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを3	5単位 部積 油た かっ 機算 機関 強度 支援 ** でも場合) *** ** ** ** ** ** ** ** ** ** ** **			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを注 本来ネギー (Mr)	5 単位 面積 当たり つ 積算 機関 独皮 更複 下 5 場合)			
表2-15-3 グランドシャインガンマ線の評価に用いる (出入管理所) (格納容易ペントを3	5単位 部積 油た かっ 機算 機関 強度 支援 ** でも場合) *** ** ** ** ** ** ** ** ** ** ** **			