泊発電所3号炉審査資料		
資料番号	SA59H-9 r. 4. 0	
提出年月日	令和4年8月31日	

泊発電所3号炉

設置許可基準規則等への適合状況について (重大事故等対処設備) 補足説明資料 比較表

59条

令和4年8月 北海道電力株式会社

枠囲みの内容は機密情報に属しますので公開できません。

第59条 原子炉制御室等(補足説明資料)

第 59 条 原十炉制御至等(補足説明資料) 女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
59-9 原子炉制御室の居住性に係る被ばく評価について	59-7 原子炉制御室の居住性に係る被ばく評価について		資料構成の相違 ・ 泊では 59-7 で居住性 に係る被ばく評価の 概要説明を行い、59-
			8に補足的な事項を記載している。・女川はいずれも 59-9としてまとめている。

	第 59 条	運転員	が原子炉制御室にと	・どまるための設備	(補足説明資料)
--	--------	-----	-----------	-----------	----------

第 50 宋 連転員が原子が制御室にととよるにめの設備「補足説明資料 女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3/4号炉	差異理由
	別添2	別添 2	
		<u> </u>	
	泊発電所3号炉	大飯発電所3 号炉及び4 号炉	資料構成の相違 ・泊では 59-7 として 26
	原子炉制御室の居住性に係る被ばく評価 について	原子炉制御室の居住性に係る被ばく評価について	条の別添 2 を添付する こととしており、別添 2
	(第26条原子炉制御室等)		の表紙が入る。女川も
			26条の資料と同じ資料 を読みこむ構成は同じ
			だが表紙はない。

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
日 次 26 条別語 2 即	1	大飯発電所 3 / 4 号炉	差異理由 記載方針の相違 ・目次の記載の仕方が異なるが、1.にてDB被ばく評価(2.にSA被ばく評価を記載する構成はは同じ。・本比較表ではSA被ばく評価について比較を行い、DB被ばく評価については26条の比較表で記載する。
(経路②) 59-9-2-5 2.4.1.3 地表面に注着した放射性物質からのガンマ線による被	→本比較表で記載		

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
	(比較のため 59-8 の目次を記載)		補足的な事項について
	(1-21-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-		泊は59-8にて記載1
希付資料1 中央制御室の居住性(設計基準事故)に係る被ばく評	1000		いるため, 59-8 の目
価について・・・・・・・・・・・・・ 26 条-別添 2-添 1-1-1	添付一覧		
1-1 中央制御室の居住性(設計基準事故)に係る被ばく評価条	添付資料 1-]: 中央制御室の居住性(設計基準事故)に係る秘ばく評価について		を貼り付け,以下の
件表・・・・・・・・・・・・・・・・・ 26 条-別添 2-添 1-1-1	1-1-1 中央制確室の居住性(設計基準事故)に係る被ばく評価条件表		別で目次にて添付資
1-2 被ぼく評価に用いた気象資料の代表性について・・・・ 26 条-別添 2-添 1-2-1 1-3 運転員の交替について・・・・・・・・・ 26 条-別添 2-添 1-3-1	1-1-2 原子炉合却材喪失時における再循環開始時間について		の比較を行った。
1-4 内規*1との整合性について・・・・・・・・・ 26 条-別添 2-添 1-4-1	1-1-3 居住性に係る被ばく評価に用いた気象資料の代表性について		なお、本比較表はS
14 FARE COMEDITION C 20 X AND 2 NO 14 1	1-1-4 線量評価に用いる大気拡散の評価について		範囲について比較し
系付資料2 中央制御室の居住性(炉心の著しい損傷)に係る被ば	1-1-5 空気流大率試験結果について		
く評価について・・・・・・・・・・・ 59-9-添2-1-1	1-1-8 直交替の考え方について SA 条文関連を含む		いる。
2-1 中央制御室の居住性(炉心の著しい損傷)に係る籔ばく評	1-1-7 内規*1との整合性について		添付資料 1-1 につ
価条件表・・・・・・・・・・・・・ 59-9-添 2-1-1	DB 条文関連		は26条別添3の比
2-2 事象の選定の考え方について・・・・・・・ 59-9-派2-2-1			で記載。
2-3 核分裂生成物の放出割合について・・・・・・ 59-9-添 2-3-1			【識別】
2-4 放射性物質の大気放出過程について・・・・・・・ 59-9-藤2-4-1	1-2-1 中央制御堂の居住性(重大事故対策)に係る被ばく評価条件表		The second secon
2-5 原子炉格納容器等への無機よう素の沈着効果について・・ 59-9-添2-5-1 2-6 原子炉建屋原子炉棟の負圧達成時間について・・・・ 59-9-添2-6-1	1-2-2 事数シーケンス選定の考え方について 1-0-9 B(かけがな)と思いるほと際は小ささまについて		比較となる資料が
2-6 原子が建築原子が裸の負圧達成時間について・・・・ 59-9-添2-0-1 2-7 被ばく評価に用いた気象資料の代表性について・・・・ 59-9-添2-7-1	1-2-3 居住性評価に用いる炉心選定の考え方について		在しない場合は赤
2-8 被ばく評価に用いる大気拡散評価について・・・・・ 59-9-爺2-8-1	1-2-4 原子炉格納容器への核分裂生成物の放出割合の設定について		線で示した(差異
2-9 地表面への沈着速度の設定について・・・・・・ 59-9-添 2-9-1	1-2-5 よう素の化学形態の設定について		由は資料記載箇月
2-10 エアロゾル粒子の乾性沈着速度について・・・・・ 59-9-添2-10-1	1-2-8 原子炉格納容器等への元素状よう素の洗着効果について		記載)。
2-11 有機よう素の乾性沈着速度について・・・・・・ 59-9-添2-11-1	1-2-7 原子炉格納容器等へのエアロゾルの沈着効果について		
2-12 マスクによる防護係数について・・・・・・・ 59-9-添 2-12-1	1-2-8 スプレイによるエアロゾルの除去速度の設定について		・資料名称は異なる
2-13 原子炉建屋原子炉棟内の放射性物質からのガンマ線によ	1-2-8 原子炉格納容器編えい率の設定について		比較対象とした資
る被ばくの評価方法について・・・・・・・ 59-9-添 2-13-1	1-2-10 アニュラス空気浄化設備 空気作動弁の開放手順の成立性について		を青下線で整理し
	1-2-11 フィルタ除去効率の設定について		た。
	1-2-12 大気への放出放射能量の推移グラフについて		
26 条別添 2 参照 本資料	1-2-13 中央制御室の直接線、スカイシャイン線評価方法について		
2-14 放射性雲中の放射性物質からのガンマ線による被ばくの	1-2-14 中央制御室空調装置の閉画路循環運転時における空気作動ダンパ強制閉		
評価方法について・・・・・・・・・・ 59-9-添 2-14-1	放手順の成立性について		
2-15 地表面に沈着した放射性物質からのガンマ線による被ば	1-2-15 マスクによる防護係数について		
くの評価方法について・・・・・・・・・ 59-9-添 2-15-1	1-2-16 中央制御室澤在時に飲食等のためマスクを外した場合の影響について		
2-16 室内に外気から取り込まれた放射性物質による被ばくの	1-2-17 中央制御室のグランドシャイン線量の評価方法について		
評価方法について・・・・・・・・・・・ 59-9-添 2-16-1	1-2-18 温性抗着を考慮した地表面抗着速度の設定について		
2-17 大気中に放出された放射性物質の入退域時の吸入摂取に	1-2-19 運転員の勤務体系を踏まえた被ばく評価結果について		
よる被ばくの評価方法について・・・・・・・ 59-9-添 2-17-1	1-2-20 放射性雲中の放射性物質からのガンマ線による被ばくの評価方法について!		
2-18 原子炉格納容器フィルタベント系排気管内の放射性物質 からのガンマ線による被ばくの評価方法について・・・ 59-9-添2-18-1	1-2-21 室内に外気から取り込まれた放射性物質による被ばくの評価方法について		
2-19 原子炉運転時の炉心熱出力を定格熱出力に余裕を見た出	1-2-22 大気中に放出された放射性物質の入退域時の吸入摂取による被ばくの評価		
カとした場合の影響について・・・・・・・ 59-9-添 2-19-1	方法について		
2-20 格納容器雰囲気直接加熱発生時の被ばく評価について・・ 59-9-添 2-20-1	1-2-23 審査ガイド*2との適合性について		
2-21 原子炉格納容器の漏えい率の設定について・・・・・ 59-9-添 2-21-1	SA 条文関連		
2-22 制御建屋における気密性及び遮蔽性に関するひび割れの	MI ACAME		
影響について・・・・・・・・・・・・・ 59-9-添 2-22-1	*1:原子力発電所中央制御室の居住性に係る被ばく評価方法について (内規)		
2-23 原子炉格納容器からの漏えいに関するエアロゾル粒子の	* 2:実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく		
捕集効果の設定について・・・・・・・ 59-9-添 2-23-1	評価に関する審査ガイド		
2-24 原子炉建屋原子炉棟の換気率について・・・・・ 59-9-添 2-24-1			
2-25 原子炉建屋プローアウトパネル閉止装置及び非常用ガス 処理系の要否について・・・・・・・・ 59-9-添 2-25-1			
2-26 審査ガイド ^{#2} への適合状況・・・・・・ 59-9-議 2-26-1			1
2 SA BISTON 1 AND DAYOU	<u> </u>		
(W. s.) 160 - As we district the destination of the latency of the			1
(※1)原子力発電所中央制御室の居住性に係る被ばく評価手法 について(内規)			
			1
(※2)実用発電用原子炉に係る重大事故時の制御室及び緊急時 対策所の居住性に係る被ばく評価に関する審査ガイド			1

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載簡所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

2. 中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価につ 2. 中央制御室の居住性(重大事故対策)に係る被ばく評価 いて

炉心の著しい損傷が発生した場合の中央制御室の居住性(炉心の 著しい損傷) に係る被ばく評価は、「実用発電用原子炉に係る重大事 故時の制御室及び緊急時対策所の居住性に係る被ばく評価に関する 審査ガイド」(以下「審査ガイド」という。)に基づき行った。

(実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈 第74条抜粋)

- b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住性について、次の 要件を満たすものであること。
- ① 本規程第37条の想定する格納容器破損モードのうち、原子炉制御室の運 転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故 シーケンス (例えば、炉心の著しい損傷の後、格納容器圧力迷がし装置等 の格納容器破損防止対策が有効に機能した場合)を想定すること。
- ② 運転員はマスクの着用を考慮してもよい。ただしその場合は、実施のため の体制を整備すること。
- ③ 交代要員体制を考慮してもよい。ただしその場合は、実施のための体制を 整備すること。
- ④ 判断基準は、運転員の実効線量が7日間で100mSvを超えないこと。

評価の結果、7 日間での実効線量は代替循環冷却系を用いて事象 収束に成功した場合で最大約 51mSv、格納容器ベントを実施した場 合で最大約51mSv となった。なお、この評価結果は遮蔽モデル上の コンクリート厚を許容される施工誤差分だけ薄くした場合の評価と している。

このことから、判断基準である「運転員の実効線量が 7 日間で 100mSv を超えないこと」を満足することを確認した。

2.1 評価事象

女川原子力発電所2号炉においては、「想定する格納容器破損モー ドのうち、原子炉制御室の運転員の被ばくの観点から結果が最も厳 しくなる事故収束に成功した事故シーケンス」である「大破断 LOCA +HPCS 失敗+低圧 ECCS 失敗+全交流動力電源喪失したシーケン ス」においても、格納容器ベントを実施することなく事象を収束す ることのできる代替循環冷却系を整備している。しかしながら、被 ばく評価においては、中央制御室の居住性評価を厳しくする観点か ら、代替循環冷却系を使用した場合のみならず、前述の「大破断 LOCA +HPCS 失敗+低圧 ECCS 失敗+全交流動力電源喪失したシーケン ス」において、原子炉格納容器フィルタベント系を経由した格納容 器ベントを実施した場合も想定する。

重大事故が発生した場合の中央制御室の居住性に係る被ばく評価 にあたっては、「実用発電用原子炉に係る重大事故時の制御室及び緊 急時対策所の居住性に係る被ばく評価に関する審査ガイド」(以下、 「審査ガイド」という。) に基づき、評価を行った。

泊発電所3号炉

(実用発電用原子炉及びその附属施設の位置。構造及び設備の基準に関する規則の解釈 第 59 条上り精粋)

- b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住住について、次の要件を満 たすものであること。
- ① 本規定第 37 条の想定する格納容器破損モードのうち、原子炉制御室の運転員の被 ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス(例えば、 便心の差しい損傷の後、格納容器圧力挑がし装置等の格納容器破糧防止対策が有効 ビ接触1.を場合)を想定すること。
- ② 運転員はマスクの着用を考慮してもよい。ただしその場合は,実施のための体制を 軽備すること。
- ② 交代要員体制を考慮してもよい。ただしその場合は、実施のための体制を整備する
- ④ 判断基準は、運転員の実効線量が7日間で 100mSv を超えないこと。

2.1 評価事象

評価事象については、想定する格納容器破損モードのうち、中央 制御室の運転員の被ばくの観点から結果が最も厳しくなる事故収束 に成功した事故シーケンスを想定し、格納容器破損防止対策に係る 有効性評価における雰囲気圧力・温度による静的負荷のうち、格納 容器過圧の破損モードにおいて想定している、大破断LOCA時に ECCS注入及び格納容器スプレイ注入に失敗するシーケンスとす

2. 中央制御室の居住性(重大事故対策)に係る被ばく評価

重大事故が発生した場合の中央制御室の居住性に係る被ばく評価にあたって は 「実用発費用原子位施設に係る重大事が時の制御室及び懸急時対策所の民任 性に係る被ばく評価に関する審査ガイド(以下、審査ガイドという)」に基づき、 採価を行った。

大飯発電所 3/4号炉

(実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規 別の解釈 第59条上り抜粋)

- b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住性について、次の要件を満たす ものであること。
- ① 本規定第 37 条の想定する格納容器破損モードのうち、原子炉制御室の運転員の被ば くの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス(例えば、炉心 の著しい損傷の後、格納容器圧力逃がし装置等の格納容器破損防止対策が有効に機能し た場合)を想定すること。
- ② 運転員はマスクの着用を考慮してもよい。ただしその場合は、実施のための体制を整 備すること。
- ③ 交代要員体制を考慮してもよい。ただしその場合は、実施のための体制を整備するこ

評価事象については、想定する格納容器破損モードのうち、中央制御室の運

転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケ

ンスを想定し、格納容器破損防止対策に係る有効性評価における雰囲気圧力・

温度による静的負荷のうち、格納容器過圧の破損モードにおいて想定している、 大破断 LOCA 時に ECCS 注入および格納容器スプレイ注入に失敗するシーケン

④ 判断基準は、運転員の実効線量が7日間で100mSvを超えないこと。

9.1 評価事象

スとする。

記載箇所の相違

泊では後段で被ば く評価結果をまとめ ている。

差異理由 本比較表では SA 被ばく

評価について比較を行

い, DB 被ばく評価(1.)

については26条の比較

表で記載する。

型式の相違

 PWR では格納容器 ベントを用いない。

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

2.2 大気中への放出量の評価

大気中へ放出される放射性物質の量は、上記 2.1 で示した事故シーケンスを想定し評価した。なお、原子炉格納容器から原子炉格納容器フィルタベント系への流入量及び原子炉格納容器から原子炉建屋原子炉棟への漏えい量を MAAP 解析及び NUREG-1465 の知見を用いて評価した。ただし、MAAP コードでは、よう素の化学組成は考慮されないため、粒子状よう素、無機よう素及び有機よう素については、大気中の放出量評価条件を設定し、放出量を評価した。評価に用いた放出放射能量を表 1 及び表 2 に示す。

表 1 大気中への放出放射能量 (7日間積算) (代替循環冷却系により事象を収束することを想定する場合)

	停止時炉内内蔵量	放出放射能量[Bq] (gross 値)
核種グループ	[Bq] (gross 值)	原子炉建屋原子炉棟からの漏えい及び 非常用ガス処理系による放出
希ガス類	約 1,6×10 ¹⁹	約 1. 6×10 ¹⁷
よう素類	約 2.1×10 ¹⁹	約 4.5×10 ¹⁵
Cs 類	約8.4×10 ¹⁷	約 2.5×10 ¹²
Te 類	約 6.0×10 ¹⁸	約 2. 7×10 ¹²
Ва 知	約 1.8×10 ¹⁹	約 2. 9×10 ¹²
Ru 郑i	約 1, 8×10 ¹⁹	約 4. 2×10 ¹¹
Ce 類	約 5.5×10 ¹⁹	約 2. 8×10 ¹¹
La類	約 4.1×10 ¹⁹	約 7.5×10 ¹⁰

表 2 大気中への放出放射能量 (7日間積算) (格納容器ベントの実施を想定する場合)

	放出放射能量[Bq] (gross 值)		
核種グループ	原子炉格納容器フィルタベン ト系を経由した放出	原子炉建屋原子炉棟からの漏 えい及び非常用ガス処理系に よる放出	
希ガス類	#9 4. 6×10 ¹⁸	約 8, 9×16 ¹⁶	
よう素類	約 3. 3×10 ¹⁸	約 3.0×10 ¹⁵	
Cs 類	約 9.6×10 ⁸	約 2.5×10 ¹²	
Те Жі	約 6.7×10 ⁸	約 2. 7×10 ¹²	
Ва 類	約 6.3×10 ⁸	約 2.9×10 ¹²	
Ru 類	約 1. 3×10 ⁸	約 4.2×16 ¹¹	
Ce 類	約7.9×10 ⁷	約 2.8×10 ¹¹	
La ¾i	約 2. 0×10 ⁷	約7.5×16 ¹⁰	

2.2 大気中への放出量の評価

放射性物質の大気中への放出量は、従来の原子炉設置変更許可申請書添付書類十の原子炉冷却材喪失時被ばく評価と同様のプロセスにて評価する。また、上記評価事象が炉心損傷後の事象であることを踏まえ、原子炉格納容器内に放出された放射性物質はNUREG-1465の原子炉格納容器内への放出割合を基に設定して評価する。

泊発電所3号炉

大気中への放射性物質の放出低減機能を有する代替格納容器スプレイ設備及びアニュラス空気浄化設備の起動時間については、全交流動力電源喪失及び最終ヒートシンク喪失を想定した起動遅れを考慮した評価とした。

2.2. 大気中への放出量の評価

放射性物質の大気中への放出量は、従来の原子炉設置変更許可申請書添付書 類十の原子炉冷却材度失時被ぼく評価と同様のプロセスにて評価する。また、 上記評価事象が炉心損傷後の事象であることを踏まえ、原子炉格納容器内に放 出された放射性物質は NUREG-1465 の原子炉格納容器内への放出割合を基に 設定して評価する。

大飯発電所 3/4号炉

大気中への放射性物質の放出低減機能を有する代替低圧注水ポンプによるスプレイおよびアニュラス空気浄化設備の起動時間については、全交流動力電源 要失および最終ヒートシンク喪失を想定した起動遅れを考慮した評価とした。

oc Bil (o) +o

i

! = SA

記載箇所の相違 放出放射能量は別添 3で記載。

差異理由

取り上げている内

容が異なるが、いず

れもソースタームの

考え方を記載してい

記載内容の相違

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

2.3 大気拡散の評価

被ばく評価に用いる相対濃度と相対線量は、大気拡散の評価に従い実効放出継続時間を基に計算した値を年間について小さい方から順に並べて整理し、累積出現頻度 97%に当たる値を用いた。評価においては、女川原子力発電所敷地内において観測した 2012 年 1 月~2012 年 12 月の 1 年間における気象データを使用した。

相対濃度及び相対線量の評価結果を表3 に示す。

表3 相対濃度及び相対線量

	表3 相	対震度及び相対線	量	
放出類及び 放出類高さ*	評価点	着目方位	相対濃度 [s/m³]	相对線量 [Gy/Bq]
	中央制御室 換気空調系給気口	SE, SSE, S, SSW, SW	5.8×10 ⁻⁴	4. 6×10 ⁻¹⁸
原子炉格納容器 フィルタベント	中央制御室中心	ENE, E, ESE, SE, SSE, S, SSW, SW	8.6×10 ⁻⁴	6, 6×10 ⁻¹⁸
系排気管 (地上 36m)	出入管理所	SSW, SW, WSW, W	5. 0×10 ⁻⁴	4. 3×10 ⁻¹⁸
	制御建屋出入口	SSE, S, SSW, SW, WSW, W	7. 1×10 ⁻⁴	5, 6×10 ⁻¹⁸
	中央制御室 換気空調系給気口	SE, SSE, S, SSW, SW	1.3×10 ⁻³	5. 0×10 ⁻¹⁸
原子炉建屋ブロ ーアウトバネル (地上 0m)	中央制御室中心	ESE, SE, SSE, S, SSW, SW	1.6×10 ⁻³	6. 3×10 ⁻¹⁸
	出入管理所	SSW, SW, WSW, W	9.9×10 ⁻⁴	4. 4×10 ⁻¹⁸
	制御建屋出入口	SSE, S, SSW, SW, WSW, W	1.5×10 ⁻⁹	6, 0×10 ⁻¹⁸
排気筒	中央制御室 換気空調系給気口	ESE	2.8×10 ⁻⁶	1. 0×10 ⁻²⁹
	中央制御室中心	ESE	2.8×10 ⁻⁶	1. 0×10 ⁻¹⁹
(地上 80m)	出入管理所	SE	4. 0×10 ⁻⁴	1. 4×10 ⁻¹⁹
	制御建屋出入口	ESE	2.8×10 ⁻⁶	1. 0×10 ⁻¹⁹

※放出源高さは放出エネルギーによる影響は未考慮.

2.3 大気拡散の評価

被ばく評価に用いる相対濃度と相対線量は、大気拡散の評価に従い実効放出継続時間を基に計算した値を年間について小さい方から順に並べた累積出現頻度 97 %に当たる値を用いた。評価においては、1997年1月~1997年12月の1年間における気象データを使用した。

なお、当該データの使用に当たっては、風向風速データが不良標本の乗却検定により、至近10年間の気象状態と比較して特に異常でないことを確認している。

12.3. 大気拡散の評価

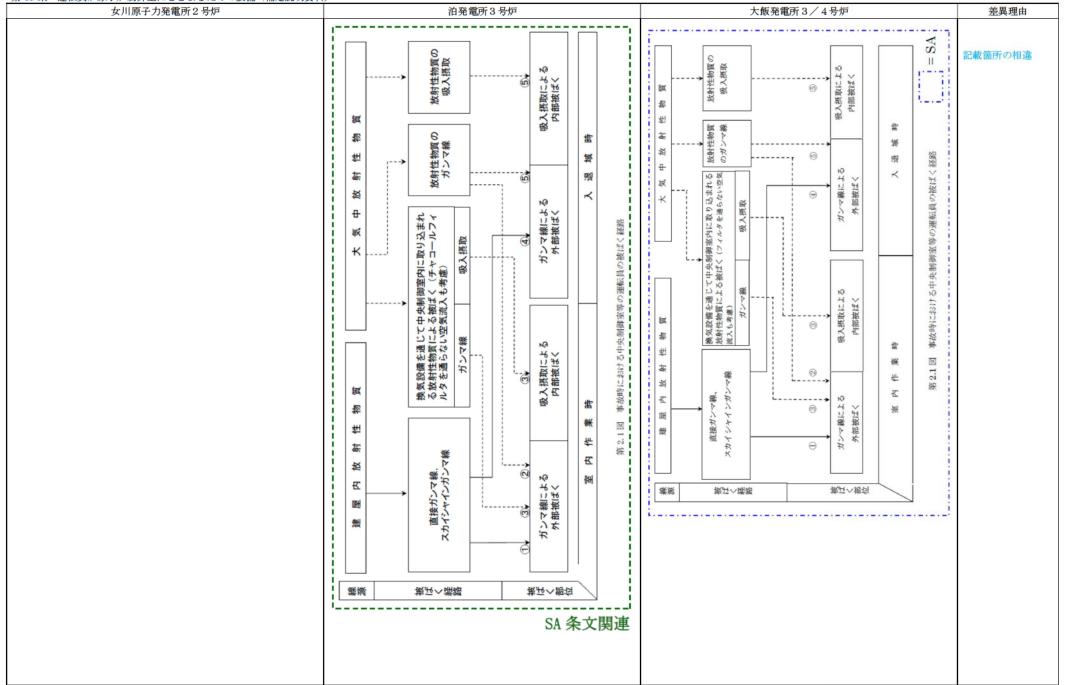
被ばく評価に用いる相対濃度と相対線量は、大気拡散の評価に従い実効放出 継続時間を基に計算した値を年間について小さい方から順に並べた累積出現頻 度 97%に当たる値を用いた。評価においては、2010 年 1 月~2010 年 12 月の 1 年間における気象データを使用した。なお、当該データの使用に当たっては、 風向風速データが不良標本の棄却検定により、最近 10 年間の気象状態と比較し て特に異常でないことを確認している。

個別解析による相違

差異理由

記載方針の相違 ・泊は異常年検定を 行っていることを記 載

記載箇所の相違 泊は別添3で記載。

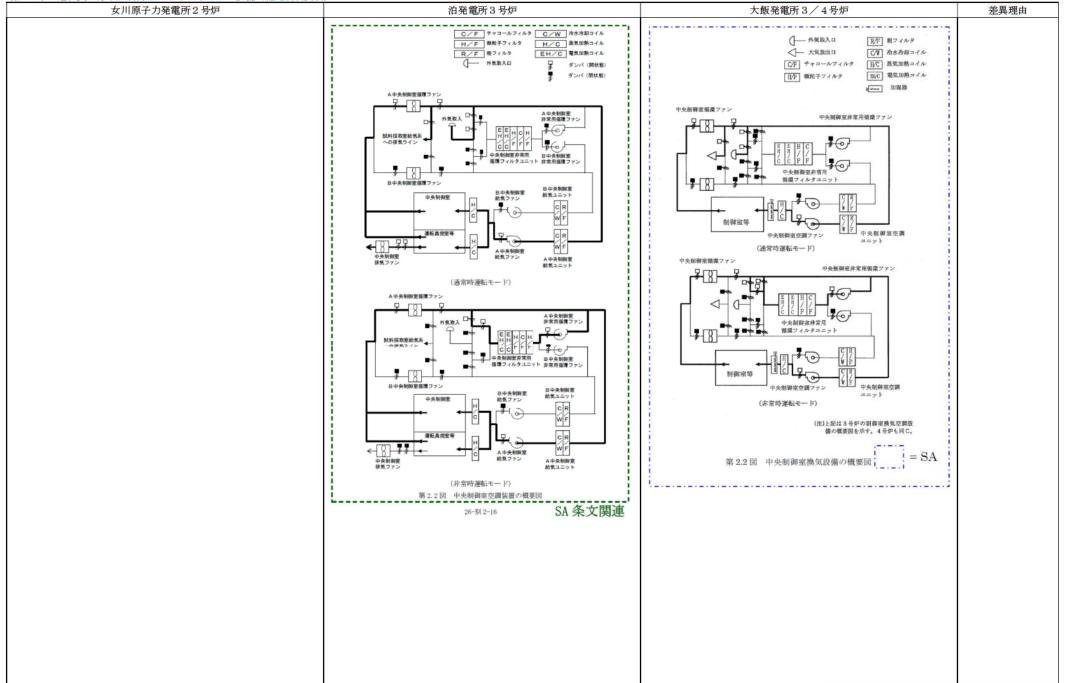

第50条 運転員が原子短期御室にレジまるための設備(補足説明資料)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料		十年政争正 2 / 4 早 左	*田畑山
女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
	2.4 建屋内の放射性物質からのガンマ線の評価 建屋内の放射性物質からの直接ガンマ線及びスカイシャインガン マ線による運転員の実効線量は、施設の位置、建屋の配置、形状等 から評価した。直接ガンマ線は QAD コード、スカイシャインガンマ 線は SCATTERING コードを用いて評価した。	2.4. 建屋内の放射性物質からのガンマ線の評価 建屋内の放射性物質からの直接ガンマ線およびスカイシャインガンマ線による運転員の実効線量は、施設の位置、建屋の配置、形状等から評価した。直接 ガンマ線は QAD コード、スカイシャインガンマ線は SCATTERING コードを 用いて評価した。	記載箇所の相違 ・次項で比較
 2.4 中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価	2.5 中央制御室居住性に係る被ばく評価	2.5. 中央制御室居住性に係る被ばく評価	
被ばく評価に当たっては、評価期間を事故発生後7日間とし、運		・ 被ばく評価に当たって考慮している被ばく経路(①~⑤)は、第2.1図に示す!・ とおりである。それぞれの経路における評価方法および評価条件は以下に示す!	⑥の相違
転員が交替(5直3 交替)するものとして実効線量を評価した。運		とおりである。	1140
転員の直交替サイクルを表 4 に、交替スケジュール例を表 5 に示		中央制御室等の運転員に係る被ばく評価期間は事象発生後7日間とした。運	
す。また,評価で想定した運転員の入退域及び中央制御室滞在の開		転員の勤務形態としては5直2.5 交代とし、7 日間の評価期間において最も中央 制御室の滞在期間が長く入退域回数が多い運転員を対象として、7 日間の積算線	
始及び終了の時間並びに空調起動や格納容器ベント実施の時間の前		量を滞在期間および入退域に要する時間の割合で配分することで、実効線量を	
後関係を参考図に示す。なお、本評価においては、1 直(1 日目)		評価した。	
の中央制御室滞在開始時に事故が発生するものと想定した。			
被ばく評価に当たって考慮した被ばく経路と被ばく経路のイメー	被ばく評価に当たって考慮している被ばく経路(①~⑤)は、第		
ジを図1及び図2に示す。また、中央制御室の居住性(炉心の著しい場所)に係る神様で変異にある。	2.1 図に示すとおりである。それぞれの経路における評価方法及び 評価条件は以下に示すとおりである。		
い損傷)に係る被ばく評価の主要条件を表9 に、被ばく評価に係る 換気空調設備の概略図を図3 に示す。	評価条件は以下に示すとわりである。		
授べ至阿苡州の規則囚を囚る(これり。			
表 4 直交替サイクル			
動務動務時間			
1 直 21 時 30 分~9 時 00 分 11 時間 30 分 2 直 8 時 40 分~16 時 50 分 8 時間 10 分			
3 直 16 時 30 分~21 時 50 分 5 時間 20 分			
2 · 3 直 8 時 40 分~21 時 50 分 13 時間 10 分			
表5 直交替スケジュール例			
1 日 2 日 3 日 4 日 5 日 6 日 7 日 滞在時間 入违城回数			
B班 3 / 1 1 休 休 2 36:30 8回			
C班 日勤 0:00 0回 D班 1 1 休 4 2 23 3 49:40 10回			
E 班 休 休 2 23 3 / 1 38:10 8 回			
※1:1直, 2:2直, 3:3直, 23:2·3直, 休:休日, 日勤:事務所勤務日			
事象発生から の経過時間(2) 0 ↓ 70min 45 55			
選転員の 動業タイム 製業タイム			
##-> III			
- 序席用ガス処理系による旅台 の開始 (事件を対する できまして 大) ・中央制御資件運所加圧 (数値) よら中央制御 (また) ・中央制御 (また) ・中央制御 (また) ・中央制御 (また) ・中央制御 (また) ・中央制御 (また) ・中央制御 (また) ・中央制御 (また) ・中央制御 (また) ・中央制御資料運作 (また) ・中央制御資料運作 (また) ・中央制御資料運作 (また) ・中央制御資料運作 (また) ・中央制御資料運作 (また) ・中央制御資料運作 (また) ・中央制御資料 (また) ・中央制御資料運作 (また) ・中央制御資料 (また) ・中央制御資料 (また) ・中央制御 (また) ・中央 (また) ・中 (また) ・中 (また) ・中 (また) ・中 (また) ・中 (また) ・中 (また) ・中 (また) ・年 (また) ・年 (また) ・年 (また) ・年 (また) ・年 (また) ・年 (また) ・年 (また) ・年 (また) ・年 (また)			
□ 中央解棄を存住(重) □ 中央解棄を存住(重) □ 中央解棄を存在(重) □ 中央解棄を存在(重) □ 中央解棄を存在(重) □ 中央解棄素存在(重) □ 中央解棄素存在(金) □ 大油機			
□ 入場帳参考図 評価で想定した運転員の中央制御室滞在の時間や空調起動等の時間の前後関係			
	→ 中央制御室等の運転員に係る被ばく評価期間は事象発生後7日間		
	とした。運転員の勤務形態としては5直2.5交替とし、7日間の評		
	価期間において最も中央制御室の滞在時間が長く入退域回数が多い		
	運転員を対象として,7 日間の積算線量を滞在期間及び入退域に要		
	する時間の割合で配分することで、実効線量を評価した。		

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)		緑字:記載表現、設備名称の相違(大貝甲がよ1日連なし/
女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
2.4.1 中央制御室内での被ばく 2.4.1.1 原子炉建屋原子炉棟内の放射性物質からのガンマ線による被ばく(経路①) 事故期間中に原子炉建屋原子炉棟内に存在する放射性物質からの直接ガンマ線及びスカイシャインガンマ線による中央制御室内での外部被ばくは、 原子炉建屋原子炉棟内の放射性物質の積算線源強度,施設の位置,遮蔽構造,地形条件等を踏まえて評価した。 なお、原子炉格納容器フィルタベント系フィルタ装置は、原子炉建屋原子炉棟内に設置しているため、原子炉建屋の躯体により遮蔽されるため影響はない。 原子炉建屋原子炉棟内に設置しているため、原子炉建屋の躯体により遮蔽されるため影響はない。 原子炉建屋原子炉棟内に存在する放射性物質からの直接ガンマ線については、QAD-CGGP2R コードを用い、スカイシャインガンマ線については ANISN コード及びG33-GP2R コードを用いて評価した。 2.4.1.2 放射性雲中の放射性物質からのガンマ線による被ばく(経路②) 放射性雲中の放射性物質からのガンマ線による中央制御室での外部被ばくは、事故期間中の大気中への放射性物質の放出量を基に、大気拡散効果と建屋によるガンマ線の遮蔽効果を踏まえて評価した。 2.4.1.3 地表面に沈着した放射性物質からのガンマ線による被ばく	2.5.1 中央制御室内での被ばく (.5.1.1 建屋からのガンマ線による被ばく (経路①) 事故期間中に建屋内に存在する放射性物質からの直接ガンマ線及 びスカイシャインガンマ線による中央制御室内での運転員の外部被ばくは、上記 2.4 の方法で実効線量を評価した。 (前頁の記載を再掲) 建屋内の放射性物質からの直接ガンマ線及びスカイシャインガンマ線による運転員の実効線量は、施設の位置、建屋の配置、形状等から評価した。	2.5.1 中央制御室内での被ばく 2.5.1.1 建屋からのガンマ線による被ばく (経路①) 事故期間中に建屋内に存在する放射性物質からの直接ガンマ線およびスカイシャインガンマ線による中央制御室内での運転員の外部被ばくは、上記 2.4. の方法で実効線量を評価した。 2.5.1.2 大気中へ放出された放射性物質のガンマ線による被ばく (経路②) 大気中へ放出された放射性物質からのガンマ線による中央制御室内での外部被ばくは、事故期間中の大気中への放射性物質の放出量を基に大気拡散効果と中央制御室の壁によるガンマ線の遮蔽効果を踏まえて運転員の実効線量を評価	記載箇所の相違 治は2.4で記載 型式の相で記載 ・PWRでを用ない。 設計等の相違いでを用いてを用いてを用いてをしている。 ・SCATTERINGな大きでは、一下デルイでのよう。 ・WT・デルイでのよう。 ののはは、一下の経はである。 記載が回ばでである。 には、一下の経は、一下の経は、一下の経はでである。 には、一下の経はでである。



治双電前9号信 GA其淮海合州 比較主 1,90

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料	泊発電所 3 号炉 S A 基準適合性 比較表 r	:3.0 青子: 記載箇所又は記載内容の相違 緑字: 記載表現、設備名称の相違	
第 35 米 連転員が原子が耐煙量にことよるにある政権 補足既労員を 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
2.4.1.4 室内に外気から取り込まれた放射性物質による被ばく(経路 ④) 外気から中央制御室内に取り込まれた放射性物質による被ばくは、中央制御室内の放射性物質濃度を基に、放射性物質からのガンマ線による外部被ばく及び放射性物質の吸入摂取による内部被ばくの和として評価した。なお、内部被ばくの評価に当たっては、マスクの着用による防護効果を考慮した。また、格納容器ペントの際には運転員は図4に示す中央制御室待避所内に滞在するとして評価した。	2.5.1.3 室内に外気から取り込まれた放射性物質による被ばく(経路 ③) 事故期間中に大気中へ放出された放射性物質の一部は外気から中央制御室内に取り込まれる。中央制御室内に取り込まれた放射性物質のガンマ線による外部被ばく及び吸入摂取による内部被ばくの和として実効線量を評価した。 中央制御室内の放射性物質濃度の計算にあたっては、運転員はマスクを着用しているとして評価した。	さしているとして評価した。また、D、公元ホリー央制得金換気設備の効果を考慮した。なお、中央制御室換気設備の起動時間については、全交流動力電源喪失および最終ヒートシンク喪失を想定した起動遅れを考慮した評価とした。	型式の相違 ・PWR では格納容器 ベントを用いない
中央制御室内の放射性物質濃度の計算は、以下の(1)から(3)に示す効果を考慮した。被ばく評価で想定する空調運用等のタイムチャートを図5に示す。	また,(1),(2)に示す中央制御室空調装置の効果を考慮した。なお,中央制御室空調装置の起動時間については,全交流動力電源喪失及び最終ヒートシンク喪失を想定した起動遅れを考慮した評価とした。	中央制御室換気設備の事故時運転モードは、通常開いている外気取り込みダ ンパを関止し、再循環させて放射性物質をフィルタにより低減する運転モード・	
(1)事故時運転モード(少量外気取入):中央制御室換気空調系中央制御室換気空調系の事故時運転モード(少量外気取入)は、通常開いている外気取り入れダンパを閉止し、再循環させて放射性物質をフィルタにより低減し、フィルタを通した外気を少量取入れる運転モードである。具体的な系統構成を図3に示す。中央制御室内の放射性物質濃度は事故時運転モード(少量外気取入)で評価している。なお、中央制御室換気空調系の事故時運転モード(少量外気取入)への切り換え時間については、運転操作や全交流動力電源喪失を想定した遅れを考慮し、有効性評価で設定した30分を起動遅れ時間として考慮した。	(1) 事故時閉回路循環運転モード 中央制御室空調装置の事故時閉回路循環運転モードは,通常開い ている外気取り入みダンパを閉止し,再循環させて放射性物質をフ ィルタにより低減する運転モードで,具体的な系統構成は第2.2図 に示すとおりである。	(2)フィルタを通らない空気流入量 大飯発電所3、4号炉中央制御室へのフィルタを通らない空気流入量は、空 気流入率測定試験結果を踏まえて保守的に換気率換算で0.5回/hを仮定して評 価した。	
(2) 中央制御室待避所加圧設備による中央制御室待避所の加圧中央制御室待避所を中央制御室待避所加圧設備(以下、「加圧設備」という。)により正圧を維持することで、外気の流入を防止する効果を考慮した。 (3) 中央制御室への外気の直接流入率中央制御室へのフィルタを通らない空気流入量は、保守的に換気率換算で1.0 回/h を仮定して評価した。	(2) フィルタを通らない空気流入量 中央制御室へのフィルタを通らない空気流入量は,空気流入率測 定試験結果を踏まえて保守的に換気率換算で 0.5 回/h を仮定して 評価した。		②の相違個別解析による相違

第 59 余 連転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所 2 号炉	泊発電所 3 号炉	大飯発電所 3 / 4 号炉	差異理由
2.4.2 入退城時の渡転員の実効線量の評価に当たっては、周辺監視区域境界から制御建屋中央制御室出入口までの運転員の移動経路を対象とした。代表評価点は出入管理所と制御建屋出入口の2 箇所とし、入退域ごとに各々の評価点に7 分間及び5 分間滞在するとして評価した。なお、原子炉格納容器フィルタベント系の屋外配管に付着した放射性物質からの影響についても、上記と同様の評価点及び滞在時間として評価した。	2.5.2 入退域時の被ばく 2.5.2.1 建屋からのガンマ線による被ばく (経路④) 事故期間中に建屋内に存在する放射性物質からの直接ガンマ線及びスカイシャインガンマ線による入退域時の運転員の外部被ばくは、中央制御室の壁によるガンマ線の遮蔽効果を期待しないこと以外は、「2.5.1.1 建屋からのガンマ線による被ばく(経路①)」と同様な手法で実効線量を評価した。 入退域時の運転員の実効線量の評価に当たっては、周辺監視区域境界から中央制御室入口までの運転員の移動経路を対象とした。代表評価点は、入退域の経路に沿って、出入管理建屋入口及び中央制御室入口として評価した。	2.5.2 入退域時の被ばく 2.5.2.1 建屋からのガンマ線による被ばく (経路④) 事故期間中に建屋内に存在する放射性物質からの直接ガンマ線およびスカイシャインガンマ線による入退坡時の運転員の外部被ばくは、中央制御室の壁によるガンマ線の遮蔽効果を期待しないこと以外は、「2.5.1.1 建屋からのガンマ線による被ばく (経路①)」と同様な手法で実効線量を評価した。 入退坡時の運転員の実効線量の評価に当たっては、周辺監視区域境界から中央制御室入口までの運転員の移動経路を対象とした。代表評価点は、入退域の経路に沿って、正門、事務所入口および中央制御室入口として評価した。	記載箇所の相違 設計等の相違 ・具体的に設定した 評価点は異なる。 ・泊ではフィルタベ ントは使用しない。
2.4.2.1 原子炉建屋原子炉棟内等の放射性物質からのガンマ線による被ばく(経路⑤)事故期間中に原子炉建屋原子炉棟内に存在する放射性物質からの直接ガンマ線及びスカイシャインガンマ線による入退域時の運転員の外部被ばくは、評価点を屋外とすること以外は「2.4.1.1 原子炉建屋原子炉棟内の放射性物質からのガンマ線による被ばく(経路①)」と同様な手法で実効線量を評価した。また、原子炉格納容器フィルタベント系の排気管内に付着した放射性物質からの直接ガンマ線による外部被ばくも上記と同様な手法で実効線量を評価した。	■ 事故期間中に建屋内に存在する放射性物質からの直接ガンマ線及びスカイシャインガンマ線による入退域時の運転員の外部被ばくは、中央制御室の壁によるガンマ線の遮蔽効果を期待しないこと以外は、「2.5.1.1 建屋からのガンマ線による被ばく(経路①)」と同様な手法で実効線量を評価した。		型式の相違・泊ではフィルタベントは使用しない。

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

を実施している

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)	緑字:記載表現、設備名称の相違	(天員的な性)達なし)
女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
2.4.2.2 放射性雲中の放射性物質からのガンマ線による被ばく(経路⑥) 中央制御室の壁等によるガンマ線の遮蔽効果を期待しないこと以外は「2.4.1.2 放射性雲中の放射性物質からのガンマ線による被ばく(経路②)」と同様な手法で実効線量を評価した。 2.4.2.3 地表面に沈着した放射性物質からのガンマ線による被ばく(経路⑦) 中央制御室の壁等によるガンマ線の遮蔽効果を期待しないこと以外は「2.4.1.3 地表面に沈着した放射性物質からのガンマ線による被ばく(経路③)」と同様な手法で実効線量を評価した。	2.5.2.2 大気中へ放出された放射性物質による被ばく(経路⑤) 大気中へ放出された放射性物質からのガンマ線による入退域時について、外部被ばくは、中央制御室の壁によるガンマ線の遮蔽効果を期待しないこと以外は「2.5.1.2 大気中へ放出された放射性物質のガンマ線による被ばく(経路②)」と同様な手法で、	A married and the state of the	記載方針の相違 女川は経路⑤、⑦、 ⑧としている経路に ついて、泊では経路 ⑤と整理している。
2.4.2.4 大気中へ放出された放射性物質の吸入摂取による被ばく(経路⑧) 入退域時の内部被ばくは、事故期間中の大気中への放射性物質の 放出量及び大気拡散効果を踏まえ評価した。なお、評価に当たって はマスクの着用による防護効果を考慮した。	内部被ばくは、空調設備効果を期待しないこと以外は「2.5.1.3 室内に外気から取り込まれた放射性物質による被ばく(経路③)」と同様な手法で放射性物質からのガンマ線による外部被ばく及び吸入摂取による内部被ばくの和として運転員の実効線量を評価した。 地表面に沈着した放射性物質からのガンマ線についても考慮して評価した。 入退城時の運転員の実効線量の評価に当たっては、上記 2.5.2.1	3号炉、4号炉事故発生時の中央制御室の居住性に係る被ばく評価結果は、 第2.1表に示すとおり、実効線量が7日間でそれぞれ約7.2mSv、約4.3mSvで ある。また、3号炉事故発生時および4号炉事故発生時の合算値は約12mSvで	
2.5 評価結果のまとめ 代替循環冷却系を用いて事象収束に成功した場合の評価結果を表 6-1-1 及び表 6-1-2 に示す。また、格納容器ベントを実施した場合 の評価結果を表 6-2-1 及び表 6-2-2 に示す。さらに、各ケースにつ いて被ばく線量の合計が最も大きい班の評価結果の内訳を表 7-1-1 から表 7-2-2 に、被ばく線量の合計が最も大きい滞在日における評 価結果の内訳を表 8-1-1 から表 8-2-2 に示す。 評価の結果、7 日間での実効線量は代替循環冷却系を用いて事象	の仮定に同じである。 2.6 評価結果のまとめ 中央制御室の居住性に係る被ばく評価結果は,第2.1表に示すと おり,実効線量が7日間で約15 mSvである。	= SA	個別解析による相談
収束に成功した場合で最大約 51mSv, 格納容器ベントを実施した場合で最大約 51mSv となった。この評価結果は遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の評価としている。 このことから、判断基準である「運転員の実効線量が 7 日間で100mSv を超えないこと」を満足することを確認した。 なお、参考として原子炉格納容器からの漏えいに関するエアログル粒子の捕集効果に期待しない (DF=1) 場合の評価結果について表6-3 及び表6-4 に示す。	したがって、評価結果は、「判断基準は、運転員の実効線量が7日間で100 mSvを超えないこと」を満足している。 なお、マスク着用を考慮しない場合の中央制御室の居住性に係る 被ばく評価結果は、実効線量が7日間で約71 mSvである。		記載方針の相違・泊でも評価条件にてコンクリート 厚みを保守的に評していることを載。 ・泊では参考ケーとしてマスクを詳しないケースの評

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0 緑字:記載表現、設備名称の相違(実質的な相違なし) 第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3/4号炉 差異理由 表 6-1-1 各勤務サイクルでの被ばく線量 ⑥の相違 (代替循環冷却系を用いて事象を収束する場合) (中央制御室内でマスクの着用を考慮した場合) (単位:mSv) **:*2*3 1 H 2 H 3 H 4 H 5 H 6 H 7 H 1.8 2 (E 18 3 8 B班 約5.3⁸⁴ 約1.9 約1.5 約9.5 約0.87 1直 1直 約46⁸⁴ 約2.9 2直 25直 3直 約1.1 約1.2 約0.47⁸⁵ 約51 2直 22直 3直 約1.6 約1.6 約0.92 表 6-1-2 各勤務サイクルでの被ばく線量 (代替循環冷却系を用いて事象を収束する場合) (中央制御室内でマスクの着用を考慮しない場合) (単位:mSv) **1*2 1 H 2 H 3 H 4 H 5 H 6 H 7 H A H 97.1 ** 99.4 ** 99.2 ** 99.3 ** 99.2 #5 21 約 6.0⁹⁰ 約16 約3.8 約3.5 約2.0 前 約520⁹³ 約4.6 2直 22直 3直 約2.4 約3.1 約1.2⁶⁴ D BE #1 530 2度 2度 3度 約3.0 約3.8 約1.8 1 直 約 2.9⁶⁴ 約12 ※1 入退域時においてマスク (〒50) の着用を考慮 帯2 連続モデル上のコンクリート厚を許容される施工談差分だけ薄くした場合の被ばく線量 入連続時において事故後1日目のみマスク(9年1,000)の報子も無差に加えて整備。7日日3直の 特は「機関関係了直前の入紙に持り接近く需要は、7日日1直の施びく器量に加えて整備。7日日3直の 施ばく器量は、大地瓜ロデル制度が確保・(7倍級期間すごかかがなりを動産(他の・・・1の印)を 表 6-2-1 各勤務サイクルでの被ぼく線量 (原子炉格納容器フィルタベント系を用いて事象を収束する場合) 1 B 2 B 3 B 4 B 5 B 6 B 7 B A班 約6.2*4 21 直 1 直 1.8 1.00 約31 #921 #91.4 18 ¥1.0,65 約1.8 約1.4 CH 20頁 D班 約46⁴⁴ 約29 <u>#151</u> 2度 21度 3度 約1.6 約1.3 約0.79 #3 0. 98⁽²⁰⁾ #3 4. 6

被ばく線量は、入板及び中央制御金庫在(評価制間終了まで)に作う被ぼく線量(表 6-1-1 の 8% を

表 6-2-2 各勤務サイクルでの被ばく線量

(原子炉格納容器フィルタベント系を用いて事象を収束する場合) (中央制御室内でマスクの着用を考慮しない場合) (単位:mSv)******

수타

2直 約1.2 約1.1 約0.39⁶⁴ 約520

2B 3B 4B 5B 6B 7B 約37 #3 25 W1 2. 0 約3,0 約2.4 3 8 #113 #3 0.75 CH

P0 4.7

D班 約520⁺³

91 人の説明においてより、1979の「の田田を有職 をき 運転をデルルカニッチラード等を持合される第三項形分だけ薄くした場合の被ぼく機能 等3 人の場所においておか扱い。1970年1000のの意味を増加して機能 手指数期的する他の人場に与りがはて発掘し、1911年の地球で保険上がたて観性。丁日計3点の 地ばく機能し、人気及び中央制御金剛性「保傷期間料了まで」に行う物ばく構能「使わっしの形を の場合と発生し、人気及び中央制御金剛性「保傷期間料了まで」に行う物ばく構能「使わっしの形を

第 69 余 連転員が原士炉制御室にどとよるための設備(棚疋説明賞科) 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
第 59 条 連転員が原子炉制御室にとどまるための設備 (補足説明資料)	泊発電所3号炉	大飯発電所 3 / 4 号炉	

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由

個別解析による相違

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

表 7-1-1 評価結果の内訳(被ばく線量が最大となる班(D班)の合計) (代替循環冷却系を用いて事象を収束する場合)

	(中央制御室内でマスクの着用を考慮する場	合) (単位: mSv)
	被ばく経路	7日間の実効線量**1
	① 原子炉建屋原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく	約 4.1×10 ⁻²
ф	② 放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約7.0×10
中央制御室滞在時	③ 地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 6.7×10
室滞在	④ 室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約3.2×10
my	(内訳) 内部被ばく 外部被ばく	(約 2.7×10) (約 5.6×10)
	小計 (①+②+③+④)	約 4.6×10
	⑤ 原子炉建屋原子炉棟内等の放射性物質からのガンマ線による入退域時の被ばく	約 1. 4×10 ⁻¹
	⑥ 放射性雲中の放射性物質からのガンマ線による入退域時の被ばく	約 2.5×10 ⁻¹
入退城時	⑦ 地表面に沈着した放射性物質からのガンマ 線による入退域時の被ばく	約 5.1×10 ⁴
nd.	® 大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 1. 2×10 ⁻²
	小計 (⑤+⑥+⑦+⑧)	約 5.3×10′
	合計 (①+②+③+④+⑤+⑥+⑦+⑧)	約 5.1×10

^{※1} 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の 被ばく線量

表 7-1-2 評価結果の内訳 (被ばく線量が最大となる班 (D班) の合計) (代替循環冷却系を用いて事象を収束する場合) (中央制御室内でマスクの着用を考慮しない場合)(単位:mSv)

	被ばく経路	7日間の実効線量※
	原子炉建屋原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく	約4.1×10 ⁻²
ıtı.	② 放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ぼく	#9 7.0×10°
央制御	③ 地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 6.7×10°
中央制御室滞在時	④ 室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 5.1×10 ²
時	(内駅) 内部被ばく 外部被ばく	(約 5.0×10 ²) (約 5.6×10 ⁰)
	小計 (①+②+③+④)	約 5. 2×10 ²
	⑤ 原子炉建屋原子炉棟内等の放射性物質から のガンマ線による入退城時の被ばく	約1.4×10 ⁻¹
	⑥ 放射性雲中の放射性物質からのガンマ線に よる入退城時の被ばく	約 2.5×10 ⁻²
入退城時	① 地表面に沈着した放射性物質からのガンマ 線による入退城時の被ばく	約 5.1×10 ⁰
时	③ 大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 1.2×10 ⁻²
	小計 (⑤+⑥+⑦+⑧)	約 5.3×10°
	合計 (①+②+③+④+⑤+⑥+⑦+⑧)	約 5. 3×10 ²

^{※1} 連載モデル上のコンクリート厚を許容される施工額差分だけ薄くした場合の 被ばく線量

第91事	由車制御室早仕柱	(重十重炒分等)	に超る独居	* 京東 4年 4世 - 田	

泊発電所3号炉

		7 日間の実効線量 (mSv) *1		
	被ばく経路	外部被ばく による 実効線量	内部被ばく による 実効線量	実効線量の 合計
	①建屋からのガンマ線による 被ばく	約 1.7×10 ⁻²	-	約 1.7×10 ⁻²
室内作	②大気中へ放出された放射性 物質のガンマ線による被ばく	約 1.2×10 ⁻²	_	約1.2×10 ⁻²
室内作業時	③室内に外気から取り込まれ た放射性物質による被ばく	約1.1×10°	約1.1×10°	約 2.2×10°
	小計 (①+②+③)	約 1.2×10°	約1.1×10°	約 2.2×10°
,	④建屋からのガンマ線による 被ばく	約1.0×10 ¹	_	約 1.0×10 ¹
入退城時	⑤大気中へ放出された放射性 物質による被ばく	約1.3×10°	約 7.9×10 ⁻²	約1.4×10°
	小計 (④+⑤)	約1.2×10 ¹	約 7.9×10 ⁻²	約 1.2×10 ¹
	合 計 (①+②+③+④+⑤)	約13	約1.1	約15*2

- *1 表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は,有効数値3桁目を四 捨五入し2桁に丸めた値
- *2 「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に

SA 条文関連

大飯発電所 3/4号炉

	Audes 120 / 619 1507	7日間の実効線量 (mSv)	
	被ばく経路	3号炉	4号炉
	①建屋からのガンマ線による被ば く	約 4.0×10 ⁻⁹	約 4.0×10 ⁻⁵
室内	②大気中へ放出された放射性物質 のガンマ線による被ばく	約 4.0×10 ⁻²	約 3.2×10÷
室内作業時	③室内に外気から取り込まれた放射性物質による被ばく	約 3.0×10°	約 2.3×10°
	小 計 (①+②+③)	約 3.1×10°	約 2.4×10 ⁶
	④建屋からのガンマ線による被ば く	約 2.7×10°	約 1.2×10 ⁴
入退城時	⑤大気中へ放出された放射性物質 による被ばく	約 1.4×10 ⁰	約 7.6×10
時	小 計 (④+⑤)	約 4.1×10°	約 1.9×10 ⁶
	合 計(①+②+③+④+⑤)	約 7.2**	約 4.3*2

- * 1:表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は、有効数 値3桁目を四捨五入し2桁に丸めた値
- | * 2:「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り | 上げて2桁に丸めた値

59-補足-17

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0 第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号	女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉		3	
₹7-2-1 評価結果の内訳(被ばく線量が最大と			第 2.2 表 中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (3 号炉)	
(原子炉格納容器フィルタベント系を用いて)				
(中央制御室内でマスクの着用を考慮する)	舞百)(単位:mSV)		7 日間の実効線量(mSv)* ¹	
被ばく経路	7日間の実効終量®1		模ぱく経路 外部被ばく 内部被ばく 大弦線量の による 実効線量の 合 計	
① 原子炉建屋原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく	約 4. 1×10°2		①建量からのガンマ線による 被ばく 的 4.0×10 ³ - 約 4.0×10 ³	
② 放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7. 0×10 ³		 ②大坂中・炭出された放射性 均 40×10²	
③ 地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 6.7×10 ⁹		第 ② 型 (1 に 2 × 2 が 2 に 2 が 2 × 2 に 2 が 2 × 2 に 2 が 2 × 2 が 2 × 2 に 2 が 2 × 2 に 2 が 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 に 2 × 2 ×	
④ 室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 3.2×10 ¹		④建量からのガンマ線による 被ばく 約 2.7×10° — 約 2.7×10°	
特 (内訳) 内部被ばく 外部被ばく	(約 2. 6×10 ⁱ) (約 5. 6×10 ⁱ)		通 ⑤ 大気中へ放出された放射性 物質による被ばく 物質による被ばく	
小計 (①+②+③+④)	約 4. 5×10 ⁱ		小 計 (⑥+⑤) 約 4.0×10° 約 7.3×10° 約 4.1×10°	
⑤ 原子炉建屋原子炉棟内等の放射性物質からのガンマ線による入退城時の被ばく	約 1. 2×10 ⁻¹		⊕ # (①+②+③+⊕+⊕) #) 60 #) 1.2 #) 7.2**	
⑥ 放射性雲中の放射性物質からのガンマ線による入退域時の被ばく	約 1.6×10°2		 * 1: 接における「来効療像の合計 (①+②+①+①+①)」以外の数値は、有効数値 値3桁目を国格五入し2桁に失めた値 * 2: 「実効線盤の合計 (②+②+②+①)・② の数値は、有効数値3桁目を切り 	
及 ・ 地表面に沈着した放射性物質からのガンマ 線による入退城時の被ばく	約 5. 2×10 ³		上げて2桁に丸めた値	
⑧ 大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 5.7×10 ⁻³			
小計 (⑤+⑥+⑦+⑧)	#9 5. 4×10 ¹			
合計(①+②+③+④+⑤+⑥+⑦+⑥) 連載モデル上のコンクリート厚を許容される施工 被ばく線量 -2-2 評価結果の内訳(被ばく線量が最大と	なる班 (D 班) の合計)		第93条(中央組織家庭住性(第十集於分類)に係る第1子と開始設置中級	
合計 (①+②+③+④+⑤+⑥+⑦+⑥) 1 遊蘇モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳 (被ばく線量が最大と	製造分だけ薄くした場合の なる班 (D 班) の合計) 事象を収束する場合)		第23妻(中央制御室居住性(重大事故対策)に係る被ばく評価結果内訳 (4号型)	
合計(①+②+③+④+⑤+⑥+⑦+⑥) 1 遮蔽モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳(被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて)	製造分だけ薄くした場合の なる班 (D 班) の合計) 事象を収束する場合)		第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内限 (4号炉) 7日間の実地線量 (mSv) ・・	
合計(①+②+③+④+⑤+⑥+⑦+⑥) 遮蔽モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳(被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて) (中央制御室内でマスクの着用を考慮しない	概能分だけ薄くした場合の なる班 (D 班) の合計) 事象を収束する場合) 場合)(単位: mSv) 7日間の実効発量***		第 2 3 表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4 号炉) 7 日間の東効維量 (mSv) **・	
合計(①+②+③+④+⑤+⑤+①+⑤) 1 遮蔽モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳(被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて) (中央制御室内でマスクの着用を考慮しない 被ばく経路 ① 原子炉建屋原子炉構内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性霊中の放射性物質からのガンマ線による中央制御室内での被ばく	銀差分だけ薄くした場合の なる班 (D 班) の合計) 事象を収束する場合) 場合) (単位: mSv) 7日間の実効発量 ⁶¹ 約4.1×10 ⁻²		第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉) 7日期の実効練量 (mSv)・1	
合計(①+②+③+④+⑤+⑥+⑦+⑥) 1 遊霰モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳(被ばく線量が最大と 原子炉格納容器フィルタベント系を用いて1 (中央制御室内でマスクの着用を考慮しない 被ばく経路 ① 原子炉建屋原子炉構内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性雲中の放射性物質からのガンマ線に トを大地を開始をなった。			第23表 (中央制御定居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉) 7 日間の実効練量 (mSv) *・	
合計(①+②+③+①+⑤+⑥+⑦+⑥) 遊霰モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳(被ばく線量が最大と 原子炉格納容器フィルタベント系を用いて) (中央制御室内でマスクの着用を考慮しない 被ばく経路 ① 原子炉建屋原子炉填内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく ③ 地表面に社着した放射性物質のガンマ線に よる中央制御室内での被ばく ④ 室内に外気から取り込まれた放射性物質に	服施分だけ薄くした場合の なる班 (D 班) の合計) 事象を収束する場合) 場合)(単位:mSv) 7日間の実効業量 ⁸¹ 約4.1×10 ² 約7.0×10 ⁶ 約6.7×10 ⁶		第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉) 7日間の実効締員 (mSv) **	
合計 (①+②+③+④+⑤+⑥+⑦+⑥) 遮蔽モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳 (被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて) 技ばく経路 ② 原子炉建理原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性雲中の放射性物質がらのガンマ線に よる中央制御室内での被ばく ③ 地表面に比着した放射性物質がよる よの中央制御室内での被ばく ④ 連表面に比着した放射性物質のガンマ線に よる中央制御室内での被ばく ④ 空内に外気から取り込まれた放射性物質に よの中央制御室内での被ばく ④ 空内に外気から取り込まれた放射性物質に よの中央制御室内での被ばく (内容) 内部被ばく (内容) 内部被ばく	根施分だけ薄くした場合の なる班 (D 班) の合計) 事象を収束する場合) 場合)(単位:mSv) 7日間の実効線量 ^{m1} 約4.1×10 ⁻² 約7.0×10 ⁶ 約6.7×10 ⁶ 約5.0×10 ⁵ (約5.0×10 ⁶)		第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉) 7日間の実効嫌量 (mSv) ** ※	
合計(①+②+③+④+⑤+⑥+⑦+⑤) 1 遮底モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳(被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて3 (中央制御室内でマスクの着用を考慮しない 被ばく経路 ① 原子炉畦屋原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性雲中の放射性物質からのガンマ線による中央制御室内での被ばく ③ 地表面になりた放射性物質のガンマ線による中央制御室内での被ばく ④ 室内に外気から取り込まれた放射性物質による中央制御室内での被ばく	勝遊分だけ薄くした場合の なる班 (D 班) の合計) 事象を収束する場合) 場合) (単位: mSv) 7 日間の実効務量 ^{m1} 約4.1×10 ⁻² 約7.0×10 ⁰ 約6.7×10 ⁰ 約5.0×10 ²		第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉) (4号炉) (4号炉) (4号炉) (4号炉) (1号で、 1号で、 1号で、 1号で、 1号で、 1号で、 1号で、 1号で、	
合計 (①+②+③+④+⑤+⑥+⑦+⑥) 遮蔽モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳 (被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて) (中央制御室内でマスクの着用を考慮しない 被ばく経路 ② 原子炉建度原子炉横内の放射性物質からの ガンマ線による中央制御室内での被ばく ③ 地表面に沈着した放射性物質のカンマ線に よる中央制御室内での被ばく ③ 地表面に沈着した放射性物質のカンマ線に よる中央制御室内での被ばく ④ 室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく (内訳) 内部被ばく 小計 (①+②+③+④) ③ 原子炉建度原子炉横内等の放射性物質から			第23妻 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉) 7 日間の東効線量 (mSv) *・ 外部被ばく 内部液は (mSv) *・ 外部被ばく 内部液は (mSv) *・ 外部被ばく による 実効線量 会 音 変が線量 な ま効線量 会 音 変がなく による 実力線量 会 音 変がないのガンマ線による 約 4.0×10* 一 約 4.0×10*	
合計 (①+②+③+①+①+①+①+⑥) 遮蔽モデル上のコンクリート厚を許容される施工 被はく線量 7-2-2 評価結果の内訳 (被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて3 被ばく経路 ② 原子炉建屋原子炉模内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく ③ 地表面に比着した放射性物質のガンマ線に よる中央制御室内での被ばく ④ 重内に外気が、取り込まれた放射性物質に よる中央制御室内での被ばく (内訳) 内部被ばく 外部被ばく 小計 (①+②+③+④) ⑤ 原子炉建屋原子炉模内等の放射性物質から のガンマ線による入造域時の被ばく ⑤ 放射性雲中の放射性物質からのガンマ線に のが対性素中の放射性物質からのガンマ線に	概能分だけ薄くした場合の なる班 (D 班) の合計) 事象を収束する場合) 場合) (単位: mSv) 7 日間の実効務量 ^{m1} わ 4.1×10 ⁻² 約 7.0×10 ⁶ 約 5.0×10 ⁶ (約 5.0×10 ⁶) (約 5.6×10 ⁶) 約 5.2×10 ⁶ 約 1.2×10 ⁶		第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉) 7 日間の実効機能 (mSv) *・・ ※	
合計(①+②+③+④+⑤+⑥+⑦+⑥) 遮蔽モデル上のコンクリート厚を許容される施工 被ばく線量 -2-2 評価結果の内訳(被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて) (中央制御室内でマスクの着用を考慮しない 被ばく経路 ① 原子炉建型原子炉構内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性霊中の放射性物質がらのガンマ線による中央制御室内での被ばく ③ 地表面に沈着した放射性物質のガンマ線による中央制御室内での被ばく (内訳)内部被ばく 小計(①+②+③+④) ⑤ 原子炉建理原子炉構内等の放射性物質による中央制御室内での被ばく (内訳)内部被ばく 小計(①+②+③+④) ⑤ 原子炉建厚子炉構内等の放射性物質からのガンマ線による入退域時の被ばく の 放射性霊中の放射性物質からのガンマ線による入退域時の被ばく ① 放射性霊中の放射性物質がらのガンマ線による入退域時の被ばく			第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉)	
合計(①+②+③+①+①+①+①+③) 遮蔽モデル上のコンクリート厚を許容される施工 被はく線量 7-2-2 評価結果の内訳(被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて1 中央制御室内でマスクの着用を考慮しない 被ばく経路 ① 原子炉建屋原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性裏中の放射性物質からのガンマ線に よる中央制御室内での被ばく ③ 地表面に注着した放射性物質のガンマ線に よる中央制御室内での被ばく ④ 室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく (内)の一の部域はく 小計(①+②+③+④) ② 原子炉建屋原子炉棟内等の放射性物質から のガンマ線による入退域時の被ばく 小計(①+②+③+④) ② 原子炉建屋原子炉棟内等の放射性物質から のガンマ線による入退域時の被ばく () 放射性雲中の放射性物質からのガンマ線に よる入退域時の被ばく () 地表面に注着した放射性物質からのガンマ線に よる入退域時の被ばく () 地表面に注着した放射性物質からのガンマ線に よる入退域時の被ばく () 大気中へ放出された放射性物質の吸入摂取			第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉)	
合計(①+②+③+①+⑤+⑥+⑦+⑥) 1 遮底モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳(被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて) (中央制御室内でマスクの着用を考慮しない 被ばく経路 ① 原子炉建屋原子炉横内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性雲中の放射性物質からのガンマ線による中央制御室内での被ばく ③ 地表面に、活動した放射性物質のガンマ線による中央制御室内での被ばく (内訳) 内部被ばく 外部被ばく 小針(①+②+③+④) ⑤ 原子炉建原子炉横内等の放射性物質からのガンマ線による入退域時の被ばく ① 放射性雲中の放射性物質からのガンマ線による入退域時の被ばく ① 地表面に、花着した放射性物質からのガンマ線による入退域時の被ばく ① 地表面に、花着した放射性物質からのガンマ線による入退域時の被ばく	根拠分だけ薄くした場合の なる班 (D 班) の合計) 事象を収束する場合) 場合) (単位: mSv) 7日間の実効線量 ⁸¹ 約4.1×10 ² 約7.0×10 ⁹ 約6.7×10 ⁹ 約5.0×10 ² (約5.0×10 ³) (約5.6×10 ⁹) 約1.2×10 ⁴ 約1.6×10 ² 約5.2×10 ⁹ 約5.2×10 ⁹		第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉)	
合計 (①+②+③+①+①+①+①+③) 1 遮蔽モデル上のコンクリート厚を許容される施工 被ばく線量 7-2-2 評価結果の内訳 (被ばく線量が最大と (原子炉格納容器フィルタベント系を用いて1 (中央制御室内でマスクの着用を考慮しない 被ばく経路 ① 原子炉建原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく ② 放射性霊中の放射性物質がらのガンマ線による中央制御室内での被ばく ③ 地表面に沈着した放射性物質のガンマ線による中央制御室内での被ばく (内膜) P)部被ばく 外部被ばく 小針 (①+②+③+④) ⑤ 原子炉建原子炉棟内等の放射性物質がらのガンマ線による入退域時の被ばく ① 放射性霊中の放射性物質がらのガンマ線による入退域時の被ばく ② 地表面に沈着した放射性物質からのガンマ線による入退域時の被ばく ③ 大気中へ放出された放射性物質からのガンマ線による入退域時の被ばく			第23表 (中央制御室居住性 (重大事故対策) に係る被ばく評価結果内訳 (4号炉)	

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由

個別解析による相違

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉

表 8-1-1 評価結果の内訳 (D 班の 1 日目)

(代替循環冷却系を用いて事象を収束する場合)

(中央制御室内でマスクの着用を考慮する場合)(単位:mSv)

	被ばく経路	D 班の 1 日目の実効線量 [※]
	① 原子炉建屋原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく	約 3.8×10 ⁻¹
ф	② 放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7.0×10 ⁶
	③ 地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 5.5×10 ⁶
央制御室滞在時	④ 室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 3.1×10 ¹
時	(内訳) 内部被ばく 外部被ばく	(約 2.5×10 ¹) (約 5.6×10 ⁰)
	小計 (①+②+③+④)	約 4. 3×10 ¹
	⑤ 原子炉建屋原子炉棟内等の放射性物質から のガンマ線による入退域時の被ばく	約 5. 3×10 ⁻¹
	⑥ 放射性雲中の放射性物質からのガンマ線による入退域時の被ばく	約3.9×10 ⁻¹
入退城時	⑦ 地表面に沈着した放射性物質からのガンマ 線による入退域時の被ばく	約 2.3×10 ⁶
時	® 大気中へ放出された放射性物質の吸入摂取 による入退城時の被ばく	約 5.0×10 ⁻⁴
	小計 (⑤+⑥+⑦+⑧)	約 2. 3×10 ⁶
	合計 (①+②+③+④+⑤+⑥+⑦+⑧)	約 4. 6×10 ¹

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の 被ばく線量

> 表 8-1-2 評価結果の内駅 (D 班の 1 日目) (代替循環冷却系を用いて事象を収束する場合)

(中央制御室内でマスクの着用を考慮しない場合) (単位:mSv)

	被ばく経路	D 班の1日目の実効線量**
	① 原子炉建屋原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく	約3.8×10 ⁻¹
中	② 放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約7.0×10 ⁰
	③ 地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 5.5×10°
央制御室滞在時	④ 室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 5.0×10 ²
時	(内訳) 内部被ばく 外部被ばく	(約 5.0×10°) (約 5.6×10°)
	小計 (①+②+③+④)	約 5. 1×10 ²
	⑤ 原子炉建屋原子炉棟内等の放射性物質からのガンマ線による入退域時の被ばく	約 5.3×10 ⁻²
	⑥ 放射性雲中の放射性物質からのガンマ線による入退域時の被ばく	約3.9×10 ⁻⁵
入退城時	⑦ 地表面に沈着した放射性物質からのガンマ 線による入退域時の被ばく	約 2.3×10 ⁹
時	® 大気中へ放出された放射性物質の吸入摂取 による入退城時の被ばく	約 5, 0×10°
	小計 (⑤+⑥+⑦+⑧)	約 2.3×10°
	会計 (①+②+③+④+⑤+⑥+⑦+⑧)	約 5, 2×10 ²

※1 遮蔽モデル上のコンクリート厚を許容される施工駅差分だけ薄くした場合の 被ぼく線量

【参考】マスク著用期間を限定した線量評価について

中央制御室の居住性(重大事故対策)に係る被ばく評価においては、評価期間中マスクの着用 を考慮している。一方、事故発生時には、事象の進展及び中央制御室内の放射性物質濃度に応じ、 放射線管理を踏まえてマスク着用の運用を行う。

泊発電所3号炉

今回の選定した事故シーケンス及び居住性に係る被ばく評価手法を用い、マスク着用期間を事 放発生直後に限定した場合の被ばく評価を以下に示す。

ここで、選定した事故シーケンスでは、全交流動力電原喪失を想定し、評価上、中央制御室非 常用循環系統の起動遅れ時間を300分(5時間)としている。

中央制御室非常用循環系統の起動後は、よう素フィルタ及び微粒子フィルタにより室内に取り 込まれた放射性物質は低減される。

このため、ここでは中央制御家非常用領債系統起動後の室内の放射性物質低減を考慮して、第 2.2表のとおり事故発生後7時間までマスクを着用するとした。

なお、評価上、屋外においては、室内より放射性物質濃度が高いため、入造城時にマスクを着 用するとして評価した。

マスク着用期間を限定した線量評価における中央制御室等の運転員の被ばく評価結果を第2.3 表に示す。マスクなしの結果を第2.4 表に示す。

第2.2表 中央制御室非常用循環系統の作動状況及びマスク着用時間

時間	0~5 h	5~7 h	7~168 h
中央制御室非常用循環系統	_	作動(フィルタによ	。 る放射性物質の低減
マスク		着用	-₩
			※入退域のみ着用

SA 条文関連

【参考】マスク着用期間を限定した線量評価について

中央制御室の居住性(重大事故対策)に係る被ばく評価においては、評価期間中マスクの着用を考慮している。一方、事故発生時には、事象の進展及び中央制御室内の放射性物質濃度に応じ、放射線管理を踏まえてマスク着用の運用を行う。

大飯発電所 3/4号炉

今回の選定した事故シーケンス及び居住性に係る被ばく評価手法を用い、マ スク着用期間を事故発生直後に限定した場合の被ばく評価を以下に示す。

ここで、選定した事故シーケンスでは、全交流動力電源喪失を想定し、評価 上、中央制御室非常用循環設備の起動遅れ時間を300分(5時間)としている。 中央制御室非常用循環設備の起動後は、よう素フィルタ及び微粒子フィルタ

により室内に取り込まれた放射性物質は低減される。このため、ここでは中央制御室非常用循環設備起動後の室内の放射性物質低 減を考慮して、第2.4 表のとおり事故発生後5時間までマスクを着用するとし

なお、評価上、屋外においては、室内より放射性物質濃度が高いため、入退 域時にマスクを着用するとして評価した。

マスク着用期間を限定した線量評価における中央制御室等の運転員の被ばく 評価結果を第 2.5 表及び第 2.6 表に示す。マスクなしの結果を第 2.7 表及び第 2.8 表に示す。

第2.4表 中央制御室非常用循環設備の作動状態及びマスク着用時間

時間	0~5h	5~168h
中央制御室非常用循環設備	-	作動 (フィルタによる放射性物質の低減)
マスク	着用	-*

※入退城時のみ着用

 $! = S_{\ell}$

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

表 8-2-1 評価結果の内訳 (D 班の 1 日目) (原子炉格納容器フィルタベント系を用いて事象を収束する場合) (中央制御室内でマスクの着用を老庸する場合) (単位・mSv)

	(中央制御室内でマスクの着用を考慮する場	合) (単位:mSv)
	被ばく経路	D 班の1日目の実効線量 ^{※3}
	① 原子炉建屋原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく	約 3.8×10 ⁻²
中	② 放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約7.0×10 ¹
	③ 地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 5.5×10°
央制御室滯在時	④ 室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約3.1×10 ^l
時	(内訳) 内部被ばく 外部被ばく	(約 2.5×10) (約 5.6×10)
	小計 (①+②+③+④)	約 4.3×10 ⁴
	⑤ 原子炉建屋原子炉棟内等の放射性物質から のガンマ線による入退城時の被ばく	約 5. 3×10°2
	⑥ 放射性雲中の放射性物質からのガンマ線に よる入退域時の被ばく	約 3. 9×10 ⁻³
入退城時	⑦ 地表面に沈着した放射性物質からのガンマ 線による入退城時の被ばく	約 2.3×10
時	® 大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 5.0×10 ⁻⁶
	小計 (⑤+⑥+⑦+⑧)	約 2.3×10°
	合計 (①+②+③+④+⑤+⑥+⑦+⑧)	約 4.6×10

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の 被ばく線量

表 8-2-2 評価結果の内訳 (D 班の 1 日目) (原子炉格納容器フィルタベント系を用いて事象を収束する場合) (中央制御室内でマスクの着用を考慮しない場合)(単位:mSv)

	被ばく経路	D班の1日目の実効線量**
	① 原子炉建屋原子炉棟内の放射性物質からの ガンマ線による中央制御室内での被ばく	約 3.8×10 ⁻¹
ф	② 放射性雲中の放射性物質からのガンマ線に よる中央制御室内での被ばく	約 7. 0×10 ^d
	③ 地表面に沈着した放射性物質のガンマ線に よる中央制御室内での被ばく	約 5. 5×10 ⁶
央制御室滞在時	④ 室内に外気から取り込まれた放射性物質に よる中央制御室内での被ばく	約 5. 0×10 ²
時	(内訳) 内部被ばく 外部被ばく	(約 4. 9×10°) (約 5. 6×10°)
	小計 (①+②+③+④)	約5.1×10 ²
	⑤ 原子炉建屋原子炉棟内等の放射性物質からのガンマ線による入退域時の被ばく	約 5.3×10 ⁻¹
	⑥ 放射性雲中の放射性物質からのガンマ線に よる入退城時の被ばく	約3.9×10 ⁻³
入退城時	① 地表面に沈着した放射性物質からのガンマ 線による入退域時の被ばく	約 2. 3×10 ⁶
域時	® 大気中へ放出された放射性物質の吸入摂取 による入退域時の被ばく	約 5. 0×10 ⁻³
	小計 (⑤+⑥+⑦+⑧)	約 2. 3×10 ^d
	合計 (①+②+③+④+⑤+⑥+⑦+⑧)	約 5. 2×10 ²

※1 遮蔽モデル上のコンクリート厚を許容される施工誤差分だけ薄くした場合の 被ばく線量

第2.3表 中央制御室居住性(重大事故対策)に係る被ばく評価結果 (7時間までマスク考慮, 7時間以降マスクなし)

泊発電所3号炉

		7 日間の実効線量 (mSv) *2				
	被ばく経路	外部被ばく による 実効線量	内部被ばく による 実効線量	実効線量の 合計		
	①建屋からのガンマ線による 被ばく	約 1.7×10 ⁻²	_	約 1.7×10 ⁻²		
室內作業時	②大気中へ放出された放射性 物質のガンマ線による被ばく	約1.2×10 ⁻²	-	約 1.2×10 ⁻²		
業時	③室内に外気から取り込まれ た放射性物質による被ばく	約1.1×10°	約 1.4×10 ¹	約 1.5×10 1		
	小計 (①+②+③)	約1.2×10 ⁰	約 1.4×10 ¹	約 1.5×10 1		
	④建屋からのガンマ線による 被ばく	約1.0×10 ¹	-	約 1.0×10 ¹		
入退城時	⑤大気中へ放出された放射性 物質による被ばく*1	約1.3×10°	約 7.9×10 ⁻²	約1.4×10°		
L	小計 (④+⑤)	約 1. 2×10 1	約 7.9×10 ⁻²	約 1.2×10 ¹		
	合 計 (①+②+③+④+⑤)	約13	約 14	約 28*3		

- *1 入退域時については常にマスクを着用とした。
- *2 表における「実効線量の合計 (①+②+③+④+⑤)」以外の数値は、有効数値3桁目を四 捨五入し2桁に丸めた値
- *3 「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に

SA 条文関連

大飯発電所3/4号炉 第 2.5 表 中央制御室居住性 (重大事故対策) に係る被ばく評価結果

(3号炉) (5時間までマスク考慮、5時間以降マスクなし) 7 日間の実効線量 (mSv) ** 被ばく経路 外部被ぼく 実効線量の による実効線量 仓 胜 ①建屋からのガンマ線による 被ばく 約 4.0×10⁻⁵ 約 4.0×10⁻¹ 約 4.0×10^章 #9 4.0×10 ③室内に外気から取り込まれ た放射性物質による被ばく 約 1.9×10° 前 1.8×10¹ #J 2.0×10 小 計(①+②+③) #9 1 9×109 #) 1.8×10¹ #1 2 0×10 ④建屋からのガンマ線による 被ばく #9 2.7×10° 約 2.7×10⁶ ⑤大気中へ放出された放射性 物質による被ばく*1 約 1.4×10° 前 7.3×10° 約 1.4×10⁶ 約 4.1×10⁶

#1 4 0×100 #1 7 3×100

#1 18

#1 24**

*1:入退城時については常にマスクを着用とした。

小 計(④+⑤)

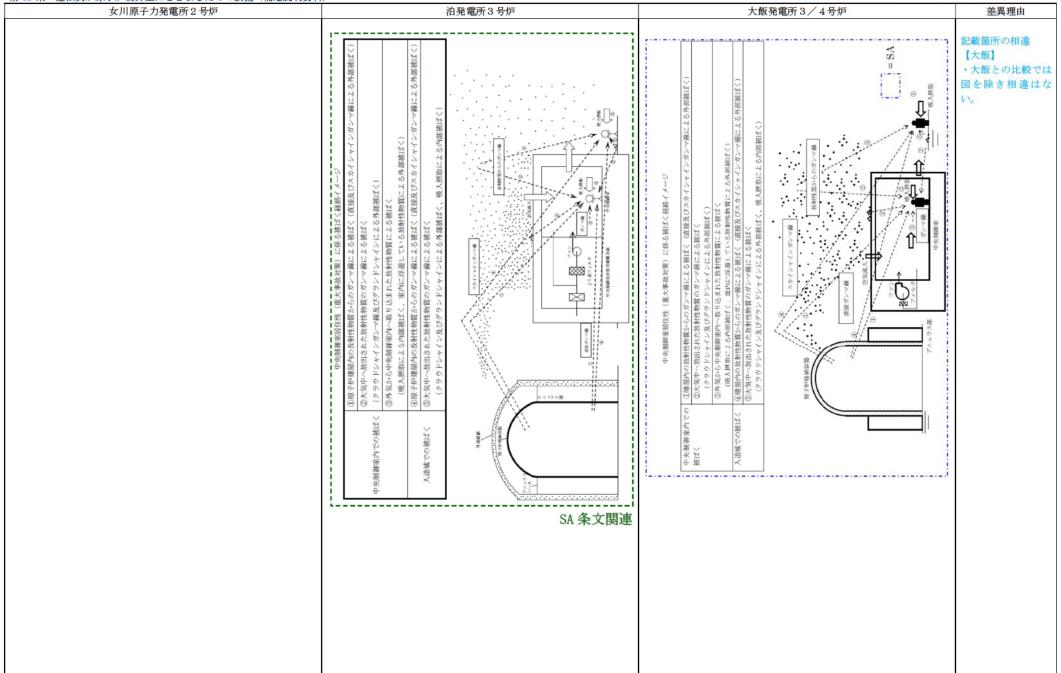
合 計(①+②+③+④+⑤)

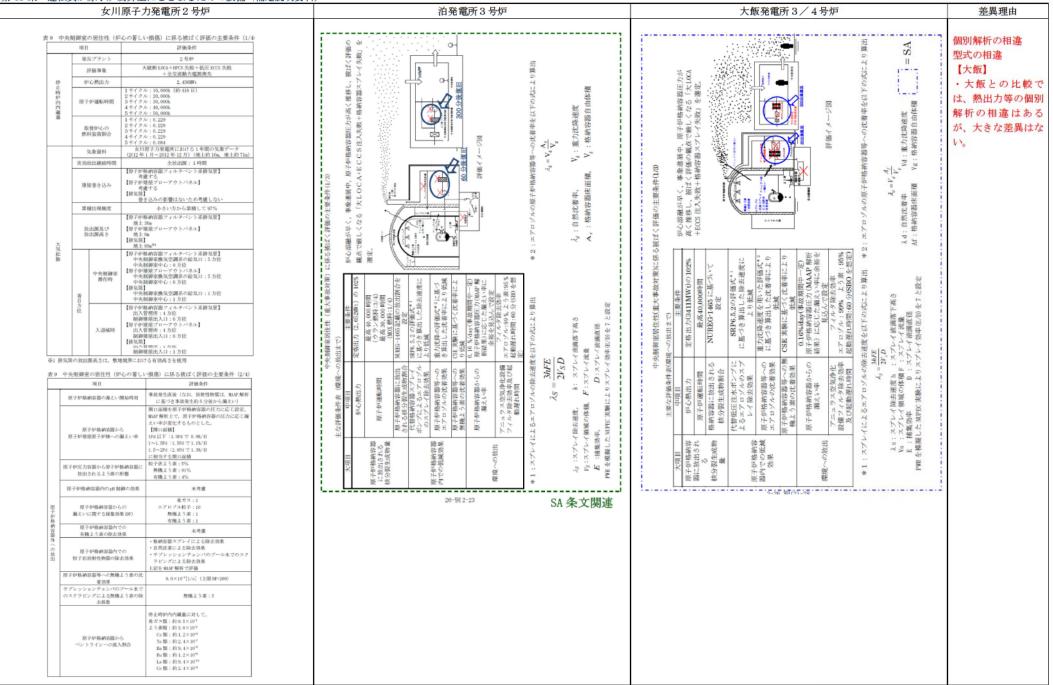
- *2:表における「実効線量の合計(①+②+③+①+⑤)」以外の数値は、有効数 値3桁目を四捨五入し2桁に丸めた値
- *3:「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り 上げて2桁に丸めた値

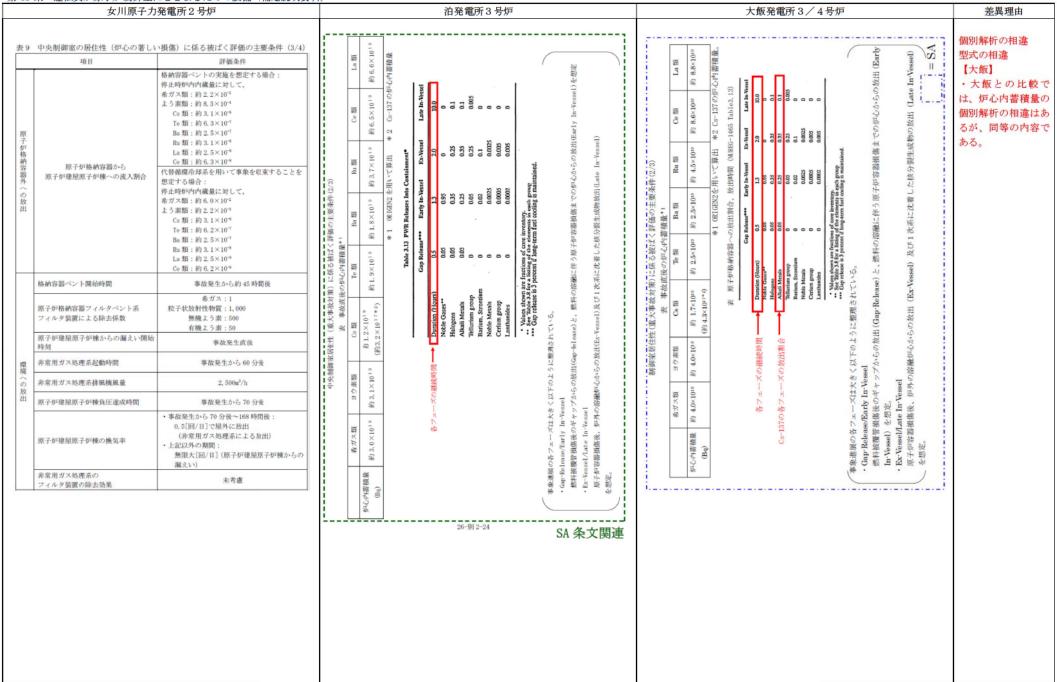
約 6.0

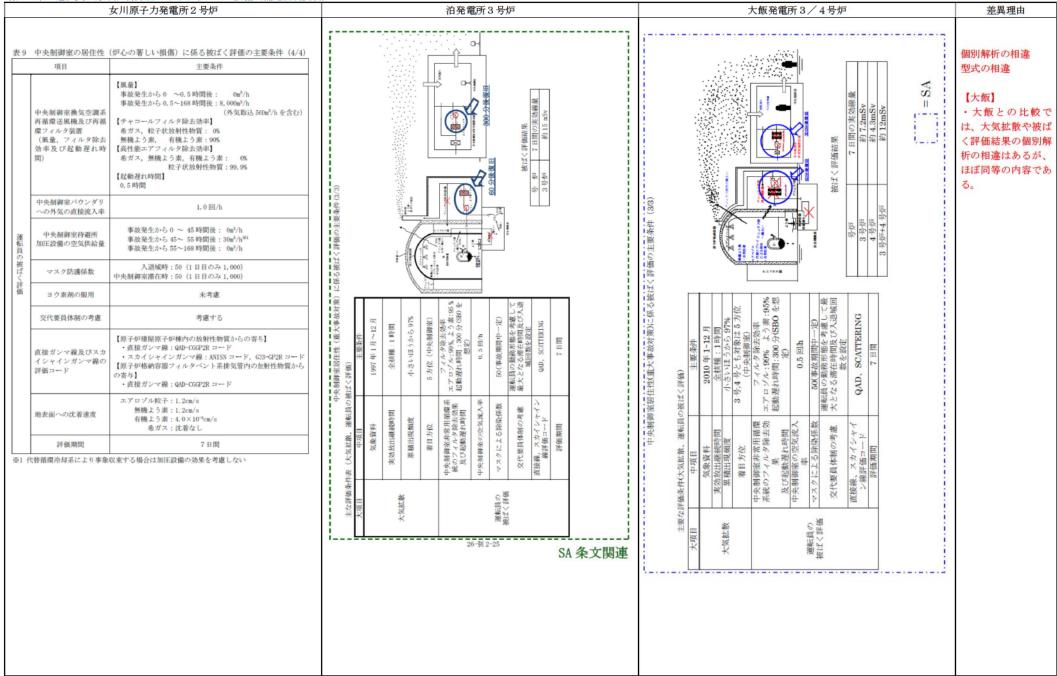
第2.6 表 中央制御室居住性(重大事故対策)に係る被ばく評価結果

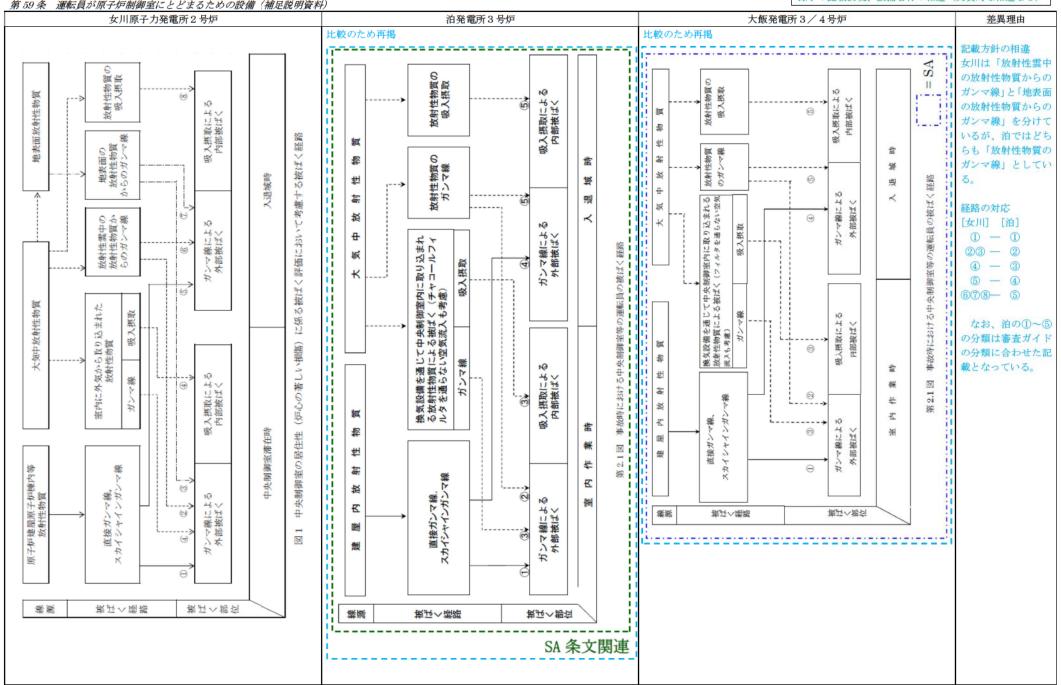
		7 日期	の実効線量(mi	Sv) *1
	被ばく経路	外部被ばく による 実効線量	内部接ばく による 実効報量	実効線量の 合 計
57	①建屋からのガンマ線による 被ばく	₩ 4.0×10°	-	約 4.0×10 ⁵
室内内	②大気中へ放出された放射性 物質のガンマ線による被ばく	∮9 3.2×10°	-	#) 3.2×10°
作業時	②室内に外気から取り込まれ た放射性物質による被ぼく	#) 1.5×10°	#1 1.4×10 [±]	₩ 1.5×10 ¹
-	小 計(①+②+③)	約 1.5×10°	#) 1.4×10 ¹	約 1.5×10 ¹
	④建量からのガンマ線による 被ばく	₩) 1.2×10°	1-	€) 1.2×10°
人退城時	⑤大気中へ放出された放射性 物質による被ばく*1	約 7.3×10 ⁻¹	的 3.8×10 ⁻²	約 7.6×10 ⁻¹
19	4 # ((+(5))	#) 1.9×10°	約 3.8×10°	約 1.9×10 ⁰
1	合 計(①+②+③+④+⑤)	W) 3.4	#) 14	#J 18**

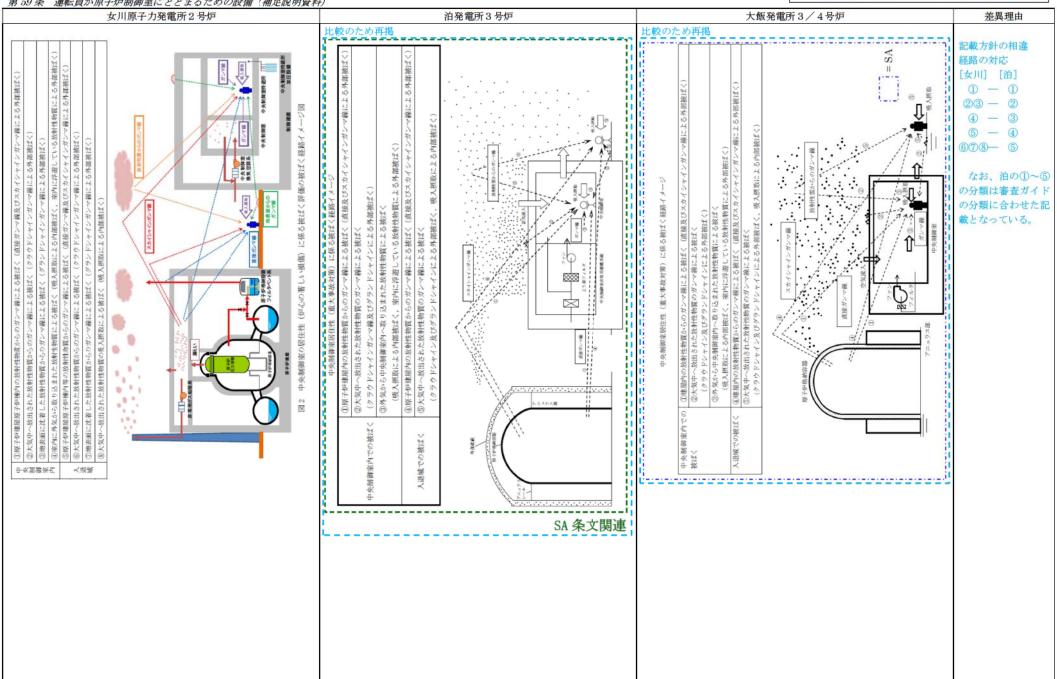

- *1:入退域時については常にマスクを着用とした。
- *2:表における「実効線量の合計(①+②+②+③+④+⑤)」以外の数値は、有効数 値3桁目を四独五入し2桁に丸めた値
- * 3:「実効線量の合計(①+②+②+①+⑤)」の数値は、有効数値3桁目を切り 上げて2桁に丸めた値

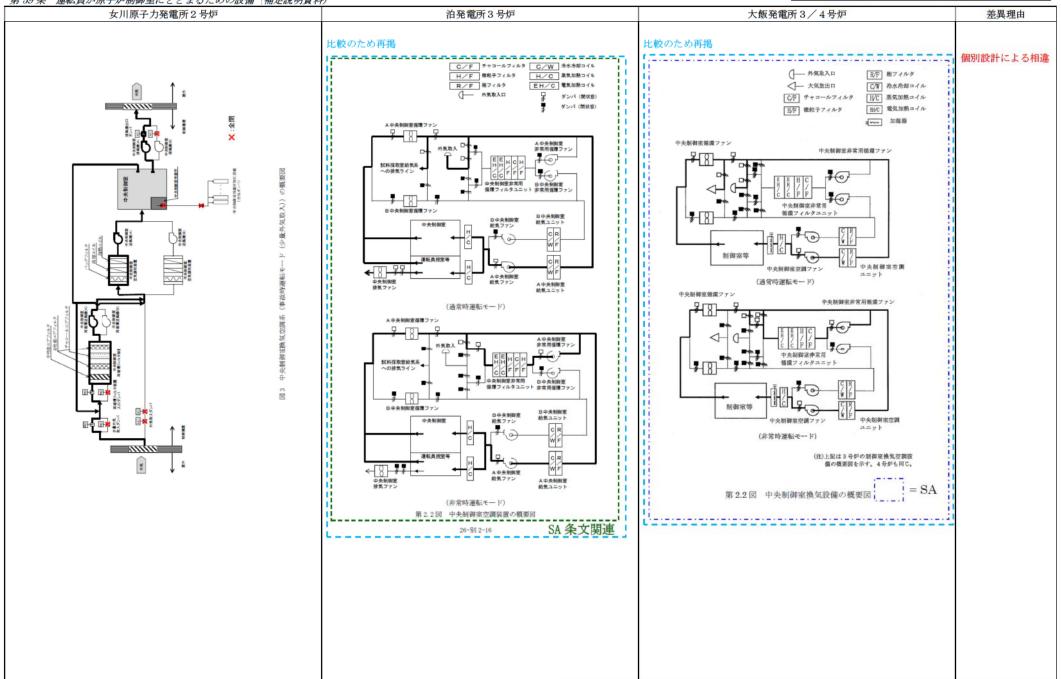

SA


個別解析による相違


差異理由


第 59 余 連転員が原子炉制御室にとどまるための設備(補足説明資料 女川原子力発電所 2 号炉		泊発電所3号	炉		大飯発電所 3 / 4 号炉	差異理由
	第2.4表 中央制御室居住性(重大事故対策)に係る被ばく評価結果				第 2.7 表 中央制御重矩住性 (重大事故対策) に係る被ぼく評価結果 (3 号炉) (マスクなし)	個別解析による相違
		(マスクなし) 7日	間の実効線量 (mSv)	*1	7日期の実効線量 (mSv) ** 検ばく経路 / 戸屋路近ばく による による による による による にある。	
	被ばく経路	外部被ばく による	内部被ばく による	実効線量の 合計	東効線量 実効線量 合 計 東効線量	
	①建屋からのガンマ線による	実効線量 約 1. 7×10 ⁻²	実効線量	約 1, 7×10 ⁻²	数 ②大気中へ放出された放射性物質 約 4.0×10 ² — 約 4.0×10 ² (こよる被ばく 作 ③外気から取り込まれた放射性物 数 質による中央制御案件での被ば 約 1.9×10 ³ 約 5.6×10 ³	
	被ばく ②大気中へ放出された放射性 内 物質のガンマ線による被ばく	約1.2×10 ⁻²	_	約 1. 2×10 ⁻²		
	内作業 物質のガンマ線による被ばく ③室内に外気から取り込まれた放射性物質による被ばく	約1.1×10°	約 5.4×10 1	約 5.5×10 ¹	 毎年の次付年時間からのカンマ 約 2.7×10° カ 2.7×10° 直 ⑤大気中へ放出された放射性物質 による被ばく 前 3.7×10° 的 5.0×10° 	
	小計 (①+②+③)	約1.2×10°	約 5.4×10 ¹	約 5.5×10 ¹	d→ B+ (⊕+⊕)	
	④建屋からのガンマ線による 被ばく	約1.0×10 ¹	-	約 1.0×10 ¹	*1:表における「実効終量の合計 (①+②+③+④+⑤)」以外の数値は、有効数 値3桁引を因路立入し2桁に丸めた値	
	退 ⑤大気中へ放出された放射性 域 物質による被ばく	約1.3×10°	約3.9×10°	約 5. 2×10°	*2:「実効線量の合計 (①+②+③+③+⑤)」の数値は、有効数値3桁目を切り 上げて2桁に丸めた値	
	小計 (④+⑤) 合 計	約1.2×10 ¹ 約13	約3.9×10° 約57	約 1.6×10 ³ 約 71*2		
	(①+②+③+④+⑤) *1 表における「実効線量の合計(
	捨五入し2桁に丸めた値 *2 「実効線量の合計(①+②+③ 丸めた値	+④+⑤)」の数値に	t,有効数值 3 桁目 6	と切り上げて2桁に	= SA	
			S	A 条文関連	第 2.8 表 中央制御家居住性(重大事故対策)に係る被ぼく評価結果 (4 号炉) (マスクなし)	
					7 日間の実効線量 (mSv) * *	
					被ばく経路	
					①建程からのガンマ線による中央 約 4.0×10 ³ - 約 4.0×10 ³ 新確成りでの終訂く ②大気中へ放出とれた放射性物質 約 3.2×10 ² - 約 3.2×10 ²	
					所 GSAがら取り込まれた放射性物 数 質による中央制御室内での被ば 約 1.5×10 ^a 約 4.5×10 ^b **	
					小 計 (①+②+③) 約 1.5×10° 約 4.3×10³ 約 4.5×10° (①・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
					機による被ばく 約1.2×10 - 約1.2×1	
					小 計 (④+⑤) 約 1.9×10 ⁶ 約 1.9×10 ⁶ 約 3.8×10 ⁶ 合 計 (①+②+③+⑥+⑥+⑥) 約 3.4 約 45 約 45 ⁴	
					 *1:表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は、有効数値 3 新日を図捨五人 2 都に丸めた値 *2:「実効線量の合計 (②+②+③+④+⑤)」の数値は、有効数値 3 新日を切り上げて 2 都に丸めた値 	
					= SA	





	11.7		第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)		
中央制御室 特選所		大敗 光 電所 3 / 4 号炉	旧発電所3号炉	女川原十刀発電所2号炉	
	(1)の相違	大飯発電所 3 / 4 号炉	泊発電所3号炉	中央制御室 待避所	

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3/4号炉 差異理由 ①の相違 記載方針の相違 ・泊では中央制御室 の加圧を行わないた め、タイムチャート は記載していない。 55 ※1 代替額額冷却系を用いて事象を収表する場合は考慮しない 図5 被ばく評価で想定する空間適用等タイムチ 45 原子炉建屋原子炉棟から の漏えい 格納容器ペント (代替循環冷却系の運転 に失敗した場合) 事故発生からの経過時間[h] 非常用ガス処理系放出 中央制御室換気空調系 中央制御室待避所に滞在*1 中央制御室待避所 加圧設備**1 中央制御室内への 外気の直接流入 中央制御室に滞在 放出疑路 中央營御室空間運転等

泊発電所3号炉 SA基準適合性 比較表 r.3.0

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

安川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3/4号炉	差異理由
	59-8 原子炉制御室等について (補足資料)		資料構成の相違
	or o sixty, happing to a constant		・泊では 59-7 で居住性
			に係る被ばく評価の
			概要説明を行い、59-
			8に補足的な事項を記載している。
			・女川はいずれも 59-9
			としてまとめてお
			り、表紙はない。

泊発電所3号炉 SA基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第 50 宋 連転員が原子が制御室にととよるにめの設備「相定説例資料 女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
AND THE PROPERTY OF THE PROPER	別添 3 泊発電所3号炉 原子炉制御室等について(補足資料) (第26条 原子炉制御室等)	A STOCK AND CONTRACT OF A STATE OF THE STATE	資料構成の相違 ・泊では59-8として26 条の別添3を添付することとしており、別添3の 表紙が入る。女川も26条 の資料と同じ資料を読みこむ構成は同じだが 表紙はない。

第59条 運	9転員が原子炉	制御室にとと	`まるための設備	(補足説明資料)
--------	---------	--------	----------	----------

第 59 栄 連転負が原子が前伸主にととよるにめの設備 補足説例資料 女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
	日 次 1. 中央制御室居住性に係る被ばく評価について 2. 中央制御室の放射線管理用資機材について 3. 中央制御室への汚染の持ち込みを防止する機能(チェンジングエリア)について 4. バス等の汚染確認方法について 5. 全交流動力電源喪失時の中央制御室設備への給電について 6. 酸素濃度,二酸化炭素濃度を踏まえた対応について		資料構成の相違・構成の相違により泊の み目次が存在する。
	7. 可搬型照明に求められる照度の考え方について 8. 設置許可基準規則 59 条における可搬型照明の扱いについて		

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

カルス 単純点がボイケーの神里にとこよるための政権 T 加足の分員を 女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
	1. 中央制御室居住性に係る被ばく評価について		資料構成の相違
	泊発電所3号炉 中央制御室居住性に係る被ばく評価の評価条件		・構成の相違により泊の
	等について,添付資料の一覧を以下に示す。		み目次が存在する。
			・比較は 59-補足-4 に
	添付一覧		て実施。
	添付資料]-]: 中央制御室の居住性(設計基準事故)に係る他ばく評価について		PRIATE AND ADDRESS OF THE PRINTERS OF THE PRIN
	1-1-1 中央制御室の居住性(設計基準事故)に係る被ばく評価条件表		
	1-1-2 原子炉冷却材要失時における再循環開始時間について		
	1-1-3 居住性に係る被ばく評価に用いた気象資料の代表性について		
	1-1-4 綾星評価に用いる大気拡散の評価について		
	1-1-5 空気流入率試験結果について		
	1-1-8 直交替の考え方について SA 柔文関連を含む 1-1-7 内銀 **12 の整合性について		
	1-1-7 内規でとの整合性について DB 条文閣連		
	加来风景座		
	旅行資料 1-2: 中央制御室の居住性(重大事故対策)に係る被ばく評価について		
	1-2-1 中央制御室の居住性(重大事故対策)に係る被ばく評価条件表		
	1-2-2 事故シーケンス選定の考え方について		
	1-2-3 居住性評価に用いる炉心選定の考え方について		
	1-2-4 原子炉格納容器への核分製生成物の放出割合の設定について		
	1-2-5 よう素の化学形態の設定について		
	1-2-8 原子炉格納容器等への元素状よう素の洗着効果について 1-2-7 原子炉格納容器等へのエアロゾルの洗着効果について		
	1-2-8 スプレイによるエアロゾルの除去速度の設定について		
	1-2-9 原子炉格納容器編えい率の設定について		
	1-2-10 アニュラス空気浄化設備 空気作動弁の開放手順の成立性について		
	1-2-11 フィルタ除去効率の設定について		
	1-2-12 大気への放出放射能量の推移グラフについて		
	1-2-13 中央制御室の直接線,スカイシャイン線評価方法について		
]-2-14 中央制御室空調装置の閉回路循環運転時における空気作動ダンパ強制閉		
	枚手順の成立性について		
	1-2-15 マスクによる防護係数について 1-2-16 中央制御室澤在時に飲食等のためマスクを外した場合の影響について		
	1-2-17 中央制御室のグランドシャイン線量の評価方法について		
	1-2-18 湿性抗着を考慮した地表面抗着速度の設定について		
	1-2-19 運転員の勤務体系を踏まえた被ばく評価結果について		
	1-2-20 放射性雲中の放射性物質からのガンマ線による破ばくの評価方法について		
]-2-2] 室内に外気から取り込まれた放射性物質による被ばくの評価方法について		
	1-2-22 大気中に放出された放射性物質の人退城時の吸入摂取による破ばくの評価		
	方法について		
	1-2-23 審査ガイド*2との適合性について		
	SA 条文関連		
	*1:原子力発電所中央制御室の居住性に係る被ばく評価方法について(内規)*2:実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく		
	*2: 実用発電用原す炉に係る重大事故時の制御並及び紫湿時対東府の店住住に係る依はく 評価に関する審査ガイド		
	p. gm 1 gm 2 - 2 2 2 10 3 2 2 2 1 1		
			L

泊発電所3号恒 SA基準適合性 比較表 r30

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

700木 座		発電所2号炉	めの設備(補足説明資料					泊	発電所:	3 号炉						大作	万発包	前 3	1/4	号恒		差異理由
分別が下り光電所とるが 付資料2 中央制御室の居住性(炉心の著しい損傷)に係る被ばく評価について				(DB	(DB に関する部分は DB26 条側で比較しているため、SA 部分を比較) 添付 1-2-1								大飯発電所 3 / 4 号炉									個別解析による相違 ・想定する炉心熱と 力について、泊でに
-1 中央制御 表	1 中央制御室の居住性 (炉心の著しい損傷) に係る被ばく評価条件表 表 2-1-1 大気中への放出放射能量評価条件(1/5)				記載会への放射性	※ への放射性 への放射性 3. (原子炉 観点から結 東に成功し スターム解					ク素類, Cs 類, 類及び La 類を	ppへの放出 薬類の性状を	添付1-2-1	の記載	器への放射 4.1(2)a.(原 の被ばくの 酸じくなる 審故シーケ 解析結果を					ョウ素類、Cs Ru類、Ce類及	器内への放 ョウ素類の 5。	定常誤差を考慮して 102%として評価して いる。
項目	評価条件	選定理由	審査ガイドでの記載		の影響						# S M	なり	が位	1	衛に最後しては、自ちたく	11			-14	E m	4格納容器P に際し、ヨー 考慮する。	and the second second
発災プラント	2 号炉	運転号炉を想定	4.2(3)h. 同じ敷地内に複数 の原子炉施設が診置されて いる場合、全原子炉施設につ いて同時に事故が起きたと 想定して評価を行うが、各原 子炉施設から彼ばく経路別 に個別に評価を実施して、そ		審査ガイドで 4.3(1)a. 原子切除納	**3.3.1.3.**	1 1		平區	子區	4.3(Da. 布ガベ類, 不類, Ba類, Ru類, 考慮する。	43(Da 原子が格納容器内への放出 割合の設定に際し、ヨウ素類の性状を 適切に考慮する。	茶	200	13(1)a.原子柜格 14物質の放出割 14物類の放出割 14が 15点から結果が 15枚収束に成功 ス)のソースタ 5に設定する。		기 교		E E	古 5 4.3(1)a.告ガス類、 7 類、Te類、Ba類、R 2 びLa類を考慮する。 ど	4.3(1)a.脱子が 出割合の設定 性状を適切に	【大飯】 ・個別解析による* 達はあるが概ね同等 の内容 ・泊ではウラン燃*
評価事象	大碗斯 LOCA HIPCS 失敗+ 低田 ECCS 失敗+全交流動力電源表 失	運転員の被ばくの 観点から結果が最 も厳しくなる事故 シーケンスを 運定 (添付資料 2 2-2, 2-20 参照)	員の被ばくの観点から結果 が最も厳しくなる事故収束 に成功した事故シーケンス (この場合、格納容器被損防 止対策が有効に働くため、格 納容器は健全である)のソー スターム解析を基に、大気中	(重大事故対策)に係る被ばく評価条件表(1/3) 大気中への放出量評価条件	明 別 別 明	が心強傷が早く、また。CV内の圧力が高く 維持される事象であることから、中央制御室 の運転員の数式くの観点から結果が最も戦 しくなる事象として選定(指付 1-2-2)	評価が厳しくなるように設定課価が厳しくなるように設定	5) 心地震	長半練期核種の蓄積により、評価が厳しくなるようにサイクル末期に設定 評価対象炉心は、被ばく評価において厳しい WOX 燃料装荷炉心を設定	長半減期核種の蓄積により,評価が厳しくなるようにサイクル末期に設定 (添付 1-2-3 参照)	評価対象がおびる組織後であることを勝まえ、 場が製工機関数化量が大きくなる提出シー ケンズ(大統領1024年753 社入場状ト格 容器スプレイ夫数シーケンスを合む)を代数 する NROの1467 当業の及出版で、後継等 機能は一条側圧力容器内放出まてを考慮) を設定(指称1244 多態)	既設の格解程器スプレイ失敗を想定するために対するたるではなるを認めている。 14年 7年 7年 2年 2年 2年 2年 2年 7年	(重大事故対策)に係る被ぼく評価条件表立のお出書原係条件(0.5)。15十二	~2.从山重时间本件(3.5、4.5头团 道 定 理 由	4 が心損傷が早く、また、格神容器内の圧 付 力が高く維持される事象であることか 子 ら、中央制御室の遺転員の被ばくの観点 籍 から結果が衰も襲しくなる事故シーケ 号 ンスとして選定(路付12.2 参照)	評価が厳しくなるように設定	評価が厳しくなるように設定 6定格値に定常誤差 (+2%) を考慮。	'つ取り替えていく場合 載し、最高時間を設定	燃料を1/4ずつ取り替えていく場合の平 衡炉心を考慮し、最高時間を設定	平価対象が炉心損傷後で 発生、被分割生成物が出着 近日・一ケンス (大破所 主入失版+格解容器スプレ ノスを含む)を代表するい 三級の放出胸合(核酸管 別見力容勢内放出までを (新付123参照)	既影格術容器スプレイ失版を想定する ためにpH5-7となると限らないため、pH に依らず有機よう素割合を保存的に設 定するために、RG.1195**のよう素割 合に基づき設定(添付1-2・4参照)	での評価条件と MO 燃料での評価条件を 記載している (添作 1-2-3 参照)
炉心熱出力	2,436MWt	定格熱出力	への放射性物質放出量及び 原子炉施設内の放射性物質 存在量分布を設定する。	則御室居住性 第1表	旗	003 注入失敗 プレイ 失敗	5 5		I(ウラン燃料) 関 (MOX 燃料)	料), 3(MOX 燃料) 3/4:ウラン燃料 1/4: MOX 燃料	00 %, 1 整: 75 % 5 %, 1e 整: 30.5 % 2 %, 5d %; 1a 醛: 0.5 % 155 %, La 醛: 0.5 % 16 NHBP-1465 匹铋스스	※ S S S S S S S S S S S S S S S S S S S	中央制御室の居住性(1	19) 人双十二	ECCS注入失 スプレイ失敗		ح (Wt) 0102		4	Xe類: 100%、I類: 75% Cs粒: 75%、Te類: 30.5% Ba類: 12% Ru類: 0.5% Ke語: 0.55% La類: 0.55% Ke計専問もNUREG-1465に 基づく)素:5% 素:91% 素:4%	
運転時間	1 サイクル:10,000h(約416日) 2 サイクル:20,000h 3 サイクル:30,000h 4 サイクル:40,000h 5 サイクル:50,000h	1 サイクル 13 ヶ月 (395 日) を考慮し て,燃料の最高取出 燃焼度に余裕を持 たせ長めに設定	_	中央	使用	大磁断 LOCA+ECCS 2 + 格美容器スプレ	老 教	定格出力 (2,652	最高 40, 000 時間(ウ 最高 30, 000 時間(4(ウラン燃料), : 装荷比率は, 3/4	西藤藤原田 11 11 11 11 11 11 11 11 11 11 11 11 11	粒子状よう。 元素状よう。 有機よう素	中央制御	第1 次(1) 使 用	大磁形LOCA+ECCS注入失敗+格静容器スプレイ失敗		考慮す E格出力 (3,411N	100	4	e類:100%、 s類:75%、 a類:12% e類:0.55% 女田時間もNG	粒子状よう 元素状よう 有機ようま	
取替炉心の燃料装荷割合	1 サイクル: 0.229 2 サイクル: 0.229 3 サイクル: 0.229 4 サイクル: 0.229 5 サイクル: 0.084	取替炉心の燃料装 荷割合に基づき設 定	_			#	が変奏		間を記	(バッチ数)	Xe Xe Cs Cs たたる Ba Cc M 放出時間 Ce 放出時間 Ce M 放出時間 Ce M	形態		条	₩ 5		シンク要失 熱出力 万	炉運転時間	(パッチ数)	器に放出さ 交換量、放出 加 加 加 加 加 加 加 加 加 加 加 加 加	素の形態	
					計 価 条	参車等差	全交流動力電源最終ヒートシンク	が心熱出力	原子炉運転時	サイクル数(原子炉格納書 に放出される 核分裂生成物量。別	よう素の		評 循	沙里	全交流動力電源	最業Rレートツ を を を が が が が が が が が が が が が が	原子炉運	サイクル数(原子が徐神客器に放出される核分裂生成物量、放出 れる核分裂生成物量、放出 時間	よう素の	

泊発電所3号炉 SA基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3/4号炉 差異理由 表 2-1-1 大気中への放出放射能量評価条件(2/5) 事変ガイドでの 200 評価条件 記載 個別解析による相違 原子炉格納容器漏えい: 事故発生直後(なお,放射性物質は, メプァイによるエアロジルの能去効果 についた、記載なし。 原子但格納容器開え 格納容器内の自然改 実験等から得られ 記載なし MAAP 解析に基づく 女川とは型式の相 らの漏えい割合に で選定した事故シーケン 解析結果を基に設定する。 が生業と MAAP 解析に基づき事故発生的 5 分後 質 8 大 3 で 数 H 3 を 1 た 1 た 1 た 1 た 1 た 1 か 4 か 一 ム 4 から漏さい 違により比較困難。 4.3(4) 血 放射 なし味 存施制 株議安園ベント・ MAAP 解析に基づく 性物質の大気中 事者へ 成仏師 教柱衛 放出開始専選及で がは、4120つ選 ーケンスのソース 果を第に設定する 4245の30人 原子 巻は着率につい 得られた適切 定する。 国 事故発生から約 45 時間後 への放出開始時 原子炉建层原子炉模器 原子が1(2)aで3(の事故) 刘及び放出崩遭 田田 メファイによる 去効果にしいた、 【大飯】 原子炉建屋原子炉練漏えい: 明祖北 ラス部体積に 原子がたる選定し 原子炉建煤原子炉摊 心器-4.3(3)e. 原 幸は、4.1(2 ーケンスの 基に設定する 事故発生直接 4.1(2) a. で選定 個別解析による相 の負圧が解消してい 格納容器 記載なし 非常用ガス処理系による放出: 2,109 (0) ×307-39 違はあるが概ね同等 事故発生から70分後 非常用ガス処理系によ 一ム解析結果を る放出: 原子炉建環原子炉練 基に設定する の内容 克術一元の 功容ケい参 の負圧造成時間を参 抑瘤 記集だ 5 事故収束に成 うち、最も格針 、対象事故シー)に応じた漏え 照(統付資料22% 4号共通) 全交流動 失を想定 , て設定 した事故シーケンスのソース 析結果のNUREG-1465記載の 参照) VE SRP6.5.2に示された評価式等に基づき設定 (部付1-2-8参照) r 5事故収束に成功した 5 5 . 最も CV 内圧が高く ダンーケンスの CV 均圧だ c 余裕を見た値を設定 シェス 原子炉格納容器内の ㎡ # 原子炉格納省 ツーケンスにあり 大十段終ヒートッ 起動遅れ時間を見 制御設備は、重大事故等 未考慮 器内の出き 対処設備と位置付け CSE A6実験に基めき設定。 (落在1-2-5参照) 御の効果 く評価に同じ いたいため表演したい 一一 SRP6.5.2に示された 設定 (番付1-2-7参照) 原子伊压力会 を用い て設定。 原子が株納食器内の。お 核构容器内心内 粒子状よう素:5% 実験に基づき設定 1-2-6参照) (添付1-2-7 放出量評価条件 制御の効果に期待しな 放出割合の設定 添付十被ばく評価に同じ 格納容器に放 無機よう素:91% いため, R.G. L. 195 に基 に際し、ヨウ素 力沈着速度。 有株上う車:4% 選定した事故シーケン 力電源喪失+最終ヒー した起動遅れ時間を見 出されるよう づき設定 類の性状を適切 > = 添付十被ば 設計値とし こ考慮する。 治した! 動力能! を想治: 始件評 た事故: スの格がに スの格がに に余裕さ 海で設定を表 有し器ン字明 効だ内スに(有効性評価で 等校ツーケン 着様から、X に応じた端次 (落在1-2-5) **関ロ前籍を収え供払請収扱の圧力に**な 設計値として じ設定。MAP 解析上で、原子伊格納容 4.3(3)e.原子伊 SE N6 3 (部件) 器の圧力に応じ漏えい率が変化するも 格前容器圏えい 原子世格納容 のとした。 車は, 4.1(2): で選定した事故 AEC 式に基づき設定 シーケンスの事 故遠避解析結果 建星原子炉棟 【開口面積】 1Pd以下:1.0Pdで 0.9%/日 0.16%/day アニュラス部アニュラス部外 一の漏えい中 SRP6, 5, 2miに示された評価式に振るく 13,100m³ 1~1.5Pd :1.5Pd で1.1N/日 を基に設定す 第1表(2/3) 1.5~29M 12.0Pd TO 1.3W/H = 9.0×10⁻⁴ に相当する間口面積 25 65 沈着洛康 9,0×10-4 (1/s 氢 アニュラス部 アニュラス部以り 0 0 60 23 表 2-1-1 大気中への放出放射能量評価条件(3/5) 7,860 91 100.00 郭德岛神 漢字用由 事者ガイドでの記載 # 代替低圧注水ボンブによ るスプレイ効果開始時間 子状物質に対 等への書 原子供格納容易から 蒾 11. 原子切除納容器/ エアロゾル粒子:10 の備えいに関する捕 無機よう書:1 原子炉格納容器から 漏えい割合 アニュラス部体 の消えいに関す 放出開始時間 格納容器が漏えい率 * 集効果 (DF) 被集効果を考慮 (近付 着体弱を 権) ドダ 着名果 有機よう素:1 資料2 2-23 参照) 容器スプレイの作動 施 原子炉格) 素状 (無 ・格納容器スプレイによる 代替格割容器スプレイによ るエアロブルのスプレイ語 が確定した事故心 代替格納容器スプレイに。 るスプレイ効果開始時間 除去効果 ンスの事故進程解 原子伊格納容器内で ・自然比較による除去効果 謙定した事故シー アニュラス部体債 **州条件を基に設定す** ・サブレッションチェンバ ンスの事故進展解析 の粒子状放射性物質 原子炉格齢容器かる場合、調えい割合 格能容器が構えい手 の除去効果 のプール木でのスクラビ 条件を基に設定 校出開始時 グによる除去効果 容器内の自然は着打 上記を MAAP 解析で評価 については、実験等か ら得られた適切なを デルを基に設定する 原子伊格納容器內寸 保守的に考慮しない の有機よう素の除去 未考底 SE 実験に基づき設定 安男内の自然仕書車 原子伊格納安提內で 9.0×10* (1/a) の無機よう楽の自然 (指付資料 2 2-5 参 ついては、実験等 (.ER DF-200) ら得られた適切なモ デルを基に設定する 1.99.0 サプレッションプ・ 無機上う書:5 Plan6.5.5 に基づき設 こよる無機よう素の 除去係数 原子が格納容器フ 粒子状放射性物質:1,000 32.0HE

泊発電所3号炉

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

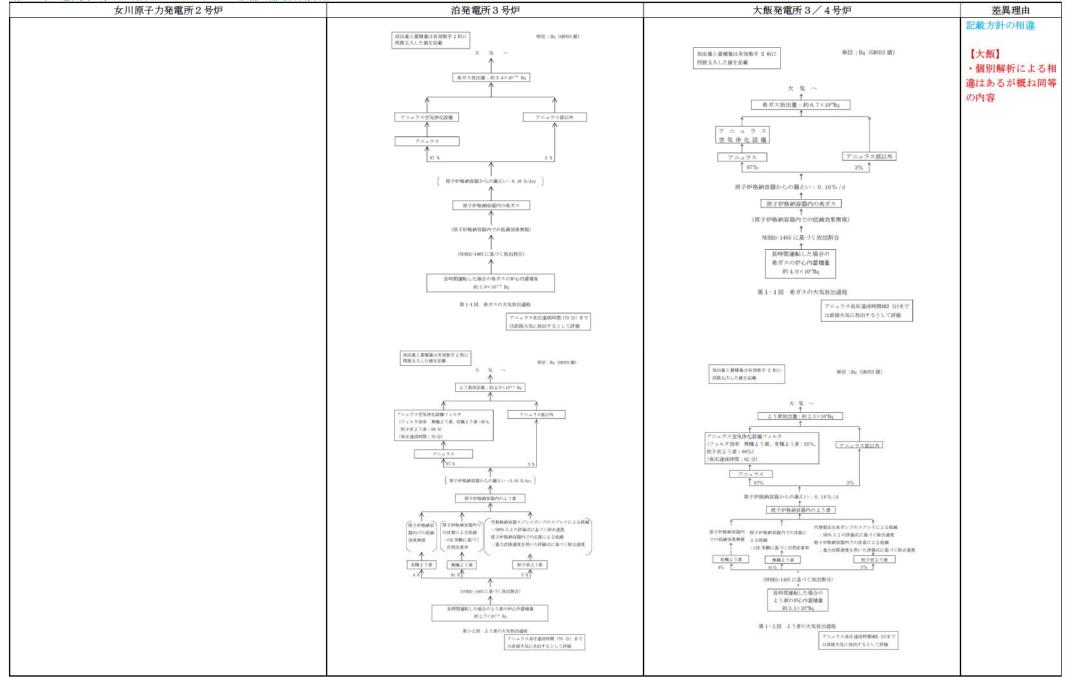
項目	評価条件	選定理由	審査ガイドでの記載
原子が格納容器から ベントラインへの流 入割合	停止時炉内面磁量に対して、 あガス類:約9.5×10 ⁻⁴ よう素類:約3.0×10 ⁻² Cs類:約1.2×10 ⁻⁸ Te	MAP 解析結果及び NREG-1465 の知見に 基づき設定 (添付資料 2 2-3 参照) よう素類については、 よう素の化学形態に 応じた原子炉格納容 器内での除去のされ かたの違いを考慮	4.3(4)a. 放射性物質 の大気中への放出間 効時列及び放出維統 時間は、4.1(2)a で源 定した事故シーケン スのソースターム解 折結果を基に設定す こ。
原子炉格納容器から 原子炉建料原子炉地 小の流入割合	格納容器ペントの実施を 想定する場合: 修作時時内内護量に対して、 希ガス類:約2.2×10 ⁻² よう素類:約3.1×10 ⁻⁸ で類:約2.5×10 ⁻⁷ 総類:約2.5×10 ⁻⁷ 総類:約2.5×10 ⁻⁹ で類:約5.3×10 ⁻⁸ 代特部層冷却系を用いて 事象を収率することを想定する場合: 伊止時時内護量に対して、 希ガス類:約6.0×10 ⁻² よう素類:約5.2×10 ⁻⁹ で加:約6.2×10 ⁻⁷ 配類:約5.1×10 ⁻⁸ にある。1×10 ⁻⁸ 日本が大類:約6.2×10 ⁻⁷ 配類:約5.2×10 ⁻⁷ 配類:約5.2×10 ⁻⁷ に類:約5.2×10 ⁻⁷ 配類:約3.1×10 ⁻⁸ 上類:約3.1×10 ⁻⁸ 上類:約3.1×10 ⁻⁸ 上類:約3.1×10 ⁻⁸ 上類:約3.1×10 ⁻⁸ 上類:約3.1×10 ⁻⁸ 上類:約3.1×10 ⁻⁸	101 E:	ЯĿ

項目	評価条件	遷定理由	審査ガイドでの記載
原子炉建星原子炉棟 の換気率	・原子炉建屋原子炉棟負圧 維持期間以外:無限大 [四/日] ・原子炉建屋原子炉棟負圧 維持期間:非常用ガス处 埋系を用いた場合の設 計機気率 0.5[加/日]に より屋外に放出	非常用ガス処理系に より負圧維持してい い期間に手が連れて放射 度が保持されない を を が の と が の と が の が の が の が の が の が の が の	-
非常用ガス処理系 起動時間	事故発生から 60 分後	運用を基に設定	-
非常用ガス処理系 排風機風量	2,500m³/h	非常用ガス処理系の 設計値を基に設定	-
非常用ガス処理系の フィルタ装置による 除去係数	希ガス:1 粒子状放射性物質:1 無機よう素:1 有機よう素:1	保守的に考慮しない ものとした	-
原子炉建屋原子炉棟 負圧達成時間	事故発生から 70 分後	非常用ガス処理系起 動時間及び排気風量 並びに原子炉速壓原 子炉棟の設計気密度 を基に評価し設定(添 付資料22-6を参照)	-
事故の評価期間	7 H	審査ガイドに示され たとおり評価期間を 設定	3. 判断基準は、運転員 の実効線量が7日間で 100mSv を超えないこ と。

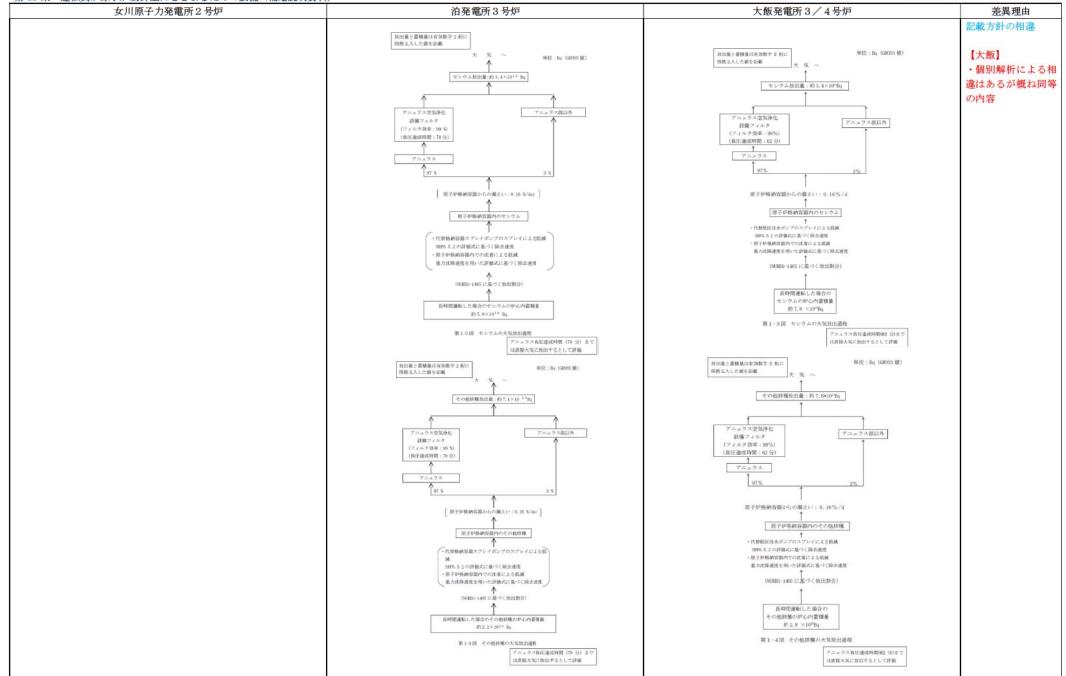
審査ガイドでの記載	.3(3)a. アニュラス空気浄化設備の 作動については, 4.1(2)a. で選定した 事故シーケンスの事故進展解析条件を 基に設定する。	1.3(3)a. アニュラス空気浄化設備の 作動については, 4.1(2)a.で選定した 素なシーケンスの事故進展解所条件を 基に設立する。	1.3(3)b. アニュラス整気枠化設備フィルタ効率 コウ素制度 USエアログルのフィルタ効率は、使用条件での設計値を基に設定 率は、使用条件での設計値を基に設定 する。なお、フィルタ効率の設定に設定 し、コウ素類の性水を適切に考慮する。	干坦	3. 判断基準は, 運転員の実効線量が 7 日間で100 mSv を超えないこと。	Basis Accidents
審査力	4.3(3)a. アニ 作動についてt 等枚シーケンフ 居に設定する。	4.3(3)a. アニ 作動について1 事故シーケンフ 基に設定する。	-dia		3. 判断基準は, 日間で100 mSv	nces of Design
選定理由	ファン 1 台の総動を想定 (強定した機な) ーケンスに振うき,全交流 作動については,4.1(2) a. で選定した (電流電源機な) - 様かとートシンク模块を想 等体シーケンスの事故進展解析条件を 定した起動数が時間を見込む)	選定した事故シーケンスに基づき、全交流動力の高級を表した事故シーケンスに基づき、全交流動力の高級を表してシークの後の表現で 同 60 分斗監験後負任達成時間 18 分 (部付 4.3(3)a. アニュラス空気浄化設備の 中数氏が構成に同じ、 中数氏が構成に同じ、 市数はが構成に同じ、 を認知していては、4.1(2)a.で選定した 高級問題後断下及びアニュラス空気浄化設 編型気件調解ではできて、 を表現を表現を表現します。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。 基に設定する。	使用条件での設計値を基に設定 が繋による確認値であり、事故期間中租保で きる除主効率であるため、設計値を評価条件 として設定(前付1-2-11参照)	使用条件での設計値を基に設定 試験による確認値であり、事故期間中担保で きる除土効率であるため、設計値を評価条件 として設定 (添付 1-2-11 参照)	審整ガイドに示されたとおりの評価期間を 3. 判断基準は,運転員の実効線盤が 7 設定	※1: ※国 NREG-1465 "Accident Source Terms for Light-Water Nuclear Power Plants" ※2: ** A Regulatory Guide 1.95 "Wetholds and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents of List-Rose Nuclear Desage Desage.
使用値	1.86×10 ⁴ m ³ /時 (ただし,60分後起動)	£87	0~78分:0% 78分~:95%	0~8分:0% 78分: ~89%	7 B	米国 NUREG-1465 "Accident Source Terms for Light- 米国 Regulatory Guide 1.195 "Methods and Assumpt
評価条件	アニュラス空気浄化設備 ファン流量	アニュラス負圧達成時間	アニュラス空気浄化設備 よう素フィルタによる 原去効率	アニュラス空気浄化設備 微粒子フィルタによる 除去効率	事故の評価期間	※1:米国 NUREG-1465 ※2:米国 Regulatory

100 m	便	张	#	使	Ж	旗	测	河	删	#	審査ガイドでの記載
7 11	スト	が存	アニュラス空気浄化設備 ファン容量		9.36×10° m²/h (ただし、60分後起動)	n³/h 後起動)	ファン1台の起動を想定。 (確定した事故シーケン 交流動力電源喪失+最終 失を想定した起動置れ	の起動を想 析故シーノ ば瀬度失わ た起動遅	1位。 ケンスに 最終ヒー れ時間は	クアン1台の記載を想定。 (選定した事故シーケンスに基ムき、全・ を活動力電影像失・機能ロートッシッ数 記 失を想定した話録を対し回り 別	4.3(3)a. アニュラス空気浄化設 傷の性節については、4.1(2)a.で 適定した事故シーケンスの事故 進展解析条件を基に設定する。
F 11	7 7	無無	アニュラス負圧塗成時間		629		議立した帯 動力 電源 関か 電源 関か 中間 6 関 を を を を が が が が が が が が が が が が は が は が	定した事故シーケンスに基 力能器を表土操作とした。 北砂間ののか・程器を知るのののののののののが、 本様十級はく事権に向いて ・ たる職別のを表すが、 を表するのでは、 をまるのでは、 をまる。 をまるのでは、 をまる。 をまる。 をまる。 をまる。 をまる。 をまる。 をまる。 をまる。	ンスに基 に - ト に - ト こ	適定した者接シーケンスに基づき、全交階 動力電源度夫・程序に一トシング度夫を 超近した起動産れ時間を見込んで指(短動 程在時間の分子起態を保護と関係 (新付十般だく単価に同じ)) 医島類支巾 即間の分件定が不非常 所書 配による電源回旋機作および代替制制 配による電源回旋機作および代替制制 202点 供給設備によるアニュラス空気等化 (総付12-9条照)	干团
アナール	スト士	ななななない。 をなる を を の を の の の の の の の の の の の の の の の	アニュラス空気浄化設備 よう素フィルタによる除 去効率		6257:0%	969	使用条件での設計値を基に設定。 対験による確認値であり、事故界 保できる除去効率であるため、部 評価条件として設定(添付1-2-1	の設計 確認値で 法等を持つ して設定	が が が が が が が が が が が が が が が が が が が	使用条件での設計値を基に設定。 収算による係場値であるり、事務期間中租 保できる除去効率であるため、認計値を 評価条件として設定(落付1-2-10事題)	4.3(9)b. アニュラス空気浄化設 $簡 7.4 \wedge 4 \rangle \delta \%$ カー・カース カーク素類及びエアロットのフィ ルクタ海に、使用条件での設計値 を基に配定する。 $f_{4.5}$ 、 $f_{4.5}$ 、 $7.4 \wedge 9$ が場の設定に即し、コウ素類の性 状を適切に考慮する。
アニコ酸粒子	スト土	スト た か が が が が が が が が が が が が が が が が が が	アニュラス空気浄化設備 微粒子フィルタによる除 去効率	9	0~62分:0% 62分~:99%	%6	使用条件での設計値を基に設定。 試験による確認値であり、事も 保できる除去効率であるため、 評価条件として設定(総付12	の設計値を確認しておかっていまります。	を あり、 あるた。 (添付)	使用条件での設計値を基に設定。 試験による確認値であり、事故期間中租 保できる除去効率であるため、設計値を 評価条件として設定(維付1-2-10参照)	王岡
Ħ	事故の評価期間	平価期	E		7 🖽		審査ガイドに示されたとおりの評価 期間を設定	いに示され	いたとお	時世の評価	3. 判断基準は、運転員の実効 機量が7日間で100mSvを超え ないこと
100	KIRI NU	REG-1	465 Ac	cident Sour	thods and	or Light-Wa	NUREG-1465-Accident Source Terms for Light-Water Nuclear Power Plants' ** IR Regulatory Guide 1.195 "Methods and Assumptions for Evaluating Radiologi	Power Pla	nts" logical C	o meanennemo	第1:米国 NUREG-1465'Acadent Source Terms for Light Water Nuclear Power Plants" 第2:米国 Beculatory Guide L195, "Methods and Assumptions for Evaluating Radioforcial Consequences of Design Basis Accidents at

大飯発電所3/4号炉


個別解析による相違 ・女川とは型式の相 違により比較困難。

差異理由


【大飯】

・個別解析による相 違はあるが概ね同等 の内容

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

表 2-1-2	大気中への放出放射能量	(7日間積算値)
(化麸活膏冷井		- レを相定する場合)

		放出放射能量[Bq] (gross 値)
核種グループ	停止時炉内內蔵量 [Bq] (gross 値)	原子炉建屋原子炉棟からの漏えい及び非常用カス処理系による放出
希ガス類	約 1.6×10 ¹⁹	約 1.6×10 ¹⁷
よう素類	約 2. 1×10 ¹⁹	約 4.5×10 ¹⁵
Cs 類	約 8. 4×10 ¹⁷	約 2.5×10 ¹²
Te 類	約 6. 0×10 ¹⁸	約 2.7×10 ¹²
Ba 類i	約 1.8×10 ¹⁹	約 2. 9×10 ¹²
Ru 類	約 1.8×10 ¹⁹	約 4. 2×10 ¹¹
Ce 類	約 5.5×10 ¹⁹	約 2. 8×10 ¹¹
La 類	彩 4. 1×10 ¹⁹	約 7.5×10 ¹⁰

表 2-1-3 大気中への放出放射能量 (7 日間積算値) (格納容器ベントの実施を想定する場合)

		放出放射能量[F	Bq] (gross 値)
核種グループ	停止時炉内内蔵量 [Bq](gross 値)	原子炉格納容器フィル タベント系を経由した 放出	原子炉建屋原子炉棟か らの漏えい及び非常用 ガス処理系による放出
希ガス類	約 1.6×10 ¹⁹	約 4.6×10 ¹⁸	約8.9×10 ¹⁶
よう素類	約 2. 1×10 ¹⁹	約 3.3×10 ¹⁵	約3.0×10 ¹⁵
Cs 類	約 8.4×10 ¹⁷	約 9.6×10 ⁸	約2.5×10 ¹²
Te 類	約 6. 0×10 ¹⁸	約 6.7×10 ⁸	約2.7×10 ¹²
Ba 類	約 1. 8×10 ¹⁹	約 6. 3×10 ⁸	約2.9×10 ¹²
Ru 類	約 1.8×10 ¹⁹	約 1. 3×10 ⁸	約 4. 2×10 ¹¹
Ce 類	約 5. 5×10 ¹⁹	約7.9×10 ⁷	約2.8×10 ¹¹
La 類	約 4. 1×10 ¹⁹	約 2.0×10 ²	約7.5×10 ¹⁰

59-9-添 2-1-6

泊発電所3号炉 第2表 大気中への放出放射能量評価結果

1	評価項目	評価結果 ※1
	Gross 値	約 5.4×10 ¹⁶ Bq
希ガス	ガンマ線エネルギ	約 8,7×10 ¹⁵ Ba
	0.5 MeV 換算値	#3 0. 1 ∧ 10 - Dq
	Gross 值	約 2.5×10 ¹⁴ Bq
よう素	I-131 等価量	約 8.2×10 ¹³ Bq
	(成人実効線量係数換算)	来9 8. 2×10 - Bq
セシウム	Gross 值	約 3.4×10 ¹³ Bq
上記以外の核種	Gross 値	約 7.1×10 ¹³ Bq

※1 放出放射能量の推移グラフは添付1-2-12に示すとおりである。

大飯発電所 3/4号炉

第2表 大気中への放出放射能量評価結果 (3号、4号共通) (7日積算)

	評価項目	評価結果*1
	Gross値	約6.7×10 ¹⁶ Bq
希ガス	ガンマ線エネルギ 0.5MeV換算値	約1.0×10 ¹⁶ Bq
	Gross (di	約2.3×10 ¹⁴ Bq
よう素	I-131等価量 (成人実効線量係数換算)	約7.7×1015Bq
セシウム	Gross値	約3.4×10 ¹⁵ Bq
上記以外の核種	Gross値	約7.6×1015Bq

※1 放出放射能量の推移グラフは添付 1-2-11 に示すとおりである

個別解析による相違

差異理由

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

新 39 宋 連転員が原子炉制御室にととまるための設備(桶足説例) 女川原子力発電所 2 号炉						泊発電	听3号 炉					大飯発電所3/	4号炉		差異理由	
	表 2-1-4 大気			Γ	t度 にたら に方向 とガウ 年す	成及いて少いの多数に対象	が出文 り気象 あた評	7a. で と放出 スター ギーを			で が が を を を と に て の の と に た に り に た に た に に し に た に し に し に た に し に し に	政及なななが、 でかなな。 を変	田文をはまれていません。)a 心臓 た 放田 スタケー キーを	mini tarte) - 1 2 took	
項目 大気拡散 評価モデル	評価条件 ガウスブルームモデル	選定理由 審査ガイドに示されたと おり設定	審査ガイドでの記載 4.2(2)。 放射性物質の 空気中最度は、放出源高 さ及び気象条件に応じ て、空間濃度分布が水平 方向及び動位方向とも に正規分布になると仮 定したがウスブルーム モデルを適用して計算 する。	審査ガイドでの記載	、2(2)a. 放射性物質の空気中濃度 は、放出霧高さ及び気象条件に応じて、 空間濃度分布が米平方向及び結び方向 ともに正規分布になると仮定したガウ スプルームモデルを適用して計算する。	4.2(2)a. 風句, 風速, 大気安定度及 び降雨の観測項目を, 現地において少なくとも,1年間観測して得られた気象 資料を大気拡散式に用いる。	1.2(2)c. 相対義度は、短時間放出又 は長時間放出に応じて、毎時刻の気象 項目と実効的な放出維続時間を基に評 垂点ごとに計算する。	シック・アン		審査ガイドでの記載	4.2.(2).a. 放射性物質の空気中濃度は、放出額高さ及び気象条件に応じて、空間濃度分布が水平方向及び鉛度方向ともに正規分布になると仮定し方力やとして正規分布になると仮定し計算する。	4.2.(2)a. 風向、風速、大気安定度及び降角の製御項目を、現地において少なくとも1 年間観測して得られた気象資料を大気拡散式に用いる。	4.2(2)c. 相対濃度は、短時間放出又は 長時間放出に応じて、毎時刻の気象項 目と実効的な放出維統時間を基に評価点ごとに計算する。	4.3.(4)b. 放出激高さは、4.1(2)aで選 たでした事故シーケンスに応じた放出 自つからの放出を仮定する。4.1(2)aで選 常定した事故シーケンスのソースター A. A解析結果を基に、放出エネルギーを 考慮してもよい。	個別解析による相違 ・放出源の相違は事故シーケンスの相違 による。 【大飯】 ・個別解析による相	
気象データ	【原子与格納容器フィルタ ベント系練気管】 【原子が建屋ブローアウト パネル】 女川原子力発電所における 1 年間の気象データ(2012 年1月~2012年12月)(地 上約10m) 【排気筒】 女川原子力発電所における 1 年間の気象データ(2012 年1月~2012年12月)(地 上71m)	タベント系練気管】 【原子炉建屋プローアウトパネル】 建屋影響を受ける大気拡 散評価を行うため保守的 に地上風(地上約10m)の 気象データを使用 【練気筒】 間(地上約71m)の気象データを使用 また、審査ガイドに示さ れたとおり発電所におい ています。 をデータを使用	4.2(2)a. 風向、風速、 大気安定度及び降雨の 観測項目を、現地におい で少なくとも1年間観 割して得られた気象資 料を大気拡散式に用い る。	表 (1/3) 大気拡散条件 選 定 理 由	4.2 (式) 審査ガイドに示されたとおり設定 2.7 スプ	雄煕原磐を受ける大気が散評価を実施 4.2 審査ガイドに示されたとおり泊発電所にお び いて観測された1年間の気象資料を使用 (添付 1-1-3 参照) 資料	4.2(2)保守的に最も短い実効放出継続時間を設定 項目 項目	4.3 放出源高さは、アニュラス空気浄化設備が、激 起動而は、地上放出として地上高さを、ア ロア ニュラス空気浄化設備が起動後は、排気筋 激 放出として排気商高さを設定している。 A.8	大気拡散条件(3号、4号共通)		4.2.(2) は、放 者 者 が イ ド に 示 さ れ た と お り 設 に 、 空 、 空 た が り の と う た う の り う う う う う う う う う う う う た う う う う う う	雄屈影響を受ける大気拡散評価を 行うため保守的に地上風(地上約4.2.(2) 10m)の気象データを使用 審査ガイドに示されたとおり大飯 くとも 発電所において観測された1年間 資料を の気象資料を使用(添付1-1-3参照)		4.3.(4) 設備が起動前は、地上放出として地 定した 設備が起動前は、地上放出として地 ロから 上高さを、アニュラス空気浄化設備 定した が起動後は、排気筒放出として排気 ム解析 簡高さを設定している。	違はあるが概ね同等 の内容	
実効放出 継続時間	全放出源:1時間	(添付資料22-7を参照) 保守的に1時間と設定	4.2(2)。 相対濃度は、 短時間放出又は長時間 放出に応じて、毎時刻の 気象項目と実効的な放 出継続時間を基に評価 点ごとに計算する。	第33	ームモデル	消発電所における 1年間の気象資料 年1月~1997年12月)	全核種:1時間	排 汽頭 73.1 m	第3表(1/3)	用値	ームモデル	=======================================	#E	排気筒 73m		
放出源及び放出源高さ	・原子炉格納容器フィルタベ ント系排気管:地上36m ・原子炉建屋プローアウトバ ネル:地上0m	審査ガイドに示されたと おり設定 ただし、放出エネルギー による影響は未考慮 なお、建屋巻込みの影響 を受けない練気筒の放出	4.3(4)b. 放出源高さは、 4.1(2) a で選定した事 故シーケンスに応じた 放出口からの放出を仮 定する。4.1(2) a で選 定した事故シーケンス のソースターム解析結	世	おウスプル	泊発電所における 1年間の気象資料 (1997年1月~1997年12	全核欄	日 0 日		使用	ガウスブル	大飯発電所における 1年間の気象資料 (2010.1~2010.12) (地上風を代表する観測点 上約10m)の気象データ)	全核權:1時	工解 T解		
	・排気筒:地上80m 5 0-9- 前	源高さは、敷地境界にお ける有効高さを使用 5-2-1-7	のソースターム解析結 果を基に、放出エネルギ 一を考慮してもよい。	4 年 世 世 米 世	散評争デル	気象条件	夹劲放出 維統時間	放出源 及び 放出調高さ		項目	大気拡散評価 モデル	刘黎 李寶 李	実効放出維統時間	放出源 及び 放出源高さ		
				99.												

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

第 09 宋 連 収		子力発電所2号	ための設備(相定説明資本 分類			泊発電所3	3 号炉				大飯発電所3/4	号炉	差異理由
項目累積出現頻度	表 2-1-4 ブ 評価条件 小さい方から累積し で 97% ・原子炉格納容器フィ ルタベント系排気 管:考慮する	れたとおり設定 (添付資料 2 2-8 を参照) 放出点から近距離 の建屋の影響を受 けるため、建屋によ	審査ガイドでの記載 4.2(2)e. 評価点の相対濃度又は 相対線量は、毎時刻の相対濃度又 は相対線量を年間について小さ い方から累積した場合、その累積 出現頻度が97%に当たる値とす る。 4.2 (2)a. 原子炉制御室の居住性 評価で特徴的な放出点から近距	報のテキュイギを	4.2(2)c. 評価点の相対適度又は相対 線量は、毎時刻の相対適度又は相対線 量を年間について小さい方から異籍し た場合、その異種出現頻度が97%に当 たる値とする。	4.2(2)a. 原子が制御室 緊急時間御 室/緊急時対策所居住性の評価で特徴 的な放出点から近距離の態響を 受ける場合には、建屋による巻き込み 現象を考慮した大気拡散による拡散バ ラメータを用いる。	4.2(2)も、巻き込みを生じる建屋として、原子炉格納容器、原子炉格等器、原子炉格等器、原子炉格等器、原子炉格等器、 ロール建屋及び燃料取り扱い建屋等、 同間として放出源の近隣に存在するすべての建屋が対象となるが、巻き込みの影響が最も大きいと考えられる一つの建屋を代表建屋とすることは、保守的な結果を与える。		審査ガイドでの記載	評価点の相対濃度又は相対 毎時刻の相対濃度又は相対線 引について小さい方から累積 、、その累積出現頻度が97%に とする。	4.2.(2)a 原子炉制御室/緊急時制御 置 室/緊急時対策所居住性の居住性罪 5 価で特徴的な放出点から近距離の建 9 屋の影響を受ける場合には、建屋による巻き込み現象を考慮した大気拡散 による拡散パラメータを用いる。	42.(2)b 巻き込みを生じる確保として、原子炉格納容器、原子炉建屋、原子炉補助建屋、ターピン建屋、コントドロール建屋及び燃料取り扱い建屋等、「原則として放出額の近隣に存在するすべての建屋が対象となるが、巻き込みの影響が最も大きいと考えられる一つの建屋を代表建屋とすることは、保守的な結果を与える。	個別解析による相違・女川は排気筒が周囲の建屋の 2.5 倍以上の高さにあるため、建屋巻き込みを考慮しない。
建脂巻き込み	原子炉建屋ブローア ウトパネル: 考慮する排気筒: 考慮しない	考慮。 排気筒については	離の建屋の影響を受ける場合に は、建屋による巻き込み現象を考 慮した大気拡散による拡散パラ	_	場へを設定	まの建屋(原子 5ため、建屋に	、一番を込み、「種音」			4.2.(2)c 線庫は、 量を年間 した場合 当たる値	4.2.(2)a 個 4.2.(2)a か	4.2.(3)h イ、原子 イケ補用 トケイト 原則と ウスロールを みの影響 サイベイの カクの影響 保守的が 保守的が 保守的が 保守的が 保守的が	
巻き込みを生じる 代表雑量	原子炉建屋	巻き込みの影響が 最も大きい ^{建屋と} して設定	4.2 (2) b. 巻き込みを生じる建屋 として、原子炉棒納容器、原子炉 建屋、原子炉棒助建屋、ターピン 建屋、カントロール建屋及び燃料 取り扱い建屋等、原則として放出 源の近隣に存在するすべての建 屋が対象となるが、巻き込みの影 響が最も大きいと考えられる一 の建屋屋で代表建屋とすること は、保守的な結果を与える。	(2/3) 大気拡散条件 第 分 組	連 定 年 日 章 正 年 日 善 連 左 日 毎 2 日 - 1	放出点(排気筒)から近距離の建屋 炉格納容器)の影響を受けるため, よる巻き込み現象を考慮	放出第(排気筒)から最も近 の影響が最も大きい建屋とし	大気拡散条件(3号、4号共通)		ドに示されたとおり設定	気筒)から近距離の種島 納容器)の影響を受ける ばによる巻き込み現象を#	放出額 (排気筒) から最も近く、き込みの影響が最も大きい建屋して選定	
放射性物質濃度の 評価点	【中央制御室滞在時】 ・中央制御室換気空調 系給気口 ・中央制御室中心 【入退城時】 ・出入管理所 ・制御建屋出入口	審査ガイドに示さ れたとおり設定	4.2.(2)b. 2) i) 評価期間中も給 気口から外気を取れれることを 前提とする場合は、給気口が設置 されている原子抑制御室が属す る建屋の表面とする。 4.2.(2)b. 3) i) 建屋の巻き込み の影響を受ける場合には、原子炉 制御室/ 緊急時制御室/緊急時対策所の 騙する建屋表面での濃度は風下 距離の依存性は小さくほぼ一様 と考えられるので、評価点は厳密 に定める必要はない。 屋上面を代表とする場合、例えば	第3表 年 日 は	吹 用 副 小さい方から架積してg %	水銀子の	器基礎與基盤	第3表(2/3) 大気拡散		審査ガイ	放出点 (排気筒) から (原子炉格神容器) の ため、建屋による巻き 蔵	放出額(掛質・受ける) (対対の) (対対が (対対 できらんの) (対対 できらんの) (対対 できらん の) (対対 できらん の) (対 できた が に を に を に を に を に を に を に を に を に を に	記載箇所の相違 ・泊の放射性物質濃 度の評価点について は次項に記載。
	59-	9-添 2-1-8	原子炉制御室/緊急時制御室/ 緊急時対策所の中心点を評価点 とするのは妥当である。	**		44の音楽	巻き込みを生じる 代表準履		使	小さい方から	松	原子學	
				77 846	四	超過	· 治 · 治		通	界積出現頻度	建屋の影響	巻き込みを生じる 代表建屋	

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

	女川原子	<i>ほにとどまるたる</i> 力発電所 2 号炉				泊発電所3号炉						飯発電所3/4号炉			差異理由
項目	表 2-1-4 大学 評価条件	気拡散条件(3/4) 選定理由	審査ガイドでの記載		する場 中心点を かる。 が 記載な	報告時間報 の属下後流電 が成が顕著で (濃度を計算 に、放出源と ままれる 1方 ななく、図 5 にはなく、図 5 にはのかがり	単層の投 濃度を水 とする。	2,			報合、 評価点 記載な な	時孫側著計灏の、払の側をでで算というない。 御被のおす詳とのがあららあった。 といる。	雇の投資を表する。		個別解析による相違
中央制卵室零在時	ベント系排気管気 中央制御定機気管 結気口:5方位 (SE, SSE, S, SSE, S 中央制御室中心: (EME, ESE, SE, SSE, SS) 「原子が建屋ブロー デネル」 中央制御室機気空 給気口:5方位 (SE, SSE, SSE, SSE, SSE,	記謝系 V) 8 か位 SE, S, -アウト 調系	4.2 (2)a. 原子が制御室 の居住性に係る彼ば、評	海茶ガイドでの記載	(中央制御客内) 4.2(2)b. 屋上面を代表と 合。例えば原子が削御室の 計解点とするのは豪当で 人工連集時】 入連集時の評価点について し、	4.2(2)b. 原子が制御者の 第/紫色即対策所の居住性 く評価の計算では、建職の での広範囲に及ぶ乱流温を あることから、放射性物質 する当該着目がとしては 評価点とを結ぶラインが名 位のみを対象とするのでは に示すように、建盟の後述 の影響が評価点に及ぶ可能	4.2(2)b. 脳向に垂近な代表建屋の投 影面積を求め、放射性物質の濃度を求 めるために大気拡散式の入力とする。	に 形状係数につこて、記載な		審査ガイドでの記載	「中央副御室内】 4.2.(2)b. 屋上面を代表とする場 えば原子炉制御室の中心点を割 とするのは妥当である。 「人込城時】 人込城時の評価点について、高	4.2.(2)a. 原子炉制御電/緊急時制御電/緊急時制御電/緊急時刻 電/緊急時刻第所の居住性に係る被 ばく評価では、建局の無下後減個での 広範囲に及ぶ乱流混合域が顕著であ ることから、放射性物質濃度を計算す るるとから、放射性物質濃度を計算す 高点とを結ぶラインが含まれる1方 他のみを対象とするのではなく、図5 に示すように、建屋の後減側の拡がり の影響が評価点に及ぶ可能性のある 複数の方位を対象とする。	4.2.(2)b. 風向に垂直な代表建屋の影面積を求め、放射性物質の濃度を めるために大気拡散式の入力とする	形状係数について、記載なし。	
着目方位	中央制御室中心: (ESE, SE, SESE, SE) (持友高) 中央制御室焼気空 給気口:1 方位 (ESE) 中央制御室中心: (ESE) 【原子炉格帕容器フペント番州女管】 出入管理原:4 方(SSE, SSE, SSE, SSE, SSE, SSE, SSE, SSE,	33, SE) 調系 審査ガイドに示された評価方法 に基づき設定 (不ルク 2-8 を参照) 立 6 が位 33, V)	価では、建場の単下後流倒での広範囲に及ぶ込流混合を必要者であることから、放射性物質前度を計算であることから、放射性物質前度を計算 する当該費目が位としては、放出線と呼吸とを結ぶラインが含まれる1方位のみを対象とするのではなく、図5に示すように、建場の後期が再優点に及ぶ可能性のある複数の方位を対象とする。	(3/3) 大気試散条件 選 定 理 由	大気拡散条件 選 定 理 由 選 定 理 由 決局排棄(4) としているれたとおり設定 がイドに示されたとおり設定 総称り (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	審査ガイドに示された評価方法に基づき設定 (部付 1-1-4参照)	着並ガイドに示されたとおり設定 現行背部可 (部付書類六) の考え方に同じ	(条件 (3号、4号共通)	設定理由	[中央制御室内] 番左ガイドに示されたとおり設定 えば 【入途域時】 入途域時の移動経路に従った適切 [入 な評価点を設定 入 し、	4.2.0 (4.2.(ドに示されたとおり設定 影面 める?	可(添付書類六)の考え方に		
人组被時	出入管理所: 4 方((SSE, SW, SSE, W) 前轉建是出入口: (SSE, S, SSE, SE, SE, SE, SE, SE, SE, SE,	6 方位 SW, W) 位		第3表 第 1 章	[中央制御室中] 中央制御室中心 [7.28版明] 出入衛理集監入口 中央制辦室入口	中央制律室:5方位 出入管理提入口:5方位 中央制御套入口:6方位	原子母格納容器の垂直な投影面積(2,700 m²)	1/2	第3表(3/3) 大気拡散条件	鉱	室中心 1 5入口	:5 方位 :2 方位 :3 方位 :5 方位 器与专股1 :5 方位 :5 方位 :1 方位 :2 方位 :3 方位	審査ガイ	現行許認同じ。	
項目	表 2-1-4 大 評価条件	気拡散条件(4/4) 選定理由	審査ガイドでの記載	#	: : :					使 用	[中央制御室内] 中央制御室中 [入违條時] 正門 正門 事務所入口 中央制御室入	3.9機 中央制御室 事務所入口 中央制御室入口 4.9機 正一年失期前室	原子炉格納容器の垂直な 投影面積(2.8×10 ³ m ²)	1/2	
建屋投影面積	2, 050m²	審査ガイドに示された とおり設定 風向に飛直な投影面積	の風向を対象に計算する	新	放射柱物質濃度	着目方位	建层校影而横	形状係數		項目	放射性物質濃度の【評価点	器 田方位 日 中川神 中 4 中川神 中	建量投影面積	形状係数	
		風雨に遊覧などの問題のうち最も小さいもの	方位ことに単単な収制的 積を求める。とだし、対 象となる複数の方位の投 影面積の中で 最小函積 を、すべての方位の計算 の入力として、同じの 力でありであり り保守的である。								英				
形状保数	1/2	「原子力発電所中央制 御室の居住性に俘る被 ばく評価手法について (内規)」に示されたと おり設定	大気気散の評価は、「原 子力発電所中央制御室の 原体をに任る施げた際原												

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所3/4号炉 差異理由 記載方針の相違 第3-1 図 評価点全体図

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

第 59 条 運転員が原子炉制御室にとどまるための設備(補足説明資料	第 59 条	運転員が原子物	『制御室にとど』	まるための設備	(補足説明資料
------------------------------------	--------	---------	----------	---------	---------

	オデル 制御 主に とる 女川原子力発電		文7相 【相及已记597多		泊発電所 3 号炉				大飯発電所 3 / 4 号炉									差異理由			
放出源及び 放出源高さ幸 原子炉格納容器フィ ルタベント系排気管	相対濃度 (x/Q) 及 評価点 中央制御室 換気空調系給気口 中央制御室中心	相対濃度 [s/m ³] 5.8×10 ⁻⁴ 8.6×10 ⁻⁴	村対線量 [Gy/Bq] 4.6×10 ⁻¹⁸ 6.6×10 ⁻¹⁸		相対線量 D/Q (Gy/Bq)	地上放出:約2.4×10 ⁻¹⁸ 排気简放出:約4.6×10 ⁻¹⁹	地上放出:約1.8×10 ⁻¹⁸ 排気筒放出:約3.3×10 ⁻¹⁹	地上放出:約2.3×10-18 排気筒放出:約4.7×10-19			相対線量 D/Q (Gy/Bq)	地上放出:3.3×10 ⁻¹⁸ 排気筒放出:5.4×10 ⁻¹⁹	地上放出:1.3×10 ⁻¹⁸ 排気筒放出:7.2×10 ⁻¹⁹	地上放出:1.6×10 ⁻¹⁸ 排気筒放出:3.5×10 ⁻¹⁹	地上放出:3.3×10 ⁻¹⁸ 排気简放出:7.7×10 ⁻¹⁹	地上放出: 2.5×10 ⁻¹⁸ 排気简放出: 4.4×10 ⁻¹⁹	地上放出:6.3×10 ⁻¹⁸ 排気筒放出:3.4×10 ⁻¹⁹	地上放出:1.2×10 ⁻¹⁸ 排気简放出:3.0×10 ⁻¹⁹	地上放出:1.7×10 ⁻¹⁸ 排気简放出:4.4×10 ⁻¹⁹		個別解析の相違・評価点数の相違は放出源数と評価地点数が異なることによる。 ・放出源数の相違(女川3、泊2)は、フィルタベントの相
(地上 36m)	制御建屋出入口	5. 0×10 ⁻⁴ 7. 1×10 ⁻⁴	4.3×10 ⁻¹⁸ 5.6×10 ⁻¹⁸			4 4					3 VE	.1×10 ⁻⁴ 3.6×10 ⁻⁴	2×104	1×10 ⁻⁴ 1.6×10 ⁻⁴	7.3×10 ⁻⁴ : 3.7×10 ⁻⁴	.6×10 ⁻⁴	0×10 ⁻⁴	1×10 ⁴	7×10 ⁻⁴		達による。 ・評価地点数の相道 (女川 4、泊 3) は事
原子炉建屋ブローア	中央制御室 換気空調系給気口 中央制御室中心	1. 3×10 ⁻³	5. 0×10 ⁻¹⁸ 6. 3×10 ⁻¹⁸		対濃度 (s/m³)	地上放出:約5.6×10 ⁻ 排気筒放出:約2.8×10 ⁻	地上放出:約3.8×10 ⁻⁴ 排気筒放出:約1.9×10 ⁻⁴	地上放出:約5.7×10-4 排気筒放出:約2.8×10-4			相対議度 X/Q (s/m³)	地上放出:7.1×10 ⁴ 排気筒放出:3.6×10 ⁴	地上放出: 2.2×10*排 (简放出: 1.1×10*	地上放出: 3.1×10⁴排気简放出: 1.6×10⁴	地上放出: 7.3×10*排気筒放出: 3.7×10*	地上放出:5.6×10 ⁴ 排気筒放出:2.8×10 ⁴	地上放出: 1.0×10 ⁴ 排気简放出: 5.2×10 ⁵	地上放出: 2.1×10* 排気筒放出: 1.0×10*	地上放出: 3.7×10 ⁻⁴ 排気简放出: 1.8×10 ⁻⁴		故時に給気口からの 外気取り入れを前提
ウトバネル (地上 0m)	出入管理所	9. 9×10 ⁻⁴	4.4×10 ⁻¹⁸		相対議度 x/Q(s/m³	放出:約 放出:約	放出:約 放出:約	校出: 約 校出: 約		相対線量		排	井 沙	排水	型 禁	排水	基本	型 共	基本		とするかどうかの [†] 違による。 【大飯】
	制御建屋出入口 中央制御室 换気空調系給気口	1. 5×10 ⁻⁵ 2. 8×10 ⁻⁶	6. 0×10 ⁻¹⁸ 1. 0×10 ⁻¹⁹	英		地上排氣筒	地上 排気筒	地上排氣節		相対濃度及び相対線量	評価方位	SSE, S, SSW, SW, WSW	SSE,S,	E,ESE,SE	SE,SSE,S, SSW,SW	ESE,E,ENE, NE,NNE	SE	ENE,E	ENE, E, ESE		・大飯とは入退域 に設定している評化
排気筒	中央制御室中心	2.8×10 ⁻⁶	1.0×10 ⁻¹⁹	(A)		٧,	NNW	NW,		-	rivia.	SSI	02	<u>(</u>	SE	ESF			EN		点数および号機数 異なる。
(地上 80m)	出入管理所	4. 0×10 ⁻⁶	1.4×10 ⁻¹⁹	相対激度及び相対線量	評価方位	WYW, NW, NNW, N	W.			第4表	着目方位	10	61	80	10	10	_	01	60		0.000
	制御建屋出入口	2.8×10 ⁻⁶	1.0×10 ⁻¹⁹	· · · · · · · · · · · · · · · · · · ·	NAME OF TAXABLE PARTY.	W, W	WNW,	W, WIW, NNW, N,			無					120		222			
※放出源高さは放出エネ	パルギーによる影響は未考慮	t		能	着目方位	2	e0	9			評価距離。	m 09	280 m	140 m	70 m	85 m	260 m	230 m	110 m	/距離	
					\vdash	Е	E	E			評価点	中央制御 室中心	正門	事務所入口	中央制御室入口	中央制御室中心	正門	事務所入口	中央制御室入口	点までの水平	
					評価距離 (m)**	09	110	50 1	平野藤		評価対象	室內作業時		入過數學		室内作業時		入退城時		放出源から評価点までの水	
					評価点	中央制御室中心	出入管理建屋 入口	中央制御室入口	放出源から評価点までの水平距離		号機		c	ir r				4 4		* #F	
					評価対象	室內作業時	入语句時	Cardio State	※1 放出願か												

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3/4号炉 差異理由 個別解析による相違 表 2-1-6 原子炉建屋原子炉棟内の放射性物質からの直接ガンマ線及び 第5表(1/2) 直接ガンマ線及びスカイシャインガンマ線の評価条件(3号、4号共通) · SCATTERING = スカイシャインガンマ線の評価条件 審売ガイドでの記載 評価条件 使用 值 遵定理由 ードでは、遮蔽体を 項目 評価条件 選定理由 審査ガイドでの記載 以下の事項を除き、大気中への放出量評価条件と同様 (Do. 原子が建設内の放射性物 原子如格納容器內 原子炉格納容器内に放出された 4.8(5)a. 原子炉建屋内の放射性 物質は、自由支援等後に均一に分 布するものとして、事故後7日間 の積薄線整性度を計算する。 は、自由空間容積に均一に分布する 放出された放射性物 4.3 (5)a. 原子炉建屋 審査ガイドに示されたとおり設定 原子炉格納容器内線 原子炉格納容器内に放出され 蒸強度分布 た核分裂生成物が均一に分布 審査ガイドに示されたとおり設定 モデル化してスカイ として、事故後7日間の職算線開発 線調強度分布 核分裂生成物が均一に分布 質が自由空間容積に 内の放射性物質は、自 度を計算する。 原子炉建屋原子 運転員の交替を考慮した場 シャイン線量を評価 由空間容積に均一に分 均一に分布すると 事故の評価期間 審査ガイドに示されたとおり設定 炉楝内線源強度 合の評価をより適切に行え 源 外程連載所さはドームが 前的 である。総備計算では、設計値に 施工初度 たち曲 を考慮してモデル化 (節 付 1・2・13 参照) . 運転員の交替ご 布するものとして、事 4.3(5) a 原子炉建設内の放射性物質 事故の評価期間 78 審査ガイドに示されたとおり設定 MLE 可能であるため、 るように設定 分布 からのスカイシャインガンマ韓及び自 との積算線源強度を 故後7日間の積算線源 据了你挑衅完整 接ガンマ線による外部被ばく線量は 計算 BWR のように 2つ 強度を計算する。 連続厚さ 積算線原強度、施設の位置、速へい 度 施工訳差づ m を考慮する 原子が絡納容器(外部高級)の厚さは ーム計画内へ n、円筒計画内であ が、練量計算では安全側にドーム n、円筒計画内の厚さでモデル化 審査ガイドに示されたとお 造及び地形条件から計算する。 事故の評価期間 7日 **6** -原子炉格納容器遮蔽 厚さ PCCV円貨部 : 1000円 のコードを用いる必 り設定 設計値に施工調差 (-5 mm) を考慮 4.3 (5)a. 原子炉建屋 中央制御室連載厚さ 要はない (866) 1-2-13 (BPO) 内の放射性物質からの 施工網差-5 m を考慮する 原子炉建屋 【大飯】 スカイシャインガンマ 遮蔽厚さ 審査ガイドに示された評価 線及び直接ガンマ線に ・大飯は PCCV のた 方法に基づき設定(コンクリ よる外部被ばく線量 アニュフス上部: 考慮し アニュラス下部: m 施工誤差については、-5m を考慮する 算 図 2-1-1 のとおり アニュラス壁厚さ ート厚の施工誤差を考慮し 設計値に施工調差 (-5mm) を考慮 同上 め、アニュラスが外 は、積算線源強度、施 て評価モデルを設定) 中央制御室 (評価点高さ) 設の位置、遮へい構造 部遮蔽の外にあり、 遮蔽厚さ 床面上 1.2m 及び地形条件から計算 遮蔽を別途評価して 内は稀密に係る事業のため会験できません 中央制御室及び中央制御室 いる。 評価点 待避所において,最も線量の 高い箇所を選定 第5表(2/2) 直接ガンマ線及びスカイシャインガンマ線の評価条件(3号、4号共通) 直接ガンマ線の線量評価に 第5表(2/1) 直接ガンマ競及がスカイシャインガンマ練の評価条件 評 循 条 件 使 用 値 選定理由 事者ガイドでの記載 用いる QAD-CGGP2R は三次元 存在ガイドでの記載 評価条件 趙定理由 L3(5)a. 限子軒建築内の放射を 技 用 値 形状を,スカイシャインガン QAD 及ckSCATTERING 改共に 3次元形状の返 中央制御室遮蔽厚さ と計値に施工談差 (-5mm) を考慮 マ線の線量評価に用いる 菇餅貯コードであり、ガンマ線の線量を計 いては、-5mm (添付1-2-12参照) 施工終売に、 を考慮する 直接ガンマ線: ANISN 及び G33-GP2R はそれ 直接输量肝值: 類するエンができる 0/D =- F 計算に必要な主な条件は、練源条件、返薪 QAD-CGGP2R =- F ぞれ一次元,三次元形状を扱 QAD及びSCATTERINGは共に3次元形 状の遊霰解析コードであり、ガンマ線の 線量を計算することができる (0A1-032P28 Ver. L.04) 体条件であり、これらの条件が4えられれ 4.10 実験等を基に縁促され、適用額 う遮蔽解析コードであり,ガ OT TO BE SELECT 1 スカイシャイン制 スカイシャイン綺里評価: は独世評価は可能である。従って、設計基 囲が通知なモデルを用いる。 評価コード QAD=ド (QAD-CGP2R Ver.Lot) 設計と多をよまな手は、線影条件、選 級体条件であり、これらの条件が失去ら スカインケイン緩飛評解: SCATTERINGコード 設計基準本板を超える事故における總 機能に適用可能である。 QAD=- | スカイシャインガンマ線: ンマ線の線量を計算するこ 5 4.1② 実験等を高に検証され、第 用範囲が適切なモデルを用いる。 ANISN =- F, G33-GP2R =- F とができる。計算に必要な主 ISCATTERING Var. 90ml 用可能である 8AD 及びSCATTERING はそれぞれ外認可での な条件は,線源条件,遮蔽体 直接線・スカイシャ ン線評価コード 使用実績がある (参考) 条件であり、これらの条件が (SCATTERING Ver.90m) QAD及びSCATTERINGはそれぞれ許 認可での使用実績がある 【原子炉格納容器フィルタベント系排 与えられれば線量評価は可 気管内の放射性物質からの寄与】 能である。したがって、股料 内心機能に係る事項のため心臓できません 直接ガンマ線: 基準事故を超える事故にお QAD-CGGP2R =- F ける線量評価に適用可能で ある。 QAD-CGGP2R, ANISN及び G33-GP2R はそれぞれ許認可 での使用実績がある。

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉

表2-1-7 直接ガンマ線及びスカイシャインガンマ線の評価に用いる原子炉建量原子 炉棟内の精算線原強度(1/2) (代替循環治却系を用いて事象を収束する場合)

工學ルキ	- (MeV)	15-21-12-2			航度 (photor			0.14.5
下限	上版 (代表 エキルギー)	24時間後 時点	48時間後 時点	72 時間後	96時間後 時点	120 時間 後時点	144 時間 後時点	168時間 後华点
	1.08 = 11"	#0.1.2×10P	03.1×16*	新五2×10 ^m	#5 T, 0 × 14 th	£18.8×10*	#51.0×19**	#h 1,1×10
1.00×10*	2.09 × 10 **	#1.1×10°	#13.1×10*	粉布7×10th	#0.Tc# > 10 th	約9.8×10⁶	#61.2×(0°	新山 ×10
2.00×10+	3.00 = 12.4	#0.7,1=10°	約2.1×10**	#53.5×10**	80 4.4×38**	#55.5×10*	40 6.4×10°	#37.1×10
3.40×10°	4.78×10 ⁻¹	£0.6.7×35P	#12.1×16 ²²	814.1×10°	80 S.9 × 18 ²²	#17.6×10 ⁴	#0.6/1×10 st	#0.1,1×10
4.18×10*	6.00<10*	Fil.5 × 10"	的L1×10*	#0.6.6×10**	#18.4×18**	#11.0×10*	#11.2×10**	#(1,1×10
$6.00 \times 10^{+}$	7.10 - 184	$F(1.2-10^{4})$	D17×10*	#9.4.3×10 th	$80~\mathrm{fi}, 6=10^{14}$	$E) \in \mathbb{R} \times 10^{14}$	85:T,9×10 ^m	#) 6, 1×10
7.00×10+	7,10 × 10 +	Fig.6×30*	153.3×10°	\$0.6.0×10**	10 tt 7 × 19 ²	#01.1×10 th	61.3×10°	#il. (×10
7.86×18*	1.88 = 18"	E) 4.8×10°	#01.4×10 ²¹	和2:0×10 ²	89.4.3×3F	#15.6×10 ^{rt}	的私TXIP	#17,4×16
F.00×16.	1.58 < 35"	ft8.6×10*	BLEXB*	\$12.5×10**	90.3,1×18**	#13.7×10*	89.4.2×10**	#) 4.4×10
1.00 × 10 1	T/00 = 18 -c	F) 1.5×109	#12.1×10*	80.3-3×10 ^a	#13.5×18**	#) 3.6×10*	#0.3x4×10**	#01.7×10
2.00×10°	3.06 × 11 +	#0.5.0×30P	\$5.1×10*	#0 6.7×10*	90 T, 0 × 19 ⁽⁶⁾	#97.1×10*	\$07.2×10*	#9.7.1×10
3.00×10°	4.00 × 10 **	812.6×30°	#56.9×10**	#1.1×10**	\$0.1,6×15°	#12.0×10*	852.4×10 ^m	#52.1×16
4:00×10°	4.86×10°	#01.4×10°	#13.1×10**	\$0.5.6×10 ^{to}	85 T; 8×38°	#19.0×10 ²⁵	\$51.2×10 th	#01.5×10
4.50×301	2.10 = 10 =	Fig.1×10°	护式补贴性	\$6.0×10*	F) L 6×10**	B) 6.1×10 ^{rs}	\$56.4×107	#) 4.7×10
1.10×10*	3.42×10°	#) 6.8 × 10°	J01.1×10 th	#61.7×10°	\$0.17.8×31 ₆₀	#0.2.0×10 rd	152 L × 10°	#V2.1×10
1.12×11 ⁻¹	6.08×18°	#5.0×10*	805.2×10 ¹⁶	B) T.31(10 th	80 tt 2 × 38°	#2 5.2×10 ¹⁴	89 W. 4 × 10 ⁻⁶	#0.0.1×10
6.01×10°	7.00 × 101	F) 3:4×10**	Military 10th	約8.3×10^a	#016.4×30**	#31.0×10 th	851.1×10 th	#)1,1×10
7.00×10°	8.00×16*	89.4×10*	801.1×10*	#11.8×10**	#02.1×10*	#0.2.3×10 th	粉2.4×10°	#12.0×10
8.00×16°	1,00 = 10°	#51,0×10°	30.2 F×10 st	163 T 0 × 10°°	8) 6.1×18°	#)-4, E = 10 th	854.9×10°	X) 5.1×10
1.06 × 39*	1.33×39°	ft1.5×10°	#12,0×10 ⁴⁰	#h II 2×10*	#) 1.3×18 th	#) 2.4×10 ²	#0.2.6×10**	#) 1, l×10
1.33 = 39*	1.34×10*	的4.5×39*	35 6.1×1011	粉6.6×10*	#5 T, 0 = 38°	#07.5×10*	40 T. 4×10°	#67,4×10
1.54×39°	1.50 = 10°	B7.2×W*	899,6×10**	#0.1.1×10*	$\theta(1,1\times 10^{10}$	#s1.2×10*	桁4.2×10*	#01,1×10
$1^{\circ}49 \pm 3\beta_{\rm S}$	1.46×394	F) 5.0 × 10*	953.4×10*	\$0.3.0×10*	903.5×38**	813.6×10^{11}	\$53.6×10*	#0.3.4×10
1.66135	2.60×30*	ID 6.3×39°	#07.2×10 th	和1.4×10 ^{to}	83.T.5×29 ²²	#17.1 × 10 th	M17.6×10*	#0.7.4×10
2.00=35"	2.50=10"	#01.9×10°	812.1×10*	新士0×10 ⁵⁶	10 L 0 × 16"	#0.2.0×10 ²⁴	#02.0×10*	#0.2.1×10
2.11×10*	3.10×10"	ft 7.3×19*	的1.4×10 ²²	#17.5×10*	#0.7.5×10**	#17.1×10*	的北京×田兰	#17.1×10
3,00 × 30°	3.53 × 30*	F) 9.7 Y 30°	89.9.7×10*	80 9.7 × 10 th	30 9,7×186	#0 9.7×10**	#09.7×10*	#0.9.7×10
3.58×30°	4. 60 × 10°	#09,7×30 ²²	899.7×10 ⁴⁶	80 W.T×10 ^{to}	#0.9,7×38**	#39.T×10°	80 K.T.×10**	80 9,1×10
4.00×31*	4.10 = 20"	ft 9.5×3F	#11.1×10*	#0.2.0×10 ⁶	#02,2×18*	#) 2.3×10°	85.2.4×10°	#12.1×10
0.24×10^{6}	5.40×31°	F) 0.6×10*	20 L (>10	#5.2.0×10°	#i 2.2×1F	#) 2.2×10*	16.2.4 K10°	#h 2.1×10
5.00 = 10°	5.33×30*	和ARXXXX	\$91.4×10	約2.0×HF	#12.2×1#	#12.3×10	的主机CIP	約2.1×10
$3.01\times31^{\circ}$	0.00 + 30°	FD 9, G = 30 ⁴	(0.1×10)	#0.2-0×10°	8) 2, 2 × 38°	#) 2.2×10°	MEAKE!	\$0.2,1×10
$6.01 = 10^{\circ}$	6.10 = 50°	$F(1.1\times10^4$	#0.1; E×10*	40 € 9×10 ₄	$R(12,5\times10^4$	#12.T×10	約 至8×10*	#12.1×10
6.74×10^{9}	7, 60 × 10 ⁶	F) L L < 10+	#01.8×10	新1.3×10°	#0.0.5×10*	#) 2.7×10*	約2.8×10 ⁴	#12.0×10
7.00×30°	7,30×10 ⁴	#51.1×10*	J0 L 6×10*	粉2.3×10*	#) 2,5×38*	#12.T×10*	粉生 8×10*	#) 2,1×10
7,581-38"	8.60×30°	#0.1.1×30*	#01.8×10*	#12.9×10°	80 2.5×384	Ft2.T×10°	89:2-8×10*	#):1.1×10
$8.06 \times 3P$	1.00×30°	F) 3:4 × 10°	NYY 8×16	10 € 9×10°	307,6×10*	#18.2×10*	#0:61,5×10*	#0%.7×10
$1.09 \times 30^{\circ}$	1.20 = 10	#E1.7×10*	$902.9{\times}10^{\circ}$	和北京区10°	#13,951P	#14.1×10*	#64.8×30*	例 & i×10
1.24 - 34	1,40 = 30°	$F(\cdot0,0=10^4$	890.0110	\$6.00×10c	$80.0,0\times 10^6$	#3:0.0×10*	8510.0×10*	#6.00 1×10
1,48 = 39	2.10×10	$F(:0.0\times 10^4$	#20.5×16	\$5.61,0×10°	#0.0,0×3#*	#14.0×10*	Ph 0: 0 × 10°	的 4.1×10
2.01 < 10"	3, 90 = 331	#0.0.0 × 30°	#90.0×16"	#0.0×10°	$92.0,9\times19^{\circ}$	#0.0.0×10*	#0.0x0×30°	#0 0,4×10
F01-31,	5.40 = 10"	#0:0.0 = 10°	#90.0×10*	#5:0×10"	$R(0,0,0) = 10^6$	#0 0:0×10*	#0.6.0×10*	#0.0.1×10

表2-1.7 直接ガンマ線及びスカイシャインガンマ線の評価に用いて原子が建屋原子 伊神内の稽質線展施度(2/2) (格納容器ペントの実施を想定する場合)

工术小书	- (MeV)			29.005	複度 (photo	tal) its		
FR.	上限(代表	24 時間後 時点	48時間後	たけ間後 時点	96時間後 時点	120 時間 後時点	144 時間 保貯点	168 時間
-	1.00×10*	#01.2×16 ²⁰	#13.6×19F	#15.2×10F	856.1×16 ²	P) 5, 5 × 30°	#14.8×10*	80 6 9 < 31
L 60×10 ⁺	2.00×10 ⁺	601.1×10 ⁶	613.9×16*	#1 5.8×10 [®]	\$16.7×16 ²	61.2×0°	#5 T. E = 10 ²⁰	的工作公司
Z.00×10°	3.00×10*	10.2.1×10 ₁₀	NT-5×10 ₄	BJ 7 3 × 10 _m	\$1.2'8×10 ₆	894.1×10**	8) 4.2×10°	10 4.3 CD
1.00×10°	4.30×10 ⁻⁷	89 6. T × 10*	MITTALE.	El 4.1×10*	\$5-4.9×10°	#91.2×00 th	10 T E = 10 m	80 E.7 < 2
4.50×10°	4.00×10 ⁻⁵	80 L 8×10 rd	80 4.7×10°	80 E. 6 × 10 ¹⁰	#57.5×16**	#57.9×30**	#0 0.2×10 th	10 0.3 (3)
6.06×10 ¹ 7.06×10 ¹	7.50×10 ⁻⁵	#91.2×10 ²⁴ #99.6×10 ²⁴	約3.1×10 ²² 約3.7×10 ²²	#14.4×10 ²⁷	#15.0×10 ² #17.2×10 ⁶	#9-1,3×10 ²²	8) ± 4×10 ² 8) ± 2×10 ²	的东东(1 的东4(1
		Fr4. 6 × 10 th				#33,9×30 th		
7.58×10°	1.00×10 ⁻⁷		Ny 1.8×TF	#5 3, 0 × 10 ^{rq}	\$6:3,6×16*		#0 4.1 = 10 th	P(4.21)
1.00×10°	1.50×10°	前8.6×10 ⁴⁴	#55.0×10**	10.2 e×10.	新2.9×10**	#9.3.0×20**	#0.2/1×10 ^{rt}	約3.1<2
1.88×10°	2.00×10°	#01.1×10*	803.1×18°	0.7 0 × 10.00	\$5.6×19°	Pi 3.6×20 th	#) 2.6 × 10°	#03.6<2
2.00×10*	3,00×10+	#9.3, 0=10 th	65 6.2×35 ²¹	#17,0×10 ^{to}	#h7.2×10 ^W	81.2×10 ²⁰	R) 7. 2 = 10 ²⁴	#0.T.2<2
3.00×10°	4.00×10*	10.2.8×10 ²⁰	M17.5×38**	#5 1.1 × 10 ²⁰	#01.3110P	(01.4×10 ²⁰	#) 1.5×10 ^{rt}	P01.6<2
4.00×10.	4.50×10 ⁻⁷	#91.4×10 ^{rs}	M3.7×29*	ED 1. 0 × 10 ¹⁵	約6.6×10*	B1,2×30**	#0.1, E×10 rd	#01.7K2
# DE×10.	3.10×10°	#0.2.1×10**	8) 4.2×10°	83.2:0×10 ₁₄	\$5.2×10°	\$9.5.3×30°	R) 1, 3 × 10**	800,313
5.10×10°	\$ 12×10 ⁻⁶	B) 6.8×10 ²³	N1.4×10 ²	B) 1.7×10 ²²	新 L T×10 ²¹	\$3.1.6×30 ¹⁸	80 1.6×10 ²⁴	約1.8<1
1.12×10°	8.00×10 ⁻¹	\$9.5.0×10**	NUTSOL.	@1.3×10°	#iT.6×10*	\$9.1,TX00**	#) 7. E=10 rd	的TAG
0,00×10°	T.00×10+	10.3, 4×10**	Mt.T, 0 × 18**	#) 6.3×10*	新8.7×16**	$B(A, B \times B)^{\otimes 2}$	#15.9×10 ¹⁰	#18,9×1
7,00×10°	8.00×10°	約9.4×10**	85 1.6×15**	#9 L.T×10**	新1.6×10 ²⁴	药 3.4×39**	初1.8×10 ⁴	药3.8()
8.00×10°	1.06×10°	#91.8×10**	的3.2×39**	#0.5×10**	#53.6×10 ⁴⁴	#83.6×30**	#0.5.6×10 ^{rs}	初3.6<3
T-00×38	1.10×10*	10 T E=10s.	MT1KIII.	#0.1.1×10**	80.2.2×10 ⁴	\$1.2×97*	#) 2, 2 = 10 ^{rt}	M2.212
1.33×38 ₆	1.34×10°	89.4.1×10 ¹⁷	85.6.3×35°	89-K-6×10 ⁽²⁾	#16.7×105	MATKE	If) €.7 × 10°	前67/1
1.34×3f*	1.60×10°	40.7.2×10 ²⁴	M1.0×39**	#01.1×10 ⁽¹⁾	#01.1×10*	#91.1×39**	#0 1.1×10 ¹⁸	#01.151
1.36×30*	1.66×10°	\$9.3,0×10**	852.4×10**	#) 1.5×10*	\$53.5×10*	#63.5×10°	803.5×10**	8)3.3<2
1.66×10°	2.06×10°	10 0° 3 × 10 4	85.7:3×10°	#) 7, 4×10**	#6.7.4×10°	817.4×10**	80 f. 4×10 rd	9)T-4<2
2.00×10°	2.16×10°	\$91,80010 ²⁴	約至6×30 ²⁰	80.2.0×10 ^{to}	約2.0×10 ⁴	892.0×10 ¹⁰	30 2.0×10 ^{rs}	M2.0<1
2.36×30°	3.00×10°	89.7, 1×10 ¹⁷	10.1.4×10°	#3.7, 6 × 10 ¹¹	W1.8×10 ⁰	89.7,9×30°	#0.7, E×10 ¹¹	10 T.3 < 2
2.06×34°	3.50×10*	(69.7×164	\$6.6.2×10°	#3 9. T × 10 ¹³	的头THIP	#39.7×39*	$\#) \oplus .7 = 10^{11}$	859,712
X 58×30°	4.05×10°	49.9.7×10**	的长7×38°	#818.7×10**	\$19.7×10 ¹⁰	#19.7×50**	#18.1×10**	#19L7K1
4.00×31°	4.567:10"	\$59.6×10*	M1.0×2F	#3 T. 0 × 10 ⁵	#r 2.2×10*	#0.2.3×39*	的2.4×10*	Ph 2.5<2
4.16×30°	3.00 ± 10°	89.9,6×10*	15 T 0 × 18;	#9 E 0 × 10 ⁶	N 2-28105	FD 2.5 X 30P	#D I. 4 = 10 ⁶	R02.141
5.00×3P	3.56×10°	89.9.6×10*	95 1.6 × 32+	#9.2.0×10*	#12.2×10	#32.3×30*	ID 2.4×10*	P02.512
3.16×10°	6.00×10°	約9.6×10*	89.1.6×32*	#12.0×10°	#12.2×10*	#12.3×10*	#12.4×10*	P(2.50)
$0.09\times10^{\circ}$	6.50 × 10"	49 1-1 = 10°	89.1.0×10*	30 T 3 = 10°	#12.5×10*	B1.7×10*	B) 2.6 = 10°	812,912
6.00×00°	7.00×10°	10.1 × 10*	#61.81C10*	#3.1.3×10°	#12.1×10*	892.7X095	#0.2.6×10*	約2.9<2
T,000×34°	7.10×10°	#91.1×10*	89.1.8×10*	F12.3×10*	#62.5×10*	492.7×305	#9.2.8 × 10*	802,912
T. 50×35°	9.00×10°	#01.1×10*	851.8×10*	#12.8×10*	的2.5×10	#12.7×10*	#12.8×10*	的支护公
8.00×3F	1.06×10 ¹	#33.4×10°	85.6×191	#11.0×10 ²	#0.17.8×10F	\$18.3×30°	#11E.6×10F	#18.8<1
1.00×3F	3.26×10°	#91.T×10*	M2.8×10*	#0.1.5×10*	新五9×10*	#0.4.1×10*	#0.4.3×10*	F14.443
1.26 - 10	1.40 × 10"	89 0.0×10°	85.0,0×30*	#3 % 0 × 10*	#1-0.0×10*	#9-0.0 × 20°	#0 0, 0 × 10*	約0.0<2
1.40×10°	2.00×10 ⁴	85 0.0×10*	85 0.0 X 30f	#14.0×10*	#0.0×10*	#10.0×30*	#0 6.0 × 10°	85 0.6 < 2
2.06×301	3.00×10°	MOLEXIE	N 0.0 × 10 ⁴	\$11.0×10*	約0.0×10F	#00.0×10*	#2 0.0 × 10°	\$0.0.0<2
3.00×36	8.00×16°	80 0.0 × 10°	10:0.0×23°	10 L 0 × 10"	W10.0×10*	90 0.0 × 20"	#0%.0×10*	#50.0<2

泊発電所3号炉

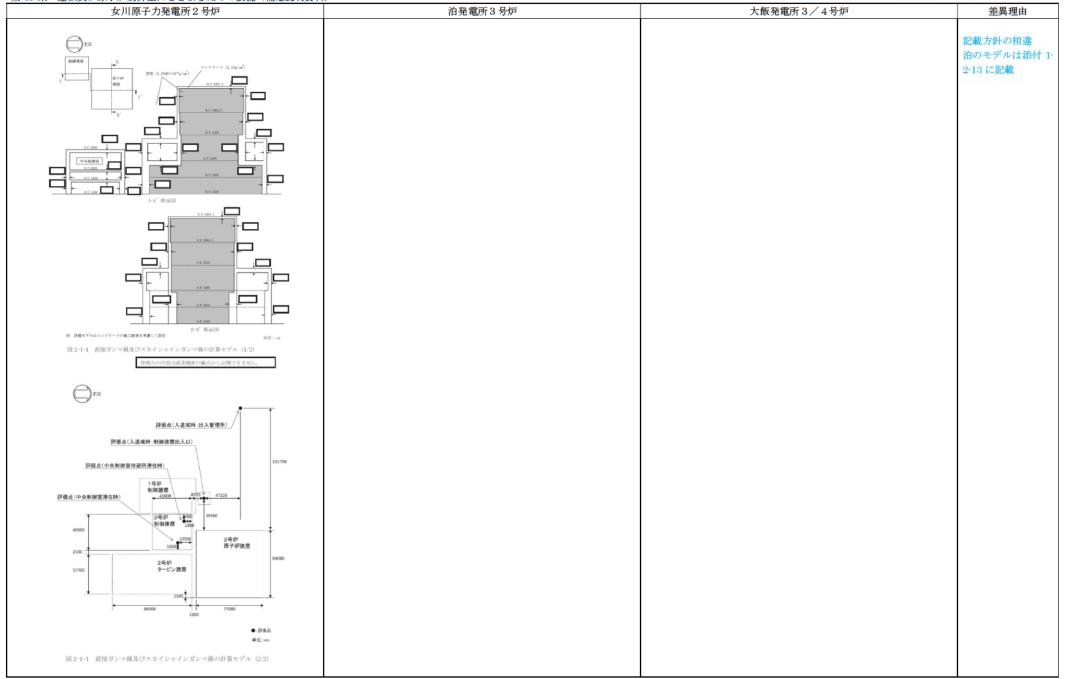
第6表 直接ガンマ線及びスカイシャインガンマ線の評価に用いる 建長内の種質線質熱度

	建型的の槓昇麻原風	及
モネルギー	エネルギー範囲	
MeV/dis)	(MeV/dis)	

代表エネルギー (MeV/dis)	エネルギー範囲 (MeV/dis)	原子炉格納容器内 積算線源強度(MeV)
0.1	E ≦ 0.1	1.7×10 ²
0.125	$0.1 < E \leq 0.15$	1.6×10 ²
0. 225	$0.15 < E \le 0.3$	1.9×10^{23}
0.375	$0.3 < E \leq 0.45$	3.3×10 ²
0.575	$0.45 < E \leq 0.7$	1. 4×10^{24}
0.85	0.7 < E ≦ 1	1.3×10 ²⁴
1. 25	1 < E ≦ 1.5	5. 0×10 ²
1.75	1.5 < E ≦ 2	1.2×10^{23}
2. 25	2 $<$ E \leq 2.5	7.2×10 ²
2. 75	2.5 < E ≦ 3	5, 8×10 ²
3.5	3 < E ≦ 4	5.8×10 ²⁰
5	4 < E ≦ 6	1.1×10 ²⁰
7	6 < E ≦ 8	2.6×10 ¹³
9.5	8 < E	4.0×10 ¹²

大飯発電所 3/4号炉

第6表 直接ガンマ線及びスカイシャインガンマ線の評価に用いる 建屋内の積算線源強度 (3号、4号共通)


(7日積算)

代表エネルギー (MeV/dis)	エネルギー範囲 (MeV/dis)	原子炉格納容器內 積算線源強度 (MeV)	アニュラス内 積算線源強度 (MeV)
0.1	E ≤ 0.1	2.2×10 ²³	2.3×1019
0.125	$0.1~<~E \leqq 0.15$	2.1×10 ²²	2.3×1017
0.225	$0.15~<~E~\leqq~0.3$	2.4×10 ²³	1.1×1019
0.375	$0.3~<~E \leqq 0.45$	4.1×10 ²⁵	2.0×1018
0.575	$0.45 < E \le 0.7$	1.9×10°4	9.9×1018
0.85	$0.7 < E \leq 1$	1.8×10 ²⁴	7.2×1018
1.25	1 < E ≦ 1.5	6.4×10 ²³	3.4×10 ¹⁸
1.75	1.5 < E ≤ 2	1.5×10 ²³	1.5×1018
2.25	2 < E ≤ 2.5	9.7×10 ²²	3.9×10 ¹⁸
2.75	$2.5 < E \leq 3$	7.9×10 ²¹	2.5×1017
3.5	$3 < E \leq 4$	8.1×10 ²⁰	2.3×1016
5	$4~<~E \leqq 6$	1.5×10 ²⁰	4.0×1015
7	6 < E ≦ 8	1.0×1015	2.5×10 ⁷
9.5	8 < E	1.6×10 ¹²	3.8×10 ⁶

個別解析による相違 評価コードが異な るため、エネルギー の区分が異なる。

差異理由

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

	女川原子力	力発電所:	2 号炉	北 明實料)	泊発電所3号炉						差異理由					
at a	2-1-8 防護装置の設備条	5件(1/3)			_											
項目 中央制御室機 事故発生から 気空調系再額 0分~3	評価条件 5 30分: 0m ² /h 8時間: 8,000m ² /h	選定理由 が心の変更を生しい 損傷がこれを発生して 損傷が見た。 はいれた。 はいれた。 がしている。 はいれた。 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	審査ガイドでの記載 4.2(2)。 原子が制 例第出内への外気取 人による放射性物 質の取り込みについては、非常用無気 空調設備の設計及 び運転条件に従っ て計算する。 4.3(3)f、原子が制 頻密の非常用機気	3	排		4.2(2)e. 原子炉制御室内に取り込まれる放射性物質の空気流入量は,空気流入水水を変が 流入率及び原子炉制御室ペウンダリ体 積(容積)を用いて計算する。	干国	b. 既設の場合では,空気流入空気流入空気流入率測定試験結果を基にる。		審査ガイドとの関係性	4.2/2/b 原子炉制御室、緊急時制御 室/緊急時対策所の建屋の表面空 気中から、次の二つの経路で放射性 物質が外気から取り込まれること を仮定する。 二 原子炉制御室/緊急時制御室 /緊急時対策所内に直接流入する こと(空気流入)	4.2/2/2e 原子炉制御室内に取り込まれる放射性物質の空気流入量は、空気流入量は、空気流入率及び原子炉制御室パウンダリ体積 (容積) を用いて計算する。		4.2(1)も 財設の場合では、空気流入率 は、空気流入率測定試験結果を基に設 定する。	個別解析による相違 ①の相違 記載箇所の相違 【大飯】
ス 空調 米 升 市 用 再 イ 電 運 転 い 起 動 遅 れ 時 間	30 分	基づき,非常 用電源の復旧 を見込んだ作 動時間	空調設権の作動に ついては、非常用電 脚の作動状態を基 に設定する。 4.2(2)e、原子炉制			4.2(2)e. 原 室/繁急時対から、次の二 外気から取りる。 こ 原子炉制 急時対策所内 気流入)	4.2(2)e. れる放射性 流入率及び 積 (容積)		4.2(1)b. 率は,空 設定する		伊西	4.2(2)e 原 室/緊急限 気中から、3 物質が外気 を仮定する と 原子す 万緊急略対	4.2(2)e 馬 れる放射 気流入率 ダリ体積	一一一	4.2(1) b は、空気 定する。	・個別解析による相 違はあるが概ね同等 の内容
事放時におけ る外気取り込 500m/h	モード(少量外気取入):	審査ガイドに 従って非常用 換気空調系から窓内に取り 入れることを 考慮	脚家の建屋の表面 空気中から、次の二 の経路で放射性 物質が外気から取り込まれることを 仮近する。 中原子が制御室の 非常用機気空間設 備によって室内に 取り入れること(外 気限人)	置条件	田 田	評価期間中は外気を運防することを前提と しているため, 中央制確室内には放射性物 質が外気から直接流入することのみを考慮	含む中央側御室バウンダ	人ろ可能性がある同フ 2定	5果 (0.15 回/h) を基 こして設定(添付 1-1-5	5、4号共通)	理 由	評価期間中は外気を運動することを 前提としているため、中央制御室内に は放射性物質が外気から直接流入す ることのみを考慮。	空調機器の体積を含む中央制御室パ ウンダリ体積として設定。	事故時運転員が立ち入る可能性があ る同フロアのエリア体積を設定	空気流入率測定的場結果 (0.17 回/h) を基に余裕を見込んだ値として設定 (添付 1:1-5 参照)	の内容
事故発生から 事故発生から 事故発生から 中央制御家符 避所加圧設備 の空気供給数 うち、大気 時間(途	50~ 45時間後:30m²/h 54~ 55時間後:30m²/h ⁶⁴ 55~168時間後:30m²/h 55~168時間後:30m²/h 加ベントの実施に伴い評価 に放出される放射性物質の 大部がが放出される開閉(数 配行資料22・間24・5 配行資料22・間24・5 に介護を特たせ、加圧設備に 正任時間を10時間と終定	運用を基に設 定。なお、代 を用います。 を取ります。 を取ります。 を取ります。 を取ります。 を取ります。 を取ります。 を取ります。 を取ります。 を取ります。 を取ります。 を取ります。 を取ります。 を取ります。 をいる。 をいる。 をいる。 をいる。 をいる。 をいる。 をいる。 をいる	4.3(3) f. 原子が制 御室の非常用機気 空調皮値の作動に ついては、非常用電 返の作動状態を基 に設定する。	中央制御室空調装置条件	選定	評価期間中は外気を3 しているため, 中央4 質が外気から直接流7	空闢機器の体積を含む リ体積として設定	事故時運転員が立ち入る ロアのエリア体積を設定	空気流入率測定試験結果 に余裕を見込んだ値とし、 参照)	中央制御室換気設備条件(3号、	設 定	評価期間中は外気 前提としているた。 は放射性物質が外 ることのみを考慮	空調機器の体積を カンダリ体積とし	事故時運転員が立ち入る可能 る同フロアのエリア体債を設定	空気流入率測定的 を基に余裕を見込 (添付1・1・5参照)	
比較のため一部再	月掲 - 2-1-8 防薄装置の設備条	h件 (3/3)		表 (1/2)	1					制御室	值	a Francisco				
		遵定理由	審査ガイドでの記載	第7表	- 1	1				中		が福	m ³	m ³	_д	
中央制御室の空 調バウングリ体 積 中央制御室 148㎡		直を基に設定	4.2(2) e. 原子炉制御 室に取り込まれる数 射性物質の空気流入 最は、空気流入率及び 原子炉制御室パウン ダリ体積(容積)を用 いて計算する。		使 用 値	評価において地館セナ	4.0×103 m3	3.8×10³ m³	0.5 国/h	7表(1/2)	使用	評価において考慮せず	$5.1 \times 10^3 m^3$	4.9×10³ m³	0.5 回/h	
比較のため一部再						01E				無						
	2-1-8 防護装置の設備条													The state of the s		
中央緩御室バウ	「原子力」 制研察のは るでは、 ついて () 基づき、1 中央制御 精: 14.00 いて空気 を実施し、 たで 0.21 り、空気 でた。 0.00 大で 0.22 り、空気 でた。 0.00 た 0.000 た 0.000 た 0.000 た 0.000 た 0.000 た 0.000 た 0.000 た 0.000 た 0.0000 た 0.000 た 0.000 c 0.	発電所中央 居住性に活に 内(現) 」に 1,2 号がの で (空間 2つ 被 を (空間 2つ を) を (空間 2つ を) を (空間 2つ を) を (空間 2つ を) を (空間 2つ を) に 2 号がら に 2 号がら に 2 号がら に 2 号がを よ と 仮と と と 仮と と と 女を と な をとす。	液ガイドでの記載 (1)b. 推設の場合 よ、空気後人物よ よ、空気後人物と は後人平衡定型機能 基に設定する。		項目	事故時における 外気取り込み	中央研御室 パウンダリ体積 (容積)	外部ガンマ線による 全身に対する線量評価時の 自由体積	控気流入率		目 薂	季払時における外気取り込み	中央制御室パウンダリ体債 (容積)	外部ガンマ線による全身に対する線量評 価時の自由体積	空気流入率	

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

	女川原子力系	発電所2号炉	5 / / / / / / / / / / / / / / / / / / /		泊発電所3号炉								差異理由				
較のため	再掲 表2-1-8 防護装置 母系件	测定度由			1ンルの 5設計値 7タ効率 代を適切		2 第 第 第 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	A気取 はこつい と計及び	3時制御 作用を考 ひいて、		种	びエアロブル 用条件での設 なお、フィル ョウ素類の性		発用後が上半発用にする。	の外気形の込みに配換備の設	(急島制御 スク番用 大ク番用 数につい	個別解析による相違
中央制御家摘 気空満系再係 環プテン定能		からの発生に を ののの発生に のののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 ののでは、 のいでは、 の	1. (12) e. 昇子尹朝 御本内への外気取 外による放射性物 質の取り込みについては、非常用泉気 変の取り込みについては、非常用泉気 変の設計及 で選挙を持たことでは、計事を持ちます。 では、非常用泉気 変が変がません。		審査ガイドでの記載 4.2(1)a. ヨウ素類及びエアロゾルの フィルタ効率は、使用条件での設計値 を基に設定する。なお、フィルタ効率 の設定に際し、ヨウ素類の性状を適切 に素値する。	国上	4.3(3)£. 原子炉制御室の非常用機気 空調設備の作動については、非常用電 源の作動状態を基に設定する。	4.2(2)6. 原子伊耐御省内への外気取入による放射性物質の取り込みについては、非常用機気空調設備の設計及び 運転条件に従って計算する。	4.2(3)c. 原子炉制御宏/緊急時削 窓/緊急時対策所内でマスク着用を3 離する。 ただし、マスクの除墜係数について, 記載はなし。		審査ガイドとの関係性	4.XDa. ヨウ素類及1 のフィルタ効率は、後 計値を基に設定する。 タ効率の設定に際し、 状を適切に考慮する。	书画	4.3/3/F 原子が制御底の非常用拠気 空間設備の行動については、非常日 電節の仕動状を含くいない。	4.2(2)を原子が制御室内へ入による放射性物質の取っいては、非常用級気空調	JAXON 原子や動物名、第40年の よび次、原子や動物名、第40年制 電人類急略対策所内でマスク着用 を考慮する。 ただし、マスクの原染係数につい た、記載なし。	記載箇所の相違 (マスクについて泊 は次項に記載) ・女川は電動ファン
中央制御室接 気空調系非常 用件易程運転 の起動遅れ時 間	30 9	速定した事 シーケンス 基づき。非 用電解の復 を見込んだ	に 御主の非常用摘気 営 型調設備の作動ニ 旧 ついては、非常用電 作 原の作動状態を基		(1) (1) (1) (1) (1) (1) (1) (1) (1) (1)	保倉	徳 瀬 4.3(3) f. 公理設備 計	# 4.2(2) E 入にJ では, 運転3	4.2(3) 第/項 (2.3) 第 (2.3) 第 (2.3) 2 (3	4号共通)	Æ	E 事故期間中報 め、設計値を 1-2-10 参照	を 事故期間中程 : め、設計値を 11-2-11 参照	に基づき、全 ドロートシンク 時間を見込ん 治式非常用発 作および現場 金非常用落魔	アンスに基づき、作 交流動力電源喪失 ッ要失を考慮	15 参照()	付き全面マスクを用いることで一部期間 において防護係数を
事故時における外気取り込 み	事故時運転モード(少量外気8 500g/h	動物関 審	用 特質が外気から取 り込まれることを 仮定する。 ・ 原子が新御名の 非常用機な直渡設 備によって家存に	開裝置条件	選 定 理 由 設計上期待できる値を設定 試験による確認値であり、事故期間中担保 できる除去効率であるため、設計値を評価 条件として設定(落付1-2-11参照)	5値を設定 値であり、事故期間中担 であるため、設計値を評 (添付1-2-11 参照)	選定した事故シーケンスに基づき。全交流 動力電源度失・最終ヒートシンク喪失を想 定した起動遅れ時間を見込んだ値 起動遅れ時間 300 分は、代替非常用発電機 による電源回接機件及び製場での手動によ 等での中央制御室非常用循環系統グンバ開機作 等での中央側部室非常用循環系統グンバ開機作 等での中央側部室非常用循環系統の道田ま		5 催 孫付 1-2-16 参照)	中央制御室換気設備条件(3号、4	定用	設計上期待できる値を設定 対象による確認値であり、事故期間中租 保できる商主効率であるため、設計値を 評価条件として設定(資付12-10参照)	設計上期谷できる値を設定 対象による確認値できり、等扱動間中租 係できる際法効率であるため、設計値や 評価条件として設定(総件19・11等形)	選定した事務シーケンスに基づき、全 交配が指数を発き、単発セートシンク が要失を設定した場解をしからの が が が に に に に に に に に に に に に に に に に	(旅付12-13 参照) 選定した事故シーケンス 繋時間については、交通 + 最終ヒートシンク整先	寺できる1	1000 として評価している。 【大飯】 ・個別解析による相
中央制御室将 避所加圧設備 の空気供給能	事故発生から 6 ~ 45 時間後: 事故発生から 45~ 55 時間後: 事故発生から 55~109 時間後: 事故発生から 55~109 時間後: 毎日 格納容器ペントの実施に 期間中に放出される旋伸	30m ² /h 特組億冷却 を用いて多 を収束する がからの記	代 系 金 4.3(3) 丘 原子が制 御室の非常用養気 支護政績の作後に ついては、非常財富) 中央制御室空調装置条	選 設計上期待できる 試験による確認 できる除去効率 条件として設定	設計上期待できる試験による確認してきる除去効率を発生が非常を表現が表	選定した事故シー 動力電源表失り 定した起動遅れ 起動遅れ時間 30 による電源回復 る中央制部条件 等での中央制部 でに要する時間。	線定した事故シ 国示してたは、 ートツンク概決	性能上期待できる値 (部付 1-2-15, 部付 1-2-16	表(2/2) 中央制御室		0~300分:0% 300 分~7 日: 95%	0~300分:0% 300分-1 日:99%	300 %	L38×10* m³/h L, 300 分後に起動	50 (洋価原照中マスク養用)	違はあるが概ね同等 の内容
TO SEALURISM IN	うち、大部分が放出される!時期(路付資料 2 2-4 回 1 所))に余裕を持たせ、加上る正圧化時間を10時間と	2-4-5 参 圧設操に 果を考慮し	20 に設定する。	第7表 (2/2)				9	(H)	第7表(使	300		ш.	海 (ただし、	(3年後	
	表 2-1-8 防護清潔	の設備条件(2/3)		搬	章 95 % 95 %	% 66 % 66		3. 後起動	を			22	チフィル	77 F.E.	(.)		
項目 中央制御室換気 空調系再格類フ イルタ装設高性 建エアフィルタ の除去効率	67X:05	港定理由 設計值を基に設定	審査ガイドでの記載 4.2(1)n. ヨウ素恒及 (ドエアザグルのフィル の効率は、使用条件で の設計質を集に設定す ち、たまり、フィルタの 率の設定に関し、ヨウ 素恒の性状を確切に考 遂する。		使用值 0~300分~7日:95》	0~300 分:0 % 300 分:0 % 300 分~7 日:99 %	300 %	5.1×10 ^{3 m3} /h (ただし,300分後起動)	50 (洋価期間中マス		項目	央制御室非常用循環設備よう素フ タによる除去効率	央制御室非常用循環設備微位チフ ダによる除去効率	別御宮井奈用循環設備フィバ る除主効率遅右時間	中央部副客域気設備井常用商環ファ 職	マスクによる解説係数	
中央制御主接気 空調系再循環フ イルタ装置チャ コールフィルタ の貸去効率	格ガス:05 無核よう素:95 有様よう素:95 校子飲放射性物質:05	16E 1:-	MUE		目 5用循環系統 - タによる 5率	5用循環系統 ソタによる 5率	/用着環系被 による (社時間	御金 アン流量	5 防護係数	:	L	松中	松中	# 4	1000		
中央補簡単パウングリッの外気 の直接成入率	t. 0 HE/h	が一方を証明中央 対解率の保存性に係 を超ばく評価を出こ ないて(仲間) 起づき、北支与がの 前:11,000円 につ いて等別度、大変を を実施した状態。最 大でも、21,21年内であ では、2000円 につ ので発度を表現。最 大でも、21月内であ のが、2000円 のか のが変化入量を こ 21月のでかたを のかが変化入量を も、接近できた状態。 の、形はとなるた の、形はとなるた の、接近を が、上でが、上で の、地でを の、地で のが、のか のが、のが、のか のが、のが、のが、のが、のが、のが、のが、のが、のが、のが、のが、のが、のが、の	4.2(1)b. 既政心体合 它は、突突成入率は、 空気或入率限定接触前 聚全局に設定する。		項 目 中央制御を非常用箱標系装 よう素フィルタによる 除去効率	中央制御室非常用希爾系制 微粒子フィルタによる 除去効率	中央制御室非常用循環系統 フィルタによる 除主効率遅れ時間	中央制御者	マスクによる防護係数								

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運	転員が原子炉制御室にと	どまるための	設備(補足説明資料	4)	7/	汨 宠 电/// 、	- • //	A基準週合性				*水	字:記載表現、設備/	占杯の相違(実質的な相違なし)
	女川原子力発電					泊	発電所3号	炉			大飯	発電所 3 /	/ 4 号炉		差異理由
項目 中央制御家の空 調バウンダリ体 植 放射性物質のガ	表 2-1-8 防護装置の 評価条件 中央制御室パウンダリ; 8,900a ² 中央制御室内待避所: 148a ² 中央制御室パウンダリ; 8,900a ³	設備条件(3/3) 選定理由 設計値を基に設定	審査ガイドでの記載 4.2(2)e. 原子が制御 空に取り込まれる放 射性物質の空気流入 最は、空気流入率及び 原子が副御空パウン グリ外植(容積)を用 いて計算する。		審査ガイドでの記載	交替考慮時の原子炉制御室滞在時間 について、記載なし。	交替考慮時の入 <u>退城回数</u> について, 記 載なし。	入退域時の滞在時間について、記載なし。		審査ガイドでの記載	交代考慮時の原子炉制御室滞在時間について、記載なし	交代考慮時の入退城回数について、 記載なし	入退域時の潜在時間について、記載 なし。		⑥の相違
ンマ線による外 部被ばくに係る 容積	5,900m 中央制御室內待難所: 148m ²	同上	同上			5 交替とし, 滞在時間と	5 交替とし,城回数とし	E入口まで 界から出入 2考慮して, E入口まで	()		25				
マスクの 防護係数	入通敏時:50 (1日目のみ1,000) 中央制御宝滞在時:50 (1日目のみ1,000)	性能上期待できる 値(部付資料22-12 参照)。入退城時及 び中央制御室滞在 時ともにマスクの 着用を考慮した。	②運転員はマスクの 着用を考慮してもよ い。ただしその場合 は、実施のための体制 を整備すること。	慮条件		応員の勤務形態として5直25交替とし、 面期間中,最大となる運転員の滞在時間と で設定 (落付 1-1-6 参照)	運転員の勤務形態として5直2.5交替とし 評価期間中,最大となる班の入退城回数と て設定(添付1-1-6参照)	周辺監視区域境界から中央制御室入口まで を評価対象とし、周辺監視区域境界から出入 管理建屋入口までは車での移動を考慮して、 出入管理建屋入口から中央制御室入口まで は徒歩での移動を考慮して設定	(3号、4号共通)	定理由	運転員の勤務形態として5直25交代と 評価期間中、最大となる班の滞在時間と 設定(添付1-1-6参照)	運転員の勤務形態として5直2.5交代とし、 評価期間中、最大となる班の入退域回数と して設定 (添付1-1-6参照)	周辺監視区域境界から制御室入口までを評価対象とし、周辺監視区域から正門、正門、 から事務所入り口までは車での移動を考慮 して、事務所入り口から中央制御室入り口 までは徒歩での移動を考慮して設定。		
ョウ素剤の服用	未考慮	保守的に考慮しな いものとした	②交代要員体制を考	運転員交替考慮条件	遡	運転員の勤務形態とし 評価期間中,最大とな? して設定(添付1-1-6	運転員の勤務引 評価期間中, 星 て設定(添付	周辺監視区城境界から中 を評価対象とし、周辺監告 管理建屋入口までは車で 出入管理建屋入口から中 は徒歩での移動を考慮し	運転員交代考慮条件	则	転員の勤務形 価期間中、最 定(添付1·1·6	転員の勤務形 価期間中、最 大設定 (添付	辺監視区城境 対象とし、周 ら事務所入り て、事務所入 では徒歩での		
要員の交替	考慮する	運用を基に設定	値してもよい。ただし その場合は、実施のた めの体制を整備する こと。	第 8 表				5, 10 分間 分間	運転員交	値	東陸	規能し			
人追城に 要する時間	入城及び進城でそれぞれ 1 回当 たり、 ・出入管理所に 7 分とどまるもの とする ・制御健屋出入口に 5 分とどまる ものとする	実測値に余裕を持たせ設定			使用値	49 時間	10回	入退城1回あたり, 入退城の経路に沿って, ・出入管理建屋入口に10分間 ・中央制御室入口に5分間 とどまるものとする。	第8表	使 用	49 時間	10回	入退域1回あたり、 入退域の経路に沿って、 ・正門に3分 ・事務所入り口に3分 ・中央制御室入り口に5分		
					ш	中央制御室部在期間	西黎	潜在時間		条件	中央制御室滞在期間	回数	田松中郷		
					項	中央書		入退城		評価	中央制御		入退城		

泊発電所3号炉 SA基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第 59 余 ;	<i>重転員か原子炉制御至得</i> 女川原子力	発電所2号炉	文/HI / TIT/CIN/91頁1	1)	泊発電所3号炉					大飯発電所 3/4号炉	3		差異理由
項目	表 2-1-9 線量換算係数及び均 評価条件	也表面への沈着速度の条 選定理由	件 審査ガイドでの記載	Г	دُ		への沈 着及び 他表面		對	記載な	によった。 大学を には を は は は は は は は は は は は は は		(MD(14745) - 1-740*
線量換算係数	成人実効線最換算係数を使用 (主な核種を以下に示寸) 1-131:2.0×10* Sv/Bq 1-132:3.1×10*10* Sv/Bq 1-133:4.0×10* Sv/Bq 1-134:1.5×10*10* Sv/Bq 1-135:9.2×10*10* Sv/Bq (cs-134:2.0×10* Sv/Bq (cs-136:2.8×10* Sv/Bq (cs-137:3.9×10* Sv/Bq (cs-137:3.9×10* Sv/Bq (cs-137:3.9×10* Sv/Bq (cs-137:3.9×10* Sv/Bq (cs-137:3.9×10* Sv/Bq (cs-137:3.9×10* Sv/Bq (cs-137:3.9×10* Sv/Bq (cs-137:3.9×10* Sv/Bq (cs-137:3.9×10* Sv/Bq	ICRP Publication 71 及び ICRP Publication 72 に基づく	-	************************************	#14/2-1-1、2.8cm 液量換算係数について,記載なし。	呼吸率について、記載なし。	4.2(2)d. 放射性物質の地表面への沈 着評価では、地表面への乾性沈着及び 路雨による湿性沈着を考慮して地表面 沈着濃度を計算する。	Input Parameters"	3号、4号共通) 審査ガイドとの関係	業 基本 で で で で で で に の で に の で に の に に に に に に に に に に に に に	が が大地状面 を水道した。 の大道学面では、 の大道学面では、 の大道学面では、 の大道学面では、 の大道学面では、 の大道学面では、 の大道学面では、 の大道学面では、 の大道学面では、 の表面では、 の大道学面では、 の表面では、 のまで、 の。 の。 の。 の。 の。 の。 の。 の。 の。 の。	na me ters"	個別解析による相違・女川では有機よう素の沈着速度を別途評価しているが、泊は保守的に他と同じ値を採用している。
呼吸率	ICRP Publication 72 に基づく 1.2 m ³ /h	ICRP Publication 71 に 基づき、成人活動時の呼 吸率を設定 線量目標値評価指針(降 水時における沈着率は乾		の沈着速度の条件 宇 理 由	1年7巻7巻7人	を設定 1 に基づく	地表面沈着 て乾性沈着 Vol. 2 ^{#1} よ	Quantification of Major I	長への沈着速度の条件(3号、 設定理由	ICRP Publication 71等に基づく	成人活動的の呼吸率を設定 ICRP Publication 71に基づく 評価点での気象条件を踏まえた地表面。 沈着速度を基に、置性完善を導進して の程式者連度の44年を定定 が住土着速度1NREGCR4551 ** Vol.2*** より設定(指付12-16、12-17 す 参照)	ntification of Major Input Par	
地表への 沈着速度	エアロゾル粒子:1.2 cm/s 無機よう素:1.2 cm/s 有機よう素:4.0×10 ³ cm/s 希ガス:沈着なし	操助の 2~3 倍大きい) を参考に、履性沈着を考 慮して乾性沈着速度 (0.3cm/s) の 4 倍を速 定。乾性沈着速度は MRRG/CR-4551 Vol.2*1 及び MRPB-K322 より設 定。(添 付 資 料 2 2~9,2~10,2~11 を参照)	価では、地表面への乾 性沈着及び降雨によ る湿性沈着を考慮し て地表面沈着濃度を	呼吸率及び地表へ選り		成人活動時の呼吸率を設定 ICRP Publication 71に基		Accident Risks:	線量換算係数、阿吸率及び地表 使 用 値		1.2 m/h	Severe Acadent Risks: Qua	
	t-4551 Vol.2"Evaluation of Sever urameters"		fication of Major	線量換算係数,				of Severe	第9表 線量機	成人 実効機 振動解 核種を以下に示す) F131:20×10* F132:31×10* F133:40×10* F135:92×10* Cs-136:52×10* Cs-136:22×10* G-137:33×10* 基づく		2"Evaluation of	
				第9表 用 申	10-10-10-10-10-10-10-10-10-10-10-10-10-1	1.2 m ³ /h		:米国 NUREG/CR-4551 Vol.2 "Evaluation of	第 第	線量機算係數	呼吸率地表への沈音速度	F1:米国 NUREG/CR-4651 Vol.	
				H	· · · · · · · · · · · · · · · · · · ·	呼吸率	地表への沈着速度	※1:米国 NUREG/			,	r	
					•								

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉

添付1-2-2

事故シーケンス選定の考え方について

炉心の著しい損傷が発生した場合の中央制御室の居住性に係る被ば く評価に当たっては、評価事象として、重大事故等対策の有効性評価 において想定する格納容器破損モードのうち、 運転員の被ばくの観点 から結果が最も厳しくなる事故収束に成功した事故シーケンスを選定 する必要がある。

合の中央制御室の居住性を確認する上で想定する事故シナリオとし て、炉心損傷が発生する「大破断LOCA+HPCS失敗+低圧ECCS失敗+全 交流動力電源喪失」シナリオを選定した。

なお、女川原子力発電所2号炉においては、炉心の著しい損傷が発生 したと想定する場合、第一に代替循環冷却系を用いて事象を収束する こととなる。しかしながら、被ばく評価においては代替循環冷却系の 運転に失敗することも考慮し、原子炉格納容器フィルタベント系を用 いてサプレッションチェンバの排気ラインを使用した格納容器ベント を実施する場合も評価対象とする。

1. 事象の概要(格納容器ベント実施時)

2-2 事象の選定の考え方について

- (1) 大破断LOCAが発生し、原子炉格納容器内に冷却材が大量に漏え いする
- (2) 更にHPCS失敗、低圧ECCS失敗、全交流動力電源喪失(SBO)を想 定するため、原子炉圧力容器への注水が出来ず炉心損傷に至る。 事象発生25分後に低圧代替注水系(常設)(復水移送ポンプ)に よる原子炉圧力容器への注水を開始することで、原子炉圧力容 器破損は回避される。
- (3) その後、原子炉圧力容器への注水及び格納容器へのスプレイを 実施するが、事象発生から約44時間経過した時点で、外部水源 注水量限界 (サプレッションプール水位が真空破壊装置下端-0.4m (通常運転水位+約2m)) に到達しスプレイを停止する。
- (4) 格納容器スプレイを停止後、事象発生から約45時間後に原子炉 格納容器フィルタベント系を用いたベントを実施する。

2. 想定事故シナリオ選定

の選定を行い、起因事象に基づく事故シナリオの抽出及び分類を行う。 その後, 重大事故等対策の有効性評価及び事故シナリオの選定を行う。

(1) 起因事象の選定

プラントに影響を与える事象について, 内部で発生する事象と外 部で発生する事象(地震,津波,その他自然現象)をそれぞれ分析る。 し、事故のきっかけとなる事象(起因事象)について選定する。

事象として、従前より許認可解析の対象としてきた事象である運転

泊発電所3号炉

重大事故時の居住性に係る被ばく評価において、評価事象について は、有効性評価で想定する格納容器破損モードのうち、中央制御室の 運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した 事故シーケンスとして、格納容器破損防止対策の有効性評価における 雰囲気圧力・温度による静的負荷のうち、格納容器過圧の破損モード 女川原子力発電所2号炉においては、炉心の著しい損傷が発生した場 において想定している。 大破断LOCA 時にECCS 注入及び格納容器スプ レイに失敗するシーケンスを対象としている。

> 中央制御室の被ばく線量は、放出された放射性物質からの線量が支 配的であることから、放射性物質の放出量が多くなるシーケンスが中一配的であることから、放射性物質の放出量が多くなるシーケンスが中 央制御室被ばくの観点から厳しくなるシーケンスである。そこで, 放 射性物質の放出量を基に中央制御室被ばくの観点から厳しいシーケン スについて以下に示す。

ECCS 注水機能喪失や全交流動力電源喪失等の炉心損傷防止シーケ ンスでは、炉心が損傷しないことから大規模な放射性物質の放出はな い。一方、炉心が損傷する事象では、大規模な放射性物質の放出が伴 うため、被ばく評価上厳しくなる。

炉心が損傷する事象としては、泊発電所3号炉の場合、格納容器破 損防止対策の有効性に係る格納容器破損モードとして選定される、「大 破断LOCA 時+ECCS 注入失敗+格納容器スプレイ失敗」、「全交流動 力電源喪失時+補助給水失敗」及び「大破断LOCA 時+ECCS 注入失敗」| 力電源喪失時+補助給水失敗」及び「大破断 LOCA+ECCS 注入失敗」で である。

ここで被ばく評価の観点で厳しくなる条件としては、炉心損傷に至 るまでの時間が短い場合、格納容器スプレイが失敗する場合及び原子 炉格納容器の圧力が高く推移する場合である。

炉心損傷に至るまでの時間が短い場合では、アニュラス空気浄化設 備の起動によりアニュラス空気浄化設備のフィルタを介して放射性物 | 備の起動によりアニュラス空気浄化設備のフィルタを介して放射性物 質の放出が大幅に低減する効果が期待できない時間がある。

格納容器スプレイが失敗する場合では、流量が少ない代替スプレイ を用いることから、原子炉格納容器内に放出されたよう素やセシウム 等の放射性物質を除去する効果が小さくなる。

原子炉格納容器圧力が高く推移する場合では、原子炉格納容器貫通 想定事故シナリオ選定については、事故のきっかけとなる起因事象 部等からの漏えい率が大きくなることから、放射性物質の放出量が多 くなる。

> 炉心が損傷する事象として選定した3 事象について、具体的な被ば く評価上の条件の相違点及び被ばく評価への影響を第1表にまとめ

第1表のとおり、炉心損傷に至るまでの時間が短い場合、かつ、格納 プラント内部で発生する事象については、プラントの外乱となる「容器スプレイが失敗する場合、かつ、原子炉格納容器圧力が高く推移 する場合である「大破断LOCA 時にECCS 注入機能及び格納容器スプレ

事故シーケンス選定の考え方について

大飯発電所 3/4号炉

重大事故時の居住性に係る被ばく評価において、評価事象について┃るシーケンスを選定 は、有効性評価で想定する格納容器破損モードのうち、中央制御室の 運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した ていることに差異は 事故シーケンスとして、格納容器破損防止対策の有効性評価におけるない。 雰囲気圧力・温度による静的負荷のうち、格納容器過圧の破損モード において想定している、大破断 LOCA 時に ECCS 注入及び格納容器ス プレイに失敗するシーケンスを対象としている。

中央制御室の被ばく線量は、放出された放射性物質からの線量が支 央制御室被ばくの観点から厳しくなるシーケンスである。そこで、放 射性物質の放出量を基に中央制御室被ばくの観点から厳しいシーケン スについて以下に示す。

ECCS 注水機能喪失や全交流動力電源喪失等の炉心損傷防止シーケ ンスでは、炉心が損傷しないことから大規模な放射性物質の放出はな い。一方、炉心が損傷する事象では、大規模な放射性物質の放出が伴 うため、被ばく評価上厳しくなる。

炉心が損傷する事象としては、大飯発電所 3.4 号炉の場合、格納容 器破損防止対策の有効性に係る格納容器破損モードとして選定され る、「大破断 LOCA+ECCS 注入失敗+格納容器スプレイ失敗」、「全交流動 ある。

ここで被ばく評価の観点で厳しくなる条件としては、炉心損傷に至 るまでの時間が短い場合、格納容器スプレイが失敗する場合及び原子 炉格納容器の圧力が高く推移する場合である。

炉心損傷に至るまでの時間が短い場合では、アニュラス空気浄化設 質の放出が大幅に低減する効果が期待できない時間がある。

格納容器スプレイが失敗する場合では、流量が少ない代替スプレイ を用いることから、原子炉格納容器内に放出されたよう素やセシウム 等の放射性物質を除去する効果が小さくなる。

原子炉格納容器圧力が高く推移する場合では、原子炉格納容器貫通 部等からの漏えい率が大きくなることから、放射性物質の放出量が多 くなる。

炉心が損傷する事象として選定した3 事象について、具体的な被ば く評価上の条件の相違点及び被ばく評価への影響を第 1 表にまとめ

第1表のとおり、炉心損傷に至るまでの時間が短い場合、かつ、格 納容器スプレイが失敗する場合、かつ、原子炉格納容器圧力が高く推 移する場合である「大破断 LOCA 時に ECCS 注入機能及び格納容器ス

記載方針の相違 ・具体的な方針とし て型式による相違は あるものの、最も被 ばく評価が厳しくな した考え方を記載し

差異理由

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉 時の異常な過渡変化(外部電源喪失等)及び設計基準事故(原子炉 冷却材喪失等)を選定する。また、原子炉の運転に影響を与える事 象として、非常用交流電源母線の故障、原子炉補機冷却系の故障等 を選定する。

プラント外部で発生する事象については、地震、津波及び地震・ 津波以外の自然現象の55事象から、地域性等を考慮して12事象(洪 水,風(台風),竜巻,凍結,降水,積雪,落雷,地滑り,火山の 影響、生物学的事象、森林火災及び高潮)を選定する。また、設計 基準を大幅に超える規模の事象発生を想定した上で、プラントに有 意な頻度で影響を与えると考えられる場合は、考慮すべき起因事象 とする。

(2) 起因事象に基づく事故シナリオの抽出及び分類

イベントツリー等により、事故のきっかけとなる事象(起因事象) を出発点に、事象がどのように進展して最終状態に至るかを、安全 機能を有する系統の動作の成否を分岐として樹形状に展開し、事故 シナリオを漏れなく抽出する。

抽出した事故シナリオを事故進展の特徴によって、表2-2-1のとお りグループ別に分類する。

表2-2-1 運転中の炉心損傷に係る事故シナリオグループ

出力運転中の炉心損傷に係る 事故シナリオグループ	概要
崩壊熱除去機能喪失	崩壊熱の除去に失敗して 炉心損傷に至るグループ
高圧・低圧注水機能喪失	低圧注水に失敗して 炉心損傷に至るグループ
高圧注水・減圧機能喪失	高圧注水に失敗して 炉心損傷に至るグループ
全交流動力電源喪失	電源を失うことにより 炉心損傷に至るグループ
原子炉停止機能喪失	止める機能を喪失して 炉心損傷に至るグループ
LOCA時注水機能喪失	LOCA時に注水に失敗して 炉心損傷に至るグループ

(3) 重大事故等対策の有効性評価及び事故シナリオの選定

(2) で分類した事故シナリオのうち、出力運転中の原子炉にお ける崩壊熱除去機能喪失、高圧・低圧注水機能喪失、高圧注水・減 圧機能喪失、全交流動力電源喪失及び原子炉停止機能喪失について は、炉心損傷に至らないため、重大事故等対処設備が機能しても炉 心損傷を避けられない事故シナリオは、LOCA時注水機能喪失のみと なる。

しかしながら、重大事故等対策の有効性評価においては、格納容 器破損モードとして、雰囲気圧力・温度による静的負荷(格納容器 過圧・過温破損) (LOCA時注水機能喪失) に加えて、高圧溶融物放 出/格納容器雰囲気直接加熱 (DCH),原子炉圧力容器外の溶融燃料

泊発電所3号炉 果となる。

したがって、本評価においては、「大破断LOCA 時にECCS 注入機能 及び格納容器スプレイ機能が喪失する事象」にて評価を行っている。

ジーケンス	大破断LOCA時に ECCS 注入機能及び格納容器スプレイ機能が要素スプレイ機能が要失する事象	大破断LOCA時に BCC3 注入機 全交流動力電源喪失時に補 大破断LOCA時にECC3 注入機能及び格納容器スプレイ機 助給木機能が喪失する事象 能が喪失する事象	大破断 DCA 時に ECCS 注入機能が喪失する事象	中央制御室被ばくへの 影響
炉心溶融開始	約 19 分	約3時間	約24分	
○格勲容器メプレイ	失敗 (代替格納容器スプレイポン プによる格納容器スプレイ 成功)	失敗 (代替格納容器スプレイボン (代替格納容器スプレイボン プによる格納容器スプレイ プによる格納容器スプレイ 成功)	成功	格納容器スプレイが成功すること により、スプレイ水による除去効 果が大きくなるので、格納容器からの放出量は低減される。 したがって、失敗の方が厳しい結 果となる。
②アニュラス空 気浄化設備の 作動	アニュラス空 アニュラス空気浄化設備作気浄化設備の 気浄化設備の動前に放出が開始。 フィルタ効果を期待できな い時間がある。	アニュラス空気浄化設備作動後に放出が開始。 動後に放出が開始。 すべての時間でフィルタ効 果を期待できる。	アニュラス空気浄化設備作動前に放出が開始。 動前に放出が開始。 フィルタ効果を期待できない時間がある。	②アニュラス空 アニュラス空気浄化設備作アニュラス空気浄化設備作アニュラス空気浄化設備作アニュラス空気浄化設備作アニュラス負圧達成後はフィルタ 気浄化設備の動前に放出が開始。 動後に放出が開始。 動前に放出が開始。 で捕集されるため、アニュラス空 アイルタ効果を期待できなすへての時間でフィルタ効フィルタ効果を期待できな気浄化設備作動前に放出が開始さ い時間がある。 果を期待できる。 い時間がある。 れる方が厳しい結果となる。
③原子炉格納容 器の圧力	事象発生初期から, 高い圧力 で推移する。	冷却材喪失事故ではないた め,原子炉格納容器の圧力上 昇は緩やかである。	格納容器スプレイが成功するため,原子炉格納容器の圧力は他の2事象に比較して,低く推移する。	③原子炉格 納容事象発生初期から,高い圧力治均材喪失事故ではないた。格納容器スプレイが成功す。原子炉格納容器圧力が高く推移す器の圧力 で推移する。 め、原子炉格納容器の圧力上るため、原子炉格納容器の圧 るほうが、原子炉格納容器質通部昇に出た またた。 早は緩やかである。 おは他の2事象に比較して、等からの漏えい率が大きくなり、低く推移する。 飯しい結果となる。

大飯発電所 3/4号炉 イ機能が喪失する事象」が、中央制御室の被ばく評価上最も厳しい結 プレイ機能が喪失する事象」が、中央制御室の被ばく評価上最も厳し い結果となる。

したがって、本評価においては、「大破断 LOCA 時に ECCS 注入機能及 び格納容器スプレイ機能が喪失する事象」にて評価を行っている。

	にECCS 注 する事象 中央制御室被ばくへの 影響	8	格納容器スプレイが成功する ことにより、スプレイ水によ る除去効果が大きくなるの で、格納容器からの放出量は 低減される。 したがって、失敗の方が厳し い結果となる。	ニュラス アニュラス空気浄化設 アニュラス空気浄化設 アニュラス空気浄化設 アニュラス負圧達成後はフィ気浄化設 保動前に放出が開始。 備作動前に放出が開始。 体下が、アニの作動 フィルタ効果を期待ですべての時間でフィルフィルタ効果を期待でコラス空気浄化設備作動前にの作動 きない時間がある。 タ効果を期待できる。 きない時間がある。 放出が開始される方が厳しい おはい時間がある。	③原子炉格納事象発生初期から、高い冷却材喪失事故でない。格納容器スプレイが成。原子炉格納容器圧力が高く推容器の圧力 圧力で推移する。 ため、原子炉格納容器の 功するため、原子炉格納 移するほうが、原子炉格納容器の 対するため、原子炉格納 移するほうが、原子炉格納容圧力は整め圧力は他の2事象器貫通部等からの漏えい率が 圧力上昇は緩やかであ 容器の圧力は他の2事象器貫通部等からの漏えい率が る。 に比較して、低く推移す大きくなり、厳しい結果となる。
第1表 各シーケンスの比較	大破断LOCA時に ECCS 注 (全交流動力電源喪失時 大破断LOCA時に ECCS 注入機能及び格納容器ス に補助給木機能が喪失 入機能が喪失する事象プレイ機能が喪失する プレイ機能が喪失する する事象	約3.1時間 約27分	成功 学佐圧注水ポンプに 格納容器スプレイ)	アニュラス空気浄化設 アニュラス空気浄化設備作動後に放出が開始。備作動前に放出が開始。備作動前に放出が開始。すべての時間 でフィル フィルタ 効果を期待ですがある。 きない時間がある。	材態失事故でない 格納容器スプ、原子炉格納容器の功するため、原上昇は緩やかであ容器の圧力は化し、原土・大・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
	大破断LOCA時にECCS注 全交流動 入機能及び格納容器スに補助給 プレイ機能が喪失する する事象 事象	約21分	失敗 (代替低圧注水ポンプに (代替低圧注水ポンプに よる格納容器スプレイよる格納容器スプレイ 成功)	ニュラスアニュラス空気浄化設 アニ気浄化設備作動前に放出が開始。備作の作動 フィルタ効果を期待ですべきない時間がある。タ効・クグ・クグ・クグ・クグ・クグ・クグ・クグ・クグ・クグ・クグ・クグ・クグ・クグ・	原子炉格納事象発生初期から、高い 合却容器の圧力 圧力で推移する。 ため、 圧力で
	シーケンス	炉心溶融開始	○格納容器スプレイスプレイ	②アニュラス 空気浄化設 備の作動	③原子炉格納 容器の圧力

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料			
女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
ー冷却材相互作用(FCI),水素燃焼,溶融炉心・コンクリート相互			
作用 (MCCI) の計5つを想定している※1。			
これらのモードにおける原子炉格納容器の破損防止のための対応			
は、LOCA時注水機能喪失とDCHに集約されているため、LOCA時注水機			
能喪失とDCHのうち、運転員の被ばくの観点から結果が厳しくなる事			
故シーケンスを確認した結果、LOCA時注水機能喪失の方が厳しくな			
る結果となった(「2-20 格納容器雰囲気直接加熱発生時の被ばく評			
価について」を参照)。			
Import of seems			
101 1 1, to the N All Me 18 th M. A. et a countrie No. 1, All Methods do de physic M. S. 1.			
以上より、炉心損傷が発生するLOCA時注水機能喪失を想定事故シナ			
リオとして選定した。			
なお, 前述のとおり, 炉心の著しい損傷が発生したと想定する場合,			
第一には代替循環冷却系を用いて事象を収束することとなる。しかし			
ながら、被ばく評価においては代替循環冷却系の運転に失敗すること			
も考慮し、原子炉格納容器フィルタベント系を用いてサプレッション			
チェンバの排気ラインを使用した格納容器ベントを実施する場合も評			
価対象とした。			
Marie			
※1 格納容器破損モード「DCH」,「FCI」及び「MCCI」は,重大事故			
等対処設備に期待する場合はこれらの現象の発生を防止するこ			
とができるが、「実用発電用原子炉及びその附属施設の位置、構			
造及び設備の基準に関する規則の解釈」第37条2-1(a)において、			
「必ず想定する格納容器破損モード」として定められているた			
め、評価を成立させるために、重大事故等対処設備の一部に期待			
しないものとしている。			

女川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3/4号炉	差異理由
	添付1-2-3		記載方針の相違
	W		・泊では、ウラン燃
	居住性評価に用いる炉心選定の考え方について		料炉心、MOX 燃料等
			荷炉心それぞれでの
	居住性評価における被ばくについては、一般的に内部被ばくによる		炉心内蓄積量と放出
	寄与が大きい。そのため、重大事故時の居住性評価においては、内部		放射能量を評価し、
	被ばくに着目して炉心を選定している。 ウラン燃料炉心(g1)及びMOX 燃料装荷炉心(g2)における炉心内蓄積		炉心選定の考え方に ついて記載してい
	量及び放出放射能量を第1表及び第2表に示す。MOX 燃料装荷炉心で		る。
	は、ウラン燃料炉心に比べ、内部被ばく評価に用いられるI-131 等価		20
	換算値が大きい。従って,重大事故時の居住性評価においては,MOX 燃		
	料装荷炉心を選定している。		
	なお、第2表に示すとおり、大気中へ放出された放射性物質による		
	外部被ばくについては、外部被ばく評価に用いられるγ線エネルギー		
	0.5 MeV 換算値がほぼ変わらない結果となっている。また, 第3 表に		
	示すとおり、建屋からのガンマ線による外部被ばくについても、外部		
	被ばく評価に用いられる原子炉格納容器内の7 日間積算線源強度がほぼ変わらない結果となっている。		
	は変わらなど和木となりている。		
	第1表 ウラン燃料炉心と MOX 燃料装荷炉心の炉心内蓄積量		
	wax 燃料装荷が心 γ線エネルギー0.5 MeV 換算 (Bq) 約 4.2E+20		
	I-131等価模算 (Bq) 約 6.6E*20 y 総エネルギー0.5 MeV 検算 (Bq) 約 4.4E*20		
	ウラン燃料炉心 I-131 等価換算 (Bq) 約 2. IE+20		
	MOX/ウラン比 y 線エネルギー0.5 MeV 換算(-) 約97 % I-131 等価換算(-) 約315 %		
	第2表 ウラン燃料炉心とMOX燃料装荷炉心の放出放射能量 アニュラス アニュラス ヘニ		
	アニュフス クニュフス 合計 部外 経由 合計 (本) アルギー かっている		
	MOX 燃料装荷炉心 (0.5 Mev 操政 (Bq) 約 4. 8E+14 約 9. IE+15 約 9. 5E+15 1-131 等価検算 (Bq) 約 6. 6E+13 約 8. 3E+13 約 1. 5E+14		
	y線エネルギー 約4 SF+14 約 9 GF+15 約 9 SF+15		
	ウラン燃料炉心 I-131等価機算 (Bq) 約 4.7E+13 約 7.5E+13 約 1.2E+14		
	y線エネルギー 0.5 MeV 換算(-) 約100.1% 約100.4% 約100.4%		
	1000 / / F FU		ı

MOX/ウラン比

約99.4%

7日間積算線源強度

ウラン燃料炉心

(MeV)

約 4.20×10²⁴

(注1) 燃料集合体最高燃焼度55,000 MWd/tまでのウラン燃料を100 %

(注2) 炉心の3/4に燃料集合体最高燃焼度55,000 MWd/tまでのウラン 燃料, 1/4に燃料集合体最高燃焼度45,000 MWd/tまでのMOX燃料

MOX燃料装荷炉心

(MeV)

約 4.18×10²⁴

装荷した炉心。

を装荷した炉心。

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉

2-3 核分裂生成物の放出割合について

炉心の著しい損傷が発生した場合における中央制御室の居住性評価 に当たっては、放射性物質の原子炉格納容器外への放出割合をMAAP コ ードとNUREG-1465 の知見を利用し評価している。

大破断LOCA+HPCS 失敗+低圧ECCS 失敗+全交流動力電源喪失する 割合、放出時間を用いている。 シナリオ (W/Wベント) でのMAAP 解析による放出割合の評価結果 (事 故発生から168 時間後時点)を表2-3-3 に示す。ただし、以下に示す 1. NUREG-1465 の放出割合、放出時間の適用性について とおり、表2-3-3 の値は中央制御室の居住性評価に使用していない。 表2-3-3 によると、高揮発性核種 (CsI やCsOH) の放出割合 (10-6 器が破損しデブリが炉外に放出される状態に至るまでを対象としたも オーダー)と比べ、中・低揮発性核種の放出割合が大きい(10-5 オー ダー)という結果となっている。

一方、TMI 事故や福島第一原子力発電所事故での観測事実から、事 ンスを第1表に示す。 故が起こった場合に最も多く放出される粒子状の物質は、よう素やセ シウム等の高揮発性の物質であり、中・低揮発性の物質の放出量は高 揮発性の物質と比べ少量であることがわかっている。

表2-3-4 は、TMI 事故後に評価された放射性核種の場所ごとの存在 量であるが、希ガスや高揮発性核種(セシウムやよう素)が原子炉圧 力容器外に全量のうち半分程度放出されている一方で、中・低揮発性 核種はほぼ全量が原子炉圧力容器内に保持されているという評価とな っている。

さらに、表2-3-5 は、福島第一原子力発電所事故後に実施された発 電所敷地内の土壌中放射性核種のサンプリング結果であるが、最も多 く検出されているのは高揮発性核種(セシウムやよう素)であり、多 くの中・低揮発性核種は不検出という結果となっている。

また、燃料からの核分裂生成物の放出及び移動挙動に関する実験結 果より、各元素の放出挙動は以下のように整理されており※1、希ガス が高温で燃料からほぼ全量放出されるのに対し、それ以外の核種の放 出挙動は雰囲気条件に依存するとしている。

希ガス:高温にて燃料からほぼ全量放出される。

- I, Cs:高温にて燃料からほぼ全量放出される。放出速度は希ガスと
- Sb. Te: 高温にて燃料からほぼ全量放出される。また、被覆管と反応 した後、被覆管の酸化に伴い放出される。
- Sr, Mo, Ru, Rh, Ba:雰囲気条件(酸化条件or 還元条件)に大きな影 響を受ける。
- Ce, Np, Pu, Y, Zr, Nb: 高温状態でも放出速度は低い。
- ※1 「化学形に着目した破損燃料からの核分裂生成物及びアクチニド の放出拳動評価のための研究 (JAEA-Review 2013-034, 2013 年12 月) |

泊発電所3号炉

原子炉格納容器への核分裂生成物の放出割合の設定について

添付1-2-4

重大事故時における居住性に係る被ばく評価では、原子炉格納容器 への核分裂生成物の放出割合の設定について, 重大事故時までの洞察 を含む米国の代表的なソースタームであるNUREG-1465に示された放出

NUREG-14651のソースタームは、燃料被覆管破損時点より、原子炉容 のであり、本評価で想定している事故シーケンスと同様のシーケンス についても対象に含まれている。NUREG-1465 で対象としているシーケ

第1表 NUREG-1465 で対象としているシーケンス

Table 3.2 PWR Source Term Contributing Sequences

Plant	Sequence	Description	
Surry	AG	LOCA (hot leg), no containment heat removal systems	
	TMLB'	LOOP, no PCS and no AFWS	
	V	Interfacing system LOCA	
	S3B	SBO with RCP seal LOCA	
	S2D-8	SBLOCA, no ECCS and H ₂ combustion	
	S2D-p	SBLOCA with 6" hole in containment	
Zion	S2DCR	LOCA (2"), no ECCS no CSRS	
	S2DCF1	LOCA RCP seal, no ECCS, no containment sprays, no coolers—H ₂ burn or DCH fails containment	
	S2DCF2	S2DCF1 except late H ₂ or overpressure failure of containment	
	TMLU	Transient, no PCS, no ECCS, no AFWS—DCH fails containment	
Oconoe 3 TMLB'		SBO, no active ESF systems	
	SIDCF	LOCA (3"), no ESF systems	
Sequoyah	S3HF1	LOCA RCP, no ECCS, no CSRS with reactor cavity flooded	
	S3HF2	S3HF1 with hot leg induced LOCA	
	3HF3	S3HF1 with dry reactor cavity	
	S3B	LOCA (1/2") with SBO	
	TBA	SBO induces hot leg LOCA—hydrogen burn fails containment	
	ACD	LOCA (hot leg), no ECCS no CS	
	S3B1	SBO delayed 4 RCP seal failures, only steam driven AFW operates	
	S3HF	LOCA (RCP seal), no ECCS, no CSRS	
	S3H	LOCA (RCP seal) no ECC recirculation	
SBO Statio	n Blackout	LOCA Loss of Coolant Accident	
	or Coolant Pump	DCH Direct Containment Heating	
	Conversion System	ESF Engineered Safety Feature	
	inment Spray	CSRS CS Recirculation System ram LOOP Loss of Offsite Power	
ATWS Antic	ipated Transient Without Sc	ram LOOP Loss of Offsite Power	

NUREG-1465 では、重大事故時に炉心から原子炉格納容器へ放出さ れる核分裂生成物の割合について第2表のような事象進展各フェー ズに対する放出割合, 放出時間を設定している。

原子炉格納容器への核分裂生成物の放出割合の設定について

大飯発電所 3/4号炉

重大事故等時における居住性に係る被ばく評価では、原子炉格納容┃はあるが、核分裂生 器への核分裂生成物の放出割合の設定について、重大事故等時までの 洞察を含む米国の代表的なソースタームである NUREG-1465 に示され いて、NUREG-1465 た放出割合、放出時間を用いている。

1. NUREG-1465 の放出割合、放出時間の適用性について

NUREG-1465 1のソースタームは、燃料被覆管破損時点より、原子炉 容器が破損しデブリが炉外に放出される状態に至るまでを対象とした ものであり、本評価で想定している事故シーケンスと同様のシーケン スについても対象に含まれている。NUREG-1465 で対象としているシー 差が大きくなる要因 ケンスを第1表に示す。

第1表 NUREG-1465 で対象としているシーケンス.

Table 3.2 PWR Source Term Contributing Sectioners

Plant	Sequence	Description
Surry	AG	LOCA (not leg), no containment heat removal system
	TMLB'	LOOP, so PCS and no APWS
	V	Interfacing system LOCA
	538	SBO with RCF scal LOCA
	S2D-5	SBLOCA, no ECCS and H2 combustion
	\$2D-\$	SBLOCA with 6" hole in containment
Zion	SZDCR	LOCA (2"), no ECCS no CSRS
	S2DCF1	LOCA RCP seal, no ECCS, no containment sprays, no coolers—H _I burn or DCH fails containment
	S2DCF2	S2DCF1 except late H ₂ or overpressure failure of containment
	TMLU	Transient, no PCS, no ECCS, no APWS-DCH fails containment
Oconee 3 TMLB*		SBO, no active ESF systems
	SIDCF	LOCA (3"), no ESF systems
Sequoyah	S3HF1	LOCA RCR, no ECCS, no CSRS with reactor cavity flooded
	S3HF2	53HF1 with hot leg induced LOCA
	3HF3	S3HF1 with day reactor davity
	\$3B	LOCA ()(*) with SBO
	TBA	SBO induces hot leg LOCA—hydregen burn fails containment
	ACD	LOCA (hot leg), no ECCS no CS
	5381	SEO delayed 4 RCP seal failures, only steam driven AFW operates
	SHIP	LOCA (RCF scal), no ECCS, no CSRS
	S3H	LOCA (RCP seal) no ECC recirculation
	on Blackout	LOCA Less of Coolant Accident
	tor Coolant Pump	DCH Direct Containment Heating
	r Conversion System.	ESF Engineered Safety Feature CSRS CS Recirculation System
	ainment Spray cipeted Transient Without	

NUREG-1465 では、重大事故等時に炉心から原子炉格納容器へ放出 される核分裂生成物の割合について第 2 表のような事象進展各フ ェーズに対する放出割合、放出時間を設定している。

記載内容の相違

下記の通り、説明 している内容に相違 成物の放出割合につ を適用することの説 明を行っている方針 に相違はない。

差異理由

【女川 要約】

- MAAP解析では誤 等を記載。
- ・次に誤差が大きく ならない条件での MAAP 解析結果と NUREG-1465 との 比較を行い、事象進 展に大きな差がない ことから NUREG-1465 の適用性を説
- その後、MAAP結 果を NUREG-1465 により補正する手法 を記載。

【泊 要約】

- ・まず、NUREG-1465 位置付けを説 明し、本評価シーケ ンスへの適用性につ いて記載。
- ·次にMAAP解析結 果と NUREG-1465 との比較を行い、事 象進展に大きな差が ないことからも NUREG-1465 の適 用性を説明。
- ・さらに、高燃焼度 燃料及び MOX 燃料 への適用性を記載。

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

緑字:記載表現、設備名称の相違(実質的な相違なし) 大飯発電所 3/4号炉

女川原子力発電所2号炉 表2-3-3 の評価結果はこれらの観測事実及び実験結果と整合が取れ ていない。これは、大破断LOCA+HPCS 失敗+低圧ECCS 失敗+全交流 動力電源喪失するシナリオにおいては、MAAP 解析が中・低揮発性核種

MAAP 解析の持つ保守性としては、炉心が再冠水し溶融炉心の外周部 が固化した後でも、燃料デブリ表面からの放射性物質の放出評価にお いて溶融プール中心部の温度を参照し放出量を評価していることや、 炉心冠水時において燃料デブリ上部の水によるスクラビング効果を考 慮していないことが挙げられる。MAAP コードの開発元であるEPRI か らも、再冠水した炉心からの低揮発性核種の放出について、MAAP 解析 が保守的な結果を与える場合がある旨の以下の報告がなされている。

の放出割合を過度に大きく評価しているためであると考えられる。

- ・炉心が再冠水した場合の低揮発性核種(Ru 及びMo)の放出について、 低温の溶融燃料表面付近ではなく、溶融燃料の平均温度を基に放出 速度を算出しているため、MAAP 解析が保守的な結果を与える場合が ある。
- ・Mo の放出量評価について、NUREG-1465 よりもMAAP コードの方が 放出量を多く評価する。

なお、高揮発性核種(セシウムやよう素)については、炉心溶融初 期に炉心外に放出されるため、上述の保守性の影響は受けないものと 考えられる。

以上のことから、大破断LOCA+HPCS 失敗+低圧ECCS 失敗+全交流 動力電源喪失するシナリオにおいて中・低揮発性核種の放出割合を評 価する際、単にMAAP 解析による評価結果を採用すると、放出割合とし て過度に保守的な結果を与える可能性があるため、他の手法を用いた 評価が必要になると考えられる。

そこで、炉心の著しい損傷が発生した場合における中央制御室の居 住性を評価する際は、MAAP 解析による放出割合の評価結果以外に、海 外での規制等にも活用されているNUREG-1465 (米国の原子力規制委員 会 (NRC) で整備されたものであり、米国でもシビアアクシデント時の 典型的な例として、中央制御室の居住性等の様々な評価で使用されて いる)の知見を利用するものとした。このことにより、TMI 事故や福 島第一原子力発電所事故の実態により見合った評価が可能となる。

なお、事故シーケンス「大破断LOCA+HPCS 失敗+低圧ECCS 失敗+ 全交流動力電源喪失」において、原子炉注水機能が使用できないもの と仮定した場合における, 炉心損傷開始から, 原子炉圧力容器が破損 するまでのMAAP 解析事象進展(炉心の著しい損傷が発生した場合にお ける中央制御室の居住性評価における想定事故シナリオでは, 当該事 故シーケンスにおいて原子炉注水機能を使用することにより原子炉圧 力容器破損には至らない) とNUREG-1465 の想定の比較は表2-3-1 の とおりであり、NUREG-1465 の想定とMAAP 解析の事象進展に大きな差 はなく、本評価においてNUREG-1465 の知見は使用可能と判断した。

NUREG-1465 の知見を利用した場合の放出割合の評価結果を表2-3-6 に示す。

Accident Source Terms for Light-Water Nuclear Power Plants

泊発電所3号炉

NUREG-1465 の中でも述べられているように、NUREG-1465 のソー スタームは炉心溶融に至る種々の事故シーケンスを基にした代表的 なソースタームである。特に、炉心損傷後に環境に放出される放射 性物質が大きくなる観点で支配的なシーケンスとして、本評価で対 象としている「大破断LOCA 時にECCS 注入及びCV スプレイ注入を 失敗するシーケンス」を含む低圧シーケンスを代表するよう設定さ れたものである。

第2表 原子炉格納容器への放出期間及び放出割合 (NUNEG-1465 Table3.13)

	Gap Release***	Early In-Vessel	Ex-Vessel	Late In-Vessel
Duration (Hours)	0.5	1.3	2.0	10.0
Noble Gases**	0.05	0.95	0	0
Halogens	0.05	0.35	0.25	0.1
Alkali Metals	0.05	0.25	0.35	0.1
Tellurium group	. 0	0.05	0.25	0.005
Barium, Strontium	0	0.02	0.1	0
Noble Metals	. 0	0.0025	0.0025	0
Cerium group	0	0.0005	0.005	0
Lanthanides	0	0.0002	0.005	0

- Values shown are fractions of core inventory.
 See Table 3.8 for a listing of the elements in each group
 Gap release is 3 percent if long-term fuel cooling is maintained.
- 事象進展の各フェーズは大きく以下のように整理されている。
- Gap-Release/Early In-Vessel
 燃料被覆管損傷後のギャップからの放出(Gap-Release)と、燃料の溶融に伴う原子炉容 器損傷までの炉心からの放出 (Early In-Vessel) を想定。
- · Ex-Vessel/Late In-Vessel 原子炉容器損傷後、炉外の溶融炉心からの放出 (Ex-Vessel) 及び1次系に沈着した核分裂 生成物の放出 (Late In-Vessel) を想定。

事象が発生してから炉心が溶融を開始し、原子炉容器が破損する 事象進展のタイミングについて、MAAP を用いた泊発電所3号炉の解 析結果とNUREG-1465 の想定を比較すると、第3 表のとおりとなる。

第3表 溶融開始から原子炉容器が破損するまでのタイミング比較

	燃料被覆管損傷が開始し、ギャップから放射性物質が放 出される期間	
MAAP 解析結果	0~約19分	約19分~約1.6時間
NUREG-1465	0~30分	30 分 ~ 1.8 時間

炉心溶融開始及び原子炉容器破損のタイミングについては、ほぼ 同じであり、核分裂生成物が大量に放出される初期の事象進展に大 きな差はないと判断している。

1 Accident Source Terms for Light-Water Nuclear Power Plants NUREG-1465 の中でも述べられているように、NUREG-1465 のソー スタームは炉心溶融に至る種々の事故シーケンスを基にした代表的 なソースタームである。特に、炉心損傷後に環境に放出される放射 載。 性物質が大きくなる観点で支配的なシーケンスとして、本評価で対 象としている「大破断 LOCA 時に ECCS 注入および格納容器スプレ イ注入を失敗するシーケンス」を含む低圧シーケンスを代表するよ う設定されたものである。

第2表 原子炉格納容器への放出割合 (NUREG-1465 Table 3.13)

	Gap Release***	Early In-Vessel	Ex-Vessel	Late In-Vessel
Duration (Hours)	0.5	1.3	2.0	10.0
Noble Gases**	0.05	0.95	0	0
Halogens	0.05	0.35	0.25	0.1
Alkali Metals	0.05	0.25	0.35	0.1
Tellurium group	. 0	0.05	0.25	0.005
Barium, Strontium	0	0.02	0.1	0
Noble Metals	. 0	0.0025	0.0025	0
Cerium group	0	0.0005	0.005	0
Lanthanides	0	0.0002	0.005	0

- Values shown are fractions of core inventory.
 See Table 3.8 for a listing of the elements in each group
 Gap release is 3 percent if long-term fuel cooling is maintained.
- 事象進展の各フェーズは大きく以下のように整理されている。
- · Gap-Release/Early In-Vessel
- 燃料被覆管損傷後のギャップからの放出 (Gap-Release) と、燃料の溶融に伴う 原子炉容器損傷までの炉心からの放出 (Early In-Vessel) を想定。
- · Ex-Vessel/Late In-Vessel
- 原子炉容器損傷後、炉外の溶融炉心からの放出 (Ex-Vessel) 及び1次系に沈着 した核分裂生成物の放出 (Late In-Vessel) を想定。

事象が発生してから炉心が溶融を開始し、原子炉容器が破損する 事象進展のタイミングについて、MAAP を用いた大飯3号炉及び4号 炉の解析結果と NUREG-1465 の想定を比較すると、第3表のとおり となる。

第3表 溶融を開始から原子行容器が破損するすでのタイミングの比較

	燃料被覆管損傷が開始し、 ギャップから放射性物質が 放出される期間	炉心溶融が開始し、溶融燃料が原子炉容器を破損する までの期間
MAAP	0~約21分	約21分~約1.4時間
NUREG-1465	0~30分	30分~1.8時間

炉心溶融開始および原子炉容器損傷のタイミングについては、ほ ぼ同じであり、核分裂生成物が大量に放出される初期の事象進展に 大きな差はないと判断している。

加えて、被ばく評 価結果から MAAP に対する NUREG-1465 の保守性を記

差異理由

【大飯】

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

> 大飯と比較すると ほぼ同等の資料構成 となっている。

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3 / 4 号炉 差異理由

表 2-3-1 MAAP 解析事象進展と NUREG-1465 の想定の比較

	燃料被覆管の損傷が開始し,ギャップ からの放射性物質が放出される期間	炉心溶融が開始し、溶融燃料が原子炉 圧力容器を破損するまでの期間 約30分~約3.0時間 ⁶²	
MAAP	約5分~約30分率		
NUREG-1465	~30 分	30 分~2 時間	

※1 炉心損傷開始 (燃料被覆管温度 1000K) ~炉心溶融開始 (燃料被覆管温度 2500K)

※2 原子炉注水機能が使用できないものと仮定した場合における原子炉圧力容器破損時間

各MAAP 核種グループの放出割合の具体的な評価方法は以下に示す とおり。

1. 希ガスグループ、CsI グループ、CsOH グループ

希ガスを含めた高揮発性の核種グループについては、原子炉格納容 器フィルタベント系への放出割合。原子炉格納容器から原子炉建屋原 子炉棟への漏えい割合ともにMAAP 解析の結果得られた放出割合を採 用する。

なお、Cs の放出割合はCsI グループとCsOH グループの放出割合※ 1※2 及びI 元素とCs 元素の停止時炉内内蔵量より、以下の式を用い て評価する。

 $F_{C_2}(T) = F_{C_2OH}(T) + M_I/M_{C_2} \times W_{C_2}/W_I \times (F_{C_2I}(T) - F_{C_2OH}(T))$

 $F_{Cr}(T)$: 時刻 Tにおけるセシウムの放出割合 FGOH (I): 時刻 I における CsOH グループの放出割合 F_{CJ} (T) : 時刻 T における CsI グループの放出割合 : 停止直後の 1 元素の炉心内内蔵重量 : 停止直後の Cs 元素の炉心内内蔵重量

· I の原子量 : Cs の原子量

- ※1 MAAP コードでは化学的・物理的性質を考慮し核種をグループ分 けしており、各グループの放出割合は、当該グループの停止時炉内 内蔵量と放出重量の比をとることで評価している。
- ※2 各核種グループの停止時炉内内蔵量は以下の手順により評価して いる。
- ① ORIGEN コードにより核種ごとの初期重量を評価する。
- ② ①の評価をもとに、同位体の重量を足し合わせ、各元素の重量を評 価する。
- ③ ②の結果をMAAP コードにインプットし、MAAP コードにて、各元素 の化合物の重量を評価する。
- ④ 各化合物は表2-3-2 に示す核種グループに属するものとして整理 している。核種グループの炉内内蔵量は、当該の核種グループに属 する化合物の炉内内蔵量の和として評価している。

NUREG-1465 のソースタームは、低燃焼度燃料を対象にしている。 そのため、米国において、NUREG-1465 のソースターム(以下、「更 新ソースターム」という。) を高燃焼度燃料及びMOX 燃料に適用す る場合の課題に関し、1999 年に第461 回ACRS (Advisory Committee on Reactor Safeguards)全体会議において議論がなされている。そ こでは、ACRS から、高燃焼度燃料及びMOX燃料への適用について判 断するためには解析ツールの改良及び実験データの収集が必要とコ メントがなされている。これに対し、NRC スタッフは、実質的にソ ースタームへの影響はないと考えられると説明している。

その後、各放出フェーズの継続時間及び各核種グループの放出割 合に与える影響等について専門家パネルでの議論が行われており、 その結果がERI/NRC 02-2022(2002 年11 月)にまとめられ公開され ている。この議論の結果として、以下に示す通り、解決すべき懸案 事項が挙げられているものの、高燃焼度燃料及びMOX 燃料に対して も更新ソースタームの適用について否定されているものではない。

Finally, there is a general expectation that the physical and chemical forms of the revised source terms as defined in NUREG-1465 are applicable to high burnup and MOX fuels.

(ERI/NRC 02-202 第4章)

議論された高燃焼度燃料は、燃料集合体の最大燃焼度75 GWd/t, 炉心の平均燃焼度50 GWd/tを対象としている。

専門家パネルの議論の結論として示された、各フェーズの継続時 間及び格納容器内への放出割合について、別紙1の第1-1 表及び第1-2 表に示す (ERI/NRC 02-202 Table 3.1 及びTable 3.12)。表のカ ッコ内の数値は、NUREG-1465 の値を示している。また、複数の数値 が同一の欄に併記されているのは、パネル内で単一の数値が合意さ れなかった場合における各専門家の推奨値である。それぞれの核種 についてNUREG-1465 と全く一致しているとは限らないが、NUREG-1465 から大きく異なるような数値は提案されていない。

以上の議論の結果として、ERI/NRC 02-202 では、引用した英文の とおり高燃焼度燃料に対してもNUREG-1465 のソースタームを適用 できると結論付けている。

なお、米国の規制基準であるRegulatory Guide の1.183 におい ては、NUREG-1465 記載の放出割合を燃料棒で最大62 GWd/t までの 燃焼度の燃料まで適用できるものと定めている。

2 ACCIDENT SOURCE TERMS FOR LIGHT-WATER NUCLEAR POWER PLANTS: HIGH BURNUP AND MIXED OXIDE

NUREG-1465 のソースタームは、低燃焼度燃料を対象にしている。 そのため、米国において、NUREG-1465 のソースターム (以下、「更 新ソースターム」という)を高燃焼度燃料及びMOX 燃料に適用する 場合の課題に関し、1999 年に第461 回 ACRS (Advisory Committee on Reactor Safeguards)全体会議において議論がなされている。そ こでは、ACRS から、高燃焼度燃料及びMOX 燃料への適用について 判断するためには解析ツールの改良及び実験データの収集が必要と コメントがなされている。これに対し、NRC スタッフは、実質的に ソースタームへの影響はないと考えられると説明している。

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

緑字:記載表現、設備名称の相違(実質的な相違なし)

その後、各放出フェーズの継続時間及び各核種グループの放出割 合に与える影響等について専門家パネルでの議論が行われており、 その結果が ERI/NRC02-202 2 (2002 年11 月)にまとめられ公開さ れている。この議論の結果として、以下に示す通り、解決すべき懸 案事項が挙げられているものの、高燃焼度燃料及び MOX 燃料に対し ても更新ソースタームの適用について否定されているものではな

Finally, there is a general expectation that the physical and chemical forms of the revised source terms as defined in NUREG-1465 are applicable to high burnup and MOX fuels. (ERI/NRC 02-202 第4章)

議論された高燃焼度燃料は、燃料集合体の最大燃焼度 75 GWd/t、 炉心平均燃焼度 50 GWd/t を対象としている。

専門家パネルの議論の結論として示された、各フェーズの継続時 間及び格納容器内への放出割合について、別紙1の第1-1表に示す (ERI/NRC 02-202 Table 3.1)。表のカッコ内の数値は、NUREG-1465 の値を示している。また、複数の数値が同一の欄に併記されている のは、パネル内で単一の数値が合意されなかった場合における各専 門家の推奨値である。それぞれの核種について NUREG-1465 と全く-致しているとは限らないが、NUREG-1465 から大きく異なるような数 値は提案されていない。

以上の議論の結果として、ERI/NRC 02-202 では、引用した英文の とおり高燃焼度燃料に対しても NUREG-1465 のソースタームを適用 できるものと結論付けている。

なお、米国の規制基準である Regulatory Guide の 1.183 におい ては、NUREG-1465 記載の放出割合を燃料棒で最大 62GWd/t までの 燃焼度の燃料まで適用できるものと定めている。

2 ACCIDENT SOURCE TERMS FOR LIGHT-WATER NUCLEAR POWER PLANTS: HIGH BURNUP AND MIXED OXIDE FUELS

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

₹	連転貝が原士炉制御至にととよるにめの設備	棚足说 奶質杯
	女川原子力発電所2号炉	

表 2-3-2	A LIVER NO.	1 - 20	A desired	THE REAL PROPERTY.

核種グループ	各核種グループに 対応する化合物	炉内内蔵量[kg] (安定核種を含む)
希ガス	Xe, Kr	
CsI	CsI, RbI	
TeO ₂ , Te ₂	TeO ₂ , Te ₂	
Sr0	Sr0	
MoO_2	MoO ₂ , RuO ₂ , TcO ₂ , RhO ₂	
CsOH	CsOH, RbOH	
Ba0	Ba0	
La ₂ O ₃	La ₂ O ₃ , Pr ₂ O ₃ , Nd ₂ O ₃ , Sm ₂ O ₃ , Y ₂ O ₃ , ZrO ₂ , NbO ₂ , AmO ₂ , CmO ₂	
CeO ₂	CeO ₂ , NpO ₂ , PuO ₂	
Sb	Sb	
UO2	U0 ₂	

※表中に示す Te2の炉内内蔵量[kg]は、停止時に炉内に存在する Te 元素の 全量が Te2の形態で存在する場合の値に相当する。

枠囲みの内容は商業機密の観点から公開できません。

2. それ以外の核種グループ

中・低揮発性の核種グループについてはMAAP 解析の結果得られた放 出割合は採用せず、MAAP 解析の結果から得られたCs の放出割合、希 ガスグループの放出割合及びNUREG-1465 の知見を利用し放出割合を 評価する。

(1) 原子炉格納容器フィルタベント系への放出割合

放出割合の経時的な振る舞いは希ガスと同一※1 とし、Cs の放出割合に対する当該核種グループの放出割合の比率が、168 時間経過時点においてNUREG-1465 で得られた比率に等しいとして,以下の評価式に基づき評価した。表2-3-7 及び表2-3-8 にNUREG-1465 で評価された原子炉格納容器内への放出割合を示す。

泊発電所3号炉

3.2 Release Fractions

The core inventory release fractions, by radiomuclide groups, for the gap release and early invessed damage phases for DBA LOCAs are histed in Table 1 for BWRs and Table 2 for PWRs. These fractions are applied to the equilibrium core inventory described in Regulatory Position 3.1.

For non-LOCA events, the fractions of the core inventory assumed to be in the gap for the various radiomichdes are given in Table 3. The release fractions from Table 3 are used in conjunction with the fission product inventory calculated with the maximum core radial peaking factor.

¹² The release fractions listed here have been determined to be acceptable for use with currently approved LWR final with a peak terminy up to 62,000 MWD MTU. The data in this section may not be applicable to core containing mixed oxide (MOX) final.

その後も更新ソースタームを高燃焼度燃料やMOX 燃料に適用する場合の課題に対して検討が行われており、2011 年1 月には、サンディア国立研究所から報告書が出されている(SAND2011-01283)。

高燃焼度燃料及UMOX 燃料の放出割合は、別紙1 の第1-3 表及び第1-4 表に示すとおり、低燃焼度燃料のそれと著しく異なるものではないことが示されている。このことから、現段階においては、NUREG-1465 の高燃焼度燃料やMOX 燃料の適用について否定されるものではないと考える。第4 表にそれらのデータを整理する。

第4表 全放出期間での格納容器への放出割合の整理

		ERI/NRC	ERI/NRC	SAND	SAND
	NUREG-1465	02-202 (高燃焼度燃料)=	02-202 (MOX 燃料)≡	2011-0128 (高燃焼度燃料)	2011-0128 (MOX 燃料)
希ガス類	1.0	1.0	1.0	0.97	0.96
よう素類	0.75	0, 85	0.82	0.60	0.62
Cs 類	0, 75	0.75	0.75	0.31	0. 55

※ 複数の値が提示されているため、平均値を使用した。

以上のように、解決すべき懸案事項があるものの、現在の知見では、高燃焼度燃料及びMOX 燃料に対しても更新ソースタームを否定されているものではないことがRegulatory Guide 1.183, ERI/NRC 02-202 及びSandia Report に示されている。

泊発電所3号炉の燃料集合体の最高燃焼度は、ウラン燃料で55 GWd/t, MOX 燃料で45 GWd/tであることから、ERI/NRC 02-202 における適用範囲,燃料集合体の最高燃焼度75 GWd/t 及びSandia Report の適用範囲,燃料集合体最高燃焼度59 GWd/t と比較し適用の範囲内にある。また、泊発電所3号炉の燃料棒最高燃焼度はウラン燃料で61 GWd/t, MOX 燃料で53 GWd/t であり、Regulatory Guide 1.183 に示される適用範囲,燃料棒最高燃焼度62 GWd/t の範囲内にある。このため、泊発電所3号炉に対し、使用を否定されていない更新ソースタームの適用は可能と判断される。

ERI/NRC 02-202 に示された放出割合の数値については、専門家の意見も分かれていること、Sandia Report 記載の数値についても、MOX 燃料については単一の格納容器の型式を対象とした解析にとどまっており、米国NRC にオーソライズされたものではないことを考慮し、今回の評価においては、NUREG-1465 の数値を用いた。

Accident Sorce Terms for Light-Water Nuclear Power Plants Using High-Burnup or MOX Fuel

3.2 Release Fractions²

The core inventory release fractions, by radionuclide groups, for the gap release and early in-vessel damage phases for DBA LOCAs are listed in Table 1 for BWRs and Table 2 for PWRs. These fractions are applied to the equilibrium core inventory described in Regulatory Position 3.1

大飯発電所 3 / 4 号炉

For non-LOCA events, the fractions of the core inventory assumed to be in the gap for the various radionuclides are given in Table 3. The release fractions from Table 3 are used in conjunction with the fission product inventory calculated with the maximum core radial peaking factor.

¹⁰ The release fractions hated here have been determined to be acceptable for use with currently approved LWR flei with a peak burnup up to 62,000 hWD MTU. The data in this section may not be applicable to cores containing mixed oxide (MOX) flei.

その後も更新ソースタームを高燃焼度燃料に適用する場合の課題 に対して検討が行われており、2011 年1 月には、サンディア国立 研究所から報告書が出されている。(SAND2011-0128³)

高燃焼度燃料の放出割合は、別紙1の第1-2表に示すとおり、低燃焼度燃料のそれと著しく異なるものではないことが示されている。このことから、現段階においては、NUREG-1465の高燃焼度燃料の適用について否定されるものではないと考える。第4表にそれらのデータを整理する。

第4表 全放出期間での格納容器への放出割合の整理

	NUREG-1465	ERI/NRC 02-202 (高燃焼燃料)**	SAND 2011-0128 (高燃焼度燃料)
希ガス類	1.0	1.0	0.97
よう素類	0.75	0.85	0.60
Cs 類	0.75	0.75	0, 31

※ 複数の値が提示されているため、平均値を使用した。

以上のように、解決すべき懸案事項があるものの、現在の知見では、高燃焼度燃料燃料に対しても更新ソースタームを否定されているものではないことが Regulatory Guide 1.183、ERI/NRC 02-202 及び Sandia Report に示されている。

大飯 3,4 号炉の燃料集合体(ウラン燃料)の最高燃焼度は、55 GWd/t であることから、ERI/NRC 02-202 における適用範囲、燃料集合体の最高燃焼度 75 GWd/t 及び Sandia Report の適用範囲、燃料集合体の最高燃焼度 59GWd/t と比較し適用範囲内にある。また、大飯 3,4 号炉の燃料棒の最高燃焼度は61GWd/t であり、Regulatory Guide 1.183 に示される適用範囲、燃料棒の最高燃焼度62GWd/t の範囲内にある。このため、大飯 3,4 号炉に対し、使用を否定されていない更新ソースタームの適用は可能と判断される。

3 Accident Source Terms for Light-Water Nuclear Power Plants Using High-Burnup or MOX Fuel

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0 緑字:記載表現、設備名称の相違(実質的な相違なし) 第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

 $F_i(T) = F_{noble, max}(T) \times \gamma_i / \gamma_{C_T} \times F_{C_T}(168h) / F_{noble, max}(168h)$

F(T) : 時刻 T における i 番目の MAAP 核種グループの放出割合

女川原子力発電所2号炉

 $F_{aoble \, pan}(T)$: 時刻 Tにおける希ガスグループの放出割合

: NUREG-1465 における i 番目の MAAP 核種グループに相当する核種

グループの原子炉格納容器内への放出割合

: NUREG-1465 における Cs に相当する核種グループの格納容器内へ

の放出割合

※1 中・低揮発性の核種グループは、事故初期の燃料が高温となっ ているとき以外はほとんど燃料外に放出されないものと考えら れる。そのため、格納容器ベント後の燃料からの追加放出はほと んどなく、事故初期に原子炉格納容器内に放出され、原子炉格納 容器気相部に浮遊しているものだけが大気中に放出され得ると 考えられる。

格納容器ベントに伴い中・低揮発性核種は原子炉格納容器気相 部からベントラインに流入するが、その流入の仕方、すなわち放 出割合の経時的な振る舞いは、同じく原子炉格納容器気相部に浮 遊しており壁面等からの追加放出がない希ガスの放出割合の振 る舞いに近いと考えられる。

ける放出割合」は、「各時刻における希ガスグループの放出割合」 に比例するものとした。

(2) 原子炉格納容器から原子炉建屋原子炉棟への漏えい割合 放出割合の経時的な振る舞いはCs と同一※2 とし、Cs の放出割合 に対する当該核種グループの放出割合の比率は、168 時間経過時点に おいてNUREG-1465 で得られた比率に等しいとして、以下の評価式に基 づき評価した。

$$F_i(T) = F_{Cz}(T) \times \frac{\gamma_i}{\gamma_{Cz}}$$

: 時刻 T における i 番目の MAAP 核種グループの放出割合

: NUREG-1465 における i 番目の MAAP 核種グループに相当する核種

グループの原子炉格納容器内への放出割合

: NUREG-1465 における Cs に相当する核種グループの格納容器内へ

の放出割合

2. 各核種グループの内訳について

NUREG-1465 の高燃焼度燃料及びMOX 燃料の適用については、前 述のとおり、現在の知見では、否定されるものではないものの、高 燃焼度燃料及UMOX 燃料に対するNUREG-1465 の適用に関する専門 家での議論の中で、NUREG-1465 に比べて大きな放出割合が提案さ れている核種グループもある。本評価で用いたモデルでの評価にお いて、各核種グループの内訳を確認する。

泊発電所3号炉

環境に放出される放射性物質に対する核種グループの内訳及び原 子炉建屋内の放射性物質からのガンマ線による中央制御室入退域時 の直接及びスカイシャイン線量に対する核種グループの内訳をそれ ぞれ第5 表及び第6 表に示す。MOX 燃料に対するNUREG-1465 の適 用に関する専門家での議論の中で、NUREG-1465 に比べて大きな放 出割合が提案されているTe 類やRu 類については、第5 表及び第6 表に示すとおり、中央制御室居住性評価における寄与割合は小さ く、居住性評価に大きな影響を及ぼすものではない。

(1)環境に放出される放射性物質の内訳について(I-131 等価量換 算、γ線エネルギ0.5 MeV 換算)

以上のことから、中・低揮発性の核種グループの「各時刻にお」中央制御室内及び入退域時の被ばく評価結果における環境に放出され る放射性物質について、NUREG-1465 に示される各核種グループの内訳 としてI-131 等価量換算及びγ線エネルギ0.5 MeV 換算の値を第5 表 に示す。I-131 等価量換算はハロゲン(よう素類)が約55%, Cs 類が 約12%, その他が約33%となっており、v線エネルギ0.5 MeV 換算は希 ガス類が約91%、ハロゲン(よう素類)が約7% Cs 類が約2%、その他 が約1%となっている。

2. 各核種グループの内訳について

NUREG-1465 の高燃焼度燃料の適用については、前述のとおり、 現在の知見では、否定されるものではないものの、高燃焼度燃料に 対する NUREG-1465 の適用に関する専門家での議論の中で、NUREG-1465 に比べて大きな放出割合が提案されている核種グループもあ る。本評価で用いたモデルでの評価において、各核種グループの内 訳を確認する。

大飯発電所 3/4号炉

差異理由

環境に放出される放射性物質に対する核種グループの内訳及び原 子炉建屋内の放射性物質からのガンマ線による中央制御室入退域時 の直接及びスカイシャイン線量に対する核種グループの内訳をそれ ぞれ第5表及び第6表に示す。高燃焼度燃料に対するNUREG-1465 の適用に関する専門家での議論の中で、NUREG-1465 に比べて大き な放出割合が提案されている Te 類や Ru 類については、第5表及 び第6表に示すとおり、中央制御室居住性評価における寄与割合 は小さく、居住性評価に大きな影響を及ぼすものではない。

(1)環境に放出される放射性物質の内訳について(I-131 等価量換 算、γ線エネルギ 0.5MeV 換算)

中央制御室内及び入退域時の被ばく評価結果における環境に放出され る放射性物質について、NUREG-1465 に示される各核種グループの内訳 として I-131 等価量換算及びγ線エネルギ 0.5MeV 換算の値を第5 表 に示す。I-131 等価量換算はハロゲン (よう素類) が約 62%、Cs 類 が約16%、その他が約22%となっており、γ線エネルギ 0.5MeV 換算 は希ガス類が約92%、ハロゲン(よう素類)が約6%、Cs 類が約2%、 その他が約1%となっている。

15

12

100

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉

※2 中・低揮発性の核種グループは原子炉格納容器内で粒子状物質 として振る舞い, 沈着や格納容器スプレイ等により気相部から除 去されると考えられる。また, 事故発生後, 原子炉格納容器の気 相部からの除去が進んだ後は原子炉格納容器からの漏えいはほ とんどなくなるものと考えられる。

本評価では、中・低揮発性の核種グループ同様、原子炉格納容器内で粒子状物質として除去されるCsを代表として参照し、中・低揮発性の核種グループの「各時刻における漏えい割合」を、「各時刻におけるCsの漏えい割合」に比例するものとした。

表 2-3-3 MAAP 解析による放出割合の評価結果

(炉心の著しい損傷が発生した場合における中央制御室の居住性評価に使用しない)

者しい損傷が発生し	た場合における中央制御室の居住性評価に使用
核種グループ	停止時炉内内蔵量に対する 原子炉格納容器フィルタベント系への放出割合 (事故発生から168時間後時点)
希ガス	約 9. 6×10 ⁻¹
CsI	約 1. 3×10 ⁻⁶
TeO ₂	約 4.5×10 ⁻⁷
Sr0	約 4. 7×10 ⁻⁵
MoO ₂	約 1. 1×10 ⁻⁶
Cs0H	約 1.2×10 ⁻⁶
BaO	約 2. 5×10 ⁻⁵
La_2O_3	約 4. 2×10 ⁻⁵
CeO ₂	約 4. 2×10 ⁻⁵
Sb	約 2.5×10 ⁻⁶
Te ₂	0
$U0_2$	0
Cs ^{⊕1}	₩) 1. 2×10 ⁻⁶

^{※1} CsIグループとCsOHグループの放出割合から評価(評価式は参考1を参照)

表 2-3-4 TMI 事故後に評価された放射性核種の場所ごとの存在量

								(単位:	%)
et se	1	医揮発性			中揮発性			高揮発性	
核 植	144Ce	184Eu	185 Eu	PaSc.	100Ru	125Sb	107Cs	Iett	atKr
原子炉建星									
原子如容器	105.4	122.7	109.5	89.7	93,2	117.2	40.1	42	30
原子炉冷却系	_	-	-	1	-	0.2	3	1	_
地階水, 気相タンク類	0.01	-	-	2.1	0.5	0.7	47	(47)†	54
補助強壓	-	-	-	0.1	-	0.7	5	7	-
合 計	105	122	110	93	94	119	95	97	85

 [「]広範囲の1歳定別定債と多量のデブリ(おもに追請水洗服物)のため、ここでの保持施は折心インペントリーを大きく上回る分析結果となってしまう。したがって、ここに保持された1のインペントリーはCoと同等であると考える。

第5表 (1/2) 環境に放出される放射性物質の各核種グループの内訳

泊発電所3号炉

(I-131 等価量換算) 放出放射能量(注1.2) 内訳 核種グループ (Bq) (%) 希ガス類 約 0.0×100 0 よう素類 約8.2×1013 55 Cs 類 約 1.7×1013 12 Te 類 約3.8×1012 3 Ba 類 約 6.1×1012 約5.9×1011 Ru 類 <1

約 2.2×1013

約 1.7×1013

約 1.5×1014

(注1)7日間積算放出量

Ce 類

La 類

合計

(注2) 有効数値3桁目を四捨五入し2桁に丸めた値

第5表(2/2) 環境に放出される放射性物質の各核種グループの内訳 (**終エネルギ05 MeV 検管)

核種グループ	放出放射能量 (注 1. 2) (Bq)	内訳 (%)
希ガス類	約8.7×10 ¹⁵	91
よう素類	約 6.7×10 ¹⁴	7
Cs 類	約1.7×10 ¹⁴	2
Te 類	約3.1×10 ¹³	<1
Ba 類	約1.7×10 ¹³	<1
Ru 類	約 9.9×10 ¹¹	<1
Ce 類	約1.1×10 ¹²	<1
La類	約 2.9×10 ¹²	<1
合計	約 9.5×10 ¹⁵	100

⁽注1)7日間積算放出量

(注2) 有効数値3桁目を四捨五入し2桁に丸めた値

大飯発電所3/4号炉

第5表(1/2) 環境に放出される放射性物質の各核種グループの内訳 (I-131 等価量換算)

核種グループ	放出放射能量 ^(注1、2、3) (Bq)	内訳 (%)
Xe 類	約 0.0	0
I類	約 7.7×10 ¹³	62
Cs 類	約 1.9×10 ¹³	16
Te 類	約 4.2×10 ¹²	3
Ba 類	約 7.7×10 ¹²	6
Ru 類	約 4.9×10 ¹¹	<1
Ce 類	約 9.4×10 ¹²	8
La類	約 5.7×10 ¹²	5
合計	約 1.2×10 ¹⁴	100

- (注1) 7日間積算放出量
- (注2) 有効数値3桁目を四捨五入し2桁に丸めた値
- (注3) 大飯発電所3号炉又は4号炉の1基あたりの放出放射能量

第5表(2/2) 環境に放出される放射性物質の各核種グループの内訳 (y 線エネルギ 0.5MeV 検算)

核種グループ	放出放射能量 (E1. 2.3) (Bq)	内訳 (%)
Xe 類	約 1.0×10 ¹⁶	92
I類	約 6.1×10 ¹⁴	6
Cs 類	約 1.7×10 ¹⁴	2
Te 類	約 2.9×10 ¹³	<1
Ba 類	約 2.0×10 ¹³	<1
Ru 類	約 8.6×10 ¹¹	<1
Ce 類	約 1.3×10 ¹²	<1
La類	約 3.7×10 ¹²	<1
合計	約 1.1×10 ¹⁶	100

- (注1) 7日間積算放出量
- (注2) 有効数値3桁目を四捨五入し2桁に丸めた値
- (注3) 大飯発電所3号炉又は4号炉の1基あたりの放出放射能量

出典: TMI-2 号機の調査研究成果 (渡会債祐, 井上康, 桝田藤夫 日本原子力学会誌 Vol.32, No.4(1990))

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

表 2-3-5 福島第一原子力発電所事故後に輸出された土壌中の放射性核種

女川原子力発電所2号炉

(2) 原子炉建屋内の放射性物質からのガンマ線による中央制御室入
退域時の直接及びスカイシャイン線量の内訳について

41(中華ヤマル 5世別高麗和野 日本地市 で東京市 (中東京 18日 - 東京1/日本日 東京(Charl) 東京(Charl) 東京(Charl) **SCHOOLS** 3:10 3:10 122 3:12 JAMA JAMA JAMA JAMA 3/28 A/38 246A 10:0-13 5.70-08 1.00-08 1.00-08 160-16

出典:東京電力ホールディングス(株)HP(http://www.tepco.co.jp/cc/press/11040609-j.html)

表 2-3-6 NUREG-1465 の知見を用いた補正後の放出割合

核種グループ	停止時炉内内蔵量に対する 原子炉格納容器フィルタベント系への放出割合 (事故発生から 168 時間後時点)
希ガス	約 9. 6×10 ⁻¹
CsI	約 1. 3×10 ⁻⁶
TeO ₂	約 2. 4×10 ⁻⁷
Sr0	約 9. 5×10 ⁻⁸
MoO ₂	約 1. 2×10 ⁻⁸
CsOH	約 1. 2×10 ⁻⁶
Ba0	約 9. 5×10 ⁻⁸
La ₂ O ₃	約 9.5×10 ⁻¹⁰
CeO ₂	約 2. 4×10 ⁻⁹
Sb	約 2. 4×10 ⁻⁷
Te ₂	0*02
UO ₂	0 ⁴⁶²
Cs ^{⊕1}	約 1. 2×10 ⁻⁶

- ※1 CsI グループと CsOH グループの放出割合から評価 (評価式は参考1を参
- ※2 本評価において「Te2グループ」及び「UO2グループ」の放出割合のMAAP 解析結果はゼロであるため、NUREG-1465の知見を用いた補正の対象外と した。

中央制御室入退域時の被ばく評価結果における原子炉建屋内の放射 性物質からの直接線及びスカイシャインガンマ線について、NUREG-1465 に示される各核種グループの内訳を第6 表に示す。希ガス類が となっている。

泊発電所3号炉

第6表 原子炉建屋内の放射性物質からのガンマ線による 中央制御室入退城時の被ばく評価における各核種グループの内訳

核種グループ	直接線及びスカイシャイン線量 (B1. 2) (mSv)	内訳 (%)
希ガス類	約 4.1×10 ¹	5
よう素類	約 7.3×10 ²	85
Cs 類	約 4.7×10 ¹	5
Te 類	約 1.1×10 ¹	1
Ba 類	約 1.3×10 ¹	2
Ru 類	約 5.1×10 ⁻¹	<1
Ce 類	約 2. 0×10 ⁻¹	<1
La類	約 1.6×10 ¹	2
合計	約 8.6×10 ²	100

- (注1) 中央制御室入口地点における7日間積算線量
- (注2) 有効数値3桁目を四捨五入し2桁に丸めた値
- 3. 今回の評価モデルでの評価とMAAP 解析での評価の比較について 本評価で用いたモデルでの被ばく評価の結果を第7表に示す。第 7 表に示されたように、中央制御室の居住性(重大事故対策)に係 る被ばく評価において, 大きく影響している被ばく経路は, 室内作 業時の「③外気から取り込まれた放射性物質による被ばく」及び入 退域時の「④原子炉建屋内の放射性物質からのガンマ線による被ば く」、「⑤大気中へ放出された放射性物質による被ばく」である。

(2) 原子炉建屋内の放射性物質からのガンマ線による中央制御室入 退域時の直接及びスカイシャイン線量の内訳について

大飯発電所 3/4号炉

中央制御室入退域時の被ばく評価結果における原子炉建屋内の放射 性物質からの直接線及びスカイシャインガンマ線について、NUREG-1465 に示される各核種グループの内訳を第6 表に示す。希ガス類が 約5%、ハロゲン(よう素類)が約85%、Cs 類が約5%、その他が約5% 約64%、ハロゲン(よう素類)が約26%、Cs 類が約5%、その他が約 5%となっている。

> 第6表 原子炉建屋内の放射性物質からのガンマ線による 中央制御室入退城時の被ばく評価における各核種グループの内訳

HEER WILL -P	直接線及びスカイシャイン線量	内訳
核種グループ	(注1, 2) (mSv)	(%)
希ガス類	約 2.9×10 ²	64
I類	約 1.2×10 ²	26
Cs 類	約 2.1×10 ¹	5
Te 類	約 8.5×10°	2
Ba類	約 6.6×10°	1
Ru 類	約 2.6×10 ⁻¹	<1
Ce 類	約 5.6×10 ⁻¹	<1
La類	約 7.5×10°	2
合計	約 4.5×10 ²	100

- (注1) 有効数値3桁目を四捨五入し2桁に丸めた値
- (注2) 大飯発電所3号炉の1基あたりの7日間積算線量
- 3. 今回の評価モデルでの評価と MAAP 解析での評価の比較について 本評価で用いたモデルでの被ばく評価の結果を第7表に示す。 第7表に示されたように、中央制御室の居住性(重大事故対策) に係る被ばく評価において、大きく影響している被ばく経路は、室 内作業時の「③外気から取り込まれた放射性物質による被ばく」及 び入退域時の「④原子炉建屋内の放射性物質からのガンマ線による 被ばく」、「⑤大気中へ放出された放射性物質による被ばく」であ る。

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉	

ake o o at	MUDEO 1405	100 00 00 7 April 40 6da	宏界内への毎出割合	

核種グループ	原子炉格納容器内への放出割合※1
Cs	0. 25
TeO ₂ , Sb, Te ₂	0.05
SrO, BaO	0.02
MoO_2	0.0025
CeO ₂ , UO ₂	0.0005
La ₂ O ₃	0.0002

※1 NUREG-1465 の Table 3.12 「Gap Release」の値と「Early In-Vessel」の値の和を参 照(NUREG-1465 では、「Gap Release」、「Early In Vessel」、「Ex-Vessel」及び「Late In-Vessel」の各事象進展フェーズに対して原子炉格納容器内への放出割合を与えてい る。炉心の著しい損傷が発生した場合における中央制御室の居住性評価における想定 事故シナリオでは、原子炉圧力容器が健全な状態で事故収束するため、原子炉圧力容 器損傷前までの炉心からの放出を想定する「Gap Release」及び「Early In Vessel」 の値の和を用いる。)

表 2-3-8 NUREG-1465 (抜粋)

Table 3.8 Revised Radionuclide Groups

Group	Title	Elements in Group
1	Noble gases	Xe, Kr
2	Halogens	I, Br
3	Alkali Metals	Cs, Rb
4	Tellurium group	Te, Sb, Se
5	Barium, strontium	Ba, Sr
6	Noble Metals	Ru, Rh, Pd, Mo, Tc, Co
7	Lanthanides	La, Zr, Nd, Eu, Nb, Pm, Pr, Sm, Y, Cm, Am
8	Cerium group	Cc, Pu, Np

Table 3.12 BWR Releases Into Containment*

	Gap Release***	Early In-Vessel	Ex-Vessel	Late In-Vessel
Duration (Hours)	0.5	1.5	3.0	10.0
Noble Gases**	0.05	0.95	0	0
Halogens	0.05	0.25	0.30	0.01
Alkali Metals	0.05	0.20	0.35	0.01
Tellurium group	0	0.05	0.25	0.005
Barium, Strontium	0	0.02	0.1	0
Noble Metals	0	0.0025	0.0025	0
Cerium group	0	0.0005	0.005	0
Lanthanides	0	0.0002	0.005	0

59-9-添 2-3-10

泊発電所3号炉

第7表 中央制御室 (重大事故) 居住性に係る被ばく評価 (マスク着用ありの結果)

		7 日	間の実効線量 (mSv)	*1
	被ばく経路	外部被ばく による 実効線量	内部被ばく による 実効線量	実効線量の 合計
	①原子炉建屋からのガンマ線 による中央制御室での被ばく	約 1.7×10 ⁻²	_	約1.7×10 ⁻²
室内	②大気中へ放出された放射性 物質による被ばく	約 1.2×10 ⁻²	_	約1.2×10 ⁻²
室内作業時	③外気から取り込まれた放射性物質による中央制御室内での被ばく	約1.1×10°	約1.1×10°	約 2.2×10°
	小計 (①+②+③)	約1.2×10°	約1.1×10 ⁰	約 2.2×10°
,	④原子炉建屋の放射性物質からのガンマ線による被ばく	約1.0×10 ¹	-	約1.0×10 ¹
人退城時	⑤大気中へ放出された放射性 物質による被ばく	約1.3×10°	約7.9×10-2	約1.4×10°
	小計 (4)+⑤)	約1.2×10 ¹	約7.9×10 ⁻²	約 1. 2×10 ¹
	合 計 (①+②+③+④+⑤)	約13	約1.1	約 15*2

- *1 表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は、有効数値3桁目を四 捨五入し2桁に丸めた値
- *2 「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に

大飯発電所 3/4号炉

第7表 (1/2) 中央制御室 (重大事故) 居住性に係る被ばく評価 (大飯3号炉)(マスク着用ありの結果)

被ばく経路		7日間の	成人実効線量((mSv) *1
		外部被ばく による 実効線量	内部被ばく による 実効線量	実効線量の 合 計
	①建屋からのガンマ線による中央 制御室内での被ばく	約 4.0×10 ⁻³	-	約 4.0×10 ⁻¹
室内	②大気中へ放出された放射性物質 による被ばく	約 4.0×10 ⁻²	1 12	#3 4, 0×10⁻²
作業時	③外気から取り込まれた放射性物 質による中央制御室内での被ば く	約 1.9×10°	約 1.1×10°	約 3.0×10°
	小 計(①+②+③)	約 1.9×10 ⁰	約 1.1×10°	約 3.1×10 ⁸
,	④建屋の放射性物質からのガンマ 線による被ばく	約 2.7×10 ⁶	-	約 2.7×10°
へ退城時	⑤大気中へ放出された放射性物質 による被ばく	約 1.4×10 ⁶	約 7,3×10 ⁻²	約 1.4×10 ⁴
Dif.	小 計(④+⑤)	約 4.0×10 ⁰	₩3 7.3×10 ⁻²	約 4.1×10 ⁴
	合 計 (①+②+③+④+⑤)	約 6.0	約 1.2	約 7.2*2

- *1 表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は、有効数値3桁目を四括五人
- *2 「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に丸めた

第7表(2/2) 中央制御室(重大事故)居住性に係る被ばく評価 (大飯 4 号炉) (マスク着用ありの結果)

		7日間の	成人実効線量(mSv) *1
被ばく経路		外部被ばく による 実効線量	内部被ばく による 実効線量	実効線量の 合 計
	①建屋からのガンマ線による中央 制御室内での被ばく	約 4.0×10 ⁻³	-	約 4.0×10 ⁻³
室内	②大気中へ放出された放射性物質 による被ばく	約 3.2×10 ⁻²	-	約 3,2×10 ⁻²
作業時	③外気から取り込まれた放射性物質による中央制御室内での被ばく	約 1.5×10°	約 8.7×10 ⁻¹	約 2.3×10 ⁸
	小 計 (①+②+③)	約 1.5×10°	約 8,7×10 ⁻¹	約 2.4×10 ⁸
入退城時	④建屋の放射性物質からのガンマ 線による被ばく	約 1.2×10°	-	約 1,2×10 ^a
	⑤大気中へ放出された放射性物質 による被ばく	約 7.3×10 ⁻¹	約 3.8×10 ⁻²	約 7.6×10 ⁻¹
	小 計 (④+⑤)	約 1.9×10°	約 3.8×10 ⁻²	約 1.9×10 ^s
Ī	合 計(①+②+③+④+⑤)	約 3.4	約 0.9	約 4.3**

- *1 表における「実効線量の合計(①+②+②+②+①+⑤)」以外の数値は、有効数値3桁目を関捨五入
- *2 「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に丸めた

この3 つの被ばく経路に着目して、本評価で用いたモデルでの評価 がMAAP 解析での評価と比較して、保守的であることを示す。

この3 つの被ばく経路に着目して、本評価で用いたモデルでの評価 が MAAP 解析での評価と比較して、保守的であることを示す。

<sup>Values shown are fractions of core inventory.
See Table 3.8 for a listing of the elements in each group
Gap release is 3 percent if long-term fuel cooling is maintained.</sup>

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

セシウムの放出割合の評価方法

- 1. セシウムの放出割合
- (1) CsI の形態で存在しているセシウム

全よう素が CsI の形態で存在するものとして整理する。 CsI の形態で存在して いるセシウムの重量は以下のとおりとなる。

- CsIの初期重量[kg]= M₁ + M₁/W₁×W_{co}
- CsI 初期重量中のセシウム重量[kg] = M_I/W_I×W_c,

セシウム元素初期重量[kg]:Mca

よう素元素初期重量[kg]: M₁ よう素原子量[-]: W₁

参考1

セシウム原子量[-]:W_{cs}

(2) CsOHの形態で存在しているセシウム 全セシウムが CsI と CsOH の形態で存在するものとして整理する。CsOH の形態 で存在しているセシウムの重量は以下のとおりとなる。

CsOH 初期重量中のセシウム重量 $[kg] = M_{cs} - CsI$ 初期重量中のセシウム重量 $[kg] = M_{cs} - M_{ls}/W_{l} \times W_{cs}$

(3) セシウムの放出量

MAAP 解析により CsI と CsOH の原子炉格納容器外への放出割合を評価

セシウムの放出重量[kg] = M₁/W₁×W_{cs} × X + (M_{cs} - M₁/W₁×W_{cs}) ×Y X: CsI 放出割合 (MAAP 解析により得られる) Y: CsOH 放出割合 (MAAP 解析により得られる)

- (4) セシウムの放出割合
 - 1. (3) で得られたセシウムの放出量から、セシウムの放出割合を評価

セシウムの放出割合 = セシウムの放出量 / セシウム元素初期重量 = $M_1/W_1 \times W_{cs}/M_{cs} \times X + (1 - M_1/W_1 \times W_{cs}/M_{cs}) \times Y$ = $Y + M_1/M_{cs} \times W_{cs}/W_1 (X - Y)$

59-9-添 2-3-11

(1) 外気から取り込まれた放射性物質による被ばく

外気から取り込まれた放射性物質による被ばくに対して、本評価 で用いたモデルでの評価が保守的であることを確認するため、原子 炉格納容器からの放出割合を比較することで整理する。

a. 今回の評価における原子炉格納容器内での挙動について 炉心損傷が起こり、放射性物質が原子炉格納容器から放出され るまでのイメージについては、別添2 に示すとおりである。

炉心に蓄積した核分裂生成物は、炉心溶融に伴って原子炉格納容器内へ放出され、原子炉格納容器内での重力沈降やスプレイによる除去により放射能量は低減されながら、原子炉格納容器内に浮遊する。さらに、有効性評価の原子炉格納容器内圧の変化を基に設定された原子炉格納容器からの漏えい率にしたがって放出される。

- b. 原子炉格納容器内への放出のタイミングについて 第3表に示すとおり、炉心溶融開始及び原子炉容器破損のタイ ミングについては、ほぼ同じであると考えられ、核分裂生成物が 大量に放出される初期の事象進展に大きな差はないと判断している。
- c. 原子炉格納容器からの放出割合の比較について 本評価で用いたモデルでの原子炉格納容器からの放出割合と MAAP 解析での原子炉格納容器からの放出割合を第8 表に示し, また,比較方法を第9 表に示す。

第8表 原子炉格納容器からの放出割合の比較*1

核種グループ	本評価で用いたモデル	MAAP 解析*2
希ガス類	約1.1×10 ⁻²	約 9.6×10 ⁻³
よう素類	約3.6×10 ⁻⁴	約3.0×10 ⁻⁴
Cs 類	約 2.0×10 ⁻⁴	約1.9×10 ⁻⁵
Te 類	約8.0×10 ⁻⁵	約 1.5×10 ⁻⁵
Ba 類	約3.2×10 ⁻⁵	約 6.9×10 ⁻⁷
Ru 類	約1.3×10 ⁻⁶	約 1.3×10 ⁻⁶
Ce 類	約 1.4×10 ⁻⁶	約 4.7×10 ⁻⁸
La 類	約 1.4×10 ⁻⁶	約7.4×10 ⁻⁹

- *1 表における割合の数値は、有効数値3桁目を四捨五入し2桁に丸めた値
- *2 Cs のように複数の化学形態 (CsI, CsOH グループ) を有する核種について は、Cs の炉心内蓄積量に対するそれぞれの化学形態グループの放出割合を合 計している。

(1) 室内に外気から取り込まれた放射性物質による中央制御室内での 被ばく

中央制御室内での被ばくに対して、本評価で用いたモデルでの評価が保守的であることを確認するため、原子炉格納容器からの放出割合を比較することで整理する。

a. 今回の評価における原子炉格納容器内での挙動について 炉心損傷が起こり、放射性物質が原子炉格納容器から放出され るまでのイメージについては、本文資料「大飯3号炉及び4号 炉原子炉制御室の居住性に係る被ばく評価について」にて示すと おりである。

炉心に蓄積した核分裂生成物は、炉心溶融に伴って原子炉格納容器内へ放出され、原子炉格納容器内での重力沈降やスプレイによる除去により放射能量は低減されながら、格納容器内に浮遊する。さらに、有効性評価の格納容器内圧の変化をもとに設定された格納容器からの漏えい率にしたがって放出される。

- b. 原子炉格納容器内への放出のタイミングについて 第3表に示すとおり、炉心溶融開始及び原子炉容器破損のタ イミングについては、ほぼ同じであると考えられ、核分裂生成物 が大量に放出される初期の事象進展に大きな差はないと判断して いる。
- c. 原子炉格納容器からの放出割合の比較について 本評価で用いたモデルでの原子炉格納容器からの放出割合と MAAP 解析での原子炉格納容器からの放出割合を第8表に示し、 また、比較方法を第9表に示す。

第8表 原子恒格納容器内からの放出割合の比較*1

核種グループ	本評価で用いたモデル	MAAP 解析**
希ガス類	約 1.1×10 ⁻²	約8.9×10 ⁻³
よう素類	約 3.6×10 ⁻⁴	約 2.8×10 ⁻⁴
Cs 類	約 2. 2×10 ⁻⁴	約 1.8×10 ⁻⁵
Te 類	約 8. 9×10 ⁻⁵	約1.5×10 ⁻⁶
Ba 類	約 3.5×10 ⁻⁵	約 6.0×10 ⁻⁷
Ru 類	約 1.5×10 ⁻⁶	約 1.5×10 ⁻⁶
Ce 類	約 1.6×10 ⁻⁶	約 6.9×10 ⁻⁸
La類	約 1. 5×10 ⁻⁶	約8.7×10°

- *1 表における割合の数値は、詳細値を四捨五入し2桁に丸めた値
- *2 Cs 類のように複数の化学形態(CsI、CsOH グループ)を有する技種については、Cs の炉心内蓄 積量に対するそれぞれの化学形態グループの放出割合を合計している。

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)

緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3/4号炉 差異理由 第8表より、原子炉格納容器からの放出割合について、本評価で用 第8表より、原子炉格納容器からの放出割合については、本評価で いたモデルでの評価のほうが、MAAP 解析での評価よりも大きな数値と 用いたモデルでの評価のほうが、MAAP 解析での評価よりも大きな数値 なっており、保守的な評価であることが確認できる。 となっており、保守的な評価であることが確認できる。 第9表 MAAPコードによる放出量と本評価による放出量の比較方法 第9表 MAAP コードによる放出量と本評価による放出量の比較方法 (ORIGEN2 コードにて計算) 炉心内蓄積量① (ORIGEN2 コードにて計算) CV 内の放射性物質量 CV 内の放射性物質量 ·CV 内への放出割合 CV 内の放射性物質量 CV内の放射性物質量 ・CV内への放出割合 (MAAP = - F) ·CV 内への放出割合 ·CV 内への放出割合 (NUREG-1465) エアロゾルの自然沈着及びスプレ (MAAP =- F) (NUREG-1465) エアロゾルの自然沈着及びスプレ イによる除去効果 エアロゾルの自然沈着及びスプレ エアロゾルの自然沈着及びスプレ イによる除去効果 (MAAP コード内で設定) イによる除去効果 (実験等に基づき設定) イによる除去効果 元素状よう素の自然沈着 (MAAP コード内で設定) (実験等に基づき設定) ・元素状よう素の自然沈着 (MAAP では評価されないため実 ・元素状よう素の自然沈着 ・元素状よう素の自然沈着 (実験等に基づき設定) 験等に基づき設定) (MAAP では評価されないため (実験等に基づき設定) 実験等に基づき設定) CV 内圧 (MAAP による評価) CV 内圧(MAAP による評価) に応じた CV 漏えい率を包絡す に応じた CV 漏えい率を考慮 CV 内圧(MAAPによる評価) CV 内圧(MAAP による評価) る漏えい率を設定 に応じた CV 漏えい率を包絡 に応じた CV 漏えい率を考慮 する漏えい率を設定 CV 外へ放出される放射性物質量② CV 外へ放出される放射性物質量③ CV 外へ放出される放射性物質量② CV 外へ放出される放射性物質量③ MAAP コードを用いた評価 今回の評価 MAAPコードを用いた評価 今回の評価 今回の評価の CV 外への放出割合 MAAP コードによる評価の CV 外への放出割合 (2/D) (3/1) 今回の評価の CV 外への放出割合 MAAP コードによる評価の CV 外への放出割合 (D/D) (2/I)

泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第 50 宋 連転員が原子が制御主にととまるだめの政備(相足説明資本 女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
	(2) 入退域時の原子炉建屋内の放射性物質からのガンマ線による被ば	(2) 建屋からのガンマ線による入退域時の被ばく	
	(2) 入退域時の原子炉建屋内の放射性物質からのガンマ線による被ばく、入退域時の原子炉建屋内の放射性物質からのガンマ線による被ばくに対して、本評価で用いたモデルでの評価が保守的であることを確認する。 MAAP 解析では、原子炉格納容器内を多区画に分割しており、原子炉格納容器内の各区画に対して固有の線源強度を設定することが可能となる。これにより、遮蔽体としては、原子炉格納容器内の遮蔽を考慮したモデルを設定することができる。 一方、本評価で用いたモデルでは、原子炉格納容器内を1つの区画としたモデルを設定し、原子炉格納容器内の線源に対して代替格納容器スプレイによる原子炉格納容器の下部区画への移行を考慮し、上部区画及び下部区画に均一に分布した線源強度を設定している。また、遮蔽体としては、外部遮蔽のみを考慮したモデルとしている。 MAAP 解析において、原子炉格納容器内の遮蔽構造物による現実的な遮蔽効果を考慮した場合、遮蔽構造物に囲まれている区画の線量の低減効果が大きく、直接線及びスカイシャイン線の網点で線量に寄与する領域は上部区画となる。 直接線及びスカイシャイン線の線源強度について、本評価で用いたモデルでの下部区画へ移行した放射性物質を除いた線源強度と、MAAP 解析での上部区画の線源強度の比較を行った。結果を第10表に示す。	(2) 建屋からのカンマ緑による人皮吸時の被はく 入退域時の原子炉建屋内の放射性物質からのガンマ線による被ばくに対して、本評価で用いたモデルでの評価が保守的であることを確認する。 MAAP 解析では、原子炉格納容器内を多区画に分割しており、原子炉格納容器内の各区画に対して固有の線源強度を設定することが可能となる。これにより、遮蔽体としては、原子炉格納容器内の遮蔽構造物(1 次遮蔽、2 次遮蔽等)を考慮した現実的な遮蔽を考慮したモデルを設定することができる。 一方、本評価で用いたモデルでは、原子炉格納容器内を1つの区画としたモデルを設定し、原子炉格納容器内の線源に対して代替格納容器スプレイによる原子炉格納容器内の線源に対して代替格納容器スプレイによる原子炉格納容器の下部区画への移行を考慮し、上部区画及び下部区画に均一に分布した線源強度を設定している。また、遮蔽体としては、外部遮蔽のみを考慮したモデルとしている。また、遮蔽体としては、外部遮蔽のみを考慮したモデルとしている。 MAAP 解析において、原子炉格納容器内の遮蔽構造物による現実的な遮蔽効果を考慮した場合、遮蔽構造物に囲まれている区画の線量の低減効果が大きく、直接線及びスカイシャイン線の線源強度について、本評価で用いたモデルでの下部区画へ移行した放射性物質を除いた線源強度と、MAAP 解析での上部区画の線源強度の比較を行った。結果を第10表に示す。	
	第 10 表 原子炉格納容器内の線源強度における本評価で用いた モデルでの評価と MAAP 解析での評価の比較	第10表 原子炉格納容器内の線源強度における本評価で用いた モデルでの評価と MAAP 解析での評価の比較	
	項 目 本評価で用いたモデル MAAP 解析	項 目 本評価で用いたモデル MAAP 解析	
	線源強度 (MeV) 約3.1×10 ²⁴ 約2.5×10 ²⁴	線源強度(MeV) 約 4.0×10 ²⁴ 約 3.2×10 ²⁴	
	第10 表に示すとおり、本評価で用いたモデルでの直接線及びスカイシャイン線の評価が線源強度の観点でより保守的な値となっている。更に本評価で用いたモデルの評価では、下部区画へ移行した放射性物質に対して外部遮蔽以外の遮蔽構造物の遮蔽効果を見込んでいない。 (3) 入退城時の大気中へ放出された放射性物質による被ばく「(1) 外気から取り込まれた放射性物質による被ばく」に同じ。 (1) (2)及び(3)より、本評価で用いたモデルでの評価は、MAAP解析での評価と比較して保守的に評価できることを確認した。	第 10 表に示すとおり、本評価で用いたモデルでの直接線及びスカイシャイン線の評価が線源強度の観点でより保守的な値となっている。更に本評価で用いたモデルの評価では、下部区画へ移行した放射性物質に対して外部遮蔽以外の遮蔽構造物の遮蔽効果を見込んでいない。 (3) 大気中へ放出された放射性物質による入退域時の被ばく「(1) 室内に外気から取り込まれた放射性物質による中央制御室内での被ばく」に同じ。 (1)、(2)及び(3)より、本評価で用いたモデルでの評価は、MAAP解析での評価と比較して保守的に評価できることを確認した。	

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

女川原子力発電所2号炉	泊発電所3号炉			大飯発電所 3 / 4 号炉				差異理由			
			2における格納容	器への放出(高	燃焼度燃料)						
	Table 3.1 PWR R	eleases Into Containment (H Gap Release	ligh Burnup Fuel)* Early In-Vessel	E3-Vessel	Late In-Vessel	第1-1表 E	RI/NRC 02-202	における格納	容器への放出(高燃焼度燃料)	
	Duration (Hours)	04 (05) ^t	1.4 (1.3)	20 (20)	10.0 (10-0)	Table 3.1 PWR P	teleases Into Containment (H	ligh Burnup Fuel)*			
	Noble Gases	0.05; 0.07; 0.07; 0.07; NE ¹ (0.05)	0.63, 0.63; 0.63; 0.65; 1.0TR. (0.95)	03 (0)	0 (0)	Duration (Hours)	Gap Release	Early In-Vessel	Ex-Vessel	Late In-Vessel	
	Halogena	0.05 (0.05)	0.35; 0.95TR (0.35)	0.25 (0.25)	0.2 (0.1)	Noble Gases	0.4 (0.5) ¹ 0.05; 0.07; 0.07; 0.07; NE ²	1.4 (1 3) 0.63, 0.63; 0.63; 0.65; 1.8TR	20 (20)	10.0 (10 0) 0 (0)	
	Alkah Metals Tellarum group	0.05 (0.05)	0.25; 0.90TR (0.25) 0.10; 0.30; 0.30; 0.35, 0.7TR	0.35 (0.35) 0.40 (0.25)	0.1 (01) 0.20 (0.005)	Halogens	(0.05)	(0.95) 0.35; 0.95TR (0.35)	0.25 (0.25)	62 (0.1)	
	Barium, Strootsum	0 (0)	(0.05)	3000000		Alkalı Metals	0.05 (0.05)	0.25; 0.90TR (0.25)	0.35 (0.35)	6.1 (0.1)	
	Noble Metals	(0)	(0.0025)	(0.1)	0 (0)	Tellarsum group	0.005 (0)	0.10; 0.30; 0.30; 0.35, 0.7TR (0.05)	0.40 (0.25)	0.20 (0.005)	
	Mo, Tc	0	0 15, 0 2; 0.2; 0.2; 0.7TR ²	0 02; 0:02; 0:2; 0:2; TR	0; 0; 0.05; 0.05, TR	Barium, Strontsum	0 (0)	0 02; ^{mar 4} (0.02)	0.1 (0.1)	D (0)	
	Ru, Rh, Pd	0	0.0025; 0.0025; 0.01, 0.01; 0.02TR	0 0025; 0.02; 0.02; 0.02; TR	0 01; 0.01; 0.01; 0 10, TR	Noble Metals Mo, Tc	(0)	(0.0025) 0 15, 0 2; 0.2; 0.2; 0.7TR ²	(0.0025)	(9)	
	Cernara group Cu	(0)	(0.0005) 0.0002, 0.0003; 0.01; 0.01; 0.02TH	(0.005) 0.005; 0.005, 0.01; 0.01; TR	(0)	Ru, Rh, Pd	0	0 0025; 0.0025; 0.01, 0.01;	0 02; 0.02; 0.2; 0.2; TR 0 0025; 0.02; 0.02; 0.02; TR	0; 0; 0:05; 0:05, TR 0:01; 0:01; 0:01; 0:10, TR	
	Pu, 27		0.0001; 0.0005; 0.001; 0.002;	0 005, 0 005; 0.01; 0.01; TR	0	Cersum group	(0)	0.02TR (0.0005)	(0.005)	(0)	
	Np	0	0 002TR 0 001; 0.01; 0.01; 0.01;	0 005; 0 005; 0.01; 0.01; TR	0	Ce	0	0.0602, 0.0605; 0.01; 0.01; 0.02TR	0.005; 0 005, 0 01; 0,61; TR		
	1anthamões (one group ⁵)	0: 0: 0: (0)	0.02TR 0.0005; 0.002; 0.01 (0.0002)	0.005; 0.01; 0.01 (0.005)	0; 0; 0 (0)	Pu, Zr	0	0.0001; 0.0005; 0.001; 0.002; 0.002TR			
	La, Eu, Pr. No	0,0	0 0002; 0.02TR	0 605; TR	0; TR	Np	0	0 001; 0.01; 0.01; 0.01; 0.02TR	0 005; 0 005; 0.01; 0.01; TR	6	
	Y, Nd, Am, Cm Nb	0, 0 0; 0	0.0002; 0.002TR 0.002; 0.002TR	0.005; TR 0.005; TR	0; TR 0: TR	Lanthamsdes (one group ⁵) La. Eu. Pr. No	0; 0; 0; (0)	0.0005; 0.002; 0.01 (0.0002) 0.0002; 0.02TR	0 005; 0.01; 0.01 (0.005)	0; 0; 0 (0)	
	Per, Ser	0,0	0.0002; 0.002TR	0.005; TR	0, TR	Y, Nd, Am, Cm	0;0	0.0002; 0.002TR	0.605; TR 0.605; TR	0; TR 0; TR	
	* Note that it was the panel."	s understanding that only about 17	T of the core will be high burnup fi	rel. This is a similferent decention	from the most when accordant	Nb	0;0	0.902; 0.002TR	0.605; TR	O; TR	
	analyses were performed for	cores that were uniformly burned	d sonally to 39 GWd1		norm the past which accrocks	Pm, Sm	0;0	0.0002; 0.002TR	0.005; TR	0, TR	
	BIAVI (ORRE), experim 2% in the containment, There panel members re	ents cited; these show a 50% relie bused upon all data available to da tained the NUREG-1465 lastfuni	releases following the pp release p in unifficient information upon who here is experimental evolutions the most from the fact at 10% deliver in. de grouping, e.g., one group, while 2-202 i= \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$ \$\frac{1}{2}\$\$\$ \$\frac{1}{2}\$\$\$ \$\frac{1}{2}\$\$\$\$ \$\frac{1}{2}\$	y to the continument, Direction. two panel members subdivided th	has a 10% retease from net and				Light-Water Nuclear Power Flash phase to the early its vessel phase. As to base as informed opinion, at burism is much more volatile fi- ery to the containment. Stomtism to the two panel members aubdivided the		
		Gap Release	Early In-Vessel	Ex-Vessel	Late In-Vessel						
	Duration (Heurs) Noble Gases	0.3; 0.4, 0.4; 0.4, 0.4 (0.5)*	14; 1.4; 1.4; 1.4; 1.5 (1.3) 9.65; 0.65; 0.75; 0.93;	2.0 (2.0) 0, 0.2; 0.3, 0.3; TR (0)	0 (0)						
	Halogens	(0.05)	0.95 TR ² (0.95) 0.325; 0.35; 0.35, 0.375;	0 15; 02; 0.25; 0.25; TR	0.2; 0.2; 0.2; 0.2; TR (0.1)						
	Alkalı Metala	(0.05)	0.95TR (0.35) 0.25; 0.30; 0.30; 0.30; 0.65TR	(0.25)	0.10, 0.15; 0.15, 0.15, TR						
	Tellucium group	(0.05)	(0.25)	(0.25)	(0.1)						
			0.1; 0.15; 0.3; 0.35; 0.7TR (0.05)	0.4; 0.4; 0.4; 0.4; TR (0.25)							
	Barium, Strootnen Noble Metals	NE*, NE, NE; 0, 0 (0) (0)	NE, NE, NE; 9:01; 0:1 (0:02) (0:0025)	NE, NE NE; 0.1; 0.1 (0.1) (0.0025)	NE, NE, NE, 0; 0 05 (0) (0)						
	Me, To	NE, NE, NE; 0, 0	NE, NE, NE; 0.1; 0.1	NE, NE, NE, 0 01, 0 01	NE, NE, NE; 0.1; 0.1						
	Ru, Rh, Pd Cersam group	NE, NE, NE; 0; 0 (6)	NE, NE, NE; 0.05; 0.1 (0.0005)	NE, NE, NE; 0.01; 0.01 (0.005)	NE, NE, NE, 0.01, 0.01 (0)						
	Ce Pu, Zr	NE, NE, NE; 0; 0 NE, NE, NE, 0, 0	NE, NE, NE, NE, 0.01 NE, NE, NE, NE, 0.001	NE, NE, NE; 0.01; 0.01 NE, NE, NE; 0.001; 0.001	NE, NE, NE; NE, 0 NE, NE, NE; NE; 0						
	Np	NE, NE, NE; 0; 0	NE, NE, NE; NE; 0.001 NE, NE, NE; NE; 0.01	NE, NE, NE, 0.01; 0.02	NE, NE, NE; NE; 0 NE, NE, NE; NE; 0						
	Lanthunides	NE, NE, NE; 0, 0 (0)	NE, NE, NE; NE; 0.005 (0.0002)	NE, NE, NE, NE, 0.01 (0.00)	5) NE, NE, NE; NE; 0 (0)						
	TR = total release. The NE = No entry, the pur	e practice in France is to not devid tel member concluded that there w	 Accident Source Terms for PWIG. the the source term unto early in-very was mulficated unformation upon was assembles in the core and not free 	sel, ex-vessel, and late in-vessel p which to base an informed opinion	phases.						

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所 2 号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由

第1-3表 SAND2011-0128における格納容器への放出(高燃焼度燃料)

Table 13. Comparison of PWR high burnup durations and release fractions (bold entries) with those recommended for PWRs in NUREG-1465 (parenthetical entries).

	Gap Release	In-vessel Release	Ex-vessel Release	Late In-vessel Release
Duration (hours)	0.22 (0.5)	4.5 (1.5)	4.8 (20)	143 (10)
Release Fractions of				
Radionuclide Groups				
Noble Gases	0.017	0.94	0.011	0.003
(Kr,Xe)	(0.05)	(0.95)	(0)	(0)
Halogens	0.004	0.37	0.011	0.21
(Br,I)	(0.05)	(0.35)	(0.25)	(0.10)
Alkali Metals	0.003	0.23	0.02	0,06
(Rb, Cs)	(0.05)	(0.25)	(0.35)	(0.10)
Alkaline Earths	0.0006	0.004	0.003	
(Sr, Ba)	(D)	(0.02)	(0.10)	(-)
Tellurium Group	0.004	0.30	0.003	0.10
(Te, Se, Sb)	(0)	(0.05)	(0.25)	(0.005)
Molybdenum	-	0.98	0.01	0.03
(Mo, Tc, Nb)		(0.0025)	(0.0025)	(0)
Noble Metals		0.006	[0.0025]	
(Ru. Pd. Rh. etc.)		(0.0025)		
Lanthanides	-	1.5x10"	1.3x10-5	
(Y, La, Sm, Pr, etc.)		(2×10 ⁻⁴)	(0.005)	
Cerium Group	-	1.5×10 ⁻⁷	2.4×10 ⁻⁴	
(Ce, Pu, Zr, etc.)		(5×10 ⁻⁴)	(0.005)	I

第1-4表 SAND2011-0128における格納容器への放出 (MOX燃料)

Table 16. Comparison of proposed source term for an ice-condenser PWR with a 40% MOX core (bold entries) to the NUREG-1465 source term for PWRs (parenthetical entries).

	Gap Release	In-vessel Release	Ex-vessel Release	Late In-vessel Release
Duration (hours)	0.36 (0.50)	4.4 (1.3)	6.5 (20)	16 (10)
Release Fractions of Radionuclide Groups				
Noble Gases	0.028	0.86	0.05	0.026
(Kr,Xe)	(0.050)	(0.95)	(0)	(D)
Halogens	0.028	0.48	0.06	0.055
(Br,I)	(0.050)	(0.35)	(0.25)	(0.10)
Alkali Metals	0.014	0.44	0.07	0.025
(Rb, Cs)	(0.050)	(0.25)	(0.35)	(0.10)
Alkaline Farths (Sr. Ba)		0.0015 (0.020)	0.60R (0.1)	9x10 ⁴ (0)
Tellurium Group	0.014	0,48	0.04	0,055
(Te, Se, Sb)	(D)	(0.05)	(0.25)	(0.005)
Molybdenum	-	0.27	[0.0025]	0.024
(Mo, Tc, Nb)		(0.0025)		(D)
Noble Metals	-	0.005	[0.0025]	3 x 10-4
(Ru, Pd, Rh, etc.)		(0.0025)		(0)
Lanthanides		1.1 x10°	3 x10°	-
(Y. La Sm, Pr, etc.)		(0.0002)	(0.005)	I .
Cerium Group		1.0 x10°	5 x10 ⁻¹	
(Ce. Pu. Zr. etc.)		(0.0005)	(0.005)	I

第1-2表 SAND2011-0128における格納容器への放出 (高燃焼度燃料)

Table 13. Comparison of PWR high burnup durations and release fractions (bold entries) with those recommended for PWRs in NUREG-1405 (parenthetical entries).

	Oap Release	In-vessel Release	Ex-vessel Release	Late In-vessel Release
Duration (hours)	0.22 (0.5)	4.5 (1.5)	4.8 (2.0)	143 (10)
Release Fractions of Radionuclide Groups				
Noble Gases (Kr,Xe)	(0.017	0.94 (0.95)	0.011	0.003
Halogens (Br,l)	(0.05)	0.37 (0.35)	0.011 (0.25)	(0.10)
Alkali Metals (Rb, Cs)	0.003	0.23 (0.25)	(0.30)	(0.10)
Alkaline Earths (Gr. Ba)	0.0006 (D)	(0.02)	0.003 (0.10)	i)
Tellurium Group (Te. Se. Sh)	0.004 (D)	0.30	0.003	0.10 (0.005)
Molybdenum (Mo, To, Nb)		(0.08	(0.0025)	0.03
Noble Metals (Ru, Pd, Rh, etc.)	-	0.006 (0.0025)	[0.0025]	1
Lanthanides (Y, La, Sm, Pr, etc.)		1.5x10° (2x10°)	1.3x10-5 (0.005)	-
(Ce, Pu, Zr, etc.)	*	1.5x10° (5x10°)	2.4x10* (0.006)	100

大飯発電所 3/4号炉

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

	 	 	7.71.7		100	 	
1		+-1	川直スカ	発電所2号	Like		
- 1		女	川原士刀	完 电/ ガンス	77,1-		

2-4 放射性物質の大気放出過程について

原子炉格納容器からサプレッションチェンバの排気ラインに流入 した放射性物質は、原子炉格納容器フィルタベント系を経由し大気 1. 大気中への放出放射能量評価の概略について 中に放出される。

また、原子炉格納容器から原子炉建屋原子炉棟に漏えいした放射 性物質は、原子炉建屋原子炉棟から非常用ガス処理系(以下「SGTS という。)を経由して、又は直接大気中に放出される。

大気中への放射性物質の放出経路ごと及び事故発生からの経過時 間ごとの単位時間当たりの放射性物質の放出割合の評価式※1 を以 下に示す。また、放射性物質の大気放出過程を図2-4-1 から図2-4-4 に示し、大気中への放出トレンドを図2-4-5 から図2-4-7 に示す。

- ※1 各評価式における放出割合等は停止時炉内内蔵量に対する割合 を表す。
- 1. 原子炉格納容器からサプレッションチェンバの排気ラインに流入 した放射性物質

$$q_{PCV \to \pm \%}(t) = q_{PCV \to FCVS}(t) \times \frac{1}{DF}$$

 $q_{PCV \to \pm \sqrt{2}}(t)$: 時刻 tにおける単位時間当たりの大気中への放出割合[1/s]

 $q_{PCV \rightarrow FCVS}(t)$: 時刻 tにおける単位時間当たりの流入割合[1/s]

(原子炉格納容器からサプレッションチェンパの排気ライン)

DF :原子炉格納容器フィルタベント系フィルタ装置の除去係数[-] ***

- ※1 除去係数は添付資料 2 2-1 を参照
- 2. 原子炉格納容器から原子炉建屋原子炉棟に漏えいした放射性物質 ①事故発生から原子炉建屋原子炉棟の負圧達成まで(事故発生70分 後※1 まで)

$$q_{R/B \rightarrow \pm 2\pi}(t) = q_{PCV \rightarrow R/B}(t)$$
 $(t < T_1)$ ⁶²

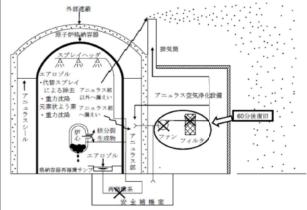
 $q_{R/B o ext{大気}}(t)$; 時刻 tにおける単位時間当たりの

原子炉建屋原子炉棟からの大気中への放出割合[1/s]

 $q_{PCV \rightarrow R/B}(t)$: 時刻 tにおける単位時間当たりの

原子炉格納容器から原子炉建屋原子炉棟への漏えい割合[1/s]

T₁:原子炉建屋原子炉棟の負圧達成時間(事故発生70分後)[s]


- ※1 SGTS 起動時間及び排気風量並びに原子炉建屋原子炉棟の設計気密度を基に評価し 設定 (添付資料 2 2-6 を参照)
- ※2 この期間では原子炉建屋原子炉棟の負圧が達成されていないことから、放射性物質 は原子炉建屋原子炉棟から大気中に直接放出されるものとして評価した。評価に当

たっては、原子炉建屋原子炉棟の換気率を保守的に無限大[回/日] とした。

泊発電所3号炉 添付1-2-12

大気中への放出放射能量の推移グラフについて

評価イメージを第1図に、大気中への放出量算定の概略を第2図 に、解析のクロノロジを第3図に示す。

第2 図に示す過程にしたがって、大気中への放出放射能量を算出する。 炉心に蓄積した核分裂生成物は、炉心溶融に伴って原子炉格納容器内 へ放出され、原子炉格納容器内での重力沈降やスプレイによる除去に より放射能量は低減されながら、格納容器内に浮遊する。さらに、有 効性評価の格納容器内圧の変化をもとに設定された格納容器からの漏 えい率にしたがって漏えいし、アニュラス空気浄化設備のフィルタ除 去効率を考慮して、各核種の放出放射能量の総量を算出する。

第1図 評価イメージ

記載内容の相違 記載位置の相違 ・PWR と BWR の設 備の差異もあるため 直接の比較はできな いが、大気中への放 出放射能量をグラフ で示している添付 1 2-12 を記載した。

差異理由

大飯発電所 3/4号炉

赤字:設備、運用又は体制の相違(設計方針の相違)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉

②原子炉建屋原子炉棟負圧達成後

(事故発生70 分後から168 時間後 (評価期間 (7 日間) 中でSGTS は停止しないことを想定)

$$q_{R/B-\pm 5\%}(t) = \lambda \cdot Q_{R/B}(t)$$
 $(t < T_1)^{\oplus 1}$
 $\frac{dQ_{R/B}(t)}{dt} = -\lambda \cdot Q_{R/B}(t) + q_{PCV-R/B}(t)$
 $Q_{R/B}(T_1)^{\oplus 2} = \int_0^{T_1} q_{PCV-R/B}(t)dt$

 $q_{R/B o ext{大気}}(t)$: 時刻 t における単位時間当たりの

原子炉建屋原子炉棟から大気中への放出割合[1/s]

 $q_{PCV \rightarrow R/B}(t)$: 時刻 t における単位時間当たりの

原子炉格納容器から原子炉建屋原子炉棟への漏えい割合[1/s]

 $Q_{R/B}(t)$: 時刻 t における原子炉建屋原子炉棟内での存在割合[-]

λ : 原子炉建屋原子炉棟の換気率[1/s]

(原子炉建屋原子炉棟の設計気密度を基に設定等)

T, : 原子炉建屋原子炉棟の負圧達成時間 (事故発生 70 分後) [s]

- ※1 この期間では原子炉建屋原子炉棟の負圧が維持されているため、放射性物質は原子 炉建屋原子炉棟から大気中に直接放出されず、SGTS を経由して大気中へ放出される。
- ※2 原子炉建屋原子炉棟の負圧達成時間(T₁)における,停止時炉内内蔵量に対する原子炉建屋原子炉棟内での存在割合は、保守的に時刻T₁までに原子炉枠納容器から原子炉建屋原子炉棟に漏えいした放射性物質の全量が原子炉建屋原子炉棟内に存在するものとして評価した。
- ※3 原子炉建屋原子炉棟の機気率は、SGTS を用いる場合の原子炉建屋原子炉棟の設計機 気率(0.5回/日)を採用している。

各核種の炉心内蓄積量の算定

泊発電所3号炉

NUREG-1465 に基づく,炉心から原子炉格納容器に放出される割合の決定

原子炉格納容器内での低減効果の算定

・原子炉格納容器内での重力沈降によるエアロゾルの自然沈着連度の算出 (NUPEC)

 $\lambda_d = V_d \frac{A_f}{V_g}$

・原子炉格納容器内での元素状よう素の自然沈着速度の算出(NUPEC)

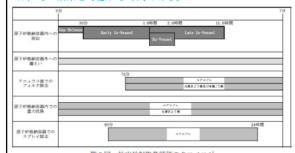
$$\lambda_d = -\frac{1}{t_1 - t_0} \log \left(\frac{\rho_1}{\rho_0} \right)$$

原子炉格納容器内のスプレイ領域での代替格納容器スプレイによるエアロゾル除去速度の算出(SRP6.5.2)

$$\lambda_S = \frac{3hFE}{2V_sD}$$

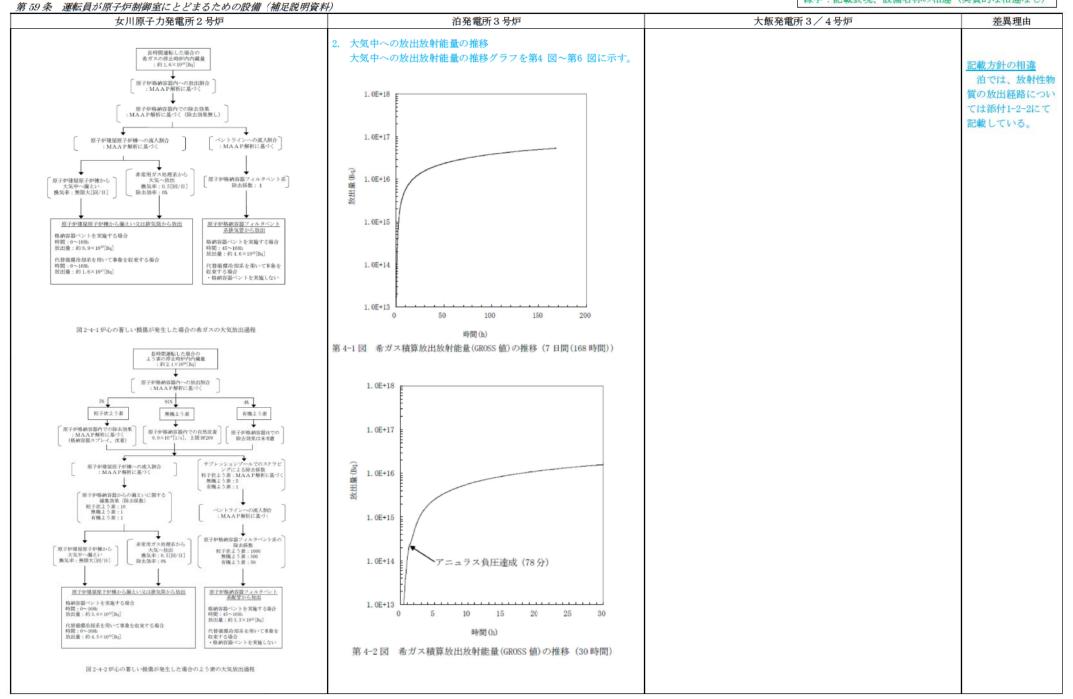
7

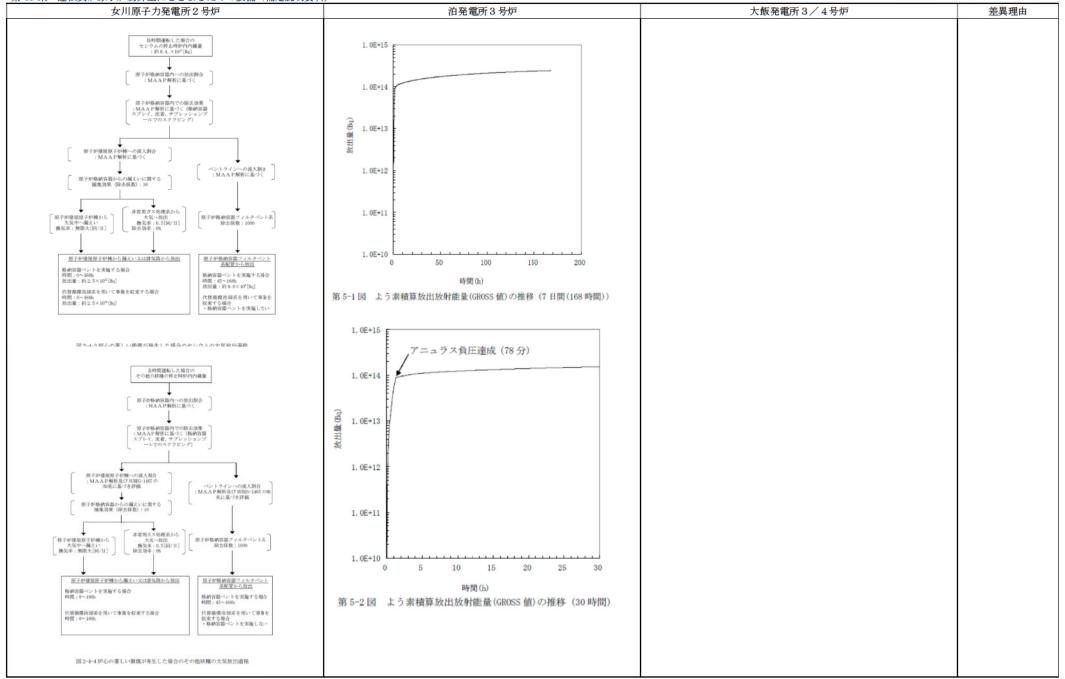
原子炉格納容器からの漏えい率の決定


・MAAP 解析値に基づく漏えい率を包絡する値を設定(0.16 %/日)

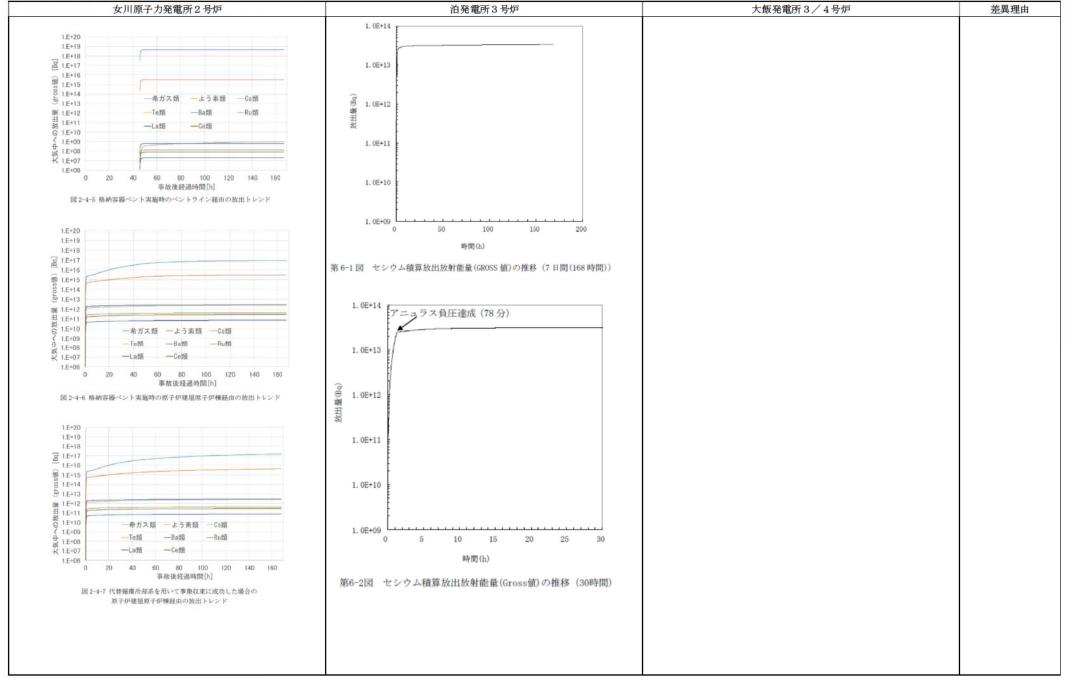
アニュラス空気浄化設備のフィルタ除去効率等を考慮した環境への放出量 (7 日間) の算出

第2図 大気中への放出放射能量算定の概略フロー


第3 図は、放出放射能量評価のクロノロジを示し、図に記載の時間は、その効果を考慮する時間である。


第3図 放出放射能量評価のクロノロジ

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違)


泊発電所 3 号炉 S A 基準適合性 比較表 r.3.0 緑字:記載表現、設備名称の相違(実質的な相違なし)

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

赤字: 設備、運用又は体制の相違(設計方針の相違) 青字: 記載箇所又は記載内容の相違(記載方針の相違) 緑字: 記載表現、設備名称の相違(実質的な相違なし)

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

サ川原子力発電所2号炉	泊発電所3号炉	大飯発電所 3 / 4 号炉	差異理由
			女川には比較対象の
	添付1-2-5		資料がないため、大
	The state of the s	The state of the Mary Add to the state of th	飯と比較を実施す
	よう素の化学形態の設定について	よう素の化学形態の設定について	る。 (本ページ相違な
	重大事故時の居住性に係る被ばく評価では、よう素の化学形態に対	重大事故時の居住性に係る被ばく評価では、よう素の化学形態に対	L.)
	する存在割合としてR.G.1.195 "Methods and Assumptions for	する存在割合として R.G.1.195 "Methods and Assumptions for	
		Evaluating Radiological Consequences of Design Basis Accidents	
		at Light Water Nuclear Power Reactors"で示されたよう素の存在割	
	割合を用いている。	合を用いている。	
	原子炉格納容器への核分裂生成物の放出割合の設定に用いたNUREG-	┃ ┃ 原子炉格納容器への核分裂生成物の放出割合の設定に用いた	
	1465 にもよう素の化学形態に対する存在割合についての記載がある	NUREG-1465 にもよう素の化学形態に対する存在割合についての記載	
	が,原子炉格納容器内の液相のpH が7 以上の場合とされている。(放	があるが、原子炉格納容器内の液相の pH が 7 以上の場合とされてい	
		る。(放出全よう素のうち元素状よう素は5%を超えないこと、有機よ	
	素状よう素の3 % (0.15 %) を超えない (95 %が粒子状))。	う素は元素状よう素の3%(0.15%)を超えない(95%が粒子状))。	
	本評価で想定するシーケンスのように, 既設の格納容器スプレイの 喪失も想定し, pH 調整がされない可能性がある場合には, 元素状よう		
		素への転換割合が大きくなるとの知見もあり、元素状よう素の存在割	
		合が大きくなれば有機よう素の存在割合も大きくなる。元素状よう素	
	はCV 内での自然沈着により一定の低減効果が見込めるのに対し、有機	は CV 内での自然沈着により一定の低減効果が見込めるのに対し、有	
	よう素は同様の低減効果を見込めないことから,原子炉格納容器外部	機よう素は同様の低減効果を見込めないことから、原子炉格納容器外	
	への放出の観点からは有機よう素の形態が重要であることを踏まえ,	部への放出の観点からは有機よう素の形態が重要であることを踏ま	
		え、本評価ではよう素の化学形態毎の存在割合の設定について以下の	
	り検討、設定した。	とおり検討、設定した。	
	NUREG-1465 では,よう素の化学形態毎の存在割合に関してpH<7 の	NUREG-1465 では、よう素の化学形態毎の存在割合に関して pH<7 の	
	場合での直接的な値の記述はないが、よう素の化学形態毎の設定に関	場合での直接的な値の記述はないが、よう素の化学形態毎の設定に関	
	して, NUREG/CR-5732 "Iodine Chemical Forms in LWR Severe	して、NUREG/CR-5732 " Iodine Chemical Forms in LWR Severe	
		Accidents"を引用している。NUREG/CR-5732 では、pH とよう素の存	
		在割合に係る知見として、pH の低下に伴って元素状よう素への転換割	
		合が増加する知見を示すとともに、pH 調整がなされる場合及びなされ	
		ない場合それぞれについて、重大事故時のよう素形態に関して複数の	
	数のプラントに対する評価を行っている。 pH 調整がなされている場合の結果を第1 表,pH 調整がなされない	プラントに対する評価を行っている。 pH 調整がなされている場合の結果を第 1 表、pH 調整がなされない	
	場合の結果を第2表に示す。PWRでドライ型格納容器を持つSurryの		
		評価結果では、pH が調整されている場合は、ほぼ全量が I-となって	
		粒子状よう素になるのに対して、pH が調整されていない場合には、ほ	
	全量が元素状よう素となる。また、有機よう素についても、非常に小	ぼ全量が元素状よう素となる。また、有機よう素についても、非常に	
		小さい割合であるが、pH 調整されている場合よりも、pH 調整されて	
	ない場合のほうが、より多くなる結果が示されている。	いない場合のほうが、より多くなる結果が示されている。	

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料) 女川原子力発電所2号炉

第1表	重大事故時の pH 調整した場合のよう素化学形態

(NUREG/CR-5732, Table 3.6) Table 3.6 Distribution of iodine species for pH controlled above 7

泊発電所3号炉

			Fraction of total iodine in containment (%)					
Plant	Accident	I ₂ (g)	I ₂ (#)	1 (0)	CH₃I (g			
Grand Gulf	TC y	0.05	0.03	99.92	0.001			
	TQUV y	0.01	0.03	99.96	0.0003			
Peach Bottom	AE y	0.002	0.03	99.97	0.0001			
	TC2 y	0.02	0.03	99.95	0.0004			
Sequoyah	TBA	0.21	0.03	99.76	0.004			
Surry	TMLB' y	1.9	0.03	98.0	0.03			
	AB y	2.4	0.03	97.5	0.03			

第2表 重大事故時のpH 調整を考慮しない場合のよう素化学形態 (NUREG/CR-5732, Table 3.7)

Table 3.7 Distribution of iodine species for uncontrolled pH

			Fraction of total iodi	ne in containment (%)	
Plant	Accident	I ₂ (g)	I ₂ (f)	(1)	CH'I (8
Grand Gulf	TC y	26.6	15.3	58.0	0.2
	TQUV y	6.6	18.3	75.1	0.06
Peach Bottom	AE y	1.6	21.6	76.8	0.01
	TC2 y	10.9	18.0	71.0	0.07
Somovah	TBA	69.2	9.9	20.5	0.4
Зитту	TMLB' Y	97.1	1.5	0.7	0.7
	AB Y	97.6	1.2	0.6	0.6

このように、重大事故時の環境条件を考慮した今回の評価の場合に は、NUREG/CR-5732 で示されるpH 調整されていないSurry の評価結 は、NUREG/CR-5732 で示されるpH 調整されていない Surry の評価結 果によう素の存在割合が近いこと、被ばく評価上の保守性等も考慮し た適切な評価条件を設定すること、といった観点から考察し、 R.G.1,195 のよう素の化学形態毎の存在割合(第3表参照)を用いる R.G.1,195 のよう素の化学形態毎の存在割合(第3表参照)を用いる こととした。

第3表 NUREG-1465 と R. G. 1. 195 におけるよう素の化学形態毎の存在割合の比較

	NUREG-1465	R. G. 1. 195
元素状よう素	4.85 %	91 %
有機よう素	0.15 %	4 %
粒子状よう素	95 %	5 %

大飯発電所 3/4号炉

第1表 重大事故時のpH 調整した場合のよう素化学形態 (NUREG/CR-5732, Table 3.6)

Table 3.6 Distribution of iodine species for pH controlled above 7

Plant	Accident	Fraction of total iodine in containment (%)					
		I ₂ (g)	I ₂ (f)	1 (1)	CH ₃ I (g)		
Grand Gulf	TC y TQUV y	0.05 0.01	0.03 0.03	99.92 99.96	0.001		
Peach Bottom	AE y TC2 y	0.002 0.02	0.03	99.97 99.95	0.0001 0.0004		
Sequoyah	TBA	0.21	0.03	99.76	0.004		
Surry	TMLB' Y AB Y	1.9 2.4	0.03 0.03	98.0 97.5	0.03 0.03		

第2表 重大事故時のpH 調整を考慮しない場合のよう素化学形態 (NUREG/CR-5732, Table 3.7)

Table 3.7 Distribution of iodine species for uncontrolled pH

Plant	Accident		Fraction of total iodi	ction of total iodine in containment (%)	
		I, (g)	I, (0	L (0)	CHI (g
Grand Gulf	TC y	26.6	15.3	58.0	0.2
	TQUV y	6.6	18.3	75.1	0.06
Peach Bottom	AE Y	1.6	21.6	76.8	0.01
	TC2 Y	10.9	18.0	71.0	0.07
Sequoyah	TBA	69.2	9.9	20.5	0.4
Surry	TMLB' Y	97.1	1.5	0.7	0.7
	AB Y	97.6	1.2	0.6	0.6

このように、重大事故時の環境条件を考慮した今回の評価の場合に 果によう素の存在割合が近いこと、被ばく評価上の保守性等も考慮し た適切な評価条件を設定すること、といった観点から考察し、 こととした。

第3表 NUREG-1465 と R. G. 1. 195 におけるよう素の化学形態毎の存在割合の比較

	NUREG-1465	R. G. 1, 195
元素状よう素	4.85 %	91 %
有機よう素	0. 15 %	4 %
粒子状よう素	95 %	5 %

は比較対象の資料が ないため、大飯と比 較を実施する。

差異理由

(本ページ相違な

添付1-2-6

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉 泊発電所3号炉 大飯発電所 3/4号炉 差異理由

2-5 原子炉格納容器等への無機よう素の沈着効果について

原子炉格納容器内における無機よう素の自然沈着率については、財 団法人 原子力発電技術機構(以下「NUPEC」という。)による検討「平 成9 年度 NUREG-1465 のソースタームを用いた放射性物質放出量の評 価に関する報告書」において、CSE A6 実験に基づく値が示されてい る。自然沈着率の算出に関する概要を以下に示す。

原子炉格納容器内における無機よう素の濃度の時間変化は、無機よ う素の自然沈着率を用いると以下の式で表される。

$$\frac{d\rho(t)}{dt} = -\lambda_d \cdot \rho(t)$$

 $\rho(t)$: 時刻 tにおける原子炉格納容器内における無機よう素の濃度[μ g/m³] λ,:自然沈着率[1/s]

これを解くことで、自然沈着率は、時刻t0、t1 での原子炉格納容器 内における無機よう素の濃度を用いて以下のように表される。

$$\lambda_d = -\frac{1}{t_1 - t_0} \cdot log \left(\frac{\rho(t_1)}{\rho(t_0)} \right)$$

NUPEC 報告書では、Nuclear Technology "Removal of Iodine and Particles by Sprays in the Containment Systems Experiment" O 記載 (CSE A6 実験) より、「CSEA6 実験の無機ヨウ素の濃度変化で は、時刻0 分で濃度10⁵ µ g/m³ であったものが、時刻30 分で1.995× | では、時刻0 分で濃度10⁵ µ g/m³であったものが、時刻30 分で1.995 × $10^4 \mu \, \mathrm{g/m^3}$ となる。」として、時刻及び濃度を上式に代入することで $10^4 \mu \, \mathrm{g/m^3}$ となる。」としており、これらの数値を上式に代入すること 無機よう素の自然沈着率9.0×10⁴[1/s]を算出している。

これは事故初期のよう素の浮遊量が多く、格納容器スプレイをして いない状態下での挙動を模擬するためのものであると考えられる。な るまでは無機よう素の除去が見込まれるとしている。

CSE A6 実験等から、原子炉格納容器に浮遊している放射性物質が、 然沈着速度がほぼ一定であり、原子炉格納容器内の無機よう素はその 大部分が事故初期の自然沈着速度に応じて除去されることが分かって いる。

原子炉格納容器等への元素状よう素の沈着効果について

重大事故時の居住性に係る被ばく評価において、原子炉格納容器内 における元素状よう素の自然沈着について,財団法人 原子力発電技術 機構(以下、「NUPEC」とする。) による検討「平成9年度 NUREG -1465 のソースタームを用いた放射性物質放出量の評価に関する報告書」に おいて、CSE A6 実験に基づく値が示されている。数値の算出に関する 概要を以下に示す。

原子炉格納容器内での元素状よう素の沈着速度をλαとすると、原子 炉格納容器内における元素状よう素の濃度ρの濃度変化は以下の式で 表される。

$$\frac{d\rho}{dt} = -\lambda d\rho$$

:原子炉格納容器内における元素状よう素の濃度 (μg/m³)

: 自然沈着率 (1/s)

これを解くことで、原子炉格納容器内での元素状よう素の沈着速度 λ_a は時刻 t_0 における元素状よう素濃度 ρ_0 と時刻 t_1 における元素状よ う素濃度ριを用いて、以下のように表される。

$$\lambda_d = -\frac{1}{t_1 - t_0} \log \left(\frac{\rho_1}{\rho_0} \right)$$

なお、NUPEC 報告書では、Nuclear Technology "Removal of Iodine and Particles by Spray in the Containment Systems Experiments" の記載 (CSE A6 実験) より、「CSE A6 実験の無機ヨウ素の濃度変化 で、元素状よう素の自然沈着速度9.0×10-4(1/s)を算出している。

これは事故初期のよう素の浮遊量が多く、スプレイが降っていない | 状態下での挙動を模擬するためと考えられる。なお、米国SRP6.5.2 で お、米国SRP6.5.2 では原子炉格納容器内の無機よう素が1/200 にな は原子炉格納容器内の元素状よう素濃度が1/200 になるまでは元素状 は原子炉格納容器内の元素状よう素濃度が 1/200 になるまでは元素 よう素の除去が見込まれるとしている。

> 今回の事故シーケンスの場合,元素状よう素がDF(除染係数)=200 に 到達する時期は、「Gap-Release」~「Late In-Vessel」の放出が終了 した時点(放出開始から11.8時間)となる。

原子炉格納容器に浮遊している放射性物質量が放出された放射性物 放出された放射性物質量の数100 分の1 程度に低下する時点までは自し質量の数100 分の1 程度に低下する時点までは自然沈着速度がほぼー 定であることがわかっており、原子炉格納容器内の元素状よう素はそ の大部分が事故初期の自然沈着速度に応じて除去される。

原子炉格納容器等への元素状よう素の沈着効果について

重大事故時の居住性に係る被ばく評価において、原子炉格納容器内 における元素状よう素の自然沈着について、財団法人原子力発電技術 機構(以下、NUPEC とする。) による検討「平成9年度 NUREG - 1465 のソースタームを用いた放射性物質放出量の評価に関する報告書」に おいて、CSE A6 実験に基づく値が示されている。数値の算出に関する 概要を以下に示す。

原子炉格納容器内での元素状よう素の沈着速度を d とすると、原子 炉格納容器内における元素状よう素の濃度 p の濃度変化は以下の式で 表される。

$$\frac{d\rho}{dt} = -\lambda_d \rho$$

:原子炉格納容器内における元素状よう素の濃度 (μg/m³)

は : 自然沈着率 (1/s)

これを解くことで、原子炉格納容器内での元素状よう素の沈着速度 λ_a は時刻 t_a における元素状よう素濃度 ρ_a と時刻 t_a における元素状 よう素濃度ριを用いて、以下のように表される。

$$\lambda_d = -\frac{1}{t_1 - t_0} \log \left(\frac{\rho_1}{\rho_0} \right)$$

なお、NUPEC 報告書では、Nuclear Technology "Removal of Iodine and Particles by Spray in the Containment Systems Experiments" の記載 (CSE A6 実験) より、「CSE A6 実験の無機ヨウ素の濃度変化で は、時刻 0 分で濃度 10⁵ μg/m³であったものが、時刻 30 分で 1.995× 10⁴μg/m³となる。」それを上式に代入することで、元素状よう素の自 然沈着速度 9.0×10-4 (1/s)を算出している。

これは事故初期のよう素の浮遊量が多く、スプレイが降っていない 状態下での挙動を模擬するためと考えられる。なお、米国 SRP6.5.2 で 状よう素の除去が見込まれるとしている。

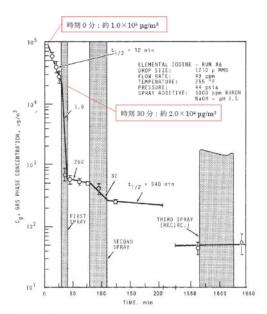
今回の事故シーケンスの場合、元素状よう素が DF(除染係数)=200 記載方針の相違 に到達する時期は、「Gap-Release」~「Late In-Vessel」の放出が終 了した時点(放出開始から11.8 時間)となる。

原子炉格納容器に浮遊している放射性物質量が放出された放射性物」いる。 質量の数 100 分の 1 程度に低下する時点までは自然沈着速度がほぼ 一定であることがわかっており、原子炉格納容器内の元素状よう素は その大部分が事故初期の自然沈着速度に応じて除去される。

·DF=200 となる時 刻について記載して

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

差異理由


第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉 泊発電所3号炉 そこで、原子炉格納容器等への無機よう素の沈着効果の設定に当た よって,ここでは代表的に事故初期の自然沈着速度を適用している。 っては、自然沈着率として上式により得られた事故初期の自然沈着率 (9.0×10⁻⁴[1/s]) を代表として適用し、また、自然沈着による上限DF

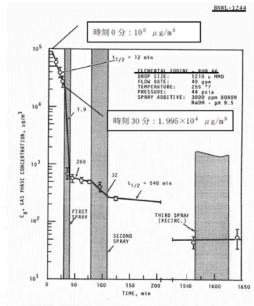
(除去効率)を200 とした。 CSE A6 実験の詳細は前述のNuclear Technology の論文において BNWL-1244 が引用されている。参考として、BNWL-1244 記載の原子炉 格納容器内における無機よう素濃度の時間変化を図2-5-1 に示す。

なお, CSE A6 実験における無機よう素の初期濃度は1×10⁵μg/m³と なっており、女川2 号炉において原子炉格納容器気相部に放出される 無機よう素の濃度も同じ105オーダーとなっている。

BNWL-1244

Concentration of Elemental Todine in the Main Room, FIGURE 9.

図 2-5-1 原子炉格納容器内における無機よう素濃度の時間変化


出典: BNWL-1244, "Removal of Iodine and PARTICLES from Containment Atmospheres by Sprays-Containment Systems Experiment Interim Report" 59-9-新 2-5-2

CSE A6 実験の詳細は前述のNuclear Technology の論文において BNWL-1244 が引用されている。参考として, BNWL-1244 記載の原子炉 格納容器内元素状よう素の時間変化を次に示す。

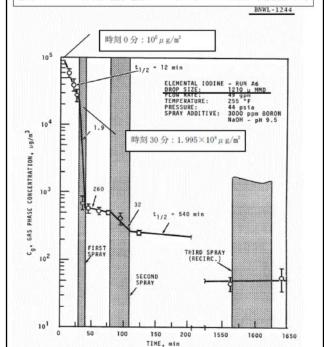
この中で元素状よう素の初期濃度は $10^5 \mu g/m^3$ となっており、泊発 電所3号炉の原子炉格納容器に浮遊するよう素の濃度と同程度であ

参考: BNWL-1244, "Removal of Iodine and Particles from Containment Atmospheres by Sprays-Containment Systems Experiment Interim Report"

注:本実験では、スプレイ添加物としてアルカリ(NaOH)が用いられているが、沈着速度算出には スプレイが降る前の濃度の値を用いているため、スプレイ添加物の影響を受けない。

Concentration of Elemental Iodine in the Main Room,

CSE A6 実験の詳細は前述の Nuclear Technology の論文において BNWL-1244 が引用されている。参考として、BNWL-1244 記載の原子炉 格納容器内元素状よう素の時間変化を次に示す。


大飯発電所 3/4号炉

よって、ここでは代表的に事故初期の自然沈着速度を適用している。

この中で元素状よう素の初期濃度は 10⁵μg/m³となっており、大飯 3,4号機の原子炉格納容器に浮遊するよう素の濃度と同程度である。

BNWL-1244, "Removal of Iodine and Particles from Containment Atmospheres by Sprays-Containment Systems Experiment Interim Report"

注:本実験では、スプレイ添加物としてアルカリ (NaOH) が用いられているが、沈着速度 算出にはスプレイが降る前の濃度の値を用いているため、スプレイ添加物の影響を受けない。

Concentration of Elemental Iodine in the Main Room,

赤字:設備、運用又は体制の相違(設計方針の相違) 青字:記載簡所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

Mr = 0 A YER FLUE FLETHING FLET LINE FLETHING AND A STATE AND A ST

第 99 米	連転員が原士が制御主にととよるための設備	佣处就则真朴	7
	女川原子力発電所2号炉		

CSE 実験の適応性について

CSE 実験と本被ばく評価で想定している事故シーケンス「大破断 LOCA+HPCS 失敗+低圧ECCS 失敗+全交流動力電源喪失」における る。 MAAP 解析結果による原子炉格納容器内の条件を表1 で比較する。ま た、CSE 実験の試験体系を図1 に示す。

なお、NUPEC 報告書においては、スプレイが使用される前の期間の よう素濃度に基づき自然沈着速度を設定しており、実験条件は女川原 子力発電所2 号炉の事故シーケンスに対するMAAP 解析結果により得 によるCV 内壁等への濡れはない。これは、CV 内壁等の濡れによるよ られた原子炉格納容器内の条件と概ね同等である。

来1 CCC 実験条件も右回り見担の条件の比較

	CSE 実験の Run Vo.				
	A-6 (1) (2)	A-5(3)	A-11 ⁽³⁾	女川2号炉	
雰囲気	蒸気+空気	同左	同左	蒸気+窒素 (+水素)	
雰囲気圧力 (MPaG)	約 0. 20	約 0, 22	約 0.24	#5 0, 31 ⁽²⁾	
雰囲気温度 (℃)	約 120	% 3 120	約 120	89 170 ^[2]	
スプレイ	間欠印	なし	なし	あり (無機よう素は自 然沈着のみ考慮)	

- (1) R. K. Hilliard, A. K. Postma, J. D. McCormack and L. F. Coleman, "Removal of Iodine and Particles by Sprays in the Containment Systems Experiment", Nucl. Technol., Vol. 10. 499-519 1971
- (2) R. K. Hilliard, L. F. Coleman, C. E. Linderoth, J. D. McCormack and A. K. Postma, "Remoral of Iodine and Particles from Containment Atmospheres by Sprays-Containment System Experiment Interim Report", BNWL-1244, 1970
- (3) R. K. Hilliard and L. F. Coleman, "Natural Transport Effects on Fission Product Behavior in the Containment Systems Experiment", BNML-1457, 1970
- [1] 自然沈着速度の算出には1回目のスプレイが使用される前の原子炉格納容器内の濃度を用い
- [2] 格納容器破損防止対策の有効性評価の事故シーケンス「大破断 LOCA+IFCS 失敗+低圧 ECCS 失败+全交流動力電源喪失」において、炉心からよう素が大量放出された後(事象初期)の

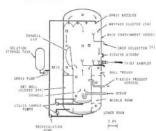


FIGURE 3. Schematic Diagram of Containment Arrangement

を持ている。 審積: 750m²、直径: 7.4m。 真さ: 20m (MAIN DOORDEY WELL を含むデット上方): 約60m²、MEIDER BOOM: 約60m²、LOWER BOOM: 約100m²

図1 CSE 実験の試験化系 (スプレイ実施時)

(参老)

(添付)

CSE 実験の適用性について

CSE 実験の条件と泊発電所3号炉の比較について第1 表にまとめ

泊発電所3号炉

また、NUPEC の報告書においては、スプレイ水が添加される前の期 間のよう素濃度を基に自然沈着速度を設定しているため,スプレイ水 う素の沈着促進を無視していることから保守的な取り扱いと考える。

第1表 CSE 実験条件と泊発電所3号炉の比較

	CS	SE 実験の Run No.	泊発電所3号炉	
	A-6 (1) (2)	A-5 (3)	A-11 (3)	解析結果
雰囲気	蒸気+空気	同左	同左	同左
雰囲気圧力 (MPaG)	約 0.20	約 0.22	約 0.24	約 0. 335*²
雰囲気温度 (℃)	約 120	約 120	約 120	約 138* ³
スプレイ	間欠的に有り*1	なし	なし	あり (元素状よう素に 対しては自然沈着 のみ考慮)

- (1) R. K. Hilliard et. al, "Removal of iodine and particles by sprays in the containment systems experiment", Nucl. Technol. Vol 10 pp499-519, 1971
- (2) R. K. Hilliard et.al. "Removal of iodine and particles from containment atmospheries by sprays", BNWL-1244
- (3) R. K. Hilliard and L. F. Coleman, "Natural transport effects on fission product behavior in the containment systems experiment". BNWL-1457
- *1:自然沈着速度の算出には第1回目のスプレイが降る前の格納容器内 よう素濃度の値を用いている。
- *2:格納容器過圧破損防止シーケンスの解析値
- *3:格納容器過温破損防止シーケンスの解析値

(添付)

CSE 実験の適用性について

大飯発電所 3/4号炉

CSE 実験の条件と大飯3、4号機の比較について第1 表にまとめ る。

また、NUPEC の報告書においては、スプレイ水が添加される前の期 間のよう素濃度を基に自然沈着速度を設定しているため、スプレイ水 による格納容器内壁等への濡れはない。これは、格納容器内壁等の濡 れによるよう素の沈着促進を無視していることから保守的な取り扱い と考える。

第1表 CSF 宝輪条件レナ板3 4号標の比較

		CSE 実験の Run No.		大飯 3,4 号機	
	A-6(1)(2)	A-5(3)	A-11(3)	解析結果	
雰囲気	蒸気+空気	同左	同左	同左	
雰囲気圧力 (MPaG)	約 0.20	約 0.22	約 0.24	約 0.43*2	
雰囲気温度 (℃)	約 120	約 120	約 120	約 144*3	
スプレイ	間欠的に 有り*1	なし	なし	あり (元素状よう素に対して は自然沈着のみ考慮)	

(1)R.K.Hilliard et.al, "Removal of iodine and particles by sprays in the containment systems experiment", Nucl. Technol. Vol 10 pp499-519, 1971

(2)R.K. Hilliard et.al, "Removal of iodine and particles from containment atmospheries by sprays", BNWL-1244

(3)R.K.Hilliard and L.F.Coleman, "Natural transport effects on fission product behavior in the containment systems experiment", BNWL-1457

- *1:自然沈着速度の算出には第1回目のスプレイが降る前の格納容器内 よう素濃度の値を用いている。
- *2:格納容器過圧破損防止シーケンスの解析値
- *3:格納容器過温破損防止シーケンスの解析値

記載内容の相違

女川は実験条件に ついて記載している が、泊は保守性につ いて記載している。

差異理由

泊も実験条件を第 1表に記載しており、 概ね同等であること を示している。 個別解析による相違

記載方針の相違 女川は図を示して いる。

青字:記載箇所又は記載内容の相違(記載方針の相違) 緑字:記載表現、設備名称の相違(実質的な相違なし)

第59条 運転員が原子炉制御室にとどまるための設備(補足説明資料)

女川原子力発電所2号炉

CSE 実験 でスプレイを使用しないA-5 及びA-11 における無機よう 素の原子炉格納容器気相部濃度の時間変化を図2 に示す。

初期の沈着(スプレイ未使用の期間)については, A-6 の場合と大 きな差は認められず、初期濃度より数100 分の1 以上低下した後、沈 められない。また、初期濃度より1/200 以上低下した後に沈着が緩や 着が穏やかになること(カットオフ)が認められる。

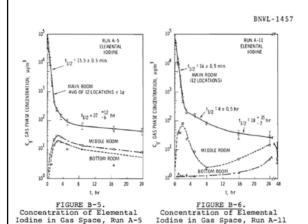


図 2 CSE A-5 及び A-11 実験による無機よう素の 原子炉格納容器内気相部濃度の時間変化

泊発電所3号炉 自然沈着のみのケース (A-5, A-11) の容器内気相部濃度を以下に示

初期の沈着については、スプレイあり(A-6)の場合と大きな差は認 かになること(カットオフ)が認められる。

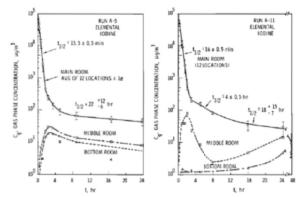


FIGURE B-5. Concentration of Elemental Iodine in Gas Space, Run A-5

FIGURE B-6. Concentration of Elemental Iodine in Gas Space, Run A-11

第2表 CSE実験における沈着の等価半減期

l		A-6 (2)	A-5 (3)	A-11 (3)
l	初期	12 分	13.5分	16分
	カットオフ後 (ノミナル値)	540 分(9 時間)*4	22 時間	18 時間
	カットオフ後 (誤差込)	(記載なし)	34 時間	33 時間

*4:スプレイが行われた後の値

大飯発電所 3/4号炉 自然沈着のみのケース (A-5, A-11) の容器内気相部濃度を以下に示

初期の沈着については、スプレイあり (A-6) の場合と大きな差は認 められない。また、初期濃度より1/200以上低下した後に沈着が緩や かになること (カットオフ) が認められる。

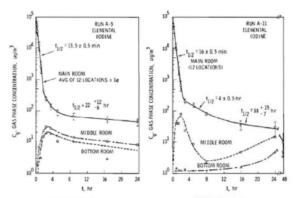


FIGURE B-5. Concentration of Elemental Iodine in Gas Space, Run A-5

FIGURE B-6. Concentration of Elemental Iodine in Gas Space, Run A-11

第2表 CSE実験における沈着の等価半減期

	A-6 ⁽²⁾	A-5(3)	A-11(3)
初期	12分	13.5 分	16分
カットオフ後 (ノミナル値)	540分(9時間)*4	22 時間	18 時間
カットオフ後 (誤差込)	(記載なし)	34 時間	33 時間

*4:スプレイが行われた後の値

記載の方針の相違

差異理由

泊は等価半減期を 表に記載