
3. 発電所におけるプロパンボンベの保管状況

発電所にて保管されているプロパンボンベは建屋内に保管されており、また、高圧ガス 保安法の規則に則り固縛されているため、何らかの外力がかかったとしても、ボンベ自体 が損傷することは考えにくい。発電所におけるプロパンボンベの保管状況を以下に示す。

【3号炉補助ボイラ建屋】プロパンガス(補助ボイラ起動用)

4. 漏えい率評価

4. 1 評価方法

前述の通り、ボンベ単体としては健全性が保たれることから、ガスボンベからの漏えい 形態としては、接続配管からの少量漏えいを想定した。漏えい率は、下記の「石油コンビ ナートの防災アセスメント指針」における災害現象解析モデル式によってプロパンボンベ を例に評価した。

<気体放出> (流速が音速以上 $(p_0/p \le \gamma_c)$ の場合)

$$\mathbf{q}_G = \operatorname{cap} \sqrt{\frac{M}{ZRT}} \gamma \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}} \qquad \text{for } \gamma_c = \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma}{\gamma-1}}$$

 q_G : 気体流出率(kg/s)

c : 流出係数 (不明の場合は 0.5 とする)

 a
 : 流出孔面積(m²)

 p
 : 容器内圧力(Pa)

p₀ : 大気圧力(=0.101 MPa=0.101×10⁶Pa)

M : 気体のモル重量(kg/mol)

T : 容器内温度(K)γ : 気体の比熱比

R : 気体定数(=8.314J/mol·K)

Z : ガスの圧縮係数(=1.0:理想気体)

(出典:石油コンビナートの防災アセスメント指針(総務省消防庁))

4. 2 評価結果

プロパンボンベからの放出率は約 3.8×10⁻³kg/s であり、スクリーニング評価対象外である屋内の塩酸タンクが屋外にあると仮定した場合と比較して 1/100 以下となった。更に、防護判断基準値が 400 倍以上高いことを考慮すると、影響は小さいと説明できる。

	プロパンボンベ	(参考) 3 -塩酸貯槽
放出率(kg/s)	3.8×10^{-3}	4. 7×10 ⁻¹
防護判断基準値(ppm)	23, 500	50

(評価条件)

パラメータ	設定値	備考
流出孔面積	$1.61 \times 10^{-6} \text{m}^2$	接続配管径:14.3mm
		配管断面積の1/100(少量漏えい)
容器内温度	40℃	最高使用温度
容器内圧力	1.8MPa	最高使用圧力
気体のモル重量	0.0408kg/mol	機械工学便覧
気体の比熱比	1. 143	機械工学便覧

4. 3 横置きボンベの影響

ボンベは通常縦置きにて設置され、配管に接続されるため、充填されたガスは気体として供給されるが、雑固体焼却炉建屋では横置きで設置され、配管に接続されるため、液体で供給された場合の漏えい影響を検討した。

なお、ボンベが横置きで設置されるのは雑固体焼却炉建屋のプロパンのみである。

○配管長さ

雑固体焼却炉建屋において、ボンベ庫内にあるボンベから気化器までの配管長さは約11.6mあり、配管内は液体、気体の混合物である。気化器通過後は、配管内は気体となり、焼却炉へ供給されることとなるが、その配管長さは約32.6m ある。

気体プロパンの配管長さは、液体、気体の混合物の配管長さに比べて、約3倍あることから、気体配管からの気体放出が発生しやすいことが想定される。

また、ボンベには過流防止弁が設置されており、多量流出は想定されない。

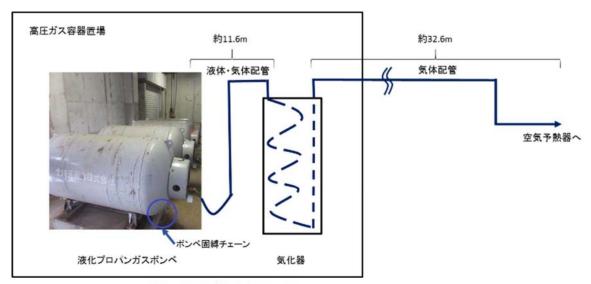


図 雑固体焼却炉のプロパンガス概略系統図

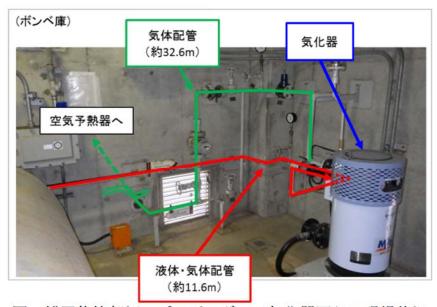


図 雑固体焼却炉のプロパンボンベ気化器回りの現場状況

○漏えい時の放出率

漏えい率は、「石油コンビナートの防災アセスメント指針」における災害現象解析モデル式により評価した。配管から気体として漏えいするとした場合のプロパンの放出率は、約 5.2×10^{-2} kg/s であり、比較対象として設定した塩酸と比較して約1/9以下となる。

なお、配管から液体として漏えいするとした場合でも、プロパンの放出率は、約 1.4×10^{-1} kg/s であり、比較対象として設定した塩酸の1/3以下となるが、防護判断基準値が400 倍以上高いこと考慮すると、影響は小さい。

	, - ,	_	
	焼却炉ブロ	パンボンベ	
	気体放出	液体放出	(参考)3-塩酸貯槽
放出率(kg/s)	5.2×10^{-2}	1. 4×10 ⁻¹	4. 7×10^{-1}
防護判断基準値(ppm)	23, 5	500	50

<気体放出>(流速が音速以上 $(p_0/p \le \gamma_c)$ の場合)

$$q_G = cap\sqrt{\frac{M}{ZRT}\gamma\left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{\gamma-1}}}$$

 q_G : 気体流出率(kg/s)

c : 流出係数 (不明の場合は 0.5 とする)

a : 流出孔面積(m²)p : 容器内圧力(Pa)

M : 気体のモル重量(kg/mol)

T : 容器内温度(K)γ : 気体の比熱比

R : 気体定数 (=8.314J/mol・K)

Z : ガスの圧縮係数(=1.0:理想気体)

(出典:石油コンビナートの防災アセスメント指針(総務省消防庁))

(評価条件)

パラメータ	設定値	備考
流出孔面積	$2.2 \times 10^{-5} \text{m}^2$	接続配管径:52.7mm
		配管断面積の 1/100 (少量漏えい)
容器内温度	50℃	最高使用温度
容器内圧力	1.8MPa	最高使用圧力
気体のモル重量	0.044096kg/mol	機械工学便覧
気体の比熱比	1. 143	機械工学便覧

$$q_L = c_a a \sqrt{2gh + \frac{2(p - p_0)}{\rho_L}}$$

$$q_G = q_L f \rho_L$$

q_L :液体流出率(m³/s)

 c_a :流出係数

:流出孔面積(m²)

p :容器内圧力(Pa)

p₀ :大気圧力(=0.101MPa=0.101×10⁶Pa)

 ρ_L :液密度(kg/m³)

g :重力加速度(=9.8)(m/s²)

h :液位(m) (液面と流出孔の高さの差)

q_G :有毒ガスの重量放出率(kg/s)

f :フラッシュ率

(出典:石油コンビナートの防災アセスメント指針(総務省消防庁))

(評価条件)

パラメータ	設定値	備考						
流出係数	1	「石油コンビナートの防災アセスメント						
		指針」には,不明の場合0.5としている						
		ものの、保守的に1と設定した						
流出孔面積	$3.6 \times 10^{-6} \text{m}^2$	接続配管径:21.4mm						
加口加加有	3.0×10 m	配管断面積の 1/100 (少量漏えい)						
容器内温度	50℃	最高使用温度						
容器内圧力	1.8MPa	最高使用圧力						
液密度	446.8kg/m ³	Perry's Chemical Engineers' Handbook						
液位	Om	液面と流出孔の高さの差						
フラッシュ率	1	全量気化する*1						

※1 フラッシュ率は、以下の式で評価できる。

 $f = \frac{H - H_b}{h_b} = C_p \frac{T - T_b}{h_b}$

f : フラッシュ率 T : 液体の貯蔵温度(K)

1:攸中// 則風溫及(N)

H:液体の貯蔵温度におけるエンタルピー(J/kg)

T_b:液体の大気圧での沸点(K)

 II_b :液体の沸点におけるエンタルピー(J/kg) C_p :液体の比熱 $(T_b \sim T \text{ OPP} j: J/kg \cdot K)$

h_h:沸点での蒸発潜熱(J/kg)

(出典:石油コンビナートの防災アセスメント指針(総務省消防庁))

フラッシュ率は、ガスの種類と流出前の温度によって決まり、焼却炉プロパンボンベから流出した場合のフラッシュ率は、0.54 となるが、少量流出のため全量気化するものとした。

圧縮ガスの取り扱いについて

1. 圧縮ガスの取り扱いの考え方

「有毒ガス防護に係る影響評価ガイド」(以下「ガイド」という。)における有毒ガス防護に係る妥当性確認においては、『ガス発生源の調査(3.評価に当たって行う事項)』の後、『評価対象物質の評価を行い、対象発生源を特定(4.スクリーニング評価)』したうえで、『防護措置等を考慮した放出量、拡散の評価(5.有毒ガス影響評価)』を行う。

スクリーニング評価に先立ち実施する固定源及び可動源の調査のうち、敷地内固定源については「敷地内に保管されている全ての有毒化学物質」が調査対象とされているが、確実に調査、影響評価及び防護措置の策定ができるように、スクリーニング評価において高圧ガス容器(以下、ボンベという)に貯蔵された二酸化炭素等の圧縮ガスの取り扱いについて考え方を整理した。

整理にあたっては、ガイドの「3.評価に当たって行う事項」の解説-4 (調査対象外とする場合)を考慮した。

【ガイド記載】

(解説-4) 調査対象外とする場合

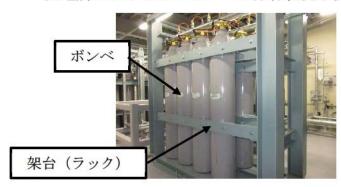
貯蔵容器が損傷し、容器に貯蔵されている有毒化学物質の全量が流出 しても、有毒ガスが大気中に多量に放出されるおそれがないと説明でき る場合。(例えば、使用場所が限定されていて貯蔵量および使用量が少ない試薬等)

原子力発電所内での圧縮ガスは、屋外又は制御室の含まれない建屋内に保管されている。

圧縮ガスは、高圧ガス保安法で規定された高圧容器で保管されており、溶接容器では 溶接部試験、容器の破裂試験や耐圧試験等が規定されており、十分な強度を有している もののみが認可されている。したがって、高圧ガスの漏えい事故は容器やバルブからで はなく、主に配管からの漏えいであるものと考えられる。

事故事例をみても、圧縮ガスの事故の多くが製造時に生じており、消費段階では事故の発生は少なく、主に配管や接続機器で生じたものである。また、容器本体からの漏えい事故の原因は、火災や容器管理不良が原因であり、東日本大震災による事故情報でも容器本体の事故は認められていない。

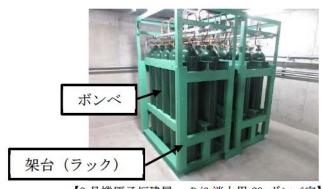
上記の高圧容器で保管している圧縮ガスの漏えい箇所としては、事故事例からみても容器本体やバルブからの漏えいは少なく、配管からの漏えいとすることが現実的な想定であり、この場合のガスの流出率は少量であり、建屋外に拡散した場合に周囲の空気で希釈されるため、高濃度になることはない。


一方,これらの圧縮ガスは、IDLH 値が高く(例えば二酸化炭素では 40,000ppm(4%)), 窒息影響に匹敵する高濃度での影響であり、閉鎖空間での漏えいといった状況以外では影響が生じる濃度に至ることはないものと考えられる。

以上のことから、圧縮ガスについては有毒ガスとしての評価の対象外であるものと考えられる。

2. 発電所におけるガスボンベの保管状況

発電所では、耐震重要度分類に対応した架台に設置、または、高圧ガス保安法の規則 に則り固縛がなされ、何らかの外力がかかったとしても、ボンベ自体が倒壊することは 考えにくい。


発電所におけるガスボンベの保管状況を以下に示す。

【3号機原子炉補助建屋(ハロン消火設備ボンベ庫)】 ハロン1301 (消火設備)

【3 号機タービン建屋】 液化炭酸ガス(発電機水素置換用)

【3号機原子炉建屋 D/G 消火用 CO₂ボンベ室】 液化炭酸ガス (消火用)

【3 号機1次系窒素ボンベ庫】 アセチレン(分析用)

3. 漏えい率評価

前述の通り、ボンベ単体としては健全性が保たれることから、ボンベからの漏えい形態としては接続配管からの少量漏えいが想定される。漏えい率は別紙4-3のプロパンボンベからの漏えい率評価と同様であり、防護判断基準値を考慮するとその影響は小さい。

化学物質名	防護判断基準値(ppm)
ハロン1301	40, 000
二酸化炭素	40, 000
六フッ化硫黄	220, 000
アセチレン	100, 000

1. 建屋内有毒化学物質の取り扱いの考え方

スクリーニング評価に先立ち実施する固定源および可動源の調査のうち、敷地内固定源については「敷地内に保管されている全ての有毒化学物質」が調査対象とされているが、「敷地内」には建屋外だけでなく、建屋内にも有毒化学物質は存在すること等も踏まえ、確実に調査、影響評価および防護措置の策定ができるように、建屋内の化学物質の扱いについて考え方を整理した。

整理にあたっては、ガイドの「3. 評価に当たって行う事項」の解説-4(調査対象外とする場合)を考慮した。

【ガイド記載】

(解説-4) 調査対象外とする場合

貯蔵容器が損傷し、容器に貯蔵されている有毒化学物質の全量が流出して も、有毒ガスが大気中に多量に放出されるおそれがないと説明できる場合。 (例えば、使用場所が限定されていて貯蔵量および使用量が少ない試薬等)

建屋内に貯蔵された有毒化学物質については、全量が流出しても、以下の理由から有毒ガス が建屋外(大気中)に多量に放出される可能性はないと考えられる。

- 分析試薬などとして使用する有毒化学物質について、薬品庫等で適切に保管管理されており、それら試薬は分析室で使用されるのみであり、分析室においては局所排気装置が設置されていること、また、保管量は、薬品タンク等と比較して少量であること等から、流出しても建屋外に多量に放出されることはない。
- 建屋内にある有毒化学物質を貯蔵しているタンクから流出した場合であっても、タンク周辺の堰にとどまる又はサンプや中和槽に流出することになる。流出先で他の流出水等により希釈されるとともに、サンプや中和槽内に留まることになり、有毒ガスが建屋外に多量に放出されることはない。
- また、液体状態から揮発した有毒化学物質は、液体表面からの拡散により、連続的に揮発、拡散が継続することで周辺環境の濃度が上昇していくこととなる。しかし、建屋内は風量が小さく蒸発量が屋外に比べて小さいため、有毒ガスが建屋外に多量に放出されることはない。
- 密度の大きいガスの場合,重力によって下層に移動,滞留することから多量に大気中に 放出されることはない。

また、密度の小さいガスの場合、浮力によって上層に移動し、建屋外に放出される可能性もあるが、建屋内で希釈されることから多量の有毒ガスが短時間に建屋外に放出されることはない。

以上のことから、建屋内に貯蔵された有毒化学物質により、有毒ガスが建屋外(大気中)に多量に放出されることはなく、有毒ガス防護対象者の必要な操作等を阻害しないことから、建屋内に貯蔵された有毒化学物質についてはガイド解説-4を適用することで、調査対象外と整理することが適切と判断できる。

2. 建屋効果の確認

建屋内は風速が小さく蒸発量が建屋外に比べて小さいことを定量的に確認するため,建屋内の薬品タンク周りの風速を測定するとともに,建屋内温度による影響及び拡散効果を評価した。

2. 1 建屋内風速

2. 1. 1 測定対象

泊発電所において建屋内に薬品が保管される以下のエリアを風速測定の対象とした。

- (1) 3号機給排水処理建屋 薬品タンクエリア(塩酸)
- (2) 1, 2号給排水処理建屋 薬品タンクエリア (塩酸)
- (3) 海水淡水化設備建屋 薬品タンクエリア (塩酸)
- (4) 3号機タービン建屋 薬品タンクエリア (塩酸)
- (5) 1号機タービン建屋 塩酸貯槽エリア(塩酸)
- (6) 2号機タービン建屋 塩酸貯槽タンクエリア(塩酸)
- (7) 3号機原子炉補助建屋 3-よう素除去薬品タンクエリア (ヒドラジン)
- (8) 3号機タービン建屋 薬液注入装置エリア (ヒドラジン, アンモニア)
- (9) 1号機タービン建屋 薬液注入装置エリア (ヒドラジン,アンモニア)
- (10) 2号機タービン建屋 薬液注入装置エリア (ヒドラジン, アンモニア)
- (11) 放射性廃棄物処理建屋 固化装置溶剤タンクエリア (テトラクロロエチレン)

2. 1. 2 測定方法

測定対象において、漏えいが想定される箇所で、風速計を用いて風速測定を実施した。測定例を図1に示す。測定は、測定対象毎に複数点行い、平均値を算定した。

3 A-塩酸貯槽

測定状況

薬品タンクエリア

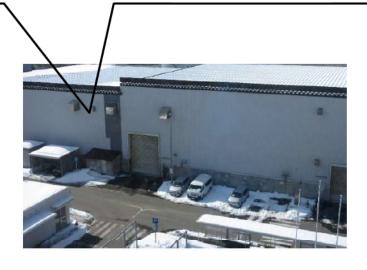


図1 建屋内風速の測定例(3号機給排水処理建屋)

2. 1. 3 測定結果

測定結果を表 1 に示す。建屋内の風速は、いずれの測定対象においても、最大でも 0.05 m/s であり、屋外風速に対して、十分小さかった。

表1 建屋内における風速測定結果

建屋	薬品タンク	風速*1	(参考) 屋外風速 ^{※2}
(1) 3号機給排水処理建屋	3 A-塩酸計量槽等	0. 04 m/s	
(2) 1, 2号給排水処理建 屋	塩酸貯槽等	0. 05 m/s	
(3)海水淡水化設備建屋	3 A-塩酸貯槽等	0.03m/s	
(4)3号機タービン建屋	3-塩酸貯槽等	0. 03 m/s	
(5) 1号機タービン建屋	1-塩酸貯槽等	0. 02 m/s	
(6)2号機タービン建屋	2-塩酸貯槽等	0. 01 m/s	5. 1 m/s
(7) 3号機原子炉補助建屋	3-よう素除去薬品タン ク	0. 01 m/s	
(8) 3号機タービン建屋	3-アンモニア原液タン ク等	0. 03 m/s	
(9)1号機タービン建屋	1 - アンモニア原液タンク等	0. 03 m/s	
(10)2号機タービン建屋	2-アンモニア原液タン ク等	0. 01 m/s	
(11)放射性廃棄物処理建 屋	固化装置溶剤タンク	0. 01 m/s	

- ※1 測定器の検出下限値は0.01m/sである。測定は複数点行い、風速の算定にあたっては、検出下限未満の場合は、0.01m/sとして平均値を算出。
- ※2 屋外風速は、気象観測所地点における観測風速の年間平均を示す。

2. 2 建屋内温度

2. 2. 1 調査対象

薬品タンクエリアは、恒常的には温度を測定していないことから、建屋内における外気温との気温差を把握するため、温度計を設置し3号機給排水処理建屋のデータを調査した。

2. 2. 2 調査方法

3号機給排水処理建屋の薬品エリアに設置した温度計より温度データを採取し、 これらのデータより蒸発率への影響が大きい夏場(7,8月)の気温を調査した。測 定状況を図2に示す。

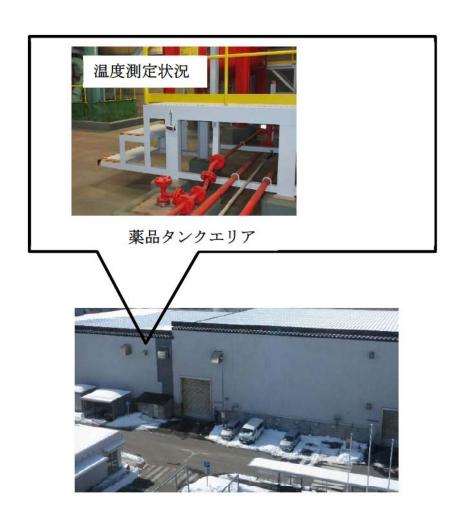


図 2 建屋内温度の測定状況 (3号機給排水処理建屋)

2. 2. 3 調査結果

建屋内温度の測定結果を表 2 に示す。夏場における建屋内の温度は、外気温と比較して+約 3.6℃であり、温度差が小さいことを確認した。

表2 夏場 (7月~8月) における建屋内温度測定結果 (R2年度)

	3号機給排水処理建屋	(参考)外気温*1
温度	24. 3℃	20. 7℃

※1 気象観測所地点における同時期の外気の平均気温。

2. 3 評価

風速測定結果を用いて、蒸発率を算定するとともに、建屋内温度の影響を評価した。 蒸発率は、文献「Modeling Hydrochloric Acid Evaporation in ALOHA」に従い、下 記の式で評価できる。

·蒸発率E

$$E = A \times K_M \times \left(\frac{M_W \times P_v}{R \times T}\right) (kg/s) \quad \cdots (4-5-1)$$

·物質移動係数 K_M

$$K_M = 0.0048 \times U^{\frac{7}{9}} \times Z^{-\frac{1}{9}} \times S_C^{-\frac{2}{3}} (\text{m/s}) \quad \cdots (4-5-2)$$

$$S_C = \frac{v}{D_M} \quad \cdots (4-5-3)$$

$$D_{M} = D_{H_{2}O} \times \sqrt{\frac{M_{WH_{2}O}}{M_{W_{m}}}} (\text{m}^{2}/\text{s}) \cdots (4-5-4)$$

$$D_{H_2O} = D_0 \times \left(\frac{T}{273.15}\right)^{1.75} (\text{m}^2/\text{s}) \cdots (4-5-5)$$

蒸発率補正Ec

$$E_C = -\left(\frac{P_a}{P_v}\right) ln\left(1 - \frac{P_v}{P_a}\right) \times E \quad (kg/s) \quad \cdots (4-5-6)$$

E : 蒸発率(kg/s)

E_c : 補正蒸発率(kg/s)

A : 堰面積(m²)

K_M : 化学物質の物質移動係数(m/s)

Mw : 化学物質の分子量(kg/kmol)

Pa : 大気圧(Pa)

 Pv
 : 化学物質の分圧(Pa)

 R
 : ガス定数(J/kmol・K)

T : 温度(K)
U : 風速(m/s)

Z : 堰直径(m)

Sc: 化学物質のシュミット数

ν : 動粘性係数 (m²/s)

D_M: 化学物質の分子拡散係数(m²/s)

D_{H2O}: 温度 T(K), 圧力 P_v(Pa) における水の分子拡散係数数(m²/s)

MwH2O : 水の分子量(kg/kmol)

MWm: 化学物質の分子量(kg/kmo1)Do: 水の拡散係数(=2.2×10-5m²/s)

風速は、物質移動係数 K_M のU項に該当し、蒸発率は $U^{\frac{1}{9}}$ に比例する。

屋内風速 0.05m/s (測定結果の上限値) の場合*, $U^{\frac{7}{9}}=0.1$, 屋外風速 5.1m/s (年間平均) では, $U^{\frac{7}{9}}=3.6$ となる。

従って、建屋内の蒸発率は、屋外に対して1/30以下となる。

また、温度は、4-5-1 式と 4-5-5 式におけるT項に該当するとともに、分圧P ν 、動粘度係数 ν も温度の影響を受ける。これらパラメータから塩酸を例に評価すると、蒸発率は、 $T^{\frac{1}{6}} \times e^{0.056(T-273.15)}$ に比例する。

室内温度 24.3 $^{\circ}$ (夏場建屋内温度) の場合, $T^{\frac{1}{6}} \times e^{0.056(T-273.15)} = 10.1$, 外気温 20.7 $^{\circ}$ (夏場外気温) では, $T^{\frac{1}{6}} \times e^{0.056(T-273.15)} = 8.2$ となる。

従って, 気温が高い夏場でも建屋内の蒸発率は, 屋外に対して約 1.23 倍であり, 蒸発率に及ぼす影響は, 風速と比較し小さい。

さらに、漏えい時には、中和槽等に排出されるとともに建屋内で拡散し、放出経路も 限定されることから、大気中に多量に放出されるおそれはなく、建屋効果を見込むこと が可能であると考えられる。

※ 弱風時の蒸発率の考え方

風速が 0m/s の場合でも、液面から蒸発したガスは濃度勾配を駆動力として分子拡散によって移動するが、これは風による移流を考慮した前述の評価式では模擬できない。

ただし、分子拡散のみによる移動量は極めて小さく、弱風時(0.05m/s)では風による移流が分子拡散より支配的であることから、分子拡散のみによる移動は、弱風時の移流に大きな影響を与えることはないと考えられる。

塩酸 (36wt%) を例に比較すると、以下のとおり無風時の分子拡散のみによる移動量を考慮した蒸発率は、弱風時の風による移流を考慮した蒸発率の約 1/3 であり、弱風時では風による移流が分子拡散より支配的である。

- ① 無風時 (0m/s) の蒸発現象をフィックの法則にてモデル化し、4-5-7 式及び 4-5-8 式に示すとおり単位面積当たりの蒸発率を評価した。
 その結果 1 気圧、20℃、塩酸 (36wt%) の場合、単位面積当たりの蒸発率は約3.5×10⁻⁵kg/s・m²となる。
- ② 弱風時 (0.05m/s) の風による移流を考慮すると,同じく 1 気圧,20℃,塩酸 (36wt%) の場合,単位面積当たりの蒸発率は約1.1×10⁻⁴kg/s・m²となる。

$$F = -D_M \frac{\partial c}{\partial h} \cdots (4-5-7)$$

F : 単位面積当たりの蒸発率(kg/s・m²)

D_M : 化学物質の分子拡散係数(m²/s)

 $\frac{\partial c}{\partial h}$: 質量濃度勾配((kg/m³)/m)

 $C = \frac{P_v M_w}{RT} \cdots (4-5-8)$

C : 質量濃度(kg/m³)

Pv : 化学物質の分圧(Pa)

Mw:化学物質の分子量(kg/kmol)

R : ガス定数(J/kmol・K)

T : 温度(K)

2. 4 拡散効果

薬品タンク漏えい時における建屋内の拡散効果については、建屋規模、換気の有無、 設置状況等で影響をうける。一方、固定源判定により抽出される建屋内のタンクは、 数が限定される。

そのため、図3の特定フローに従い、建屋内における薬品タンクの保管状況に応じ、 漏えい時の影響を評価した。

なお、建屋内のタンクから漏えいが発生しても、大気への放出口が限定され、放出時には建屋の巻き込み効果も発生し拡散が促進されることから、実際の評価地点における濃度は、評価値よりも低いものになる。

評価結果は、表3に示すとおりであり、いずれの建屋においても、抑制効果が期待できる。

建屋内における漏えい時の蒸発率が、屋外に対し 1/30 以下となることに加え、上述の抑制効果をあわせると建屋内タンクから多量に放出されるおそれはないと説明できる。

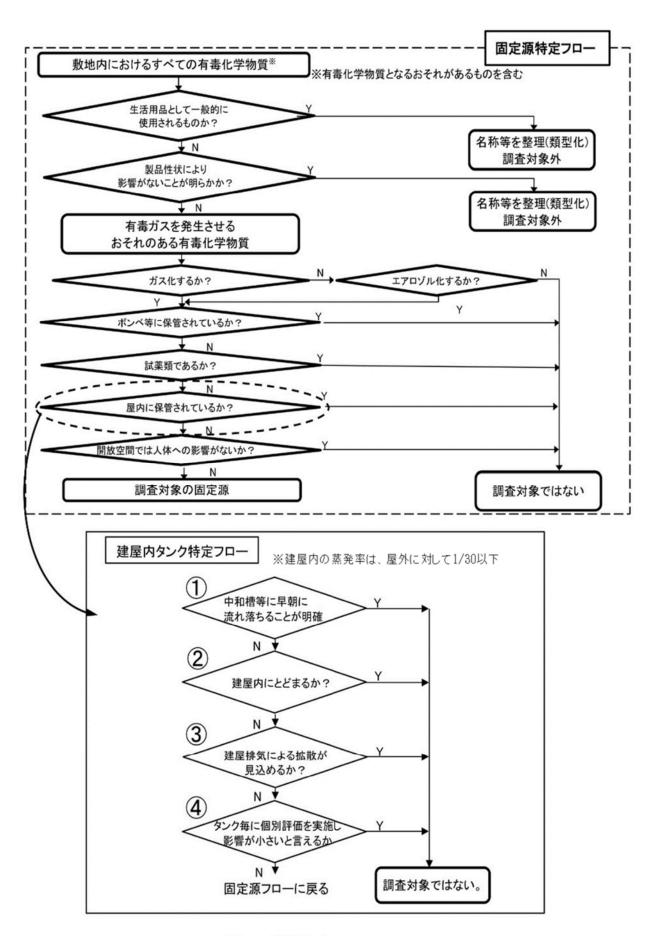


図 3 建屋内タンク特定フロー

表3 建屋内タンク漏えい時の影響評価結果(1/2)

X	3 建座内グン	/ I/NI /L V		半個結果(1/2)
建屋	薬品タンク*1	容量	フローでの 分岐	評価結果
	3 A, B - 塩酸計量槽	各 0.54m³		
3 号機 給排水処理建屋	3 A, B — 塩酸貯槽	各 10m³		3号機給排水処理建屋は、常時排気ファンにより換気(1,020m³/min)され、漏えい時には排気ファンにより希釈され、建屋外に放出される。排気ファンによる希釈効果としては、1/15以下*2となる。
	カチオン塔 塩酸計量槽	0.67m³		
1,2号給排水処理 建屋	混床式ポリシャ 一塔塩酸計量器	0.36m³		1, 2 号機給排水処理建屋は, 常時排気 ファンにより換気 (1,330m³/min) され,
	塩酸貯槽	15m³	1 (2)	漏えい時には排気ファンにより希釈され、建屋外に放出される。排気ファンによる希釈効果としては、1/20以下**2となる。
海水淡水化設備建屋	3 A, B - 塩酸貯槽	各 10m³	③Y	海水淡水化設備建屋については,常時排気ファンにより換気(2,070㎡/min)され,漏えい時には排気ファンにより希釈され,建屋外に放出される。排気ファンによる希釈効果としては,1/30以下**2となる。
	3-塩酸貯槽	35m³		
3 号機	3 A, B - 塩酸 計量槽	各 4.4m³		3号機タービン建屋は、自然換気されて おり、漏えい時には、建屋内拡散後、自 鉄地気によりる乳され、建屋内に放出さ
タービン建屋	3-ヒドラジン 原液タンク	$12 \mathrm{m}^3$		然換気により希釈され,建屋外に放出される。自然換気による希釈効果としては,少なくとも 1/60 以下*2*3となる。
	3-アンモニア 原液タンク	$10 \mathrm{m}^3$		

表3 建屋内タンク漏えい時の影響評価結果(2/2)

1	0 元江177 1	///// ·	A SAME H	十四和木(2/2)		
建屋	薬品タンク**1	容量	フローでの 分岐	評価結果		
	1-塩酸貯槽	22m^3		4 D W b 18 18 18 18 18 18 18 18 18 18 18 18 18		
	1-塩酸計量槽	3m³		1 号機タービン建屋は、自然換気されて おり、漏えい時には、建屋内拡散後、自		
1号機タービン建屋	1-ヒドラジン 原液タンク	4. 5m ³	З Ү	然換気により希釈され、建屋外に放出される。自然換気による希釈効果として		
	1 -アンモニア 原液タンク	8m³		は,少なくとも 1/30 以下**2*3 となる		
	2-塩酸貯槽	22m^3				
2 号機タービン建屋	2-塩酸計量槽	3m³	3Y	@v	②v	2 号タービン建屋は、自然換気されており、漏えい時には、建屋内拡散後、自然 換気により希釈され、建屋外に放出され
2 号機タービン建屋	2-ヒドラジン 原液タンク	4.5m³		る。自然換気による希釈効果としては, 少なくとも 1/30 以下**2**3 となる		
	2-アンモニア 原液タンク	8m³		D. W. C. O. 1/00 (X) C. W. O.		
3 号機 原子炉補助建屋	3 - よう素除去 薬品タンク	2.5m³	З Ү	3号機原子炉補助建屋については、常時排気ファンにより換気(6,000m³/min)され、漏えい時には排気ファンにより希釈され、建屋外に放出される。排気ファンによる希釈効果としては、1/100以下※2となる。さらに、排気筒放出のため高所放出となり、拡散が促進される。		
放射性廃棄物 処理建屋	固化装置溶剤タ ンク	0.7m ³	З Ү	放射性廃棄物処理建屋については、常時排気ファンにより換気(2,130m³/min)され、漏えい時には排気ファンにより希釈され、建屋外に放出される。排気ファンによる希釈効果としては、1/35以下**2となる。さらに、排気筒放出のため高所放出となり、拡散が促進される。		

^{※1 1,2}号機タービン建屋のヒドラジン原液貯蔵タンクは、使用予定がないため運用 停止予定。1,2,3号機格納容器の各蓄圧タンクは、漏えい時には格納容器内に 留まることから考慮不要である。

^{※2} 薬品漏えい時、建屋内濃度が定常状態となった場合の排気濃度は、ザイデル式に従い、以下の式で評価できる。

$$C = \frac{E}{Q} \qquad \cdots (4-5-9)$$

$$Cppm = C \times \frac{22.4}{M} \times \frac{273+T}{273} \times \frac{1013}{P} \times 10^6 \quad \cdots (4-5-10)$$

C : 排気濃度(kg/m³)

Cppm : 排気濃度(ppm)

E : 蒸発率(kg/s)

Q : 換気量(m³/s)

M : 分子量(g/mo1)

T : 温度(℃)

P : 気圧(hPa)

排気濃度は、4–5–9 式における C 項に該当し、換気量に反比例する。 換気量 $6,000 \text{m}^3/\text{min}$ (3号機原子炉補助建屋) の場合、換気量は約 $100 \text{m}^3/\text{s}$ であり、排気濃度は、蒸発率に対して、1/100 以下となる。

※3 例えば自然換気の排気口の面積約 160m² に対して、排気口付近の風速は 0.4m/s より大きく、換気量としては、約 60m³/s 以上となる。

1. 密閉空間で人体影響を考慮すべきものの取り扱いの考え方

「有毒ガス防護に係る影響評価ガイド」(以下「ガイド」という。)における有毒ガス防護に係る妥当性確認においては、『ガス発生源の調査(3.評価に当たって行う事項)』の後、『評価対象物質の評価を行い、対象発生源を特定(4.スクリーニング評価)』したうえで、『防護措置等を考慮した放出量、拡散の評価(5.有毒ガス影響評価)』を行う。

スクリーニング評価に先立ち実施する固定源及び可動源の調査のうち,敷地内固定源については「敷地内に保管されている全ての有毒化学物質」が調査対象とされているが,確実に調査,影響評価及び防護措置の策定ができるように,密閉空間で人体影響を考慮すべきものの取り扱いについて考え方を整理した。

整理にあたっては、ガイドの「3.評価に当たって行う事項」の解説-4 (調査対象外とする場合)を考慮した。

【ガイド記載】

(解説-4) 調査対象外とする場合

貯蔵容器が損傷し、容器に貯蔵されている有毒化学物質の全量が流出 しても、有毒ガスが大気中に多量に放出されるおそれがないと説明でき る場合。(例えば、使用場所が限定されていて貯蔵量および使用量が少ない試薬等)

六フッ化硫黄は、防護判断基準値が高く(22万ppm:空気中の22%),人体に影響を与えるのは、密閉空間で放出される場合に限定される。六フッ化硫黄が漏えいしたとしても、評価地点である中央制御室等の中に保管されておらず、密閉空間ではないことから、運転員等に影響を与えることはないと考えられる。

プロパン,ブタン,二酸化炭素についても同様に,運転員等に影響を与えることはないと考えられる。

以上のことから、密閉空間で人体影響を考慮すべきものについては、有毒ガスとして の評価の対象外であるものと考えられる。

2. 六フッ化硫黄の防護判断基準値

産業中毒便覧においては、「ラットを80%六弗化硫黄ガス(=800,000ppm)と、20%酸素の混合ガスに16~24時間曝露したが、何ら特異的な生体影響はない。六弗化硫黄ガスは薬理学的に不活性ガスと考えられる。」と記載されており、六フッ化硫黄に有毒性はない。

また、六フッ化硫黄は、有毒化学物質の設定において主たる情報源である国際化学物質安全性カードに IDLH 値がなく急性毒性影響は示されていない物質である。

しかしながら、化学物質の有害性評価等の世界標準システム (GHS) で作成されたデータベースにおいては、毒性影響はないとしているものの、「当該物質には麻酔作用があることを示す記述があり、極めて高濃度での弱い麻酔作用以外は不活性のガスであるとの記述もあり、区分3 (麻酔作用) とした」と記載されている。

また、OECD SIDs 文書において、「20人の若年成人に79%のSF6 (21%の02) を約10分間曝露した結果、55%以上のSF6 に曝露した被験者は、鎮静作用、眠気および深みのある声質を認めた。4人の被験者はわずかに呼吸困難を感じた。最初の麻酔効果は22%SF6で経験された。」と記載されていることから、六フッ化硫黄の防護判断基準値については、保守的に22%を採用した。

3. 漏えい時の影響確認

3.1 高密度ガスの拡散について

六フッ化硫黄は空気より分子量が大きい高密度ガス(六フッ化硫黄の密度は空気の約5倍)であるため、瞬時に大量に漏えいした場合、事象発生直後は鉛直方向には拡散し難く、水平方向に拡散する中で地表面付近に滞留するが、時間の経過とともに徐々に拡散、希釈される。(図1参照)

- (a)漏えい直後の状態 拡散するガスの前面で鉛直方向に空気を巻き込みながら,水平方向に広が っていく。
- (b)漏えいから暫く時間が経過した状態 水平方向(地表付近)に非常に安定な成層を形成するため,周囲の空気の 巻込みの影響は小さく,地表面からの熱を受けやすくなる。
- (c)漏えいから十分時間が経過した状態 漏えいガスへの周囲からの入熱,風等の影響で鉛直方向にも拡散が起こり,次第に高密度ガスとしての性質を失い,拡散,希釈される。
 - (a) immediately after spill...... effect of gravity flow is large.

 entrainment of ambient air is effective.

(b) a few time later after very flat heavy gas cloud
the spill very strong stratification
effect of entrainment is small.
effect of heat transfer from
ground is large.
turbulence damping is important.

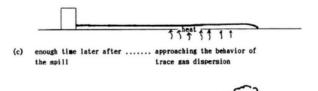


図1 高密度ガスの拡散について

(出典:高密度ガスの拡散予測について(大気汚染学会誌 第27巻 第1号(1992)))

放出点からある程度距離が離れた地点において,最も漏えいガスが高濃度となるのは,(b)の漏えいから暫く時間が経過した段階における,地表付近に非常に安定な成層を形成した状態だと考えられる。

3. 2 六フッ化硫黄漏えい時の影響評価

泊発電所 屋外開閉所等に設置されている機器(母線、遮断器)に内包されている 六フッ化硫黄(約8,900kg)の全量漏えいを想定した場合,気体の状態方程式に基づき 体積換算すると,約1,490m³となる。また,屋外開閉所エリア中心から最も近い重要操 作地点までの距離は約420mである。

六フッ化硫黄の漏えい時の挙動を考慮して、半径 420m の円柱状に広がり、前頁(b)のように成層を形成した場合を考えると、この六フッ化硫黄が対処要員の口元相当である高さ(1.5m)まで広がった場合の濃度は約0.2%となり、防護判断基準値の22%を下回る。また、濃度 100%で希釈されることなく成層を形成した場合、その高さは約0.3cmとなり、対処要員の活動に支障はない。

なお、実際には漏えいガスが評価点の範囲内で成層状にとどまり続けることはなく、 周囲からの入熱や風等の影響で鉛直方向にも拡散、希釈されると考えられることから、 対処要員への影響はさらに小さくなると考えられる。

従って、大気拡散による希釈効果に期待しなくても、濃度が防護判断基準値まで上 昇することはない。

○評価式

気体の状態方程式

$$pV = \frac{w}{M}RT$$

・機器設置中心から最も近い重要操作地点における対処要員口元相当までのエリアの 体積 V'の算出

$$V' = \pi r^2 h$$

・機器設置中心から最も近い重要操作地点における六フッ化硫黄の濃度 C(%)の算出 $C = \frac{V}{V'} \times 100$

(評価条件)

p: 圧力(=1atm)

V: 六フッ化硫黄の体積

w: 六フッ化硫黄の質量(=8,900kg)

M: 六フッ化硫黄のモル質量(=146g/mol) R: モル気体定数(=0.082L·atm/(K·mol))

T:温度(=25℃)

r: 六フッ化硫黄を内包する機器設置エリア中心から最も近い重要操作地点までの距離 (=420m)

h:対処要員の口元相当高さ(=1.5m)

C:機器設置中心から最も近い重要操作地点における六フッ化硫黄の濃度(%)

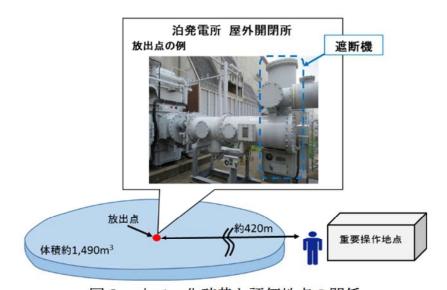


図2 六フッ化硫黄と評価地点の関係

3. 3 重要操作地点での作業を踏まえた影響検討

「3.2 六フッ化硫黄漏えい時の影響評価」では屋外開閉所の中心から最も近い重要操作地点(可搬型代替電源車接続口)での対処要員の口元相当である高さ1.5mにおける濃度を約0.2%と評価しており、防護判断基準値(22%)に対して1/110以下となり、十分余裕がある。

また,重要操作地点では,可搬型代替電源車の接続作業があり,ケーブル展張等の際に低姿勢での作業が必要となるが,六フッ化硫黄が濃度100%で希釈されることなく成層を形成した場合の高さは約0.3cmであり十分低いため,重要操作地点で作業を行う対処要員の対処能力は損なわれない。

表1 泊発電所の固定源整理表 (敷地内 タンク類) (1/7)

令和3年2月末時点

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	ガ	毒ス断	調	查対	象整	理	調査対
					a	b	1	2	3	4	象
アスファルト	放射性廃棄物 処理建屋	アスファルトタンク	100%	29. 3m³	×*1	×	_		<u></u>	7/20	-
	放射性廃棄物 処理建屋	セメントホッパ	100%	2 m ³	× ^{※1}	×		_	-	12	
セメント	3 号機 原子炉補助建屋	3-セメントサ イロ	100%	4 m ³	×*1	×	_	_	_	_	-
	3号機 原子炉補助建屋	3-セメント計 量器	100%	0.1 m ³	× [∗] 1	×	_	_	_	_	-
	1号機 タービン建屋	1-アンモニア 原液タンク	25%	8 m ³	0	×	×	×	0	_	_
	1号機 タービン建屋	1 A - アンモニ アタンク	2%	1.5 m ³	×*2	×	_	_	_	_	_
	1号機 タービン建屋	1 B - アンモニ アタンク	2%	1.5 m ³	×*2	×	_	_	_	_	-
	2号機 タービン建屋	2-アンモニア 原液タンク	25%	8 m ³	0	×	×	×	0	_	_
アンモニア	2号機 タービン建屋	2 A - アンモニ アタンク	2%	1.5 m ³	× [∗] 2	×	_	_	_	_	-
	2号機 タービン建屋	2 B - アンモニ アタンク	2%	1.5 m ³	× ^{₩2}	×	_	_	_	_	_
	3号機 タービン建屋	3-アンモニア 原液タンク	25%	10 m ³	0	×	×	×	0	_	_
	3号機 タービン建屋	3 A - アンモニ アタンク	2%	1.5 m ³	×*2	×	_	_	_	_	_
	3号機 タービン建屋	3 B - アンモニ アタンク	2%	1.5 m ³	×*2	×	_	_	_	_	_
	1号機 タービン建屋	1-ヒドラジン 原液タンク	32%	4.5 m ³	0	×	×	×	0	_	_
	1号機 タービン建屋	1 A - ヒドラジ ンタンク	2. 5%	1 m ³	×*2	×	_	_	_	_	_
	1号機 タービン建屋	1 B - ヒドラジ ンタンク	2. 5%	1 m ³	× ^{∗2}	×	_	_	_	_	_
	2号機 タービン建屋	2 - ヒドラジン 原液タンク	32%	4.5 m ³	0	×	×	×	0	_	_
	2号機 タービン建屋	2 A - ヒドラジ ンタンク	2. 5%	1 m ³	×*2	×	_	_	_	_	_
ヒドラジン	2号機 タービン建屋	2 B - ヒドラジ ンタンク	2. 5%	1 m ³	×*2	×	_	_	_	_	_
	3号機 タービン建屋	3 - ヒドラジン 原液タンク	32%	12 m³	0	×	×	×	0	_	_
	3号機 タービン建屋	3 A - ヒドラジ ンタンク	2%	1.5 m ³	×*2	×	_	_	_	_	_
	3 号機 タービン建屋	3 B - ヒドラジ ンタンク	2%	1.5 m ³	×*2	×	_	_	_	_	_
	3号機 タービン建屋	3 A - スチーム コンバータ薬液	2%	0.15 m ³	×*2	×	_	_	_	_	_

a:ガス化する(※1:固体又は固体を溶かした水溶液,※2:揮発性が乏しい液体)

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表 1 泊発電所の固定源整理表 (敷地内 タンク類) (2/7)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	ガ	毒ス断	語	查対	象整	理	調査対
					a	b	1	2	3	4	象
	3号機 タービン建屋	3B-スチームコ ンバータ薬液注入 タンク	2%	0. 15 m ³	× ^{※2}	×	_	-	-	_	_
	3号機 原子炉補助建屋	3-よう素除去薬 品タンク	≧35%	2.5 m ³	0	×	×	×	0	_	-
	補助ボイラー建屋 (1,2号機)	補助ボイラ薬液注 入タンク (希ヒド ラジン)	2%	0.15 m ³	× ^{₩2}	×	_	_	_	_	_
ヒドラジン	補助ボイラー建屋 (1,2号機)	補助ボイラ薬液注 入タンク (濃ヒド ラジン)	4%	0.15 m ³	× ^{※2}	×	_	_	_	_	_
	補助ボイラー建屋 (3号機)	補助ボイラ薬液注 入タンク (希ヒド ラジン)	2%	0.5 m ³	× ^{※2}	×	_	_	_	_	_
	補助ボイラー建屋 (3号機)	補助ボイラ薬液注 入タンク (濃ヒド ラジン)	10%	0. 15 m ³	× ^{₩2}	×	_	_	_	_	_
	1号機原子炉建屋	1A-ほう酸タン ク	≥21,000ppm as B	20 m ³	×*1	×	_	_	_	_	_
	1 号機原子炉建屋	1B-ほう酸タン ク	≧21,000ppm as B	20 m ³	×*1	×	_	_	_	_	_
	1 号機原子炉建屋	1 - ほう酸補給タ ンク	21,000ppm as B	1.5 m ³	×*1	×	_	_	_	_	_
	1 号機原子炉建屋	1-ほう酸注入タ ンク	≥21,000ppm as B	2. 46 m ³	×*1	×	_	_	_	_	_
	1 号機原子炉建屋格 納容器内	1 A-蓄圧タンク	≥2,900ppm as B	56.5 m ³	× ^{※1}	0	×	×	0	_	_
	1号機原子炉建屋格 納容器内	1B-蓄圧タンク	≧2,900ppm as B	56. 5 m ³	×*1	0	×	×	0	_	_
	1 号機燃料取替用水 タンク建屋	1 -燃料取替用水 タンク	≥2,900ppm as B	1,600 m ³	×*1	×	_	_	_	_	_
ほう酸	2号機原子炉建屋	2A-ほう酸タン ク	≥21,000ppm as B	20 m ³	×*1	×	_	_	_	_	_
(3) 10	2号機原子炉建屋	2B-ほう酸タン ク	≥21,000ppm as B	20 m ³	×*1	×	_	_	_	_	_
	2号機原子炉建屋	2 ーほう酸補給タ ンク	21,000ppm as B	1.5 m ³	×*1	×	_	_	_	_	_
	2号機原子炉建屋	2-ほう酸注入タ ンク	≥21,000ppm as B	2.46 m ³	×*1	×	_	_	_	_	_
	2 号機原子炉建屋格 納容器内	2 Aー蓄圧タンク	≥2,900ppm as B	56.5 m ³	×*1	0	×	×	0	_	_
	2号機原子炉建屋格 納容器内	2 B-蓄圧タンク	≥2,900ppm as B	56.5 m ³	×*1	0	×	×	0	_	_
	2 号機燃料取替用水 タンク建屋	2 -燃料取替用水 タンク	≥2,900ppm as B	1,600 m ³	×*1	×	_	_	_	_	_
	3号機 原子炉補助建屋	3A-ほう酸タン ク	≥21,000ppm as B	40 m ³	×*1	×	_	_	_	_	_
	3 号機 原子炉補助建屋	3B-ほう酸タン ク	≥21,000ppm as B	40 m ³	×*1	×	_	_	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表 1 泊発電所の固定源整理表 (敷地内 タンク類) (3/7)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	ガ	毒ス断	調	查対	象整	理	調査対
					a	b	1	2	3	4	象
	3 号機 原子炉補助建屋	3ーほう酸補給タ ンク	21,000ppm as B	3 m ³	× ^{∰1}	×	-	_	Ī	-	-
	3号機 原子炉補助建屋	3-ほう酸注入タ ンク	≧21,000ppm as B	6 m ³	× [∗] 1	×	_	_	-	_	_
) T = EA	3号機原子炉建屋格 納容器内	3 A - 蓄圧タンク	≧3,000ppm as B	41 m ³	×*1	0	×	×	0		
ほう酸	3号機原子炉建屋格 納容器内	3 B-蕃圧タンク	≧3,000ppm as B	41 m ³	× [∗] 1	0	×	×	0	_	_
	3号機原子炉建屋格 納容器内	3 C 一蓄圧タンク	≧3,000ppm as B	41 m ³	×*1	0	×	×	0	_	_
	3号機原子炉建屋	3 -燃料取替用水 ピット	≧3,000ppm as B	2000 m ³	× ^{※1}	×	ı	ı	ı	_	1
	1号機タービン建屋	1-塩酸貯槽	35%	22 m ³	0	×	×	×	0	_	
	1 号機タービン建屋	1-塩酸計量槽	35%	3 m ³	0	×	×	×	0	_	-
	2号機タービン建屋	2-塩酸貯槽	35%	22 m ³	0	×	×	×	0	_	_
	2号機タービン建屋	2-塩酸計量槽	35%	3 m ³	0	×	×	×	0	_	1
	3号機タービン建屋	3 - 塩酸貯槽	35%	35 m ³	0	×	×	×	0	_	_
	3号機タービン建屋	3 A - 塩酸計量槽	35%	4.4 m ³	0	×	×	×	0	_	1
	3号機タービン建屋	3 B - 塩酸計量槽	35%	4.4 m ³	0	×	×	×	0	_	_
	1, 2号機 給排水処理建屋	塩酸貯槽	35%	15 m ³	0	×	×	×	0	_	_
塩酸	1, 2 号機 給排水処理建屋	カチオン塔塩酸計 量槽	35%	0.67 m ³	0	×	×	×	0	_	_
	1,2号機 給排水処理建屋	混床式ポリシャー 塔塩酸計量器	35%	0.36 m ³	0	×	×	×	0	_	_
	1,2号機 給排水処理建屋	中和塩酸槽	5%	6 m ³	×	×	_	_	_	_	_
	3 号機 給排水処理建屋	3 A - 塩酸計量槽	35%	0.54 m ³	0	×	×	×	0	_	_
	3 号機 給排水処理建屋	3 B - 塩酸計量槽	35%	0.54 m ³	0	×	×	×	0	_	_
	3号機 給排水処理建屋	3 A - 塩酸貯槽	35%	10 m ³	0	×	×	×	0	_	_
	3 号機 給排水処理建屋	3 B - 塩酸貯槽	35%	10 m ³	0	×	×	×	0	_	_
	海水淡水化設備建屋	3 A-塩酸貯槽	35%	10 m ³	0	×	×	X	0	_	_
	海水淡水化設備建屋	3 B - 塩酸貯槽	35%	10 m ³	0	×	×	×	0	_	_
	1, 2号機 給排水処理建屋	苛性ソーダ貯槽	25%	27 m ³	× [∗] 1	×	×				
水酸化ナトリウ ム	1,2号機 給排水処理建屋	アニオン塔苛性ソ ーダ計量槽	25%	0.88 m ³	×*1	×	×	_	_	_	_
	1,2号機 給排水処理建屋	混床式ポリシャー 塔苛性ソーダ計量 槽	25%	0.44 m ³		×	×	_	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表1 泊発電所の固定源整理表 (敷地内 タンク類) (4/7)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	有ガ	毒ス断		查対	象整	理	調査対
					a	b b	1	2	3	4	象
	1号機原子炉補助建 屋	1-よう素除去 薬品タンク	≧30%	15 m ³	×*1	×	×	-	-	-	-
	2号機原子炉補助建 屋	2-よう素除去 薬品タンク	≧30%	15 m ³	×*1	×	×	_	- <u></u>	_	-
	3号機 原子炉補助建屋	3 - p H 調整剤 貯蔵タンク	30%	1.2 m ³	× [∗] 1	×	×	_	-	-	-
	3号機 原子炉補助建屋	3-1次系か性 ソーダタンク	25%	4 m ³	×*1	×	_	_	_	_	_
	3号機 原子炉補助建屋	3 - 廃液貯蔵ピットか性ソーダ 計量タンク	25%	0.3 m ³	×*1	×	_	_	_	_	_
	3号機 原子炉補助建屋	3 - 酸液ドレン タンクか性ソー ダ計量タンク	25%	0. 02 m ³	×*1	×	_	_	_	_	_
	1 号機タービン建屋	1 - 苛性ソーダ 貯槽	25%	26.5 m ³	×*1	×	_	_	_	_	-
	1 号機タービン建屋	1 - 苛性ソーダ 計量槽	25%	3.4 m ³	× ^{※1}	×	_	_	_	_	_
	2号機タービン建屋	2 - 苛性ソーダ 貯槽	25%	26.5 m ³	× [∗]	×	_	_	_	_	-
	2号機タービン建屋	2 - 苛性ソーダ 計量槽	25%	3.4 m ³	× [∗] 1	×	_	_	_	_	-
	3号機タービン建屋	3 - 苛性ソーダ 貯槽	25%	50 m ³	×*1	×	_	_	_	_	_
水酸化ナトリウ ム	3号機タービン建屋	3 A - 苛性ソー ダ計量槽	25%	3.7 m ³	×*1	×	_	_	_	_	_
	3号機タービン建屋	3 B - 苛性ソー ダ計量槽	25%	3.7 m ³	×*1	×	_	_	_	_	_
	3号機 給排水処理建屋	3 A - 苛性ソー ダ貯槽	25%	15 m ³	×*1	×	_	_	_	_	_
	3号機 給排水処理建屋	3 B - 苛性ソー ダ貯槽	25%	15 m ³	×*1	×	_	_	_	_	_
	3号機 給排水処理建屋	3 A - 苛性ソー ダ計量槽	25%	0.89 m ³	×*1	×	_	_	_	_	_
	3号機 給排水処理建屋	3 B - 苛性ソー ダ計量槽	25%	0.89 m ³	×*1	×	_	_	_	_	_
	海水淡水化設備建屋	3 A - 苛性ソー ダ貯槽	25%	8 m ³	× [∗] 1	×	_	_	_	_	_
	海水淡水化設備建屋	3 B - 苛性ソー ダ貯槽	25%	1.5 m ³	× [∗] 1	×	_	_	_	_	_
	海水淡水化設備建屋	3 A - 苛性ソー ダ希釈槽	10%	0. 28 m ³	×*1	×	_	_	_	_	_
	海水淡水化設備建屋	3 B - 苛性ソー ダ希釈槽	10%	0. 28 m ³	× [∗] 1	×	_	_	_	_	_
	放射性廃棄物処理建 屋	アスファルト固 化装置 中和剤 タンク	25%	16 m³	× ^{₩1}	×	_	_	_	_	_
	1号機 原子炉補助建屋	廃 液 蒸 発 装 置 中和剤計量タン ク	25%	0. 02 m ³	×*1	×	_	_	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

泊発電所の固定源整理表 (敷地内 タンク類) (5/7) 表 1

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	有ガ	毒ス断		查対	象整	理	調査対
					a	b	1	2	3	4	象
	1号機原子炉補助建 屋	廃 液 蒸 発 装 置 中和剤注入タン ク	25%	0.3 m ³	× ^{楽1}	×	-	I	-	-	_
水酸化ナトリウム	1 号機原子炉補助建 屋	酸液ドレンタン ク 中和剤計量 タンク	25%	0.002 m ³	× ^{※1}	×	-	ı	_	_	_
	3 号機原子炉補助建 屋	セメント固化装 置 3ー中和剤 計量管	25%	0.01 m ³	× ^{※1}	×	_	_	_	_	_
	1, 2 号機 給排水処理建屋	ヒドラジン処理 液溶解槽	10%	0.9 m ³	× [∗] 1	×	_	_	_	_	_
硫酸銅	3 号機 給排水処理建屋	3 A - ヒドラジン処理液溶解槽	10%	0.31 m ³	× ^{*1}	×	_	_	_	_	_
	3 号機 給排水処理建屋	3 B - ヒドラジ ン処理液溶解槽	10%	0.31 m ³	× ^{¾1}	×	_	_	_	_	_
塩化第二鉄	海水淡水化設備建屋	3 一塩化第二鉄 貯槽	37%	2 m ³	× [∗] 2	×	_	ı	_	_	_
	海水淡水化設備建屋	3 - 重亜硫酸ソ ーダ貯槽	20%	0.24 m ³	×*1	×	_	1	_	_	_
亜硫酸水素ナト リウム	海水淡水化設備建屋	3 - 重亜硫酸ソ ーダ計量槽	20%	0. 24 m ³	× ^{※1}	×	_	_	_	_	-
	海水淡水化設備建屋	3 - 重亜硫酸ソ ーダ計量器	20%	0.003 m ³	× ^{∗1}	×	_	_	_	_	_
次亜塩素酸ナト	1, 2号機 給排水処理建屋	次亜塩素酸ソー ダ貯槽	2%	0.31 m ³	× ^{※2}	×	_	ı	_	_	_
リウム	3 号機 給排水処理建屋	3 一次亜塩素酸 ソーダ貯槽	2%	0.31 m ³	× ^{※2}	×	_	1	_	_	_
	放射性廃棄物処理建 屋	固化装置消泡剤 タンク	20%	0.31 m ³	×*1	×	_	ı	_	_	_
非晶質シリカ	3号機 原子炉補助建屋	セメント固化装置 3-消泡剤タ ンク	10%	0.135 m ³	× ^{※1}	×	_	ı	_	_	_
	3号機 原子炉補助建屋	セメント固化装 置 3-消泡剤計 量管	10%	0.0065 m ³	× ^{※1}	×	_	1	_	_	_
テトラクロロ エチレン	放射性廃棄物処理建 屋	固化装置溶剤タ ンク	≥99%	0.7 m ³	0	×	×	×	0	_	-
	1 号機 原子炉補助建屋	1-亜鉛供給タン ク	1,500ppm as Zn	0.3 m ³	×*1	×	_	_	_	_	_
酢酸亜鉛	2 号機 原子炉補助建屋	2-亜鉛供給タンク	1,500ppm as Zn	0.3 m ³	× ^{※1}	×	_	_	_	_	_
	3 号機 原子炉補助建屋	3-亜鉛供給タン ク	1,500ppm as Zn	0.15 m ³	×*1	×	_	_	_	_	_
軽油	1号機屋外埋設	ディーゼル発電 機設備燃料油貯 油槽(1A1, 1A2, 1B1, 1B2)	_	461.6 m ³	×*2	×	_	_	_	_	_
社	2号機屋外埋設	ディーゼル発電 機設備燃料油貯 油槽(2A1, 2A2, 2B1, 2B2)	_	461.6 m³	×*2	×	_	_	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2: 試薬類であるか 3:屋内に保管されている

表1 泊発電所の固定源整理表 (敷地内 タンク類) (6/7)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	有ガ	毒ス断	88	查対	象整	理	調査対
					a	b	1	2	3	4	象
	3号機屋外埋設	ディーゼル発電 機設備燃料油貯 油槽(3A1,3 A2)	=	295.88 m³	× ^{₩2}		=	=	-	-	=
	3号機屋外埋設	ディーゼル発電 機設備燃料油貯 油槽(3B1,3 B2)	_	295.8 m³	×*2	×	-		-	a - -	-
	1号機原子炉建屋 1A- ディーゼル発電機補 助タンク室	1 Aー燃料油サー ビスタンク	_	11 m ³	× ^{※2}	×	_	_	_	_	_
	1号機原子炉建屋 1B- ディーゼル発電機補 助タンク室	1B-燃料油サー ビスタンク	_	11 m ³	× ^{※2}	×	_	_	_	_	_
	1号機原子炉建屋 1A- ディーゼル発電機補 機室	1 A - 燃料油ドレ ンタンク	-	0.1 m ³	× ^{※2}	×	_	_	_	_	_
	1号機原子炉建屋 1B- ディーゼル発電機補 機室	1B-燃料油ドレ ンタンク	_	0.1 m ³	× ^{∗2}	×	_	_	_	_	_
軽油	2号機原子炉建屋 2A- ディーゼル発電機補 助タンク室	2A-燃料油サー ビスタンク	_	11 m ³	× ^{※2}	×	_	_	_	_	_
	2号機原子炉建屋 2B- ディーゼル発電機補 助タンク室	2B-燃料油サー ビスタンク	_	11 m ³	× ^{※2}	×	_	_	_	_	_
	2号機原子炉建屋 2A- ディーゼル発電機補 機室	2A-燃料油ドレ ンタンク	_	0.1 m ³	× ^{※2}	×	_	_	_	_	_
	2号機原子炉建屋 2B- ディーゼル発電機補 機室	2B-燃料油ドレ ンタンク	_	0.1 m ³	× [∗] 2	×	-	_	_	_	_
	3号機原子炉建屋 3A- 燃料油サービスタン ク室	3A-燃料油サービ スタンク	_	13 m ³	× ^{∗2}	×	_	_	_	_	_
	3号機原子炉建屋 3B- 燃料油サービスタン ク室	3B-燃料油サービ スタンク	_	13 m ³	× ^{⊛2}	×	_	_	_	_	_
	3 号機ディーゼル発 電機建屋 3A-ディーゼ ル発電機補機室	3A-燃料油ドレン タンク	_	0.2 m ³	× ^{∗2}	×	_	_	_	_	_
	3 号機ディーゼル発 電機建屋 3B-ディーゼ ル発電機補機室	3B-燃料油ドレン タンク	_	0.2 m ³	× ^{∗2}	×	_	_	_	_	_
A重油	1 ・ 2 号機エリア 屋外タンク貯蔵所	補助ボイラー燃 料タンク	_	600 m ³	×*2	×	_	_	_	_	_
**=#	3号機エリア 屋外 タンク貯蔵所	3-補助ボイラー燃料タンク	_	720 m ³	×*2	×	_	_	_	_	_
水酸化カルシウ ム粉末	3号機 原子炉補助建屋	セメント固化装置 3-薬液貯蔵 ホッパ	100%	5 m ³	× [∗] 2	×	_	_	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表1 泊発電所の固定源整理表 (敷地内 タンク類) (7/7)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	ガ	毒ス断	調	查対	象整	理	調査対
					a	b	1	2	3	4	象
水酸化カルシウ ム粉末	3号機 原子炉補助建屋	セメント固化装置 3-薬液計量器	100%	0. 15 m ³	×*2	×	_	_	-	_	_
超耐寒3%たん	泡消火設備建屋	泡原液タンク		0.85 m ³	× ^{※2}	×		_	_	-	-
白泡消火薬剤 (泡第 52~1 号)	泡消火設備建屋 (3 号機)	泡原液タンク		1 m ³	×*2	×	-	_	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表 2 泊発電所の固定源整理表 (敷地内 ボンベ類) (1/5)

令和3年2月末時点

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	カ	毒ス断	調	查対	象整	理	調査対
				100	a	b	1	2	3	4	象
	1 号機タービン建屋B1F CO₂供給装置	ガスボンベ	≥99.5%	30kg×15 本	0	=	0	=	. =	-	-
	1 号機タービン建屋 B1F CO ₂ 消火設備	ガスボンベ	≥99.5%	46.4kg×2本	0	_	0		_	_	_
	1 号機タービン建屋 B1F CO₂消火設備	ガスボンベ	≧99.5%	1.2kg×2本	0	_	0	_	_	·	_
	1 号機タービン建屋 2F ハロン消火装置	ガスボンベ	≧99.5%	1. 1kg×3 本	0	_	0	_	_	_	_
	1号機発電機ガスボンベ貯蔵庫	ガスボンベ	≥99.5%	30kg×30 本	0	_	0	_	_	_	_
	1 号機 D/G 消火用 CO ₂ ボンバ 室	カスホンへ	≧99.5%	45kg×40 本	0	_	0	_	_	_	_
	1 号機 D/G 消火用 CO ₂ ボンバ 室	ガスボンベ	≥99.5%	0.65kg×6本	0	_	0	_	_	_	_
	1号機原子炉補助建屋 11 ボンベ庫	ガスボンベ	≥99.5%	30kg×31本	0	_	0	_	_	_	-
	1号機原子炉補助建屋 12 ボンベ庫	ガスボンベ	≧99.5%	1.5kg×25 本	0	_	0	_	_	_	-
	1号機原子炉補助建屋 13 ボンベ庫	ガスボンベ	≧99.5%	45kg×19本	0	_	0	_	_	_	_
	1号機原子炉補助建屋 14 ボンベ庫	ガスボンベ	≧99.5%	45kg×19本	0	_	0	_	_	_	_
	2 号機タービン建屋 CO ₂ 供給装置	ガスボンベ	≧99.5%	0.65kg×15本	0	_	0	_	_	_	_
二酸化炭素	2 号機タービン建屋 CO ₂ 消火設備	ガスボンベ	≥99.5%	45kg×2本	0	_	0	_	_	_	_
	2 号機タービン建屋 CO ₂ 消火設備	ガスボンベ	≥99.5%	0.65kg×2本	0	_	0	_	_	_	_
	2 号機タービン建屋 ハロン消火装置	ガスボンベ	≧99.5%	30kg×3本	0	_	0	_	_	_	_
	発電機ガスボンベ貯蔵庫	ガスボンベ	≥99.5%	0.65kg×30本	0	_	0	_	_	_	_
	発電機ガスボンベ貯蔵庫	ガスボンベ	≧99.5%	53.8kg×1本	0	_	0	_	_	_	_
	発電機ガスボンベ貯蔵庫	ガスボンベ	≥99.5%	21.7kg×1本	0	_	0	_	_	_	_
	2 号機 D/G 消火用 CO ₂ ボンハ 室	ガスボンベ	≧99.5%	52. 1kg×40 本	0	_	0	_	_	_	_
	2 号機 D/G 消火用 CO2 ボンベ室	ガスボンベ	≥99.5%	20.8kg×6本	0	_	0	_	_	_	_
	2 号機原子炉補助建屋 21 ボンベ庫	ガスボンベ	≧99.5%	50kg×27 本	0	_	0	_	_	_	_
	2 号機原子炉補助建屋 22 ボンベ庫	ガスボンベ	≧99.5%	500kg×23本	0	_	0	_	_	_	_
	2 号機原子炉補助建屋 23 ボンベ庫	ガスボンベ	≥99.5%	50kg×19本	0	_	0	_	_	_	_
	2 号機原子炉補助建屋 24 ボンベ庫	ガスボンベ	≧99.5%	0.65kg×18本	0	_	0	_	_	_	_
	2 号機原子炉補助建屋 25 ボンベ庫	ガスボンベ	≧99.5%	0.65kg×2本	0	_	0	_	_	_	_

a:ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表 2 泊発電所の固定源整理表 (敷地内 ボンベ類) (2/5)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	有ガ	毒ス断	調	查対	象整	理	調査対
	- H. W. 1:				a	b	1	2	3	4	象
	3 号機タービン建屋 B1F CO ₂ 容器エット	ガスボンベ	≧99.5%	50kg×2本	0	=	0	-	-	-	-
	3 号機タービン建屋 B1F CO ₂ 容器エット	ガスボンベ	≧99.5%	20kg×5 本	0	=	0	_	-	_	-
	3-発電機ガスボンベ 貯蔵庫	ガスボンベ	≧99.5%	50kg×24本	0	_	0	_	_	1-	-
	3 号機タービン建屋 2F 消火装置	ガスボンベ	≧99.5%	20kg×4本	0	_	0	_	_	_	-
	3 号機タービン建屋 1F	ガスボンベ	≧99.5%	50kg×17本	0	_	0	_	_	_	_
	3 号機 D/G 消火用 CO ₂ ボンハ 室	ガスボンベ	≧99.5%	500kg×46本	0	_	0	_	_	_	_
	3 号機 D/G 消火用 CO ₂ ボンヘン室	ガスボンベ	≧99.5%	50kg×6本	0	_	0	_	_	_	_
	3 号機 D/G 消火用 CO ₂ ボンヘン室	ガスボンベ	≧99.5%	22.6kg×5本	0	_	0	_	_	_	_
	3号機原子炉補助建屋 31ボンベ庫	ガスボンベ	≧99.5%	8.5kg×30本	0	_	0	_	_	_	_
	3号機原子炉補助建屋 32ボンベ庫	ガスボンベ	≧99.5%	7kg×16 本	0	_	0	_	_	_	_
二酸化炭素	3号機原子炉補助建屋 33ボンベ庫	ガスボンベ	≧99.5%	1kg×13 本	0	_	0	_	_	_	_
一致记火茶	3号機原子炉補助建屋 34ボンベ庫	ガスボンベ	≧99.5%	1kg×12本	0	_	0	_	_	_	_
	3号機原子炉補助建屋36ボンベ庫	ガスボンベ	≧99.5%	1kg×20 本	0	_	0	_	_	_	_
	3 号機中央制御室消火 用ボンベ保管スペース	ガスボンベ	≧99.5%	0.65kg×3本	0	_	0	_	_	_	_
	3 号機補助ボイラー建屋	ガスボンベ	≧99.5%	0.65kg×1本	0	_	0	_	_	_	_
	3 号機循環水建屋 C3 ボンバ庫	ガスボンベ	≧99.5%	1kg×5本	0	_	0	_	_	_	_
	放射性廃棄物処理建 屋 W1 ボンベ庫	ガスボンベ	≥99.5%	0.65kg×6本	0	_	0	_	_	_	_
	放射性廃棄物処理建 屋 W2 ボンベ庫	ガスボンベ	≧99.5%	0.65kg×2本	0	_	0	_	_	_	_
	1,2号機1次系窒素ボンベ室	ガスボンベ	≥99.5%	35kg×42 本	0	_	0	_	_	_	_
	1,2号機原子炉補助建屋ハロンカース庫	ガスボンベ	≧99.5%	0.65kg×5本	0	_	0	_	_	_	_
	固体廃棄物貯蔵庫 S1 ボンベ庫	ガスボンベ	≧99.5%	55kg×99 本	0	_	0	_	_	_	_
	固体廃棄物貯蔵庫 S1 ボンベ庫	ガスボンベ	≧99.5%	1kg×4本	0	_	0	_	_	_	_
	1号機タービン建屋ハロ ン消火装置	ガスボンベ	≧99.6%	50kg×3 本	0	_	0	_	_	_	_
ハロン 1301	1号機タービン建屋ハロン消火装置	ガスボンベ	≧99.6%	20kg×1本	0	_	0	_	_	_	_
	1号機原子炉補助建屋 11 ボンベ庫	ガスボンベ	≧99.6%	60kg×30本	0	_	0	_	_	_	_

a:ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表 2 泊発電所の固定源整理表 (敷地内 ボンベ類) (3/5)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	有ガ	毒ス断	調	查対	象整	理	調査対
	1日松匠フ层材以為目				a	b	1	2	3	4	象
	1号機原子炉補助建屋 12 ボンベ庫	ガスボンベ	≧99.6%	60kg×24本	0	=	0		-	ā=-	-
	1 号機原子炉建屋 13 ボンバ 庫	ガスボンベ	≧99.6%	60kg×39本	0	22	0	<u></u>		· <u> </u>	-
	1 号機原子炉建屋 14 ボンバ 庫	ガスボンベ	≧99.6%	60kg×17本	0	_	0	1	_	-	-
	2 号機タービン建屋ハロ ン消火装置	ガスボンベ	≧99.6%	50kg×3本	0	_	0	_	_	_	_
	2 号機タービン建屋ハロ ン消火装置	ガスボンベ	≧99.6%	20kg×1本	0	_	0	ı	_	-	_
	2号機原子炉補助建屋21ボンベ庫	ガスボンベ	≧99.6%	60kg×30本	0	_	0	_	_	_	_
	2 号機原子炉補助建屋 22 ボンベ庫	ガスボンベ	≧99.6%	60kg×23 本	0	_	0	_	_	_	_
	2 号機原子炉建屋 23 ボンベ庫	ガスボンベ	≧99.6%	60kg×33 本	0	_	0	_	_	_	_
	2 号機原子炉建屋 24 ボンバ 庫	ガスボンベ	≧99.6%	60kg×17本	0	_	0	_	_	_	_
	2 号機原子炉建屋 25 ボンベ庫	ガスボンベ	≧99.6%	60kg×2本	0	_	0	_	_	_	_
	3号機原子炉補助建屋 31 ボンベ庫	ガスボンベ	≧99.6%	60kg×51本	0	_	0	_	_	_	_
	3 号機原子炉建屋 32 ボンベ庫	ガスボンベ	≧99.6%	60kg×20 本	0	_	0	_	_	_	_
	3 号機原子炉建屋 33 ボンベ庫	ガスボンベ	≧99.6%	60kg×30本	0	_	0	_	_	_	_
ハロン 1301	3 号機原了炉建屋 34 ボンベ庫	ガスボンベ	≧99.6%	60kg×27本	0	_	0	_	_	_	_
	3 号機原子炉補助建屋 35 ボンベ庫	ガスボンベ	≧99.6%	10kg×4本	0	_	0	ı	_	-	_
	3号機原子炉補助建屋36ボンベ庫(非管)	ガスボンベ	≧99.6%	60kg×37本	0	_	0	_	_	_	_
	3 号機循環水建屋 C3 ボンベ庫	ガスボンベ	≥99.6%	60kg×13 本	0	_	0	_	_	_	_
	3 号機循環水建屋 C3 ボンバ庫	ガスボンベ	≧99.6%	40kg×2本	0	_	0	_	_	_	_
	3 号機電気建屋 補充用ボンベ庫	ガスボンベ	≧99.6%	60kg×40 本	0	_	0	_	_	_	_
	3 号機電気建屋補充用 ボンバ 庫	ガスボンベ	≧99.6%	60kg×40 本	0	_	0	ı		ı	_
	放射性廃棄物処理建 屋 W1 ボンバ庫	ガスボンベ	≧99.6%	60kg×29 本	0	_	0	_	_	_	_
	放射性廃棄物処理建 屋 W2 ボンバ庫	ガスボンベ	≧99.6%	60kg×10 本	0	_	0	_	_	_	_
	1,2号機出入管理建屋 ハロンカ・ス庫	ガスボンベ	≥99.6%	30kg×5本	0	_	0	_	_	_	_
	緊急時対策所 待機 所空調上屋	ガスボンベ	≧99.6%	60kg×5本	0	_	0	_	_	_	_
	緊急時対策所 指揮 所空調上屋	ガスボンベ	≧99.6%	60kg×5本	0	_	0	_	_	_	_
	1,2 号機出入管理建屋 通信機械室	ガスボンベ	≥99.6%	60kg×1本	0	_	0	_	_	_	_

a:ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表 2 泊発電所の固定源整理表 (敷地内 ボンベ類) (4/5)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	カ	 ス 断	調		象整	理	調査対
	1,2号機出入管理建屋	**************************************			a	b	1	2	3	4	象
ハロン 1301	通信機械室	ガスボンベ	≧99.6%	50kg×1本	0	-	0	-	7557	-	_
	1,2 号機 1 次系水素ボンベ室	ガスボンベ	≧98%	7kg×3本	0	_	0	1	_		-
アセチレン	1,2 号機出入管理建屋可燃性ガスボンベ庫	ガスボンベ	≧98%	7kg×2本	0	_	0	_	_	-	_
	3 号機 1 次系窒素ボン ベ室	ガスボンベ	≧98%	7kg×3本	0	_	0	-	-	_	-
	3 号機補助ボイラー建屋	ガスボンベ	プロパン:≧90% ブタン:10%	50kg×2本	0	_	0	_	_	_	_
プロパン	1,2 号機出入管理建屋可燃性ガスボンベ庫	ガスボンベ	プロパン:≧90% ブタン:10%	50kg×4本	0	_	0	_	_	_	_
	1,2 号機 プロパンガスボンベ庫	ガスボンベ	プロパン: ≧90% ブタン:10%	500kg×4本	0	_	0	_	_	_	_
	1,2号機 補助ボイラー建屋	ガスボンベ	プロパン:≧90% ブタン:10%	50kg×3本	0	_	0	_	_	_	_
	1,2 号機 補助ボイラー建屋	ガスボンベ	SO ₂ : 0.045% N ₂ : 99.955%	0.5m ³ ×2本	0	_	0	_	_	_	_
混合ガス (二酸化硫黄+	3 号機補助ボイラー建屋	ガスボンベ	SO ₂ : 0.045% N ₂ : 99.955%	0.5m ³ ×2本	0	_	0	_	_	_	_
室素)	1,2 号機出入管理建屋 環境測定室	ガスボンベ	SO ₂ : 0.045% N ₂ : 99.955%	1.5m³×3本	0	_	0	_	_	_	_
	3 号機電気建屋	ガスボンベ	SO ₂ : 0.045% N ₂ : 99.955%	0.5m³×2本	0	_	0	_	_	_	_
混合ガス (ヘリウム+ イソブタン)	1,2号機出入管理建屋 環境測定室	ガスボンベ	He: 99% C ₄ H ₁₀ : 1%	7m³×2本	0	_	0	_	_	_	_
混合ガス	1,2 号機 放射能測定室	ガスボンベ	Ar: 90% CH ₄ : 10%	1.5m³×12本	0	_	0	_	_	_	_
(アルゴン+ メタン)	3 号機 1 次系窒素ボンバ室	ガスボンベ	Ar: 90% CH ₄ : 10%	1.5m³×4本	0	_	0	_	_	_	_
	3 号機 放射能測定室	ガスボンベ	Ar: 90% CH ₄ : 10%	1.5m³×2本	0	_	0	_	_	_	_
混合ガス (一酸化窒素+ 窒素)	1,2 号機出入管理建屋 環境測定室	ガスボンベ	N0: 0. 045% N ₂ : 99. 955%	1.5m³×3本	0	_	0	_	_	_	_
混合ガス (CO ₂ +Ar+	3 号機中央制御室消火 用ボンベ保管スペース	ガスボンベ	CO ₂ : 8% Ar: 40% N ₂ : 52%	22.6m³×1本	0	_	0	_	_	_	_
N ₂)	3号機中央制御室消火 用ボンベ保管スペース	ガスボンベ	CO ₂ : 8% Ar: 40% N ₂ : 52%	8.5m³×1本	0	_	0	_	_	_	_
	1,2 号機 1 次系窒素ボ ンバ室	ガスボンベ	≧99.5%	7m³×30本	0	_	0	_	_	_	_
酸素	管理事務所 緊急医療室	ガスボンベ	≧99.5%	0.5m³×4本	0	_	0	_	_	_	_
政术	管理事務所 緊急医療室	ガスボンベ	≧99.5%	0.3m³×1本	0	_	0	_	_	_	_
	3号機 出入管理建屋	ガスボンベ	≧99.5%	0.5m³×1本	0	_	0	_	_	_	_

a: ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表 2 泊発電所の固定源整理表 (敷地内 ボンベ類) (5/5)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	力	 ス 断	調	查対	象整	理	調査対
	25				a	b	1	2	3	4	象
二酸化硫黄	1,2 号機出入管理建屋 バイオアッセイ室	ガスボンベ	≥99%	15L×1本	0	_	0	-	=	_	-
亜酸化窒素	管理事務所 緊急医療室	ガスボンベ	≧97.0%	2. 5kg×1 本	0	_	0	_	_	_	_
六フッ化硫黄	275kV 開閉所	ガスボンベ	≥99.999%	50kg×1本	0	_	0	<u> </u>	332	<u>1000</u>	

a: ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

表3 泊発電所の固定源整理表(敷地内 機器【冷媒】)(1/3)

令和3年2月末時点

								TJ TH	3年	471	レh4、
有毒化学物質	保管場所	貯蔵施設	濃度	内容量	カ	毒ス断	調		象整	理	調査対
					a	b	1	2	3	4	象
	1号機原子炉補助建屋	1 A - 空調用冷凍機	100%	300kg	0	_	×	×	0*		2.22
	1号機原子炉補助建屋	1 B - 空調用冷凍機	100%	300kg	0	-	×	×	0*	_	=
	1号機原子炉補助建屋	1 C - 空調用冷凍機	100%	300kg	0	-	×	×	0*	1000	====
CFC - 11	1号機原子炉補助建屋	1 D - 空調用冷凍機	100%	300kg	0	-	×	×	0*	-	_
CFC - II	2 号機原子炉補助建屋	2 A - 空調用冷凍機	100%	300kg	0		×	×	0*		
	2 号機原子炉補助建屋	2 B - 空調用冷凍機	100%	300kg	0	_	×	×	0*	_	_
	2 号機原子炉補助建屋	2 C - 空調用冷凍機	100%	300kg	0	_	×	×	0*	_	_
	2 号機原子炉補助建屋	2 D – 空調用冷凍機	100%	300kg	0	_	×	×	0*	_	_
	1,2 号機出入管理建屋	A-ドライクリーニング装 置内冷凍機	100%	16kg	0	_	×	×	0*	-	_
HCFC - 22	1,2 号機出入管理建屋	Bードライクリーニング装 置内冷凍機	100%	16kg	0	_	×	×	0*	_	_
	1,2 号機出入管理建屋	1, 2 - 洗濯設備ドライク リーニング冷水ユニット	100%	48kg	0	_	×	×	0*	_	_
	3号機原子炉建屋	3 A - 空調用冷凍機	100%	290kg	0	_	×	×	0*	_	_
HFC-134a	3号機原子炉建屋	3 B - 空調用冷凍機	100%	290kg	0	_	×	×	0*	_	_
пгС-134а	3号機原子炉建屋	3 C - 空調用冷凍機	100%	290kg	0	_	×	×	0*	_	_
	3 号機原子炉建屋	3 D - 空調用冷凍機	100%	290kg	0	_	×	×	0*	_	_
	3 号機原子炉建屋	使用済燃料ピット監視カメ ラ空冷装置	100%	1kg	0	_	×	×	0*	_	_
R-404A	3 号機原子炉補助建屋	使用済燃料ピット監視カメ ラ空冷装置	100%	1kg	0	_	×	×	0*	-	_
	3 号倉庫内	使用済燃料ピット監視カメ ラ空冷装置	100%	1kg	0	_	×	×	0*	_	_
	3 号機原子炉補助建屋	3 ーセメント固化装置濃縮 廃液循環配管冷却機	100%	1. 4kg	0	_	×	×	0*	_	_
	固体廃棄物貯蔵庫	固体廃棄物貯蔵庫 A-貯 蔵庫空調用冷凍機	100%	28kg	0	_	×	×	0*	_	_
	固体廃棄物貯蔵庫	固体廃棄物貯蔵庫 B-貯 蔵庫空調用冷凍機	100%	28kg	0	_	×	×	0*	_	_
R-407C	1 号機原子炉建屋	1 号機主排気筒試料採取装置(1R-24) 用ユニットクーラ	100%	0. 28kg	0	_	×	×	0*	_	_
	1 号機原子炉建屋	1 号機非常用排気筒試料採取装置(1 R - 2 9)用ユニットクーラ		0. 28kg	0	_	×	×	0*	_	_
	1号機原子炉建屋	1号機格納容器試料採取装置(1R-42)用ユニットクーラ	100%	0. 28kg	0	_	×	×	0*	_	_

a:ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4: 開放空間での人体への影響がない

※:冷媒 (フロン類) は防護判断基準値 (1,000~32,000ppm) が高く、漏えいした場合でも建屋内で希釈された時点で防護判断基準値を下回り、大気中に多量に放出されるおそれがないため、調査対象外

表3 泊発電所の固定源整理表 (敷地内 機器【冷媒】) (2/3)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	カ	毒ス断	語	查対	象整	理	調査対
					a	b	1	2	3	4	象
	1号機タービン建屋	1 号機復水器排気ガスモニ タ (1 R - 4 3) 用エアー ドライヤ	577 X 504 A 110	1.8kg	0	_	×	×	0*	-	_
	2 号機原子炉建屋	2 号機主排気筒試料採取装置(2R-24) 用ユニットクーラ		0. 28kg	0	-	×	×	0*	-	_
	2 号機原子炉建屋	2 号機非常用排気筒試料採取装置(2R-29) 用ユニットクーラ		0. 28kg	0	_	×	×	0*	_	_
	2 号機原子炉建屋	2 号機格納容器試料採取装置(2R-42)用ユニットクーラ		0. 28kg	0	_	×	×	0*	_	_
	2 号機タービン建屋	2 号機復水器排気ガスモニタ(2R-43)用エアードライヤ		1.8kg	0	_	×	×	0*	_	_
	3 号機原子炉建屋	3 号機排気筒試料採取装置 (3 R - 2 4) 用ユニット クーラ	100%	0. 28kg	0	_	×	×	0*	_	_
R-407C	3 号機原子炉建屋	3号機格納容器試料採取装置(3R-42)用ユニットクーラ		0. 28kg	0	_	×	×	0*	_	_
	3 号機タービン建屋	3号機復水器排気ガスモニタ(3R-43)用エアードライヤ	100%	3. 6kg	0	_	×	×	0*	_	_
	2号倉庫内	2号倉庫空調室エアードライヤ(予備品)	100%	1.8kg	0	_	×	×	0*	_	_
	2号倉庫内	2号倉庫空調室ユニットク ーラ(予備品)	100%	0. 28kg	O	_	×	×	O*	_	_
	2号倉庫内	2号倉庫空調室ユニットク ーラ(予備品)	100%	0. 28kg	0	_	×	×	0*	_	_
	放射性廃棄物処理建 屋	焼却炉排気試料採取装置 (R-32)用エアードラ イヤ		1. 8kg	0	_	×	×	0*	_	_
	放射性廃棄物処理建 屋	焼却炉排気試料採取装置 (R-32)用ユニットク ーラ	100%	0. 28kg	0	_	×	×	O*	_	_
	放射性廃棄物処理建 屋	廃棄物処理建屋試料採取装置(R-39)用ユニット クーラ	100%	0.28kg	0	_	×	×	0*	_	_
	放射性廃棄物処理建 屋	放射性廃棄物処理建屋 空調用冷凍機	100%	38kg	0	_	×	×	0*	_	_
D_4104	放射性廃棄物処理建 屋	放射性廃棄物処理建屋空調 用冷凍機	100%	38kg	0	_	×	×	0*	_	_
R-410A	放射性廃棄物処理建 屋	放射性廃棄物処理建屋空調 用冷凍機	100%	38kg	0	_	×	×	0*	_	_
	放射性廃棄物処理建 屋	放射性廃棄物処理建屋 空調用冷凍機	100%	38kg	0	_	×	×	0*	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4:開放空間での人体への影響がない

※:冷媒(フロン類)は防護判断基準値(1,000~32,000ppm)が高く、漏えいした場合でも建屋内で希釈された時点で防護判断基準値を下回り、大気中に多量に放出されるおそれがないため、調査対象外

表3 泊発電所の固定源整理表 (敷地内 機器【冷媒】) (3/3)

有毒化学物質	保管場所	貯蔵施設	濃度	内容量	カ	毒ス断	調	查対	象整	理	調査対
					a	b	1	2	3	4	象
HCFC-225 c b	1,2号機管理事務所	A-ドライクリーニング 装置 蒸留新液タンク	100%	590L	0	-	×	×	0*	a=-	-
CFC-113	1,2 号機管理事務所	B-ドライクリーニング 装置 蒸留新液タンク	100%	590L	0	==	×	×	0*	7 <u>—</u> 7	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4:開放空間での人体への影響がない

※:冷媒(フロン類) は防護判断基準値(1,000~32,000ppm)が高く、漏えいした場合でも建屋内で希釈された時点で防護判断基準値を下回り、大気中に多量に放出されるおそれがないため、調査対象外

表 4 泊発電所の固定源整理表 (敷地内 機器【遮断器】)

令和3年2月末時点

								山小口	3年2	2 71 7	了五十
有毒化学物質	保管場所	貯蔵施設	濃度	内容量	カ	毒ス断	調	查対	象整	理	調査対
					a	b	1	2	3	4	象
	275kV 開閉所	遮断器	100%	8,570 kg	0	-	×	×	×	0	-
	66kV 開閉所	遮断器	100%	267. 4kg	0	-	×	×	X	0	-
	3 号非常用受電設備	遮断器	100%	50kg	0	-	×	×	X	0	-
	3号機タービン建屋(3号 機発電機付近 負荷開閉 器)		100%	60kg	0	_	×	×	0*	_	-
六フッ化硫黄	1号機メタクラ(1号機 原子炉補助建屋,1号機 タービン建屋)		100%	98kg	0	_	×	×	0*	_	
	2号機メタクラ(2号機 原子炉補助建屋,2号機 タービン建屋,放射性廃 棄物処理建屋)		100%	86. 5kg	0	_	×	×	0*	_	-
	予備変圧器受電区分(1 号機原子炉補助建屋)	遮断器	100%	1.5 kg	0	_	×	×	0*	_	_
	予備変圧器受電区分(2 号機原子炉補助建屋)	遮断器	100%	1.5 kg	0	_	×	×	0*	_	_

a:ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4: 開放空間での人体への影響がない

※: 六フッ化硫黄は防護判断基準値 (220,000ppm) が高く、漏えいした場合でも建屋内で希釈された時点で防護判断 基準値を下回り、大気中に多量に放出されるおそれがないため、調査対象外

表 5 泊発電所の固定源整理表 (敷地内 試薬類) (1/7)

令和3年2月末時点

									14 4 1	10 1	4).	7	1 1111
保管場所	性状	容器		内容	量		ガ	ス	調		2000	理	調査対
							a	b	1	2	3	4	象
	液体	ガラス瓶	500m1	×	13	本	_	-	_	0	_	_	_
	液体	テフロン瓶	500ml	×	8	本	-	-	_	0	_	_	-
	液体	ポリ容器	500m1	×	7	本	_	=	=	0	=	_	-
	固体	ガラス瓶	500m1	×	1	本	_	_	_	0	_	_	_
	液体	ガラス瓶	500m1	×	3	本	_	_	_	0	_	_	_
	液体	ポリ容器	500m1	×	11	本	_	_	_	0	_	_	_
	液体	ガラス瓶	500m1	×	4	本	_	_	_	0	_	_	_
	固体	ポリ容器	500m1	×	4	本	_	_	_	0	_	_	_
	液体	ガラス瓶	500m1	×	2	本	-	_	_	0	-	1	_
	液体	ポリ容器	500m1	×	4	本	_	_	_	0	_	_	_
	液体	ポリ容器	500m1	×	14	本	_	_	_	0	_	_	_
	固体	ポリ容器	500m1	×	3	本	_	_	_	0	_	_	_
₩.m. + 3/x = 1.	液体	ガラス瓶	500m1	×	2	本	_	_	_	0	-	_	_
官理事務所 一般分析室	液体	ガラス瓶	500m1	×	3	本	_	_	_	0	_	_	_
	液体	ガラス瓶	3L	×	6	本	_	_	_	0	_	_	_
	液体	ガラス瓶	500m1	×	3	本	_	_	_	0	_	_	_
	液体	ガラス瓶	500m1	×	3	本	_	_	_	0	_	_	_
	固体	ポリ容器	500m1	×	1	本	_	_	_	0	_	_	_
	液体	ポリ容器	500m1	×	2	本	_	_	_	0	_	_	_
	固体	ガラス瓶	500m1	×	2	本		_	_	0	ı	-	_
	液体	ガラス瓶	500m1	X	5	本	-	_	_	0	1	-	_
	液体	ガラス瓶	500g	×	2	本	_	_	_	0	_	-	_
	固体	ポリ容器	500g	×	3	本	_	_	_	0	_	_	_
	固体	ポリ容器	500g	×	9	本	_	_	_	0	_	_	_
	固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
	固体	ポリ容器	500g	X	3	本	_	_	_	0	_	_	_
	固体	ポリ容器	500g	×	3	本	_	_	_	0	_	_	_
	管理事務所	 一次 液 液 体 体 体 体 体 体 体 体 体 体 体 体 体 体 体 体 体	液体 ガラス瓶 液体 ボガラスス ス 深 で で で で で で で で で	液体 ガラス瓶 500ml 液体 ボリ容器 500ml 液体 ポリ容器 500ml 液体 ガラス瓶 500ml 液体 ポリ容器 500ml 液体 ポリ容器 500ml 液体 ポリ容器 500ml 液体 ガラス瓶 500ml 液体 ガラス 瓶 500ml 液体 ガラ	液体 ガラス瓶 500ml × 液体 デフロン瓶 500ml × 液体 ポリ容器 500ml × 液体 ガラス瓶 500ml × 液体 ポリ容器 500ml × 液体 ポリ容器 500ml × 液体 ポリ容器 500ml × 液体 ポリ容器 500ml × 液体 ガラス瓶 500ml × 液体 ガラス 液体 ガラス	液体 ガラス瓶 500ml × 13 液体 デフロン瓶 500ml × 13 液体 デフロン瓶 500ml × 1 1 液体 ガラス瓶 500ml × 4 固体 ポリ容器 500ml × 4 液体 ガラス瓶 500ml × 4 液体 ガラス瓶 500ml × 4 液体 ガラス瓶 500ml × 4 液体 ポリ容器 500ml × 4 液体 ポリ容器 500ml × 14 固体 ポリ容器 500ml × 3 液体 ガラス瓶 500ml × 2 固体 ポリ容器 500ml × 2	液体 ガラス瓶 500ml × 13 本 液体 デフロン瓶 500ml × 8 本 液体 ポリ容器 500ml × 7 本 固体 ガラス瓶 500ml × 1 本 液体 ガラス瓶 500ml × 4 本 高体 ボリ容器 500ml × 4 本 液体 ガラス瓶 500ml × 4 本 液体 ボリ容器 500ml × 4 本 液体 ボリ容器 500ml × 14 本 高体 ボリ容器 500ml × 14 本 高体 ボリ容器 500ml × 3 本 液体 ガラス瓶 500ml × 2 本 液体 ガラス瓶 500ml × 3 本 液体 ガラス瓶 500ml × 2 本 高体 ボリ容器 500ml × 2 本 高体 ガラス瓶 500ml × 3 本 液体 ガラス瓶 500ml × 3 本 高体 ボリ容器 500g × 3 本 高体 ボリ容器 500g × 3 本 高体 ボリ容器 500g × 3 本 高体 ポリ容器 500g × 3 本 高体 オース カース トース トース トース トース トース トース トース トース トース ト	保管場所 性状 容器 内容量 ガ判 a a a a a a a a a a a a a a a a a a	液体 ガラス瓶 500ml × 13 本 液体 デフロン瓶 500ml × 13 本 液体 デフロン瓶 500ml × 1 本 液体 ガラス瓶 500ml × 4 本 液体 ガラス瓶 500ml × 4 本 液体 ガラス瓶 500ml × 4 本 液体 ガラス瓶 500ml × 2 本 液体 ガラス瓶 500ml × 3 本	保管場所 性状 容器	保管場所 性状 容器	保管場所 性状 容器 内容量 打次 割	保管場所 性状 容器

- a:ガス化する
- b:エアロゾル化する
- 1:ボンベ等に保管されている
- 2:試薬類であるか
- 3:屋内に保管されている
- 4:開放空間での人体への影響がない
- 注: 試薬類は、使用場所が一般分析室や特定の設備の設置個所等に限定されていること、また、一般に流通している容器単位で保管されており、内容量はタンク等と比較して少量であることから、容器に貯蔵されている全量が流出しても有毒ガスが大気中に多量に放出されるおそれがないため調査対象外

表 5 泊発電所の固定源整理表 (敷地内 試薬類) (2/7)

10	们光电灯		加正生私	(九人上	71.1	П-	来	-		/	()			
									毒	⊐ 17*1	* + 1	Az, stol-	700	調
有毒化学物質	保管場所	性状	容器		内容量	赴			ス断	調	查 対	象整	埋	查対
The second second second								a	b b	1	2	3	4	象
塩化鉄(Ⅲ)六水 和物		固体	ポリ容器	500g	×	2	本	_	_	_	0	_	-	-
硫酸アンモニウム 鉄(Ⅲ) 12水和	,	固体	ガラス瓶	500g	×	3	本	_	-	-	0	_	_	-
物 硫酸鉄 (Ⅲ) n 水 和物	4	固体	ポリ容器	500g	×	1	本	-	-	_	0	_	_	1-1
硫酸銅五水和物		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
酢酸アンモニウム		固体	ポリ容器	500g	×	15	本	_	_	_	0	_	_	_
酢酸銅(Ⅱ)-水和 物		固体	ポリ容器	500g	×	8	本	_	_	_	0	_	_	_
炭酸アンモニウム		固体	ガラス瓶	500g	×	7	本	_	_	_	0	_	_	_
炭酸水素ナトリウ ム		固体	ポリ容器	500g	×	4	本	_	_	_	0	_	_	_
炭酸ナトリウム (無水)		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
ほう酸	•	固体	ポリ容器	500g	×	2	本	_	_	_	0	_	_	_
モリブデン酸アン モニウム		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
四ほう酸ナトリウ ム十水和物		固体	ポリ容器	500g	×	8	本	_	_	_	0	_	_	_
硝酸カリウム		固体	ポリ容器	500g	×	20	本	_	_	_	0	_	_	_
p ージメチルアミ ノベンズアルデヒ ド	管理事務所 一般分析室	固体	ガラス瓶	500g	×	2	本	_	_	_	0	_	_	_
塩化ヒドロキシル アミン		固体	ポリ容器	500g	×	2	本	_	_	_	0	_	_	_
クロム酸ナトリウ ム四水和物		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
クロム酸カリウム		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
二クロム酸カリウ ム		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
硝酸亜鉛六水和物		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
硝酸銀		固体	ポリ容器	500g	×	1	本	ı	ı	ı	0	ı	_	-
硝酸バリウム		固体	ポリ容器	500g	×	2	本	_	_	_	0	_	_	_
水酸化カリウム		固体	ポリ容器	500g	×	2	本	_	_	_	0	_	_	_
水酸化ナトリウム		固体	ポリ容器	500g	×	14	本	_	_	_	0	_	_	_
硫酸銀		固体	ガラス瓶	500g	×	3	本	_	_	_	0	_	_	_
エチレンジアミン四酢酸二ナトリウ		固体	ポリ容器	50g	×	1	本	_	_	_	0	_	_	_
ム 塩化ヒドラジニウ ム		固体	ポリ容器	25g	×	1	本	_	_	_	0	_	_	_
酸化イットリウム		固体	ガラス瓶	25g	×	2	本	_	_	_	0	_	_	_
a・ガス化する														

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4:開放空間での人体への影響がない

注: 試薬類は、使用場所が一般分析室や特定の設備の設置個所等に限定されていること、また、一般に流通している容器単位で保管されており、内容量はタンク等と比較して少量であることから、容器に貯蔵されている全量が流出しても有毒ガスが大気中に多量に放出されるおそれがないため調査対象外

表 5 泊発電所の固定源整理表 (敷地内 試薬類) (3/7)

有毒化学物質	保管場所	性状	容器		内容	量		ガ	毒ス断	調	查対	象整	理	調査対
				/				a	b	1	2	3	4	象
酸化コバルト (Ⅱ, Ⅲ)		固体	ガラス瓶	25g	×	2	本	-		_	0	-	-	-
硝酸イットリウム n水和物		固体	ポリ容器	500g	×	2	本	-	-	-	0	-	8 	_
シリカゲル		固体	ポリ容器	500g	×	3	本	l	_	_	0	1	_	_
ジンコン		固体	ガラス瓶	5g	×	2	本	_	_	_	0	1	_	_
フェノールフタレ イン		固体	ガラス瓶	25g	×	2	本	_	_	_	0	_	_	_
フタル酸水素カリ ウム		個体	ガラス瓶	50g	×	5	本	_	_	_	0	_	_	_
塩化カリウム溶液		液体	ポリ容器	500m1	×	2	本	_	_	_	0	_	_	_
塩化カリウム溶液		液体	ポリ容器	100ml	×	1	本	_	_	_	0	_	_	_
ソーダ石灰		固体	ガラス瓶	500g	×	1	本	_	_	_	0	_	_	_
ブロモクレゾール グリーン		固体	ポリ容器	5g	×	1	本	_	_	_	0	_	_	_
ブロモクレゾール グリーン		固体	ガラス瓶	25g	×	1	本	_	_	_	0	_	_	_
メチルオレンジ		固体	ポリ容器	25g	×	2	本	_	_	_	0	_	_	_
メチルレッド		固体	ガラス瓶	1g	×	1	本	_	_	_	0	_	_	_
メチレンブルー		固体	ポリ容器	25g	×	1	本	_	_	_	0	_	_	_
ICP-MS 用標準液 Re	管理事務所 一般分析室	液体	ポリ容器	100m1	×	1	本	_	_	_	0	_	_	_
金属標準液 Cu		液体	ポリ容器	100m1	×	2	本	_	_	_	0	_	_	_
金属標準液 Ni		液体	ポリ容器	100m1	×	5	本	_	_	_	0	_	_	_
金属標準液 Mg		液体	ポリ容器	100m1	×	2	本	_	_	_	0	_	_	_
金属標準液 Li		液体	ポリ容器	100m1	×	2	本	_	_	_	0	_	_	_
金属標準液 Co		液体	ポリ容器	100m1	×	3	本	_	_	_	0	_	_	_
金属標準液 Y		液体	ポリ容器	100m1	×	1	本	_	_	_	0	_	_	_
イオンクロマト用試薬 C 1		液体	ガラス瓶	50m1	×	2	本	_	_	_	0	_	_	_
イオンクロマト用試薬 F		液体	ポリ容器	50m1	×	3	本	_	_	_	0	_	_	_
pH標準液 (9. 18) 用粉末試薬		固体	ポリ容器	5 包	×	12	袋	_	_	_	0	_	_	_
次亜塩素酸ナトリ ウム溶液		液体	ポリ容器	500m1	×	3	本	_	_	_	0	_	_	_
硝酸		液体	ガラス瓶	500m1	×	3	本	_	_	_	0	_	_	_
Sievers900 TOC 用 酸化剤		液体	ポリ容器	300m1	×	3	本	_	_	_	0	_	_	_
Sievers900 TOC 用 リン酸		液体	ポリ容器	300m1	X	3	本	_	_	_	0	_	_	_
エタノール		液体	ガラス瓶	3L	×	3	本	_	_	_	0	_	_	_
塩酸		液体	ポリ容器	4kg	×	3	本	_	_	_	0	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4: 開放空間での人体への影響がない

注: 試薬類は、使用場所が一般分析室や特定の設備の設置個所等に限定されていること、また、一般に流通している 容器単位で保管されており、内容量はタンク等と比較して少量であることから、容器に貯蔵されている全量が流 出しても有毒ガスが大気中に多量に放出されるおそれがないため調査対象外

表 5 泊発電所の固定源整理表 (敷地内 試薬類) (4/7)

有毒化学物質	保管場所	性状	容器		内容	1111		有	毒ス断	227707	查対	象整	理	調査対
								a	b	1	2	3	4	象
水酸化リチウム溶 液		液体	ポリ容器	5L	×	22	本	-	-	-	0	-	s	-
オクタノール		液体	ガラス瓶	25ml	×	1	本	_	-	-	0	-	-	-
硝酸カルシウム四 水和物		固体	ポリ容器	500g	×	1	本	Ţ	Į	-	0	-	-	-
硝酸ビスマス		固体	ガラス瓶	100g	×	1	本	1	-	-	0	-	-	-
リン酸		液体	ポリ容器	100ml	×	1	本	1	_	_	0	_	_	_
ホルムアルデヒド		液体	ガラス瓶	500ml	×	1	本	ı	_	_	0	_	_	_
塩化水銀		液体	ガラス瓶	25g	×	1	本	ı	ı		0	ı	_	_
クロロホルム		液体	ガラス瓶	500ml	×	1	本	-	-	1	0	_	_	_
金属標準液 Nb		液体	ポリ容器	100ml	×	4	本	١	-	1	0	_	_	_
金属標準液 Se		液体	ポリ容器	100ml	×	3	本	_	_	_	0	_	_	_
酢酸亜鉛 (DZA)		固体	ポリ容器	1000g	×	15	本	_	_	_	0	_	_	_
ふっ化水素酸		液体	ポリ容器	500g	×	2	本	_	_		0	_	_	_
メタ亜ひ酸ナトリ ウム		固体	ガラス瓶	5g	×	1	本	-	_	_	0	_	_	_
発煙硝酸 比重 1.45		液体	ガラス瓶	500g	×	2	本	_	_	_	0	_	_	_
発煙硝酸 比重 1.52		液体	ガラス瓶	500g	×	2	本	-	_	_	0	_	_	_
水酸化ナトリウム	管理事務所	液体	缶	20kg	×	1	缶	-	_	_	0	_	_	_
ヒドラジン一水和物	一般分析室	液体	ポリ容器	20kg	×	1	本	_	_	_	0	_	_	_
塩化カルシウム		固体	ポリ容器	500g	×	7	本	_	_	_	0	_	_	_
塩化第二鉄		固体	ガラス瓶	500g	×	4	本	_	_	_	0	_	_	_
過酸化ナトリウム		固体	缶	25g	×	1	本	_	_	_	0	_	_	_
過マンガン酸カリ ウム		固体	ガラス瓶	500g	×	1	本	_	_	_	0	_	_	_
酢酸バリウム		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
酸化マンガン (I V) 粉末		固体	ポリ容器	500g	×	2	本	_	_	_	0	_	_	_
硝酸銀		固体	ガラス瓶	100g	×	2	本	-	_	_	0	_	_	_
水酸化ナトリウム 粒状		固体	缶	20kg	×	1	本	-	_	_	0	_	_	_
水酸化バリウム 八水和物		固体	ポリ容器	500g	×	1	本	1	_	_	0	_	_	_
バリウム標準液		液体	ポリ容器	100m1		2	本	_	_	_	0	_	_	_
比較電極内部液 RE-4 (KC1)		液体	ポリ容器	500m1	×	4	本	_	_	_	0	_	_	_
ほう酸塩 p H 標準 液 p H9.18		液体	ポリ容器	500m1	×	2	本	_	_	_	0	_	_	_
メタノール		液体	ガラス瓶	4L	×	1	本	_	_	_	0	_	_	_
よう化ナトリウム		液体	ガラス瓶	25g	×	2	本	_	_	_	0	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4: 開放空間での人体への影響がない

注: 試薬類は、使用場所が一般分析室や特定の設備の設置個所等に限定されていること、また、一般に流通している 容器単位で保管されており、内容量はタンク等と比較して少量であることから、容器に貯蔵されている全量が流 出しても有毒ガスが大気中に多量に放出されるおそれがないため調査対象外

表 5 泊発電所の固定源整理表 (敷地内 試薬類) (5/7)

有毒化学物質 保管場所 性状 容器 内容量 ガス 利力ス 1 本 1 / 2 3 4	10	们光电灯	一旦人	加亚生	(从人	71.1	Į.	人来为	H)	10	/	()			
サンモニウム三水	有毒化学物質	保管場所	性状	容器		内容	量		ガ	ス	調	查対	象整	理	查
リンモリブデン酸 一般分析窓 固体 ガラス瓶 500g × 1 本	1 Book Switzens Library (St.)	E COMPTO CALCANDA	8 1 90	100000							1	2	3	4	2.00
一 亜硫酸木素ナトリウム	ノンセーリムニホ		固体	ガラス瓶	500g	×	1	本	_	_			<u></u>	_	_
亜硫酸水素ナトリウム 一次 一次 一次 一次 一次 一次 一次 一			固体	ガラス瓶	500g	×	1	本	-	=	=	0	-	-	_
液検 ボリ容器 500ml × 1 本 0	亜硫酸水素ナトリ	管理事務所	液体	ポリ容器	500g	×	1	本	1	_	_	0	_		_
酸化チタン 塩酸 液体 ボリ容器 50g × 1 本 0 (オンクロマト用試薬			液体	ポリ容器	500m1	×	1	本	_	_	_	0	_	_	_
塩酸 液体 ポリ容器 30ml × 1 本 0 イオンクロマト用試薬 (イオンクロマト用試薬 f イオンクロマト用試薬 f イオンクロマト用試薬 f イオンクロマト用試薬 f イオンクロマト用試薬 g 体 ガラス瓶 50ml × 1 本 0 液体 ガラス瓶 50ml × 1 本 0 で	エタノール	緊急時対策所	液体	ポリ容器	100ml	×	1	本	_	_	_	0	_	_	_
イオンクロマト用試薬	酸化チタン		固体	ポリ容器	50g	×	1	本	_	_	_	0	_	_	_
C1 イオソクロマト用試薬 F イオソクロマト用試薬 SO4 液体 ガラス瓶 50ml × 1 本 ○ ○ 金属標準液 Fe	塩酸		液体	ポリ容器	30m1	×	1	本	_	_	_	0	_	_	_
F イオンクロマト用試薬 SO4 金属標準液 Fe 金属標準液 Na 金属標準液 Ni 金属標準液 Ni 金属標準液 Ni 金属標準液 Li pH9. 1 8標準液 フタル酸水素カリウム BH 標準液 (9. 1 8) 用粉末試薬 500ml × 1 本 ○ ○ □ DH 標準液 (9. 1 8) 用粉末試薬 500ml × 2 本 ○ □ DH 標準液 (9. 1 8) 用粉末試薬 500ml × 2 本 ○ □ DH 標準液 (9. 1 8) 用粉末試薬 500ml × 2 本 ○ □ DH 標準液 (9. 1 8) 用粉末式薬 500ml × 2 本 ○ □ DH 標準液 (9. 1 8) 用粉末式薬 500ml × 2 本 ○ □ DH 標準液 (9. 1 8) 用粉末式薬 500ml × 2 本 ○ □ DH 標準液 (9. 1 8) 用粉末式薬 500ml × 1 本 ○ □ DH 標準液 (9. 1 8) 用粉末式薬 500ml × 1 本 ○ □ DH 標準液 (9. 1 8) 用粉末式薬 500ml × 1 本 ○ □ DH 標準次 (9. 1 8) 用粉末式薬 500ml × 1 本 ○ □ DH 表示 500ml × 1 本 ○ □ DH 和 和 DH 和 DH 和 DH 和 DH	C 1		液体	ガラス瓶	50m1	×	1	本	_	_	_	0	_	_	_
SO4 金属標準液 Fe 金属標準液 Na 金属標準液 Ni 金属標準液 Ni 金属標準液 Ni 金属標準液 Li DH9.18標準液 フタル酸水素カリウム 固体 ポリ容器 100ml × 1 本 ○ B体 ポリ容器 500ml × 2 本 ○ 固体 ポリ容器 500ml × 2 本 ○ 塩化鉄 (III) 六水 方/m 財建屋 放射化学室 協修 ガラス瓶 500ml × 1 本 ○ 液体 ガラス瓶 500ml × 1 本 ○ 腐体 ポリ容器 500g × 1 本 ○ 腐体 ポリ容器 500g × 1 本 ○ 腐体 ポリ容器 500g × 1 本 ○ 腐体 ボリ容器 500g × 1 本 ○ 液体 ボリ容器 500g × 1 本 ○	F		液体	ガラス瓶	50m1	×	1	本	_	_	_	0	_	_	_
 金属標準液 N a 金属標準液 N i 金属標準液 L i pH 9. 1 8標準液 フタル酸水素カリウム pH 標準液 (9. 1 8) 用粉末試薬 加物 塩化鉄 (Ⅲ) 六水 和物 が射化学室 塩酸 キシレンコロジオン 酢酸エシーモニウム 酸化コバルト (Ⅱ, Ⅲ) 酢酸アンモニウム 緩衝液 成体 ポリ容器 500g × 1 本ーーー ○ ーーー で放体 ガラス瓶 500g × 1 本ーーー ○ ーーー で放体 ボリ容器 500g × 1 本ーーー ○ ーーー で放体 ガラス瓶 79 変器 500g × 1 本ーーー ○ ーーー で放体 ガラス瓶 79 変器 500g × 1 本ーーー ○ ーーー で放体 ボリ容器 500g × 1 本ーーー ○ ーーー ーーー で放体 ボリ容器 500g × 1 本ーーー ○ ーーー でから では、ボリ容器 500g × 1 本ーーー ○ ーーー ーーー でから では、ボリ容器 500g × 1 本ーーー ○ ーーー ーーー でから では、ボリ容器 500g × 1 本ーーー ○ ーーー ーーー でから では、ボリ容器 500g × 1 本ーーー ○ ーーー ーーー でから では、ボリ容器 500g × 1 本ーーー ○ ーーー ーーー でから では、ボリ容器 500g × 1 本ーーー ○ ーーー ーーー を放作 ボリ容器 500g × 1 本ーーー ○ ーーー ーーー ○ ーーー ーーー ○ ーーー ーー ○ ーーー ○ ○ ーーー ○ ○ ーーー ○ ○ ーーー ○			液体	ポリ容器	3L	×	4	本	_	_	_	0	_	_	_
 金属標準液 Ni 金属標準液 LipH9.18標準液 JyAm酸水素カリウム PH 標準液 (9.18) 用粉末試薬 加物 子炉補助建屋 放射化学室 塩化鉄 (III) 六水 和物 イラス瓶 500g × 2 本	金属標準液 Fe		液体	ポリ容器	100ml	×	1	本	_	_	_	0	_	_	_
金属標準液 Li	金属標準液 Na		液体	ポリ容器	100ml	×	1	本	_	_	_	0	_	_	_
pH9. 18標準液フタル酸水素カリウム 液体 ポリ容器 500ml × 2 本	金属標準液 Ni		液体	ポリ容器	100m1	×	1	本	1	_	_	0	_	_	_
フタル酸水素カリウム pH標準液(9.18)用粉末試薬 1,2号機原塩化鉄(III) 六水 7. 万炉補助建屋放射化学室 Image: Triangle of the control o	金属標準液 Li		固体	ポリ容器	100m1	×	1	本	_	_	_	0	_	_	_
ウム PH標準液(9. 18)用粉末試薬 和物 1,2号機原 地外化学室 1,2号機原 地外化学室 5包 × 4 袋 -	pH9. 18標準液		液体	ポリ容器	500m1	×	2	本	_	_	_	0	_	_	_
1 8) 用粉末試薬 塩化鉄 (Ⅲ) 六水 和物 1, 2号機原 塩化鉄 (Ⅲ) 六水 和物化学室 放射化学室 放射化学室 放射化学室 液体 ガラス瓶 500g × 1 本 ー ー ー ー ー ー ー ー ー ー ー ー ー ー 一 一 一 一 一			固体	ガラス瓶	50g	×	2	本	_	_	_	0	_	_	-
塩化鉄 (III) 六水 子炉補助建屋 放射化学室 固体 ポリ容器 500g × 1 本 ○	p H 標準液 (9. 18) 用粉末試薬	1,2号機原	固体	ポリ容器	5 包	×	4	袋	_	_	_	0	_	_	_
塩酸 液体 ガラス瓶 500ml × 1 本 -	塩化鉄(Ⅲ)六水	子炉補助建屋	固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
コロジオン 液体 ガラス瓶 500ml × 1 本		200 A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	液体	ガラス瓶	500m1	×	1	本	_	_	_	0	_	_	_
酢酸亜鉛 (DZA) 固体 ポリ容器 1000g × 1 本 ー	キシレン		液体	ガラス瓶	500m1	×	1	本	_	_	_	0	_	_	_
酢酸アンモニウム 酸 化 コ バ ルト (II, III) 酢酸アンモニウム 緩衝液 しゅう酸二水和物 硝酸 ジリカゲル 水酸化ナトリウム 水酸化ナトリウム 水酸化リチウム溶液 水酸化リチウム溶液 500g × 1 本 ー ー ○ ー ー ○ ー ー ○ ○ ー ー ○ ○ ○ ○ ○ ○ ○	コロジオン		液体	ガラス瓶	500m1	×	1	本	_	_	_	0	_	_	_
酸 化 コ バ ルト (II, III) 酢酸アンモニウム 緩衝液 しゅう酸二水和物 硝酸 シリカゲル 水酸化ナトリウム 水酸化リチウム溶液 水酸化リチウム溶液 500g × 1 本 ○ - ○ ○ - ○ ○ - ○ ○ - ○ - ○ ○ - ○	酢酸亜鉛 (DZA)		固体	ポリ容器	1000g	×	1	本	_	_	_	0	_	_	_
(II, III) 酢酸アンモニウム 緩衝液 しゅう酸二水和物 間体 ポリ容器 500g × 1 本	酢酸アンモニウム		固体	ポリ容器	500g	×	6	本	_	_	_	0	_	_	_
緩衝液 版体 ボリ容器 3L × 1 本 -			固体	ガラス瓶	25g	×	1	本	_	_	_	0	_	_	_
しゅう酸二水和物 硝酸 シリカゲル 水酸化ナトリウム 水酸化リチウム溶液 固体 ポリ容器 500g × 1 本	酢酸アンモニウム		液体	ポリ容器	3L	×	1	本	_	_	_	0	_	_	-
シリカゲル 固体 ポリ容器 500g × 1 本 ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー ー	しゅう酸二水和物		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
水酸化ナトリウム 固体 ポリ容器 500g × 1 本 ー ー ー ー ー 水酸化リチウム溶液 液体 ポリ容器 5L × 3 本 ー ー ー ー ー ー ー ー	硝酸		液体	ガラス瓶	500m1	×	1	本	_	_	_	0	_	_	_
水酸化リチウム溶液 液体 ポリ容器 5L × 3 本	シリカゲル		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
液 液体 ホリ谷帝 5L × 3 本 - - - - - - - - -	水酸化ナトリウム		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
	液		液体	ポリ容器	5L	×	3	本	_	_	_	0	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4: 開放空間での人体への影響がない

注: 試薬類は、使用場所が一般分析室や特定の設備の設置個所等に限定されていること、また、一般に流通している容器単位で保管されており、内容量はタンク等と比較して少量であることから、容器に貯蔵されている全量が流出しても有毒ガスが大気中に多量に放出されるおそれがないため調査対象外

表 5 泊発電所の固定源整理表 (敷地内 試薬類) (6/7)

	11170 12171 42		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	()200	•		H-17	_			. /		-	-302
有毒化学物質	保管場所	性状	容器		内容	量		ガ	毒ス断	調	查対	象整	理	調査対
								a	b	1	2	3	4	象
ソーダ石灰		固体	ガラス瓶	500g	×	1	本	_	-	_	0	_	-	_
ほう酸	1, 2号機原	固体	ポリ容器	500g	×	1	本	-	-	_	0	-	-	-
メチルオレンジ	子炉補助建屋	固体	ポリ容器	25g	×	1	本	-	-	-	0	-	-	-
モリブデン酸アン モニウム,結晶	放射化学室	固体	ポリ容器	500g	×	1	本	_	1-1	-	0	1	_	-
アンモニア水		液体	ポリ容器	500m1	×	1	本	_	_		0	-	_	_
硝酸		液体	テフロン容器	500m1	×	1	本	_	_	_	0	ı	ı	_
水酸化カリウム		固体	ポリ容器	500g	×	1	本	_	_	_	0	ı		_
	3 号機原子炉 補助建屋	固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	-
1)7 5 34	^{冊の建産} 放射化学室	固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
酢酸		液体	ガラス瓶	500m1	×	1	本	_	_	_	0	_	_	_
イオンクロマト用試薬 F		液体	ポリ容器	50m1	×	1	本	_	_	_	0	-	_	_
イオンクロマト用試薬 C1		液体	ガラス瓶	50m1	×	1	本	_	_	_	0	ı		_
pH9.18標準 液		液体	ポリ容器	500m1	×	2	本	_	_	_	0	_	_	_
1 [/ /	3号機原子炉	固体	ガラス瓶	50g	×	3	本	_	_	_	0	_	_	_
	補助建屋 放射化学室	固体	ポリ容器	5 包	×	3	袋	_	_	_	0	_	_	_
塩酸		液体	ガラス瓶	500m1	×	1	本	_	_	_	0	_	_	_
硝酸		液体	テフロン容器	500m1	×	1	本	_	_	_	0	_	_	_
水酸化リチウム溶 液		液体	ポリ容器	5L	×	4	本	_	_	_	0	_	_	_
アンモニア水		液体	ポリ容器	500m1	×	1	本	_	_	_	0	_	_	_
L(+)アスコルビン 酸		固体	ガラス瓶	500g	×	1	本	_	_	_	0	_	_	_
塩化ヒドロキシル アミン		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
しゅう酸二水和物	0 4 44 7 18 1	固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
モリブデン酸アンモニウム、結晶		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
pージメチルアミ ノベンズアルデヒ ド	<i>A'</i> 71 ≖	固体	ガラス瓶	500g	×	1	本	_	_	_	0	_	_	_
炭酸水素ナトリウ ム		固体	ポリ容器	500g	×	1	本	_	_	_	0	_	_	_
ヒドラジン一水和物		液体	ポリ容器	20kg	×	2	本	_	_	_	0	_	_	_
加一 / / 5 U (相 泡剤)	3 号機原了炉 補助建屋	液体	缶	1L	×	9	缶	_	_	_	0	_	_	_
過マンガン酸カリ ウム	3 号機 出入管理建屋	固体	ガラス瓶	500g	×	2	本	_	_	_	0	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4: 開放空間での人体への影響がない

注: 試薬類は、使用場所が一般分析室や特定の設備の設置個所等に限定されていること、また、一般に流通している容器単位で保管されており、内容量はタンク等と比較して少量であることから、容器に貯蔵されている全量が流出しても有毒ガスが大気中に多量に放出されるおそれがないため調査対象外

表 5 泊発電所の固定源整理表 (敷地内 試薬類) (7/7)

有毒化学物質	保管場所	性状	容器		内容	111		有	ス		查対	象整	理	調査対
product late 1 1 1 1								a	b	1	2	3	4	象
亜硫酸水素ナトリ ウム		液体	ポリ容器	500g	×	2	本	I	-	-	0	-	s —	-
硫酸	3 号機	液体	ポリ容器	500ml	×	2	本	ı	-	-	0	-		-
	出入管理建屋	液体	ポリ容器	100ml	×	2	本	Ī	1	-	0	-	-	72.000
酸化チタン		固体	ポリ容器	50g	×	2	本	ij	1	=	0	-	-	1700
塩酸		液体	ポリ容器	30m1	×	2	本	1	_	_	0	_	_	_
ほう酸 (固体)	3号倉庫	固体	袋	20kg	×	826	袋	ı			0	ı		_
過マンガン酸カリ ウム		固体	ガラス瓶	500g	×	2	本	1	_	_	0	_	_	-
亜硫酸水素ナトリ ウム		液体	ポリ容器	500g	×	2	本	_	_	_	0	_	_	_
硫酸	緊急時対策所	液体	ポリ容器	500m1	×	2	本	_	_	_	0	_	_	_
エタノール		液体	ポリ容器	100m1	×	2	本	_	_	_	0	_	_	_
酸化チタン		固体	ポリ容器	50g	×	2	本	_	_	_	0	_	_	_
塩酸		液体	ポリ容器	30m1	×	2	本	_	_	_	0	_	_	_
バーミキュライト セメント		固体	袋	20kg	×	73	袋	_	_	_	0	_	_	_
テトラクロロエチ	放射性廃棄物	固体	缶	25g	×	1	缶	_	_	_	0	_	_	_
非晶質シリカ K M-83A(消泡 剤)	処埋 建屋	液体	缶	16L	×	10	缶				0			
p H計用飽和 KC1 溶液	総合管理事務 所排水建屋	液体	ポリ容器	250m1	×	10	本	_	_	_	0	_	_	_
ほう酸塩 pH 標準 液	3号機コール	液体	ポリ容器	500m1	×	9	本	-	_	_	0	_	_	_
pH計用飽和 KCl 溶液	ド計器室	液体	ポリ容器	500m1	×	9	本	_	_	_	0	_	_	_
グリセリン	1/2号機コ ールド計器室	液体	ポリ容器	4L	×	1	本	_	_	_	0	_	_	_
エタノール	新保修事務所	液体	ガラス瓶	500ml	×	1	本	_	_	_	0	_	_	_
	H O P E 原子 力センター倉 庫	液体	ガラス瓶	500m1	×	1	本	1	_	_	0	_	_	_
ヒドラジン一水和物 60%		液体	ポリ容器	20kg	×	20	本	_	_	_	0	_	_	_
硫酸銅	1, 2 号機給 排水処理建屋	固体	袋	25kg	X	3	袋	_	_	_	0	_	_	_
次亜塩素酸ナトリ ウム	乔 小处理建度	液体	ポリ容器	20L	×	4	缶	_	_	_	0	_	_	_
亜硫酸水素ナトリ	海水淡水化設 備建屋	固体	袋	25kg	×	30	袋	_	_	_	0	_	_	_
水酔ルナトリウム	3号機給排水 処理建屋	液体	ポリ容器	20kg	×	14	缶	_	_	_	0	_	_	_

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4:開放空間での人体への影響がない

注: 試薬類は、使用場所が一般分析室や特定の設備の設置個所等に限定されていること、また、一般に流通している 容器単位で保管されており、内容量はタンク等と比較して少量であることから、容器に貯蔵されている全量が流 出しても有毒ガスが大気中に多量に放出されるおそれがないため調査対象外

表 6 泊発電所の固定源整理表

(敷地内 製品性状により影響がないことが明らかなもの)

令和3年2月末時点

有毒	化学物質	保管場所	容器	内容量	単位	ガ	毒ス断	調	查対	象整	理	調査対
				-		a	b	1	2	3	4	象
		各機器	機器	-	1	1	I	-	-	1	-	L
ľ,	閏滑油	油倉庫, 3号油 倉庫	ドラム缶 等	-	-	1	-	-	-0	1 - 1	a -	ï
潤滑剂	由(廃油)	第2危険物倉庫	ドラム缶 等	-	-	-	-	-	-	-	-	1
糸	色縁油	各変圧器	機器	-	-	_	-	-	-	-	-	1
バッテリー	水酸化 カリウム	各機器	容器	-	_	ı	_	-	-	-	-	_
	希硫酸			-	-	-	-	-	-	-	-	1
セメント	ハ゛ーミキュライトセメント プ゜レミックスセメント	3 号機原子炉補 助建屋 放射性廃棄物処 理建屋	袋	-	-	1	-	-	-	-	-	1
放射性 固体廃棄物	アスファルト 固化体 セメント固化体	固体廃棄物貯蔵 庫	ドラム缶	-	-	ı	-	-	-	-	-	-
酸素	 통呼吸器	各配備場所	ボンベ	-	_	1	_	-	-	-	-	-
いる3 (開放空間)	質等に貯蔵されて を息性ガス こ設置されている もの)	各配備場所*	ボンベ等耐圧容器	-	_	_	-	-	-	-	-	_

a: ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか3:屋内に保管されている

4:開放空間での人体への影響がない

※:中央制御室及び緊急時対策所内には配備されていない

表 7 泊発電所の固定源整理表

(敷地内 生活用品として一般的に使用されるもの)

令和3年2月末時点

	有毒化学物質	保管場所	容器	内容量	単位	ガ	毒ス断	調	查対	象整	理	調査対象
				1.77		a	b	1	2	3	4	家
生活用品	洗剤, エアコンの冷媒, 殺虫剤, 自販機, 調味 料, 車, 電池, 消毒液, 消火器, 飲料, 融雪剤, スプレー缶, 作業用品	事務所等	_	ı	-	1	-	-	-	ı	1	_

a:ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4:開放空間での人体への影響がない

表8 泊発電所の固定源整理表 (敷地外 地域防災計画)

令和3年12月末時点

品名	貯蔵量(kl)	有毒ガ	ス判断		調査対	象整理		調査
四石	以 與 KI)	a	b	1	2	3	4	4 対象
第二石油類	4	×	×	_	_	_	1-	_
第三石油類	300	×	×	-	-	_	85-0	
第三石油類	80	×	×	-	_	_	-	_

a: ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4: 開放空間での人体への影響がない

表 9 泊発電所の固定源整理表 (敷地外 毒物及び劇物取締法)

令和元年5月末時点

旦夕	貯蔵量	有毒ガ	ス判断		調査対	象整理		調査
面名 	只] 咸 里	a	b	1	2	3	4	対象
対象なし	_	_	_	_	_	_	_	_

a:ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4:開放空間での人体への影響がない

注: 開示請求を行ったが, 得られる情報なし

表10 泊発電所の固定源整理表 (敷地外 消防法) (1/1)

令和元年5月末時点

	D-5-世s 目./1 \	有毒力	ス判断		周查文	象整理	E	調査	
品名**1	貯蔵量(kg)	a	b	1 * 1	2	3	4	対象	
液化石油ガス	1,000	0	-	0	-	-	50	-	
液化石油ガス	300	0	_	0	<u> 222</u>	-	202	1 -	
液化石油ガス	750	0	_	0	(<u>200.7</u>	_	200	2-3	
液化石油ガス	700	0	_	0	-	_		2-4	
液化石油ガス	800	0	_	0	1	_	_	_	
液化石油ガス	600	0	-	0	_	_	-	-	
液化石油ガス	400	0	_	0	_	-		_	
液化石油ガス	900	0	_	0	_	_	_	<u> </u>	
液化石油ガス	300	0	_	0	_	_	_	<u> </u>	
液化石油ガス	900	0	_	0	_	_	_	<u> </u>	
液化石油ガス	900	0	_	0	_	_	_	-	
液化石油ガス	300	0	_	0	_	_	_	<u> </u>	
液化石油ガス	400	0	_	0	_	_	_	<u> </u>	
液化石油ガス	300	0	_	0	_	_	_	<u> </u>	
液化石油ガス	1,500	0	_	0	_	_	_	<u> </u>	
液化石油ガス	400	0	<u> </u>	0	_	_	_	l –	
液化石油ガス	500	0	_	0	_	_	_	<u> </u>	
液化石油ガス	500	0	_	0	_	_	_	-	
液化石油ガス	500	0	_	0	_	_	_	<u> </u>	
液化石油ガス	500	0	_	0	_	_	_	<u> </u>	
液化石油ガス	600	0	_	0	_	_	_	<u> </u>	
液化石油ガス	300	0	_	0	_	_	_	<u> </u>	
液化石油ガス	300	0	_	0	_	_	_	-	
液化石油ガス	500	0	_	0	_	_	_	<u> </u>	
液化石油ガス	500	0	_	0	_	_	_	-	
液化石油ガス	22, 180	0	_	0	_	_	_	-	
液化石油ガス	300	0	_	0	_	_	_	_	
液化石油ガス	1,500	0	_	0	_	_	_	_	
圧縮アセチレンガス	56	0	_	0	_	_	_	_	
圧縮アセチレンガス	56	0	_	0	_	_	_	_	
ホルムアルデヒド	500	0	_	_	_	0	_	_	

a: ガス化する

b:エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4:開放空間での人体への影響がない

※1:液化石油ガスについて、消防法に基づく開示請求結果からはボンベ等に保管されていることが明確でないものがあったが、高圧ガス保安法施行令第2条第3項第8号の規定により、同法令の適用除外となりうる条件である内容積を超える貯蔵量であるため、高圧ガス保安法で定義される容器(ボンベ等)に保管されていると判断した。

【参考:高圧ガス保安法に係る適用除外】

▶ 高圧ガス保安法 (適用除外)

第3条第1項 この法律の規定は、次の各号に掲げる高圧ガスについては、適用しない。 第8号 その他災害の発生のおそれがない高圧ガスであつて、政令で定めるもの。

▶ 高圧ガス保安法施行令 (適用除外)

第2条第3項 法第3条第1項第8号の政令で定める高圧ガスは、次のとおりとする。

第8号 内容積一リットル以下の容器内における液化ガスであって、温度三十五度において圧力 ○・八メガパスカル (当該液化ガスがフルオロカーボン (第四号の経済産業省令で定める燃 焼性の基準に適合するものに限る。) である場合にあっては、二・一メガパスカル) 以下の もののうち、経済産業大臣が定めるもの。

表11 泊発電所の固定源整理表 (敷地外 高圧ガス保安法)

令和元年5月末時点

日夕	n4-46 E	有毒ガス判断			調査			
品名	貯蔵量	a	b	1	2	3	4	対象
対象なし	_	_	°—1	13 <u>—1</u> 1	_	487	<u> </u>	19_3

a: ガス化する

b: エアロゾル化する

1:ボンベ等に保管されている

2:試薬類であるか

3:屋内に保管されている

4:開放空間での人体への影響がない

注:開示請求を行ったが、得られる情報なし

参考資料1 冷媒に含まれる有毒化学物質について

敷地内固定源として抽出された冷媒に含まれる有毒化学物質を以下に示す。

冷媒番号	成分**1	含有率**2	有毒ガス防護 判断基準値(ppm)
CFC - 11 (R-11)	トリクロロフルオロメタン	100%	1,000
HCFC - 22 (R-22)	<u>クロロジフルオロメタン</u>	100%	32, 000
HFC-134a (R-134a)	<u>1, 1, 1, 2-テトラフルオロエタン</u>	100%	8,000
	ペンタフルオロエタン	44%	-
R-404A	1,1,1-トリフルオロエタン	52%	_
	<u>1,1,1,2-テトラフルオロエタン</u>	4%	8,000
	<u>ジフルオロメタン</u>	23%	8, 200
R-407C	ペンタフルオロエタン	25%	_
	<u>1,1,1,2-テトラフルオロエタン</u>	52%	8,000
D 4104	<u>ジフルオロメタン</u>	50%	8, 200
R-410A	ペンタフルオロエタン	50%	_
HCFC-225cb	ジクロロペンタフルオロプロパン	100%	2,000
CFC-113	1. 1. 2ートリクロロー		2,000

※1:下線部分は有毒化学物質を示す。

※2:安全データシート(日本フルオロカーボン協会 モデル SDS, または 厚生労働省 職場のあんぜんサイト モデル SDS)

表1 泊発電所の可動源整理表

令和3年2月末時点

No.	3	-				10 11	75-1	7	MCHO W	
輸送物	輸送先(代表例)	輸送先(代表例) 荷姿			毒ス断	調査対象整理			調査 対象	
				a	b	1	2	3		
アスファルト	アスファルトタンク	タンクローリー	10m ³	×	×	-	-	-	-	
アンモニア	3-アンモニア 原液タンク	タンクローリー	11m ³	0	-	×	×	×	対象	
塩酸	3 - 塩酸貯槽	タンクローリー	9m³	0	_	×	X	×	対象	
ヒドラジン	3-ヒドラジン 原液タンク	タンクローリー	10m ³	0	_	×	×	×	対象	
塩化第二鉄	塩化第二鉄貯槽	タンクローリー	7m ³	×	X	_	_	_	-	
水酸化ナトリウム	3 -苛性ソーダ貯槽	タンクローリー	7m^3	×	×	-	_	-	-	
軽油	3 号機ディーゼル発電機 設備燃料油貯油槽	タンクローリー	16m ³	×	×	-	_	-	-	
A重油	3号機補助ボイラー燃料 タンク	タンクローリー	18kL	×	×	-	-	-	-	
プロパン	プロパンガスボンベ庫	ガスボンベ	500kg	0	-	0	-	-	-	
六フッ化硫黄	275kV 開閉所	ガスボンベ	53kg	0	-	0	_	_	-	
ハロン 1301	3 号機原子炉補助建屋	ガスボンベ	70 L	0	-	0	-	-	-	
炭酸ガス	3号機タービン建屋	ガスボンベ	45kg	0	_	0	-	-	-	
混合ガス (二酸化硫黄+窒素)	1,2 号機出入管理建屋	ガスボンベ	3.4 L	0	-	0	-	-	-	
混合ガス (ヘリウム+イソブタン)	1,2 号機出入管理建屋	ガスボンベ	47 L	0	-	0	-	-	-	
混合ガス (一酸化窒素+窒素)	1,2 号機出入管理建屋	ガスボンベ	47 L	0	_	0	_	-	-	
酸素	1,2 号機 1 次系窒素ボンベ室	ガスボンベ	47 L	0	ı	0	_	_	ı	
アセチレン	1,2 号機 1 次系水素ボンベ室	ガスボンベ	7kg	0	-	0	-	-	-	
試薬類	管理事務所 一般分析室	ポリ容器 ガラス瓶等	*	-	ı	×	0	ı	1	

a : ガス化する

b:エアロゾル化する1:ボンベ等で運搬される2:輸送量が少量である

3 : 開放空間での人体への影響がない

※ : 詳細は表5 泊発電所の固定源整理表 (敷地内 試薬類) にて記載

表 2 泊発電所の可動源整理表

(製品性状により影響がないことが明らかなもの)

令和3年2月末時点

有毒化学物質		保管場所 荷姿 輸送量 単		荷姿 輸送量		ガ	毒ス断	2,23	查対整理		調査対
						a	b	1	2	3	象
		各機器	機器	3/2-02	-	-	-	-	1-	-	-
1	闁滑油	油倉庫, 3号油 倉庫	ドラム缶 等		-	-	-	-	-	-	-
浬]滑油(廃油)	第2危険物倉庫	ドラム缶 等	-	-	-	-	-	-	-	-
除	色縁油	各変圧器	機器	-	-	-	-	-	_	-	_
バッテリー	水酸化 カリウム	各機器	容器	_	-	-	_	-	-	-	-
	希硫酸			-	-	-	-	-	-	-	_
セメント	ハ゛ーミキュライトセメント プ゜レミックスセメント	3号機原子炉補 助建屋 放射性廃棄物処 理建屋	40-	-	-	-	-	ı	-	ı	ı
放射性固体廃棄物	アスファルト 固化体 セメント固化 体	固体廃棄物貯 蔵庫	ドラム缶	-	-	-	-	-	-	-	-
酸素	《呼吸器	各配備場所	ボンベ	-	-	-	-	-	-	-	-

a : ガス化する

b:エアロゾル化する1:ボンベ等で運搬される2:輸送量が少量である

3 : 開放空間での人体への影響がない

表3 泊発電所の可動源整理表

(生活用品として一般的に使用されるもの)

令和3年2月末時点

有毒化学物質		輸送先 (代表例)	荷姿	輸送量	単位	ガ	毒ス断	調査	対象	整理	調査対象
				a	b	1	2	3	家		
生活用品	洗剤, エアコンの冷媒, 殺虫剤, 自販機, 調味料, 車, 電池, 消毒液, 消火器, 飲料, 融雪剤, スプレー缶, 作業用品	事務所等	J	-	-	Î	î	_	_	1	1

a : ガス化する

b:エアロゾル化する1:ボンベ等で運搬される2:輸送量が少量である

3 : 開放空間での人体への影響がない

今回の有毒ガス防護に係る影響評価においては、ガイドに従って、大気中に多量に放出されるおそれがない物質を調査対象外としているが、これに関し以下のとおり考察した。

有毒ガス防護に係る影響評価においては、調査時点において"有毒化学物質の性状、貯蔵量、貯蔵方法その他の理由により調査対象外としている場合には、その根拠を確認する。"と記載されており、解説—4として、"貯蔵容器が損傷し、容器に貯蔵されている有毒化学物質の全量が流出しても、有毒ガスが大気中に多量に放出されるおそれがないと説明できる場合。(例えば、使用場所が限定されていて貯蔵量及び使用量が少ない試薬等)"と記載されている。そのため、貯蔵容器が損傷し、容器に貯蔵されている有毒化学物質の全量が流出しても、有毒ガスが大気中に多量に放出されるおそれがないものとして、揮発性が乏しくエアロゾル化しないものに加え、①ボンベ等に保管されているもの、②試薬類であるもの、③屋内に保管されるもの、④開放空間での人体への影響がないものを選定している。

これらの除外した有毒化学物質の除外理由は以下のとおりである。

揮発性が低いものについては、そもそも揮発しづらく気中への放出量そのものが小さいため、大気中に多量に放出されるおそれはないとした。ボンベ等に保管されるものについては、漏えい箇所が接続配管であり、少量漏えいとなり、放出後に拡散されるため、大気中に多量に放出されるおそれはないとした。試薬類については、使用場所が限定されていて貯蔵量及び使用量が少ないため、大気中に多量に放出されるおそれはないとした。屋内に貯蔵されるものは、屋内の風量から漏えいが発生してもガス化が促進されることは考えにくく、また放出地点も限定されるため、大気中に多量に放出されるおそれはないとした。開放空間での人体への影響がないものについては、防護判断基準値が高く、人体に影響を与えるのは、密閉空間で放出される場合に限定されるため、人体に影響を与える程度の高濃度で大気中に多量に放出されるおそれはないとした。

このように、これらは大気中に多量に放出されるおそれはないが、漏えいを考慮しても、 拡散によって評価地点に到達するまでに濃度が低くなるため、評価地点での濃度は発生場所 濃度よりもさらに小さくなる。

ガイドにおいて調査対象外の考え方が示されているのは、防護措置としての基本的な対応 は同じであることから、影響が大きく早期に放出される発生源からの有毒ガスを想定して評 価することで、防護措置の妥当性を確認できるものと考えている。 流出した有毒化学物質と、その周囲にある有毒化学物質等との反応による有毒ガスの発生 について評価した。

本評価では、泊発電所敷地内の貯蔵施設に貯蔵されている化学物質及び敷地内で輸送されている化学物質のうち、液状の有毒化学物質である塩酸、アンモニア、ヒドラジン、また、 貯蔵量、貯蔵状態からみて、有毒ガス防護に係る影響評価上、大気中への多量の放出を考慮する必要がないとしている液状の化学物質について、貯蔵施設から流出した際に接触する他の化学物質との反応により発生する有毒ガスについて評価した。

気体状の化学物質については、一般で使用されている化学物質(プロパン等)のみであり、貯蔵容器からの流出を想定しても、他の有毒化学物質等との反応により、有毒ガス防護に係る影響評価上、大気中への多量の放出を考慮する必要のある有毒ガスを発生させるおそれはないことから評価対象外とする。

貯蔵施設のうち、薬品タンクについては、タンク下部に防液堤が設置されており、流出時においても、貯蔵量の全量を防液堤等内に貯留することができる設計となっていることから、他の薬品との混触は考え難いため評価対象外とする。

一部の薬品タンクについては、同一防液堤内に設置されており、薬品タンクからの薬品の 流出を想定すると混触するものがあるため、混触が考えられる化学物質を想定し、反応によ る有毒ガスの発生について評価した結果を表1に示す。

評価の結果,液状の化学物質及び有毒化学物質の流出時における他の物質との混触を考慮すると,反応によって有毒ガスが発生する可能性があることを確認したことから,対象となるタンクについて,混触を防止するため防液堤を分離する等の対策を実施することとした。 混触を防止する対象を表 2 に示す。

表 1 他の有毒化学物質等との反応により発生する有毒ガスについて(1/3)

化学物質	混触の可能性のある化学物質と の反応	備考
塩酸 (35%)	・水酸化ナトリウと であいる であれて であるしない。 であるしない。 であるとしない。 では でん	・陽イオン交換樹脂再生用 ・中和用
アンモニア (25%)	・ヒドラジン 反応しない。	・p H調整用
ヒドラジン (≧35%)	・アンモニア 反応しない。	・ p H調整用 ・脱酸素用
 (≥35%) 反応しない。 ・塩酸 反応しない。 ・水酸化ナトリウム 中和して水酸化アルミニウム の沈殿が生じるのみであり、 有毒ガスは発生しない。 ・アニオン系・カチオン系ポリ アクリルアミド 反応しない。 ・硫酸銅 反応しない。 ・流酸サトリウム 反応し、塩素ガスを生じる。 ・ベントナイト 反応しない。 		・水処理用フロック剤

表1 他の有毒化学物質等との反応により発生する有毒ガスについて(2/3)

表 1 他の有毒化学物 化学物質	質等との反応により発生する有毒 混触の可能性のある化学物質と	備考
11.于7// 頁	の反応	VH ~¬
次亜塩素酸ナトリウム (2%)	・水酸化ナトリウム 反応しない。 ・ポリ塩化アルミニウム 反応しない。 ・アクリルな子オン系ポリアクにしない。 ・アクルない。 ・反心とけない。 ・ 反心をし、塩素ガスを生じる。 ・ ででいる。 ・ でではし、塩素がスを生じる。 ・ でではし、塩素がスを生じる。 ・ でででは、塩素がスを生じる。	• 殺菌剤用
亜硫酸水素ナトリウム (20%)	 ・水酸化ナトリウム 反応しない。 ・塩酸 反応し, 亜硫酸ガスを生じ る。 ・塩化第二鉄 反応し, 亜硫酸ガスを生じ る。 	・還元剤用
水酸化ナトリウム (25%)	 ・塩やスポークを ・塩やスポリ和り。 ・カンルを ・カンルを ・カンルを ・カンルを ・カンルを ・カンルを ・カドークを ・カルを ・カルを	・陰イオン交換樹脂再生用 ・中和用

表1 他の有毒化学物質等との反応により発生する有毒ガスについて(3/3)

化学物質	混触の可能性のある化学物質と の反応	備考
塩化第二鉄 (37%)	 ・水酸化ナトリウム 中和して沈殿が生じるのみであり、有毒ガスは発生しない。 ・塩酸反応しない。 ・亜硫酸水素ナトリウム反応し、亜硫酸ガスが発生する。 	・凝集助剤
硫酸銅(10%)	 ・アニオン系・カチオン系ポリアクリルアミド反応しない。 ・塩酸 反応しない。 ・水酸・レナトリウム中和して洗験が生じるのみであり、有毒ガスは発生しない。 ・ポリ塩化アルミニウム反応と、・ボリウムをであり、ない。 ・プレントナイトので、でのでは素酸・アルウムをであり、ないのでは素がスを生じる。 	・排水処理用
凝集助剤(アニオン系ポ リアクリルアミド) (0.15%) 脱水助剤(カチオン系ポ リアクリルアミド) (0.15%)	 ・塩酸 反応しない。 ・水酸化ナトリウム 反成酸化ナトリウム 反応しない。 ・硫酸応しない。 ・硫酸応ントナイト 反次亜塩大の ・次応しない ・次応しない 	・水処理用フロック剤

表 2 混触を防止する対象

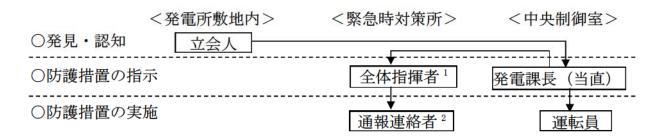
建屋名	対策を講じる対象の 有毒化学物質	混触を防止する有毒化学物質
1, 2号機給排処理建屋	次亜塩素酸ナトリウム	塩酸 ポリ塩化アルミニウム 硫酸銅
3 号機給排処理建屋		塩酸
海水淡水化設備建屋	亜硫酸水素ナトリウム	塩酸 塩化第二鉄

1. 実施体制

<発電所敷地内>

2. 実施手順

- (1) 有毒化学物質を積載した薬品タンクローリー(以下,「可動源」)が敷地内へ入構する際,立会人は担当課に連絡する。
- (2) 立会人は、受入(納入)箇所まで可動源に随行し、受入(納入)完了まで立会する。立会人は、防毒マスク及び吸収缶を常備する。



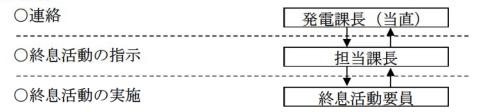
3. その他

- (1) 可動源の入構は、原則平日通常勤務時間帯とする。
- (2) 発電所で重大事故等が発生した場合は、既に入構している可動源は、立会人随行の上速やかに敷地外に退避させ、また、新たな可動源を敷地内に入構させないこととする。
- (3) 立会人については、重大事故等対策に必要な要員以外の者が対応する。

敷地内可動源からの有毒ガス防護に係る実施体制及び手順

1. 実施体制

2. 実施手順


- (1) 立会人は、有毒ガスの発生による異常を検知した場合、通信連絡設備等により発電課長(当直)に連絡する。
- (2) 発電課長(当直)は、通信連絡設備等を使用して有毒ガスの発生による異常があることを所内及び必要な要員に周知する。
- (3) 発電課長(当直)は、運転員に中央制御室空調装置の隔離及び防毒マスクの着用を 指示する。
- (4) 運転員は、発電課長(当直)の指示により、換気空調装置を隔離するとともに、防 毒マスクを着用する。
- (5) 全体指揮者¹は、有毒ガスの発生による異常の連絡を受けた場合、通報連絡者²に外気を取り込まないよう緊急時対策所換気設備の隔離を指示するとともに、防毒マスクの着用を指示する。
- (6) 通報連絡者²は、全体指揮者¹の指示により、換気空調設備を隔離するとともに、防 毒マスクを着用する。

¹ 発電所対策本部が設置されている場合は、発電所対策本部長

² 発電所対策本部が設置されている場合は、発電所災害対策要員(指示要員) 別紙 6-2-1

敷地内可動源に対する有毒化学物質の処理等の措置に係る実施体制及び手順

1. 実施体制

2. 実施手順

- (1) 発電課長(当直)より連絡を受けた担当課長は、対応要員に防毒マスクの着用とともに、有毒ガスの発生を終息させるために必要な措置を実施するよう指示する。
- (2) 終息活動要員は、担当課長から指示された場合、防毒マスクを着用するとともに、有毒ガスの発生を終息させるために速やかに現地に移動する。
- (3) 終息活動要員は、現地到着後、有毒ガスの発生源に対して、散水による希釈処理を実施する。
- (4) 担当課長は、希釈処理に時間を要する場合、必要に応じ酸素呼吸器の着用を指示する。終息活動要員は、担当課長から指示された場合、酸素呼吸器を着用する。
- (5) 終息活動要員は、作業完了後、担当課長に終息活動完了を連絡する。
- (6) 担当課長は、発電課長(当直)に終息活動完了を連絡する。
- (7) 発電課長(当直)は、全体指揮者に終息活動完了を連絡する。なお、発電所対策本 部が設置されている場合は、発電所対策本部長へ終息活動完了を連絡する。
- (8) 発電所対策本部長は、発電所災害対策要員に有毒ガスの発生が終息したことを連絡する。

3. その他

(1) 終息活動要員については、重大事故等対策に必要な要員以外の者が対応する。

1. 実施体制

予期せず発生する有毒ガス防護に係る実施体制を図 1, 防護対象者の要員名称を表 1 に示す。

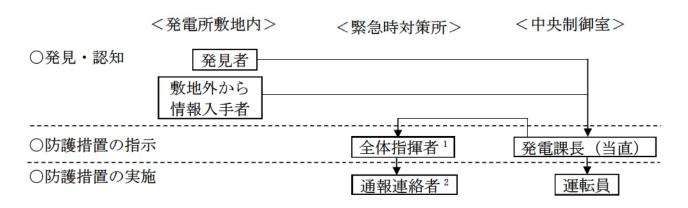


図1 実施体制 表1 防護対象者の要員名称

ガイドの呼称	泊発電所における対応要員の呼称	人数
運転・初動要員	運転員及び災害対策本部要員 (初動対応体制)	運転員:6人 災害対策本部要員(初動対応体制): 3人
運転・指示要員	運転員及び発電所災害対策要員 (運転員を除く。)のうち重大事 故等に対処するために必要な指示 を行う要員	運転員:6人 発電所災害対策要員(一部):22人
運転・対処要員	重大事故等に対処する要員	重大事故等に対処する要員73人

2. 実施手順

- (1) 発電課長(当直)は、臭気等により異常を検知した場合、又は予期せぬ有毒ガス発生の連絡を受けた場合、運転員に酸素呼吸器の着用を指示する。
- (2) 発電課長(当直)は、予期せぬ有毒ガスの発生を通信連絡設備等により所内及び必要な要員に周知する。
- (3) 全体指揮者¹は、臭気等により異常を検知した場合、又は予期せぬ有毒ガス発生の連絡を受けた場合、通報連絡者²に酸素呼吸器の着用を指示する。
- (4) 運転員は、発電課長(当直)の指示により、定められた着用手順に従い酸素呼吸器を着用する。
- (5) 通報連絡者²は、全体指揮者¹から指示された場合、定められた手順に従い酸素呼吸器を着用する。

¹ 発電所対策本部が設置されている場合は、発電所対策本部長

² 発電所対策本部が設置されている場合は、発電所災害対策要員(初動要員)

3. 酸素呼吸器の必要配備数量について

3. 1 防護対象者の人数

中央制御室,緊急時対策所における必要要員数から,防護対象となる人数を表1のとおり設定した。

表1 防護対象者となる人数

	中央制御室(運転員)	緊急時対策所 (初動要員)	
人数	6人	3人	

3. 2 酸素ボンベ等の配備数量

酸素呼吸器の仕様から、一人当たり必要数量を算定し、全要員に対する配備数量を表2のとおり設定した。

表2 全要員に対する配備数量

大1 工文只(C/I) / Ohlm 外重				
	中央制御室(運転員)	緊急時対策所 (初動要員)		
種類	酸素呼吸器			
仕様	公称使用時間:360分/個			
酸素ボンベ 必要数量 (一人当たり)	①呼吸器 1 個の使用可能時間 360 分/個 ②6 時間利用の必要呼吸器数 6 時間×60 分÷360 分/個= 1 個/人			
酸素ボンベ 必要数量 (全要員)	1本/人×6人=6本	1本/人×3人=3本		

予期せず発生する有毒ガス防護に係るバックアップの供給体制について

1. バックアップの供給体制

予期せず発生する有毒ガスに対し、継続的な対応が可能となるよう、発電所敷地外からの酸素ボンベの供給体制を図1のとおり整備する。バックアップの供給イメージを図2、また、敷地外からの酸素ボンベの供給ルートを図3に示す。

予期せず発生した有毒ガスに係る対応が発生した場合,全体指揮者は,担当課長に予備ボンベの手配を指示する。担当課長は,高圧ガス事業者に酸素ボンベ運搬を依頼する。連絡を受けた高圧ガス事業者は,酸素ボンベを運搬し,発電所入口等にて発電所員との受渡しを行う。発電所員は発電所敷地内を運搬する。

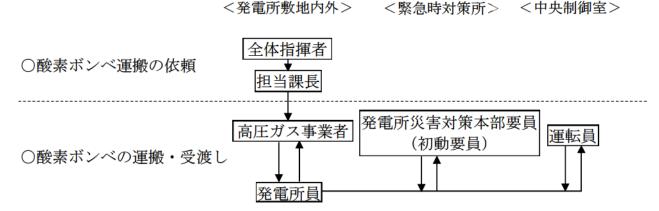


図1 バックアップの供給体制

2. 予備ボンベ

発電所に保管する予備ボンベの数量は、高圧ガス事業者に連絡後、発電所まで何時間で 到着できるかによる。

札幌地区から供給する場合,約1日分のボンベを発電所内に配備し,約8時間おきに高 圧ガス事業者から充填された酸素ボンベを受け取ることで対応が可能である。

予備ボンベについては、中央制御室および緊急時対策所において、各々酸素呼吸器とと もに転倒防止対策が施されたラックに配備する。配備予定場所を図3、図4に示す。

3号機原子炉補助建量 T. P. 17, 8m平面図

図3 酸素呼吸器予備ボンベ配備予定場所(中央制御室)

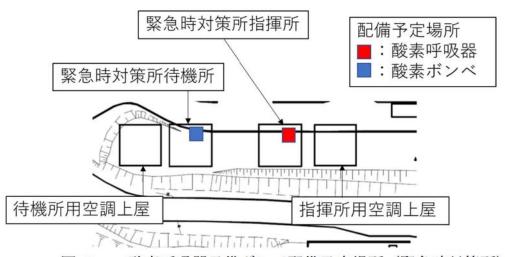


図 4 酸素呼吸器予備ボンベ配備予定場所 (緊急時対策所)

- 1. 改正規則等への適合性について
 - 1.1 改正規則等において追加された事項

「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」 (以下「設置許可基準規則」という。)において、原子炉制御室及び緊急時制御室の運 転員、緊急時対策所において重大事故等に対処するために必要な要員並びに重大事故等 対処上特に重要な操作を行う要員(以下「運転・対処要員」という。)が、有毒ガスが 発生した場合でも必要な操作を行えるよう、吸気中の有毒ガス濃度を有毒ガス防護判断 基準値以下とするために必要な設備を求めることが明確化された。具体的な改正点は、 以下の1.1.1から1.1.3に示すとおり。

なお,緊急時制御室の運転員に対する防護については,特定重大事故等対処施設に関連するため,別途説明する。

- 1.1.1 原子炉制御室における有毒ガス防護に係る事項 (改正された規則等)
 - · 設置許可基準規則 (第二十六条)
 - ・設置許可基準規則の解釈 (第26条)

設置許可基準規則 (抜粋)

(原子炉制御室等)

第二十六条

 $1 \sim 2$ (略)

- 3 一次冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常が発生した場合に発電用原子炉の運転の停止その他の発電用原子炉施設の安全性を確保するための措置をとるため、従事者が支障なく原子炉制御室に入り、又は一定期間とどまり、かつ、当該措置をとるための操作を行うことができるよう、次の各号に掲げる場所の区分に応じ、当該各号に定める設備を設けなければならない。
 - 一 原子炉制御室及びその近傍並びに有毒ガスの発生源の近傍工場等内にお ける有毒ガスの発生を検出するための装置及び当 該装置が有毒ガスの発生 を検出した場合に原子炉制御室において自動的に警報するための装置
 - 二 (略)

設置許可基準規則の解釈 (抜粋)

第26条 (原子炉制御室等)

1~4 (略)

- 5 第3項に規定する「従事者が支障なく原子炉制御室に入り、又は一定期間とどまり」とは、事故発生後、事故対策操作をすべき従事者が原子炉制御室に接近できるよう通路が確保されていること、及び従事者が原子炉制御室に適切な期間滞在できること、並びに従事者の交替等のため接近する場合においては、放射線レベルの減衰及び時間経過とともに可能となる被ばく防護策が採り得ることをいう。「当該措置をとるための操作を行うことができる」には、有毒ガスの発生に関して、有毒ガスが原子炉制御室の運転員に及ぼす影響により、運転員の対処能力が著しく低下し、安全施設の安全機能が損なわれることがないことを含む。
- 6 第3項第1号に規定する「有毒ガスの発生源」とは、有毒ガスの発生時において、運転員の対処能力が損なわれるおそれがあるものをいう。「工場等内における有毒ガスの発生」とは、有毒ガスの発生源から有毒ガスが発生することをいう。
- (注)変更又は追加箇所を下線部で示す。
 - 1.1.2 緊急時対策所における有毒ガス防護に係る事項 (改正された規則等)
 - · 設置許可基準規則 (第三十四条)
 - ・設置許可基準規則の解釈(第34条)

設置許可基準規則 (抜粋)

(緊急時対策所)

第三十四条 (略)

2 緊急時対策所及びその近傍並びに有毒ガスの発生源の近傍には、有毒ガスが 発生した場合に適切な措置をとるため、工場等内における有毒ガスの発生を 検出するための装置及び当該装置が有毒ガスの発生を検出した場合に緊急時 対策所において自動的に警報するための装置その他の適切に防護するための 設備を設けなければならない。

設置許可基準規則の解釈 (抜粋)

第34条 (緊急時対策所)

- 1 第2項に規定する「有毒ガスの発生源」とは、有毒ガスの発生時において、 指示要員の対処能力が損なわれるおそれがあるものをいう。「有毒ガスが発生した場合」とは、有毒ガスが緊急時対策所の指示要員に及ぼす影響により、指示要員の対処能力が著しく低下し、安全施設の安全機能が損なわれるおそれがあることをいう。
- (注)変更又は追加箇所を下線部で示す。

1.1.3 有毒ガス発生時の原子炉制御室の運転員,緊急時対策所において重大事故等に対 処するために必要な要員並びに重大事故等対処上特に重要な操作を行う要員の防 護に係る事項

(改正された規則等)

・実用発電用原子炉に係る発電用原子炉設置者の重大事故の発生及び拡大の防止に 必要な措置を実施するために必要な技術的能力に係る審査基準(以下「技術的能力審査基準」という。)

技術的能力審查基準 (抜粋)

- Ⅲ 要求事項の解釈
- 1. 重大事故等対策における要求事項の解釈
- 1. 0 共通事項
- $(1) \sim (3)$ (略)
- (4) 手順書の整備、訓練の実施及び体制の整備

【要求事項】

(略)

【解釈】

- 1 手順書の整備は、以下によること。
 - a)~f) (略)
 - g) 有毒ガス発生時の原子炉制御室及び緊急時制御室の運転員、緊急時対 策所において重大事故等に対処するために必要な要員並びに重大事故 等対処上特に重要な操作(常設設備と接続する屋外に設けられた可搬 型重大事故等対処設備(原子炉建屋の外から水又は電力を供給するも のに限る。)の接続をいう。)を行う要員(以下「運転・対処要員」 という。)の防護に関し、次の①から③に掲げる措置を講じることを 定める方針であること。
 - ① 運転・対処要員の吸気中の有毒ガス濃度を有毒ガス防護のための判断基準値以下とするための手順を整備すること。
 - ② 予期せぬ有毒ガスの発生に対応するため、原子炉制御室及び緊急時制御室の運転員並びに緊急時対策所において重大事故等に対処するために必要な指示を行う要員のうち初動対応を行う者に対する防護具の配備、着用等運用面の対策を行うこと。
 - ③ 設置許可基準規則第62条等に規定する通信連絡設備により、有毒ガスの発生を原子炉制御室又は緊急時制御室の運転員から、当該運転員以外の運転・対処要員に知らせること。
- 2 (略)
- 3 体制の整備は以下によること。
 - a)~k) (略)
 - 1) 運転・対処要員の防護に関し、次の①及び②に掲げる措置を講じることを定める方針であること。
 - ① 運転・対処要員の吸気中の有毒ガス濃度を有毒ガス防護のための判断基準値以下とするための体制を整備すること。
 - ② 予期せぬ有毒ガスの発生に対応するため、原子炉制御室及び緊急時制御室 の運転員並びに緊急時対策所において重大事故等に対処するために必要な指示を行う要員のうち初動対応を行う者に対する防護具の配備等を行うこと。
- (注)変更又は追加箇所を下線部で示す。

1.2 改正規則等への適合性

1.2.1 原子炉制御室における有毒ガス防護に係る事項

設置許可基準規則第二十六条第3項第1号にて,「原子炉制御室及びその近傍並びに有毒ガスの発生源の近傍 工場等内における有毒ガスの発生を検出するための装置及び当該装置が有毒ガスの発生を検出した場合に原子炉制御室において自動的に警報するための装置」を設けることが追加要求された。

上記規則改正を踏まえ、有毒ガス防護に係る影響評価ガイドを参照して、敷地内外において貯蔵施設に保管されている有毒ガスを発生させるおそれのある有毒化学物質(以下「固定源」という。)及び敷地内において輸送手段の輸送容器に保管されている有毒ガスを発生させるおそれのある有毒化学物質(以下「可動源」という。)それぞれに対して有毒ガスが発生した場合の影響評価(以下「有毒ガス防護に係る影響評価」という。)を実施した。有毒ガス防護に係る影響評価に当たっては、有毒ガスが大気中に多量に放出されるかの観点から、有毒化学物質の揮発性等の性状、貯蔵量、建屋内保管、換気等の貯蔵状況等を踏まえ、敷地内及び中央制御室等から半径10km以内にある敷地外の固定源並びに敷地内の可動源を特定し、特定した有毒化学物質に対して有毒ガス防護のための判断基準値を設定する。また、固定源の有毒ガス防護に係る影響評価に用いる貯蔵量等は、現場の状況を踏まえ評価条件を設定した。敷地内外における有毒化学物質の調査の結果、設置許可基準規則第二十六条第3項第1号に規定する「有毒ガスの発生源」がないことを確認した。また、可動源に対しては、通信連絡設備による連絡、中央制御室空調装置の隔離、防護具の着用等の対策により、運転員を防護できる設計とする。評価結果は、本文「6. まとめ」に示す。

以上のことから、有毒ガスの発生を検出するための装置や自動的に警報するための装置を設置しなくても、有毒ガスが発生した場合に、有毒ガスが中央制御室の運転員に及ぼす影響により、運転員の対処能力が著しく低下し、安全施設の安全機能が損なわれることがなく、改正規則に適合する。

1.2.2 原子炉制御室の追加要求事項に対する適合のための設計方針

3の一 について

万一事故が発生した際には、中央制御室内の運転員に対し、有毒ガスの発生に関して、有毒ガスが中央制御室の運転員に及ぼす影響により、運転員の対処能力が著しく低下しないよう、運転員が中央制御室内にとどまり、事故対策に必要な各種の操作を行うことができる設計とする。

想定される有毒ガスの発生において、有毒ガスが運転員に及ぼす影響により、運転 員の対処能力が著しく低下し、安全施設の安全機能が損なわれることがない設計とす る。そのために、固定源及び可動源それぞれに対して有毒ガス防護に係る影響評価を 実施する。固定源に対しては、運転員の吸気中の有毒ガス濃度の評価結果が、有毒ガ ス防護のための判断基準値を下回ることにより運転員を防護できる設計とする。可動 源に対しては、中央制御室空調装置の隔離等の対策により、運転員を防護できる設計 とする。

1.2.3 緊急時対策所における有毒ガス防護に係る事項

設置許可基準規則第三十四条第2項にて,「緊急時対策所及びその近傍並びに有毒ガスの発生源の近傍には、有毒ガスが発生した場合に適切な措置をとるため,工場等内における有毒ガスの発生を検出するための装置及び当該装置が有毒ガスの発生を検

出した場合に緊急時対策所において自動的に警報するための装置その他の適切に防護するための設備」を設けることが追加要求された。

上記規則改正を踏まえ、有毒ガス防護に係る影響評価ガイドを参照して、有毒ガス防護に係る影響評価を実施した。有毒ガス防護に係る影響評価に当たっては、有毒ガスが大気中に多量に放出されるかの観点から、有毒化学物質の性状、貯蔵状況等を踏まえ固定源及び可動源を特定し、特定した有毒化学物質に対して有毒ガス防護のための判断基準値を設定し、固定源の有毒ガス防護に係る影響評価に用いる保管量等は現場の状況を踏まえ評価条件を設定した。敷地内外における有毒化学物質の調査の結果、設置許可基準規則第三十四条第2項に規定する「有毒ガスの発生源」がないことを確認した。また、可動源に対しては、通信連絡設備による連絡、緊急時対策所換気設備の隔離、防護具の着用等の対策により、重大事故等に対処するために必要な指示を行う要員を防護できる設計とする。評価結果は、本文「6. まとめ」に示す。

以上のことから、有毒ガスの発生を検出するための装置や自動的に警報するための 装置を設置しなくても、有毒ガスが発生した場合に、有毒ガスが緊急時対策所の当該 要員に及ぼす影響により、当該要員の対処能力が著しく低下し、安全施設の安全機能 が損なわれることがなく、改正規則に適合する。

1.2.4 緊急時対策所の追加要求事項に対する適合のための設計方針

2 について

緊急時対策所は,有毒ガスが緊急時対策所の重大事故等に対処するために必要な指示を行う要員に及ぼす影響により,当該要員の対処能力が著しく低下しないよう,当該要員が緊急時対策所内にとどまり,事故対策に必要な各種の指示・操作を行うことができる設計とする。

想定される有毒ガスの発生において、有毒ガスが当該要員に及ぼす影響により、当該要員の対処能力が著しく低下し、安全施設の安全機能が損なわれることがない設計とする。そのために、有毒ガス防護に係る影響評価を実施する。固定源に対しては、当該要員の吸気中の有毒ガス濃度の評価結果が、有毒ガス防護のための判断基準値を下回ることにより当該要員を防護できる設計とする。可動源に対しては、緊急時対策所換気設備の隔離等の対策により、当該要員を防護できる設計とする。

1.2.5 有毒ガス発生時の原子炉制御室の運転員、緊急時対策所において重大事故等に対 処するために必要な要員並びに重大事故等対処上特に重要な操作を行う要員の防護に 係る事項

技術的能力審査基準(Ⅲ 要求事項の解釈 1.0 共通事項)にて,有毒ガス発生時の運転・対処要員の防護に関して,措置を講じることが追加要求された。

規則改正を踏まえ、有毒ガス発生時に、運転員及び発電所災害対策要員(運転員を除く。)の吸気中の有毒ガス濃度を有毒ガス防護のための判断基準値以下とすることにより、事故対策に必要な各種の指示、操作を行うことができるよう手順と体制を整備するとともに、予期せぬ有毒ガスが発生した場合に事故対策に必要な各種の指示、操作を行うための手順や有毒ガスの発生による異常を検知した場合に有毒ガスの発生を必要な要員に周知するための手順を整備することとしており、改正規則に適合する。

1.2.6 技術的能力審査基準の追加要求事項に対する適合性

1について

有毒ガス発生時に、事故対策に必要な各種の指示、操作を行うことができるよう、運転員及び発電所災害対策要員(運転員を除く。)の吸気中の有毒ガス濃度を有毒ガス防護のための判断基準値以下とするための手順を整備する。固定源に対しては、運転員及び発電所災害対策要員(運転員を除く。)の吸気中の有毒ガス濃度を有毒ガス防護のための判断基準値を下回るようにする。可動源に対しては、換気空調設備の隔離等により、運転員及び発電所災害対策要員(運転員を除く。)のうち重大事故等に対処するために必要な指示を行う要員が事故対策に必要な各種の指示、操作を行うことができるようにする。

予期せぬ有毒ガスの発生においても,運転員及び発電所災害対策要員(運転員を除く。)のうち初動対応を行う要員が防護具を着用することにより,事故対策に必要な各種の指示,操作を行うことができるよう手順を整備する。

有毒ガスの発生による異常を検知した場合に、発電課長(当直)に連絡し、運転員が通信連絡設備により、発電所の必要な要員に有毒ガスの発生を周知する手順を整備する。

3について

有毒ガス発生時に、事故対策に必要な各種の指示、操作を行うことができるよう、運転員及び発電所災害対策要員(運転員を除く。)の吸気中の有毒ガス濃度を有毒ガス防護のための判断基準値以下とするための体制を整備する。固定源に対しては、運転員及び発電所災害対策要員(運転員を除く。)の吸気中の有毒ガス濃度を有毒ガス防護のための判断基準値を下回るようにする。可動源に対しては、換気空調設備の隔離等により、運転員及び発電所災害対策要員(運転員を除く。)のうち重大事故等に対処するために必要な指示を行う要員が事故対策に必要な各種の指示、操作を行うことができるようにする。

予期せぬ有毒ガスの発生においても,運転員及び発電所災害対策要員(運転員を除く。)のうち初動対応を行う要員に対して防護具を配備することにより,事故対策に必要な各種の指示,操作を行うことができるよう体制を整備する。

1.3 有毒ガス防護に係る規則への適合性

本規則改正に伴う設置許可基準規則での関係条文を整理した結果を添付資料1に示す。 有毒ガス防護に係る規則等の改正の関係条文は、第三条~第十三条、第二十六条、第 三十四条、第三十五条、第四十二条及び第六十二条であるが、これらのうち第二十六条 及び第三十四条への適合性は、1.2に示すとおりである。その他の関係条文については、 発電用原子炉施設、設計基準対象施設又は安全施設全般に関係するものであるが、添付 資料1に示すとおり、有毒ガス防護に係る対応においての設備の変更はない。

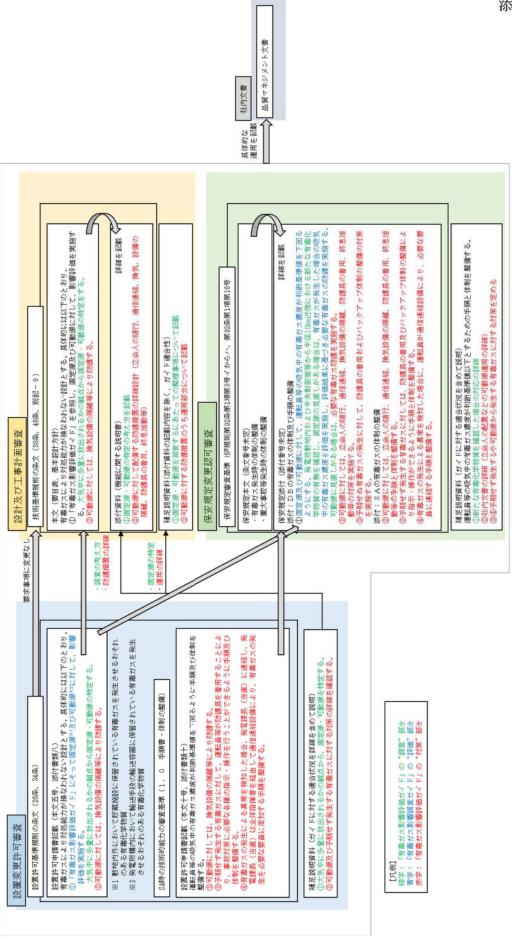
1.4 有毒ガス防護に係る後段規制について

有毒ガス防護に係る後段規制について、整理した結果を添付資料2に示す。

泊発電所3号炉 有毒ガス防護に係る規則等の改正に伴う条文整理表

泊発電所3号炉の有毒ガス防護に係る規則等の改正に伴い、設置許可基準規則の各条文との 関係について、下表に整理結果を示す。

【凡例】○:関係条文


·		S1	×:関係なし
	設置許可基準規則条文	関係性	備考
第1条	適用範囲	×	適用範囲を示したものであり,要求事項ではない ことから,関係条文ではない。
第2条	定義	×	用語の定義であり、要求事項ではないことから、 関係条文ではない。
第3条	設計基準対象施設の地盤	0*	有毒ガス防護に対する運用変更を実施するが,設計基準対処施設の地盤に変更はない。
第4条	地震による損傷の防止	0*	有毒ガス防護に対する運用変更を実施するが,地 震による損傷の防止に変更はない。
第5条	津波による損傷の防止	0*	有毒ガス防護に対する運用変更を実施するが,津 波による損傷の防止に変更はない。
第6条	外部からの衝撃による損傷の防 止	0*	有毒ガス防護に対する運用変更を実施するが,外 部からの衝撃による損傷の防止に変更はない。
第7条	発電用原子炉施設への人の不法 な侵入等の防止	0*	発電用原子炉施設全体に係る要求事項であるが、 有毒ガス防護に対する運用の変更に伴う変更はない。
第8条	火災による損傷の防止	0*	有毒ガス防護に対する運用変更を実施するが,火 災による損傷の防止に変更はない。
第9条	溢水による損傷の防止等	0*	有毒ガス防護に対する運用変更を実施するが,溢 水による損傷の防止等に変更はない。
第10条	誤操作の防止	0*	有毒ガス防護に対する運用変更を実施するが, 誤操作の防止に変更はない。
第11条	安全避難通路等	0*	有毒ガス防護に対する運用変更を実施するが,安 全避難通路等に変更はない。
第 12 条	安全施設	0*	有毒ガス防護に対する運用変更を実施するが,安全施設に変更はない。
第13条	運転時の異常な過渡変化及び設 計基準事故の拡大の防止	0*	有毒ガス防護に対する運用変更を実施するが,運 転時の異常な過渡変化及び設計基準事故の拡大の 防止に変更はない。
第14条	全交流動力電源喪失対策設備	×	有毒ガス防護に対する運用変更を実施するが,全 交流動力電源喪失対策設備に該当しないことか ら,関係条文ではない。
第15条	炉心等	×	有毒ガス防護に対する運用変更を実施するが, 炉心等に該当しないことから, 関係条文ではない。
第 16 条	燃料体等の取扱施設及び貯蔵施 設	×	有毒ガス防護に対する運用変更を実施するが,燃料体等の取扱施設及び貯蔵施設に該当しないことから,関係条文ではない。
第17条	原子炉冷却材圧力バウンダリ	×	有毒ガス防護に対する運用変更を実施するが,原 子炉冷却材圧力バウンダリに該当しないことか ら,関係条文ではない。
第 18 条	蒸気タービン	×	有毒ガス防護に対する運用変更を実施するが、蒸 気タービンに該当しないことから、関係条文では ない。

設置許可基準規則条文		関係性	備考
第19条	非常用炉心冷却設備	×	有毒ガス防護に対する運用変更を実施するが,非 常用炉心冷却設備に該当しないことから,関係条 文ではない。
第 20 条	一次冷却材の減少分を補給する 設備	×	有毒ガス防護に対する運用変更を実施するが,一 次冷却材の減少分を補給する設備に該当しないこ とから,関係条文ではない。
第21条	残留熱を除去することができる 設備	×	有毒ガス防護に対する運用変更を実施するが,残 留熱を除去することができる設備に該当しないこ とから,関係条文ではない。
第 22 条	最終ヒートシンクへ熱を輸送す ることができる設備	×	有毒ガス防護に対する運用変更を実施するが,最終ヒートシンクへ熱を輸送することができる設備 に該当しないことから,関係条文ではない。
第 23 条	計測制御系統施設	×	有毒ガス防護に対する運用変更を実施するが,計 測制御系統施設に該当しないことから,関係条文 ではない。
第 24 条	安全保護回路	×	有毒ガス防護に対する運用変更を実施するが,安 全保護回路に該当しないことから,関係条文では ない。
第 25 条	反応度制御系統及び原子炉制御 系統	×	有毒ガス防護に対する運用変更を実施するが,反 応度制御系統及び原子炉制御系統に該当しないこ とから,関係条文ではない。
第 26 条	原子炉制御室等	0*	有毒ガス防護に関する規則改正に係る条文であり、機能要求を満足することを確認する必要があることから、適用対象である。
第 27 条	放射性廃棄物の処理施設	×	有毒ガス防護に対する運用変更を実施するが,放射性廃棄物の処理施設に該当しないことから,関係条文ではない。
第 28 条	放射性廃棄物の貯蔵施設	×	有毒ガス防護に対する運用変更を実施するが,放 射性廃棄物の貯蔵施設に該当しないことから,関 係条文ではない。
第 29 条	工場等周辺における直接線等か らの防護	×	有毒ガス防護に対する運用変更を実施するが,敷 地境界における線量率の変更はないことから,関 係条文ではない。
第 30 条	放射線からの放射線業務従事者 の防護	×	有毒ガス防護に対する運用変更を実施するが,放 射線からの放射線業務従事者の防護に該当しない ことから,関係条文ではない。
第 31 条	監視設備	×	有毒ガス防護に対する運用変更を実施するが,監 視設備の変更はないことから,関係条文ではな い。
第 32 条	原子炉格納施設	×	有毒ガス防護に対する運用変更を実施するが,原 子炉格納施設に該当しないことから,関係条文で はない。
第 33 条	保安電源設備	×	有毒ガス防護に対する運用変更を実施するが,保 安電源設備に該当しないことから,関係条文では ない。
第 34 条	緊急時対策所	0*	有毒ガス防護に関する規則改正に係る条文であり、機能要求を満足することを確認する必要があることから、適用対象である。
第 35 条	通信連絡設備	0*	有毒ガス防護に対する運用変更を実施するため, 有毒ガス発生時の連絡手段として通信連絡設備を 利用するが,通信連絡設備に変更はない。
第36条	補助ボイラー	×	有毒ガス防護に対する運用変更を実施するが、補 助ボイラーに該当しないことから、関係条文では ない。

設置許可基準規則条文		関係性	備考
第 37 条	重大事故等の拡大の防止等	×	有毒ガス防護に対する運用変更を実施するが,重 大事故等対処施設ではないことから,関係条文で はない。
第38条	重大事故等対処施設の地盤	×	同上
第39条	地震による損傷の防止	×	同上
第40条	津波による損傷の防止	×	同上
第41条	火災による損傷の防止	×	同上
第 42 条	特定重大事故等対処施設	0*	有毒ガス防護に関する規則改正に係る条文であり、機能要求を満足することを確認する必要がことから、適用対象である。 なお、特定重大事故等対処施設に関連するため別途説明する。
第 43 条	重大事故等対処設備	×	有毒ガス防護に対する運用変更を実施するが,重 大事故等対処施設ではないことから,関係条文で はない。
第 44 条	緊急停止失敗時に発電用原子炉 を未臨界にするための設備	×	同上
第 45 条	原子炉冷却材圧力バウンダリ高 圧時に発電用原子炉を冷却する ための設備	×	同上
第 46 条	原子炉冷却材圧力バウンダリを 減圧するための設備	×	同上
第 47 条	原子炉冷却材圧力バウンダリ低 圧時に発電用原子炉を冷却する ための設備	×	同上
第 48 条	最終ヒートシンクへ熱を輸送す るための設備	×	同上
第 49 条	原子炉格納容器内の冷却等のた めの設備	×	同上
第 50 条	原子炉格納容器の過圧破損を防 止するための設備	×	同上
第 51 条	原子炉格納容器下部の溶融炉心 を冷却するための設備	×	同上
第 52 条	水素爆発による原子炉格納容器 の破損を防止するための設備	×	同上
第 53 条	水素爆発による原子炉建屋等の 損傷を防止するための設備	×	同上
第 54 条	使用済燃料貯蔵槽の冷却等のた めの設備	×	同上
第 55 条	工場等外への放射性物質の拡散 を抑制するための設備	×	同上

設置許可基準規則条文		関係性	備考
第 56 条	重大事故等の収束に必要となる 水の供給設備	×	同上
第 57 条	電源設備	×	同上
第 58 条	計装設備	×	同上
第 59 条	運転員が原子炉制御室にとどま るための設備	×	同上
第60条	監視測定設備	×	同上
第61条	緊急時対策所	×	同上
第 62 条	通信連絡を行うために必要な設 備	0*	有毒ガス防護に対する運用変更を実施するため, 有毒ガス発生時の連絡手段として通信連絡設備を 利用するが,通信連絡設備に変更はない。

※:新規制基準適合性審査のうち、設計基準対象施設の各条文の審査にて適合性を示す。

有毒ガス防護に係る後段規制について

別紙 8-13