重大事故等対策の有効性評価における解析入力条件について

泊発電所3号炉の設置変更許可申請書における重大事故等対策の有効性評価については、事象進展の不確かさを考慮して、泊発電所3号炉の設計値等の現実的な条件を基本としつつ、有効性を確認するための評価項目となるパラメータに対して余裕が小さくなるよう設定した値を解析入力条件として、重要事故シーケンス等毎の解析により評価している。

別紙に各重要事故シーケンス等における主要な解析条件の設定について示す。

7.1.1 2次冷却系からの除熱機能喪失

名称	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
(1) 初期条件			
1) 炉心熱出力	$2,652 \times 1.02$ MW	定格值+定常誤差	$2,652 \times 1.02MW$
2) 1 次冷却材圧力	15.41+0.21 MPa [gage]	定格值+定常誤差	15.41+0.21 MPa [gage]
3) 1 次冷却材平均温度	306.6+2.2°C	定格值+定常誤差	302. 3+2. 2°C
4) 炉心崩壊熱	AESJ 推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5)蒸気発生器2次側保有水量	50t(1 基当たり)	設計值	48t(1 基当たり)
1)原子炉トリップ信号 「蒸気発生器水位低」			
1 設定点	蒸気発生器狭域水位 11%	設計值(下限値)	蒸気発生器狭域水位 11%
ii 応答時間	2 秒後に制御棒落下開始	最大値(設計要求値)	2 秒後に制御棒落下開始
2) 高圧注入ポンプ			
i 台数	2台	設計值	2台
11 容量	最小社入特性 (高圧注入特性:0m³/h~約230m³/h、0MPa[gage] ~約13 MPa [gage])	最小値(設計値に余裕を考慮した値)	最小注入特性 (高圧注入特性: 0m³/h~約 250m³/h、0MPa[gage]~ 約12.7 MPa [gage])
3) 加圧器逃がし弁			
1 個数	2個	設計值	2個
11 容量	95t/h(1 個当たり)	設計值	95t/h(1 個当たり)
 フィードアンドブリード (高圧注入及び加圧器逃がし弁開) 			
i 開始条件 (非常用炉心冷却設備作動信号手動 ※ター+mに四端33、みエ新門	蒸気発生器広域水位 0%到達の 5 分後	運転員等操作余裕の考え方	蒸気発生器広域水位 0%到達の 5 分後
発信十/加土希処かし开于期期)			

名	解析条件	解析条件の位置付け	[参考値] 標準値 (3ループ標準入力)
1) 炉心熱出力	$2,652 \times 1.02MW$	定格值+定常誤差	2, $652 \times 1.02MW$
2) 1 次冷劫材圧力	15.41+0.21MPa[gage]	定格值+定常誤差	15.41+0.21MPa[gage]
3) 1 次冷劫材平均温度	306.6+2.2°C	定格值+定常誤差	302. 3+2. 2°C
4) 炉心崩壊熱	AESJ 推奨値+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50t (1 基当たり)	設計値	48t (1 基当たり)
6) 原子炉格納容器自由体積	$ 65,500 \mathrm{m}^3 $	最小値(設計値に余裕を考慮した値)	$67,400 \mathrm{m}^3$
(2) 事故条件			
1) RCP シール部からの漏えい率 (初	定格圧力において	最大値(実機評価値に余裕を考慮した値)	定格圧力において
期) (単分の日本の人) (単一) (日本の人) (日本の	約109m³/h (480gpm) (1台当たり) 相当となる 1/25/t・0 //t・0・2/ // 2 //t・2 //t・2 //t・3 //t・3 //t・4 //t		約109m³/h (480gpm) (1台当たり) 相当となるログが・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・
(事象充生時からの痛えいを想定)	コ缶約 1.6cm(約 0.6 インナ)(1 ロ当たり) …		44 ○ 1. Pcm (水) 0. P → フナ) (1 に当たり) ☆
	16 J	最大値(実機評価値に余裕を考慮した値)	定格圧力において 1.5m³/h (1 台当たり) 相当となる口径約 0.2cm
	0.5cm (約0.07 インチ) (1 台当たり) **		(約0.07インチ) (1台当たり) ※
(3) 重大事故等対策に関連する機器条件			
1) 原子炉トリップ信号			
「1次冷却材ポンプ電源電圧低」			
i 散定点	65%定格点	設計値(トリップ限界値)	65%定格点
ii 応答時間	1.8 秒後に制御棒落下開始	最大値 (設計要求値)	1.2 秒後に制御棒落下開始
2) タービン動補助給水ポンプ			
i 給水開始	事象発生の 60 秒後	最大値(設計値に余裕を考慮した値)	事象発生の60 秒後
(起動遅れ時間)	(自動起動)		(自動起動)
ii 個数	1台	設計値	1台
… 容量	80 m³/h(蒸気発生器 3 基合計)	最小値(設計値に余裕を考慮した値)	160m³/h (蒸気発生器3 基合計)
3) 主蒸気逃がし弁			
i個数	3個(1ループ当たり1個)	設計値	3個(1ループ当たり1個)
11 容量	定格ループ流量の10% (1 個当たり)	設計値	定格ループ流量の10% (1個当たり)
4) 蓄圧タンク			
1 基数	3 基 (1 ループ当たり 1 基)	設計値	3 基 (1 ループ当たり1 基)
ii 保持圧力	4.04MPa[gage]	最低保持圧力	4.04MPa[gage]
班 保有水量	29.0m³ (1 基当たり)	最小保有水量	29.0m³ (1 基当たり)
200 F 2	47 \$4		

(※1):SBO+RCP シール LOCA の条件 (※2):SBO+RCP シール LOCA 無しの条件

各	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
5) 代替格納容器スプレイポンプ			
1 注入流量	30m³/h ※/ 考慮しない※		30㎡/ h ※/ 考慮しない※
6) 漏えい停止圧力	考慮しない [※] /	設計值	考慮しない [※] /
	0.83MPa[gage] **2	(RCP 封水ライン逃がし弁の吹き止まり圧力)	0.83MPa[gage] **2
(4) 重大事故等対策に関連する操作条件			
1) 主蒸気逃がし弁			
1 2 次系強制冷却開始	事象発生から30分後	運転員等操作余裕の考え方	事象発生から30分後
ii 2 次系強制冷却再開	蓄圧タンク出口弁閉止10分後	運転員等操作余裕の考え方	蓄圧タンク出口弁閉止 10 分後
2) 1次冷劫材温度の維持	1 次冷劫材温度 208°C (約 1.7MPa[gage]) 到達 時及び	運転員等操作条件	1 次冷劫材温度 208℃(約 1.7MPa[gage])到達時 及び
	1 次冷劫材温度 170°C (約 0.7MPa[gage]) 到達時		1 次冷劫材温度 170°C(約 0.7MPa[gage])到達時
3) 蓄圧タンク			
1 出口弁閉止	1 次冷均材圧力 1.7MPa[gage]到達及び代替交流 電源確立 (60 分*1/24 時間**) から 10 分後	運転員等操作余裕の考え方	1 次冷劫材圧力 1.7MPa [gage]到達及び代替交流電源確立 (60分*1/24時間***) から10分後
4) 補助給水流量の調整	蒸気発生器狭域水位内	運転員等操作条件	素気発生器狭域水位内
5) 代替格納容器スプレイポンプ			
i起動	1 次冷劫材圧力 0.7 MPa [gage] 到達及び代替交流 電源確立 (60分) 時点**1/考慮しない**2	運転員等操作余裕の考え方	1次冷丸材圧力 0.7 MPa[gage]到達及び代替交流 電源確立 (60分) 時点*1/考慮しない**2
6) 交流電源確立	事象発生の60分後*1/事象発生の24時間後***		事象発生の60分後*1/事象発生の24時間後*2
001 :	47 A A A A A A A A A A A A A A A A A A A		

(※1):SBO+RCP シール LOCA の条件 (※2):SBO+RCP シール LOCA 無しの条件

7.1.4 格納容器除熱機能喪失

各春	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
(1) 初期条件			
1) 炉心熱出力	$2,652 \times 1.02MW$	定格值+定常誤差	2, 652×1.02MW
2) 1次冷劫材圧力	15.41+0.21MPa[gage]	定格值+定常誤差	15.41+0.21MPa[gage]
3) 1次冷劫材平均温度	306.6+2.2°C	定格值+定常誤差	302.3+2.2°C
4) 炉心崩壊熱	AESJ 推奨値+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50t (1 基当たり)	設計値	48t (1 基当たり)
6) 原子炉格納容器自由体積	65, 500 m ³	最小値(設計値に余裕を考慮した値)	$67,400 \mathrm{m}^3$
(2) 重大事故等対策に関連する機器条件			
1) 原子炉トリップ信号			
原子炉压力低			
1 散定点	12.73 MPa[gage]	散計値(トリップ限界値)	12.73 MPa[gage]
ii 応答時間	2.0秒	最大値(設計要求値)	2.0秒
2) 非常用炉心冷却設備作動信号 「原子炉圧力異常低」			
1 設定点	11.36 MPa[gage]	設計值(作動限界値)	11.36 MPa[gage]
i 応答時間	[0秒	最小値	0秒
3) 高圧注入ポンプ			
1 台数	2台	設計値	2台
ii 容量	最大注入特性	最大値(設計値に余裕を考慮した値)	最大注入特性
	(高圧注入特性:0m³/h~約350m³/h、		(高圧注入特性: 0m³/h~約350m³/h,
- 1	0 MPa[gage]~※715.7 MPa[gage])		0 MPalgage」~※715.6 MPalgage」)
4) 余熱除去ポンプ			
1	注入時:2台	再循環時に低圧注入系の喪失を仮定	注入時:2台
	再循環時:0台		再循環時:0台
ii 容量	最大注入特性	最大値(設計値に余裕を考慮した値)	最大注入特性
	(低压注入特性:0m³/h~約1,820m³/h、		(低压注入特性: 0m³/h~約1,820m³/h、
	O MPa[gage]~約1.3 MPa[gage])		0 MPa[gage]~約1.3 MPa[gage])
5) 補助給水ポンプ			
i 給水開始 (起動遅れ時間)	非常用炉心冷却設備作動限界値到達の60秒後 (自動起動)	最大值(設計要求値)	非常用炉心冷却設備作動限界値到達の60 秒後(自動起動)
ü 台数	電動2 台+タービン動1 台	設計值	電動2台+タービン動1台
II. 容量	150m³/h (蒸気発生器 3 基合計)	最小値(設計値に余裕を考慮した値)	280m³/h (蒸気発生器3基合計)

名称	解折条件	解析条件の位置付け	【参考値】標準値 (3ループ標準入力)
6)			
1 基数	2基 (健全側ループに各1基)	破断ループに接続する 1 基は有効に作動しないも	2 基 (健全側ループに各1基)
		のとする。	
ii 保持圧力	4.04 MPa[gage]	最低保持圧力	4.04 MPa[gage]
训 保有水量	29.0m³ (1 基当たり)	最小保有水量	29.0m³ (1 基当たり)
7) 再循環運転切替			
i 燃料取替用水ピット	16.5%	設計値	16%
再循環切替水位			
(注水量)	m^3)	設計値	(m^3)
8) 格納容器再循環ユニット			
i 基数	2 基	制作である。	2 基
ii 除熱特性	100°C~約 155°C、	設計値 (粗フィルタあり)	100°C~約155°C、
	約3.6MW~約6.5MW		約1.9MW~約8.1MW
	(1 基当たり)		(1 基当たり)
(3) 重大事故等対策に関連する操作条件			
1) 格納容器再循環ユニットによる格	1) 格納容器再循環ユニットによる格 原子炉格納容器最高使用圧力 0.283 MPa[gage]	運転員等操作余裕の考え方	原子炉格納容器最高使用圧力 0.283 MPa[gage]到
納容器内自然対流冷却開始	到達から30分後		達から30分後

枠囲みの内容は機密情報に属しますので公開できません。

7.1.5 原子炉停止機能喪失

名称	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
(1) 初期条件			
1) 炉心熱出力	2,652 MW	定格值	2,652 MW
2) 1 次冷劫材圧力	15.41 MPa[gage]	定格值	15.41 MPa[gage]
3) 1次冷劫材平均温度	306.6°C	定格值	302.3°C
4) 炉心崩壊熱	AESJ 推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 減速材温度係数	初期:-18pcm/℃	最大值	初期:-13pcm/°C
		(泊3号炉の炉心設計に基づく保守的な値)	
6) ドップラ特性	ウラン燃料平衡炉心とMOX燃料平衡炉心を 代表するドップラ特性	最確値	ウラン燃料平衡炉心とMOX燃料平衡炉心を代表 するドップラ特性
7) 対象炉心	ウラン燃料平衡炉心に対して、設定した減速材 温度係数、ドップラ特性を考慮した炉心	設計値	ウラン燃料平衡炉心に対して、設定した減速材温 度係数、ドップラ特性を考慮した炉心
8) 蒸気発生器2次側保有水量	50t (1 基当たり)	設計値	48 t (1 基当たり)
(2) 重大事故等対策に関連する機器条件			
1) 共通要因故障対策盤(自動制御盤) (ATWS 緩和設備)			
(土然ペンインを番/ 補助給水ポンプ作動)			
1 散定点	蒸気発生器水位低(狭域水位 7%)	設計値	蒸気発生器水位低(狭域水位7%)
ii 応答時間	[2.0秒	最大值(設計要求値)	2.0秒
1-1) 主蒸気ライン隔離			
i 主蒸気隔離弁閉止 (起動遅れ時間)	ATWS 緩和設備作動設定点到達の 17 秒後(自 動起動)	最大值(設計要求值)	ATMS 緩和設備作動設定点到達の 17 秒後 (自動起動)
i 個数	1個 (1 ループ当たり)	設計値	1個 (1ループ当たり)
1-2) 補助給水ポンプ			
i 給水開始 (起動遅れ時間)	ATMS 緩和設備作動設定点到達の 60 秒後 (自動記動)	最大値(設計要求値)	ATMS 緩和設備作動設定点到達の 60 秒後 (自動起動)
ii 個数	電動2 台+タービン動1 台	設計値	電動2台+タービン動1台
容量	150m³/h (蒸気発生器3基合計)	最小値(設計値に余裕を考慮した値)	280m³/h (蒸気発生器 3 基合計)
2) 加圧器逃がし弁			
i個数	2個	設計値	2個
ii 容量	95t/h (1 個当たり)	設計値	95t/h (1 個当たり)

7.1.6 ECCS注水機能喪失

名	解析条件	解析条件の位置付け	【参考値】標準値 (3ループ標準入力)
初期条件			
炉心熱出力	$2,652 \times 1.02 \text{ MW}$	定格值+定常誤差	2, $652 \times 1.02 \text{ MW}$
2) 1 次冷劫材圧力	15.41+0.21 MPa[gage]	定格值+定常誤差	15.41+0.21 MPa[gage]
3) 1 次冷劫材平均温度	306.6+2.2°C	定格值+定常誤差	302. 3+2. 2°C
4) 炉心崩壊熱	AESJ 推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50 t (1 基当たり)	設計值	48 t (1 基当たり)
重大事故等対策に関連する機器条件			
1) 原子炉トリップ信号 「原子炉圧力低」			
1 設定点	12.73 MPa[gage]	設計値(トリップ限界値)	12.73 MPa[gage]
ii 応答時間	2.0 秒後に制御棒落下開始	最大值(設計要求値)	2.0 秒後に制御棒落下開始
2-1)非常用炉心冷却設備作動信号 「原子炉圧力低と加圧器水位低の一致」			
1 散定点	12.04 MPa[gage]	設計值(作動限界值)	12.04 MPa[gage]
	水位検出器下端	設計值(作動限界值)	水位検出器下端
ii 応答時間	2.0秒	最大値 (設計要求値)	2.0秒
2-2)非常用炉心冷却設備作動信号 「原子炉圧力異常低」			
1 設定点	11.36 MPa[gage]	設計值(作動限界值)	11.36 MPa[gage]
ii 応答時間	2.0秒	最大値(設計要求値)	2.0秒
3) 余勲除去ポンプ			
i 台数	2台	設計値(高圧注入系は機能喪失を仮定)	2台
ii 容量	最小注入特性 (低圧注入特性:0m³/h~約770m³/h、 0 MPa[gage]~約0.8 MPa[gage])	設計値	最小注入特性 (低圧注入特性:0m³/h~約830m³/h、0Ma[gage] ~約0.7 MPa[gage])
4) 補助給水ポンプ			
i 給水開始 (起動遅れ時間)	非常用炉心冷却設備作動限界値到達の 60 秒後 (自動起動)	最大値(設計要求値)	非常用炉心冷却設備作動限界値到達の 60 秒後 (自動起動)
ii 個数	電動 2 台+タービン動 1 台	設計値	電動2台+タービン動1台
	150m³/h (蒸気発牛器 3 基合計)	最小値(設計値に余裕を考慮した値)	280m ³ /h (蒸气

名称	解析条件	解析条件の位置付け	【参考値】標準値 (3ループ標準入力)
5) 主蒸気逃がし弁			
i 個数	3個(1ループ当たり1個)	設計値	3個 (1ループ当たり1個)
ii 容量	定格主蒸気流量の約10% (1 個当たり)	設計値	定格主蒸気流量の約 10%(1 個当たり)
(9) 蓄圧タンク			
1 基数	2 基 (健全ループに各1基)	破断ループに接続する 1 基は有効に作動しないも 2基 (健全ループに各1基) のとする	2 基 (健全ループに各1基)
i 保持圧力	4.04 MPa[gage]	最低保持圧力	4.04 MPa[gage]
… 保有水量	29.0m³ (1 基当たり)	最小保有水量	29.0m³ (1 基当たり)
(3) 重大事故等対策に関連する操作条件			
1) 2次系強制冷却開始	非常用炉心冷却設備作動信号発信の 10 分後に 運転員等操作余裕の考え方	運転員等操作余裕の考え方	非常用炉心冷却設備作動信号発信の10分後に開始
(王蒸気逃がし弁開)	開始し1分で完了		し1分で完了
2) 補助給水流量の調整	素気発生器狭域水位内	運転員等操作条件	蒸気発生器狭域水位内
11	蒸気発生器狭域水位内	運転員等操作条件	

7.1.7 ECCS再循環機能喪失

名	部杯多件	解析各件の位置付け	(17 77) 「参差値】超準値 (3ループ超離入一)
	JANIANI MANANIAN		
(1) 初期条件			
1) 炉心熱出力	2.652×1.02 MW	定格值+定常誤差	2. $652 \times 1.02MW$
2) 1 次冷却材圧力	15.41+0.21MPa[gage]	定格値+定常誤差	15.41+0.21MPa[gage]
3) 1次冷劫材平均温度	306.6+2.2°C	定格值+定常誤差	302. 3+2. 2°C
4) 炉心崩壊熱	AESJ 推奨値+ORIGEN−2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50 t (1 基当たり)	設計値	48 t (1 基当たり)
6) 原子炉格納容器自由体積	$ 65,500 \mathrm{m}^{3} $	最小値(設計値に余裕を考慮した値)	$67,400 \mathrm{m}^3$
(2) 事故条件			
1) 再循環運転切替			
i 燃料取替用水ピット	燃料取替用水ピット水位低	設計値	燃料取替用水タンク水位低
再循環切替水位	(16.5%)到達時にECCS再循環に失敗		(16%)到達時にECCS再循環に失敗
(注水量)	m^3)	設計値	m_3)
(3) 重大事故等対策に関連する機器条件			
1) 原子炉トリップ信号			
原子炉圧力低]			
1 散定点	12.73 MPa[gage]	設計値(トリップ限界値)	12.73 MPa[gage]
ii	2.0秒	最大值(設計要求值)	2.0秒
2) 非常用炉心冷却設備作動信号 「原子炉圧力異常低」			
i 設定点	11.36 MPa[gage]	設計値(作動限界値)	11.36 MPa[gage]
i	0	最小値	40
3) 原子炉格納容器スプレイ作動信号 「原子炉格納容器圧力異常高」			
1 設定点	0.136 MPa[gage]	設計値(作動限界值)	0.136 MPa[gage]
ii 応答時間	(40)	最小値	0
4) 高圧注入ポンプ			
1 台数	注入時:2台	再循環時に高圧注入系の喪失を仮定	注入時:2台
	再循環時:0台		再循環時:0台
ii 容量	最大注入特性 (高圧注入特性:0m³/h~約350m³/h、	最大値(設計値に余裕を考慮した値)	最大注入特性 (高圧注入特性:0m³/h~約350m³/h、0Mpa[gage]
	0 MPa[gage]~約15.7 MPa[gage])		~約15.6 MPa[gage])

枠囲みの内容は機密情報に属しますので公開できません。

添 6.1.1-10

名称	解析条件	解析条件の位置付け	[参考値] 標準値 (3ループ標準入力)
5) 余勲除去ポンプ			
1 台数	注入時:2台	再循環時に低圧注入系の喪失を仮定	注入時:2台
	再循環時:0台		再循環時:0台
11 容量	最大注入特性	最大値(設計値に余裕を考慮した値)	最大注入特性
	(低圧注入特性:0m³/h~約1,820m³/h、0		(低压注入特性:0m³/h~約1,820m³/h、0
	MPa[gage]∼終1.3MPa[gage])		MPa[gage]~約1.3 MPa[gage])
6) 格納容器スプレイポンプ			
1 台数	注入時:2台	ECCS 再循環機能喪失後、格納容器スプレイ1系列	注入時:2台
	再循環時:1台	による代替再循環を使用した炉心注水を行う	再循環時:1台
ii 容量	m³/h(1台当たり)	最大値(設計値に余裕を考慮した値)	m³/h(1台当たり)
7) 補助給水ポンプ			
i 給水開始	非常用炉心冷却設備作動限界値到達の60秒後	最大值(設計要求值)	非常用炉心冷却設備作動限界値到達の60秒後(自
(起動遅れ時間)	(自動起動)		動起動)
ü 台数	電動2台+タービン動1台	設計値	電動2台+タービン動1台
n 容量	150 m³/h (蒸気発生器3 基合計)	最小値	約280 m³/h (蒸気発生器3基合計)
		(設計値に余裕を考慮した値)	
8) 蓄圧タンク			
1 基数	2 基(健全側ループに各1基)	破断ループに接続する 1 基は有効に作動しないも のとする	2 基(健全側ループに各1基)
ii 保持圧力	4.04 MPa[gage]	最低保持圧力	4.04 MPa[gage]
班 保有水量	29.0 m³(1 基当たり)	最小保有水量	29.0 ㎡(1 基当たり)
9) 代替再循環 (格納容器スプレイ1系列使用)			
1 流量	200 m³/h	設計値	200 m³/h
(4) 重大事故等対策に関連する操作条件			
 代替再循環開始 (格納容器スプレイ1系列使用) 	再循環運転切替失敗の30分後	運転員等操作余裕の考え方	再循環運転切替失敗の 30 分後(この間は注水がないと仮定)

7.1.8 格納容器バイパス (インターフェイスシステムLOCA)

【参考値】標準値(3ループ標準入力)		2. $652 \times 1.02MW$	15.41+0.21MPa[gage]	302.3+2.2°C	AESJ 推奨值+ORIGEN-2	48 t (1 基当たり)		破断口径(等価直径)	約 2. 5cm(1 インチ)相当		約7.6cm(3インチ)相当	約 2.9cm(1.15インチ)相当				12.73 MPa[gage]	2.0 秒後に制御棒落下開始		11.36 MPa[gage]	2.0秒		2台	最大注入特性	(高圧注入特性:0m³/h~約350m³/h、0MPa[gage] ~約15.6 MPa[gage])		非常用炉心冷却設備 作動限界値到達の60 秒後(自動起動)	電動2台+タービン動1台
解析条件の位置付け		定格值+定常誤差	定格值+定常誤差	定格值+定常誤差	心運用の包絡値	設計値			設計値		設計値	評価値に対して余裕を考慮した値				設計値(トリップ限界値)	最大值(設計要求值)		(非動限事情)	最大值(設計要求值)		設計値	最小値(設計値に余裕を考慮した値)			最大値(設計要求値)	設計値
解析条件		2. $652 \times 1.02MW$	15.41+0.21MPa[gage]	306.6+2.2°C	AESJ 推奨值+ORIGEN-2	50 t (1 基当たり)			約2.5cm(1 インチ)相当		約7.6cm(3 インチ)相当	約 2. 9cm(1.15 インチ)相当				12.73 MPa[gage]	2.0 秒後に制御棒落下開始		11.36 MPa[gage]	2.0秒		2台	最大注入特性	(高圧注入特性:0m³/h~約350m³/h、 0 MPa[gage]~約15.7 MPa[gage])		非常用炉心冷却設備 作動限界値到達の 60 秒 後(自動起動)	電動2台+タービン動1台
名称	(1) 初期条件	1) 炉心熱出力	2) 1 次冷却材圧力	3) 1 次冷封材平均温度	4) 炉心崩壊熱	5) 蒸気発生器 2 次側保有水量	(2) 事故条件	1) 破裂箇所(漏えい個所)	i 原子炉格納容器外の余熱除去冷 却器出口逃がし弁	(1個)	頂子炉格納容器内の余熱除去ポンプ入口逃がし弁(1個)	ii	(3) 重大事故等対策に関連する機器条件	1) 原子炉トリップ信号	「原子炉圧力低」	i 設定点	ii 応答時間	2) 非常用炉心冷却設備作動信号 「原子炉圧力異常低」	i 散定点	ii 応答時間	 高圧注入ポンプ 	1 台数	ii 容量		4) 補助給水ポンプ	i 給水開始 (起動遅れ時間)	ü個数

名称	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
	150 m³/h	最小値(設計値に余裕を考慮した値)	280 m³/h
	(蒸気発生器3基合計)		(蒸気発生器3基合計)
5) 蓄圧タンク			
1 基数	3 基(1 ループ当たり 1 基)	設計値	3 基(1ループ当たり1基)
ii 保持圧力	4.04 MPa[gage]	最低保持圧力	4.04 MPa[gage]
… 保有水量	29.0 m³(1 基当たり)	最小保有水量	29.0 m³(1 基当たり)
6) 主蒸気逃がし弁			
ii 個数	3 個 (1 ループ当たり 1 個)	設計値	3個(1ループ当たり1個)
… 容量	定格主蒸気流量の10%(1 個当たり)	設計値	定格主蒸気流量の10%(1 個当たり)
7) 余熱除去系逃がし弁吹き止まり圧	E 余熟除去冷却器出口逃がし弁、及び余熟除去ポ	設計值	余熱除去冷却器出口逃がし弁、及び余熱除去ポン
力	ンプ入口逃がし弁の設計値		プ入口逃がし弁の設計値
(4) 重大事故等対策に関連する操作条件			
1) 2 次系強制冷却 開始	非常用炉心冷却設備作動信号発信から 25 分後	運転員等操作余裕の考え方	非常用炉心冷却設備作動信号発信から25分後
2) 補助給水流量の調整	蒸気発生器狭域水位内	運転員等操作条件	蒸気発生器狭域水位内
3) 加圧器逃がし弁の開閉操作	加圧器逃がし弁の開閉操作に係る条件成立後	運転員等操作条件	加圧器逃がし弁の開閉操作に係る条件成立後
4) 非常用炉心冷却設備の高圧注入か	2 非常用炉心冷却設備停止条件成立から4分後	運転員等操作余裕の考え方	非常用炉心冷却設備停止条件成立から2分後
ら充てん注入への切替え			
5) 充てん流量の調整	加圧器水位計測範囲内	運転員等操作条件	加圧器水位計測範囲内

7.1.8 格納容器バイパス (SGTR)

c	解析來中 SES>1 COMM	解析条件の位置付け 守女はユテヴ部芝	参考値 標準値 (3ループ標準入力) 100mm 100m
15.	2. 052 ~ 1. UZMW 15. 41 + 0. 21MPa [gage]	佐作ill 十左吊政左 定格值 + 定常觀差	2. 002 A.1. UZMW 15. 41 + 0. 21MPa[gage]
306	306.6+2.2°C	定格值+定常誤差	302. 3+2. 2°C
AES.	AESJ 推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
50 t	: (1 基当たり)	設計值	48 t (1 基当たり)
蒸気	蒸気発生器の伝熱管 1 本の両端破断	事故想定	蒸気発生器の伝熱管1本の両端破断
主素	主蒸気安全弁1 弁の開固着	事故想定	主蒸気安全弁1 弁の開固着
12.	73 MPa[gage]	設計値(トリップ限界値)	12.73 MPa[gage]
2秒	2 秒後に制御棒落下開始	最大値(設計要求値)	2 秒後に制御棒落下開始
1次	1 次冷却材平均温度等の関数	設計値(トリップ限界値)	1次冷却材平均温度等の関数
6秒	6 秒後に制御棒落下開始	最大値(設計要求値)	6 秒後に制御棒落下開始
12.	12. 04 MPa[gage]	設計值(作動限界值)	12.04 MPa[gage]
本作	水位検出器下端水位(水位)	設計值(作動限界值)	水位検出器下端水位(水位)
2.0秒	秒	最大値(設計要求値)	2.0秒
2台		設計値	2台
最大 (高) 0 M	最大注入特性 (高圧注入特性:0m³/h~約350m³/h、 0 MPa[gage]~約15.7 MPa[gage])	最大値(設計値に余裕を考慮した値)	最大注入特性 (高圧注入特性:0m³/h~約350m³/h、0MPa[gage] ~約15.6 MPa[gage])
非滑 (自)	非常用炉心冷却設備作動限界値到達の 60 秒後 (自動起動)	最大値(設計要求値)	非常用炉心冷却設備作動限界値到達の 60 秒後(自動起動)
雷重	雷動 2 台 + タービン動 1 台	設計値	電動2台+タービン動1台

		12 44 111114	the state of the s	The state of the s
	名称	解析条件	解析条件の位置付け	【参考値】標準値(3ルーブ標準入力)
	II. 容量	150 m³/h(蒸気発生器3基合計)	最小値(設計値に余裕を考慮した値)	280 m³/h(蒸気発生器3基合計)
(9) 主蒸気逃がし弁			
	i 個数	2個(健全側1ループ当たり1個)	運転員等操作条件	2個(健全側1ループ当たり1個)
	ii 容量	定格主蒸気流量の10%(1 個当たり)	設計値	定格主蒸気流量の10%(1 個当たり)
(4)	重大事故等対策に関連する操作条件			
1	1) 破損蒸気発生器への補助給水停止	原子炉トリップ後10分で開始し、約2分で完	運転員等操作余裕の考え方	原子炉トリップ後10分で開始し、約2分で完了
2	2) 破損蒸気発生器につながるタービ	<u> </u>		
,,	ン動補助給水ポンプ駆動蒸気元弁閉止			
3)) 破損蒸気発生器につながる主蒸気			
≊	隔離弁閉止			
4)) 健全側主蒸気逃がし弁の開閉操作	破損側蒸気発生器隔離操作完了後1分	運転員等操作余裕の考え方	破損側蒸気発生器隔離操作完了後1分
2)) 補助給水流量の調整	素気発生器狭域水位内	運転員操作条件	蒸気発生器狭域水位内
(9) 加圧器逃がし弁の開閉操作	加圧器逃がし弁の開閉操作に係る条件成立後	運転員操作条件	加圧器逃がし弁の開閉操作に係る条件成立後
7) 高圧注入から充てん注入への切替	非常用炉心冷却設備停止条件成立から2分後	運転員等操作余裕の考え方	非常用炉心冷却設備停止条件成立から2分後
(8) 充てん流量の調整	加圧器水位計測範囲内	運転員等操作条件	加圧器水位計測範囲内
6	9) 余熱除去系による炉心冷却開始	余熱除去運転条件成立後	運転員操作条件	余熟除去運転条件成立後

7.2.1.1 格納容器過圧破損

Ę.	解析条件	解析条件の位置付け	「参考値」 標準値 (3ルーフ標準人力)
1) 初期条件			
1) 炉心熱出力	$2,652\times1.02$ MW	定格値+定常誤差	$2,652 \times 1.02$ MW
2) 1 次冷却材圧力	15.41+0.21MPa[gage]	定格値+定常誤差	15.41+0.21MPa[gage]
3) 1 次冷却材平均温度	306. 6+2. 2°C	定格値+定常誤差	302. 3+2. 2°C
4) 炉心崩壊熱	AESJ 推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50t (1 基当たり)	設計値	48t (1 基当たり)
6) 原子炉格納容器自由体積	65, 500m³	最小値(設計値に余裕を考慮した値)	67, 400m³
7) 原子炉格納容器ヒートシンク	m ₃	設計値に余裕を考慮した小さめの値	n ₃
2) 重大事故等対策に関連する機器条件	コンクリート: 本り		日の日
1 設定点	65%定格点	設計値(トリップ限界値)	65%定格点
n 応答時間	1.8秒	最大値(設計要求値)	1.2秒
2) タービン動補助給水ポンプ			
i 給水開始 (起動遅れ時間)	事象発生の 60 秒後 (自動起動)	最大值(設計要求値)	事象発生の 60 秒後 (自動起動)
ii 台数	1台	一般計值	1台
.ii. 容量	80 ㎡/h (蒸気発生器3基合計)	最小値(設計値に余裕を考慮した値)	160 m³/h (蒸気発生器 3 基合計)
3) 蓄圧タンク			
1 基数	3 基 (1 ループ当たり1基)	設計値	3 基 (1ループ当たり1基)
ii 保持圧力	4.04MPa[gage]	最低保持圧力	4. 04MPa[gage]
… 保有水量	29.0m³ (1 基当たり)	最小保有水量	29.0m³ (1 基当たり)
4) 代替格納容器スプレイポンプによる代替格納容器スプレイ			
1 台数	1台	設計値	1台
ii 容量	140 m ³ /h	散計值	140 m ³ /h
5) 格納容器再循環ユニット			
1 基数	2基	設計値	2基
ii 除熱特性	100℃~約155℃、約3.6MW~約6.5MW (1 基当たり)	設計値(粗フィルタあり)	100℃~約155℃、約1.9MW~約8.1MW (1 基当たり)
6) 原子炉格納容器内水素処理装置及 78枚約容器水素メガナイタ	効果を期待せず		効果を期待せず

| 枠囲みの内容は機密情報に属しますので公開できません。

名称	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
(3) 重大事故等対策に関連する操作条件			
1) 代替格納容器スプレイポンプによ 炉心溶融開始の30分後	炉心容融開始の30分後	運転員等操作余裕の考え方	炉心容融開始の30分後
る代替格納容器スプレイの開始			
2) 代替格納容器スプレイポンプによ 事象発生の24時間後	事象発生の24時間後	運転員等操作余裕の考え方	事象発生の24時間後
る代替格納容器スプレイの停止			200.00
3) 格納容器再循環ユニットによる格	事象発生の24時間後	運転員等操作余裕の考え方	事象発生の24時間後
納容器内自然対流冷却開始			

7.2.1.2 格納容器過温破損

名称	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
(1) 初期条件			
1) 炉心熱出力	$2,652\times1.02$ MW	定格値+定常誤差	$2,652 \times 1.02MW$
2) 1 次冷却材压力	15.41+0.21MPa[gage]	定格値+定常誤差	15.41+0.21MPa[gage]
3) 1 次冷劫材平均温度	306. 6+2. 2°C	定格值+定常誤差	302. 3+2. 2°C
4) 炉心崩壊熱	AESJ 推奨値+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50t (1 基当たり)	設計值	48t (1 基当たり)
6) 原子炉格納容器自由体積	65, 500m³	最小値 (設計値に余裕を考慮した値)	67, 400m³
7) 原子炉格納容器ヒートシンク	m ₃	設計値に余裕を考慮した小さめの値	m ₃
- 1	コンクリート: 彩う m³		コンクリート: 糸つ
(2) 事故条件	-		
1) RCPシール部からの漏えい率(初期)] 約1.5㎡/h (1台当たり)	実機評価値と同程度の値	約1.5m³/h (1台当たり)
(事象発生時からの漏えい仮定)			
(3) 重大事故等対策に関連する機器条件			
1) 原子炉トリップ信号			
1 次冷却材ポンプ電源電圧低			
1 散定点	65%定格点	設計値(トリップ限界値)	65%定格点
i 応答時間	1.8秒	最大値(設計要求値)	1.2秒
2) 蓄圧タンク			
1 基数	3基 (1ループ当たり1基)	設計値	3 基 (1 ループ当たり 1 基)
i 保持圧力	4.04MPa[gage]	最低保持圧力	4.04MPa[gage]
班 保有水量	29.0m³ (1 基当たり)	最小保有水量	29.0m³ (1 基当たり)
3) 加圧器逃がし弁			
1 個数	2個	設計値	2個
ii 容量	95t/h (1 個当たり)	設計値	95t/h (1 個当たり)
4) 代替格納容器スプレイポンプによる代替格納容器スプレイ			
i 台数	1台	設計值	1台
ii 容量	140m³/h	設計値	140m³/h
5) 格納容器再循環ユニット			
1 基数	2基	設計値	2基
ii 除熱特性	100℃~約155℃、約3.6MW~約6.5MW	設計値(粗フィルタあり)	100℃~約155℃、約1.9MW~約8.1MW(1 基当たり)

Į.	你忙久 //	報告条件の位置生は	(十七素単一一)(6) 野栗里【野条学】
	押の末下	かり 木下・ヘル 見いい	参与 国 (1) (1) (1) (1)
(4) 重大事故等対策に関連する操作条件			
1) 加圧器逃がし弁開 炉心	炉心溶融開始の 10 分後	運転員等操作余裕の考え方	炉心容融開始の10分後
2) 代替格納容器スプレイポンプによる			
代替格納容器スプレイの運転条件			
i 開始	炉心溶融開始の30分後	運転員等操作余裕の考え方	炉心容融開始の30分後
1 一旦停止 格納	格納容器再循環サンプ水位 80%	運転員等操作条件	格納容器再循環サンプ水位 77%
+			+
原子	原子炉格納容器最高使用圧力未満		原子炉格納容器最高使用圧力未満
二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二	原子炉格納容器最高使用圧力到達の30分後	運転員等操作余裕の考え方	原子炉格納容器最高使用圧力到達の30分後
iv 停止 事象	事象発生の24時間後	運転員等操作余裕の考え方	事象発生の24時間後
v 格納容器再循環ユニットによる 事象	事象発生の24 時間後	運転員等操作余裕の考え方	事象発生の24時間後
格納容器内自然対流冷却開始			

7.2.2 高温溶融物放出/格納容器雰囲気直接加熱

名称	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
(1) 初期条件			
1) 炉心熱出力	$2,652\times1.02$ MW	定格值+定常誤差	$2,652 \times 1.02MW$
2) 1 次冷却材圧力	15.41+0.21MPa[gage]	定格值+定常誤差	15.41+0.21MPa[gage]
3) 1 次冷却材平均温度	306. 6+2. 2°C	定格値+定常誤差	302. 3+2. 2°C
4) 炉心崩壊熱	AESJ 推奨値+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50t (1 基当たり)	設計値	48t (1 基当たり)
6) 原子炉格納容器自由体積	65, 500m³	最小値(設計値に余裕を考慮した値)	67, 400m³
7) 原子炉格納容器ヒートシンク	金属:約 13 13 13 14 14 15 15 15 15 15 15 15 15 15 15 15 15 15	設計値に余裕を考慮した小さめの値	金属:約 m³
(9) 重拗条件			
	約1.5m³/h (1台当たり)	実機評価値と同程度の値	約1.5m3/h (1台当たり)
) () () () () () () () () () (
(事象発生時からの漏えい仮定)			
(3) 重大事故等対策に関連する機器条件			
1) 原子炉トリップ信号			
「1 次冷却材ポンプ電源電圧低」			
i 設定点	65%定格点	散計値(トリップ限界値)	65%定格点
ii 応答時間	1.8秒	最大値(設計要求値)	1.2秒
 割 素 上 力 お お			
1 基数	3基 (1ループ当たり1基)	設計値	3 基 (1 ループ当たり 1 基)
ii 保持圧力	4.04MPa[gage]	最低保持圧力	4.04MPa[gage]
训 保有水量	29.0m³ (1 基当たり)	最小保有水量	29.0m³ (1 基当たり)
3) 加圧器逃がし弁			
1 個数	2個	設計値	2個
ii 容量	95t/h (1 個当たり)	設計値	95t/h (1 個当たり)
4) 代替格納容器スプレイポンプによる代替格納容器スプレイ			
i 台数	1台	設計值	1台
ii 容量	140m³/h	設計值	140m³/h
5) 格納容器再循環ユニット			
1 基数	2基	設計値	2基
ii 除熱特性	100℃~約155℃、約3.6MW~約6.5MW (1 基当たり)	設計値(粗フィルタあり)	100℃~約155℃、約1.9Mm~約8.1Mm(1 基当たり)

枠囲みの内容は機密情報に属しますので公開できません。

(7 / 7) 一大海瀬一川 一大海瀬県 (3 パー・7) 一大海瀬県 (3 パー・7) 一大海瀬川 一大海瀬川 一大海瀬県 (3 パー・7) 一大海瀬川 一大海河 一大海河 一大海河 一大海河 一大海河 一大海河 一大海河 一大海河	かれて東方などの第一位には、 10年にある 10年により	1.17.1 事政の37、14、15人を入来記されて行うない。 知見に基づき設定	いて破損 複数の破損形態のうち、最も早く判定される計装 最大歪みを超えた場合に破損	用案内管溶接部破損に対し、健全性が維持される最大の歪みを設定		後 運転員等操作余裕の考え方 炉心溶融開始の10分後			後 運転員等操作余裕の考え方 炉心溶融開始の30分後	*r位 80% 運転員等操作条件	+	月用圧力未満	5用圧力到達の30分後 運転員等操作余裕の考え方 原子炉格納容器最高使用圧力到達の30分後	運転員等操作余裕の考え方 事象発生の24 時間後	海岸 英畑 体 会 が 一 差 き 古
船杆条 体	1	-1,	最大歪みを超えた場合に破損 複数	用案目		炉心溶融開始の10分後 運転			炉心溶融開始の30分後 運転		+	原子炉格納容器最高使用圧力未満	原子炉格納容器最高使用圧力到達の30分後 運転	事象発生の24時間後 運転	事象率4の24 時間後
分	1	111111111111111111111111111111111111111	7) 原子炉容器破損		(4) 重大事故等対策に関連する操作条件	1) 加圧器逃がし弁関	2) 代替格納容器スプレイポンプによる	代替格納容器スプレイの運転条件	i 開始	ii 一旦停止			… 再開	iv 停止	4 枚幼次哭再循環ユーットアトス

7.2.3 原子炉容器外の溶融燃料ー冷却材相互作用

名称	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
初期条件			
1) 炉心熱出力	$2,652 \times 1.02MW$	定格值+定常誤差	$2,652 \times 1.02MW$
2) 1 次冷却材圧力	15.41+0.21MPa[gage]	定格值+定常誤差	15.41+0.21MPa[gage]
3) 1 次冷封材平均温度	306.6+2.2°C	定格值+定常誤差	302.3+2.2°C
4) 炉心崩壊熱	AESJ 推奨値+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50t (1 基当たり)	設計値	48t (1 基あたり)
6) 原子炉格納容器自由体積	65, 500m³	最小値(設計値に余裕を考慮した値)	67, 400m³
7) 原子炉格納容器ヒートシンク	金属:約 m³	設計値に余裕を考慮した小さめの値	金属:約 m³
重大事故等対策に関連する機器条件			
- 1 吹行幼々ホンノ電源電圧は」: むやよ	中华5/050	が計は (1.1) 光田田(は)	1 分 子/0.50
1 欧佐河 1 欧佐河 1 欧络時間	0.3%左冲示 1.8 秒	既に順(ドンノン版が順) 最大値(設計要求値)	0.3%左冲示 1.2 秒
X			
i 給水開始 (起動遅れ時間)	事象発生の 60 秒後 (自動起動)	最大値 (設計要求値)	事象発生の 60 秒後 (自動起動)
ü 台数	1.0	設計値	1合
Ι.	80m³/h (蒸気発生器3基合計)	最小値(設計値に余裕を考慮した値)	160m³/h (蒸気発生器3基合計)
3) 蓄圧タンク			
1 基数	3 基 (1 ループ当たり 1 基)	設計値	3 基 (1 ループ当たり 1 基)
ii 保持圧力	4. 04MPa[gage]	最低保持圧力	4. 04MPa[gage]
nn 保有水量	29.0m³(1 基あたり)	最小保有水量	29.0m³(1 基あたり)
4) 代替格納容器スプレイポンプによる代替格納容器スプレイ			
1 台数	14	設計值	14
ii 容量	140 m ³ /h	設計値	140 m³/h
5) 格納容器再循環ユニット			
i 基数	2	設計値	2 基
ii 除熟特性	100℃~約 155℃、約 3.6MW~約 6.5MW (1 基当たり)	設計値 (粗フィルタあり)	100℃~約155℃、 約1.9MW~約8.1MW (1 基当たり)

添 6.1.1-22

		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		
	名称	解析条件	解析条件の位置付け	【参考値】標準値 (3パープ標準入力)
9	(s) 原子炉格納容器内水素処理装置及 7. 放納容器水素イブナイタ	効果を期待せず		効果を期待せず
7	7) 原子炉容器破損時のデブリジェットの初期落下径	計装用案内管の径と同等	複数の破損形態のうち、最も早く判定される計装 用案内管溶接部破損における破損口径を設定	計装用案内管の径と同等
∞	8) エントレインメント係数	Ricou-Spalding モデルにおけるエントレインメント係数の最確値	原子炉容器外の溶融燃料ー冷却材相互作用の大規 模実験に対するベンチマーク解析において検討さ れた推奨範囲の最確値を設定	Ricou-Spalding モデルにおけるエントレインメント係数の最確値
σ,	9) 容融炉心と水の伝熱面積	原子炉容器外の溶融燃料ー冷却材相互作用の 大規模実験のベンチマーク解析の粒子径より 算出	原子炉容器外の溶融燃料-冷却材相互作用の大規 模実験に対するベンチマーク解析において検討さ れた粒子径ファクタの推奨範囲の最確値に基づき 設定	原子炉容器外の溶融燃料ー冷却材相互作用の大規模実験のペンチマーク解析の粒子径より算出
(3)	重大事故等対策に関連する操作条件			
1 10	1) 代替格納容器スプレイポンプによ 「炉心溶融開始の30分後る代替格納容器スプレイの開始	炉心容融開始の30分後	運転員等操作余裕の考え方	炉心溶融開始の30分後
01 1/4	2) 代替格納容器スプレイポンプによる代替格納容器スプレイの停止	事象発生の 24 時間後	運転員等操作余裕の考え方	事象発生の24時間後
8 条	3) 格納容器再循環ユニットによる格 納容器内自然対流冷却開始	事象発生の 24 時間後	運転員等操作余裕の考え方	事象発生の24時間後

7.2.4 水素燃焼

名	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
(1) 初期条件			
1) 炉心熱出力	$2,652 \times 1.02MW$	定格值+定常誤差	2, $652 \times 1.02MW$
2) 1 次冷却材压力	15.41+0.21MPa[gage]	定格值+定常誤差	15.41+0.21MPa[gage]
3) 1 次冷却材平均温度	306.6+2.2°C	定格值+定常誤差	302.3+2.2°C
4) 炉心崩壊熱	AESJ推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50t (1 基当たり)	設計值	48t (1基当たり)
6) 原子炉格納容器自由体積	65, 500m³	最小値(設計値に余裕を考慮した値)	67,400m³
7) 原子炉格納容器ヒートシンク	金属:約 m³	設計値に余裕を考慮した大きめの値	金属:約 m³
	コンクリート: 糸5 m³		コンクリート: 糸5
8) 原子炉格納容器初期温度	49°C	設計値	20°C
9) 原子炉格納容器初期圧力	大気圧	散計値	大気圧
(2) 重大事故等対策に関連する機器条件			
1) 原子炉トリップ	事象初期からの原子炉トリップを仮定		事象初期からの原子炉トリップを仮定
2) 蓄圧タンク			
1 基数	3 基 (1 ループ当たり 1 基)	設計值	3 基 (1 ループ当たり 1 基)
ii 保持圧力	4.04MPa[gage]	最低保持压力	4.04MPa[gage]
保有水量	29.0m³ (1 基当たり)	最小保有水量	29.0m³ (1 基当たり)
3) 原子炉格納容器內水素処理装置			
i 個数	5個	配備個数	5個
n 性能	1.2kg/h (1 個当たり) (水素濃度 4vol%、圧力	設計值	1.2kg/h (1 個当たり) (水素濃度 4vol%、圧力
	0.15MPa (abs) 時)		0.15MPa(abs)時)
4) 格納容器水素イグナイタ	効果を期待せず		効果を期待せず
5) 再循環運転切替			
i 燃料用取替用水ピット 再循環切替水位	16.5%	設計値	791
(注水量)	(※ m³)	設計值	(糸 m³)
(3) その他			
1) 格納容器スプレイポンプ			
i スプレイ開始	事象発生の 109 秒後	信号遅れと作動遅れを考慮して設定	事象発生の 112 秒後
ii 容量	m³/h (1台当たり)	最大値(設計値に余裕を考慮した値)	m³/h (1 台当たり)

枠囲みの内容は機密情報に属しますので公開できません。

添 6.1.1-24

7.2.5 溶融炉心・コンクリート相互作用

名称	解析条件	解析条件の位置付け	[参考値] 標準値 (3ループ標準入力)
(1) 初期条件			
1) 炉心熱出力	$2,652 \times 1.02$ MW	定格值+定常誤差	$2,652 \times 1.02MW$
2) 1 次冷却材圧力	15.41+0.21MPa[gage]	定格值+定常誤差	15.41+0.21MPa[gage]
3) 1 次冷封材平均温度	306.6+2.2°C	定格值+定常誤差	302.3+2.2°C
4) 炉心崩壊熱	AESJ 推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
5) 蒸気発生器2次側保有水量	50t (1 基当たり)	即提礎	48t (1 基当たり)
6) 原子炉格納容器自由体積	65, 500m³	最小値(設計値に余裕を考慮した値)	67, 400m³
7) 原子炉格納容器ヒートシンク	金属:約 m³	設計値に余裕を考慮した小さめの値	金属:約 m³ m³ m³ m³ m³ m³
(2) 重大事故等対策に関連する機器条件			
1) 原子炉トリップ信号			
11 伙作均均 30 / 7 - 11 11 12 12 13 13 13 13	65%定格点	設計値(トリップ限界値)	65%定格点
ü 応答時間	1.8秒		1.2秒
2) タービン動補助給水ポンプ			
i 給水開始 (起動選和時間)	事象発生の 60 秒後 (自動起動)	最大値(設計要求値)	事象発生の 60 秒後 (自動起動)
ü 台数	1台	設計值	1台
nn 容量	80㎡/小(蒸気発生器3基合計)	最小値(設計値に余裕を考慮した値)	160m³/h(蒸気発生器3基合計)
3)			
i 基数	3 基 (1 ループ当たり1基)	即提礎	3 基 (1 ループ当たり1 基)
ii 保持圧力	4.04MPa[gage]	中国的	4.04MPa[gage]
保有水量	29.0m³(1 基当たり)	最小保有水量	29.0m³(1 基当たり)
4) 代替格納容器スプレイポンプによる代替格納容器スプレイ			
i 台数	1台	設計值	1台
ii 容量	140m³/h	設計値	140m³/h
5) 格納容器再循環ユニット			
1 基数	置者	設計値	2基
ii 除熟時性	100℃~約155℃、約3.6MW~約6.5MW (1 基当たり)	設計値 (粗フィルタあり)	100°C~約155°C、 約1.9MW~約8.1MW(1 基当たり)

名称	解析条件	解析条件の位置付け	【参考値】標準値 (3ループ標準入力)
6) 原子炉格納容器内水素処理装置及 び格納容器水素イグナイタ	効果を期待せず		効果を期待せず
7) 溶融炉心の原子炉下部キャビティ 床面での拡がり	原子炉下部キャビティ床底面の全面	米国の新設炉に対する民間ガイドラインと同じ考 え方	原子炉下部キャビティ床底面の全面
8) 溶融炉心から原子炉下部キャビテ 0.8MM/㎡相当(大気圧条件) イ水への熱流束の上限	0.8MW/㎡相当(大気圧条件)	水による冷却を伴った溶融物とコンクリートの相 0.8MM/㎡相当(大気圧条件) 互作用に関する実験に基づき設定	0.8MW/㎡相当(大気圧条件)
9) 溶融炉心とコンクリートの伝熱	容融炉心とコンクリートの伝熱抵抗を考慮せず	溶融炉心が原子炉下部キャビティ床面に堆積し、コンクリートと直接接触している場合、溶融炉心の表面温度とコンクリート表面温度が同等となることに基づき設定	溶融炉心とコンクリートの伝熱抵抗を考慮せず
重大事故等対策に関連する操作条件			
1) 代替格約容器スプレイポンプによ 炉心溶融開始の30分後 る代替格約容器スプレイの開始	炉心溶融開始の30分後	運転員等操作余裕の考え方	炉心溶融開始の30分後
2) 代替格納容器スプレイポンプによる代替格納容器スプレイの停止	事象発生の24時間後	運転員等操作余裕の考え方	事象発生の 24 時間後
3) 格納容器再循環ユニットによる格 納容器内自然対流冷却開始	事象発生の24 時間後	運転員等操作余裕の考え方	事象発生の 24 時間後

7.4.1 崩壊熱除去機能喪失

名称	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
(1) 初期条件			
1) 原子炉停止後の時間	72 時間	最短時間に余裕をみた時間	畠 牟 55
2) 1 次冷却材圧力	大気圧(0 MPa[gage])	ミッドループ運転時の現実的な設定	大気圧(0 MPa[gage])
3) 1 次冷却材高温側温度	93℃(保安規定モード5)	ミッドループ運転時の運転モード(モード 5)の上限値	93℃(保安規定モード5)
4) 1 次冷却材水位	原子炉容器出入口 配管中心高さ+100mm	ミッドループ運転時の木位	原子炉容器出入口 配管中心高さ+80mm
5) 炉心崩壊熱	AESJ 推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值 + ORIGEN-2
6) 1 次系開口部	加圧器安全弁3個取り外し 加圧器ベント弁1個開放	ミッドループ運転時の現実的な設定	加圧器安全弁3個取り外し 加圧器ベント弁2個開放
7) 2次系の状態	2 次系からの冷却なし		2次系からの冷却なし
(2) 重大事故等対策に関連する機器条件			
1) 代替格納容器スプレイポンプ			
1 注水流量	29 m³/h	蒸発量を上回る流量	30 m³/h
(3) 重大事故等対策に関連する操作条件			
1) 代替格納容器スプレイポンプ起動	事象発生の 60 分後	運転員等操作余裕の考え方	事象発生の50分後

7.4.2 全交流動力電源喪失

名称	解析条件	解析条件の位置付け	【参考値】標準値 (3ループ標準入力)
(1) 初期条件			
1) 原子炉停止後の時間	72 時間	最短時間に余裕をみた時間	[]
2) 1 次冷却材圧力	大気圧(0 MPa[gage])	ミッドループ運転時の現実的な設定	大気圧(0 MPa[gage])
3) 1次冷却材高温側温度	93℃(保安規定モード5)	ミッドループ運転時の運転モード(モード 5)の上 限値	93℃(保安規定モード5)
4) 1次冷劫材水位	原子炉容器出入口 配管中心高さ+100mm	ミッドループ運転時の水位	原子炉容器出入口 配管中心高 さ+80mm
5) 炉心崩壊熱	AESJ 推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
6) 1次系開口部	加圧器安全弁3個取り外し 加圧器ベント弁1個開放	ミッドループ運転時の現実的な設定	加圧器安全弁3個取り外し 加圧器ペント弁2個開放
7) 2次系の状態	2次系からの冷却なし		2次系からの冷却なし
(2) 重大事故等対策に関連する機器条件			
1) 代替格納容器スプレイポンプ			
i 注水流量	29 m³/h	蒸発量を上回る流量	30 m³/h
(3) 重大事故等対策に関連する操作条件			
1) 代替格納容器スプレイポンプ起動	事象発生の60分後	運転員等操作余裕の考え方	事象発生の 50 分後

7.4.3 原子炉冷却材の流出

名称	解析条件	解析条件の位置付け	【参考値】標準値(3ループ標準入力)
(1) 初期条件			
1) 原子炉停止後の時間	72 時間	最短時間に余裕をみた時間	[] 自由 55
2) 1 次冷劫材圧力	大気圧(0 MPa[gage])	ミッドループ運転時の現実的な設定	大気圧(0 MPa[gage])
3) 1 次冷却材高温側温度	93℃(保安規定モード5)	ミッドループ運転時の運転モード(モード 5)の上 限値	93℃(保安規定モード5)
4) 1 次冷却材水位	原子炉容器出入口 配管中心高さ+100mm	ミッドループ運転時の木位	原子炉容器出入ロ 配管中心高さ+80mm
5) 炉心崩壊熱	AESJ 推奨值+ORIGEN-2	炉心運用の包絡値	AESJ 推奨值+ORIGEN-2
6) 1 次系開口部	加圧器安全弁3個取り外し 加圧器ベント弁1個開放	ミッドループ運転時の現実的な設定	加圧器安全弁3個取り外し 加圧器ベント弁2個開放
7) 2次系の状態	2 次系からの冷却なし		2次系からの冷却なし
(2) 事故条件			
1) 流出の想定	400 m³/h(余勲除去ポンプ停止まで)	浄化運転時の最大流量	380 ㎡/h(余熱除去ポンプ停止まで)
	燃料取替用水ピット戻り配管の口径である約 0. 2m(8インチ) 口径相当(余熱除去機能喪失後)	最大口俗配管	燃料取替用水タンク戻り配管の口径である約 0. m(8インチ) 口径相当(余熱除去機能喪失後)
(3) 重大事故等対策に関連する機器条件	和		
1) 充てんポンプ			
1 注水流量	29 m³/h	蒸発量を上回る流量	31 m³/h
(4) 重大事故等対策に関連する操作条件	中		
1) 充てんポンプ作動	余熱除去ポンプ機能喪失の20分後	運転員等操作余裕の考え方	余熱除去ポンプ機能喪失の20分後

原子炉冷却材圧力バウンダリにかかる圧力について

評価項目の一つである、

・原子炉冷却材圧力バウンダリにかかる圧力が最高使用圧力の 1.2 倍又は限界圧力を下回ること。

において、原子炉冷却材圧力バウンダリにかかる圧力が最大となるところの圧力 と評価項目を比較する必要があり、安全解析上は以下のとおり評価している。

・原子炉冷却材圧力バウンダリにかかる圧力が最大となるところは1次冷却材ポンプ吐出部である。この1次冷却材ポンプ吐出部の圧力の評価は、図1に示すとおり、加圧器サージ管接続部を代表点とした原子炉圧力(計算結果)に、別途、保守的に評価した加圧器気相部から1次系までの静水頭、加圧器安全弁までのライン圧損及び1次冷却材ポンプから加圧器サージ管接続部流路圧損の合計を加算して、原子炉冷却材圧力バウンダリにかかる圧力としている。

一方、有効性評価において、1次冷却材圧力の代表的な挙動を示す観点では、使用コード*1の違いや事象の特徴により、圧力の過渡応答図の記載を以下の取り扱いとしているが、これらの相違は、本質的に有意なものではない。

- ① 1次冷却材圧力が初期から過度に上昇する事象:評価項目に対応するように、原子炉冷却材圧力バウンダリにかかる圧力の挙動に着目し、記載している。
- ② 炉心露出する可能性がある事象:設計基準事故の「原子炉冷却材喪失」と同様に、炉心圧力の挙動に着目し、記載している。
- ③ 炉心露出する可能性が低い事象:加圧器サージ管接続部の圧力挙動に着目し、 記載している。

^{※1:} MAAP コードは、炉心溶融後のプラント全体挙動を評価する目的から、1次冷却材圧力は代表点で計算しており、初期値は加圧器気相部圧力としている。

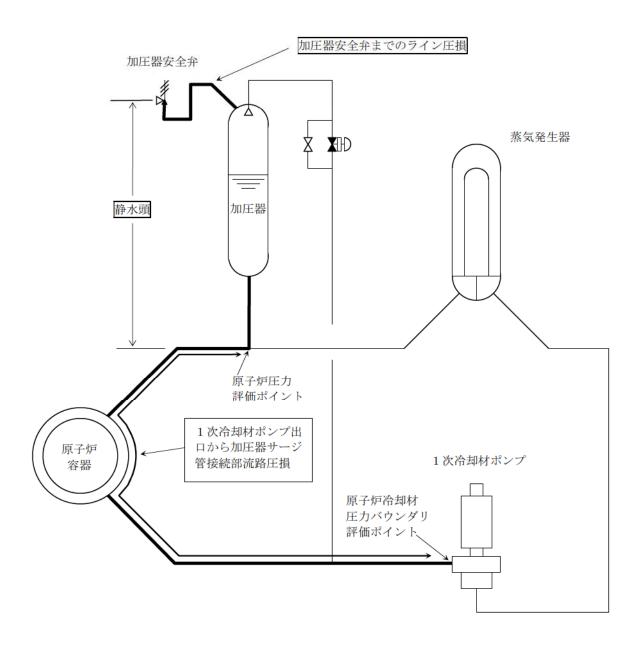
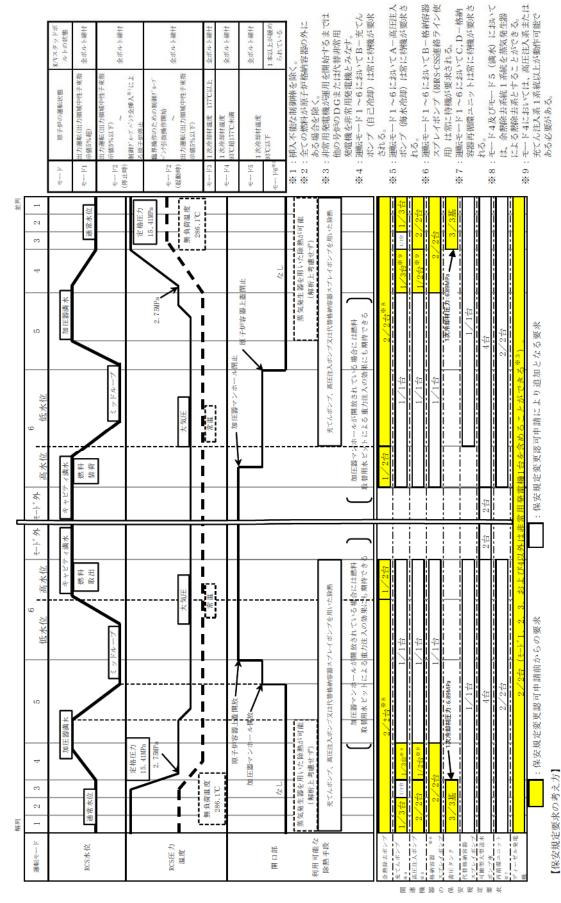



図1 1次冷却系ループ圧力勾配

定期検査工程の概要について

定期検査工程の概要及び関連するミッドループ運転の概要について次頁以降に示す。

・重大事故等対策の有効性評価において期待している設備が適切に動作することで炉心損傷等を防止することができることから、対象設備を運転モード毎に保安規定要求している。

低水位 9 9 キャビティ満水 千一,外 干一,外 キャビティ満水 9 高水位 然 取 田 低水位 2 **⊗** 2. 事象想定の考え方 Θ က 1 2 運転モード RCS水位

<崩壊熱除去機能喪失、全交流動力電源喪失、原子炉冷却材の流出>

2 က

C)

加圧器満水

0

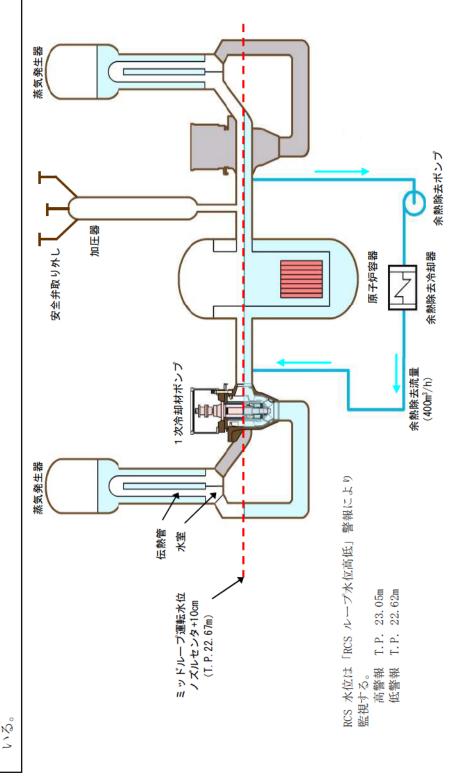
6

							SBO, RHR機能喪失、	流出事象は	③ミディア。 ら評価	
	通常	低	ポンプ			レ				
铅濱木	高	低	容器スプレイポンプ	4 %	による冷却	食であるが崩壊熱				

				①	
<u>©</u>	通常	低	ポンプ	廢熱	平価対象外
⑥ 加圧器満水	里	低	代替格納容器スプレイ 再循環ユニット SG2 次系による冷却	②②と同様であるが崩 さらない	全燃料取出中のため請
(5) ミッドルーブ運転	印	爭	代替格納容器スプレイボンプ 再循環ユニット 562次系による冷却	水位および主要な緩和設備は①②③と同様であるが崩壊熱が小さいため、事象は厳しくならない	※ モード外については全燃料取出中のため評価対象外
(垂) キャビティ端木(モード外を除く*)	高(木量1000m³以上)	中 → (燃料取替) → 低	再循環ユニット	木位が非常に高いため木位低下まで時間余裕あり	
③ ミッドループ運転	侹	4	代替格納容器スプレイボンプ 再循環ユニット再循環ユニット	時間余裕が最も厳しい	
② 加圧器 満水	崽	4	代替格納容器スプレイポンプ 再循環ユニット SG 2 次系による冷却	水位が③ より高く、 SGによる 冷却も期 待できる	
Θ	通常	里	代替格納容器スプレイホ 再循環ユニット S62次系による冷却	通常時に包絡	
	RCS水位	崩壊熱	主要な 緩和設備	RHR喪失事象 SBO事象 流出事象	

î			1			_	<i>/</i>		七年永武士 母甲母女		る道文部、写字を出れている。	単くに計画
	(場更	里	歌學	群旧李	$^{\prime}/$	64	時間余	裕が厳	こと	
	⑥ 加圧器満水) 單	里	(低温)	全権人		\$ 9	時間余裕が厳しい			
	⑤ ミッドループ運転		低	遛	低温	全挿入		脚對				
	(型)キャビティ端木	(モード外を除く*)	高(木量1000m³以上)	低 → (燃料取替) → 高	低溫	全挿入		鵝闛	ため、対象外			
	③ (3) (3) (4) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7		爭	爭	晋到	全挿入		鵝鲐	純木ラインの隔離期間中であるため、			
_	②加压器	遍水	童	低	低温	全挿入		44	反応度が	6より小	いない	
) 誤投入>	①		通常	低	電電	全引抜		64	反応度	MOL	り小さ	l, \
<反応度の誤投入>			RCS水位	反応度	RCS水温	停止バンク	位置	純木ライン	希釈事象			

※ モード外については全燃料取出中のため評価対象外


ミッドループ運転概要図 . ფ

ミッドゲープ運転についた

定期検査時においては、プラントを停止しクールダウンを行った後、燃料を取り出す前に1次冷却材系統を水抜きし、1次冷却材配管中心付近(ノズルセンタ)にする必要がある。このときの運転状態をミッドループ運転と称している。 「アズルセンタ)にする必要がある。このときの運転状態をミッドループ運転と称している。 原子炉には燃料が入っていることから、ミッドループ運転中は余熱除去ポンプにて冷却と浄化を行っている。ミッドループ運転中は、余熱除去ポ ンプへの空気の巻き込みによるキャビテーションを防止するため、通常681m³/hである余熱除去流量を400m³/hに絞って運転している。

ミッドループ運転の必要性について

PWRプラントの場合、定期検査時に燃料を取り出すためには、原子炉容器蓋を開放する前に蒸気発生器伝熱管内の水を抜く必要がある。この時の水抜きレベルはノズルセンタ+10cmであり、蒸気発生器作業や1 次冷却材ポンプ作業を効率よく行うためにもミッドループ運転が必要とされて

重大事故等対策の有効性評価における作業毎の成立性確認結果について

重大事故等対策の有効性評価において行われる各作業について、作業(操作)の概要、 必要要員数および作業(操作)時間、操作の成立性について下記の要領で確認した。

個別確認結果とそれに基づく重大事故等対策の成立性確認を「表 重大事故等対策の成立性確認」に示す。

「操作名称」

1. 作業概要:作業項目、具体的な運転操作・作業内容、対応する事故シーケン スグループ等の番号

2. 操作時間

(1) 想定時間 : 移動時間+操作時間に5~10分程度の余裕を見て

(要求時間) 5分単位で値を設定。ただし、時間余裕が少ない操

作については、1分単位で値を設定。

(2) 実績時間 : 現地への移動時間(重大事故発生時については放射

(実績又は模擬) 線防護具着用時間含む)、訓練による実績時間、模擬

による想定時間等を記載

3. 操作の成立性について

(1) 状況 : 操作場所を記載

(2) 作業環境 : 現場の作業環境について記載

アクセス性、重大事故等の状況を仮定した環境による

影響

放射線防護具を着用する場合の考慮事項

暗所の場合の考慮事項 等

(3) 連絡手段 : 各所との連絡手段について記載

電力保安通信用電話設備及びページング装置等が使

用不能の場合の考慮事項

(4) 操作性 : 現場作業の操作性について記載

表 重大事故等対策の成立性確認

所的	能力審查基基準No	ï	1 <u>1 1</u>		61	1.3			113	1	1.14
技術	能力	3!	44			=	*1		44,		T
- VI	操作性	刀但そ中特廉政士崩場無	通常原子が運転中と同じ	î	通常行う弁機作と同じであり、容易に操作できる。また、アレキシブル配管はカップラ指統により容易かっ。メブラ接続により容易かつ確実に接続できる。	-	通常行う進断器操作と同じ であり、容易に操作できる。		通常原子哲運転中と同じ		通常原子が運転中と同じ
	連絡手段	ī	Ť	ï	電力保安通信用電話設備の機帯 電話端末(PRS)を横行している。 また、電力保安部信用電話設備 の携帯電話端末(PRS)が使用で きない場合は必要により横行返 通話装置を使用する。	Ť	電力保安通信用電話影艦の携帯 電話端末(PRS)を終行している。 また、電力保安部信用電話設備 の携帯電話端末(PRS)が使用できない場合は必要により幾何可 適話装置を使用する。		Υ		î
	その他 (騒音、足場等)	河 実際子が 運転中と同じ	通常原子が運転中と同じ	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。		通常原子炉運転中と同じ		通常原子が運転中と同じ
作業環境	超過	中央制御室にはメッテ リ内臓照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはパッテ リ内臓照明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバ ッテリウ酸照明を設置 している。また、ヘッ ドライトおよび酸中電 灯を携行している。	作業エリア付近にはバ シテリ内機照明を設置 している。また、ヘッ ドライトおよび機中電 灯を携行している。	アクセスルートにはバ ッテリ内蔵照明を設置 している。また、ヘッ ドライトおよび酸中電 灯を携行している。	作業エリア付近にはバ シテリ内蔵照明を設置 している。また、ヘッ ドライトおよび接中電 灯を携行している。		中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ	イトを配備している。	中央部部省にはベッチ リ内機関の年を開催している。また、ヘッドラ イトを配備している。
作為	放射線環境	通常運転時と同程度	通常運転時と同程度		3期格 運転時 と同程度	典問題名報問歌樂歌			通常運転時と同程度		「ゆん損傷がない場合」 通常無限と同程度 「ゆん損傷がある場合」 高線量になる場所はな く、熱料が可能であるり ことから全面マスク等 を着用。
	温度・湿度	選集連合は登録を	通常運転時と同程度	外気と同程度	通常運転時と 同程度	外気と同程度	通常運転時と 同程度		通常運転時と同程度		通常運転時と同程度
	长況	操作現場 (中央制御室)	操作現場 (中央制御室)	接近程路 (R/B)	操作現場 (R/B、MS管室)	接近程路 (A/B)	操作現場 (A/B)		操作現場 (中央制御室)		操作現場 (中央制劑室)
Serious Alberta	兵業を引きる	3.25	1.9	¥	4 4 M	₩.	FC 1		3%		13分
all the the district	然下・下系の想定時間	5分	5分	i l	9 9 M	700	500		5%		15分
事故	Na. (資料版)	7.1.1	7.1.1		177	-	1		7.1.1		7.2.1.1 7.2.1.1 7.2.1.2 7.4.2
His Adv. Ass. Sept. 40. Dec.	4年の公里に銀下・ 作業内容	補助給水系ポンプ配動 操作	電動主給水ボンブ起動 操作	SG直接给水用高压水	ンプの使用準備	SG直接给水用高压水	ンプへの治電操作	非常用炉心冷却設備作 動信号手動発信	高圧注入ポンプによる 注水確認	加圧器透がし弁開放操作	代替非常用発電機から のお電準備・起動操作、 起動確認
	作業項目	四十六四十 年 五 五 五	無 从 定生寄在小回 復操作		を を を を を を を を を を を を を を を を を を を	円分人へため、日本人・日本人・日本人・日本人・日本人・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・日本・			フィードアンド ブリード操作		電腦和保作業
	Na		1			N			63		4

技術的	能力審査 基準No							! !	
	操作性 龍力	ī	通常行う適断器操作と同じ であり、容易に操作できる。	通常原子が運転中と同じ	1	海条行う運動器操作と同じ であり、発息に操作できる。	1	通条行う過度器基件と同じ であり、発易に基件できる。	道常原子が議院中と同じ
	連絡手段	ī	電力保安通信用電話設備の携帯 電話端末(RB) を携下している。 上、電力保安信号電話設備 の募券電話端末(RB) が使用できない場合は必要により携行型 通話装置を使用する。	Ť	٦	電力保安通信用電話設備の携帯 電話指来(NB)を終行している。 上、電力保安値信用電話設備 の機等電話端末(NB)が使用で きない場合は必要により携行型 通話装置を使用する。	٦	電力保安連信用電話設備の維帯 電話版末(NB)を載すしている。 また、電力保安値信用電話設施 の報準電話端末(NB)が使用で きない場合は必要により兼行型 通話装置を使用する。	ï
	その他 (騒音、足場等)	酵業性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。	プ 回 子 四 連 本 母 子 廻 ま 頭 ま 頭 ま 頭 ま 頭 ま 頭 ま 頭 ま 頭 ま 頭 ま 頭 ま	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 廃となる設備はない。	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 廃となる設備はない。	通常原子炉運転中と同じ
作業環境	照明	アクセスルートにはバッテリ内臓肌明を設置 している。また、ヘッドライトおよび幾中電 灯を携行している。	作業エリア付近にはバ ッテリ内議領明を設置 レている。また、ヘッ ドライトおよび修中電 灯を携行している。	中央制御室にはバッテ リ内鐵照明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバッテリ内機照明を設置 リている。また、ヘッドライトおよび影響を ドライトおよび影中電 灯を横行している。	作業エリア付近には / ッテリ内側には / ッテリ内側側明を設置 している。また、 ヘッドライト および数中端 がも様行している。	アクセスルートにはバッテリ内議開明を設置 している。また、ヘッ ドライトおよび幾中電 灯を携行している。	作業エリア付近にはバッテリ内積照明を設置 リフトの。また、ヘッ ドライトおよび幾中電 灯を携行している。	中央制御室にはバッテ リ内魔照明を設置して いる。また、ヘッドラ イトを配備している。
作簿	放射線環境	「伊心掛橋がたい場合」 通常運転時と同程度 「伊心地橋がある場合」 高線量になる場合する 、アウセス、維作が可	能であるものの、溶染が 予値よからよ ケット発量やを持て、 全面マスク等を着用。	通常運転時と同程度		3曲份 建铁焊 之间转度		2世紀 2 同程成	通常運転時と同程度
	温度・湿度	外気と同程度	海围回 子铅弹瓶 紫壓	通常運転時と同程度	外気と同程度	通常運転時上同程度	外気と同程度	通常運転時 回程度	通常運転時と同程度
	株況	接近経路 (R/B・A/B)	操作現場 (A/B)	操作現場 (中央制御室)	接近経路 (R/B·A/B)	操作現場 (A/B)	接近経路 (R/B·A/B)	操作現場 (A/B)	操作現場 (中央制御室)
のうながら	実績時間	13分		2.93	4	11%	4	1 4 33	2.99
一种 中華	想定時間	15%		5分	ž. 6	2 0 X	* 6	t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	5.9
事故シーケンス	No. (資料和)	7.1.2 7.2.1.1 7.2.1.2	2, 4, 2	7.1.2		27.1.2		24.5	7.1.2
日本的な組織を	作業内容	非常用母級受電準備及び受電車		不要直流電源負荷切り 難し (中央制御室操作)	不要直流電腦負荷切り	雅 C (中央制御窓隣接鑑所)	不要直流電腦負荷切り	(現場製作)	後備蓄電池投入
	作業項目				全部。				
L	Na				4				

技術的	能力審查 基準No	1.14			2 6 4 6		2 6 4 5 6	L. 3		1.3	
	操作性	Ť	通常行う進齢器操作と同じ であり、容易に操作できる。	51	手御ハンドル操作は足場が 股間されており支導なく場 作できる。	Ť	手動ハンドル動作は圧場が 膨脹されており気耐なく物 作できる。	通常原子が運転中と同じ		河川の東京の一番の一番の	
	連絡手段	Ť	電力保安通信用電話設備の携帯 電話指求 (RB) を載作している。 上、電力保安値信用電話設備 の募集電影端末 (RB) が使用で きない場合は必要により 執行型 通話装置を使用する。	Ĩ	電力保安通信用電話設備の携帯 電話端末(RB) & 携行している。 主大、電力保安衛信用電話設備 の募集電話端末(RB) 対使用で 含立い場合は必要により携行型 通話装置を使用する。	Ĩ	電力保及通信用電話設備の携帯 電話端末(NS)を兼行している。 また、電力保安が信用電話設備 の機帯電話端末(NS)が使用で きない場合は必要により執行型 通話装置を使用する。	ï		ī	
	その他 (騒音、足楊等)	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支障となる設備はない。	耐震性を有するアクセス ルートを設定している。	主勝気流動音に対する時 音が策として耳栓を携行 している。	耐震性を有するアクセス ルートを設定している。	主藤気流動音に対する防 音が発として耳栓を横行 している。	通常原子が譲収中と同じ		コ 回 マ 中 渉悪	
作業環境	鱼湖	アクセスルートにはバッテリ内機関明を設置 リている。また、ヘッ ドライトはよび線中電 灯を携行している。	作業エリア付近にはバ ッテリ内機関明を設置 レている。また、ヘッ ドライトおよび幾中電 灯を携行している。	アクセスルートにはバ ッテリ内蔵照明を設置 している。また、ヘッ ドライトおよび豚中電 灯を携行している。	作業エリア付近にはバッテリア付近にはバッテリ内機関明を設置している。また、ヘッドライトおよび機中電灯を維行している。	アクセスルートにはバ ッテリ内臓照明を設置 している。また、ヘッ ドライトおよび膝中電 灯を携行している。	作業エリア付近にはメ ッテリ内機関列を設置 している。また、 ドライトおよび数中能 灯を横行している。	中央制御室にはパッテ リ内鐵照明を設置して いえ キャ ヘッドラ	イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ	
作為	放射線環境	【伊心樹橋がない場合】 通常運転時と同程度 「伊心樹橋がある場合】 落築豊になる場所はな	ペンプンペン 繋号がい 能であるものの 第号が 子都されることからボ ケット継載計を繋行し、 全面マスク等を着用。		通常運動やと同程度		原 発 通信 と 回信 度	【哲心損傷がない場合】 通常運転時と同程度 [好心損傷がある場合] 高線量になる場所はな	く、操作が可能であるも のの、汚染が予想される ことから全面マスク等 を着用。	新田田 岩田 田田 東京 東京 日田 田田 東京 田田	
	温度・湿度	外気と同程度	通常運転時上同程度	外気と同程度	新聞但 了報問顧 場麼	外気と同程度	通常 運転時 70倍減	通常運転時と同程度		通常運転時と同程度	
	朱況	接近経路 (A/B)	操作現場 (A/B)	接近経路 (R/B)	操作現場 (AS管室)	接近経路 (R/B)	操作現場 (AS管室)	操作現場 (中中制御政)		操作現場 (中央制御室)	
of the special state of the sta	実績時間	1.9			12分		湖京東部	1.5		2.83	
and the state of	※ 1 ・ ※ ※ ・ ・ ※ ・ ・ ※ ・ ・ ・ ※ ・ ・ ・ ※ ・ ・ ・ ※ ・	₩9			20%		廣宜実施	1.9		5%	
事故	Na Na (資料版)	7.2.1	7.4.2		7.1.2		7.1.2	7.1.4 7.1.6 7.1.7 7.1.8 7.2.4	7.1.8	7.1.8	
A STATE OF THE PERSON OF THE P	を 作業内容 作業内容	光電器包目			主務気态がし弁開放 (現場操作)		主禁気込がし弁限度調 糖 (現録操作)	主蒸気透がし弁開放 (中央制御室操作)	健全側蒸気発生器の主 蒸気逃がし弁開放操作 (中央制御室操作)	補助給水ポンプ起動確 認、健全飼蒸気発生器へ の補助給水流量確立の	
	作業項目	電頂確保件業					2次系強制冷却操作				
	Να	4					ιņ				

技術的	能力審查 基準%	1111	1111 4018	14 () () () () () () () () () (7 4	1.6	t- ∞ ∞	ş	4 0 6 8		
	操作性	通常原子均運転中と同じ	通常原子が運転中と同じ	î	通常行う弁機作と同じであ り、容易に操作できる。	-	通常行う弁機作と同じであり、容易に操作できる。	ř	遊断器線の受電確認及び代 事格信者数プレイボンブ の機体場所は、通路件近に あり、容易に適作できる。		
	連絡手段	ř	ī	Ť	電力保安通信用電話設備の携帯 電話指案 (RS) を携行している。 主た、電力保安が信用電話設備 の機帯電話端末 (PS) が使用できない場合は必要により 携行型 通路装置を使用する。	î -	電力保安通信用電話設備の携帯 電話端来(1815 & 整行している。 主た、電力保安が信用電話設備 の熱等電話端末(1815) 後世川で きない場合は必要により執行型 通話装置を使用する。	ř	電力保安通信用電話配備の携帯電話配備の携帯 電話端来(附S) を携行している。 主た、電力保安値信用電話配便 の機帯電話端末(MS) が使用できない場合は必要により携行型 適話装置を使用する。		
	その他 (騒音、足場等)	通常原子炉運転中と同じ	通常原子が運転中と同じ	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 隊となる設備はない。	耐農性を有するアクセス ルートを設定している。	作業エリア周辺には、支 廃となる設備はない。	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。		
作業環境	照明	中央制御室にはパッチ リ内機関明を設定して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッチ リ内職闘の事を際して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバ ッテリ内蔵照明を設置 している。また、ヘッ ドライトおよび豚中電 灯を携行している。	作業エリア付近にはバッテリ内値開発設置 レている。また、ヘッ ドライトおよび修中電 灯を携行している。	アクセスルートにはバ ッテリ内臓照明を設置 レている。また、ヘッ ドライトはよび酸中電 灯を携行している。	作業エリア付近にはパッテリ内機関明を設置 リアいる。また、ヘッドライトおよび修布電 灯を携行している。	アクセスルートにはバ ッテリ内臓照明を設置 レている。また、ヘッ ドライトおよび像中電 灯を携行している。	作業エリア付近にはベ ッテリ内機関明を設置 している。また、ヘッ ドライトおよび第中艦 灯を勝行している。		
作為	放射線環境	「原心損傷がない場合」 通常強制に中国担保 「原心損傷がある場合」 高級量になる場所はな く、操用が可能である ロのの、対象が平穏される ことから全面マスク等 を着用。	「伊心機能がない場合」 通常無限と同程度 「伊心機能がある場合」 高線量になる場所はな く、機能が関であるも の、例れが可能である ことから全面マスク等 を着用。		通常運転時と同程度	【炉心推傷がない場合】 通常運転時と同程度 【炉心推傷がある場合】 業準長でかえ、地戸ドか	(A. アクセス、参加には、 他であるものの、汚染が 子部はおることからボ ケット線量計を終行し、 全面マスク等を着用。	【ダム損傷がない場合】 通常運転時と同程度	「毎小機能が必要を 「サンサス、維化が く、アウイス、維化が 種であるものの、汚染が 予想されることからが ケット機能性を が日本の から、 が日本の は が日本の は が日本の は が日本の は が日本の は が は が日本の は は が日本の は は は は は は は は は は は は は		
	温度・湿度	通常運転時と同程度	新聞回る伽海薫場原	外気と同程度	運常運転時上 阿程度	外気と同程度	通常運転時と同程度	外気と同租度	通常運転時上四組度		
	长況	操作現場 (中央制御室)	操作現場 (中央制御室)	接近経路 (R/B・A/B)	操作現場 (R/B・A/B)	接近経路 (R/B・A/B)	操作現場 (R/B・A/B)	接近経路 (R/B)	操作現場 (R/B)		
and the state of t	実績時間	建定支施	8.89		27%		22 <i>h</i>	3.9	(字 心性水) 2分 【格神容器 スプレイ】		
An etc. of other	☆〒・下業の 想定時間	適宜実施	5.9		30分		25%		5.39		
拉輪	Na. (資料版)	7.1.2 7.1.3 7.2.1.1	7.1.2 7.1.3 7.2.1.1 7.2.1.2 7.4.1 7.4.1	7.1.2 7.4.3 7.4.2 7.4.2 7.2.1.4		7.1.2 7.7.1.3 7.7.1.2 7.4.1.2 7.4.1.2 7.4.1.3 7.4.1.3 7.4.1.3 7.4.1.3 7.4.1.3 7.4.1.3 7.4.1.3 7.4.1.3 7.4.1.3		7.1.4 7.2.1.1 7.2.1.2 7.4.1 7.4.2			
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	具体的/心壁的線件・ 作業内容	補助給永ポンプ出口流 最関節弁関度関整	代替格納容器スプレイ ポンプ配動準備 (中央制御室操作)	代替格納容器スプレイ	ボンブ起動等艦 (炉心注水)	代替格納容器スプレイ	光ンプ配動準備(格拍容器スプレイ)		代替格特容器スプレイボンブ配動		
	作業項目	補助給水流量調整				代替格納容器 スプレイボンブ 起動操作					
	Na	9				t-					

ą.	性。			<u> </u>	1212	17.	0 9														
技術的	能力審查 基準No	1.4	11.0		1.10		1.16	91 -	21												
	操作性	i	通常行う進断器操作と同じ であり、容易に操作できる。	ï	操作場所は連絡付近にあ り、容易に操作できる。 強業ガスン全を機能する フレキンプル配管に、カッ ブラ接続であり容易かの確 実に接続できる。ボンベル 非に接続できる。ボンベル 非なれるできる。ボンベル ボンベ付近に設置している。	ı	ダンス開起置作業は、ミニチュア弁権作と維持シャフトを開発への一下を開発への一下を開発して一下を開発していています。 等易に実権可能である。	1	ゲンバ開処置作業は、ミニ チュア手機性と連帯シャフ トを開創へ回す作業のみで あり、容易に実施可能であ る。												
	連絡手段	ī	電力保安通信用電話設備の適等 電話標末(1985)を載行している。 また、電力保金通信配備 の等等電話端末(1985)が使用で きない場合は必要により携行型 通話設置を使用する。	ř	電力保安通信用電話設備の携帯 電話端末(1953)を携行している。 また、電力保金信用電話監修 の場帯電話端末(1953)が使用で きない場合は必要により携行型 通話設置を使用する。	ï	電力保安通信用電話設備の携帯 電話標束(PBS)を終行している。 また、電力保安通信用電話認備 の携帯電話端末(PBS)が使用で きない場合は必要により携行型 通話装置を使用する。	ï	電力保安通信用電話設備の携帯 電話備末(PR)を携行している。 また、電力保安通信用電話設備 の携帯電話網末(PRS)が使用で きない場合は必要により携行型 通話装置を使用する。												
	その他 (騒音、足楊等)	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	苗震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。	酢蹊性を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。												
作業環境	超湖	アクセスルートにはバ ッテリ内破照明を設置 している。また、ヘッ ドライトおよび修中電 灯を幾行している。	作業エリア付近にはバッテリ内強別明を設置 フテリ内議別明を設置 している。また、ヘッ ドライトおよび版中電 灯を携行している。	アクセスルートにはバッテリ内破照明を設置 している。また、ヘッドライトおよび修中電 灯を様行している。	作業エリア付近にはパッテリの機能明を設置 している。また、ヘッドライトおよび後中電 灯を排行している。	アクセスルートにはバ ッテリウ機服明を設置 している。また、ヘッ ドライトおよび幾中電 灯を携行している。	作業エリア付近にはバ ッテリ内機関明を設置 している。また、ヘッ ドライトおよび幾中電 灯を携行している。	アクセスルートにはバ ッテリ内厳照明を設置 している。また、ヘッ ドライトおよび線中電 灯を携行している。	ヘッドライトおよび機 中電灯を携行してい る。												
作為	放射線環境		通常運転時と同程度	【炉心損傷がない場合】 通常運転時と同程度	「毎心損傷がある場合」 高機能になる場所はな、 ・アクセス、機作が可 能であるものの、汚染が 予想されることからボ ケット操能性を終行し、 全面マスク等を着用。	【炉心掛傷がない場合】 通常運転時と同程度	【毎心損傷がある場合】 高機量になる場所はな、 、アクセス、 連行のの、汚染が 育であるものの、汚染が 予想をおることからボ ケット採掘計を繋行し、 全面マスク等を着用。	【伊心樹橋がない場合】 通常運転時と同程度 【伊心樹橋がある場合】 高線量になる場所はな	(、アイエン、操作が可能であるものの、汚染が 指であるものの、汚染が 子様されることがある ケット機能計を操行し、 全面マスク等を着用。												
	温度・湿度	外気と同程度	通常運転時と同程度	外気と同程度	原常 連続 時間 医性性 () () () () () () () () () (外気と同程度	通常運転時と阿程度	外気と同程度	通常運転時と同程度												
	株況	(B/V) 開發亞發	(图/V) 傑笛·斯	接近経路 (R/B・A/B)	操作現場 (R/B)	接近経路 (R/B・A/B)	操作現場 (A/B)	接近籍 (A/B)	操作現場 (A/B)												
the obligation when the con-	英瀬時間		13分		17.9		23分	\$ 0.6	3												
All the the olds on	数字・下来の想定時間		15%		20分		30%	∜ 50 €	3												
144	Na (資料版)	7.1.3 7.1.4 7.4.1 7.1.2 7.2.1.3 7.2.1.3 7.2.1.3		7.1.2 7.1.3 7.2.1.1 7.2.1.2 7.4.2								7.1.2 7.2.1.3 7.2.1.1 7.2.1.2		7.1.2 7.2.1.3 7.2.1.1 7.2.1.2 7.4.2					7.1.2 7.2.1.1 7.2.1.2 7.4.2	7.1.2	7.2.1.2
of the black 20, explain an the	大学が必要な際下・作業内容	about the day top op and was all	てき ちぎかき ケップム ボンブく Oを 職業 布		Bーアニュラス空気冷 化設備空気作動子代替 空気供給及びダンバ手 動開操作		政科採取室排 気系グン パ関処置	中央制御査非常用組織系グント制処置													
	作業項目	化替格納容器	スプレイボンブに動操作				被ぼく低減操作														
	Να		t-				∞														

技術的	能力審査 基準No	1.10	1.16		1.3		í
技	能力 基1	1	4		H	あまて易ボのし	!
	操作性	通常原子短邏転中と同じ	通常原子河運転中と同じ	通常原子が運転中と同じ	ï	通常行う弁操作と同じで り、容易に操作できる。 た、ホームの接続につい けかップラ接続により かっ確実に接続できる。 かっ確実に接続できる。 アペ元弁を開とするため 工具はボンベや近に設置 でいる。	コ回そ 中海無点 子 道 路 原
	連絡手段	ī	Ÿ	ា	ï	電力保安通信用電話配備の搬帯電話端末大(185)を幾行している。 また、電力保安通信用電話配備 また、電力保安通信用電話配備 の機帯電話端末(185)が使用で きない場合は必要により携行型 通話装置を使用する。	ř
	その他 (騒音、足場等)	通常原子炉運転中と同じ	通常原子が運転中と同じ	通常原子を運転中と同じ	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。	コ配名中国職員大国場所
作業環境	照明	中央制御室にはパッテ り内離開明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ り内臓期等を認定して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバッテリウ酸照明を設置 している。また、ヘッ ドライトおよび擦中電 灯を携行している。	作業エリア付近にはバ ッテリ内蔵照明を設置 している。また、ヘッ ドライトおよび勝中電 灯を携行している。	中央制御室にはバッテ リ内礁照明を設置して いる。また、ヘッドラ イトを配備している。
作簿	放射線環境	(年心地能がない場合) 通常強能時と同程度 (年小地能がある場合) 高級量になる場所はな へ、戦性が可能である ことから全面マスク等 を着用。	「伊心損傷がない場合」 通常機能学「同形度 「伊心損傷がある場合」 高機能になる場所はな く、機能が関係のある。 ことから全面マスク等 を着用。	高線量になる場所はなく、動作が可能であるものの、汚染が予想されることから全面マスク等を着まれるとから全面マスク等を着用。	高級量になる場所はな	(、アウエス、操作が可能であるものの、汚染が 確定わるものの、汚染が 予想されることからボ ケット練量計を携行し、 全面マスク等を着用。	【が人損傷がない場合】 通常強性的と同程度 「存ん損傷がある場合】 高線量になる場所はな 、、製作が可能であるも のの、汚染が予酷される とから全面マスク等 を着用。
	温度・湿度	通常運転時と同程度	新報回 了報導 新 場 要	選問を受ける は 単独 原 集 原	外気と同程度	寡附妇?和鸿藍場更	莉哥回了軸灣麼場麼
	铁泥	操作現場 (中央制創室)	操作現場 (中央制御室)	操作現場 (中央制御室)	接近経路 (R/B・A/B)	操作現場 (R/B)	操作現場 (中央制御室)
のうべきな事が	実績時間	2分	1.9	3%		21%	2.9.9
北位, 佐地の	想定時間	5.9	53	5分		303	5%
事故	Na. (資料和)	7.1.2 7.1.3 7.2.1.1 7.2.1.2 7.4.1 7.4.2	7.1.2 7.1.3 7.2.1.1 7.2.1.2 7.4.1 7.4.2	7.2.1.2		7. 2. 1. 2	7.1.1 7.1.2 7.1.3 7.1.6 7.1.8
日本合か選出権権・	A PPD A MAN PP 作業内容	アニュラス空気浄化ファン配動操作	非常用領徵系配動 非常用領徵系配動	加圧器透がし弁開放準 備 (中央制御室操作)		加圧器逃がし弁開放性 備 (現場施仰)	刊聞 本口 田 み 八 兄 田 幸 田 禄 正 み ~ 久 田 禄
	作業項目		(大)		加圧器透がし弁開放準備		藩田タンク出口弁 操作
	Na	(xo		6		10

技術的	能力審查 基準No		1.4			·	1. 8 8.	
技	能力	2	-	2. C.		\$ P. 1. 2		ñ
	操作性	つ回マ中鴻薫舟 子周慕要		通常行う非機作と同じであ り、容易に操作できる。	ī	通常行う弁機作と同じであ り、容易に操作できる。	プロ 子中海薫成子組場駅	通常原子が運転中と同じ
	連絡手段	ĭ	ï	電力保安通信用電話設備の携帯電話指域で1683 を維行している。 また、電力保金値信用電話配金 の場帯電話衛末(1815) が使用で きない場合は必要により 終行型 通話装置を使用する。	ĭ	電力保安通信用電話設備の維帯 電話端末(1985)を維行している。 また、電力保安値信用電話影像 の映帯電話端末(1985)が使用で きない場合は必要により携行型 通路装置を使用する。	ï	T
	その他 (発音、足楊等)	コ 回マ中理脈が子 海場駅	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 廃となる設備はない。	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	コ回子中海亜球子返来原	通常原子炉運転中と同じ
作業環境	鱼湖	中央制御室にはバッデ り内線開発を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバッテリ内酸照明を設置 している。また、ヘッドライトおよび撥中電 灯を者下われび撥中電	作業エリア付近にはバ ッテリの機照明を設置 レている。また、ヘッ ドライトおよび幾中電 灯を携行している。	アクセスルートにはバッテリウ酸照明を設置 している。また、ヘッドライトおよび騰中電 ガライトおよび騰中電	作業エリア付近にはバ シテリ内臓闘明を設置 している。また、ヘッ ドライトおよび級中電 灯を携行している。	中央制御室にはメッチ リ内線開明を設置して いる。また、〜の。ドラ イトを配備している。	中央制御室にはペッチ リ内職関中を設置して いる。非た、一つ、また。 イトを配備している。
作為	放射線環境	(年心樹像がない場合) 通常運転時と同程度 [年心樹像がある場合] 高線量になる場所はなく、緑神が可能であるも のの)汚染が子連される ことから全面マスク等 を着用。		通常運転時と同程度	【伊心神傷がない場合】 通常運転時と同程度 「伊心神傷がある場合】	高線量になる場所はな 〈、アウセス、操作が可 能であるものの、海枠が 予想されることからが ケット機&計を機行し、 全面マスク等を着用。	【毎心損傷がない場合】 通常運転ゆと同程度 【毎心損傷がある場合】 高線量になる場所はな く、熱が可能である ことから全面マスク等 を着用。	高級量になる場所はな く、雑件が可能であるも のの、汚染が予想される ことから全面マスク等 を着用。
	温度・湿度	新田川 全国 東京	外気と同程度	運常運転時と同程度	外気と同程度	通常運転時と同程度	英语回子帕姆斯 場更	通常運転時と同程度
	朱況	操作現場 (中央制御室)	接近程路 (R/B・A/B)	操作現場 (R/B)	接近経路 (R/B・A/B)	操作現場 (A/B)	操作現場 (空動劇館室)	操作现場 (中央側網底)
inclose Arthur A. P. Co.	高素をおっての実験を開	3.5		22分		30分	8 %	\$\$
all the . the altern	数ir・ri 想定時間	5.9		30分		35分	10分	6.9
144	N. N. (資料版)	7.1.2 7.1.3 7.2.1.1 7.2.1.2		7.1.2		7.2.1.2	7.1.2 7.1.3 7.2.1.1 7.2.1.2 7.4.2	7.2.1.1
H Jacks Assembled the	具体的/A型転換件・ 作業内容	1 次 冷却材ポンプ封水 戻り隔離弁等間止確認		1次 帝却材ポンプ対水戻り 隔離弁等 関止	1	カース c c c c c c c c c c c c c c c c c c c	B — 充てんポンプ (自己 冷却) 系統構成	B - 光てんポンプ (自己 冷却) 起動
作業項目 1. ※治却はボン シールの確認。 (自己・ガスルメン (自己・カリ) (日の・知) (日の・)								
	2 2							

	在。			-		e de la companya della companya della companya della companya de la companya della companya dell	12	
技術的	能力審查 基準No	1.4			5			1.15
	操作性	通常原子が連続中と同じ		ダンド開処置作業は、ミニ チュブキ操作と連絡シャフ 1・を開動へ回す件業のみで あり、容易に英雄可能であ る。	-	通常行う遮断器操作と同じ であり、容易に操作できる。	-	資機材の運搬、敷設件業は 一般的な作業であり、容易 に実施の形が、分類 員については必要な訓練や 継続的に実施している。
	連絡手段	ï	-	電力保安通信用電話提倡の携帯 電話端末(185)を終行している。 また、電力保安通信用電話配備 の場帯電話端末(185)が後用で きない場合は必要により携行型 通話装置を使用する。	¥	電力保安通信用電話設備の携帯電話指案(他の場合 電話指案(時5)を載行している。 の実、電力経過に をない場合は必要により携行型 通路装置を使用する。	Τ	電力保安通信用電話設備の携帯 電話端末(时8)を整行している。 また、電力保安通信用電話設備 の携帯電話端末(185)が使用で きない場合は必要により携行型 通話装置を使用する。
	その他 (騒音、足場等)	通常原子が運転中と同じ	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。	耐農性を有するアクセス ルートを設定している。	作業エリア周辺には、支 廃となる設備はない。	苗္姓を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。
作業環境	開開	中央制御室にはベッテ り内離開明を設定して いる。また、〜ッドラ イトを配備している。	アクセスルートにはバ ッテリ内機筋明を設置 している。また、ヘッ ドライトおよび略中稿 灯を捲行している。	作業エリア付近にはバッテリ内機関明を設置 リストラッチリ内機関明を設置 レストル・スケードライトおよび略中電 灯を携行している。	アクセスルートにはバッテリ内機無明を設置 リストラー・エン・ハッド・アップ・アライトはよび後中電 灯を携行している。	作業エリア付近にはバ ッテリ内礁無明を設置 レている。また、ヘッ ドライトはよび機中電 灯を携行している。	ヘッドライトおよび懐 中電灯を携行している。	ヘッドライトおよび撥 中電灯を携行してい る。
伸	放射線環境	【近心損傷がない場合】 通常強性的と「四程度 【近心損傷がある場合】 高線量になる場所はな く、操作の間を関われな のの。対象が平型される ことから全面マスク等 を着用。	「伊心損傷がない場合」 通常運転時と同程度 「伊心損傷がある場合」 高速量になる場合は	、、アウエス、操作が可能であるものの、汚染が 確であるものの、汚染が 子憩されることがある ケット機能計を携行し、 全面マスク等を着用。	【伊心州橋がない場合】 通常運転時と同程度 【伊心州橋がある場合】 高線並になる場合」 高線量になる場合は	(、アクセス、操作が可能であるとの、「発表が 種であるための、「発表が 予想をおることからが ケット線量計を携行し、 全面マスク等を着用。	【炉心機傷がない場合】 通常運転時と 同程度 【炉心損傷がある場合】	高級能になる場所はな く、アクセス、操作が可 能であるものの、汚染が 予想されることからボ ケット線量計を繋行し、 全国マスク等を着用。
	温度・湿度	瀬田回っ 仲澤悪場更	外気と同程度	회 報回 了報 齊 數 級 便	外気と同程度	通常運転時と同程度	外気と同程度	通常運転時と同程度
	伏況	(室) (東東) (東) (東) (東) (東) (東) (東) (東) (東) (接近経路 (R/B·A/B)	(B/V) 傑) (B/V)	(B/V)	(B/V) (A/B)	接近餐路 (A/B)	操作現場 (A/B)
the richard Arts A. A. P. Co.	実績時間	1.9	₹ 4	1031	\ *	1.4.77		適宜実施
All the Alexander	然は、中柔の 想定時間	5.9}	\$ c	RO N	4	203		適宜実施
24年	Na. (資料版)	7.1.6	7.1.2	7.2.1.2	7.1.2	7.2.1.2	7.1.2	7.2.1.1 7.2.1.2 7.4.2
ALTHOUGH CHICKLES OF THE PERSON OF THE PERSO	本体がある。	充てんポンプ配動操作	メベルを がベルタを が変数を が変数を が変数を がある。 がる。 がる。 がる。 がる。 がる。 がる。 がる。 が	m Ann アンタロネクタ 差替え ンタロネクタ 差替え	四ベルム原料実収製業	980	1994年 1995年	
	作業項目	流でんポンプ組動機件	普電池室機気系グ	調点部が大人	蓄電池監排気ファ	大松巻		可賴型計測器據続
	Na	13	;		Ļ	27		16

技術的	能力審查 基準No		1.13		i)	1.2 1.3 1.13	1.4
	操作性		通常行う弁機作と同じであり、容易に維作できる。	通常原子が運転中と同じ	通常原子が運転中と同じ	コロマ中部軍政子国忠・	通常原子短運転中と同じ
	連絡手段	Ĩ	電力保安通信用電話設備の携帯 電話指案 (PRS) を携行している。 また、電力保安信貨電話設備 の影響電話端末 (PRS) が使用で きない場合は必要により携行型 通話装置を使用する。	Ť	E-	·-	Τ
	その他 (騒音、足場等)	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 麻となる設備はない。	コ回マ中海維持十万回を	刀 回 そ中郷疵 <i>蚪</i> 去趙紫麼	コ 回 マ 中強悪 承 壬 道 皋 野	通常原子炉運転中と同じ
作業環境	超湖	アクセスルートにはバ ッテリ内藤原明を設置 レている。また、ヘッ ドライトおよび務中電 灯を携行している。	作業エリア付近にはバ シテリ内儀照明を設置 している。また、ヘッ ドライトおよび像中電 灯を携行している。	中央制御室にはバッテ リ内離顕明を配定して いめ。また、ヘッドラ イトを配備している。	中央制御室にはパッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内臓照明を設置して いる。また、ヘッドラ イトを配備している。
作為	放射線環境	【毎心損傷がない場合】 通常運転時と同程度 【毎心損傷がある場合】 高際裏になる場所はなく、アクセス、過程が日く、アクセス、過程が日く、	能であるものの、汚染が 予想されることからポ ケット線量計を携行し、 全面マスク等を着用。	「毎心損傷がない場合」 通常連転時と同程度 「毎心損傷がある場合」 高線量になる場所はな へ、縁折の間であるも のの、背線が平穏される ことから全面マスク等 を着用。	通常運転時と同程度	通常運転時と同程度	通常運転時と同程度
	温度・湿度	外気と同程度	重常運転時と同程度	(東京) 登録 (東京) 登録 (東京) 東京 (東京) 東東 (東東) 東東 (東	新 器回マ報鴻薫幕駅	新暦回~軸珠薫紫 亜	通常運転時と同程度
	状況	接近経路 (R/B・A/B)	操作現場 (A/B)	操作現場 (中央制鋼篮)	操作現場 (中央制御室)	操作現場 (中央制御室)	操作現場 (中央制御室)
Budder Attra-	実績時間	12%		5.93	2.93	2.93	3.95
排体, 体数0	数中・中楽の 想定時間	253		10分	5%	5%	5%
事故	Na. (資料級)	7.1.4	7.2.4	7.1.6 7.1.6 7.1.7 7.1.7 7.2.8	7.1.4	7.1.1	7.1.4
日本合く運転報格・	具体的/心壓監察压 作業内容	然母敬野田水ピット 雑鈴ラインアップ場作		総科政群用水ビット 補給操作	格納容器スプレイ起動 操作	再循環切替操作	再循環切替操作、低圧再 循環機能喪失確認
	作業項目		燃料政幹用水 ビット補給操作		格納容器スプレイ 回復操作	297 '미주경반 Lic'에의 205 전드	17 H SK SC H 17K L L
	Na		71		18	9	1

技術的	能力審査 基準No				1.6					:]	1:1
	操作性	-	産業供給ホースについては カップラ接続であり容易か の選先に接続できる。ボソ ベニ弁を開上するための工 具はボンベ付近に設置して いる。	通常原子が運転中と同じ	ĵ.	通常行う弁操作と同じであり、容易に操作できる。	Ť	通常行う弁操作と同じであり、容易に操作できる。	通常原子垣運転中と同じ	通常原子短運転中と同じ	通常原子短運転中と同じ	通常原子垣運転中と同じ
	連絡手段	Ť	電力接交通信用電話設備の携帯電話指案(作SS)を携行している。 電話指案(FRS)を携行している。 また、電力接近指案(FRS)が提用で きない場合は必要により携行型 通話設置を使用する。	-	Ť	電力保安通信用電話設備の携帯電話指域(168) &幾行している。 電話端末(内8) &幾行している。 正、電力保安通信用電話設備 の携帯電話端末(円8) が使用で きない場合は必要により携行型	Ĩ	電力保安通信用電話設備の携帯 電話端末(PRS)を携行している。 また、電力保安部信用電話設備 の携帯電話端末(PRS)が使用できない場合は必要により携行型 通路装置を使用する。	۲	T	Ī	ĭ
	その他 (騒音、足揚等)	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 席となる設備はない。	ユ 回 そ 中 弾悪 政 子 道 湯 悪	附妻社を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 廃となる設備はない。	通常原子が運転中と同じ	コ 回マ 中強悪 政士 題 象 野	コ 回マ 中弾疵 承壬 超 器 駅	通常原子炉運転中と同じ
作業環境	照明	アクセスルートにはバ ッテリ内臓照明を設置 している。また、ヘッ ドライトおよび終中電 灯を携行している。	作業エリア付近にはバ ッテリ内機照明を設置 している。また、ヘッ ドライトおよび機中電 灯を携行している。	中央制御室にはバッテ リ内藤原明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバ ッテリ内機照明を設置 している。また、ヘッ ドライトおよび機中電 灯を携行している。	作業エリア付近にはバ ッテリ内議照明を設置 している。また、ヘッ ドライトおよび機中電 灯を携行している。	アクセスルートにはバッテリ内臓照明を設置 している。また、ヘッドライトおよび幾中電 灯を兼作している。	作業エリア付近にはバ ッテリ内蔵照明を設置 している。また、ヘッ ドライトおよび修中電 灯を携行している。	中央制御室にはパッテ リ内臓関明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。
伸	放射線環境		通常運転時と同程度	通常運転時と同程度	apa aasteen "I yaa walkin ayo ayo	3国市 3開発がす C FJ 社長 19。		連帯運動時で回程度	通常運転時と同程度	重常運転時と同程度	瀬田 日本	通常運転時と同程度
	温度・湿度	外気と同程度	通常運転時と同程度	通常運転時と同程度	外気と同程度	運業運転を同日報	外気と 同程度	通常運転時と同程度	通常運転時と同程度	通常運転時と同程度	通常運転時と同程度	通常運転時と同程度
	铁泥	接近経路 (R/B・A/B)	操作現場 (R/B)	操作現場 (中央制御室)	接近経路 (A/B)	操作現場 (R/B)	接近経路 (A/B)	操作現場 (R/B)	操作現場 (中央制御室)	操作現場 (中央制御室)	操作現場 (中央制御室)	操作現場 (中央制御室)
Budde dotter at a co	実績時間		18分	4.53	\$ 6	Жa	4	20%	3%	29	29	1.9
All the . the she ex-	※ 中・中 表 グ 想定時間		25分	10分		Ka	4 6	3 U X	5.9	₩E	₩E	2.93
事故	Na. (資料報)	A 1 F	7.4.3	7.1.4 7.4.1 7.4.3	7.1.4	7.4.3	4.1.7	7.43	7.1.4 7.4.1 7.4.3	7.1.5	7.1.5	7.1.5
- 中心のないない。	************************************	山资水畔安朝群母七郎	正	原子炉棉機冷却水系加 圧操作準備 (中央制御室操作)	原子存補機冷却水系加	压熱作	以 多水层 经基础 化苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基苯基	Ш	格納容器再份 環ユニットによる冷却操作 (中央制御室操作)	年動原子炉トリップ機	制御棒壓動裝置用電纜 開放·制御棒落下操作	手動ターピントリップ 操作
	作業項目				格納容器內自然对	oter I I India				ent the 1- and the	原于学学工業 作	手動ターピントリ ップ操作
	Na				ଛ					ē	17	22

技術的	能力審查 基準No	1.1	1.1	i	1	1			9	
	操作性	通常原子が運転中と同じ	通常原子が運転中と同じ	通常原子は連続中と同じ	通常原子が運転中と同じ	通常原子原連転中と同じ		通常原子掉運転中と同じ		通常原子炉運転中と同じ
	連絡手段	ï	Ÿ	ī	T	T		Ĩ		Ť
	その他 (騒音、足場等)	コ回る中海悪政士通場駅	コ 回マ中弾悪 政士 道場 悪	コ 回マ中頸鹿 政士 通場 悪	コ 回マ中理歴 母无 通場 悪	コ回マ中強悪政士通場乗		通常原子炉運転中と同じ		通常原子が運転中と同じ
作業環境	照明	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内機照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはパッテ リ内確照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはパッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。		中央制御道にはバッテ リ内蔵照明を設置した いる。また、ヘッドラ イトを指揮したストラ		中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。
作為	放射線環境	通常運転時と同程度	通常運転時と同程度	通出 医甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基甲基	通常運転時と同程度	高線量になる場所はなく、 名、 場件が可能であるも のの、 汚染が予想される ことから全面マスク等 を着用。		通常運転時と同程度		通常運転時と同程度
	温度・湿度	通常運転時と同程度	瀬器回 マ報弾薫集更	新田川 子和地配場駅	新田町と朝藤紫龍	新器回 る軸導脈場駅		通常運転時と同程度		通常運転時と同程度
	扶況	操作現場 (中央制御室)	操作現場 (中央制御室)	操作現場 (中央制례室)	操作現場 (中央制御室)	操作現場 (中央制御室)		操作現場 (中央制御室)		操作現場 (中央制御室)
terifolis Africa. P. C.	実績時間	4.93	1.9	1.9	1.9	45		3%		4%
All the . the sheep	操作・作業の 想定時間	5.9	<i></i> ₩9	<i></i> €9	5 <i>9</i>	5. 9.		5%		5.9
2000年	ンーケンス Na (資料知)	7.1.5	7.1.5	7.1.6	7.1.6	7.2.4		7.1.7		7.1.7
- 中小小のないない。	具体的/心里乾燥作。 作業内容	緊急ほう酸濃縮操作	ほう酸希釈ライン隔離 操作	高圧注入ポンプ起動操作	余勲 株玉ボンプによる 株圧注入確認	高圧及び低圧注入系機 能回復操作	再循環切替操作	格納容器スプレイ再循 環成功を確認	高圧及び低圧注入系機 能喪失確認	高圧及び低圧注入系機 能回復操作
	作業項目	緊急ほう酸濃縮操作	ほう酸希釈ライン 隔離操作	高压注入系回復操作	假圧注入系確認	高圧及び低圧注入 系機能回復操作	再循環切替操作。 復日操作		再循環切替操作。 復日操作	
	Na	23	24	25	26	27	8			

技術的	能力審査 基準No					=======================================			
	操作性	7回子中跡悪舟七頭東	通常原子好運転中と同じ	i	通常行う弁操作と同じであり、容易に操作できる。	通常原子原連を中と同じ	Ĩ	通常行う弁操作と同じであり、容易に操作できる。	通常原子短邏転中と同じ
	連絡手段			ï	電力保安通信用電話設備の携帯 電話指表 (PRS) を横行している。 また、電力保金信用電話設備 の影響電話端末 (PRS) が使用で きない場合は必要により 携行型 通話設置を使用する。	Ĩ	ï	電力保安通信用電話設備の携帯電話指案(報5)を修行している。 電話指案(1983)を修行している。 主た、電力保室信用電話設備 の場等電話端末(1985)が使用で きない場合は必要により携行型 通話設置を使用する。	ï
	その他 (騒音、足場等)	通常原子炉運転中と同じ	通常原子炉運転中と同じ	骨震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 席となる設備はない。	プ 回る 中海派 野 大道 紫原	苗震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	通常原子标選転中と同じ
作業環境	照明	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバ ッテリ内機関明を設置 している。また、ヘッ ドライトおよび婚中電 灯を携行している。	作業エリア付近にはバ ッテリ内臓照明を設置 レている。また、ヘッ ドライトおよび終中電 灯を携行している。	中央制御室にはバッテ リ内機関明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバッテリ内臓照明を設置 している。また、ヘッドライトおよび嫁中電 灯を携行している。	作業エリア付近にはバッテリ内機関明を設置 リアいる。また、ヘッドライトはよび機中電 バラボトはよび機中電 灯を携行している。	中央制御室にはバッテ リ内蔵原明を設置して いる。また、ヘッドラ イトを配備している。
伸	放射線環境	通常運転時と同程度	通常運転時と同程度		通常運転時と同程度	通常運転時と同程度		通常運動時と同程度	通常運動時と同程度
	温度・湿度	軍器回 て船 弾薬 場更	瀬器回 マ船 郷薫 場 駅	外気と同程度	菊풤劍 刁報鴻藍紫壓	新田川マ和珠薫集駅	外気と同程度	新暦回 そ帕鴻薫 場更	通常運転時と同程度
	长況	操作現場 (中央制御室)	操作現場 (中央制御室)	接近経路 (A/B・R/B)	操作現場 (R/B)	操作現場 (中央制御室)	接近経路 (R/B・A/B)	操作現場 (R/B)	操作現場 (中央制御室)
のいた数据記	実績時間	1.9	1.9		2 4 分	471		20分	1.9
排化、体操 介	線下・下業の 想定時間	<i></i> ₩9	5分		3.5分	£9		30分	5分
事故	ンーケイへ Na. (資料Ma)	7.3.1	7.3.1		7.3.2 7.3.2	7.3.1		7.3.2	7.3.1
in the first the second state of the	具体的/A型転換件・ 作業内容	燃料取替用水ビットか らの注水準備	燃料取替用水ビットか らの注水操作	Li de ya	部件収費用水とットが らの注水準備・注水操作	2 次系組水系 結からの 注水操作		2 次系純水系 統からの 注水操作	1次系権水タンクから の注水準備
	作業項目					食用が熱料にット 注水機作			
	Nα					8			

技術的	能力審查 基準No		1.11				11			L 3	
	操作性	ij	通常行う弁機作と同じであり、容易に操作できる。	(ii)	語店ホースはカップラ接続 であり容易から確実に接続 できる。	Ü	各股備の接続部はコネクタ接続等の簡易な構造となっており、容易に作業できる。	通常原子炉運転中と同じ	通常原子が運転中と同じ	f;	ツインパワーキの陪棄作 インパワーキの密集体 インパワーキへの密集が 配管に接続することで、 インパワーキへの密集が を発売することで、 インパーチの発生部の 作スイッチにより が同じたり、 するに兼作 できる。 変成ポンペの表に できる。 を放ボンスを を にはカップラ棒ボでもり にはカップラ棒ボでもり また 関に 表を用とするが また。 は、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、
	連絡手段	\ -	電力保安通信用電話設備の携帯電話指揮(1455)を横行している。 元、電力保金通信用電話設備 の機等電話協業で(NS)が使用で きない場合は必要により修行型 通話装置を使用する。	27	電力保安通信用電話設備の維帯電話指表 (1985) を換行している。 主た、電力保安値信用電話設施 の執券電話編末 (1985) が使用できない場合は必要により 維行型 通路設置を使用する。	ľ	電力保安通信用電話設備の携帯電話指域で1685を幾行している。 また、電力保金信用電話記憶 の頻素電話端末(1825)が使用で きない場合は必要により携行型 通話装置を使用する。	Ĩ	Ĩ	Ť	電力保安通信用電話設備の携帯 電話端末(1983)を終行している。 また、電力保空信用電話設備 の場帯電話端末(1983)が使用で 含ない場合は必要により携行型 通話装置を使用する。
	その他 (騒音、足場等)	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 麻となる設備はない。	苗業性を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	通常原子炉運転中と同じ	通常原子が運転中と同じ	苗農性を有するアクセス ルートを設定している。	作業エリア周辺には、支 廃となる設備はない。
作業環境	照明	アクセスルートにはバ ッテリ内機照明を設置 している。また、ヘッ ドライトおよび落中電 灯を携行している。	作業エリア付近にはバ ッテリ内機筋明を設置 レている。また、ヘッ ドライトおよび機中電 灯を横行している。	アクセスルートにはバッテリ内機照明を設置 している。また、ヘッドライトおよび撥中電 灯を着行している。	作業エリア付近にはバ ッテリ内機照明を設置 している。また、ヘッ ドライトおよび幾中電 灯を横行している。	アクセスルートにはバ ッテリ内破照明を設置 している。また、ヘッ ドライトおよび勝中電 灯を携行している。	作業エリア付近にはバッテリ内職馬明を設置 リアリウェンの。また、ヘッドライトなよび終中電 灯を携行している。	中央制御室にはバッテ リ内臓照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバッテリ内蔵照明を設置 している。また、ヘッドライトおよび落中電 灯を携行している。	作業エリア付近にはパッテリア体質にはパッテリケ機原用を設置 している。また、ヘッドテイトはよび条中値 対を壊行している。
作	放射線環境		通常運転時と同程度	通常運転時と同程度			通常運転時と同程度	通常運転時と同程度	通常運転時と同程度		高線量になる場所はな く、解析の間であるも 0の、対象が平面される ことから全面マスク等 を着用。
	温度・湿度	外気と同程度	通常 連帯 連帯 連帯 連帯 連帯 連帯 連帯 連	外気と同程度	通常運転時と同程度	外気と同程度	運常運転時と同程度	通常運転時と同程度	通常運転時と同程度	外気と同程度	通常運転時と同程度
	状況	(B/V) 易勢亞鋒	(B/V) 你在小裤	接近程路 (R/B)	操作现場 (R/B)	接近経路 (A/B・R/B)	操作现場 (RB・屋外)	操作現場 (中央制御室)	操作現場 (中央制御室)	接近経路 (A/B)	操作现場 (A/B)
のいる数据を記	実績時間		15分		23分		1 時間45分	4分	3分		2 4 33
排化·作物()	然に時間		25分		305		5分 5分 5分 30分		30%		
事故	Na. (資料Na.)	१८ १८ १८ १८			7.3.1 7.3.2 2.2.2		7.3.1 3.2.2	7.1.8	2.1.8		7. 1. 8
in the felt of states the state of		1次系編水タンクから の注水操作 部火 貯備 (る 過水タン ク) からの注水操作		使用済燃料ピット可搬割エリアモニタ・権用済	経草にット水位(可養 地)及び使用液素等にッ 下暇 組カメラ 空冷装順 の設備	余熱除去系統の燃料取 替用水ピットからの隔 雕操作	余勲除去系統の1次系か らの隔離操作		微樹系列の含熟除去系 結隔離操作		
	作業項目	楽				使用済然科ピットの監視			余器除去系統の 今職・国産地・	1	
	Na				8	16					

T.	性。						-	63,550	
技術自	能力審査 基準No	1.3	1.3		. i			1.13	
	操作性 通常原子/伊達転中と同じ		コピマ中珠藍頭左道場駅	コ回2中跡脈がそ週累駅	ï	手動ハンドル操作はグレー チング上で行うため支藤な く操作できる。	144	通常行う弁嫌作と同じであり、容易に操作できる。	通常原子が運転中と同じ
	連絡手段	ñ	Ĩ	Ÿ	Ť	電力保安通信用電話設備の携帯電話指案(他の場帯電話指案(付お)を載行している。 また、電力保金信用電話設備 の場帯電話協案を信用電影を観用 の場所電話協業を信託の表表を提出 きない場合は必要により携行型 通路設置を使用する。	T	電力保安通信用電話設備の場響電話指域で10.5。 電話指案(1985)を終行している。 主人、電力保金信用電話影像 の場響電話端末(1985)が使用で きない場合は必要により携行型 通話設置を使用する。	ľ
	その他 (騒音、足場等)	通常原子标選転中と同じ	コ 回 マ中語版 埼子 遊場 原	通常原子炉運転中と同じ	所要性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。	耐農性を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	通常原子短邏輯中と同じ
作業環境	鱼崽	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ り内臓期等を際でし いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバ ッテリ内機関明を設置 している。また、ヘッ ドライトおよび篠中電 灯を修行している。	作業エリア付近にはバ ッテリ内厳領明を設置 レている。また、ヘッ ドライトおよび始中電 灯を携行している。	アクセスルートにはバ ッテリ内蔵限明を設置 している。また、ヘッ ドライトおよび隆中電 灯を携行している。	作業エリア付近にはパ ッテリ内版開明を設置 レている。また、ヘッ ドライトおよび始中電 灯を携行している。	中央無御室にはバッテ リ内臓照明を設置して いる。また、ヘッドラ イトを配備している。
作為	放射線環境	通常運転時と同程度	「ゆん損傷がない場合」 通常運転時 「同程度」 「かん損傷がある場合」 高線量になる場所はな く、解析の間であるり のの。別数が可能である ことから全面マスク等 を着用。	通常運転時と同程度	新線量になる場所はな く、操作が可能であるも のの. 汚染が子傷される 等を着用。			通常運転時と同程度	通常運転時と同程度
	温度・湿度	通常運転時と同程度	原常 (金属) 原本	通常運転時と同程度	外気と同程度	通常運転時と同程度	外気と同程度	運常運転時と同程度	通常運転時と同程度
	快祝	操作現場 (中央制御室)	操作現場 (中央網례室)	操作現場 (中央制御室)	(A/B・R/B) 開發正確開	操作現場(AIS管室)	接近餐將 (A/B)	操作現場 (A/B)	操作現場 (中央制御室)
Berthale Arte 11. In 195	芸術やいっの実績中間	2%	19	2分	12%			5分	7 分
and the off and the	紫井・井楽の 想定時間	5分	5%	2分	15%			10%	15分
非常	Na Na (資料版)	7.1.8	7.1.8	r; r; r; ;		SS -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1		7.1.7	7.1.7
He started the very few day the	具体的心理的操作。 作業内容	充てん水注入開始操作 安全注入停止操作	加圧器透がし非開放	破損傷蒸気差生器の隔 雕操作、破損傷蒸気発生 器への補助給 水停止操 作	改技側蒸気発生器主蒸 気隔離弁増し締め操作		代替中指数フイン手動弁開動作	B-格納容器スプレイ ポンプによる代替再確 環操作	
	作業項目	充てん開始・安全 注入停止操作	1次系強制減圧操作		被損倒蒸 気発生器 BR開発作		格検容器スプレイ ポンプによる代替 再領環操作		
Ĺ	Na	32	33		8		- P 77 34 00 00		

技術的 期 12.9 19								
技術	施力引	1	.9					
	操作性	通常原子が運転中と同じ 通常原子が運転中と同じ		通常原子を運転中と同じ	T.	国機型設備作場所は適 路付近にあり、容易に操作 水舎な。 地理整格特等部分 水舎を当り、可用型を ・ 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一	通常原子好運転中と同じ	
	連絡手限	ï	Ÿ	r	T	電力保安通信用電話設備の修帯電話標本(185)を兼行している。 主た、電力保安通信用電話設備 また、電力保安通信用電話的での修業電話端末(185)が使用で きない場合は必要により携行型 通話設置を使用する。	Ť	
	その他 (騒音、足楊等)	コ 回マ中弾脈がチ 順場 駅	通常原子が運転中と同じ	通常原子が運転中と同じ	群農社を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	コ 回る中郷憲政王 随場 康	
作業環境	超湖	中央制御室にはバッテ リ内機照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内機関明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内魔照明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバ ッテリ内機原明を設置 レている。また、ヘッ ドライトおよび機中電 灯を携行している。	作業エリア付近にはバ ッテリ内機筋明を設置 ドレでいる。また、ヘッ ドフイトは、2000 対全路行している。	中央制御室にはベッテ リ内機関明を設置して いる。また、ヘッドラ イトを配備している。	
作為	放射線環境	高線量になる場所はな く、操作が可能であるも のの、汚染が予想される ことから全面マスタ等 を着用。	「年ん制修がない場合」 通常運転時と同程度 「年ん制修がある場合」 高級量になる場所はな く、機能の間であるも ののの方数ができません。 ことから全面マスク等 を発用。	高業量になる場所はな く、操作が可能であるも いの、汚験が予想される ことから全面マスク等 を着用。		新編集になる場所はな (アクセス、海棒が可 能であるものの、海線が 予想をおることがらボ 予想をおることからボ クター 発展的を発行ることがら 全面マスク等を着用。	高級量になる場所はな 、、機能が可能であるも のの、汚染が予慮であるも ことから全面マスク等 を着用。	
	温度・湿度	運業運転時と同程度	適常運転時と同程度	運搬運転時と同程度	外気と同程度	通常 運転時と 同程度	新田畑 子 四番 産	
	朱況	操作现場 (中央制御室)	操作現場 (中央制御室)	操作現場 (中央制御室)	接近経路 (R/B・A/B)	操作現場 (R/E)	操作現場 (中央制御室)	
のうべの数様の関	三株 40%の分別 米瀬 年間	2.5}	1.9	浙广庆施		55 25	2.93	
排作, 佐藤介	紫井・井楽り 想定時間	5.9	5.9	運宜実施	1 時間10分			
事故	/ Na (資料系)	7. 2. 4	7.1.6 7.2.1.1 7.2.1.2 7.2.4	7. 9.		7.2.1.1 7.2.1.2 7.2.4		
日 4年40年8年7日日	A 体的な単位像件・作業内容	格納容器スプレイ再係 機納容器スプレイ 環切替確認	格納容器水素イグナイケ匹動	原子 戸格納容器水素処理器。格納容器水素イ ガナイタの動作状況の 確認	可能型格特 存留水素 度計別エニット配助 備・配助 (現場場有) (現場場有)			
	作業項目	再循環切替操作	水素濃度低液操作		可限型格神容器水 紫藤町割によっ 下配動			
% % % % % % % % % % % % % % % % % % %								

Ð	短り			~	-				
技術的	能力審査 基準No	1.9		1.10					
	操作性	近常を連びる。	□報整設備の操作場所は通 できる。可能型の一・容易に操作 できる。可能型の一・コラス を指揮性関ロニットの接 然作業は、一般的なカップ ラットの表 が作業に、一般的なカップ ラットの表 が乗機できる。「毎島に接続 を表面を開発」によって をある。「毎島に接続 を表現を計画によったの間 を表現を表して、「一世のより、「一世のより、「一世のより、「一世のより」である。「一世のなカップ を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を		コロマ中連駆攻上海場所	т	通常行う弁機作と同じであり、容易に操作できる。	通常原子が運転中と同じ	
	連絡手段	-	Υ	電力保安通信用電話設備の携帯電話機大・でいる。 また、電力保安通信用電話配 の携帯電話端末(NES)が使用で きない場合は必要により携行型 通話装置を使用する。	_	-	電力保安通信用電話設備の携帯電話機で発売 電話端末(特別)を載行している。 また、電力保安通信用電話設備 の携帯電話端末(特別)が使用で きない場合は必要により携行型 通話装置を使用する。	ľ	
	その他 (騒音、足場等)	つ 阿名中海難様子 万岡 足	苗僕性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。	コ 回子 中陸歌 歩子 海帯 駅	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 廃となる設備はない。	通常原子炉運転中と同じ	
作業環境	施湖	中央制御室にはベッチ り内臓調明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバ ッテリ内臓照明を設置 している。また、ヘッ ドライトおよび撥中電 灯を携行している。	作業エリア付近にはパ ッテリ内機筋明を設置 ドレでいる。また、ヘッ ドフを終行している。	中央制御室にはバッテ リ内職調明を設置して いる。また、ベッドラ イトを配備している。	アクセスルートに注バ ッテリ内職領明を設置 レている。また、ヘッ ドライトおよび総申電 灯を携行している。	作業エリア付近にはバ ッテリ内機関明を設置 レている。また、ヘッ ドライトおよび線中電 灯を携行している。	中央制御室にはメッテ リ内藤照明を設置して いる。また、ヘッドラ イトを配備している。	
作業	放射線環境	高級量になる場所はな 、、機性が可能であるも のの、汚染が予慮が予慮と ことから全面マスク等 を着用。		施藤県になる場所はな く、アウス、維存が目 機であるもの、海枠が目 機であるもの、海枠 子様されるによからボ ケット機関や発布し、 全国マスク等を着用。	高級量になる場所はな (人業性が可能であるも のの、汚染が予慮である。 ことから全面マスク等 を養用。		通常 運転時 と同程度	通常運転時と同程度	
	温度・湿度	新田山 マ 台湾 東北 東 いっぱん かいかい かいかい かいかい かいかい かいかい かいかい かいかい かい	外気と同程度	新豬妇 子帕玛斯 場更	河 路如子 船時聚場 壓	外気と同程度	新時 紀 子報時數 苯更	通常運転時と同程度	
	长兒	操作現場 (中央制御室)	接近経路 (R/B・A/B)	操作現場 (R/E)	操作現場 (中央制創室)	接近経路 (R/B・A/B)	操作現場 (R/B)	操作現場 (中央制御室)	
Parishe Mar As C. C.	実績時間	單苯基類		3 E	專業基果		19分	5分	
41.14c . 14c 48c 00	想定時間	廣宜実施		1 時間10分	超光过凝		5 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	5%	
本様が	Na. (資料和)	7.2.1.1 7.2.1.2 7.2.4		7.2.1.1 7.2.1.2 7.2.4	7.2.1.1 7.2.1.2 7.2.4	7. 4.1	03 65 약 약 단 단	7.4.7.7.4.2.2.4.3	
III Abrilda Securitati dili dec	A 中の4 生物数1・ 作業内容	原子炉格枘容器内水素 濃度確認		可模型アニュラス水素 後度計割据職取付け	アニュラス水素濃度値		格納容器隔離弁閉止	格納容器隔離弁閉止嫌作	
	作業項目	可傳型格納容器水 素濃度計測 ニッ ト配動		可様型アニュラス 水素濃度計割装置 取付け			格利容器隔離		
	× 8			39		04			

_	_							_
技術的	能力審査 基準No	1.4	1.4	1.4		1		f
	操作性	通常原子炉運転中と同じ	コ阿と中海繁政子国家原	通常原子与運転中と同じ	通常原子炉運転中と同じ	Ţ	通常行う非機作と同じであ り、容易に操作できる。	通常原子歩運転中と同じ
	連絡手段	ï	ী	- ×T-	² T	Ť	電力保安通信用電話設備の携帯 電話端末(PRS)を終行している。 また、電力保安通信用電話影幅 の携帯電話端末(PRS)が使用で きない場合は必要により携行型 通話装置を使用する。	ř
	その他 (騒音、足場等)	通常原子炉運転中と同じ	プ 回る 中端薫 ほそ 直 湯 薫	近常原子が運転中と同じ	2 回る中海運転中 5回 に	所襲社を有するアクセス ルートを設定している。	作業エリア周辺には、支 降となる設備はない。	通常原子炉運転中と同じ
作業環境	開開	中央制御室にはバッテ リ内護照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内議照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはパッテ リ内蔵原明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	アクセスルートにはバ ッテリ内臓照明を設置 している。また、ヘッ ドライトおよび修中電 灯を携行している。	作業エリア付近にはバ ッテリ内廣照明を設置 レている。また、ヘッ ドライトおよび終中電 灯を携行している。	中央制御室にはバッテ リ内臓照明を設置して いる。また、ヘッドラ イトを配備している。
作為	放射線環境	通常運転時と同程度	通常運転時と同程度	通常運動医	通常運転時と同程度		通常運転時と同程度	通常運転時と同程度
	温度・湿度	通常運転時と同程度	通常運輸時と同程度	通常運転時と同程度	通常運転時と同程度	外気と同程度	運常運転時と 同程度	通常運転時と同程度
	朱況	操作現場 (中央制御室)	操作現場 (中央制御室)	操作現場 (中央制御室)	操作現場 (中央制御室)	接近経路 (A/B)	操作現場 (A/B)	操作現場 (中央制御室)
Service Art A. S.	実績時間	2.93	82	4.93	異定主要		國 宜実施	1.9
all the . the olde go	線下・下楽の 想定時間	5分	5分	5分	画面実施		適宜失館	1.9
事	ハーフィス Na. (資料知)	7.4.1	7.4.1 7.4.3	7.4.1	7.4.3		7. 4. 5.	7.4.4
日本社会会理性事件	具体的/A型転換件・ 作業内容	高圧注入ポンプによる 炉心注水操作	光て ルポンプ による炉 心注水操作	燃料取替用水ビットに よる炉心注水操作	余熟除去系結隔離操作 (中央制御室操作)		余数 除主系体調えい原 因制在・隔離操作 (現場操作)	希釈停止操作
	作業項目	高田注入ボンブに よる炉心注水操作 名炉心注水操作 る炉心注水操作 皆科売費用水ビッ 下炉心注水操作 金額除去系統の隔 離操作			希釈停止操作			
Ma 42 43 43 43 43 43 43 43 43 43 43 43 43 43				45				

技術的	能力審查基基準No				1.13	_			
	熱作性	í ,	ホース経長・回収車による 可搬型ホース整設は、ホー スを展・回収車を選集しホースを がらホースが車上から引き がらホースが車上から引き にとから、整で整設もれたホー にとから、整要を対たホー にから、株本を にとから、体験でもはない。 は一名を がら様にて追加していく オースを表・回収を オースを表・回収を オースを表・回収を オースを表・回収を オースを オースを オースを オースを オースを オースを オースを オース	ी	※一次整接・回収単による 回線型ホース整接に、ホー がの非一ス整形に、ボー がのホースを整した がのボーンが単上がの引き 田 かれるにもできまれる 田 にから、地でを表はれる 田 にから、地でを表はれる エ とから 作業員が がら確認しながら作業員が がら確認しながら作業員が が、回収をは が、回収をは が、可能別を は、可以を が、可能別を には、 が、可能別を は、 が、可能別を は、 が、可能別を は、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、	ì	通常行う非操作と同じであ り、容易に操作できる。		
	创生 娱 聚		トランシーバ及び衛星電話設備 (衛星機帯電話) により連絡を 行う。	T	トランシーベ及び衛星電話設備 (衛星携帯電話) により連絡を 行う。		電力接交通信用電話設備の携帯 電話端末(的8)を幾行している。 また、電力保安通信用電話設備 の携帯電話端末(1813)が使用で きない場合は必要により携行型 通話装置を使用する。		
	その他 (騒音、足場等)	接近経路上に、支庫となる設備はない。	作業エリア周辺には、支 廃となる設備はない。 冬期間の風外作業では防 寒服等を着用する。	接近経路上に、支降となる設備はない。	作業エリア周辺には、支 廃となる設備はない。 冬期間の最外作業では防 楽服等を着用する。	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。		
作業環境	照明	夜間作業時は、ヘッド ライト及び撥中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び後中電灯に より操作可能である。	夜間作業時は、ヘッド ライト及び繁中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び後中電灯に より操作可能である。	アクセスルートにはバッテリ内機無明を設置 リーにいる。また、ヘッ ドライトはよび幾中電 灯を横行している。	ヘンドライトおよび撥 中電灯を携行してい る。		
伸	放射線環境		数键位 乙輪燈團 裝頭		新田紀 7 幸福 新原		通常運動 と同程度		
	温度・湿度	1	1	I	ı	外気と同程度	通常運転時と阿程度		
	状況	接近餐路 (量外)	操作現場 (配外)	接近経路 (屋外)	操作現場 (配外)	接近経路 (A/B, R/B)	操作現場 (R/B)		
Problem for the Co.	実績時間			3時間10分		2 0 %			
北北 北坡	想定時間		2 時間30分		1 時間 4 0分	40%			
24年	Na. (資料和)		7.1.2		다. 다.다. 아.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			
日休命会選問報告	作業内容	F 乗りむ 可模型ホース敷設、代替 育本・生水配配・上級 ホース基長 回収 和によ る可能型ホース敷設			ホース施長・回収率による可能を表現・回収率による可能を表示・文教院、可能が未大・ン学 オの実際、メング等間の可能をポートの可能を表現・アク等を表現を表現・アクを表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を		帯切着水にット書荷氷村構成 村構成		
	作業項目 構 気 発 生 器 トランド 水 離 条 (循 水) の注								
	Na	9							

技術的	能力審査 基準No				11.11.12.13.11.13.13					
	操作性	1	可搬型ホースはカップラ等 により容易かつ確実に接続 できる。	100	ホース経長・回収単による 可能型ホース整設に、ホー スを長・回収率を運転し、ホー スを日本のでは、水のボーンのでは、 がのゴースが車上がの引き 出いまり、でを検診したする とのが、一定でを検診があっまっ という。 製造が高いましてで が、ではではなった。 ボースを提出していてが ボースを提出していてが ボースを提出していてが ボースを提出していてが 作業であり。 作業であり。 作業であり。 作業であり。 作業をあたり、 作業であり。 作業をあたり、 作業であり。 作業をあたり、 イ本、 が、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、 は、	17	可模型ホースはカップラ等 により容易かつ確実に接続 できる。	ı		
	連絡手段			ï	トランシーバ及び衛星電話設備 (衛星携帯電話) により連絡を 行う。	Ĭ	トランシーバ及び衛星電話設備 (衛星機帯電話) により連絡を 行う。			
	その他 (騒音、足場等)	接近経路上に、支障となる設備はない。	作業エリア周辺には、支 離となる設備はない。 冬期間の最外作業では防 乗服等を着用する。	接近経路上に、支障となる設備はない。	作業エリア周辺には、支 降となる設備はない。 冬期間の風外作業では防 寒服等を着用する。	接近経路上に、支庫となる設備はない。	作業エリア周辺には、支 麻となる設備はない。 冬期間の最外作業では防 寒服等を音用する。	接近経路上に、支廉となる設備はない。	作業エリア周辺には、支 降となる設備はない。 冬期間の寛外作業では防 寒服等を着用する。	
作業環境	照明	夜間作業時は、ヘッド ライト及び骸中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び骸中電灯に より操作可能である。	夜間作業時は、ヘッド ライト及び酸中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及で幾中電灯に より操作可能である。	夜間作業時は、ヘッド ライト及び懐中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び機中電灯に より操作可能である。	夜間作業時に、ヘッド ライト及び後中電灯に より接近可能である。	皮間作業時は、ヘッド ライト及び修中電灯に より操作可能である。	
相	放射線環境	声楽量になる場所はな ・ 挙作が可能であるも 〇〇 まなれる書き	ことから全面マスク等 を着用。 を着用。		運幣 運転時 と同程度		通常運転時と同程度		通常運転時と同程度	
	温度・湿度	I	I	I	I	ı	I	I	ı	
	铁泥	接近経路 (屋外)	操作現場 (屋外)	接近程路 (屋外)	操作現場 (個外)	接近経路 (屋外)	操作現場 (屋外)	接近程路 (屋外)	操作現場 (周外)	
British Att A. C. C.	実績時間				1時間30分				2 時間3 0 分	
排体, 体物小	想定時間	1 Bellin 1 0.45	1 mplu 1 0 35		50 OS		2時間20分		1時間15分	
事故	No. (資料版)	7.3.1	7.3.2		ca 연연 단단		1 前機型ホース整設、ホース・3.1 ス延長・回収率による可 発型ホース整設		7. 3. 1. 3. 2. 2. 2. 2. 2. 3. 1. 3. 3. 1. 3. 3. 1. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3. 3.	
III Alexandra des constata de tabandos	作業内容	作業内容 作業内容 本一ス態度 回収 単による 可能をよって影像 本型大幅送 ポンプ車 の の の を							ホース結長・回収車によるの所を記していません。 (国収車によるの所を対象) 内	
	作業項目				使用済勢 科ピット への打水桶原(沙 4・鉱土水桶原(淡	Code C				
	Na	40 C PC								

技術的	能力審查 基準No	i)		<u></u>		113				1.1.13	
	操作性	51	T	可機型ホースはカップラ等 により容易かつ確実に接続 できる。	i	は他の表現を表現を表現を表現を表現を表現を表現を表現を表現を可能を可能を可能を表現を可能を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を		可模型ホースはカップラ等 により容易かつ確実に接続 できる。	1	ホース施表・回収車による 可機型ホース機能は、ホー ス施長・ロの収率を選供し、ホー スを製砂ルートを移動した からオースが電上から引き といってのでは、大力を でしてのでは、大力を でしてのでは、大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を があった。 大力を から、 大力を があった。 大力を があった。 大力を があった。 大力を から、 たった。 たった。 たった。 たった。 たった。 たった。 たった。 たった	
	連絡手段	エ渉 帯電話 により連絡を 国		トランシーバ及び衛星電話設備 (衛星携帯電話) により連絡を 行う。	Ť	トランシーバ及び衛星電話設備 (衛星携帯電話) により連絡を 行う。	ī	トランシーバ及び衛星電話設備 (衛星機帯電話) により連絡を 行う。			
	その他 (騒音、足楊等)	接近経路上に、支障となる設備はない。	接近経路上に、支障となる設備はない。	作業エリア周辺には、支 廃となる設備はない。 冬期間の屋外作業では防 寒服等を着用する。	接近経路上に、支障となる設備はない。	作業エリア周辺には、支 解となる機能なたい。 冬期間の風外作業では防 楽服等を着用する。	接近経路上に、支障となる設備はない。	作業エリア周辺には、支 障となる設備はない。 冬期間の最外作業では防 寒服等を着用する。	接近経路上に、支障となる設備はない。	作業エリア周辺には、支 降となる設備はない。 冬期間の最外件業では防 兼服等を着用する。	
作業環境	照明	夜間作業時は、ヘッド ライト及び餐中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び機中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び機中電灯に より操作可能である。	夜間作業時は、ヘッド ライト及び篠中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び後中離灯に より操作可能である。	夜間作業時は、ヘッド ライト及び篠中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び機中電灯に より操作可能である。	夜間作業時は、ヘッド ライト及び懐中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び修中電灯に より操作可能である。	
伸	放射線環境	運営運転 と同程度		通常運転時と同程度		通常連続等と同語機関	【炉心損傷がない場合】 通常運転時と同程度	保心性療験がある場合 高線量及び符集機能 なりうちものの、ボケッ 下線量計を排行し、汚染 防護服及び全面マスク 砂等用により養紅く低 減が図られるため、作業 は可能である。		通常連合で同程度	
	温度・湿度	I	ı	I	ı	I	ı	I	I	ı	
	铁泥	接近経路 (屋外)	接近経路 (量外)	操作現場 (屋外)	接近経路 (屋外)	操作現場 (個外)	接近経路 (屋外)	操作現場 (屋外)	接近経路 (屋外)	操作現場 (照外)	
mentions where as the con-	実績時間	45 <i>分</i>		2時間25分		1時間31分				3 nkm3	
All the the olds on	然に時間	1 時間		記盤を		2. Big-fitty		2 時間2 0分		1 時間4 0 分	
事故	Na (資料版)	7.3.1		7.3.2		૧ ૧ ૧ ૧ ૧	7.1.2 7.1.3 7.2.1.1 7.2.1.2 7.4.2		7.4.2		
IN TACAL SA SEEDING ARE TA	メートリンム 生化 次 ドー・ 作業内容	代替給水ビット、原水槽の状況確認	可機型ホース敷設、ホー	ス延長・回収率による可 撤型ホース敷設		ホーメ施長・回収車による も可能がポーメ解説・可 を と と の可能能・ボンブ車 の可能能・ボンブ車 の可能能・ボンブ車 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、 が、	可報型ホース整般、ホース整要・回収率による可 ・ 本一ス整要・回収率による可 ・ 本一ス整要・回収率による可 ・ 本一ス整要・回収率によ ・ 本一ス整要・回収率によ ・ 本一次を要・回収率によ ・ 本一次を要・回収率によ ・ 本一次を要・回収率による可 ・ 本一次を要・回収率による可 ・ 本一次を要・回収率による可能を表すができます。		ボース強長・回収車による可能を対して実際、可 あり重要がよって実際、可 みの設備、ボンブ車周辺 の可能数・インブ車 の可能数・インブ車周辺 が、大大車周辺 が、大大車周辺 が、大大車周辺 が、大大関係		
	作業項目	毎用労務等にット への許米羅米(淡 水・海米)							使用済然やビット への注水薄梁(海 水)		
Ĺ	Na	# C 本						88 一			

技術的	能力審査 基準No				1.1.55	2						1.13
	操作性 借	5	ホース磁長・回収率による 可需量法十一次解記・、ホー が展表・回収率を運転しか からオースが推上から引き 出されることで整設される 出されることで整設される 出されることで整設される コースが高いたがら作業員が 大き様になっている。 大き様にには関していく 作業であり容易である。ま が第二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十	設備する水中ボンブは棒盤 花ものであり入力で降下設 できる。 中子が維維が出来る落在監 接続施可、の可機型ホース 接続推断への可機型ホース 接続作業は、一般的な中盤 等作業であり、容易に実施 できる。		通常原子が運転中と同じ	T)	通常行う非機作と同じであ	り、容易に操作できる。	ij	工具を使用することなく取 付けできるよう顕像してい ることから容易に実施でき る。	通常原子が運転中と同じ
	連絡手段	~	トランシーバ及び衛星電話設備 (衛星携帯電話) により連絡を 行う。			T	η	電力保安通信用電話設備の携帯 電話端末(PHS)を携行している。 また、電力保安通信用電話設備	の携帯電話端末(PKS)が使用できない場合は必要により携行型通話装置を使用する。	Ĩ	電力保存通信用電話設備の携帯電話指表 (1815 を携行している。 また、電力保安信用電話設備 の場構電話端末 (1815 が使用で きない場合は必要により携行型 通路装置を使用する。	ľ
	その他 (騒音、足楊等)	接近経路上に、支廉となる設備はない。	作業エリア開辺には、支 様となる股側はない。 今期間の整外体質では防 楽服等を著用する。			通貨原子が運動中と同じ	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支		耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 障となる設備はない。	国名 単連 原本 子宮 連 原 子 宮 田 子 国 原 田 子 国 ア 国 ア
作業環境	展開	夜間作業時は、ヘッド ライト及び機中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び勝中電灯に より操作可能である。		中央制御室にはバッテ	リ内臓照明を設置している。また、ヘッドライトを配備している。	ヘッドライトおよび懐 中電灯を携行してい る。	作業エリア付近にはバ ッテリ内蔵照明を設置 コテロス キャーヘッ	している。また、ころ ドライトおよび核中電 灯を携行している。	ヘッドライトおよび機 中電灯を携行してい る。	ヘッドライトおよび撥 中電灯を携行してい る。	中央制御室にはバッテ リ内臓関明を設置して いる。また、ヘッドラ イトを配備している。
作為	放射線環境		(年の企業権がない。集合 通常運転時と同程度 一部企業権がある。 所職企業及び等保護権合 たりっちもの・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		【炉心損傷がない場合】 通常運転時と同程度 「右かねをあるとは合】	高級量になる場所はな く、操作が可能であるも のの、汚染が手器される ことから全面マスク等 を着用。	【炉心損傷がない場合】 通常運転時と同程度 【炉心損傷がある場合】	高線量になる場所はな く、アクセス、操作が可 能であるものの、汚染が き継さかるものの、汚染が	アポミれることがらホ ケット線量計を携行し、 全面マスク等を着用。	【炉心損傷がない場合】 通常運転時と同程度	「伊心機能がある場合】 高線量になる場所はな く、アクセス、線作が可 能であるものの、汚染が チ型をあることからボ ケット線量料を繋行し、 全面マスク等を着用。	通常運転時に同程度
	温度・湿度	外気と同程度	通常運転時と 同程度			通常運転時と同程度	外気と同程度	単田園 へ田 単純 停帆		外気と同程度	通常運転時と同程度	通常運転時と同程度
	状況	接近経路 (R/B・屋外)	操作现場 (R/B·曆外)	屋西側を経更]		操作現場 (中央制御室)	接近経路 (A/B・R/B)	操作現場	(A/B • R/B)	接近経路 (A/B・R/B)	操作現場 (R/B)	操作現場 (中央制御室)
and the state of t	実績時間		証金で	【3号炉原子炉建屋西たルートの設定変更】	6分	5%	35分	31%	29分		50分	6%
All the the others	※ 中・中 素の 想定時間	迎 职	4 時間 1 0 分	追而【3 由したル	20分	20分	1時間	1時間	50分		1 時間	20分
事故	Na. (資料級)		7.1.2 7.1.3 7.2.1.1 7.2.1.2 7.4.2		7.1.2	7.2.1.1	7.1.2	7.2.1.1		7.1.9	7.2.1.1 7.2.1.2 7.2.1.2 7.4.2	7.1.2
H Jacks Assemble the	************************************		日報題ホース教授、原子 存組職活却な系統のエース教際日と教院、テース教際日と教院、テースを表記の主義をディースを表記の主義をディースを表表をディースを表示して表現、中報と、オースを表現、オース教授、一部の日報をディーンを表現、一部の日報を表現である。		次班本港 中华铝彩 野蜂	出来者権成 出来結構成 (中央制御室操作)	All while the six of the block and the	格割 谷器 四日 添对流信 却系統構成 (現場操作)			可樂型温度計測裝置取付け	A - 衛圧注入ボンブへ の組織内却体(部外) 通 水系砕構度 (中央地御監操作)
	作業項目					原子存储機治却水 系統への通水確保 (海水)						
L	Na					49						

技術的	能力審查 基準No		1.13			1.4						
	操作性		通常行う非機能と同じであり、容易に操作できる。		近常原子が運転中と同じ	河原発車が高速を	Î	可機型ホースはカップラ等 により容易かつ確実に接続 できる。	j.	ホース施長・回収車による 可機型ホーンを際に、ホー 不整長・回収車を離化した からホースが乗上から引き 出されることで整限される にから、整股されたホー とから、複数できたが、 大を確認しながら件業員が から株上でで配置がある。 でをたてて値配していく 作業であり等のの多の。 から株皮がでいた 作業であり等のである。 作業でありまりである。 作業でをがは、 が関係できる。 特別がのが が関係できる。 特別がのが が関係できる。 が が が が が が が が が が が が が	Î	通常行う井製作と同じであり、容易に操作できる。
	連絡手段	ř.	電力保安通信用電話設備の携帯 電話端末(PHS)を携行している。 また、電力保安通信用電話設備	の携帯電話端末(PRS)が使用できない場合は必要により携行型 通話装置を使用する。	T	Ĩ	ï	トランシーバ及び撤星電話股備 (衛星携帯電話) により連絡を 行う。	ï	が奪取電話設備 により連絡を により連絡を		電力保安通信用電話設備の携帯 電話指載を(特S)を横行している。 また、電力保金値信用電話配備 の地帯電話端末で(MS)が使用で きない場合は必要により携行型 通路設置を使用する。
	その他 (騒音、足楊等)	耐震性を有するアクセス ルートを設定している。	作業エリア周辺には、支		通常原子炉運転中と同じ	通常原子が運転中と同じ	接近経路上に、支靡となる設備はない。	作業エリア周辺には、支 離となる設備はない。 冬期間の最外作業では防 寒服等を着用する。	接近経路上に、支靡となる設備はない。	作業エリア周辺には、支 解となる機能ない。 条期間の配条件業では防 楽服等を着用する。	所震性を有するアクセス ルートを設定している。	作業エリア周辺には、支 廃となる設備はない。
作業環境	照明	ヘッドライトおよび懐 中電灯を携行してい る。	作業エリア付近にはバッテリ内臓照明を設置 コテンス・キャ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	レン・つ。また、ヘッドライトおよび餐中電灯を携行している。	中央制御室にはパッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	中央制御室にはバッテ リ内蔵照明を設置して いる。また、ヘッドラ イトを配備している。	夜間作業時は、ヘッド ライト及び篠中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び核中電灯に より操作可能である。	夜間作業時は、ヘッド ライト及び懐中電灯に より接近可能である。	夜間作業時は、ヘッド ライト及び後中電灯に より操作可能である。	アクセスルートにはバ ッテリ内機照明を設置 している。また、ヘッ ドライトおよび篠中電 灯を携行している。	ヘッドライトおよび機 中電灯を携行してい る。
作	放射線環境		通常運転時と同程度		通常運転時と 阿程度	通常運転時と同程度	高線量及び汚染環境と なりうるものの、ボケット線量計を携行し、汚染	防護服及び全面マスク 等着用により被ばく低 減が図られるため、作業 は可能である。		高級を及び存換機と イなりの存換機と イなりのの、対タッ 大変を 体験を 等機能を 等機能の は が は は が は が は が は が は が は が は が は が は が は が が が が が が が が が が が が が	高線量になる場所はな く、アクセス、操作が可	順であるbOOA (特殊が 予慮されることからが ケット機能計を携行し、 全面マスク等を着用。
	温度・湿度	外気と同程度	aye explored "1" open capters; aper 200	地の 迷れ 呼 には (現代)	通常運転時と同程度	通常運転時と同程度	ı	ı	ı	ı	外気と同程度	通常運転時と同程度
	状況	接近経路 (A/B・R/B)	操作現場	(A/B • R/B)	操作現場 (中央制御室)	操作現場 (中央制御室)	接近経路 (屋外)	操作現場 (屋外)	接近経路 (配外)	操作現場 (周外)	接近程路 (A/B, R/B)	操作現場 (R/B)
the close Add to the con-	実績時間	35分	31%	15分	4.93	88				3時間10分		20分
4.16.16·46.00	然に時間	1 時間	1時間	25分	10分	5分		2 時間3 0分	1時間40分			40分
神 拉	- 12		7.1.2		7.1.2 7.1.3 7.4.1 7.4.2 7.4.2	7.1.2 7.1.3 7.4.1 7.4.2 7.4.3	ŧ	7.2.1. 2.1.2.1. 2.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.1.2.2.1.2.2.1.2.2.1.2.2.1.2		7.7. 7.7. 7.7. 7.7. 7.9. 7.9. 7.9. 7.9.		7.2.1.2
in the left of states and the	************************************		A - 高圧注入ポンプへ の補機冷却水 (海水) 通 水系結構成 (現場操作)		A一高圧注入ポンプ系 結構成	A — 高圧注入ポンプ起動	可機型ホース敷設、代替のようシューンを記した。	箱 本・注水配置と 接続、 ホース延長・回収車によ る可模型ホース敷設	らり散型ホース酸版、可 ・ ロの ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・			添料収容用水ビット補給系統構成 治系統構成
	作業項目		原子炉補機冷却水 系統への通水確保 (循水)		東土軍務聯運転過	中 本				然科技事用水ビット・9年 大ビット 9年 条 (希永)		
23 24 X												

運転員操作余裕時間に対する解析上の仮定について

重大事故等が発生した場合の対応は、運転要領に基づいて実施するため、解析上は、 事象進展に従って適宜運転員が必要な操作を行うことを仮定しているが、運転員操作の 仮定に際しては、操作余裕時間を考慮している。具体的には、以下に示すとおりである。

- (1) 運転員操作余裕時間に関する基本設定
 - 有効性評価の解析において仮定した運転員操作余裕時間設定については、以下のと おり大きく5つに分類できる。
 - (a) 中央制御室での警報発信等を起点として中央制御室で操作するもの
 - ・警報等の発信時点+10分
 - (b) 上記操作に引き続き中央制御室で操作するもの
 - · 上記操作+1分
 - (c) 中央制御室で監視するパラメータにより、条件を満足したことを起点として中央 制御室で操作するもの
 - · 条件満足時点+10分
 - (d) 中央制御室で監視するパラメータにより、条件を満足したことを起点として現場 操作を伴うもの
 - ·条件満足時点+30分*
 - (e) 個別の運転操作に必要な時間を考慮
 - ※:訓練等に基づく実移動時間や、操作等に必要な時間を現実的に想定した上で、 余裕時間内に十分に対応できることを確認している。
- (2) 重要事故シーケンス等毎の運転員等の操作余裕時間

重要事故シーケンス及び評価事故シーケンス毎に考慮している運転員等の操作余裕 時間について表1のとおり整理した。

運転員操作余裕時間に対する評価上の仮定の整理 (1/5) 表1

⁽a) 中央制御室での警報発信等を起点として中央制御室で操作するもの(警報等の発信時点+10分)

⁽b) 上記操作に引き続き中央制御室で操作するもの(上記操作+1分)(c) 中央制御室で監視するペラメータにより、条件を満足したことを起点として中央制御室で操作するもの(条件満足時点+10分)

⁽d) 中央制御室で監視するパラメータにより、条件を満足したことを起点として現場操作を伴うもの (条件満足時点+30分)

⁽e) 個別の運転操作に必要な時間を考慮

代替電源又は電源は、当該操作に間に合うよう準備する ≈ ×

運転員操作余裕時間に対する評価上の仮定の整理 (2/5) 表1

(1) 連転員深下が始時間に対する計画工でで戻せてませて、2)	運転員操作等 解析上設定した操作時間 考え方※1	次系強制冷却 非常用炉心冷却設備作動信号発信+10 (a)、(b) (中央操作) 分で補助給水流量確認、さらに主蒸気逃 ・主蒸気逃がし弁開放 がし弁操作に+1分	・替再循環 (4) (中央操作、現場操作) ・格納容器スプレイによる炉心注入	次系強制冷却 非常用炉心冷却設備作動信号発信+25 (e) 1次系、2次系、放射線モニタ等の パラメータからのインターフェイス システムLOCAの発生判断、プラント 状態把握、余熱除去系遠隔隔離操作、 2次系強制冷却操作時間を考慮し た。	破損側蒸気発生器の隔離 ①原子炉トリップ+10分で破損側蒸気 ①(a)、(b) (中央操作) 発生器への補助給水停止、主蒸気隔離弁閉止 ・主蒸気隔離弁閉止 ンプ駆動蒸気元弁閉止操作開始、十 ・タービン動補助給水ポンプ駆動蒸 約2分で操作完了 気元弁閉止 ②破損側蒸気発生器の隔離操作完了+ (中央操作) 1分
女 1 建羟瓦米卜尔ヤ时间	運転員操作等	2 §	(中	2 % (H)	(中)
		ECCS注水機能喪失 (中破断LOCA+高圧注入失敗)	ECCS再循環機能喪失 (大破断LOCA+高圧再循環失敗+低 圧再循環失敗)	格納容器バイパス が (インターフェイスシステムLOCA) 賃 防 止 対 数 数	が 格納容器バイパス (蒸気発生器伝熱管破損+破損蒸気 発生器隔離失敗)

⁽a) 中央制御室での警報発信等を起点として中央制御室で操作するもの (警報等の発信時点+10分) -**

⁽b) 上記操作に引き続き中央制御室で操作するもの(上記操作+1分)(c) 中央制御室で監視するペラメータにより、条件を満足したことを起点として中央制御室で操作するもの(条件満足時点+10分)

⁽d) 中央制御室で監視するパラメータにより、条件を満足したことを起点として現場操作を伴うもの(条件満足時点+30分)(e) 個別の運転操作に必要な時間を考慮

運転員操作余裕時間に対する評価上の仮定の整理 (3/5) 表1

	割 考え方 ^{※1}	(p)	①(c)、(e)早期の電源回復不能判断時点から現場操作に着手し、炉心溶融までに準備完了していることから、中央操作+10分とした。	(p) (©	
	解析上設定した操作時間	炉心溶融開始+30分	①炉心溶融開始+10分	②炉心溶融開始+30分	I
文· AP文本:AP文本:APA A A A A A A A A A A A A A A A A A A	運転員操作等	代替格納容器スプレイポンプによる代 替格納容器スプレイ ^{※2} (現場操作) ・代替格納容器スプレイポンプによ る格約容器へのスプレイ	①加圧器逃がし弁による1次系強制減 圧 (中央操作、現場操作) ・加圧器逃がし弁空気供給	②代替格納容器スプレイポンプによる 代替格納容器スプレイ (現場操作) **2・代替格納容器スプレイポンプによる格納容器へのスプレイ	なし
		格納容器過圧破損、原子炉圧力容器 外の溶融燃料ー冷却材相互作用及び 溶融炉心・コンクリート相互作用 (大破断LOCA + ECCS注入失敗 + 格納 容器スプレイ注入失敗)	格納容器過温被損及び高圧溶融物放 出/格納容器雰囲気直接加熱 (全交流動力電源喪失+補助給水失 敗)		水素燃焼 (大破断LOCA+ECCS注入失敗)
			春	防止対策	

(a) 中央制御室での警報発信等を起点として中央制御室で操作するもの(警報等の発信時点+10分) ... **

(b) 上記操作に引き続き中央制御室で操作するもの(上記操作+1分)(c) 中央制御室で監視するパラメータにより、条件を満足したことを起点として中央制御室で操作するもの(条件満足時点+10分)

(d) 中央制御室で監視するパラメータにより、条件を満足したことを起点として現場操作を伴うもの (条件満足時点+30分)

(e) 個別の運転操作に必要な時間を考慮

代替電源は、当該操作に間に合うよう準備する % %

運転員操作余裕時間に対する評価上の仮定の整理 (4/5) 表1

	考え方*1	(e) 使用済燃料ピット中央水面の線量率 が燃料取扱時の燃料取扱棟の遮蔽設計 基準値0.15mSv/hに相当する水位まで 低下する約1.6日後までに給水を開始 することが可能。	(e) 使用済燃料ピット中央水面の線量率 が燃料取扱時の燃料取扱棟の遮蔽設計 基準値0.15mSv/hに相当する水位まで 低下する約1.0日後までに給水を開始 することが可能。
医哲具法厅尔伯哈人》,2时间上70次元706年(47.0)	解析上設定した操作時間		l
女 1 建铁瓦米尼水イ西间(2人) 7.	運転員操作等	可搬型大型送水ポンプ車による給水 (現場操作)	可搬型大型送水ポンプ車による給水(現場操作)
		想定事故 1 (使用済燃料 ピット冷却系及び補給 水系の故障)	想定事故 2 (使用済燃料ピット冷却系配管の破断)
		使用済燃料ピット	燃料損傷防止対策
•			

(a) 中央制御室での警報発信等を起点として中央制御室で操作するもの(警報等の発信時点+10分) . *

⁽b) 上記操作に引き続き中央制御室で操作するもの(上記操作+1分)(c) 中央制御室で監視するパラメータにより、条件を満足したことを起点として中央制御室で操作するもの(条件満足時点+10分)(d) 中央制御室で監視するパラメータにより、条件を満足したことを起点として現場操作を伴うもの(条件満足時点+30分)(e) 個別の運転操作に必要な時間を考慮

表1 運転員操作余裕時間に対する評価上の仮定の整理(5/5)

運転員操作等解析上設定した操作時間 考え方*1	崩壊熱除去機能喪失(余熱除去系の ② 代替注入手段の準備(現場操作)**2 (余熱除去機能喪失) ③ 代替格納容器スプレイポンプによ (全熱除去機能喪失) ③ 代替格納容器スプレイポンプによ (会熱除去機能喪失)	立交流動力電源喪失 ① 状況判断 事象発生+60分 (e) 全交流動力電源喪失時では、代替電(全交流動力電源喪失時では、代替電(全交流動力電源喪失時では、代替主入手段の準備、現場操作) (全交流動力電源喪失 + 原子炉補機 ② 代替注入手段の準備(現場操作) 33 代替格納容器スプレイポンプによ 本入操作に余裕を見込んで60分とした。 5 は入(現場操作) た。	頂子炉冷却材の流出 ① 状況判断及び充てんポンプによる注入(中央操 余熱除去機能喪失+20分 (e) 状況判断及び充てんポンプによる注 入に余裕を見込んで20分とした。 村の流出) 作)	5応度の誤投入 希釈停止操作 「中性子源領域炉停止時中性子東高」警 (c) (1 次系補給水ポンプ 2 台の誤作 報発信+10分 ・1 次系補給水ポンプ停止、弁閉止
	崩壊熱除去機能喪失(故障による停止時冷却権 (余熱除去機能喪失)	(H) %:	表	反応度の誤投入 (1 次系補給水ポンフ 動)
		運転停止中の燃	料損傷防止対策	

(a) 中央制御室での警報発信等を起点として中央制御室で操作するもの(警報等の発信時点+10分) ... **

(b) 上記操作に引き続き中央制御室で操作するもの(上記操作+1分)

(c) 中央制御室で監視するパラメータにより、条件を満足したことを起点として中央制御室で操作するもの (条件満足時点+10分)

(d) 中央制御室で監視するパラメータにより、条件を満足したことを起点として現場操作を伴うもの (条件満足時点+30分)

(e) 個別の運転操作に必要な時間を考慮

※2 代替電源は、当該操作に間に合うよう準備する

有効性評価における作業と所要時間(タイムチャート)の基本的な考え方について

1. 基本事項

(1) 状況判断時間

事象発生から 10 分間は状況判断、作業準備等を行う想定とし、運転員等の操作は実施しないものとする。

(2) 適宜実施を用いる対応操作

「適宜実施」は特定のタイミングで実施せず、状況に合わせて対応する操作に対して使用する。なお、他操作との重複を許容するが、他の操作を優先した場合であっても作業の成立性に影響のない場合に限定する。

(3) 故障機器等の機能回復操作

フロントライン系機能喪失時は故障機器等の機能回復操作を試みるが、有効性評価では夜間・休日の限られた要員で対応を行う想定であることから、実施できることは限られており、原因不明又は早期の復旧が不能と判断すればそれ以上の機能回復操作を実施せずに、炉心損傷防止又は格納容器破損防止のために速やかに手順に従った対応を進める必要がある。

フロントライン系機能喪失は様々な要因が考えられるが、有効性評価では故障原因 を具体的に特定しているものではないため、各事象共通で以下の内容とする。

a. 中央制御室における機能回復操作

対応内容としては動作不能となったポンプの再起動操作、弁操作等が考えられるが、何れも短時間で対応可能なことから一律5分とし、その後は各操作間の余裕時間等で再度回復を試みることを想定して適宜実施とする。

b. 現場における機能回復操作

故障機器等へのアクセス及び早期復旧不能等の判断に要する状況確認時間を考慮 して一律 10 分とし、その後は各操作間の余裕時間等で再度回復を試みることを想定 して適宜実施とする。

(4) 原子炉安定停止に向けた対応手段

原子炉安定停止に必要な対応手段はタイムチャートに記載を行う。ただし、安定停止に向けた操作が通常のプラント停止操作等と同様の対応である場合は、作業の成立性に問題は生じないことから特別記載を行わないものとする。

2. 連続作業の考え方

タイムチャートでは極力早期に各設備を待機状態にできるような要員の動きとするため、可能な場合は基本的に連続作業の形をとることとするが、その考え方を以下にまとめる。なお、運転員による中央制御室での操作は負荷が小さく、作業の連続性は問題とならないことから現場操作についての考え方を示す。

(1) 屋内作業における連続作業の考え方

a. 作業の連続性に対する考慮事項

比較的短時間の間に複数の操作の対応にあたることから、作業が不測の事態により遅延する可能性を考慮し、解析でクレジットをとっている時間(以下、使命時間という。)をもつ作業を同一要員に連続して実施させない。

b. 作業の負荷に対する考慮事項 操作対象の数、操作量、移動距離等を考慮し、負荷の大きい作業については連続 して実施させない。

(2) 屋外作業における連続作業の考え方

- a. 作業の連続性に対する考慮事項 比較的長時間に亘る対応となることから、以下を考慮して作業を設定する。
 - (a) 操作実績に対して十分な裕度が各作業時間において確保されていることを確認 した上でタイムチャートの作業を設定し、多少の遅延が生じても成立性に影響が 生じないようにする。
 - (b) 連続して実施する作業は、使命時間に対して大きな裕度があることを確認した上でタイムチャートの作業を設定し、状況に応じて休憩等の対応を可能とする。
- b. 作業の負荷に対する考慮事項
 - (a) ホース延長回収車を用いたホースの敷設等、人力に頼る部分を極力低減した作業 内容となっていることを確認した上でタイムチャートの作業を設定する。
 - (b) 可搬型大型送水ポンプ車による送水作業は4人の災害対策要員で一連の作業を 行うことから、要員の役割を固定せずに担当作業の入替えを行っての対応を可能 とする。なお、タイムチャートでは要員の記号に「'」を付記し、入替え可能と いうこと示す。これにより、要員の疲労の状況によっては、負荷の少ない操作と 担当を交代する等、状況に応じた対応を可能とする。
 - (c) 万一、疲労等により対応不能となった要員が発生した場合には、サポート的な配置としている災害対策要員3名と交代して対応を行うこととする。また、屋外作業は比較的長時間が経過した後の対応であり、現実的には発電所構外からの参集者に期待できることから、参集要員との交代による対応も考慮する。

3. 技術的能力の手順との整合性

技術的能力はそれぞれ条文で要求される機能別に考えうる故障想定から対応手段を選 定し、手順の優先順位等を定めたもの(機能ベースの手順)となっている。

一方、有効性評価は事象ベースであり、夜間・休日における限られた要員での対応を 示していることから、技術的能力で選定した手段を優先順位通りに全て実施するもので はなく、重大事故等対処設備を用いた手段を中心に選択して実施する必要がある。また、 手順着手の判断基準に該当しないが、その後の事象の進展を考慮し先行して準備を実施 する場合や有効性評価条件に合わせた対応を示している場合もある。

なお、有効性評価のような事象ベースにおいても迷わず対応可能なように、手順着手の判断や優先順位を事前に検討の上で運転手順書(運転要領)を策定しており、発電課長(当直)は判断を誤ることなく対応が可能となっている。

以下に技術的能力の手順との整合性についての有効性評価における考え方を示す。

(1) 基本的な考え方

- a. 有効性評価における作業の所要時間及び必要要員は技術的能力で整備されている 手順と整合を図るが、以下を考慮する。
 - (a) 他の手段と共通する対応操作がある場合等については、その手順の省略を可能 とする。
 - (b) 技術的能力のタイムチャートはその手順を単独で行った場合の流れを示しているが、有効性評価は状況により他作業と並行して対応を進める必要があることから、作業の成立性に影響がない場合には、中央制御室及び現場操作の実施タイミングは実際の対応に沿った内容とする。
- b. 手順の優先順位及び着手の判断基準は技術的能力で整備されている手順と整合を 図るが、(2)以降に示す内容を考慮する。
- c. 通常の運転操作等、技術的能力に該当しない操作は訓練実績等に基づき設定した内容とする。(通常の運転操作等の想定時間及び実績時間については添付資料 6.3.1 「重大事故等対策の有効性評価における作業毎の成立性確認結果について」のとおり。)

(2) 対応要員等に対する考慮事項

有効性評価は夜間・休日の限られた要員での対応を想定するため以下を考慮する。

a. 有効性評価上期待しない手順については、原則、最も優先順位の高い対応手段のみを実施する。なお、SG 直接給水用高圧ポンプによる蒸気発生器への注水については高揚程のポンプであり補助給水ポンプの代替手段として有効なため、第2手段ではあるが対応を行う。

- b. 複数の手順着手の判断基準に該当した場合は、使命時間内に各手順が達成可能なように順序立てて着手を行う。
- c. サポート系機能喪失時は対応操作が多岐に亘ることから以下を考慮する。
 - (a) 注水等に用いる水源の選択については、使命時間内に確実に注水可能な手段として、重大事故対処設備を用いた手段である海水を選択する想定とする。
 - (b) 可搬型設備による使用済燃料ピットの状態監視については、漏洩が発生している ものではなく、常設設備により水位等の監視が可能であることから、他の操作を 優先する。本手順は対応可能となった時点での着手とする補助的な位置付けの対 応となることから、有効性評価上は特別記載を行わない。
 - (c) 格納容器水素イグナイタ起動については、炉心損傷に至らないと判断した場合、 格納容器内の水素濃度上昇を伴わないことから、他の操作を優先する。本手順は 対応可能となった時点での着手とする補助的な位置付けの対応となることから、 有効性評価上は特別記載を行わない。

(3) 事象進展に対する考慮事項

重要事故シーケンスの中でもサポート系機能喪失時はプラント状態が厳しくなることから、その後の事象進展の可能性を考慮し以下の対応とする。

- a. 炉心損傷防止対策の場合であっても炉心損傷に至った際の代替格納容器スプレイポンプの炉心注水から CV スプレイへの切り替えを考慮して、B 充てんポンプ(自己冷却)による代替炉心注水の準備を行う。また、アニュラス内の水素排出及び被ばく低減を考慮して、B アニュラス空気浄化ファンの準備及び起動を行う。
- b. 全交流動力電源喪失の場合は、常設直流電源の喪失を考慮して、可搬型計測器によるパラメータ計測又は監視の準備を行う。
- c. 全交流動力電源喪失 (RCP シール LOCA が発生しない場合) の場合は、シール LOCA への事象進展を考慮して、代替格納容器スプレイポンプによる代替炉心注水の準備、 1 次冷却材ポンプ封水戻り隔離弁等の閉止及び中央制御室非常用循環ファンの準備及び起動を行う。

(4) 有効性評価条件に対する考慮事項

a. 共通事項

有効性評価では操作開始条件等に保守性を持たせている場合があるため、技術的 能力の手順と異なったとしても有効性評価に合わせた条件とする。

- b. 全交流動力電源喪失 (RCP シール LOCA が発生しない場合)
 - (a) 有効性評価の審査ガイドに従い、交流動力電源は24時間使用できないものとすることから、代替非常用発電機以外の電源復旧作業には着手せず、24時間後に代替非常用発電機による給電が開始される想定とする。

(b) 有効性評価の審査ガイドに従い、常設直流電源は24時間にわたり、重大事故等の対応に必要な設備に電気の供給を行えるものとすることから、可搬型直流電源用発電機及び可搬型直流変換器による代替電源(直流)からの給電には着手しない想定とする。

c. 原子炉補機冷却機能喪失

全交流動力電源喪失と同じ重要事故シーケンスを選定しており、事象の推移が同一となることから、電源の回復操作に関する手順以外は同様の対応を行う想定とする。

d. 原子炉停止機能喪失

有効性評価では事象発生後 10 分間は運転員等の操作に期待しないことから、共通 要因故障対策盤(自動制御盤)(ATWS 緩和設備)の作動状況の確認後に手動による原 子炉手動トリップ操作を行う想定とする。

e. 水素燃焼

炉心損傷に至るため、再循環運転に移行しない可能性があるが、有効性評価条件 に合わせて格納容器スプレイポンプの再循環運転を継続し、格納容器内自然対流冷 却には着手しない想定とする。

f. 崩壊熱除去機能喪失 (RHR の故障による停止時冷却機能喪失)

ディーゼル発電機による給電が可能であることから、充てんポンプを用いた炉心 注水が可能であるが、全交流動力電源喪失(停止時)と同一条件で評価しているこ とから、全交流動力電源喪失(停止時)に合わせて代替格納容器スプレイポンプに よる炉心注水を行う想定とする。なお、代替格納容器スプレイポンプより優先順位 の高い炉心注水手段については、考慮しない手順の扱いとして可能な限り対応を行 う想定とする。

(5) その他考慮事項

- a. 技術的能力の手順着手の判断基準に直接該当しない場合であっても、実施する手順 が類似する場合にはその内容を参照する。
- b. 必要に応じて実施する長期的な対応等については可能となった時点での着手とす る補助的な位置付けの対応であることから、有効性評価上は特別記載を行わない。
- c. 自動起動補機等、運転員の対応を必要としない手段については事故対応上で特記すべき事項を除き記載を行わない。
- d. 監視事項は多岐に亘るため、事故対応上で特記すべき事項を除き記載を行わない。

以上

有効性評価における安全機能の喪失に対する仮定について

表1~4に炉心損傷防止対策、格納容器破損防止対策、使用済燃料ピットの燃料損傷防止対策及び運転停止中の燃料損傷防止対策の有効性評価の各重要事故シーケンス等において、安全機能の喪失に対する仮定及び解析上考慮しない主な重大事故等対処設備の一覧を示す。

表1 炉心損傷防止対策の有効性評価における安全機能の喪失に対する仮定 (1/2)

	解析上考慮しない	主な重大事故等対処設備	I				·B-充てんポンプ (自己冷却)				・B-充てんポンプ (自己冷却)					・代替格納容器スプレイポンプ	I		
スター・アンス・ロスートの	サ 今 機能 の 車 年 ご 対 す 2 仮 完	メ 主体能 グスペニュッショック	・補助給水系機能喪失		非常用所內交流電源喪失	原子炉補機冷却機能喪失		· 计以第八十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二十二	非吊用所內父流電源喪大 匠之后結構公扣機站車件	• 原丁沪 儒 懷 布 却 懷 肥 喪 大		非常用所內交流電源喪失	原子炉補機冷却機能喪失		・格納容器スプレイ注入機能喪	失	· 低圧再循環機能喪失	. 匠之后信 .	• 原丁炉停止阀能费大
	有亜重物シーケンス	耳爻 すい・ / ・ /	主給水流量喪失時に補助給水機 能が喪失する事故	外部電源喪失時に非常用所内交	流電源が喪失し,原子炉補機冷却	機能の喪失及び RCP シール	LOCA が発生する事故	外部電源喪失時に非常用所内交	流電源が喪失し,原子炉補機冷却	機能が喪失する事故	外部電源喪失時に非常用所内交	流電源が喪失し,原子炉補機冷却	機能の喪失及び RCP シール	LOCA が発生する事故	大破断 TOCA 時に低圧再循環機	能及び格納容器スプレイ注入機	能が喪失する事故	主給水流量喪失時に原子炉トリ	ップ機能が喪失する事故
	車がシーケンスグループ	す以、ハイハル・	2 次冷却系からの除熱機能喪失				全交流動力電源喪失					百万万年幾次古幾名語子	/ / / / / / / / / / / / / / / / / / /			原子炉格納容器の除熱機能喪失		原子炉停止機能喪失	(主給水流量喪失)

表1 炉心損傷防止対策の有効性評価における安全機能の喪失に対する仮定 (2/2)

事故シーケンスグループ	重要事故シーケンス	安全機能の喪失に対する仮定	解析上考慮しない 主な重大事故等対処設備
原子炉停止機能喪失 (負荷の喪失)	負荷の喪失時に原子炉トリップ 機能が喪失する事故	・原子炉停止機能喪失	I
ECCS 注水機能喪失	中破断 TOCA 時に高圧注入機能 が喪失する事故	・高圧注入機能喪失	・充てんポンプ
ECCS 再循環機能喪失	大破断 TOCA 時に低圧再循環機能及び高圧再循環機能が喪失する事故	・ECCS 再循環機能喪失	
格納容器バイパス (インターフェイスシステム LOCA)	インターフェイスシステム LOCA	・余熱除去系入口隔離弁の誤開 又は破損が発生した側の余熱 除去機能喪失	~
格納容器バイパス (蒸気発生器伝熱管破損時に破 損側蒸気発生器の隔離に失敗する事故)	蒸気発生器伝熱管破損時に破損 側蒸気発生器の隔離に失敗する 事故	・主蒸気安全弁 1 個の開固着	_

表2 格納容器破損防止対策の有効性評価における安全機能の喪失に対する仮定

3 KM	度 解析上考慮しない 主な重大事故等対処設備					·B-充てんポンプ (自己冷却)					「日外に日かった。」といって、「日本に日かった」といって、「日本」といって、「日本」といって、「日本」といって、「日本」というできません。	・B-ル・ヘ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・		・校舎や手ィガナイカ	一世紀中部へ米フィンスト	・尤んろキンノ
ロボナ中央域の中台をプログロコロできてマメージのでしている。	安全機能の喪失に対する仮定		・低圧注入機能喪失	・高圧注入機能喪失	・格納容器スプレイ注入機能喪	头	外部電源喪失時に非常用所内	交流電源喪失	原子炉補機冷却機能喪失	・外部電源喪失時に非常用所内	交流電源喪失	・補助給水機能喪失	原子炉補機冷却機能喪失	. 在厅头 1 黎络語先	10年代文献的大文 11年代 11年代 11年代 11年代 11年代 11年代 11年代 11年	• 尚圧汪人機能喪矢
HAMJET BENEZIAN EAT AN EUR	延価車払シーケンス	日面手以・ハ・ハ			大破断 TOCA 時に低圧注入機	能, 高圧注入機能及び格納容器ス	プレイ注入機能が喪失する事故			20 数量的指人用少用的日外	外部电解投入时に非吊用用分文分割を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を表現を	信息がが大く、信め哲会を形が一番がある。 電子子 2 車坊	文人 うず以	大破断 TOCA 時に低圧注入機能	及び高圧注入機能が喪失する事	故
7.7.	枚納次哭砕指チード	日付けており入り		雰囲気圧力・温度による静的負荷	(格納容器過圧破損)	原子炉圧力容器外の溶融燃料-	冷却材相互作用	溶融炉心・コンクリート相互作用		雰囲気圧力・温度による静的負荷	(格納容器過温破損)	高圧溶融物放出/格納容器雰囲	気直接加熱		水素燃焼	

使用済燃料ピットの燃料損傷防止対策の有効性評価における安全機能の喪失に対する仮定 **3

光	 	な今機能の電生に対する信号	解析上考慮しない
· 为总	非 以	メ土城時クスペパムッの文件	主な重大事故等対処設備
	使用済燃料ピットの冷却機能又	. 每田汶棒粒 2000 人士操作品	
	は注水機能が喪失することによ	・文圧な然在につても対象形状を	
想定事故1	り, 使用済燃料ピット内の水の温	大,在田家奉堂。一次少盛给市	T
	度が上昇し, 蒸発により水位が低	・安田庁然在につて任不優毘政・	
	下する事故	K	
	サイフォン現象等により使用済 ・使用済燃料ピット冷却機能喪	・使用済燃料ピット冷却機能喪	
0.44	燃料ピット内の水の小規模な喪	大	
沼化争以 7	失が発生し, 使用済燃料ピットの	・使用済燃料ピット注水機能喪	ı
	水位が低下する事故	失	

運転停止中の燃料損傷防止対策の有効性評価における安全機能の喪失に対する仮定 表4

解析上考慮しない 主な重大事故等対処設備	・高圧注入ポンプ	・B – 充てんポンプ (自己冷却)	I	I
安全機能の喪失に対する仮定	・待機中の余熱除去系機能喪失・充てん機能喪失	非常用所內交流電源喪失原子炉補機冷却機能喪失	・1次系水位が1次冷却材配管 の下端に到達した時点で余熱 除去機能喪失	I
重要事故シーケンス	燃料取出前のミッドループ運転 中に余熱除去機能が喪失する事 故	燃料取出前のミッドループ運転中に外部電源が喪失するとともに非常用所内交流電源が喪失し、原子炉補機冷却機能が喪失する事故事故	燃料取出前のミッドループ運転 中に原子炉冷却材圧力バウンダ リ機能が喪失する事故	原子炉起動時に, 化学体積制御系の弁の誤作動等により原子炉へ 純水が流入する事故
事故シーケンスグループ	崩壊熱除去機能喪失(余熱除去系 の故障による停止時冷却機能喪 失)	全交流動力電源喪失	原子炉冷却材の流出	反応度の誤投入

安全評価におけるA型燃料とB型燃料の取扱いについて

泊発電所3号炉では、炉心内でA型燃料とB型燃料を併用するが、安全評価*1に おいては代表的にA型燃料を評価対象とする。

表1に示すように、A型燃料とB型燃料において燃料の主要な仕様に大きな差異はなく、核的、機械的、熱水力的にA型燃料とB型燃料の性能は同じように扱えることを確認している。運転時の異常な過渡変化及び設計基準事故においては、A型燃料及びB型燃料の熱水力特性がほぼ同じであり、また、炉心全体及び局所的な核特性が混在炉心ゆえに厳しくなることはない。これらの結果を考慮して、本発電用原子炉施設の重大事故等対策(設備、手順等)の有効性を確認するという重大事故等対策の有効性評価においても評価対象の燃料の種類は1つとし、代表的にA型燃料について評価を行う。

また、安全評価においては、A型MOX燃料の混在も考慮している。

^{*1} 運転時の異常な過渡変化,設計基準事故および重大事故等への対処に係る措置 の有効性評価

表1 A型燃料とB型燃料の主要な燃料仕様(泊3号炉)

		ステッ	ップ 2
	単位	A型	B型
ペレット			
直径	mm	約 8.19	同左
初期密度 (理論密度における)	%	約 97	同左
濃縮度	wt%	約 4.8	同左
燃料被覆管			
外径	mm	約 9.50	同左
厚さ	mm	約 0.57	同左
被覆管-ペレット 間隙(直径)	mm	約 0.17	同左
燃料集合体			
燃料棒配列		17×17	同左
集合体当たりの 燃料棒本数		264	同左
燃料棒初期 ヘリウム圧力	MPa		
燃料棒ピッチ	mm	約 12.6	同左
支持格子数		9	同左

枠囲みの内容は機密情報に属しますので公開できません。

シビアアクシデント解析に係る当社の関与について

有効性評価のうち、シビアアクシデント解析業務はプラントメーカに委託している ものの、解析結果の活用に当たっては、以下のとおり当社としても積極的に関与し、 解析業務の適切性を確認している。

- ○解析コードの実機適用性に当たっては、プラントメーカとの共同研究等により、 プラントメーカと一体となって検討を進めており、報告会等を通じて当社の意見 を反映している。なお、有効性評価に使用している解析コード開発時の当社の関 与について、表1に示す。
- ○解析業務委託に当たっては、当社よりプラントメーカに対して「原子力施設における許認可申請等に係る解析業務の品質向上ガイドライン」*(平成22年12月発行原子力技術協会)に基づいて、それまでの経験等を反映した社内マニュアルにしたがって要員の教育、計算機プログラムの検証、入力根拠の明確化等、必要な品質保証活動の実施を要求している。
- ○これに加えて、当社がプラントメーカに赴き、上記の要求事項が適切に実施されていることを確認している。
- ○解析結果については、既往の解析結果と比較すること等により妥当性を確認している。

なお、シビアアクシデントについては、今後も不確実さを含む現象などに対する継 続的な検討を進め、更なる知見の拡充に努めていく。

【参考】シビアアクシデント解析の活用例

- ▶シビアアクシデント解析結果を用いたアクシデントマネジメントガイドラインの整備。これに基づく教育・訓練の実施。
 - ⇒今回の有効性評価等を踏まえた改善等を行い、継続的に教育、訓練を実施している。また、更なる運転員の教育のため、自社のシミュレータ及び NTC (原子力発電訓練センター) におけるシミュレータを活用し、シビアアクシデント挙動の把握・対応能力向上に努めている。
- ➤シビアアクシデント解析に主体的に関与することを目的に MAAP**コードを導入している。
- *:原子力施設の許認可申請等における解析業務の品質向上のために、発注者(事業者)と受注者(解析者) における解析業務に係る品質保証活動としての実施事項について、各社の管理プロセスとして自主的に取 り組むべき内容を明確化したもの。
- **: EPRI によって開発されたコード

表 1 有効性評価に使用している解析コード/評価手法の開発に係る当社の関与

コード		共同研究実績
M-RELAP5	平成 17~18 年度	新 Non-LOCA 解析手法の実機適用研究
SPARKLE-2	平成 19~20 年度	新 Non-LOCA 解析手法を用いた反応度投入事象 に関する評価指針解析への適合性に関する研 究 他
MAAP	昭和 62 年度 昭和 63~平成元年度	シビアアクシデントの評価に関する研究 シビアアクシデントの評価に関する研究(その 2)他
GOTHIC	平成 10~11 年度 平成 18 年度	格納容器内圧評価手法の高度化に関する研究 多区画内圧評価手法の実機適用化に関する研 究
COCO	平成2年度	最適安全解析コード及び評価手法の開発(ステップ4)

重大事故等対策の有効性評価の一般データ (事象共通データ)

- (1) 一般
- (2) 炉心
- (3) 燃料
- (4) 加圧器及び1次冷却材設備
- (5) 蒸気発生器
- (6) 1 次冷却材ポンプ
- (7) 原子炉格納容器
- (8) 原子炉制御設備
- (9) 燃料取替用水ピット

なお、	本資料中の	の中の値は、	商業機密事項に相当致	しますので、	公開できません。
-----	-------	--------	------------	--------	----------

第1表 システム熱水力解析用データ

	名 称	数	値	解析上の取り扱い
(1) —	般			
1)	炉心熱出力	2652×1.02	MW	定格值+定常誤差(※1)
2)	ループ数	3		設計値
3)	ループ全流量	60600m³/h		設計値
4)	1 次冷却材圧力	15. 41+0. 21	MPa[gage]	定格値+定常誤差(※1)
5)	1 次冷却材温度	306. 6+2. 2°C	0	定格値+定常誤差(※1)
6)	原子炉容器入口温度	288℃		設計値
7)	原子炉容器出口温度	325℃		設計値
8)	上部ヘッド温度			設計値
9)	1 次冷却材容積	273 m ³		設計値、SG プラグ率 10%を考慮
		(内訳は第	2表参照)	
10)	流路形状データ(水力的等	等価直径、 第3表、第	4表及び第1図~	設計値
	流路断面積、流路長さ、流	流路高さ) 第5図参照		
11)	圧力損失データ	第5表参照		設計値
12)	炉心崩壊熱	AESJ 推奨値	+ORIGEN-2	最大値(炉心運用の包絡値)
(2) 炉	心			
1)	冷却材炉心流量			
	i 炉心流量	93. 5%		設計値
	ii バイパス流量	%		設計値
	iii 原子炉容器頂部	%		設計値
	バイパス流量			
2)	炉心流路面積	\mathbf{m}^2		設計値
3)	実効熱伝達面積	4. 515×10^3	\mathbf{m}^2	設計値
4)	即発中性子寿命	$21\mu\;{ m sec}$		最大値 (炉心運用の包絡値)
5)	遅発中性子割合	0.75%		最大値 (炉心運用の包絡値)
6)	減速材密度係数	第6図参照		最小値(炉心運用の包絡値)(※1)
7)	ドップラ係数	第7図参照		最大値【絶対値】(炉心運用の包絡値)
				(%1)
8)	トリップ反応度曲線	第8図参照		最小値 (炉心運用の包絡値)

(※1) ATWS 事象では個別に設定 (個別事象の説明に別途整理)

	名 称	数值	解析上の取り扱い
(3) 燃	料		
1)	燃料集合体数	157	設計値
2)	集合体あたりの燃料棒数	264	設計値
3)	燃料棒配列	17×17	設計値
4)	燃料棒ピッチ	1.26cm	設計値
5)	燃料棒有効長	3. 648m	設計値
6)	被覆管外径	0.950cm	設計値
7)	被覆管肉厚	0.057cm	設計値
8)	ペレット直径	0.819cm	設計値
9)	ギャップ幅	0.0085cm	設計値
10)		97. 4%	設計値
11)	ペレット密度	理論密度の約 97%	設計値
12)	濃縮度	4.8wt%以下	設計値
(4)	加圧器及び1次冷却材設備		
1)	加圧器水位	65%体積	設計値
2)	加圧器逃がし弁データ		
	i 容量及び個数	95 t/h/個	設計値
		2 個	設計値
	ii 設定圧力	[Pa[gage]	設計値
		ロックアップ: IPa	
3)	主蒸気逃がし弁データ		
	i 容量及び個数	定格主蒸気流量の 10%	設計値
		1個/ループ	設計値
	ii 設定圧力	MPa[gage]	設計値
		ロックアップ MPa	
4)	加圧器安全弁データ		
	i 容量及び個数	157 t/h/個	設計値
		3個	設計值
	ii 設定圧力	MPa[gage]	設計值
		全開: MPa[gage]	設計値に余裕を考慮した高めの値
			(弁作動開始から全開までを で模
			擬)
5)	主蒸気安全弁データ		
	i 容量及び個数	定格主蒸気流量の 100%	設計値
		5個/ループ	設計値(1 個当たり定格主蒸気流量の
			20%)

名 称	数值	解析上の取り扱い
ii 設定圧力	第1段: MPa[gage]	設計値 1個/ループ
	全開: Pa[gage]	設計値に余裕を考慮した高めの値
	第2段: [Pa[gage]	設計値 1個/ループ
	全開: Pa[gage]	設計値に余裕を考慮した高めの値
	第3段: [Pa[gage]	設計値 3個/ループ
	全開: Pa[gage]	設計値に余裕を考慮した高めの値
	_	(段毎に、弁作動開始から全開までを
		で模擬)
(5) 蒸気発生器		
1) 伝熱管本数	3047 本/基	設計値、SG プラグ率 10%を考慮
2) 伝熱管外径	22. 2 mm	設計值
3) 伝熱管厚さ	1.3 mm	設計值
4) 伝熱面積	4.55×10 ³ m ² /基	設計値、SG プラグ率 10%を考慮
5) 伝熱管材質	TT690	設計値
6) 伝熱管長さ	n	設計值
7) 伝熱管配列 (ピッチ)	32.5 mm	設計值
8) 伝熱管流路面積	n²/基	設計値、SG プラグ率 10%を考慮
9) 主給水流量(初期)		設計値(102%出力時)(※1)
10) 主蒸気流量(初期)		設計値 (102%出力時) (※1)
11) 2次側圧力	MPa[gage]	102%出力時+定常誤差考慮 (※1)
12) 蒸気発生器 2 次側水位	44% (狭域水位スパン)	設計值
13) 蒸気発生器 2 次側保有水量	50 ton/基	設計値
14) 循環比	4	設計値
(6) 1 次冷却材ポンプ		
1) ポンプ回転数	1500 rpm	設計值
2) ポンプ揚程	m	設計值
3) RCP 定格トルク	2.77×10³kgf • m	設計値
4) 慣性モーメント	2800 kg • m²	設計値
5) ポンプホモロガス曲線	第9図参照	設計値
6) RCP 定格体積流量	20200 m³/h/ループ	設計値
7) 冷却材定格密度	750kg/m ³	設計値
8) RCP 摩擦トルク係数(K)		設計値

(※1) ATWS 事象では個別に設定 (個別事象の説明に別途整理)

	名称	数	値	解析上の取り扱い
(7)	原子炉格納容器			(※2)
1)	格納容器内自由体積	65, 500m ³		最小値(設計値に余裕を考慮した値)
2)	初期温度	49℃		設計値
3)	初期圧力	9.8kPa[gage]		設計値
4)	ヒートシンク	第6表参照		最小値(設計値に余裕を考慮した値)
5)	格納容器再循環ユニット			
	i 容量	第 10 図参照		設計値
	ii 個数	2台		設計値
(8)	原子炉制御設備			
1)	制御棒制御系	制御棒制御系(制	削御グループ)	作動を仮定しない
2)	ほう素濃度制御系	化学体積制御設	備	作動を仮定しない
3)	加圧器圧力制御系	加圧器スプレイ	弁	作動を仮定しない(加圧器逃がし弁は
		加圧器逃がし弁		自動作動) (※3)
		加圧器ヒーター		
4)	加圧器水位制御系	化学体積制御設	備	作動を仮定しない(※3)
5)	給水制御系	主給水制御弁の	開度調整	作動を仮定しない(※3)
6)	タービンバイパス制御系	タービンバイパ	ス制御系	作動を仮定しない
7)	主蒸気逃がし弁制御系	主蒸気逃がし弁		主蒸気逃がし弁は自動作動
(9)	燃料取替用水ピット			
1)	容量	$2000 \mathrm{m}^3$		設計値
2)	ほう素濃度	3200ppm		設計値

- (※2) 水素燃焼事象では個別に設定(個別事象の説明に別途整理)
- (※3) 蒸気発生器伝熱管破損事象では自動作動
- (※4) 以下については、個別事象の説明に別途整理
 - 安全保護系の設定点、作動限界値及び応答時間
 - 原子炉冷却材喪失時の破断位置、破断口径

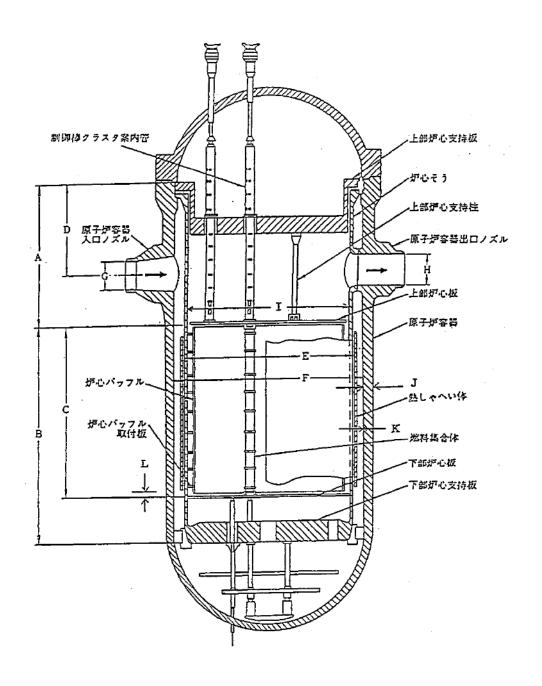
第2表 1次冷却系各部冷却材容積

名称	容 積 (m³)
炉心	
上部プレナム	
下部プレナム	
ダウンカマ	
バレル・バッフル領域	
原子炉容器頂部	
高温側配管	
蒸気発生器プレナム	
蒸気発生器伝熱管 (SG プラグ率 10%)	
蒸気発生器ーポンプ間配管	
低温側配管	
加圧器液相部	
加圧器サージ管	
合 計 (SG プラグ率 10%)	273

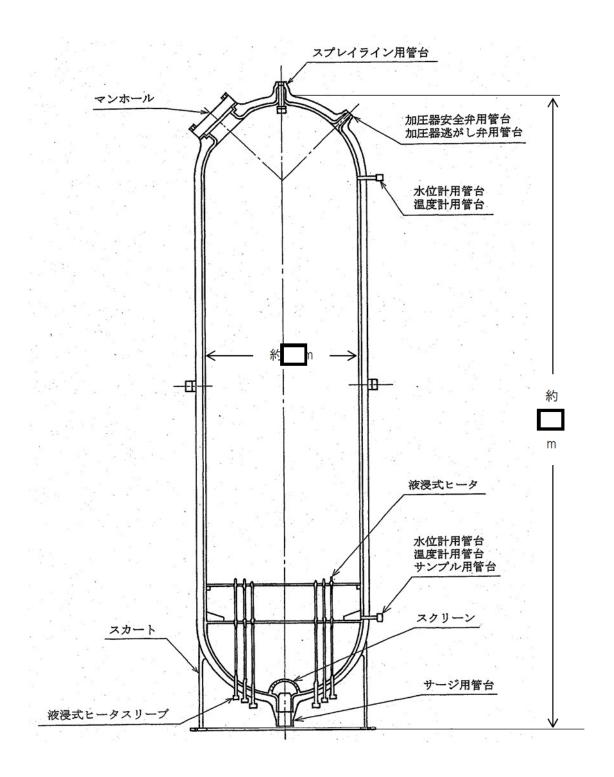
第3表 原子炉容器内寸法

番号	名 称	7	法	(m)
A	原子炉容器フランジ面より上部炉心板下端まで			
В	上部炉心板下端よりダウンカマ下端まで			
С	上部炉心板下端より下部炉心板上端まで			
D	原子炉容器フランジ面より入口ノズル中央まで			
Е	炉心そう外径			
F	原子炉容器内径			
G	入口ノズル内径			
Н	出口ノズル内径			
I	炉心そう内径			
J	原子炉容器本体肉厚			
К	原子炉容器クラッド肉厚			
L	燃料発熱部下端より下部炉心板上端まで			

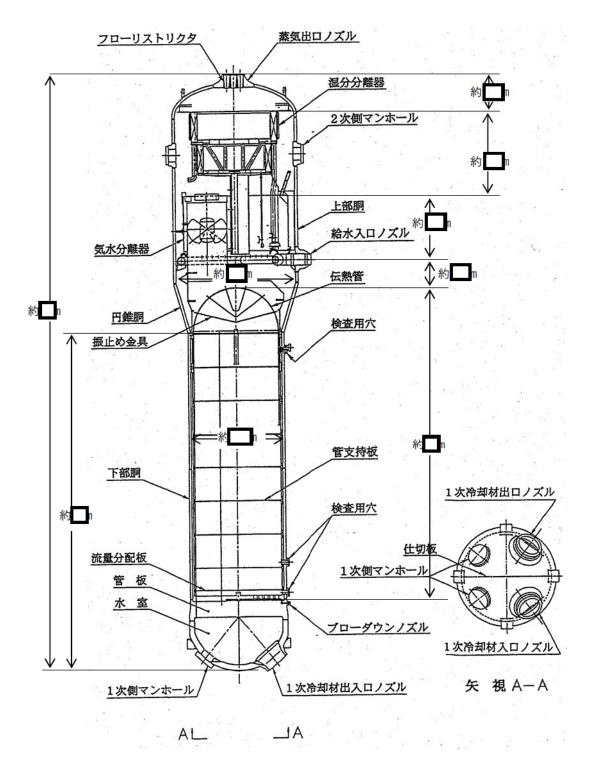
第4表 形状データ (各領域の水力学的等価直径、流路面積)

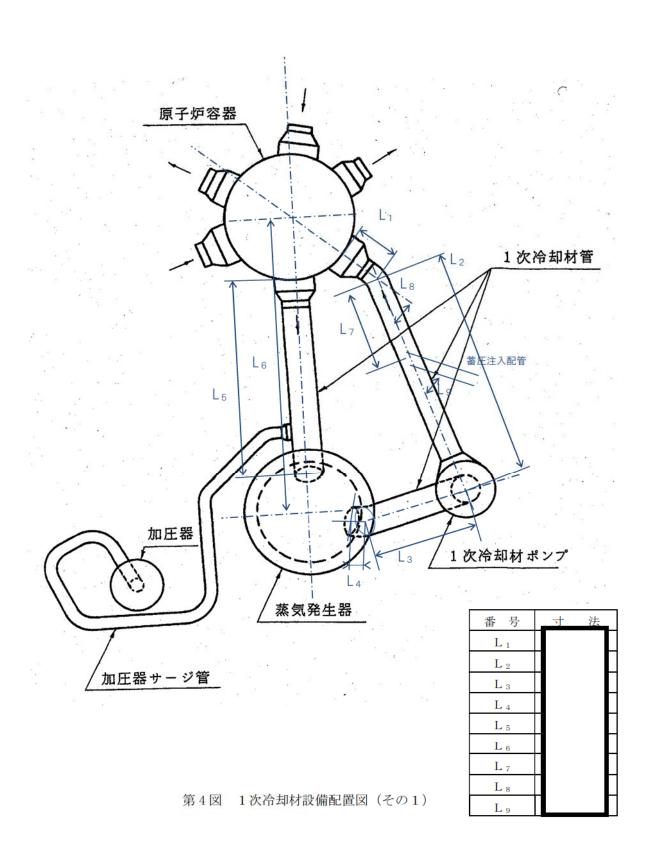

名称	水力学的等価直径 (m)	流路断面積 (m²)
• 原子炉容器内		
入口ノズル (1 体当たり)		
スプレイノズル		
ダウンカマ		
下部プレナム		
炉心有効発熱長間		
炉心バイパス		
上部プレナム		
ガイドチューブ		
出口ノズル(1 体当たり)		
・1 次冷却材配管(1 ループ分)		
ホットレグ		
クロスオーバーレグ		
コールドレグ		
・1 次冷却材ポンプ (1 基当たり)		
・蒸気発生器1次側(1基当たり)		
入口プレナム		
伝熱管 (SG プラグ率 10%)		
出口プレナム		
· 蒸気発生器 2 次側		
ダウンカマ部		
加熱部		
ライザー部		
1次気水分離器		
蒸気ドーム部		
主蒸気配管		Г
・加圧器		
本体		
サージ管		

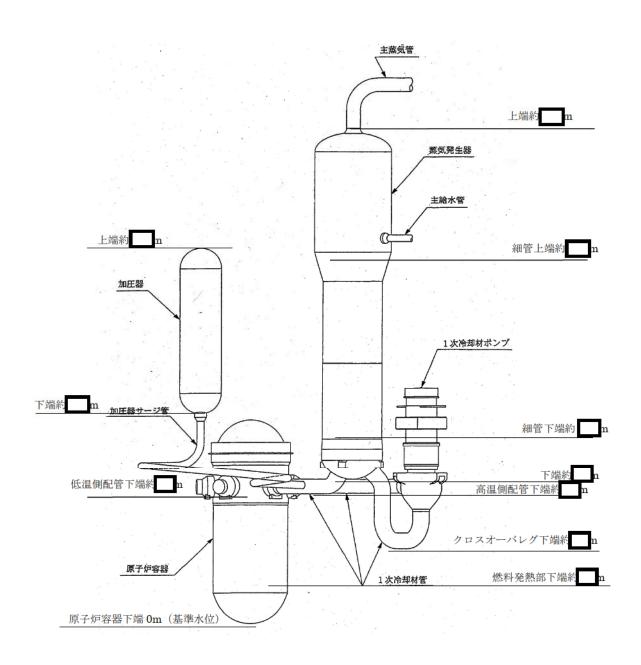
第5表 1次冷却系各部圧力損失(全出力時)


名 称	圧力損失 (MPa)		
原子炉容器(入口ノズル〜出口ノズル間)			
共 ≠ 水 件 四 1 口 → 川 口 / CC → 二 が ボ	-l $-$ l		
蒸気発生器入口~出口(SG プラグ率 10%)			
ループ配管			
基层软件思身施刚	<u> </u>		
蒸気発生器 2 次側			

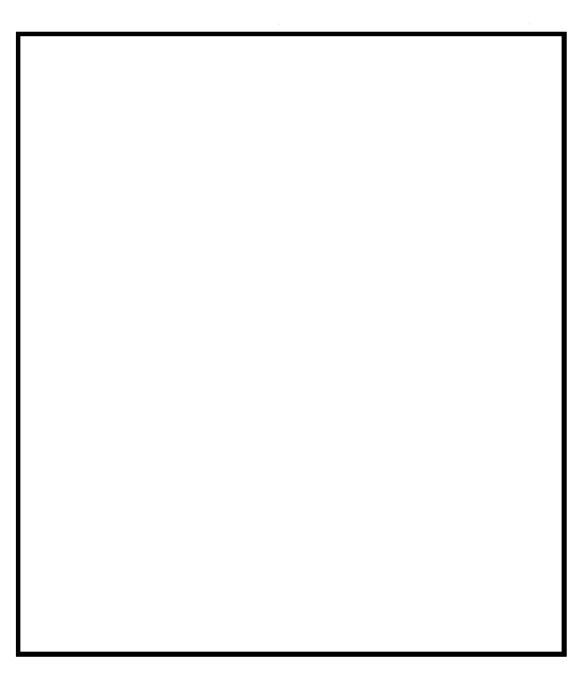
第6表 原子炉格納容器ヒートシンクデータ


		表面積(m²)	板厚 (mm)
(1)	CV ドーム部		
(2)	CV シリンダ部		
(3)	CV コンクリート(1)		
(4)	CV コンクリート(2)		
(5)	スチールラインドコンクリート(1)		
(6)	スチールラインドコンクリート(2)		
(7)	スチールラインドコンクリート(3)		
(8)	スチールラインドコンクリート(4)		
(9)	雑鋼材(1)・・・炭素鋼(厚さで分類)		
(10)	雑鋼材(2)・・・炭素鋼(厚さで分類)		
(11)	雑鋼材(3)・・・炭素鋼(厚さで分類)		
(12)	雑鋼材(4)・・・炭素鋼(厚さで分類)		
(13)	雑鋼材(5)・・・炭素鋼(厚さで分類)		
(14)	雑鋼材(6)・・・ステンレス・スチール		
(15)	雑鋼材(7)・・・銅フィン・チューブ		
(16)	配管(1) ステンレス・スチール(内部に水有)		
(17)	配管(2) ステンレス・スチール(内部に水無)		
(18)	配管(3) 炭素鋼(内部に水有)		
(19)	配管(4) 炭素鋼(内部に水無)		
(20)	検出器等…アルミニウム		
(注 1).	上段は鋼材、下段はコンクリートを示す。		

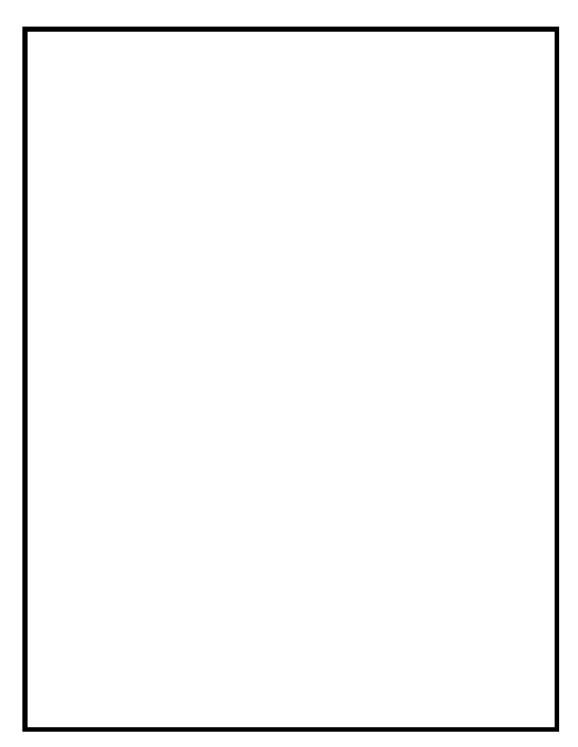

第1図 原子炉容器内寸法

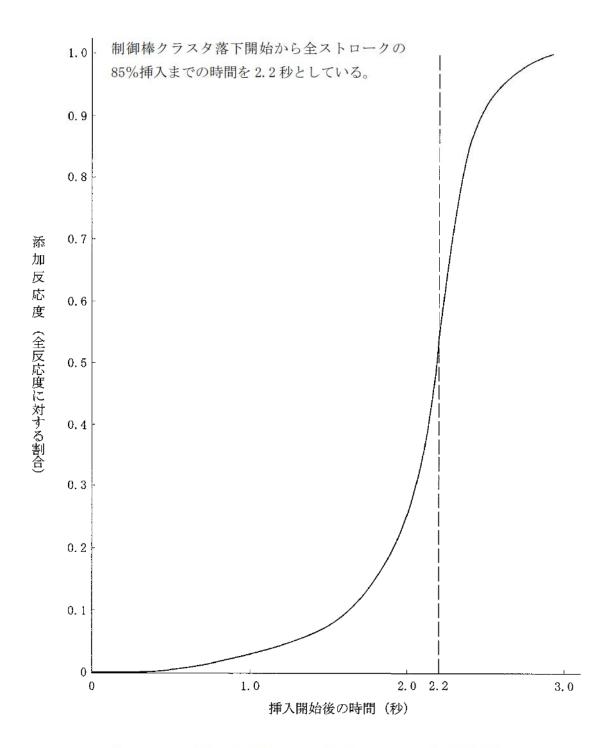


第2図 加圧器構造図



第3図 蒸気発生器構造図




第5図 1次冷却材設備配置図(その2)

第6図 減速材密度係数

第7図 ドップラ係数

第8図 トリップ時の制御棒クラスタ挿入による反応度添加曲線