【試料採取室排気隔離ダンパ閉処置】

1. 操作概要

アニュラス空気浄化ファン起動のため、ダンパの閉処置を行う。

2. 必要要員数及び操作時間

必要要員数: 1名 操作時間(想定): 30分

操作時間(実績): 23分(移動,放射線防護具着用含む)

3. 作業の成立性

アクセス性: LEDヘッドランプ・LED懐中電灯を携行していることからアクセスで

きる。また、アクセスルートに設置されている照明はバッテリ内蔵型であ

り、事故環境下においてもアクセスできる。

作業環境: 事故環境下における室温は通常運転状態と同等である。また、ダンパ閉処

置作業エリア周辺には、作業を行う上で支障となる設備はなく、LEDへッドランプ・LED懐中電灯を用いることから事故環境下においても作業

できる。

汚染が予想される場合は、個人線量計を携帯し、放射線防護具等を着用す

る。

操作性: ダンパ閉処置作業は、対象ダンパの制御用空気供給弁閉操作と連結シャフ

トを閉側へ回す作業のみであり、容易に実施可能である。

連絡手段: 通常時の通信手段として電力保安通信用電話設備の携帯電話端末(PHS)

を携行しており連続通話で約6時間使用可能である。また、事故環境下に

おいて、通常の連絡手段が使用不能となった場合でも、携行型通話装置を

使用し中央制御室との連絡を行う。

ダンパ全景 (原子炉補助建屋T. P. 40.3 m)

(制御用空気供給弁閉操作イメージ)

- ① 原子炉補助建屋T.P.40.3 mへ移動し,作業準備を行う。
- ② 対象ダンパの制御用空気供給弁を閉止する。

(連結シャフト、止めネジイメージ)

- ③ ダンパオペレータの連結シャフトの止め ネジを緩める。
- ④ 連結シャフトを閉方向へ操作する。
- ⑤ 閉状態を保持したまま止めネジを締め付ける。

(空気作動ダンパ閉作業イメージ)

フィルタ除去効率の設定について

1. 微粒子フィルタについて

重大事故時の居住性に係る被ばく評価において,中央制御室空調装置及びアニュラス空気浄化 設備の微粒子フィルタによるエアロゾル除去効率の評価条件として 99 %を用いている。上記の 微粒子フィルタについては,納入前の工場検査においてフィルタ除去効率が確保されていること を確認している。

微粒子フィルタのろ材はガラス繊維をシート状にしたもので,エアロゾルを含んだ空気がろ材を通過する際に,エアロゾルがガラス繊維に衝突・接触することにより捕集される。

(1) 中央制御室空調装置の微粒子フィルタ

a. 温度及び湿度条件について

泊発電所3号炉の中央制御室は、原子炉格納容器から離れた位置にあるために、温度や湿度が通常時に比べて大きく変わることはなく、フィルタの性能が低下するような環境にはならない。したがって、微粒子フィルタ除去効率99%は確保できる。

b. 保持容量について

泊発電所3号炉の中央制御室空調装置の微粒子フィルタの保持容量は約2.9 kg/2 枚(全4枚のうち上流側2枚)である。中央制御室(重大事故)居住性に係る被ばく評価で選定した評価事象において原子炉格納容器から放出され、中央制御室内に流入するエアロゾル量は約30 mg である。

これは、安定核種も踏まえて、保守的にアニュラスフィルタによる除去効率を無視し、格納容器から漏えいしてきた微粒子が全て大気中に放出されるとして評価したものである。また、漏えいした微粒子は全て地上から放出されるとして格納容器から中央制御室までの大気拡散(希釈効果)を考慮し、中央制御室内に侵入した微粒子は全量がフィルタに捕集されるものとした。なお、よう素は全て粒子状よう素として評価した。(第5表及び第1図参照)

したがって、中央制御室空調装置の微粒子フィルタには、エアロゾルを十分に捕集できる容量があるので、微粒子フィルタ除去効率 99 %は確保できる。

微粒子フィルタ	中央制御室空調装置
フィルタに捕集されるエアロゾル量	約 30 mg
保持容量	約 2.9 kg

第1表 中央制御室空調装置の微粒子フィルタ保持容量

(2) アニュラス空気浄化設備の微粒子フィルタ

a. 温度及び湿度条件について

本評価で選定した評価事象において、原子炉格納容器内は 150 ℃程度となり、原子炉格納容器からの温度伝播等によりアニュラス内の温度が上昇する。

アニュラス内の温度は最高で 120 ℃程度までの上昇であるため、泊発電所 3 号炉のアニュラス空気浄化設備に設置している微粒子フィルタの最高使用温度を大幅に上回ることはなく、性能が低下することはない。なお、フィルタに捕集された放射性物質の崩壊熱による温度上昇は 1 ℃程度であり、アニュラス内温度への影響は大きいものではない。また、湿度についても、格納容器漏えい率に応じたわずかな湿度上昇はあるものの、アニュラス空気浄化設備起動後は、アニュラス外からの空気混入もあることから、それほど湿度が上がることはないため、フィルタの性能が低下することはない。したがって、微粒子フィルタ除去効率 99 %は確保できる。

b. 保持容量について

泊発電所3号炉のアニュラス空気浄化設備の微粒子フィルタの保持容量は約8.9 kg/6 枚(全12枚のうち上流側6枚)である。

評価期間中に原子炉格納容器からアニュラス部へ漏えいしたエアロゾルすべてが捕集されるという保守的な仮定で評価した結果が約0.9 kg である。

これは、安定核種も踏まえて、格納容器から漏えいしてきた微粒子が全量フィルタに捕集 されるものとして評価したものである。なお、よう素は全て粒子状よう素として評価した。 (第5表及び第2図参照)

したがって、アニュラス空気浄化設備の微粒子フィルタには、エアロゾルを十分に捕集できる容量があるので、微粒子フィルタ除去効率 99 %は確保できる。

第2表 アニュラス空気浄化設備の微粒子フィルタ保持容量

微粒子フィルタ	アニュラス空気浄化設備
フィルタに捕集されるエアロゾル量	約 0.9 kg
保持容量	約 8.9 kg

2. よう素フィルタについて

重大事故時の居住性に係る被ばく評価において,中央制御室空調装置及びアニュラス空気浄化 設備のよう素フィルタは有機よう素及び元素状よう素の除去効率の評価条件として 95 %を用い ている。上記のよう素フィルタについては,定期事業者検査で上記除去効率が確保できているこ とを確認している。

(1) 中央制御室空調装置のよう素フィルタ

a. 温度及び湿度条件について

先のとおり、泊発電所3号炉の中央制御室は、原子炉格納容器から離れた位置にあるために、温度や湿度が通常時に比べて大きく変わることはなく、フィルタの性能が低下するような環境にはならない。したがって、よう素フィルタ除去効率として95%は確保できる。なお、温湿度条件を踏まえた除去効率の妥当性の詳細については、添付に示す。

b. 吸着容量について

泊発電所3号炉の中央制御室空調装置のよう素フィルタの吸着容量は,約0.43 kg/10 枚である。中央制御室(重大事故)居住性に係る被ばく評価で選定した評価事象において原子炉格納容器から放出され、中央制御室内に流入するよう素量は約25 mg 程度である。これは、「1. 微粒子フィルタについて (1)中央制御室空調装置の微粒子フィルタ」と同様の手法で評価したものである(安定核種も考慮)。ただし、よう素の化学形態は全て元素状よう素または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素フィルタに捕集されるものとした。(第5表及び第3図参照)

したがって、中央制御室空調装置のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として 95 %は確保できる。

3,1 71 73 73 73 73 73 73 73 73 73 73 73 73 73	
よう素フィルタ	中央制御室空調装置
フィルタに捕集されるよう素量	約 25 mg
吸着容量	約 0.43 kg

第3表 中央制御室空調装置のよう素フィルタ保持容量

(2) アニュラス空気浄化設備のよう素フィルタ

a. 温度及び湿度条件について

よう素フィルタは、低温条件下での除去性能が低いことが分かっており、重大事故時のような温度が高い状態であれば、化学反応が進行しやすく除去効率が高くなる傾向がある。

また、湿度に対しては、低湿度の方が高い除去効率を発揮できるが、先のとおり、格納容器漏えい率に応じたわずかな湿度上昇はあるものの、アニュラス空気浄化設備起動後は、アニュラス外からの空気混入もあることから、それほど湿度が上がることはない。したがって、温度及び湿度の影響によりフィルタの性能が低下することはなく、よう素フィルタ除去効率

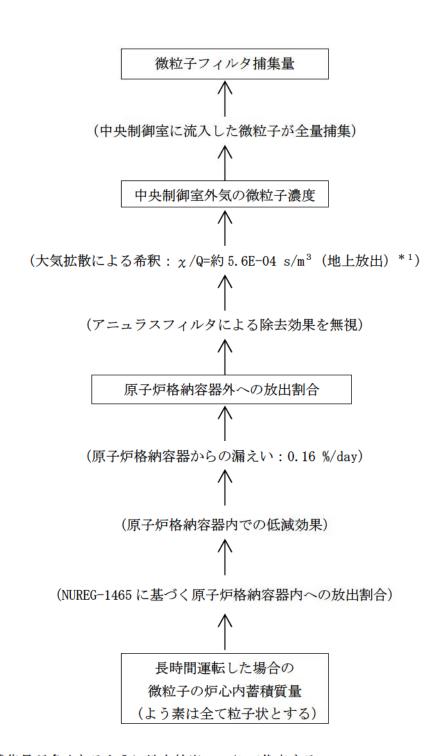
として 95 %は確保できる。なお, 温湿度条件を踏まえた除去効率の妥当性の詳細については, 添付に示す。

b. 吸着容量について

泊発電所3号炉のアニュラス空気浄化設備のよう素フィルタの吸着容量は、約1.4 kg/34 枚である。

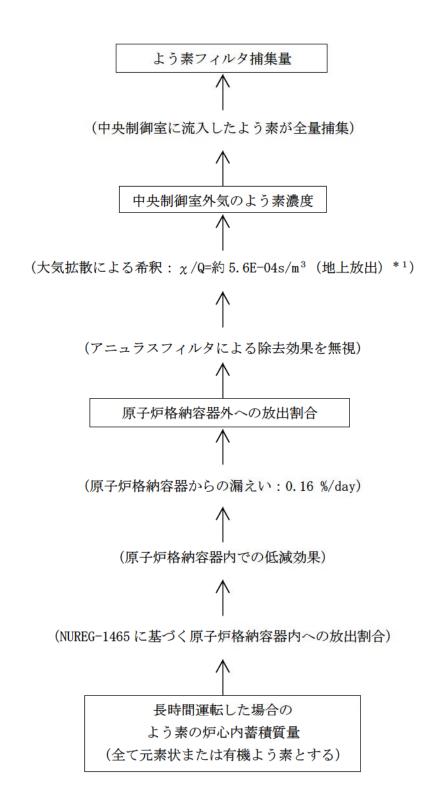
評価期間中に原子炉格納容器からアニュラス部へ漏えいしたよう素すべてが吸着される という保守的な仮定で評価した結果が約 20 g である。

これは、「1. 微粒子フィルタについて (2) アニュラス空気浄化設備の微粒子フィルタ」と同様の手法で評価したものである(安定核種も考慮)。ただし、よう素の化学形態は全て元素状よう素または有機よう素とした。(第5表及び第4図参照)

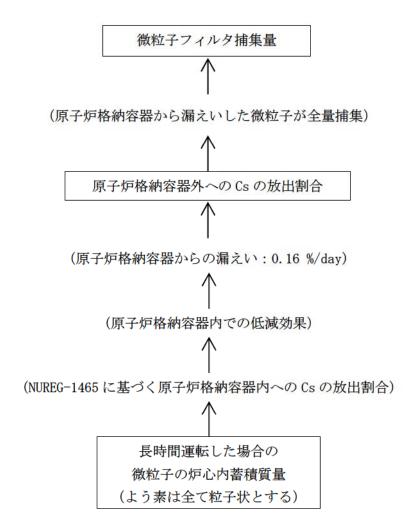

したがって、アニュラス空気浄化設備のよう素フィルタには、よう素を十分に吸着できる 容量があるので、よう素フィルタ除去効率 95 %は確保できる。

第4表 アニュラス空気浄化設備のよう素フィルタ吸着容量

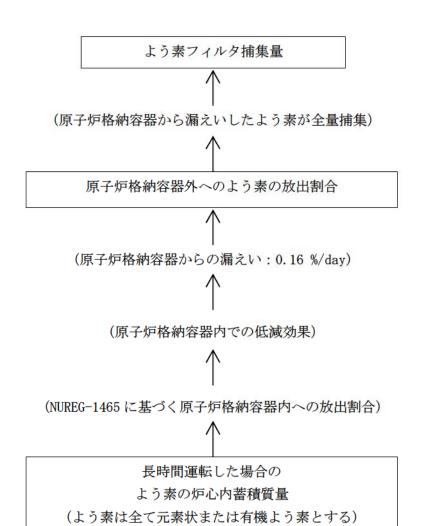
よう素フィルタ	アニュラス空気浄化設備
フィルタに捕集されるよう素量	約 20 g
吸着容量	約 1.4 kg


第5表 炉心内蓄積質量(安定核種を含む)

核種	炉心内蓄積質量
1久1里	(kg)
よう素類	2. 1E+01
(よう素)	(2. 0E+01)
Cs 類	3. 0E+02
Te 類	5. 0E+01
Ba 類	2. 1E+02
Ru 類	6. 9E+02
Ce 類	9. 4E+02
La類	1. 0E+03
合計	3. 2E+03


*1:捕集量が多くなるように地上放出のχ/Qで代表する

第1図 中央制御室空調装置の微粒子フィルタ捕集量評価の過程



*1:捕集量が多くなるように地上放出の χ/Q で代表する

第2図 中央制御室空調装置のよう素フィルタ捕集量評価の過程

第3図 アニュラス空気浄化設備の微粒子フィルタ捕集量評価の過程

第4図 アニュラス空気浄化設備のよう素フィルタ捕集量評価の過程

よう素フィルタの湿度条件等を踏まえた除去効率の妥当性について

(1) よう素フィルタ除去効率試験について

よう素フィルタについては、定期事業者検査においてよう素フィルタ除去効率試験を実施し、よう素除去性能が要求性能(除去効率95 %以上)を満足することを確認している。

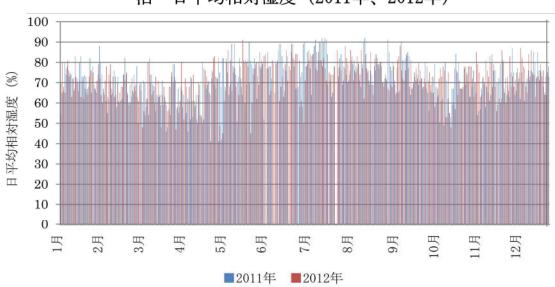
その際の試験条件は、アニュラス空気浄化設備、中央制御室非常用循環系統ともに「温度: 30 ℃、湿度:95 %RH」である。

なお、よう素フィルタは高温、低湿度の方が高い除去効率を発揮できる傾向にある。

(2) 泊発電所の温度状況について

泊発電所の温度状況については、設置許可添付 6 に記載する月別の最高温度の平均値、最低気温の平均値(統計期間 1991 年~2020 年)によると、最高値及び最低値はそれぞれ 25.6 $^{\circ}$ C、 $^{\circ}$ -5.8 $^{\circ}$ Cである。

ただし、過去に本評価を行った際の評価条件は、当時の最高値及び最低値である、25.6 \mathbb{C} , -6.1 \mathbb{C} であった(統計期間 $1981\sim2010$ 年)。以前の評価条件の方が包絡的な評価となるため、過去に実施した評価条件での検討結果を記載する。


表1 泊発電所周辺の温度状況(設置許可添付6に記載する温度の抜粋)

泊発電所の最寄りの気象官署	寿都特別地域		小樽特別地域	
	気象観測所		気象観測所	
最高気温月/最低気温月	8月	1月	8月	1月
最高気温の平均値/最低気温 の平均値	24.6 ℃	-4.7 ℃	25.6 ℃	-5.8 ℃

(3) 泊発電所の相対湿度状況について

2011年及び2012年の1月~12月までの泊発電所内の相対湿度データに関して日平均として整理した。横軸に各日単位で1年間,縦軸に日平均の相対湿度を示す。この結果,95 %RH以上の相対湿度の高い日はなく,相対湿度90 %RH以上は年間13日 (2011年),1日 (2012年)であった。従って,日平均の相対湿度において,フィルタの性能に影響する日平均の相対湿度95 %RHは年間を通してなく,相対湿度90 %RH以上は年間最大4 %程度である。

なお、2021年においても確認を行ったところ、日平均の相対湿度95%RHは年間を通して2日間 しかなく、相対湿度90 %RH以上となるのは年間20日 (5%程度) であった。

泊 日平均相対湿度(2011年、2012年)

図1 2011年1月~2012年12月の日平均の相対湿度

(4) 事故時のよう素フィルタ処理空気条件について

a. アニュラス空気浄化設備

アニュラス空気浄化設備の系統構成を図2に示す。重大事故時のアニュラスには、格納容器から水蒸気が侵入し、格納容器以外から外気が侵入してくる。具体的には、格納容器からの水蒸気侵入量が約 $7.5~kg/h~^{(th1)}$ であり、格納容器以外からの水蒸気を含む空気の侵入量は、約 $3000~m^3/h~^{(th2)}$ である。

泊発電所周辺の夏季及び冬季の外気の温度,湿度を(2)項及び(3)項より25.6 \mathbb{C} ,95 %RH 及び-6.1 \mathbb{C} ,95 %RHとすると,重大事故時のアニュラス内空気の水蒸気分圧は,それぞれ,約4.0 kPa,約0.92 kPa $^{(\pm 3)}$ となる。事故時のアニュラスは,格納容器からの伝熱により通常時の温度(40 \mathbb{C} 程度)以下になることは考えられないため,アニュラス内温度を40 \mathbb{C} と想定した場合,この時の相対湿度は55 %RH以下となり $^{(\pm 4)}$,よう素フィルタの効率は確保できる。

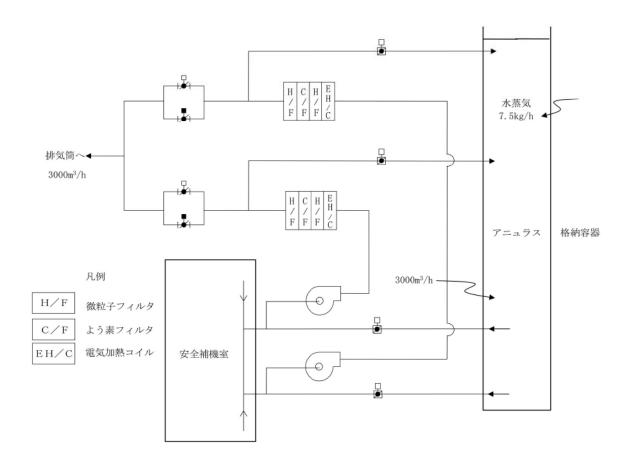


図2 泊3号炉 アニュラス空気浄化設備系統構成

b. 中央制御室非常用循環系統

中央制御室非常用循環系統の系統構成は図3の通りであり、冷却コイルにより冷却(除湿) され、60 %RH以下に維持されるので、よう素フィルタの効率は確保できる。

海水系の機能喪失等により、冷却コイルによる冷却(除湿)ができない状況においては、電気計装盤、照明、ファン等の発熱により、中央制御室内は外気より温度が高くなるため、相対湿度は低くなる。従って、中央制御室内空気の相対湿度は95 %RHを上回ることはなく、よう素フィルタの効率は確保できる。例えば、中央制御室内での昇温が5 $\mathbb C$ の場合、外気温度 25.6 $\mathbb C$ 、95 %RH 及び-6.1 $\mathbb C$ 、95 %RH時のよう素フィルタ入口相対湿度は、それぞれ73 %RH、63 %RHを下回る (25.6) こととなる。

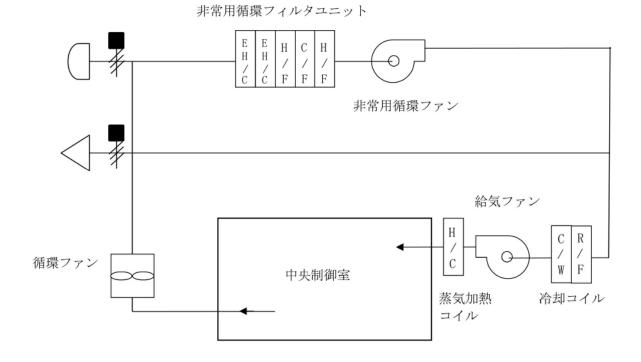


図3 中央制御室非常用循環系統 概略系統構成

- (注1) 格納容器からの水蒸気侵入量は、格納容器内最大質量と格納容器漏えい率より算出 している。格納容器内水蒸気最大質量は解析結果の最大値約112000 kgとし、格納容器 漏えい率は被ばく評価条件0.16 %/日としている。
- (注2) アニュラス少量排気量
- (注3) 25.6 ℃, 95 %RH及び-6.1 ℃, 95 %RHの時のアニュラス内水蒸気分圧は,以下の通りとなる。

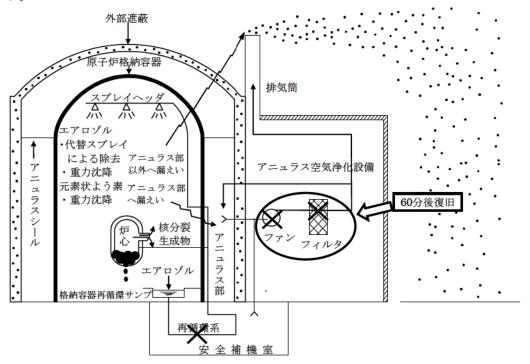
外気条件	25.6 ℃, 95 %RH	-6.1 °C, 95 %RH	
水蒸気密度【ρ o'】	0.024 kg/m^3	0.0049 kg/m^3	
空気密度【ρο】	1.1 kg/m ³	1.3 kg/m ³	
アニュラス少量排気量(L)	3000	m^3/h	
CV 以外の水蒸気侵入量	79. lam/la	14.7 log/b	
$[Mo' = \rho o' \times L]$	72 kg/h	14.7 kg/h	
CV 以外の空気侵入量	2200 leg /b	2000 leg/b	
$[Mo = \rho o \times L]$	3300 kg/h	3900 kg/h	
CV からの水蒸気侵入量	7.5	lra/b	
(Mcv')	7.5 kg/h		
アニュラス内空気絶対湿度	0.025 kg'/kg	0.0057 kg'/kg	
[X= (Mo' + Mcv') /Mo]	0.025 kg /kg	0.0057 kg /kg	
アニュラス内水蒸気分圧			
$[Pw=P\times X/ (0.622+X)]$	約4.0 kPa	約0.92 kPa	
P=101.3(kPa) (大気圧)			

(注4) 事故時のアニュラス内温度を 40 ℃とすると, 40 ℃の飽和水蒸気分圧は7.4 kPaであるから, アニュラス内空気の相対湿度は, 以下の通りとなる。

25.6 ℃, 95 %RH時: 4.0 kPa/7.4 kPa×100=54.1 %RH

-6.1 °C, 95 %RH時: 0.92 kPa/7.4 kPa×100=12.5 %RH

(注5) 25.6 ℃, 95 %RH及び-6.1 ℃, 95 %RHの水蒸気分圧は, それぞれ, 3.2 kPa, 0.35 kPa である。また, 30.6 ℃及び-1.1 ℃の飽和水蒸気分圧は, それぞれ, 4.4 kPa, 0.56 kPa であるから, 中央制御室非常用循環フィルタユニット取扱空気の相対湿度は, 以下の 通りとなる。


25.6 ℃, 95 %RH時: 3.2 kPa/4.4 kPa×100=72.8 %RH

-6.1 ℃, 95 %RH時: 0.35 kPa/0.56 kPa×100=62.5 %RH

大気中への放出放射能量の推移グラフについて

1. 大気中への放出放射能量評価の概略について

評価イメージを第1図に、大気中への放出量算定の概略を第2図に、解析のクロノロジを第3図に示す。

第1図 評価イメージ

第 2 図に示す過程にしたがって、大気中への放出放射能量を算出する。炉心に蓄積した核分裂生成物は、炉心溶融に伴って原子炉格納容器内へ放出され、原子炉格納容器内での重力 沈降やスプレイによる除去により放射能量は低減されながら、格納容器内に浮遊する。さら に、有効性評価の格納容器内圧の変化をもとに設定された格納容器からの漏えい率にしたが って漏えいし、アニュラス空気浄化設備のフィルタ除去効率を考慮して、各核種の放出放射 能量の総量を算出する。

各核種の炉心内蓄積量の算定

NUREG-1465 に基づく、炉心から原子炉格納容器に放出される割合の決定

原子炉格納容器内での低減効果の算定

・原子炉格納容器内での重力沈降によるエアロゾルの自然沈着速度の算出 (NUPEC) Af

 $\lambda_d = V_d \frac{A_f}{V_g}$

・原子炉格納容器内での元素状よう素の自然沈着速度の算出(NUPEC)

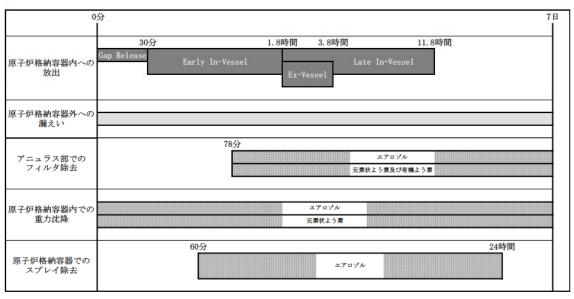
$$\lambda_d = -\frac{1}{t_1 - t_0} \log \left(\frac{\rho_1}{\rho_0} \right)$$

・原子炉格納容器内のスプレイ領域での代替格納容器スプレイによるエアロゾル除去速度の算出(SRP6.5.2)

$$\lambda_{S} = \frac{3hFE}{2V_{s}D}$$

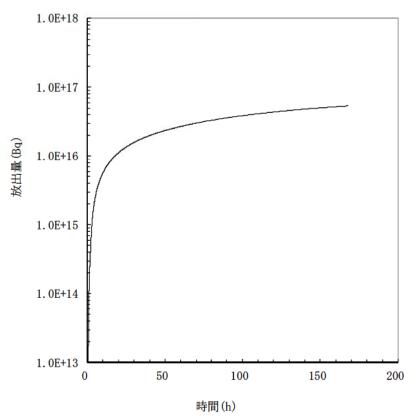
原子炉格納容器からの漏えい率の決定

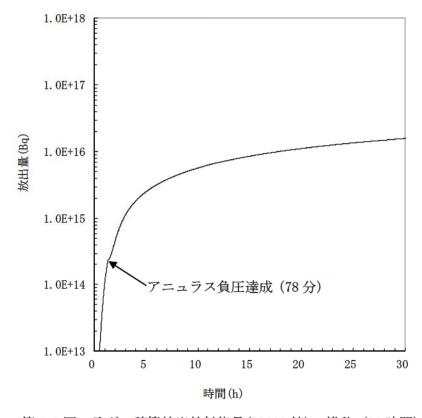
・MAAP 解析値に基づく漏えい率を包絡する値を設定(0.16 %/日)


原子炉格納容器からの漏えい割合の算定

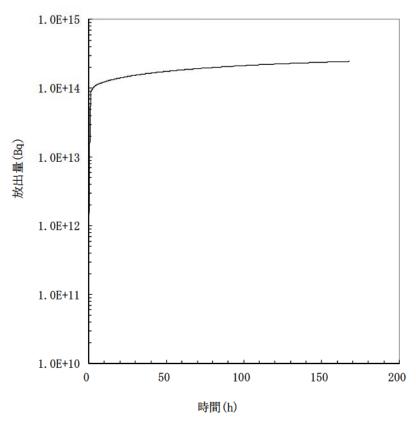
アニュラス空気浄化設備のフィルタ除去効率等を考慮した環境への放出量 (7日間)の算出

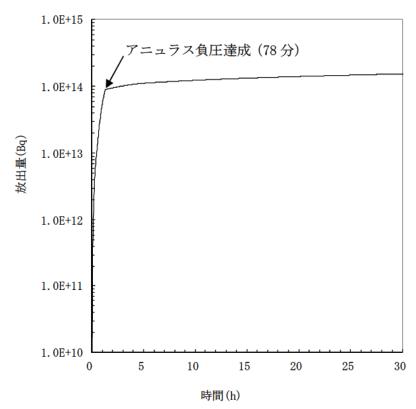
第2図 大気中への放出放射能量算定の概略フロー

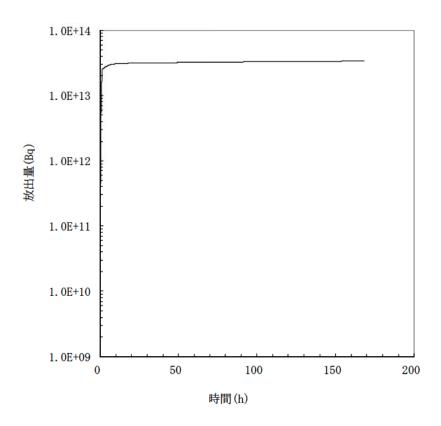

第3図は、放出放射能量評価のクロノロジを示し、図に記載の時間は、その効果を考慮する時間である。

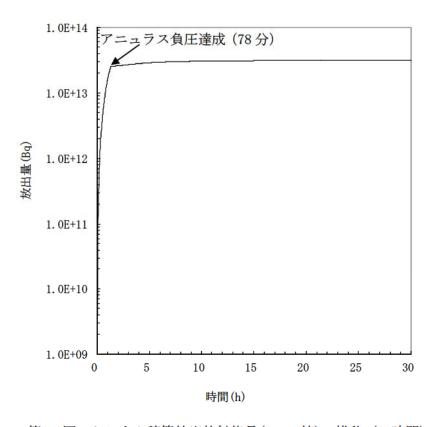

第3図 放出放射能量評価のクロノロジ

2. 大気中への放出放射能量の推移


大気中への放出放射能量の推移グラフを第4図~第6図に示す。


第4-1 図 希ガス積算放出放射能量(GROSS 値)の推移 (7日間(168時間))


第4-2図 希ガス積算放出放射能量(GROSS 値)の推移(30 時間)


第5-1 図 よう素積算放出放射能量(GROSS 値)の推移 (7日間(168時間))

第5-2 図 よう素積算放出放射能量(GROSS 値)の推移 (30 時間)

第 6-1 図 セシウム積算放出放射能量(GROSS 値)の推移 (7 日間(168 時間))

第6-2図 セシウム積算放出放射能量(Gross値)の推移(30時間)

中央制御室の直接線、スカイシャイン線評価方法について

重大事故時の居住性に係る被ばく評価において,原子炉格納容器からの直接線,スカイシャイン線評価では,重大事故時等に原子炉格納容器内に放出された核分裂生成物を線源としている。 このため,原子炉格納容器からの直接線,スカイシャイン線評価では,以下のとおりモデル化を行っている。

(1) 原子炉格納容器のモデル化 原子炉格納容器外部遮蔽の厚さは、ドーム部 計算では、安全側にマイナス側許容差を考慮してドーム部 の厚さでモデル化する。また、形状は原子炉格納容器自由体積及び内径を保存してモデル化し、直接線量を QAD コード、スカイシャイン線量を SCATTERING コードで計算している。なお、原子炉格納容器内の放射性物質は自由空間容積に均一に分布しているものとして計算している。具体的には、原子炉格納容器内の放射性物質はドーム部、円筒部に均一に分布しているものとしている。ただし、代替原子炉格納容器スプレイを使用するため、粒子状放射性物質の沈降が期待でき、これらは運転床レベル以下の自由空間容積に均一に分布しているものとして計算している。

原子炉格納容器モデル化概略図

ĺ	(2)	中中	き制御	I)エテ	シルイ	1
١		7.7	בעור ויווד		/ _ /	101	

中央制御室は、原子炉建屋に隣接する原子炉補助建屋内に位置し、その外側には補助遮蔽、建屋外壁があるが、直接・スカイシャイン線量は様々な方向から原子炉補助建屋内に入射するため、方向により透過する壁が異なってくる。また、原子炉補助建屋内は多くの部屋で区画されており複雑な形状となっている事から、全体の線量寄与も小さいことを考慮して、線量計算では、安全側にこれら構築物の遮蔽効果を無視し、中央制御室遮蔽のみ考慮する。

設計基準では、直接線量評価に SCATTERING コードを用いているが、重大事故時においては、より詳細な評価を実施する目的で、QAD コードにて直接線を評価している。中央制御室盛蔽の厚さは、壁 天井 としてモデル化している。なお、中央制御室内の計算点は中央制御室中央の人の高さ(床上 1.5 m)としている。

中央制御室モデル化概念図

(3) 直接線量評価に使用した評価コードについて

設計基準では,直接線量評価に SCATTERING コードを用いているが,重大事故対策においては, より詳細な評価を実施する目的で, QAD コードにて直接線を評価している。

QAD コード及び SCATTERING コードとも、ガンマ線の物質による減衰を考慮した直接線を評価する 3 次元形状の遮蔽解析コードであり、計算手法は同一であるが、エネルギー群等が異なる。各コードの比較概要、使い分け及び各コードの概要をそれぞれ第1表~第3表に示す。

第1表 QAD コードと SCATTERING コードの概要比較

コード名 項目	QAD コード	SCATTERING コード
取り扱える体系	線源及び遮蔽体とも多様な計算体系 (立方体, 球体, 円筒体系等)	同左
エネルギー群	任意のエネルギー群数(今回は14群)	同左(今回は5群)

第2表 QAD コードの概要

コード名 項目	QAD-CGGP2R
開発機関	米国ロスアラモス国立研究所及び日本原子力研究開発機構
開発時期	2001年(初版開発時期 1967年)
バージョン	1. 04
コードの概要	(汎用コード) 本計算機コードは、米国ロスアラモス国立研究所で開発されたガンマ線の物質透過を計算するための点減衰核積分法計算機コード「QAD」をベースとし、旧日本原子力研究所がICRP1990年勧告の国内関連法令・規制への取り入れに合わせて、実効線量率等を計算できるように改良したバージョンである。 本計算機コードは、線源及び遮蔽体を直方体、円筒、球などの三次元形状で模擬した計算体系でガンマ線の実効線量率及び空気カーマ率等を計算することができる。

第3表 SCATTERING コードの概要

コード名 項目	SCATTERING	
開発機関	米国ロスアラモス国立研究所及び三菱重工業(株)	
開発時期	2002年(初版開発時期 1974年)	
使用したバージョン	90m	
コードの概要	(非公開メーカーコード) スカイシャイン線量の解析コードであり、ガンマ線が空気中で散乱 を受けた後、観測点に到達する散乱線量(スカイシャイン線量)を 計算する。	

中央制御室空調装置の閉回路循環運転時における空気作動ダンパ 強制開放手順の成立性について

中央制御室空調装置の閉回路循環運転時の空気作動ダンパ開放手順

1. 操作概要

全交流動力電源喪失時において、炉心損傷時の中央制御室における被ばく低減を目的として中央 制御室空調装置の閉回路循環運転を行う。この循環運転を実施するためには、空気作動ダンパを強 制的に開放する必要があるため、次の操作を行う。

2. 必要要員数及び操作時間

必要要員数 : 2名 操作時間(想定) : 35分

操作時間(模擬):29分(移動,放射線防護具着用含む)

3. 操作の成立性

アクセス性:LEDヘッドランプ・LED懐中電灯を携行していることからアクセスできる。 また、アクセスルートに設置されている照明はバッテリ内蔵型であり、事故環境 下においてもアクセスできる。

作業環境 : 事故環境下における室温は通常運転状態と同等である。また、ダンパ開処置作業 エリア周辺には、作業を行う上で支障となる設備はなく、LEDヘッドランプ・ LED懐中電灯を用いることから事故環境下においても作業できる。

汚染が予想される場合は、個人線量計を携帯し、放射線防護具等を着用する。

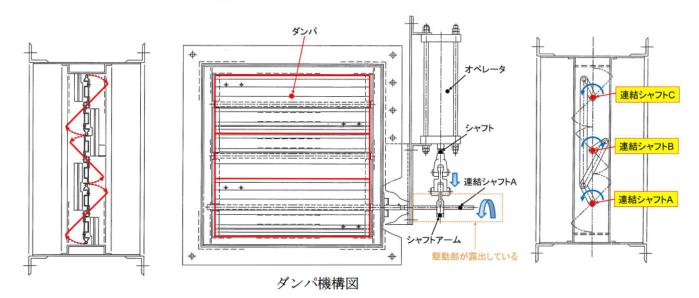
操作性 : ダンパ開処置作業は、ミニチュア弁操作と連結シャフトを開側へ回す作業のみで あり、容易に実施可能である。

連絡手段 : 通常時の通信手段として,電力保安通信用電話設備の携帯電話端末(PHS)を携行しており,連続通話で約6時間使用可能である。また,事故環境下において,通常の連絡手段が使用不能となった場合でも,携行型通話装置を使用し中央制御室との連絡を行う。

ダンパ全景 (原子炉補助建屋T.P.24.8 m) (開操作対象ダンパの一例)

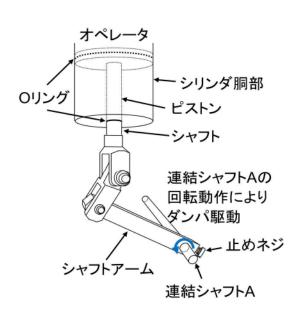
- ① 原子炉補助建屋T.P.24.8 mへ移動し,作業 準備を行う。
- ② 対象ダンパの駆動用制御用空気ミニチュア弁を閉止する。

- ③ ダンパオペレータの連結シャフトの止め ネジを緩める。
- ④ 連結シャフトを開方向へ操作する。
- ⑤ 開状態を保持したまま止めネジを締め付ける。

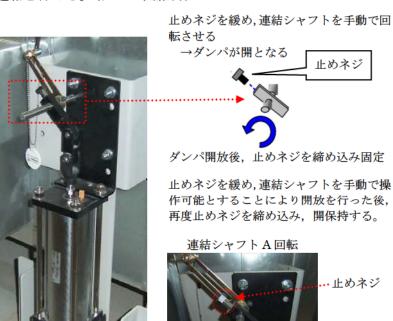


(空気作動ダンパ開作業イメージ)

空気作動ダンパを強制的に開放する手順について


1. ダンパの開処置方法

ダンパは、駆動部が露出しているため、止めネジを緩めることで手動によりダンパを直接回転 させることによりダンパ開とする。



2. 操作方法

- (1) 動作しないオペレータの拘束をフリーにするため、シャフトアームと連結シャフト A の連結を緩める。
- (2) 連結シャフトAを手動で回す。(連結シャフトB, Cに回転力が伝達しダンパ開)
- (3) シャフトアームと連結シャフトAの連結を締める。(ダンパ開維持)

ダンパ駆動部模式図

ダンパ駆動部写真

マスクによる防護係数について

重大事故時の居住性に係る被ばく評価において、以下の検討を踏まえ、全面マスクの防護係数 として50を使用している。

1. 厚生労働省労働基準局長通知について

「電離放射線障害防止規則の一部を改正する省令の施行等について」(基発0412第1号 都道府県労働局長あて厚生労働省労働基準局長通知)によると、「200万ベクレル毎キログラムを超える事故由来廃棄物等を取り扱う作業であって、粉じん濃度が10ミリグラム毎立方メートルを超える場所における作業を行う場合、内部被ばく線量を1年につき1ミリシーベルト以下とするため、漏れを考慮しても、50以上の防護係数を期待できる捕集効率99.9%以上の全面型防じんマスクの着用を義務付けたものであること」としている。

●以下, 電離放射線障害防止規則(最終改正:平成25年7月8日) 抜粋

第三十八条 事業者は、第二十八条の規定により明示した区域内の作業又は緊急作業その 他の作業で、第三条第三項の厚生労働大臣が定める限度を超えて汚染された空 気を吸入するおそれのあるものに労働者を従事させるときは、その汚染の程度 に応じて防じんマスク、防毒マスク、ホースマスク、酸素呼吸器等の有効な呼 吸用保護具を備え、これらをその作業に従事する労働者に使用させなければな らない。

●以下, 基発第0412第1号(平成25年4月12日)抜粋

キ 保護具 (第38条関係)

① 第1項の「有効な呼吸用保護具」は、次に掲げる作業の区分及び事故由来廃棄物等の放射能濃度の区分に応じた捕集効率を持つ呼吸用保護具又はこれと同等以上のものをいうこと。

	放射能濃度	放射能濃度	放射能濃度
	200 万 Bq/kg 超	50 万 Bq/kg 超	50 万 Bq/kg 以下
		200 万 Bq/kg 以下	
高濃度粉じん作業(粉じん	捕集効率 99.9%	捕集効率 95%以上	捕集効率 80%以
濃度 10mg/m³ 超の場所にお ける作業)	以上(全面型)		上
高濃度粉じん作業以外の作業(粉じん濃度 10mg/m³以下の場所における作業)	捕集効率 95%以上	捕集効率 80%以上	捕集効率 80%以 上

② 防じんマスクの捕集効率については、200万ベクレル毎キログラムを超える事故由 来廃棄物等を取り扱う作業であって、粉じん濃度が 10 ミリグラム毎立方メートルを 超える場所における作業を行う場合、内部被ばく線量を1年につき1ミリシーベルト 以下とするため、漏れを考慮しても、50以上の防護係数を期待できる捕集効率99.9% 以上の全面型防じんマスクの着用を義務付けたものであること。

2. マスクメーカーによる除染係数検査結果について

全面マスクを納入しているマスクメーカーにおいて、全面マスク(よう素用吸収缶)についての除染係数を検査している。本検査は、放射性ヨウ化メチルを用い、除染係数を算出したものである。その結果は、≥1,200と十分な除染係数を有することを確認した。 (フィルタ透過率は0.083 %以下)

なお、吸収缶の除染係数については10時間後において顕著な低下傾向は確認されないことから、 運転員の最長勤務時間(14時間10分)においても、十分な除染係数を有していると考えられる。

第1表 マスクメーカーによる除染係数検査結果

CA-N4RIのDF値

DF	値	入口濃度 試験流量		温湿度	
4時間後	10時間後	(Bq/cm ³)	(L/min)	(血仙)及	
≥230,000	113, 000	9.5×10 ⁻²	20	20°C - 05%PU	
≧1, 200	≥ 2, 700	7.6×10 ⁻⁵	20	30°C • 95%RH	

また、同じくマスクメーカーにより全面マスクの漏れ率を試験しており、最大でも0.01%であった。この漏れ率と除染係数(フィルタ透過率)から計算される防護係数は約1,000であった。

防護係数 (PF) =100/ {漏れ率(%)+フィルタ透過率(%)}

=100/(0.01+0.083) = 1,000

3. 泊発電所におけるマスク着用について

全面マスクによる防護係数については、着用者の熟練度に依存して大きく変化するといわれており、実作業時の防護係数は、より低下する可能性があるため、講師による指導のもとフィッティングテスターを使用した全面マスクの着用訓練を行い、漏れ率(フィルタ透過率を含む)2%を担保できるよう正しく全面マスクを着用できていることを確認している。

このため、全面マスクによる防護係数は50とする。なお、全面マスク着用については今後と もさらに教育・訓練を進めていき、マスク着用の習熟度を高めていく。

中央制御室滞在時に飲食等のためマスクを外した場合の影響について

運転員は直交替により順次入れ替わるため、事故発生時に中央制御室内の放射性物質濃度が高い場合は、中央制御室内で飲食せず、直交替によって退域した際又は緊急時対策所に移動して飲食することが可能であるが、仮に、運転員が中央制御室滞在時に飲食等のためマスクを外した場合の影響について概略評価を行った。

評価では、中央制御室内の放射性物質濃度が高い事故発生後7時間まではマスクは外さないものとする。

事故後7時間~168時間の間でのマスクを考慮しない場合とマスクを考慮した場合の線量の差から、飲食等のためマスクを外す時間を1時間と仮定すると、吸入による内部被ばくの影響は約0.1 mSv となり、仮に運転員が飲食等のためにマスクを外したとしても、その影響は小さいと考える。

第1表 吸入による内部被ばく線量

吸入による内部被ばく線量	中央制御室滞在時の内部被ばく線量
① 7時間以降マスクなしの場合	約 1.4×10 ¹ mSv
② 168 時間 (7 日間) マスクありの場合	約1.1×10° mSv
①-② 7時間~168時間中のマスクを外した場合の影響	約1.3×10 ¹ mSv
③ 1時間マスクを外した場合の内部被ばくの影響	約 0.1 mSv

中央制御室のグランドシャイン線量の評価方法について

1. 入退域時のグランドシャイン線量評価について

中央制御室入退域時の運転員に対するグランドシャイン線量評価は,第1表に示す評価 点に対して,以下のとおり評価している。

(1) 地表沈着量

地表沈着量は, 次式にて算出する。

$$AG_{i}(t) = \frac{VG_{i} \cdot (\chi/Q) \cdot Q_{i}}{\lambda_{i}} \cdot (1 - \exp(-\lambda_{i} \cdot t))$$

VG_i : 時刻 t, 核種 i の沈着速度 (m/s)

(χ/Q):時刻 t の相対濃度 (s/m³)

Qi : 時刻 t,核種 i の放射性物質の放出率(Bq/s)

λ_i :核種 i の崩壊定数 (1/s)

(2) 地表沈着物からのγ線による外部被ばくの計算 グランドシャイン線量率は、次式にて算出する。

$$DG_i(t) = KG_i \cdot AG_i(t) \cdot 3600$$
....(2)

DG_i(t): 時刻 t, 核種 i に関するグランドシャイン線量率 (Sv/h)

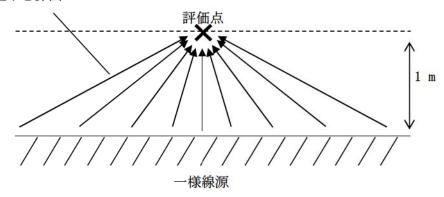
KG;: 地表沈着核種 i からの実効線量換算係数(Sv/s)/(Bq/m²)

AG_i(t):時刻 t,核種 i の放射性物質の地表沈着量(Bq/m²)

積算被ばく線量は,式(2)を対象期間T(h)で積分し,次式で算出する。

核種合計のグランドシャイン線量は、次式で計算する。

$$DDG = \sum_{i} DDG_{i}$$


DDG :核種合計の積算グランドシャイン線量 (Sv)

 DDG_i : 核種 i の積算グランドシャイン線量 (Sv)

実効線量換算係数は、NUREG/CR-4551を参照し設定したものである。ここでの、計算モデルはサブマージョンモデル(大きな領域の中で放射能の均質分布を仮定し、その中心における被ばくを仮定するモデル)を適用しており、一様線源を仮定し、評価点は地上 1 m としている。線量換算係数計算モデルの概念図を第1図に示す。

地表沈着した放射性物質のγ線

による線量率を算出

第1図 線量換算係数計算モデルの概念図

第1表 入退域時の評価点

評価点	CV 中心から の距離 (m)	EL (m)		
出入管理建屋入口	120			
中央制御室入口	55			

枠囲みの内容は機密情報に属しますので公開できません。

2. 中央制御室内でのグランドシャイン線量評価について

中央制御室は、原子炉建屋に隣接する原子炉補助建屋内に位置し、中央制御室内に影響する可能性のあるグランドシャイン線量は、原子炉補助建屋等の屋上や周辺の地表面に沈着した放射性物質によるものと考えられ、建屋内構造壁・床・天井及び建屋外壁・屋上の遮蔽効果が得られる。

グランドシャイン線量の評価条件比較表を第2表に示す。

地表面に沈着した放射性物質からのグランドシャイン線量は中央制御室側壁 に加えて、建屋内の構造壁等の遮蔽効果(計 以上)が得られることから、 の遮蔽効果を考慮した屋上面からのグランドシャイン線量よりさらに3桁程度小さな値となると考えられる。したがって、屋上面線源からの寄与が支配的であることから、屋上面線源からのグランドシャイン線量(約9.5×10⁻⁴ mSv)で代表して評価した。

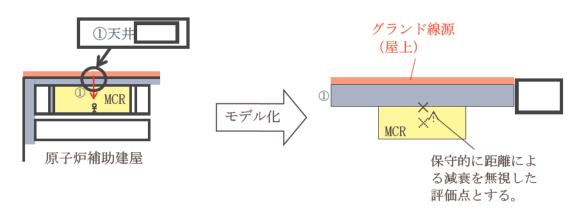
なお、第3表にマスク着用を考慮した中央制御室の居住性(重大事故対策)に係る被ばく線量結果を示すが、室内作業時の大気中へ放出された放射性物質のガンマ線による中央制御室内での被ばく線量としてクラウドシャインの線量を記載しているが、約1.2×10⁻² mSv となる。したがって、室内作業時の大気中へ放出された放射性物質のガンマ線による中央制御室内での被ばくについて、グランドシャイン線量は有意な線量とならない。

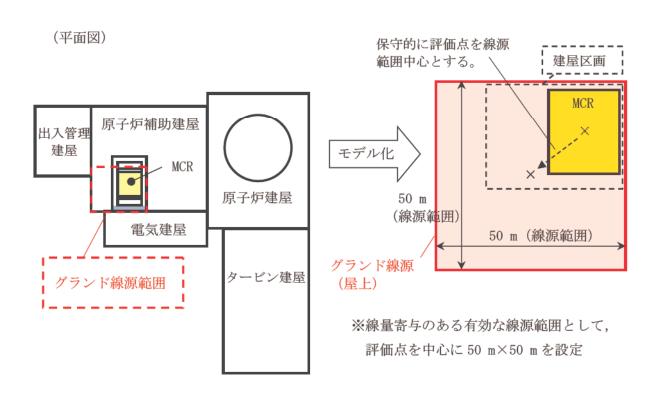
屋上面に沈着した放射性物質からのグランドシャイン線量の評価モデルを第3図に示す。 屋上から中央制御室までは距離が離れているが、この距離による減衰効果も無視した保守 的な評価モデルとしている。また、評価点の水平方向位置についても保守的に線源面の中 心とした評価モデルとしている。

枠囲みの内容は機密情報に属しますので公開できません。

第2表 屋上からと地表面からのグランドシャイン線量の評価条件比較表 (中央制御室)

	経	路	評価条件設	定の考え方
	屋上面 線源から	地表面 線源から	屋上面線源からの 条件設定の考え方	地表面線源からの寄与
遮蔽厚			評価条件として考慮する 遮蔽壁は,評価点までの遮 蔽厚が最小となる経路で 設定。	地表面からの線源と屋上 からの線源では,有意な遮 蔽厚に 以上の差。 【地表面線源の寄与: 1/1,000 倍以下】
線源から 評価点ま での最短 距離	約7 m	約 17 m	屋上線源から評価点まで の最短距離は約7m。	地表面からは最短で約 17 m離れており、遠方の線源だと距離が更に離れるが、地表面からの線量を保守的に見積もるために、地表面線源の寄与を同程度とした。 【地表面線源の寄与: 同程度】


総評:


地表面線源の寄与は屋上面線源からの寄与の約 $0.1\%(100\%\times0.001=0.1\%)$ であり、屋上面線源からの寄与が支配的であることから、屋上面線源からのグランドシャイン線量(約 9.5×10^{-4} mSv)で代表して評価した。

	枠囲みの内容は機密情報に属しますので公開できません
	作曲みの内谷は機管情報に属しまりので公開できません

第2図 屋上及び地表面からのグランドシャインに考慮できる遮蔽厚

(断面図)

第3図 グランドシャイン評価における計算モデルの概要図

本囲みの内容は機密情報に属しますので公開できません。

第3表 中央制御室の居住性(重大事故対策)に係る被ばく評価結果 -マスク着用-

		7 日	間の実効線量 (mSv)	*1
被ばく経路		外部被ばく による 実効線量	内部被ばく による 実効線量	実効線量の 合計
	①原子炉建屋からのガンマ線 による中央制御室での被ばく	約 1.7×10 ⁻²	1	約 1.7×10 ⁻²
室内	②大気中へ放出された放射性 物質による被ばく	約 1. 2×10 ⁻²	1	約 1.2×10 ⁻²
室内作業時	③外気から取り込まれた放射 性物質による中央制御室内で の被ばく	約 1.1×10°	約 1.1×10°	約 2. 2×10°
	小計 (①+②+③)	約 1.2×10°	約 1.1×10°	約 2. 2×10°
-	④原子炉建屋の放射性物質からのガンマ線による被ばく	約1.0×10 ¹	1	約 1. 0×10 ¹
人退城時	⑤大気中へ放出された放射性 物質による被ばく	約 1.3×10°	約 7.9×10 ⁻²	約 1.4×10°
	小計 (④+⑤)	約 1. 2×10 ¹	約 7.9×10 ⁻²	約 1. 2×10 ¹
	合 計 (①+②+③+④+⑤)	約 13	約 1.1	約 15* ²

- *1 表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は、有効数値3桁目を四 捨五入し2桁に丸めた値
- *2 「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に 丸めた値

湿性沈着を考慮した地表面沈着速度の設定について

1. 湿性沈着を考慮した地表面沈着速度の設定について

重大事故時の居住性に係る被ばく評価においては、地表面への沈着を評価する際、降雨による 湿性沈着を考慮して地表面沈着濃度を評価している。

以下に今回,湿性沈着を考慮した地表面沈着速度を乾性沈着の4倍として設定した妥当性について示す。

1.1 乾性沈着率と湿性沈着率の算定方法について

以下の計算式から乾性沈着率と地表沈着率(単位時間あたりの沈着量)を求める。ここでは 放射性崩壊による減少効果については式に含んでいないが、別途考慮している。また、放出源 からの放出が継続する時間と沈着を考慮する時間は同じとしている。

(1) 乾性沈着率

単位放出率あたりの乾性沈着率は線量目標値評価指針の式と同様に以下の式で表される。

$$D_{di} = V_{gd} \cdot \chi / Q_0 \quad \dots \quad (1)$$

Ddi:単位放出率あたりの乾性沈着率 [1/m2]

V_{gd}: 沈着速度 [m/s]

χ/Q₀ : 地上の相対濃度 [s/m³] (地上放出時の軸上濃度)

(2) 湿性沈着率

単位放出率当たりの湿性沈着率は評価指針に降水時の沈着量評価の参考資料として挙げられている Chamberlain の研究報告*より濃度を相対濃度 (χ/Q) で表現すると以下の式で表される。

$$D_{ri} = \Lambda \cdot \int_0^\infty \chi / Q_{(z)} dz \tag{2}$$

Dri : 単位放出率あたりの湿性沈着率 [1/m²]

Λ : 洗浄係数 [1/s]

 $\chi/Q(z)$: 鉛直方向の相対濃度分布 $[s/m^3]$

ここで、 $\chi/Q_{(z)}$ が正規分布をとると仮定すると、

$$D_{ri} = \Lambda \cdot \chi / Q_0 \cdot \sqrt{2\pi} \cdot \Sigma z \tag{3}$$

Σz : 鉛直拡散幅[m]

χ/Q₀ : 地上の相対濃度 [s/m³] (地上放出時の軸上濃度)

* Chamberlain, A.C.: Aspects of Travel and Deposition of Aerosol and Vapour Cloud, AERE HP/R1261 (1955)

(3) 地表沈着率

上記(1)式と(3)式から、地表沈着率は、以下の式で表される。

$$A = D_{di} + D_{ri} = V_{gd} \cdot \chi / Q_0 + \Lambda \cdot \chi / Q_0 \cdot \sqrt{2\pi} \cdot \Sigma z \qquad (4)$$

A : 単位時間あたりの地表沈着率[1/m2]

1.2 地表面濃度評価時の地表沈着率

今回の評価においてグランドシャイン線量が大きい評価点について、地表沈着率は年間を通じて 1 時間ごとの気象条件に対して、(1)式及び(3)式から各時間での沈着率を算出し、そのうちの年間 97 %積算値を取った。一方で、乾性沈着のみを考慮して年間 97 %積算値を想定した乾性沈着率(すなわち χ/Q の 97 %積算値×沈着速度)との比を(5)式のようにとると、第 1 表~第 2 表のとおり、約 $1.2\sim1.3$ 倍であった。地表面沈着率の累積出現頻度 97 %の求め方については添付 1 に示す。

$$\frac{D_{di} + D_{ri}}{D_{di}} = \frac{\left(V_{gd} \cdot \chi / Q_{0t} + \Lambda \cdot \chi / Q_{0t} \cdot \sqrt{2\pi} \cdot \Sigma z\right)_{97\%}}{V_{gd} \cdot \left(\chi / Q_{0}\right)_{97\%}} \dots (5)$$

()97%: 年間の97%積算値

χ/Q_{0t} : 時刻 t の地上の相対濃度 [s/m³] (地上放出時の軸上濃度)

第1表 泊発電所3号炉における湿性沈着量評価(中央制御室入口)

累積出現頻度 97 %値	$\chi/Q(s/m^3)$	約 5.7×10 ⁻⁴
条負山光頻及 97 %ill	① 乾性沈着率(1/m²)	約 1.7×10 ⁻⁶
	② 地表面沈着率(1/m²)	約 2. 2×10 ⁻⁶
累積出現頻度 97 %値	(乾性+湿性)	ポリ 2. 2 入 10 -
	降雨量(mm/h)	2
降雨時と非降雨	約1.3	

第2表 泊発電所3号炉における湿性沈着量評価(出入管理建屋入口)

田巷山田崎市 07 0/荷	$\chi/Q(s/m^3)$	約3.8×10 ⁻⁴
累積出現頻度 97 %値	① 乾性沈着(1/m²)	約1.1×10 ⁻⁶
	② 地表面沈着率(1/m²)	約 1. 4×10 ⁻⁶
累積出現頻度 97 %値	(乾性+湿性)	ポリ1.4×10
	降雨量(mm/h)	0
降雨時と非降雨時の比(②/①)		約1.2

以上より、湿性沈着を考慮した沈着率は、 χ/Q 97 %積算値を使用した場合の乾性沈着率に比べ、4 倍を下回る結果が得られたことから、今回の評価において湿性沈着を考慮した沈着速度を乾性沈着の4倍とすることは保守的な評価であると考えられる。

なお、参考として出入管理建屋入口における地表沈着率の算出に使用する降雨量を、保守的な想定として年間 97%積算値の降雨があったものと仮定した場合の同評価結果を添付 2 に示す。 また、評価に使用するパラメータを第 3 表に示す。

第3表 地表沈着関連パラメータ

パラメータ	値	備考
乾性沈着速度	0.3 (cm/s)	NUREG/CR-4551 Vol. 2
$V_{\rm gd}$		
鉛直拡散幅	気象指針に基づき計算	1時間ごとの値を算出。
Σz	$\sum \left(-\frac{2}{3} + \frac{1}{3} + \frac{1}{3} \right)$	・ 建屋投影面積 A: 2700 (m ²)
	$\sum_{z} = \sqrt{\left(\sigma_{z}^{2} + \mathbf{c}\mathbf{A}/\mathbf{\pi}\right)}$	・ 形状係数 c:0.5
		・ σ _z :鉛直方向の平地の拡散パラメータ (m)
洗浄係数	$\Lambda = 9.5E - 5 \times Pr^{0.8} (s^{-1})$	日本原子力学会標準「原子力発電所の確率論的
Λ		安全評価に関する実施基準 (レベル 3PSA 編):
	Pr : 降水強度	2008」(NUREG-1150 解析使用値として引用)
	(mm/h)	
気象条件	1997 年	1997年1月~1997年12月の1時間ごとの風向,
		風速,降水量を使用

2. 乾性沈着速度の設定について

乾性の沈着速度 0.3~cm/s は NUREG/CR-4551 (参考文献 1) に基づいて設定している。 NUREG/CR-4551 では郊外を対象とし、郊外とは道路、芝生及び木・潅木の葉で構成されるとしている。原子力発電所内も同様の構成であるため、郊外における沈着速度が適用できると考えられる。また、 $\text{NUREG/CR-4551}}$ では $0.5~\mu$ m の粒径に対して検討されており、種々のシビアアクシデント時の粒子状物質の粒径の検討(添付 $3~\delta$ 照)から、居住性評価における粒子状物質の大部分は、この粒径範囲内にあると考えられる。

また、W. G. N. Slinn の検討によると、草や水、小石といった様々な材質に対する粒径に応じた乾性の沈着速度を整理しており、これによると $0.1~\mu$ m~ $5~\mu$ m の粒径では沈着速度は 0.3~cm/s 程度である。

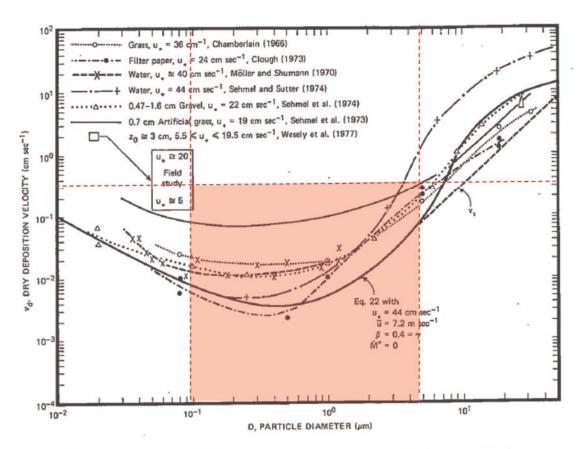


Fig. 4 Dry deposition velocity as a function of particle size. Data were obtained from a number of publications. ¹⁹⁻²⁵ The theoretical curve appropriate for a smooth surface is shown for comparison. Note that the theoretical curve is strongly dependent on the value for u* and that Eq. 22 does not contain a parameterization for surface roughness. For a preliminary study of the effect of surface roughness and other factors, see Ref. 5.

図 様々な粒径における地表面沈着速度(参考文献2)

また、中央制御室における被ばく評価へのシナリオを考慮した場合、エアロゾルの粒径の 適用性は以下のとおりである。

シビアアクシデント時に,放射性物質を含むエアロゾルの放出においては,以下の除去過程が考えられる。

①格納容器内での沈着による除去過程

格納容器内でのエアロゾルの重力沈降速度は、エアロゾルの粒径の二乗に比例する。例えば、エアロゾル粒径が 5 μ m の場合、その沈着率は、NUPEC 報告書(参考文献 3)より現行考慮しているエアロゾルの粒径 1 μ m の場合に比べ 25 倍となる。したがって、粒径の大きいエアロゾルほど格納容器内に捕獲されやすくなる。

②アニュラス空気浄化設備微粒子フィルタによる除去過程

アニュラス空気浄化設備の微粒子フィルタについては,最大透過粒子径 $0.15~\mu\,\mathrm{m}$ を考慮した単体試験にて,フィルタ効率性能(99.97 %以上)を確認している。

微粒子フィルタは、粒子径 $0.15~\mu\,\mathrm{m}$ が最も捕獲しにくいことが明らかとなっており (Ref. JIS Z 4812)、粒子径がこれにより大きくなると、微粒子フィルタの捕獲メカニズム (慣性衝突効果等) によりフィルタ繊維に粒子が捕獲される割合が大きくなる。以上より、 $5~\mu\,\mathrm{m}$ 以上の粒径の大きいエアロゾルは、最もフィルタを透過しやすい粒子径 $0.15~\mu\,\mathrm{m}$ に比べ相対的に捕獲されやすいといえる。

このため、中央制御室の被ばく評価シナリオにおいては、アニュラス空気浄化設備起動前では上記①の除去過程にて、相対的に粒子径の大きいエアロゾルは多く格納容器内に捕獲される。また、アニュラス空気浄化系起動後では、①及び②の除去過程で、5 μ m以上の粒径のエアロゾルは十分に捕獲され、それら粒径の大きなエアロゾルの放出はされにくいと考えられる。

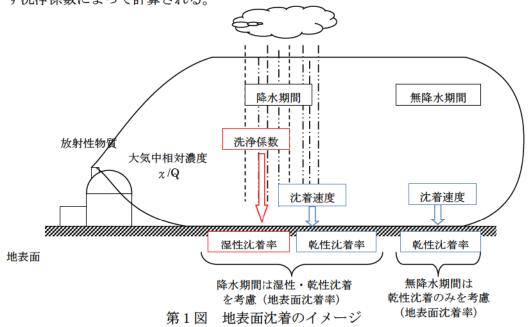
以上より、種々のシビアアクシデント時のエアロゾルの粒径の検討から粒径の大部分は $0.1~\mu\,\mathrm{m}\sim 5~\mu\,\mathrm{m}$ の範囲にあること、また、沈着速度が高い傾向にある粒径が大きなエアロゾルは大気へ放出されにくい傾向にあることから、居住性評価における乾性沈着速度として $0.3~\mathrm{cm/s}$ を適用できると考えている。

参考文献1

J.L. Sprung 等: Evaluation of severe accident risks: quantification of major input parameters, NUREG/CR-4451 Vol. 2 Rev. 1 Part 7, 1990

参考文献 2

W. G. N. Slinn: Environmental Effects, Parameterizations for Resuspension and for Wet and Dry Deposition of Particles and Gases for Use in Radiation Dose Calculations, Nuclear Safety Vol. 19 No. 2, 1978


参考文献3

NUPEC「平成9年度 NUREG-1465のソースタームを用いた放射性物質放出量の評価に関する報告書 (平成10年3月)」

地表面沈着率の累積出現頻度 97 %値の求め方について

1. 地表面沈着について

第1図及び式①に示すように地面への放射性物質の沈着は、乾性沈着と湿性沈着によって発生する。乾性沈着は地上近くの放射性物質が、地面状態等によって決まる沈着割合(沈着速度)に応じて地面に沈着する現象であり、放射性物質の地表面濃度に沈着速度をかけることで計算される。湿性沈着は降水によって放射性物質が雨水に取り込まれ、地面に落下・沈着する現象であり、大気中の放射性物質の濃度分布と降水強度及び沈着の割合を示す洗浄係数によって計算される。

<地表面沈着率の計算式>

 $D = D_d + D_w = \chi / Q_0 V_g + \int \chi / Q_{(z)} \Lambda dz - \dots$

D: 地表面沈着率 (1/m²) (単位放出率当たり)

 D_d
 : 乾性沈着率 (1/m²)

 D_m
 : 湿性沈着率 (1/m²)

 χ/Q_0 : 地上の相対濃度 (s/m^3) (地上放出時の軸上濃度)

 $\chi/Q_{(z)}$:鉛直方向の相対濃度分布(s/m^3)

 v_g : 沈着速度(m/s) Λ : 洗浄係数(1/s) ただし, $\Lambda=aP^b$

a,b:洗浄係数パラメータ (-)

P : 降水強度 (mm/hr)

z : 鉛直長さ (m)

2. 地表面沈着率の累積出現頻度 97 %値の求め方

地表面沈着率の累積出現頻度は、気象指針に記載されている χ/Q の累積出現頻度 97 %値の求め方に基づいて計算した。具体的には以下の手順で計算を行った(第 2 図参照)。

(1) 各時刻における気象条件から、式①を用いて χ/Q 、乾性沈着率、湿性沈着率を1時間 ごとに算出する。なお、評価対象方位以外に風が吹いた時刻については、評価対象方位 における χ/Q がゼロとなるため、地表面沈着率(乾性沈着率+湿性沈着率)もゼロとなる。

第2図の例は、評価対象方位をNW、NNWとした場合であり、 χ/Q による乾性沈着率及び降水による湿性沈着率から地表面沈着率を算出する。評価対象方位(NW、NNW 方位)以外の方位に風が吹いた時刻については、地表面沈着率はゼロとなる。

(2) 上記(1)で求めた 1 時間毎の地表面沈着率を値の大きさ順に並びかえ,小さい方から数えて累積出現頻度が 97 %を超えたところの沈着率を、地表面沈着率の累積出現頻度 97 %値とする(地表面沈着率の累積出現頻度であるため、 χ/Q の累積出現頻度と異なる)。

			が評価対の場合	降水が 性沈着		時刻は,湿 ゼロ				
日時	方位 (風向)	風速 (m/s)	大気 安定度	χ/Q (s/m³)		生沈着率 (1/m²) (①)	降水量 (mm/hr)	湿性沈着 (1/m²) (②)		地表面沈着率
1/1 1:00	NW (SE)	1.0	D	○×10 ⁻⁴	0	×10 ⁻⁷	0	0		○×10 ⁻⁷
1/1 2:00	NNW (SSE)	2.3	E	○×10 ⁻⁴	0	×10 ⁻⁷	1.0	○×10 ⁻	- 6	○×10 ⁻⁶
1/1 3:00	E (W)	3. 1	D			_	1.5	_		0
			• • •	• • •		• • •				
12/21 23:00	NNW (SSE)	2. 5	D	○×10 ⁻³	0	×10 ⁻⁶	0	0		○×10 ⁻⁶
	及び乾性沈着率が出現 地表面沈着率を昇順に並び替え									
						No	出現頻度 (%)	χ/Q (s/m ³)		面沈着率 ①+②)
						1	0.000	-		0
						2	0.003	_		0
		地	表面沈着	率の		• • •				
				度 97 %値 -	→[00	97. 004	○×10 ⁻⁴	0	×10 ⁻⁷
0	30500 28 300		3 2 2 2	and the same of th	_[00	97. 010	○×10 ⁻⁵	0	×10 ⁻⁷
によっ	てx/Qは必		あり, 気象条順に並ぶとは	100						
限らな(従	Distriction of the second	算とは順都	番が異なる)			×××	100.000	○×10 ⁻⁴	0	×10 ⁻⁶

第2図 地表面沈着率の累積出現頻度 97 %値の求め方 (評価対象方位が NW, NNW の例)

3. 累積出現頻度 97 %値付近における地表面沈着率

各評価点における地表面沈着率の累積出現頻度 97 %値付近の値を第 1 表および第 2 表に示す。

第1表 泊発電所3号炉における地表面沈着率 (評価点:中央制御室入口)

No	方位 (風向)	降水量 (mm/hr)	χ/Q (s/m ³)	地表面沈着率 (1/m²)	乾性沈着率 の累積出現 頻度 97 %値 との比率*1	累積出現 頻度 (%)
					• • •	
8418	WNW (ESE)	1.5	2.1×10^{-4}	2. 1×10 ⁻⁶	約 1. 2	96. 993
8419	WNW (ESE)	2.0	1.8×10 ⁻⁴	2.2×10 ⁻⁶	約 1. 3	<u>97. 004</u>
8420	NW (SE)	5. 5	9. 6×10 ⁻⁵	2.2×10 ⁻⁶	約1.3	97. 016
• • •					• • •	• • •

% 1 乾性沈着率の累積出現頻度 97 %値との比率= (地表面沈着率) / (乾性沈着率の累積出現頻度 97 %値) で計算した。 なお,(乾性沈着率の累積出現頻度 97 %値) =約 1.7×10^{-6} ($1/m^2$)

第2表 泊発電所3号炉における地表面沈着率 (評価点:出入管理建屋入口)

No	方位 (風向)	降水量 (mm/hr)	χ/Q (s/m ³)	地表面沈着率 (1/m²)	乾性沈着率 の累積出現 頻度 97 %値 との比率 ^{**3}	累積出現 頻度 (%)
• • •	• • •	12.1		• • •	• • •	• • •
8413**1	NW (SE)	0.5	2.4×10^{-4}	1.4×10 ⁻⁶	約 1. 2	96. 935
					• • •	
8418	WNW (ESE)	0	4. 7×10^{-4}	1.4×10 ⁻⁶	約 1. 2	96. 993
8419	<u>NW</u> (SE)	<u>0</u>	4.7×10 ⁻⁴	1.4×10 ⁻⁶	約 1. 2	<u>97. 004</u>
8420	NW (SE)	0	4. 7×10^{-4}	1.4×10 ⁻⁶	約 1. 2	97. 016
	• • •	• • •	• • •	• • •	• • •	• • •
8433**2	WNW (ESE)	4. 0	7.9×10^{-5}	1.4×10 ⁻⁶	約 1.3	97. 166
• • •	• • •	• • •	• • •	• • •	• • •	• • •

- ※1 97 %から累積出現頻度を下げていき、初めて降水が発生したときの値
- ※2 97 %から累積出現頻度を上げていき、初めて降水が発生したときの値
- ※3 乾性沈着率の累積出現頻度 97 %値との比率= (地表面沈着率) / (乾性沈着率の累積出現頻度 97 %値) で計算した。なお,(乾性沈着率の累積出現頻度 97 %値) =約 1.1 × 10^{-6} ($1/m^2$)

湿性沈着の考慮について

中央制御室周辺における地表面への沈着量は、気象条件として相対濃度(χ /Q)及び降雨量を考慮して評価している。ここで、相対濃度としては、97%積算値を使用し、また、沈着速度は乾性の沈着速度の 4 倍の値としている。これは、審査ガイドに記載されているとおり、湿性沈着を考慮した沈着濃度とするためである。一方、相対濃度を 97%積算値として、さらに年間の最も厳しい降雨量の沈着速度を設定することは、気象条件を基に降雨を適正に考慮した沈着量とはならない。具体的には、出入管理建屋入口において最大の降雨強度の時間においては、風向は見込み方位ではないため、沈着量は 0 となるにもかかわらず、相対濃度として 97%積算値を用いて沈着量を設定することとなり、不適切である。なお、今回評価に用いた 1997 年度の気象データによると、1 時間の最大雨量は全方位で 22 mm/h であり、出入管理建屋入口においては χ /Q 97%積算値が得られた時刻では降雨はなかった。

そこで、本評価では、沈着速度を乾性沈着の 4 倍とすることの妥当性確認として、前述のとおり χ /Q 97 %積算値が得られた時刻では降雨はなかったが、保守的な想定として更に年間 97%積算値の降雨量があったものと仮定し、屋外と建屋の境界である、出入管理建屋入口における降雨時の「単位放出率当たりの地表面沈着量」(以下、地表面沈着率とする)を評価した(表 1 参照)。その結果、降雨を考慮した場合の地表面沈着率は、降雨を考慮しない場合の χ /Q 97 %積算値を想定した乾性地表面沈着率の約 2.7 倍であったことから、湿性沈着を考慮した沈着量を乾性沈着の 4 倍とすることは保守的な評価であると判断した。

泊発電所3号炉における湿性沈着量評価(出入管理建屋入口)

χ/Q(約3.8×10 ⁻⁴	
97%積算値降	1.0	
地表面沈着率(1/m²)	乾性沈着①	約 1.1×10 ⁻⁶
	湿性沈着②	約 1.9×10 ⁻⁶
降雨時と非降雨時の	約 2.7	

シビアアクシデント時のエアロゾルの粒径について

シビアアクシデント時に CV 内で発生する放射性物質を含むエアロゾルの粒径分布として 0.1 $\mu\,\mathrm{m}\sim 5$ $\mu\,\mathrm{m}$ の範囲であることは、粒径分布に関して実施されている研究を基に設定している。

シビアアクシデント時には CV 内にスプレイ等による注水が実施されることから,シビアアクシデント時の粒径分布を想定し「CV 内でのエアロゾルの挙動」及び「CV 内の水の存在の考慮」といった観点で実施された第1表の②,⑤に示す試験等を調査した。さらに,シビアアクシデント時のエアロゾルの粒径に対する共通的な知見とされている情報を得るために,海外の規制機関(NRCなど)や各国の合同で実施されているシビアアクシデント時のエアロゾルの挙動の試験等(第1表の①,③,④)を調査した。以上の調査結果を第1表に示す。

この表で整理した試験等は、想定するエアロゾル発生源、挙動範囲(CV, RCS 配管等)及び水の存在等に違いがあるが、エアロゾル粒径の範囲に大きな違いはなく、CV 内環境でのエアロゾルの粒径はこれらのエアロゾル粒径と同等な分布範囲を持つものと推定できる。

従って、過去の種々の調査・研究により示されている範囲をカバーする値として、 $0.1~\mu\,\mathrm{m}\sim 5~\mu\,\mathrm{m}$ の範囲のエアロゾルを想定することは妥当であると考える。

第1表 シビアアクシデント時のエアロゾル粒径についての文献調査結果

番号	試験名又は報告書名等	エアロゾル粒径	備考
		(μm)	
			シビアアクシデント時の評価に使
	LACE LA2 [*] 1	約 0.5~5	用されるコードでの格納容器閉じ
	LACE LAZ	(第1図参照)	込め機能喪失を想定した条件とし
			た比較試験。
		0.25~2.5	CV内に水が存在し、溶融炉心を覆
2	NUREG/CR-5901 ^{**} 2	() E (+ 1)	っている場合のスクラビング効果
		(添付-1)	のモデル化を紹介したレポート。
		0.1~3.0	シビアアクシデント時の炉心損傷
3	AECL が実施した実験 ^{※3}	(FH 0)	を考慮した1次系内のエアロゾル
		(添付-2)	挙動に着目した実験。
		0.29~0.56	シビアアクシデント時の炉心損傷
4	PBF — SFD [*] ³	(XF.14 0)	を考慮した1次系内のエアロゾル
		(添付-2)	挙動に着目した実験。
			シビアアクシデント時の FP 挙動の
(5)	PHÉBUS FP ^{₩3}	0.5~0.65	実験。(左記のエアロゾル粒径は
	THEBOS PI	(添付-2)	PHÉBUS FP 実験の CV 内のエアロゾル
			挙動に着目した実験の結果。)

参考文献

- ※1: J. H. Wilson and P. C. Arwood, Summary of Pretest Aerosol Code Calculations for LWR Aerosol Containment Experiments (LACE) LA2, ORNL
 - A. L. Wright, J. H. Wilson and P. C. Arwood, PRETEST AEROSOL CODE COMPARISONS FOR LWR AEROSOL CONTAINMENT TESTS LA1 AND LA2
- ※2: D. A. Powers and J. L. Sprung, NUREG/CR-5901, A Simplified Model of Aerosol Scrubbing by a Water Pool Overlying Core Debris Interacting With Concrete
- 3: STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS, NEA/CSNI/R (2009) 3

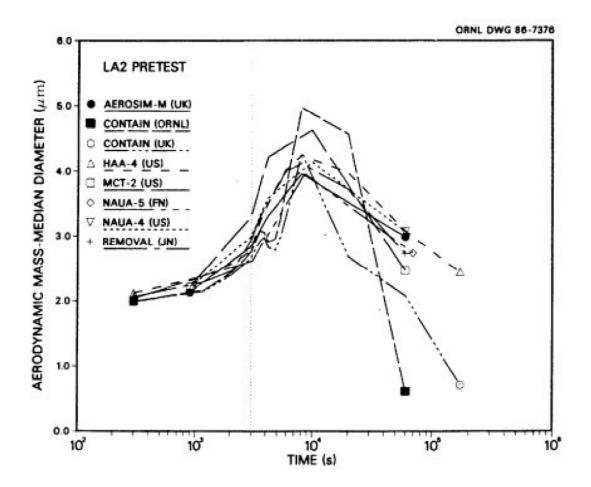


Fig. 11. LA2 pretest calculations — aerodynamic mass median diameter vs time.

第1図 LACE LA2 でのコード比較試験で得られたエアロゾル粒径の時間変化グラフ

so-called "quench" temperature. At temperatures below this quench temperature the kinetics of gas phase reactions among CO, CO₂, H₂, and H₂O are too slow to maintain chemical equilibrium on useful time scales. In the sharp temperature drop created by the water pool, very hot gases produced by the core debris are suddenly cooled to temperatures such that the gas composition is effectively "frozen" at the equilibrium composition for the "quench" temperature. Experimental evidence suggest that the "quench" temperature is 1300 to 1000 K. The value of the quench temperature was assumed to be uniformly distributed over this temperature range for the calculations done here.

- (6) Solute Mass. The mass of solutes in water pools overlying core debris attacking concrete has not been examined carefully in the experiments done to date. It is assumed here that the logarithm of the solute mass is uniformly distributed over the range of ln(0.05 g/kilogram H₂O) = -3.00 to ln(100 g/kilogram H₂O) = 4.61.
- (7) Volume Fraction Suspended Solids. The volume fraction of suspended solids in the water pool will increase with time. Depending on the available facilities for replenishing the water, this volume fraction could become quite large. Models available for this study are, however, limited to volume fractions of 0.1. Consequently, the volume fraction of suspended solids is taken to be uniformly distributed over the range of 0 to 0.1.
- (8) Density of Suspended Solids. Among the materials that are expected to make up the suspended solids are $Ca(OH)_2$ ($\rho = 2.2 \text{ g/cm}^3$) or SiO_2 ($\rho = 2.2 \text{ g/cm}^3$) from the concrete and UO_2 ($\rho = 10 \text{ g/cm}^3$) or ZrO_2 ($\rho = 5.9 \text{ g/cm}^3$) from the core debris or any of a variety of aerosol materials. It is assumed here that the material density of the suspended solids is uniformly distributed over the range of 2 to 6 g/cm³. The upper limit is chosen based on the assumption that suspended UO_2 will hydrate, thus reducing its effective density. Otherwise, gas sparging will not keep such a dense material suspended.
- (9) <u>Surface Tension of Water</u>. The surface tension of the water can be increased or decreased by dissolved materials. The magnitude of the change is taken here to be $S\sigma(w)$ where S is the weight fraction of dissolved solids. The sign of the change is taken to be minus or plus depending on whether a random variable ϵ is less than 0.5 or greater than or equal to 0.5. Thus, the surface tension of the liquid is:

$$\sigma_1 = \begin{cases} \sigma(w) & (1-S) & \text{for } \epsilon < 0.5 \\ \sigma(w) & (1+S) & \text{for } \epsilon \ge 0.5 \end{cases}$$

where $\sigma(w)$ is the surface tension of pure water.

(10) Mean Aerosol Particle Size. The mass mean particle size for aerosols produced during melt/concrete interactions is known only for situations in which no water is present. There is reason to believe smaller particles will be produced if a water pool is present. Examination of aerosols produced during melt/concrete interactions shows that the primary particles are about 0.1 μm in diameter. Even with a water pool present, smaller particles would not be expected. Consequently, the natural logarithm of the mean particle size is taken here to be uniformly distributed over the range from $\ln (0.25 \mu m) = -1.39 \text{ to } \ln (2.5 \mu m) = 0.92$.

- (11) Geometric Standard Deviation of the Particle Size Distribution. The aerosols produced during core debris-concrete interactions are assumed to have lognormal size distributions. Experimentally determined geometric standard deviations for the distributions in cases with no water present vary between 1.6 and 3.2. An argument can be made that the geometric standard deviation is positively correlated with the mean size of the aerosol. Proof of this correlation is difficult to marshall because of the sparse data base. It can also be argued that smaller geometric standard deviations will be produced in situations with water present. It is unlikely that data will ever be available to demonstrate this contention. The geometric standard deviation of the size distribution is assumed to be uniformly distributed over the range of 1.6 to 3.2. Any correlation of the geometric standard deviation with the mean size of the aerosol is neglected.
- (12) Aerosol Material Density. Early in the course of core debris interactions with concrete, UO₂ with a solid density of around 10 g/cm³ is the predominant aerosol material. As the interaction progresses, oxides of iron, manganese and chromium with densities of about 5.5 g/cm³ and condensed products of concrete decomposition such as Na₂O, K₂O, Al₂O₃ SiO₂, and CaO with densities of 1.3 to 4 g/cm³ become the dominant aerosol species. Condensation and reaction of water with the species may alter the apparent material densities. Coagglomeration of aerosolized materials also complicates the prediction of the densities of materials that make up the aerosol. As a result the material density of the aerosol is considered uncertain. The material density used in the calculation of aerosol trapping is taken to be an uncertain parameter uniformly distributed over the range of 1.5 to 10.0 g/cm³.

Note that the mean aerosol particle size predicted by the VANESA code [6] is correlated with the particle material density to the -1/3 power. This correlation of aerosol particle size with particle material density was taken to be too weak and insufficiently supported by experimental evidence to be considered in the uncertainty analyses done here.

(13) Initial Bubble Size. The initial bubble size is calculated from the Davidson-Schular equation:

$$D_b = \epsilon \left(\frac{6}{\pi}\right)^{1/3} \frac{V_5^{0.4}}{g^{0.2}} cm$$

where € is assumed to be uniformly distributed over the range of 1 to 1.54. The minimum bubble size is limited by the Fritz formula to be:

$$D_b = 0.0105 \ \Psi [\sigma_l / g(\rho_l - \rho_g)]^{1/2}$$

where the contact angle is assumed to be uniformly distributed over the range of 20 to 120°. The maximum bubble size is limited by the Taylor instability model to be:

添付-2 STATE-OF-THE-ART REPORT ON NUCLEAR AEROSOLS NEA/CSNI/R(2009)5の抜粋及び試験の概要

9.2.1 Aerosols in the RCS

9.2.1.1 AECL

The experimenters conclude that spherical particles of around 0.1 to 0.3 µm formed (though their composition was not established) then these agglomerated giving rise to a mixture of compact particles between 0.1 and 3.0 µm in size at the point of measurement. The composition of the particles was found to be dominated by Cs, Sn and U: while the Cs and Sn mass contributions remained constant and very similar in mass, U was relatively minor in the first hour at 1860 K evolving to be the main contributor in the third (very approximately: 42 % U, 26 % Sn, 33 % Cs). Neither break down of composition by particle size nor statistical size information was measured.

9.2.1.2 PBF-SFD

Further interesting measurements for purposes here were six isokinetic, sequential, filtered samples located about 13 m from the bundle outlet. These were used to follow the evolution of the aerosol composition and to examine particle size (SEM). Based on these analyses the authors state that particle geometrical-mean diameter varied over the range $0.29\text{-}0.56~\mu\text{m}$ elimination of the first filter due to it being early with respect to the main transient gives the range $0.32\text{-}0.56~\mu\text{m}$) while standard deviation fluctuated between 1.6 and 2.06. In the images of filter deposits needle-like forms are seen. Turning to composition, if the first filter sample is eliminated and "below detection limit" is taken as zero, for the structural components and volatile fission products we have in terms of percentages the values given in Table 9.2-1.

9.2.2 Aerosols in the containment

9.2.2.1 PHÉBUS FP

The aerosol size distributions were fairly lognormal with an average size (AMMD) in FPT0 of 2.4 μ m at the end of the 5-hour bundle-degradation phase growing to 3.5 μ m before stabilizing at 3.35 μ m; aerosol size in FPT1 was slightly larger at between 3.5 and 4.0 μ m. Geometric-mean diameter (d₅₀) of particles in FPT1 was seen to be between 0.5 and 0.65 μ m a SEM image of a deposit is shown in Fig. 9.2-2. In both tests the geometric standard deviation of the lognormal distribution was fairly constant at a value of around 2.0. There was clear evidence that aerosol composition varied very little as a function of particle size except for the late settling phase of the FPT1 test: during this period, the smallest particles were found to be cesium-rich. In terms of chemical speciation, X-ray techniques were used on some deposits and there

試験の概要

試験名又は報告書名等	試験の概要
AECL が実施した実験	CANDU のジルカロイ被覆管燃料を使用した、1次系での
AECL が美地した美被	核分裂生成物の挙動についての試験。
	米国アイダホ国立工学環境研究所で実施された炉心損傷
PBF—SFD	状態での燃料棒及び炉心のふるまい,核分裂生成物及び
	水素の放出についての試験。
	フランスカダラッシュ研究所の PHÉBUS 研究炉で実施さ
PHÉBUS FP	れた、シビアアクシデント条件下での炉心燃料から1次
FREDUS FF	系を経て格納容器に至るまでの核分裂生成物の挙動を調
	べる実機燃料を用いた総合試験。

運転員の勤務体系を踏まえた被ばく評価結果について

重大事故が発生した場合の中央制御室の居住性に係る被ばく評価にあたっては、「実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく評価に関する審査ガイド」 (以下、「審査ガイド」という。)に基づき事象発生後7日間の線量評価を行っている。

審査ガイドにおいては交代要員体制を考慮することが認められており、その考慮の方法として、「原子力発電所中央制御室の居住性に係る被ばく評価手法について(内規)(平成21・07・27原院第1号平成21年8月12日」の考え方に基づき、7日間の評価期間において最も中央制御室の滞在時間が長く入退域回数が多い運転員を対象として、7日間の積算線量を滞在期間及び入退域に要する時間の割合で配分することで、実効線量を評価した。

一方本評価では、より実際に即した評価として、事故時の勤務体系を踏まえた場合の線量評価を実施した。

1. 勤務体系

運転員の勤務形態としては5直2.5交替とした。運転員の直交代サイクルを第1表に、勤務スケジュール例を第2表に示す。

勤務	勤務時刻	勤務時間
1 直	22:00 ~ 8:10	10 時間 10 分
2 直	8:10 ~ 15:20	7 時間 20 分
3 直	15:00 ~ 22:10	7 時間 10 分
連直	8:00 ~ 22:10	14 時間 10 分

第1表 直交代サイクル

第2表 勤務スケジュール	例
--------------	---

	1日	2 日	3 日	4 日	5 日	6 日	7 日
A 班	3 直	連直	2 直		1直	1直	
B班				日勤			
C 班			3直	連直	2 直		1 直
D班	1 直	1直			3 直	連直	2直
E班	2 直		1直	1直			3直

入退域
回数
10 回
8回
10 回
8 回

2. 評価条件

本評価においては安全側の評価となるよう、A 班の勤務が線量率の高い評価期間の前半に集中し、かつ通算の中央制御室滞在時間が長くなるような勤務スケジュールを想定した。具体的には、A 班の3 直勤務の中央制御室滞在開始時に事故が発生するものと想定しそれ以降の7日間(168 時間)について、第1表に示す直交代サイクルにて勤務を行った場合の線量評価を行った。

3. 評価結果

勤務スケジュールを踏まえた各勤務サイクルでの被ばく線量を第3表~第5表に示す。なお、 第3表~第5表はマスク着用の想定がそれぞれ異なる。

さらに、各ケースについて被ばく線量の合計が最も大きい班の評価結果の内訳を第6表~第8表に示す。

評価の結果、マスク着用を考慮した場合の評価は約18mSvとなり、勤務スケジュールを被ばく が厳しくなるように想定した場合でも、滞在時間で分配した場合(約15mSv)に比較して極端に大 きくならないことが確認された。

なお実際の勤務においては、個人線量計による被ばく管理を実施することで、特定の直に被ば くが偏る場合には日勤直の班を代わりに勤務させるなどの対応を行うことで、更なる被ばくの平 準化が可能であると考えらえる。

第3表 各勤務サイクルでの被ばく線量 (中央制御室内でマスクの着用を考慮した場合) ※

(単位:mSv)

	1日目	2日目	3日目	4日目	5日目	6日目	7日目	8日目	合計※3
A 直	^{3直} 約 6.9	^{連直} 約 4. 4	^{2直} 約2.8	_	1直 約 2.0	1直 約1.7	_	_	約 18
B直	_	_	_	_	_	_	_	_	0
C 直	_	_	3直 約 2.6	^{連直} 約 2.3	^{2直} 約1.8	_	1直 約 1.4	1直 約1.2	約 9.5
D直	1直 ※1	1直 約 6.4	_	_	3直 約1.7	^{連直} 約 1. 6	^{2直} 約 1.3	_	約 11
E直	2直 ※1	_	1直 約3.3	1直 約 2.5	_	_	3直 約1.3	^{連直} ※2 約 0. 6	約7.7

[※] 評価期間が7日=168時間のため、8日目の途中まで考慮。入退域時においてマスク(PF=50)の着用を考慮

^{※1} 事象発生前(評価対象外)

^{※2} 連直の途中で対象期間終了

^{※3} 合計線量は、有効数値3桁目を切り上げて2桁に丸めた値

第4表 各勤務サイクルでの被ばく線量

(中央制御室内で7時間までマスクの着用を考慮した場合)※

(単位: mSv)

	1日目	2日目	3日目	4日目	5日目	6日目	7日目	8日目	合計※4
A直	3直 ※3	^{連直} 約 9. 5	2直 約 5.0	_	1直 約 4.4	1直 約 3.8	_	-	<u>約31</u>
B直	_	_	_	_	_	_	_	_	0
C 直	_	_	3直 約 4.7	^{連直} 約 5.9	約3.5	_	約3.4	約3.0	約 21
D直	1直 ※1	約 15	_	_	3直 約3.3	^{連直} 約 4. 5	^{2直} 約 2.7	_	約 26
E直	2直 ※1	_	1直 約 6.5	1直 約 5.2	_	_	3直 約 2.5	連直 ※2 約 1. 8	約 16

[※] 評価期間が7日=168時間のため、8日目の途中まで考慮。入退域時においてマスク(PF=50)の着用を考慮。

- ※1 事象発生前(評価対象外)
- **2 連直の途中で対象期間終了
- ※3 事故発生から7時間のみマスク(PF=50)の着用を考慮。
- ※4 合計線量は、有効数値3桁目を切り上げて2桁に丸めた値

第5表 各勤務サイクルでの被ばく線量

(中央制御室内でマスクの着用を考慮しない場合) ※

(単位:mSv)

	1日目	2 日目	3 日目	4 日目	5 日目	6日目	7日目	8日目	合計※3
A直	3直 約 140	^{連直} 約 9. 5	^{2直} 約5.0	_	約 4.4	1直 約3.8	_	_	<u>約 170</u>
B直	_	_	_	_	_	_	_	_	0
C直	_	_	3直 約 4.7	^{連直} 約 5.9	^{2直} 約3.5	_	約3.4	約3.0	約 21
D直	1直 ※1	約 15	_	_	3直 約3.3	^{連直} 約 4. 5	^{2直} 約2.7	_	約 26
E直	2直 ※1	_	約6.5	1直 約 5.2	_	_	3直 約 2.5	連直 ※2約 1.8	約 16

[※] 評価期間が7日=168時間のため、8日目の途中まで考慮。入退域時においてマスク(PF=50)の着用を考慮

- ※1 事象発生前(評価対象外)
- ※2 連直の途中で対象期間終了
- ※3 合計線量は、有効数値3桁目を切り上げて2桁に丸めた値

第6表 評価結果の内訳(被ばく線量が最大となる班(A班)の合計) (中央制御室内でマスクの着用を考慮した場合)

		7日	間の実効線量 (mSv)	*1
	被ばく経路	外部被ばくによる 実効線量	内部被ばくによる 実効線量	実効線量の 合計
	①建屋からのガンマ線による 被ばく	約3.3×10 ⁻²		約 3.3×10 ⁻²
室内作	②大気中へ放出された放射性 物質のガンマ線による被ばく	約 2.4×10 ⁻²		約 2. 4×10 ⁻²
作業時	③室内に外気から取り込まれ た放射性物質による被ばく	約 1.8×10°	約 3.0×10º	約 4.8×10°
	小計 (①+②+③)	約 1.9×10°	約 3.0×10º	約 4.9×10°
_	④建屋からのガンマ線による 被ばく	約 1.2×10 ¹		約 1.2×10¹
入退域時	⑤大気中へ放出された放射性 物質による被ばく	約 1.3×10 ⁰	約 5.5×10 ⁻²	約 1.3×10°
,	小計 (④+⑤)	約 1. 3×10 ¹	約 5.5×10 ⁻²	約 1. 3×10 ¹
	合 計 (①+②+③+④+⑤)	約 15	約 3.1	約 18*²

^{*1} 表における「実効線量の合計 (①+②+③+④+⑤)」以外の数値は、有効数値 3 桁目を四 捨五入し 2 桁に丸めた値

^{*2 「}実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に 丸めた値

第7表 評価結果の内訳(被ばく線量が最大となる班(A班)の合計) (中央制御室内で7時間までマスクの着用を考慮した場合)

		7 日	間の実効線量 (mSv)	*1
	被ばく経路	外部被ばくによる 実効線量	内部被ばくによる 実効線量	実効線量の 合計
	①建屋からのガンマ線による 被ばく	約3.3×10 ⁻²		約 3.3×10 ⁻²
室内作	②大気中へ放出された放射性 物質のガンマ線による被ばく	約 2.4×10 ⁻²		約 2. 4×10 ⁻²
作業時	③室内に外気から取り込まれ た放射性物質による被ばく	約 1.8×10 ⁰	約 1.5×10 ¹	約 1.7×10 ¹
	小計 (①+②+③)	約 1.9×10 ⁰	約 1.5×10 ¹	約 1.7×10 ¹
_	④建屋からのガンマ線による 被ばく	約 1. 2×10 ¹		約 1. 2×10¹
入退域時	⑤大気中へ放出された放射性 物質による被ばく	約 1.3×10°	約 5.5×10 ⁻²	約 1.3×10°
	小計 (④+⑤)	約 1. 3×10 ¹	約 5.5×10 ⁻²	約 1. 3×10 ¹
	合 計 (①+②+③+④+⑤)	約 15	約 15	約 31*²

^{*1} 表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は、有効数値3桁目を四 捨五入し2桁に丸めた値

^{*2 「}実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に 丸めた値

第8表 評価結果の内訳(被ばく線量が最大となる班(A班)の合計) (中央制御室内でマスクの着用を考慮しない場合)

		7日	間の実効線量 (mSv)	*1
	被ばく経路	外部被ばくによる 実効線量	内部被ばくによる 実効線量	実効線量の 合計
	①建屋からのガンマ線による 被ばく	約3.3×10 ⁻²		約 3.3×10 ⁻²
室内作	②大気中へ放出された放射性 物質のガンマ線による被ばく	約 2.4×10 ⁻²		約 2. 4×10 ⁻²
作業時	③室内に外気から取り込まれ た放射性物質による被ばく	約 1.8×10°	約 1.5×10²	約 1.5×10²
	小計 (①+②+③)	約 1.9×10°	約 1.5×10²	約 1.5×10 ²
_	④建屋からのガンマ線による 被ばく	約 1.2×10 ¹		約 1. 2×10¹
入退域時	⑤大気中へ放出された放射性 物質による被ばく	約 1.3×10 ⁰	約 5.5×10 ⁻²	約 1.3×10°
	小計 (④+⑤)	約 1. 3×10 ¹	約 5.5×10 ⁻²	約 1. 3×10 ¹
	合 計 (①+②+③+④+⑤)	約 15	約 150	約 170* ²

^{*1} 表における「実効線量の合計 (①+②+③+④+⑤)」以外の数値は、有効数値 3 桁目を四 捨五入し 2 桁に丸めた値

^{*2 「}実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に 丸めた値

放射性雲中の放射性物質からのガンマ線による被ばくの評価方法について

中央制御室の居住性に係る被ばく評価における、放射性雲中の放射性物質からのガンマ線(クラウドシャインガンマ線)による被ばくは、放射性物質の放出量、大気拡散の効果及び建屋によるガンマ線の遮蔽効果を考慮し評価する。

1. 放出量及び大気拡散

大気中への放出放射能量は添付 1-2-1 の第 2 表の値を用いた。また、使用する相対線量は添付 1-2-1 の第 4 表の値を用いた。

2. 評価体系

中央制御室滞在時の評価においては、中央制御室を囲む遮蔽を考慮し、遮蔽厚さをコンクリートと設定した。

入退域時の評価においては、保守的に周囲に遮蔽壁がないものとした。

3. 評価コード

クラウドシャインガンマ線による被ばくは、評価コードを使用せず以下に示す式を用いて評価した。なお、入退域時の評価では R=1 として評価した。

$$D_c = 1.0 \times 10^3 \cdot \sum_k \int_{t_0}^{t_1} K \cdot R \cdot (D/Q) \cdot Q_k(t) \cdot dt$$

 D_c : 滞在時のクラウドからの外部被ばく線量 (mSv)

K:空気カーマから全身に対しての線量への換算係数(Sv/Gy)

(1 Sv=1 Gy とする。)

R : コンクリートによるγ線の減衰率(-)

(2.5MeVに対するコンクリートの減衰率を採用する。)

D/Q: 気象データに基づく γ 線エネルギ 0.5MeV 換算の相対線量 (Gy/Bq)

 $Q_k(t)$: 時刻 t における核種 k の環境放出率

(γ線エネルギ 0.5MeV 換算値) (Bq/s)

枠囲みの内容は機密情報に属しますので公開できません。

コンクリートによるγ線の減衰率は、安全側に 2.5 MeV に対するコンクリートの減衰率 (テーラー型ビルドアップ係数を考慮)を採用している。

$$R = A \cdot e^{-(1+a_1)\cdot \mu \cdot t} + (1-A) \cdot e^{-(1+a_2)\cdot \mu \cdot t}$$

Α、α1、α2 : ビルドアップファクタ

A = 4.97

 $\alpha_1 = -0.0769$

 $\alpha_2 = 0.1062$

μ : 線減衰係数 (cm⁻¹)

 $\mu = 0.083$

t :中央制御室遮蔽厚 (cm)

4. 評価結果

クラウドシャインガンマ線による被ばくの評価結果を第1表に示す。

第1表 クラウドシャインガンマ線による被ばくの評価結果

讀	平価位置	積算日数	実効線量[mSv]
中央制	削御室滞在時	7 日	4.0×10^{-2}
7 28 45 04	出入管理建屋入口	7日※1	4.0×10^{0}
入退域時	中央制御室入口	7日※1	5.6×10^{0}

^{※1}屋外に7日間滞在するものとして評価

室内に外気から取り込まれた放射性物質による被ばくの評価方法について

中央制御室の居住性評価における,室内に外気から取り込まれた放射性物質による被ばくの評価方法を以下に示す。なお,中央制御室空調装置の中央制御室非常用循環フィルタユニットは原子炉補助建屋 24.8m に設置されており,建屋の床による遮蔽や離隔距離を十分に確保していることから,フィルタユニットに蓄積された放射性物質による線量は無視できる程度にまで低減されるものと考え評価対象外とした。

1. 放射性物質の濃度

中央制御室の雰囲気中に浮遊する放射性物質量の時間変化は、中央制御室空調装置の効果を考慮し、以下の式で評価した。

$$\frac{d}{dt} A_{\text{CT}} = \frac{AI_{1} \cdot Q_{2}}{V_{\text{CT}} \cdot DF_{\text{CT}}} + \frac{AI_{2} \cdot Q_{3}}{V_{\text{CT}}} - \frac{A_{\text{CT}} \cdot (Q_{2} + Q_{3})}{V_{\text{CT}}} - \frac{A_{\text{CT}} \cdot Q_{1} \cdot (DF_{\text{CT}} - 1)}{V_{\text{CT}} \cdot DF_{\text{CT}}} - \lambda \cdot A_{\text{CT}} \cdot A_{\text{CT}}$$

$$= \frac{AI_1 \cdot Q_2}{V_{\mathrm{CT}} \cdot DF_{\mathrm{CT}}} + \frac{AI_2 \cdot Q_3}{V_{\mathrm{CT}}} - \left\{\lambda + \frac{(Q_2 + Q_3)}{V_{\mathrm{CT}}} + \frac{Q_1 \cdot (DF_{\mathrm{CT}} - 1)}{V_{\mathrm{CT}} \cdot DF_{\mathrm{CT}}}\right\} \cdot A_{\mathrm{CT}}$$

ACT : 中央制御室内放射能濃度 (Bq/cm³)

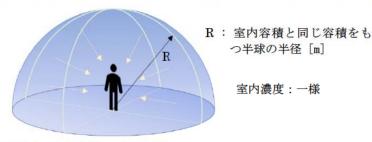
A I , : 外気取入口の空気中放射能濃度 (Bq/cm³)

A I 2 : 中央制御室周辺の空気中放射能濃度 (Bq/cm³)

Q₁ : フィルタの容量 (m³/s)

Q₂ : 外気取入口での外気取入流量 (m³/s)

Q₃ : 中央制御室へのインリーク量 (m³/s)


VcT : 中央制御室エンベロープ体積 (m³)

DF_{CT} : 非常用フィルター・ユニットの DF

核種の大気中への放出率[Bq/s]は添付 1-2-1 の第 1 表に基づき評価した。また、相対濃度は添付 1-2-1 の第 4 表の値を用いた。

2. 評価体系

室内に外気から取り込まれた放射性物質による被ばくの評価にあたり想定した評価体系を第1図に示す。なお、線源領域は中央制御室内の空間部とし、室内の放射能濃度は一様とした。

第1図 室内に外気から取り込まれた放射性物質による被ばくの評価モデル図

3. 評価コード

中央制御室内の放射性物質の吸入摂取による内部被ばく及び室内に浮遊している放射性物質 からのガンマ線による外部被ばくの評価に当たっては、評価コードを使用せず、以下の式を用 いて評価した。

【吸入摂取による内部被ばく】

$$\begin{split} I_{DI} &= \frac{1.0 \times 10^3}{PF} \cdot \sum_k \int_{t_0}^{t_1} R \cdot H_\infty \cdot E_{k \to I} \cdot C_k(t) \cdot 1.0 \times 10^6 \ dt \\ &= \frac{1.0 \times 10^9}{PF} \cdot \sum_k \int_{t_0}^{t_1} R \cdot H_\infty \cdot C_{kI}(t) \ dt \end{split}$$

IDI: : 放射性物質の吸入摂取による内部被ばく線量 (mSv)

R : 呼吸率 (m³/s)

H_∞ : I-131 の吸入摂取による線量係数 (Sv/Bq)

E_{k→I} :核種 k から I-131 等価量への換算係数 (-)

(ICRP90 年勧告ベースの成人実効線量係数換算値)

 $C_k(t)$: 時刻 t における核種 k の中央制御室内放射能濃度 (Bq/cm³)

 $C_{kI}(t)$:時刻 t における核種 k の中央制御室内放射能濃度 (I-131 等価量) (Bq/cm³)

PF :マスクの防護係数 (-)

【外部被ばく】

$$\begin{split} I_{D\gamma} &= \sum_{k} \int_{t_{0}}^{t_{1}} \frac{1}{2} \cdot \frac{K}{\mu} \Big[\frac{A}{1 + \alpha_{1}} \{ \ 1 - exp(-(1 + \alpha_{1}) \cdot \mu \cdot R_{0}) \} \\ &+ \frac{1 - A}{1 + \alpha_{2}} \{ \ 1 - exp(-(1 + \alpha_{2}) \cdot \mu \cdot R_{0}) \} \Big] \cdot \frac{E_{\gamma k}}{0.5} \cdot A_{CTk}(t) dt \end{split}$$

 $I_{D\gamma}$: 放射性物質の γ 線による外部被ばく線量 (mSv)

K : 線量率換算係数 0.5MeV…8.92×10⁻⁶ ((mSv/h)/(γ/cm²/s))

Α, α1, α2 : テーラー型ビルドアップ係数 (空気中 0.5 MeV γ 線)

A = 24.0

 $\alpha 1 = -0.138$

 $\alpha 2 = 0.0$

μ : 線減衰係数 1.0×10⁻⁴ (cm⁻¹) (空気中 0.5 MeV γ 線)

 R_0 : 半球の半径 $R_0 = \left(\frac{3}{2} \cdot \frac{V}{\pi}\right)^{1/3} \times 100$ (cm)

V : 外部 γ 線による全身に対する線量評価時の自由体積 (m³)

E_{νk} : 核種 k の γ 線実効エネルギ (MeV/dis)

 $A_{CTR}(t)$: 時刻 t における核種 k の中央制御室内放射能濃度 (Bq/cm³)

4. 評価結果

室内に外気から取り込まれた放射性物質による被ばくの評価結果を第1表に示す。

第1表 室内に外気から取り込まれた放射性物質による被ばくの評価結果

評価位置	線源	積算日数	被ばく経路	実効線量[mSv]
		7日	外部被ばく	3.9×10^{0}
中央制御室	中央制御室内浮遊分	7 🗆	吸入摂取による	1 0 × 102
		7日	内部被ばく※1	1.8×10^{2}

^{※1}マスクの着用を考慮しない場合

大気中に放出された放射性物質の入退域時の吸入摂取による被ばくの評価方法について

中央制御室の居住性評価における、大気中に放出された放射性物質の入退域時の吸入摂取による被ばくの評価方法を以下に示す。

1. 放出量及び大気拡散

核種の大気中への放出率[Bq/s]は添付 1-2-1 の第 1 表に基づき評価した。また、相対濃度は添付 1-2-1 の第 4 表の値を用いた。

2. 評価コード

大気中に放出された放射性物質の入退域時の吸入摂取による被ばくは、評価コードを使用せず以下に示す式を用いて評価した。

$$I_{DI} = \frac{1.0 \times 10^3}{PF} \cdot \sum_k \int_{t_0}^{t_1} R \cdot H_{\infty} \cdot E_{k \to I} \cdot (\chi/Q) \cdot C_k(t) dt$$

I_{DI}: 放射性物質の吸入摂取による内部被ばく線量 (mSv)

R : 呼吸率 (m³/s)

 H_{∞} : I-131 の吸入摂取による線量係数(Sv/Bq) $E_{k \to I}$: 核種 k から I-131 等価量への換算係数(-)

(ICRP90 年勧告ベースの成人実効線量係数換算値)

 (χ/Q) :相対濃度 (s/m^3)

 $C_k(t)$: 時刻 t における核種 k の環境放出率 (Bq/s)

PF : マスクの防護係数 (-)

3. 評価結果

大気中に放出された放射性物質の入退域時の吸入摂取による被ばくの評価結果を第1表に示す。

第1表 大気中に放出された放射性物質の吸入摂取による入退域時の被ばくの評価結果

評価位置	線源	積算日数	実効線量[mSv] **2
入退域時	出入管理建屋入口	7日※1	2.3×10^{2}
八区域时	中央制御室入口	7 日※1	3.4×10^{2}

^{※1}屋外に7日間滞在するものとして評価

※2マスクの着用を考慮しない場合

	の運転員の被ぼくの	の運転員の被ぼくの器破損防止対策に係	の運転員の被ぼくの器破損防止対策に係モードにおいて想定	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として	の運転員の被ばくの 器破損防止対策に係 モードにおいて想定 スを評価対象として スを評価対象として 7 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	な,制御室の運転員の	ち,制御室の運転員の社が、格納容器破損防止	ち,制御室の運転員のA して,格納容器破損防止 最過圧の破損モードにお	ち,制御室の運転員の4 ンて,格納容器破損防止 お過圧の破損モードにお	ち,制御室の運転員の かて,格納容器破損防止 お過圧の破損モードにお でるシーケンスを評価対	ち,制御室の運転員の かて,格納容器破損防止 お過圧の破損モードにお でるシーケンスを評価対	ち,制御室の運転員の4 ンて,格納容器破損防止 3.過圧の破損モードにお 7.るシーケンスを評価対	ち,制御室の運転員の かて,格納容器破損防止 最過圧の破損モードにお でるシーケンスを評価対	ち,制御室の運転員の かて,格納容器破損防止 計過圧の破損モードにお でるシーケンスを評価対	ち,制御室の運転員の社 して,格納容器破損防止 評過圧の破損モードにお でるシーケンスを評価対	ち,制御室の運転員の4 ンて,格納容器破損防止 5過圧の破損モードにお 7-5シーケンスを評価対	ち,制御室の運転員の4 ンて,格納容器破損防止 5週圧の破損モードにお 7-5シーケンスを評価対	ち、制御室の運転員の4 ンて、格納容器破損防止 計過圧の破損モードにお トるシーケンスを評価対
	→ 帯金ガイト通り(1) 評価事象については,「有効性評価で想定する格納容器破損モードのうち,制御室の運転員の被ぼくの	普宣ガイド週り) 評価事象については,「有効性評価で想定する格納容器破損モードのうち,制御室の運転員の被ばくの 観点から結果が最も厳しくなる事故収束に成功した事故シーケンス」として,格納容器破損防止対策に係	帯金カイド週り) 評価事象については,「有効性評価で想定する格納容器破損モードのうち,制御室の運転員の被ばくの 観点から結果が最も厳しくなる事故収束に成功した事故シーケンス」として,格納容器破損防止対策に係 る有効性評価における雰囲気圧力・温度による静的負荷のうち,格納容器過圧の破損モードにおいて想定	帯全カイド週り)評価事象については,「有効性評価で想定する格納容器破損モードのうち,制御室の運転員の被ばくの 観点から結果が最も厳しくなる事故収束に成功した事故シーケンス」として,格納容器破損防止対策に係 る有効性評価における雰囲気圧力・温度による静的負荷のうち,格納容器過圧の破損モードにおいて想定 している,大破断 LOCA 時に ECCS 注入及び格納容器スプレイ注入に失敗するシーケンスを評価対象として	ドのうち, 制御室の運転 <」として, 格納容器破∄ (納容器過圧の破損モー 	ドのうち,制御室の運転 4」として,格納容器破∄ 約容器過圧の破損モー 2.失敗するシーケンスを計	ドのうち,制御室の運転 4」として,格納容器破計 (神容器過圧の破損モー 1 (共敗するシーケンスを計	ドのうち, 制御室の運転 7」として, 格納容器破計 1納容器過圧の破損モー 2.失敗するシーケンスを言 でいる。	ドのうち, 制御室の運転 7」として, 格納容器破乱 (神容器過圧の破損モー :失敗するシーケンスを言 (いる。	ドのうち, 制御室の運転 く」として, 格納容器破損 納容器過圧の破損モー :失敗するシーケンスを言 : (いる。	ドのうち, 制御室の運転 く」として, 格納容器破損 納容器過圧の破損モー :失敗するシーケンスを言 :いる。	ドのうち, 制御室の運転で」として, 格納容器破損 ・対を器過圧の破損モー ・失敗するシーケンスを言 ・たいる。	ドのうち, 制御室の運転 に、として, 格納容器破損 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・
	桜損モードのうち,制 /	枚損モードのうち, 制/ ーケンス」として, 格	波損モードのうち,制/ ーケンス」として,格 うち,格納容器過圧の	枚損モードのうち, 制/ ーケンス」として, 格 うち, 格納容器過圧の, イ注入に失敗するシー	皮損モードのうち, 制/ ーケンス」として, 格 うち, 格納容器過圧の; イ注入に失敗するシー	核損モードのうち,制 ーケンス」として,格 うち,格納容器過圧の? イ注入に失敗するシー	枚損モードのうち, 制(ーケンス」として, 格 うち, 格納容器適圧の イ注入に失敗するシー いる。	枚損モードのうち, 制/ ーケンス」として, 格 うち, 格納容器過圧の, イ注入に失敗するシー いる。 確認している。	皮損モードのうち, 制が ーケンス」として, 格 うち, 格納容器過圧の イ注入に失敗するシー いる。 確認している。	枚損モードのうち,制/ ーケンス」として,格 うち,格納容器過圧の/ イ注入に失敗するシー いる。 確認している。	校損モードのうち,制 ーケンス」として,格 うち,格納容器過圧の; イ注入に失敗するシー いる。 確認している。	校損モードのうち,制 ーケンス」として,格 うち,格納容器過圧の; イ注入に失敗するシー いる。 確認している。	枚損モードのうち,制 ーケンス」として,格 うち,格納容器過圧の, いる。 確認している。
	- 3格納容器破損モー	·る格納容器破損モー カした事故シーケン	·3格納容器破損モー 幼した事故シーケン. 5静的負荷のうち, **	る格納容器破損モー 幼した事故シーケン 5静的負荷のうち, 本 均容器スプレイ注入(- 5格納容器破損モー カレた事故シーケン 5静的負荷のうち, 本 均容器スプレイ注入(る格納容器破損モー	- 5格納容器破損モー カレた事故シーケン 5静的負荷のうち, 4容器スプレイ注入。 している。 ・ て評価している。	 ① 評価事象については,「有効性評価で想定する格納容器破損モードのう観点から結果が最も厳しくなる事故収束に成功した事故シーケンス」としる有効性評価における雰囲気圧力・温度による静的負荷のうち,格納容器している,大破断 LOCA 時に ECCS 注入及び格納容器スプレイ注入に失敗すいる。 ② 運転員はマスクを着用しているとして評価している。 ③ 運転員の勤務形態(5直2.5交替)を考慮して評価している。 ④ 運転員の実効線量が7日間で100 mSvを超えないことを確認している。 	る格納容器破損モー 対した事故シーケン 5静的負荷のうち, 本 4容器スプレイ注入に 4な器のでいる。 とないことを確認し さないことを確認し	る格納容器破損モー カレた事故シーケン、 5静的負荷のうち, 神 4容器スプレイ注入。 レている。 ・て評価している。 さないことを確認し、	る格納容器破損モー 対した事故シーケン、 5静的負荷のうち, 本 4容器スプレイ注入に 1ないる。 とないことを確認し、 さないことを確認し、	る格納容器破損モー	る格納容器破損モー
	評価で想定する格約	:評価で想定する格/ 事故収東に成功した	:評価で想定する格給 事故収束に成功した カ・温度による静的	:評価で想定する格 事故収束に成功した カ・温度による静的 は入及び格納容器	:評価で想定する格 事故収束に成功した カ・温度による静的 ;注入及び格納容器	① 評価事象については,「有効性評価で想定する格納容観点から結果が最も厳しくなる事故収束に成功した事する有効性評価における雰囲気圧力・温度による静的負本している,大破断 LOCA 時に ECCS 注入及び格納容器スプいる。② 運転員はマスクを着用しているとして評価している。	 ① 評価事象については,「有効性評価で想定する格納容器破損 観点から結果が最も厳しくなる事故収束に成功した事故シーケる有効性評価における雰囲気圧力・温度による静的負荷のうち,している,大破断 LOCA 時に ECCS 注入及び格納容器スプレイ注でいる。 ② 運転員はマスクを着用しているとして評価している。 ③ 運転員の勤務形態 (5 直 2.5 交替)を考慮して評価している。 	:評価で想定する格 事故収束に成功した 力・温度による静的 :注入及び格納容器 5として評価してい 5替)を考慮して評 100 mSv を超えない	:評価で想定する格券 事故収束に成功した 力・温度による静的 ; 注入及び格納容器 5として評価してい、 2替)を考慮して評	:評価で想定する格券 事故収束に成功した 力・温度による静的 さ社入及び格納容器 5として評価してい 5替)を考慮して評	:評価で想定する格券 事故収束に成功した 力・温度による静的 ;注入及び格納容器 5として評価してい 2替)を考慮して評	:評価で想定する格券 事故収束に成功した 力・温度による静的 は社入及び格納容器 を替)を考慮していい 2替)を考慮して評 100 mSv を超えない	:評価で想定する格券 事故収束に成功した 力・温度による静的 は注入及び格納容器 (程)を考慮してい (2替)を考慮してい (2種)を考慮して評
	は, 「有効性評価	は,「有効性評価 厳しくなる事故!	は,「有効性評価 厳しくなる事故! る雰囲気圧力・?	は,「有効性評価 畿しくなる事故! る雰囲気圧力・? 3A 時に ECCS 注フ	は,「有効性評価 幾しくなる事故」 る雰囲気圧力・? 3A 時に ECCS 注フ	は,「有効性評価 酸しくなる事故! る雰囲気圧力・? SA 時に ECCS 注了 着用していると	は, 「有効性評価 厳しくなる事故! る雰囲気圧力・? A 時に ECCS 注 <i>)</i> 着用していると (5 直 2. 5 交替)	は,「有効性評価	は, 「有効性評価 後しくなる事故」 る雰囲気圧力・? A 時に ECCS 注入 着用していると (5 直 2. 5 交替) が 7 日間で 100	は,「有効性評価 後しくなる事故! る雰囲気圧力・? 3A 時に ECCS 注了 着用していると (5 直 2. 5 交替) が 7 日間で 100	は,「有効性評価 後しくなる事故」 る雰囲気圧力・? A 時に ECCS 注入 着用していると (5 直 2. 5 交替) が 7 日間で100	は,「有効性評価 酸しくなる事故」 る雰囲気圧力・? A 時に ECCS 注了 着用していると (5 直 2. 5 交替) が 7 日間で 100	は,「有効性評価 後しくなる事故」 る雰囲気圧力・? 3.4 時に ECCS 注入 着用していると が 7 日間で 100
	象については	象については 結果が最も厳	象については 結果が最も厳 評価における	象については 結果が最も厳 評価における , 大破断 LOCA	象については 結果が最も厳 評価における , 大破断 LOCA	- 象については 結果が最も厳 :評価における , 大破断 LOCA はマスクを着	象については 結果が最も厳 評価における , 大破断 LOCA (はマスクを着 (ひ勤務形態 (象については 結果が最も厳 評価における , 大破断10CA (ロ動務形態 (の実効線量が	象については 結果が最も厳 評価における , 大破断 LOCA (はマスクを着 の勤務形態 (の実効線量が	象については 結果が最も厳 評価における , 大破断 LOCA の関務形態 (の実効線量が	象については 結果が最も厳 評価における , 大破断 LOCA (の実効線量が の実効線量が	象については 結果が最も勝 評価における , 大破断 LOCA の勤務形態 (の実効線量が	象については 結果が最も勝 になける はマスクを着 の実効線量が の実効線量が
	動 報 ①	① 評価事観点から	① 評価事績観点からがるる有効性計	歌価事会観点から着る有効性計している,	即 評価事績観点から着る有効性計している,いる。	(1) 評価事績(2) 報転員(3) 運転員	(1) 評価事績(2) 運転員を(3) 運転員を	即価事績観点から着る有効性目している,いる。運転員(運転員(運転員(運転員(● 評価事績● 報点から消○ 本有効性計○ いる。○ 運転員(○ 運転員(○ 運転員(○ 運転員(○ 運転員(● 評価事績● 報点から消○ 本有効性計○ でついる,○ 運転員(○ 運転員(● 運転員(● 運転員(● 評価事業参有効性計○ 本有効性計○ (2) (2) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	● 評価事業あ有効性計ひている,いる。○ 運転員の● 運転員の● 運転員の	● 報● を る を な を な な な な な な な な な な な な な な な
	C, \$40												
	b) 炉心の著しい損傷が発生した場合の原子炉制御室の居住性について、要件を満たすものであること。	炉心の著しい損傷が発生した場合の原子炉制御室の居住性について、δ要件を満たすものであること。 ① 設置許可基準規則解釈第37条の想定する格納容器破損モードのう	らの著しい損傷が発生した場合の原子炉制御室の居住性について、次の牛を満たすものであること。 設置許可基準規則解釈第37条の想定する格納容器破損モードのう 5、原子炉制御室の運転員の被ばくの観点から結果が最も厳しくなる事	いの著しい損傷が発生した場合の原子炉制御室の居住性について、次の件を満たすものであること。 設置許可基準規則解釈第37条の想定する格納容器破損モードのうち、原子炉制御室の運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス (例えば、炉心の著しい損傷の後、格	いの著しい損傷が発生した場合の原子炉制御室の居住性について、次の件を満たすものであること。 設置許可基準規則解釈第37条の想定する格納容器破損モードのうち、原子炉制御室の運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス(例えば、炉心の著しい損傷の後、格納容器圧力逃し装置等の格納容器破損防止対策が有効に機能した場合)	#住性について 器破損モード が最も厳しく 3著しい損傷の 育効に機能し	#住性について 	#住性についる 	いの著しい損傷が発生した場合の原子炉制御室の居住性について、次の件を満たすものであること。 設置許可基準規則解釈第37条の想定する格納容器破損モードのうち、原子炉制御室の運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス(例えば、炉心の著しい損傷の後、格納容器圧力逃し装置等の格納容器破損防止対策が有効に機能した場合)を想定すること。 正転員はマスクの着用を考慮してもよい。ただしその場合は、実施のための体交代要員体制を整備すること。	#住性についる 器破損モード 2番しい損傷の 1 対に機能しば その場合は、 実施のた		#在性についる 	#在性についる
	=制御室の居	5制御室の居 する格納容器	5制御室の居 する格納容器 3点から結果:	5制御室の居する格納容器 する格納容器 1点から結果: とば、炉心の3	5制御室の居する格納容器 する格納容器 1点から結果 とば、炉心のご 5止対策が有	5制御室の居する格納容器1点から結果2に、炉心の活がのがあるがあるがあるがあるがあるがあるがあるがあるがあることが、炉心の3に対策が有	5制御室の居する格納容器 よる格納容器 とば、炉心の 防止対策が有	5制御室の居する格納容器 よらなから結果(たいから) たば、炉心の) が止対策が有	s制御室の居 する格納容器 L点から結果、 とば、炉心の! カ止対策が有 い。ただしそ	s制御室の居 する格納容器 L点から結果。 Eば、炉心の SLL対策が有 なLと対策が有 しその場合に	5制御室の居 する格納容器 5点から結果、 とば、炉心の3 50上対策が有 10、ただしそ しその場合に	5制御室の居 する格納容器 5点から結果、 5ば、炉心の3 5止対策が有 しその場合に 間で100mSv	5制御室の居 する格納容器 とば、炉心の が上対策が有 び止対策が有 間で100mSv
	場合の原子炉。	場合の原子炉 。 7条の想定。	場合の原子炉 。 7条の想定で り被ばくの観	場合の原子炉 7条の想定。 7後ばくの観 ケンス (例え	場合の原子炉 7 条の想定で 7 後の観定で かかス (例え 約容器破損び	#合の原子炉、7条の想定。 7条の想定。 7後ばくの観 ケンス (例え 納容器破損隊	 炉心の著しい損傷が発生した場合の原子炉制御室の居住性についてのであること。 ① 設置許可基準規則解釈第37条の想定する格納容器破損モートち、原子炉制御室の運転員の被ばくの観点から結果が最も厳し、故収束に成功した事故シーケンス(例えば、炉心の著しい損傷納容器圧力逃し装置等の格納容器破損防止対策が有効に機能しを想定すること。 ② 運転員はマスクの着用を考慮してもよい。ただしその場合は、 	#合の原子炉 7条の想定。 7条の想定。 かンス (例え 納容器破損隊 調査してもよい	840の原子炉7条の機は70機はインス (例えケンス (例え) 納容器破損び消遣してもよい。また、ただ1。	9400原子炉 7条の想定。 7後ばくの観 ケンス (例え 納容器破損砂 調な器破損砂 。よい。ただし	場合の原子炉 7条の想定で 7条の想定で かな。(例え 納容器破損び 調してもよい。 まい。 ただし。	8台の原子炉7条の根にで 7条の根にでの観ケンス (例え ケンス (例え 納容器破損び 調査してもよい。 はい。ただし。	場合の原子炉 7条の想定3 7条の想定3 が容器破損び 約容器破損び まい。ただ1 2まい。ただ1 2乗量が7 日間
	炉心の著しい損傷が発生した場 要件を満たすものであること。	が発生した場であること。 同解釈第3	ix発生した場であること。 同解釈第3 Eの運転員の	7発生した場であること。 であること。 1則解釈第3 2の運転員の た事故シーグ	び発生した場であること。 であること。 則解釈第3 宮の運転員の た事故シーグ 装置等の格約	び発生した場であること。 であること。 即解釈第3 この運転員の た事故シー/ 装置等の格/ 装置等の格/	5発生した場であること。 であること。 則解釈第3 医の運転員の た事故シーグ 装置等の格約 数置等の格約	いの著しい損傷が発生した場件を満たすものであること。 設置許可基準規則解釈第3 ち、原子炉制御室の運転員の 故収束に成功した事故シーグ 納容器圧力逃し装置等の格約 を想定すること。 運転員はマスクの着用を考しための体制を整備すること。	び発生した場であること。 関解釈第3 20運転員の た事故シーグ 装置等の格約 端すること。 考慮しても。	が発生した場であること。 関解釈第3 国の運転員の た事故シーケ 装置等の格 装置等の格 端すること。 考慮しても。	び発生した場であること。 関の運転員の た事故シーグ 装置等の格線 端すること。 考慮しても、 長島	び発生した場であること。 同解釈第3 即解釈第3 起の運転員の た事故シーグ 装置等の格約 業間すること。 考慮しても。	び発生した場合あるにと。 (であるにと。 (であるにと。) (の) 連転員の (の) 着用を考し、 (本) は、(は、) は、
	i傷が 5ので	・損傷が トもので 基準規則	↑損傷が すもので 基準規 両側御室	い損傷が すもので 可基準規 阿制御室 成功した	い損傷が こすもので 可基準規 炉制御室 に成功した E力逃し翌	い損傷が にすもので 可基準規 が制御室 に成功した E力逃し数	い損傷が にすもので 可基準規 が制御室 に成功した E力逃し事 Fること。	い損傷が にするので が制御室 が制御室 に成功した に力逃し等 につこと。 はマスクの	い場 () す () す () が () () が () () () () () () () () () ()	い損傷が すもので 1基準規E 同制御室 成功しな 方がと でること。 ること。 (制を整備 情を整備	いの著しい損傷が発 件を満たすものであ 設置許可基準規則 ち、原子炉制御室の 故収束に成功した引 納容器圧力逃し装置 を想定すること。 運転員はマスクの3 ための体制を整備す ための体制を整備す 大砂に要員体制を考り	トゥ債	4 も 8 の 4 4 も 8 の 5 4 も 8 の 5 4 も 8 の 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5
しい損傷	たず	たり	た同状	たほかだ	た。 1. 子 訳 思			た in 子 is 归 ju in 4	たったにほういか	たっかに圧すがは体頭情	← 'I' te/ atf fut mill	* ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' '	- た : 1 : 1 : 1 : 2 : 1 : 2 : 2 : 2 : 3 : 4 :

大気中へ放出された放射性物質からのガンマ線による中央制御室内での外部被ばくは,事故期間中の大気中への放射性物質の放出量を基に大気拡散効果と中央制御室の壁によるガンマ線の遮蔽効果を踏ま **建屋内の放射性物質からのスカイシャインガンマ線による中央制御室内での外部被ぼく線量を評価し** 地表面に沈着した放射性物質からのガンマ線による外部被ばく(グランドシャイン)についても考慮し ①最適評価手法を適用し,「4.2 居住性に係る被ばく評価の共通解析条件」に基づいて評価している。 ②実験等に基づいて検証されたコードやこれまでの許認可で使用したモデルに基づいて評価している。 建屋内の放射性物質からの直接ガンマ線による中央制御室内での外部被ばく線量を評価している。 中央制御室の居住性に係る被ばく経路は図1のとおり,①~⑤の経路に対して評価している。 中央制御室の居住性に係る被ばく評価の適合状況 えて運転員の外部被ばく(クラウドシャイン)を評価している。 → 審査ガイド通り → 審査ガイド通 審査ガイド通り 審査ガイド通り ト評価したいる。 4. 1 (1) ① 4. 1 (1) ② 4. 1 (1) 1 4. 実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 原子短側御室/緊急時間御室 緊急時対策所の居住性に係る被ばく評価で 図 1 7、原子位制御畑の 緊急時制御室又は緊急時対策所の居住 ① 原子炉建屋内の放射性物質からのガンマ線による原子炉制御室/緊急時 ① 居住住に係る被ばく評価にあたっては最適評価手法を適用し、「4.2 居住 性に係る被ぼく評価の共通解析条件」を適用する。ただし、保守的な仮 ② 不確かさが大きいモデルを使用する場合や検証されたモデルの適用範囲 原子炉建屋(二次格納施設(BWR 型原子炉施設)又は原子炉格納容器 るガント練による原子炉制御電/緊急時制御電/緊急時対策所内での被 放射性雲中の放射性物質からのガンを線による外部被ぼく(クラウ 地表面に治治した放射性物質からのガンを機による外部被付く(グ 及びアニュラス部 (PWR 型原子炉施設)) 内の放射性物質から放射され 大気中へ放出された放射性物質から放射されるガンマ線による外部被 ただし、合理的な理由がある場合は、この経路によらないことができる。 原子炉建屋内の放射性物質からのスカイシャインガンや線による **を超える場合には、感度解析結果等を基にその影響を適切に考慮する。** 原子炉建屋内の放射性物質からの直接ガンマ線による外部被ぼく 緊急時間海海 **居住性に係る被ばく評価に関する審査ガイド** 実験等を基に検証され、適用範囲が適切なモデルを用いる。 ② 大気中へ放出された放射性物質による原子炉制御室。 なく練唱を、次の二つの路路を対象に評算する。 近く練量を、次の二つの経路を対象に計算する。 は、次の被はく経路による被称く線量を評価する。 定及び条件の適用を否定するものではない。 国任性に係る被託く評価の事法及び範囲 4. 居住住に係る被ぼく評価の標準評価手法 世海祖/駿島毘女瀬原内での被は -居住性に係る被ばく経路を、図 2 に、 用言係や接近へ知路をかれただができ 毎時対称所内での被近く レソドシャイソ) アシャイソン 外部被ぼく (1) 被げく締昭 4. 1 િ

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 居住性に係る被ばく評価に関する審査ガイド

② 外気から取り込まれた放射性物質による原子炉制御室/緊急時制御室/緊急時制御室/緊急時制御室/緊急時対策所内での被ぼく

原子炉制御電/緊急時制御室、緊急時が接所内に取り込まれた放射性物質による彼ばく養量を、次の二つの被ばく経路を対象にして計算する。なお、原子炉制御電/緊急時制御電・緊急時対策所向に取り込まれた数射性物質は、重向に沈着せずに浮遊しているものと仮定して評価する。

- 原子垣制御室。緊急時制御室/緊急時対策所内へ外気から取り込まれた放射性物質の吸入摂取による内部被ぼく
 - それに次が日かないが大きにはよりに呼ない。 原子原制御名・緊急時間御名・緊急時間御名・緊急時対策所占へ外気から取り込まされた数性指数質からのガンと継による外部後径へ
- ④ 原子炉建屋内の放射性物質からのガンマ線による入地域での被置く 原子炉建屋内の放射性物質から放射されるガンマ線による入退域での 被置く練量を、次の二つの経路を対象に計算する。
- 原子が建屋内の放射性物質からのスカイツセインガンを繰けよる子が抜けく
- 原子炉建屋内の放射性物質からの直接ガンマ線による外部被ぼく
- ・ 牧射性戦中の牧射性物質がつわガント線による外部被ぼく(クラウドンキイン)
- 地表面に洗着した放射性物質からのガンン線による外部被信く(グランドシャイン)
- 3 放射性物質の吸入摂取による内部被ぼく

(2) 評価の手順

原子短制鋼金・緊急時制御宝/緊急時対策所の居住性に係る被ぼく評価の 手順を図また示す。

- 3. 原子垣制御室、緊急時制御室/緊急時対策所の居住性に係る被握く評価 に用いるソースタームを設定する。
- ・原子炉制御室の居住性に係る被害く評価では、格納容器破損防止対策の有効性評価^(参2)で想定する格納容器破損モードのうち、原子炉制御室の運転員又は対策要員の被げくの観点から結果が最も厳しくなる事が収せに成めした事故シーケンス(この場合、格謝容器破損防止対策が自分に働くため、格納容器は確全である)のソースターム解析を策が自分に働くため、格納容器は確全である)のソースターム解析を

中央制御室の居住性に係る被ばく評価の適合状況

4. 1 (1) ③ → 審査ガイド通

中央制御室に取り込まれた放射性物質は,中央制御室内に沈着せずに浮遊しているものと仮定して評価 している。

事故期間中に大気中へ放出された放射性物質の一部は外気から中央制御室内に取り込まれる。中央制御室内に取り込まれた放射性物質のガンマ線による外部被ばく及び吸入摂取による内部被ばくの和として実効線量を評価している。

4. 1 (1) ④ → 審査ガイド通り

建屋内の放射性物質からのスカイシャインガンマ線による入退域時の外部被ばく線量を評価している。

建屋内の放射性物質からの直接ガンマ線による入退域時の外部被ばく線量を評価している。

4.1 (1)⑤ → 審査ガイド通り

大気中へ放出された放射性物質からのガンマ線による入退域時の被ばくは、中央制御室の壁によるガンマ線の遮蔽効果を期待しないこと以外は「4.1(1)②大気中へ放出された放射性物質による中央制御室内での被ばく」及び「4.1(1)③外気から取り込まれた放射性物質による中央制御室内での被ばく」と同様な手法で、放射性物質からのガンマ線による外部被ばく及び吸入摂取による内部被ばくの和として実効線量を評価している。地表面に沈着した放射性物質からのガンマ線に

4. 1 (2) → 審査ガイド通り

中央制御室居住性に係る被ばくは図3の手順に基づいて評価している。

4.1 (2) a. → 審査ガイド通り

中央制御室居住性に係る被ばく評価における放射性物質の大気中への放出量は,「有効性評価で想定する格納容器被損モードのうち,制御室の運転員の被ばくの観点から結果が最も厳しくなる事故収束に成功した事故シーケンス」として、格納容器破損防止対策に係る有効性評価における雰囲気圧力・温度による静的負荷のうち、格納容器過圧の破損モードにおいて想定している、大破断 LOCA 時に ECCS 注入及び格納容器スプレイ注入に失敗するシーケンスを解析することにより設定している。また、評価事象が炉心損傷後の事象であることを踏まえ、原子炉格納容器内に放出された放射性物質は NURG-1465 の被覆管破損放出〜晚期圧力容器内放出までの原子炉格納容器内へが放出地物質は NURG-1465 の被覆管破損放出〜晚期圧力容器内放出までの原子炉格納容器内へが放出割合を基に設定して評価している。

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の **居住性に係る被ばく評価に関する審査ガイ**

中央制御室の居住性に係る被ばく評価の適合状況

基に、大気中への放射性物質放出量及び原子炉施設内の放射性物質存 在量分布を改定する。

- 性物質の大気中への放用割合が東京電力株式会社福品第一原子力発 電所事故と同等と仮定した事故に対して、放射性物質の大気中への放 また、放射性物質の原子炉格納容器内への放出割合及び炉心内蔵量 田割合及び炉心内蔵量から大気中への放射性物質放出量を計算する。 緊急時間御室又は緊急時対策所の居住住に係る被買く評価では、 から原子炉施設内の放射性物質存在量分布を設定する。
- 原子炉施設敷地内の年間の実気象データを用いて、大気拡散を計算して 苗対態度及び苗対線風を非算する。 Þ,
- 原子炉施設内の放射性物質存在量分布から原子炉建屋内の線源強度を計 年中で、
- 原子炉制御空/緊急時制御室/緊急時対策所内での運転員又は対策要員 の被ぼく縁載を計算する。
 - 上記らの結果を用いて、原子定律屋内の依射性物質からのガンを線(ス カインテインガンを織、直接ガンを繰りによる被買く線量を計算する。
- ・上記る及びもの結果を用いて、大気中へ放出された放射性物質及び地 表面に沈着した故射性物質のガンマ線による外部被ぼく線見を計算 Ψ̈́
 - 緊急時期領領一緊急時 対策所内に外気から取り込まれた放射性物質による被ぼく線量(ガン ~線による外部被ばく及び吸入摂取による内部被ぼく)を計算する。 ・上記』及びもの結果を用いて、原子炉制御選。
- 判断基準を満たしているかどうかを 上記すで望録した線量の合肆値が、 編調をも نه

B 任福台係る被違く評価の共通解析条件 Ø ্ বা

- (1) 沈着・除去等
- 原子や制御塩/緊急時制御塩/緊急時対策所の非常用換気空調設備フィ ルタ効率

なお、フィルタ効率の設定に際し、ヨウ素類の性状を適切に考慮する。 に設定する。

ョウ素類及びエアコブルのフィルタ効率は、使用条件での設計値を基

空気流入率

Ġ,

空気流入率測定試験結果を基に設定 空氣流入率は、 開設の場合では,

審査ガイド通り 1 1 (2) b. 4

被ばく評価に用いる相対濃度及び相対線量は、大気拡散の評価に従い実効放出継続時間を基に計算した値を年間について小さい方から順に並べた累積出現頻度 67 %に当たる値を用いている。評価においては、 1997年1月から1997年12月の1年間における気象データを使用している。

→ 審査ガイド通り 1 (2) c.

4

スカイシャインガンマ線及び直接ガンマ線による外部 原子炉施設内の放射性物質存在量分布を考慮し,スカイシャインガンマが被ばくの実効線量を評価するために,建屋内の線源強度を計算している。 4

→ 審査ガイド通り 1 (2) d.

前項。の結果を用いて,建屋内の放射性物質からのガンマ線による被ばく線量を計算している。

前項 a 及び b の結果を用いて,大気中へ放出された放射性物質及び地表面に沈着した放射性物質のガンマ線による外部被ばく線量を計算している。

B 前項a及びbの結果を用いて,中央制御室内に外気から取り込まれた放射性物質による被ばく線量ンマ線による外部被ばく及び吸入摂取による内部被ばく)を計算している。

審査ガイド通り 1 1 (2) e. 4.

前項 q で計算した線量の合計値が,「判断基準は,運転員の実効線量が 7 日間で 100 mSv を超えないこ と」を満足していることを確認している。

審査ガイド通り 2 (1) a. 4.

中央制御室非常用循環設備のフィルタ除去効率は,使用条件での設計上,期待できる値として,よう素フィルタ除去効率は 95 %,微粒子フィルタ除去効率は 99 %と仮定して評価している。運転員のマスク 着用(マスクの除染係数:50)を考慮している。

審査ガイド通り 1 2 (1) b. 4

空気流入率測定試験結果を基に余裕を見込んだ値 (0.5回/h) と設定している。 空気流入率は、

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
する。が最の場合では、空気流入率は、設計値を基に設定する。(なお、原子炉制御室/緊急時制御室/緊急時対策所設置後、設定値の妥当性を空気流入率圏定試験によって確認する。)(2) 大気拡散3. 放射性物質の大気拡散	4.2 (2) a. → 審査ガイド通り
・放射性物質の空気中濃度は、放出隙高さ及び気象条件に応じて、空間震度分布が水平方向及び鉛直方向ともに正規分布になると仮定したガウスプルームモデルを適用して計算する。なお、三次元拡散シミュレーションモデルを用いてもよい。	放射性物質の空気中濃度は,ガウスプルームモデルを適用して計算している。
・風向、風速、大気安定度及び降雨の観測項目を、現地において少なくとも1年間観測して得られた気象資料を大気拡散式に加いる。 ・ガウスブルームモデルを適用して計算する場合には、水平及び垂直方	泊発電所内で観測して得られた 1997 年 1 月 1 日から 1997 年 12 月 31 日の 1 年間の気象資料を大気拡散式に用いている。また,建屋影響を受ける大気拡散評価を実施している。 水平及び垂直方向の拡散パラメータは,風下距離及び大気安定度に応じて,気象指針における相関式を用いてには、
向の拡散パラメータは、風下距離及び大気安定度に応じて、気象指針 (**) における相関式さ用いて計算する。 (**) における相関式さ用いて計算する。 ・原子相制御電/緊急時制御電/緊急時対策所の居住信評価で特徴的な 放出点から近距離の建屋の影響を受ける場合には、建屋による巻き込 基用象を表置した大気拡散による拡散パラメータを用いる。	用いて計算している。 放出点(排気筒)から近距離の建屋(原子炉格納容器)の影響を受けるため,建屋による巻き込みを考 慮し,建屋の影響がある場合の拡散パラメータを用いている。
原子炉建屋の建屋後流での巻き込みが生じる場合の条件については、 枚出点と巻き込みが生じる準屋及び評価点との位置関係については、狭 に示す条件すべてに該当した場合、放出点から抜出された放射性物質 は準屋の風下値で巻き込みの影響を受け拡散し、評価点に到達するものとする。	ー~三のすべての条件に該当するため,建屋による巻き込みを考慮して評価している。 3. 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
 一 放出点の高さが建屋の高さの 2.5 倍に満たない場合 一 放出点と評価点を補んだ直線と平行で放出点を風下とした風向 n について、放出点の位置が風向 n と準屋の投影形状に応じて定まる - 定の範囲(図 4 の領域 An)の中にある場合 一 評価点が、巻き込みを生じる建屋の風下電にある場合 	放出点(排気筒)は建屋の高さがほぼ同じであるため,2.5 倍に満たない。 放出点(排気筒)の位置は,図4の領域 An の中にある。
出るなる。	評価点(中央制御室等)は,巻き込みを生じる建屋(原子炉格納容器)の風下側にある。 建屋による巻き込みを考慮し,図5に示すように,建屋の後流側の拡がりの影響が評価点に及ぶ可能性 のある複数の方位(5方位)を対象としている。

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
なく、図3に示すように、建屋の後流側の広がりの影響が評価点に及ぶ可能性のある複数の方位を対象とする。	
・放射性物質の大気拡散の詳細は、「原子力発電所中共制御室の居住性・放射性物質の大気拡散の詳細は、「原子力発電所中共制御室の居住性に係る彼ばく評価手法だっいて(内規)、ジェによる。	放射性物質の大気拡散については,「原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)」に基づいて評価している。
・答き込みを生じる代表徳屋	4. 2 (2) b. → 審査ガイド通り
1)原子伝統屋の近辺では、隣接する複数の衛屋の属下側で広く巻きによってコッキ輪が升きていますのにより	建屋巻き込みによる拡散を考慮している。
2/からその表表が仕しているものだとの。 おかじとさそに 4 単にしこと 一直を直接 名称語 一角を放棄等	1. 由我并介 法招处责 经某人因子(1.1. 由我)4个个"自然联络》5. 5. 5. 6 条件,人类"自己"5、(我却是)现已在
7)後の公子の王しの亀留として、原子が存むなむ、原子が建国で原子の福田・原子の福田・原田・カーに、海は、コントローン番尾が70条約6)の	双田原(非风同) 25 5 0 でもひかの影響が取り入さい準圧として原士が恰釣谷命を代衣準囲としている。 している。
、、これのイーン・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	
象となるが、答き込みの影響が最も大きいと考えられる一つの世	
屋を代表建屋とすることは、保守的な結果を与える。	
・放射性物質濃度の評価点	
1) 原子析制御宝/緊急時創御宝/緊急時対策所が属する建屋の代表	事故時に外気の取入れを遮断するため,室内へ直接流入するとして評価している。
国の遺花	
原子炉制御室/緊急時制御室/緊急時対策所内には、次の 5又	
な 当然まって、原子炉制御室/緊急時制御室 緊急時対策所が属	
する建屋の表面から放射性物質が侵入するとする。	
① 事故時に外気取入を行う場合は、主に給気口を介しての外	
気取入及び宝内への直接流入	
11) 事故時に外気の取入れを遮断する場合は、室内への直接流	
Υ	
2) 建屋による巻き込みの影響が生じる場合、原子炉制御室/緊急時	評価期間中は外気を遮断することを前提としているため,中央制御室が属する建屋の屋上面を選定する
制御室、緊急時対策所が属する建屋の近辺ではほぼ全般にわたり、	が,具体的には,保守的に放出点と同じ高さにおける濃度を評価している。
代表建屋による巻き込みによる拡散の効果が及んでいると考えら	
れる。	
このため、原子炉制御室、緊急時制御客/緊急時対策所換気室	
調設備の非常時の運転モードに応じて、次の前又は前によって、	
原子炉制御室、緊急時制御室、緊急時対策所が属する建屋の表面	
の譲渡を計算する。	
1) 評価期間中も給気ロから外気を取入れることを前提とする	
場合は、給気口が設置されている原子炉制御室/緊急時制	
御室・緊急時対策所が属する建屋の表面とする。	

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
 ii) 評価期間中注外気を進断することを前提とする場合は、原子炉制御室/緊急時間御室 緊急時対策所が属する建屋の各表面(屋上面又は側面)のうちの代表面(代表評価面)を選定する。 3) 代表面における評価点 	
 3. 建屋の巻き込みの影響を受ける場合には、原子炉制御電/緊急時制御電/緊急時対策所の属する電量表面での濃度は風下距離の依存性は小さくほぼ一様と考えられるので、評価点は厳密に定める必要はない。 基上面を代表とする場合、例えば原子炉制御室・緊急時割御室/緊急時対策所の中心点を評価点とするのは妥当である。 	屋上面を代表としており,評価点は中央制御室中心としている。
 1) 代表評価面を、原子や制御室/緊急時制御室、緊急時対策 所が属する建屋の屋上面とすることは適切な選ばである。 また、原子炉和御室、緊急時間御室、緊急時利約室 上面から離れている場合は、原子炉制御室・緊急時制御室 整急時対策所が属する建屋の側面を代表評価面として、 それに対応する高さでの濃度を対で適用することも適切で ある。 	中央制御室が属する建屋の屋上面を選定するが,具体的には,保守的に放出点と同じ高さにおける濃度を評価している。
iii) 量上面を代表面とする場合は、評価点として原子抑制御金 / 緊急時制御室 緊急時対策所の中心点を選定し、対応する風下距離から拡散パラメータを算出してもよい。 また $\sigma_y=0$ 及び $\sigma_z=0$ として、 σ_y 、 σ_z の の値を適用してもよい。 ・着日方位	屋上面を代表としており,評価点は中央制御室中心とし,保守的に放出点と評価点とが同じ高さとして,その間の水平直線距離に基づき,濃度評価の拡散ペラメータを算出している。
1) 原子炉制御室/緊急時制御室 緊急時対策所の散ばく評価の計算では、代表建星の風下後売側での広範囲に及ぶ乱流混合域が顕著であることがら、放射性物質濃度を計算する当該着目方位と、ては、放出療と評価点とを結ぶラインが含まれる1方位のみを対象とするのではなく、図5こ示すように、代表建屋の後流側の板がりの影響が評価点に及ぶ可能性のある複数の方位を対象とする。 評価対象とする方位は、放出された放射性物質が建屋の影響を受けて拡散すること及び建屋の影響を受けて拡散された放射性	建屋による巻き込みを考慮し,i)~ii)の条件に該当する方位を選定し,建屋の後流側の払がりの影響が評価点に及ぶ可能性のある複数の方位(5 方位)を対象としている。

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
物質が詳価点に届くことの両方に該当する方位とする。 具体的に注、全 16 方位について以下の三つの条件に該当する 方位を選定し、すべての条件に該当する方位を評価対象とする。) 対出点が評価点の風上にあること	放出点が評価点の風上にある方位を対象としている。
ii) 放出点から放出された放射性物質が、健康の風下側に巻き込まれるような範囲に、評価点が存在すること。この条件に該当する風向の方位加」の適定には、図6のような方法を用いることができる。図 6 の対象となる二つの風向の方位の範囲の1x、mipのうち、放出点が評価点の風上となるとちらか一方の範囲が評価の対象となる。放出点が離壁に接ちらか一方の範囲が評価の対象となる。放出点が建設に接	放出点は建屋に近接しているため,放出点が評価点の風上となる180° を対象としている。
近し、0.5Lの拡散領域(図 6 のハッチング組分)の内部にある場合は、風向の方位の1は放出点が評価点の風上となる180。が対象となる。(!!) 雑長の画下垂が巻き込まれた 7年高級電車に対過源ストン	図7に示す方法により、確局の後流側の拡がりの影響が評価点に及ぶ可能性のある複数の方位(5 方位)
m) 種種の興下側で遊客が異れた人気の評価界に関係すること。 との条件に該当する原向の方位mgの適定には、図 7 電子 方方法を用いることができる。評価点が種屋に接近し、0.5 上の柱骸領域(図 7 のハッチング部分)の内部にある場合は、 風向の方位mgは放出点が評価点の風上となる 180°が対 象となる。	2017年かり万氏により、準色の夜の間の近かりの影響が計画に入ぶり間はのめの核数の方位(3万位)を評価方位として選定している。
図6及び図7は、断面が円筒形状の建屋を倒として示しているが、断面形状が矩形の建屋についても、同じ要演で評価対象の方位を決定することができる。 継尾の影響がある場合の評価対象方位選定手順を、図8に示す。 建屋の影響がある場合の評価対象方位選定手順を、図8に示す。 は本的には、図9のとおり、原子炉制御室一緊急時制御室/緊急 時対策所が属する建屋及面において定めた評価点から、原子炉施設の代表建屋の水平断面を見込む範囲にあるすべての方位を定める。 数何学的に建屋群を見込む範囲にあるすべての方位を定める。 とのずれによって、評価すべき方位の数が増加することが考えられるが、この場合、幾何学的な見込み範囲に相当する適切な見込みたられるが、この場合、幾何学的な見込み範囲に相当する適切な見込み	「着目方位1)」の方法により,評価対象の方位を選定している。
方位の設定を行ってもよい。 ・建屋投影面積 1) 図 10 に示すとおり、風向に垂直な代及建屋の投影面積を求め、 抜射性物質の濃度を求めるために大気拡散式の入力とする。	原子炉格納容器の垂直な投影面積を大気拡散式の入力としている。

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 居住性に係る被ばく評価に関する審査ガイド	中央制御室の居住性に係る被ばく評価の適合状況
2) 建屋の影響がある場合の多くは複数の風向を対象に計算する必要があるので、風向の方位ごとに垂直な投影面積を求める。ただし、対象となる複数の方位の投影面積の中で、最小面積を、すべた。	すべての方位について,原子炉格納容器の最小投影面積を用いている。
ての方位の計算の人力として共通に適用することは、合理的であり保守的である。 り保守的である。 3) 風下側の地表面から上側の投影面積を求め大気拡散式の入力とする。方位によって風下側の地表面の高さが異なる場合は、方位 ごとに地表面高さから上側の面積を求める。また、方位によって、 代表建歴と注測の電量が重なっている場合でも、原則地表面から	原子炉格納容器の地表面からの投影面積を用いている。
上側の代表建屋の投影面積を用いる。 c. 和対濃度及び相対線量 ・和対濃度は、短時間放出又注長時間放出に応じて、毎時刻の気象項目	4.2 (2) c. → 審査ガイド通り 相対濃度は,毎時刻の気象項目(風向,風速,大気安定度)及び実効放出継続時間(保守的に1時間と
と大分的な放出継続時間を基に評価点ごとに聖算する。・相対線長は、放射性物質の韓国態度分布を算出し、これをガフィ線电子等をデルンで活通工した評価点におけば神像であ。	する)を基に,短時間放出の式を適用し,評価している。 相対線量は,放射性物質の空間濃度分布を算出し,これをガンマ線量計算モデルに適用して計算している。
・評価点の相対課度又は相対線量は、毎時刻の相対機度又は相対線量を 年間について小さい方から果確した場合、その果確出現頻度が 97%に 当たる値とする。 ・相対總度及が相対議員の詳細は、「原子力発留所中共制御室の居住性	年間の気象データに基づく相対濃度及び相対線量を小さい方から累積し,97%に当たる値を用いている。 る。 相対濃度及び相対線量の詳細は、「原子力発電所中央制御室の居住性に係る被ぼく評価手法について(内
 「日本の収入のご用が終末の計画は、「東ナン第中の工工 に係る被定く評価手法について(内規)」等による。 d. 地表面への汽着 放射性物質の地表面への汽着評価では、地表面への乾性汽着及び降雨による温性汽着を考慮して地表面汽着濃度を計算する。 C. 原子炉制御室 緊急時制御室/緊急時対策所内の放射性物質濃度・ ・原子炉制御室/緊急時制御室/緊急時対策所の建屋の表面で気中から、 ・原子炉制御室/緊急時制御室/緊急時対策所の建屋の表面で気中から、 	用の減交及の日的減差の行動はよりによっている。 4. 2 (2) d. → 審査ガイド通り 地表面への乾性沈着及び降雨への湿性沈着を考慮して地表面沈着濃度を計算している。 沈着速度 (1.2 cm/s) については線量目標値評価指針を参考に、湿性沈着を考慮して乾性沈着速度 (0.3 cm/s) の 4 倍を設定。乾性沈着速度はNURGC/CR-4551 Vol. 2 より設定。 4. 2 (2) e. → 審査ガイド通り 評価期間中は外気を遮断することを前提としているため、二の経路(直接流入)で放射性物質が外気から取り込まれることを仮定している。
ずいる 一所の非統領人) 所内に両	評価期間中は外気を遮断することを前提としているため,外気取入れは行わないとして評価している。
こと(空気流入) ・原子症制御室・緊急時制御室と緊急時対策所内の雰囲気中で放射性物質は、一様混合すると仮定する。 食は、一様混合すると仮定する。 なお、原子炉制御车/緊急時制御车/緊急時対策所内に取り込まれ	中央制御室では放射性物質は一様混合するとし,室内での放射性物質は沈着せず浮遊しているものと仮定している。

外部被ばく線量については,空気中濃度及びクラウドシャインに対する外部被ばく線量換算係数の積で 計算した線量率を積算して計算している。 外部被ばく線量については,地表面沈着濃度及びグランドシャインに対する外部被ばく線量換算係数の 積で計算した線量率を積算して計算している。 中央制御室における内部被ばく線量については,空気中濃度,呼吸率及び内部被ばく換算係数の積で計 算した線量率を積算して計算している。 評価期間中は外気を遮断することを前提としているため,外気取入れは行わないとして評価している。 空気流入量は空気流入率及び中央制御室バウンダリ体積を考慮した体積を用いて計算している。 また、マスクを着用しない場合についても評価している。 中央制御室では室内での放射性物質は沈着せずに浮遊しているものと仮定している。 中央制御室の居住性に係る被ばく評価の適合状況 中央制御室内の運転員については,建屋による遮蔽効果を考慮している。 中央制御室内の運転員については建屋による遮蔽効果を考慮している。 審査ガイド通り 審査ガイド通り 審査ガイド通 マスク着用を考慮している。 1 1 1 (3) a. 2 (3) c. (3) b. 0 0 4 4. 4. 熙 砸 ・地表面に沈着した放射性物質からのガンマ線による外部被ぼく線量は、 実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 緊急時が兼所向に取り込まれる放射性 原子を制御名/緊急時制御名/緊急時対策所内にいる運転員又は対策 緊急時制御老/緊急時対策所内に取り込まれた 原子伊制御軍/緊急時制御軍/緊急時対策所内への外気取入による放 射性物質の取り込みについては、非常用換気空調設備の設計及び運転 £. 気中時間積分濃度及びクラウドシャインに対する外部被ぼく線量機 原子炉制御金/緊急時制御室/緊急時対策所内にいる運転員又は対策 地表面枕着黴灰及びグランドシャインに対する外部被ぼく線量換算 要員に対しては、原子炉制御室/緊急時制御室/緊急時対策所の建屋 原子炉制御室/緊急時制御室/緊急時対策所内へ外気から取り込まれた 緊急時対報 ・原子哲制御事/緊急時制御事/緊急時対策所内、外気から取り込まれ 積分濃度、呼吸率及び吸入による内部被削く線量検算係数の積で計算 <u>し</u> 迎 聚邻郡 聚金甲が深屋の無国 た放射性物質の吸入摂取による内部被従く線量は、室内の空気中時間 物質の空気流入量は、空気流入率及び原子炉制御室/緊急時制御室) ・放射性襲中の放射性物質からのガンシ線による外部被ばく線量は、 た放射性物質は、室内に沈着せずに浮遊しているものと仮定する。 緊急時間御母/緊急時対策所内でマスク兼用を基 地表面に沈着した放射性物質からのガンマ線による原子炉制御室/ 放射性物質は、室内に活着せずに浮遊しているものと仮定する。 時制御御/緊急時対策所内での外部被買く(グランドシャイン) 放射性雲中の放射性物質からのガンマ線による原子炉制御室/ 御御/緊急時対叛所内かの名部被稱へ(クラウドシャイソ) 緊急時対策所パウンダリ体積(容積)を用いて計算する. 緊急時間海田 **居住性に係る被ばく評価に関する審査ガイ** によって放射線が衝へいるれる低減効果をお慮す によって放射線が遮へいされる低減効果を考慮す **東国に対しては、原子が通復四/緊急時通復宝** 放射性物質の吸入摂取による原子炉制御室 原子护制御御/緊急時間御側 条件に従って計算する。 算係数の積が計算する 係数の値で計算する。 ・なお、原子を重御池 阻内から内部後近へ 原子炉制御宝。 (3) 蘇思評审 á j

中央制御室内に取り込まれた放射性物質からのガンマ線による外部被ばく線量については、空気中濃度 及びクラウドシャインに対する外部被ばく線量換算係数の積で計算した線量率を積算して計算している。 入退域でのクラウドシャイン線量については,空気中濃度及びクラウドシャインに対する外部被ばく線量換算係数の積で計算した線量率を積算して計算している。 入退域でのグランドシャイン線量については、地表面沈着濃度及びグランドシャインに対する外部被ばく線量険算係数の積で計算した線量率を積算して計算している。 入退域での内部被ばくについては空気中濃度,呼吸率及び内部被ばく換算係数の積で計算した線量率を 中央制御室では室内での放射性物質は沈着せずに浮遊しているものと仮定している。 中央制御室の居住性に係る被ばく評価の適合状況 入退域での放射線防護 (マスク着用)による被ばく低減を考慮している。 3号炉単独発災を想定し、評価している。 審査ガイド通り 審査ガイド通り 審査ガイド通り → 審査ガイド通り 積算して計算している。 1 1 1 2 (3) g. 2 (3) f. (3) d. 2 (3) e. 2 (3) h. 0 4. 4 4 4. 4 実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 地表面に汽着した放射性物質からのガンマ線による入退域での外部被ば 地表面に沈着した放射性物質からのガンマ線による外部被ぼく線量は、 マスク着用を考慮しない場合の評価結果も提出を求 緊急時対策所向へ外気から取り込まれた 聚伯再経兼界四十二年無から取り込まれ 時間積分濃度及びクラウドシャインに対する外部被ぼく線量換算係 緊急時対策所内に取り込まれた 放射性物質は、0項の内部被ばく同様、室内に沈着セずに浮遊してい 放射性雲中の放射性物質からのガンや線による人退域での外部被ばく 気中時間積分濃度及びクラウドシャインに対する外部被置く線晶模 地表面枕着濃度及びグランドシャインに対する外部散びく線量換算 ・放射性物質の吸入摂取による内部被害く線量は、入退域での空気中時 間積分濃度、呼吸率及び吸入による内部被ぼく線量換算係数の積で計 から被ぼく経路別に個別に評価を実施して、その結果を合算すること 算保存的な結果を与える。原子が施設敷地内の地形や、原子が施設と 評価対象位置の関係等を考慮した、より現実的な被団く線量の重ね合 わせ評価を実施する場合はその要当性を説明した資料の提出を求め 室内の空気中 全原子炉施設 ・放射性雲中の放射性物質からのガンマ線による外部散ぼく線量は、 ・入退城での放射線防護による被ぼく低減効果を考慮してもよい。 た放射性物質からのガンマ線による外部被ぼく線量は、 ・同じ敷地内に複数の原子炉施設が設置されている場合。 について同時に事故が起きたと想定して評価を行うが、 居住性に係る被ばく評価に関する審査ガイ 放射性物質の吸入摂取による入退域での内部被ぼく 放射性物質のガンを織による外部被ぼく ・なお、原子が第個個/緊急時間傾倒 · 医子智性细胞 聚化甲基缩图 原子質問御便、緊急時間御風 草係数の積で計算する。 被ばく線量の重ね合わせ く (グランドシャイン) 係数の値で計算する。 (クラウドシャイン) 数の確で計算する。 るものと仮定する。 その場合は、 陣する。 S V Ń ċ ij ь'n 4

実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の日かば、またに開いてますが、またに関いてますが、またに関いてますが、これに関いてません。

居住性に係る被ばく評価に関する審査ガイド

、3 原子炉制御室の居住性に係る被消く評価の主要解析条件等

(1) ソースターム

原子宣格熱容器内への放出割合

εij.

- ・原子炉格線容器内への放射性物質の放出割合は、4.1 (2) a で選定した事故シーケンスのソースターム解析結果を基に設定する。
- 希ガス類、ヨウ蒸類、Cs 類、To 類、Ba 類、Bu 類、Co 類及び Ta 類を考慮する。
- ・なお、原子炉格納容器内への放出割合の設定に際し、ヨウ赤類の性状を通りに考慮する。

b. 原子恒格納容器内への放田率

・原子行格熱容器内への放射性物質の放出率は、4.1 (2) a で選定した事故シーケンスのソースターム解析結果を基に設定する。

(2) 非纸田细腻

寿常用電影の作動についれば、4.1(3)a や過むした事故シーケンスの事故進展解析条件を異に設定する。

ただし、代替交流電源からの治電を考慮する場合は、治電までに要する。 裕時間を見込むこと。

張

(3) 沈着・除力等

- 非常用ガス処理系 (BWR) 又はアニュラス空気浄化設備 (PWR)非常用ガス処理系 (BWR) 又はアニュラス空気浄化設備 (PWR) の作動については、4.1 (2) a で選定した事故シーケンスの事故進展解析
- b. 非常用ガス処理系 (BWR) 又はアニュラス党気浄化設備 (PWR) フィルタ体素

条件を制に設定する。

ヨウ素類及びエアロブルのフィルタ効率は、使用条件での設計値を基 に設定する。

なお、フィルタ効率の設定に際し、ヨウ素類の性状を適切に考慮する。

c. 原子育格電洋器スプレイ

原子炉格部深器スプレイの作動にらいては、4.1(2)a で選定した事数シーケンスの事故進展解析条件を基に設定する。

d. 原子炉格納容器内の自然汽船

原子炉格莉容器内の自然沈着幸については、実験等から得られた適切 なモデルを基に設定する。

中央制御室の居住性に係る被ばく評価の適合状況

4.3 (1) → 審査ガイドの趣旨に基づいて設定

評価事象が炉心損傷後の事象であることを踏まえ,原子炉格納容器内に放出された放射性物質は NNKBG-1465 の被覆管破損放出~晚期圧力容器内放出までを考慮した原子炉格納容器内への放出割合を基に設定して評価している。

核種グループについては NUREG-1465 で想定されたグループ類であり,希ガス類,よう素類,Cs 類,Te類,Ba類,Ru類,Ce類及びLa類を考慮している。

よう素の性状については,pH によらず保守的に設定するために B. G. 1.195 のよう素割合に基づき設定している。

NUREG-1465 は、当該シーケンスを含む、早期から RCS 圧力が低く推移するシーケンスを代表するよう設定されたものである。また、NUREG-1465 に基づく「格納容器に放出される割合」の設定については、MAAPコードによる評価結果に比べて保守的ではない核種があるものの、MAAPコードに内蔵されたエアロゾルの自然沈着等の評価式による低減効果は本評価での低減効果に比べて大きいため、被ばく評価に直接寄与する「原子炉格納容器外に放出される割合」については、本評価は MAAPコードによる評価よりも保守的な設定となる。

4.3(2) → 審査ガイド通り

全交流動力電源喪失を仮定した評価条件としているため、電源は代替非常用発電機からの供給とすることを仮定している。具体的にはアニュラス空気浄化設備及び中央制御室非常用循環設備等の起動時間については、代替非常用発電機からの受電までに要する余裕時間を見込んでいる。

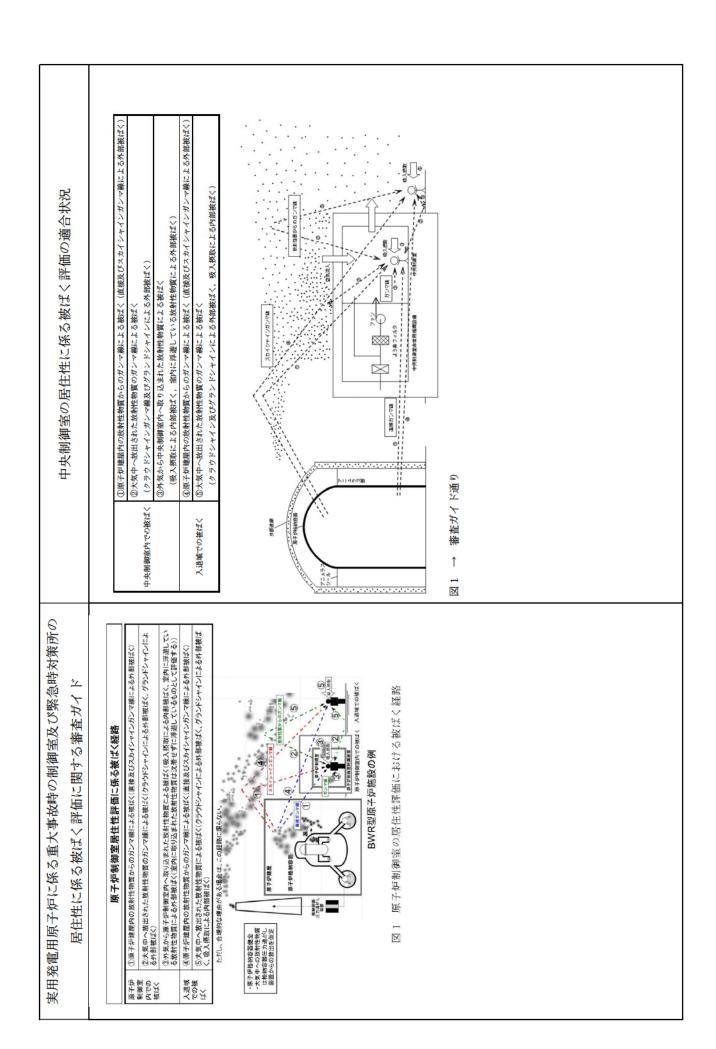
4.3 (3) a. → 審査ガイド通り

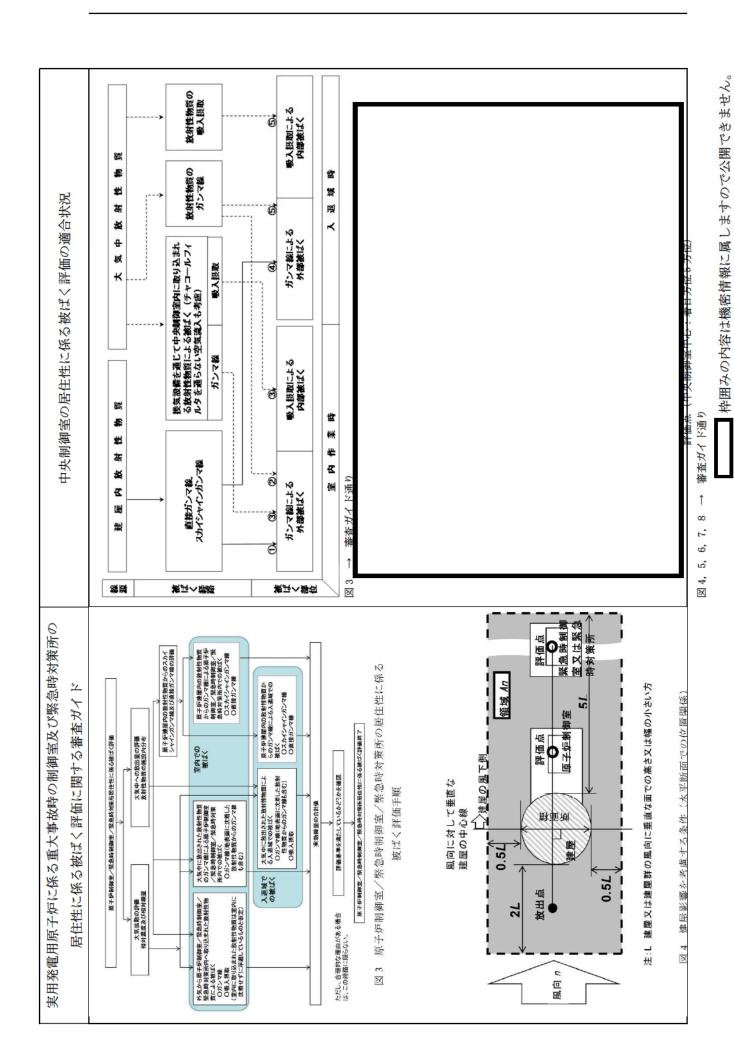
アニュラス空気浄化設備の作動時間については、選定した事故シーケンスに基づき全交流電源喪失及び最終ヒートシンク喪失を想定した起動遅れを見込んだ(起動遅れ60分+起動後負圧達成時間18分)評価としている。起動遅れ時間60分は、代替非常用発電機による電源回復操作及びアニュラス空気浄化設備空気作動弁代替空気供給等によるアニュラス空気浄化設備の復日までに要する時間を想定してい

4.3 (3) b. → 審査ガイド通り

アニュラス空気浄化設備のフィルタ効率は、使用条件での設計上期待できる値として、よう素フィルタ効率は95%、微粒子フィルタ効率は99%と仮定して評価している。なお、よう素類の性状を適切に考慮し、有機よう素及び元素状よう素はよう素フィルタで除去され、粒子状よう素は微粒子フィルタで除去されると評価している。

4.3 (3) c. → 審査ガイド通り

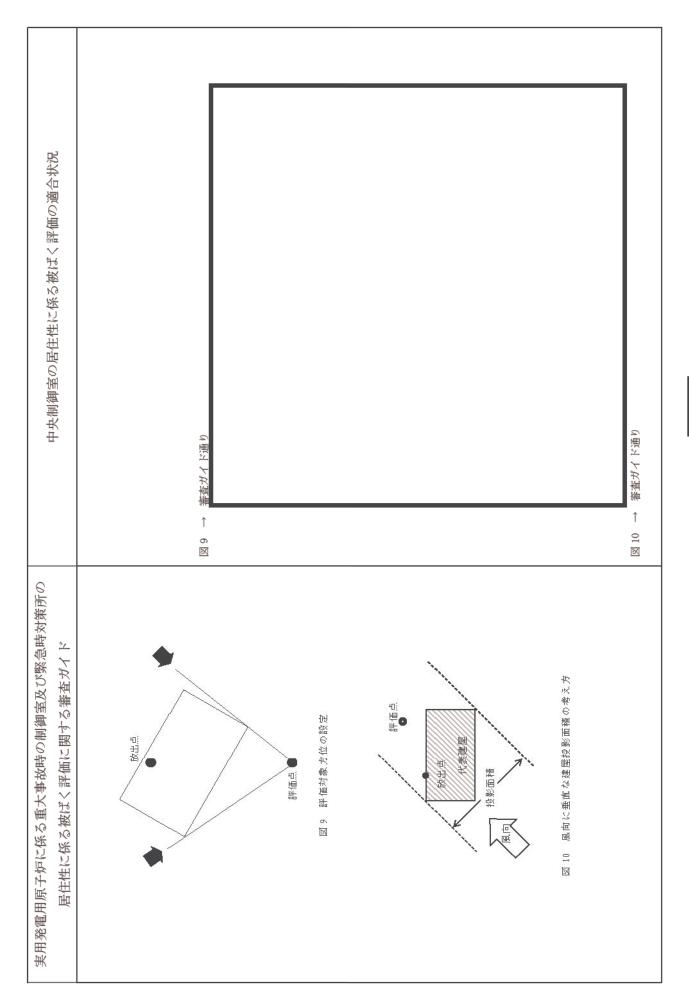

の パンパン・コーニュー・ユン スプレイの作動については,4.1(2)a. で選定した事故シーケンスの事故進展解析条件を基に設定している。


3 (3) d. → 審査ガイド通り

4

自然沈着率については,実験等から得られた適切なモデルを基に設定している。 無機よう素の自然沈着率は,CSE実験に基づき,9.0×10-4(1/s)と仮定している。 エアロゾルの自然沈着率は,重力沈降速度を用いた自然沈着率の評価式に基づき,計算している。

放射性物質の大気中への放出開始時刻は,4.1(2)a.で選定した事故シーケンスのソースターム解析結果を基に設定している。実効放出継続時間は保守的に1時間としている。 原子炉 中央制御室空調装置の作動時間については,全交流電源喪失及び最終ヒートシンク喪失を想定した起動遅れ (300分)を考慮した評価としている。起動遅れ時間 300 分は代替非常用発電機による電源回復操作及び現場での手動による中央制御室非常用循環設備ダンパ開操作等での中央制御室非常用循環設備の復日 4.1(2)a.で選定した事故シーケンスの解析結果を基に, 想定事故時に原子炉格納容器内に放出された放射性物質を設定し,スカイシャインガンマ線及び直接ガンマ線の線源としている。 建屋内の放射性物質からのスカイシャインガンマ線及び直接ガンマ線による外部被ぼく線量は, 上記で評価した積算線源強度, 施設の位置・地形条件 (線源位置と評価点との距離等), 遮蔽構造 (原子炉格納容器外部遮蔽構造者しくはアニュラス遮蔽構造, 中央制御室遮蔽構造)から計算している。直接線量を QAD コ 建屋内の放射性物質からの直接ガンマ線による入退域時の外部被ばく線量は, 4.3(5)a. と同様の条件で計 4.1(2)a で選定した事故シーケンスの原子炉格納容器内圧力に応じた漏えい率を基に設定している。 建屋内の放射性物質は自由空間容積に均一に分布しているものとして計算している。具体的には, 放出源高さは,排気筒放出の場合は排気筒高さ,地上放出の場合は地上高さを仮定している。 格納容器内の放射性物質はドーム部,円筒部に均一に分布しているものとしている。 中央制御室の居住性に係る被ばく評価の適合状況 ード,スカイシャイン線量を SCATTERING コードで計算している。 審査ガイド通り 審査ガイド通り までに要する時間を想定している。 → 審査ガイド通り → 審査ガイド通り 審査ガイド通り → 審査ガイド通り 1 1 1 3 (4) a. 3 (4) b. 3 (5) b. a e ė 3 (3) f. (2) (3) က က 4 4 4 4. 4 4 実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の 原子炉格納容器漏えい率は、4.1(2)aで選定した事故シーケンスの 原子が制御室の非常用機気空調設備の作動については、非常用電源の 4. 原子恒律屋内の放射性物質からのガンマ線による原子炉制御室内での外 想定事故時に原子炉格納容器から原子炉建屋内に放出された故射性 この原子炉建屋内の放射性物質をスカイシャインガ 原子炉建屋内の放射性物質からのスカイシャインガンマ線及び直接ガ 放射性物質の大気中への放出開始時刻及び放出継続時間は、4.1 (2) 放出厳高さは、4.1(2) aで選定した事故シーケンスに応じた放出ロ からの故出を仮定する。4.1 (2) 』で選定した事故シーケンスのソース この作するものと 原子炉建屋内の放射性物質からのガンマ線による入退域での外部被ぼく ・スカイシャインガンを練及び直接ガシを繰の線源は、上記3と同様に 原子管建居内の設配在物質からのスカイシャインガン マ線及び直接ガンマ線による外部被買く線量は、上記』と同様の条件 a お選定した事故シーケンスのフースターム解析結果を基定設定する。 ・4.1 (2) a で選定した事故シーケンスのソースターム解析結果を基に、 爋 施設の位置、 タ・・ム解析結果を基に、放出エネルギ・・を考慮してもよい。 **居住性に係る被ばく評価に関する審査ガイ** 原子炉建屋内の放射性物質は、自由空間容積に均 **複算線源強度、** 生故後7月間の循環線源強度を計算する ソシ線及び直接ガンシ線の線源とする。 アト織門よる外部数置へ篠東は、 原子が制御室の非常用換気空調設備 事故道風解析結果を基に設定する。 構造及び地形条件から計算する。 放出開始時刻及び放出継続時間 作動状態を基に設定する 原子庁格納容器漏えい率 物質を設定する。 鐵算線源過度 か計解する 設定する。 放出激高点 <u>ز</u> 大紅杖杖 **衛** 職 軍 軍 軍 密接近く ပ် es, ń (12) Ď,



59-8-241

| 枠囲みの内容は機密情報に属しますので公開できません。

| 枠囲みの内容は機密情報に属しますので公開できません。

2. 中央制御室の放射線管理用資機材について

2.1 中央制御室の想定要員数の整理

事故時の中央制御室の想定要員数は、緊急時対策所の要員数として整理した初動対応要員 (発電課長(当直)からの指示等に基づき、必要な初動対応を実施)との整合、また、事故発 生タイミングが当直引継時間中であった場合を考慮した3号炉運転員(交替当直要員)を踏ま え第2-1表のとおり31名とする。

第 2-1 表 中央制御室の想定要員数

要員種別	人数
3 号炉運転員	6名
災害対策要員	9名
消火要員	8名
災害対策要員(支援)	2名
3 号炉運転員(交替当直要員)	6名
想定要員数 合計 31名	

2.2 中央制御室に配備する放射線管理用資機材について

中央制御室には,事故時に使用する防護具類及び汚染検査等を実施するための放射線計測器並びにチェンジングエリア設営用資機材を保管する。

防護具類及びポケット線量計の予定保管数については,中央制御室に滞在する要員数(以下, 「想定要員数」という。) に余裕を持たせた数量を保管する。

(1) 防護具類及び除染資材の予定保管数

防護具類の予定保管数については、中央制御室の想定要員数を考慮し第 2-2 表のとおりとする。

また,発電所構内には予定保管数を大きく上回る在庫を保管しているため,予定保管数の 防護具等が足りなくなる事態が発生した場合でも追加補充することが可能である。

中央制御室 構内保管 品名 単位 考え方 数量**1 予定保管数 タイベック 着 約 2,400 紙帽子 個 約 15,000 汚染区域用靴下 足 50 31 名×1.5 倍 約7,000 約33,000 綿手袋 双 オーバーシューズ(靴カバー) 約 620 足 31 名×2 (中央制御 全面マスク 個 100 室内での着用分)× 約800 1.5倍 電動ファン付きマスク 8名**2+余裕 約90 個 10 チャコールフィルタ 個 210 約 360 (以下内訳) 31 名×2 (中央制御 全面マスク用 200 室内での着用分)× 個 約 270 1.5 倍×2 個 電動ファン付きマスク用 8 名*2 + 余裕 約90 個 10 ゴム手袋 双 約73,000 100 31 名×1.5 倍×2 重 着 31 名×1.5 倍 アノラック 50 約1,800 セルフエアセット 台 16 約 72

第2-2表 主な防護具類及び除染資材の予定保管数

※1:発電所構内に保管または配備している数量(令和3年8月現在,緊急時対策所配備数を除く)

※2:運転員(6名)+放管員(2名)

(2) 放射線計測器の予定保管数

放射線計測器の予定保管数については,使用目的,使用する想定要員数及び予備台数から 第2-3表のとおりとする。

- a. ポケット線量計
 - (a) 使用目的

事故発生後の想定要員に対する外部被ばく線量を測定するために使用する。

(b) 予定保管数

ポケット線量計は1人1台携帯するため,中央制御室の想定要員の数に余裕を持たせて第2-3表のとおり50台配備する。

- b. GM汚染サーベイメータ
 - (a) 使用目的

中央制御室外で活動した要員等の身体等に,放射性物質が付着していないことの確認 及び中央制御室内の表面汚染密度を定期的(1回/日以上)に測定し,放射性物質の異常な流入等がないことを確認するために使用する。

(b) 予定保管数

GM汚染サーベイメータの具体的な使用方法は、中央制御室出入口に設置する「チェンジングエリア」内の「スクリーニングエリア」において、中央制御室に入室する要員の身体測定を放管班員 1~2 名で、中央制御室内における定期的(1回/日以上)な表面汚染密度の測定を放管班員 1名で行うことを想定している。

このため、第2-3表のとおり3台配備する。

【参考】

- ●GM汚染サーベイメータ
 - ・測定範囲:0~1×10⁵ cpm
 - ・電 源: 乾電池 (単2型電池) 4本 [連続 100 時間以上]

c. 電離箱サーベイメータ

(a) 使用目的

中央制御室内の線量当量率を定期的(1回/日以上)に測定し,放射性物質の異常な流入等がないことを確認するために使用する。

(b) 予定保管数

電離箱サーベイメータの具体的な使用方法は、中央制御室内における定期的(1回/日以上)な線量当量率の測定を放管班員1名で行うことを想定している。

原子力災害活動に従事する要員の線量管理を行う上で放射線測定は必須であることから,故障等により使用ができない状態も考慮し予備機も含め第2-3表のとおり2台配備する。

【参考】

●電離箱サーベイメータ

・測定範囲:1 μSv/h~300 mSv/h

·電源:乾電池(単3型電池)4本[連続80時間以上]

第2-3表 放射線計測器の予定保管数

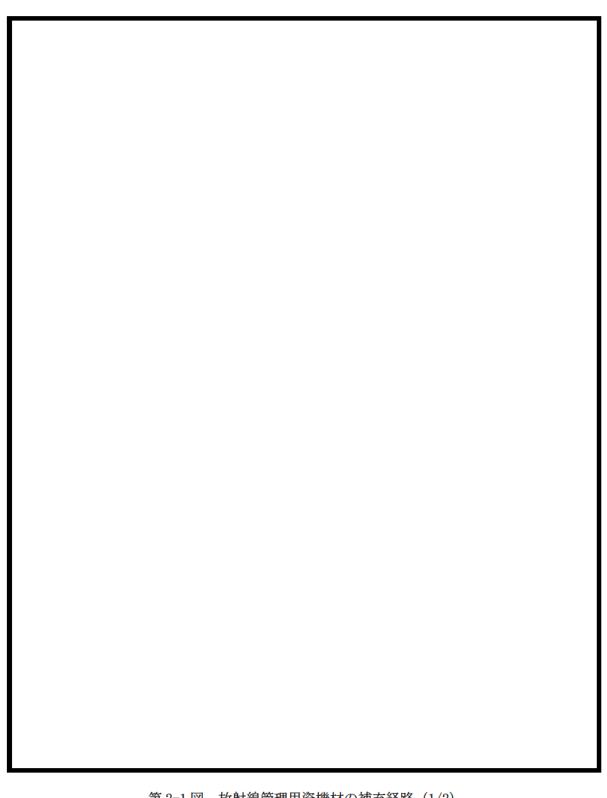
品 名	単位	中央制御室 予定保管数	考え方	構内保管 数量 ^{※1}
ポケット線量計	台	50	31 名×1.5倍	1, 247
GM汚染サーベイメータ	台	3	中央制御室内のモニタリング及び中央制御室入室 者の汚染検査に使用	126
電離箱サーベイメータ	台	2	中央制御室内のモニタリングに使用	53

※1:発電所構内に保管または配備している数量(令和3年8月現在,緊急時対策所配備数を除く)

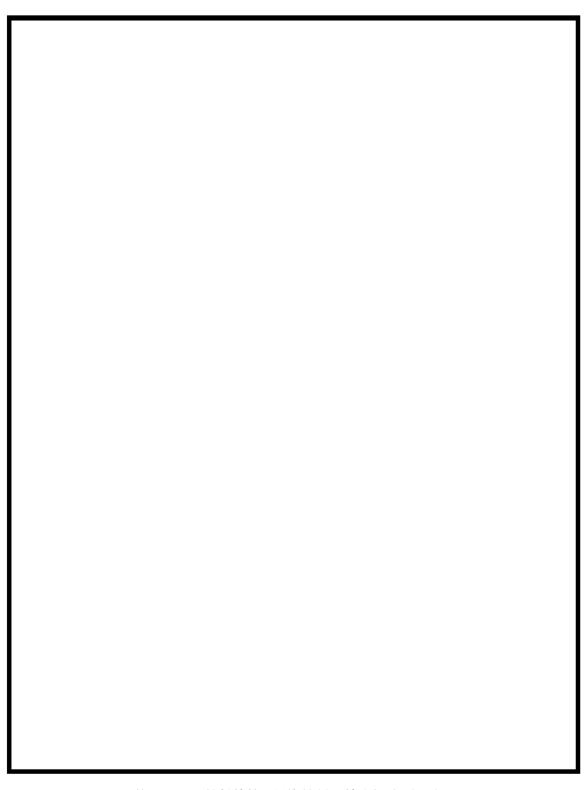
2.3 中央制御室に配備する放射線管理用資機材の補充について

中央制御室予定保管数分の放射線管理用資機材(中央制御室に初期配備している放射線管理 用資機材)が不足するような事態となる場合は、構内に保管している放射線管理用資機材を中 央制御室に適宜運搬することにより補充する。

中央制御室から管理区域内の各倉庫間の補充経路及び主な放射線管理用資機材保有数量(令和3年8月現在)については、次のとおりとなる。


第2-4表 各倉庫の主な放射線管理用資機材保有数量(令和3年8月現在)

【定検放管資材庫:3号炉 原子炉補助建屋 T.P.24.8 m】


1 作	1/1/ 1 //	而势是连 1.1.	21. 0 m ₁
資機材名称	単位	数量	備考
タイベック	着	約 370	
紙帽子	個	約1,000	
汚染区域用靴下	足	約 700	
綿手袋	双	約1,000	
全面マスク	個	約 100	
オーバーシューズ (靴カバー)	足	約 300	
チャコールフィルタ	個	約 80	
ゴム手袋	双	約 20,000	
アノラック	着	約 650	

【放管資材倉庫:3号炉 原子炉補助建屋 T.P.2.8 m】

資機材名称	単位	数量	備考
タイベック	着	約 395	
汚染区域用靴下	足	約 200	
全面マスク	個	約 20	
オーバーシューズ (靴カバー)	足	約 100	
チャコールフィルタ	個	約 20	
ゴム手袋	双	約 500	
アノラック	着	約 100	

第2-1図 放射線管理用資機材の補充経路(1/2)

第2-1図 放射線管理用資機材の補充経路(2/2)

- 3. 中央制御室への汚染の持ち込みを防止する機能 (チェンジングエリア) について
- 3.1 チェンジングエリアの基本的考え方

チェンジングエリアの設営にあたっては、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則の解釈」第59条第1項(中央制御室)及び「実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」第74条第1項(中央制御室)に基づき、中央制御室の外側が放射性物質により汚染したような状況下において、中央制御室への汚染の持ち込みを防止するため、モニタリング及び作業服の着替え等を行うための区画を設けることを基本的考え方とする。

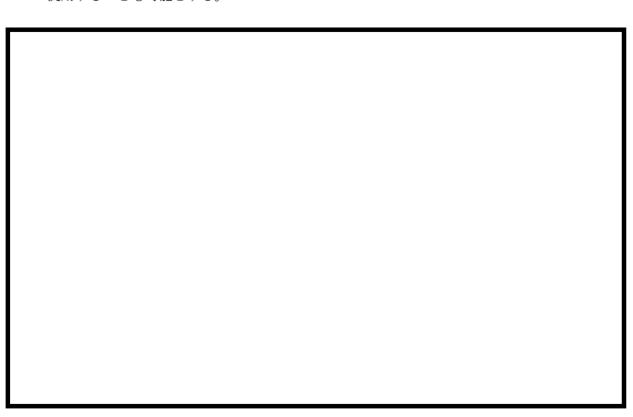
(実用発電用原子炉及びその附属施設の技術基準に関する規則の解釈」第74条第1項(中央制御室)抜粋)

原子炉制御室の外側が放射性物質により汚染したような状況下において、原子炉制御室への 汚染の持ち込みを防止するため、モニタリング及び作業服の着替え等を行うための区画を設 けること。

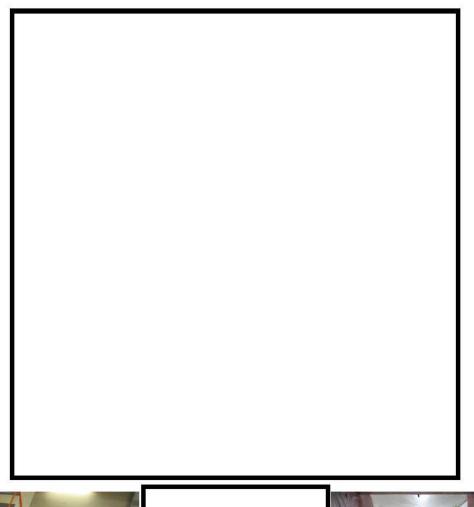
3.2 チェンジングエリアの概要

チェンジングエリアは、中央制御室に併設する。概要は下表のとおり。

第3-1表 チェンジングエリアの概要


	項目	理由
	中央制御室横通路	中央制御室の外側が放射性物質により汚染した
設営		ような状況下において,中央制御室所への汚染
場所		の持ち込みを防止するため、モニタリング及び
		作業服の着替え等を行うための区画を設ける。
	床面,壁面のシート養生(脱衣エ	中央制御室横通路を活用し、床面、壁面をシー
	リアはグリーンハウス化)	ト養生(脱衣エリアはグリーンハウス化)し、
設営		チェンジングエリアを設定。
形式	グリーンハウスはスチールアルミ	グリーンハウスは仮設のため、速やかに設営が
	製フレームを使用	可能な専用のスチールアルミ製フレームを使用
		する。
	事象発生後に設置	原子力災害対策特別措置法第 10 条特定事象発
設営		生後に設置することとする。
時期		チェンジングエリアの設営に要する時間は約1
		時間 10 分である。

3.3 アクセスルート及び場	計	バ場	及び	17	ルー	ス	セ	ク	T	3	3.
----------------	---	----	----	----	----	---	---	---	---	---	----

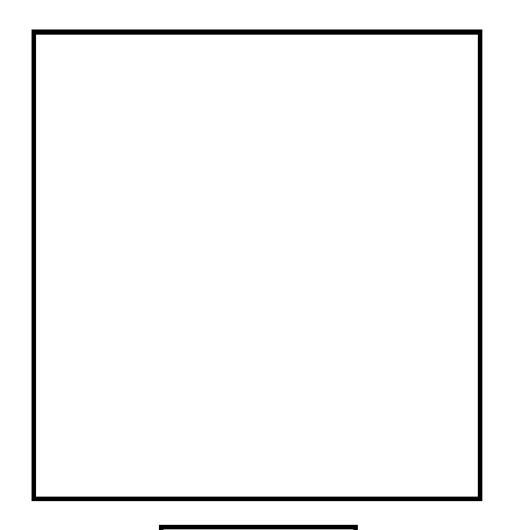

(1) アクセスルート

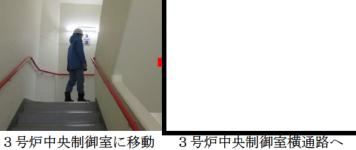
チェンジングエリアの設置にあたっては,第3-1,2図のアクセスルートにより,チェンジングエリア設置箇所にアクセスする。

具体的には、要員の多くが通常勤務時に滞在している総合管理事務所からアクセス道路まで徒歩による移動で A~E ルートまでの 5 ルートからアクセスが可能であり、通行可能なルートを選定することでアクセスの多様性は確保できる。また、A ルートはアクセス道路の耐震性に問題はない。なお、他のアクセスルートからアクセス可能な場合には、当該ルートを使用することも可能とする。

第3-1図 チェンジングエリアへの屋外アクセスルート

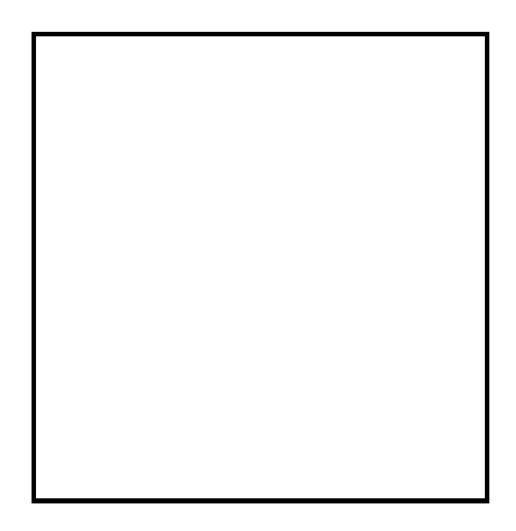
3号炉中央制御室に移動


3 号炉中央制御室横通路へ (A, B, Cルート)


チェンジングエリア

第3-2図 チェンジングエリアへの屋内アクセスルート (1/3)

枠囲みの内容は機密情報に属しますので公開できません。



チェンジングエリア

(D ルート)

第3-2図 チェンジングエリアへの屋内アクセスルート (2/3)

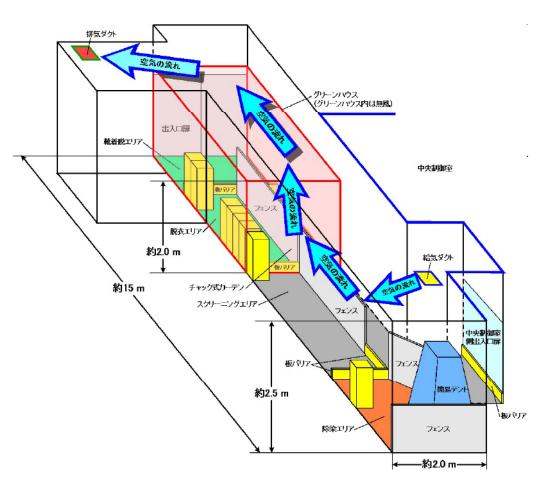
枠囲みの内容は機密情報に属しますので公開できません。

3号炉中央制御室に移動

(E ルート)

チェンジングエリア

第3-2図 チェンジングエリアへの屋内アクセスルート (3/3)


| 枠囲みの内容は機密情報に属しますので公開できません。

(2) 場所

a. 設置場所の選定理由

中央制御室内に放射性物質の汚染を持ち込ませないためチェンジングエリアを設営するが、設置場所は以下の観点から、全てのエリア(靴着脱エリア、脱衣エリア、スクリーニングエリア、除染エリア)について、中央制御室空調装置の換気エリア内である、中央制御室アクセス用の核物質防護区域出入口扉と中央制御室出入口との間の通路とした(第3-3 図参照)。

- ・上記エリアは、中央制御室出入口近傍の給気ダクトから反対側の排気ダクトへ、常時 空調用の空気の流れがあることから、防護具類を脱衣するグリーンハウスの気密性を 高めることで、可搬型空気浄化装置を設置しなくても、中央制御室内に放射性物質の 流入を防止することが可能である。
- ・上記エリアは直線状の形状で、かつ一定の広さが確保されており、設営の容易性、迅速性及び動線の単純化の観点から好ましい場所となっている。

第3-3 図 中央制御室内へ放射性物質を流入させない風向

b. 設置場所

チェンジングエリアの設置場所は、第3-4図のとおり。

第3-2表 チェンジングエリアの設置の考え方

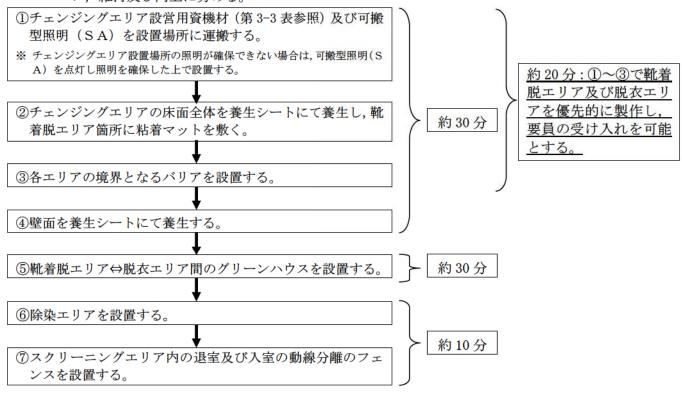
	設営場所	機能	設営の考え方
中央制御室	チェンジングエリア	• 脱衣	・中央制御室横の通路をチェン
		・スクリーニング	ジングエリア(脱衣、スクリ
		除染	ーニング, 除染) として利用。
			・床面・壁面等は汚染の除去が
			容易となるように養生シー
			トで養生。

第 3-4 図	中央制御室チェンジングエリア設置場所	

	枠囲みの内容は機密情報に属しますので公開できません。
	1十四ペップ 1分は1及在旧刊に関しよりの(五所 くさよどん)

3.4 設営 (考え方, 資機材)

(1) 考え方


中央制御室への放射性物質の持ち込みを防止するため,重大事故等が発生した場合,放管班員2名で設置(設置時間は,資機材準備を含めて約1時間10分)を行う。また,夜間及び休日にチェンジングエリアを設営する場合においても,発電所構内に常駐している放管班員2名で行う。

チェンジングエリアの使用に当たっては,第3-5図の基本フローに従った準備を行うこととし,チェンジングエリア設営用資機材とともに手順等を保管して,緊急時においても速やかな対応が可能であるようにしている。

中央制御室外で活動する要員は現場対応のため中央制御室から退室し、活動終了後に中央制御室に入室することになり、入室する際にはチェンジングエリアが設営済みであることが望ましいが、現場対応の状況によっては中央制御室から退室後、チェンジングエリア設営中に中央制御室へ戻ってくる可能性もある。

チェンジングエリアの各エリアで最も放射性物質による汚染が生じるおそれがあるのは 靴着脱エリア及び脱衣エリアであることから,次のフローのように当該エリアを優先的に設 営し要員の受け入れを可能とすることで,チェンジングエリアの設営中の中央制御室への入 室者からの放射性物質の持ち込みを防止し,その他のエリアについても迅速に設営する。

なお,チェンジングエリアを設営する放管班員の力量は,定期的(1 回/年)に訓練を行い,維持及び向上に努める。

第3-5図 チェンジングエリア使用準備の基本フロー図

(2) チェンジングエリア設営用資機材

チェンジングエリア設営用資機材については、使用開始後のチェンジングエリアの補修や 汚染によるシートの張替え等も想定して第3-3表のとおりとする。

第3-3表 中央制御室チェンジングエリア設営用資機材

品 名	単位	中央制御室 予定保管数	考え方
グリーンハウス (透明)	個	2	予備1個含む
グリーンハウス専用フレーム	個	1	_
養生シート (透明・ピンク・白) バリア	本	9	各色3本
バリア (600・750・900 mm)	枚	9	各サイズ3枚
作業用テープ(緑)	巻	5	_
養生テープ (ピンク)	巻	20	_
透明ロール袋(大)	本	10	_
粘着マット	枚	10	_
ウエス	箱	1	24 束/箱
ウェットティッシュ	個	62	31 名×2 個
はさみ・カッター	個	各 2	必要数
マジック	本	2	必要数
簡易テント	個	1	必要数
簡易シャワー	個	1	必要数
線量管理用テーブル	台	1	必要数

3.5 運用(出入管理, 脱衣, スクリーニング, 除染, 着衣, 汚染管理, 廃棄物管理, 環境管理)

(1) 出入管理

チェンジングエリアは,放射性物質が屋外等に放出される状況下において,中央制御室外で活動した要員が中央制御室に入室する際に利用する。

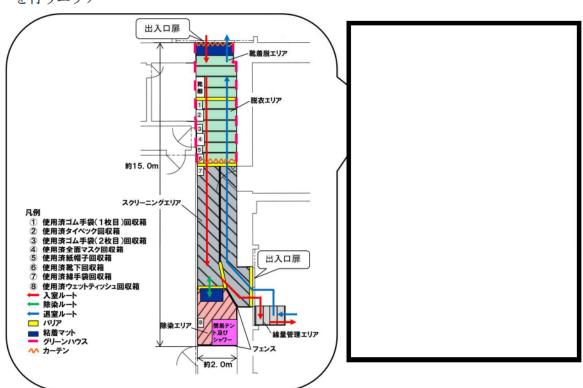
中央制御室外は放射性物質により汚染しているおそれがあることから,中央制御室外で活動する要員は防護具類を着用し活動することになる。

チェンジングエリアのレイアウトは、要員の防護具類の脱衣行為に合わせて第3-6図のとおり4分割した次のエリアを設けることで中央制御室内への放射性物質の持ち込みを防止する。

①「靴着脱エリア」

中央制御室外で使用した靴を脱ぐ、または中央制御室外へ退室する場合に靴を脱ぐエリア

②「脱衣エリア」

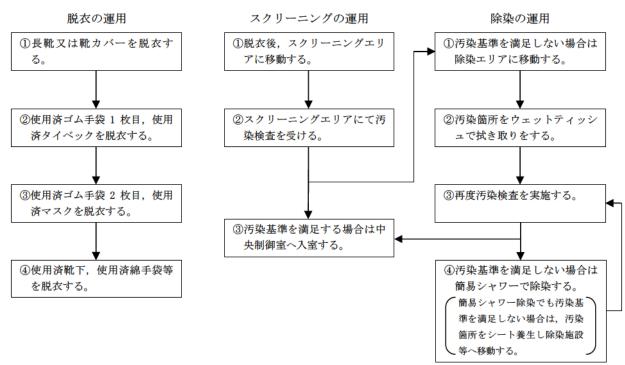

防護具類を適切な順番で脱衣するエリア

③「スクリーニングエリア」

防護具類を脱衣した要員の身体サーベイを行い、汚染が確認されなければ中央制御室内へ 移動するエリア

④「除染エリア」

「スクリーニングエリア」で要員の身体に放射性物質による汚染が確認された場合の除染 を行うエリア



第3-6図 中央制御室チェンジングエリアイメージ図

また,中央制御室外で作業した要員に付着した放射性物質が防護具類を着用していない要員 に接触等により移行しないよう中央制御室外へ退室する要員は,中央制御室内で防護具類を着 用し,チェンジングエリアを経由して中央制御室外へ退室する動線とする。

チェンジングエリアの具体的運用は以下のとおり。

なお, チェンジングエリアの運用が適切に実施できるよう定期的な教育・訓練を行い入域時間の短縮及び技術力の向上を図ることとしている。

第3-7図 中央制御室チェンジングエリア運用基本フロー図

(2) 脱衣

チェンジングエリアにおける防護具類の脱衣手順は以下のとおり。要員等の防護具類の脱衣場所は脱衣エリアとする。

- ・靴着脱エリアにおいて、長靴または靴カバーを脱衣し、使用済ゴム手袋1枚目を外す。
- ・脱衣エリアでは,使用済タイベック,使用済ゴム手袋2枚目,使用済全面マスク,使 用済靴下,使用済綿手袋を脱衣する。

なお、脱衣手順の間違いは内部被ばくにつながるおそれがあることから、放管班員が要員 の防護具類の脱衣状況について、適宜監視し、指導、助言をする。

(3) スクリーニング

チェンジングエリアにおけるスクリーニング手順は以下のとおり。

- ・脱衣後、スクリーニングエリアに移動する。
- スクリーニングエリアにて汚染検査を受ける。

汚染基準を満足する場合は中央制御室へ入室する。汚染基準を満足しない場合は除染 エリアに移動し、除染を行う。

(4) 除染

チェンジングエリアにおける除染手順は以下のとおり。

- ・スクリーニングにて汚染検査を満足しない場合は除染エリアに移動する。
- ・汚染箇所をウェットティッシュで拭き取りする。(必要に応じて、水のいらないシャンプー等を使用する。)
- ・スクリーニングエリアにて再度汚染検査を実施する。
- ・汚染基準を満足しない場合は簡易シャワーで除染する。(簡易シャワー除染でも汚染基準を満足しない場合は汚染箇所をシートで養生し除染施設等へ移動する。)

(5) 着衣

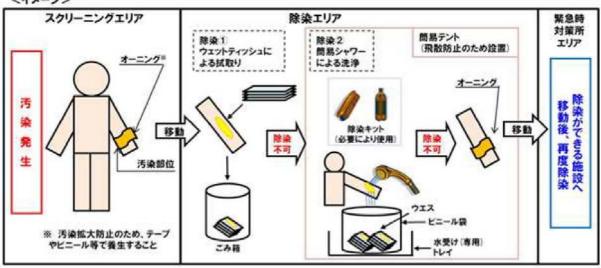
中央制御室内における防護具類の着衣手順は以下のとおり。要員等の防護具類の着衣場所は中央制御室内とする。

・中央制御室において,脱衣と反対の手順にて,綿手袋,管理区域用靴下,全面マスク, ゴム手袋1枚目,タイベック,ゴム手袋2枚目を着衣する。

なお,着衣状況は内部被ばくにつながるおそれがあることから,放管班員が要員の防護具 類の着衣状況について,適宜監視し,指導,助言をする。

(6) 汚染管理

前述のとおり、中央制御室内に放射性物質による汚染を持ち込まないようチェンジングエリアを設ける。スクリーニングエリア内で要員の汚染が確認された場合は、スクリーニングエリアに隣接した「除染エリア」で要員の除染を行う。


要員の除染については、ウェットティッシュによる拭き取りによる除染を基本とするが、 拭き取りにて除染できない場合も想定し、汚染部位への水洗による除染が行えるよう簡易シャワーを設ける。また、簡易シャワーを用いた除染により発生した汚染水は、必要に応じて ウエスへ染み込ませる等により固体廃棄物として処理するなど管理された状態で運用を行う。

なお、中央制御室内においては基本的に汚染水の発生はないと考えられるものの仮に汚染水が発生したとしても発生量は限られることから、除染の際に発生する汚染水と同様に必要に応じてウエスへ染み込ませる等により固体廃棄物として処理するなど管理された状態で運用を行う。

汚染水については上記のとおり適切に処理することとし、汚染水が除染エリアから飛散したり漏水したりしないような対策を取る。

また、管理されない状態において汚染水が外部放出されることのないよう運用していく。

<イメージ>

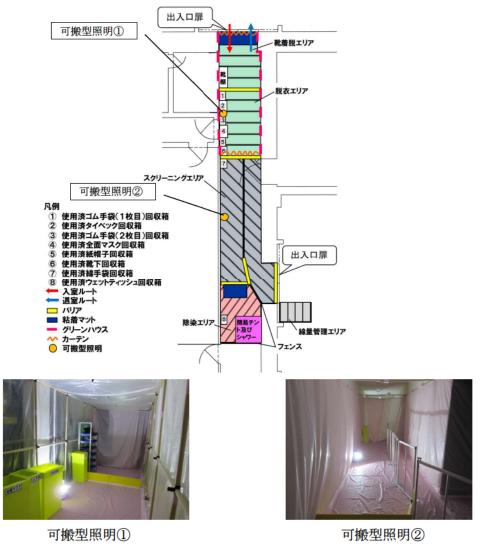
第3-8図 身体汚染発生時における除染対応及び汚染水処理イメージ図

(7) 廃棄物管理

中央制御室外で活動した要員が着用した防護具類については、チェンジングエリアの脱衣 エリアで廃棄する。これら放射性廃棄物については、チェンジングエリア内に留め置くと環 境線量当量率の上昇及び放射性物質による汚染拡大へつながる要因となることから、適宜持 ち出しチェンジングエリア内の環境線量当量率の上昇及び汚染拡大の防止を図る。

(8) 環境管理

放管班員は、中央制御室内の表面汚染密度、線量当量率及び空気中放射性物質濃度を定期 的(1回/日以上)に測定し、放射性物質の異常な流入等がないことを確認する。


また, 必要に応じて防護具類の着用や除染等の対策を講じる。

プルーム通過後にチェンジングエリアの出入管理を再開する際には,表面汚染密度,線量 当量率及び空気中放射性物質濃度等の測定を実施する。

3.6 チェンジングエリアの可搬型照明 (SA)

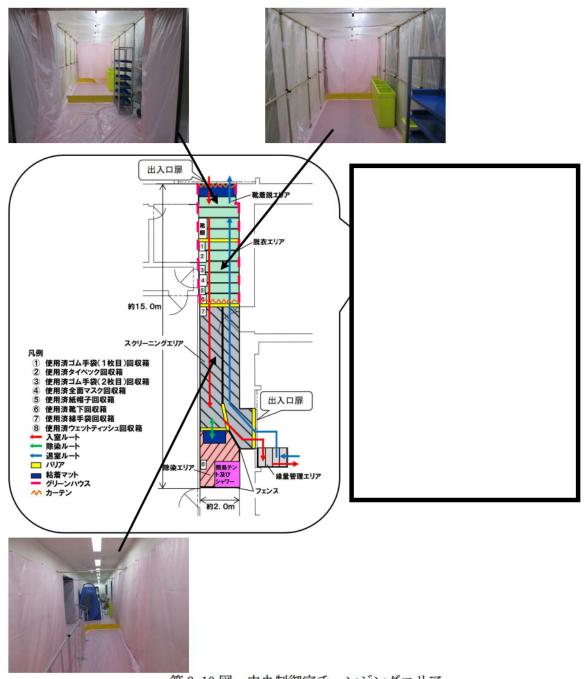
チェンジングエリア設置箇所付近の全照明が消灯した場合に使用する可搬型照明(SA)は, 2個使用する。個数はチェンジングエリア設置,身体サーベイ及び除染時に必要な照度を確保 できることを確認している。

可搬型照明(SA)の照度は、チェンジングエリア内に2個設置した場合で、身体サーベイ等を行う床面において20ルクス以上の照度になるように配置する。

第3-9図 可搬型照明(SA)確認状況

【設備仕様】

●可搬型照明 (SA)

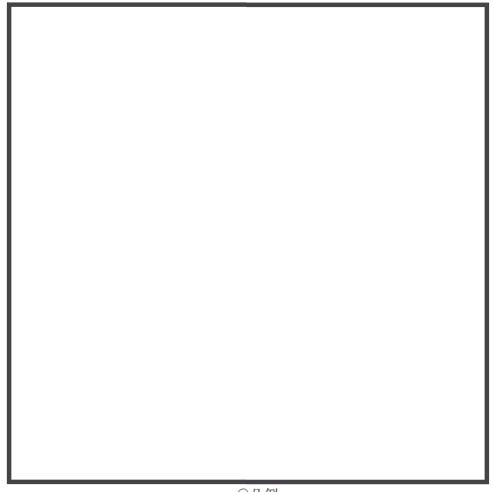

個数: 3個(予備1個含む)

3.7 チェンジングエリアにかかる補足事項

(1) チェンジングエリアの設営状況

チェンジングエリアの設営状況は第3-10図のとおり。

チェンジングエリアは、汚染の除去の容易さの観点からエリア全体の床面、壁面を養生シートで養生し、脱衣エリアについては速やかに設営が可能な専用のスチールアルミ製フレームを使用する。


第 3-10 図 中央制御室チェンジングエリア

枠囲みの内容は機密情報に属しますので公開できません。

- (2) 中央制御室への放射性物質の流入防止
 - a. 出入口扉以外の扉の施錠による放射性物質の流入防止

中央制御室のエリアには複数の扉が設置されているが、中央制御室内への放射性物質の流入を防止するため、中央制御室の境界にある扉は全て気密扉であるとともに、第 3-11 図のとおり出入口となる扉は 1 箇所のみとし、その他の扉については施錠管理により開放ができない運用とすることで、中央制御室内への放射性物質の持ち込みを防止する運用としている。

出入口となる扉 1 箇所には、要員が装着している防護具類の脱衣エリア及び脱衣後の現場 作業要員の身体等に放射性物質が付着していないことを確認するためのスクリーニングエ リアを設置し、中央制御室内への放射性物質の持込みを防止する。

○凡例

: 中央制御室空調装置の換気エリア

: 気密扉

: 気密扉及び扉施錠箇所 : チェンジングエリア

第 3-11 図 中央制御室出入口扉施錠箇所

- b. グリーンハウスにおける放射性物質の閉じ込めによる中央制御室への流入防止 中央制御室へ放射性物質の流入を防止するため,グリーンハウスの汚染管理方法を以下 のとおりとする。
 - (a) 表面汚染密度及び空気中放射性物質濃度の管理方法

汚染レベルが高くなると予想される靴着脱エリア及び脱衣エリアをグリーンハウス 化することで,靴着脱エリアでの靴の履き替え及び脱衣エリアでの防護具類の脱衣により,防護具類の表面から剥がれ落ちた放射性物質をグリーンハウス内に閉じ込め,中央 制御室内への汚染の持ち込みを防止する。

また,グリーンハウスの両端に取り付けるカーテンは,気密性を向上させるためにチャック式のカーテンとし,放射性物質の閉じ込めに万全を期す。

(b) 定期的な測定

グリーンハウス内には靴の履き替え等により放射性物質が持ち込まれることになるが定期的(1回/日以上)な測定により汚染の有無を確認し,汚染が確認された場合は,チェンジングエリアに滞在する放管班員が速やかに除染を行う。

- c. 中央制御室内への放射性物質の流入を防止するための運用方法
 - (a) グリーンハウスの設営及び要員の入退域の運用

中央制御室内への放射性物質の流入の防止に万全を期すため風向と合わせて,グリーンハウスの設営方法及びチェンジングエリアの要員の入退域の運用に関して以下のと おりとすることとしている。

- ① グリーンハウス内は無風状態を維持するため,グリーンハウス自体の気密性を高くする必要があることから,出入口に取り付けるカーテンについてはチャック式のカーテンとする。
- ② 要員は出入口扉から入退域することになるが、中央制御室内への放射性物質の流入 を防止するため、中央制御室空調装置の換気エリア側の出入口扉のカーテン及び中 央制御室側のカーテンの同時開放は禁止することとし、カーテン部に注意喚起の標 識を掲示する。

また,チャック式カーテン通過後には完全にチャックを閉止することとし,上記の 標識の他に注意喚起の標識を合わせて掲示する。

なお,同時開放させないための出入口扉,カーテンの状態の監視は,スクリーニングエリアに常駐する放管班員が行うこととし,必要に応じ放管班員から入退域しようとする要員に対して指示・指導するものとする。

(b) チャック式のカーテンの開閉運用手順

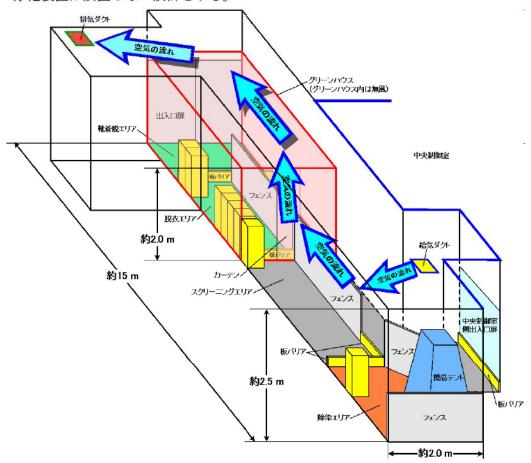
チャック式のカーテンが同時開放される可能性があるのは、グリーンハウス両端から要 員が同時に入退域する場合であり、同時開放を防止するため運用方法を以下のとおりとす る。

① チェンジングエリア内のスクリーニングエリアに常駐している放管班員は、グリー

ンハウス両端の2箇所に設置されているチャック式のカーテンから入退域しよう とする要員がいる場合,要員に対して指示・指導する必要があるため,入退域状況 を常時監視する。

- ② 放管班員は2箇所同時にチャック式のカーテンから要員が入退域しようとしている場合,両方の要員に対して放管班員はまず待機を指示する。
- ③ 放管班員は、待機を指示した要員に対してチャック式のカーテンは同時開放が禁止であること及び通過後にはチャックを完全に閉止することを告知する。
- ④ 告知後, 放管班員はどちらか一方の要員に通過を指示し, もう一方の要員に対して は待機の継続を指示する。
- ⑤ 先に指示した要員がチャック式のカーテンの通過後,放管班員は待機している要員 に通過を指示する。
- ⑥ 待機を指示されたにも関わらず、同時にチャック式のカーテンを通過しようとする 要員がいた場合、放管班員は当該要員に対して適切に指導するものとする。
- ⑦ 放管班員は、グリーンハウス内の使用済み防護具類の回収等に合わせて、適宜チャック式カーテンのチャックが完全に閉止しているかを確認する。
- d. 中央制御室空調装置による放射性物質の中央制御室への流入防止

仮にグリーンハウスから放射性物質が漏えいした場合においても,放射性物質を中央制御室へ流入させないようにするため,中央制御室空調装置による空気の流れにより,放射性物質の中央制御室への流入を防止する。


中央制御室に放射性物質を流入させない風向として,グリーンハウス内については放射性物質をグリーンハウス内に留めておくため無風とし,グリーンハウス外については,給気ダクト側から排気ダクト側への風向とする。

以上から,検証のためチェンジングエリアを設営し風向確認試験を行ったが,実際の空気の流れは,第3-12図に示す風向であることを確認した。

試験の概要を以下に示す。

- ① チェンジングエリアに設置する全ての資機材を配置した。
- ② グリーンハウスの両端に設置するカーテンはチャック式とする。
- ③ 中央制御室空調装置は,重大事故時の運転状態である閉回路循環運転にて,試験を行った。
- ④ グリーンハウスから中央制御室内への放射性物質の流入する経路となるようにグリーン ハウスのスクリーニングエリア側に取り付けたカーテン、中央制御室出入口扉を開放し、 中央制御室空調装置の範囲の境界となる出入口扉及びカーテンについては閉止状態とし た。
- ⑤ 確認高さは、中央制御室内、スクリーニングエリア内及びグリーンハウス内は、要員を模擬し床上高さ+1500mm とし、その他にグリーンハウス上、排気ダクト付近については、床上高さ+2000mm で確認を行った。

放射性物質をグリーンハウス内に閉じ込めること及び中央制御室空調装置により,中央 制御室へ放射性物質が流入することはないことから,チェンジングエリアへの可搬型空気 浄化装置は設置しない設計とする。

第 3-12 図 チェンジングエリアの空気の流れイメージ図

e. 中央制御室空調装置の換気エリアに設置することによる外部被ばく等の低減 チェンジングエリアを中央制御室空調装置の換気エリアに設置することにより,外部被 ばく,衣服汚染及び身体汚染を低減できる。

具体的には以下のとおり。

(a) 外部被ばくの低減

グリーンハウスを中央制御室空調装置の範囲外に設置した場合,チェンジングエリア 周辺の汚染レベルが高く,要員が防護具類を脱衣する際に外部被ばくの増加が懸念される。

このため、中央制御室遮へいに囲まれた中央制御室空調装置の換気エリアにチェンジングエリアを設置することで、環境の線量当量率は低くなり、要員の外部被ばくを低減できる。

(b) 衣服汚染及び身体汚染の低減

グリーンハウスを中央制御室空調装置の範囲外に設置した場合,チェンジングエリア

周辺の汚染レベルが高く,中央制御室への要員の入退室時に外部の放射性物質が流入することから,グリーンハウス内に汚染が付着しやすくなり要員の衣服汚染及び身体汚染の発生が増加する懸念がある。

一方, チェンジングエリアを中央制御室空調装置の換気エリアに設置した場合は, 中央制御室内の環境の汚染レベルは低いため, 衣服汚染及び身体汚染の発生を抑制することができる。

(3) 中央制御室の外側の状況に応じた運用

チェンジングエリアにおいて正確な身体サーベイを行うために,緊対所における外側の状況(主に放射線レベル)(以下,「周辺状況」という。)に応じて汚染の管理基準を柔軟に設定する必要がある。

このため,周辺状況が高放射線下の状況を想定して,チェンジングエリアの運用に係る管理基準等を整理し、状況に応じた設定・運用を以下のとおり行うこととする。

a. 運用の判断基準

(a) 状況及び汚染の管理基準

第3-4表のとおり、状況に応じた汚染の管理基準により運用する。

第3-4表 チェンジングエリア内における汚染の管理基準

	状況	汚染の管理基準**1	根拠等
状況①	屋外(発電所構内全般)へ少量 の放射性物質が漏えい又は放出 されるような原子力災害時	1,300 cpm (4 Bq/cm ²)	法令に定める表面汚染密度限度(アルファ 線を放出しない放射性同位元素の表面汚 染密度限度:40 Bq/cm ²) の1/10
状況②	大規模プルームが放出されるよ	40,000 cpm ^{**2} (120 Bq/cm ²)	原子力災害対策指針におけるOIL4を 準拠
2	うな原子力災害時	13,000 cpm ³ ** (40 Bq/cm²)	原子力災害対策指針におけるOIL4【1 ヶ月後の値】を準拠

※1:計測器の仕様や校正により異なる場合は、計測器毎の数値を確認しておく。また、測定する場所のBGに 留意する必要がある。

※2:BGの影響が相対的に小さくなる数値のうち最低の水準として設定。 (13,000×3≒40,000)

※3:40 Bq/cm² (放射性ヨウ素の吸入により小児の甲状腺等価線量が100 mSvに相当する内部被ばくをもたら すと想定される体表面汚染密度)

【参考1】運用上の介入レベル(OIL4)について

- ●原子力災害対策指針(令和3年7月21日一部改正)より抜粋
 - 「運用上の介入レベル」 (Operational Intervention Level)
 - 「原子力災害対策指針」において設定された避難等の防護措置の実施を判断する基準
 - ・空間放射線量率や環境試料中の放射性物質の濃度等を原則計測可能な値で表される

基準の種類	基準の概要	初期設定値	防護措置の概要
OIL4	不注意な経口摂取,皮膚汚	β線: 40,000 cpm ^{※1}	避難又は一時移転の基準
	染からの外部被ばくを防止	(皮膚から数cmでの検出器の計数率)	に基づいて避難等した避
	するため、除染を講ずるた		難者等に避難退域時検査
	めの基準	β線:13,000 cpm ^{※2} 【1ヵ月後の値】	を実施して,基準を超え
		(皮膚から数cmでの検出器の計数率)	る際は迅速に簡易除染等
			を実施。

%1:我が国において広く用いられている β 線の入射窓面積が $20~{
m cm}^2$ の検出器を利用した場合の計数率であり、表面汚染密度は約 $120~{
m Bq/cm}^2$ 相当となる。他の計測器を使用して測定する場合には、この表面汚染密度から入射窓面積や検出効率を勘案した計数率を求める必要がある。

%2:%1と同様,表面汚染密度は $40~Bq/cm^2$ 相当となり,計測器の仕様が異なる場合には,計数率の換算が必要である。

上記汚染の管理基準の設定にあたり、中央制御室滞在における内部被ばく線量を試算した。 評価条件は表 3-5 表のとおりとし、中央制御室に入室する運転員等の衣類には、40 Bq/cm² の放射性物質が付着しているものと仮定し、付着した放射性物質(40 Bq/cm²)がすべて中央 制御室内に持ち込まれ、浮遊するものとして評価した。

第3-5表 中央制御室における線量評価条件

おりな 「人間岬主におりる豚重肝皿木肝				
項目	使 用 値	設定理由		
運転員等の衣類に付着して 中央制御室に持ち込まれる 放射性物質の量	2. 096E+07 Bq/ 31名	・40 Bq/cm ² ×16900 cm ² (体表面積) ×31 名 (衣類に付着した放射性物質 が 0~60 s の短時間で中央制御室内へ 全量浮遊するものと仮定) ・Cs-137 と I-131 を想定		
中央制御室換気系統 処理空間容量	4000 m ³	空調機器の体積を含む中央制御室バウンダリ体積として設定		
中央制御室非常用循環系統 フィルタ容量	85 m ³ /min	設計値		
中央制御室非常用循環系統起動時間	60 s	0~60 sに中央制御室操作員の着衣の 放射性物質が全て中央制御室内に浮 遊するものと仮定。安全側に放射性物 質が全量浮遊するまでの中央制御室 非常用循環系統のフィルタ効果は期 待しないものとした		
中央制御室非常用循環系統 よう素フィルタによる除去効率	0~60 s : 0 % 60 s~ : 95 %	設計上期待できる値として設定		
中央制御室非常用循環系統 微粒子フィルタによる除去効率	0~60 s:0 % 60 s~:99 %	同上		
空気流入率	2000 m ³ /h (0.5回/h)	空気流入率測定試験結果(0.15回/h) を基に余裕を見込んだ値として設定		
マスクの着用	考慮しない	被ばく評価上,安全側にマスクの着用 を考慮しないものとする		
交替回数	20 回	7日間の直交替回数に余裕をみた値		
中央制御室滯在時間	49 時間	運転員の勤務形態として5直2.5交替 とし,評価期間中,最大となる班の滞 在時間を設定		
評価期間	7 日	審査ガイド*1に基づく		

*1:「実用発電用原子炉に係る重大事故時の制御室及び緊急時対策所の居住性に係る被ばく 評価に関する審査ガイド」 被ばく評価結果を第 3-6 表に示す。衣類の付着物として全量 Cs-137 を仮定した場合は、約 0.8 mSv/7 日,全量 I-131 を仮定した場合は約 0.4 mSv/7 日であり、持ち込まれた放射性物質が全量浮遊したものと仮定しても被ばく線量は小さいものであり、現実的には全量浮遊することはないため、実際の被ばく影響は十分に小さいものと考える。

なお、中央制御室の居住性に係る被ばく評価については、別途「泊発電所3号炉 中央制御室について」において審査ガイドに基づき評価しており、本評価は中央制御室入室の汚染管理基準の評価のため試算したものである。

第3-6表 衣類に付着した放射性物質による中央制御室での被ばく評価結果

	Cs-137 の衣類への 付着を仮定	I-131 の衣類への 付着を仮定	
吸入摂取による			
実効線量結果	約 0.8	約 0.4	
(mSv/7 日)			

なお, さらなる被ばく低減の観点からもより低い管理基準で運用していくことも視野に入れて改善を図っていく。

(4) 中央制御室におけるマスク着用の運用

中央制御室における放射性物質濃度の監視については、重大事故等発生時によう素、粒子状物質濃度の監視を行うこととしている。この中央制御室内の放射性物質濃度等の確認の結果、あらかじめ定めた管理基準(空気中よう素濃度:1×10⁻⁴ Bq/cm³)を下回る場合はマスクを外すこととし、上回る場合はマスクの着用を判断する。

なお、測定は緊急時対策所の本部長の指示により行う。

また、事象進展が早く、放射性物質濃度の監視の準備が整うまでに、炉心出口温度等により炉心損傷が予想される事態となった場合又は炉心損傷の兆候が見られた場合(炉心出口温度が350℃を超えて上昇が継続する場合、又は格納容器内高レンジエリアモニタ(高レンジ)の指示値が1×10⁵mSv/h以上)は、その時点でマスクを着用することとし、その後に放射性物質濃度の監視が開始されて以降は、管理基準に従うこととする。

マスクの着脱の判断方法は第3-7表のとおり。

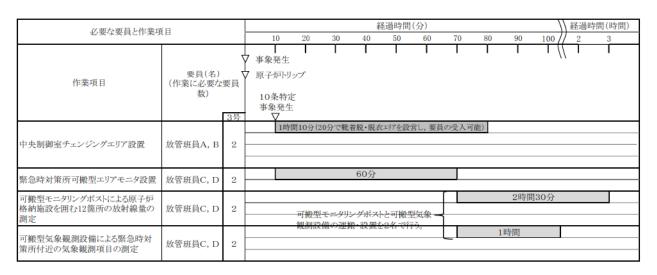
状況	情報	判断方法	判断主体
放射性物質濃度の監	放射性物	放射性物質濃度等の情報によりマスク	緊急時対策所
視が可能な状況	質濃度等	着脱を判断する。	発電所対策本部長
事象の進展が早く放 射性物質濃度の監視 の準備が整うまで	炉心出口 温度等	炉心出口温度等により炉心損傷が予想 される事態となった場合又は炉心損傷 の兆候が見られた場合は、マスク着用 を判断する。(マスクを外す判断は放射 性物質濃度の監視が可能な状況と同 様)	中央制御室発電課長(当直)

第3-7表 マスク着用の判断方法

なお、炉心出口温度等により炉心損傷が予想される事態となった場合又は炉心損傷の兆候が見られた場合をマスク着用の判断基準とした理由としては、炉心損傷となれば原子炉格納容器内に放出される放射性物質量が急激に増加し、それに伴い大気への放出量が増加し、中央制御室内放射性物質濃度が高くなるリスクが高まることから、炉心損傷に至る前にマスク着用を判断し、確実に被ばく防護を図るためである。事故初期の運転員操作の輻輳に鑑みると、マスク着用判断に迷わないことが最優先であり、炉心損傷の判断基準(炉心出口温度350℃以上及び格納容器内高レンジエリアモニタ(高レンジ)の指示値が1×105mSv/h以上)よりも前にマスク着用を判断するため、「炉心出口温度350℃以上」と「格納容器内高レンジエリアモニタ(高レンジ)の指示値が1×105mSv/h以上」の基準をそのまま用いるとともに、「及び」ではなく「又は」の条件とする。ただし、マスク着用は対応操作に制約を与えるものであり、炉心出口温度が350℃を若干超過した後に下回るような、炉心損傷に至らない事象については、マスクの着用は必要ないことから、「炉心出口温度が350℃を"超えて

上昇が継続する場合"」とし、そのような事態を防ぐ判断基準とする。

中央制御室における放射性物質濃度の監視については、可搬式ダストサンプラ(よう素、粒子状物質)を中央制御室内に配備し、重大事故等発生時によう素・粒子状物質濃度の監視を行うこととしている。本装置は連続監視が可能ではないものの、適時監視することにより、マスクの着脱の判断を適切に実施することが可能である。


(5) 放管班員の緊急時対応のタイムチャート

放管班員は、中央制御室チェンジングエリアの設営以外に、緊急時対策所可搬型エリアモニタの設置 (60分)、可搬型モニタリングポスト 12 箇所の設置・測定 (2 時間 30分)、可搬型気象観測設備の設置・測定 (1 時間)を行う。

これら対応は.以下のタイムチャート(例)のとおり放管班員4名で行うものとし、平日の勤務時間帯の対応も然ることながら、夜間および休日においても発電所内に放管班員4名を常駐させていることから、参集に時間を要することなく、重大事故等が発生した場合でも速やかに対応することが可能である。

- ●中央制御室チェンジングエリアの設営: 放管班員2名
- ●緊急時対策所可搬型エリアモニタの設置 ⇒ 可搬型モニタリングポスト 12 箇所の設置・ 測定 ⇒ 可搬型気象観測設備の設置・測定: 放管班員 2 名

放管班員対応タイムチャート (例)

4. 中央制御室への地震及び火災等の影響

想定される自然災害(地震,竜巻,台風等)と火災及び溢水について,中央制御室での操作に 影響を与える事象を抽出し,対応について整理した。

中央制御室の環境に影響を与える可能性のある事象に対しては,第4-1表に示す起因事象と同時にもたらされる環境条件が考えられるが,いずれの場合でも中央制御室での操作性(操作の容易性)に影響を与えることはない。

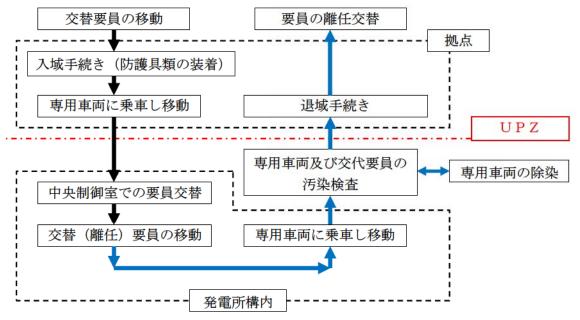
中央制御室の主な対応を以下に示す。

- 地震:中央制御室内に設置するラック等は転倒防止措置を講じ、ラック等の転倒による 制御盤上の操作器への誤接触の防止を図る。また、運転員は地震が発生した場合、運転 員机又は主盤等のデスク部につかまり安全を確保するとともに警報発信状況等の把握に 努めることとしている。
- 火災:中央制御室にて火災が発生した場合は、運転員が火災状況を確認し、初期消火を 行うことができるよう消火器を設置している。
- 溢水:中央制御室に溢水源がないことを確認しているが、火災のための消火栓による溢水については、内部溢水で評価を実施し、問題ないことを確認している。

第4-1表 中央制御室における環境条件への対応

第4-1 衣 中犬間岬主における泉境米件、VV対応					
起因事象	同時にもたらされる中央 制御室の環境条件	中央制御室での操作性(操作の容易性)に与える影響			
地震	内部火災	中央制御室は、耐震を考慮して設計していることから、地震が発生した場合でも火災が発生することはない。また、仮に、中央制御室で火災が発生しても、運転員が火災状況を確認し、消火器にて初期消火を行うことを手順に定めている。また、中央制御盤(安全系コンソール)内で火災が発生した場合には、盤内の煙感知器により火災を感知し、常駐する運転員が消火器による消火を行うことを手順に定めることで速やかな消火を可能とし、中央制御室の機能は維持される。なお、念のため、中央制御盤(安全系コンソール)に隣接する盤についても、火災を早期に感知するため、煙感知器を設置する。			
	内部溢水	中央制御室に溢水源がないことは確認しているが,火災のための 消火栓による溢水については, 内部溢水で評価を実施し, 問題 ないことを確認している。			
	余震	地震発生時の対応として,運転員は地震が発生した場合,運転 員机及び主盤等のデスク部につかまり安全確保に努めることを 規定類に定める。			
一番巻・台風	外部電源喪失に伴う照明 等の所内電源の喪失	外部電源喪失時においても,中央制御室の照明はディーゼル発電機から給電される。また、無停電運転保安灯及び可搬型照明を備えており,全交流動力電源喪失時に重大事故等に対処するために			
積雪(暴風雪)		必要な電源の供給が交流動力電源設備から開始されるまでの間 においても照明は確保される。			
落雷					
外部火災等					
	ばい煙又は有毒ガスの発 生による中央制御室内換 気設備への影響	外部火災等の影響評価及び火山の影響評価により原子炉補助建 屋内部に影響がないことを確認している。 なお,中央制御室空調装置を手動で閉回路循環運転へ切り替え ることで,外気を遮断できる。			
火山	降下火砕物による中央制 御室内換気設備への影響				
凍結	凍結による中央制御室内 環境への影響	中央制御室空調装置により環境温度が維持されるため,中央制御 室内環境への影響はない。			

5. バス等の汚染確認方法について

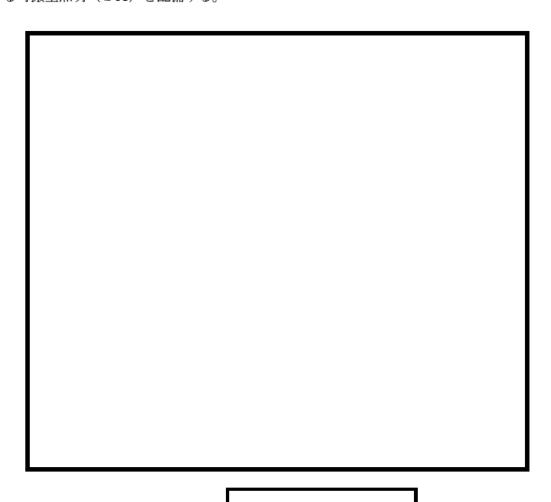

中央制御室居住性に係る被ばく評価に用いている敷地外から発電所内事務所までの動線は, バスによる移動を想定している。

バス等の車両や人の出入り制限と汚染防護のための入退域管理・汚染サーベイ等をおこなう拠点は、通常、UPZ付近等で設定され、バス等の車両もそこで汚染管理を実施することとなる。

バス等の車両の汚染管理としては、当該車両をUPZ内専用の車両として管理するとともに汚染検査等により必要に応じて除染を行うこととする。除染方法としては、内部被ばくの防止の観点から、マスクやゴム手袋等の防護具類を着用し使用済の防護具類は適切に除染または処分する。また、汚染の除去は放射性物質の飛散防止の観点から、基本的に拭き取りによる除去とし、汚染の除去が困難な部品等については新品と交換する等の措置を取る。

乗車員の被ばく管理については、UPZ付近に設定される入退域管理・汚染サーベイの拠点により行い、被ばく低減の観点から、乗車する車両の運行場所の汚染状況により、必要に応じてマスクやゴム手袋等の防護具類を着用し内部被ばくの低減に努めるとともに上記車両の除染により外部被ばくの低減も行うこととする。

また、中央制御室の居住性に係る被ばく評価においては、第 5-1 表のとおり、入退域時の運転 員の被ばくを考慮している。入退域時の被ばく評価において、実際にはバスで移動をするために 外気濃度そのものを吸入摂取することはないが外気濃度条件で内部被ばくを評価している等の 保守性を有しており、バスに若干の汚染があったとしても、中央制御室の居住性に係る被ばく評 価全体に影響を与えることはない。


第5-1図 中央制御室の運転員等の交替時における車両等及び人の基本動線

第5-1表 中央制御室の居住性(重大事故)に係る被ばく評価

	被ばく経路	7日間の実効線量 (mSv)
中央	①原子炉建屋内の放射性物質からのガンマ線 による被ばく	約 1.7×10 ⁻²
央制御室滞在時	②大気中へ放出された放射性物質のガンマ線 による被ばく	約 1.2×10 ⁻²
滞在時	③外気から中央制御室内へ取り込まれた放射 性物質による被ばく	約 1.1×10°
	小計 (①+②+③)	約 1.2×10 °
入	④原子炉建屋内の放射性物質からのガンマ線 による入退域での被ばく	約 1. 0×10 ¹
入退城時	⑤大気中へ放出された放射性物質による入退 域での被ばく	約 1.3×10°
	小計 (④+⑤)	約 1.2×10 1
	合 計 (①+②+③+④+⑤)	約 13

6. 全交流動力電源喪失時の中央制御室設備への給電について

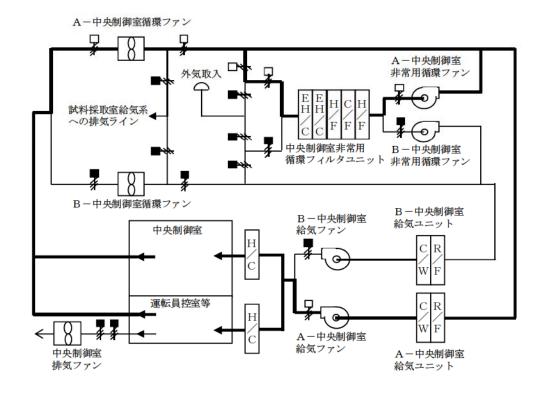
全交流動力電源喪失発生時から30分以上無電源で点灯する無停電運転保安灯を中央制御室内に以下のとおり配備しており、代替非常用発電機が起動するまでの間(事故発生後25分以内)の照明は確保されている。無停電運転保安灯により、運転員の操作・監視に支障のない程度の照度を確保しているとともに、全交流動力電源喪失を想定した対応操作訓練を実施している。また、仮に無停電運転保安灯が使用できない場合にも必要な照度を確保できるよう、代替非常用発電機から給電できる可搬型照明(SA)を配備する。

なお、空調については代替非常用発電機が起動するまでの間起動しないが、居住性に係る被ばく評価においては、保守的に全交流動力電源喪失発生から5時間後に起動することを条件としている。

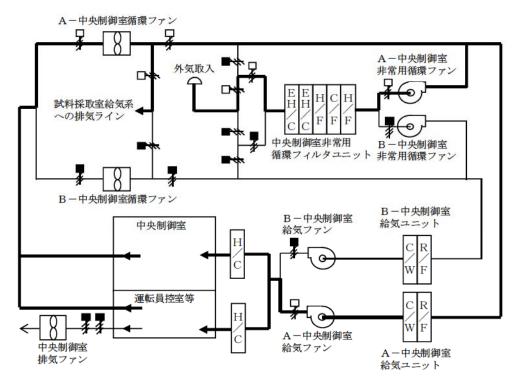
また、チェンジングエリア内の照明についても、中央制御室内の照明と同様である。

: 無停電運転保安灯

: チェンジングエリア


7. 酸素濃度, 二酸化炭素濃度を踏まえた対応について

非常用炉心冷却装置が動作する等の事故時においては、中央制御室空調装置について、通常開いている外気取り込みダンパを閉止し、再循環させて放射性物質をフィルタにより低減する系統構成(事故時閉回路循環運転モード)となる。


事故時閉回路循環運転中には、酸素濃度及び二酸化炭素濃度を定期的に測定し、酸素濃度が19%を下回るおそれがある場合又は二酸化炭素濃度が1%を超えるおそれがある場合は、外気をフィルタで浄化しながら取り入れることとし、その内容を手順に反映する。系統構成概要を添付1に示す。

フィルタで浄化しながらの外気取入れであるため、添付2のとおり、中央制御室の居住性に係る被ばく評価への影響は無視できる程度である。

なお、外気取入れを閉止した際において、中央制御室内の酸素濃度及び二酸化炭素濃度を評価 した結果は添付3のとおりであり、中央制御室の居住性に係る被ばく評価の評価期間中、中央制 御室に滞在する運転員の操作環境に影響を与えることは考えられない。

中央制御室空調装置の系統構成概要(事故時閉回路循環運転モード)

中央制御室空調装置の系統構成概要(外気取入れ運転モード)

外気取入れ時の被ばく影響について

重大事故時の中央制御室外気取入れ遮断(事故時閉回路循環運転モード)中において酸素濃度 及び二酸化炭素濃度に係る環境が悪化し、外気を取り入れた場合の居住性に係る被ばく評価への 影響を確認する。

外気取入を考慮した影響確認の評価条件と外気取入を考慮していない現行評価の結果は第7-1 表のとおりであり、フィルタで浄化しながらの外気取入れであるため、中央制御室の居住性に係 る被ばく評価への影響は無視できる程度である。

評価条件を第7-2表に示す。

第7-1表 中央制御室被ばく評価結果比較表 (3号炉)

		7 日間の実効線量			
	被ばく経路	(mSv)			
	1次は、柱路	現行評価	影響確認		
		(外気取入を考慮なし)	(外気取入を考慮)		
	①建屋からのガンマ線に				
	よる中央制御室内での	約 1.7×10 ⁻²	同左		
	被ばく				
室	②大気中へ放出された放				
内作	射性物質のガンマ線に	約 1.2×10 ⁻²	同左		
室内作業時	よる被ばく				
時	③室内に外気から取り込		約 2. 2×10°		
	まれた放射性物質によ	約 2.2×10°	(約 3.1×10 ⁻⁴)* ²		
	る被ばく		(M) 5. 1 × 10 /		
	小計 (①+②+③)	約 2.2×10°	約 2.2×10°		
	④建屋からのガンマ線に	約 1. 0×10 ¹	同左		
入	よる被ばく	ポリ 1. U ヘ 10	四左		
入 退域時	⑤大気中へ放出された放	約 1. 4×10°	同左		
時	射性物質による被ばく	水リ1. 4へ10	刊在		
	小計 (④+⑤)	約 1.2×10 ¹	同左		
合計	(1)+2+3+4+5)	約 15*1	約 15*1		

*1:詳細値を有効数字2桁に切り上げた値

*2:カッコ内は現行評価からの被ばく線量の増加分を記載

第7-2表 評価条件比較表 (中央制御室空調装置条件)

7.1	CONTRACTOR	「大时仰王王明表直木」	
項目	現行評価での使用値 (外気取入を考慮な し)	影響確認での使用値 (外気取入を考慮)	影響確認での使用値の 設定理由
事故時における外気取り込み	0~168 h:外気取入れ なし	0~96 h: 外気取入れなし 96 ~99 h: 5.1× 10 ³ m ³ /h 外気をフィルタを介して取り 込む 99 h~168 h: 外気取 入れなし	・酸素及び二酸化炭素 濃度を初期値近くま で戻すために必要な 外気取入れ時間とし て3時間*1を想定。 ・7日(168時間) 内に環境悪化をする ことは想定できない ため,仮に96時間後 の取入れを想定。
中央制御室バウンダリ体 積(容積)	4.0×10 ³ m ³	同左	条件変更なし
外部ガンマ線による全身 に対する線量評価時の自 由体積	3.8×10 ³ m ³	同左	条件変更なし
空気流入量	2.00×10 ³ m ³ /h (0.5回/h)	同左	条件変更なし
中央制御室非常用循環フ イルタユニットよう素フ イルタによる除去効率	0~300 分:0 % 300 分~7 日:95 %	同左	条件変更なし
中央制御室非常用循環フ イルタユニット微粒子フ イルタによる除去効率	0~300 分:0 % 300 分~7 日:99 %	同左	条件変更なし
中央制御室非常用循環フ ィルタユニットフィルタ による除去効率遅れ時間	300 分	同左	条件変更なし
中央制御室非常用循環ファン流量	5.1×10 ³ m ³ /h (ただし,300分後に起動)	同左	条件変更なし

※1:酸素濃度 19 %, 二酸化炭素濃度 1.0 % (運用上の許容濃度を設定) の環境から, 3 時間外 気取入れを実施した場合, 酸素濃度 20.89 %, 二酸化炭素濃度 0.063 %となる。(初期酸素 濃度: 20.95 %, 初期二酸化炭素濃度: 0.03 %)

外気遮断時の中央制御室内の酸素及び二酸化炭素濃度の評価について

1. 設計基準事故時の中央制御室内の酸素及び二酸化炭素濃度の評価

(1) 概要

「実用発電用原子炉及びその付属施設の技術基準に関する規則の解釈」第38条第13項に規定する「換気設備の隔離その他の適切な防護措置」として、中央制御室空調装置は、外気から遮断する閉回路循環運転とすることができる。

設計基準事故が発生した際の事故時閉回路循環運転により,外気の取り込みを一時的に停止 した場合の中央制御室内の居住性について,以下のとおり評価した。

(2) 評価

外気取入遮断時の中央制御室内に滞在する運転員の操作環境の劣化防止のため,酸素濃度及び二酸化炭素濃度について評価を行った。

a. 酸素濃度

「空気調和・衛生工学便覧 空調設備篇」に基づき、酸素濃度について評価した。

(a) 評価条件

- ·在室人数:10人
- ・中央制御室バウンダリ内体積:3,500 m3
- ・空気流入率:0.05回/h※(閉回路循環運転)
 - ※空気流入率測定試験結果(約0.12回/h)を基に保守的に設定。
- ·初期酸素濃度:20.95 %
- ・1人当たりの呼吸量は、事故時の運転操作を想定し、歩行時の呼吸量を適用して 24 0/min とする。
- ・1 人当たりの酸素消費量は、呼気の酸素濃度: 16.40%として、65.52 ℓ/h とする。
- ・許容酸素濃度:19 %以上(鉱山保安法施行規則から)

(b) 評価結果

上記評価条件から求めた酸素濃度は、以下のとおりであり、720 時間外気取入を遮断 したままでも、中央制御室内に滞在する運転員の操作環境に影響を与えない。

時間	12 時間	24 時間	36 時間	96 時間	168 時間	720 時間
酸素濃度	20. 78 %	20.69 %	20.64 %	20. 58 %	20. 58 %	20. 58 %

b. 二酸化炭素濃度

「空気調和・衛生工学便覧 空調設備篇」に基づき、二酸化炭素濃度について評価した。

(a) 評価条件

- · 在室人数:10人
- ・中央制御室バウンダリ内体積:3,500 m³
- ・空気流入率:0.05回/h※(閉回路循環運転)
 - ※空気流入率測定試験結果(約0.12回/h)を基に保守的に設定。
- ·初期二酸化炭素濃度:0.03 %
- ・1 人当たりの二酸化炭素吐出量は、事故時の運転操作を想定し、中等作業時の吐出量を適用して 0.046 m³/h とする。
- ・許容二酸化炭素濃度:1%以下(鉱山保安法施行規則から)

(b) 評価結果

上記評価条件から求めた二酸化炭素濃度は、以下のとおりであり、720時間外気取入を遮断したままでも、中央制御室内に滞在する運転員の操作環境に影響を与えない。

時間	12 時間	24 時間	36 時間	96 時間	168 時間	720 時間
二酸化 炭素濃度	0.149 %	0. 214 %	0.249 %	0. 291 %	0. 293 %	0. 293 %

2. 重大事故時の中央制御室内の酸素及び二酸化炭素濃度の評価

(1) 概要

「実用発電用原子炉及びその付属施設の技術基準に関する規則の解釈」第 74 条に規定する「運転員がとどまるために必要な措置」として、中央制御室空調装置は、外気から遮断する閉回路循環運転とすることができる。

重大事故が発生した際の事故時閉回路循環運転により、外気の取り込みを一時的に停止した場合の中央制御室内の居住性について、以下のとおり評価した。

(2) 評価

外気取入遮断時の中央制御室内に滞在する運転員の操作環境の劣化防止のため,酸素濃度及び二酸化炭素濃度について評価を行った。

a. 酸素濃度

「空気調和・衛生工学便覧 空調設備篇」に基づき、酸素濃度について評価した。

(a) 評価条件

- · 在室人数:13 人
- ・中央制御室バウンダリ内体積:3,500 m3
- ・空気流入率:0~5h 0回/h (SBO 想定によるファン停止) 5~168h 0.05回/h※ (閉回路循環運転)
 - ※空気流入率測定試験結果(約0.12回/h)を基に保守的に設定。
- 初期酸素濃度: 20.95 %
- ・1 人当たりの呼吸量は、事故時の運転操作を想定し、歩行時の呼吸量を適用して 24 0/min とする。
- ・1 人当たりの酸素消費量は、呼気の酸素濃度:16.40%として、65.52 Q/h とする。
- ・許容酸素濃度:19 %以上(鉱山保安法施行規則から)

(b) 評価結果

上記評価条件から求めた酸素濃度は、以下のとおりであり、168 時間外気取入を遮断したままでも、中央制御室内に滞在する運転員の操作環境に影響を与えない。

時間	12 時間	24 時間	36 時間	96 時間	168 時間
酸素濃度	20. 72 %	20.60 %	20. 54 %	20. 47 %	20. 46 %

b. 二酸化炭素濃度

「空気調和・衛生工学便覧 空調設備篇」に基づき、二酸化炭素濃度について評価した。

(a) 評価条件

- · 在室人数:13人
- ・中央制御室バウンダリ内体積:3,500 m3
- ・空気流入率:0~5h 0回/h (SBO 想定によるファン停止)

5~168h 0.05 回/h※ (閉回路循環運転)

- ※空気流入率測定試験結果(約0.12回/h)を基に保守的に設定。
- ·初期二酸化炭素濃度:0.03%
- ・1人当たりの二酸化炭素吐出量は、事故時の運転操作を想定し、中等作業時の吐出量を適用して 0.046 m³/h とする。
- ・許容二酸化炭素濃度:1%以下(鉱山保安法施行規則から)

(b) 評価結果

上記評価条件から求めた二酸化炭素濃度は、以下のとおりであり、168 時間外気取入を 遮断したままでも、中央制御室内に滞在する運転員の操作環境に影響を与えない。

時間	時間 12 時間		36 時間	96 時間	168 時間	
二酸化 炭素濃度	0. 191 %	0. 273 %	0.317 %	0.369 %	0. 372 %	

中央制御室内の酸素濃度及び二酸化炭素濃度の評価における人員について

泊3号炉の中央制御室における酸素濃度及び二酸化炭素濃度の評価において想定する人員の設定については、評価のベースとなる人数として中央制御室の標準人員である6人を想定している。そのうえで、中央制御室に立入る可能性のある人員を考慮して、本評価においては以下のとおり設定している。

すなわち、設計基準事故時については4人、重大事故等時については7人を、評価のベースとなる人数に加えることで、各々10人及び13人が外気隔離の期間中(設計基準事故時: 30日,重大事故等時:7日間) に中央制御室に滞在するものとして評価を行っている。

(表1)

なお、(1)(2)項に設定の考え方を示す。

表 1 中央制御室内の酸素濃度及び二酸化炭素濃度の評価における人員の設定

	在室人員	評価条件の設定		
設計基準事故時	10人	当直員6人*1に加えて4人*2を考慮		
重大事故等時	13人	当直員6人*1に加えて7人*3を考慮		

※ 1 :標準人員(表2)

※ 2 : 研修員等を想定

※ 3 : 重大事故等時に当直指揮下となる可能性のある災害対策要員(運転支援等)を想

定

(1) 評価のベースとなる人数

評価のベースとなる人数 (評価期間中は中央制御室内に滞在)としては、標準人員である 6人を考慮している (表2)。「標準人員」は、発電課長(当直)、副長、運転員 I 及び運転員 II から成り、通常運転時の対応、停止時の対応、事故等時の事象収束対応等の中央制御室内の操作状況によらず変わるものではない。

一方、保安規定では確保する運転員の人数が原子炉の運転モードに応じて定められており、最も多くなる原子炉運転中の場合では「6名以上」と定めている。ここで、保安規定で定める運転員の人数に対しては、欠員が生じないよう補充することも規定されており、当直体制としての人数が確保されることを前提としている。この人数が標準人員の6名であり、評価のベースとしてこの標準人員を用いることは妥当と考える。

表 2 標準人員の内訳

SOURCE STATES	TO CONTROL AND THE PARTIES.
	在室人員
発電課長 (当直)	1人
副長	1人
運転員Ⅰ・運転員Ⅱ	4人

(2) 評価条件の設定の考え方

本評価においては中央制御室に在室する要員として,(1)で設定したベースの人数に加えて, 立入る可能性のある人員を追加し,この人員が評価期間中,中央制御室に常駐しているものと 想定した。

ここで、(1)で設定した運転員についても、評価条件を設定するにあたって運転員に加える 人員についても、設計基準事故時及び重大事故等時の評価で想定する評価期間(30日間及び7 日間)中、常に中央制御室に在室するわけではないが、これらの合計人数が評価期間中は常に 在室するものと想定した。

なお,運転員に対して設定している(1)の標準人員に加えて,研修員等が中央制御室に在室することもある。また,重大事故等時においては災害対策要員(運転支援等)7人が当直指揮下に入るため中央制御室に立入る可能性がある。一方,事故発生時においては、中央制御室への立入りを制限することを社内規程に定める。

これらを踏まえて、今回の評価では設計基準事故時の評価では4人、重大事故等時の評価では7人を(1)の標準人員に加えて評価することとした。

なお、中央制御室の平均的な在室人員及び中央制御室の在室人員の推移を表3、表4及び図1、図2にそれぞれ示す。

表3 設計基準事故時における中央制御室の在室人員

	1日目	2日目	3日目	 29 日目	30 日目	30 日間 平均
事象発生時 点で1,2, 3直	8. 65	8. 44	8. 65	 8. 65	8. 44	8. 55
事象発生時 点で1,連直	8. 44	8. 65	8. 44	 8. 44	8. 65	8. 55

(単位:人)

表 4 重大事故等時(過圧破損シナリオの場合)における中央制御室の在室人員

	1日目								7日間	
	2 時間 (初動)	2~24 時間	平均	2月目	3日目	4日目	5日目	6日目	7日目	平均
事象発生時										
点で1, 2,	8. 62	10. 79	10. 59	5. 25	5. 38	5. 25	5. 38	5. 25	5. 38	6. 07
3直										
事象発生時 点で1,連直	8. 62	10. 65	10. 47	5. 38	5. 25	5. 38	5. 25	5. 38	5. 25	6. 05

(単位:人)

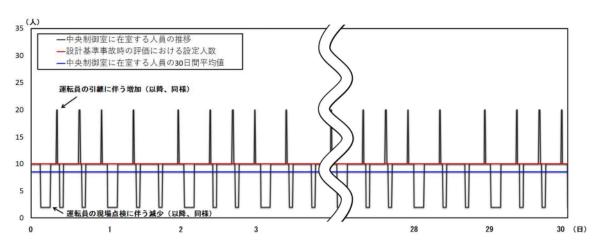


図1 設計基準事故時における中央制御室の在室人員の推移のイメージ

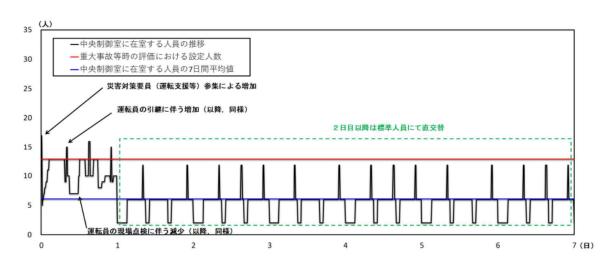


図2 重大事故等時(過圧破損シナリオの場合) における 中央制御室の在室人員の推移のイメージ

8. 可搬型照明に求められる照度の考え方について

(1) 中央制御室及びチェンジングエリアにおける必要な照度

中央制御室及びチェンジングエリアについては全ての照明が消灯した場合に,中央制御室内の運転コンソール及び指令コンソールにおける計器,操作器及び手順書の確認等の運転監視操作,チェンジングエリアにおける身体サーベイ及び除染作業等が確実に実施できる照度を確保する必要がある。

これらの作業を確実に実施するために必要となる照度は、当社が実施した視認性確認の結果から、15 ルクス以上確保できていれば十分な視認性があり、かつ支障なく作業することができることを確認している。

一方,「JIS Z 9125 (2007) 屋内作業場の照明基準」(以下,「JIS Z 9125」という。)は, "全作業時間にわたっての視作業を, 効率よく, かつ, 快適で, 安全に行うための屋内作業場の照明設計基準, 照明要件などについて規定した規格"であるが, その中で通常の照明状態において, 人の顔を識別するには約 20 ルクスの水平面照度を必要とし, 20 ルクスの水平面照度を照度段階の最低値と定義されている。

これらより、当社が実施した視認性確認の結果から運転監視操作、身体サーベイ及び除染作業等に必要となる照度である 15 ルクスに余裕を持たせ、中央制御室及びチェンジングエリアの可搬型照明 (SA) の照度は JIS Z 9125 の照度段階の最低値である 20 ルクス以上を確保する設計とする。

以下に、中央制御室及びチェンジングエリアにおいて、20 ルクス以上を確保するための照 度確認結果を示す。

(2) 可搬型照明 (SA) による照度確認

中央制御室及びチェンジングエリアの全ての照明を消灯状態とし、可搬型照明(SA)点灯状態において各作業エリアの必要照度が確保されていることを確認した。

なお、中央制御室については、通常の運転操作に影響を及ぼさないようシミュレータ施設 を用いて照度を確認している。

a. 中央制御室

(a) 確認目的

中央制御室で運転監視操作を行うため、運転コンソール及び指令コンソールの盤面並びにデスク上において、可搬型照明(SA)を計画した設置場所に設置し必要照度である20ルクス以上を確保できることを確認する。

(b) 確認条件

照度確認に影響を及ぼさないよう、シミュレータ施設の全ての照明、大型表示盤、運転コンソール盤面及び指令コンソール盤面を消灯状態とする。また、可搬型照明(SA)は、最低照度を確認するため運転コンソール及び指令コンソール盤面から約2m隔離した

位置に設置し、地震による転倒・落下の可能性がないよう床面に設置した状態で点灯する。

(c) 確認項目

運転監視操作を行う運転コンソール盤面及び指令コンソール盤面及びデスク上について、代表点の照度を照度計により確認する。(第8-1 図参照)

(d) 判定基準

作業のために必要な照度である 15 ルクスに余裕を持たせ,全ての照度の確認箇所において,20 ルクス以上の照度であることを基準とする。

(e) 確認結果

第8-1表のとおり、全ての照度の確認箇所において、判断基準である 20 ルクス以上の 照度であることを確認した。

また、操作箇所に応じて可搬型照明 (SA) の向きを変更することにより、さらに照度を確保することが可能であることを確認した。

第8-1図 シミュレータにおける可搬型照明(SA)確認状況

第8-1表 シミュレータにおける照度確認結果

確認点	照度 (ルクス)	確認点	照度(ルクス)		
(1)	197	(5)	51		
(2)	197	(6)	42		
(3)	180	(7)	29		
(4)	47	(8)	22		

b. チェンジングエリア

(a) 確認目的

チェンジングエリアで身体サーベイ及び除染作業等を行うため、各作業エリアにおいて、可搬型照明(SA)を計画した設置場所に設置し必要照度である 20 ルクス以上を確保できることを確認する。

(b) 確認条件

照度確認に影響を及ぼさないよう, チェンジングエリアの全ての照明を消灯状態とする。

また,可搬型照明(SA)は,最低照度を確保するためグリーンハウス内及びスクリーニングエリアの中心となる位置に設置し,地震による転倒・落下の可能性がないよう 床面に設置した状態で点灯する。

(c) 確認項目

身体サーベイ及び除染作業等を行う各作業エリアについて,代表点の照度を照度計(中央制御室で使用した計器と同一品)により確認する。(第8-2 図参照)

(d) 判定基準

作業のために必要な照度である 15 ルクスに余裕を持たせ,全ての照度の確認箇所において,20 ルクス以上の照度であることを基準とする。

(e) 確認結果

第8-2表のとおり、全ての照度の確認箇所において、判断基準である 20 ルクス以上の 照度であることを確認した。

第8-2図 チェンジングエリアにおける可搬型照明 (SA) を使用した状態での作業状況

第8-2表 チェンジングエリアにおける照度確認結果

測定点	照度(ルクス)	測定点	照度 (ルクス)	
(1)	(1) 45		80	
(2)	71	(6)	65	
(3)	86	(7)	39	
(4)	42	(8)	21	

c. 可搬型照明 (SA) の機種変更について

a. 項及び b. 項で照度確認を実施した可搬型照明 (SA) は耐用年数及び製造メーカの製造中止情報を考慮して機種変更を予定している。後継機の選定にあたっては, (1)項記載の中央制御室及びチェンジグエリアにおける必要照度を満足した機種変更前の可搬型照明と同等以上の照度性能がある可搬型照明を選定する。今回予定の機種変更前後の照度性能比較結果は第8-3表のとおり。

機種変更前 機種変更後 メーカ 日動工業 (株) 日動工業(株) 型式 LED30-LIFE-1L1B LEN-HRE40SN-W-03M-LIFE 光源 LED30W LED40W 1 m 照度 DC: 1060[1x] DC: 1350[1x]AC: 1510[1x]外観

第8-3表 可搬型照明 (SA) 機種変更前後の照度性能比較

(3) まとめ

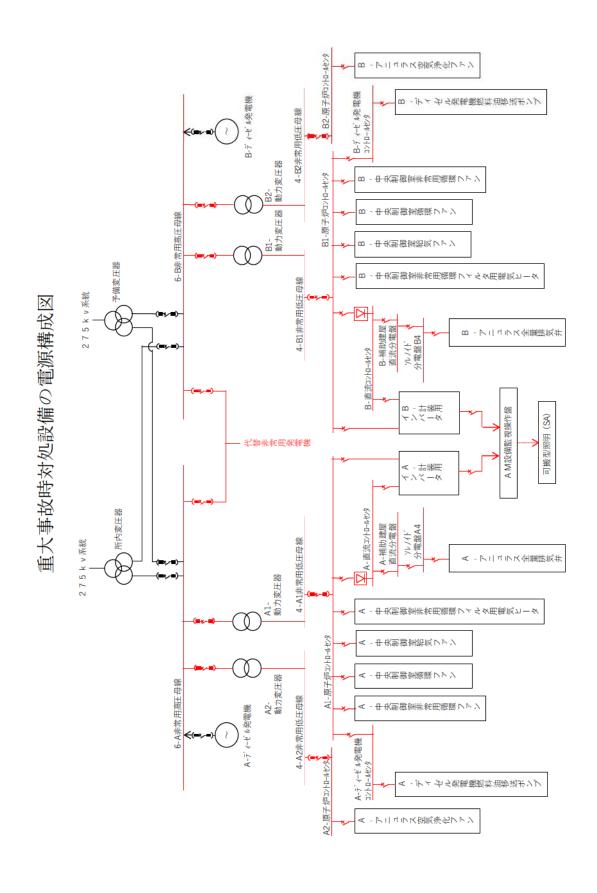
中央制御室及びチェンジングエリアの全ての照明を消灯状態とし、可搬型照明(SA)の 点灯状態における各作業エリアの照度を確認した結果、全ての照度の確認箇所において、JIS Z 9125 に規定されている最低値である 20 ルクス以上の照度があり、十分に視認性があり問題なく作業をすることができる照度であることを確認した。

また、現設計における可搬型照明 (SA) の設置場所及び設置個数で問題なく作業ができるため、可搬型照明 (SA) の設置場所及び設置個数も妥当であると判断できる。

9. 設置許可基準規則 59 条における可搬型照明の扱いについて

(1) 中央制御室用の可搬型照明の扱い

中央制御室用の照明に関しては、設置許可基準規則 59 条解釈において、「原子炉制御室用の電源(空調及び照明等)は、代替交流電源設備からの給電を可能とすること。」とされている。この条文要求は、照明へ給電する代替交流電源設備の設置が要求事項であり、照明自体を重大事故等対処設備とすることが要求事項ではないと考える。


したがって、中央制御室用の照明は条文要求上は重大事故等対処設備とすることが必須とは 考えていないが、運転員による中央制御室内でのパラメータ監視や操作のために安定的に制御 盤等の照度を確保することの重要性に鑑み、重大事故等対処設備として整理する。具体的には、 可搬型照明を重大事故等対処設備として整理し、中央制御室の常設照明は耐震性を有していな いため多様性拡張設備として整理する。

(2) チェンジングエリア用の可搬型照明の扱い

チェンジングエリアに関しては、設置許可基準規則 59 条解釈において、「原子炉制御室の外側が放射性物質により汚染したような状況下において、原子炉制御室への汚染の持ち込みを防止するため、モニタリング及び作業服の着替え等を行うための区画を設けること。」とされており、照明設置に関する要求事項はない。

したがって、チェンジングエリア用の照明については、条文要求上は重大事故等対処設備とすることが必須とは考えていないが、チェンジングエリアの運用のために照明確保は必要であり、また、59条における照明の扱いの整合性を図るために、チェンジングエリア用の照明についても重大事故等対処設備として扱うこととする。具体的には、可搬型照明を重大事故等対処設備として整理し、チェンジングエリアの常設照明は耐震性を有していないため多様性拡張設備として整理する。

59-9 単線結線図

