2.5	代替補機冷却及び格納容器内自然対流冷却を行	う場合の吐出圧	力 MPa以上
	原子炉冷却系統施設のうち補機冷却水設備。	して代替補機冷	却及び格納容器内自然対
	流冷却を行う場合の可搬型大型送水ポンプ車の	吐出圧力は、海	水を原子炉補機冷却水系
	統に送水する場合の水源と移送先の圧力差、	水頭、機器圧損	、配管ホース及び弁類圧
	損を基に設定する。		
	水源と移送先の圧力差	り 0.275MP	a
	静水頭	0.323MP	a
	機器圧損	MP MP	a
	配管・ホース及び弁類圧損	MP MP	a
	合 計	MP	a
	以上より、原子炉冷却系統施設のうち補機と	却水設備として	代替補機冷却及び格納容
	器内自然対流冷却を行う場合の可搬型大型送	(ポンプ車の吐出	出圧力は、 MPa以上と
	する。		
	<u>_</u>	_	
2.6		MPa以上	
	原子炉冷却系統施設のうち、蒸気タービンド		
	可搬型大型送水ポンプ車の吐出圧力は、海水を	,	
	移送先の圧力差、静水頭、機器圧損、配管ホー	ス及び弁類圧損	を基に同時送水を考慮し
	て設定する。		
		5 OMP	
		0.190MP	
		мР /	
		MP	
	合 計	MPMP	a
		- h	/# 1. 1 ~ I+ III // 1. 1. 0
	以上より、原子炉冷却系統施設のうち、蒸気		
	へ補給する可搬型大型送水ポンプ車の吐出圧ス	ば、MPa以上	ことする。
	MWD5####################################	m NU	
2. 7		<u> </u>	
	原子炉格納施設のうち圧力低減設備その他の	安全設備として	燃料取替用水ピットへ補

	給する可搬型大型送水ポンプ車の吐出圧力は、海	水を燃料取替用水ピットへ補給する場
	合の水源と移送先の圧力差、静水頭、機器圧損、	配管ホース及び弁類圧損を基に同時送
	水を考慮し設定する。	
	水源と移送先の圧力差	句 OMPa
	静水頭	句 0.295MPa
	機器圧損	何 MPa
	配管・ホース及び弁類圧損 糸	ЯРа MPa
	合 計	ή MPa
	以上より、原子炉格納施設のうち圧力低減設備	その他の安全設備として燃料取替用水
	ピットへ補給する可搬型大型送水ポンプ車の吐出	圧力は、MPa以上とする。
		— —
	公称値については、要求される最大吐出圧力	MPaを上回るMPaのポンプとす
	る。	
	(3+1)	
3.	3. 最高使用圧力 (注1)	
	可搬型大型送水ポンプ車を重大事故等時において使	
	を電気的に1.6MPaに制限していることから、その制限	値である1.6MPaとする。
4	4. 具点体田坦库 (注1)	
4.	4. 最高使用温度 (注1)	・田上ヶ田人の汨安は、北海でよったよ
	可搬型大型送水ポンプ車を重大事故等時において使	用する場合の価度は、小原である個小
	の温度 ^(注2) が40℃を下回るため40℃とする。	
5	5. 原動機出力	
υ.	可搬型大型送水ポンプ車の原動機出力は、流量	3 /h時の軸動力を其に設定する
	可搬型大型送水ポンプ車の流量が m ³ /h、吐出圧	
	要軸動力は、メーカ設定値より (W/個とする。	ma, cozeoma o ose
	安和助力は、	
	(注1) 重大事故等対処設備については、重大事故等時	持において使用する場合の圧力及び温
	度を記載する。	
	以降の重大事故等時の最高使用圧力及び最高使	用温度についても同様の記載とする

(注2) 海水の温度は、外気の温度である原子炉設置変更許可申請書添付書類六に示す泊	発
電所における最高の月平均気温である8月の約25.6℃(寿都特別地域気象観測)	折
24.5℃、小樽特別地域気象観測所25.6℃)を下回る。	

			変更前	変更後
名 称			C, D-格納容器再循環ユニット	
茗	星	MW/個		7.6
管側	最高使用圧力	MPa	_	1. 4
側	最高使用温度	$^{\circ}$ C		163
胴	最高使用圧力	MPa		_
側	最高使用温度	$^{\circ}$ C		155
位	素 面 積	m ² /個		

()内は公称値を示す。

【設定根拠】

• 設計基準対象施設

格納容器再循環ユニットは,通常運転時において冷却コイルに原子炉補機冷却水を通水し,格納容器再循環ファンによる強制循環によって,原子炉格納容器内の機器,配管等からの放熱量を除去するために設計交換熱量 (Wを有する設計としており,原子炉格納容器内に格納容器再循環ユニットを4個設置する。なお,格納容器再循環ユニットは,通常運転時は3個使用する。

格納容器再循環ユニット(A, B, C, D-格納容器再循環ユニット)は、制御棒駆動装置冷却ユニットとあいまって原子炉冷却材圧力バウンダリに属する配管から1次冷却材の漏えい(0.23m³/h)が生じた場合において、漏えいに伴い原子炉格納容器内に放出される蒸気を凝縮するために必要な冷却能力を有する設計とする。

なお、原子炉格納容器内の蒸気を凝縮させ漏えいを監視する装置については、添付資料23 「原子炉格納容器内の一次冷却材の漏えいを監視する装置の構成に関する説明書並びに計測 範囲及び警報動作範囲に関する説明書」に示す。

重大事故等対処設備

重大事故等時に原子炉格納施設のうち圧力低減設備その他の安全設備として使用するC, D-格納容器再循環ユニットは、以下の機能を有する。

C, D-格納容器再循環ユニットは,設計基準事故対処設備が有する最終ヒートシンクへ 熱を輸送する機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損(炉

心の著しい損傷が発生する前に生ずるものに限る。)を防止するため、最終ヒートシンクへ 熱を輸送するために設置する。

系統構成は、原子炉補機冷却海水ポンプ及び原子炉補機冷却水ポンプの故障等により最終ヒートシンクへ熱を輸送する機能が喪失した場合並びに全交流動力電源が喪失した場合における1次冷却材喪失事象時を想定し、A、D-原子炉補機冷却水冷却器出口配管と可搬型ホースを接続し、海を水源とする可搬型大型送水ポンプ車により原子炉補機冷却水系統を介して、C、D-格納容器再循環ユニットへ海水を直接供給し、原子炉格納容器内の自然対流冷却により原子炉格納容器内の圧力及び温度を低下させる設計とする。これらの系統構成については、設備別記載事項の設定根拠に関する説明書別添3「技術基準規則 第63条系統図」による。

C, D-格納容器再循環ユニットは,設計基準事故対処設備が有する原子炉格納容器内の 冷却機能が喪失した場合において原子炉格納容器内の圧力及び温度を低下させるため,ま た,炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため,原子 炉格納容器内の圧力及び温度を低下させるために設置する。

これらの系統構成は、C, D-原子炉補機冷却海水ポンプを用いて、C, D-原子炉補機 冷却水冷却器へ海水を通水するとともに、原子炉補機冷却水の沸騰防止のため、原子炉補機 冷却水サージタンクに原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベを接続し て窒素加圧し、C, D-原子炉補機冷却水ポンプにより、C, D-格納容器再循環ユニット へ原子炉補機冷却水を通水し、格納容器内自然対流冷却により原子炉格納容器内の圧力及び 温度を低下させる設計とする。

なお、全交流動力電源又は原子炉補機冷却機能が喪失し、炉心の著しい損傷が発生した場合を想定し、A、D-原子炉補機冷却水冷却器出口配管と可搬型ホースで接続し、海を水源とする可搬型大型送水ポンプ車により原子炉補機冷却水系統を介して、C、D-格納容器再循環ユニットへ海水を直接供給し、格納容器自然対流冷却により原子炉格納容器内の圧力及び温度を低下させる設計とする。

C, D-格納容器再循環ユニットは,原子炉格納容器内雰囲気温度の上昇により自動動作するダクト開放機構を有し,重大事故等時において原子炉格納容器の最高使用圧力及び最高使用温度を下回る飽和温度にて確実に開放することで,C,D-格納容器再循環ユニットに通水した冷却水により,凝縮・冷却した密度の大きいガスが下部の(水没レベルより高い位置にある)ダクト開放機構から原子炉格納容器内に放出される。

重大事故等時の冷却は凝縮熱伝達が支配的であり、原子炉格納容器内の水蒸気の凝縮による格納容器内自然対流冷却により、圧力および温度を低減する設計とする。

これらの系統構成については、設備別記載事項の設定根拠に関する説明書別添3「技術基準規則 第64条系統図」による。

C, D-格納容器再循環ユニットは、炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため、原子炉格納容器内の圧力及び温度を低下させるために設置する。

これらの系統構成は、C, D-原子炉補機冷却海水ポンプを用いて、C, D-原子炉補機 冷却水冷却器へ海水を通水するとともに、原子炉補機冷却水の沸騰防止のため、原子炉補機 冷却水サージタンクに原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベを接続し て窒素加圧し、C, D-原子炉補機冷却水ポンプにより、C, D-格納容器再循環ユニット へ原子炉補機冷却水を通水し、格納容器内自然対流冷却により原子炉格納容器内の圧力及び 温度を低下させる設計とする。

なお、全交流動力電源又は原子炉補機冷却機能が喪失し、炉心の著しい損傷が発生した場合を想定し、A、D-原子炉補機冷却水冷却器出口配管と可搬型ホースで接続し、海を水源とする可搬型大型送水ポンプ車により原子炉補機冷却水系統を介して、C、D-格納容器再循環ユニットへ海水を直接供給し、格納容器自然対流冷却により原子炉格納容器内の圧力及び温度を低下させる設計とする。

原子炉格納施設のうち圧力低減設備その他の安全設備として、C、D-格納容器再循環ユニットは、原子炉格納容器内雰囲気温度の上昇により自動動作するダクト開放機構を有し、重大事故等時において原子炉格納容器の最高使用圧力及び最高使用温度を下回る飽和温度にて確実に開放することで、C、D-格納容器再循環ユニットに通水した冷却水により、凝縮・冷却した密度の大きいガスが下部の(水没レベルより高い位置にある)ダクト開放機構から原子炉格納容器内に放出される。

重大事故等時の冷却は凝縮熱伝達が支配的であり,原子炉格納容器内の水蒸気の凝縮による格納容器内自然対流冷却により,圧力および温度を低減する設計とする。

これらの系統構成については、設備別記載事項の設定根拠に関する説明書別添3「技術基準規則 第65条系統図」による。

格納容器再循環ユニットは、4個設置しているもののうち重大事故等対処設備として2個 (C, D-格納容器再循環ユニット)を使用する。

1. 容量

重大事故等時に、C, D-格納容器再循環ユニットに求められる性能は、原子炉格納容器

内に放出されるエネルギを継続的に原子炉格納容器外に排出して,原子炉格納容器内圧力及 び温度を過度に上昇させず,原子炉格納容器の健全性を維持することである。

- C, D-格納容器再循環ユニットの除熱量は、対処する事故シーケンスにおける原子炉格納容器内の雰囲気温度等により異なるが、重大事故等時の使用状態での除熱量を踏まえ、有効性評価の判断基準である原子炉格納容器の最高使用圧力の2倍時での飽和蒸気での解析条件を基に設定する。
- C, D-格納容器再循環ユニットの容量は、原子炉格納容器内の最高使用圧力の2倍時 (0.566MPa, 155℃) に原子炉補機冷却水 (設計温度32℃) 又は海水 (設計温度26℃) を包括する冷却水温度32℃を通常運転時の定格流量である m³/hで通水する場合に得られる除熱量を、電力共同研究による実証試験により確認された評価手法により評価し7.6MW/個とする。

電力共同研究による実証試験の詳細については、添付資料36「原子炉格納施設の設計条件に関する説明書」に示す。

2. 最高使用圧力

- 2.1 最高使用圧力(管側)
 - C, D-格納容器再循環ユニット(管側)を重大事故等時において使用する場合の圧力は,原子炉補機冷却水冷却器(管側)の重大事故等時における使用圧力と同じ1.4MPaとする。
- 2.2 最高使用圧力(胴側)
 - C, D-格納容器再循環ユニット(胴側)を重大事故等時において使用する場合の圧力は、格納容器再循環ファンが停止した状態であり、格納容器再循環ユニットの内外面に有意な差圧は発生しないため設定しない。

3. 最高使用温度

- 3.1 最高使用温度(管側)
 - C, D-格納容器再循環ユニット(管側)を重大事故等時において使用する場合の温度は, C, D-原子炉補機冷却水冷却器(胴側)の重大事故等時における使用温度と同じ163℃とする。
- 3.2 最高使用温度(胴側)
 - C, D-格納容器再循環ユニット(胴側)を重大事故等時において使用する場合の温度は、原子炉格納容器の重大事故等時における使用温度141℃を上回る155℃とする。

4.	云熱面積
	設計基準対象施設として使用する格納容器再循環ユニットに内蔵する冷却コイルの伝熱面
禾	漬は,出力運転時の原子炉格納容器内雰囲気温度を49℃以下に維持できる処理風量
	(2,600m³/min) において容量 MW (設計熱交換量) を満足できることをメーカが設計段
ß	皆において確認した伝熱面積 m²/個以上とする。
	C, D-格納容器再循環ユニットを重大事故等時において使用する場合の伝熱面積は, 設
į	計基準対象施設の伝熱面積を基に評価しており,
	m ² /個以上とする。
	公称値については、要求される伝熱面積と同じn ² /個とする。

			変更前	変更後
名	利	尔		原子炉補機冷却水サージタンク加圧用 可搬型窒素ガスボンベ
容	量	ℓ/個	_	46.7 以上 (46.7)
最高使用品	王力	MPa		19. 6
最高使用流	温度	$^{\circ}$ C		40
個	数	_		2以上(4(予備2))

【設定根拠】

• 重大事故等対処設備

重大事故等時に使用する原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベは、 以下の機能を有する。

原子炉冷却系統施設のうち原子炉補機冷却設備として使用する原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベは、設計基準事故対処設備が有する原子炉格納容器内の冷却機能が喪失した場合において炉心の著しい損傷を防止するため、原子炉格納容器内の圧力及び温度を低下させるために設置する。

系統構成は格納容器内自然対流冷却として,原子炉補機冷却水サージタンク加圧用可搬型 窒素ガスボンベは原子炉補機冷却水の沸騰防止のため,原子炉補機冷却水サージタンクに 接続して窒素加圧し,C, D-原子炉補機冷却水ポンプによりC, D-格納容器再循環ユニット へ原子炉補機冷却水を通水できる設計とする。これらの系統構成については,設備別記載 事項の設定根拠に関する説明書別添3「技術基準規則 第64条系統図」による。

原子炉冷却系統施設のうち原子炉補機冷却設備として使用する原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベは、炉心の著しい損傷が発生した場合に原子炉格納容器内の圧力及び温度を低下させるために設置する。また、炉心の著しい損傷が発生した場合に原子炉格納容器の破損を防止するため、原子炉格納容器内の圧力及び温度並びに放射性物質の濃度を低下させるために設置する。

系統構成は格納容器内自然対流冷却として,原子炉補機冷却水サージタンク加圧用可搬型 窒素ガスボンベは原子炉補機冷却水の沸騰防止のため,原子炉補機冷却水サージタンクに 接続して窒素加圧し,C,D-原子炉補機冷却水ポンプによりC,D-格納容器再循環ユニット へ原子炉補機冷却水を通水できる設計とする。これらの系統構成については、設備別記載 事項の設定根拠に関する説明書別添3「技術基準規則 第64条65条系統図」による。

原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベの保有数は、1セット2個、保 守点検中にも使用可能であるため、保守点検による待機除外時のバックアップ用は考慮せず に故障時のバックアップ用として2個の合計4個を保管する。

1. 容量

重大事故等時に使用する原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベは, 高圧ガス保安法の適合品である一般汎用型の窒素ガスボンベを使用する。このため,当該ボンベの容量は一般汎用型の窒素ガスボンベの標準容量46.7ℓ/個以上とする。

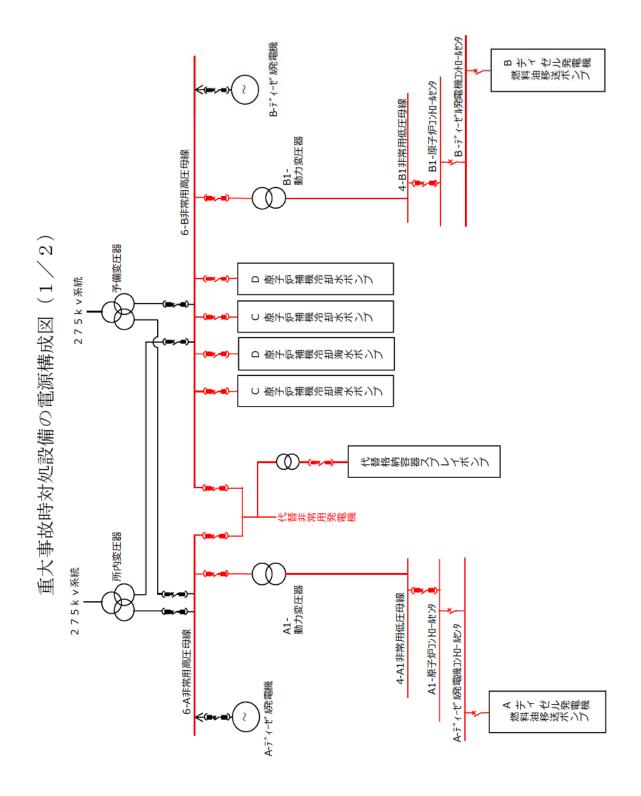
また、重大事故等時に原子炉補機冷却水の沸騰を防止するために原子炉補機冷却水サージタンクの気相部体積 n³を初期圧力 MPa[abs]から MPa[abs]に加圧するのに必要な窒素量は約 Nm³ (注1)であり、上記圧力下での原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベの窒素供給可能量は、約 Nm³ (注2)であることから、原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベの必要個数は、 個 Nm³/ Nm³)となる。

このため、原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベの設定個数は、 固を上回る2個とする。

なお, C, D-原子炉格納容器再循環ユニットを使用した自然対流冷却による原子炉格納容器内の冷却時は,原子炉補機冷却系統は健全でありリークはなく連続加圧の必要はないため,加圧回数は1回とする。

公称値については、要求される容量と同じ46.7ℓ/個とする。

2. 最高使用圧力


原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベを重大事故等時において使用する場合の圧力は、高圧ガス保安法の適合品であるボンベにて実績を有する充てん圧力である19.6MPaとする。

3. 最高使用温度

原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベを重大事故等時において使用 する場合の温度は、高圧ガス保安法に基づき40℃とする。

(注1) 原子炉補機冷却水サージタンクを加圧するために必要な窒素量は、気相部の体積が
m³であることから以下のとおりとする。
$V_1 = Q_1 \times (P_1 - P_2) / P_0 =$
V ₁ :原子炉補機冷却水サージタンクの窒素消費量 (Nm ³)
\mathbf{Q}_1 :原子炉補機冷却水サージタンクの気相部の体積 $(\mathbf{m}^3)=$
Pı:原子炉補機冷却水サージタンクの加圧圧力(MPa[abs])=
P ₂ :原子炉補機冷却水サージタンクの初期圧力(MPa[abs])=
P ₀ : 絶対圧力(MPa[abs])=0.101
(注2) 原子炉補機冷却水サージタンク加圧用可搬型窒素ガスボンベ内の窒素量は,以下のと
おりとする。
$Q = P \times V_1 / 0.101 = 19.701 \times 46.7 \times 10^{-3} / 0.101 = 9.1 \text{Nm}^3$
Q:窒素ボンベ内の窒素量 (Nm ³)
${ m V}_1$: ボンベの容量(${ m m}^3$) $=46.7 imes10^{-3}$
P:ボンベの充てん圧力(MPa[abs])=19.6+0.101=19.701
原子炉補機冷却水サージタンクを加圧する場合の窒素供給可能量は,充てん圧力が
19.701 MPa[abs] であることから以下のとおりとする。 (窒素ボンベの充てん圧力
19.6MPa=19.701MPa[abs])
$V_S = Q \times (P - P_1) / P =$ Nm ³ /個
V_s : 窒素ガスボンベ1個当たりの窒素供給可能量 (Nm^3)
$Q:$ 窒素ガスボンベ内の窒素量(Nm^3) $=9.1$
P:ボンベの充てん圧力(MPa[abs])=19.701
P ₁ :原子炉補機冷却水サージタンクの加圧圧力(MPa[abs])=

49 - 6 - 2

49-	7 格納容器再循環ユニットによる自然対流冷却について

格納容器再循環ユニットによる自然対流冷却について

泊3号機の格納容器再循環ユニットによる自然対流冷却について次頁以降に 示す。

- 1章 はじめに
- 2章 格納容器再循環ユニット冷却コイル性能試験概要 (PWR5電力共研概要)
 - 2. 1 性能試験
 - 2.1.1 試験に使用する冷却コイルの選定
 - 2. 1. 2 測定項目の設定
 - 2. 1. 3 試験装置
 - 2.1.4 試験条件の設定
 - 2. 1. 5 試験方法
- 3章 除熱評価式の試験による検証
 - 3.1 除熱評価式について
 - 3. 2 除熱評価式の試験での検証
- 4章 自然対流冷却時の除熱性能評価
 - 4. 1 ドラフト力計算について
 - 4. 2 系統圧力損失計算について
 - 4. 3 冷却コイル部の凝縮水等の影響考慮について
 - 4. 4 自然対流冷却の除熱量評価手順について
- 5章 除熱量計算手法の妥当性に関する考察
 - 5. 1 不凝縮性ガスの除熱性能に対する影響について
 - 5. 2 冷却コイル性能試験範囲の妥当性について
- 6章 まとめ

(添付資料)

- 参考資料-0 格納容器再循環ユニットの実機条件
- 参考資料-1 冷却コイル高さ方向での熱容量の余裕について
- 参考資料-2 エアロゾルによる自然対流冷却除熱性能劣化について
- 参考資料-3 格納容器再循環ユニットのダクト内での水素燃焼影響について
- 参考資料-4 再循環ユニットによる自然対流冷却時の沸騰防止運用について
- 参考資料-5 OECD PANDA 試験の知見を踏まえた自然対流冷却に関する考察
- 参考資料-6 格納容器再循環ユニットによる格納容器内自然対流冷却の水素影響について
- 参考資料-7 実機における凝縮水の影響について
- 参考資料-8 格納容器再循環ユニットによる自然対流冷却発生プロセスの定量的考察
- 参考資料-9 格納容器再循環ユニット粗フィルタ撤去による影響について

1章 はじめに

格納容器再循環ユニットは、原子炉冷却材喪失事故(LOCA)、全交流電源喪失(SBO)及び最終ヒートシンク喪失(LUHS)の事象の重畳を想定するような重大事故発生時において、冷却水を通水し自然対流による格納容器気相部冷却を行うことにより、炉心及び格納容器の損傷防止を図る設備である。

ここで、格納容器再循環ユニットは、自然対流冷却性能の観点から、自然対流冷却時に使用するC、D-格納容器再循環ユニットの粗フィルタを取外し、流路の圧力損失を低減することで、自然対流量を増大させている。

本書は、粗フィルタを取外した格納容器再循環ユニット冷却コイルの除熱評価式及び除 熱評価式を検証するために実施した試験、並びに除熱評価式を用いた重大事故時における 格納容器再循環ユニットによる自然対流冷却の除熱性能評価手順についてまとめたもの であり、以下の構成としている。

2章は、PWR 5電力共研として実施した、格納容器再循環ユニット冷却コイルの性能 試験の概要について述べる。

3章は、冷却コイルの性能試験で得られた結果を踏まえた冷却コイル単体における除熱 評価式の妥当性の検証結果について述べる。

4章は、冷却コイル単体の除熱評価式を踏まえて、冷却コイル・ダクト等で構成される 格納容器再循環ユニットにおける自然対流冷却時の除熱性能評価手法について述べる。

5 章は、除熱量評価手法の妥当性に関する考察を行った結果について述べる。

2章 格納容器再循環ユニット冷却コイル性能試験概要(PWR5電力共研概要)

重大事故時に格納容器内の圧力・温度を低減させ格納容器の破損を防止する格納容器再循環ユニットについて、冷却コイル性能を評価する除熱評価式の確認を行うため、実機サイズの冷却コイルによる冷却性能試験を実施した。また、発生した凝縮水による冷却コイル下段での混合ガス流路面積減少の影響について確認を行うために、コイル高さ方向での冷却性能の確認試験を行った。

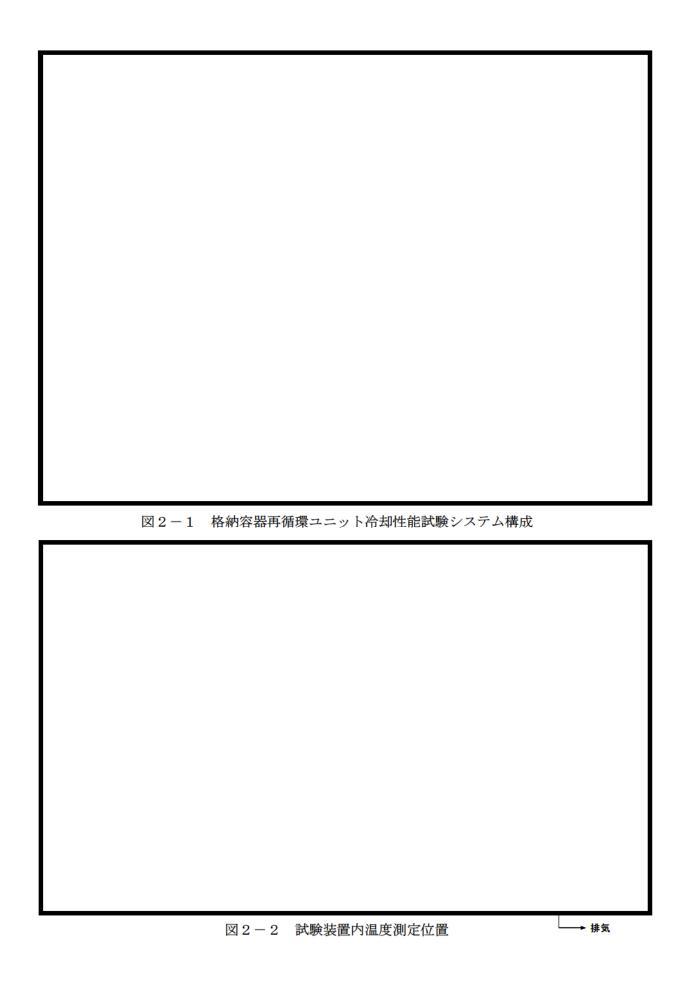
2. 1 性能試験

2. 1. 1 試験に使用する冷却コイルの選定

本試験に使用する冷却コイルは、ハーフサーキット型で、奥行き方向8列、幅方向有効 長500mm、高さ方向34チューブの冷却コイルを選定した。

(1) 冷却コイル型式

PWRプラントの格納容器再循環ユニット冷却コイルの型式では最も多く泊発電所3号機でも使用しているハーフサーキット型を選定した。


(2) 冷却コイルのサイズ

水蒸気凝縮量が多い場合に、冷却コイル高さ方向での熱交換量に差が生じ(上部>下部)、 コイルの高さの高いものほどその差は大きいと考えられるため、PWRプラントで使用し ているハーフサーキット型の冷却コイルのうち、最も有効高さの高いものを選定した。た だし、コイルの幅については、実機の流速分布と大きな差が出ない範囲として 500mm とした。

2.1.2 測定項目の設定

測定項目は、重大事故時の条件下での除熱評価式の検証、及び凝縮水等による冷却コイル熱交換量への影響を評価できるように設定した。

	表2-1	測定項目の設定根拠
2. 1. 3 試験装置		

2.1.4 試験条件の設定

事故時と同様の空気と水蒸気の混合ガス環境下において冷却コイルでの除熱量、凝縮量等を実験により求め、除熱量評価式を検証した(実験条件表2-2)。

表2-2 再循環ユニット (冷却コイル) 凝縮熱伝達実験条件

	実験条件	泊3号機
全圧	2∼5 ata	約 3.9~6.9ata**
水蒸気分圧	0.80~3.57 ata	約 2.6~5.4ata [※]
温度	93∼139℃	約 128~155℃*
混合ガス流速	0.1~0.4 m/sec	約 0.2~0.3m/sec
冷却水入口温度	常温	同左
冷却水流量	13m³/hr/基	10.3m³/hr/基
冷却コイル型式	フィン付管型冷却コイル	同左
チューブ有効長さ	0.5 m	1.3m
チューブ本数	34本	44 本
列数	8列	8列
冷却コイル高さ	約 1.3m(フィン長さ)	約 1.68m

※泊3号機における格納容器圧力1Pd~2Pdでの値

2.1.5 試験方法
(1)除熱量(凝縮熱伝達量)計測

3. 1 除熱評価式について	
(1) 除熱量評価の基礎式	

3章 除熱評価式の試験による検証

(2)	除熱基礎式を用いた除熱評価
	図3.1-1 格納容器再循環ユニットの除熱量評価モデル

3. 2 除熱評価式の試験での検証

2章での確証試験結果と除熱評価式との比較を行う。

冷却水流量を定格の $13\,\mathrm{m}^3/\mathrm{h}$ の他、低流量の $6\,\mathrm{m}^3/\mathrm{h}$, $3\,\mathrm{m}^3/\mathrm{h}$ とした場合において、各圧力での混合ガス流速に対する

- ・冷却コイル熱交換量
- · 水蒸気凝縮量

の比較を行ったものをそれぞれ図3. $2-1\sim3$. 2-6に示す。

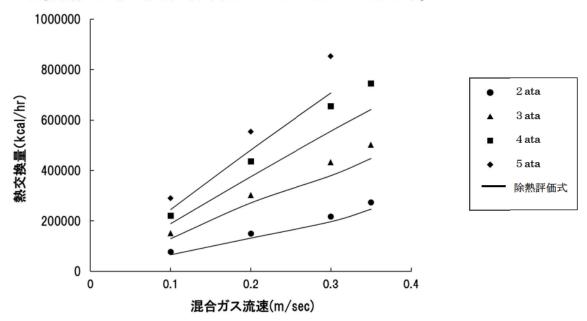


図3. 2-1 混合ガス流速に対する冷却コイル熱交換量(冷却水流量:13m³/h)

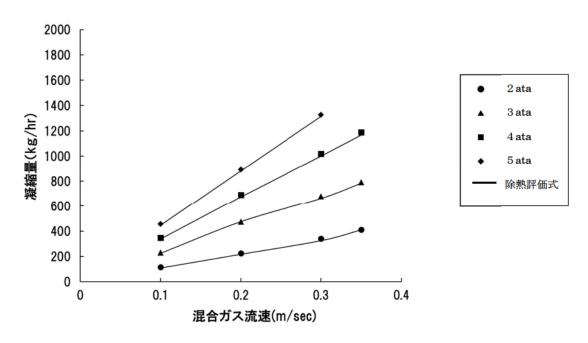


図3. 2-2 混合ガス流速に対する水蒸気凝縮量(冷却水流量:13m³/h)

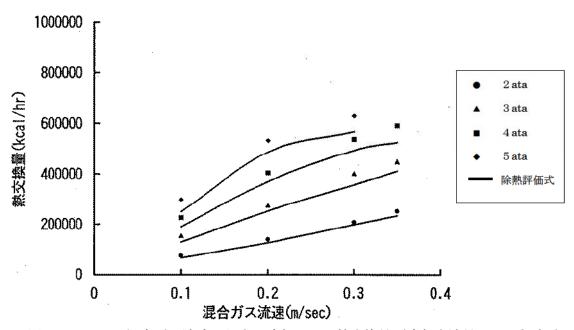


図3. 2-3 混合ガス流速に対する冷却コイル熱交換量(冷却水流量:6 m³/h)

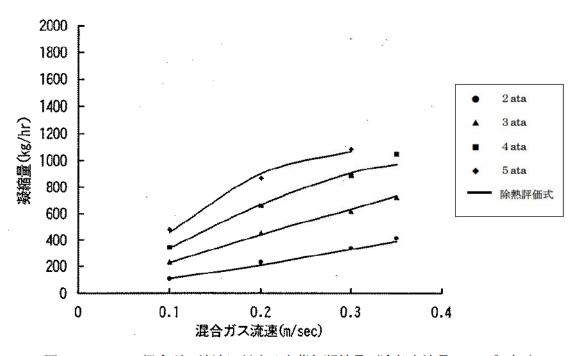


図3. 2-4 混合ガス流速に対する水蒸気凝縮量(冷却水流量:6 m³/h)

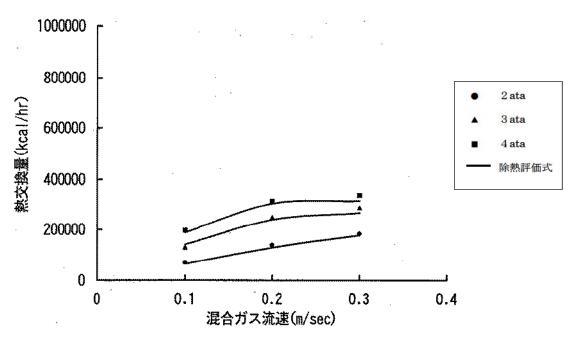


図3. 2-5 混合ガス流速に対する冷却コイル熱交換量(冷却水流量:3m³/h)

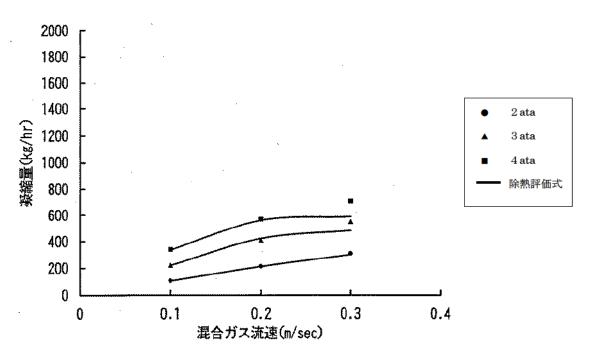


図3.2-6 混合ガス流速に対する水蒸気凝縮量(冷却水流量:3m³/h)

それぞれの図中に実線で表されているものが除熱評価式に基づく計算結果である。 これより、冷却コイル熱交換量、水蒸気凝縮量については試験結果と約1割程度の誤差 範囲内で良く一致している。なお、除熱評価式は、実機条件(約3.9~6.9ata, 10.3m³/h) においては実験データに対して1割程度は保守側(余裕がある)となると考えられる。

4章 自然対流冷却時の除熱性能評価

格納容器再循環ユニットを用いた自然対流冷却は、冷却コイルにより凝縮・冷却され密 度を増した混合ガス(空気及び水蒸気)と、格納容器内雰囲気混合ガスとの密度差及び高 低差から得られるドラフト力と系全体の圧力損失によりバランスする自然対流によって、 格納容器内の除熱を行うものである。

格納容器再循環ユニットにおける自然対流冷却形成の概念は次のとおりである。 (図4-1参照)

(1)冷却水通水初期状態(図4-1a)

最初に、冷却水コイルへの冷却水通水よる水蒸気凝縮によって、ユニット内側と外側の 双方からコイルへ向かう流れが発生する (図中①)。次に、冷却によって密度を増すために 下降流となり、コイル下部からユニット内外へ流れ出る(図中②)。その後、冷却空気の一 部はコイル下部に滞留する (図中図)。

(2) 過渡状態(図4-1b)

過渡状態に移ると、ユニット内側は、ユニット外側の格納容器側空間よりも狭隘なこと から、凝縮及び冷却が相対的に早く促進されるようになる(図中@領域)。このため、ユニ ット内側からのコイルへの流れが外側からの流れに比べて相対的に弱くなる(図中③)。ま た、ユニット内雰囲気の密度が増し、下部ダクトへの下降流が発生する(図中④)。

(3) 定常状態(図4-1c)

過渡状態の後に、ユニット内側の凝縮・冷却が更に促進すると、ユニット内雰囲気の密 度が更に増し(図中⑥領域)、下降流が加速する。このために、ユニット外側⇒冷却コイル ⇒ユニット内側⇒下部ダクト⇒吹出口(ダクト開放機構)⇒格納容器雰囲気の流れが形成 され、自然対流冷却が定常状態となる(図中⑤)。

- a. 冷却水通水初期状態 b. 過渡状態

c . 定常状態

図4-1 格納容器再循環ユニット自然対流冷却形成の概念図

自然対流冷却による除熱量については、冷却コイル性能試験で得られた知見を踏まえ、以下のように求める。

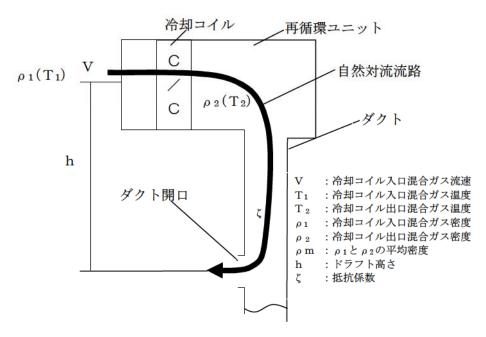


図4-2 再循環ユニットにおける自然対流モデル

4. 1 ドラフト力計算について

ドラフトカ(Pd)については、以下の式で求められる。

 $P d = h \times (\rho_2 - \rho_1)$

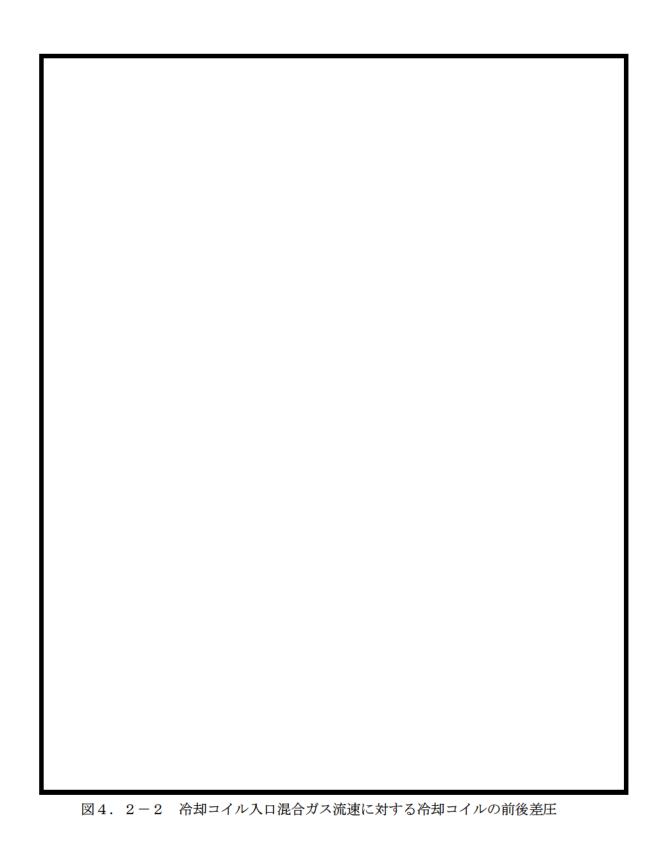
ここで、

h:ドラフト高さ(再循環ユニット入口開口部中心~ダクト開口部中心までの高さ)

4. 2 系統圧力損失計算について

泊3号機における自然対流冷却時の圧力損失を考慮するものとして、格納容器再循環ユニットの冷却コイル、ダクト(含むファン)があり、系統圧力損失(ΔP)は以下より求められる。

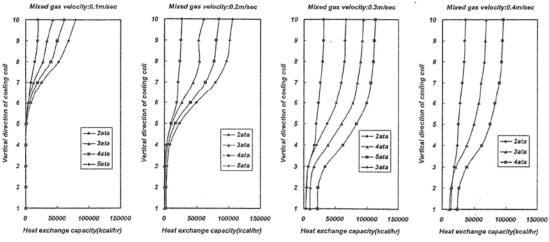
 $\Delta P = \Delta P c + \Delta P p$


ここで、

ΔΡ c: 冷却コイル圧力損失

ΔPp: ダクト圧力損失

(1) 冷却コイル圧力	損失	


図4.2-1 冷却コイル入口混合ガス流速に対する冷却コイル抵抗係数

(2) ダクトの圧力損失

4.3 冷却コイル部の凝縮水等の影響考慮について

図 4. 3-1 に冷却コイル性能試験時の冷却コイル高さ方向おける冷却コイル出入口での冷却水温度をもとに算出した熱交換量の分布を示す。

Distribution of the heat exchange capacity in vertical direction of cooling coil

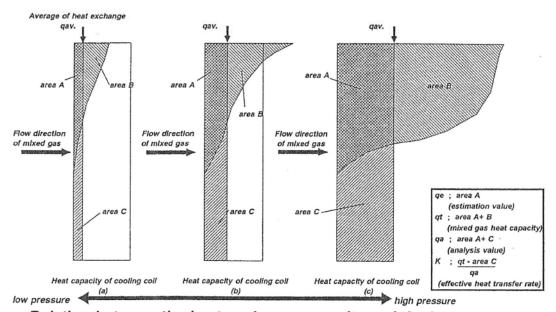
図4.3-1 冷却コイル高さ方向の除熱分布

この図より、冷却コイル下部にはほとんど伝熱に寄与していない領域があることが確認 できる。また、この領域は冷却コイル入口混合ガス流速が減少するほど拡大し、有効な伝 熱領域が縮小する傾向にあることがわかる。

この原因としては、<①凝縮水>、<②冷却空気の滞留>の2点の影響が考えられる。 <①凝縮水の影響>

冷却コイル部では混合ガス中の水蒸気が凝縮し、コイルフィンを上部から下部に流下する。その結果、冷却コイル下部での凝縮水膜厚が上部より増し、コイルフィン間のガス流路が減少し、混合ガスの流入が妨げられると考えられる。また、凝縮膜厚の増加により、この部分での熱抵抗が増加し伝熱性能が低下すると考えられる。図4.3-2に冷却コイルの外観(チューブとフィンの拡大)を示す。

図4.3-2 冷却コイルの外観(チューブとフィンの拡大)


<②冷却空気の滞留の影響>

冷却コイルに進入した混合ガスが凝縮・冷却されることで、減速し、密度量を増すため、冷却コイル上部から下部への下降流が生じる。この一部が冷却コイルの下部に滞留し、より凝縮・冷却されることで冷却空気層を形成し、冷却コイル下部での混合ガスの流入が妨げられると考えられる。

なお、冷却コイル性能試験においては、冷却コイル出口内流況を確認しており、図4. 3-3に示すように、混合ガスが下向きの速度成分を持ちコイル内を斜め下方にコイル出口へ流出しており、冷却コイル下部においては、冷却空気の滞留も見られる。

このように冷却コイル性能試験では、冷却コイル下部の閉塞状況が測定されている。一方、冷却コイルトータル除熱量は、平均流速で評価した評価式での除熱量とよく一致する結果となった(図3.2-1参照)。

このことから、以下の考察を実施した。

Relation between the heat exchange capacity and the heat capacity

図4.3-4 冷却コイルの除熱量と熱容量の関係

図4.3-4に冷却コイルの除熱量と熱容量の関係を示す。ここで、縦軸は冷却コイル 高さを、横軸は各高さにおける除熱量を、長方形の枠は冷却コイルの熱容量を表したもの である。

冷却コイル性能試験では、冷却コイル下部での閉塞により、冷却コイル高さ方向での流速分布が発生したが、冷却コイルのトータル除熱量(qt=領域A+領域B)は、平均流速で評価した場合(閉塞が無い状態でコイル内を平均流速で流れた場合の)の除熱量(qa=領域A+領域C)とよく一致する結果となった(qt=qa)。これは、流入する混合ガスの保有熱量に対して、冷却コイルの熱容量に余裕があったために、冷却コイル下部での除熱量低下分(領域C)が、冷却コイル上部(領域B)で補完される結果となったためであると考えられる(図4.3-4 (a)の状態)。

これに対して、冷却コイル性能試験よりも高温高圧の条件を想定した場合(図4.3-4 (c)の状態)には、流入する混合ガスの保有熱量が増加するために、冷却コイルの熱容量の余裕が減少し、ある温度圧力以上になると冷却コイル上部での除熱が頭打ちになり(領域Bが寄与しない。領域B=0)、冷却コイル下部での除熱量の低下分(領域C)の補完ができなくなる可能性がある(qt-領域C(領域B)=領域A)ことが考えられる。

そこで、各圧力での混合ガス流速に対し、冷却コイル全伝熱面と伝熱に寄与しない部分 を除く有効な伝熱面との比率(有効伝熱率)を求め、除熱量評価において用いる。 有効伝熱率の評価においては、この条件で最も保守的と考えられる図4.3-4の(c)の状態を考慮している。具体的には、有効伝熱率(K)は、下式で示される。

K= (qt-領域C)/qa

ここで分子の"qt-領域C"は冷却コイルの下部無効領域を差し引いた有効伝熱領域(有効除熱量)で領域Aを示し、分母の qa は冷却コイルの全伝熱領域(全除熱量)で領域A+Cを示す。また、冷却コイル性能試験においては qa≒qt なので実際の評価では下式にて評価している。

K= 領域A ✓ (領域A + 領域B)

図4. 3-5 領域Aの求め方

枠囲みの内容は機密情報に属しますので公開できません。

このようにして求めた有効伝熱率は図4.3-6の通りであり、流速の増加とともに有効伝熱率は増加する傾向にある。有効伝熱率に影響を及ぼす<①凝縮水>、<②冷却空気の滞留>の2つの要因のうち、<②冷却空気の滞留>の方が有効伝熱率に対して支配的な要因と考えられる。これは、一般的に<①凝縮水>については流速の増加に伴い増加するが、冷却コイル性能試験の結果では、流速が増加しても伝熱性能が低下する方向とならなかったためである。

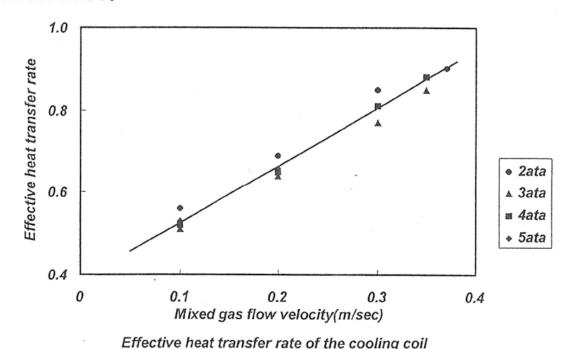


図4.3-6 冷却コイルの有効伝熱率

上記の結果は、2章「格納容器再循環ユニット冷却コイル性能試験概要(PWR5電力共研概要)」において、実機を模擬した単体(1段積み)の冷却コイルによる性能試験の結果を基に評価したものである。一方、実機は上下方向に設置された複数の冷却コイル(泊3号機は添付資料0図1-2に示す通り2段積み)で形成されている。有効伝熱率に対して支配的な要因である冷却空気の滞留に関しては、上下方向に積み重ねた方が滞留域から離れた冷却コイルの範囲が広くなるとともに、ドラフト力が増加するために冷却コイル出口の流速が増し、有効伝熱率の評価に用いた冷却コイル入口の流速も速くなる。したがって、コイル全体としては冷却空気の滞留の影響を受けにくくなるため、性能試験結果を適用することは妥当である。

4. 4 自然対流冷却の除熱量評価手順について

自然対流冷却時の除熱量は、ドラフト高さから引き起こされるドラフト力と系全体の圧力損失がバランスする冷却コイル入口混合ガス流速から求める。

実際の除熱においては4.3で示したように冷却コイル下部は閉塞が見られ除熱に寄与しない箇所があるため、有効伝熱率(K)を用いて、以下のように自然対流冷却時の除熱性能を評価している。

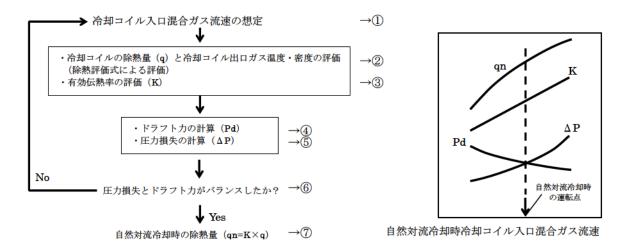
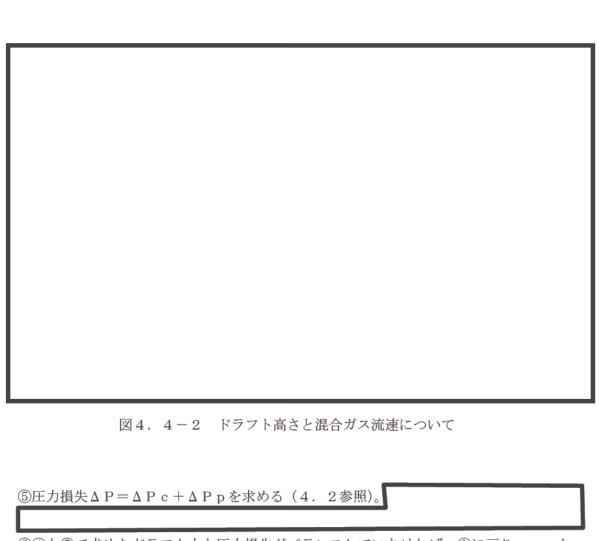



図4.4-1 自然対流冷却の除熱量評価フロー

ここで、

- ①冷却コイル入口混合ガス流速Vを想定する。
- ②除熱評価式により、上記流速Vと格納容器雰囲気条件を想定した場合の除熱量 q と冷却コイル出口ガス温度・密度を求める
- ③VからK値を求める(4.3参照)。
- ④ドラフト力Pdを求める(4.1参照)。

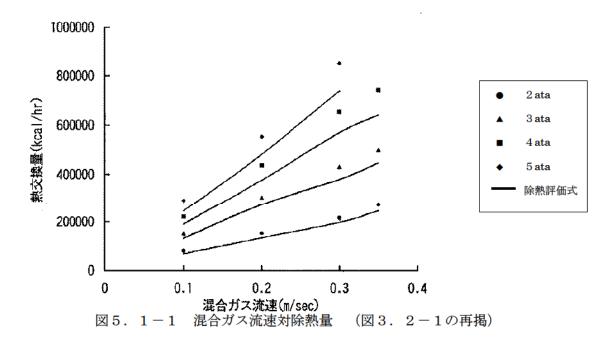
枠囲みの内容は機密情報に属しますので公開できません。

- ⑥④と⑤で求めたドラフト力と圧力損失がバランスしていなければ、①に戻りユニット 入口ガス流速Vを見直す。
- ⑦バランスしたユニット入口ガス流速Vと除熱評価式から求めた除熱量qにKを掛け自然対流冷却時の除熱量qnを求める。

上記の手順で格納容器内圧 (格納容器内温度) を変化させて求めた q n が参考資料 0 図 1-1の重大事故時の再循環ユニットの除熱性能曲線となる。

枠囲みの内容は機密情報に属しますので公開できません。

5章 除熱量計算手法の妥当性に関する考察


5. 1 不凝縮性ガスの除熱性能に対する影響について

(1) 不凝縮性ガスの影響について

格納容器再循環ユニットの除熱性能は不凝縮性ガスの影響(除熱性能、コイル下部の影響)を含む評価を実施している。

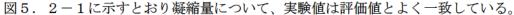
冷却コイル性能試験では、実機格納容器雰囲気条件を模擬した不凝縮性ガスを含む条件 にて、不凝縮性ガスの影響を含む冷却コイルの除熱性能、冷却コイル下部の影響を把握し ている。

冷却コイルの除熱性能について、試験結果と評価結果がよく一致しており(図5.1-1)、実機冷却除熱性能は試験により検証された除熱評価式を用いて評価している。

また、最終的な自然対流冷却除熱性能評価では、上記冷却コイルの除熱性能に対してコイル下部の影響を考慮した評価を実施している。

試験では、実機と同タイプ、同サイズの冷却コイルを用いているため、凝縮面の形状、 液膜の除去能力も実機と同等の影響を把握できているものと考えている。

(2) 生成される水素の影響について


原子炉格納容器内に水素が存在する場合に、格納容器再循環ユニットの除熱性能は水素 濃度に応じて変化するため、格納容器破損防止の観点で、ドライ換算で13vol%の水素が原 子炉格納容器内に存在する場合の感度解析を実施し、原子炉格納容器圧力及び温度に対す る影響を確認した。

ドライ換算で 13vol%の水素が格納容器内に存在する場合、原子炉格納容器圧力を約 0.011MPa の範囲で高めに評価し、原子炉格納容器雰囲気温度は1℃未満の上昇幅である。 従って、原子炉格納容器圧力及び温度は、それぞれ原子炉格納容器の最高使用圧力の 2 倍 及び200℃に対して十分余裕があり、水素濃度による不確かさを考慮しても、評価項目となるパラメータに与える影響は小さいことを確認した。(参考資料-6)

5. 2 冷却コイル性能試験範囲の妥当性について

表2-2に示すように、泊発電所3号機における再循環ユニットの使用温度条件に対し、 冷却コイル性能試験の実施範囲は少し低いものとなっていることについての考察を以下に 述べる。

冷却コイル性能試験では、凝縮熱伝達項を含む除熱評価式で算出された除熱量、凝縮量 と実験で測定された実験値を比較し、除熱評価式の妥当性を確認している。

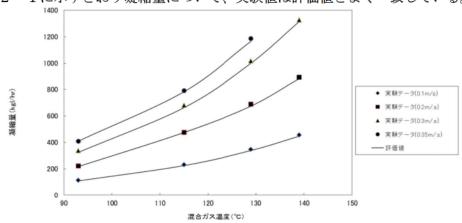


図 5. 2-1 実験による確証試験データと凝縮量評価との比較 (図 3. 2-2の横軸を変更したもの)

一方、全除熱量については、凝縮熱伝達量(水蒸気凝縮による潜熱除去)と対流熱伝達量(温度降下による顕熱除去)によって達成され、保守的に評価される(図5.2-2参照)。

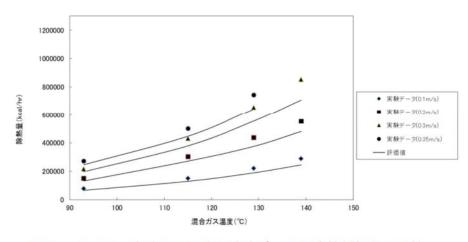


図 5. 2-2 実験による確証試験データと除熱評価との比較 (図 3. 2-1の横軸を変更したもの)

凝縮熱量の全除熱量に占める割合は実験値では約80~85%、評価値では約90%~95%となり、評価値が大きくなる理由としては、凝縮熱伝達量が実験値と評価値でよく一致していることから、対流熱伝達量が保守的に評価されていると考える。その理由として、混合ガスの熱伝達係数と温度降下量(凝縮液膜の温度)が保守的に評価されているため、対流熱伝達量は保守的な評価となっているが、この保守性は温度に依存しない。

以上から凝縮熱伝達については実験値と評価値でよく一致しており、全熱量についても 対流熱伝達の保守性により、保守的に評価されるが、その保守性は温度に依存しないこと から、除熱評価式は実験値から有効であるといえるため、冷却コイル性能試験の範囲を超 える範囲での評価も可能である。

なお、これらの除熱評価式、冷却コイル性能試験は共に飽和蒸気条件を前提としており、 有効性評価で自然対流冷却を期待しているいずれのシーケンスでも、蒸気条件は飽和状態 となっている。

6章 まとめ

重大事故時における格納容器再循環ユニットによる自然対流冷却の除熱性能を評価する にあたり、以下の事項を実施した。

- ・実機サイズの格納容器再循環ユニット冷却コイルを模擬した試験装置において、重大事 故時の格納容器雰囲気条件を模擬した試験を行い、冷却コイルにおける除熱評価式の検証 を実施した。
- ・冷却コイル性能試験において凝縮水や冷却空気の滞留による冷却コイル下部での閉塞(除熱の低下)が確認されたものの、冷却コイルでの熱容量余裕からコイル上部での除熱量が増加し、総除熱量については低下が見られない状況が確認された。そこで、冷却コイル性能試験よりも高温高圧の条件で冷却コイルの熱容量余裕がなくなることを保守的に想定し、除熱評価式を使った再循環ユニットの除熱性能評価においては、閉塞する冷却コイル下部分の除熱は期待しないものとして、評価を実施した。
- ・系統圧力損失として、冷却コイル部については、冷却コイル性能試験において測定した 出入口差圧に基づき抵抗係数を求めた。

上記を踏まえ、重大事故時の格納容器再循環ユニットによる自然対流冷却時の除熱性能 曲線を求めた。

参考資料-0 格納容器再循環ユニットの実機条件

1. 格納容器再循環ユニットの実機条件

格納容器再循環ユニットは、通常運転時において、冷却コイルに原子炉補機冷却水を通水し、格納容器再循環ファンによる強制循環によって、格納容器内の機器、配管等からの発熱を除去するために設置している。

また、重大事故時には、格納容器再循環ファンによる強制循環に期待せずとも、冷却コイルに原子炉補機冷却水又は海水を通水することで格納容器内の水蒸気を凝縮させ、自然対流による循環によって冷却し、格納容器圧力上昇を抑制できる。

以下に、格納容器再循環ユニットの実機条件を示す。

1. 1 実機の機器仕様・構造

(1)機器仕様

格納容器再循環ユニットは、4 個設置されており、通常運転時は 3 個、重大事故時は 2 個使用する。

種類:冷却コイル

容量 (注1): 約 0.59MW/個 (通常運転時)

約 6.7MW/個(格納容器最高使用圧力時の値(約 132℃)

約 7.6MW/個(格納容器最高使用圧力の 2 倍時の値(約 155℃)

(注1)	冷却水温度 32℃、	冷却水流量	における値

図1-1 重大事故時の格納容器再循環ユニットの除熱性能曲線

(2) 容量

格納容器再循環ユニットの容量は、通常運転時における格納容器内の環境維持のため の必要冷却能力を基に設定し、格納容器内を 49℃以下に維持するために必要な容量とし ている。

枠囲みの内容は機密情報に属しますので公開できません。
作曲がいい谷は筬色情報に属しまりいて公開しるません

通常運転時における格納容器内の発熱量は約 1.77MW であり、3 個の格納容器再循環 ユニットを使用するため、格納容器再循環ユニット1 個あたりの容量は約 0.59MW であ る。

また、重大事故時は、冷却水を通水した冷却コイルで水蒸気が凝縮することにより、冷却コイル出入口で密度差が生じ、冷却コイル入口と下部ダクト出口の高低差によるドラフト力で自然対流が発生し、格納容器内の熱を除去する。自然対流による除熱能力は、格納容器内雰囲気温度・圧力、ドラフト高さによる風量及び冷却水温度等により決まり、格納容器内雰囲気温度約 155℃において格納容器再循環ユニット1 個あたり約 7.6MWの除熱量が得られる。この格納容器再循環ユニットを2 個使用することにより、格納容器圧力を最高使用圧力の2 倍以下に抑えることができる。

(3) 格納容器再循環ユニットの構造

格納容器再循環ユニットの流路上には、冷却コイル、ダクトが設置されており、自然対流量の算出における圧力損失の評価では、流路上の全ての機器の抵抗を考慮し、これに基づく自然対流冷却の成立性を確認している。なお、泊3号機の再循環ユニットは冷却コイル4面に上下2段の計8個のコイルが設置されている。図1-2に格納容器再循環ユニットの概要図を示す。

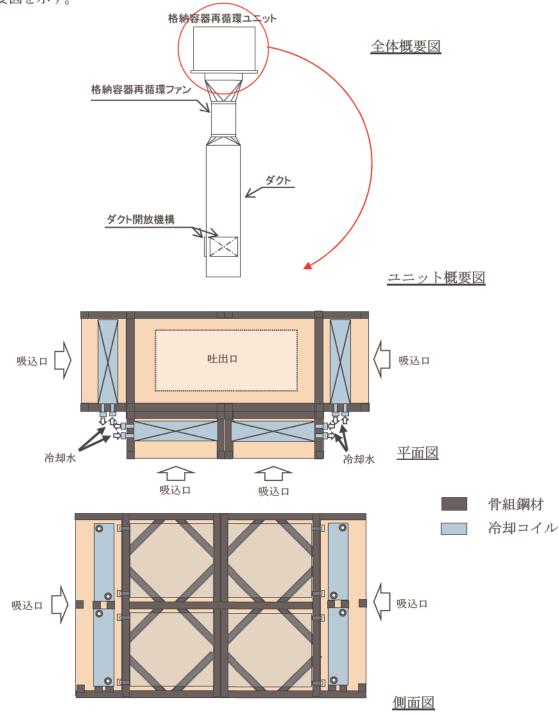


図1-2 格納容器再循環ユニット構造概略図

(4) 格納容器再循環ユニット冷却コイルの構造

格納容器再循環ユニットの冷却コイルは、冷却フィンとコイルで構成されている。 図1-3に冷却コイルの外観を示す。

冷却水ヘッダー部 (冷却水温度計測用熱伝対取付状態)

チューブベント部

図1-3 冷却コイルの外観(冷却コイル性能試験で使用のもの)

泊3号機の格納容器再循環ユニットでは、冷却コイルにハーフサーキット型が使用されており、これは、PWRプラントの格納容器再循環ユニット冷却コイルの型式では最も多く使用されている。

図1-4にハーフサーキット型冷却コイルの側面及び鳥瞰図の概念図を示す。ハーフサーキット型冷却コイルでは、空気の流れに対して冷却水はまず下流から上流へ行き来して流れるので、ハーフサーキットでの分配本数はチューブ本数に対して半分となる。

側面図	鳥瞰図

図1-4 ハーフサーキット型冷却コイル概念図

本囲みの内容は機密情報に属しますので公開できません。

(5) ダクト開放機構

泊3号機の通常時の再循環ダクトの吹出口はダクト最下端部の1箇所に設置されており、 重大事故時には、吹出口のフェールクローズ (F.C) のダンパが閉止する。また、水没する ことが想定されることから、水没しないレベルにダクト開放口を新たに設置し、開放口に 開放機構を設置した。(図1-5, 6、表1-1)

a. ダクト開放機構動作原理

格納容器内雰囲気温度が上昇し、ダクト開放機構駆動装置に取り付けられたメルティングヒューズ (①) が溶断することにより、ダクト開放機構の操作ハンドルの回転を止めているヒューズ押出しピン (②) が引き抜かれ、作動スプリング (③) により操作ハンドル (④) が回転しダクト開放機構が開放される。

b. ダクト開放機構の開放設定温度

格納容器再循環ユニットによる格納容器内自然対流冷却は、格納容器圧力が最高使用 圧力に達した後に開始することを想定している。このため、ダクト開放機構のメルティ ングヒューズの設定温度は、格納容器の最高使用圧力に対する飽和温度(約 132℃)に 対して十分な裕度を考慮し 110℃に設定している。

なお、この温度設定より低い温度設定の標準品としては、72℃の温度設定のものがあるが、格納容器再循環系統の最高使用温度 65℃を考慮するとダクト開放機構が誤作動した場合、格納容器下部への冷却空気が減少し、RCP や RV などの冷却に悪影響を及ぼす懸念があるため採用しない。

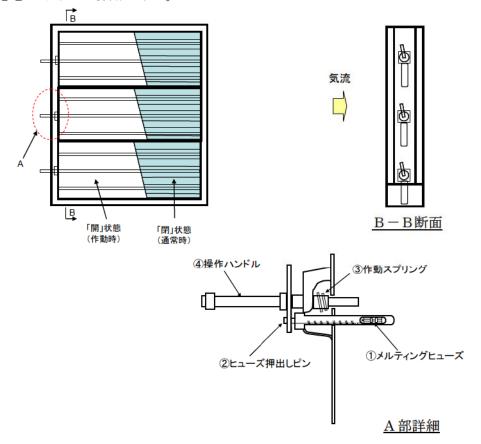


図1-5 ダクト開放機構概略図

表1-1 各事故シナリオにおける再循環ファン・再循環ダクト吹出口の状況

	各シナリオでの状況		ニットでの おける条件
有効性評価シナリオ	吹出口(最下部) の水没状況 C,D系:T.P.21.9m (格納容器内水位)	再循環ファン の稼動状況	想定する 吹出口
原子炉補機冷却機能喪失	水没せず		
(全交流電源喪失	T. P. 約 13.7m		
+RCP シール LOCA)	(約1,800m³)		
格納容器の除熱機能喪失	水没せず		
(大 LOCA+低圧再循環失敗	T. P. 約 13.7m	 考慮せず	
+格納容器スプレイ失敗)	(約1,800m³)	与慮せり (自然対流冷	ダクト開放
格納容器過圧破損	水没せず	却で評価)	機構
(大 LOCA+ECCS 注入失敗	T.P.約17.8m	四个开侧)	
+格納容器スプレイ注入失敗)	(約3,600m³)		
格納容器過温破損 (全交流電源喪失+補助給水失敗)	水没せず T.P.約17.0m (約3,200m³)		

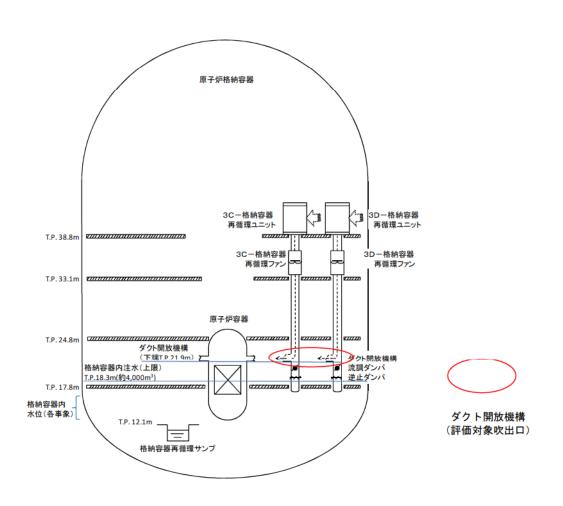
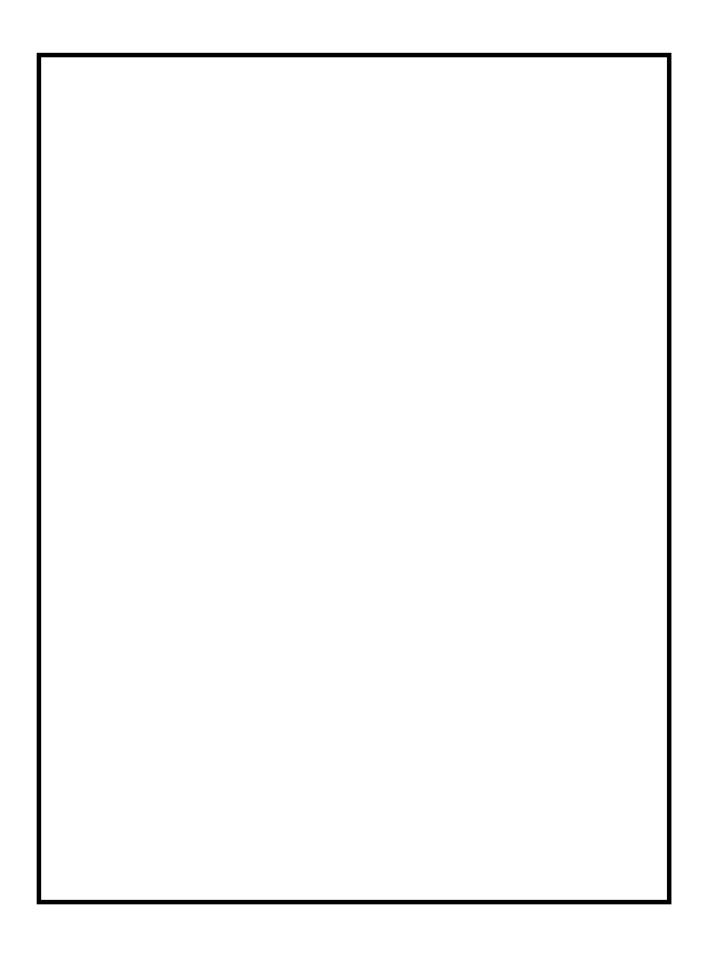


図1-6 格納容器再循環ユニット配置概要図 (原子炉格納容器断面図)

(6) ダクト開放機構の信頼性

ダクト開放機構については、重大事故時の環境下において、電源や空気源に頼ることなく、静的、且つ温度上昇に対して確実に開放できる仕組みとしてメルティングヒューズを使用したダクト開放機構を選定しており、開放機構の基本的な構造は防火ダンパと同様である。

また、過去の研究**において自然対流冷却の流路確保に対するダクト開放機構の信頼性 を確認することを目的として、下表のようにメルティングヒューズの単体特性試験及び 作動性能実証試験を実施し、ダクト開放機構の作動性能を検証しており、高い信頼性が あることを確認している。


なお、泊発電所のメルティングヒューズ納入時にも、納入するメルティングヒューズ と同じロット番号のメルティングヒューズを使用し、単体特性試験を実施した結果、設 定温度110 \mathbb{C} に対して、+0 \mathbb{C} \sim -6 $\mathbb{$

また、ダクト開放機構についても、電共研による作動性能実証試験において成果を得られた試験体と同仕様品を採用している。

※ 「電力共同研究アクシデントマネージメント要素技術の実証に関する研究

(平成6年度最終報告書)」

	公開でき	きません。
--	------	-------

(7) 実機配置

泊3号機では、重大事故時の自然対流路を確保するためにメルティングヒューズで開放するダクト開放機構を T.P.38.8m 設置の2台 (C、D) の再循環ユニットの下部ダクトに設置しており、この開放機構 (T.P.17.8m フロアに設置) を評価対象としている。

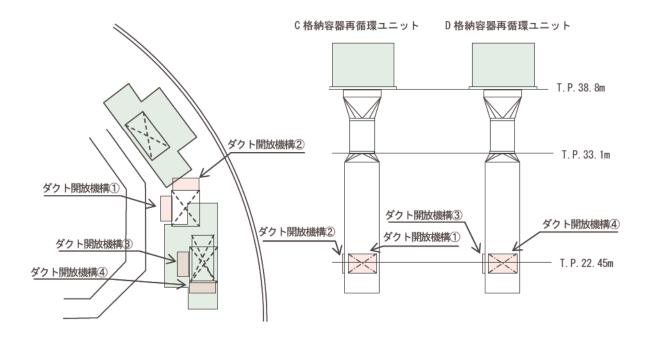


図1-9 格納容器再循環ユニット及びダクト開放機構配置概略図

参考資料-1 冷却コイル高さ方向での熱容量の裕度について

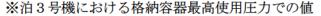

格納容器再循環ユニット冷却コイル性能確認試験にて試験を実施した条件のうち、泊3号機における格納容器最高使用圧力(0.283MPaG = 3.9ata)とほぼ同等な冷却コイル入口混合ガス条件(表 1 参照。圧力 4ata、温度 130 $^{\circ}$ $^{\circ}$ における冷却コイル高さ方向での冷却コイルの熱容量の余裕を確認するために、冷却コイル高さ方向での冷却な図 1 に整理した。

図1を見ると、コイル高さが高いほど冷却水出口温度は高く、コイル高さが低いほど冷却水出口温度は低いことがわかる。冷却水の温度上昇分が除熱量であるため、コイル高さが高いほど除熱量が大きく、コイル高さが低いほど除熱量が小さいことがわかる。

除熱量の最も大きい条件は、混合ガス流速 0.4 m/s におけるコイル高さ 1.2 m のポイントであり、このポイントでの冷却水出口温度は $88 ^{\circ}$ であるので、混合ガス温度約 $130 ^{\circ}$ に比べて、約 $40 ^{\circ}$ の冷却水温度の余裕があることがわかる。

24	XI PWATICAWATIC VILLA				
	実験条件	泊3号機*			
全圧	4ata	約 3.9ata			
温度	約 130℃	約 130℃			
混合ガス流速	0.1~0.4m/sec	約 0.25m/sec			

表1 試験条件と実機条件との比較

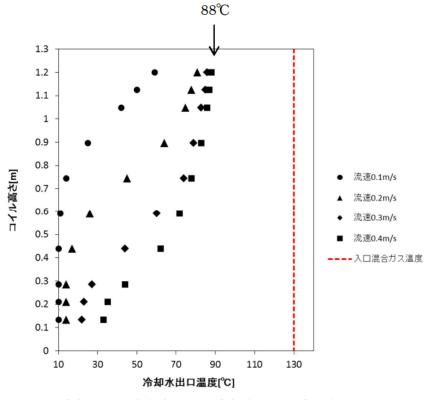


図1 冷却コイル高さ方向での冷却水出口温度分布

参考資料-2 エアロゾルによる自然対流冷却除熱性能劣化について

泊3号機における格納容器破損防止対策の代表シナリオである「大破断 LOCA+ECCS 注入失敗+CV スプレイ失敗」シナリオでは格納容器内のエアロゾル浮遊濃度は、MAAP 解析の結果より最大で約 3700 mg/m^3 である(図1)。これを見ると、事故時急激にエアロゾルが発生するが、代替 CV スプレイ水により 3時間程度で除去されていることがわかる。

一方、本シナリオにおける格納容器再循環ユニットによる自然対流冷却の開始時刻は、 エアロゾルが除去されて以降であるので、自然対流冷却開始時点では格納容器内に有意な エアロゾルの浮遊はないことがわかる。

従って、格納容器再循環ユニットによる自然対流冷却について、エアロゾルによる有意 な除熱性能劣化の影響はないものと判断できる。

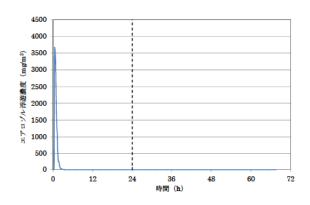


図1 エアロゾルの浮遊濃度(ドーム部)

(大破断 LOCA+ECCS 注入失敗+CV スプレイ失敗+代替 CV スプレイ成功) シナリオ

1. はじめに

本資料は、格納容器再循環ユニット内の局所的な水素濃度上昇による水素燃焼の影響についてまとめたものである。なお、格納容器再循環ユニット内に着火源はないためユニット内からの水素燃焼は想定しがたいが、冷却コイル出口ではドライ環境のため入口より水素濃度が相対的に上昇することを踏まえ、念のために機器への影響を確認することを目的とする。

2. 爆轟と爆燃における圧力伝播と圧力分布の違い

爆轟では、火炎は音速を超えた速度で伝播するため、火炎の直前に衝撃波が形成され、 火炎からのエネルギー放出により衝撃波が減衰することなく伝播し続けるものとなる。

空間内の圧力分布を考えると、爆轟では火災伝播は圧力の伝わる速度より速く局所的に 圧力が大きく上昇するため、非常に大きな被害が出やすいが、爆燃では圧力変化(音速で 伝わる)は火炎伝播より十分速く空間内に伝わる。このため、燃焼による圧力上昇は閉空 間全体で平均化される。

イグナイタが着火する 8%vol%程度の水素濃度では、火炎伝搬速度は小さく爆轟に至らないため、仮にダクト内又は外で着火・伝播しても、ダクトに有意な圧力(内外圧力差)は生じない。

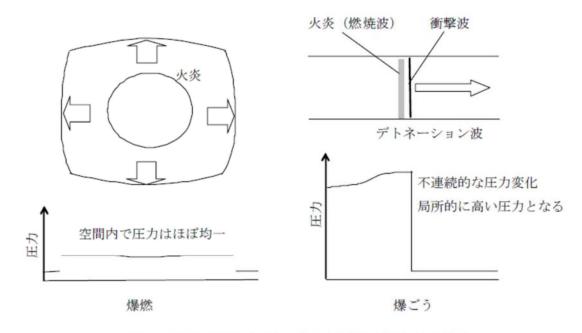


図1 爆燃と爆轟での圧力分布(参考文献(1)より引用)

3. 単純な体系での評価

(1) 一般的な知見

内容積 2L のステンレス製円筒容器 (102mm $\phi \times 210$ H 観測窓付)を用い、着火は容器中心部において、電気スパーク (15kV のネオントランス)を用いて室温、大気圧下で行った水素/空気混合ガスの爆発圧力特性の測定結果を図 2 に、測定装置の概略を図 3 に示す。8%程度では、爆発過圧力は、100kPa~200kPa の間にある。

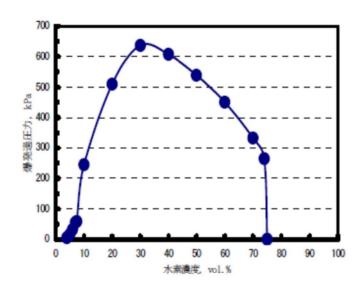


図2 水素/空気混合ガスの爆発圧力(参考文献(1)より引用)

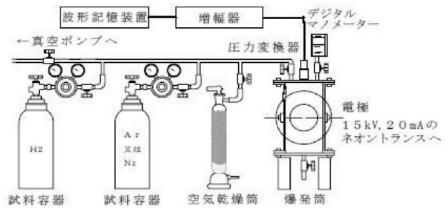


図3 水素の爆発特性測定装置(参考文献(1)より引用)

(2) 火炎伝播解析による評価

1m³、8m³及び64m³の立方体(閉空間)に一様濃度の水素と空気との予混合気が形成されている場合の最大過圧(燃焼終了時)を水素の燃焼解析で求め、その計算結果を表 1 に示す。理論的には以下の式が成り立つが、別途実施した水素濃度 20%の計算結果は文献値より少し低めではあるが、8%および30%を含めて、凡そ文献値とほぼ同じ値を示している。水素濃度 8%程度の場合、計算では最大過圧は160kPaであった。

8%の水素が全て燃焼した時の到達圧力は、図4に示すとおり、容積(1m³、8m³及び64m³) が異なっても最大で160kPaであり、到達圧力が同じであることを確認した。なお、圧力の時間に伴う上昇は、体系内のどの地点でもほぼ同じ圧力のまま上昇していく結果となっている。このことは、図1に示した爆燃までの燃焼では、燃焼に伴う局所的な圧力の増加は体系内に速やかに均一化されることを裏付けている。

以上より、8%の水素濃度で水素がすべて燃焼しても、区画内の設置されている機器の表面で圧力差は小さく、健全性が脅かされることはない。

 H2濃度
 文献値(*)
 計算結果

 8%
 100~200kPa
 160kPa

 20%
 500kPa
 400kPa

 30%
 640kPa
 600kPa

表 1 最大過圧

(*): 参考文献1より引用

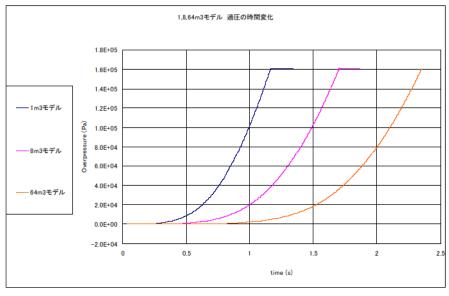


図 4 1m³、8m³及び64m³での圧力変化(H₂濃度8%)

4. ダクト体系での確認

これまでの知見では、配管類で爆轟が生じたのは、片端又は両端が閉ざされた閉空間で水素濃度が高濃度に蓄積したもので起こっているので、PWRのユニット・ダクトのような両端が開放された構造、水素濃度が高くない(ドライ水素濃度 13%未満)条件では爆轟は発生しないと考えられる。

しかしながら、ダクト内では、火炎の伝播方向が限定され、火炎加速が比較的起こり やすいと考えらえること、及びダクト内で水蒸気が凝縮して水素濃度が高濃度になる可 能性を想定し、

- ・ダクト内13%濃度均一(解析水蒸気凝縮による水素濃度増加を考慮し、GOTHIC 解析のCVドライ平均水素濃度の最大値を包絡する値を設定)
- ・ダクト外(部屋内)8%均一
- ・ダクト内で何らかの理由で着火仮定

の条件で火炎伝播及び圧力伝播解析により、爆燃の範囲でもダクトユニットの健全性 に影響するような内外圧差が生じないことを評価した。

4. 1 ダクト内での着火

(1)解析体系

解析体系を図5に示す。点火位置はダクト上部開口端の中央とした。

(2)解析結果

図6に燃焼率コンター図を示すとおり、区画内の燃焼は1秒以内で終わっている。ダクト内の圧力はダクト上部と中央部の開口部から抜けるため内部からの圧力上昇値は高くないが、ダクト内での燃焼終了後もダクト外での燃焼が下部で続いているため、区画内の燃焼終了間際にダクト外部の圧力が内部に比べて若干高くなる。この時の自然対流路(ダクト開口部より上側)の内外差圧は表2及び図7に示すとおりであり、過渡的にも再循環ユニットダクトの許容圧力内に収まる結果となった。

表 2 自然対流路の内外圧差評価結果

自然対流路の内外圧差最大値	泊3号機の再循環ユニット		
	ダクトの許容圧力		
約 7kPa	約 19.6kPa(*)		

(*): カタログ保証値

4. 2 ダクト外での着火

(1)解析体系

解析体系を図8に示す。なお、着火点は実機の離隔距離を踏まえ、ダクトから3mとした。

(2)解析結果

図9の燃焼率コンター図に示すとおり、区画内の燃焼は1秒以内で終わっている。

ダクト下端部が閉口であるため、火炎はダクトの外側を取り囲むように進む。火炎がダクト中央部に到達すると、ダクト中央部からダクト内部にも広がり、ダクト内においても上下方向に進むが、ダクト内の下方へ火炎伝播は、上方と比べ、下端が閉構造のため、閉端部での圧力が次第に高くなることからダクト内下端方向への燃焼ガス膨張が妨げられ、火炎はダクト外側よりも緩やかに伝播している。その後、火炎はダクト上部を抜け、火炎は消失している。火炎伝播の時間差によりダクト内外の圧力差が生じるが、自然対流路(ダクト開口部より上側)の内外差圧は最大でも表3及び図10に示すとおりであり、過渡的にも再循環ダクトの許容圧力内に収まる結果となった。

表 3 自然対流路の内外圧力差評価結果

自然対流路の内外圧力差最大値	再循環ダクトの許容圧力
約 4.4kPa	約 19.6kPa(*)

(*): カタログ保証値

5. まとめ

解析によるダクト体系での確認により、最も厳しいと考えらえる水素濃度が高い条件 で燃焼したとしても、ダクトに損傷を与える程度の圧力差は生じないことを確認した。

また、温度の面については、燃焼時の雰囲気の温度は上昇するが、周囲の壁等への放熱(主に輻射熱伝達)により低下する。この雰囲気の温度変化に対して、金属機器類は、雰囲気より大きな熱容量を持つため、温度の上昇は緩やかとなる。例として、8%水素濃度均一区画内での燃焼を解析した結果、ダクトのような薄板の機器であっても燃焼時の表面温度の上昇は約40℃以下となり、ダクト構造に影響を及ぼすことは考えられない。

以上より、格納容器再循環ユニット内で万一水素が燃焼した場合を仮定しても、機器 の機能に影響を及ぼすことはないと考える。

参考文献(1) 水素の有効利用ガイドブック 平成 20 年 3 月 (独) 新エネルギー・産業技術総合開発機構

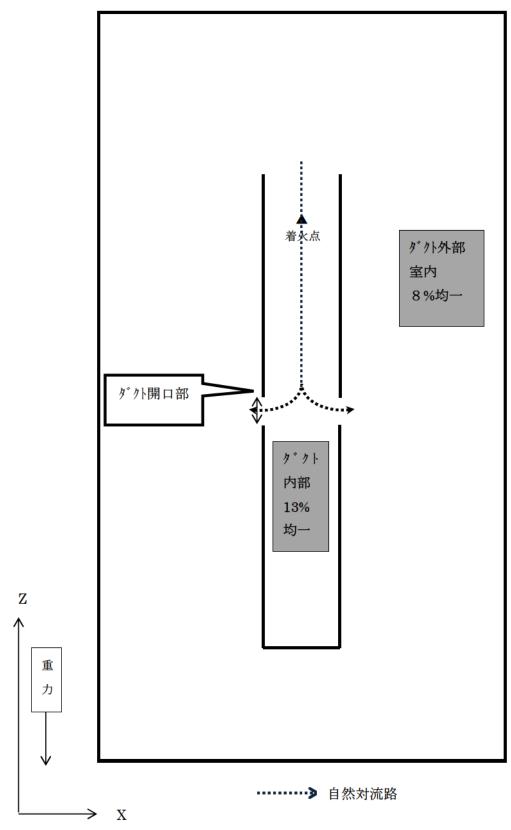
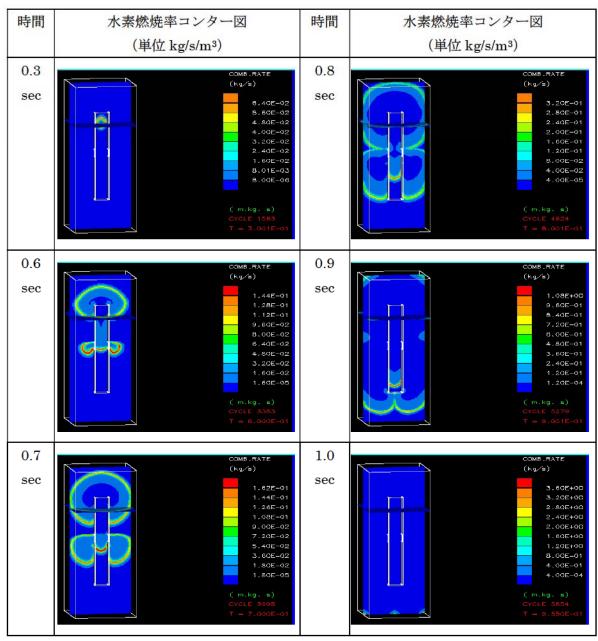
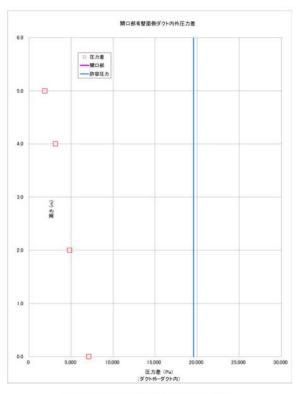
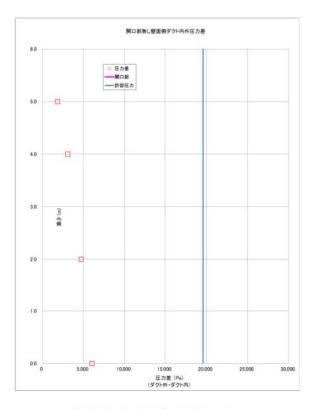




図5 ダクト内外火炎伝播解析体系図 X-Z 断面 (Y-Z 断面も同様)



(単位 kg/s)

図6 水素燃焼率コンター図

(1) 中央開口部のある面

(2) 中央開口部のない面

図7 軸方向位置におけるダクト内外圧力差 (0.955 s)

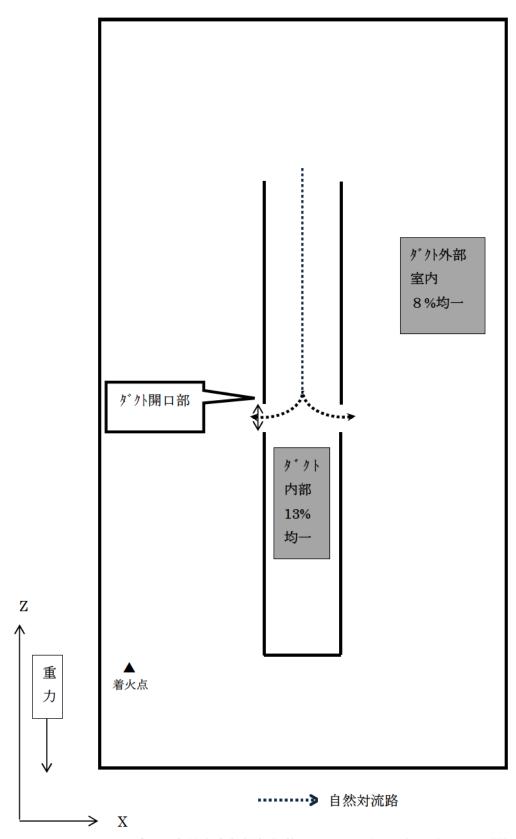
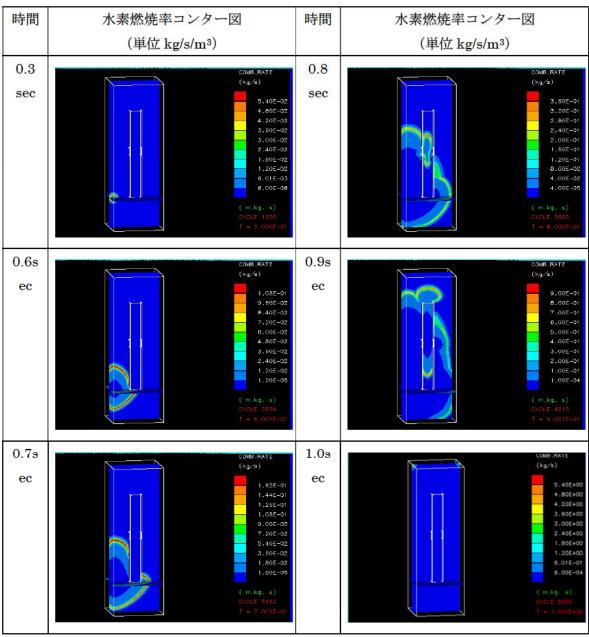
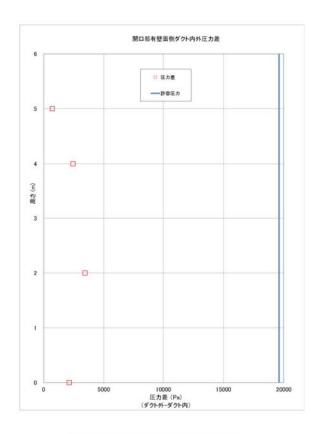
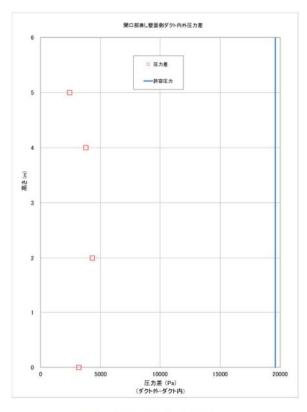




図8 ダクト内外火炎伝播解析体系図 X-Z 断面 (Y-Z 断面も同様)



(単位 kg/s)

図9 水素燃焼率コンター図

(1) 中央開口部のある面

(2) 中央開口部の内面

図10 軸方向位置におけるダクト内外圧力差 (1.006 s)

過去の燃焼試験の整理からの考察

過去の水素燃焼に関する試験等の知見を表 1 に整理した。上表に開放空間または X,Y,Z の 寸法が同等の閉囲空間での水素燃焼試験の条件を、下表に細長い閉囲空間(管路、ダクト系)での水素燃焼試験の条件を示している。爆轟が発生するのは、過去の試験等では、下表のような細長い配管類に水素と支燃性ガスがドライに近い条件で閉じ込められた場合であり、ダクト・配管以外の広い空間での火炎伝播試験の体系では、水素濃度が 13~15%(ドライ水素濃度)でも、爆轟は発生していない。ウェット条件になるとさらに高濃度の水素でも発生していない。

また、過去の細長い体系(管路、ダクト)での水素燃焼試験結果と再循環ダクトの体系の 比較を表2に示す。

RUT 試験から、約11%未満の水素濃度では、障害物の有無に係らず、爆燃止まりであるのに対して、12.5%以上の水素濃度では障害物がある場合にのみ爆轟が発生している。

労働省産業安全研究所の試験では、両端又は片端が閉の場合には、障害物の有無に係らず 爆轟が発生している。この結果から、両端又は片端が閉の場合では、障害物がなくても配 管の長さと径の比(L/D)が大きく、30%程度の高水素濃度の場合は爆轟に転移する可能性が 高いことが分かる。

SRI の試験結果においては、両端が開放の場合でも水素濃度 30%の水素濃度で障害物がある場合に爆轟が発生している。この結果から、配管の両端が開口の場合でも、L/D が大きく、30%程度の高水素濃度で障害物がある場合には、爆轟が発生する可能性があることが分かる。

NUPEC の大規模試験は、内径 8m の球体系(270m³)で多区画(11 区画)である特徴があり、この球体系の中に円周約 16m、口径 1m のドーナツ状 8 角形空間があるが、15 %(ドライ) 大気圧の条件でも爆轟は発生していない。この結果から、複数の開口部があり、L/Dが 20 未満と比較的小さい体系では、15%程度の水素濃度でも爆轟は発生しない傾向にあることが分かる。

以上を整理すると、爆轟発生の条件として、以下の条件が挙げられる。

- ✓ 水素濃度が12.5%未満では障害物の存在に依存しないが、12.5%以上では水素濃度と共 に障害物が存在した方が爆轟の可能性が高まる。
- ✓ 配管の両端が開口の場合でも、L/D が大きく、30%程度の高水素濃度で障害物がある場合には、爆轟が発生する可能性がある。
- ✓ 両端又は片端が閉の場合では、障害物がなくても L/D が大きく、30%程度の高水素濃度の場合に爆轟に転移する可能性が高い。
- ✓ L/D が 20 未満と比較的小さい体系では、15%程度の水素濃度でも爆轟は発生していない。

実機での細長い体系である再循環ダクトでは、保守的に水蒸気凝縮による水素濃度増加を 考慮し、GOTHIC 解析の CV ドライ平均水素濃度の最大値を包絡する値として、ダクト内 の水素濃度を保守的に 13%とした場合においても、開放された系であり、ダクト内には障 害物がない。また、L/D も 10 未満であり、過去の爆轟事例のいずれの条件にも当てはまら ない。

表 1 過去の水素燃焼に関する試験等の知見

2 箇所の上部区画への開口部 あり 100% 水素高圧(40MPa~)貯 蔵ククイに漏えい孔を設置し、大 気への放出後に着火。 備考 爆轟の発生の有無 なて なて なて なて なて なし 配管の長さ (T) と 径 (D) の比 (L/D) ■ 開放空間または X.Y.Z の寸法が同等の閉囲空間での水素燃焼試験の条件の整理(爆轟が生じなかった試験結果のみ) 該当なし 該当なし 該当なし 該当なし 約 2.3 約 16 (水蒸気濃度 0~60vol%) (水蒸気濃度 4~40vol%) $5.6 \sim 12.7 \text{vol}\% \ (\eta_{\pi \gamma})$ 6,8,10 vol% (\\dip \inj\) 5,50vol% (\\dip \text{1.9} \rangle 20%) 30vol% (\$\pi_2\$\} 40%) 8~15 vol% (\\^\dagger \\74) 5~15vol% (\\"74) $5.5 \sim 14 \text{vol}\%$ 水素濃度等 $5\sim13\text{vol}\%$ 手すり状の細長い オリフィス4箇所 障害物の有無 ものがある なし なて なし なて 100%水素高圧(40MPa~)貯蔵クンク に漏えい孔を設置し、大気への放 出後に着火 円周約 16m、口径 1m のドーナツ 状8角形空間 半径 16m の球体系(2100m³)、 内径 8m の球体系(270m³) 特徴:多区画 (11 区画) 開空間 (5m³の小体系) 特徴:広い自由空間 特徵:多区画 試験体系 640m³大規模 小規模 \Re NEDO 試験 NIS 試驗 BMC(独) NUPEC 試験 NUPEC EPRI 試験

爆轟が発生するのは、過去の試験等では、下表のような長い配管類に水素と支燃性ガスがドライに近い条件で閉じ込められた場合であり、上表のようなそれ以外の体系では、ドライ濃 度 13,14,15%でもそれぞれ爆轟の発生は認められていない。 ウェット条件になるとさらに高濃度の水素でも生じていない。

ガケト 2/2) かのず 計楽 再 学 零 の 冬 子 の 英田 (西灣 大 8 子) す (千 ご ナ 4 す) 弁 田 か 今 4 ら)

神長い別用空間	■ 神長い閉囲空間(冒路、タクト系)での水素燃焼試験の条件の整埋(豫櫓が発生した(生じさせた)結果を含む):	、験の条件の整理(療	쀆か発生した(生じさせた	:) 結果を含む):		ON THE PARTY OF TH
試験、他	試験体系	障害物の有無	水素濃度等	配管の長さ (L) と	配管の長さ (I) と 爆轟の発生時の条件等	爆轟が発生しなかった条件等
				径 (D) の比 (L/D)		
RUT 試験 (露)	RUT 試験 (露) 70 m の閉鎖空間 (480m³)	12 / 設置	() € , ⟨) %Ioa09~	約 28	% ५ ५	水蒸気 15vol%のウェット条件で
OECD/EU	$(2.3\text{mW}\times2.5\text{mH}\times70\text{m})$		(ウェット条件でも実施)		12.5vol%(ドライ)で爆轟発生。	は、同一体系でも爆轟は発生
						甘寺。
NUPEC(&米NRC)	NUPEC(&米NRC) 爆轟管:2体系。両端部とも閉端		(オリフィス)を 約 5~約 50vol%	8SDA 試験:約60	94	同一体系に、ベントによる開
高温燃焼試験	構造。	多数設置。	(水素-空気系、水蒸気-水 HTCF 試験:約78	HTCF 試験:約78	300K 条件では 15%(ドライ)か	300K 条件では 15%(ドライ)か 放のパスを追加した試験では
	·10cm 内径×6.1m (SSDA 試験)		素-空気系)		ら、650K 条件では11%(ドラ 爆轟は発生せず。	爆轟は発生せず。
	・27cm 内径×21.3m (HTCF 試験)				()から、それぞれ爆轟発生。	
SRI	約 10m の爆轟管。一端は開構造。	障害物	有(7,13,25 20~57vol%	92 6	64	障害物無しでは爆轟発生せ
(NEDO We-Net)		個)・無の両クース			障害物設置時に爆轟発生。	360
労働省産業安全研 爆轟管	爆轟管 :	障害物(スパイラル線) 30vol%(ドライ)	30vol%(ドライ)	約 75~325	68	管の両端部とも開の場合は爆
究所 試験	・28mm 内径×管全長 2.1m~9.1m	の有無				轟は発生せず。(障害物設置の
_	年後・提致の間/問約な合わせ					神へよ)

	王な試骸条件、体氷	水素濃度(ドライ)	障害物、閉塞率	端部構造	L/D(長さ/径)	爆轟発生の有無
		13%より上	● あり(対)742、スパ イラル)	●両端又は片端が閉	三20 以上	●発生
		〇13%以下	Oなし	○両端とも開放	〇20 未満	〇未発生
RUT 試験	水素濃度:9.8~14% (ドライ)	8.6:0	0	● 両端閉	• : 28	0
	長さ:65m	$\bigcirc: 11$	●:30%(閉塞率)	↓ •	↓ : ●	0
		$\bigcirc:11.2$	%09 : ●	↓ ●	↓ : ●	0
	【実機がかい、ルナ法】	$\bigcirc: 12.5$	0	↓ ●	↓ : ●	0
	障害物:12 ヶ固定	$\bigcirc: 12.5$	●:30%	←	← •	•
		$\bigcirc: 12.5$	%09 : ●	↓ ●	↓ : ●	0
		•:14	0	←	. : ●	0
		•:14	% 09∶ ●	←	-:	•
労働省	水素濃度:30% (ドライ)	●:30	0	0	● : 75~325	0
産業安全研究所 試験	L: 2.1~9.1m	●:30	● : スパイラル	0	← ::	•
	D: 0.028m	●:30	0	● 片端閉(反点火側)	- :	•
	【爆轟試験管サイズ】	●:30	● : スパイラル	←	← ::	•
	障害物:多数		0	■ 片端閉(点火側)	← ::	•
		08∶●	477 ° 177 €	↓	↓ :	•
		●:30	0	● 両端閉	↓ : ●	•
		●:30	1, 3, 1, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	↓ ●	↓ : ●	•
NUPEC & USNRC	水素濃度:17~約 60%	•:17	●:57%	●: 両端閉	9: 78	•
	L:21.3m, D:0.27m	0 : 20	← ::	↓ :	. :	•
	【爆轟試験管+イズ】	●:30	↓ :	↓ .: •	← ::	•
	障害物:多数					
SRI プロジェクト試験	水素濃度:20~57%	• : 20	32%	●:片端閉(点火側)	• : 56	•
	長々:9.9m	: 24	↓ : ●	↓ :	↓ : ●	•
		●:30	↓ : ●	0	← ::	•
	【爆轟試験管+イズ】	● :20	0	●:片端閉(反点火側)	↓ : ●	0
	(全13 ケース)	• : 20	• : 65%	. :	↓	•
	障害物: 最大 25 値	●:30	0	↓ : ●	↓ : ●	0
			0	↓ : ●	↓ : ●	0
		●:30	9 : 65%	↓ : ●	↓ : ●	•
		• : 57	↓ : ●	↓ : ●	↓ : ●	•
		. 57	32%	↓ : ↓	↓ : ●	•
		●:30	↓ : ●	↓ : •	↓ : ●	•
		08∶●	↓ : ●	↓ : •	↓ : ●	•
		●:30	• : 47%	← 	← .:	•
NUPEC 大規模試験	一般部 ドーナツ八角形状	8:0	0	○:複数個所に関口部	0:16	0
	D:1m、全周:16m	$\bigcirc:12$	0	↓ : ○	↓ : ○	0
	【実機がかいがルサ法】	•:15	0	↓ : ○	0:↓	0
	水素濃度:5~15%				- 1	
Ctr 肝角菌 ゴェー (4 年		****	_	○・	0 6	

参考資料-4 格納容器再循環ユニットによる自然対流冷却時の沸騰防止運用について

1. はじめに

原子炉冷却材喪失事故(LOCA)+全交流動力電源喪失(SBO)+最終ヒートシンク喪失(LUHS)の事象を想定するような重大事故発生時において、格納容器の自然対流冷却を実施するために可搬型大型送水ポンプ車による格納容器再循環ユニット通水時における沸騰防止運用について纏めた。

2. 系統圧損評価について

格納容器過温破損(全交流電源喪失+補助給水失敗)における格納容器雰囲気温度の最高値は約 141 ℃であり、格納容器再循環ユニット内部における流体条件を保守的に格納容器雰囲気温度と同等である 141 ℃とした場合の飽和蒸気圧は 0.272MPa(gage)[約 28m]となる。

この場合、格納容器再循環ユニットへの機器、配管・ホース及び弁類の圧損、静水頭差、 取水源と移送先の圧力差の合計揚程は下表のとおり である。

項 目 必要揚程
機器圧損
(可搬型大型送水ポンプ車~格納容器再循環ユニット出口)
配管・ホース及び弁類圧損
(可搬型大型送水ポンプ車~格納容器再循環ユニット出口)
静水頭差(可搬型大型送水ポンプ車~格納容器再循環ユニット)
取水源と移送先の圧力差
(沸騰防止のための格納容器再循環ユニット出口保持圧力)
合 計

表-1 沸騰防止運用に必要な可搬型大型送水ポンプ車の必要揚程

- * 保守的に重大事故シーケンス「格納容器過温破損(全交流動力電源喪失+補助給水失敗)」 における格納容器雰囲気温度を基に設定
- 注 可搬型大型送水ポンプ車を T.P.10m (ポンプ吸込位置 (T.P.11.25m)) に設置し、通水 した場合の評価。

格納容器自然対流冷却を実施するために可搬型大型送水ポンプ車を用いて格納容器再循環ユニットに海水を通水する際には、格納容器再循環ユニット出口圧力計(格納容器外)にて圧力を確認しながら海水排水ラインに設けられた流量調整弁(格納容器外)を操作し、格納容器再循環ユニット内での沸騰を防止する。

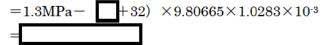
ı	地田7、の中央は桃皮は却に見る	ナナカフ	い田ポモナル)
1	枠囲みの内容は機密情報に属	しまりのし	公用でさません。

3. 格納容器再循環ユニット出口における沸騰防止可能な格納容器内温度について

(1) はじめに

可搬型大型送水ポンプ車を用いて格納容器再循環ユニットに海水を通水する際に格納容 器再循環ユニット出口における沸騰を防止することが可能な格納容器内温度を検討した。

(2) 検討内容


格納容器再循環ユニット出口圧力は、静水頭差(再循環ユニット出口最高点高さ一可搬型大型送水ポンプ車設置高さ)、通水ラインの圧損、可搬型大型送水ポンプ車の吐出圧力により求められ、その圧力が格納容器再循環ユニット出口における沸騰防止に寄与する圧力と考えられる。

泊3号機で配備する可搬型大型送水ポンプ車の設置高さと格納容器再循環ユニット出口の最高点高さより求めた静水頭差、通水ラインの圧損、及び可搬型大型送水ポンプ車の吐出圧力は以下のとおりである。この時、格納容器再循環ユニット出口圧力はとなり、この飽和蒸気温度に相当するまで沸騰防止が可能と考えられる。

【評価条件】

静水頭差:	32m
通水ライン圧損:	
可搬型大型送水ポンプ車吐出圧力:	1.3 MPa

格納容器再循環ユニット出口最高点高さにおける配管内圧力

(3) 検討結果

泊3号機で配備する可搬型大型送水ポンプ車を用いて格納容器再循環ユニットに海水を 通水する場合は、格納容器雰囲気温度154℃程度まで沸騰を防止する運用が可能であり、重 要事故シーケンスに対する安全解析で確認している格納容器雰囲気温度の最高値である 141℃に対し、十分な余裕を有していることを確認している。

枠囲みの内容は機密情報に属しますので公開できません			
	 地回7の中央)よ機会は知り7日	リーナナのボハ明ボナ	+111
	 作用みの内容は機能情報に属	ましますりで公開でさ	ますかん

【参考】系統概念図

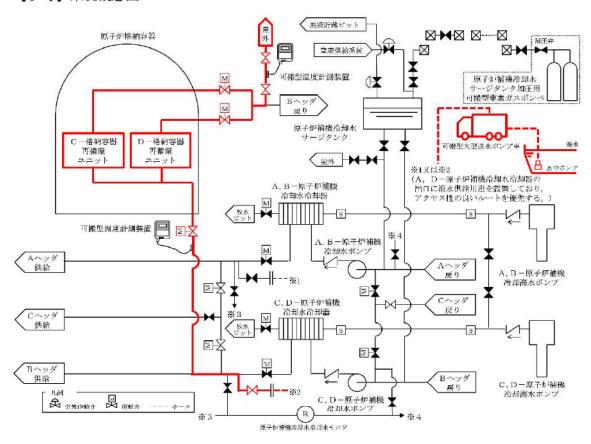


図-1 格納容器再循環ユニット冷却配管概念図(泊3号機)

【参考2】純水と海水の物性値比較

パラメータ	純水	海水
動粘性係数(m²/s)	$1.792 \times 10^{-6 \times 1}$	$1.797 \times 10^{-6 \times 2}$
比容積(m³/kg)	0.0010002**3	0.0009725 ^{**4}
密 度(g/cm³)	0.99984	1.02833

※1:1999 蒸気表 日本機械学会より大気圧下での0℃の動粘性係数を使用

※2:流体の熱物性値集 日本機械学会より0℃の各圧力の動粘性係数を線形近似し、大気 圧相当(1.01325bar)の動粘性係数を算出。

※3:1999 蒸気表 日本機械学会より大気圧下での0℃の比容積を使用

※4:流体の熱物性値集 日本機械学会より0℃の各圧力の密度を線形近似し、大気圧相当 (1.01325bar) の密度を算出し比容積に換算。

参考資料-5 OECD PANDA 試験の知見を踏まえた自然対流冷却に関する考察

1. はじめに

本資料は、OECDで実施された PANDA 試験における格納容器クーラに関する試験を 踏まえて、格納容器再循環ユニットの除熱性能への影響を考察したものである。

2. OECD PANDA 試験における格納容器クーラ試験

(1) 格納容器クーラ試験の概要

PANDA 試験における格納容器クーラに関する試験 (ST4) は、原子炉格納容器内で 水素成層化したことを前提として、軽い不凝縮性ガス (実機:水素、PANDA 試験:へ リウム) によるクーラの除熱性能への影響を評価したものである。

(2) 試験内容

試験は以下のように試験容器内中央部からの注入ガス成分を変化させ、以下の3フェーズにより実施している。

- ・フェーズ I: 水蒸気注入 (図 1a、2a)
- ・フェーズ II: 水蒸気-ヘリウム混合ガスの注入(図 1b~e、図 2b~e)
- ・フェーズⅢ: 水蒸気注入(図 1f、2f)

(3) 試験条件

PANDA 試験では、感度ケースとして以下の条件を考慮している。

- ・格納容器クーラの設置高さ
 - (基本ケース:容器中央、感度ケース:容器上部)
- ・容器からのベント (加圧状態による影響の確認)
- ・クーラ下部のダクト開口部閉止

(4) 試験結果概要

基本ケース (クーラを容器中央設置 (図 1a~f)) では、フェーズ II (水蒸気—ヘリウム混合ガスを注入する段階) において、ヘリウム濃度が高いガスがクーラケーシング内に蓄積することで、(図 1b) の段階ですでに排気ダクトを通る下降流がなくなっており、クーラ内部にヘリウム濃度が高まったガスが成層化して蓄積することにより約20%のクーラ除熱性能低下が見られた (図 1c)。また、蓄積したガスがクーラ入口付近から逆に放出され、容器内の密度成層化を形成している (図 1e,f)

一方、感度ケース (クーラを容器上部設置 (図 2a~f)) では、フェーズⅡにおいてクーラケーシング内へのヘリウムの蓄積が観察されたが、基本ケースと比べてより小さな範囲に留まった。このため、除熱性能の低下は基本ケースと比べて限定的であった。

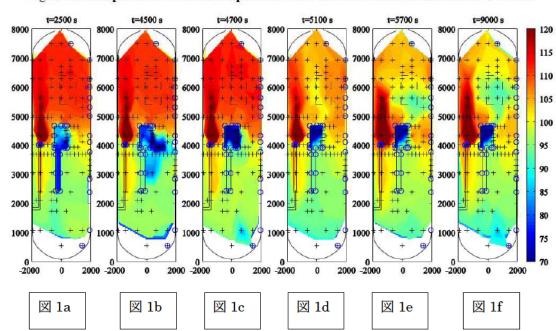
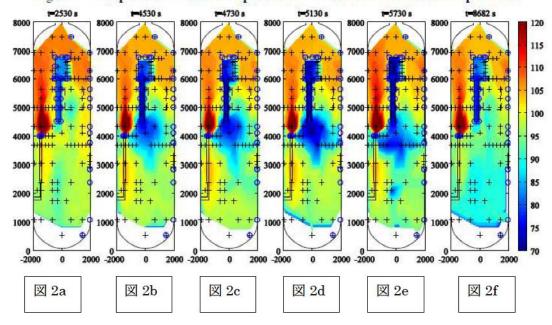



Figure 40. Temperature Contour Map for the Test with the Cooler at the Middle Position

3. PANDA 試験結果を踏まえた考察

上記の結果を踏まえ、PANDA 試験結果と実機 PWR プラントにおける格納容器内成層化による格納容器クーラ除熱性能の考察を表1にまとめる。

1100
₩,
6
鱜
巡
0
7
\vec{n}
上台
ラ性能への影響の考
ΪŻ
J
1
絽
妙
£
谷
20
±,
<u></u>
$^{\circ}$
38
におい
R にお
WR にお
PWR にお
機 PWR にお
実機 PWR にお
と実機 PWR にお
険と実機 PWR にお
式験 と 実機 PWR にお
\ 試験と実機 PWR にお
JA 試験と実機 bWR にお
NDA 試験と実機 PWR にお
ANDA 試験と実機 bWR にお
PANDA 試験と実機 bMR にお
:1 PANDA 試験と実機 PWR における格納容器 /
表 1 PANDA 試験と実機 PWR にお

表1 PANDA 試験と実機 PWR における格納容器クーラ性能への影響の考察	PANDA 試験 (ST_4) 国内 PWR 実機 考 察	o格納容器クーラへの成層化の影響を試験するため、クーラ oCV 破損防止シナリオでは原則として、格納容o再循環ユニット動作前の CV スプレイによ気相部は CV スプレイの影響 により混合性が良好と考え の再循環ユニット動作(原則 $24H$)までに、水素処 理設備(イグナイタ、PAR)により水素処理が進。水素蓄積による再循環ユニット 地。 cV スプレイの影響 により混合性が良好と考え られる。 理設備(イグナイタ、PAR)により水素処理が進 ・ ト除熱量への影響は水素処理が進む時間経過につれて 縮小される方向。	容器中央部の原則として格納容器下部の実機では格納容器下部での放 (加圧器逃がしタンク、RCP シール部、1次系 配管、原子炉下部キャビティ)出がほとんどで、CV 内自然 対流生成により密度成層化 が発生しにくいと考えられ 加圧器気相部破断	容器上部 の格納容器中央部
	BANDA 試勵	・格納容器クーラへの成層化の使用時の初期条件として成層	o格納容器中央部	・格納容器上部・クーラ位置が密度成層・ケーラ位置が密度成層・ケーラーラの解消に適したものもなった。となっており、早期に解される。・ケーラ内のヘリウムリ・・ケーラ内のヘリウムリ・・ケーラ内のヘリウムリ・・ケーラ内のペリウムリ・・ケーラ内のペリウムリ・・ケーが、除熱性能低下は限にかり、除熱性能低下は限にから、「PANDA 対験を模擬した図3の解析結果でも確認可能)
		格納容器クーラ使用シナリオ	(水素-水蒸気) 混合ガス放出箇所	格納容器クーラ (再 循環ユニット) 設置 位置と除熟性能へ の影響

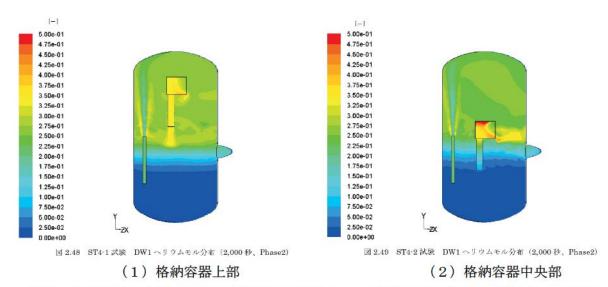


図3 注入ラインとクーラを含む断面におけるフェーズ II (2,000 秒後)のヘリウムモル分率 (出典:平成21年度 シビアアクシデント時格納容器内多次元熱流動及び FP 挙動解析、 平成22年6月、独立行政法人 原子力安全基盤機構)

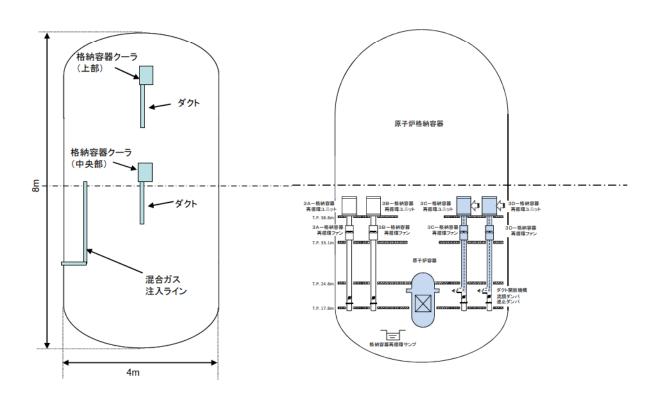


図4 PANDAと原子炉格納容器(泊3号機の例)との設備位置の相対位置比較

参考資料-6 格納容器再循環ユニットによる格納容器内自然対流冷却の水素影響について

1. はじめに

原子炉格納容器内に水素が存在する場合に、格納容器再循環ユニットの除熱性能は水素 濃度に応じて変化するため、不確かさが存在する。このため、格納容器破損防止の観点で、 ドライ換算で13vol%の水素が原子炉格納容器内に存在する場合の感度解析を実施し、原子 炉格納容器圧力及び温度に対する影響を確認した。

2. 影響評価

格納容器破損モード「雰囲気圧力・温度による静的負荷(格納容器過圧破損)」の評価事故シーケンス「大破断LOCA時に低圧注入機能、高圧注入機能及び格納容器スプレイ機能が喪失する事故」における原子炉格納容器圧力及び温度の推移をそれぞれ図1及び図2に示す。

ドライ換算で 13vo1%の水素が原子炉格納容器内に存在する場合、原子炉格納容器圧力を約 0.011MPa の範囲で高めに評価し、原子炉格納容器雰囲気温度を約 1℃未満の上昇幅である。従って、原子炉格納容器圧力及び温度は、それぞれ原子炉格納容器の最高使用圧力の2 倍(0.566MPa[gage])及び 200℃に対して十分な余裕があり、水素濃度による不確かさを考慮しても、評価項目となるパラメータに与える影響は小さいことを確認した。

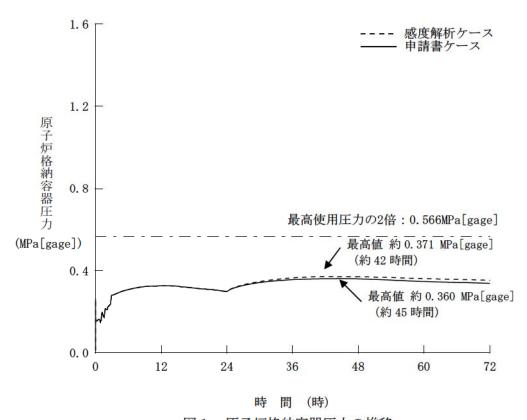


図1 原子炉格納容器圧力の推移

(格納容器再循環ユニットによる格納容器内自然対流冷却の水素影響確認)

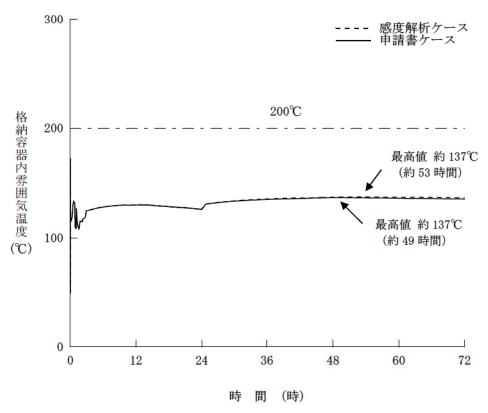


図2 格納容器内雰囲気温度の推移 (格納容器再循環ユニットによる格納容器内自然対流冷却の水素影響確認)

参考資料-7 実機における凝縮水の影響について

1. はじめに

本資料は、実機における凝縮水の影響について考察を行うものである。

2. 実機における凝縮水の影響

実機において、格納容器再循環ユニット冷却コイルの凝縮水ドレンについては、下記のような経路を通じて最終的には格納容器サンプへ流出する。図1に格納容器再循環ユニットにおける凝縮水ドレンの流路の模式図を示す。

【凝縮水が少量の場合(通常運転時等)】

個々の冷却コイル下部に設置されているドレンパンから、ドレンラインを経由して格納容器サンプへ排出される。本ドレンラインは、通常運転時に発生する凝縮水処理機能、及び原子炉冷却材圧力バウンダリから少量の1次冷却材漏えいが発生した場合に備えて、その単位時間当たりの漏えい量を凝縮水として測定する機能を有しており、多量の凝縮水の排出を目的としたものではない。

【凝縮水が多量の場合(重大事故時等)】

重大事故時等においては上記ドレンラインの許容排出流量を超える可能性があるが、超過分の凝縮水についてはドレンパンから溢れることになる。この場合、ユニット外側に流れた凝縮水は、ユニット設置フロアの床ドレンを通じて格納容器サンプへ排出される。一方、ユニット内側に流れた凝縮水はダクト側へ流れる。ダクト下方には再循環ユニットファン出口ダンパがあり、重大事故時には閉止状態となっているので、ダンパ上部での水位が上昇した場合にはダクト開口からダクト外へ流れる。いずれの場合についても、流出先の床ドレンを通じて格納容器サンプへ排出される。

(参考)

ドレンパンは、上面から見て直下にあるコイルを十分に覆い隠す程度に広い面積を持っており、さらに、ドレンパンの底面端部はドレンパンの排水溝やサポート板の取り付けにより、端部から溢れた水がドレンパン底面を伝って下部のコイルへ直接滴下し難い構造となっているために、溢れ出た水がその下部のコイルに滴下せず速やかに排出される。また仮に、下部のコイルへ直接水が滴下した場合にもコイル上面には天板が設置されているために上部からの凝縮水の影響を防ぐことが可能である。

凝縮水ドレ	ン流路模式図

図1 格納容器再循環ユニットにおける凝縮水ドレンの流路(模式図)

	こ属しますので公開できません。
--	-----------------

参考資料-8 格納容器再循環ユニットによる自然対流冷却発生プロセスの定量的考察

格納容器再循環ユニットによる自然対流冷却の発生概念については図4-1に示した通りであり、冷却水通水後に過渡状態を経てユニット外側から下部ダクトへの定常的な流れが発生する。自然対流冷却が確立することに関しては、参考資料—5で示した OECD PANDA における実証試験や、独立行政法人 原子力安全基盤機構 (JNES) による同試験の解析による検証結果でも確認することができる。本参考資料では、JNES の解析結果を基にした自然対流冷却発生プロセスの定量的な考察を行う。

JNES では、国のアクシデントマネジメント(AM)レビューやリスク上重要とされるシビアアクシデント(SA)現象及び AM 策の有効性を評価するために、最新の試験研究等で得られた知見やデータを活用して解析ツールの整備が実施されており、数値流体力学解析手法を用いて格納容器内熱流動解析手法を整備し、試験データを用いて検証すること、さらに、代表的な格納容器 AM 策に適用したその有効性が評価されている。この一環として下記の2点の検討結果が報告されている。

【1. PANDA 試験の試験前解析】

格納容器内熱流動研究に関する OECD 国際協力プロジェクト PANDA 試験のデータを用いて格納容器内熱流動解析手法を検証するとともに、PANDA 試験の格納容器自然対流冷却試験シリーズの試験前解析を実施しており、クーラ周辺の詳細流動等のクーラ特性に係る有用な知見を得ている。

【2. 実炉解析】

上記で検証した解析手法を PWR 実炉の格納容器体系に適用して、SA 時に格納容器自然対流冷却を実施した場合のクーラ除熱効果や格納容器内温度分布、混合ガスの濃度分布等を評価している。解析メッシュは上記より粗いものの、格納容器自然対流冷却 AM は格納容器内雰囲気を効果的に冷却させることを確認している。

なお、これらの内容は以下の報告書に纏められている。

- ①アクシデントマネジメント知識ベース整備に関する報告書(格納容器内多次元流動解析 手法の検証と自然対流冷却 AM 策への適用)(H17~H19 年度)
- ②アクシデントマネジメント時格納容器内多次元熱流動及び FP 挙動解析(H20~H21 年度)

以下では、格納容器再循環ユニットによる自然対流冷却の自然対流冷却発生のプロセス について、上記報告書に纏められたこれらの2点の検討結果に基づき、以下に定量的考察 を説明する。

1. PANDA 試験の試験前解析

PANDA 試験の試験前解析は H17~H21 度まで毎年実施しているが、ダクト系を模擬した再循環クーラの解析については H20 年度と H21 年度にて実施している。ここでこのうち最新の H21 年度報告書をモデルとして説明する。

(1)解析モデルと解析条件

H21年度のPANDA試験のST4シリーズは自然対流冷却AM策を模擬した試験でクーラの配置、及びクーラ下部のダクト有無の影響について模擬格納容器内(DW)の流れに及ぼす影響を把握するものである。PANDA試験の解析モデルを図1に、解析条件を表1に示す。図1に示す通りで、クーラは伝熱管とケーシングで構成され、気体が出入りする一側面のみを開放する形状としている。伝熱管群は開放側面に面して奥行を持ち配置されている。クーラ下部へダクトを配置するケースでは、ケーシング奥側の伝熱管群が存在しない領域の中心にダクトを配置する形状とている。DW内のクーラの配置はDW内上段と中段に配置する2ケースを実施している。本説明では、ダクト有で、流入蒸気の成層化の影響を受け難いDW上段設置のケースST4-1をモデルケースとする。

表1に示す通りで、DW 内の初期圧力は 1.3bar で、SA 時に想定される格納容器内への流入条件として前半 1000 秒(Phase1)は水蒸気のみが流入し、後半 1000 秒(Phase2)は水素ガスを模擬したヘリウムと水蒸気の混合ガスが流入する。本説明では、クーラ作動から自然対流の流れが形成され、除熱量が安定化するまでの過程を把握できる Phase1 をモデルケースとする。

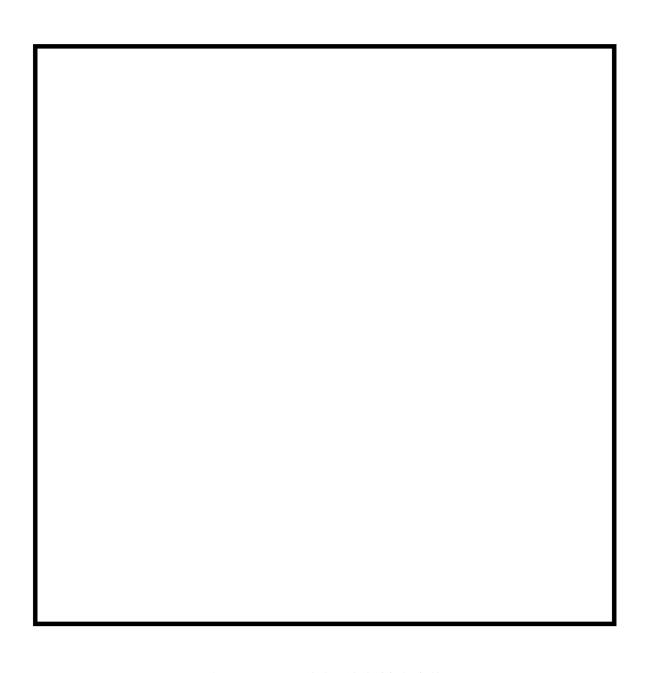


表 1 PANDA 試験の試験前解析条件

ST4		DW 内初期条件	‡	ガス流入条	条件(インジェクション)								
	圧力	温度	流速	温度									
Phase1	1.3bar	108℃	空気	水蒸気	40m/s	140℃							
Phase2	Phase1 結果	Phase1 結果	Phase1 結果	水蒸気	40m/s	140℃							
				ヘリウム	$25 \mathrm{m/s}$								

枠囲みの内容は機密情報に属しますので公開できません。

(2)解析結果

クーラ除熱量及び DW 内圧力の時間変化を図 2、及び図 3 に示す。また、クーラ除熱がほぼ安定化した時刻での流速分布、温度分布、水蒸気モル分布を図 5~図 7 に示す。

図2の除熱量の時間変化より、除熱量は200秒までにほぼ安定化した状態となっており、 その後は図3に示すDW内での圧力の上昇に追従して、増加する変化を示している。

図 5 に示す 1000 秒後の DW 内の流速分布図では、流れはクーラ入口から水平に侵入し、 クーラ内で下降流となって下部ダクトを降下してダクト下部から DW へ流出する流れが形成されている。また、クーラ入口の流速分布は入口上部ほど高速の流線を示しており、クーラ下部では流れの一部が正面からクーラ外側へ下降流となって DW へ流出している。

図 6、図 7 の温度分布、水蒸気モル分布図ではクーラ内部、ダクト内部が DW 内と比較して冷却され、水蒸気の割合が低下していることが確認できる。クーラ下部については冷却空気が滞留し、滞留空気の一部がクーラ下部から直接 DW 内へ流出することが確認できる。

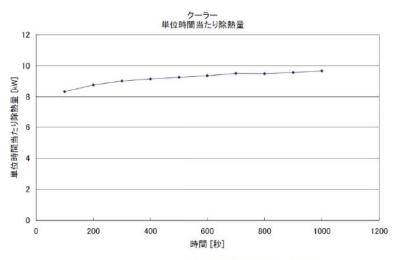


図 2 除熱量時間変化(ST4-1 試験)

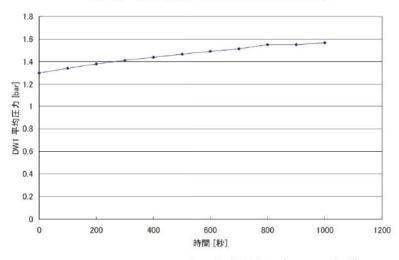


図3 試験容器内平均圧力時間変化(ST4-1 試験)

本試験前解析に対応する PANDA 試験結果のクーラ除熱量の時間変化を図4に示す。 図4に示す通りで、除熱量は約1000秒でほぼ安定化する結果となっており、図2に示す試験前解析の結果より若干安定化までの時間は要しているものの、ほぼ同様の傾向を示す結果となった。

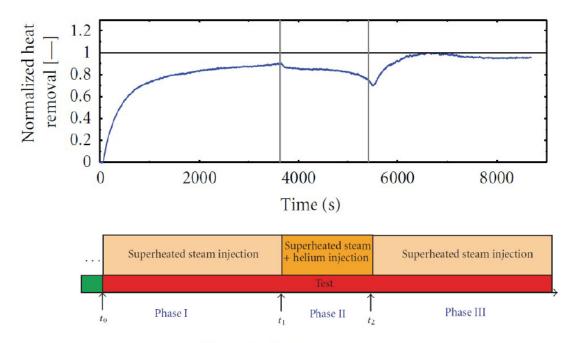


図 4 PANDA 試験結果での除熱量時間変化(ST4-試験)

出典: Ralf Kapulla, GuillaumeMignot, and Domenico Paladino, Laboratory for Thermalhydraulics (LTH), Paul Scherrer Institut, 5232 Villigen, Switzerland, "Large-Scale Containment Cooler Performance Experiments under Accident Conditions", in Science and Technology of Nuclear Installations, "Severe Accident Analysis in Nuclear Power Plants"



図 5 流速分布(1000 秒、ST4-1 試験)

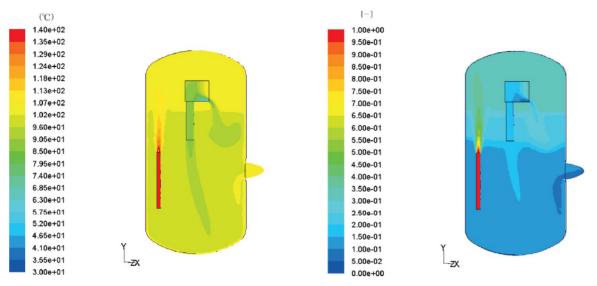


図 6 温度分布(1000 秒、ST4-1 試験) 図 7 水蒸気モル分布(1000 秒、ST4-1 試験)

2. 実炉解析

実炉解析は H17~H21 度まで毎年実施しているが、再循環クーラの除熱量の時間変化が 掲載されている報告書は H17~H19 年度まである。ここでは1項. PANDA 試験解析に基 づく実炉解析と、除熱量の時間変化が掲載される最新の H19 年度報告書をモデルとして説 明する。

2. 1 H21年度の実炉解析

(1)解析モデルと解析条件

H21 年度の実炉解析は、ST4 試験の PANDA 試験解析で得た解析手法及び知見をドライ型 PWR 4 ループプラントの実炉スケールの格納容器へ適用して重大事故時の条件下の実炉格納容器内の解析を実施している。

実炉解析での解析モデルを図8に、解析条件を表2に示す。

図 8 に示す通りで、格納容器モデルは上部コンパートメントの自由空間だけでなく、互いに階段やグレーチング等の開口で連通する下部コンパートメントを含む、全体系を対象としており、オペレーティングフロアーにはダクト付きの再循環クーラを模擬している。

再循環クーラの冷却モデルは、クーラ単体の除熱性能を基に、クーラ内各セルあたりの 除熱量を時々刻々計算して、格納容器体系の除熱量を計算するもので、局所的な流動や雰 囲気温度の影響及びダクト等の周辺形状の効果を解析できるモデルとなっている。

SA 後の事象進展が準静的に至った状態を想定して流動解析を実施している。 破断箇所はループ室内、加圧器室の配管破断と原子炉下部ヘッドの破損を想定しているが本説明では代表的なケースとしてループ室破断をモデルケースとする。表 2 に示す通りで、初期条件はクーラが作動する条件で、かつ、格納容器内流れ場が安定している状態における温度、圧力及び気相組成を初期条件としている。流入条件は原子炉キャビティ室床面からガスを流入させている。

表 2 実炉解析条件

破断位置	格納容器内	初期条件	ガス流入条件(原子炉キャビディ							
	圧力/温度	気相質量分率	流入流量	質量分率						
		空気/蒸気/水素		空気/蒸気/水素						
ループ室	0.164MPa/127℃	0.54/0.43/0.03	7.969×10-2kg/s	0.44/0.30/0.26						

(2)解析結果

格納容器内の流速分布、温度分布、水蒸気モル分布を図9~図11に示す。

図9に示す3600秒後の流速分布図では、流れはクーラ入口から水平に侵入し、クーラ内で下降流となって下部ダクトを降下してダクト下部から格納容器へ流出する流れが形成されている。また、クーラ入口の流速分布は入口下部で低速の流線を示しており、クーラ下部では流れの一部が正面からクーラ外側へ下降流となって格納容器内へ流出している。

図 10、図 11 の温度分布、水蒸気モル分布図ではクーラ内部、ダクト内部が格納容器内と比較して冷却され、水蒸気の割合が低下していることが確認できる。クーラ下部については冷却空気が滞留し、滞留空気の一部がクーラ下部から直接格納容器内へ流出することが確認できる。

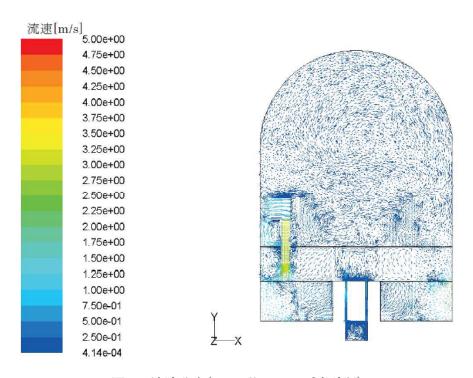


図 9 流速分布(3600 秒、ループ室破断)

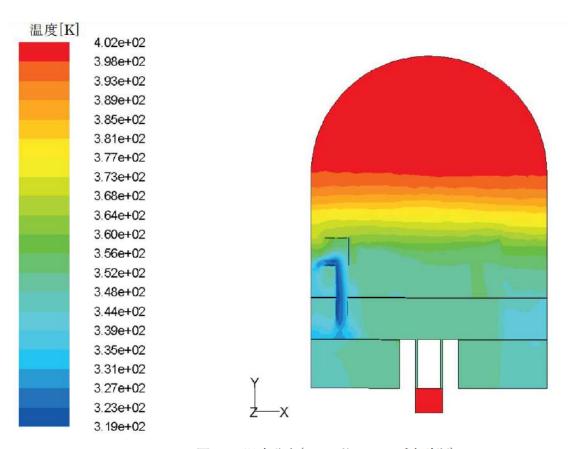


図 10 温度分布(3600 秒、ループ室破断)

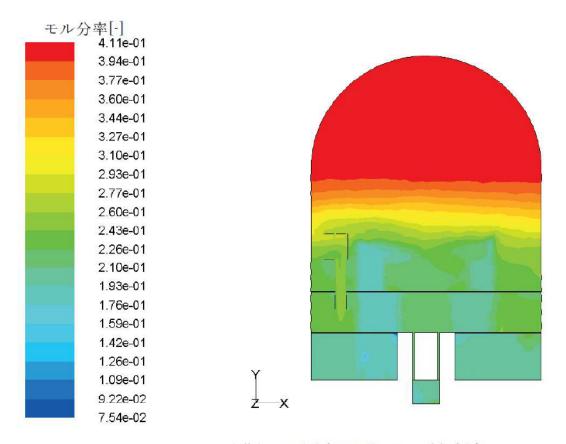


図 11 水蒸気モル分布(3600 秒、ループ室破断)

2. 2 H19年度の実炉解析

(1)解析モデルと解析条件

H19年度の実炉解析は、ダクト無クーラを用いたTest25のPANDA試験解析で得た解析手法及び知見をドライ型PWR4ループプラントの実炉スケールの格納容器へ適用して重大事故時の条件下の実炉格納容器内の解析を実施している。

実炉解析の解析モデルは H21 年度と同様であり図 8 に示す。

解析は定常計算にて格納容器内流動を確立させた後に、クーラを作動させて非定常計算 を実施しており、破断箇所はループ室内、加圧器室の配管破断を想定しているが本説明で は代表的なケースとしてループ室破断をモデルケースとする。解析条件は表3に示す。

破断位置	格納容器内	卜初期条件	ガス流入条件 (蒸気発生器基礎部部							
	圧力/温度	7/温度 気相質量分率 流入流量								
		空気/蒸気/水素								
ループ室	0.49MPa/140℃	0.26/0.74/0.0	10 kg/s /1.0kg/s	152℃						

表 3 実炉解析条件

(2)解析結果

クーラ除熱量の時間変化を図 12 に示す。また、解析開始から 100 秒、400 秒、1000 秒 後の流速分布、温度分布、水蒸気質量分率分布を図 13~図 15 に示す。

図 12 の除熱量の時間変化より、クーラ作動開始後約 15 秒の間にクーラ除熱量が一時的に減少する期間があるが、これはクーラを通過する流れが確立するまでの期間に相当する。 クーラを通過する流れがほぼ確立した 15 秒以降では小さな変動が時々見られる程度であり、 300 秒以降は除熱量がゆるやかに減少傾向となっているが、これは格納容器内雰囲気温度が 全体的に低下しているためであり、クーラの冷却効果が非常に大きいものであることを示 している。

図 13 に示す流速分布図では、100 秒後では既に安定した自然対流を形成しており、400 秒後、1000 秒後でもこの傾向に大きな変化はない。流れはクーラ入口から水平に侵入し、クーラ内で下降流となって下部ダクトを降下してダクト下部から格納容器へ流出する流れが形成されている。また、クーラ入口の流速分布は入口下部で低速の流線を示しており、クーラ下部では流れの一部が正面からクーラ外側へ下降流となって格納容器内へ流出している。また、図 14、図 15 の温度分布、水蒸気質量分率分布図ではクーラ内部、ダクト内部が格納容器内と比較して冷却され、水蒸気の割合が低下していることが確認できる。クーラ下部については冷却空気が滞留し、滞留空気の一部がクーラ下部から直接格納容器内へ流出することが確認でき、これは H21 年度の結果と同様である。

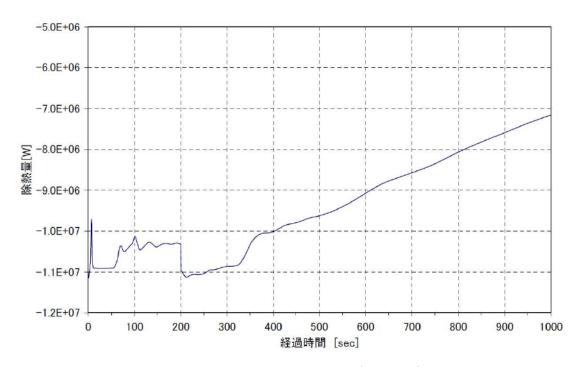
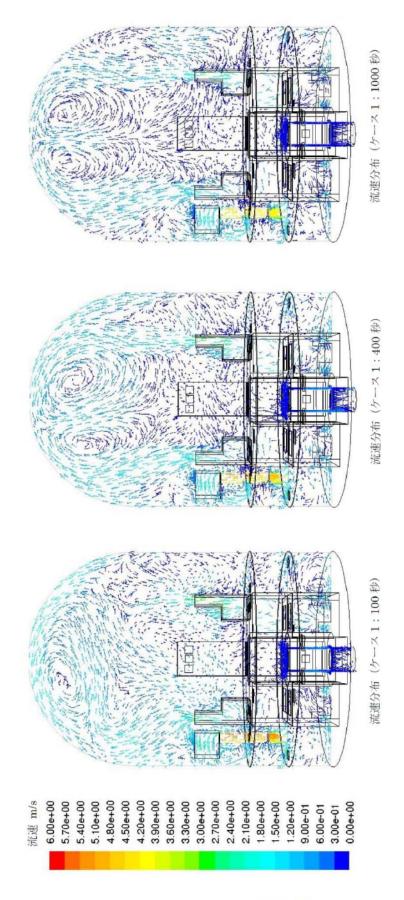
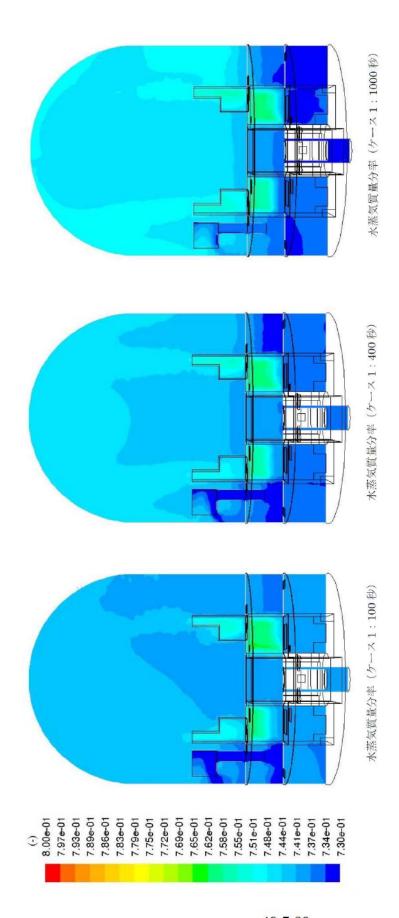




図 12 除熱量時間変化(ケース 1)

49-7-79

3. PANDA 試験と実機条件との比較

PANDA 試験のクーラモデルと実機再循環ユニットのダクト系を含めた形状は、それぞれ 図 1 及び参考資料 0 の図 1-2 に示すようにほぼ同様(相似)な形状をしており、実機の 方が大型である。

一方、自然対流の流れの安定化には、主としてドラフト力と圧力損失、ユニット外からユニット内への初期流れの形成が影響するものと考えられる。ここで、ユニットの単位除熱能力(単位通過面積当たりの除熱量、及び単位流速を流した場合のコイル前後の温度(密度)変化量)が同様とした場合を想定すると、スケールの変化が生じた場合には下記の通り、圧力損失は同等のままで、ドラフト力の増加と初期流れの形成時間の遅れの影響は相殺される方向となる。その結果として、自然対流の安定化までの時間については、PANDA試験と実機で大きな差異は発生しないものと予想される。

- ドラフトカ=ユニット内外の密度差×ドラフト高さであるため、スケールが大きい実機の方がドラフト高さが大きい分ドラフト力も大きくなり、自然対流の流速が速くなる。
- 圧力損失=抵抗係数×動圧であり、抵抗係数はスケールに影響しないために、流速が 一定であれば圧力損失はスケールが変化しても変わらない。
- ユニット外から内への初期の流れの形成は、ユニット内の容積とユニットの除熱能力に主として影響されるが、容積はスケールの三乗に比例するのに対して、除熱能力(伝熱面積)は二乗に比例するために、流速一定であればスケールが大きい実機の方が初期の流れの形成については時間を要する傾向となる。

4. まとめ

PANDA 試験の試験前解析の結果では、自然対流冷却の除熱量はクーラ作動から 200 秒程度で安定化し、また、対応する実際の PANDA 試験結果においても 1000 秒程で安定化している。さらに、実炉解析では、15 秒程度で流れが形成され、300 秒程度で流れが安定化する結果が得られている。

安定化した状態においては、クーラ周囲の流れはクーラ入口から水平に侵入し、クーラ内で下降流となって下部ダクトを降下してダクト下部から排出する流れが形成される。また、クーラ入口の流速分布は入口上部ほど高速の流線を示し、クーラ下部では流れの一部が正面からクーラ外側へ下降流となって流出している。クーラ周囲の温度分布、水蒸気モル分布はクーラ内部、ダクト内部が容器内と比較して冷却され、水蒸気の割合が低下している。クーラ下部については冷却空気が滞留し、滞留空気の一部がクーラ下部から直接外側へ流出する。これらの流況は、PANDA試験解析、実炉解析の結果において確認できている。

以上より、格納容器再循環ユニットによる自然対流発生のプロセスについて、再循環ユニットが冷却に寄与し始める初期状態から約十数分以内には、ユニット外側からダクトへの下降流が発生し定常的な自然対流冷却状態に至ることが、PANDA試験の試験前解析及び実炉解析の結果から定量的に確認されていると言える。

実機の格納容器再循環ユニットは、PANDA 試験等のクーラと基本的な構造、仕組みは類似(形状は相似)していることから、実機において上記の知見と大きく異なる挙動が発生することは考え難い。しかしながら、PANDA 試験モデル及び条件と実機では詳細が異なることが予想されることから、初期状態から自然対流冷却安定化までの時間やそれが有効性評価に与える影響については定量的に把握しておくことが重要である。そのために、今後、PANDA 試験の詳細な試験結果を含めたデータの分析を行うこと等により知見の拡充を図り、引き続き実機での挙動を定量的に分析することとする。

以上

参考文献

- Evaluation of the Cooling Performance of Non Safety Grade Air Recirculation System Cooling Coils (JEARI-memo 08-127, June 1996, "PROCEEDINGS OF THE WORKSHOP ON SEVERE ACCIDENT RESEARCH IN JAPAN (SARJ-95) December 4-6, 1995, Tokyo Japan")
- 2. Ralf Kapulla, Guillaume Mignot, and Domenico Paladino, "Large-Scale Containment Cooler Performance Experiments under Accident Conditions", Hindawi Publishing Corporation Science and Technology of Nuclear Installations Volume 2012, Article ID 943197,20 pages
- 3. アクシデントマネジメント知識ベース整備に関する報告書(格納容器内多次元流動解析手法の検証と自然対流冷却 AM 策への適用)(H17~H19 年度) 独立行政法人 原子力安全基盤機構 事業成果報告書
- 4. アクシデントマネジメント時格納容器内多次元熱流動及び FP 挙動解析 (H20~H21 年度) 独立行政法人 原子力安全基盤機構 事業成果報告書

参考資料-9 格納容器再循環ユニット粗フィルタ撤去による影響について

1. 格納容器再循環ユニット粗フィルタの機能

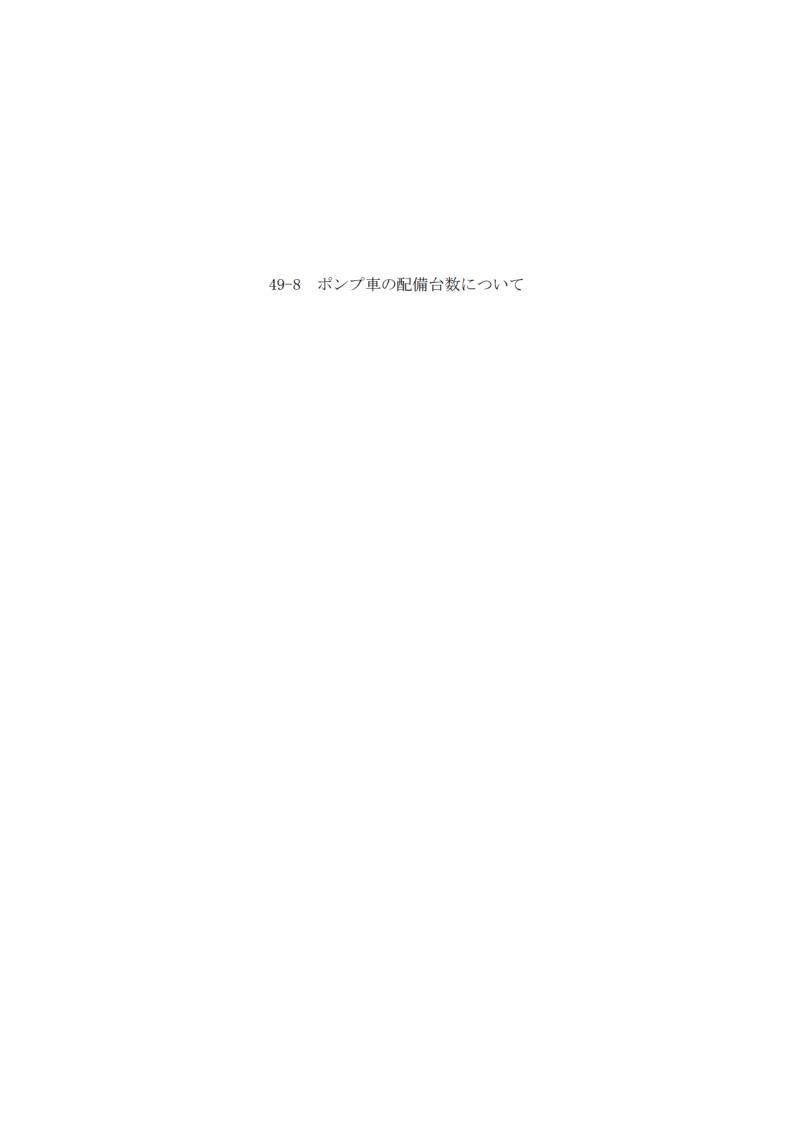
換気空調設備においては、コイルの上流側にコイルの汚れによる伝熱性能低下を考慮して基本的にコイル上流側にラフィルタを設置しており、格納容器再循環ユニットも冷却コイルの前面に粗フィルタを設置している。

2. 格納容器再循環ユニット粗フィルタ撤去による影響

泊3号炉の格納容器再循環ユニット粗フィルタは 294Pa の差圧を目安に交換をする運用をしているが、2009年12月の運転開始以来、フィルタ交換の実績はない。

また、同様の仕様のフィルタ、フィルタユニットの1,2号炉については、既に2000年よりプラント運転中D号機の粗フィルタを撤去した運用を行っているが、4定検に1度の目視点検においても、ユニットのコイルが汚れるような現象は見られていない。

以上より、プラント運転中の格納容器内雰囲気の空気の清浄度は良いと判断でき、格納 容器再循環ユニットにフィルタがなくても問題はない。


一方、重大事故時においては、エアロゾル発生による悪影響が懸念されるが、自然対流 冷却開始時点ではエアロゾルはCVスプレイにより除去できるため、格納容器内に有意な エアロゾルの浮遊はないことから、格納容器再循環ユニットによる自然対流冷却について、 エアロゾルによる有意な除熱性能劣化の影響はない。(参考資料-2参照)

3. まとめ

泊3号炉の格納容器再循環ユニットに内蔵している粗フィルタは、冷却コイルの汚れによる伝熱性能低下を防止する目的で設置しているが、これまでフィルタ差圧の上昇はほとんど無く、粗フィルタがなくても問題ないと判断できる。

また、重大事故時においても自然対流冷却開始時点では格納容器内に有意なエアロゾルの浮遊はないため、エアロゾルによる有意な除熱性能劣化の影響はない。従って、格納容器再循環ユニットの粗フィルタの撤去による悪影響はない。

以上

ポンプ車の配備台数は、重大事故等時又は大規模損壊発生時に、同時に実施することを想定するケースを考慮したうえで、必要な容量を満足する台数、並びに故障時及び保守点検による待機除外時のバックアップ用として必要な台数をもとに、可搬型大型送水ポンプ車を合計6台及び可搬型大容量海水送水ポンプ車を合計2台配備している。

ポンプ車の仕様及び配備台数を表1に示す。

ポンプ車を使用する対応手段と有効性評価の関連について、「設置許可基準規則」、「技術基準規則」及び「技術的能力審査基準」と重要事故シーケンス等との関連を表2に示す。ポンプ車を使用する対応手段は、①代替炉心注水、②燃料取替用水ピット又は補助給水ピットへの補給、③使用済燃料ピットへの注水又はスプレイ、④代替補機冷却、⑤放水を目的として配備しており、これらの対応手段におけるポンプ車の配備台数の考え方及び条文毎の配備数記載を図1に示す。

大規模損壊時におけるポンプ車の配備台数の考え方は、「泊3号炉 大規模損壊発 生時の体制の整備について(大規模な自然災害又は故意による大型航空機の衝突そ の他のテロリズムへの対応)」に示す。

名 称	容 量	吐出圧力	配備台数
可搬型大型送水ポンプ車	約 300 m³/h	約 1.3MPa	6台
可搬型大容量海水送水ポンプ車	m³/h (約1,440m³/h 約1,800m³/h)	約 1.2MPa	2 台

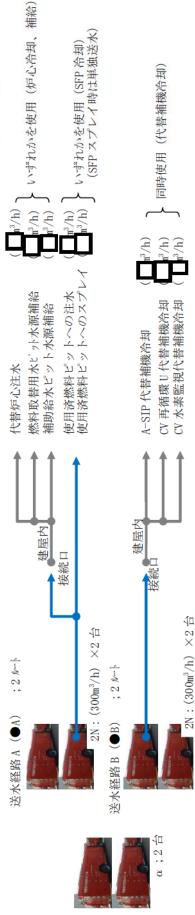
表 49-8-1 ポンプ車の仕様及び配備台数

※可搬型大容量海水送水ポンプ車の容量は、放水砲の要求容量を示す。

(() 内に定格容量を記載)

[※] 可搬型大型送水ポンプ車は定格容量、定格揚程を示す。

及りよ二等値や組合性の表質体数がデン。 選集さす人変化水砂へ相子 選集さす人変化水砂へ相子	8	5.4					Ī			T			Ī	T						П				Τ	Τ											Τ	Γ		П	Т	7
出版の終証が電子業 でハル王特証が電子業に中選をしてが、その請加度科集 高書子子更加選挙(マー 人の報知の表現の表現の表現の表現の表現の表現の表現の表現の表現の表現の表現の表現の表現の	0	5.3	e est	-0				333			222			- 20		- 63	_						\parallel	$^{+}$	t		_									t	H	Н	H	+	1
大豊龍原体に関立会 た34章下火豊心底震路体11中国際に一山からの戸田部科理 心強搬団市搬料等下線、山火県小電震賞文内市田水中125 出事る下火弾 出版の駅出か出予算・ 出版の駅出か出予算・	-	5.2		- 12			1			1	0	0	0 0	0	0	0						0	+	+							0	0				_		Н		\dashv	1
*大乗や遊廳去雑橋念:1中遊覧で一水や5の高田は作業 必事る 天建電影な様肌交会	9	6.1		,			+			+			1											\dagger	t											t	H	Н	H	\dagger	1
お酵長小の木の内へつは燃素用剤やよう等素和でより下す 効率るを下消なが水の 4c 当は地面用象、J」は乗らま乗 は水料も利さよい割鉛の表去物種な。大乗卵離去剤機構製 は水料も利きましま。	00	42						220						1		- 6						0	\forall	$^{+}$								0				H			$\mid \mid$	\dashv	+
にいる。 では、正確に必要がたける。 では、正確には、正確には、正確には、正確には、正確には、 のでは、正確には、正確には、 のでは、正確には、 のでは、正確には、 のでは、	8	4.1								+		+	+	+	+		_	L				0	H	\dagger	t			H	+			0		L		H	H	Н	H	\dashv	$\frac{1}{2}$
等待掛け 反波動人 打コ高、温泉人 江北 コミード はってい つか はま	(B) F M (B)	372						200			200																														
級型集水 失義心論動人並田実以及強動人並用歌二商ADOJ開設大 均準さす 開発ではよっていったの様常		3.4										Ī	Ī	Ī	Ī					0			Т	T			Г									Ī			П	1	1
田や互計が近水 — 減差規索の外額等は19年千章 容候計り支援額人封三溝、過額人封三部二約420日間前大 出車さす大乗に強援監督等トレビス器	(銀年 20)	3.3																																							
機切到高別國際器容納計》、出資數總和田萬 木油經劃,J大學立能審院交內周用常和二個大機能審請社 起事占下大應立辦辦	(銀料(1))	3.2	Ī	Ī		Ī					Ì	Ì	Ì	Ì	Ī					Ī			Ï	Ť	Ì											Ī					
(搬遊室無碍等物計) 同食(物等54.1)支星, 化五茂國費 水油佐斯, J.大東心能震阵交內限用常4.1阿大奧能震器付 培奉6*大東心強聯	9)	3.1.2										0	(0		0	0	0		0		0							0	0		0									
(最新五版都容特計) 原産(特勢3よ)支援・化五皮属界 容辨計も反踪器人 紅田県 (調整人北田県) (新のJR 田田 出事るす火乗 14歳軽人志下して入路	00	3.1.1										0	(0		0	0	0		0		0							0	0		0									
スントンと報告他終 大・1編詞の格士発足高時報毎17年報日報日報士発足高 大・1 出する。 大・1 は本る。 大・1 は本る。 大・1 は 大・2 は 大・3 は よ う で う が よ う の ま う の ま う の ま う の ま う 。 う と う 。 う と う 。 う 。 う と う う う 。 う う う う	8	2.8																L	L				Ц		L										L	ļ	L		Ц		
スン・トン (都幸神教 ADOJムモスジストェビーやい)	8	2.8								⇃								L	L				Ц		L										_	ļ	L		Ц		
大変制度機能表表 大変能LOGA的に修正条件 対象 対象 対象 対象 対象 対象 対象 対象 対象 対象	0	2,7																							L										L	ļ	L		Ц		
大麦級藝水主SOOヨ 大麦級藝水主SOO国 発電の大夫美は強軽人打五実ごPBAOのJ選挙中	(6)	26																L					Ц													L	L		Ц		
光度消耗 4 年間 2 日本 大変 消耗 4 年間 2 日本 大変 消耗 4 年間 2 日本	8	2.5								⇃									L				Ц	1	L											ļ	L		Ц		
大義等維計,J大東立議劃監督共正部1四400J諸部 で不器等維計,J大東立議劃監督共正部1四400J諸部 出帯るす大東立議劃人訂下し	9	2.4								_														1	L							L				L	L		Ц		
光要 鴻樹 证水 翻載可干票 新叫干服,J火姜 在整置在安内間 原来社 1 经火费 能雷诺许 地事等 7 士美 2 4 2 0 2 3 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(25回標)	2.3																																							
光賽監響七雄肌安全 動學干壓,J大賽位報源或安內照供來後11時大賽報節或社 樂事令下大廳位強搬班常廳		2.2								4		0	0 (0	0	0						0	Ц	1	L		0					0				ļ	L		Ц		
大概総算れば四交全 動地干級、J大樹心能源在交内周前常は1時大機能源品付 地帯等す主発体ADOJA一公90所以在大便の謝樹は市勝	(3)	22					4	0		4	1	0	0 0	0	0	0						0		1			0				0	0				L	L		Н		4
大乗派動権情の心は派団作次を 出事るす大乗が法額が結び割い昨天再量加水給生	0	2.1					\downarrow	_		4	4	4	1	+	4			L						1	-							L		L		Ļ	L	Н	Н	4	4
技術的能力対応手段と有効性評価 比較表 (可樂型大型送水ポンプ車又は可樂型大容量海水送水ポンプ車を使用する対応手段)		No N				() 海水を用いた可需型大型温水水ン7単による代替がらは水	Æ	④ー1 Aー薬圧注入ポンプ(海水冷却)による薬圧代替再循環運転	① 海水を用いた可需整大型造水がンプ単による代替がら注水	Æ	_		-		第一1 可需数大型請求ポンプ網によるA-菓圧注入ポンプ(第末冷却)への確議冷却大(第末)選末	⑥ー2 両業型大型送水ボンブ車を用いたら、D一格体登録再選ユニナルによる格格容器内自然対流冷却	第2条を設定水ボンブ車を用いたC、D一格納容器再落用ニニナによる格納容器内自然対流冷却	(4) - 2 同業型大型法水がンプ車を用いた。D - 格林砂器再構造ユントによる格林砂器内自然対抗冷却		●→3 可激配格減即級四米推進度計劃31十分		3. 又は ③-1 類水を用いた可能拡大型送水がご準による使用済煙料ビナトの注水	-	101-1 内面的大砂面は水池水がシブ単収が放大路がよめ部共取設革(所満在の割式存除)への放大 (67-2 か 四個的大街車 日本は水煮シブ単形(30大根)・1・44大乗くの背壁設金		5-6	(第三段 (2) - 1 第次を用いた補助的水ビットへの基的	への体 ① 燃料物管用水ビットから第~の水道切替	1911年 第末作用によれ割其貨幣用大力 そくら体的	水ビッ ②2 第水を用いた燃料収費用水ビットの補約	第二十 A一葉圧注入ポンプ(潮水冷却)による薬圧代替再循環運転	②1 類水を用いた可需数大型送水ボン7単による使用済煙制ビットの送水	使用漆 ③ー2 海水を用いた可楽型大型淡水ボン7準及び可繁型スプレイノズルによる使用液燃料ビットへのスプレイ	⑤ー1 可激型大容量等水池水ボンブ率及び数水器による差料取扱様(所能情内燃料体等)への放水	県子が (S)-2 同業型大砂量海水送水ボンブ車及び放水器による格林砂器及びアニュラス部への放水						
技術によって						如	41									10年 10年 10日	教長石等者の	東市は機能要失				水機能の集失B 小発生時	着えい発生時				主米(のためのた	行動を用水ビン		及び燃料取職用			東えい発生時の	様への放水	器の破損時の						
(可搬型大型送水	-		44/59 Rt #52L	45/80 31 flyth	46.761 対す銀びにし	1次冷却材果失事象が発生している場合	1次分却材果大華集が発生している場合			連修修士中の権令	7-4-1-2014年第7-4-7-5	フロントレイン 系 植物 東久郎	48/63	ナポート 所需報報大郎		90.00	49/04 指体部構造機を対止するための指摘を扱う分類 サポート系統裁製失業	50,755 全交武勢力電源要失又は原子如補機沖結機能要失時	51/86	52/67 水素濃度監視	83/83		54/1/8 使用資産材ビットからの大量の水の漏えい発生時		98/70		雑気要生器2次割によるから予算(注水)のための代替手収及5倍数80米デットへの技術	が心注水の心めの代替手段及び無料取替用水ビットへの供	盤	格納容器 スプレイのための代替手段 及び燃料取替用水ビットへの供給	59.71 代替再错项重核	使用済意料ピットへの水の体格	使用液燃料だットからの大量の水の漏えい配生時の使用液	他はピットへのスプレイ及び他科教技	がらの後しい機能及び第子が特殊が認め 結婚時間及びアニュン共への数米	67.772	58/73	59.774	60/75	92/19	62.777 対象なし
			7	1.2	1.3											•	-	1.7	9.1	1.9	1. 10		-		1, 12						1, 13				_	1. 14	1. 16	1. 16		1. 18	1, 19
															4	49)—8	3-	-2																						

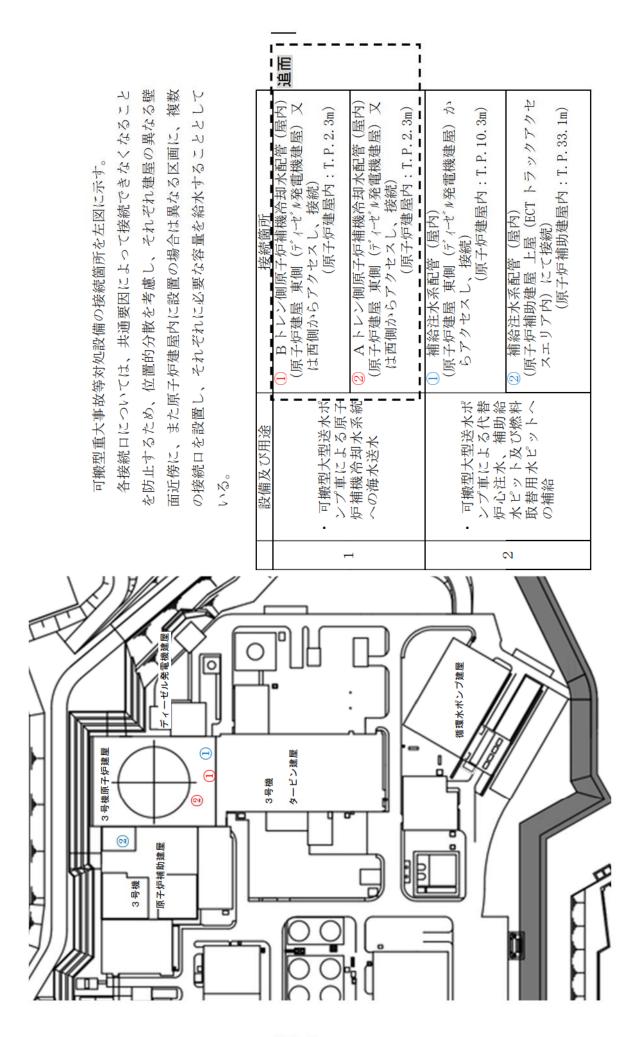

次の5つの機能を目的として、ポンプ車を使用する対応手段を整備している。 ①代替炉心注水 ②燃料取替用水ピット又は補助給水ピットへの補給 ③使用済燃料ピットへの注水又はスプレイ ④代替補機冷却 ⑤放水

#
掘
技
摲
$\ddot{\mathbb{R}}$
(重大事故等時)
$\overline{}$
七
M
析
6
1
籴
小数
備台教
配備台数
の配備台数
車の配備台数
プ車の配備台数
ンプ車の配備台数
ポンプ車の配備台数
ポンプ車の配備台数の考え方
49-8-1
49-8-1

			使用するポンプ車	と 組合せごとの								
ž	5 G F F F F	要求数	配備数	前数	関連	142	関連する設置許可条文	可条文		条文毎の配備数記載)配備数	記載
No.	対心手授の目形	(N;必要数、α;予備)	可搬型大型	可搬型大容量海水		●;対	な手段・	(●;対応手段・容量とも記載		〇;対応手段のみ記載)	要のみ記	成)
			送水ポンプ車 (注1)	送水ポンプ車 (注2)	47	48	49	20	52	54	22	99
Θ	代替炉心注水	$2N + \alpha$			•		_	_	P	ľ	1	0
$\bigcirc\!$	水源補給 (補助給水ピット)	$2N + \alpha$			ı	_	_	_	1	1	_	•
2-2	水源補給(燃料取替用水ごット)	$2N + \alpha$	• A	1	-	_	_	_		Ţ	1	•
3-1	使用済燃料ピットへの注水	$2N + \alpha$			-		_	_	F	•	1	0
3-2	使用済燃料ピットへのスプレイ	$2N + \alpha$ ($^{(\pm 3)}$			-	-	_	-	1	•	•	0
4)-1	代替補機冷却 (A-SIP)	$2N + \alpha$			•	•	_	-	1	Ţ	1	0
4)-2	代替補機冷却 (CV 再循環 U)	$2N + \alpha$	•B	I	0	•	•	•	F	1	1	1
4-3	代替補機冷却 (CV 水素監視)	$2N + \alpha$			-	-	_	_	•	Ţ	1	1
5)-1	放水(燃料取扱棟)	N			-	-	_	_	Ŧ	•	•	0
5-2	放水 (原子炉建屋及びアニュラス)	N	ı	•	-	_	_	_		1	•	0
6-3	放水 (泡消火)	N			-	-		-	P	1	•	1
.0.		1			L	L			3	3	8	12
今ボン	各ボンフ車の配備数 と 条又毎の配備数	送水ボンブ車	(2×2)+2	1	9	4	4	4	4	4	2	4
記載		大容量ポンプ車	ı	1+1	I	-	-	-	1	2	2	Ī

(注 1) 可搬型大型送水ポンプ車は、表中"●A"及び"●B"で下図の送水経路のうちから必要な送水先を組合わせて送水する。 (注2)可搬型大容量海水送水ポンプ車は、いずれかの放水先へ使用し、放水砲の使用場所へ直送水する。

(注 3)55 条拡散抑制については配備数 N/2 が要求事項であり、拡散抑制を目的として配備する可搬型大容量海水送水ポンプ車を同じく配備数はNとする。



49-9 可搬型重大事故等対処設備の接続口について

可搬型重大事故等対処設備の接続口について

設置許可基準 第43条(重大事故等対処設備)

_		ι					
適合状況	以下の可搬型重大事故等対処設備を常設設備に接続する場合、共通要因によって接続できなくなることを防止するため、位置的分散を考慮し、それぞれ建屋の異なる面の隣接しない位置に適切な離隔距離をもって複数箇所に、また原子炉建屋内に設置の場合は建屋内の異なる区画に複数箇所設置し異なる建屋面から接続できるように、複数の接続口を設けている。 以下に、可搬型重大事故等対処設備の接続箇所を示す。	設備及び用途接続箇所・可搬型大型送水ポンプ車原子炉建屋 東側 (ディーブル発電機建屋) 又は	<td color="1" rowspan="2" th="" ="" 一面<=""><th>追而理由【3号炉原子炉建屋西側を経由したルートの設定変更】 以降の 追而 標記の追而理由は,上記と同様であることから省略する。</th><th>可搬型大型送水ポンプ車による代替炉心注水、補助給水ピット及び燃料取替用水ピットへの補給は、ひとつの接続口を使用するが、それぞれの機能に必要な容量を確保できる接続口を設置している。(別紙)</th><th>(屋内):ホースの接続はシャッター・扉を経由して行い、接続口自体は屋内であることを示す。</th></td>	<th>追而理由【3号炉原子炉建屋西側を経由したルートの設定変更】 以降の 追而 標記の追而理由は,上記と同様であることから省略する。</th> <th>可搬型大型送水ポンプ車による代替炉心注水、補助給水ピット及び燃料取替用水ピットへの補給は、ひとつの接続口を使用するが、それぞれの機能に必要な容量を確保できる接続口を設置している。(別紙)</th> <th>(屋内):ホースの接続はシャッター・扉を経由して行い、接続口自体は屋内であることを示す。</th>	追而理由【3号炉原子炉建屋西側を経由したルートの設定変更】 以降の 追而 標記の追而理由は,上記と同様であることから省略する。	可搬型大型送水ポンプ車による代替炉心注水、補助給水ピット及び燃料取替用水ピットへの補給は、ひとつの接続口を使用するが、それぞれの機能に必要な容量を確保できる接続口を設置している。(別紙)	(屋内):ホースの接続はシャッター・扉を経由して行い、接続口自体は屋内であることを示す。
以自用で発生しない。本でもなずがた以前の新規制基準の該当項目	重大事故等対処設備は、次に掲げるものでなければならない らない 3 可搬型重大事故等対処設備に関しては、第一項に定めるもののほか、次に掲げるものでなければならない。	三 常設設備と接続するものにあっては、共通要因によって接続することができなくなることを防止するため、可搬型重大事故等対処設備(原子炉建屋の外から水又は電力を供給するものに限る。)の接続口をそれぞれ互いに異なる複数の場所に設けるものであること。	【解釈】6 第3項第3号について、複数の機能でひとつの接続		ロを使用する場合は、それぞれの機能に必要な容量(同時に使用する可能性がある場合は、合計の容量)を確保することができるように接続口を設けること。		
¥		無 43	条第3項				

1. 可搬型大型送水ポンプ車による原子炉補機冷却水系統への海水送水の接続ロ(1/

続することができなくなることを防止している。

返: 基準律液により T. P. 10m の敷地は浸水しないこと、及び接続口は2つとも水密化した建屋内であり、津波により同時に接続不能とはならない。

※: 接続口と屋内ホース敷設ルートの周囲には可燃物がないこと、及び接続

×

無

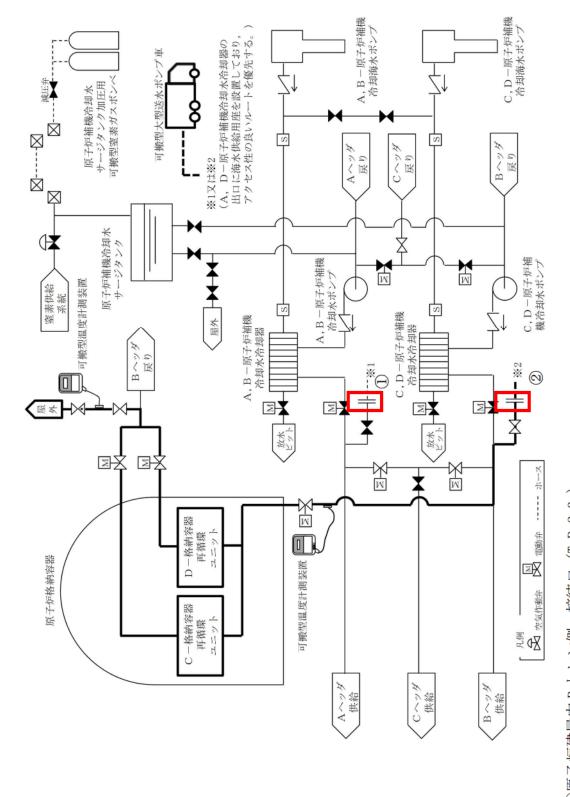
農:接続先である原子炉補機冷却水配管及び設置場所である原子炉建屋は耐 震重要度分類Sクラスであることから、地震時においても使用可能であ

共通要因について

型

に配置することにより位置的分散を図った2箇所 (Aトレ ン及びBトレンの原子炉補機冷却水配管への接続)を設け ており、共通の要因により同時に被災することはなく、接

可搬型大型送水ポンプ車による原子炉補機冷却水系統へ


頑健な原子炉建屋内の異なる区画

の海水送水の接続口は、

問題なく接続作業が可能である。

枠囲みの内容は機密情報に属しますので公開できません。

49-9-4

①原子炉建屋内Bトレン側 接続口 (T.P.2.3m) ②原子炉建屋内Aトレン側 接続口 (T.P.2.3m)

概略系統図

က

<u>⊠</u> 1

49-9-5

可搬型大型送水ポンプ車による代替炉心注水、補助給水ピット/燃料取替用水ピットへの補給の接続ロ(1/3) . 2

ピット/燃料取替用水ピットへの補給の接続口は、原子炉 可搬型大型送水ポンプ車による代替炉心注水、補助給水 建屋の異なる壁面近傍に配置することにより位置的分散を 共通の要因により同時に被災することはなく、接続するこ 図った2箇所(原子炉建屋の東側と西側)を設けており、 とができなくなることを防止している。

ぞれの機能に必要な容量を確保できる接続口を設置してい 上記は複数の機能でひとつの接続口を使用するが、それ

- 原子炉建屋、及び原子炉補助建屋は耐震重要度分類Sクラスであることか ら、地震時においても使用可能であり、問題なく接続作業が可能である。 震:接続口及び接続配管は耐震性を有する設計としていること、設置場所の 【共通要因について】 ・<u>地 震</u>:接続ロ及〕
 - 水密化した建屋内に、もう1つはT.P.33.1mの高所にあることから、津波 :基準津波により T.P.10mの敷地は浸水しないこと、及び接続口の1つは により同時に接続不能とはならない。 波 無
- 雲性を有し、地震により損壊し火災が発生するおそれはないことから、火 :接続口と屋内ホース敷設ルートの周囲には可燃物がないこと、及び接続 ロと屋内ホース敷設ルート近傍の油内包回転機器も基準地震動に対し耐 災により接続不能とはならない。 \approx **₹**
 - :事故環境下にあってもポンプ車の設置、接続や運転など必要な作業は実 插回能にある。 放射線
- 容易办 つ確実に接続することが可能である。また、手順を確立しており確実に常 :ホースと常設配管の接続は JIS または ANSI 規格のフランジ継手、ホースの接続はポンプの種類に応じた同一規格の専用金具により、 設設備との接続が可能である。 その他

接続口の設置場所 2 - 1

取水場所及びホース敷設ルート $\times 2 - 2$

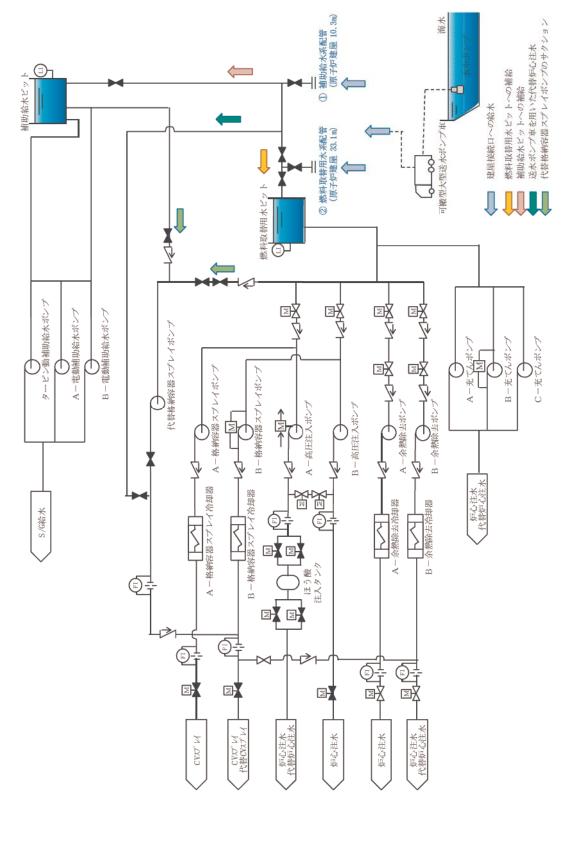


図2-3 熱駱米約図

まとめ

_ ! :	但 则			
接続口配置	・Bトレン側原子炉補機冷却水配管 (原子炉建屋内:T.P.2.3m) (原子炉建屋内:T.P.2.3m) (原子炉建屋内:T.P.2.3m) ・Aトレン側原子炉補機冷却水配管 (原子炉建屋内:T.P.2.3m) (原子炉建屋 東側 (ディーゼル発電機建屋)又は西側からアクセスし、接続) (原子炉建屋 東側 (ディーゼル発電機建屋)又は西側からアクセスし、接続)	 ・補助給水系配管 (原子炉建屋内:T.P.10.3m) (原子炉建屋内:T.P.10.3m) ・燃料取替用水系配管 (原子炉補助建屋内:T.P.33.1m) (原子炉補助建屋内:T.P.33.1m) (原子炉補助建屋上屋(ECTトラックアクセスエリア内)にて接続) ・原子炉建屋の異なる壁面近傍に配置している。 	・防潮堤内に取水口を確保 おり、問題ない。 おり、問題ない。 とホースは任意の場所に敷設できる とており、問題ない。 機動性があるため、一部重複ルートに対しても問題ない。 とを防止するため、位置的分散を図った複数の接続口の設置とともに、ホース敷設ルートについても同様に対応しており、確実な助水・洋水が可能となるよう配慮している。	
ホース敷設ルート	・合計2ルートを確保。・建屋の東側廻り、西側廻りの両方のルートを確保。・建屋内にて、一部重複ルートあり。	・合計2ルートを確保。 ・建屋の東側廻り、西側廻りの両方 のルートを確保。	・防潮堤内に取水口を確保 ・ホースは任意の場所に敷設できる しており、問題ない。 機動性があるため、一部重複ルー トに対しても問題ない。 設置許可基準第 43 条第 3 項 (接続口)に関する対応については、ま ことを防止するため、位置的分散を図った複数の接続口の設置ととす おり、確実な取水・注水が可能となるよう配慮している。	
取水場所	・3号スクリーン室	・3号スクリーン室	・防潮堤内に取水口を確保 しており、問題ない。 設置許可基準第 43 条第 3 項 ことを防止するため、位置的 おり、確実な取水・注水が可	
	可搬型大型送水ポンプ 車による原子炉補機冷 却水系統への海水送水	可搬型大型送水ポンプ 車による代替炉心注 水、補助給水ピット及 び燃料取替用水ピット への補給	まとめ (評価)	

別紙

可搬型大型送水ポンプ車による代替炉心注水、補助給水ピット/燃料取替用水ピットへの補給の接続口の兼用について

票記の接続口は3つの機能を1つの接続口で兼用している。

一方、設置許可基準規則第43条における接続口の兼用に係る要求事項は下記のとおりである。

(設置許可基準規則第43条 解釈第6項)

第3項第3号について、複数の機能で一つの接続口を使用する場合は、それぞれの機能に必要な容量(同時に使用する可能性がある場 合は、合計の容量)を確保できるように接続口を設けること。

本資料においては以下のとおり、標記の接続口が設置許可基準規則の接続口の兼用に係る要求事項に適合していることを確認した。

標記の接続口を使用する重大事故等の有効性評価のシナリオは表1のとおりであるが、複数の機能を同時に使用することはない。また、③の機 能を使用する状況においては常設 SA 設備による炉心冷却機能は喪失している、及び炉心が既に損傷していると考えられ、①及び②の機能との同 時使用の可能性はない。従って、それぞれの機能に必要な容量を確保していることにより、上記の基準要求事項に適合している。なお、表1の①、 ②及び③の機能が関連する設置許可基準規則の条文は第 56 条と第 47 条であるが、これらの条文に接続口に係る要求事項はない。

② 可搬型大型送水ポンプ車による 燃料取替用水ピットへの補給
(重大事故等の収束に 第 56 条 (重大事故等の収束に必なる水の供給設備) 要となる水の供給設備)
0
0

49-10 可搬型大型送水ポンプ車の構造について

可搬型大型送水ポンプ車の構造について

可搬型大型送水ポンプ車は、図 49-10-1 に示すとおり送水ポンプ1台、付属の水中ポンプ1台、車両のディーゼルエンジン1台で構成される。

可搬型大型送水ポンプ車は、送水ポンプ及び付属の水中ポンプを、消防ポンプ自動車用機関である、車両のディーゼルエンジンにて駆動する設計であり、外部電源が不要な設計である。

可搬型大型送水ポンプ車は、淡水又は海水を付属水中ポンプにて取水した 後、ホースを介して車載ポンプへと送水し、加圧した水を各注水先へ送水す る。

なお、付属水中ポンプの吸い込み部にはストレーナを設置し、異物の流入を 防止する設計としている。

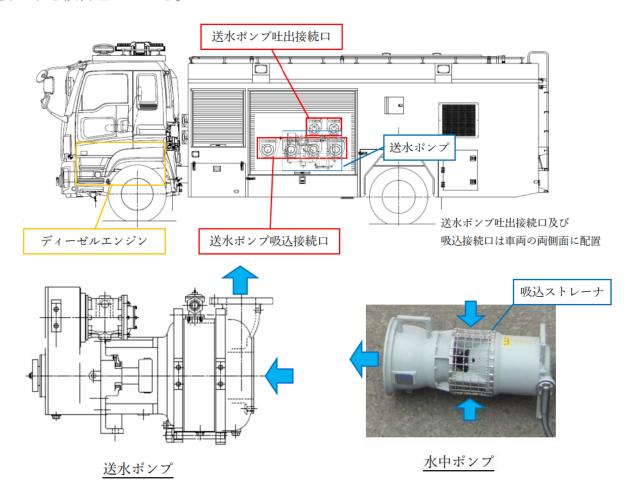


図 49-10-1 可搬型大型送水ポンプ車の構造概要図