
線量評価に用いる大気拡散の評価について

線量評価に用いる大気拡散の評価としては、実効放出継続時間を基に計算した値を年間 について小さい値から順に並べて整理し、累積出現頻度97%に当たる値としている。また、

着目方位と 复数の方位を		第1図から第3図に示すとおり、建屋による広がりの影響を考慮し、 している
を扱いフクロエヤ	2 / 列 永 C	
	第1図	滞在時の評価対象方位の選定(評価点:中央制御室中心)

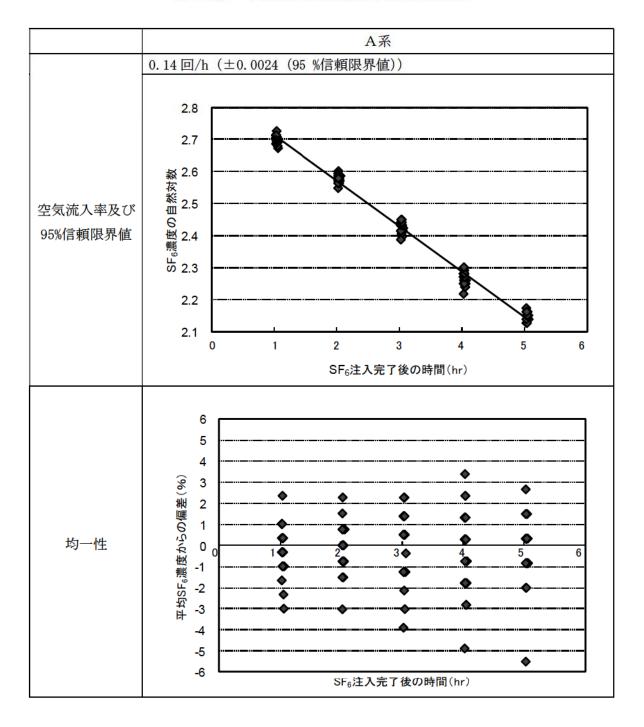
枠囲みの内容は機密情報に属しますので公開できません。26 条-別添 3-31

枠囲みの内容は機密情報に属しますので公開できません。 26 条-別添 3-32

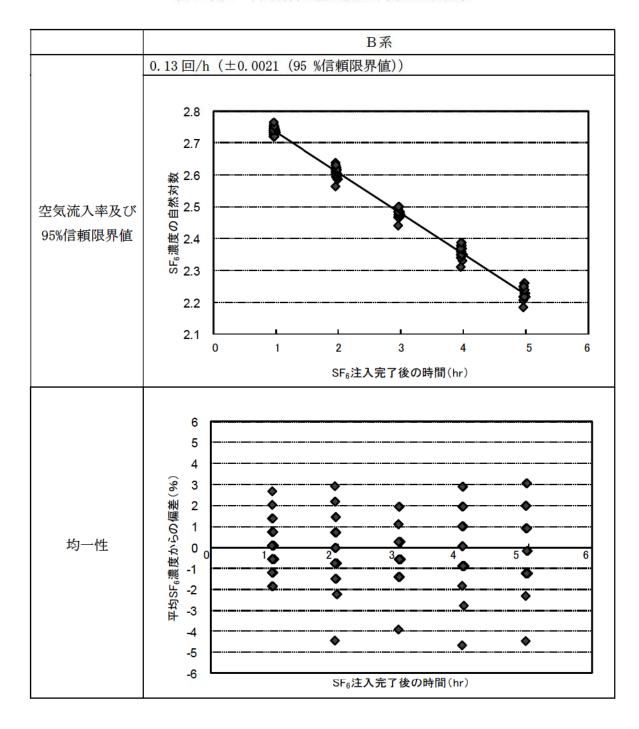
空気流入率試験結果について

「原子力発電所中央制御室の居住性に係る被ばく評価手法について(内規)(平成21・07・27原院第1号平成21年8月12日)」の別添資料「原子力発電所の中央制御室の空気流入率測定試験手法」に基づき,泊3号炉中央制御室について平成20年12月に試験を実施した結果,空気流入率は最大で0.14回/h(±0.0024(95 %信頼限界値))である。

保全活動としては、中央制御室の気密性に影響する換気空調設備及び電気計装設備の定期的な 点検等に加え、空気流入率試験(6年毎)を実施することにより、中央制御室の気密性の健全性を 確認することとしている。


なお、運転開始前に中央制御室の空気流入率を測定する試験を実施し、中央制御室の居住性を 確認する。

空気流入率試験結果の詳細を次ページ以降に示す。


泊発電所3号炉 中央制御室空気流入率測定試験結果

項目			内 容		
試験日程	平成 20 年 11 月 19 (試験時のプラン	terminal vita	成 20 年 11 月 21 日 : 建設中)		
均一化の程度	系統		トレーサガス濃度: (測定値-平均値		D場所によるバラツキ 均値 (%)
均にの住及	A系			-5. 5∼	3.4
	B系			-4.6~	-3. 1
試験手法			室の空気流入率測定 「全サンプリング点		法のうち 試験手順」にて実施
		内容		適用	備考
	トレーサガス濃度 値の±10%以内		のバラツキが平均	0	
	決定係数R ² が0.90以上であること。				*均一化の目安を満 足している
適用条件	①中央制御室の空気流入率が,別区画に比べて小さいこと。			_	*1区画で構成され ている
	②特異点の除去が、1時点の全測定データ個数の10%以内であること。				*特異点の除去はない
	③中央制御室以外の空気流入率が大きい区 画に,立入規制等の管理的措置を各種マニ				*特定の区画を除外せず、全ての区画を包
	ュアルに等に明記し、運転員へ周知すること。			_	含するリーク率で評価している
	系統	(±ļ	空気流入率 以下は 95%信頼限界	値)	決定係数R ²
試験結果	A系	0.	14回/h (±0.0024)		_
	B系	0.	13回/h (±0.0021)		
特記事項					

泊3号炉 中央制御室空気流入率測定試験結果

泊3号炉 中央制御室空気流入率測定試験結果

中央制御室空気流入率測定試験方法の概要

1. 中央制御室の空気流入率の試験方法

米国材料試験協会規格 ASTM E741-00 (2006) 及び空気調和・衛生工学会規格 SHASE-S 116-2003 に規定された「濃度減衰法」に準拠して実施。(濃度減衰法)

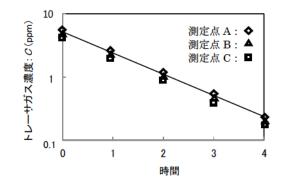
トレーサガスを中央制御室バウンダリ内へ注入し,適切な時間間隔で濃度測定を実施。トレー サガス濃度の対数をサンプリング時間に対してプロットし, その傾きを中央制御室の空気流入率 とする。

 $\frac{V \times dC(t)}{dt} = S(t) - f \times C(t)$

: 中央制御室バウンダリ内体積

C(t) : トレーサガス濃度

S(t) : トレーサガス注入量


 $\ln C(t) = -A(t-t_0) + \ln C(t_0)$ f :空気流出量

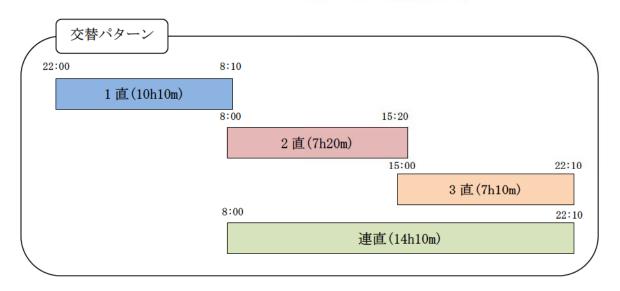
: 空気流入率(換気率)

 $A = -\frac{\ln C(t) - \ln C(t_0)}{t - t_0}$

t : 時間

 t_0 : サンプリング開始時間

2. 試験対象範囲 (NISA 内規より抜粋)


太線:中央制御室バウンダリ 中央制御室バウンダリ(下図太線)内が対象 空調装置 中央制御室 再循環フィルタ装置 その他(計算機室等) 、他系統ダクト及び 総・排気エリア

直交替の考え方について

通常時の運転員の勤務形態として,5 直 2.5 交替制を採用しており,事故発生等の緊急時においても同様の勤務形態を継続することとしている。

1. 1日間での交替パターン

下図に1日間での交替パターンを示す。前日の22時に当直につき8時10分まで勤務をする「1直」,8時より15時20分まで勤務をする「2直」,15時より22時10分まで勤務をする「3直」と,「2直」と「3直」を続けて勤務する「連直」の4つの勤務がある。

2. 勤務の組合せと勤務時間等について

当直勤務については8日間を1サイクルとして、これらの勤務を組み合わせており、3交替の 代表例としてA班に着目したものを第1表に示す。

この際、1 サイクルにおいて勤務時間が最大となる班は 49 時間勤務となり、当直は 5 回勤務 (入退域回数は 10 回) となる。

なお、重大事故及び設計基準事故において評価対象期間となる 7 日間、30 日間について、それぞれの班の滞在時間と入退域回数について第2表に取りまとめている。

第1表 具体的な組み合わせパターンの代表例

日	1直	2 直	3 直
1	D班	E班	A班(7h10m)
2	D班	A班(14	kh10m)
3	E班	A班(7h20m)	C班
4	E班	CĦ	班
5	A班(10h10m)	C班	D班
6	A班(10h10m)	D	班
7	C班	D班	E班
8	C班	Εţ	班

A班の滞在時間:7h10m+14h10m+7h20m+10h10m+10h10m=48h60m=49hr

A班の入退域回数:10回

第2表 当直の中央制御室滞在時間と交替回数

		範囲	最大
7 日 閏	滞在時間	34 時間 50 分~49 時間 00 分	49 時間 00 分
7日間	入退域回数	8回~10回	10 回
20 日間	滞在時間	174 時間 30 分~196 時間 00 分	196 時間 00 分
30 日間	入退域回数	36 回~40 回	40 回

3. 事故発生時における当直の交替について

事故発生時において,当直員は中長期での運転操作等の対応に支障が出ることの無いよう,通 常時の勤務形態と同様の勤務形態を継続する。

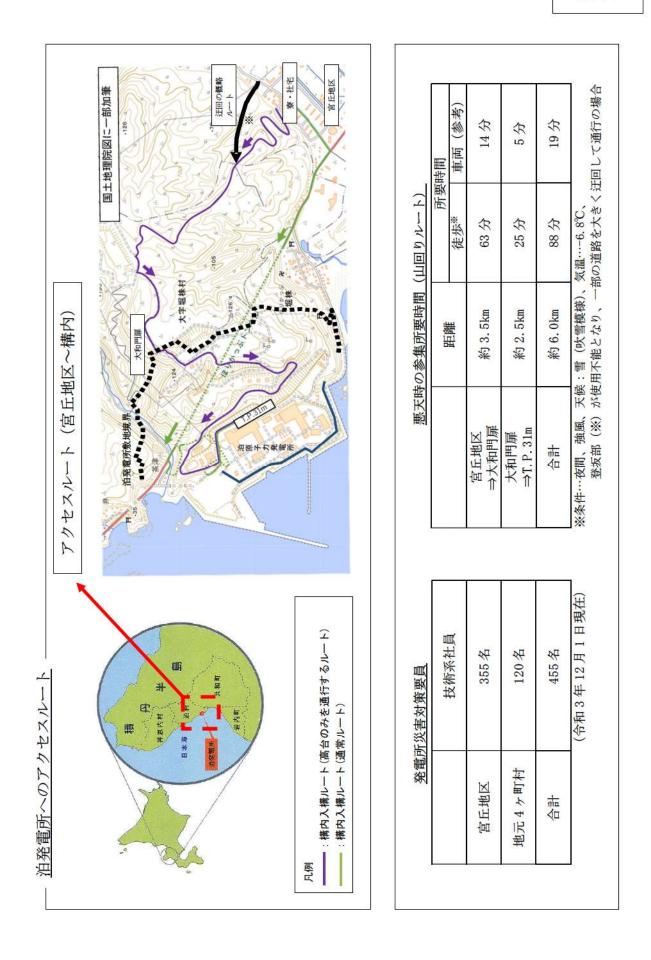
この際,発電所までのアクセスルートの確保が課題となるが,別紙に示すとおり,発電所までのアクセスルートについては,通常使用するルートに加え,社員が多く住居している宮丘地区からの山廻りルートが確保されていることから,要員の交替に支障となることはない。

4. 事故事象の進展により当直員の交替がすぐにできない場合

重大事故発生時などについては、現場の運転員が操作等で現場を離れることができず、直ちに 次の当直に引き継げない場合や、交替の当直員の到着が遅れる場合などが想定される。

現在評価している最大の滞在時間に、もし仮に最長の当直時間となる連直の 14 時間 10 分を加えた場合、重大事故については約 29 %、設計基準事故については約 7 %増えることとなるが、第 3 表、第 4 表に示すとおり 100 mSv を超えることはない。

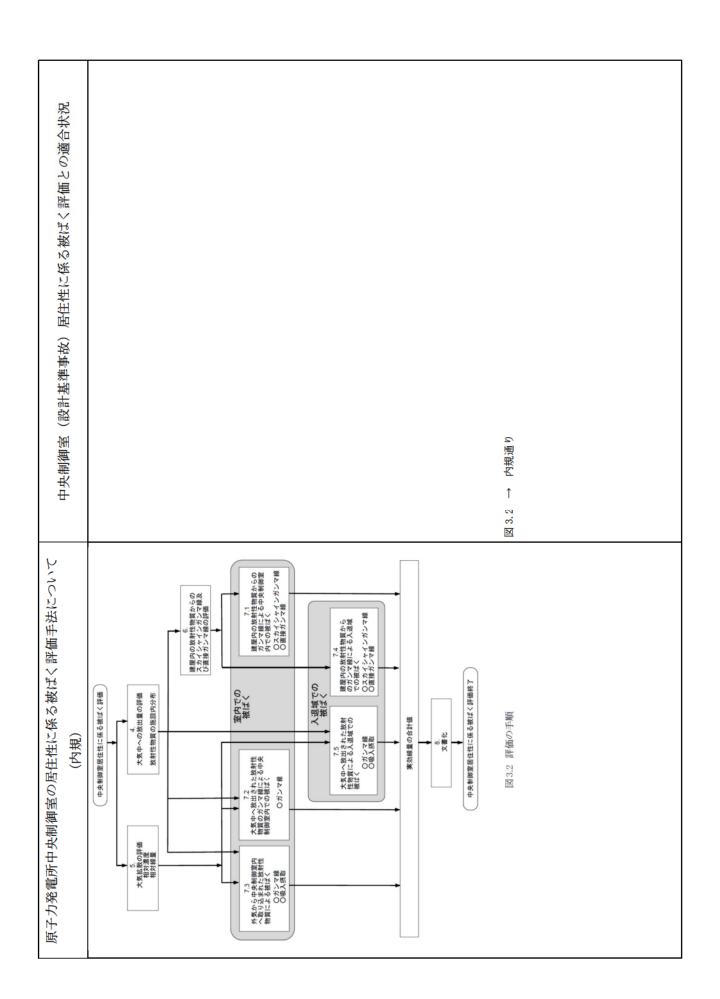
49 時間+14 時間 10 分=63 時間 10 分(約 29 %增)

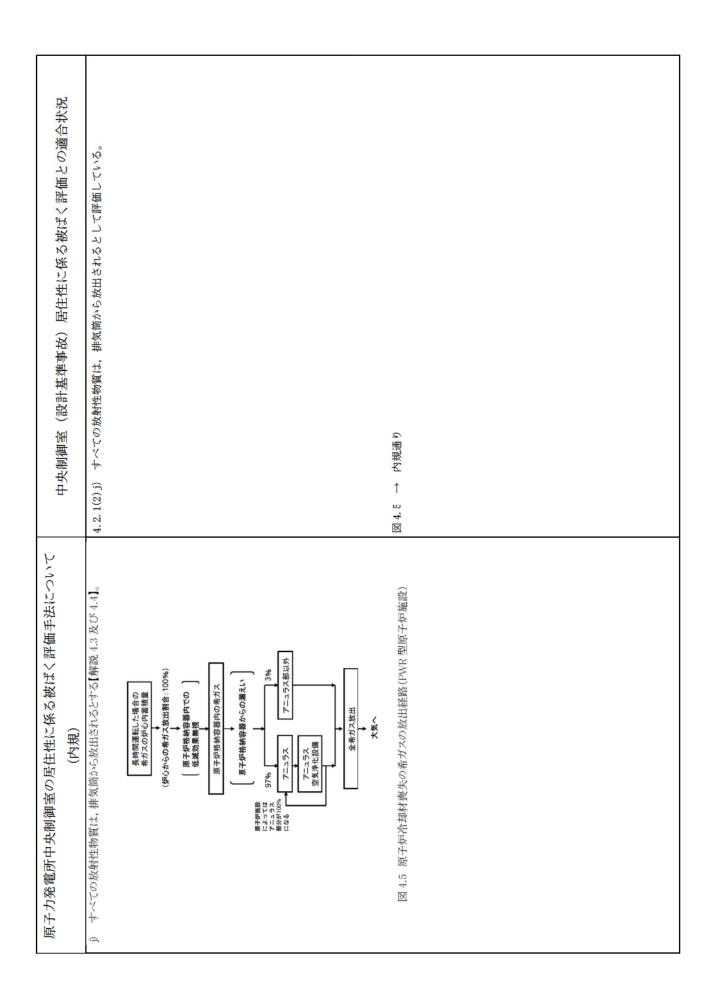

196 時間+14 時間 10 分=210 時間 10 分(約7 %增)

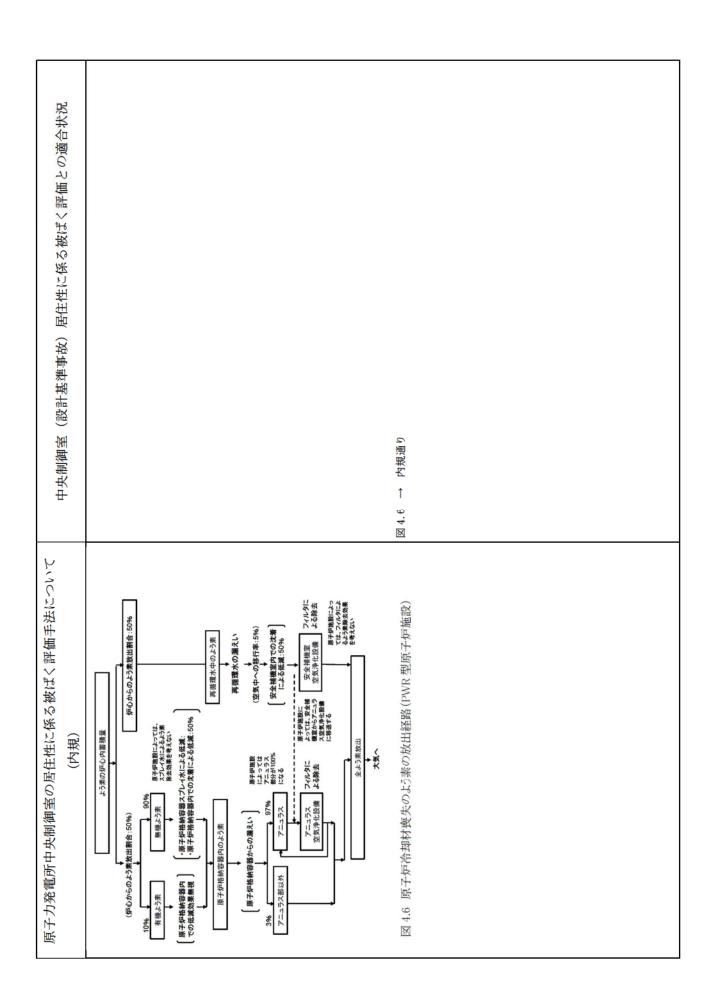
第3表 重大事故の被ばく評価 (実効線量 mSv)

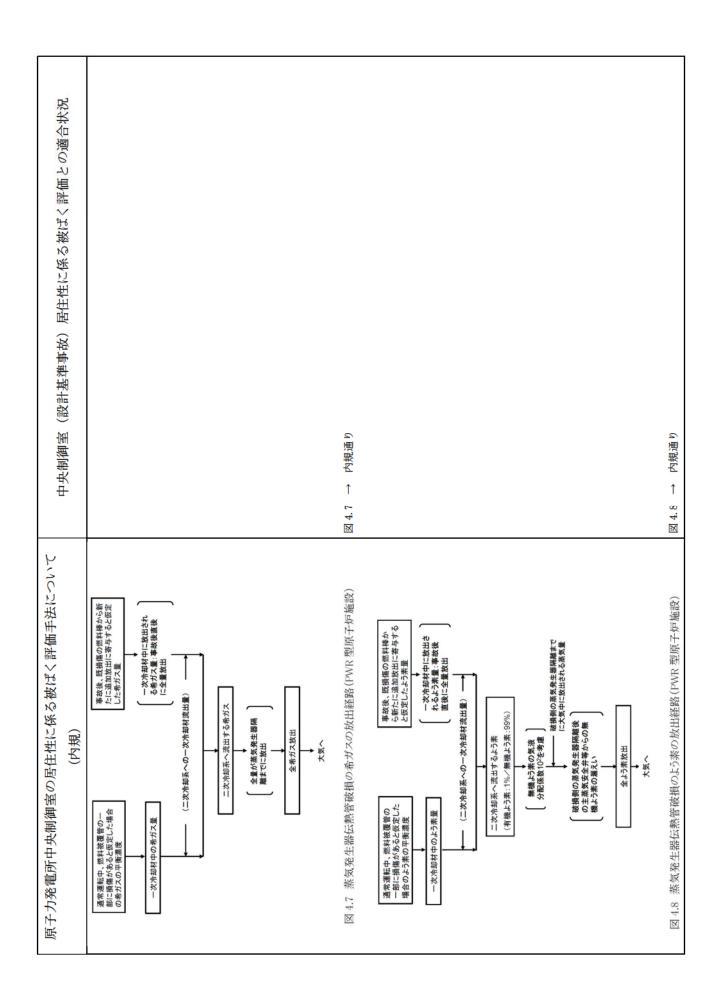
	マン	スク有	マフ	スク無
	49 時間滞在	約63時間滯在	49 時間滯在	約 63 時間滞在
中央制御室滞在時	約 2.2	約 2.9	約 55	約 71
入退域時	糸	5 12	彩	16
合計	約 15	約 15	約 71	約 87


第4表 設計基準事故の被ばく評価 (実効線量 mSv)


	原子炉料	分却材喪失	蒸気発生器	居伝熱管損傷
	196 時間滞在	約210時間滯在	196 時間滞在	約 210 時間滞在
中央制御室滞在時	約 9.2	約 9.8	約 6.0	約 6.4
入退域時	約	8.3	約0	. 0071
合計	約 18	約 19	約6.0	約 6.5

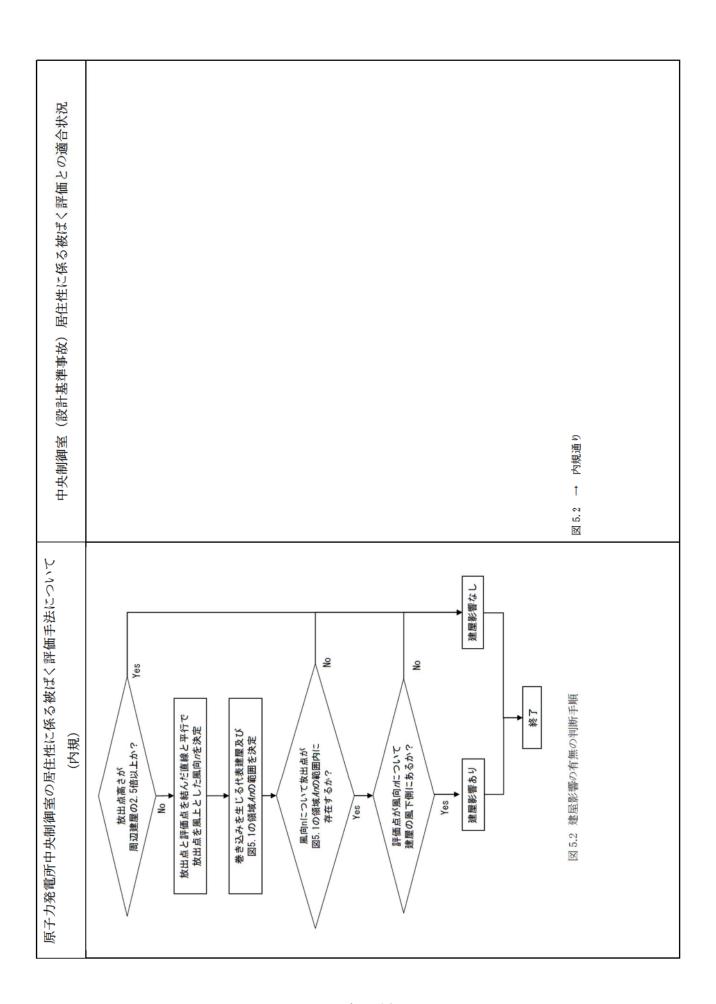

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況		3.1(1) → 内規通り	3.1b) 泊発電所3号炉は PWR 型原子炉施設のため,原子炉格納容器内放出は原子炉冷却材喪失,原子炉格納容器外放出は蒸気発生器伝熱管破損として評価する。	3.2 → 内規通り	3.2(1)a) 中央制御室内での被ばく評価 3.2(1)a)1) 建屋内の放射性物質からのスカイシャインガンマ線及び直接ガンマ線による中央制御 室内での外部被ばく線量を評価している。	 3.2(1)a)2) 大気中へ放出された放射性物質からのガンマ線による中央制御室内での外部被ばくは、事故期間中の大気中への放射性物質の放出量を基に大気拡散効果と中央制御室の壁によるガンマ線の遮蔽効果を踏まえて運転員の外部被ばくを評価している。 3.2(1)a)3) 事故期間中に大気中へ放出された放射性物質の一部は外気から中央制御室内に取り込まれる。中央制御室内に取り込まれた放射性物質の吸入摂取による内部被ばく及びガンマ線による外部被ばくの和として実効線量を評価している。 	3.2(1)b) 入退域時の被ばく評価3.2(1)b)4) 建屋内の放射性物質からのスカイシャインガンマ線及び直接ガンマ線による入退域時の外部被ばく線量を評価している。	3.2(1)b)5) 大気中へ放出された放射性物質からの吸入摂取による内部被ばく線量及びガンマ線による外部被ばく線量を評価している。
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	 評価項目(評価の手順, 判断基準含む) 担定事故 	(1) 想定事故の種類 原子炉施設の構造, 特性及び安全上の諸対策から, 放射性物質の放出の拡大の可能性のあ る事故の態様として, 原子炉格納容器内放出と原子炉格納容器外放出の 2 種類を考える[解説 3.1]。	a) BWR 型原子炉施設の原子炉格納容器内放出は原子炉冷却材喪失,原子炉格納容器 外放出は主蒸気管破断とする。 b) PWR 型原子炉施設の原子炉格納容器内放出は原子炉冷却材喪失,原子炉格納容器 外放出は蒸気発生器伝熱管破損とする。 c) 原子炉格納容器内放出及び原子炉格納容器外放出は,一方の事故で包含できる場合 は, いずれかで代表してもよい。	3.2 評価項目	正する(図3.1)。 :制御室内での被ばく :部被ばく	- 建屋内の放射性物質からの直接ガンマ線による外部数はく 大気中へ放出された放射性物質による被ばく 大気中へ放出された放射性物質による破ばく 3) 外気から取り込まれた放射性物質による中央制御室内での被ばく 中央制御室内へ取り込まれた放射性物質による中央制御室内での被ばく 中央制御室内へ取り込まれた放射性物質による形はくを,次の二つの被ばく経路を 対象にして計算する。 - 中央制御室内へ外気から取り込まれた放射性物質の吸入摂取による内部被ば く	B城時の被ばくを, 次 ・部被ばく	- 建屋内の放射性物質からの直接ガンマ縁による外部数はく 5) 大気中へ放出された放射性物質による被ばく 大気中へ放出された放射性物質による入退域時の被ばくを,次の二つの被ばく経路 を対象にして計算する。 - 大気中へ放出された放射性物質の吸入摂取による内部被ばく


(ビ) 評価の手順	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
図 3.2 に示す。 への放出量の計算及び放射性物質の施設内分布 故に対して,大気中への放射性物質放出量を計算する。また,放射性物質の施 在な書や本字計算する(1.4 半毎日への放射場の認価)	3.2(2)a) 想定事故に対して,大気中への放出量及び放射性物質の施設内の存在量分布を評価している。
政行の仕行車分布を引きする。(14.大次十六の以出車の計画) 原子が施設間辺の気象で一夕を用いて、大気拡散を計算して相対濃度及び相対線量を 計算する。(15.大気拡散の評価」) 放射性物質の施設内の存在量分布から建屋内の線源強度を計算する。(16.建屋からの スカイシャインガンマ線及び直接ガンマ線の評価」)	3.2(2)b) 原子炉施設周辺の気象データを用いて,大気拡散を計算して相対濃度及び相対線量を評価している。 1.2(2)c) 放射性物質の施設内の存在量分布から建屋内の線源強度を評価している。
質からのガンマ線(スカインャインガンマ (「7.1 建屋内の放射性物質からのガン 1された放射性物質による被ばくを計算 のガンマ線による中央制御室内での被	 3.2(2)d)1) 前項のの結果を用いて、建屋内の放射性物質からのガンマ線 (スカイシャイン線,直接ガンマ線)による被ばくを評価している。 3.2(2)d)2) 前項a)及びb)の結果を用いて,大気中へ放出された放射性物質による被ぼくを評価している。
(147) 前項 a)及び b)の結果を用いて、中央制御室内に外気から取り込まれた放射性物質 による被ばく(ガンマ線及び吸入摂取)を計算する。(「7.3 室内に外気から取り込まれた放射性物質による中央制御室内での被ばく」) 3.3 結構性の運転員の並ばえますまる。	3.2(2)d)3) 前項a)及びb)の結果を用いて,中央制御室内に外気から取り込まれた放射性物質による被ばく (ガンマ線及び吸入摂取)を評価している。
へが表示の結果を用いて、建国ポナラ。 1) 前項 のの結果を開いて、建屋(存在する放射性物質から放射されるガンや線(スカインセインガンマ線)直接が上で表別による被ばくを計算する。(「7.4 建屋内の放射性・モニュー・カー・エー・エー・エー・エー・エー・エー・エー・エー・エー・エー・エー・エー・エー	3.2(2)e)1) 前項 c)の結果を用いて,建屋に存在する放射性物質から放射されるガンマ線(スカイン・インガンマ線,直接ガンマ線)による被ばくを評価している。
物質からのカンマ森による人造場時の夜ほく」) 2) 前項 a)及び b)の結果を用いて、大気中へ放出された放射性物質による被ぼく(ガン 、 マ線及び吸入摂取)を計算する。(「7.5 大気中へ放出された放射性物質による入退 城時の被ぼく()	3.2(2)e)2) 前項a)及びb)の結果を用いて,大気中へ放出された放射性物質による被ばく (ガンマ線及び吸入摂取)を評価している。
^右 果を文書化する。 o c)までのうち, b)は他の評価と並列に進めてもよい。 また d)及び e)は, °	3.2(2)f) 評価条件及び評価結果を文書化し、資料としてまとめている。 3.2(2)g) 評価の手順のa)から c)までのうち, b)は他の評価と並列に進めている。また d)及び e) は,並列に進めている。
判断基準	3.3 → 内規通り
[3.1 想定事故」に対して、「3.2 評価項目」の(1)a)中央制御室内での被ばく評価及び(1)b)入退域 時の被ばく評価で計算した線量の合計値が、次の判断基準を満足すること。 - 1 人あたりの被ばく経路ごとの実効線量の合算値が、100mSv を超えない。『解説 3.2』。	「1 人あたりの被ばく経路ごとの実効線量の合算値が, 100 mSv を超えない」ことを満足しているることを確認している。



 	原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規) 4. 大気中~の放出量の評価 4.2 PWR型原子が施設 4.2 PWR型原子が施設 4.3 Fが当材度失及び蒸気発生器伝熱管破損を対象とする。原子炉冷却材度失及び蒸気発生器伝熱管破損を対象とする。原子炉冷却材度失及び蒸気発生器伝熱管破損を対象とする。原子炉冷却材度失及び蒸気発生器に熱管破損を対象とする。原子炉冷却材度失及び蒸気発生器に熱管を損を対していずれがで代表しておより。 4.2.1 原子炉冷却材度失く及び蒸気発生器伝熱管破損を対象とする。原子炉冷却材度失及び蒸気発生器に対しておれるとする。 (1) 原子炉に、定格出力に全発を見た出力で十分長時間運転していたとする[解説 4.1]。 2) 大気中~の放出量の計算 a) 希力スは図 4.5、よう素12図 4.6 に示す放出経路で大気中へ放出されるとする。 (2) 大気中への放出量の計算 b) 事象発生後、原子が格神容器内に放出されたよう素のうち、有機よう素は 10%とし、残りの 90%は無機よう素とする。 (3) 原子作格納容器内に放出されたよう素のうち、無機よう素は、50%が原子が格納容器内 20%は無機しま素とび希力スは、この効果を無視する。 (4) 原子作格納容器内に放出されたよう素のから、無機よう素は、50%が原子が格納容器内 4.5、20%の原子が確中減期を100 秒とすることは受りと認えた、着身にないで、その考え方を期間する。2 有機よう素及び希力スは、スプレイによるこの効果を無視する。 (5) に示されており、その考え方を期間する。2 有機よう素及び名力スは、スプレイによるこの効果を無視する。 (6) アニュラス空気再循環設備でイルタを含むりは、起動信号を明らかに、かつ、十分な時間的余格を見込んで、その機能を期待することができる。フィルタのよう素除去効率は設計に設けを見込んで、その機能を期待することができる。フィルタのよう素除去効率は設計に設けを見込んで、その機能を期待することができる。フィルタのよう素除去効率は設計に設けを見込んで、その機能を現を見込んで、その機能を別解さまし。	中制御室 (設計基準事故) 居住性 内規通り 内規通り 定格出力に余裕を見た出力で十分長時間 大気中への放出量の計算 図 4.5 及び図 4.6 に示される放出経路 いる。 事象発生後、原子炉格納容器内に放出 不着ガス 100 %、よう素 50 %の割合とし 原子炉格納容器内に放出されたよう素 機よう素として評価している。 原子炉格納容器内に放出されたよう素 機よう素として評価している。 原子炉格納容器内に放出されたよう素 及び同容器内の機器等に沈着し、原子炉 している。有機よう素及び希ガスは、こ 原子炉格約容器スプレイ水による無機 た値に余裕を見込んだ値として評価して の湯えいは、原子炉格納容器の設計 たるの効果を無視して評価している。 アニュラス空気再循環設備 (フィルタ 分な時間的余裕を見込んで、その機能を 分な時間的余裕を見込んで、その機能を からのよう素除去効率は設計値に余裕を
P	ECCS が再循環モードで運転され、原子炉格納容器内の水が原子炉格納容器外に導かれる場合には、原子炉格納容器外において設計漏えい率に余裕を見込んだ漏えい率での再循環水の漏えいがあると仮定する。例えば、設計漏えい率を下回らない値に対し2倍の余裕を見込んだ設定を仮定する。 再循環水中には、等象発生直後、よう素の炉心内蓄積量の50%が溶解するとし、ECCSの再循環系から補助建屋に漏えいしたよう素の気相への移行率は5%、補助建屋内でのよう素の沈着率は50%と仮定する。	4.2.1(2)h) ECCSが再循環モードで運転され,原子炉格納容器内の水が原子炉格納容器外に導かれる場合には,原子炉格納容器外において設計漏えい率に余裕を見込んだ漏えい率での再循環水の漏えいがあると仮定して評価している。 再循環水中には,事象発生直後,よう素の炉心内蓄積量の 50 %が溶解するとし,ECCSの再循環系から補助建屋に漏えいしたよう素の気相への移行率は 5%, 補助建屋内でのよう素の沈着率は 50 %と仮定して評価している。
$\widehat{}$	ECCS の再循環系が設置される補助建屋内換気系によう素用フィルタが設備される場合には、その除去効率は設計値に余裕を持った値とする「解説 4.2」。	4.2.1(2)i) ECCSの再循環系が設置される補助建屋内換気系によう素用フィルタが設備される場合には,その除去効率は設計値に余裕を持った値として評価している。

14.2.2 一	
原子炉の出力運転中に、蒸気発生器の伝熱管 1 本が、解時に両端破断し、二次冷却系を介 4.2.2(3) Uて一次冷却材が原子炉格納容器外に放出される事象とする。 Uて一次冷却材が原子炉格納容器外に放出される事象とする。 Uて一次冷却材が原子原を持ては、その動作は、一次冷却材の適出量を大きくするように仮定 4.2.2(4) a) 事業発生前の一次冷却材中の放射性物質の濃度は、設計上想定した燃料披養管欠陥 4.2.2(4) b) 事業発生前の一次冷却材中の放射性物質の濃度は、設計上想定した燃料披養管欠陥 4.2.2(4) b) 事業発生前の一次冷却材中の放射性物質の濃度は、設計上想定した燃料披養管欠陥 4.2.2(4) b) 事業発生前の一次冷却がに追加が出される。素気発生器を隔離するまでの間に一次冷却系か 5.2(4) c) 後一次冷却系に追加が出される。素気発生器を隔離するまでの間に一次冷却があか 5.2次冷却系に適出する放射能量の割合は、その時流出する一次治却材量の全保有本意に対する放射能量の割合は、その時流出する一次冷却材量の全保有 本量に対する割合と同じとする。 b) 改規した素気発生器の隔離までの放出率を、放出量を隔離時間で除した値で一定であるとはな気中に放出される。主なら対系に流出した希力スは、全量が大気中に放出される。無視した素気を生器の隔離までの放出率を、放出量を隔離時間で除した値で一定であるとはならとい。 b) 破損した素気発生器の隔離までの放出率を、放出量を隔離時間で除した値で一定であるとはな音をしまい。 c) 破損した素気発生器の隔離後は、二次側弁からの蒸気の調えいによって、無機よう素が 4.2.2(4) をしてもよい。 c) 破損した素気発生器の隔離後は、二次側弁からの蒸気の調えいによって、無機よう素が 4.2.2(4) をしたできることができる。また、二次側弁かの脂素気の調えいによって、無機よう素が 4.2.2(4) をしたしまい。 c) 破損した素気発生器の隔離後は、二次側弁からの蒸気が高えいでは、2.2(4) をしたっな出される。弁からの蒸気温えい率は、設計値に余裕を見込んだ値で30 目間 総くものとする。	内規どおり 定格出力に余裕を見た出力で十分長時間運転していた炉心を評価対象炉心としている。
4.2.2(3) 年的電腦に、要失する場合と喪失しない場合のいずれか難し、場合を仮定する。また、	原子炉の出力運転中に,蒸気発生器の伝熱管 1 本が,瞬時に両端破断し,二次冷却系を介して一次冷却材が原子炉格納容器外に放出される事象を評価する。
4.2.2(4)a) おガス類は図 4.3、よう素類は図 1.4 に示す放出経路で大気中へ放出されるとする。 キガス類は図 4.3、よう素類は図 1.4 に示す放出経路で大気中へ放出されるとする。 4.2.2(4)b) 事象発生前の一次冷却材中の放射性物質の濃度は,設計上想定した燃料被覆管欠陥 等を用いて計算された値とする。 (4.2.2(4)c) 設計上想定した欠陥を有する燃料棒のギャップから,希ガス及びよう素が,事故発生値 (4.2.2(4)d) この一次冷却材内放射性物質のうち,蒸気発生器を隔離するまでの間に一次冷却系か 5二次冷却系に適加放出される。 本量に対する割合に口とする。 4.2.2(4)d) 5二次冷却系に適加放出される。 非機よう素は 1%とし,残りの 99%は無機よう素 4.2.2(4)d) とする。 有機よう素は 全量が大気中に放出される。無機よう素は (条が分配係数 100 で蒸気ととに大気中に放出される。 無機よう素は 1%とし,残りの 99%は無機よう素は 全量が大気中に放出される。 無機よう素は (全量が大気中に放出される。 非した。 4.2.2(4)f) 破損した蒸気発生器の隔離までの放出率を,放出量を隔離時間で除した値で一定であると仮定することができる。また,二次側弁の開閉状況を考慮して放出率を時間依存値で設定してもよい。 は積した素気発生器の隔離後は、二次側弁からの蒸気の漏えいによって、無機よう素が 4.2.2(4)g) 破損した蒸気発生器の隔離後は、二次側弁からの蒸気の漏えいでは、設計値に余裕を見込んだ値で30 日間 総代ものとする。	外部電源は,大気への核分裂生成物の放出量の観点から,外部電源がない場合の方がより厳しい評価となるため,外部電源が喪失すると仮定して評価する。また,ECCSの動作は一次冷却材の流出量を大きくするように仮定する。
事象発生前の一次冷却材中の放射性物質の濃度は,設計上想定した燃料被覆管欠陥 4.2.2(4)b) 率を用いて計算された値とする。 設計上想定した欠陥を有する燃料棒のギャップから,希ガス及びよう素が,事故発生直 5.2.2(4)c) 後一次冷却系に追加放出される。 本気発生器を隔離するまでの間に一次冷却系から二次冷却系へ流出する放射能量の割合は,その時流出するでの間に一次冷却系から二次冷却系に追加が出される。 本量に対する割合と同じとする。 有機よう素は、全量が大気中に放出される。 無機よう素は、気管生器の局離までの放出率を、放出量を隔離時間で除した値で一定であると仮定するともに大気中に放出される。 二次治却系に流出した希ガスは,全量が大気中に放出される。 本域ともに大気中に放出される。 二次治却系に流出した希ガスは,全量が大気中に放出される。 大治却系に流出した希ガスは,全量が大気中に放出される。 大治却系に流出した希ガスは,全量が大気中に放出される。 大治却系に流出した希ガスは,全量が大気中に放出される。 大治却系に流出した希ガスは,全量が大気中に放出される。 また,二次側弁の開閉状況を考慮して放出率を時間依存値で 設定してもよい。 破損した蒸気発生器の隔離後は、二次側弁の局が表気の漏えいによって、無機よう素が 4.2.2(4)g) 大気中へ放出される。 弁からの蒸気漏えい率は,設計値に余裕を見込んだ値で30 日間総くものとする。	希ガス類は図 4.7,よう素類は図 4.8 に示す放出経路で大気中へ放出されるとして評する。
設計上想定した欠陥を有する燃料棒のギャップから、希ガス及びよう素が、事故発生直 4.2.2(4)c)後一次冷却系に追加放出される。この一次冷却系に追加放出される。この一次冷却が高端はからない。 素気発生器を隔離するまでの間に一次冷却系か 5.2(4)d) らこ次冷却系へ流出する放射能量の割合は、その時流出する一次冷却材量の全保有 本量に対する割合と同じとする。 有機よう素は、全量が大気中に放出される。 無機よう素は、気液分配係数 100 で 蒸気ともに大気中に放出される。 主次冷却系に流出した希ガスは、全量が大気中に放出される。 世される。 世域よう素は、全量が大気中に放出される。 二次冷却系に流出した希ガスは、全量が大気中に放出される。 立次冷却系に流出した希ガスは、全量が大気中に放出される。 立次冷却系に流出した希ガスは、全量が大気中に放出される。 大冷却系に流出した希ガスは、全量が大気中に放置を移走して放出率を時間依存値で 設定してもよい。 砂積した蒸気発生器の隔離後は、二次側弁の開閉状況を考慮して放出率を時間依存値で 設定してもよい。 被損した蒸気発生器の隔離後は、二次側弁からの蒸気の漏えいによって、無機よう素が、 4.2.2(4)g) 大気中へ放出される。弁からの蒸気漏えい率は、設計値に余裕を見込んだ値で30 日間 続くものとする。	事象発生前の一次冷却材中の放射性物質の濃度は,設計上想定した燃料被覆管欠陥率 2用いて評価している。
この一次冷却が内放射性物質のうち, 蒸気発生器を隔離するまでの間に一次冷却系か ち二次冷却系へ流出する放射能量の割合は,その時流出する一次冷却材量の全保有 本量に対する割合と同じとする。 二次冷却系に流出してきたよう素のうち,有機よう素は1%とし,残りの99%は無機よう素 とする。有機よう素は、全量が大気中に放出される。無機よう素は、気液分配係数100で 蒸気ともに大気中に放出される。二次冷却系に流出した希ガスは,全量が大気中に放 出される。 破損した蒸気発生器の隔離までの放出率を,放出量を隔離時間で除した値で一定であ ると仮定することができる。また,二次側弁の開閉状況を考慮して放出率を時間依存値で 設定してもよい。 破損した蒸気発生器の隔離後は、二次側弁からの蒸気の漏えいによって、無機よう素が 大気中へ放出される。弁からの蒸気漏えい率は、設計値に余裕を見込んだ値で30月間 続たものとする。	設計上想定した久陥を有する燃料棒のギャップから,希ガス及びよう素が,事故発生 直後一次冷却系に追加放出されることとしている。
二次冷却系に流出してきたよう素のうち,有機よう素は1%とし,残りの99%は無機よう素 4.2.2(4)e)とする。有機よう素は、全量が大気中に放出される。無機よう素は、気液分配係数100で蒸気とといて大気中に放出される。二次冷却系に流出した希ガスは、全量が大気中に放出される。上から加率を、放出量を隔離時間で除した値で一定であると仮定することができる。また、二次側弁の開閉状況を考慮して放出率を時間依存値で設定してもよい。破損した蒸気発生器の隔離後は、二次側弁からの蒸気の漏えいによって、無機よう素が大気中へ放出される。弁からの蒸気漏えい率は、設計値に余裕を見込んだ値で30日間続くものとする。	この一次冷却材内放射性物質のうち,蒸気発生器を隔離するまでの間に一次冷却系から二次冷却系へ流出する放射能量の割合は,その時流出する一次冷却材量の全保有水量に対する割合と同じとして評価している。
破損した蒸気発生器の隔離までの放出率を, 放出量を隔離時間で除した値で一定であると仮定することができる。また, 二次側弁の開閉状況を考慮して放出率を時間依存値で設定してもよい。 被損した素気発生器の隔離後は, 二次側弁からの蒸気の漏えいによって, 無機よう素が大気中へ放出される。弁からの蒸気漏えい率は, 設計値に余裕を見込んだ値で30 日間続くものとする。	二次冷却系に流出してきたよう素のうち,有機よう素は 1 %とし,残り 99 %は無機よう素として評価している。有機よう素は,全量が大気中に放出されるとして評価している,無機よう素は,気液分配係数 100 で蒸気とともに大気中に放出される。二次冷却系に流出した希ガスは,全量が大気中に放出されるとして評価している。
破損した蒸気発生器の隔離後は、二次側弁からの蒸気の漏えいによって、無機よう素が 大気中へ放出される。弁からの蒸気漏えい率は、設計値に余裕を見込んだ値で30 日間 続代ものとする。	破損した蒸気発生器の隔離までの放出率を、放出量を隔離時間で除した値で一定であると仮定して評価している。また,二次側弁の開閉状況を考慮して放出率を時間依存値で設定している。
	破損した蒸気発生器の隔離後は,二次側弁からの蒸気の漏えいによって,無機よう素が大気中へ放出されるとして評価している。弁からの蒸気漏えい率は,設計値に余裕を見込んだ値で30 日間続くものとして評価している。


原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
 大気拡散の評価 立1 放射性物質の大気拡散 	
5.1.1 大気拡散の計算式 大気拡散モデルについては、国内の既存の中央制御室と大きく異なる設計の場合には適用しない。 ない、ユモのの8編とのはないはなかは土地勘土「約2% c.1.1	5.1.1 → 内規通り 泊発電所3号炉の中央制御室は,既存の中央制御室と大きく異なる設計ではないため,大気拡散モデルを適用する。
(1) 建屋の影響を受けない場合の名本本版改え「階記 5・1] a) ガウスブルームモデルの適用 b) ガウスブルームモデル 放射性物質の空気中濃度は、放出源高さ、風向、風速、大気安定度に応じて、空間 濃度分布が水平方向、鉛直方向ともに正規分布になると仮定した次のガウスブルー ムモデル(**)を適用して計算する。	たていてであって。 5.1.1(1)a)1) 放射性物質の空気中濃度は,示されたガウスプルームモデルにて評価している。
$ \chi(x, y, z) = \frac{Q}{2\pi\sigma_y \sigma_z U} \exp\left(-\lambda \frac{x}{U}\right) \exp\left(-\frac{y^2}{2\sigma_y^2}\right) \\ \times \left[\exp\left\{-\frac{(z-H)^2}{2\sigma_z^2}\right\} + \exp\left\{-\frac{(z+H)^2}{2\sigma_z^2}\right\} \right] $ (5.1)	
$\chi(x,y,z)$:評価点 (x,y,z) の放射性物質の濃度 (Bq/m^3) Q :放射性物質の放出率 $(Bq/s)U$:放射性物質の放出薬 $(m/s)\lambda :放射性物質の崩壊定数 (1/s)z$:評価点の高さ $(m)H$:放射性物質の放出源の高さ $(m)\sigma_y :濃度のy方向の拡がyのx<y>x>x>x>x>x>x>x>$	
拡散式の座標は, 放出源直下の地表を原点に, 風下方向をx軸, その直角方向をy軸, 鉛直方向をz軸とする直角座標である。	
2) 保守性を確保するために、通常、放射性物質の核崩壊による減衰項は計算しない。 すなわち、(5.1)式で、核崩壊による減衰項を次のとおりとする。	5.1.1(1)a)2) 放射性物質の核崩壊による減衰項は評価していない。
$\exp\left(-\lambda \frac{x}{U}\right) = 1 \tag{5.2}$	
b) σ,及びσ.は,中央制御室が設置されている建屋が,放出源から比較的近距離にあることを考えて,5.1.3項に示す方法で計算する。	5.1.1(1)p) 5.1.3項に示された方法で評価している。

原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
c) 気象データ 風向,風速,大気安定度等の観測項目を,現地において少なくとも1年間観測して得ら れた気象資料を拡散式に用いる。放出源の高さにおける気象データが得られている場合 にはそれを活用してよい。	5.1.1(1)c) 風向,風速,大気安定度等の観測項目を,現地において少なくとも1年間観測して得られた気象資料を拡散式に用いて,評価している。
(2) 建屋影響を受ける場合の基本拡散式 [解説 5.2] a) 中央制御室評価で特徴的な近距離の建屋の影響を受ける場合には、 (5.1) 式の通常の 大気拡散による拡がのパラメータである σ_y 及び σ_z に、建屋による巻込み現象による初 期拡散パラメータ σ_{po} , σ_{zo} を加算した総合的な拡散パラメータ \sum_j , \sum_z を適用する。	5.1.1(2)a) 中央制御室評価で特徴的な近距離の建屋の影響を受けるため, 建屋による巻き込み現象による影響を含めて評価している。
1) 建屋影響を受ける場合は,次の(5.3)式を基本拡散式とする。	5.1.1(2)a)1) 建屋影響を受けるため, (5.3)式の基本拡散式を用いて評価している。
$ \chi(x, y, z) = \frac{Q}{2\pi \sum_{y} \sum_{z} U} \exp\left(-\lambda \frac{x}{U}\right) \exp\left(-\frac{y^{2}}{2\sum_{y}^{2}}\right) \times \left[\exp\left\{-\frac{(z-H)^{2}}{2\sum_{z}^{2}}\right\} + \exp\left\{-\frac{(z+H)^{2}}{2\sum_{z}^{2}}\right\}\right] \dots (5.3) $	
$\sum_{y}^{2} = \sigma_{y0}^{2} + \sigma_{y}^{2}$, $\sum_{z}^{2} = \sigma_{z0}^{2} + \sigma_{z}^{2}$	
$\sigma_{y0}^2=\sigma_{z0}^2=rac{cA}{\pi}$	
$\chi(x,y,z)$:評価点 (x,y,z) の放射性物質の濃度 (Bq/m^3) の :放射性物質の放出率 (Ba/s)	
: 放出源を代表する風速	
λ : 放射性物質の崩壊圧数 (1/s) : 詳価点の高さ (m)	
が恒の	
濃度の y 方向の払が y のベラメータ (m) \sum_i :華屋の影響を加算した	
濃度の こ 方向の拡がののペラメータ	
σ_z :濃度の z 方向の拡が y のパラメータ (m) σ_w :建屋による巻込み現象による	
: 建屋などの風向方向の投影面積	
(一)	

 	5.1.1(2)a)2) 放射性物質の核崩壊による減衰項は評価していない。		5.1.1(2)b) 形状係数 c の値は,1/2 を用いる。	5.1.1(2)c) 中央制御室においては,放出源又は巻き込みを生じる建屋から近距離にあり,拡散パラメータの値はσzo,σzoが支配的となるが,σy及びσzは0とはしていない。	5.1.1(2)d) 建屋影響は、放出源高さから地上高さに渡る気象条件の影響を受けるため、保守的に地上高さに相当する比較的低風速の気象データ(地上10 m高さで測定)で評価している。	[5.1.1(2)e) 建屋影響を受ける場合の条件については、[5.1.2 原子炉施設周辺の建屋影響による拡散] に従う。	5.1.1(3)a) (5.3)式を適用するため,「5.1.2 原子炉施設周辺の建屋影響による拡散」の(1)a)の 放出源の条件に応じて,原子炉施設周辺の濃度を次の b)又は c)の方法によって計算し	た。 5.1.1(3)b)1) 放出源と評価点で高度差がある場合には,評価点高さを放出源高さとして(z=H, H>0), (5.4)式で濃度を評価している。		
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	2) 保守性を確保するために、通常、放射性物質の核崩壊による減衰項は計算しない。 すなわち、(5.3)式で、核崩壊による減衰項を次のとおりとする。これは、(5.2)式の場合と同じである。	$\exp\left(-\lambda \frac{x}{U}\right) = 1$	b) 形状係数cの値は,特に根拠が示されるもののほかは原則として 1/2 を用いる。これは, Gifford により示された範囲(1/2 <c<2)において保守的に最も大きな濃度を与えるため である。</c<2)において保守的に最も大きな濃度を与えるため 	c) 中央制御室の評価においては、放出源又は巻き込みを生じる建屋から近距離にあるため、拡散パラメータの値はの。, の。が支配的となる。このため, (5.3)式の計算で, の,= 0及びの: = 0として, の。, の。の値を適用してもよい。	d)気象データ 建屋影響は,放出源高さから地上高さに渡る気象条件の影響を受けるため,地上高さに 相当する比較的低風速の気象データ(地上10m 高さで測定)を採用するのは保守的か つ適切である。	e) 建屋影響を受ける場合の条件については,「5.1.2 原子炉施設周辺の建屋影響による拡散」に従う。	(3) 建屋影響を受ける場合の基本拡散式の適用についてa) (5.3)式を適用する場合,「5.1.2 原子炉施設周辺の建屋影響による拡散」の(1),a)の放出 源の条件に応じて、原子炉施設周辺の濃度を,次のb)又はらの方法によって計算する。	b) 放出源の高さで濃度を計算する場合1) 放出源と評価点で高度差がある場合には、評価点高さを放出源高さとして(z=H, H>の), (5.4)式で濃度を求める[解説 5.3][解説 5.4]。	$\chi(x,y,z) = \frac{Q}{2\pi\sum_{y} \cdot \sum_{z} U} \exp\left(-\frac{y^{2}}{2\sum_{y}^{2}}\right) \cdot \left[1 + \exp\left(-\frac{(2H)^{2}}{2\sum_{z}^{2}}\right)\right] \dots (5.4)$	$\chi(x,y,z)$:評価点 (x,y,z) の放射性物質の濃度 (Bq/m^3) の : 放射性物質の放出率 (Bq/s) U : 放出額を代表する風速 (m/s) H : 放射性物質の放出源の高さ (m/s) \sum_{i} : 建屋の影響を加算した 護度の y 方向の拡が y の x,z y x y y (m) \sum_{i} : 建屋の影響を加算した (m) : 建屋の影響を加算した (m) : 建屋の影響を加算した (m) : 建屋の影響を加算した

釆	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
2) 放出源の高さが地表面よりも十分離れている場合には、地表面からの反射による濃度の寄与が小さくなるため、右辺の指数減衰項は11に比べて小さくなることを確認できれば、無視してよい【解説 5.5】。	5.1.1(3)2) 放出源の高さが地表面よりも十分離れている場合には、地表面からの反射による濃度の寄与が小さくなり、右辺の指数減衰項は1に比べて小さくなることを確認している。
c) 地上面の高さで濃度を計算する場合 放出源及び評価点が地上面にある場合 $(z=0, H=0)$, 地上面の濃度を適用して, (5.5) 式で求める $[解説 5.3][解説 5.4]$ 。	5.1.1(3)c) 放出源及び評価点が地上面にある場合 (z=0, H=0), 地上面の濃度を適用して, (5.5) 式で評価している。
$\chi(x, y, 0) = \frac{Q}{\pi \sum_{y} \sum_{z} U} \exp\left(-\frac{y^{2}}{2\sum_{y}}\right) $ (5.5)	
$\chi(x,y,0)$:評価点 $(x,y,0)$ の放射性物質の濃度 (Bq/m^3) Q : 放射性物質の放出率 (Bq/s) U : 放出源を代表する風速 (m/s) Z , :建屋の影響を加算した 濃度の y 方向の址が y のパラメータ (m) Z : :建屋の影響を加算した 濃度の y 方向の址が y のパラメータ (m) X : :建屋の影響を加算した 濃度の y x y	
5.1.2 原子炉施設周辺の建屋影響による拡散 (1) 原子炉施設周辺の建屋影響による拡散による場合の条件 a) 中央制御室のように、事故時の放射性物質の放出点から比較的近距離の場所では、建 E D	5.1.2 → 内規通り 5.1.2(1)a) 中央制御室の被ばく評価においては、放出点と巻き込みを生じる離屋及び評価点との位置関係について、示された条件すべてに該当するため、放出点から放出された放射性物質は建屋の風下側で巻き込みの影響を受け拡散し、評価点に到達するものとして評価している。

<i>a</i> .			
中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況		図5.1 → 内規通り	5.1.2(1)b) 5.1.2(1)a)にしたがって評価している。
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	風向に対して垂直な 建屋の中心線 風向 n 放出点		b) 実験等によって、より具体的な最新知見が得られた場合、例えば風洞実験の結果から建 屋の影響を受けていないことが明らかになった場合にはこの限りではない。

ついて 中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況	^{みが生じ} 5.1.2(2)a) 風下着目方位を1方位のみとせず,複数方位を着目方位と見込み、かつ,保守的な評 前に、 価となるよう,すべての評価対象方位について風下中心軸上の最大濃度を用いて評価し と見込み, ている。	の濃度 5.1.2(2)b) この場合の拡散パラメータは、建屋等の投影面積の関数であり、かつ、その中での濃 なが状 たって,		無度) 出席 さ) 2 点商 さ) 3 点商 さ)	図5.3 → 内規通り
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	(2) 建屋後流の巻き込みによる放射性物質の拡散の考え方 a) 「5.1.2原子炉施設周辺の建屋影響による拡散(U)a)項で、建屋後流での巻き込みが生じると判定された場合、ブルームは、通常の大気拡散によって放射性物質が拡がる前に、巻込み現象によって放射性物質の拡散が行われたと考える。 このような場合には、風下着目方位を1方位のみとせず、複数方位を着目方位と見込み、かつ、保守的な評価となるよう、すべての評価対象方位について風下中心軸上の最大激度を用いる。	b) この場合の拡散パラメータは、建屋等の投影面積の関数であり、かつ、その中での濃度 分布は正規分布と仮定する。 建屋影響を受けない通常の拡散の基本式(5.1)式と同様、建屋影響を取入れた基本拡散 式(5.3)式も正規分布を仮定しているが、建屋の巻き込みによる初期拡散効果によって、 ゆるやかな分布となる。(図 5.3)	建屋の風下側の巻き込み が配こると仮定する範囲 (中心軸上の最大濃度) 放性点 (評価点) 放性点 (評価点)	Δみ (中心軸上の高さで最大) (中心軸上の最大) (加) 中心軸 (放) (評価 面点) (計画 当) (計画 当) (計画 三人) (計画 三人) (計画 三人) (計画 三人) (計画 三人)	(b) 鉛直方向図 5.3 建屋による巻込み現象を考えた建屋周辺の濃度分布の考え方

(内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
(3) 建屋による巻き込みの評価条件 a) 巻き込みを生じる代表建屋 1) 原子炉施設の近辺では、隣接する複数の建屋の風下側で広く巻き込みによる拡散 が生じているものとする。	5.1.2(3)a) 巻き込みを生じる建屋として、巻き込みの影響が最も大きいと考えられる一つの建屋を代表として相対濃度を算出している。代表建屋は表 5.1 に示されているとおり,原子炉格納容器とする。
2) 巻き込みを生じる建屋として、原子炉格納容器、原子炉建屋、原子炉補助建屋、タービン建屋、コントロール建屋、燃料取り扱い建屋等、原則として放出源の近隣に存在するすべての建屋が対象となるが、巻き込みの影響が最も大きいと考えられる一つの建屋を代表として相対濃度を算出することは、保守的な結果を与える「解説5.6」。	
3)巻き込みを生じる代表的な建屋として,表 5.1 に示す建屋を選定することは適切である。	
表 5.1 放射性物質の巻き込みの対象とする代表建屋の選定例 原子炉施設 想定事故 原子炉建屋(建屋影響がある場合) 主蒸気管破断 原子炉建屋(は屋影響がある場合) トカア代表) アカア代表 PWR型原子炉施設 原子炉均材模失 原子炉格解容器(原子炉格網施設), 原子炉格納容器(原子炉格網施設),	
原子炉建屋 蒸気発生器伝熱管 原子炉格納容器(原子炉格納施設), 破損 原子炉格納容器(原子炉格納施設)及び 原子炉鞋	
b) 放射性物質濃度の評価点 1) 中央制御室が属する建屋の代表面の選定 中央制御室内には、中央制御室が属する建屋(以下,「当該建屋」)の表面から、事 故時に外気取入を行う場合は主に給気口を介して、また事故時に外気の取入れを 遮断する場合には流入によって、放射性物質が侵入するとする。	1.2(3)b)1) 事故時に外気の取入れを遮断するので,中央制御室内には流入によって放射性物質が侵入するものとして評価している。
2) 建屋の影響が生じる場合,中央制御室を含む当該建屋の近辺ではほぼ全般にわたり,代表建屋による巻き込みによる拡散の効果が及んでいると考えられる。このため,中央制御室換気設備の非常時の運転モードに応じて、次の i)又は ii)によって,当該建屋の表面の濃度を計算する。	1.2(3)b)2) 評価期間中は外気を遮断することを前提としているため,中央制御室が属する当該建屋の屋上面を代表面(代表評価面)として選定する。
i) 評価期間中も給気口から外気を取入れることを前提とする場合は、給気口が設置されている当該建屋の表面とする。	
ii) 評価期間中は外気を遮断することを前提とする場合は、中央制御室が属する当該建屋の各表面(屋上面又は側面)のうちの代表面(代表評価面)を選定する。	

原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
3) 代表面における評価点 i) 建屋の巻き込みの影響を受ける場合には、中央制御室の属する建屋表面での 濃度は風下距離の依存性は小さくほぼ一様と考えられるので、評価点は厳密に 定める必要はない。屋上面を代表とする場合、例えば中央制御室の中心点を評 価点とするのは妥当である。	5.1.2(3)p)3) 屋上面を代表としているため,中央制御室の中心点を評価点としている。
前)中央制御室が属する当該建量とは、原子炉建屋、原子炉補助建屋又はコントロール建屋などが相当する。	
Ⅲ)代表評価面は、当該建屋の屋上面とすることは適切な選定である。また、中央 制御室が屋上面から離れている場合は、当該準屋の側面を代表評価面として、 それに対応する高さでの濃度を対で適用することも適切である。	
iv) 屋上面を代表面とする場合、評価点として中央制御室の中心点を選定し、対応する風下距離から拡散ベラメータを算出してもよい。また $\sigma_y=0$ 及び $\sigma_z=0$ として、 σ_y 。 σ_z の値を適用してもよい。	$5.1.2(3)$ b) 3 iv) 拡散パラメータの値は σ_{po} , σ_{zo} が支配的となるが, σ_{y} 及び σ_{z} は0 とはしていない。
 2) 着目方位 1) 中央制御室の被ばく評価の計算では、代表建屋の風下後流側での広範囲に及ぶ 乱流混合域が顕著であることから、放射性物質濃度を計算する当該着目方位として は、放出源と評価点とを結ぶラインが含まれる1方位のみを対象とするのではなく、図 5.4 に示すように、代表建屋の後流側の枕がりの影響が評価点に及ぶ可能性のある 複数の方位を対象とする【解説 5.1]。 	5.1.2(3)c)1) 代表建屋の風下後流側での広範囲に及ぶ乱流混合域が顕著であることから,放射性物質濃度を計算する当該着目方位としては,放出源と評価点とを結ぶラインが含まれる1方位のみを対象とするのではなく,図 5.4 に示すように,代表建屋の後流側の拡がりの影響が評価点に及ぶ可能性のある複数の方位を対象として評価している。
●: 放出点 注意風下側の巻き込み (評価点 による批がり (評価が象) (評価点 による批がり (評価点 でもした (計価が象) (まで (計価が (計価が (計価	
図 5.4 建屋後流での巻き込み影響を受ける場合の考慮すべき方位	図5.4 → 内規通り

原子力発電所中央制御室の居住性に係る被ばく評価手法について

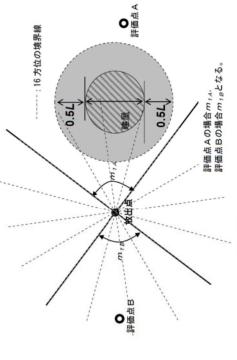
中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況

(内規)

及び建屋の影響を受けて拡散された放射性物質が評価点に届くことの両方に該当する 評価対象とする方位は、放出された放射性物質が建屋の影響を受けて拡散すること,

具体的には、全16方位について以下の三つの条件に該当する方位を選定し、すべ

- 放出点が建屋に接近し、0.5Lの拡散領域(図5.5のハッチング部分)の内部にある場合 方法を用いることができる。図 5.5 の対象となる二つの風向の方位の範囲m,w, m,Bの 出点が存在すること。この条件に該当する風向の方位m1の選定には,図 5.5 のような 放出点から放出された放射性物質が, 建屋の風下側に巻き込まれるような範囲に, 放 うち、放出点が評価点の風上となるどもらか一方の
 一方の
 無い対象となる。 ての条件に該当する方位を評価対象とする。 放出点が評価点の風上にあること

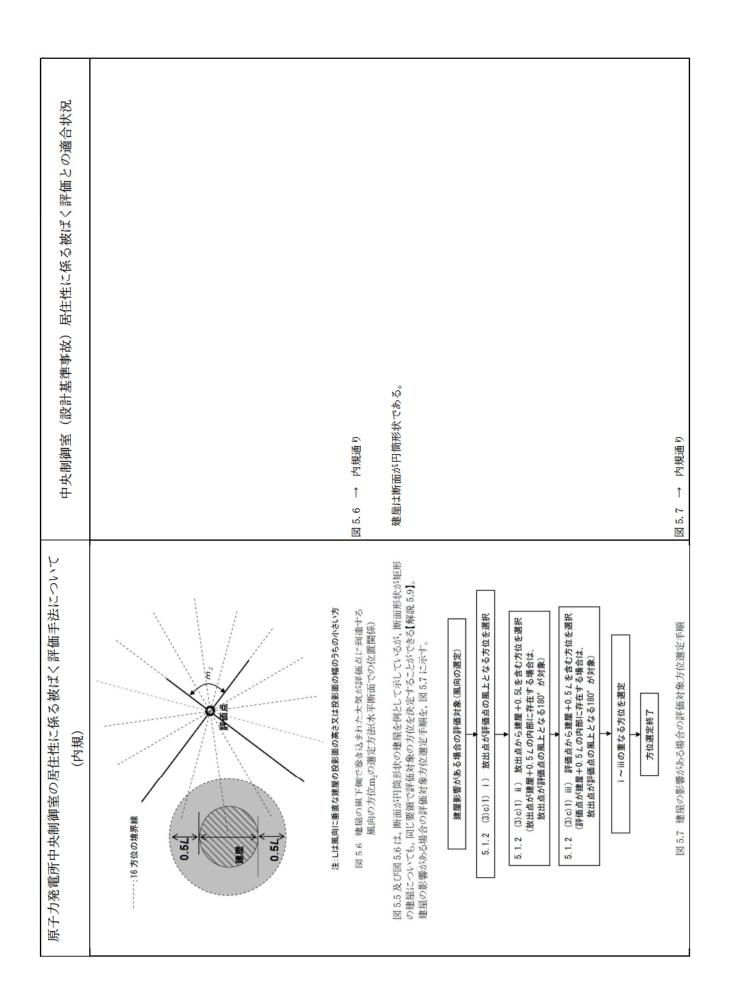

放出点が建屋に接近し, 0.5Lの拡散領域(図5.5のハッチング部分)の内部にあ

5.1.2(3)c)1)i) 放出点は評価点の風上である。 5.1.2(3)c)1)ii) 放出点が建屋に接近し,0.5Lの

ている。

るため, 風向の方位 m.1 は放出点が評価点の風上となる180°を対象として評価し

は, 風向の方位m,は放出点が評価点の風上となる180。 が対象となる[解説 5.8]。



注:Lは風向に垂直な建屋の投影面の高さ又は投影面の幅のうちの小さい方

図5.5 建屋の風下側で放射性物質が巻き込まれる風向の方位m,の選定方法 (水平断面での位置関係)

評価点が建屋に接近し、0.5Lの拡散領域(図5.6のハッチング部分)の内部にある場合 建屋の風下側で巻き込まれた大気が評価点に到達すること。この条件に該当する風 は,風向の方位mgは放出点が評価点の風上となる180°が対象となる「解説 5.8」。 向の方位m。の選定には、図 5.6 に示す方法を用いることができる。 î

5.1.2(3)c)1) ii) 評価点が建屋に接近し, 0.5Lの拡散領域(図 2.6のハッチング部分)の内部にあ るため, 風向の方位 m2は放出点が評価点の風上となる180° を対象として評価し

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況	5.1.2(3)c)2) 当該建屋表面において定めた評価点から,原子炉施設の代表建屋の水平断面を見込み範囲にあるすべての方位を定めて評価している。	5.1.2(3)d)1) 風向に垂直な代表建屋の投影面積を求めて,放射性物質の濃度を求めるために大気拡散式の入力としている。	5.1.2(3)d)2) すべての方位に対して最小面積である,地表面から上の原子炉格納容器の最小投影面積を,すべての方位の計算の入力として共通に適用している。	5.1.2(3)d)3) 風下側の地表面から上の投影面積を求め大気拡散式の入力とするが,原則地表面から上の原子炉格納容器の最小投影面積をすべての方位の計算の入力として共通に適用している。
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	2) 具体的には、図 5.8 のとおり、当該建屋表面において定めた評価点から、原子炉施設の代表建屋の水平断面を見込む範囲にあるすべての方位を定める。[解説 5.7] 幾何学的に建屋群を見込む範囲に対して、気象評価上の方位とのずれによって、評価すべき方位の数が増加することが考えられるが、この場合、幾何学的な見込み範囲に相当する適切な見込み方位の設定を行ってもよい [解説 5.10]。	d) 建屋投影面積1) 図5.9に示すとおり, 風向に垂直な代表建屋の投影面積を求め, 放射性物質の濃度を求めるために大気拡散式の入力とする【解説 5.11】。	2) 建屋の影響がある場合の多くは複数の風向を対象に計算する必要があるので、風向の方位ごとに垂直な投影面積を求める。ただし、対象となる複数の方位の投影面積の中で、最小面積を、すべての方位の計算の入力として共通に適用することは、合理的であり保守的である。	3) 風下側の地表面から上の投影面積を求め大気拡散式の入力とする。方位によって 風下側の地表面の高さが異なる場合は、方位ごとに地表面高さから上の面積を求め る。また、方位によって、代表建屋とは別の建屋が重なっている場合でも、原則地表 面から上の代表建屋の投影面積を用いる【解説 5.12】。

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況		図5.9 → 内規通り	5.1.2(4) 建屋の影響を考慮して評価している。	5.1.3 → 内規通り5.1.3(1)(2) 風下方位の通常の大気拡散による拡がりのパラメータ σy及び σzは, 風下距離及び大	XXXEXCAN STOREST STORE	
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)		図 5.9 風向に垂直な建屋投影面積の考え方	(4) 建屋の影響がない場合の計算に必要な具体的な条件 a) 放射性物質濃度の評価点の選定 建屋の影響がない場合の放射性物質の拡がりのパラメータは a, 及び a _z のみとなり, 放出 点からの風下距離の影響が大きいことを考慮して, 以下のとおりとする。 1) 非常時に外気の取入れを行う場合 外気取入口の設置されている点を評価点とする。 2) 非常時に外気の取入れを進断する場合 当該建屋表面において以下を満たす点を評価点とする。 ① 風下距離: 放出点から中央側鎖室の最近接点までの距離 ② 放出点との高度差が最小となる建屋面	 b) 風向の方位 建屋の影響がない場合は、放出点から評価点を結ぶ風向を含む 1 方位のみについて計算を行う。 5.1.3 濃度分布の拡がりのパラメータσ,・σ。 (1) 風下方向の通常の大気拡散による拡がりのパラメータσ, 及びσ。は、風下距離及び大気安かにかった。 このにはないになった。 このにはないになった。 このにはないになった。 このにはないになった。 このにはないになった。 このにはないになった。 このになる 	在及に応じて、図 3.10 スはて4にに対応する中間なによって水のる。 (2) 相関式から求める場合は、次のとおりとする($^{\oplus 3}$)。 $\log \sigma_z = \log \sigma_1 + \{a_1 + a_2 \log x + a_3 (\log x)^2\} \log x$ (5.6)	$\sigma_y = 0.67775 \theta_{0_1} x (5 - \log x)$

0.030100	-0.095108	0.8916 -0.001649	1.4132 0.49523	3.9077 3.898	a_1 a_2	The second section of the second seco	(b) 風下距離が0.2km以遠	表 5.3(2/2)	妻 $5.3(1/2)$	0 40 30 20 15 10	A B C D E F	0.2 $\theta_{01}:0.$ Lk m における角度因子の値 (\deg)	: 濃度の鉛直方向の拡がりパラメータ (m) (deg) (deg)	数にとった 片 対数 10 10	- タ (m) (deg) (deg) (0 の風下距離を対 0.1km) の値を表 5.2 (a) (deg) (feg) (5.3 に示す。 5.3 に示す。 5.3 に示す。 C C C C C T距離が 0.2kmオ '',a,は 0 とする)	表 5.2 $\theta_{0.1}$: 0.1kn A B 5.0 40 50 40 表 5.3(1/2) 拡勝 表 5.3(1/2) 拡勝 (a, m) (a, n) (a
0.7117 -0.12697 0.0	10000	0.7626 -0.095108	0.8916 -0.001649 0.7626 -0.095108	0.8916 -0.001649 0.7626 -0.095108	3.9077 3.898 1.4132 0.49523 0.8916 -0.001649 0.7626 -0.095108	3.9077 3.898 1.4132 0.49523 0.8916 -0.001649 0.7626 -0.095108	a1 a2 3.9077 3.898 1.4132 0.49523 0.8916 -0.001649 0.7626 -0.095108	(b) 風下距離が 0.2km以遠 a ₁ a ₂ 3.9077 3.898 1.4132 0.49523 0.78916 0.78016 0.7626 0.7626	(a) 風下距離が0.2km未満 (a;,a; は0 とする) 51 165. 1.07 83.7 0.894 58.0 0.894 58.0 0.894 58.0 0.894 58.0 0.894 58.0 0.894 58.0 0.894 58.0 0.894 24.4 0.894 15.5 0.854 24.4 0.854 24.4 0.854 24.4 0.854 15.5 0.822 (b) 風下距離が0.2km以遠 a ₂ a ₁ a ₂ 3.9077 3.898 1.4132 0.49523 0.8916 -0.001649	(a) 風下距離が 0.2km未満 (a.3.a) 位値 (a.3.a) は 0 とする) σ_1 (a.3.a) は 0 とする) σ_1 (a.3.b) は 0 とする) 165.	(a) 風下距離が0.2km未満 (a;a;は0とする) (a) (a) (a) (a) (a) (a) (a) (a) (a) (a	83.7 20 15 1.07 83.7 3.898 1.4132 0.49523 1.4132 0.49523 1.4132 0.49523 1.4132 0.49523 1.4132 0.49523 1.4132 0.49518 1.505 1.605 1.005 1	発験式のパラメータである。 8(0.1km) の値を表 5.2 3(1/2) 拡散のパラメータである。 9(0.1km) の値を表 5.3 3(1/2) 拡散のパラメータ 0.2km 未満 (a) 風下距離が 0.2km 未満 (a) 風下距離が 0.2km 未満 (b) 風下距離が 0.2km 未満 (c) 風下距離が 0.2km 未満 (d) 風下距離が 0.2km 未満 (e) 風下距離が 0.2km 未満 (f) 風下距離が 0.2km 未満 (g) 風下距離が 0.2km 未満 (g) 風下距離が 0.2km とする) (g) 15.5 (h) 風下距離が 0.2km 以違 (h) 風下距離 0.2km 以違 (h) 風下距離 0.2km いっとkm いったkm いっとkm いっとkm いっとkm いっとkm いっとkm いったkm いっとkm いっとkm いったkm いったkm いっとkm いったkm	a_3 1.7330 0.12772 0.0 0.0	3.898 0.49523 -0.001649	下距離が0.2km以 a ₁ 3.9077 1.4132 0.8916 0.7626	表 5.3(2/2) 拡鬱 (b) 風 (c) 風 (c) 風 (d)
	(b) 風下距離が 0.2km以遠 a ₂ a ₁ a ₂ a ₃ 9077 3.898 1.4132 0.49523 0.8916 -0.001649	(b) 風下距離が 0.2km以遠 a ₂ a ₁ a ₂ 3.9077 3.898 1.4132 0.49523	(b) 風下距離が 0.2km以遠 a ₂ a ₃ 39077 3.898	5.3(2/2) 拡散のパラメータ σ_1, a_1, a_2, a_3 の値 (b) 風下距離が $0.2km$ 以遠 a_1	5.3(2/2) 拡散のパラメータ \(\sigma_1, a_1, a_2, a_3\) の値 (b) 風下距離が \(0.2km以)遠	5.3(2/2) 拡散のパラメータ σ, a, a, a, o値(h) 風下距離が 0.2km以读	5.3(2/2) 拡幣のパラメータの, a, a, a, o値			(a) 版下野離 3 (a_{1}, a_{2}, a_{3}) 位 (a_{2}, a_{3}) は $(a_{$			4 B C B 15 Like が 15 Li O D B 下野離を対数にとった片対数]			
	(b) 風下距離が 0.2km以遠 a ₁ a ₂ 3.898 3.9077 3.898 1.4132 0.49523 0.8916 -0.001649	(b) 風下距離が 0.2km以遠 a ₁ a ₂ a ₃ 9077 3.898 1.4132 0.49523	(b) 風下距離が 0.2km以遠 a ₁ a ₂ a ₃ .898	5.3(2/2) 拡散のパラメータ σ_1, a_1, a_2, a_3 の値(b) 風下距離が $0.2km$ 以達 a_1	5.3(2/2) 拡散のパラメータ σ_1, a_1, a_2, a_3 の値 (b) 風下距離が 0.2km以遠	5.3(2/2) 拡散のパラメータ σ₁, a₁, a₂, a₃ の値(h) 風下距離が 0.2km以读	: 5.3(2/2) 拡散のペラメータ の, a, a, a, a, の値			(a) 版形のペラメータ σ_1 、 σ_2 、 σ_3 の値 (a_2, a_3) は σ_2 σ_3 σ_3 σ_4 σ_5 σ_4 σ_6 σ_8			経験式のペラとし、図 5.10 の風下距離を対数にとった片対数 経験式のペラメータである。 $\theta(0.1km)$ の値を表 5.2 に示す。 a ₃ の値な、表 5.3 に示す。 A B C D E F F 0 40 30 20 15 10 (a) 風下距離がのペラメータで、a ₁ a ₂ の値 (a) 風下距離がの2km末満 (a) 風下距離がの2km末満 (b) 風下距離が0.2km末満 (c) 風下距離が0.2km末満 (a) 風下距離が0.2km末満 (b) 風下距離が0.2km末満 (c) 風下距離が0.2km末満 (a) 風下距離が0.2km末満 (b) 風下距離が0.2km末満 (c) の.894 (c) 83.7 (c) 83.7 (c) 83.7 (c) 83.7 (c) 83.4 (c) 83.7 (c) 83.7 (c) 83.4 (c)		0.822		15.5
	15.5 0.822 $(b.32/2)$ 拡散のパラメータ σ_1, a_1, a_2, a_3 の値 a_1 a_2 a_3 a_4 a_2 a_3 a_4 a_3 a_4 a_2 a_3 a_4 a_4 a_2 a_3 a_4 a_4 a_2 a_4 a_4 a_5 a	15.5 0.822 3(2/2) 拡散のバラメータ σ_1 , σ_1 , σ_2 , σ_3 の値 (b) 風下距離が 0.2km以遠 σ_1 σ_2 3.9077 3.898 1.4132 0.49523	15.5 0.822 0.822 0.822 0.822 0.822 0.822 0.822 0.822 0.822 0.822 0.822 0.822 0.922 0.922 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932 0.932	15.5 0.822 0.822 $0.3(2/2)$ 拡散のパラメータ σ_1, a_1, a_2, a_3 の値 a_1 a_2	 15.5 0.822 5.3(2/2) 拡散のパラメータσ₁, a₁, a₂, a₃の値 (b) 風下距離が 0.2km以遠 	15.5 0.822 0.822 (h) 配下距離パの2×ータの1, a ₁ ,a ₂ ,a ₃ の値	15.5 0.822 そ5.3(2/2) 拡散のパラメータ の1, a1, a2, a3 の値			5.3(1/2)			経験式のバラメータである。 9(0.1km) の値を表 5.2 に示す。 発験式のバラメータである。 9(0.1km) の値を表 5.2 に示す。 a ₃ の値を, 表 5.3 に示す。 5.2 θ_{a1} : 0.1kmにおけろ角度因子の値 (deg) A B C D E F 0 40 30 20 15 10 (a) 風下距離がのスラメータ a ₁ a ₁ a ₂ の値 (a) 風下距離がの2km未満 (a) 風下距離が0.2km未満 (a) 風下距離が0.2km未満 1.07 a ₁ 5.3(1/2) 拡散のスラメータ a ₁ a ₁ a ₂ 1.07 a ₃ 5.3(1/2) 拡散のスラメータ a ₁ a ₁ a ₂ 1.07 a ₃ 5.3(1/2) が数の2をする) (a) 圏下距離が0.2km未満 1.07 a ₁ a ₁ a ₂ a ₃ 5.3(1/2) が数の2をする) a ₁ a ₁ a ₂ a ₃ a ₃ a ₃ a ₄ a ₃		0.854		24.4
	24.4 0.854 15.5 0.852 3(2/2) 拡散のパラメータ σ_1 , σ_2 , σ_3 の値 (b) 風下距離が 0.2km以遠 σ_1 σ_2 3.9077 3.898 1.4132 0.49523 0.8916 -0.001649	24.4 0.854 15.5 0.822 3(2/2) 拡散のバラメータ σ_1 , σ_2 , σ_3 の値 (b) 風下距離が 0.2km以遠 σ_1 3.9077 3.888 1.4132 0.49523	24.4 0.854 15.5 0.852 3(2/2) 拡散のバラメータ σ_1 , σ_2 , σ_3 の値 (b) 風下距離が 0.2km以遠 σ_1 σ_2 3.9077 3.898	24.4 0.854 15.5 0.854 15.5 0.822 0.822 $0.3(2/2)$ 拡散のパラメータ σ_1, a_1, a_2, a_3 の値 a_1 a_2	24.4 0.854 15.5 0.822 5.3(2/2) 拡散のパラメータ σ_1 , a_1 , a_2 , a_3 の値 (b) 風下距離が $0.2km$ 以達	24.4 0.854 15.5 0.822 E 5.3(2/2) 拡散のパラメータ $\sigma_1, \sigma_1, \sigma_2, \sigma_3$ の値 (h) 風下距離が 0.2km以读	24.4 0.854 15.5 0.822 長 5.3(2/2) 拡散のパラメータ $\sigma_{1}, \sigma_{2}, \sigma_{3}$ の値			5.3(1/2)			(編集式のバラメータである。 θ(0.1km)の値を表 5.2 に示す。 (a) の値を、表 5.3 に示す。 (a) の値を、表 5.3 に示す。 (b) 40 30 20 15 10 10 10 10 10 10 10 10 10 10 10 10 10		0.854		33.0
	33.0 0.854 24.4 0.854 15.5 0.822 3(2/2) 拡散のパラメータ σ_1 , σ_1 , σ_2 , σ_3 の値 (b) 風下距離が $0.2km$ 以遠 σ_1 σ_2 3.9077 3.898 1.4132 0.49523 0.8916 -0.001649	33.0 0.854 24.4 0.854 15.5 0.822 3(2/2) 拡散のバラメータ σ_1 , σ_1 , σ_2 , σ_3 の値 (b) 風下距離が 0.2km以遠 σ_1 σ_2 3.9077 3.898 1.4132 0.49523	33.0 0.854 24.4 0.854 15.5 0.822 3(2/2) 拡散のバラメータ σ_1 , σ_1 , σ_2 , σ_3 の値 (b) 風下距離が 0.2 km 以遠 σ_1 σ_2 3.9077 3.898	33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下野離が0.2km以遠 a_1	33.0 0.854 24.4 0.854 15.5 0.822 5.3(2/2) 拡散のペラメータ σ_1 , a_1 , a_2 , a_3 の値 (b) 風下距離が $0.2km$ 以遠	33.0 0.854 24.4 0.854 15.5 0.822 (h) 風下貯離が 0.24m以遠	33.0 0.854 24.4 0.854 15.5 0.822 長 5.3(2/2) 拡散のパラメータ $\sigma_1, \sigma_2, \sigma_3$ の値			5.3(1/2)			編纂式のパラメータである。 $\theta(0.1km)$ の 順を表 5.2 に示す。 編纂式のパラメータである。 $\theta(0.1km)$ の 値を表 5.2 に示す。 a_3 の 値を、表 5.3 に示す。 b_3 2 b_4 : b_4 2 b_5 2 b_5 2 b_5 2 b_5 3 b_5 2 b_5 3 b_5 3 b_5 4 b_5 5 b_5 5 b_5 5 b_5 5 b_5 5 b_5 6 b_5 6 b_5 6 b_5 7 b_5 7 b_5 7 b_5 7 b_5 7 b_5 8 b_5 7 b_5 8 b_5 9 b_5 8 b_5 9		0.891		58.0
	58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 15.5 0.822 (b) 風下距離が0.2km以遠 a ₁ a ₂ 3.9077 3.898 1.4132 0.49523 0.8916 -0.001649	58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下距離が0.2km以遠 a ₁ a ₂ 3.9077 3.888 1.4132 0.49523	58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下距離が 0.2km以遠 a ₁ a ₂ a ₃ の値 3.9077 3.898	58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下距離が $0.2km$ 以遠	58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 5.3(2/2) 拡散のパラメータ $\sigma_1, \sigma_1, \sigma_2, \sigma_3$ の値 (b) 風下距離が 0.2km以 遠	58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (h) 風下野離が 0.2km以遠	58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 ま 5.3(2/2) 拡散のパラメータ $\sigma_{1,a_{1},a_{2},a_{3}}$ の値			(a) 拡散のパラメータ σ_1, a_1, a_2, a_3 の値 $(a) 風 下距離が 0.2km 未満 (a_1, a_3) \ddagger 0 とする) \sigma_1 a_1 165. 1.07$	<u> </u>		###式のパラメータである。9(0.1km)の値を表 5.2 に示す。 ###式のパラメータである。9(0.1km)の値を表 5.2 に示す。 ###式のパラメータである。9(0.1km)の値を表 5.2 に示す。 ### B C D E F ## C D E F ## B C D E E E F ## B C D E E F ## B C D E E E F ## B C D E E E F ## B C D E E E F ## B		0.894		83.7
	83.7 0.894 58.0 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下距離が0.2km以遠 a ₁ a ₂ 3.9077 3.898 1.4132 0.49523 0.8916 -0.001649	83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下距離が0.2km以遠 a ₁ a ₂ 3.9077 3.888 1.4132 0.49523	83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下距離が0.2km以遠 a ₁ a ₂ 3.9077 3.898	83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下野離が0.2km以遠 a ₁	83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 5.3(2/2) 拡散のバラメータ \(\sigma_1, a_2, a_3\) の値 (b) 風下距離が 0.2km以達	83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (h) 風下野離が 0.2km以遠	83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 ま5.3(2/2) 拡散のパラメータ G, a, a, a, a, a, a, o 値			5.3(1/2)	<u> </u>	+	指鞭式のバラメータである。 $\theta(0.1km)$ の値を表 5.2 に示す。 指鞭式のバラメータである。 $\theta(0.1km)$ の値を表 5.2 に示す。 a_3 の値を、表 5.3 に示す。 5.2 $\theta_{0.1}$: $0.1km$ における角度因子の値 (deg) 4 B C D E F F O 15 10 II		1.07		165.
	165. 1.07 83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 15.5 $\pi k $	165. 1.07 83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.854 15.5 0.854 0.852 (b) 風下距離が0.2km以遠 a ₂ a ₁ a ₂ 3.9077 3.898 1.4132 0.49523	165. 1.07 83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下距離が 0.2km以遠 a ₁ a ₂ a ₂	165. 1.07 83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 15.5 0.822 (b) 風下距離が0.2km以達	1.07 83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (b) 風下距離が 0.2km以遠	165. 1.07 83.7 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 (h) 周下路離が 0.2km 以達	165.1.0783.70.89458.00.89133.00.85424.40.85415.50.8225.3(2/2) 拡散のパラメータ σ, a, a, a, a か値		(a) 風下距離が0.2km未満 (a ₂ ,a ₃ は0 とする)	5.3(1/2) 拡散のパラメータ a, a, a, a, a の値 (a) 風下距離が 0.2km 未満 (a, a, t, a, t, 0 とする)		H	- ikm j θ(100km) = 2 とし、図 5.10 の風下距離を対数にとった片対数 - ikm j θ(100km) = 2 とし、図 5.10 の風下距離を対数にとった片対数 - ikm j の値を表 5.2 に示す。 - a ₃ の値を、表 5.3 に示す。 - b ₄ : 0. ikmにおけろ角度因子の値 (deg) - c		a_1		σ_1
	165. 1.07 183.7 0.894 58.0 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.891 16.1 0.891	165. 1.07 183.7 0.894 58.0 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854 15.5 0.854	165. 1.07 183.7 0.894 58.0 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.822 15.5 な散のパラメータ σ_1 , σ_1 , σ_2 , σ_3 の値 (b) 風下距離が $0.2km$ 以遠 σ_1 3.9077 3.898	165. a ₁ 165. 1.07 83.7 0.894 58.0 0.894 58.0 0.891 33.0 0.854 24.4 0.854 15.5 0.852 15.5 0.822 (b) 風下距離が0.2km以達 a ₁	6.) 風下距離が 0.2km以達					$5.3(1/2)$ 拡散のバラメータ σ_1, a_1, a_2, a_3 の値			A		攊	下距離が0.2kmオ	(a) 風 (a)
						(a) 風下距離が0.2km未満 (a) 風下距離が0.2km未満 (a ₁ ,a ₃ は0とする) σ ₁ a ₁ 165. 1.07 83.7 0.894 58.0 0.891 33.0 0.884 24.4 0.854 24.4 0.854 15.5 0.822 (h) 風下距離が0.2km以済	$3(1/2)$ 拡散のパラメータ σ_1 , σ_2 , σ_3 の値 σ_3 (a) 風下距離が $0.2km$ 未満 σ_1 σ_1 σ_1 σ_1 σ_1 σ_1 σ_1 σ_2 σ_3 σ_4 σ_2 σ_3 σ_4 σ_2 σ_3 σ_4 $\sigma_$	(a) 風下距離が $0.2km$ 未満 $(a_2,a_3 \pm 0 e \pm 7.5)$ σ_1 σ_1 σ_1 σ_1 σ_1 σ_2 σ_3 σ_3 σ_4 σ_2 σ_3 σ_3 σ_4 σ_3 σ_4 σ_2 σ_3 σ_3 σ_4 σ_3 σ_4 σ_5 σ_4 σ_5			30 20 15	C D E 30 20 15	$F(m)/\theta(100km) = 2$ とし、図 5.10 の風 下距離を対数にとった片対数 $F(m)/\theta(100km) = 2$ とし、図 5.10 の風 下距離を対数にとった片対数 の値を、表 5.3 に示す。 F(m) における角度因子の値 (deg) F(m) 20 $F(m)$ F	<u> </u>			
(a) 風下距離が 0.2km 未満 58.0 (b) 風下距離が 0.2km 以 33.0 (c) 風下距離が 0.2km 以 33.0 (c) 風下距離が 0.2km 以 34.4 (c) 風下距離が 0.2km 以 3.898 (c) 0.49523 (c) 0.49523 (c) 0.5kg (c) 0.059108	8.1/2) 拡帯のパラメータ G ₁ , a ₁ , a ₂ , a ₃ の値 (a) 風下距離が 0.2km未満 (a ₂ , a ₃)は 0 とする) (a ₂ , a ₃)は 0 とする) (a ₃) 風下距離が 0.2km未満 (a ₂ , a ₃)は 0 とする) (a ₃) 風下距離が 0.2km未満 (a ₃) 1.07 83.7 0.894 58.0 0.854 58.0 0.854 15.5 0.852 (b) 風下距離が 0.2km以遠 a ₂ (c) 風下距離が 0.2km以遠 a ₃ (d) 風下距離が 0.2km以遠 a ₃ (d) 風下距離が 0.2km以遠 a ₃ (e) 風下距離が 0.2km以遠 a ₃ (f) 風下距離が 0.2km以遠 a ₃ (f) 風下距離が 0.2km以遠 a ₃ (f) 1.4132 0.49523	8.1/2) 拡帯のパラメータ G ₁ , a ₁ , a ₂ , a ₃ の値 (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 とする) (a ₂ , a ₃) は 0 と 8.854 (b ₂) 無数のパラメータ G ₁ , a ₁ , a ₂ , a ₃ の値 (c ₃) 無数のパラメータ G ₁ , a ₁ , a ₂ , a ₃ の値 (c ₄) 風下距離が 0.2km以遠 (a ₁) (a ₂) (a ₃) 1.4132 (a ₄) (a ₂) (a ₃) 1.4132 (a ₄) 3.898	8 C D E E E 40 30 20 15 15 3(1/2) 拡散のパラメータ G ₁ , a ₁ , a ₂ , a ₃ の値 (a ₂ , a ₃)は 0 とする) a ₁ (a ₂ , a ₃)は 0 とする) a ₁ (a ₂ , a ₃)は 0 とする) a ₁ (a ₂ , a ₃)は 0 とする) a ₂ (a ₃) を B ₂ (a ₂ , a ₃)は 0 とする) a ₂ (a ₃) を B ₂ (a ₂ , a ₃)は 0 と B ₂ (a ₂) を B ₂ (a ₃) を B ₃ (a ₂) を B ₂ (a ₃) を B ₃ (a	2 θ_{01} : 0.1kmにおける角度因子の値 (deg) 1	83.7 (b) 風下距離が 0.2km 以 a) (c) (deg) (deg	B C D E E 40 30 20 15 15 40 30 20 15 15 15 15 15 15 15 15 15 15 15 15 15	8.7 (a) 拡散のパラメータ G, a, a, a, a, a, a) 値 1/2) 拡散のパラメータ G, a, a, a, a, a, a) 値 (a, a, は 0 とする) a,	B C D E E E 40 30 20 15 15 17 2) 拡散のパラメータ G, a, a, a, a, b C a, a 1.07 83.7 0.894 58.0 0.854 58.0 0.854 15.5 0.822	B C D E 40 30 20 15	$0.2 \theta_{0.1}$: $0.1km$ における角度因子の値 (deg)	$.2$ $ heta_{01}$: $0.lkm$ における角度因子の値 (\deg)		l/mi)/θ(100/mi)=2とし, 図 5.10 の風下距離を対数にとった片対数 経験式のパラメータである。θ(0.1km)の値を表 5.2 に示す。 "の値を, 表 5.3 に示す。				
(a) 風下距離が 0.2km 大満 (a) 風下距離が 0.2km 大満 (a) 風下距離が 0.2km 未満 (a) 風下距離が 0.2km 大満 58.0 0.894 58.0 0.854 15.5 0.822 15.5 0.822 15.5 0.822 15.5 0.822 15.5 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.891 0.995108	2 θ_{01} : $0.1km$ における角度因子の値 (deg) B C D E E 40 30 20 15 15 15 15 15 15 15 15 15 15 15 15 15	2 θ ₀₁ : 0.1kmにおける角度因子の値 (deg) B C D E 40 30 20 15 3(1/2) 拡散のパラメータ ₀ .4, a ₁ , a ₂ , a ₃ の値 (a) 風下距離が0.2km未満 (a) 風下距離が0.2km未満 (a) よいかは165. 1.07 83.7 0.894 58.0 0.854 58.0 0.854 58.0 0.854 15.5 0.822 15.5 a (b) 風下距離が0.2km以遠 (c) 風下距離が0.2km以遠 (d) 風下距離が0.2km以遠 (d) 風下距離が0.2km以遠 (e) 風下距離が0.2km以遠 (f) 風下距離が0.2km以遠 (f) 風下距離が0.2km以遠 (f) 風下距離が0.2km以遠 (f) 風下距離が0.2km以遠 (f) 風下距離が0.2km以遠	2 θ ₀₁ : 0.1kmにおける角度因子の値 (deg) B C D E 40 30 20 15 3(1/2) 拡散のパラメータ σ ₁ . a ₁ a ₂ a ₃ の値 (a) 風下距離が 0.2km未満 (a) 風下距離が 0.2km未満 (a) よい とする) 58.0 0.894 58.0 0.894 58.0 0.854 24.4 0.854 15.5 0.822 15.5 a ₁ a ₁ a ₂ (b) 風下距離が 0.2km以遠 (a) 風下距離が 0.2km以遠 (b) 風下距離が 0.2km以遠 (c) 風下距離が 0.2km以遠 (c) 風下距離が 0.2km以遠 (d) 3.898	8.1 (3.1kmにおける角度因子の値 (deg) B C D E I 40 30 20 15 11 11 11 11 11 11 11 11 11 11 11 11	8.1: 0.1kmにおける角度因子の値 (deg) B C D E F F 10 40 30 20 15 10 10 10 10 10 10 10 10 10 10 10 10 10	8 C D E E E 40 30 20 15 15 40 M E E E 40 30 20 15 15 17 2	6 ₀₁ : 0.1kmにおける角度因子の値 (deg) B C D E 40 30 20 15 1/2) 拡散のパラメータ σ ₁ , a ₁ , a ₂ , a ₃ の値 (a) 風下距離が 0.2km未満 (a ₂ , a ₃)は 0 とする) a ₁ 165. 1.07 83.7 0.894 58.0 0.854 24.4 0.854 15.5 0.822 15.5 0.822	0 ₀₁ : 0.1kmにおける角度因子の値 (deg) B C D E 40 30 20 15 1/2) 拡散のパラメータ σ ₁ , a ₁ , a ₂ , a ₃ の値 (a) 風下路離が 0.2km未満 (a ₂ , a ₃ は0 とする) a ₁ 0 ₁ (a) 風下路離が 0.2km未満 (a ₃ は0 とする) a ₁ 0 ₁ (a) 風下路 (a)	θ ₀₁ : 0.1kmにおける角度因子の値 (deg) B C D E 40 30 20 15	$.2 \ heta_0$: $0.lkm$ における角度因子の値 (deg) $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$0.0.1$ 0.1 k m における角度因子の値 (\deg)		k/tnokm) = 2 とし, 図 5.10 の風下距離を対数にとった片対数 発験式のパラメータである。θ(0.1km)の値を表 5.2 に示す。			5.3 亿示す。	
1度因子の値 (deg) D E D E E 20 15 20 15 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20	1度因子の値 (deg) D E E 20 15 20 15 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20	1度因子の値 (deg) D E 20 15 20 15 20 15 20 15 20 15 20 15 20 20 20 3894 0.894 0.894 0.854 0.854 0.854 0.852 20 3.898 3.898 3.898 0.49523	1度因子の値 (deg) D E 20 15 20 15 20 15 20 15 20 15 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 20 2	1年因子の値 (deg) D E I I I I I I I I I I I I I I I I I I	1度因子の値 (deg) D E F 20 15 10 20 15 10 ***/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/*/	1度因子の値 (deg) D E D E D E D D E D D D D D D D D D D D	1度因子の値 (deg) D E D E	1度因子の値 (deg) D E E 20 15 15 15 15 15 15 15 15 15 15 15 15 15	9度因子の値 (deg) D E 20 15	$_3$ の値を,表 $_5$.3 に示す。 $_2$ $_6$ $_0$: $_0$.1. $_0$.1. $_0$.1. $_0$.2. $_0$: $_0$.2. $_0$: $_0$	$_3$ の値を,表 $_5$.3 に示す。 $_2$ $_3$ $_4$ $_5$ $_5$ $_5$ $_5$ $_5$ $_5$ $_5$ $_5$	3の値を,表5.3に示す。		数にとった片対数 2に示す。	.0 の風下距離を対 0.1km)の値を表 5.2	ラメータである。の	,の値を,表
(4) 高い (4) (4) (4) (4) (4) (4) (4) (4) (4) (4)	接換 (数の 報 元 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1.Emizationを抵抗的シギラスータ (w) 1.Emizationを抵抗的シギラスータ (w) 1.Emizationを指数によった。(deg) 1.Emizationを提出とった。(deg) 1.Emizationを提出とった。(deg) 1.Emizationを提出とった。(deg) 1.Emizationを提出とった。(deg) 1.Emizationを提出といいの値を表示2.に示す。 1.Emizationの位を表示2.に示す。 1.	2. 2 (a) 2 上 (a) (b) (b) (b) (b) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c	上記が12415名単度日子の値 (deg) Libmi23415名単度日子の値 (deg) Libmi23415名単度日子の値 (deg) Libmi2415名単度日子の値 (deg) Libmi2415名単度日子の値 (deg) A B C D E F F 0 40 30 20 15 10 1 10 1 10 1 10 1 10 1 10 1 10	2.2 の名: O. Lkmに2437名角度因子の値 (deg) 1.km)の(100km)= 2 とし、図 5.10 の風下軽離を対骸にとった片対骸 延齢式のバディーディか。 3.2 の3: O. Lkmに2437名角度因子の値 (deg) 3.3 の 20 15 10 10 10 10 10 10 10 10 10 10 10 10 10	2歳の給電力向の能力がクラメータ (w) Lkmi1とおける角度因子の値 (deg) E動製えのバラケータである。 d(0.1km)の値を表 5.2 に示す。 1chm) (θ(100km) = 2 とし、図 5.10 の風下距離を対数にとった片対数 E動製えのバラケータである。 d(0.1km)の値を表 5.2 に示す。 1chm) (をは、表 5.3 に示す。 1chm) を	2度の給血力向の並が50メラメータ (vn) 1kmic 2 sti 7 5 4 度	1km/eluchinの地ががリペラメータ (m) 1km/におおてろの度用で値 (deg) 1km/eluokm) = 2 とし、図 5.10 の風下距離を対象にとった片対数 1km/eluchin/off度因子の値(deg) 1cm/eluchin/off度因子の値(deg) 1cm/eluchin/off度因子の値(deg) 1cm/eluchin/off度因子の値(deg) 1cm/eluchin/off度因子の値(deg) 1cm/eluchin/off度因子の値(deg) 1cm/eluchin/off度を表 5.2 に示す。 1cm/eluchin/offectiveを表 5.2 に示す。 1cm/eluchin/offe	度度の鉛面方向の拡がりパラメータ (m) (deg) $(Lkm) / \ell + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 +$	(技の鉛直方向の拡がりパラメータ (m) :Ikm/とおけろ角度因子の値 (deg) :Ikm)/ θ(100km) = 2 とし、図 5.10 の風下距離を対数にとった片対数 :経験式のパラメータである。θ(0.1km)の値を表 5.2 に示す。 2.2 の値を、表 5.3 に示す。 3.2 θ _{0.1} : 0.1kmにおける角度因子の値 (deg) A B C D E F	<u>ξ</u> 度の鉛直方向の拡がりパラメータ (m) :Ikm)/θ(100km) = 2 とL, 図 5.10 の風下距離を対数にとった片対数 :経験式のパラメータである。θ(0.1km)の値を表 5.2 に示す。 a_3 の値を, 表 5.3 に示す。 5.2 θ ₀₁ :0.1kmにおける角度因子の値(deg)	佐の鉛直方向の拡がりパラメータ (m) Ikmにおける角度因子の値 (deg) Ikm)/ θ(100km) = 2 とし, 図 5.10 の風下距離を対数にとった片対数 経験式のパラメータである。 θ(0.1km)の値を表 5.2 に示す。 経験式のパラメータである。 θ(0.1km)の値を表 5.2 に示す。 2.3 に示す。 3.5 に示す。 3.5 に示す。 3.5 に示す。 4.5 の値を、表 5.3 に示す。 4.5 の値を、表 5.5 に示す。 5.5 にいまればいる 5.5 にいま				ijの拡がりパラメー ij度因子の値 m)=2とし,図5.	§度の鉛直方作 .Ikmにおけるf .Ikm)/θ(100ね 経験式のパラ
															数にとった片 対数 10 10	O.1km の値を表 5.2 に示す。	9 D E E 20 15 20 15 15 15 15 15 15 15 15 15 15 15 15 15

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況		5.2.1 → 内規通り	 5.2.1(1) 相対濃度は、毎時刻の気象項目を実効的な放出継続時間(放射性物質の放出率の時間的変化から定めるもので、以下実効放出継続時間という)をもとに、評価点ごとに評価している。 5.2.1(2) 評価点の相対濃度は、毎時刻の相対濃度を年間について小さい方から累積した場合、その累積出現頻度が97%に当たる相対濃度として評価している。
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	(a) y , 方向の拡ぶりのペラメーツ (b) z 方向の拡ぶりのペラメーツ (c) y 方向の拡ぶりのペラメーツ (de) y 大向の記述にはほぼ忠実に従って作成したもので、中央制御室の計算に適用できる。 h 及びのは、次のとおりである(e) y 所成したもので、中央制御室の計算に適用できる。 h 表 y の y 所成 y	5.2.1 其効放出継続時間内の気象変動の扱いの考え方事故後に放射性物質の放出が継続にいる時間を踏まえた相対濃度は,次のとおり計算する。	

力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	中
5.2.2 実効放出継続時間に応じた水平方向濃度の扱い (1) 相対濃度 χ/Q(t, (5.10)式(***)によって計算する【解説 5.13】。	5.2.2 → 内規通り5.2.2(1) 実効放出継続時間に応じた相対濃度x/Qは, (5.10)式によって計算している。
$\chi/Q = \frac{1}{T} \sum_{i=1}^{T} (x/Q)_i \delta_i^d $ (5.10)	
χ/Q :実効放出継続時間中の相対濃度 (s/m^3) I :実効放出継続時間 (h) I $(\chi/Q)_i$:時刻 i の相対濃度 (s/m^3) S_i^d :時刻 i T_i 國向が評価対象 d O 場合 $S_i^d=1$ 時刻 i T_i 國向が評価対象 d O 場合 $S_i^d=1$	
a) この場合, (χ/Q),は、時刻/における気象条件に対する相対濃度であり、5.1.2 項で示す考え力で計算するが、さらに、水平方向の風向の変動を考えて、次項に示すとおり計算する。 する。 b) 風洞実験の結果等によって(χ/Q),の補正が必要なときは、適切な補正を行う。	$5.2.2(1)$ a) $(\chi/0)_I$ は、時刻 I における気象条件に対する相対濃度であり、 $5.1.2$ 項で示す考え方で計算するが、さらに、水平方向の風向の変動を考えて、次項に示すとおり計算している。 $5.2.2(1)$ b) 補正は不要である。
(2) (ス/の)の計算式a) 建屋の影響を受けない場合の計算式建屋の巻き込みによる影響を受けない場合は、相対濃度は、次の1)及び2)のとおり、短時間放出又は長時間放出に応じて計算する。	5.2.2(2)a) 建屋の影響を受ける。
1) 短時間放出の場合 短時間放出の場合, $(\chi/Q)_i$ の計算は,風向が一定と仮定して (5.11) 式 $^{(@3)}$ によって 計算する。	
$(\chi/Q)_i = \frac{1}{2\pi\sigma_{yi}\sigma_{zi}U_i} \cdot \left[\exp\left\{ -\frac{(z-H)^2}{2\sigma_{zi}^2} \right\} + \exp\left\{ -\frac{(z+H)^2}{2\sigma_{zi}^2} \right\} \right] \qquad \dots (5.11)$	
(ス/Q), :時刻 i の相対機度 (s/m³) : 評価点の高さ (m) H : 放出部の高さ(排気筒有効高さ) (m) (m) U, :時刻 i の風速 (m/s) σ _j : 時刻 i で、濃度の水平方向の	

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況				5.2.2(2)b) 5.1.2項の考え方に基づき,中央制御室を含む建屋の後流側では,建屋の投影面積に応じた初期拡散による拡がりをもつ濃度分布として計算している。また,実効放出継続時間に応じて,次の1)又は2)によって,相対濃度を計算して評価している。	5.2.2(2)b)1) 建屋影響を受ける場合の濃度分布は,風向に垂直な建屋の投影の幅と高さに相当する拡がりの中で,放出点からの軸上濃度を最大値とする正規分布として仮定する。短時間放出の計算の場合には保守的に水平濃度分布の中心軸上に中央制御室評価点に存在し風向が一定であるものとして,(5.13)式によって計算している。			
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	2) 長時間放出の場合 実効放出時間が 8 時間を超える場合には、 $(\chi/Q)_i$ の計算に当たっては,放出放射 性物質の全量が一方位内のみに一様分布すると仮定して (5.12) 式 $^{(*)}$ によって計算 する。	$(\chi/Q)_t = \frac{2.032}{2\sigma_\pi U_t x} \cdot \left[\exp\left\{ -\frac{(z-H)^2}{2\sigma_\pi^2} \right\} + \exp\left\{ -\frac{(z+H)^2}{2\sigma_\pi^2} \right\} \right] \qquad \dots (5.12)$	(χ/Q) , :時刻 i の相対濃度 (s/m^3) H : 放出源の高さ(排気筒有効高さ) (m) x : 放出源から評価点までの距離 (m) U_i : 時刻 i の風速 (m/s) σ_{2i} : 時刻 i で、濃度の鉛直方向の $\pi \chi x y \chi y \chi y \chi z \chi z - \chi z \chi$	b) 建屋の影響を受ける場合の計算式 5.1.2 項の考え方に基づき, 中央制御室を含む建屋の後流側では, 建屋の投影面積に 応じた初期拡散による拡がりをもつ濃度分布として計算する。また, 実効放出継続時間に 応じて, 次の 1)又は 2)によって, 相対濃度を計算する。	1) 短時間放出の場合 建屋影響を受ける場合の濃度分布は,風向に垂直な建屋の投影の幅と高さに相当 する拡がりの中で,放出点からの軸上濃度を最大値とする正規分布として仮定する。 短時間放出の計算の場合には保守的に水平濃度分布の中心軸上に中央制御室評 価点に存在し風向が一定であるものとして,(5.13)式(**)によって計算する。	$(\chi/Q)_t = \frac{1}{2\pi\sum_{ji}\sum_{ji}\sum_{\alpha}U}\left[\exp\left[-\frac{(z-H)^2}{2\sum_{\alpha}^2}\right] + \exp\left\{-\frac{(z+H)^2}{2\sum_{\alpha}^2}\right]\right] \dots (5.13)$	$\sum_{\mathcal{M}} = \sqrt{\sigma_{\mathcal{M}}^2 + \frac{cA}{\pi}} , \sum_{\mathcal{M}} = \sqrt{\sigma_{\mathcal{M}}^2 + \frac{cA}{\pi}}$	(X/Q), :時刻iの相対濃度 (s/m³) H : 放出源の高さ (m) z :評価点の高さ (m) U, :時刻iの風速 (m/s) c :形状係数 (-) ∑, :時刻iで, 建屋等の影響を入れた (-) 濃度の水平方向の拡ががパラメータ (m) ∑。:時刻iで, 建屋等の影響を入れた

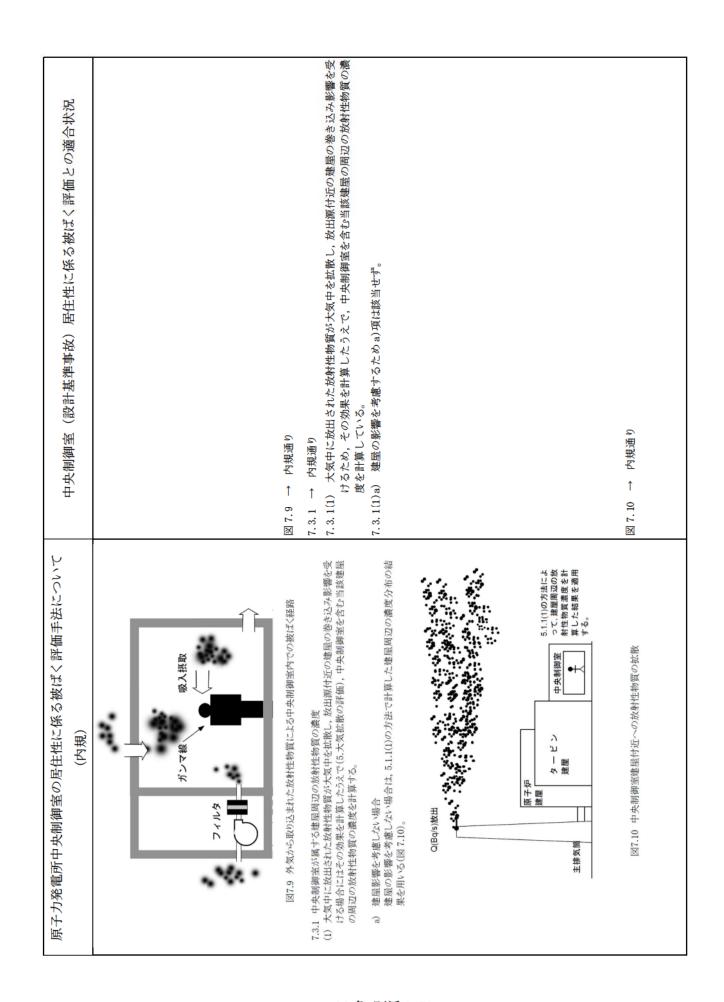
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
 濃度の鉛直方向の址がりパラメータ (m) のヵ :時刻 iで、濃度の水平方向の 並がりパラメータ (m) のヵ :時刻 iで、濃度の水平方向の 並がりパラメータ (m) 立 長時間放出の場合には、建屋の影響のない場合と同様に、1 方位内で平均し た濃度として求めてもよい。 i) 長時間放出の場合には、建屋の影響がない場合と同様に、1 方位内で平均し た濃度として求めてもよい。 ii) ただし、建屋の影響による拡がりの幅が風向の1方位の幅よりも拡がり隣接の方 位にまで及ぶ場合には、建屋の影響がない場合の(5.12)式のような、放射性物 質の拡がりの全量を計算し1方位の幅で平均すると、短時間放出の(5.13)式で 得合れる最大濃度より大きな値となり不合理な結果となることがある[解説 5.14]。 ii) ii)の場合、1 方位内に分布する放射性物質の量を求め、1 方位の幅で平均化 処理することは適切な例である。 iii) ii)の場合、平均化位理をする。 iii) ii)の場合、平均化位理を行うかわりに、長時間でも短時間の計算式による最大 濃度として計算を行うことは保守的であり、かつ計算も簡便となる。 iv) ii)の場合、平均化位配置を表現大きには保守的であり、かつ計算も簡便となる。 	5.2.2(2)b)2) 長時間でも保守的に短時間の計算式による最大濃度として計算を行い評価している。
5.3 柏対線量(D/Q)	5.3 → 内規通り
(1) 大気中に放出された放射性物質に起因する放射性雲からのガンマ線による全身に対しての 線量を計算するために、空気カーマを用いた相対線量を計算する。	5.3(1) 大気中に放出された放射性物質に起因する放射性雲からのガンマ線による全身に対しての 線量を計算するために、空気カーマを用いた相対線量を計算している。
(2) 空気カーマから全身に対しての線量への換算係数は,15v/Gyとする。	5.3(2) 空気カーマから全身に対しての線量への換算係数は,1 Sv/6yとして評価している。
(3) 評価点(x,y,0)における空気カーマ率は,(5.14)式(*5)によって計算する。	5.3(3) 評価点(x,y,0)における空気カーマ率は、(5.14)式によって計算している。
$D = K_I E \mu_0 \int_{0-\infty}^{\infty} \int_{0}^{\infty} \int_{-\infty}^{\infty} \frac{e^{-j\tau}}{4i\pi^2} B(\mu\nu) \chi(x,y,z) dx dy dz $ (5.14)	
$B(\mu\nu) = 1 + \alpha(\mu\nu) + \beta(\mu\nu)^2 + \gamma(\mu\nu)^3$	
L_1 : 空気吸収線量率 $(\mu Gy/s)$ K_1 : 空気吸収線量率 $(\mu Gy/s)$ K_2 : 空気吸収線量率への換算係数 $\frac{dis\cdot m^3 \cdot \mu Gy}{MeV \cdot Bq \cdot s}$ E : ガンマ線の実効エネルギ (MeV/dis) μ_s : 空気に対するガンマ線の線域表係数 $(1/m)$ μ : 空気に対するガンマ線の線域表係数 $(1/m)$ r : (x',y',z') n ω (y',y',z') π (x',y',z') π (y',y',z') (y',z') $($	

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況		5.3(4) 相対線量の計算においても建屋影響を受けるが,評価においては建屋影響の効果を取入れていない。	5.3(5) 評価点を放出点と同じ高さ(屬下輪上)に設定し、ス(x', y', Z')を計算する場合の 建屋の巻き込み効果を見込まずに計算することは、合理的かつ保守的であるため、建屋影響の効果を見込んでいない。	
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	$\chi(x,y,z):(x,y,z)$ の濃度 $\mu_o,\mu,\alpha,\beta,\gamma$ は、 $0.5MeVのガンマ線に対する値を用いる。$	(4) 建屋影響を受ける場合は、 $\chi(x,y,z)$ の計算において、建屋影響の効果を取入れてもよい。 (「5.2.2(2)b)建屋の影響を受ける場合の計算式」参照)	 (5) 評価点を放出点と同じ高さ(個下軸上)に設定し、次(ボ・バ・ボ・)を計算する場合の建屋の巻き込み外来を見込まずに計算することは、合理的かつ保守的である。ただし、建屋影響を受ける場合は、この影響を見込んで複数方位を、着目方位とする必要がある。(「5.1.2(3)ら着目方位」参照) 	

(2) 空気カーマから全身に対しての線量への換算係数は、ガンマ線エネルギに依存した実効線量への換算係数又は15v/Gyとする。 (3) DAID 利回工店は勢のインスにフェンクにしま利回工店校舗を貼のトント 放か薄 シンのご		中央	中央制御室(設計基準事故)	居住性に係る被ばく評価との適合状況
	ネルギに依存した実効線	6.2(2) 空気	空気カーマから全身に対しての線量への換算係数は、	量への検算係数は,1 Sv/6y として評価している。
	M	6.2(3) 治発1 い。	電所3号炉はプレストレスト	泊発電所3号炉はプレストレストコンクリート型原子炉格納容器ではないため, 考慮しな'。'。
(4) スカイシャインガンマ線の計算方法a) スカイシャインガンマ線の計算は一回散乱計算法を用いるものとし、必要に応じて輸送計算コードを適宜組み合わせて用いる。ただし、(6.1)式の内容と同等で技術的妥当性が認められる場合には、特に使用する計算方法を制限するものではない。	とし、必要に応じて輸送計 同等で技術的妥当性が認 がない。	6.2(4)a) A	スカイシャインガンマ線及び直接線の計算は,	接線の計算は,一回散乱計算法を用いて評価している。
b) 基本計算式を(6.1)式(Φ6. #7.#®)とする。		6.2(4)り 基	基本計算式を(6.1)式として評価している。	りている。
$H_{S} = \int_{0}^{T} D_{S} dt$				
$D_{S} = \sum_{E} \sum_{E} \int_{V} \Phi(E, x) K(E) \frac{d\sigma}{d\Omega} (E, \theta) \frac{N}{r^{2}} B(E, b) \exp \left(- \sum_{l} \sum_{m} \mu_{l}^{l} X_{m} \right) dV$	V_m $\int dV$ (6.1)			
5	(Sv)			
	(8)			
	(G_V/S)			
E,x)				
	減衰係数 (1/m)			
	$(Gy/(y/m^2))$			
B(E,b) : 散乱エネルギEのガンマ線の散乱点から計算点までの りに対するアルドアップ係数 (-)	気から計算点までの(-)			
X :領域mの透過距離	(m)			
	(m)			
V : 批乱体積	(m^3)			
(E,θ)	$(m^2 \mid steradian)$			
σ. 2. 1散乱角 Θ : 散乱角	(radian)			
c) 散乱点におけるガン々線束は、次の i)又は ij)のいずれかの方法によって計算する j) 蓮へいの影響を,ビルドアップ係数を用いて求める場合 (**)	法によって計算する。	6.2(4)こ) 散	散乱点におけるガンマ線束は、	i)の方法によって計算している。

 6.3 → 内規通り (1) 原子炉施設の建屋内に放出された放射性物質に起因する直接ガンマ線による線量の計算のために、線源、施設の位置関係、建屋構造等から計算の体系モデルを構築して評価している。
空気カーマから全身に対する線量への換算係数は, ガンマ線エネルギに依存した実効線量 6.3(2) 空気カーマから全身に対する線量への換算係数は, 1 Sv/Gyとする。

て 中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況	6.3(3)a) 直接ガンマ線の計算は,点減衰核積分法を用いて評価している。	6.3(3)b) 基本計算式は(6.4)式としている。				
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	(3) 直接ガンマ線の計算方法 a) 直接ガンマ線の計算は, 点減衰核積分法を用いる。ただし, (6.4)式の内容と同等で, 技術的妥当性が認められる場合には, 使用する計算方法を制限するものではない。	b) 基本計算式は(6.4)式(®& # 7. # 9)とする。	$H_d = \sum_{E} K(E) \int_{V} \frac{S(E, x, y, z)e^{-b}B(E, b)}{4\pi R^2} dV \qquad (6.4)$	$b = \sum_i \mu_i I_i$	H _g :実効線量 K(E) :線源エネルギEに対する線量換算係数 (y/m²) S(E.x.y.z):機算線源強度 (y/m²) B(E,b) :線源エネルギEでガンマ線減衰距離 に対する J, :線源エネルギEに対する物質:の線域衰係数 (1/m) I, :物質:の透過距離 (m) R :線源体積 V :線源体積	


原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
7. 中央制御室居住性に係る被ばく評価	7. → 内規通り
(1) 中央制御室居住性に係る運転員の被ばくを, 3.2(1)に示した被ばく経路について, 7.1 から7.5 までに示す'方法によって計算する。	7. (1) 中央制御室居住性に係る運転員の被ばくを, 3.2(1)に示した被ばく経路について, 7.1 から7.5 までに示す方法によって計算している。
(2) 次の a)及び b)のとおり, 想定事故に対し、すべての被ばく経路の評価が必要となるものではない [解説 7.1]。 a) PWR 型原子炉施設の蒸気発生器伝熱管破損のように, 建屋内に放射性物質が滞留することなく系統から直接環境へ放出されるような事象については, 建屋からのスカインヤインガンマ線及び直接ガンマ線の評価は不要である。 b) BWR 型原子炉施設の主蒸気管破断時の半球状雲の放出及び PWR 型原子炉施設の蒸気の路	7.(2)a) 蒸気発生器伝熱管破損については、建屋からのスカイシャインガンマ線及び直接ガンマ線の評価は、考慮していない。 7.(2)b) PWR 型原子炉施設の蒸気発生器伝熱管破損時については、入退域時の線量の評価は、考慮していない。
間に集中して放出される放射性物質に対しては、入退域時の線量の評価は不要である。 (3) 運転員の勤務状態については、平常時の直交替を基に設定する。ただし、直交替の設定を 平常時のものから変更する場合、事故時マニュアル等に当該の運用を記載することが前提で ある。	7. (3) 運転員の勤務状態については,平常時の直交替を基に設定するため,5直2.5交代体制として評価している。
7.1 建屋内の放射性物質からのガンマ線による中央制御室内での被ばく (1) 次の a)及び b)の被ばく経路について,運転員の被ばくを,7.1.1 から 7.1.2 までに示す方法によって計算する(図 7.1)。 。 建屋内の放射性物質からのスカイシャインガンマ線による中央制御室内での被ばく b) 建屋内の放射性物質からの直接ガンマ線による中央制御室内での被ばく	7.1 → 内規通り 7.1(1) 建屋内の放射性物質からのスカイシャインガンマ線による中央制御室内での被ばく及び建屋内の放射性物質からの直接ガンマ線による中央制御室内での被ばく経路については,運転員の被ばくを,7.1.1から 7.1.2 までに示す方法によって計算している。
スカイシャインガンマ線 直接ガンマ線 原子炉 原子炉 建屋	
(b) PWR 型原子炉施設 図 7.1 建屋内の放射性物質からのガンマ線による中央制御室内での被ば<経路	図7.1 → 内規通り

原子	原子力発電所中央制御室の居住性に係る被ばく評価手法について	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
	(内規)	
7.1.1 %	7.1.1 建屋内の放射性物質からのスカイシャインガンマ線による中央制御室内での被ばく	7.1.1 → 内規通り
(2) 原 a)	(2) 原子炉台湖材製失時の機量評価(PWR型原子炉施設) a) 原子炉台湖材製失発生後30日間,原子炉格納容器内及びアニュラス内に存在する放射性物質を線源としたスカイシャインガンマ線による,中央制御室内における積算線量を計算する(図7.3)。	7.1.1(2)a) 原子炉冷却材喪失発生後 30 日間,原子炉格納容器内に存在する放射性物質を線源としたスカイシャインガンマ線による,中央制御室内における積算線量を評価している。
(q	スカインャインガン~線の線源強度は,「6.1スカインャインガン~線及び直接ガン~線の線源の計算」で解析した結果を用いる。	7.1.1(2)b) スカイシャインガンマ繰の線源強度は, [6.1 スカイシャインガンマ線及び直接ガンマ線の線源の計算」で解析した結果を用いて評価している。
(2)	線源から中央制御室に至るまでの遮へい効果を,構造物の配置,形状及び組成から計算する。建屋等の構造壁又は天井に対して,配置,形状及び組成を明らかにして,遮へい効果を見込んでもよい。	7.1.1(2)c) 線源から中央制御室に至るまでの遮へい効果を,構造物の配置,形状及び組成から評価している。
(P	線量の評価点は、中央制御室内の中心、操作盤位置等の代表点とする。室内の複数点 の計算結果から線量が最大となる点を評価点としてもよい。	7.1.1(2)d) 線源の評価点は,中央制御室内の中心として評価している。
(e)	中央制御室内の滞在期間を, 運転員の勤務状態に即して計算し, 30日間の積算線量を滞在期間の割合で配分する。	7.1.1(2)e) 中央制御室内の滞在時間を,運転員の勤務状態に即して計算し,30 日間の積算線量を滞在時間の割合で配分して評価している。
G	アニュラス部が原子炉格納容器外部遮へいの内側にある場合には, アニュラス部内の線源を原子炉格納容器内に存在するとして計算してもよい。	7.1.1(2)f) アニュラス部が原子炉格納容器外部遮蔽の内側にあるため,アニュラス部内の線源を原子炉格納容器内に存在するとして評価した。
(g)	スカイシャインガンマ線による運転員の外部被ばく線量は、次のとおり計算する。	$7.1.1(2)_8$) スカイシャインガンマ線による運転員の外部被ばく線量は,示された計算式を用いて評価している。
	外部被ばく線量=室内作業時スカイシャインガンマ線積算線量 ×直交替による滞在時間割合*1 *1)例:4直3交替勤務の場合 0.25=(8h/直×3直×30日/4)/(24h×30日)	
	スカイジャインガンな響	
	原子炉格納容器 原子炉 東東	
	図7.3 原子炉冷却材喪失のスカイシャインガンマ線の計算 (PWR型原子炉施設)	図 7.3 → 内規通り

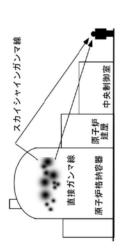
原子	原子力発電所中央制御室の居住性に係る被ばく評価手法について	中中田御安(記計甘湘東歩) 早仕州で 係え 抜げく 郭俑 レの 海今中が
	(内規)	(成門 番牛事政)
7.1.2 ½ (2) 原- a)	2 建屋内の放射性物質からの直接ガンマ線による中央制御室内での被ばく 原子炉冷却材喪失時の線量評価(PWR型原子炉施設) a) 原子炉冷却材喪失発生後30日間,原子炉格納容器内及びアニュラス内に存在する放射 性物質を線源とした直接ガンマ線による,中央制御室内における積算線量を計算する (図7.6)。	7.1.2 → 内規通り 7.1.2(2)a) 原子炉冷却材喪失発生後 30 日間,原子炉格納容器内に存在する放射性物質を線源とし た直接ガンマ線による,中央制御室内における積算線量を評価している。
(q	直接ガンマ線の線源強度は、「6.1スカイシャインガンマ線及び直接ガンマ線の線源の計 第」で解析した結果を用いる。	7.1.2(2)b) 直接ガンマ線の線源強度, [6.1 スカイシャインガンマ線及び直接ガンマ線の線源の計算」で解析した結果を用いて評価している。
c)	線源から中央制御室に至るまでの遮へい効果を,構造物の配置,形状及び組成から計算する。建屋等の構造壁又は天井に対して,配置,形状及び組成を明らかにして, 遮へい効果を見込んでもよい。	7.1.2(2)c) 線顔から中央制御室に至るまでの遮へい効果を,構造物の配置,形状及び組成から計算している。
(P	線量の評価点は、中央制御室内の中心、操作盤位置等の代表点とする。室内の複数点 の計算結果から線量が最大となる点を評価点としてもよい。	7.1.2(3)q) 線源の評価点は,中央制御室内の中心として評価している。
(e)	中央制御室内の滞在期間を,運転員の勤務状態に即して計算し,30日間の積算線量を 滞在期間の割合で配分する。	7.1.2(2)e) 中央制御室内の滞在期間を,運転員の勤務状態に即して計算し,30 日間の積算線量を滞在期間の割合で配分して評価している。
(J	アニュラス部が原子炉格納容器外部遮へいの内側にある場合には,アニュラス部内の線源を原子炉格納容器内に存在するとして計算してもよい。	7.1.2(2)f) アニュラス部が原子炉格納容器外部遮蔽の内側にあるため, アニュラス部内の線源を原子が下げが存むなってが低している。
(g)	直接ガンマ線による運転員の外部被ばく線量は、次のとおり計算する。	7.1.2(2)g) 直接ガンマ線による運転員の外部被ばく線量は,示された計算式を用いて評価してい
	外部被ばぐ線量=室内作業時直接ガンマ線積算線量 ×直交替による滞在時間割合*! *1)例:4直3交替勤務の場合 0.25=(8h/直×3直×30 H/4)/(24h×30 H)	ů
	直接ガンマ線 原子炉 原子炉 原子炉 選ε	
	図7.6 原子炉冷却材喪失の直接ガンマ線の計算 (PWR型原子炉施設)	図7.6 → 内規通り

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況	7.2 → 内規通り 7.2(1) 大気中〜放出された放射性物質から放射されるガンマ線による運転員の被ぼくを, 次の(2) から(5)によって計算している。				7.2(2) 建屋から大気中へ放出された放射性物質からのガンマ線による中央制御室内作業時の運転員の被ばく線量を評価している。	7.2(3) 相対線量 D/g の評価点は,中央制御室内の中心として評価している。	7.2(4) 中央制御室の天井・側壁によるガンマ線 (Eγ > 1.5 MeV 以上) の遮蔽効果を考慮して計算 1.7いろ	7.2(5) ガンマ線による運転員の外部被ばく線量は,示された計算式を用いて評価している。		
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	7.2 大気中へ放出された放射性物質のガンマ線による中央制御室内での被ばく (1) 大気中へ放出された放射性物質から放射されるガンマ線による運転員の被ばくを, 次の(2)から(5)によって計算する(図 7.8)。	原子炉格納容器 原子が 放射性豊からの 建屋 イ中央制御室	(b) PWR 型原子炉施設	図 7.8 大気中へ放出された放射性物質のガンマ線による 中央制御室内での被ばく経路	(2) 建屋から大気中へ放出された放射性物質からのガンマ線による中央制御室内作業時の運転員の被ばく線量を計算する。	(3) 相対線量 D/g O評価点は、中央制御室内の中心、操作盤位置等の代表点とする。室内の複数点の計算結果から線量が最大となる点を評価点としてもよい。	(4) 中央制御室の天井・側壁によるガンマ線 $(E_{r}\geq1.5MeV$ 以上 $)$ の蓮へい効果を計算する。	(5) ガンマ線による運転員の外部被ばく線量は、次のとおり計算する。	外部被ぼく線量=大気中へ放出された希ガス等 (BWRブラントの主蒸気管破断では、ハロゲン等を含む)のガンマ線による実効線量×直交替による滞在時間割合 *1 *1) 例:4直3交替勤務の場合 0.25=(8h/直×3直×30日/4)/(24h×30日)	

原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
b) 蒸気発生器伝熱管破損時には、大気中へ放出された放射性物質のガンマ線による中央制御室内での被ばくの線源となる者ガスは、破損側蒸気発生器の1次系から2次系への漏えいが停止するまでの短時間に全量が放出されるため、事故発生時に勤務している直がすべての線量を受けるとして、直交替による滞在時間割合を「1.0」とする。	7.2(5)b) 蒸気発生器伝熱管破損時には、大気中へ放出された放射性物質のガンマ線による中央制御室内での被ばくの線源となる希ガスは、破損側蒸気発生器の1次系から2次系への漏えいが停止するまでの短時間に全量が放出されるため、事故発生時に勤務している直がすべての線量を受けるものとして評価している。
外部被ば<線量=放出希ガスのガンマ線による実効線量×1.0	
c) 大気中へ放出された放射性物質のガンマ線による中央制御室内滞在時の実効線量は, 次の1)及び2)に示す方法によって計算する。	7.2(5)c) 大気中へ放出された放射性物質のガンマ線による中央制御室内滞在時の実効線量は, 示された方法によって評価している。
1) 原子炉冷却材喪失時及び蒸気発生器伝熱管破損時	
$H_{\gamma} = \int_{0}^{T} K(D/Q)Q_{\gamma}(t)B \exp(-\mu X)dt$ (7.1)	
H :希ガスのガンマ線の外部被ばくによる実効線量 (Sv) K :空気カーマから実効線量への換算係数 (Sv/Gv,K=1) D/Q :相対線量 (Gv/Bq) Q,(I) :時刻1/における核種の環境放出率 (Bq/s) A :ビルドアップ係数 (J) A :コンクリートに対するガンマ線の線域養係数 (I/m) X :中央制御室コンクリート厚さ (m) I :計算対象期間(30日間) (注) (注)30日間連続滞在の場合の値である。	
上式のうちコンクリートによる減衰効果 $B\exp(-\mu X)$ は,テーラー型ビルドアップ係数を用いて計算してもよい。	
7.3 室内に外気から取り込まれた放射性物質による中央制御室内での被ぼく	7.3 → 内規通り
(1) 次のa)及びb)について, 7.3.1から7.32までに示す方法によって計算する。	7.3(1) 室内に外気から取り込まれた放射性物質による中央制御室内での被ばくについては,7.3.1から7.3 テルドディナギドドゥイ製価している
a) 建屋表面の空気中の放射性物質濃度	。る. アノン 国 はノ へんりなって かっこう はっこう でき
b) 室内に外気から取り込まれた放射性物質による中央制御室内の放射性物質濃度	
なお,中央制御室の空気流入率については,「原子力発電所の中央制御室の空気流入率 測定試験手法」に従うこと。	
(2) 次のa)及びb)の被ばく経路による運転員の被ばくを,7.3.3から7.3.4までに示す方法によって 計算する。(図7.9)	7.3(2) 室内に外気から取り込まれた放射性物質の吸入摂取による中央制御室内での被ぼく及び室内に外気から取り込まれた放射性物質からのガンマ線による中央制御室内での被ぼくの被ぼっています。
a) 室内に外気から取り込まれた放射性物質の吸入摂取による中央制御室内での被ばく	く 柱路による連転員の被はくについては,7.3.3 から 7.3.4 までにホす方法によって評価している。
b) 室内に外気から取り込まれた放射性物質からのガンマ線による中央制御室内での被ばく	

|--|

原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
(6) 中央制御室の自動隔離を期待する場合には、その起動信号を明確にするとともに隔離に要する時間を見込む。また、隔離のために手動操作が必要な場合には、隔離に要する時間に加えて運転員が事故を検知してから操作を開始するまで10分以上の時間的余裕を見込んで計算する。 (7) 中央制御室内の雰囲気中に浮遊する放射性物質量の時間変化は、次のとおり計算する。 (7) 中央制御室内への取り込み空気放射性濃度に基づき、空調システムの設計に従って中	7.3.2(6) 中央制御室の自動隔離を期待する場合には、その起動信号を明確にするとともに隔離に要する時間を見込む。また、隔離のために手動操作が必要な場合には、隔離に要する時間に加えて運転員が事故を検知してから操作を開始するまで 10 分以上の時間的余裕を見込んで計算する。 7.3.2(7) 中央制御室内の雰囲気中に浮遊する放射性物質量の時間変化は、示されたとおり評価している。
央制御室内の放射能濃度を求める「解説7.2」。	7.3.2(7)a) 中央制御室内への取り込み空気放射能濃度に基づき,空調システムの設計に従って中央制御室内の放射能濃度を評価している。
$\begin{split} \frac{dM_{I}^{k}(t)}{dt} &= -\lambda^{k} M_{I}^{k}(t) - \sum_{j=1}^{n} \frac{G_{j,j}}{V_{I}} M_{I}^{k}(t) + \sum_{j=1}^{n} (1 - E_{y}^{k}) \frac{G_{y}}{V_{f}} M_{J}^{k}(t)) \\ &+ \sum_{i=1}^{N} (1 - E_{x}^{k}) \alpha_{I} S_{I}^{k}(t) + \alpha_{I} S_{I}^{k}(t) \end{split}$	
$S_I^k(t) = (\chi/Q)_I Q^k(t)$ $S_I^k(t) = (\chi/Q)_I Q^k(t)$	
(7.4)	
$M_i^t(t)$: 時刻 i における区面 i の核種 k の放射性物質の量 (Bq) V_i : 区画 i の体積 (m^3) E_g^i : 区画 j から i の経路にあるフィルタの除去効率 $(-)$ G_g : 区画 j から i の本積流量 (m^3/s) i : 核種 k の動態定数 $(1/s)$	
$_1$ 取入口 $_1$ での核種 $_k$ の濃度 $_2$ の気取入量 度	
【入率×中央制御室パウングJ内体積 核種よの濃度 価点1の相対濃度	
b) 中央制御室に相当する区画の容積は、中央制御室バウングリ内体積(容積)とする。	7.3.2(7)b) 中央制御室に相当する区画の容積は,中央制御室バウンダリ内体積 (容積)としている。
7.3.3 室内に外気から取り込まれた放射性物質の吸入摂取による中央制御室内での被ばく(1) 放射性物質の吸入摂取による運転員の被ばく線量を, 次の(2)から(5)までの方法によって計算する(図7.12)。	7.3.3 → 内規通り7.3.3(1) 放射性物質の吸入摂取による運転員の被ばく線量を,次の(2)から(5)までの方法によって 評価している。
(2) 線量の計算にあたっては、運転員の勤務状態に即して、中央制御室内の滞在期間を計算し、	7.3.3(2) 線量の計算にあたっては、運転員の勤務状態に即して、中央制御室内の滞在期間を計算し 30 日間の積算線量を滞在期間の割合で配分して評価している。


中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況	7.3.3(3) 被ばく低減方策として, 防護マスク着用を考慮していない。	7.3.3(4) 吸入摂取による運転員の内部被ばく線量は,示されたとおり計算している。		外気から取り込まれた放射性物質の吸入摂取による運転員の実効線量は, (7.5)式によって計算 している。		図7.12 → 内規通り
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	30日間の積算線量を滞在期間の割合で配分する。 (3) 被ばく低減方策として、防護マスク着用による放射性よう素の吸入による内部被ばくの低減を はかる場合には、その効果及び運用条件を適切に示して評価に反映してもよい。	(4) 吸入摂取による運転員の内部被ばく綠量は、次のとおり計算する。	内部被ばぐ線量=室内に外気から取り込まれた放射性物質の吸入摂取による実効線量 ×直交替による滞在時間割合*! *1)例:4直3交替勤務の場合 0.25=(8h/置×3直×30日/4)/(24h×30日)	ここで,外気から取り込まれた放射性物質の吸入摂取による運転員の実効線量は,(7.5)式によって計算する。	$H_{I}=\int_{0}^{R}RH_{*}C_{I}(t)dt$: よう素の吸入摂取の内部被ばべによる実効線量 (Sv) R_{*} : よう素 (I-131) 吸入摂取時の内部域はべいま効線量への 接算係数 $C_{I}(t)$: 時刻 I における中央制御室内の放射能濃度 (Bq/m^{3}) (注) 30日間連続滞在の場合の値である。 (S) (E) 30日間連続滞在の場合の値である。	図7.12 放射性物質取り込みによる中央制御室内での吸入摂取による被ばく

(内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
(6) 蒸気発生器伝熱管破損時は、二次系への漏えい停止までの短時間に、よう素放出量のうちの大部分が放出される。そのため、二次系への漏えい停止までに受けるすべての線量は、事故発生時に勤務している直が受けるものとして、次のように計算する「解説1.3」。	7.3.3(6) 蒸気発生器伝熱管破損時は,二次系への漏えい停止までの短時間に,よう素放出量のうちの大部分が放出されるため,二次系への漏えい停止までに受けるすべての線量は,事故発生時に勤務している直が受けるものとして計算している。
内部被ば<線量=二次系への漏えい停止までに受ける, 室内に外気から取り込まれた放射性物質の吸入摂取による実効線量 -	
二次系への編えい停止後に受ける, 室内に外気から取り込まれた放射性物質の吸入摂取による実効線量 ×直交替による滞在時間割合	
7.3.4 室内に外気から取り込まれた放射性物質からのガンマ線による中央制御室内での被ばく 7.(1) 放射性物質からのガンマ線による運転員の被ばく線量を,次の(2)から(6)までの方法によって 7. 計算する(図7.13)。	7.3.4 → 内規通り7.3.4(1) 放射性物質からのガンマ線による運転員の被ばく線量を,次の(2)から(6)までの方法によって計算している。
(2) 中央制御室は, 容積が等価な半球状とする。そして, 半球の中心に運転員がいるものとする。	7.3.4(2) 中央制御室は、容積が等価な半球状としている。そして、半球の中心に運転員がいるもの
(3) 中央制御室の容積は、中央制御室パウングリ内体積(容積)とする。 a) ただし、エンペローブの一部が、ガンマ線を遥へいてきる躯体で区画され、運転員がその 区画内のみに立入る場合には、当該区画の容積を用いてもよい。	として評価している。 1.3.4(3) 中央制御室の容積は,中央制御室バウンダリ内体積(容積)とする。
b) ガンマ線による板ぼくの計算では、中央制御室と異なる階層部分のエンベローブについて、 階層間の天井等による遭へいがあるので、中央制御室の容積から除外してもよい。	7.3.4(3)b) ガンマ線による被ばくの計算では、中央制御室と異なる階層部分のエンベロープについて、 階層間の天井等による遮蔽があるので、中央制御室の容積から除外して評価している。
(4) 終量の計算にあたっては、運転員の勤務状態に即して、中央制御室内の滞在期間を計算し、 30日間の積算線量を滞在期間の割合で配分する。	7.3.4(4) 線量の計算にあたっては、運転員の勤務状態に即して,中央制御室内の滞在期間を計算し, 30 日間の積算線量を滞在期間の割合で配分して評価している。
(5) ガンマ線による運転員の外部被ばく線量は、次のとおり計算する。	7.3.4(5) ガンマ線による運転員の外部被ばく線量は, b)で示されたとおり計算している。
外部被ばく線量=室内に外気から取り込まれた放射性物質のガンマ線による実効線量 ×直交替による滞在時間割合*! *1) 例:4直3交替勤務の場合 0.25=(8h/直×3直×30日/4)/(24×30日)	
a) 外気から取り込まれた放射性物質のガンマ線による運転員の実効線量は,(7.7)式(#3)によって計算する。	
$H_{\gamma} = \int_0^T 6.2 \times 10^{-14} E_{\gamma} (1 - e^{-i\sigma^2}) C_{\gamma}(t) dt$ (7.7)	
H :希ガスのガンマ線の外部被ばくによる実効線量(Sv) E :ガンマ線の実効エネルギ(0.5MeV) μ :空気に対するガンマ線の線エネルギ吸収係数(1/m) R :中央制御室半球換算時等価半径(m) C _p (t) :時刻はこおける中央制御室内の放射能濃度(Bq/m²) T :計算期間(3.0日) T :計算期間(3.0日)	

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況		図7.13 → 内規通り	7.3.4(7) 蒸気発生器伝熱管破損時は,二次系への漏えい停止までの短時間に,希ガスの放出量の全量が放出されるため,二次系への漏えい停止までに受けるすべての線量は事故発生時に勤務している直が受けるとして計算している。
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	b) また、 (7.7) 式以外に、 (7.8) 式($^{(8.5)}$ によって計算することも妥当である。 $H_{\gamma} = \int_{0}^{T} \frac{1}{2} \frac{K}{\mu} \left[\frac{A}{1+\alpha_{1}} \left\{ 1 - \exp(-(1+\alpha_{2})\mu R) \right\} + \frac{1-A}{1+\alpha_{2}} \left\{ 1 - \exp(-(1+\alpha_{2})\mu R) \right\} \frac{E_{L}}{0.5} C_{\gamma}(t) dt$ $H_{\gamma} : 希ガスのガンマ線の外部被ばくによる実効線量(Sr)$ $K : 線量率換算係数 (Sr) (Y'm^{2})$ $A, \alpha_{1}, \alpha_{2} : デーラー型ビルドアップ係数(2気中 0.5MeV ガンマ線)(-) \mu : 空気に対するガンマ線の線域衰係数 (1/m)$	図7.13 放射性物質取り込みによる中央制御室内でのガンマ線による被ばく	(7) 蒸気発生器伝熱管破損時は、二次系への漏えい停止までの短時間に、希ガスの放出量の 全量が放出される。そのため、二次系への漏えい停止までに受けるすっての線量は事故発 生時に勤務している直が受けるとして、以下のように計算する[解説7.3]。 外部被ばく線量= 二次系への漏えい停止までに受ける。 室内に外気から取り込まれた放射性物質の外部ガンマ線による 実効線量 十 二次系への漏えい停止後に受ける。 室内に外気から取り込まれた放射性物質の外部ガンマ線による 室内に外気から取り込まれた放射性物質の外部ガンマ線による 室内に外気から取り込まれた放射性物質の外部ガンマ線による 室内に外気がら取り込まれた放射性物質の外部ガンマ線による

居住性に係る被ばく評価との適合状況 (設計基準事故) 中央制御室 原子力発電所中央制御室の居住性に係る被ばく評価手法について

- 建屋内の放射性物質からのガンマ線による入退域時の被ば 7.4
- 次の a)及び b)の被ばく経路からの運転員の被ばくを, 7.4.1 から 7.4.2 までに示す方法によっ \exists
- 建屋内の放射性物質からのスカイシャインガンマ線による入退域時の被ばく
 - 建屋内の放射性物質からの直接ガンマ線による入退城時の被ばく
- 蒸気発生器伝熱管破損(PWR型原子炉施設)のように,建屋内に放射性物質が滞留すること なく系統から直接環境へ放出されるような事象については、建屋からの直接ガンマ線及びス カイシャインガンを繰の評価は不要である 3

(b) PWR 型原子炉施設

- 図7.14 建屋内の放射性物質からのガンマ線による入退域時の被ばく経路
- **建屋内の放射性物質からのスカインャインガンァ線による入退城時の被ばく** 7.4.1
- (2)
- 原子炉冷却材喪失発生後30日間,原子炉格納容器内及びアニュラス内に存在する放射 性物質を線源としたスカイシャインガンを線による,入退域時の評価点における積算線量 原子炉冷却材喪失時の線量評価(bMR型原子炉施設) a) 原子炉冷却材喪失発生後30日間,原子炉格納容器 を計算する(図7.16)
- スカインャインガンマ線の線原強度は,「6.1スカイシャインガンマ線及び直接ガンマ線の 線源の計算」で解析した結果を用いる。 (9
- 線源から評価点に至るまでの遮へい効果を、構造物の配置、形状及び組成から計算す 0
- 入退域での所要時間を,運転員の勤務状態に即して計算し,30日間の積算線量を所要 時間の割合で配分する[解説7.4] P
- 計算に当たっては,次の1)又は2/のいずれかの仮定を用いる。 (e)
- 入退域時の移動経路及び入退域に要する時間をプラントごとに計算し、移動経路に 従った適切な評価点及び滞在時間を設定する。この場合、移動に伴って、複数の評 管理建屋の入口を代表評価点とし、入退域ごとに評価点に15分間滞在するとする。 価点を設定してもよい「解説7.5」
- アニュラス部が原子炉格納容器外部進へいの内側にある場合には、アニュラス部内の線 G

- 内規通り 1 7.4
- 建屋内の放射性物質からのスカイシャインガンマ線及び直接ガンマ線による入退域時の運 転員の被ばくは, 7.4.1から 7.4.2 までに示す方法によって計算している 7.4. (1)
- 蒸気発生器伝熱管破損については、建屋からの直接ガンマ線及びスカイシャインガンマ線 の評価は不要としている 7.4. (2)

内規通り 1 図 7. 14

- 内規通り 1
- 7.4.1(2)a) 原子炉冷却材喪失発生後 30 日間,原子炉格納容器内に存在する放射性物質を繰源とし たスカイシャインガンマ線による,入退域時の評価点における積算線量を計算している。
- 1.4.1(2)b) スカイツャインガンを繰の線源強度は,[6.1 スカイツャインガンを繰及び直接ガンを 線の線源の計算」で解析した結果を用いている。
- 形状及び組成から計算して 7.4.1(2)c) 線源から評価点に至るまでの遮蔽効果を, 構造物の配置,
- 日間の積算線量を所要 30 7.4.1(2)d) 入退域での所要時間を,運転員の勤務形態に即して計算し, 時間の割合で配分して評価している。
- 7.4.1(2)e) 計算に当たっては, 2)の仮定を用いて評価している。
- 入退域時の評価点は、出入管理建屋入口と中央制御室入口として評価している。 7.4.1(2)e(2)
- 7.4.1(2)f) アニュラス部が原子炉格納容器外部遮蔽の内側にあるため,アニュラス部内の線源を原 子炉格納容器内に存在するとして計算している。

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況	T.4.1(2)g) スカイシャインガンマ線による運転員の外部被ぼく線量は, 示されたとおり計算してい	°¢		図 7.16 → 内規通り		
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	源を原子炉格納容器内に存在するとして計算してもよい。 g) スカイシャインガンマ線による運転員の外部被ばく線量は,次のとおり計算する。		スカイシャインガンマ線原子炉 原子炉 原子炉 中央制御室	図7.16 原子炉冷却材喪失時の建屋内の放射性物質がらのスカイシャインガンマ線による入退城時の被ばく(PWR型原子炉施設)		

原子	原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
7.4.2 (2) 原 a)	建屋内の放射性物質からの直接ガンマ線による入退域時の被ばく (子炉冷却材度失時の線量評価 (PVR 型原子炉施設) 原子炉冷却材度失発生後30日間,原子炉格納容器内及びアニュラス内に存在する放射 性物質を線源とした直接ガンマ線による,入退域時の評価点における積算線量を計算す る(図7.19)。	7.4.2 → 内規通り 7.4.2(2)a) 原子炉冷却材喪失発生後30日間,原子炉格納容器内に存在する放射性物質を線源とした4.2(2)a) 原子炉冷却材喪失発生後30日間,原子炉格納容器内に存在する放射性物質を線源とした直接ガンマ線による,入退域時の評価点における積算線量を計算している。
(q	直接ガンマ線の線源強度は, 「6.1スカイシャインガンマ線及び直接ガンマ線の線源の計算」で解析した結果を用いる。	7.4.2(2)b) 直接ガンマ線の線源強度は,「6.1 スカイシャインガンマ線及び直接ガンマ線の線源の計算」で解析した結果を用いて評価している。
(c)	線源から評価点に至るまでの遮へい効果を,構造物の配置,形状及び組成から計算する。 る。	7.4.2(2)c) 線顔から評価点に至るまでの遮蔽効果を,構造物の配置,形状及び組成から計算する。
(p	入退城での所要時間を、運転員の勤務状態に即して計算し、30日間の積算線量を所要 時間の割合で配分する[解説7.4]。	7.4.2(2)d) 入退域での所要時間を,運転員の勤務状態に即して計算し,30 日間の積算線量を所要時間の4.5で配分して評価している。
(э	計算に当たっては、次の1)又は2)のいずれかの仮定を用いる。 1)管理準屋の入口を代表評価点とし、入退域ごとに評価点に15分間滞在するとする。 2)入退域時の移動経路及び入退域に要する時間をプランドごとに計算し、移動経路に 従った適切な評価点及び滞在時間を設定する。この場合、移動に伴って、複数の評 価点を設定してもよい【解説1.5】。	7.4.2(2)e) 計算に当たっては,2)の仮定を用いて評価している。 7.4.2(2)e)2) 入退域時の評価点は,出入管理建屋入口と中央制御室入口として評価している。
(J	アニュラス部が原子炉格納容器外部遮へいの内側にある場合には,アニュラス部内の線 源を原子炉格納容器内に存在するとして計算してもよい。	7.4.2(2)f) アニュラス部が原子炉格納容器外部遮蔽の内側にあるため,アニュラス部内の線源を原子が発光を持ちたするとして計算している。
(8	直接ガンマ線による運転員の外部被ばく線量は,次のとおり計算する。 外部被ばぐ線量=入退域時直接ガンマ線積算線量 ×直交替による所要時間割合*! *1)例:4直3交替動務:片道15分の場合 0.015625=(0.25h/直×2×3直×30日/4)/(24h×30日)	7.4.2(2)g) 直接ガンマ線による運転員の外部被ばく線量は,示されたとおり計算している。
	直接ガンマ線 原子炉 原子炉 建発 中央制御室	
	 (1) (1) (1) (2) (1) (2) (2) (3) (3) (4) (4) (4) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7	図 7.19 → 内規通り

原子力発電所中央制御室の居住性に係る被ばく評価手法について (内担)	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況
/だは今年津田、日本土海撃兵事子をよれに在今年以上 コロー・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・アン・	
	7.5 → 内規通り 7.5(1) 大気中へ放出された放射性物質からのガンマ線による入退域時の被ばく及び吸入摂取によ
する。 a) 大気中へ放出された放射性物質からのガンマ線による入退域時の被ぼく b) 十年 中へか出された放射性物質がらのガンマ線による入退域時の被ぼく	る入退域時の運転員の被ばくは,7.5.1 から 7.5.2 までに示す方法で計算している。
気る電	7.5(2) 大気中に放出された放射性物質が大気中を拡散し、放出源付近の建屋の巻き込み影響の効果を計算したうえで(5.大気拡散の評価),中央制御室を含む当該建屋の周辺の放射性物質の濃度を計算している。
a) 建屋影響を考慮しない場合 建屋の影響を考慮しない場合は, 5.1.1(1)の方法で計算した建屋周辺の濃度分布の結	7.5(2)a) 建屋影響を考慮するため a) 項は該当せず。
果を用いる(図 7.21)。 b) 建屋影響を考慮する場合 建屋の影響を考慮する場合は, 5.1.1(2)及び(3)の方法で計算した建屋周辺の濃度分布 の結果を用いる(図 7.22)。	7.5(2)b) 建屋の影響を考慮するため, 5.1.1(2)及び(3)の方法で計算した建屋周辺の濃度分布の結果を用いて評価している。
排気筒がシマ線の再子が建屋	
中央制御室 中央制御室 四 2.2.1	図 7.2』 建屋影響を考慮するため対象外
原子炉格納容器	
選軍 カンマ線 吸入摂取 中央制御室	
図 7.22 建屋影響がある場合	図7.22 → 内規通り

原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規) 1.5.1 大気中~放出された放射性物質からのガンマ線による入退域時の被ぼく (1) 大気中~放出された放射性物質からがアマ線による入退域時の被ぼく (1) 大気中~放出された放射性物質から放射されるガンマ線による被ぼくを計算する(図7.23)。ただし、事故発生直後の短時間に集中して放出される放射性物質(主蒸気管破断時の半球ただし、事故発生直後の短時間に集中して放出される放射性物質(主蒸気管破断時の半球	中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況 7.5.1 → 内規通り 7.5.1(1) 大気中〜放出された放射性物質から放射されるガンマ線による被ばくを計算している。た だし,事故発生直後の短時間に集中して放出される放射性物質 (蒸気発生器伝熱管破損時の
状素,然気発生器体熱管飲損時の2次米への摘えい停止までの放出など)による線重については,入退域時の線量としては評価しない【解説 7.1】。 建屋から大気中へ放出された放射性物質からのガンマ線による運転員の交替のための入退域時の線量を計算する。	2 次系への漏えい停止までの放出など)による線量については,入退域時の線量としては評価していない。 7.5.1(2) 建屋から大気中へ放出された放射性物質からのガンマ線による運転員の交替のための入 退域時の線量を計算している。
入退域時の線量は入退域評価点での相対線量D/Qを求め,これに放射性物質(この場合は、放射能)の放出率を乗じて求める。 人記域での所要時間を,運転員の勤務状態に即して計算し,30日間の積算線量を所要時間 の割合で配分する。	 7.5.1(3) 入退域時の線量は入退域評価点での相対線量 D/Q を求め,これに放射性物質(この場合は, 放射能)の放出率を乗じて評価している。 7.5.1(4) 入退域での所要時間を,運転員の勤務状態に即して計算し,30 日間の積算線量を所要時間の割合で配分して評価している。
入退域時の計算に当たっては,以下のいずれかの仮定を用いる。 a) 管理建屋の入口を代表評価点とし,入退域ごとに評価点に,15分間滞在するとする。	7.5.1(5) 入退域時の計算に当たっては,b)の仮定を用いて計算している。
b) 入退域時の移動経路及び入退域に要する時間をプラントごとに計算し、移動経路に従った適切な評価点及び滞在時間を設定する。この場合、移動に伴って、複数の評価点を設定してもよい。【解説7.5】	7.5.1(5)b) 入退域時の評価点は,出入管理建屋入口と中央制御室入口として評価している。
ガンマ線による運転員の外部被ばく線量は、次のとおり計算する。	7.5.1(6) ガンマ線による運転員の外部被ばく線量は,示されたとおり計算している。
外部被ば<線量=放出希ガス等(BWRプラントの主蒸気管破断では、ハロゲン等を含む)のガンマ線による実効線量 ×直交替による入退所要時間割合*!	
*1) 例:4直3交替勤務·片道15分の場合 0.015625=(0.25h/直×2×3直×30日/4)/(24h×30日)	
ここで、ガンマ線による運転員の実効線量は、 (7.10) 式によって計算する。 $H_{r}=\int_{0}^{t}K(D/Q)Q_{r}(t)dt$	
H_{γ} : 希ガスのガンマ線の外部被ばくによる実効線量 (Sv) K : 空気カーマから実効線量への換算係数 $(Sv/Gy, K=1)$ D/Q : 相対線量 (Gv/Bq) $Q_{\gamma}(t)$: 時刻 t における核種の環境放出率 (Bq/s) $(T\sqrt{2} \sim 2000)$ $(T\sqrt{2} \sim 200)$ $(T$	

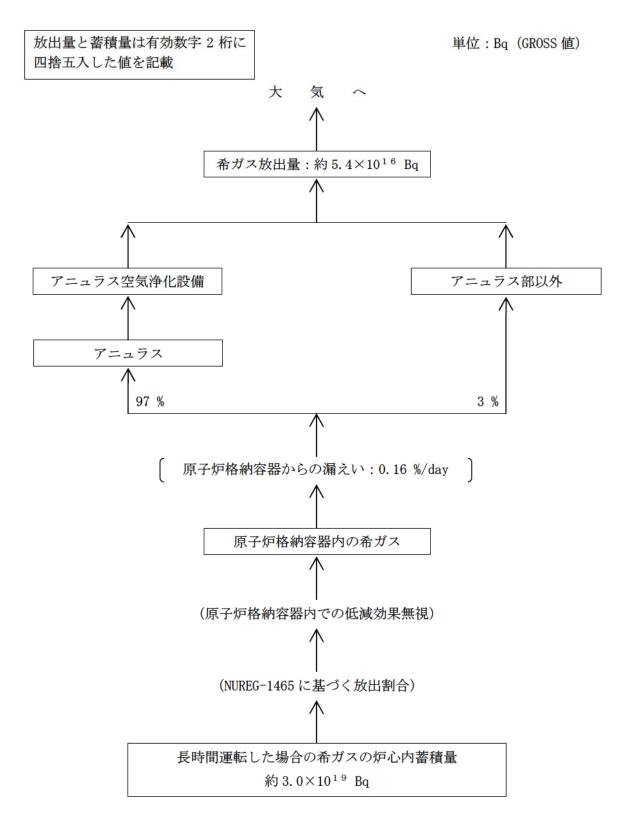
中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況		図7.23 → 内規通り	7.5.2 → 内規通り 7.5.2(1) 大気中へ放出された放射性物質を吸入摂取することによる被ばくを計算している。ただ し、事故発生直後の短時間に集中して放出される放射性物質(蒸気発生器伝熱管被損時の2 次系への漏えい停止までの放出)による線量については,入退域時の線量としては評価して いない。	7.5.2(2) 入退域時の線量は入退域評価点での相対濃度χ/Qを求め,これに放射性物質の放出率を乗じて求める。線量換算係数,呼吸率を乗じて求める。	7.5.2(3) 入退域での所要時間を,運転員の勤務状態に即して計算し,30 日間の積算線量を所要時間の割合や配分して評価している。	7.5.2(4) 被ばく低減方策として,防護マスク着用を考慮していない。	7.5.2(5) 入退城時の計算に当たっては, b)の仮定を用いて評価している。	7.5.2(5)b) 入退城時の評価点は,出入管理建屋入口と中央制御室入口として評価している。	
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	原子炉格納容器 原子炉 ガンマ線 連屋 中央制御室	(b) PWR 型原子炉施設 図7.23 原子炉冷却材喪失時の放射性雲のガンマ線による 入退城時の被ぼく	7.5.2 大気中~放出された放射性物質の吸入摂取による入退域時の被ばく (1) 大気中~放出された放射性物質を吸入摂取することによる被ばくを計算する(図 7.24)。ただ し、事放発生直後の短時間に集中に放出される放射性物質(主蒸気管破節時の半球状雲、 蒸気発生器伝熱管破損時の2次系~の漏えい停止までの放出など)による線量については, 入退城時の線量としては評価しない[解説 7.1]。	(2) 入退域時の線量は入退域評価点での相対濃度 y/Q を求め、これに放射性物質の放出率を乗じて求める。線量換算係数、呼吸率を乗じて求める。	(3) 入退域での所要時間を,運転員の勤務状態に即して計算し,30日間の積算線量を所要時間の割合で配分する。	(4) 被ばく低減方策として、例えば、防護マスク着用による放射性よう素の吸入による内部被ばくの低減をはかる場合には、その効果及び運用条件を適切に示して評価に反映してもよい。	(5) 計算に当たっては、以下のいずわかの仮定を用いる。 a) 管理建屋の入口を代表評価点とし、入退域ごとに評価点に15分間滞在するとする。	b) 入退城時の移動経路及び入退城に要する時間をプラントごとに計算し、移動経路に従った適切な評価点及び滞在時間を設定する。この場合、移動に伴って、複数の評価点を設定してもよい【解説1.5】。	

中央制御室(設計基準事故)居住性に係る被ばく評価との適合状況	7.5.2(6) 吸入摂取による運転員の内部被ばく線量は,示されたとおり計算している。						図7.24 → 内規通り
原子力発電所中央制御室の居住性に係る被ばく評価手法について (内規)	(6) 吸入摂取による運転員の内部被ばく線量は、次のとおり計算する。	内部被ばく線量=放出よう素の吸入摂取による実効線量 ×直交替による所要時間割合*1 *1)例:4直3交替勤務・片道15分の場合 0.015625=(0.25h/直×2×3直×30日/4)/(24h×30日)	ここで,吸入摂取による運転員の実効線量は,(7.11)式によって計算する。	$H_I = \int_0^T RH_x \left(\chi / Q \right) Q_I(t) dt $ (7.11)	H_1 : よう素の吸入摂取の内部被ばくによる実効線量 (Sv) R : 呼吸率 (成人活動時) (m^3/s) H_{∞} : よう素 $(I-131)$ 吸入摂取時の成人の実効線量 \sim の 換算係数 χ/Q : 相対機度 (Sv/Bq) χ/Q : 相対機度 (Sv/Bq) (Sv/Bq) $(I-131)$ 等価量) $(I-131)$ 等価量) $(I-131)$ 等価量) $(I-131)$ 等価量) $(I-131)$	原子炉格納容器 原子炉 建屋 中央制御室 中央制御室 (h) FWR 型原子炉 施設	図7.24 原子炉冷却材度失時の放射性雲の吸入摂取による 入退城時の被ばく

中央制御室居住性(重大事故対策)に係る被ばく評価条件表

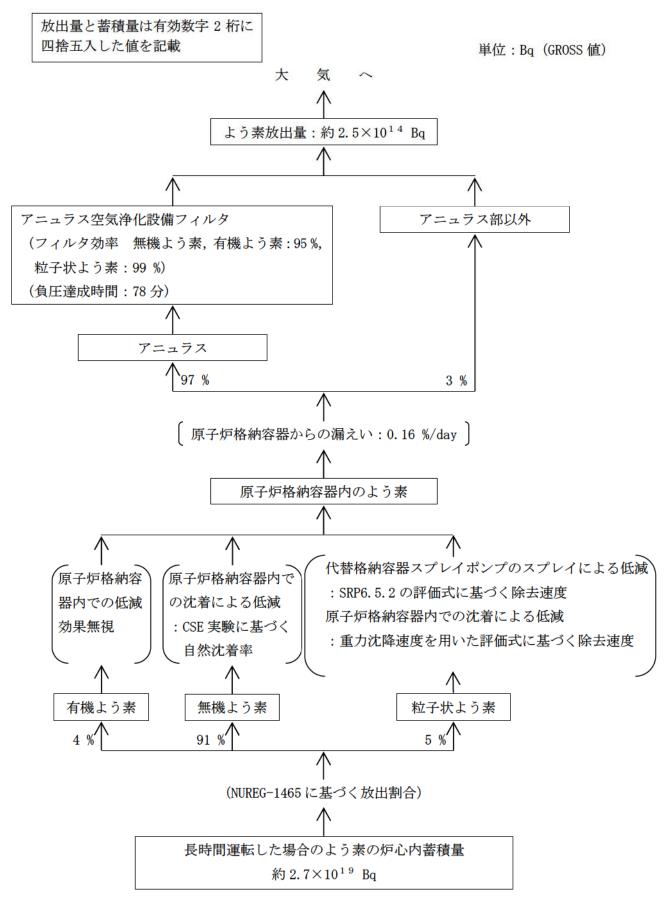
第1表(1/3) 大気中への放出量評価条件

評 価 条 件	使用値	選 定 理 由	審査ガイドでの記載
評価事象	大破断 LOCA+ECCS 注入失敗 +格納容器スプレイ失敗	炉心損傷が早く,また,CV 内の圧力が高く維持される事象であることから,中央制御室の運転員の被ばくの観点から結果が最も厳しくなる事象として選定(統付 1-2-2)	4.3(1)a. 原子炉格納容器への放射性 物質の放出割合は,4.1(2)a. (原子炉 制御室の運転員の被ばくの観点から結 果が最も厳しくなる事故収束に成功し た事故シーケンス)のソースターム解 析結果を基に設定する。
全交流動力電源喪失	考慮する	評価が厳しくなるように設定	日日
最終ヒートシンク喪失	考慮する	評価が厳しくなるように設定	干岜
炉心熱出力	定格出力 (2,652 MWt) の102 %	定格値に定常誤差 (+2%) を考慮	干岜
原子炉運転時間	最高 40,000 時間(ウラン燃料) 最高 30,000 時間(MOX 燃料)	長半減期核種の蓄積により,評価が厳しくなるようにサイクル末期に設定評価対象炉心は,被ばく評価において厳しいMOX 燃料装荷炉心を設定	日上
サイクル数 (バッチ数)	4(ウラン燃料), 3(MOX 燃料) 装荷比率は, 3/4:ウラン燃料 1/4: MOX 燃料	長半減期核種の蓄積により, 評価が厳しくなるようにサイクル末期に設定 (添付 1-2-3 参照)	干坦
原子炉格納容器 に放出される 核分裂生成物量, 放出時間	Xe 類:100 %,I 類:75 % Cs 類:75 %,Te 類:30. 5 % Ba 類:12 %,Ru 類:0. 5 % Ce 類:0. 55 %,La 類:0. 52 % 放出時間も NUREG-1465 に基づく	評価対象が炉心損傷後であることを踏まえ、 核分裂生成物放出量が大きくなる低圧シー ケンス (大破断 LOCA+ECCS 注入失敗十格納 容器スプレイ失敗シーケンスを含む)を代表 する NUREG-1465 ^{※1} 記載の放出割合(被覆管 破損放出~晩期圧力容器内放出までを考慮) を設定(添付1-2-4参照)	4.3(1)a. 希ガス類, ヨウ素類, Cs類, Te類, Ba類, Ru類, Ce類及びLa類を 考慮する。
よう素の形態	粒子状よう素: 5 % 元素状よう素:91 % 有機よう素 : 4 %	既設の格納容器スプレイ失敗を想定するために pHン7 となると限らないため, pH に依らず有機よう素割合を保守的に設定するために, R.G.1.195 ^{%2} のよう素割合に基づき設定(添付1-2-5 参照)	4.3(1)a. 原子炉格納容器内への放出 割合の設定に際し, ヨウ素類の性状を 適切に考慮する。


第1表 (2/3) 大気中への放出量評価条件

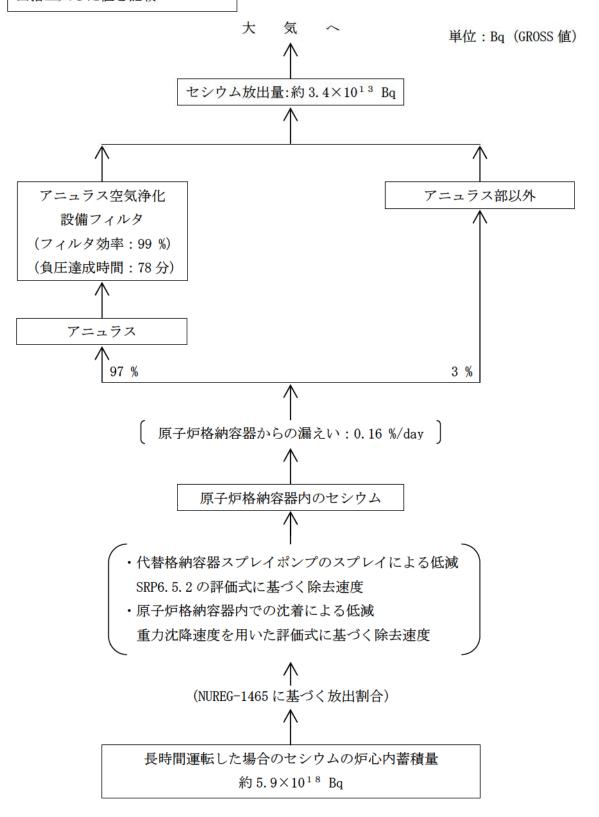
	男1 衣 (Z/3)	3) 人気中への放出重評価条件	
評 価 条 件	使 用 値	選 定 理 由	審査ガイドでの記載
放出開始時間	0 0	選定した事故シーケンスのソースターム解析結果の NUREG-1465 記載の値を設定	4.3(4)a. 放射性物質の大気中への放出開始時刻及び放出継続時間は,4.1(2)aで選定した事故シーケンスのソースターム解析結果を基に設定する。
原子炉格納容器等への 元素状(無機)よう素の 沈着効果	沈着速度 $9.0{ imes}10^{-4}$ $(1/s)$	CSE A6 実験に基づき設定 (添付 1-2-6 参照)	4.3(3)d. 原子炉格納容器内の自然沈着率については,実験等から得られた適切なモデルを基に設定する。
原子炉格納容器等へのエアロゾルの沈着効果	沈着速度 6.65×10 ⁻³ (1/h)	重力沈着速度を用いたモデル $\lambda_{\rm d}=V_{\rm d}\frac{A_{\rm f}}{V_{\rm g}}$ を基に設定。(添付 1-2-7 参照)	干빝
代替格納容器スプレイによるスプレイ効果開始時間	60分	選定した事故シーケンスに基づき,全交流動力電源喪失+最終ヒートシンク喪失を想定した起動遅れ時間を見込んだ値として設定	4.3(3)c. 原子炉格納容器スプレイの作動については, 4.1 (2) a で選定した事故シーケンスの事故進展解析条件を基に設定する。
代替格納容器スプレイによ るエアログルのスプレイ除 去効果	SRP6. 5. 2*3に示された評価式に基づく	SRP6. 5. 2 に示された評価式等に基づき設定 (添付 1-2-8 参照)	スプレイによるエアロゾルの除去効果 について, 記載なし。
原子炉格納容器からの漏えい率	0.16 %/day	有効性評価で想定する事故収束に成功した 事故シーケンスのうち,最も CV 内圧が高く 推移する,対象事故シーケンスの CV 内圧力 に応じた漏えい率に余裕を見た値を設定 (添付 1-2-9 参照)	4.3(3)e. 原子炉格納容器漏えい率は, 4.1(2)a.で選定した事故シーケンスの 事故進展解析結果を基に設定する。
原子炉格納容器からの 漏えい割合	アニュラス部 :97 % アニュラス部以外:3 %	添付十被ばく評価に同じ	原子炉格納容器からの漏えい割合につ いて, 記載なし。
アニュラス部体積	7,860 m³	設計値として設定	アニュラス部体積について、記載なし。

大気中への放出量評価条件 第1表 (3/3)

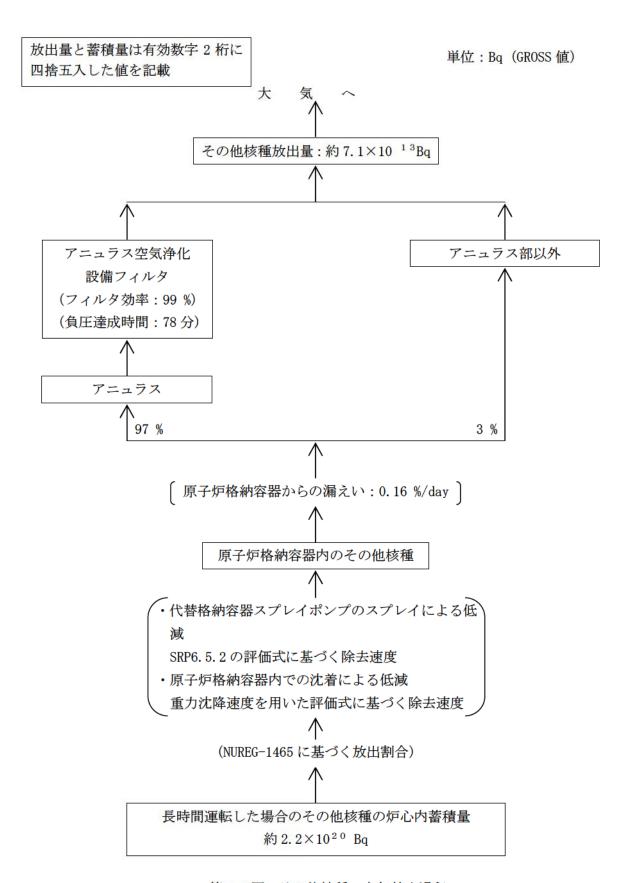

	男1 衣 (3/3)	3) ス気中への双山重評価条件	
評 価 条 件	使 用 値	選 定 理 由	審査ガイドでの記載
アニュラス空気浄化設備 ファン流量	1.86×10 ^{4 m³/} 時 (ただし, 60 分後起動)	ファン1台の起動を想定 (選定した事故シーケンスに基づき,全交流 動力電源喪失+最終ヒートシンク喪失を想 定した起動遅れ時間を見込む)	4.3(3)a. アニュラス空気浄化設備の 作動については, 4.1(2)a. で選定した 事故シーケンスの事故進展解析条件を 基に設定する。
アニュラス負圧達成時間	78 分	選定した事故シーケンスに基づき,全交流動力電源喪失+最終ヒートシンク喪失を想定した起動遅れ時間を見込んだ値(起動遅れ時間60分十起動後負圧達成時間18分(添付十被ばく評価に同じ)起動遅れ時間60分は代替非常用発電機による電源回復操作及びアニュラス空気浄化設備空気作動弁代替空気供給等によるアニュラス空気浄化設備の復旧までに要する時間を想定(添付1-2-10参照)	4.3(3)a. アニュラス空気浄化設備の 作動については,4.1(2)a.で選定した 事故シーケンスの事故進展解析条件を 基に設定する。
アニュラス空気浄化設備 よう素フィルタによる 除去効率	0~78分: 0 %78分: 35 %	使用条件での設計値を基に設定 試験による確認値であり, 事故期間中担保できる除去効率であるため, 設計値を評価条件として設定(添付 1-2-11 参照)	4.3(3)b. アニュラス空気浄化設備フィルタ効率 ョウ素類及びエアロゾルのフィルタ効率は, 使用条件での設計値を基に設定する。なお, フィルタ効率の設定に際し, ヨウ素類の性状を適切に考慮する。
アニュラス空気浄化設備 微粒子フィルタによる 除去効率	0~78分: 0 % 78分~ :99 %	使用条件での設計値を基に設定 試験による確認値であり,事故期間中担保できる除去効率であるため,設計値を評価条件 として設定(添付1-2-11参照)	一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一
	1 B	審査ガイドに示されたとおりの評価期間を 設定	3. 判断基準は,運転員の実効線量が 7 日間で100 mSv を超えないこと。
※1 · 岩田 MIDDC-1465 "Accident	Course Towns for	I inht-Woton Ninology Domon Dlonton	

※1:米国 NURGG-1465 "Accident Source Terms for Light-Water Nuclear Power Plants" ※2:米国 Regulatory Guide 1.195 "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents atLight-Water Nuclear Power Reactors" ※3:米国 Standard Review Plan 6.5.2 "Containmant Spray as a Fission Product Cleanup System"

第1-1図 希ガスの大気放出過程


アニュラス負圧達成時間 (78分)までは直接大気に放出するとして評価

第1-2図 よう素の大気放出過程


アニュラス負圧達成時間 (78分)までは直接大気に放出するとして評価

放出量と蓄積量は有効数字 2 桁に 四捨五入した値を記載

第1-3図 セシウムの大気放出過程

アニュラス負圧達成時間 (78分) までは直接大気に放出するとして評価

第1-4図 その他核種の大気放出過程

アニュラス負圧達成時間 (78 分) まで は直接大気に放出するとして評価

第2表 大気中への放出放射能量評価結果

i i	平価項目	評価結果 *1
	Gross 値	約 5.4×10 ¹⁶ Bq
希ガス	ガンマ線エネルギ	約 8.7×10 ¹⁵ Bq
	0.5 MeV 換算值	ポソ δ. 7 ∧ 10 − −
	Gross 値	約 2.5×10 ¹⁴ Bq
よう素	I-131 等価量	約 8.2×10 ¹³ Bq
	(成人実効線量係数換算)	ポソ 8. 2 ∧ 10 ° ° bq
セシウム	Gross 値	約 3.4×10 ¹³ Bq
上記以外の核種	Gross 値	約 7.1×10 ¹³ Bq

^{※1} 放出放射能量の推移グラフは添付1-2-12に示すとおりである。

第3表(1/3) 大気拡散条件

		形の女	売っ女(1/5) 人私払臥米 〒	
評 価 条 件	使 用	値	選定理由	審査ガイドでの記載
大気拡散評価モデブル	ガウスプルームモデル	-ムモデル	審査ガイドに示されたとおり設定	4.2(2)a. 放射性物質の空気中濃度 は,放出源高さ及び気象条件に応じて, 空間濃度分布が水平方向及び鉛直方向 ともに正規分布になると仮定したガウ スプルームモデルを適用して計算す る。
刘 条条尺	泊発電所における 1 年間の気象資料 (1997 年1月~1997 年12月	-おける -象資料 997 年 12 月)	建屋影響を受ける大気拡散評価を実施 審査ガイドに示されたとおり消発電所にお いて観測された1年間の気象資料を使用 (添付1-1-3参照)	4.2(2)a. 風向, 風速, 大気安定度及 び降雨の観測項目を, 現地において少 なくとも1年間観測して得られた気象 資料を大気拡散式に用いる。
実効放出継続時間	全核種:1 時間	1 時間	保守的に最も短い実効放出継続時間を設定	4.2(2)c. 相対濃度は,短時間放出又は長時間放出に応じて,毎時刻の気象項目と実効的な放出継続時間を基に評価点ごとに計算する。
放出源 及び 放出源高さ	工平 0	排気筒 73.1 m	放出源高さは,アニュラス空気浄化設備が起動前は,地上放出として地上高さを,アニュラス空気浄化設備が起動後は,排気筒放出として状気筒高さを設定している。	4.3(4)b. 放出源高さは,4.1(2)a.で 選定した事故シーケンスに応じた放出 口からの放出を仮定する。4.1(2)a.で 選定した事故シーケンスのソースター ム解析結果を基に,放出エネルギーを 考慮してもよい。

第3表(2/3) 大気拡散条件

	AD A	カゥ女(5/ º) 人気がA 欧木丁	
評 価 条 件	使 用 値	選定理由	審査ガイドでの記載
累積出現頻度	小さい方から累積して97%	審査ガイドに示された方法に基づき設定	4.2(2)c. 評価点の相対濃度又は相対 線量は,毎時刻の相対濃度又は相対線 量を年間について小さい方から累積し
			た場合,その累積出現頻度が 97%に当たる値とする。
		人名/ 田井 多数品记入 3、4、4年11年	4.2(2)a. 原子炉制御室/緊急時制御室/緊急時対策所居住性の評価で特徴
韓屋の影響	水電 か電かん		的な放出点から近距離の建屋の影響を
	ð	デロール・ディー・ディー・ディー・ディー・ディー・ディー・ディー・ディー・ディー・ディー	受ける場合には、建屋による巻き込み
nc			現象を考慮した大気拡散による拡散パ
-			ラメータを用いる。
-号[[汝			4.2(2)b. 巻き込みを生じる建屋とし
			て,原子炉格納容器,原子炉建屋,原
101			子炉補助建屋,タービン建屋,コント
米キュスンカイドス		おこれ という はい	ロール建屋及び燃料取り扱い建屋等,
ゆのためが出しる代表を出しる	原子炉格納容器		原則として放出源の近隣に存在するす
一次产用		*/が書が取り入ら4.4年用こして選ん	べての建屋が対象となるが,巻き込み
			の影響が最も大きいと考えられる一つ
			の建屋を代表建屋とすることは, 保守
			的な結果を与える。

第3表(3/3) 大気拡散条件

	おっ女 (の/の)	(3/3) 人刘加斯米汗	
評 価 条 件	使 用 値	選定理由	審査ガイドでの記載
放射性物質濃度の評価点	【中央制御室内】 中央制御室中心 【入退域時】 出入管理建屋入口 中央制御室入口	【中央制御室内】 審査ガイドに示されたとおり設定 【入退域時】 入退域時の移動経路に従って適切な評価点 を設定 (第 3-1 図,第 3-2 図,第 3-3 図参照)	【中央制御室内】 4.2(2)b. 屋上面を代表とする場合,例えば原子炉制御室の中心点を 評価点とするのは妥当である。 【入退域時の評価点について,記載な し。
着目方位	中央制御室:5方位 出入管理建屋入口:3方位 中央制御室入口:6方位	審査ガイドに示された評価方法に基づき設定(添付 1-1-4 参照)	4.2(2)b. 原子炉制御室/緊急時制御 室/緊急時対策所の居住性に係る被ば く評価の計算では,建屋の風下後流側 での広範囲に及ぶ乱流混合域が顕著で あることから,放射性物質濃度を計算 する当該着目方位としては,放出源と 評価点とを結ぶラインが含まれる1方 位のみを対象とするのではなく,図5 に示すように,建屋の後流側の拡がり の影響が評価点に及ぶ可能性のある複 数の方位を対象とする。
建屋投影面積	原子炉格納容器の垂直な投影面積 (2,700 m²)	審査ガイドに示されたとおり設定	4.2(2)b. 風向に垂直な代表建屋の投 影面積を求め, 放射性物質の濃度を求 めるために大気拡散式の入力とする。
形状係数	1/2	現行許認可(添付書類六)の考え方に同じ	形状係数について、記載なし。

26 条-別添 3-102

第 3-3 図 出入管理建屋入口評価点	第 3-2 図 中央制御室中心及び入口評価点

第4表 相対濃度及び相対線量

郭伍芬鱼	7 出处	評価距離	分子 日亲	型 工工	相対濃度	相対線量
計画が多	计個点	(m) **	有日の1年	計画の記	χ/Q (s/m ³)	D/Q (Gy/Bq)
安古化雅胜	八十四級田十十	U2	L	W, WNW, NW,	地上放出:約5.6×10 ⁻⁴	地上放出:約2.4×10-18
また また また	十大司を出てい	III 00	C	NNW, N	排気筒放出:約2.8×10 ⁻⁴	排気筒放出:約4.6×10-19
	出入管理建屋	110	c	HINN HIN	地上放出:約3.8×10 ⁻⁴	地上放出:約1.8×10-18
和华里、广	入口	110 III	c	MINW, INW, ININW	排気筒放出:約1.9×10 ⁻⁴	排気筒放出:約3.3×10-19
生をとく	十十年到後於3-1		y	W, WNW, NW,	地上放出:約5.7×10 ⁻⁴	地上放出:約2.3×10-18
	十六司軍田八口	III 0c	O	NNW, N, NNE	排気筒放出:約2.8×10 ⁻⁴	排気筒放出:約4.7×10-19

※1 放出源から評価点までの水平距離

		第5表 (1/2) 直接ガンマ	直接ガンマ線及びスカイシャインガンマ線の評価条件	
	評 価 条 件	使 用 値	選定理由	審査ガイドでの記載
		以下の事項を除	事項を除き,大気中への放出量評価条件と同様	
ź				4.3(5)a. 原子炉建屋内の放射性物質
凝源	原子炉格納容器内	原子炉格納容器内に放出された	み話のようなよれればアギメ	は,自由空間容積に均一に分布するも
強声	線源強度分布	核分裂生成物が均一に分布	毎110~1 にから4かにこわり政府	のとして, 事故後7日間の積算線源強
ζ				度を計算する。
	事故の評価期間	目 2	審査ガイドに示されたとおり設定	干国
				4.3(5)a. 原子炉建屋内の放射性物質
		ドーム部:	<u> </u>	からのスカイシャインガンマ線及び直
	原士炉格割谷器	日筒部:	筒部 である。線量計算では、設計値に 本工部 * / 「 、 ・ * * * * * * ・ / ・ / ・ / ・ / ・ / ・ / ・	接ガンマ線による外部被ばく線量は、
計	応散(すら	施工誤ギ-5 mm を水庫する	超二联ガ (-2 mm) পんぼってたアプロ (4% (4 1-2-13 参照)	積算線源強度, 施設の位置, 遮へい構
中小				造及び地形条件から計算する。
アイ				
	キ 画 辞典 が 表 声 王 王	天井:0.8 m	設計値に施工誤差 (-5 mm) を考慮	
	イス写写出高度平の		(添付 1-2-13 参照)	7
		施工誤差-5 mm を考慮する		

196	_										
	審査ガイドでの記載					4.1② 実験等を基に検証され、適用範	囲が適切なモデルを用いる。				
直接ガンマ線及びスカイシャインガンマ線の評価条件	選定理由	QAD 及び SCATTERING は共に 3 次元形状の遮	蔽解析コードであり, ガンマ線の線量を計	算することができる	計算に必要な主な条件は、線源条件、遮蔽	体条件であり,これらの条件が与えられれ 4.1② 実験等を基に検証され,適用範	ば線量評価は可能である。従って、設計基	準事故を超える事故における線量評価に適	用可能である	QAD 及び SCATTERING はそれぞれ許認可での	使用実績がある
第5表 (2/2) 直接ガンマ	使 用 値			直接線量評価:	QAD = - K	(QAD-CGGP2R Ver. 1. 04)	スカイシャイン線量評価:	SCATTERING = - F	(SCATTERING Ver. 90m)		
	評 価 条 件				- 异异	自分派・フォンジを	イグインヤイノ教制用に対する	4 1 1 三			
					11111	⊯⊦	h jk	7			

第6表 直接ガンマ線及びスカイシャインガンマ線の評価に用いる 建屋内の積算線源強度

代表エネルギー (MeV/dis)	エネルギー範囲 (MeV/dis)	原子炉格納容器内 積算線源強度(MeV)
0. 1	E ≤ 0.1	1.7×10 ²³
0. 125	$0.1 < E \le 0.15$	1.6×10 ²
0. 225	$0.15 < E \le 0.3$	1.9×10 ²³
0. 375	$0.3 < E \le 0.45$	3. 3×10 ²³
0. 575	$0.45 < E \le 0.7$	1. 4×10 ²⁴
0.85	0.7 < E ≦ 1	1. 3×10 ² ⁴
1. 25	1 < E ≦ 1.5	5. 0×10 ²
1. 75	1.5 $<$ E \leq 2	1. 2×10 ²³
2. 25	$2 < E \leq 2.5$	7. 2×10 ²
2. 75	$2.5 < E \leq 3$	5.8×10 ²
3. 5	3 $<$ E \leq 4	5.8×10 ²⁰
5	4 < E ≦ 6	1. 1×10 ²⁰
7	6 < E ≦ 8	2. 6×10 ¹³
9. 5	8 < E	4. 0×10 ¹²

第7表(1/2) 中央制御室空調装置条件

項目	使 用 値	選定理由	審査ガイドでの記載
事故時における 外気取り込み	評価において考慮セず	評価期間中は外気を遮断することを前提と しているため,中央制御室内には放射性物 質が外気から直接流入することのみを考慮	4.2(2)e. 原子炉制御室/緊急時制御室/緊急時制御室/緊急時対策所の建屋の表面空気中から,次の二つの経路で放射性物質が外気から取り込まれることを仮定する。 二 原子炉制御室/緊急時制御室/緊急時対策所内に直接流入すること(空気流入)
中央制御室 バウンダリ体積 (容積)	$4.0 \times 10^3 \text{ m}^3$	空調機器の体積を含む中央制御室バウンダ リ体積として設定	4.2(2)e. 原子炉制御室内に取り込まれる放射性物質の空気流入量は,空気流入率及び原子炉制御室バウンダリ体積(容積)を用いて計算する。
外部ガンマ線による 全身に対する線量評価時の 自由体積	$3.8{ imes}10^3$ m 3	事故時運転員が立ち入る可能性がある同フロアのエリア体積を設定	一旦上
空気流入率	0.5 国/h	空気流入率測定試験結果(0.15 回/h)を基に余裕を見込んだ値として設定(添付 1-1-5参照)	4.2(1)p. 既設の場合では,空気流入率は,空気流入率は,空気流入率測定試験結果を基に設定する。

第7表 (2/2) 中央制御室空調装置条件

	77 1 48 (4/4)	/ 下入时冲玉工啊衣且不计	
項目	使 用 値	選定理由	審査ガイドでの記載
中央制御室非常用循環系統 よう素フィルタによる 除去効率	0~300分:0%300分为:0%300分~7日:95%	設計上期待できる値を設定 試験による確認値であり,事故期間中担保できる除去効率であるため,設計値を評価条件として設定(添付1-2-11参照)	4.2(1)a. ヨウ素類及びエアロゾルのフィルタ効率は,使用条件での設計値を基に設定する。なお,フィルタ効率の設定に際し,ヨウ素類の性状を適切に考慮する。
中央制御室非常用循環系統 微粒子フィルタによる 除去効率	0~300分:0%300分为:0%300分~7日:99%	設計上期待できる値を設定 試験による確認値であり、事故期間中担保 できる除去効率であるため、設計値を評価 条件として設定(添付1-2-11参照)	同上
中央制御室非常用循環系統 フィルタによる 除去効率遅れ時間	300 分	選定した事故シーケンスに基づき,全交流動力電源喪失+最終ヒートシンク喪失を想定した起動遅れ時間を見込んだ値起動遅れ時間300分は,代替非常用発電機による電源回復操作及び現場での手動による中央制御室非常用循環系統ダンパ開操作等での中央制御室非常用循環系統がの復旧までに要する時間を想定(添付1-2-14)	4.3(3)f. 原子炉制御室の非常用換気空調設備の作動については,非常用電源の作動状態を基に設定する。
中央制御室非常用循環ファン流量	5.1×10 ^{3 m³/h} (ただし, 300 分後起動)	選定した事故シーケンスに基づき,作動時間については,交流動力電源喪失+最終ヒートシンク喪失を考慮	4.2(2)e. 原子炉制御室内への外気取入による放射性物質の取り込みについては,非常用換気空調設備の設計及び運転条件に従って計算する。
マスクによる防護係数	50 (評価期間中マスク着用)	性能上期待できる値 (添付 1-2-15,添付 1-2-16 参照)	4.2(3)c. 原子炉制御室/緊急時制御 室/緊急時対策所内でマスク着用を考 慮する。 ただし,マスクの除染係数について, 記載はなし。

第8表 運転員交替考慮条件

世	ш.	第8表 第	第8表 運転員交替考慮条件 選 定 理 由	審査ガイドでの記載
 	中央制御室滞在期間	49 時間	運転員の勤務形態として5直2.5交替とし, 評価期間中,最大となる運転員の滞在時間として設定(添付1-1-6参照)	交替考慮時の原子炉制御室滞在時間 について, 記載なし。
	回数	10 回	運転員の勤務形態として5直2.5交替とし, 評価期間中,最大となる班の入退域回数として設定(添付1-1-6参照)	交替考慮時の入退域回数について, 記載なし。
入退域	滞在時間	入退域1回あたり, 入退域の経路に沿って, ・出入管理建屋入口に10分間 ・中央制御室入口に5分間	周辺監視区域境界から中央制御室入口までを評価対象とし,周辺監視区域境界から出入管理建屋入口までは車での移動を考慮して,出入管理建屋入口から中央制御室入口まで	入退域時の滞在時間について,記載なし。
		とどまるものとする。	は徒歩での移動を考慮して設定	

	審査ガイドでの記載	線量換算係数について,記載なし。	呼吸率について, 記載なし。	4.2(2)d. 放射性物質の地表面への沈着評価では、地表面への乾性沈着及び降雨による湿性沈着を考慮して地表面 沈着濃度を計算する。
呼吸率及び地表への沈着速度の条件	選定理由	ICRP Publication 71 等に基づく	成人活動時の呼吸率を設定 ICRP Publication 71に基づく	評価点での気象条件を踏まえた地表面沈着 速度を基に,湿性沈着を考慮して乾性沈着 速度の4倍を設定 乾性沈着速度は NUREG/CR-4551 Vol.2 ^{※1} よ り設定(添付1-2-17,添付1-2-18参照)
第9表 線量換算係数,	使 用 値	成人実効線量換算係数を使用(主な核種を以下に示す) 1-131 : 2.0×10 ⁻⁸ Sv/Bq 1-132 : 3.1×10 ⁻¹⁰ Sv/Bq 1-133 : 4.0×10 ⁻⁹ Sv/Bq 1-134 : 1.5×10 ⁻¹⁰ Sv/Bq 1-135 : 9.2×10 ⁻¹⁰ Sv/Bq Cs-134 : 2.0×10 ⁻⁸ Sv/Bq Cs-136 : 2.8×10 ⁻⁹ Sv/Bq Cs-136 : 2.8×10 ⁻⁹ Sv/Bq Cs-137 : 3.9×10 ⁻⁸ Sv/Bq	1.2 m³/h	1.2 cm/s
	項目	線量換算係数	呼吸率	地表への沈着速度

※1:米国 NUREG/CR-4551 Vol.2 "Evaluation of Severe Accident Risks: Quantification of Major Input Parameters"

事故シーケンス選定の考え方について

重大事故時の居住性に係る被ばく評価において、評価事象については、有効性評価で想定する 格納容器破損モードのうち、中央制御室の運転員の被ばくの観点から結果が最も厳しくなる事故 収束に成功した事故シーケンスとして、格納容器破損防止対策の有効性評価における雰囲気圧 力・温度による静的負荷のうち、格納容器過圧の破損モードにおいて想定している、大破断 LOCA 時に ECCS 注入及び格納容器スプレイに失敗するシーケンスを対象としている。

中央制御室の被ばく線量は、放出された放射性物質からの線量が支配的であることから、放射性物質の放出量が多くなるシーケンスが中央制御室被ばくの観点から厳しくなるシーケンスである。そこで、放射性物質の放出量を基に中央制御室被ばくの観点から厳しいシーケンスについて以下に示す。

ECCS 注水機能喪失や全交流動力電源喪失等の炉心損傷防止シーケンスでは、炉心が損傷しないことから大規模な放射性物質の放出はない。一方、炉心が損傷する事象では、大規模な放射性物質の放出が伴うため、被ばく評価上厳しくなる。

炉心が損傷する事象としては、泊発電所3号炉の場合、格納容器破損防止対策の有効性に係る 格納容器破損モードとして選定される、「大破断LOCA時+ECCS注入失敗+格納容器スプレイ失敗」、 「全交流動力電源喪失時+補助給水失敗」及び「大破断LOCA時+ECCS注入失敗」である。

ここで被ばく評価の観点で厳しくなる条件としては、炉心損傷に至るまでの時間が短い場合、 格納容器スプレイが失敗する場合及び原子炉格納容器の圧力が高く推移する場合である。

炉心損傷に至るまでの時間が短い場合では、アニュラス空気浄化設備の起動によりアニュラス 空気浄化設備のフィルタを介して放射性物質の放出が大幅に低減する効果が期待できない時間が ある。

格納容器スプレイが失敗する場合では、流量が少ない代替スプレイを用いることから、原子炉 格納容器内に放出されたよう素やセシウム等の放射性物質を除去する効果が小さくなる。

原子炉格納容器圧力が高く推移する場合では,原子炉格納容器貫通部等からの漏えい率が大き くなることから,放射性物質の放出量が多くなる。

炉心が損傷する事象として選定した3事象について,具体的な被ばく評価上の条件の相違点及び被ばく評価への影響を第1表にまとめる。

第1表のとおり、炉心損傷に至るまでの時間が短い場合、かつ、格納容器スプレイが失敗する場合、かつ、原子炉格納容器圧力が高く推移する場合である「大破断 LOCA 時に ECCS 注入機能及び格納容器スプレイ機能が喪失する事象」が、中央制御室の被ばく評価上最も厳しい結果となる。

したがって、本評価においては、「大破断 LOCA 時に ECCS 注入機能及び格納容器スプレイ機能が 喪失する事象」にて評価を行っている。

第1表 各シーケンスの比較

シーケンス	大破断TOCA時にECCS注入機能及び格納容器スプレイ機能が喪失する事象	大破断TOCA時にECCS注入機 全交流動力電源喪失時に補 大破断TOCA時にECCS注入機能及び格納容器スプレイ機 助給水機能が喪失する事象 能が喪失する事象 能が喪失する事象	大破断TOCA時にECCS注入機能が喪失する事象	中央制御室被ばくへの 影響
炉心溶融開始	約19分	約3時間	約 24 分	
①格納容器 スプレイ	失敗 (代替格納容器スプレイポン プルナス格納容器スプレイ	失敗 (代替格納容器スプレイポン (代替格納容器スプレイポンプ): よるぬ物容器スプレイポン (代替格納容器スプレイポン	成功	格納容器スプレイが成功すること により,スプレイ水による除去効 単が大きくたろので ぬ紬な器か
	成功)	成功)		イルスで、できって、「Lanting」のの放出量は低減される。 したがって、失敗の方が厳しい結果となる。
②アニュラス空気浄化設備の 気浄化設備の 作動	アニュラス空 アニュラス空気浄化設備作 気浄化設備の動前に放出が開始。 アイルタ効果を期待できない時間がある。	:アニュラス空気浄化設備作動後に放出が開始。 すべての時間でフィルタ効果を期待できる。	アニュラス空気浄化設備作動前に放出が開始。 フィルタ効果を期待できない時間がある。	②アニュラス空 アニュラス空気浄化設備作 アニュラス空気浄化設備作 アニュラス空気浄化設備作 アニュラス負圧達成後はフィルタ 気浄化設備の 動前に放出が開始。 動後に放出が開始。 動能に放出が開始。 で捕集されるため,アニュラス空 (有) アイルタ効果を期待できな。 アイルタ効果を期待できな。 すべての時間でフィルタ効 フィルタ効果を期待できな。 (有) 大きなの時間でフィルタ効果を期待できな。 なうが厳しい結果となる。 れる方が厳しい結果となる。
③原子炉格納容 器の圧力	:事象発生初期から,高い圧力で推移する。	冷却材喪失事故ではないた め,原子炉格納容器の圧力上 昇は緩やかである。	格納容器スプレイが成功するため,原子炉格納容器の圧力は他の2事象に比較して,低く推移する。	③原子炉格納容 事象発生初期から,高い圧力 冷却材喪失事故ではないた 格納容器スプレイが成功す 原子炉格納容器圧力が高く推移す器の圧力 で推移する。 め,原子炉格納容器の圧力と るため,原子炉格納容器重通部 昇は緩やかである。 カは他の2事象に比較して,等からの漏えい率が大きくなり,ほく推移する。 ほい結果となる。

居住性評価に用いる炉心選定の考え方について

居住性評価における被ばくについては,一般的に内部被ばくによる寄与が大きい。そのため, 重大事故時の居住性評価においては,内部被ばくに着目して炉心を選定している。

ウラン燃料炉心^(注1)及び MOX 燃料装荷炉心^(注2)における炉心内蓄積量及び放出放射能量を第 1 表及び第 2 表に示す。MOX 燃料装荷炉心では、ウラン燃料炉心に比べ、内部被ばく評価に用いられる I-131 等価換算値が大きい。従って、重大事故時の居住性評価においては、MOX 燃料装荷炉心を選定している。

なお,第2表に示すとおり、大気中へ放出された放射性物質による外部被ばくについては、外部被ばく評価に用いられる γ 線エネルギー0.5 MeV 換算値がほぼ変わらない結果となっている。また、第3表に示すとおり、建屋からのガンマ線による外部被ばくについても、外部被ばく評価に用いられる原子炉格納容器内の7日間積算線源強度がほぼ変わらない結果となっている。

MOX 燃料装荷炉心	γ線エネルギー0.5 MeV 換算 (Bq)	約 4. 2E+20
MUA 然件表何况心	I-131 等価換算 (Bq)	約 6.6E+20
ウラン燃料炉心	γ線エネルギー0.5 MeV 換算 (Bq)	約 4. 4E+20
ソノン XXX47XP 心	I-131 等価換算 (Bq)	約 2.1E+20
MOX/ウラン比	γ線エネルギー0.5 MeV 換算(-)	約 97 %
MOA/ グランL	I-131 等価換算(-)	約 315 %

第1表 ウラン燃料炉心と MOX 燃料装荷炉心の炉心内蓄積量

笛りま	ウラン燃料炉心と MOX 燃料装荷炉心の放出放射能量
界 4 衣	ソノンススストチストー心と MUA ススストキー表何スド心ソノ双山双針庇里

		アニュラス 部外	アニュラス 経由	合計
MOX 燃料装荷炉心	γ線エネルギー 0.5 MeV 換算 (Bq)	約 4.8E+14	約 9.1E+15	約 9.5E+15
	I-131 等価換算 (Bq)	約 6.6E+13	約 8. 3E+13	約 1.5E+14
ウラン燃料炉心	γ線エネルギー 0.5 MeV 換算 (Bq)	約 4.8E+14	約 9.0E+15	約 9.5E+15
	I-131 等価換算(Bq)	約 4. 7E+13	約 7.5E+13	約 1.2E+14
MOX/ウラン比	y線エネルギー 0.5 MeV換算(-)	約 100.1%	約 100.4%	約 100.4%
	I-131 等価換算(-)	約 139%	約 111%	約 122%

第3表 ウラン燃料炉心とMOX燃料装荷炉心の原子炉格納容器内の 7日間積算線源強度

MOX燃料装荷炉心 (MeV)	ウラン燃料炉心 (MeV)	MOX/ウラン比
約 4.18×10 ²⁴	約 4. 20×10 ²⁴	約 99.4 %

(注1) 燃料集合体最高燃焼度55,000 MWd/tまでのウラン燃料を100 %装荷した炉心。

⁽注2) 炉心の3/4に燃料集合体最高燃焼度55,000 MWd/tまでのウラン燃料,1/4に燃料集合体最高 燃焼度45,000 MWd/tまでのMOX燃料を装荷した炉心。

原子炉格納容器への核分裂生成物の放出割合の設定について

重大事故時における居住性に係る被ばく評価では、原子炉格納容器への核分裂生成物の放出割合の設定について、重大事故時までの洞察を含む米国の代表的なソースタームである NUREG-1465 に示された放出割合、放出時間を用いている。

1. NUREG-1465 の放出割合,放出時間の適用性について

NUREG-1465¹のソースタームは、燃料被覆管破損時点より、原子炉容器が破損しデブリが炉外に放出される状態に至るまでを対象としたものであり、本評価で想定している事故シーケンスと同様のシーケンスについても対象に含まれている。NUREG-1465 で対象としているシーケンスを第1表に示す。

第1表 NUREG-1465 で対象としているシーケンス

Plant	Sequence	Description		
Surry	AG	LOCA (hot leg), no containment heat removal systems		
	TMLB'	LOOP, no PCS and no AFWS		
	v	Interfacing system LOCA		
	S3B	SBO with RCP seal LOCA		
	\$2D-8	SBLOCA, no ECCS and H ₂ combustion		
	S2D-β	SBLOCA with 6" hole in containment		
Zion	S2DCR	LOCA (2"), no ECCS no CSRS		
	S2DCF1	LOCA RCP seal, no ECCS, no containment sprays, no coolers—H ₂ burn or DCH fails containment		
	S2DCF2	S2DCF1 except late H ₂ or overpressure failure of containment		
	TMLU	Transient, no PCS, no ECCS, no AFWS—DCH fails containment		
Oconee	3 TMLB'	SBO, no active ESF systems		
	SIDCF	LOCA (3"), no ESF systems		
Sequoya	h S3HF1	LOCA RCP, no ECCS, no CSRS with reactor cavity flooded		
	S3HF2	S3HF1 with hot leg induced LOCA		
	3HF3	S3HF1 with dry reactor cavity		
	S3B	LOCA (½") with SBO		
	ТВА	SBO induces hot leg LOCA—hydrogen burn fails containment		
	ACD	LOCA (hot leg), no ECCS no CS		
	S3B1	SBO delayed 4 RCP seal failures, only steam driven AFW operates		
	S3HF	LOCA (RCP seal), no ECCS, no CSRS		
	S3H	LOCA (RCP scal) no ECC recirculation		
SBO RCP PCS CS ATWS	Station Blackout Reactor Coolant Pump Power Conversion System Containment Spray Anticipated Transient Without S	LOCA Loss of Coolant Accident DCH Direct Containment Heating ESF Engineered Safety Feature CSRS CS Recirculation System cram LOOP Loss of Offsite Power		

Table 3.2 PWR Source Term Contributing Sequences

NUREG-1465 では、重大事故時に炉心から原子炉格納容器へ放出される核分裂生成物の割合について第2表のような事象進展各フェーズに対する放出割合、放出時間を設定している。

NUREG-1465 の中でも述べられているように、NUREG-1465 のソースタームは炉心溶融に至る

¹ Accident Source Terms for Light-Water Nuclear Power Plants

種々の事故シーケンスを基にした代表的なソースタームである。特に、炉心損傷後に環境に放出 される放射性物質が大きくなる観点で支配的なシーケンスとして, 本評価で対象としている「大 破断 LOCA 時に ECCS 注入及び CV スプレイ注入を失敗するシーケンス」を含む低圧シーケンスを 代表するよう設定されたものである。

第2表 原子炉格納容器への放出期間及び放出割合 (NUREG-1465 Table3.13)

	Gap Release***	Early In-Vessel	Ex-Vessel	Late In-Vessel
Duration (Hours)	0.5	1.3	2.0	10.0
Noble Gases**	0.05	0.95	0	0
Halogens	0.05	0.35	0.25	0.1
Alkali Metals	0.05	0.25	0.35	0.1
Tellurium group	. 0	0.05	0.25	0.005
Barium, Strontium	0	0.02	0.1	0
Noble Metals	. 0	0.0025	0.0025	0
Cerium group	0	0.0005	0.005	0
Lanthanides	0	0.0002	0.005	0

- Values shown are fractions of core inventory.
 See Table 3.8 for a listing of the elements in each group
 Gap release is 3 percent if long-term fuel cooling is maintained.

事象進展の各フェーズは大きく以下のように整理されている。

- Gap-Release/Early In-Vessel
- 燃料被覆管損傷後のギャップからの放出 (Gap-Release) と,燃料の溶融に伴う原子炉容 器損傷までの炉心からの放出 (Early In-Vessel) を想定。
- Ex-Vessel/Late In-Vessel
- 原子炉容器損傷後、炉外の溶融炉心からの放出 (Ex-Vessel) 及び1次系に沈着した核分裂 生成物の放出 (Late In-Vessel) を想定。

事象が発生してから炉心が溶融を開始し、原子炉容器が破損する事象進展のタイミングについ て、MAAP を用いた泊発電所3号炉の解析結果とNUREG-1465の想定を比較すると、第3表のとお りとなる。

第3表 溶融開始から原子炉容器が破損するまでのタイミング比較

	燃料被覆管損傷が開始し,ギ	炉心溶融が開始し,溶融燃料
	ャップから放射性物質が放	が原子炉容器を破損するま
	出される期間	での期間
MAAP 解析結果	0~約19分	約 19 分~約 1.6 時間
NUREG-1465	0~30分	30分~1.8時間

炉心溶融開始及び原子炉容器破損のタイミングについては、ほぼ同じであり、核分裂生成物が 大量に放出される初期の事象進展に大きな差はないと判断している。

NUREG-1465 のソースタームは、低燃焼度燃料を対象にしている。そのため、米国において、NUREG-1465 のソースターム(以下、「更新ソースターム」という。)を高燃焼度燃料及び MOX 燃料に適用する場合の課題に関し、1999 年に第 461 回 ACRS (Advisory Committee on Reactor Safeguards)全体会議において議論がなされている。そこでは、ACRS から、高燃焼度燃料及び MOX 燃料への適用について判断するためには解析ツールの改良及び実験データの収集が必要とコメントがなされている。これに対し、NRC スタッフは、実質的にソースタームへの影響はないと考えられると説明している。

その後,各放出フェーズの継続時間及び各核種グループの放出割合に与える影響等について専門家パネルでの議論が行われており、その結果が ERI/NRC 02-202²(2002 年 11 月)にまとめられ公開されている。この議論の結果として、以下に示す通り、解決すべき懸案事項が挙げられているものの、高燃焼度燃料及び MOX 燃料に対しても更新ソースタームの適用について否定されているものではない。

Finally, there is a general expectation that the physical and chemical forms of the revised source terms as defined in NUREG-1465 are applicable to high burnup and MOX fuels.

(ERI/NRC 02-202 第4章)

議論された高燃焼度燃料は,燃料集合体の最大燃焼度 75 GWd/t, 炉心の平均燃焼度 50 GWd/t を対象としている。

専門家パネルの議論の結論として示された,各フェーズの継続時間及び格納容器内への放出割合について,別紙1の第1-1表及び第1-2表に示す(ERI/NRC 02-202 Table 3.1及び Table 3.12)。表のカッコ内の数値は、NUREG-1465 の値を示している。また、複数の数値が同一の欄に併記されているのは、パネル内で単一の数値が合意されなかった場合における各専門家の推奨値である。それぞれの核種について NUREG-1465 と全く一致しているとは限らないが、NUREG-1465 から大きく異なるような数値は提案されていない。

以上の議論の結果として, ERI/NRC 02-202 では, 引用した英文のとおり高燃焼度燃料に対しても NUREG-1465 のソースタームを適用できると結論付けている。

なお、米国の規制基準である Regulatory Guide の 1.183 においては、NUREG-1465 記載の放出 割合を燃料棒で最大 62 GWd/t までの燃焼度の燃料まで適用できるものと定めている。

.

² ACCIDENT SOURCE TERMS FOR LIGHT-WATER NUCLEAR POWER PLANTS: HIGH BURNUP AND MIXED OXIDE FUELS

3.2 Release Fractions 10

The core inventory release fractions, by radionuclide groups, for the gap release and early in-vessel damage phases for DBA LOCAs are listed in Table 1 for BWRs and Table 2 for PWRs. These fractions are applied to the equilibrium core inventory described in Regulatory Position 3.1.

For non-LOCA events, the fractions of the core inventory assumed to be in the gap for the various radionuclides are given in Table 3. The release fractions from Table 3 are used in conjunction with the fission product inventory calculated with the maximum core radial peaking factor.

¹⁰ The release fractions listed here have been determined to be acceptable for use with currently approved LWR fuel with a peak burnup up to 62,000 MWD/MTU. The data in this section may not be applicable to cores containing mixed oxide (MOX) fuel.

その後も更新ソースタームを高燃焼度燃料や MOX 燃料に適用する場合の課題に対して検討が行われており、2011 年 1 月には、サンディア国立研究所から報告書が出されている (SAND2011-0128³)。

高燃焼度燃料及び MOX 燃料の放出割合は、別紙1の第1-3表及び第1-4表に示すとおり、低燃焼度燃料のそれと著しく異なるものではないことが示されている。このことから、現段階においては、NUREG-1465の高燃焼度燃料や MOX 燃料の適用について否定されるものではないと考える。第4表にそれらのデータを整理する。

		ERI/NRC	ERI/NRC	SAND	SAND
	NUREG-1465	02-202	02-202	2011-0128	2011-0128
		(高燃焼度燃料)※	(MOX 燃料)※	(高燃焼度燃料)	(MOX 燃料)
希ガス類	1.0	1.0	1. 0	0. 97	0. 96
よう素類	0. 75	0.85	0.82	0.60	0.62
Cs 類	0.75	0.75	0.75	0. 31	0. 55

第4表 全放出期間での格納容器への放出割合の整理

以上のように、解決すべき懸案事項があるものの、現在の知見では、高燃焼度燃料及び MOX 燃料に対しても更新ソースタームを否定されているものではないことが Regulatory Guide 1.183、ERI/NRC 02-202 及び Sandia Report に示されている。

泊発電所 3 号炉の燃料集合体の最高燃焼度は、ウラン燃料で 55 GWd/t, MOX 燃料で 45 GWd/t であることから、ERI/NRC 02-202 における適用範囲、燃料集合体の最高燃焼度 75 GWd/t 及び Sandia Report の適用範囲、燃料集合体最高燃焼度 59 GWd/t と比較し適用の範囲内にある。また、泊発電所 3 号炉の燃料棒最高燃焼度はウラン燃料で 61 GWd/t, MOX 燃料で 53 GWd/t であり、Regulatory Guide 1.183 に示される適用範囲、燃料棒最高燃焼度 62 GWd/t の範囲内にある。こ

_

[※] 複数の値が提示されているため、平均値を使用した。

³ Accident Sorce Terms for Light-Water Nuclear Power Plants Using High-Burnup or MOX Fuel

のため、泊発電所3号炉に対し、使用を否定されていない更新ソースタームの適用は可能と判断 される。

ERI/NRC 02-202 に示された放出割合の数値については、専門家の意見も分かれていること、Sandia Report 記載の数値についても、MOX 燃料については単一の格納容器の型式を対象とした解析にとどまっており、米国 NRC にオーソライズされたものではないことを考慮し、今回の評価においては、NUREG-1465 の数値を用いた。

2. 各核種グループの内訳について

NUREG-1465 の高燃焼度燃料及び MOX 燃料の適用については、前述のとおり、現在の知見では、 否定されるものではないものの、高燃焼度燃料及び MOX 燃料に対する NUREG-1465 の適用に関す る専門家での議論の中で、NUREG-1465 に比べて大きな放出割合が提案されている核種グループ もある。本評価で用いたモデルでの評価において、各核種グループの内訳を確認する。

環境に放出される放射性物質に対する核種グループの内訳及び原子炉建屋内の放射性物質からのガンマ線による中央制御室入退域時の直接及びスカイシャイン線量に対する核種グループの内訳をそれぞれ第5表及び第6表に示す。MOX 燃料に対する NUREG-1465 の適用に関する専門家での議論の中で、NUREG-1465 に比べて大きな放出割合が提案されている Te 類や Ru 類については、第5表及び第6表に示すとおり、中央制御室居住性評価における寄与割合は小さく、居住性評価に大きな影響を及ぼすものではない。

(1) 環境に放出される放射性物質の内訳について(I-131 等価量換算, γ 線エネルギ 0.5 MeV 換算)

中央制御室内及び入退域時の被ばく評価結果における環境に放出される放射性物質について、NUREG-1465 に示される各核種グループの内訳として I-131 等価量換算及び γ 線エネルギ 0.5 MeV 換算の値を第 5 表に示す。I-131 等価量換算はハロゲン(よう素類)が約 55 %,Cs 類が約 12 %,その他が約 33 %となっており, γ 線エネルギ 0.5 MeV 換算は希ガス類が約 91 %,ハロゲン(よう素類)が約 7 %,Cs 類が約 2 %,その他が約 1 %となっている。

第5表 (1/2) 環境に放出される放射性物質の各核種グループの内訳 (I-131 等価量換算)

核種グループ	放出放射能量 (注1, 2) (Bq)	内訳 (%)
希ガス類	約0.0×10°	0
よう素類	約 8.2×10 ¹³	55
Cs 類	約 1.7×10 ¹³	12
Te 類	約 3.8×10 ¹²	3
Ba 類	約 6.1×10 ¹²	4
Ru 類	約 5.9×10 ¹¹	<1
Ce 類	約 2.2×10 ¹³	15
La類	約 1.7×10 ¹³	12
合計	約 1.5×10 ¹⁴	100

(注1)7日間積算放出量

(注2) 有効数値3桁目を四捨五入し2桁に丸めた値

第5表 (2/2) 環境に放出される放射性物質の各核種グループの内訳 (γ線エネルギ 0.5 MeV 換算)

核種グループ	放出放射能量 ^(注1,2) (Bq)	内訳 (%)
希ガス類	約 8.7×10 ¹⁵	91
よう素類	約 6.7×10 ¹⁴	7
Cs 類	約 1.7×10 ¹⁴	2
Te 類	約 3.1×10 ¹³	<1
Ba 類	約 1.7×10 ¹³	<1
Ru 類	約 9.9×10 ¹¹	<1
Ce 類	約 1.1×10 ¹²	<1
La 類	約 2.9×10 ¹²	<1
合計	約 9.5×10 ¹⁵	100

(注1)7日間積算放出量

(注2) 有効数値3桁目を四捨五入し2桁に丸めた値

(2) 原子炉建屋内の放射性物質からのガンマ線による中央制御室入退域時の直接及びスカイシャイン線量の内訳について

中央制御室入退域時の被ばく評価結果における原子炉建屋内の放射性物質からの直接線及 びスカイシャインガンマ線について、NUREG-1465 に示される各核種グループの内訳を第 6 表 に示す。希ガス類が約 5 %、ハロゲン(よう素類)が約 85 %、Cs 類が約 5 %、その他が約 5 % となっている。

第6表 原子炉建屋内の放射性物質からのガンマ線による 中央制御室入退域時の被ばく評価における各核種グループの内訳

核種グループ	直接線及びスカイシャイン線量 (注1, 2) (mSv)	内訳 (%)
希ガス類	約 4.1×10 ¹	5
よう素類	約7.3×10 ²	85
Cs 類	約 4.7×10 ¹	5
Te 類	約1.1×10 ¹	1
Ba 類	約1.3×10 ¹	2
Ru 類	約 5.1×10 ⁻¹	<1
Ce 類	約 2.0×10 ⁻¹	<1
La 類	約1.6×10 ¹	2
合計	約 8.6×10 ²	100

⁽注1) 中央制御室入口地点における7日間積算線量

⁽注2) 有効数値3桁目を四捨五入し2桁に丸めた値

3. 今回の評価モデルでの評価と MAAP 解析での評価の比較について

本評価で用いたモデルでの被ばく評価の結果を第7表に示す。第7表に示されたように、中央制御室の居住性(重大事故対策)に係る被ばく評価において、大きく影響している被ばく経路は、室内作業時の「③外気から取り込まれた放射性物質による被ばく」及び入退域時の「④原子炉建屋内の放射性物質からのガンマ線による被ばく」、「⑤大気中へ放出された放射性物質による被ばく」である。

第7表 中央制御室(重大事故)居住性に係る被ばく評価 (マスク着用ありの結果)

		7日間の実効線量 (mSv) *1		
	被ばく経路	外部被ばく による 実効線量	内部被ばく による 実効線量	実効線量の 合計
	①原子炉建屋からのガンマ線 による中央制御室での被ばく	約 1.7×10 ⁻²	1	約 1.7×10 ⁻²
室内	②大気中へ放出された放射性 物質による被ばく	約 1.2×10 ⁻²		約 1.2×10 ⁻²
室内作業時	③外気から取り込まれた放射 性物質による中央制御室内で の被ばく	約1.1×10°	約 1. 1×10°	約 2. 2×10°
	小計 (①+②+③)	約 1.2×10°	約 1.1×10°	約 2. 2×10°
-	④原子炉建屋の放射性物質からのガンマ線による被ばく	約1.0×10 ¹	1	約 1. 0×10 ¹
人退城時	⑤大気中へ放出された放射性 物質による被ばく	約1.3×10°	約 7.9×10 ⁻²	約 1.4×10°
	小計 (④+⑤)	約 1. 2×10 ¹	約 7.9×10 ⁻²	約1.2×10 ¹
	合 計 (①+②+③+④+⑤)	約 13	約1.1	約 15* ²

- *1 表における「実効線量の合計(①+②+③+④+⑤)」以外の数値は、有効数値3桁目を四 捨五入し2桁に丸めた値
- *2 「実効線量の合計(①+②+③+④+⑤)」の数値は、有効数値3桁目を切り上げて2桁に 丸めた値

この3つの被ばく経路に着目して、本評価で用いたモデルでの評価が MAAP 解析での評価と比較して、保守的であることを示す。

(1) 外気から取り込まれた放射性物質による被ばく

外気から取り込まれた放射性物質による被ばくに対して,本評価で用いたモデルでの評価が 保守的であることを確認するため,原子炉格納容器からの放出割合を比較することで整理する。

a. 今回の評価における原子炉格納容器内での挙動について

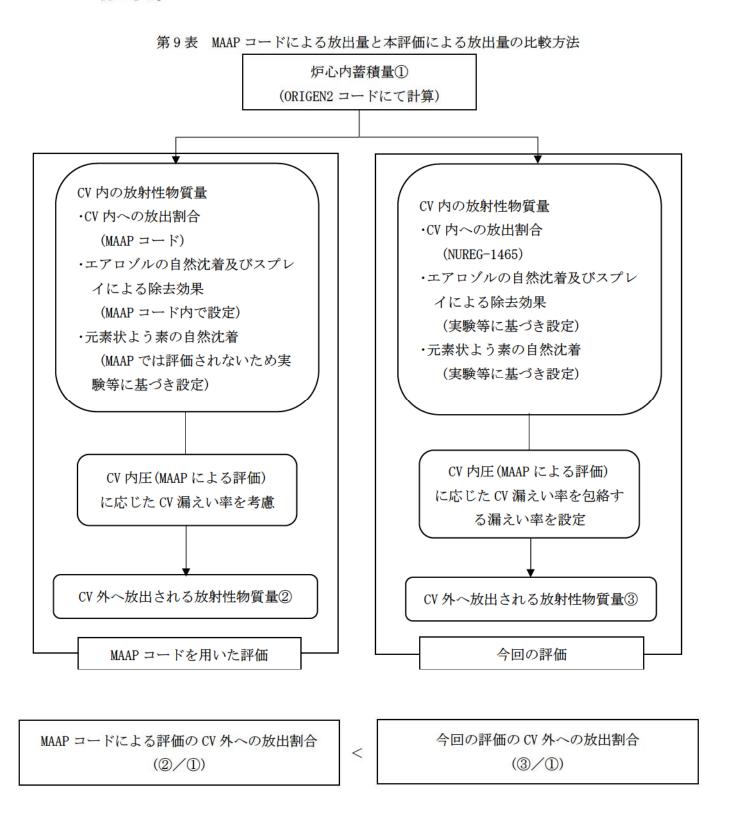
炉心損傷が起こり,放射性物質が原子炉格納容器から放出されるまでのイメージについて は、別添2に示すとおりである。

炉心に蓄積した核分裂生成物は、炉心溶融に伴って原子炉格納容器内へ放出され、原子炉格納容器内での重力沈降やスプレイによる除去により放射能量は低減されながら、原子炉格納容器内に浮遊する。さらに、有効性評価の原子炉格納容器内圧の変化を基に設定された原子炉格納容器からの漏えい率にしたがって放出される。

b. 原子炉格納容器内への放出のタイミングについて

第3表に示すとおり、炉心溶融開始及び原子炉容器破損のタイミングについては、ほぼ同じであると考えられ、核分裂生成物が大量に放出される初期の事象進展に大きな差はないと判断している。

c. 原子炉格納容器からの放出割合の比較について


本評価で用いたモデルでの原子炉格納容器からの放出割合と MAAP 解析での原子炉格納容器からの放出割合を第8表に示し、また、比較方法を第9表に示す。

核種グループ	本評価で用いたモデル	MAAP 解析*2
希ガス類	約1.1×10 ⁻²	約 9.6×10 ⁻³
よう素類	約3.6×10 ⁻⁴	約 3.0×10 ⁻⁴
Cs 類	約2.0×10 ⁻⁴	約 1.9×10 ⁻⁵
Te 類	約8.0×10 ⁻⁵	約 1.5×10 ⁻⁵
Ba 類	約3.2×10 ⁻⁵	約 6.9×10 ⁻⁷
Ru 類	約1.3×10 ⁻⁶	約 1.3×10 ⁻⁶
Ce 類	約1.4×10 ⁻⁶	約 4.7×10 ⁻⁸
La類	約1.4×10 ⁻⁶	約 7.4×10 ⁻⁹

第8表 原子炉格納容器からの放出割合の比較*1

- *1 表における割合の数値は、有効数値3桁目を四捨五入し2桁に丸めた値
- *2 Cs のように複数の化学形態 (CsI, CsOH グループ) を有する核種については、Cs の炉心内蓄積量に対するそれぞれの化学形態グループの放出割合を合計している。

第8表より、原子炉格納容器からの放出割合について、本評価で用いたモデルでの評価のほうが、MAAP 解析での評価よりも大きな数値となっており、保守的な評価であることが確認できる。

(2) 入退域時の原子炉建屋内の放射性物質からのガンマ線による被ばく

入退域時の原子炉建屋内の放射性物質からのガンマ線による被ばくに対して,本評価で用いたモデルでの評価が保守的であることを確認する。

MAAP 解析では、原子炉格納容器内を多区画に分割しており、原子炉格納容器内の各区画に対して固有の線源強度を設定することが可能となる。これにより、遮蔽体としては、原子炉格納容器内の遮蔽構造物(1次遮蔽、2次遮蔽等)を考慮した現実的な遮蔽を考慮したモデルを設定することができる。

一方、本評価で用いたモデルでは、原子炉格納容器内を1つの区画としたモデルを設定し、原子炉格納容器内の線源に対して代替格納容器スプレイによる原子炉格納容器の下部区画への移行を考慮し、上部区画及び下部区画に均一に分布した線源強度を設定している。また、遮蔽体としては、外部遮蔽のみを考慮したモデルとしている。

MAAP 解析において、原子炉格納容器内の遮蔽構造物による現実的な遮蔽効果を考慮した場合、遮蔽構造物に囲まれている区画の線量の低減効果が大きく、直接線及びスカイシャイン線の観点で線量に寄与する領域は上部区画となる。

直接線及びスカイシャイン線の線源強度について、本評価で用いたモデルでの下部区画へ移行した放射性物質を除いた線源強度と、MAAP解析での上部区画の線源強度の比較を行った。 結果を第10表に示す。

第10表 原子炉格納容器内の線源強度における本評価で用いた モデルでの評価と MAAP 解析での評価の比較

項目	本評価で用いたモデル	MAAP 解析
線源強度 (MeV)	約3.1×10 ²⁴	約 2.5×10 ²⁴

第 10 表に示すとおり、本評価で用いたモデルでの直接線及びスカイシャイン線の評価が線 源強度の観点でより保守的な値となっている。更に本評価で用いたモデルの評価では、下部区 画へ移行した放射性物質に対して外部遮蔽以外の遮蔽構造物の遮蔽効果を見込んでいない。

(3) 入退域時の大気中へ放出された放射性物質による被ばく

- 「(1) 外気から取り込まれた放射性物質による被ばく」に同じ。
- (1), (2)及び(3)より,本評価で用いたモデルでの評価は,MAAP解析での評価と比較して保守的に評価できることを確認した。

第 1-1 表 ERI/NRC 02-202 における格納容器への放出 (高燃焼度燃料)

PWR Releases Into Containment (High Burnup Fuel)^a

	Gap Release	Early In-Vessel	Ex-Vessel	Late In-Vessel
Duration (Hours)	04 (05)1	1.4 (13)	2 0 (2 0)	10.0 (100)
Noble Gases	0.05; 0.07; 0 07; 0 07; NE ³ (0.05)	0.63, 0.63; 0 63; 0 65; 1.0TR (0.95)	0 3 (0)	0 (0)
Halogens	0.05 (0.05)	0.35; 0.95TR (0 35)	0.25 (0.25)	0.2 (0.1)
Alkalı Metals	0.05 (0.05)	0.25; 0.90TR (0 25)	0.35 (0.35)	0.1 (0 1)
Tellurium group	0.005 (0)	0.10; 0.30; 0.30; 0.35, 0.7TR (0.05)	0.40 (0.25)	0.20 (0.005)
Barium, Strontium	0 (0)	0 02; note 4 (0.02)	0.1 (0.1)	0 (0)
Noble Metals	(0)	(0.0025)	(0.0025)	(0)
Mo, Tc	0	0 15, 0 2; 0.2; 0.2; 0.7TR ²	0 02; 0.02; 0.2; 0.2; TR	0; 0; 0.05; 0.05, TR
Ru, Rh, Pd	0	0 0025; 0.0025; 0.01, 0.01; 0.02TR	0 0025; 0.02; 0.02; 0.02; TR	0 01; 0.01; 0.01; 0 10, TF
Cerium group	(0)	(0.0005)	(0.005)	(0)
Ce	0	0.0002, 0 0005; 0.01; 0.01; 0.02TR	0.005; 0 005, 0 01; 0.01; TR	0
Pu, Zr	0	0.0001; 0 0005; 0.001; 0.002; 0 002TR	0 005, 0 005; 0.01; 0.01; TR	0
Np	0	0 001; 0.01; 0.01; 0.01; 0.02TR	0 005; 0 005; 0.01; 0.01; TR	0
anthanides (one group ⁵)	0; 0; 0; (0)	0.0005; 0.002; 0.01 (0.0002)	0 005; 0.01; 0.01 (0.005)	0; 0; 0 (0)
La, Eu, Pr, Nb	0; 0	0 0002; 0.02TR	0 005; TR	0; TR
Y, Nd, Am, Cm	0; 0	0.0002; 0.002TR	0.005; TR	0; TR
Nb	0; 0	0.002; 0.002TR	0.005; TR	0; TR
Pm, Sm	0; 0	0.0002; 0.002TR	0.005; TR	0, TR

^{*} Note that it was the panel's understanding that only about 1/3 of the core will be high burnup fuel. This is a significant deviation from the past when accident analyses were performed for cores that were uniformly burned usually to 39 GWd/t

第1-2表 ERI/NRC 02-202 における格納容器への放出 (MOX 燃料)

MOX Releases Into Containment⁴ Table 3.12

	Gap Release	Early In-Vessel	Ex-Vessel	Late In-Vessel
Duration (Hours)	0.3; 0.4, 0.4; 0.4, 0.4 (0 5)1	1 4; 1.4; 1.4; 1.5 (1.3)	2.0 (2.0)	10 0 (10 0)
Noble Gases	0 05, 0 05, 0 05; 0.05; 0 07 (0.05)	0.65; 0.65; 0.75; 0.93; 0.95 TR ² (0.95)	0, 0 2; 0.3, 0 3; TR (0)	0 (0)
Halogens	0 05; 0 05; 0.05; 0.05; 0.07 (0.05)	0.325; 0.35; 0.35, 0.375; 0.95TR (0 35)	0 15; 0.2; 0.25; 0.25; TR (0.25)	0.2; 0.2; 0.2; 0.2; TR (0.1)
Alkalı Metals	0 05; 0.05; 0.05; 0.05; 0.07 (0.05)	0.25; 0.30; 0 30; 0 30; 0.65TR (0.25)	0.25; 0.25; 0.30; 0.30; TR (0.35)	0.10, 0.15; 0.15, 0 15, TR (0.1)
Tellurium group	0; 0; 0; 0.005; 0.005 (0)	0.1; 0.15; 0.3; 0.35; 0.7TR (0.05)	0.4; 0.4; 0.4; TR (0.25)	0.1; 0 2; 0 2; 0 2; TR (0.005)
Barium, Strontium	NE ³ , NE, NE; 0, 0 (0)	NE, NE, NE; 0.01; 0.1 (0.02)	NE, NE, NE; 0.1; 0.1 (0.1)	NE, NE, NE, 0; 0 05 (0)
Noble Metals	(0)	(0 0025)	(0.0025)	(0)
Mo, Tc	NE, NE, NE; 0, 0	NE, NE, NE; 0.1; 0.1	NE, NE, NE, 0 01, 0 01	NE, NE, NE; 0.1; 0.1
Ru, Rh, Pd	NE, NE, NE; 0; 0	NE, NE, NE; 0.05; 0.1	NE, NE, NE; 0.01; 0 01	NE, NE, NE, 0.01, 0 01
Cerium group	(0)	(0.0005)	(0.005)	(0)
Ce	NE, NE, NE; 0; 0	NE, NE, NE, NE; 0.01	NE, NE, NE; 0.01; 0 01	NE, NE, NE; NE, 0
Pu, Zr	NE, NE, NE, 0, 0	NE, NE, NE; NE; 0.001	NE, NE, NE; 0.001; 0.001	NE, NE, NE; NE; 0
Np	NE, NE, NE; 0; 0	NE, NE, NE; NE; 0.01	NE, NE, NE, 0.01; 0 02	NE, NE, NE; NE; 0
Lanthanides	NE, NE, NE; 0, 0 (0)	NE, NE, NE; NE; 0.005 (0.0002)	NE, NE, NE, NE, 0.01 (0 005)	NE, NE, NE; NE; 0 (0)

The numbers in parenthesis are those from NUREG-1465, Accident Source Terms for PWR Light-Water Nuclear Power Plants (Table 3.13).

The numbers in parenthesis are those from NUREG-1465, Accident Source Terms for PWR Light-Water Nuclear Power Plants (Table 3.13).

TR = total release. The practice in France is to assign all releases following the gap release phase to the early in-vessel phase.

NE= No entry; the panel member concluded that there was insufficient information upon which to base an informed opinion.

Barium should not be treated the same as Strontium. There is experimental evidence that barium is much more volatile than strontium. VERCORS and HI/VI (ORNL) experiments cited; these show a 50% release from the fuel and a 10% delivery to the containment. Strontium has a 10% release from fuel and 2% to the containment, based upon all data available to date.

Three panel members retained the NUREG-1465 lanthanide grouping, e.g., one group, while two panel members subdivided the group into four subgroups.

TR = total release. The practice in France is to not divide the source term into early in-vessel, ex-vessel, and late in-vessel phases.

NE = No entry; the panel member concluded that there was insufficient information upon which to base an informed opinion.

The values in Table 3.12 are for releases from the MOX assemblies in the core and not from the LEU assemblies.

第1-3表 SAND2011-0128における格納容器への放出(高燃焼度燃料)

Table 13. Comparison of PWR high burnup durations and release fractions (bold entries) with those recommended for PWRs in NUREG-1465 (parenthetical entries).

	Gap Release	In-vessel Release	Ex-vessel Release	Late In-vessel Release
Duration (hours)	0.22 (0.5)	4.5 (1.5)	4.8 (2.0)	143 (10)
Release Fractions of Radionuclide Groups				
Noble Gases	0.017	0.94	0.011	0.003
(Kr,Xe)	(0.05)	(0.95)	(0)	(0)
Halogens	0.004	0.37	0.011	0.21
(Br,I)	(0.05)	(0.35)	(0.25)	(0.10)
Alkali Metals	0.003	0.23	0.02	0.06
(Rb, Cs)	(0.05)	(0.25)	(0.35)	(0.10)
Alkaline Earths	0.0006	0.004	0.003	-
(Sr, Ba)	(0)	(0.02)	(0.10)	(-)
Tellurium Group	0.004	0.30	0.003	0.10
(Te, Se, Sb)	(0)	(0.05)	(0.25)	(0.005)
Molybdenum	-	0.08	0.01	0.03
(Mo, Tc, Nb)		(0.0025)	(0.0025)	(0)
Noble Metals	-	0.006	[0.0025]	-
(Ru, Pd, Rh, etc.)		(0.0025)		
Lanthanides	-	1.5x10 ⁻⁷	1.3x10-5	-
(Y, La, Sm, Pr, etc.)		(2x10 ⁻⁴)	(0.005)	
Cerium Group		1.5x10 ⁻⁷	2.4x10 ⁻⁴	-
(Ce, Pu, Zr, etc.)		(5x10 ⁻⁴)	(0.005)	

第1-4表 SAND2011-0128における格納容器への放出 (MOX燃料)

Table 16. Comparison of proposed source term for an ice-condenser PWR with a 40% MOX core (bold entries) to the NUREG-1465 source term for PWRs (parenthetical entries).

	Gap Release	In-vessel Release	Ex-vessel Release	Late In-vessel Release
Duration (hours)	0.36 (0.50)	4.4 (1.3)	6.5 (2.0)	16 (10)
Release Fractions of Radionuclide Groups				
Noble Gases (Kr,Xe)	0.028 (0.050)	0.86 (0.95)	0.05 (0)	0.026 (0)
Halogens (Br,I)	0.028 (0.050)	0.48 (0.35)	0.06 (0.25)	0.055
Alkali Metals (Rb, Cs)	0.014 (0.050)	0.44 (0.25)	0.07 (0.35)	0.025 (0.10)
Alkaline Earths (Sr, Ba)	-	0.0015 (0.020)	0.008	9x10 ⁻⁸ (0)
Tellurium Group (Te, Se, Sb)	0.014 (0)	0.48 (0.05)	0.04 (0.25)	0.055 (0.005)
Molybdenum (Mo, Tc, Nb)	7.	0.27 (0.0025)	[0.0025]	0.024 (0)
Noble Metals (Ru, Pd, Rh, etc.)	-	0.005 (0.0025)	[0.0025]	3 x10 ⁻⁴ (0)
Lanthanides (Y, La, Sm, Pr, etc.)	•	1.1 x10 ⁻⁷ (0.0002)	3 x10 ⁻⁵ (0.005)	-
Cerium Group (Ce, Pu, Zr, etc.)	-	1.0 x10 ⁻⁷ (0.0005)	5 x10 ⁻⁴ (0.005)	

よう素の化学形態の設定について

重大事故時の居住性に係る被ばく評価では、よう素の化学形態に対する存在割合として R.G.1.195 "Methods and Assumptions for Evaluating Radiological Consequences of Design Basis Accidents at Light Water Nuclear Power Reactors"で示されたよう素の存在割合を用い ている。

原子炉格納容器への核分裂生成物の放出割合の設定に用いた NUREG-1465 にもよう素の化学形態に対する存在割合についての記載があるが,原子炉格納容器内の液相のpHが7以上の場合とされている。(放出全よう素のうち元素状よう素は5%を超えないこと,有機よう素は元素状よう素の3%(0.15%)を超えない(95%が粒子状))。

本評価で想定するシーケンスのように、既設の格納容器スプレイの喪失も想定し、pH 調整がされない可能性がある場合には、元素状よう素への転換割合が大きくなるとの知見もあり、元素状よう素の存在割合が大きくなれば有機よう素の存在割合も大きくなる。元素状よう素は CV 内での自然沈着により一定の低減効果が見込めるのに対し、有機よう素は同様の低減効果を見込めないことから、原子炉格納容器外部への放出の観点からは有機よう素の形態が重要であることを踏まえ、本評価ではよう素の化学形態毎の存在割合の設定について以下のとおり検討、設定した。

NUREG-1465 では、よう素の化学形態毎の存在割合に関して pH<7 の場合での直接的な値の記述はないが、よう素の化学形態毎の設定に関して、NUREG/CR-5732 "Iodine Chemical Forms in LWR Severe Accidents"を引用している。NUREG/CR-5732 では、pH とよう素の存在割合に係る知見として、pH の低下に伴って元素状よう素への転換割合が増加する知見を示すとともに、pH 調整がなされる場合及びなされない場合それぞれについて、重大事故時のよう素化学形態に関して複数のプラントに対する評価を行っている。

pH 調整がなされている場合の結果を第 1 表,pH 調整がなされない場合の結果を第 2 表に示す。PWR でドライ型格納容器を持つ Surry の評価結果では,pH が調整されている場合は,ほぼ全量が I^- となって粒子状よう素になるのに対して,pH が調整されていない場合には,ほぼ全量が元素状よう素となる。また,有機よう素についても,非常に小さい割合であるが,pH 調整されている場合よりも,pH 調整されていない場合のほうが,より多くなる結果が示されている。

第1表 重大事故時の pH 調整した場合のよう素化学形態 (NUREG/CR-5732, Table 3.6)

Table 3.6 Distribution of iodine species for pH controlled above 7

		Fraction of total iodine in containment (%)			
Plant	Accident	I ₂ (g)	I ₂ (ℓ)	I (f)	CH ₃ I (g)
Grand Gulf	ТС ү	0.05	0.03	99.92	0.001
	TQUV Y	0.01	0.03	99.96	0.0003
Peach Bottom	AE Y	0.002	0.03	99.97	0.0001
	TC2 Y	0.02	0.03	99.95	0.0004
Sequoyah	TBA	0.21	0.03	99.76	0.004
Surry	TMLB' γ	1.9	0.03	98.0	0.03
,	АВγ	2.4	0.03	97.5	0.03

第2表 重大事故時の pH 調整を考慮しない場合のよう素化学形態 (NUREG/CR-5732, Table 3.7)

Table 3.7 Distribution of iodine species for uncontrolled pH

Plant			Fraction of total iodi	ne in containment (%)	
	Accident	I ₂ (g)	I ₂ (0)	1. (4)	CH ₃ I (g
Grand Gulf	TC y	26.6	15.3	58.0	0.2
	TQUV y	6.6	18.3	75.1	0.06
Peach Bottom	ΑΕ γ	1.6	21.6	76.8	0.01
	TC2 γ	10.9	18.0	71.0	0.07
Sequoyah	TBA	69.2	9.9	20.5	0.4
Surry	TMLB' Y	97.1	1.5	0.7	0.7
	AB Y	97.6	1.2	0.6	0.6

このように、重大事故時の環境条件を考慮した今回の評価の場合には、NUREG/CR-5732 で示される pH 調整されていない Surry の評価結果によう素の存在割合が近いこと、被ばく評価上の保守性等も考慮した適切な評価条件を設定すること、といった観点から考察し、R.G. 1.195 のよう素の化学形態毎の存在割合(第3表参照)を用いることとした。

第3表 NUREG-1465 と R. G. 1. 195 におけるよう素の化学形態毎の存在割合の比較

	NUREG-1465	R. G. 1. 195
元素状よう素	4. 85 %	91 %
有機よう素	0. 15 %	4 %
粒子状よう素	95 %	5 %

原子炉格納容器等への元素状よう素の沈着効果について

重大事故時の居住性に係る被ばく評価において、原子炉格納容器内における元素状よう素の自然沈着について、財団法人 原子力発電技術機構(以下、「NUPEC」とする。)による検討「平成9年度 NUREG-1465のソースタームを用いた放射性物質放出量の評価に関する報告書」において、CSE A6 実験に基づく値が示されている。

数値の算出に関する概要を以下に示す。

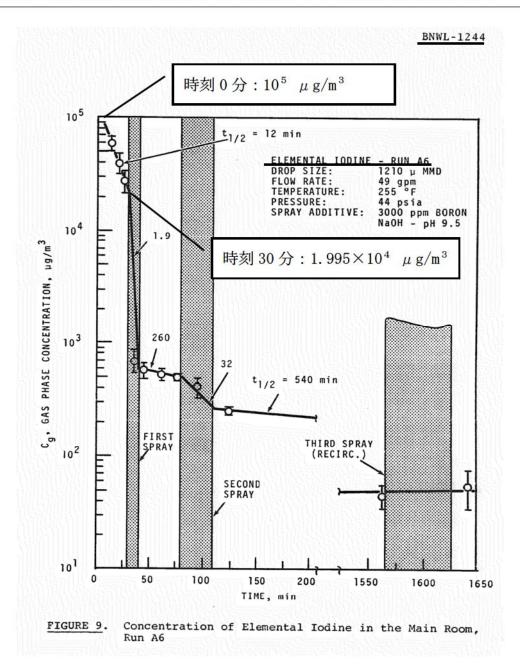
原子炉格納容器内での元素状よう素の沈着速度を λd とすると,原子炉格納容器内における元素 状よう素の濃度 ρ の濃度変化は以下の式で表される。

$$\frac{d\rho}{dt} = -\lambda_d \, \rho$$

ho : 原子炉格納容器内における元素状よう素の濃度 (μ g/m³)

λ_d : 自然沈着率 (1/s)

これを解くことで、原子炉格納容器内での元素状よう素の沈着速度 λ_d は時刻 t_0 における元素状よう素濃度 ρ_0 と時刻 t_1 における元素状よう素濃度 ρ_1 を用いて、以下のように表される。


$$\lambda_d = -\frac{1}{t_1 - t_0} \log \left(\frac{\rho_1}{\rho_0} \right)$$

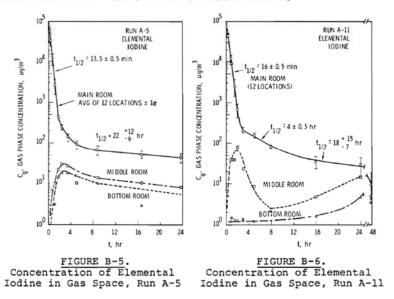
なお、NUPEC 報告書では、Nuclear Technology "Removal of Iodine and Particles by Spray in the Containment Systems Experiments"の記載(CSE A6 実験)より、「CSE A6 実験の無機ヨウ素の濃度変化では、時刻 0分で濃度 $10^5~\mu\,\mathrm{g/m^3}$ であったものが、時刻 30 分で $1.995\times10^4~\mu\,\mathrm{g/m^3}$ となる。」としており、これらの数値を上式に代入することで、元素状よう素の自然沈着速度 9.0×10^{-4} ($1/\mathrm{s}$) を算出している。これは事故初期のよう素の浮遊量が多く、スプレイが降っていない状態下での挙動を模擬するためと考えられる。なお、米国 SRP6. 5.2 では原子炉格納容器内の元素状よう素濃度が 1/200 になるまでは元素状よう素の除去が見込まれるとしている。今回の事故シーケンスの場合、元素状よう素が DF (除染係数)=200 に到達する時期は、「Gap-Release」~「Late In-Vessel」の放出が終了した時点(放出開始から 11.8 時間)となる。原子炉格納容器に浮遊している放射性物質量が放出された放射性物質量の数 100 分の 1 程度に低下する時点までは自然沈着速度がほぼ一定であることがわかっており、原子炉格納容器内の元素状よう素はその大部分が事故初期の自然沈着速度に応じて除去される。よって、ここでは代表的に事故初期の自然沈着速度を適用している。

CSE A6 実験の詳細は前述の Nuclear Technology の論文において BNWL- 1244 が引用されている。 参考として,BNWL-1244 記載の原子炉格納容器内元素状よう素の時間変化を次に示す。この中で元素状よう素の初期濃度は $10^5~\mu~g/m^3$ となっており,泊発電所 3 号炉の原子炉格納容器に浮遊するよう素の濃度と同程度である。

参考: BNWL-1244, "Removal of Iodine and Particles from Containment Atmospheres by Sprays-Containment Systems Experiment Interim Report"

注:本実験では、スプレイ添加物としてアルカリ(NaOH)が用いられているが、沈着速度算出には スプレイが降る前の濃度の値を用いているため、スプレイ添加物の影響を受けない。

CSE 実験の適用性について


CSE 実験の条件と泊発電所3号炉の比較について第1表にまとめる。また、NUPEC の報告書においては、スプレイ水が添加される前の期間のよう素濃度を基に自然沈着速度を設定しているため、スプレイ水による CV 内壁等への濡れはない。これは、CV 内壁等の濡れによるよう素の沈着促進を無視していることから保守的な取り扱いと考える。

		泊発電所3号炉		
	A-6 (1) (2)	A-5 (3)	A-11 (3)	解析結果
雰囲気	蒸気+空気	同左	同左	同左
雰囲気圧力 (MPaG)	約 0. 20	約 0.22	約 0.24	約 0. 335* ²
雰囲気温度 (℃)	約 120	約 120	約 120	約 138*³
スプレイ	間欠的に有り*1	なし	なし	あり (元素状よう素に 対しては自然沈着 のみ考慮)

第1表 CSE 実験条件と泊発電所3号炉の比較

- (1) R. K. Hilliard et. al, "Removal of iodine and particles by sprays in the containment systems experiment", Nucl. Technol. Vol 10 pp499-519, 1971
- (2) R. K. Hilliard et.al, "Removal of iodine and particles from containment atmospheries by sprays", BNWL-1244
- (3) R. K. Hilliard and L. F. Coleman, "Natural transport effects on fission product behavior in the containment systems experiment", BNWL-1457
- *1:自然沈着速度の算出には第1回目のスプレイが降る前の格納容器内 よう素濃度の値を用いている。
- *2:格納容器過圧破損防止シーケンスの解析値
- *3:格納容器過温破損防止シーケンスの解析値

自然沈着のみのケース (A-5, A-11) の容器内気相部濃度を以下に示す。初期の沈着については、スプレイあり (A-6) の場合と大きな差は認められない。また、初期濃度より 1/200 以上低下した後に沈着が緩やかになること (カットオフ) が認められる。

第2表 CSE 実験における沈着の等価半減期

	A-6 (2)	A-5 ⁽³⁾	A-11 (3)
初期	12 分	13.5分	16 分
カットオフ後 (ノミナル値)	540 分(9 時間)*4	22 時間	18 時間
カットオフ後 (誤差込)	(記載なし)	34 時間	33 時間

*4:スプレイが行われた後の値

後期の沈着の影響評価として、感度解析を実施した。条件を第3表に、結果を第4表に示す。 これより、カットオフ後の沈着速度はCV外への元素状よう素の放出割合に対して影響が小さい ため、現行の評価条件は妥当と考える。

第3表 感度解析条件

	ベース条件	感度解析
等価半減期	12 分	同左
(初期)	(沈着速度 9E-4 s-1)	円 左
/** /π* \/. * -\ * \ \#	同上	40 時間
等価半減期		(A-5実験結果の34時間(誤
(カットオフ DF=200 後)		差込み) に余裕を見た値)

第4表 感度解析結果

	ベース条件	感度解析
よう素の CV 外への放出割合	3. 6E-4	3. 7E-4
(炉心インベントリ比)	(1.00) *	(1.03) **

[※] カッコ内はベース条件に対する割合

今回の評価では、CSE 実験における実験開始後 30 分までの元素状よう素の濃度減少から求めた 自然沈着率を使用している。ここで、CSE 実験において、DF=200 に達する時間までの元素状よう 素の濃度減少から自然沈着率を求めた場合の影響を以下に示す。

CV 内の自然沈着率を設定した根拠としている A-6 試験については、スプレイされることでスプレイによる除去効果があるため、初期濃度に対して DF=200 に達するまでの傾きは、現状の評価に使用している自然沈着のみの傾きよりも大きく、除去効率は大きくなる。

また、スプレイされない試験の結果として、同じく CSE の試験結果 (A-5, A-11 試験) を基に自然沈着率を用いた場合においては、前述のとおり、初期の自然沈着率は現状の評価に使用している自然沈着率と大きな違いはない。さらに、A-5 試験及び A-11 試験の CV 内のよう素濃度はDF=200 付近まで沈着速度は低下していない。したがって、DF=200 まで一定の自然沈着率を用いることは問題ないと考える。

なお、仮に A-5 試験及び A-11 試験のうち等価半減期の長い A-11 試験の結果から得られる等価 半減期 16 分を用いてよう素の CV 外への放出割合について算出した結果を第5表に示す。評価結 果は第5表に示すとおり、他の試験結果から得られる自然沈着率を用いても現状の A-6 試験結果 から得られる自然沈着率と比べて差異は小さいと言える。

第5表 自然沈着率を変動させた場合のよう素のCV外への放出割合

	申請ケース	感度解析①	感度解析②
等価半減期(初期)	12 分	同左	16 分※1
等価半減期(DF=200 到達後)	同上	40 時間※2	同左
よう素の CV 外への放出割合	約 3.6E-04	約 3.7E-04	約 3. 7E-04
申請ケースに対する比	1.00	1. 03	1.04

※1: A-11 試験の結果より設定した値

※2:A-5試験の結果に余裕を見込んで設定した値

また,自然沈着率は評価する体系の区画体積と内面積の比である比表面積の影響を受け,比表面積が大きいほど自然沈着率は大きくなる。

そこで、CSEの試験体系と泊発電所3号炉の比表面積について第6表に示す。

第6表に示すとおり、CSE 試験体系と泊発電所3号炉は同等の比表面積となっており、CSE の試験で得られた沈着速度は泊発電所3号炉に適用可能である。

第6表 CSE 試験と泊発電所3号炉の比表面積の比較

	CSE 試験体系	泊発電所3号炉
体積(m³)	約 600	約 65, 500
表面積(m²)	約 570	約 69,000
比表面積(m-1)	約 0.96	約 1.05

(参考) CSE 試験体系

TABLE I Physical Conditions Common to All Spray Experiments

Volume above deck including drywell Surface area above deck including		21 005 ft ³	595 m³
drywell		6 140 ft ²	569 m ²
Surface area/volume		0.293/ft	0.958/m
Cross-section area, main		490 ft ²	45.5 m ²
Cross-section area, dryv		95 ft ²	8.8 m ²
Volume, middle room		2 089 ft ³	59 m ³
Surface area, middle room		1 363 ft ²	127 m ²
Volume, lower room		3 384 ft ³	96 m ³
Surface area, lower room		2 057 ft ²	191 m ²
Total volume of all rooms		26 477 ft ³	751 m ³
Total surface area, all rooms		9 560 ft ²	888 m ²
Drop fall height to deck		33.8 ft	10.3 m
Drop fall height to drywell bottom		50.5 ft	15.4 m
Surface coating All interior su phenolic paint			ed with
Thermal insulation All exterior su 1-in. Fibergla			

^aTwo coats Phenoline 302 over one coat Phenoline 300 primer. The Carboline Co., St. Louis, Missouri. $^{b}k=0.027$ Btu/(h ft²) (° F/ft) at 200°F, Type PF-615, Owens-Corning Fiberglas Corp.

参考:その他の知見(PHEBUS FP 試験)に対する考察について

PHEBUS-FP 計画は、カダラッシュ研究所の PHEBUS 研究炉を用いて、炉心から格納容器に至る FP が移行する過程を、ホットレグ、コールドレグ配管、蒸気発生器等を設置した原子炉システム を模擬した体系で総合的な実験を行ったものである。

試験は約23 GWd/t燃焼した使用済み燃料を18本,未照射燃料棒2本等を使用し,十分な水蒸気雰囲気下で1996年7月に実施された。

PHEBUS FP試験装置の概念図を第1図に示す。

試験は出力を上昇させて燃料を損傷させるフェーズの後, 1次回路系が閉じられて格納容器が隔離される。この状態で2日程の格納容器が隔離されたエアロゾルフェーズ,約20分の格納容器下部に沈着したFPを下部サンプに洗い流す洗浄フェーズが取られ格納容器内のFP濃度の測定が行われる。その後,2日程度の格納容器のよう素の化学挙動を確認する化学フェーズが取られ、サンプ水を含めたFP挙動が調べられる。

PHEBUS FP試験の結果を第2図に示す。エアロゾルフェーズにおける格納容器内のガス状よう素 (元素状よう素及び有機よう素) の割合は放出後の時間が経過するにつれて約0.05 % (炉心インベントリ比) まで十分低下することが分かり、また時間の経過とともに濃度低下の傾向が小さくなることがわかる。測定データがエアロゾルフェーズ (格納容器隔離後) の値であり、FP放出後 数時間経過していることから、この挙動は前述のCSE実験と同様の傾向である。

- (1) 原子力発電技術機構, 重要構造物安全評価(原子炉格納容器信頼性実証事業) に関する総 括報告書, 平成 15 年
- (2) 原子力発電技術機構, 重要構造物安全評価(原子炉格納容器信頼性実証事業) に関する総 括報告書(要約版), 平成15年

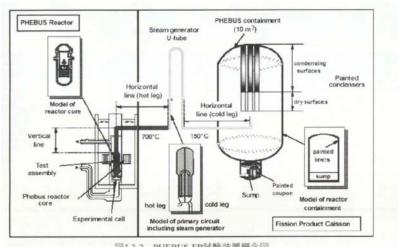
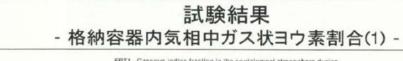
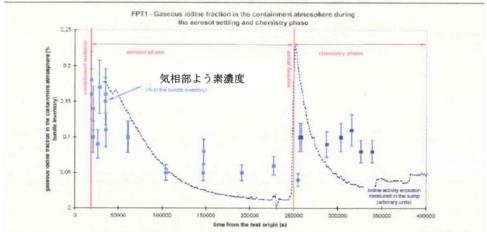




図3.3-2 PHEBUS-FP試験装置概念図

第1図 PHEBUS FP 試験装置 (1)

●格納容器内のガス状ヨウ素割合(炉心インペントリに対する割合)は、エアロゾルフェーズ初期で約 0.2%*から後期で0.05%*程度まで徐々に減少、洗浄後の化学フェーズでは0.1%*程度とほぼ一定 (注)格納容器 (ソヘントリに対する割合では、それぞれ約0.3%, 0.08%, 0.15% (格納容器への放出割合が 約64%のため)

第2図 PHEBUS FP 試験結果 (2)

原子炉格納容器等へのエアロゾルの沈着効果について

重大事故時の居住性に係る被ばく評価において,原子炉格納容器内におけるエアロゾルの自然 沈着について,財団法人 原子力発電技術機構(以下,「NUPEC」とする。)による検討「平成9年 度 NUREG-1465のソースタームを用いた放射性物質放出量の評価に関する報告書」(平成10年3 月)(以下,「NUPEC報告書」とする。)において,エアロゾルの重力沈着速度を用いたモデルが検 討されている。

このモデルの概要を以下に示す。

原子炉格納容器内での重力沈降速度をV_dとすると,原子炉格納容器内の核分裂生成物の沈着による減少率は,原子炉格納容器内が一様に混合されているものとし,以下の式から求められる。 なお,泊発電所3号炉の原子炉格納容器床面積及び原子炉格納容器自由体積の値を用いている。

$$\lambda_{\rm d} = V_{\rm d} \frac{A_{\rm f}}{V_{\rm g}} = 6.65 \times 10^{-3} \ (1/\text{F})$$

λ_d : 自然沈着率 (1/s)

V_a : 重力沈降速度 (m/s)

A_f : 原子炉格納容器床面積 (m²)

(泊発電所3号炉 1,250 m²)

 $V_{\rm g}$: 原子炉格納容器自由体積 $({
m m}^3)$

(泊発電所 3 号炉 65,500 m³)

ここで、Vdの算出については、エアロゾルが沈降する際の終端速度を求める式であるストークスの式を適用し、以下のように表される。

$$V_{d} = \frac{2r_p^2(\rho_p - \rho_g)g}{9\mu_g} \approx \frac{2r_p^2\rho_pg}{9\mu_g}$$

 r_p :エアロゾル半径(m)

 ρ_p : エアロゾル密度(kg/m³)

 ρ_g : 気体の密度 (kg/m^3) g : 重力加速度 (m/s^2)

μ_g : 気体の粘度(Pa・s)

各パラメータの値を第1表にまとめる。なお、ここで示したパラメータは NUPEC 報告書に記載されている値である。

パラメータ 値 備考 エアロゾル半径 r_p (m) 0.5×10^{-6} 粒径 $1~\mu$ m のエアロゾルを想定 エアロゾル密度 ρ_p (kg/m³) 3.2×10^3 NUPEC 報告書より 気体の密度 ρ_g (kg/m³) - エアロゾル密度と比べ小さいため無 視 重力加速度 g (m/s²) 9.8 理科年表より 気体の粘度 μ_g (Pa・s) 1.8×10^{-5} NUPEC 報告書より

第1表 評価に用いたパラメータ

よって、
$$\lambda_d = 9.68 \times 10^{-5} \times 1250 / 65500 = 1.847 \times 10^{-6} (1/s)$$

= $6.649 \times 10^{-3} (1/時) \rightarrow 6.65 \times 10^{-3} (1/時) となる。$

(参考)

NUPEC「平成 9 年度 NUREG-1465 のソースタームを用いた放射性物質放出量の評価に関する報告書 (平成 10 年 3 月)」抜粋

(1) 自然沈着

・希ガス 指針類及び設置許可申請書と同様に沈着しない。

・有機ヨウ素(ガス) 指針類及び設置許可申請書と同様に沈着しない。

・無機ヨウ素 (ガス) 9.0×10⁻⁴ (1/s):自然沈着率 (λ_δ)

CSE A6実験⁽³⁾の無機ヨウ素の濃度変化では、時刻0分で濃度 10^5 μ g/m³であったものが、時刻30分で $1.995 \times 10^4 \mu$ g/m³となる。

$$\lambda_d = -\frac{1}{30 \times 60} \log \left(1.995 \times 10^4 / 10^5 \right) = 9.0 \times 10^{-4} (1 / s)$$

・CsI(エアロゾル) 1.9×10⁻⁶ (1/s):自然沈着率 (λ_d)

1μmの大きさのエアロゾルの重力沈降速度を用い、雰囲気中に一様に混合していると仮定して、格納容器床面積と自由体積との比を乗じて求められる。

$$V_{d} = \frac{2 r_{p}^{2} (\rho_{p} - \rho_{g}) g}{9 \mu_{g}} \approx \frac{2 r_{p}^{2} \rho_{p} g}{9 \mu_{g}}$$
$$= \frac{2 \times (1 \times 10^{-6} / 2)^{2} \times 3.2 \times 10^{3} \times 9.8}{9 \times 1.8 \times 10^{-5}} = 9.68 \times 10^{-5} (\text{m} / \text{s})$$

$$\lambda_d = V_d \frac{A_F}{V_G} \approx 9.68 \times 10^{-5} \times \frac{\pi \times 21.5^2}{73700} = 1.9 \times 10^{-6} (1 / s)$$

・Cs,Te,Sr,Ru,Ce,La CsIと同じ扱いとする。

スプレイによるエアロゾルの除去速度の設定について

重大事故時に炉心から格納容器へ放出されるガス状,粒子状の放射性物質は,沈着や拡散だけでなくスプレイによる除去等の効果によっても,原子炉格納容器内での挙動に影響を受ける。従って,NUREG-1465 や MAAP にはこれらの挙動に係る評価式,評価モデル或いは実験に基づき設定された値等が示されており,審査ガイドでもこれら効果の考慮について示されている。

このうちエアロゾルに対するスプレイ効果の考慮について、本評価で知見として参考とした NUREG-1465ではその効果について適切に考慮することとされていることも踏まえ、SRP6.5.2において示されるエアロゾルに対するスプレイ効果及び NUPEC 実験結果に基づいたスプレイ効率を用いることとする。設定の考え方について以下に整理した。

SRP6.5.2 エアロゾルに対するスプレイ効果の式

米国 SRP6.5.2 では、スプレイ領域におけるスプレイによるエアロゾルの除去速度を以下の式により算出している。

この評価式は、米国新設プラント(US-APWR、AP-1000)の設計基準事象に対する評価においても用いられており、また、シビアアクシデント解析コードである MELCOR や MAAP に組み込まれているものである。

$$\lambda_S = \frac{3hFE}{2V_SD}$$

λς:スプレイ除去速度

h :スプレイ液滴落下高さ

 V_S :スプレイ領域の体積

F : スプレイ流量

E: 捕集効率

D : スプレイ液滴直径

また、米国 R. G. 1. 195 でもエアロゾルのスプレイ効果として、下記のとおり SRP6. 5. 2 が適用可能としていることから、本評価にも用いている。

2.3 Reduction in airborne radioactivity in the containment by containment spray systems that have been designed and are maintained in accordance with Chapter 6.5.2 of the SRP¹

(Ref. A-1) may be credited. An acceptable model for the removal of iodine and particulates is described in Chapter 6.5.2 of the SRP.

2. スプレイ効率 (E/D) の設定について

今回の評価では、E/Dを7と設定した。その妥当性について以下に示す。

(1) NUPEC 試験

「重要構造物安全評価(原子炉格納容器信頼性実証事業)に関する総括報告書 平成 15 年 3 月 財団法人 原子力発電技術機構」において、シビアアクシデント時のスプレイの効果について模擬試験及び評価が以下の通り実施されている。その結果を適用し、本評価ではスプレイ効率(E/D)を7と設定する。

なお、エアロゾルに対するスプレイ効果については、エアロゾルの除染係数 (DF) がある値に達すると除去速度が緩やかになるという NUREG/CR-0009 の結果に基づき、今回の評価では、除去速度が緩やかになる時点の DF を「カットオフ DF」と定義し、SRP6. 5.2 にて提案されているカットオフ DF と同じ 50 と設定した。SRP6. 5.2 では DF50 到達以降、E/D を 1/10 とするとの考え方も示されており、その考えに従い、カットオフ DF50 を超えた後のスプレイ効果については、E/D=0.7 として除去速度を算出した。

さらに、同図中には前述のBWRの場合の結果と同様に、NUREG-1465⁽¹⁾から評価したエアロゾル濃度計算値を実線及び破線で示した。これから、PWRの場合にもNUREG-1465で用いているE/D=1の値はスプレイによる除去効果を過小評価し、この場合のE/Dの値は約7で試験結果とほぼ一致することが分かる。これは、BWRの場合と同様主に蒸気凝縮(拡散泳動)によるエアロゾル除去効果がスプレイ期間中の予測値よりも大きいことを示している。

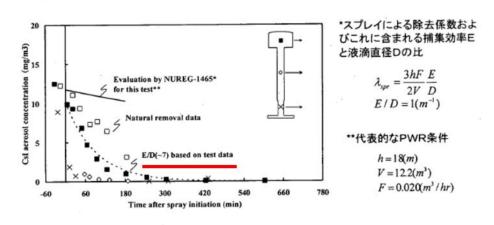


図3.2-12 PWR模擬試験(基本条件)結果とNUREG-1465評価値との比較

(2) 泊発電所3号炉への適用

泊発電所3号炉の今回の評価では、NUPEC模擬試験に基づき、E/D=7としている。

NUPEC 模擬試験では、PCCV4 ループプラントのシビアアクシデント状況を想定し、スプレイによる除去効果を確認した結果、スプレイ粒径 1.5 mm の条件の下で、E/D=7 との結果が得られている。

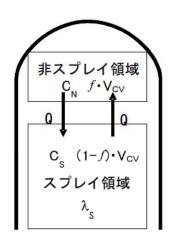
PCCV プラントと鋼鉄 CV プラントの泊発電所3号炉では、重大事故時の温度や圧力について

若干の差があるものと思われるが、CSE 実験での結果から、温度、圧力等の条件の違いがスプレイ効率に与える影響は小さいのに対し、スプレイ粒径は大きく影響を与えることがわかる (添付-1 参照)。

よって、NUPEC の試験結果である E/D=7 を適用するためには、スプレイ粒径が 1.5~mm を上回らないことを確認する必要がある。

この試験では,実機条件でのスプレイノズル 1 個あたり約 1 m^3/h を模擬しており,このときのスプレイ液滴径が 1.5 mm であった。泊発電所 3 号炉では代替格納容器スプレイポンプによるスプレイで使用するスプレイリングヘッダに 100 個のスプレイノズルが設置されているため,スプレイ粒径 1.5 mm 以下を達成するためには,スプレイポンプ流量 100 m^3/h 以上(スプレイノズル 1 個あたり約 1 m^3/h)が必要である。今回の評価で用いた泊発電所 3 号炉の代替格納容器スプレイ流量は 140 m^3/h (> 100 m^3/h)であり,スプレイ粒径 1.5 mm 以下を達成できているため,E/D=7 を適用することは妥当である。

3. エアロゾル除去速度の算出


1. で示した SRP6. 5. 2 のエアロゾルに対するスプレイ領域でのスプレイ効果の式を用い, 2. で示したスプレイ効率 (E/D), 泊 3 号炉でのスプレイ液滴落下高さ, スプレイ領域の体積及 びスプレイ流量にてエアロゾル除去速度を算出した。

ここでの評価では、今回の評価事象を考慮し、スプレイするための動的機器を代替格納容器スプレイポンプとする。この場合、代替格納容器スプレイは流量も小さく、そのカバー範囲も小さい。そのため、評価においては、原子炉格納容器内でスプレイ水がかからない領域(非スプレイ領域)があることを考慮して、エアロゾル除去速度を算出している。

非スプレイ領域においては、スプレイによるエアロゾル除去効果を直接的に見込むことは できないが、原子炉格納容器内空気の対流による混合効果によって、非スプレイ領域内空気 がスプレイ領域に移行することで、間接的に除去される。

米国 Regulatory Guide 1.183 では、スプレイによるエアロゾルの除去効果を評価する際には非スプレイ領域を考慮すること、スプレイ領域と非スプレイ領域の混合割合は非スプレイ領域が 1 時間に 2 回循環するとしていることから、今回の評価でも、非スプレイ領域を考慮し、混合割合は非スプレイ領域が 1 時間に 2 回循環することとする (添付-2 参照)。

評価の概略図を以下に示す。格納容器内全体積 V_{CV} に対する非スプレイ領域の体積割合を f とし、非スプレイ領域においてはスプレイによる除去効果がないものとする。領域 i における浮遊エアロゾル濃度を C_i とし、非スプレイ領域とスプレイ領域の間には、流量Q の空気循環があり、スプレイ領域へ移行したエアロゾルはスプレイにより除去されると考える。

このモデルにおける非スプレイ領域及びスプレイ領域のエアロゾル濃度の時間変化及び 格納容器内の浮遊エアロゾル量は、次式で評価した。

$$\begin{cases} \frac{dC_{N}}{dt} = -\frac{1}{f \cdot T} \cdot (C_{N} - C_{S}) \\ \frac{dC_{S}}{dt} = \frac{1}{(1 - f) \cdot T} \cdot (C_{N} - C_{S}) - (\lambda_{S} \cdot C_{S}) \end{cases}$$

$$N_{\rm E}(t) = (f \cdot C_{\rm N} + (1 - f) \cdot C_{\rm S}) \cdot V_{\rm CV}$$

 C_i : 領域 i における浮遊エアロゾル濃度 (Bq/ \mathbf{m}^3)

 $N_{\it F}$: 非スプレイ領域考慮時の CV 内エアロゾル量 (Bq)

f : 非スプレイ領域体積割合 (-)

(泊発電所3号炉 93%)

T: CV 内空気混合時間(h)

 $T \equiv \frac{V_{\text{CV}}}{Q}$: (CV 内の空気が十分に混合するまでの時間)

V_{CV} : CV 内自由体積(m³)

(泊発電所3号炉 65,500 m3)

O: CV 内空気循環流量(m3/h)

(泊発電所 3 号炉 122,000 m3)

 λ_{s} : スプレイ領域のスプレイによるエアロゾル除去係数 (h^{-1})

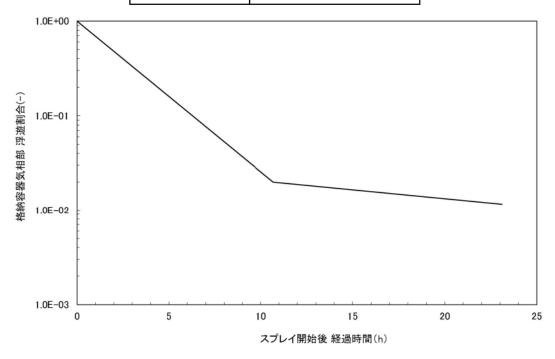
 $V_{
m S}$: スプレイ領域体積

(添字 N:非スプレイ領域, S:スプレイ領域)

ただし、 λ_s はスプレイ領域における除去係数であり、原子炉格納容器全体の体積から非スプレイ領域を差し引いた残りの領域でのスプレイ除去係数である。よって、SRP6.5.2 で示さ

れている「 $V_{\rm S}$ 」は、スプレイ領域体積として、 $V_{\rm CV} imes (1-f)$ として考える。

上記モデルを使用し、非スプレイ領域を考慮した原子炉格納容器内全体の浮遊エアロゾル のスプレイ除去速度を算出した。


なお、エアロゾルに対するスプレイ効果については、エアロゾルの除染係数 (DF) がある値に達すると除去速度が緩やかになるという NUREG/CR-0009 の結果に基づき、今回の評価では、除去速度が緩やかになる時点の DF を「カットオフ DF」と定義し、SRP6. 5. 2 にて提案されているカットオフ DF と同じ 50 と設定した。SRP6. 5. 2 ではカットオフ DF が 50 を到達以降は、E/D を 1/10 とするとの考え方も示されており、その考えに従い、カットオフ DF50 を超えた後のスプレイ効果については、E/D=0.7 として除去速度を算出した。

以上のことから、本評価におけるスプレイによるエアロゾル除去速度として第1表のよう に設定した。

また、第1表をグラフで表したスプレイ除去効果のモデルを第1図に示す。

カットオフ DF エアロゾル除去速度
DF < 50 0.36 (1/時)
DF ≥ 50 0.043 (1/時)

第1表 エアロゾル除去速度

第1図 スプレイ除去効果のモデル

CSE データ ("Removal of Iodine and Particles by Sprays in the Containment Systems Experiment" Nuclear Technology Vol. 10, 1971)

CSE での各試験での条件表を以下に示す。

TABLE II Experimental Conditions-CSE Spray Tests

	Run	Run	Run	Run	Run	Run
	A-3	A-4	A-6	A-7	A-8	A-9
Atmosphere	Air	Air	Steam-air	Steam-air	Steam-air	Steam-ai
Temperature, °F	77	77	250	. 250	250	250
Pressure, psia	14.6	14.6	44	50	48	44
Nozzle type Drop MMD, $\mu^{\rm d}$ Geometric standard deviation, σ	1210 1.53	1210 1.53	1210 1.53	1210 1.53	770 1.50	1220 1,50
Number of nozzles	3	12	12	12	12	12
Spray rate, gal/min	12.8	48.8	49	49	50.5	145
Total spray volume, gal	510	1950	1960	1960	2020	2300
Spray solution	c	e	ı	g	f	ſ

^aSpraying Systems Co. 3/4 7G3, full cone. ^bSpraying Systems Co. 3/8 A20, hollow cone. ^cSpraying Systems Co. 3/4 A50, hollow cone. ^dMass median diameter.

TABLE IX Summary of Initial Spray Washout Coefficients

	λ_S Observed, min ^{-1a}			
Run No.	Elemental Iodine	Particulate Iodine	Iodine on Charcoal Paper	Total Inorganic ^b Iodine
A-3	0.126	0.055	0.058	0.125
A-4	0.495	0.277	0.063	0.43
A-6	0.330	0.32	0.154	0.31
A-7	0.315	0.31	0	0.20
A-8	1.08	0.99	0.365	0.96
A-9	1.20	1.15	0.548	1.14

aFor first spray period, corrected for natural removal on vessel surfaces.

この結果から, 温度及び圧力を変化させて試験を実施した A-4, A-6 及び A-7 での"Particulate Iodine"の結果を比較すると、数割の範囲で一致しており、大きな差は生じていない。これに対 し、スプレイ粒径を小さくした A-8 では、3 倍以上スプレイ効率が向上していることがわかる。

 $^{^\}circ525$ ppm boron as $\rm H_2BO_3$ in NaOH, pH 9.5. f3000 ppm boron as $\rm H_2BO_3$ in NaOH, pH 9.5. 83000 ppm boron as $\rm H_2BO_3$ in demineralized water pH 5.

また、この条件で得られたスプレイ効率の結果を以下に示す。

bIncludes iodine deposited on Maypack inlet.

スプレイ領域と非スプレイ領域の取り扱いについて

エアロゾルの除去効果については、別紙に示される条件で実施された NUPEC 試験を基にスプレイ効率と液滴径の比として E/D=7 を用いている。

NUPEC 試験では、下記のとおり CV 自由体積及び代替スプレイ流量を模擬してスケールダウンした体系を用いていることから、E/D=7 の中に CV 内の流動の効果も加味されたものとなっている。

同様に、PWRの場合、代表プラントとして国内で運転中の大容量プラントである110万 KWe級の4ループを選定した。この場合、本試験で使用する模擬格納容器は実機と比較して体積比で約1/5900であり、一方、AM条件で使用するノズル数は全数の一部(最下段からのスプレイへッダのみ;120個程度)と少ないため、本試験で使用するスプレイノズルの個数は1個以下となる。すなわち、PWR模擬試験においては実機のスプレイノズルをそのまま使用できないため、FP除去効果に影響を及ぼすと考えられるAMスプレイ時の液滴径分布をできる限り模擬しうるシミュレータノズルを使用することとした。また、スプレイ流量に関しては、AM時のスプレイ流量が約120 ton/hrであり、これを1/5900でスケールダウンして、シミュレータノズル1個で0.34リットル/minを基準条件とした。

そのため, E/D=7 を評価に用い, 更に非スプレイ領域によってエアロゾルの除去が見込めない 効果を取り込むことは下記のとおり保守的な扱いとなる。

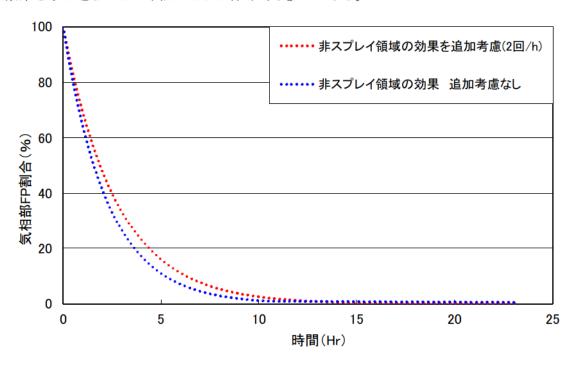


図 スプレイ除去効果の比較

(別紙) NUPEC PWR 模擬試験条件

表3.2-3 PWR模擬試験条件

	表3.2-3 PV	WR模擬試験条件	
	実機プラント	本試験	注記
対象シナリオ	AHF	- 同左	
対象プラント	PWR4ループ炉	同左	
CV体積	71,700m ³	12.2m³	初期水量2000m³を減じ る。スケール比1/5877
CV高さ	20m	同左	
スプレイノズル個数	120	1	
スプレイ流量	120m³/hr	0.34L/min	
ノズル型式	新倉EX554L	シミュレータノズル	
ノズル出口径	10mm	1.2mm	
スプレイ液滴径	1500ミクロン(ダウタ径)	1470ミクロン(ザウタ径)	
散布形態	約10hr 連続	同左	
スプレイ水温	303K	同左	
スプレイ水質	中性	同左	
CV初期全圧	0.52MPa	同左	,
水蒸気分圧	0.39MPa	同左	
Air分圧	0.12MPa	同左	N ₂ で代用
H ₂ 分圧	0.01MPa	同左	Heで代用
CV初期温度	415K	同左	
CV初期水位	(不明)	100mm	BWR基本ケースに合わ せた
エアロゾル種類	CsI	同左	
Csl濃度	0.01g/m ³	同左	
CsI粒径	1ミクロン	同左	幾何標準偏差は2.0
試験中のCsI供給	無し	同左	
崩壊熱	3,411MWt	4.3 kW	実機は原子炉停止後10 間の崩壊熱レベル (定権 出力の0.7%) 、 試験は一定で供給
蒸気の状態	飽和蒸気	同左	
蒸気供給高さ	CV下部	同左	

原子炉格納容器漏えい率の設定について

重大事故時の居住性に係る被ばく評価において、原子炉格納容器からの漏えい率については、 有効性評価で想定する事故収束に成功した事故シーケンスのうち、原子炉格納容器内圧力が高く 推移する事故シーケンスである「大破断 LOCA 時に ECCS 注入及び CV スプレイ注入を失敗するシーケンス」における原子炉格納容器内の圧力解析結果に対応した漏えい率に余裕を見込んだ値を設 定している。

原子炉格納容器からの漏えい率は、原子炉格納容器内圧力が最高使用圧力の 0.9 倍の圧力以下の場合は(1)に示す式を、超える場合は(2)に示す式を使用する。

(1) 原子炉格納容器内圧力が最高使用圧力の 0.9 倍以下の場合

最高使用圧力の 0.9 倍以下の漏えい率を保守的に評価するために差圧流の式 (これまでの設計事象にて使用) より算出する。

$$\frac{L_t}{L_d} = \sqrt{\frac{\Delta P_t}{\Delta P_d} \cdot \frac{\rho_d}{\rho_t}}$$

L: 漏えい率

Ld : 設計漏えい率

 ΔP : 原子炉格納容器内外差圧 ρ : 原子炉格納容器内密度

d : 添え字 "d" は漏えい試験時の状態を表す

t: 添え字"t"は事故時の状態を表す

(2) 原子炉格納容器内圧力が最高使用圧力の 0.9 倍より大きい場合

圧力が上昇すれば、流体は圧縮性流体の挙動を示すため、原子炉格納容器内圧力が最高使用 圧力の 0.9 倍より大きい場合は圧縮性流体の層流・乱流の状態を考慮する。漏えい率は差圧流 の式、圧縮性流体の層流、または乱流を考慮した式の 3 式から得られる値の内、最大の値とす る。

$$\begin{split} \frac{\mu_d}{\mu_t} \cdot \frac{2k_t}{k_t - 1} \cdot \frac{P_t}{P_d} \cdot \left(\frac{\left(\frac{P_{leak,t}}{P_t} \right)^{\frac{1}{k_t}}}{P_t} - \frac{P_{leak,t}}{P_t} \right)}{\left(\frac{P_{leak,d}}{P_d} \right)^{\frac{1}{k_d}}} - \frac{P_{leak,d}}{P_d} \end{split}$$

$$\frac{L_t}{L_d} = \max \left(\frac{2k_t}{\frac{k_t - 1}{k_t - 1}} \cdot \frac{P_t}{P_d} \cdot \frac{\rho_d}{\rho_t} \cdot \left(\frac{\left(\frac{P_{leak,d}}{P_d} \right)^{\frac{2}{k_d}} - \left(\frac{P_{leak,d}}{P_t} \right)^{\frac{k_t + 1}{k_t}}}{P_t} \right)^{\frac{1}{2}}}{\left(\frac{P_{leak,d}}{P_d} \right)^{\frac{2}{k_d}} - \left(\frac{P_{leak,d}}{P_d} \right)^{\frac{k_d + 1}{k_d}}} \right) \right]$$

$$\to \frac{1}{2}$$

$$\times \left(\frac{\Delta P_t}{\Delta P_d} \cdot \frac{\rho_d}{\rho_t} \right)^{\frac{1}{2}}$$

$$\times \left(\frac{\Delta P_t}{\Delta P_d} \cdot \frac{\rho_d}{\rho_t} \right)^{\frac{1}{2}}$$

$$\to \frac{2}{2}$$

$$\times \left(\frac{\Delta P_t}{\Delta P_d} \cdot \frac{\rho_d}{\rho_t} \right)^{\frac{1}{2}}$$

$$\to \frac{2}{2}$$

$$\times \left(\frac{\Delta P_t}{\Delta P_d} \cdot \frac{\rho_d}{\rho_t} \right)^{\frac{1}{2}}$$

$$\to \frac{2}{2}$$

$$\times \left(\frac{\Delta P_t}{\Delta P_d} \cdot \frac{\rho_d}{\rho_t} \right)^{\frac{1}{2}}$$

$$\to \frac{2}{2}$$

$$\times \left(\frac{\Delta P_t}{\Delta P_d} \cdot \frac{\rho_d}{\rho_t} \right)^{\frac{1}{2}}$$

$$\to \frac{2}{2}$$

$$\times \left(\frac{\Delta P_t}{\Delta P_d} \cdot \frac{\rho_d}{\rho_t} \right)^{\frac{1}{2}}$$

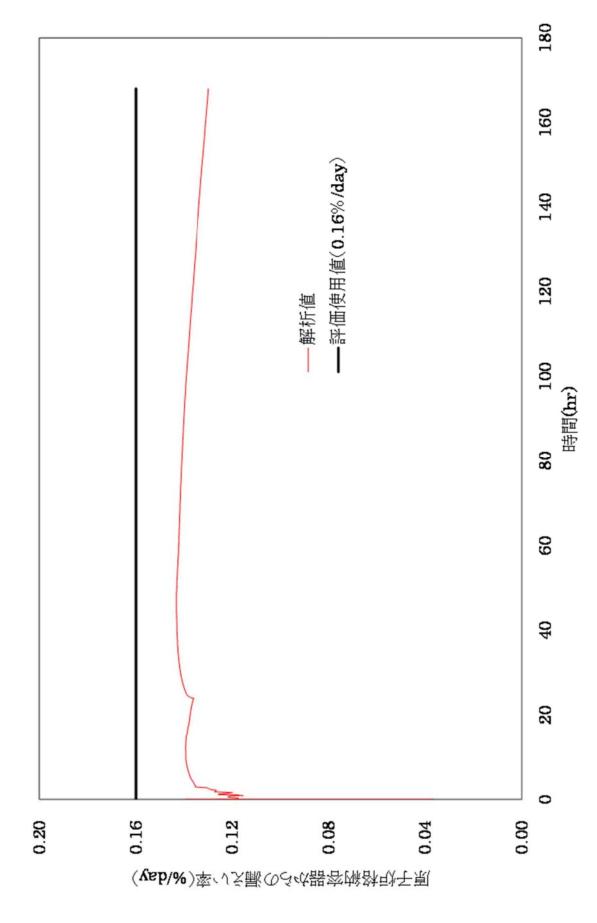
P : 原子炉格納容器内圧力

 P_{leak} : 漏えい口出口での圧力

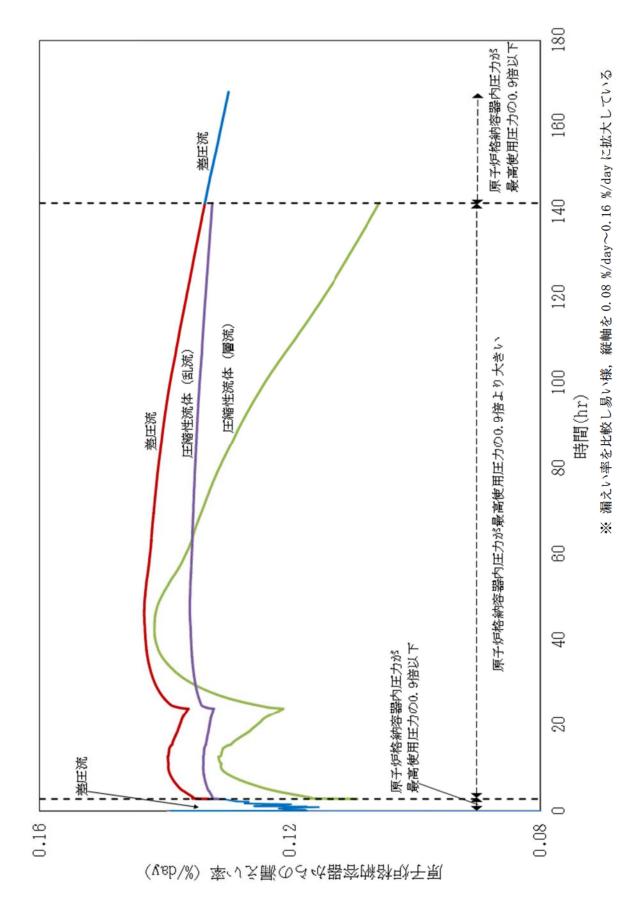
μ : 原子炉格納容器内の気体の粘性係数

k : 原子炉格納容器内の気体の比熱比

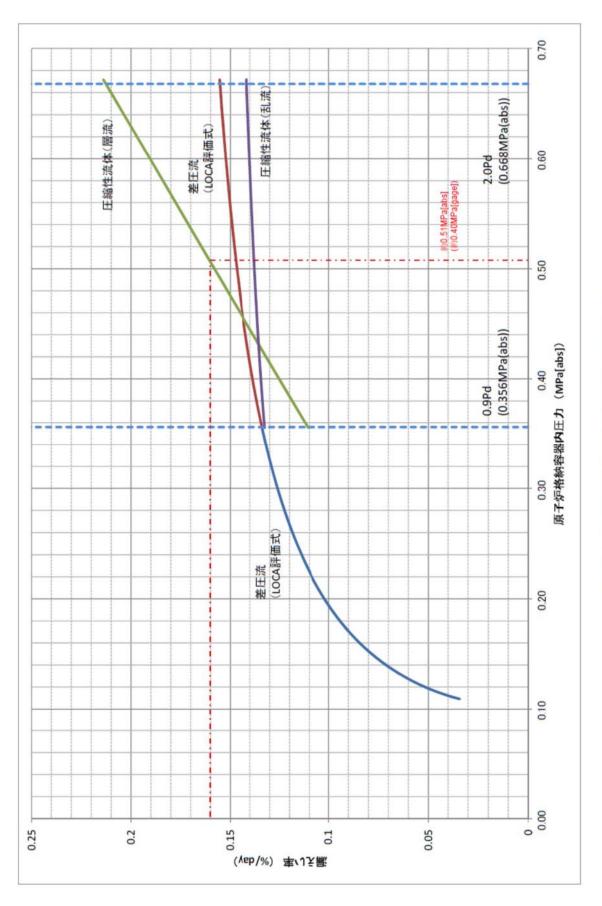
Patm : 大気圧


$$\frac{P_{leak,t}}{P_t} = \max\left(\left(\frac{2}{k_t + 1}\right)^{\frac{k_t}{k_t - 1}}, \frac{P_{atm}}{P_t}\right)$$

$$\frac{P_{leak,d}}{P_d} = \max\left(\left(\frac{2}{k_d+1}\right)^{\frac{k_d}{k_d-1}}, \frac{P_{atm}}{P_d}\right)$$


原子炉格納容器からの漏えい率を第1図に示し、上記(1)、(2)で述べた各流況の式から得られる漏えい率を第2図に示す。

原子炉格納容器内の圧力解析結果(最高値約 0.360 MPa [gage])に対応した漏えい率(約 0.144 %/日)に余裕を見込んだ値として,原子炉格納容器からの漏えい率を事故期間(7 日間)中 0.16 %/日一定に設定している。この時,漏えい率 0.16 %に対する原子炉格納容器圧力は,最も小さい圧縮性流体(層流)を仮定したとしても,第3図に示すとおり約0.40 MPa[gage]であり,原子炉格納容器内圧解析結果に対して余裕をみこんでいる。


なお、上式には温度の相関は直接表れないが、気体の粘性係数、比熱比等で温度影響を考慮 した上で、得られる値のうち最大値を評価している。

第1図 原子炉格納容器内圧力に応じた原子炉格納容器からの漏えい率

原子炉格納容器内圧力に応じた原子炉格納容器からの漏えい率(算出式別) 第2図

第3図:原子炉格納容器内圧力に応じた漏えい率

アニュラス空気浄化設備 空気作動弁の開放手順の成立性について

重大事故時の居住性に係る被ばく評価において想定している,アニュラス空気浄化ファン起動 のための操作の成立性について,下記に示す。

【アニュラス排気ダンパ現場手動開操作、アニュラス全量排気弁代替空気(窒素)供給操作】

1. 操作概要

全交流動力電源喪失時, 炉心損傷時の被ばく低減のため, アニュラス空気浄化ファンを起動 するための排気弁用供給空気の切替え操作を行う。

2. 必要要員数及び操作時間

必要要員数 : 2 名

想定時間(想定):約20分

操作時間(模擬):約17分(移動,放射線防護具着用含む)

3. 操作の成立性

アクセス性:LEDヘッドランプ・LED懐中電灯を携行していることからアクセスできる。 また、アクセスルートに設置されている照明はバッテリ内蔵型であり、事故 環境下においてもアクセスできる。

作業環境:事故環境下における作業エリアの温度は通常運転状態と同等である。また、操作 エリアに設置されている照明はバッテリ内蔵型であり、事故環境下においても 操作できる。汚染が予想される場合は、個人線量計を携帯し、放射線防護具等を 着用する。

操 作性:操作場所は通路付近にあり、容易に操作できる。

窒素ガスボンベを接続するフレキシブル配管は、カップラ接続であり容易かつ確 実に接続できる。ボンベ元弁を開とするための工具はボンベ付近に設置している。

連絡手段:通常時の通信手段として,電力保安通信用電話設備の携帯電話端末(PHS) を携行しており,連続通話で約6時間使用可能である。また,事故環境下において,通常の連絡手段が使用不能となった場合でも,携行型通話装置を使用し中央制御室との連絡を行う。

アニュラス排気ダンパ現場手動操作 (原子炉補助建屋 T.P.40.3m)

アニュラス全量排気弁操作用可搬型 窒素ガスボンベのカップラ接続 (原子炉補助建屋 T.P.40.3m)

窒素供給操作 (バルブパネル操作) (原子炉補助建屋 T.P.40.3m)

窒素供給操作(系統側バルブ操作) (原子炉補助建屋 T.P.40.3m)

【試料採取室排気隔離ダンパ閉処置】

1. 操作概要

アニュラス空気浄化ファン起動のため、ダンパの閉処置を行う。

2. 必要要員数及び操作時間

必要要員数: 1名 操作時間(想定): 30分

操作時間(実績): 23分(移動,放射線防護具着用含む)

3. 作業の成立性

アクセス性: LEDヘッドランプ・LED懐中電灯を携行していることからアクセスで

きる。また、アクセスルートに設置されている照明はバッテリ内蔵型であ

り、事故環境下においてもアクセスできる。

作業環境: 事故環境下における室温は通常運転状態と同等である。また、ダンパ閉処

置作業エリア周辺には、作業を行う上で支障となる設備はなく、LEDへッドランプ・LED懐中電灯を用いることから事故環境下においても作業

できる。

汚染が予想される場合は、個人線量計を携帯し、放射線防護具等を着用す

る。

操作性: ダンパ閉処置作業は、対象ダンパの制御用空気供給弁閉操作と連結シャフ

トを閉側へ回す作業のみであり、容易に実施可能である。

連絡手段: 通常時の通信手段として電力保安通信用電話設備の携帯電話端末(PHS)

を携行しており連続通話で約6時間使用可能である。また,事故環境下に おいて,通常の連絡手段が使用不能となった場合でも,携行型通話装置を

使用し中央制御室との連絡を行う。

ダンパ全景 (原子炉補助建屋T.P.40.3 m)

(制御用空気供給弁閉操作イメージ)

- ① 原子炉補助建屋T.P.40.3 mへ移動し,作業準備を行う。
- ② 対象ダンパの制御用空気供給弁を閉止する。

(連結シャフト、止めネジイメージ)

- ③ ダンパオペレータの連結シャフトの止め ネジを緩める。
- ④ 連結シャフトを閉方向へ操作する。
- ⑤ 閉状態を保持したまま止めネジを締め付ける。

(空気作動ダンパ閉作業イメージ)

フィルタ除去効率の設定について

1. 微粒子フィルタについて

重大事故時の居住性に係る被ばく評価において、中央制御室空調装置及びアニュラス空気浄化 設備の微粒子フィルタによるエアロゾル除去効率の評価条件として 99 %を用いている。上記の 微粒子フィルタについては、納入前の工場検査においてフィルタ除去効率が確保されていること を確認している。

微粒子フィルタのろ材はガラス繊維をシート状にしたもので,エアロゾルを含んだ空気がろ材を通過する際に、エアロゾルがガラス繊維に衝突・接触することにより捕集される。

(1) 中央制御室空調装置の微粒子フィルタ

a. 温度及び湿度条件について

泊発電所3号炉の中央制御室は、原子炉格納容器から離れた位置にあるために、温度や湿度が通常時に比べて大きく変わることはなく、フィルタの性能が低下するような環境にはならない。したがって、微粒子フィルタ除去効率99%は確保できる。

b. 保持容量について

泊発電所3号炉の中央制御室空調装置の微粒子フィルタの保持容量は約2.9 kg/2 枚(全4枚のうち上流側2枚)である。中央制御室(重大事故)居住性に係る被ばく評価で選定した評価事象において原子炉格納容器から放出され、中央制御室内に流入するエアロゾル量は約30 mg である。

これは、安定核種も踏まえて、保守的にアニュラスフィルタによる除去効率を無視し、格納容器から漏えいしてきた微粒子が全て大気中に放出されるとして評価したものである。また、漏えいした微粒子は全て地上から放出されるとして格納容器から中央制御室までの大気拡散(希釈効果)を考慮し、中央制御室内に侵入した微粒子は全量がフィルタに捕集されるものとした。なお、よう素は全て粒子状よう素として評価した。(第5表及び第1図参照)

したがって、中央制御室空調装置の微粒子フィルタには、エアロゾルを十分に捕集できる容量があるので、微粒子フィルタ除去効率 99 %は確保できる。

微粒子フィルタ	中央制御室空調装置
フィルタに捕集されるエアロゾル量	約 30 mg
保持容量	約 2.9 kg

第1表 中央制御室空調装置の微粒子フィルタ保持容量

(2) アニュラス空気浄化設備の微粒子フィルタ

a. 温度及び湿度条件について

本評価で選定した評価事象において、原子炉格納容器内は 150 ℃程度となり、原子炉格納容器からの温度伝播等によりアニュラス内の温度が上昇する。

アニュラス内の温度は最高で 120 ℃程度までの上昇であるため、泊発電所 3 号炉のアニュラス空気浄化設備に設置している微粒子フィルタの最高使用温度を大幅に上回ることはなく、性能が低下することはない。なお、フィルタに捕集された放射性物質の崩壊熱による温度上昇は 1 ℃程度であり、アニュラス内温度への影響は大きいものではない。また、湿度についても、格納容器漏えい率に応じたわずかな湿度上昇はあるものの、アニュラス空気浄化設備起動後は、アニュラス外からの空気混入もあることから、それほど湿度が上がることはないため、フィルタの性能が低下することはない。したがって、微粒子フィルタ除去効率 99 %は確保できる。

b. 保持容量について

泊発電所3号炉のアニュラス空気浄化設備の微粒子フィルタの保持容量は約8.9 kg/6 枚(全12 枚のうち上流側6枚)である。

評価期間中に原子炉格納容器からアニュラス部へ漏えいしたエアロゾルすべてが捕集されるという保守的な仮定で評価した結果が約0.9 kg である。

これは、安定核種も踏まえて、格納容器から漏えいしてきた微粒子が全量フィルタに捕集 されるものとして評価したものである。なお、よう素は全て粒子状よう素として評価した。 (第5表及び第2図参照)

したがって、アニュラス空気浄化設備の微粒子フィルタには、エアロゾルを十分に捕集できる容量があるので、微粒子フィルタ除去効率 99 %は確保できる。

第2表 アニュラス空気浄化設備の微粒子フィルタ保持容量

微粒子フィルタ	アニュラス空気浄化設備
フィルタに捕集されるエアロゾル量	約 0.9 kg
保持容量	約 8.9 kg

2. よう素フィルタについて

重大事故時の居住性に係る被ばく評価において、中央制御室空調装置及びアニュラス空気浄化 設備のよう素フィルタは有機よう素及び元素状よう素の除去効率の評価条件として 95 %を用い ている。上記のよう素フィルタについては、定期事業者検査で上記除去効率が確保できているこ とを確認している。

(1) 中央制御室空調装置のよう素フィルタ

a. 温度及び湿度条件について

先のとおり、泊発電所3号炉の中央制御室は、原子炉格納容器から離れた位置にあるために、温度や湿度が通常時に比べて大きく変わることはなく、フィルタの性能が低下するような環境にはならない。したがって、よう素フィルタ除去効率として95%は確保できる。なお、温湿度条件を踏まえた除去効率の妥当性の詳細については、添付に示す。

b. 吸着容量について

泊発電所3号炉の中央制御室空調装置のよう素フィルタの吸着容量は,約0.43 kg/10 枚である。中央制御室(重大事故)居住性に係る被ばく評価で選定した評価事象において原子炉格納容器から放出され、中央制御室内に流入するよう素量は約25 mg 程度である。これは、「1. 微粒子フィルタについて (1)中央制御室空調装置の微粒子フィルタ」と同様の手法で評価したものである(安定核種も考慮)。ただし、よう素の化学形態は全て元素状よう素または有機よう素とし、中央制御室内に侵入したよう素は全量がよう素フィルタに捕集されるものとした。(第5表及び第3図参照)

したがって、中央制御室空調装置のよう素フィルタには、中央制御室内に流入する全てのよう素量でも十分に吸着できる容量があり、よう素フィルタ除去効率として 95 %は確保できる。

大学 一大学社 工工学会社	200 7 M 2 1 2 7 PH 1 TH I
よう素フィルタ	中央制御室空調装置
フィルタに捕集されるよう素量	約 25 mg
吸着容量	約 0.43 kg

第3表 中央制御室空調装置のよう素フィルタ保持容量

(2) アニュラス空気浄化設備のよう素フィルタ

a. 温度及び湿度条件について

よう素フィルタは、低温条件下での除去性能が低いことが分かっており、重大事故時のような温度が高い状態であれば、化学反応が進行しやすく除去効率が高くなる傾向がある。

また、湿度に対しては、低湿度の方が高い除去効率を発揮できるが、先のとおり、格納容器漏えい率に応じたわずかな湿度上昇はあるものの、アニュラス空気浄化設備起動後は、アニュラス外からの空気混入もあることから、それほど湿度が上がることはない。したがって、温度及び湿度の影響によりフィルタの性能が低下することはなく、よう素フィルタ除去効率

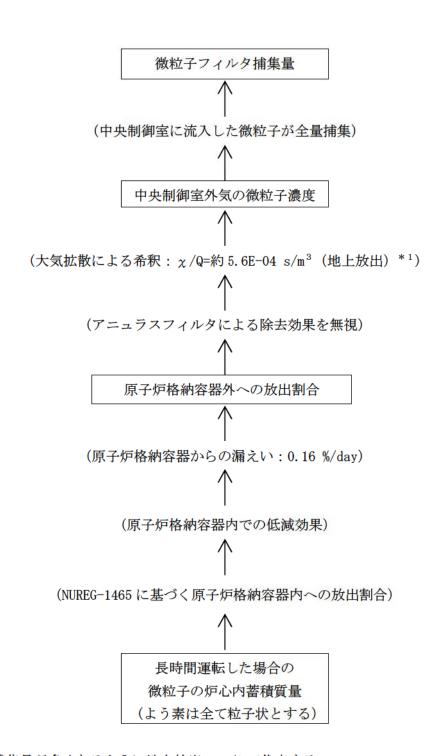
として 95 %は確保できる。なお, 温湿度条件を踏まえた除去効率の妥当性の詳細については, 添付に示す。

b. 吸着容量について

泊発電所3号炉のアニュラス空気浄化設備のよう素フィルタの吸着容量は、約1.4 kg/34 枚である。

評価期間中に原子炉格納容器からアニュラス部へ漏えいしたよう素すべてが吸着される という保守的な仮定で評価した結果が約 20 g である。

これは、「1. 微粒子フィルタについて (2) アニュラス空気浄化設備の微粒子フィルタ」と同様の手法で評価したものである(安定核種も考慮)。ただし、よう素の化学形態は全て元素状よう素または有機よう素とした。(第5表及び第4図参照)


したがって、アニュラス空気浄化設備のよう素フィルタには、よう素を十分に吸着できる 容量があるので、よう素フィルタ除去効率 95 %は確保できる。

第4表 アニュラス空気浄化設備のよう素フィルタ吸着容量

よう素フィルタ	アニュラス空気浄化設備
フィルタに捕集されるよう素量	約 20 g
吸着容量	約 1.4 kg

第5表 炉心内蓄積質量(安定核種を含む)

核種	炉心内蓄積質量
1久1里	(kg)
よう素類	2. 1E+01
(よう素)	(2. 0E+01)
Cs 類	3. 0E+02
Te 類	5. 0E+01
Ba 類	2. 1E+02
Ru 類	6. 9E+02
Ce 類	9. 4E+02
La類	1. 0E+03
合計	3. 2E+03

*1:捕集量が多くなるように地上放出のχ/Qで代表する

第1図 中央制御室空調装置の微粒子フィルタ捕集量評価の過程