泊発電所 3 号炉審査資料		
資料番号	DB33－9	r．4．0
提出年月日	令和4年8月5日	

泊発電所 3 号炉

設置許可基準規則等への適合状況について （設計基準対象施設等）

比較表

第33条 保安電源設備

令和 4 年 8 月
北海道電力株式会社

比較結果等をとりまとめた資料

1．先行審査実績等を踏まえた泊 3 号炉まとめ資料の変更状況（2017 年 3 月以降）

1－1）設計方針•運用•体制などを変更し，まとめ資料を修正した箇所と理由
a．大飯 $3 / 4$ 号炉まとめ資料と比較した結果，変更したもの：なし
b．女川 2 号炉まとめ資料と比較した結果，変更したもの ：なし
c．他社審查会合の指摘事項等を確認した結果，変更したもの：なし
d．当社が自主的に変更したもの
：なし
1－2）設計方針•運用•体制を変更するものではないが，まとめ資料の記載の充実を行った箇所と理由
a．大飯 $3 / 4$ 号炬まとめ資料と比較した結果，変更したもの：なし
b．女川 2 号炉まとめ資料と比較した結果，変更したもの：下記 3 件
－吊り下げ設置型高圧遮断器を使用していない旨の記載の明確化のため，女川まとめ資料2．1．1．1（別添 2 含む ）と同様の記述を 2.1 ．1．1．1（補足 1 含む）に追記した。【比較表 p33－72，76，320，321】
 2．1．3（補足 2）に追記した。【比較表 p33－152，373，374】
－開閉所設備等の耐震性評価に係る記載の明確化のため，女川まとめ資料（2．2．4．2．1（1）含む）と同様の記述を2．1．4．4．1に追記した。【比較表 p33－17，167，169，170】
c．他社審査会合の指摘事項等を確認した結果，変更したもの：なし
d．当社が自主的に変更したもの：下記 1 件
－送電鉄塔の設計に係る風圧荷重に係る記載の明確化のため，令和 2 年 8 月の電気設備の技術基準の解釈の改正に係る内容の記述を 2.1 .3 （補足 2 ）に追記した。【比較表 $\mathrm{p} 33-151$ 】

2．大飯 $3 / 4$ 号炉まとめ資料との比較結果の概要

2－1）設備の相違
－保安電源設備の概要等について，「泊 3 号炉の保安電源設備の特徴」及び「系統概要図」に示す。
保安電源設備の構成•運用に差異があるが，泊 3 号炉と大飯 $3 / 4$ 号炉の基準適合性の考え方に相違はない。

【泊 3 号炉の保安電源設備の特徴】

外部電源系及び非常用所内電源系＞

－泊3号炉再稼働時の構成
＞泊3号炉の外部電源系は，現状，送受電可能な 275 kV 送電線（泊幹線及び後志幹線）2 ルート 4 回線で電力采統に連系している \checkmark 泊幹線（ 275 kV 1 ルート 2 回線）は西野変電所に連系し，後志幹線（ 275 kV 1 ルート 2 回線）は西双葉開閉所に連系している
$\checkmark 275 \mathrm{kV}$ 送電系が連系する西野変電所及び西双薬開閉所の両方が停止とならない限り， 275 kV 送電系から電力の供給は維持される。
＞ 275 kV 送電系が連系する西野変電所及び西双葉開閉所の両方が停止となった場合には，非常用ディーゼル発電機から非常用高圧母線に電力が供給される。
\checkmark 非常用高圧母線の受電優先順位：（1）予備変圧器（ 275 kV 系）\Rightarrow（2）所内変圧器（ 275 kV 系）\Rightarrow（3）ディーゼル発電機
－泊 3 号炬再稼働後（ 66 kV 開閉所（後備用）及び後備変圧器設置後）の構成
ン泊 3 号炉再稼働後には，更なる信頼性向上対策として，現状の 275 kV 送電線に加えて，受電専用の 66 kV 送電線（泊電源支線） 1 ルート 2 回線を泊 3 号炉に接続する計画である。 （設置許可申請書には， 66 kV 送電系と連系することを踏まえた記載としている。なお，現状は仮設備（移動式の変電設備）にて 66 kV 送電系と連系している。）
$\checkmark 66 \mathrm{kV}$ 送電線（泊電源支線）から， 66 kV 開閉所（後備用）及び後備変圧器を介して泊 3 号炉に接続する設計とする
\checkmark 泊電源支線（茅沼線及び泊支線を経由）（ 66 kV 1 ルート 2 回線）は国富変電所に連系する設計とする。

＞ 275 kV 送電系が全て停電して非常用ディーゼル発電機から非常用母線に電力を供給している場合にも， 66 kV 送電系が健全であれば 66 kV 送電系から非常用高圧母線に電力を供給できる設計としている。
\checkmark 非常用高圧母線の受電優先順位：（1）予備変圧器（ 275 kV 系）\Rightarrow（2）所内変圧器（ 275 kV 系）\Rightarrow（3）ディーゼル発電機 \Rightarrow（4）後備変圧器（ 66 kV 系）
－大飯 $3 / 4$ 号炬の構成（参考）
 に連系している。
\checkmark 大飯幹線（ 500 kV 1 ルート 2 回線）は西京都変電所に連系し，第二大飯幹線（ 500 kV 1 ルート 2 回線）は京北開閉所に連系している。 また，大飯支線（小浜線を経由）（ 77 kV 1 ルート 1 回線）は小浜変電所に連系している。
－ 500 kV 送電系が連系する西京都変電所及び京北開閉所の両方が停止となった場合には，ティーゼル発電機から非常用高圧母線に電力が供給される。 ディーゼル発電機からの供給が停止となった場合には， 77 kV 送電采から非常用高圧母線に電力が供給される。
\checkmark 非常用高圧母線の受電優先順位：（1）No． 2 予備変圧器（ 500 kV 系）\Rightarrow（2）所内変圧器（ 500 kV 系）\Rightarrow（3）ディーゼル発電機 \Rightarrow（4） No 。1予備変圧器（ 77 kV 系）
－女川 2 号炉の構成（参考）
 ている。
\checkmark 牡鹿幹線（ 275 kV 1 ルート 2 回線）は石巻変電所に連系し，松島幹線（ 275 kV 1 ルート 2 回線）は富城中央変電所に連采している また，塚浜支線（鮎川線 1 号を一部含む。）（ 66 kV 1 ルート 1 回線）は女川変電所に連系している。
－ 275 kV 送電系が連系する石巻変電所及び宮城中央変電所の両方が停止となった場合には，非常用ディーゼル発電機から非常用高圧母線に電力が供給される。非常用ディーゼル発電機からの供給が停止となった場合には， 66 kV 送電系から非常用高圧母線に電力が供給される
\checkmark 非常用高圧母線の受電優先順位：（1）所内変圧器（発電機系，通常運転時のみ）\Rightarrow（2）起動変圧器（ 275 kV 系）\Rightarrow（3）ディーゼル発電機 \Rightarrow（4）予備変圧器（ 66 kV 系）
<1 相開放故障 $>$
－泊 3 号炉，大飯 $3 / 4$ 号炉（参考），女川 2 号炉（参考）共通
＞変圧器の1次側に破損が想定される架線の碍子はない。仮に導体の断線による 1 相開放が発生したとしても接地された筐体，管路内に収納された構造であるため地絡が発生し検知可能である。
＞ 1 相開放故障が発生したバイロン 2 号機との類似箇所としては，送電線のGISへの引き込み部があるが，受電回線を複数確保することで電源の健全性を維持できる。
また，運転員が毎日実施する巡視点検にて架線部の故障を早期に検知できる。

| 泊発電所 3 号炉 | 女川原子力発電所 2 号炉 | 差異理由 |
| :---: | :---: | :---: | :---: |
| | | |

〔比較表（第 33 条 保安電源啍備）差異理由一覧】

No．		赤字：設侑，運用又は休制の相遠（般計方䟔の相違）				
1	設備•運用の相遠（1）	偏•運用に差異があるが，基準で定める容量以上の数料を眝葴す るという点において同等である。 －大飯：燃料神眝荗タンクと重油タンクに眝蔵（タンク間はタンクロ 	卲栽方針の相進（1）	－泊は既砤可の記述く倣った㲹裁としている。	設偕名标の相違（1）	
2	設備構成の相違（2）		䟕栽方針の相違（2）		設伤名称の相逢（2）	
3	設備構成の相逼（3）		疎載方針の相達（3）	所＂と䟕機しているが，大做の＂変重所＂の祋載と実筫的な相違は ない。	設俭名称の相達（3）	
4	設借設计等の相違（4）		䟕戊方鱽の相違（4）	鈝而安定工指針」の内容を補足 1 に記事している。	設㑋名标の相違（4）	－大族：バワーセンター泊：ハハワーコントロールセンタ
5	設備設計等の相違（5）	いる。（これから設莀するため＂～設計とする＂としているュ） －大板 77 kV 変圧器：No． 1 子偏変圧器一泊 66 kV 変圧器：後偏変圧器	記載方針の相送（5）	配苗の考え方に含めて記機しておち，実質的な相違はない	棂栽表現の相達（5）	
6	設俌•運用の相違（6）	$\cdot 1$ 相開放への対応に保る祋栽に差異があるが， 1 相開放の早期検知ができるようにするという点において同等である。 －泊の 275 kV 送電線は複数回線との接続を碓保することにより 1 相開放の影響を受けないようにしているが，1回線接続となる場合 ととしている。	䟕機方針の相達（6）	柜申請のため記載していない。	設偯名称の相違（6）	
7	$\begin{array}{\|l} \hline \begin{array}{l} \text { 設偏設計等の } \\ \text { 相違 (7) } \end{array} \\ \hline \end{array}$					
8	設偏設計等の相違（8）	－津波への対策は異なるが，津波の馱響を受けないエリア（津波の影響を受けない數地高さ又は防滴堤内）に設医するという点に扑い て同等である。 －塩害への対策は異なるが，塩害を考虚して設储を設嚂するという点において同等である。				
9	供給開始時間 の相逢（9）	－代㬱交流電源かっら電力の供紿が開始されるまでの時閭に差異があ るが，全交流動力電源衰失時に必要な容量の渵電池を設けている点において同等である				
10	設借構成の相逼（10）	 使用するという点において同等である。 －大飯 ：SF6 ガス遮断器一泊 ：真空庶断器 		，		
11	設備褠成の相違（11）	－開開所—変圧器閭のケーブルの有無に差睤があるが，電力供給及 び1 相開放故障の検知ができるる㮖成という点で同等である。 －大饭：OF ケーフル \rightarrow 泊 ：CV ケーフル				
12	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { 役偏•対応手䢻 } \\ \text { の相適 (12) } \end{array} \\ \hline \end{array}$	に昜妒問の電力偯通を実旅ける点に打いて同等である。				

泊発電所3号炉	女川原子力発電所 2 号炉	差異理由
第 33 条 保安電源設備	第33条：保安電源設備	差異理由の説明は，本文差異箁所の初出に
＜目 次＞	＜目 次〉	記韯している。（目次及び初出以降の記載
	1．基本方針	は省略。差異理由の説明は「差異理由一筧」

1．基本方針

基本方針

1.1 要求事項の整理
1.2 追加要求事項に対する適合性
（1）位置，構造及び設備
（2）安全設計方針
（3）適合性説明
1.3 気象等
1.4 設備等（手順等含む）

保安電源設備（33 条関係）

2． 1 保安電源の信頼性
2．1．1 発電所構内における電気系統の信頼性
2．1．1．1 機器の破損，故障その他の異常の検知と拡大防止について
2．1．1．1．1 電気設備の保護

2．1．1．1．2 所内保護継電器
2．1．1．2 変圧器 1 次側の 3 相のうち 1 相の開放が発生し た場合

2．1．1．2．1 安全施設への電力供給について
2．1．1．2．2 1 相開放故障の検知性について
2．1．1．2．3 各受電時系統毎の具体的な検知方法

2．1．1．3 電力の供給が停止しない構成

2．1．2 電線路の独立性
2．1．2．1 大舨発電所3号炣及び 4 号炬への電線路の独立性
1.1 要求事項の整理
1.2 追加要求事項に対する適合性
（1）位置，構造及び設備
（2）安全設計方針
（3）適合性説明
1.3 気象等

1．4 設備等（手順等含む）

2．保安電源設備（33 条関係）
2.1 保安電源の信頼性

2．1．1 発電所構内における電気系統の信頼性
2．1．1．1 機器の破損，故障その他の異常の検知と拡大防止について
2．1．1．1．1 電気設備の保護

2．1．1．1．2 所内保護継電器
2．1．1．2 変圧器 1 次側の 3 相のうち 1 相の開放が発生し た場合

2．1．1．2．1 安全施設への電力供給について 2．1．1．2．2 1 相開放故障の検知性について
2．1．1．2．3 具体的な検知方法

2．1．1．3 電力の供給が停止しない構成

2．1．2 電線路の独立性

2．1．2．1 泊発電所 3 号所への電線路の独立性
1.1 要求事項の整理
1.2 追加要求事項に対する適合性
1.3 気象等
1.4 設備等

2．追加要求事項に対する適合方針
2.1 保安電源設備の概要

2．1．1 常用電源設備の概要
2．1．2 非常用電源設備の概要
2.2 保安電源の信頼性

2．2．1 発電所構内における電気系統の信頼性
2．2．1．1 安全施設に対する電力系統の異常検知とその拡大防止
2．2．1．1．1 安全施設の保護装置について
2．2．1．1．1．1 送電線保護装置
2．2．1．1．1．2 275 kV 母線保護装置
2．2．1．1．1．3 変圧器保護装置
2．2．1．1．1．4 その他設備に対する保護装置
2．2．1．1．2 1 相開放故障への対策について
2．2．1．1．2．1 米国バイロン 2 号炉の事象の概要と問題点

2．2．1．1．2．2 非常用高圧母線への電力供給について
2．2．1．1．2．3 1 相開放故障時における検知性
2．2．1．1．2．4 1 相開放故障時に非常用高圧母線へ電源供給した場合の検知性
2．2．1．1．2．5 1 相開放故障時の対応操作について
2．2．1．1．3 電気設備の保護
2．2．1．2 電気系統の信頼性
2．2．1．2．1 系統分離を考慮した母線構成
2．2．1．2．2 電気系統を構成する個々の機器の信頼性
2．2．1．2．3 非常用所内電源系からの受電時等の母線の切替操作
2．2．2 電線路の独立性
2．2．2．1 外部電源受電回路について
2．2．2．2 複数の変電所又は開閉所との接続
2．2．2．2．1 変雨所等と活断層等の位置 2．2．2．2．2 変電所又は開閉所の停止想定

第33条 保安電源設備	泊発電所3号炬 DB基準適合性 比較表 r．4．		
大飯発電所 $3 / 4$ 号炉	泊発電所 3 号炉	女川原子力発電所 2 号炉	差異理由
＜概 要＞ 1．において，設計基準事故対処設傏の設置許可基準規則，技術基準規則の追加要求事項を明碓化するとともに，それら要求に対 する大飯発雨所 3 号炉及び 4 号拒における適合性を示す。 2．において，設計基準事故対処設傏について，追加要求事項に適合するために必要となる機能を達成するための設備又は運用等について説明する。 3．において，追加要求事項に適合するための技術的能力（手順等）を抽出し，必要となる運用対策等を整理する。	＜概 要＞ 1．において，設計基準事故対処設備の設置䛨可基準規則，技術基準規則の追加要求事項を明碓化するとともに，それら要求に対 する泊発重所 3 号咞における適合性を示す。 2．において，設計基準事故対処設備について，追加要求事頂に適合するために必要となる機能を達成するための設備又は運用等について説明する。 3．において，追加要求事項に適合するための技術的能力（手順等）を抽出し，必要となる運用対策等を整理する。		礼戬表珼の相達

第33条 保安電源設窚	泊発電所3号炉 DB基準適合性 比	比較表 r．4．0	
大飯発電所 $3 / 4$ 号炉	泊発電所 3 号炉	女川原子力発電所 2 号炉	差異理由
1．基本方針 1.1 要求事項の整理 保安電源設備について，設置許可基準規則第 33 条及びに技術基準規則第 45 条において，追加要求事項を明碓化する。 （表1）	1．基本方針 1.1 要求事項の整理 保安電源設備について，設置許可基準規則第 33 条及び技術基準規則第 45 条におういて，追加要求事項を明碓化する（表 1）。	1．基本方針 1.1 要求事項の整理 保安電源設備について，設置許可基準規則第 33 条及び技術基準規則第 45 条に抽いて，追加要求事項を明磪化する（第 $1.1-1$ 表）。	記聝表現の相違

第 33 条 保安電源設備
大飯発電所 $3 / 4$ 号炉
1.2 追加要求事項に対する適合性
（1）位置，構造及ひ設備
口．発電用原子炉施設の一般構造
（3）その他の主要な構造
（i）本発電用原子炉施設は，（1）耐震構造，（2）耐津波構造に
加え，以下の基本的方針のもとに安全設計を行う。

a．設計基準対象施設

（ab）保安電源設備
原子炉施設は，重要安全施設がその機能を維持するため に必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。

また，原子炉施設には，非常用電源設備（安全施設に係 るものに限る。）を設ける設計とする。

【説明資料（2．1．2．1）（2．2．1）】

保安電源設備（安全施設へ電力を供給するための設備を いう。）は，電線路，原子炉施設において常時使用される発電機及び非常用電源設備から安全施設への電力の供給が停止することがないよう，発電機，送電線，変圧器，母線等に保護継電器を設置し，機器の損壊，故障その他の異常 を检知するとともに，異常を検知した場合は，ガス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより，その拡大を防止する設計とする。

【説明資料（2．1．1．3）（2．1．1．1）】

1.2 追加要求事項に対する適合性
 （1）位置，構造及び設備

1.2 追加要求事項に対する適合

口．発電用原子炬施設の一般構造
（3）その他の主要な構造
（i）本発電用原子炉施設は，（1）耐震構造，（2）耐津波構造に加え，以下の基本的方針のもとに安全設計を行う。
a．設計基準対象施設
（ab）保安電源設備
原子炉施設は，重要安全施設がその機能を維持するため に必要となる電力を当該重要安全施設に供給するため，電力系統に連系した設計とする。
また，原子炉施設には，非常用電源設備（安全施設に係 るぁのに限る。）を設ける設計とする。

【説明資料（2．1．2．1）（2．2．1）】

1）位置，構造及び設備

口 発電用原子炉施設の一般構造
（3）その他の主要な構造
（i）本発電用原子炉施設は，（1）耐震構造，（2）耐津波構造に加え，以下の基本的方針のもとに安全設計を行う。

a．設計基準对象施設

（ab）保安電源設備

発電用原子炬施設は，重要安全施設がその機能を維持す るために必要となる電力を当該重要安全施設に供給する ため，電力系統に連系した設計とする。

また，発電用原子炬施設には，非常用電源設備（安全施設に属するものに限る。以下，本項におおいて同じ。）を設 ける設計とする。

【説明資料（2．1．1：P33 条－48～52）
（2．1．2：P33 条－53～56）】
保安電源設備（安全施設へ電力を供給するための設備を いう。）は，電線路，原子炉施設において常時使用される発電機及び非常用電源設備から安全施設への電力の供給が停止することがないよう，発電機，送電線，変圧器，母線等に保護継電器を設置し，機器の損壊，故障その他の異常 を検知するとともに，異常を検知した場合は，ガス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより，その拡大を防止する設計とする

【説明資料（2．1．1．3）（2．1．1．1）】
特に重要安全施設においては，多重性を有し，采統分離 が可能である母線で構成し，信頼性の高い機器を設置する ことで，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。

【説明資料（2．1．1．3）】
また，変圧器 1 次側におおて 3 相のうち 1 相の電路の開放が生じ，安全施設への電力の供給が不安定になった場合 においては，自動（地絡や過電流による保護継電器の動作 こより）若しくは手動操作で，故障箇所の隔離又は非常用母線の健全な電源からの受電へ切替えることにより安全施設への電力の供給の安定性を回復できる設計とする。

【説明資料（2．1．1．2）】

特に重要安全施設においては，多重性を有し，系統分離 が可能である母線で構成し，信頼性の高い機器を設置する ことで，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。

【説明資料（2．1．1．3）】
また，変圧器 1 次側において 3 相のうち 1 相の電路の開放が生じ，安全施設への電力の供給が不安定になった場合 においては，自動（地絡や過電流による保護継電器の動作 により）若しくは手動操作で，故障箇所の隔離又は非常用母線の健全な電源からの受電へ切り替えることにより安全施設への電力の供給の安定性を回復できる設計とする。

【説明資料（2．1．1．2）】

保安電源設備（安全施設へ電力を供給するための設備を いう。）は，電線路，発電用原子炉施設において常時使用 される発電機，外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう，発電機，送電線，変圧器，母線等に保護継電器を設置し，機器の損壊，故障をの他の異常を検知するとともに，異常を检知し た場合は，カス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより，その拡大を防止す る設計とする。

【説明資料（2．2．1．1：P33 条 $-57 \sim 63,81 \sim 82)$ 】
特に重要安全施設においては，多重性を有し，系統分離 が可能である母線で構成し，信頼性の高い機器を設置する とともに，非常用所内電源系からの受電時の母線切替操作 が容易な設計とする。

【説明資料（2．2．1．2：P33 条 $-83 \sim 87$ ）】

また，変圧器 1 次側において 3 相のうちの 1 相の電路の開放が生じ，安全施設への電力の供給が不安定になった場合においては，自動（地絡や過電流による保護継電器の動作）若しくは手動操作で，故障箇所の隔離又は非常用母線 の健全な電源からの受電へ切り替えることにより安全施設への電力の供給の安定性を回復できる設計とする。

【説明資料（2．2．1．1：P33 条 $-64 \sim 80$ ）】

設計基準対象施設に接続する電線路のうち少なくとも 2回線は，それぞれ互いに独立したものであって，当該設計基準対象施設において受電可能なものであり，かつ，それ により当該設計基準対象施設を電力系統に連系するとと もに，電線路のうち少なくとも 1 回線は，設計基準対象施設において他の回線と物理的に分離して受電できる設計 とする。

【説明資料（2．1．2）】

設計基準対象施設に接続する電線路は，同一の発電所内 の 2 以上の原子炬施設を電力系統に連系する場合には，以 ずれの 2 回線が眩失した場合においても電力系統からこ れらの原子炉施設への電力の供給が同時に停止しない設計とする。

【説明資料（2．1．4．1）（2．1．4．2）】

非常用電源設備及びその附属設備は，多重性又は多様性 を確保し，及び独立性を確保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において工学的安全施設及び設計基準事故に対処するための設備がその機能を確保するために十分な容量を有する設計とする。

【説明資料 $(2.2 .1)(2.1 .1)(2.1 .4 .3)(2.2 .1 .1 .1) 】$

ディーゼル発電機については，7日間の外部電源懐失を仮定しても，連続運転により必要とする電力を供給できる よう，7日間分の容量以上の燃料を數地内の燃料油貯藏夕 ンクと重油タンクに分けて貯蔵し，重油タンクから燃料油貯蔵タンクに燃料を輸送する際はタンクローリーを使用 する設計とする。

【説明資料（2．2．1．2）（2．2．1．3．1）】

設計基準対象施設に接続する電線路のうち少なくとも 2 回線は，それぞれ互いに独立したものであって，当該設計基準対象施設において受電可能なものであり，かつ，そ れにより当竺設計基準対象施設を電力系統に連系すると ともに，電線路のうち少なくとも 1 回線は，設計基準対象施設において他の回線と物理的に分離して受電できる設計とする。

【説明資料（2．1．2）】

設計基準対象施設に接続する電線路は，同一の発電所内 の 2 以上の原子炬施設を電力系統に連系する場合には，い ずれの 2 回線が襄失した場合においても電力系統からこ れらの原子炉施設への電力の供給が同時に停止しない設計とする。

【説明資料（2．1．4．1）（2．1．4．2）】

非常用電源設備及びその附属設備は，多重性又は多様性 を確保し，及び独立性を確保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において工学的安全施設及び設計基漼事故に対処するための設備がその機能を確保するために十分な容量を有する設計とする。

【説明資料（2．2．1）（2．1．1）（2．1．4．3）（2．2．1．1．1）】

ディーゼル発電機については，7日間の外部電源喪失を仮定しても，連続運転により必要とする電力を供給できる よう，7日間分の容量以上の燃料を敷地内のディーゼル発電機燃料油貯油槽に貯藏する設計とする。

【説明資料（2．2．1．2）】

設計基準対象施設に接続する電線路のうち少なくとも 2 回線は，それぞれ互いに独立したものであって，当該設計基準対象施設において受電可能なものであり，かつっそ れにより当該設計基準対象施設を電力系統に連系すると ともに，電線路のうち少なくとも 1 回線は，設計基準対象施設において他の回線と物理的に分離して受電できる設計とする。

【説明資料 $(2.2 .2:$ P33 条 $-88 \sim 94)$
$(2.2 .3 .1:$ P33 条 $-95 \sim 113)$ 】

設計基準対象施設に接続する雨線路は，同一の発電所内 の 2 以上の発電用原子炉施設を電力系統に連系する場合 には，いずれの 2 回線が襄失した場合においても電力系統 からこれらの発電用原子炉施設への電力の供給が同時に停止しない設計とする。

【説明資料（2．2．3：P33 条－95～123） （2．2． 4 ：P33 条 $-124 \sim 157$ ）】

非常用電源設備及びその附属設備は，多重性又は多様性 を確保し，及び独立性を確保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において工学的安全施設及び設計基準事故に対処するための設備がその機能を確保するために十分な容量を有する設計とする。

【説明資料（2．3．1．1：P33 条－158～163）
（2．3．1．2：P33 条 $-164 \sim 171$ ）1
7 日間の外部電源懐失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用 ディーゼル発電機（高圧灲心スブレイ系ディーゼル発電機 を含む。）2台を7日間連続運転することにより必要とす る電力を供給できる容量以上の燃料を敷地内の軽油タン クに貯藏する設計とする。

【説明資料（2．3．1．3：P33 条－172）】

段优名标の相達（1）
－大飯 ：燃料油的蔵タンクー泊：ティィーせ几発菓機㒄料油貯油棈設偯•運用の相達（1）
－ティィーゼル発電機の連統運輷に必要な㜣料を数地内に詝蔵ける設備•運用に差異 があるか，基潅で定める容量以上の玈料を貯蔵するという点において同等である。
－大飯：燃料油䗆藏タンクと重油タンクに眝閥（タンク閏はタンクローリーにて输送）一泊：ディーせル発電機慗料油羜神槽 に䗆墄

大飯発電所 $3 / 4$ 号炉	泊発電所 3 号炉	女川原子力発電所2号炉	差異理由
タンクローリーについては，保管場所及び輸送ルートを含み，地震，津波及び想定される自然現象，並びに原子炉施設の安全性を損なわせる原因となるわそれがある事象 であって人為によるもの（故意によるものを除く。）を考慮するとともに，タンクローリーの故障，重油タンク等の単一故障を考慮しても，ディーゼル発電機の7日間以上の連続運転に支障がない設計とし，常時 4 台以上（3号及び 4 号炉共用）を配備する。 【説明資料（2．2．1．3．2）（2．2．1．3．3）（2．2．1．3．4）】			設備•運用の相達（1）
配備するタンクローリーについては，竜巻注意情報等が発表され，公的機関により竜巻発生確度等を確認した場合，発電所内に 24 時間待機している緊急安全対策要員に よりトンネル内にタンクローリーを 4 台退避させること で，ディーゼル発電機の7日間以上の連続運転に支障がな い設計とする。 タンクローリーの火災時には早期発見できるよう火災感知設備を設け，中央制御室にて常時監視できる設計とす るとともに，消火設備として消火器を設置する設計とす る。 タンクローリーによる㡏送については，発生する外部電源震失によるディーゼル発電機の運転が必要となった場合に，7日間以上の連続運転に支障がないよう，輸送に係 る要員の確保を含む手順を定め，昼夜問わず，計画的かつ確実に実施するものとする。 【説明资料（2．2．1，3．6）（2．2．1，3．8）（2．2．1，3，9）】			設俯•運用の相違（1）
設計基準対象施設は，他の原子炉施設に属する非常用電源設備及びその附属設備から受電する場合には，当該非常用電源設備から供給される電力に過度に依存しない設計 とする。 【説明資料（2．2．2）】	設計基準対象施設は，他の原子炬施設に属する非常用電源設備及びその附属設備から受電する場合には，当該非常用電源設備から供給される電力に過度に依存しない設計 とする。 【説明資料（2．2．2）】	設計基準対象施設は，他の発電用原子炉施設に属する非常用電源設備及びその附属設備から受電する場合には，当該非常用電源設備から供給される電力に過度に依存しない設計とする。	

b．燃料油貯蔵タンク
（「ディーゼル発電機」及び「代替電源設備」と兼用）
基 数
2
容 量
約 $165 \mathrm{~m}^{3}$（ 1 基当たり）
c．重油タンク
（「ディーゼル発電機」及び「代替電源設備」と兼用）基 数
容 量 約 $200 \mathrm{~m}^{3}$（ 1 基当た $り$ ）
赤字：設備，運用又は体制の相違（設計方針の相違）
緑字：記載表現，設備名称の相違（実質的な相違なし）

第 33 条 保安電源設備
大飯発電所 $3 / 4$ 号炉
（3）適合性説明 （保安電源設備）
1 発電用原子炬施設は，重要安全施設がその機能を維持するた めに必要となる電力を当該重要安全施設に供給するため，電力

2 発電用原子炬施設には，非常用電源設備（安全施設に属する ものに限る。以下この条において同じ。）を設けなければなら ない。
3 保安電源設備（安全施設へ電力を供給するための設備をい う。）は，電線路，発電用原子炬施設において常時使用される発電機及び非常用電源設備から安全施設への電力の供給が停止 することがないよう，機器の損塄，故障その他の異常を検知す るとともに，その拡大を防止するものでなければならない。
4 設計基準対象施設に接続する電線路のうち少なくとも二回線は，それぞれ互いに独立したものであって，当該設計基準対象施設において受電可能なものであり，かつ，それにより当荄設計基準対象施設を電力系統に連系するものでなければなら ない。
5 前項の電線路のうち少なくとも一回線は，設計基準対象施設 において他の回線と物理的に分離して受電できるものでなけ ればならない
6 設計基準対象施設に接続する電線路は，同一の工場等の二以上の発電用原子炉施設を電力系統に連系する場合には，いずれ の二回線が喪失した場合においても電力采統からこれらの発電用原子炉施設への電力の供給が同時に停止しないものでな ければならない。
7 非常用電源設備及びその附属設備は，多重性又は多樣性を確保し，及び独立性を確保し，その系統を構成する機械又は器具 の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において工学的安全施設及び設計基準事故に対処するための設備がその機能を確保するために十分な容量を有するものでなければならない。
8 設計基準対象施設は，他の発電用原子炬施設に属する非常用電源設備及びその附属設備から受電する場合には，当該非常用電源設備から供給される電力に過度に依存しないものでなけ ればならない。

第1項について
原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，500kV送電線（大飯幹線及び第二大飯幹線）2 ルート4回線及び 77 k V 送電線（大飯支線）1 ルート1回線で電力系統に連系した設計とする。

【説明資料（2．1．2．1）】
（3）適合性説明
（保安電源設清） （保安電源設備）
1 発電用原子炉施設は，重要安全施設がその機能を維持するた めに必要となる電力を当該重要安全施設に供給するため，電力系統に連系したものでなければならない。
2 発電用原子炬施設には，非常用電源設備（安全施設に属する ものに限る。以下この条において同じ。）を設けなければなら ない。
保安電源設備（安全施設へ電力を供給するための設備をし う。）は，電線路，発電用原子炉施設において常時使用される発電機及び非常用電源設備から安全施設への電力の供給が停止 することがないよう，機器の損塄，故障その他の異常を検知す るとともに，その拡大を防止するものでなければならない。
設計基準対象施設に接続する電線路のうち少なくとも二回線は，それぞれ互いに独立したものであって，当該設計基準対象施設において受電可能なものであり，かつ，それにより当該設計基準対象施設を電力系統に連系するものでなければなら ない。
前項の電線路のうち少なくとも一回線は，設計基準対象施設 において他の回線と物理的に分離して受電できるものでなけ ればならない。
設計基準対象施設に接続する電線路は，同一の工場等の二以上の発電用原子炉施設を電力系統に連系する場合には，いずれ の二回線が喪失した場合においても電力系統からこれらの発電用原子炉施設への電力の供給が同時に停止しないものでな ければならない。
非常用電源設備及びその附属設備は，多重性又は多様性を確保し，及び独立性を確保し，その系統を構成する機械又は器具 の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において工学的安全施設及び設計基準事故に対処するための設備がその機能を確保するために十分な容量を有するものでなければならない。
設計基準対象施設は，他の発電用原子炉施設に属する非常用電源設備及びその附属設備から受電する場合には，当該非常用電源設備から供給される電力に過度に依存しないものでなけ ればならない。

第 1 項について
原子炬施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため， 275 kV 送電線（北海道電力ネットワーク株式会社泊幹線（以下「泊幹線」 という。）及び北海道電力ネットワーク株式会社後志幹線（以下「後志幹線」という。））2 ルート 4 回線及び 66 kV 送電線（北海道電力ネットワーク株式会社泊電源支線（以下「泊電源支線」 という。））1 ルート 2 回線で電力系統に連系した設計とする。
（3）適合性說明
（保安電源設備）
第三十三条 発電用原子炉施設は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給する ため，電力系統に連系したものでなければならない。
2 発電用原子炉施設には，非常用電源設備（安全施設に属する ものに限る。以下この条において同じ。）を設けなければなら ない。
3 保安電源設備（安全施設へ電力を供給するための設備をい う。）は，電線路，発電用原子炉施設において常時使用される発電機及び非常用電源設備から安全施設への電力の供給が停止 することがないよう，機器の損壊，故障その他の異常を検知す るとともに，その拡大を防止するものでなければならない。
4 設計基準対象施設に接続する電線路のうち少なくとも二回線は，それぞれ互いに独立したものであって，当該設計基準対象施設において受電可能なものであり，かつ，それにより当荄設計基準対象施設を電力系統に連系するものでなければなら ない。
5 前項の電線路のうち少なくとも一回線は，設計基準対象施設 において他の回線と物理的に分離して受電できるものでなけ ればならない。
6 設計基準対象施設に接続する電線路は，同一の工場等の二以上の発電用原子炉施設を電力系統に連系する場合には，いずれ の二回線が喪失した場合においても電力系統からこれらの発電用原子炉施設への電力の供給が同時に停止しないものでな ければならない。
7 非常用電源設備及びその附属設備は，多重性又は多様性を確保し，及び独立性を確保し，その系統を構成する機械又は器具 の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において工学的安全施設及び設計基準事故に対処するための設備がその機能を確保するために十分な容量を有するものでなければならない。
8 設計基準対象施設は，他の発電用原子炉施設に属する非常用電源設備及びその附属設備から受電する場合には，当該非常用電源設備から供給される電力に過度に依存しないものでなけ ればならない

適合のための設計方針

第1項について
発電用原子炉施設は，重要安全施設がその機能を維持するた めに必要となる電力を当該重要安全施設に供給するため， 275 kV 送電線（牡鹿幹線及び松島幹線）2 ルート各 2 回線（ 1号， 2 号及ぴ 3 号炬共用，既設）及ぴ 66 kV 送電線（塚浜支線 （鮎川線1号を一部含む。）及び万石線）1ルート 1 回線（ 1号， 2 号及び 3 号炬共用，既設）で電力系統に連系した設計と する。

般供满成の相違（3）

設偏設計等の相達（4）記䇅表現の相達 －泊は初出のみ「北游道挰力ネットワー

【説明資料（2．1．2．1）】

また，保安電源設備は，重要安全施設がその機能を維持する ために必要となる電力の供給が停止することがないよう，以下 の設計とする。
－送電線の回線数と開閉所の母線数は，供給信頼度の整合が図 れた設計とし，500 k V母線は2 母 線，776 V母線は1母線で構成する。 500 kV 送電線及び 77 kV 送電線は， それだれNo，2予備変圧器及びNo．1予備変圧器を介し原子炬施設へ給電する設計とするとともに発電機からの発生電力は，所内変圧器を介し原子炉施設へ給雨する設計とす る。非常用母線を2母線確保する構成とすることで，多重性 を損なうことなく，系統分離を考慮して母線を構成する設計 とする。
－電気系統を構成する送電線，母線，変圧器，非常用電源系， その他関連する機器については，電気学会電気規格調査会に て定められた規格（J E C）又は日本工業規格（J I S）等 で定められた適切な仕様を選定することにより信頼性の高 い設計とする。
－非常用所内電源系からの受電時等の母線切替えは，故障を検知した場合，自動切替え及び容易に手動で切り替わる設計と する。

【説明資料（2．1．1）（2．1．1．3）】
第 4 項について
設計基準対象施設は，送受電可能な回線として， 500 kV送電線（大飯幹線及び第二大飯幹線）2 ルート 4 回線及び受電専用の回線として 77 kV 送電線（大飯支線）1ルート 1 回線 の合計 3 ルート 5 回線にて，電力系統に接続する。

500 kV 送電線のうち2回線（大飯幹線）は，約 70 km 離 れた西京都変電所に連系し，他の 2 回線（第二大飯幹線）は，約 50 km 離れた京北開閉所に連系する。

また，77kV送電線1回線（大飯支線）は，約 26 km 雥れた小浜変電所に連系する。

また，保安電源設備は，重要安全施設がその機能を維持する
ために必要となる電力の供給が停止することがないよう，以下 の設計とする。
－送電線の回線数と開閉所の母線数は，供給信頼度の整合 が図られた設計とし， 275 kV 母線は 2 母線， 66 kV 母線は 1 母線で構成する。275kV 送電線（泊幹線及ひ後志幹線） は予備変圧器を介し又は主変圧器及び所内変圧器を介 L， 66 kV 送電線（泊電源支線）は後備変圧器を介し原子炉施設へ給電する設計とするとともに発電機からの発生電力は，所内変圧器を介し原子炉施設へ給電する設計 とする。非常用母線を 2 母線確保する構成とすること で，多重性を損なうことなく，系統分離を考慮して母線 を構成する設計とする。
－電気系統を構成する送電線，母線，変圧器，非常用電源系，その他関連する機器については，電気学会電気規格調査会にて定められた規格（J E C）又は日本産業規格 （J I S ）等で定められた適切な仕様を選定することに より信頼性の高い設計とする。
－非常用所内電源系からの受電時等の母線切替は，故障を検知した場合，自動又は手動で容易に切替わる設計とす る。

【説明資料（2．1．1）（2．1．1．3）】

第 4 項について

設計基準対象施設は，送受電可能な回線として， 275 kV 送電線（泊幹線及び後志幹線）2ルート 4 回線及び受電專用の回線 として 66 kV 送電線（泊電源支線）1 ルート 2 回線の合計 3 ル ート 6 回線にて，電力系統に連系する設計とする。

275 kV 送電線のうち 2 回線（泊幹線）は，約 67 km 離れた北海道電力ネットワーク株式会社西野変電所（以下「西野変電所」 という。）に連系し，他の 2 回線（後志幹線）は約 66 km 離れた北海道電力ネットワーク株式会社西双葉開閉所（以下「西双葉開閉所」という。）に連系する。
また， 66 kV 送電線（泊電源支線）は約 19 km 離れた北海道電力 ネットワーク株式会社国富変電所（以下「国富変電所」という。 に北海道電力ネットワーク株式会社茅沼線（以下「茅沼線」 と いう。）及び北海道電カネットワーク株式会社泊支線（以下「泊支線」という。）を経由して連系する設計とする。

また，保安電源設備は，重要安全施設の機能を維持するため
に必要となる電力の供給が停止することがないよう，以下の設計とする。
－送電線の回線数と開閉所の母線数は，供給信頼度の整合が図れた設計とし，電気系統の系統分離を考慮して， 275 kV 母線を 4 母線， 66 kV 母線を 1 母線で構成する。 275 kV 送電線 は母線連絡遮断器を設置したタイラインにより起動変圧器を介して， 66 kV 送電線は予備変圧器を介して発電用原子炉施設へ給電する設計とする。非常用母線を3母線磪保す ることで，多重性を損なうことなく，系統分離を考慮して母線を構成する設計とする。
－電気系統を構成する送電線（牡鹿幹線，松島幹線，塚浜支線（鮎川線 1 号を一部含む。）及び万石線），母線，変圧器，非常用所内電源設備，その他関連する機器については，電気学会電気規格調査会にて定められた規格（J E C）又 は日本産業規格（J I S）等で定められた適切な仕様を選定し，信頼性の高い設計とする。
非常用所電源系からの受電時等の母線切替は，故㧭を検知 した場合，自動又は手動で容易に切り替わる設計とする。

【説明資料（2．2．1：P33 条－57～87）】第4項について

設計基準対象施設は，送受電可能な回線として 275 kV 送電線 （牡鹿幹線及び松島幹線）2 ルート各2回線（1号，2号及び 3 号炉共用，既設）及び受電専用の回路として 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。））1ルート 1 回線（ 1 号， 2 号及び 3 号炉共用，既設）の合計 3 ルート 5 回線にて，電力系統に接続する。

275 kV 送電線（牡鹿幹線）1ルート 2 回線は，約 28 km 離れた石巻変電所に， 275 kV 送電線（松島幹線）1ルート 2 回線は，約 84 km 離れた宮城中央変電所に連系する。

また， 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。）） 1 ルート1回線は約 8 km 離れた女川変電所及び万石線を経由し その上流接続先である約 22 km 離れた西石巻変電所に連系する。

記栽表現の相達
設偏構成の相違（3）歌偏設計等の相達（4）
設偏構成の相違（2）設供設計等の相達（5）

記效表現の相達

紀軨表現の相違

設偏構成の相違（3）
設偏設計等の相達（4）
記載方針の相语（2）
－泊は等がる設偏が电力系統の場合は土＂速系＂，原子炻施設の場合は＂接続＂と用兂 を使い分けて記栽している方，実廑的な相違はない。
陪偏構成の相違（3）
－大领 500 kV 電気所：西京都変电所，京北開閉所一泊 275 kV 電気所：西野変電所，西双葉開衙所

設偏設椋等の相達（4）
－大飯 77 kV 電気所 ：小沃変電所（小泜線 を経由して連系）\rightarrow 泊 66 kV 電気所：国富変電所（泊支線，茅沼線を経由して連系）記梂表現の相違
－泊は初出のな「北海渞車力ネットワーク株式会社～」と祀栖している。

大飯発電所 $3 / 4$ 号炉	泊発電所3号炉	女川原子力発電所2号炉	差異理由

【説明資料（2．1．2）】

第5項について
設計基準対象施設に連系する 500 kV 送電線（大飯幹線及 び第二大飯幹線） 4 回線と 77 kV 送電線（大飯支線） 1 回線 は，同一の送電鉄塔に架線しないよう，それぞれに送電鉄塔を備える設計とする。

また，送電線は，大規模な盛土の崩壊，大規模な地すべり，急傾斜の崩壊による被害の最小化を図るため，鉄塔基礎の安定性を確保することで，鉄塔の倒壊を防止するとともに，台風等 による強風発生時の事故防止対策を図ることにより，外部電源系からの電力供給が同時に停止することのない設計とする。

さらに，500kV送電線（大飯幹線及び第二大飯幹線）と 77 kV 送電線（大飯支線及び小浜線）の交差箇所の離隔距離 については，必要な絶縁距離を確保する設計とする。

これらにより，設計基準対象施設に連亲する送電線は，互い に物理的に分離した設計とする。

【説明資料（2．1．3）】

これらの電気所は異なる電気所に連系し， 1 つの電気所が停止 することによって，当該原子力施設に接続された送電線がすべ て停止する事態に至らない設計とする。

【説明資料（2．1．2）】

第5項について
設計基準対象施設に接続する 275 kV 送電線（泊幹線及び後志幹線） 4 回線と 66 kV 送電線（茅沼線及び泊支線） 2 回線は，同一の送電鉄塔に架線しないよう，それぞれに送電鉄塔を備え る設計とする。なお， 66 kV 送電線（泊電源支線）は地中に埋設 する設計とする。
また，送電線は，大規模な盛土の崩壊，大規模な地すべり，急傾斜地の崩壊による被害の最小化を図るため，鉄塔基礎の安定性を確保することで，鉄塔の倒壊を防止するとともに，強風発生時及 ひ送雨線着雪時の事故防止対策を図ることにより，外部電源系からの電力供給が同時に停止することのない設計と する。
さらに， 275 kV 送電線（泊幹線及ぴ後志幹線）と 66 kV 送電線 （茅沼線及び泊支線）の交差箇所の離隔距離については，必要 な絶縁距離を確保する設計とする。

これらにより，設計基準対象施設に接続する送電線は，互い に物理的に分離した設計とする。

【説明資料（2．1．3）】

上記3ルート5回線の送電線の独立性を確保するため，万一，送電線の上流側接続先である石巻変電所が停止した場合で も，外部電源からの電力供給が可能となるよう，宮城中央変電所又は女川変電所を経由するルートで本発電所に電力を供給 することが可能な設計とする。また，宮城中央変電所が停止し た場合には，石巻変電所又は女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。さらに，女川変電所が停止した場合には，石巻変電所又は宮城中央変電所 を経由するルートで本発電所に電力を供給することが可能な設計とする。

【説明資料（2．2．2：P33 条 $-88 \sim 94$ ）】

第 5 項について
設計基準対象施設に連系する 275 kV 送電線（牡鹿幹線）2回線と 275 kV 送電線（松島幹線） 2 回線及び 66 kV 送電線（塚浜支線（鲇川線 1 号を一部含む。）及び万石線）1回線は，同一 の送電鉄塔に架線しないよう，それぞれに送電鉄塔を備える設計とする。

また，送電線は，大規模な盛土の崩壊，大規模な地滑り，急傾斜の崩壊による被害の最小化を図るため，鉄塔基嘫の安定性 を確保することで，鉄塔の倒壊を防止するとともに，台風等に よる強風発生時又は着氷雪の事故防止対策を図ることにより，外部電源系からの電力供給が同時に停止することのない設計 とする。
さらに， 275 kV 送電線（牡鹿幹線及び松島幹線）と 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。）及び万石線）の接近•交差•併架箇所については，仮に1つの鉄塔が倒壊しても，全 ての送電線が同時に機能喪失しない絶縁距離及び水平距離を確保する設計とし，水平距離が満足できない場合は，電線の張力方向によって全ての送電線が同時に機能襄失しない鉄塔の配置となる設計とする。

これらにより，設計基準対象施設に連系する送電線は，互い に物理的に分離した設計とする。

【説明資料（2．2．3：P33 条 $-95 \sim 123$ ）】

－泊は送菓線の上流侧接続先の変莫所及
 いるか，大饭の＂変電所＂の祀様と寒䫡的 な相違はない。记䡴表現の相達

没備構成の相違（3）設偏設计等の相違（4）

般偏設計等の相達（7）

記狳表現の相違

設備構成の相違 ${ }^{(3)}$設偏設計等の相違（4）

靯戟方针の相椲（2）

第 33 条 保安電源設備					
大飯発電所 $3 / 4$ 号炉					
第 6 頂について 設計基準対象施設に連系する送電線は， 500 kV 送電線					

これらの送電線は 1 回線で 3 号炉及び 4 号炬の停止に必要 な電力を供給し得る容量とし，いずれの 2 回線が喪失しても，原子炉施設が同時に外部電源喪失に至らない構成とする。
なお，大飯発電所の 500 kV 送電線は，母線連絡遮断器を介し，連絡ラインにより3号炉及び 4 号炬に接続するととも に， 77 kV 送電線は，No．1予備変圧器を介し， 3 号炉及 び 4 号炉へ接続する設計とする。

【説明資料（2．1．4．1）（2．1．4．2）】
当該開閉所から主発電機側の送受電設備は，十分な支持性能 をもつ地盤に設置するとともに，碍子は可とう性のある隙垂碍子を使用し，遮断器等は重心の低いガス絶縁開閉装置を採用す る等，耐震性の高いものを使用する。さらに津波の影響を受け ない敷地高さに設置するとともに，塩害を考慮し，碍子に対し ては，碍子洗浄装置を設置し，遮断器等に対しては，電路が夕 ンクに内包されているガス絶縁開閉装置を採用する。

【説明資料（2．1．4．4）（2．1．4．4．1）（2．1．4．4．2）】

第 7 項について
ディーゼル発電機及びその附属設備は，多重性及び独立性を考慮して，必要な容量のものを各々別の場所に 2 台備え，共通要因により機能喪失しない設計とするとともに，各々非常用高圧母線に接続する。

蓄電池は，非常用 2 系統を各々別の場所に設蒖し，多重性及 び独立性を確保し共通要因により機能が喪失しない設計とす る。

これらにより，その系統を構成する機械又は器具の単一故障 が発生した場合にも，機能が確保される設計とする。

【説明資料（2．1．1）（2．2．1）（2．1．1．3）】

第6項について
設計基準対象施設に接繶する送電線は， 275 kV 送電線（泊幹線及び後志幹線） 4 回線と 66 kV 送電線（泊電源支線） 2 回線 で構成する設計とする。
これらの送電線は1回線で3号炉の停止に必要な電力を供給し得る容量とし，いずれの 2 回線が喪失しても，原子炬施設 が同時に外部電源喪失に至らない構成とする。
なお，泊発電所の 275 kV 送電線（泊幹線及び後志幹線）は，母線連絡遮断器を介し，タイラインにより3号炬に接続する設計とするとともに， 66 kV 送電線（泊電源支線）は，後備変圧器 を介し， 3 号炉へ接続する設計とする。

【説明資料（2．1．4．1）（2．1．4．2）】
275 kV 開閉所から発電機側の送受電設備は，十分な支持性能 をもつ地盤に設置するとともに，碍子は可とう性のある懸垂碍子を使用し，遮断器等は重心の低いガス絶縁開閉装置を採用す る等，耐震性の高いものを使用する。また，津波の影響を受け ないよう， 275 kV 開閉所及び予備変圧器を津波の影響を受けな い敷地高さに，主変圧器及び所内変圧器を防潮堤内に設置す る。さらに，塩害を考慮し， 275 kV 開閉所を塩害の小さい陸側後背地へ設置するとともに，碍子に対しては遮風建屋内に絶縁性能が高いポリマー碍管を設置し，遮断器等に対しては，電路 がタンクに内包されているガス絶縁開閉装置を採用する。
66 kV 開閉所（後備用）の受電設備は，十分な支持性能をもつ地盤に設置し，遮断器等は重心の低いガス絶縁開閉装置を操用 する等，耐震性の高いものを使用する設計とする。さらに津波 の影響を受けない數地高さに設置するとともに，塩害を考慮 L，陸側後背地人設置するとともにカス絶縁開閉装置への送電線の接続はケーブル引き込みとし，遮断器等に対しては，電路 がタンクに内包されているカス絶縁開閉装置を探用する設計 とする。

【説明資料（2．1．4．4）（2．1．4．4．1）（2．1．4．4．2） （2．1．4．4．3）（2．1．4．4．4）】

第 7 項について
ディーゼル発電機及びその附属設備は，多重性及び独立性を考慮して，必要な容量のものを各々別の場所に 2 台備え，共通要因により機能喪失しない設計とするとともに，各々非常用高圧母線に接続する。

蓄電池は，非常用 2 系統を各々別の場所に設置し，多重性及 び独立性を碓保し共通要因により機能が喪失しない設計とす る。
これらにより，その系統を構成する機械又は器具の単一故障 が発生した場合にも，機能が確保される設計とする。

【説明資料（2．1．1）（2．2．1）（2．1．1．3）】

第6頂について原子力発電所2号邞 \quad 差異理由
設計基準対象施設に連系する送電線は， 275 kV 送電線 4 回線
と 66 kV 送電線1回線とで構成する。
これらの送電線は 1 回線で 2 号炉の停止に必要な電力を供給し得る容量とし，いずれの 2 回線が衰失しても，発電用原子炉施設が同時に外部電源襄失に至らない構成とする。
なお， 275 kV 送電線は母線連絡遮断器を設置したタイライン により起動変圧器を介して， 66 kV 送雨線は予備変圧器を介して発電用原子炉施設へ接続する設計とする。

開閉所からの送受電設備は，十分な支持性能を持つ地盤に設置するとともに，遮断器等は重心の低いカス絶縁開閉装置を採用する等，耐震性の高いものを使用する。

さらに，防潮堤等により津波の影響を受けないエリアに設置 するとともに，塩害を考慮し， 275 kV 送電線引留部の碍子に対 しては，碍子洗浄ができる設計とし，遮断器等に対しては，電路がタンクに内包されているガス絶縁開閉装置を採用する。

【説明資料（2．1．1：P33条－48～52） （2．2．4：P33 条－124～157）〕

第 7 項について
非常用ディーゼル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。）及びその附属設備は，多重性及び独立性を考慮 して，必要な容量のものを各々別の場所に 3 台備え，共通要因 により機能が喪失しない設計とするとともに，各々非常用高圧母線に接続する。
蓄電池は，非常用 3 系統をそれぞれ異なる区画に設置し，多重性及び独立性を確保し共通要因により機能が懐失しない設計とする。
これらにより，その系統を構成する機器の単一故障が発生し た場合にも，機能が確保される設計とする。

また，ディーゼル発電機については，7日間の外部電源喪失 を仮定しても，連続運転により必要とする電力を供給できるよ う，7日間分の容量以上の燃料を敷地内の燃料油貯蔵タンクと重油タンクに分けて貯藏し，重油タンクから䋣料油貯蔵タンク に燃料を輸送する際はタンクローリーを使用する設計とする。

【説明資料（2．2．1．2）（2．2．1．3．1）】
外部電源震失時，ディーゼル発電機が長時間連続運転を行う場合において，夜間におけるタンクローリーによるディーゼル発電機燃料の輸送を実施する場合，ヘッドライト等の可橵型照明，タンクローリーの前照灯等を使用する。これらの可搬型照明は，発電所構内の所定の場所に保管し，輸送開始が必要とな る時間（少なくとも3日以内）までに十分準備可能な設計とす る。

> 【説明資料 (2.2.1.3.9)】

タンクローリーについては，保管場所及び輸送ルートを含 み，地震，津波及び想定される自然現象，並びに原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるちの（故意によるちのを除く。）を考慮しても，ディー ゼル発電機の7日間以上の連続運転に支障がない設計とする。

【説明資料（2．2．1．3．2）（2．2．1．3．3）（2．2．1．3．4）】
具体的には，地震時においても保管場所及び輸送ルートの健全性が確保できる場所を少なくとも 4 箇所選定し，各々 1 台を配備するとともに，竜巻時においては，童巻注意情報等が発表 され，公的機関により童巻発生確度等を確認した場合，発電所内に 24 時間待機している緊急安全対策要員によりトンネル内 にタンクローリーを 4 台退避させる運用とする。

あわせて保管場所及び輸送ルートの選定に当たつては，津波 の影響を受けない場所を逯定する。さらに保管場所の選定に当 たつては，消火困難でない場所を選定するとともに，タンクロ ーリーの火災時にも早期に発見できるよう火災感知設備を設 け，中央制御室にて常時監視できる設計とし，消火設備として消火器を設置する。外部火災（森林火災又は敷地内タンクの火災）に対しても，少なくとも 4 箇所は健全性を維持できる場所 を選定するものとする。なお，配備するタンクローリーは地震，津波及び想定される自然現象，並びに原子炻施設の安全性を損 なわせる原因となるおそれがある事象であって人為によるも の（故意によるものを除く。）によっても，同時に機能喪失しな いよう，各々異なる場所に保管する設計とする。

また，ディーゼル発電機については，7日間の外部電源衰失 を仮定しても，連続運転により必要とする電力を供給できるよ う，7日間分の容量以上の燃料を敷地内のディーゼル発電機燃料油貯油槽に貯蔵する。

【説明資料（2．2．1．2）】

7 日間の外部電源衰失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用ディーセ ル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）2台を7日間連続運転することにより必要とする電力を供給で きる容量以上の燃料を敷地内の軽油タンクに貯蔵する設計と する。

【説明資料（2．3．1：P33条－158～172）】

郡信名你の相違（1）
設偏•運用の相達（1）

設偏•運用の相達（1）

設備•運用の相達（1）

設偏•運用の相達（1）

また，発電所の安全に必要な直流電源を確保するため蕃電池を設置し，安定した交流電源を必要とするものに対しては，無停電電源装置を設置する。直流電源設備は，非常用所内電源として 125 V 2 系統及び常用所内電源とし て125V1系統から構成する。

【説明資料（2．2．1．1．2）】

発電機，外部電源系，非常用所内電源系，その他の関連 する電気系統機器の短絡や地絡又は母線の低電圧や過電流等を検知できる設計とし，検知した場合には，遮断器 により故障箇所を隔離し，他の安全機能への影響を限定 し，非常用所内電源系からの受電時に母線切替操作も容易に実施可能な設計とする。

【説明資料（2．1．1．3）（2．1．1．1）】

10．1．2 設計方針

10．1．2．1 非常用所内電源采
安全上重要な構築物，系統及び機器の安全機能を確保 するため非常用所内電源系を設ける。安全上重要な系統及び機器へ電力を供給する電気施設は，その電力の供給 が停止することがないよう，発電機，外部電源系，非常用所内電源系，その他の関連する電気系統機器の短絡や地絡又は母線の低電圧や過電流等を検知できる設計とし，検知した場合には，遮断器により故障箇所を隔離し，他 の安全機能への影響を限定できる設計とする。

また，非常用所内電源系からの受電時に，容易に母線切替操作が実施可能な設計とする。

【説明資料（2．1．1．3）（2．1．1．1）】

非常用電源設備及びその附属設備は，多重性及び独立性を確保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過潧変化時又は設計基準事故時において工学的安全施設及び設計基準事故対処設備の機能が碓保される設計とする。

【説明資料（2．2．1）（2．1．1．3）（2．2．1．1．1）】

また，発電所の安全に必要な直流電源を確保するため蓄電池を設置し，安定した交流電源を必要とするものに対し ては，無停電電源装置を設置する。直流電源設備は，非常用所内電源として 125 V 2 系統及び常用所内電源として 125 V 2系統から構成する。

【説明資料（2．2．1．1．2）】

発雨機，外部電源系，非常用所内電源系，その他の関連 する電気系統機器の短絡や地絡又は母線の低電圧や過電流等を検知できる設計とし，検知した場合には，遮断器に より故障箇所を隔離し，他の安全機能への影響を限定でき る設計とする。
また，非常用所内電源系からの受電時に，容易に母線切替操作が可能な設計とする。

【説明資料（2．1．1．3）（2．1．1．1）】

10．1．2 設計方針
10．1．2．1 非常用所内電源系
安全上重要な構築物，系統及び機器の安全機能を確保 するため非常用所内電源系を設ける。安全上重要な系統及び機器へ電力を供給する電気施設は，その電力の供緰 が停止することがないよう，発電機，外部電源系，非常用所内電源系，その他の関連する電気系統機器の短絡や地絡又は母線の低電圧や過電流等を検知できる設計と し，検知した場合には，遮断器により故障箇所を隔離し，他の安全機能への影響を限定できる設計とする。

また，非常用所内電源系からの受電時に，容易に母線切替操作が可能な設計とする

【説明資料（2．1．1．3）（2．1．1．1）】

非常用雷源設備及びその附属設備は，多重性及び独立性を確保し，その系統を構成する機械又は器具の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において工学的安全施設及び設計基準事故対処設備の機能が確保される設計とする。

【説明資料（2．2．1）（2．1．1．3）（2．2．1．1．1）】

また，発電所の安全に必要な直流電源を確保するため莘電池（非常用）を設置し，安定した交流電源を必要とする ものに対しては，非常用の無停電電源装置を設置する。非常用直流電源設備は，非常用所内電源系として3系統から構成し， 3 采統のうち 1 系統が故障しても発電用原子炉の安全性は確保できる設計とする。

外部雨源，非常用所内電源設備，その他の関連する電気系統機器の短絡若しくは地絡又は母線の低電圧若しくは過電流等を検知できる設計とし，検知した場合には，遮断器により故障箇所を隔離することによって，故障による影響を局所化できるとともに，他の安全機能への影響を限定 できる設計とする。
また，非常用所内電源設備からの受電時に，容易に母線切替操作が可能な設計とする。

【説明資料（2．1．2：P33 条 $-53 \sim 56$ ）】
10．1．1．2 設計方針
10．1．1．2．1 非常用所内電源系
安全上重要な構築物，系統及び機器の安全機能を確保 するため非常用所内電源系を設ける。安全上重要な系統及び機器人電力を供給する電気施設は，その電力の供給 が停止することがないよう，外部電源，非常用所内電源設備，その他の関連する電気系統機器の短絡若しくは地絡又は母線の低電圧若しくは過電流等を検知できる設計とし，検知した場合には，遮断器により故障箇所を隔離することによって，故障による影響を局所化できると ともに，他の安全機能への影響を限定できる設計とす る。

また，非常用所内電源設備からの受電時に，容易に母線切替操作が可能な設計とする。

【説明資料（2．2．1．1：P33 条－57～82） （2．1．2：P33 条－53～56）

非常用所内雷源系である非常用所内雷源設備及びも の附属設備は，多重性及び独立性を確保し，その系統を構成する機器の単一故障が発生した場合であっても，運転時の異常な過渡変化時又は設計基準事故時において発電用原子炉の安全性が確保できる設計とする。

【説明資料（2．3．1．1：P33 条 $-158 \sim 163$ ）
（2．3．1．2：P33 条 $-164 \sim 171$ ）।

設偏構成の相違（2）

記棘表現の相違

第33条 保安電源設備	边	緑宇：記載表現，設	備名称の相違（実質的な相違なし）
大飯発電所 $3 / 4$ 号炉	泊発電所3号炉	女川原子力発電所2号炉	差異理由
また，ディーゼル発電機については，7日間の外部電源猿失を仮定しても，連続運転により必要とする電力を供給できるよう，7日間分の容量以上の燃料を敷地内の燃料油貯藏タンクと重油タンクに分けて貯蔵し，重油タンク から燃料油貯蔵タンクに燃料を輸送する際はタンクロー リーを使用する設計とする。 【説明資料（2．2．1．2）（2．2．1．3．1）】	また，ディーゼル発電機については，7日間の外部電源喪失を仮定しても，連続運転により必要とする電力を供給できるよう，7日間分の容量以上の燃料を敷地内の ディーセル発電機㒄料油貯油棒に貯藏する設計とする。 【説明資料（2．2．1．2）】	非常用所内電源系のうち非常用交流電源設備である非常用ディーゼル発電機（高圧炉心スブレイ系ディーゼ ル発電機を含む。）については，燃料体及び原子炉椧却材圧カバウンダリの設計条件を超えることなく炉心を冷却でき，あるいは，椧却材喪失事故時にも炬心の椧却 とともに，原子炉格納容器等安全上重要な系統機器の機能を碓保できる容量と機能を有する設計とする。 また，7日間の外部電源懐失を仮定しても，運転時の異常な過渡変化又は設計基準事故に対処するために必要な非常用ディーゼル発電機（高圧炉心スプレイ系ディ一ゼル発電機を含む。）2台を7日間連続運転すること により必要とする電力を供給できる容量以上の燃料を敷地内の軽油タンクに貯蔵する設計とする。 【説明資料（2．3．1．3：P33 条－172）】	設㒇名称の）相違（1） 設偏•運用の相達（1）
10．1．2．2 全交流動力電源喪失 原子炉施設には，全交流動力電源表失時から重大事故等に対処するために必要な電力の供給が交流動力電源設備から開始されるまでの約 30 分間，原子炉を安全に停止 し，かつ，原子炉の停止後に炬心を泠却するための設備 が動作するとともに，原子炉格納容器の健全性を確保す るための設備が動作することができるよう，これらの設備の動作に必要な容量を有する亩電池（安全防護系用） を設ける。	10．1．2．2 全交流動力電源喪失 原子炉施設には，全交流動力電源震失時から重大事故等に対処するために必要な電力の供給が交流動力電源設備から開始されるまでの約 25 分間に対し，十分長い間，原子炉を安全に停止し，かつ，原子炉の停止後に炉心を泠却するための設備が動作するとともに，原子炉格納容器の健全性を確保するための設備が動作すること ができるよう，これらの設備の動作に必要な容量を有す る莘電池（非常用）を設ける設計とする。	10．1．1．2．2 全交流動力電源喪失 発電用原子炉施設には，全交流動力電源霝失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの約 15 分を包絡し た約 8 時間に対し，発電用原子炉を安全に停止し，かつ，発電用原子炉の停止後に炉心を泠却するための設備が動作するとともに，原子炉格納容器の健全性を確保する ための設備が動作することができるよう，これらの設備 の動作に必要な容量を有する非常用直流電源設備であ る蓄電池（非常用）を設ける設計とする。 【説明資料（2．3．1．2：P33 条 $-164 \sim 171$ ）】 10．1．1．3 主要設備の仕様 主要設備の仕様を第 10．1－1 表から第 10．1－5 表に示 す。	供給開始時間の相違（9） －代禁交流電源から電力の供給が開始さ れるまでの時間に差異があるが，全交流動力電源褧失時に必要な容量の雚電油を設 けている点にないて同等である。 記梂方針の相湋 －泊は 14 条め表現上整合を图り「十分長 い開」上記洅しているが，記裁内容に倸る実質的な相違はない。設唖名称の相違（3）

これらの母線は，母線ごとに一連のメタルクラッド開閉装置で構成し遮断器には SF_{6} ガス遮断器を使用する。故障を検知した場合には，遮断器により故障箇所を隔離す ることにより，故障による影響を局所化できるとともに，他の安全機能への影響を限定できる設計とする。
非常用高圧母線のメタルクラッド開閉装置は，耐震性 を有した制御建屋内に設置する。
非常用高圧母線はNo． 2 予備変圧器，所内変圧器，N o． 1 子備変圧器及びディーゼル発電機に接続し工学的安全施設の補機と発電所の保安に必要な非常用系補機に給電する。

通常時，非常用高圧母線には500kV送電線からN o． 2 予備変圧器を介し，No．2 予備変圧器から受電で きなくなった場合には所内変圧器かっら，また，所内変圧器から受電できなくなった場合にはディーゼル発電機か ら，さらにディーゼル発電機からの受電も失敗した場合 には，No．1予備変圧器から給電する。

メタルクラッド開閉装置の設備仕様の概路を第10．1．1表に示す。

【説明資料（2．1．1）（2．1．1．1）】
10．1．3．2 所内低圧系統
所内低圧系統を，第10．1．1図に示す。非常用低圧母線 は，次の4母線で構成する。
非常用低圧母線（3－A1，3－A2，3－B1，3－B2）非常用高圧母線から受電する母線

これらの母線は，一連のキュービクルで構成し，遮断器は気中遮断器を使用する。故障を検知した場合には，遮断器により故障箇所を隔離することにより，故障によ る影響を局所化できるとともに，他の安全機能への影響 を限定できる設計とする。

所内高圧系統を第 10．1．1図に示す。非常用高圧母線 は，次の2母線で構成する。

非常用高圧母線（6－A，6－B）
予備変圧器，所内変圧器，ディーゼル発電機，後備変圧器から受電する母線

これらの母線は，母線ごとに一連のメタルクラッド開閉装置で構成し，遮断器には真空遮断器を使用する。故障を検知した場合には，遮断器により故障箇所を隔離す ることにより，故障による影響を局所化できるととも に，他の安全機能への影響を限定できる設計とする。
非常用高圧母線のメタルクラッド開閉装置は，耐震設計上，原子炉禣助建屋内に設置する。

非常用高圧母線は予備変圧器，所内変圧器，ディーゼ ル発電機及び後備変圧器に接続し工学的安全施設を含 む重要度め特に高い安全機能を有する設呱に給電する設計とする。

非常用高圧母線は，常時 275 kV 送電線（泊幹線及び後志幹線）から子備変圧器を通して受重するが，子備変田器の故障時等せ受電てきない場合には，所内変圧器を通 して受電する。また， 275 kV 送電線（泊幹線及び後志幹線）が衰失した場合，非常用高圧母線は，ディーゼル発電機から受電する。
さらに， 66 kV 送電線（泊電源支線）に電圧がある場合は，手動で後備変圧器に切替えて受電することもできる設計とする。

【説明資料（2．1．1）（2．1．1．1）】
10．1．3．2 所内低圧系統
所内低圧系統を第10．1．1図に示す。非常用低圧母線 は，次の 4 母線で構成する。
非常用低圧母線（4－A1，4－A2，4－B1，4－B2）非常用高圧母線から動力変圧器を通して受電する母線
これらの母線は，一連のキュービクルで構成し，遮断器は配線用遮断器を使用する。故障を検知した場合に は，遮断器により故障箇所を隔雥することにより，故障 による影響を局所化できるとともに，他の安全機能への影響を限定できる設計とする。

10．1．1．4 主要設備
10．1．1．4．1 所内高圧系統
非常用の所内高圧系統は，6．9kV で第 $10.1-1$ 図に示
すように3母線で構成する。
非常用高圧母線………常用高圧母線又は非常用ディ常用高圧母線又は非常用ディ
ーゼル発電機（高圧烼心スプ レイ系ディーゼル発電機を含 む。）から受電する母線
これらの母線は，母線ごとに一連のメタルクラッド開閉装置で構成し遮断器には真空遮断器を使用する。故障 を検知した場合には，遮断器により故障箇所を隔離する ことによって，故障による影響を局所化できるととも に，他の安全機能への影響を限定できる設計とする。
非常用高圧母線のメタルクラッド開閉装置は，耐震性 を有した原子炉建屋付属棟内に設置する。
非常用高圧母線には，工学的安全施設に関係する機器 を振り分ける

275 kV 送電線が使用できる場合は所内変圧器又は，起動変圧器から，また， 275 kV 送電線が使用できなくなっ た場合には非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）から非常用高圧母線に給電する。

さらに，非常用ディーゼル発電機（高圧炉心スプレイ系 ディーゼル発電機を含む。）から受電できない場合， 66 kV開閉所から予備変圧器を介して非常用高圧母線に給電 する。

【説明資料（2．1．2：P33 条 $-53 \sim 56$ ）】
10．1．1．4．2 所内低圧系統
非常用の所内低圧系統は，460V で第 10．1－1 図に示 すように3母線で構成する。
非常用低圧母線………非常用高圧母線から動力変圧器を通して受電する母線

これらの母線は，母線ごとに一連のキュービクルで構成し，遮断器は気中遮断器又は配線用遮断器を使用す る。故障を検知した場合には，遮断器により故障箇所を隔離することによって，故障による影響を局所化できる とともに，他の安全機能への影響を限定できる設計とす とと
る。

非常用低圧母線のバワーセンタは，耐震性を有した制御建屋内に設置する。

工学的安全施設の補機と発電所の保安に必要な非常用系補機を接続している非常用低圧母線には，非常用高圧母線から動力変圧器を通して降圧し給電する。また，通常時，非常用低圧母線には， 500 kV 送電線からNo． 2予傏変圧器を介して非常用高圧母線を通じて給電し， No．2 予備変圧器から受電できなくなった場合には，所内変圧器から非常用高圧母線を通して給電する。所内変圧器から受電できなくなった場合には，ディーゼル発電機から非常用高圧母線を通じて給電する。

さらにディーゼル発電機からの受電も失敗した場合に は，No．1予備変圧器から非常用高圧母線を通じて給電する。

バワーセンタの設備仕様の概略を第10．1．2表に示す。

10．1．3．3 ディーゼル発電機

（1）ディーゼル発電機
ディーゼル発電機は，500kV外部電源が完全に喪失した場合に，発電所の保安を碓保し，安全に停止する ために必要な電力を供給し，さらに，工学的安全施設の電力も供給する。

ディーゼル発電機は，多重性を考慮して，必要な容量 のものを 2 台備え，各々非常用高圧母線に接続する。各 ディーゼル発電機は，原子炬周辺建屋内のそれぞれ独立 した部屋に設置する。

【説明資料（2．1．1）（2．2．1）（2．2．1．1．3）】

10．1．3．3 ディーゼル発電機
ディーゼル発電機は， 275 kV 送電線（泊幹線及び後志幹線）が喪失した場合に，原子炉を安全に停止するため に必要な電力を供給し，かつ原子炣冷却材衰失が同時に笼生した場合に，工学的安全施設を含む重要度の特に高 い安全機能を有する設備の作動のための電力も供給す る。

ディーゼル発電機は，多重性を考慮し2台備え，非常用高圧母線にそれだれ接続する。各ディーゼル発電機 は，配電盤及ぜ制御盤とちそれぞれ独立した部屋に設置 する。

工学的安全施設を含む重要度の特に高い安全機能を有する設備を接続している非常用低圧母線には，非常用高圧母線から動力変圧器を通して降圧し給電する。ま た，通常時，非常用低圧母線には， 275 kV 送電線（泊幹線及び後志幹線）から予備変圧器を介して非常用高圧母線を通じて給電し，予樋変圧器から受電できなくなった場合には，所内変圧器から非常用高圧母線を通して給電 する。
さらに，すべての 275 kV 送電線（泊幹線及び後志幹線） が喪失した場合には，ディーゼル発電機から非常用高圧母線を通して給電する。
66 kV 送電線（泊電源支線）に電圧がある場合は，手動で後備変圧器に切替えて非常用高圧母線を通じて給電す ることもできる設計とする。

【説明資料（2．1．1）（2．2．1）（2．2．1．1．3）】

工学的安全施設に関係する機器を接続している非常用低圧母線には，非常用高圧母線から動力変圧器を通し て降圧し給電する。

275 kV 送電線が使用できる場合は所内変圧器又は起動変圧器から，また， 275 kV 送電線が使用できなくなった場合には非常用ディーゼル発電機（高圧炉心スブレイ系 ディーゼル発電機を含む。）から非常用高圧母線を通し て非常用低圧母線に給電する。

さらに，非常用ディーゼル発電機（高圧炉心スブレイ系ディーゼル発電機を含む。）から受電できない場合， 66 kV 開閉所から予備変圧器を介して非常用高圧母線を通して非常用低圧母線に給電する。

【説明資料（2．1．2：P33条－53～56）】
10．1．1．4．3 非常用ディーゼル発電機（高圧炉心スプレイ系ディ ーゼル発電機を含む。）
非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機を含む。）は，外部電源が覄失した場合には発電用原子炉を安全に停止するために必要な電力を供給し，また，外部電源が喪失し同時に原子炬冷却材喪失 が発生した場合には工学的安全施設作動のための電力 を供給する。
非常用ディーゼル発電機（高圧炉心スプレイ糸ディー ゼル発電機を含む。）は多重性を考慮して，3台を備え，各々非常用高圧母線に接続する。各非常用ディーゼル発電設備（高圧炉心スブレイ系ディーゼル発電機を含む。） は，耐震性を有した原子炉建屋付属棟内のそれぞれ独立 した部屋に設置する。

【説明資料（2．3．1．1：P33 条 $-158 \sim 163$ ）】

歌偏名标の相違（4）
－大飯：パワーセンター泊：パワーコント ロールセンタ記較表現の相洷
建屋名你の相違

祀較方針の相違（1）

設偏構成の相違（3）
撵偏名称の相達（2）

記较表現の相達
歌偯構成の相違（3）

設偏設計等の相達（4）
設偏設計等の相違（5）

－泊は10．1．4にまとめて記載している。

設席褠成の相違（3）
記戟方針の相達（1）

記載方針の相椲（1）非常用低圧母線のパワーセンタ及びモータコントロ一ルセンタは，耐震性を有した原子炉建屋付属棟内に設置する。

ディーゼル発電機は，非常用高圧母線低電圧信号及U非常用炉心冷却設備作動信号で起動し，12秒以内何電圧 を確立した後は，各非常用高圧母線に接続し負荷に給雨 する。

外部電源震失のみか加発生した場合，各ディーゼル発電機に自動的に接続される主要禣機は，次のとおりである。
中央制御室空調ファン
中央制御室循塄ファン
厷てんボンフ
空調用椧涑機
原子炉補機冷却水ボンフ
電動補助給水ポング
海水ボンフ

格納容器再循噮ファン
制御用空気王縮機
原子炉容器室椧却ファン
空調用泠水ボンブ

上記以外にも，必要に応じて補機を起動できる。

ディーゼル発電機は，非常用高圧母線低電圧信号又は非常用炉心椧却設備作動信号で起動し，䄪 10 秒で電圧 を確立する。

非常用高圧母線低電王信号が発信した場合には，デ一ゼル発電機が自動起動するとともに非常用母線に接続する負荷のうち動力変圧器等を除きすごて開放する。 ディーセル発電機の電圧が確立すると非常用高圧母線 に自動的に接続され，原子炉を停止するために必要な偵何を順次投入する
非常用炉心冷却設作作動信号によりディーゼル発電機方自動起動した場合で，非常用高圧母線が停電してい ない場合は，ティーせル発電機は待機運転状能となり手動で停止するまで運転を継続する
なお，非常用高圧母線低電圧信号及ひ非常用炬心椧却設俿作動信号が同時に発信した場合には，ディーゼル発電機が自動起動するとともに非常用母線に接続する負荷のうち動力変圧器等を除きすべて開放する。ディーも ル発電機の電圧が碓立すると非常用高圧母線に自動的 に接続され，工学的安全施設を含む重要度の特に高い安全機能を有する設備に関する負荷在順次投入する。

非常用高圧母線が停電し，各ディーゼル発電機が非常用高圧母線に接続されると以下の主要な負荷を順次投入する。

充てんボンブ	1台
制御用空気圧縮機	1台
安全補機開閉器室給気ファン	1台
中央制御室給気ファン	1 台
中央制御室循噮ファン	1 台
原子炬補機洽却水ボンブ	1 台目
原子炉補機浍却水ポンブ	2台目
電動補助緰水ボンブ	1 台
原子炬補機椧却海水ボンブ	1台目
原子炬補機椧却海水ボンブ	2台目
空調用冷凁機	1 台目
空調用冷凁機	2台目
格約容器再循擐ファン	1 台目
格納容器再㵌噮ファン	2台目
制御棒歌動装置冷却フアン	1 台
原子炉容器室椧却ファン	1 台
䌷受椧却水ボンブ	1 台

各非常用ディーセル発電機（高圧炉心スブレイ系ディ一ゼル発電機を含む。）に接続する主要な負荷は以下の系統に属するものである。

非常用ディーゼル発電機（区分 I）
低圧炉心スプレイ亲

残留埶除去系

タービン補機冷却采
原子炉補機冷却系
換気空調系（中央制御室，非常用ディーゼル発電機
室等）
ほう酸水注入采
制御棒駆動水圧系
非常用ガス処理系
可燃性ガス濃度制御采
藍電池充電器
非常用照明

祀銥方卻の相造（1）

祀様方針の相澾（1）

記較方針の相違（1）
設偏構成の相違（2）
（泊の既許可に記栽の接続される＂負荷＂ を＂主要な負荷＂に変更するとともに，泊 の既工認に記載の個別負荷を反映した。
－中央制御定給気ファン等
\rightarrow 中央制䘖室給気ファン
中央制御室循㙫ファン
原子炉容器宝椧却ファン
－空調用椧凁機
\rightarrow 空調用洽凁機
空調用满凁機

数十台
1台，
1台，
1台
1台
台目，
2台目）

第 33 条					
保安電源設備					
大飯発電所 $3 / 4$ 号炉					
10.1 .3 .4					
直流電源設備					

直流電源設備は，第10．1．3図に示すように，䓊電池（安全防護采用） 2 組に加え，蓄電池（一般用） 1 組の合計 3組のそれぞれ独立した蓄電池，充電器，直流き電盤等で構成し，蓄電池（安全防護系用）2組のいずれの1組が故障しても残りの采統でブラントの安全性は確保する。

また，これらは，多重性及び独立性を確保することによ り，共通要因により同時に機能が襄失することのない設計とする。直流母線は 125 V であり，うち蓄電池（安全防護系用） 2 組の電源の負荷は，工学的安全施設等の開閉器作動電源，タービン動補助給水ボンブ起動輼，電磁弁，計装用電源（無停電電源装置）である。

3 組の蓄電池は，据置型蓄電池で独立したものであり，業電池（安全防護系用） 2 組は非常用低圧母線に接続され た充電器で浮動充電する。

【説明資料（2．2．1．1．2）】
また，蓄電池（安全防護系用）の容量は 1 組当たり $2400 \mathrm{~A} \cdot \mathrm{~h}$ であり，原子炉を安全に停止し，かつ，原子炉 の停止後に炉心を一定時間冷却するための設備が動作す るとともに原子炉格納容器の健全性を確保するための設備が動作することができるよう，これらの動作に必要な容量を有している。

この容量は，例えば，原子炉が停止した際に遮断器の開放動作を行ラメタルクラッド開閉装置（約 27 A ），原子炉停止後の炉心椧却のためのタービン動補助給水ボンブ起動盤（タービン動補助給水ポンプ非常用油ポンプ，夕 ービン動補助給水ポンプ起動升等）（約 93A），原子炉の停止，冷却，原子炬格納容器の健全性を確認できる計器に電力供給を行う計装用電源（無停電電源装置）（約 190A）及びその他制御盤の待機電力等（約 240A）の負荷へ電力供給を行った場合においても，全交流動力電源喪失時か ら重大事故等に対処するために必要な電力の供給が交流動力電源設備から開始されるまでの約 30 分間に対し，1時間以上電力供給が可能な容量である。

直流電源装置の設備仕様の概略空第 10.1 .3 表に示す

直流電源設備は，第 10.1 .3 図に示すように，葽電池
（非常用） 2 組に加え，䈏電池（常用） 2 組の合計 4 組 のそれぞれ独立した蓄電池，充電器，直流コントロール セン夕等で構成し，蓄電池（非常用）2組のいずれの1組が故障しても残りの系統でプラントの安全性を確保 する。

また，これらは，多重性及び独立性を磪保することによ り，共通要因により同時に機能が襄失することのない設計とする。直流母線は 125 V であり，うち書電池（非常用） 2 組の電源の負荷は，工学的安全施設等の開閉器作動電源，電磁弁，計測制御用電源設備（無停電電源装置）等である。

4 組の蓄電池は，据置型蓄電池で独立したものであ り，荎電池（非常用） 2 組は非常用低圧母線に接続され た充電器で浮動充電する。

【説明資料（2．2．1．1．2）】
また，蓄電池（非常用）の容量は 1 組当たり約 $2,400 \mathrm{Ah}$ であり，原子炉を安全に停止し，かつ，原子炉の停止後 に炉心を一定時間冷却するための設備が動作するとと もに原子炉格納容器の健全性を確保するための設備が動作することができるようっこれらの動作に必要な容量 を有している。

この容量は，例えば，原子炉が停止した際に遮断器の開放動作を行うメタルクラッド開閉装置（約 50A），原子炉停止後の炉心椧却のためのタービン動補助給水ポン プ起動盤（タービン動補助給水ポンブ非常用油ポンプ， タービン動補助給水ボンブ脤動蒸気入口亣等）（約 170 A ），原子炉の停止，椧却，原子炉格納容器の健全性を確認できる計器に電力供給を行う計測制御用電源設輪 （無停電電源装置）（約 290A）及びその他制御盤の待機電力等（約 170A）の負荷へ電力供給を行った場合におい ても，全交流動力電源喪失時から重大事故等に対処する ために必要な電力の供給が交流動力電源設備から開始 されるまでの約 25 分間に対し， 1 時間以上電力供給が可能な容量である。

10．1．1．4．4 直流電源設備
非常用直流電源設備は，第10．1－3図に示すように，非常用所内電源系として，直流 125 V 3 系統（区分 I ， II，III）から構成する。
非常用所内電源系の直流 125 V 系統は，非常用低圧母線に接続される充電器 5 個，蓄電池 3 組等を設ける。こ れらの 3 系統のうち 1 系統が故障しても発電用原子炉 の安全性は確保できる。

また，これらの系統は，多重性及び独立性を確保する ことにより，共通要因により同時に機能が㐮失すること のない設計とする。直流母線は 125 V であり，非常用直流電源設備 3 組の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する非常用の無停電電源装置等である。
そのため，原子炉水位及び原子炉圧力の監視による発電用原子炉の泠却状態の確認並びに原子炉格納容器内圧力及びサプレッションプール水温度の監視による原子炉格納容器の健全性の確認を可能とする。
蓄電池（非常用）は 125 V 蓄電池 2 A （区分 I ）， 2 B （区分II）及び 2 H（区分III）の 3 組で構成し，据置型蓄電池 でそれぞれ異なる区画に設置され独立したものであり，非常用低圧母線に接続された充電器で浮動充電する。

また，蓄電池（非常用）の容量はそれぞれ約 $8,000 \mathrm{Ah}$ （区分I），約 $6,000 \mathrm{Ah}$（区分II）及び約 400 Ah （区分 III）であり，発電用原子炉を安全に停止し，かつ，発電用原子炉の停止後に炉心を一定時間冷却するための設備の動作に必要な容量を有している。

この容量は，例えば，発電用原子炉が停止した際に遮断器の開放動作を行うメタルクラッド開閉装置等，発電用原子炉停止後の炉心椧却のための原子炉隔離時椧却系，発電用原子炉の停止，椧却，原子炉格納容器の健全性を確認できる計器に電源供給を行う制御盤及び非常用の無停電電源装置の負荷へ電源供給を行った場合に おいても，全交流動力電源喪失時から重大事故等に対処 するために必要な電力の供給が常設代替交流電源設備 から開始されるまでの約 15 分を包絡した約 8 時間以上電源供給が可能な容量である。

設揀名标の相違（3）
用）
 ルセンタ
設㒀構成の相違（2）
記範表現の相達

䬦偏名称の相達（3
記戟京現の相違

設偏構成の相違（2）
設偏名标の相違（3）

效偏名标の相違（3）
記載表現の相澾

弡偏構成の相違（2）

祀軣表現の相違

供給開始時閒の相達（9）
記職䈏所の相洼
－泊は10．1．4にまとめて鱾裁している。常用として計装用交流母線8母線，また，常用として計装用交流母線8日線及び計装用後備母線5 母線で構成 し，母線電圧は100V である。

非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電電源装置等で構成する。

無停電電源装曽は，外部電源喪失及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源設䡌から開始されるまでの約 25 分間においても，直流電源設備である蓄電池（非常用）か ら直流電力が供給されることにより，無停電電源装置内 の変換器を介し直流を交流へ変換し，非常用の計装用交流母線に対し電力供給を確保する。そのため，灯外核計装の監視による原子炉の安全停止状能の確認， 1 次冷却材温度等の監視による原子炬の治却状態の確認，及び原子炉格納容器圧力，格納容器内温度の監視による原子炉格納容器の健全性の確認を可能とする。

原子炉保諼設備等の重要度の特に高い安全機能を有 する設備に関する負荷は，非常用の計装用交流母線に接続する。多重チャンネル構成の原子炉保護設備への給電 は，チャンネルごとに分けて分離及ひ独立性を持たせ る。

なお，非常用の計装用交流母線のうち 4 母線は，計装用後備変圧器からも受電できる

0．1．1．4．5 計測制御用電源設備
非常用の計測制御用電源設備は，第 $10.1-4$ 図に示す ように，無停電交流母線 120 V 2 母線及び計測母線 120 V 2母線で構成する。

無停電交流母線は， 2 系統に分離独立させ，それだれ非常用の無停電電源装置から給電する。

非常用の無停電電源装置は，外部電源衰失及ぴ全交流動力電源愄失時から重大事故等に対処するため，非常用直流電源設備である蓄電池（非常用）から電力が供給さ れることにより，非常用の無停電電源装置内の変換器を介し直流を交流一変換し，無停電交流母線に対し電力供給を碓保する。

非常用の無停電電源装置は，核計装の監視による発電用原子炬の安全停止状態及び末臨界の維持状態の確認 のため，全交流動力電源丧失時から重大事故等に対処す るために必要な電力の供給が常設代替交流電源設備か ら開始されるまでの約 15 分間を包絡した約 1 時間，電源供給が可能である。

なお，これらの電源を保守点検する場合は，必要な電力は非常用低圧母線に接続された無停電電源装置内の変圧器から供給する。
また，計測母線は，分離された非常用低圧母線から給電する。

【説明資料（2．1：P14条－13～15）（2．2：P14 条 $-16 \sim 42$ ） （2．3．1：P14 条 $-43 \sim 50$ ）

計測制御用電源設備は，第10．1．4図に示すように非常用として計装用母線 8 母線，また，常用として計装用母線10母線（内 2 母線は， 3 号及び 4 号炉共用）及び計装用後備母線 5 母線で構成し，母線雨圧は 115 V 及び 100 V である。
非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する計装用電源（無停電電源装直）等で構成する。
計装用電源（無停電電源装置）は，外部電源喪失及び全交流動力電源喪失時から重大事故等に対処するために必要な電力の供給が交流動力電源から開始されるまでの約 30 分間においても，直流電源設備である蓄電池（安全防護系用）から直流電力が供給されることにより，計装用電源（無停電電源装置）内の変換器を介し直流を交流人変換し，非常用の計装用母線に対し電力供給を確保でき る。そのため，灯外核計装の監視による原子炉の安全停止の確認， 1 次椧却材温度等の監視による原子炉の泠却状態の確認，及び原子炉格納容器圧力，原子炬格納容器雰囲気温度の監視による原子炉格納容器の健全性の確認 を可能とする。
原子炉保護設備等の重要度の特に高い安全機能を有す る設備に関する負荷は，非常用の計装用母線に接続する。多重チャンネル構成の原子炉保護設備への給電は，チャ ンネルごとに分離し，独立性を確保する。

なお，非常用の計装用母線 4 母線は，後備計装用電源 （変圧器）からも受電できる。

計测制御用電源設備の設備仕様の概略を第10．1．4表 に示す。

非常用高圧母線が停電するとティーゼル発電機が起動するとともに，非常用高圧母線に接続する負荷は コントロールセンタ等を除いてすべて遮断し，ディー ゼル発電機の電圧が定格値になるとディーゼル発電機を非常用高圧母線に接続し，発電所を安全に停止す るために必要な負荷を順次再投入する。
（3）No， 1 予備変圧器（ 77 k V 采）への切替え
500 kV 送電線 4 回線とも停電し，その上ディー ゼル発電機からの受電も失敗し，77kV送電線に電圧がある場合，No．1予備変圧器から受電して，発電所の安全停止に必要な補機を運転する
本切替えは手動切替えであり容易に実施可能であ る。

【説明资料（2．1．1．3）（2．1．3．2．3）】
（4） 500 kV 送電線電圧回復後の切替え
ディーゼル発電機で所内負荷運転中， 500 kV 送電線の電圧が回復すれば，所内負荷を元の状態に戻 す。

（5）計装用母線の切替え

非常用の計装用電源（無停電電源装置）からの 8 母線には，2 台の後俑計装用電源（変圧器）を設け，440V交流電源に切り替えることができる。

10．1．4 主要仕様
主要仕様を第 10.1 .1 表から第 10.1 ． 5 表に示す。

非常用高圧母線が停電するとディーゼル発電機が起動するとともに，非常用高圧母線に接続する電動機負荷及び非常用低圧母線に接続する電䡃機負荷はすべて遮断し，ディーゼル発電機の電圧が定格値になるとディー ゼル発電機を非常用高圧母線に接続し，発電所を安全に停止するために必要な負荷を順次再投入する。

【説明資料（2．1．1．3）】
（3）後備変圧器への切替
275 kV 送電線（泊幹線及び後志幹線） 4 回線がすべ喪失し，ディーゼル発電機で所内負荷運転中， 66 kV 送電線（泊電源支線）に電圧がある場合，後備変圧器から受電して，発電所の安全停止に必要な補機を運転すること もできる設計とする。本切替は手動切替であり容易に実施可能な設計とする。
（4） 275 kV 送電線電圧回復後の切替
ディーゼル発電機又は後備変圧器で所内負荷運転中， 275 kV 送電線（泊幹線及び後志幹線）の電圧が回復すれ ば，所内負荷を元の状態に戻す

用交流母線の切替
非常用の計測制御用電源設備のうち 4 母 線には，2台 の計装用後檤変圧器を設け，切替えることができる。

10．1．4 主要仕様
メタルクラッド開開装置，バワーコントロールセンタ， ディーセル発電機設備，直流電源設備及び計測制御用電源設備の主要仕様を第 10.1 ． 1 表から第 10.1 .5 表に示す。

差異理由

非常用高圧母線が所内変圧器及び起動変圧器を介し た受電ができなくなった場合には，非常用高圧母線に接続された負荷は，動力変圧器及びモータコントロールセ ンタを除いて全て遮断される。非常用ディーゼル発電機 （高圧炉心スプレイ系ディーゼル発電機を含む。）は，自動起動し電圧及び周波数が定格値になると，非常用高圧母線に自動的に接続され，発電用原子炬の停止に必要 な負荷が自動的に順次投入される。

【説明資料（2．2．1．2：P33 条－83～87）】

設偏設計等の相違（5）祀㖑表現の相違設熵構成の相違（2）弱㒀設計等の相違（4）設偏設計等の相遠
－大䴚はディーゼル発電機からの受菓失政時に切柏えするが，泊は 66 kV 送電線に電圧があれしばティーセル発電機からの受需中であっても手䡃切整できる設神とす る。
記識筒所の相違
（2） 275 kV 送電線又は 66 kV 送電線電圧回復後の切替
非常用ディーゼル発電機（高圧炉心スプレイ系ディー ゼル発電機を含む。）で所内負荷運転中， 275 kV 送電線又は 66 kV 送電線の電圧が回復すれば，非常用ディーゼ ル発電機（高圧炉心スブレイ系ディーゼル発電機を含 む。）を外部電源に同期並列させる。275kV 送電線電圧回復の場合は無停電切替（手動）で所内負荷を元の状態 にもどし， 66 kV 送電線電圧回復の場合は無停電切替（手動）で発電用原子炉を安全に停止するために必要な所内電力を受電する。

【説明資料（2．2．1．2：P33 条－83～87）】
خ

設偏構成の相違（2）䟚載表現の相達設偏設計等の相達（5）

```
記臷方針の相違(1
記轙表現の相達
```

設偏構成の相違 (2)

記鐡噇所の相潿

 している。

所内高圧母線は，常用 4 母線と非常用 2 母線で構成する。常用4母線は所内変圧器から直接受電できるほか，No． 2予備変圧器からも受電できる設計とする。

所内低圧母線は，常用 6 母線，非常用 4 母線で構成する。常用 6 母線は常用高圧母線から動力用変圧器を通して受電 できる設計とする。

所内禣機は，工学的安全施設の補機と一般補機とに分け， そえそれ非常用母線，常用母線に接続する。

所内䋠機で 2 台以上設置するものは非常用，常用共に各母線に分割接続し，所内電力供給の安定を図る。

【説明資料（2．1．1）】

また，必要な直流電源を確保するため蕃電池を設置する。

直流電源設備は，非常用所内電源として 2 系統及び常用所内電源として1系統から構成する

【説明資料（2．2．1．1．2）】

10．3．2 設計方針

10．3．2．1 外部電源采

重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，外部電源系を設ける。重要安全施設へ電力を供給する電気施設は，そ の電力の供給が停止することがないよう，送電線の回線数と特高開閉所の母線数は，供給信頼度の整合が図れた設計とし，電気系統の系統分離を考慮して， 500 kV母線を 2 母線， 77 kV 母線を 1 母線で構成する。

【説明資料（2．1．2．1）（2．1．1）】
また，発電機，外部電源系，非常用所内電源系，その他 の関連する電気系統の機器の短絡や地絡又は母線の低電圧や過電流等を検知できる設計とし，検知した場合には，遮断器により故障箇所を隔離することにより，故障によ る影響を局所化できるとともに，他の安全機能への影響 を限定できる構成とする。

所内高圧母線は，常用 3 母線と非常用 2 母線で構成す る。常用3母線は所内変圧器から直接受電できる他，予偕変圧器からも受電できる設計とする。

所内低圧母線は，常用 5 母線，非常用 4 母線で構成する常用 5 母線は常用高圧母線から動力変圧器を通して受電 できる設計とする。

所内の設俑は，工学的安全施設を含む重要度の特に高に安全機能を有する設備とをれ以外の設俑に分頪し，工学的安全施設を含む重要度の特に高い安全機能を有する設備 は，非常用母線に，それ以外の設備は，原則として常用母線に接続する。
所内の設備で 2 台以上設置するものは非常用，常用ともに各母線に分割接続し，所内電力供給の安定を図る。

【説明資料（2．1．1）】
また，必要な直流電源を確保するため蓄電池を設置し，安定した交流電源を必要とするものに対しては無停東電源装置を設匽する。
直流電源設備は，非常用所内電源として 2 系統及び常用所内電源として 2 系統から構成する。

【説明資料（2．2．1．1．2）】

10．3．2 設計方針
10．3．2．1 外部電源采
重要安全施設がその機能を維持するために必要とな る電力を当該重要安全施設に供給するため，外部電源系 を設ける。重要安全施設へ電力を供給する電気施設は， その電力の供給が停止することがないよう，送電線の回線数と開閉所の母線数は，供給信頼度の整合が図られた設計とし，電気系統の系統分離を考慮して， 275 kV 母線 を 2 母線， 66 kV 母線を 1 母線で構成する設計とする。

【説明資料（2．1．2．1）（2．1．1）】
また，発電機，外部電源系，非常用所内電源系，その他の関連する電気系統の機器の短絡や地絡又は母線の低電圧や過電流，変圧器 1 次側における 1 相開放故障等 を検知できる設計とし，検知した場合には遮断器により故障箇所を隔離することにより故障による影響を局所化できるとともに，他の安全機能への影響を限定できる構成とする。

【説明資料（2．1．1．3）（2．1．1．1）】
女川原子力発電所 2 号炉

常用高圧母線は 2 母線で構成し，所内変圧器又は共通用高圧母線から受電できる設計とする。

共通用高圧母線は2母線で構成し，起動変圧器から受電 できる設計とする。
常用低圧母線は 2 母線で構成し，常用高圧母線から動力変圧器を通して受電できる設計とする。

共通用低圧母線は 2 母線で構成し，共通用高圧母線から動力変圧器を通して受電できる設計とする。

所内機器で 2 台以上設置するものは，非常用，常用共に，各母線に分割接続し，所内電力供給の安定を図る。

また，直流電源設備は，常用所内電源系として直流 250 V 1 系統で構成する。

【説明資料（2．1．1：P33 条 $-48 \sim 52$ ）】

10．3．2 設計方針

10．3．2．1 外部電源系
重要安全施設がその機能を維持するために必要とな る電力を当該重要安全施設に供給するため，外部電源系 を設ける。重要安全施設へ電力を供給する電気施設は， その電力の供給が停止することがないよう，送電線の回線数と開閉所の母線数は，供給信頼度の整合が図れた設計とし，電気系統の系統分離を考慮して， 275 kV 母線を 4 母線， 66 kV 母線を 1 母線で構成する。

【説明資料（2．1．1：P33 条 $-48 \sim 52$ ）】
また，発電機，外部電源系，非常用所内電源系，その他の関連する電気系統の機器の短絡若しくは地絡又は母線の低電圧若しくは過電流，変圧器 1 次側における 1相開放故障等を検知できる設計とし，検知した場合に は，遮断器により故障箇所を隔離することによって，故障による影響を局所化できるとともに，他の安全機能へ の影響を限定できる構成とする。

【説明資料（2．2．1：P33 条－57～87）】
差異理

設偯構成の相遠（2
記載䒾現の相達
設偏名标の相逗（2）

設偏構成の相違（2）

記戟方针の相達（1）

記㭜表現の相達

記鈛方針の相逢
－「非常用電曝設仵」の記述に做った記載 としている。

設椨構成の相違（2）

記載表現の相達
縏偏構成の相達（3）設偏設計等の相達（4）

記機䑺所の相逗

 な限り異常の早期検知に努める。

【説明痗料（2．1．1．2）］
外部電源系の少なくとも 2 回線は，それぞれ独立した送電線により電力系統に連系させるため，万一，送電線 の上流側接続先である西京都変電所，京北開閉所又は小浜変電所のいずれかっから停止しても，残りの変電所から電力を供給することが可能な設計とする。

【説明資料（2．1．2）】
少なくとも 1 回線は他の回線と物理的に分離された設計とし，すべての送電線が同一鉄塔等に架線されない設計とすることにより，これらの原子炉施設への電力供給 が同時に停止しない設計とする。
さらに，いずれの 2 回線が襄失した場合においても電力系統からこれらの原子炉施設への電力供給が同時に停止しない設計とする。
【説明資料（2．1．3）（2．1．2．1．1）（2．1．2．1．2）（2．1．2．1．3）】
当該特高開閉所から主発電機側の送受電設備は，十分 な支持性能をもつ地盤に設置する。
碍子，遮断器等は耐震性の高いものを使用する。さら に津波に対して隔離又は防護するとともに，塩害を考慮 した設計とする。

【説明資料（2．1．4．4）（2．1．4．4．1）（2．1．4．4．2）】

外部電源系の少なくとも 2 回線は，それぞれ独立した送電線により電力系統に連系させるため，万一，送電線 の上流側接続先である西野変電所から停止しても西双葉開閉所から，また，西双葉開閉所が停止しても西野変電所から電力を供給する。

さらに，西野変電所と西双葉開閉所が停止した場合でも国富変電所から電力を供給することが可能な設計とす る。

【説明资料（2．1．2）】
少なくとも 1 回線は他の回線と物理的に分離された設計とし，すべての送電線が同一鉄塔等に架線されない設計とすることにより，これらの原子炉施設への電力供給が同時に停止しない設計とする。
さらに，いずれの 2 回線が嬛失した場合においても電力糸統からこれらの原子炉施設への電力供給が同時に停止しない設計とする。

【説明資料（2．1．3）（2．1．2．1．1）（2．1．2．1．2）】
開閉所から発電機側の送受電設備は，十分な支持性能 をもつ地盤に設置する。
碍子，遮断器等は耐震性の高いものを使用する。さら に津波に対して隔離又は防護するとともに，塩害を考慮 した設計とする。

【説明資料（2．1．4．4）（2．1．4．4．1）（2．1．4．4．2） （2．1．4．4．3）（2．1．4．4．4）】

外部電源系の少なくとも 2 回線は，それぞれ独立した送電線により電力系統に連系させるため，万一，送電線 の上流側接続先である石巻変電所が停止した場合でも，外部電源系からの電力供給が可能となるよう，宮城中央変電所又は女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。また，宮城中央変電所が停止した場合には，石巻変電所又は女川変電所を経由するルートで本発電所に電力を供給すること が可能な設計とする。
さらに，女川変電所が停止した場合には，石巻変電所又 は宮城中央変電所を経由するルートで本発電所に電力 を供給することが可能な設計とする。

少なくとも 1 回線は他の回線と物理的に分離された設計とし，全ての送電線が同一鉄塔等に架線されない設計とすることにより，これらの発電用原子炉施設への電力供給が同時に停止しない設計とする。

さらに，いずれの 2 回線が喪失した場合においても電力系統からこれらの発電用原子炬施設への電力供給が同時に停止しない設計とする。

【説明坆料（2．2．2：P33 条－88～94）】
開閉所及び送受電設備は，十分な支持性能を持つ地盤 に設置する。
碍子，遮断器等は耐震性の高いものを使用する。さら に，防潮堤等により津波の影響を受けないエリアに設置 するとともに，塩害を考慮した設計とする。

【説明資料（2．2．4．2：P33 条 $-130 \sim 157$ ）】

－泊は前段に含あて礼載している。

般偏構成の相違（3）跽載表現の相達

設信設计等の相違（4）

記載䑺所の相達

記梂表現の相達

設偏設計等の相達（8）

大飯発電所 $3 / 4$ 号炉	泊発電所3号炉	女川原子力発電所 2 号炉	差異理由
		10．3．3 主要設備の仕様 主要仕様を第 10．1－1 表から第 10．1－4 表及び第 10.3 -1 表から第 $10.3-4$ 表に示す。	
10．3．3 主要設備 10．3．3．1 送電線（1号， 2 号， 3 号及び 4 号炬共用，非常用電源設備と兼用） 発電所は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，第 10．3．1図に示すとおり，送受電可能な 500 kV 送電線 （大飯幹線及び第二大飯幹線） 2 ルート 4 回線及び受電專用の回線として77kV送電線（大飯支線）1 ルート1回線の合計 3 ルート 5 回線で電力采統に連系する。	10．3．3 主要設備 10．3．3．1 送電線（1号， 2 号及び3号炉共用，非常用電源設備 と兼用） 発電所は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，第 10．3．1図に示すとおり，送受電可能な 275 kV 送電線（泊幹線及び後志幹線） 2 ルート 4 回線及び受電專用の回線 として 66 kV 送電線（泊電源支線）1 ルート 2 回線の合計3ルート 6 回線で電力系統に連系する設計とする。	10．3．4 主要設備 10．3．4．1 送電線（1号， 2 号及び 3 号炬共用，既設，非常用電源設備と兼用） 発電所は，重要安全施設がその機能を維持するために必要となる電力を当該重要安全施設に供給するため，第 10．3－1図に示すとおり，送受電可能な回線として 275 kV送電線（牡鹿幹線）1 ルート 2 回線， 275 kV 送電線（松島幹線） 1 ルート 2 回線及び受電専用の回線として 66 kV送電線（塚浜支線（鮎川線 1 号を一部含む。）及び万石線）1 ルート1回線の合計 3 ルート 5 回線で電力系統に連系する。	設㛿構成の相違（3） 設偏設計等の相達（4）
500 kV 送電線のうち 2 回線（大飯幹線）は，約 70 km離れた西京都変電所に連系し，他の 2 回線（第二大飯幹線）は，約 50 km 離れた京北開閉所に連系する。 また，77kV送電線（大飯支線）にて，約 26 km 離れた小浜変電所に連系する。	275 kV 送電線のうち 2 回線（泊幹線）は，約 67 km 離れ た西野変電所に連系し，他の 2 回線（後志幹線）は約 66 km離れた西双葉開閉所に連系する。 また， 66 kV 送電線（泊電源支線）は約 19 km 離れた国富変電所に茅沼線及び泊支線を経由して連系する設計と する。	275 kV 送電線（牡鹿幹線）は，約 28 km 離れた石巻変電所に， 275 kV 送電線（松島幹線）は，約 84 km 離れた宮城中央変電所に連系する。 また， 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含 む。）及び万石線）は，約 8 km 離れた女川変電所及びそ の上流接続先である約 22 km 離れた西石巻変電所に連系 する。 【説明資料（2．1．1：P33 条 $-48 \sim 52$ ）】	
万一，送電線の上流側接続先である西京都変電所，京北開閉所又は小浜変電所のいずれかが停止しても，残り の変電所から電力を供給することが可能な設計とする。	万一，送電線の接続先である西野変電所が停止しても西双葉開閉所から，また西双葉開閉所が停止しても西野変電所から電力を供給する。	万一，石巻変電所が停止した場合でも，外部電源系か らの電力供給が可能となるよう，宮城中央変電所又は女川変電所を経由するルートで本発電所に電力を供給す ることが可能な設計とする。また，宫城中央変電所が停止した場合には，石巻変電所又は女川変電所を経由する ルートで本発電所に電力を供給することが可能な設計 とする。	設儒構成の相違（3）䠌載表現の相達
500 kV 送電線への切替えは自動切替えであり，容易 に実施可能である。 77 kV 送電線への切替えは手動に より実施可能である。 【説明資料（2．1．2）】	さらに，西野変電所と西双葉開閉所が停止した場合でも手動で切替えることにより国富変電所から電力を供給 することが可能な設計とする。 【説明資料（2．1．2）】	さらに，女川変電所が停止した場合には，石巻変電所又 は宮城中央変電所を経由するルートで本発電所に電力 を供給することが可能な設計とする。	設偏設計等の相違（4）
送電線は1回線で，重要安全施設がその機能を維持す るために必要となる電力を供給できるような容量を選定 するとともに，常時，重要安全施設に連系する 500 k V 送電線は，単一故障時の影響を考慮し，4回線とする。 【説明資料（2．1．4．1）（2．1．4．2）（2．1．4．3）】	送電線は1回線で，重要安全施設がその機能を維持す るために必要となる電力を供給できるような容量を選定するとともに，常時，重要安全施設に連系する 275 kV送電線（泊幹線及び後志幹線）は，単一故障時の影響を考慮し，4回線とする。 【説明資料（2．1．4．1）（2．1．4．2）（2．1．4．3）】	送電線は， 1 回線で重要安全施設がその機能を維持す るために必要となる電力を供給できる容量を選定する とともに，常時，重要安全施設に連系する 275 kV 送電線 は，系統事故による停電の減少を図るためタイラインに て接続とする。 【説明資料（2．1．1：P33 条 $-48 \sim 52$ ）】	設偏構成の相違（3）

500 kV 送電系統については，短絡，地絡検出用保護装置を2系列設置することにより，多重化を図る設計 とする。また，送電線両端の電気所の送雨線引出口に遮断器を配置し，送電線で短絡，地絡等の故障が発生した場合には，遮断器により故障箇所を隔離することにより，故䧫による影彗を局所化できるとともに，他の安全機能 への影響を限定できる設計とする。

【説明資料（2．1．1．3）（2．1．1．1）】
また，送電線1相の開放が生じた際には， 500 kV送電線は電力送電時， 77 kV 送電線は，No． 1 予俑変圧器から所内負荷へ給電している場合，保讙装置による自動検知又は人的な検知（巡視点柈等）を加えることで，一部の保護粎電器等による検知が期待できない箇所の 1相開放故障の発見や，その兆候を早期に発見できる可能性を高めることとしている。
なお， 1 相開放故障事象の知見を手順書に反映し，運転員に対して定期的に教育を実施するとともに，変圧器等 の巡視点检を1日1回実施することや手動による受電切替え時に，変圧器等の巡視点検を実施することで，可能 な限り異常の早期検知に努める。

【説明資料（2．1．1．2）】
設計基準対象施設に連系する 500 kV 送電線（大眅幹線及び第二大飯幹線） 4 回線と 77 kV 送電線（大飯支線）1回線は，同一の送電鉄塔に架線しないよう，それで れに送雨鉄塔を備える。

また，送電線は，大規模な盛士の崩壊，大規模な地すべ り，急傾斜の崩壊による被害の最小化を図るため，鉄塔基碳の安定性を碓保することで，鉄塔の倒壊を防止する とともに，台風等によろ強風発生時の事故防止対策を図 ることにより，外部電源系からの電力供給が同時に停止 することはない。
さらに， 500 kV 送電線（大飯幹線及び第二大飯軽線）と 77 kV 送電線（大飯支線及び小浜線）の交差箇所

275 kV 送雨系䖻については，短絡，地絡俸出用保僙装置を 2 系列設置することにより，多重化を図る設計とす る。また，送電線両端の電気所の送電線引出口に遮断器 を配置し，送電線で短絡，地絡等の故障が発生した場合 には，遮断器により故䧛箇所を隔髉することにより，故障による影響を局所化できるとともに，他の安全機能へ の影響を限定できる設計とする。

【説明資料（2．1．1．3）（2．1．1．1）】
また，送電線 1 相の開放が生じた際には， 275 kV 送雨線（泊幹線及び後志幹線）は電力送電時，66kV 送電線（泊電源支線）は後備変圧器から所内負荷へ給電している場合，保護装置による自動検知又は人的な検知（巡視点検等）を加えることで，一部の保墸継電器等による検知加期待できない箇所の 1 相開放故障の発見や，その兆候を早期に発見できる可能性を高めることとしている。

【説明資料（2．1．1．2）】
設計基準対象施設に接続する 275 kV 送電線（泊幹線及 び後志幹線） 4 回線と 66 kV 送電線（茅沼線及ひ泊支線） 2回線は，同一の送電鉄塔に架線しないよう，それぞれ に送電鉄塔を備える。

また，送電線は，大規模な盛士の崩壊，大規模な地す ごり，急傾斜地の崩脿による被害の最小化を図るため，鉄塔基硴の安定性を碓保することで，鉄塔の倒摱を防止 するとともに，強風発生時及び送電線着雪時の事故防止対策を図ることにより，外部電源系からの電力供紿が同時に停止することはない。
さらに， 275 kV 送電線（泊幹線及ひ後志軲線）と 66 kV送電線（茅沼線及び泊支線）の交差箇所の離隔距雄につ いては，必要な絶縁距離を碓保する。

これらにより，設計基準対象施設に連系する送電線 は，互いに物理的に分離した設計である。

275 kV 送電線については，短絡，地絡检出用保護装置 を 2 系列設置することにより，多重化を図る設計とす る。また，送電線両端の発電所及ひ変電所の送雨線引出口に遮断器を配置し，送電線で矩絡，地絡等の故障が発生した場合には，遮断器により故障箇所を隔離すること によって，故障による影響を局所化できるとともに，他 の安全機能への影響を限定できる設計とする。

また，送電線 1 相の開放が生じた際には， 275 kV 送電線は送受電時， 66 kV 送電線は受電している場合，保護装置による自動検知又は人的な検知（巡視点検等）を加え ることで，一部の保護継電器等による検知が期待できな い箇所の 1 相開放故障の発見や，その兆候を早期に発見 できる可能性を高めることとしている。

設借構成の相違（3） －

【説明資料（2．2．1．1：P33 条 $-57 \sim 82$ ）】
設計基準対象施設に連系する 275 kV 送電線（牡鹿幹線）1ルート 2 回線と 275 kV 送電線（松島幹線）1ルー ト 2 回線及び 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。）及び万石線）1 ルート1回線は，同一の送電鉄塔に架線しないよう，それぞれに送電鉄塔を備える。

【説明資料（2．2．3．1：P33 条 $-95 \sim 113$ ）】
また，送電線は，大規模な盛士の崩㯰，大規模な地滑 り，急侕斜の前脿による被害の最小化を図るため，鉄塔基碳の安定性を碓保することで，鉄塔の倒䍚を防止する とともに，台風等による強風発生時又は冬期の着水雪に よる事故防止対策を図ることにより，外部電源系からの電力供給が同時に停止することのない設計とする。
さらに， 275 kV 送電線（牲鹿幹線及び松島幹線）と 66 kV送電線（塚浜支線（鮎川線 1 号を一部含む。）及び万石線）の接近•交差•併架箇所については，仮に 1 つの鉄塔が倒諘しても，全ての送電線が同時に機能襄失しない絶縁距離及び水平距離を碓保する設計とし，水平距儶が満足できない場合は，電線の張力方向によって全ての送電線が同時に機能噰失しない鉄塔の配置となる設計と する。
これらにより，設計基準対象施設に連系する送電線 は，互いに物理的に分離した設計とする。

設倩構成の相違 ${ }^{(3)}$設偏設計等の相達（4）設偏設計等の相達（5）

設偏•運用の相達（6）

枟放方針の相違（2）
設偏構成の相違（3）設偏設計等の相達（4）

䟕誧表現の相澾

設偏構成の相違（3）
喑偏設計等の相達（4）

記載方針の相漌（2）

（1）No． 2 予俑変圧器（ 500 kV 系）への切替え
所内変圧器から受電している常用高圧母線は主変圧器停止時にはNo，2予偳変圧器に切替えを行う。

10．3．4 主要仕様
主要仕様を第10．1．1表から第10．1．4表及び第10．3．1表から第10．3．4表に示す。

10．3．5 試験検査

10．3．5．1 蓄電池
蓄電池は，定期的に電解液面の検查と補水，電解液の比重とセル電圧の測定及び浮動充電電圧の測定を行い，健全性を確認する。
10.3 .6 手順等
（1）外部電源系統切替えを実施する際は，手順を定め，給電操作指令伝㻃等を活用し，給電運用担当箇所と連暴を図り実施する。
（2）電気設備の塩害を考慮し，定期的に碍子洗浄操作を実施 する。また，碍子の污損が激しい場合は，臨時に碍子洗浄操作を実施する。
（3）変圧器 1 次側において 1 相開放を検知した場合，故障箇所の隔離又は非常用母線を健全な電源から受電できるよ う切替えを実施する。
（4）上記（3）対応の 1 相開放故障が检知されない状態におい て，安全系機器に悪影響が生じた場合にも，運転員がそれ を認知し，適切な対応を行えるよう手順書等を整備し，運転員に対して定期的に教育を実施する。
（5）変圧器等の巡視点検を 1 日 1 回実施する。また，手動に よる受電切替え時には，変圧器等の巡視点検を実施する。
（6）電気設備に要求される機能を維持するため，日常点検，定期点検により適切な保守管理を行うとともに，故障時に おいては補修を行う。
（7）外部電源系統切替操作に関する教育•訓練を実旅する。 （8）電気設備に係る保守管理に関する教育を実施する。
（1）子備変圧器への切替
所内変圧器から受電している常用高圧母線は所内亦圧器及び主変圧器停止時には，子備変圧器に切替えを行 う。本切澘は自動切替であり容易に実施可能である。

10．3．4 主要仕様
メタルクラッド開閉装置，バワーコントロールセンタ，直流電源設備，計測制御用電源設備，送電線設備，開閉所設備，発電機及び励磁機設備並びに主要変圧器設備の主要仕様を第 10.1 .1 表，第 10.1 .2 表，第 10.1 .4 表，第 10.1 .5表及び第10．3．1表から第10．3．4表に示す。

10．3．5 試験検査

10．3．5．1 普電池（常用）
蓄電池（常用）は，定期的にセル電圧の測定及び浮動充電電圧の測定を行い，健全性を確認する。
10.3 .6 手順等
（1）外部電源系統切替を実施する際は，手順を定め，給電運用担当箇所と連㘯を図り確実に操作を実施する。
（2）電気設備の塩害による汚損，劣化を監視するためポリマ一碍管の漏れ電流測定を実施する。また，碍子の汚損が激しい場合は，碍子の清掃を実施する。
（3）変圧器 1 次側において 1 相開放を検知した場合，故障箇所の隔離又は非常用母線を健全な電源から受電できるよ う切替を実施する。
（4）変圧器 1 次側における 1 相開放事象への対応として， 275 kV 送電線は複数回線を確保し， 1 回線となる場合には送電線引留部（架線部）の巡視点検を実施する。
（5）電気設備に要求される機能を維持するため，適切に保守管理を実施するとともに，必要に応じ補修を行う。
（6）電気設備に係る保守管理に関する教育を実施する。
（1） 275 kV 系への切替
常用高圧母線は，通常運転時は発電機から所内変圧器 を通して電力を供給するが，所内変圧器回路の故障時又 は発電用原子炉の停止時には，起動変圧器を通して受電 するように切り替える。本切替は自動又は中央制御室で の手動操作であり容易に実施可能である。

【説明資料（2．2．1．2：P33 条 $-83 \sim 87$ ）】
领樴表現の相椲
設傐名称の相達（2
記敷方針の相達
 としている。

記載筒所の相洷
－大飯洔 10．3．3．1 かか5 10．1．3．8に記蔵 している。
記策表現の相違

10．3．5 試験検査
10．3．5．1 蓄電池（常用）
蓄電池（常用）は，定期的に巡視点検を行い，機器の健全性や，浮動充電状態にあること等を確認する。
10.3 .6 手順等

常用電源設備は，以下の内容を含む手順を定め，適切な管理を行う。
（1）電気設備の塩害を考慮し，定期的に碍子洗浄操作を実施 する。また，碍子の汚損が激しい場合は，臨時に碍子洗浄操作を実施する。
（2）変圧器 1 次側において 1 相開放を検知した場合，故障箇所の隔離又は非常用母線を健全な電源から受電できるよ う切替えを実施する。
（3）変圧器 1 次側における 1 相開放事象への対応として，送電線は複数回線との接続を確保し，送電線引留部の巡視点検を実施する。

第10．1．2図 工学的安全施設作動時 の負荷曲線

第 $10.1-2$ 図 $(1) \sim(3)$ 工学的安全施設作動時における非常用
ディーゼル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。）の負荷曲線（その1）～（その3）

設偏構成の相違（2）

（泊の既許可に記栽の接続される＂負荷＂ を＂主要な負荷＂に変更するとともに，泊 の既工認に記載の個別負荷を反映した。
－中央制㹍宝給気ファン，原子灯格納容器
隔雄亣等

アニュラス空気洋化ファン
中央制御室給気ファン
中央制御室循塬ファン中央制御室非常用苜環ファン 1 号
空調用洽湅機 1 台
\rightarrow 空䙗用洽涑機 1 台目
空調用椧凁機
2台目）

第33条 保安電源設備	泊発電所3号炉 DB基準適合性	比較表 r．4．0	
大飯発電所 $3 / 4$ 号炉	泊発電所3号炉		差異理由
2．保安電源設備（33 条闗倸）	2．保安電源設備（33 条関係）	2．追加要求事項に対する適合方針 2.1 保安電源設備の概要 2．1．1 常用電源設備の概要 女川原子力発電所に接続する 275 kV V 送電線 4 回線は， 275 kV V 送電線（牡鹿幹線）2回線， 275 kV 送電線（松島幹線） 2 回線の 2 ルー トでそれぞれ約 28 km 離れた石巻変電所，約 84 km 離れた宮城中央変電所に連系する。また， 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。）及び万石線） 1 回線の 1 ルートで約 8 km 離れた女川変電所及びその上流接続先である約 22 km 離れた西石巻変電所に連系する。送電系統図を第2．1．1－1図に示し，開閉所単線結線図を第2．1．1－2図に示す。 上記 3 ルート 5 回線の独立性を磪保するため，万一，石巻変電所が停止した場合でも，外部電源系からの電力供給が可能となる よう， 275 kV 送電線（松島幹線）又は 66 kV 送電線（塚浜支線（鮎川線1号を一部含む。）及び万石線）により電力を供給することが可能な設計とする。また，宮城中央変電所が停止した場合には， 275 kV 送電線（牡鹿幹線）又は 66 kV 送電線（塚浜支線（鮎川線 1 号 を一部含む。）及び万石線）により，女川変電所が停止した場合 には， 275 kV 送電線（牡鹿幹線又は松島幹線）により電力を供給す ることが可能な設計とする。 これら送電線は，発電所を安全に停止するために必要な電力を供給可能な容量とする。275kV送電線 4 回線は， 1 回線停止時で も女川原子力発電所の全発生電力を送電し得る能力がある。 通常運転時には，所内電力は，主として発電機から所内変圧器 を通して受電するが， 275 kV 送電線より起動変圧器を介しても受電することができる。また， 66 kV 送電線より予備変圧器を介して受電することができる。 常用高圧母線は 2 母線で構成し，所内変圧器又は共通用高圧母線から受電する。 共通用高圧母線は 2 母線で構成し，起動変圧器から受電する。常用低圧母線は 2 母線で構成し，常用高圧母線から動力変圧器 を通して受電する。 共通用低圧母線は2母線で構成し，共通用高圧母線から動力変圧器を通して受電する。 所内機器で 2 台以上設置するものは，単一の所内母線の故障が あっても，全機能を㖓失しないよう 2 母線以上に各々接続し，所内電力供給の安定を図る。所内単線結線図を第2．1．1－3図に示 す。 また，直流電源設備は，常用所内電源として，250V 1 系統で構成する。直流電源単線結線図を第2．1．1－4図に示す。	

第 33 条 保安軍源設備

第33条 保安電源設備	泊発電所3号炬 DB基準適合性 比	比較表 r．4．0	は体制の相墥（設計方針の相這）記載内容の相違（記載方針の相違）備名称の相違（実質的な相違なし）
大飯発電所 $3 / 4$ 号炬	泊発電所 3 号炉	女川原子力発電所 2 号炬	差異理由
	（補足1）吊り下げ設置型高圧遮断器について 1 事象概要 平成 23 年 3 月 11 日の東北地方太平洋沖地震による摇れで，東北電力株式会社女川原子力発電所 1 号機高圧電源盤 6－1 Aで火災が発生したことを受け，平成 23 年 5 月 31 日に発出された経済産業省原子力安全•保安院指示文書「原子力発電所における吊り下げ設㩖型の高圧遮断器に係る火災防諘上の必要な措置の実施等について（指示）」（平成 $23 \cdot 05 \cdot 30$ 原院第 2 号）に基づき，原子力発電所において所有している吊り下げ設圈型高圧遮断器 の有無を碓認した。 2 吊り下げ設置型高圧遮断器の有無泊発電所で使用している吊り下げ設置型の高圧遮断器につい て調查した結果，設置されていないことを確認した。		最新知見の反映，記戟方浐の相達 －吊り下げ設置型高圧遮断器を使用して いない旨の記載の明碓化のため，女川まと め資料2．1．1．1（別添 2 含む）と同様の記述を2．1．1．1．1（補足1含む）に追記した。

第33条 保安電源設潵	泊発電所3号炉 DB基準適合性 比	比較表r．r ． 4.0	
大飯発箸所 $3 / 4$ 号炬	泊発電所 3 号炻	女川原子力発電所 2 号炉	差異理由
2．1．1．1．2 所内保護継電器 発電所で使用されている機器保萋継電器は種々あり，保護対象機器により発電機関係，変圧器関係及び電動機関係に大別するこ とができ，それぞれの機器の保護動作を担っている。 所内保護に対する基準は，機器保護と同様の基準をもとに，継電器を設けて所内動力母線（メタクラ母線，パワーセンタ母線等） に事故が発生した場合の完全な保護動作を行っている。	2．1．1．1．2 所内保赛継電器 発電所で使用されている機器保護継電器は種々あり，保護対象機器により発電機関係•変圧器関係•電動機関係に大別すること ができ，それぞれの機器の保㯵動作を担っている。 所内保護に対する基準は，機器保護と同様の基準をもとに，保荽継電器を設けて所内動力母線（メタクラ母線，バワーコントロ一ルセンタ母線等）に事故が発生した場合の完全な保護動作を行 っている。	2．2．1．1．1．4 その他設備に対する保護装置 ファンやポンプ等の補機については過負荷保護継電器及び過電流保護継電器を設置している。 過負荷保護継電器（49）及び過電流保護継電器（51）にて過電流 を検知した場合，警報を発生させることや補機を停止させること により，他の安全機能への影響を限定できる設計としている。【設置許可基準規則第 33 条 第 3 項 解釈 21	記載表現の相達 設㛿名称の相違（4） 謌侑構成の相違（2）

第33条 保安電源設備	泊発電所3号炉 D B 基淮適合性	比較表r．4．0	
大飯発䉓所 $3 / 4$ 号炻	泊発電所 3 号炻	女川原子力発電所 2 号炉	差異理由
		（2） 1 相開放故障が発生し変圧器 2 次側電圧が低下しない事象の メカニズム 米国バイロン 2 号炉の事象のように変圧器 1 次側において 1相開放故障が発生した場合に，所内電源系の 3 相の各相には，低電圧を検知する交流不足電圧継電器（27）が設置されていること から，交流不足電圧継電器（27）の検知電圧がある程度（約 30%以上）低下すれば，当該の保護継電器が動作し警報が発報するこ とにより1相開放故障を含めた電源系の異常を検知することが可能である。 一方，変圧器負荷が非常に少ない場合や，変圧器に \triangle 結線の安定巻線を含む場合等においては，所内電源系側の交流不足電圧継電器（27）の検知電圧が動作範囲まで低下せず， 1 相開放故障が検知できない可能性がある（3相交流では，変圧器 1 次側におけ る 1 相のみが開放故障となっても変圧器鉄心に磁束の励磁が持続され，変圧器 2 次側（所内電源系側）において 3 相ともほぼ正常に電圧が維持されてしまう場合がある。）。 したがって，変圧器 1 次側に 1 相開放故障が発生した場合の検知の可否については，交流不足電圧継電器（27）が動作すること により検知できる場合もあるものの，発生時の負荷の状態などに よっては検知できない可能性がある。 （3）問題点 当該事象に対し，「変圧器 1 次側の 3 相のうち 1 相開放故障が発生した状態が検知されることなく，非常用母線への給電が維持 された。」ことが問題点である。	

2．1．1．2．2 1 相開放故障の検知性について

発生想定箇所（変圧器の 1 次側）において，米国バイロン 2 号炬の事象のように 1 相開放故障が発生した場合に，所内電源系の 3 相の各相には，母線の低電圧を検知する交流不足電圧継電器が設置されており，変圧器 1 次側の 1 相開放故障に伴い，交流不足電圧継電器の検知電圧がある程度（3 割程度）低下した場合，当該保護継電器が動作し警報が発信することにより1相開放故障 を含めた電源系の異常を検知することが可能である。
ただし，変圧器負荷が非常に少ない場合や，変圧器に Δ 結線の安定巻線を含む場合，所内電源系側の交流不足電圧継電器の検知電圧が保護継電器の動作範囲まで低下せず，当該保護継電器での 1 相開放故障が検知できない可能性がある。（3相交流は1相の みの開放故障では変圧器鉄心に磁束の励磁が継続されるため 2次側が 3 相不平衡になることなく，ほぼ正常な電圧が維持される ケースがある。）そのため，交流不足電圧継電器による変圧器 1次側の 1 相開放故障が検知できない可能性がある。
しかし，予備変圧器，所内変圧器，主変圧器の 1 次側（外部電源系側）の接続部位は，米国パイロン 2 号炉同様の架線による接続ではなく，接地された筐体•管路内に配線が収納された構造（G IS，CVケーブル，相分離母線）である。また，後備変圧器に ついても同様な設計とする。
このような構造の場合，変圧器 1 次側に破損が想定される架線 の碍子は存在せず，また仮に導体の断線による 1 相開放故障が発生したとしても，接地された筐体•管路を通じ完全地絡となるこ とで，保護継電器による検知が可能である
このように設備構成上，泊 3 号炉において変圧器の 1 次側（外部電源側）での地絡•短絡を伴わない 1 相開放故障の発生は，か なり稀なケースといえる
\qquad \checkmark
また， 1 次側で 1 相開放故障が発生した場合に，当該母線から給電された電動機に異常な挙動（振動•異音）があったり，連続的に過負荷トリップする等の举動を示す場合もあり（米国バイロ ン 2 号炉においても確認されている），これらの事象で 1 相開放故噇が発見される場合も考えられる。

2．2．1．1．2．3 1相開放故障時における検知性
（1）送電線引込み部以外での 1 相開放故障
外部電源に直接接続している対象変圧器（起動変圧器及び予備変圧器） 1 次側の接続部位は，送電線の引込み部を除き米国バイ ロン 2 号炉のように全面的に気中に露出した架線接続ではなく，接地された筐体内等に配線された構造である。（第2．2．1－9図参照）

筐体内等の導体においては，断線による 1 相開放故障が発生し たとしても，接地された筐体等を通じ完全地絡となることで，電流差動継電器（87）及び地絡過電圧継電器（64）による検知が可能 である。
電流差動継電器（87）等が動作することにより，1相開放故障 が発生した部位が自動で隔離されるとともに，非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）が自動起動し非常用高圧母線に電源供給される。
したがって，変圧器 1 次側の 3 相のうち 1 相開放故障が発生した状態が検知されることなく，非常用母線への給電が維持されるこ とはない。（別添 3,4 ）

子濰䢒国哭

第2．2．1－9图変圧器 1 次侧偾緮㹍

（2）送電線引込み部の 1 相開放故障

第2．2．1－8 図の受電経路において米国バイロン 2 号炬のよう に導体が気中へ露出した類似箇所は第 2．2．1－10 図のとおり開閉所の送電線引込み部（引留鉄構～プッシング）である。

275 kV 明阳白
66kv Mminim

距載箘所の相语

設備構成の相違（11）
大飯 ：OF ケーブル $\mathrm{C}_{\text {泊 ：CV }}$ ケーブル

記載蕃所の相違

大飯は2．1．1．2．3（3）に記載している。

上記のとおり，変圧器の 1 次側においては，設備状況と発生箇所の違いにより，複数の検知要素がある。以降の記載および各補足にて，各系統毎，設備毎の具体的な検知要素の違いや，各保護継電器の動作•不動作の場合についての最新知見を踏まえた考察，運転員の対応等について示す。
2．1．1．2．3 各受電時系統毎の具体的な検知方法
（1）異常検知について
（1） 500 kV 送電系統の異常検知について
通常，No． 2 予備変圧器は海水ポンプモータ等の負荷が有る
状態であり，送電線においては，異常を検知する手段として，電状態であり，送電線においては，異常を検知する手段として，電流の三相平衡監視を常時行っており，電力送電時， 1 相開放故障 が発生した場合は，電流が不平衡となるため，異常を検知するこ とが可能である。
（2） 77 kV 送電系統の異常検知について
1 相開放故障時のこれまでの国内外の解析知見より，1相開放故障時の電気的挙動は，変圧器容量には依存せず変圧器巻線種，接地方法，鉄心構造等の変圧器型式の違いに依存すると分かって きている。
また，当社が確認しているNo． 1 予備変圧器の巻線型式（外部電源側 -Y ，負荷側 -Y ，安定巻線 $-\Delta$ ，高圧側の接地が無） における電気過渡応答解析結果では，当該型式の変圧器の場合に おいて 1 相開放故障が起きた場合は，負荷の大小に関わらず 1 相開放故障の該当相の 2 次側電圧（低圧側）の電圧は 0 となる举動 を示し，この場合，不足電圧継電器の動作および，電圧計の指示等にて確認する事が可能と考えられる。

前述の解析については，今後も妥当性の検証等行っていくが，事象検知の信頼性拡充のための当面の対応として，1 相開放故障事象の知見を手順書に反映し，運転員に対して定期的に教育を実施するとともに，変圧器等の巡視点検を1日1回実施することや手動による受電切替え時に，変圧器等の巡視点検を実施すること で，可能な限り異常の早期検知に努める。

2．1．1．2．3 具体的な検知方洼
（1） 275 kV 送電系統からの受電の場合
（1） 275 kV 送電系統の異常検知について
通常，原子炉補機冷却海水ポンプモー夕等の負荷が有る状態で

a． 275 kV 送電線引込み部での 1 相開放故障発生

275 kV 送電線 4 回線の電源は 275 kV 開閉所にて連系しているた あり，送電線においては，異常を検知する手段として電流の 3 相平衡監視を常時行っており，電力送電時， 1 相開放故障が発生し た場合は電流が不平衡となるため，異常を検知することが可能で ある。

また，送電線のガス絶縁開閉装置への引き込み部は，運転員が毎日実施する巡視点検により1相開放故障を早期に検知するこ とが可能である。
＜内容比較のため再揭（4）$-1 / 3\rangle$
（2） 66 kV 送電系統からの受電の場合
（1） 66 kV 送電系統の異常検知について
通常，後備変圧器は無負荷状態で待機しており，電流が流れて いないことから電流計による 1 相開放故障の検知は難しい。
ただし，引留鉄構等の米国バイロン 2 号で発生した事故と類似 した箇所については，米国バイロン 2 号機と異なり，導体の断總 が起きないケーブル引き込みによる設計とする。仮に，断線が発生した場合には，導体と接地されたタンク間の絶縁距離が保てな くなるため地絡が発生し，地絡過電圧継電器（64）が動作する等，異常を検知することが可能な設計とする
一方，後備変圧器に負荷が有る状態においては，1 次側で地絡短絡を伴わない 1 相開放故障が発生した場合には，電流計による確認を実施することで検知することができる設計とする

め，（2）の受電経路で受電する場合に 275 kV 送電線 1 回線にて 1 相

開放故障が発生しても非常用高圧母線の電圧に変化が生じるこ

 とはない。この場合，毎日実施する「巡視点検」にて電路の健全性を確認 することにより， 1 相開放故障を目視で検知することが可能であ る。

女川原子力発電所では毎日実施する巡視点検時に確認すべき項目として，パトロール手順書にて第 2．2．1－1 表のとおり定め ており，1日 1 回以上パトロールを実施することで 1 相開放故障 の発見が可能である。
したがって， 1 相開放故障が発生した状態が検知されることな く， 1 相開放故障が発生した変圧器を経由した非常用母線への給電が維持されることはない。

巡視機器	点検項目
引留鉄構及び碍子	a．外䘽損動の有無

差異理由

記䡛罍所の相達

－泊は2．1．1．2．3（2）に記載している
設俑設計等の相違（4）
設偏設計等の相達（5）設偕•運用の相達（6）

第33条 保安電源設備	泊発電所3号炉 DB 基準適合性	比較表 r．4．0	
大飯発電所 $3 / 4$ 号拒	泊発電所 3 号炻	女川原子力発電所2号炬	差異理由
		2．2．1．1．2．4 1 相開放故障時に非常用高圧母線へ電源供給した場合の検知性 仮に対象変圧器（起動変圧器及び予備変圧器） 1 次側に 3 相中 1 相が欠相した電力が供給され，非常用高圧母線に給電した場合 の検知性について負荷の軽重を踏まえて以下のとおり示す。 前述の第2．2．1－11図に示すとおり，変圧器の 1 次側において 1 相開放故障が発生した場合，「（1）交流電圧が低下する」他にも，負荷への給電を考慮した場合には以下の事象が発生する（第 2．2．1－12～13 図参照）。 （2）電動機に逆相電流が流れるため，各相の電流が不平衡にな り，電動機電流の増加相が発生する。 （3）変圧器の 1 次側の中性点に電流が流れる。 したがって，上記事象（1）（2）（3）を検知することにより，変圧器 1次側に 1 相開放故障が発生した場合の検知性向上の対策を図る。 第2．2．1－12図 過負荷粎弗器（49）による检知（イメージ）（予備変圧器） 第2．2．1－13区 中性点過雨流維曹器（51）による检知 （イメージ）（起動変圧器） 上記事象は，変圧器の 1 次側において 1 相開放故障が発生した条件により検知できる保護継電器が異なる。 1 相開放故障の発生条件に応じた保護継電器による検知方法を第2．2．1－2表に示す。	

	泊発電所 3 号炉 D B 基準適合性 泊発電所 3 号炉	比較表 r．4．0						
		女川原子力発電所 2 号炬						差異理由
		1 1．		$\min _{\text {vix }}^{\text {min }}$	ตูสส\％		จmm	
				－	2 $\max ^{(51)}$	間教し，韭高井商压性裉の才 ことて，弗京用だィ一せん死 重起動。投入をれる。	$\left\lvert\, \begin{aligned} & 5.2 .2 .1 \\ & -1389 \end{aligned}\right.$	
				－				
			м白商	\times	tom			
			関保	\circ	模事哭（27）		皮2．2．1 -11 团	
		※1．$\bigcirc:$ 検知可能 $\Delta:$ 検知可能な場合と不可能な場合あり ×：検知できないことを示す ※2．自主対策により新規設置し，検知性向上を実現している。 ※3．無負荷なので安全上の問題に至ることはない。 ※4．予備変圧器の場合，保赛継電器による検知は負荷の状態や種別に依存する。静的負荷のみの場合には 3 相中 1 相の対地電圧が低下するため，交流不足電圧継電器（27）にて検知可能であるが，電動機負荷が存在すると，変圧器 2 次側に逆電圧が誘起され，交流不足電圧継電器（27）では検知でき ない。その場合には，電動機の負荷率に依存した電動機電流の増加により過負荷継電器（49）にて検知可能な場合が ある。						

大飯発重所 $3 / 4$ 号炉
（2）検知後の対応
非常用母線へ給電中の変圧器の 1 次側において 1 相開放故障

仮に待機側の変圧器も健全な状態で無い場合や，点検や運用上
の理由から，待機側変圧器が無い場合等においては，ディーゼル

発電機の起動により非常用母線に給電される。
（3）検知後の対応
予備変圧器から非常用母線へ給電中の変圧器の 1 次側におし て 1 相開放故障を検知した場合，給電中の変圧器を手動にて切離 すことにより，待機側の変圧器が受電可能な状態であれば自動的 に切替わり，健全な変圧器より非常用母線に給電される。
仮に待機側の変圧器も健全な状態でない場合や，点検や運用上 の理由から待機側変圧器がない場合等においては，ディーゼル発電機の起動により非常用母線に給電される

2．2．1．1．2．5 1 相開放故障時の対応操作について
1 相開放故障の発生箇所ごとに応じた識別方法と対応操作を第2．2．1－3～5 表に示す。

党生筬所				别话
		于䡃	（非常用高圧盘澡の電圧に変化重し） 供給は行わない	4．1（1）
		手動	 	4．1（2）

 （発菓用原子际の色動または停止中）

	3馬为方去			别活
$\begin{array}{\|l\|l} \hline 275 \mathrm{kV} \\ \text { 送菬相 } \end{array}$	目誢にて施施	手動	（肼索用高圧時楾の電圧に麦化焦し）	4．2（1）
test 发压落 1次侧	起動変压替又は 275kv 母緮の電流差 铁知		 作し，井策用デイーせん票雨林（高圧加かスフレレイ苐ティーせル肴雨機を含も．）加ら需标供紙氏行う。	4．2（2）
	 （51）にて喚加	自哑	輩常用滈压舟票の雷压が表失十るこ とて，交流不足当压㡽辉器（27）加颙作し，韭蒂用ディーせル覀電晠（商圧所心スプレイ采ディーせル屏事機を含むっ）がら電鴯供詒を行う。	4．2（3）
	定㿥にて検知	手䖝	 	4．2（4）
66 kv逹電䛞		乎禹	䑺脽されている。 （非京用商圧母綵の电圧に変化䱈し）	4．2（5）

なお，予備変圧器は通常，非常用高圧母線に電源供給を行って いないが，予備変圧器を用いた電源供給時の 1 相開放故障発生箇所ごとに応じた識別方法と対応操作を第2．2．1－5 表に示す

第33条 保安電源設備	泊発電所3号炉 DB基準適合性 比較表 r．4．0		
大飯発電所 $3 / 4$ 号炬	泊発電所 3 号炉	女川原子力発雨所 2 号炉	差異理由
（補足 1）変圧器 1 次側における設備状況について（GIS 設備） 	（補足 1）変圧器 1 次側における設備状況について（G I S 設備） 275 kV 系続イメーン国（楨から）		設備構成の相違（2）設備構成の相違（3） 設備設旪等の相違（4）設備設計等の相違（5）

変压哭名标	菴压			
			買備異	安定索新
	515kV／24kV	Y	Δ	镸し
	515kV／24kV	Y	Δ	塈し
	24kV76．9kV	Δ	Y	駞し
	24kV／6．9kV	」	Y	制し
	515kV／6．9kV	Y	Y	Δ
	$77 \mathrm{kV} / 6.9 \mathrm{kV}$	Y	Y	Δ

-

 \qquad

砍厓詈名称	菓压			
			負僻诩	安定券㛵
	280kV／6．9kV	Y	Y	Δ
	21kV／6．9kV	Δ	Y	照し
主叐珃睘	275kV／21kV	Y	Δ	需し
	64． $5 \mathrm{kV} / 6.9 \mathrm{kV}$	Y	Y	Δ

$$
\pi-16 \% \text { m) }
$$ NT－16 \％mi

费圧器（ $\Delta-\mathrm{Y}$ 結憬）

設倩構成の相違（2）設偏構成の相違（3）設備設計等の相違（4）設備設計等の相達（5）

（補足 3－1）ガス絶縁開閉装置（GIS）の故障検知について
GIS は，接地されたタンク内に導体が収納されており，絶縁性の高いSF6 ガスにより絶縁が確保されている。
SF6 ガスは気中絶縁に比べ約 7 倍の絶縁性能を有しているた め，道体とタンク間の距離を縮小化することが可能である。

GIS は母線，プッシング，遮断器，断路器等の機器から構成 されている。
ブッシングは磁器碍管に導体等が収納された構造となって おり，ブッシング内の導体等の破損については，磁器碍管の破損がない限り考えにくい

仮に，磁器碍管の破損による故障が発生した場合，導体と接地物（タンク）間で地絡が発生する。その場合，電流差動継電器（87）が設置されており，検知が可能。

ガス絶縁開閉装置は，絶縁スペーサ（材料：エポキシ樹脂） でGIS 内の導体（材料：アルミ合金）を支持する構造となって おり，絶縁スペーサは，機械的強度が高く壊れることはないこ とから，導体の脱落が生じない構造となっている。したがって， GIS 内部での 1 相開放故障は発生しない構造である。

フッシシンクの外钼

渞 体
（補足3－1）ガス絶縁開閉装置（G I S）の故障検知について
GISは，接地されたタンク内に導体が収納されており，絶縁性の高いS F 6 ガスにより絶縁が確保されている。
SF6ガスは気中絶縁に比べ約 7 倍の絶縁性能を有してい るため，導体とタンク間の距離を縮小化することが可能であ る。

GISは母線，ブッシング，遮断器，断路器等の機器から構成されている。
275 kV 系統のブッシングはポリマー碍管に導体等が収納され た構造となっており，ブッシング内の導体等の破損について は，ポリマー碍管の破損がない限り考えにくい。
仮に，ポリマー碍管の破損による故障が発生した場合，導体 と接地物間で地絡が発生する。その場合，地絡過電流継電器 （51G）あるいは比率差動継電器（87）が設置されており，検知が可能。
66 kV 系統のエポキシ碍管は，接地されたタンク内に収納され ており，エポキシ碍管内に電力ケーブルが接続された構造とな つており，機械的強度が高く，壊れることはない。仮に，破損 した場合は，電力ケーブル導体とタンク間の絶縁距離が保てな くなるため地絡が発生し，地絡過電圧継電器（64）が設置されて おり，検知が可能な設計とする。
ガス絶縁開閉装置は，絶縁スペーサ（材料：エポキシ樹脂） でG I S内の導体（材料：アルミ合金）を支持する構造となっ ており，絶縁スペーサは，機械的強度が高く壊れることはない ことから，導体の脱落が生じない構造となっている。したがっ て，G I S 内部での 1 相開放故障は発生しない構造である。

275kVプッシンクの外祀

設偏構成の相違（3）設僱構成の相違（2）

第33条 保安電源設羬	泊発電所 3 号炉 DB基準適合性		備名称の相違（実質的な相違なし）
大飯発诸所 $3 / 4$ 号炉	泊発電所 3 号炉	女川原子力発電所 2 号炉	差異理由
 $77 \mathrm{kVGIS内内}$	 		設㛿構成の相違（2）設偳構成の相違 ${ }^{(3)}$敬信設詚等の相違（4）

大飯発電所 $3 / 4$ 号炉
ガス絶縁開閉装置（GIS）の故障検知について
（遮断器の投入動作不良による欠相の検知）
遮断器により 1 相開放故障が発生する要因として，投入動作
不良による相が考えられる。しかし，投入動作不良による欠

不良による欠相が考えられる。しかし，投入動作不良による欠相が発生した場合においては，欠相継電器（47）を設置してお り，検知が可能である。

欠相が生じた場合，欠相保諼継電器が動作し，遮断器は 3 相開放されるため，欠相状態は解除され，また，警報により， 1 相開放故障の検知が可能である。

【例 ：a 相のみ開放，b，c 相投入】

遮断器投入不良による1相開放故椲検知のインターロック

ガス絶縁開閉装置（G I S）の故障検知について
（遮断器の投入動作不良による欠相の検知）

遮断器により 1 相開放故障が発生する要因として，投入動作不良による欠相が考えられる。しかし，投入動作不良による欠相が発生した場合においては，欠相継電器（47）を設置してお り，検知が可能である。

欠相が生じた場合，欠相保護継電器が動作し，遮断器は3相開放されるため，欠相状態は解除され，また警報により， 1 相開放故障の検知が可能である。

【俳：R 相のみ明放，S，T

虺断器投入不良による1相旧放故陣检知のインターロック
（

赤字：設備，運用又は体制の相違（設計方針の相違）

変圧器の故障検知について（断線が発生しない構造）

外鉄形変圧器の巻線は，矩形平板コイルを組みあわせて構成 するが，この矩形平板コイルには，複数の平角銅線（素線）が用 いられる。素線は各々クラフト紙が巻かれ，また，複数の素線全体をまとめて共通絶縁を施している。

このように，巻線の1ターンは複数の平角銅線により構成さ れていることから，断線が発生し，1相開放故障が発生するこ とは無い。

ブッシングと巻線のリード線の接続箇所は，ボルトで接続 し，かつテービングを施しているため，接続が外れて断線する ことは無い。万が一外れた場合には，導体とタンク間の絶縁離隔距離が保てなくなるため地絡が発生し，検知が可能である。

過去このような事例が発生したことはないことをメーカに も確認している。

変圧器の故障検知について（断線が発生しない構造）
変圧器の巻線は，矩形平板コイルを組み合わせて構成する が，この矩形平板コイルには，複数の平角銅線（素線）が用い られる。素線は各々クラフト紙が巻かれ，また，複数の素線全体をまとめて共通絶縁を施している。

このように，巻線 1 ターンは複数の平角銅線により構成され ていることから，断線が発生し， 1 相開放故障が発生すること は無い。

ブッシングと巻線のリード線の接続箇所は，ボルトで接続し ている。且つ 275 kV 系統ではテーピングを施しているため，接続が外れて断線することは無い。万が一外れた場合には，導体 とタンク間の絶縁離隔距離が保てなくなるため地絡が発生し，検知が可能である。
過去，この様な事例が発生したことはないことをメーカにも確認している。

設備構成の相違（2）

設偏設計等の相違（5）
（後㩦変圧器は内鈇形変圧器を使用する ＋画である。）

䟕載表現の相達

（補足5）保護継電器が検知可能な範囲について
変圧器 1 次側において 1 相開放故障が発生した場合には，以下の保護継雨器により，設定値に到達した場合，検知可能であ る。

主な保建退电睪	根要
不足地区旔車思（27）	 \pm
	 1相欠相の可能性があることから原因网声を行う手 を核知けることが可能
	 果かっ5，1相明收故倳を楥知けることが可能

ただし，地絡や短絡を伴わない 1 相開放故障の場合，設備構成や負荷状況によっては，保護継電器の設定値まで値が変動し ない可能性がある。
－不足電圧継電器（27）にて検知できない事象
不足電圧継電器は，所内母線に設置しておら，母線電圧が低下した場合に，保護装置が動作する。これらの設定値は，電圧変動による誤動作が起きないよう，大型電動機の起動時の電圧低下や送電系統の電圧変動等を見込んだ上で設定値を定めて おり，69\％以上としている。

仮に，短絡や地絡を伴わない 1 相開放故障が発生した場合 に，これらの設定値を下回る電圧変動が発生すれば検知可能で あるが，変圧器の巻線構成及び負荷状態によっては，電圧がほ ぼ低下しない状態となり，不足電圧継電器の動作値まで到達し ない可能性があり，その場合不足電圧継電器にて検知できな い。

（補足5）保護継電器が検知可能な範囲について

変圧器 1 次側において 1 相開放故障が発生した場合には，以下の保護継電器により設定値に到達した場合，検知可能であ る。

	凩

ただし，地絡•短絡を伴わない 1 相開放故障の場合，設備粋成や負荷状況によっては，保護継電器の設定値まで値が変動し ない可能性がある。
－不足電圧継電器にて検知できない事象
不足電圧継電器は，所内母線に設置しており，母線電圧が低下した場合に，保護装置が動作する。これらの設定値は，電圧変動による誤動作が起きないよう，大型電動機の起動時の電圧低下や送電系統の電圧変動などを見込んだ上で設定値を定め ており， 69% 以上としている。
仮に，短絡•地絡を伴わない 1 相開放故障が発生した場合に これらの設定値を下回る電圧変動が発生すれば検知可能であ るが，変圧器の巻線構成及び負荷状態によっては，電圧がほぼ低下しない状態となり，不足電圧継電器の動作値まで到達しな い可能性があり，その場合不足電圧継電器にて検知できない。
－過電流継電器（51）にて検知できない事象
電流については，安定巻線の作用により，電源側電流のうち，零相電流のみ安定巻線に流れ，正相及び逆相電流が所内側へ流 れる。電流の大きさ及び位相については，所内側電圧がほぼ正常を保っており，電動機の正常運転を維持することから，全相 が 1 相開放故障前と等しい電力を消費するように， 3 相電流が流れようとする。

しかし，この電流値が，過電流継電器の設定値に到達しない場合は，過電流継電器による検知はできない。これらの設定値 は，電動機ごとの定格電流の約 150% にて動作となるよう設定 している。また，回転機温度継電器により，定格電流の約 110%増加した場合に動作となるよう設定している。

INSS 及び EPRIにて実施された解析結果も次表のとおり安定巻線 Δ を含む場合，電流及び電圧がほとんど変化しない結果 も報告されている。

バラメータ			INSS	EPRI
無負荷	低压则	電圧	ほとんと変化なし	変化無し
		電流	－	解析無し
有負荷	低圧側	電压	ほとんど変化なし	0～20\％ほと隆下
		電流	ほとんと変化なし	解析無し

なお，外部電源側（入力）Y，負荷側（出力）Δ ，外部電源側（入力）Y，負荷側（出力）Yの場合及び外部電源側Y，負荷側 $\mathrm{Y}+\Delta$ の安定巻線の場合は，電圧の変化による地絡のない 1 相開放（欠相）を検出することはできない，又は困難である。

しかし，上記以外の結線の変圧器は，制御室の電圧計の変化 で地絡のない 1 相開放（欠相）を検出することはできると報告 されている。
－過電流継電器にて検知できない事象
電流については，安定巻線の作用により，電源側電流のらち電流については，安定巻線の作用により，電源側電流のらち，
零相電流のみ安定巻線に流れ，正相及び逆相電流が所内側へ流 れる。電流の大きさ及び位相については，所内側電圧がほぼ正常を保っており，電動機の正常運転を維持することから，全相 が 1 相開放故障前と等しい電力を消費するように， 3 相電流が流れようとする。

しかし，この電流値が，過電流継電器の設定値に到達しない場合は，過電流継雨器による検知はできない。これらの設定値 は，電動機ごとの定格電流の約 150% にて動作となるよう設定 している。また，過負荷継電器により，電動機ごとに定格電流 の約 110% 増加した場合に動作となるよう設定している。
INSS 及び EPRI にて実施された解析結果も以下のとおうり安定巻線 Δ を含む場合，電流，電圧がほとんど変化しない結果も報告されている。

ハヲメータ			mss	Exal
梲芴	${ }^{\text {stax }}$ 现	姓	はとんと麦化なし	交化爰し
		据	－	絡析省し
㭏负等	败理係	理无	12とんを事化なく	0～20\％木124\％
			はとんと家优なし	楖鼡し

なお，外部電源側（入力） Y ，負荷側（出力）Δ ，外部電源側（入力） Y ，負荷側（出力） Y の場合及び外部電源側 Y ，負荷側 $\mathrm{Y}+\Delta$ の安定巻線の場合は，電圧の変化による地絡のない 1 相開放（欠相）を検出することはできない，又は困難である しかし，上記以外の結線の変圧器は，制御室の電圧計の変化 で地絡のない 1 相開放（欠相）を検出することはできると報告 されている。

第33条 保安電源設備	泊発電所3号炉 D B 基淮適合性	比較表 r．4．0	
大飯発䉓所 $3 / 4$ 号炻	泊発電所 3 号炻	女川原子力発電所 2 号炉	差異理由
		2．2．1．2 電気系統の信頼性 重要安全施設に対する電気系統については，系統分離を考慮し た母線によって構成するとともに，電気系統を構成する個々の機器が信頼性の高いものであって，非常用所内電源系からの受電時等の母線切替操作が容易である設計とする。 2．2．1．2．1 系統分離を考慮した母線構成 通常運転時は，発電機から所内変圧器を介して非常高圧母線へ給電し，発重機停止時には 275 kV 開閉所から起動変圧器を介して非常用高圧母線へ給電する設計とする。また， 66 kV 送電線を予備電源として使用することも可能な設計とする。非常用母線を3母線確保することで，多重性を損なうことなく，系統分離を考慮し て母線を構成する設計とする。 詳細な系統構成は2．2．1．1．2．2 項参照。 2．2．1．2．2 電気系統を構成する個々の機器の信頼性 電気系統を構成する送電線（ 275 kV 送電線（牡鹿幹線及び松島幹線）及び 66 kV 送電線（塚浜支線（鲇川線 1 号を一部含む。）及び万石線）），母線，変圧器，非常用電源系，その他関連する機器に ついては，電気学会電気規格調査会にて定められた規格（J E C）又は日本産業規格（J I S）等で定められた適切な仕様を選定し，信頼性の高い設計とする。	

泊発電所 3 号炉 女川原子力発電所 2 号炬

2．1．1．3 電力の供給が停止しない構成

非常用母線が優先電源（No．2 予備変圧器）から受電できな くなった場合には後備電源（所内変圧器に切替えられ最終的には ディーゼル発電機が投入）に切替えられる。本切替えは，通常自動切替えであり容易に実施可能な構成となっている。
さらにディーゼル発電機からの受電も失敗した場合には，N o． 1 予備変圧器から受電する。本切替えは，手動切替えで容易 に実施可能である。

2．1．1．3 電力の供給が停止しない構成場合には，後備電源（所内変圧器に切替えられ，最終的にはディ ーゼル発電機が投入）に切替えられる。本切替は，通常自動切替 であり容易に実施可能な構成となっている。
さらに，ディーゼル発電機からの受電も失敗した場合には，後備変圧器から受電する。本切替は手動切替で容易に実施可能であ る。

2．2．1．2．3 非常用所内電源系からの受電時等の母線の切替操作
重要度の特に高い安全機能を有する構築物，系統及び機器で， その機能を達成するために電力を必要とするものについては，非常用高圧母線から電源供給可能な構成とし，非常用高圧母線は外部電源並びに非常用ディーゼル発電機（高圧炬心スプレイ系ディ ーゼル発電機を含む。）のいずれからも受電できる構成としてい
る（第2．2．1－15 図参照）。【設置許可基準規則 第 33 条 第 1 項】
このうち，外部電源については，送電線に接続する遮断器や断
路器等を設置した 275 kV 開閉所機器， 66 kV 開閉所機器，開閉所電圧を降圧する変圧器，及び高圧母線等を設置した所内高圧系統か ら構成される。
開閉所機器，変圧器及び所内高圧系統については，送電線や所内電源の切替操作が容易に実施可能なように操作スイッチ等を設ける設備構成としている。【設置許可基準規則第 33 条 第 3 項解釈 1 ，第 4 項 解釈 3 ，解釈 4 】
非常用所内電源系は，所内変圧器から受電できない場合，起動変圧器への自動切替が可能であり，所内変圧器及び起動変圧器か ら受電できない場合，非常用ディーゼル発電機（高圧炉心スプレ イ系ディーゼル発電機を含む。）からの受電に自動切替される。 また，所内変圧器，起動変圧器，非常用ディーゼル発電機（高圧炉ふスプレイ系ディーゼル発電機を含む。）から受電できない場合，予備変圧器からの受電に自動切替される等，安全施設への電力の供給が停止することがない構成としている。【設置許可基潐規則第 33 条 第 3 項 解釈 1 】

ต221－159 minnoum

設備名称の相違（2）

設偏設計等の相達（5）記載表現の相違

第33条 保安電源偐備	泊発電所3号炬 D B 基漼適合性	比較表 r．4．0	
大飯発電所 $3 / 4$ 号炬	泊発電所 3 号炉	女川原子力発電所 2 号炉	差異理由
		非常用高圧母線は，通常運転時は発電機から所内変圧器及び常用高圧母線を通して受電する。 通常運転時の受電経路は以下のとおり。 －非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{C}$ ）：発電機 \rightarrow 所内変圧器 （A）\rightarrow 常用高圧母線 $(6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{~A}) \rightarrow$ 非常用高圧母 線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{C}$ ） －非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} \quad 6-2 \mathrm{D}$ ）：発電機 \rightarrow 所内変圧器 （B）\rightarrow 常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{~B}$ ）\rightarrow 非常用高圧母 線（ 6.9 kV M／C $6-2 \mathrm{D}$ ） －非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{H}$ ）：発電機 \rightarrow 所内変圧器 （A）\rightarrow 常用高圧母線 $(6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{~A}) \rightarrow$ 非常用高圧母 線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{H}$ ） 所内変圧器回路の故障時又は発電用原子炉の停止時には， 275 kV 送電線（牡鹿幹線又は松島幹線）から起動変圧器，共通用高圧母線及び常用高圧母線を通して受電するように切り替える。 発電用原子炉停止時の受電経路は以下のとおり。 －非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{C}$ ）： 275 kV 送電線一起動変圧器 \rightarrow 共通用高圧母線 $(6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{SA}-1) \rightarrow$ 常用高圧母線（6．9kV M／C 6－2A）\rightarrow 非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C}$ 6－2C） －非常用高圧母線（ 6.9 kV M $/ \mathrm{C} 6-2 \mathrm{D}$ ）： 275 kV 送電線 \rightarrow 起動変圧器 \rightarrow 共通用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{SB}-1$ ）\rightarrow 常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{~B}$ ）\rightarrow 非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C}$ 6－2D） －非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{H}$ ）： 275 kV 送電線 \rightarrow 起動変圧器 \rightarrow 共通用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{SA}-1$ ）\rightarrow 常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{~A}$ ）\rightarrow 非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C}$ $6-2 \mathrm{H}$ ） 非常用高圧母線が 275 kV 送電線（牡鹿幹線及び松島幹線）から受電できなくなった場合，非常用ディーゼル発電機（A），非常用 ディーゼル発電機（B）及び高圧炬心スプレイ系ディーゼル発電機は自動起動し，非常用高圧母線へ給電する。 275 kV 送電線（牡鹿幹線及び松島幹線）から受電できなくなっ た場合の受電経路は以下のとおり。 －非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{C}$ ）：非常用ディーゼル発電機（A）\rightarrow 非常用高圧母線（ 6.9 kV M／C $6-2 \mathrm{C}$ ） －非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{D}$ ）：非常用ディーゼル発電機（B）\rightarrow 非常用高圧母線（ 6.9 kV M／C $6-2 \mathrm{D}$ ） －非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{H}$ ）：高圧炉心スプレイ系 ディーゼル発電機 \rightarrow 非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{H}$ ） 更に，非常用ディーゼル発電機（高圧炬心スプレイ系ディーゼ ル発電機を含む。）から受電できなくなった場合， 66 kV 送電線か ら予備変圧器を通しての給電へ自動切替される。	

策33条 保安電源設漕	泊発電所3号炉 DB基準適合性	比較表 r．4．0	
大飯発䉓所 $3 / 4$ 号炻	泊発電所 3 号炉	女川原子力発電所 2 号炬	差異理由
		非常用ディーゼル発電機（高圧炬心スプレイ系ディーゼル発電機を含む。）から受電できなくなった場合の受電経路は以下のと おり。 －非常用高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{C}$ ）： 66 kV 送電線 \rightarrow 予備変圧器 \rightarrow 予備高圧母線 $(6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-\mathrm{E}) \rightarrow$ 非常用高圧母線 （6． 9 kV M／C $6-2 \mathrm{C}$ ） －非常用高圧母線（ 6.9 kV M／C $6-2 \mathrm{D}$ ）： 66 kV 送電線 \rightarrow 予備変圧器 \rightarrow 予備高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-\mathrm{E}$ ）\rightarrow 非常用高圧母線 （ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{D}$ ） ※予備高圧母線（ 6.9 kV M／C $6-\mathrm{E}$ ）は非常用高圧母線 $(6.9 \mathrm{kV}$ M／C 6－2C）への母線供給を優先とし，非常用高圧母線 （ 6.9 kV M／C $6-2 \mathrm{C}$ ）へ供給時は非常用高圧母線（ 6.9 kV M ／C 6－2D）へ供給しない。 －非常用高圧母線（ 6.9 kV M $/ \mathrm{C} 6-2 \mathrm{H}$ ）： 66 kV 送電線 \rightarrow 予備変圧器 \rightarrow 予備高圧母線（ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-\mathrm{E}$ ）\rightarrow 非常用高圧母線 （ $6.9 \mathrm{kV} \mathrm{M} / \mathrm{C} 6-2 \mathrm{H}$ ） なお，非常用ディーゼル発電機（高圧炬心スプレイ采ディーゼ ル発電機を含む。）への受電切替及び予備変圧器への受電切替は，変圧器の故障等により母線電圧が低下したことを检知する不足電圧継電器の動作により自動切替する設計とする（第2．2．1－16図参照）。【設置許可基準規則第 33 条 第 3 項 解釈 1】	

2．1．2．1．3 小浜変電所全停電時の供給系統
大飯発電所に接続する送電線の構成は，500kV送電線4回線（4回線は連絡ラインで接続されている。）と，77kV送電線 1 回線で構成されており， 500 kV 送電線のうち 2 回線（大飯幹線）は，約 70 km 離れた西京都変電所に接続し，他の 2 回線（第二大飯幹線）は，約 50 km 離れた京北開閉所に接続する。 77 k V 送電線 1 回線（大飯支線）は，約 26 km 離れた小浜変電所に接続する。仮に小浜変電所が全停電となった場合でも，保護リレー により事故区間を速やかに除去することで，他への波及を防止す るとともに 500 kV 大飯幹線 2 回線及ぴ 500 kV 第二大飯幹線2回線からの送電が継続されることから大飯発電所の外部電源系が全停電することはない。

小活裹筺所全傽雨詩の電力供給ルート

女川変電所が事故等により全停電した場合には，第2．2．2－7
図に示すとおり，宫城中央変電所又は石巻変電所から 275 kV 送電
線（松島幹線又は牡鹿幹線）にて女川原子力発電所への電力供給
が可能である。【設置許可基準規則第 33 条 第 4 項 解积 4】

倦電線の交差筩所及ぜ近接区間

なお，女川原子力発雨所に接続する送電線等には，第2．2．3－ 2 図のとおり，発電所構外において接近•交差•併架する箇所が 7 箇所（1）～（7）ある。
これらの箇所については，仮に 1 つの鉄塔が倒壊しても，電線 の張力方向によってすべての送電線が同時に機能襄失しない鉄塔の配置となる設計とする。
また，構内の送電鉄塔は，重大事故等対処設備，防潮堤，アク セスルートへの影響を考慮する。

女川原子力発電所に接続する送電線等の接近•交差•併架箇所 の状況は，第2．2．3－1 表のとおり。

第33条 保安電源颜備	泊発電所3号炉 DB基準適合性	比較表 r．4．0	
大飯発電所 $3 / 4$ 号炉	泊発電所 3 号炉	女川原子力発電所 2 号炉	差異理由
		O想定状況 $2 / 4$（接近•交差） 1．牡鹿幹線No．10の鉄塔が水平角度による張力方向に倒壊，牡鹿幹線 $\mathrm{No} .9 \sim \mathrm{No.10の}$ 電線が落下し，牡鹿幹線が停電する。 2．牡鹿幹線 No． $9 \sim \mathrm{No} 10$ の電線が，鮎川線 $\mathrm{No} .26 \sim \mathrm{No} .27$ の電線と接触し，鮎川線及び塚浜支線が停電する。 3．牡鹿幹線Na10は，水平角度による張力方向が松島幹線と逆方向のため，松島幹線とは接触しない。 4．松島幹線の 2 回線が残り，女川原子力発電所に電力供給が可能である。 O想定状況 $3 / 4$（交差） 1．松島幹線 No． 9 の鉄塔が倒壊，松島幹線No． $9 \sim$ No． 10 の電線が落下し，松島幹線が停電する。 2．松島幹線 $\mathrm{No} .9 \sim \mathrm{No} .10$ の電線が，鮎川線 $\mathrm{N} .25 \sim \mathrm{No} .26$ の電線と接触し，鮎川線及び塚浜支線が停電する。 3．松島幹線 N $N .9$ の鉄塔が牡鹿幹線側に倒れたとしても松島幹線 No． $9 \sim$ No． 10 の電線も含め牡鹿幹線とは離隔があり接触せず，牡鹿幹線の 2 回線が残り，女川原子力発電所に電力供給が可能である。 O想定状況4／4（交差） 1．牡鹿幹線No． 9 の鉄塔が倒壊，牡鹿幹線No． $9 \sim \mathrm{Na.10}$ の電線が落下し，牡鹿幹線が停電する。 2．牡鹿幹線 $\mathrm{No} .9 \sim \mathrm{Na} 10$ の電線が，鮎川線 $\mathrm{N} .26 \sim \mathrm{No} 0.27$ の電線と接触し，鮎川線及び塚浜支線が停電する。 3．松島幹線の 2 回線が残り，女川原子力発電所に電力供給が可能である。	

第33条 保安電源設侕	泊発電所3号炉 D B 基準適合性	比較表 r．4．0	
大飯発電所 $3 / 4$ 号炬	泊発電所 3 号炉	女川原子力発雨所 2 号炉	差異理由
		（5）接近•交差箇所の状況 第 $2.2 .3-7$ 図に 275 kV 送電線（松島幹線）， 275 kV 送電線（牡鹿幹線）， 66 kV 送電線（万石線）の接近•交差箇所の現地状況を示す。 ○想定状況 $1 / 5$（接近•交差） 1．松島幹線 $\mathrm{N}, 28$ の鉄塔が水平角度による張力方向に倒壊，松島幹線 $\mathrm{N} .27 \sim \mathrm{No} .29$ の電線が落下し，松島幹線が停電する。 2．松島幹線 No ． $28 \sim \mathrm{No}$ ． 29 の電線が万石線 $\mathrm{N} 0.75 \sim \mathrm{No} 76$ の電線と接触 し，万石線，鮎川線及び塚浜支線が停電する。 3．松島幹線 $N o .28$ は水平角度による張力方向が牡鹿幹線と逆方向 のため，松島幹線No． $27 \sim \mathrm{No} .29$ の電線も含め牡鹿幹線とは接触 しない。 4．牡鹿幹線の 2 回線が残り，女川原子力発電所に電力供給が可能である。	

500 kV 大飯幹線， 500 kV 第二大飯幹線 4 回線が同時停止した場合は，下図に示すとおり 77 k V 大飯支線からの電力供給が可能である。
77 kV 大飯支線からの電力は，No．1予備変圧器を通して非常用母線に給電することが可能である。

受電優先順位については，以下の通りである。（1）～（3）について は自動切替，（4）については手動切替で給電可能である。
（1） 500 kV 第二大飯幹線からNo． 2 予備変圧器を通した給電 （2） 500 kV 大飯幹線から主変圧器，所内変圧器を通した給電 （3）ディーゼル発電機からの給電
（4） 77 kV 大飯支線からNo．1予備変圧器を通した給電

○想定状况 $2 / 5$（接近•交差）
1．松島幹線No． 29 の鉄塔が水平角度による張力方向に倒壊，松島幹線No．28～No．29の電線が落下し，松島幹線が停電する。
2．松島幹線 $\mathrm{No} 0.28 \sim \mathrm{No} .29$ の電線が万石線 $\mathrm{No} .75 \sim \mathrm{No} 76$ の電線と接触 し，万石線，鮎川線及び塚浜支線が停電する。
3．松島幹線 No 029 は水平角度による張力方向が牡鹿幹線と逆方向 のため，牡鹿幹線とは接触しない。
4．牡鹿幹線の 2 回線が残り，女川原子力発電所に電力供給が可能である。

○想定状况 $3 / 5$（接近）
1．牡鹿幹線 $\mathrm{N} N .31$ の鉄塔が倒壊，牡鹿幹線 $\mathrm{N} o .30 \sim \mathrm{~N} o .32$ の電線が落下し，牡鹿幹線が停電する
2．牡鹿幹線No．31の鉄塔が松島幹線側に倒れたとしても牡鹿幹線 $\mathrm{N} .30 \sim \mathrm{No} .32$ の電線 も含め松島幹線及び万石線とは離隔があり接触しない。
3．松島幹線の 2 回線，万石線の 2 回線，鮎川線の 2 回線及び塚浜支線の 1 回線が残り，女川原子力発電所に電力供給が可能 である。

○想定状況 $4 / 5$（交差）

1．牡鹿幹線 N .32 の鉄塔が倒㙹，牡鹿幹線 $\mathrm{N} .31 \sim \mathrm{No} .33$ の電線が落下し，牡鹿幹線が停電する。
石線，鮎川線及び塚浜支線が停電する。
3．牡鹿幹線 No．32の鉄塔が松島幹線側に倒れたとしても牡鹿幹線 No． $31 ~ N o .33$ の電線を含め松島幹線とは離隔があり接触しな い。松島幹線の 2 回線が残り，女川原子力発電所に電力供給 が可能である。

○想定状況 $5 / 5$（接近•交差）
1．牡鹿幹線 $\mathrm{N}, 333$ の鉄塔が水平角度による張力方向に倒壊，牡鹿幹線 $\mathrm{N} .32 \sim \mathrm{No} .33$ の電線が落下し，牡鹿幹線が停電する。
2．牡鹿幹線No．32～No33の電線が万石線No． $73 \sim$ No． 74 と接触し，万石線，鮎川線及び塚浜支線が停電する。
3．牡鹿幹線No．33は水平角度による張力方向が松島幹線と逆方向 のため，松島幹線とは接触しない。
4．松島幹線の 2 回線が残り，女川原子力発電所に電力供給が可能である。

第33条 保安電源設備	泊発電所3号炬 DB基準適合性 比		載内容の相違（記載方針の相違）名称の相違（実質的な相違なし）
大飯発重所 $3 / 4$ 号炉	泊発電所 3 号炉	女川原子力発電所 2 号炉	差異理由
2．1．3． 4 鉄塔基磫の安定性 大飯発電所の外部電源線の送電鉄塔について，敷地周辺の地盤変状の影響による二次的被害の要因である盛土崩壊や地すべり，急傾斜地の土砂崩壊の影響を評価し，必要な対策を実施した。 鉄塔周辺の地盤変状の影響による被害の要因として「（1）盛土の崩壊」，「（2）地すべり」及び「（3）急傾斜地の土砂崩壊」の3項目（次図参照）としており，それぞれの評価を行った。	2．1．3． 4 鉄塔基硶の安定性 泊発電所に接続する送電線の送電鉄塔について，敷地周辺の地盤形状の影響による二次的被害の要因である盛土の崩壊や地 すべり，急傾斜地の土砂崩壊の影響を評価した。 鉄塔周辺の地盤変状の影響による被害の要因として，「（1）盛土 の崩壊」，「（2）地すべり」及び「（3）急傾斜地の土砂崩壊」の3項目 （下図参照）としており，それぞれの評価を行った。	2．2．3．2 送電線の信頼性向上対策 送電線は，大規模な盛土の崩壊，大規模な地すべり，急傾斜地 の崩壊による被害の最小化を図るため，鉄塔基碟の安定性を碓保 することで，鉄塔の倒壊を防止する設計とする。 過去に発生した設備の被害状況を踏まえて，電気設備の技術基準（第 32 条）への適合に加え，台風等による強風発生時又は冬期の着水雪による事故防止対策を図ることにより，外部電源系か らの電力供給が同時に停止することのない設計とする。 2．2．3．2．1 鉄塔基礎の安定性 一般に，送電線ルートはルート選定の段階から地すべり地域等 を極力回避しており，地震による鉄塔數地周辺の影響による被害 の最小化を図っている。また，やむを得ずこのような地域を選定 する場合には個別に詳細調査を実施し，基磦の安定性を検討して基礔型を選定する等の対策を実施している。 さらに，女川原子力発電所 2 号炉に接続する 275 kV 送電線 4 回線及び 66 kV 送電線 1 回線については，鉄塔數地周辺で基礎の安定性に影響を与える盛士の崩壊，地すべり，急傾斜地の土砂崩壊 について，図面等を用いた机上調査及び地質專門家による現地踏査を実施し，鉄塔基磫の安定性が確保されていることを確認して いる。評価対象となる鉄塔基数を第 2．2．3－3 表に，評価対象線路を第2．2．3－10図に示す。 第2．2．3－10図 基硬の安定性評㑂対象樂路	記載表現の相達設侑構成の相違（3）設偳䝘計等の相違（4）

第33条 保安電源設備	泊発電所3号炉 DB基準適合性 比	比較表 r．4．0	
大飯発電所 $3 / 4$ 号炉	泊発電所 3 号炉	女川原子力発電所 2 号䢶	差異理由
（1）盛土の崩壊に対する基硞の安定性評価結果【現場踏査対象の抽出】		（1）盛土の崩堙リスク	記載笽所の相違
対象箇所の抽出に当たっては，送電線並びにその周辺の地形状況が記載されている実測平面図等を使用して，人工的に土地の改変が加えられた箇所を抽出した。 また，送電線周辺で発生した盛土に関する送電線の保守記録も確認するとともに，車両，ヘリコプター巡視で直接現場状况を確認し，漏れの無いよう盛土箇所を抽出した。抽出の結果，鉄塔 469 基のうち，1基が該当した。	対象箇所の抽出にあたっては，送雨線並びにその周辺の地形状況が記載されている実測平面図や送電線路周辺の保守記㟤を使用して，人工的に土地の改変が加えられた箇所がないか机上で碓認した。 更に，机上で碓認した箇所を含め，送電線周辺の現地状況を徒歩・ヘリコプター巡視で碓認し，漏れかなないように盛土箇所を抽出した。 その結果，評価対象鉄塔 442 基について，鉄塔付近や鉄塔鋯地 の斜面上方に盛土䉥所がないことを碓認した。	実測平面図や国土地理院発行の地形図等を使用し，人工的に土地の改変が加えられた箇所を抽出	記載表現の相違 設備構成の相違（3）設備設計等の相違（4）
なお，盛土の規模としては，東北地方太平洋沖地震で倒壊した東京電力の「夜の森線周辺で発生した盛土崩壊箇所と同程度の規模以上の盛土を対象とした。さらに安全性の観点から，それよ りも小規模な盛土についても対象とした。	〈内容比較のため再揭（5）＞ 盛土箇所の抽出にあたっては，今回の検討の発端となった東京電力（株）の 66 kV 夜の森線周辺で発生した盛土崩壊箇所と同程度の盛土規模を対象とし，更なる安全性向上の観点から，それよ りも小規模な盛土についても対象とした。		記載萄所の相湋記載表現の相違
【現場踏查結果】 対象鉄塔 1 基について現場踏査を実施した結果，盛土について は，小規模なものであり，仮に当該盛土が崩壊しても鉄塔まで土砂が到達する可能性は極めて低いことから，鉄塔基磞の安定性に影響がないものと判断した。		$\rightarrow 275 \mathrm{kV}$ 送電線（牡鹿幹線） 4 基， 66 kV 送電線（万石線） 1 基 \rightarrow 抽出された 5 基について現地踏査等により，現時点では基磞 の安定性に問題ないことを確認（第2．2．3－4表参照，詳細は別添1を参照）	陪偏構成の相違 ${ }^{(3)}$設借設計等の相達（4）

第33条 保安電源設備	泊発電所3号炉 DB基準適合性 比	比較表 r．4．0	は体制の相違（設計方針の相違）記載内容の相違（記載方針の相違）備名称の相違（実質的な相違なし）
大飯発電所 $3 / 4$ 号炬	泊発電所 3 号炉	女川原子力発電所 2 号炬	差異理由
（2）地すごりに対する基啱の安定性評価結果 【現場踏查対象の抽出】 地すべり防止区域（地すごり防止法），地すごり危険箇所（地方自治体指定），地すべり地形分布図（（独）防災科学技術研究所） に示される範囲及びその近傍に設置している鉄塔を逥定し，さら に空中写真判読により，鉄塔との位置関俰等を碓諰した結果，鉄塔 469 基のうち 37 基が該当した。	（2）地すべりに対する基硶の安定性評価結果 【現地踏査対象の抽出】 地すべりについては，地すべり防止区域（地すべり等防止法），地すべり危険箇所（地方自治体指定）及び地すべり地形分布図 （（独）防災科学技術研究所）から対象鉄塔を抽出した後，さらに『道路土工 切土工•斜面安定工指針（（社）日本道路協会 平成 21年6月）』に示されている「地すべり型による地形図及び写真判読のポイント（P．377）」を参考にした空中写真判読あるいは送電線とその周辺の地形状況が記載されている実測平面図等を用 いて，地形勾配，地形形状，地形状況を碓認し， 113 基を抽出し た。	（2）地すべりリスク 地すべり防止区域，地すべり危険箇所，地すべり地形分布図か ら対象鉄塔を抽出した後，空中写真判読により地すべり地形近傍 の鉄塔を抽出 $\rightarrow 275 \mathrm{kV}$ 送電線（松島幹線） 14 基， 275 kV 送電線（牡鹿幹線） 3 基， 66 kV 送電線（鮎川線） 5 基， 66 kV 送電線（万石線） 2基	記載表現の相違 記此方計の相逢（4） 考とした「道路土工 切土工•斜面安定工指針」の内容を補足 1 に紀戬している。 設信構成の相違 ${ }^{(3)}$設偏設計等の相違（4）
【現場踏査結果】 対象鉄塔 37 基については，既に静止した地すべり土塊である ことや，地すべり土塊から離れていること等を確認し，将来的に も鉄塔斜面の安定性が損なわれる危険性は低いと評価し，対策不要と判断した。	【現地踏査結果】 抽出した 113 基について，地質，地盤，斜面崩溒等の知識とと もに土質調査や土木施工など，地質に関する様々な経験を有する地質専門家により現地踏査を実施し，詳細な地形，地質，変状の情報等を収集した。 踏査にあたっては，調査の対象とする地区に対して可能な限り見通しの良い正面または側面から全体の地形，勾配，傾斜変換線 の位置等を確認して，地すべり地の概略を把握するとともに，地 すべり地内を詳細に踏查し，地形状況，露岩分布状況，移動土塊 の状況，地表面の変状，構造物の変状の有無等について確認した。安定度の評価にあたっては，安定度区分に応じた評価基準と対応方針を示す必要があるが，『道路土工 切土工•斜面安定工指針』における「地すべりの安定度判定一覧表（P．370）」等を参考 に地質專門家の意見を踏まえて設定した。 上述の現地踏査で収集した地形，地質，変状の情報等と評価基準に基づき，各鉄塔を評価した結果，鉄塔基硞の安定性は問題な いことを碓認した。	\rightarrow 抽出された 24 基について現地蹅查等により，現時点では基碳の安定性に問題ないことを碻認（第2．2．3－4表参照，詳細 は別添 1 を参照）	設㛿满成の相達 (3)郡偏設計等の相逢（4） 記機方針の相違（4）

2）風圧荷重
電気設痛の技術基準に規定されている風圧荷重は，高温季と低温季の 2 種類であり，さらに北海道電力ネットワーク株式会社では着雪時の風圧荷重（着雪時風圧荷重）を独自に規定して －泊は送菓跌榙の設計及び栭震性につい補足2に䟕載している。

as		＊
same	＊axick	
留溉	 いrnto大きい！	
＊＊＊		

－甲種風圧荷重 鉄塔の各構成材の垂直投影面に加わる風 の圧力によって計算したものであり，平均風速 $40 \mathrm{~m} / \mathrm{s}$ を考慮する
乙種風圧荷重 架渉線（電線等）の周囲に厚さ 6 mm ，比重 0.9 の氷雪が付着した状態に対し，甲種風圧荷重の 0.5 倍（平均風速約 $27 \mathrm{~m} / \mathrm{s}$ ）によ って計算したもの
－着雪時風圧荷重 気温 $0^{\circ} \mathrm{C}$ て，架渉線（電線等）の周囲に比重 0.7 の雪が同心円状に 1 m あたり 5 kg付着した状態に対し，平均風速 $15 \mathrm{~m} / \mathrm{s}$ の風の圧力によって計算したあの

令和 2 年 8 月の電気設備の技術基準の解粎の改正により，遂電鉄塔の主要な荷重である風圧荷重に平均風速 $40 \mathrm{~m} / \mathrm{s}$ と地域別基本風速を比べて，大きい方の荷重を考慮することに見直し された。送電線の経過地及び気象観測所の配置を下図に，周辺観測所における過去の最大風速（10 分間平均風速の最大値）を下表に示す。
当該地域における過去の平均風速の最大値は $29.7 \mathrm{~m} / \mathrm{s}$ であ り，平均風速 $40 \mathrm{~m} / \mathrm{s}$ を下回るため，令和 2 年 8 月の改正前と同様に平均風速 $40 \mathrm{~m} / \mathrm{s}$ の風圧荷重を考慮することとしている。 れは，強い台風による風の強さと同等である。

最新知見の反映，距載方計の相迲
－送電鉄塔の設計に係る風圧荷重に俰る記載の明確化のため，令和 2 年 8 月の電気設備の技術基準の解积の改正に係る内容 の記述を2．1．3（補足2）に追記した。

－泊発電所に接続する送雨線等の経過地

周辺における過去の気象データから平均
風速 $40 \mathrm{~m} / \mathrm{s}$ を超えた実績がないことを確踗した旨の記載の明碓化のため，女川まと め資料別添 6 と同様の記述を 2．1．3（補足 2）に追記した。

最新知見の反映，䟕載方針の相達
－泊発奄所に接続する送電線等の経過地周辺にさける過去の気象テータから平均風速 $40 \mathrm{~m} / \mathrm{s}$ を超えた実績がないことを確認した旨の記載の明磪化のため，女川まと め資料別添6と同様の記述を 2． 1.3 （補足 2）に追記した。

第33条 保安電源設備	泊発電所3号炉 DB基準適合性		 角名称の相違（実質的な相違なし
大飯発電所 $3 / 4$ 号炬	泊発電所 3 号炉	女川原子力発電所 2 号炬	差異理由
	（2）現行の耐震基準（風圧荇重基準）の妥当性の評価 報告書では，兵庫県南部地震（以下，本地震）における被害状況を分析するとともに，理論的および実証的検討を行い，現行の耐震基準（風圧荷重基準）が，一般的な地震動及び高レベ ルの地震動に対して妥当なものと評価されている。 以下に，その概要を示す。 a．理論的妥当性 一般的な地震動に関しては，現行の基準による鉄塔は，建築基準法の震度法によって地震荷重により解析した結果，地震荷重と鉄塔の応力比（地震荷重／風圧荷重）が 1 以下とな り，200～300gal に対する耐震性を有すると評価されている。 また，高レベルの地震動に対しては，本地震にて観測され た地震波形（水平方向 818 gal および 585 gal ）を入力して動的解析を行った結果，鉄塔の各部材は弾性限界内にとどまり変形も発生しないことが確認されていることから，高しベル の地震動に対しても耐震性を有していることが評価されて いる。 b．実証的妥当性 現行の基準による鉄塔は，本地震より過去の 14 回の大き な地震の震度 6 以上の地域において地震動による直接的な被害がなかったことからっ一般的な地震動に対して十分な耐震性を有していると評価きれている。 また，高レベルの地震動に対しても，本地震の地震動に対 して鉄塔が倒壊し，送電不能となったものは特殊な構造※の 1 基のみであったことから，十分な耐震性を有していると評価されている。 ※特殊な構造：一般的な鉄塔部材を交差させた構造（フフライ ヒ構造）ではない構造。 （3）東北地方太平洋沖地震による被害を蹅まえた耐震性の检討電気設備地震対策ワーキングクループ報告書（原子力安全•保安部会電力安全小委員会，平成 24 年 3 月）において，平成 23 年3月11日に発生した東北地方太平洋沖地震では，倒壊•折損等の鉄塔被害が無かったこと，電力の供給支障を 1 週間程度でほぼ解消したことを蹽まえ，現行の耐震性の考え方につい て変更の必要はないと評価されている。		䟕載方卻の相達 －泊は送菓跌榙の設計及び耐莀性につい て補足 2 に䟕荿している。

第33条 保安電源設犕	泊発電所3号炉 DB基淮適合性 比		
大飯発䉓所 $3 / 4$ 号炉	泊発電所 3 号炉	女川原子力発電所 2 号炬	差異理由
	2．1．3．6．1（参考）泊支線からの分岐によるルート碓保（更なる信頼性向上対策 1 ） 現状の泊発電所 3 号炬に対する電力供給は 275 kV 送電線 2 ルートであるが，更なる信頼性向上対策として， 66 kV 泊支線を活用した電力供給ルートを常時碓保した。 ＜対策1－（1）泊支線からの分岐によるルート確保＞ － 66 kV ルート（管路布設）及び 6.6 kV ルート（管路布設）の施工は，絶縁ケーブルを管路に布設し，一部を除き地中一埋設する。 －信頼性向上対策 1 －（2）として実施する 66 kV 泊支線から後備変圧器を介した泊発電所 3 号炉への接続工事が完了後，本対策により設置した設備は除却する。 迹雨		設俪設計等の相達（4）設備設計等の相達（5）

大飯発電所 $3 / 4$ 号炉	
2．1．3．7 送電線の信頼性向上対策	
過去に発生した設備の被害状況を踏まえて，技術基帮への適合	
に加え，强風，着雪対策等により，さらに信頼性を高めている。	

（2）着雪対策

過去の豪雪被害による対応として，技術基準への適合に加え，地域ごとに定めた着雪厚さ，湿型着雪による荷重を考慮する設計 とした。局所的な異常積雪を考慮し，雪の移動圧及び沈降圧を設計に考慮した。（積雪深設計）また，着氷雪及び強風によるキャロ ッビング事故対策としてルーズスペーサを設置した。

電線のより方向への回転成長を途中で寸断し，筒雪重着雪への発達を抑制させる。

桃着雪リンダ

2．1．3．7 送電線の信頼性向上対策

送電鈇塔については，電気設備の技術基準に基づく風圧荷重等，各種設定荷重に対し，所定の強度を有するよう施設している。 また，過去に発生した設備の被害状況を踏まえて，更に着霄荷重 も考慮することにより強風時も含め信頼性を高めている。

（1）強風対策

送電鉄塔の設計にあたっては，電気設備の技術基準に定められ ている風圧荷重（平均風速 $40 \mathrm{~m} / \mathrm{s}$ ）を鉄塔規模（高さ）に応じた設計風圧値の㸺増を考慮し設定している。また，風圧荷重よりも大きな着雪荷重にも耐えうるよう設計を行うことにより，電気設備の技術基準に定められている風圧荷重を上回る強風にも耐え らる設計としている。

2．2．3．2．3 送電線の風雪対策について

（1）設備対策面

a．風に対する設備対策

電気設備の技術基準（解釈）に基づく甲種風圧荷重（風速 $40 \mathrm{~m} / \mathrm{s}$ ）
及び乙種風圧荷重（架渉線の周囲に厚さ 6 mm 又は 9 mm ，比重 0.9 の氷雪が付着した状態に対し，甲種風圧荷重の 0.5 倍を基整とし て計算したもの）を考慮している。

（2）着雪対策

昭和 47 年に発生した電線着雪による稚内線での鉄塔倒壊を踏 まえ，北海道電カネットワーク株式会社独自の着雪荷重も考慮す ることとしている。泊発電所へ接続される送電鉄塔は以下の着雪荷重を考慮して設計されている。

- 風速 $15 \mathrm{~m} / \mathrm{s}$
- 送電線の周囲に比重 0.7 の雪が同心円状に 1 m あたり 5 kg 付着

また，電線に対しては以下の着雪対策を実施している。
＞難着雪リンク
電線に一定の等間隔で取り付けることにより，着雪の
b．雪に対する設備対策
上記の荷重に加えて， 275 kV 送電線（牡鹿幹線及び松島幹線） の全区間及び 66 kV 送電線（塚浜支線，鮎川線及び万石線）の一部区間については，これまでの雪害事故実績を踏まえ耐雪強化対策として，電線への湿型着雪荷重（経過地により架渉線の周囲に厚さ $20 \mathrm{~mm} \sim 40 \mathrm{~mm}$ ，密度 $0.6 \mathrm{~g} / \mathrm{cm}^{3}$ の雪）を考慮している。
更に，重着雪，キャロッピングを防止するため，雪害防止対策品 を設置し，信頼性向上を図っている。女川原子力発電所に接続す る送電線等に採用している雪害防止対策品とその役割は第2．2．3 -11 図のとおり

相間スペー泊発電所3号炉
女川原子力発電所 2 号知
キャロッピングによる短絡事故の防止を目的として適用されているが，電線の捻れ剛性（捻れにくさ）を増加させる効果もあり，着電による電線の捻れを防止 することで，同一方向に着雪させて自重で落下させる もの。電線の回転による着雪成長の抑制効果がある。
－素導体スペーサ
多導体送電線において，導体同士の接触による損傷を防止するために，スペーサを一定間隔で取り付けてい るが，スペーサの取付部により導体が固定されるた め，電線の捻れ剛性を増加させる効果もあり，相間ス ペーサと同様電線の回転による着雪成長の抑制効果 がある。

地比スベーサ

越凍スペーサ

戠路各
絽名
 275 66ky 实低支楼 66 kV 船川䭒

○雪害防止対策品の線路別採用状況
 設備構成の相違（3）

対策品採用状況は第 $2.2 .3-7$ 表のとおり

設備設計等の相違（4）

第33条 保安電源設備	泊発電所3号炉 DB基準適合性 比	比較表 r．4．0	妃載内容の相違（記載方针の相違） 備名称の相違（実質的な相違なし）
大飯発重所 $3 / 4$ 号炉		女川原子力発電所 2 号炉	差異理由
2．1．4．2 変圧器多重故障時の電力供給継続 変圧器多重故障等により500kV送電線4回線が喪失した場合は，原子炉を安全に停止するために必要な所内電力は，ディー ゼル発電機から受電する。さらに，ディーゼル発電機からの受電 に失敗した場合には，77kV送電線1回線から受電する。 変圧器多重故障による外部暈頑表失時の電力供給	2．1．4．2 変圧器多重故障時の電力供給継続 変圧器多重故障などにより 275 kV 送電線 4 回線が喪失した場合は，原子炉を安全に停止するために必要な所内電力は，ディー ゼル発電機から受電する。また， 66 kV 送電線が健全であれば， 66 kV 送電線からも受電できる。	2．2．4．1．2 変圧器多重故障時の電力供給 変圧器多重故障等により， 275 kV 送電線 4 回線及び 66 kV 送電線1回線から受電できない場合は，非常用高圧母線が常用高圧母線から受電できなくなるため，発電用原子炉を安全に停止するた めに必要な所内電力は非常用ディーゼル発電機（高圧炬心スプレ イ系ディーゼル発電機を含む。）から受電する。 第 2．2．4－5 図に，変圧器多重故障時の非常用高圧母線への電力供給を示す。 	設備構成の相違（2）設㛿構成の相違（3）設偳設勆等の相違（4）設備設計等の相違（5）

故

2．2．4．1．3 外部電源受電設備の設備容量について
女川原子力発電所は， 275 kV 送電線（牡鹿幹線及び松島幹線） 2 ルート各 2 回線及び 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。）及び万石線）1 ルート1回線で電力系統に連系してい る。

非常用高圧母線は，以下の方法にて受電可能である。

（1）通常時，所内変圧器から受電する。
（2）所内変圧器かっら受重できない場合，起動変圧器へ自動切替 が可能。 275 kV 開閉所にあるガス絶縁開閉装置を介し，起動変圧器にて6．9kVへ降圧し，受電する。
（3）所内変圧器及び起動変圧器から受電できない場合，非常用 ディーゼル発電機（高圧炉ふスプレイ系ディーゼル発電機を含む。）からの受電に自動切替。
（4）非常用ディーゼル発電機（高圧炉心スブレイ系ディーゼル発電機を含む。）が使用できない場合，予備変圧器からの受電に切替え。 66 kV ガス絶縁開閉装置を介し，予備変圧器にて 6． 9 kV に降圧し，受電する。
それぞれの送電線及び変圧器は，第2．2．4－1 表に示す発電用原子炉を安全に停止するために必要な電力を受電し得る容量を有している（第2．2．4－2 表参照）。【設置許可基準規則第 33 条 第 4 項】

		ytar Espma（2mial		
	1590	18	28	ay
		इ．essma	т．esawa	т．ezavis
c䂭碞		20．8зıs		

設備構成の相違（2）

設備構成の相違（3）
設備名妳の相違（2）

䟕載表現の相達設備設計等の相違（4）設備設計等の相達（5）

第33条 保安電源設備	泊発電所3号炉 D B 基準適合性 比	交表 r．4．0緑子：記儎表現，設	名称の相違（実質的な相違なし）
大飯発電所 $3 / 4$ 号炉	泊発電所 3 号炉	女川原子力発電所2号炉	差異理由
2．1．4．4 特高開閉所	2．1．4．4 開閉所	2．2．4．2 受送電設備の信頼性 275 kV 開閉所， 66 kV 開閉所及びケーブル洞道等は十分な支持性能を持つ地盤に設置した上で，遮断器等の機器については耐震性 の高い機器を使用する設計とする。 275 kV 開閉所及び 66 kV 開閉所は防潮堤等を設置することで津波の影響を受けない設計とするとともに，塩害を考慮する設計と する。 2．2．4．2．1 開閉所設備等の耐震性評価について	紉載表現の相違
500 kV V特高開閉所は，盛土上に設置してあり，ごた基礎構造である。なお， 1.0 Ci の地震力（ $\mathrm{Kh}=0.16$ ）に対し十分な安全性を確保しており，耐震クラスCを満足している。 77 kVV 特高開閉所は，岩盤上に設置してあり，べた基硔構造である。なお，地震力（Kh＝0．89）に対し十分な安全性を確保しており，耐震クラスCを満足している。また， 500 kV 特高開閉所及び 77 kV 特高開閉所の基硞コンクリート及び周辺斜面の擁壁•法面等について，日常点検及び定期点検を行い，有害な欠陥がないことを確認して いる。	275 kV 開閉所の基䃈は岩着している。なお， 1.0 Ci の地震力に対し十分な安全性を確保しており，耐震クラスCを満足してい る。また，開閉所基䊙コンクリート，周辺法面等について，定期的な点検を行い，有害な欠陥がないことを確認している。	275 kV 開閉所， 66 kV 開閉所及びケーブル洞道等の基礎構造は，直接基礎構造又は杭基礎構造であり， 1.0 Ci の地震力に対し不等沈下，傾斜又はすべりがおきないような地盤に設置していること から，十分な支持性能を確保しており，耐震クラスCを満足して いる。	設備樓成の相違（2）
発電所内の開閉所及び送受電設備に使用する碍子は耐震性の高 い懸垂碍子を使用しており，遮断器等は耐震クラスCを満足する SF6ガス絶縁開閉装置（GIS）を使用している。津波による影響に対 しては，設計基準津波高さが最大でT．P．+8.0 m に対し， 500 k V特高開開所高さがT．P．+32 m 以上であり， 77 kV 特高開閉所高さはT．P．+15.4 m以上であるため問題ない。また，塩害に対して	発電所内の 275 kV 開閉所及び送受電設備に使用する碍子は耐震性の高い懸垂碍子を使用しており，遮断器等は耐震クラスCを満足するS F 6 ガス絶縁開閉装㯰（G I S）を使用している。津波による影響に対しては， 275 kV 開閉所の設置高さが標高約 85 m であるため問題ない。また，塩害を受けにくいよう，プッシング は遮風建屋内に設置し，ポリマー碍管を探用している。	発電所内の開閉所の遮断器は耐震クラスCを満足するガス絶縁開閉装置及びガス遮断器を使用している（第2．2．4－6図参照）。	設備構成の相達（2） 記載表現の相達 設偏設計等の相違 ${ }^{(8)}$
		開閉所の電気設備及び変圧器については，経済産業省原子力安全•保安院指示文書「原子力発電所等の外部電源の信頼性碓保に係る開閉所等の地震対策について（指示）」（平成 $23 \cdot 06 \cdot 07$ 原院第 1 号）に基づき，JEAG5003－2010「変電所等における電気設備の耐震設計指針」による耐震評価を実施することにより，耐震裕度を有する設計とする。（平成 23 年 7 月 7 日報告）【設置許可基準規則第 33 条 第 6 項 解釈 6】	最新知見の反映 －開閉所段霍等の耐震性評価に係る記載 の明碓化のため，女川まとめ資料 （2．2．4．2．1（1）含む）と同樣の記述を 2．1．4．4．1に追記した。

