資料4-1の別紙1、別紙2及び別紙3を以下にまとめた。

中深度処分対象廃棄物の放射能濃度決定方法に係る 日本原子力学会標準の技術評価に関する検討チーム

別紙1 最大放射能濃度の計算の手順の比較

(チャンネルボックス (CB) の評価手順と評価結果の例)

	放射能濃度決定標準の規定内容を具体的に理解するために、同じ評価が
説明依頼事項	チャンネルボックス)に対して、①点推定法、②濃度比法、③換算係数
	布評価法を用いて、最大放射能濃度を算出した例を示して下さい。

2022年10月27日

(一社)日本原子力学会 標準委員会

資料4-2

対象物(例えば、 数法及び④濃度分

必少 活動してのしいやす 日本の注 支援法 支援				区間推定法	
8.222 元素の分析 ③ どのいうたは物理が多な思したがな: 400 不動から下記のも限数 ③ 認知したがな: 400 不動があいたすこかの ④ 認知したがな: 400 不動があいたすこかの ● 認知したがな: 400 不動があいため ● 認知したがな: 400 不動があいたすこかの ● 認知したがな: 400 不動があいた ● 認知したがな: 400 不動があいたすこかの ● 認知したがな: 400 不動があいたすこかの ● 認知したがな: 400 不動があいたすこかの ● 認知したがた: 400 不動があいた ● 認知したがた: 400 不動・た ● 認知を読む: 400 不動・た ● 認知を認知したがた: 400 不動・た ● 認知を読む: 400 不動・た </th <th>規定 説明して欲しい内谷</th> <th>「「「「」「「」」「」「」」「」」「」」「」」「」」「」」「」」「」」「」」「</th> <th>濃度比法</th> <th>換算係数法</th> <th>濃度分布評価法</th>	規定 説明して欲しい内谷	「「「「」「「」」「」「」」「」」「」」「」」「」」「」」「」」「」」「」」「	濃度比法	換算係数法	濃度分布評価法
す。(表G.6, 7参照) (除外元素 : C, Na, V, Cr, Mn, Zn:6元 素)	規定 説明して欲しい内容 6.1.22 元素成分条件 ① どのように起源元素を選定 6.1.22.1 起源元素の ② その結果、どの起源元素を選定 ③ スクーリングをした場合、ジェスクリーニングの内容 第年の規定内容 「1.22.1 起源元素は、評価対象とする)。 属等の確実(材料)ごとに、次の)。 第1 広源元素は、評価対象をする)。 一 起源元素は、評価対象とする。 一 起源元素は、評価対象核種(評価対象核種 (評価対象核種の総生成放射) る寄与が小さい元素は、起源 ● ● ア価対象核種の総生成放射1 る寄与が小さい元素は、起源 ●	点推定法 ①避亡した方法: ごたか 理由と 小金 小金 た方を 元素と 元素 読むる 成する パイト アリー なうる放 竹化に ま起 11 第一次 小です。	 濃度比法 ①避定した方法: 全103 元素から下記の4段階 のスクリーニング(添付1参照)を実施して申 請核種の起源元素を選定します。 附属書 G では、仮に、「現行 L2 埋設などの申 請核種(4C, 3%Cl, @Co, @Ni, 9Sr, 94Nb, 97b; 1291, 137Cs, 全 a)」を想定して起源元素 を選定した例を示しています。 ③スクリーニングの理由と内容: スクリーニング は、申請核種の放射能を評価するための放射化 計算に必要とならない元素を除外し、全103元 素から申請核種の起源元素に適切に絞り込こ むためです。 二次: U, Th以外の放射性同位体を除いた元素 に絞ります。(初期材料は放射化されてな いため) (除外元素: Tc, Pm, Bi, Po, At, Rn, Fr, Ra, Ac, Pa, Np, Pu, Am, Cm, Bk, Cf, Es, Fm, Md, No, Lr: 21元素) 二次: 評価対象核種を生成する元素に絞りま す。(表G.3参照)(評価対象核種を生成し ない元素は、起源元素から除外) (除分元素: H, He, Li, Be, B, Mg, Al, Si, P, Ca, Sc, Ti, Ga, Ge, As, Se, Br, Rh, Pd, Ag, Cd, In, Sn, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb: 47元素) 三次: 附属書Hの図H.19に示す製造工程(熱処 理:溶解等, 化学処理:還元等)を踏まえ 鋼材中に残存する元素に絞ります。(精錬 時などに揮散する可能性が高いと判断で きる元素は、起源元素から除外) (ま分元素: F, Ne, Ar, Kr, Rb, Sr, Y, Ru, Sb, Te, I, Xe, Cs, Ba, La: 15元素) 四次: 放射能生成比0.01%以上の元素に絞りま す。(表G.7参照) (除分元素: C, Na, V, Cr, Mn, Zn: 6元 素) 	区間推定法 換算係数法 ①選定した方法::左記(濃度比法)と同じです。	<u>濃度分布評価法</u> ①選定した方法: 左記(濃度比法)と同じです。

最大放射能濃度の計算の手順の比較(チャンネルボックス(CB)の評価手順と評価結果の例)

田中 ジロレズ効しい内容				区間推定法		
規定	記明して欲しい内谷	息推定法	濃度比法	換算係数法	濃度分布評価法	
6.1.2.2.2 起源元素の 元素成分データの収 集方法	 3つの方法のうちどの方法で収集したか その方法を選んだ理由 	① 収集方法: 右記 (濃度比法) と同じです。	① 収集方法 :3種類の収集方法(化学分析を行う方法、文献データ・材料証明書を収集する方法、材料規格の元素データを収集する方法)を 全て適用しています。 その適用方法は、附属書Iの表I.3 に示しています。	① 収集方法: 左記(濃度比法)と同じです。	① 収集方法: 左記(濃度比法)と同じです。	
	 6.1.2.2.2 起源元素の元素成分データの 収集方法 評価対象とする放射化金属等の種類,材 料を考慮した上で,次のいずれかの方法 で起源元素の元素成分データを収集する。 一放射化金属等の試料(品質管理用保存 試料など)又は同じ材料の種類の試料 の化学分析を行う方法。 一放射化金属等と同じ材料種類の試料,又は同種の材料種類の試料の化学分析結果の文献データ,材料証明書を収 集する方法。 一放射化金属等と同じ材料種類に関す る材料規格の元素成分データを収集 する方法。 	<u>②選択理由:</u> 右記(濃度比法)と同じです。	 ②選択理由: 幅広く元素分析データを収集するために、全ての手法を適用するものです。なお、この収集した分析データの中から入力用の元素データを設定するために、次の考え方でデータを選択します。 ③分析データが得られている場合:分析データを選択する。 ⑤分析データが得られなかった場合:文献データを選択する。 ⑥全球分元素の場合:分析データに替えて、材料規格値(保守的な評価とするため)を適用してもよいと考えます。 なお、上記を踏まえ、CBの例として入力用の元素分布の設定データとして選択した結果を表I.9に示しています。 	<u>②選択理由:</u> 左記(濃度比法)と同じです。	②選択理由: 左記(濃度比法)と同じです。	
6.1.2.2.3 起源元素の 成分条件の設定方法	 3つの方法のうちどの方法で設定したか その方法を選んだ理由 標準の規定内容 6.1.2.2.3 起源元素の成分条件の設定方 	①選択した設定方法: 「代表値を設定する 方法」を適用しています。	①選択した設定方法: 上記で選択しました分析 データを使用した「濃度分布から設定する方 法」を適用しています。(表 I.9 に示します元素 データを使用) なお、主成分である Fe 及び Zr は、CB の例で は「濃度範囲を設定する方法」を適用していま す。	① 選択した設定方法: 左記(濃度比法)と同じ です。	①選択した設定方法:左記(濃度比法)と同じ です。	
	 法 起源元素の元素成分条件は、次のいずれかの方法で設定する。 一代表値を設定する方法 収集した起源元素の元素成分データによって、濃度の代表値を設定する。 一濃度分布から設定する方法 収集した起源元素の元素成分データの濃度分布を踏まえ、複数の代表的濃度(例平均濃度,信頼上限値など)を設定する。 一濃度範囲を設定する方法 収集した起源元素の元素成分データの濃度範囲を設定する。 一濃度範囲を設定する方法 収集した起源元素の元素成分データの濃度範囲を踏まえ、最大濃度、最小濃度を設定する。 注記検出が困難な元素に関する濃度分布の評価方法は、附属書日を参照。 	②方法の選択理由: 度範囲から、保守的となる最大値、又は信 頼上限値などを代表値として設定するこ とができることが理由です。	②方法の選択理由: 主成分元素について「濃度範囲を設定する方法」を適用しましたのは、材料規格として濃度の許容範囲が決まっているため、この許容範囲を利用して保守的な設定が可能であることが理由になります。 一方、主成分元素以外について「濃度分布から設定する方法」を適用しましたのは、上記のような材料成分の許容範囲がないため、選択した分析データや文献値(平均値及び標準偏差)を利用して濃度分布から保守的に設定する必要があることが理由になります。	② 方法の選択理由: 左記(濃度比法)と同じで す。	② 方法の選択理由: 左記(濃度比法)と同じで す。	

相合	ジロレマ後にい中の		区間推定法		
規正	記明して欲しい内谷	「「「「「」」「「」」「」」「」」「」」「」」「」」「」」「」」「」」「」」「	濃度比法	換算係数法	濃度分布評価法
6.1.2.3 中性子条件	① 使用した中性子輸送コードの種類	① 中性子輸送コード: MCNP	① 中性子輸送コード: 単位燃料集合体核特性計	① 中性子輸送コード: 左記 (濃度比法) と同じで	① 中性子輸送コード: 左記 (濃度比法) と同じで
a)中性子フルエン	 そのコードを選んだ理由 		算コード		
ス率・中性子スペクト	③ 中性子フルエンス率、中性子スペクト	2) 選定理出: 評価対象位直の甲性子条件 な正確に評価するためには、厳制集合体を	(2) 選定理田: 炉内の甲性子余件を設定するに は、9 次元技想水カコードで求めた軸古向出力	(2)選定理由: 左記(濃度比法)と同じです。	(2)選定理田: 左記(濃度比法)と同じです。
ル	ルの設定に至るまでの考え方、設定の	を正確に計画りるにのには、然料来口体を モデル化した中性子フルエンス感・中性子	は、3 次元後系がハリュート C 秋の に軸 ハ 同山 ハ 分布 ボイド 家分布を計算 一 中性子フルエン		
	判断方法、根拠	スペクトルの計算を行うことが必要にな	ス率・中性子スペクトルを算出することが必要		
		ります。	となります。		
	 標準の規定内容	この計算に際して、計算コードとして	この計算に際して、計算コードとして「単位燃		
	6.1.2.3 中性子条件	「MCNP」を選定しましたのは、添付2(標	料集合体核特性計算コード」を選定しましたの		
	評価対象とする放射化金属等に対する	準には示されていません)の MCNP は原	は、添付3(標準には示されていません)に示		
	次の中性子フルエンス率・中性子スペク	子炉内をモデル化して中性子フルエンス	すように、原子炉の炉心設計及び中性子フルエ		
	トル, 及び放射化町山頂を設定する。 注記詳細け 附属車F 及び附属車C 券昭	一挙・甲性子スペクトルを求めることかでき ス計算っ ドレーズ使用実徒がため 一十一	ンス率・甲性チスペクトルの分布評価に広く用		
	a) 中性子フルエンス率・中性子スペクト	□ る町昇→−トとして使用夫禎かのり、人空 = 宇殿やベンチマーカ試験による絵証も行	いられ、豆苗な夫禎がのり、端が訊練で夫陵連		
	ル 中性子フルエンス率・中性子スペ	われていることが理由にかります	私による便祉が114740℃をあことが生日によります		
	クトルは、原子炉及び燃料の配置を考慮した中性子輸送計算コードなどに		7670		
	よって適切に評価して設定する。中性	3設定方法:(附属書FのF.1.3b参照)	③設定方法:(附属書GのG2.2参照)	3 設定方法: (将来の計算に適用する計画)	3設定方法:左記(濃度比法)と同じです。
	子輸送計算コードは,詳細モデルの要	中性子フルエンス率・中性子スペクトルの	<u> 適中性子フルエンス率・中性子スペクトルの炉</u>	<u> 適中性子フルエンス率・中性子スペクトルの炉</u>	
	求レベル及び精度の要求レベルと合われて海田することが高切である。	設定においては、燃料集合体をモデル化	<u>内分布の評価計算</u>	<u>内分布の評価計算</u>	
	例 中性子輸送計算のモンテカルロ法	し、中性子の3次元分布の計算を行った上	1)代表燃料断面について、燃焼度及び出力密度	左記(濃度比法)と同じです。	
	などは,原子炉の中性子の詳細条	で、評価位置を保守的に選んで設定する考	の条件を、それぞれサイクル中期の炉心平均		
	件及び評価対象範囲に設置されて		燃焼度、及び定格出力密度として、チャンネ	ただし、下記の点が異なります。	
	いる構造物なとの条件への適合が 亜求される提合にも、 構造物など	設定方法としては、3次元核然水力解析に トス牌料体の出力八左及びギノビ索八左	ルホックス設直位直の中性ナノルエンス率・	 「自理指標でめる燃料集合体の「平均燃焼 ・	
	の条件に合わせることが可能であ	よる然料準の山力力相及びかイトギカ相 を計算し これをむとに MCND による由	中住すべくシドルを昇山しまり。 9)代表に心の3次元核執水力解析によって「に	度」の速たした代表7点(10、20、30、 40 45 50 55 CWVd4)ごとに 「「広の	
	3.	2 前昇し、こ402 りとに MONI による十 性子分布の計算を実施し、サイクルジレの	の経方向位置に応じた軸方向出力分布 ボイ	40、45、50、55 GW000 ことに、かりかう チャンネルボックス評価位置に広じた軸	
	なお、具体的な中性子条件の設定方法は、点	保守的位置における中性子フルエンス率・	ド率分布を算出します。	方向出力分布、ボイド率分布を踏まえて、	
	推定法は附属書 Fの F.1.3 を参照、区間推定	中性子スペクトルを設定しました。	3)2)で求めた軸方向出力分布、ボイド率分布を	軸方向位置における中性子フルエンス	
	法は附属書GのG.2を参照。	設定の判断方法は、燃料集合体をモデル化	利用し、1)の値をボイド率で内挿、出力密度	率・中性子スペクトルを計算して設定し	
		した MCNP の計算結果において、中性子	補正を行い、炉心中央部及び最外周部におけ	ます。	
		フルエンス率が最大となる位置で設定す	るチャンネルボックス評価位置の中性子フ	2) 径方向は、中性子フルエンス率が最大と	
		ることであり、その根拠は、中性子スペク	ルエンス率・中性子スペクトルを計算しま	なる炉心中央部及び中性子スペクトルが	
		トルが大きく変化しなければ、中性子フル	す。	最も硬くなる炉心部(コントロールセル	
		エンス率が最大な位置において最大の放	また、附属書1の1.2.2.2.1a)に示すように、	位置:連転中の制御棒挿人位置)をそれぞ	
		射肥か生成されると考えられるためです。 	中性ナイヘクトルか大さく変化する制御棒 振み位置。 信むめについてき 中地でフォーン	れ日本可的に週用しよす。	
			1甲八匹匹、ゲルツトレーン・くも中性ナノルエノ ス家・山松子スペクトルた計算します		
			ハー・ロエンハンロアで可昇しより。		
			上記の手順によって、原子炉内の CB が設置さ		
			れる全評価位置における中性子フルエンス率・		
			中性子スペクトルが決まります。		

+B				区間推定法	
規定	説明して欲しい内谷	二	濃度比法	換算係数法	濃度分布評価法
			 <u> </u> 	<u> し 中 性 子 フ ル エ ン ス 率 ・ 中 性 子 ス ペ ク ト ル の 選</u>	
			定 1)6.1.2.4 照射条件の手順によって選択した「照 射時間」を踏まえ CB の恒内のローテーシ	定 左記(濃度比法)と同じです。	
			ョンパターン (表) をランダムサンプリング	ただし、下記の点が異なります。	
			によって選択し、軸方向、径方向の評価位置	1) 選定した管理指標である燃料集合体の「平	
			をランダムサンプリングによって決定する	均燃焼度」の代表7点(10、20、30、40、	
			ことで、CB が設置される位置条件を網羅し	45、50、55 GWd/t) ごとに、@で評価した	
			7.評価位直の速正が出来ることになります。 (以更計質同数分を実施)	中性ナノルエンス率・中性ナスヘクトルの 分布上り 選択・決定します	
			2) ③の炉内分布の評価計算で評価した中性子	(必要計算回数分を実施)	
			フルエンス率・中性子スペクトルの分布よ		
			り、1)で選択した評価位置のローテーション		
			ごとの中性子フルエンス率・中性子スペクト		
			ルを選択・決定しよす。(必要計算回数分を美 協)		
b)放射化断面積	① 2つの方法のうちいずれの方法で放	①選択した方法:右記(濃度比法)と同じ。	① 選択した方法: 放射化計算コードに「内蔵さ	①選択した方法:左記(濃度比法)と同じです。	①選択した方法:左記(濃度比法)と同じです。
	射化断面積を作成したのか		れている放射化断面積ライブラリ」を使用しま		
	 その方法を選んだ理由 		to ODICIENIC OT SALVA STAT		
			なわ、ORIGEN'S のペイクトルインケックス を用いて内蔵放射化断面積ライブラリを補正		
	標準の規定内容(6.1.2.3 b))		します。		
	次のいずれかの方法で設定する。	②選択理由: 右記(濃度比法)と同じ。	②選択理由: ORIGEN-S に「内蔵されている	②選択理由:左記(濃度比法)と同じです。	②選択理由:左記(濃度比法)と同じです。
	は附属されている放射化断面積ライ		放射化断面積ライブラリ」を用いた放射化計算		
	ブラリから選択する。このとき、最新		子炉の廃止措置に使用された実績があること		
	の計昇コート及び放射化断阻槓フ1 ブラリを確認する。		が、内蔵放射化断面積ライブラリを選択した理		
	- 中性子フルエンス率の評価結果から,		由です。		
	放射化範囲の中性子スペクトルの特件を考慮して放射化断面積を設定す				
	3.				
6.1.2.4 照射条件	a)とb)のいずれを選定したか	(1-a 選定した方法: 個別に照射履歴を設 字ナス 古法」 な翌字 ます (図 F2 参照)	①-a 選定した方法: 代表照射履歴(照射時間)	①-a 選定した方法: 「代表照射履歴 (燃焼度)」	①-a 選定した方法: 左記 (濃度比法) と同じで オ
	(1) その方法を選んだ理由	上りる力伝」を選定しまり。(因F.3 参照)	そしたりる力伝」を選定しまり。 具体的には、収集したCBの照射時間データ(平	した CB が装荷される 9×9 燃料の燃焼集合体	9.0
	(2) 各方法において、照射条件を設定する		均及び標準偏差)から、附属書Iに示す入力条	の許認可上の最高燃焼度 55GWd/t から、範囲	
	場合の週切性を判断する理由(判断力		件用の照射時間分布を設定し、設定した照射時	を0~55GWd/tと設定します。また、燃焼度に	
) 法) は、回様に保守性を判断できる理 		間の分布からランダムサンプリングします。	対する代表ポイントは10,20,30,40,45,	
				b0, bbGWdt の7点を設定しよ9。	
	 標準の規定内容 (6124)	①- b選定理由 : 評価対象とした CB(保	①- b選定理由: 評価対象とする CB 全体の照	①-b選定理由:換算係数法の管理指標として	①- b選定理由: 左記(濃度比法)と同じです。
	a) 個別に照射履歴を設定する方法 放	守的に最大値を示すと考えられる CB 注)	射条件を網羅した設定とするために、実際の	燃料集合体平均燃焼度(中性子フルエンス率と	
	射化金属等ごとに、中性子の照射履歴	自体の甲性子熊射日数及び甲性子熊射停	UBの照射時間の分布(半均及び標準偏差)か に評価することで、仕主昭計層既に上てせいけい	照射期間の積に比例する) を用いることで、径	
	に基づさ、週切又は保守的に代表する 照射条件を設定する。	ニロ威を運転リインルことに分えられる	計算用の入力条件とできることが理由です。	射期間を考慮できることが理由です。	

相定 説明して効しい内容			区間推定法		
規定	記明して欲しい内谷	「「「「」」「「」」「」「」」「」」「」」「」」「」」「」」「」」「」」「」」	濃度比法	換算係数法	濃度分布評価法
	b) 代表照射履歴を設定する方法 中性 子の照射履歴に基づき,放射化金属等 のグループを適切又は保守的に代表 する照射条件を設定する。 なお,換算係数法,濃度比法及び濃度 分布評価法によって決定する場合は, 複数の放射化金属等を適切に代表す る照射条件の範囲又は分布を設定し てもよい。	 ②-a 設定の妥当性: 評価対象とした CB (保守的に最大値を示すと考えられる CB ^注)の個別の詳細な照射記録を適用することで、適切性、妥当性を確保できることが理由です。 注:照射時間が長く、中性子フルエンス率も高いCB 	 ②-a 設定の妥当性: 代表照射分布(平均1,786日、標準偏差=654日)は、約13,000体のCBの照射時間の実態調査結果を踏まえることで、照射分布の適切性、妥当性を確保できることが理由です。(表I.14参照) ②-b 放射化計算の入力用の設定方法: 上記のCBの照射時間の実態調査結果から設定した代表照射分布から、ランダムサンプリングすることによって、照射時間を必要回数設定します。 	 ②-a 設定の妥当性: 燃焼度の評価範囲を 0 GWd/t から 9×9 燃料の最大燃焼度の 55 GWd/t に設定しています。その間の燃焼度の換 算係数は内挿で求めます。 さらに、大半の 9×9 燃料の取出し燃焼度は、 40~55 GWd/t の範囲であるため、この区間は 5 GWd/t刻みと内挿評価の補間性を高めることで、燃焼度設定値の適切性、妥当性を確保できることが理由です。 	 ②-a 設定の妥当性: 左記 (濃度比法) と同じで す。 ③-b 放射化計算の入力用の設定方法: 度比法) と同じです。
6.1.3 放射化計算	① なぜ、その放射化計算方法を選んだの	選択した方法: 右記(濃度比法)と同じで	選択した方法:ORIGEN-S	選択した方法: 左記(濃度比法)と同じです。	選択した方法: 左記(濃度比法)と同じです。
6.1.3.1 放射化計算方 法	か 標準の規定内容 6.1.3.1 放射化計算方法 放射化計算を行うに当たっては,適切 な放射化計算方法を選定し,計算範囲の 中性子条件の特徴を考慮し,使用する。	す。 ① 選択理由: 右記 (濃度比法) と同じです。	①選択理由: 添付4 (標準には示されていません) に示す計算方法の妥当性、及び中性子フル エンス率・中性子スペクトルの違いを放射化計 算に反映するためです。 ORIGEN-S は、スペクトルインデックスを設 定することによって、中性子スペクトルの違い を放射化計算に反映可能です。	① 選択理由: 左記(濃度比法)と同じです。	①選択理由:左記(濃度比法)と同じです。
6.1.3.2 計算用入力条 件の設定	放射化計算の入力パラメータ及び条件 区間推定法の場合、入力パラメータ及び条件をランダムに抽出するか又は 適切な代表条件を設定するかどちら 	 ①選択した方法: 「適切な代表条件*」で設定する方法 ※ここでは、評価対象 CB(保守的に最大値を示すと考えられる CB^注)の評価対象位置の条件です。 	 ①選択した方法: 「ランダムに抽出する**」方法 (附属書 I 参照) ※放射化計算の入力パラメータ及び条件をラ ンダムに抽出します。 	①選択した方法:左記(濃度比法)と同じです。	① 選択した方法: 左記 (濃度比法) と同じです。
	か ② その方法を選んだ理由 標準の規定内容 6.1.3.2 計算用入力条件の設定 6.1.2 を踏まえ、適用する理論計算法	 ②選択理由: 特定の評価対象 CB (保守的に最大値を示すと考えられる CB ^注)及び評価対象位置を設定するためです。 注:照射時間が長く、照射条件である中性 	②選択理由:評価対象物の条件範囲を網羅した無作為な評価を行うために、入力条件を設定した分布などからランダムサンプリングで行う必要があるためです。	②選択理由: 左記(濃度比法)と同じです。 ただし、燃焼度ごとに行います。	② 選択理由: 左記(濃度比法)と同じです。
	 (点推定法又は区間推定法)ごとに必要となる、次の放射化計算の入力パラメータ及び条件を、評価対象とする放射化金属等ごとに設定する。 一元素成分条件 一中性子条件 一照射条件 なお、区間推定法を適用する場合は、 各入力パラメータ及び条件について、 6.1.2 で評価した入力条件の分布又は範囲から、ランダムに抽出して放射化計算の入力データとして設定するか、又は、適切な代表的条件を放射化計算の入力 	子フルエンス率も高いCB	補足:放射化計算の実施と濃度比の評価: 設定 した計算用入力条件を使用した必要数の放射 化計算を行った結果(Key核種と評価対象核種 の放射能濃度)を使用して、適用する評価対象 核種に対する濃度比(最大放射能濃度を評価す る場合は算術平均値を適用)を決定します。	# 祖 : 放射化計算の実施と換算係数の評価 : 管理指標である燃料集合体燃焼度ごとに、設定した計算用入力条件を使用した必要数の放射化計算を行った結果(燃焼度と放射能濃度との比である換算係数の分布)を使用して、適用する換算係数を決定します。	補足:放射化計算の実施(濃度分布の評価): 設定した計算用入力条件を使用して行った必要数の放射化計算の結果を使用して、適用する 評価対象核種に関する放射能濃度の分布を決定します。

4-5				区間推定法
規定	記明して欲しい内容	点推定法	濃度比法	換算係数法
6.1.3.3 放射化計算の 計算数の設定 6.1.3.3.1 点推定法	 ① 必要計算数 ② その数で妥当とした理由 標準の規定内容 6.1.3.3 放射化計算の計算数の設定 6.1.3.3.1 点推定法 必要計算数は、評価対象とする放射化 金属等の大きさ及び中性子フルエンス 率の差異(例1参照)、評価対象とする 放射化金属等の部位の特徴(例2参照) 	 1点です。 ①その数で十分と判断した理由: 点推定法で、最大放射能濃度を評価する場合は、CBの最大濃度の位置での保守性(元素濃度、照射時間に最大値、又は信頼上限値を適用する)を含む計算でCB全体を評価するためです。 		
61332 区間堆定	などを考慮して決定する。 ① 宇施した計算数	_	① 計算数・ 附届書 [バ云] ます計算例でけ 40	①計算数・ 今後宝施1 ます
法	 ② その数で十分と判断した理由 標準の規定内容 (6122 放射化計算の計算数の部字) 		<u>したです。</u> 点です。	 ○ 町 2+5X・ 前述しました各集合体平均燃焼度7点 30,40,45,50,55 GWdt)に対し (濃度比法)と同じ、各々40点を計算 280点を想定しています。
	0.1.3.3 成別化計算の計算数の設定 6.1.3.3.2 区間推定法 実施した放射化計算結果の数が、放射 能濃度決定のための評価データとして 十分かについては、放射化計算を行った 数とその放射化計算結果とが示す統計 値の安定性の推移を踏まえて判断する。		②その数で十分と判断した理由: 必要計算数は 核種間の相関関係に依存するため、核種ごとに 必要計算回数は異なります。 例として附属書 I に例示しました Nb-94 の場 合は Co-60 との相関係数 0.83 であり、計算数 としては、30 点で充分と考えますが、他の核種 も含めた統一した評価例を示すため 40 点とし ています。 (注:計算数の充足性の判断に関しては、添付 5 (標準に示しておりません) に示しました第3 回会合における日本原子力学会への説明依頼 事項に対する回答の回答 13(4)を参照ください。)	②その数で十分と判断した理由: 今後 す。 各燃焼度において濃度比法と同様に、 放射能濃度と燃焼度との比で求めら 係数の分布(または放射能濃度の分布 正規分布と見なせることに関して、約 用いて分布の安定性(平均値、信頼上) を評価し、充足性を評価します。
6.1.4 表面汚染の取扱 い	 表面汚染を除染したか 除染した場合、除染が十分と判断した 根拠 除染しない場合、表面に付着した放射 性物質の放射能濃度の評価結果 理論計算法で決定した放射能濃度に 加えなかった場合、その理由 標準の規定内容 6.1.4 表面汚染の取扱い 理論計算法の適用において,放射化金属 等の表面に付着した放射性物質を十分 に低減できるよう除染する場合は,表面 の汚染を考慮する必要はない。また,除 染しない場合は,放射化金属等の表面に	右記(濃度比法)と同じです。	標準には示されておりませんが、下記の考え方 です。 (一般的な炉内構造物に関する説明です) ①表面汚染の除染:系統除染程度は実施しま すが、機械的除染の実施は未定です。 ②除染が十分と判断した根拠:除染の判断は、 放射化分と汚染分の濃度の比(除染の効果)だ けでなく、線量評価からの表面汚染分の判断も 必要ですので、現状、標準では汚染分に関する 具体例までを示しておりませんが、下記のよう に考えます。現状、③を基本と考えます。 ③表面汚染分の考慮が必要な場合:表面汚染 分の放射能濃度を評価して、放射化分の放射能 濃度に加えることが基本です。	左記(濃度比法)と同じです。

	濃度分布評価法
7点(10,20, けして、左記 頃した合計	① 計算数: 左記(濃度比法)と同じです。
後実施しま 二、評価した られる換算 かが対策を 上限値など)	②その数で十分と判断した理由: 左記(濃度比法)と同じです。
す。	左記(濃度比法)と同じです。

相定 説明して欲しい内容			区間推定法		
規定	記明して欲しい内容	点推定法	濃度比法	換算係数法	濃度分布評価法
	付着した放射性物質の放射能濃度を評 価し,必要に応じて理論計算法で決定し た放射能濃度に加える。		表面汚染を評価した結果は、標準にはありませんが、母材とクラッド分の比を評価した結果を 解説表3に示しています。		
			 ④表面汚染分の考慮が不要な場合: 除染などによって、表面汚染分の放射能濃度への影響が低いと考えられる場合は、表面汚染分を考慮する必要はないと考えます。 ・埋設処分における汚染分の線量評価への影響が放射化分に比べ小さいと考えられる濃度以下の場合(ただ、現段階において定量的な判断基準を示すことはできません) 		
 6.3.1 理論的方法の妥当性確認 6.3.1.1 妥当性確認の方法 	 放射化計算方法及び計算手順が期待 される結果を与えたか そのように判断した根拠 計算が、恒常的に、正確に実施できる か そのように判断した根拠 そのように判断した根拠 標準の規定内容 6.3.1.1 妥当性確認の方法 妥当性確認は、理論計算法の放射化計 算方法及び計算手順が期待される結果 を与えることを(客観的,文書化された 証拠によって)明示し、計算が恒常的に、 正確に実施できることを確認する。	 ①及び②計算方法・結果: 分析結果-理論 計算結果の比較及び保守性の評価を踏ま え、適用する方法・手順に従うことによっ て、廃棄体の放射能濃度を精度よく又は保 守的に決定することができます。(6.3 の説 明参照) ③恒常的に、正確に実施: 妥当性が確認さ れた計算コードを使用し、計算手順書を定 め、入力条件書を作成した上で手順に従っ て実施し、計算の記録を残すことで、再現 性が得られる評価結果となります。 ④判断した根拠: 第三者によって上記の方 法(検証結果含む)、手順及び入力データが 確認でき、かつ、再評価もできるようにな っているためです。 	左記(点推定法)と同じです。 (左記の分析―計算結果の比較検証及び計算 コード及び入力条件の設定方法の妥当性を確 認する)	点推定法と同じです。	点推定法と同じです。
6.3.1.2 不確かさの扱 い	 不確かさの評価方法と結果 標準の規定内容 6.3.1.2 不確かさの扱い 理論計算法の結果の代表性を定量化 するために,計算の正確さ及び不確かさ を評価する。 	ー (理論計算法の計算結果と分析結果の評 価精度の比較は、添付8を参照くださ い)	①-a 不確かさの評価方法:計算結果である濃度比(平均値)に関しては信頼限界を評価し、組合せる Key 核種濃度(非破壊測定の場合)に関しては、変動係数を評価し、双方を乗じることで、評価した放射能濃度の不確かさの範囲を評価します。	①-a 不確かさの評価方法: 現状、標準では計算 結果である換算係数の不確かさを評価してい ません。 今後、換算係数に関しては信頼限界を評価し、 組合せる管理指標ごとの変動係数等を評価し、 評価した放射能濃度の不確かさの範囲を評価 します。	①-a 不確かさの評価方法:計算結果である放射能濃度分布の平均値及び標準偏差を踏まえ、 信頼限界を評価し、評価した放射能濃度の分布 のもつ不確かさの範囲を評価します。
			①-b 結果の不確かさの試算結果: Nb-94 の場合(算術平均を適用)で、約1.6倍の不確かさを含みます。 (添付6参照:標準にはこの結果は示されていません)	 ①-b 結果の不確かさの試算結果: 現状、標準では計算結果である換算係数の不確かさを評価していません。 今後、上記の最大放射能濃度を算出手順で計算した結果によって不確かさ*を評価します。 ※各燃焼度における放射能濃度と燃焼度との比で計算される換算係数の分布(または、放射能濃度の分布)の計算結果のもつ不確かさに関して、分布の平均値、標準偏差を考慮した信頼区間を踏まえて評価します。 	 ①-b 結果の不確かさの試算結果: Nb-94 の場合で放射能濃度分布は、約1.8倍の不確かさ(上側へのスライドする不確かさ)を有していると考えられます。 (添付7参照:標準には、この結果は示されていません)

坦中	ゴ田レイ効し、中気	占推守汁		区間推定法
规止	説明して欲しい内容		濃度比法	換算係数法
6.5 放射能濃度の評価 における裕度	 ① 最大放射能濃度の算出方法と結果 ② 提示する評価精度値とその根拠 標準の規定内容 6.5 放射能濃度の評価における裕度 理論的方法又は実証的方法による放射能濃度を超えないことを確認する場合、最大放射能濃度を超えないことを確認するため、適切な裕度を考慮する。 標準に示す裕度の設定例 解説 6.5.2 最大放射能濃度を超えないことを確認する方法 (スクリーニングレベルの適用) ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●	 ①最大放射能濃度との比較に用いる推定放射能濃度の算出方法と結果 最大の放射能濃度の評価に適用する場合は、計算条件に保守的条件(入力条件に最大値、又は信頼上限値の適用)を設定します。保守的条件を設定することで、裕度を確保できます。 その最大の「放射能濃度」の評価結果を表1に示します。 	 ①-a 最大放射能度の評価に適用する係数:「算術平均濃度比」を適用します。 ①-b 推定放射能濃度の算出方法と結果:「算術平均濃度比」を適用します。 ①-b 推定放射能濃度の算出方法と結果:「算術平均濃度比」にKey 核種(Co-60)の放射能濃度(非破壊外部測定によって評価した結果、または理論計算によって評価した結果)を乗じることで、評価対象核種の最大の「放射能濃度」を決定します。 これが事業許可申請書等の「最大放射能濃度」を決定します。これが事業許可申請書等の「最大放射能濃度」を設定します。 沈射化計算の結果の範囲*は、10 倍以内に収まっており、濃度比法を適用できる範囲を制限する「スクリーニングレベル」(例えば 1/10)を設定することによって、最大放射能濃度を超えないことの確認が可能です。 ※附属書 I の表 I.21 の計算結果では、最も濃度比の範囲が小さい Cl-36 の場合で最大の濃度比/算術平均濃度比=2.4、最も濃度比の範囲が大きい Sr-90 の場合で最大の濃度比/算術平均濃度比=5.9 その最大の「放射能濃度」の評価結果を表 2 に示します。 	 ①-a 最大放射能濃度との比較に用い 現状、最大の放射能濃度の比較に用い 係数」の算出結果はありません。 今後、上記の最大放射能濃度の算出= て計算した結果にて「換算係数」** す。 ※各燃焼度における放射能濃度と燃 で計算される換算係数の分布(ます 能濃度の分布)を計算した結果を聞 「換算係数」の裕度を評価します。 ①-b 推定放射能濃度の算出方法と結 比較に用いる推定放射能濃度の算出 りません。 今後、上述の最大の放射能濃度の算出 って計算した結果にて評価します。
	(最大の放射能濃度の評価結果の比較)	ト記に最大の放射能濃度の評価結果を示 します。	下記に「標準に示す計 及び最大の	算結果」と「分析結果(これは標準に」)放射能濃度の評価結果(区間推定法の

	濃度分布評価法
いる係数: いる「換算	ー (係数評価は濃度分布評価法では行いません)
Fmgによう を評価しま	
、焼度の比 とは、放射 沓まえて、	
果 : 現状、 は結果はあ	①-b 推定放射能濃度の算出方法と結果:計算 した放射能濃度の結果の最大の「放射能濃度」
出手順によ	(図2 参照)を保守的に適用し、この最大の「放 射能濃度」を決定します。 これが事業許可変更申請書の「最大放射能濃 度」を超えていないことで確認します。
	その「最大放射能濃度」の評価結果を表3に示 します。
け示されてい	いません)」との比較
比較用)を	示します。
. –	

+8 -		⊢ <i>₩</i>		区間推定法
規定	記明して欲しい内谷	二	濃度比法	換算係数法
	最大の放射能濃度の比較の補足説明 標準では評価方法間の評価結果の比較は 行っておりませんが、標準に示していま す濃度比法で行った放射化計算の結果 (附属書 I の表 I.21)を使用すると、右 記のように、各手法間の Nb-94 の最大の 放射能濃度の評価結果は、1.27 倍の範囲 で評価されています。	表1最大の放射能濃度の評価条件と評価結果 Nb-94の最大 計算したNb-94の放射能濃 の放射能濃度 砂の最大 の求め方 ごて、Nb-94の最大の放射 i ごて、Nb-94の最大の放射	表2最大の放射能濃度の評価条件と評価結果 Co-60の最大 計算した結果 ¹⁰ のCo-60の放射能 の放射能濃度 設定方法 Nb-94の ①Co-60放射能濃度と適用 最大の放射能 されたNb-94放射能濃度を使用して、Nb-94放射能濃度を使用して、Nb-94/Co-60濃度比(算術平均)を評価 ②上欄のCo-60放射能濃度(最大値)に、①で求めたNb-94/Co-60濃度比を乗じてNb-94の最大の放射能濃度を評価	ー (現状、最大の放射能濃度の評(評価できておりません。 今後、前述した最大の放射能濃度を 手順に従って計算した結果を示し
	条件の保守性が加えられている評価結果 での比較となっています。 なお、最大の放射能濃度の決定は、標準の 附属書Mに示します「基本的な考え方」 を踏まえて、「保守的な最大値」、「ばらつ きを考慮した濃度比の算術平均値とスク リーニングレベルの組合せ」などによっ て確認できます。(上記の解説図 11)	94 最大の放 射能濃度 注1 附属書Iの表I.21に示す放射化計算の結果 から決定 標準には記載していませんが、濃度比法で 放射能濃度を評価した結果(濃度比法も1 点ごとの計算は点推定法と同じ)の最大値 を保守的に適用すると上記の値となりま す。	94 最大の放 射能濃度 4.9 E+9 Bq/t 注1 附属書 I の表 I.21 に示す放射化計算の結果	
	 標準の附属書の内容 M.3.2 最大放射能濃度を超えないことの確認における評価精度への対応の考え方 a)評価精度の考え方 廃棄体の放射能濃度が最大放射能濃度を超えないことに関する確認においては、M.2 に示した個々の廃棄体に関する放射能濃度評価値のばらつきへの考慮が必要となる。この最大放射濃度を超えないことの確認において要求される評価精度に関する基本的な考え方を、次に示す。 1)点推定法によって個々の廃棄物に対して放射能濃度を決定する方法点指定法では、評価対象廃棄物個々の放射能濃度を詳細に決定するため、最大放射能濃度の確認においても放射能濃度の確認においても放射能濃度の確認においても放射能濃度の確認においても放射能濃度を超えないことを確認することができる。 2)区間推定法によって廃棄物グループを代表する平均的な放射能濃度を超えないことを確認する必要がある。 b)評価精度の提示方法 廃棄物グループを代表する平均的な放射能濃度を意味する方法における廃棄体個々の放射能濃度のばらつきの程度を意味する評価精度は、次のいずれかの方 	②結果の不確かさの試算結果:点推定法での直接的な比較結果は標準には示しておりませんが、保守的な計算結果と真値(分析結果)との裕度は、濃度比法の結果(分析結果と計算結果の比較した図1)から、1桁~2桁程度の保守的評価となっています。	 ②結果の不確かさの試算結果: Nb-94 の場合、約 1.6 倍(算術平均適用の場合)のばらつきを含む(添付6参照:標準には示されていません)。また、図1 (Nb-94 と Co-60 の放射能濃度の計算結果の散布図)のように理論計算による計算結果とCBの代表試料の分析結果の比較によって保守性も把握しています。 注記 Co-60 の最大放射能濃度に濃度比を乗じてNb-94 の最大放射能濃度を評価します。 	 ②結果の不確かさの試算結果: 現状、 度の不確かさ**は評価できていません 例は、平均放射能濃度の算出例を示 す) ※今後、前述した最大放射能濃度を算 順に従って計算した結果によって を評価します。

坦中	説明して効しい内容	占+#f==?+		区間推定法	
	武明して飲しい内谷	点推走 <i>法</i>	濃度比法	換算係数法	濃度分布評価法
	 法などによって提示することが可能である。 1) 推定放射能濃度のばらつきの分布の偏差によって評価精度を提示する。 例 区間推定法によって評価した廃棄物グループの濃度分布などのばらつきの標準偏差から、得られる平均値の信頼区間による提示など。 2) 推定放射能濃度のばらつきの統計的な信頼区間などによって評価精度を提示する。 				

添付1 第1回検討チーム会合 資料 1-1 L1 放射能評価標準に規定されている評価方法の概要及び理論的方法の技術的ポイント

<u>評価対象核種からの起源元素の選定方法の例</u> (材質ZrTN804D、評価対象核種Ni-63の場合の選定例)

本標準で示す評価対象核種の放射化計算の際に必要となる「起源元素」の選定手順の具体例を、ZrTN804Dの評価対象核種 Ni-63を例にした場合の選定手順とその過程における起源源元素の選定結果例を以下に示す。

添付2 第2回検討チーム会合 資料 2-1-3 P33 – 中性子輸送計算コード(例 MCNP)の妥当性-

添付3 第2回検討チーム会合 資料 2-1-3 P34 - 中性子輸送計算コード(例 単位燃料集合体核特性コード)の妥当性-

1. 概要

単位燃料集合体核特性コードは燃料集合体の反応度や出力分布等の核的性質 を解析するコードであり,GEや東芝などメーカーが独自に開発してきた解析コードである。 単位燃料集合体核特性コードを用いる場合は,必要に応じて出力密度及びボイド 率による補正を行う。

2. 機能

単位燃料集合体核特性コードは、遮蔽解析に際して以下の機能を有する。

1)1体の燃料集合体を対象に、中性子の空間的・エネルギー的振舞いを評価する。

2) 単位燃料集合体核特性コードは、二次元の体系を扱うことができる。

3. 解析フロー

単位燃料集合体核特性コードの解析フローを図に示す。

4. 使用実績

単位燃料集合体核特性コードは,原子力施設の炉心設計及び中性子束分布評価に広く用いられており,豊富な実績がある。

5. 検証

コードの導入評価1)が実施されていることを確認。 臨界試験/実機運転実績等による検証1)が実施されていることを確認。

1) (株)東芝, "沸騰水型原子力発電所燃料集合体核特性計算手法", TLR-006Rev.1, 平成20年

添付4 第2回検討チーム会合 資料2-1-3 P13

放射化計算コード(例 ORIGEN-S)の妥当性

1. 概要

ORIGEN-Sコードとは、米国オークリッジ国立研究所にて開発されたORIGENシリーズの一つである。SCALEシステムの一部であり、ORIGEN-79同様3群のスペクトルを使用可能である。

一連のORIGENコードを使用して計算できる内容は、次のとおりである。

- 1) 燃焼計算 燃料の核種組成(重量),照射期間(運転パターン),炉内中性子束あるいは炉の比出 カを入力することによって,各核種の放射能量,中性子やガンマ線発生数,核分裂生成物やアクチノイド 核種の生成量を計算する。
- 2) 放射化計算 評価対象である構造材の材料組成,中性子束,照射履歴を入力することによって,構造 材の放射化放射能量を計算する。
- 3) 崩壊計算 評価対象である材料組成,中性子束,照射履歴を入力することによって,生成,消滅計算から得られる放射性核種の発熱量を計算する。

2. 使用実績

ORIGEN-Sは、炉内構造物の放射化計算,原子炉施設の廃止措置に使用されている。

3. 検証方法

汎用コードの導入評価¹⁾が実施されていることが確認されている。 大型実験/ベンチマーク試験による検証²⁾が実施されていることが確認されている。

- 1) SCALE: A Modular Code System for Performing Standardized Computer Analyses for Licensing Evaluation, ORNL/TM-2005/39, Version 5.1, Vols.I–III,November (2006)
- 2) K.Tanaka et al., "Radioactivity evaluation for Main Steam Line and Suppression Chamber of small type BWR", Progress in Nuclear Science and Technology Volume 4 (2014) pp.836-839

添付5 第3回会合における日本原子力学会への説明依頼事項に対する回答の回答13(4)

標準に記載されている内容ではありませんが、必要計算数の考え方としましては、次の考え方が適用できます。

必要計算数の考え方の例として、IAEA Nuclear Energy Series No. NW-T-1.18 に示されるスケーリングファクタの評価に必要な分析データの充足数に関する 引用文献[1]があり、図 13(4)-4 の評価結果(相関係数 0.8 の場合の 100 点のデータまでの統計値の推移を評価した例)などを踏まえ、理論計算の計算数を増 し続けても、計算結果の信頼性の指標となる統計値(相関係数などの 95% 信頼下限値)の向上率が、図 13(4)-4 のように徐々に低下し、計算数を向上したと してもその効果が得られなくなっていきます。

このように計算数を増やした場合に得られる計算結果の信頼性の向上率が小さくなり、安定した段階が、計算数が充足したと判断できる数量と考えます。 この計算数としての充足性を満たす数量(引用文献ではスケーリングファクタ法における必要データ数)に関して、相関係数ごとに表 13(4)-2 に示されており、このデータ数の充足性を満たす数量の考え方が、同じ統計値(相関関係を踏まえた濃度比)を利用して評価する理論的方法にも適用することが可能です。

図 13(4)-4 The changes in correlation coefficient with the number of samples (相関係数 0.8 の例[1])

耒	₹13(4)-2	Required number of	of data according	e to the correlation	coefficient and base	ed on a 95% confidence l	<i>limit</i> [1]
-	<12(1) <u></u>	Itequal ca mano ci o	j uuuu ueeoi uuiy	s to the contention		<i>a on a > c / c conjucite c</i>	

		Correlation Coefficient							
	0.6	0.7	0.8	0.9	0.95				
Required number of data	40	35	30	25	20				

出典 1 KASHIWAGI M., MÜLLER W., LANTÈS B., "Considerations on the activity concentration determination method for low-level waste packages and nuclide data comparison between different countries", Safety of Radioactive Waste Management (Proc. Int. Conf. Cordoba, 2000), IAEA, Vienna (2000) 175–179.

添付6 区間推定法(濃度比法)における不確かさの評価

評価方法	評価大	法内における不確かさ	さの程度		放射化計算結果以降の評価で生じる ばらつきの評価
濃度比法 (附属書Iの 表 I.21 の結果を使 田1 新たに計算1	 CB グループ内でのばり 不確かさ: Nb-94 での試算例: 	っつきを考慮した入力	算結果の	評価した放射能濃度は、濃度比(算術平均) の評価値と非破壊測定値の不確かさとを加 味すると、評価値は約1.6倍となる可能性が ある	
た結果)	 ・ 非破壊測定結果(Co-60 測定精度:±20%[1] (L1 廃棄体に収納して に近いと仮定されるが、 た) 	<u>算術平均</u> <u>1.2E-4</u> <u>1.3</u> 倍)の不確かさ: いる廃棄物は体積線源 保守性を加え充填固	幾何平均 8.9E-5 1.4 倍 息と想定でき、より均 化体の測定評価結果] 一廃棄体 :を適用し	

参考資料

[1] 酒井ら, 充填固化体の放射能評価について, 原子力バックエンド研究, Vol5, No1(1998)

添付7 区間推定法(濃度分布評価法)における不確かさの評価

評価方法		評価大	方法内における不確かさ		放射化計算結果以降の評価で生じる ばらつきの評価	
濃度分布評価法	•	CB グループ内でのば	っつきを考慮した入力	の計算結	評価した放射能濃度は、放射能濃度分布のば	
(附属書Iの		果の不確かさ:			らつきを加味すると、評価値は分布の平均値	
表 I.21 の結果を使		Nb-94 での試算例 :			の不確かさから濃度分布自体が約1.8倍高い	
用し新たに計算し		各平均濃度及び99%信頼	頓上限との比:			濃度側にスライドする可能性がある。
た結果)			算術平均	幾何平均		
		平均濃度	1.9E+9	1.1E+9		
		99%信頼上限との比	1.4 倍	1.8倍		
					•	

添付8 第1回検討チーム会合 資料 1-1 L1 放射能評価標準に規定されている評価方法の概要及び理論的方法の技術的ポイント P39

検証 放射化計算結果の検証

-本標準における放射化計算結果と分析結果との比較-

本標準では、分析試料を採取した部位の放射能濃度に関する点推定法(区間推定法の個々の計算は点推定法と同じである)による計算結果と分析結果との比較によって、計算方法の妥当性を評価している。

放射化物	BWR チャンネルボックス	PWR 制御棒				
試料採取部位 (評価部位)	は料の無限位置 (チャンネルボックス 中央から採取)	All BH年スパイター All BH和スパイター All BH和スパイター All BH和スパイター All BH和スパイター All BH和スパイター All BH和スパイター All BH和スパイター				
分析結果	Co-60:3.3×10 ¹² Bq/t	Ag-108m : 2.5×10 ¹⁴ Bq/t				
計算結果	Co-60: 3.4×10 ¹² Bq/t	Ag-108m : 2.6×10 ¹⁴ Bq/t				
入力条件	<u>元素成分</u> : 同一ロットの未照射試料の元素分析結果 <u>中性子条件</u> : CB中央部の中性子フルエンス率、 <u>照射条件</u> (中性子照射及び照射停止日数): サイクルごとに与える。	一元素成分: Ag-In-Cd合金のミルシートの平均値 中性子条件: 制御棒先端の中性子フルエンス率、 照射条件(中性子照射及び照射停止日数): サイクルごとに与える。				

【濃度比法に関する評価例の参考】

附属書 F 図 F.3-チャンネルボックスの中性子の照射履歴(概念図)

表 G.3—放射化計算による核種生成の有無の評価例(二次スクリーニング評価)

H - - - NB	起源元素						評価対象核種					単位:Bq
B </td <td>(1次SL^{a)}後)</td> <td>¹⁴C</td> <td>³⁶Cl</td> <td>⁶⁰Co</td> <td>⁶³Ni</td> <td>⁹⁰Sr</td> <td>⁹⁴Nb</td> <td>⁹⁹Tc</td> <td>¹²⁹I</td> <td>¹³⁷Cs</td> <td>²³⁷Np</td> <td>全α</td>	(1次SL ^{a)} 後)	¹⁴ C	³⁶ Cl	⁶⁰ Co	⁶³ Ni	⁹⁰ Sr	⁹⁴ Nb	⁹⁹ Tc	¹²⁹ I	¹³⁷ Cs	²³⁷ Np	全 α
Ib. -	H	_	-	-	_	_	-	-	-	-		_
D C <thc< th=""> C <thc< th=""> <thc< th=""></thc<></thc<></thc<>	He	_	- 1	_		-	-		- 1	-	-	-
Bes -	Li	_	-	-	-	-	-	-	-	-	-	-
B -	Be	_	-	—	_	_	_	_	-	—	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	В	_	-	-	-	-	-	-	-	-	-	-
N 104 + 00 -<	С	1.00 ×10 ⁵	-	-	-		-	-	-	-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	N	1.04×10^{-10}	-	-	-	-	-	-	-	-	-	-
F MA MA<	0	5.51 ×10 ⁵	-	—	—	_	_	-	-	—	-	_
No. 1 (b, v) - <th< td=""><td>F</td><td>3.61 ×10⁻²</td><td>-</td><td>-</td><td>-</td><td>—</td><td>—</td><td>-</td><td>-</td><td>-</td><td>-</td><td>_</td></th<>	F	3.61 ×10 ⁻²	-	-	-	—	—	-	-	-	-	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ne	1.36 ×10 °	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Na	4.91 ×10 ⁻¹	-	-	-	-	-	-	-	-	-	-
All -	Mg	-	_	-	-	_	-	-	_	-	-	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Al	_	-	-	-	_	_	-	-	-	-	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Si	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	P	—	-	_	_	_	—	_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			1.90 ×10	_	_			_	_	_	_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	<u> </u>		3.99×10^{-4}	_	_				_	_	_	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	AI K		$\frac{2.04 \times 10}{4.88 \times 10^{-6}}$	_	_			_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ca		00 ×10	_	_			- -		_	- -	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sc	_	<u> </u>			_	_	_	<u> </u>		_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ti	_						_			_	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	V	_	_	1.13×10^{-0}	_	_	-	-	_	_	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cr	_		4.57 ×10 ³		_	_	-			-	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Mn	-	_	5.97 ×10 ⁷	9.45 ×10 ⁻¹	-	-	-	_	_	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Fe	_	—	2.14 ×10 ⁹	2.34 ×10 ⁴	_	_	_	_	_	_	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Co	-	-	4.87 ×10 12	5.29 ×10 8	-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ni	-	_	4.53 ×10 ¹⁰	1.94 ×10 ¹⁰	-	-	-	—	_	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Cu			4.84 ×10 ⁸	3.04 ×10 ⁹					_		
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Zn			2.01 ×10 ¹	3.07 ×10 ⁵							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ga			-	-			-		-	-	
As -	Ge	-			-	-	-	-			-	-
Se -	As	-	-	-	-	-	-	-	-	-	-	-
br -	Se			-	-			-		-	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Br	-	-	-		-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Kr	_	_	-	_	2.51 ×10 ⁻⁰	_	_	_	_	_	_
so -	KD S-			_		5.14 ×10 ⁻⁵		-		_	-	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sr V			_		3.96 ×10 ⁻⁵				_		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	1 7r					1.34×10^{-1}	- 8.64 \sigma10.0		<u> </u>			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	ZI Nb	<u> </u>	<u> </u>			2.41 ×10 ⁻²	3.04 ×10 °	1.57×10^{-2}	<u> </u>			
No. I.00 Nu I.00 Nu <td>Mo</td> <td></td> <td></td> <td></td> <td></td> <td>1.88 ×10⁻¹</td> <td>1.60×10^{4}</td> <td>5.33 ×10⁻⁵</td> <td></td> <td></td> <td>_</td> <td></td>	Mo					1.88 ×10 ⁻¹	1.60×10^{4}	5.33 ×10 ⁻⁵			_	
Bb -	Ru					-	4.47 ×10 ⁻¹	-				
Pit -	Rh	_	_	_	_	_	-	_	_	_	_	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Pd	_	-	-	_	-	_	-	-	-	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ag	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Cd	—	-	-	-	-	—	-	-	-	-	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	In		-	-	_			-	-	-	-	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sn		-	-	-		-	-	-	-	-	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Sb	—	—	—	—	—	—	—	—	3.25 ×10 ⁻¹	—	—
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Te	-	-	-	-	-	-	-	3.49 ×10 ⁴	3.84 ×10 ⁴	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	I	-	-	-	-	_	_	-	4.80 ×10 ³	6.60 ×10 ⁴	-	_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Xe	-		-	-	-	_	-		1.94 ×10 ⁹	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Cs	-		-	-	-	-	-		6.16 ×10 ⁸	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Ba	-	-	-	-	-	-	-	-	1.71 ×10 ³	-	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	La	-				-	-	_		9.66 ×10 -	_	-
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	Ce	_		_	_	_	_					_
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	PT NJ		<u> </u>		-				<u> </u>			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sm		H			<u> </u>	<u> </u>		H			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	- 5III Fu	_	<u> </u>			_	_	- -	<u> </u>		- -	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gd	_				_	_	- 1			- 1	_
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Th	- 1	i _		i _ 1	- 1	- 1	i _	i _	i _	i _	- 1
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Dv	-	_	_	-	—	_	_	_	_	_	-
Er -	Но	-	-	-	-	-	-	-	-	-	-	-
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Er	_	_	_	_		_	-	_	_	-	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Tm											
Lu -	Yb	_		—	_	_	_	-		—	-	_
Hf -	Lu	-	_	-	-	-	-	-	_	-	-	-
Ta -	Hf	_				-	-	-			-	-
W -	Ta	-		-	-	-	-	-		-	-	-
Re -	W			-	-	_	_	-		-	-	
US -	Re	-	-	-	-	-	-	-	-	-	-	-
II -	<u>Us</u>		-	-	-	-	—	-	-	-	-	-
rt -	lr D											
Au - <td>Pt A</td> <td></td>	Pt A											
IX -	Au			_				-		_	-	
1 二 1	TI TI											
Th - - - 5.77 ×10 ¹⁰ - 1.88 ×10 ⁶ 2.04 ×10 ⁴ 5.77 ×10 ¹⁰ 1.92 ×10 ⁴ 1.10 ×10 ⁵ U - - - 9.35 ×10 ⁹ - 1.27 ×10 ⁶ 8.29 ×10 ³ 2.85 ×10 ¹⁰ 2.41 ×10 ³ 1.22 ×10 ¹¹ 合計 1.04 ×10 ⁹ 6.04 ×10 ⁹ - 1.27 ×10 ⁶ 8.29 ×10 ³ 2.85 ×10 ¹⁰ 2.41 ×10 ³ 1.22 ×10 ¹¹ 合計 1.04 ×10 ⁹ 6.04 ×10 ⁹ 3.68 ×10 ⁶ 8.48 ×10 ⁴ 8.87 ×10 ¹⁰ 2.41 ×10 ³ 1.22 ×10 ¹¹ 注記1 上記は、 - - - - - - ×10 ⁴ 3.68 ×10 ⁶ 6.84 ×10 ⁴ 8.87 ×10 ¹⁰ 1.21 ×10 ⁴ 1.33 ×10 ⁴ 注記2 広射に向 広気に向	Ph		<u> </u>			<u> </u>	<u> </u>		<u> </u>			
U -	Th	-	l _			5.77 ×10 ⁻¹⁰		1.88 ×10 ⁶	2.04 ×10 ⁴	5.77 ×10 ¹⁰	1.92 ×10 ⁴	1.10 ×10 ⁹
合計 1.04 ×10 ¹⁰ 6.04 ×10 ⁸ 4.92 ×10 ¹² 2.30 ×10 ¹⁰ 6.70 ×10 ¹⁰ 3.94 ×10 ⁸ 3.68 ×10 ⁸ 6.84 ×10 ⁴ 8.87 ×10 ¹⁰ 2.16 ×10 ⁴ 1.33 ×10 ¹ 注記1 上記は、一次スクリーニング実施後の元素(安定同位体核種が存在する元素) に対して放射化計算を実施した結果である。 1.33 ×10 ¹¹ 1.33 ×10 ¹¹ 注記2 MR1計算条件は、計算コード: ORIGEN2.0, 断面積ライブラリ: PWR41133, 照射時間: 30y, 中性子フルエンス率: 4.72×10 ¹⁴ cm ⁻² s, 元素量: 各元素とも等量(0.001kg) 2.16 ×10 ⁴¹ 1.33 ×10 ¹¹ 注記3 ORIGEN上の閾値(CutOf)は、3.7Bq (=1.0×10 ¹¹⁰ Ci)とした(ただし, 照射時間60yでの生成量で核種生成の有無を判断)。 3 3 3 3 注記3 バーニングを意味する。	U	_		_	_	9.35 ×10 ⁹		1.27 ×10 ⁶	8.29 ×10 ³	2.85 ×10 ¹⁰	2.41 ×10 ³	1.22 ×10 ¹⁰
 注記は、一次スクリーニング実施後の元素(安定同位体核種が存在する元素)に対して放射化計算を実施した結果である。 注記2 放射化計算条件は、計算コード: ORIGEN2.2, 断面積ライブラリ: PWR41133, 照射時間: 30y, 中性子フルエンス率: 4.72×10⁴ cm²/s, 元素量: 各元素とも等量(0.001kg) 注記3 ORIGEN上の閾値(CutOft)は、3.7Bq(=1.0×10⁻¹⁰ Ci)とした(ただし, 照射時間60yでの生成量で核種生成の有無を判断)。 注^a 1次5Lは、「一次スクリーニングを意味する。 	合計	1.04 ×10 ¹⁰	6.04 ×10 8	4.92 ×10 12	2.30 ×10 ¹⁰	6.70 ×10 ¹⁰	3.94 ×10 8	3.68 ×10 °	6.84 ×10 ⁴	8.87 ×10 ¹⁰	2.16 ×10 ⁴	1.33 ×10 ¹⁰
 注記2 放射化計算条件は、計算コード:ORIGEN2.2、断面積ライブラリ:PWR41J33、照射時間:30y、中性子ブルエンス率:4.72×10¹⁴cm⁻²/s、元素量:各元素とも等量(0.001kg) 注記3 ORIGEN上の閾値(CutO印)は、3.7Bq(=1.0×10⁻¹⁰ Ci)とした(ただし、照射時間60yでの生成量で核種生成の有無を判断)。 注² 1次SLは、「一次スクリーニング"を意味する。 	注記1	上記は,一次	スクリーニング身	尾施後の元素(安	定同位体核種が有	存在する元素) に	対して放射化計算	草を実施した結果	である。			
 注配3 ORIGEN上の閾値(CutOff)は、3.7Bq(=1.0×10⁻¹⁰ Ci)とした(ただし、照射時間60yでの生成量で核種生成の有無を判断)。 注⁰ 1次5Lは、「一次スクリーニング"を意味する。 	注記2	放射化計算条	件は、計算コート	S: ORIGEN2.2,	断面積ライブラリ) : PWR41J33, 月	照射時間:30y,	中性子フルエンス	本: 4.72×10 ¹⁴ cr	m ⁻² /s, 元素量:各	元素とも等量().001kg)
注 ⁽¹⁾ 1次SLは、"一次スタリーニング"を意味する。	注記3	ORIGEN上の開	同値(CutOff)は, 3.	.7Bq (=1.0 $\times 10^{-10}$	Ci)とした(ただし,	照射時間60yでの	シ生成量で核種生	成の有無を判断)。				-
	注 * ³⁾	1次SLは,"一次	、スクリーニング"を	意味する。								

	F					
	スラグとして除去	低沸点による揮発	希ガス	希少元素	還式想想してよる除去	用途が限定される
三次 スカリーニング 対象元素	原料である鉱石に含まれるが, 高炉などで原料を溶解分離し たときのスラグとして大半は 除去。	高炉の温度が2000°C近くとなることを考慮すると、飢渇する可能性が高い(括弧内は沸点)。	岩石・鉱物に微量含まれるが, 希ガスが不純物として金属に 混入する可能性は,低い。	希少性が高く,不純物として金属に混入する可能性は,低い。	高沢における還元性雰囲気によって、精錬超程で除去。 ただし、酸素を吹付けて脱炭する場合もある。	特定の用途に利用する場合だ けに含まれる(括弧内は、利用 される場合の主な用途)。
O ^{a)}	_	_		_	0	_
F	_	_	_	_	_	(フッ素コーティング)
Ne	_	_	0	_	_	_
Ar	_	_	0	_	_	_
Kr	_	_	0	_	_	_
Rb	_	○ (696°C)	_	_	_	(ルビジウム原子時計)
Sr	0	○ (1 639°C)	_	_	_	_
Y	0	_	_	_	_	_
Ru	_	—	—	0	—	(水素化触媒)
Sb	0	○ (1 640°C)	_	_	_	_
Te	0	○ (1 390°C)	_	_	_	_
Ι	_	_	_	_	_	(抗菌処理)
Xe	_	_	0	_	_	_
Cs	0	○ (760°C)	_	_	_	_
Ba	0	○ (1 537°C)	_	_	_	_
La	0		_		_	
注記 "o"に 注 ^{a)} ZrTN	は, 金属に対する三次スクリー 1804D の元素のうち, O は, 材	ーニングが可能と考えられる対 幾極的強度向上を目的とした	対象元素を示す。 添加が行われているため,評	価対象(三次スクリーニング	の対象外)とした。	

表G.5—三次スクリーニングで除外対象とできる元素例(ZrTN804D, SUS304の場合の例)

<zrtn804d></zrtn804d>											
	分析	データ ^{a)}	文献	、データ ^{b)}	成分管理目標値	推定存在濃度					
元素		平均值		平均值	(質量分率%)	レベル					
	アータ数	(質量分率%)	アータ数	(質量分率%)	(JIS H 4751 ^[3])	(質量分率%)					
С	16 (0)	1.6 ×10 -2	4 (2)	1.0 ×10 -2	\leq 0.027	1.0 ×10 -2					
N	21 (0)	3.2 ×10 -3	10 (1)	3.2 ×10 ⁻³	\leq 0.008	5.0 ×10 -3					
0	5 (0)	1.3 ×10 ⁻¹	5 (0)	1.1 ×10 ⁻¹		1.0 ×10 ⁻¹					
Na	0 (0)	_	0 (0)	_	_	1.0×10^{-0}					
S	0 (0)	_	1 (0)	3.5×10^{-3}		50×10^{-3}					
Cl	0(21)	(50×10^{-4})	$\frac{1}{0}$			5.0×10^{-4}					
K	0 (4)	(10×10^{-4})	0 (0)	_	_	1.0×10^{-4}					
V		(1.0 ×10)	2 (0)	2.4 ×10 -3		1.0×10^{-3}					
Cr		_	18 (0)	1.1×10^{-1}	$0.07 \sim 0.13$	1.0×10^{-1}					
Mn	0 (0)		5 (1)	1.1×10 1.0 × 10 ⁻³	< 0.07 * 0.15	1.0×10 1.0 × 10 -3					
Fe	5 (0)	2 1 ×10 ⁻¹	18 (0)	1.0×10 2.1 ×10 ⁻¹	$0.18 \sim 0.24$	1.0×10 1.0 × 10 ⁻¹					
	<u> </u>	(76×10^{-4})	18 (0) 5 (0)	2.1×10	< 0.002	1.0×10					
Ni	$\frac{0(21)}{11(10)}$	(7.0×10^{-3})	$\frac{3(0)}{3(1)}$	$\frac{4.7 \times 10}{3.5 \times 10^{-3}}$	≤ 0.002 < 0.007	5.0×10^{-3}					
	0 (0)	4.2 ×10	3 (1)	3.3×10	≤ 0.007 < 0.005	1.0×10^{-3}					
	0(0)	_	<u> </u>	-		1.0×10 1.0 × 10 ⁻²					
7r	16 (0)	<u> </u>	1 (0)	0.8 ×10.1		1.0×10^{-1}					
Nh	0(21)	(30×10^{-3})	1 (0)	$\frac{9.8 \times 10}{1.2 \times 10^{-2}}$	7次回り < 0.010	5.0×10^{-3}					
Mo	0 (21)	(3.5×10^{-4})	1 (0)	1.2×10^{-3}	< 0.010 < 0.005	1.0×10^{-3}					
Th	0(21)	(10×10^{-5})	1(1)	2.0 ×10		1.0×10 1.0 × 10 -5					
II	1 (20)	(1.0×10^{-5})	2 (0)	3.5 ×10 -5	< 3 5E 04	1.0×10 5.0 × 10 -5					
0	1 (20)	(0.1 ×10)	2 (0)	119204	∃ 5.5L-04	5.0 ×10					
)	3	US304							
	分析	データー	文南	<u>、データ[®]</u>	成分管埋目標値	推定存在濃度					
兀素	データ数	平均值	データ数	平均值	(質量分率%)	レベル					
	21.(0)	(員重万平%)	12 (2)	(員里万平%)	(JIS G 4305 ⁽³⁾)	(員里)(平心)					
C	21 (0)	4.9×10^{-2}	13 (3)	5.9 ×10 -2	≦ 0.08	5.0×10^{-2}					
N	21 (0)	4.6 ×10 -2	5 (0)	6.9 ×10 -2		5.0×10^{-2}					
Na	0 (0)	-	1 (0)	9.7 ×10 4	-	1.0×10^{-3}					
<u> </u>	9 (0)	3.9×10^{-9}	11 (3)	1.6 ×10 -2	≥ 0.03	1.0 ×10 -2					
	0 (9)	(7.3×10^{-1})	1 (0)	7.0×10^{-9}	—	1.0×10^{-5}					
<u> </u>	0 (4)	(1.0 ×10 ·)	0(1)	(3.0×10^{-7})	_	1.0×10					
V C	0 (0)		1 (0)	4.6 ×10 -	— 18.00 20 .00	5.0×10^{-2}					
Ur Ma	9 (0)	1.8×10^{-1}	18 (0)	1.9×10^{-1}	$18.00 \sim 20.00$	2.0×10^{-1}					
Nin E-	9 (0)	1.5 ×10 °	11 (5)	1.3 ×10 °	≥ 2.00	1.0 ×10 °					
Fe C	9(0)	7.2 ×10 ·	4 (0)	7.0 ×10 ·	_	7.0 ×10 ·					
C0 Ni	21 (0)	1.2 ×10 ·	<u> </u>	7.7×10^{-2}		1.0×10^{-1}					
IN1 C:-	21 (0)	0./ ×10 °	18 (0)	7.4 ×10 °	0.00 ~ 10.50	1.0 ×10 *					
	0 (0)	—	5 (U) 1 (D)	1.8×10^{-1}	—	1.0×10^{-1}					
<u>کاا</u> 7۰	5 (7)		1 (0)	4.0×10^{-1}	_	5.0×10^{-1}					
LI Nh	J (7)	2.0×10^{-2}	1 (U) 2 (D)	1.0×10^{-2}	_	1.0×10^{-2}					
Mo	15 (0)	2.0×10 1.6 $\times 10^{-1}$	2 (0) 5 (0)	9.3 ×10 -1	_	1.0×10 1 0 \sigma 10 -1					
1VIO Th	15 (0)	(50×10^{-7})	J (0)	(10×10^{-4})	_	1.0×10^{-7}					
II	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
 注記1	注記1 上記は、分析データ及び文献データの平均値から、各元素の推定存在濃度(オーダー)を評価した結果である。										
注記2 データ数は、検出値のデータ数と、その横に括弧書きで検出限界以下のデータ数も合わせて記載した。											
注記3 平均値は、検出データの平均値を記載した。ただし、検出限界データしか存在しない元素は、括弧書きで検出限界											
rate prof C	データの平均値を記載した(ZrTN804DのUは検出データ+検出限界データの平均値を括弧書き										
	で記載した)。										
注記4 存在濃度レベルの推定が困難な元素(ZrTN804DのNa, Zn)は,地殻存在割合 ^[29] を利用して推定存在濃度レベル											
	・ロール版を、パーショルルをの回知をありが、というひかいな、というは、ショルロ・コロロー、とやりのしていまたでは一般スレーシャー を評価した。										
注 ^{a)}	分析データ:放射	化計算条件を設定する	ために事業者が評	価対象廃棄物(材料)中	コの元素分析を実施した結果[2]						
b)	文献データ:一般	公開文献情報 ^{[5]~[28]}									

表 G.6—起源元素の推定存在濃度レベル例(オーダー)

表 I.3-各元素の元素分析データ収集結果 (ZrTN804D)

**#王禄分6 ボウ道 標準 (賞参考%)、「半時 3.1×10 ³ 3.7× -2.5)(0.0 (.3×10 ⁴) 1.4× -0.9)(0.0 5.0×10 ⁴) -3.3) 1.0×10 ⁴) -2.5) -2.5 (0.0 -0	正規会会 正規会 第三 平均値 10 ² 32 ×10 ³ 10 ³ 32 ×10 ³ 10 ⁴ 13 ×10 ³ - - - (50 ×10 ⁴) - (10 ×10 ⁴)	(実数) 標準優差 5.2 ×10 ⁻⁴ ネ7 ×10 ⁻⁴ -		分年 最大値 (質量分明46) 4.1 ×(0 ⁻⁴ 1.4 ×(0 ⁻⁴	データ教 10(1) 5(0) 1(0)	対数正 平均値 (管量分平%) 2.8 ×10 ³ (-2.6) 1.1 ×10 ⁴ (-0.9) 3.5 ×10 ³	機分布 標準優差 (平均量+1-0) 4.6、<10 ⁻³ (0.22) 1.3 ×10 ⁻³ (0.05)	正規分布 平均值 (推動分布%) 3.2 ×10 ⁻⁴ 1.1 ×10 ⁻⁶	(実数) 標準優差 2.0 ×10 ⁻⁹ 1.3 ×10 ⁻²	優 最小値 (第章3)早%) 1.4 ×10 ^A 9.5 ×10 ^平	分布 最大值 (常量分平)9 8.0 ~10 ⁻⁴ 1.3 ~10 ⁻⁴	(JISH 4751 ⁰) (営業()第40) (営業()第40)
平功値 標準 (注意) 第40 3.1 × 10 ² 3.7 × -2.5) (0.4 (.3 × 10 ⁴) 1.4 × -0.9) (0.0 	備要 平均値 (名重)(年400 10 ⁴ 8) 32 ≈10 ⁴ 10 ⁴ 8) 32 ≈10 ⁴ 15 ≈10 ⁴ (50 ≈10 ⁴ - (10 ≈10 ⁴)	標準優差 52×10 ⁻⁴ ネ7×10 ⁻⁴ -) -	後小値 (営業分単約) 22×(0 ³ 1.3×(0 ³)	最大值 (質量分明%) 4.1 ×(0 ⁻⁴ 1.4 ×(0 ⁻⁴	データ数 10(1) 5(0)	平均倍 (軍動分平%) 2.8×10 ⁻³ (-2.6) 1.1×10 ⁻⁴ (-0.9) 3.5×10 ⁻⁸	標準優差 (平台編+14) 4.6 ×10 ⁻³ (0.22) 1.3 ×10 ⁻¹ (0.05)	平均值 (資量分率%) 3.2 -10 ⁻⁴ 1.1 -10 ⁻⁶	標準優差 20 ×10 ⁻⁹ 1.3 ×10 ⁻²	最小道 (首集分平40 1.4 ×10 ⁻⁴ 9.5 ×10 ⁻²	最大個 (富重分率59 8.0 ×10 ⁻⁴ 1.3 ×10 ⁻⁴	(賞量()単い) ≤ 0.008 (不純物
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	10 ⁴ 8) 10 ⁴ 10 ⁴ 15 ⁴	52 ×10 ⁻⁴ *7 ×10 ⁻⁴ -) -	22 <10 ³ 13 ×10 ⁴	4.1 ×(0 ⁻⁴ 1.4 ×(0 ⁻⁴	10 (1) 5 (0) 1 (0)	2.8 ×10 ⁻³ (-2.6) 1.1 ×10 ⁻⁴ (-0.9) 3.5 ×10 ⁻⁸	4.6 <10.3 (0.22) 1.3 <10.1 (0.05)	3.2 ×10 ⁴	2.0 ×10 ⁴ 1.3 ×10 ⁴	1.4 ×10 * 9.5 ×10 *	8.0 -10 ⁻⁸ 1.3 -10 ⁻⁴	5 0.008 (不純精 -
13 ×10 ⁴ 14 + -09) (04 - 50 ×10 ⁴) -33) 10 ×10 ⁴) -40) 21 ×10 ⁵ 22 ×	10 ⁴ 1 3 ±10 ⁴ - (50 ±10 ⁴) - (10 ±10 ⁴)	\$7 ×10 ⁴ -) -	13 v(04 -	(.4 ×(0.4	5 (0)	1.1 ×10.4 (-0.9) 3.5 ×10.4	13 ×10 ⁻¹ (0.05)	1.1 +10 4	1.3 ×10 °	9,5 ×10 *	1.3 +10 4	1.2
5.0 × 10 *) -3.3) 1.0 × 10 *) -4.0) 2.1 × 10 * 22 ×	- (50 ×10 ⁻¹ - (10 ×10 ⁻¹	-	-	14-11	1 (0)	3.5 -10 *						
5.0 × 10 ⁻⁴) -3.3) 1.0 × 10 ⁻⁴) -4.0) 2.1 × 10 ⁻⁸ 2.2 ×	- (50 +10 ⁻¹ - (10 +10 ⁻¹)	and south			(-25)	1.7	3.5 +10 *	1	-	2	2
1.0 ×10 ⁴) -40) 2.1 ×10 ⁴ 2.2 ×	(L0 +10 ⁻⁹		1 20 10 1	(50 -10 4)	0.(0)	-	+		1	-	-	
2.1 ×10 * 2.2 ×) — · · · ·	(1.0 +10.4)	(10 +10 4)	0.(0)	-	-	+	-	1.21	\sim	1.9
47) (0.0	2.1 +10.5	5.5 ki0.ª	2.1 +10 *	22 -10-1	18 (0)	21 +10 4	2.2 ×10 ⁻⁴ (0.03)	2.1 +10 4	13 318-2	18 -10 1	2.4 + (0.4	0.18 ~ 0.24
3.3 ×10 ⁻⁴)	(7.6 +10 4)	(1.0 ×10 ×)	(1.0 -10.4)	5 (0)	2.8 -10 *	9.0 (10.4	4.7 +10 4	4.8 +10 4	1.1 310.4	1.0 -10 4	≤ 0.002 (不解物
4.2 ×10 4.5 ×	42 ×10.4	3.4 ×10 *	3.5 +10.0	4.8 ×10.4	3 (1)	3.2 -10 "	5.1 ×10 [*] (0.20)	3.5 =10.4	1.5 ×10.0	2.0 +10-8	5.0 ×10.4	S 0.007 (不純物
- 1 i e	er Den	1.01		4.1	3 (0)	1.6 -10 *	2.4 -10 *	1.7 -10.4	5.8 ×10.4	1.0 +10 *	2.0 ×10.4	S 0.005 (不純物
9.8 ×10 ¹ -	9.8 +101	-	9.8 +101	9.8 -101	1 (0)	9.8 -10"	-	9.8 +101	-	+	÷.	機部
2.9 ×10 *) -2.5)	- (3.9 ×10.4	- 1	(50 +10+)	(30 ×104)	1 (0)	1.2 ×10 * (-L9)	1.0	1.2 +10 4	-		-	S 0.010 (不純物
3.3 ×10 *)	(7.6 +10 *	-	(1.0 =10.*)	(1.0 ×10.4)	1(0)	2.0 +10 *	-	2.0 +10.4	-	-	+	S 0.005 (不純物
1.0 ×10 ⁻⁴) -50)	C 1.0 ×10.4	- ((1.0 =10.8)	(10 +10 -)	0 (0)	-	-	-	1		+-	÷
2.0 ×10 4 -3.7	(8.1 -10 *	-	- 14	+	2 (0)	32 -104	. ÷.	3.5 +10.4	-	2.0 +10 *	5.0 ×10 ⁻⁵	S 3.5E-04 (不純物
2.9 3.3 1.0 2.0 、元明 数/过, 【標準数/2	20) ×10 ⁴) 2.5) ×10 ⁴) 3.5) ×10 ⁴) 5.0) ×10 ⁴) 3.7) 第四十一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一一	- 9.8 × 10 ¹ ×10 ⁺¹ - (3.9 × 10 ⁴) ×10 ⁺¹ - (3.9 × 10 ⁴) ×10 ⁺¹ - (3.9 × 10 ⁴) ×10 ⁺¹ - (7.6 × 10 ⁴) ×10 ⁺¹ - (1.0 × 10 ⁻⁹) ×10 ⁺¹ - (8.1 × 10 ⁻⁹) 第0 ⁺¹ - (8.1 × 10 ⁻⁹) - - (8.1 × 10 ⁻⁹)	- 98×10 ¹ - ×10 ⁺¹) - (39×10 ⁻¹) - ×10 ⁺¹) - (39×10 ⁻¹) - ×10 ⁺¹) - (76×10 ⁻¹) - ×10 ⁺¹) - (76×10 ⁻¹) - ×10 ⁺¹) - (10×10 ⁻³) - ×10 ⁺¹ - (81×10 ⁻³) - 第7 - (81×10 ⁻³) - 第0 ⁺¹ - (81×10 ⁻³) - 第0 ⁺¹ - (81×10 ⁻³) - 第6 ⁺¹ - (81×10 ⁻³) - 第1 ⁺¹ - (81×10 ⁻³) - 第2 ⁺¹ - (81×10 ⁻³) - 第1 ⁺¹ - (81×10 ⁻³) - 第2 ⁺¹ - (81×10 ⁻³) - 10 ⁺¹ - (81×10 ⁻³)	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

表 I.9-ZrTN804D の各元素の濃度分布条件設定結果

	1.	濃度分布の設定	The second second		1.0			度分布条件の取り	白結果			
元素	12.54	濃度分布法	善本形状	1	収集デ	-9	対数正	规分布	正規	分布	一樣	汾布
	管理条件	遵択	設定	分析	文献	データ数	平均值 (質量分率%)	標準偏差 (平均)+1c)	平均值 (實量分單%)	標準備差	最小信 (質量分率%)	最大值 (質量分年%)
N	不純物成分	対数正规分布		0	Ň	比較的少	3.2 ×10 ⁻³ (-2.5)	5.0 ×10 ⁻³ (0.2)	1.2	1	÷.	1180
0	微量成分	対数正規分布	-	Q	-	比較的少	1.6 ×10 ⁻¹ (-0.8)	2.0 -10 -1	11.251	-	$\mathbb{C} \in \mathbb{C}$	1.0
s	微量成分	対数正規分布			0	非常に少	4.0 ×10 ⁻¹ (-2.4)	13 -10 4	$1 \sim 1$		1997	1.5
С	微量成分	対数正规分布		O	5	ND值だけ	2.0 ×10 ⁻⁴ (-3.7)	3.2 ×10 ⁻⁴ (0.2)	11+-1	-	14.1	-
ĸ	微量成分	対数正規分布	-	Q	-	ND値だけ	4.0 ×10 ⁻⁴ (-4.4)	6.3 ×10 ⁻⁶		1	2	1.5
Fe	主成分	一樣分布		0	-	比較的少	(s Herri	1.5			0.18	0.24
Co	不純物成分	対数正規分布		Q	-	ND信だけ	4.0 ×10 ⁻⁴ (-3.4)	63×10 ⁻⁴ (0.2)		1	-	
Ni	不純物成分	対数正規分布	正規分布	0	-	比較的少		~	5 ×10 ª	7 ×10 **	X	1.7
Cu	不純物成分	対截正規分布	正规分布	-	0	比較的少	1.141	1.501	2 ×10 -3	6 ×10 ⁻⁴	1.401	1.000
Zr	主成分	一联分布	-	0		比較的少	1.200		121		98	100
ΝЪ	不純物成分	対数正规分布		Q	1	ND信だけ	2.0 ×10 ⁻¹ (-2.7)	3.2 ×10 ⁻³	1.17	1		-
Mo	不純物成分	対数正规分布	-	0	-	ND価だけ	4.0 ×10 ⁻⁴	6.3 ×10 ⁻⁴ (0.2)		1000	T.	1-1-1
Th	微量成分	対数正规分布	-	0	-	ND値だけ	4.0 ×10 ⁻⁴ (-5.4)	63 ×10 *	1	-		1.5
U	不純物成分	対数正规分布	-	Q	~	非常に少	2.5 ×10 ⁻⁴	7.9 ×10 ⁻⁴	1.28	-	1	-

●原田で確認のや他にしななどであったがに示。 注意を対象に成分もの場所運動を見、学知道「無得感差(Int で表示した。また、対象に成分もの搭誤書を(下段)には、学知識と標準運動をしたの目の対象表示値を示した。 注意4 年均額及び場準運動に、有効要求3桁目(たた)、対象正規分をの場合は、対象額の有效素字3桁目)を切り上げて設定した。

運転サ	イクル数 ^{a)}		ᄬᅖᄮᇔᇓᇰᇓᇰᄷᄱ								
11.715.314/.	中性子照射 出現頻度分布		配直位直の設定条件								
サイクル安文	時間		(ローアーションの種類の)								
1	2 年未満	固 定 ^{b)}	A : 中央								
2	2年以上,	配置ローテーションの	B :中央→中央								
	3年未満	種類の一様分布の	C :中央→近傍								
3	3年以上,	配置ローテーションの	D : 中央→中央→中央								
	4 年未満	種類の一様分布の	E :中央→近傍→中央								
4	4 年以上,	配置ローテーションの	F :中央→中央→中央→中央								
	5 年未満	種類の一様分布 ^{。)}	G :中央→中央→近傍→中央								
			H :中央→中央→中央→最外								
			Ⅰ :中央→中央→最外→最外								
			J :中央→近傍→最外→最外								
5	5年以上	配置ローテーションの	K :中央→中央→中央→中央→最外								
		種類の一様分布の	L :中央→中央→中央→最外→最外								
			M:中央→中央→近傍→最外→最外								
注 ^{a)} 中性	上子照射時間に応	こじて運転サイクル数を設定。									
^{b)} 中性	上子照射時間2年	∈未満の場合は,配置位置のロ−	-テーションは、行わず、原子炉の中央部で継								
続的	に照射される。										
c) 範囲	目を評価すること	:が重要であり,代表的な配置位	2置のローテーションを種類ごとに同じように								
選択するとした。											
ッ 原子	 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・										
の組	1百せ)。 ト・国子后内の「	1日初 長め、原乙に内の長め「	国初二近傍・判測集近傍位署 な音吐去で								
(中) (中)	て、原丁沢内の5	Г大пр, 取21.加丁ル1900取21月	コーロー, レニレテ ・ 削岬伴ヒレ゙カデヒヒ 単, と 息味 り Ѻ。								
1											

表 I.11-ZrTN804D(BWR チャンネルボックスの本体)の配置位置の設定

表 I.14-ZrTN804D (BWR チャンネルボックスの本体)の照射時間の出現頻度分布の設定

	燃焼度の実態調査	設定頻度分布	中性子照射時間の設定条件 ^{a)}		
中性子照射 時間の条件	約13000体の燃料集合体(すな わち,付随するチャンネルボッ クス)の燃焼度の実態調査結果 を踏まえ,次の実態分布が評価 された。 燃焼度 : 正規分布	正規分布	平 均 值=1786日 標準偏差=654日		
注 ^{a)} 中性子照射時間の設定条件は、燃料集合体の燃焼度(実績)に基づき比出力を踏まえて算出した。					
なお,比出力にはプラントの設置許可申請書記載値の最小値を利用した。					

		2								単位:Bg/t
計算 No.	¹⁴ C	³⁶ Cl	⁶⁰ Co	⁶³ Ni	⁹⁰ Sr	⁹⁴ Nb	⁹⁹ Te	¹²⁹ I	¹³⁷ Cs	²³⁷ Np
1	1.68 ×10 ¹¹	6.95 ×10 ⁸	2.16 ×10 13	4.47 ×10 ¹¹	1.74 ×10 ⁹	3.09 ×10 9	2.00 ×10 7	7.09 ×10 ²	1.95 ×10 9	1.16 ×10 ³
2	1.14 ×10 ¹¹	3.16 ×10 ⁸	2.86 ×10 13	2.72 ×10 ^{II}	6.90 ×10 ⁹	1.47 ×10 9	1.71 ×10 7	4.77 ×10 3	1.46 ×10 10	1.52 ×10 4
3	3.80 ×10 10	2.52 ×10 ⁸	2.01 ×10 13	2.16 ×10 ¹¹	1.96 ×10 ⁻¹⁰	1.36 ×10 °	2.09 ×10 7	1.46 ×10 4	4.43 ×10 10	5.22 ×10 4
4	7.37 ×10 10	3.00 ×10 ⁸	2.49 ×10 13	2.68 ×10 11	8.73 ×10 ⁹	2.17 ×10 ⁹	7.58 ×10 6	5.98 ×10 ³	1.79 ×10 ¹⁰	1.93 ×10 4
5	4.66 ×10 10	2.46 ×10 *	8.33 ×10 12	2.03 ×10 ¹¹	5.24 ×10 9	1.98 ×10 °	4.99 ×10 6	3.38 ×10 3	1.02 ×10 10	1.14 ×10 4
6	3.95 ×10 10	2.19 ×10 *	1.24 ×10 ⁻¹³	1.49 ×10 ¹¹	1.06 ×10 ¹⁰	2.45 ×10 9	1.33 ×10 7	8.06 ×10 3	2.29 ×10 ¹⁰	3.22 ×10 4
7	3.77 ×10 9	1.59 ×10 7	1.88 ×10 12	1.67 ×10 10	1.82 ×10 9	8.15 ×10 7	1.17 ×10 ⁶	5.31 ×10 ²	2.34 ×10 ⁹	4.01 ×10 ³
8	4.31 ×10 9	5.99 ×10 7	2.97 ×10 12	4.05 ×10 10	6.97 ×10 *	3.38 ×10 8	1.44 ×10 6	2.92 ×10 ²	1.02 ×10 ⁹	1.74 ×10 ³
9	1.46 ×10 ¹⁰	6.51 ×10 7	6.97 ×10 12	5.13 ×10 10	1.67 ×10 ¹⁰	2.94 ×10 *	4.99 ×10 ⁶	7.18 ×10 ³	2.51 ×10 10	2.88 ×10 4
10	7.34 ×10 10	1.23 ×10 ⁸	3.83 ×10 13	2.29 ×10 ¹¹	2.35 ×10 ⁹	3.43 ×10 9	2.50 ×10 7	1.11 ×10 ³	3.11 ×10 ⁹	2.89 ×10 ³
11	1.17 ×10 ¹⁰	8.48 ×10 7	4.43 ×10 12	6.45 ×10 10	6.69 ×10 ⁸	7.31 ×10 ⁸	6.82 ×10 5	2.93 ×10 ²	9.89 ×10 ⁸	1.15 ×10 ³
12	3.81 ×10 10	3.70 ×10 *	1.85 ×10 13	1.39 ×10 ¹¹	1.84 ×10 ⁹	7.42 ×10 *	1.19 ×10 7	9.98 ×10 ²	3.02 ×10 ⁹	4.30 ×10 3
13	1.18 ×10 ¹¹	3.25 ×10 *	1.37 ×10 ¹³	2.98 ×10 ¹¹	3.91 ×10 ⁹	3.27 ×10 9	1.96 ×10 7	2.51 ×10 ³	7.16 ×10 ⁹	7.39 ×10 ³
14	2.55 ×10 10	2.42 ×10 *	2.20 ×10 13	1.41 ×10 ¹¹	2.28 ×10 ⁹	1.91 ×10 9	8.61 ×10 6	1.37 ×10 3	3.96 ×10 9	5.21 ×10 ³
15	8.63 ×10 ⁹	6.92 ×10 ⁷	1.31 ×10 ¹³	4.62 ×10 10	2.62 ×10 ⁸	1.57 ×10 *	2.78 ×10 5	9.20 ×10 1	3.42 ×10 ⁸	2.06 ×10 ⁻²
16	1.42 ×10 ¹¹	4.27 ×10 *	10.00 ×10 12	3.52 ×10 ¹¹	9.76 ×10 ⁹	4.50 ×10 ⁹	2.28 ×10 7	7.42 ×10 ³	2.16 ×10 ¹⁰	2.01 ×10 ⁴
17	6.99 ×10 ¹⁰	4.75 ×10 *	2.16 ×10 ¹³	1.62 ×10 11	8.58 ×10 ⁹	2.98 ×10 ⁹	1.20 ×10 7	5.47 ×10 ³	1.68 ×10 10	2.42 ×10 4
18	3.26 ×10 10	2.42 ×10 *	1.70 ×10 ¹³	2.62 ×10 ¹¹	7.16 ×10 ⁹	2.30 ×10 ⁹	1.19 ×10 7	5.07 ×10 ³	1.50 ×10 ¹⁰	1.57 ×10 4
19	1.65 ×10 ¹⁰	1.17 ×10 *	1.23 ×10 ¹³	7.30 ×10 ¹⁰	3.54 ×10 9	1.36 ×10 9	4.53 ×10 ⁶	1.93 ×10 ³	6.23 ×10 ⁹	9.66 ×10 ³
20	7.10 ×10 ¹⁰	3.30 ×10 *	2.46 ×10 13	2.75 ×10 ^{II}	1.75 ×10 ¹⁰	2.90 ×10 ⁹	1.90 ×10 7	1.38 ×10 4	4.08 ×10 10	3.90 ×10 4
21	1.00 ×10 ¹¹	2.30 ×10 ⁸	1.98 ×10 ¹³	2.79 ×10 ¹¹	3.31 ×10 ¹⁰	3.07 ×10 ⁹	3.23 ×10 7	2.60 ×10 ⁴	7.76 ×10 10	8.58 ×10 4
22	6.23 ×10 ⁸	7.05 ×10 6	8.42 ×10 ¹¹	5.11 ×10 °	2.05 ×10 ⁸	2.08 ×10 ⁷	5.43 ×10 4	4.47 ×10 ⁻¹	2.22 ×10 ⁸	1.26 ×10 ²
23	5.41 ×10 10	1.66 ×10 ⁸	6.53 ×10 12	1.09 ×10 ¹¹	1.07 ×10 ⁹	6.25 ×10 ⁸	1.91 ×10 ⁶	5.72 ×10 ²	1.72 ×10 ⁹	2.12 ×10 ⁻³
24	1.50 ×10 ¹¹	5.91 ×10 *	4.33 ×10 13	3.87 ×10 ¹¹	1.76 ×10 ¹⁰	2.16 ×10 ⁹	2.90 ×10 7	1.38 ×10 4	4.13 ×10 ¹⁰	3.75 ×10 4
25	5.39 ×10 9	1.46 ×10 *	3.45 ×10 12	5.27 ×10 10	1.23 ×10 ⁹	5.93 ×10 *	9.51 ×10 5	5.05 ×10 ²	1.79 ×10 ⁹	2.14 ×10 ³
26	6.61 ×10 10	2.26 ×10 *	4.30 ×10 13	3.30 ×10 ¹¹	7.53 ×10 9	4.54 ×10 9	2.54 ×10 7	5.28 ×10 ³	1.52 ×10 ¹⁰	1.44 ×10 4
27	5.16 ×10 10	8.60 ×10 *	4.22 ×10 13	2.93 ×10 ¹¹	6.89 ×10 °	1.21 ×10 °	1.83 ×10 7	4.95 ×10 3	1.46 ×10 ¹⁰	1.51 ×10 4
28	8.90 ×10 ¹⁰	4.84 ×10 *	1.69 ×10 ¹³	2.27 ×10 ¹¹	6.72 ×10 ⁹	2.53 ×10 ⁹	9.38 ×10 ⁶	4.44 ×10 ³	1.39 ×10 10	1.45 ×10 4
29	3.07 ×10 9	3.30 ×10 ⁷	2.82 ×10 ⁻¹²	1.70 ×10 ¹⁰	3.00 ×10 ⁸	2.06 ×10 *	1.14 ×10 5	8.63 ×10 ¹	3.56 ×10 ⁸	2.49 ×10 ⁻²
30	7.64 ×10 10	2.46 ×10 *	1.66 ×10 ¹³	2.35 ×10 ¹¹	7.51 ×10 ⁹	1.14 ×10 ⁹	7.78 ×10 ⁶	5.11 ×10 ³	1.59 ×10 ¹⁰	1.72 ×10 4
31	1.05 ×10 ¹⁰	5.41 ×10 7	5.39 ×10 12	3.97 ×10 ¹⁰	2.03 ×10 9	3.32 ×10 *	1.10 ×10 ⁶	9.51 ×10 ²	3.11 ×10 ⁹	5.66 ×10 ³
32	1.58 ×10 ¹¹	5.45 ×10 *	4.02 ×10 ¹³	4.63 ×10 ¹¹	1.37 ×10 ¹⁰	6.13 ×10 9	2.80 ×10 7	1.01 ×10 4	3.02 ×10 10	1.83 ×10 4
33	1.99 ×10 9	1.90 ×10 7	4.74 ×10 ¹¹	1.24 ×10 ⁻¹⁰	\$.46 ×10 ⁷	2.93 ×10 7	1.09 ×10 5	2.19 ×10	9.54 ×10 7	4.79 ×10
34	4.42 ×10 10	4.18 ×10 *	2.05 ×10 13	1.88 ×10 11	1.12 ×10 ⁹	2.32 ×10 °	6.19 ×10 ⁶	5.17 ×10 ²	1.47 ×10 ⁹	1.72 ×10 ³
35	1.15 ×10 10	2,72 ×10 *	1.13 ×10 ¹³	1.82 ×10 ¹¹	1.23 ×10 ⁹	1.58 ×10 ⁹	3.89 ×10 6	5.83 ×10 ²	1.73 ×10 ⁹	1.56 ×10 ³
36	4.64 ×10 10	2.21 ×10 ⁸	2.17 ×10 13	1.60 ×10 ¹¹	2.69 ×10 9	1.04 ×10 ⁹	8.81 ×10 6	1.57 ×10 ³	4.83 ×10 9	7.12 ×10 ⁻³
37	9.83 ×10 9	1.28 ×10 9	3.44 ×10 13	1.31 ×10 ¹¹	1.85 ×10 9	6.89 ×10 *	3.71 ×10 6	1.04 ×10 ³	3.25 ×10 9	4.48 ×10 ³
38	3.57 ×10 10	2.90 ×10 ⁸	-2.43 ×10 13	2.73 ×10 ¹¹	7.61 ×10 9	3.30 ×10 ⁹	1.33 ×10 7	5.62 ×10 ³	1.64 ×10 10	1.88 ×10 4
39	9.38 ×10 10	1.76 ×10 *	2.20 ×10 13	2.47 ×10 11	3.22 ×10 9	1.70 ×10 ⁹	7.64 ×10 6	2.12 ×10 ³	6.23 ×10 9	6.11 ×10 ³
40	3.32 ×10 10	1.82 ×10 *	1.25 ×10 13	1.51 ×10 ¹¹	1.71 ×10 ⁹	1.82 ×10 9	3.31 ×10 6	9.39 ×10 2	2.97 ×10 9	3.92 ×10 3

表 I.21-ZrTN804D の放射化計算結果(BWR チャンネルボックスの本体)

解説表 3-チャンネルボックス ^{a)}の母材に対するクラッドの放射能比 ^{b) [5]}

³ H	¹⁴ C	⁶⁰ Co	⁶³ Ni	¹³⁷ Cs		
0.18 %	0.0041 %	0.95 %	0.21 %	0.27 %		
注 ^{a)} 福島第二発電所1号機から発生したチャンネルボックス。 ^{b)} 放射化学分析等によって得られた単位面積当たりの放射能の比(クラッドの母材に対する比)。						

別紙2 換算係数法計算例(BWRチャンネルボックス)の中性子条件設定について

(1) 炉心配置位置の違いによる中性子スペクトルの変動幅について

BWRの径方向の炉心配置位置(最外周、コントロールセル(注 1)、炉心中央平均)の 違いによる中性子スペクトルの変動幅の評価として、熱中性子フルエンス率に対する高速 中性子フルエンス率及び熱外中性子フルエンス率の比率がどの程度変動するか評価した結 果を図に示します。

図に示すとおり、高速中性子、熱外中性子ともに径方向の<u>炉心配置位置の違いによる中性</u> 子スペクトルの変動は、炉心中央平均の中性子スペクトル(下図グラフの青線)に対して 0.9 (グラフの赤線)~1.4 倍(グラフの緑線)(-10%~+40%)程度の範囲となります。

炉心配置位置による中性子スペクトルの変動範囲

注1:コントロールセルとは、BWR の出力運転中に反応度制御のために制御棒を挿入する セルをいう。一般的にコントロールセルの位置は限定され、燃焼の進んだ燃料が装荷 される。

コントロールセルは運転中も制御棒を挿入しているため、当該セルの中性子フルエ ンス率は低くなり、またスペクトルは炉心平均と比較して高速、熱外中性子の寄与が 高くなる。

(2)中性子スペクトルの違いによる放射化放射能量の変動範囲について

(1)で評価した炉心配置位置の違いによる高速中性子及び熱外中性子のスペクトルの変動 が放射化放射能量に及ぼす影響を確認するため、スペクトルインデックスを任意に設定で きる ORIGEN79 コードを用い、高速中性子及び熱外中性子のスペクトルインデックスを0 ~10 倍に振って、放射化放射能量の感度を評価しました。感度解析は、埋設施設の申請核 種を想定した核種に対し実施しました。

各解析ケースにおいては、基本ケース(F4:基本ケース1、R2:基本ケース2)から高速 中性子、熱外中性子についてそれぞれ桁で振ってスペクトルインデックスの違いに対する 放射化放射能量の感度解析を実施しました。(下表参照:高速中性子スペクトルインデック スの感度解析条件:F4(基本ケース1)とF5、熱外中性子スペクトルインデックスの感度 解析条件:R2(基本ケース2)とR4)

感度解析結果のうち、感度が高かった核種の結果例を下図に示します。Ni-63 と Tc-99 の 放射化放射能量について、各基本ケースに対する比較ケースにおける放射化放射能量の比 を見ると、高速中性子に対して感度はありませんでした。一方、熱外中性子に対しては、ス ペクトルインデックスが 10 倍になると Ni-63 の生成量は約 3~8 倍(比例係数(注 2)で 0.3~0.8)となり、Tc-99 の生成量は約 3~9 倍(比例係数で 0.3~0.9)となりました。そ の他の核種についても同様な傾向を示しました。

以上より、<u>中性子スペクトルの変動による放射化放射能量への影響は、高速中性子スペク</u> トルの変動比率に対しては感度はなく、熱外中性子スペクトルの変動比率に対する放射化 放射能量の変動比率は最大でも 0.9 倍程度であることを確認しました。

注2:比較ケースの生成放射能比/比較ケースの中性子フルエンス率比 (各々の比は基本ケースとの比を意味します)

感度解析のケース		中性子スペクトルインデックス			中性子束(cm ⁻² ·sec ⁻¹)		
		高速中性子	熱外中性子	熱中性子	高速中性子	熱外中性子	熱中性子
F4	基本ケース1 (高速中性子 の影響評価)	1	0	0.64169	6.9E13	0.0E00	1.0E14
F5	高速中性子の スペクトルイ ンデックスを 10 倍に設定し たケース	10	0	0.64169	6.9E14	0.0E00	1.0E14
R2	基本ケース2 (熱外中性子 の影響評価)	0	0.1	0.64169	0.0E00	1.45 E14	1.0E14
R4	熱外中性子の スペクトルイ ンデックスを 10 倍に設定し たケース	0	1	0.64169	0.0E00	1.45E15	1.0E14

表 中性子スペクトルの違いに対する放射化放射能量の感度解析条件 (ORIGEN index)

事業者より提供されたデータ

中性子スペクトルの変動による放射化放射能量の変動範囲

事業者より提供されたデータ

(3) 炉心配置位置の違いによる放射化放射能量の影響評価

(1)(2)の結果より、径方向の炉心配置位置の違いによる中性子スペクトルの変動範囲は、炉心平均のスペクトルに対して高速、熱外ともに0.9~1.4倍(-10%~+40%)程度となっています。また、スペクトルの変動による放射化放射能量への影響は高速中性子スペクトルの変動に対しては影響がなく、熱外中性子スペクトルの変動比率に対する放射化放射能量の感度は最大でも0.9倍であることから、炉心配置位置の違いによる放射化放射能量の影響は、-9%~+36%程度となることがわかります。

なお+36%となるのはチャンネルボックスがコントロールセルに配置されている場合と なりますが、実際にはチャンネルボックスは炉心内をローテーションして使用されますの でコントロールセルのみに配置されることはなく、炉心配置位置の違いによる中性子スペ クトルの変動によって生じる放射化放射能量への影響はさらに小さなものになります。

上記評価は、燃料タイプの違い等による影響を考慮する必要があり、また申請核種確定後 に放射化放射能量の感度解析の追加評価が必要になると考えられますが、その場合でも上 記に示した中性子条件設定のための手順を適用できるものと考えています。炉心平均(径方 向)の中性子条件を適用するための確認手順を下図に示します。

今後、中深度処分施設の事業許可申請が行われる時期までに、実機プラントでの両者の計 算結果の比較例が蓄積され、本手順の妥当性の定量的な根拠がより明確になることが期待 されます。

炉心平均(径方向)の中性子条件を適用するための確認手順

以上

放射化計算結果の妥当性確認について

放射化計算結果の妥当性確認として、基本的には分析値と計算結果の比較により妥当性 を確認しますが、すべて分析値と比較する訳ではなく、計算条件の相違点から条件ごとに 結果に与える影響度を評価し、すべての条件による影響が結果に反映されていることの確 認の具体例を説明します。

放射化によって生成する核種の放射能は、中性子の照射時間が生成する核種の半減期に 比べて短いなどの条件では、次式のように近似的に表されます。(附属書D参照)

$\mathbf{A} = \boldsymbol{\sigma} \times \mathbf{N} \times \boldsymbol{\Phi} \times \mathbf{t} \times \boldsymbol{\lambda}$

ここに、	А	:評価対象とする放射化金属等の放射能濃度(Bq/cm³)
	σ	:親核種の放射化断面積(cm²)
	Ν	:親核種の照射前の原子数密度(cm ⁻³)
	Φ	:中性子フルエンス率(n/cm²/s)
	t	:中性子の照射時間 (s)
	λ	:生成核種の崩壊定数(s ⁻¹)

さらに、放射能濃度の減衰は下式で考慮できるため、

 $\exp(-\lambda \times T)$

ここに、

λ : 生成核種の崩壊定数 (s⁻¹)T : 冷却時間 (s)

上記の2式を合わせると、下記のように時間減衰を考慮した放射能濃度が簡易的に評価 できます。中性子フルエンス率が同じである場合は、①の差異が②~④の影響度の積と同 等であることを確認することで放射化計算結果の妥当性を確認します。

 $A = \sigma \times N \times \Phi \times t \times \lambda \times \exp(-\lambda \times T)$ $(1) \quad (2) \quad (3) \quad (4)$

表 I.21 に BWR チャンネルボックスの本体の放射化計算結果が示されていますが、この 計算 No.13 及び 38 の ⁶⁰Co 放射能濃度を参照して、放射化計算結果の妥当性確認の具体例 を説明します。

表 I.21 における計算 No.13 及び 38 の ⁶⁰Co 放射能濃度は表 1 のとおりです。計算 No.13 の放射化計算結果は妥当性確認が済んでいるとして、計算 No.38 の放射化計算結果が計算 No.13 の約 1.77 倍(①に相当)であることが妥当であることを具体例により確認します。

表1 表 I.21 における計算 No.13 及び 38 の ⁶⁰Co 放射能濃度(①に相当)

計算No.	⁶⁰ Co	影響度
13	1.37E+13	-
38	2.43E+13	1.77

この放射化計算条件は表 I.17 の元素成分条件と表 I.18 の中性子条件及び中性子照射条件 であります。

表 I.18 における計算 No.13 及び 38 の中性子条件は共通であるため、この計算条件の影響はありません。

表 I.17 における計算 No.13 及び 38 の Co 濃度は表 2 のとおりであり、他に計算条件の 相違がなければ、計算 No.38 の放射化計算結果は計算 No.13 の約 1.85 倍(②に相当)と なります。

また、表 I.18 における計算 No.13 及び 38 の全サイクル合計の照射時間は表 3 のとおり であり、他に計算条件の相違がなければ、計算 No.38 の放射化計算結果は計算 No.13 の約 0.887 倍(③に相当)となります。

さらに、表 I.18 における計算 No.13 及び 38 の全サイクル合計の照射停止時間は表 4 の とおりであり、他に計算条件の相違がなければ、⁶⁰Co の半減期を考慮すると計算 No.38 の 放射化計算結果は計算 No.13 の約 1.04 倍(④に相当)となります。

表 2 表 I.17 における計算 No.13 及び 38 の Co 濃度(②に相当)

計算No.	Со	影響度
13	2.35E-04	-
38	4.35E-04	1.85

表3 表 I.18 における計算 No.13 及び 38 の全サイクル合計の照射時間(③に相当)

計算No.	全サイクル合計の照射時間	影響度
13	2500	-
38	2217	0.887

		⁶⁰ Coの半減期を考慮した	
計算No.	全サイクル合計の照射停止時間	照射停止時間における減衰率	影響度
13	1071	0.680	-
38	950	0.710	1.04

表4 表 I.18 における計算 No.13 及び 38 の全サイクル合計の照射停止時間(④に相当)

表 2~表 4 の影響度をすべて積算すると約 1.71(②③④に相当)であり、表 1 の影響度 の約 1.77(①に相当)と同等であるため、計算 No.38 の放射化計算結果は妥当であると判 断します。

以上