島根原子力発電所3号炉 審査資料		
資料番号 S3-EP-004(説2)		
提出年月日	令和4年9月7日	

島根原子力発電所3号炉 チャンネルボックス厚変更に伴う評価項目の整理 及び使用する解析コードについて

令和4年9月 中国電力株式会社

本資料のうち、枠囲みの内容は機密に係る事項のため公開できません。

目 次

はじめに …	P.2	
1. チャンネルボックス厚変更の概要及び評価項目の整理 1.1 島根3号炉の炉心の特徴		
格子形状 初装荷炉心の特徴 ・・・・ ・・・	P.4 P.5	
1.2 チャンネルボックス厚変更の概要		
チャンネルボックス厚変更の概要 チャンネルボックス厚変更による炉心特性への影響	P.6 響 P.7	
1.3 チャンネルボックス厚変更に伴う評価項目の整理		
チャンネルボックス厚変更による許認可解析への景	/響 ····· P.8	
設置許可基準規則との関係	P.14	4
	P.19	9
2. LANCR/AETNAコードの許認可解析への適用性確認の概要		
2.1 LANCR/AETNAコードの概要及び特徴		
炉心解析コード(LANCR/AETNA)の概要 LANCR/AETNAコードの特徴 ・・・・	P.21	1 2
2.2 LANCR/AETNAコードの妥当性確認方法の説明		
許認可解析への適用性確認の考え方	P.23	3
適用性確認の手順	••••••••••••••••••••••••••••••••••••••	4
検証及び妥当性確認の考え方	P.27	7
2.3 LANCR/AETNAコードの妥当性確認結果の例示		
モデル化の網羅性確認結果の例	•••••• P.28	8
妥当性確認の網羅性確認結果の例	P.29	9
週用車囲と妥当性確認の美施車囲の確認結果 許認可解析へのLANCR/AETNAコード適用の	.00例 P.32 妥当性確認 P.33	2 3

- 島根原子力発電所3号炉(以下,「島根3号炉」という。)は,新規制基準適合に係る 原子炉設置変更許可申請において,地震時の影響を低減させるために燃料集合体に装着 するチャンネルボックスの厚さを変更(以下,「C/B変更」という。)している。
- C/B変更に伴い炉心特性が変化することから,原子炉設置変更許可申請書添付書類八及び添付書類十における9×9燃料(A型)及び9×9燃料(B型)の炉心特性等に関する解析を実施している。
- これらの解析にあたり、準備ができている最新のコードを用いるという観点から、9×9燃料(A型)に関する炉心解析で用いるコードを変更している。
- 上記を踏まえ,本資料では以下について説明する。
- C/B変更の概要及びC/B変更による影響を踏まえた許認可解析項目の整理 設置変更許可申請に対するC/B変更の影響を把握することを目的に、島根3号炉の炉心・燃料の特徴とC/B変更 概要および炉心特性への影響を示し、影響を受ける設置変更許可申請での解析項目と設置許可基準規則との関 係を整理する。
- ② 今回の解析で新たに用いた次のコードの許認可解析への適用性確認の概要
 - ・燃料集合体核特性計算コード LANCR Ver.1 (以下,「LANCR」という。)
 - ・三次元沸騰水型原子炉模擬計算コード AETNA Ver.1(以下,「AETNA」という。)

について,重要度ランキングテーブル(PIRT)/モデル性能比較表/モデル性能評価表などを用いて許認可解析への 適用の妥当性に関する判断方法について説明する。

1. チャンネルボックス厚変更の概要及び評価項目の整理

1.1 島根3号炉の炉心の特徴 格子形状

(4)

島根3号炉の格子形状はABWRで標準的に採用されているN格子である。

1.1 島根3号炉の炉心の特徴 初装荷炉心の特徴

島根3号炉では初装荷燃料の平均濃縮度を高めた高燃焼度初装荷炉心設計を採用している。 高濃縮度燃料と低濃縮度燃料を規則的に配置することで燃料設計を最適化し,取出燃焼度の向上を 図っている。 平衡炉心は9×9燃料(A型)及び9×9燃料(B型)で構成するが,初装荷炉心は9×9燃料(A型)のみで構成する。

1.2 チャンネルボックス厚変更の概要 チャンネルボックス厚変更の概要

島根3号炉では地震時の影響を低減させるため燃料集合体に装着するチャンネルボックスを厚くする。これにより、チャンネルボックス内の流路面積は変更ないが、チャンネルボックス外の流路面積は減少する。

1.2 チャンネルボックス厚変更の概要 チャンネルボックス厚変更による炉心特性への影響

(7)

1.3 チャンネルボックス厚変更に伴う評価項目の整理 チャンネルボックス厚変更による許認可解析への影響(添付書類八)(1/2)

設置変更許可申請におけるC/B変更の影響範囲を把握するため,影響を受ける解析項目とその主な理由を整理した。

記載箇所	解析	C/B変更の影響を受ける項目	影響の主な理由
添付書類八		•	
3. 発電用原子炉及び炉心			
3.1 燃料			
3.1.5 機械設計			
応力解析	被覆管の応力解析	燃料被覆管応力	「運転時の異常な過渡変化の解析」の最 大過出力を使用
3.3 核設計,熱水力設計及び動	動特性		
3.3.1 核設計			
		過剰増倍率	幾何条件の変更に伴う核特性の変化
		全制御棒の反応度制御能力	幾何条件の変更に伴う核特性の変化
		炉停止余裕	幾何条件の変更に伴う核特性の変化
		制御棒価値	幾何条件の変更に伴う核特性の変化
	スクラム反応度	幾何条件の変更に伴う核特性の変化	
	初装荷炉心, 平衡炉心の解析	ドップラ係数	幾何条件の変更に伴う核特性の変化
		減速材ボイド係数	幾何条件の変更に伴う核特性の変化
		減速材温度係数	幾何条件の変更に伴う核特性の変化
核特性		出力反応度係数	幾何条件の変更に伴う核特性の変化
		半径方向ピーキング係数, 軸方向ピーキング係数 局所ピーキング係数	幾何条件の変更に伴う核特性の変化
		初装荷燃料集合体の取出平均燃焼度	幾何条件の変更に伴う核特性の変化
		減速材対燃料体積比	幾何条件の変更に伴う核特性の変化
		平均中性子束	幾何条件の変更に伴う核特性の変化
		中性子平均寿命	幾何条件の変更に伴う核特性の変化
		実効遅発中性子割合	幾何条件の変更に伴う核特性の変化

1.3 チャンネルボックス厚変更に伴う評価項目の整理 チャンネルボックス厚変更による許認可解析への影響(添付書類八)(2/2)

記載箇所	解析	C/B変更の影響を受ける項目	影響の主な理由	
3.3.2 熱水力設計				
熱水力設計上の燃料の許容 設計限界	安全限界MCPR(SLMCPR)の解析	SLMCPR	核特性の変化に伴う炉心状態の変化	
通常運転時の熱的制限値	MCPR運転制限値の評価	MCPR運転制限値	SLMCPRの解析結果,「運転時の異常な 過渡変化の解析」のΔMCPRの評価結果 を使用	
ᅒᅶᅻᄩ	初装荷炉心, 平衡炉心の解析	最大線出力密度,MCPR	幾何条件の変更に伴う核特性の変化	
熱水力特性	熱水力特性の解析	炉心平均ボイド率	幾何条件の変更に伴う熱水力特性の変化	
3.3.3 動特性				
	核熱水力安定性の解析	減幅比	核特性の変化に伴う反応度係数の変化	
動特性	プラント安定性の解析	減幅比	核特性の変化に伴う反応度係数の変化	
	キセノン空間振動の安定性の解析	キセノンの空間振動の安定性	核特性の変化に伴う反応度係数の変化	
6. 計測制御系統施設				
6.1 原子炉制御系				
6.1.2 原子炉停止系				
ほう酸水注入系	平衡炉心の解析	平衡炉心のボロン反応度添加速度	幾何条件の変更に伴う核特性の変化	

1.3 チャンネルボックス厚変更に伴う評価項目の整理 チャンネルボックス厚変更による許認可解析への影響(添付書類十)(1/4)

記載箇所	解析	C/B変更の影響を受ける項目	影響の主な理由	
添付書類十				
2. 運転時の異常な過渡変化の解析				
2.3 過渡解析				
2.3.1 炉心内の反応度又は出力分	市の異常な変化			
原子炉起動時における制御棒の 異常な引き抜き	制御棒系過渡解析	燃料エンタルピの最大値 原子炉圧力	核特性の変化に伴う炉心状態の変化	
出力運転中の制御棒の異常な引 き抜き		MCPR 局所の表面熱流束 原子炉平均出力	核特性の変化に伴う炉心状態の変化	
2.3.2 炉心内の熱発生又は熱除去の異常な変化				
原子炉冷却材流量の部分喪失		中性子束 炉心平均表面熱流束 ΔMCPR 原子炉圧力	核特性の変化に伴う反応度係数の変化	
外部電源喪失	プラント過渡解析	同上	核特性の変化に伴う反応度係数の変化	
給水加熱喪失		同上	核特性の変化に伴う反応度係数の変化	
原子炉冷却材流量制御系の誤動 作		同上	核特性の変化に伴う反応度係数の変化	

1.3 チャンネルボックス厚変更に伴う評価項目の整理 チャンネルボックス厚変更による許認可解析への影響(添付書類十)(2/4)

記載箇所	解析	C/B変更の影響を受ける項目	影響の主な理由		
2.3.3 原子炉冷却材圧力又は原子	2.3.3 原子炉冷却材圧力又は原子炉冷却材保有量の異常な変化				
負荷の喪失		中性子束 炉心平均表面熱流束 ΔMCPR 原子炉圧力	核特性の変化に伴う反応度係数の変化		
主蒸気隔離弁の誤閉止	プラント過渡解析	同上	核特性の変化に伴う反応度係数の変化		
給水制御系の故障		同上	核特性の変化に伴う反応度係数の変化		
原子炉圧力制御系の故障		同上	核特性の変化に伴う反応度係数の変化		
給水流量の全喪失		同上	核特性の変化に伴う反応度係数の変化		

1.3 チャンネルボックス厚変更に伴う評価項目の整理 チャンネルボックス厚変更による許認可解析への影響(添付書類十)(3/4)

記載箇所	解析	C/B変更の影響を受ける項目	影響の主な理由
3. 設計基準事故解析			
3.2 原子炉冷却材の喪失又は炉心冷却状態の著しい変化			
原子炉冷却材喪失		燃料被覆管最高温度 燃料被覆管酸化割合	幾何条件の変更に伴う熱水力特性の変化
原子炉冷却材流量の喪失	プラント事故解析	原子炉圧力 燃料被覆管最高温度 燃料被覆管酸化割合	核特性の変化に伴う反応度係数の変化
3.3 反応度の異常な投入又は原子炉出力の急激な変化			
制御棒落下	制御棒系事故解析	燃料エンタルピの最大値 破損燃料棒割合 原子炉圧力	核特性の変化に伴う炉心状態の変化

1.3 チャンネルボックス厚変更に伴う評価項目の整理 チャンネルボックス厚変更による許認可解析への影響(添付書類十)(4/4)

記載箇所	解析	C/B変更の影響を受ける項目	影響の主な理由		
3.4 環境への放射性物質の異常な放出	3.4 環境への放射性物質の異常な放出				
放射性気体廃棄物処理施設の破損	_*1	-	_		
主蒸気管破断	プラント事故解析	原子炉冷却材流出量 燃料被覆管最高温度 燃料被覆管酸化割合	幾何条件の変更に伴う熱水力特性の変化		
	_*1	-	_		
燃料集合体の落下	_*1	_	_		
原子炉冷却材喪失	_*1	_	_		
制御棒落下	被ばく評価* ¹	実効線量	「制御棒落下」の破損燃料棒割合を使用		
3.5 原子炉格納容器内圧力,雰囲気等の異常な変化					
原子炉冷却材喪失	_	_	_		
可燃性ガスの発生	_	_	_		
動荷重の発生	_	_	_		

*1:制御棒落下の被ばく評価において,評価に用いる気象年を島根2号炉と同じものに最新化している。 制御棒落下以外の事象はC/B変更による被ばく評価上の影響はないが,制御棒落下と同様に気象年を島根2号炉と同じものに最新化して解析を行っている。

1.3 チャンネルボックス厚変更に伴う評価項目の整理 設置許可基準規則(第十三条)との関係

(14)

設置変更許可申請におけるC/B変更の影響範囲を把握するため、「実用発電用原子炉及びその附属施設の位置、構造及び設備の基準に関する規則」(以下、「設置許可基準規則」という。)との関係を整理した。

設置許可基準規則	ぶり 音頬 ハン 「 にのりる 評価内容	備考
 (運転時の異常な過渡変化及び設計基準事故の拡大の防止) (運転時の異常な過渡変化及び設計基準事故の拡大の防止) 第十三条 設計基準対象施設は、次に掲げる要件を満たすものでなければならない。 運転時の異常な過渡変化時において次に掲げる要件を満たすものであること。 イ 最小限界熱流束比(燃料被覆材から冷却材への熱伝達が低下し、燃料被覆 材の温度が急上昇し始める時の熱流束(単位時間及び単位面積当たりの熱量 をいう。以下同じ。)と運転時の熱流束との比の最小値をいう。)又は最小限界 査打 出力比(燃料体に沸騰遷移が発生した時の燃料体の出力と運転時の燃料体の 出力との比の最小値をいう。)が許容限界値以上であること。 燃料被覆材が破損しないものであること。 パ 燃料材のエンタルピーが燃料要素の許容損傷限界を超えないこと。 こ 原子炉冷却材圧力バウンダリにかかる圧力が最高使用圧力の一・一倍以下とな ること。 ご 燃料材のエンタルピーが炉心及び原子炉冷却材圧力バウンダリの健全性を維持 するための制限値を超えないこと。 パ 原子炉冷却材圧力バウンダリにかかる圧力が最高使用圧力の一・二倍以下とな ること。 こ 原子炉冷却材圧力バウンダリにかかる圧力が最高使用圧力の一・二倍以下とな ること。 こ 原子炉冷却材圧力バウンダリにかかる圧力が最高使用圧力の一・二倍以下とな ること。 こ 原子炉格納容器バウンダリにかかる圧力及び原子炉格納容器バウンダリにおかる 温度が最高使用圧力及び最高使用温度以下となること。 ホ 設計基準対象施設が工場等周辺の公衆に放射線障害を及ぼさないものである こと。 	①運転時の異常な過渡 ①運転時の異常な過渡 化及び設計基準事故に 打する解析及び評価を, 発電用軽水型原子炉施 の安全評価に関する審 指針」(平成2年8月 0日原子力安全委員会 定)等に基づき実施し 2件を満足すること。	 :添付書類十 「2.運転時の異常な過渡変化の解析」 「3.設計基準事故解析」

1.3 チャンネルボックス厚変更に伴う評価項目の整理 設置許可基準規則(第十五条)との関係(1/2)

設置許可基準規則	添付書類八/十における評価内容	備考
(炉心等) 第十五条 設計基準対象施設は、原子炉固有の出力抑制特性 を有するとともに、発電用原子炉の反応度を制御することにより 核分裂の連鎖反応を制御できる能力を有するものでなければな らない。	①減速材ボイド係数とドップラ係数が常に負であ ること。また、②減速材ボイド係数・ドップラ係数・ 減速材温度係数を総合した反応度係数(出力 反応度係数)が常に負であること。	①, ②:添付書類八 「3.3.1 核設計」
	プラント運転中に予期されるあらゆる運転状態で、出力振動に対し、十分な減衰特性を有していること。具体的には、①以下の安定性減幅比 が限界基準及び設計基準以下となること。 ・チャンネル水力学的安定性 ・炉心安定性 ・領域安定性 ・プラント安定性 ②キセノン空間振動の安定性に関しては、出 力反応度係数がキセノン空間振動を十分減衰で きる大きさを有すること。	①, ②:添付書類八 「3.3.3 動特性」
2 炉心は、通常運転時又は運転時の異常な過渡変化時に発電用原子炉の運転に支障が生ずる場合において、原子炉冷却系統、原子炉停止系統、反応度制御系統、計測制御系統及び安全保護回路の機能と併せて機能することにより燃料要素の許容損傷限界を超えないものでなければならない。	通常運転時の熱的制限値を守っている状態で ①運転時の異常な過渡変化が発生しても「発電 用軽水型原子炉施設の安全評価に関する審査 指針」(平成2年8月30日原子力安全委員会 決定)等に記載されている運転時の異常な過渡 変化に対する判断基準を満足すること。 ②C/B変更後の炉心において,通常運転時の 熱的制限値を守って通常運転ができること。(解 析例を示す)	 :添付書類十 運転時の異常な 過渡変化の解析」 :添付書類八 :添付書類八 3.3.2 熱水力設計」

.5

1.3 チャンネルボックス厚変更に伴う評価項目の整理 設置許可基準規則(第十五条)との関係(2/2)

設置許可基準規則	添付書類八/十における評価内容	備考
3 燃料体、減速材及び反射材並びに炉心支持構造物は、通常運転時、運転時の異常な過渡変化時及び設計基準事故時において、 発電用原子炉を安全に停止し、かつ、停止後に炉心の冷却機能 を維持できるものでなければならない。	(燃料棒以外の燃料の構成要素や炉心支 持構造物等に対する要求事項であり, C/B変 更による影響はない。)	
4 燃料体及び反射材並びに炉心支持構造物、熱遮蔽材並びに一次冷却系統に係る容器、管、ポンプ及び弁は、一次冷却材又は二次冷却材の循環、沸騰その他の一次冷却材又は二次冷却材の 挙動により生ずる流体振動又は温度差のある流体の混合その他の 一次冷却材又は二次冷却材の挙動により生ずる温度変動により 損傷を受けないものでなければならない。	燃料の機械設計に対する要求事項であり, C/B変更による燃料の機械設計への直接の影響はないが,「運転時の異常な過渡変化の解析」の解析結果を踏まえた①燃料被覆管の応力設計比が既許可から変更となるため,変更後の評価結果について説明する。	①:添付書類八 「3.1.5 機械設計」
5 燃料体は、通常運転時における圧力、温度及び放射線に起因す る最も厳しい条件において、必要な物理的及び化学的性質を保持 するものでなければならない。	なお、効率的な記明を行っ観点から上記の 説明は「燃料被覆管の閉じ込め機能維持評 価」の説明時に合わせて行う予定である。	
 6 燃料体は、次に掲げるものでなければならない。 通常運転時及び運転時の異常な過渡変化時における発電 用原子炉内の圧力、自重、附加荷重その他の燃料体に加わる 負荷に耐えるものとすること。 二 輸送中又は取扱中において、著しい変形を生じないものとする こと。 		

16

1.3 チャンネルボックス厚変更に伴う評価項目の整理 設置許可基準規則(第二十五条)との関係(1/2)

設置許可基準規則	添付書類八/十における評価内容	備考
(反応度制御系統及び原子炉停止系統) 第二十五条 発電用原子炉施設には、反応度制御系統(原子炉 停止系統を含み、安全施設に係るものに限る。次項において同 じ。)を設けなければならない。	(設備に対する要求事項であり, C/B変更 による影響はない。)	
 2 反応度制御系統は、計画的な出力変化に伴う反応度変化を燃料要素の許容損傷限界を超えることなく制御できる能力を有し、かつ、次に掲げるものでなければならない。 制御棒、液体制御材その他反応度を制御するものによる二以上の独立した系統を有するものとすること。 通常運転時の高温状態において、二以上の独立した系統がそれぞれ発電用原子炉を未臨界に移行し、及び未臨界を維持できるものであり、かつ、運転時の異常な過渡変化時の高温状態においても反応度制御系統のうち少なくとも一つは、燃料要素の許容損傷限界を超えることなく発電用原子炉を未臨界に移行し、及び未臨界を維持できること。この場合において、非常用炉心冷却設備その他の発電用原子炉施設の安全性を損なうおそれがある場合に作動する設備の作動に伴って注入される液体制御材による反応度価値を加えることができる。 	設備に対する要求事項であり、C/B変更に よる影響はないが、以下についてC/B変更後 の解析例や見通しを示す。 ・①C/B変更後のスクラム曲線が設計用スクラ ム曲線よりも安全側になること(解析例を示 す) ・②C/B変更後の炉心において、反応度価値 の最も大きい制御棒(同一の水圧制御ユ ニットに属する1組又は1本)が完全に炉 心の外に引き抜かれ、挿入できないときでも 炉心を臨界未満にできること(解析例を示 す) ・③C/B変更後においてもほう酸水の注入時に 未臨界を確保できる見通しがあること	 ①, ②:添付書類八 「3.3.1 核設計」 ③:添付書類八 「6.1.2 原子炉停止 系」

1.3 チャンネルボックス厚変更に伴う評価項目の整理 設置許可基準規則(第二十五条)との関係(2/2)

設置許可基準規則	添付書類八/十における評価内容	備考
 三 通常運転時及び運転時の異常な過渡変化時における低温 状態において、反応度制御系統のうち少なくとも一つは、発電用 原子炉を未臨界に移行し、及び未臨界を維持できること。 四 一次冷却材喪失その他の設計基準事故時において、反応度 制御系統のうち少なくとも一つは、発電用原子炉を未臨界へ移 行することができ、かつ、少なくとも一つは、発電用原子炉を未臨 界に維持できること。この場合において、非常用炉心冷却設備そ の他の発電用原子炉施設の安全性を損なうおそれがある場合 に作動する設備の作動に伴って注入される液体制御材による反 応度価値を加えることができる。 五 制御棒を用いる場合にあっては、反応度価値の最も大きな制 御棒一本が固着した場合においても前三号の規定に適合すること 	設備に対する要求事項であり、C/B変更に よる影響はないが、以下についてC/B変更後 の解析例や見通しを示す。 ・①C/B変更後のスクラム曲線が設計用スクラ ム曲線よりも安全側になること(解析例を示 す) ・②C/B変更後の炉心において、反応度価値 の最も大きい制御棒(同一の水圧制御ユ ニットに属する1組又は1本)が完全に炉 心の外に引き抜かれ、挿入できないときでも 炉心を臨界未満にできること(解析例を示 す)	 ①,②:添付書類八 「3.3.1 核設計」 ③:添付書類八 「6.1.2 原子炉停止 系」
3 制御棒の最大反応度価値及び反応度添加率は、想定される反応度投入事象(発電用原子炉に反応度が異常に投入される事象をいう。)に対して原子炉冷却材圧カバウンダリを破損せず、かつ、炉心の冷却機能を損なうような炉心、炉心支持構造物及び原子炉圧力容器内部構造物の損壊を起こさないものでなければならない。	<u>未臨界を確保できる見通しがある</u> こと	
4 制御棒、液体制御材その他の反応度を制御する設備は、通常運転時における圧力、温度及び放射線に起因する最も厳しい条件において、必要な物理的及び化学的性質を保持するものでなければならない。	(設備に対する要求事項であり, C/B変更 による影響はない。)	

18

1.3 チャンネルボックス厚変更に伴う評価項目の整理 解析で使用するコード一覧

C/B変更後の許認可解析では以下のコード群を使用(LANCR/AETNAは着色箇所)

添付書類	<u>毎27</u> +⊂	9×9燃料(A型	型)に係る解析	9×9燃料(B型)に係る解析						
亦竹青斑	丹牛竹丁	C/B変更前	C/B変更後	C/B変更前	C/B変更後					
	燃料被覆管応力解析	FURST MARC	FURST ANSYS ^{*1}	B: Al	SPAN NSYS					
添付書類八	炉心特性評価に関する解析	HINES/PANACH	LANCR/AETNA	NEUPH	∕S∕COS3D					
	動特性に関する解析	OD` RE	YSY DY	ST/ BA	AIF-PK NDIX					
添付書類十	原子炉起動時における制御棒の異常な引き抜き	APEX	APEX/SCAT	EUF	REKA-N					
運転時の異常な過渡変化の	出力運転中の制御棒の異常な引き抜き	PANACH	AETNA	C	DS3D					
解析	給水加熱喪失	REDY /	ÍISCOR	BAND	IX/THRP					
	上記以外の運転時の異常な過渡変化の解析	REDY/	/SCAT	BANDIX/	FRANCESCA					
添付書類十	原子炉冷却材喪失	LAMB/SC/	AT/SAFER	LABEL/FRAN	ICESCA/SALUTE					
設計基準事	原子炉冷却材流量の喪失	REDY/SC/	AT/SAFER	BANDIX/FRA	NCESCA/SALUTE					
口又丹午小川	制御棒落下	APEX./	ŚCAT	EUF	REKA-N					
	主蒸気管破断	LAMB/SC/	AT/SAFER	LABEL/FRAN	ICESCA/SALUTE					

*1: ANSYSはMARCと同等の解析が可能な汎用有限要素法解析コードであり、島根原子力発電所2号炉新規制基準適合性に係る審査(地震時の燃料被覆管の 閉じ込め機能維持に係る燃料被覆管応力解析)(及び先行プラント)において、9×9燃料(A型)に係る解析に対する適用性を説明している。

2. LANCR/AETNAコードの許認可解析への適用性確認の概要

2.1 LANCR/AETNAコードの概要及び特徴 炉心解析コード(LANCR/AETNA)の概要

<u>解析システムの構成</u>

- AETNA: 炉心全体に対して, 燃料集 合体単位の特性を用いた3 次元の核熱水力反復計算 を行い, 出力分布や炉停止 余裕などの各種炉心特性を 評価する。
- LANCR: 燃料集合体の断面に対して 燃料棒単位の詳細な核計 算を2次元体系で実施し, AETNAに必要な燃料集合 体断面の平均的な核特性を 計算する。

LANCRの計算に必要な核データライブ ラリは,評価済み核データを公開コード NJOYで処理し,F-tableと呼ばれる形 式で作成する。

2.1 LANCR/AETNAコードの概要及び特徴 LANCR/AETNAコードの特徴

22

島根3号炉のC/B変更に伴う9×9燃料(A型)の許認可解析においては、準備ができている最新のコードを用いるという観点から、炉心解析システムとしてLANCR/AETNAを適用する。

LANCR/AETNAコードの主な特徴

	項目	HINES/PANACH	LANCR/AETNA
	核データ	ENDF/B-IV,-V	ENDF/B-VII.0
十算	スペクトル計算	衝突確率法(68+30群)	衝突確率法(190群)
体局		エネルギ3群 拡散計算法	エネルギ35群 輸送計算法
集	中性子束分布計算		
= 心計算	中性子束分布計算	エネルギ修正1群 有限差分法	エネルギ3群 解析的多項式ノード法
坟	燃料棒出力	集合体計算時のテーブル	炉心計算時の再構築モデル
	熱水力	混相流に対する3保存式に基づく圧損許 ドリフトフラックスボイドモデルに基づくボイト	平価と *率評価

2.2 LANCR/AETNAコードの妥当性確認方法の説明 許認可解析への適用性確認の考え方

23

"LANCR/AETNAコードを島根3号炉の許認可解析に適用することの妥当性"を示すため, 以下を説明する。

<u>コードが解析に必要なモデルを有すること</u>

- ・炉心体系に関する全ての物理現象の中から重要なものが特定されていること
- ・特定した重要な物理現象に対して、対応するモデルが網羅的に実装されていること

試験等の妥当性確認によりコードの信頼性が確認されていること

- ・重要な物理現象について、妥当性確認が網羅的に実施されていること
- ・妥当性確認に用いた試験等の条件範囲がコードの適用範囲を包絡していること

<u>島根3号炉許認可解析に必要な信頼性を達成していること</u>

・許認可解析で想定した不確かさの設定値に対し、コードの不確かさが下回っていること

これらを確認する手順の具体的な方法と適用例を以降に示す。

2.2 LANCR/AETNAコードの妥当性確認方法の説明 適用性確認の手順

(24)

島根3号炉の許認可解析に対するLANCR/AETNAの適用性について①~⑤の手順で確認する。

手順	目的	使用するツール
1	炉心解析における重要な現象を特定する。	重要度ランキングテーブル(PIRT, P.28) →重要な現象が特定されていること
2	①で抽出された重要な現象のモデル化の有無を確認し, モデル化されていないものについて取り扱いを説明する。	モデル性能比較表(P.28) →各現象に対し"〇"が一つ以上あること
3	②で示された現象とモデル群に対し, もれなく検証及び妥 当性確認が実施されていることを確認する。	モデル性能評価表(P.29) →各現象に対し"〇"が一つ以上あること
4	LANCR/AETNAの適用範囲に対し、上記で示された検 証及び妥当性確認の試験条件が包絡していることを確認 する。	LANCR/AETNAの適用範囲と検証及び妥当 性確認の実施範囲の対応表(P.32) →適用範囲が妥当性確認範囲に含まれること
5	検証及び妥当性確認を通して整理された不確かさ又はこれらの積算値が,設計における設定値を下回っていることを確認する。	不確かさと設定値の関係表(P.33) →不確かさが設定値を下回ること

手順①~③の具体的な方法をP.25~26に, 手順③における検証及び妥当性確認の考え方をP.27に, 確認結果の例をP.28以降に示す。

2.2 LANCR/AETNAコードの妥当性確認方法の説明 手順①重要な物理現象の特定

手順① 重要度ランキングテーブル(PIRT*)を用いて、炉心 解析において重要となる物理現象を特定する。

左側:炉心体系に関する全ての物理現象を列挙

上側:評価指標(主要な評価対象項目)を列挙

両者の関係をI~Hでランク付けする。

→ランクM以上を含む物理現象を重要なものとし, 手順②以降の確認の対象とする。

本資料ではランクM以上を含む物理現象のみを示す。

重要度ランクの考え方

ランク	PIRT重要度ランクの定義	包絡性確認の考え方
Н	評価指標に対する影響が大きいと考えられる現象	該当するモデルを実装する。実装されたモデルに対して, 試験・実機もしくは連続エネルギモンテカルロコード等の信
Μ	評価指標に対する影響が中程度と考えられる現象	確認が実施できない場合,それらの取り扱いについて説 明する。
L	評価指標に対する影響が小さいと考えられる現象	物理現象に対するモデルの実装・検証・妥当性確認は必 ずしも実施せず, 出力分布・実効増倍率の妥当性確認
Ι	評価指標に対して影響を与えないか, 無視できる 程度の現象	により総合的に確認する。これらの現象は重要度が低いので、本資料のPIRT等では記載を省略している。

*PIRT (Phenomena Identification and Ranking Table):日本原子力学会標準, 「シミュレーションの信頼性確保に関するガイドライン:2015」,AESJ-SC-A008:2015,2016年7月

\square		重要	度ランキ	シグテ-	-ブル
		評価 指標1	評価 指標2	評価 討標3	評価 指標4
14	現象1	L	Н	L	L
物 理	現象2	Н	Н	L	Н
現	現象3	Ι	Ι	L	L
豕	現象4	L	L	М	М

2.2 LANCR/AETNAコードの妥当性確認方法の説明 手順②モデル化の網羅性確認, 手順③検証及び妥当性確認の網羅性確認

手順② モデル性能比較表を用い、コードのモデルが、手順① でランクM以上とした物理現象を考慮していることを確認する。

- 左側: PIRTで特定された重要な物理現象
- 上側:コードで考慮されているすべてのモデルを列挙

物理現象に対応するモデルにO,モデルがない場合はN/Aを記載

→モデル化に抜けがないことを確認し、モデル化されていな い物理現象がある場合は、その取り扱いを示す。

26

物理現象と評価指標の関係(手順①)と物理現象とモデルの関係(手順②)のつながりを見やすくするため、 本資料では、作成したPIRTとモデル性能比較表の例をP.28に示す。

手順③ 手順②の結果とモデル性能評価表を用い,重要な物理現象を扱うモデルの検証及び妥当性確認の状態を把握する。

左側: PIRTで特定された重要な物理現象

上側:検証及び妥当性確認の項目を列挙

物理現象に対応する妥当性確認項目にOを記載

→重要な物理現象に対して検証・妥当性確認に抜けがない ことを確認し,確認されていないものは取り扱いを示す。

本資料では,重要な物理現象,関連するモデル及び妥当性確認の関係を見やすくするため,モデル性能比較表とモデル性能評価表を結合し,物理現象の最高ランクを含めた例をP.29に示す。

2.2 LANCR/AETNAコードの妥当性確認方法の説明 検証及び妥当性確認の考え方

27

「検証」

ベンチマーク問題について他の解析結果と比較する事。コードの信頼性確認の一部として, 適用範囲における実機を超える条件に対する確認(手順④)で利用している。 (前提となるソフトウェア品質については,開発元における品質マネジメントシステムにより確 保されるものとし,品質確保を目的とする検証については説明を省略)

「妥当性確認」

試験や実機プラントにおける測定値等と比較する事。信頼性の確認では検証より優先される。 測定データは限られるため,連続エネルギモンテカルロコード等の詳細モデルによる計算結果と の比較は,信頼性確認を補完できる「妥当性確認に準ずる確認」と位置付けている。

物理現象に対するモデルの信頼性確認(手順③)では、妥当性確認を優先し網羅的に実施しており(モデル性能評価表では一つ以上の妥当性確認に"〇")、検証は参考情報として提示する。

適用範囲にわたる試験条件等の包絡性確認(手順④)も,妥当性確認を可能な限り優先する。一部の適用範囲は検証実施条件まで外挿する。(検証結果から不確かさの拡大は見られない)

LANCR及びAETNAの解析には上流過程の結果が反映されるので、それぞれの妥当性確認は 上流過程に関する妥当性確認の一部を含むものと位置付けられる。特にAETNAの妥当性確認 は、炉心解析システム全体に対する総合的な妥当性確認の意味を持つ。

2.3 LANCR/AETNAコードの妥当性確認結果の例示 モデル化の網羅性確認結果の例(手順①・② LANCR)

一つも〇がない現象(下記注2)については、これで問題がないと考える理由をコード説明書に記載する。

LANCRのPIRT及びモデル性能比較表

						重	更度	ミランド	キング) (P]	IRT)				,	"_"	:関	モデノ 連しな	レ性前	能比 ″〇'	跤表 ": 関	連す	3,	
	(物理	2 現象)		無限増倍率	局所出力分布	ガドリニア価値	ボイド反応度	ドップラ反応度	ほう素価値	制御棒価値	减速材温度係数	遅発中性子割合	燃焼後核種組成	最高ランク	ィブラリモデル(中性子・ガンマ線)	エネルギ群構造	実効断面積計算	詳細エネルギ スペクトル計算 🗾	□間Iネル+* 2次元中性子輸送計算	2次元ガンマ線輸送計算	はたいまた。 はたいので、 はたいでは、 はたいで、 にたいで、 にのでいたいでいでいでいでいでいでいでいでいでいでいでいでいでいでいでいでいでいで	均質化定数計算(Beff含む) ###=+管(werfst	※が51.4、(※)だフェーン・19.36/J	燃焼スペクトル調整
		中性子反応断面積	核分裂 吸収 散乱												ID				Ħ		ם	-		_
	性応	非均質性	自己遮蔽	ŀ																				
	Ψw	中性子束分布																						
明現	子态	ガンマ線反応断面積		ľ																				
核的	光凤	ガンマ線束分布		ľ																				
	轊 訬 也	冷却材 化学組成変 化	SLC																					
	も他	三次元効果	燃焼スペクトル																					
的	以	核分裂発熱																						
大泉	****	ガンマ線発熱																						
熱的. 王	大大	冷却材密度分布	集合体内ボイド率分布 注 1																					
枚料	核反応	燃料組成	Gd燃料棒																					

注1 集合体内ボイド率分布の仮定の妥当性は、AETNAの妥当性確認(ガンマスキャン)を通して実施される。

注2

2.3 LANCR/AETNAコードの妥当性確認結果の例示 妥当性確認の網羅性確認結果の例(手順③ AETNA(核的現象))

重要な現象に対し,モデル性能評価表の妥当性確認項目において"O"が一つ以上あるかを確認した。(対応する妥当 性確認の存在を確認)

							"	-":艮	目連し	ない,	モデル ″○″	性能 : 関词	比較	表 ,"	'N/Aʻ	" : E	デル無	Ħ														ŦŦ	・ル性	能評	両表									
	\backslash						核	計算				Γ		熱水	く力計	算				その	D他		5	プラン	ト運	転実約	責によ	:る妥)	当性矿	寉認	Т	試験 妥当	。 による 性確!	5 22	ベン	チマー	の問題	題に	連続	고치	レギモン	/テカ) 当性和	ルロ計算	算等に
B\ *(;	VRの \$LAN	炉内物理現象 ICR PIRTにあるもの	重要度ランキング	中性子束計算(定常)	中性子束計算(過渡) 宣勿王」E計管	回人し 回査 燃料棒出力再構築	燃料棒燃焼度再構築	断面積モデル	燃焼履歴モデル	ミクロ燃焼モデル 酸料は南エニョ	※344曲支 こ) ル 反射体モデル	すいよう	サブクール沸騰モデル	ボイド相関式	壁面熱伝達	圧力損失	チャンネル流量配分	バイパスモデル	熟的余裕計算	沸騰遷移相関式	核計装応答	学習モデル(プロセス計算機編)	令温時臨界固有値(制御棒価値)	出力運転時臨界固有値	出力分布(TIPとの比較)	出力分布(γスキャン)	燃料棒出力分布(γスキャン)	照射後試験	MOX装荷炉心	長期停止運転	即20山20年44	チャンネル圧損試験	SPERT実験	安定性試験高次モード分布	IAEA PWRベンチマーク (定常)	_RA BWRベンチマーク (定常/過渡)	HAFAS BWRベンチマーク (定常)	LMW PWRベンチマーク (過渡)	均質円筒炉心高次モード問題	局所出力 (初装荷多濃縮度炉心)	局所出力 (MOX燃料部分炉心)	局所出刀(10X10燃料半衡炉心)	燃焼履歴問題	キャーローキャーシュンジャロチャンネル流量配分
	4	□性子増倍特性 (ノード) *	I																																									
	遁	発中性子割合 (ノード) *	L																																									
		3次元 出力分布 (定常)	Ł																																									
	佈	3 次元 高次モートガ巾(正 常)	L																																									
	5間3.	3次元 出力分布(過渡)	L																																									
	ъл	局所出力分布 *	L																																									
		局所燃焼度分布	L																																									
		制御棒価値 *	L																																									
		ボイド反応度 *	L																																									
明象		ドップラ反応度 *	L																																									
核氏	べい	ほう酸価値 *	Į.																																									
	ジー	減速材温度 *	Ł																																									
	J,	燃料減損 (ノード)	Ł																																									
		核分裂生成物反応度(ノード)	L																																									
		スクラム時 制御棒価値 *	Ļ																																									
		スクラム時 ボイド反応度 *	L																																									
	包因	制御棒履歴	L																																									
	戓体]	多種類制御棒効果	L																																									
	構	水ロッド形状	I																																									
	计装	炉内計装管応答																																										

AETNAのモデル性能比較表及び評価表(核的現象)

表中の①(SPERT実験), ②(LRA BWRベンチマーク(過渡)), ③(LMW PWRベンチマーク(過渡))では,炉心出力の時間依存応 答のみ確認している。

本資料のうち, 枠囲みの内容は機密に係る事項のため公開できません。

C

2.3 LANCR/AETNAコードの妥当性確認結果の例示 LANCRの妥当性確認結果の例 (手順③)

試験による妥当性確認の例としてBASALA臨界試験による妥当性確認結果を以下に示す。 実効増倍率及び相対出力分布 _____

実効増倍率の誤差の平均は %Δk,全試験を対象としたテストバンドル内の相対出力分布の実験値からのRMS誤差は, %であった。

ウォータロッド反応度, 減速材ボイド反応度, ガドリニア燃料棒反応度及び<u>制御棒</u>反応度

減速材ボイド反応度を除き,実験値からの不確かさは測定誤差(約____%)の範囲内で あった。減速材ボイド反応度の不確かさは____%であった。

等温温度係数

20℃~60℃での計算値は実験誤差の範囲内であり、60℃~80℃の2ケースについては実験誤差の2 σ以内で一致した。

積分ほう素価値

計算値は実験誤差の範囲内で実験値と一致した。

2.3 LANCR/AETNAコードの妥当性確認結果の例示 AETNAの妥当性確認結果の例 (手順③)

プラント運転実績による妥当性確認の例として,出力分布(ガンマスキャンとの比較)による妥当性確認の結果を以下に示す。

燃焼の進んだ高燃焼度8×8燃料と新燃料の9×9燃料を装荷したBWR 大型炉取替炉心 (炉心平均燃焼度28GWd/t) および高燃焼度8×8燃料の濃縮度多種類燃料を装荷した ABWR初装荷炉心における運転後の燃料集合体ガンマスキャン測定値(La-140 測定値)と AETNA による計算値(La-140 計算値)を比較した。

BWR 大型炉取替炉心及びABWR 初装荷炉心において, ノーダルRMS誤差は %, 径 方向 %, 軸方向 %である。測定データとの比較例は以下のとおりである。

2.3 LANCR/AETNAコードの妥当性確認結果の例示 適用範囲と妥当性確認の実施範囲の確認結果の例(手順④)

LANCRの適用範囲と、検証及び妥当性確認の実施範囲の内訳と合計範囲を以下にまとめる。検証及び妥当性確認の合計範囲は適用範囲を包絡している。

		検証及び妥当性確認範囲と内訳									
	適用範囲	右記の合計確認範囲	試験データによる 妥当性確認	公開ベンチマーク問題 による検証	連続エネルギ モンテカルロ計算 による妥当性確認						
燃料棒配列	1×1~10×10	1×1~10×10	1×1, 8×8, 9×9	1×1, 4×4, 9×9, 10×10	8×8~10×10						
²³⁵ U濃縮度	0.2~6.5 wt%	0.2~6.5 wt%	0.2~4.9 wt%	0.2~6.5 wt%	0.2~6 wt%						
Gd ₂ O ₃ 含有量	0~15 wt%	0~15 wt%	0~5 wt%	0~6 wt%	0~15 wt%						
プルトニウム含有率	0~17.2 wt%	0~17.2 wt%	0~8.7 wt%	0~17.2 wt%	0~15.5 wt%						
核分裂性 プルトニウム富化度	0~11 wt%	0~11 wt%	0~wt%	0~11 wt%	0~10.4 wt%						
燃料棒の温度	10~2300℃	10~2300 ℃	10~80 ℃	627~1527 ℃	20∼2300 ℃						
減速材ボイド率	0~100 %	0~100 %	0% (40%模擬あり)	0~70%	0~100 %						
減速材温度	10∼327 ℃	10~327 ℃	10~80 ℃	327∼327℃	20~286 ℃						
減速材中のほう素濃度	0~2230 ppm	0~2230 ppm	0~2230 ppm	0 ppm	$0{\sim}1700$ ppm						
燃焼度 (燃料集合体平均)	0~80 GWd/t	0~80 GWd/t	0 GWd/t	0~70 GWd/t	0~80 GWd/t						
制御棒吸収材	B ₄ C, ハフニウム	B ₄ C, ハフニウム	B ₄ C, ハフニウム		B ₄ C, ハフニウム						

本資料のうち,枠囲みの内容は機密に係る事項のため公開できません。

2.3 LANCR/AETNAコードの妥当性確認結果の例示 許認可解析へのLANCR/AETNAコード適用の妥当性確認(手順⑤)

島根3号炉のC/B変更に係る許認可解析では、炉心関連のパラメータについてコードに起因する不確かさ を想定し、必要と考えられる設計裕度を設定している。そのうち安全上重要と考えられる代表項目として以 下の4項目を選定し、LANCR/AETNAの不確かさ又は不確かさを積み上げた保守因子が、設計におけ る設定値を下回っていることを確認した。

これにより、LANCR/AETNAを島根3号炉C/B変更に係る許認可解析へ適用することは妥当と判断できる。

載速材ボイド係数,βeff, ノード出力、ノード燃焼度 D不確かさを積算	 %	25 %	計算コードの不確かさと取替炉心段階に 生じる不確かさも考慮
^{ミッ} プラ係数,βeff,制御 奉価値の不確かさを積算	%∆ k	0.3 %∆k	計算コードの不確かさと取替炉心段階に 生じる不確かさも考慮
/-ド出力 (AETNA)	%	5.2 %	SLMCPR評価で設定する核計算の不確 かさ
局所出力 (AETNA)	 %	3.0 %	SLMCPR評価で設定するR因子不確かさ 1.5%の2倍
まう素価値, 冷温臨界固 う値の不確かさを積算	%∆k	1.5 %∆k	SLC停止余裕評価において設定した基準 値
· 奉 ー ル ー 司 ー ま う ー	クラ麻威, peri, 南西 価値の不確かさを積算 -ド出力 (AETNA) 所出力 (AETNA) う素価値, 冷温臨界固 値の不確かさを積算	 「第二章 (AETNA) 「出力 (AETNA) 「出力 (AETNA) 「為価値, 冷温臨界固 値の不確かさを積算 「公本 	価値の不確かさを積算 0.3 %Δk 0.3 %Δk -ド出力 (AETNA) 0.3 %Δk 所出力 (AETNA) 0% 3.0 % う素価値, 冷温臨界固 値の不確かさを積算 0%Δk 1.5 %Δk

本資料のうち, 枠囲みの内容は機密に係る事項のため公開できません。