志賀原子力発電所1号炉 高経年化技術評価 (2相ステンレス鋼の熱時効)

補足説明資料

2022年10月6日 北陸電力株式会社

目 次

1.	概要	1
2.	基本方針	1
3.	評価対象と評価手法	3
3.	.1 評価対象機器・対象部位の選定 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	3
3.	.2 評価手法	8
4.	代表機器の技術評価	9
4.	.1 健全性評価	9
4.	.2 現状保全	17
4.	.3 総合評価	19
4.	.4 高経年化への対応 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
5.	代表機器以外の技術評価・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	19
6.	まとめ ・・・・・・	20
6.	.1 審査ガイド適合性 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	20
6.	.2 施設管理に関する方針として策定する事項 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	21
別紙	氏1 フェライト量算出における適用規格と化学成分量の設定について	1-1
別紙	£2 き裂進展抵抗の算出過程 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	2-1
別紙	£3 疲労き裂進展速度式の比較 ·····	3-1
別紙	モ4 き裂進展力(J _{app})の算出過程 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4-1
別紙	45 代表機器以外の機器に関する現状保全等について	5-1
別紙	氏6 評価対象外機器の熱時効への対応について ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	6-1

1. 概要

本資料は、「実用発電用原子炉の設置、運転等に関する規則」第82条第1項の規定に基づき実施 した、冷温停止状態が維持されることを前提とした高経年化技術評価のうち、2相ステンレス鋼の 熱時効の評価結果について補足説明するものである。

オーステナイト相とフェライト相の2相から成るステンレス鋳鋼は、高温状態(250 ℃以上)で 長時間使用すると、材料特性(靱性)が低下する可能性がある。この現象は、熱時効脆化と呼ばれ、 熱時効によってフェライト相中に Cr の割合の高い相(Cr リッチ相)が析出し、この析出相がフェ ライト相を硬化させることによって発生すると考えられている。

熱時効の程度は材料に含まれるフェライト量が多く,使用温度が高く,時効時間が長いほど大き くなる。また,使用条件としては,応力(荷重)が大きいほど健全性評価への影響は大きくなる。

冷温停止状態が維持されることを前提とした状態においては,熱時効が進展する可能性はないが, 熱時効により靭性が低下した場合,き裂の存在によっては,機器の健全性維持に影響があるため, 想定すべきき裂発生の有無及び熱時効による脆化の観点から,2相ステンレス鋼の熱時効について 評価を実施した。

2. 基本方針

2相ステンレス鋼の熱時効の影響が懸念される対象部位についてき裂の発生及び進展の可能性 が将来にわたって否定できない場合は、その発生又は進展に係る健全性評価を行い、「実用発電用原 子炉施設における高経年化対策審査ガイド」(以下、「審査ガイド」という。)及び「実用発電用原子 炉施設における高経年化対策実施ガイド」(以下、「実施ガイド」という。)の要求事項を満たすこと を確認する。

2相ステンレス鋼の熱時効についての要求事項を表1に整埋する。

なお、本事象は、冷温停止状態が維持されることを前提とした期間は劣化の進展が考えられない 経年劣化事象であるが、評価時点(2021年7月30日)までの劣化の発生又は進展に係る健全性評 価を実施する必要があることから、高経年化対策上着目すべき経年劣化事象として整理している。

評価にあたっては,実施ガイド3.1⑧ただし書き^{*1}に該当することから,運転開始後40年時点ま での期間における健全性を評価している。

※1:運転開始以後30年を経過する日において技術基準^{*2}に適合しないものがある場合 ※2:実用発電用原子炉及びその附属施設の技術基準に関する規則に定められる基準

1

表1 2相ステンレス鋼の熱時効についての要求事項

ガイド名	要求事項
	3. 高経年化技術評価等の審査の視点・着眼点
	(1)高経年化技術評価の審査
	 健全性の評価
	実施ガイド 3.1⑤に規定する期間の満了日までの期間について, 高経年
	化対策上着目すべき経年劣化事象の発生又は進展に係る健全性を評価して
	いることを審査する。
実用発電用原子炉	13 現状保全の評価
施設における高経	健全性評価結果から現状の保全策の妥当性が評価されていることを審査
年化対策審査ガイ	する。
ド	⑭ 追加保全策の抽出
	現状保全の評価結果から、現状保全に追加する必要のある新たな保全策
	が抽出されていることを審査する。
	(2)長期施設管理方針の審査
	 長期施設管理方針の策定
	すべての追加保全策について長期保守管理方針として策定されているか
	を審査する。
	3.1 高経年化技術評価の実施及び見直し
	(5) 抽出された高経年化対策上看目すべき経年劣化事象について、以下に規定す
	る期間の満了日までの期間について機器・構造物の健全性評価を行うととも
	に、必要に応じ現状の施設管理に追加すべき保全策(以下「追加保全策」とい
	1 美用炉規則弗82 余弗1 頃の規定に基づく高栓牛化技術評価ノフントの運
	転を開始した日から 60 年间(たたし、③ただし者の規止に該当りる場合に はプラントの運転な問題した日から 40 年間したて)
実用発電用原子炉	○ 三級年化技術評価の結果抽出された今ての追加保令等(発雲田原子炉の運転
施設における高経	① 同社中に取用計画の福米油田された主くの追加保主衆 (光電用示) がの運転 を断結的に行うことを前提として抽出されたもの及び冷泪信止骨能が維持さ
年化対策実施ガイ	と阿杭山に行うことを前近として抽曲されたものの今て)について 発雲田原子信ごと
ド	に 施設管理の項目及び当該項目 ジレの実施時期を相定」た長期施設管理方
	に, 施設官座の項口及び当該項口ここの天施所別を死足した及別施設官座の 針を第定すること
	かお「高級年化技術評価の結果抽出された追加保全策について」発電用原
	子炬の運転を断続的に行うことを前提とした評価から抽出されたものと冷温
	停止状態が維持されることを前提とした評価から抽出されたものの間で、そ
	の対象の経年劣化事象及び機器・構造物の部位が重複するものについては、
	双方の追加保全策を踏まえた保守的な長期施設管理方針を策定すること。
	ただし、冷温停止が維持されることを前提とした高経年化技術評価のみを
	行う場合はその限りではない。

- 3. 評価対象と評価手法
 - 3.1 評価対象機器・対象部位の選定

熱時効の評価対象機器・部位については,最高使用温度が250 ℃以上の機器のうち,材料が ステンレス鋳鋼の部位を「評価対象部位」として抽出した。

また,「評価対象部位」のうち,日本原子力学会「日本原子力学会標準 原子力発電所の高経年 化対策実施基準:2008」(以下,「実施基準」という。)のC.5(2相ステンレス鋼の熱時効)C.5.2 (評価対象)を基に,以下の条件に当てはまるものを「定量評価対象部位」として抽出した。 ○使用温度が 250 ℃以上

○き裂の原因となる経年劣化事象の発生が想定される

評価対象部位の抽出結果一覧表を表2に示す。評価の結果,き裂の原因として考えられる「低 サイクル疲労」については問題ないことを確認しており,評価対象部位は抽出されなかった。

しかしながら,製造時の判定基準未満となる初期欠陥が存在する可能性は否定できないこと から,念の為,保守的に初期欠陥を想定し,定量評価(き裂安定性評価)を実施し,熱時効によ る機器の健全性への影響を確認する。

定量評価を実施するにあたり,熱時効への影響が大きいと考えられる条件(発生応力及びフェ ライト量の多寡)での比較を実施し,代表の評価対象機器・部位を選定した。その結果を表3に 示す。

評価	書分類	機器名称	対象部位	最高使用 温度 (℃)	使用温度 (℃)	口径 (A)	き裂の原因とな る劣化事象*	備考
ポンプ		原子炉冷却材再循環ポン	ケーシンク	302	280	_	低サイクル疲労	疲労評価を実施し,許容値を満たすこ とを確認しており,疲労割れが評価期 間において問題となる可能性はない。
)	羽根車	302	280		_	
			ケーシンク゛リンク゛	302	280		_	
		PLRポンプ入口弁	弁箱	302	280	550	低サイクル疲労	疲労評価実施機器と比較して,条件が 同等であるため,疲労割れが評価期間 において問題となる可能性はない。
			弁ふた,弁体	302	280		—	
		PLR ポンプ出口弁 RHR 炉水入口止め弁	弁箱	302	280	550	低サイクル疲労	疲労評価を実施し,許容値を満たすこ とを確認しており,疲労割れが評価期 間において問題となる可能性はない。
	仕切弁		弁ふた、弁体	302	280		—	
			弁箱	302	280	300	低サイクル疲労	疲労評価実施機器と比較して、条件が 同等であるため、疲労割れが評価期間 において問題となる可能性はない。
			弁ふた、弁体	302	280		—	
弁		RHR 炉水戻り止め弁	弁箱	302	286	300	低サイクル疲労	疲労評価実施機器と比較して,条件が 同等であるため,疲労割れが評価期間 において問題となる可能性はない。
			弁ふた,弁体	302	286		_	
		CUW 系統入口弁	弁箱	302	285	100	低サイクル疲労	疲労評価実施機器と比較して,条件が 同等であるため,疲労割れが評価期間 において問題となる可能性はない。
			弁ふた,弁体	302	285		_	
	玉形弁	PLR ポンプブリードオフ弁	弁箱	302	250 ℃未満	20	低サイクル疲労	疲労評価実施機器と比較して,条件が 同等であるため,疲労割れが評価期間 において問題となる可能性はない。
			弁ふた	302	250 ℃未満			
	満正会	SLC 外側隔離弁	弁箱	302	250 ℃未満	40	_	
	逆 止开	SLC 内側隔離弁	弁箱	302	250 ℃未満	40		

表2(1/2) 熱時効の劣化評価に関する評価対象部位の抽出結果一覧表

*:技術評価書にて、高経年化対策上着目すべき経年劣化事象としている事象を記載する。

評価書分類	機器名称	対象部位	最高使用 温度 (℃)	使用温度 (℃)	口径 (A)	き裂の原因とな る劣化事象*	備考
	炉心スプレイスパージャ	開口部付ノズル	302	286	—	—	
	制御棒案内管	ヘ・ース	302	286	_	_	
	燃料支持金具	中央燃料支持 金具	302	286		_	
炉内傅垣物	ジ [゙] ェットホ [°] ンフ [°]	フ゛ラケット	302	286	—	_	
		ミキサ	302	286	_	_	
		デ゛ィフューサ゛	302	286	—	—	
		ライサ゛	302	286	—	_	
	制御棒	落下速度リミッタ	302	286	—	—	
機械設備	判御按顾新继续	コレットヒ゜ストン	302	250 ℃未満	_		
	前仰悻駆虭懱傋	コレットリテイナチューフ゛	302	250 ℃未満	_	_	

表2(2/2) 熱時効の劣化評価に関する評価対象部位の抽出結果一覧表

*:技術評価書にて、高経年化対策上着目すべき経年劣化事象としている事象を記載する。

сл

機器 分類	対象機器	対象部位	機器番号	フェライト量 (%)	使用温度 (℃)	発生応力* (MPa)	選定 結果
792.79	原子炉冷却材再循環	ケーシンノガ	B31-C001A	約 16.9	280	125.0	
~~ /	ポンプ		B31-C001B	約 17.8	280	120.0	
	DID ポンプネロ会	台体	B31-F001A	約 11.1	280	82.0	
	PLR ホンワ入口开	开相	B31-F001B	約 10.6	280	80.0	
	PLR ポンプ出口弁	弁箱	B31-F002A	約 11.5	280	74.0	
			B31-F002B	約 11.7	280	75.0	
弁	DIID 后来J 口止込会	-la htte	E11-F010A	約 12.5	280	114.0	
	KHK 炉水八口正©开	开相	E11-F010B	約 12.5	280	120.0	
	DUD 伝え言い止める		E11-F017A	約 18.8	286	123.0	
	KHK 炉水戻り正の开	开箱	E11-F017B	約 18.8	286	131.0	0
	CUW 系統入口弁	弁箱	G31-F001	約 12.9	285	177.0	0

表3 熱時効の代表評価対象部位の選定表

*:発生応力は,破壊に寄与する荷重である一次応力(内圧,自重,地震)に,安全側に二次応力の 熱膨張荷重を加えたものである。

表3より,評価対象部位の選定の結果,フェライト量が最も多いRHR 炉水戻り止め弁と発生応 力が最大となるCUW系統入口弁を代表評価対象部位として選定した。RHR 炉水戻り止め弁の弁箱 及びCUW系統入口弁の弁箱の評価結果を「4.代表機器の技術評価」に,それ以外の評価結果は, 「5.代表機器以外の技術評価」に示す。

また、フェライト量は表4に示す製造時の材料成分を用いて、「Standard Practice for Steel Casting, Austenitic Alloy, Estimating Ferrite Content Thereof (ASTM A800/A800M)」(以下、「ASTM A800/A800M」という。)に示される線図(図1,図2)により決定した。

计 每继空,如位	材料		化学成分(%)(製品分析)						Cra /Ni	フェライト量	
刘 豕(茂品•司)山		С	Si	Mn	Cr	Ni	Mo	Nb*	N*	Ur _e /NI _e	F (%)
RHR 炉水戻り止 め弁の弁箱	SCS16A							0.20	0.04	約 1.37	約 18.8
CUW 系統入口弁 の弁箱	SCS16A							0.20	0.04	約 1.25	約 12.9

表4 ミルシートによる材料成分

*:Nb, Nの化学成分は規格上の規定値がなく、製造時のミルシートに記載がないため、別紙1に示すとおり、NUREG/CR-4513/Revision2「Estimation of Fracture Toughness of Cast Stainless Steels during Thermal Aging in LWR Systems」(以下,「NUREG/CR-4513/Revision2」という。)の記載を参考に、Nb=0.20[%], N=0.04[%]とした。

図1 RHR 炉水戻り止め弁の弁箱のフェライト量導出図

図2 CUW系統入口弁の弁箱のフェライト量導出図

3.2 評価手法

RHR 炉水戻り止め弁の弁箱と CUW 系統入口弁の弁箱について,運転開始後 40 年時点までの供 用期間を仮定して,低下した破壊靭性(き裂進展抵抗)と想定き裂における破壊力(き裂進展力) を比較して,構造安定性を評価する。評価の流れを図3に,評価手法を以下に示す。

図3 熱時効評価の流れ

- ・実施基準にて規定されている靭性予測モデル(H3T モデル: Hyperbolic Time Temperature Toughness)を用いて、熱時効後のステンレス鋳鋼のき裂進展抵抗を予測する。本評価で用いる「S. Kawaguchi et al., "PREDICTION METHOD OF TENSILE PROPERTIES AND FRACTURE TOUGHNESS OF THERMALLY AGED CAST DUPLEX STAINLESS STEEL PIPING", ASME PVP 2005-71528」(以下,「PVP 2005-71528」という。)にて公開されたH3T モデルは、熱時効により低下するき裂進展抵抗(靭性)を予測するために開発されたものであり、複数の鋼種や製造方法の材料により取得された材料データに基づき、フェライト量から熱時効後の材料のき裂進展抵抗を予測するものである。今回の評価では保守的にばらつきの下限線(-2S)を用いて、運転開始後40年間の熱時効によるき裂進展抵抗を予測している。
- ・日本電気協会「原子力発電所配管破損防護設計技術指針 JEAG 4613-1998」(以下,「JEAG4613」 という。)及び原子炉安全基準専門部会報告書の「配管の破断に伴う「内部発生飛来物に対す る設計上の考慮」について」を参考にして,初期欠陥を設定する。

また,運転開始後40年時点までに,プラント運転によって生じる応カサイクルから,初期 欠陥が疲労き裂により進展する量を算出する。

・き裂進展力は、「DUCTILE FRACTURE HANDBOOK」EPRI NP-6301-D (1989)(以下、「HANDBOOK」という。)の volume1 1章2項2.1-2.3節のJ積分の解析解に基づき算出する。

4. 代表機器の技術評価

- 4.1 健全性評価
 - 4.1.1 き裂の原因となる経年劣化事象の評価

熱時効による靱性低下は、フェライト量が多く、使用温度が高く、時効時間が長いほど大きくなる。靱性が低下した状態でき裂が存在する場合には小さな荷重でき裂が進展し、不安定破壊を引き起こす可能性がある。RHR 炉水戻り止め弁の弁箱及び CUW 系統入口弁の弁箱の使用温度は 250 ℃以上であり、熱時効による靱性低下の可能性は否定できないが、不安定破壊の原因となるき裂が存在しなければ健全性の維持は可能である。

き裂の原因となる経年劣化事象としては、応力腐食割れ及び低サイクル疲労割れが考え られるが、ステンレス鋳鋼は、2相ステンレス組織であり、溶接等による熱影響によって鋭 敏化することがないため、応力腐食割れは発生しないものと考えられる³³ことから、当該機 器において、き裂の原因として想定される経年劣化事象は低サイクル疲労割れのみである。

低サイクル疲労割れについては、冷温停止状態が維持されることを前提とした高経年化 技術評価を実施することから、過渡条件は運転開始後40年時点までの期間を想定して設定 した。ただし、冷温停止維持状態においては、プラントの起動・停止等の熱過渡が生じない ため、運転開始後40年時点の過渡条件は、評価時点(2021年7月30日)の過渡実績とな る。従って、低サイクル疲労評価の過渡条件の繰返し回数は、評価時点(2021年7月30日) までの運転実績に基づく実績過渡回数を用いて、疲れ累積係数による評価を実施している。

評価の結果,運転開始後40年を経過するまでの期間において,疲労割れの発生が問題と なる可能性がないことを確認している。

※3:日本原子力安全推進協会「BWR 炉内構造物点検評価ガイドライン」

- 4.1.2 熱時効による脆化評価
 - (1) 評価対象期間の靭性予測

プラントの長期運転により熱時効したステンレス鋳鋼は,引張強さが増加するため材料 強度の評価上の余裕は向上するが,材料の靱性が低下する。

ここでは、靭性予測モデル(H3T モデル)を用いて、評価対象機器の使用温度で、評価時 点(2021年7月30日)までの熱時効時間(109,851 h)を想定し、き裂進展抵抗を予測 した。熱時効時間の算出過程を別紙2に示す。

評価結果であるき裂進展抵抗(破壊靭性値:J₁c,J₆)は、最小の予測値であり、算出結果を表5、算出過程を別紙2に示す。

対象機器・部位	J_{IC} (kJ/m ²)	$J_6 (kJ/m^2)$
RHR 炉水戻り止め弁の弁箱	153.0	291.8
CUW 系統入口弁の弁箱	176.3	553.5

表5 き裂進展抵抗(破壊靱性値:J_{IC}, J₆)

(2) 想定き裂の評価

初期欠陥は、JEAG4613及び「配管の破断に伴う「内部発生飛来物に対する設計上の考慮」 について」を参考^{**4}に、図4のとおり、評価対象部位の板厚(t)から初期き裂長さ(2c₀) 及び初期き裂深さ(a₀)を設定している。

図4 初期欠陥の形状

※4:想定した初期欠陥の検出性に関しては,過去に実施された国の実証事業「平成16 年度 原子力発電施設検査技術実証事業に関する報告書(超音波探傷試験におけ る欠陥検出性及びサイジング精度の確認に関するもの)」において,ステンレス鋳 鋼の深さ約0.18 t の疲労き裂を検出可能であることが確認されている。 弁箱内面に仮定した初期欠陥がプラント運転時に生じる応カサイクルにより運転開始後 40年時点までに進展する量を算出する。

き裂進展速度は,BWR 環境中を考慮した式であり,保守的な評価^{**5}となる日本機械学会 「発電用原子力設備規格 維持規格 JSME S NA1-2008」(以下,「維持規格」という。)添付 「E-2 き裂進展速度」に規定されているオーステナイト系ステンレス鋼の BWR 環境中の疲 労き裂進展速度(図 添付 E-2-FA-2)を用いて算出する。

> da/dN=8.17×10⁻¹²・ $t_r^{0.5}$ ・(ΔK)^{3.0}/(1-R)^{2.12} $\Delta K = K_{max} - K_{min}$ (R ≥ 0 の場合) $\Delta K = K_{max}$ (R < 0 の場合)

da/dN:疲労き裂進展速度 [m/cycle]
 tr :負荷上昇時間 [s]
 tr=1(tr<1の場合)
 tr=1000(trが定義できない場合)
 ΔK:応力拡大係数の変動範囲 [MPa√m]
 R:応力比(Kmin/Kmax)
 Kmin, Kmax:最大及び最小応力拡大係数 [MPa√m]

応カサイクルは、実績過渡回数に基づいて、評価時点(2021年7月30日)までを想定 したものとする。

表6,表7にRHR 炉水戻り止め弁及びCUW系統入口弁の応カサイクルを示す。

き裂進展評価の応力を算出する解析モデル上の応力値は、モデルの設計上、評価対象機 器と配管の取合い部のうちの配管側の公称板厚部の値を用いており、本評価の評価点であ る取合い部のうちの機器側の評価部位の値ではないため、評価の際は、解析モデルから算 出した膜応力及び曲げ応力に、それぞれ応力算出部位と評価部位の断面積比及び断面係数 比を補正して算出する。表6,表7では上記の点を考慮した評価部位の応力を示す。

応力拡大係数は、供用状態A, B及び地震荷重を考慮した内圧・熱応カ・曲げモーメン ト荷重を用いて算出を行う。

※5:維持規格の環境(BWR 環境中及び大気中)の異なる2つのオーステナイト系ステンレス鋼の疲労き裂進展速度式及び日本機械学会「発電用原子力設備規格 配管破損防護設計規格 JSME S ND1-2002」(以下,「配管破損防護設計規格」という。)の鋼種(オーステナイトステンレス鍛鋼及び鋳鋼)の異なる2つの疲労き裂進展速度式を比較した結果を別紙3に示す。

	证 海 友 小	迅速同粉	膜応力*2	(MPa)	曲げ応力 ^{*3} (MPa)	
	迥 伋 禾 件	迴伋凹剱	σ_{mmax}	σ_{mmin}	σ bmax	σ bmin
1	ボルト締付け	15	0.0	0.0	0.6	0.6
2	耐圧試験(最高使用圧力以下)	20	70.6	0.0	17.6	0.6
3	起動(昇温)	32	66.2	0.0	91.9	6.0
4	起動 (タービン起動)	30	75.7	66.2	105.1	85.5
5	週末低出力運転(出力 50 %)	1	75.7	66.2	85.5	85.5
6	制御棒パターン変更	61	75.7	69.4	85.5	85.5
7	給水加熱機能喪失(発電機負荷遮断)	7	75.7	75.7	117.4	93.3
8	スクラム (タービントリップ)	2	75.7	14.6	108.8	60.1
9	スクラム (その他のスクラム)	5	75.7	14.6	108.8	60.1
10	定格出力運転	21	75.7	75.7	85.5	85.5
11	停止 (タービン停止)	30	75.7	66.2	92.1	85.5
12	停止(高温待機)	31	66.2	66.2	89.8	89.8
13	停止(冷却)	31	66.2	10.7	221.2	56.4
14	停止(容器満水)	31	10.7	0.0	61.9	45.7
15	停止(満水後冷却)	31	0.0	0.0	62.7	6.0
16	ボルト取外し	15	0.0	0.0	8.2	0.6
17	燃料交換	22	0.0	0.0	0.6	0.6
18	1/3Sd地震	240*4	98.2	89.3	4.8	-4.8

表6 RHR 炉水戻り止め弁の応力サイクル*1

*1:応力サイクルにおける「膜応力」「曲げ応力」は、日本機械学会「発電用原子力設備規格 設計・ 建設規格(2005年版〔2007年追補版〕)JSME S NC1-2005/2007」(以下,「設計・建設規格」とい う。)の PPB-3532 に基づき算出する。

- *2: 膜応力は機器断面に一様に作用する応力成分のことを示し、内圧により生じる応力は膜応力に分 類する。
- *3:曲げ応力は配管の曲げモーメントにより生じる応力成分のことを示し、自重、熱膨張、地震により生じる応力は曲げモーメントにより生じる応力が支配的であることから曲げ応力に分類する。
- *4:配管破損防護設計規格を参考に設定する。

	语 液 冬 仇		膜応力*2	(MPa)	曲げ応力 ^{*3} (MPa)	
	迥 伋 禾 件	迴伋凹剱	σ_{mmax}	σ_{mmin}	σ bmax	σ bmin
1	ボルト締付け	15	0.0	0.0	0.8	0.8
2	耐圧試験(最高使用圧力以下)	20	62.1	0.0	19.5	0.8
3	起動(昇温)	32	57.5	0.0	121.0	8.1
4	起動 (タービン起動)	30	57.5	57.5	136.1	115.3
5	週末低出力運転(出力 50 %)	1	57.5	57.5	115.3	115.3
6	制御棒パターン変更	61	57.5	57.5	115.3	115.3
7	給水加熱機能喪失(発電機負荷遮断)	7	57.5	57.5	119.7	109.8
8	スクラム (タービントリップ)	2	61.6	12.8	136.1	78.2
9	スクラム (その他のスクラム)	5	57.5	12.8	136.1	78.2
10	定格出力運転	21	57.5	57.5	115.3	115.3
11	停止 (タービン停止)	30	57.5	57.5	121.2	115.3
12	停止(高温待機)	31	57.5	57.5	121.0	121.0
13	停止 (冷却)	31	57.5	9.4	121.4	74.7
14	停止(容器満水)	31	9.4	0.0	79.3	63.5
15	停止(満水後冷却)	31	0.0	0.0	63.9	8.1
16	ボルト取外し	15	0.0	0.0	11.4	0.8
17	燃料交換	22	0.0	0.0	0.8	0.8
18	定格出力運転(CUW ポンプトリップ)	7	57.5	57.5	115.3	20.8
19	1/3Sd地震	240*4	75.2	68.4	11.6	-11.6

表7 CUW 系統入口弁の応力サイクル*1

*1:応力サイクルにおける「膜応力」「曲げ応力」は、設計・建設規格の PPB-3532 に基づき算出する。

*2: 膜応力は機器断面に一様に作用する応力成分のことを示し、内圧により生じる応力は膜応力に分 類する。

*3:曲げ応力は配管の曲げモーメントにより生じる応力成分のことを示し、自重、熱膨張、地震により生じる応力は曲げモーメントにより生じる応力が支配的であることから曲げ応力に分類する。
*4:配管破損防護設計規格を参考に設定する。

(3) き裂安定性評価用想定き裂

き裂安定性評価では,安全側に評価するため,(2)項で算出した疲労き裂を貫通き裂に置 き換える。想定き裂置き換えイメージを図5に,き裂安定性評価用想定き裂を表8に示す。

図5 想定き裂置き換えイメージ

表8 き裂安定性評価用想定き裂

RHR 炉水戻り止め弁の弁箱(板厚:t=19.25 [mm])

対象機器・部位	き裂深さ (mm)	き裂半長 (mm)	備考
初期	$a_0=3.85$	c ₀ =9.63	_
評価時点 (2021 年 7 月 30 日)	a=6.75	c=11.19	$\begin{array}{c} \Delta a = 2.90 \\ \Delta c = 1.56 \end{array}$

CUW 系統入口弁の弁箱(板厚:t=7.85 [mm])

対象機器・部位	き裂深さ (mm)	き裂半長 (mm)	備考
初期	$a_0=3.00$	c ₀ =7.50	_
評価時点 (2021 年 7 月 30 日)	a=3.62	c=7.78	$\Delta a = 0.62$ $\Delta c = 0.28$

(4) き裂進展力 (J_{app})

き裂進展力は,評価部位の応力とき裂長さが初期欠陥,板厚の3/2倍,5/2倍及び き裂進展解析結果(評価時点の想定き裂)のき裂安定性評価用想定き裂(周方向貫通き裂) を用いて,HANDBOOKのZahoorのJ積分の解析解により,評価対象機器の使用温度におけ るき裂進展力を算出する。

き裂進展力の評価に用いる発生応力の詳細を表9に、き裂進展力の算出結果を表10に、 算出過程を別紙4に示す。

封角燃碧,如位	応力分類*1		一次応力		二次応力の	会計
対象機器・副性	(MPa)	自重	内圧	地震	熱膨張荷重*2	
	膜応力		36.9	_	_	$36.9 \\ (40.7) *^3$
Rnk炉水戻り止め井の井相	曲げ応力	3.6	_	15.5	74.8	93.9 (101.8) *3
	膜応力	_	28.7	_	_	$\begin{array}{c} 28.7 \\ (31.2) \end{array} *^3$
	曲げ応力	7.6		37.7	102.4	$\begin{array}{c} 147.\ 7\\ (157.\ 7) \end{array} \ ^{*3}$

表9 発生応力の詳細

*1:膜応力は機器断面に一様に作用する応力成分のことを示し、内圧により生じる応力は膜応力 に分類する。曲げ応力は配管の曲げモーメントにより生じる応力成分のことを示し、自重、 熱膨張、地震により生じる応力は曲げモーメントにより生じる応力が支配的であることから 曲げ応力に分類する。

*2:き裂進展力の算出において考慮する応力は,破壊に寄与する荷重である一次応力(内圧,自 重,地震)に,安全側に二次応力の熱膨張荷重を加えたものである。 *3:き裂進展評価の応力と同様,き裂進展力の評価に用いる応力は,解析モデルから算出した膜 応力及び曲げ応力に対し,それぞれ応力算出部位と評価部位の断面積比及び断面係数比を考 慮して算出している。表中の()内は上記の点を考慮した評価部位における発生応力を示し ている。

対象機器・部位	評価項目	初期欠陥	評価時点想定き裂 進展解析結果	き裂想定 (板厚の3/2倍)	き裂想定 (板厚の5/2倍)
RHR 炉水戻り止め弁	き裂半長 c (mm)	9.63	11. 19	28.89	48.15
の弁箱 J	き裂進展力 J _{app} (kJ/m ²)	3. 6	4.4	16.9	37.4
CUW 系統入口弁 の弁箱	き裂半長 c (mm)	7.50	7.78	11.78	19.63
	き裂進展力 J _{app} (kJ/m ²)	34.3	36.5	72.8	159.6

表 10 き裂進展力 (Japp)

(5) 破壊力学による健全性の評価

き裂安定性評価用想定き裂及び靱性予測モデルを用いて決定した評価対象部位の熱時効後の材料のき裂進展抵抗(J_{mat})と構造系に与えられた応力(一次応力である内圧,自重, 地震の応力値に二次応力の熱膨張荷重による応力値を加えたもの)とき裂形状から算出されるき裂進展力(J_{ap})を求めて,その比較を行う。

図6にRHR 炉水戻り止め弁のき裂安定性評価結果,図7にCUW系統入口弁のき裂安定性評価結果を示す。

評価の結果,き裂進展抵抗がき裂進展力と交差し,き裂進展抵抗がき裂進展力を上回る こと及びき裂進展抵抗とき裂進展力の交点でき裂進展抵抗の傾きがき裂進展力の傾きを上 回ることから,RHR 炉水戻り止め弁の弁箱及び CUW 系統入口弁の弁箱は不安定破壊するこ とはない。

したがって,RHR 炉水戻り止め弁の弁箱及び CUW 系統入口弁の弁箱の熱時効は健全性評価上問題ない。

図6 RHR 炉水戻り止め弁の弁箱のき裂安定性評価結果

図7 CUW 系統入口弁の弁箱のき裂安定性評価結果

4.2 現状保全

RHR 炉水戻り止め弁の弁箱及び CUW 系統入口弁の弁箱については,表 11 に示すとおり,製造時に放射線透過試験及び浸透探傷試験を実施しており,有意な欠陥がないことを確認している。

対象機器	対象部位	検査方法	判定基準	判定
RHR 炉水戻り止め弁	弁箱	放射線透過試験	告示第 501 号 JIS G 0581 JIS Z 3104 (溶接開先部)	合格
		浸透探傷試験	告示第 501 号	合格
CUW 系統入口弁	弁箱	浸透探傷試験	告示第 501 号	合格

表 11 代表機器の製造時検査方法及び結果

現状保全としては、分解点検時の目視点検及び浸透探傷試験により、異常のないことを確認し ている。また、クラス1機器供用期間中検査として日本機械学会「発電用原子力設備規格 維持 規格 JSME S NA1」に基づき、定期的に溶接部の超音波探傷試験又は浸透探傷試験を実施してい る。現在までの検査で異常のないことを確認しており、これまでに補修した実績はない。至近の 検査結果を表 12 に示す。

対象機器	検査部位	検査方法	検査種別	判定基準	定期検査	判定
	弁箱の内面	目視点検	分解点検	社内基準*1	13 回	合格
RHR 炉水戻り止 め弁	シート面	浸透探傷試験	分解点検	設計・建設規格 (JSME S NC1-2005/2007) 溶接規格 (JSME S NB1- 2007)	13 回	合格
	弁本体の内 表面	目視点検	供用期間中 検査	維持規格 (JSME S NA1- 2008) VT-3	13 回	合格
	弁箱と配管 の溶接部	超音波探傷試験	供用期間中 検査	電気工作物の溶接の技 術基準の解釈	7 回	合格
CUW 系統入口弁	弁箱の内面	目視点検	分解点検	社内基準*1	13 回	合格
	シート面	浸透探傷試験	分解点検	設計・建設規格 (JSME S NC1-2005/2007) 溶接規格 (JSME S NB1- 2007)	13 回	合格
	弁箱と配管 の溶接部	超音波探傷試験	供用期間中 検査	維持規格(JSME S NA1- 2002) NISA 文書 ^{*2}	10 回	合格
	弁箱と配管 の溶接部	浸透探傷試験	供用期間中 検査	維持規格 (JSME S NA1- 2008)	13 回	合格

表 12 代表機器の現状保全

*1:著しい損傷・減肉・腐食・摩耗等の無いこと

^{*2:}発電用原子力設備における破壊を引き起こすき裂その他の欠陥の解釈について(平成18年3月 23日付け平成18・03・20原院第2号)

4.3 総合評価

健全性評価結果から,現時点の知見においては,2相ステンレス鋼の熱時効は高経年化対策上 問題となる可能性はないと考える。

また,現状保全において,目視点検,浸透探傷試験及び超音波探傷試験を実施し,異常のない ことを確認しており,冷温停止維持状態においては,有意な熱過渡はなく,今後のき裂の原因と なる疲労割れの発生・進展する可能性はないことから,熱時効が高経年化対策上問題となる可能 性はないと判断する。

4.4 高経年化への対応

RHR 炉水戻り止め弁の弁箱及び CUW 系統入口弁の弁箱の熱時効に対しては、高経年化対策の観点から現状の保全内容に追加すべき項目はなく、今後も現状保全を継続していく。

5. 代表機器以外の技術評価

表2に示す機器のうち、使用温度が250 ℃以上となる機器について評価を行った。

き裂の原因となる低サイクル疲労割れが想定される機器は、低サイクル疲労評価機器の評価に包 含され、低サイクル疲労割れが評価期間において問題となる可能性はないと評価する。

また,その他の機器については,き裂の原因となる経年劣化事象が想定されないことから,熱時 効が問題となる可能性はないと評価する。なお,冷温停止維持状態において熱時効は進展すること がない事象である。

別紙5に対象機器の製造時検査及び現状保全について,別紙6に評価対象外機器の熱時効への対応を記載する。

6. まとめ

6.1 審査ガイド適合性

「2. 基本方針」で示した要求事項について技術評価を行った結果,すべての要求を満足して おり,審査ガイドに適合していることを確認した。熱時効についての要求事項との対比を表 13 に示す。

表 13	熱時効につい	ての要求事項。	レの対比
- J			

エノドク	五十年四	壮华莎伊什里	
ガイ下名	安水争坦	这你評価結果 	
	3. 局経年化技術評価等の審査の視点・者眼点	4.1の「健全性評価」に示す	
	(1)局栓牛化技術評価の番笛	とわり、代衣機畚じめる RHK	
	(U) 健全性の評価 実施ガイド 9.1 ©に相字ナズ 期間の速了日までの期	炉水戻り止め井の井相及び	
	夫旭ルイト 3.10に規止りる労间の個丁日までの労 問について、 言奴年化対策上美日才ぶき奴年少ル東角	CUW 糸統入口井の井相につい て) 軍転開始後 40 年時点な相	
	间について、 同社十七対東上有日 り ~ ご	く運転開始後 40 平時点を忘 定した健全研証価を実施し	
	の光生人は進展に休る健主性を計画していることを審	た。	
中田 秋 東 田 西 フ	·····································	4.2の「現状保全」に示すと	
夫用 死 电 用 尿 丁 「 広 む い た い よ ス	④ 先代床主の計画 健全性証価結果から現状の保全策の妥当性が評価さ	おり、現状保全の評価結果か	
ア旭0にわける 直級年化対策案	れていることを案査する。	ら,現状の保全策が妥当であ	
向 座 干 に 刈 泉 番 杏 ガ イ ド		ることを確認した。	
±./• 1 1	(4) 追加保全策の抽出		
	現状保全の評価結果から、現状保全に追加する必要	4.4の「高経年化への対応」	
	のめる新たな保全東が抽出されていることを番査す	に示すとおり,現状保全項目	
		に高経年化対策の観点から追	
	(2) 長期施設官埋力針の番査	加すべきものはないと判断し	
	① 大規胞設官理力町の東正 すべての迫加促合等について目期保空等理士をしい	た。	
	97~~の迫加休生束について文朔休寸官理力釘とし て策定されているかを案本する		
	3.1 高級生化技術評価の実施及び見直し		
	 5.1 同程中に反応計画の実施及び発展して (5) 抽出された高経年化対策上着日すべき経年劣化事象につ 		
	いて、以下に規定する期間の満了日までの期間について機		
	器・構造物の健全性評価を行うとともに、必要に応じ現状		
	の施設管理に追加すべき保全策(以下「追加保全策」とい		
	う。)を抽出すること。		
	イ 実用炉規則第 82 条第 1 項の規定に基づく高経年化技		
	術評価プラントの運転を開始した日から 60 年間(ただ		
	し、⑧ただし書の規定に該当する場合にはプラントの		
	運転を開始した日から 40 年間とする。)		
	3.2 長期施設管理方針の策定及び変更	4.4の「喜経年化への対応」	
実用発電用原子	 高経年化技術評価の結果抽出された全ての追加保全策(発 	に示すとおり 現状保全項目	
炉施設における	電用原子炉の運転を断続的に行うことを前提として抽出	に高級年化対策の組占から追	
高経年化対策実	されたもの及び冷温停止状態が維持されることを前提と	加すべきものけないと判断し	
施ガイド	して抽出されたものの全て。)について、発電用原子炉ご	to	
	とに,施設管理の項目及び当該項目ごとの実施時期を規定		
	した長期施設管理方針を策定すること。		
	なお、高経年化技術評価の結果抽出された追加保全策		
	について、発電用原子炉の連転を断続的に行うことを削		
	徒としに評価から抽出されたものと行温停止状態か維持 されてこした 売損しした 認知から 抽出されたきのの問		
	されることを削促としに詳価かり拙田されたものの間で、その対角の奴年少ル東角五が地里・堪浩楠の如臣が重		
	く、ての対象の程中为11事家及い機器・博垣物の部型が里 指するものについてけ、翌古の追加児会等を欧まった伊		
	はりつしつについては、		
	ただし、冷温停止が維持されることを前提とした高級		
	年化技術評価のみを行う場合はその限りではない。		

6.2 施設管理に関する方針として策定する事項熱時効に関する評価において、施設管理に関する方針は抽出されなかった。

別 紙

- 別紙1 フェライト量算出における適用規格と化学成分量の設定について
- 別紙2 き裂進展抵抗の算出過程
- 別紙3 疲労き裂進展速度式の比較
- 別紙4 き裂進展力(J_{app})の算出過程
- 別紙5 代表機器以外の機器に関する現状保全等について
- 別紙6 評価対象外機器の熱時効への対応について

別紙1 フェライト量算出における適用規格と化学成分量の設定について

熱時効によるき裂進展抵抗を予測する上で必要となるフェライト量の算出について,適用規格及び 化学成分量の設定方法について以下に整理する。

1. 適用規格

き裂進展抵抗の予測は、日本原子力学会「日本原子力学会標準 原子力発電所の高経年化対策実施 基準:2015」に記載のある PVP2005-71528 に従って実施した。PVP2005-71528 では、材料の破壊靭 性試験結果と ASTM A800/A800M により算出されたフェライト量の関係から、破壊靭性予測式の定数 を決定している。

このため、志賀原子力発電所1号炉の評価では、ASTM A800/A800Mに基づき、フェライト量を算出した。

2. 化学成分量の設定について

フェライト量算出に使用する化学成分量については、基本的にミルシートに記載される化学成分 量を使用した。しかしながら、Nb 及びN については、ミルシートに化学成分量に関する記載がない ことから、以下の考え方で値を設定し、フェライト量を算出した。

(1) Nb の含有量について

設定值:Nb=0.20 [wt%]

【設定根拠】

ASTM A800/A800M には、Nb の設定について記載がない。このため、NUREG/CR-4513/Revision2の2.2.2.2.ASTM 800/800M Methodology に「Nb=0.20 %とした場合、フ ェライト量の推定値は、フェライト量5 %の材料については、約 7 %高く、フェライト 量 30 %の材料では約 4 %高く見積もられる。」と記載されていることから、本記載を参 考とし、保守的に Nb=0.20 wt%とした。

(2) N の含有量について

設定值:N=0.04 [wt%]

【設定根拠】

ASTM A800/A800Mの7. Estimation of Ferrite Content に「Nについては、類似材料の データが多く得られている場合、その平均値を報告することができる。」と記載されている ことから、NUREG/CR-4513/Revison2のAPPENDIX A MATERIAL INFORMATIONに記載されるス テンレス鋳鋼の化学成分量を参考とした。これらの値を確認した結果、表1のとおり、N含 有量の平均値は、材料全体で 0.047 wt%、評価対象機器の使用材料である A351 Gr. CF-3M (SCS16A 相当材) で 0.043 %であり、いずれも 0.04~0.05 の値となった。N の値は小さく なるとフェライト量が大きくなる傾向にあるため、保守的に N=0.04 wt%とした。

材料(相当する JIS 材)	サンプル数	平均值 (wt%)
A351 Gr.CF-3M (SCS16A)	6	0.043
全体		
[A351 Gr.CF-8 (SCS13A), A351 Gr.CF-8M (SCS14A),	112	0.047
A351 Gr.CF-3M (SCS16A), A351 Gr.CF-3 (SCS19A)]		

表1 NUREG/CR-4513/Revision2 に記載される材料のN含有量

熱時効脆化により低下するステンレス鋳鋼のき裂進展抵抗(破壊靭性値)を予測する式として,以下に示す H3T モデルがある。

$$M = A + \frac{B}{t+C}$$

M:熱時効時間 t 後の破壊靭性値 [kJ/m²]

 $(J_{IC}: 延性き裂が成長を始める破壊靭性値, J_6: \Delta a = 6 mm における破壊靭性値) A: 熱時効時間無限大での破壊靭性値 <math>[kJ/m^2]$

- B:熱時効温度に関連する定数
- t:熱時効時間[h]
- C:熱時効時間に関連する定数
- **Δ**a:き裂進展量 [mm]

H3T モデルの定数A, B, Cの評価手法として参照した PVP2005-71528 の文献では、フェライト量の異なるステンレス鋳鋼の機械的特性試験や破壊靭性試験結果を基に、任意の運転温度における長時間熱時効後のき裂進展抵抗(破壊靭性値)を化学成分及びフェライト量から予測する以下の H3T モデルが提唱されている。

$$M_{K} = A + \frac{B_{i} \exp \left[\frac{Q}{R}\left(\frac{1}{T_{k}} - \frac{1}{T_{i}}\right)\right]}{t + \left(t_{Fi} + C_{i}\right) \exp \left[\frac{Q}{R}\left(\frac{1}{T_{k}} - \frac{1}{T_{i}}\right)\right] - t_{Fi} \exp \left[\frac{F}{R}\left(\frac{1}{T_{k}} - \frac{1}{T_{i}}\right)\right]}$$

MK:熱時効時間 t 後の破壊靭性値 [kJ/m²]

 $(J_{IC}:$ 延性き裂が成長を始める破壊靭性値, $J_6: \Delta a = 6$ mm における破壊靭性値)

- A:熱時効時間無限大での破壊靭性値 [kJ/m²]
- B_i:温度T_i(325 ℃)における熱時効温度に関連する定数

t:熱時効時間[h]

- T_k:評価対象の使用温度[K]
- t_{Fi}, t_{Fi}+C_i:温度 T_i (325 ℃) における時間定数
- Q, F:活性化エネルギー [kJ/mol] (=100 kJ/mol)
- R:定数 [kJ/ (mol・K)] (=0.008368 kJ/mol・K)
- Δa:き裂進展量 [mm]

破壊靱性値 M_K (J_{IC}, J₆)の予測式 (H3T モデル)の定数(A, B_i, t_{Fi}, t_{Fi}+C_i)を表1に示す。

表1 H3T モデルの定数 (325 ℃)

		Predicted equat	S	
	А	Log ₁₀ (A of CV-RT)=	2.2818 -0.0472×F%	0.1411
CVPT	B325	Log ₁₀ B ₃₂₅ =	6.0909 -0.2861×Mo	0.2621
(Charpy absorbed energy(J) at RT	t _{F325}	$Log_{10} t_{F325} =$	10.7270 -0.4720×Cr +0.2846×Ni -13.9003×N	0.1124
	(t _F +C) ₃₂₅	$Log_{10} (t_F + C)_{325} =$	3.9369 -0.3784×Mo	0.1597
	А	Log ₁₀ (A of CV-HT)=	2.8357 -0.0592×F%	0.1638
CV-HT (Charpy	B ₃₂₅	Log ₁₀ B ₃₂₅ =	8.5909 +2.4273×Mn -0.4328×Ni	0.1606
absorbed energy at 325°C)	t _{F325}	Log ₁₀ t _{F325} =	22.8968 -2.0122×Mn -0.8227×Cr -23.0802×C	0.0743
	(t _F + C) ₃₂₅	$Log_{10} (t_F + C)_{325} =$	4.9882 -0.4121×Mo	0.1454
	А	Log ₁₀ (A of J _{le} -HT)=	3.2961 -0.0530×F%	0.2518
J _{le} -HT (L. at 325℃	B ₃₂₅	Log ₁₀ B ₃₂₅ =	5.7869 +0.9256×Mn	0.1514
(J _{le} at 525 C, kJ/m ²)	t _{F325}	Log ₁₀ t _{F325} =	4.3047 -19.1095×N	0.2732
	(t _F + C) ₃₂₅	Log ₁₀ (t _F +C) ₃₂₅ =	1.5354 +0.2062×Ni	0.1417
	Α	Log ₁₀ (A of J ₆ -HT)=	3.6699 -0.0490×F%	0.1490
J ₆ -HT (J ₆ at 325°C, kJ/m^2) J ₆ :J value at Δa	B ₃₂₅	Log ₁₀ B ₃₂₅ =	-1.7907 +0.4130×Cr	0.1783
	t _{F325}	Log ₁₀ t _{F325} =	7.6362 -0.3670×Ni -16.108×N	0.0892
onun	(t _F + C) ₃₂₅	Log ₁₀ (t _F +C) ₃₂₅ =	-2.9645 +0.3438×Cr -0.1648×Mo	0.0702

Table 3Constants of Fully Aged Toughness Prediction Model
when the Operating Temperature is 325°C (H3T Model)

note) F% : Ferrite content(%) by ASTM A800 diagram. C, Si, Mn, Cr, Ni, Mo, N (wt%) S:標準偏差

熱時効時間は、評価時点(2021年7月30日)の運転時間を想定し、以下のとおり算出した。

<評価時点(2021年7月30日)のEFPH>

= (2021 年7月30日時点の総運転時間)

=109,851 (h) (約 12.54 EFPY)

また,H3T モデルでは表1のとおり,各定数の標準偏差Sが報告されている。本評価においても標 準偏差の2倍(-2S)を考慮し,表2のとおり,評価時点(2021年7月30日)における破壊靭性値 (J_{IC},J₆)の最小予測値を算出した。

	J_{IC} (kJ/m ²)	J ₆ (kJ∕m ²)			
RHR 炉水戻り止め弁の弁箱	153.0	291.8			
CUW 系統入口弁の弁箱	176.3	553. 5			

表 2 破壊靭性値 (J_{IC}, J₆)

別紙3 疲労き裂進展速度式の比較

2相ステンレス鋼の熱時効のき裂進展評価における疲労き裂進展速度の式に関して、志賀原子力発 電所1号炉の評価対象機器・部位及び使用環境への適用性を考慮し、保守的である式を検討した。

1. 維持規格の環境(BWR 環境中,大気中)の異なるき裂進展速度式

維持規格の添付 E-2 において,オーステナイト系ステンレス鋼(鍛鋼)の「①BWR 環境中(図添 付 E-2-FA-2)」及び「②大気中(図添付 E-2-FA-1)」の疲労き裂進展速度式が規定されている。

2. 配管破損防護設計規格の鋼種(鍛鋼,鋳鋼)の異なるき裂進展速度式

配管破損防護設計規格解説 添付 5-4 において,「③オーステナイト系ステンレス鍛鋼(図解説添付 5-4-2)」及び「④ステンレス鋳鋼(図解説添付 5-4-3)」のき裂進展速度式が規定されている。

上記の①~④の式を応力比(R=0.7)の条件で比較した結果,①>③>④>②となった。以上より、本評価では、BWR 環境中を考慮しており、保守的な評価となる①の維持規格のオーステナイト系ステンレス鋼のBWR 環境中の疲労き裂進展速度式を用いてき裂進展評価を実施する。

き裂進展力 (J_{app}) は, HANDBOOK の Zahoor の J 積分の解析解により算出しており, volumel 1章 2項 2.1~2.3節のうち主に, 2.3節 Combined Tension and Bending (P2-17, 2-18) にある以下の式を用いて算出する。

$$\begin{split} & J = f_{t} \frac{P^{2}}{4Rt^{2}E} + f_{b} \frac{M^{2}}{R^{3}t^{2}E} + \alpha \sigma_{0} \varepsilon_{0} R(\pi - \theta)(\theta / \pi) h_{1}(P / P_{0}')^{n+1} \\ & P_{0}' = 0.5 \left[-\lambda \frac{RP_{0}^{2}}{M_{0}} + \left\{ \left(\lambda \frac{RP_{0}^{2}}{M_{0}} \right)^{2} + 4P_{0}^{2} \right\}^{0.5} \right] \\ & \lambda = \frac{M}{PR} \\ & P_{0} = 2 \sigma_{0} Rt \left[\pi - \theta - 2 \sin^{-1} \left(\frac{1}{2} \sin \theta \right) \right] \\ & M_{0} = 4 \sigma_{0} R^{2} t \left[\cos \frac{\theta}{2} - \left(\frac{1}{2} \sin \theta \right) \right] \\ & f_{t} = \left(\theta_{e} / \pi \right) \left\{ 1 + A \left[5.3303 \left(\theta_{e} / \pi \right)^{1.5} + 18.773 \left(\theta_{e} / \pi \right)^{4.24} \right] \right\}^{2} \\ & f_{b} = \left(\theta_{e} / \pi \right) \left\{ 1 + A \left[4.5967 \left(\theta_{e} / \pi \right)^{1.5} + 2.6422 \left(\theta_{e} / \pi \right)^{4.24} \right] \right\}^{2} \\ & \theta_{e} = \theta \left[1 + \left(\frac{1}{\beta} \right) \left(\frac{n-1}{n+1} \right) \left(\frac{\sigma_{1}F_{t} + \sigma_{b}F_{b}}{\sigma_{0}} \right)^{2} / \left\{ 1 + \left(\frac{P}{P_{0}'} \right)^{2} \right\} \right] \\ & \sigma_{t} = \frac{P}{2\pi R t} \\ & \sigma_{b} = \frac{M}{\pi R^{2} t} \\ F_{t} = 1 + A \left[5.3303 \left(\theta / \pi \right)^{1.5} + 18.773 \left(\theta / \pi \right)^{4.24} \right] \\ & F_{b} = 1 + A \left[4.5967 \left(\theta / \pi \right)^{1.5} + 2.6422 \left(\theta / \pi \right)^{4.24} \right] \\ & A = \left\{ \begin{bmatrix} 0.125 (R/t) - 0.25 \end{bmatrix}^{0.25} , \text{ for } 5 \leq R/t \leq 10 \\ \begin{bmatrix} 0.4 (R/t) - 3.0 \end{bmatrix}^{0.25} \right\} \end{split}$$

(F_t, F_b, Aはそれぞれ HANDBOOK volume1 1章2項の2.1節 Axial Tension (P2-1)及び2.2節 Bending Moment (P2-9)の値を使用する。)

なお、同解法における定数 α 及び加工硬化指数 n は、Ramberg-Osgood の応力-ひずみ関係において下記のとおり与えられる。

$$\varepsilon / \varepsilon_0 = \sigma / \sigma_0 + \alpha (\sigma / \sigma_0)^n$$

 $\alpha = -0.011 \sigma_f + 6.054$
 $n = -0.005 \sigma_f + 6.763$

ここで σ_{f} は時効材の流動応力であり、下記のとおり未時効材の流動応力 $\sigma_{f(0)}$ に熱時効の影響を 考慮することにより求まる。

σ_{f(0)}はH3Tモデルにある以下の予測式を用いて算出する。

σ_{f(0)}=105. 472+6. 96F+16. 062Mo+1535. 398C

F:フェライト量 [%], Mo:モリブデン重量組成 [wt%], C:炭素重量組成 [wt%]

$$\sigma_{f} = \sigma_{f(0)} \left\{ \frac{1+1.\ 161}{2} - \frac{1-1.\ 161}{2} \times \tanh\left(\frac{P(t,\ T)-2.\ 996}{0.\ 929}\right) \right\} \quad \cdot \quad \cdot \quad (F \ [\%] \ <23 \ [\%])$$

$$\sigma_{f} = \sigma_{f(0)} \left\{ \frac{1+1.\ 247}{2} - \frac{1-1.\ 247}{2} \times \tanh\left(\frac{P(t,\ T)-3.\ 148}{0.\ 919}\right) \right\} \quad \cdot \quad \cdot \quad (F \ [\%] \ \ge23 \ [\%])$$

$$P(t,\ T) = \log t \ +0.\ 4343 \frac{Q}{R} \left(\frac{1}{673.\ 2} - \frac{1}{T}\right)$$

さらに、Zahoorの解析解における σ_0 は時効硬化を考慮した 0.2 %耐力を用いる。未時効材の 0.2 %耐力 σ_{y0} は、H3T モデルにある以下の予測式を用いて算出した。 σ_0 は、 σ_{y0} に熱時効の影響を考慮し、下記のとおり算出する。

$$\sigma_{y(0)} = 6.653 + 5.385F + 10.007Mo + 1535.385C$$

$$\sigma_{0} = \sigma_{y(0)} \left\{ \frac{1+1.071}{2} - \frac{1-1.071}{2} \times \tanh\left(\frac{P(t, T) - 1.617}{0.916}\right) \right\} \cdot \cdot \cdot (F [\%] < 23 [\%])$$

$$\sigma_{0} = \sigma_{y(0)} \left\{ \frac{1+1.144}{2} - \frac{1-1.144}{2} \times \tanh\left(\frac{P(t, T) - 3.02}{1.462}\right) \right\} \cdot \cdot \cdot (F [\%] \ge 23 [\%])$$

Japp 算出に使用した値と記号の説明を表1に示す。

	J _{app} 算出に使用した パラメータ	評価対象	J _{app} 算出に 使用する値	単位	備考
+	七回	1	19.25	mm	
t	1汉/子	2	7.85	111111	1200极序
Ro	从坐容	1	159.60	mm	①の外径 319.2÷2
IX0	77千任	2	57.3	111111	②の外径 114.6÷2
R.	内坐容	1	140.35	mm	$P_{1} - P_{2} - t$
R ₁	P J 丁 庄	2	49.45	111111	
R	亚均平汉	1	149.975	mm	$P - P_{-} - t / 2$
K	十均十任	2	53.375	111111	$\mathbf{K} = \mathbf{K}_0 = \mathbf{U} \neq \mathbf{Z}$
G	動士向ドカ	1	40.7	MDo	_
0 t	単田ノノ「円」ルンノ」	2	31.2	Mra	
<i>G</i> .	手法子士	1	101.8	MDa	
U b		2	157.7	мга	_
G	土味為社のAo0/ あも	1	160.81	MD-	H3T モデルにある予測式から求
0 y0	不时刻材070.2%时月	2	128.01	мга	めたもの
C.		1	172.03	MD-	σ _{y0} に熱時効の影響を考慮した
0 0	0.2 %101/1	2	136.94	мга	もの
	000/副士のひざひ	1	9.89 $\times 10^{-4}$		E
٤ ٥	0.2 % 順力ののすみ	2	7.87 $ imes$ 10 ⁻⁴		$\varepsilon_0 = \sigma_0 \nearrow E$
	土吐井を注動にも	1	302.65	10D	H3T モデルにある予測式から求
O f(0)	木時刻材の流動応力	2	259.98	мра	めたもの
	法利亡士	1	338.45	MD -	σ _{f(0)} に熱時効の影響を考慮し
O f	(元男川心ノ」	2	290. 43	мга	たもの
		1	2.33		Ramberg-Osgood の応力-ひずみ
ά	上级	2	2.86		関係における定数
n	加工西化长粉	1	5.071		Ramberg-Osgood の応力-ひずみ
11	加工被们胡数	2	5. 311		関係における加工硬化指数
ß	<u> </u>	1	2		亚五ハポルの建工字粉
β	桶正足剱	2	2		千面のすみの補正足数
F	纷强时代 粉	1	1.74×10^{5}	MDa	UPT エデル文計店
Ľ	和印中1生1术数	2	1.74×10^{5}	мга	1131 モノル文献値
р		1	738284	NT	
Г	11111111111111111111111111111111111111	2	82138	IN	$P - 2\pi Kt \times \sigma_t$
м	曲げた マンパ	1	138473326	N	$M - D^2 + M =$
IVI	囲りモーメント	2	11079674	IN • mm	$M = \pi K^{-} t \times \sigma_{b}$
ı	軸力と曲げモーメント	1	1.251		
r	の比率	2	2.527		$\lambda - M / PK$

表1 Jap 算出に使用した値と記号の説明

①:RHR 炉水戻り止め弁の弁箱

②: CUW 系統入口弁の弁箱

また、 h_1 については HANDBOOK の選定表から θ / π 、 $\lambda / (1 + \lambda)$ 、n、R/tの値を用いて設定している。 h_1 選定表は、特定の上記パラメータ値に対して h_1 の値を示しているため、そのうち、 $\lambda /$

(1+ λ), nについては線形補間により各 θ / π に対応する h₁を求めている。その後, θ / π と h₁の関係を,評価時点(2021年7月30日)のき裂長さにおいて保守的になるよう多項式近似し,評価対象機器の θ / π に対応する h₁を設定し,評価を行っている。

なお,評価対象機器の R/t は約6~8であることを踏まえ, R/t=10 における h_1 選定表を用いて h_1 の値を設定している。これは, R/t が大きくなる(薄肉になる) ほど, h_1 が大きくなる傾向が 2.1 節及び 2.2 節から読み取れることから, h_1 が大きいほど J_{app} も大きくなることを考慮し,保守的な評価とするためである。

き裂長さを初期欠陥,評価時点想定き裂,板厚の3/2倍,5/2倍としたときの各き裂における J_{app}を表2に示す。

J _{app} 算出は	こ使用した値	単位	評価対象	評価用 初期欠陥	評価時点想定き 裂進展解析結果	き裂想定 (板厚の3/2倍)	き裂想定 (板厚の5/2倍)
	オアロルド		1	9.63	11.19	28.89	48.15
с	さ殺于女	mm	2	7.50	7.78	11. 78	19.63
0 /	き裂の角度		1)	0.020	0.024	0.061	0.102
θ / π C/ (π R	C/ (π R _i)	_	2	0.045	0.046	0.070	0.117
1	<u>→</u> ¥4.		1)	7.368	8. 188	12.380	11.098
h1	正奴	_	2	10.561	10.681	11.114	8.316
т	た刻と世界上	1 T / 2	1)	3.6	4.4	16.9	37.4
J app	さ裂進展刀	KJ∕m²	2	34.3	36.5	72.8	159.6

表2 き裂安定性評価用想定き裂における Jam 算出について

①:RHR炉水戻り止め弁の弁箱

②:CUW系統入口弁の弁箱

別紙5 代表機器以外の機器に関する現状保全等について

熱時効の健全性評価において、代表機器以外の機器に関して、以下の理由から、評価時点(2021年7月30日)でき裂は存在せず、今後もき裂は発生しないと評価した。

・製造時の検査又は現状保全において、き裂がないことを確認している。

- ・ステンレス鋳鋼は、2相ステンレス組織であり、溶接等による熱影響によって鋭敏化することが ないため、応力腐食割れは発生しないものと考えられる*。
- ・低サイクル疲労割れについては、プラントの起動・停止時等に受ける温度・圧力変化により大き な応力を受ける機器について、建設時に工事計画認可にて評価を実施しており、技術評価におい ても代表機器の評価を実施し、許容値を満たすことを確認している。

その他の機器については、工事計画認可時の評価対象ではなく、また、疲労評価上、プラントの起動・停止時等に温度・圧力の影響が代表機器よりも厳しくないことから、低サイクル疲労割れが評価 期間において問題となる可能性はない。

※:日本原子力安全推進協会「BWR 炉内構造物点検評価ガイドライン」

以下に,代表機器以外の機器において「き裂の原因となる経年劣化事象が想定される部位」及び「き 裂の原因となる経年劣化事象が想定されない部位」の対応について示す。

1. き裂の原因となる経年劣化事象が想定される部位の対応

(1) 原子炉冷却材再循環ポンプのケーシングについて

原子炉冷却材再循環ポンプのケーシングは,表1に示すとおり,製造時の検査及び現状保全 を実施し,異常がないことを確認している。

また,低サイクル疲労割れについては,プラントの起動・停止時等に受ける温度・圧力変化 により大きな応力を受ける部位として,高経年化技術評価書の代表機器について運転開始後40 年時点を想定した評価を実施しており,許容値を満たしていることから,低サイクル疲労割れ が評価期間において問題となる可能性はない。

以上より,熱時効は想定されるが,そのことが機器の健全性に影響を与える可能性はないと 評価する。

機種 分類	機器名称	対象部位	製造時の検査及び 判定基準*	現状保全及び 判定基準*	判定
ポンプ	原子炉冷却材 再循環ポンプ	ケーシング	 ・放射線透過試験:① ・浸透探傷試験:①2 	 ・浸透探傷試験:34 ・超音波探傷試験:56 ・目視点検:78 	合格

表1 原子炉冷却材再循環ポンプのケーシングの製造時の検査及び現状保全

*:製造時の検査及び現状保全の判定基準を以下に示す。

①告示第 501 号

②電気工作物の溶接に関する技術基準を定める省令 通商産業省令第81号 ③電気工作物の溶接に関する技術基準 ④発電用原子力設備に関する構造等の技術基準

⑤発電用原子力設備における破壊を引き起こすき裂その他の欠陥の解釈について(平成 18 年 3 月 23 日付け平成 18・03・20 原院第 2 号)

⑥溶接規格 (JSME S NB1)

⑦社内基準: 錆・傷・その他著しい損傷のないこと。

⑧維持規格 (JSME S NA1) VT-3

(2) 仕切弁の弁箱について

各弁の弁箱は,表2に示すとおり,製造時の検査及び現状保全を実施し,異常がないことを 確認している。

また,低サイクル疲労割れについては,プラントの起動・停止時等に受ける温度・圧力変化 により大きな応力を受ける部位として,高経年化技術評価書の代表機器である PLR ポンプ出口 弁の弁箱について運転開始後 40 年時点を想定した評価を実施しており,許容値を満足してい ることから,低サイクル疲労割れが評価期間において問題となる可能性はない。

以上より,熱時効は想定されるものの,そのことが機器の健全性に影響を与える可能性はな いと評価する。

機種 分類	機器名称	対象 部位	製造時の検査及び 判定基準*	現状保全及び 判定基準*	判定
	PLRポンプ入口弁	弁箱	 ・放射線透過試験:12 ・浸透探傷試験:12 	 ・供用期間中検査:56 ・目視点検:7 ・浸透探傷試験:89 	合格
仕切弁	PLRポンプ出口弁	弁箱	 ・放射線透過試験:①② ・浸透探傷試験:①② 	 ・供用期間中検査:56 ・目視点検:7 ・浸透探傷試験:89 	合格
	RHR 炉水入口止 め弁	弁箱	 ・放射線透過試験:①③④ ・浸透探傷試験:① 	 ・供用期間中検査:5000 ・目視点検:⑦ 	合格

表2 仕切弁の弁箱の製造時の検査及び現状保全

*:製造時の検査及び現状保全の判定基準を以下に示す。

①告示第 501 号

②電気工作物の溶接に関する技術基準(省令第81号)

③JIS G 0581

④JIS Z 3104

⑤弁本体の内表面の目視点検:維持規格 (JSME S NA1) VT-3

⑥弁箱と配管の溶接部の超音波探傷試験:溶接規格 (JSME S NB1) 及び「発電用原子力設備にお

ける破壊を引き起こすき裂その他の欠陥の解釈について(平成 21 年 12 月 25 日付け平成 21・

11・18 原院第1号)」

⑦社内基準:著しい損傷・減肉・腐食・摩耗等の無いこと

⑧設計・建設規格 (JSME S NC1)

⑨溶接規格 (JSME S NB1)

⑩弁箱と配管の溶接部の浸透探傷試験:維持規格 (JSME S NA1)

⑪弁箱と配管の溶接部の超音波探傷試験:維持規格及び「発電用原子力設備における破壊を引き

起こすき裂その他の欠陥の解釈について(平成18年3月23日付け平成18・03・20原院第2号)」

- 2. き裂の原因となる経年劣化事象が想定されない部位の対応について
 - (1) 原子炉冷却材再循環ポンプの羽根車, ケーシングリングについて

原子炉冷却材再循環ポンプの羽根車,ケーシングリングは,表3に示すとおり,製造時の検 査及び現状保全を実施し,異常がないことを確認している。

また,プラントの起動・停止時等に受ける温度・圧力変化により大きな応力を受ける部位と して,ケーシングの疲労評価を実施しており,許容値を満たすことを確認している。

さらに、羽根車、ケーシングリングは、原子炉冷却材の圧カバウンダリではなく、疲労評価 上はケーシングが羽根車、ケーシングリングよりも厳しいと考えられることから、低サイクル 疲労割れが評価期間において問題となる可能性はない。

以上より,熱時効は想定されるものの,そのことが機器の健全性に影響を与える可能性はな いと評価する。

表3 原子炉冷却材再循環ポンプの製造時の検査及び現状保全

機器名称	対象部位	製造時の検査及び 判定基準*	現状保全及び 判定基準*	判定
原子炉冷却材 再循環ポンプ	羽根車	 ・放射線透過試験:① ・浸透探傷試験:① 	・目視点検:②・浸透探傷試験:③	合格
	ケーシンク゛リンク゛	・浸透探傷試験:①	 目視点検:② 	合格

*:製造時の検査及び現状保全の判定基準を以下に示す。

①告示第 501 号

②社内基準: 錆・傷・その他著しい損傷のないこと。

③設計・建設規格 (JSME S NC1)

(2) 仕切弁(弁ふた,弁体)について

各弁の弁ふた,弁体は,表4に示すとおり,製造時の検査又は現状保全により,異常がない ことを確認している。

また,低サイクル疲労割れについては,プラントの起動・停止時等に受ける温度・圧力変化 により大きな応力を受ける部位として高経年化技術評価書の代表機器である PLR ポンプ出口弁 の弁箱について運転開始後 40 年時点を想定した疲労評価を実施しており,許容値を満足する ことを確認している。

さらに,疲労評価上,弁箱が弁ふた,弁体よりも厳しいと考えられることから,弁ふた,弁 体の低サイクル疲労割れが評価期間において問題となる可能性はない。

以上より,熱時効は想定されるものの,そのことが機器の健全性に影響を与える可能性はな いと評価する。

機器名称	対象部位	製造時の検査及び 判定基準*	現状保全及び 判定基準*	判定
PLR ポンプ 入口弁	弁ふた, 弁 体	 ・放射線透過試験:① ・浸透探傷試験:① 	 ・目視点検:③ ・浸透探傷試験(弁体):④⑤ 	合格
PLR ポンプ 出口弁	弁ふた,弁 体	 ・放射線透過試験:① ・浸透探傷試験:① 	 ・目視点検:③ ・浸透探傷試験(弁体):④⑤ 	合格
RHR 炉水入口 止め弁	弁ふた, 弁 体	 ・放射線透過試験:①② ・浸透探傷試験:① 	・目視点検:③ ・浸透探傷試験(弁体):④⑤	合格
RHR 炉水戻り 止め弁	弁ふた,弁 体	 ・放射線透過試験:①② ・浸透探傷試験:① 	・目視点検:③ ・浸透探傷試験(弁体):④⑤	合格
CUW 系統入口弁	弁ふた,弁 体	 ・浸透探傷試験:① 	 ・目視点検:③ ・浸透探傷試験(弁体):④⑤ 	合格

表4 仕切弁(弁ふた,弁体)の製造時の検査及び現状保全

*:製造時の検査及び現状保全の判定基準を以下に示す。

①告示第 501 号

②JIS G 0581

③社内基準:著しい損傷・減肉・腐食・摩耗などの無いこと。

④設計・建設規格 (JSME S NC1)

⑤溶接規格 (JSME S NB1)

(3) 中央燃料支持金具,制御棒案内管のベース,炉心スプレイスパージャのノズル,制御棒の落 下速度リミッタについて

当該部位は,表5のとおり,製造時の検査及び現状保全を実施し,異常がないことを確認している。

また,発生する応力は自重及び支持対象物の重量が主であり,劣化によるき裂は想定されない。

以上より,熱時効は想定されるものの,そのことが機器の健全性に影響を与える可能性はな いと考える。

X 3 千人旅行又內並只寻沙表這兩少快且及6 先代休主				
機器名称	対象部位	製造時の検査及び 判定基準*1	現状保全及び 判定基準*1	判定
燃料支持金具	中央燃料 支持金具	 ・放射線透過試験:① ・浸透探傷試験:② 	・供用期間中検査(目視点検):④*2	合格
制御棒案内管	ベース	 ・放射線透過試験:② ・浸透探傷試験:② 	・供用期間中検査(目視点検):④*2	合格
炉心スプレイ スパージャ	開口部付 ノズル	_	・供用期間中検査(目視点検):④	合格
制御棒	落下速度 リミッタ	 ・放射線透過試験:③ ・浸透探傷試験:② 	 ・水中カメラによる目視点検:5 ・運用基準*3に基づき取替 	合格

表5 中央燃料支持金具等の製造時の検査及び現状保全

*1:製造時の検査及び現状保全の判定基準を以下に示す。

①JIS G 0581

②告示第 501 号

③ASTM E446, E186

④維持規格 (JSME S NA1) VT-3

⑤社内基準:機器表面について、摩耗、き裂、腐食、浸食等の異常が無いこと。

*2:維持規格の検査プログラムの考え方に基づき、目視点検を実施する計画としている。

- *3:制御棒の有効長を4等分したいずれかの区間で相対価値が10%減少した時点の核的寿命 に対して保守的に定めた運用基準による。
- (4) ジェットポンプのライザ,ミキサ,ディフューザ,ブラケットについて

当該部位は,原子炉冷却材の圧カバウンダリではなく,表6に示すとおり,製造時の検査及 び現状保全を実施し,異常がないことを確認している。

以上より,熱時効は想定されるものの,そのことが機器の健全性に影響を与える可能性はな いと評価する。

機器名称	対象部位	製造時の検査及び 判定基準 ^{*1}	現状保全及び 判定基準*1	判定
ジェット ポンプ	ライザ	 ・放射線透過試験:①② ・浸透探傷試験:① 	・供用期間中検査(目視点検): ③④*2	合格
	ミキサ	 ・放射線透過試験:①② ・浸透探傷試験:① 	・供用期間中検査(目視点検): ③④*2	合格
	ディフューザ	 ・放射線透過試験:①② ・浸透探傷試験:① 	・供用期間中検査(目視点検): ③④*2	合格
	ブラケット	 ・放射線透過試験:①② ・浸透探傷試験:① 	・供用期間中検査(目視点検): ③④*2	合格

表6 ジェットポンプの製造時の検査及び現状保全

*1:製造時の検査及び現状保全の判定基準を以下に示す。

①告示第 501 号

②ASTM 規格

- ③維持規格 (JSME S NA1) VT-3
- ④維持規格 (JSME S NA1) MVT-1
- *2:維持規格の検査プログラムの考え方に基づき,目視点検(MVT-1)を実施する計画としている。

別紙6 評価対象外機器の熱時効への対応について

補足説明資料本文の表2「熱時効の劣化評価に関する評価対象部位の抽出結果一覧表」において, 使用温度が250 ℃未満と評価し,評価対象外とした理由を以下に示す。

1. 使用温度が 250 ℃未満の玉形弁, 逆止弁について

表1に示す玉形弁, 逆止弁については, 最高使用温度は302 ℃であるが, 使用温度は250 ℃未満 であることから, 評価対象外とした。

機器名称	使用温度	最高使用温度
PLR ポンプブリードオフ弁	66 ℃以下	302 °C
SLC 外側隔離弁	40 ℃以下	302 °C
SLC 内側隔離弁	65 ℃以下	302 °C

表1 使用温度が250 ℃未満の玉形弁, 逆止弁

2. 制御棒駆動機構のコレットピストン,コレットリテイナチューブについて

当該部位はステンレス鋳鋼であるが,構造上,冷却流路に設置されているため,使用温度は 250 ℃ 未満であることから評価対象外とした。

以上