2021比較委報告001

令和3年度放射性物質測定調査委託費 (IAEAとの試験所間比較分析の実施) 事業成果報告書

2022年3月

公益財団法人 日本分析センター

本報告書は、原子力規制委員会 原子力規制庁の令和3年度 放射性物質測定調査委託費(IAEA との試験所間比較分析の実 施)事業における委託業務として、公益財団法人日本分析セン ターが実施した成果を取りまとめたものです。

1.	件	名		1
2.	目	的		1
3.	実	施期間		1
4.	業	務実施内容		1
	(1)	IAEA との試験所間比較分析に係る連絡・調整業務	务	1
	(2)	海水及び海底土の採取		3
	(3)	試料の前処理、分割、送付		7
	(4)	放射性核種の分析		7
	(5)	関係団体等への作業説明・申請・結果報告		11
	(6)	作業結果の取りまとめと報告		11

別紙

別紙1	試料採取及び試料前処理に係る日程表	12
別紙2	試料採取場所の地図	14
別紙3	現地対応の状況	15

別添

別添資料1 分析結果	1	Ç)
------------	---	---	---

参考資料

参考資料1	IAEA との試験所間比較分析に係る試料採取	
	作業報告書	33
参考資料2	海底土の前処理作業	75
参考資料3	分析実施機関の分析結果	87

目 次

1. 件名

令和3年度放射性物質測定調査委託費(IAEAとの試験所間比較分析の実施) 事業

2. 目的

現在、福島県沖を中心とする海洋モニタリングデータの国際的な信頼性・透明 性の向上のため、原子力規制委員会は、IAEA との協力により試験所間比較分析 (inter-laboratory comparison)を実施している。

この試験所間比較分析の一環として、IAEA が主導する ALMERA Network のメン バーである公益財団法人日本分析センター(以下「日本分析センター」という。) を中心とした体制を構築し、IAEA と共同で東京電力ホールディングス株式会社福 島第一原子力発電所付近の海域で海水及び海底土を採取・分析し、分析結果等を 試験所間比較分析のために IAEA へ報告する。これらの結果を基に海洋環境試料 の採取方法から放射能分析及び結果の評価に至る一連の工程を踏まえたモニタ リングデータの国際的な比較・評価を中立公正な立場の IAEA 側から得ることに より、信頼できるモニタリングデータの提供並びに国際的な信頼性及び透明性の 向上に資することを目的とする。

※ALMERA Network: IAEA の主導により 1995 年に設立され、IAEA 加盟国の分 析機関をメンバーとするネットワーク。分析技術の維持・向上のための取組 みや事故等の際の信頼性ある適時の環境モニタリングデータを共有するため の活動を実施している。

3. 実施期間

2021年9月28日~2022年3月31日

- 4. 業務実施内容
- (1) IAEA との試験所間比較分析に係る連絡・調整業務

IAEA 専門家と共同で、試料の採取等を行うにあたり、以下の連絡・調整を行った。

 ・試料の採取等の日程について、原子力規制庁からの連絡を受け、株式会社 KANSO テクノス(以下「KANSO テクノス」という。)を通じて、採取機材、船 等の準備・手配に係る連絡及び調整を行った。試料採取のための船は IAEA 等の担当者が採取状況を確認するため、2 隻確保した。また、悪天候等で採 取日程が変更することを考慮し、確実に試料の採取が実施できるよう、傭船 期間を確保した。

- ・IAEA 専門家と共同で試料の採取等を行うために必要な港、乗船場所、下船場 所、サンプリングルート等に係る連絡及び調整を行った。
- ・IAEA との試験所間比較分析に係る試料採取及び前処理作業に参加した IAEA 専門家を表1に示す。
- ・IAEA 専門家らの移動の手配に係る連絡及び調整を行った。宿泊先^{注1)}のリストを表2に示す。また、試料採取に伴う移動方法として、マイクロバスを手配し、IAEA 専門家らを宿泊先と乗船及び下船場所の港^{注2)}の送迎を行った。
 - 注1: IAEA 専門家の宿泊先は外務省で手配した。
 - 注2:悪天候により作業船が出港できなかったため、港においてビデオ 等により採取状況の確認を行った。

表1 IAEA 専門家リスト

所属	氏名
IAEA Environment Laboratories	Mr. Paul Mc Ginnity
IAEA Environment Laboratories	Ms. Megan Cook
Institut de radioprotection et de sûreté nucléaire, France (IRSN)	Mr. Christophe Ardois
Korea Institute of Nuclear Safety,Korea (KINS)	Mr. Daeji Kim
Karlsruhe Institute of Technology,Germany (KIT)	Mr. Christoph Josef Wilhelm

表2 宿泊先リスト

日付	宿泊先
2021年11月7日(日)~	ハタゴイン福島広野
2021年11月10日(水)	〒979-0403 福島県双葉郡広野町下浅見川広長 44-5
2021年11月8日(月)~	Jヴィレッジ
2021年11月9日(火)	〒979-0513 福島県双葉郡楢葉町山田岡美シ森8
2021年11月10日(水)~	ハイアットセントリック銀座東京
2021年11月12日(金)	〒104-0061 東京都中央区銀座 6-6-7

- ・試料の採取方法、均質化方法、分配方法、試料の送付方法、前処理方法、分 析方法等に係る連絡及び調整を行った。
- ・日本分析センターで得られた分析結果については、IAEA 指定の報告様式にとりまとめ、2022 年 3 月に IAEA (Radiometrics Laboratory Environment Laboratories Department of Nuclear Sciences and Applications IAEA) 宛に報告様式をメールにて報告した。
- ・業務実施に向けて必要な調整を、原子力規制庁担当官と適宜協議を行い実施 した。原子力規制庁との打合せ内容について、以下に示す。
 - 日時:第1回 2021年10月14日(木) 9時15分から10時20分 第2回 2021年10月29日(金) 17時00分から18時00分 場所:Web開催
 - 内容:海水・海底土の試料採取ならびに海底土の前処理における IAEA 専門家の立ち合いについて
- ・試料採取及び試料前処理に係る一連の行程を別紙1に示す。
- ・IAEA 専門家との試料採取及び試料前処理期間中における業務の進捗状況について、適宜、原子力規制庁担当官、日本分析センター関係者、KANS0 テクノス関係者にメールにて連絡し、情報共有を図った。
- (2) 海水及び海底土の採取

海水、海底土を採取した場所を別紙2に、現地対応の状況を別紙3に示す。 また、IAEA専門家が試料の採取等の実施状況を確認するために必要となる諸準 備を行った。

- ・海水の採取は5地点について、年1回実施した。
- ・海底土の採取は3地点について、年1回実施した。
- ・海水及び海底土の採取量を表3に示す。

IAEA 専門家の立ち会い当日は、悪天候により試料採取が行えなかったため、 前日に実施した採取の様子を撮影したビデオ等により採取状況の確認を行っ た。

4€	水川	地车米	地上女		採取量	
武 科		地点剱	地点名	Cs-134, Cs-137 用	Sr-90 用	H−3 用
			M-101	20 L×8 個(計 160 L)	40 L×8 個(計 320 L)	2 L×8 個(計16 L)
	水		M-102	20 L×8 個(計160 L)	40 L×8 個(計 320 L)	2 L×8 個(計16 L)
海		5 地点	M-103	20 L×8 個(計 160 L)	40 L×8 個(計 320 L)	2 L×8 個(計16 L)
			M-104	20 L×8 個(計 160 L)	40 L×8 個(計 320 L)	2 L×8 個(計16 L)
			T-D1	20 L×8 個(計 160 L)	40 L×8 個(計 320 L)	2 L×8 個(計16 L)

表3 海水及び海底土の採取量

試 料	地点数	地点名	採取量
		F-P04	6 kgを目標に採取
海底土	3 地点	T-S3	6 kgを目標に採取
		T-S8	6 kgを目標に採取

- ・採取地点及び詳細な時期は IAEA 及び原子力規制庁担当官と調整の上で決定した。
- ・採取方法については、放射能測定法シリーズ16「環境試料採取法」(昭和58 年制定)に準じた。詳細はIAEA及び原子力規制庁担当官と調整の上決定した。
- ・試料採取のための船は IAEA 専門家が採取状況を確認するため、及び作業の安 全を確保するための監視船を含め2隻確保した。
- ・悪天候等で採取日程が変更することを考慮し、傭船期間を確保した。
- ・海水については、ポンプで汲み上げた海水を大型プラスチック容器に溜めた
 後、同容器に取り付けた4つのバルブロから試料容器(キュービテナー及び
 ポリプロピレン製平角瓶2L容器)に移した。バルブ番号と試料容器に入れた
 順番が分かるように、試料容器に試料コードを付与した。海水の分取及び試料コードの付与方法については、図1に示す。また分析実施機関へ送付する
 試料コードの組合せについては、表4に示す。

図1 海水の分取及び試料コードの付与方法

	Sr-90 用) M-104	·1-1	-2-1	-3-1	-4-1	-1-2	-2-2	-3-2					-4-2			
		M-130	-1-1, 3-	?-2-1, 3-	?-3-1, 3-	?-4-1, 3-	?-1-2, 3-	?-2-2, 3-	?-3-2, 3-					-4-2, 3-			
		M-102	57	57		57	.,							.,			
		M-101															
		TD-1									1-3-4		1-4-4				
	17 用	M-104									1 - 3 - 4	1-4-4					
	34,Cs-13	M-130	1-1-3	1-2-3	1-3-3	1-4-3	1-1-4	1-2-4		1-3-4		1-4-4					
	Cs-1	M-102								1-3-4		1-4-4					
		M-101										1-3-4			1-4-4		
		TD-1											1-4-2				
		M-104			1-3-1	1-4-1	1-1-2					1-4-2					
	Н−3 Л	M-130		1-2-1				1-1-2	1-3-2			1-4-2					
		M-102										1-4-2					
		M-101										1-4-2					
	大市中市福田	ンで天地な思	IAEA	IRSN	KINS	KIT	省智野	日本分析センター	一般財団法人九州環境管理協会	東北緑化環境保全株式会社	KANSO テクノス	公益財団法人海洋生物環境研究所	東京パワーテクノロジー株式会社	KANSO テクノス			
- 1			No. 1	No. 2	No. 3	No. 4	No. 5	No. 6		No. 7			No. 8				

表4 分析実施機関へ送付する試料コードの組合せ

* IAEA: IAEA Environment Laboratories

* IRSN: Institut de radioprotection et de sûreté nucléaire, France

* KINS: Korea Institute of Nuclear Safety, Korea

* KIT: Karlsruhe Institute of Technology, Germany

(3) 試料の前処理、分割、送付

IAEA 専門家と共同で試料の前処理、分割等を行った。また、IAEA 専門家が前処 理等の実施状況を確認するために必要となる諸準備を行った。

- ① 海水
 - ・(2) で採取した試料は、IAEA との調整の上、決定された方法に従って必要 な処理を行った。
 - ・トリチウム分析以外の海水は、陸揚げした後、海水 20 L 当たり塩酸 20 mL をそれぞれに添加した。
 - ・海水の採取時における大型プラスチック容器内の均質性及び採取した海水を 試料容器(キュービテナー)に移す際にバルブが偏らないように考慮し、表 4のように組み合わせた試料を分析機関に送付した。
 - ・トリチウム分析用海水については、塩酸を添加せずに、分析機関に送付した。
 - ・海水については、KANSOテクノスにて、運送業者を通じて IAEA 側に引き渡した。
- 2 海底土
 - ・(2) で採取した試料は、IAEA との調整の上、決定された方法に従って必要 な処理を行った。なお、海底土は乾燥後、細土として分析に用いた。
 - ・海底土については、IAEA との調整の上、決定された方法に従って分割した。
 - ・海底土については、運送業者を通じて IAEA 側に引き渡した。

KANS0 テクノスに依頼した試料採取については参考資料1に示し、日本分析センターで実施した海底土の前処理作業については参考資料2に示した。

(4) 放射性核種の分析

海水及び海底土について、対象とする放射性核種を表5に、日本分析センター 及び分析実施機関の分析核種を表6に示す。また、日本分析センターと分析実施 機関の分析結果を表7に、日本分析センターの分析結果詳細を別添資料1に、分 析実施機関の分析結果詳細を参考資料3に示した。

分析方法は、放射能測定法シリーズに準じた。また、放射能分析を実施するに あたり、適用する分析方法及び確保すべき検出下限目標値については、表 8 の 「分析方法及び検出目標レベル」を目安にした。

なお、分析方法等の詳細は IAEA と調整の上決定した。

表5 分析対象核種

試料	放射性核種
海 水	H-3, Sr-90, Cs-134, Cs-137
海底土	Cs-134, Cs-137, Pu-238, Pu-239+240

表6 日本分析センター及び分析実施機関の分析核種

試料	分析実施機関	分析核種
	日本分析センター	H-3, Sr-90, Cs-134, Cs-137
	KANSO テクノス	Sr-90, Cs-134, Cs-137
	東北緑化環境保全株式会社	Cs-134, Cs-137
海 水	東京パワーテクノロジー株式会社	H-3, Cs-134, Cs-137
	公益財団法人海洋生物環境研究所	H-3, Cs-134, Cs-137
	一般財団法人九州環境管理協会	H-3, Sr-90, Cs-134, Cs-137
	福島県	H-3, Sr-90, Cs-134, Cs-137
	日本分析センター	Cs-134, Cs-137, Pu-238, Pu-239+240
	国立研究開発法人日本原子力研究開発機構	Cs-134, Cs-137, Pu-238, Pu-239+240
海底土	東北緑化環境保全株式会社	Cs-134, Cs-137
	東京パワーテクノロジー株式会社	Cs-134, Cs-137
	福島県	Cs-134, Cs-137, Pu-238, Pu-239+240

試料	核種	分析機関	M-101	M-102	M-103	M-104	T-D1
		日本分析センター	0.131	0.164	0.108	0.082	0.074
		東京パワーテクノロジー(株)	_	_	_	_	ND
	H-3	(公財)海洋生物環境研究所	0.106	0.112	0.072	0.054	_
		(一財) 九州環境管理協会	0.155	0.144	0.075	0.071	0.063
		福島県	0.140	0.126	0.084	0.050	0.065
		日本分析センター	0.00397	0.00195	0.000920	0.000883	0.00102
	Sec. 0.0	KANSO テクノス	0.0033	0.0018	0.00084	0.0012	0.00082
	5r-90	(一財) 九州環境管理協会	0.00329	0.00182	0.00078	0.00093	0.00079
海水		福島県	0.003	0.002	0.001	0.001	ND
		日本分析センター	0.00295	0.00141	< 0.00097	< 0. 00099	< 0.00092
		KANSO テクノス			—	ND	ND
(円~/Ⅰ)		東北緑化環境保全㈱		ND	ND	_	_
(Dq/L)	Cs-134	東京パワーテクノロジー㈱	_	_	_	—	ND
		(公財)海洋生物環境研究所	0.0024	0.0016	ND	ND	
		(一財)九州環境管理協会	0.00211	_	_	_	_
		福島県	ND	ND	ND	ND	ND
		日本分析センター	0.0619	0.0445	0.0153	0.0191	0.00508
		KANSO テクノス				0.017	0.0044
		東北緑化環境保全㈱		0.0375	0.0146	_	
	Cs-137	東京パワーテクノロジー㈱	_	_	_	—	0.0041
		(公財)海洋生物環境研究所	0.059	0.041	0.014	0.018	
		(一財)九州環境管理協会	0.0589	_	_	_	_
		福島県	0.060	0.042	0.013	0.019	0.004

表7 日本分析センター及び分析実施機関の分析結果一覧

※各分析実施機関の分析結果は、IAEA への報告値をそのまま記載している。

試料	核種	分析機関	F-P04	T-S3	T-S8
		日本分析センター	1.08	1.33	1.72
		(国研)日本原子力研究開発機構	1.6	1.4	1.6
	Cs-134	東北緑化環境保全㈱	_	2.19	-
		東京パワーテクノロジー㈱	1.6	1.5	1.7
		福島県	1.4		1.9
		日本分析センター	37.6	50.2	49.3
		(国研)日本原子力研究開発機構	40.8	44.2	37.5
海底土	Cs-137	東北緑化環境保全㈱	_	55.8	_
(Bq/kg-dry)		東京パワーテクノロジー㈱	41.3	46.3	50.9
		福島県	38.2		42.0
		日本分析センター	0.00362	0.00576	0.00772
	Pu-238	(国研)日本原子力研究開発機構	ND	ND	ND
		福島県	0.00598	0.00710	0.00825
		日本分析センター	0.393	0.410	0.512
	Pu-239+240	(国研)日本原子力研究開発機構	0.37	0. 43	0. 53
		福島県	0.433	0.430	0.533

表7 日本分析センター及び分析実施機関の分析結果一覧(続き)

※各分析実施機関の分析結果は、IAEA への報告値をそのまま記載している。

表8 分析方法及び検出目標レベル

試 料	分析・測定方法	対象核種	検出下限目標値
	電解濃縮法・液体シンチレーション測定	H-3	0.4 Bq/L
	AMP沈殿、	Cs-134	0.001 Bq/L
海水	ゲルマニウム半導体検出器によるγ線スペクトロメトリー	Cs-137	0.001 Bq/L
	放射化学分析、ガスフロー型β線計数装置又は液体シンチレーショ ン測定	Sr-90	0.001 Bq/L
	105℃乾燥後、250μm孔径のふるい分け、	Cs-134	1 Bq/kg乾土
海底土	ゲルマニウム半導体検出器によるγ線スペクトロメトリー	Cs-137	1 Bq/kg乾土
(毋)氐丄.	上記の乾燥、ふるい分けした試料を放射化学分析、	Pu-238	0.02 Bq/kg乾土
	α線スペクトロメトリー	Pu-239+240	0.02 Bq/kg乾土

(5) 関係団体等への作業説明・申請・結果報告

関係団体等(海上保安庁、関係漁業協同組合連合会及び漁業協同組合、必要 に応じて自治体関係部局等)に対して、KANSOテクノスを通し、必要に応じて、 作業開始前に作業の説明を行うとともに、必要に応じて作業結果の説明を行っ た。また、海上保安庁等に対して作業に必要な申請を行った。

(6) 作業結果の取りまとめと報告

作業結果については、各作業・分析が完了後、分析結果内容を精査したのち、 速報結果として原子力規制庁担当官へ報告した。

日本分析センターで得られた分析結果については、IAEA 指定の報告様式にと りまとめ、2022 年 3 月に、IAEA (Radiometrics Laboratory Environment Laboratories Department of Nuclear Sciences and Applications IAEA) へ メールにて報告した。

別紙1

試料採取及び試料前処理に係る日程表

日付	場所	主な内容
11月7日 (日)	福島県	 ○日本分析センター職員(サンプリング担当)3名、採取用具等を積み、 車で千葉市から福島県双葉郡へ移動 ○到着後、資材、予定等の最終確認
11月8日 (月)	福島県	 〇田代氏(原子力規制庁)とマイクロバスで双葉郡浪江町・請戸港へ移動 ○請戸港に到着後、KANSO テクノスと合流 ○試料採取の準備 ○作業船及び監視船が請戸港から出港 ○採取地点 F-P04、T-S3、T-S8 で海底土を採取 ○採取地点 M-102、M-103、T-D1 で海水を採取 ○請戸港に帰港 ○試料等を荷下した後、海水への塩酸添加、梱包等の発送準備作業、 試料の発送 ○作業終了後、ホテルへ移動 (KANSO テクノスは請戸港で解散。田代氏は広野駅で解散)
11月9日 (火)	福島県	 ○佐々木氏(原子力規制庁)、二宮氏(原子力規制庁)、森氏(環境省)とマイクロバスとレンタカーで、Jヴィレッジを経由し、請戸港へ移動(JヴィレッジにてIAEA 他(5名)、通訳2名、酒見氏(外務省)と合流) ○請戸港に到着後、KANSOテクノスと合流 ○試料採取の予定通りで準備したが、波が高く、天候も悪いため、実施不可と判断 ○資機材や前日の採取のビデオを用いて、海水・海底土の試料採取の 様子を説明 ○KANSOテクノス、IAEA・規制庁等とは請戸港で解散 (IAEA・規制庁等はマイクロバスでJヴィレッジ及び広野駅へ送迎) ○ホテルへ移動
11月10日 (水)	福島県	 ○レンタカーで現地視察のため富岡港へ移動 ○視察終了後、ホテルへ移動 ○規制庁、KANS0 テクノスと 11 日のスケジュール調整
11月11日 (木)	福島県	 ○武藤氏(原子力規制庁)とマイクロバスとレンタカーで、請戸港へ移動 ○請戸港に到着後、KANSO テクノス、加藤氏(福島県)と合流 ○試料採取の準備 ○作業船及び監視船が請戸港から出港 ○採取地点 M-101、M-104 で海水を採取 ○請戸港に帰港 ○試料等を荷下した後、海水への塩酸添加、梱包等の発送準備作業、 試料の発送 ○作業終了 ○武藤氏、加藤氏、KANSO テクノスとは請戸港で解散 (武藤氏はマイクロバスで広野駅へ送迎) ○日本分析センターへ移動

日付	場所	主な内容
11月12日 (金)	千葉県 千葉市	 ○IAEA 他(5 名)の宿泊先へ出迎え (ハイアットセントリック銀座東京) ○通訳2名、二宮氏と合流後、海底土の前処理作業の視察のため日本分 析センターへ移動 ○原子力規制庁(佐々木氏、二宮氏)立ち会いのもと海底土の前処理作 業実施(1日目) ○作業終了後、IAEA 他(5 名)を宿泊先ホテルへ送迎
11月15日 (月)	千葉県 千葉市	○原子力規制庁(二宮氏)立ち会いのもと日本分析センターにて海底土 の前処理作業実施(2日目)

別紙2

試料採取場所の地図

現地対応の状況

写真1 関係者での集合写真 (原子力規制庁、JCAC 職員他)

写真2 作業船

写真3 海底土の採取状況

写真4 海底土の採取状況

写真5 海底土の採取状況

写真6 海底土の採取状況

写真7 海水の採取状況

写真8 海水の採取状況

写真9 海水の採取状況

写真11 採取した海水に酸を添加

写真10 海水の採取状況

写真12 試料発送準備

写真 13 関係者での集合写真 (原子力規制庁、IAEA 他)

写真14海底土の採取について説明

写真15海水の採取について説明

写真16海水の採取について説明

写真17ビデオによる試料採取状況の説明

写真18 ビデオによる試料採取状況の説明

別添資料1 分析結果

公益財団法人 日本分析センターの分析結果

(海水)

H-3	
Nuclide:	

Method (including separation):

Sample water was distilled after addition of KMnO4 and Na2O2. Distilled water applied electrolitic enrichement of H-3. After H-3 enrichment, sample water was distilled again. Fifty mL of distilled water was mixed with 50mL of scintillator for measurement.

Detection system (including type of calibration applied):

Hitachi, Ltd. LSC-LB5(Quenching correction curve by H-3 STD with different ratio of water and scintillator)

Detection limit (Bq/L):

 $M-101: 0.046, \ M-102: 0.047, \ M-103: 0.046, \ M-104: 0.046, \ T-D1: 0.046$

Nuclear data used (e.g., half-life):

Half-life: 12.33 year

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of H-3 (Bq/L)	0.131	0.164	0.108	0.082	0.074
Uncertainty $(k=1)$ (Bq/L)	0.017	0.019	0.017	0.016	0.016

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	()	
Uncertainty component associated with net count rate of H-3	12.6	10.6	15.0	19.2	21.4
Uncertainty component associated with detector efficiency	2.85	2.85	2.85	2.85	2.85
Uncertainty component associated with weighing	0.0	0.0	0.0	0.0	0.0
Any other uncertainty component (Uncertainty compornent associated with Electrolytic enrichment)	2.85	2.85	2.85	2.85	2.85
Relative combined standard uncertainty $(k=1)$	13.2	11.3	15.5	19.6	21.8

IAEA ILC November 2021 U 3 Sr 00 Cs 134 and Cs 137 in securator	11-3, 31-70, C3-13+ and C3-13/ III SCAWAICI
--	---

Sr-90	
Nuclide:	

Method (including chemical separation):

dryness and residue was dissolved in water. Y-90 was removed in scavenging. Two weeks later, Y-90 co-precipitated with Fe(OH)3 was filtered using filter paper(milking). The precipitate on the filter paper Precipitation of carbonate was produced from eluate. Precipitation of carbonate was dissolved with hydrochloric acid and removed calcium by ion-excanged resins. The eluate was preformed evaporation to was dried and used directly for measurement of β -ray activity.

Detection system (including type of calibration applied):

Detection Efficiency:62.467% Hitachi: LBC-4211 Low background β-ray counter (by Y-90 of known activity co-precipitated with Fe(OH)3)

Detection limit (Bq/L):

 $M-101: 0.00027 \ , \ M-102: 0.00027 \ , \ M-103: 0.00027 \ , \ M-104: 0.00028 \ , \ T-D1: 0.00028 \ , \ T-D1: 0.00028 \ , \ M-101: 0.$

Nuclear data used (e.g., half-life):

Half life: Sr-90 29.12 y , Y-90 64.0 h

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of Sr-90 (Bq/L)	0.00397	0.00195	0.000920	0.000883	0.00102
Uncertainty (k=1) (Bq/L)	0.00032	0.00021	0.00014	0.00014	0.00015

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	()	
Uncertainty component associated with net count rate of Sr-90 (or Y-90 if applicable)	6.18	9.18	14.5	15.2	13.4
Uncertainty component associated with detector efficiency	1.76	1.76	1.76	1.76	1.76
Uncertainty component associated with chemical yield determination	3.70	3.70	3.70	3.70	3.70
Uncertainty component associated with weighing	1.65	1.65	1.65	1.65	1.65
Any other uncertainty component (preparation of the sample)	2.70	2.70	2.70	2.70	2.70
Relative combined standard uncertainty (k=1)	8.1	10.5	15.4	16.1	14.4

Cs-134	
Nuclide:	

applicable):
if
separation,
emical
ch
(including
Method (

Chemical separation by AMP followed by gamma-ray spectrometry.

Detection system (including type of calibration applied):

P-type coaxial (relative efficiency 31%) calibration with multi-gamma source

Detection limit (Bq/L):

M-101:0.00088

M-102:0.00092 M-103:0.00097 M-104:0.00099 T-D1:0.00092

Nuclear data used (e.g., half-life and emission probabilities):

Evaluated Nuclear Structure Data File,NNDC,Brookhaven (2016.1): 2.07y , 795.9keV , 85.5%

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of Cs-134 (Bq/L)	0.00295	0.00141	<0.00097	<0.00099	<0.00092
Uncertainty $(k=1)$ (Bq/L)	0.00034	0.00030	0.00029	0.00030	0.00026

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	()	
Uncertainty component associated with net count rate of Cs-134	10.4	21.0	190.4	83.0	77.3
Uncertainty component associated with detector efficiency	3.0	3.0	3.0	3.0	3.0
Uncertainty component associated with emission probability	2.7	2.7	2.7	2.7	2.7
Uncertainty component associated with weighing	0.4	0.4	0.4	0.4	0.4
Any other uncertainty component (Uncertainty of detector stability)	2.9	2.9	2.9	2.9	2.9
Relative combined standard uncertainty $(k=1)$	11.5	21.6	190.5	83.1	77.5

Nuclide: Cs-137					
Method (including chemical separation, if applicable):					
Chemical separation by AMP followed by gamma-ray spect	trometry.				
Detection system (including type of calibration applied):					
P-type coaxial (relative efficiency 31%) calibration with multi-gamma source					
Detection limit (Ro/L):					
M-101 : 0.00062 M-102 : 0.00057 M-10	03:0.00060 M-10	4:0.00057 T-D1:	0.00058		
Nuclear data used (e.g., half-life and emission probabilities)	:(
Evaluated Nuclear Structure Data File,NNDC,Brookhaven ((2016.1): 30.08y, 661.7keV	, 85.1%			
RESULTS					
At reference time 09 November 2021 12:00 UTC					
			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of Cs-137 (Bq/L)	0.0619	0.0445	0.0153	0.0191	0.00508
Uncertainty $(k=1)$ (Bq/L)	0.0031	0.0023	0.00083	0.0010	0.00034
Uncertainty Budget (optional)			Relative uncertainty (%) (k=1	()	
Uncertainty component associated with net count rate of Cs-137	0.9	1.1	2.1	1.8	4.6
Uncertainty component associated with detector efficiency	3.0	3.0	3.0	3.0	3.0
Uncertainty component associated with emission probability	2.7	2.7	2.7	2.7	2.7
Uncertainty component associated with weighing	0.4	0.4	0.4	0.4	0.4

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater 2.9 6.8

2.9 5.3

2.9 5.4

2.9 5.1

2.9 5.1

Relative combined standard uncertainty (k=1)

Any other uncertainty component (Uncertainty of detector stability)

公益財団法人 日本分析センターの分析結果

(海底土)

Method:

Cs-134

Direct gamma-counting of the sediment sample (Cylindrical)

Detection system (including type of calibration applied): P-type coaxial (relative efficiency 31%) calibration with multi-gamma source

Detection limit (Bq/kg dry):

F-P04 : 0.86 T-S3 : 0.72 T-S8 : 0.73

Nuclear data used (e.g., half-life and emission probabilities):

Evaluated Nuclear Structure Data File,NNDC,Brookhaven (2016.1): 2.07y , 795.9keV , 85.5%

RESULTS

 Bq/kg dry

 Bq/kg dry

 Bassic activity of Cs-134 (Bq/kg dry)
 Bassic activity of Cs-134 (Bq/kg dry)
 Bassic activity of Cs-134 (Bq/kg dry)

 Uncertainty (k=1) (Bq/kg dry)
 0.27
 0.24
 0.26

Uncertainty Budget (optional)	R	Relative uncertainty (%) (k=	1)
Uncertainty component associated with net count rate of Cs-134	25.0	17.5	14.1
Uncertainty component associated with detector efficiency	3.0	3.0	3.0
Uncertainty component associated with emission probability	2.7	2.7	2.7
Uncertainty component associated with weighing	0.4	0.4	0.4
Any other uncertainty component (Uncertainty of detector stability)	2.9	2.9	2.9
Relative combined standard uncertainty $(k=1)$	25.5	18.2	15.0

Method:

_

Cs-137

Direct gamma-counting of the sediment sample (Cylindrical)

Detection system (including type of calibration applied): P-type coaxial (relative efficiency 31%) calibration with multi-gamma source

Detection limit (Bq/kg dry):

F-P04:0.52 T-S3:0.47 T-S8:0.52

Nuclear data used (e.g., half-life and emission probabilities):

Evaluated Nuclear Structure Data File,NNDC,Brookhaven (2016.1): 30.08y , 661.7keV , 85.1%

RESULTS

 Bq/kg dry

 Bq/kg dry

 Bassic activity of Cs-137 (Bq/kg dry)
 Bassic 37.6
 Bassic 30.2
 49.3

 Uncertainty (k=1) (Bq/kg dry)
 1.9
 2.5
 2.5

Uncertainty Budget (optional)	R	Relative uncertainty (%) (k=	1)
Uncertainty component associated with net count rate of Cs-137	1.2	1.0	1.0
Uncertainty component associated with detector efficiency	3.0	3.0	3.0
Uncertainty component associated with emission probability	2.7	2.7	2.7
Uncertainty component associated with weighing	0.4	0.4	0.4
Any other uncertainty component (Uncertainty of detector stability)	2.9	2.9	2.9
Relative combined standard uncertainty $(k=1)$	5.1	5.1	5.1

Method:

Sediment samples were leached with nitric acid. Plutonium were separated with anion exchange resin column. Purified plutonium was electrodeposited on a stainless steel disc for alpha spectrometry.

Detection system (including type of calibration applied):

Si semiconductor detector was used for plutonium measurement. (The calibration was carried out using NIST traceable Pu-242 tracer.)

Detection limit (Bq/kg dry):

F-P04:0.0037 T-S3:0.0035 T-S08:0.0031

Nuclear data used (e.g., half-life and emission probabilities):

Pu-238:87.7 y

RESULTS

		bq/kg ury		
	F-P04	T-S3	T-S8	
Massic activity of Pu-238 (Bq/kg dry)	0.00362	0.00576	0.00772	
Uncertainty $(k=1)$ (Bq/kg dry)	0.0012	0.0013	0.0014	

Uncertainty Budget (optional)	R	Relative uncertainty (%) (k=	1)
Uncertainty component associated with net count rate of Pu-238	31.9	23.0	18.0
Uncertainty component associated with activity of yield tracer (if used)	0.68	0.68	0.68
Uncertainty component associated with net count rate of yield tracer (if used)	1.85	1.86	1.80
Uncertainty component associated with weighing	0.044	0.044	0.044
Any other uncertainty component (please specify)	0.0	0.0	0.0
Relative combined standard uncertainty $(k=1)$	32.0	23.1	18.1

Nuclide:	Pu-239/240

Method:
Sediment samples were leached with nitric acid. Plutonium were separated with anion exchange resin column. Purified plutonium was
electrodeposited on a stainless steel disc for alpha spectrometry.

Detection system (including type of calibration applied):

Si semiconductor detector was used for plutonium measurement. (The calibration was carried out using NIST traceable Pu-242 tracer.)

Detection limit (Bq/kg dry):

F-P04:0.0023 T-S3:0.0037 T-S08:0.0024

Nuclear data used (e.g., half-life and emission probabilities):

Pu-239 : 2.413e4 y Pu-240 :6.570e3 y

RESULTS

 Bq/kg dry

 Bq/kg dry

 Bq/kg dry

 F-P04
 T-S3
 T-S8

 Massic activity of Pu-239/240 (Bq/kg dry)
 0.393
 0.410
 0.512

 Uncertainty (k=1) (Bq/kg dry)
 0.012
 0.013
 0.014

Uncertainty Budget (optional)	Relative uncertainty (%) (k=1)			
Uncertainty component associated with net count rate of Pu-239/240	2.40	2.38	2.05	
Uncertainty component associated with activity of yield tracer (if used)	0.68	0.68	0.68	
Uncertainty component associated with net count rate of yield tracer (if used)	1.85	1.86	1.80	
Uncertainty component associated with weighing	0.044	0.044	0.044	
Any other uncertainty component (please specify)	0.0	0.0	0.0	
Relative combined standard uncertainty $(k=1)$	3.1	3.1	2.8	
参考資料1

IAEA との試験所間比較分析に係る試料採取

作業報告書

1. 概要

原子力規制委員会は、福島県沖を中心とする海洋モニタリングデータの国内外の信頼 性・透明性の維持向上を図るため、IAEA(International Atomic Energy Agency:国際 原子力機関)との協力により試験所間比較分析を実施している。この試験所間比較分析の 一環として、公益財団法人日本分析センターは、原子力規制庁及びIAEAと共同で、東京 電力ホールディングス株式会社福島第一原子力発電所付近の海域で海水及び海底土を採 取し、試料の放射能分析を実施している。

本業務は、これら作業における海水及び海底土の採取を、原子力規制庁との調整の上、決定された方法に従って実施した。

2. 調査方法

2-1. 調査地点

調査地点は原子力規制委員会が指定した採水5地点、採泥3地点の計8地点とした。 調査地点の位置情報を表2-1及び図2-1に示す。

ᆎᆂ	調査	項目		业结			市奴	
地点	採水	採泥		北祥			鬼粒	
M-101		_	37°	25 '	36 ″	141°	02 '	36 ″
M-102			37°	25 '	06 ″	141°	02 '	36 ″
M-103		-	37°	26 '	42 ″	141°	02 '	48 ″
M-104		-	37°	24 '	06 ″	141°	02 '	48″
T-D1		-	37°	30'	00 ″	141°	04 '	20 ″
T-S3			37°	27'	30 ″	141°	04 '	44″
T-S8	_	٠	37°	23 '	00 ″	141 °	04 '	44 ″
F-P04	-		37°	25'	27 ″	141°	03 '	26″

表2-1 調査地点の位置情報

※緯度 経度は世界測地系 WGS84 に準拠

2-2.調査時期

現地調査は2021年11月8~11日に実施した。 現地調査の工程を表2-2に示す。

	年月				2021年11月			
	日	7	8	9	10	11	12	13
	曜日	(日)	(月)	(火)	(水)	(木)	(金)	(±)
調査地点		現地入り 機材受取	T-S8 F-P04 T-S3 M-102 M-103 T-D1	荒天待機	荒天待機	M-104 M-101 機材発送 撤収	_	-
調査項日	水質	—	•••	-	-	••	—	_
	底質	_		-	—	-	_	—
<u>≣+</u> *1 <i>森</i> :≚	海水試料	_	•••	_	_	••	_	_
武科光达	海底土試料	—		_	—	-	—	_

表2一2 調査工程

※調査地点の青文字は採水地点(●)、赤文字は採泥地点(■)

2-3. 試料の採取量

海水試料及び海底土試料の地点毎の採取量を表2-3に示す。

海水試料	³ H分;	析用	¹³⁴ Cs、 ¹³⁷	Cs分析用	⁹⁰ Sr分	↑析用
採取地点	分析機関数	採取量	分析機関数	採取量	分析機関数	採取量
M-101	8	2L×8個	8	20L×8個	8	20L×16個
M-102	8	2L×8個	8	20L×8個	8	20L×16個
M-103	8	2L×8個	8	20L×8個	8	20L×16個
M-104	8	2L×8個	8	20L×8個	8	20L×16個
T-D1	8	2L×8個	8	20L×8個	8	20L×16個

表2-3 地点毎の海水試料及び海底土試料の採取量

海底土試料	Cs, Pu	分析用		
採取地点	分析機関数	採取量		
T-S3	8	6kg-wet		
T-58	8	6kg-wet		
F P04	8	6kg-wet		

2-4. 調査方法

(1) 採水

D-GPS を用いて船位を確認後、水中ポンプを用いて採水を行った。

採水深度は 1.0m 程度とし、汲み上げた海水は船上の大型タンク内で十分に攪拌、均 一化を図った後に、所定の容器に分取して海水試料とした。

図2-2に海水試料の採水・分取状況を、図2-3および表2-4に海水試料の分取 内訳を示す。

図2-2 海水試料の採水・分取状況

図2-3 海水試料の分取内訳

	地点名		N-	101			N	102			N-	103			N-	104			T-	Đ1	
	試料番号	1-1-1	1-2-1	1-3-1	1-4-1	1-1-1	1-2-1	1-3-1	1-4-1	1-1-1	1-2-1	1-3-1	1-4-1	1-1-1	1-2-1	1-3-1	1-4-1	1-1-1	1-2-1	1-3-1	1-4-1
	分析機関	IAEA	IRSN	KINS	KIT	IAEA	IRSN	K1NS	KIT	IAEA	IRSN	KINS	KIT	IAEA	IRSN	KINS	KIT	IAEA	IRSN	K1NS	KIT
n-s	試料番号	1-1-2	1-2-2	1-3-2	1-4-2	1-1-2	1-2-2	1-3-2	1-4-2	1-1-2	1-2-2	1-3-2	1-4-2	1-1-2	1-2-2	1-3-2	1-4-2	1-1-2	1-2-2	1-3-2	1-4-2
	分析機関	FP	JCAC	KEEA	MERI	FP	JCAC	KEEA	TPT												
	試料番号	1-1-3	1-2-3	1-3-3	1-4-3	1-1-3	1-2-3	1-3-3	1-4-3	1-1-3	1-2-3	1-3-3	1-4-3	1-1-3	1-2-3	1-3-3	1-4-3	1-1-3	1-2-3	1-3-3	1-4-3
6.	分析機関	IAEA	IRSN	KINS	KIT	IAEA	IRSN	K1NS	KIT												
05	試料番号	1-1-4	1-2-4	1-3-4	1-4-4	1-1-4	1-2-4	1-3-4	1-4-4	1-1-4	1-2-4	1-3-4	1-4-4	1-1-4	1-2-4	1-3-4	1-4-4	1-1-4	1-2-4	1-3-4	1-4-4
	分析機関	FP	JCAC	KEEA	MERI	FP	JCAC	TRK	MERI	FP	JCAC	TRK	MERI	FP	JCAC	KANSO	MERI	FP	JCAC	KANSO	TPT
	試料番号	2-1-1	2-2-1	2-3-1	2-4-1	2-1-1	2-2-1	2-3-1	2-4-1	2-1-1	2-2-1	2-3-1	2-4-1	2-1-1	2-2-1	2-3-1	2-4-1	2-1-1	2-2-1	2-3-1	2-4-1
	分析機関	IAEA	IRSN	KINS	KIT																
	試料番号	2-1-2	2-2-2	2-3-2	2-4-2	2-1-2	2-2-2	2-3-2	2-4-2	2-1-2	2-2-2	2-3-2	2-4-2	2-1-2	2-2-2	2-3-2	2-4-2	2-1-2	2-2-2	2-3-2	2-4-2
S.r.	分析機関	FP	JCAC	KEEA	KANSO																
31	試料番号	3-1-1	3-2-1	3-3-1	3-4-1	3-1-1	3-2-1	3-3-1	3-4-1	3-1-1	3-2-1	3-3-1	3-4-1	3-1-1	3-2-1	3-3-1	3-4-1	3-1-1	3-2-1	3-3-1	3-4-1
	分析機関	IAEA	IRSN	KINS	KIT	IAEA	IRSN	KINS	KIT	IAEA	IRSN	KINS	КІТ	IAEA	IRSN	KINS	KIT	IAEA	IRSN	KINS	KIT
	試料番号	3-1-2	3-2-2	3-3-2	3-4-2	3-1-2	3-2-2	3-3-2	3-4-2	3-1-2	3-2-2	3-3-2	3-4-2	3-1-2	3-2-2	3-3-2	3-4-2	3-1-2	3-2-2	3-3-2	3-4-2
	分析機関	FP	JCAC	KEEA	KANSO																

表2一4 海水試料の分取内調	₹2-4	海水試料の分取内部
----------------	------	-----------

名称	分析機関名
FP	福島県
TRK	東北緑化環境保全株式会社
JCAC	公益財団法人 日本分析センター
KANSO	株式会社KANSO <i>テウノ</i> ス
KEEA	一般財団法人 九州環境管理協会
MERI	公益財団法人 海洋生物環境研究所
TPT	東京パワーテクノロジー株式会社
IAEA	IAEA Environment Laboratories
IRSN	Institut de Radioprotection et Surete Nucleaire, France
KINS	Korea Institute of Nuclear Safety, Korea
KIT	Karlsruhe Institute of Technology, Germany

(2)採泥

D-GPS を用いて船位を確認後、グラブ式採泥器(スミス・マッキンタイヤ型採泥器) を用いて採泥を行った。採取した海底土はステンレス製のバットに移して攪拌・均一化 を図った後に、湿重量で 6kg-wet 程度を分取して調製用の海底土試料とした。

図2-4に海底土試料の採泥状況を示す。

図2-4 海底土試料の採泥状況

3. 結果

3 - 1. 現地調査記録

現地調査に係るインベントリデータを表3-1に、現地調査に係る記録写真を資料に 示す。

	202	1年11月 M-101	Ξ	2021	年11月8 M-100	Ξ	20214 M	Ē11月8 -1∩2		2021年	Ē11月1	Ē	2021	年11月8		2021年11	月8日	20214	年11月8日 T-c?	2021	年11月8日 T_C0	п
		M-101			M-102		2	103		<	M-104			<u>-</u>		70d-4	4		- <u>-</u> 23			
e	° 7	25 '	36 ″	37 °	25 '	00 <i>"</i>	37°.	26 '	42 ″	37°	24 '	. 90	37 °	30 '	00 [°]	37°25'	, 27 "	37 °	27 ' 30 "	、 37°	23 ' (<u>, 00</u>
12	° 11	02 '	36 ″	141 °	02 '	36 ″ 1	41°	02 ' .	48 ″ 1.	41°	02 '	48 ″	141°	, 10	20 ″ 14	11°03′	, 26 ″	141 °	04 '44 "	ر 141 °	04 ' '	44 ″
		十世			上層		<u></u>	누		_	十回			山市		上同			日上		十回	
		快晴			DAN			塘			快晴			詣		詣			DENK		鞙	
		Ν			z			z		-	NNE			I		z			z		z	
		0.8			1.8		-	0.6			0.8		-	CALM		2.2			2.0		2.4	
		0.5			1.2			1.0			1.0			1.0		1.2			1.5		1.2	
		2.0			2.4			3.4			2.1			7.0		3.3			3.5		5.0	
		3GY5.5/5	5	6	33.5/8.5		900	3.5/8.5		3GY	/5.5/5.5	10	06	3.5/8.5		9G3.5/8	8.5	96	3.5/8.5	6	33.5/8.5	
		10.2			10.6		-	1.7			12.9			21.2		17.4			22.7		26.5	
	10:13	10:27	10:36	10:28	10:42	10:53	11:14 1	1:28 1	1:36 {	9:31	9:43	9:55	12:04	12:17	12:25	I			I		I	
-	7.38	17.41	17.46	17.57	17.58	17.66 1	7.74	7.71 1	7 74 1	7.11 1	7.15 1	17.19	17.82	17.82	7.87	I			I		I	
е е	2.89	32.96	32.90	33.05	33.03	33.03 3	32.97 3.	2.96 3;	2.97 3.	2.84 3	32.79 3	32.80	33.12	33.09 3	3.08	I			I		I	
		Ι			I			I			I			I		9:21			9:49		8:45	
		I			I			I			I			I		17.8			17.9		17.8	
		I			I			I			I			I		2.5Y4/	'3	2	574/2		5Y4/2	
		I			I			I			I			I		窃			砂		鸟	
_		Ι			I			I			I			I		なし			なし		なし	
		I			I			I			I			I		イドカ	Ē		なし		なし	
		Ι			I			I			I			T		3			3		2	
9		Ι			I			I			I			I		6.6			7.5		6.3	
٧IX	煛	19.5°C		気道:15	.8°C	থাম	這 道:18.2	S S	₩	[通:15:	3°C	N/	氮温:21	၁့၀	気探度	遍:15.4°C 泥量:6.0kg	-wet程	∬通∷15. 按泥量:6	6°C 3.0kg-wet程	◎ 注 10 通:15 目:: 15 目:: 15	i.4°C 6.0kg-we	辑
1			1						┤			1										I

表3-1 令和3度 IVEA との試験所間比較試験に係る試料採取インベントリデータ

**!: 緯度 - 経度は世界測地系WGS84IC準拠した。

^{※2}: 風向の"--"は方向なし、風速の"CALM"は静穏(風速0.2m/s以下)を示す。

*3: 水色の色調判定は標準色カード202に従った。

*4: 水温、塩分は船上の大型タンクに汲み上げた海水の性状を示す。

^{※5}: 底質の色調判定は新版標準土色帖に従った。

**6: 採泥量は船上での簡易計測。

3-2. 試料の送付

試料の送付は(公財)日本分析センターの指示に従った。 海水試料は、採取当日に表3-2に示す分析実施機関に送付した。 海底土試料は、採取当日に現地から日本分析センターに送付した。

¹³⁴Cs、¹³⁷Cs分析用 ⁹⁰Sr 分析用 分析実施機関 ³H分析用 送付先 IAEA Environment Laboratories 20L×1個×5地点 20L×2個×5地点 2L×1個×5地点 Institut de Radioprotection et Surete 20L×1個×5地点 20L×2個×5地点 2L×1個×5地点 Nucleaire, France Korea Institute of Nuclear Safety, 日本分析センター 20L×1個×5地点 20L×2個×5地点 2L×1個×5地点 分析部 総括グループ Korea Karlsruhe Institute of Technology, 20L×1個×5地点 20L×2個×5地点 2L×1個×5地点 Germany 公益財団法人日本分析センター 20L×1個×5地点 20L×2個×5地点 2L×1個×5地点 福島県環境創造センター 20L×1個×5地点 20L×2個×5地点 環境放射線センター 福島県 福島県環境創造センター 2L×1個×5地点 研究部 株式会社KANSOテクノス 株式会社KANSOテクノス 20L×1個×2地点 20L×2個×5地点 計測分析所 九州環境管理協会 一般財団法人九州環境管理協会 20L×1個×1地点 20L×2個×5地点 2L×1個×5地点 技術部先進領域課 海洋生物環境研究所 公益財団法人海洋生物環境研究所 20L×1個×4地点 2L×1個×4地点 中央研究所 東北緑化環境保全株式会社 _ 東北緑化環境保全株式会社 20L×1個×2地点 _ 環境分析センター 東京パワーテクノロジー 東京パワーテクノロジー株式会社 20L×1個×1地点 _ 2L×1個×1地点 株式会社 福島原子力事業所

表3-2 海水試料の送付先(現地発送)

資料

令和3年度 IAEA との試験所間比較分析に係る試料採取及び試料調製等業務 現地調査状況写真集

No.1 調査地点 T−S8	
写真項目 調査地点状況	
写真説明 調査地点 遠景	
調査年月日 令和3年11月8日	
No.2 調査地点 T−S8	
写真項目 調査地点状況	
写真説明 調査地点 近景	
調査年月日 令和3年11月8日	
No.3 調査地点 T−S8	
写真項目 調査実施状況	
写真説明 気象・海象 気温測定	
調査年月日 令和3年11月8日	

No.7 調査地点 T-S8 写真項目 調査 写真説明 気象・海象 透明度測定 調査年月日 令和3年11月8日	
No.8 調査地点 T-S8 写真項目 調査 算定施状況 写真説明 採泥状況 調査年月日 令和3年11月8日	
No.9 調査地点 T-S8 写真項目 調査実施状況 写真説明 泥温・泥色測定 調査年月日 令和3年11月8日	

No.10 調査地点 F-P04 写真項目 調査性点状況 調査集別明 遠景 調査年月日 令和3年11月8日	
No.11 調査地点 F-P04 写真項目 調査地点状況 写真説明 調査地点 近景	
令和3年11月8日 No.12 調査地点 F-P04	
写真項目 調査実施状況 写真説明 気象•海象 気温測定	
調査年月日 令和3年11月8日	

No.13 調査地点 F-P04 写真項目 調査実施研 気象・海象 風向測定 調査年月日 令和3年11月8日	
No.14 調査地点 F-P04 写真項目 調査実施研 気象・海衆 風速測定 調査年月日 令和3年11月8日	
No.15 調査地点 F-P04 写真項目 調査実施状況 写真説明 気象・海象 水色測定	
調査年月日 令和3年11月8日	

No.16 調査地点 F-P04 写真項目 調査 写真説明 気象・海象 透明度測定 調査年月日 令和3年11月8日	
No.17 調査地点 F-P04 写真項目 調査実施研 採泥状況 調査年月日 令和3年11月8日	
No.18 調査地点 F-P04 写真項目 調査 写真説明 採泥 泥温・泥色測定 調査年月日 令和3年11月8日	

No.19 調査地点 T-S3 写真項目 調査地点状況 写真説明 調査地点 遠景	
調査年月日 令和3年11月8日	
No.20 調査地点 T-S3	
写真項目 調査地点状況	
写真説明 調査地点 近景	
調査年月日 令和3年11月8日	
No.21 調査地点 T−S3	
写真項目 調査実施状況	
写真説明 気象・海象 気温測定	
調査年月日 令和3年11月8日	

No.22 調査地点 T-S3 写真項目 調査 写真説明 気象・海象 風向測定 調査年月日 令和3年11月8日	
No.23 調査地点 T-S3	
調査実施状況	
写真説明 気象∙海象 風速測定	
調査年月日 令和3年11月8日	
No.24 調査地点 T−S3	
写真項目 調査実施状況	
写真説明 気象・海象 水色測定	
調査年月日 令和3年11月8日	

No.25 調査地点 T-S3 写真項目 調査 写真説明 気象・海象 透明度測定 調査年月日 令和3年11月8日	
No.26 調査地点 T-S3 写真項目 調査 算施状況 写真説明 採泥 採泥状況 調査年月日 令和3年11月8日	<image/>
No.27 調査地点 T-S3 写真項目 調査実施状況 写真説明 採泥 泥温・泥色測定 調査年月日 令和3年11月8日	

No.28 調査地点 M-102 写真項目 調査地点状況	
与具詋明 調査地点 遠景	
調査年月日 令和3年11月8日	
No.29 調査地点 M−102	
写真項目 調査地点状況 写真説明 調査地点 近暑	
調査年月日 令和3年11月8日	
No.30 調査地点 M−102	
写真項目 調査実施状況	
写真説明 気象・海象 気温測定	
調査年月日 令和3年11月8日	

No.31 調査地点 M-102 写真項目 調査実施状況 写真説明 気象・海象 風向・風速測定 調査年月日 令和3年11月8日	
No.32 調査地点 M─102	
写真項目 調査実施状況	
写真説明 気象∙海象 水色測定	
調査年月日 令和3年11月8日	
No.33 調査地点 M─102	
写真項目 調査実施状況	
写真説明 気象・海象 透明度測定	
調査年月日 令和3年11月8日	

No.34 調査地点 M-102 写真項目 調査実施状況 写真説明 採水 海水採取状況 調査年月日 令和3年11月8日	
No.35 調査地点 M-102	
写真項目 調査実施状況 写真説明 採水	
水質測定 調査年月日 令和3年11月8日	
No.36 調査地点 M─102	
写真項目 調査実施状況	
写真説明 採水 分注状況	
調査年月日 令和3年11月8日	

No.37 調査地点 M-103	
写真項目 調査地点状況	
写真説明 調査地点 遠景	
調査年月日 令和3年11月8日	
No.38 調査地点 M−103	
写真項目 調査地点状況	
写真説明 調査地点 近景	
調査年月日 令和3年11月8日	
No.39 調査地点 M−103	
写真項目 調査実施状況	
写真説明 気象·海象 気温測定	
調査年月日 令和3年11月8日	

No.40 調査地点 M-103 写真項目 調査実施状況 写真説明 気象・海象 風向・風速測定 調査年月日 令和3年11月8日	
No.41 調査地点 M-103	
写真項目 調査実施状況	
写真説明 気象∙海象 水色測定	
調査年月日 令和3年11月8日	
No.42 調査地点 M─103	
写真項目 調査実施状況	
写真説明 気象∙海象 透明度測定	
調査年月日 令和3年11月8日	

No.46 調査地点 T-D1 写真項目 調査性点状況 調査地点 遠景 調査年月日 令和3年11月8日	
No.47 調査地点 T-D1 写真項目 調査性別 調査時 近景 調査年月日 令和3年11月8日	
No.48 調査地点 T-D1 写真項目 調査 写真説明 気象・海象 気温測定 調査年月日 令和3年11月8日	

No.49 調査地点 T-D1 写真項目 調査実施状況 写真説明 気象・海象 風向・風速測定 調査年月日 令和3年11月8日	
No.50 調査地点 T-D1	
写真項目 調査実施状況 写真説明 気象・海象 水色測定	
調査年月日 令和3年11月8日	
No.51 調査地点 T−D1	
写真項目 調査実施状況 写真説明 気明-海象	
亟纳度湖定 調査年月日 令和3年11月8日	

No.55 調査地点 M-104 写真項目 調査地点状況 写真説明 調査地点 遠景	
調査年月日 令和3年11月11日	
No.56 調査地点 M−104	
写真項目 調査地点状況	
写真説明 調杏地点	
近景 調査年月日 令和3年11月11日	
No.57 調査地点 M−104	
写真項目 調杳実施状況	
写真説明 気象·海象 気温測定	
調査年月日 令和3年11月11日	

No.58 調査地点 M-104 写真項目 調査実施状況 写真説明 気象・海象 風向・風速測定 調査年月日 令和3年11月11日	
No.59 調査地点 M-104 军直項日	
調査実施状況	
与具詋时 気象•海象 水色測定	
調査年月日 令和3年11月11日	
No.60 調査地点 M─104	
写真項目 調査実施状況	
写真説明 気象・海象 透明度測定	
調査年月日 令和3年11月11日	

No.61 調査地点 M-104 写真項目 調査実施状況 写真説明 採水 海水採取状況 調査年月日 令和3年11月11日	
No.62 調査地点 M-104 写真項目 調査実施状況 写真説明 採水 水質測定 調査年月日 令和3年11月11日	
No.63 調査地点 M-104 写真項目 調査実施状況 写真説明 採水 分注状況 調査年月日 令和3年11月11日	<image/>

No.64 調査地点 M-101 写真項目 調査性局 調査時 遠景 調査年月日 令和3年11月11日	
No.65 調査地点 M-101 写真項目 調査 支真説明 調査地点 近景 調査年月日 令和3年11月11日	
No.66 調査地点 M-101 写真項目 調査実施状況 写真説明 気象・海象 気温測定 調査年月日 令和3年11月11日	<image/>
No.67 調査地点 M-101 写真項目 調査実施状況 写真説明 気象・海象 風向・風速測定 調査年月日 令和3年11月11日	
---	--
No.68 調査地点 M-101 写真項目 調査実施状況 写真説明 気象•海象 水色測定 調査年月日 令和3年11月11日	
No.69 調査地点 M-101 写真項目 調査実施状況 写真説明 気象・海象 透明度測定 調査年月日 令和3年11月11日	

No.70 調査地点 M-101 写真項目 調査実施状況 写真説明 採水 海水採取状況 調査年月日 令和3年11月11日	
No.71 調査地点 M-101 写真項目 調査実施状況 写真説明 本探測中	
水貨測定 調査年月日 令和3年11月11日	
No.72 調査地点 M−101	
写真項目 調査実施状況 写真説明 採水 分注状況	
調査年月日 令和3年11月11日	

No.73 調査地点 T-S3,T-S8,F-P04 写真項目 採取試料 写真説明 採取試料 採泥試料 調査年月日 令和3年11月8日	
No.74 調査地点 一	
写真項目 採取試料	A A A A
写直说阳	
子其武功 採取試料 球水試料用字	
調查年月日 令和3年11月8日	
No.75 調査地点	
T-D1,M-103,M-102	
写真項目	9999
採取試料	amit
与具詋时 採取試料 採水試料	
調査年月日	
ᠤᠬᡅᢃᢡ᠋ᠨ᠘ᡠ᠋ᡏ	

No.76 調査地点 M-102 写真項目 採取試料 写真説明 採取試料 採水試料	
調査年月日 令和3年11月8日	
No.77 調査地点 M-103	and the second se
写真項目 採取試料	
写真説明 採取試料 採水試料	
調査年月日 令和3年11月8日	
No.78 調査地点 T−D1	
写真項目 採取試料	T
写真説明 採取試料 採水試料	
調査年月日 令和3年11月8日	

No.79 調査地点 M-101,M-104 写真項目 採取試料 写真説明 採水試料 調査年月日 令和3年11月11日	
No.80 調査地点 M-101	
写真項目 採取試料	
写真説明 採取試料 採水試料	
調査年月日 令和3年11月11日	
No.81 調査地点 M−104	
写真項目 採取試料	
写真説明 採取試料 採水試料	
調査年月日 令和3年11月11日	

— 74 —

参考資料2

海底土の前処理作業

1. 概要

福島県沖を中心とする海洋モニタリングデータの国際的な信頼性・透明性の向上のため、原子力規制委員会は、IAEA との協力により試験所間比較分析 (inter-laboratory comparison)を実施している。

この試験所間比較分析の一環として、本件は東京電力ホールディングス株式会社 福島第一原子力発電所付近の海域で海水及び海底土を採取し、試料の放射能分析を 実施している。

日本分析センターでは、IAEA との調整の上、決定された方法に従って、海底土の 前処理、分割等を実施した。

2. 実施方法

(1) 実施時期

海底土の前処理、分割は2021年11月10~15日に実施した。 前処理、分割に係る日程表を表 2-1に示す。

1	年月			2021年	-11月		7
	日	10	11	12	13	14	15
	曜日	水	木	金	土	日	月
	T-S3			\rightarrow			
採取地点	T-S8						
-	F-P04						$ \rightarrow $

表 2-1 前処理実施日程

(2) 前処理工程

前処理を行った海底土試料は、表 2-2 に示す。

海底土試料は、図 2-1 に示すフローに基づいて前処理、分割を実施し、試験所 間比較分析用試料とした。

表 2-2 海底土試料の採取地点と受取量

资表发生	应而且	分析	機関
採取地尽	文収里	Cs分析用	Pu分析用
T-S3	6.6kg-wet	8	7
T-S8	5.8kg-wet	8	7
F-P04	6.7kg-wet	8	7

図 2-1 海底土試料の調製フロー

(3) 試料の分割

採取地点 T-S3、T-S8 及び F-P04 の海底土試料の分割フローを図 2-2 に示す。 試料の分割には筒井理化学器械株式会社製の二分器 JIS6 号型を用いた。 分割した試料は、粉体ロートを用いて、T-S3 は 10 本の容器、T-S8 及び F-P04

は9本の容器に移した。

3. 実施結果

(1) 試料調製の記録

海底土試料の前処理、分割に係る詳細データは、地点ごとに表 3-1~3 に示す。

表 3-1 IAEA との試験所間比較分析に係る海底土前処理、分割記録(1)

Sam	nple	No.					T-	\$3				
-		travNo.		101	102			<u> </u>		<u> </u>		
0.002		trav(g)	total	1068.8	1082.3					÷	6	è. ÷
Ini	tial	trav+ sample (g)	6,85465	4289.0	4425.5	4		Q	2	9. S	2	S 1
		sample (g)	6563.4	3220.2	3343.2							
		trav+ sample (g)	total	3618.5	3727.4	,		÷				÷
	1st weight	sample (g)	5194.8	2549.7	2645.1	i i						
0		trav+ sample (g)	total	3618.7	3726.9							81
Dry	2nd weight	sample (g)	5194.5	2549.9	2644.6	-		-				-
(at 105 °C)	lst - Ind	decrease(g)	0.30			· · · · ·		÷ .	1	e-		e
0	1st - 2nd	decrease(%)	0.01	-		Sc 3		9 :		6; · · · ·		S, E
	water	content (%)	20.9		2	2 2						
i.	777,6-3752	travNo	200	103		i i					ч. Г.	÷. :
		trav(o)	total	435.7		6 S		6 S		6 X		a P
	> 2 mm	trazet comple (g)		470.6		S. 3	5	2. S		2 <u>5</u> 2		£ 1
£1.		aando (a)	34.0	34.0		÷;					-	
stze fractionation		sampe (g)	54.2	104		e		÷ .		e-	,	÷ 5
		uayivo.	total	1081.8		Q 3		G :		s; s		s, t
	≦ 2 mm	trave cometo (a)	total	6248.2		-		-	0			<u>.</u>
		uay+ sampe (g)	5166.4	5166.4		-				6.	¢	
6		sampe (g)	5100.4	105		6 - 8		c 3		s	5	с I
		dayino.	total	628 4	-	2 2		* *		2 · · · ·		<u>e</u> 1
	> 250 µm	uay(g)	tota	2072.2		÷		-	-	-	-	
100		tray+ sample (g)	2424.0	3073.2				· · · · · ·	1	с		· · · · · · · · · · · · · · · · · · ·
stze fractionation		sampe (g)	2434.0	104		<i>š</i> . 3		<i>8</i> 3		8	2	e i
		dayino.	total	7175		-	,	÷	2	e	0	<u>.</u>
	≦ 250 µm	tray(g)	tota	717.5		÷				÷		÷. ÷
		tray+ sample (g)	2720.0	3440.3		6 - S		s - 3		8 8		s 1
e 3		sample (g)	2729.0	2/29.0		st and		2 2				2 I
		travNo	109				110					1
		trasz(g)	638.6)	0	650.0	0		0	0	÷ ÷
1st split	1/2	trans- comple (a)	1000.6			£	2024.8	2	-	2	5	£
		eannia (n)	1352.0				1374.8			-) 	6 <u> </u>
÷		sampe (g)					10,40			1	- 	
16 A		trayNo.	111		112		113		114			
and solid	1/4	tray(g)	446.3		456.8		451.8		453.5			
2105 Spar		tray+ sample (g)	1122.1		1132.5		1151.8		1128.1			
z. – 7		sample (g)	675.8		675.7	Į.	700.0	Ĩ.	674.6	i.		ļ į
-					<u> </u>		<u> </u>				() ()	
		trayNo.	115	116	117	118	119	120	121		122	
3rd orbit	1/9	tray(g)	452.8	445.7	445	453.9	459.9	446.4	454.9		452.9	
510 Spir	20	tray+ sample (g)	792.5	781	782.2	791.7	809.6	795.8	792.4	i i	789.4	l i
		sample (g)	339.7	335.3	337.2	337.8	349.7	349.4	337.5		336.5	
										-	<u>γ</u>	
		trayNo.							123	124	125	126
Ath selit	1/16	tray(g)							446.0	450.1	452.7	447.4
in oher		tray+ sample (g)	÷.	÷.	÷		+	÷	615.1	617.7	621.3	614.9
		sampie (g)	339.7	335.3	337.2	337.8	349.7	349.4	169.1	167.6	168.6	167.5
Bottle Name			IAEA ILC2021 Sediment T-S3 Bottle A	IAEA ILC2021 Sediment T-S3 Bottle B	IAEA ILC2021 Sediment T-S3 Bottle C	IAEA ILC2021 Sediment T-S3 Bottle D	IAEA ILC2021 Sediment T-S3 Bottle E	IAEA ILC2021 Sediment T-S3 Bottle F	IAEA ILC2021 Sediment T-S3 Bottle G	IAEA ILC2021 Sediment T-S3 Bottle H	IAEA ILC2021 Sediment T-S3 Bottle I	IAEA ILC2021 Sediment T-S3 Bottle J

表 3-2 IAEA との試験所間比較分析に係る海底土前処理、分割記録(2)

Sample		No.					8	T-S8					
1 - 12		In No.	S.	301	30.2								
		Eay Nu	total	1000 7	1076.9	Q - 3		ý.	a a		8	562	
Ini	tial	tay (g)	10(21	2056.0	4015.1	6 g	-	2	6		8		1
		ray+ satiple (g)	59144	2976.1	30.20.2	-			0				-
<u>i</u>	ė.	sampe (g)	2014.4	2104.6	2930.5	ė i			i i			-	-
	lat weight	ray+ sample (g)	4115.6	3194.0	22/0.5	-			i i		-	-	-
		sample (g)	4313.0	2102.0	2201.7	-		-					-
Dry	2nd weight	ray+ sample (g)	10131	3193.2	32/03			5		:	8		-
(at 105 °C)		ampe (g)	3 2 20	2112.2	2200.1	82 - 24 		8			5		
	197 - 200	Oecrease(g)	3.00		2	2. P			8. P		8	200	-
	1st - 2nd ttrater	decrease(%)	0.07		S:	Q ()		2	9 9	-	8	562	
	wates	Cuten (70)	8.62	1.02	2	6 9		8	9 8		8		-
		tray No.		103		÷ (- -				
	> 2mm	tray (g)	10031	440.2		8	-	¢.	÷			-	
220		tray+ sample (g)		333.2	1	÷			÷			-	-
size foretionation	<u> -</u>	sample (g)	87.0	87.0	-	e (e (-
nacionation		tray No.	1000	104	2	e2 - 2		8	2 8		6		
	≦ 2 mm	tray (g)	total	1000.3	8	£ 3		8	i i		8	202	
		tray+ sample (g)		5298.5		8 <u>.</u> 13		8	Si 8		8	5.2	
	8	sample (g)	4232.2	4232.2	2	8							
		tray No.		105	-	-							
	> 250 µm	tray (g)	total	638.3	6				i i	-	-	-	
(DAD)		tray+ sample (g)		1219.1			-		÷		-	-	
size Geografication		sample (g)	580.8	580.8	-	e (-	-				
Inschonshon		tray No.	1999	106		2 2		8	2 2		8		<u> </u>
	≦ 250 µm	tray (g)	total	717.0	ý	E I		2	e s		8	- 22	- <u>1</u> 2 - 4
		tray+ sample (g)	Contractions of	3553.7				2	8		2		
	<u>1</u>	sample (g)	2836.7	2836.7					ų į				
8	la la	1 (22)				5 B	110	-	S 8		8	563	1 10 1
		tray No.	109	-	8	5 ý	110	5			8		
lst split	1/2	tray (g)	049.5				037.9	8					
68		tray+ sample (g)	2001.3				2060.4	1	i i			-	
	6	sample (g)	1411.8				1422.5	1					
-		tray No.	111		112		113		114				
12/12/2012	2253	tray (g)	446.0		444.8		452.5		4 5 9 . 8				
THO SO R	1/4	tray+ sample (g)	1155.0		1146.1	si	1163.2		1171.9		8	307	
		sample (g)	709.0		701.3		710.7		712.1				
5 - E	8	16	<u></u>	:		-					<u> </u>	à.,	
0		tray No.	115	116	117	118	119	120	121		122		
-		tray (g)	456.6	445.6	447.1	452.7	453.4	453.6	451.6		43.5.4		
ord spat	1/8	tray+ sample (g)	809.8	801.1	794.7	805.8	810.7	\$06.3	808.9		789.5		
c		sample (g)	353.2	355.5	347.6	353.1	357.3	352.7	357.3		354.1		
		101							1				+
		tray No.			2 2				123	124			104
44-40	1.74	tray (g)							454.7	44.5.7			10663
-Hit spar	1/10	tray+ sample (g)	+	+	+	*	+	+	634.2	623.4	+	-	1882.3
		sample (g)	353.2	355.5	347.6	353.1	3573	352.7	1 79.5	177.7	354.1		\$16.0
Bottle Name	74		IAFA ILC2021 Sediment T-58Bottle A	IAEA ILC2021 Sediment T-S8 Bottle B	IAEA ILC2021 Sediment T-S8 Bottle C	IA FA ILC 2021 Sediment T-58 Bottle D	IAEA IL (2021 Sediment T-S8 Bottle E	IAEA ILC2021 Sediment I-S8 flottle F	IAEA ILC 2021 Sediment T-S8 Bottle G	IAEA ILC2021 Sediment T-S8 Bottle H	IAEA ILC2020 Sedment 1-S8 flottle 1	0-0	IAFA ILC2021 Sediment T-S8 archive

表 3-3 IAEA との試験所間比較分析に係る海底土前処理、分割記録(3)

Sample		No.						F-P04	1					
		tray No.		201	202	a:	(c)	¢	c				8 8	
1.20	8.0V	tray (g)	total	1041.2	1078.4									
In	fal	tray+ sample (g)		4371.5	4489.8	ų.	la S	C	e s	8	S		2. S	e e
		sample (g)	6741.7	3330.3	3411.4	Э.		Ξ.	e i	8 8	e 8	1	8 8	o i
		tray+ sample (g)	total	3530.6	3 6 6 4 . 5	1		i i	i i			Ì Ì	j	
	1st weight	sample (g)	50 75 .5	2489.4	2586.1				i i					
	and one inter	tray+ sample (g)	total	3529.6	3 66 2.8									
(at 105 "C)	an wega	sample (g)	50 72 .8	2488.4	2584.4									
e	lst - 2nd	decrease(g)	2.70		2	2				8 9			8 8	
	lst - 2nd	decrease (%)	0.05		2	5		2	e	8 8	- 3		8 8	e j
8	water	content (%)	24.8		ž.	ic.	ç	c	c ;	s	e		s - 3	
		tray No.	10/0204	203										
	> 2 mm	tray (g)	total	451.4	1			1		1				
		tray+ sample (g)		497.1			<u> </u>							
size	-	sample (g)	45.7	45.7	0									
tractoriation		tray No.	1. al 2010	204	8	-		-				_	;;	-
	≦ 2 mm	tray (g)	total	1076.8	÷	<u>.</u>	;			÷	÷		k	
		tray+ sample (g)		0111.0	2 2	é	()	-	-				-)i
<u>e</u>	20	sample (g)	5034.8	2034.8	2	8		e						u <u>1</u> .
		ray No.	total	642.1	÷			2	S;	8 3			8 8 8	<u> </u>
	> 250 µm	travit menda (e)	eo car	1152.4	£.	10	10 B	C	C	5				
04000		comela (e)	511.3	511 3	<u>e</u>	la -	(c)	e	c :	8			X 0 1 X	
size fractionation	0	way No	511.5	206	8	<u>9</u>	<u> </u>	6	e :	8 8		- 3	8 8 8	o 1
0.000000000	125	tray (a)	total	747.0	S 1	ģ	<u> </u>	S	6 ÷	8 8	- S	2 3	2 2 2	0 I
	≦ 250 µm	trav+ samnle (s)		4242.5	c.	5			· · · ·					
		sample (g)	3495.5	3495.5	<u>.</u>									
	01	n en		1	6.9 6.9			N.			•. •			
		tray No.	209		1		210]]					
Teterit	12	tray (g)	636.5		11		634.3							
100 opin	100	tray+ sample (g)	1988.5			6	2025.3	ļ						
<u>.</u>	an.	sample (g)	1352.0			÷.	1391.0		÷.	ų – 1	8 8		1 1 1	
1		() () () () () () () () () () () () () (10		<u> </u>							
		tray No.	211		212	ů:	213	e :	214		8 3		5 21 3	
2nd split	14	tray (g)	453.2		452.5	0.	432.0	6	406.8				2 51 3	
		tray+ sample (g)	1120.8		1135.2		1137.0	8	1092.4				2 2 2	
0	<u>.</u>	sample (g)	007.0		082.7		705.0		085.0	<u> </u>				
6	Ê.		215	216	21.7	218	21.0	220	221	Ĩ.	222			
		Eay ING.	433.4	474.6	4270	413.3	4303	435	441.1	÷	431.4			
3rd split	18	eay (g) trau+ camela (d)	773.0	751.3	7731	740 0	800.4	778.2	775.4		782.5			
		sammle (g)	340.5	326.7	3452	336.6	361.1	343.2	334.3		351.1			
	12 12	andre (B												-
-	Î.	trav No							223	224		\square	204	208
0300 68	1053054	trav (g)							434.0	441.1			1076.8	701.5
4th split	1/16	tray+ sample (g)	4		1	Ļ	Ļ	1	597.0	612.6		5	2106.2	1449.7
		sample (g)	340.5	326.7	345.2	336.6	361.1	343.2	163.0	171.5	3511		1029.4	748.2
Bottle Name			IAEA ILC2021 Satiment F494 Bottle A	IAEA IIE 2021 Sediment F-P04 Bottle B	IAEA ILE 2021 Sediment F-P04 Bottle C	IAEA ILC2021 Sediment F-P04 Hottle D	IAEA ILC2021 Sediment F-P04 Bomle E	IAEA ILC2021 Sed inten t F-P04 Bontle F	IAEA ILC2621 Sediment F-P04 Bottle G	IAEA ILC2021 Sederent F-P04 Bottle H	IAEA ILC2021 Sediment F-P04 Bottle I		IAFA ILC202I Sedurent F-P04 archive	IAEA ILC2021 Sediment F4904 archive

(2) 実施状況

試料調製の各工程について、実施状況を示す。

試料調製実施状況

参考資料3

分析実施機関の分析結果

分析機関: 福島県

Nuclide: H-3					
Method (including separation):					
About 1,200 g of sample was purified by vacuum distillation. by CO ₂ gas bubbling and electrolyte was removed by vacuum scintillation counter(500 min/sample). Tritium activity was de	1,000 g of puified sample v distillation. 10 g of enriche termined using tritium spik	was enriched to the final weig ed water sample was mixed wi e method.	at of 15 g using alkaline electro th 10 mL of scintillator(Ultima	Jlysis enrichment system. Enri gold LLT, perkinelmer) and ı	ched sample was neutrized ased for counting by liquid
Detection system (including type of calibration analied):					
Detection System : Liquid Scintillation Counter(LSC-LB7, Hi Methods of calibration : ESCR method	tachi)				
Detection limit (Bq/L):					
0.028 Bq/L(calculated by Cooper's method : Factors determin	ing the ultimate detection s	ensitivity of Ge(Li) gamma-ra	y spectrometers J.A.Cooper, 1	970)	
Nuclear data used (e.g., half-life):					
half life of tritium : 12.33 year β emission probability : 100%					
RESULTS					
At reference time 09 November 2021 12:00 UTC					
			Bq/L		
Activity concentration of H_3 (Roff.)	M-101 0 140	M-102 0 126	M-103 0.084	M-104 0.050	T-D1 0.065
Uncertainty $(k=1)$ (Bq/L)	0.022	0.019	0.015	0.011	0.014
Uncertainty Budget (optional)		Í	telative uncertainty (%) (k=1		
Uncertainty component associated with net count rate of H-3	9.7	0.6	12.8	19.3	17.6
Uncertainty component associated with detector efficiency	2.8	2.8	2.8	2.8	2.8
Uncertainty component associated with weighing	0.2	0.2	0.2	0.2	0.2
Uncertainty component associated with tritium activity of spike sample	2.8	2.8	2.8	2.8	2.8
Uncertainty component associated with tritium recovery on enrichment	11.4	11.4	11.4	7.11	11.4
Relative combined standard uncertainty $(k=1)$	15.5	15.0	17.6	22.7	21.3

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater

Nuclide: Sr-90					
Method (including chemical separation):					
Measurement of Y-90 chemical-separated from Sr-90 and a	other elements with Fe-prec	sipitationand ion-exchange m	ethod		
Detection system (including type of calibration applied):					
low-background beta counter calibrated with standard Y-90	source				
Detection limit (Bo/L):					
M-101:0.00095Bq/L,M-102:0.00075Bq/L,M-103:0.00065B	iq/L,M-104:0.00068Bq/L,TI	J-1 :0.00053Bq/L			
كالنظمة فيقمسها لأمم المالالكمان					
ICRP Publication 107:Nuclear Decay Data for Dosimetric C	alculations, Ann.ICRP38(3)	,2008			
RESULTS					
At reference time 09 November 2021 12:00 UTC					
			Bq/L		E
Activity concentration of Sr.90 (Ba/L)	M-101 0.003	M-102	M-105 0.001	M-104 0.001	
Uncertainty ($k=1$) (Bq/L)	0.000	0.000	0.000	0.000	
Uncertainty Budget (optional)			Relative uncertainty (%) (k=	(]	
Uncertainty component associated with net count rate of Sr-90 (or Y-90 if applicable)	12.0	16.8	22.0	22.5	37.9
Uncertainty component associated with detector efficiency	3.3	3.3	3.3	3.3	3.3
Uncertainty component associated with chemical yield determination	2.7	2.8	2.8	2.8	2.7
Uncertainty component associated with weighing	0.6	9.0	0.6	0.6	9.0
Any other uncertainty component (please specify)	0.0	0.0	0.0	0.0	0.0
Relative combined standard uncertainty $(k=1)$	12.7	17.3	22.5	23.0	38.2

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater

Cs-134	
Nuclide:	

Method (including chemical separation, if applicable):

Chemical separation of caesium by using ammmonium molybdophosphate(AMP) and manganese dioxide(MnO2) followed by gamma-ray spectrometry with a HPGe detector

Detection system (including type of calibration applied): CANBERRA Genie 2000

(Calibration with multi -gamma source)

Detection limit (Bq/L):

M-101:0.0021Bq/L,M-102:0.0021Bq/L,M-103:0.0019Bq/L,M-104:0.0018Bq/L,T-D1:0.0018Bq/L

Nuclear data used (e.g., half-life and emission probabilities):

Table of Isotopes,7th Edition (harf-life 2.062year, emission probabilities:85.44%)

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	T-DI
Activity concentration of Cs-134 (Bq/L)	QN	QN	QN	ND	CIN
Uncertainty $(k=1)$ (Bq/L)		—	Ι	-	-

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	(
Uncertainty component associated with net count rate of Cs-134					
Uncertainty component associated with detector efficiency	2.9	2.9	2.9	2.9	2.9
Uncertainty component associated with emission probability	2.7	2.7	2.7	2.7	2.7
Uncertainty component associated with weighing	0.2	0.2	0.2	0.2	0.2
Any other uncertainty component (please specify)	4.3	4.3	4.3	4.3	4.3
Relative combined standard uncertainty $(k=1)$	5.9	5.9	5.9	5.9	5.9

Nuclide: Cs-137					
Method (including chemical separation, if applicable):					
Chemical separation of caesium by using ammmonium moly	ybdophosphate(AMP) and m	anganese dioxide(MnO2) fol	lowed by gamma-ray spectrome	stry with a HPGe detector	
Detection system (including type of calibration applied):					
CANBERRA Genie 2000 (Calibration with multi -gamma source)					
Detection limit (Bq/L):					
M-101:0.0014Bq/L, M-102:0.0015Bq/L, M-103:0.0014Bq/L	J,M-104:0.0014Bq/L,T-D1:0).0014Bq/L			
Nuclear data used (e.g., half-life and emission probabilities)	:(
Table of Isotopes,7th Edition (harf-life:30.174year,emission	n probabilities:85.0%)				
RESULTS					
At reference time 09 November 2021 12:00 UTC					
			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of Cs-137 (Bq/L)	090.0	0.042	0.013	0.019	0.004
Uncertainty $(k=1)$ (Bq/L)	0.004	0.003	0.001	0.001	0.001
Uncertainty Budget (optional)			Relative uncertainty (%) (k=	1)	
Uncertainty component associated with net count rate of Cs-137	2.2	2.7	5.4	4.3	14.4
Uncertainty component associated with detector efficiency	2.9	2.9	5.9	67	672

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	(
Uncertainty component associated with net count rate of Cs-137	2.2	2.7	5.4	4.3	14.4
Uncertainty component associated with detector efficiency	2.9	2.9	2.9	2.9	2.9
Uncertainty component associated with emission probability	2.7	2.7	2.7	2.7	2.7
Uncertainty component associated with weighing	0.2	0.2	0.2	0.2	0.2
Any other uncertainty component (please specify)	4.3	4.3	4.3	4.3	4.3
Relative combined standard uncertainty $(k=1)$	6.2	6.4	8.0	7.3	15.6

Method:

gammma-ray spectrometry with a HPGe detector

Cs-134

Detection system (including type of calibration applied): CANBERRA Genie 2000 (Calibration with multi-gamma source)

Detection limit (Bq/kg dry):

F-P04:0.96Bq/kg dry,T-S3:0.83Bq/kg dry,T-S8:0.85Bq/kg dry

Nuclear data used (e.g., half-life and emission probabilities):

Table of Isotopes,7th Edition (harf-life:2.062year,emission probabilities:85.44%)

RESULTS

		Bq/kg dry	
	F-P04	T-S3	T-S8
Massic activity of Cs-134 (Bq/kg dry)	1.4	—	1.9
Uncertainty $(k=1)$ (Bq/kg dry)	0.3	_	0.3

Uncertainty Budget (optional)	F	elative uncertainty (%) (k=	1)
Uncertainty component associated with net count rate of Cs-134	23.0	_	15.9
Uncertainty component associated with detector efficiency	2.9	-	2.9
Uncertainty component associated with emission probability	2.7	-	2.7
Uncertainty component associated with weighing	0.2	-	0.2
Any other uncertainty component (please specify)	4.1	I	4.1
Relative combined standard uncertainty $(k=1)$	23.7	_	16.9

Tuchuc.	Ν	uclide:	
---------	---	---------	--

Method:

gammma-ray spectrometry with a HPGe detector

Cs-137

Detection system (including type of calibration applied): CANBERRA Genie 2000 (Calibration with multi-gamma source)

Detection limit (Bq/kg dry):

F-P04:0.65Bq/kg dry,T-S3:0.53Bq/kg dry,T-S8:0.61Bq/kg dry

Nuclear data used (e.g., half-life and emission probabilities):

Table of Isotopes,7th Edition (harf-life:30.174year,emission probabilities:85.0%)

RESULTS

		Bq/kg dry	
	F-P04	T-S3	T-S8
Massic activity of Cs-137 (Bq/kg dry)	38.2	_	42.0
Uncertainty $(k=1)$ (Bq/kg dry)	2.3	—	2.5

Uncertainty Budget (optional)	R	Relative uncertainty (%) (k=	1)
Uncertainty component associated with net count rate of Cs-137	1.6	_	1.5
Uncertainty component associated with detector efficiency	2.9	_	2.9
Uncertainty component associated with emission probability	2.7	_	2.7
Uncertainty component associated with weighing	0.2	_	0.2
Any other uncertainty component (please specify)	4.1	_	4.1
Relative combined standard uncertainty $(k=1)$	5.9	_	5.9

Nuclide:	
----------	--

3 6 /1 1	
Method	
methou.	

After conditioning plutonium valence using reducing agent, purificated plutonium by anion exchange culumn was adhered to stainless steel plate electrically.

Detection system (including type of calibration applied):

Pu-238

Silicon semiconductor detector caliblated by alpha reference source certified by LRQA.

Detection limit (Bq/kg dry):

F-P04: 0.00424 , T-S3: 0.00468 , T-S8: 0.00490

Nuclear data used (e.g., half-life and emission probabilities): Half life:87.7 year emission porobabilities:99.9%

RESULTS

		Bq/kg dry	
	F-P04	T-S3	T-S8
Massic activity of Pu-238 (Bq/kg dry)	0.00598	0.00710	0.00825
Uncertainty $(k=1)$ (Bq/kg dry)	0.0014	0.0016	0.0016

Uncertainty Budget (optional)	R	elative uncertainty (%) (k=	1)
Uncertainty component associated with net count rate of Pu-238	23.5	21.7	19.6
Uncertainty component associated with activity of yield tracer (if used)	1.13	1.13	1.13
Uncertainty component associated with net count rate of yield tracer (if used)	3.04	3.09	3.01
Uncertainty component associated with weighing	0.0210	0.0210	0.0210
Any other uncertainty component (please specify)	0.0	0.0	0.0
Relative combined standard uncertainty $(k=1)$	23.7	21.9	19.9

Nuclide:	Pu-239/240

After conditioning plutonium valence using reducing agent, purificated plutonium by anion exchange culumn was adhered to stainless steel plate electrically.

Detection system (including type of calibration applied):

Silicon semiconductor detector caliblated by alpha reference source certified by LRQA.

Detection limit (Bq/kg dry):

F-P04: 0.0522, T-S3: 0.0529, T-S8:0.0611

Nuclear data used (e.g., half-life and emission probabilities): Half life:6561 year emission porobabilities:99.9%

RESULTS

 Bq/kg dry

 Bq/kg dry

 Bq/kg dry

 Bq/kg dry

 F-P04
 T-S3

 Massic activity of Pu-239/240 (Bq/kg dry)
 0.433
 0.430

 Uncertainty (k=1) (Bq/kg dry)
 0.018
 0.018

Uncertainty Budget (optional)	R	elative uncertainty (%) (k=	1)
Uncertainty component associated with net count rate of Pu-239/240	2.63	2.69	2.35
Uncertainty component associated with activity of yield tracer (if used)	1.13	1.13	1.13
Uncertainty component associated with net count rate of yield tracer (if used)	3.04	3.09	3.01
Uncertainty component associated with weighing	0.0210	0.0210	0.0210
Any other uncertainty component (please specify)	0.00	0.00	0.00
Relative combined standard uncertainty $(k=1)$	4.2	4.2	4.0

T-S8

0.533

0.021

分析機関: 東京パワーテクノロジー株式会社

er 2021	137 in seawater
EA ILC Novemb	Cs-134 and Cs-
IAI	H-3, Sr-90,

יי ב		
Nuclease	inucine:	

	<u>.</u>	÷	
•	censration -	or part attorn	•
	nindinani)	Amount	
	/ Pthoo		

The sample solution was distilled by a heating mantle. A liquid scintillation counter (ALOKA, LB-7) was used for the counting of an aliquot of the distilled sample mixed with a scintillation cocktail (Ultima Gold LLT).

Detection system (including type of calibration applied):

The counting efficiency was determined by the external standard channels ratio method (ESCR).

Detection limit (Bq/L):

T-D1... 0.35

Nuclear data used (e.g., half-life):

half life ••• 12.32 (year)

RESULTS

			Dq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of H-3 (Bq/L)		-	•	-	ND
Uncertainty $(k=1)$ (Bq/L)	-			-	-

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	()	
Uncertainty component associated with net count rate of H-3	-		T		·
Uncertainty component associated with detector efficiency		I			
Uncertainty component associated with weighing		-	-		•
Any other uncertainty component (please specify)	-		•		•
Relative combined standard uncertainty $(k=1)$	-	-	I	-	1

Cs-134
Nuclide:

Method (including chemical separation, if applicable):

Chemical separation of caesium by using AMP (ammonium molybdophosphate) followed by gamma-ray spectrometry with a p-type coaxial HPGe detector was used for 134Cs determination in seawater. SEIKO EG&G Gamma Studio was used for the analysis of the obtained spectra.

Detection system (including type of calibration applied):

Efficiency calibration is carried out using mixed-radionuclide sources in Marinelli beaker (Cd-109, Co-57, Ce-139, Cr-51, Sr-85, Cs-137, Mn-54, Y-88 and Co-60) for coincidence losses, self-absorption effects.

Detection limit (Bq/L):

T-D1 · · · 0.0008

Nuclear data used (e.g., half-life and emission probabilities): emission probabilities ••• 97.56 (%) half-life ••• 2.06 (year)

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	IQ-T
Activity concentration of Cs-134 (Bq/L)	-	-	•	-	ΠN
Uncertainty $(k=1)$ (Bq/L)	-				

Uncertainty Budget (optional)		Rı	elative uncertainty (%) (k=1		
Uncertainty component associated with net count rate of Cs-134	-			-	
Uncertainty component associated with detector efficiency	·	ı	I		I
Uncertainty component associated with emission probability	-	T			I
Uncertainty component associated with weighing	-	•	•	•	·
Any other uncertainty component (please specify)	I	I	T		I
Relative combined standard uncertainty $(k=1)$					

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater

ζ		
A	.001011	

Method (including chemical separation, if applicable):

Chemical separation of cassium by using AMP (ammonium molybdophosphate) followed by gamma-ray spectrometry with a p-type coaxial HPGe detector was used for 137Cs determination in seawater. SEIKO EG&G Gamma Studio was used for the analysis of the obtained spectra.

Detection system (including type of calibration applied):

Efficiency calibration is carried out using mixed-radionuclide sources in Marinelli beaker (Cd-109, Co-57, Ce-139, Cr-51, Sr-85, Cs-137, Mn-54, Y-88 and Co-60) for coincidence losses, self-absorption effects.

Detection limit (Bq/L):

T-D1 ... 0.0009

Nuclear data used (e.g., half-life and emission probabilities): emission probabilities ••• 85.0 (%) half-life ••• 30.17 (year)

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of Cs-137 (Bq/L)	-	-	-	-	0.0041
Uncertainty $(k=1)$ (Bq/L)	-	•	•		0.0004

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	()	
Uncertainty component associated with net count rate of Cs-137	-	-	-	-	8.6
Uncertainty component associated with detector efficiency					2.8
Uncertainty component associated with emission probability	-	-	-		0.6
Uncertainty component associated with weighing	•	•	-		0.5
Any other uncertainty component (please specify)	-	П	-		0.0
Relative combined standard uncertainty $(k=1)$		-	-	-	9.0

Nuclide: Cs-134

Method:

Sediment samples in U8 type polypropylene container were counted on a p-type coaxial HPGe detector. SEIKO EG&G Gamma Studio was used for the analysis of the obtained spectra.

Detection system (including type of calibration applied):

Efficiency calibration is carried out using mixed-radionuclide sources in U8 type polypropylene container (Cd-109, Co-57, Ce-139, Cr-51, Sr-85, Cs-137, Mn-54, Y-88 and Co-60) for coincidence losses, self-absorption effects.

Detection limit (Bq/kg dry):

F-P04...0.7 , T-S3...0.6 , T-S8...0.6

Nuclear data used (e.g., half-life and emission probabilities): half-life •••• 2.06 (year) emission probabilities ••• 97.56 (%)

RESULTS

		Bq/kg dry	
	F-P04	T-S3	T-S8
Massic activity of Cs-134 (Bq/kg dry)	1.6	1.5	1.7
Uncertainty $(k=1)$ (Bq/kg dry)	0.4	0.2	0.2

Uncertainty Budget (optional)	ŀ	Relative uncertainty (%) (k=	1)
Uncertainty component associated with net count rate of Cs-134	24.0	15.1	13.7
Uncertainty component associated with detector efficiency	2.8	2.8	2.8
Uncertainty component associated with emission probability	0.3	0.3	0.3
Uncertainty component associated with weighing	0.0	0.0	0.0
Any other uncertainty component (please specify)	0.0	0.0	0.0
Relative combined standard uncertainty $(k=1)$	24.2	15.3	14.0
Method:

Sediment samples in U8 type polypropylene container were counted on a p-type coaxial HPGe detector. SEIKO EG&G Gamma Studio was used for the analysis of the obtained spectra.

Detection system (including type of calibration applied):

Efficiency calibration is carried out using mixed-radionuclide sources in U8 type polypropylene container (Cd-109, Co-57, Ce-139, Cr-51, Sr-85, Cs-137, Mn-54, Y-88 and Co-60) for coincidence losses, self-absorption effects.

Detection limit (Bq/kg dry):

F-P04...0.7, T-S3...0.6, T-S8...0.7

Nuclear data used (e.g., half-life and emission probabilities): half-life •••• 30.17 (year) emission probabilities ••• 85.0 (%)

RESULTS

		Bq/kg dry	
	F-P04	T-S3	T-S8
Massic activity of Cs-137 (Bq/kg dry)	41.3	46.3	50.9
Uncertainty $(k=1)$ (Bq/kg dry)	1.3	1.4	1.6

Uncertainty Budget (optional)	F	Relative uncertainty (%) (k=1	1)
Uncertainty component associated with net count rate of Cs-137	1.5	1.4	1.3
Uncertainty component associated with detector efficiency	2.8	2.8	2.8
Uncertainty component associated with emission probability	0.6	0.6	0.6
Uncertainty component associated with weighing	0.0	0.0	0.0
Any other uncertainty component (please specify)	0.0	0.0	0.0
Relative combined standard uncertainty $(k=1)$	3.2	3.1	3.1

分析機関:一般財団法人九州環境管理協会

Nuclide: H-3					
Method (including separation):					
Distilled seawater sample was electrically enriched about 50 mixed with scintillation cocktail 10 g in a 20 mL low diffusi	times using electric cell (Ni on polyvial, and measured by	anode, Fe cathode). After elec v Low Backgound LSC for 800	trical enrichment, the sample w) min.	vas neutlized and distilled. En	iched sample water 10 g was
Detection system (including type of calibration applied):					
Low Background Liquid Scintillation Counter(Hitachi, LB-5) calibrated with a set of que	snched standards.			
Detection limit (Ba/L):					
M-101: 0.022, M-102: 0.022, M-103: 0.023, M-104: 0.023, '	T-D1: 0.022				
Nuclear data used (e.g., half-life):					
H-3 half-life: 12.312 ± 0.025 year (BIPM-5 Table of Radio	nuclides Vol.3)				
RESULTS					
At reference time 09 November 2021 12:00 UTC					
			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of H-3 (Bq/L)	0.155	0.144	0.075	0.071	0.063
Uncertainty $(k=1)$ (Bq/L)	0.011	0.010	0.009	0.009	0.008
Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	(
Uncertainty component associated with net count rate of H-3	5.7	6.0	10.9	11.4	12.4
Uncertainty component associated with detector efficiency	2.8	2.8	2.8	2.8	2.8
Uncertainty component associated with weighing	0.2	0.2	0.2	0.2	0.2

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater 2.5 13.0

2.5 12.0

2.5 11.5

2.5

2.5 6.8

Uncertainty component asoociated with reproducibility electrolytic enrichment

Relative combined standard uncertainty (k=1)

Nuclide: Sr-90

Method (including chemical separation):

Sr pre-consentration in 40 L of seawater sample was carried out using a cation exchange resin, followed by separation of carbonate precipitation and oxalate precipitation. Sr-Ca separation was carried out using a cation exchange resin. Ba was separated from Sr as the insoluble Ba cromate precipitate. The Sr-Y separation was carried out by co-precipitation of Y with ferric hydroxide. Sr chemical recovery was determined by ICP-AES. After 2weeks, Y-90 was measured immediately after separation from Sr-90 by proportional counter.

Detection system (including type of calibration applied):

Proportional counter(Mirion Technologies Canberra, LB-4200) calibrated with co-precipitation of Y-90 with ferric hydroxide.

Detection limit (Bq/L):

M-101: 0.00034, M-102: 0.00036, M-103: 0.00033, M-104: 0.00036, T-D1: 0.00031

Nuclear data used (e.g., half-life): BIPM-5 Table of Radionuclides Vol.3 Sr-90 half-life(y): 28.80 ± 0.07 year, Y-90 half-life(d):2.6684 ± 0.0013 days

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	IQ-T
Activity concentration of Sr-90 (Bq/L)	0.00329	0.00182	0.00078	0.00093	62000.0
Uncertainty $(k=1)$ (Bq/L)	0.00031	0.00021	0.00014	0.00016	0.00014

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	()	
Uncertainty component associated with net count rate of Sr-90 (or Y-90 if applicable)	6.8	10.1	17.3	16.3	16.5
Uncertainty component associated with detector efficiency	2.0	1.9	1.7	1.5	1.7
Uncertainty component associated with chemical yield determination	6.2	4.8	6.3	4.7	6.2
Uncertainty component associated with weighing	0.2	0.2	0.2	0.2	0.2
Any other uncertainty component (please specify)	0.0	0.0	0.0	0.0	0.0
Relative combined standard uncertainty $(k=1)$	9.4	11.3	18.5	17.0	17.7

Nuclide: Cs-134					
Method (including chemical separation, if applicable):					
Cs in seawater sample (20 L) was co-precipitated with AMI	P, and separated AMP was me	asured for 160,000 sec by Ge	detector.		
Detection custom (including true of collination analied).					
Low-Background Coaxial Ge detector (Mirion Technologie	s Canberra, GX4018-7915-30	ULB) calibrated with multi ga	unma source.		
Detection limit (Ba/L):					
M-101: 0.00077					
Nuclear data used (e.g., half-life and emission probabilities)					
BIPM-5 Table of Radionuclides Vol.7 Cs-134 half-life(y): 2.0644 ± 0.0014 , emission probablitie:	s(%) 97.63 ± 0.08 (604.720 k	eV)			
RESULTS					
At reference time 09 November 2021 12:00 UTC			ž		
	M-101	M-102	Bq/L M-103	M-104	T-D1
Activity concentration of Cs-134 (Bq/L)	0.00211				
Uncertainty $(k=1)$ (Bq/L)	0.00029				1
Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1		
Uncertainty component associated with net count rate of Cs-134	13.2		-	-	
Uncertainty component associated with detector efficiency	3.34	ı	T	I	I
Uncertainty component associated with emission probability	0.082				
Uncertainty component associated with weighing	0.102	·	ı	I	I
Uncertainty component associated with detector stability and sample positioning	1.36	ı	r	•	•
Relative combined standard uncertainty $(k=1)$	13.7	#VALUE!	#VALUE!	#VALUE!	#VALUE!

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater

Nuclide: Cs-137					
Method (including chemical separation, if applicable):					
Cs in scawater sample (20 L) was co-precipitated with AMP, i	and separated AMP was me	asured for 160,000 sec by G	detector.		
Detection system (including type of calibration applied):					
Low-Background Coaxial Ge detector (Mirion Technologies C	Canberra, GX4018-7915-30	ULB) calibrated with multi g	amma source.		
р					
M-101: 0.0005					
Nuclear data used (e. σ half-life and emission probabilities)					
BIPM-5 Table of Radionuclides Vol.3 Cs-137 half-life(y): 30.05 ± 0.08 , emission probablities(%) {	84.99 ± 0.20 (661.657 keV)				
RESULTS					
At reference time 09 November 2021 12:00 UTC			Ę		
			Bq/L		i e
Activity concentration of Cs-137 (Ba/L)	M-101 0.0589	- 701-W	- 102	M-104 -	
Uncertainty $(k=1)$ (Bq/L)	0.0022	-	-	-	-
Uncertainty Budget (optional)		H	elative uncertainty (%) (k=1)		
Uncertainty component associated with net count rate of Cs-137	1.12	-	-	-	
Uncertainty component associated with detector efficiency	3.34	ı			
Uncertainty component associated with emission probability	0.235	I			
Uncertainty component associated with weighing	0.102		·		·
Uncertainty component associated with detector stability and sample positioning	1.36	T	·	-	
Relative combined standard uncertainty $(k=1)$	3.8	#VALUE!	#VALUE!	#VALUE!	#VALUE!

H-3, Sr-90, Cs-134 and Cs-137 in seawater

IAEA ILC November 2021

分析機関: 公益財団法人海洋生物環境研究所

H-3 Nuclide: Method (including separation)

The seawater samples were purified by distillation, and then tritium in the sample was concentrated by an electrolytic enrichment method (500 mL to 50 mL) by Ni-Ni electrodes. Enriched sample was further purified by distillation. The enriched sample (50ml) was mixed with 50 mL of Ultima Gold uLLT scintillation cocktail.

Detection system (including type of calibration applied):

Beta rays from the sample were measured using Hitachi AccuFLEX LSC-LB7 low background liquid scintillation counter. By using 8 standard samples with known concentrations of tritium and variable quenching levels, relationship between counting efficiencies and External Standard Channel Ratios (ESCR) was derived. The relationship was used to estimate counting efficiencies for each sample.

M-101 : 0.049 Bq/L, M-102 : 0.049 Bq/L, M-103 : 0.047 Bq/L, M-104 : 0.048 Bq/L Detection limit (Bq/L):

We calculated the detection limit (DL) by 3 method.

nDL : detection limit counting rate $n_{DL} > rac{K}{2} \left(rac{K}{t_s} + \sqrt{\left(rac{K}{t_s}
ight)^2 + 4n_b \left(rac{1}{t_s} + rac{1}{t_b}
ight)}
ight)$

nb : BG counting rate ts : Counting time for sample (500 min) tb : Counting time for BG (1000 min) $\mathbf{K} = \mathbf{3}$

Nuclear data used (e.g., half-life):

The physical parameters used to calculate the radioactivity was referred to ENSDF (2020) Half life : 12.32 ± 0.02 years

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-1 04	I-T
Activity concentration of H-3 (Bq/L)	0.106	0.112	0.072	0.054	
Uncertainty $(k=1)$ (Bq/L)	0.021	0.021	0.019	0.020	

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1		
Uncertainty component associated with net count rate of H-3	18.2%	17.3%	25.0%	33.6%	
Uncertainty component associated with detector efficiency	2.8%	2.8%	2.8%	2.8%	
Uncertainty component associated with weighing	0.012%	0.012%	0.012%	0.012%	
Any other uncertainty component (please specify)	7.2%	%6'9	9.1%	12.9%	
Relative combined standard uncertainty $(k=1)$	19.8%	18.8%	26.7%	36.1%	0.0

Nuclide: Cs-134					
Method (including chemical separation, if applicable):					
By adding 0.26 g of CsCl as carrier and 12 g of ammonium pl radioactivity was measured by using a gamma-ray spectromet seawater before and after adding AMP, and it was more than (aosphomolybdate (AMP) to er equipped with a planar-ty 99.9 %.	18-211 of seawater, 134Cs w pe, high purity Ge detector. T	as separated by co-precipitatic he chemical yield was estimat	m. AMP/Cs precipitate was fill ed by Comparison of stable ce:	cred and, then, its sium concentrations in
Defection system (including type of calibration andled) [.]					
Efficiency calibration was carried out using five standard garr calculated based on the regression curve for the height-efficien 1.76 keV, respectively. The relative efficiency and FWHM of	tima ray sources with differency relationship. FWHM we fithe detector 2 are 42 % and	nt height (0.5 cm, 1.0 cm, 2.0 is calculated by measuring a (11.81 keV, respectively.	cm, 3.0 cm, and 5.0 cm) in U o-60 standard source. The rel	8 containers. The efficiency f ative efficiency and FWHM of	or the samples were the detector 1 are 46 % and
Detection limit (Bq/L):					
M-101: 0.0009 Bq/L, M-102: 0.0008 Bq/L, M-103: 0.0009 The estimation of the detection limit was carried out by referr	Bq/L, M-104 : 0.0009 Bq/L ing to the method of Cooper	et al., 1970.			
Nuclear data used (e.g., half-life and emission probabilities):					
We referred ENSDF (August 2001). Half life : 2.0648 ± 0.0010 years, Principal gamma ray emissi	on energy : 604.7210 ± 0.00	20 keV, Principal gamma ray	emission probability : 97.62 =	= 0.03 %	
RESULTS					
At reference time 09 November 2021 12:00 UTC					
			Bq/L		
	M-101	M-102	M-103	M-104	T-DI
Activity concentration of Cs-134 (Bq/L)	0.0024 0.0003	0.0016	Not Detect (N.D.)	N.D.	
(= der) (* a) (remeand		10000			
Uncertainty Budget (optional)		4	kelative uncertainty (%) (k=	(
Uncertainty component associated with net count rate of Cs-134	9.4%	13.9%	31.9%	29.3%	
Uncertainty component associated with detector efficiency	7.0%	7.0%	7.0%	7.0%	
Uncertainty component associated with emission probability	0.03%	0.03%	0.03%	0.03%	
Uncertainty component associated with weighing	0.0040%	0.0040%	0.0040%	0.0040%	
Any other uncertainty component (please specify)	1.4%	1.4%	1.4%	1.3%	
Relative combined standard uncertainty $(k=1)$	11.8%	15.6%	32.7%	30.2%	0:0

.

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater .

Nuclide: Cs-137					
Method (including chemical separation, if applicable):					
By adding 0.26 g of CsCl as carrier and 12 g of ammonium f radioactivity was measured by using a gamma-ray spectrome seawater before and after adding AMP, and it was more than	phosphomolybdate (AMP) to eter equipped with a planar-ty 1 99.9 %.	18-211 of seawater, 134Cs pe, high purity Ge detector.	vas separated by co-precipitati The chemical yield was estimat	on. AMP/Cs precipitate was fi ed by Comparison of stable ce	ltered and, then, its sium concentrations in
Detection system (including type of calibration applied):					
Efficiency calibration was carried out using five standard ga calculated based on the regression curve for the height-effici 1.77 keV, respectively.	mma ray sources with differe iency relationship. FWHM w	ent height (0.5 cm, 1.0 cm, 2 as calculated by measuring a	0 cm, 3.0 cm, and 5.0 cm) in U Co-60 standard source. The rel	 8 containers. The efficiency 1 ative efficiency and FWHM o 	or the samples were f the detector are 42 % and
$\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$					
Detection limit (Bq/L): M-101 : 0.0007 Bq/L, M-102 : 0.0007 Bq/L, M-103 : 0.0007 The estimation of the detection limit was carried out by refer	7 Bq/L, M-104 : 0.0007 Bq/L ring to the method of Cooper	et al., 1970.			
Nuclear data used (e.g., half-life and emission probabilities):					
We referred ENSDF (August 2001). Half life : 30.04 ± 0.03 years, Principal gamma ray emission	energy : 661.657 ± 0.003 ke	V, Principal gamma ray emi	sion probability : 85.10 ± 0.20	%	
RESULTS					
At reference time 09 November 2021 12:00 UTC					
			Bq/L		
	M-101	M-102	M-103	M-104	T-DI
Activity concentration of Cs-137 (Bq/L) Uncertainty $(k=1)$ (Bq/L)	0.059 0.0042	0.041 0.0030	0.014 0.0011	0.018 0.0013	
Uncertainty Budget (optional)			Relative uncertainty (%) (k=]	()	
Uncertainty component associated with net count rate of Cs-137	1.1%	1.3%	2.5%	1.9%	
Uncertainty component associated with detector efficiency	7.0%	%0°L	7.0%	7.0%	
Uncertainty component associated with emission probability	0.24%	0.24%	0.24%	0.24%	
Uncertainty component associated with weighing	0.0040%	0.0040%	0.0040%	0.0040%	
Any other uncertainty component (please specify)	1.4%	1.4%	1.4%	1.3%	
Relative combined standard uncertainty $(k=1)$	7.2%	7.2%	7.5%	7.4%	0.0

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater 分析機関: 東北緑化環境保全株式会社

134	1
Cs-1	
uclide:	

Method (including chemical separation, if applicable):
Cesium chemical separation by ammonium phosphomolybdate (AMP)
Detection system (including type of calibration applied):
Germanium semiconductor detector Calibration with cesium source
Detection limit (Bq/L):

M-102:0.00098, M-103:0.00087

Nuclear data used (e.g., half-life and emission probabilities):

2.065 years 604.66keV 97.62%

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of Cs-134 (Bq/L)	000'0	ND	ND	0.000	0.000
Uncertainty $(k=1)$ (Bq/L)	0.000			0.000	0.000

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	(
Uncertainty component associated with net count rate of Cs-134	0.0	41.1	67.8	0.0	0.0
Uncertainty component associated with detector efficiency	0.0	0.7	2:0	0.0	0.0
Uncertainty component associated with emission probability	0.0	0.1	0.1	0.0	0.0
Uncertainty component associated with weighing	0.0	0.0	0.0	0.0	0.0
Any other uncertainty component (please specify) Uncertainty of radioactivity of standrd sourcos	0.0	2.4	2.4	0.0	0.0
Relative combined standard uncertainty $(k=1)$	0.0	41.2	67.9	0.0	0.0

Cs-137	
Nuclide:	

Method (including chemical separation, if applicable):
Cesium chemical separation by ammonium phosphomolybdate (AMP)
Detection system (including type of calibration applied):
Germanium semiconductor detector Calibration with cesium source
Detection limit (Bq/L):

M-102:0.00042, M-103:0.00040

Nuclear data used (e.g., half-life and emission probabilities):

30.07 years 661.64keV 85.10%

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of Cs-137 (Bq/L)	0.000	0.0375	0.0146	0.000	0.000
Uncertainty $(k=1)$ (Bq/L)	0.000	0.00107	0.00051	0.000	0.000

Uncertainty Budget (optional)		R	elative uncertainty (%) (k=1	()	
Uncertainty component associated with net count rate of Cs-137	0.0	1.5	2.4	0.0	0.0
Uncertainty component associated with detector efficiency	0.0	0.4	0.4	0.0	0.0
Uncertainty component associated with emission probability	0.0	0.2	0.2	0.0	0.0
Uncertainty component associated with weighing	0.0	0.0	0.0	0.0	0.0
Any other uncertainty component (please specify) Uncertainty of radioactivity of standrd sourcos	0.0	2.5	2.5	0.0	0.0
Relative combined standard uncertainty $(k=1)$	0.0	2.9	3.5	0.0	0.0

Nuclide:

Method:

Fill the sample in a U-8 container and measure with a Ge semiconductor detector.

Detection system (including type of calibration applied): Germanium semiconductor detector Calibration with 9 nuclide sources

Cs-134

Detection limit (Bq/kg dry):

0.84

Nuclear data used (e.g., half-life and emission probabilities): 2.065年 604.66kev 97.62%

RESULTS

		Bq/kg dry	
	F-P04	T-S3	T-S8
Massic activity of Cs-134 (Bq/kg dry)	0.0	2.19	0.0
Uncertainty $(k=1)$ (Bq/kg dry)	0.0	0.311	0.0

Uncertainty Budget (optional)	ŀ	Relative uncertainty (%) (k=1	1)
Uncertainty component associated with net count rate of Cs-134	0.0	13.9	0.0
Uncertainty component associated with detector efficiency	0.0	0.7	0.0
Uncertainty component associated with emission probability	0.0	0.1	0.0
Uncertainty component associated with weighing	0.0	0.0	0.0
Any other uncertainty component (please specify) Uncertainty of radioactivity of standrd sourcos	0.0	2.4	0.0
Relative combined standard uncertainty $(k=1)$	0.0	14.2	0.0

Nuclide:

Method:

Fill the sample in a U-8 container and measure with a Ge semiconductor detector

Detection system (including type of calibration applied): Germanium semiconductor detector Calibration with 9 nuclide sources

Cs-137

Detection limit (Bq/kg dry):

0.81

Nuclear data used (e.g., half-life and emission probabilities):

30.07年 661.64kev 85.10%

RESULTS

		Bq/kg dry	
	F-P04	T-S3	T-S8
Massic activity of Cs-137 (Bq/kg dry)	0.0	55.8	0.0
Uncertainty $(k=1)$ (Bq/kg dry)	0.0	1.62	0.0

Uncertainty Budget (optional)	F	Relative uncertainty (%) (k=1	1)
Uncertainty component associated with net count rate of Cs-137	0.0	1.4	0.0
Uncertainty component associated with detector efficiency	0.0	0.7	0.0
Uncertainty component associated with emission probability	0.0	0.2	0.0
Uncertainty component associated with weighing	0.0	0.0	0.0
Any other uncertainty component (please specify) Uncertainty of radioactivity of standrd sourcos	0.0	2.4	0.0
Relative combined standard uncertainty $(k=1)$	0.0	2.9	0.0

分析機関:株式会社 KANSO テクノス

Are used (including circuit a separation). Sr was concentrated using ion exchange resin(Dowex 50W-i purified Sr sat more than 2 weeks until Sr-Y became radioac measured from a Y-90 collected filter using 2π gas-flow cou	8X) from 40L of aqueous san trively in equilibrium. After b mter for 100 minutes. Sr-90 c	nple. Carbonate and barium cl being in radioactive equilibriu concentration was determined	nomate treatment was perform m, Y was separated using Fe c from Y-90 radioactivity recov	ed to separate and purify Sr. S o-precipitation method, and Y. rry rate, decay correction, and	colution with separated and -90 radioactivity was other necessary calculations.
Detection system (including type of calibration applied): Multi-Detector Low Background Alpha/Beta Counting Syste Number of points in the efficiency :1 points (Average value	em:LB4200 (Mirion Technold of 6 samples)	ogies.)			
Detection limit ($\mathrm{Bq/L}$): $0.00044 \sim 0.00048$					
Nuclear data used (e.g., half-life):					
Radioisotope Pocket Data Book 10th Edition (half-life:28.74	4 y)				
RESULTS					
At reference time 09 November 2021 12:00 UTC			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of Sr-90 (Bq/L)	0.0033	0.0018	0.00084	0.0012	0.00082
Uncertainty $(k=1)$ (Bq/L)	0.0003	0.0002	0.00018	0.0002	0.00018
Uncertainty Budget (optional)		R	kelative uncertainty (%) (k=1	(
Uncertainty component associated with net count rate of Sr-90 (or Y-90 if applicable)	7.2	11	21	15	20
Uncertainty component associated with detector efficiency	2.6	2.6	2.6	2.6	2.6
Uncertainty component associated with chemical yield determination	3.5	3.5	3.5	3.6	7.1
Uncertainty component associated with weighing	0.014	0.014	0.014	0.014	0.014
Any other uncertainty component (please specify)	0.0025	0.0025	0.0025	0.0025	0.0025
Relative combined standard uncertainty $(k=1)$	8.5	12	21	16	22

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater

Sr-90

Nuclide:

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater

Cs-134	
uclide:	

Method (including chemical separation, if applicable)

Added nitrate to 20L of aqueous sample and adjust pH to about 1.6. Added 0.39 g of CsCl and mixed well; then added 6 g of AMP and mixed well again. Solution was settled overnight and collected AMP/Cs by filtering. Dried AMP/Cs at room temperature and calculated recovery rate by weighing. Insert AMP/Cs to teflon tube container, then measured Cs-134 and Cs-137 using well-type germanium semiconductor detector for 100000 seconds.

Detection system (including type of calibration applied): Germanium semiconductor detector:GWL-90-15(ORTEC),Software:Gamma Station(SEIKO EG&G CO., LTD.) Number of points in the efficiency curve:3 points,Type of calibration:quadratic curve

Detection limit (Bq/L):

0.00068

Nuclear data used (e.g., half-life and emission probabilities):

Table of Isotopes 7th Edition (half-life 2.062y, emission probabilities: 97.56%, y-ray energy 604.66keV)

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	T-D1
Activity concentration of Cs-134 (Bq/L)				ND	ND
Uncertainty $(k=1)$ (Bq/L)					

Uncertainty Budget (optional)	Re	elative uncertainty (%) (k=1	(
Uncertainty component associated with net count rate of Cs-134			•	•
Uncertainty component associated with detector efficiency			I	I
Uncertainty component associated with emission probability			•	•
Uncertainty component associated with weighing			•	•
Any other uncertainty component (please specify)			•	•
Relative combined standard uncertainty $(k=1)$			I	I

IAEA ILC November 2021 H-3, Sr-90, Cs-134 and Cs-137 in seawater

Cs-13	
Nuclide:	

Method (including chemical separation, if applicable):

Added nitrate to 20L of aqueous sample and adjust pH to about 1.6. Added 0.39 g of CsCl and mixed well; then added 6 g of AMP and mixed well again. Solution was settled overnight and collected AMP/Cs by filtering. Dried AMP/Cs at room temperature and calculated recovery rate by weighing. Insert AMP/Cs to teflon tube container, then measured Cs-134 and Cs-137 using well-type germanium semiconductor detector for 100000 seconds.

Detection system (including type of calibration applied): Germanium semiconductor detector:GWL-90-15(ORTEC),Software:Gamma Station(SEIKO EG&G CO., LTD.) Number of points in the efficiency curve:3 points,Type of calibration:quadratic curve

Detection limit (Bq/L):

0.00037

Nuclear data used (e.g., half-life and emission probabilities):

Table of Isotopes 7th Edition (half-life:30.174y, emission probabilities: 85.00%, y-ray energy:661.64keV)

RESULTS

			Bq/L		
	M-101	M-102	M-103	M-104	IQ-T
Activity concentration of Cs-137 (Bq/L)				0.017	0.0044
Uncertainty $(k=1)$ (Bq/L)				0.001	0.0002

Uncertainty Budget (optional)	Rí	elative uncertainty (%) (k=1		
Uncertainty component associated with net count rate of Cs-137			1.9	4.4
Uncertainty component associated with detector efficiency			1.6	1.6
Uncertainty component associated with emission probability			0.8	0.8
Uncertainty component associated with weighing			2.6	2.6
Any other uncertainty component (please specify)			0.0	0.0
Relative combined standard uncertainty $(k=1)$			3.7	5.4

分析機関: 国立研究開発法人日本原子力研究開発機構

Nuclide:

Cs-134

Method:	
F-P04: First, approx. 120 g of the sediment sample was transferred to a plastic container (47 mmφ). Then, a direct gamma-counting of the sample was performed. Gamma line on 604.7 keV was used.	
T-S3: 108.89 g of sediment sample was filled in plastic container (47 mmø).	
The massic activity was measured by direct gamma-counting for 80000 seconds.	
T-S8: Direct gamma-counting of the sediment sample Any aditional chemical treatments are not applied in the sediment sample Measuring container was a container (56mm diameter ×30mm height) Weight of sample for a measurement was 113.6g Measuring time was 80000 seconds	

Detection system (including type of calibration applied):

F-P04: An n-type germanium detector (GMX-40195-S, EG&G ORTEC) coupled with a MCA (MCA-7a, SEIKO EG&G Co., Ltd.) and a software (Gamma Station, SEIKO EG&G Co., Ltd.) was used for a measurement and an analysis of gamma-ray spectrum. The detection system was calibrated using a volume multinuclide standard (multinuclide distributed in ~1.1 g/cc alumina matrix in a plastic container of the same one as the sample container). Correction for true coincidence summing (TCS), self-absorption, decay was performed.

T-S3: High purity germanium semiconductor detector with 100% relative efficiency : GC10021, CANBERRA The detector was calibrated with the same shape of the volume radioactivity standard with mixed gamma sources. Corrections were made for self-absroption in the sample matrix and for true coincidence summing.

T-S8: Detector :Coaxial Ge Detector manufactured by CANBERRA (Model: GX3519) : Resolution(FWHM) at 1.33MeV ; 1.9 keV / Relative Efficiency at 1.33MeV ; 35 %
Detector effeciency calibrated with a multiple gamma ray emitting large volume source, which was manufactured by Eckert & Ziegler Isotope Products. (Source type: EG-ML, Source form : container, Serial number: 2060-14,Component nuclide: Am-241(0.236kBq), Cd-109(3.30kBq), Co-57(0.126kBq), Ce-139(0.164kBq), Hg-203(0.491kBq), Sn-113(0.616kBq), Sr-85(0.784kBq), Cs-137(0.553kBq), Y-88(1.25kBq), Co-60(0.659kBq), Date of calibration; 1 December 2018)
Analysis software : Gamma StationTM Seiko-EG&G (Model:DS-P1001)
MCA: MCA-7TM Seiko-EG&G (Model :M7-000)

Detection limit (Bq/kg dry):

F-P04: 0.88 T-S3: 0.32 T-S8: 0.53

Nuclear data used (e.g., half-life and emission probabilities):

F-P04: Half-life : Half-life: 2.06 years +/- 0.005 years Emission probabilities: 97.6% +/- 0.32% Reference : Table of Isotopes Eighth Edition, A Wiley-Interscience Publication, 1996
T-S3: Half-life: 2.0652₄ y, Energy: 604.721₂ keV, γ emission probability: 97.62₁₁% *Smaller italic numbers following any value represent the uncertainty. Reference: Evaluated Nuclear Structure Data File, NNDC, Brookhaven National Laboratory, 2004.

T-S8: Half-life:2.0625 y, Energy: 604.662 keV, Emission probability: 97.5632%
*Smaller italic numbers following any value represent the uncertainty.
Reference : C.M. Lederer, V.S. Sheirley et al., Table of Isotopes Seventh Edition, 1978

RESULTS

		Bq/kg dry	
	F-P04	T-S3	T-S8
Massic activity of Cs-134 (Bq/kg dry)	1.6	1.4	1.6
Uncertainty $(k=1)$ (Bq/kg dry)	0.4	0.2	0.4

Uncertainty Budget (optional)	Relative uncertainty (%) (k=1)		
Uncertainty component associated with net count rate of Cs-134	20.7	9.6	12.3
Uncertainty component associated with detector efficiency	6.6	2.8	18.3
Uncertainty component associated with emission probability	0.3	0.1	0.3
Uncertainty component associated with weighing	0.0	0.2	0.0
Any other uncertainty component (please specify) Decay correction	0.5	10.0	0.0
Relative combined standard uncertainty $(k=1)$	21.7	14.1	22.0

Nuclide: Cs-137
Method:
F-P04: First, approx. 120 g of the sediment sample was transferred to a plastic container (47 mm\u03c6). Then, a direct gamma-counting of the sample was performed. Gamma line on 661.6 keV was used.
T-S3: 108.89 g of sediment sample was filled in plastic container (47 mmφ). The massic activity was measured by direct gamma-counting for 80000 seconds.
T-S8: Direct gamma-counting of the sediment sample Any aditional chemical treatments are not applied in the sediment sample Measuring container was a container (56mm diameter ×30mm height) Weight of sample for a measurement was 113.6g Measuring time was 80000 seconds
Detection system (including type of calibration applied):
F-P04: An n-type germanium detector (GMX-40195-S, EG&G ORTEC) coupled with a MCA (MCA-7a, SEIKO EG&G Co., Ltd.) and a software (Gamma Station, SEIKO EG&G Co., Ltd.) was used for a measurement and an analysis of gamma-ray spectrum. The detection system was calibrated using a volume multinuclide standard (multinuclide distributed in ~1.1 g/cc alumina matrix in a plastic container of the same one as the sample container). Correction for self-absorption, decay was performed.
T-S3 : High purity germanium semiconductor detector with 100% relative efficiency : GC10021, CANBERRA The detector was calibrated with the same shape of the volume radioactivity standard with mixed gamma sources. Corrections were made for self-absroption in the sample matrix and for true coincidence summing.
 T-S8: Detector :Coaxial Ge Detector manufactured by CANBERRA (Model: GX3519) : Resolution(FWHM) at 1.33MeV ; 1.9 keV / Relative Efficiency at 1.33MeV ; 35 % Detector effeciency calibrated with a multiple gamma ray emitting large volume source, which was manufactured by Eckert & Ziegler Isotope Products. (Source type: EG-ML, Source form : container, Serial number: 2060-14,Component nuclide: Am-241(0.236kBq), Cd-109(3.30kBq), Co-57(0.126kBq), Ce-139(0.164kBq), Hg-203(0.491kBq), Sn-113(0.616kBq), Sr-85(0.784kBq), Cs-137(0.553kBq), Y-88(1.25kBq), Co-60(0.659kBq), Date of calibration; 1 December 2018) Analysis software : Gamma StationTM Seiko-EG&G (Model:DS-P1001) MCA: MCA-7TM Seiko-EG&G (Model :M7-000)
Detection limit (Bq/kg dry):
F-P04: 0.80 T-S3: 0.36 T-S8: 0.65
Nuclear data used (e.g. half-life and emission probabilities):
F-P04: Half-life: Half-life: 30.1 years +/- 0.03 years Reference: Table of Isotopes Eighth Edition, A Wiley-Interscience Publication, 1996 Emission probabilities: 84.6% +/- 0.5% Reference: The Gamma Rays of the Radionuclides, Tables for Applied Gamma Ray Spectrometry Verlag Chemie Weinheim New York, 1979
 T-S3: Half-life: 30.08₉ y, Energy: 661.657₃ keV, γ emission probability: 85.10₂₀% *Smaller italic numbers following any value represent the uncertainty. Reference: Evaluated Nuclear Structure Data File, NNDC, Brookhaven National Laboratory, 2007.
 T-S8: Half-life:30.174₃₄ y, Energy: 661.638₁₉ keV, Emission probability: 85.0₅% *Smaller italic numbers following any value represent the uncertainty. Reference : C.M. Lederer, V.S. Sheirley et al., Table of Isotopes Seventh Edition, 1978
RESULTS

	Bq/kg dry		
	F-P04	T-S3	T-S8
Massic activity of Cs-137 (Bq/kg dry)	40.8	44.2	37.5
Uncertainty $(k=1)$ (Bq/kg dry)	3.5	2.6	6.9

Uncertainty Budget (optional)	Relative uncertainty (%) (k=1)		
Uncertainty component associated with net count rate of Cs-137	5.4	1.5	1.2
Uncertainty component associated with detector efficiency	6.6	2.8	18.3
Uncertainty component associated with emission probability	0.6	0.2	0.6
Uncertainty component associated with weighing	0.0	0.2	0.0
Any other uncertainty component (please specify) Decay correction(F-P04)	0.2	4.9	0.0
Relative combined standard uncertainty $(k=1)$	8.5	5.9	18.4

Nuclide: Pu-238
Method:
F-P04: Dried sediment sample was first heated to 500°C. Then a ²⁴² Pu isotope dilution tracer was added to sample, and the plutonium recovered from the sediment with a 8M HNO ₃ leach. This material had the plutonium oxidation stated adjusted with hydrogen peroxide. Plutonium was then separated and purified using Dowex 1×8 (100-200 mesh) anion exchange resin. Plutonium was electrodeposited onto stainless-steel plate and counted by alpha-ray spectrometry.
 T-S3,T-S8: 1. A sample was heated to 450 °C. 2. The sample was spiked with a Pu-242 tracer and immersed in the HNO₃ solution on heating for leaching. 3. Plutonium ions were extracted from the filtered leaching solution by an ion-exchange method. 4. These plutonium ions were fixed on a stainless steel plate by electrodeposition. 5. The massic activity of Pu-238 was measured by alpha-counting for 80000 seconds.
Detection system (including type of calibration annlied):
 F-P04: Silicon semiconductor detector (Alpha Analyst 7200, Canberra) was used for a measurement and analysis of alpha-ray spectrum. The detection system was calibrated using alpha radiation standard sources (a radionuclide deposited onto stainless-steel plate). Energy and efficiency calibration was performed. T-S3,T-S8: High purity silicon semiconductor detector with 25% relative efficiency : SEIKO EG&G ALPHA-ENSEMBLE-8 The detector was calibrated with the same shape of the radioactivity standard with mixed alpha sources.
Detection limit (Bq/kg dry):
F-P04: 0.018 T-S3: 0.0051 T-S8: 0.0071
Nuclear data used (e.g., half-life and emission probabilities):
F-P04:Nuclear data was not used for decay compensation. T-S3,T-S8 : Half-life: 87.7 ₁ years Energy: 5499.03 ₂₀ keV Reference: Evaluated Nuclear Structure Data File, NNDC, Brookhaven National Laboratory, 2006.

RESULTS

At reference time 09 November 2021 12:00 UTC

	Bq/kg dry		
	F-P04	T-S3	T-S8
Massic activity of Pu-238 (Bq/kg dry)	0.0	0.0	0.0
Uncertainty $(k=1)$ (Bq/kg dry)	0.0	0.0	0.0

Uncertainty Budget (optional)	Relative uncertainty (%) (k=1)		
Uncertainty component associated with net count rate of Pu-238	0.0	0.0	0.0
Uncertainty component associated with activity of yield tracer (if used)	0.0	0.0	0.0
Uncertainty component associated with net count rate of yield tracer (if used)	0.0	0.0	0.0
Uncertainty component associated with weighing	0.0	0.0	0.0
Any other uncertainty component (please specify)	0.0	0.0	0.0
Relative combined standard uncertainty $(k=1)$	0.0	0.0	0.0

*Since the massic activity of Pu-238 is below the detection limit, the relative uncertainty is not evaluated.

Nuclide: Pu-239/240

Method:

F-P04: Dried sediment sample was first heated to 500°C. Then a ²⁴²Pu isotope dilution tracer was added to sample, and the plutonium recovered from the sediment with a 8M HNO₃ leach. This material had the plutonium oxidation stated adjusted with hydrogen peroxide. Plutonium was then separated and purified using Dowex 1×8 (100-200 mesh) anion exchange resin. Plutonium was electrodeposited onto stainless-steel plate and counted by alpha-ray spectrometry.

T-S3,T-S8: 1. A sample was heated to 450 °C.

- 2. The sample was spiked with tracers and immersed in the HNO3 solution on heating for leaching.
- 3. Plutonium ions were extracted from the filtered leaching solution by an ion-exchange method.
- 4. These plutonium ions were fixed on a stainless steel plate by electrodeposition.
- 5. The massic activity of Pu-239/240 was measured by alpha-counting for 80000 seconds.

Detection system (including type of calibration applied):

F-P04: Silicon semiconductor detector (Alpha Analyst 7200, Canberra) was used for a measurement and analysis of alpha-ray spectrum. The detection system was calibrated using alpha radiation standard sources (a radionuclide deposited onto stainless-steel plate). Energy and efficiency calibration was performed.

T-S3,T-S8: High purity silicon semiconductor detector with 25% relative efficiency : SEIKO EG&G ALPHA-ENSEMBLE-8 The detector was calibrated with the same shape of the radioactivity standard with mixed alpha sources.

Detection limit (Bq/kg dry):

F-P04: 0.017 T-S3: 0.0060 T-S8: 0.0084

Nuclear data used (e.g., half-life and emission probabilities):

F-P04: Nuclear data was not used for decay compensation.

T-S3,T-S8:

Pu-239: Half-life: 24110_{30} years

Energy: 5156.5914 keV

Reference: Evaluated Nuclear Structure Data File, NNDC, Brookhaven National Laboratory, 2014.

RESULTS

	Bq/kg dry		
	F-P04	T-S3	T-S8
Massic activity of Pu-239/240 (Bq/kg dry)	0.37	0.43	0.53
Uncertainty $(k=1)$ (Bq/kg dry)	0.04	0.03	0.05

Uncertainty Budget (optional)	Relative uncertainty (%) (k=1)		
Uncertainty component associated with net count rate of Pu-239/240	7.1	6.3	7.4
Uncertainty component associated with activity of yield tracer (if used)	2.1	0.6	0.6
Uncertainty component associated with net count rate of yield tracer (if used)	7.2	3.3	3.7
Uncertainty component associated with weighing	0.0	0.4	0.4
Any other uncertainty component (please specify) Uncertainty component associated with detector efficiency Decay data	0.0	2.9	2.9
Relative combined standard uncertainty $(k=1)$	10.3	7.7	8.8

この印刷物は、印刷用の紙へ リサイクルできます。