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Partitioning of emergency work doses reported annually to RADREC into external and

internal doses

Background and aim: J-EPISODE, an epidemiological survey for nuclear workers, will
conduct risk estimation by converting the recorded doses reported annually to the
Radiation Dose Registration Center (RADREC) into organ-absorbed doses. Only the sum
of external and internal doses (effective doses) has been reported annually for emergency
work doses due to the Fukushima Daiichi Nuclear Power Plant accident. However, the
organ-absorbed dose estimation needs disaggregation into external and internal doses.
Materials and methods: In addition to annual dose reports, ad-hoc reports on historical
external and internal doses by type of normal or emergency work are submitted to
RADREC after lifting the designation of a nuclear worker and are stored on microfilm.
No such report is available for those who have been working still after the emergency
work. Emergency work doses including internal doses were stratified by effective dose
groups in FY2010 or FY2011, TEPCO's or contractors’ emplovee; then, the sample
participants were selected from each stratum. Retrieving their mierofilms, the
proportion of internal doses was caleulated by stratum, which was applied to the effective
doses of each individual emergency worker to estimate separately the external and
internal doses.

Results: The estimated proportion of internal doses in 50+ mSv was 40% for TEPCO employees in
FY2010 and 20% for contractors, but it was 0.3% and 11.7%, respectively, in FY2011. Next, individual
organ-absorbed doses from emergency work will be reconstructed separately by external and internal
doses.

This work was funded by the Nuclear Regulation Authority.
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ABSTRACT

Background: Japanese Epidemiological Study on Low-Dose Radiation Effects (J-EPISODE) has
analyzed health effects in association with photon exposure assessed in Hp(10} up to now. It is under
way to estimate cancer morbidity and mortality risk evaluated in organ absorbed dose in a newly
designed cohort, the features of which were 1) all participants have agreed to participate in the study,
2) had a baseline information including smoking, education, job, etc. from lifestyle survey, 3) were
able to follow-up vital status and underlying cause of death, 4) were able to obtain cancer incidence
data by linkage with Mational Cancer Registry, and 5) smoking confounding was suggested in

association between radiation and cancer death.

Aim: To describe reconstruction method of organ absorbed dose and to reanalyze site specific cancer

mortality risk for J-EPISODE with follow-up 1991-2010.

Materials and methods: The reconstruction method of organ dose principally followed the approach
adopted in the IARC 15-Country Collaborative Study. The recorded dose was converted to air kerma,
further converted to organ-absorbed dose. The method was modified considening recent usage practice
of dosimeters in Japan and body size of Japanese. Conversion coefficient was estimated for the
selected 14 tissues/organs: the colon, red born marrow (RBM), oesophagus, stomach, liver, gall
bladder, spleen, lungs, pancreas, prostate, bladder, kidneys, brain and heart. Following reconstruction
of organ absorbed dose for J-EPISODE during 1957 to 2010, Poisson regression method was applied
for estimating ERR. (Excess Relative Risk) for cancer mortality.

Results: The conversion coefficients were approximately 0.8 Gy/Sv. The estimated ERRs/Gy for site

specific cancer mortality were compatible with the previous analysis using the recorded dose Hp{10).

Decreasing trends of risk estimates by adjustment of smoking did not change even when organ-
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absorbed dose was used,
Conclusion: The main features concerning smoking confounding in the previous risk analysis were
also found in the reanalysis results using the organ-absorbed dose. J-EPISODE risk analysis will

mainly use the reconstructed organ-absorbed dose in the future.

This work was funded by Muclear Regulation Authority, Japan.
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(1) A Risk Comparison between Lifestyle, Socioeconomic Status, and Radiation: A
Cohort Study of Cancer Mortality among Japanese Nuclear Workers (J-EPISODE).
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Paper

A Risk Comparison between Lifestyle, Socioeconomic Status, and Radiation: A Cohort
Study of Cancer Mortality among Japanese Nuclear Workers (J-EPISODE)

. A s 1 3 1y . . . .
{ Shin’ichi Kudu,' Akemi leludu," Hiroshige Furu.ua.,l Noboru Ishlza.wat,1 and Shin Smg,usal
%
! INTRODUCTION
E Abstract—The health effects of low-d diati e have
i been a source of controversy. One possible reason is that epidemio- THE HEALTH effects of high-dose radiation were made visible
§ logical studies that compare radiation risk with other factors, such b)' studies on atomic bomb survivors (Pierce et al. 1996;
i as lifestyle or socioeconomic status, have been limited. The aim of . L
{  this study is to conduct a comparison of the cancer risk of mortality Preston etal. 2003; Ozasa et al. 2012). While several studies
E between radiation, lifestyle habits (such as smoking), and socioeco- have been carried out (Kudo et al. 2018a and b; Haylock
¢ nomic status (such as years of education) among Japanese nuclear et al. 2018; Leuraud et al. 2015; Richardson et al. 2015),
?:r::r";;: E:ﬁ::'::dm:lsg‘:;?:”lmz male nﬁ'r:"_' ‘mr'_:e“'f consensus on the health effects of low-dose radiation has
;lul:ing 2003-2004. To exclucie syslémaljc P— cause?] by missing not been established. This suggests that if they exist, these
5 values, we used multiple imj and Poisson reg) on to esti- effects are difficult to detect because they are probably less
:  mate relative risks and t‘Ullngﬁl:‘B iflrl?f"ﬂls {OI‘ lifestyle :3h“5£‘]5l]<* than the risks due to lifestyle or socioeconomic status. How-
£ i ic stat d i . The total s 5 . . : P
g :m':;)::;; ;1'5'30"6: T;’e :::ea: agetan‘zl Wm;’; l;:;: were ever, there is considerable anxiety among the public about
549y and 24.8 mSv (10-y lagged dose), respeetively. Significantly the health effects of low-dose radiation, especially after
high relative risks were determined for smoking, alcohol con- the accident at the Fukushima Daiichi Nuclear Power Plant,
z]“ml"t'“n‘; - n.f d v 1 ex . ‘_il" Lﬂ ' '“1:1!"2' and it is often discussed in the context of whether radiation
n.::';‘ :;1 H a?:loi.'\liu]:a\z::(:;:;w nurﬁu;}:tgnc ;::: - i‘:l;g';;: h‘;: risks exist or not. However, to understand this, a comparison
related cancers. Since the simultaneous inclugion of radiation with other lifestyle or sociceconomic factors could be infor-
and non-radiation variables in the model for relative risk (RR) mative. While some studies have reported the results of risk
g caleulation means that the caleulated radiation RR is the result comparisons between radiation and smoking (Cahoon et al,
L of adjustment by other variables, the risk of cancer from low- i . 3 P . T,
. dose radiation, if any, is less than smoking and probably less than 2017; Kreisheimer et al. 2093' Kudo “? al. 2020;‘ Gilbert
other lifestyle factors. et al. 2013), those between lifestyle, socioeconomic status,
Health Phys. 000(0):000-000; 2022 and radiation for individual canses of death remain limited.
Key words: cancer; epidemiology; radiation, low-level; risk estimates Moreover, a cohort study of cancer mortality among
Japanese nuclear workers in an epidemiological study on
low-dose radiation effects (J-EPISODE: Japanese epidemi-
ological study on low-dose radiation effects) has been con-
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ducted since 1990 by the Radiation Effects Association
(REA). Information on lifestyle or socioeconomic status
wits ublained by a questionmaire survey [or a part of the co-
hort, which consisted of 41,742 participants. However, there
was some missing data (from 1 to 12% depending on the
questions) in their responses. Thus, if a complete case anal-
ysis is done, the cohort will be reduced by 25%. In this case,
a single imputation or complete case analysis revealed that
the results were biased when the missing data did not occur
completely at random. One of the solutions was multiple
imputation (Rubin 1987; Rubin and Schenker 1991). We
have previously compared the risk between death due to ra-
diation and death due to smoking (Kudo et al. 2020). In the

1
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present study, the variables for comparing risk are expanded
to compare the risk of cancer death among more factors.
Thus, the aim of this study is to examine the comparison of
mortality between lifestyle, socioeconomic stats, and radiation
for grouped cancers and site-specific cancers. This is accom-
plished by the simultaneous derivation of relative risks from
one cohort by multiple imputation and Poisson regression.

MATERIALS AND METHODS

Ethical approval

The study protocol was based on the Ethical Guidelines
for Medical and Health Research Involving Human Subjects
by the Tapanese Ministry of Education, Culture, Sports, Sci-
ence and Technology, Ministry of Health, Labour and Wel-
fare (MHLW).

Cohort definition and follow-up of vital status

The present study, J-EPISCDE, is a prospective cohort
study, and its endpoint was death. To this end, a mortality
follow-up was carried out on those workers of Japanese na-
tionality who were registered in the Radiation Dose Regis-
try Center (RADREC) within the REA as of the end of
March 1999,

To ascertain workers’ vital status, copies of the resi-
dence registration cards (RRCs) were acquired from local
government ofices. These copies were issued when sub-
jects were alive, and those of deleted RRCs, mcluding death
dates or new addresses, were issued when subjects were de-
ceased or had moved away. Obtaining the informed consent
of those included in the cohort was performed from 2007 to
2009. The refusal rate was approximately 7%. For those
whose data we obtained but who later refused to participate,
we ceased all follow-up efforts, and their observed period
was censored on the last day on which their vital statuses
were known.

To identify the causes of death among deceased partic-
ipants, linkage with death records was approved for use and
provided by MHILW. These records can almost completely
ascertain the causes of death because they are based on
the national registry. Indices used for record linkage were
date of birth, date of death, sex, and municipality code of
residence (Iwasaki et al. 2000). In the end, we were able to
identify the cause of death for 99.5% of the subjects. The
underlying causes of death were coded according to the In-
temational Classification of Diseases (ICD), 10th revision.
Dosimetry

The dose records were supplied by RADREC. Personal
dose equivalent /7, (10), which is the operational quantity of
effective dose obtained from dosimeter readings, was used
in the risk analysis. Here, the effective dose was the sum
of the external and internal doses by fiscal year (from
April to March of the next year). Moreover, external doses

Month 2022, Volume 000, Number 0

consisted of photons and neutrons. The photon doses were
the external exposure records of equivalent doses at a tissue
depth of 10 mm [#, (10]]. In cases where neutron and inter-
nal doses were positively detected, they were added to exter-
nal doses. However, such a case 1s so rare in Japan under
routine nuclear work during nommal operation, periodic in-
spections, and maintenance that those doses have little im-
pact on the analysis.

The annual radiation exposure for each worker was cal-
culated by adding doses from all facilities where they worked
in a given year. Exposures below the detectable level were set
as 0 mSv in the analysis. The present study covers radiation
dose records from 1957—when the use of nuclear energy
began in Japan—to the end of 2010, which was set as the
censored date of the observation period.

Lifestyle questionnaire survey

To examine factors potentially confounding the risk as-
sessment of nuclear workers, a lifestyle questionnaire sur-
vey was conducted from September 2003 to March 2004,
It was given to a sample of male workers who were 40 y
old or more as of 1 July 2003. The questionnaire was self-
administered and included questions about lifestyle and so-
cloeconomic status factors such as smoking, job category,
years of education, and so on. The questionnaire was dis-
tributed by postal mail to all workers exposed to 10 mSv
or higher radiation levels as of 31 March 2002, while 40%
of workers with less than 10 mSv were sampled. However,
the questionnaire was not distributed to female workers be-
cause the numbers of deceased females were too small to
analyze (approximately 20). Therefore, female workers were
excluded from the analysis, and questionnaires were distrib-
uted to 78,064 male workers.

Variables used for estimation of relative risks

The aim of this study was to estimate relative risk (RR)
for each variable: smoking [pack-years {pack-y)]. alcohol
consumption (ethanol in g d”), health consciousness, fre-
quency of medical examination, breakfast intake, sleep,
body mass index (BMI), job category, position, years of ed-
ucation, and cumulative radiation dose. To compare with
other studies, smoking was quantified as the total amount
of smoking in pack-y for current smokers, while alcohol
consumption was quantified as ethanol in g d ! for current
drinkers. The pack-y were defined as follows: the mumber
of cigarettes per day x (1 pack/20 cigarettes) x the number
of years between the age at which the individual started to
smoke and the age on the swrvey date. RRs of current
smokers were estimated by pack-y and defined against
never smokers (those with 0 pack-v). In the case of former
smokers, the mortality rate differs depending on the years
since cessation of smoking. Because the model would be
complicated 1f this were taken into account, the RRs of for-
mer smokers were not estimated by pack-y but estimated as
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one former-smoker group against a group of never smokers.
Meanwhile, ethanol in g d~' was calculated by the type of
liquor and frequency of drinking for current drinkers. RRs
of current drinkers were estimated by ethanol in g d " against
never drnkers (ethanol =0 g d ). RRs of former drinkers
were estimated as one former-drinker group against that of
never drinkers. Finally, BMI was defined as an individual’s
weight (kg) divided by the square of height (m).

Causes of death

The causes of death for which RRs were cstimated in-
cluded all cancers excluding leukemia (hereafter “all can-
cers”) (ICD10: CO0-C90, C96-C97). Other causes included
stomach cancer (C16), liver cancer (C22), colorectal cancer
(C18-C21), hung cancer (C33-C34), smoking-related can-
cers (CO0-C16, €22, €25, €30.0, C31-C34, C64-C67),
and non-smokmg-related cancers (C17-C21, C23-C24,
C26-C29, C30.1-C30.9, C35-Co3, Co8-C80).

Multiple imputation

There were missing values in the answers to the life-
style questionnaire. However, as they were not considered
as missing completely at random, it was thought that the
single imputation analysis or complete case analysis would
be biased. Therefore, a multiple imputation method was
adopted in three stages (Rubin 1987; Rubin and Schenker
1991) as shown below.

Imputation stage. A fully conditional specification was
used for the imputation algorithm (845 2016). More specifi-
cally, conditional on the observed portion of the variable that
contains missing data and the variable that does not contain
missing data, an imputation model was constructed for each
variable. Nominal variables—smoking status, alcohol con-
sumption status, job category, and position—were based on
discriminant function. Ondinal variables—health consciousness,
frequency of medical examination, breakfast intake, sleep, and
vears of education—were based on ordinal logistic regres-
sion. Contimuous variables—BMIL, pack-y, and ethanol in g
d™*—were based on lincar regression. Meanwhile, radiation
doses from RADREC had no missing data. The following
anxiliary variables without any missing data were included
in the model to make the missing-at-random assumption
more plausible: age at the time of the survey, number of sites
where a worker has worked, the latest prefecture code that
verified a worker’s survival status, year of first exposure
to radiation, and year of latest exposure to radiation. Fur-
ther, indicators of death by all cancers were also added to
the auwxiliary variables as the endpoint.

An example of the imputation model of x; and x> when
x; (e.g., pack-y) and x, {e.g., alcohol consumption) are
missing is shown below:

x1=PBg+ Baxa + Baxs + -+ Pixi+ €

x2 = By + Bix +Baxs + o+ B + g,

where x;—x; are the vanables mentioned above, ;-8 are
the parameters, 8, is the intercept, and & is the error term.
When imputing x;, x is assigned by random sample from
observed values as an initial value. Missing variable x; is es-
timated by the imputation model conditional on the other
variables. When imputing x,, the estimated parameters 3,
and x; are used as the condition for the imputation model.
This process of estimating the parameters and the imputed
values is repeated a certain number of times. However, the
values at the beginning of the repeating process are discarded
as “bum-in" because they may be affected by the imtial value.
In this way, multiple data sets (called pseudo-complete data
sets) with imputed missing data are created. The munber of
bum-in was 100, and the created mumber of pseudo-complete
data sets was 30 in this analysis. The MI procedure by SAS
was used for imputation (SAS 2014, 2016).

Estimation stage. The entry date for person-year
(person-y) calculations was set 2 y after the date of response
to the questionnaire to prevent any health conditions at that
time from afTecting the analysis (Goodman et al, 1995). The
exit date of the person-y calculation was set as whichever of
the following was the earliest: (a) the date of the latest con-
firmation of vital status, (b) the date of death, or (c) 31
December 2010. Therefore, individual workers® observa-
tion periods differed, but they were within 2005 to 2010,

MNext, to select a model for risk comparison, we exam-
ined the joint effect of smoking and radiation with reference
to the studies of atomic bomb survivors (Pierce et al. 2003;
Furukawa et al. 2010; Grant et al. 2017; Cahoon et al.
2017). The target cause of death was lung cancer, and the
following Poisson regression models were used:

A = hyla, r)expleag)(1 + 8, - Smaks + B; - Radiation -+ v - Smoke - Radiation),
0]

where A is the death rate, and A, is the background death
rate [stratified by a: 5-y attained age categories (20—, 25—,
... and 100+); and r: residence, which is divided into eight
regional categories within Japan (Kudo et al. 2018a and
bb)]. Meanwhile, g is an indicator of a former smoker
{1 = former smoker, 0 = current and never smoker), and o
is a coefficient of ¢. However, calendar periods were not ad-
justed because the observation period was short (2005

2010). Meanwhile, “Smoke™ refers to the pack-y for current
smokers, and “Radiation” is the cumulative radiation dose.
The unit of pack-y was 20 pack-y, and the unit of radiation
was 100 mSv. Therefore, 8; represents the smoking ERR.
per 20 pack-y, and 3, represents the radiation ERR per
100 mSv. Here, it is worth noting that if the interaction term
v 1s significant, the joint effect of smoking and radiation is
multiplicative; if’ not, it is additive. As a result of the
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analysis, smoking was significant, radiation was not, and
the mteraction term was not significant (data not shown),
suggesting that the joint effect is additive. Additionally,
the simple additive model (2), simple multiplicative model
(3), generalized additive model (4), and generlized multi-
plicative model (5) were used:

A = Agla, r) explag)(1 + B, Smoke + B,Radiation) (2)
A= Agla,r)explag)(l + B, Smoke}(1 + B,Radiation)  (3)

A= Agla,r)explag)(l + B, Smoke + B,Smoke - Radiation) (4]
A= Agla,r) explag)(1 + B3 Smoke){ 1 + B,Smoke - Radiation). (5)

The results were mostly consistent with the common
finding that smoking nisk (3 ;) was significantly high, but -
diation nisk (/3,) was not significant (Supplementary Table 1,
http://links.lww.com/HP/A213). Since radiation was not sig-
nificant, risk comparison seemed acceptable in both additive
and multiplicative models, but when all 11 variables that are
used for the estimation of relative risks as described in the
above section were inchuded in the model, the additive model
did not converge. Consequently, the multiplicative model,
which is easy to fit, was used in the following analysis.

Poisson regression was also used to quantify the RRs
of lifestyle, socioeconomic status, and radiation based on
the number of deaths and person-y after stratification ac-
cording to the 5-year attained age categories and residence.
Here, cumulative dose and attained age were treated as time-
dependent variables. The former was lagged 10 y (Gilbert
et al. 2013; Haylock et al. 2018; Kreisheimer et al. 2003;
Kudo et al. 2018a, 2020; Richardson et al. 2015) and up-
dated every month on the assumption that annual doses
were distnbuted uniformly over each year. The model used
to estimate relative risks was a log linear model, which im-
plies nultiplicative joint effects:

A =Aola,r)exp(Bzi + ... + Byzu ), (6)

where z;—z;; represent the variables that were used to esti-
mate RRs. More specifically, z; was smoking (pack-v) de-
fined as 0 (never smoker, reference; hereafter simply ref),
former smoker, >0 (current smoker), 20— {current smoker),
40— (current smoker), and 60+ (current smoker). Former
smoker was considered to be one category. Next, z, was al-
cohol consumption (ethanol in g d ') defined as 0 (never
drinker, ref), former drinker, >0 {(current drinker), 20— (current
drinker), 40— (current drinker), and 60+ (current drinker). The
former drinker was considered to be one category for the
same reason as for the smokers mentioned above. z; was
health consciousness defined as good (ref), medium, and
bad. z; was frequency of medical examination defined as ev-
ery year (ref), sometimes, and almost never. z; was breakfast
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intake defined as every day (ref), sometimes, and almost
never. z; was sleep defined as well (ref), sometimes not well,
and not well. z> was BMI defined as <18.5, 18.5— (ref), 25—,
and 30+. z5 was job category defined as design and research
{ref), radiological management, operation and investigation,
and maintenance. zp was position defined as management
(ref), technical advisor, group leader, and staff. z;, was years
of education defined as 13+ (ref), 10-12, and <10. Finally,
z;; was the cumulative radiation dose assuming a 10-y lag
defined as <5 (ref), 5—, 10—, 20—, 50—, and 100+ .

Meanwhile, 5,5, represent the coefficient—relative
risk against these 11 reference categories, and 95% confi-
dence intervals described below in the integration stage
were calculated. The person-y table was created by DATAR,
and the models were fitted by AMFIT. Both were EPICURE
modules (EPICURE 2008).

Integration stage. Using the point estimates and variances
for each RR calculated from the 30 pseudocomplete data sets
described in the (1) imputation stage, we calenlated the inte-
grated point estimates, and 95% confidence intervals (Cls) of
each variable and category were integrated by Rubin’s method
{Rubin 1987; Rubin and Schenker 1991) as shown below.

Integrated relative risk

where [J is the number of pseudo-complete data sets (30 in
this analysis), and@dis the relative nisk in each pseudo-complete
data set. Thus, 6 is the integrated relative risk—the arithmetic
mean of the relative risks of pseudo-complete data sets.

Integrated variance:

r=w+2tlp
=W+

L
W=— Wy
D

78,064 Nurnber of questionnaires distributed.
4,522 Unknown destination.
l —» 27,637 Noreply.
45,905 Number of repliers.
— 343 Unable to identify in RADREC.
l — 180 No answers written in questionnaire,
— 3,640 Moved out or deceased before the entry date of follow-up,
41,742 Number of cohort members.
Fig. 1. The construction process of Japanese nuclear worker cohort.

1
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Table 1. Number of subjects by each category of items among Japanese nuclear workers.

Risk comparison of cancer mortality among Japaness nuclear workers @ 5. Kuno BT AL

Number of subjects
Items Category Not imputed PCD #1* Complete case
41742 (100%a) 41742 (100%) 31800 (100%)
Smoking 0 (Never, ref”) 8494 (20°4) 8790 (21%%) 6859 (22%)
(Pack-y) Former smoker 12555 (30%a) 12975 (31%) 9302 (31%)
={) 2134 (5%0) 2159 (5%) 1733 (5%)
20 9595 23%) BG4 (24%) 7635 (24%)
40— 5508 (13%) 5728 (14%0) 4130 (13%)
Gl 2197 (5%) 2226 (5%) 1611 (5%)
Unknown®™ 1259 (3%
Alcokol consumption 0 (Never, ref™) 64350 (15%) TOB3 (17%0) 5216 (16%)
[Ethanol / day (g)] Former drinker 2660 ©%) 2885 (7%) 1808 (6%)
=0 14881 (36%) 15563 (37%) 12591 {40%)
20— 6715 (16%) 7624 (18%0) 5725 (18%)
Al— 3605 (9%0) 4209 (10%) 3100 (10%4)
Gl 4129 (10%%) 4378 (10%0) 3360 (11%)
Unknown® 3302 (8%5)
Health consciousness Good (ref®) 12650 (304} 12884 (31%0) 9521 (30%)
Medium 26070 (62%) 26426 (63%) 20428 (64%)
Bad 2399 {6%%) 2432 (6%%) 1851 (6%4)
Unkmown” 383 (1%%)
Frequency of Every year (ref”) 33645 (81%) 34009 (81%0) 26796 (84%)
medical examination Sometimes 4865 (12%) 4951 (12%0) 3276 (10%)
Almost never 2742 (7%) 2782 (7%) 1728 (5%)
Unknown® 450 (1%5)
Breakfast intake Every day (1ef") 34854 (83%) 35159 (84%0) 26748 (84%%)
Sometimes 4044 (10°4) 4069 (10%0) 3061 (10%4)
Almost never 2499 {6%) 2514 (6%%) 1991 (6%a)
Unknown® 345 (1%5)
Sleep Well (ref®) 24607 (59%) 24906 (60%) 19216 (60%)
Sometimes not well 1521 (36%) 15389 (37%) 11580 (36%)
Kot well 1436 (3%) 1447 (3%) 1004 (3%)
Unknown® 488 (1%%)
BMI <185 1125 (3%) 1150 (3%) 782 (2%)
18.5- <25 ref®) 28872 (69%) 2014 (70%) 22125 (70%)
25 10496 (25%) 10596 (25%) 227 (26%)
30 885 (2%%) 892 (2%) 666 (2%)
Unknown® 364 (1%%)
Tob category Design & rescarch (ref”) 3888 (9%0) 4064 (10%%) 3431 (11%)
Radiclogical management 8034 (19%) 8379 (20%0) T170 (23%)
Operation & investigation 5565 (13%) 5837 (14%0) 4733 (15%)
Maintenance 21800 (52%) 23462 (56%) 16466 (529)
Unkneown® 2455 {6%0)
Position Management (ref”) 9945 24%) 10535 (25%) 8956 (28%)
Technical advisor 3940 (9%%) 4361 (10%) 3358 (11%)
Group leader 10201 (24%) 12201 (29%) 8434 (27%)
Staff 12708 (30%) 14645 (35%) 11082 (35%)
Unknown® 4948 (12%)
Years of education 13+ years (ref®) 12925 (31%) 13195 (32%) 11277 (35%)
1012 years 18940 (85%) 19670 (47%) 15416 (489)
<10 years 8236 (20%) BETT (21%) 5107 (16%)
Unknown® 1641 o)
Radiation <5 mSv {ref®) 20353 “9%) 20353 {49%) 15435 (49%)
Continued next page
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Table 1. (Continued)
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Number of subjects
Ttems Category Mot imputed PCD #1° Complete case
(Cumulative dose) S— mSv 2029 (7% 2929 (7%) 2182 (7%)
10— mSv 6259 (15%) 6259 (15%) am7 (15%)
20— mSv 6815 (16%) 6815 (16%) 5210 (16%)
50— mSv 3429 (8%) 3429 (8%) 2704 (99%)
100+ mSv 1957 (5%) 1957 (5%) 1522 (5%)

“Number of subjects of psewdo-complete data set #1. These were almost similar but differed slightly by data set.

Reference category.

“The subjects classified under “unknown™ were distributed to other categories by multiple imputation.

L

B_
D-1

(8:-50)

where T'is the integrated variance, W; is the variance of each
pseudo-complete data set, and @ pis the arithmetic mean of
relative risks of pseudo-complete data sets. These integrated
relative misks and vanances were calculated using the
MIANALYZE procedure by SAS (SAS 2014, 2016).

Comparison with complete case analysis

There were 31,800 workers who responded to all the var-
1ables for calculating the relative nisk. A complete case analysis
was conducted agamst these respondents to compare with the
results based on the multiple imputation for all cancers.

>

d-1

RESULTS

The process of cohort construction is depicted in Fig. 1.
The lifestyle questionnaires were distributed to 78,064
workers. Of these, 45,905 workers replied, while the others
were in unknown destinations and/or did not reply. In addi-
tion, the following were excluded: 1) unable to be identified
in RADREC; 2) no answers written in the questionnaire;
and 3) no follow-up period, such as those who moved or were
deceased before the entry date of the follow-up (September 1,
2005). The remaining 41,742 workers were set as the cohort.
Accumulated person-y were 215,000 through 2005 to 2010.
The mean age and mean cumulative dose at the date of sur-
vey wene 54.9 v and 24.8 mSv (10-y-lagged dose), respec-
tively, while the mean duration of employment was 9.9 y.
Table 1 shows the number of subjects by each variable before
multiple imputation, after imputation (psendo-complete data
set #1), and a complete case analysis. The subjects who were
in the unknown category were distributed to other categories
by multiple imputation. Therefore, the number of subjects
vaned by each category and psendo-complete data sets. De-
tailed numbers on the subjects are provided in Supplemen-
tary Table 2, htip:/links. lww.com/HP/A214.

Meanwhile, Fig. 2 shows the relative risks and 95% Cls
by each cause of death and category of items. More specif-

ically, significantly increasing RRs of all cancers, stomach
cancer, liver cancer, lung cancer, and smoking-related can-
cers for smoking were seen (Panels A, B, C, E, and F). In
these causes of death, dose responses—namely, as pack-y
increased, RRs of smoking also increased—were also shown.
Additionally, sigmficantly ncreasing RRs of all cancers,
liver cancer, colorectal cancer, and smoking-related cancers
for alcohol consumption were seen (Panels A, C, D, and F).
However, no significantly increasing RRs for health con-
sciousness were seen. Moreover, significantly increasing RRs
of all cancers, smoking-related cancers, and non-smoking-
related cancers for frequency of medical examination were
seen (Panels A, F, and G). Further, dose responses were seen
in all cancers and smoking-related cancers (Panel A, F).
Significantly increasing RRs of stomach cancer, colorectal
cancer, and non-smoking-related cancers for break fast in-
take were seen (Panels B, D, and (3). The same was seen
with that of liver cancer for sleep (Panel C) and all cancers
for BMI (Panel A). However, there were no significantly
increasing RRs for job category, position, and years of ed-
ucation. Significantly increasing RRs of ling cancer and
smoking=related cancers for radiation were seen (Panel E, F).
Finally, detailed relative risks and 95% CIs by each cause of
death and category of items are described in Supplementary
Table 3, http://links.lww.com/HP/A215. Results from the
complete case analysis were different from those that were
imputed (Table 2).

DISCUSSION

Principal findings

In this study, direct risk comparisons between lifestyle,
socioeconomic status, radiation, and cancer mortality were
examined. Lifestyle factors such as smoking, alcohol con-
sumption, frequency of medical examination, breakfast in-
take, sleep, and BMI showed significantly increasing RRs.
In particular, smoking showed greater RRs than other factors.
In contrast, socioeconomuc factors—such as job category, po-
sition, and years of education—showed no evidence of nisk.
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All cancers excl. leukemia (Obs=978)
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Liver cancer (Obs=100)
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Fig. 2. Relative risks and 95% Cls by lifestyle, socioeconomic status, and radiation among Japanese nuclear workers.
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Table 2. Relative risks and 95 % Cls for each category of items by imputed and complete case analysis for all cancers exchd-
ing leukemia among Japanese nuclear workers,

Tmputed Complete case analysis
Ttems Category RR (95%CT) RE (9594CT)
Smoking 0 (Never, ref) 1.00 1.00
(Pack-y) Former smoker 151 (1.22-1.86) 141 (1.14-1.76)
=0 1.66 (1.11-2.50) 143 (092-223)
20— 195 (1.83-2.49) 193 (1.50-2.47)
A0— 195 (1.53-2.50) 1.79 (1.39-2.30)
60+ 271 (205-3.57) 2.70 (2.104-3.58)
Aleokol consumption 0 (Never, ref”) 100 Loo
[Ethanol / day (z)] Former drinker 151 (120-1.51) 154 (1.51-2.50)
=0 0.90 (0.74-1.11) 1.07 (0.86-1.33)
20— 118 (0.93-1.49) 1.34 (1.03-1.71)
40 119 (0.89-1.59) 135 (1.01-1.81)
60+ 130 (1.01-1.68) 152 (1.17-197)
Health consciousness Good (ref") 100 1.00
Medium 1.08 (0.94-1.24) 1.19 (1.02-138)
Bad 0.99 (0.72-1.35) 110 (0.79-1.54)
Frequency of Every year (ref®) 1.00 1.00
medical examination Sometimes 119 (101-1.41) 120 (1.00-1.43)
Almost never 126 (1.02-1.55 137 (1.10-1.70)
Breakfast infake Every day (ref') 1.00 1.00
Sometimes 0.92 (0.71-1.18) 0.88 (0.67-1.16)
Almost never 121 (0.80-1.65) 135 (0.99-1.82)
Sleep Well {ref") 1.00 1.00
Sometimes not well 1.06 (0.93-121) 105 (0.92-121)
Not well 083 (0.66-1.30) 054 (0.65-1.36)
BMI <185 134 (1.01-1.77) 110 (0.78-1.55)
18.5— < 25 (ref") 1.00 1.00
25— 0.94 (0.80-1.10) 095 (0.81-1.12)
30+ 0.91 (0.54-1.55) 1.03 (0.59-1.79)
Job catzgory Design & reszarch (ref”) 1.00 1.00
Radiological management 059 (0.74-132) 056 (0.73-126)
Operation & investigation 057 (0.70-1.34) 087 (0.71-1.32)
Maintenance 1.0l (0.77-1.34) 1.05 (0.81-136)
Position Management {ref*) 1.00 1.00
Technical advisar 0.96 (0.72-1.27) 1.01 {0.78-131)
Group leader 119 (0.94-1.50) 114 (0.92-1.42)
Stafi 1.07 (0.86-133) 102 (0.83-1.25)
Years of education 13+ years (ref™) 1.00 1.00
10—12 years 1.14 (0.94-1.3T) 111 (0.93-133)
<10 years 116 (0.94-1.42) 123 (1.00-1.50)
Radiation <5 mSv (ref) 1.00 1.00
(Cumulative dose) 5= mSv 125 (0.98-1.59) 1.04 (0.78-1.38)
10— mSv 103 (0.85-124) 1.03 (0.84-1.25)
20— mSv 1.08 (0.90-1.29) 0.99 (0.81-1.20)
50— mSv 1.24 (0.996-1.55) 1.20 (0.95-1.52)
100+ mSv 0.89 (0.65-1.20) 0.76 {0.55-1.06)

“Reference calegory.

estimates were larger than the RR for factors other than
smoking but smaller than the RR for smoking—especially
significantly lower than that for the 40 pack-y and over.
Meanwhile, the RR of category 5 mSv was 1.35 (1.02, 1.80)

Significantly mcreasing RRs of lng cancer and smoking-
related cancers for radiation were also seen. The RR of category
5 mSv was 2.10 (95% CL 1.34, 3.29), and the RR. of calegory
50 mSv was 1.61 (1.03, 2.51) for lung cancer. These point
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and the RR of category 50 mSv was 1.32 (1.02, 1.71) for
smoking-related cancer. These point estimates were larger
than the RE for factors other than smoking and alcohol
consumption but smaller than the RR for smoking, the cate-
gory of former drinker, and 60+ category of ethanol g " d ™
of aleohol consumption—especially significantly lower than
that for 240 pack-y of smoking. Here, the comparison of ra-
diation and smoking risk is unit-dependent, but these results
suggest that the radiation nsk, if any, is less than that of
smoking. Further, our previous analysis comparing the risks
of radiation and smoking in a larger cohort suggested that
the radiation nisk, if’ any, was less than the smoking risk
(Kudo 2020). The present results are similar in this respect.

However, the results from complete case analyses were
different from the mputed results to some extent. This probably
reflected the fact that the multiple imputation was thought to
be less biased than the non-imputed or complete case anal-
ysis. In addition, multiple imputation, which included aux-
iliary variables, made the assumption of missing-at-random
more plausible and improved the precision of the analysis
(Rubin 1987; SAS 2014).

Table 3 provides mfonmation on the observed and excess
deaths of smoking and radiation by dose category and pack=y cat-
egory for hng cancer and smoking-related cancers based on the
pseudo complete data set #1. The model was a linear and multi-
plicative joint effect of smoking and radiation as follows:

A = Agexplena + azr + asg)(1 + Bysi)(1 + Bads),
(7)

where @ 1s an attained age, r is residence, and g is an indica-
tor of a former smoker (1 = former smoker, 0 = current and

never smoker). Further, o ;e ; is a coefficient of a, r, and g;
%; 15 the pack-y category for current and never smokers
{pack-y = 0); and d, is the radiation dose category. Finally,
B and B, are coefficients of 5, and 4, respectively.

Table 3 also shows the attributable fraction (AF), which
is expressed as the proportion of excess to observed deaths.
The AFs for hmg cancer were 48%, 1%, and 2% for smoking
only, radiation only, and smoking-radiation interaction, respec-
tively. In this context, a study of atomic bomb survivors found
that the AFs for solid cancer derived by males were 30%, 6%,
and 2% (Grant 2017). Our results suggest that the AF of radi-
ation may have been smaller because the average dose of the
cohort was lower than that of the atomic bomb survivors,
which in tum may have caused the AF of smoking to be rela-
tively higher. In addition, the difference between our results for
hmg cancer and those of the atomic bomb survivors for solid
cancers may also be a factor. For lung cancer, excess deaths
of radiation only increased with increasing dose category,
but conversely, it decreased for smoking-related cancers.

Comparison with other studies in terms of factors other
than radiation

Mortality by several risk factors was also evaluated in
the Japan Collaborative Cohort Study for Evaluation on
Cancer (JACC) and the Japan Public Health Center-based
prospective study on cancer and cardiovascular diseases
{(TPHC Study). The RRs for all cancers in the present anal-
ysis were compatible with the above studies for the most
part. For example, the RRs of the 60+ category of pack-y
in both the present analysis and the JACC were 2.71
(2.05, 3.57) and 2.48 (95% CI: 2.13, 2.90), respectively
(Ozasa 2007a). The RRs of the 30+ category of pack-y in
the present analysis and the JPHC were 1.95 (1.53, 2.49)

Table 3. Observed and excess death of smoking and radiation by dose category for lung cancer and smoking-related cancers
based on pseudo complete data set #1 among Japanese nuclear workers.

Dose category Oibzerved Smoking  AF Radiation  AF Smoking-radiation
(mSv) deaths  Background  only  smoking  only radiation interaction AF smoking-radiation
Lung cancer
=5 B4 549 49.6 9% 00 0% 0.0 o
5- 26 73 79 30% 0.1 0% 0.1 %
10— 43 18.7 18.8 44% 03 1% 0.3 1%
20— 44 189 204 6% 0.7 2% 0.8 2%
50 27 98 103 38% 0.8 3 0.5 3
100+ 13 58 19 61% 11 El 1.6 12%
Total 237 1153 1149 A8% il 1% T 2%
Smoking-related cancers
<5 291 2159 123 39% =01 0% 0.0 4
5= 58 296 176 0% =01 0% =01 e
10— 114 79 422 3T —0.6 — 1% —0.3 L1
20— 135 754 455 344 —14 —1% —0.8 —1%
50 15 384 230 31% 15 2% 0.9 1%
100+ 3l 237 172 55% 2.1 T% 16 5%
Total 704 4558 25779 3% 58 1% 38 1%
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and 1.83 (95% CI: 1.34, 2.51), respectively (Hara et al.
2002). The RRs of the 60+ category of ethanol ¢ ' d” ' in
the present analysis and the 81+ category of the JACC were
1.30 (1.01, 1.68) and 1.39 {1.20, 1.60), respectively (Ozasa
2007b). However, slightly higher RRs of smoking and alco-
hol consumption were seen i site-specific cancers in the
present analysis relative to the JACC, although the Cls over-
lapped. The RRs of the 60+ category of smoking in the pres-
ent analysis and the JACC were 2.76 (1.35, 5.62) and 1.57
(1.09, 2.25) for stomach cancer, 2.58 (1.20, 5.52) and 1.81
(1.14, 2.87) for liver cancer, and 12.52 (6.05, 25.90) and
785 (5.65, 109) for lung cancer, respectively (Ozasa
2007a). In addition, we found larger RRs of aleohol con-
sumption in the present analysis than in the JACC. The
ERs of the maximum category for liver cancer were 1.87
(0.82, 4.27) and 1.47 (0.96, 2.25) for the present analysis
and JACC, respectively (Ozasa 2007b). Considering the dif-
ference in categories (the present analysis was 60+ and
JACC was 1+), the RRs in the present analysis seemed
higher. However, these discrepancies may be reflections of
differences in cohort structure—the present analysis was
based on an occupational cohort, and JACC and JPHC were
based on an mhabitant cohort (Ohno et al. 2001; Hara et al.
2002). Moreover, the differences in age or baseline risk
might contribute to this discrepancy. More specifically, sig-
uificantly high RRs of alcohol consumption were shown for
smoking-related cancer in the present analysis. This was
likely because some cancers related to alcohol consumption
were included in the smoking-related cancer category—for
example, esophagus and liver cancers (Ozasa 2007a and b).
Further, significantly high RRs were shown in the frequency
of medical examination for all cancers, breakfast intake for
stomach and colorectal cancers, sleep for liver cancer, and
BMI for all cancers; however, the Cls of present analysis
overlapped with the Cls of JACC (Suzuki 2007; Iso and
Kubota 2007; Fujino 2007a).

Furthermore, significant differences in health effects
by socioeconomic factors have been reported by some stud-
1es (Fujino 2007b; Kagamimon et al. 2009), but no sigmifi-
cant differences were shown in this analysis. The cohort of
this study was an occupation cohort. Thus, some differences
between RRs of the present analysis and other studies were
found, but their CIs overlapped. Therefore, the cancer mor-
tality rates caused by lifestyle or socioeconomic status that
were derived from our analysis could be regarded as com-
patible with other studies.

Comparison with other studies in terms of radiation
The Cls of radiation for all cancers that were derived
from previous analyses overlapped with international nu-
clear worker studies for all cancers other than leukemia
(Richardson et al. 2015), a UK national registry for radiation
workers of all malignant neoplasms (excluding leukemia)
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{Haylock et al. 2018), and under 0.5 Gy categories of a study
on atomic bomb survivors (Ozasa et al. 2012). Therefore,
risk estimate on cancer mortality based on radiation, which
was derived from our analysis, could be regarded as compat-
ible with these studies.
Limitations

Some limitations of the present analysis should be ac-
knowledged. First, the deficiency of statistical power 1s the
greatest limitation. The total person-y were 215,000, and
the number of observed deaths for all cancers was 978.
These person-y and numbers of observed deaths might be
insufficient for detecting risks by each vanable and cate-
gory, especially in site-specific cancer. Second, as shown
in Fig. 1, the cohort of this study was the 41,742 respon-
dents to the lifestyle questionnaire, but the number of those
to whom the questionnaire was distributed was 78,064; the
remaining 36,322 individuals did not respond. The mean
ages of the 41,742 and 36,322 subjects in September 2003
were 54.9 and 53.7 v, respectively, and the mean radiation
doses were 24.8 mSv and 20.9 mSv, respectively, with no
significant difference between them. However, the fact that
only about half of those who received the questionnaires
responded to the survey suggests the existence of a potential
bias. Third, there was a possibility that unadjusted confound-
ing factors were present. Although dose response was not
found, significantly high RRs of radiation were found in
lung and smoking-related cancers. However, no signifi-
cantly high RRs of radiation were found for non-smoking
related cancers. These results may suggest that there are
some unadjusted confounding factors related to both radia-
tion and smoking.

CONCLUSION

The RRs of lifestyle, socioeconomic status, and radia-
tion derived from this analysis were compatible with other
studies. Despite the limitations, significantly high RRs of
smoking, alcohol consumption, frequency of medical ex-
amination, breakfast intake, sleep, BMI, and radiation were
found. Additionally, dose responses of RRs of smoking and
frequency of medical examination were also found in the
present analysis. Moreover, the results of this analysis showed
that smoking is a major risk factor. Since the simultaneous
inclusion of radiation and non-radiation variables in the
moedel for RR calculation means that the calculated radia-
tion RR is the result of adjustment by other variables, the
risk of cancer from low-dose radiation, if any, is less than
smoking and probably less than other lifestyle factors. The
results offer worthwhile evidence in terms of the minimiza-
tion of bias by using multiple imputation and estimation of
RRs for several causes of death, variables, and categornies
from one simultaneous cohort.
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The results of the studies among nuclear workers were inconsistent with some reporting that a risk was seen, while others reported
no risk. The reason for this may be due to the different analysis methods among the studies.
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Table 1 Summary including SMRs and 95% confidence intervals of each epidemiological study of cancer mortality among radiolo-
gists and radiological technologist:

SMRs and 956% Cls

Cohort  Observed  Total Mean dose
Oohart' "0 peried  PY  (mSv, mCy)

Allcauses  Alleancers  Leukemia Breast Skin Others
Japanese 12,195 19691993 272,043 Year of birth Year of birth Year of birth Year of birth Year of birth Lymphoma®
technologists (o) =1933: 470 mSv =1933: 0.69 =1933 0.81 =1933: 1.55 =1933: L568 Year of birth
(8] >1934: 132 mSv (065, 0.74)  {0.73, 0.90)  {0.85, 2.60) (0.24,573) 1933 1.59
Z1934: 054 1934 0.80 = 1934 0.95 =1934: 0.00 (112, 2.20)
(0.46, 0.61)  (0.63, 0.99) (.35, 2.08) (0,00, 8.89)°  >1934: 0.85
(0.40, 1.64)
us 6,510 1920-1974 573,395 120 131 L.67 MNon-can-
radiologists (0) cers: 1,18
[13]
us 43,763 1979-2008 Year of Year of Year of Year of Mon hod-
radiologists {20) graduation  graduation  graduation graduation  jikin
[14] (Male) (Male) (Male) (Male) lymphoma
<1940: 0.96 <1940 112 < 1940: 1.91 < 1940: 6,38 Year of
(0.88, 1.05)  (0.94, 1.34) (0.83, 4.41) (175, 28.20) graduation
1840 0.98 1940 0.99 1940 1.31 1940 1.29  (Male)
(0.93, 1.03)  (0.90, 1.08) (0.89, 1.94) (078, 2.14) < 1940: 2.69
1960 0.87 1960 0.96 1960 0.91 1960 0.67  (1.93, 5.45)
(0.81, 0.95) (.84, 1.10)  (0.52, LBS) (0.7, 1.25) 1940 101
1980+:0.66 1980+: 0.96 1980+: 1.25 1980+: 0,31 {0.70, 1.55)
(0.54, 0.81) (0,62, 1.48) (0.17, 9.49) (0,04, 2.75) 1960 0.94
(0,58, 1.55)
1980 +: 0.57
(0.11, 2.86)
us 146,022 1926-1997 698028 37 mOy' Year of first  Year of first  Year of first  Year of first
technologists  (73) [18] [17] worked worked Wor worked
[15] <1940 128 < 1950: 1.64 < 1940: 2.92 <194 8.6
(0,93, L69F (0.42, 631F (122, 7.000" (L0, 72.7)°
1940 L17° 19560+: 1940 244 1940 1.6
1950 1187 1.00° (126, 4.75)" (0.5, 5.1F
1960 +: (Reforence) 1950 1.24 1950 1.1
1.007 (0.77, 2.00)° (0.5, 2.6
(Reference) 1960+ 1960 0.9
1.00% (0.5, 1.4
(Reference)  1970+:
1Lo0"
(Reference)
(18]
US army G560 19M46-1974 174,500 NS
technologists (D)
[24]
UK 2,698  1897-1997 69,615 Year of first  Year of first Year of first
radiologists (o) registration  registration registration
[25) 1897= 0.97 1897~ 175 1897 4.35
1921-: 0.92 1921 124 1921-: 4.66
1986 1.00 1936 112 1936 0.00°
1965+ : 0.68' 1955+: 0.71 1955+ :
o.o0*
Canada [27] 67,562  1951-1987 3.78 mSv 0.53 0,78 Thyroid
(65) (0.51, 0.55) {0.75, 0.82)" cancer
174
(140, 2.14)"
China 27,011 1950-1995 654,686 Year of em- Year of Year of Year of Year of
X-Tay {20} ployed employed  employed  employed  employed
workers [29] <1970 551 mSv <1970 <1870 <1970: 134 < 1970:
1970+ : 82 mSv L24"® .37 1970 +: 1.33' 431
1970 +: 1.08' 1970+ 1,75' 1970+ 2,74
Denmark 4,161 19681985 49,563 18.4mSv Year of Year of Prostate
[20] (82) radiation radintion cancer
dose dose 6.02
mesurement mesurement (1.94, 14.08)
1— Lod 1- 121
3-: 092 3 1.26'
6+:1.21' 6+: 1.43'
a: The number in blankets indicate the reference number. b The number in | h indicate the of women. ¢: Person years, d: The num-

ber of shserved death was zere. e: Lynphatic and hematopeietic. £ Female breast dese. g RR. h: p<0.08. i Melancma. j: p<0.001 k: 90% CL L SIR.
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Table 2 Summary including ERRs, SMRs and 95% confidence intervals of each epidemiological study of cancer mortality among
nuclear workers

ERRs and 96% Cls

Cnhm Obsgerved  Total Mean dose
Cohort® it poriod PY  (mSv. mGy) ‘:ﬂ&:ﬁ? Lisksia g oo SMRs and 95%Cls
Towkemia excluding CLL
Japan [33] 71,783  1999-2010 591000 265 029 - 2,00 0.94 1.28
(0 (- 081, 1577 (- 568 168" (- 124,390 (- 0.03, 2.79)°
US NPP' 53,698 1979-1997 698,051 257 051 567 0.246 6.40 Solid cancers:
[34] (12) (2,01, 4.64F (- 256,30.4) (<-2.51,844) (2.29,122)  0.65(0.58 0.72)
Nen = eancers:
0.34 (0.32, 0.36)
USpooled 119,196 1944-1991 4,019,066 202 014 0.069 0.026
[35] (20) (=017, 0.48) (- 022,47 (- 043,068 (- 026 033"
US million 1,028,301
worker [43] (20}
UK [486] 167,008 1955-2011 3,684,391 253 Maortality: Mortality: Maortality: Maortality: All causes:
(10) 0.285 1712 0.028 0.251 0.83 (0,81, 0,84)
(0.06, 0.53)° (0.05 1.29)° (- 038, 0.51° (0.03,0.49)°  All cancers:
Incid id 013 [47] 0.84 (0,82, 0.86)
0.283 1.782 (- 0.28, 0.61)° [47]
.10, 048" (0.17, 4.36)"
[47]
France [48] 59004 19682004 1,469,949 18.4 036 352 0.81 0.31 All eauses:
(13) (- 042 125/ (<0, 16.00)" (- 072, 278 (- 071, L62)* 0.60 (0.59, 0.62)
Solid cancers:
0.68 0.65, 0.71)
Pleural cancer:
1.69 (122, 2.27)
Skin melanoma:
1.40(1.02, 1.88)
Russin [49] 25,757 1948-2015 998048 419" 012 10 Gamma: 0.164  0.04
(25) 0.05, 0.21) (0.5, 2.0 (0.043, 0.300)  ( — 0.00, 0.09)
[50] [51] Plutonium: [52]
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e Last estimate. £ Nuclear Power Plant. g: Solid cancers. h: Cardiovascular diseases. i: 10-y\=ar~lﬂund dose. j: Circulatory disease. k: External lung
dose. I: Solid cancers other than lung, liver, and bone. m: Hazard ratio per m8v. n: All cancers. o: All leukemia. p: Mo sonvergence of lower bound. g
SIR. r: Colon dose.
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Abstract

The Japanese Epidemiological Study on Low-Dose Radiation Effects (J-EPISODE) has been
conducted since 1990 by the Radiation Effects Association to analyse health effects for nuclear
workers. It uses the recorded doses, i.e. dosimeter readings, evaluated in H,(10) for estimation of
radiation risk; however, the International Commission on Radiological Protection does not
recommend the use of effective doses for epidemiological evaluation and instead recommends the
use of organ-absorbed doses for assessing cancer risk. Recently, the J-EPISODE has developed a
conversion factor that can convert dosimeter readings to organ-absorbed doses following, in
principle, the approach adopted by the International Agency for Research on Cancer 15-Country
Collaborative Study. The approach was modified based on recent dosimeter usage practices and the
Japanese physique. The aim of this study was to reanalyse the excess relative risk (ERR) of cancer
mortality for the J-EPISODE using the previous analysis method but substituting the
organ-absorbed dose for the recorded dose to confirm the adaptability and relevance of
organ-absorbed doses for the J-EPISODE. The organ-absorbed doses from 1957 to 2010 were
reconstructed for the whole cohort. The cancer mortality risk was reanalysed with Poisson
regression methods, first by comparing the ERR/Gy for all cancers excluding leukaemia with the
risk after excluding lung cancer for the whole cohort of 204 103 participants. In the whole cohort,
all cancers excluding leukaemia, lung cancer and non-Hodgkin’s lymphoma had statistically
significant positive ERR/Gy estimates; leukaemia excluding chronic lymphocytic leukaemia had
negative but not statistically significant estimates. Gallbladder cancer and pancreatic cancer
showed statistically significant negative. Then, a subcohort of 71 733 respondents was selected
based on lifestyle surveys with data on qualitative smoking status as well as quantitative smoking
information on pack-years, Pack-years for current smokers and former smokers and years since the
cessation of smoking for former smokers were used for the smoking-adjusted model. The most
important feature of the J-EPISODE revealed to date was a decreasing tendency of the ERR/Sv by
the smoking adjustment. For almost all causes of death such as lung cancer and stomach cancer,
the estimated ERR/Gy decreased by the smoking adjustment, although those for the colon, prostate
and kidney and other urinary organs were almost the same after the adjustment. This tendency
remained unchanged even when using the organ-absorbed dose, indicating the appropriateness of
using organ-absorbed doses for further risk analysis. At the same time, it indicated that
confounding by smoking seriously biased the radiation risk estimates in the J-EPISODE and thus
should be accounted even if organ dose is used.

1. Introduction

1.1. Construction of conversion factors from dosimeter readings to organ-absorbed doses
Since 1990, the Institute of Radiation Epidemiology of the Radiation Effects Association { REA) has been
conducting a nuclear worker cohort study, the Japanese Epidemiological Study on Low-Dose Radiation
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Effects (]-EFISODE), to analyse the health effects. The ]-EPISODE has estimated the radiation risk
associated with photon exposure assessed in the personal dose equivalent, Hp(10), which is a good estimator
of the effective dose. The Japanese nuclear industry started in the late 1950s, and the annual recorded doses,
i.e. dosimeter readings, from 1957 to 2010 evaluated in Hy(10) were provided by the Radiation Dose
Registration Center (RADREC), REA (Asano and Ito 2019). The endpoints were cancer deaths until the
present. Cancer incidence data have also been available since 2016 from the Mational Cancer Registry
(Matsuda and Sobue 2015).

The J-EPISODE has recently constructed organ-absorbed dose conversion coefficients from dosimeter
readings recorded in RADREC, as described in the sister papers ( Furuta et al 20204, 2020b, 2021). Although
the concept of effective dose and its operational definition of personal dose equivalent are widely used for
radiological protection purpose, the International Commission on Radiological Protection (ICRP) does not
recommend the use of effective doses for epidemiological evaluation (ICRP 2007); rather, it recommends
using organ-absorbed doses for cancer risk evaluations in epidemiological cohort studies. The method
adopted by the J-EPISODE was based on established organ dose reconstruction methods and followed, in
principle, the methodology of the International Agency for Research on Cancer (IARC) 15-Country
Collaborative Study (hereinafter called the 15-Country Study) ( Thierry-Chef et al 2007). The framework for
the conversion from a dosimeter reading to an organ-absorbed dose was summarised as follows:

{a) The 15-Country Study examined the dosimeter response to photon exposure for the dosimeter types of

old film badges (FBs), multi-element FBs and thermoluminescence dosimeters (TLDs). Data for the dosi-
meter types recently in use were supplemented with data obtained by the J-EPISODE from experiments on
the dosimeter response—dosimeter reading per air kerma—for radio-photoluminescent glass dosimeters
(glass badges [GBs]), active personal dosimeters (hereinafter called electronic personal dosimeters [EPDs])
and optically stimulated luminescence dosimeters (Luminess badges [ LBs]). The supplementary data were
obtained using a device that irradiated an anthropomorphic phantom in the Japan Atomic Energy Agency
(JAEA) calibration laboratories.

(b} The reconstruction of an organ-absorbed dose required information on the photon energy and geometry

distribution of the exposed population. The J-EPISODE employed the 15-Country Study assumption; on
average, in nuclear power plants (NPPs}), 10% of the dose received by nuclear workers was due to photon
energies ranging from 100 to 300 keV and 90% from photon energies ranging from 300 to 3000 keV. In mixed
activities (MA) facilities, such as research and development organisations and fuel processing factories, 209
of the dose came from photon energies ranging from 100 to 300 keV and 80% from photon energies ranging
from 300 to 3000 keV, with the average geometry being 50% in the anteroposterior geometry and 50% in
the isotropic geometry for NPPs and MA facilities. A literature survey also disclosed survey reports jointly
conducted by Japanese electric power companies in the 1980s. The analysis of the working environments of
Japanese workers in NPPs demonstrated the appropriateness of applying the 15-Country Study assumption
for nuclear workers in Japan.

(c) The ]-EPISODE subjects differ physically from the references defined by the ICRP. The 15-Country Study

used a conversion coefficient computed from ICRP Publication 74, which was a simulation result using the
reference computational phantom for an adult male based on the standard Caucasian physique (ICRP 1996).
By contrast, the ]-EPISODE estimated a conversion coefficient from air kerma to an organ-absorbed dose
based on IM-103—an adult male voxel phantom with an average Japanese size {Sato and Takahashi 2012).
Eventually, the differences in conversion coefficients were small, The conversion coeflicient was estimated for
the following 14 tissuesforgans: the colon, red bone marrow (RBM), oesophagus, stomach, liver, gallbladder,
spleen, lungs, pancreas, prostate, bladder, kidneys, brain and heart.

(d) Bias regarding any differences in dosimeter calibration was taken into account, because until 1988, the phys-

ical quantity of exposure—expressed in terms of roentgen ( R} units—was measured by personal dosimeters
calibrated in free air. By contrast, personal dosimeters since 1989 have been designed to measure phantom-
related operational quantities. Therefore, the bias factor for the recorded doses in Sv until 1988 was defined as
the ratio between the recorded dose H (10} raised by backscatter radiation from the body and the delivered
dose in Hy(10).

(e) Integration of the above-mentioned factors using a mathematical model of a lognormal distribution resul-

ted in the conversion factors from the dosimeter reading to the organ-absorbed dose by dosimeter type (FB,
TLD, GB, EPD and LB), nuclear facility type (NPP or MA facility) and period (until 1988 or since 1989).
Figure | shows the conversion factor, the organ-absorbed dose per dosimeter reading (Gy/Sv), according
to tissue/organ for selected combinations of dosimeter types, nuclear facility type and period. The conver-
sion factor was approximately 0.7-0.9 Gy Sv~! (Furuta et al 2021). The values were higher in the lungs,
stommach and gallbladder but lower in the kidneys, prostate and spleen. According to dosimeter type, the
dosimeter responses for FB and LB contributed less than those for EPD, GB and TLD. The contribution of
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Fignre 1. Conversion factor from the dosimeter reading to the organ-absorbed dose (Gy/Sv) by tissue/organ for specific
combinations of dosimeter type, nuclear facility type and period; Film badge (FB) used in NPPs until 1988, TLD used in the
mixed activities (MA) facilities until 1988, EPD used in NPPs since 1989 and Glass badge (GB) used in NPPs since 1989,

the dosimeters from MA facilities was approximately 295 less than that of dosimeters from NPP facilities.
In the period until 1988, the roentgen era, the contribution was approximately 496 lower than that in the
period since 1989 ( Furuta et al 2021).

For more details about the methods used to estimate organ-absorbed doses, please refer to the sister
papers { Furuta et al 2020a, 2020b, 2021).

1.2. Smoking as a possible confounding factor

One advantage of the ]-EPISODE was that it has information on smoking and the earlier analyses suggested
that smoking might be a strong confounder in the association between radiation and cancer mortality. The
REA (2015) compared the estimated excess relative risks (ERRs)/Sv for all cancers excluding leukaemia for all
204 103 participants, and for all cancers excluding lung cancer and excluding leukaemia. The REA (2015)
also compared the 75 442 respondents to lifestyle surveys who reported smoking information, for their
estimated ERRs/Sv for all cancers excluding leukaemia, with and without the smoking adjustment, using
qualitative information on smoking status. Of the 75442 participants, 71 733 had quantitative information
on pack-years. These data were analysed and the estimated ERRs/Sv for all cancers excluding leukaemia with
and without the smoking adjustment were compared. Details were described in Kudo et al (2018).

1.3. Previous nuclear worker cohort studies on cancer risk: pros and cons

The Life Span Study (LSS) of Atomic bomb survivors is regarded as the gold standard for radiation
protection from high-dose and high-dose-rate radiation exposures (Ozasa et al 2012, Grant et al 2017). Many
cohort studies have been conducted on nuclear workers to investigate the effects of low-dose and
low-dose-rate radiation exposures, but the results remain controversial. The goal of many occupational
cohort studies on nuclear workers was to obtain risk estimates, compatible with that of the LSS, for
low-dose/low-dose-rate radiation effects directly from the cohort instead of extrapolating from the results of
the LSS for high-dose/high-dose-rate exposures, Therefore, accurnulation of a large number of person-years
of follow-up and observed deaths is crucial to obtain precise risk estimates for prolonged low-dose and
low-dose-rate exposures. Of these studies, historical cohort studies, such as the 15-Country Study {Cardis
etal 2007, Vrijheid et al 2007) and the International Nuclear Workers Study (INWORKS) (Richardson et al
2015, Hamra et al 2016}, which set their retrospective observations from the 1940s or 19503, already fulfilled
this requirement. The long follow-up duration was a strength and contributed to the improved accuracy of
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the risk estimates. One of the features of occupational exposure cohorts is that each worker carries a personal
dosimeter; thus dose information on external exposure, which is the dominant dose, can be obtained
relatively accurately. However, the uncertainty regarding dosimetry in the early years and especially the
possible exposure to neutrons in relation to nuclear weapons production are also weaknesses of the cohorts
(Fix et al 1997, Wakeford 2021). The study of dose errors remarkably progressed during the 15-Country
Study and organ doses were reconstructed. Another weakness was the lack of control of potential
confounders.

In contrast to the historical cohort studies, the ]-EPISODE mostly consisted of NPP workers and started
its follow-up in the 1990s using the doses recorded since 1957, It has to accumulate person-years to obtain
reliable results. The J-EPISODE did not experience such serious problems with dosimetry as those in the
historical cohort studies because the nuclear industry started later in Japan than in the United States and
Western Furope, and the J-EPISODE did not include nuclear weapons industries. The J-EPISODE finally
performed an organ dose reconstruction and is now in the same position as the historical cohort studies with
regard to dosimetry. Its weakness was its short follow-up period, which resulted in unstable risk estimates
with wide confidence intervals (Cls). However, the limited uncertainty regarding dosimetry and the possible
control of confounders were its advantages.

1.4. Aim

The primary aim of this study was to reanalyse the ERR of cancer mortality for the ]-EPISODE using the
same method used in previous analyses, except the reconstructed organ-absorbed dose was used instead of
the recorded dose. The second aim was to confirm the adaptability of organ-absorbed dose and relevancy of
the estimated radiation risk obtained by using organ-absorbed dose for the J-EPISODE.

2. Methods

The manuscript focused on determining whether the main features of the results remained unchanged
regardless of whether the doses applied for the analysis were the recorded doses or the reconstructed
organ-absorbed doses. The analysis methods for risk estimation for the J-EPISODE have been described
elsewhere (REA 2015, Kudo et al 2018). Here, we briefly describe the method in terms of the comparability
between the present study and the previous studies.

2.1. Cohort definition

Two cohorts were included in the analysis: the whole cohort and the subcohort. The whole cohort consisted
of 204 103 Japanese male workers who were registered with the RADREC as of the end of March 1999, The
whole cohort was followed up from 1991 to 2010. The subcohort consisted of 71 733 participants from the
whole cohort who responded to the lifestyle surveys described below and who included smoking information
on pack-years (hereinafter referred as the subcohort). The subcohort was followed up from 1999 to 2010
(table 1).

2.2, Dosimetry

The Japanese nuclear industry started in the late 1950s. Doses received by each worker in the controlled areas
were monitored with a personal dosimeter. The doses were evaluated in mSv of H,(10) and conceptually
consisted of external and internal exposure doses, However, the doses received were assumed to be derived
predominantly from the photon in the energy from 100 keV to 3 MeV. Each nuclear facility periodically
submits its records of individual annual doses to the RADREC, These records include doses received by the
own employees and contractors” workers. The J-EPISODE was provided by the RADREC with the annual
recorded doses from 1957 to 2010 for each worker and each facility.

2.2.1. Organ dose reconstruction

A specific organ-absorbed dose was reconstructed based on each worker’s annual recorded dose from each
nuclear facility in each year categorised into an NPP or MA facility and a specific dosimeter type assigned as
the primary persenal dosimeter in the facility. The specific organ-absorbed dose for each worker in each year
was obtained by multiplying the categorised individual annual recorded dose in Sv by the corresponding
conversion factor (Gy $v) and then summing them for each worker and year (Furuta et al 2021).

2.3. Follow-up of vital status and underlying causes of death

The endpoint of the J-EPISODE was cancer death to date, The vital status of each participant was verified by
applying to the municipality for the issuance of his Resident Registration Card (RRC). If the participant was
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‘Table 1. Profile of the ]-EPISODE.
The subcohort with

smoking information
Item The whole cohort on pack-years ICD-10 codes
Cohort size for analysis 204 103 males 71733 males
Follow-up period 1991-2010 19992010
Total person-years 2889000 591 000
Mean years of follow-up 14.2 8.2
Number of deaths
All cancers (ca) excluding 7929 1326 CO0-C97 except
leukaemia C91-C95
Ca of oral cavity and pharynx 201 37 CO0-C14
Oesophageal ca 441 87 C15
Stomach ca 1407 218 Cle
Colon ca 535 100 Cl8
Rectum ca 398 68 C19-C21
Liver ca 1219 138 c22
Gallbladder ca 261 38 C23-C24
Pancreatic ca 531 109 C25
Lungeca 1756 319 C33-C34
Prostate ca 192 39 ol
Bladder ca 103 14 C67
Ca of kidney and other urinary 145 20 C64-C66, C68
organs
Mon-Hodgkin’s Lymphoma 176 34 CB2-C85, C96
Multiple myeloma 60 14 €88, C90
Leukaemia excluding chronic 207 44 C91-C95 except
lymphocytic leukaemia €911
Mean cumulative colon absorbed 1.0 20.1
dose since 1957 at the end of
follow-up (mGy)
Mean age (years) 55.6 at the end of 45.1 at the date of
follow-up SUrvey response

still alive, a copy of his RRC was issued; if he was deceased or had moved, a record deleting his RRC was
issued. A new application for issuance was made at the new addresses of participants who had moved. The
maximum retention period for the deleted records at the municipality was five years until 2020, but it has
since been extended to 150 years. Therefore, RRC inquiries to municipalities were conducted at intervals of
less than five years.

For participants whose deaths were ascertained through RRCs, the underlying causes of death were
abtained by record linkages with the death records of the Vital Statistics approved for use and provided by
the Ministry of Health, Labour and Welfare. Underlying causes of death in the death certificates were coded
according to the International Classification of Diseases (ICD) tenth revision (Iwasaki et al 2000},

2.4. Lifestyle surveys

The J-EPISODE conducted lifestyle surveys in 1997 and 2003 among different samples of the whole cohort to
obtain the potential confounding factors. The number of respondents was 46 141 for the first survey and

41 742 for the second survey. Some participants responded to both surveys, but only the first survey
responses were analysed in the present study. The first survey examined the participants’ characteristics, such
as occupational history and lifestyle, which included questions on smoking status { current, former and
never), age at starting to smoke, number of cigarettes smoked per day and age of the cessation of smoking for
former smokers. In addition to these questions, the second survey questionnaire included information on
educational history and jobs at nuclear facilities (Murata et al 2002).

Here, figure 2 illustrates the variables z; and z; for the pack-years, which were calculated as the number of
smoking years multiplied by the number of cigarettes per day and divided by 20 (cigarettes per pack). For
current smokers, z; was the number of smoking years since the age at starting to smoke through the age at
the survey date. For former smokers, z; used the number of smoking years since the age at starting to smoke
until the age of the cessation of smoking, and the variable z; was calculated as the non-smoking years since
the cessation of smoking until the age at the survey date. For participants who had never smoked, z;-z; were
zero,
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For current smoker:
Z,: pack-years = (number of smoking years) x
(number of cigarettes smoked per day) / 20

Age at starting Age at survey
to smoke date

For former smoker:

Zy: pack-years & non-smoking years
Age at starting Age of cessation Age at survey
to smoke of smoking date

Figure 2. llustration of pack-years for current and former smokers,

2.5. Risk estimation models

The ERR for mortality from all cancers excluding leukaemia among the male Japanese nuclear workers was
estimated using a linear model and a Poisson regression method, which was applied for cross-classified data
of the number of deaths and person-years. Dose accumulation lagged by two years for leukaemia excluding
chronic lymphocytic leukaemia (CLL) and 10 years for other cancers. For each cancer from a tissue/organ,
the corresponding organ-absorbed dose was primarily applied for the analysis. Where this was not
applicable, the colon absorbed dose was applied not only for rectum cancer but also for all cancers excluding
leukaernia. The RBM absorbed dose was applied for non-Hodgkin's lymphoma, multiple myeloma and
leukaemia excluding CLL. The cesophagus absorbed dose was applied for cancers of the oral cavity and
pharynx, and the stomach absorbed dose was applied for pancreatic cancer.

2.5.1. Model for the whole cohort
For the whole cohort of 204 103 male participants, the following model was applied:

A= ola,c,r) (14 Bd), o

where A was the mortality rate at the cumulative organ-absorbed dose d { Gy}, Ag was the background
meortality rate stratified by 4, ¢ and r; a was the attained age (20—, 25—, ..., 95— and 100+), ¢ was the calendar
year (1991-1994, 1995-1999, 2000-2004 and 2005-2010) and r was the residence area (Hokkaido + Tohoku,
Kanto, Hokuriku, Chubu, Kinki, Chugoku, Shikoku and Kyushu + Okinawa); 4 was the parameter of the
ERR/Gy; d was categorised into six groups by mGy levels of <5, 5—, 10—, 20—, 50— and 100-+. This madel was
identical to that used in the previous analysis by the REA (2015), except for the use of the organ-absorbed
dose instead of the recorded dose. Comparisons were first made between the ERRs/Gy from the present study
and the ERRs/Sv from the previous study. Comparisons were then made between the ERR/Gy for all cancers
excluding leukaemia and the ERR/Gy for all cancers excluding lung cancer and excluding leukaemia.

2.5.2, Model for the subcokort
For the subcohort of 71 733 participants who had smoking information on pack-years, the following model
was applied for the smoking adjustment:

A=Aola, ¢y, 1, s)exp(anz + oaz + aaz) (1 + Gd), (2)

where A was the mortality rate at the cumulative organ-absorbed dose d ( Gy}, Ag was the background
mortality rate stratified by a (attained age; the same category as (1)), ¢ (calendar year; <2000, 20002004 and
2005-2010), y (birth year; <1920, 1920, 1925, ..., and 1970+), r (residence area; the same as (1)) and s
(survey indicator; the first or the second). 3 was the parameter of the ERR/Gy. d was categorised into 14
groups by mGy levels: 0, =0, 1-, 2—, 3—, 5-, 7.5—, 10—, 15—, 20—, 25—, 50—, 100— and 200+ In the exponential
term, the variables z)—z5 defined in section 2.4 were employed and o;,—oy represented the respective
coefficients of z—z;. Pack-years of z; and z; were categorised into eight groups: 0, >0, 10—, 15—, 20—, 25—, 30—
and 50+ The non-smoking years of z; since the cessation of smoking were categorised into three groups;
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Table 2. Cumulative dose of Hy(10) and a specific organ -absorbed dose during 19572010 for the whole cobort of 204 103 participants

in the J-EPISODE,
Organ-absorbed dose (mGy)
Recorded dose
H(10) (mSv) Calon Lungs Red bone marrow
Mean cumulative dose since 1957 at 139 1.0 115 10.1

the end of follow-up

<5, 5-and 10+. This model was identical to the previous analysis by Kudo et al (2018) except for the use of
the organ-absorbed dose instead of the recorded dose.

The ERR/Gy, except for the smoking confounder, was directly and quantitatively estimated by the
smoking-adjusted model (2) with the exponential terms of pack-years variables, Therefore, the effect of
smoking as a confounder was determined by comparing the ERRs/Gy between the smoking-adjusted model
(2) and the non-adjusted model without the exponential term: A = A (a, ¢, y, r, 5) (14 3d).

The relative risk (RR) of pack-years of smoking by pack-year category was estimated by modifying model
(2). The numerical variables z; and z; in model (2) were categorised; a pack-year categorical variable z;
including current smoker, former smoker as well as non-smoker was generated; then
exp (a2 + o2 + aaza) in model (2) were replaced with exp (123 + 7223) . The RR was obtained as the
exponential of the estimated ;.

3. Results

3.1. Reconstructed organ-absorbed dose for the J-EPISODE from 1957 to 2010

Table 2 shows the comparison of the cumulative dose between the recorded dose in Hp(10) and a specific
organ-absorbed dose reconstructed in the present study. The mean cumulative dose in Hp(10) was 13.9 mSv
in 2010, and the mean cumulative organ-absorbed dose was 11.0 mGy for the colon, 11.5 mGy for the lungs
and 10.1 mGy for RBM. Neglecting dose unit differences, the organ dose values were approximately 0.8 times
the recorded doses. This indicated that the recorded doses were overestimated in terms of the
organ-absorbed dose.

3.2, Reanalysis results for the whole cohort

The whole cohort consisting of 204 103 participants with follow-up from 1991 to 2010 had a total
person-years number of 2.9 million, a number of observed deaths from all cancers excluding leukaemia of

n = 7929 and a mean age at the end of follow-up of 55.6 (table 1). As for the number of deaths by cancer site,
lung cancer (n = 1756}, stomach cancer (n = 1407) and liver cancer (n = 1219) contributed 55%. Figure >
and table * shows the ERRs/Gy by causes of death using the organ-absorbed dose for 204 103 participants
with follow-up in 1991-2010 in comparison with the ERRs/Sv using the recorded dose in F,(10). For all
cancers excluding leukaermia, the estimated ERR/Gy and 9096 CI was 1.22 (0.24, 2.26), which were
statistically significant positive but possibly confounded by smoking, because it decreased to 0.50 (—0.56,
1.56) when excluding lung cancer, The Cls for site-specific cancers were wider due to the small number of
observed deaths (figure ). Statistically significant positive estimates of ERR/Gy were only observed for the
lung (4.00 [ 1.81, 6.49]), with n = 1756 and for non-Hodgkin’s lymphoma (11.35 [ 2.58, 23.70]), with

n = 176, in addition to all cancers excluding leukaemia. Positive but not statistically significant estimates
were seen for the eight site-specific cancers. Statistically significant negative estimates were observed for the
gallbladder (—4.87 [—7.05, —1.15]), with # — 261, and for the pancreas (—5.29 [7.21, —2.54]), with

n = 531. In addition to the estimates for leukaemia excluding CLL (—0.42 [—5.38, 7.59]} with n = 207, other
two cancers were observed negative but not statistically significant.

3.3. Reanalysis results for the subcohort

The subcohort consisting of 71 733 participants with follow-up in 1999-2010 had a number of total
person-years of 0.6 million, a number of observed deaths from all cancers excluding leukaemia of n = 1326
and a mean age at the date of survey response of 45.1 (table 1). Figure 4 and table 4 shows the ERRs/Gy and
90% Cls by causes of death with the smoking adjustment using pack-years for the subcohort and a
comparison with the ERRs/Gy without the smoking adjustment. The estimated ERR/Gy for all cancers
excluding leukaemia decreased from a ERR/Gy of 1.00 (—0.55, 2.82) without the smoking adjustment to 0.25
{—1.16, 1.92) with the smoking adjustment. For leukaemia excluding CLL—this is also an important tissue
for radiation protection—the estimate of the ERR/Gy did not converged due to a small number of deaths

{n = 44). By cancer site, the ERR/Gy decreased from 3.09 (—0.11, 7.34) to 1.56 { —1.15, 5.25) for lung cancer
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ERR/Gy or ERR/Sv
a 2 4

All cnacers (ca)
excluding leukaemia
All ca excluding lung ca
and excluding leukasmia
Ca of oral cavty

and pharynx

Oesophageal ca

Stomach ca +
o © ERR/SY
Colonca « ERR/Gy

Rectum ca

o

Liverca
Gallbladder ca +

Pancreatic ca e e

Causes of death
o

Lung ca

Prostate ca

Bladder ca

Ca of kidney and %
other urinary organs

MNon-Hodgkin's lymphoma
Multiple myeloma
Leukaemia excluding CLL

Figure 3. ERR/Gy and 90% CI by causes of death using the organ-absorbed dose for the whele cohort of 204 103 participants in
the J-EPISODE with follow-up in 1991-2010 in comparison with ERR/Sv using H,, (10),

Note: (1) The ERRs/Gy were estimated using the organ-absorbed dose, while the ERRs/Sv were estimated using the recorded dose
in H,(10).

(2) ’ﬁ.e 0% Cls of the ERRs/Gy were hased on the likelihood method. The lower bounds of the Cls for the oral cavity and
pharynx, gallbladder, pancreas, and kidney and other urinary organs denoted the last estimate.

(3) Dose data lagged by two years for leukaemia excluding chronic lymphocytic leukaemia (CLL) and by 10 years for other
cancers. For each cause of cancer death, the corresponding organ -absorbed dose was applied as listed in table 3.

with observed deaths n = 319; from 0.15 (—3.35, 5.20) to a negative ERR/Gy of —0.70 (—3.74, 3.87) for
stomach cancer (n = 218} (table 4). The plots of the ERRs/Gy for almost all causes of death were closer to the
vertical line of the origin with the smoking adjustment than without the smoking adjustment (figure 4).
However, cancers with wide Cls showed inconsistent and unstable movements. The estimates for the colon
(n = 100), prostate (n = 39) and kidney and other urinary organs (n = 20) were almost the same without or
with the smoking adjustment. The estimates for the oesophagus (n = 87) and non-Hodgkin’s lymphoma

{n = 34) were not closer to zero with the smoking adjustment than without the smoking adjustment.

3.4. Smoking as a possible confounder between radiation and mortality

The United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) 2019 Report
stated that alcohol consumption and smoking were suspected as important confounding factors that may
have influenced the effects reported by the ]-EPISODE (UNMSCEAR 2019}, citing Kudo et al (2018). In his
editorial in the Journal of Radiological Protection, Akiba (2018) determined that the J-EPISODE confirmed a
well-established principle of epidemiology, namely that smoking confounds the relationship between
radiation and smoking-related disease risks when radiation is related to smoking.

Table 3 demonstrates the comparison of the estimated cancer mortality risk between the present and the
previous study. For the 204 103 participants, the ERR/Gy for all cancers excluding leukaernia decreased when
lung cancer was also excluded, as described in section 2.2, This decreasing tendency did not differ from the
previous study using Hy(10) (REA 2015).

When conducting a direct adjustment of smoking using pack-years for the subcohort, the ERR/Gy
without the smoking adjustment decreased, as described in section .3. The most important feature of the
]-EPISODE was the decreasing tendency of the ERR/Sv following adjustment for smoking ( Kudo et al 2018).
These decreasing trends remained unchanged even when the organ-absorbed dose was used, indicating the
appropriateness of using organ-absorbed doses for further risk analysis.
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Table 3. Reanalysis results of the cancer mortality risk using organ-absorbed dose for the J-EPISODE, in comparison with the previons
study using recorded dose,

Previous study
Present study using using recorded
organ-absorbed dose dose in Hy(10)
Cause of death Organ dose ERR/Gy  90% CI ERR/Sv  90% CI
The Whole cohort of all 204 103 participants with the follow-up 1991-2010
All cancers (ca) excluding Colon 1.22 (0.24, 2.26) 1.20 (0,43, 1.96)
leukaemia
All ca excluding lung ca and Colon 0.50 (—0.56, 1.56) 0.66 (—0.18, 1.50)
excluding leukaemia
Ca of oral cavity and pharynx Oesophagus —2.08 (—6.20°, 5.03) —0.44 (—4.68,3.79)
Oesophageal ca Oesophagus 237 (—2.12,8.25) 3.20 (—0.37,6.78)
Stomach ca Stomach 0.96 (—1.24, 3.52) 0.50 (—1.23,2.23)
Colon ca Colon ~2.58 (—4.73, 0.52) —1.64 (—4.02,0.73)
Rectum ca Colon 0.75 (=2.79, 5.57) 0.90 (—2.50, 4.29)
Liver ca Liver 2.54 (=0.12, 5.67) 2.52 (0.33,4.72)
Gallbladder ca Gallbladder —4.87 (=7.05% —=1.15) -3.51 (—6.06, —0.96)
Pancreatic ca Pancreas —529 (=7.21%, —2.54) —3.64 (—5.35,—1.92)
Lung ca Lung 4.00 (1.51, 6.49) 3.15 (1.34, 4.96)
Prostate ca Prostate 4.07 (—2.14, 13.31) 2.62 (—2.81, 8.04)
Bladder ca Eladder 219 (—3.95, 13.02) 34 (—4.23,10.51)
Ca of kidney and other Kidney 041 (—6.56% 12.98) =013 (—5.25, 5.00)
urinary organs
Mon-Hodgkin's lymphoma Red bone 11.35 (2.58,23.70) 896 (1.30, 16.62)
marrow
Multiple myeloma Red bone 8.13 (—3.88, 30.68) 6.93 (—5.30,19.15)
marrow
Leukaemia excluding CLL Red bone —0.42 (=538, 7.59) —-0.27 (—4.07,3.52)
IATTOW

The subcohort of 71 733 respondents to lifestyle surveys with follow up 1999-2010
All ca excluding leukaemia
Without smoking adjustment Colon 1.00 (—0.55, 2.52) 0.50 (—0.39,2.19)
With smoking adjustment Colon 0.25 (—1.16, 1.92) 0.29 (—0.81, 1.57)

(1) Dose data lagged by two years for lenkaemia excuding chronic lymphocoytic leukaemia (CLL) and by 10 years for other cancers. They
were categorised into six groups in the analysis for the whole cohort and 14 groups for the subeohort.

{2) The Cls were based on the Wald method for the whole cohort and the likelihood method for the subcohort.

* Last estimate is denoted because the EREs did not converge.

3.5. ERR and 90% CI by dose category for the subcohort

Figure 5 shows the ERR and 9096 CI by dose category for the subcohort, i.e. the results from the direct
adjustment using pack-years. The slope of the straight lines through the origin represents the ERR/Sv or
ERR/Gy. The slope of the dotted line was ERR/Sv of 0.80 (9096 CI: —0.39, 2.19) without the smoking
adjustment using the recorded dose in Hp(10) in the previous study (Kude et al 2018). By contrast, in the
present study, the dashed line demonstrated a ERR/Gy of 1.00 (—0.55, 2.82) without the smoking adjustment
using the colon absorbed dose and this decreased to the solid line of ERR/Gy 0.25 {—1.16, 1.92) with the
smoking adjustment.

3.5.1. Comparison of the CI results between using recorded dose (mSv) and organ dose (mGy)

In figure 5, the dot A shows a value of ERR 0,41 (—0.11, 0.93) at 261.9 mSv for the highest dose group of
200+ mSv in H,(10) on the dotted line (Kudo et al 2018). It shifted left to the dot B on the dashed line, the
value of which is 0.44 (—0.29, 1.59) at 234.0 mGy in the colon absorbed dose group of 2004+ mGy (table 5),
and the CI is wider, because the magnitudes of the colon absorbed dose were approximately 0.8 times the
recorded dose and the number of observed deaths also decreased from n = 26 in the 200+ mSv group to

n =7 in the 2004+ mGy group. Conversely, the dot C (ERR —0.17 [—0.37, 0.03] at 136.9 mSv) in the group of
100-200 mSv on the dotted line moved up to the dot D (ERR —0.10 [—0,34, 0.21] at 133.1 mGy) in the group
of 100-200 mGy on the dashed line but the CIs of both the dot C and D were almost the same width (table 5).
This tendency of no differences in the Cls was also found in the lower dose groups less than 100 mSv or mGy.
Accordingly, the slope of the dashed straight line was steeper than the dotted straight line, i.e. the ERR/Gy of
1.00 without the smoking adjustment was larger than the ERR/Sv of 0.80 without the smoking adjustment.
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Figure 4. Comparison of ERR/Gy and 90% CI by causes of death for the subcohort of the J-EPISODE with follow-up in
19992010 with/without the smoking adjustment.

Note: (1) The ERR/Gy values for pancreatic cancer, multiple myeloma, and leuk ia excluding chronic lymphocytic leukaemia
(CLL) were not converged.

(2) The Cls were based on the likelihood method, but those for oesophagus, colon, gallbladder, prostate and bladder were based
on the Wald method. The lower bounds of the Cls for the oral cavity and pharynx, stomach and rectum denoted the last estimate
of the likelihood method.

(3) Dose data lagged by two years for leukaemia excluding CLL and by 10 years for ather cancers. For each canse of cancer death,
the corresponding organ-absorbed dose was applied as listed in table 4.

Table 4. ERR/Gy and 90% CI by cause of death using organ-absorbed dose for the subcohort of the J-EPISODE with follow-up in

19902010,

Without smoking adjustment With smoking adjustment
Causes of death Organ dose ERR/Gy  90% CI ERR/Gy 90% CI
All cancers (ca) excluding  Colon .00 (—0.55,2.82) 025  (—1.16,1.92)
levkaemia
Ca of oral cavity and Oesophagus 666  (—7.45",30.94) 491 (-7.86%,27.25)
pharynx
Oesophageal ca Oesophagus —1.08  (—637,421}" —179  (-6.53,2.96)"
Stomach ca Stomach 015 (~3.35%5.20) —070  (—3.74%,3.87)
Colon ca Colon —3.17 (—4.14, —2.19) * —3.16 (—5.19,—1.14) "
Rectum ca Colon 325 (—2.61,14.07) 255 (—3.38%12.76)
Liver ca Liver 544 (—0.66, 14.48) 4.05 (—1.50,12.39)
Gallbladder ca Gallbladder —0.15  (—8.34,8.05)" —046  (—8.21,7.30)"
Lungca Lung 3.09 (011,734 156 ( 1.15,5.25)
Prostate ca Prostate ~0.89  (—10.64,887)" ~076  (=1072,9.21)"
Bladder ca Bladder 926 (—17.29,35.80)" 7.56 (—16.80,31.91)°
Ca of kidney and other Kidney 24.11 (—2.45,95.94) 24.01  (—2.55,96.54)
urinary organs
Mon-Hodgkin's lymphoma  Red bone marrow 1632 (1.89,45.30) 17.07  (2.18,47.07)
All ca excduding lung ca Colon 0.51 (—1.20, 2.56) =004 (=163, 1.88)
and excluding leukaemia
(1) The ERR/Gy values for pancreatic cancer, multipl loma and lenkaemia excluding chronic lymphocytic leukaemia (CLL) were
not converged.

(2) The Cls were based on the likelihood method.

(3} Dose data lagged by two years for leukaemia excluding CLL and by 10 years for other cancers,
* Wald-based CI.

* Last estimate is denoted because the ERRs did not converge.
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Figure 5. ERR and 90% CI for all cancers excluding leukaemia by dose category for the subcohort of the J-EPISODE with
follow-up in 19992010 with the smoking adjustment using pack-years applied,

Note: Colon absorbed dose (mGy) and recorded dose (mSv) were categorised into 14 groups (0, >0,1-, 2,3, 5-, 7.5-,10-, 15,
20—, 25—, 50—, 100 and 200+). The slope of the straight lines through the origin represents ERR/Gy or ERR/Sv.

Table 5. ERR and 90% CI for all cancers excluding leukaemia by dose category for the subcohort of J-EPISODE with follow -upin
19992010 with/without the smoking adjustment using colon absorbed dose.

ERR and 90% CI without ERR and 90%CI with
Dose category Mean dose Observed death smoking adjustment smoking adjustment
0 mGy 0.0 mGy 313 0.00 0.00
>0 0.4 188 =0.02 (—0.16,0.14) —0.03 (—0.17,0.13)
1- L.5 55 —0.08 (—0.28,0.16) —0.00 (—0.29, 0.16)
2- 2.5 41 0,02 (—0.23, 0.34) 0.02 (—0.24,0.33)
3- 39 71 0.19 (—0.05, 0.48) 0.18 (—0.05, 0.46)
5— 6.2 60 0.11 (=0.12, 0.40) 0.07 (—0.16, 0.34)
7.5~ &7 71 0.07 (—0.15,0.32) 0.02 (—0.18, 0.26)
10— 12.3 106 0,08 (—0.11, 0.30) 0.05 (—0.13,0.27)
15— 17.4 78 0.26 (0,02, 0.55) 0.20 (—0.03, 0.48)
20~ 2.4 54 0.20 (—0.07, 0.52) 0.17 (—0.09, 0.48)
25 354 145 0.20 (0.02, 0.42) 0.17 (—0.01, 0.38)
50— 69.4 103 0.23 (0.01, 0.48) 0.17 (—0.04, 0.41)
100 133.1 3 —0.10 (—0.34, 0.21) —0.17 (—0.39,0.11)
200+ 234.0 7 0.44 (—0.29, 1.59) 0.26 (—0.38, 1.26)
Previous analysis using recorded dose
100— mSv 136.9msv 61 ~0.17 (—0.37, 0.03) —0.22 (—0.41, 0.03)
2004 261.9 26 0.41 (—0.11, 0.93) 0.27 (—0.20, 0.74)

‘The Cls were based on the likelihood method.

3.5.2. ERR by dose category using organ dose with/without the smoking adjustment

Table 5 demonstrates that, for all dose groups, the ERRs without the smoking adjustment decreased to the
values with the smoking adjustment. Accordingly, the slope of the solid straight line was less steep than that
of the dashed straight line (figure 5), indicating the decreasing trend in the ERR/Gy with the smoking
adjustment.

3.5.3. Sensitivity analysis using different organ dose category

Taking into consideration that estimates of ERR/Gy are susceptible to dose category, 14 dose groups (0, >0,
0.8, 1.6, 2.4, 4-, 6, 8-, 12—, 16—, 20—, 40—, 80— and 160+ mGy)—hereinafter called adjusted dose
category—which had cut-off points 0.8 times the size of those of the dose category described in section 2.5.2,
were temporarily applied in model (2). The estimated ERR/Gy of 1.09 {—0.47, 2.89) without the smoking
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Table 6. ERR/Gy and ERR by dose category for all cancers excluding leukaemia for the subcohort of the J-EPISODE with follow-up in
19992010 with/ without the smoking adjustment using colon absorbed dose when adjusted dose category was applied,

Without smoking With smoking
Observed death adjustment adjustment

ERR/Gy and 9096 CI ERR/Gy and 90% CI
All cancers excluding leukaemia 1,326 1.09 (—0.47, 2.89) 0.41 (—1.02, 2.09)
Adjusted Mean dose Observed death ERR and 90% CI ERR and 90% CI
Dose category
0 mGy 0.0 mGy 313 0.00 0.00
>0 0.3 175 ~0.00 (0,15, 0.17) —0.01 (—0.15,0.16)
0.8~ 1.2 19 =0.15 (—0.35, 0.08) —0.16 (—0.36, 0.07)
16— 2.0 34 —0.07 (—0.32,0.24) —0.06 (—0.31, 0.25)
24— 3.1 63 012 (—0.11, 0.40) 0.11 (—0.12, 0.39)
4- 5.0 66 0.34 (0.06, 0.67) 0.31 (0.04, 0.63)
6 7.0 42 —=0.07 (—0.30,0.21) =0.09 (—0.32, 0.18)
] 9.9 104 0.09 (—0.10, 0.31) 0.04 (—0.14, 0.26)
12- 13.9 80 0.17 (—~0.06, 0.43) 0.14 (~0.07, 0.40)
16— 17.9 57 0.18 (—0.08, 0.49) 0.13 (—=0.12,0.42)
20~ 284 153 0.17 (—0.01, 0.38) 0.15 (—0.03, 0.35)
40- 56.3 129 0.32 (0.11,0.57) 0.27 (0.06, 0.51)
80— 108.8 43 —0.16 (—0.37, 0.09) —0.22 (—0.41,0.01)
160+ 197.3 18 0.47 (—0.04, 1.16) 0.34 (—=0.13,0.96)

(1) The cut-off points of the adjusted dose category were set as 0.8 times the size of those of the dose category i table 5.
(2) The CIs were based on the likelihood method.

adjustment decreased to 0.41 (—1.02, 2.09) with the smoking adjustment, but still demonstrated a decreasing
tendency (table 6). The width of the CI of the ERR without the smoking adjustment in the highest dose
group did not differ greatly, whether the dose unit was mSv or mGy. The ERR was 0.41 (—0.11, 0.93) at 261.9
mSv for the highest dose group of 200+ mSv in the previous study and 0.47 {—0.04, 1.16) at 197.3 mGy for
the 1604 mGy group using the adjusted dose category, because the distribution of the observed deaths by the
adjusted dose category in mGy was almost the same as in mSv. Regardless of the dose category, the decreasing
trend in the ERR/Gy with the smoking adjustment remained.

3.6. Heterogeneity among the dose groups

The dose group of 15-20 mGy showed a relatively higher ERR, but the group greater than 100 mGy showed a
lower ERR, even after the smoking adjustment (table 5). This trend was observed in both the whole cohort
and the subcohort, as well as in many causes of deaths (not shown), suggesting that there unresolved
heterogeneity might still exist among the dose groups in the J-EPISODE.

3.7. Association of smoking with cancer mortality

An association between smoking and lung cancer is one of the conditions of a confounder. By modifying
maodel (2), we estimated the RRs and 90% Cls of the pack-years of smoking for lung cancer and all cancers
excluding leukaemia by pack-years category (table 7). The RRs of lung cancer for smokers increased sharply
over 30 pack-years. The lung cancer risk of current smokers with 30-50 pack-years, the proportion of which
was the largest, was 5.4 times higher than that of non-smokers, whereas that of former smokers was 3.7 times
higher. This result confirmed one of the requirements of confounding,.

4, Discussion

4.1. Improved accuracy of dosimetry
Akiba (2018) indicated that the strengths of the ]-EPISODE were its accurate dosimetry and virtually
complete mortality follow-up. Regarding the first point, because the ICRP (2007) recommends the use of
organ-absorbed doses for assessing cancer risk in epidemiological cohort studies, the J-EPISODE developed
organ-absorbed dose conversion factors from dosimeter readings to further improve accuracy of dosimetry
and to facilitate international comparisons of risk estimates ( Furuta et al 2020a, 2020b, 2021).

In constructing the organ-absorbed doses, the doses received by the workers in the present study were
assumed to derive predominantly from photon doses in the energy range of 100-3000 keV. The possibilities
of neutron and internal exposures were discussed by Furuta et al (2021), as was the uncertainty regarding
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Table 7. RR and 90% CI of pack-years of smoking by pack-year category as the reference being non-smoker for all cancers excluding,
leukaemia and lung cancer for the subcohort of the J-EPISODE with follow-up in 1999-2010 using organ-absorbed dose,

All cancers
excluding leukaemia Lung cancer
Pack-year Mean Numberof  Observed Observed
category pack-years partcipants death RR and 90% CI death RR and 90% CI
Non-smoker 0 15290 155 1 19 1
Current smoker
>0 5.4 7494 21 2.21 (1.44, 3.40) 3 3.89 (1.37, 11.00)
10— 12,1 4059 9 0.87 (0,49, 1.54) 0 —
15~ 17.1 4403 43 2.40(1.79,3.22) 7 2.92(1.37,622)
20— 221 4386 60 2.28(1.76,2.94) 9 2.68 (1.36, 5.29)
25— i} 4129 68 1.99 (1.56, 2.54) 1 257 (137, 4.84)
30~ 377 12063 340 2.27 (1.93,2.57) 99 5.38 (3.54, 8.16)
50+ 63.9 4963 258 3.01(2.54,3.57) &2 7.61 (498, 11.62)
Former smoker
>0 5.2 3228 29 1.29 (0.84, 1.97) 4 1.38 (0.47, 4.04)
10— 11.9 1922 26 1.38(0.91, 2.09) 4 1.67 (0.60, 4.66)
15- 17.1 1736 28 1.37 (0,93, 2.03) 5 2.00 (0.80, 5.00)
20~ 221 1590 12 1.87 (1.34, 2.61) 3 1.73 (0.70, 4.27)
25— 269 1166 25 1.33 (0.91, 1.94) 4 1.66 (0.64, 4.30)
30- 379 3382 125 1.89(1.51,2.36) 32 3.74 (2.20, 6.37)
50+ 704 1924 97 2,09 (166, 2.63) 35 5.76 (3.47,9.54)

The CIs were based on the Wald method.

photon dosimetry. Ultimately, the organ-absorbed dose reconstruction in the J-EPISODE ignored the
neutron and internal exposure doses, if any.

4.2. Improved risk estimates by using the organ-absorbed dose

When over- or underestimates were found in the dose measurements, the risk estimates reflected such
evaluation. In the IARC Three-Country Study including the United States, the UK and Canada, organ doses
were constructed by overcoming the uncertainty in dosimetry (Fix et al 1997). The dose committee
concluded that for solid cancers, the recorded dose and organ dose were compatible, but for leukaemia, the
recorded dose overestimated the RBM absorbed dose by approximately 20%. Cardis et al (1995) evaluated
the ERR/Sv for all cancers excluding leukaemia as is, which was computed using the recorded dose, but
evaluated the risk of leukaemia to be 209 higher than the computed ERR/Sv. In the following 15-Country
Study, organ-absorbed dose was used for the risk estimation. Regarding the effect of dose reconstruction on
risk estimates in the INWORKS, the ERR/Cy for all cancers excluding leukaemia using colon doses was (.48
(0.20,0.79), while the ERR/Sv for the analysis using recorded photon doses was as low as 0.35 (0.14, 0.57)
(Richardson et al 2015). The use of colon doses, which were also adjusted for errors, did not improve the fit
of the model, but the comparison with the LSS became easier by using organ dose. In the subcohort of the
J-EPISODE, the risk estimate for the model without the smoking adjustment using recorded doses increased
from ERR/Sv (.80 (—0.39, 2.19) to ERR/Gy 1.00 (—0.55, 2.82) when organ doses were used (table 3). This
was a logical consequence of the fact that recorded doses were overestimated in terms of organ doses.

4.3. Smoking-adjusted radiation risk

As described in section 3.4, it was not surprising to see in table 3 that the ERR/Gy for cancer was slightly
higher than the ERR/Sv based on recorded dose because the recorded dose was generally overestimated.
However, for all cancers excluding leukaemia, when excluding lung cancer in the whole cohort and
conducting smoking adjustment in the subcohort, the opposite trend may be seen. In the whole cohort, the
lung-cancer-excluded ERR/Gy of 0.50 (—(1.56, 1.56) in the present study was lower than the
lung-cancer-excluded ERR/Sv of 0.66 (—0.18, 1.50) in the previous study for all cancers excluding leukaemia.
This was because the risk estimate using organ doses (ERR/Gy 4.00 [1.81, 6.49]} for lung cancer, which
accounted for 229 of the observed deaths, increased largely compared with that using the recorded dose case
(ERR/Sv 3.15 [1.34, 4.96] ) (table ). Eventually, the results of excluding lung cancer in the present analysis
showed a decrease from the previous study. In the subcohort, the smoking-adjusted ERR/Gy of 0.25 (—1.16,
1.92} in the present study for all cancers excluding leukaemia was slightly lower than the smoking-adjusted
ERR/Sv 0f 0.29 (—0.81, 1.57) in the previous study. However, by comparing the smoking-adjusted risk in the
subcohort between using recorded doses and organ doses for lung cancer (n = 319), stomach cancer
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Table 8. Indirect validation of king confounding by excluding lung cancer from all cancers excluding leukaemia.

Cause of cancer death Observed deaths Radiation risk

15-Country Collaborative Study

Cardis et al (2007) ERR/Sv and 90% CI
All cancers (ca) excluding leukaemia 5024 0.97 (0.27, 1.80)
All ca excluding leukaemia and excluding 3528 0.59 (—0.16, 1.51)
lhung ca and pleura ca
Lung ca 1457 1,86 (0.49, 3.63)
Pleura ca 39 5.28(<0,39.9)

INWORKS

Richardson et al (2015, 2017) ERR/Gy and 90% C1
All ca excluding leukaemia 19064 0,48 (0.20,0.79)
Solid ca 17957 0,47 (0,18, 0.79)
Solid ca (simple model *) 17957 0.37 (0.14, 0.62)
Solid ca excluding lung ca 12155 0.46 (0.11,0.85)
Salid ca excluding lung ca (simple model) 12155 0.35(0.07, 0.65)
Lung ca 5802 0.51 (0.00, 1.09)

The subcohort of the |-EFISODE with the

smoking adjustment using organ dose ERR/Gy and 90% CI
All ca exchuding leukaemia 1326 0.25(—1.16,1.92)
All ca excluding leukaemia without 1326 1.00 {—0.55, 2.85)
smoking adjustment
All ca exchuding leukaemia with DOE b 1326 0.76 (—0.86,2.71)
adjustment
All ca excluding leukaemia and excluding 1007 0.51 (—1.20, 2.56)
lung ca without smoking adjustment
Lung ca 319 1.56 (—1.15, 5.25)
Lung ca without smoking adjustment 319 3.09(—0.11,7.34)
Lung ca with DOE adjustment 319 4.05(0.19, 9.60)

French combined cohort

Metz-Flamant et al (2013) ERR/Sv and 90% CI
All solid ca 2312 0.34 (—0.56, 1.38)
All solid ca without SES © adjustment 2312 1.47 (0.40, 2.67)
Lung ca 585 1.20 (—0.63, 3.55)

UK updated third NRERW

Haylock et al (2018) ERR/Sv and 90% CI
All ca excluding leukaemia 11329 0.29 (0.06,0.53)
All ca excluding leukaemia and excluding 8114 0.37 (0.11,0.65)
lung ca and pleura
Ca from tracher, bronchus and lung 3058 0,03 (—0.38,0.51)
Pleura ca 157 1.06 (—0.96, 5.21)

Pooled U.S. cohort

Schubauer-Berigan et al (2015) ERR% per 10 mSv

and 95% CI1 7

All ca excluding leukaemia 10877 0,14 (—0.17,0.48)
Lung ca 3514 0.07 (—0.43, 0.66)
Smoking-related ca excluding leukaemia 6950 —0.08 (—0.43,0.32)

* Adjusted only for country, age, sex and birth cohort.
" Duration of employment.

¢ Sodoeconomic status,

“ Based on total (gamma, neutron and tritium) dose,

(n = 218) and liver cancer (n = 138), which contributed largely to the number of deaths, the estimated risk
value moved away from 0 for lung cancer (from ERR/Sv 0.94 [—1.24, 3.90] to ERR/Gy 1.56 [—1.15, 5.25]),
stomach cancer (from —0.20 [—2.94, 2.55] to —0.70 [ —3.74, 3.87]) and liver cancer (from 3.89 [—2.94, 2.55]
to 4.05 [—1.50, 12.39]), respectively (REA 2015; table 4). The trend by cancer site was not necessarily the
same as that for all cancers excluding leukaemia. Therefore, the decrease found in all cancers excluding
leukaemia may be coincidental.

4.4. Indirect validation of smoking as a confounder by excluding lung cancer

All cohort studies were concerned about smoking as a possible confounder, but because of the few cohorts
with information on smoking status, an indirect method was used to examine the possibility of smoking as a
confounder by excluding lung cancer from all cancers (table &), In the 15-Country Study, the ERR/Sv 0.97
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(0.27, 1.80) for all cancers excluding leukaemia decreased to 0.59 (—0.16, 1.51) when lung and pleura cancers
were excluded (Cardis et al 2007). This tendency was similar to the J-EPISODE. In the subcohort of the
J-EPISODE, the ERR/Cy for all cancers excluding leukaemia without the smoking adjustment was 1.00
(—0.55,2.85), whereas that for all cancers excluding leukaemia and excluding lung cancer without the
smoking adjustment was 0.51 (—1.20, 2.56). On the contrary, in the INWORKS, the ERR/Gy for solid
cancers was 0.47 (0.18, 0.79) and solid cancers excluding lung cancer also had an ERR/Gy of 0.46 (0.11, 0.85),
which were essentially the same value {Richardson et al 2015). Therefore, they concluded that the values
suggested no confounding by smoking in the INWORKS. However, the difference in these results when lung
cancer was excluded was considered to be due to the magnitude of the ERR for lung cancer. In the
INWORKS, the ERR/Gy for lung cancer was 0.51 (0.00, 1.09) (Richardson et al 2017), which was almost the
same as that for solid cancers. On the contrary, in the 15-Country Study, the ERR/Sv for lung cancer was 1.86
(0.49, 3.63), which was almost twice greater than that for all cancers excluding leukaemia ( Cardis et al 2007).
In the subcohort of the J-EPISODE, the ERR/Gy for lung cancer without the smoking adjustment was 3.09
(—0.11, 7.34), almost three times greater than that for all cancers excluding leukaemia.

Despite the uniformity of the ERRs/Gy by cancer site in the INWORKS results, the country cohorts of
France, the UK and the United States displayed different results from that of the pooled cohort, although
differences in the facilities included and observation periods were found. In the French combined cohort that
consisted of the Commissariat a I'Energie Atomique (CEA), AREVA Nuclear Cycle (AREVA NC) and
Electricité de France (EDF), the ERR/Sv for all solid cancers was 0.34 {—0.56, 1.38), which is positive but not
significant, whereas that for lung cancer was 1.20 (—0.63, 3.55) (Metz-Flamant et @l 2013 }. The result after
excluding lung cancer was not shown, but might be decreased. In the main analyses, socioeconomic status
{SES) was adjusted, partially considering smoking habits. When SES was not adjusted, the ERR/Sv for all
solid cancers increased to 1.47 (0.40, 2.67). In the pooled U5, cohort from five facilities, namely Hanford,
Idaho National Laboratory (INL), Oak Ridge National Laboratory (ORML), Portsmouth Maval Shipyard
{PNS) and Savannah River Site (SRS}, the ERR% per 10 mSv and 95% CI for all cancers excluding leukaemia
was 0.14 (—0.17, 0.48), which was positive but not significant, whereas that for lung cancer was 0.07 (—0.43,
0.66) {Schubauer-Berigan et al 2015). The results of a study on chronic obstructive pulmonary disease
(COPD), which is highly influenced by smoking, indicated that confounding by smoking may be positive in
Hanford and ORNL and negative in INL, PNS and SRS. A strong healthy worker survival effect (HWSE) was
also identified as a feature of the poeled cohort, but the adjusted increase in ERR in HWSE was highest for
smoking-related cancers. In the main analysis, SES (first job title) and duration of employment { DOE) were
used as adjustment variables, which may have partially adjusted for the smoking effect along with HWSE. In
the UK updated third analysis of Mational Registry for Radiation Workers (NRRW), including the Ministry
of Defence, British Nuclear Fuels (BNFL), UK Atomic Energy Authority (UKAEA), British Energy
Generation and Magnox Electric and Atomic Weapons Establishment, the ERR/Sv 0f 0.37 (0.11, 0.65) for all
cancers excluding leukaemia and excluding lung and pleura cancers increased from 0.29 (0,06, 0.53) for all
cancers excluding leukaernia (Muirhead et al 2009, Haylock et al 2018). Considering the low estimate of 0.03
(—0.38, 0.51) for lung cancer, some negative confounding effect of smoking on radiation risk estimates was
indicated. The results indicate that when examining smoking as a confounder, not only smoking adjustment
but also the relationship with other risk factors such as adjustment variables, that is, stratification variables,
should be fully considered in the model.

4,5, Possible healthy worker survivor effects

The INWORKS estimated the risk in the main analysis by adding SES related to job, DOE and neutron
menitoring status as adjustment variables to the simple model that adjusted enly for country, age, sex and
birth cohort. Possible confounding by SES and DOE was also examined by excluding each variable from the
meodel. The results suggested that job position positively confounded the results but DOE negatively
confounded the results because of HWSE (Cardis ef al 2007, Richardson et al 2015). The estimated ERR/Gy
for solid cancers from the simple model was 0.37 (0.14, 0.62), and that for solid cancers excluding lung
cancer was 0.35 (0.07, 0.65), whereas the estimates from the fully adjusted model were 0.47 (0.18, 0.79) and
0.46 (0.11, 0.85), respectively (table &), indicating that the net adjustment effect by SES and DOE was small
(Richardson et af 2015). This may be due to the offsetting of the positive confounding by job position and
negative confounding by DOE. As the J-EPISODE lacks information on job position, we could not conduct
an analysis with both SES and DOE as adjustment variables under the same condition as that in the
INWORKS. Even though interpretation of the risk estimates is difficult, the results when only DOE was
adjusted are presented in table 9. The DOE-adjusted risk estimates of 0.76 {—0.86, 2.71) largely increased
compared with the DOE-non-adjusted estimates of 0.25 (—1.16, 1.92), which suggests that DOE is a negative
confounder. These results were similar with those obtained using recorded dose in the study of Kudo et al
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Table 9. ERR/Gy and 90% CI by cause of death for the subcohort of the J-EPISODE with follow-up in 19992010 using organ -absorbed
doses when the duration of em ployment was added as the adjustment variable in the model.

‘Without smoking ad justment

With smoking adjustment

Causes of death ERR/Gy 90% CI ERR/Gy 90% CI

All cancers (ca) excluding 1.78 [1.00] (—0.04, 3.96) 0.76 [0.25] (—0.86, 2.71)
leukaemia

Ca of oral cavity and 16.10 [6.66] (—2.08, 59.66) 12.75 [4.94] (—3.9%,51.59)
pharynx

Oesophageal ca —1.42[—1.08]  (—6.54,3.70)" —219[-1.79]  (—6.60,2.23)"
Stomach ca —0.26 [0.15] (—4.05%, 5.07) —1.25[-070]  (—4.43°,3.36)
Colon ca —=3.16 [-3.17] (—5.47, —0.85)" —3.17 [-3.186] (—3.81, —2.53)
Rectum ca 6.35[3.25) (—1.66, 22.40) 5.30 [2.25] (—2.12, 20.56)
Liver ca 13.19 [5.44] (3.31,28.71) 10.25 [4.05] (1.47, 24.30)
Gallbladder ca ~0.37 [0.15] (—8.87,8.12) —~0.51 [~0.46] (—8.71,7.69)
Lung ca 6.29 [3.09] (1.70, 12.76) 4.05 [1.56] (0.19, 9.60)
Prostate ca —3.52 [—0.89] (—8.68, 1.64)° —3.51 [-0.76] (—8.74, 1.72)*
Bladder ca 23.76 [9.26] (—28.20,75.73)* 26.91 [7.56] (—31.30, 85.13)*
Ca of kidney and other 35.67 [24.11] (—1.01, 144.7) 36.92 [24.01] (—1.02, 152.5)
urinary organs

Mon-Hodgkin's lymphoma 21.64 [16.32] (3.17,63.46) 2344 [17.01] (3.82,68.15)
(1) Figures in bracket represent the ERR/Gy in table 4, where the duration of was not adjusted

(2) The Cls were based on the likelihood method.

“Wald-based CI

" Last estimate is denoted because the ERRs did not converge.

{2018). The third lifestyle survey, conducted between 2015 and 2019, added SES-related questions on
employer type, company size, job type and final job position to allow for a more detailed analysis of
confounding factors.

4.6, Comparison of risk estimates with other studies

Richardson et al (2015) reported that the results of the INWORKS were statistically compatible with the LSS,
The ERR/Gy and 909 CI for solid cancers was 0.47 (0.18, 0.79) in the INWORKS (table 8), whereas the
ERR/Sv for men aged 20-60 years in the LSS was 0.32 with 95% CI 0.01-0.05. Furthermore, Leuraud et al
(2021) emphasized that by restricting the comparison by using similar ages and follow-up periods, they
found complementary results from different studies with ERR/Gy of 0.28 (0.18, 0.38) for the LSS and 0.29
(0.07,0.53) for the INWORKS.

On the contrary, the results of the subcohort of the J-EPISODE were not statistically significant for all
cancers excluding leukaemia (0.25 [—1.16, 1.92]) owing to the lack of person-years, but the point estimate of
the ERR/Gy 0.25 was within the 90% CI 0.20-0.79 of ERR/Gy of 0.48 for all cancers excluding leukaemia in
the INWORKS. Further accumulation of person-years of follow-up is expected for proper comparison.

5. Conclusion

The ]-EPISODE established organ-absorbed doses from the recorded doses by using the organ dose
reconstruction methods to improve the accuracy of dosimetry. The estimated ERRs/Gy for cancer mortality
were consistent with the previous analysis results using H,(10), indicating that the risk estimation using the
organ-absorbed dose was applicable for the ]-EPISODE. In the whole cohort, all cancers excluding
leukaemia, lung cancer and non-Hodgkin’s lymphoma had statistically significant positive ERR/Gy estimates;
leukaemia excluding CLL had negative but not statistically significant estimates. Gallbladder cancer and
pancreatic cancer showed statistically significant negative. The main features related to smoking as a
confounder reported in the previous analysis remained unchanged. In the subcohort, for almost all causes of
death such as lung cancer and stomach cancer, the estimated ERR/Gy decreased by the smoking adjustment,
although those for the colon, prostate and kidney and other urinary organs were almost the same after the
adjustment. These results indicate that confounding by smoking seriously biased the radiation risk estimate
in the |- EPISODE and thus should be accounted for even if organ dose is used. The J-EPISODE will also use
organ-absorbed doses to analyse the cancer incidence, which has become available.
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Paper

Organ Dose Reconstruction Applicable for a Japanese Nuclear Worker Cohort:
J-EPISODE

Hiroshige Furuta,' Kaoru Sato,” Akemi Nishide,® Shin’ichi Kudo,' and Shin Saigusa'

Abstract—An evaluation of cancer risk based on organ-absorbed
dose is underway for the Japanese Epidemiological Study on
Low-Dose Radiation Effects (J-EPISODE), which has analyzed
health effeets in association with radiation exposure evaluated
with the personal dose equivalent Hy(10). Although the concept
of effective dose and its operational definition of Hy,(10) are widely
used for radiological pru(ecuon purpuses, effective dose is not

ded for epi luati Organ-absorbed
dasc was instead adopted for l].u: 1ARC 15-Country Collaborative
study (15-Country study), the International Nuclear Workers Study
(INWORKS), the Mayak worker study, and the Life Span Study
(LSS} of atomic bomb survivors. The reconstruction method in
J-EPISODE followed in principle the approach adopted in the
15-Country Study. As part of the approach of J-EPISODE, a con-
version factor from photon dosimeter reading to air kerma was

(3) a factor relating to the differences in dose concepts and calibra-
tion practices between the roenigen dosimeter era and the present.
Dosimeter response data were cited from the companion paper.
Data on organ-absorbed photon dose per air kerma were estimated
using a voxel phantom with the average Japanese adult male height
and weight. The bias factor for the recorded dose in the roentgen
era was defined, considering the backscatter radiation from the hu-
man body. The estimated values of organ-absorbed photon dose
per air kerma were almost the same as those in ICRP Publication
116, revealing that the effect of differences in body size was almost
negligible, The conversion factors from dosimeter reading to
organ-absorbed dose were estimated by period (the roenigen era
or from then), nuclear facility type (nuclear power plant or other),
dosimeter type, and tissue or organ. The estimated conversion fac-
tors ranged from 0.7 to 0.9 (Gy Sv ). The estimated cumulative
nrgamnhmlrhed photon dose for the participants of J-EPISODE

developed using dosimeter response data, which were ed
by the experiment using an phic phantom, and it
was confirmed that the 15-Country sludy’s assumption of photon
energy and geometry distribution in a work environment applied to
Japanese nuclear workers. This article focuses on a method for
reconstructing the conversion factor from photon dosimeter read-
ing to organ-absorbed photon dose for a Japanese nuclear worker
cohort. The model for estimating the conversion factor was defined
under the assumption of a lognormal distribution from three con-
cerned bias factors: (1) a dosimeter reading per air kerma, Le., do-
simeter response; (2) an organ-absorbed dose per air kerma; and
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1 that organ-absorbed dose values were approximately
08 times the recorded doses if neglecting dose-unit differences.
J-EPISODE reconstructed an organ-absorbed dose conversion fac-
tor and will evaluate the risk of cancer mortality and morbidity
using the organ-absorbed dose in the future.

Health Phys. 121(5):471-483; 2021

Key words: dose, organ; dosimetry, external; epidemiology;
nuclear workers

INTRODUCTION

Tue ~veeps of organ-absorbed dose

Although the concept of effective dose E and its oper-
ational definition of personal dose equivalent H,(10) are
now widely used for radiological protection purposes, the In-
temational Commission on Radiological Protection (ICRP)
has stated that effective dose is not recommended for epidemi-
ological evaluation (ICRP 2007). It is instead desirable to use
organ-absorbed dose for the evaluation of cancer risk in epide-
miological cohort studies. Organ-absorbed dose, which is suit-
ably weighted by the relative biological effectiveness (RBE), if
necessary, when dealing with neutrons, was adopted for the
15-Country Collaborative Study (hereinafter called the
15-Country study) conducted by the Intemational Agency for
Research on Cancer (IARC) (Cardis et al. 2007; Thierry-Chef
et al. 2007; Vrjheid et al. 2007). It was also used in the
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International Nuclear Workers Study (INWORKS) (Leurand
et al. 2015; Thierry-Chel et al. 2015; Richardson et al. 2015;
Hamra et al. 2016), the Mayak worker study {Gilbert
et al. 2013), and the Life Span Study (L.SS) of atomic
bomb survivors, which used RBE-weighted absorbed
dose for neutrons (Preston et al. 2007; Ozasa et al.
2012; Grant et al. 2017).

Preceding studies on organ-absorbed dose
reconstruction

In the IARC Combined Study, which consisted of seven
cohorts in Canada, the United Kingdom, and the United
States, Fix et al. (1997) conducted a detailed study of do-
simetry technology, radiation fields, and measurement prac-
tices, followed by conversion of externally recorded doses
to organ-absorbed doses [lung dose and red bone marrow
(RBM)]. Thierry-Chef et al. (2007) conducted a study on
dose errors within the framework of the 15-Country study
and outlined details of the organ-absorbed dose reconstruc-
tion method. Thierry-Chef et al. (2015) updated and devel-
oped the same method for the INWORKS, which was
also an IARC study. Additionally, the Million Worker Study
(MWS) also implemented various organ-absorbed dose re-
constructions (Bouville et al. 2015). Among these studies,
Thierry-Chef et al. (2007) described the method in the most
comprehensive and practical detailed manner; therefore, it
was used in this study.

Framework for reconstructing the organ-absorbed dose
in the 15-Country study

The framework for organ-absorbed dose reconstruction
established in the 15-Country study consisted of four main
components, as described in Thierry-Chel et al. (2007): (1)
experiments of dosimeter response employing readings per
H(10) for three dosimeter types used until 2000 (the old film
badge [FB], a multi-element FB, and a thermoluminescence
dosimeter [TLD]}; (2) an assumption concerning photon en-
ergy and geometry distribution in the workplace; (3) a con-
version coefficient from #,(10) to an organ-absorbed dose
derived from ICRP Publication 74 (ICRP 1996); and finally
(4) the construction of a conversion factor from dosimeter
readings to organ-absorbed dose using the above results in
a mathematical model.

Framework for reconstructing the organ-absorbed dose
in the J-EPISODE

The Japanese Epidemiological Study on Low-Dose
Radiation Effects (I-EPISODE) has been conducted by the
Radiation Effects Association (REA) since 1990 and ana-

November 2021, Volume 121, Number 5

to be compared and evaluated internationally in the future, it
1s mdispensable for it to use an organ-absorbed dose. Addition-
ally, cancer incidence data since 2016 have become available
from the National Cancer Registry (Matsuda and Sobue
2015). These conditions have enhanced the I-EPISODE re-
construction of an organ-absorbed dose, and the Expert
Comumittee on Reconstruction of Organ Dose (membership:
Michiaki Kai, Norio Tsujimura, Kaoru Sato, and Norihito
Sato) was set up within the REA dunng the fiscal year
2017-2018 (REA 2019). The framework for the conversion
from a dosimeter reading to an organ-absorbed dose is
displayed n Fig. 1.

The report by the Expert Committee 1s summarized as
follows (REA 2019):

1. The 15-Country study exammed the dosimeter response
to photon exposure for the dosimeter types FB and
TLD. To supplement data for the dosimeter types re-
cently in use, the I-EPISODE experimented on the dosim-
eter response for radio-photoluminescent glass dosimeters
(glass badges [(GBs]), active personal dosimeters (herein-
after called electronic personal dosimeter [EPDs]), and op-
tically stimulated luminescence dosimeters (Luminess
badges [LBs]) using a device that irmadiated an anthropo-
morphic phantom in the Japan Atomic Energy Agency
(JAEA) calibration laboratories, as described by Furuta
et al. (2020a). The obtained data were consistent with
those in the 15-Country study;

The reconstruction of an organ-absorbed dose necessitated
information on the photon energy and geometry distribu-
tion of the exposed population. The J-EPISODE employed
the 15-Country study’s assumption conceming photon en-
ergy and geometry distribution in a work environment. Si-
multneously, to verfy the validity of the 15-Couniry
study’s assumption in Japan, a literature survey was con-
ducted to review documents on the work environments of
Japanese nuclear power plants (NPPs). The literature survey
disclosed that Japanese electric power companies had
joinfly researched energy distnbution and meidence direc-
tion distribution of garmma rays in the workplace during pe-
rodic inspections and mamtenance, as well as during plant
operation, in the 1980s. The analysis of the survey re-
sults on photon energy and geometry distnibution at Jap-
anese NPPs demonstrated the appropriateness of applying
the 15-Country study’s assumption for muclear workers in
Japan and reconstructing an organ-absorbed dose in J-
EPISODE, as also described by Furuta et al. (2020b);

lyzed health effects in association with radiation exposure 3. The 15-Country study applied the conversion factor of

evaluated with the personal dose equivalent [1,(10) an organ-absorbed dose per H,(10) derived from the

(REA 2015; Kudo et al. 2018a and b). However, among conversion coefficient in ICRP Publication 74 (ICRP

intemationally-evalated radiation epidemiological studies, the 1996), which was based on the Reference Computa-

organ-absorbed dose has been mamly used for the evaluation tional Phantom-Adult Male (RCP-AM) with standard

of morbidity and mortality due to cancer. For the J-EPISODE Caucasian physiques defined in ICRP Publication 110
www health-plysics. com
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Fig. 1. Framework of reconstruction from dosimeter reading to organ-absorbed dose adopted for the I-EPISODE.

(ICRP 2009). The INWORKS also employed the up-
dated conversion coefficients in ICRP Publication 116
(ICRP 2010). In contrast, the J-EPISODE estimated a con-
version coefficient from air kerma to an organ-absorbed
dose based on JM-103, an adult male voxel phantom with
average Japanese size (Sato et al. 2010, 2011; Sato and
Takahashi 2012, 2017; Manabe et al. 2014) that was de-
veloped by the JAEA based on ICRP Publication 110
(ICRP 2009); and

. The above results were integrated using a mathematical
model of a lognormal distribution. Finally, the conver-
sion factor from dosimeter reading to organ-absorbed
dose was constructed.

Aim of the study
The present study aimed to describe 3. and 4. above

and to reconstruct organ-absorbed photon doses from pho-
ton dosimeter readings taken from 1957 to 2010 from the
I-EPISODE participants. The goal was to reanalyze the data
for evaluating radiation risk and confirm the appropriate-
ness of the conversion factors. This manuscript focuses on
the conversion from external photon doses only; it briefly
addresses other possible sources of radiation exposure for
nuclear workers in Japan.

MATERIALS AND METHODS
Study subjects and recorded dose of the J-EPISODE

The J-EPISODE targeted occupationally exposed
workers registered with the Radiation Dose Registration

Center (RADREC) (Asano and Ito 2019) within the REA,
which included workers in nuclear energy research and de-
velopment (R&D), nuclear fuel processing, and employed
in NPPs, as well as contractors and subcontractors working
in NPPs. Each nuclear facility regularly submitted the re-
cords of mndividual annual doses, which were received in
the facility and evaluated in /7,(10), to the RADREC. The
J-EPISODE was provided with the individual annual doses
received in each nuclear facility from 1957 to 2010. This
study assumed that the recorded doses were predommantly
derived from the photon extemal exposure with an energy
between 100 keV and 3,000 ke

Model for estimating conversion factors

The model for estimating conversion factors from do-
simeter readings to organ-absorbed doses was defined as
the following:

DR_T)\'B;XBQ_XB_;, {l)
where Dy was the dosimeter reading, T was the
organ-absorbed dose, and B; was the bias factor (i =1, 2,
and 3). B, was a reciprocal of the organ-absorbed dose per
air kerma, B, a dosimeter reading per air kerma, and B; a
factor relating to the differences in dose concepts and cali-
bration practices. It was considered that T was a true value
and that Dy was a measured value including biases. Here,
it was assumed that the vanables B, B, and B; followed
a lognormal distribution for the convenience of caleulation:
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(2)
where m, was the mean of the natural logarithm (In) of each
factor B;: In{B;), and s; was the standard deviation of In{B;).
Then, the overall bias B, the products of B, B, and B;,
also followed a lognormal distribution, as described in the
Appendix of the present paper:
Overall bias B (= Byx By« Bs} ~LN({m,s%),

Bias B; ~ LN (m;, s;%),

(3

where m was the sum of the means of In(B;): m = Zm;, and
s* was the sum of the variances of In(By): s* = Ss;.

The bias uncertainty K; was defined for each bias fac-
tor B;, as follows:

K;i = exp(1.96 x 5 ). (4)

Therefore, the 95% confidence interval for the esti-
mated bias B, was the interval of (B/K,, B, x K,).

The overall uncertainty K of the overall bias B was
expressed as the following:

K = exp(1.96 x s}
= exp{].Qﬁ % sqrt[ ¥ (InK;/1.96% ] } (5)

The conversion factor ¢ between the dosimeter reading
Dy and the organ-absorbed dose T was expressed as the
mean of the overall bias B:

c=E(B) = exp(m | 52;"2)
(6)

The conversion factor ¢ was a constant determined by
the period (until 1988 or since 1989), nuclear facility type
{NPP or mixed-activities [MA] facility such as R&D organi-
zation and fuel processing factory), dosimeter type, and tis-
sue or orgarn.

The organ-absorbed dose estimated by this method had
the following characteristics. The mean value of the esti-
mated organ-absorbed dose (Dy/c) obtained by dividing
the recorded dose of each worker by the conversion factor
¢ was equal to the mean value of the true organ-absorbed
dose, i.e. an unbiased estimation value. The following equa-
tion holds for each year, nuclear facility, and tissue or organ:

E(Dr/¢) = E(Dg)/c = E(T} x E(B)/c = E(T). (7)

The estimated organ-absorbed dose obtained by dividing
the recorded dose for each worker by the conversion factor
¢ should not be interpreted as the organ-absorbed dose for
each worker because differences in body size among
workers were not taken into consideration. The estimated
organ-absorbed dose for a specific worker assumed that
the exposure dose followed the same photon energy and ge-
ometry distribution as the average of the workers at the

= exp(m) x exp(s?/2}.
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nuclear facility and that the body size was the same as the
Japanese average.

The uncertainty of the conversion factor ¢ was the same
as the overall uncertainty K.

Distribution of photon energy and geometry at the
working environment

This study employed the 15-Country study’s assump-
tion of photon energy and geometry distribution at work-
places (Thierry-Chef et al. 2007): on average, in NPPs,
10% of the dose received by nuclear workers was due to
photon energies ranging from 100 to 300 keV and 90%
was from photon energies ranging from 300 to 3,000 keV.
In MA facilities, 20% of the dose received by workers was from
photon energies ranging from 100 to 300 keV and 80% was
from photon energies ranging from 300 to 3,000 keV, with
the average geometry being 50% i the antero-posterior (AP)
and 5% in the isotropic (ISO) geometry for NPPs and MA
facilities. Funuta et al. (2020b) stated that the literature survey
results in Japan provided strong evidence that supported
the robustness and generality of the 15-Country study’s
assumption, which was estimated based on the judgments
of experts at nuclear facilities around the world.

According to the 15-Country study (Thierry-Chef et al.
2007), the dosimeter response in the 100-300 keV range
was considered to be represented by the responses at 118
and 208 keV—the mean energy of beam code N-150 and
N-250, respectively—in the experiment. Although this
study used responses at 119 and 207 keV, the differences
m the mean energy were neghgible. Therefore, the dosimeter
response in the 100-300 keV range was computed on the
weighted average, 25% of which was for the responses at
119 keV and 75% for the responses at 207 keV. In addition,
the dosimeter response in the 300-3,000 keV range was
considered to be represented by a point at 662 keV. The re-
sults representing the energy range of 100-300 keV and
300-3,000 keV were then averaged in the same way for es-
timating the conversion factor.

B, and K;: Conversion coefficient of an organ-absorbed
dose from air kerma for JM-103

The basic data of bias factor B, were the reciprocal of
the organ-absorbed dose per air kerma by photon energy
and geometry. The use of a Japanese adult male phantom
was thought appropriate due to the difference in body size
from that of a Caucasian male, which was the basis for
RCP-AM. The JAEA has developed voxel phantom JM-103
using the average Japanese adult male height and weight
(Sato et al. 2010, 2011; Sato and Takahashi 2012, 2017;
Manabe et al. 2014), which conformed to the reference voxel
phantom RCP-AM defined in ICRP Publication 110 (ICRP
2009). The height and weight of the RCP-AM were 176 cm
and 73 kg, respectively, whereas those of the IM-103 were
170 cm and 64 kg,
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Concerning the JAEA reports (Sato et al. 2010, 2011;
Sato and Takahashi 2012, 2017; Manabe et al. 2014), the ra-
tio of an organ-absorbed dose based on the computational
phantoms between RCP-AM and JM-103 by tissue or
organ, photon energy (100, 150, 200, 300, 600, and
800 keV), and geometry (AP and ISO) was simulated
using the general-purpose radiation transport code PHITS
version 2.76, which was developed by the JAEA (Sato
et al. 2018). Then, the ratios at energy levels of 119, 207,
and 662 keV were interpolated. The selected 14 tissues or or-
gans were the colon, red bone marrow (RBM), esophagus,
stomach, liver, gall bladder, spleen, lungs, pancreas, prostate,
bladder, kidneys, brain, and heart. Here, the RBM doses for
IM-103 and RCP-AM were evaluated by the mass energy ab-
sorption coefficient.

The conversion coeflicient for IM-103 was estimated
by multiplying the above ratio between RCP-AM and
IM-103 by the conversion coefficient of organ-absorbed
dose per air kerma in ICRP Publication 116 (ICRP 2010)
at photon energies of 119, 207, and 662 keV for AP and
ISO geometry. Furthermore, the conversion coefficient of
an organ-absorbed dose per air kenma under the exposure
conditions of WNPPs and MA facilities was generated as the
weighted mean of the above results, using the proportion
values of photon energy and geometry distribution,
which was assumed in the 15-Country study (Thierry-
Chef et al. 2007).

The uncertainty of the organ-absorbed dose conversion
coefficient was considered due to (1) anatomical character-
istics (height, organ mass, organ arrangement or shape,
etc.), {2) the model used in the simulation code, and (3) sta-
tistical errors in the Monte Carlo calculation. However, it

was difficult to evaluate the uncertainty quantitatively. In
contrast, paragraph 167 of the “Analysis of data variability”
in [CRP Publication 74 (ICRP 1996) stated that the coefTi-
clents of variation for the calculated organ equivalent dose
conversion coeflicients were generally less than 2.5% for
large organs such as the lungs, liver, and stomach, and
less than 1% for organs or tissues distributed throughout
the body, such as skin, bone-surface, and bone-marrow.
The uncertainty of K, was assumed to be 1.050 from
InK; = 1.96 x 0.025 = 0.049, since the conversion coef-
ficients were close to 1 and the upper limit of the coeffi-
cients of variation was 2.5%.

B; and K;: Dosimeter response

The bias factor B; was defined as the dosimeter read-
ing per air kerma by dosimeter type and nuclear facility
type. Table 5, “Dosemeter response and uncertainty by
dosemeter type and nuclear facility type” in Furuta et al.
{2020a) shows bias B, and uncertainty K, for GB, FPD, and
LB, while Figure 6, “Dosimeter response per air kenma in
the work environment experienced by muclear workers by do-
simeter type and nuclear facility type.” in Furuta et al. {2020a)
shows the B; for old FB, multi-clement FB, and TLD.

Uncertainty K for old FB, multi-element FB, and TLD
was determined according to Table 7, “Dosemeter types
used in Japan and the comesponding data from the [ARC
study,” in Furuta et al. (2020a), along with the uncertaintics
in NPPs and MA facilities that were computed as the weighted
average of uncertainties derived from the SD/mean in Table 3,
“Response of dosemeters irradiated, on phantom, to three
radiation qualities (118, 208 and 662 keV) in AP, rotational and
Isotropic geometries of exposure,” in Thierry-Chefet al. (2002).

Table 1. Transition of photon dose concepts and calibration practices in Japan.

Period
Ttem Until 1988 15892000 2001-present
Compliant ICRP Rec lation Recr dati Recommendations; 1990 Recommendations;
Publication 6 (ICRP 1964)  Publication 26 Publication 60
(ICRF 197T) {ICRP 1991)
Recorded dose by law Dose equivalent (rem) Effective dose Effective dose (Sv)

Operational guantity
Physical quantity Exposure dose (roentgen)
Phantom defining operational Free air
quantity

Personal dose equivalent F{10)

Fluence or air kerma (Gy)

TCRIT sphere phantom

equivalent (Sv)

Same as the left
(39

Same as the left
TCRLT slab phantom

(tissue equivalent substance) (fissue equivalent

substance)

Conversion coefficient of - Dose equivalent per H(10) per air kerma

operational quantity per physical unit fluenes at a depth of 10 mm  (Table A24 of

guantity (Table 6 of Publication 51) Publication 74)

(ICRP 1987) (ICRP 1996)

Phantom used for calibration of ~ Free air Acrylic plate phantom Aguarium

personal dosimeter in practics water phantom
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B; and K;: Bias factor relating to differences in
calibration practice and dose concept

The factor B; was a specific bias accounting for any
differences in dosimeter calibration concepts. Table 1 sum-
marizes the historical changes in the recorded dose quanti-
ties and calibration phantoms. Until 1988, the physical
quantity of exposure, expressed in terms of its unit the roent-
gen (R), was measured by personal dosimeters calibrated m
free air; therefore, a dosimeter placed on the human body
would indicate a reading slightly higher than the delivered ex-
posure due to the backscattered radiation from the body.
Thierry-Chef et al. (2007) stated that the backscatter radiation
contributed about 10% of the exposure at the surface.

Table 2, “Conversion coefficients between quantities
for cesium, cobalt and radium sources,” in Thierry-Chef
et al. {2007) shows the factors used to convert the recorded
doseto F,(10). The conversion coefTicient of F1,(10) per ex-
posure expressed in R was 1.06/100 (Sv R ™) at the calibra-
tion source of cesium (662 keV). However, the dosimeter
reading expressed in R was directly read as the dose equiv-
alent {rem) in practice because the rem conversion constant
per R was set to 1 by regulation (MOL 1975) and was fir-
ther converted to H,(10) in Sv using conversion coefficient
of 100 rem = 1 Sv due to the change in the International
System of Units {(SI). Briefly, when 1 R of radiation was di-
rected to a dosimeter placed on the human body, the dosim-
cler reading indicated 1.1 R. This reading value included
backscatter radiation from the body, which read as 1.1 rem
and was further recorded as 1.10/100 Sv. The delivered dose
of 1 R was evaluated as #,(10) of 1.06/100 Sv. Therefore,
the bias factor B for the recorded doses until 1988 was de-
fined as the ratio between the recorded dose including
backscattered radiation expressed in F,(10) and the deliv-
ered dose i F,(10): B; = (1.10/100) / (1.06/100) = 1/0.96
(Sv Sv ).

In contrast, personal dosimeters since 1989 have been
designed to measure the phantom-related operational quan-
tities, and therefore any corrections for the specific bias in
B; were unnecessary. Technically speaking, the period since
1989 can be divided into two periods: (1) 1989-2000 when
dosimeters were calibrated on an acrylic slab phantom in
terms of H*(10), as a swrrogate for M, (10), and (2) 2001-
present when dosimeters were or are calibrated on a water
slab phantom in terms of 77, (10). Compared with the roent-
gen dosimeter era, however, the transitional changes in cal-
ibration conditions appear trivial.

Reconstruction of the organ-absorbed dose from 1957
to 2010

With the use of B, B,, and B; above, the conversion
factor ¢ (Sv Gy ') defined in eqn (6) was determined as ¢
{p. ft. dt. t), where p was a period {(until 1988 or since
1989), ft was nuclear facility type (NPP or MA facility),
dt was dosimeter type (old FB, multi-element FB, TLD,
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Table 2. Organ-absorbed dose per air kerma (Gy Gy™) for IM-103.*

Antero-

posterior Tsotropic

geomety  geometry B,

Photon energy Photon energy  (Reciprocal

(keV) (keV) of By} K;
Tissue or
organ 118 207 662 119 207 662 NFP MA NPP MA
Colon 138 119 1.04 070 0.65 067 0.84 085 1.032 1.029
Redbone 106 092 086 0.76 0.68 069 0.77 078 1032 1.029
marrow
(REM)
Esophagus 111 1.00 0.92 0.64 0.63 0.66 0.78 079 1.032 1.029
Stonmchk 148 1.26 107 0.71 0.66 0.68 0.86 087 1032 1.029
Liver 130 1,13 059 070 065 0.66 0.82 082 1.032 1.029
Gall 147 128 109 0.66 064 0.66 0.86 086 1.032 1.02%

bladder

Spleen 0.84 0.79 0.78 072 0.66 067 0.73 073 1032 1.029
Lungs 125 113 1.03 0.77 0.72 0.74 0.88 088 1032 1.029
Pancreas 136 118 1.02 066 059 062 0.80 081 1032 1.029
Prostate 107 098 087 0.61 058 061 0.73 074 1.032 1.029
Bladder 138 118 1.02 0.64 061 064 0.81 082 1.032 1.029
Kidneys 092 0.83 081 066 060 061 0.70 071 1.032 1.029
Brain 0.77 076 0.79 0.80 077 0.78 0.79 0.7% 1032 1.029
Heart 135 117 1.02 0.71 0.66 060 0.84 085 1032 1.029

"Note: (1) RBM was evaluated by the mass energy absorption coefficient. (2)
B, was defined as the weighted mean of the above values by energy and geom-
etry using the value of photon energy and geometry distribution. For instance,
1B, for NPP was computed as:

B = expl 0,025 3 0.5 ¢ In(IB; 19 apd +0.075 % 05 = In(IBygy ap)+ 0.9
0.5 % In(IBggr p4p) +0.025 ¢ 0.5 3 In(IByyg gea) +0.075 x 05 ¢ InfIBygy 1e0) +
0.9 0.5 2 In(TBgga 1s0) | (3) K for NPP was computed using K= 1.03 as
the next:

Kygep = exp{ 1.96 2 sqrt] 0,025 3 0.5 < (InK/1.96)° + 0.075 < 0.5 » {InK/1.96)*
09 % 0.5 % (K96 0,025 % 0.5 5 (mK/1L96F + 0,075 < 0.5 » (nk/1.96)"
+0.9 % 0.5 x (Ink/1.961" 13

GB, EPD, and LB), and t was tissue or organ. The process
of reconstructing specific organ-absorbed doses was as fol-
lows: (1) the dosimeter type was assigned to the primary
personal dosimeter in use at each facility in each year; (2)
The annual reconded dose Dy in Sv for each worker exposed
at each facility in each year was categonized in relation to the
perod, nuclear facility type, and dosimeter type was repre-
sented as Dp(w, v, §i p, i, dt), where w was a worker, y
was a year between 1957-2010, and f was a facility; and
{3) The specific organ-absorbed dose T in Gy for each worker
in each year was obtained by dividing the categorized individual
annual recorded doses by the corresponding conversion fac-
tors and summing them for each worker and vear; ie. T
(W, y, ) = Z¢ Dg(w, v, fi p, i, dt) / e(p, &, dt, ).

Reanalysis of cancer mortality for the J-EPISODE

The excess relative risk (ERR) per Gy for mortality
from a specific cancer among the J-EPISODE of a male
Japanese nuclear worker cohort was estimated in association
with a corresponding organ-absorbed dose using a Poisson
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regression model, which was applied to cross<classified data
for the mumber of deaths and person-years. Colon dose, the
most representative organ-absorbed dose, was applied for an
evaluation of death from all solid cancers, and RBM dose
for leukemia. The details of the models have been deseribed
elsewhere (REA 2015).

RESULTS

B, and K;: Organ-absorbed dose per air kerma for
JM-103

Table 2 summarizes the organ-absorbed dose per air
kerma, i.e., organ-absorbed dose conversion factor, by tis-
sue or organ for the Japanese male voxel phantom JM-103
(Sato et al. 2010, 2011; Sato and Takahashi 2012, 2017;
Manabe et al. 2014). In the case of AP irradiation in all tis-
sues or organs, the lower the energy, the larger the
organ-absorbed dose conversion factor. In contrast, in the
case of [SO, the difference due to the energy level was small.
The organ-absorbed dose conversion factor for ISO was
smaller than that for AP for most tissues or organs and ener-
aies. The difference in organ-absorbed dose conversion fac-
tors between AP and ISO was small in REM but large in
the colon, stomach, liver, hings, and other organs.

The organ-absorbed dose conversion factor [B,, the re-
ciprocal of bias By, under the average exposure condition
was, for instance, 0.84 (Gy Gy 1) in the colon, 0.88 in the
lungs, and 0.77 in RBM for NPPs, and 0.85 in the colon,
0.8 in the lungs, and 0.78 in RBM for MA facilities. The
values of IB, for the lungs and colon, which are located in
the anterior surface part of the body, were larger than that
of RBM, which is situated deep in the body.

B; and K;: Dosimeter reading per air kerma

Table 3 shows the dosimeter response B, i.e., dosimeter

reading per air kerma and its uncertainty K, by dosimeter

Table 3. Dosimeter response and uncertainty by dosimeter type and
nuclear facility type.”

Dosimeter Response (Ba)

(svGy ) Uneertainty (K2)
Dosimeter type NFP MA NFP MA
Old FB 1.07 1.10 1.034 1.063
Bulti-element FB L6 1.07 1026 1.051
TLD 1.02 1.04 1.034 1.048
GB 1oz 1.02 1011 1.011
EFD 1.00 1.01 1.004 1.003
LB 1.06 1.08 1.037 1.033

*Note: (1) Dosimeter response B, and uneartaity K, for GB, EPD, and LB
cited Table 5 of Furuta et al. (2020a). {2) Dosimeter response B, for old FBE,
multi<lement FB, and TLD refers 1o Figure 6 in Furuta et al. (2020a). (3) Un-
certainty K, for old FI3, multi-element FB, and TLD were determined accord-
ing to Table 7 of Funuta et al. (2020a), along with the uncertainties in NFF or
MA that were computed as the weighted average of uncertainties derived from
the SIVmean in Table 3 of Thierry-Chef et al (2002).
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Table 4. Bias for the recorded dose until 1988 and its uncertainty.

Period Cuantity B K.
Until 1983 Exposure inR*  1/0.96 (Sv Sv 1) 1103 (s = 0.05)
Since 1959 FL(10) I 1(s=0)

“Despite the relationship of one rem being equivalent to 0.96 R, the value of do-
simeter reading in R were in practice recorded in rem as it was until 1988, then
converted 1o Sv due 1o the change of S in 1989,

type and nuclear facility type. The values of dosimeter re-
sponses were between 1.0-1.1 (Sv f‘-}y_l). The dosimeter re-
sponses for MA facilities were about 2% larger than those for
NPPs. By dosimeter type, the dosimeter responses for FB
and LB were relatively large, while those for EPD, GB, and
TLD were close to 1.

Bs and K;: Bias factor for the recorded dose until 1988
Table 4 shows the bias factor By related to calibration

practice and dose concept as well as its uncertainty K.
For the recorded doses in Sv until 1988, which were derived
from reading the exposure in R, bias factor B; was 1/0.96
{Sv Sv ') and its uncertainty K5 was 1.103. For the recorded
dose since 1989, B; and K; were set to 1 for convenience.

Conversion factor from dosimeter reading to
organ-absorbed dose

Table 5 shows the values of the first term of exp{m} in
equ (6) by period, dosimeter type, and nuclear facility type
for the colon, lungs, and RBM, as well as the associated

Table 5. The first term of egn (6) of the conversion factor ¢ by perdod,
nuclear facility type, and dosimeter type for the colon, Jungs, and
RBM, as well as its uncertainty.”

Orverall
NPP's MA facilities uncertainty K
Dosineter
type Colon Lungs REM  Colon Lungs REM NFP  MA
exp(m): the first term of eqn (6) since 1959
Mludti-
element 126 120 138 126 122 137 1041 1.059
FB
TLD 121 116 132 122 118 133 1.047 1056
oB 121 116 132 1200 1.6 131 1034 1031
EFD L1 L4 130 119 115 129 1032 1.029
LB 126 120 138 27 123 138 1049 1,044
expim); the first term of eqn (6} until 1958
Old-FB 133 127 145 135 130 147 1114 1126
M-
element 131 125 143 131 127 143 1112 1120
FB
TLD 126 121 138 127 1.3 139 L14 1119

“Note: (1) The first term of eqn (6) was commuted as follows:

exp(m) =B, = By » By =(1/IB;) = By = Bi. (2) By each period, only the do-
simeter types used in that period were displayed. (3) Overall uncertainty K was
computed using eqn (5).
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Table 6. The second term of eqn (6) of the conversion factor ¢ by
period, nuclear facility type, and dosimeter type for the colon, lungs,
and RBM."

NPPs MA facilities

Dosimeter type Colon Lungs RBEM Colon Lungs  REM

exp(s”/2): the second term of eqn (6) sinee 1989

Multi-element FB - 1.0004 1.0004 10004 1.0004 10004 10004
TLD 10004 10004 10004 10004 10004 10004
GE 10001 1.0001 1.0001 1.0001 1.0001  1.0001
EFD 10001 1.0001 1.0001 10001 1.0001  1.0001
LB 10003 1.0003 1.0003 1.0002 10002 1.0002
exp(r"f“z): the second term of eqn (6) until 1988
Old-FB 1002 1002 1002 looz  Lo0z 1002
Multi-element FB 1002 1002 1002 Lo0z 1002 1002
TLD 1.002 1002 1002 1002 Lo02 1002

*Note: The valuss of exp(s”/2), the second term of eqn (6) were computed as:
expl(s’/2) = exp] [ (Ink,/1.96)° + (Ink,/1 961" + (Inky/1.96)° )2 ).

overall uncertainty K. The values of the second term of exp
(s*/2) in egn (6), which had a role in contributing the uncer-
tainty of bias to the conversion factor, are shown in Table 6.
The values of the second term were neghgible, both untl
1988 (1.002 for all) and smee 1989 {1.0001-1.0004). There-
fore, the values of the conversion factor were basically deter-
mined by the values of the first term. Table 7 shows the
reciprocal of the conversion factor (1/¢) by period, nuclear fa-
cility type, and dosimeter type for the colon, lungs, and RBM.

The values of the reciprocal of conversion factors were
from approximately 0.7 (Gy Sv™) to 0.9. Fig. 2 shows the
reciprocal of conversion factor for EPD at NPPs since
1989 by tissue or organ in order of values. The values were
higher in the lungs (0.88), stomach (0.86), and gall bladder
(0.86), whereas they were lower in the kidneys (0.70), pros-
tate (0.73), and spleen (0.73).

DISCUSSION

Differences in the 15-Country study and the INWORKS
organ-absorbed dose reconstruction methods

This study followed in principle the 15-Country
study’s organ-absorbed dose reconstruction method de-
scribed by Thierry-Chef et al. (2007). This method was
also used in the INWORKS, as described by Thierry-Chef
et al. (2015). Although the INWORKS updated the dosime-
ter response data, changed the organ-absorbed dose conver-
sion factor from [CRP Publication 74 (ICRP 1996) to
Publication 116 (ICRP 2010), and created a time-varying
variable to address the neutron exposure condition, the basic
framework for converting photon dosimeter readings to
organ-absorbed photon doses remamed unchanged, even af-
ter Thierry-Chef et al. (2015).
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Differences in the 15-Country study and the INWORKS
facility development times and cohort compositions
Since the 15-Country study and the INWORKS included

some facilities that began to operate before the 1950s, much
effort was devoted to the comparability of dose concepts and
dosimmeter calibration practices. In contrast, the Japanese nu-
clear industry started in the late 1950s; consequently, the con-
cept of exposure dose in B was used from the outset (Table 1).
This late start contributed to the simplification of factor B
compared with the IARC studies.

Most Tapanese nuclear workers worked at NPPs, where
half of the reactors were pressurized water reactors (PWRs)
and half were boiling water reactors (BWRs). The main
source of the photon dose was ®Co. There were no measur-
able records of neutron exposure from the operating reactor
exceeding the detection lhimit. Moreover, there was no inter-
nal exposure to tntium because there was no heavy water re-
actor (HWR) in Japan.

Additionally, the 15-Country study and the INWORKS
included nuclear weapons manufacturing operations in the
19405 and 1950s. Consequently, neutron exposire was a ma-
jor issue. This study did not encounter this issue because the
manufacturing of nuclear weapons has been banned since
1955 under the Japan-US agreement concerning civil uses
of atomic energy and related domestic acts in Japan.

Sources of radiation exposure and uncertainties for the
J-EPISODE

The organ-absorbed dose reconstruction method de-
scribed in this study dealt with photon doses only. Fix et al.
{1997) and Merwin et al. (2008) discussed in detail the
sources of radiation and the possible causes of errors in do-
simetry for the [ARC Combined Study and Part B of the
Energy Employees Compensation Act, respectively. The ac-
tions taken in Japan to address these potential problems can

Table 7. Conversion factor from dosimeter reading to organ-absorbed
dose by period, nuclear facility type, and dosimeter type for the colon,
lungs, and RBM.*

NPPs
Colon Lungs REM

MA facilities
Colon Lungs REM

Drosimeter type

lie: reciprocal of comversion factor (Gy Sv ') since 1989

Multi-element FB 079 083 073 079 082 073
TLD 082 086 075 082 085 075
GB 082 086 075 083 086 070
EFD 084 08 077 084 087 077
LB 079 083 073 079 081 072
lie: reciprocal of econversion factor (Gy Sv 1) il 1988
OldFB 075 079 069 074 077 068
Multi-element FB 076 080 070 076 079 070
TLD 079 08 072 078 081 072

"Note: {11 The value ¢ was computed as the product of Tables 5 and 6. {2) The
organ-absorbed dose is obtained by multiplying the recorded dose in Sv by
(1/c), the reciprocal of the conversion factor.
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Organ-absorbed dose per dosimeter reading (Gy Sv'')

Tissuesororgans 0 0.1

02 03 04 05 06 07 08 09 1

Lungs
Stomach
Gall bladder
Colon
Heart
Liver
Bladder
Pancreas
Brain
Esophagus
RBM
Spleen

Prostate
Kidneys

Fig. 2. Conversion factors from dosimeter reading to organ-absorbed dose for the selected 14 tissues or organs (EPD at NPPs since 1989).

be summarized as follows: (1) a medical examination, in-
cluding a chest x ray, is implemented annually by law, but
exposure dose wnrecorded; (2) workers are not allowed to
enter the controlled area without wearing a personal dosim-
eter; (3) film badges are to be changed monthly; (4) doses
below the detection limit are never recorded as zero, and
the RADREC database instead records the number of en-
tries into the controlled area that are below the detection
limit; and (5) to address the storage dose for the integrating
personal dosimeter, a control dosimeter is to be used to ex-
clude the effect of background radiation.

The study covered the exposure dose resulting from
normal work—the work durmg the operation, periodic in-
spection, and maimntenance in case of NPP—from 1957 to
2010. During the period, neutron exposure was limited only
for a few workers, and internal emitter was rare; therefore,
the organ-absorbed dose reconstruction and the risk analysis
proceeded under the assumption that the recorded dose was
predominantly due to photon radiation. In practice, original
records of neutron exposure doses and intemal doses evalu-
ated in committed doses, if any, are to be kept by each em-
ployer. In contrast, by regulation, this information is not
recorded in the RADREC database, which includes only
the individual annual dose {(external dose plus internal
dose). After lifting the designation of a nuclear worker,
his disaggregated records into external and internal doses
are to be sent to the RADREC. However, there is no
breakdown of neutron exposure in this document either.
Despite thorough investigation and discussion, it is not
feasible to identify workers with possible neutron expo-
sure, meaning that it does not make much sense to pursue
breakdown into neutron.

Durng the fabrication of mixed oxide (MOX) fuel con-
taining 20-30% plutonium by weight for the expenmental

fast breeder reactor Joyo and the prototype reactor Monju
at the Nuclear Fuel Cycle Engineering Laboratories (NCL)
of JAEA for a certain peniod, at most 200-300 workers were
possibly exposed to neutrons and photons, specifically
60 keV photons from **'Am. However, even for those
workers, the contribution of neutron to the effective dose
was only about 30% (Yamazaki et al. 2017; Tsujimura
et al. 2021). The JAEA-NCL's neutron exposure has
existed since the 1980s and has used albedo-type TLD
dosimeters. Because the JAEA-NCL has not used a neutron
track emulsion type A (NTA) film dosimeter, which has been
mentioned by Merwin et al. (2008) and Thierry-Chef et al.
{2015} as having a techmical defect m that neutrons of about
0.5 MeV or less could not be measured, such problems have
not historically occurred in the JAEA.

There have been some cases of internal exposure, but
most of them have been minor until 2010, For instance, from
the experience of plutoninm inhalation accidents in the past
decades at the JAEA-NCL, the exposure of one worker
in 1993 with an effective dose equivalent of 90 mSv
was the largest by far, and the others were trivial, being
an average of 0.1 mSv at the MOX plant and 1.5 mSv
at the reprocessing plant (Kurihara and Kanai 2011).

Adter 2010, there were cases of an accident at the TEPCO
Fukushima Daiichi Nuclear Power Plant (FDNP) in March
2011, as well as a plitonium contamination accident at the
Qarai R&D Institute of JAEA in June 2017 where five
workers were internally exposed. In the FDNP accident, there
was an internal exposure to "' and other radionuclides, but
the evaluation of internal dose due to emergency work and
conversion o an anmual organ-absorbed dose is ongoing,

Thus, neutron exposure doses and intemal exposure
doses, if any, were ignored in organ-absorbed dose recon-
struction in the present study.
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Differences in body size between Caucasians and
Japanese

Regarding the estimation of the organ-absorbed dose per
air kerma, the standard Caucasian male phantom RCP-AM
was used in the 15-Country study, whereas the average
Japanese adult male phantom IM-103 was used i this study.
The value of an organ-absorbed dose in the colon and hings
based on JIM-103 was about 2% larger than its RCP-AM value
(Table 8). Because the Japanese are smaller in body size
than Caucasians, their subcutaneous tissue in the abdomen
and chest is accordingly thinner. Regarding RBM, in which
hematopoietic function is distributed in many tissues, no
difference was observed between the two phantoms. At
least for adult males, the effect of differences in body size
was almost negligible.

Regarding the values of dosimeter response, Furuta
et al. (2020a) stated that the results for GB, EPD, and LB
in their study were compatible with the results of FB and
TLD in the 15-Country study. Therefore, the results of the
conversion factor of the present study apply to nuclear worker
cohort studies in other countries.

Recently, mesh phantoms have been developed. The
voxel phantom can be expressed in mm, whereas the mesh
phantom can be described in pom, which allows, for exam-
ple, an evaluation of the bone surface. However, for the
tissues or organs concerned in the present study, mesh phan-
toms arc unlikely to affect the results.

Robustness and generality of the 15-Country study’s
assumption

Table 2 demonstrates the differences in the values of
organ-absorbed dose per air kerma between the AP and
ISO for all tissues or organs. This result indicated that the
geometry distribution was a strong contributor in estimating
the weighted mean for the work environments of NPPs or MA
facilities. In such a context, it was crucial that the 15-Country
study’s assumption of photon energy and geometry distribu-
tion was supported by the literature survey results in Japan,
as mentioned by Funuta et al. (2020b), indicating the robust-
ness and generality of the assumption.

Reconstruction of the organ-absorbed dose from 1957
to 2010

Table 9 shows the comparison of the cumulative dose
between the recorded dose in H,(10) and a specific organ-
absorbed dose reconstructed for the J-EPISODE. While the
mean cumulative dose in H(10) was 13.9 mSv in 2010,

Table 8. Comparison of organ-absorbed dose per air kerma between
RCP-AM and JM-103 for the colon, lungs, and RBM (Gy Gy ™).
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Table 9. Comparison of cumulative dose between [,(10) and a
specific organ-absorbed dose (1957 2010 for 204,103 male workers
in the I-EPISODE).

Orpan-absorbed dose

(mfGy)
Recorded dose
HA10) (mSv) Colon Lungs RBM
Mean cumulative dose in 2010 139 1.0 11.5 10.1

the mean cunulative organ-absorbed dose was 11.0 mGy for
the colon, 11.5 mGy for the lungs, and 10.1 mGy for RBM.
Neglecting dose-unit differences, organ-absorbed dose values
were approximately 0.8 times the recorded doses.

This difference of 0.8 between the measured doses and
the organ-absorbed doses was fuindamentally derived from
the estimates of dosimeter responses, the organ-absorbed
dose conversion factors used, and the assumption of photon
energy distribution and geometry distribution. Of these, the
first two were technically determined, so they were thought
to be common in all studies. However, the differences in the
exposure scenarios of geometry distribution have an impact.
The present study, along with the 15-Country study and the
INWORKS, assumed that 50% of the exposure dose was in
AP and 50% in [SO. In contrast, 50% m AP and 50% in ro-
tational (ROT) geometry was adopted in the IARC Com-
bined Study (Fix et al. 1997). In addition, the MWS
recommended using 70% in AP and 30% in RO if detailed
information was not available (Bouville et al. 2015).

As for the results of the INWORKS, the reciprocal of
the estimated bias, B.,jon, Blung, and Bggyy for men in Table
1 of Thierry-Chef et al. (2015), corresponded to the ratio of
the measured dose to the organ-absorbed dose. The results
of the present study were compatible with this finding.
Reanalysis of cancer mortality for the J-EPISODE

For all 204,103 participants in the cohort during the
follow=up peried 1991-2010, the EFRRs Gy " were estimated
for several cancers in association with organ-absorbed doses.
Reanalysis results of cancer mortality for the I-EPISODE will
be presented separately. Ignoring dose units, the values of the
ERRs Gy ' were slightly larger than, or rather about the same
as, the corresponding values of the ERRs $v™" in the previous
analysis using H,(10) (REA 2015), indicating the appropriate-
ness of using the conversion factor from dosimeter readings to
organ-absorbed doses for fiurther analysis.

CONCLUSION
The J-EPISODE constructed an organ-absorbed dose

NPPs MA facilities conversion factor. Accordingly, the JFEPISODE will use the
Phantom Colon  Lungs  REM Colon  Lungs RBM ()l'gd{l—dth(}l‘bt‘d dose to estimate the risk of cancer 111ur‘lalil.y
RPN T —— 2EE  ORF  U7E and cancer incidence in the future. A series of companion pa-
IM-103 084 088 07 055 088 078 pers to the present study demonstrated that the 15-Country
study’s assumption of photon energy and geometry distnbution
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was robust and general. The dosimeter response data for GB,
EPD, and LB were consistent with the 15-Country study and
will also be useful for any nuclear worker cohorts. The differ-
ences in radiation effects on tissues or organs between the Cau-
casian and Japanese models were small. Therefore, the
conversion factors from dosimeter reading to organ-absorbed
dose revealed in the present study can be applied to muclear
worker cohort studies in other countries.
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APPENDIX: PROPERTIES OF LOGNORMAL When the indepen(]_ent random variables X and Y fol-

DISTRIBUTION low a lognormal distribution, i.e. In(X) ~ N(px, 0x°)

and In(Y) ~ N{p, ov°), the product XY also follows a
lognormal distribution because the normal distribution
‘When the random variable X follows a lognormal dis- has reproducibility:
tribution, that is, In{X) follows a normal distribution with
the mean being p and the standard deviation being o,
i.e. In(X) ~ N(p, o), the mean and median of X can be 5 2
expressed as follows: In{XY) = In(X) + In(Y) ~ N{px + py, 08" + av*).

Mean : E(X} = exp(p. + ¢7/2),

Median : Med(X) = exp(p.). [ 1|
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