令和3年度原子力規制庁委託成果報告書

耐津波設計・フラジリティ評価手法の整備に 係る防潮堤水理試験(黒津波影響) (令和3年度分)

大成建設株式会社

令和4年2月

本報告書は、原子力規制委員会原子力規制庁からの委託により実施した業務の成果をとりまとめたものです。

本報告書に関する問い合わせは、原子力規制庁までお願いします。

1.	事業概要	1-1
2.	知見調査	2-1
	2.1. 既往文献調査	. 2-1
	2.1.1.現地調査	. 2-2
	2.1.2. 水理試験	. 2-4
	2.1.3. 数值解析	. 2-6
	2.2. 有識者へのヒアリング	. 2-8
3.	現地調査	3-1
	3.1. 調査概要	. 3-1
	3.2. 調查方法	. 3-2
	3.2.1. 調査箇所の選定	. 3-2
	3.2.2. サンプリング方法	. 3-3
	3.2.3. 分析方法	. 3-5
	3.2. 調查結果	. 3-16
	3.2.1. サンプリング結果	. 3-16
	3.2.2. 分析結果	. 3-23
4.	水理試験	4-1
	4.1. 試験概要	. 4-1
	4.2. 試験方法	. 4-2
	4.2.1. 試験縮尺	. 4-2
	4.2.2. 試験水槽	. 4-2
	4.2.3. 底質模型	. 4-4
	4.2.4. 計測項目	. 4-7
	4.2.5. 試験手順	. 4-11
	4.2.6. 試験ケース	. 4-12
	4.3. 固定床試験結果	. 4-15
	4.3.1. 管路内の流速分布	. 4-15
	4.3.2. 摩擦速度およびシールズ数	. 4-26
	4.4. 移動床試験結果	. 4-32
	4.4.1.底質模型の特性	. 4-32
	4.4.2. 流速の再現性確認	. 4-38
	4.4.2. 巻き上がった底質の鉛直濃度分布	. 4-40
	4.4.3. 掃流砂量および浮遊砂量	. 4-48
5.	まとめ	5-1

叁末資料	1
現地調査補足資料	. 1
 (1) 作業写真集(川崎港京浜運河) 	. 2
(2) 作業写真集(久慈川河口付近海域)	. 23
(3) 試験分析報告書	. 47

1. 事業概要

本事業は、防潮堤等の津波防護施設の耐津波設計評価に関連する内容として、ヘドロ状の堆積 物を含む津波(以下「黒津波」という)に関する文献等を調査・整理すること及び実際の海域の 海底に堆積した底質をサンプリングし性状を分析・整理するとともに、底質の巻き上がりの発生 条件等に関する水理試験を実施することにより、黒津波の性状、発生条件等に係る知見を拡充す ることを目的とする.

(1) 知見調査

黒津波に関わる既往文献等を調査し,取得した知見を整理した.なお,直接黒津波に関係しな い文献であっても水理試験の実施方法等に資する文献は整理した.また,知見調査にあたっては, 2名の有識者へヒアリングを実施し,現地調査および水理試験などに関する助言をまとめた.

(2) 現地調査

河口付近の海域において,海底に堆積した底質を採取した.なお,サンプリング海域は,都市 部の港湾・運河と生活圏の河口近傍の2箇所とし,1箇所当たり5地点で底質のサンプリングを 実施した.得られた底質のサンプルについて,粒度分布,比重,組成等を調査・分析・整理した.

(3) 水理試験

水理試験では、あらかじめ底質を堆積させた模型を管路内の底部に設置し、清水による津波を 模した流れを発生させ、底質を巻き上げた.事前に、固定床試験で水路内の流速分布を計測し、 移動床試験で巻き上がった底質の鉛直濃度分布、掃流砂量及び浮遊砂量を計測した.同一条件で の試験回数は3回とし、合計60ケースを実施した.なお、本試験は実機スケールを想定し、津波 を模した流速3ケースを設定した.底質模型については、粒径および比重等の異なる3ケースを 選定し、1ケースは粒径1µm以下のものとした.

水理試験で得た水路内の流速分布,巻き上がった底質の鉛直濃度分布,掃流砂量及び浮遊砂量 から,底質の性状と巻き上がりの関係を整理した.

2. 知見調査

2.1. 既往文献調查

海底に堆積した底質(土砂やヘドロ等)を含有した津波(以降,黒津波とする)が与える影響 について,過去の文献等を調査した.本調査の方針として,黒津波が発生する条件だけでなく, 黒津波による構造物への作用荷重についても整理し,得られた知見を分析した.特に以下の内容 に主眼を置き,現地調査・水理試験・数値解析の項目に分類して文献を整理した.

- ・黒津波の発生条件(ヘドロが堆積する場所,底質が巻き上がる地形など)について
- ・黒津波に含有する土砂やヘドロなどの底質を再現する実験材料について
- ・水の見掛け比重や粘性による津波波形の変化について
- ・防潮堤に作用する津波荷重の変化要因(密度や波形など)について
- ・黒津波を対象とした数値解析に適用可能な土砂移動モデルについて

以降では、項目ごとに文献調査結果を示し、各文献の概要については巻末に示す. なお、水理 試験や数値解析については、既往文献の多くが土砂に関するものであり、現状では非常に細かい 粒径(数 µm 程度)のシルトやヘドロなどを対象とする研究は少ないため、土砂に関する内容も 含めて整理した.

2.1.1. 現地調査

(1) 陸上における津波痕跡調査

高崎ら(2012)¹は、東北地方太平洋沖地震に伴う津波によって陸上に打ち上げられたヘドロの状況を、2011年12月に宮城県東松島市・石巻市・名取市を対象として調査している.結果として、東松島市東部(石巻側)と石巻市中心を流れる旧北上川河口周辺では、海底堆積物として大量のヘドロが打ち上がっていた.海岸から離れた位置において、津波による海水が長期間溜まった状態の水はけの良くない水田や、津波の浸水によって3日以上水没した住宅には、真っ黒な異臭の激しいヘドロが約40cm堆積していた.一方で、名取市の仙台空港周辺では、有機物含有量の少ない砂質の海底堆積物が打ち上がっていた.色川ら(2013)²は、2012年1月に宮城県石巻市・女川町を対象として瓦礫置き場の土壌や水を採取し、pH、有機体炭素、金属類、イオン濃度などを分析した.その結果、ヘドロを被った瓦礫が多い地点において、ヘドロに含まれていたと推測されるマンガンや亜鉛等が多いことが確認された.

NHK(2019)³⁾では,2011 年東日本大震災の翌日に宮城県気仙沼市のコンテナボックス内で採取された黒津波の水を分析し、主成分であるヘドロから密度 1,130g/L,平均粒径 7µm が確認された.

(2) 海底における津波痕跡調査

奥村ら(2016)⁴⁾は、宮城県の松島湾を対象に、東北地方太平洋沖地震津波前後における水深や底 泥の粒度分布と強熱減量を測定し、底泥の安定同位体比を測定することで陸上ではなく、海洋起 源の底泥であることが推察された.女川湾における調査では、層別のクロロフィル a から震災後 の砂泥の堆積速度を推定し、震災後約1年半で少なくとも砂泥が20cm程度堆積したと考察した. さらに、太田ら(2017)⁵は、松島湾における底泥のシルト含有率・全硫化物・COD・強熱減量を1997 年と2012年で比較し、東北地方太平洋沖地震津波によって海底土砂が擾乱され、その後沈降する ことによって湾内で均一化されたと推察している.

(3) 想定津波に対するリスク評価のための現地調査

山下ら(2019)⁶は,神奈川県川崎市の臨海域を対象とし,津波土砂移動モデルに基づき数値解析 を行い,運河内で浸食の可能性が高い場所において底質調査を行った.その際,調査船上から採 泥器を投入して底質試料を採取し,粒度分布,強熱減量,重金属,PCB などを分析することで, 津波による底質移動に起因した災害リスクを評価した.

参考文献

- 高崎みつる,玉置仁,堀知行,片山葉子:東松島市を中心とした津波打ち上げヘドロの状況調査,日本水環境学会震災対応タスクチーム分科会活動報告書,(2)湿地・沿岸域に関係 するテーマ,pp.3-6,2012.
- 2) 色川俊也,小川浩正,進藤拓,中村修,矢内勝,黒澤一:東日本大震災被災地における汚泥 (ヘドロ)の分析結果に基づく被災地特有呼吸器疾患の診断と予防対策,大和証券ヘルス 財団研究業績集,36巻,pp.163-172,2013.
- 3) NHK スペシャル連動企画"黒い津波"~知られざる実像~, https://www3.nhk.or.jp/news/special/shinsai8portal/kuroinami/, (参照 2019-12-9)
- 4) 奥村裕,金子健司,鈴木矩晃,太田裕達:シンポジウム記録 東北の海は今,震災後4年間の研究成果と漁業復興 I.東日本大震災が海洋生態系になにをもたらしたのか-海洋環境・海洋生態系の変化と経過- 4. 震災が及ぼした底質の変化,日本水産学会誌,82(2), p.139,2016.
- 5) 太田裕達, 鈴木矩晃, 雁部総明: 松島湾における東日本大震災前後の底質環境について, 宮城県水産研究報告, 17 号, pp.35-41, 2017.
- 6) 山下啓,大石裕介,古村孝志,今村文彦:臨海都市部における津波による底質移動に起因した災害リスク評価に向けて,Coastal Engineering Journal 投稿予定(第66回海岸工学講演会(2019)で発表).

2.1.2. 水理試験

(1) 氾濫水密度の評価

松冨・川島(2015)¹⁾は、中央粒径が 0.32~0.48mm の土砂を用いた水理実験によって津波氾濫水 の最大密度が 1.2 g/cm³程度に達し得ることを示し、最大密度が土砂の粒径分布、氾濫水の採取量、 氾濫流量にほとんど依存しないことを確認した. さらに、松冨ら(2016)²⁾は、2015 年の水理実験¹⁾ に基づき、津波遡上高(遡上距離)、土砂堆積厚(空間分布含む)、土砂堆積距離・津波遡上距離比 (≦1)の密度依存性を検討し、氾濫水密度が大きくなれば遡上高(遡上距離)は小さく平均土砂 堆積厚は大きくなること、土砂堆積距離と津波遡上距離は大きく異なる場合があることを示した. また松冨ら(2017)³⁾は、2016 年の水理実験²⁾に基づき、津波氾濫水密度の水理量への依存性、津波 遡上距離や土砂堆積距離、土砂堆積厚の氾濫水密度への依存性を定量的に検討し、氾濫水密度が 入射フルード数(~シールズ数)と土砂粒径に依存すること、氾濫水密度が大きくなるにつれて 土砂堆積距離・遡上距離比が小さくなることを示した.

(2) 土砂を含んだ津波荷重の評価

松富ら(2018)⁴は,有限幅の RC 造建築物に作用する津波荷重の氾濫水密度への依存を土砂水と 清水を用いた水理実験を通して実証し,前面浸水深や前面浸水深係数(=前面浸水深/入射氾濫 水深)が同じ場合,氾濫水密度が大きいほど土砂水による水平力が大きいことを示した.さらに, 松富ら(2019)⁵は 2018 年の水理実験⁴に基づき,津波周期が十分に長い条件下で土砂水と清水を 用いた津波荷重実験を行い,氾濫水密度と波周期の津波荷重への影響を検討し,氾濫水密度が大 きくなれば波周期に関係なく水平力が大きくなり,波周期が長くなれば増大率は低減するが水平 力は大きくなることを示した.

木瀬・有川(2020)⁶は、土砂やシルトを含んだ津波に関する水理実験を行い、波圧、水面角度、 フルード数、衝撃波圧、作用時間などのパラメータを用いて段波特性を示した。その結果、密度 が大きくなると衝突時の水面角度がばらつき、壁面と平行に近い場合には大きな波圧が生じる可 能性を示した。また、波圧係数の既往提案式から密度による津波の最大波力を評価し、フルード 数が同じであっても土砂が混じることで相対的に波圧が増大する可能性があることを示した。

(3) 浮遊砂の濃度・粘性評価

志方ら(2021)⁷は,中央粒径 0.16,0.33mm の土砂を用いた砂移動実験により,模擬津波による高 流速条件下で飽和状態にある浮遊砂濃度データを取得し,平衡浮遊砂濃度と水理量との関係を整 理した.標準的なパラメータを用いた飽和浮遊砂濃度式は,実験データから推定した平衡浮遊砂 濃度の分布範囲内に収まり,飽和浮遊砂濃度式の妥当性が確認された.

中村ら(2015)⁸⁾は、浮遊砂による流れの構造変化(密度と粘性の変化)のうち粘度の変化に着目 し、粘度の浮遊砂濃度依存性だけでなく、せん断応力依存性も考慮した評価式の提案を行うため に、粘土(カオリン)の懸濁液を用いた粘度計による実験を行った.その結果、清水の粘度はせ ん断応力によらずほぼ一定値のニュートン流体であり、浮遊砂を含む濁水の粘度はせん断応力の 増加とともに減少する非ニュートン流体であることを確認し、浮遊砂濃度とせん断応力が与えら れれば粘度が推定できることを示した.

2-4

参考文献

- 1) 松冨英夫,川島峻:津波氾濫流の密度に関する基礎実験,土木学会論文集 B2 (海岸工学), Vol.71, No.2, pp.355-360, 2015.
- 2) 松冨英夫,今野史子,齋川聖,鎌滝孝信,渡邉一也:津波氾濫水密度の土砂堆積や遡上高 への影響,土木学会論文集 B2 (海岸工学), Vol.72, No.2, pp.397-402, 2016.
- 3) 松冨英夫, 今野史子, 後村晃基, 今藤晃太, 鎌滝孝信, 渡邉一也: 津波氾濫水密度とその遡 上距離や土砂堆積への影響に関する定量実験, 土木学会論文集 B2(海岸工学), Vol.73, No.2, pp.373-378, 2017.
- 4) 松冨英夫,岡田隼人,久保田友寛,今野史子: RC 造建築物に作用する津波荷重の氾濫水密度への依存に関する基礎実験,土木学会論文集 B2(海岸工学), Vol.74, No.2, pp.265-270, 2018.
- 5) 松冨英夫,三上輝,千葉裕太:氾濫水密度と波周期の津波荷重への影響,土木学会論文集 B2(海岸工学), Vol.75, No.2, pp.397-402, 2019.
- 木瀬晃周,有川太郎:土砂・シルトを含んだ津波の波力に関する実験的研究,土木学会論 文集 B2(海岸工学), Vol.76, No.2, pp.385-390, 2020.
- 7) 志方建仁,藤井直樹,松山昌史,加藤勝秀:津波による高流速条件下の浮遊砂濃度に関する実験的研究,土木学会論文集 B2(海岸工学), Vol.77, No.2, pp.199-204, 2021.
- 8) 中村友昭,鈴木愛美,水谷法美:高濃度の浮遊砂を含有した流体の粘度の測定とその評価, 土木学会論文集 B2(海岸工学), Vol.71, No.2, pp.1185-1190, 2015.

2.1.3. 数值解析

(1) 平面 2 次元の津波土砂移動モデル

藤井ら(1998)¹⁾は,全流砂量の一部がその場所での外力に一義的に支配される局所フラックスと して挙動し,残りが浮遊成分として単層の移流拡散方程式にしたがって挙動する局所フラックス・ 移流拡散混合モデルを導入しており,津波の非定常性に伴う高圧力勾配下での底面せん断力に着 目して無次元掃流力(シールズ数)の算定方法を改良した.

高橋ら(1999)²⁾は,掃流砂と浮遊砂を独立に取り扱い,浮遊砂濃度が非平衡な状態でも適用可能 な津波を対象とした土砂移動モデルの提案を行い,掃流層内で流砂運動が完結する掃流砂量に加 え,掃流砂層と浮遊砂層間の砂の巻上げと沈降から構成される交換砂量を導入した.

西畑ら(2007)³⁾は、物理メカニズムに基づく漂砂量式を用いて、底質の移動は掃流砂と浮遊砂の 移流・拡散方程式を解き、高橋ら(1999)²⁾と類似の方法として、掃流砂と浮遊砂の間で巻上・沈降 フラックスによる鉛直方向の土砂移動を考慮している.

(2) 平面 2 次元の津波土砂移動モデルを用いた被災リスクの評価

山下ら(2019)⁴⁾は、南海トラフ巨大地震の津波リスクが最も高い高知県土佐湾を対象に、高橋ら (1999)²⁾モデルを用いて広域津波土砂移動の数値シミュレーションを実施し、3 種類の底質を想定 して津波による地形変化が生じやすい地域や地形変化による潜在的な影響として津波ハザードの 変化傾向を検討した.

門廻ら(2019)⁵⁾は、宮城県気仙沼湾周辺を対象に、郵便番号ごとの犠牲者数・犠牲率を求め、高橋ら(1999)²⁾モデルによる津波氾濫・土砂移動計算の結果から、最大浸水深・最大流速・浮遊砂濃度と犠牲率に相関があることを示した.

(3)3次元数値モデルによる津波土砂移動・津波荷重の評価

木原・松山(2007)⁶は,3次元の数値計算による浮遊砂濃度の鉛直分布を計算するため,津波の 伝播・浮遊砂の移流拡散・土砂移動に伴う,港湾内での地形変化へ適用できる静水圧近似を仮定 した3次元数値モデルを開発した.また,長波伝播及び浮遊砂の移流・拡散に関するテスト計算 と室内実験の再現計算により,静水圧3次元浅水流モデルの妥当性を確認した.

中村ら(2016)⁷は,浮遊砂を含んだ濁水の粘性係数の評価式と,浮遊砂による水の密度の変化を, 既往の3次元流体・構造・地形変化・地盤連成数値計算モデルFS3M (Three-Dimensional Coupled Fluid-Structure-Sediment-Seabed Interaction Model)に組み込んだ. さらに,同モデルを実スケールの 津波遡上計算に適用し,浸水深・底面流速・波圧・波力に与える浮遊砂の影響を検討した.その 結果,準定常的な持続波圧により最大波力が生じる場合には,浮遊砂による密度と粘性係数を考 慮することで最大波力が増加することを確認できた.

小俣ら(2021)⁸⁾は,清水の津波が,塩分濃度の調整により密度を変化させた液体に伝播して直立 壁に衝突する実験を行い,OpenFOAMによる再現解析から,津波衝突時の構造物に働く波力特性 や津波浸入時の波形変化等について検証した.その結果,液体の密度が大きくなるほど浸水深が 小さくなり,津波の到達時間が遅延するが,津波荷重は液体密度に単純に比例して大きくはなら ないことを確認した.

参考文献

- 1) 藤井直樹, 大森政則, 高尾誠, 金山進, 大谷英夫: 津波による海底地形変化に関する研究, 海岸工学論文集, 第 45 巻, pp.376-380, 1998.
- 2) 高橋智幸,首藤伸夫,今村文彦,浅井大輔:掃流砂層・浮遊砂層間の交換砂量を考慮した 津波移動床モデルの開発,海岸工学論文集,第46巻,pp.606-610,1999.
- 西畑剛,佐貫宏,森屋陽一,後藤和久:津波による地形変化モデルに関する研究,海岸工 学論文集,第54巻, pp.521-525, 2007.
- 山下啓,菅原大助,門廻充侍,有川太郎,高橋智幸,今村文彦:高知県における最大クラスの津波による地形変化と潜在的影響の評価,土木学会論文集 B2(海岸工学), Vol.75, No.2, pp.685-690, 2019.
- 5) 門廻充侍,山下啓,高橋智幸,今村文彦:宮城県気仙沼市における震災データ活用による 犠牲率と黒い津波外力との関係, Coastal Engineering Journal 投稿予定(第66回海岸工学講 演会(2019)で発表).
- 6) 木原直人,松山昌史:静水圧3次元数値モデルを用いた津波による地形変化の数値計算, 海岸工学論文集,第54巻,pp.516-520,2007.
- 7) 中村友昭,鈴木愛美,趙容桓,水谷法美:浮遊砂による流体の粘度の変化と一様流および 津波による流動場に与える影響に関する研究,土木学会論文集 B2(海岸工学), Vol.72, No.2, pp.163-168, 2016.
- 8) 小俣哲平,織田幸伸,橋本貴之:津波作用荷重への密度変化の影響に関する基礎研究,令和3年度土木学会全国大会年次学術講演会,II-101,2021.

2.2. 有識者へのヒアリング

知見調査のうち有識者へのヒアリングについては、以下の2名に現地調査と水理試験について 意見を頂戴した.

(1) 有識者 A

- ・現地調査については、今後実務において黒津波のリスクを評価する上で、どこをどのように 調査し、何の項目について分析すれば適切なのかを検討する必要がある.
- ・水理試験については、底質の巻き上がり初期の状態を適切に計測して評価できれば、黒津波の先端のモデル化も検討できると考えられる。
- ・水理試験に使用する底質模型を含む懸濁液の粘性は確認すべきである.
- ・黒津波の数値解析については、CFD のような計算負荷が大きい解析だけでなく、平面2次元の解析(計算負荷が比較的小さい)も検討する必要がある.水理試験の結果を適用することで、既往の砂移動モデルを拡張する方法も考えられる.

(2) 有識者 B

- ・底質を構成する粘土鉱物の種類を確認する必要がある.鉱物の種類によっては、溶媒により 懸濁液の粘性が大きく異なる.
- ・たとえば、カオリンについては、溶媒(純水、水道水、海水など)に依らず粘性への影響が小さい、一方、モンモリロナイトなどは、溶媒の種類によって底質の凝集などが発生するため、
 懸濁液は均質な状態にはならないことから、水理試験に使用する底質模型としては不適当と
 考えられる、
- ・水理試験については、特に波力を対象とした場合、地形変化と流体物性(密度や粘性など)の要因を分けることが重要である。

3. 現地調査

3.1. 調査概要

現地調査は,海底に堆積した底質(土砂やヘドロ等)の性状を確認することを目的に実施した. 調査対象としては,都市部の港湾および水路,生活圏の河口近傍の2箇所を選定し,各5地点に おいて潜水作業により柱状採泥器を用いて底質を採取した.得られたサンプルの粒度分布・比重・ 組成等を分析して結果を整理した.

以降に詳細を示す.

3.2. 調查方法

3.2.1. 調査箇所の選定

調査箇所として、以下の2箇所を選定し、各5地点について底質のサンプリングを実施した.

(1) 川崎港京浜運河

都市部においてヘドロ等の底質が顕著に堆積していると考えられる港湾・水路として,神奈川 県川崎市川崎港京浜運河(以降,川崎港京浜運河という)を選定した.調査区域を図-3.1 に示す.

図-3.1 川崎港京浜運河の調査区域

(2) 久慈川河口付近海域

郊外において住宅からの雑排水等があるような河口域として,茨城県日立市久慈川河口付近の 海域(以降,久慈川河口付近海域という)を選定した.調査区域を図-3.2 に示す.

図-3.2 久慈川河口付近海域の調査区域

3.2.2. サンプリング方法

本調査における底質のサンプリング方法(図-3.3)を以下に示す.

- ① 調査船でサンプリング予定地点に向かい,立ち上げブイ(入水ポイント)を投入し,その 位置座標をGPSにより記録した.
- ② 潜水士2名が入水し、調査船が離れたことを確認してから、立ち上げブイのロープに沿っ て海底まで潜行した.
- ③ 調査船は、潜水士が入水した後にゆっくりと離れ、ダイバーとの安全距離を確保した. そ の後は、周辺の安全監視を行った.
- ④ 潜水士は、海底の状況を水中カメラで撮影し、柱状採泥器を用いて底質のコアサンプルを 2 本採取した.
- ⑤ 潜水士2名は、立ち上げブイのロープに沿ってゆっくり浮上した.
- ⑥ 潜水士は、浮上完了後に手合図を送り調査船を呼び寄せ、船上へ揚収されることで作業を 完了した.その後,立ち上げブイを回収した.
- ⑦ 次の地点に移動し、上記①~⑥を繰返した.
- なお、川崎港京浜運河での作業では、横浜海上保安部の指導により警戒船を1隻配備した.

(a) 底質サンプリングの作業イメージ

図-3.3 潜水作業による底質のサンプリング方法

分析対象となる底質のサンプルは,図-3.4 に示すように表層 20cm を押し出して採取し,柱状 試料2本分を攪拌して混ぜ合わせ,サンプルビンへ封入した.

3.2.3. 分析方法

採取した底質の分析項目は、粒度分布、比重、組成など表-3.1の通りとした. 各項目における 分析方法を次頁以降に示す.

No	項目名称	
1	粒度分布	D50
2	比重	S
3	含水比	W
4	沈降速度	V
5	強熱減量	IL
6	塑性限界·液性限界	WP, WL
7	水素イオン濃度	pH
8	化学的酸素要求量	COD
9	有機体炭素	TOC
10	金属	Fe, Mn, Cu, Zn
11	イオン	SO4 ²⁻ , PO4 ³⁻ , Cl ⁻

表-3.1 底質の分析項目一覧

(1) 粒度分布

準拠:

JIS Z 8825

使用機器:

レーザ回折・散乱式粒度分布測定器:LMS-2000e セイシン企業製(写真-3.1)

測定方法:

- ① 分散媒のみでブランク測定を行う.
- ② 分散層に試料を適量入れる.

③ 超音波分散により試料を分散させ、循環式にて粒度分布測定を行う.

【原理】

レーザ回折・散乱法による粒子径分布測定は、粒子による光散乱の角度分布(散乱パター ン)が粒子径に依存する現象に基づいて行う.適正な液体または気体中に、適正濃度で分散 された試料を単色光(通常はレーザ光)ビームが横切るように通過させる.粒子によって様々 な角度に散乱された光は複数の光強度検出器で測定され、散乱パターンに対応する測定値が 記録される.測定域における試料濃度等が適正範囲にあれば、粒子群からの光散乱パターン は、個々の単一粒子からの散乱パターンの総和と等しい.理論的に計算した想定される粒子 径分画からの散乱パターンの重ね合わせが、測定された散乱パターンに最もよく一致するよ うに各分画の寄与率を求める数学的逆問題を解くことで、体積基準の粒子径分布を求める.

測定条件:

- ① 測定範囲 0.02~2000µm
- ② 使用溶剤 イオン交換水
- ③ 超音波使用時間 1分

写真-3.1 レーザ回折・散乱式粒度分布測定器:LMS-2000e (参照 https://www.betterseishin.co.jp/)

(2) 比重

準拠:

JIS Z 8807

使用機器:

比重瓶(JIS R 3503 化学分析用ガラス器具に準拠)

測定方法:

ピクノメーター法を用いて測定した.

【原理】

比重瓶の質量を M0, 試料固体を入れた比重瓶の質量を M1, 更に標準物質を加えて比重瓶 を満たしたときの質量を M2 とすれば, m1=M2-M1 は加えた標準物質の質量である.標準 物質だけで比重瓶を満たしたときの質量を M3 とすれば, m2=M3-M0-m1 は試料固体と同体 積の標準物質の質量である.試料固体の質量 m0=M1-M0 と, m2 と標準物質密度とによって 計算される試料固体の体積から試料固体の密度及び比重を求める.

測定条件:

使用分散媒 水

(3) 含水比

準拠:

JIS A 1203

測定方法:

- a) 容器の質量 mc [g]をはかる.
- b) 試料を容器に入れ, 全質量 ma [g]をはかる.
- c) 試料を容器ごと恒温乾燥炉に入れ,(110±5)℃で一定の質量になるまで炉乾燥する.なお, 一定の質量とは,1時間乾燥させたときに,乾燥前後の質量変化が0.1%未満であればよい.
- d) 炉乾燥試料を容器ごとデシケーターに移すか蓋付き容器の蓋をし、おおむね室温になるま で冷ました後、全質量 mb [g]をはかる.
- e) 試験は、対象とする試料について最低1回行う. 含水比は、次の式を用いて算出して、四捨五入によって、小数点以下1桁に丸める.対象 とする試料について複数回行った場合の代表値は、算術平均値を採用する.平均値は四捨 五入によって、小数点以下1桁に丸めて代表値とする.

$$w = \frac{ma - mb}{mb - mc} \times 100$$

ここに,w:含水比 [%],ma:試料及び容器の質量 [g],mb:炉乾燥試料及び容器の質量 [g], mc:容器の質量 [g]である. (4) 沈降速度

使用機器:

①レーザ回折・散乱法:LMS-2000e

②光透過式遠心沈降法: SKC-2000

測定方法:

レーザ回折・散乱法および光透過式遠心沈降法により得られた中央粒径に対して,以下の ストークス式により沈降速度を算定した.

$$V = \frac{d^2(\rho_s - \rho_f)g}{18\eta}$$

ここで、Vは沈降速度 [cm/s], dは粒子径 [cm], ρ_s は粒子密度 [g/cm³], ρ_f は液体密度 [g/cm³], g は重力加速度 [cm/s²] (=980), μ は液体の粘度 [g/cm·s]とした.

【原理】

①レーザ回折・散乱法

(1)に記載の通り

②光透過式遠心沈降法

光透過式遠心沈降法では、遠心力により強制的に粒子を沈降させ、光の通過量を計測し、 濃度変化を測定する.濃度の変化から通過率を算出し、沈降速度を用いてストークス式より 粒径を換算する。この方法は、測定するサンプル中に様々な粒子径の粒子が混在していても、 粒子の質量に依存した沈降速度で沈降するため、重い粒子は速く、軽い粒子は遅く沈降する。 したがって、均一の密度を持つ粒子であれば、粒径の大きい粒子から小さな粒子に並び直す ように分級されながら沈降していく.この大きさ順で落ちてくる粒子の濃度を光の透過率を 使って求めるため、分布幅精度・分解能が高い粒子径分布を測定することが可能になる. 測定条件:

①レーザ回折・散乱法

(1)に記載の通り

②光透過式遠心沈降法

- ・粒径 0.5~75µm
- ・沈降距離 70mm
- ・液温 16.0~16.5℃
- ·使用溶剂 水

(5) 強熱減量

準拠:

JIS A 1226

使用機器:

空気加熱電気炉 アズワン製

測定方法:

- a) るつぼの質量 mc [g]を 0.001 g まではかる.
- b) 試料をるつぼに入れ, 試料及びるつぼの全質量 ma [g]を 0.001 g まではかる.
- c) るつぼに蓋を斜めにかぶせて電気炉に入れ、徐々に加熱する.
- d) 温度を(750±50)℃に保持し,1時間強熱する.
- e) 強熱停止後,10 分程度電気炉を開放した後,るつぼばさみを用いて,るつぼを炉内から 取り出し,室温で数分間放置する.
- f) るつぼをデシケーターに移し,おおむね室温になるまで冷ました後,強熱後の試料及びる つぼの全質量 mb [g]を 0.001 g まではかる.
- g) 一定の質量になるまで, c)~f)を繰り返す. 強熱後の試料及びるつぼの全質量 mb が増加 した場合は,増加する前の mb を採用する.なお,一定の質量とは,試料の質量変化が 0.1% 以下になることをいう.

強熱減量は、次の式を用いて算出して、四捨五入によって、小数点以下1桁に丸める. 対象とする試料について複数回行った場合の代表値は、算術平均値を採用する.平均値は 四捨五入によって、小数点以下1桁に丸めて代表値とする.

$$Li = \frac{ma - mb}{ma - mc} \times 100$$

ここに, *Li*: 強熱減量 [%], *ma*: 炉乾燥試料及びるつぼの全質量 [g], *mb*: 強熱後の試料 及びるつぼの全質量 [g], *mc*: るつぼの質量 [g]である.

測定条件:

750℃で1時間

(6) 塑性限界·液性限界

準拠:

JIS A 1205

測定方法:

①塑性限界

【試験】

- a) 練り合わせた試料の塊を,手のひらとすりガラス板(写真-3.2) との間で転がしながら試料をひも状にし,ひもの太さを直径3mmの丸棒に合わせる.このひもが直径3mmになったとき,再び塊にしてこの操作を繰り返す.
- b)a)の操作において、試料のひもが直径3mmになった段階で、試料が切れ切れになったとき、JISA 1203に規定されている方法に従い、その切れ切れになった部分の試料を集めて 速やかに含水比を求める.
- c) 塑性限界試験は、対象とする試料について最低3回行う.

【計算】

- a)3回の含水比の算術平均値を塑性限界 wP [%]とする.
- b) 塑性限界が上述した試験で求められないときは、NP(Non-Plastic)とする. 塑性指数は、次の式によって算出する.ただし、液性限界と塑性限界との間に有意な差が ないときは、NPとする.

ここに, IP: 塑性指数, wL: 液性限界 [%], wP: 塑性限界 [%]である.

写真-3.2 塑性限界試験の使用機器例 (参照 https://www.marui-group.co.jp)

②液性限界

【試験】

- a) 黄銅皿と硬質ゴム台との間にゲージを差し込み, 黄銅皿の落下高さが (10±0.1) mm にな るように落下装置 (写真-3.3) を調整する.
- b) へらを用いて試料を黄銅皿に最大厚さが約10mmになるように入れ、形を整える. 溝切りを黄銅皿の底に直角に保ちながらカムの当たりの中心線を通る黄銅皿の直径に沿って溝を切り、試料を二つに分ける.
- c) 黄銅皿を落下装置に取り付け,落下装置によって1秒間に2回の割合で黄銅皿を持ち上 げて落とすことを繰り返し,溝の底部の二つに分けた試料が長さ約15mm 合流するまで 続ける.
- d) 溝が合流したときの落下回数を記録し,JISA1203 に規定されている方法に従い,合流した付近の試料の含水比を求める.
- e) 試料に蒸留水を加えるか、又は水分を蒸発させた後、試料をよく練り合わせてb)~d)の 操作を4回以上繰り返す.その際、落下回数10~25回の試料を2個、25~35回の試料を 2個が得られるようにする.

【計算】

- a) 片対数グラフ用紙の対数目盛に落下回数及び算術目盛に含水比をとって、測定値をプロ ットする.
- b) 測定値に最もよく適合する直線を流動曲線とする.
- c) 流動曲線において,落下回数 25 回に相当する含水比 w [%]を小数点以下 1 桁まで読み取り,液性限界 wL [%]とする.
- d) 流動曲線は、直線の勾配が 30~50°になるようにスケールをとる.
- e) 液性限界が上述の試験で求められないときは、NP(Non-Plastic) とする.

写真-3.3 液性限界試験の使用機器例 (参照 https://www.marui-group.co.jp)

(7) 水素イオン濃度(pH)

準拠:

底質調查方法(H24)¹⁾Ⅱ4.4

使用機器:

a) pH メーター

b) 遠心分離機

測定方法:

底質から遠心分離機を用いて間隙水を抜き取り,その間隙水の水素イオン濃度(pH)を pHメ ーターで測定する.

測定条件:

水温 18~19℃

(8) 化学的酸素要求量(COD)

準拠:

底質調查方法(H24)¹⁾Ⅱ4.7

使用機器:

a) 水浴

b) 三角フラスコ

測定方法:

試料をはかり取り,アルカリ性溶液とし,沸騰水浴中で30分間加熱により消費される過マンガン酸カリウム溶液(20 mmol/L)の量から, CODsed 値を求める.

測定条件:

- a) 水: JIS K 0557
- b) 過マンガン酸カリウム溶液(20 mmol/L): JIS K 8247
- c) 水酸化ナトリウム溶液(300 g/L): JIS K 8576
- d) しゅう酸ナトリウム溶液(50 mmol/L): JIS K 8528
- e) でんぷん溶液(10 g/L): JIS K 8659
- f) よう化カリウム溶液(100 g/L): JIS K 8913
- g) 0.1 mol/L チオ硫酸ナトリウム溶液: JIS K 8637

(9) 有機体炭素(TOC)

準拠:

```
底質調查方法(H24)<sup>1)</sup>Ⅱ4.10 燃焼酸化方式
```

使用機器:

- a) 乾燥器
- b) 磁製乳鉢, めのう乳鉢
- c) ミル
- d) ふるい : JIS Z 8801-1
- e) デシケーター
- f) 精密天秤 (0.001mg の桁まで秤量可能)
- g) 遠心分離機
- h) 元素分析計

測定方法:

試料の前処理は,塩酸(1+11)を添加し,無機の炭酸塩と炭酸水素塩を二酸化炭素に換えて除 去した後,全有機炭素を元素分析計で測定する.なお,元素分析計は,燃焼酸化方式とし, 試料中の有機物質を酸素あるいは空気気流中の燃焼炉(650℃~1,200℃)で完全に二酸化炭素 と水に分解でき,炭素相当・窒素相当の指示値が得られ,乾燥重量当たりの有機炭素として 測定できるものを使用した.

測定条件:

- a) 水: JIS K 0557
- b) 塩酸(1+11): JIS K 8180
- c) アセトアニリド(C:71.09%, N:10.36%)
- d) p-ニトロアニリン(C:52.17%, N:20.28%)
- e) スルファニル酸(C:41.6%, N:8.1%)
- f) 酸化銅 (ワイヤー)
- g) 還元銅 (ワイヤー)
- h) ヘリウム
- i) 酸素
- j) 水素

(10) 各種金属(Fe, Mn, Cu, Zn)

準拠:

- ・鉄(Fe) 底質調査方法(H24)¹⁾Ⅱ5.5.4 ICP 発光分析法
- ・マンガン(Mn) 底質調査方法(H24)¹⁾Ⅱ5.6.4 ICP 発光分析法
- ・銅(Cu) 底質調査方法(H24)¹⁾Ⅱ5.3.4 ICP 発光分析法
- ・亜鉛(Zn) 底質調査方法(H24)¹⁾Ⅱ5.4.4 ICP 発光分析法

使用機器:

a) ICP 発光分光分析装置:

JISK0116に規定する誘導結合プラズマ(ICP)発光分光分析装置で波長の異なる2本 以上のスペクトルが同時測定可能なもの

- b) ガス:アルゴン
- c) 加熱装置

マイクロウェーブ分解装置:樹脂製の密閉容器をマイクロウェーブにより加熱でき,温 度制御機能をもつもの.

測定方法:

試料を前処理した後,内標準元素を加え,試料導入部を通して誘導結合プラズマ中に噴霧 し,各種金属(Fe, Mn, Cu, Zn)と内標準元素の発光強度を測定して定量する.スペクトル干渉 を受けやすいので,必ず適切なバックグラウンド補正を行う.

【原理】

ICP (Inductively Coupled Plasma:高周波誘導結合プラズマ)は、発光分光分析法の一つであ る.分析試料に、プラズマのエネルギーを外部から与えると含有されている成分元素(原子) が励起される.その励起された原子が、低いエネルギー準位に戻るときに放出される発光線 (スペクトル線)を測定する方法である.発光線の位置(波長)から成分元素の種類を判定 し、その強度から各元素の含有量を求める. (11) 各種イオン(SO4²⁻, PO4³⁻, Cl⁻)

準拠:

- ・硫化物(SO4²⁻) 底質調査方法(H24)¹⁾Ⅱ4.6 よう素滴定法
- ・全りん(PO₄³⁻) 底質調査方法(H24)¹⁾II 4.9 モリブデン青吸光光度法

・有機塩素化合物(Cl) 環告第 13 号別表第 6/JIS K 0102 35.3 イオンクロマトグラフ法

使用機器:

- a) 蒸留装置 [SO4²⁻]
- b) 分光光度計 [PO4³⁻]
- c) イオンクロマトグラフ [Cl-]

d) マイクロシリンジ [Cl⁻]

測定方法:

[SO4²⁻]

亜鉛アンミン溶液で硫化亜鉛アンミン錯塩として現地固定した後,水蒸気蒸留により硫化 水素を分離し、よう素滴定法により定量する.なお、固定方法としては、次の通りとする.

①ポリエチレンびん 300mL に亜鉛アンミン溶液を満たす.

②採取した試料を均一に混ぜ、約50gをポリエチレンびんに取る.

③亜鉛アミン溶液をあふれさせ、容器中に空隙が残らないように密栓してよく混和する. ④4℃以下に保存する.

[PO4³⁻]

硝酸-過塩素酸分解法もしくは硝酸-硫酸分解法で前処理分解した試料を,モリブデン青 (アスコルビン酸)吸光光度法によりりんを測定・定量する.

[CI-]

試料中の塩化物イオンをイオンクロマトグラフ(IC)法によって定量する.この方法では,溶 離液と呼ばれる移動相に液体試料を導入し,試料中のイオン成分を固定相である分離カラム 内で分離させ,検出器によりイオン成分を測定する.

測定条件:

[PO4³⁻]分析波長: 880nm または 710nm

【出典】

1) 環境省 水·待機環境局:底質調查方法,平成24年8月.

3.3. 調査結果

3.3.1. サンプリング結果

サンプリング結果として,各調査地点の位置,水深,底泥の推定層厚,柱状採泥器のサンプル および海底の状況写真,備考には採取した表層部の底質の状態を記載して整理した.なお,底泥 の推定層厚については,潜水士が水中で計測用の鉄筋棒を海底に差し込み,棒の自重で沈む長さ を計測した.底泥の推定層厚が薄い(層厚約 20cm 以下の)場合には,コアサンプルの底泥の層厚 を物差しなどで計測した.また,備考に記載している底質名称について,本書内では以下の通り 定義した.

- ・砂: 粒径 2mm~0.074mm の土
- ・シルト: 粒径 0.074mm~0.005mmの土
- ・粘土:粒径 0.005mm 以下の土
- ・泥:粘土とシルトが混じったような土
- ・砂泥:砂と泥が混じったような土
- ・ヘドロ:水底に溜まった柔らかい泥で、汚染が進み、場合によっては臭いがするもの
- ・ 浮泥: 有機物を多く含み, 保水能力が非常に高く, 比重も小さく, 海底に沈降するが圧密 し難い状態のもの
- ・底泥:ヘドロもしくは浮泥などの柔らかい有機性堆積物
- ・還元層:状態の良し悪しに関わらず,還元され黒っぽくなった層 (今回のケースでは,下層の固い粘土が主な成分である層に見られた)

(1) 川崎港京浜運河

表-3.2, 図-3.5 に示す調査地点で採取された底質のサンプリング結果を表-3.3 および表-3.4 に 示す. なお、川崎港京浜運河での調査写真集は、巻末に添付する.

- ・地点 A1, A2 : 流れが小さく, 底質が滞留しているような場所(南渡田運河・浅野運河)
- ・地点 B1, B2 : 外海からの入り口付近(京浜運河)
- ・地点C :運河支流の入り口付近(京浜運河・塩浜運河)

表-3.2 川崎港京浜運河でのサンプリング位置の座標・水深

採取地点	緯度	経度	調査時水深
地点A1	N35° 30′ 28.7″	E139° 43′ 20.8″	4m
地点A2	N35° 30′ 39.5″	E139° 43′ 43.3″	4m
地点B1	N35° 30′ 22.6″	E139° 46′ 20.8″	11m
地点B2	N35° 29′ 41.3″	E139° 44′ 07.0″	8m
地点C	N35° 30′ 30.3″	E139° 45′ 00.3″	12m

図-3.5 川崎港京浜運河におけるサンプリング位置図

表-3.3 川崎港京浜運河における底質のサンプリング結果(1)

	水深	底泥の推定層厚	
	8m	lcm	
	コアサンプル	海底の状況	
地点 B2			
備考	採取した底質は,表層に浮泥が1cm程度,その下に砂層が55cm以上ある.		
	水深	底泥の推定層厚	
	12m	40cm	
	コアサンプル	海底の状況	
地点 C			
備老	採取した底質は,表層に浮泥が 3cm 程度,その	トに粘土層が 65cm 程度あり, さらに下にヘドロ層が	

表-3.4 川崎港京浜運河における底質のサンプリング結果(2)

(2) 久慈川河口付近海域

表-3.5, 図-3.6 に示す調査地点で採取された底質のサンプリング結果を表-3.6 および表-3.7 に 示す. なお, 久慈川河口付近海域における調査写真集は, 巻末に添付する.

- ・地点 A :流れが小さく,底質が滞留しやすい場所(日立港内)
- ・地点 B1, B2 :堤防内外(日立港堤防)
- ・地点 C1, C2 :河口付近(久慈川・茂宮川)

表-3.5 久慈川河口付近海域でのサンプリング位置の座標・水深

採取地点	緯度	経度	調査時水深
地点A	N36° 29′ 26.0″	E140° 37′ 07.3″	7.6m
地点B1	N36° 29′ 04.3″	E140° 37′ 36.8″	12m
地点B2	N36° 28′ 51.4″	E140° 37′ 50.3″	15m
地点C1	N36° 29′ 11.4″	E140° 36′ 49.3″	3.8m
地点C2	N36° 28′ 46.3″	E140° 37′ 06.9″	3.2m

図-3.6 久慈川河口付近海域におけるサンプリング位置図

	水深	底泥の推定層厚
	7.6m	0cm
	コアサンプル	海底の状況
地点 A		
備考	海底の表層土は固く,原地盤の粘土層と考えられ	る. 採取した底質は,浮泥がほぼなく,ほとんどが粘
		底泥の推定層厚
	12m	2cm
	コアサンプル	
地点 B1	B-TG	2
備考	採取した底質は, 2cm 程度の浮泥・砂泥・砂の 3 層に目られた 沖 自い等けなし	層であり, 黒っぽく還元された土と考えられる層が下
	水深	 底泥の推定層厚
	15m	0.5cm
	コアサンプル	海底の状況
地点 B2		
備考	採取した底質は, 5mm 程度の浮泥・砂泥・砂の3層であった.油,臭い等はなし.	

表-3.6 久慈川河口付近海域での底質サンプリング結果(1)

	水深	底泥の推定層厚
	3.8m	20cm
	コアサンプル	海底の状況
地点 C1		
備考	採取した底質は, 20cm 程度の浮泥で, 以深は還元層の2層であった. 河口域のためか, 田 な土であった.	
	水深	底泥の推定層厚
	3.2m	0cm
	コアサンプル	海底の状況
地点 C2		
		12

表-3.7 久慈川河口付近海域での底質サンプリング結果(2)
(1) 川崎港京浜運河

川崎港京浜運河における分析結果一覧を表-3.8および表-3.9に示す.また,各調査地点での粒 度分布を図-3.7に示す.なお、各分析結果の試験表については、巻末に添付する.

川崎港京浜運河	[
項目	単位	地点A1	地点A2	地点B1	地点B2	地点C	備考
中央粒径(D ₅₀)	μm	13.577	25.150	18.035	47.219	12.577	
比重(D)	-	2.542	2.511	2.605	2.660	2.562	
含水比(w)	%	304.4	139.4	121.5	60.0	247.3	
沈降速度(V)	cm/s	0.0139	0.0469	0.0256	0.1815	0.0121	上記中央粒径 での沈降速度
強熱減量(IL)	%	20.19	22.23	7.83	6.53	13.00	
塑性限界(W _P)	%	79.1	49.2	37.2	25.1	54.3	
液性限界 (W_L)	%	157.8	80.5	72.9	33.4	122.8	

表-3.8 川崎港京浜運河における分析結果一覧(1)

表-3.9 川崎港京浜運河における分析結果一覧(2)

Л	嶹	港	亰	浜	禈	河
		10	~	//~	ᆂ	· · · J

<u>川响危求洪建内</u>	光 /	ᅶᇥᆂᇗᆀ	ᆂᇥᆂᇲᇲ	ᆂᄟᆂᅙᅦ	ᆂᄟᆂᇚᇲ	바르이
	単位	地点AI	^{地点A2}	^{地点B1}	地点B2	^{地点C}
水素イオン濃度(pH)	pН	8.7	8.5	8.4	8.1	8.2
化学的酸素要求量(COD)	mg/g	65	69	28	15	44
有機体炭素(TOC)	mg/g	80	170	19	19	31
各種金属						
Fe	mg/kg	80000	49000	36000	34000	32000
Mn	mg/kg	880	1500	510	400	520
Cu	mg/kg	530	170	62	62	120
Zn	mg/kg	2800	6200	280	670	480
各種イオン						
SO4 ²⁻	mg/g	2.4	16.0	1.1	1.4	2.3
PO4 ³⁻	mg/g	1.1	0.6	0.6	0.7	0.6
CI	mg/g	<4	<4	<4	<4	<4

図-3.7 川崎港京浜運河における各調査地点での粒度分布

(2) 久慈川河口付近海域

久慈川河口付近海域における分析結果一覧を表-3.10および表-3.11に示す.また,各調査地点 での粒度分布を図-3.8に示す.なお,各分析結果の試験表については,巻末に添付する.

久慈川河口付近海域							
項目	単位	地点A	地点B1	地点B2	地点C1	地点C2	備考
中央粒径(D ₅₀)	μm	25.567	31.930	32.933	23.723	276.736	
比重(D)	_	2.621	2.581	2.624	2.631	2.664	
含水比(w)	%	68.3	112.8	126.2	126.5	26.1	
沈降速度(V)	cm/s	0.052	0.079	0.086	0.045	6.249	上記中央粒径 での沈降速度
強熱減量(IL)	%	6.81	10.97	7.41	9.39	2.67	
塑性限界(W _P)	%	39.3	47.6	40.4	44.3	—	
液性限界(W _L)	%	66.2	71.6	64.9	76.9	_	

表-3.10 久慈川河口付近海域における分析結果一覧(1)

表-3.11 久慈川河口付近海域における分析結果一覧(2)

久慈川河口付近海域

項目	単位	地点A	地点B1	地点B2	地点C1	地点C2
水素イオン濃度(pH)	pН	8.2	8.1	8.1	7.8	7.4
化学的酸素要求量(COD)	mg/g	10	22	27	27	1
有機体炭素(TOC)	mg/g	7	21	18	25	1
各種金属						
Fe	mg/kg	30000	25000	27000	22000	12000
Mn	mg/kg	310	290	350	260	230
Cu	mg/kg	13	52	37	45	4
Zn	mg/kg	52	100	100	110	35
各種イオン						
SO4 ²⁻	mg/g	<0.01	0.7	1.3	0.5	<0.01
PO4 ³⁻	mg/g	0.3	0.6	0.5	0.9	0.2
CI⁻	mg/g	<4	<4	<4	<4	<4

図-3.8 久慈川河口付近海域における各調査地点での粒度分布

4. 水理試験

4.1. 試験概要

水理試験は、海底に堆積した底質(土砂やヘドロなど)の性状と巻き上がり条件の関係を整理 することを目的に実施した.本試験では、管路区間および開水路区間のある2次元水槽を用い、 管路区間には底質模型をセットするサンドベッドを設置した.津波を模した流れは、水槽上流に 設置したヘッドタンクからの流れをバルブの開度で調整し、流速を3ケース設定した.底質模型 は、粒径および比重の異なる3種類とし、そのうち1つは粒径1µm以下のものを使用した.試験 手順としては、サンドベッドに蓋をした固定床試験により管路内の流速分布を求め、蓋を外して 底質模型を敷き均した移動床試験で巻き上がった底質の鉛直濃度分布、掃流砂量並びに浮遊砂量 を計測した.試験ケースとしては、同条件で各3ケースを行い、全60ケースを実施した.

以降に詳細を示す.

4.2. 試験方法

4.2.1. 試験縮尺

想定縮尺は1/1(実機スケール)相当とした.

4.2.2. 試験水槽

本試験では、幅 0.2m,高さ 0.5m の矩形断面で延長 6.5m (擦付部 1.0m 含む)の管路区間と、幅 0.5m,高さ 1.0m の矩形断面で延長 4.5m (擦付部 1.0m 含む)の開水路区間を有するアクリル製の 二次元水槽を用いて実施した(図-4.1 参照).水槽の上流側端部に、容量 3m³のタンクを 2 台設置 し、タンク内に所定量の水を溜めて、バタフライバルブの開放により流れを発生させた.なお、 シャッターバルブの開度を調整することで流速を変化させた.

管路区間には、水路延長方向の両端部を1:2 勾配にしたサンドベッド(幅0.2m, 延長2.5m, 深 さ0.15m)を設け、底質模型を敷き均した.また、サンドベッド下流端から約3cm下流の位置に おいて、水路の側面に吸引孔(φ4mm,9箇所)を設け、所定量の濁水を同時に採取できるように した.さらに、管路区間を満管にするため開水路区間の下流端部に高さ0.5mの越流堰を設置し、 サンドベッドから流された底質模型が上流に戻らないように、サンドベッド下流端から0.5m下流 の位置にシャッターを設置した.

水理試験装置の詳細図を図-4.2に示す.

図-4.1 水理試験装置概要図

4.2.3. 底質模型

底質模型は,表-4.1 に示す通り粒子径及び粒子密度が異なる3ケースを設定した.そのうち, 実際の津波痕跡から採取された底質と近い粒子径のものとしてフライアッシュ,粒径 1µm 以下の ものとしてシリカフュームを使用した(写真-4.1).フライアッシュとは,ボイラ内で燃焼により 生じた溶融状態の微細な灰粒子が高温の燃焼ガス中を浮遊した後,ボイラ出口における温度低下 に伴い球形微細粒子となったもので,主な含有元素はシリカとアルミナである.シリカフューム とは,電気炉によるフェロシリコンや金属シリコンの精錬過程で発生する副産物であり,二酸化 ケイ素の超微粒子である.

移動床試験では,試験水槽外の別容器において,あらかじめ設定した含水比になるように底質 材料と水を計量して撹拌し,これをサンドベッドに敷き均した後,静かに水を流入させて管路内 を満菅状態にした.

ID	材料名	中央粒径 d50 [µm]	粒子密度 [g/cm ³]	かさ密度 [g/cm ³]	岩垣式 ¹⁾ による 限界摩擦速度* [cm/s]
a	硅砂6号	314	2.65	1.24	2.56
b	フライアッシュ	5.43	2.34	0.77	0.12
c	シリカフューム	0.54	2.26	0.29	0.01

表-4.1 底質模型

(a) フライアッシュ²⁾
(b) シリカフューム³⁾
写真-4.1 フライアッシュおよびシリカフュームの顕微鏡写真

【出典】

- 1) 岩垣雄一:限界掃流力に関する基礎的研究(I)限界掃流力の流体力学的研究,土木学会論文集第41号, 昭和31年12月.
- 2) 一般財団法人石炭フロンティア機構:フライアッシュ,

http://www.jcoal.or.jp/ashdb/ashqa/whatash/ashtype/flyash/, 参照 2022.1.31.

3) ユニオン化成株式会社:シリカフューム, https://unionkasei.co.jp/jp/silicafume/, 参照 2022.1.31.

サンドベッドにセットする底質模型の含水比を設定するため、底質材料を水中落下により自然 沈降させた際の含水比を,次の方法により算定した(図-4.3).

①所定量の水をメスシリンダーに入れ、底質材料を投入する。
②底質材料を水と撹拌・混合して蓋で密閉し、そのまま静置する。
③底質材料の沈降が完了した後、上澄水を除去した配合比率から含水比を算定する。

図-4.3 サンドベッドにセットする底質模型の含水比の設定方法

サンドベッドにセットする底質模型の配合および含水比を表-4.2 に示す.この結果は,写真-4.2 ~写真-4.4 に示すように底質材料の沈降状況を確認し,沈降完了後の上澄水を除去した配合から 含水比を算定した.なお,シリカフュームについては,含水比の影響を確認するため,底質材料 と水の質量比が1:1になる(含水比100%)の配合についても検討した.

ш	材料名		승규나나 10/1				
ID		材料質量 [g]	水質量 [g]	混合体積 [ml]	古小北 [70]		
a	硅砂6号	713	224	500	31		
b	フライアッシュ	472	298	500	63		
	c シリカフューム	194	413	500	213		
c		317	317	500	100		

表-4.2 サンドベッドにセットする底質模型の配合および含水比

(a) 撹拌直後

(d) 5 日後

(b) 15 時間後 (c) 40 時間後 写真-4.3 フライアッシュの撹拌後の沈降状況

写真-4.2 硅砂6号の撹拌後の沈降状況

(a) 撹拌直後

(b) 15 時間後

(e) 14 日後

4.2.4. 計測項目

計測項目は,動画撮影と画像処理による管路内の流速分布,巻き上がった底質の鉛直濃度分布, 掃流砂量・浮遊砂量とした.以下に詳細を示す.

(1) 管路内の流速分布

固定床試験のセットアップとしてサンドベッドに蓋をし、PIV (Particle Image Velocimetry; 粒子 画像流速計)で管路内の流速分布を計測した(図-4.4,写真-4.5).なお、PIVの計測時において は、写真-4.6 に示すナイロン粒子(30µm)のトレーサーを水路上流に投入して流れで分散させ、 水路の上面からレーザーシートを照射し、水路側面から高速度カメラで撮影した動画を解析した. 流速の計測位置は、図-4.5 に示す電磁流速計の設置位置とサンドベッド位置の2箇所とした.

PIV による流速の精度は、水路床から 50, 250mm の高さに水路側面から設置した電磁流速計で 計測した流速値との比較により検証した.また、水路側壁の影響を確認するため、電磁流速計の 設置位置で水路中央と側壁近く(側面から 50mm)の2測線について PIV 計測を行った.

図-4.4 PIV による流速分布の計測

写真-4.5 PIV 計測装置の設置状況(電磁流速計の設置位置)

(a) ナイロン粒子: 粒径 30µm

(b) トレーサーの作成

(c) トレーサーの投入位置写真-4.6 PIV 計測時に使用するトレーサー

(2) 巻き上がった底質の鉛直濃度分布

事前にサンドベッド下流端から 30mm 下流の位置において,鉛直方向に 25,50mm 間隔で水路 側壁から内径 φ4mm の吸引孔を 9箇所設けた(図-4.6 (a)). ここでは,内径 φ4mm,長さ 200mm のパイプを水路断面中央位置まで延ばし,外側の端部にチューブを取り付けてシリンジをセット した.各シリンジは同時に同量を引っ張り,チューブ内にある濁水を採取した(図-4.6 (b)).なお, 底質を含む濁水の採取時間については,「サンドベッド上流端での定常流が吸引孔の位置に到達後」 かつ「サンドベッド上流端での地形変化に伴う巻上げ砂が到達する前」の時間を設定した.

移動床試験のセットアップとして、サンドベッドの蓋を取り外してサンドベッドに底質模型を 敷き均した.所定の流速で流れを発生させ、上記時間において底質を含有する濁水を吸引孔から 採取した.採取された濁水は、マイクロピペット(写真-4.7(a))で定格体積 V(=8cm³)を測り採り、 定温乾燥機(写真-4.7(b))により水分を蒸発させ、乾燥後の底質材料の質量 M_s を電子天びん(写 真-4.7(c))で測った.ここで、 ρ_s は底質材料の密度、 ρ_w は水の密度とし、次式により濁水密度 ρ 、 質量濃度 C_m および体積濃度 C_v を求めた.

(a) 吸引孔設置位置: 縦断方向

(b) 底質含有水の採取: A-A 断面

図-4.6 濁水の採取方法

(3) 掃流砂量・浮遊砂量

掃流砂量・浮遊砂量については、設定流速の流れで底質を巻き上げ後に、開水路区間に流れた 底質が上流側に戻らないようシャッターを閉じ、シャッターと越流堰の間に残った砂を回収した (図-4.7). その後、回収した砂を定温乾燥炉に入れて水分を蒸発させ、電子天びんを用いて質量 を計測した.

図-4.7 掃流砂・浮遊砂の回収位置

4.2.5. 試験手順

(1) 固定床試験:流速分布の計測

移動床試験に先立ち,図-4.1のサンドベッドに蓋をした固定床試験において,津波を想定した 流速が異なる3ケースを決定した.この際,サンドベッド位置での流速分布を,PIV (Particle Image Velocimetry;粒子画像流速計)により計測した.

(2) 移動床試験:濃度・砂量の計測

サンドベッドの蓋を取り外し,表-4.1 に示す底質模型をサンドベッド内に敷き均し,(1)で決定 した所定の流速で流れを発生させた.

サンドベッドより下流位置で鉛直方向9箇所の吸引孔から,所定時間において濁水を採取した. 濁水試料はマイクロピペットで定格体積を測り採り,定温乾燥機で水分を蒸発させてから乾燥後 の底質の質量を電子天びんで測ることにより,濁水の密度や濃度の鉛直分布を求めた.掃流砂量・ 浮遊砂量については,シャッターと越流堰の間に残った砂を回収し,定温乾燥器で水分を蒸発さ せた後に砂量の質量を計測した.なお,試験中は水路側面に設置したビデオカメラにより,底質 の巻き上がり状況を記録した.

4.2.6. 試験ケース

試験ケースとして,表-4.3 に示す.なお,同一条件での試験回数は3回とし,合計60ケースを 実施した.水理試験の全ケース一覧を表-4.4,表-4.5 に示す.

種類	底質	流速	計測位置	定常状態 の継続時間	底質の 含水比	試験回数
固定床 試験	無し	3 種類	2 測線	_	_	同条件3回
移動床 試験	珪砂6号	3 種類	_	2 種類	1種類	同条件3回
	フライアッシュ	2 種類	_	1種類	1種類	同条件3回
	シリカフューム	3 種類	_	1種類	2 種類	同条件3回

表-4.3 水理試験ケースの設定

 $(3 \times 2 + 3 \times 2 \times 1 + 2 \times 1 \times 1 + 3 \times 1 \times 2) \times 3$ 回=20×3回=60ケース

No.	ケース名	試験条件 (固定床F,移動床M)	流速 (fw1, fw2, fw3)	計測位置 (中央mc,側壁ms)	試験 回数
1	F-fw1-mc-1				1
2	F-fw1-mc-2			mc	2
3	F-fw1-mc-3		frv1		3
4	F-fw1-ms-1		1w1		1
5	F-fw1-ms-2			ms	2
6	F-fw1-ms-3				3
7	F-fw2-mc-1	F	fw2	mc	1
8	F-fw2-mc-2				2
9	F-fw2-mc-3				3
10	F-fw2-ms-1	T,		ms	1
11	F-fw2-ms-2				2
12	F-fw2-ms-3				3
13	F-fw3-mc-1				1
14	F-fw3-mc-2			mc	2
15	F-fw3-mc-3		f?		3
16	F-fw3-ms-1		tw3		1
17	F-fw3-ms-2			ms	2
18	F-fw3-ms-3				3

表-4.4 水理試験ケース一覧(固定床試験)

No.	ケース名	試験条件 (固定床F,移動床M)	底質種類 (a, b, c)	流速 (fw1, fw2, fw3)	定常状態の継続 時間(長L,短S)	底質の含水比 (高h,低l)	試験 回数
19	M-a-fw1-L-1						1
20	M-a-fw1-L-2				L		2
21	M-a-fw1-L-3			£1			3
22	M-a-fw1-S-1			IWI			1
23	M-a-fw1-S-2				S		2
24	M-a-fw1-S-3						3
25	M-a-fw2-L-1						1
26	M-a-fw2-L-2				L		2
27	M-a-fw2-L-3			fur?		_	3
28	M-a-fw2-S-1		a	1W2		_	1
29	M-a-fw2-S-2				S		2
30	M-a-fw2-S-3					3	
31	M-a-fw3-L-1						1
32	M-a-fw3-L-2				L		2
33	M-a-fw3-L-3			fw3			3
34	M-a-fw3-S-1			1₩5			1
35	M-a-fw3-S-2				S		2
36	M-a-fw3-S-3						3
37	M-b-fw1-1						1
38	M-b-fw1-2			fw1			2
39	M-b-fw1-3	м	h		_	_	3
40	M-b-fw3-1	141					1
41	M-b-fw3-2			fw3			2
42	M-b-fw3-3						3
43	M-c-fw1-h-1						1
44	M-c-fw1-h-2					h	2
45	M-c-fw1-h-3			fw1			3
46	M-c-fw1-l-1			11			1
47	M-c-fw1-l-2					1	2
48	M-c-fw1-l-3						3
49	M-c-fw2-h-1						1
50	M-c-fw2-h-2					h	2
51	M-c-fw2-h-3		с	fw2	_		3
52	M-c-fw2-l-1		-				1
53	M-c-fw2-l-2					1	2
54	M-c-fw2-l-3				4		3
55	M-c-fw3-h-1						1
56	M-c-fw3-h-2					h	2
57	M-c-fw3-h-3			fw3			3
58	M-c-fw3-l-1			_			1
59	M-c-fw3-l-2					1	2
60	M-c-fw3-l-3		1				3

表-4.5 水理試験ケース一覧(移動床試験)

4.3. 固定床試験結果

4.3.1. 管路内の流速分布

本試験の流速は,fw1:1.3m/s,fw2:1.0m/s,fw3:0.8m/sの3ケースを設定した.管路内での 流速分布については,高速度カメラで撮影された画像からPIV解析を行い,図-4.8に示すように 1秒間の時間平均流速を計算し,それぞれ画像左上原点からの水平位置における鉛直分布を平均 して求めた.

電磁流速計の設置位置における中央測線での結果を図-4.9~図-4.11,電磁流速計の設置位置に おける側壁測線(側壁から50mmの位置)での結果を図-4.12~図-4.14,サンドベッド位置での中 央測線での結果を図-4.15~図-4.17 にそれぞれ示す.なお,PIV による電磁流速計の設置位置で の流速結果(図-4.9~図-4.14)については、同じ測線位置に設置した電磁流速計の結果との比較 により精度検証を行った.その結果,PIV による流速の鉛直分布と、電磁流速計の流速値が概ね 一致していることが確認できた.

各計測位置における流速の鉛直分布を比較した結果を図-4.18 に示す.水路側壁による流速への 影響については、中央測線(mc)での水路床から 50mmの流速と、側壁測線(側壁から 50mmの 位置;ms)での鉛直位置-250mmの流速がほぼ整合していることが確認できた.さらに、電磁流速 計の設置位置での中央測線(mc)とサンドベッド位置での中央測線(sc)を比較すると、サンド ベッド位置での中央測線(sc)での流速分布が若干過小であったが、概ね同程度の流速分布が得ら れた.

図-4.8 PIV による画像解析から得られた時間平均流速の鉛直分布例

図-4.9 PIV による流速の鉛直分布(fw1:1.3m/s, m:電磁流速計の設置位置, c:中央測線)

図-4.11 PIV による流速の鉛直分布(fw3:0.8m/s, m:電磁流速計の設置位置, c:中央測線)

図-4.12 PIV による流速の鉛直分布(fw1:1.3m/s, m:電磁流速計の設置位置, s: 側壁測線)

図-4.13 PIV による流速の鉛直分布(fw2:1.0m/s, m:電磁流速計の設置位置, s: 側壁測線)

図-4.15 PIV による流速の鉛直分布(fw1:1.3m/s, s:サンドベッド位置, c:中央測線)

4.3.2. 摩擦速度およびシールズ数

図-4.18 に示す流速の鉛直分布のうち,サンドベッド位置での中央測線(sc)の結果を図-4.19 に 再掲する.なお,図中の破線は,fw1~fw3の鉛直平均流速を示している.

次に,得られた流速分布から様々な方法で摩擦速度 u*を推定し,次式によりシールズ数 τ*を算 定した.

$$\tau_* = \frac{u_*^2}{sgd}$$

ここで,*s* は底質の水中比重($s = (\rho_s - \rho_w)/\rho_w$), ρ_s は底質粒子の密度, ρ_w は水の密度(=1.0 g/cm³), g は重力加速度(=9.81 m/s²), d は底質の粒子径(中央粒径 d50) である.

以降に,各種方法で推定した摩擦速度 u*およびシールズ数 t*を示す.

図-4.19 サンドベッド位置での中央測線における流速の鉛直分布

(1) Prandtl-Karman の対数分布則

高橋ら(2011)¹⁾より Prandtl-Karman の対数分布則を以下のように変形し, 摩擦速度 u*を推定した.

$$\frac{u}{u_*} = A_r + \frac{1}{\kappa} \ln \frac{z}{k}$$
$$u = \frac{u_*}{\kappa} \ln z + A \qquad \left(\because A = A_r u_* - \frac{u_*}{\kappa} \ln k \right)$$

ここで、 κ は Karman 定数 (κ =0.4)、kは相当粗度、 A_r とAは定数である. なお、Aは A_r ,u*, κ ,kに より算定される定数として整理されるため、kを設定することなく、得られた流速分布の対数近似 式から u*を推定できる.

図-4.19の流速分布を片対数グラフとして図-4.20に示す.図中には、水路床から0.1m以下に おける対数近似曲線を示しており、対数近似式の傾きは*u*_{*}/κ、切片は*A*に相当する.Prandtl-Karman の対数分布則による各底質模型の摩擦速度およびシールズ数を表-4.6に示す.ただし、これに適 用する計測結果は、底質模型に相当する底面粗度を与えた状態での計測結果を用いるべきであり、 本試験では粗度板等を設置していない(アクリル板である)ため、参考値として示す.

図-4.20 本試験で得られた流速の対数分布図

表- 4.6	Prandtl-Karman	の対数分布則によ	る摩擦速度およびシール	レズ数の推定
--------	----------------	----------	-------------	--------

流速ケース		fw1:1.3m/s	fw2:1.0m/s	fw3:0.8m/s
対数近似曲線の傾き u_*/κ		0.1304	0.0796	0.0662
摩擦速度 u* [m/s]		0.0522	0.0318	0.0265
SA JUT **	硅砂6号	0.54	0.20	0.14
	フライアッシュ	38	14	10
τ∗ [-]	シリカフューム	408	152	105

(2) 粗面乱流の抵抗則

小林ら(1996)²⁾および藤井ら(1998)³⁾より, 平均流速を用いて次式の粗面乱流に対する抵抗則から 摩擦速度 *u**を推定した.

$$\frac{u^*}{\bar{u}} = \frac{\kappa}{\ln(h/z_0) - 1}$$

ここで、 \bar{u} は鉛直平均流速、 κ は Karman 定数 (κ =0.4)、hは水深 (h=0.25m; 水路高 0.5m の半分)、 z_0 は粗度高さ ($z_0=k_s/30$)、 k_s は相当粗度である.ここで、小林ら(1996)²⁾は移動床の効果を考慮して $k_s=5\tau * d$ (Wilson・Nnadi, 1992) ⁴⁾を用いており、藤井ら(1998)³⁾は $k_s=d$ としている.なお、dは底質 の粒子径 (中央粒径 d50) である.

粗面乱流の抵抗則による各底質模型の摩擦速度およびシールズ数について,相当粗度 k_s=5τ*dの場合を表-4.7, k_s=dの場合を表-4.8 に示す.

流速ケース		fw1:1.3m/s	fw2:1.0m/s	fw3:0.8m/s	
鉛直平均流速 $ar{u}$ [m/s]		1.201 0.947		0.724	
摩擦速度 u* [m/s]	硅砂6号	0.0619	0.0452	0.0319	
	フライアッシュ	0.0643	0.0467	0.0329	
	シリカフューム	0.0650	0.0472	0.0332	
シールズ数 マ* [-]	硅砂6号	0.75	0.40	0.20	
	フライアッシュ	58	31	15	
	シリカフューム	633	334	165	

表-4.7 粗面乱流の抵抗則による摩擦速度およびシールズ数の推定(k_s=5_{T*d}の場合)

表-4.8 粗面乱流の抵抗則による摩擦速度およびシールズ数の推定(k_s=dの場合)

流退	をケース	fw1:1.3m/s	fw2:1.0m/s	fw3:0.8m/s	
鉛直平均流速 $ar{u}$ [m/s]		1.201	0.947	0.724	
麻坡油由	硅砂6号	0.0529	0.0417	0.0319	
摩僚速度 u* [m/s]	フライアッシュ	0.0366	0.0288	0.0220	
	シリカフューム	0.0311	0.0245	0.0188	
シールズ数 _{7*} [-]	硅砂6号	0.55	0.34	0.20	
	フライアッシュ	19	12	7	
	シリカフューム	145	90	53	

(3) マニング則

マニングの式から動水勾配 i を算定し、平均流速を用いて次式により摩擦速度 u*を推定した.

$$u_* = \sqrt{gRi}$$
$$i = \left(n\bar{u}R^{-2/3}\right)^2$$

ここで, g は重力加速度(=9.81 m/s²), R は径深(=断面積 A/潤辺 S = 0.0714 m), n はマニングの 粗度係数(底質模型の中央粒径を絶対粗度とし,表-4.9 から内挿/外挿), ūは鉛直平均流速である. マニング則による各底質模型の摩擦速度およびシールズ数を表-4.10 に示す.

表-4.9 絶対粗度に応じたマニングの粗度係数(水理公式集 2018 年版)5)

表 4-3.2 流量式の係数*					
絶対粗度 (m)	$C_{\scriptscriptstyle H}$	C_r	n _M		
1×10-6	150.9	34.44	0.00983		
2×10 ⁻⁶	150.8	34.41	0.00984		
5×10 ⁻⁶	150.4	34.31	0.00986		
1×10 ⁻⁵	149.7	34.16	0.00990		
2×10 ⁻⁵	148.4	33.88	0.00997		
5×10 ⁻⁵	145.2	33.17	0.01017		
1×10^{-4}	141.1	32.26	0.01044		
2×10 ⁻⁴	135.2	30.96	0.01085		
5×10^{-4}	124.8	28.66	0.01168		
1×10 ⁻³	115.3	26.57	0.01258		
2×10 ⁻³	104.9	24.27	0.01374		
5×10 ⁻³	90.5	21.07	0.01578		
1×10 ⁻²	79.4	18.58	0.01787		

*:太字は適用範囲を示す.

表-4.10 マニング則による摩擦速度およびシールズ数の推定

流退	をケース	fw1:1.3m/s	fw2:1.0m/s	fw3:0.8m/s	
鉛直平均流速 \bar{u} [m/s]		1.201	0.947	0.724	
マニングの粗度係数 n [m ^{-1/3} s]		0.01117 0.00986		0.00983	
動水勾配 i[-]		0.0061	0.0061 0.0029		
摩擦速度 u* [m/s]		0.0652 0.0454		0.0346	
シャールブ米	硅砂6号	0.84	0.41	0.24	
∇=¬ν∧ ₅ χ τ∗ [-]	フライアッシュ	60	29	17	
	シリカフューム	637	309	180	

(4) まとめ

各方法による摩擦速度 u*およびシールズ数 t*の推定結果を表-4.11 に示す.

底質種類		推定方法		摩擦速度 u* [m/s]			シールズ数 τ* [-]		
				fw1	fw2	fw3	fw1	fw2	fw3
a	硅砂 6 号	Prandtl-Karman 対数則		0.0522	0.0318	0.0265	0.54	0.20	0.14
		粗面乱流	$k=5\tau^*d$	0.0619	0.0452	0.0319	0.75	0.40	0.20
		の抵抗則	k=d	0.0529	0.0417	0.0319	0.55	0.34	0.20
		マニング則		0.0652	0.0454	0.0346	0.84	0.41	0.24
	フライアッシュ	Prandtl-Karman 対数則		0.0522	0.0318	0.0265	38	14	10
b		粗面乱流	$k=5\tau^*d$	0.0643	0.0467	0.0329	58	31	15
		の抵抗則	k=d	0.0366	0.0288	0.0220	19	12	7
		マニング則		0.0652	0.0454	0.0346	60	29	17
с	シリカフューム	Prandtl-Karman 対数則		0.0522	0.0318	0.0265	408	152	105
		粗面乱流	$k=5\tau^*d$	0.0650	0.0472	0.0332	633	334	165
		の抵抗則	k=d	0.0311	0.0245	0.0188	145	90	53
		マニング則		0.0652	0.0454	0.0346	637	309	180

表-4.11 摩擦速度およびシールズ数の推定結果

参考文献

- 1) 高橋智幸,黒川貴博,藤田将孝,島田広昭:津波による土砂移動の粒径依存性に関する水理 実験,土木学会論文集 B2(海岸工学), Vol.67, No.2, pp.231-235, 2011.
- 小林昭男,織田幸伸,東江隆夫,高尾誠,藤井直樹:津波による砂移動に関する研究,海岸工 学論文集,第43巻, pp.691-695, 1996.
- 3) 藤井直樹, 大森政則, 高尾誠, 金山進, 大谷英夫: 津波による海底地形変化に関する研究, 海 岸工学論文集, 第45巻, pp.376-380, 1998.
- 4) Wilson, K. C., F. N. Nnadi: Motion of mobile beds at high shear stress, Proc. 23rd Int. Conf. on Coastal Eng., pp.2917-2925, 1992.
- 5) 土木学会水工学委員会:水理公式集 [2018 年版], 丸善出版, p.506, 2018.

4.4. 移動床試験結果

4.4.1. 底質模型の特性

移動床試験の実施に先立ち,底質模型の特性を以下の通り確認した.なお,現地調査において, 川崎港京浜運河の地点 A1 および A2 で採取された底質の分析結果と比較した.

(1) 粒度分布

水理試験に使用した底質模型および現地調査で採取した底質の粒度分布を図-4.21,中央粒径 d50を表-4.12に示す.なお,現地調査で採取された底質は,海底表層20cm分のサンプルを対象 としたため,ヘドロだけでなく粘土や砂などを含む粒度分布と考えられる.

図-4.21 底質模型の粒径加積曲線

底質種類	中央粒径 d50 [µm]
硅砂6号	314
フライアッシュ	5.43
シリカフューム	0.540
川崎港京浜運河 A1	13.6
川崎港京浜運河 A2	25.2

表-4.12 底質模型の中央粒径と現地調査結果との比較
水理試験に使用した底質模型および現地調査で採取した底質の比重を表-4.13に示す.

底質種類	比重 [-]
硅砂6号	2.65
フライアッシュ	2.34
シリカフューム	2.26
川崎港京浜運河 A1	2.54
川崎港京浜運河 A2	2.51

表-4.13 底質模型の比重と現地調査結果との比較

(3) 含水比

水理試験に使用した底質模型および現地調査で採取した底質の含水比を表-4.14に示す.

底質種類	含水比 [%]
硅砂 6 号	31
フライアッシュ	63
シリカフューム	213
川崎港京浜運河 A1	304
川崎港京浜運河 A2	139

表-4.14 底質模型の含水比と現地調査結果との比較

(4) 粘性

水理試験に使用した底質模型のうち、フライアッシュ(含水比 w=63%) とシリカフューム(含水比 w=213%、100%) について、Thermo Scientific 社製の HAAKE Viscotester iQ Air レオメーター (写真-4.8)を使用し、二重円筒型粘度計により粘性を確認した.

せん断速度と粘度 η ・せん断応力 τ の関係,粘度 η とせん断応力 τ の関係を図-4.22~図-4.24 に 示す. 同図より,せん断速度に対する粘度 η とせん断応力 τ の傾向から,いずれも非ニュートン 流体のうちビンガム(塑性)流体の特徴を示していることを確認した.

写真-4.8 二重円筒型粘度計による底質模型の粘性確認

図-4.22 底質模型の粘性分析結果(底質 b:フライアッシュ,含水比:63%)

図-4.23 底質模型の粘性分析結果(底質 c:シリカフューム,含水比 h:213%)

図-4.24 底質模型の粘性分析結果(底質 c:シリカフューム,含水比1:100%)

4.4.2. 流速の再現性確認

移動床試験では、巻上げられた底質により電磁流速計を用いた計測ができないため、管路区間の上流に設置した超音波流量計(写真-4.9参照)により流量を計測し、流量計設置位置(内径 φ 202mm)での断面平均流速を確認した.全試験ケース(固定床試験,移動床試験)における超音波流量計での流速の平均値および標準偏差は表-4.15となり、流速のばらつきを正規分布で表すと図-4.25となった.これらの結果から、標準偏差は平均流速の1%程度であり、固定床試験と同じ設定流速(fw1~fw3)で移動床試験を実施できていたと判断できる.

写真-4.9 超音波流量計の設置状況

海海をいって	超音波流量計による流速 [m/s]		
加速クース	平均值	標準偏差	
fw1:1.3m/s	3.485	0.0378	
fw2:1.0m/s	2.730	0.0280	
fw3:0.8m/s	2.140	0.0298	

表-4.15 超音波流量計による流速の平均値および標準偏差

図-4.25 超音波流量計による流速の正規分布

4.4.3. 巻き上がった底質の鉛直濃度分布

水理試験に使用した底質模型のうち硅砂6号については、写真-4.10に示すように全てのケース において吸引孔最下部(水路床から50mm上方)よりも低い位置で砂が移動していたことから、 底質を含む濁水の採取ができなかった.そのため、本試験ではフライアッシュおよびシリカフュ ームのみを対象とし、巻き上がった底質の鉛直濃度分布を計測した.

底質模型を含む濁水の採取時間については、水路側面から撮影された映像から「サンドベッド 上流端での地形変化に伴う巻上げ砂が到達する前の時間」を確認したうえで、固定床試験で計測 された電磁流速計による流速の時系列から「サンドベッド上流端での定常流が吸引孔の位置に到 達した後の時間」を設定した(図-4.26).また、シリカフュームの含水比 213%のケースについて は、写真-4.11に示すように 2 層流となり、サンドベッド上流側の濃度が薄くなったため、濁水の 採取時間を他のケースよりも早い時間に設定した(図-4.27).

濁水密度・質量濃度・体積濃度の鉛直分布について、フライアッシュの結果を図-4.28、シリカフュームの含水比 213%の結果を図-4.29、含水比 100%の結果を図-4.30 に示す. なお、図中の赤破線は、サンドベッドにセットした底質模型の濁水密度・質量濃度・体積濃度を示している.

写真-4.10 硅砂 6 号における移動床試験の状況(流速 fw1:1.3m/s)

写真-4.11 シリカフュームにおける移動床試験の状況(流速 fw1:1.3m/s, 含水比 h:213%)

図-4.26 濁水試料の採取時間(シリカフューム、含水比 213%除く)

図-4.27 濁水試料の採取時間(シリカフューム,含水比213%)

図-4.28 濁水密度・質量濃度・体積濃度の鉛直分布(底質 b:フライアッシュ,含水比:63%)

図-4.29 濁水密度・質量濃度・体積濃度の鉛直分布(底質 c:シリカフューム,含水比 h:213%)

図-4.30 濁水密度・質量濃度・体積濃度の鉛直分布(底質 c:シリカフューム,含水比 l:100%)

巻き上がった底質の鉛直濃度分布を,次式の指数関数を用いて近似して推定した.

$$C(Z) = C_b exp[-A(Z - Z_0)]$$

ここで、C(Z)は体積濃度の鉛直分布、 C_b は底面濃度、Aは係数、Zは水路床からの高さ、 Z_0 は底面 濃度の初期高さである.

巻き上がった底質の体積濃度について,最小二乗法により C_b, A, Z₀を表-4.16の通り設定し, 鉛直分布を推定した.フライアッシュの推定結果を図-4.31,シリカフュームでの含水比 213%の 推定結果を図-4.32,含水比 100%の推定結果を図-4.33 に示す.ここで,図中の赤破線は,サンド ベッドにセットした底質模型の体積濃度を示し,巻き上がった底質の体積濃度の上限値とした.

皮质性型	含水比	流速	底面濃度	係数	底面濃度の初期高さ
広員快 空	w [%]	ケース	<i>C</i> _b [%]	A [-]	Z_0 [mm]
フライアッシュ	63	fw1:1.3m/s	24.0	0.0473	15.2
		fw3:0.8m/s	1.35	0.0462	0.0
シリカフューム	213	fw1:1.3m/s	17.0	0.0586	46.3
		fw2:1.0m/s	17.0	0.0362	46.4
		fw3:0.8m/s	17.0	0.0232	50.1
	100	fw1:1.3m/s	0.530	0.0431	0.0
		fw2:1.0m/s	0.015	0.0009	0.0
		fw3:0.8m/s	0.015	0.0026	0.0

表-4.16 最小二乗法による巻き上がった底質の鉛直濃度分布の推定

図-4.31 巻き上がった底質の推定鉛直濃度分布(底質 b:フライアッシュ,含水比:63%)

図-4.32 巻き上がった底質の推定鉛直濃度分布(底質 c:シリカフューム,含水比 h:213%)

4.4.4. 掃流砂量および浮遊砂量

水理試験に使用した底質模型のうち, 硅砂 6 号における掃流砂量・浮遊砂量の結果を表-4.17 に 示す. なお, 表中の単位時間当たりの砂量 Q [cm³/s]は, 定常状態の継続時間ごとの平均砂量の差 を単位時間当たりとし, 硅砂 6 号の粒子密度 2.65 g/cm³を除すことで算定した.

		定常状態の	掃流砂量·浮遊砂量			
ケース名	流速ケース	継続時間	各ケース	平均	差	単位時間当たりの砂量
		[s]	[g]	[g]	[g]	$Q [\mathrm{cm}^{3}/\mathrm{s}]$
M-a-fw1-L-1		7	534.53			
M-a-fw1-L-2		7	590.16	592.81		
M-a-fw1-L-3	$f_{11} = \frac{1}{2} m/c$	7	653.75		146	20
M-a-fw1-s-1	1w1:1.3m/s	5	477.43		140	20
M-a-fw1-s-2		5	430.90	446.85		
M-a-fw1-s-3		5	432.21			
M-a-fw2-L-1		7	137.32			
M-a-fw2-L-2		7	150.80	152.34		
M-a-fw2-L-3	fw2:1.0m/s	7	168.89	92.66	60	11
M-a-fw2-s-1		5	94.98			11
M-a-fw2-s-2		5	84.75			
M-a-fw2-s-3		5	98.25			
M-a-fw3-L-1		8	25.97			
M-a-fw3-L-2		8	38.59	33.32		
M-a-fw3-L-3	fw2:0.8m/a	8	35.41		12	2
M-a-fw3-s-1	1W3.0.0111/S	5	17.67		15	Δ
M-a-fw3-s-2		5	22.74	20.22		
M-a-fw3-s-3		5	20.24			

表-4.17 硅砂6号における掃流砂量および浮遊砂量

表-4.17の結果について、以下の既往算定式による流砂量の評価値と比較した.

既往算定式のうち小林ら(1996)¹⁾は、水理実験との比較により、以下の流砂量式を提案している.

$$q = 30\tau_*^{1.5}\sqrt{sgd^3}$$

ここで、qは単位幅・単位時間当たりの流砂量[cm²/s]、 τ *は粗面乱流の抵抗則(相当粗度 $k_s=5\tau$ *d) によるシールズ数、sは底質の水中比重、gは重力加速度(=981 cm/s²)、dは底質の粒子径(中央 粒径 d50)[cm]である.また、藤井ら(1998)²は、水理実験との比較により、以下の流砂量式を提案 している.

$q = 58\tau_*^{1.5}\sqrt{sgd^3}$

ここで, τ*は粗面乱流の抵抗則(相当粗度 k_s=d)によるシールズ数である.

単位時間当たりの砂量 Qは、下式で算定した.

Q = qB

ここで, B は水路幅 (=20 cm) である.

一方,高橋ら(1999)³⁾は,水理実験との比較により,以下の掃流砂量および浮遊砂量の算定式を 提案している.

$$q_b = 21\tau_*^{1.5}\sqrt{sgd^3}$$
$$q_{rise} = 0.012\tau_*^2\sqrt{sgd}$$

ここで、 q_b は単位幅・単位時間当たりの掃流砂量[cm²/s]、 q_{rise} は単位面積・単位時間当たりの浮遊 砂量[cm/s]、 τ *はマニング則によるシールズ数である.また、池野ら(2009)⁴は、水理実験との比較 により、以下の掃流砂量および浮遊砂量の算定式を提案している.

$$q_b = 17\tau_*^{1.5} \left(1 - \frac{\tau_{*c}}{\tau_*}\right) \left(1 - \frac{u_{b*c}}{u_{b*}}\right) \sqrt{sgd^3}$$
$$q_{rise} = 0.15 (\nu^2/sgd^3)^{0.2} \left\{ \left(w_s/\sqrt{sgd}\right)^{0.8} (\tau_* - \tau_{*c}) \right\}^2 \sqrt{sgd}$$

ここで、 τ *は粗面乱流の抵抗則(相当粗度 $k_s=d$)によるシールズ数、 τ *cは限界シールズ数、 u_{b*c} は 岩垣(1956)⁵⁾による限界摩擦速度[cm/s]、 u_{b*} は摩擦速度[cm/s]、vは動粘性係数[cm^{2/}s]、 w_s は Rubey(1933)⁶による下式から推定された沈降速度[cm/s]である.

$$w_s = \sqrt{\frac{2}{3}sgd + \frac{36\nu^2}{d^2} - \frac{6\nu}{d}}$$

単位時間当たりの砂量 Qは、下式で算定した.

$$Q = q_b B + q_{rise} BL$$

ここで、Lはサンドベッド区間の長さ(=250 cm)である.

以上の既往算定式による流砂量の評価値と本試験結果の比較を表-4.18 に示す.同表より,既往 算定式を用いて本試験の流砂量を推定すると,過大評価の傾向にあることが分かった.ただし, それぞれの既往算定式の基本となる水理実験は,本試験と装置や条件等が異なり,また本試験に おける砂を対象とした試験ケースが限られることから,今回の比較結果は参考とする.

шњ	匹 沿答 字了	シールズ数	流速	砂量
山央	机任券定入	τ ∗ [-]	ケース	<i>Q</i> [cm ³ /s]
卡沙胶			fw1:1.3m/s	28
本武俠	_	_	fw2:1.0m/s	11
而不			fw3:0.8m/s	2
小社合	20.15	粗面乱流の抵抗則	fw1:1.3m/s	88
(1006)1)	$q = 30\tau_*^{-\infty}\sqrt{sga^3}$	$[k_s=5\tau*d]$	fw2:1.0m/s	34
(1990)	Q = Q D	(表- 4.7)	fw3:0.8m/s	12
藤井さ	22.15	粗面乱流の抵抗則	fw1:1.3m/s	106
膝开り (1008)2)	$q = 80\tau_*^{-3}\sqrt{sgd^3}$	$[k_s=d]$	fw2:1.0m/s	52
(1998)-/	Q = Q D	(表-4.8)	fw3:0.8m/s	23
古场心	$q_b = 21\tau_*^{1.5}\sqrt{sgd^3}$	マーング印	fw1:1.3m/s	371
同間り	$q_{rise} = 0.012 \tau_*^2 \sqrt{sgd}$	(圭 4 10)	fw2:1.0m/s	95
(1999)**	$Q = q_b B + q_{rise} B L$	(衣-4.10)	fw3:0.8m/s	35
	$q_b = 17 au_*^{1.5} \left(1 - rac{ au_{*c}}{ au_*} ight) \left(1 - rac{u_{b*c}}{u_{b*}} ight) \sqrt{sgd^3}$	粗面乱流の抵抗則	fw1:1.3m/s	106
池野ら (2009) ⁴⁾	$q_{rise} = 0.15 (v^2/sgd^3)^{0.2} \left\{ \left(w_s / \sqrt{sgd} \right)^{0.8} (\tau_* - \tau_{*c}) \right\}^2 \sqrt{sgd}$	$[k_s=d]$	fw2:1.0m/s	23
	$Q = q_b B + q_{rise} BL$	(衣-4.8)	fw3:0.8m/s	1

表-4.18 本試験結果と既往算定式による砂量の比較

参考文献

- 小林昭男,織田幸伸,東江隆夫,高尾誠,藤井直樹:津波による砂移動に関する研究,海岸工 学論文集,第43巻, pp.691-695, 1996.
- 2) 藤井直樹, 大森政則, 高尾誠, 金山進, 大谷英夫: 津波による海底地形変化に関する研究, 海 岸工学論文集, 第 45 巻, pp.376-380, 1998.
- 3) 高橋智幸,首藤伸夫,今村文彦,浅井大輔:掃流砂層・浮遊砂層間の交換砂量を考慮した津 波移動床モデルの開発,海岸工学論文集,第46巻,pp.606-610,1999.
- 池野正明,吉井匠,松山昌史,藤井直樹:津波による砂移動量実験と浮遊砂巻上量式の提案, 電力中央研究所報告,研究報告: V08064, 2009.
- 5) 岩垣雄一:限界掃流力に関する基礎的研究(I)限界掃流力の流体力学的研究,土木学会論 文集第41号,昭和31年12月.
- Rubey, W. W.: Settling velocities of gravel, sand, and silt particles, American Journal of Science, Vol. 25, pp. 325-338, 1933.

5. まとめ

本事業では、海底に堆積した底質(土砂やヘドロなど)を含有した津波(以降、黒津波とする) に関する既往文献を調査して整理し、有識者へのヒアリングを実施した.また、実海域の底質を サンプリングして性状を分析・整理するとともに、底質の巻き上げに関する水理試験を実施する ことにより、黒津波の性状や発生条件等に係る知見を拡充した.本事業で得られた結果を以下に まとめる.

知見調査

- ✓ 知見調査では、黒津波に関する既往文献について、現地調査・水理試験・数値解析の項目 に分類して整理した。
- ✓ 現地調査では、東日本大震災後において陸上でヘドロなど津波堆積物の分布状況が確認され、pH,有機体炭素、金属類、イオン濃度等を分析した結果などが報告されていた.また、 宮城県の湾内において津波前後の水深や底泥の粒度分布・強熱減量等が比較されており、 津波による底質移動の影響が確認できた.
- ✓ 水理試験では、現状として黒津波を直接的に対象とした研究は限られており、その多くが 比較的粒径の大きな土砂の移動を対象としたものであった.津波による土砂移動と黒津波 では、共通点はあるものの、底質の巻き上がり状況や濁水の濃度変化に伴う密度や粘性等 の特性が異なる現象と考えられる.
- ✓ 数値解析では、津波による土砂移動モデルを適用した平面2次元解析が実務で多く用いられているが、黒津波を対象とした場合には底質の巻き上がりによる津波の密度や粘性等の変化を考慮したCFDなどの3次元解析による検証が必要となる.
- ✓ 2名の有識者にヒアリングを行い、助言を頂いた.

現地調査

- ✓ 現地調査では、都市部の港湾及び水路、生活圏の河口近傍の2箇所において、海底に堆積 した底質を採取し、粒度分布・比重・組成等を分析した。
- ✓ 都市部の港湾及び水路として川崎港京浜運河を調査した結果,流れがほとんど無いような 閉鎖性水域において厚さ 50cm 程度のヘドロを含む底泥層が確認された.一方,外海からの 波が浸入して流れがある場所では,数 cm の浮泥の下が砂層となっていた.
- ✓ 生活圏の河口近傍として久慈川河口付近海域を調査した結果,全体的にヘドロは見られず, 砂層がほとんどであった.

水理試験

- ✓ 水理試験では、管路区間および開水路区間を有する2次元水槽を用い、管路区間のサンド ベッドに設置した底質を、津波を模した流れにより巻き上げた.
- ✓ 底質模型には、硅砂 6 号 (中央粒径 345µm, 比重 2.65), フライアッシュ (中央粒径 5.43µm, 比重 2.34), シリカフューム (中央粒径 0.54µm, 比重 2.26)を使用した. なお、シリカフュ ームについては、含水比を 2 種類設定した.

- ✓ 津波を模した流れとして,流速を 1.3, 1.0, 0.8 m/s の 3 ケースを設定した.
- ✓ サンドベッドに蓋をした固定床試験では、PIV (Particle Image Velocimetry) により管路内の 流速分布を計測し、様々な方法で摩擦速度およびシールズ数を推定した.ただし、本試験 の流速分布は、アクリル製の水路底板上の結果であるため、底質模型上における摩擦速度 の適切な評価には、今後、追加実験等により再検討する必要がある.
- ✓ 蓋を取り外して底質を敷き均した移動床試験では、サンドベッドより下流の位置において 水槽側壁から鉛直方向9箇所に設けた吸引孔により、巻き上がった底質を含む濁水を水路 断面中央で吸い込み採取した.底質模型は、フライアッシュとシリカフュームを対象とし、 濁水密度・質量濃度・体積濃度を確認した.
- ✓ 含水比の高いシリカフュームのケースでは、流れによって底質が巻き上がるよりもむしろ 水よりも比重の大きな流体のように挙動しており、二層流のような状態で流下した.一方、 含水比の低いシリカフュームのケースでは、流体のような挙動はせず、一般的な土砂移動 と同様、表層部分が巻き上がる挙動をしていた.
- ✓ 上記のように底質の流動化が生じる要因としては、含水比が高くなることで底質のせん断 抵抗が小さくなっていることが挙げられる.水の流れにより、底質のせん断抵抗を超える せん断力が底質内に生じ、流体のような挙動で流下すると考えられる.ただし、含水比の 影響による底質の物性や挙動の変化については、比重などの他の要因も考えられるため、 せん断抵抗が支配的であるかどうかについては、さらに検討する必要がある.
- ✓ 一般に、土砂のせん断抵抗は、底質の粒径や比重に依存するが、粒径がより細かい場合に は底質の含水比(粘度)も影響すると考えられる.しかし、本試験ではケース数が限られ ているため、その関係性を定量的に評価するためには、粒径・比重・含水比等を変化させ たパラメータスタディによる追加検討が必要である.
- ✓ 本試験の範囲では、底質の流下および巻き上がり等により、水路上端部分まで濃度が上昇 する現象は確認されなかった.実際の黒津波の現象では、水面部分まで濁りが達している と考えられるが、これには砕波や平面方向の地形変化など鉛直方向の拡散を促進する効果 を考慮する必要があると考えられる.
- ✓ 硅砂 6 号については、掃流砂量および浮遊砂量を計測し、既往算定式による流砂量と比較した。その結果、本試験による結果に比べて、既往算定式の流砂量が過大評価となった。 ただし、既往算定式の基本となる水理実験は、本試験と装置や条件等が異なり、また本試験での砂を対象とした試験ケースが限られるため、今回の比較結果は参考とする。

5-2

巻末資料

現地調査補足資料

以下の内容について,資料を添付する.

- (1) 作業写真集(川崎港京浜運河)
- (2) 作業写真集(久慈川河口付近海域)
- (3) 試験分析報告書

(1) 作業写真集

(川崎港京浜運河)

No. 1 川崎港京浜運河 作業前打合せ

撮影日:2021年12月20日

No. 2 川崎港京浜運河 地点 A1 周辺状況

撮影日:2021年12月20日

No. 3

川崎港京浜運河 St. Che 地点 A1 周辺状況 海底表層にある底質の潜水採取 業務名称 川崎港京浜運河 地点 A1 潜水作業 作業名 令和 3年 12月 20日 年月日 大成建設(株) 発 注 者 海洋エンジニアリング株式会社 受注者

No. 4 川崎港京浜運河 地点 A1 周辺状況

撮影日:2021年12月20日

海底表層にある底質の潜水採取

令和 3年 12月 20日 大成建設(株)

|崎港京浜運河 地点 A1 潜水作業

業務名称

注 者

No. 5 川崎港京浜運河 地点 A1 周辺状況

撮影日:2021年12月20日

川崎港京浜運河 地点 A1 柱状採泥用コア

No. 6

No.	7	
川崎	i港京浜運	可
地点	i A1	
潜水	士入水	

撮影日:2021年12月20日

No. 8 川崎港京浜運河 地点A1 海底状況 撮影日:2021年12月20日

<u>№.9</u> 川崎港京浜運河 地点A1 海底状況

No. 10
川崎港京浜運河
地点 A1
海底状況
撮影日:2021年12月20日

川崎港京浜運河

地点A1

採泥作業

撮影日:2021年12月20日

No. 12 川崎港京浜運河 地点A1 コアサンプル

No. 13 川崎港京浜運河 **地点**A1 コアサンプル

撮影日:2021年12月20日

No. 14
川崎港京浜運河
地点A1
分析用サンプル
撮影日:2021年12月21日

<u>№</u>.15 <u>川崎港京浜運河</u> <u>地点A2</u> 周辺状況

No. 16 川崎港京浜運河 地点A2 周辺状況

撮影日:2021年12月20日

No. 17

川崎港京浜運河 地点A2 周辺状況

撮影日:2021年12月20日

No. 18 川崎港京浜運河 地点A2 潜水士入水

No. 20
川崎港京浜運河
地点 A2
海底状況
撮影日:2021年12月20日

川崎港京浜運河 地点A2 採泥作業

撮影日:2021年12月20日

No. 23
川崎港京浜運河
地点 A2
コアサンプル
撮影日:2021年12月20日

<u>No. 24</u> 川崎港京浜運河 地点A2 コアサンプル

<u>N₀. 25</u>
川崎港京浜運河
地点 A2
分析用サンプル
撮影日:2021年12月21日

川崎港京浜運河

<u>地点</u>B1

周辺状況

撮影日:2021年12月20日

No. 27 川崎港京浜運河 **地点**B1 周辺状況

川崎港京浜運河

地点B1

周辺状況

撮影日:2021年12月20日

No. 29

川崎港京浜運河

地点B1

海底状況

No. 31 川崎港京浜運河 **地点**B1 海底状況 撮影日:2021年12月20日

川崎港京浜運河 地点B1 採泥作業 撮影日:2021年12月20日

No. 33 川崎港京浜運河 **地点**B1 <u>コアサンプル</u>

No. 34
川崎港京浜運河
<u>地点B1</u>
コアサンプル
撮影日:2021年12月20日
No. 35
川崎港京浜運河
<u>地点B1</u>
<u>地点B1</u> コアサンプル
<u>地点B1</u> コアサンプル
<u>地点B1</u> コアサンプル
<u>地点B1</u> <u>コアサンプル</u>
<u>地点B1</u> <u>コアサンプル</u>
<u>地点B1</u> コアサンプル
<u>地点B1</u> コアサンプル
<u>地点B1</u> コアサンプル

No. 36 川崎港京浜運河 **地点**B1 分析用サンプル 撮影日:2021年12月21日

川崎港京浜運河

地点B2

周辺状況

撮影日:2021年12月20日

No. 38

<u>川崎港京浜運河</u> <u>地点B2</u> 周辺状況

撮影日:2021年12月20日

<u>No. 40</u>
川崎港京浜運河
地点 B2
海底状況
撮影日:2021年12月20日

No. 41
川崎港京浜運河
地点 B2
海底状況
撮影日:2021年12月20日

No. 43
川崎港京浜運河
<u>地点B2</u>
コアサンプル
撮影日:2021年12月20日

I.

L

ľ

r,

<u>№. 44</u> <u>川崎港京浜運河</u> <u>地点B2</u> <u>コアサンプル</u>

撮影日:2021年12月20日

No. 45 川崎港京浜運河 地点B2 コアサンプル

No. 46
川崎港京浜運河
<u>地点B2</u>
分析用サンプル
撮影日:2021年12月21日

川崎港京浜運河

地点C

周辺状況

撮影日:2021年12月20日

No. 48 川崎港京浜運河 周辺状況

No. 49

川崎港京浜運河

地点C

周辺状況

撮影日:2021年12月20日

No. 50

川崎港京浜運河

地点C

<u>海底状</u>況

撮影日:2021年12月20日

<u>No. 51</u> 川崎港京浜運河 地点C 周辺状況

No. 53

川崎港京浜運河

地点C

採泥作業

撮影日:2021年12月20日

No. 54 川崎港京浜運河 地点C コアサンプル

<u>No. 55</u> 川崎港京浜運河 地点C コアサンプル

撮影日:2021年12月20日

<u>No. 56</u> 川崎港京浜運河 地点C コアサンプル

撮影日:2021年12月20日

No. 57

川崎港京浜運河

地点C

コアサンプル

No. 58
川崎港京浜運河
地点C
分析用サンプル
撮影日:2021年12月21日

No. 59 川崎港京浜運河 対象点(地点A1近隣) 海底状況 撮影日:2021年12月20日

No. 60 川崎港京浜運河 全地点コアサンプル

(2) 作業写真集

(久慈川河口付近海域)

久慈川河口付近海域

地点A

周辺状況

撮影日:2021年12月27日

No. 2

久慈川河口付近海域 地点A

周辺状況

撮影日:2021年12月27日

No. 4 久慈川河口付近海域 地点A 海底状況

撮影日:2021年12月27日

No. 5

久慈川河口付近海域

地点A

海底状況

撮影日:2021年12月27日

久慈川河口付近海域

地点A

コアサンプル1

久慈川河口付近海域

地点A

コアサンプル1

撮影日:2021年12月27日

No. 8

久慈川河口付近海域

地点A

コアサンプル2

撮影日:2021年12月27日

久慈川河口付近海域

地点A

コアサンプル2

撮影日:2021年12月27日

No. 11

久慈川河口付近海域

地点A

分析用サンプル

撮影日:2022年1月4日

No. 12

久慈川河口付近海域

地点B1

周辺状況

No. 13 久慈川河口付近海域 地点B1 海底状況 撮影日:2021年12月27日

久慈川河口付近海域

地点B1

海底状況

撮影日:2021年12月27日

<u>No.</u> 15 <u>久慈川河口付近海域</u>

地点B1

海底状況

No.	16
1.00	

久慈川河口付近海域

地点B1

コアサンプル1

撮影日:2021年12月27日

No. 17
久慈川河口付近海域
地点B1
コアサンプル1

撮影日:2021年12月27日

No. 18

久慈川河口付近海域

地点B1

コアサンプル1

No. 19	
久慈川河口付近海域	k
地点B1	
コアサンプル1	
相影口,2021左12日27日	1
旗影日:2021年12月27日	I
No. 20	
久慈川河口付近海域	k
地点B1	
コアサンプル1	
<u> </u>	1
1取於日:2021年12月27日	I
No. 21	
久慈川河口付近海域	Ż
地点B1	
コアサンプル2	
撮影日:2021年12月27日	

地点B1 コアサンプル2 撮影日:2021年12月27日 No. 23 久慈川河口付近海域 地点B1 コアサンプル2 撮影日:2021年12月27日

撮影日:2022年1月4日

TIINININININI S**AMB**

EIZ EIZ

23

ガラス

			久慈川河口付近海域
			地点B2
			周辺状況
業務名称	海底表層にある底質の潜水採取	No.	
作業名	日立市久慈川河口付近の海域 地点 B2 潛水作業		
年月日	令和 3年 12月 27日		
帝注者	大成建設(株)		
注者	海洋エンジニアリング株式会社		

撮影日:2021年12月27日

No. 26

No. 25

久慈川河口付近海域

地点B2

周辺状況

撮影日:2021年12月27日

海底状況

久慈川河口付近海域

地点B2

海底状況

撮影日:2021年12月27日

No. 29

久慈川河口付近海域

撮影日:2021年12月27日

地点B2

コアサンプル1

No. 30 久慈川河口付近海域 . . 地点B2 2 コアサンプル1

No. 31
久慈川河口付近海域
地点B2
コアサンプル1
撮影日:2021年12月27日
No. 32
久慈川河口付近海域
地点B2
コアサンプル1
撮影日:2021年12月27日

No. 33

久慈川河口付近海域

地点B2

コアサンプル2

No. 34

久慈川河口付近海域

地点B2

コアサンプル2

撮影日:2021年12月27日

No. 35

久慈川河口付近海域

地点B2

コアサンプル2

撮影日:2021年12月27日

No. 36 久慈川河口付近海域 地点B2 分析用サンプル

撮影日:2022年1月4日

久慈川河口付近海域

地点C1

周辺状況

撮影日:2021年12月27日

No. 38

<u>久慈川河口付近海域</u> 地点C1 潜水士

撮影日:2021年12月27日

久慈川河口付近海域

地点C1

海底状況

撮影日:2021年12月27日

No. 41

久慈川河口付近海域

地点C1

採泥作業

撮影日:2021年12月27日

No. 42

久慈川河口付近海域

地点C1

コアサンプル1

久慈川河口付近海域

地点C1

コアサンプル1

撮影日:2021年12月27日

No. 44

久慈川河口付近海域

地点C1

コアサンプル1

撮影日:2021年12月27日

No. 45

久慈川河口付近海域

地点C1

コアサンプル1

E	<u> </u>

撮影日:2021年12月27日

No. 46

No. 47 久慈川河口付近海域 地点C1 コアサンプル2

撮影日:2021年12月27日

No. 48

久慈川河口付近海域

地点C1

コアサンプル2

久慈川河口付近海域

地点C1

分析用サンプル

撮影日:2022年1月4日

No. 50

久慈川河口付近海域

地点C2

周辺状況

撮影日:2021年12月27日

No. 51

久慈川河口付近海域

地点C2

周辺状況

<u>久慈川河口付近海域</u> <u>地点C2</u> 潜水士

撮影日:2021年12月27日

No. 53

久慈川河口付近海域

地点C2

海底状況

撮影日:2021年12月27日

No. 55
久慈川河口付近海域
地点C2
採泥作業
撮影日:2021年12月27日

久慈川河口付近海域

地点C2

コアサンプル1

撮影日:2021年12月27日

No. 57

久慈川河口付近海域

地点C2

コアサンプル1

88

4 3 2

久慈川河口付近海域

地点C2

コアサンプル1

撮影日:2021年12月27日

No. 59

久慈川河口付近海域

地点C2

コアサンプル2

撮影日:2021年12月27日

No. 60

久慈川河口付近海域

地点C2

コアサンプル2

No. 61

久慈川河口付近海域

地点C2

コアサンプル2

撮影日:2021年12月27日

No. 62

久慈川河口付近海域

地点C2

分析サンプル

No. 63 久慈川河口付近海域 対照地点(地点A近隣) 海底状況

No. 64 久慈川河口付近海域 対照地点(地点A近隣) 海底状況 (11) 海底状況 (11) 撮影日:2021年12月27日 (11)

No. 65

久慈川河口付近海域 対照地点(地点A近隣)

海底状況

撮影日:2021年12月27日

<u>No. 66</u> <u>久慈川河口付近海域</u> <u>対照地点(地点A近隣)</u> <u>コアサンプル</u>

<u>久慈川河口付近海域</u> <u>対照地点(地点A近隣)</u> コアサンプル

撮影日:2021年12月27日

No. 67

(3) 試験分析報告書

<u> 発行No 21124896</u>

2022年1月25日

試 験 分析報 告 書

【含有量試験】

海洋エンジニアリング株式会社 様

海底表層にある底質の分析一式

	7	帝人	エコ・セ	トイエン:	ス株ェ	代会社
		東	京都港区三	田三丁目3番	8号	
				TEL 03-	-5440-4:	301
TES	事	業所	東京都羽林	寸市神明台四	丁目8番	43号
				TEL 04:	2-530-40)30
	計	量証明]事業登録	東京都	Vo. 624	(濃度)
				東京都	Vo. 1003	(音圧)
				東京都	No. 1004	(振動)
試料受付方法	持込	Ĩ	式験責任者	若林	和也	

2021年12月22日受付の試料について試験した結果を下記のとおり 報告いたします。

	試料名称	単位	KE-A1	KE-A2	KE-B1	試験分析方法
1	粒度試験		別紙	別紙	別紙	JIS A 1204
2	比重	_	2. 542	2. 511	2. 605	ピクノメーター法
3	含水比	%	304. 40	139. 35	121. 53	JIS A 1203準拠
4	液性限界	%	157. 8	80. 5	72. 9	JIS A 1205
5	塑性限界	%	79. 1	49. 2	37. 2	JIS A 1205
6	沈降速度(遠心沈降法)	—	別紙	別紙	別紙	光透過式遠心沈降法
7	強熱減量	%	20. 19	22. 23	7. 83	JIS A 1226準拠
8	рH	рH	8. 7 (19°C)	8. 5 (19°C)	8. 4 (19°C)	底質調査方法(H24) Ⅱ4.4
9	COD	mg/g	65	69	28	底質調査方法(H24) Ⅱ4.7
10	硫化物	mg/g	2. 4	16	1. 1	底質調査方法(H24) Ⅱ4.6 よう素滴定法
11	全りん	mg/g	1. 1	0. 6	0. 6	底質調査方法(H24) II4.9 モリブデン青吸光光度法
12	全有機炭素	mg/g	80	170	19	底質調査方法(H24) Ⅱ4.10 燃焼酸化法
13	有機塩素化合物	mg/kg	<4	<4	<4	環告第13号別表第6/JIS K 0102 35.3 イオンクロマトク・ラフ法
14	鉄	mg/kg	80000	49000	36000	底質調査方法(H24) Ⅱ5.5. 4 ICP発光分析法
15	マンガン	mg/kg	880	1500	510	底質調査方法(H24) II5.6. 4 ICP発光分析法
16	銅	mg/kg	530	170	62	底質調査方法(H24) Ⅱ5.3. 4 ICP発光分析法
17	亜鉛	mg/kg	2800	6200	280	底質調査方法(H24) Ⅱ5.4. 4 ICP発光分析法
	以下余白					

<u> 発行No 21124896</u>

2022年1月25日

試験 分析報告書

【含有量試験】

海洋エンジニアリング株式会社 様

海底表層にある底質の分析一式

*	帝人	エコ・サイ	イエンス株式会社	È
	東	京都港区三田	三丁目3番8号	
			TEL 03-5440-4301	
	事業所	東京都羽村市	市神明台四丁目8番43号	
			TEL 042-530-4030	
	計量証明	月事業登録	東京都No. 624 (濃度)	
			東京都No. 1003(音圧)	
			東京都No.1004(振動)	

2021年12月22日受付の試料について試験した結果を下記のとおり 報告いたします。

試料受付方法 持込

試験責任者 若林 和也

	試料名称 試験分析項目	単位	KE-B2	KE-C		試験分析方法
1	粒度試験		別紙	別紙	······································	JIS A 1204
2	比重	_	2. 660	2. 562		ピクノメーター法
3	含水比	%	59.95	247. 25		JIS A 1203準拠
4	液性限界	%	33. 4	122. 8		JIS A 1205
5	塑性限界	%	25. 1	54. 3		JIS A 1205
6	沈降速度(遠心沈降法)		別紙	別紙		光透過式遠心沈降法
7	強熱減量	%	6. 53	13.00		JIS A 1226準拠
8	рH	pH	8. 1 (19°C)	8.2(19°C)		底質調査方法(H24) II 4.4
9	COD	mg/g	15	44		底質調査方法(H24) Ⅱ4.7
10	硫化物	mg/g	1. 4	2. 3		底質調査方法(H24) II4.6 よう素滴定法
11	全りん	mg/g	0. 7	0. 6		底質調査方法(H24) II4.9 モリブデン青吸光光度法
12	全有機炭素	mg/g	19	31		底質調査方法(H24) Ⅱ4.10 燃焼酸化法
13	有機塩素化合物	mg/kg	<4	<4		環告第13号別表第6/JIS K 0102 35.3 イオンクロマトグラフ法
14	鉃	mg/kg	34000	32000		底質調査方法(H24) Ⅱ5.5. 4 ICP発光分析法
15	マンガン	mg/kg	400	520		底質調査方法(H24) Ⅱ5.6. 4 ICP発光分析法
16	銅	mg/kg	62	120		底質調査方法(H24) Ⅱ5.3. 4 ICP発光分析法
17	亜鉛	mg/kg	670	480		底質調査方法(H24) Ⅱ5.4. 4 ICP発光分析法
	以下余白					

ページ 2/ 2

1 測定項目

粒度分布(レーザー回折・散乱法)

2 測定試料

KE-A1

KE-A2

- KE-B1
- KE-B2

KE-C

計:5検体

- 3 使用機器,測定方法,測定条件
 - 使用機器: LMS-2000e(㈱セイシン企業製)
 - 測定方法: 1.分散媒のみでブランク測定を行う。 2.分散槽に試料を適量入れる。 3.超音波分散により試料を分散させ、循環式にて粒度分布測定を行う。
 - 測定条件:測定範囲
 0.02~2000.00 µm
 使用溶剤
 イオン交換水
 超音波使用時間
 1分

4 測定結果

測定結果は別紙参照願います。

-

Laser Micron Sizer LMS-2000e

www.betterseishin.co.jp

測定番号	4585		SOP名				測定日	2022年1	月6日 14:44	:36	
ナンプル名	KE-B1		ロット番	号			測定者名	らい (株セイ	/シン企業		
分散ユニット	·名 WET	Г UNIT 2000S (/	A) 散乱引	食度 1	7.25 %		超音	波出力	0 %		
粒子名	Fraunhofe	r	粒子属	目折率	0.000	虚数部 0	为年 七 丁一	ヒナル	汎用モート		
分散媒名 モード	Water	// m	分散如	某屈折率 ₹	1.330	11 m	粒子很	圣範囲	0.020 t	o 2000.000	μm
- 1 ⁻		<i>μ</i>			40.000	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,					
農度	(0.0180 %Vol	スパン	,	7.227		均一性		2.3	36	
		d(25): 6	3.241 µn	1		d(75)	65.388	μm			
d(10):	2.612	μm		d(50):	18.035	μm		d(§	90): 132.9	9 60 μ	m
	3 🖻				粒	度 <u>分布</u> ──├┼┼┼┼		┟╋╬╅┯┯╾╋╍	╺╼╍┟╾╍╎╍╌┼╍╎╍╎╴	}	
	2.8										
	2.4										
	2.2							-			
(%)	1.8					ļ					
獚	1.4				╎┼──┤┲┛						
4	1.2										
	0.8								┓┥┥┥╢╢		
	0.6									<u>Î</u>	
	0.2										
	б. о	1	0.1		1	10		100	1	1000	
KE-B	<u>1, 202</u>	2年1月6日	14:44:36			- 佺(μm)					
	5.3UT (★猜)∝】 □ 粉子袋	(11m) [35.7()]	(休務)と		ころい下(休憩)と	数子码(//m)		(38)) 《 · · · · · · · · · · · · · · · · · ·	径(11m) ふろ (い下/休護
0.020		0.00	0.224 0.252	0.00	2.518 2.825	9.55 11.02	28.251 31.698	1	59.08 51.19	316.979 355.656	98. 98.
0.025 0.028 0.032		0.00	0.283 0.317 0.356	0.00 0.00	3.170 3.557 3.991	12.62 14.37 16.27	35,566 39,905 44,774		53.27 55.35 57.46	399.052 447.744 502.377	99. 99. 99
0.036 0.040		0.00	0.399 0.448	0.05 0.13	4.477 5.024	18.31 20.50	50.238 56.368		59.65 71.92	563.677 632.456	99. 100.
0.045 0.050 0.056		0.00	0.502	0.25	5.637 6.325 7.096	22.83 25.29 27.97	63.246 70.963 79.621		74.29 76.76	709.627 796.214 893.367	100. 100. 100
0.063		0.00	0.710	0.90	7.962 8.934	30.55 33.29	89.337	8	31.85 1 34.37 1	002.374	100.
0.080 0.089		0.00	0.893 1.002	1.64 2.12	10.024 11.247	36.09 38.90	112.468 126.191	8	36.79 1 39.05 1	261.915 415.892	100. 100.
0.100 0.112 0.126		0.00	1,125 1.262 1,416	2.68 3.34 4.09	12.619 14.159 15.887	41.70 44.45 47.14	141.589 158.866 178.250	6	91.08 1 92.86 1 94.35 2	588.656 782,502 2000.000	100. 100. 100
0.142 0.159		0.00	1.589 1.783	4.95 5.92	17.825 20.000	49.74 52.24	200.000 224.404		95.56 96.53		100.
0.178 0.200		0.00	2.000	7.00 8.21	22.440 25.179	54.62 56.90_J	251.785		97.28 97.86		
<u>子径(um)</u> 頻 0.020	度.%(体積)	<u>粒子径(um)</u> 0.142	頻序、%(体積)	<u>粒子径(um)</u> 1.002		<u>粒子径 (µm)</u> 7.096	新度。%(体 精)	<u>粒子径(µm)</u> 50.238		<u> </u>) 頻度 3
0.022 0.025	0.00 0.00 0.00	0.159 0.178	0.00	1.125	0.56 0.65 0.75	7.962 8.934	2.68 2.75 2.79	56.368 63.246	2.27 2.37 2.47	399.05 447.74	2
0.028 0.032 0.036	0.00 0.00	0.200	0.00 0.00	1.416 1.589 1.783	0.86 0.97	10.024 11.247 12.610	2.81 2.80	70.963 79.621 89.337	2.53 2.55	502.37 563.67 632.45	/ /
0.040 0.045	0.00	0.283	0.00	2.000 2.244	1.09 1.21	14.159 15.887	2.76 2.69	100.237 112.468	2.52 2.42 2.26	709.62	
0.050	0.00 0.00 0.00	0.356 0.399	0.05	2.518 2.825	1.47	17.825 20.000	2,49 2,38	126.191 141.589	2.20 2.04 1.77	893.36 1002.37	/ +
0.063 0.071 0.080	0.00	0.448 0.502 0.564	0.12	3.170 3.557 3.991	1.75 1.90	22.440 25.179 28.251	2,28 2,18	158.866 178.250 200.000	1.49 1.21	1124.68 1261.91 1415.89	
0.089 0.100	0.00 0.00 0.00	0.632 0.710	0.22 0.27 0.33	4.477 5.024	2.04 2.19 2.33	31.698 35.566	2.11 2.08 2.08	224.404 251.785	0.96 0.75 0.59	1588.650 1782.502	
0.112	0.00	0.796	0.40 0.48	5.637 6.325 7.006	2.46 2.58	39.905 44.774	2.11 2.18	282.508 316.979 355.656	0.47 0.40	2000.000	'

.

Laser Micron Sizer LMS-2000e

www.betterseishin.co.jp

測定番号	4598		SOP名				測定日	20224	年1月6日	14:56:04	4	
サンプル名	KEC		ロット番号				測定者名	る(株社	ェイシンゴ	≧業		
分散ユニ 粒子名 分散媒名 モード	ット名 WET Fraunhofe Water 12.152	r UNIT 2000S (Å r μm	A) 散乱強/ 粒子屈 分散媒/ 平均径	度 1 斤率 II.折率	7.27 % 0.000 1.330 30.782	虚数部 0 μm	超音: 解析 - 粒子 {	波出力 モデル 圣範囲	0 汎用刊 0.02	% ≘—ド 0 to	2000.000	μm
濃度	C	.0159 %Vol	スパン		5.491		均一性			1.98		
d(10): 2.448	d(25): 5 µm	5.504 μm	d(50):	12.577	d(75): µm	29.503	μm	d(90):	71.511	μm	
体積(%)	$ \begin{array}{c} 4 \\ 3.5 \\ 3 \\ 2.5 \\ 2 \\ 1.5 \\ 1 \\ 0.5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0$											
KE	-0.022	」 <u>年1月6日</u> 1	4:56:04		粒子	10 <u>径(μm)</u>		100		10	00	
<u>約子得(m</u> 0,0) 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,0 0,	m) ふるいて (20 20 22 25 28 32 36 40 45 56 56 56 56 56 56 56 56 56 56 56 56 56		(4.50.04 (4.50.04 0.222 0.222 0.252 0.252 0.317 0.356 0.399 0.448 0.632 0.564 0.632 0.710 0.706 0.883 1.002 1.125 1.262 1.416 1.589 1.783 2.000 2.244	本語) % 0.00 0.00 0.00 0.00 0.00 0.05 0.14 0.68 0.68 0.68 0.99 1.35 1.80 2.92 2.94 4.47 5.39 6.44 7.61 8.92	<u></u> 前子径(Um) 2.518 2.825 3.170 3.557 3.991 4.477 5.024 5.637 6.325 7.096 8.934 10.024 11.247 12.619 14.159 15.887 17.825 20.000 22.440 25.179	<u>5</u>	<u>勤子径(Um)</u> 28.251 31.698 35.566 39.905 44.774 50.238 56.368 63.246 70.963 79.621 89.337 100.237 112.468 126.191 141.559 158.866 178.250 200.000 224.404 251.785 282.508) 	(4.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	<u>勤子</u> 31 35 39 44 50 56 63 70 79 89 89 80 100 112 126 178 178 200	(11 m) 3.55 (1) 6.979 5.556 9.052 7.744 2.377 2.456 9.627 6.214 3.867 2.374 4.683 3.387 2.374 4.683 1.915 5.892 8.656 2.502 0.000	F (法精)% 99.02 99.27 99.49 99.70 99.97 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
<u>勤子律(µm)</u> 0.020 0.022 0.025 0.028 0.032 0.036 0.040 0.045 0.050 0.055 0.055 0.053 0.053 0.063 0.071 0.068 0.063 0.071 0.069 0.089 0.102 0.126 0.126	· 相度 %(体神) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	粒子径(北西) 地 0.142 0.159 0.159 0.178 0.200 0.224 0.252 0.283 0.317 0.356 0.399 0.448 0.502 0.584 0.632 0.710 0.766 0.893 1.002 0.293	續度 %(体積) 第 第 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.05 0.08 0.18 0.24 0.30 0.37 0.44 0.53 0.53	(子径(ルm) 1.002 1.125 1.262 1.416 1.589 1.783 2.000 2.244 2.518 2.825 3.170 3.557 3.991 4.477 5.024 5.637 6.325 7.096	/ 辅 陪 %(体精) 0.62 0.71 0.82 0.93 1.05 1.17 1.31 1.45 1.61 1.78 1.96 2.15 2.36 2.58 2.80 3.02 3.23	<u> 新子谷(//m)</u> 7.096 7.962 8.934 10.024 11.247 12.619 14.159 15.887 17.825 20.000 22.440 25.179 28.251 31.698 35.566 39.905 44.774 50.238	唐 %(本特) 3,41 3,57 3,70 3,81 3,79 3,73 3,62 3,47 3,29 3,09 2,88 2,66 2,45 2,25 2,05 1,88	<u>第7</u> 子径 (<i>μ</i>) 50.2: 56.3: 70.9: 79.6: 89.3: 100.2: 112.44 126.15 141.55 148.15 178.25 200.00 224.44 251.76 21.75 21.75 21.75 316.95 355.65	m) 447度 9 58 58 46 46 33 33 21 37 37 37 37 37 38 33 39 56 50 00 00 00 10 10 56 56 56 56 56 56 56 56	((k 78)) 1.70 1.55 1.40 1.26 1.14 1.03 0.93 0.84 0.76 0.67 0.59 0.43 0.31 0.27 0.25	<u> </u>	/ / / / / / / / / / / / / / / / / / /

•

1 測定項目

真比重測定(ピクノメーター法)

2 測定試料

KE-A1 KE-A2 KE-B1 KE-B2 KE-C

計:5検体

3 使用分散媒

水

4 測定方法

・JIS Z 8807 固体の密度及び比重の測定方法 ・JIS R 3503 化学分析用ガラス器具 上記規格に準拠

5 測定結果

測定結果は下記表の通り

	試料量(g)	真比重	測定時の水温(℃)
KE-A1	5.5020	2.542	17.5
KE-A2	10.2418	2.511	15.5
KE-B1	11.1539	2.605	16.5
KE-B2	15.0017	2.660	16.5
KE-C	5.9855	2.562	16.0

含水比測定結果

試料名		KE-A1	
皿風袋(g)	125.04	121.94	122.82
(皿+湿試)質量(g)	154.02	153.94	153.24
(皿+乾試)質量(g)	132.54	129.70	130.16
含水比(%)	286.40	312.37	314.44
平均(%)		304.40	
試料名		KE-A2	
皿風袋(g)	122.81	124.94	125.08
(皿+湿試)質量(g)	154.98	156.08	157.32
(皿+乾試)質量(g)	136.35	137.79	138.62
含水比(%)	137.59	142.33	138.11
平均(%)		139.35	
試料名		KE-B1	
皿風袋(g)	122.36	119.15	122.65
(皿+湿試)質量(g)	155.88	152.35	154.33
(皿+乾試)質量(g)	137.89	134.01	136.71
含水比(%)	115.84	123.42	125.32
平均(%)		121.53	
		KE-B2	
皿風袋(g)	125.92	125.89	121.28
(皿+湿試)質量(g)	157.07	160.79	152.18
(皿+乾試)質量(g)	145.03	147.65	141.03
含水比(%)	63.00	60.39	56.46
平均(%)		59.95	
試料名		KE-C	
皿風袋(g)	123.54	120.42	121.32
(皿+湿試)質量(g)	154.03	152.39	154.54
(皿+乾試)質量(g)	132.27	129.89	130.68
含水比(%)	249.26	237.59	254.91
平均(%)		247.25	

土質試験結果一覧表(材料)

整理年月日 2022年 1月 17日 ------

							整理担当者	宮下 晃	
ث	式 料 () ※	番	号 \	KE-A1	KE-A2	KE-B1	KE-B2	KE-C	
		ہ ج)						
_	湿 潤 光	ì 度 ρι	g/cm°						
	乾 燥 裕	È度ρd	g/cm"						
	土粒子の	密度 ρ。 	g/cm³						
	目然含2	水比加	%	 					
般	間 隙	比e							
	飽和	度 S,	%						
	石 分	(75mm	以上) %						
بليل	· · · · · · · · · · · · · · · · · · ·	$^{10}(2\sim75)$	mm) %						
型	砂 分	¹⁾ (0. 075^	~2mm) %						
	シルト分	¹⁾ (0. 005~0.	075mm) %		 +		+		
	粘土分	¹⁾ (0. 005m	1111歳) %						
	最大粒	i 径	mm						
度	均等係	数 <i>U</i> 。							
コンシ	液性限	と界 wı	%	157.8	80. 5	72.9	33.4	122.8	
ステ	塑性限	、界w,	%	79.1	49.2	37. 2	25.1	54.3	
シシー	塑性指	】数 <i>I</i> ,		78.7	31.3	35. 7	8.3	68.5	
特性									
分	地盤材料	斗の							
भूम्स	分類	_名							
·	分類記	1 号							
締	試験方	法							
固	最大乾燥	密度 pom	ax g∕cm³						
Ø	最適含な	k比 wտ	». %						
	試験方	法							
С	膨張	比 r.	%						
в	貫入試験後含	休比 W2	%						
R	平均C	BR	%				1		
IX.	%修正C	CBR	%						
						*			
д	突固め回	回数	回/層						
Ì	コーン排	旨数 <i>q</i> 。	kN/m²						
ン指数									
							+		
							+		
佐記回	 東頂						L		モ港の上船ももい
ry µLi≞	F'X						1) イ に	コガビ际いた75mm に対する百分率で	不両の工質材料 表す。

[1kN/m²≒0.0102kgf/cm²]

JIS A	1205	十の海灶限界・湖州限界対験	(試驗結里)
JGS	$0\ 1\ 4\ 1$	工切做住成外。至住限外码跌	(毗欧加木)

調查件名 物理試験

試験年月日 2022年 1月 14日

試料番号	(深さ) KE-A1		
液	性限界試験	塑性限界試験	液性限界 ω. %
落下回数	含水比 w %	含水比 w %	157.8
11	165.4	77.9	塑性限界 w, %
15	162. 7	80.0	79. 1
23	158.6	79. 5	塑性指数 I,
26	157.6		78. 7
33	155. 0		
45	152. 3		
試料番号	(深さ) KE-A2		
液	生限界試験	塑性限界試験	液性限界 ω. %
落下回数	含水比 w %	含水比 w %	80. 5
10	00.4	40.0	前外四周 … 0/

12	89.4	48. <i>L</i>	型1991107 W, /0
17	84.4	49.1	49. 2
21	82.4	50.4	塑性指数 I,
28	79. 7		31. 3
32	77.0		
41	75. 1		
試料番号	(深さ) KE-B1		

液	生限界試験	塑性限界試験	液性限界 ω」%
落下回数	含水比 w %	含水比 w %	72.9
10	86.6	36. 3	塑性限界 w,%
15	79. 2	38.5	37. 2
21	74.8	36. 9	塑性指数 1,
28	71. 1		35. 7
33	68.8		
48	64.7		

試料番号(深さ) KE-B2

液	生限界試験	塑性限界試験	液性限界 ₩∟%		
落下回数	含水比 w %	含水比 w %	33.4		
11	37.6	24. 7	塑性限界 w, %		
17	35. 0	25. 2	25. 1		
21	33. 9	25.3	塑性指数 Ⅰ,		
30	32. 4		8.3		
39	31. 7				
44	30. 7				

特記事項

JIS A 1205 JGS 0141

土の液性限界・塑性限界試験(試験結果)

調查件名 物理試験

試験年月日 2022年 1月 14日

試料番号	(深さ) KE-C		
液	生限界試験	塑性限界試験	液性限界 ω1 %
落下回数	含水比 w %	含水比 w %	122. 8
8	149. 7	54.6	塑性限界 w, %
14	136.3	53.6	54. 3
24	123. 8	54. 8	塑性指数 I,
28	119.9		68.5
36	114.6		
40	111.8		

試料番号(深さ)

液	生限界試驗	矣		塑性限	界試	験	液性限界	$w_{ extsf{L}}$	%
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	w_{P}	%
							塑性指数	$I_{\mathbf{p}}$	

試料番号 (深さ)

液	生限界試驗	矣		塑性限界試験			液性限界 ω1 %
落下回数	含水比	w	%	含水比	w	%	
							塑性限界 w, %
							塑性指数 1,

試料番号 (深さ)

液	性限界試驗	僉		塑性限界試験			液性限界	$w_{\text{\tiny L}}$	%
落下回数	含水比	w	%	含水比	w	%			
							塑性限界	$w_{\mathfrak{p}}$	%
							塑性指数	I,	
							•		
+ 記事項									

沈降速度(遠心沈降法中央粒径含む)結果一覧

ストークスの式:

V= d² (ρs-ρf)g 18μ V:沈降速度 (cm/s) d:粒子径 (cm) ρs:粒子密度 (g/cm³) ρf:液体密度 (g/cm³) g:重力加速度 (cm/s²) = 980 μ:液体の粘度 (g/cm・s)

	ρs	ρf	μ	d	V		ρs	ρf	μ	d	V
調査地点	粒子密度	液体密度	液体の粘度	粒径	沈降速度	調査地点	粒子密度	液体密度	液体の粘度	粒径	沈降速度
	g/cm ³	g/cm ³	c poise	$\mu{ m m}$	cm/s		g/cm ³	g/cm ³	c poise	$\mu{ m m}$	cm/s
KE-A1	2.542	0.999	1.111	75	0.4253	KE-A2	2.511	0.999	1.111	75	0.4168
	2.542	0.999	1.111	50	0.1890		2.511	0.999	1.111	50	0.1852
	2.542	0.999	1.111	30	0.0681		2.511	0.999	1.111	30	0.0667
	2.542	0.999	1.111	20	0.0302		2.511	0.999	1.111	20	0.0296
	2.542	0.999	1.111	15	0.0170		2.511	0.999	1.111	15	0.0167
	2.542	0.999	1.111	10	0.0076		2.511	0.999	1.111	10	0.0074
	2.542	0.999	1.111	7	0.0037		2.511	0.999	1.111	7	0.0036
	2.542	0.999	1.111	5	0.0019		2.511	0.999	1.111	5	0.0019
	2.542	0.999	1.111	3	0.00068		2.511	0.999	1.111	3	0.00067
	2.542	0.999	1.111	2	0.00030		2.511	0.999	1.111	2	0.00030
	2.542	0.999	1.111	1.5	0.00017		2.511	0.999	1.111	1.5	0.00017
	2.542	0.999	1.111	1	0.000076		2.511	0.999	1.111	1	0.00007
	2.542	0.999	1.111	0.7	0.000037		2.511	0.999	1.111	0.7	0.000036
	2.542	0.999	1.111	0.5	0.000019		2.511	0.999	1.111	0.5	0.000019
中央粒径	2 542	0.999	1 111	13 577	0.013938	中央粒径	2 5 1 1	0.999	1 111	25.15	0.046867
遠心沈降法	21012	0.777		101077	0.010700	遠心沈降法	2.011	0.777		20110	01010007
由央粒径	2.542	0.999	1.111	7.715	0.004501	中央粒径	2.511	0.999	1.111	18	0.024007
	2.605	0.000	1 1 1 1	75	0.4427		2.660	0.000	1 1 1 1	75	0.4570
NE-DI	2.005	0.999	1.111	75	0.4427	NE-DZ	2.000	0.999	1.111	75	0.4579
	2.005	0.999	1.111	30	0.1908		2.000	0.999	1.111	30	0.2035
	2.005	0.999	1.111	30	0.0708		2.000	0.999	1.111	30	0.0733
	2.605	0.999	1.111	20	0.0315		2.000	0.999	1.111	20	0.0326
	2.605	0.999	1.111	10	0.0177		2.000	0.999	1.111	10	0.0183
	2.605	0.999	1.111	10	0.0079		2.660	0.999	1.111	10	0.0081
	2.605	0.999	1.111	/	0.0039		2.660	0.999	1.111	/	0.0040
	2.605	0.999	1.111	5	0.0020		2.660	0.999	1.111	5	0.0020
	2.605	0.999	1.111	3	0.00071		2.660	0.999	1.111	3	0.00073
	2.605	0.999	1.111	2	0.00031		2.660	0.999	1.111	2	0.00033
	2.605	0.999	1.111	1.5	0.00018		2.660	0.999	1.111	1.5	0.00018
	2.605	0.999	1.111	1	0.00008		2.660	0.999	1.111	1	0.000081
	2.605	0.999	1.111	0.7	0.000039		2.660	0.999	1.111	0.7	0.000040
	2.605	0.999	1.111	0.5	0.000020		2.660	0.999	1.111	0.5	0.000020
中央粒径	2.605	0.999	1.111	18.035	0.025599	中央粒径	2.660	0.999	1.111	47.219	0.181486
遠心沈降法 中央粒径	2.605	0.999	1.111	15.87	0.019822	遠心沈降法 中央粒径	2.660	0.999	1.111	16.543	0.022276
KE-C	2.562	0.999	1.111	75	0.4308						
	2.562	0.999	1.111	50	0.1915						
	2.562	0.999	1.111	30	0.0689						
	2.562	0.999	1.111	20	0.0306						
	2.562	0.999	1.111	15	0.0172						
	2.562	0.999	1.111	10	0.0077						
	2.562	0.999	1.111	7	0.0038						
	2.562	0.999	1.111	5	0.0019						
	2.562	0.999	1.111	3	0.00069						
	2.562	0.999	1.111	2	0.00031						
	2.562	0.999	1.111	1.5	0.00017]					
	2.562	0.999	1.111	1	0.00008	1					
	2.562	0.999	1.111	0.7	0.000038	1					
	2.562	0.999	1.111	0.5	0.000019	1					
中央粒径	2.562	0.999	1.111	12.577	0.012116	1					
遠心沈降法 中央粒径	2.562	0.999	1.111	8.822	0.005961185						

1 測定項目

光透過式遠心沈降法による粒度分布

2 測定試料

KE-A1

KE-A2

KE-B1

KE-B2

KE-C

計:5検体

3 使用機器

SKC-2000

4 測定条件

粒径:0.5~75(μm) 沈降距離: 70mm 液温: KE-A1、KE-A2、KE-B2 16.0℃ KE-B1、KE-C 16.5℃ 使用溶剤: Water

5 測定結果

別紙参照ください

1	SAMPLE	KE-A1
2	SAMPLE DENSITY	2.542 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.111 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/1/11
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.38883888
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Η	T1	DT1	NT	Ν
. 1	75.00	μm	70.0	00'16"	00'16"		
2	50.00	μm	70.0	00'37"	00'21"		
3	30.00	μm	70.0	01'43"	01'06"		
4	20.00	μm	70.0	03'51"	02'08"		
5	15.00	μm	70.0	06'51"	03'00"		
6	10.00	μm	70.0	15'26"	08'35"		
7	7.00	μm	70.0	31'29"	16'03"	52 ″	300
8	5.00	μm	70.0	61'43"	30'14"	97 ″	300
9	3.00	μm	70.0	171'25"	109'42"	127 ″	500
10	2.00	μm	70.0	385'41"	214'16"	173 ″	600
11	1.50	μm	70.0	685'40"	299'59"	136″	800
12	1.00	μm	70.0	1542'45"	857'05"	249 ″	1000
13	0.70	μm	70.0	3148'29"	1605'44"	276 ″	1300
14	0.50	μm	70.0	6171'01"	3022'32"	519 ″	1300
15							

.

Dark	9.7
Blank	188.5

初期濃度	王下限	ą. – – –		45.5	1.301
初期濃度	₹上限	Į		54.6	1.3997
		測定結果	透過率		吸光度
75.00	μm	49.35		22.17	1.346
50.00	μm	49.43		22.22	1.347
30.00	μm	49.73		22.39	1.350
20.00	μm	50.26		22.68	1.356
15.00	μm	51.46		23.35	1.368
10.00	μm	55.48		25.60	1.408
7.00	μm	65.18		31.03	1.492
5.00	μm	80.19		39.42	1.596
3.00	μm	113.84		58.24	1.765
2.00	μm	146.13		76.29	1.882
1.50	μm	160.82		84.51	1.927
1.00	μm	177.14		93.64	1.971
0.70	μm	182.26		96.50	1.985
0.50	μm	187.43		99.39	1.997

49.35 1.3458

	RAN	IGE			NXX		Х		NXXX	VACC	V۶	SACC	S۴
0.00	<	0.50	М	2.000	- 1.997	×	2.25	=	0.006	0.006	0.25	0.02	4.71
0.50	<	0.70	М	1.997	- 1.985	×	1.68	=	0.022	0.028	1.13	0.06	11.79
0.70	<	1.00	M	1.985	- 1.971	×	1.45	=	0.019	0.046	1.91	0.08	16.17
1.00	<	1.50	М	1.971	- 1.927	×	1.44	=	0.064	0.110	4.54	0.13	26.27
1.50	<	2.00	М	1.927	- 1,.882	×	1.49	=	0.066	0.177	7.25	0.17	33.72
2.00	<	3.00	М	1.882	- 1.765	×	1.70	=	0.199	0.376	15.44	0.25	49.44
3.00	<	5.00	М	1.765	- 1.596	×	2.32	=	0.393	0.769	31.59	0.35	68.83
5.00	<	7.00	М	1.596	- 1.492	×	3.36	=	0.349	1.119	45.94	0.41	80.31
7.00	<	10.00	М	1.492	- 1.408	×	4.97	=	0.415	1.534	62.98	0.46	89.94
10.00	<	15.00	М	1.408	- 1.368	×	9.25	=	0.369	1.903	78.15	0.49	95.76
15.00	<	20.00	М	1.368	- 1.356	×	16.10	=	0.204	2.107	86.52	0.50	98.06
20.00	<	30.00	М	1.356	- 1.350	×	25.00	=	0.143	2.249	92.39	0.50	99.18
30.00	<	50.00	М	1.350	- 1.347	×	40.00	=	0.131	2.380	97.75	0.51	99.83
50.00	<	75.00	М	1.347	- 1.346	×	62.50	=	0.055	2.435	100.00	0.51	100.00

D10 : 2.336µm D50 : 7.715µm D90 : 25.932µm SV = 4720.20 cm2/g

.

測定結果_KE-A1

1	SAMPLE	KE-A2
2	SAMPLE DENSITY	2.511 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.111 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/1/12
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.36093609
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		H	Τ1	DT1	NT	Ν
1	75.00	μm	70.0	00'17"	00'17"		
2	50.00	μm	70.0	00'38"	00'21"		
3	30.00	μm	70.0	01'45"	01'07"		
4	20.00	μm	70.0	03'56"	02'11"		
5	15.00	μm	70.0	07'00"	03'04"		
6	10.00	μm	70.0	15'45"	08'45"		
7	7.00	μm	70.0	32'08"	16'23"	53 ″	300
8	5.00	μm	70.0	62'59"	30'51"	99 ″	300
9	3.00	μm	70.0	174'56"	111'57"	130″	500
10	2.00	μm	70.0	393'36"	218'40"	176 ″	600
11	1.50	μm	70.0	699'44"	306'08"	139″	800
12	1.00	μm	70.0	1574'23"	874'39"	254″	1000
13	0.70	μm	70.0	3213'02"	1638'39"	281″	1300
14	0.50	μm	70.0	6297'33"	3084'31"	530 ″	1300
15							

• . •

Dark	10.2
Blank	188.9

初期濃度	医下胚	Į		45.9	1.301
初期濃度	王匹	Ż		55.0	1.3997
		測定結果	透過率		吸光度
75.00	μm	47.71	:	21.02	1.323
50.00	μm	47.74	:	21.04	1.323
30.00	μm	50.81	:	22.75	1.357
20.00	μm	56.29	:	25.82	1.412
15.00	μm	64.44		30.38	1.483
10.00	μm	82.14		40.29	1.605
7.00	μm	113.14	!	57.63	1.761
5.00	μm	141.46		73.48	1.866
3.00	μm	166.82	:	87.67	1.943
2.00	μm	177.31		93.54	1.971
1.50	μm	182.87		96.65	1.985
1.00	μm	187.28	1	99.12	1.996
0.70	μm	188.24	-	99.66	1.999
0.50	μm	188.32	1	99.70	1.999

47.71 1.3226

.

	RANGE			NXX			х		NXXX	VACC	V೪	SACC	S%
0.00	<	0.50	М	2.000	- 1.999	×	2.25	=	0.003	0.003	0.05	0.01	2.32
0.50	<	0.70	М	1.999	- 1.999	×	1.68	=	0.000	0.003	0.05	0.01	2.43
0.70	<	1.00	М	1.999	- 1.996	×	1.45	=	0.003	0.007	0.10	0.02	3.23
1.00	<	1.50	М	1.996	- 1.985	×	1.44	=	0.016	0.022	0.35	0.03	5.75
1.50	<	2.00	М	1.985	- 1.971	×	1.49	=	0.021	0.043	0.68	0.04	8.17
2.00	<	3.00	М	1.971	- 1.943	×	1.70	=	0.048	0.091	1.42	0.06	12.00
3.00	<	5.00	М	1.943	- 1.866	×	2.32	=	0.178	0.269	4.19	0.10	20.91
5.00	<	7.00	М	1.866	- 1.761	×	3.36	=	0.354	0.624	9.71	0.16	32.73
7.00	<	10.00	М	1.761	- 1.605	×	4.97	=	0.773	1.397	21.74	0.25	50.95
10.00	<	15.00	М	1.605	- 1.483	×	9.25	=	1.134	2.531	39.38	0.35	69.10
15.00	<	20.00	М	1.483	- 1.412	×	16.10	=	1.137	3.668	57.08	0.41	82.11
20.00	<	30.00	М	1.412	- 1.357	×	25.00	=	1.373	5.041	78.44	0.47	93.11
30.00	<	50.00	М	1.357	- 1.323	×	40.00	=	1.364	6.405	99.66	0.50	99.93
50.00	<	75.00	М	1.323	- 1.323	×	62.50	=	0.022	6.426	100.00	0.50	100.00

D10 : $7.073\mu m$ D50 : $18.000\mu m$ D90 : $40.894\mu m$ SV = 1860.10 cm2/g

.

測定結果_KE-A2

1	SAMPLE	KE-B1
2	SAMPLE DENSITY	2.605 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.097 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.5 ℃
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/1/12
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.46399271
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	

16 R/W

	Х		Н	Τ1	DT1	NT	N
1	75.00	μm	70.0	00'16"	00'16"		
2	50.00	μm	70.0	00'35"	00'19"		
3	30.00	μm	70.0	01'38"	01'03"		
4	20.00	μm	70.0	03'40"	02'02"		
5	15.00	μm	70.0	06'30"	02'50"		
6	10.00	μm	70.0	14'38"	08'08"		
7	7.00	μm	70.0	29'52"	15'14"	49 ″	300
8	5.00	μm	70.0	58'33"	28'41"	92 ″	300
9	3.00	μm	70.0	162'37"	104'04"	121″	500
10	2.00	μm	70.0	365'53"	203'16"	164″	600
11	1.50	μm	70.0	650'28"	284'35"	129″	800
12	1.00	μm	70.0	1463'33"	813'05"	236″	1000
13	0.70	μm	70.0	2986'51"	1523'18"	262 ″	1300
14	0.50	μm	70.0	5854'14"	2867'23"	492 ″	1300
15							

Dark	10.2
Blank	192.2

. .

初期濃度	ミ下阻	Ż		46.6	1.301
初期濃度	₹上限	Ę		55.8	1.3997
		測定結果	透過率		吸光度
75.00	μm	49.26		21.49	1.332
50.00	μm	49.77		21.77	1.338
30.00	μm	51.66		22.80	1.358
20.00	μm	53.35		23.73	1.375
15.00	μm	54.46		24.34	1.386
10.00	μm	56.54		25.48	1.406
7.00	μm	67.32		31.41	1.497
5.00	μm	80.78		38.80	1.589
3.00	μm	108.51		54.04	1.733
2.00	μm	137.55		69.99	1.845
1.50	μm	152.18		78.03	1.892
1.00	μm	172.67		89.28	1.951
0.70	μm	180.82		93.76	1.972
0.50	μm	185.43		96.29	1.984

49.26 1.3321

	RANGE			NXX			х		NXXX	VACC	V۶	SACC	S%
0.00	<	0.50	М	2.000	- 1.984	×	2.25	=	0.037	0.037	1.06	0.15	22.51
0.50	<	0.70	М	1.984	- 1.972	×	1.68	=	0.019	0.056	1.62	0.18	27.45
0.70	<	1.00	М	1.972	- 1.951	×	1.45	=	0.031	0.087	2.50	0.22	32.96
1.00	<	1.50	М	1.951	- 1.892	×	1.44	=	0.084	0.171	4.92	0.28	43.22
1.50	<	2.00	М	1.892	- 1.845	×	1.49	=	0.070	0.241	6.93	0.32	49.33
2.00	<	3.00	М	1.845	- 1.733	×	1.70	=	0.191	0.432	12.42	0.40	60.98
3.00	<	5.00	М	1.733	- 1.589	×	2.32	=	0.334	0.766	22.00	0.48	73.69
5.00	<	7.00	М	1.589	- 1.497	×	3.36	=	0.309	1.075	30.86	0.53	81.53
7.00	<	10.00	М	1.497	- 1.406	×	4.97	=	0.451	1.526	43.82	0.59	89.62
10.00	<	15.00	М	1.406	- 1.386	×	9.25	=	0.184	1.710	49.11	0.60	91.87
15.00	<	20.00	М	1.386	- 1.375	×	16.10	=	0.177	1.888	54.21	0.61	93.42
20.00	<	30.00	М	1.375	- 1.358	×	25.00	=	0.433	2.321	66.65	0.63	96.06
30.00	<	50.00	М	1.358	- 1.338	×	40.00	=	0.810	3.130	89.90	0.65	99.14
50.00	<	75.00	М	1.338	- 1.332	×	62.50	=	0.352	3.482	100.00	0.66	100.00

D10 : $2.559\mu m$ D50 : $15.870\mu m$ D90 : $50.246\mu m$ SV = 4436.85 cm2/g

•

測定結果_KE-B1

1	SAMPLE	KE-B2
2	SAMPLE DENSITY	2.660 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.111 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/1/13
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.4950495
13	MAX X	75.00 µm
14	Н	70.0 mm
15		
тJ	REC.NO	

	Х		Н	T 1	DT1	NT	Ν
1	75.00	μm	70.0	00'15"	00'15"		
2	50.00	μm	70.0	00'34"	00'19"		
3	30.00	μm	70.0	01'36"	01'02"		
4	20.00	μm	70.0	03'35"	01'59"		
5	15.00	μm	70.0	06'22"	02'47"		
6	10.00	μm	70.0	14'20"	07'58"		
7	7.00	μm	70.0	29'15"	14'55"	48 ″	300
8	5.00	μm	70.0	57'20"	28'05"	91 ″	300
9	3.00	μm	70.0	159'14"	101'54"	118″	500
10	2.00	μm	70.0	358'17"	199'03"	160″	600
11	1.50	μm	70.0	636'57"	278'40"	126 "	800
12	1.00	μm	70.0	1433'09"	796'12"	231″	1000
13	0.70	μm	70.0	2924'48"	1491'39"	256 ″	1300
14	0.50	μm	70.0	5732 ' 37"	2807'49"	482″	1300
15							

Dark	9.3
Blank	187.5

初期濃度 初期濃度	€下阻 €上阻	₹ ₹ 測定結果	透過率	45.0 54.1	1.301 1.3997 吸光度
75.00	μm	50.76		23.25	1.366
50.00	μm	51.52		23.67	1.374
30.00	μm	53.51		24.79	1.394
20.00	μm	55.33		25.81	1.412
15.00	μm	57.24		26.88	1.430
10.00	μm	60.63		28.79	1.459
7.00	μm	75.75		37.27	1.571
5.00	μm	98.10		49.82	1.697
3.00	μm	131.78		68.72	1.837
2.00	μm	161.31		85.29	1.931
1.50	μm	171.51		91.02	1.959
1.00	μm	182.99		97.46	1.989
0.70	μm	186.07		99.19	1.996
0.50	μm	187.17		99.81	1.999

50.76 1.3664

	RANGE			NXX			Х		NXXX VACC		V۶	SACC	S%
0.00	<	0.50	М	2.000	- 1.999	×	2.25	=	0.002	0.002	0.05	0.01	1.66
0.50	<	0.70	М	1.999	- 1.996	×	1.68	=	0.005	0.006	0.17	0.02	3.33
0.70	<	1.00	М	1.996	- 1.989	×	1.45	=	0.011	0.017	0.45	0.03	6.21
1.00	<	1.50	М	1.989	- 1.959	×	1.44	=	0.043	0.060	1.56	0.06	13.79
1.50	<	2.00	М	1.959	- 1.931	×	1.49	=	0.042	0.102	2.65	0.09	19.10
2.00	<	3.00	М	1.931	- 1.837	×	1.70	=	0.160	0.262	6.78	0.15	33.26
3.00	<	5.00	М	1.837	- 1.697	×	2.32	=	0.324	0.586	15.18	0.23	51.23
5.00	<	7.00	М	1.697	- 1.571	×	3.36	=	0.423	1.009	26.15	0.30	66.88
7.00	<	10.00	М	1.571	- 1.459	×	4.97	=	0.558	1.567	40.61	0.37	81.44
10.00	<	15.00	М	1.459	- 1.430	×	9.25	=	0.275	1.842	47.72	0.39	86.31
15.00	<	20.00	М	1.430	- 1.412	×	16.10	=	0.285	2.126	55.10	0.41	89.92
20.00	<	30.00	М	1.412	- 1.394	×	25.00	=	0.438	2.565	66.46	0.42	93.81
30.00	<	50.00	М	1.394	- 1.374	×	40.00	=	0.801	3.365	87.21	0.44	98.25
50.00	<	75.00	М	1.374	- 1.366	×	62.50	=	0.494	3.859	100.00	0.45	100.00

```
D10 : 3.767\mu m D50 : 16.543\mu m D90 : 55.452\mu m SV = 2570.74 \text{ cm}2/\text{g}
```

.

.

測定結果_KE-B2

1	SAMPLE	KE-C
2	SAMPLE DENSITY	2.562 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.097 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.5 ℃
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/1/13
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.4247949
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	

16 R/W

	Х		Н	T1	DT1	NT	Ν
1	75.00	μm	70.0	00'16"	00'16"		
2	50.00	μm	70.0	00'36"	00'20"		
3	30.00	μm	70.0	01'40"	01'04"		
4	20.00	μm	70.0	03'46"	02'06"		
5	15.00	μm	70.0	06'41"	02'55"		
6	10.00	μm	70.0	15'02"	08'21"		
7	7.00	μm	70.0	30'41"	15'39"	50 ″	300
8	5.00	μm	70.0	60'09"	29'28"	95 ″	300
9	3.00	μm	70.0	167'05"	106'56"	124″	500
10	2.00	μm	70.0	375 57"	208'52"	168″	600
11	1.50	μm	70.0	668'22"	292'25"	133″	800
12	1.00	μm	70.0	1503'49"	835'27"	242″	1000
13	0.70	μm	70.0	3069'02"	1565'13"	269 ″	1300
14	0.50	μm	70.0	6015'17"	2946'15"	506 ″	1300
15							

Dark	9.3
Blank	190.8

初期濃虏 初期濃虏	モ下郎 モ上郎	₹ ₹ 測定結果	透過率	45.6 54.9	1.301 1.3997 吸光度
75.00	μm	50.00		22.40	1.350
50.00	μm	50.23		22.53	1.353
30.00	μm	50.93		22.92	1.360
20.00	μm	52.05		23.53	1.372
15.00	μm	53.41		24.28	1.385
10.00	μm	55.61		25.49	1.406
7.00	μm	68.48		32.59	1.513
5.00	μm	82.05		40.06	1.603
3.00	μm	108.94		54.88	1.739
2.00	μm	143.72		74.04	1.869
1.50	μm	158.19		82.02	1.914
1.00	μm	176.12		91.89	1.963
0.70	μm	184.35		96.43	1.984
0.50	μm	187.72		98.29	1.992

50.00 1.3503

	RAN	IGE			NXX		Х		NXXX	VACC	V۶	SACC	S읭
0.00	<	0.50	М	2.000	- 1.992	×	2.25	=	0.017	0.017	0.62	0.07	12.27
0.50	<	0.70	М	1.992	- 1.984	×	1.68	=	0.014	0.031	1.13	0.09	16.48
0.70	<	1.00	М	1.984	- 1.963	×	1.45	=	0.030	0.061	2.24	0.13	22.94
1.00	<	1.50	М	1.963	- 1.914	×	1.44	=	0.071	0.132	4.86	0.18	33.25
1.50	<	2.00	М	1.914	- 1.869	×	1.49	=	0.066	0.198	7.29	0.22	40.11
2.00	<	3.00	М	1.869	- 1.739	×	1.70	=	0.221	0.419	15.42	0.31	56.17
3.00	<	5.00	М	1.739	- 1.603	×	2.32	=	0.317	0.736	27.08	0.39	70.56
5.00	<	7.00	М	1.603	- 1.513	×	3.36	=	0.301	1.038	38.16	0.44	79.68
7.00	<	10.00	М	1.513	- 1.406	×	4.97	=	0.530	1.568	57.66	0.50	91.00
10.00	<	15.00	М	1.406	- 1.385	×	9.25	=	0.196	1.763	64.85	0.52	93.85
15.00	<	20.00	М	1.385	- 1.372	×	16.10	=	0.219	1.983	72.91	0.53	96.12
20.00	<	30.00	М	1.372	- 1.360	×	25.00	=	0.289	2.271	83.52	0.54	98.22
30.00	<	50.00	М	1.360	- 1.353	×	40.00	=	0.295	2.566	94.37	0.55	99.56
50.00	<	75.00	М	1.353	- 1.350	×	62.50	=	0.153	2.719	100.00	0.55	100.00

D10 : $2.334\mu m$ D50 : $8.822\mu m$ D90 : $41.942\mu m$ SV = 4643.48 cm2/g

.

1 測定項目

強熱減量

2 測定試料

- KE-A1
- KE-A2
- KE-B1
- KE-B2
- KE-C

計:5検体

3 使用機器

・強熱減量 アズワン製 空気加熱電気炉

- 4 測定条件
 - ・強熱減量 750℃で1時間
 - ・JIS A1226準拠
- 5 測定結果

•強熱減量

		KE-A1			KE-A2	
	1回目	2回目	3回目	1回目	2回目	3回目
風袋 g	19.4177	25.5713	22.4406	22.316	19.4272	19.4342
風袋+加熱前試料 g	21.4752	27.5993	24.4809	24.3367	21.4472	21.4689
風袋+加熱後試料 g	21.0595	27.2016	24.0573	23.886	20.9979	21.0185
強熱減量 %	20.20	19.61	20.76	22.30	22.24	22.14
平均值 %		20.19			22.23	

		KE-B1			KE-B2	
	1回目	2回目	3回目	1回目	2回目	3回目
風袋 g	24.1325	21.3941	26.1356	22.8345	19.4338	19.4178
風袋+加熱前試料 g	26.1613	23.4532	28.1816	24.9952	21.4604	21.5261
風袋+加熱後試料 g	26.0049	23.2944	28.0167	24.8525	21.3335	21.3844
強熱減量 %	7.71	7.71	8.06	6.60	6.26	6.72
平均值 %		7.83			6.53	

		KE-C	
	1回目	2回目	3回目
風袋 g	19.4269	22,834	22.4466
風袋+加熱前試料 g	21.4986	24.876	24.5041
風袋+加熱後試料 g	21.2311	24.6126	24.2325
強熱減量 %	12.91	12.90	13.20
平均值 %		13.00	

<u> 発行No 21125011</u>

2022年1月26日

試 験 析 報 告 書 分

【含有量試験】

海洋エンジニアリング株式会社 様

海底表層にある底質の分析一式

	7	帝人エコ・	サイエン	ス株式会社
		東京都港区	三田三丁目3番	8号
TES		e alla 121° unio alla date es	1EL 03-	-5440-4301
		美所 東京都名	3村市神明音四	() 日8番43号
	÷.,		101-04/	(~030~4030 (a 6274 ()準時()
	ā	「風祉叻争未豆剪	· 東京都 市京都	io. 1003 (音圧)
			東京都	No.1004(振動)
試料受付方法	持込	試験責任	者 若林	和也

2022年1月5日受付の試料について試験した結果を下記のとおり 報告いたします。

	試料名称 試験分析項目	単位	HI-A	H1-B1	HI-B2	試験分析方法
1	粒度試験		別紙	別紙	別紙	JIS A 1204
2	比重		2. 621	2. 581	2. 624	ピクノメーター法
3	含水比	%	68. 27	112. 76	126. 24	JIS A 1203準拠
4	液性限界	%	66. 2	71.6	64. 9	JIS A1205
5	塑性限界	%	39. 3	47. 6	40. 4	JIS A1205
6	沈降速度(遠心沈降法)		別紙	別紙	別紙	光透過式遠心沈降法
7	強熱減 量	%	6. 81	10. 97	7. 41	JIS A 1226準拠
8	рH	рН	8. 2 (18°C)	8. 1 (18°C)	8. 1 (18°C)	底質調査方法(H24) Ⅱ4.4
9	COD	mg/g	9. 7	22	27	底質調査方法(H24) Ⅱ4.7
10	硫化物	mg/g	<0. 01	0. 68	1. 3	底質調査方法(H24) Ⅱ4.6 よう素滴定法
11	全りん	mg/g	0. 31	0. 58	0. 49	底質調査方法(H24) Ⅱ4.9 モリブデン青吸光光度法
12	全有機炭素	mg/g	7. 1	21	18	底質調査方法(H24) Ⅱ4,10 燃焼酸化法
13	有機塩素化合物	mg/kg	<4	<4	<4	環告第13号別表第6/JIS K 0102 35.3 イオンクロマトク・ラフ法
14	鉄	mg/kg	30000	25000	27000	底質調査方法(H24) Ⅱ5.5. 4 ICP発光分析法
15	マンガン	mg/kg	310	290	350	底質調査方法(H24) Ⅱ5.6. 4 ICP発光分析法
16	鉰	mg/kg	13	52	37	底質調査方法(H24) Ⅱ5.3. 4 ICP発光分析法
17	亜鉛	mg/kg	52	100	100	底質調査方法(H24) Ⅱ5.4. 4 [CP発光分析法
	以下余白					

<u> 発行No 21125011</u>

試 験 報 告 分析 書

【含有量試験】

2022年1月26日

海洋エンジニアリング株式会社 様

海底表層にある底質の分析一式

	7	帝人エ	コ・サイ	ィエン	ス株式	式会社
		東京都	港区三田王	三丁目3番	8号	
				TEL 03-	-5440-43	301
TES	5 콱	【業所 東】	京都羽村市	神明台四	丁目8番	43号
				TEL 042	2-530-40	030
	ā	量証明事業	業登録	東京都	lo. 624	(濃度)
				東京都	lo. 1003	(音圧)
				東京都	lo. 1004	(振動)
試料受付方法	持込	試験	責任者	若林	和也	

2022年1月5日受付の試料について試験した結果を下記のとおり 報告いたします。

	試驗分析項目	単位	HI-C1	H1-C2	試験分析方法
1	粒度試験		別紙	別紙	JIS A 1204
2	比重		2. 631	2. 664	ピクノメーター法
3	含水比	%	126. 49	26. 07	JIS A 1203準拠
4	液性限界	%	76. 9		JIS A1205
5	塑性限界	%	44. 3		JIS A1205
6	沈降速度(遠心沈降法)	_	別紙	別紙	光透過式遠心沈降法
7	強熱減量	%	9. 39	2. 67	JIS A 1226準拠
8	нq	рН	7. 8 (18°C)	7. 4 (18℃)	底質調査方法(H24) Ⅱ4.4
9	COD	mg/g	27	1. 2	底質調査方法(H24) Ⅱ4.7
10	硫化物	mg/g	0. 54	<0. 01	底質調査方法(H24) Ⅱ4.6 よう素滴定法
11	全りん	mg/g	0. 94	0. 20	底質調査方法(H24) Ⅱ4.9 モリブデン青吸光光度法
12	全有機炭素	mg/g	25	0. 7	底質調査方法(H24) Ⅱ4.10 燃焼酸化法
13	有機塩素化合物	mg/kg	<4	<4	環告第13号別表第6/JIS K 0102 35.3 イオンクロマトク・ラフ法
14	鉄	mg/kg	22000	12000	底質調査方法(H24) Ⅱ 5.5. 4 ICP発光分析法
15	マンガン	mg/kg	260	230	底質調査方法(H24) Ⅱ 5.6. 4 ICP発光分析法
16	<i>勤</i> 词	mg/kg	45	4. 1	底質調査方法(H24) II5.3. 4 ICP発光分析法
17	亜鉛	mg/kg	110	35	底質調査方法(H24) II5.4. 4 ICP発光分析法
	以下余白	ç			

ページ 2/ 2

1 測定項目

粒度分布(レーザー回折・散乱法)

2 測定試料

HI–A

HI-B1

- HI-B2
- HI-C1
- HI-C2

計:5検体

- 3 使用機器·測定方法·測定条件
 - 使用機器: LMS-2000e(㈱セイシン企業製)
 - 測定方法: 1.分散媒のみでブランク測定を行う。 2.分散槽に試料を適量入れる。 3.超音波分散により試料を分散させ、循環式にて粒度分布測定を行う。
 - 測定条件:測定範囲 0.02~2000.00 µ m
 使用溶剤 イオン交換水
 超音波使用時間 1分
- 4 測定結果

測定結果は別紙参照願います。

測定番号 ナンプル名	奋亏 4623 SOP名 プル名 HI−B1 ロット番号						:	測定者 2022年1月13日 11:45:32 測定者名 (株)セイシン企業					
分散ユニッ 粒子名 分散媒名 モード	ト名 WET Fraunhofe Water 59.110	UNIT 2000S (Α) 散乱強度 粒子屈折 分散媒屈 平均径	散乱強度 15 粒子屈折率 分散媒屈折率 平均径		虚数部 <i>μ</i> m	0	超音波出力 解析モデル 粒子径範囲		J 0 % 汎用モード 0.020 to 2		2000.000	μm
濃度	0.	0234 %Vol	スパン		3.450		均	一性			1.13		
d(10):	3.863	d(25): 1(µm).745 μm	d(50):	31.930	d(7 µ m	'5): 68	3.730	µm d(90):	114.01	4 μr	n
[粒月	度分布]
(%)	4 3.5 3 2.5												:
体積	2 1.5 0.5												
	8.0	<u> </u>	0.1		1	10			100		10	000	
HI-H	31, 2022	年1月13日	11:45:32		<u>粒子</u>	<u>径(µm)</u>							
	1:205/4	╊) ৶ 街之夜/	n=\ _:Z+\\\\/#	BET OF T	<u></u>	- Z I) T (/+ ++) N		242 (271277/4	-78.14	147-74	200 N 1 5 7 7 8	
30 - 132 (Um) 0.022 0.025 0.025 0.025 0.026 0.027 0.036 0.036 0.040 0.040 0.040 0.046 0.050 0.056 0.056 0.066 0.066 0.071 0.089 0.100 0.112 0.122 0.128 0.178 0.200		推測論 新子谷 (0.00 0.00 0 0.00 1 0.00 0 0.00 00000000	Um) S.3 L) T (4:3) 224	131 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.13 0.25 0.39 0.58 0.58 0.80 1.07 1.38 1.74 2.15 2.63 3.16 3.77 3.74 5.21	<u>新子律(//m)</u> 2.818 2.825 3.170 3.557 3.991 4.477 5.024 5.637 6.325 7.096 7.962 7.962 7.962 8.934 10.024 11.247 12.619 14.159 15.887 17.825 20.000 22.440 25.179	55 LV T: ((24) 16,05 6.05 6.99 8.01 9.13 10.36 11.68 13.10 14.63 16.26 17.98 19.80 21.72 23.74 25.85 28.06 30.36 32.77 35.28 37.90 40.65 43.54	<u></u>	P4* (um) 28.251 31.668 35.566 39.905 50.238 56.368 63.246 70.963 70.2621 89.337 100.237 112.468 126.191 158.866 178.250 200.000 224.404 251.785 282.508	<u>ふるい下 (</u>	(x) (x) <td><u>約子径</u> 331 35 56 63 70 79 89 100 1121 126 141 158 178 200</td> <td>(山市) ふるし 6.979 (5.656) (9.052) (7.744 (2.377) (2.456) (9.627) (6.214) (3.367) (2.374) (4.683) (1.915) (5.892) (8.656) (2.502) (0.000)</td> <td>水下 (体積 99. 99. 99. 99. 99. 99. 99. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 10. 10. 10. 10. 10. 1</td>	<u>約子径</u> 331 35 56 63 70 79 89 100 1121 126 141 158 178 200	(山市) ふるし 6.979 (5.656) (9.052) (7.744 (2.377) (2.456) (9.627) (6.214) (3.367) (2.374) (4.683) (1.915) (5.892) (8.656) (2.502) (0.000)	水下 (体積 99. 99. 99. 99. 99. 99. 99. 100. 100. 100. 100. 100. 100. 100. 100. 100. 100. 10. 10. 10. 10. 10. 1
<u>子径(um)</u> 0.022 0.022 0.022 0.025 0.028 0.032 0.036 0.040 0.045 0.050 0.056 0.056 0.056 0.063 0.071 0.089 0.100 0.112 0.126 0.142	●院 ¥(体種) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<u>助子稈(µm)</u> 0.142 0.159 0.178 0.200 0.224 0.252 0.283 0.317 0.356 0.399 0.448 0.502 0.564 0.632 0.710 0.796 0.893 1002	序 %(体稿) 約子 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	径(Um) 1.002 1.125 1.262 1.416 1.563 1.783 2.000 2.244 2.518 2.825 3.170 3.557 3.991 4.477 5.024 5.637 6.325 7.096	· 賭唐 %(体精) 0.36 0.42 0.47 0.54 0.61 0.68 0.76 0.84 0.93 1.03 1.12 1.22 1.32 1.42 1.53 1.63 1.73	<u> 新子径 (µm)</u> 7.096 7.096 8.934 10.024 11.247 12.619 14.159 15.887 17.825 20.000 22.440 25.179 28.251 31.698 35.566 39.905 44.774 50.232	·箱彦 %((本 1.82 1.92 2.01 2.11 2.21 2.31 2.41 2.51 2.63 2.75 2.89 3.04 3.21 3.38 3.55 3.71 3.84	<u> </u>	· 箱度 %	(体稽) 3.93 3.96 3.91 3.79 3.58 3.29 2.94 2.53 2.10 1.66 1.26 0.90 0.61 0.40 0.25 0.16 0.11	<u>新子径(4</u>) 355.656 399.052 447.744 502.377 563.677 632.456 709.627 796.214 893.367 1002.374 1124.683 1261.915 1415.882 1588.656 1782.502 2000.000	

測定番号	4626		SOP	名来已			測定日	l 2022年	₣1月13日	∃ 11:56:	16	
 サンフル名	HI-B2		עיים 	曲 万 			測定者:	名(株)も	?イシンゴ	È業		
分散ユニッ 粒子名 分散媒名 モード	ト名 WE Fraunhofi Water 41.964	TUNIT 2000s er μm	S (A) 散乱 粒子 分費 平1	L強度 ←屈折率 效媒屈折率 勾径	15.39 % 0.000 1.330 56.754	虚数部 0 <i>μ</i> m	超音 解析 粒子	が波出力 モデル 径範囲	0 汎用 1 0.02	% ミード 20 to	2000.000	μm
 濃度		0.0248 %Vc	al 7,1	ペン	4.183		均一性			1.3		
d(10):	4.396	d(25): µ m	12.398	µm d(50) :	: 32.933	d(75 µm): 73.751	μm	i(90):	142.16	8 µm	I
						 奪分布						
休積(%)	$ \begin{array}{c} 4 \\ 3, 5 \\ 3 \\ 2, 5 \\ 2 \\ 1, 5 \\ 1 \\ 0, 5 \\ 0, 6 \\ \end{array} $)1								10		
	0.0	71	0.1		1 粒子	·径(μm)		100		10	00	
HI-	B2, 202	2年1月13	日 11:56:	16								
<u> 勤子</u> 存 (ルm) 0.020 0.022 0.025 0.032 0.032 0.036 0.040 0.045 0.056 0.056 0.063 0.071 0.089 0.100 0.112 0.126 0.142 0.159 0.178 0.200	<u>ふ</u> るい下 ()	は新)% 約3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	2年(µm) ふるし 0.224 0.252 0.283 0.317 0.356 0.399 0.448 0.502 0.564 0.632 0.710 0.796 0.893 1.002 1.125 1.262 1.416 1.589 1.783 2.000 2.244	<u> 下(体積)%</u> 0.00 0.00 0.00 0.00 0.00 0.03 0.11 0.34 0.50 0.70 0.93 1.20 1.52 1.88 2.30 2.77 3.30 3.89 4.55	<u></u> 	<u>ふるい下(体制)%</u> 5.28 6.09 6.98 7.96 9.03 10.19 11.45 12.81 14.26 15.82 17.48 19.26 21.15 23.17 25.34 27.67 30.16 32.83 35.68 38.72 41.93	<u>勤子径(11</u> m) 28.251 31.698 35.566 39.905 44.774 50.238 56.368 63.246 70.963 79.621 89.337 102.37 112.468 126.191 141.589 158.866 178.250 200.000 224.404 251.785 282.508) <u>ふ</u> るい下(生 13)% 45.30 48.81 52.42 56.10 59.80 63.48 67.08 77.09 77.09 80.08 82.87 77.09 85.44 87.80 89.93 91.84 93.53 94.99 94.25 97.31 98.19	<u> </u>	(Um) ふるい 3.979 5.656 3.052 7.744 2.377 3.677 2.456 3.627 3.214 3.367 3.367 3.374 4.683 3.367 3.374 5.892 8.556 2.502 5.000	下(体指)% 98.90 99.44 99.83 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00
約子径(µm) 株 0.020 0.022 0.025 0.028 0.036 0.036 0.045 0.056 0.056 0.056 0.056 0.056 0.056 0.063 0.071 0.080 0.089 0.100 0.112 0.126 0.142	御除 %(体積) 0.00	約子径(µm) 0.142 0.159 0.178 0.200 0.224 0.252 0.283 0.317 0.356 0.399 0.448 0.502 0.502 0.564 0.632 0.710 0.796 0.893 1.002	道府 %(体精) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.	<u> 均子径(µm)</u> 1.002 1.125 1.262 1.416 1.589 1.783 2.000 2.244 2.518 2.825 3.170 3.557 3.991 4.477 5.024 5.637 6.325 7.096	箱彦 %(体精) 0.32 0.36 0.42 0.47 0.53 0.59 0.66 0.73 0.81 0.89 0.98 1.07 1.16 1.26 1.36 1.46 1.56	<u>約子径(µm)</u> 7.096 7.962 8.934 10.024 11.247 12.619 14.159 15.887 17.825 20.000 22.440 25.179 28.251 31.698 35.566 39.905 44.774 50.238	增度 %(体稽) 1.66 1.77 1.89 2.03 2.17 2.32 2.49 2.67 2.65 3.03 3.21 3.37 3.51 3.61 3.68 3.70 3.67	<u>約子径(Um</u> 50.23) 56.364 70.63 79.621 89.33 100.237 112.466 126.191 141.585 158.866 178.255 200.000 224.404 251.785 282.506 316.979 355.656	<u>)</u> 》類南 % 3 3 3 3 1 3 5 5 5 5 5 5 5 5 5 5 5 5 5	(体稿) 3.60 3.49 3.35 3.18 2.99 2.57 2.57 2.35 2.13 1.91 1.69 1.47 1.26 1.06 0.68 0.71 0.53	<u> 対子保(µm)</u> 355.656 399.052 447.744 502.377 563.677 632.456 709.627 796.214 893.367 1002.374 1124.683 1261.915 1415.892 1588.656 1782.502 2000.000	· 續度 %(体積 0.44 0.1 0.00 0.00 0.00 0.00 0.00 0.00

	閉セインン	2企業			
		州止日白 (限)セイシン企業			
分散ユニット名 WET UNIT 2000S (A) 散乱強度 6.76 % 超音波出力	0 %				
立子名 Fraunhofer 粒子屈折率 0.000 虚数部 0 解析モデル	汎用	ヨモード			
分散媒名 Water 分散媒屈折率 1.330 粒子径範囲	0.020 to 2000.0		2000.000	μm	
Eード 281.088 μm 平均径 299.028 μm					
農度 0.0922 %Vol スパン 1.227 均一性		0.402			
d(25): 202.468 μm d(75): 375.026 μm	d(00).	488 040) ((m		
	u(30).	400.048	μ		
	瞐		ang dag a falskalar		
			- (1) (1) (1) (1) (1) (1)		
			and the second second second		
			n, provinsi 1 and 1 a d		
100 100 100 100 100 100 100 100 100 100		100	0		
HI-C2, 2022年1月13日 12:07:52					
<u> 新子径 (um) ふるい下 (体積) % 約子径 (um) ふるい下 (体積) % 新子径 (um) ふるい下 (体積) % 新子径 (um) ふるい</u>	下(体積)%	粒子径(um) ふるい	下(体積	
0.020 0.00 0.224 0.00 2.518 0.58 28.251 0.022 0.00 0.252 0.00 2.825 0.64 31.698 0.025 0.00 0.282 0.00 3.120 0.71 25 555	3.02 3.32	316	.979 .656	61. 71.	
0.028 0.00 0.317 0.00 3.557 0.77 39.905 0.032 0.00 0.356 0.00 3.991 0.85 44.774	4.03 4.35	399 447 502	.052 .744 .377	79. 85. 91	
0.036 0.00 0.399 0.00 4.477 0.93 50.238 0.040 0.00 0.448 0.00 5.024 1.03 56.368	4.61 4.75	563	.677	94. 97.	
0.045 0.00 0.502 0.00 5.637 1.14 63.246 0.050 0.00 0.564 0.00 6.325 1.26 70.963	4.78 4.78	709	.627 .214	98. 99.	
0.056 0.00 0.632 0.00 7.096 1.38 79.621 0.063 0.00 0.710 0.00 7.962 1.51 89.337	4.78 4.78	893 1002	.367 .374	99. 99.	
0.071 0.00 0.796 0.00 8.934 1.64 100.237 0.080 0.00 0.893 0.00 10.024 1.77 112.468 0.089 0.00 10.02 0.00 112.477 1.88 1.96.191	4.87	1124	.683	99. 99.	
0.100 0.00 1.125 0.04 12.619 1.99 141.589 0.112 0.00 1.282 0.11 14159 2.09 158.866	8.72 12.28	1588	.656	99. 99. 99.	
0.126 0.00 1.416 0.19 15.887 2.19 178.250 0.142 0.00 1.589 0.28 17.825 2.29 200.000	17.41 24.19	2000.	.000	100.	
0.159 0.00 1.783 0.36 20.000 2.41 224.404 0.178 0.00 2.000 0.44 22.440 2.57 251.785	32.45 41.83				
	51.80	J L	L		
2径(Um) 知居%(体積) <u>新子径(Um)</u> 類唐%(体積) <u>新子径(Um)</u> 類唐%(体積) <u>新子径(Um)</u> 類唐%(体積) <u>新子径(Um)</u> 類唐%(体積) <u>新子径(Um)</u> 類唐%(体積) <u>新子径(Um)</u> 類唐%(体積) <u>5000000000000000000000000000000000000</u>	(<u>µm)</u> 頻度 0.238	₹%(体積) 0.13	<u> </u>	頻度	
0.022 0.00 0.133 0.00 1.125 0.07 7.962 0.13 56 0.025 0.00 0.178 0.00 1.262 0.08 8.934 0.13 63 0.028 0.00 1.416 0.08 10.034 0.13 63	0.308 3.246 0.963	0.03 0.00	399.052 447.744 502.277		
0.032 0.00 0.224 0.00 1.710 0.08 10.024 0.12 70 0.032 0.00 0.224 0.00 1.589 0.08 11.247 0.12 70 0.036 0.00 0.252 0.00 1.783 0.08 11.247 0.11 79	9.621	0.00	563.677 632.456		
0.040 0.00 0.00 0.00 0.08 14.155 0.10 100 0.045 0.00 0.317 0.00 2.244 0.07 15.887 0.10 100	0.237 2.468	0.09	709.627 796.214		
0.050 0.00 0.356 0.00 2.518 0.06 17.825 0.10 126 0.056 0.00 0.399 0.00 2.825 0.06 20.000 0.15 141	6.191 1.589	2.20	893.367 1002.374		
0.063 0.00 0.448 0.00 3.170 0.07 22.440 0.20 158 0.071 0.00 0.502 0.00 3.557 0.07 25.179 0.20 178 0.001 0.502 0.00 3.557 0.08 25.179 0.25 178	8.866 8.250	5.13	1124.683 1261.915		
0.000 0.00 0.00+ 0.00 3.991 0.09 28.251 0.31 200 0.089 0.00 0.632 0.00 4.477 0.10 31.698 0.35 224 0.100 0.710 5.024 0.10 5.024 0.10 5.55 24	0.000 4.404	8.26 9.38	1415.892 1588.656 1782.500		
0.112 0.00 0.796 0.00 5.637 0.11 33.300 0.36 281 0.112 0.00 0.796 0.00 5.637 0.12 39.905 0.33 282 0.12 0.00 6.325 0.12 44.774 0.33 285	2.508	9.98 9.95	2000.000		
1 測定項目

真比重測定(ピクノメーター法)

2 測定試料

HI-A HI-B1 HI-B2 HI-C1 HI-C2

計:5検体

3 使用溶媒

水

4 測定方法

・JIS Z 8807 固体の密度及び比重の測定方法 ・JIS R 3503 化学分析用ガラス器具 上記規格に準拠

5 測定結果

測定結果は下記表の通り

	試料量(g)	真比重	測定時の水温(℃)
HI-A	8.0463	2.621	16.5
HI-B1	8.1327	2.581	14.0
HI-B2	9.3759	2.624	15.0
HI-C1	10.0310	2.631	16.0
HI-C2	18.8047	2.664	18.0

含水比測定結果

試料名		HI–A	
皿風袋(g)	125.92	121.40	123.19
(皿+湿試)質量(g)	159.07	165.54	157.53
(皿+乾試)質量(g)	145.24	147.84	143.84
含水比	71.58	66.94	66.30
平均		68.27	
試料名		HI-B1	
皿風袋(g)	125.48	121.32	121.28
(皿+湿試)質量(g)	158.08	154.54	157.32
(皿+乾試)質量(g)	140.85	137.27	137.82
含水比	112.10	108.28	117.90
平均		112.76	
		HI-B2	
皿風袋(g)	122.57	121.88	123.40
(皿+湿試)質量(g)	160.13	162.41	162.71
(皿+乾試)質量(g)	139.25	139.83	140.66
含水比	125.18	125.79	127.75
平均		126.24	
		HI-C1	
皿風袋(g)	125.08	123.53	124.96
(皿+湿試)質量(g)	165.26	164.53	166.92
(皿+乾試)質量(g)	142.78	141.67	143.49
含水比	127.01	126.02	126.44
平均		126.49	
		HI-C2	
皿風袋(g)	125.05	122.85	119.15
(皿+湿試)質量(g)	155.87	153.23	150.37
(皿+乾試)質量(g)	149.23	147.17	143.96
含水比	27.46	24.92	25.84
平均		26.07	

土質試験結果一覧表(材料)

調查件名 物理試験

整理年月日 2022年 1月 19日

										理担当者	Ĩ	呂卜 耂	Z	
斌)	: 料 〔深	番 さ	号)	HI-	A	HI-B	1	HI-B2	H	II-C1		HI-C2		
1	湿潤額	密度 ρ _ι	g/cm ³											
-	乾燥部	否度ρα	g/cm ³											
	土粒子の	密度 ρ。	g/cm ³											
	自然含	水比 ω.	%											
n,	間隙	比 e		+										
x	飽 和	度 S.	%											
	石分	(7.5 mm)) / ·											
		(10, 10, 10, 10, 10, 10, 10, 10, 10, 10,	nm) %											
1	私 分	¹⁾ /0 075~	2mm] %											
	シルト分	1) (0.015×0.0	(5mm) 0/											
	* +	1) (0. 0.05 m	(3000)/0 			+	+						+	
	伯上刀	(U、UUJIII) 	山木綱) /0											
		L 15E	mm 											
Ę	均等付	き殺 U _c												
-														
	Nete tut or													
	液性阻		%	66.	2	71.6) 	64.9		76.9				
	塑性阻	₹ 界 w _p	%	39.	3	47.6	5	40.4		14.3				
	塑性指	∃数 <i>Ⅰ</i> ,		26.	9	24.0)	24.5		32.6		ΝΡ		
5	地盤材制	単の												
5	分類	名												
3	分類証	3 号												
Ť	試験力	7 法												
	最大乾燥	密度 p _{dma}	g/cm³											
	最適含7	水比 Wopi	%											
	試験方	ī 法												
	膨 張	比 r。	%											
	貫入試験後名	含水比 w2	%											
	平均C	BR	%										***	
. [%修正(CBR	%											
Ē			~~											
,	突固め回	コ数	回/層											
`	コーン打	旨数 q。	kN/m²											
-				~										
τ														
ŀ														
-														
ľ									+					
ŀ														
-														
F												*******		
	II百									• >	<u> </u> <i>ナ</i> ハナ		المحاجز ساب	
ц Ŧ										1)	石分を	际いに15	┉木満	の工資和 -

$\begin{array}{c c} \text{JIS A} & 1205\\ \text{JGS} & 0141 \end{array} \pm \mathcal{O}$)液性限界・	塑性限界試験	(試験結果)
--	--------	--------	--------

調查件名 物理試驗

試験年月日 2022年 1月 19日

試料番号	(深さ) HI-A		
液	性限界試験	塑性限界試験	液性限界 ₩1 %
落下回数	含水比 w %	含水比 w %	66.2
10	72. 7	38.2	塑性限界 ω。%
15	70. 1	40. 1	39. 3
21	67.3	39. 7	塑性指数 1,
29	64.8		26. 9
42	62.7	_	
48	61.8		
試料番号	(深さ) HI-BI		
液	性限界試験	塑性限界試験	液性限界 ωι %
落下回数	含水比 w %	含水比 w %	71.6
11	76.5	47.3	塑性限界 ω, %
16	74.1	48.0	47.6
23	72.0	47.6	塑性指数 I,
27	71.1		24.0
34	69.7	_	
45	68.5	50 C	
試料番号	(深さ) HI-B2		
液	生限界試験	塑性限界試験	液性限界 ω1 %
落下回数	含水比 w %	含水比 w %	64. 9
8	76.3	40.4	塑性限界 w, %
16	69.9	40. 5	40. 4
24	65.2	40.2	塑性指数 1,
28	63. 5	-	24. 5
33	61.6		
49	58.7		
試料番号	(深さ) HI-C1		,
液	生限界試験	塑性限界試験	液性限界 ωι %
落下回数	含水比 w %	含水比 w %	76.9
13	82.9	44. 5	塑性限界 w, %
19	79.1	43. 6	44.3
23	77.4	44.9	塑性指数 1,
28	75.8		32.6
35	73.9		
47	72.0		

試 験 者 宮下 晃

JIS A 1205 JGS 0141

土の液性限界・塑性限界試験(試験結果)

(%)

З

뉬

×

¢⊓

調查件名 物理試験

試験年月日 2022年 1月 19日

試料番号	(深さ)	HI	-C2				
液性限界試験				塑性限	界試	験	液性限界 ωι %
落下回数	含水比	w	%	含水比	w	%	
							塑性限界 w, %
							塑性指数 I,
							N P
				ヒモ状	にな	こらす	『試験不能
				$\phi 5 mm$ (3	こて	破壞	
					_		

試料番号 (深さ)

液	生限界試驗	矣	塑性限界	試験	液性限界	$w_{\tt L}$	%
落下回数	含水比	w %	含水比	w %			
					塑性限界	$w_{\mathfrak{p}}$	%
				******	塑性指数	$I_{\mathfrak{p}}$	
~~~~							

試料番号(深さ)

液	性限界試験	塑性限界試験	液性限界 ωι %
落下回数	含水比 w %	含水比 w %	
			塑性限界 ω, %
			塑性指数 1,

試料番号 (深さ)

液	生限界試験	塑性限界試験	液性限界 ω1 %
落下回数	含水比 w %	含水比 w %	
			塑性限界 w, %
			塑性指数 1,

特記事項

NP (non-plastic) となるのはシルトや細砂を多く含む 低塑性の土の場合が多い。





#### 沈降速度(遠心沈降法中央粒径含む)結果一覧

ストークスの式:

V= d² (ρs-ρf)g 18μ V:沈降速度 (cm/s) d:粒子径 (cm) ρs:粒子密度 (g/cm³) ρf:液体密度 (g/cm³) g:重力加速度 (cm/s²) = 980 μ:液体の粘度 (g/cm・s)

	ρs	ρf	μ	d	V		ρs	ρf	μ	d	V
調査点	粒子密度	液体密度	液体の粘度	粒径	沈降速度	調査点	粒子密度	液体密度	液体の粘度	粒径	沈降速度
	g/cm ³	g/cm ³	c poise	$\mu{ m m}$	cm/s		g/cm ³	g/cm ³	c poise	$\mu{ m m}$	cm/s
HI-A	2.621	0.999	1.111	75	0.4471	HI-B1	2.581	0.999	1.111	75	0.4361
	2.621	0.999	1.111	50	0.1987		2.581	0.999	1.111	50	0.1938
	2.621	0.999	1.111	30	0.0715		2.581	0.999	1.111	30	0.0698
	2.621	0.999	1.111	20	0.0318		2.581	0.999	1.111	20	0.0310
	2.621	0.999	1.111	15	0.0179		2.581	0.999	1.111	15	0.0174
	2.621	0.999	1.111	10	0.0079		2.581	0.999	1.111	10	0.0078
	2.621	0.999	1.111	7	0.0039		2.581	0.999	1.111	7	0.0038
	2.621	0.999	1.111	5	0.0020		2.581	0.999	1.111	5	0.0019
	2.621	0.999	1.111	3	0.00072		2.581	0.999	1.111	3	0.00070
	2.621	0.999	1.111	2	0.00032		2.581	0.999	1.111	2	0.00031
	2.621	0.999	1.111	1.5	0.00018		2.581	0.999	1.111	1.5	0.00017
	2.621	0.999	1.111	1	0.00008		2.581	0.999	1.111	1	0.000078
	2.621	0.999	1.111	0.7	0.000039		2.581	0.999	1.111	0.7	0.000038
	2.621	0.999	1.111	0.5	0.000020		2.581	0.999	1.111	0.5	0.000019
中央粒径	2.621	0.999	1.111	25.568	0.051962	中央粒径	2.581	0.999	1.111	31.93	0.079039
遠心沈降法 中央粒径	2.621	0.999	1.111	24.531	0.047832	遠心沈降法 中央粒径	2.581	0.999	1.111	24.169	0.045286
HI-B2	2.624	0.999	1.111	75	0.4479	HI-C1	2.631	0.999	1.111	75	0.4499
	2.624	0.999	1.111	50	0.1991		2.631	0.999	1.111	50	0.1999
	2.624	0.999	1.111	30	0.0717		2.631	0.999	1.111	30	0.0720
	2.624	0.999	1.111	20	0.0319		2.631	0.999	1.111	20	0.0320
	2.624	0.999	1.111	15	0.0179		2.631	0.999	1.111	15	0.0180
	2.624	0.999	1.111	10	0.0080		2.631	0.999	1.111	10	0.0080
	2.624	0.999	1.111	7	0.0039		2.631	0.999	1.111	7	0.0039
	2.624	0.999	1.111	5	0.0020		2.631	0.999	1.111	5	0.0020
	2.624	0.999	1.111	3	0.00072		2.631	0.999	1.111	3	0.00072
	2.624	0.999	1.111	2	0.00032		2.631	0.999	1.111	2	0.00032
	2.624	0.999	1.111	1.5	0.00018		2.631	0.999	1.111	1.5	0.00018
	2.624	0.999	1.111	1	0.000080		2.631	0.999	1.111	1	0.000080
	2.624	0.999	1.111	0.7	0.000039		2.631	0.999	1.111	0.7	0.000039
1 I II	2.624	0.999	1.111	0.5	0.000020	1 1 42 5	2.631	0.999	1.111	0.5	0.000020
中央粒径	2.624	0.999	1.111	32.933	0.086369	中央粒径	2.631	0.999	1.111	23.723	0.045009
遠心沈降法 中央粒径	2.624	0.999	1.111	24.365	0.047274	遠心沈降法 中央粒径	2.631	0.999	1.111	15.906	0.020234
HI-C2	2.664	0.999	1.111	75	0.4590						
	2.664	0.999	1.111	50	0.2040						
	2.664	0.999	1.111	30	0.0734						
	2.664	0.999	1.111	20	0.0326						
	2.664	0.999	1.111	15	0.0184						
	2.664	0.999	1.111	10	0.0082	]					
	2.664	0.999	1.111	7	0.0040	]					
	2.664	0.999	1.111	5	0.0020	]					
	2.664	0.999	1.111	3	0.00073	]					
	2.664	0.999	1.111	2	0.00033						
	2.664	0.999	1.111	1.5	0.00018	]					
	2.664	0.999	1.111	1	0.000082	]					
	2.664	0.999	1.111	0.7	0.000040						
	2.664	0.999	1.111	0.5	0.000020						
中央粒径	2.664	0.999	1.111	276.736	6.248634						
遠心沈降法 中央粒径	2.664	0.999	1.111	26.972	0.059358108						

## 測定報告書

#### 1 測定項目

光透過式遠心沈降法による粒度分布

#### 2 測定試料

HI-A

HI-B1

HI-B2

HI-C1

HI-C2

計:5検体

### 3 使用機器

SKC-2000

#### 4 測定条件

粒径:0.5~	•75(μm)	
沈降距離:	70 mm	
液温:	全試料	16.0°C
使用溶剤:	Water	

### 5 測定結果

別紙参照ください

1	SAMPLE	HI-A
2	SAMPLE DENSITY	2.621 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.111 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/1/17
10	OPERATOR	hattori
11	REMARKS	
12	У	1.45994599
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Η	T1	DT1	NT	N
1	75.00	μm	70.0	00'16"	00'16"		
2	50.00	μm	70.0	00'35"	00'19"		
3	30.00	μm	70.0	01'38"	01'03"		
4	20.00	μm	70.0	03'40"	02'02"		
5	15.00	μm	70.0	06'31"	02'51"		
6	10.00	μm	70.0	14'41"	08'10"		
7	7.00	μm	70.0	29 <b>'</b> 57"	15'16"	49 <b>″</b>	300
8	5.00	μm	70.0	58'42"	28'45"	93 <b>″</b>	300
9	3.00	μm	70.0	163'04"	104'22"	121″	500
10	2.00	μm	70.0	366'54"	203'50"	164″	600
11	1.50	μm	70.0	652'16"	285'22"	129″	800
12	1.00	μm	70.0	1467'37"	815'21"	237″	1000
13	0.70	μm	70.0	2995'08"	1527'31"	262″	1300
14	0.50	μm	70.0	5870'28"	2875 <b>'</b> 20"	494 <b>″</b>	1300
15							
10							

		Dark	11.1	
		Blank	190.0	
初期濃度	まト随	R .	46.8	1.301
初期濃度	王臣	₹.	56.0	1.3997
		測定結果	透過率	吸光度
75.00	μm	49.78	21.64	1.335
50.00	μm	50.60	22.10	1.344
30.00	μm	53.65	23.80	1.377
20.00	μm	57.69	26.06	1.416
15.00	μm	60.26	27.50	1.439
10.00	$\mu m$	64.85	30.06	1.478
7.00	μm	72.83	34.52	1.538
5.00	μm	82.05	39.67	1.598
3.00	μm	96.28	47.62	1.678
2.00	μm	116.24	58.78	1.769
1.50	μm	127.26	64.93	1.812
1.00	μm	146.85	75.88	1.880
0.70	μm	162.88	84.84	1.929
0.50	μm	172.44	90.18	1.955

49.78 1.3353

	RAI	IGE			NXX		Х		NXXX	VACC	V%	SACC	S%
0.00	<	0.50	М	2.000	- 1.955	×	2.25		0.101	0.101	2.11	0.40	41.10
0.50	<	0.70	М	1.955	- 1.929	×	1.68		0.045	0.146	3.04	0.48	48.65
0.70	<	1.00	М	1.929	- 1.880	×	1.45	=	0.070	0.216	4.50	0.56	57.03
1.00	<	1.50	М	1.880	- 1.812	×	1.44	=	0.097	0.313	6.53	0.64	64.94
1.50	<	2.00	М	1.812	- 1.769	×	1.49	=	0.064	0.377	7.87	0.68	68.68
2.00	<	3.00	М	1.769	- 1.678	×	1.70		0.155	0.533	11.11	0.74	75.00
3.00	<	5.00	М	1.678	- 1.598	×	2.32	=	0.184	0.717	14.95	0.78	79.68
5.00	<	7.00	М	1.598	- 1.538	×	3.36	=	0.203	0.920	19.18	0.82	83.12
7.00	<	10.00	М	1.538	- 1.478	×	4.97		0.299	1.218	25.41	0.85	86.70
10.00	<	15.00	М	1.478	- 1.439	×	9.25	=	0.358	1.577	32.88	0.88	89.61
15.00	<	20.00	М	1.439	- 1.416	×	16.10	=	0.375	1.952	40.70	0.90	91.79
20.00	<	30.00	М	1.416	- 1.377	×	25.00	-	0.984	2.935	61.22	0.94	95.79
30.00	<	50.00	М	1.377	- 1.344	×	40.00	=	1.291	4.226	88.14	0.97	99.07
50.00	<	75.00	М	1.344	- 1.335	×	62.50		0.569	4.795	100.00	0.98	100.00

```
D10 : 2.658\mum D50 : 24.531\mum D90 : 53.923\mum SV = 4969.01 cm2/g
```



測定結果_HI-A

1	SAMPLE	HI-B1
2	SAMPLE DENSITY	2.581 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.111 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/1/17
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.42394239
13	MAX X	75.00 μm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Н	Τ1	DT1	NT	Ν
1	75.00	μm	70.0	00'16"	00'16"		
2	50.00	μm	70.0	00'36"	00'20"		
3	30.00	μm	70.0	01'40"	01'04"		
4	20.00	μm	70.0	03'46"	02'06"		
5	15.00	μm	70.0	06'41"	02'55"		
6	10.00	μm	70.0	15'03"	08'22"		
7	7.00	μm	70.0	30'43"	15'40"	51″	300
8	5.00	μm	70.0	60'11"	29'28"	95 <b>″</b>	300
9	3.00	μm	70.0	167'11"	107'00"	124″	500
10	2.00	μm	70.0	376'11"	209'00"	168″	600
11	1.50	μm	70.0	668'46"	292'35"	133″	800
12	1.00	μm	70.0	1504'43"	835'57"	243″	1000
13	0.70	μm	70.0	3070'52"	1566'09"	269″	1300
14	0.50	μm	70.0	6018'53"	2948'01"	506″	1300
15							
16							

		Blank		188.2	
初期濃度 初期濃度	ま下随 ま上随	₹ ₹ 測定結果	透過率	46.5 55.5	1.301 1.3997 <b>吸光度</b>
75.00	μm	50.22		22.11	1.345
50.00	μm	51.37		22.76	1.357
30.00	μm	54.80		24.69	1.393
20.00	μm	59.21		27.18	1.434
15.00	μm	63.29		29.49	1.470
10.00	μm	67.47		31.85	1.503
7.00	μm	85.47		42.00	1.623
5.00	μm	108.42		54.96	1.740
3.00	μm	141.86		73.83	1.868
2.00	μm	163.08		85.81	1.934
1.50	μm	173.05		91.44	1.961
1.00	μm	181.97		96.47	1.984
0.70	μm	185.08		98.23	1.992
0.50	μm	186.99		99.31	1.997

11.1

Dark

50.22 1.3446

	RANGE			NXX			Х		NXXX	VACC	V%	SACC	S%
0.00	<	0.50	М	2.000	- 1.997	×	2.25	-	0.007	0.007	0.12	0.03	5.39
0.50	<	0.70	М	1.997	- 1.992	×	1.68	-	0.008	0.015	0.26	0.04	8.01
0.70	<	1.00	М	1.992	- 1.984	×	1.45		0.011	0.026	0.46	0.05	10.65
1.00	<	1.50	М	1.984	- 1.961	×	1.44		0.033	0.060	1.06	0.08	15.94
1.50	<	2.00	М	1.961	- 1.934	×	1.49	=	0.041	0.101	1.79	0.10	20.58
2.00	<	3.00	М	1.934	- 1.868	×	1.70	-	0.111	0.212	3.76	0.15	29.36
3.00	<	5.00	М	1.868	- 1.740	×	2.32	=	0.297	0.509	9.05	0.22	44.08
5.00	<	7.00	М	1.740	- 1.623	×	3.36		0.392	0.901	16.03	0.29	57.01
7.00	<	10.00	М	1.623	- 1.503	×	4.97	=	0.598	1.499	26.66	0.36	70.93
10.00	<	15.00	М	1.503	- 1.470	×	9.25		0.309	1.808	32.16	0.38	75.82
15.00	<	20.00	М	1.470	- 1.434	×	16.10		0.569	2.377	42.27	0.42	82.25
20.00	<	30.00	М	1.434	- 1.393	×	25.00		1.043	3.420	60.81	0.46	90.50
30.00	<	50.00	М	1.393	- 1.357	×	40.00		1.418	4.838	86.03	0.49	97.51
50.00	<	75.00	М	1.357	- 1.345	×	62.50	_	0.785	5.624	100.00	0.51	100.00

D10 :  $5.272\mu m$  D50 : 24.169 $\mu m$  D90 : 57.101 $\mu m$  SV = 2066.97 cm2/g



測定結果_HI-B1

1	SAMPLE	HI-B2
2	SAMPLE DENSITY	2.624 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.111 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/1/17
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.46264626
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Н	T1	DT1	NT	Ν
1	75.00	μm	70.0	00'16"	00'16"		
2	50.00	μm	70.0	00'35"	00'19"		
3	30.00	μm	70.0	01'38"	01'03"		
4	20.00	μm	70.0	03'40"	02'02"		
5	15.00	μm	70.0	06'31"	02'51"		
6	10.00	μm	70.0	14'39"	08'08"		
7	7.00	μm	70.0	29'54"	15'15"	49 <b>″</b>	300
8	5.00	μm	70.0	58'36"	28'42"	93 <b>″</b>	300
9	3.00	μm	70.0	162'46"	104'10"	121″	500
10	2.00	μm	70.0	366'14"	203'28"	164″	600
11	1.50	μm	70.0	651'04"	284'50"	129″	800
12	1.00	μm	70.0	1464'54"	813'50"	236″	1000
13	0.70	μm	70.0	2989'36"	1524'42"	262″	1300
14	0.50	μm	70.0	5859'37"	2870'01"	493 <b>″</b>	1300
15							
16							

Dark	11.1
Blank	188.2
初期濃度下限	46.5

1.301 52.36 1.3677

初期濃度	ま上陸	R.	55.5	1.3997
		測定結果	透過率	吸光度
75.00	μm	52.36	23.32	1.368
50.00	μm	53.78	24.12	1.382
30.00	μm	58.59	26.83	1.429
20.00	μm	65.68	30.83	1.489
15.00	μm	72.06	34.44	1.537
10.00	μm	88.48	43.70	1.641
7.00	μm	116.31	59.41	1.774
5.00	μm	138.82	72.12	1.858
3.00	μm	165.48	87.16	1.940
2.00	μm	175.17	92.63	1.967
1.50	μm	180.56	95.68	1.981
1.00	μm	184.73	98.03	1.991
0.70	μm	187.11	99.37	1.997
0.50	μm	187.14	99.39	1.997

RANGE			NXX			Х		NXXX VACC		V%	SACC	Se	
0.00	<	0.50	М	2.000	- 1.997	×	2.25	-	0.006	0.006	0.08	0.02	4.87
0.50	<	0.70	М	1.997	- 1.997	×	1.68		0.000	0.006	0.08	0.02	4.91
0.70	<	1.00	М	1.997	- 1.991	×	1.45		0.009	0.015	0.20	0.03	6.95
1.00	<	1.50	М	1.991	- 1.981	×	1.44		0.015	0.030	0.41	0.05	9.42
1.50	<	2.00	М	1.981	- 1.967	×	1.49		0.021	0.051	0.70	0.06	11.85
2.00	<	3.00	М	1.967	- 1.940	×	1.70	=	0.045	0.096	1.32	0.08	15.51
3.00	<	5.00	М	1.940	- 1.858	×	2.32	222	0.191	0.287	3.96	0.12	25.23
5.00	<	7.00	М	1.858	- 1.774	×	3.36	=	0.283	0.569	7.86	0.17	34.83
7.00	<	10.00	М	1.774	- 1.641	×	4.97	=	0.663	1.232	17.02	0.25	50.71
10.00	<	15.00	М	1.641	- 1.537	×	9.25	=	0.957	2.190	30.24	0.33	66.30
15.00	<	20.00	М	1.537	- 1.489	×	16.10		0.772	2.962	40.90	0.37	75.29
20.00	<	30.00	М	1.489	- 1.429	×	25.00	Ŧ	1.509	4.472	61.74	0.43	87.58
30.00	<	50.00	М	1.429	- 1.382	×	40.00		1.853	6.325	87.33	0.48	97.01
50.00	<	75.00	М	1.382	- 1.368	×	62.50	=	0.917	7.242	100.00	0.49	100.00

```
D10 : 7.701\mum D50 : 24.365\mum D90 : 55.264\mum SV = 1550.93 cm2/g
```



測定結果_HI-B2

1	SAMPLE	HI-C1
2	SAMPLE DENSITY	2.631 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.111 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.0 °C
8	DISPERSION METHOD	Ultra Sonic 1min
9	DATE	2022/1/17
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.46894689
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Η	T1	DT1	NT	Ν
1	75.00	μm	70.0	00'16"	00'16"		
2	50.00	μm	70.0	00'35"	00'19"		
3	30.00	μm	70.0	01'37"	01'02"		
4	20.00	μm	70.0	03'39"	02'02"		
5	15.00	μm	70.0	06'29"	02'50"		
6	10.00	μm	70.0	14'35"	08'06"		
7	7.00	μm	70.0	29'46"	15'11"	49 <b>″</b>	300
8	5.00	μm	70.0	58'21"	28'35"	92″	300
9	3.00	μm	70.0	162'04"	103'43"	120″	500
10	2.00	μm	70.0	364'39"	202'35"	163″	600
11	1.50	μm	70.0	648'17"	283'38"	129″	800
12	1.00	μm	70.0	1458'37"	810'20"	235″	1000
13	0.70	μm	70.0	2976'47"	1518'10"	261″	1300
14	0.50	μm	70.0	5834'29"	2857'42"	491″	1300
15							
16							

		Dark		11.1	
		Blank		187.3	
初期濃度 初期濃度	を下限 を上限	測定結果	透過率	46.3 55.3	1.301 1.3997 <b>吸光度</b>
75.00	μm	51.37		22.87	1.359
50.00	μm	51.55		22.97	1.361
30.00	μm	53.75		24.22	1.384
20.00	μm	55.95		25.47	1.406
15.00	μm	58.82		27.10	1.433
10.00	μm	63.11		29.53	1.470
7.00	μm	77.84		37.89	1.579
5.00	$\mu m$	95.64		47.99	1.681
3.00	μm	133.93		69.71	1.843
2.00	μm	151.32		79.57	1.901
1.50	$\mu m$	163.60		86.54	1.937
1.00	μm	174.07		92.48	1.966
0.70	μm	178.15		94.79	1.977
0.50	μm	180.96		96.39	1.984

51.37 1.3593

	RAN	IGE			NXX		Х		NXXX	VACC	٨ŝ	SACC	St
0.00	<	0.50	М	2.000	- 1.984	×	2.25		0.036	0.036	0.93	0.14	23.99
0.50	<	0.70	М	1.984	- 1.977	×	1.68	-	0.012	0.048	1.24	0.16	27.38
0.70	<	1.00	М	1.977	- 1.966	×	1.45		0.016	0.064	1.64	0.18	30.42
1.00	<	1.50	М	1.966	- 1.937	×	1.44	=	0.041	0.105	2.71	0.22	35.95
1.50	<	2.00	М	1.937	- 1.901	×	1.49	=	0.054	0.159	4.11	0.25	41.12
2.00	<	3.00	М	1.901	- 1.843	×	1.70	=	0.098	0.257	6.62	0.29	47.64
3.00	<	5.00	М	1.843	- 1.681	×	2.32		0.376	0.633	16.32	0.38	63.33
5.00	<	7.00	М	1.681	- 1.579	×	3.36	-	0.345	0.978	25.21	0.44	72.91
7.00	<	10.00	М	1.579	- 1.470	×	4.97	=	0.538	1.516	39.07	0.50	83.47
10.00	<	15.00	М	1.470	- 1.433	×	9.25	=	0.345	1.862	47.98	0.53	88.08
15.00	<	20.00	М	1.433	- 1.406	×	16.10	=	0.433	2.295	59.14	0.55	92.21
20.00	<	30.00	М	1.406	- 1.384	×	25.00	=	0.545	2.840	73.20	0.57	95.85
30.00	<	50.00	М	1.384	- 1.361	×	40.00		0.919	3.759	96.88	0.60	99.68
50.00	<	75.00	М	1.361	- 1.359	×	62.50	-	0.121	3.880	100.00	0.60	100.00

D10 : 3.696µm D50 : 15.906µm D90 : 44.187µm SV = 3714.22 cm2/g



測定結果_HI-C1

1	SAMPLE	HI-C2
2	SAMPLE DENSITY	2.664 g/cm3
3	DISPERSION MEDIUM	Water
4	MEDIUM DENSITY	0.999 g/cm3
5	MEDIUM VISCOSITY	1.111 C.P
6	ROOM TEMPERATURE	22.0 °C
7	MEDIUM TEMPERATURE	16.0 °C
8	DISPERSION METHOD	
9	DATE	2022/1/18
10	OPERATOR	hattori
11	REMARKS	
12	Y	1.49864986
13	MAX X	75.00 µm
14	Н	70.0 mm
15	REC.NO	
16	R/W	

	Х		Н	T1	DT1	NT	Ν
1	75.00	μm	70.0	00'15"	00'15"		
2	50.00	μm	70.0	00'34"	00'19"		
3	30.00	μm	70.0	01'35"	01'01"		
4	20.00	μm	70.0	03'34"	01'59"		
5	15.00	μm	70.0	06'21"	02'47"		
6	10.00	μm	70.0	14'18"	07157"		
7	7.00	μm	70.0	29'11"	14'53"	48″	300
8	5.00	μm	70.0	57'11"	28'00"	90″	300
9	3.00	μm	70.0	158'51"	101'40"	118″	500
10	2.00	μm	70.0	357'26"	198'35"	160″	600
11	1.50	μm	70.0	635'26"	278'00"	126″	800
12	1.00	μm	70.0	1429'43"	794'17"	230″	1000
13	0.70	μm	70.0	2917'47"	1488'04"	255 <b>″</b>	1300
14	0.50	μm	70.0	5718'51"	2801'04"	481″	1300
15							
16							

		Dark	11.6	
		Blank	188.6	
初期濃度	ま下限	Į	47.0	1.301
初期濃度	ま上限	Į	56.0	1.3997
		測定結果	透過率	吸光度
75.00	μm	50.76	22.13	1.345
50.00	μm	53.44	23.65	1.374
30.00	μm	56.51	25.38	1.404
20.00	μm	60.35	27.55	1.440
15.00	μm	64.43	29.85	1.475
10.00	μm	77.58	37.28	1.572
7.00	μm	93.38	46.21	1.665
5.00	μm	111.18	56.27	1.750
3.00	μm	136.13	70.37	1.847
2.00	μm	157.84	82.63	1.917
1.50	μm	167.98	88.36	1.946
1.00	μm	178.41	94.25	1.974
0.70	μm	184.07	97.45	1.989
0.50	μm	187.14	99.19	1.996

50.76 1.345

### 測定条件&TC_HI-C2

	RAN	IGE			NXX		Х		NXXX	VACC	V%	SACC	S%
0.00	<	0.50	М	2.000	- 1.996	×	2.25	=	0.008	0.008	0.12	0.03	5.91
0.50	<	0.70	М	1.996	- 1.989	×	1.68	-	0.013	0.021	0.32	0.05	9.89
0.70	<	1.00	М	1.989	- 1.974	×	1.45		0.021	0.042	0.63	0.08	14.45
1.00	<	1.50	М	1.974	- 1.946	×	1.44	=	0.040	0.082	1.25	0.11	20.43
1.50	<	2.00	М	1.946	- 1.917	×	1.49	_	0.043	0.125	1.90	0.14	25.01
2.00	<	3.00	М	1.917	- 1.847	×	1.70	==	0.119	0.244	3.70	0.18	33.80
3.00	<	5.00	М	1.847	- 1.750	×	2.32	=	0.225	0.469	7.12	0.24	44.23
5.00	<	7.00	М	1.750	- 1.665	×	3.36	=	0.287	0.757	11.48	0.29	53.10
7.00	<	10.00	М	1.665	- 1.572	×	4.97		0.464	1.220	18.51	0.34	63.20
10.00	<	15.00	М	1.572	- 1.475	×	9.25	===	0.893	2.113	32.06	0.41	76.43
15.00	<	20.00	М	1.475	- 1.440	×	16.10		0.562	2.675	40.58	0.44	82.38
20.00	<	30.00	М	1.440	- 1.404	×	25.00	=	0.891	3.565	54.09	0.48	88.98
30.00	<	50.00	М	1.404	- 1.374	×	40.00		1.230	4.795	72.75	0.51	94.68
50.00	<	75.00	М	1.374	- 1.345	×	62.50		1.796	6.592	100.00	0.54	100.00

D10 : 6.322µm D50 : 26.972µm D90 : 65.827µm SV = 1787.81 cm2/g



測定結果_HI−C2

1 測定項目

#### 強熱減量

- 2 測定試料
  - HI-A
  - HI-B1
  - HI-B2
  - HI-C1
  - HI-C2

### 計:5検体

3 使用機器

・強熱減量 アズワン製 空気加熱電気炉

- 4 測定条件
  - ・強熱減量 750℃で1時間
  - •JIS A1226準拠
- 5 測定結果

#### ·強熱減量

		HI-A				
	1回目	2回目	3回目	1回目	2回目	3回目
風袋 g	21.3934	24.1324	25.5713	22.3164	26.1348	25.5713
風袋+加熱前試料 g	23.4342	26.1746	27.5903	24.3896	28.1879	27.6198
風袋+加熱後試料 g	23.2982	26.0314	27.4538	24.1707	27.9634	27.3860
強熱減量 %	6.66	7.01	6.76	10.56	10.93	11.41
平均值 %		6.81			10.97	

		HI-B2		HI-C1			
	1回目	2回目	3回目	1回目	2回目	3回目	
風袋 g	19.4344	24.1330	22.8341	22.4410	21.3937	22.3167	
風袋+加熱前試料 g	21.4827	26.2039	24.8736	24.5243	23.4480	24.3933	
風袋+加熱後試料 g	21.3313	26.0527	24.7201	24.3333	23.2519	24.1971	
強熱減量 %	7.39	7.30	7.53	9.17	9.55	9.45	
平均值 %		7.41			9.39		

		HI-C2	
	1回目	2回目	3回目
風袋 g	19.4271	19.418	26.1346
風袋+加熱前試料 g	21.4605	21.4618	28.1861
風袋+加熱後試料 g	21.4064	21.4073	28.1311
強熱減量 %	2.66	2.67	2.68
平均值 %		2.67	



この印刷物は、印刷用の紙へ リサイクルできます。