

東京電力福島第一原子力発電所における 事故の分析に係る検討会 第31回会合 資料4-3

水素燃焼試験等の概要

- (・火炎色等確認試験の概要、
 - ・水素燃焼試験の概要、
 - ・混合気体燃焼試験の概要、
 - ・ケーブル等加熱試験(2021年度)結果の概要)

2022年9月6日

東京電力福島第一原子力発電所事故対策室

水素燃焼試験等の概要

3 号機の水素爆発時の映像では、火炎及び噴煙の状態から水素以外に可燃性ガスの存在が示唆された。 火炎の色や輝度、燃焼時間等から可燃性の有機化合物が相当量存在していたと考えられる。また、爆発 直後の衛星写真ではシールドプラグ部分から激しく水蒸気が噴出しており原子炉建屋内部にも相当量の 水蒸気が存在したと考えられる。

1号機及び3号機の原子炉建屋において発生した水素爆発に関して、deflagration(爆燃)を考慮した 水素濃度等の条件による水素燃焼時の挙動及び原子炉格納容器内で発生し、原子炉建屋内に漏えいした と考えられる可燃性有機ガスによる水素燃焼への影響を把握することを目的に、以下の水素及び可燃性 有機ガスの燃焼試験等を実施する。

1)火炎色等確認試験

2)水素燃焼試験

3)混合気体燃焼試験

火炎色等確認試験の概要

火炎色等確認試験の概念

火炎色等確認試験の試験条件の例

試験資機材

記録用カメラ

赤外線サーモグラフィ

オートバーナー

流量計

水素ガス等(水素ガス、メタンガス、ブタンガス)

パラメータ

- A) 水素濃度_4 vol%、8 vol%、10 vol%、20 vol%、30 vol% 【5パラメーター】
- B) 可燃性有機ガス種類_メタン(CH4)、ブタン(C4H10) 【2パラメーター】
- C) 可燃性有機ガス濃度_0 vol%、1 vol%、5 vol% 【3パラメーター】

測定項目

- A) 水素ガス及び可燃性有機ガスの流量(濃度)及び温度
- B) 記録用カメラによる燃焼挙動(水素等の燃焼時の火炎色及び煙・煤等の発生状態)
- C) 赤外線放射温度計等による火炎の温度分布

水素燃焼試験の概要

▶ 水素 + 空気の混合気体を想定

▶ 水素濃度(4vol% ~ 20vol%等)による着火時の燃焼状態(高速度カメラ)や燃焼による温度、圧力上昇を 確認

水素燃焼試験の試験条件の例

<u>試験資機材</u>

水素燃焼装置

高速度カメラ

流量計、温度計、圧力計

水素ガス等(水素ガス、空気)

<u>パラメータ</u>

A) 水素濃度_4 vol%、8 vol%、10 vol%、20 vol% 【4パラメータ】

<u>測定項目</u>

- A) 水素ガスの濃度及び温度
- B) 燃焼時の系内の圧力変化
- C) 高速度カメラによる燃焼挙動

混合気体燃焼試験の概要

▶ 水素 + 可燃性有機ガス + 空気の混合気体を想定

▶ 水素濃度(4vol% ~ 20vol%等)、可燃性有機ガス濃度(数vol%等)、酸素濃度(空気量)による着火時の 燃焼状態(高速度カメラ)や燃焼による温度、圧力上昇を確認

③ 広子2規制委員会 混合気体(水素、可燃性有機ガス及び空気)燃焼試験 の試験条件の例

<u>試験資機材</u>

水素燃焼装置

高速度カメラ

流量計、温度計、圧力計

水素ガス等(水素ガス、メタンガス、ブタンガス、空気)

<u>パラメータ</u>

- A) 水素濃度_4 vol%、8 vol%、10 vol%、20 vol% 【4パラメータ】
- B) 可燃性有機ガス種類_メタン(CH4)、ブタン(C4H10) 【2パラメータ】
- C) 可燃性有機ガス濃度_1 vol%、5 vol% 【2パラメータ】

<u>測定項目</u>

- A) 水素ガス及び可燃性有機ガスの濃度及び温度
- B) 燃焼時の系内の圧力変化
- C) 高速度カメラによる燃焼挙動

ケーブル等加熱試験(2021年度)結果の概要

3号機の水素爆発時の映像では、火炎及び噴煙の状態から水素以外に可燃性ガスの存在が示唆された。 火炎の色や輝度、燃焼時間等から可燃性の有機化合物が相当量存在していたと考えられる。また、爆発 直後の衛星写真ではシールドプラグ部分から激しく水蒸気が噴出しており原子炉建屋内部にも相当量の 水蒸気が存在したと考えられる。

2021年度は、BWRの格納容器内に可燃性有機化合物を含むガスの発生源となり得るケーブルや保温材 が存在することから、東京電力から格納容器内で使用されているケーブル及び保温材の同材品及び類似 品の試料提供を受け、これらの試料の加熱試験を東京電力及びJAEAにて行った。

その結果、各試料を約1,000 まで加熱した際に複数の温度域で試料重量が減少すること、ケーブル等 に使用されている有機材料が熱分解生成ガスとして検出されていることが確認された。

ケーブル等の加熱試験の結果概要

出典:東京電力福島第一原子力発電所の事故の分析 に係る検討会(第29回会合)資料1 - 1及び資料1 - 2

ケーブル等の加熱試験の結果概要

N_o

出典:東京電力福島第一原子力発電所の事故の分析 に係る検討会(第29回会合)資料1 - 1及び資料1 - 2

BWR格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

熱分解ガスクロマトグラフ(GC) - 質量分析(MS)

ケーブル等の加熱試験の結果概要

出典:東京電力福島第一原子力発電所の事故の分析 に係る検討会(第29回会合)資料1-1及び資料1-2

15

ShORDJADDURT/DJDURT/DDURT/DJDURT/DJDURT/DJDURT/DDURT/DJDURT/DDURT/DJDURT/DDURT/DJDURT/DDURT/DJDURT/DDURT/DJDURT/DDUR			BWR 格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】										ケープル・塗料	・保 (本i	温材(式験)	の可燃 【東京	燃性ガ マ電力	ス発生 HD】	と 量評	価試験
1 1	禁 強度	熱分解ガスクロマトグラフ(GC) - 質量分析(MS) ウレタンの例 生成ガス成分の 時間分離 生成ガス成分を時間的に分離し、 MS測定データを分析、ライブラリ データと照合し、定性分析を実施。 類似度800未満は と記載。						熱分解ガスクロマトク ウレタン保温材昇温前 。	ブラフロ 後の3	(GC) <u>犬態</u>	- 質量	·分析(VIS) .	ンレタン , , , , , , , , , , , , , , , , , , ,						
$ \frac{1}{10} \frac{1}{10} \frac{1}{2} \sqrt{9} \frac{1}{10} \sqrt{9} \sqrt{9} \sqrt{9} \sqrt{9} \sqrt{68} \frac{1}{10} \frac{1}{23} \frac{1}{23} \frac{1}{2} \sqrt{9} \sqrt{7} \sqrt{9} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} 2$	ピーク No.	保持時間 (min)	ウレタンの定性結果(<u>246°C加熱</u> ライブラリ解析 推定化合物	<u>時</u>) 類似度	ピーク No.	· (min)	ウレタンの定性結果(<u>421°C加</u> ライブラリ解析 推定化合物	<u>熱時</u>) 類似度	ピーク No.	保持時間 (min)	ウレタンの定性結果(<u>580°C加</u> ライブラリ解析 推定化合物	<u>熱時</u>) 類似度	試験前	(4.0)	言	式験後		(10	試	験後
$\frac{1}{2}$ <	1	1.02	1-クロロ-3-フルオロベンゼン	608	1	1.23	アリルプロピルエーテル	697	1	1.21	シクロプチルシラン	689	-	(100	JU 7 j K	、系刀人	坂 現ト) (10	100 小	※ 式
Image: Problem in the second secon	2	1.09	1-クロロ-3-フルオロペンゼン	565	2	1.42	5-ヘキセン-1-オール	711	2	3.35	トルエン	919		7	レまポフ	シレタン保護	温材ガス発	<u>生量(m3/t</u> 水茎気	:)	业基层
3 2.28 $12 - 97 \Pi = 7\pi^{1/2}$ 930 3 6.68 $23 - 97 \# + 3.77 + 2.2 - 713$ 3 9.67 $97 = 1 - 93 \# + 4.97 + 2.2 - 717$ 779 779 4 9.28 NN- $33 + 74 + 59 + 72 - 717$ 817 4 9.28 $2.2 + 74.3 - 37 + 59 + 72 - 717$ 767 4 11.54 $2.7 \pm 74.3 - 37 + 59 + 72 - 717 - 717$ 767 4 11.54 $2.7 \pm 74.3 - 37 + 59 - 717 - $													<u> 環境</u> 温度(℃) BT	~230 2	30~370	370~1000	BT~230	730~370	370~1000	200
4 9.28 N.P. $\forall x \neq h \lor \phi q n + \psi \land r = h$ 1.5 $2.4 \neq h \lor 3.4 \mp h \lor + \psi \lor 1$ 767 4 1.54 $2.4 \neq h \lor 3.4 \mp h \lor + \psi \lor 1$ 767 4 1.54 $2.4 \neq h \lor 3.4 \mp h \lor + \psi \lor 1$ 767 4 1.54 $2.4 \neq h \lor 3.4 \mp h \lor + \psi \lor 1$ 767 4 1.54 $2.4 \neq h \lor 3.4 \mp h \lor + \psi \lor 1$ 767 4 1.54 $2.4 \neq h \lor 4.4 \mp h \lor 4.4 \lor 4.4 \mp h \to 4.4$	3	2.28	1,2-ジクロロプロパン	930	3	6.68	2,3-ジメチル-3-ブテン-2- オール	713	3	9.67	ジアニリノジメチルシラン	779		-	-	-	-	-	2.64E+02	-
4 9.8 N.P. $y \neq h \nu \neq h \nu \neq h \nu$ 8/8 4 9.28 $\nu (h \nu \neq h \nu \neq h) \neq h \neq $		0.00		070		0.00		767		11.51		740	CO	-	-	-	-	-	1.16E+02	-
13.33 3.33 -Trifluoro-2-hydroxy- propionic acid. 2-isopropul-5- methyl-cyclohexylester methyl	4	9.28	N,N-シメナルシクロヘキシルア ミン	8/8	4	9.28	2-(2-クロロエトキシ)エダ ノール	161	4	11.54	2-メナル-3-オキサヘキサン- 1,5-ジオール	142	CH4 5.83	33E-04 1	.25E-03	7.35E+00	6.29E-03	1.09E-03	2.72E+01	5.49E-03
a b <td>5</td> <td>13.33</td> <td>3.3.3-Trifluoro-2-hydroxy-</td> <td>742</td> <td>5</td> <td>11.86</td> <td>3-メトキシ-1.2-プロパンジ</td> <td>611</td> <td>5</td> <td>12.99</td> <td>34-ジメチルアニリン</td> <td>899</td> <td>C2H4</td> <td>- 4</td> <td>.17E-04</td> <td>5.43E-01</td> <td>3.59E-03</td> <td>7.03E-04</td> <td>6.68E+00</td> <td>-</td>	5	13.33	3.3.3-Trifluoro-2-hydroxy-	742	5	11.86	3-メトキシ-1.2-プロパンジ	611	5	12.99	34-ジメチルアニリン	899	C2H4	- 4	.17E-04	5.43E-01	3.59E-03	7.03E-04	6.68E+00	-
k k <td></td> <td>10.00</td> <td>propionic acid, 2-isopropyl-5-</td> <td>1.14</td> <td></td> <td>1100</td> <td>オール</td> <td></td> <td></td> <td>12100</td> <td></td> <td></td> <td>C2H6</td> <td>- 5</td> <td>.00E-04</td> <td>6.83E-01</td> <td>8.98E-04</td> <td>1.56E-04</td> <td>1.25E+00</td> <td>-</td>		10.00	propionic acid, 2-isopropyl-5-	1.14		1100	オール			12100			C2H6	- 5	.00E-04	6.83E-01	8.98E-04	1.56E-04	1.25E+00	-
Image: Normal state in the state	6	17.36	Germacrene A, 9-(methylthio)-	567	6	13.09	Pentan-2-ol, 4-allyloxy-2-	702	6	15.28	4-sec-ブチルアニリン	727	炭 C3H6	- 1	.92E-02	5.95E-01	2.70E-03	5.47E-04	3.63E+00	-
7 21.43 $9.0kk \downarrow \forall J_2[1-(2 \square n \neq f \neq h)]$ 890 7 15.9 $1.1'(12 \neg \Box n \neq \forall f \neq h) \forall Z_1(2 \neg \Box n \neq \forall f \neq h) \forall Z_1(2 \neg \Box n \neq d \neq h))$ 803 8 21.54 $9.kk \forall Z_1[-(2 \square n \neq f \neq h)]$ 901 8 $19.0k$ $b \forall J \forall J \forall \Box U \forall J \Box U \forall J \Box U \forall J \forall U \forall J \Box U \forall U$							methyl-						化 C3H8 2.92	2E-04 5	.00E-04	1.51E-01	1.80E-03	3.13E-04	4.30E-01	1.37E-03
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	7	21.43	りん酸トリス[1-(クロロメチル)	890	7	15.79	1,1'-(1,2-プロパンジイルビス	755	7	17.53	2,7-ジメチルキノリン	803	水 i-C4H10	-	-	-	-	-	-	-
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			エナル」				オキン)ヒス(2-フロパノール)						素 n-C4H10	-	-	-	-	7.81E-05	6.00E-02	-
Image: Processing and Constraints of the processing of the procesing of the processing of the processing	8	21.54	りん酸ビス[1-(クロロメチルエ チル)] (3-クロロプロビル)	901	8	19.08	トリイソプロピレングリコー	738	8	21.13	4-ペンジルアニリン	878	i-C5H12	- 1	.1/E-03	1.23E-02	-	-	- 1005 00	-
9 2.1.0 9/2.00 9/2.00 9/2.00 9/2.00 2/2.4 2/4.12 4/4-メチレンジアニリン 882 1.52E-01 2.1/E-01 3.15E-01 5.03E-01 2.2/F-01 2.1/E-01 8.3/E-01 10 22.37 2-((2-Chlorothxy)carbonyl) 678 10 3.3.44 4/4·3/J > J > J > 10 25.04 4/4·3/J > J > J > 10 879 879 10 10 25.04 4/4·3/J > J > J > 10 879 10 25.04 4/4·3/J > J > J > 10 25.04 4/4·3/J > J > J > 10 879 10 10 1.52E-01 1.52E-01 1.52E-01 5.03E-01 2.34E-01 8.3/E-01 10 22.37 2-((2-Chlorothxy)carbonyl) 678 10 3.3.44 4/4·3/J > J > J > J > 10 25.04 4/4·3/J > J > J > J > J > 10 879 10 10 1.52E-01 1.24E+01 5.03E+01 2.34E+01 8.3/E=01 10 22.37 2-((2-Chlorothxy)carbonyl) 678 10 2.5.04 4.4·3/J > J > J > J > J > J > J > J > J > J >		01.0		010	0	00.1	メチルエーテル	600		04.10	A 41 - 4 - 7 + 5 - 5 - 7 - 11 -	000	n=C5H12 上記以外の01~05(0H4份等法) 1.50	- 3	17E-01	2.28E-02	-	-	1.36E-02	9 275-01
Image: Control (Control (Contro) (Control (Control (Control (Control (Cont	9	21.6	リん酸ビス(3-クロロフロビル) [1-(クロロメチル)エチル]	916	9	22.4	ethoxy) carbonyl) benzoic	628	9	24.12	4,4 - メナレンシアニリン	882	2日11日1日11日11日11日11日11日11日11日11日11日11日11日	5E-01 2	02E-01	1.24E+01	5.03E-01	2.2/E-01	2.13E+00	8.51E-01
	10	22.37	2-((2-Chloroethoxy)carbonyl)	678	10	33.44	acid A A'-ジイソシアン酸メチレン	735	10	25.04	44'-メチレンジアニリン	879		-	-	6.48E-01	5.50E-01	2.04E-01	3.00E+01	-
	10	22.51	benzoic acid	010	10	55.44	ジフェニル	155		23.04	1.1 / / / / / / / / / / /	019	H2S 8.75	5E-05 7	50E-05	-	7.28E-03	938E-04	4.30E-02	4 67E-03

材料由来成分(ウレタンの場合はジクロロプロパン、トルエン等)となる高分子量の有機化合物を推定(炭素数4以上を検出)

 水蒸気環境下の方が水素環境下よりも可燃性ガスが多く 発生する傾向。

2021年度の試験結果の整理

JAEA及び東京電力の2021年度の試験結果等については、

- ▶ JAEAは、試料単体(絶縁体等の素材単位)を窒素環境下で加熱しており、単純な系 で発生するガスを質量分析にかけ、定性分析を主体に実施した。その結果、H₂O及 びCO₂を検出するとともに、炭素数4以上の高分子量のガスを推定した。
- ▶ 一方、東京電力は、試料全体(ケーブルの場合、シース、絶縁体、導体を含む一体としたもの)を水素環境下及び水蒸気環境下で加熱し、試料の加熱前後でのフーリエ 変換赤外分光法や走査型電子顕微鏡-エネルギー分散型X線分光分析による状態 変化を確認するとともに、CH₄の炭素数3以下の低分子量のガスを定量している。
 ▶ 全体としては、H₂O及びCO₂の発生量が多く、次いでCH₄等の炭素数3以下の低分子
 - 量のガス、最後に炭素数4以上の高分子量のガス(プロパンやトルエン等)が検出される傾向。高分子量のガスは、各試料の材料由来成分と考えられる。

JAEA BWR格納容器内有機材料熱分解生成気体の分析 (ケーブル及び保温材の加熱試験) 試料

No.	種類	仕様等	用途	試料写真等	予備試験	本試験 (1200 昇温試験)
1	ケーブル	CVケーブル シース∶難燃性特殊耐熱ビニル	高圧動力用ケーブ ルに使用	DA	熱重量測定 (TG)-DTA- MS	2021年度完了
2	ケーブル	PNケーブル 絶縁体∶難燃性エチレンプロピレンゴ ム	·制御·計装ケーブ ルに使用 ·RPV下部に設置		熱重量測定 (TG)-DTA- MS	2021年度完了
3	ケーブル	PNケーブル シース∶特殊クロロプレンゴム	·制御·計装ケーブ ルに使用 ·RPV下部に設置		熱重量測定 (TG)-DTA- MS	2021年度完了
4	保温材	ウレタン保温材	·配管保温		熱重量測定 (TG)-DTA- MS	2021年度完了

出典:東京電力福島第一原子力発電所の事故の分析に係る検討会(第29回会合)資料1 - 1

4 試料

東京電力 可燃性有機ガス発生量評価(ケーブル、保温材及び塗料

の昇温試験)試料

出典:東京電力福島第一原子力発電所の事故の分析に係る検討会(第29回会合)資料1-2

No.	│ │ 種類	仕様等	用途	試料写真等	予備試験	本試験 (1000 昇温試験) (200 24h 試験)	
1	ケーブル	CVケーブル 絶縁体:架橋ポリエチレン シース:難燃性特殊耐熱ビニル	・高圧動力用 ケーブルに使用		熱重量測定(TG) FT-IR,SEM-EDX	2021年度完了 <u>7</u> 訂	<u> </u>
2	ケーブル	PNケーブル 絶縁体 : 難燃性エチレンプロピレンゴム シース : 特殊クロロプレンゴム	·制御·計装ケー ブルに使用 ·RPV下部に設置		熱重量測定(TG) FT-IR,SEM-EDX	2021年度完了	
3	ケーブル	同軸ケーブル 絶縁体:ETFE / 架橋ポリエチレン シース:難燃性架橋ポリエチレン	·SRNM/LPRM ケーブルに使用 ·RPV下部に設置		熱重量測定(TG) FT-IR,SEM-EDX	2021年度完了	
4	保温材	ウレタン保温材	·配管保温		熱重量測定(TG) FT-IR,SEM-EDX	2021年度完了	
5	保温材	ポリイミド保温材	·配管保温		熱重量測定(TG) FT-IR,SEM-EDX	2021年度完了	
6	塗料	エポキシ系塗料	・D/W、S/C壁面 上塗り		熱重量測定(TG) FT-IR,SEM-EDX	2021年度完了	
7	塗料	無機ジンクリッチ塗料	・D/W、S/C壁面 下塗り		熱重量測定(TG) FT-IR,SEM-EDX	2022年度実施予定	18

19

ケーブル等加熱試験(2021年度)結果 のデータ整理

出典:東京電力福島第一原子力発電所の事故の分析に係る検討会(第30回会合)資料3 - 2 東京電力福島第一原子力発電所の事故の分析に係る検討会(第29回会合)資料1 - 1及び資料1 - 2 東京電力福島第一原子力発電所の事故の分析に係る検討会(第28回会合)資料3 - 1及び資料4 - 1 東京電力福島第一原子力発電所の事故の分析に係る検討会(第27回会合)資料5 - 2 東京電力福島第一原子力発電所の事故の分析に係る検討会(第26回会合)資料4 - 2 東京電力福島第一原子力発電所の事故の分析に係る検討会(第23回会合)資料4 - 1及び資料5 - 2 令和3年度原子力規制庁委託成果報告書(東京電力福島第一原子力発電所プラント内核種移行に関する調査) 令和4年3月 国立研究開発法人日本原子力研究開発機構

ケーブル等加熱試験の試料等(2021年度実施)

:分析実施 - :分析対象外 × :分析未実施

No.	種類	試料	仕様等	BWR 格納容器内有機材料熱 分解生成気体の分析 [JAEA]	ケーブル・塗料・保温材の可 燃性ガス発生量評価試験 [東京電力HD]
	ケーブル	再循環ポンプ動力ケーブル	CVケーブル	-	}_
			絶縁体:架橋ポリエチレン	×	-
			シース:難燃性特殊耐熱ビニル		-
	ケーブル	原子炉圧力容器底部温度計	PNケーブル	-	
		<i>y</i> – <i>y w</i>	絶縁体:難燃性エチレンプロピレンゴム		-
			シース:特殊クロロプレンゴム		
	ケーブル	SRNM/LPRMケーブル	同軸ケーブル	-	
			絶縁体:ETFE / 架橋ポリエチレン	×	-
			シース:難燃性架橋ポリエチレン	×	-
	保温材	原子炉補機冷却水系配管	ウレタン保温材		
	保温材	配管保温材	ポリイミド保温材	×	
	塗料	格納容器内(D/W、S/C)壁面 上塗り	エポキシ系塗料	×	
	塗料	格納容器内(D/W、S/C)壁面 下塗り	無機ジンクリッチ塗料	×	×

ケーブル全体を加熱 20

BWR格納容器内有機材料熱分解生成気体の分析 (予備試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (予備試験)【東京電力HD】

TG-MS**分析条件**

パン(試料容器)	白金(開放式)
試料量	約 2.5 mg
測定範囲	室温 ~ 1200
昇温速度	10 / minまたは20 / min
雰囲気	窒素ガス(流量200 mL/min)
イオン化法	電子イオン化(EI)
m/zの走査範囲	2 ~ 200

予備試験:昇温中の重量変化測定(TG)によるガス採取温度域の決定 試料の昇温前後のFT-IR及びSEM-EDXを測定

TG (熱重量)測定

: 試料の温度を一定のプログラムに従って変化させながら、その 試料の質量を温度の関数として測定する方法。試料の熱分解や 脱水等の減少など、劣化事象を定量的に測定。

FT-IR(フーリエ変換赤外分光法)

: 試料に赤外光を照射し、透過または反射した光量を測定する方 法。分子の構造や官能基の情報を得て、物質の定性や同定に関 する情報を得ることができる。

SEM-EDX(走査型電子顕微鏡-エネルギー分散型X線分光分析) : 試料に電子線を照射し、表面にXY方向に二次元走査し、そこか ら発生する様々な信号を用いて表面構造の観察や組成の分析な どを行う。

原子カ規制委員会ケーブル等加熱試験の試験条件等(2021年度実施)

BWR格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】

熱分解GC-MS分析条件

加熱雰囲気	N2 雰囲気
	2.1 mg
試料加熱温度	$ \cdot 321 \rightarrow 395 \rightarrow 500 $ (難燃性エチレンプロピレンゴム) $ \cdot 307 \rightarrow 404 \rightarrow 527 $ (特殊クロロプレンゴム) $ \cdot 376 \rightarrow 560 \rightarrow 800 $ (難燃性特殊耐熱ビニル) $ \cdot 246 \rightarrow 421 \rightarrow 580 $ (ウレタン)
各温度での保持時間	1分間
インターフェイス温度	240
クライオトラップ	使用する
カラム	DB-5MS UI (30 m × 0.25 mm, 0.25 µm)
キャリヤーガス、流量	He, 1.0 mL/min(初期カラム流量)
スプリット比	200:1
注入口温度	240
検出器	MS, スキャンモード, m/z= 29~1000
インターフェイス温度	320
オーブンの温度	40 (5 min)→10 /minで昇温→320 (30 min)

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

本試験条件設定

- 水蒸気、水素ガス環境下における1000
 までの連続昇温試験(昇温) 速度10 /min)予備試験(TG測定)で得られた結果から、ガス発 牛のタイミングにて3つのガスサンプリング領域を設定
- 水蒸気か水素ガス環境下のいずれかにおいて、200 24時間保持試 験
- ケーブルはシース、絶縁体、導体含む一体もので試験実施

本試験分析方法

- 200 、ガス発生温度域、1000 で採取したガスをガスクロマトグ ラフィーより分析
- •昇温前後でのケーブル等の高分子成分の変化をFT-IR より測定
- •昇温前後でのケーブル等中に含まれる各元素の相対変化をSEM-EDX より測定
- ・水素ガス環境下(水素ガス流量:0.3L/min程度)、 水蒸気環境下(水蒸気流量:0.3L/min程度、窒素ガス流量: 0.1L/min程度

CVケーブルの結果概要(1/3)

- 188 -

CVケーブルの結果概要(2/3)

CVケーブルの結果概要(3/3)

BWR格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

CVケーブル シース(難燃性特殊耐熱ビニル) <u>昇温前後の状態</u>

試験後

温度()	<u>280 ~ 376</u>	376 ~ 560	560 ~ 800	800 ~ 1200
推定発生 ガス	水 二酸化炭素 2-オクテン	水 二酸化炭素 ベンゼン トルエン	水素 水 二酸化炭素	二酸化炭素

昇温条件 10 /min

熱分解ガスには高分子量の有機化合物が含まれると推定。
 TG-MS分析結果と合わせると、幅広い分子量の有機化合物が生成され得るが、無機ガス成分(H2O等)に比べると、個々の生成量は低いと考えられる。

試験前

(1000 水素ガス環境下)

試験後 (1000 水蒸気環境下)

1000 昇温時、200 24時間保持に発生したガス分析結果

試料			CVケーブルガス発生量(m3/t)								
環境	<u>i</u>		水素ガス			水蒸気		水蒸気			
温度	(°C)	RT~350	350~500	500~1000	RT~350	350~500	500~1000	200			
H2		-	-	+	-	-	1.01E+02	2 — 2			
CO		-	-	2.74E+00	-	-	1.95E+01	-			
	CH4	1.52E-04	1.90E-01	1.10E+01	2.29E-04	6.53E-03	1.81E+01	2.98E-04			
	C2H4	1.52E-04	1.42E-01	1.92E+00	-	4.57E-03	1.17E+01	9.92E-05			
	C2H6	-	1.33E-01	1.92E+00	-	3.59E-03	2.01E+00	-			
炭	C3H6	-	1.23E-01	6.17E-01	-	1.96E-03	2.41E+00	-			
化	C3H8	2.27E-04	8.06E-02	1.92E-01	-	1.63E-03	4.58E-01	6.95E-04			
水	i-C4H10	-	1.33E-03	5.48E-03	-	1.41E-04	7.45E-03	-			
素	n-C4H10	-	5.12E-02	9.46E-02	-	5.22E-04	2.87E-01	-			
	i-C5H12	-	1.80E-02	8.78E-02	-	-	2.64E-01	-			
	n-C5H12	-	1.71E-02	8.36E-02	-	-	1.98E-01	-			
	上記以外のC1~C5(CH4換算値)	-	2.65E-01	1.06E+00	-	4.03E-03	4.58E+00	2 - 1			
	CH4換算合計値	1.25E-03	1.90E+00	2.33E+01	5.33E-04	3.92E-02	6.02E+01	2.58E-03			
NH3		-	-	-	3.81E-05	-	-	4.96E-05			
H2S		8.34E-05	2.09E-03	3.70E-03	7.46E-04	4.46E-05	2.87E-04	3.37E-04			

□ 水蒸気環境下でH2及び炭化水素(CH4換算)の発生量大。

PNケーブルの結果概要(1/4)

PNケーブルの結果概要(2/4)

PNケーブル シース(特殊クロロプレンゴム)

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (予備試験)【東京電力HD】

PNケーブルの結果概要(3/4)

193

BWR格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

PNケーブル 絶縁体(難燃性エチレンプロピレンゴム) 昇温前後の状態

試験前

試験後

温度()	210 ~ 321	321 ~ 395	<u>395 ~ 500</u>	500 ~ 1200
推定発生 ガス	二酸化炭素	水 二酸化炭素 1-ブテン	水素 水 一酸化窒素 二酸化炭素 C7炭化水素 ベンゼン トルエン	二酸化炭素

昇温条件 10 /min

□ 熱分解ガスには高分子量の有機化合物が含まれると推定。

PNケーブル 昇温前後の状態

(1000 水素ガス環境下)

試験後 (1000 水蒸気環境下)

1000 昇温時、200 24時間保持に発生したガス分析結果

試料	4			PNケーブ	ルガス発生	呈量(m3/t)		
環境	ž.	水素ガス				水蒸気		水蒸気
温度	€(°C)	RT~400	400~500	500~1000	RT~400	400~500	500~1000	200
H2		-	-	-	-	1.55E-01	3.98E+02	-
CO		-	4.09E-02	4.32E-01	-	6.87E-02	1.62E+02	-
	CH4	4.71E-02	3.80E-01	4.75E+00	3.86E-03	1.22E-01	1.83E+01	3.72E-03
	C2H4	9.11E-02	2.21E-01	4.15E-01	4.87E-03	1.41E-01	6.26E+00	5.32E-04
	C2H6	1.40E-02	2.09E-01	3.89E-01	7.16E-04	5.15E-02	3.05E+00	-
炭	C3H6	5.16E-03	1.02E-01	1.99E-01	2.86E-04	1.89E-02	2.70E+00	-
化	C3H8	7.44E-03	8.18E-02	9.08E-02	2.86E-04	1.63E-02	9.57E-01	1.33E-03
水	i-C4H10	-	3.60E-03	3.46E-03	-	6.18E-04	4.79E-02	-
素	n-C4H10	5.77E-03	4.91E-02	4.32E-02	-	7.90E-03	5.39E-01	-
	i-C5H12	-	1.06E-02	1.90E-02		6.01E-04	2.18E-01	-
	n-C5H12	4.86E-03	2.29E-02	4.32E-02	-	9.62E-04	4.26E-01	-
	上記以外のC1~C5(CH4換算値)	7.75E-02	3.35E-01	3.89E-01	2.29E-03	9.10E-02	6.35E+00	-
	CH4換算合計値	3.95E-01	2.41E+00	7.78E+00	1.86E-02	7.04E-01	5.74E+01	8.91E-03
NH3		-	-	Ξ.	-	-	-	-
H2S		1.20E-01	1.47E-01	1.04E-01	6.15E-03	5.84E-02	3.31E-01	4.65E-04

□ 水蒸気環境下でH2及びCOの発生量大。

PNケーブルの結果概要(4/4)

194

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

PNケーブル シース(特殊クロロプレンゴム) <u>昇温前後の状態</u>

試験後

温度	230 ~	<u>307 ~</u>	404 ~	527 ~	700 ~
()	307	<u>404</u>	527	700	1200
推定 発生 ガス	水 二酸化炭素	水 二酸化炭素 2-ウロロ-2-メチ ルプロパン 塩素 ベンゼン トルエン	水素 水 二酸化炭素 2-クロロ-2-メチ ルプロパン 塩素 C7炭化水素 ベンゼン トルエン	水素 水 二酸化炭素	二酸化炭素

昇温条件 10 /min

□ 熱分解ガスには高分子量の有機化合物が含まれると推定。

PN**ケーブル** <u>昇温前後の状態</u>

(1000 水素ガス環境下)

試験後 (1000 水蒸気環境下)

<u>1000 昇温時、200 24時間保持に発生したガス分析結果</u>

試料	4			PNケーブ	ルガス発生	E量(m3/t)		
環均	÷.		水素ガス			水蒸気		水蒸気
温度	€(°C)	RT~400	400~500	500~1000	RT~400	400~500	500~1000	200
H2		-	-	-		1.55E-01	3.98E+02	-
CO		-	4.09E-02	4.32E-01	-	6.87E-02	1.62E+02	-
	CH4	4.71E-02	3.80E-01	4.75E+00	3.86E-03	1.22E-01	1.83E+01	3.72E-03
	C2H4	9.11E-02	2.21E-01	4.15E-01	4.87E-03	1.41E-01	6.26E+00	5.32E-04
	C2H6	1.40E-02	2.09E-01	3.89E-01	7.16E-04	5.15E-02	3.05E+00	-
炭	C3H6	5.16E-03	1.02E-01	1.99E-01	2.86E-04	1.89E-02	2.70E+00	-
化	C3H8	7.44E-03	8.18E-02	9.08E-02	2.86E-04	1.63E-02	9.57E-01	1.33E-03
水	i-C4H10	-	3.60E-03	3.46E-03	-	6.18E-04	4.79E-02	-
素	n-C4H10	5.77E-03	4.91E-02	4.32E-02	-	7.90E-03	5.39E-01	-
	i-C5H12	-	1.06E-02	1.90E-02	-	6.01E-04	2.18E-01	-
	n-C5H12	4.86E-03	2.29E-02	4.32E-02	-	9.62E-04	4.26E-01	-
	上記以外のC1~C5(CH4換算値)	7.75E-02	3.35E-01	3.89E-01	2.29E-03	9.10E-02	6.35E+00	-
	CH4換算合計値	3.95E-01	2.41E+00	7.78E+00	1.86E-02	7.04E-01	5.74E+01	8.91E-03
NH3		-	-	-	-	-	-	-
H2S	5	1.20E-01	1.47E-01	1.04E-01	6.15E-03	5.84E-02	3.31E-01	4.65E-04

□ 水蒸気環境下でH2及びCOの発生量大。

同軸ケーブルの結果概要(1/4)

- 195 -

同軸ケーブルの結果概要(2/4)

同軸ケーブルの結果概要(3/4)

- 197 -

同軸ケーブルの結果概要(4/4)

BWR格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

<u>1000 昇温時、200 24時間保持に発生したガス分析結果</u>

試料		同軸ケーブルガス発生量(m3/t)							
環境		水素ガス			水蒸気			水蒸気	
温度(°C)		RT~400	400~540	540~1000	RT~400	400~540	540~1000	200	
H2		-	-	-	-	-	3.37E+01	-	
CO		-	-	-	-	-	1.17E+01	-	
	CH4	1.27E-03	1.52E-01	2.76E+00	2.14E-03	1.81E-02	7.12E+00	1.29E-03	
	C2H4	2.29E-03	1.62E-01	5.31E-01	-	2.05E-02	5.44E+00	-	
	C2H6	7.62E-04	1.20E-01	5.84E-01	5.35E-04	1.40E-02	1.26E+00	-	
炭	C3H6	7.62E-04	1.20E-01	1.81E-01	-	7.91E-03	1.51E+00	-	
化	C3H8	7.62E-04	5.08E-02	6.37E-02	1.87E-02	6.51E-03	2.93E-01	3.22E-03	
水	i-C4H10	-	1.02E-03	5.31E-04	-	-	-	-	
素	n-C4H10	-	2.91E-02	2.92E-02	-	1.12E-03	1.72E-01	-	
	i-C5H12	-	1.43E-02	1.86E-02	-	-	6.28E-02	-	
	n-C5H12	-	1.20E-02	2.02E-02	-	-	3.98E-02	-	
	上記以外のC1~C5(CH4換算値)	5.84E-03	2.68E-01	3.29E-01	-	1.07E-02	2.93E+00	-	
	CH4換算合計值	1.80E-02	1.66E+00	6.37E+00	5.88E-02	1.40E-01	2.72E+01	1.22E-02	
NH3		-	-	-	-	-	-	-	
H2S		-	-	2.02E-03	3.74E-04	1.49E-04	2.93E-04	1.22E-03	

□ 水蒸気環境下でH2及び炭化水素(CH4換算)の発生量大。

分析未実施

保温材の結果概要(1/4)

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (予備試験)【東京電力HD】

- 199 -

保温材の結果概要(2/4)

BWR格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

保温材(ウレタン) 昇温前後の状態

=++ 田全 ====

F	八向火月]	-					
温度()	160 ~ 246	<u>246 ~ 421</u>	421 ~ 580	580 ~ 1200			
推定発生 ガス	C8炭化水素 二酸化炭素 塩化アリル	水 一酸化炭素 二酸化炭素 イソ酪酸	ベンゼン トルエン	-			

昇温条件 10 /min

□ 材料由来成分(ウレタンの場合はジクロロプロパン、トルエン 等)となる高分子量の有機化合物を推定(炭素数4以上を検出) □ TG-MS分析結果と合わせると、幅広い分子量の有機化合物が 生成され得るが、無機ガス成分(H2O等)に比べると、個々の生 成量は低いと考えられる。

試験前

(1000 水素ガス環境下)

試験後 (1000 水蒸気環境下)

1000 昇温時、200 24時間保持に発生したガス分析結果

試料		ウレタン保温材ガス発生量(m3/t)							
環境		水素ガス			水蒸気			水蒸気	
温度(℃)		RT~230	230~370	370~1000	RT~230	230~370	370~1000	200	
H2		-	-	-	-	-	2.64E+02	-	
CO		-	-	-	-	-	1.16E+02	-	
	CH4	5.83E-04	1.25E-03	7.35E+00	6.29E-03	1.09E-03	2.72E+01	5.49E-03	
	C2H4	-	4.17E-04	5.43E-01	3.59E-03	7.03E-04	6.68E+00	-	
	C2H6	-	5.00E-04	6.83E-01	8.98E-04	1.56E-04	1.25E+00	-	
炭	C3H6	-	1.92E-02	5.95E-01	2.70E-03	5.47E-04	3.63E+00	-	
化	C3H8	2.92E-04	5.00E-04	1.51E-01	1.80E-03	3.13E-04	4.30E-01	1.37E-03	
水	i-C4H10	-	-	-	-		-	-	
素	n-C4H10	-	-	-	-	7.81E-05	6.00E-02	-	
	i-C5H12	-	1.17E-03	1.23E-02	-	-	-	-	
	n-C5H12	-	3.08E-03	2.28E-02	-	-	1.36E-02	-	
	上記以外のC1~C5(CH4換算値)	1.52E-01	2.17E-01	3.15E-01	5.03E-01	2.27E-01	2.15E+00	8.37E-01	
	CH4換算合計值	1.55E-01	2.92E-01	1.24E+01	5.30E-01	2.34E-01	5.66E+01	8.51E-01	
NH3		-	-	6.48E-01	-	-	3.96E-03	-	
H2S		8.75E-05	7.50E-05	-	7.28E-03	9.38E-04	4.30E-02	4.67E-03	

□ 水蒸気環境下でH2及びCOの発生量大。

保温材の結果概要(3/4)

- 201 -

保温材の結果概要(4/4)

BWR格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

保温材(ポリイミド)

分析未実施

1000 昇温時、200 24時間保持に発生したガス分析結果

= n .1e									
試料		ホリイミト 保温 材力 ス 発 生 童(m3/t)							
環境		水素				水素ガス			
温度	€(°C)	RT~520	520~700	700~1000	RT~520	520~700	700~1000	200	
H2		-	-	-	-	-	6.32E+02		
CO		-	7.38E+00	3.08E+00	-	1.71E+00	3.94E+02	-	
	CH4	1.40E-02	2.22E-01	9.85E+00	6.57E-03	5.14E-02	2.36E+01	1.52E-04	
	C2H4	1.08E-03	1.35E-02	5.23E-02	-	6.57E-03	1.36E+00	-	
	C2H6	-	9.23E-03	4.00E-02	-	2.86E-04	3.53E-02	-	
炭	C3H6	-	3.08E-03	-	-	2.00E-03	7.87E-02	-	
化	C3H8	1.08E-03	2.65E-02	7.38E-02	-	2.86E-04	1.60E-01	-	
水	i-C4H10	-	-	-	-	-	-	-	
素	n-C4H10	-	-	-	-	-	-	-	
	i-C5H12	-	-	-	-	-	-	-	
	n-C5H12	-	-	-	-	-	-	-	
	上記以外のC1~C5(CH4換算値)	4.95E-02	1.78E-02	2.46E-02	(-1)	-	7.60E-02	-	
	CH4換算合計值	7.22E-02	3.69E-01	1.05E+01	1.31E-02	7.14E-02	2.69E+01	4.55E-04	
NH3		5.38E-04	3.08E-02	1.60E+00	1.64E-03	-	1.36E-03	-	
H2S		-	-	-	3.29E-04	5.71E-05	1.63E-03	-	

□ 水蒸気環境下でH2及びCOの発生量大。

- 202 -

塗料の結果概要(1/4)

BWR**格納容器内有機材料熱分解生成気体の分析** (予備試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (予備試験)【東京電力HD】

塗料(エポキシ系塗料)

塗料(エポキシ系塗料)

分析未実施

塗料の結果概要(2/4)

BWR格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

塗料(エポキシ系塗料)

分析未実施

司八个十									
環境		水素ガス			水蒸気			水蒸気	
温度	E(°C)	RT~200	200~600	600~1000	RT~200	200~600	600~1000	200	
H2		-	-	-	-	-	1.31E+02	-	
CO		-	-	1.50E+00	-	-	2.05E+01	-	
	CH4	1.97E-04	2.36E-01	3.74E+00	1.11E-02	2.39E-02	1.57E+01	8.24E-03	
	C2H4	-	4.13E-02	2.69E-01	8.55E-03	4.87E-03	4.44E+00	-	
	C2H6		5.51E-02	2.17E-01	2.56E-03	3.42E-03	5.40E-01	-	
炭	C3H6	-	3.94E-02	1.72E-02	6.84E-03	3.76E-03	6.22E-01	-	
化	C3H8	1.97E-04	1.91E-02	8.23E-03	2.56E-03	1.45E-03	1.37E-01	2.06E-03	
水	i-C4H10	-	-	-	-	4.27E-04	-	-	
素	n-C4H10	-	5.71E-03		1.71E-03	3.42E-04	3.76E-02	-	
(¹¹)	i-C5H12	-	-		-	-	-	-	
	n-C5H12	-	3.54E-03	-	-	5.13E-04	1.91E-02	-	
	上記以外のC1~C5(CH4換算値)	2.36E-03	1.24E-01	1.65E-02	3.59E-02	9.40E-03	8.21E-01	6.18E-02	
	CH4換算合計値	3.15E-03	7.28E-01	4.79E+00	1.11E-01	6.92E-02	2.87E+01	8.03E-02	
NH3		1.97E-04	3.94E-02	1.50E-03	-		-	-	
H2S		-	-	8.98E-02	-	-	6.77E-01	4.12E-04	

□ 水蒸気環境下でH2及び炭化水素(CH4換算)の発生量大。

- 204 -

塗料の結果概要(3/4)

40

約770℃

- エポキシ系塗肉

無機ジンクリッチ塗料

無機ジンクリッチ塗料

1000

800

600

塗料の結果概要(4/4)

BWR格納容器内有機材料熱分解生成気体の分析 (本試験)【JAEA】

ケーブル・塗料・保温材の可燃性ガス発生量評価試験 (本試験)【東京電力HD】

塗料(無機ジンクリッチ塗料)

塗料(無機ジンクリッチ塗料)

分析未実施

分析未実施