O 2 （6） $\mathrm{VI}-2-3-2$ R 4

O 2 （6） $\mathrm{VI}-2-3-2$ R 4

O 2 （6） $\mathrm{VI}-2-3-2 \quad \mathrm{R} 4$

O 2 （6） $\mathrm{VI}-2-3-2$ R 4

O 2 （6） $\mathrm{VI}-2-3-2$ R 4

$$
\text { O } 2 \text { (6) } \mathrm{VI}-2-3-2 \quad \mathrm{R} 4
$$

O 2 （6） $\mathrm{VI}-2-3-2 \mathrm{R}$

O 2 （6） $\mathrm{VI}-2-3-2 \mathrm{R}$

O 2 （6） $\mathrm{VI}-2-3-2$ R 4

表 4－12 基準地震動S s によるばね反力，せん断力

名称	単位	方向	最大地震応答値						
			Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
制御棒駆動機構ハウジングレストレントビーム	$\times 10^{3} \mathrm{~N}$	NS	278	350	260	218	218	393	213
		EW	264	327	279	215	242	264	237
シュラウドサポート	$\times 10^{6} \mathrm{~N} \cdot \mathrm{~mm}$	NS	23200	23800	23300	15000	24600	20000	17300
		EW	40600	26000	33000	28100	32000	36400	17000
上部サポート	$\times 10^{3} \mathrm{~N}$	NS	1590	1680	1540	922	1680	1170	1020
		EW	2770	1720	2250	1770	2210	2390	1130
下部スタビライザ	$\times 10^{3} \mathrm{~N}$	NS	433	453	409	261	430	346	273
		EW	709	441	573	458	560	621	298
炉心シュラウド支持ロッド	$\times 10^{3} \mathrm{~N}$	NS	157	164	153	95.9	174	125	110
		EW	280	168	228	192	222	242	114
上部格子板	$\times 10^{3} \mathrm{~N}$	NS	3140	3320	2500	2260	2790	2440	2290
		EW	2740	2900	2230	2180	2670	2180	2010
炉心支持板	$\times 10^{3} \mathrm{~N}$	NS	3770	4110	3130	2690	3350	3870	2650
		EW	3130	3750	2750	2500	3050	2770	2290

O 2 （6） $\mathrm{VI}-2-3-2$ R 4

O 2 （6） $\mathrm{VI}-2-3-2$ R 4

O 2 （6） $\mathrm{VI}-2-3-2$ R 4

$$
\text { O } 2 \text { (6) } \mathrm{VI}-2-3-2 \quad \mathrm{R} 4
$$

$$
\text { O } 2 \text { (6) } \mathrm{VI}-2-3-2 \quad \mathrm{R} 4
$$

5．設計用地震力
設計用地震力は，基本ケースと材料物性の不確かさ等を考慮したケースの包絡値とし，以下の とおり整理する。なお，設計用最大応答加速度及び設計用床応答曲線は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に記載する。
5.1 弾性設計用地震動 Sa 及び静的地震力

弾性設計用地震動 S d に対する設計用地震力及び静的地震力を表 5－1～表5－5 に示す。ここ では，地震力として，せん断力，モーメント，軸力，ばね反力及び燃料集合体相対変位を示し ている。なお，弾性設計用地震動S d に対する設計用地震力と静的地震力のらちいずれか大き い方をS d＊として評価に用いる。
5.2 基準地震動 S s

基準地震動 S s に対する設計用地震力を表 5－6～表 5－10 に示す。ここでは，地震力として， せん断力，モーメント，軸力，ばね反力及び燃料集合体相対変位を示している。

表 5－1 弾性設計用地震動 S d に対する設計用地震力及び静的地震力（せん断力）（1／2）

			せん断	
	構造物	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	弾性設計用地震動 S d に対する設計用地震力	静的地震力
			422	191
			1． 66×10^{3}	808
			3． 37×10^{3}	1． 90×10^{3}
			1.98×10^{3}	339
	䒬了成成容器		2.11×10^{3}	1． 84×10^{3}
			4.18×10^{3}	4.14×10^{3}
			5.27×10^{3}	5.68×10^{3}
			6． 31×10^{3}	7.28×10^{3}
			1． 69×10^{4}	1． 96×10^{4}
	原子师木休の其柘		1． 82×10^{4}	2． 14×10^{4}
\sim	子本体の基硞		1.95×10^{4}	2． 30×10^{4}
			2． 05×10^{4}	2.46×10^{4}
1 1 1			4． 41×10^{3}	1． 30×10^{3}
5			4.25×10^{3}	2.91×10^{3}
	原子炉しやへい壁		5.54×10^{3}	5.83×10^{3}
			7.85×10^{3}	7.96×10^{3}
N			1． 03×10^{4}	1.06×10^{4}
			175	140
			340	279
			2． 17×10^{3}	1.68×10^{3}
			2.62×10^{3}	2.15×10^{3}
	原子师格納容器		1． 40×10^{4}	1． 42×10^{4}
	皂子炉格納容器		1． 49×10^{4}	1.51×10^{4}
			1.54×10^{4}	1.58×10^{4}
			1.62×10^{4}	1． 70×10^{4}
			1.64×10^{4}	1． 76×10^{4}
			1． 68×10^{4}	1． 88×10^{4}

表 5－1 弾性設計用地震動 S d に対する設計用地震力及び静的地震力（せん断力）（2／2）

表 5－2 弾性設計用地震動 S d に対する設計用地震力及び静的地震力（モーメント）（1／2）

			モーメン	mm）
	構造物	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	弾性設計用地震動 S d に対する設計用地震力	静的地震力
			0	0
			1． 16×10^{6}	5.23×10^{5}
			4． 72×10^{6}	2． 30×10^{6}
			1.11×10^{7}	5.88×10^{6}
	原子炉圧力容器		1． 14×10^{7}	7.00×10^{6}
			1． 88×10^{7}	1． 37×10^{7}
			3． 00×10^{7}	2.80×10^{7}
			4． 01×10^{7}	3.93×10^{7}
			5． 40×10^{7}	5.59×10^{7}
			1． 30×10^{8}	1． 43×10^{8}
			1． 43×10^{8}	1.58×10^{8}
	原子炉本体の基礎		1.64×10^{8}	1． 86×10^{8}
\sim			1.96×10^{8}	2.30×10^{8}
			2.33×10^{8}	2． 76×10^{8}
∞			0	0
$\stackrel{1}{\sim}$			1.22×10^{7}	3.57×10^{6}
＞	原子师しゃへい壁		2.24×10^{7}	1.19×10^{7}
	原子炉しやへい壁		3.39×10^{7}	2.67×10^{7}
			4.79×10^{7}	4.90×10^{7}
\sim			7.80×10^{7}	8.64×10^{7}
\bigcirc			0	0
			4.02×10^{5}	3.21×10^{5}
			1.13×10^{6}	9.16×10^{5}
			4． 05×10^{6}	3.26×10^{6}
			1.17×10^{7}	9.50×10^{6}
	原子炉格納容器		7.16×10^{7}	7.16×10^{7}
			1.14×10^{8}	1.15×10^{8}
			1.89×10^{8}	1.91×10^{8}
			2.67×10^{8}	2． 74×10^{8}
			3.00×10^{8}	3.09×10^{8}
			3.24×10^{8}	3.36×10^{8}

表 5－2 弾性設計用地震動 S d に対する設計用地震力及び静的地震力（モーメント）（2／2）

			モーメン	mm）
	構造物	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	弾性設計用地震動 S d に対する設計用地震力	静的地震力
			0	0
			5.90×10^{5}	1.14×10^{5}
			1.83×10^{6}	4.10×10^{5}
			4.27×10^{6}	1． 07×10^{6}
			6． 07×10^{6}	1.50×10^{6}
			5.13×10^{6}	1.15×10^{6}
			6.63×10^{6}	1.55×10^{6}
	炉心シュラウド		7.76×10^{6}	2.24×10^{6}
			9.25×10^{6}	2.96×10^{6}
			1． 11×10^{7}	3.71×10^{6}
			1.30×10^{7}	4.50×10^{6}
－			1.52×10^{7}	5.32×10^{6}
0			1.76×10^{7}	6.17×10^{6}
\sim			2.15×10^{7}	8.70×10^{6}
\cdots			2.55×10^{7}	1.14×10^{7}
$\stackrel{1}{1}$			0	0
5	制御棒案内管		7.31×10^{5}	1.76×10^{5}
（0）	制御棒案内官		9.23×10^{5}	2.02×10^{5}
			0	0
\bigcirc			0	0
O			8.83×10^{5}	2． 77×10^{5}
			2.97×10^{5}	2.21×10^{5}
	制御棒駆動機構 ハウジング		3.18×10^{4}	1． 89×10^{4}
			1． 77×10^{5}	8.06×10^{4}
			1． 70×10^{5}	8.54×10^{4}
			0	0
			0	0
			1.58×10^{6}	4.70×10^{5}
			2． 69×10^{6}	7.44×10^{5}
	燃料集合体		3． 09×10^{6}	8.18×10^{5}
			2.67×10^{6}	7.19×10^{5}
			1.55×10^{6}	4.46×10^{5}
			0	0

表 5－3 弾性設計用地震動 S d に対する設計用地震力（軸力）（1／2）

構造物	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	軸力（kN）
		弾性設計用地震動 S d に対する設計用地震力
原子炉圧力容器	119	
		860
		1.50×10^{3}
		1.92×10^{3}
		2． 47×10^{3}
		2.96×10^{3}
		3.46×10^{3}
		7.13×10^{3}
原子炉本体の基礎		1.96×10^{4}
		2． 07×10^{4}
		2． 18×10^{4}
		2． 28×10^{4}
原子炉しやへい壁		1.53×10^{3}
		3.44×10^{3}
		6． 68×10^{3}
		9． 06×10^{3}
		1． 15×10^{4}
原子炉格納容器		82.9
		165
		634
		896
		1． 73×10^{3}
		2.33×10^{3}
		2.77×10^{3}
		3.54×10^{3}
		3.88×10^{3}
		4． 64×10^{3}

表 5－3 弾性設計用地震動 S d に対する設計用地震力（軸力）（2／2）

表 5－4 弾性設計用地震動 S d に対する設計用地震力及び静的地震力（ばね反力，せん断力）

名称	応答種別	弾性設計用地震動 S d に対する設計用地震力	静的地震力
原子炉圧力容器スタビライザ	ばね反力（kN）	6． 05×10^{3}	2.52×10^{3}
原子炉格納容器スタビライザ	ばね反力（kN）	9.04×10^{3}	2.50×10^{3}
原子炉格納容器シヤラグ	ばね反力（kN）	1． 48×10^{4}	8.27×10^{3}
燃料交換ベローズ	ばね反力（kN）	1.10×10^{3}	584
所員用エアロック	ばね反力（kN）	163	157
ベント管	ばね反力（kN）	1． 28×10^{3}	624
制御棒駆動機構ハウジング レストレントビーム	ばね反力（kN）	231	142
炉心シュラウド回転ばね	回転ばね反力（kN•mm）	2.55×10^{7}	1． 14×10^{7}
上部格子板	せん断力（kN）	2． 35×10^{3}	742
炉心支持板	せん断力（kN）	2． 74×10^{3}	958
上部サポート	ばね反力（kN）	3.41×10^{3}	551
下部スタビライザ	ばね反力（kN）	874	168

表 5－5 弾性設計用地震動 S d に対する設計用地震力及び静的地震力（相対変位）

名称	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	相対変位（mm）	
		弾性設計用地震動 S d に対する設計用地震力	静的地震力
燃料集合体		0	0
		16． 4	4.6
		28.3	7.8
		32.7	9.0
		28.3	7.8
		16.3	4.5
		0	0

表 5－6 基準地震動 S s に対する設計用地震力（せん断力）（1／2）

構造物	$\begin{gathered} \text { 標高 } \\ 0 . \mathrm{P} . \quad(\mathrm{m}) \end{gathered}$	せん断力（kN）
		基準地震動S s に対する設計用地震力
原子炉圧力容器	559	
		2． 22×10^{3}
		4． 40×10^{3}
		3． 69×10^{3}
		3.90×10^{3}
		6． 74×10^{3}
		9． 30×10^{3}
		1． 15×10^{4}
原子炉本体の基礎		3.06×10^{4}
		3.33×10^{4}
		3． 64×10^{4}
		3.93×10^{4}
原子炉しやへい壁		7.41×10^{3}
		7.84×10^{3}
		1． 02×10^{4}
		1． 35×10^{4}
		1． 75×10^{4}
原子炉格納容器		312
		609
		3． 46×10^{3}
		4． 17×10^{3}
		3.45×10^{4}
		3.57×10^{4}
		3.65×10^{4}
		3.79×10^{4}
		3.85×10^{4}
		3.99×10^{4}

表 5－6 基準地震動 S s に対する設計用地震力（せん断力）（2／2）

構造物	$\begin{gathered} \text { 標高 } \\ 0 . .^{(m)} \end{gathered}$	せん断力（kN）
		基準地震動 S s に対する設計用地震力
炉心シュラウド	665	
		1． 47×10^{3}
		2． 43×10^{3}
		3.01×10^{3}
		3.88×10^{3}
		3.75×10^{3}
		4． 08×10^{3}
		4.39×10^{3}
		4.69×10^{3}
		5.15×10^{3}
		5.72×10^{3}
		6． 34×10^{3}
		6． 46×10^{3}
制御棒案内管		1． 54×10^{3}
		406
		1． 32×10^{3}
制御棒駆動機構 ハウジング		2． 00×10^{3}
		608
		345
		27.4
		328
燃料集合体		3.81×10^{3}
		2． 62×10^{3}
		981
		1.05×10^{3}
		2． 63×10^{3}
		3． 62×10^{3}

表 5－7 基準地震動 S s に対する設計用地震力（モーメント）（1／2）

構造物	標高 0．P．（m）	モーメント（kN•mm）
		基準地震動S s に対する設計用地震力
原子炉圧力容器		0
		1． 54×10^{6}
		6． 38×10^{6}
		1． 48×10^{7}
		1． 97×10^{7}
		3． 26×10^{7}
		5.21×10^{7}
		6.59×10^{7}
		8.91×10^{7}
原子炉本体の基礎		2.34×10^{8}
		2． 57×10^{8}
		2.96×10^{8}
		3． 60×10^{8}
		4.28×10^{8}
原子炉しやへい壁		0
		2． 05×10^{7}
		4． 16×10^{7}
		6． 37×10^{7}
		9． 11×10^{7}
		1． 45×10^{8}
原子炉格納容器		0
		7． 20×10^{5}
		2． 02×10^{6}
		6． 57×10^{6}
		1． 87×10^{7}
		1． 64×10^{8}
		2.65×10^{8}
		4． 42×10^{8}
		6.25×10^{8}
		7.02×10^{8}
		7.59×10^{8}

表 5－7 基準地震動 S s に対する設計用地震力（モーメント）（2／2）

構造物	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	モーメント（kN•mm）
		基準地震動S s に対する設計用地震力
炉心シュラウド	0	
		8.53×10^{5}
		2． 73×10^{6}
		6． 72×10^{6}
		9． 34×10^{6}
		8． 24×10^{6}
		1． 07×10^{7}
		1． 21×10^{7}
		1． 49×10^{7}
		1． 79×10^{7}
		2． 10×10^{7}
		2． 43×10^{7}
		2． 77×10^{7}
		3.48×10^{7}
		4． 21×10^{7}
制御棒案内管		0
		1． 81×10^{6}
		2． 28×10^{6}
		0
制御棒駆動機構ハウジング		0
		2． 19×10^{6}
		6． 60×10^{5}
		7.90×10^{4}
		3.51×10^{5}
		3． 49×10^{5}
		0
燃料集合体		0
		2.68×10^{6}
		4． 52×10^{6}
		5.11×10^{6}
		4． 38×10^{6}
		2.54×10^{6}
		0

	表 5－8 基準地震動 S	する設訪	地震力（軸力）（1／2）
			軸力（kN）
	構造物	$\begin{gathered} \text { 標高 } \\ \text { 0. P. (m) } \end{gathered}$	基準地震動 S s に対する設計用地震力
			204
			1． 49×10^{3}
			2.58×10^{3}
			3.30×10^{3}
	皂子阶地の容器		4.25×10^{3}
			5.10×10^{3}
			5.96×10^{3}
			1． 23×10^{4}
			3.38×10^{4}
	原子绾木体の其䂾		3.57×10^{4}
－	－		3.76×10^{4}
\sim			3.92×10^{4}
$\stackrel{1}{1}$			2.64×10^{3}
\uparrow			5.92×10^{3}
＞	原子炉しやへい壁		1． 16×10^{4}
（0）			1． 57×10^{4}
N			1.98×10^{4}
\bigcirc			143
			285
			1． 10×10^{3}
			1.55×10^{3}
	原子师格納容器		2.97×10^{3}
	皂子小格納容器		4.01×10^{3}
			4.77×10^{3}
			6． 10×10^{3}
			6.69×10^{3}
			7.99×10^{3}

表 5－9 基準地震動 S s に対する設計用地震力（ばね反力，せん断力）

名称	応答種別	基準地震動 $\mathrm{S} \mathrm{s} \mathrm{に 対 する}$ 設計用地震力
原子炉圧力容器スタビライザ	ばね反力 (kN)	8.25×10^{3}
原子炉格納容器スタビライザ	ばね反力 (kN)	1.58×10^{4}
原子炉格納容器シヤラグ	ばね反力 (kN)	3.41×10^{4}
燃料交換ベローズ	ばね反力 (kN)	1.71×10^{3}
所員用エアロック	ばね反力 (kN)	304
ベント管	ばね反力 (kN)	2.06×10^{3}
制御棒駆動機構ハウジング	ばね反力 (kN)	473
レストレントビーム	目転ばね反力 $(\mathrm{kN} \cdot \mathrm{mm})$	4.21×10^{7}
炉心シュラウド回転ばね	せん断力 (kN)	3.96×10^{3}
上部格子板	せん断力 (kN)	4.52×10^{3}
炉心支持板	ばね反力 (kN)	5.91×10^{3}
上部サポート	ばね反力 (kN)	1.61×10^{3}
下部スタビライザ		

表 5－10 基準地震動 S s に対する設計用地震力（相対変位）

名称	$\begin{gathered} \text { 標高 } \\ 0 . .^{(m)} \end{gathered}$	相対変位（mm）
		基準地震動 S s に対する設計用地震力
燃料集合体		0
		27． 4
		47.2
		54.2
		46.8
		27.0
		0

VI－2－3－3 炉心の耐震性についての計算書

VI－2－3－3－1 燃料集合体の耐震性についての計算書
VI－2－3－3－2 炉心支持構造物の耐震性についての計算書

VI－2－3－3－1 燃料集合体の耐震性についての計算書
1．概要 1
2．一般事項 2
2.1 構造計画 2
2.2 評価方針 6
2.3 適用規格•基準等 7
2． 4 記号の説明 8
2．4．1 9×9 燃料（A 型） 8
2．4．2 9×9 燃料（B 型） 10
3．燃料集合体の地震応答解析 13
4．地震時の制御棒挿入性試験検討 14
5．地震時の燃料被覆管の応力評価 15
5.1 燃料被覆管の応力評価で考慮する荷重の組合せ及び許容応力状態 15
5.2 燃料被覆管の応力評価における評価部位 15
5.3 評価対象燃料の炉内滞在期間と評価に用いる許容応力 16
5.4 スペーサ間及びスペーサ部の燃料被覆管の応力評価 16
5．4．1 スペーサ間及びスペーサ部の応力評価に用いる地震加速度及び相対変位 16
5．4．2 地震時のスペーサ間及びスペーサ部の応力評価の方法 16
5．4．3 評価結果 17
5.5 下部端栓溶接部の燃料被覆管の応力評価 18
5．5．1 下部端栓溶接部の応力評価に用いる地震加速度及び相対変位 18
5．5．2 地震時の下部端栓溶接部の応力評価の方法 18
5．5．3 下部端栓溶接部の疲労評価 20
5．5．4 評価結果 21
5.6 まとめ 21
6．引用文献 53
付録 1 応力計算結果の応力分類処理方法 54

1．概要

本計算書は，燃料集合体の耐震性について示すものである。
地震時において燃料集合体に要求されるのは，制御棒の挿入機能の確保，崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持である。

制御棒の挿入機能の確保については，原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補－1984（（社）日本電気協会）に従って，地震時におけ る制御棒の挿入性についての検討を行い，基準地震動 S s に対し制御棒の挿入性が確保 されることを，VI－2－6－2－1「制御棒の耐震性についての計算書」にて説明する。

崩壊熱除去可能な形状の維持については，VI－2－3－3－2「炉心支持構造物の耐震性につ いての計算書」にてその詳細を示すとおり，燃料集合体を支持している炉心支持構造物 が耐震設計上の重要度分類Sクラスで設計され，その支持機能は地震時においても維持 されるので，崩壊熱除去可能な形状は維持されると考えられる。燃料被覆管自体の損傷 は必ずしも崩壊熱除去可能な形状の喪失を意味するわけではないが，ここではVI－2－1－9「機能維持の基本方針」にて設定している構造強度の設計方針に基づき，燃料被覆管の地震時応力を弾性解析によって求め，燃料被覆管が健全であり，崩壊熱除去可能な形状 が維持されることを確認する。

燃料被覆管の閉じ込め機能の維持については，通常運転時の状態で燃料被覆管に作用 する荷重及び運転時の異常な過渡変化時の状態のらち地震によって引き起こされるおそ れのある事象によって燃料被覆管に作用する荷重と地震力を組み合わせても，燃料被覆管に発生する応力が放射性物質の閉じ込め機能に影響しないことを確認する。

2．一般事項
2.1 構造計画

燃料集合体の構造計画を表2－1 に示す。

表 2－1 燃料集合体の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
炉心は最外周部の一部を除き十字型制御棒とそれ を囲む4体の燃料集合体を 1 セルとして構成される。燃料集合体の下部は下部 タイプレートの着座面が炉心支持板上の燃料支持金具に嵌合して支持され，上部はセルを構成する燃料集合体が上部格子板内 で水平方向に支持される。上下部タイプレート，スペ ーサ，ウォータロッド（又 はウォータチャンネル）及 びタイロッドは結合又は支持により骨格を形成す る。燃料集合体の上下方向 は，タイロッドを下部タイ プレートにねじ留めする とともに上部タイプレー トにナット留めすること で結合している。4体の燃料集合体の外側にはめた チャンネルボックスの外面が制御棒＊ 1 の通路を構成する。	9×9 燃料（ A 型）の燃料集合体 ${ }^{* 2}$ は 74 本の燃料棒と 2 本のウォータロ ッドを， 9×9 燃料（ B 型） の燃料集合体 ${ }^{* 3}$ は 72 本 の燃料棒と 1 本のウォ ータチャンネルを，それ ぞれ 9×9 の正方格子に配列して 7 個のスペー サにより束ね，それらの上下端が上部タイプレ ート及び下部タイプレ ートと嵌合することに より形成される。 9×9 燃料（A 型）の 74 本の燃料棒のうち，8本は長さの短い部分長燃料棒であ り，これらは第1から第 5の5個のスペーサによ り束ね，部分長燃料棒下部を下部タイプレート にねじ留めする。 燃料集合体を炉心に装荷する際には，外側には チャンネルボックスを はめる。	

注記 $* 1:$ 制御棒の構造計画の詳細は，VI－2－6－2－1「制御棒の耐震性についての計算書」に示す。
＊2： 9×9 燃料（A型）燃料集合体の詳細図を図 $2-1$ に示す。
＊ $3: 9 \times 9$ 燃料（B型）燃料集合体の詳細図を図2－2に示す。

燃料集合体には 9×9 燃料（A 型）と 9×9 燃料（B 型）があり， 9×9 燃料（A 型）に は 2 本の太径のウォータロッドがあるが， 9×9 燃料（B型）では 1 本の角管のウォー タチャンネルであり，また， 9×9 燃料（ A 型）のみに部分長燃料棒が存在するといっ た違いがある。

図 2－1 9×9 燃料（A 型）燃料集合体の詳細図

図 2－2 9×9 燃料（B 型）燃料集合体の詳細図

2.2 評価方針

地震時において燃料集合体に要求されるのは，制御棒の挿入機能の確保，崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持であり，地震時において于 ャンネルボックスに要求されるのは，制御棒の挿入機能の確保である。

制御棒の地震時挿入性の評価については，炉心を模擬した実物大の部分モデルによ る加振時制御棒挿入試験結果から挿入機能に支障を与えない燃料集合体の最大相対変位を求め，地震応答解析から求めた燃料集合体の最大応答相対変位がその燃料集合体 の最大相対変位を下回ることを確認する。制御棒の地震時挿入性の評価は，VI－2－6－2－ 1 「制御棒の耐震性についての計算書」に示す。

崩壊熱除去可能な形状の維持については，燃料集合体を支持している炉心支持構造物の支持機能が維持され，燃料被覆管の一次応力により構造的に崩壊するような状態 となることを防ぐことで崩壊熱除去可能な形状は維持されると考えられる。燃料被覆管自体の損傷は必ずしも崩壊熱除去可能な形状の喪失を意味するわけではないが，保守的に燃料被覆管の地震時応力を弹性解析で求め，原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（（社）日本電気協会）に規定されている評価基準に従 い許容限界以下であることを確認する。
燃料被覆管の地震時応力は，運転時（通常運転時及び地震によって引き起こされる おそれのある過渡変化時）に燃料被覆管に作用している荷重と地震力を組み合わせて評価する。また，運転中に燃料に生じる燃料被覆管の腐食等の照射の影響を考慮して，燃料被覆管の地震時応力を求める。

燃料被覆管の閉じ込め機能の維持については，運転時と地震時に燃料被覆管に作用 する荷重を組み合わせても，燃料被覆管の応答がおおむね弾性状態にとどまり，燃料被覆管に発生する応力が許容限界以下であること，地震時の繰返し荷重により燃料被覆管に応力振幅が作用しても疲労破壊しないことを確認する。

地震時の燃料被覆管の耐震評価フローを，図 2－3 に示す。
崩壊熱除去可能な形状の維持に関する燃料集合体の耐震評価の方法は，平成 22 年 10 月 26 日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の実績に基づいて いる。

2.3 適用規格•基準等

本評価において適用する規格•基準等を以下に示す。
－原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 • 補

- 1984（（社）日本電気協会）
- 原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）
－発電用原子力設備規格 設計•建設規格（（社）日本機械学会，2005／2007）（以下「設計•建設規格」という。）

2． 4 記号の説明
2．4．1 9×9 燃料（A 型）

記号	記号の説明	単位
A	スペーサの接触力に基づく応力計算に用いる定数	－
P c	冷却材圧力	MPa
P_{g}	燃料棒内圧 ${ }^{* 1}$	MPa
r 1	燃料被覆管の外半径＊${ }^{\text {2 }}$	mm
r 2	燃料被覆管の内半径＊${ }^{\text {2 }}$	mm
r m	燃料被覆管の平均半径＊${ }^{\text {2 }}$	mm
t	燃料被覆管の肉厚＊${ }^{\text {2 }}$	mm
d	燃料被覆管の楕円度	mm
q c r	燃料被覆管の臨界座屈荷重	MPa
f	スペーサ接触力	N
α	燃料被覆管の熱膨張率	${ }^{\circ} \mathrm{C}^{-1}$
E	燃料被覆管の縦弾性係数	MPa
v	燃料被覆管のポアソン比	－
l	スペーサ間距離	mm
δ	水力振動による燃料棒の振幅	mm
T 0	燃料被覆管の外面温度	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{1}$	燃料被覆管の内外面温度差	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{2}$	燃料被覆管の円周方向温度差	${ }^{\circ} \mathrm{C}$
F	膨張スプリング等による軸方向荷重に基づき燃料棒に作用す る力	N
G h	地震時の水平方向最大加速度	$\mathrm{m} / \mathrm{s}^{2}$
G v	地震時の鉛直方向最大加速度	$\mathrm{m} / \mathrm{s}^{2}$
W r	燃料棒の全質量	kg
W s	スペーサ間距離当たりの燃料棒質量	kg
Z	燃料被覆管の断面係数＊2	mm^{3}
L	燃料棒の全長	mm
Y	地震時の燃料集合体の最大変位	mm
$\Delta \sigma$	地震期間中の繰返し荷重による応力振幅（応力強さの振幅）	MPa
N	$\Delta \sigma$ に対応するジルカロイの設計疲労曲線の許容サイクル数	回
n	地震力の繰返し回数	回
S y	燃料被覆管（ジルカロイ）の降伏応力＊3	MPa
S u	燃料被覆管（ジルカロイ）の引張強さ＊3	MPa

注記＊1：
＊2：燃料被覆管の
照射に伴ら腐食減肉を考慮。
＊3：燃料被覆管の温度及び照射の効果を考慮。

2．4．2 9×9 燃料（ B 型）

記号	記号の説明	単位
P_{i}	燃料棒内圧	MPa
P 。	泠却材圧力	MPa
r i	燃料被覆管の内半径＊${ }^{\text { }}$	mm
r o	燃料被覆管の外半径＊ 2	mm
r m	燃料被覆管の平均半径＊${ }^{\text {2 }}$	mm
D 。	燃料被覆管の外径＊${ }^{\text {2 }}$	mm
D i	燃料被覆管の内径＊${ }^{\text { }}$	mm
t	燃料被覆管の肉厚＊${ }^{*}$	mm
v	燃料被覆管のポアソン比	－
E	燃料被覆管の縦弾性係数	MPa
I	燃料被覆管の断面二次モーメント	mm^{4}
ω	燃料被覆管の楕円度	mm
$\mathrm{P}_{\mathrm{c} ~ \mathrm{r}}$	燃料被覆管の臨界座屈荷重	MPa
1	スペーサ間距離	mm
A	水力振動による燃料棒の振幅	mm
L	燃料棒の全長	mm
W 。	燃料要素単位長質量＊3	$\mathrm{kg} / \mathrm{mm}$
W	実際の燃料要素単位長質量	kg／mm
g	重力加速度	$\mathrm{m} / \mathrm{s}^{2}$
G h	地震時の水平方向最大加速度	$\mathrm{m} / \mathrm{s}^{2}$
G v	地震時の鉛直方向最大加速度	$\mathrm{m} / \mathrm{s}^{2}$
Y	地震時の燃料集合体の最大変位	mm
$\mathrm{C}_{1} \sim \mathrm{C}_{7}$	定数	－
T	燃料被覆管温度	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}$	燃料被覆管の内外面温度差	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}_{\mathrm{i}}$	燃料被覆管の内面周方向最大温度差	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{T}$ 。	燃料被覆管の外面周方向最大温度差	${ }^{\circ} \mathrm{C}$
δ	燃料被覆管の外径と内径の比	－
$\alpha_{\text {r }}$	燃料被覆管の半径方向熱膨張係数	${ }^{\circ} \mathrm{C}^{-1}$
$\alpha_{\text {z }}$	燃料被覆管の軸方向熱膨張係数	${ }^{\circ} \mathrm{C}^{-1}$
P	燃料要素と支持格子の接触力	N
N_{1}	燃料体当たりの支持格子数	－
N_{2}	タイロッド燃料要素数	－

記号	記号の説明	単位
N 3	標準燃料要素数	－
μ	支持格子－燃料要素間の摩擦係数	－
S	燃料被覆管断面積	mm^{2}
F_{i}	プレナムスプリング力	N
$\mathrm{F}_{\text {e }}$	膨張スプリング力	N
S y	燃料被覆管（ジルカロイ）の降伏応力＊ 4	MPa
S u	燃料被覆管（ジルカロイ）の引張強さ＊4	MPa

注記 $* 1$ ：燃料被覆管の
＊ 2 ：燃料被覆管

照射に伴う腐食減肉を考慮。
＊ 3 ：鉛直地震加速度に基づく応力は，地震時鉛直方向最大加速度を見かけの質量増加として扱い，燃料要素単位長質量W。で考慮している。
＊4：燃料被覆管の温度及び照射の効果を考慮。

図 2－3 地震時の燃料被覆管の耐震評価フロー

3．燃料集合体の地震応答解析
燃料集合体の地震応答解析は原子炉圧力容器内部構造物の一部として実施されており， この詳細はVI－2－3－2「炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」に示されている。

地震応答解析では新型 8×8 ジルコニウムライナ燃料を対象としているが，燃料集合体の剛性はチャンネルボックスにより支配され，燃料集合体の質量は燃料タイプによら ずほぼ同等である＊ことから，燃料集合体の地震応答は燃料タイプによらず，この燃料集合体の地震応答解析結果が適用可能である。設計用地震波としては，基準地震動 S S及び弾性設計用地震動S d を採用している。

応答解析は，時刻歴応答解析法を適用して建屋のNS及びEWの水平方向並びに鉛直方向について，基本ケースの他に材料物性の不確かさ等を考慮した解析も実施している。

地震時に燃料集合体に要求される制御棒挿入性，崩壊熱除去可能な形状維持及び燃料被覆管の閉じ込め機能の維持の評価においては，基本ケースの最大応答相対変位及び最大応答加速度に対し，材料物性の不確かさ等を考慮した最大応答相対変位 $54.2 \mathrm{~mm}(\mathrm{~S} \mathrm{~s})$ ， $32.7 \mathrm{~mm} ~(\mathrm{~S} \mathrm{~d})$ ，最大水平加速度 $56.3 \mathrm{~m} / \mathrm{s}^{2}$（S s）， $34.1 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~d})$ 及び最大鉛直加速度 $16.2 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~s}), 9.5 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~d})$ を用いる。また，下部端检溶接部の応力評価では，水平地震加速度として下部端栓溶接部直上の下部タイプレートースペーサ間の燃料棒に作用する水平加速度の最大値 $35.4 \mathrm{~m} / \mathrm{s}^{2}$（S s ）， $20.8 \mathrm{~m} / \mathrm{s}^{2}$（S d）を用いる。

注記 $*: ~$ 新型 8×8 ジルコニウムライナ燃料の質量は約 $\mathrm{kg}, ~ 9 \times 9$ 燃料（A 型）の質量は約 $\square \mathrm{kg}$ ， 9×9 燃料（ B 型）の質量は約 kg であり，燃料集合体の質量は燃料タイプによらずほぼ同等である。

4．地震時の制御棒挿入性試験検討
地震時における制御棒挿入性についての検討方法は，3章で設定した最大応答相対変位 54.2 mm が，制御棒挿入性試験にて確認された挿入機能に支障を与えない最大燃料集合体変位を下回ることを確認する。

VI－2－6－2－1「制御棒の耐震性についての計算書」にその詳細を示すとおり制御棒挿入機能は確保される。

5．地震時の燃料被覆管の応力評価

5.1 燃料被覆管の応力評価で考慮する荷重の組合せ及び許容応力状態

地震時に燃料集合体に要求される崩壊熱除去可能な形状の維持及び燃料被覆管の閉 じ込め機能の維持に関する燃料被覆管の応力評価は，表 5－1 及び表 5－2 に示す荷重の組合せにより燃料被覆管に発生する応力を弾性解析で求める。表 5－1 及び表5－2 の地震荷重 S d＊及びS s 以外の荷重については，通常運転時及び地震によって引き起こ されるおそれのある過渡事象として炉心出力が上昇する（出力過渡）事象及び炉心圧力が上昇する（圧力過渡）事象において燃料集合体に作用する荷重を考慮する。また，地震荷重 S d＊は，弾性設計用地震動 S d による地震力又は静的地震力のいずれか大 きい方の地震荷重であるが，本評価では静的地震力より大きい弾性設計用地震動 S d による地震力が対象となる。表 5－1 及び表 5－2 のそれぞれの評価で対象とする応力分類について，せん断歪エネルギ説（von Mises 理論）に基づく相当応力を計算し，当該の許容応力に対する比（設計比）を評価する。
（1）崩壊熱除去可能な形状の維持に関する応力評価
崩壊熱除去可能な形状の維持に関する応力評価では，表 5－1 に示すように，原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（（社）日本電気協会）に基 づき一次応力を対象として，許容応力 0.7 S u に対する設計比を評価する。崩壊熱除去可能な形状の維持に用いる手法は，平成 22 年 10 月 26 日付け平成 $22 \cdot 09 \cdot 15$ 原第 5 号にて認可された工事計画の実績に基づいている。
（2）燃料被覆管の閉じ込め機能の維持に関する応力評価
燃料被覆管の閉じ込め機能の維持に関する応力評価では，表 5－2 に基づき，静的地震力より大きい弾性設計用地震動 S d における荷重条件に対して燃料被覆管がおおむ ね弾性状態にとどまること，基準地震動 S s における荷重条件に対して破断延性限界 に余裕を有していることを確認するため，一次応力＋二次応力を対象として，許容応力として弾性設計用地震動 S d に対してS y，基準地震動 S s に対してS uを適用し，設計比を評価する。

5.2 燃料被覆管の応力評価における評価部位

地震時の崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持に関す る燃料被覆管の応力評価では，2．1節に記載した燃料集合体内の燃料棒の構造より， スペーサ間及びスペーサ部，並びに下部端栓溶接部（閉じ込め機能維持の評価のみ） について評価を行う。ここで，スペーサ間及びスペーサ部では，ジルカロイ－2 製の燃料被覆管の内面にジルコニウムが内張り（ジルコニウムライナ）されているが，

応力評価の対象となる。また，下部端栓の材料は燃料被覆管と同じジルカロイ－2 であ り，下部端栓と燃料被覆管の突合せ部は溶加材を用いないTIG 溶接により溶接されて おり，ジルカロイ－2 部が応力評価の対象となる。

5.3 評価対象燃料の炉内滞在期間と評価に用いる許容応力

炉内には炉内滞在期間の異なる種々の燃料が混在しているが，地震時の燃料被覆管応力評価では，それらの燃料から炉内滞在期間が 0 年， 2.2 年， 8.0 年の燃料で代表 させて，それぞれ寿命初期，寿命中期，寿命末期として，燃料棒熱•機械設計解析に より個々の応力評価部位の解析条件を設定する。また，応力評価の対象であるジルカ ロイ－2 の許容応力には，個々の応力評価部位における燃料被覆管の温度及び照射の影響を考慮して，図 5－1 から図5－5 の設計値を用いる。
5.4 スペーサ間及びスペーサ部の燃料被覆管の応力評価

5．4．1 スペーサ間及びスペーサ部の応力評価に用いる地震加速度及び相対変位
地震時におけるスペーサ間及びスペーサ部の応力評価では，燃料集合体の相対変位（閉じ込め機能維持の評価のみ），燃料集合体に作用する水平地震加速度及び鉛直地震加速度として， 3 章で設定した $54.2 \mathrm{~mm}, ~ 56.3 \mathrm{~m} / \mathrm{s}^{2}$ 及び $16.2 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~s})$並びに 32.7 mm ， $34.1 \mathrm{~m} / \mathrm{s}^{2}$ 及び $9.5 \mathrm{~m} / \mathrm{s}^{2}$（S d）を用いる。

崩壊熱除去可能な形状の維持及び燃料被覆管の閉じ込め機能の維持に関するス ペーサ間及びスペーサ部の応力評価に用いる地震加速度及び燃料集合体の相対変位等の解析条件を表 5－3（1）及び表 5－4（1），スペーサ間及びスペーサ部の応力評価に用いる数値又は数式を表5－3（2）及び表5－4（2）に示す。

5．4．2 地震時のスペーサ間及びスペーサ部の応力評価の方法
地震時におけるスペーサ間及びスペーサ部の応力評価に用いる解析コードは 9×9 燃料（A 型）については「FURST」， 9×9 燃料（B 型）については「BSPAN2」 により実施する。

なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，「VI －5 計算機プログラム（解析コード）の概要」に示す。

地震時のスペーサ間及びスペーサ部の応力評価のフローを図5－6に，その詳細 を以下に示す。
（1）応力の計算
応力計算は，以下の（2）に示すように，通常運転時及び地震によって引き起こさ れるおそれのある過渡時の応力に地震により発生する応力を加え合せて三軸方向 （半径方向，円周方向及び軸方向）について解析し，それらより相当応力を計算

する。
（2）発生応力
通常運転時及び過渡時並びに地震時に発生する応力として，表 5－5 を考慮する。燃料被覆管に発生する各応力については，燃料被覆管を厚肉円筒と見なし，複数のスペーサで支持された燃料棒を梁と見なして個々の応力の計算式を設定して いる。燃料被覆管に発生する応力の計算式を表 5－6 及び表 5－8，燃料被覆管に発生する応力の模式図を図 5－7 及び図 5－8 に示す。また，地震時の崩壞熱除去可能 な形状の維持及び燃料被覆管の閉じ込め機能の維持に関するスペーサ間及びスペ ーサ部の地震時の応力評価における応力の組合せを，表 5－7 及び表 5－9 に示す。
（3）設計比の評価
設計比の評価では，燃料被覆管温度，燃料棒内圧，炉心条件，燃料棒寸法及び許容応力の統計的分布を考慮し，モンテカルロ法により統計評価を行う。ここで，燃料被覆管温度及び燃料棒内圧については， 9×9 燃料（A 型）は燃料棒熱•機械設計コード「PRIME」（引用文献（1），（2）参照）， 9×9 燃料（B 型）は燃料棒熱•機械設計コード「CARO」（引用文献（3）参照）による解析結果をそれぞれ用いる。

なお，燃料被覆管温度及び燃料棒内圧の評価に用いる解析コードの検証及び妥当性確認等の概要については，「VI－5 計算機プログラム（解析コード）の概要」 に示す。

モンテカルロ法による評価では，1回の試行ごとに乱数を用い，統計的分布に従い設定される入力条件から 1 つの設計比が得られる。この試行を繰り返すこと により設計比の統計的分布を求め，設計比の 95% 確率上限値が 1 以下であること をもって，燃料集合体の耐震性を確認する。

5．4．3 評価結果

崩壊熱除去可能な形状及び燃料被覆管の閉じ込め機能が維持されることを確認 するため，通常運転時及び地震によって引き起こされるおそれのある過渡変化時 に燃料被覆管に作用する荷重に加えて，地震時における水平地震加速度，燃料集合体相対変位（燃料被覆管の閉じ込め機能の維持の評価のみに使用）及び鉛直地震加速度を考慮した燃料被覆管応力評価を実施する。
（1）崩壊熱除去可能な形状の維持に関する応力評価
VI－2－3－3－2「炉心支持構造物の耐震性についての計算書」にてその詳細を示す とおり，燃料集合体を支持している炉心支持構造物は，地震時にもその支持機能 は維持されるので，崩壊熱除去可能な形状は維持されると考えられる。崩壊熱除

去可能な形状の維持についてはさらに，基準地震動 S s 及び弹性設計用地震動 S d による地震力並びに静的地震力に対し崩壊熱除去可能な形状が維持されること を確認するため，燃料被覆管の地震時応力を弹性解析によって求めた結果，設計比の 95% 確率上限値が 1 を下回る結果を得た。
地震時の崩壊熱除去可能な形状の維持に関する応力評価の結果を，表 5－10 及 び表 5－11に示す。
（2）燃料被覆管の閉じ込め機能の維持に関する応力評価
燃料被覆管の閉じ込め機能が維持されることを確認するため，基準地震動S s による地震力に対して許容応力をSu，弾性設計用地震動Sdによる地震力に対 して許容応力をS y として燃料被覆管の地震時応力を弾性解析によってそれぞれ求めた結果，設計比の 95% 確率上限値が 1 を下回る結果を得た。
地震時の燃料被覆管の閉じ込め機能の維持に関する応力評価の結果を，表 5－12及び表 5－13に示す。
5.5 下部端栓溶接部の燃料被覆管の応力評価

5．5．1 下部端栓溶接部の応力評価に用いる地震加速度及び相対変位
地震時における下部端栓溶接部の応力評価では，燃料集合体相対変位，燃料集合体に作用する水平地震加速度及び鉛直地震加速度として，3章で設定した $54.2 \mathrm{~mm}, ~ 35.4 \mathrm{~m} / \mathrm{s}^{2}$ 及び $16.2 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~s})$ 並びに $32.7 \mathrm{~mm}, ~ 20.8 \mathrm{~m} / \mathrm{s}^{2}$ 及び $9.5 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S}$ d）を用いる。なお，水平地震加速度 $35.4 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~s})$ 及び $20.8 \mathrm{~m} / \mathrm{s}^{2}(\mathrm{~S} \mathrm{~d}) は$,下部端栓溶接部直上の下部タイプレートースペーサ間の燃料棒に作用する水平加速度である。

5．5．2 地震時の下部端栓溶接部の応力評価の方法

地震時における下部端栓溶接部の応力評価は，端栓溶接部の形状が複雑なため有限要素法による汎用の解析コード「ANSYS」を用いて発生応力を評価し，許容応力として弾性設計用地震動 S d ではSy，基準地震動 S s ではSuに対する相当応力の比（設計比）を評価する。

なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，「VI －5 計算機プログラム（解析コード）の概要」に示す。

地震時の下部端栓溶接部の応力評価のフローを，図 5－9 に示す。
（1）下部端栓溶接部の応力評価モデル
下部端栓溶接部の応力評価では，最初に下部端栓溶接部近傍の下部端栓，燃料被覆管及びペレットをモデル化し，有限要素法を用いた熱解析により下部端栓溶

接部近傍での温度分布を評価する。
次に，熱解析で得られた下部端栓溶接部近傍の温度分布を読み込み，熱膨張差 による熱応力の分布，運転時及び地震時の荷重条件に基づき発生する応力分布を有限要素法を用いた機械解析により評価する。機械解析では，

を用いた発生応力が大きくな
る解析モデルを用いている。
熱解析モデル及び機械解析モデルを，それぞれ図 5－10から図 5－12に示す。
（2）下部端栓溶接部の熱解析での入力データ
通常運転時及び過渡時における下部端栓溶接部近傍の温度分布を評価するため，表 5－14の項目を考慮している。

なお，解析モデル上下端は断熱の境界条件とし，ペレット一下部端栓接触面に は熱抵抗がないものとして，上記の保守側の入力と合わせて，下部端栓溶接部近傍の温度分布による熱応力が大きくなるような解析を実施する。
（3）下部端栓溶接部の応力評価で考慮する荷重
通常運転時及び過渡時並びに地震時に下部端检溶接部に作用する荷重として，表5－15を考慮する。

なお地震時には，水平地震加速度，燃料集合体の相対変位及び鉛直地震加速度 により発生する軸方向荷重が反転することを考慮して，軸方向の引張応力及び圧縮応力の絶対値が個々に大きくなるように組合わせた解析を実施する。

（4）設計比の評価

設計比の評価では，燃料被覆管温度，燃料棒内圧，炉心条件，燃料棒寸法及び許容応力の統計的分布を考慮し，それぞれの 95% 確率上／下限値に基づき解析結果が保守側となるように設定した入力値を用いて決定論的評価を実施する。ここ で，燃料被覆管温度及び燃料棒内圧については， 9×9 燃料（A 型）は燃料棒熱•機械設計コード「PRIME」（引用文献（1），（2）参照）， 9×9 燃料（B 型）は燃料棒熱•機械設計コード「CARO」（引用文献（3）参照）による解析結果をそれぞれ用いる。

応力計算は，厳しい条件となる過渡時の炉心条件に地震による荷重を加え合せ て，下部端栓溶接部に発生する三軸方向（半径方向，円周方向及び軸方向）の応力を解析し，それらより相当応力を計算する。

また，燃料被覆管の閉じ込め機能の維持に関する評価では，一次応力＋二次応力を対象としているが，解析コード「ANSYS」での有限要素法による端栓溶接部の応力解析においては，応力集中によるピーク応力を含む結果となっている。この

ため，付録 1 に示す応力分類処理方法に従って，全発生応力から一次応力 + 二次応力を分類する。
燃料被覆管の閉じ込め機能の維持に関する評価で要求されている許容応力は，弾性設計用地震動 S d に対してS y，基準地震動 S s に対して S u であるが，そ れぞれの許容応力について下部端栓溶接部の温度及び照射の影響を考慮した保守側の 95% 確率下限値を用いる。

5．5．3 下部端栓溶接部の疲労評価

5．5．2 項の有限要素法を用いた解析コード「ANSYS」で得られる応力集中による ピーク応力を含む下部端栓溶接部の応力強さに基づき，地震期間中に負荷される繰返し荷重による燃料被覆管の疲労評価を実施する。疲労評価は一次＋二次＋ピ ーク応力を評価対象とするため，ピーク応力が発生する下部端栓溶接部を評価対象部位とする。
（1）地震期間中の繰返し荷重による応力振幅
地震期間中に下部端栓溶接部に負荷されるピーク応力を含む応力振幅（ $\Delta \sigma$ ） の評価においては，作用方向が反転する地震の繰返し荷重により三軸方向の応力成分の大小関係が大きく変化するため主応力の方向が有意に変化する。このため， 9×9 燃料（A型）については，日本産業規格 J I S B 8266 「圧力容器の構造一特定規格 附属書8（規定）圧力容器の応力解析及び疲労解析」の3．2．1 a） 2）の主応力方向が変動する場合の応力強さ振幅の算出手法に基づき，応力強さの振幅を評価する。 9×9 燃料（B 型）については，延性材料に対する評価において よく一致することが知られているせん断歪エネルギ説（von Mises 理論）に基づ き，燃料被覆管の相当応力の振幅を評価する。
（2）ジルカロイの設計疲労曲線
燃料被覆管の疲労評価に用いるジルカロイの設計疲労曲線（引用文献（4）参照） を，図 5－14 に示す。（1）の方法で評価された地震期間中の繰返し荷重による応力振幅（主応力の方向が変化する場合の応力強さの振幅，$\Delta \sigma$ ）を，図 5－14と対比 することにより，許容サイクル数（N）を求める。
（3）地震力の繰返し回数に基づく疲労累積係数の評価
地震力の繰返し回数（ n ）を（2）で求めた許容サイクル数（N）で除すことによ り，地震力が繰り返された場合の疲労累積係数を評価する。なお，地震力の繰返 し回数（n）には，340回（S s ）及び590回（S d）を用いる。

5．5．4 評価結果

燃料被覆管の閉じ込め機能が維持されることを確認するため，基準地震動S s による地震力に対して許容応力をS u，弾性設計用地震動 S d による地震力に対 して許容応力をS y として下部端栓溶接部の地震時応力を解析コード「ANSYS」で求めた結果，それぞれ設計比が 1 を下回る結果を得た。

地震時における下部端栓溶接部の応力評価の結果を，表 5－16及び表 5－17に示 す。

燃料被覆管の閉じ込め機能が維持されることを確認するため，基準地震動S s又は弾性設計用地震動 S d による地震力がそれぞれ繰り返された場合の応力振幅 と繰返し回数より疲労累積係数を評価した結果，地震動による疲労累積係数増分 を加えても疲労累積係数は1 を下回る結果を得た。

地震時における下部端栓溶接部の疲労評価の結果を，表 5－18 及び表 5－19に示 す。
5.6 まとめ

通常運転時及び地震によって引き起こされるおそれのある過渡変化時に燃料被覆管 に作用する荷重に加えて，水平地震加速度，燃料集合体の相対変位（閉じ込め機能維持の評価のみ）及び鉛直地震加速度を考慮した燃料被覆管応力評価を実施した。

その結果，崩壊熱除去可能な形状の維持に関する燃料被覆管の設計比が最大となる のは寿命初期で，その値は 9×9 燃料（A型）で $0.43, ~ 9 \times 9$ 燃料（ B 型）で 0.52 であ り，設計比が 1 を下回っていることから，地震時にも崩壊熱除去可能な形状は維持さ れることを確認した。

地震時の燃料被覆管の閉じ込め機能の維持に関する燃料被覆管の設計比が最大とな るのは寿命初期であり，スペーサ間及びスペーサ部では 9×9 燃料（A 型）で 0.79 ， 9×9 燃料（B 型）で 0.78 ，下部端栓溶接部では 9×9 燃料（A 型）で $0.72, ~ 9 \times 9$ 燃料 （B型）で 0.69 で，設計比は 1 を下回つている。また，地震時の繰返し荷重に基づく燃料被覆管の疲労累積係数は 9×9 燃料（A 型）で $0.031 ~(S ~ s) ~ 及 ひ ゙ ~ 0.005 ~(S ~ d) ~, ~$
疲労累積係数（ 9×9 燃料（A 型）で約 $0.003, ~ 9 \times 9$ 燃料（B 型）で約 0.006 ，引用文献 （5），（6）参照）に付加しても1を下回つている。これらの結果より，地震時の燃料被覆管の閉じ込め機能が維持されることを確認した。

表 5－1 崩壊熱除去可能な形状維持の評価で考慮する荷重の組合せ及び許容限界

荷重の組合せ	許容応力	許容限界
	状態	一次応力
$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	III ${ }_{\text {A }} \mathrm{S}$	$0.7 \cdot \mathrm{Su*1,*2}$
$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	IV A S	

注記 $* 1:$ せん断ひずみエネルギ説に基づく相当応力に対して評価する。 ＊2：使用温度及び照射の効果を考慮して許容値を設定する。

表 5－2 閉じ込め機能維持の評価で考慮する荷重の組合せ及び許容限界

荷重の組合せ	許容応力状態	許容限界	
		一次 + 二次応力	一次＋二次＋ピーク応力
$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	III ${ }_{\text {A }} \mathrm{S}$	S y＊${ }^{*}$ ，${ }^{2}$	S d 又は S s 地震動のみによる疲労解析を行い，運転状態 I，II における疲労累積係数との和が 1．0以下であること。
$D+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	IV ${ }_{\text {A }} \mathrm{S}$	S u＊1，＊2	

注記＊1：せん断ひずみエネルギ説に基づく相当応力に対して評価する。
＊2：使用温度及び照射の効果を考慮して許容値を設定する。
＊3：運転時の異常な過渡変化時として，運転状態IIIの制御棒引抜きについても考慮す る。

表 5－3（1）スペーサ間及びスペーサ部の応力評価に用いる解析条件（9×9燃料（A 型））

項目	解析条件
寿命時期	寿命初期／中期／末期
評価部位	スペーサ間／スペーサ部
計算機コード	FURST
地震動	基準地震動 S s／弾性設計用地震動 S d
水平方向加速度：G h $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	56.3 （ S s ）／34．1（ S d ）
鉛直方向加速度：G v ${ }^{\text {a }}$（m／s ${ }^{2}$ ）	$16.2(\mathrm{~S} \mathrm{~s} \mathrm{)} / 9.5$（ S d ）
燃料集合体変位：Y（mm）＊	54．2（ S s ）／32．7（ S d）

注記 $*: ~$ 燃料被覆管の閉じ込め機能の維持に関する評価にのみ使用

表 5－3（2）スペーサ間及びスペーサ部の応力評価に用いる数値又は数式 （ 9×9 燃料（ A 型））

記号	単位	数値又は数式	特記事項
A	－		
P c	MPa		圧力過渡時の冷却材圧力
P_{g}	MPa		燃料棒熱•機械設計解析結果
r 1	mm	$\mathrm{r}_{2}+\mathrm{t}$	
r 2	mm		
r m	mm	$\left(\mathrm{r}_{1}+\mathrm{r}_{2}\right) / 2$	
t	mm		照射に伴う腐食減肉を考慮
d	mm		
q c r	MPa		
f	N		
α	${ }^{\circ} \mathrm{C}{ }^{-1}$		
E	MPa		
v	－		
l	mm		
δ	mm		
T0	${ }^{\circ} \mathrm{C}$		燃料棒熱•機械設計解析結果
$\Delta \mathrm{T}_{1}$	${ }^{\circ} \mathrm{C}$		燃料棒熱•機械設計解析結果
$\Delta \mathrm{T}_{2}$	${ }^{\circ} \mathrm{C}$		
F	N		
W r	kg		
W s	kg		
Z	mm^{3}	$\pi\left(\mathrm{r}_{1}^{4}-\mathrm{r}_{2}{ }^{4}\right) /\left(4 \mathrm{r}_{1}\right)$	
L	mm		
S y	MPa	図 5－1 参照＊1	燃料被覆管の温度及び照射の効果を考慮
S u	MPa	図5－2 参照＊1	燃料被覆管の温度及び照射の効果を考慮

注記＊1：統計分布を考慮。
＊2：寿命初期，寿命中期及び寿命末期の値。

表 5－4（1）スペーサ間及びスペーサ部の応力評価に用いる解析条件（9×9燃料（B 型））

項目	解析条件
寿命時期	寿命初期／中期／末期
評価部位	スペーサ間／スペーサ部
計算機コード	BSPAN2
地震動	基準地震動S s／弾性設計用地震動 S d
水平方向加速度：G h $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	56.3 （S s ）／34．1（ S d ）
鉛直方向加速度：G v $\left(\mathrm{m} / \mathrm{s}^{2}\right)$	$16.2(\mathrm{~S} \mathrm{~s} \mathrm{)} / 9.5$（ S d ）
燃料集合体変位：Y（mm）＊	54.2 （ S s ）／32．7（ S d）

注記＊：燃料被覆管の閉じ込め機能の維持に関する評価にのみ使用

表 5－4（2）スペーサ間及びスペーサ部の応力評価に用いる数値又は数式 （ 9×9 燃料（ B 型））（ $1 / 2$ ）

記号	単位	数値又は数式	特記事項
			燃料棒熱•機械設計解析結果
$\mathrm{P}_{\text {i }}$	MPa		
$\mathrm{P}_{\text {。 }}$	MPa		圧力過渡時の泠却材圧力
r i	mm	$\mathrm{D}_{\mathrm{i}} / 2$	
r o	mm	D．$/ 2$	
r m	mm	$\left(\mathrm{r}_{\mathrm{i}}+\mathrm{r}_{\mathrm{o}}\right) / 2$	
D 。	mm	$\mathrm{D}_{\mathrm{i}}+2 \mathrm{t}$	
D i	mm		
t	mm		照射に伴う腐食減肉を考慮
v	－		
E	MPa		
I	mm^{4}	$\pi\left(\mathrm{D}_{\mathrm{o}}{ }^{4}-\mathrm{D}_{\mathrm{i}}{ }^{4}\right) / 64$	
ω	mm		
$\mathrm{P}_{\mathrm{cr} \mathrm{r}}$	MPa		
1	mm		
A	mm		
L	mm		
W 。	kg／mm		鉛直加速度を見かけの質量増加として考慮
W	kg／mm		
g	$\mathrm{m} / \mathrm{s}^{2}$	9． 80665	
C_{1}	－		
C_{2}	－		
C_{3}	－		
C 4	－		
C_{5}	－		
C6	－		
C_{7}	－		
T	${ }^{\circ} \mathrm{C}$		
$\Delta \mathrm{T}$	${ }^{\circ} \mathrm{C}$		
$\Delta \mathrm{T}_{\mathrm{i}}$	${ }^{\circ} \mathrm{C}$		

表 5－4（2）スペーサ間及びスペーサ部の応力評価に用いる数値又は数式 （ 9×9 燃料（ B 型））$(2 / 2)$

記号	単位	数値又は数式	特記事項
$\Delta \mathrm{T}$ 。	${ }^{\circ} \mathrm{C}$		
δ	－	$\mathrm{D}_{\text {o }} / \mathrm{D}_{\mathrm{i}}$	
$\alpha_{\text {r }}$	${ }^{\circ} \mathrm{C}^{-1}$		
α_{z}	${ }^{\circ} \mathrm{C}^{-1}$		
P	N		
N_{1}	－		
N_{2}	－		
N_{3}	－		
μ	－		
S	mm^{2}	$\pi\left(\mathrm{r}_{0}{ }^{2}-\mathrm{ri}_{\mathrm{i}}{ }^{2}\right)$	
F ${ }_{\text {i }}$	N		
F e	N		
S y	MPa	図 5－4 参照＊1	燃料被覆管の温度及び照射の効果を考慮
S u	MPa	図 5－4 参照＊${ }^{\text {c }}$	燃料被覆管の温度及び照射の効果を考慮

注記 $* 1$ ：統計分布を考慮。
＊2：寿命初期，寿命中期及び寿命末期の値。

表 5－5 燃料被覆管に発生する応力

考慮する応力	スペーサ間	スペーサ部	条件
内外圧力差に基づく応力	\bigcirc	\bigcirc	通常運転時及び過渡時
水力振動に基づく応力	\bigcirc	$\bigcirc * 1$	
楕円度に基づく応力	\bigcirc	\bigcirc	
スペーサの接触力に基づく応力	－	\bigcirc	
半径方向温度差に基づく熱応力	\bigcirc	\bigcirc	
円周方向温度差に基づく熱応力	\bigcirc	\bigcirc	
膨張スプリング等による軸方向荷重に基づく応力	\bigcirc	\bigcirc	
ウォータチャンネルと燃料被覆管の熱膨張差による応力	$\bigcirc * 2$	$\bigcirc * 2$	
燃料棒のたわみに基づく応力	\bigcirc	\bigcirc	地震時
チャンネルボックスのたわみに基づく応力	\bigcirc	\bigcirc	
鉛直地震加速度に基づく応力	\bigcirc	\bigcirc	

注記 $* 1: 9 \times 9$ 燃料（ A 型）の場合に考慮。
＊ $2: 9 \times 9$ 燃料（ B 型）の場合に考慮。

表 5－6（1）スペーサ間及びスペーサ部の応力の計算式（通常運転時及び過渡時）
$(9 \times 9$ 燃料（A 型））（ $1 / 2$ ）

応力の種類	応力の成分	外面	内面
（1）内外圧 力差に基づ く応力 （一次応力）	半径方向		
	円周方向		
	軸方向		
（2）水力振動に基づく応力 （一次応力）	半径方向		
	円周方向		
	軸方向		
（3）楕円度 に基づく応力 （一次応力）	半径方向		
	円周方向		
	軸方向		
（4）スペー サの接触力 に基づく応力 （二次応力）	半径方向		
	円周方向		
	軸方向		
（5）半径方 向温度差に基づく熱応力 （二次応力）	半径方向		
	円周方向		
	軸方向		
（6）円周方向温度差に基づく熱応力 （二次応力）	半径方向		
	円周方向		
	軸方向		

表 5－6（1）スペーサ間及びスペーサ部の応力の計算式（通常運転時及び過渡時）

$$
(9 \times 9 \text { 燃料 }(A \text { 型 })) \quad(2 / 2)
$$

応力の種類	応力の成分		内面
（7）膨張ス	半径方向		
プリング等	円周方向		
による軸方			
向荷重に基			
づく応力	軸方向		
（一次応力）			

表 5－6（2）スペーサ間及びスペーサ部の応力の計算式（地震時）
（ 9×9 燃料（A 型））

応力の種類	応力の成分	外面	内面
（8）スペーサ間での燃料棒 のたわみに基づく応力 （一次応力）	半径方向		
	円周方向		
	軸方向		
（9）スペーサ部での燃料棒 のたわみに基づく応力 （一次応力）	半径方向		
	円周方向		
	軸方向		
（10）チャンネルボックス のたわみに基づく応力 （二次応力）	半径方向		
	円周方向		
	軸方向		
（11）鉛直地震加速度に基$\begin{aligned} & \text { づく応力 } \\ & \text { (一次応力) } \end{aligned}$	半径方向		
	円周方向		
	軸方向		

表 5－7 スペーサ間及びスペーサ部の地震時の応力評価における応力の組合せ （ 9×9 燃料（ A 型 $) ~)$

解析分類	評価位置	応力分類	応力組合せ＊
崩壊熱除去可能 な形状の維持	スペーサ間	一次応力	$(1)+(2)+(3)+(7)+(8)+(11)$
	スペーサ部		$(1)+(2)+(3)+(7)+(9)+(11)$
閉じ込め機能の維持	スペーサ間	$\begin{aligned} & \text { 一次応力 } \\ & + \text { 二次応力 } \end{aligned}$	$(1)+(2)+(3)+(5)+(6)+(7)+(8)+(10)+(11)$
	スペーサ部		$(1)+(2)+(3)+(4)+(5)+(6)+(7)+(9)+(10)+(11)$

注記＊：表 5－6の応力の種類を示す各番号の応力の組合せを示す。

表 5－8（1）スペーサ間及びスペーサ部の応力の計算式（通常運転時及び過渡時）
$(9 \times 9$ 燃料（ B 型））（ $1 / 2$ ）

表 5－8（1）スペーサ間及びスペーサ部の応力の計算式（通常運転時及び過渡時）
$(9 \times 9$ 燃料（ B 型））（ $2 / 2$ ）

応力の種類	応力の成分	内面	外面
（6）燃 料 被 覆			
管周方向温度 円周方向			
勾配による応			
$\text { 力 } \quad \text { 半径方向 }$			
（二次応力）	軸方向		
（7）ウォータ 円周方			
チャンネルと 半径方向			
燃料被覆管の 熱膨張差によ			
る応力 軸方向			
（二次応力）			
（8）膨張スプ 円周方向			
リング及びプ			
ングによる応			
力			
	軸方向		

表 5－8（2）スペーサ間及びスペーサ部の応力の計算式（地震時）
（ 9×9 燃料（ B 型））

表 5－9 スペーサ間及びスペーサ部の地震時の応力評価における応力の組合せ （ 9×9 燃料（ B 型）$)$

解析分類	評価位置	応力分類	応力組合せ＊
崩壊熱除去可能 な形状の維持	スペーサ間	一次応力	$(1)+(2)+(3)+(9)$
	スペーサ部		$(1)+(2)+(9)$
閉じ込め機能の維持	スペーサ間	$\begin{aligned} & \text { 一次応力 } \\ & + \text { 二次応力 } \end{aligned}$	$(1)+(2)+(3)+(5)+(6)+(7)+(8)+(9)+(10)$
	スペーサ部		$(1)+(2)+(4)+(5)+(6)+(7)+(8)+(9)+(10)$

注記＊：表5－8の応力の種類を示す各番号の応力の組合せを示す。

表 5－10 地震時の崩壊熱除去可能な形状の維持に関する応力評価結果 （ 9×9 燃料（A 型））

地震動	許容応力	運転条件＊	寿命時期	$\begin{gathered} \text { スペーサ間 } \\ \text { (設計比) } \end{gathered}$	$\begin{gathered} \text { スペーサ部 } \\ \text { (設計比) } \end{gathered}$
				一次応力	一次応力
基準地震動 S s	0． 7 Su	圧力過渡	寿命初期	0． 43	0． 40
			寿命中期	0.26	0． 25
			寿命末期	0.27	0． 25

注記＊：解析対象が一次応力であるため出力過渡時に大きくなる熱応力が影響しないので圧力過渡のみを評価対象とした。

表 5－11 地震時の崩壊熱除去可能な形状の維持に関する応力評価結果

$$
(9 \times 9 \text { 燃料 }(B \text { 型 }))
$$

地震動	許容応力	運転条件＊	寿命時期	$\begin{gathered} \text { スペーサ間 } \\ \text { (設計比) } \end{gathered}$	$\begin{gathered} \text { スペーサ部 } \\ \text { (設計比) } \end{gathered}$
				一次応力	一次応力
基準地震動 S s	0.7 S u	圧力過渡	寿命初期	0.52	0.52
			寿命中期	0.39	0.39
			寿命末期	0.37	0.37

注記＊：解析対象が一次応力であるため出力過渡時に大きくなる熱応力が影響しないので圧力過渡のみを評価対象とした。

表 5－12 地震時の燃料被覆管の閉じ込め機能の維持に関する応力評価結果
（ 9×9 燃料（ A 型））

地震動	許容応力	運転条件	寿命時期	$\begin{gathered} \text { スペーサ間 } \\ \text { (設計比) } \end{gathered}$	$\begin{gathered} \text { スペーサ部 } \\ \text { (設計比) } \end{gathered}$
				一次応力＋二次応力	一次応力＋二次応力
基準地震動 S s	S u	圧力過渡	寿命初期	0.54	0． 49
			寿命中期	0.33	0.29
			寿命末期	0.29	0.31
		出力過渡	寿命初期	0.54	0． 44
			寿命中期	0.35	0． 32
			寿命末期	0.30	0.30
弾性設計用地震動 S d	S y	圧力過渡	寿命初期	0.79	0． 70
			寿命中期	0． 29	0.27
			寿命末期	0.25	0.24
		出力過渡	寿命初期	0． 75	0.61
			寿命中期	0.31	0． 29
			寿命末期	0.26	0． 24

表 5－13 地震時の燃料被覆管の閉じ込め機能の維持に関する応力評価結果 （ 9×9 燃料（ B 型））

地震動	許容応力	運転条件	寿命時期	$\begin{gathered} \text { スペーサ間 } \\ \text { (設計比) } \end{gathered}$	$\begin{aligned} & \text { スペーサ部 } \\ & \text { (設計比) } \end{aligned}$
				一次応力＋二次応力	一次応力＋二次応力
基準地震動 S s	S u	圧力過渡	寿命初期	0.59	0.57
			寿命中期	0． 42	0． 40
			寿命末期	0.38	0.36
		出力過渡	寿命初期	0.60	0.58
			寿命中期	0． 45	0． 42
			寿命末期	0.38	0.37
弾性設計用地震動 S d	S y	圧力過渡	寿命初期	0． 75	0.78
			寿命中期	0.36	0． 32
			寿命末期	0.30	0.28
		出力過渡	寿命初期	0.73	0． 74
			寿命中期	0.39	0.34
			寿命末期	0.30	0.27

表 5－14 下部端栓溶接部の熱解析で考慮する項目

	考慮する項目
ペレットの発熱	
ジルカロイ部材の γ 発熱＊	
ペレットー被覆管ギャップ熱伝達	
被覆表面熱伝達係数	
ペレット及びジルカロイ部材の熱伝導率	

注記＊： 9×9 燃料（ A 型）の場合に考慮。

表 5－15 下部端栓溶接部の応力評価で考慮する荷重

考慮する荷重	条件
下部端栓及び被覆管部における温度分布（熱解析結果を読み込去）	通常運転時及び過渡時
燃料棒内圧	
冷却材圧力	
内外圧力差による軸方向荷重（軸方向応力）	
膨張スプリング等による軸方向荷重（軸方向応力）＊1	
燃料被覆管の周方向温度差及び端栓取付角公差による初期曲がりに基づく曲げ荷重（曲げ応力）＊	
燃料棒のたわみに基づく曲げ荷重（曲げ応力）	地震時
チャンネルボックスのたわみに基づく曲げ荷重（曲げ応力）	
鉛直地震加速度に基づく軸方向荷重（軸方向応力）＊2	

注記 $* 1: 9 \times 9$ 燃料（ A 型）の場合に考慮。
＊ $2: 9 \times 9$ 燃料（ B 型）の場合，鉛直方向地震加速度は地震時にかかる荷重への見かけ の質量増加として考慮。

表 5－16 地震時の下部端栓溶接部の応力評価結果（ 9×9 燃料（A 型））

注記＊：下部端栓部の燃料棒の出力は低く，出力過渡時に発生する応力は圧力過渡時 の応力より小さいため，圧力過渡時のみを評価対象とした。

表 5－17 地震時の下部端栓溶接部の応力評価結果 $(9 \times 9$ 燃料（ B 型））

地震動	許容応力	運転条件＊	寿命時期	下部端栓溶接部 （設計比）
				一次応力 +二次応力
基準地震動 S s	S u	圧力過渡	寿命初期	0.50
			寿命中期	0． 45
			寿命末期	0． 44
弾性設計用地震動	S y	圧力過渡	寿命初期	0.69
			寿命中期	0.54
S d			寿命末期	0． 52

注記 $~$ ：下部端栓部の燃料棒の出力は低く，出力過渡時に発生する応力は圧力過渡時 の応力より小さいため，圧力過渡時のみを評価対象とした。

表 5－18 地震時の下部端栓溶接部の疲労評価結果（ 9×9 燃料（ A 型））

地震動	寿命時期	応力振幅 （MPa）	$\begin{gathered} \text { 許容 } \\ \text { サイクル数 } \end{gathered}$	地震荷重の繰返し回数	疲労係数の増分＊
基準地震動 S s	寿命初期	108	1． 1×10^{4}	340	0.031
	寿命中期	107	1． 1×10^{4}	340	0.031
	寿命末期	108	1． 1×10^{4}	340	0.031
弾性設計用地震動	寿命初期	65	1． 3×10^{5}	590	0.005
	寿命中期	64	1． 5×10^{5}	590	0． 004
	寿命末期	65	1． 3×10^{5}	590	0.005

注記＊：燃料の全寿命を通した疲労累積係数（約 0.003 ，引用文献（5）参照）を付加しても 1を下回っている。

表 5－19 地震時の下部端栓溶接部の疲労評価結果（ 9×9 燃料（ B 型））

地震動	寿命時期	応力振幅 (MPa)	$\begin{gathered} \text { 許容 } \\ \text { サイクル数 } \end{gathered}$	地震荷重の繰返し回数	疲労係数の増分＊
基準地震動 S s	寿命初期	141	4.1×10^{3}	340	0.082
	寿命中期	138	4． 6×10^{3}	340	0.073
	寿命末期	137	5.0×10^{3}	340	0.068
弾性設計用地震動 S d	寿命初期	73	6． 5×10^{4}	590	0.010
	寿命中期	72	7.2×10^{4}	590	0.009
	寿命末期	71	7.6×10^{4}	590	0.008

注記＊：燃料の全寿命を通した疲労累積係数（約 0.006 ，引用文献（6）参照）を付加しても 1を下回っている。
\square
図 5－1 ジルカロイ－2 降伏応力の設計値（公称値＊）（9×9燃料（A 型））

図 5－2 ジルカロイ－2引張強さの設計値（公称値＊）（ 9×9 燃料（ A 型））

注記＊：データ分布上の公称値を示す。

図 5－3 ジルカロイ－2 降伏応力及び引張強さの設計値（95\％確率下限値）
（ 9×9 燃料（ A 型）下部端栓溶接部）

図 5－4 ジルカロイ－2 降伏応力及び引張強さの設計値（公称値＊）
（ 9×9 燃料（ B 型）スペーサ間及びスペーサ部）

図 5－5 ジルカロイ－2 降伏応力及び引張強さの設計値（ 95% 確率下限値） （ 9×9 燃料（ B 型）下部端栓溶接部）

注記＊：データ分布上の公称値を示す。

図 5－6 地震時のスペーサ間及びスペーサ部の応力評価のフロー

図 5－9 地震時の下部端栓溶接部の応力評価のフロー

図 5－10 下部端栓溶接部の応力評価における熱解析モデル（ 9×9 燃料（A型））

図 5－11 下部端栓溶接部の応力評価における機械解析モデル（9×9燃料（A 型））
\square
図 5－12 下部端栓溶接部の応力評価における熱•機械解析モデル $(9 \times 9$ 燃料（B 型））

図 5－13 地震時の下部端栓溶接部の疲労評価のフロー

図 5－14 ジルカロイの設計疲労曲線＊

注記＊：ジルカロイ設計疲労曲線は，引用文献（4）に基づき，ジルカロイ－2 の未照射材及 び照射材についての疲労試験結果をベースに，ジルカロイー4等の機械特性及び疲労特性がジルカロイ－2 とほぼ同等であることを確認し，ジルカロイ－2， 3 及び 4共通の設計曲線として設定したものである。Langer－0’ Donne11 は，設計曲線を保守側に見積もるため，未照射材及び照射材それぞれについて応力を $1 / 2$ ，サイ クル数を1／20とし，未照射材及び照射材の両者の包絡線を Langer－0’ Donnell の設計疲労曲線としている。

6．引用文献
（1）「沸騰水型原子力発電所 燃料の設計手法について」，株式会社日立製作所，H L R－ 033 訂 1 ，平成 10 年 2 月
（2）「沸騰水型原子力発電所 燃料の設計手法について」，株式会社東芝，T L R－045 改訂 1 ，平成 10 年 1 月
（3）「沸騰水型軽水炉用燃料の設計手法について」，原子燃料工業株式会社，N L R－14，昭和 62 年 12 月
（4）W．J．0＇Donnell and B．F．Langer，＂Fatigue Design Basis for Zircaloy Components＂，Nuclear Science and Engineering，20，1－12（1964）
（5）女川原子力発電所第 2 号機「燃料体設計認可申請書」（GNF 燃設認第 35 号，平成 21年10月16日認可）
（6）女川原子力発電所第 2 号機及び第 3 号機「燃料体設計認可申請書」（ 20 原燃東 第 802 号，平成 21 年 1 月 7 日認可）

付録 1 応力計算結果の応力分類処理方法

燃料被覆管下部端栓溶接部は，切欠き形状を含む複雑な形状（付図－1参照）であるため有限要素法を用いた解析コード「ANSYS」により発生応力を求めており，算出される応力値 には（一次応力＋二次応力＋ピーク応力）の全応力成分が含まれる（付図 -2 参照）。ピー ク応力は，応力集中又は局部熱応力により，一次応力又は二次応力に付加される応力の増加分として定義されており，その特徴は，それによって大きな変形は起こらないが，それ が繰り返されると疲労破壊の原因となることがあるとされている（「設計•建設規格」参照）。原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1•補－1984（（社）日本電気協会）においてもピーク応力は疲労破壊が対象とされている。よって，解析コー ド「ANSYS」の計算モデル中のメッシュ要素の節点での応力解析結果から，下記に示す応力分類処理を行い，一次応力＋二次応力及びピーク応力を求める。
（1）応力評価断面として，付図－1 に示す端栓一被覆管溶接面を選択する。
（2）（1）で選んだ応力評価断面に対して，断面内の全ての節点の応力を積分し，断面平均応力（膜応力）及び断面内での曲げの釣合いが等価となる曲げ応力の等価直線成分 を求める。この膜応力と曲げ応力の等価直線成分を合計したものを一次応力 + 二次応力とする（付図－2 参照）。
（3）応力評価断面における応力分布と（2）で求めた一次応力＋二次応力（膜応力と曲げ応力の等価直線成分の合計）との差をピーク応力とする（付図 -2 参照）。
応力が最も厳しい条件となるのはピーク応力の方向と正味の曲げモーメントの方向が一致するケースであり，下部端栓溶接部の応力解析では燃料被覆管内面位置が該当する。よ って，付図－2 に示すように，設計比の評価には燃料被覆管内面位置での応力を用いる。

付図－1 下部端栓部の有限要素法による応力解析体系の模式図

付図－2 応力分布と応力分類処理結果の模式図

VI－2－3－3－2 炉心支持構造物の耐震性についての計算書

VI－2－3－3－2－1 炉心支持構造物の応力解析の方針
VI－2－3－3－2－2 炉心シュラウドの耐震性についての計算書
VI－2－3－3－2－3 シュラウドサポートの耐震性についての計算書
VI－2－3－3－2－4 炉心シュラウド支持ロッドの耐震性についての計算書
VI－2－3－3－2－5 上部格子板の耐震性についての計算書
VI－2－3－3－2－6 炉心支持板の耐震性についての計算書
VI－2－3－3－2－7 燃料支持金具の耐震性についての計算書
VI－2－3－3－2－8 制御棒案内管の耐震性についての計算書

VI－2－3－3－2－1 炉心支持構造物の応力解析の方針

まえがき

本書は，炉心支持構造物の耐震評価及び重大事故等時における強度評価に関する応力解析の方針を示すものであり，以下の二編により構成している。
（1）耐震評価編
（2）強度評価編
（1）耐震評価編

目次

1．概要1
2．一般事項 2
2.1 構造計画 2
2．2 評価方針 4
2.3 適用規格•基準等 4
2.4 記号の説明 5
2.5 計算精度と数値の丸め方 6
3．計算条件 7
3.1 評価対象機器 7
3.2 形状及び寸法 7
3.3 荷重の組合せ及び許容応力状態 7
3．4 許容応力 7
3.5 許容応力評価条件 8
3.6 溶接部の継手効率 8
4．荷重条件 9
4． 1 設計条件 9
4．2 運転条件 9
4.3 重大事故等時の条件 9
4． 4 荷重の組合せ及び応力評価 9
5．応力評価の手順 10
5.1 計算に使用する解析コード 10
5.2 荷重条件の選定 10
5.3 応力の評価 10
5．3．1 主応力 10
5．3．2 応力強さ 10
5．3．3 一次応力強さ 10
5．4 特別な応力の評価 11
5．4．1 純せん断応力の評価 11
5．4．2 支圧応力の評価 11
5．4．3 座屈の評価 11
6．評価結果の添付 12
6．1 応力評価結果 12
7．引用文献 13
8．参照図書 13

添付1溶接部の継手効率•．． 29

図表目次

図2－1 炉心支持構造物の耐震評価フロー 4
図3－1 全体断面図 14
図4－1 炉心支持構造物の差圧 15
表2－1 炉心支持構造物の構造計画 3
表2－2 表示する数値の丸め方 6
表3－1 荷重の組合せ及び許容応力状態 16
表3－2 許容応力（炉心支持構造物） 18
表3－3 許容応力評価条件 19
表4－1 外荷重 20
表4－2 荷重の組合せ 28

1．概要

本書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，炉心支持構造物の耐震評価に関する応力解析の方針を説明するもので ある。

設計用地震力を除く荷重による炉心支持構造物（シュラウドサポート，上部格子板，炉心支持板，燃料支持金具及び制御棒案内管を除く）の応力評価は，平成17年2月4日付 け東北電原第145号にて届出た工事計画の添付書類（参照図書（1））による（以下「既工認」という）。

注1：本書に記載していない特別な内容がある場合は，下記計算書（以下「耐震計算書」という。）に示す。
（1）VI－2－3－3－2－2 炉心シュラウドの耐震性についての計算書
（2）VI－2－3－3－2－3 シュラウドサポートの耐震性についての計算書
（3）VI－2－3－3－2－4 炉心シュラウド支持ロッドの耐震性についての計算書
（4）VI－2－3－3－2－5 上部格子板の耐震性についての計算書
（5）VI－2－3－3－2－6 炉心支持板の耐震性についての計算書
（6）VI－2－3－3－2－7 燃料支持金具の耐震性についての計算書
（7）VI－2－3－3－2－8 制御棒案内管の耐震性についての計算書注 2 ：図表は，原則として巻末に示す。

2．一般事項
2.1 構造計画

炉心支持構造物の構造計画を表2－1に示す。炉心支持構造物は，下記の機器により構成される。
（1）炉心シュラウド
（2）シュラウドサポート
（3）炉心シュラウド支持ロッド
（4）上部格子板
（5）炉心支持板
（6）燃料支持金具
（7）制御棒案内管

表 2－1 炉心支持構造物の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
炉心を構成する燃料集合体，制御棒は，炉心シュラウド内に設けられ る。 炉心シュラウドは，原子炉圧力容器下部鏡板に溶接されたシュラウドサ ポートにより支持される。また，炉心 シュラウド支持ロッドによって水平及び鉛直方向に拘束される。 燃料集合体は，燃料支持金具を介 して制御棒案内管（ただし，周辺燃料支持金具を介する場合は炉心支持板）によって支持される。また，水平方向については，上部格子板及び炉心支持板によって支持される。	炉心支持構造物は，炉心シュラウド，シュラウ ドサポート，炉心シュラ ウド支持ロッド，上部格子板，炉心支持板，燃料支持金具，制御棒案内管 により構成される。	

2.2 評価方針

炉心支持構造物の構造強度評価は，添付書類「VI－2－1－9 機能維持の基本方針」及 び「3．計算条件」にて設定した荷重及び荷重の組合せ並びに許容応力に基づき，

「2．1 構造計画」にて示す炉心支持構造物の各機器の耐震計算書にて設定する箇所 において，「4．荷重条件」にて設定した荷重に基づく応力が許容応力内に収まるこ とを，「5．応力評価の手順」にて示す方法にて確認することで実施する。確認結果 を耐震計算書に示す。

炉心支持構造物の耐震評価フローを図2－1に示す。

図 2－1 炉心支持構造物の耐震評価フロー
2.3 適用規格•基準等

適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 0 1 •補 －1984（日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1991 追補版（日本電気協会） （以降「J E A G 4 6 O 1 」と記載しているものは上記3指針を指す。）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。））
J S ME S N C 1－2005／2007）（日本機械学会 2007年9月）（以下「設計•建設規格」という。）

注：本書及び耐震計算書において，設計•建設規格の条項は「設計•建設規格 $-\triangle \triangle \Delta \Delta(\diamond)$ a．（a）」として示す。

2． 4 記号の説明
本書及び耐震計算書において，以下の記号を使用する。ただし，本書添付及び耐震計算書中に別途記載ある場合は，この限りでない。

なお，耐震計算書における記号の字体及び大きさについては，本書と異なる場合が ある。

記号	記号の説明	単位
H	水平力	N
M	モーメント	$\mathrm{N} \cdot \mathrm{m}$
$\mathrm{P}_{\text {b }}$	一次曲げ応力	MPa
P_{m}	一次一般膜応力	MPa
S 12	主応力差 $\sigma_{1}-\sigma_{2}$	MPa
S_{23}	主応力差 $\sigma_{2}-O_{3}$	MPa
S 31	主応力差 $\sigma_{3}-\sigma_{1}$	MPa
S d＊	弾性設計用地震動 S d により定まる地震力又は S クラス設備に適用される静的地震力のいずれか大きい方の地震力	－
S_{m}	設計応力強さ	MPa
S s	基準地震動S s により定まる地震力	－
S u	設計引張強さ	MPa
$\mathrm{S}_{\text {y }}$	設計降伏点	MPa
$S_{\text {y }}$（ R T ）	材料の $40^{\circ} \mathrm{C}$ における設計降伏点	MPa
V	鉛直力	N
η	溶接部の継手効率	－
σ_{1}	主応力	MPa
$\sigma^{\circ} 2$	主応力	MPa
$\sigma 3$	主応力	MPa
$\sigma \ell$	軸方向応力	MPa
σ r	半径方向応力	MPa
σ t	周方向応力	MPa
$\tau_{\ell r}$	せん断応力	MPa
$\tau \mathrm{ret}$	せん断応力	MPa
τ te	せん断応力	MPa

記号	記号の説明	単位
$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	設計•建設規格の供用状態C相当の許容応力を基準として， それに地震により生じる応力に対する特別な応力の制限を 加えた許容応力状態 設計•建設規格の供用状態D相当の許容応力を基準として， それに地震により生じる応力に対する特別な応力の制限を 加えた嫆応力状態	-
$\mathrm{V}_{\mathrm{A} S} \mathrm{~S}$	運転状態V（重大事故等時の状態）相当の応力評価を行う 許容応力状態を基本として，それに地震により生じる応力 に対する特別な応力の制限を加えた許容応力状態	-

2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 2－2 に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類		単位	処理桁	
処理方法	表示桁			
荷重名称	死荷重 ${ }^{* 1}$	$-* 2$	有効数字 4 桁目	切上げ
	地震荷重	$-* 2$	有効数字 3 数字 4 桁目	
算出応力	切上げ	有効数字 3 桁目		
応力強さ	MPa	小数点以下第 1 位	切上げ	整数位
許容応力 $* 3$	MPa	小数点以下第 1 位	切上げ	整数位

注記 $* 1$ ：上部格子板，炉心支持板及び燃料支持金具を対象とする。
＊ $2:$ 機器毎に考慮する荷重に応じた単位を適用する。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における許容応力は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．計算条件
3.1 評価対象機器

応力評価を行う機器は，次のとおりである。（表 2－1 及び図 3－1参照）

機器名称		評価対象	
		耐震性についての計算書 （許容応力状態に対する評価）	
		IIII ${ }_{A}$ ，IV ${ }_{A} \mathrm{~S}$	$\mathrm{V}_{\mathrm{A}} \mathrm{S}$
（1）	炉心シュラウド	\bigcirc	\bigcirc
（2）	シュラウドサポート	\bigcirc	\bigcirc
（3）	炉心シュラウド支持ロッド	\bigcirc	\bigcirc
（4）	上部格子板	\bigcirc	\bigcirc
（5）	炉心支持板	\bigcirc	\bigcirc
（6）	燃料支持金具	\bigcirc	\bigcirc
（7）	制御棒案内管	\bigcirc	\bigcirc

注：「○」は評価対象を示す。

3.2 形状及び寸法

各部の形状及び寸法は，耐震計算書に示す。
3.3 荷重の組合せ及び許容応力状態

炉心支持構造物の荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価 に用いるものを表3－1（1）に，重大事故等対処設備の評価に用いるものを表3－1（2）に示す。また，各許容応力状態で考慮する荷重は，4章に示すとおりである。

なお，炉心支持構造物については，重大事故等対処設備の耐震評価は，設計基準対象施設の耐震評価に包絡される。

3．4 許容応力
許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表3－2に示す。
この表に記載のない圧縮荷重を受ける場合に対する許容応力は，耐震計算書に記載す るものとする。
3.5 許容応力評価条件
（1）設計応力強さ S_{m} ，設計降伏点 S_{y} 及び設計引張強さ S_{u} は，それぞれ設計•建設規格 付録材料図表 Part5表1，表8及び表9に定められたものを使用する。
（2）許容応力状態 $I I I_{A} S$ 及び許容応力状態 $I V_{A} S$ の一次応力の評価には，運転状態 I 及 びIIにおける流体の最高温度 \square に対する許容応力を用いる。
（3）炉心支持構造物の許容応力評価条件を表 $3-3$ に示す。 なお，各機器で使用される材料は，耐震計算書に示す。
3.6 溶接部の継手効率
（1）溶接部の継手効率は，継手の種類と分類及び継手に適用する検査の種類によ り，設計•建設規格 CSS－3150に従って定める。溶接部の継手効率を添付 1 に示 す。なお，溶接部の継手効率が 1.00 未満の場合は，継手効率を耐震計算書に示 す。
（2）溶接部の許容応力は，材料の許容応力に継手効率を乗じたものとし，耐震計算書に示す。

4．荷重条件
炉心支持構造物は，以下の荷重条件に耐えることを確認する。各機器の応力評価には，本章に示す荷重を考慮する。

4． 1 設計条件
設計条件は既工認からの変更はなく，参照図書（1）a．に定めるとおりである。

4．2 運転条件

運転条件及び記号は，既工認からの変更はなく，参照図書（1）a．に定めるとおりであ る。

各機器の応力評価において考慮する外荷重の値を表4－1に示す。
炉心支持構造物の評価に用いる設計用地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」及び「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並 びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」により求めた荷重，若 しくはそれらの条件を包絡する様に定めた保守的な荷重とする。

4． 3 重大事故等時の条件

4． 4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価項目の対応を表4－2に示す。表4－2 及び耐震計算書にお いて，荷重の種類と記号は以下のとおりである。

なお，荷重の組合せについては，機器ごとに適切に組み合わせる。

荷重

（1）差圧
（2）死荷重
（3）機器の地震時の慣性力による地震荷重 S d＊（一次荷重）
（4）機器の地震時の慣性力による地震荷重 S s（一次荷重）

5．応力評価の手順
応力評価の手順について述べる。
5.1 計算に使用する解析コード

解析コードは「A－SAFIA」，「PIPE」，「STAX」及び「ASHSD」を用いる。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
5.2 荷重条件の選定

応力解析においては，4章に示した荷重条件のうちから，その部分に作用する荷重 を選定して計算を行う。
5.3 応力の評価

5．3．1 主応力
計算した応力は，応力の分類ごとに重ね合わせ，組合せ応力を求める。
組合せ応力は，一般に $\sigma_{\mathrm{t}}, ~ \sigma_{\ell}, ~ \sigma_{\mathrm{r}}, ~ \tau_{\mathrm{t} \ell}, ~ \tau_{\ell \mathrm{r}}, ~ \tau_{\mathrm{r}}$ の 6 成分を持つが，主応力 σ は，引用文献（1）の $1 \cdot 3 \cdot 6$ 項により，次式を満足する 3 根 $\sigma_{1}, \sigma_{2}, ~ \sigma_{3}$ として計算する。

$$
\begin{aligned}
& \sigma^{3}-\left(\sigma_{\mathrm{t}}+\sigma_{\ell}+\sigma_{\mathrm{r}}\right) \cdot \sigma^{2}+\left(\sigma_{\mathrm{t}} \cdot \sigma_{\ell}+\sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{r}} \cdot \sigma_{\mathrm{t}}-\tau_{\mathrm{t} \ell^{2}}\right. \\
& \left.-\tau_{\ell \mathrm{r}}{ }^{2}-\tau_{\mathrm{rt}}{ }^{2}\right) \cdot \sigma_{\mathrm{t}}-\sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{t}} \cdot \tau_{\ell \mathrm{r}}{ }^{2}+\sigma_{\ell} \cdot \tau_{\mathrm{rt}}{ }^{2} \\
& +\sigma_{\mathrm{r}} \cdot \tau_{\mathrm{t} \ell^{2}-2 \cdot \tau_{\mathrm{t} \ell} \cdot \tau_{\ell \mathrm{r}} \cdot \tau_{\mathrm{rt}}=0}
\end{aligned}
$$

上式により主応力を求める。

5．3．2 応力強さ
以下の 3 つの主応力差の絶対値で最大のものを応力強さとする。

$$
\begin{aligned}
& \mathrm{S}_{12}=\sigma_{1}-\sigma_{2} \\
& \mathrm{~S}_{23}=\sigma_{2}-\sigma_{3} \\
& \mathrm{~S}_{31}=\sigma_{3}-\sigma_{1}
\end{aligned}
$$

5．3．3 一次応力強さ
許容応力状態 $I I I_{A} S$ 及び許容応力状態 $I V{ }_{A} S$ において生じる一次一般膜応力及び一次一般膜 + 一次曲げ応力の応力強さが，3．4節に示す許容応力を満足すること を示す。

5． 4 特別な応力の評価

5．4．1 純せん断応力の評価
純せん断荷重を受ける部分は，設計•建設規格 CSS－3114により評価する。解析箇所を以下に示す。許容応力は表3－2に示し，評価方法は耐震計算書に示 す。
（1）炉心シュラウド支持ロッドのトグルピン

5．4．2 支圧応力の評価
支圧荷重を受ける部分は，設計•建設規格 CSS－3115により評価する。解析箇所を以下に示す。許容応力は表3－2に示し，評価方法は耐震計算書に示す。
（1）炉心シュラウドの上部格子板及び炉心支持板支持面
（2）炉心シュラウドの上部サポート支持面
（3）シュラウドサポートプレートのトグル支持面

5．4．3 座屈の評価

軸圧縮荷重を受ける部分は，設計•建設規格 SSB－3121．1により評価する。解析箇所を以下に示す。評価方法及び許容応力は，耐震計算書に示す。
（1）シュラウドサポートレグ

6．評価結果の添付

応力評価点番号は，機器ごとに記号 P01 からの連番とする。奇数番号を内面の点，偶数番号を外面の点として，耐震計算書の形状•寸法•材料•応力評価点を示す図におい て定義する。

なお，軸対称モデル解析において，非軸対称な外荷重による応力評価を行った場合，荷重の入力方位と応力評価点の方位の関係により応力に極大値と極小値が生じる。外荷重による応力が極大となる方位の応力評価点は［例 P01］と表し，極小となる方位の応力評価点にはプライム（＇）を付けて［例 P01＇］と表す。

一次応力の評価は，内外面の応力評価点を含む断面（応力評価面）について行う。

6.1 応力評価結果

（1）次の応力評価結果は，全応力評価点（面）について添付する。
a．一次一般膜応力強さの評価のまとめ
b．一次一般膜 + 一次曲げ応力強さの評価のまとめ
（2）次の特別な評価は，対象となるすべての部位について評価し，結果を記載する。
a．純せん断応力
b．支圧応力
c．座屈

7．引用文献
文献番号は，本書及び耐震計算書において共通である。
（1）機械工学便覧 基礎編 $\alpha 3$（日本機械学会）

8．参照図書
（1）女川原子力発電所第 2 号機工事計画届出書（平成 17 年 2 月 4 日東北電原第 145 号）添付書類
a．IV－2－1－1 炉心シュラウド，シュラウドサポート及び炉心シュラウド支持ロッド の応力解析の方針
b．IV－2－1－2 炉心シュラウドの応力計算書
c．IV－2－1－4 炉心シュラウド支持ロッドの応力計算書

図 3－1 全体断面図

（単位：MPa）

部位	運転状態 V
$\mathrm{P}_{12}=\mathrm{P}_{1}-\mathrm{P}_{2}$	
$\mathrm{P}_{13}=\mathrm{P}_{1}-\mathrm{P}_{3}$	
$\mathrm{P}_{32}=\mathrm{P}_{3}-\mathrm{P}_{2}$	
$\mathrm{P}_{34}=\mathrm{P}_{3}-\mathrm{P}_{4}$	
$\mathrm{P}_{45}=\mathrm{P}_{4}-\mathrm{P}_{5}$	

図 4－1 炉心支持構造物の差圧

表 3－1（1）荷重の組合せ及び許容応力状態（設計基準対象施設）

D ：死荷重
P：地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）における圧力荷重
M ：地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）で設備に作用している機械的荷重
S d＊：弾性設計用地震動 S d により定まる地震力又はSクラス設備に適用される静的地震力のいずれか大きい方の地震力
$\mathrm{P}_{\mathrm{L}} \quad$ ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている圧力荷重
M_{L} ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている死荷重及び地震荷重以外の機械的荷重
S s ：基準地震動 S s により定まる地震力

表 3－1（2）荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊	機器等の区分	荷重の組合せ	許容応力状態

［記号の説明］
D ：死荷重
$\mathrm{P}_{\mathrm{L}} \quad$ ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている圧力荷重
M_{L} ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている死荷重及び地震荷重以外の機械的荷重
$S \mathrm{~d}$＊：弾性設計用地震動 Sd d にり定まる地震力又は S クラス設備に適用される静的地震力のいずれか大きい方の地震力
P ：地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）又は運転状態Vにおける圧力荷重
M ：地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）又は運転状態Vで設備に作用している機械的荷重
S s ：基準地震動 S s により定まる地震力
P SAL ：重大事故等時の状態（運転状態 V）で長期的（長期（L））に作用する圧力荷重
$\mathrm{M}_{\mathrm{SAL}}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））に作用する機械的荷重
S d ：弾性設計用地震動 S d により定まる地震力
$P_{\text {SALL }}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））より更に長期的（長期（LL））に作用する圧力荷重
$M_{S A L L}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））より更に長期的（長期（LL））に作用する機械的荷重
注記＊：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。

O 2 （6）VI－2－3－3－2－1（1）R 2

表3－2 許容応力（炉心支持構造物）

許容応力状態	許容応力＊			
	一次一般膜応力	一次一般膜 + 一次曲げ応力	純せん断応力	支圧応力
$\mathrm{III}_{4} \mathrm{~S}$	1．5 $\cdot \mathrm{S}_{\mathrm{m}}$		$0.9 \cdot \mathrm{Sm}_{\mathrm{m}}$	$\begin{gathered} 1.5 \cdot \mathrm{~S}_{\mathrm{y}} \\ \left(2.25 \cdot \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$			
$\begin{gathered} \mathrm{V}_{A} \mathrm{~S} \\ \left(\mathrm{~V}_{A} \mathrm{~S} \text { として } \mathrm{IV}_{A} \mathrm{~S}\right. \text { の許容 } \\ \text { 応力を用いる。) } \end{gathered}$	ただし，A S S 及びHNAに ついては $2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$ と $2.4 \cdot \mathrm{~S}_{\mathrm{m}}$ の小さい方。		$1.2 \cdot \mathrm{~S}_{\mathrm{m}}$	$\begin{gathered} 2 \cdot \mathrm{~S}_{\mathrm{y}} \\ \left(3 \cdot \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

O 2 （6）VI－2－3－3－2－1（1）R 3

表 3－3 許容応力評価条件（設計基準対象施設）

評価部位	材料		温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (\mathrm{MPa}) \end{gathered}$
炉心支持構造物	$\begin{gathered} \text { オーステナイト系 } \\ \text { ステンレス鋼及び } \\ \text { 高ニッケル合金 } \end{gathered}$	SUS316	流体の最高温度				
		SUS316L	流体の最高温度				
		SUS316LTP	流体の最高温度				
		NCF600－P	流体の最高温度				
		NCF750 相当 （ASME SB－637 UNS N07750）	流体の最高温度				
		GXM1 相当 （ASME SA－182 F XM－19）	流体の最高温度				
		SCS19A	流体の最高温度				

表 4－1（1）外荷重

炉心シュラウド外荷重

表 4－1（2）外荷重

シュラウドサポート外荷重

記号	荷重名称		鉛直力			水平力	モーメント
			$\begin{gathered} \mathrm{V}_{1} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{2} \\ (\mathrm{kN}) \end{gathered}$	$\begin{aligned} & \mathrm{V}_{3}{ }^{* 1} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
L02	差圧＊${ }^{2}$						
L04	死荷重	$\begin{aligned} & \hline \mathrm{C} 19 * 3 \\ & \text { 除く運車 } \end{aligned}$					
		C19＊3					
		C02＊${ }^{\text {}}$					
L14	地震荷重S d＊＊						
L16	地震荷重S s						

表 4－1（3）外荷重

炉心シュラウド支持ロッド外荷重

記号	荷重名称	鉛直力	水平力	モーメント
		$\begin{gathered} \mathrm{V} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{~N}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{gathered}$
L02	差圧＊${ }^{1}$			
L04	死荷重			
L14	地震荷重S d＊＊			
L16	地震荷重 S S			

表 4－1（4）外荷重

上部格子板外荷重

記号	荷重名称	鉛直力＊1	水平力＊2
		V （N）	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$
L04	死荷重		
L14	地震荷重S d＊		
L16	地震荷重S S		

表 4－1（5）外荷重

炉心支持板外荷重

記号	荷重名称	鉛直力		水平力＊${ }^{3}$
		$\mathrm{V}_{1} * 1$ （N）	$\mathrm{V}_{2} * 2$ （ N ）	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$
L04	死荷重			
L14	地震荷重S d＊			
L16	地震荷重S s			

表 4－1（6）外荷重

燃料支持金具外荷重

記号	荷重名称	荷重作用点	鉛直力	水平力	モーメント
			V （N）	H （N）	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{gathered}$
L04	死荷重				
L14	地震荷重S d＊＊				
L16	地震荷重S S				

表 4－1（7）外荷重

制御棒案内管外荷重

表 4－2 荷重の組合せ

状態	荷重の組合せ	応力評価
許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$	$\mathrm{L} 02+\mathrm{L} 04+\mathrm{L} 14$	P_{m} $\mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{b}}$
許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$\mathrm{L} 02+\mathrm{L} 04+\mathrm{L} 16$	P_{m} $\mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{b}}$

添付1 溶接部の継手効率

炉心支持構造物の主な溶接部の継手効率は，設計•建設規格 CSS－3150に従い，付表－1のとおりに定められる。

付表－1

注記 $~: ~$ 検査の種類を示す記号は次のとおりである。
P T＋R T ：設計•建設規格
P P T ：設計•建設規格
PT ：設計•建設規格
CSS－3150に定めるAの検査
CSS－3150に定めるCの検査
CSS－3150に定めるEの検査
（2）強度評価編

目次

1．概要 1
2．一般事項 2
2.1 構造計画 2
2．2 評価方針 2
2.3 適用規格•基準等 2
2． 4 記号の説明 2
2.5 計算精度と数値の丸め方 3
3．計算条件 4
3.1 評価対象機器 4
3.2 形状及び寸法 4
3.3 荷重の組合せ及び運転状態 4
3.4 許容応力 4
3.5 許容応力評価条件 5
3.6 溶接部の継手効率 5
4．荷重条件 6
4． 1 運転条件 6
4.2 重大事故等時の条件 6
4.3 荷重の組合せ及び応力評価 6
5．応力評価の手順 7
5.1 計算に使用する解析コード 7
5.2 荷重条件の選定 7
5.3 応力の評価 7
5．3．1 主応力 7
5．3．2 応力強さ 7
5．3．3 一次応力強さ 7
5．4 特別な応力の評価 7
5．4．1 純せん断応力の評価 7
5．4．2 支圧応力の評価 8
5．4．3 座屈の評価 8
6．評価結果の添付 9
6．1 応力評価結果 9
7．引用文献 10
8．参照図書 10
添付1 溶接部の継手効率 15

図表目次

図 2－1 炉心支持構造物の強度評価フロー 2
表 2－1 表示する数値の丸め方 3
表 3－1 荷重の組合せ及び運転状態 11
表 3－2 許容応力（炉心支持構造物） 12
表 3－3 許容応力評価条件 13
表 4－1 荷重の組合せ 143

1．概要

本書は，炉心支持構造物の重大事故等時における強度評価に関する応力解析の方針を説明するものである。

炉心支持構造物（シュラウドサポート，上部格子板，炉心支持板，燃料支持金具及び制御棒案内管を除く）の応力評価は，平成 17 年 2 月 4 日付け東北電原第 145 号にて届出た工事計画の添付書類（参照図書（1））による（以下「既工認」という）。

注1：本書に記載していない特別な内容がある場合は，下記計算書（以下「強度計算書」という。）に示す。
（1）VI－3－別添 6－1 炉心シュラウドの強度計算書
（2）VI－3－別添 6－2 シュラウドサポートの強度計算書
（3）VI－3－別添 6－3 炉心シュラウド支持ロッドの強度計算書
（4）VI－3－別添 6－4 上部格子板の強度計算書
（5）VI－3－別添 6－5 炉心支持板の強度計算書
（6）VI－3－別添 6－6 燃料支持金具の強度計算書
（7）VI－3－別添 6－7 制御棒案内管の強度計算書注 2 ：図表は，原則として巻末に示す。

2．一般事項

2.1 構造計画

炉心支持構造物の構造計画は，本書（1）耐震評価編の 2.1 節に記載のとおりであ る。

2.2 評価方針

炉心支持構造物の構造強度評価は，「3．計算条件」にて設定した荷重及び荷重の組合せ並びに許容応力に基づき，「2．1 構造計画」にて示す炉心支持構造物の各機器 の強度計算書にて設定する箇所において，「4．荷重条件」にて設定した荷重に基づ く応力が許容応力内に収まることを，「5．応力評価の手順」にて示す方法にて確認 することで実施する。確認結果を強度計算書に示す。

炉心支持構造物の強度評価フローを図2－1に示す。

図 2－1 炉心支持構造物の強度評価フロー

2.3 適用規格•基準等

適用する規格•基準等を以下に示す。
（1）発電用原子力設備に関する構造等の技術基準（昭和55年10月30日 通商産業省告示第 5 0 1 号（以下「昭和 55 年告示」という。）
（2）発電用原子力設備に関する構造等の技術基準（平成6年7月21日 通商産業省告示第 501 号（以下「平成6年告示」という。）

注：本書及び強度計算書において，昭和55年告示の条項は「昭和 55 年告示第○条第○項第○号○○」とし，平成6年告示の条項は「平成6年告示第○条第○項第○号○○」 として示す。

2.4 記号の説明

本書及び強度計算書において使用する記号は，本書（1）耐震評価編の 2.4 節に記載 のとおりである。
2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-1$ に示す通りである。

表 2－1 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
応力強さ	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊	MPa	小数点以下第 1 位	切捨て	整数位

注記 $*$ ：昭和 55 年告示別表に記載された温度の中間における許容応力は，比例法により補間した値の小数点以下第 2 位を切捨て，小数点以下第 1 位までの値として算出す る。得られた値をSI 単位に換算した値の小数点以下第 1 位を切り捨て，整数位まで の値とする。平成 6 年告示別表に記載された温度の中間における許容応力は，比例法により補間した値の小数点以下第 1 位を切捨て，整数位までの値とする。

3．計算条件
3.1 評価対象機器

応力評価を行う機器は，次のとおりである。（本書（1）耐震評価編の表 2－1 及び図 3－ 1 参照）

機器名称		評価対象
		$\begin{gathered} \text { 強度計算書 } \\ (\text { 運転状態 } \mathrm{V} \text { に対する評価) } \end{gathered}$
（1）	炉心シュラウド	\bigcirc
（2）	シュラウドサポート	\bigcirc
（3）	炉心シュラウド支持ロッド	\bigcirc
（4）	上部格子板	\bigcirc
（5）	炉心支持板	\bigcirc
（6）	燃料支持金具	\bigcirc
（7）	制御棒案内管	\bigcirc

注：「○」は評価対象を示す。
3.2 形状及び寸法

各部の形状及び寸法は，強度計算書に示す。
3.3 荷重の組合せ及び運転状態

炉心支持構造物の荷重の組合せ及び運転状態を表3－1 に示す。また，各運転状態で考慮する荷重は，4章に示すとおりである。
3.4 許容応力

許容応力は，表3－2に示す。この表に記載のない圧縮荷重を受ける場合に対する許容応力は，強度計算書に記載するものとする。

3.5 許容応力評価条件

（1）設計応力強さ S_{m} ，設計降伏点 S_{y} 及び設計引張強さ S_{u} は，それぞれ炉心シュ ラウド，シュラウドサポート及び炉心シュラウド支持ロッドは平成 6 年告示別表第2，第9，第10に定められたものを使用し，炉心シュラウド，シュラウドサポ ート及び炉心シュラウド支持ロッドを除く炉心支持構造物は昭和 55 年告示別表第2，第 9，第10に定められたものを使用する。
（2）運転状態 Vの一次応力の評価には，運転状態 Vにおける評価温度 \square こ対す る許容応力を用いる。
（3）炉心支持構造物の許容応力評価条件を表3－3に示す。 なお，各機器で使用される材料は，強度計算書に示す。
3.6 溶接部の継手効率
（1）溶接部の継手効率は，継手の種類と分類及び継手に適用する検査の種類によ り，炉心シュラウド及びシュラウドサポートは平成 6 年告示第 99 条第 4 項に，炉心シュラウド，シュラウドサポート及び炉心シュラウド支持ロッドを除く炉心支持構造物は昭和55年告示第99条第4項に従って定める。溶接部の継手効率を添付 1 に示す。なお，溶接部の継手効率が 1.00 未満の場合は，継手効率を強度計算書に示す。
（2）溶接部の許容応力は，材料の許容応力に継手効率を乗じたものとし，強度計算書に示す。

4．荷重条件
炉心支持構造物は，以下の荷重条件に耐えることを確認する。
各機器の応力評価には，本章に示す荷重を考慮する。

4． 1 運転条件
運転条件は，本書（1）耐震評価編の 4.2 節に定めるとおりである。

4．2 重大事故等時の条件
重大事故等時の条件は，本書（1）耐震評価編の 4.3 節に定めるとおりである。

4． 3 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価項目の対応を表4－1に示す。表4－1 及び強度計算書にお いて，荷重の種類と記号は，本書（1）耐震評価編の4．4節に定めるとおりである。 なお，荷重の組合せについては，機器ごとに適切に組み合わせる。

5．応力評価の手順
応力評価の手順について述べる。
5.1 計算に使用する解析コード

解析コードは「A－SAFIA」及び「STAX」を用いる。なお，評価に用いる解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
5.2 荷重条件の選定

応力解析においては， 4 章に示した荷重条件のうちから，その部分に作用する荷重 を選定して計算を行う。
5.3 応力の評価

5．3．1 主応力
主応力の計算は，本書（1）耐震評価編の5．3．1項に定めるとおりである。

5．3．2 応力強さ
応力強さは，本書（1）耐震評価編の5．3．2項に定めるとおりである。

5．3．3 一次応力強さ
運転状態Vにおいて生じる一次一般膜応力及び一次一般膜 + 一次曲げ応力の応力強さが，3．4節に示す許容応力を満足することを示す。

5． 4 特別な応力の評価
5．4．1 純せん断応力の評価
純せん断荷重を受ける部分は，平成 6 年告示第 96 条第 1 項第 1 号へにより評価する。解析箇所を以下に示す。許容応力は表3－2に示し，評価方法は強度計算書に示す。
（1）炉心シュラウド支持ロッドのトグルピン

5．4．2 支圧応力の評価

支圧荷重を受ける部分は，平成 6 年告示第 96 条第 1 項第 1 号卜により評価す る。解析箇所を以下に示す。許容応力は表3－2に示し，評価方法は強度計算書に示す。
（1）炉心シュラウドの上部格子板及び炉心支持板支持面
（2）炉心シュラウドの上部サポート支持面
（3）シュラウドサポートプレートのトグルバー支持面

5．4．3 座屈の評価

軸圧縮荷重又は外圧を受ける部分は，平成 6 年告示第 88 条第 3 項第 1 号又は昭和 55 年告示第 96 条第 1 項第 1 号チ，昭和 55 年告示第 96 条第 2 項第 1 号によ り評価する。解析箇所を以下に示す。評価方法及び許容応力は，強度計算書に示 す。
（1）シュラウドサポートレグ
（2）制御棒案内管

6．評価結果の添付
応力評価点番号は，本書（1）耐震評価編の6章に定めるとおりである。

6． 1 応力評価結果
（1）次の応力評価結果は，全応力評価点（面）について添付する。
a．一次一般膜応力強さの評価のまとめ
b．一次一般膜 + 一次曲げ応力強さの評価のまとめ
（2）次の特別な評価は，対象となるすべての部位について評価し，結果を記載する。 a．純せん断応力
b．支圧応力
c．座屈

7．引用文献
引用文献は，本書（1）耐震評価編の7章に定めるとおりである。

8．参照図書
（1）女川原子力発電所第 2 号機工事計画届出書（平成 17 年 2 月 4 日東北電原第 145 号）添付書類
a．IV－2－1－1 炉心シュラウド，シュラウドサポート及び炉心シュラウド支持ロッド の応力解析の方針
b．IV－2－1－2 炉心シュラウドの応力計算書
c．IV－2－1－4 炉心シュラウド支持ロッドの応力計算書

O 2 （6）VI－2－3－3－2－1（2）R 2

表 3－1 荷重の組合せ及び運転状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊	機器等の区分	荷重の組合せ	運転状態
原子炉 本体	炉心支持構造物	$\begin{aligned} & \hline \text { 炉心シュラウド } \\ & \text { シュラウドサポート } \\ & \text { 炉心シュラウド支持ロッド } \\ & \text { 上部格子板 } \\ & \text { 炉心支持板 } \\ & \text { 燃料支持金具 } \\ & \text { 制御棒案内管 } \\ & \hline \end{aligned}$	常設耐震／防止 常設／緩和常設／防止 （DB 拡張）	－	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{A}$	V

［記号の説明］
D ：死荷重
P ：運転状態Vにおける圧力荷重
M ：運転状態Vで設備に作用している機械的荷重
A ：事故時荷重
注記＊：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB 拡張）」は常設重大事故防止設備（設計基準拡張）を示す。

O 2 （6）VI－2－3－3－2－1（2）R 1

表 3－2 許容応力（炉心支持構造物）

運転状態	許容応力＊			
	一次一般膜応力	一次一般膜＋一次曲げ応力	純せん断応力	支圧応力
V （VとしてIVの許容応力 を用いる。）	$\begin{gathered} 2 / 3 \cdot \mathrm{~S}_{\mathrm{u}} \\ \text { ただし, } \mathrm{ASS及びHNAに} \\ \text { ついては } 2 / 3 \cdot \mathrm{~S}_{\mathrm{u}} と \\ 2.4 \cdot \mathrm{~S}_{\mathrm{m}} \text { の小さい方。 } \end{gathered}$	左欄の 1.5 倍の値	$1.2 \cdot \mathrm{Sm}_{\mathrm{m}}$	$\begin{gathered} 2 \cdot \mathrm{~S}_{\mathrm{y}} \\ \left(3 \cdot \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$

注記＊：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略する。

表 3－3（1）許容応力評価条件（重大事故等対処設備（炉心シュラウド，シュラウドサポート及び炉心シュラウド支持ロッド））

評価部位	材料		温度条件 （ $\left.{ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
炉心支持構造物	オーステナイト系 ステンレス鋼及び 高ニッケル合金	SUS316L	評価温度				
		NCF600－P	評価温度				
		NCF750 相当 （ASME SB－637 UNS N07750）	評価温度				
		GXM1 相当 （ASME SA－182 F XM－19）	評価温度				

表 3－3（2）許容応力評価条件（重大事故等対処設備（炉心シュラウド，シュラウドサポート及び炉心シュラウド支持ロッドを除く
炉心支持構造物））

評価部位	材料		温度条件 $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y}(R T) \\ (M P a) \end{gathered}$
炉心支持構造物	オーステナイト系 ステンレス鋼及び 高ニッケル合金	SUS316	評価温度				
		SUS316L	評価温度				
		SUS316LTP	評価温度				
		SCS19A	評価温度				

表 4－1 荷重の組合せ

状態	荷重の組合せ	応力評価
運転状態 V	L02＋L04	P_{m} $\mathrm{P}_{\mathrm{m}}+\mathrm{P}_{\mathrm{b}}$

添付1溶接部の継手効率

炉心支持構造物の主な溶接部の継手効率は，昭和55年告示第99条第4項及び平成6年告示第 99 条第 4 項に従い，付表－1 のとおりに定められる。

注記＊：検査の種類を示す記号は次のとおりである。
PT＋RT：昭和55年告示第99条第4項及び平成6年告示第99条第4項に定めるイの検査

PPT：昭和55年告示第99条第4項及び平成6年告示第99条第4項に定めるハの検査
P T ：昭和 55 年告示第 99 条第 4 項及び平成 6 年告示第 99 条第 4 項に定めるホの検査
VI-2-3-3-2-2 炉心シュラウドの耐震性についての計算書

目次

1．一般事項 1
1．1 記号の説明 1
1．2 形状•寸法•材料 1
1．3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 5
2.1 設計条件 5
2.2 運転条件 5
2．3 材料 5
2.4 荷重の組合せ及び許容応力状態 5
2.5 荷重の組合せ及び応力評価 5
2.6 許容応力 5
2.7 応力の記号と方向 5
3．応力計算 6
3.1 応力評価点 6
3.2 差圧による応力 6
3．2．1 荷重条件 6
3．2．2 計算方法 6
3.3 外荷重による応力 7
3．3．1 荷重条件 7
3．3．2 計算方法 7
3．4 応力の評価 7
4．応力強さの評価 8
4.1 一次一般膜応力強さの評価 8
4.2 一次一般膜＋一次曲げ応力強さの評価 8
5．特別な応力の評価 9
5.1 支圧応力の評価 9
5．1．1 支圧面積 9
5．1．2 支圧荷重 9
5．1．3 平均支圧応力 9
5．1．4 支圧応力の評価 9
図 1－1 形状•寸法•材料•応力評価点 2
図 5－1 支圧荷重の支持面 10
表 1－1 計算結果の概要 3
表 3－1 断面性状 12
表 4－1 一次一般膜応力強さの評価のまとめ 13
表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ 14
表 5－1 支圧応力の評価 15

1．一般事項
本計算書は，炉心シュラウドの応力計算について示すものである。
炉心シュラウドは，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

炉心シュラウドは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1． 1 記号の説明
記号の説明を「応力解析の方針」（1）耐震評価編の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^{2}
D_{i}	内径	mm
D_{o}	外径	mm
I	断面二次モーメント	mm^{4}
σ c	平均支圧応力	MPa

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲

解析範囲を図1－1に示す。
なお，下部胴とシュラウドサポートとの接合部の応力解析及び評価は，添付書類「VI $-2-3-3-2-3$ シュラウドサポートの耐震性についての計算書」に記載する。

1． 4 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－3－2－2 R 2

表1－1（1）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
上部胴 SUS316L	III ${ }_{\text {A }} \mathrm{S}$	22	142	P01＇－P02＇	22	214	P01＇－P02＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	26	228	P01＇－P02＇	26	343	P01＇－P02＇
	IIİ ${ }_{A} \mathrm{~S}$	19	92＊	P03＇－P04＇	19	139＊	P03＇－P04＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	28	148＊	P03＇－P04＇	28	223＊	P03＇－P04＇
$\begin{gathered} \text { 中間胴 } \\ \text { SUS316L } \end{gathered}$	IIIA ${ }_{\text {A }}$	22	92＊	P05＇－P06＇	22	139＊	P05＇－P06＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	31	148＊	P05＇－P06＇	31	223＊	P05＇－P06，
	IIIAS	46	142	P07＇－P08＇	46	214	P07＇－P08＇
	IV ${ }_{\text {A }} \mathrm{S}$	71	228	P07＇－P08＇	71	343	P07＇－P08＇
	IIIA ${ }_{A} \mathrm{~S}$	46	92＊	P09＇－P10＇	46	139＊	P09＇－P10＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	71	148＊	P09＇－P10＇	71	223＊	P09＇－P10＇
$\begin{gathered} \text { 下部胴 } \\ \text { SUS316L } \end{gathered}$	IIIA ${ }_{\text {A }} \mathrm{S}$	56	92＊	P11＇－P12＇	56	139＊	P11＇－P12＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	82	148＊	P11＇－P12＇	82	223＊	P11＇－P12＇

注記＊：継手効率 更乗じた値を示す。

表 1－1（2）計算結果の概要
（単位： MPa ）

部分及び材料	許容応力状態	支圧応力	
		平均支圧応力	許容応力
上部格子板支持面 SUS316L	III ${ }_{A} \mathrm{~S}$	4	157
	$I V_{A} \mathrm{~S}$	5	210
炉心支持板支持面 SUS316L	III ${ }_{A} \mathrm{~S}$	1	157
	IV ${ }_{\text {A }} \mathrm{S}$	1	210
上部サポート支持面 SUS316L	III ${ }_{A} \mathrm{~S}$	95	157
	IV ${ }_{\text {A }} \mathrm{S}$	160	210

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の 3.3 節に示 す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。
2.6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の3．4節に示す。
溶接部の継手効率を「応力解析の方針」（1）耐震評価編の 3.6 節に示す。
2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。

σ_{t} ：周方向応力
σ_{e} ：軸方向応力
σ_{r} ：半径方向応力
τ_{t} ，せん断応力

$\tau_{\ell \mathrm{r}}$ ：せん断応力
H：水平力
M ：モーメント
V ：鉛直力

3．応力計算
3.1 応力評価点

応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。
3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）b ，に定めるとおりである。

3．2．2 計算方法

（1）一次一般膜応力
差圧 P による一次一般膜応力は，次式で求める。

$$
\sigma_{\mathrm{t}}=\frac{1}{\mathrm{Y}-1} \cdot \mathrm{P}
$$

$$
\sigma_{e}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

$$
\sigma_{\mathrm{r}}=-\frac{1}{\mathrm{Y}+1} \cdot \mathrm{P}
$$

ここで， $\mathrm{Y}=\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}$
（2）一次一般膜＋一次曲げ応力
差圧による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

3.3 外荷重による応力

3．3．1 荷重条件（L04，L14 及び L16）
外荷重を「応力解析の方針」（1）耐震評価編の表 4－1（1）に示す。

3．3．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。

$$
\begin{aligned}
& \sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}}+\frac{\mathrm{M}}{\mathrm{I}} \cdot \frac{\mathrm{D} o}{2} \\
& \tau_{\mathrm{t} \ell}=\frac{\mathrm{H}}{\mathrm{~A}}
\end{aligned}
$$

（2）一次一般膜 + 一次曲げ応力
外荷重による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。
3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとお りである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1 に示す。
表 4－1より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．4節及び3．6節に示す許容応力を満足する。
4.2 一次一般膜＋一次曲げ応力強さの評価各許容応力状態における評価を表4－2 に示す。
表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.4 節及び 3.6 節に示す許容応力を満足する。

5．特別な応力の評価
5.1 支圧応力の評価

炉心シュラウドの上部格子板支持面及び炉心支持板支持面には，それぞれの鉛直力 により支圧応力が生じ，炉心シュラウドの上部サポート支持面には炉心シュラウド支持ロッドの軸力による支圧応力が発生するため，支圧応力の評価を行う。

5．1．1 支圧面積（図 5－1 参照）
（1）上部格子板支持面
上部格子板支持面の支圧荷重を受ける面積は，以下のとおりである。

（2）炉心支持板支持面炉心支持板支持面の支圧荷重を受ける面積は，以下のとおりである。

（3）上部サポート支持面
上部サポート支持面の支圧荷重を受ける面積は，以下のとおりである。

5．1．2 支圧荷重
各許容応力状態における上部格子板支持面，炉心支持板支持面及び上部サポー ト支持面に作用する鉛直力を「応力解析の方針」（1）耐震評価編の表 4－1（1）（荷重作用点G，H及びJ）に示す。

5．1．3 平均支圧応力
平均支圧応力 $\sigma \mathrm{c}$ は，次式で求める。

$$
\sigma_{\mathrm{c}}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

5．1．4 支圧応力の評価
各許容応力状態における評価を表5－1に示す。
表 5－1 より，各許容応力状態の平均支圧応力は，「応力解析の方針」（1）耐震評価編の3．4節に示す許容応力を満足する。

a．上部格子板

b．炉心支持板
図 5－1（1）支圧荷重の支持面（単位：mm）

図 5－1（2）支圧荷重の支持面（単位：mm）

表 3－1 断面性状

応力評価点	Do (mm)	D_{i} (mm)	A $\left(\mathrm{mm}^{2}\right)$	I $\left(\mathrm{mm}^{4}\right)$
P01，P02				
P03，P04				
P05，P06				
P07，P08				
P09，P10				
P11，P12				

表4－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	17	142	22	228
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	22	142	26	228
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	16	92＊	24	148＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	19	92＊	28	148＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	17	92＊	25	148＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	22	92＊	31	148＊
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	40	142	65	228
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	46	142	71	228
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	40	92＊	65	148＊
$\begin{aligned} & \text { P09' } \\ & \text { P10 } \end{aligned}$	46	92＊	71	148＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	44	92＊	68	148＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	56	92＊	82	148＊

注記 $*: ~$ 継手効率
を乗じた値を示す。

表4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	17	214	22	343
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	22	214	26	343
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	16	139＊	24	$223 *$
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	19	139＊	28	223 ＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	17	139＊	25	223＊
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	22	139＊	31	223 ＊
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	40	214	65	343
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	46	214	71	343
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	40	139＊	65	223＊
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	46	139＊	71	223 ＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	44	139＊	68	$223 *$
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	56	139＊	82	223 ＊

注記＊：継手効率 \square を乗じた値を示す。

表5－1（1）支圧応力の評価

	（単位：MPa）		
応力評価面	許容応力状態	平均支圧応力	許容応力
上部格子板 支持面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	4	157
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	5	210

表 5－1（2）支圧応力の評価

応力評価面	許容応力状態	平均支圧応力	許容応力
炉心支持板 支持面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	1	157
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	1	210

表 5－1（3）支圧応力の評価

応力評価面	許容応力状態	平均支圧応力	許容応力
上部サポート 支持面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	95	157
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	160	210

> VI-2-3-3-2-3 シュラウドサポートの耐震性についての計算書
1．一般事項 1
1.1 記号の説明 1
1．2 形状•寸法•材料 2
1.3 解析範囲 2
1．4 計算結果の概要 2
2．計算条件 6
2.1 設計条件 6
2.2 運転条件 6
2． 3 材料 6
2.4 荷重の組合せ及び許容応力状態 6
2.5 荷重の組合せ及び応力評価 6
2.6 許容応力 6
2.7 応力の記号と方向 6
3．応力計算 7
3.1 応力評価点 7
3.2 差圧による応力 7
3.3 外荷重による応力 7
3．3．1 シュラウドサポート全体に作用する外荷重 7
3．3．2 支持ロッドから作用する荷重 7
3.4 応力の評価 9
4．応力強さの評価 9
4.1 一次一般膜応力強さの評価 9
4.2 一次一般膜＋一次曲げ応力強さの評価 9
5．特別な応力の評価 10
5.1 軸圧縮荷重による座屈に対する評価 10
5.2 支圧応力の評価 13

図表目次

図 1－1 形状•寸法•材料•応力評価点 3
図 3－1 応力計算のモデル 14
図 3－2 支持ロッドから作用する荷重による応力の計算モデル 15
図 5－1 支圧荷重の支持面 16
表 1－1 計算結果の概要 4
表 4－1 一次一般膜応力強さの評価のまとめ 17
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 18
表 5－1 座屈に対する評価 19
表 5－2 支圧応力の評価 19

1．一般事項
本計算書は，シュラウドサポートの応力計算について示すものである。
シュラウドサポートは，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

シュラウドサポートは，設計基準対象施設においてはSクラス施設に，重大事故等対処設備に おいては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

注：以下，シュラウドサポートレグ，シュラウドサポートシリンダ，シュラウドサポ ートプレート，炉心シュラウド下部胴及び炉心シュラウド支持ロッドを，それぞ れ「レグ」，「シリンダ」，「プレート」，「下部胴」及び「支持ロッド」とい う。
1.1 記号の説明

記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	レグ1本当たりの断面積	mm^{2}
B	レグの幅	mm
C	部材両端の拘束条件に対する座屈長さの係数	－
F	設計•建設規格 SSB－3121．1（1）に定める値	MPa
F＊	設計•建設規格 SSB－3121．3に定める値	MPa
f c	許容応力 設計•建設規格 SSB－3121．1（3）に定める値	MPa
I	座屈軸についての断面二次モーメント	mm^{4}
W	支持ロッドから作用する荷重	N
$\mathrm{c} \sim \mathrm{e}$	支圧面積の計算に用いる寸法	mm
i	座屈軸についての断面二次半径	mm
l	レグの長さ	mm
ℓ_{k}	座屈長さ	mm
T	レグの板厚	mm
Λ	限界細長比	－
λ	有効細長比	－
v	設計•建設規格 SSB－3121．1（3）a．に定める v	－
A_{C}	支圧面積	mm^{2}
σ c	平均支圧応力	MPa

1.2 形状•寸法•材料

本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲
解析範囲を図1－1に示す。
1.4 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目 し，各部分ごとに数点の評価点を設けて評価を行い，応力が厳しくなる評価点を記載する。

図1－1 形状•寸法•材料•応力評価点（単位：mm）

$$
\mathrm{O} 2 \text { (6) } \mathrm{VI}-2-3-3-2-3 \quad \mathrm{R} 2
$$

表 1－1（1）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力強さ	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面
レグ	$\mathrm{III}_{4} \mathrm{~S}$	167	221＊	P01－P02	167	332＊	P01－P02
NCF600－P	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	251	300＊	P01－P02	251	450＊	P01－P02
シリンダ	$\mathrm{III}_{4} \mathrm{~S}$	75	246	P07－P08	75	369	P07－P08
NCF600－P	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	115	334	P07－P08	115	501	P07－P08
プレート	$\mathrm{III}_{A} \mathrm{~S}$	76	246	P15＇－P16＇	127	332＊	P17－P18
NCF600－P	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	130	334	P15＇－P16＇	210	450＊	P17－P18
下部胴	$\mathrm{III}_{\text {A }} \mathrm{S}$	101	128＊	P19－P20	101	192＊	P19－P20
SUS316L	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	160	205＊	P19－P20	160	308＊	P19－P20

注記＊：継手効率 をを乗じた値を示す。

$$
\text { O } 2 \text { (6) VI-2-3-3-2-3 R } 2
$$

表1－1（2）計算結果の概要

部分及び材料	許容応力状態	座屈に対する評価	
		圧縮応力	許容応力
レグ	$\mathrm{III}_{4} \mathrm{~S}$	118	198
NCF600－P	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	189	209

表1－1（3）計算結果の概要

（単位：MPa）			
部分及び材料	許容応力状態	支圧応力の評価	
		平均支圧応力	許容応力
プレートのトグル支持面 NCF600－P	$\mathrm{II}_{\mathrm{A}} \mathrm{S}$	134	291
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	227	388

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．3節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。
2.6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の3．4節に示す。
溶接部の継手効率を「応力解析の方針」（1）耐震評価編の3．6節に示す。
2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。
σ_{t} ：周方向応力
σ_{ℓ} ：軸方向応力
σ_{r} ：半径方向応力
$\tau_{\text {te }}$ ：せん断応力
$\tau_{\ell r}$ ：せん断応力

3．応力計算

3.1 応力評価点

応力評価点の位置を図1－1に示す。

3．2 差圧による応力
（1）荷重条件（L02）
各運転状態による差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）a．に定めるとおりである。
（2）計算方法
差圧による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「STAX」 により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図3－1に示す。

3.3 外荷重による応力

3．3．1 シュラウドサポート全体に作用する外荷重
（1）荷重条件（L04，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の表4－1（2）に示す。
（2）計算方法
軸対称荷重（鉛直力 $V_{1}, ~ V_{2}$ 及び V_{3} ）による応力の計算は，二次元軸対称の有限要素 でモデル化し，計算機コード「STAX」により行う。非軸対称荷重（水平力H及びモーメ ントM）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「ASHSD」により行う。

応力計算のモデル及び仮定した境界条件（拘束条件）を図3－1に示す。
また，プレートより上の部位について，水平力によるせん断応力の計算は，計算機コード「PIPE」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要につ いては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．3．2 支持ロッドから作用する荷重

（1）荷重条件（L02，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の表4－1（2）に示す。
（2）計算方法
支持ロッドから作用する荷重による応力の計算は，以下の式で算出する。
支持ロッドから作用する荷重は，プレートを垂直上方に引っ張る荷重であるが，荷重が作用する位置の周辺は，図 3－2 に示すように原子炉圧力容器やシリンダ等で拘束されており，支持ロッドを中心とした円板を仮定することで支持ロッド近傍に発生する応力と拘束され た位置での応力を求める。

具体的には，外周固定，内周に輪形荷重が作用する円板モデルを仮定し，その内部に発生 する応力を計算する。
計算式は，「応力解析の方針」（1）耐震評価編の引用文献（1）の表 $5 \cdot 1$ の No． 10 式による。 この計算式において，支持ロッドの穴の周辺部については，円板モデルの内周に発生する応力を適用し，原子炉圧力容器で拘束されている部分については，円板モデルの外周に発生す る応力を適用する。
応力を求める計算式を以下に示す。なお，計算式中の記号は，図 3－2 に示すとおりである。

支持ロッドの穴の周辺部

$$
\begin{aligned}
& \sigma_{\mathrm{t}}= \pm \frac{3 \cdot \mathrm{~W}}{4 \cdot \pi \cdot \mathrm{t}^{2}} \cdot\left\{2 \cdot(1+v) \cdot\left(\mathrm{X}+\ln \frac{\mathrm{a}}{\mathrm{~b}}\right)-(1-v) \cdot\left(1-\mathrm{Y} \cdot \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)\right\} \\
& \sigma_{\ell}= \pm \frac{3 \cdot \mathrm{~W}}{4 \cdot \pi \cdot \mathrm{t}^{2}} \cdot\left\{2 \cdot(1+v) \cdot\left(\mathrm{X}+\ln \frac{\mathrm{a}}{\mathrm{~b}}\right)+(1-v) \cdot\left(1-\mathrm{Y} \cdot \frac{\mathrm{a}^{2}}{\mathrm{~b}^{2}}\right)\right\}
\end{aligned}
$$

原子炉圧力容器で拘束されている部分

$$
\begin{aligned}
& \sigma_{\mathrm{t}}= \pm \frac{3 \cdot \mathrm{~W}}{4 \cdot \pi \cdot \mathrm{t}^{2}} \cdot\{2 \cdot(1+v) \cdot \mathrm{X}+(1-v) \cdot(1-\mathrm{Y})\} \\
& \sigma_{\ell}= \pm \frac{3 \cdot \mathrm{~W}}{4 \cdot \pi \cdot \mathrm{t}^{2}} \cdot\{2 \cdot(1+v) \cdot \mathrm{X}-(1-v) \cdot(1-\mathrm{Y})\}
\end{aligned}
$$

応力式の複号は，上がプレート上面，下がプレート下面を表す。
ここで，

$$
\begin{aligned}
\mathrm{X}= & -\frac{1}{2} \cdot \frac{\mathrm{a}^{2}}{(1-v) \cdot \mathrm{a}^{2}+(1+v) \cdot \mathrm{b}^{2}} \\
& \cdot\left\{2 \cdot(1+v) \cdot \frac{\mathrm{b}^{2}}{\mathrm{a}^{2}} \cdot \ln \frac{\mathrm{a}}{\mathrm{~b}}+(1-v) \cdot\left(1-\frac{\mathrm{b}^{2}}{\mathrm{a}^{2}}\right)\right\}
\end{aligned}
$$

$$
\mathrm{Y}=-\frac{2 \cdot \mathrm{~b}^{2}}{(1-v) \cdot \mathrm{a}^{2}+(1+v) \cdot \mathrm{b}^{2}} \cdot\left\{(1+v) \cdot \ln \frac{\mathrm{a}}{\mathrm{~b}}-1\right\}
$$

v ：ポアソン比 $(=\square)$
また，せん断応力は，次式で求める。
支持ロッドの穴の周辺部

$$
\tau_{\mathrm{rt}}=\frac{\mathrm{W}}{2 \cdot \pi \cdot \mathrm{~b} \cdot \mathrm{t}}
$$

原子炉圧力容器で拘束されている部分

$$
\tau_{\ell \mathrm{r}}=\frac{\mathrm{W}}{2 \cdot \pi \cdot \mathrm{a} \cdot \mathrm{t}}
$$

上記の方法で求めた応力を一次応力として用いる。

3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりであ る。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表4－1より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編 の3．4節及び3．6節に示す許容応力を満足する。
4.2 一次一般膜十一次曲げ応力強さの評価

各許容応力状態における評価を表4－2に示す。
表4－2より，各許容応力状態の一次一般膜 + 一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．4節及び3．6節に示す許容応力を満足する。

5．特別な応力の評価
5.1 軸圧縮荷重による座屈に対する評価

レグには，シュラウドサポートに作用する鉛直力及びモーメントにより，圧縮応力が生じる。
したがって，これらの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
a．座屈長さ ℓ_{k}

$$
\begin{array}{r}
\ell_{\mathrm{k}}=\mathrm{C} \cdot \ell=0.7 \times \square \mathrm{mm} \\
\text { ここで, } \quad \mathrm{C}=0.7 \\
\quad \ell: \text { レグの長さ }=\square \mathrm{mm}
\end{array}
$$

b．座屈軸についての断面二次半径 i
$\mathrm{i}=\sqrt{\frac{\mathrm{I}}{\mathrm{A}}}=\sqrt{\square \mathrm{mm}}$
ここで，I ：座屈軸についての断面二次モーメント
$=\frac{1}{12} \cdot \mathrm{~T}^{3} \cdot \mathrm{~B}=\square \mathrm{mm}^{4}$
$\mathrm{T}:$ レグの板厚 $=\square \mathrm{mm}$
$\mathrm{B}:$ レグの幅 $=\square \mathrm{mm}$
A：レグ 1 本当たりの断面積
$=\mathrm{T} \cdot \mathrm{B}=\square \mathrm{mm}^{2}$
c．有効細長比 λ

（2）荷重
シュラウドサポートに作用する鉛直力及びモーメントを「応力解析の方針」（1）耐震評価編 の表4－1（2）に示す。
（3）圧縮応力
各許容応力状態においてレグに発生する圧縮応力を表5－1に示す。
レグに発生する圧縮応力は，応力評価面P03’－P04’ での一次一般膜応力（ σ e）を示す。
（4）許容応力
各許容応力状態における許容応力の計算は，設計•建設規格 SSB－3121を準用して計算す る。
a．許容応力状態 $I I{ }_{A} S$
許容応力状態 $I_{A} S$ における許容応力度 F は，以下の 3 つの値のらち小さい方を用 いる。
$1.35 \cdot \mathrm{~S}_{\mathrm{y}}=262 \mathrm{MPa}$
$0.7 \cdot \mathrm{~S}_{\mathrm{u}}=350 \mathrm{MPa}$

${ }^{\circ} \mathrm{C}$ における値）
$\mathrm{S}_{\mathrm{y}}=245 \mathrm{MPa}$ \square ${ }^{\circ} \mathrm{C}$ における値）
－
における値）
したがって，許容応力度 $\mathrm{F}=245 \mathrm{MPa}$ とする。
許容応力状態III ${ }_{A}$ Sにおける許容応力 f c は，次のように得られる。

$$
\text { 限界細長比: } \Lambda=\sqrt{\frac{\pi^{2} \cdot \mathrm{E}}{0.6 \cdot \mathrm{~F}}}=\sqrt{\frac{\pi^{2} \times \square}{0.6 \times 245}}=\square
$$

ここで，E：縦弹性係数＝$\square \mathrm{MPa}$（ $\square{ }^{\circ} \mathrm{C}$ における値）
ゆえに，$\lambda<\Lambda$ なので f 。は，

$$
\mathrm{f}_{\mathrm{c}}=1.5 \cdot\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{\mathrm{F}}{v}
$$

$$
=1.5 \times\left\{1-0.4 \times(\square)^{2}\right\} \times \frac{245}{\square}=198 \mathrm{MPa}
$$

ここで，

$$
v=1.5+\frac{2}{3} \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}=1.5+\frac{2}{3} \times(\square)^{2}=\square
$$

b．許容応力状態 $\mathrm{IV}_{A} S$
許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ における許容応力度 F ＊は，以下の 3 つの値のらち小さい方を用 いる。
$1.35 \cdot \mathrm{~S}_{\mathrm{y}}=262 \mathrm{MPa}$

$0.7 \cdot \mathrm{~S}_{\mathrm{u}}=350 \mathrm{MPa}$ ${ }^{\circ} \mathrm{C}$ における値）
$1.2 \cdot \mathrm{~S}_{\mathrm{y}}=294 \mathrm{MPa}$ における値）

したがって，許容応力度 $\mathrm{F}^{*}=262 \mathrm{MPa}$ とする。
許容応力状態 $\mathrm{IV}_{\mathrm{A}} S$ における許容応力 f c は，次のように得られる。
限界細長比：$\Lambda=\sqrt{\frac{\pi^{2} \cdot \mathrm{E}}{0.6 \cdot \mathrm{~F}^{*}}}=\sqrt{\frac{\pi^{2} \times \square}{0.6 \times 262}}=\square$
ここで，E：縦弾性係数＝$\quad \mathrm{MPa} \quad \square{ }^{\circ} \mathrm{C}$ における値）
ゆえに，$\lambda<\Lambda$ なので f 。は，

$$
\begin{aligned}
\mathrm{f}_{\mathrm{c}} & =1.5 \cdot\left\{1-0.4 \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}\right\} \cdot \frac{\mathrm{F}^{*}}{v} \\
& =1.5 \times\left\{1-0.4 \times(\square)^{2}\right\} \times 262=209 \mathrm{MPa}
\end{aligned}
$$

ここで，

$$
v=1.5+\frac{2}{3} \cdot\left(\frac{\lambda}{\Lambda}\right)^{2}=1.5+\frac{2}{3} \times(\square)^{2}=\square
$$

（5）軸圧縮荷重による座屈に対する評価
各許容応力状態における軸圧縮荷重による座屈に対する評価を表5－1に示す。
表5－1より，各許容応力状態における圧縮応力は，許容応力を満足するため，座屈は発生し ない。

5.2 支圧応力の評価

プレートには，図 5－1 に示すように支持ロッドから作用する鉛直力により，プレートと支持 ロッドのトグルとの接触面に支圧応力が生じる。したがって，この荷重により発生する支圧応力の評価を行う。
（1）計算データ
a．支圧面積 A_{C}

（2）荷重
プレートに支持ロッドから作用する鉛直力を「応力解析の方針」（1）耐震評価編の表4－1（2） に示す。
（3）平均支圧応力
平均支圧応力 $\sigma \mathrm{c}$ は，次のようにして求める。

$$
\sigma_{\mathrm{c}}=\frac{\mathrm{W}}{\mathrm{Ac}}
$$

（4）支圧応力の評価
各許容応力状態における評価を表5－2に示す。
表5－2より，各許容応力状態における平均支圧応力は，「応力解析の方針」（1）耐震評価編 の3．4節に示す許容応力を満足する。

図3－1 応力計算のモデル

（外周固定の円板モデル）

図 3－2 支持ロッドから作用する荷重による応力の計算モデル

図 5－1 支圧荷重の支持面

表 4－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 IIIA ${ }_{\text {A }}$ S		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	167	221＊	251	300＊
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	102	$221 *$	186	300 ＊
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	143	246	217	334
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	88	246	161	334
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	57	246	87	334
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	41	246	71	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	75	246	115	334
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	55	246	95	334
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	63	246	96	334
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	41	246	74	334
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \\ & \hline \end{aligned}$	55	$221 *$	91	300 ＊
$\begin{aligned} & \text { P11' } \\ & \text { P12 } \end{aligned}$	55	221＊	91	300 ＊
$\begin{aligned} & \hline \text { P13 } \\ & \text { P14 } \end{aligned}$	56	246	86	334
$\begin{aligned} & \text { P13' } \\ & \text { P14 } \end{aligned}$	44	246	74	334
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	69	246	122	334
$\begin{aligned} & \text { P15 } \\ & \text { P16, } \end{aligned}$	76	246	130	334
$\begin{aligned} & \hline \text { P17 } \\ & \text { P18 } \\ & \hline \end{aligned}$	45	221＊	83	300 ＊
$\begin{aligned} & \hline \text { P17' } \\ & \text { P18 } \end{aligned}$	60	$221 *$	98	300 ＊
$\begin{aligned} & \text { P19 } \\ & \text { P20 } \end{aligned}$	101	128＊	160	205^{*}
$\begin{aligned} & \hline \text { P19' } \\ & \text { P20' } \end{aligned}$	81	128＊	140	205^{*}

注記 $*$ ：継手効率 をを乗じた値を示す。

表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

（単位：MPa）				
応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	167	332 ＊	251	450 ＊
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	102	$332 *$	186	450＊
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	143	369	217	501
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	88	369	161	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	57	369	87	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	41	369	71	501
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	75	369	115	501
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	55	369	95	501
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	63	369	96	501
$\begin{aligned} & \hline \text { P09' } \\ & \text { P10' } \end{aligned}$	41	369	74	501
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	55	332^{*}	91	450 ＊
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	55	332 ＊	91	450 ＊
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	56	369	86	501
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	44	369	74	501
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	69	369	122	501
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	76	369	130	501
$\begin{aligned} & \text { P17 } \\ & \text { P18 } \end{aligned}$	127	332 ＊	210	450 ＊
$\begin{aligned} & \hline \text { P17 } \\ & \text { P18 } \end{aligned}$	106	332 ＊	190	450 ＊
$\begin{aligned} & \text { P19 } \\ & \text { P20 } \end{aligned}$	101	192＊	160	308^{*}
$\begin{aligned} & \hline \text { P19' } \\ & \text { P20 } \end{aligned}$	81	192＊	140	308＊

[^0]表5－1 座屈に対する評価
（単位：MPa）

応力評価面	許容応力状態	圧縮応力	許容応力
$\mathrm{P03}{ }^{\prime}-\mathrm{P} 04^{\prime}$	$\mathrm{II}_{\mathrm{A}} \mathrm{S}$	118	198
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	189	209

表5－2 支圧応力の評価
（単位：MPa）

VI－2－3－3－2－4 炉心シュラウド支持ロッドの耐震性についての計算書

目次

1．一般事項 1
1．1 記号の説明 1
1．2 形状•寸法•材料 1
1．3 解析範囲 1
1．4 計算結果の概要 1
2．計算条件 9
2．1 設計条件 9
2.2 運転条件 9
2．3 材料 9
2． 4 荷重の組合せ及び許容応力状態 9
2.5 荷重の組合せ及び応力評価 9
2.6 許容応力 9
2.7 応力の記号と方向 9
3．外荷重の条件 10
3.1 計算方法 10
3.2 解析モデル 10
3.3 計算結果 10
3．3．1 固有周期 10
3．3．2 設計用地震力 11
3．3．3 地震荷重 11
4．応力計算 12
4．1 応力評価点 12
4．2 上部サポートの外荷重による応力 12
4．2．1 荷重条件 12
4．2．2 計算方法 12
4．3上部タイロッド（P05～P08）の外荷重による応力 13
4．3．1 荷重条件 13
4．3．2 計算方法 13
4． 4 上部タイロッド（P13～P16），下部タイロッド及びトグルクレビスの外荷重による 応力 14
4．4．1 荷重条件 14
4．4．2 計算方法 14
4.5 応力の評価 14
5．応力強さの評価 15
5.1 一次一般膜応力強さの評価 15
5.2 一次一般膜 + 一次曲げ応力強さの評価 15
6．特別な応力の評価 16
6.1 せん断応力の評価 16
6．1．1 せん断面積 16
6．1．2 純せん断荷重 16
6．1．3 平均せん断応力 16
6．1．4 せん断応力の評価 16

図表目次

図 1－1 形状•寸法•材料•応力評価点 2
図 3－1 地震荷重の設定の考え方 17
図 3－2 炉心シュラウド支持ロッドの解析モデル 18
図 3－3 振動モード図 19
図 3－4 時刻歴加速度波形 21
表 1－1 計算結果の概要 7
表 3－1 解析モデルのデータ諸元 28
表3－2 解析モデルの物性値 30
表 3－3 ばね定数 30
表 3－4 固有周期 30
表 3－5 各検討ケースに用いる入力地震動（水平方向） 31
表 3－6 静的震度及び時刻歴加速度波形の最大値（水平方向） 31
表 3－7 地震応答解析結果（せん断力） 32
表 3－8 地震応答解析結果（モーメント） 33
表 4－1 断面性状 34
表 5－1 一次一般膜応力強さの評価のまとめ 35
表 5－2 一次一般膜＋一次曲げ応力強さの評価のまとめ 36
表 6－1 せん断応力の評価 37

1．一般事項
本計算書は，炉心シュラウド支持ロッドの応力計算について示すものである。炉心シュラウド支持ロッドは，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価す る。

炉心シュラウド支持ロッドは，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1． 1 記号の説明
記号の説明を「応力解析の方針」（1）耐震評価編の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	mm^{2}
D。	外径	mm
I	断面二次モーメント	mm^{4}
L	荷重作用点と応力評価断面との距離	mm
t	板厚	mm
b	六角断面の対面距離	mm
τ	平均せん断応力	MPa

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。
1.3 解析範囲

解析範囲を図1－1に示す。

1． 4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。

図1－1（1）形状•寸法•材料•応力評価点（単位：mm）

注：上部ウェッジは原子炉圧力容器に面接触し，上部サポート（タイプ1）と機械的に接合している。上部サポート（タイプ1）は炉心シュラウド上端に嵌合するとともに上部胴側面に面接触している。

図 1－1（2）形状•寸法•材料•応力評価点（単位：mm）

B 部詳细

注：上部ウェッジは原子炉圧力容器に面接触し，上部サポート（タイプ 2）と機械的に接合している。上部サポート（タイプ 2）は炉心シュラウド上端に嵌合するとともに上部胴側面に面接触している。

図 1－1（3）形状•寸法•材料•応力評価点（単位：mm）

注：下部タイロッドは上部タイロッドとは異なり，タイプ 1 及びタイプ 2 で構造上の差異がない。なお，下部スタビライザは原子炉圧力容器に面接触し，下部ウェッジと機械的に接合している。また，下部ウェ ッジは炉心シュラウドに面接触している。上部タイロッド及び下部タイロッドは下部スタビライザに機械的に接合されている。炉心支持板ウェッジは炉心シュラウドと炉心支持板に面接触している。

図 1－1（4）形状•寸法•材料•応力評価点（単位：mm）

注：斜線部はトグルクレビス及びトグルピンの評価対象部を示す。なお，下部タイロッドはトグルクレビス と機械的に接合されている。トグルはトグルピンによりトグルクレビスにピン結合されている。トグルはシ ユラウドサポートプレート下面に面接触している。

図 1－1（5）形状•寸法•材料•応力評価点（単位：mm）

表1－1（1）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
上部サポート（タイプ 1） NCF750 相 当 （ASME SB－637 UNS N07750）	III ${ }_{\text {S }} \mathrm{S}$	140	483	P01－P02	246	724	P01－P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	237	585	P01－P02	415	878	P01－P02
上部サポート（タイプ 2） NCF750 相 当 （ASME SB－637 UNS N07750）	III ${ }_{\text {A }} \mathrm{S}$	151	483	P03－P04	262	724	P03－P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	254	585	P03－P04	443	878	P03－P04
上部タイロッド（タイプ 1） GXM1 相当 （ASME SA－182 F XM－19）	III ${ }_{\text {A }} \mathrm{S}$	169	303	P05－P06	242	454	P05－P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	285	368	P05－P06	390	553	P05－P06
上部タイロッド（タイプ 2） GXM1 相当 （ASME SA－182 F XM－19）	III ${ }_{A} \mathrm{~S}$	169	303	P07－P08	242	454	P07－P08
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	285	368	P07－P08	390	553	P07－P08
下部タイロッド NCF750 相 当 （ASME SB－637 UNS N07750）	III ${ }_{A} \mathrm{~S}$	198	483	P09－P10	284	724	P09－P10
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	335	585	P09－P10	417	878	P09－P10
トグルクレビス NCF750 相当 （ASME SB－637 UNS N07750）	IIIA ${ }_{\text {S }}$	304	483	P11－P12	304	724	P11－P12
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	515	585	P11－P12	515	878	P11－P12
上部タイロッド（タイプ 1） GXM1 相当 （ASME SA－182 F XM－19）	III ${ }_{\text {A }} \mathrm{S}$	137	303	P13－P14	190	454	P13－P14
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	231	368	P13－P14	405	553	P13－P14
```上部タイロッド (タイプ 2) GXM1 相当 (ASME SA-182 F XM-19)```	III ${ }_{\text {A }} \mathrm{S}$	86	303	P15－P16	113	454	P15－P16
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	146	368	P15－P16	234	553	P15－P16

表 1－1（2）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	せん断応力	
		平均せん断応力	許容応力
トグルピン   NCF750 相当   （ASME $\mathrm{SB}-637$ UNS N07750）	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	190	289
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	322	386

O 2 （6）VI－2－3－3－2－4 R 7

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の 3.3 節に示 す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の 4.4 節に示す。

2． 6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.4 節に示す。

2．7 応力の記号と方向
応力の記号とその方向は，以下のとおりとする。


上部サポート

$\sigma \mathrm{t}$ ：周方向応力
$\sigma e$ ：軸方向応力
$\sigma_{r}$ ：半径方向応力
$\tau \mathrm{t} \ell$ ：せん断応力
H：水平力
M ：モーメント
V ：鉛直力

上部サポート以外

3．外荷重の条件
3.1 計算方法

炉心シュラウド支持ロッドに適用する地震荷重の設定の考え方を図3－1 に示す。
炉心シュラウド支持ロッドに加わる鉛直方向地震荷重は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」において，炉心シュラウド支持ロッドがばね要素としてモデル化されているため，鉛直方向及び水平方向の地震によるばね反力として求めた軸力の和（以下「鉛直方向地震荷重（軸力）」という。）を用いる。

固有周期，水平方向地震荷重（せん断力及びモーメント）は「3．2 解析モデル」に示す解析モデルを用いて時刻歴応答解析により求める。

解析コードは，「TDAPIII」を使用し，解析コードの検証及び妥当性確認等の概要につ いては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

## 3.2 解析モデル

解析モデルを図3－2に示す。また，各質点，部材のデータ諸元，部材の物性値及び ばね定数を表 3－1～表3－3に示す。

本解析モデルは，

支持条件は，

## 両端単純支持とする。

## 3． 3 計算結果

3．3．1 固有周期
固有周期を表 3－4に，振動モード図を図3－3に示す。固有周期は，0．05秒を超 えていたため，動的解析を実施した。

## 3．3．2 設計用地震力

動的解析は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」で得られるタ イロッドと取り合う炉心シュラウドの質点 0 。 の水平方向の時刻歴加速度を上部サポートの取り合い点，シュラウドサポートの取り合い点及び下部スタ ビライザの拘束点への入力とし，考慮した設計用地震力の一覧表を表3－5に示す。静的震度を表3－6に示す。また，入力とする時刻歴加速度のうち基準地震動S s に対する代表波の波形図を図3－4に示す。

## 3．3．3 地震荷重

解析により求めた各質点の水平方向地震荷重（せん断力及びモーメント）を表 3－7 及び表3－8に示す。

炉心シュラウド支持ロッドに適用する地震荷重として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体 の基礎の地震応答計算書」により求めた鉛直方向地震荷重（軸力）及び解析によ り求めた水平方向地震荷重（せん断力及びモーメント）を「応力解析の方針」（1）耐震評価編の表4－1（3）に示す。

4．応力計算
4．1 応力評価点
応力評価点の位置を図 1－1 に示す。
なお，各応力評価点の断面性状は，表4－1に示すとおりである。

4．2 上部サポートの外荷重による応力
4．2．1 荷重条件（L02，L04，L14 及び L16）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」（1）耐震評価編の表4－1（3）に示す。

4．2．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。
$\tau_{\mathrm{t} \ell}=\frac{\mathrm{V}}{\mathrm{A}}$
（2）一次一般膜＋一次曲げ応力
外荷重による一次一般膜＋一次曲げ応力は，次式で求める。
$\sigma_{\ell}=\frac{\mathrm{V} \cdot \mathrm{L}}{2 \cdot \mathrm{I}} \cdot \frac{\mathrm{t}}{2}$
$\tau_{t e}=\frac{V}{A}$

4．3上部タイロッド（P05～P08）の外荷重による応力
4．3．1 荷重条件（L02，L04，L14 及び L16）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」（1）耐震評価編の表4－1（3）に示す。

4．3．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。

$$
\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

$\tau_{\mathrm{t} \ell}=\frac{\mathrm{H}}{\mathrm{A}}$
（2）一次一般膜＋一次曲げ応力外荷重による一次一般膜 + 一次曲げ応力は，次式で求める。
$\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{A}}+\frac{\mathrm{M}}{\mathrm{I}} \cdot \frac{\mathrm{b}}{2 \cdot \cos \square}$
$\tau_{\mathrm{t} \ell}=\frac{\mathrm{H}}{\mathrm{A}}$
4.4 上部タイロッド（P13～P16），下部タイロッド及びトグルクレビスの外荷重による応力

4．4．1 荷重条件（L02，L04，L14及び L16）
炉心シュラウド支持ロッドに作用する外荷重を「応力解析の方針」（1）耐震評価編の表4－1（3）に示す。

4．4．2 計算方法
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。
$\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{A}}$
$\tau_{t}=\frac{\mathrm{H}}{\mathrm{A}}$
（2）一次一般膜＋一次曲げ応力
外荷重による一次一般膜十一次曲げ応力は，次式で求める。なおトグルクレ ビスについては，外荷重による一次一般膜十一次曲げ応力は，一次一般膜応力 と同じである。

$$
\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}}+\frac{\mathrm{M}}{\mathrm{I}} \cdot \frac{\mathrm{D} \circ}{2}
$$

$$
\tau_{t}=\frac{\mathrm{H}}{\mathrm{~A}}
$$

4． 5 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2 項に定めるとお りである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.4 節に示す許容応力を満足する。
5.2 一次一般膜 + 一次曲げ応力強さの評価各許容応力状態における評価を表5－2に示す。

表 5－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.4 節に示す許容応力を満足する。

6．特別な応力の評価
炉心シュラウド支持ロッドの軸力により，トグルピンにはせん断応力が生じる。こ れについて，せん断応力の評価を行う。
6.1 せん断応力の評価

6．1．1 せん断面積
（1）トグルピン（図 $1-1$（5）参照）
トグルピンが鉛直荷重を受けるせん断面積は次のようになる。


6．1．2 純せん断荷重
各許容応力状態におけるトグルピンに作用する鉛直力を「応力解析の方針」（1）耐震評価編の表4－1（3）に示す。

6．1．3 平均せん断応力
平均せん断応力 $\tau$ は，次式によって求める。

$$
\tau=\frac{\mathrm{H}}{\mathrm{~A}}
$$

6．1．4 せん断応力の評価
各許容応力状態における評価を表6－1 に示す。
表 6－1 より，各許容応力状態の平均せん断応力は，「応力解析の方針」（1）耐震評価編の3．4節に示す許容応力を満足する。


図3－1 地震荷重の設定の考え方


図3－2 炉心シュラウド支持ロッドの解析モデル


図3－3（1）振動モード図（タイプ1，水平方向，1次）


図3－3（2）振動モード図（タイプ2，水平方向，1次）



図3－4（1）時刻歴加速度波形（ケース1（基本ケース），Ss－D1）



図3－4（2）時刻歴加速度波形（ケース1（基本ケース），Ss－D2）






表3－1（1）解析モデルのデータ諸元（タイプ1）

	質点番号	質点高さ＊   （m）	$\begin{gathered} \text { 質量 } \\ \times 10^{3}(\mathrm{~kg}) \end{gathered}$	部材長 （m）	$\begin{gathered} \text { 断面二次 } \\ \text { モーメント }\left(\mathrm{m}^{4}\right) \end{gathered}$	有効せん断断面積（ $\mathrm{m}^{2}$ ）
	T1					
	T2					
	T3					
	T4					
	T5					
	T6					
	T7					
－	T8					
	T9					
$\begin{gathered} \text { C} \\ \end{gathered}$	T10					
$\frac{1}{5}$	T11					
（6）	T12					
$\bigcirc$	T13					
	T14					
	T15					
	T16					
	T17					
	T18					
	T19					
	T20					
	T21					
	T22					

注記＊：鉛直方向の傾きを考慮しない部材長の積算高さを示し，0．000は標高 0．P．10．276 に相当する。


注記＊：鉛直方向の傾きを考慮しない部材長の積算高さを示し，0．000は標高 0．P．10．276 に相当する。

表 3－2 解析モデルの物性値
\(\left.$$
\begin{array}{|c|c|c|c|c|}\hline \text { 名称 } & \begin{array}{c}\text { 部材端の } \\
\text { 質点番号 }\end{array} & \begin{array}{c}\text { 縦弾性係数 } \mathrm{E} \\
(\mathrm{MPa})\end{array} & \text { ポアソン比 }\end{array}
$$ \begin{array}{c}減衰定数 <br>

(\%)\end{array}\right]\)| 1.0 |
| :---: |
| 上部タイロッド |

注：～は連続した質点を示す。

表3－3 ばね定数

No．	名称	ばね定数   $(\mathrm{kN} / \mathrm{m})$	減衰定数   $(\%)$
K	下部スタビライザ   水平ばね		1.0


表3－4（1）
固有周期（タイプ1，水平方向）     モード 固有周期（s） 刺激係数＊   1 次     2 次

注記＊：刺激係数は，各次の固有ベクトルを最大振幅が 1.0 となるように正規化して算出した値を示す。

表3－4（2）	固有周期（タイプ2，水平方向）	
モード	固有周期（s）	刺激係数＊
1 次		
2 次		

注記＊：刺激係数は，各次の固有ベクトルを最大振幅が 1.0 となるように正規化して算出した値を示す。

表 3－5 各検討ケースに用いる入力地震動（水平方向）

検討ケース	弾性設計用地震動 S d 及び基準地震動 S s						
	$\begin{aligned} & \mathrm{Ss}-\mathrm{D} 1 \\ & \mathrm{Sd}-\mathrm{D} 1 \end{aligned}$	$\begin{aligned} & \mathrm{Ss}-\mathrm{D} 2 \\ & \mathrm{Sd}-\mathrm{D} 2 \end{aligned}$	$\begin{aligned} & \mathrm{Ss}-\mathrm{D} 3 \\ & \mathrm{Sd}-\mathrm{D} 3 \end{aligned}$	$\begin{aligned} & \mathrm{Ss}-\mathrm{F} 1 \\ & \mathrm{Sd}-\mathrm{F} 1 \end{aligned}$	$\begin{aligned} & \hline \mathrm{Ss}-\mathrm{F} 2 \\ & \mathrm{Sd}-\mathrm{F} 2 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline \text { Ss-F3 } \\ & \text { Sd-F3 } \end{aligned}$	$\begin{aligned} & \mathrm{Ss}-\mathrm{N} 1 \\ & \mathrm{Sd}-\mathrm{N} 1 \end{aligned}$
$\begin{aligned} & \text { ケース } 1^{* 2} \\ & \text { (基本ケース) } \end{aligned}$	$\bigcirc$						
ケース $2 * 2$	$\bigcirc$	$\bigcirc$	$\bigcirc$			$\bigcirc$	$\bigcirc$
ケース 3＊2	$\bigcirc$	$\bigcirc$	$\bigcirc$			$\bigcirc$	$\bigcirc$
ケース $4^{* 2}$	$\bigcirc * 1$	$\bigcirc * 1$	$\bigcirc * 1$			$\bigcirc * 1$	$\bigcirc * 1$
ケース $5^{* 2}$	$\bigcirc * 1$	＊ 1	$\bigcirc * 1$			$\bigcirc * 1$	$\bigcirc * 1$
ケース 6＊2	$\bigcirc * 1$	$\bigcirc * 1$	$\bigcirc * 1$			$\bigcirc * 1$	$\bigcirc * 1$
ケース ${ }^{* 2}$	$\bigcirc$	$\bigcirc$	$\bigcirc$			$\bigcirc$	$\bigcirc$

注記 $* 1$ ：ケース $4 ~ ケ ー ス 6 は$ 基準地震動 S s 固有のケースのため，弾性設計用地震動 S d については実施しない。
＊2：添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」の建屋－機器連成地震応答解析において材料物性の不確かさを考慮する解析ケースである。

表3－6 静的震度（水平方向）

設置場所   床面高さ   $(\mathrm{m})$	静的震度   $\left(3.6 \cdot \mathrm{C}^{2}\right)$
原子炉圧力容器内部   $0 . \mathrm{P} \quad 10.324 \sim$   17.533	$0.92 * 1$
$0.80 * 2$	

注記＊1：解析モデルにおける質点番号 の 静的震度を示す。
＊2：解析モデルにおける質点番号 $\square$ の静的震度を示す。

表 3－7 地震応答解析結果（せん断力）


注：タイプ 1 及びタイプ 2 の解析モデルの地震応答解析結果の包絡値を示す。
注記＊：鉛直方向の傾きを考慮しない部材長の積算高さを示し，0．000は標高 0．P．10． 276 に相当する。

表 3－8 地震応答解析結果（モーメント）


注：タイプ 1 及びタイプ 2 の解析モデルの地震応答解析結果の包絡値を示す。
注記＊：鉛直方向の傾きを考慮しない部材長の積算高さを示し，0．000は標高 0．P．10． 276 に相当する。

表 4－1 断面性状


表 5－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	140	483	237	585
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02' } \end{aligned}$	124	483	221	585
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	151	483	254	585
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	131	483	234	585
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	169	303	285	368
$\begin{aligned} & \hline \text { P05' } \\ & \text { P06 } \end{aligned}$	149	303	265	368
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	169	303	285	368
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	149	303	265	368
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	198	483	335	585
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	176	483	313	585
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	304	483	515	585
$\begin{aligned} & \text { P11' } \\ & \text { P12 } \end{aligned}$	268	483	479	585
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	137	303	231	368
$\begin{aligned} & \text { P13' } \\ & \text { P14 } \end{aligned}$	120	303	215	368
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	86	303	146	368
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	76	303	136	368

表5－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	246	724	415	878
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	217	724	386	878
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	262	724	443	878
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	229	724	410	878
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	242	454	390	553
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	222	454	370	553
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	242	454	390	553
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	222	454	370	553
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	284	724	417	878
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	262	724	395	878
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	304	724	515	878
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	268	724	479	878
$\begin{aligned} & \hline \text { P13 } \\ & \text { P14 } \\ & \hline \end{aligned}$	190	454	405	553
$\begin{aligned} & \text { P13 } \\ & \text { P14 } \end{aligned}$	174	454	389	553
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	113	454	234	553
$\begin{aligned} & \text { P15 } \\ & \text { P16 } \end{aligned}$	103	454	223	553

表6－1 せん断応力の評価
（単位：MPa）

応力評価面	許容応力状態	平均せん断応力	許容応力
トグルピン	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	190	289
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	322	386

VI－2－3－3－2－5 上部格子板の耐震性についての計算書
1．一般事項 ..... 1
1.1 記号の説明 ..... 1
1．2 形状•寸法•材料 ..... 1
1．3 解析範囲 ..... 1
1． 4 計算結果の概要 ..... 1
2．計算条件 ..... 4
2.1 設計条件 ..... 4
2.2 運転条件 ..... 4
2．3 材料 ..... 4
2.4 荷重の組合せ及び許容応力状態 ..... 4
2.5 荷重の組合せ及び応力評価 ..... 4
2.6 許容応力 ..... 4
2.7 応力の記号と方向 ..... 4
3．応力計算 ..... 5
3.1 応力評価点 ..... 5
3．2 差圧による応力 ..... 5
3．2．1 荷重条件 ..... 5
3．2．2 計算方法 ..... 5
3.3 外荷重による応力 ..... 6
3．3．1 荷重条件 ..... 6
3．3．2 計算方法 ..... 6
3.4 応力の評価 ..... 7
4．応力強さの評価 ..... 8
4.1 一次一般膜応力強さの評価 ..... 8
4.2 一次一般膜＋一次曲げ応力強さの評価 ..... 8

図表目次
図 1－1 形状•寸法•材料•応力評価点 ..... 2
図 3－1 応力計算モデル ..... 9
表 1－1 計算結果の概要 ..... 3
表 3－1 断面性状 ..... 10
表 4－1 一次一般膜応力強さの評価のまとめ ..... 11
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ ..... 12

1．一般事項
本計算書は，上部格子板の応力計算について示すものである。
上部格子板は，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

上部格子板は，設計基準対象施設においてSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張） に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
1.1 記号の説明

記号の説明を，「応力解析の方針」（1）耐震評価編の2．4節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	$\mathrm{mm}^{2}$
a	グリッドプレートの高さ	mm
b	グリッドプレート下溝の高さ	mm
c	グリッドプレート上溝の高さ	mm
d	グリッドプレートの高さ	mm
e	グリッドプレート切欠きの高さ	mm
h	グリッドプレートの板厚	mm
L	グリッドプレート13スパンの長さ	mm
$\ell$	グリッドプレート1スパンの長さ	mm
Z	断面係数	$\mathrm{mm}^{3}$

1.2 形状•寸法•材料

本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

## 1.3 解析範囲

解析範囲を図1－1に示す。

## 1.4 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目 し，応力評価上厳しくなる代表的な評価点を記載する。


Z प $9-Z-\varepsilon-\varepsilon-Z-I \Lambda \quad$（9）$\quad$ O


図 1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－3－2－5 R 2

表 1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価点	応力強さ	許容応力	応力評価点
$\begin{gathered} \text { グリッドプレート } \\ \text { SUS316L } \end{gathered}$	$\mathrm{III}_{A} \mathrm{~S}$	8	142	P01	93	214	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	14	228	P01	150	343	P01
	$\mathrm{III}_{A} \mathrm{~S}$	8	142	P02	93	214	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	14	228	P02	150	343	P02

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の 3．3 節に示す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。
2.6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の 3.4 節に示す。

## 2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。
なお，主応力の算出は，「応力解析の方針」（1）耐震評価編の5．3．1項に示される
 $\tau_{\mathrm{yz}}, \tau_{\mathrm{zx}}$ に添字を置き換えて求める。
$\sigma \mathrm{x}: ~ \mathrm{x}$ 方向応力

$\sigma_{\mathrm{y}}$ ：y 方向応力
$\sigma_{z} \quad: ~ z ~$ 方向応力
$\tau \mathrm{xy}$ ：せん断応力
$\tau_{\mathrm{y} z}$ ：せん断応力
$\tau_{z x}$ ：せん断応力

3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。
3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，「応力解析の方針」（1）耐震評価編の参照図書（1）a．に定めるとおりである。

3．2．2 計算方法
差圧 $P_{34}$ による応力は，次式で求められる。なお，計算は，最大応力の発生する最長の グリッドプレートについて行う。計算モデルを図3－1に示す。
（1）一次応力
a．差圧 $P_{34}$ による荷重

$$
\mathrm{W}_{\mathrm{P}}=-\mathrm{P}_{34} \cdot \mathrm{~h} \cdot \mathrm{~L}
$$

b．端部におけるモーメント
$\stackrel{\sim}{\circ}$

$$
\mathrm{M}=\frac{\mathrm{W}_{\mathrm{P}} \cdot \mathrm{~L}}{12}
$$

c．曲げ応力

$$
\sigma_{\mathrm{x}}=\frac{\mathrm{M}}{\mathrm{Z}_{1}}
$$

d．せん断応力

$$
\tau_{\mathrm{zx}}=\frac{\mathrm{W}_{\mathrm{P}}}{2 \cdot \mathrm{~A}}
$$

## 3.3 外荷重による応力

3．3．1 荷重条件（L04，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の表 4－1（4）に示す。

3．3．2 計算方法
外荷重による応力は，以下により求める。
応力計算モデルを図 3－1に示す。
（1）一次応力
a．鉛直方向荷重による応力
（a）グリッドプレートの端部における鉛直方向荷重

$$
\mathrm{W}_{\mathrm{v}}=13 \cdot \mathrm{~V}
$$

（b）グリッドプレートの端部におけるモーメント

$$
M_{v}=\frac{W_{v} \cdot L}{12}
$$

（c）曲げ応力
$\sigma_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{v}}}{\mathrm{Z}_{1}}$
（d）せん断応力
$\tau_{\mathrm{zx}}=\frac{\mathrm{W}_{\mathrm{V}}}{2 \cdot \mathrm{~A}}$
b．水平方向荷重による応力
（a）格子 1 個当たりの水平方向荷重

（b）格子の端部におけるモーメント

$$
\mathrm{M}_{\mathrm{H}}=\frac{\mathrm{W}_{\mathrm{H}} \cdot \ell}{12}
$$

（c）曲げ応力

$$
\sigma_{\mathrm{x}}=\frac{\mathrm{M}_{\mathrm{H}}}{\mathrm{Z}_{2}}
$$

（d）せん断応力
$\tau_{z \mathrm{x}}=\frac{\mathrm{W}_{\mathrm{H}}}{2 \cdot \mathrm{~A}}$

## 3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

4．応力強さの評価
4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表4－1に示す。
表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編 の 3.4 節に示す許容応力を満足する。
4.2 一次一般膜＋一次曲げ応力強さの評価

各許容応力状態における評価を表4－2に示す。
表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．4節に示す許容応力を満足する。


表 3－1 断面性状

応力評価点	a   $(\mathrm{mm})$	h   $(\mathrm{mm})$	A   $\left(\mathrm{mm}^{2}\right)$	$\mathrm{Z}_{1}{ }^{* 1}$   $\left(\mathrm{~mm}^{3}\right)$	$\mathrm{Z}_{2}{ }^{* 2}$   $\left(\mathrm{~mm}^{3}\right)$
P01，P02					


＊2：グリッドプレートの z 軸まわりの断面係数

表 4－1 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価点	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01	8	142	14	228
P01＇	8	142	13	228
P02	8	142	14	228
P02＇	8	142	13	228

表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価点	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01	93	214	150	343
P01＇	77	214	134	343
P02	93	214	150	343
P02，	77	214	134	343

VI－2－3－3－2－6 炉心支持板の耐震性についての計算書

## 目次

1．一般事項 ..... 1
1．1 記号の説明 ..... 1
1．2 形状•寸法•材料 ..... 2
1．3 解析範囲 ..... 2
1．4 計算結果の概要 ..... 2
2．計算条件 ..... 7
2.1 設計条件 ..... 7
2.2 運転条件 ..... 7
2．3 材料 ..... 7
2.4 荷重の組合せ及び許容応力状態 ..... 7
2.5 荷重の組合せ及び応力評価 ..... 7
2.6 許容応力 ..... 7
2.7 応力の記号と方向 ..... 8
3．応力計算 ..... 9
3.1 応力評価点 ..... 9
3.2 差圧による応力 ..... 9
3．2．1 荷重条件 ..... 9
3．2．2 計算方法 ..... 9
3.3 外荷重による応力 ..... 12
3．3．1 荷重条件 ..... 12
3．3．2 計算方法 ..... 12
3.4 応力の評価 ..... 14
4．応力強さの評価 ..... 15
4.1 一次一般膜応力強さの評価 ..... 15
4.2 一次一般膜 + 一次曲げ応力強さの評価 ..... 15
図 1－1 形状•寸法•材料•応力評価点 ..... 3
図 3－1 補強ビームの応力計算モデル ..... 16
図 3－2 支持板の応力計算モデル ..... 18
表 1－1 計算結果の概要 ..... 6
表 3－1 断面性状 ..... 20
表 4－1 一次一般膜応力強さの評価のまとめ ..... 21
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ ..... 22

1．一般事項
本計算書は，炉心支持板の応力計算について示すものである。
炉心支持板は，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。
炉心支持板は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備にお いては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

## 1．1 記号の説明

記号の説明を「応力解析の方針」（1）耐震評価編の 2.4 節に示す。 さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
a i	補強ビーム長さ	mm
b e	等価幅	mm
D	制御棒案内管用穴径	mm
e o	中立軸からの距離	mm
e $0^{\prime}$	中立軸からの距離	mm
e 1	中立軸からの距離	mm
e ${ }_{1}{ }^{\prime}$	中立軸からの距離	mm
h c	支持板の板厚	mm
h o	補強ビーム高さ	mm
$\mathrm{h}_{1}$	補強ビーム高さ	mm
I 0	断面二次モーメント	$\mathrm{mm}^{4}$
$\mathrm{I}_{1}$	断面二次モーメント	$\mathrm{mm}^{4}$
I 2	断面二次モーメント	$\mathrm{mm}^{4}$
I 3	断面二次モーメント	$\mathrm{mm}^{4}$
$\mathrm{I}_{\mathrm{A}}$	断面二次モーメント	$\mathrm{mm}^{4}$
$I_{\text {B }}$	断面二次モーメント	$\mathrm{mm}^{4}$
$\ell_{i}$	補強ビームの長さ	mm
$\ell_{\mathrm{p}}$	補強ビーム1スパン当たりの長さ	mm
t	補強ビーム板厚	mm

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

1．3 解析範囲
解析範囲を図1－1に示す。

1．4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。


生1：各補強ビームの寸法を図1－1（3）に示士。
注2：B部の詳細は図1－1（2）参照。

図1－1（1）形状•寸法•材料•応力評価点


## B部詳細図


：応力評価点

図 1－1（2）形状•寸法•材料•応力評価点


各補強ビームのa1，\＆1 の寸法（単位：mm）

寸法 ビームNo.	ai	$\ell \mathbf{i}$
補強ビームNo． 1		
補強ビームNo． 2		
補強ビームNa． 3		
補強ビームNo．4		
補強ビームNo． 5		
補強ビーム№． 6		

図 1－1（3）形状•寸法•材料•応力評価点

表1－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価点	応力強さ	許容応力	応力評価点
補強ビーム SUS316	III ${ }_{\text {A }} \mathrm{S}$	12	116＊	P03	60	268	P01＇
	$I V_{A} \mathrm{~S}$	13	185＊	P03	61	427	P01＇
支持板   SUS316	IIIA ${ }_{4}$ S	31	178	P07	142	268	P07，
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	50	284	P07	214	427	P07，

注記＊：継手効率 を乗じた値を示す。

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の 4.1 節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。

2．3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の 3.3 節に示 す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の3．4節に示す。
溶接部の継手効率を「応力解析の方針」（1）耐震評価編の 3.6 節に示す。

## 2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。
なお，主応力の算出は，「応力解析の方針」（1）耐震評価編の5．3．1項に示される式 において，$\sigma_{\mathrm{t}}, \sigma_{\ell}, \sigma_{\mathrm{r}}, \tau_{\mathrm{t} \ell}, \tau_{\ell \mathrm{r}}, \tau_{\mathrm{r}} \mathrm{t}$ をそれぞれ $\sigma_{\mathrm{x}}, \sigma_{\mathrm{y}}, \sigma_{z}, \tau_{\mathrm{xy}}$ ， $\tau_{\mathrm{yz}}, \tau_{\mathrm{z}} \mathrm{x}$ に添字を置き換えて求める。

$\left\{\begin{array}{l}\sigma \mathrm{x}: \mathrm{X} \text { 方向応力 } \\ \sigma \mathrm{y}: \mathrm{Y} \text { 方向応力 } \\ \sigma \mathrm{z}: \mathrm{Z} \text { 方向応力 } \\ \tau \mathrm{xy}: \text { せん断応力 } \\ \tau \mathrm{yz}: \text { せん断応力 } \\ \tau \mathrm{zx}: \text { せん断応力 }\end{array}\right.$


3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。

## 3.2 差圧による応力

3．2．1 荷重条件（LO2）
各運転状態による差圧は，「応力解析の方針」（1）耐震評価編の参照図書（1）a． に定めるとおりである。

3．2．2 計算方法
（1）補強ビーム
a．差圧による荷重
補強ビームの荷重計算モデルを図3－1に示す。
差圧による単位長さ当たりの分布荷重 $W_{1}$ は，次式で求める。
$\mathrm{W}_{1}=\mathrm{P}_{13} \cdot \frac{2}{\ell_{\mathrm{p}}} \cdot\left(e_{\mathrm{p}}^{2}-\frac{\pi}{4} \cdot \mathrm{D}^{2}\right)$
b．曲げ応力（応力分類：一次応力）
図 3－1 に示す補強ビームの荷重計算モデルにより荷重を求め，図 3－1に示す補強ビームの応力計算モデルにより曲げ応力を求める。ここで，断面二次モー メント $I_{0}, ~ I_{1}$ は，支持板を穴の部分の面積を除いたものと等しい面積を持つ穴のない帯状の板に置き換えて計算する。穴としては，制御棒案内管の入る穴及び中性子束計測案内管の入る穴を考慮する。
（a） $0 \leqq x \leqq$ i $\quad$ のとき
イ．モーメント

$$
\mathrm{M}=\frac{\mathrm{W}_{1}}{2} \cdot\left(\mathrm{a}_{\mathrm{i}}^{2}-\mathrm{x}^{2}\right)
$$

ロ．曲げ応力

$$
\begin{array}{ll}
\sigma_{\mathrm{x}}=-\frac{\mathrm{M}}{\mathrm{I}_{1}} \cdot \mathrm{e}_{1} & \left(\begin{array}{l}
\text { 補強ビームの下端 }) \\
\sigma_{\mathrm{x}}=\frac{\mathrm{M}}{\mathrm{I}_{1}} \cdot \mathrm{e}_{1}^{\prime}
\end{array}\right. \\
& (\text { 補強ビームの上端 }) \tag{補強ビームの上端}
\end{array}
$$

（b）$\quad \ell_{\mathrm{i}} \leqq \mathrm{x} \leqq \mathrm{a}_{\mathrm{i}}$ のとき
イ．モーメント

$$
\mathrm{M}=\frac{\mathrm{W}_{1}}{2} \cdot\left(\mathrm{a}_{\mathrm{i}}^{2}-\mathrm{x}^{2}\right)
$$

口．曲げ応力

$$
\begin{array}{ll}
\sigma_{x}=-\frac{M}{I_{0}} \cdot e_{0} & (\text { 補強ビームの下端 }) \\
\sigma_{x}=\frac{M}{I_{0}} \cdot e_{0}^{\prime} & (\text { 補強ビームの上端 })
\end{array}
$$

ここで， $\mathrm{I}_{1}$ ：I 1 部の断面二次モーメント
I o ：I o 部の断面二次モーメント
c．せん断応力（応力分類：一次一般膜応力）
補強ビームの固定端でせん断力は最大となり，補強ビームの中央でせん断力は 0 となる。

補強ビームの固定端におけるせん断応力は次式で求める。

$$
\tau_{z \mathrm{x}}=\frac{\mathrm{F}}{\mathrm{~A}_{0}}
$$

ここで，F：固定端におけるせん断力

$$
\mathrm{F}=\mathrm{W}_{1} \cdot \mathrm{a}_{\mathrm{i}}
$$

$\mathrm{A}_{0}$ ：固定端の断面積
$\mathrm{A}_{0}=\mathrm{b}_{\mathrm{e}} \cdot \mathrm{h}_{\mathrm{c}}+\mathrm{h}_{0} \cdot \mathrm{t}$
（2）支持板

## a．差圧による荷重

支持板の荷重計算モデルを図 3－2 に示す。
差圧による単位長さ当たりの分布荷重 $W_{2}$ は，次式で求める。

$$
\mathrm{W}_{2}=\mathrm{P}_{13} \cdot \frac{1}{\ell_{4}} \cdot\left(\ell_{4} \cdot \ell_{\mathrm{p}}-\frac{\pi}{4} \cdot \mathrm{D}^{2}\right)
$$

b．曲げ応力（応力分類：一次応力）
図 3－2 に示す支持板の応力計算モデルにより曲げ応力を求める。
（a）モーメント

$$
\mathrm{M}=\mathrm{M}_{\mathrm{B}}-\mathrm{W}_{2} \cdot \ell_{4} \cdot \mathrm{y}+\frac{\mathrm{W}_{2}}{2} \cdot \mathrm{y}^{2}
$$

（b）曲げ応力
固定端における曲げ応力は，次式で求める。
$\sigma_{\mathrm{y}}=\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{I}_{2}} \cdot \frac{\mathrm{hc}}{2}$
（支持板の下面）
$\sigma_{\mathrm{y}}=-\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{I}_{2}} \cdot \frac{\mathrm{~h} \mathrm{c}}{2}$
（支持板の上面）

また， $\mathrm{y}=\square$ mm における曲げ応力は，次式で求める。
$\sigma_{\mathrm{y}}=\frac{\mathrm{M}(\mathrm{y}=\square)}{\mathrm{I}_{3}} \cdot \frac{\mathrm{hc}}{2} \quad$（支持板の下面）
$\sigma_{\mathrm{y}}=-\frac{\mathrm{M}(\mathrm{y}=\square)}{\mathrm{I}_{3}} \cdot \frac{\mathrm{~h} \mathrm{c}}{2} \quad$（支持板の上面）

ここで， $\mathrm{M}_{\mathrm{B}}$ ：固定端モーメント
$\mathrm{M}_{\mathrm{B}}=\left[\frac{\left.2 \cdot \ell_{4}^{3}-\left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{3}}-1\right) \cdot\left(e_{3}^{3}-{\left.e_{2}^{3}-3 \cdot \ell_{3}^{2} \cdot \ell_{4}+3 \cdot \ell_{2}^{2} \cdot \ell_{4}\right)}_{6 \cdot\left\{\ell_{4}+\left(\frac{\mathrm{I}_{2}}{\mathrm{I}_{3}}-1\right) \cdot\left(\ell_{3}-\ell_{2}\right)\right\}}\right] \cdot \mathrm{W}_{2}{ }^{2}{ }^{2}\right)}{}\right.$
$\mathrm{I}_{2}$ ： $\mathrm{I}_{2}$ 部の断面二次モーメント
$\mathrm{I}_{3}$ ： $\mathrm{I}_{3}$ 部の断面二次モーメント
c．せん断応力（応力分類：一次一般膜応力）
固定端におけるせん断応力は，次式で求める。

$$
\tau_{\mathrm{yz}}=\frac{\mathrm{W}_{2} \cdot \ell_{4}}{\mathrm{hc} \cdot \ell_{5}}
$$

$\mathrm{y}=\square \mathrm{mm}$ におけるせん断応力は，次式で求める。

$$
\tau_{\mathrm{yz}}=\frac{\mathrm{W}_{2}}{\mathrm{hcc} \cdot \ell_{6}} \cdot\left(\ell_{4}-\square\right)
$$

## 3.3 外荷重による応力

3．3．1 荷重条件（L04，L14及び L16）
外荷重を「応力解析の方針」（1）耐震評価編の表4－1（5）に示す。

## 3．3．2 計算方法

（1）補強ビーム
a．死荷重による単位長さ当たりの分布荷重
補強ビームの荷重計算モデルを図 3－1 に示す。
死荷重による単位長さ当たりの分布荷重 $W_{3}$ は，次式で求める。

$$
\mathrm{W}_{3}=\frac{\mathrm{V}_{1}}{\ell_{\mathrm{p}}}
$$

b．鉛直方向地震荷重による単位長さ当たりの分布荷重
補強ビームの荷重計算モデルを図 3－1に示す。
鉛直方向地震荷重による単位長さ当たりの分布荷重 $W_{4}$ は，次式で求める。

$$
\mathrm{W}_{4}=\frac{\mathrm{V}_{1}}{\ell_{\mathrm{p}}}
$$

c．曲げ応力及びせん断応力
3．2．2（1）項と同様にして求める。
（2）支持板
a．死荷重による単位長さ当たりの分布荷重
支持板の荷重計算モデルを図3－2に示す。
死荷重による単位長さ当たりの分布荷重 $W_{5}$ は，次式で求める。

$$
\mathrm{W}_{5}=\frac{\mathrm{V}_{2}}{2 \cdot \ell_{4}}
$$

b．鉛直方向地震荷重による単位長さ当たりの分布荷重
支持板の荷重計算モデルを図3－2に示す。
鉛直方向地震荷重による単位長さ当たりの分布荷重W6は，次式で求める。

$$
\mathrm{W}_{6}=\frac{\mathrm{V}_{2}}{2 \cdot \ell_{4}}
$$

c．水平方向地震荷重による荷重
図 3－2 に示す 1 本の制御棒案内管が支持板に与える水平方向地震荷重 $\mathrm{H}_{\mathrm{p}}$ は，次の値を用いる。


ここで，Hは水平方向地震荷重で，「応力解析の方針」（1）耐震評価編の表 4－1（5）に示すとおりである。
d．曲げ応力及びせん断応力
（a）鉛直方向荷重（死荷重及び鉛直方向地震荷重）
3．2．2（2）項と同様にして求める。
（b）水平方向地震荷重
図 3－2に示す支持板の応力計算モデルにより曲げ応力を求める。
イ．モーメント
固定端におけるモーメント $\mathrm{M}_{\mathrm{A}}$


口．引張応力（応力分類：一次一般膜応力）
固定端における引張応力

$$
\sigma_{\mathrm{y}}=\frac{\mathrm{H}_{\mathrm{p}}}{\mathrm{~h}_{\mathrm{c}} \cdot \ell_{5}}
$$

## $y=$

$$
\sigma_{\mathrm{y}}=\frac{\mathrm{H}_{\mathrm{p}}}{\mathrm{~h}_{\mathrm{c}} \cdot \ell_{6}}
$$

八。曲げ応力（応力分類：一次応力）
固定端における曲げ応力

$$
\sigma_{\mathrm{y}}=\frac{\mathrm{M}_{\mathrm{A}}}{\mathrm{I}_{\mathrm{A}}} \cdot \frac{\ell_{5}}{2}
$$


$\sigma_{\mathrm{y}}=\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{I}_{\mathrm{B}}} \cdot \frac{\ell_{6}}{2}$

ここで， $\mathrm{I}_{\mathrm{A}}$ ：I A 部の断面二次モーメント
I в ：I в 部の断面二次モーメント

二．せん断応力（応力分類：一次一般膜応力）
固定端におけるせん断応力

$$
\tau_{\mathrm{xy}}=\frac{\mathrm{H}_{\mathrm{p}}}{\mathrm{~h}_{\mathrm{c}} \cdot \ell_{5}}
$$



$$
\tau_{\mathrm{xy}}=\frac{\mathrm{H}_{\mathrm{p}}}{\mathrm{~h}_{\mathrm{c}} \cdot \ell_{6}}
$$

## 3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。なお，支持板は，補強ビームで計算された曲げ応力 $\sigma x$ も考慮し，組合せ応力を求める。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとお りである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表 4－1より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.4 節及び 3.6 節に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価各許容応力状態における評価を表4－2に示す。

表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.4 節及び 3.6 節に示す許容応力を満足する。



（単位：mm）
図3－1（1）補強ビームの応力計算モデル

（単位：mm）

図 3－1（2）補強ビームの応力計算モデル


注記＊：固定端から最小幅に

## なる部分までの距離

注：斜線部は支持板を保守的に簡便化した応力計算モデル
（はりモデル）を示す。
（単位：mm）

図3－2（1）支持板の応力計算モデル


Hp の方向が補強ビームそ平行を場合


Hpの方向が補強ビームに垂直な場合

Hp：制御棒案内管用穴1つ当 br作用广る水平地震荷重
（単位：mm）
図 3－2（2）支持板の応力計算モデル

表 3－1 断面性状

応力評価点	補強ビームに平行な軸		補強ビームに垂直な軸	
	I $\left(\mathrm{mm}^{4}\right)$	e（mm）	I $\left(\mathrm{mm}^{4}\right)$	e（mm）
P01，P01＇				
P02，P02＇				
P03，P03＇				
P04，P04＇				
P05，P05				
P06，P06＇				
P07，P07，				
P08，P08＇				

表 4－1 一次一般膜応力強さの評価のまとめ

応力評価点	許容応力状態 $\mathrm{III}{ }_{A} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01	0	178	0	284
P01＇	0	178	0	284
P02	0	178	0	284
P02＇	0	178	0	284
P03	12	$116 * 1$	13	$185 * 1$
P03＇	12	$116{ }^{1}$	12	$185 * 1$
P04	12	178	13	284
P04＇	12	178	12	284
P05	9	$107 * 2$	14	$170 * 2$
P05＇	9	$107 * 2$	14	$170 * 2$
P06	9	178	14	284
P06＇	9	178	14	284
P07	31	178	50	284
P07＇	31	178	50	284
P08	31	178	50	284
P08＇	31	178	50	284

注記 $* 1$ ：継手効率 を乗じた値を示す。
注記 $* 2$ ：継手効率 をを乗じた値を示す。

表4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価点	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01	57	268	56	427
P01＇	60	268	61	427
P02	28	268	28	427
P02＇	26	268	26	427
P03	12	$174 * 1$	13	$277 * 1$
P03＇	12	$174 * 1$	12	$277 * 1$
P04	12	268	13	427
P04＇	12	268	12	427
P05	41	$161 * 2$	57	$256 * 2$
P05＇	36	$161 * 2$	52	$256 * 2$
P06	29	268	33	427
P06＇	67	268	82	427
P07	106	268	177	427
P07＇	142	268	214	427
P08	116	268	187	427
P08＇	132	268	204	427

注記 $* 1$ ：継手効率 を乗じた値を示す。
注記 $* 2$ ：継手効率 $\longrightarrow$ を乗じた値を示す。

VI－2－3－3－2－7 燃料支持金具の耐震性についての計算書

## 目次

1．一般事項 ..... 1
1.1 記号の説明 ..... 1
1．2 形状•寸法•材料 ..... 1
1．3 解析範囲 ..... 1
1．4 計算結果の概要 ..... 1
2．計算条件 ..... 5
2.1 設計条件 ..... 5
2.2 運転条件 ..... 5
2．3 材料 ..... 5
2.4 荷重の組合せ及び許容応力状態 ..... 5
2.5 荷重の組合せ及び応力評価 ..... 5
2． 6 許容応力 ..... 5
2.7 応力の記号と方向 ..... 5
3．応力計算 ..... 6
3.1 応力評価点 ..... 6
3．2 差圧による応力 ..... 6
3．2．1 荷重条件 ..... 6
3．2．2 計算方法 ..... 6
3.3 外荷重による応力 ..... 7
3．3．1 荷重条件 ..... 7
3．3．2 計算方法 ..... 7
3．4 応力の評価 ..... 7
4．応力強さの評価 ..... 8
4.1 一次一般膜応力強さの評価 ..... 8
4.2 一次一般膜十一次曲げ応力強さの評価 ..... 8
図 1－1 形状•寸法•材料•応力評価点 ..... 2
図 3－1 中央燃料支持金具の差圧による応力計算モデル ..... 9
図 3－2 中央燃料支持金具の外荷重による応力計算モデル ..... 9
表 1－1 計算結果の概要 ..... 4
表 3－1 断面性状 ..... 10
表 4－1 一次一般膜応力強さの評価のまとめ ..... 11
表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ ..... 12

## 1．一般事項

本計算書は，燃料支持金具の応力計算について示すものである。
燃料支持金具は，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

燃料支持金具は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
1.1 記号の説明

記号の説明を「応力解析の方針」（1）耐震評価編の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号	記号の説明	単位
A	断面積	$\mathrm{mm}^{2}$
D i	内径	mm
D 。 2	外径	mm
I	断面二次モーメント	$\mathrm{mm}^{4}$

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1 に示す。

1．3 解析範囲
解析範囲を図1－1 に示す。
1.4 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。


図1－1（1）形状•寸法•材料•応力評価点（単位：mm）


図1－1（2）形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－3－2－7 R 2

表 1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜 + 一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
中央燃料支持金具 SCS19A	III ${ }_{\text {A }} \mathrm{S}$	22	173	P01＇－P02＇	22	259	P01＇－P02＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	34	248	P01＇－P02＇	34	372	P01＇－P02＇
周辺燃料支持金具 SUS316LTP	$\mathrm{III}_{\text {A }} \mathrm{S}$	12	85＊	P03＇－P04＇	12	128＊	P03＇－P04＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	19	$137 *$	P03＇－P04＇	19	205＊	P03－－P04＇

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の 4.1 節に示す。

2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の 3.3 節に示 す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の 4.4 節に示す。
2.6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の3．4節に示す。
溶接部の継手効率を「応力解析の方針」（1）耐震評価編の 3.6 節に示す。
2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。
$\sigma$ t ：周方向応力
$\sigma_{\ell}$ ：軸方向応力
$\sigma$ r ：半径方向応力
$\tau_{\mathrm{te}}$ ：せん断応力


3．応力計算
3.1 応力評価点

応力評価点の位置を図 $1-1$ に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。

## 3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，「応力解析の方針」（1）耐震評価編の参照図書（1）a． に定めるとおりである。

3．2．2 計算方法
中央燃料支持金具の差圧による応力は，応力評価点の位置における断面で，外径 を $\square \mathrm{mm}$ とし，かつ厚さが最小となる円筒を考え計算する。中央燃料支持金具の差圧による応力計算のモデルを図 3－1に示す。周辺燃料支持金具の差圧による応力は，応力評価点の位置における断面の円筒 を考え計算する。
（1）一次一般膜応力
差圧 $\mathrm{P}_{13}$ による一次一般膜応力は，次式で求める。

$$
\begin{aligned}
& \sigma_{\mathrm{t}}=\frac{1}{\mathrm{Y}-1} \cdot \mathrm{P}_{13} \\
& \sigma_{\ell}=\frac{1}{\mathrm{Y}^{2}-1} \cdot \mathrm{P}_{13} \\
& \sigma_{\mathrm{r}}=-\frac{1}{\mathrm{Y}+1} \cdot \mathrm{P}_{13}
\end{aligned}
$$

ここで， $\mathrm{Y}=\frac{\mathrm{D}_{\mathrm{o}}}{\mathrm{D}_{\mathrm{i}}}$
（2）一次一般膜＋一次曲げ応力
差圧による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

## 3.3 外荷重による応力

3．3．1 荷重条件（L04，L14 及び L16）
外荷重を「応力解析の方針」（1）耐震評価編の表 4－1（6）に示す。

3．3．2 計算方法
中央燃料支持金具の外荷重による応力は，応力評価点の位置における断面にお いて，その断面の最小板厚及び内幅を用いて算出される最小外径 $\square \mathrm{mm}$ の円筒 を考え計算する。

中央燃料支持金具の外荷重による応力計算のモデルを図3－2に示す。
周辺燃料支持金具の外荷重による応力は，応力評価点の位置における断面の円筒を考え計算する。
（1）一次一般膜応力
外荷重による一次一般膜応力は，次式で求める。

$$
\begin{aligned}
& \sigma_{\ell}=\frac{V}{A}+\frac{M}{I} \cdot \frac{D_{o}}{2} \\
& \tau_{\mathrm{t} \ell}=\frac{\mathrm{H}}{\mathrm{~A}}
\end{aligned}
$$

（2）一次一般膜 + 一次曲げ応力
外荷重による一次曲げ応力は，存在しない。したがって，一次一般膜 + 一次曲げ応力は，一次一般膜応力と同じである。

## 3.4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとお りである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1に示す。
表 4－1より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.4 節及び 3.6 節に示す許容応力を満足する。
4.2 一次一般膜 + 一次曲げ応力強さの評価各許容応力状態における評価を表4－2に示す。

表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.4 節及び 3.6 節に示す許容応力を満足する。


図 3－1 中央燃料支持金具の差圧による応力計算モデル（単位：mm）


図 3－2 中央燃料支持金具の外荷重による応力計算モデル（単位：mm）

## 表 3－1 断面性状

応力評価点	$\mathrm{D}_{\mathrm{o}}$   $(\mathrm{mm})$	$\mathrm{D}_{\mathrm{i}}$   $(\mathrm{mm})$	A   $\left(\mathrm{mm}^{2}\right)$	I   $\left(\mathrm{mm}^{4}\right)$		
$\mathrm{P} 01, \mathrm{P} 02^{*}$					$\quad$	
:---						
$\mathrm{P} 03, \mathrm{P} 04$						

注記＊：上段は差圧による応力計算モデルの断面性状を示し，下段は外荷重による応力計算モデルの断面性状を示す。

表 4－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	17	173	29	248
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	22	173	34	248
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	10	85＊	16	137＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	12	85＊	19	137＊
注記 $*$ ：継手効率		を乗じた値を示す。		

[^1]表 4－2 一次一般膜＋一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 III $_{A} \mathrm{~S}$		許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	17	259	29	372
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	22	259	34	372
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	10	128＊	16	205＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	12	128＊	19	205＊
注記 $*$ ：継手効率				

VI－2－3－3－2－8 制御棒案内管の耐震性についての計算書

## 目次

1．一般事項 ..... 1
1．1 記号の説明 ..... 1
1．2 形状•寸法•材料 ..... 1
1．3 解析範囲 ..... 1
1．4 計算結果の概要 ..... 1
2．計算条件 ..... 4
2.1 設計条件 ..... 4
2.2 運転条件 ..... 4
2． 3 材料 ..... 4
2． 4 荷重の組合せ及び許容応力状態 ..... 4
2.5 荷重の組合せ及び応力評価 ..... 4
2.6 許容応力 ..... 4
2.7 応力の記号と方向 ..... 4
3．応力計算 ..... 5
3.1 応力評価点 ..... 5
3.2 差圧による応力 ..... 5
3．2．1 荷重条件 ..... 5
3．2．2 計算方法 ..... 5
3.3 外荷重による応力 ..... 5
3．3．1 荷重条件 ..... 5
3．3．2 計算方法 ..... 5
3．4 応力の評価 ..... 6
4．応力強さの評価 ..... 7
4.1 一次一般膜応力強さの評価 ..... 7
4.2 一次一般膜＋一次曲げ応力強さの評価 ..... 7

## 図表目次

図 1－1 形状•寸法•材料•応力評価点 ..... 2
表 1－1 計算結果の概要 ..... 3
表 3－1 断面性状 ..... 8
表 4－1 一次一般膜応力強さの評価のまとめ ..... 9
表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ ..... 10

1．一般事項
本計算書は，制御棒案内管の応力計算について示すものである。
制御棒案内管は，炉心支持構造物であるため，添付書類「VI－2－3－3－2－1 炉心支持構造物の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

制御棒案内管は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
1.1 記号の説明

記号の説明を「応力解析の方針」（1）耐震評価編の 2.4 節に示す。
さらに，本計算書において，以下の記号を用いる。

記号		記号の説明
A	断面積	単位
Z	断面係数	$\mathrm{mm}^{2}$
$\mathrm{~mm}^{3}$		

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1 に示す。

1．3 解析範囲
解析範囲を図1－1 に示す。

1．4 計算結果の概要
計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。


図 1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－3－2－8 R 2

表 1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次一般膜＋一次曲げ応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面
長手中央部   SUS316L	III ${ }_{\text {A }} \mathrm{S}$	36	142	P01－P02	36	214	P01－P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	228	P01－P02	81	343	P01－P02
下部溶接部 SUS316L	III ${ }_{A} \mathrm{~S}$	9	92＊	P03－P04	9	139＊	P03－P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	12	148＊	P03－P04	12	223＊	P03－P04
注記 $*$ ：継手効	を乗じた値を示す。						

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。
2.4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の 3.3 節に示 す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。
2.6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の3．4節に示す。
溶接部の継手効率を「応力解析の方針」（1）耐震評価編の 3.6 節に示す。

## 2.7 応力の記号と方向

応力の記号とその方向は，以下のとおりとする。

## $\sigma$ t ：周方向応力

$\sigma \ell:$ 軸方向応力
$\sigma \mathbf{r}$ ：半径方向応力
$\tau \ell r:$ せん断応力


3．応力計算
3.1 応力評価点

応力評価点の位置を図1－1に示す。
なお，各応力評価点の断面性状は，表3－1に示すとおりである。

## 3.2 差圧による応力

3．2．1 荷重条件（L02）
各運転状態による差圧は，「応力解析の方針」（1）耐震評価編の4．2節に示す。

3．2．2 計算方法
差圧による一次応力の計算は，計算機コード「A－SAFIA」を用いて行う。 なお，評価に用いる計算機コードの概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。
3.3 外荷重による応力

3．3．1 荷重条件（L04，L14及び L16）
外荷重を「応力解析の方針」（1）耐震評価編の表4－1（7）に示す。

3．3．2 計算方法
（1）死荷重による応力（L04）
死荷重による一次一般膜応力は，次式で求める。

$$
\sigma_{\ell}=-\frac{\mathrm{V}}{\mathrm{~A}}
$$

（2）地震荷重による応力（L14，L16）
a．鉛直方向地震荷重による応力
鉛直方向地震荷重による一次一般膜応力は，次式で求める。

$$
\sigma_{\ell}=\frac{\mathrm{V}}{\mathrm{~A}}
$$

b．水平方向地震荷重による応力
（a）曲げモーメントによる応力
曲げモーメントによる一次一般膜応力は，次式で求める。

$$
\sigma_{\ell}=\frac{\mathrm{M}}{\mathrm{Z}}
$$

（b）水平力による応力
水平方向地震により生ずる水平力による一次一般膜応力は，次式で求める。

$$
\tau_{\ell \mathrm{r}}=\frac{\mathrm{H}}{\mathrm{~A}}
$$

3．4 応力の評価
各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとお りである。

4．応力強さの評価
4.1 一次一般膜応力強さの評価

各許容応力状態における評価を表4－1 に示す。
表 4－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．4節及び3．6節に示す許容応力を満足する。
4.2 一次一般膜＋一次曲げ応力強さの評価各許容応力状態における評価を表4－2 に示す。
表 4－2 より，各許容応力状態の一次一般膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.4 節及び 3.6 節に示す許容応力を満足する。

表 3－1 断面性状

応力評価点	A   $\left(\mathrm{mm}^{2}\right)$	Z   $\left(\mathrm{mm}^{3}\right)$
$\mathrm{P} 01, \mathrm{P} 02$		
$\mathrm{P} 03, \mathrm{P} 04$		

表 4－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	36	142	81	228
$\begin{aligned} & \text { P01' } \\ & \text { P02 } \end{aligned}$	35	142	80	228
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	9	92＊	12	148＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	7	92＊	11	148＊

表 4－2 一次一般膜 + 一次曲げ応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	36	214	81	343
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	35	214	80	343
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	9	139＊	12	223＊
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	7	139＊	11	223＊
注記＊：継手効率				

VI－2－3－4 原子炉圧力容器の耐震性についての計算書

VI－2－3－4－1 原子炉圧力容器本体の耐震性についての計算書
VI－2－3－4－2 原子炉圧力容器付属構造物の耐震性についての計算書
VI－2－3－4－3 原子炉圧力容器内部構造物の耐震性についての計算書

VI－2－3－4－1 原子炉圧力容器本体の耐震性についての計算書

VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針
VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書
VI-2-3-4-1-1 原子炉圧力容器の応力解析の方針

まえがき

本書は，原子炉圧力容器の耐震評価及び重大事故等時における強度評価に関する応力解析の方針 を示すものであり，以下の二編により構成している。
（1）耐震評価編
（2）強度評価編
（1）耐震評価編

## 目次

1．概 要 ..... 1
2．一般事項 ..... 2
2． 1 構造計画 ..... 2
2．2 評価方針 ..... 4
2.3 適用規格•基準等 ..... 4
2．4 記号の説明 ..... 5
2.5 計算精度と数値の丸め方 ..... 7
3．計算条件 ..... 8
3.1 評価対象機器 ..... 8
3.2 形状及び寸法 ..... 9
3.3 物性値 ..... 9
3．4 荷重の組合せ及び許容応力状態 ..... 9
3.5 許容応力 ..... 9
3.6 許容応力評価条件 ..... 9
4．荷重条件 ..... 10
4.1 設計条件 ..... 10
4．2 運転条件 ..... 10
4．3 重大事故等時の条件 ..... 10
4．4 荷重の組合せ及び応力評価 ..... 11
5．応力評価の手順 ..... 12
5.1 計算に使用する解析コード ..... 12
5.2 荷重条件の選定 ..... 12
5.3 応力の評価 ..... 12
5．3．1 主応力 ..... 12
5．3．2 応力強さ ..... 12
5．3．3 一次応力強さ ..... 12
5．3．4 一次 + 二次応力強さ ..... 13
5.4 繰返し荷重の評価 ..... 13
5．4．1 疲労解析不要の検討 ..... 13
5．4．2 疲労解析 ..... 13
5.5 特別な応力の評価 ..... 14
5．5．1 純せん断応力の評価 ..... 14
5．5．2 支圧応力の評価 ..... 14
5．5．3 座屈の評価 ..... 14
5.6 原子炉圧力容器基礎ボルトの評価 ..... 15
6．評価結果の添付 ..... 16
6.1 応力評価結果 ..... 16
6.2 繰返し荷重の評価結果 ..... 17
7．引用文献 ..... 18
8．参照図書 ..... 18

## 図表目次

図 2－1 原子炉圧力容器の耐震評価フロ ..... 4
図 3－1 全体断面図 ..... 19
図 4－1 運転状態Vにおける差圧 ..... 20
表 2－1 原子炉圧力容器の構造計画 ..... 3
表 2－2 表示する数値の丸め方 ..... 7
表 3－1 繰返し荷重の評価に使用する材料の物性値… ..... 21
表 3－2 荷重の組合せ及び許容応力状態•• ..... 22
表 3－3 許容応力（クラス 1 容器及び重大事故等クラス 2 容器） ..... 24
表 3－4 許容応力（クラス 1 支持構造物及び重大事故等クラス 2 支持構造物） ..... 25
表3－5 許容応力評価条件． ..... 26
表 4－1 外荷重 ..... 27
表 4－2 荷重の組合せ ..... 39
表 5－1 繰返しピーク応力強さの割増し方法 ..... 40

## 1．概要

本書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針 に基づき，原子炉圧力容器（原子炉圧力容器支持スカート及び原子炉圧力容器基礎ボルトを含 む）の耐震評価に関する応力解析の方針を説明するものである。

設計用地震力を除く荷重による原子炉圧力容器本体の応力評価は，平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類（参照図書（1））に，原子炉圧力容器基礎ボルト の応力評価の手順は，平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付書類 （参照図書（2））による。

注1：本書に記載していない特別な内容がある場合は，添付書類「VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書」（以下「耐震計算書」という。）に示す。

注 2 ：図表は，原則として巻末に示す。
注3：平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類（参照図書（1））及び平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付書類（参照図書（2））は以下「既工認」という。

2．一般事項

## 2.1 構造計画

原子炉圧力容器の構造計画を表2－1に示す。原子炉圧力容器は，下記の機器により構成される。
（1）胴板
（2）上部鏡板，鏡板フランジ，胴板フランジ及びスタッドボルト
（3）下部鏡板
（4）制御棒駆動機構ハウジング貫通孔
（5）中性子束計測ハウジング貫通孔
（6）再循環水出口ノズル（N1）
（7）再循環水入口ノズル（N2）
（8）主蒸気出口ノズル（N3）
（9）給水ノズル（N4）
（10）低圧炉心スプレイノズル（N5）
（11）低圧注水ノズル（N6）
（12）上蓋スプレイノズル（N7）
（13）ベントノズル（N8）
（14）ジェットポンプ計測管貫通部ノズル（N9）
（15）差圧検出・ほう酸水注入ノズル（N11）
（16）計装ノズル（N12，N13，N14）
（17）ドレンノズル（N15）
（18）高圧炉心スプレイノズル（N16）
（19）ブラケット類
（20）原子炉圧力容器支持スカート
（21）原子炉圧力容器基礎ボルト

表2－1 原子炉圧力容器の構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
原子炉圧力容器を原子炉圧力容器支持スカートが支持す る。また，原子炉圧力容器支持スカートは原子炉圧力容器基礎ボルトにて原子炉本体基礎に固定される。	原子炉圧力容器は，胴板，上部鏡板，鏡板フランジ，胴板 フランジ及びスタッドボル   ト，下部鏡板，制御棒駆動機構ハウジング貫通孔，中性子束計測ハウジング貫通孔，再循環水出口ノズル，再循環水入口ノズル，主蒸気出口ノズ ル，給水ノズル，低圧炉心ス プレイノズル，低圧注水ノズ ル，上蓋スプレイノズル，ベ ントノズル，ジェットポンプ計測管貫通部ノズル，差圧検出・ほう酸水注入ノズル，計装ノズル，ドレンノズル，高圧炉心スプレイノズル，ブラ ケット類，原子炉圧力容器支持スカート，原子炉圧力容器基礎ボルトより構成される。	

## 2． 2 評価方針

原子炉圧力容器の構造強度評価は，添付書類「VI－2－1－9 機能維持の基本方針」及び「3．計算条件」にて設定した荷重及び荷重の組合せ並びに許容応力に基づき，「2．1 構造計画」 にて示す原子炉圧力容器の各機器の耐震計算書にて設定する箇所において，「4．荷重条件」 にて設定した荷重に基づく応力等が許容応力内に収まることを，「5．応力評価の手順」に示 す方法にて確認することで実施する。確認結果を耐震計算書に示す。

原子炉圧力容器の耐震評価フローを図2－1に示す。


図2－1 原子炉圧力容器の耐震評価フロー

## 2.3 適用規格•基準等

適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針 J E A G 4 6 0 1－1987（日本電気協会）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編 J E A G 4 6 O 1 •補— 1984 （日本電気協会）
（3）原子力発電所耐震設計技術指針 J E A G 4 6 O 1－1991 追補版（日本電気協会）（以降
「JEAG4601」と記載しているものは上記3指針を指す。）
（4）発電用原子力設備規格（設計•建設規格（2005年版（2007年追補版含む。））J S ME S N C 1－2005／2007）（日本機械学会 2007年9月）（以下「設計•建設規格」とい う。）

注：本書及び耐震計算書において，設計•建設規格の条項は「設計•建設規格 $\triangle \Delta \Delta \Delta(\diamond)$ a．（a）」として示す。

## 2.4 記号の説明

本書及び耐震計算書において，以下の記号を使用する。ただし，本書及び耐震計算書中に別途記載ある場合は，この限りでない。

記号	記号の説明	単位
A 0	簡易弾塑性解析に使用する係数	－
a	簡易弾塑性解析に使用する係数	－
B 0	簡易弾塑性解析に使用する係数	－
E	縦弾性係数	MPa
E 0	設計疲労線図に使用されている縦弾性係数	MPa
$f_{\text {t }}$ 。	引張力のみを受ける基礎ボルトの許容引張応力	MPa
$f_{\text {s b }}$	せん断力のみを受ける基礎ボルトの許容せん断応力	MPa
$f_{\text {st }}$	基礎ボルトの許容組合せ応力	MPa
$\mathrm{F}_{\mathrm{x}}$	水平力	N
$\mathrm{F}_{\mathrm{y}}$	鉛直力	N
F ${ }_{z}$	軸力	N
H	水平力	N
i	応力振幅のタイプ	－
K	簡易弾塑性解析に使用する係数	－
K	簡易弾塑性解析に用いる繰返しピーク応力強さの補正係数	－
M	モーメント	$\mathrm{N} \cdot \mathrm{m}$
$\mathrm{M}_{\mathrm{z}}$	ねじりモーメント	$\mathrm{N} \cdot \mathrm{m}$
$\mathrm{Na}_{\mathrm{a}}$	Se〕に対応する許容繰返し回数	回
N ${ }_{\text {c }}$	実際の繰返し回数	回
$\mathrm{P}_{\mathrm{b}}$	一次曲げ応力	MPa
$\mathrm{P}_{\mathrm{L}}$	一次局部膜応力	MPa
$\mathrm{P}_{\mathrm{m}}$	一次一般膜応力	MPa
Q	二次応力	MPa
q	簡易弾塑性解析に使用する係数	－
S d＊	弾性設計用地震動 S d により定まる地震力又はSクラス設備に適用される静的地震力のいずれか大きい方の地震力	－
S s	基準地震動S s こより定まる地震力	－


記号	記号の説明	単位
S	$10^{6}$ 回又は $10^{11}$ 回に対する許容繰返しピーク応力強さ	MPa
$\mathrm{S}_{12}$	主応力差 $\sigma_{1}-\sigma_{2}$	MPa
$\mathrm{S}_{23}$	主応力差 $\sigma_{2}-\sigma_{3}$	MPa
$\mathrm{S}_{31}$	主応力差 $\sigma_{3}-\sigma_{1}$	MPa
So	繰返しピーク応力強さ	MPa
Si	補正繰返しピーク応力強さ	MPa
$\mathrm{S}_{\mathrm{m}}$	設計応力強さ	MPa
$S_{n}$	運転状態I 及びIIにおける一次＋二次応力の応力差最大範囲	MPa
$\mathrm{S}_{\mathrm{n}}{ }^{\text {\＃}}$	地震荷重S d＊による一次十二次応力の応力差最大範囲	MPa
$\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$	地震荷重S s による一次＋二次応力の応力差最大範囲	MPa
$S_{p}$	一次＋二次＋ピーク応力の応力差範囲	MPa
$S_{p}{ }^{\# 1}$	地震荷重S d＊による一次＋二次＋ピーク応力の応力差範囲	MPa
Sp\＃${ }^{\text {\＃}}$	地震荷重S s による一次＋二次＋ピーク応力の応力差範囲	MPa
$\mathrm{S}_{u}$	設計引張強さ	MPa
$S_{y}$	設計降伏点	MPa
$S_{y}$（RT）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
$\mathrm{Uf}_{f}$	疲労累積係数（ $\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\text {d }}$ 又は $\left.\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\text {s }}\right)$	－
$\mathrm{U}_{\mathrm{n}}$	運転状態I 及びIIにおける疲労累積係数	－
Us d	地震荷重S d＊による疲労累積係数	－
Us s	地震荷重S s による疲労累積係数	－
V	鉛直力	N
$\alpha$	形状係数（純曲げによる全断面降伏荷重と初期降伏荷重の比，又は 1．5のいずれか小さい方の値）	－
$\sigma_{1}$	主応力	MPa
$\sigma_{2}$	主応力	MPa
\％ 3	主応力	MPa


記号	記号の説明	単位
$\sigma$ b	引張応力	MPa
$\sigma$ e	軸方向応力	MPa
$\sigma$ r	半径方向応力	MPa
$\sigma{ }_{\text {t }}$	周方向応力	MPa
$\tau$ b	せん断応力	MPa
$\tau_{\ell r}$	せん断応力	MPa
$\tau \mathrm{rt}$	せん断応力	MPa
$\tau$ te	せん断応力	MPa
$\mathrm{III}_{A} \mathrm{~S}$	設計•建設規格の供用状態 C 相当の許容応力を基準として，それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態	－
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	設計•建設規格の供用状態 D 相当の許容応力を基準として，それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態	－
$\mathrm{V}_{A} \mathrm{~S}$	運転状態V（重大事故等時の状態）相当の応力評価を行う許容応力状態を基本として，それに地震により生じる応力に対する特別な応力の制限を加えた許容応力状態	－

## 2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表2－2に示すとおりである。

表2－2 表示する数値の丸め方

数値の種類	単位	処理析	処理方法	表示桁
地震荷重	$-* 1$	有効数字 4 桁目	切上げ	有效数字 3 桁目 $* 2$
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
応力強さ	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊3	MPa	小数点以下第 1 位	切捨て	整数位
座屈の評価	-	小数点以下第 3 位	切上げ	小数点以下第 2 位 $* 4$
疲学累積係数	-	小数点以下第 4 位	切上げ	小数点以下第 3 位 $* 4$

注記＊1：機器毎に考慮する荷重に応じた単位を適用する。
＊2：差圧検出・ほう酸水注入ノズル（N11），ドレンノズル（N15）及びノズルサーマル スリーブの表示桁は小数点以下第 2 位とし，上記以外のノズルの表示桁は地震荷重以外の外荷重の表示桁に合わせる。なお，処理方法は切上げとする。
＊3：設計•建設規格 付録材料図表に記載された温度の中間における許容応力は，比例法 により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。
＊4：許容値の表示桁は評価結果の表示桁に合わせる。

## 3．計算条件

## 3.1 評価対象機器

応力評価を行う機器は，次のとおりである。（表2－1及び図3－1参照）


注：「○」は評価対象，「×」は評価対象外を示す。
注記＊1：作用する主たる荷重は内圧であり，地震力を負担するような部位ではなく，既工認からの変更はない ため，評価対象機器としない。
＊2：結果が厳しくなる制御棒駆動機構ハウジング貫通孔を代表として評価するため，評価対象機器としな い。
＊3：設計基準対象施設としてのみ申請する施設
＊ 4 ：使用条件が一時的（機器搬出入時又は事故時の蒸気乾燥器浮上がり等）なものであり，通常運転時に外荷重が作用せず，既工認からの変更はないため，評価対象機器としない。
＊5：クラス1管であるが，設計•建設規格 PPB－3112の規定により，クラス1容器として，本応力解析 の方針を適用する。

## 3.2 形状及び寸法

各部の形状及び寸法は，耐震計算書に示す。

## 3.3 物性値

地震荷重による繰返し荷重の評価に使用する材料の物性値を表3－1に示す。
3.4 荷重の組合せ及び許容応力状態

原子炉圧力容器の荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価に用い るものを表3－2（1）に，重大事故等対処設備の評価に用いるものを表3－2（2）に示す。また，各許容応力状態で考慮する荷重は，4章に示すとおりである。

なお，原子炉圧力容器については，重大事故等対処設備の耐震評価は，設計基準対象施設の耐震評価に包絡される。

## 3.5 許容応力

（1）原子炉圧力容器の許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づ き表3－3に示す。この表に記載のない圧縮荷重を受ける場合に対する許容応力は，耐震計算書に記載するものとする。
（2）原子炉圧力容器基礎ボルトの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表3－4に示す。

## 3.6 許容応力評価条件

（1）設計応力強さ $\mathrm{S}_{\mathrm{m}}$ ，設計降伏点 $\mathrm{S}_{\mathrm{y}}$ 及び設計引張強さ $\mathrm{S}_{\mathrm{u}}$ は，それぞれ設計•建設規格 付録材料図表 Part5 表1，表2，表8及び表9に定められたものを使用する。
（2）許容応力状態 $I I I_{A} \mathrm{~S}$ 及び許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の一次応力の評価には，運転状態 I 及びII における流体の最高温度 $冖$ に対する許容応力を用いる。また，許容応力状態III ${ }_{A} \mathrm{~S}$ 及び許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ の一次 + 二次応力及び繰返し荷重の評価には，運転温度とし て定格出力運転時の蒸気温度 $\square$ に対する許容応力を用いる。
（3）原子炉圧力容器の許容応力評価条件を表3－5に示す。
なお，原子炉圧力容器基礎ボルトの許容応力評価条件及び各機器で使用される材料は，耐震計算書に示す。

4．荷重条件
原子炉圧力容器は，以下の荷重条件に耐えることを確認する。
各機器の応力評価には，本章に示す荷重を考慮する。

4．1 設計条件
設計条件は既工認からの変更はなく，参照図書（1）a．に定めるとおりである。

## 4．2 運転条件

運転条件及び記号は，既工認からの変更はなく，参照図書（1）a．に定めるとおりである。
各機器の応力評価において考慮する外荷重の値を表4－1に示す。
原子炉圧力容器の評価に用いる設計用地震力は，添付書類「VI－2－1－7 設計用床応答曲線の作成方針」及び「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並 びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」により求めた荷重，若 しくはそれらの条件を包絡する様に定めた保守的な荷重とする。

また，地震荷重S d＊及び地震荷重S S の繰返し回数は，地震動に対する応答特性等を考慮して，地震荷重 S d＊は590回，地震荷重 S s は 340 回とする。

## 4．3 重大事故等時の条件

重大事故等時の条件は以下のとおりである。

## 4． 4 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価項目の対応を表4－2に示す。表4－2及び耐震計算書において，荷重の種類と記号は以下のとおりである。

なお，荷重の組合せについては，機器ごとに適切に組み合わせる。

荷重記号
（1）内圧
（2）差圧
（3）死荷重
（4）熱変形力（熱膨張差により生じる荷重）
（5）活荷重（流体反力，スクラム反力及びその他機器作動時に働く荷重）
（6）熱負荷
（7）ボルト締結力
（8）配管又は機器の地震時の慣性力による地震荷重 S d＊（一次荷重）
（9）配管又は機器の拘束点の地震時の相対変位による地震荷重 $\mathrm{S}_{\mathrm{d}} \mathrm{d}^{*}$（二次荷重）
（10）配管又は機器の地震時の慣性力による地震荷重 S s（一次荷重）
（11）配管又は機器の拘束点の地震時の相対変位による地震荷重S s（二次荷重）
（12）外荷重（運転状態 I 及びIIにおける荷重）
［L12，L13，L18，L19］
（13）外荷重（運転状態 Vにおける荷重）

5．応力評価の手順
応力評価の手順について述べる。
5.1 計算に使用する解析コード

解析コードは「A－SAFIA」，「PIPE」，「STAX」及び「ASHSD」を用いる。なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5計算機プログラム（解析コード）の概要」に示す。
5.2 荷重条件の選定

応力解析においては，4章に示した荷重条件のうちから，その部分に作用する荷重 を選定して計算を行う。

## 5.3 応力の評価

5．3．1 主応力
計算した応力は，応力の分類ごとに重ね合わせ，組合せ応力を求める。
組合せ応力は，一般に $\sigma_{\mathrm{t}}, ~ \sigma_{\ell}, \sigma_{\mathrm{r}}, \tau_{\mathrm{t} \ell}, \tau_{\ell \mathrm{r}}, \tau_{\mathrm{r}}{ }_{\mathrm{t}}$ の6成分を持つが，主応力 $\sigma$ は，引用文献（1）の1．3．6項により，次式を満足する3根 $\sigma_{1}, ~ \sigma_{2}, ~ \sigma_{3}$ として計算する。

$$
\begin{aligned}
& \sigma^{3}-\left(\sigma_{\mathrm{t}}+\sigma_{\ell}+\sigma_{\mathrm{r}}\right) \cdot \sigma^{2}+\left(\sigma_{\mathrm{t}} \cdot \sigma_{\ell}+\sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{r}} \cdot \sigma_{\mathrm{t}}-\tau_{\mathrm{t} \ell}{ }^{2}\right. \\
& \left.-\tau_{\ell \mathrm{r}}^{2}-\tau_{\mathrm{rt}}^{2}\right) \cdot \sigma-\sigma_{\mathrm{t}} \cdot \sigma_{\ell} \cdot \sigma_{\mathrm{r}}+\sigma_{\mathrm{t}} \cdot \tau_{\ell \mathrm{r}}^{2}+\sigma_{\ell} \cdot \tau_{\mathrm{rt}^{2}}^{2} \\
& +\sigma_{\mathrm{r}} \cdot \tau_{\mathrm{t} \ell}{ }^{2}-2 \cdot \tau_{\mathrm{t} \ell} \cdot \tau_{\ell \mathrm{r}} \cdot \tau_{\mathrm{rt}}=0
\end{aligned}
$$

上式により主応力を求める。

5．3．2 応力強さ
以下の 3 つの主応力差の絶対値で最大のものを応力強さとする。

$$
\begin{aligned}
& \mathrm{S}_{12}=\sigma_{1}-\sigma_{2} \\
& \mathrm{~S}_{23}=\sigma_{2}-\sigma_{3} \\
& \mathrm{~S}_{31}=\sigma_{3}-\sigma_{1}
\end{aligned}
$$

## 5．3．3 一次応力強さ

許容応力状態 $I I I_{A} S$ 及び許容応力状態 $V_{A} S$ において生じる一次一般膜応力，一次局部膜応力及び一次膜＋一次曲げ応力の応力強さが，3．5節に示す許容応力を満足することを示 す。

ただし，一次局部膜応力より一次膜＋一次曲げ応力の方が発生値及び許容応力の観点で厳しくなることから，一次局部膜応力強さの評価については省略する。

5．3．4 一次 + 二次応力強さ
許容応力状態 $I I I_{A} S$ 及び許容応力状態 $V_{A} S$ において生じる一次 + 二次応力の応力差最大範囲 （ $\left.S_{n}{ }^{\# 1}, ~ S_{n}{ }^{\# 2}\right)$ が， 3.5 節に示す許容応力を満足することを示す。
本規定を満足しない応力評価点については，5．4節で述べる設計•建設規格 PVB－3300に基づいた簡易弾塑性解析を行ら。

## 5.4 繰返し荷重の評価

繰返し荷重の評価は，運転状態 I 及びIIによる荷重並びに許容応力状態 $I I I_{A} S$ 及び許容応力状態 $V_{\mathrm{A}} \mathrm{S}$ による荷重を用いて，次の方法によって行う。

## 5．4．1 疲労解析不要の検討

本項の検討は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，設計•建設規格 PVB－3140（6）を満たすことを示す。

## 5．4．2 疲労解析

以下の手順で疲労解析を行う。
（1）運転状態 I 及びIIにおいて生じる一次＋二次＋ピーク応力の応力差の変動並びに許容応力状態 $I I I I_{A} S$ 及び許容応力状態 $V_{A} S$ において生じる一次 + 二次 + ピーク応力の応力差の変動を求める。また，この変動の繰返し回数として，参照図書（1）a．に示す各運転条件の繰返し回数及び 4.2 節に示す地震荷重の繰返し回数を考慮する。
（2）応力差の変動とその繰返し回数より，一次 + 二次 + ピーク応力の応力差範囲 （ $\mathrm{S}_{\mathrm{p}}, ~ \mathrm{~S}_{\mathrm{p}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{p}}{ }^{\# 2}$ ）及びこの応力振幅の繰返し回数を求める。
（3）繰返しピーク応力強さは，次式により求める。

$$
\mathrm{S}_{e}=\frac{\mathrm{S}_{\mathrm{p}}}{2}
$$

ただし，一次＋二次応力の応力差最大範囲（ $S_{n}$ ，$S_{n}{ }^{\# 1}$ 又は $S_{n}{ }^{\# 2}$ ）が3• $S_{m}$ を超える応力評価点については，設計•建設規格 PVB－3300の簡易弾塑性解析の適用性の検討を行い，適合する場合は，表5－1に示す方法により繰返しピーク応力強 さの割増しを行う。
（4）設計疲労線図に使用している縦弾性係数（E o）と解析に用いる縦弾性係数（E） との比を考慮し，繰返しピーク応力強さを次式で補正する。

$$
\begin{aligned}
& \mathrm{S}_{\ell}=\mathrm{S}_{\ell} \cdot \frac{\mathrm{E}_{0}}{\mathrm{E}} \\
& \text { なお, } \mathrm{E} \text { と } \mathrm{E}_{0} \text { は表3-1に示す。 }
\end{aligned}
$$

（5）疲労累積係数（ $\mathrm{U}_{\mathrm{f}}$ ）
疲労累積係数（ $\mathrm{U}_{\mathrm{f}}$ ）は， $\mathrm{S}_{\mathrm{e}}{ }^{\prime}$ に対応する許容繰返し回数が $10^{6}$ 回以下（低合金鋼及び炭素鋼）又は $10^{11}$ 回以下（オーステナイト系ステンレス鋼及び高ニッケル合金）となる応力振幅について，次式により求める。設計•建設規格 PVB－3114又は PVB－3315に従って，運転状態I 及びIIにおける疲労累積係数 $U_{\mathrm{n}}$ と許容応力状態 III $_{A} S$ における疲労累積係数 $U_{S d}$ 又は許容応力状態 $V_{A} S$ における疲労累積係数 $\mathrm{U}_{\mathrm{s}}$ の和 $\mathrm{U}_{\mathrm{f}}\left(\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{sd}}\right.$ 又は $\left.\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{s}}\right)$ が，1以下であることを示す。 オーステナイト系ステンレス鋼及び高ニッケル合金の場合，繰返しピーク応力強 さ194MPa以下の設計疲労線図は，設計•建設規格 表 添付4－2－2の曲線Cを用い る。

$$
\text { 疲労累積係数 }\left(\mathrm{U}_{\mathrm{f}}\right)=\sum_{\mathrm{i}=1}^{\mathrm{k}} \frac{\mathrm{~N}_{\mathrm{c}}(\mathrm{i})}{\mathrm{N}_{\mathrm{a}}(\mathrm{i})}
$$

## 5．5 特別な応力の評価

5．5．1 純せん断応力の評価
純せん断荷重を受ける部分は，設計•建設規格 PVB－3115により評価する。解析箇所を以下に示す。評価方法は参照図書（1）u．に示し，許容応力は表3－3に示す。
（1）ブラケット類

5．5．2 支圧応力の評価
支圧荷重を受ける部分は，設計•建設規格 PVB－3116により評価する。解析箇所を以下 に示す。評価方法及び許容応力は，耐震計算書に示す。
（1）胴板

## 5．5．3 座屈の評価

軸圧縮荷重を受ける部分は，設計•建設規格 PVB－3117あるいはJEAG4601に基 づき評価する。解析箇所を以下に示す。評価方法及び許容応力は，耐震計算書に示す。
（1）制御棒駆動機構ハウジング貫通孔スタブチューブ
（2）原子炉圧力容器支持スカート

## 5.6 原子炉圧力容器基礎ボルトの評価

原子炉圧力容器基礎ボルトの評価方法は参照図書（2）に示す。基礎ボルトは引張応力とせん断力を同時に受けるため，引張応力 $\sigma$ b は次式より求めた許容引張応力 $f_{\mathrm{t}} \mathrm{s}$ 以下であること。 ただし，$f_{\mathrm{t}}$ 。は下表による。

$$
f_{\mathrm{ts}}=\operatorname{Min} .\left(1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right)
$$

せん断応力 $\tau_{\mathrm{b}}$ はせん断力のみを受ける基礎ボルトの許容せん断応力 $f_{\mathrm{s}} \mathrm{b}$ 以下であること。 ただし，$f_{\mathrm{s} \text { bは下表による。 }}$

	弾性設計用地震動 S d 又は静的   震度による荷重との組合せの場合	基準地震動 S s による   荷重との組合せの場合
許容引張応力   $f_{\mathrm{to}}$	$\frac{\mathrm{F}}{2} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{2} \cdot 1.5$
許容せん断応力   $f_{\mathrm{sb}}$	$\frac{\mathrm{F}}{1.5 \sqrt{3}} \cdot 1.5$	$\frac{\mathrm{~F}^{*}}{1.5 \sqrt{3}} \cdot 1.5$

［記号の説明］

$$
\begin{array}{lll}
\mathrm{F} & : \text { 設計•建設規格 } & \mathrm{SSB}-3121.1 \text { (1)に定める値 } \\
\mathrm{F}^{*} & \text { : 設計•建設規格 } & \mathrm{SSB}-3133 \text { に定める値 }
\end{array}
$$

6．評価結果の添付
応力評価点番号は，機器ごとに記号P01からの連番とする。奇数番号を内面の点，偶数番号を外面の点として，耐震計算書の形状•寸法•材料•応力評価点を示す図において定義する。 なお，軸対称モデル解析において，非軸対称な外荷重による応力評価を行った場合，荷重の入力方位と応力評価点の方位の関係により応力に極大値と極小値が生じる。外荷重による応力 が極大となる方位の応力評価点は［例 P01］と表し，極小となる方位の応力評価点にはプライ ム（’）を付けて［ 例 P01’］と表す。

一次応力の評価は，内外面の応力評価点を含む断面（応力評価面）について行う。


## 6． 1 応力評価結果

（1）次の応力評価結果は，全応力評価点（面）について添付する。
a．一次一般膜応力強さの評価のまとめ
b．一次膜 + 一次曲げ応力強さの評価のまとめ
c．一次 + 二次応力強さの評価のまとめ
d．疲労累積係数の評価のまとめ
（2）次の特別な評価は，対象となるすべての部位について評価し，結果を記載する。
a．純せん断応力
b．支圧応力
c．座屈
（3）原子炉圧力容器基礎ボルトの評価は，次の応力評価結果を記載する。
a．引張応力
b．せん断応力

## 6.2 繰返し荷重の評価結果

運転状態 I 及びIIにおける疲労累積係数に許容応力状態 $\mathrm{III}_{A} S$ 又は許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$ のいずれ か大きい方の疲労累積係数を加えた値の計算結果については，それぞれの部分で最も厳しい部分について添付する。

7．引用文献
文献番号は，本書及び耐震計算書において共通である。
（1）機械工学便覧 基礎編 $\alpha 3$（日本機械学会）

8．参照図書
（1）女川原子力発電所第 2 号機 第 5 回工事計画認可申請書 添付書類
a．IV－3－1－1－1 原子炉圧力容器の応力解析の方針
b．IV－3－1－1－2 原子炉圧力容器の穴と補強についての計算書
c．IV－3－1－1－3 胴板の応力計算書
d．IV－3－1－1－4 上部鏡板，鏡板フランジ及び胴板フランジの応力計算書
e．IV－3－1－1－5 下部鏡板の応力計算書
f．IV－3－1－1－6 制御棒駆動機構ハウジング貫通孔の応力計算書
g．IV－3－1－1－7 中性子束計測ハウジング貫通孔の応力計算書
h．IV－3－1－1－8 再循環水出口ノズル（N1）の応力計算書
i．IV－3－1－1－9 再循環水入口ノズル（N2）の応力計算書
j．IV－3－1－1－10 主蒸気出口ノズル（N3）の応力計算書
k．IV－3－1－1－11 給水ノズル（N4）の応力計算書
l．IV－3－1－1－12 低圧炉心スプレイノズル（N5）の応力計算書
m．IV－3－1－1－13 低圧注水ノズル（N6）の応力計算書
n．IV－3－1－1－14 上蓋スプレイノズル（N7）の応力計算書
o．IV－3－1－1－15 ベントノズル（N8）の応力計算書
p．IV－3－1－1－16 ジェットポンプ計測管貫通部ノズル（N9）の応力計算書
q．IV－3－1－1－17 差圧検出・ほう酸水注入ノズル（N11）の応力計算書
r．IV－3－1－1－18 計装ノズル（N12，N13，N14）の応力計算書
s．IV－3－1－1－19 ドレンノズル（N15）の応力計算書
t．IV－3－1－1－20 高圧炉心スプレイノズル（N16）の応力計算書
u．IV－3－1－1－21 ブラケット類の応力計算書
v．IV－3－1－3－7 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の応力計算書
（2）女川原子力発電所第 2 号機 第 1 回工事計画認可申請書 添付書類
IV－2－4－1－1 原子炉圧力容器基礎ボルトの耐震性についての計算書


図3－1 全体断面図


P x ：スリーブ内圧力
Py：原子炉圧力容器内圧力
差圧（Pxy）＝Px－Py
（単位：MPa）

部位		運転状態   V
再循環水入口ノズル	（N2）	
給水ノズル	（N4）	
低圧炉心スプレイノズル	（N5）	
低圧注水ノズル	（N6）	
高圧炉心スプレイノズル	（N16）	

図4－1 運転状態Vにおける差圧

表3－1 繰返し荷重の評価に使用する材料の物性値

| 材料 | E <br> $\times 10^{5}$ <br> $(\mathrm{MPa})$ | $\mathrm{S}_{\mathrm{m}}$ | S |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $(\mathrm{MPa})$ | $\mathrm{E}_{0}$ <br> $\times 10^{5}$ <br> $(\mathrm{MPa})$ | q | $\mathrm{A}_{0}$ | $\mathrm{~B}_{0}$ |
| $(\mathrm{MPa})$ |  |  |  |  |$|$

［記号の説明］

E	：運転温度
$\mathrm{S}_{\mathrm{m}}$	：運転温度 $\square$ に対する設計応力強さ
S	：設計•建設規格 表 添付 $4-2-1$ の $\mathrm{S}_{\mathrm{u}} \leqq 550 \mathrm{MPa}$ の $10^{6}$ 回に対する繰返し ピーク応力強さ，設計•建設規格 表 添付4－2－2の曲線Cの $10^{11}$ 回に対する繰返しピーク応力強さ
E 0	：設計•建設規格 添付4－2に記載された縦弾性係数
q， $\mathrm{A}_{0}, \mathrm{~B}_{0}$	：設計•建設規格 表 PVB－3315－1に示された簡易弾塑性解析に使用する係数の値


施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉本体	原子炉圧力容器及び炉心	原子炉圧力容器	S	クラス1容器 $*^{1}$	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	$\mathrm{III}_{A} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}{ }^{*}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	

## ［記号の説明］

D ：死荷重
P ：地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）における圧力荷重
M ：地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）で設備に作用している機械的荷重
$S d^{*}$ ：弾性設計用地震動 S dにより定まる地震力又はSクラス設備に適用される静的地震力のいずれか大きい方の地震力
$\mathrm{P}_{\mathrm{L}} \quad$ ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている圧力荷重
$\mathrm{M}_{\mathrm{L}} \quad$ ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている死荷重及び地震荷重以外の機械的荷重
S s ：基準地震動 S s により定まる地震力

注記＊1：クラス1支持構造物を含む。

表 3－2（2）荷重の組合せ及び許容応力状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊ 1	機器等の区分	荷重の組合せ	許容応力状態
$\begin{gathered} \text { 原子炉 } \\ \text { 本体 } \end{gathered}$	原子炉   圧力容器   及び炉心	原子炉   圧力容器	常設耐震／防止常設／緩和常設   ／防止   （DB拡張）	重大事故等クラス2	$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}$＊	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	
					$\mathrm{D}+\mathrm{P}_{\mathrm{SAL}}+\mathrm{M}_{\mathrm{SAL}}+\mathrm{S} \mathrm{d}$	$\begin{gathered} \mathrm{V}_{\mathrm{A}} \mathrm{~S} \\ \left(\mathrm{~V}_{\mathrm{A}} \mathrm{~S}\right. \text { としてIV許容応力を用い } \\ \text { る。) } \end{gathered}$
					$\mathrm{D}+\mathrm{P}_{\text {SALL }}+\mathrm{M}_{\text {SALL }}+\mathrm{S} \mathrm{s}$	

［記号の説明］
D ：死荷重
$\mathrm{P}_{\mathrm{L}}$ ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている圧力荷重
$\mathrm{M}_{\mathrm{L}}$ ：地震との組合せが独立な運転状態IVの事故の直後を除き，その後に生じている死荷重及び地震荷重以外の機械的荷重
$S d^{*}$ ：弾性設計用地震動 S dにより定まる地震力又はSクラス設備に適用される静的地震力のいずれか大きい方の地震力
P ：地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）又は運転状態Vにおける圧力荷重
M ：地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く）又は運転状態 Vで設備に作用している機械的荷重
S s ：基準地震動 S s により定まる地震力
P SAL ：重大事故等時の状態（運転状態V）で長期的（長期（L））に作用する圧力荷重
$\mathrm{M}_{\mathrm{SAL}}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））に作用する機械的荷重
S d ：弾性設計用地震動 S d により定まる地震力
$P_{\text {SALL }}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））より更に長期的（長期（LL））に作用する圧力荷重
$M_{S A L L}$ ：重大事故等時の状態（運転状態V）で長期的（長期（L））より更に長期的（長期（LL））に作用する機械的荷重
注記＊1：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB拡張）」は常設重大事故防止設備（設計基準拡張）を示す。

表3－3 許容応力（クラス1容器及び重大事故等クラス2容器）

許容応力状態	許容応力＊3					
	一次一般膜応力	- 次膜＋   - 次曲げ応力	一次＋二次応力	$\begin{gathered} \text { 一次 + 二次 + } \\ \text { ピーク応力 } \end{gathered}$	純せん断応力	支圧応力
IIII ${ }_{\text {S }} \mathrm{S}$	$\mathrm{S}_{\mathrm{y}} \text { と } 2 / 3 \cdot \mathrm{~S}_{\mathrm{u}} \text { の小さい方。 }$   ただし，A S S 及びHNAにつ  	左欄の $\alpha$ 倍の値＊1	$3 \cdot \mathrm{~S}_{\mathrm{m}}{ }^{* 2}$   S dまたはS s地震動＊4のみによ る応力振幅につ いて評価する。	S d またはS s地震動＊4 のみに よる疲労解析を行い，運転状態 I及びIIにおける疲労累積係数と の和が 1.0 以下 であること。＊5	$0.6 \cdot \mathrm{~S}_{\mathrm{m}}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}}^{* 6} \\ \left(1.5 \cdot \mathrm{~S}_{\mathrm{y}}\right) \end{gathered}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$2 / 3 \cdot \mathrm{~S}_{\mathrm{u}}$					
$\begin{gathered} \mathrm{V}_{A} S \\ \left(\mathrm{~V}_{A} S \text { としてIV }{ }_{A} S\right. \text { の } \\ \text { 許容応力を用い } \\ \text { る。) } \\ \hline \end{gathered}$	ただし，AS S 及びHNA については $2 / 3 \cdot S_{u}$ と 2.4 • $\mathrm{S}_{\mathrm{m}}$ の小さい方。	左欄の $\alpha$ 倍の値 ${ }^{* 1}$			$0.4 \cdot \mathrm{~S}_{\mathrm{u}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}{ }^{* 6} \\ \left(1.5 \cdot \mathrm{~S}_{\mathrm{u}}\right) \end{gathered}$

注記＊1：設計•建設規格 PVB－3111に基づき，純曲げによる全断面降伏荷重と初期降伏荷重の比または1．5のいずれか小さい方の値（ $\alpha$ ）を用いる。
＊2：3• $\mathrm{S}_{\mathrm{m}}$ を超える場合は弾塑性解析を行う。この場合，設計•建設規格 PVB－3300（PVB－3313を除く）の簡易弾塑性解析を用いる。
＊ 3 ：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略す る。
＊4：クラス 1 容器及び重大事故等クラス 2 容器においては， S d＊または S s 地震力を考慮する。
＊5：設計•建設規格 PVB－3140（6）を満たすときは疲労解析不要。
ただし，PVB－3140（6）の「応力の全振幅」は「S d＊又はS s 地震動による応力の全振幅」と読み替える。


表3－4 許容応力（クラス1支持構造物及び重大事故等クラス2支持構造物）

許容応力状態	許容応力＊1，＊2 （ボルト等）	
	一次応力	
	引張	せん断
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}_{\text {s }}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
$\begin{gathered} V_{A} S \\ \left(V_{A} S \text { としてIV }{ }_{A} S\right. \text { の } \\ \text { 許容応力を用いる) } \end{gathered}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊

［記号の説明］
$\mathrm{f}_{\mathrm{t}}$ ：許容引張応力 ボルト等に対して設計•建設規格 SSB －3131（1）に定める値
$\mathrm{f}_{\mathrm{s}}$ ：許容せん断応力 ボルト等に対して設計•建設規格 SSB－3131（2）に定める値
$\mathrm{f}_{\mathrm{t}}$＊：上記の $\mathrm{f}_{\mathrm{t}}$ の値を算出する際に設計•建設規格 付属材料図表 Part5 表8に定める値とあるのを設計•建設規格 付属材料図表 Part5 表 8 に定める値 の 1.2 倍と読み替えて計算した値

注記 $* 1$ ：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。
＊2：当該の応力が生じない場合，規格基準で省略可能とされてる場合及び他の応力で代表可能である場合は評価を省略する。

表3－5 許容応力評価条件（設計基準対象施設）

評価部位	材料		温度条件   $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
原子炉圧力容器	炭素鋼及び低合金鋼	SQV2A	流体の最高温度				
			運転温度				
		SFVC2B	流体の最高温度				
			運転温度				
		SFVQ1A	流体の最高温度				
			運転温度				
		SGV480	流体の最高温度				
			運転温度				
	オーステナイト系 ステンレス鋼及び高ニッケル合金	SUS316LTP	流体の最高温度				
			運転温度				
		SUSF316	流体の最高温度				
			運転温度				
		NCF600－B	流体の最高温度				
			運転温度				

下部鏡板外荷重（胴板及び圧力容器支持スカートを含む）

記号	荷重名称	運転状態	鉛直力		水平力	モーメント
			$\begin{aligned} & \mathrm{V}_{1}{ }^{* 1} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{aligned} & \mathrm{V}_{2}{ }^{* 2} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
L12	外荷重A	運転状態I 及びII （下記を除く運転時）				
L13	外荷重B	運転状態 I 及びII （スクラム時）				
L18	外荷重C	運転状態 I 及びII （耐圧試験時）				
L21	外荷重E	運転状態V				
L14	地震荷重S					
L16	地震荷重S					

炉心シュラウド支持ロッドから原子炉圧力容器胴板に作用する外荷重

記号	荷重名称		水平力
			$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$
L14	地震荷重S d＊＊	上部ウェッジ	
		下部スタビライザ	
L16	地震荷重S S	上部ウェッジ	
		下部スタビライザ	

表 4－1（3）外荷重

制御棒駆動機構ハウジング貫通孔外荷重

$\begin{aligned} & \text { 記 } \\ & \text { 号 } \end{aligned}$	荷重名称	運転状態	鉛直力		水平力		モーメント	
			$\begin{gathered} \mathrm{V}_{1} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{V}_{2} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{H}_{1} \\ (\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{H}_{2} \\ (\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M}_{1} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
L12	外荷重A	運転状態 I 及びII   （下記を除く運転時）						
L13	外荷重B	運転状態 I 及びII （スクラム時）＊1，＊2						
L18	外荷重C	運転状態I 及びII （バッファ効果なし）＊1						
L19	外荷重D	運転状態I 及びII (ロッドスタック) *1						
L21	外荷重E	運転状態V						
L14	地震荷重	d＊						
L16	地震荷重							

表 4－1（4）外荷重

ノズル外荷重

ノズル	記号	荷重名称	力		モーメント		荷重作   用点   位置   （mm）
			$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{z} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{z} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	
再循環水出ロノズ ル （N1）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（一次）					
	L17	地震荷重 S s（二次）					
再循環水入口ノズ ル （N2）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ ${ }^{\text {c }}$ 次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（一次）					
	L17	地震荷重 S s（二次）					
主蒸気出 ロノズル （N3）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（一次）					
	L17	地震荷重 S s（二次）					
給水ノズ   ル   （N4）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（一次）					
	L17	地震荷重 S s（二次）					
$\begin{aligned} & \text { 低圧, 高 } \\ & \text { 圧炉心ス } \\ & \text { プレイノ } \\ & \text { ズル } \\ & \text { (N5, N16) } \end{aligned}$	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（一次）					
	L17	地震荷重 S s（二次）					

ノズル外荷重


ノズル外荷重

ノズル	記号	荷重名称	力		モーメント		荷重作用点位置 （mm）
			$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{z} \\ & (\mathrm{kN}) \end{aligned}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{z} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	
差 圧 検   出・ほう   酸水注入   ノズル   （N11）＊2	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
計装ノズ   ル   （N12，N   13，N14）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
$\begin{aligned} & \text { ドレン) } \\ & \text { ズル } \\ & \text { (N15) } \end{aligned}$	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					

$\square$

表 4－1（5）外荷重

ノズルサーマルスリーブ荷重

ノズル	記号	荷重名称	力		モーメント		荷重作用点位置 （mm）
			$\begin{gathered} \mathrm{H} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{F}_{z} \\ (\mathrm{kN}) \\ \hline \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	
再循環水入口ノズ ル （N2）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
給水ノズ   ル   （N4）	L04	死荷重					
	L07	熱変形力					
	L14	地震荷重S d＊（					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
低圧，高圧炉心ス プレイノ ズル （N5，N16）	L04	死荷重					
	L07	熱変形力（流れなし）					
	L07	熱変形力（注水時）					
	L14	地震荷重S d＊（ ${ }^{\text {圱次）}}$					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重S s（一次）					
	L17	地震荷重S s（二次）					
低圧注水 ノズル   （N6）	L04	死荷重					
	L07	熱変形力（流れなし）					
	L07	熱変形力（注水時）					
	L14	地震荷重S d＊（ 一次）					
	L15	地震荷重S d＊（二次）					
	L16	地震荷重 S s（ ${ }^{\text {c }}$（次）					
	L17	地震荷重S s（二次）					

$\square$

表 4－1（6）外荷重

ブラケット外荷重

ブラケット	荷重名称	力（kN）		
		$\mathrm{F}_{\mathrm{x}}$	$\mathrm{F}_{\mathrm{y}}$	$\mathrm{F}_{2}$
原子炉圧力容器	地震荷重S d＊			
スタビライザ	地震荷重 S s			
蒸気乾燥器支持	地震荷重S d＊			
	地震荷重 S s			
給水スパージャ	地震荷重S d＊			
	地震荷重S s			
炉心スプレイ	地震荷重S d＊			
	地震荷重S S			

## 表 4－1（7）外荷重

原子炉圧力容器基礎ボルト外荷重

記号	荷重名称	軸力		せん断力	モーメント
		$\begin{array}{cc} \hline \text { N } \begin{array}{c} \text { (最大) } \\ (k N) \end{array} \\ \hline \end{array}$		$\begin{gathered} \mathrm{Q} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
－	運転状態 I 及びII				
－	運転状態IV＊1				
L14	地震荷重S d＊				
L16	地震荷重S s				

表 4－1（8）外荷重

差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）外荷重

$\begin{aligned} & \text { 記 } \\ & \text { 号 } \end{aligned}$	条件	荷重作用点	せん断力	軸力	$\begin{gathered} \text { 曲げ } \\ \text { モーメント } \end{gathered}$	$\begin{gathered} \text { ねじり } \\ \text { モーメント } \end{gathered}$
			$\begin{gathered} \mathrm{H} \\ (\mathrm{~N}) \end{gathered}$	$\begin{aligned} & \mathrm{F}_{\mathrm{z}} \\ & (\mathrm{~N}) \end{aligned}$	$\begin{gathered} \mathrm{M} \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{z}} \\ (\mathrm{kN} \cdot \mathrm{~mm}) \end{gathered}$
L04	死荷重					
L14	弾性設計用地震動 S d＊					
L16	基準地震動 S s					

（

表4－2 荷重の組合せ

状態	荷重の組合せ	応力評価
運転状態I 及びII	$\begin{aligned} & \mathrm{L} 01+\mathrm{L} 02+(\mathrm{L} 04, \mathrm{~L} 12, \mathrm{~L} 13, \mathrm{~L} 18 \text { 又は L19) * } \\ & +\mathrm{L} 07+\mathrm{L} 08+\mathrm{L} 10+\mathrm{L} 11 \end{aligned}$	$P_{L}+P_{b}+Q$   疲労解析
許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$	$\begin{aligned} & \text { L01+L02+(L04, L12, L13, L18 又は L19) * } \\ & +\mathrm{L} 08+\mathrm{L} 11+\mathrm{L} 14 \end{aligned}$	$\begin{aligned} & \mathrm{P}_{\mathrm{m}} \\ & \mathrm{P}_{\mathrm{L}}+\mathrm{P}_{\mathrm{b}} \end{aligned}$
	$\mathrm{L} 14+\mathrm{L} 15$	$P_{L}+P_{b}+Q$   疲労解析
許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$	$\begin{aligned} & \mathrm{L} 01+\mathrm{L} 02+(\mathrm{L} 04, \mathrm{~L} 12, \mathrm{~L} 13, \mathrm{~L} 18 \text { 又は L19) * } \\ & +\mathrm{L} 08+\mathrm{L} 11+\mathrm{L} 16 \end{aligned}$	$\begin{aligned} & P_{m} \\ & P_{L}+P_{b} \end{aligned}$
	$\mathrm{L} 16+\mathrm{L} 17$	$P_{L}+P_{b}+Q$   疲労解析

注記＊：（ ）内の荷重のうち，各運転条件において実際に考慮する荷重を組合せる。

表5－1 繰返しピーク応力強さの割増し方法

$\mathrm{S}_{\mathrm{n}}$	S
$3 \cdot \mathrm{Sm}$ 末満	$\mathrm{S}_{\ell}=\frac{\mathrm{S}_{\mathrm{p}}}{2}$
$3 \cdot \mathrm{Sm以上}$	$\mathrm{S}_{\mathrm{e}}=\frac{\mathrm{K}_{\mathrm{e}} \cdot \mathrm{~S}_{\mathrm{p}}}{2}$   $\mathrm{K}_{\mathrm{e}}$ は，次の手順により計算する。   （1） $\mathrm{K}<\mathrm{B}_{0}$   （1） $\begin{aligned} & \frac{S_{n}}{3 \cdot S_{m}}<\frac{\left(q+\frac{A_{0}}{K}-1\right)-\sqrt{\left(q+\frac{A_{0}}{K}-1\right)-4 \cdot A_{0} \cdot(q-1)}}{2 \cdot A_{0}} \\ & K_{e}=1+A_{0} \cdot\left(\frac{S_{n}}{3 \cdot S_{m}}-\frac{1}{K}\right) \end{aligned}$   （2） $\begin{aligned} & \frac{S_{n}}{3 \cdot S_{m}} \geq \frac{\left(q+\frac{A_{0}}{K}-1\right)-\sqrt{\left(q+\frac{A_{0}}{K}-1\right)-4 \cdot A_{0} \cdot(q-1)}}{2 \cdot A_{0}} \\ & K_{e}=1+(q-1) \cdot\left(1-\frac{3 \cdot S_{m}}{S_{n}}\right) \end{aligned}$   （2） $\mathrm{K} \geqq \mathrm{B}_{0}$   （1） $\begin{aligned} & \frac{S_{n}}{3 \cdot S_{m}}<\frac{(q-1)-\sqrt{A_{0} \cdot\left(1-\frac{1}{K}\right) \cdot(q-1)}}{a} \\ & K_{e}=a \cdot \frac{S_{n}}{3 \cdot S_{m}}+A_{0} \cdot\left(1-\frac{1}{K}\right)+1-a \end{aligned}$   （2）$\frac{S_{n}}{3 \cdot S_{m}} \geq \frac{(q-1)-\sqrt{A_{0} \cdot\left(1-\frac{1}{K}\right) \cdot(q-1)}}{a}$ $\mathrm{K}_{\mathrm{e}}=1+(\mathrm{q}-1) \cdot\left(1-\frac{3 \cdot \mathrm{~S}_{\mathrm{m}}}{\mathrm{~S}_{\mathrm{n}}}\right)$   ここで， $\mathrm{K}=\frac{\mathrm{S}_{\mathrm{p}}}{\mathrm{~S}_{\mathrm{n}}}$ $a=A_{0} \cdot\left(1-\frac{1}{K}\right)+(q-1)-2 \cdot \sqrt{A_{0} \cdot\left(1-\frac{1}{K}\right) \cdot(q-1)}$

注1：q， $\mathrm{A}_{0}$ ， $\mathrm{B}_{0}$ は，表3－1に示す。
注 2 ：地震荷重 Sd ＊及び地震荷重 S s にあっては， $\mathrm{S}_{\mathrm{n}}$ をそれぞれ $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ ， $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ と読み替え， $S_{p}$ をそれぞれ $\mathrm{S}_{\mathrm{p}}{ }^{\# 1}$ ， $\mathrm{S}_{\mathrm{p}}{ }^{\# 2}$ と読み替えるものとする。
（2）強度評価編

## 目次

1．概 要 ..... 1
2．一般事項 ..... 2
2． 1 構造計画 ..... 2
2．2 評価方針 ..... 2
2.3 適用規格•基準等 ..... 2
2． 4 記号の説明 ..... 3
2.5 計算精度と数値の丸め方 ..... 3
3．計算条件 ..... 4
3.1 評価対象機器 ..... 4
3.2 形状及び寸法 ..... 4
3.3 荷重の組合せ及び運転状態 ..... 5
3．4 許容応力 ..... 5
3.5 許容応力評価条件 ..... 5
4．荷重条件 ..... 6
4．1 運転条件 ..... 6
4．2 重大事故等時の条件 ..... 6
4.3 荷重の組合せ及び応力評価 ..... 6
5．応力評価の手順 ..... 7
5.1 荷重条件の選定 ..... 7
5.2 応力の評価 ..... 7
5．2．1 主応力 ..... 7
5．2．2 応力強さ ..... 7
5．2．3 一次応力強さ ..... 7
5.3 ボルトの応力評価 ..... 7
5．4 特別な応力の評価 ..... 7
5．4．1 座屈の評価 ..... 7
6．評価結果の添付 ..... 8
6.1 応力評価結果 ..... 8
7．引用文献 ..... 9
8．参照図書 ..... 9

## 図表目次

図2－1 原子炉圧力容器の強度評価フロー ..... 2
表2－1 表示する数値の丸め方 ..... 3
表3－1 荷重の組合せ及び運転状態 ..... 10
表3－2 許容応力（クラス1容器及び重大事故等クラス2容器） ..... 11
表3－3 許容応力評価条件 ..... 12
表4－1 荷重の組合せ ..... 13

## 1．概要

本書は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物 の強度計算の基本方針」にて設定している構造強度の設計方針に基づき，原子炉圧力容器の重大事故等時における強度評価に関する応力解析の方針を説明するものである。

重大事故等時の内圧を除く荷重による原子炉圧力容器本体の応力評価は，平成4年1月13日付 け3資庁第10518号にて認可された工事計画の添付書類（参照図書（1））による。

注1：本書に記載していない特別な内容がある場合は，添付書類「VI－3－3－1－1－1 原子炉圧力容器本体の強度計算書」（以下「強度計算書」という。）に示す。

注2：図表は，原則として巻末に示す。
注3：平成4年1月13日付け3資庁第10518号にて認可された工事計画の添付書類（参照図書（1））は以下「既工認」という。

2．一般事項
2.1 構造計画

原子炉圧力容器の構造計画は，本書（1）耐震評価編の 2.1 節に記載のとおりである。

## 2.2 評価方針

原子炉圧力容器の構造強度評価は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」及び「3。計算条件」にて設定した荷重及び荷重の組合せ並びに許容応力に基づき，「2．1 構造計画」にて示す原子炉圧力容器の各機器の強度計算書にて設定する箇所において，「4．荷重条件」にて設定した荷重に基づく応力等が許容応力内に収まることを，「5．応力評価の手順」に示す方法にて確認することで実施する。確認結果を強度計算書に示す。

原子炉圧力容器の強度評価フローを図2－1に示す。


図2－1 原子炉圧力容器の強度評価フロー

## 2.3 適用規格•基準等

適用する規格•基準等を以下に示す。
（1）発電用原子力設備に関する構造等の技術基準（昭和55年10月30日 通商産業省告示第50 1 号（以下「告示」という。））

注：本書及び強度計算書において，告示の条項は「告示第○条第○項第○号○○」として示す。
2.4 記号の説明

本書及び強度計算書において使用する記号は，本書（1）耐震評価編の2．4節に記載のとおり である。
2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表2－1に示すとおりである。

表 2－1 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
応力強さ	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊	MPa	小数点以下第 1 位	切捨て	整数位

注記 $*: ~$ 告示別表に記載された温度の中間における許容応力は，比例法により補間した値の小数点以下第 3 位を切り捨て，小数点以下第 2 位までの値として算出する。得られた値をSI 単位に換算した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

## 3．計算条件

## 3.1 評価対象機器

応力評価を行う機器は，次のとおりである。（本書（1）耐震評価編の表2－1及び図3－1参照）


注：「○」は評価対象，「×」は評価対象外を示す。
注記＊1：設計基準対象施設としてのみ申請する施設
＊2：第1種管であるが，告示第46条第1項の規定により，第1種容器として，本応力解析の方針を適用す る。

## 3.2 形状及び寸法

各部の形状及び寸法は，強度計算書に示す。

## 3.3 荷重の組合せ及び運転状態

原子炉圧力容器の荷重の組合せ及び運転状態を表3－1に示す。また，各運転状態で考慮す る荷重は，4章に示すとおりである。

## 3.4 許容応力

（1）許容応力は，添付書類「VI－3－1－5 重大事故等クラス 2 機器及び重大事故等クラス 2 支持構造物の強度計算の基本方針」に基づき表3－2に示す。この表に記載のない圧縮荷重を受ける場合に対する許容応力は，強度計算書に記載するものとする。

## 3.5 許容応力評価条件

（1）設計応力強さ $S_{m}$ ，設計降伏点 $S_{\mathrm{y}}$ 及び設計引張強さ $\mathrm{S}_{\mathrm{u}}$ は，それぞれ告示別表第 2，第3，第 9 ，第 10 に定められたものを使用する。
（2）運転状態 V の一次応力強さの評価には，運転状態 V における評価温度 $\square$ に対する許容応力を用いる。
（3）原子炉圧力容器の許容応力評価条件を表3－3に示す。

4．荷重条件
原子炉圧力容器は，以下の荷重条件に耐えることを確認する。
各機器の応力評価には，本章に示す荷重を考慮する。
4.1 運転条件

運転条件は，本書（1）耐震評価編の4．2節に定めるとおりである。

4． 2 重大事故等時の条件
重大事故等時の条件は，本書（1）耐震評価編の4．3節に定めるとおりである。
4.3 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価項目の対応を表4－1に示す。表4－1及び強度計算書において，荷重の種類と記号は，本書（1）耐震評価編の4．4節に定めるとおりである。 なお，荷重の組合せについては，機器ごとに適切に組み合わせる。

5．応力評価の手順
応力評価の手順について述べる。
5.1 荷重条件の選定

応力解析においては，4章に示した荷重条件のうちから，その部分に作用する荷重 を選定して計算を行う。

## 5.2 応力の評価

5．2．1 主応力
主応力の計算は，本書（1）耐震評価編の5．3．1項に定めるとおりである。

5．2．2 応力強さ
応力強さは，本書（1）耐震評価編の5．3．2項に定めるとおりである。

## 5．2．3 一次応力強さ

運転状態Vにおいて生じる一次一般膜応力，一次局部膜応力及び一次膜 + 一次曲げ応力 の応力強さが，3．4節に示す許容応力を満足することを示す。

ただし，一次局部膜応力より一次膜＋一次曲げ応力の方が発生値及び許容応力の観点で厳しくなることから，一次局部膜応力強さの評価については省略する。

5．3 ボルトの応力評価
ボルトの応力評価は，告示第13条第1項第2号ハに基づき，ボルトの軸方向に垂直な断面の平均引張応力及び平均引張応力＋曲げ応力について行う。運転状態Vにおいて生じる平均引張応力及び平均引張応力＋曲げ応力が，3．4節に示す許容応力を満足することを示す。

## 5.4 特別な応力の評価

## 5．4．1 座屈の評価

軸圧縮荷重又は外圧を受ける部分は，告示第13条第1項第1号又又は告示第13条第2項に基 づき評価する。解析箇所を以下に示す。評価方法及び許容応力は，強度計算書に示す。
（1）制御棒駆動機構ハウジング貫通孔スタブチューブ

6．評価結果の添付
応力評価点番号は，本書（1）耐震評価編の6章に定めるとおりである。

6． 1 応力評価結果
（1）次の応力評価結果は，全応力評価点（面）について添付する。
a．一次一般膜応力強さの評価のまとめ
b．一次膜＋一次曲げ応力強さの評価のまとめ
（2）次の特別な評価は，対象となるすべての部位について評価し，結果を記載する。 a．座屈

7．引用文献
引用文献は，本書（1）耐震評価編の7章に記載のとおりである。

8．参照図書
（1）女川原子力発電所第 2 号機 第 5 回工事計画認可申請書 添付書類
a．IV－3－1－1－1 原子炉圧力容器の応力解析の方針
b．IV－3－1－1－2 原子炉圧力容器の穴と補強についての計算書
c．IV－3－1－1－3 胴板の応力計算書
d．IV－3－1－1－4 上部鏡板，鏡板フランジ及び胴板フランジの応力計算書
e．IV－3－1－1－5 下部鏡板の応力計算書
f．IV－3－1－1－6 制御棒駆動機構ハウジング貫通孔の応力計算書
g．IV－3－1－1－7 中性子束計測ハウジング貫通孔の応力計算書
h．IV－3－1－1－8 再循環水出ロノズル（N1）の応力計算書
i．IV－3－1－1－9 再循環水入口ノズル（N2）の応力計算書
j．IV－3－1－1－10 主蒸気出ロノズル（N3）の応力計算書
k．IV－3－1－1－11 給水ノズル（N4）の応力計算書
e．IV－3－1－1－12 低圧炉心スプレイノズル（N5）の応力計算書
m．IV－3－1－1－13 低圧注水ノズル（N6）の応力計算書
n．IV－3－1－1－14 上蓋スプレイノズル（N7）の応力計算書
o．IV－3－1－1－15 ベントノズル（N8）の応力計算書
p．IV－3－1－1－16 ジェットポンプ計測管貫通部ノズル（N9）の応力計算書
q．IV－3－1－1－17 差圧検出・ほう酸水注入ノズル（N11）の応力計算書
r．IV－3－1－1－18 計装ノズル（N12，N13，N14）の応力計算書
s．IV－3－1－1－19 ドレンノズル（N15）の応力計算書
t．IV－3－1－1－20 高圧炉心スプレイノズル（N16）の応力計算書
u．IV－3－1－1－21 ブラケット類の応力計算書
v．IV－3－1－3－7 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の応力計算書
（2）女川原子力発電所第 2 号機 第 1 回工事計画認可申請書 添付書類 IV－2－4－1－1 原子炉圧力容器基礎ボルトの耐震性についての計算書

表3－1 荷重の組合せ及び運転状態（重大事故等対処設備）

施設区分		機器名称	設備分類＊	機器等の区分	荷重の組合せ	運転状態
$\begin{gathered} \text { 原子炉 } \\ \text { 本体 } \end{gathered}$	原子炉圧力容器及び炉心	$\begin{gathered} \text { 原子炉 } \\ \text { 圧力容器 } \end{gathered}$	常設耐震／防止常設／緩和常設／防止   （DB拡張）	重大事故等 クラス2	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{A}$	V

［記号の説明］
D ：死荷重
P ：運転状態Vにおける圧力荷重
M ：運転状態Vで設備に作用している機械的荷重
A ：事故時荷重
注記＊：「常設耐震／防止」は常設耐震重要重大事故防止設備，「常設／緩和」は常設重大事故緩和設備，「常設／防止（DB拡張）」は常設重大事故防止設備（設計基準拡張）を示す。

O 2 （6）VI－2－3－4－1－1（2）R 2

表3－2 許容応力（クラス1容器及び重大事故等クラス2容器）

運転状態	許容応力＊1					
	一次一般膜応力＊2	- 次膜＋   - 次曲げ応力＊3	一次＋二次応力	$\begin{gathered} \text { 一次 }+ \text { 二次 }+ \\ \text { ピーク応力 } \\ \hline \end{gathered}$	純せん断応力	支圧応力
（VとしてIVの許容応力を用いる。）	$\begin{gathered} 2 / 3 \cdot \mathrm{~S}_{\mathrm{u}} \\ \text { ただし, } \mathrm{ASS} \text { S 及びHNA } \\ \text { については } 2 / 3 \cdot \mathrm{~S}_{\mathrm{u}} と \\ 2.4 \cdot \mathrm{~S}_{\mathrm{m}} \text { の小さい方。 } \end{gathered}$	左欄の   1． 5 倍の値	－	－	$0.4 \cdot \mathrm{~S}_{\mathrm{u}}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}}{ }^{* 4} \\ \left(1.5 \cdot \mathrm{~S}_{\mathrm{u}}\right) \end{gathered}$

注記＊1：当該の応力が生じない場合，規格基準で省略可能とされている場合及び他の応力で代表可能である場合は評価を省略す る。
＊2：ボルトにあっては平均引張応力に対する許容応力を示す。
＊ 3 ：ボルトにあっては平均引張＋曲げ応力に対する許容応力を示す。
＊4：（）内は，支圧荷重の作用端から自由端までの距離が支圧荷重の作用幅より大きい場合の値。

表3－3 許容応力評価条件（重大事故等対処設備）

評価部位	材料		温度条件   （ ${ }^{\circ} \mathrm{C}$ ）	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	
原子炉圧力容器	炭素鋼及び低合金鋼	SQV2A	評価温度				
		SFVC2B	評価温度				
		SFVQ1A	評価温度				
	$\begin{gathered} \hline \text { オーステナイト系 } \\ \text { ステンレス鋼及び } \\ \text { 高ニッケル合金 } \\ \hline \end{gathered}$	SUS316LTP	評価温度				
		SUSF316	評価温度				
		NCF600－B	評価温度				
	$\begin{aligned} & \text { フェライト系 } \\ & \text { ステンレス鋼 } \end{aligned}$	SNB24－3	評価温度				

表4－1 荷重の組合せ

状態	荷重の組合せ	応力評価
運転状態 V	$\mathrm{L} 01+\mathrm{L} 02+$（L04 又は L 21 ）＊$+\mathrm{L} 08+\mathrm{L} 11$	$\mathrm{P}_{\mathrm{m}}$   $\mathrm{P}_{\mathrm{L}}$$+\mathrm{P}_{\mathrm{b}}$

注記＊：（ ）内の荷重のうち，各運転条件において実際に考慮する荷重を組合せる。

VI－2－3－4－1－2 原子炉圧力容器の耐震性についての計算書

## 目次（全体構成）

1．概要 ..... 1－1
2．胴板の耐震性についての計算 ..... 2－1
3．下部鏡板の耐震性についての計算 ..... 3－1
4．制御棒駆動機構ハウジング貫通孔の耐震性についての計算 ..... 4－1
5．再循環水出口ノズル（N1）の耐震性についての計算 ..... 5－1
6．再循環水入口ノズル（N2）の耐震性についての計算 ..... 6－1
7．主蒸気出ロノズル（N3）の耐震性についての計算 ..... 7－1
8．給水ノズル（N4）の耐震性についての計算 ..... 8－1
9．低圧炉心スプレイノズル（N5）の耐震性についての計算 ..... 9－1
10．低圧注水ノズル（N6）の耐震性についての計算 ..... 10－1
11．上蓋スプレイノズル（N7）の耐震性についての計算 ..... 11－1
12．ベントノズル（N8）の耐震性についての計算 ..... 12－1
13．ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算 ..... 13－1
14．差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算 ..... 14－1
15．計装ノズル（N12，N13，N14）の耐震性についての計算 ..... 15－1
16．ドレンノズル（N15）の耐震性についての計算 ..... 16－1
17．高圧炉心スプレイノズル（N16）の耐震性についての計算 ..... 17－1
18．ブラケット類の耐震性についての計算 ..... 18－1
19．原子炉圧力容器支持スカートの耐震性についての計算 ..... 19－1
20．原子炉圧力容器基礎ボルトの耐震性についての計算 ..... 20－1

## 目次

（胴板）
2．胴板の耐震性についての計算 ..... 2－1
2.1 一般事項 ..... 2－1
2．1．1 記号の説明 ..... 2－1
2．1．2 形状－寸法 •材料 ..... 2－1
2．1．3 解析範囲 ..... 2－1
2．1．4 計算結果の概要 ..... 2－1
2.2 計算条件 ..... 2－5
2．2．1 設計条件 ..... 2－5
2．2．2 運転条件 ..... 2－5
2．2．3 材料 ..... 2－5
2．2．4 荷重の組合せ及び許容応力状態 ..... 2－5
2．2．5 荷重の組合せ及び応力評価 ..... 2－5
2．2．6 許容応力 ..... 2－5
2.3 応力計算 ..... 2－5
2．3．1 応力評価点 ..... 2－5
2．3．2 内圧による応力 ..... 2－5
2．3．3 外荷重による応力 ..... 2－6
2．3．4 応力の評価 ..... 2－6
2．4 応力強さの評価 ..... 2－6
2．4．1 一次一般膜応力強さの評価 ..... 2－6
2．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 2－6
2．4．3 一次 + 二次応力強さの評価 ..... 2－6
2.5 繰返し荷重の評価 ..... 2－7
2．5．1 設計•建設規格 PVB－3140（6）についての検討 ..... 2－7
2． 6 特別な応力の評価 ..... 2－8
2．6．1 支圧応力の評価 ..... 2－8

## 図表目次

## （胴板）

図2－1 形状•寸法•材料•応力評価点 ..... 2－2
表2－1 計算結果の概要 ..... 2－4
表2－2 一次一般膜応力強さの評価のまとめ・ ..... 2－9
表2－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 2－10
表2－4 一次 + 二次応力強さの評価のまとめ ..... 2－11
表2－5 支圧応力の評価に用いる荷重 ..... 2－12
表2－6 支圧応力の評価 ..... 2－12

## 目次

（下部鏡板）
3．下部鏡板の耐震性についての計算 ..... 3－1
3.1 一般事項 ..... 3－1
3．1．1 形状•寸法•材料 ..... 3－1
3．1．2 解析範囲 ..... 3－1
3．1．3 計算結果の概要 ..... 3－1
3.2 計算条件 ..... 3－4
3．2．1 設計条件 ..... 3－4
3．2．2 運転条件 ..... 3－4
3．2．3 材料 ..... 3－4
3．2．4 荷重の組合せ及び許容応力状態 ..... 3－4
3．2．5 荷重の組合せ及び応力評価 ..... 3－4
3．2．6 許容応力 ..... 3－4
3.3 応力計算 ..... 3－4
3．3．1 応力評価点 ..... 3－4
3．3．2 内圧による応力 ..... 3－4
3．3．3 外荷重による応力 ..... 3－5
3．3．4 応力の評価 ..... 3－5
3．4 応力強さの評価 ..... 3－5
3．4．1 一次一般膜応力強さの評価 ..... 3－5
3．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 3－5
3．4．3 一次 + 二次応力強さの評価 ..... 3－5
3.5 繰返し荷重の評価 ..... 3－6
3．5．1 疲労解析 ..... 3－6

## 図表目次

（下部鏡板）
図3－1 形状•寸法•材料•応力評価点 ..... 3－2
表3－1 計算結果の概要 ..... 3－3
表3－2 一次一般膜応力強さの評価のまとめ・ ..... 3－7
表3－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 3－8
表3－4 一次＋二次応力強さの評価のまとめ ..... 3－9
表3－5 疲労累積係数 ..... 3－10
表3－6 疲労累積係数の評価のまとめ ..... 3－11

> 目次
> (制御棒駆動機構ハウジング貫通孔)
4．制御棒駆動機構ハウジング貫通孔の耐震性についての計算 ..... 4－1
4． 1 一般事項 ..... 4－1
4．1．1 記号の説明 ..... 4－1
4．1．2 形状 • 寸法 •材料 ..... 4－1
4．1．3 解析範囲 ..... 4－1
4．1．4 計算結果の概要 ..... 4－1
4．2 計算条件 ..... 4－4
4．2．1 設計条件 ..... 4－4
4．2．2 運転条件 ..... 4－4
4．2．3 材料 ..... 4－4
4．2．4 荷重の組合せ及び許容応力状態 ..... 4－4
4．2．5 荷重の組合せ及び応力評価 ..... 4－4
4．2．6 許容応力 ..... 4－4
4．3 応力計算 ..... 4－4
4．3．1 応力評価点 ..... 4－4
4．3．2 内圧による応力 ..... 4－4
4．3．3 外荷重による応力 ..... 4－5
4．3．4 応力の評価 ..... 4－5
4． 4 応力強さの評価 ..... 4－5
4．4．1 一次一般膜応力強さの評価 ..... 4－5
4．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 4－5
4．4．3 一次 + 二次応力強さの評価 ..... 4－5
4.5 繰返し荷重の評価 ..... 4－6
4．5．1 疲労解析 ..... 4－6
4． 6 特別な応力の評価 ..... 4－6
4．6．1 座屈に対する評価 ..... 4－6

## 図表目次

（制御棒駆動機構ハウジング貫通孔）
図 4－1 形状•寸法•材料•応力評価点 ..... 4－2
表4－1 計算結果の概要 ..... 4－3
表4－2 一次一般膜応力強さの評価のまとめ・ ..... 4－8
表4－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 4－9
表4－4 一次 + 二次応力強さの評価のまとめ ..... 4－10
表4－5 疲労累積係数 ..... 4－11
表4－6 疲労累積係数の評価のまとめ ..... 4－14
表4－7 座屈に対する評価に用いる荷重 ..... 4－15
表4－8 座屈に対する評価 ..... 4－15

## 目次

（再循環水出口ノズル（N1））
5．再循環水出ロノズル（N1）の耐震性についての計算 ..... 5－1
5.1 一般事項 ..... 5－1
5．1．1 形状•寸法•材料 ..... 5－1
5．1．2 解析範囲 ..... 5－1
5．1．3 計算結果の概要 ..... 5－1
5.2 計算条件 ..... 5－4
5．2．1 設計条件 ..... 5－4
5．2．2 運転条件 ..... 5－4
5．2．3 材料 ..... 5－4
5．2．4 荷重の組合せ及び許容応力状態 ..... 5－4
5．2．5 荷重の組合せ及び応力評価 ..... 5－4
5．2．6 許容応力 ..... 5－4
5.3 応力計算 ..... 5－4
5．3．1 応力評価点 ..... 5－4
5．3．2 内圧による応力 ..... 5－4
5．3．3 外荷重による応力 ..... 5－5
5．3．4 応力の評価 ..... 5－5
5．4 応力強さの評価 ..... 5－5
5．4．1 一次一般膜応力強さの評価 ..... 5－5
5．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 5－5
5．4．3 一次 + 二次応力強さの評価 ..... 5－5
5.5 繰返し荷重の評価 ..... 5－6
5．5．1 疲労解析 ..... 5－6

## 図表目次

（再循環水出口ノズル（ N 1 ））
図 5－1 形状•寸法•材料•応力評価点 ..... 5－2
表5－1 計算結果の概要 ..... 5－3
表5－2 一次一般膜応力強さの評価のまとめ・ ..... 5－7
表5－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 5－8
表5－4 一次＋二次応力強さの評価のまとめ ..... 5－9
表5－5 疲労累積係数。 ..... 5－10
表5－6 疲労累積係数の評価のまとめ ..... 5－13

## 目次

（再循環水入口ノズル（N2））
6．再循環水入口ノズル（N2）の耐震性についての計算 ..... 6－1
6． 1 一般事項 ..... 6－1
6．1．1 形状•寸法•材料 ..... 6－1
6．1．2 解析範囲 ..... 6－1
6．1．3 計算結果の概要 ..... 6－1
6.2 計算条件 ..... 6－4
6．2．1 設計条件 ..... 6－4
6．2．2 運転条件 ..... 6－4
6．2．3 材料 ..... 6－4
6．2．4 荷重の組合せ及び許容応力状態 ..... 6－4
6．2．5 荷重の組合せ及び応力評価 ..... 6－4
6．2．6 許容応力 ..... 6－4
6．3 応力計算 ..... 6－4
6．3．1 応力評価点 ..... 6－4
6．3．2 内圧及び差圧による応力 ..... 6－4
6．3．3 外荷重による応力 ..... 6－5
6．3．4 応力の評価 ..... 6－5
6． 4 応力強さの評価 ..... 6－5
6．4．1 一次一般膜応力強さの評価 ..... 6－5
6．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 6－5
6．4．3 一次 + 二次応力強さの評価 ..... 6－5
6.5 繰返し荷重の評価 ..... 6－6
6．5．1 疲労解析 ..... 6－6

## 図表目次

（再循環水入口ノズル（N2））
図6－1 形状•寸法•材料•応力評価点 ..... 6－2
表6－1 計算結果の概要 ..... 6－3
表6－2 一次一般膜応力強さの評価のまとめ． ..... 6－7
表6－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 6－8
表6－4 一次＋二次応力強さの評価のまとめ ..... 6－9
表6－5 疲労累積係数 ..... 6－10
表6－6 疲労累積係数の評価のまとめ ..... 6－13

## 目次 <br> （主蒸気出口ノズル（N3））

7．主蒸気出口ノズル（N3）の耐震性についての計算 ..... 7－1
7.1 一般事項 ..... 7－1
7．1．1 形状•寸法•材料 ..... 7－1
7．1．2 解析範囲 ..... 7－1
7．1．3 計算結果の概要 ..... 7－1
7.2 計算条件 ..... 7－4
7．2．1 設計条件 ..... 7－4
7．2．2 運転条件 ..... 7－4
7．2．3 材料 ..... 7－4
7．2．4 荷重の組合せ及び許容応力状態 ..... 7－4
7．2．5 荷重の組合せ及び応力評価 ..... 7－4
7．2．6 許容応力 ..... 7－4
7．3 応力計算 ..... 7－4
7．3．1 応力評価点 ..... 7－4
7．3．2 内圧による応力 ..... 7－4
7．3．3 外荷重による応力 ..... 7－5
7．3．4 応力の評価 ..... 7－5
7．4 応力強さの評価 ..... 7－5
7．4．1 一次一般膜応力強さの評価 ..... 7－5
7．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 7－5
7．4．3 一次 + 二次応力強さの評価 ..... 7－5
7.5 繰返し荷重の評価 ..... 7－6
7．5．1 疲労解析 ..... 7－6

## 図表目次

（主蒸気出口ノズル（N3））
図 7－1 形状•寸法•材料•応力評価点 ..... 7－2
表7－1 計算結果の概要 ..... 7－3
表7－2 一次一般膜応力強さの評価のまとめ・ ..... 7－7
表7－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 7－8
表7－4 一次 + 二次応力強さの評価のまとめ ..... 7－9
表7－5 疲労累積係数 ..... 7－10
表7－6 疲労累積係数の評価のまとめ ..... 7－13

## 目次

（給水ノズル（N4））
8．給水ノズル（N4）の耐震性についての計算 ..... 8－1
8． 1 一般事項 ..... 8－1
8．1．1 形状•寸法•材料 ..... 8－1
8．1．2 解析範囲 ..... 8－1
8．1．3 計算結果の概要 ..... 8－1
8．2 計算条件 ..... 8－4
8．2．1 設計条件 ..... 8－4
8．2．2 運転条件 ..... 8－4
8．2．3 材料 ..... 8－4
8．2．4 荷重の組合せ及び許容応力状態 ..... 8－4
8．2．5 荷重の組合せ及び応力評価 ..... 8－4
8．2．6 許容応力 ..... 8－4
8．3 応力計算 ..... 8－4
8．3．1 応力評価点 ..... 8－4
8．3．2 内圧及び差圧による応力 ..... 8－4
8．3．3 外荷重による応力 ..... 8－5
8．3．4 応力の評価 ..... 8－5
8． 4 応力強さの評価 ..... 8－5
8．4．1 一次一般膜応力強さの評価 ..... 8－5
8．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 8－5
8．4．3 一次 + 二次応力強さの評価 ..... 8－5
8.5 繰返し荷重の評価 ..... 8－6
8．5．1 疲労解析 ..... 8－6

## 図表目次

（給水ノズル（N4））
図8－1 形状•寸法•材料•応力評価点 ..... 8－2
表8－1 計算結果の概要 ..... 8－3
表8－2 一次一般膜応力強さの評価のまとめ・ ..... 8－7
表8－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 8－8
表8－4 一次＋二次応力強さの評価のまとめ ..... 8－9
表8－5 疲労累積係数 ..... 8－10
表8－6 疲労累積係数の評価のまとめ ..... 8－13
9．低圧炉心スプレイノズル（N5）の耐震性についての計算 ..... 9－1
9.1 一般事項 ..... 9－1
9．1．1 形状•寸法•材料 ..... 9－1
9．1．2 解析範囲 ..... 9－1
9．1．3 計算結果の概要 ..... 9－1
9．2 計算条件 ..... 9－4
9．2．1 設計条件 ..... 9－4
9．2．2 運転条件 ..... 9－4
9．2．3 材料 ..... 9－4
9．2．4 荷重の組合せ及び許容応力状態 ..... 9－4
9．2．5 荷重の組合せ及び応力評価 ..... 9－4
9．2．6 許容応力 ..... 9－4
9．3 応力計算 ..... 9－4
9．3．1 応力評価点 ..... 9－4
9．3．2 内圧及び差圧による応力 ..... 9－4
9．3．3 外荷重による応力 ..... 9－5
9．3．4 応力の評価 ..... 9－5
9.4 応力強さの評価 ..... 9－5
9．4．1 一次一般膜応力強さの評価 ..... 9－5
9．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 9－5
9．4．3 一次 + 二次応力強さの評価 ..... 9－5
9.5 繰返し荷重の評価 ..... 9－6
9．5．1 疲労解析 ..... 9－6

## 図表目次

## （低圧炉心スプレイノズル（N5））

図9－1 形状•寸法•材料•応力評価点 ..... 9－2
表9－1 計算結果の概要 ..... 9－3
表9－2 一次一般膜応力強さの評価のまとめ・•• ..... 9－7
表9－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 9－8
表9－4 一次 + 二次応力強さの評価のまとめ ..... 9－9
表9－5 疲労累積係数 ..... 9－10
表9－6 疲労累積係数の評価のまとめ ..... 9－13

## 目次

（低圧注水ノズル（N6））
10．低圧注水ノズル（N6）の耐震性についての計算 ..... 10－1
10． 1 一般事項 ..... 10－1
10．1．1 形状 • 寸法 •材料 ..... 10－1
10．1．2 解析範囲 ..... 10－1
10．1．3 計算結果の概要 ..... 10－1
10．2 計算条件 ..... 10－4
10．2．1 設計条件 ..... 10－4
10．2．2 運転条件 ..... 10－4
10．2．3 材料 ..... 10－4
10．2．4 荷重の組合せ及び許容応力状態 ..... 10－4
10．2．5 荷重の組合せ及び応力評価 ..... 10－4
10．2．6 許容応力 ..... 10－4
10．3 応力計算 ..... 10－4
10．3．1 応力評価点 ..... 10－4
10．3．2 内圧及び差圧による応力 ..... 10－4
10．3．3 外荷重による応力 ..... 10－5
10．3．4 応力の評価 ..... 10－5
10．4 応力強さの評価 ..... 10－5
10．4．1 一次一般膜応力強さの評価 ..... 10－5
10．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 10－5
10．4．3 一次 + 二次応力強さの評価 ..... 10－5
10.5 繰返し荷重の評価 ..... 10－6
10．5．1 疲労解析 ..... 10－6

## 図表目次

## （低圧注水ノズル（N6））

図10－1 形状•寸法•材料•応力評価点 ..... 10－2
表10－1 計算結果の概要 ..... 10－3
表10－2 一次一般膜応力強さの評価のまとめ ..... 10－7
表10－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 10－8
表10－4 一次＋二次応力強さの評価のまとめ ..... 10－9
表10－5 疲労累積係数． ..... 10－10
表10－6 疲労累積係数の評価のまとめ ..... 10－13

## 目次

（上蓋スプレイノズル（N7））
11．上蓋スプレイノズル（N7）の耐震性についての計算 ..... 11－1
11.1 一般事項 ..... 11－1
11．1．1 形状•寸法•材料 ..... 11－1
11．1．2 解析範囲 ..... 11－1
11．1．3 計算結果の概要 ..... 11－1
11．2 計算条件 ..... 11－4
11．2．1 設計条件 ..... 11－4
11．2．2 運転条件 ..... 11－4
11．2．3 材料 ..... 11－4
11．2．4 荷重の組合せ及び許容応力状態 ..... 11－4
11．2．5 荷重の組合せ及び応力評価 ..... 11－4
11．2．6 許容応力 ..... 11－4
11.3 応力計算 ..... 11－4
11．3．1 応力評価点 ..... 11－4
11．3．2 内圧による応力 ..... 11－4
11．3．3 外荷重による応力 ..... $11-5$
11．3．4 ボルト荷重による応力 ..... 11－5
11．3．5 応力の評価 ..... 11－5
11．4 応力強さの評価 ..... 11－5
11．4．1 一次一般膜応力強さの評価 ..... $11-5$
11．4．2 一次膜 + 一次曲げ応力強さの評価 ..... $11-5$
11．4．3 一次 + 二次応力強さの評価 ..... 11－6
11.5 繰返し荷重の評価 ..... 11－6
11．5．1 疲労解析 ..... 11－6

## 図表目次

> (上蓋スプレイノズル (N7))
図11－1 形状•寸法•材料•応力評価点 ..... 11－2
表11－1 計算結果の概要 ..... 11－3
表11－2 一次一般膜応力強さの評価のまとめ ..... 11－7
表11－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 11－8
表11－4 一次＋二次応力強さの評価のまとめ ..... 11－9
表11－5 疲労累積係数 ..... 11－10
表11－6 疲労累積係数の評価のまとめ ..... 11－12

> 目次
> $($ ベントノズル $(\mathrm{N} 8))$
12．ベントノズル（N8）の耐震性についての計算 ..... 12－1
12.1 一般事項 ..... 12－1
12．1．1 形状•寸法•材料 ..... 12－1
12．1．2 解析範囲 ..... 12－1
12．1．3 計算結果の概要 ..... 12－1
12．2 計算条件 ..... 12－4
12．2．1 設計条件 ..... 12－4
12．2．2 運転条件 ..... 12－4
12．2．3 材料 ..... 12－4
12．2．4 荷重の組合せ及び許容応力状態 ..... 12－4
12．2．5 荷重の組合せ及び応力評価 ..... 12－4
12．2．6 許容応力 ..... 12－4
12.3 応力計算 ..... 12－4
12．3．1 応力評価点 ..... 12－4
12．3．2 内圧による応力 ..... 12－4
12．3．3 外荷重による応力 ..... 12－5
12．3．4 ボルト荷重による応力 ..... 12－5
12．3．5 応力の評価 ..... 12－5
12．4 応力強さの評価 ..... 12－5
12．4．1 一次一般膜応力強さの評価 ..... 12－5
12．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 12－5
12．4．3 一次 + 二次応力強さの評価 ..... 12－6
12.5 繰返し荷重の評価 ..... 12－6
12．5．1 疲労解析 ..... 12－6

## 図表目次

(ベントノズル (N8) )
図12－1 形状•寸法•材料•応力評価点 ..... 12－2
表12－1 計算結果の概要 ..... 12－3
表12－2 一次一般膜応力強さの評価のまとめ ..... 12－7
表12－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 12－8
表12－4 一次＋二次応力強さの評価のまとめ ..... 12－9
表12－5 疲労累積係数． ..... 12－10
表12－6 疲労累積係数の評価のまとめ ..... 12－12

## 目次

## （ジェットポンプ計測管貫通部ノズル（N9））

13．ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算 ..... 13－1
13.1 一般事項 ..... 13－1
13．1．1 形状•寸法•材料 ..... 13－1
13．1．2 解析範囲 ..... 13－1
13．1．3 計算結果の概要 ..... 13－1
13.2 計算条件 ..... 13－4
13．2．1 設計条件 ..... 13－4
13．2．2 運転条件 ..... 13－4
13．2．3 材料 ..... 13－4
13．2．4 荷重の組合せ及び許容応力状態 ..... 13－4
13．2．5 荷重の組合せ及び応力評価 ..... 13－4
13．2．6 許容応力 ..... 13－4
13．3 応力計算 ..... 13－4
13．3．1 応力評価点 ..... 13－4
13．3．2 内圧による応力 ..... 13－4
13．3．3 外荷重による応力 ..... 13－5
13．3．4 応力の評価 ..... 13－5
13．4 応力強さの評価 ..... 13－5
13．4．1 一次一般膜応力強さの評価 ..... 13－5
13．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 13－5
13．4．3 一次 + 二次応力強さの評価 ..... 13－5
13.5 繰返し荷重の評価 ..... 13－6
13．5．1 疲労解析 ..... 13－6
図表目次
（ジェットポンプ計測管貫通部ノズル（N9））
図 13－1 形状•寸法•材料•応力評価点 ..... 13－2
表13－1 計算結果の概要 ..... 13－3
表13－2 一次一般膜応力強さの評価のまとめ ..... 13－7
表13－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 13－8
表13－4 一次＋二次応力強さの評価のまとめ ..... 13－9
表13－5 疲労累積係数． ..... 13－10
表13－6 疲労累積係数の評価のまとめ ..... 13－13

目次<br>（差圧検出・ほう酸水注入ノズル（N11））

14．差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算 ..... 14－1
14.1 一般事項 ..... 14－1
14．1．1 形状•寸法•材料 ..... 14－1
14．1．2 解析範囲 ..... 14－1
14．1．3 計算結果の概要 ..... 14－1
14．2 計算条件 ..... 14－4
14．2．1 設計条件 ..... 14－4
14．2．2 運転条件 ..... 14－4
14．2．3 材料 ..... 14－4
14．2．4 荷重の組合せ及び許容応力状態 ..... 14－4
14．2．5 荷重の組合せ及び応力評価 ..... 14－4
14．2．6 許容応力 ..... 14－4
14．3 応力計算 ..... 14－4
14．3．1 応力評価点 ..... 14－4
14．3．2 内圧による応力 ..... 14－4
14．3．3 外荷重による応力 ..... 14－5
14．3．4 応力の評価 ..... 14－5
14．4 応力強さの評価 ..... 14－5
14．4．1 一次一般膜応力強さの評価 ..... 14－5
14．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 14－5
14．4．3 一次 + 二次応力強さの評価 ..... 14－5
14.5 繰返し荷重の評価 ..... 14－6
14．5．1 疲労解析 ..... 14－6

## 図表目次

（差圧検出・ほら酸水注入ノズル（N11））
図14－1 形状•寸法•材料•応力評価点… ..... 14－2
表14－1 計算結果の概要 ..... 14－3
表14－2 一次一般膜応力強さの評価のまとめ ..... 14－7
表14－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 14－8
表14－4 一次＋二次応力強さの評価のまとめ ..... 14－9
表14－5 疲労累積係数． ..... 14－10
表14－6 疲労累積係数の評価のまとめ ..... 14－12
15．計装ノズル（N12，N13，N14）の耐震性についての計算 ..... 15－1
15.1 一般事項 ..... 15－1
15．1．1 形状•寸法•材料 ..... 15－1
15．1．2 解析範囲 ..... 15－1
15．1．3 計算結果の概要 ..... 15－1
15．2 計算条件 ..... 15－7
15．2．1 設計条件 ..... 15－7
15．2．2 運転条件 ..... 15－7
15．2．3 材料 ..... 15－7
15．2．4 荷重の組合せ及び許容応力状態 ..... 15－7
15．2．5 荷重の組合せ及び応力評価 ..... 15－7
15．2．6 許容応力 ..... 15－7
15．3 応力計算 ..... 15－7
15．3．1 応力評価点 ..... 15－7
15．3．2 内圧による応力 ..... 15－7
15．3．3 外荷重による応力 ..... 15－8
15．3．4 応力の評価 ..... 15－8
15．4 応力強さの評価 ..... 15－8
15．4．1 一次一般膜応力強さの評価 ..... 15－8
15．4．2 一次膜＋一次曲げ応力強さの評価 ..... 15－8
15．4．3 一次＋二次応力強さの評価 ..... 15－8
15.5 繰返し荷重の評価 ..... 15－9
15．5．1 疲労解析 ..... 15－9

## 図表目次

（計装ノズル（N12，N13，N14））
図15－1 形状•寸法•材料•応力評価点 ..... 15－2
表15－1 計装ノズルの計算結果の概要 ..... 15－4
表15－2 計装ノズルの一次一般膜応力強さの評価のまとめ ..... 15－10
表15－3 計装ノズルの一次膜＋一次曲げ応力強さの評価のまとめ ..... 15－13
表15－4 計装ノズルの一次＋二次応力強さの評価のまとめ ..... 15－16
表15－5 計装ノズルの疲労累積係数 ..... 15－19
表15－6 計装ノズルの疲労累積係数の評価のまとめ ..... 15－28

## 目次 <br> （ドレンノズル（N15））

16．ドレンノズル（N15）の耐震性についての計算 ..... 16－1
16.1 一般事項 ..... 16－1
16．1．1 形状•寸法•材料 ..... 16－1
16．1．2 解析範囲 ..... 16－1
16．1．3 計算結果の概要 ..... 16－1
16．2 計算条件 ..... 16－4
16．2．1 設計条件 ..... 16－4
16．2．2 運転条件 ..... 16－4
16．2．3 材料 ..... 16－4
16．2．4 荷重の組合せ及び許容応力状態 ..... 16－4
16．2．5 荷重の組合せ及び応力評価 ..... 16－4
16．2．6 許容応力 ..... 16－4
16．3 応力計算 ..... 16－4
16．3．1 応力評価点 ..... 16－4
16．3．2 内圧による応力 ..... 16－4
16．3．3 外荷重による応力 ..... 16－5
16．3．4 応力の評価 ..... 16－5
16．4 応力強さの評価 ..... 16－5
16．4．1 一次一般膜応力強さの評価 ..... 16－5
16．4．2 一次膜＋一次曲げ応力強さの評価 ..... 16－5
16．4．3 一次 + 二次応力強さの評価 ..... 16－5
16.5 繰返し荷重の評価 ..... 16－6
16．5．1 疲労解析 ..... 16－6

## 図表目次

（ドレンノズル（N15））
図16－1 形状•寸法•材料•応力評価点 ..... 16－2
表16－1 計算結果の概要 ..... 16－3
表16－2 一次一般膜応力強さの評価のまとめ ..... 16－7
表16－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 16－8
表16－4 一次＋二次応力強さの評価のまとめ ..... 16－9
表16－5 疲労累積係数 ..... 16－10
表16－6 疲労累積係数の評価のまとめ ..... 16－12

> 目次
> (高圧炉心スプレイノズル $(\mathrm{N} 16)$ )
17．高圧炉心スプレイノズル（N16）の耐震性についての計算 ..... 17－1
17.1 一般事項 ..... 17－1
17．1．1 形状•寸法•材料 ..... 17－1
17．1．2 解析範囲 ..... 17－1
17．1．3 計算結果の概要 ..... 17－1
17．2 計算条件 ..... 17－4
17．2．1 設計条件 ..... 17－4
17．2．2 運転条件 ..... 17－4
17．2．3 材料 ..... 17－4
17．2．4 荷重の組合せ及び許容応力状態 ..... 17－4
17．2．5 荷重の組合せ及び応力評価 ..... 17－4
17．2．6 許容応力 ..... 17－4
17．3 応力計算 ..... 17－4
17．3．1 応力評価点 ..... 17－4
17．3．2 内圧及び差圧による応力 ..... 17－4
17．3．3 外荷重による応力 ..... 17－5
17．3．4 応力の評価 ..... 17－5
17．4 応力強さの評価 ..... 17－5
17．4．1 一次一般膜応力強さの評価 ..... 17－5
17．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 17－5
17．4．3 一次 + 二次応力強さの評価 ..... 17－5
17.5 繰返し荷重の評価 ..... 17－6
17．5．1 疲労解析 ..... 17－6

## 図表目次

> (高圧炉心スプレイノズル (N16) )
図 17－1 形状•寸法•材料•応力評価点 ..... 17－2
表 17－1 計算結果の概要 ..... 17－3
表17－2 一次一般膜応力強さの評価のまとめ ..... 17－7
表17－3 一次膜＋一次曲げ応力強さの評価のまとめ ..... 17－8
表17－4 一次＋二次応力強さの評価のまとめ ..... 17－9
表17－5 疲労累積係数• ..... 17－10
表17－6 疲労累積係数の評価のまとめ ..... 17－13

## 目次

18．ブラケット類の耐震性についての計算 ..... 18－1
18.1 一般事項 ..... 18－1
18．1．1 記号の説明 ..... 18－1
18．1．2 形状•寸法•材料 ..... 18－1
18．1．3 解析範囲 ..... 18－1
18．1．4 計算結果の概要 ..... 18－1
18．2 計算条件 ..... 18－6
18．2．1 設計条件 ..... 18－6
18．2．2 材料 ..... 18－6
18．2．3 荷重の組合せ及び許容応力状態 ..... 18－6
18．2．4 荷重の組合せ及び応力評価 ..... 18－6
18．2．5 許容応力 ..... 18－6
18．2．6 応力の記号と方向 ..... 18－6
18．3 応力計算 ..... 18－7
18．3．1 応力評価点 ..... 18－7
18．3．2 外荷重による応力 ..... 18－7
18．3．3 応力の評価 ..... 18－7
18．4 応力強さの評価 ..... 18－8
18．4．1 ブラケット付根の応力強さの評価 ..... 18－8
18．4．2 ロッド穴周辺の応力強さの評価 ..... 18－8

## 図表目次

（ブラケット類）
図18－1 形状•寸法•材料 ..... 18－2
表18－1 計算結果の概要 ..... 18－5
表18－2 ブラケット付根の一次一般膜応力強さの評価•• ..... 18－9
表18－3 ブラケット付根の一次膜＋一次曲げ応力強さの評価 ..... 18－10
表18－4 ロッド穴周辺の純せん断応力の評価． ..... 18－11
表18－5 ロッド穴周辺の一次膜＋一次曲げ応力強さの評価． ..... 18－11

## 目次

（原子炉圧力容器支持スカート）
19．原子炉圧力容器支持スカートの耐震性についての計算 ..... 19－1
19.1 一般事項 ..... 19－1
19．1．1 記号の説明 ..... 19－1
19．1．2 形状•寸法•材料 ..... 19－1
19．1．3 解析範囲 ..... 19－1
19．1．4 計算結果の概要 ..... 19－1
19．2 計算条件 ..... 19－4
19．2．1 設計条件 ..... 19－4
19．2．2 運転条件 ..... 19－4
19．2．3 材料 ..... 19－4
19．2．4 荷重の組合せ及び許容応力状態 ..... 19－4
19．2．5 荷重の組合せ及び応力評価 ..... 19－4
19．2．6 許容応力 ..... 19－4
19．3 応力計算 ..... 19－5
19．3．1 応力評価点 ..... 19－5
19．3．2 内圧による応力 ..... 19－5
19．3．3 外荷重による応力 ..... 19－5
19．3．4 応力の評価 ..... 19－6
19．4 応力強さの評価 ..... 19－6
19．4．1 一次一般膜応力強さの評価 ..... 19－6
19．4．2 一次膜 + 一次曲げ応力強さの評価 ..... 19－6
19．4．3 一次 + 二次応力強さの評価 ..... 19－6
19.5 繰返し荷重の評価 ..... 19－6
19．5．1 疲労解析 ..... 19－6
19．6 特別な応力の評価 ..... 19－7
19．6．1 座屈に対する評価 ..... 19－7

## 図表目次

（原子炉圧力容器支持スカート）
図19－1 形状•寸法•材料•応力評価点 ..... 19－2
図19－2 内圧及び外荷重（軸対称荷重）による応力計算のモデル ..... 19－9
図19－3 外荷重（非軸対称荷重）による応力計算のモデル ..... 19－10
表19－1 計算結果の概要 ..... 19－3
表19－2 応力集中係数． ..... 19－11
表19－3 一次一般膜応力強さの評価のまとめ・ ..... 19－12
表19－4 一次膜＋一次曲げ応力強さの評価のまとめ ..... 19－13
表19－5 一次＋二次応力強さの評価のまとめ・ ..... 19－14
表19－6 疲労累積係数 ..... 19－15
表19－7 疲労累積係数の評価のまとめ ..... 19－16表19－8 座屈に対する評価に用いる荷重19－17
表19－9 座屈に対する評価 ..... 19－17

> 目次
> (原子炉圧力容器基礎ボルト)
20．原子炉圧力容器基礎ボルトの耐震性についての計算 ..... 20－1
20.1 一般事項 ..... 20－1
20．1．1 形状 • 寸法 •材料 ..... 20－1
20．1．2 解析範囲 ..... 20－1
20．1．3 計算結果の概要 ..... 20－1
20．2 計算条件 ..... 20－4
20．2．1 設計条件 ..... 20－4
20．2．2 材料 ..... 20－4
20．2．3 荷重の組合せ及び許容応力状態 ..... 20－4
20．2．4 荷重の組合せ及び応力評価• ..... 20－4
20．2．5 許容応力 ..... 20－4
20．2．6 許容応力評価条件 ..... 20－4
20．3 応力計算 ..... 20－4
20．3．1 外荷重による応力 ..... 20－4
20．4 応力の評価 ..... 20－5

## 図表目次

（原子炉圧力容器基礎ボルト）
図20－1 形状•寸法•材料 ..... 20－2
表20－1 計算結果の概要 ..... $20-3$
表20－2 許容応力評価条件• ..... 20－6
表20－3 計算結果• ..... 20－6

## 1．概要

本計算書は，原子炉圧力容器（原子炉圧力容器支持スカート及び原子炉圧力容器基礎 ボルトを含む。）の耐震計算結果を示すものである。

本計算書の各機器は，添付書類「VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針」 （以下「応力解析の方針」という。）に基づき評価する。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（「応力解析の方針」の参照図書（1））及び平成元年6月8日付け元資庁第2015号にて認可された工事計画の添付書類（「応力解析の方針」の参照図書（2）） は以下「既工認」という。

2．胴板の耐震性についての計算
2.1 一般事項

本章は，胴板の耐震性についての計算である。
胴板は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

2．1．1 記号の説明
記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
$\mathrm{N}^{\prime}$	荷重変動回数	回
$\Delta \sigma^{\prime}$	機械的荷重により生じる応力の全振幅	MPa
Sa	任意の点の繰返しピーク応力強さ	MPa
$\mathrm{A}_{\mathrm{c}}$	支圧面積	$\mathrm{mm}^{2}$
W	炉心シュラウド支持ロッドから作用する荷重	N
$\mathrm{a} \sim \mathrm{d}$	支圧面積の計算に用いる寸法	mm
$\sigma_{\mathrm{c}}$	平均支圧応力	MPa

2．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図2－1に示す。

2．1．3 解析範囲
解析範囲を図2－1に示す。

## 2．1．4 計算結果の概要

計算結果の概要を表2－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図2－1（1）形状•寸法•材料•応力評価点（単位：mm）
（胴板）


図2－1（2）形状•寸法•材料•応力評価点（単位：mm）
（胴板の上部ウェッジ及び下部スタビライザとの接触部）

$$
\text { O } 2 \text { (6) } \mathrm{VI}-2-3-4-1-2 \quad \mathrm{R} 4
$$

## 表 2－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ			一次膜＋一次曲げ応力強さ			一次＋二次応力強さ		
		応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価面	応力強さ	許容   応力	応力評価面	応力   強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価点
	$\mathrm{III}_{4} \mathrm{~S}$	173	303	P01－P02	173	394	P01－P02	－	－	－
胢板 SQV2A	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	173	320	P01－P02	173	416	P01－P02	－	－	－
SFVQ1A	$\mathrm{III}_{A} \mathrm{~S}$	－	－	－	－	－	－	56	552	P01
SFVQ1A	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	76	552	P01

表2－1（2）計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	支圧応力の評価	
		平均支圧応力	許容応力
上部ウェッジ支持面 SFVQ1A	$\mathrm{III}_{\text {A }} \mathrm{S}$	236	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	408	481
下部スタビライザ支持面 SFVQ1A	$\mathrm{III}_{\text {A }} \mathrm{S}$	34	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	62	481

## 2.2 計算条件

2．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

2．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

2．2．3 材料
各部の材料を図2－1に示す。

2．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

2．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

2．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

## 2.3 応力計算

2．3．1 応力評価点
応力評価点の位置を図2－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）c．に定めるとおりである。

## 2．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）c．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）c．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

## 2．3．3 外荷重による応力

（1）荷重条件（L12，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）c．に定めるとおりである。

## 2．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 2.4 応力強さの評価

2．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表2－2に示す。
表2－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

2．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表2－3に示す。
表2－3より，各許容応力状態の一次膜 + 一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

2．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表2－4に示す。
表2－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

## 2.5 繰返し荷重の評価

2．5．1 設計•建設規格 PVB－3140（6）についての検討
添付書類「VI－2－1－9 機能維持の基本方針」に基づき，設計•建設規格 PVB－3140（6）の検討を行い，疲労解析が不要であることを示す。

著しい機械的荷重は， $\mathrm{S}=86 \mathrm{MPa}$ を超えるような応力変動を生じる荷重である。
N’は，「応力解析の方針」（1）耐震評価編の4．2節に示すように地震荷重の繰返し回数 が多い地震荷重S d＊の回数を用いる。

$$
N^{\prime}=590 \text { 回 }
$$

N’に対するS は，設計•建設規格 添付4－2 3．1よりS a＝684MPaである。
S d 又は S s 地震動による $\Delta \sigma$ は，「応力解析の方針」（1）耐震評価編の4．2節に示 すように地震荷重の大きいS s 地震動による応力の全振幅を用いる。
$\Delta \sigma=32 \times 2=64 \mathrm{MPa}$
したがって， S a $>\Delta \sigma$ であり，条件を満足する。

## 2.6 特別な応力の評価

2．6．1 支圧応力の評価
胴板には，炉心シュラウド支持ロッドから作用する荷重により，上部ウェッジ及び下部 スタビライザとの接触面に支圧応力が生じる。したがって，これらの荷重により発生する支圧応力の評価を行う。
（1）計算データ
上部ウェッジの幅
上部ウェッジの高さ


上部ウェッジの支圧面積


下部スタビライザの幅
下部スタビライザの高さ
下部スタビライザの隅の処理寸法
下部スタビライザの隅の処理寸法


下部スタビライザの支圧面積

$$
A_{c}=(\mathrm{a}-2 \cdot \mathrm{c}) \cdot(\mathrm{b}-2 \cdot \mathrm{~d})
$$


（2）荷重
各許容応力状態における炉心シュラウド支持ロッドから胴板に作用する水平力を表2－5に示す。
（3）平均支圧応力
平均支圧応力 $\sigma \mathrm{c}$ は，次のようにして求める。

$$
\sigma_{\mathrm{c}}=\frac{\mathrm{W}}{\mathrm{~A}_{\mathrm{c}}}
$$

（4）支圧応力の評価
各許容応力状態における評価を表2－6に示す。
表2－6より，各許容応力状態の平均支圧応力は，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

表 2－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01   P02	173	303	173	320
P01   P02	172	303	173	320

表 2－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01   P02	173	394	173	416
P01   P02	172	394	173	416

表 2－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \#_{1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{2} * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	56	76	552
P01＇	56	76	552
P02	56	76	552
P02	56	76	552

注記 $* 1: S_{n}{ }^{\# 1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表2－5 支圧応力の評価に用いる荷重
（単位：kN）

許容応力状態	評価部位   水平力＊   H	
	上部ウェッジ支持面	
	下部スタビライザ支持面	
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	上部ウェッジ支持面	
	下部スタビライザ支持面	

注記＊：炉心シュラウド支持ロッド1体分の上部ウェッジ及び
下部スタビライザに作用する荷重である。

評価部位	許容応力状態	平均支圧応力	許容応力
上部ウェッジ支持面	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	236	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	408	481
	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	34	303
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	62	481

3．下部鏡板の耐震性についての計算
3.1 一般事項

本章は，下部鏡板の耐震性についての計算である。
下部鏡板は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

```
3．1．1 形状•寸法•材料本章で解析する箇所の形状•寸法•材料を図3－1に示す。
```


## 3．1．2 解析範囲 <br> 解析範囲を図3－1に示す。

3．1．3 計算結果の概要
計算結果の概要を表3－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図3－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6） $\mathrm{VI}-2-3-4-1-2 \quad \mathrm{R} 4$

表 3－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			一次 + 二次応力強さ(MPa)			疲労解析		
		応力強さ	許容応力	応力評価面	応力強さ	許容   応力	応力評価面	応力強さ	許容   応力	応力評価点	疲労累積係数＊	許容値	応力評価点
下部鏡板 SFVQ1A	$\mathrm{III}_{\text {S }} \mathrm{S}$	104	303	P01＇－P02＇	101	388	P05－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	103	320	P01＇－P02＇	122	410	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	168	552	P05	0． 043	1． 000	P05
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	232	552	P05			

注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。

## 3.2 計算条件

3．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

3．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

3．2．3 材料
各部の材料を図3－1に示す。

3．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

3．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

3．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 3.3 応力計算

3．3．1 応力評価点
応力評価点の位置を図3－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）e．に定めるとおりである。

## 3．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）e．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）e．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

## 3．3．3 外荷重による応力

（1）荷重条件（L12，L13，L18，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）e．に定めるとおりである。

## 3．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 3.4 応力強さの評価

3．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表3－2に示す。
表3－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

3．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表3－3に示す。
表3－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

3．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表3－4に示す。
表3－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}} \#^{1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{2}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

## 3.5 繰返し荷重の評価

3．5．1 疲労解析
下部鏡板の応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
最も厳しい応力評価点における疲労累積係数の計算結果を表3－5に示す。また，各応力評価点における疲労累積係数を表3－6に示す。

表3－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 3－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01   P02	96	303	98	320
P01   P02	104	303	103	320

表 3－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	94	394	96	416
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	99	394	97	416
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \\ & \hline \end{aligned}$	38	394	38	416
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	62	394	71	416
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	52	388	75	410
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	101	388	122	410

表 3－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{*} *_{2}$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	36	50	552
P01	36	50	552
P02	36	48	552
P02	36	48	552
P03	50	70	552
P03＇	50	70	552
P04	56	76	552
P04	56	76	552
P05	168	232	552
P05＇	168	232	552
P06	82	112	552
P06	82	112	552

注記 $* 1: ~ S_{n}{ }^{1}$ は許容応力状態 $I I I_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 3－5 疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 }
\end{aligned} \text { - } \begin{aligned}
& \text { P05 } \\
& \text { 材 } \\
& \text { 料 }
\end{aligned} \text { - SFVQ1A }
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 3－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U s d	U s s	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.002	0.000	0.000	0.002	1． 000
P01＇	0.002	0.000	0.000	0.002	1． 000
P02	0.001	0.000	0.000	0.001	1.000
P02＇	0.001	0.000	0.000	0.001	1.000
P03	0.014	0.000	0.000	0.014	1.000
P03＇	0.014	0.000	0.000	0.014	1.000
P04	0.006	0.000	0.000	0.006	1． 000
P04＇	0.006	0.000	0.000	0.006	1.000
P05	0.021	0.014	0.022	0.043	1． 000
P05，	0.021	0.014	0.022	0.043	1.000
P06	0.008	0.000	0.000	0.008	1． 000
P06＇	0.008	0.000	0.000	0.008	1． 000

注記＊：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

4．制御棒駆動機構ハウジング貫通孔の耐震性についての計算

## 4.1 一般事項

本章は，制御棒駆動機構八ウジング貫通孔の耐震性についての計算である。
制御棒駆動機構ハウジング貫通孔は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

注：以下，制御棒駆動機構ハウジングを「ハウジング」，制御棒駆動機構ハウジング貫通孔ス タブチューブを「スタブチューブ」という。

4．1．1 記号の説明
記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
$\mathrm{R}_{\mathrm{i}}$	スタブチューブの内半径	mm
t	スタブチューブの最小厚さ	mm
A	スタブチューブの断面積	$\mathrm{mm}^{2}$
$\mathrm{Z}^{2}$	スタブチューブの断面係数	$\mathrm{mm}^{3}$
$\sigma_{\mathrm{ca}}$	許容応力	MPa

4．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図4－1に示す。

4．1．3 解析範囲
解析範囲を図4－1に示す。

4．1．4 計算結果の概要
計算結果の概要を表4－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図4－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6） $\mathrm{VI}-2-3-4-1-2$ R 4

表 4－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価面	応力強さ	許容   応力	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \\ & \hline \end{aligned}$	許容   応力	応力評価点	疲労累積係数＊	許容値	応力評価点
ハウジング SUSF316	$\mathrm{III}_{\text {S }} \mathrm{S}$	48	143	P03－P04	48	197	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	49	280	P03－P04	102	386	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	80	360	P02	0． 002	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	188	360	P02			
$\begin{aligned} & \text { スタブ } \\ & \text { チューブ } \\ & \text { NCF600-B } \end{aligned}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	8	196	P05＇－P06＇	187	287	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	9	334	P05＇－P06＇	207	487	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	52	492	P06	0． 006	1． 000	P05
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	128	492	P06			
下部鏡板 リガメント SFVQ1A	$\mathrm{III}_{4} \mathrm{~S}$	144	303	P09－P10	149	454	P09－P10	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	143	320	P09－P10	148	481	P09－P10	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	0	552	P09	0． 003	1． 000	P10
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	2	552	P09			

注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。
表4-1 (2) 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	座屈に対する評価	
		圧縮応力	許容応力
スタブチューブ   NCF600－ B	$\mathrm{II}_{\mathrm{A}} \mathrm{S}$	36	101
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	74	126

## 4．2 計算条件

4．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

4．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

4．2．3 材料
各部の材料を図4－1に示す。

4．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

4．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

4．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

## 4．3 応力計算

4．3．1 応力評価点
応力評価点の位置を図4－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）f．に定めるとおりである。

## 4．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）f．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）f．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

## 4．3．3 外荷重による応力

（1）荷重条件（L12，L13，L18，L19，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
L14及びL16の荷重のらち，軸対称荷重（鉛直力 $\mathrm{V}_{1}$ 及び $\mathrm{V}_{2}$ ）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「STAX」により行う。なお，評価に用 いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

その他の外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）f．に定めるとおりである。

## 4．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 4． 4 応力強さの評価

4．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表4－2に示す。
表4－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

4．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表4－3に示す。
表4－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

4．4．3 一次＋二次応力強さの評価
地震荷重のみにおける評価を表4－4に示す。
表4－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

## 4.5 繰返し荷重の評価

4．5．1 疲労解析
ハウジング，スタブチューブ及び下部鏡板リガメントの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表4－5に示す。 また，各応力評価点における疲労累積係数を表4－6に示す。

表4－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

## 4． 6 特別な応力の評価

4．6．1 座屈に対する評価
スタブチューブには，制御棒駆動機構ハウジング貫通孔に作用する鉛直力及びモーメン
トにより，圧縮応力が生じる。したがって，これらの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
スタブチューブの内半径
スタブチューブの最小厚さ


スタブチューブの断面積

$$
\mathrm{A}=\pi \cdot\left\{\left(\mathrm{R}_{\mathrm{i}}+\mathrm{t}\right)^{2}-\mathrm{R}_{\mathrm{i}}^{2}\right\}=\pi \times \square=\square \mathrm{mm}^{2}
$$

スタブチューブの断面係数

$$
\begin{aligned}
\mathrm{Z} & =\frac{\pi}{4} \cdot \frac{\left(\mathrm{R}_{\mathrm{i}}+\mathrm{t}\right)^{4}-\mathrm{R}_{\mathrm{i}}^{4}}{\mathrm{R}_{\mathrm{i}}+\mathrm{t}}=\frac{\pi}{4} \times \\
& =\square \mathrm{mm}^{3}
\end{aligned}
$$

（2）荷重
スタブチューブに作用する鉛直力及びモーメントを「応力解析の方針」（1）耐震評価編の 4． 2 節に示す。
（3）圧縮応力
計算データ（断面性能）を基に，表4－7に示す各許容応力状態の荷重によってスタブチュ ーブに発生する圧縮応力を表4－8に示す。
（4）許容応力
各許容応力状態における許容応力の計算は，設計•建設規格 PVB－3117を準用して計算す る。
a．許容応力状態 III $_{A} S$
許容応力状態 $I I I I_{A} S$ における許容応力 $\sigma \mathrm{ca}$ は，次のように得られる。

$$
\sigma_{\mathrm{ca}}=1.2 \operatorname{MIN}\left[\mathrm{~S}_{\mathrm{m}}, \quad \mathrm{~B}\right]
$$

ここで，
$\mathrm{S}_{\mathrm{m}}=164 \mathrm{MPa}$
$\mathrm{B}=84 \mathrm{MPa}$

## （ ${ }^{\circ} \mathrm{C}$ における値）

このうち B 値は，設計•建設規格 PVB－3117より，次のようにして求める。
設計•建設規格 付録材料図表 Part7 図1より


を用いて，設計•建設規格 付録材料図表 Part7 図7より

$$
\mathrm{B}=84 \mathrm{MPa}
$$

よって，許容応力 $\sigma \mathrm{ca}$ は，

$$
\sigma_{\mathrm{ca}}=1.2 \cdot \mathrm{~B}=1.2 \times 84=101 \mathrm{MPa}
$$

b．許容応力状態IV ${ }_{A} S$
許容応力状態 $\mathrm{IV}_{\mathrm{A}} S$ における許容応力 $\sigma \mathrm{ca}$ は，次のように得られる。

$$
\sigma_{\mathrm{ca}}=1.5 \operatorname{MIN}\left[\mathrm{~S}_{\mathrm{m}}, \quad \mathrm{~B}\right]
$$

よって，許容応力 $\sigma \mathrm{ca}$ は，
$\sigma_{\mathrm{ca}}=1.5 \cdot \mathrm{~B}=1.5 \times 84=126 \mathrm{MPa}$
（5）座屈に対する評価
各許容応力状態における座屈に対する評価を表4－8に示す。
表4－8より，各許容応力状態における圧縮応力は，許容応力を満足するため，座屈は発生 しない。

表 4－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{\text {A }} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	10	143	12	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	10	143	11	280
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \\ & \hline \end{aligned}$	48	143	49	280
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	48	143	49	280
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	6	196	6	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	8	196	9	334
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	2	196	3	334
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	4	196	6	334
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \\ & \hline \end{aligned}$	144	303	143	320

表 4－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{A} \mathrm{~S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \\ & \hline \end{aligned}$	48	197	102	386
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	38	197	91	386
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	35	197	50	386
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	9	197	14	386
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	34	273	71	464
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	28	273	64	464
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \\ & \hline \end{aligned}$	162	287	147	487
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \\ & \hline \end{aligned}$	187	287	207	487
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	149	454	148	481

表 4－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \#^{2} * 1$	$\mathrm{~S}_{\mathrm{n}} \#^{2} * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	62	152	360
P01	62	152	360
P02	80	188	360
P02	80	188	360
P03	20	46	360
P03	20	46	360
P04	26	56	360
P04	26	56	360
P05	48	110	492
P05	48	110	492
P06	52	128	492
P06	52	128	492
P07	24	56	492
P07	24	56	492
P08	34	80	492
P08	34	80	492
P09	0	2	552
P10	0	0	552

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 4－5（1）疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P04 } \\
\text { 材 } & \text { 料 } & - & \text { SUSF316 }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\ell}$ に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 4－5（2）疲労累積係数

$$
\begin{array}{llll}
\text { 応力評価点 } & - & \text { P05 } \\
\text { 材 } & \text { 料 } & - & \text { NCF600-B }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\ell}$ に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 4－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P10 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 4－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U S d	U s s	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.000	0.000	0.000	0.000	1．000
P01＇	0.000	0.000	0.000	0.000	1．000
P02	0.000	0.000	0.001	0.001	1.000
P02＇	0.000	0.000	0.001	0.001	1． 000
P03	0.000	0.000	0.000	0.000	1． 000
P03＇	0.000	0.000	0.000	0.000	1． 000
P04	0.001	0.000	0.001	0.002	1． 000
P04＇	0.001	0.000	0.001	0.002	1． 000
P05	0.003	0.001	0.003	0.006	1． 000
P05，	0.003	0.001	0.003	0.006	1． 000
P06	0.000	0.000	0.000	0.000	1． 000
P06＇	0.000	0.000	0.000	0.000	1． 000
P07	0.001	0.000	0.000	0.001	1． 000
P07	0.001	0.000	0.000	0.001	1． 000
P08	0.003	0.000	0.000	0.003	1． 000
P08＇	0.003	0.000	0.000	0.003	1． 000
P09	0.003	0.000	0.000	0.003	1． 000
P10	0.003	0.000	0.000	0.003	1．000

注記＊：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重S s のいずれか大きい方を加えた値である。

表4－7 座屈に対する評価に用いる荷重

許容応力状態	鉛直力＊1   $\mathrm{V}(\mathrm{kN})$	モーメント＊2   $\mathrm{M}(\mathrm{kN} \cdot \mathrm{m})$	
$\mathrm{II}_{A} \mathrm{~S}$			
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$			

注記＊ 1 ：「応力解析の方針」（1）耐震評価編の4．2節に示す $\mathrm{V}_{1}+\mathrm{V}_{2}$ の値 ＊2 ：「応力解析の方針」（1）耐震評価編の4．2節に示す $\mathrm{M}_{1}+\mathrm{M}_{2}$ の値

表4－8 座屈に対する評価

5．再循環水出口ノズル（N1）の耐震性についての計算
5.1 一般事項

本章は，再循環水出口ノズル（N1）の耐震性についての計算である。
再循環水出口ノズル（N1）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

5．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図5－1に示す。

5．1．2 解析範囲
解析範囲を図5－1に示す。

5．1．3 計算結果の概要
計算結果の概要を表5－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図5－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6） $\mathrm{VI}-2-3-4-1-2$ R 4

表 5－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ \text { (MPa) } \end{gathered}$			一次＋二次応力強さ （MPa）			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容   応力	応力評価面	応力強さ	許容応力	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	76	143	P01－P02	172	194	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	280	P01－P02	195	380	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	320	360	P02	0.004	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$378 * 2$	360	P02			
溶接部 ステンレス鋼	$\mathrm{IIH}_{\text {S }} \mathrm{S}$	62	143	P03－P04	145	197	P03－P04	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	65	280	P03－P04	163	386	P03－P04	－	－	－	－	－	－
	$\mathrm{III}_{A} \mathrm{~S}$	－	－	－	－	－	－	270	360	P04	0． 002	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	320	360	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	75	303	P05－P06	180	409	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	80	320	P05－P06	204	432	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	344	552	P06	0． 071	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	410	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

## 5.2 計算条件

5．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

5．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

5．2．3 材料
各部の材料を図5－1に示す。

5．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

5．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

5．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 5.3 応力計算

5．3．1 応力評価点
応力評価点の位置を図5－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）h．に定めるとおりである。

## 5．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）h．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）h．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

## 5．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）h．に定めるとおりである。

## 5．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 5.4 応力強さの評価

5．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表5－2に示す。
表5－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

5．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表5－3に示す。
表5－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

5．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表5－4に示す。
表5－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P02及びP02＇

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P02及びP02’）にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

## 5.5 繰返し荷重の評価

5．5．1 疲労解析
ノズルセーフエンド，溶接部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表5－5に示す。 また，各応力評価点における疲労累積係数を表5－6に示す。

表5－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 5－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	76	143	81	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	73	143	77	280
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \\ & \hline \end{aligned}$	62	143	65	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	59	143	62	280
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	75	303	80	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	73	303	77	320

表 5－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{V}_{\text {A }} \mathrm{S}$ S	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	168	194	190	380
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	172	194	195	380
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	145	197	163	386
$\begin{aligned} & \text { P03' } \\ & \text { P04' } \\ & \hline \end{aligned}$	145	197	163	386
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	180	409	204	432
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	162	409	186	432

च y $\quad$－I－モ－- －-IA （9）$\quad$ O

表 5－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{2} * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	280	332	360
P01	280	332	360
P02	320	$378^{* 3}$	360
P02	320	$378^{* 3}$	360
P03	228	272	360
P03	228	272	360
P04	270	320	360
P04	270	320	360
P05	302	360	552
P05	302	360	552
P06	344	410	552
P06	344	410	552

注記 $* 1: ~ S_{n}{ }^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊3 ：簡易弾塑性解析を行う。

表 5－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	378	1． 142	446	255	282	97905	340	0.004
疲労累積係数 $U_{n}=0.000$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Us}_{\text {s }}=0.004$								

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析）
に示す。
注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 5－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P04 } \\
\text { 材 } & \text { 料 } & \text { - }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析）
に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\mathrm{e}}$ に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 5－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析）
に示す。
注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{e}$ に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 5－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	$\mathrm{U}_{\mathrm{s}}$	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.001	0.001	0.001	0.002	1.000
P01	0.000	0.001	0.001	0.001	1.000
P02	0.000	0.001	0.004	0.004	1.000
P02	0.000	0.001	0.004	0.004	1.000
P03	0.001	0.001	0.001	0.002	1.000
P03	0.000	0.001	0.001	0.001	1.000
P04	0.001	0.001	0.001	0.002	1.000
P04	0.001	0.001	0.001	0.002	1.000
P05	0.000	0.017	0.017	0.017	1.000
P05	0.000	0.017	0.017	0.017	1.000
P06	0.000	0.071	0.067	0.071	1.000
P06	0.000	0.071	0.067	0.071	1.000

注記＊：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

6．再循環水入口ノズル（N2）の耐震性についての計算
6.1 一般事項

本章は，再循環水入口ノズル（N2）の耐震性についての計算である。
再循環水入口ノズル（N2）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

6．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図6－1に示す。

6．1．2 解析範囲
解析範囲を図6－1に示す。

6．1．3 計算結果の概要
計算結果の概要を表6－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。



図6－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6） $\mathrm{VI}-2-3-4-1-2$ R 4

表 6－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力強さ	許容応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフェンド } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	97	143	P01－P02	171	193	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	108	280	P01－P02	328	378	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	228	360	P02	0.625	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	730＊2	360	P02			
サーマル   スリーブ   SUSF316	$\mathrm{III}_{\text {A }} \mathrm{S}$	27	143	P05－P06	61	193	P05－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	28	280	P05－P06	78	378	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	96	360	P06	0． 017	1． 000	P06’
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	164	360	P06			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	65	303	P07－P08	86	409	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	72	320	P07－P08	185	432	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	170	552	P08	0． 100	1． 000	P08
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	488	552	P08			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又 は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

## 6．2 計算条件

6．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

6．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

6．2．3 材料
各部の材料を図6－1に示す。

6．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

6．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

6．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

6．3 応力計算
6．3．1 応力評価点
応力評価点の位置を図6－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）i．に定めるとおりである。

6．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）i．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）i．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

## 6．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）i．に定めるとおりである。

## 6．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 6.4 応力強さの評価

6．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表6－2に示す。
表6－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

6．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表6－3に示す。
表6－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

6．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表6－4に示す。
表6－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02’

一次＋二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。
6.5 繰返し荷重の評価

6．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表6－5に示す。 また，各応力評価点における疲労累積係数を表6－6に示す。

表6－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 6－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{4} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	97	143	108	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	94	143	103	280
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	48	143	53	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	47	143	51	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	27	143	28	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	27	143	28	280
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	65	303	72	320
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	65	303	70	320

表 6－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}{ }_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	115	193＊1	264	378＊1
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	171	193＊1	328	$378 * 1$
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	55	198＊2	120	389＊2
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	72	198＊2	139	389＊2
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	33	193＊1	46	378＊1
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \\ & \hline \end{aligned}$	61	193＊1	78	378＊1
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \\ & \hline \end{aligned}$	85	409＊1	183	432＊${ }^{1}$
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \\ & \hline \end{aligned}$	86	409＊1	185	432＊${ }^{1}$

表 6－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{*} *_{2}$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	202	$648^{* 3}$	360
P01	202	$648^{\prime 3}$	360
P02	228	$730^{* 3}$	360
P02	228	$730^{* 3}$	360
P03	102	284	360
P03	102	284	360
P04	120	342	360
P04	120	342	360
P05	86	144	360
P05	86	144	360
P06	96	164	360
P06	96	164	360
P07	148	426	552
P07	148	426	552
P08	170	488	552
P08	170	488	552

注記 $* 1: S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態IV S による一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 6－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\ell}$ に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 6－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06’ } \\
\text { 材 } & \text { 料 } & -\quad \text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	164	－	678	339	376	22055	340	0.016
疲労累積係数 $U_{n}=0.001$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Us}_{\mathrm{s}}=0.017$								

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\mathrm{e}}$ に（ $\mathrm{E}_{0} / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 6－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P08 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\mathrm{e}}$ に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 6－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U S d	U s s	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.001	0.001	0.193	0.194	1． 000
P01＇	0.001	0.001	0.193	0.194	1.000
P02	0.001	0.001	0.624	0.625	1.000
P02＇	0.001	0.001	0.624	0.625	1.000
P03	0.001	0.001	0.078	0.079	1.000
P03＇	0.001	0.001	0.078	0.079	1.000
P04	0.001	0.000	0.001	0． 002	1． 000
P04＇	0.001	0.000	0.001	0.002	1.000
P05	0.001	0.000	0.000	0.001	1． 000
P05，	0.001	0.000	0.000	0.001	1.000
P06	0.000	0.002	0.016	0.016	1． 000
P06＇	0.001	0.002	0.016	0.017	1.000
P07	0.001	0.001	0.030	0.031	1.000
P07	0.001	0.001	0.030	0.031	1． 000
P08	0.001	0.005	0.099	0.100	1.000
P08＇	0.001	0.005	0.099	0.100	1.000

注記 $*$ ：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重S s のいずれか大きい方を加えた値である。

7．主蒸気出ロノズル（N3）の耐震性についての計算

## 7.1 一般事項

本章は，主蒸気出ロノズル（N3）の耐震性についての計算である。
主蒸気出口ノズル（N3）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

## 7．1．1 形状•寸法•材料 <br> 本章で解析する箇所の形状•寸法•材料を図7－1に示す。

## 7．1．2 解析範囲

解析範囲を図7－1に示す。

7．1．3 計算結果の概要
計算結果の概要を表7－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図7－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6） $\mathrm{VI}-2-3-4-1-2$ R 4

表 7－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \hline \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力強さ	許容応力	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	111	188	P01－P02	188	249	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	110	292	P01－P02	181	385	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	382	383	P02	0． 036	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	380	383	P02			
溶接部炭素鋼	$\mathrm{III}_{A} \mathrm{~S}$	81	188	P03－P04	153	253	P03＇－P04	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	292	P03－P04	147	391	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	310	383	P04	0． 016	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	310	383	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	81	303	P05－P06	159	406	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	81	320	P05－P06	153	429	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	336	552	P06	0． 061	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	336	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重 S s のいずれか大きい方を加えた値である。

## 7．2 計算条件

7．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

7．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

7．2．3 材料
各部の材料を図7－1に示す。

7．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

7．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

7．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

## 7．3 応力計算

7．3．1 応力評価点
応力評価点の位置を図7－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1） j ．に定めるとおりである。

## 7．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）j．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）j．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

## 7．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）j．に定めるとおりである。

## 7．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 7．4 応力強さの評価

7．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表7－2に示す。
表7－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

7．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表7－3に示す。
表7－3より，各許容応力状態の一次膜 + 一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

7．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表7－4に示す。
表7－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}} \#^{1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{2}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析 の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

## 7.5 繰返し荷重の評価

7．5．1 疲労解析
ノズルセーフエンド，溶接部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表7－5に示す。 また，各応力評価点における疲労累積係数を表7－6に示す。

表7－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 7－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	111	188	110	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	107	188	107	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	81	188	81	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	78	188	78	292
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	81	303	81	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	78	303	78	320

表 7－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{V}_{\text {A }} \mathrm{S}$ S	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	181	249	174	385
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	188	249	181	385
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	149	253	144	391
$\begin{aligned} & \text { P03' } \\ & \text { P04' } \\ & \hline \end{aligned}$	153	253	147	391
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	159	406	153	429
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	145	406	139	429

च y $\quad$－I－$-\mp-\varepsilon-Z-I \Lambda \quad$（9）$\quad$ O

表 7－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	354	354	383
P01＇	354	354	383
P02	382	380	383
P02	382	380	383
P03	280	278	383
P03＇	280	278	383
P04	310	310	383
P04	310	310	383
P05	302	302	552
P05＇	302	302	552
P06	336	336	552
P06＇	336	336	552

注記 $* 1: S_{n}{ }^{\# 1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 7－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\mathrm{e}}$ に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 7－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \mathrm{P} 04 \\
\text { 材 } & \text { 料 } & - \\
\text { 炭素鋼 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{\prime *} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	310	－	310	155	173	38887	590	0.016
					疲労	積係数	U S d	0.016
				疲労累積係数			U n	0.000
				疲労累積係数		$\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\text {d }}=$		0.016

注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\text {e }}$ に（ E 0 ／E）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 7－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\text {e }}$ に（ E 0 ／E）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 7－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	$\mathrm{U}_{\mathrm{s}}$	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.001	0.035	0.020	0.036	1.000
P01	0.001	0.035	0.020	0.036	1.000
P02	0.000	0.029	0.017	0.029	1.000
P02	0.000	0.029	0.017	0.029	1.000
P03	0.001	0.011	0.006	0.012	1.000
P03	0.000	0.011	0.006	0.011	1.000
P04	0.000	0.016	0.009	0.016	1.000
P04	0.000	0.016	0.009	0.016	1.000
P05	0.001	0.017	0.010	0.018	1.000
P05	0.001	0.017	0.010	0.018	1.000
P06	0.001	0.060	0.034	0.061	1.000
P06	0.000	0.060	0.034	0.060	1.000

注記＊：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

8．給水ノズル（N4）の耐震性についての計算
8.1 一般事項

本章は，給水ノズル（N4）の耐震性についての計算である。
給水ノズル（N4）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備に おいては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備 （設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

8．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図8－1に示す。

8．1．2 解析範囲
解析範囲を図8－1に示す。

8．1．3 計算結果の概要
計算結果の概要を表8－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図8－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－4－1－2 R 4

表 8－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			一次 + 二次応力強さ(MPa)			疲労解析		
		応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面	応力 強さ	許容   応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	102	188	P01－P02	204	253	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	107	292	P01－P02	228	391	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	378	383	P02	0．324	1． 000	P03＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$466^{* 2}$	383	P02			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{IIH}_{\text {S }} \mathrm{S}$	61	303	P05－P06	128	415	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	63	320	P05－P06	147	439	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	252	552	P06	0． 034	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	322	552	P06			
サーマル   スリーブ   SFVC2B	$\mathrm{III}_{A} \mathrm{~S}$	12	188	P07－P08	44	262	P07＇－P08＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	14	292	P09－P10	53	394	P09＇－P10＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	94	383	P10	0． 324	1． 000	P07＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	162	383	P10			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2：許容応力3•S $\mathrm{m}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

## 8.2 計算条件

8．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

8．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

8．2．3 材料
各部の材料を図8－1に示す。

8．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

8．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

8．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 8.3 応力計算

8．3．1 応力評価点
応力評価点の位置を図8－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）k．に定めるとおりである。

## 8．3．2 内圧及び差圧による応力

（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）k．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）k．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

## 8．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）k．に定めるとおりである。

## 8．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 8． 4 応力強さの評価

8．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表8－2に示す。
表8－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

8．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表8－3に示す。
表8－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

8．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表8－4に示す。
表8－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{2}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01 ，P02及びP02

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

## 8.5 繰返し荷重の評価

8．5．1 疲労解析
ノズルセーフエンド，ノズルエンド及びサーマルスリーブの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表8－5に示す。 また，各応力評価点における疲労累積係数を表8－6に示す。

表8－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 8－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	102	188	107	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	98	188	102	292
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	61	188	63	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	58	188	61	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	61	303	63	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	58	303	61	320
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	12	188	12	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	10	188	10	292
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	12	188	14	292
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	11	188	12	292

表 8－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	204	253	228	391
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	199	253	224	391
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	107	258	126	400
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	107	258	126	400
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	128	415	147	439
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	109	415	128	439
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	24	262	24	405
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	44	262	54	405
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	31	255	48	394
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	36	255	53	394

表 8－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \#^{1} * 1$	$\mathrm{S}_{\mathrm{n}} \# 2 * 2$	許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	340	418＊3	383
P01＇	340	418＊3	383
P02	378	466 ＊3	383
P02＇	378	$466{ }^{* 3}$	383
P03	198	256	383
P03＇	198	256	383
P04	232	300	383
P04＇	232	300	383
P05	214	272	552
P05＇	214	272	552
P06	252	322	552
P06＇	252	322	552
P07	50	82	383
P07＇	50	82	383
P08	58	98	383
P08＇	58	98	383
P09	82	142	383
P09＇	82	142	383
P10	94	162	383
P10＇	94	162	383

注記 $* 1: S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 8－5（1）疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P03 } \\
\text { 材 } & \text { 料 } & - & \text { SFVC2B }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 8－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\text {e }}$ に（ E 0 ／E）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 8－5（3）疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 - P07, } \\
& \text { 材 料 - SFVC2B }
\end{aligned}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 8－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U s d	$\mathrm{U}_{\mathrm{s}}$ s	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.004	0.021	0.039	0.043	1.000
P01＇	0.004	0.021	0.039	0.043	1.000
P02	0.008	0.060	0.173	0.181	1.000
P02＇	0.003	0.060	0.173	0.176	1． 000
P03	0.089	0.181	0.225	0．314	1． 000
P03＇	0.099	0.181	0.225	0.324	1． 000
P04	0.006	0.005	0.008	0.014	1． 000
P04＇	0.006	0.005	0.008	0.014	1.000
P05	0.001	0.005	0.007	0.008	1.000
P05＇	0.001	0.005	0.007	0.008	1.000
P06	0.001	0.025	0.033	0.034	1.000
P06＇	0.001	0.025	0.033	0.034	1.000
P07	0.234	0.000	0.000	0.234	1.000
P07	0.324	0.000	0.000	0.324	1． 000
P08	0.094	0.005	0.020	0.114	1． 000
P08＇	0.093	0.005	0.020	0.113	1． 000
P09	0.015	0.000	0.000	0.015	1． 000
P09＇	0.016	0.000	0.000	0.016	1.000
P10	0.006	0.000	0.004	0.010	1． 000
P10＇	0.006	0.000	0.004	0.010	1.000

注記 $~$ ：疲労累積係数 $U_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は
地震荷重S s のいずれか大きい方を加えた値である。

9．低圧炉心スプレイノズル（N5）の耐震性についての計算
9.1 一般事項

本章は，低圧炉心スプレイノズル（N5）の耐震性についての計算である。
低圧炉心スプレイノズル（N5）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

9．1．1 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図9－1に示す。

9．1．2 解析範囲
解析範囲を図9－1に示す。

9．1．3 計算結果の概要
計算結果の概要を表9－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図9－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－4－1－2 R 4

表 9－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価面	応力   強さ	許容応力	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容   応力	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	89	188	P01－P02	214	253	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	92	292	P01－P02	276	391	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	374	383	P02	0． 290	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$522^{* 2}$	383	P02			
サーマル   スリーブ   SFVC2B	$\mathrm{III}_{\text {S }} \mathrm{S}$	17	188	P09－P10	39	247	P07－P08	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	18	292	P09－P10	58	382	P07－P08	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－P10	－	－	－	102	383	P08	0． 009	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	178	383	P08			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	64	303	P11－P12	123	409	P11－P12	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	65	320	P11－P12	159	432	P11－P12	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	222	552	P12	0． 025	1． 000	P12
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	310	552	P12			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 Sd ＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2：許容応力3•S $\mathrm{m}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

## 9．2 計算条件

9．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

9．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

9．2．3 材料
各部の材料を図9－1に示す。

9．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

9．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

9．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

## 9．3 応力計算

9．3．1 応力評価点
応力評価点の位置を図9－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）と．に定めるとおりである。

9．3．2 内圧及び差圧による応力
（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）l．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）l．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

## 9．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1） ．に定めるとおりである。

## 9．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 9．4 応力強さの評価

9．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表9－2に示す。
表9－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

9．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表9－3に示す。
表9－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

9．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表9－4に示す。
表9－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下 であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01 ，P02及びP02

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

## 9.5 繰返し荷重の評価

9．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表9－5に示す。 また，各応力評価点における疲労累積係数を表9－6に示す。

表9－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 9－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	89	188	92	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	88	188	90	292
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	64	188	65	292
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	63	188	64	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	14	188	15	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	17	188	18	292
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	17	188	17	292
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	64	303	65	320
$\begin{aligned} & \text { P11' } \\ & \text { P12 } \end{aligned}$	63	303	64	320

表 9－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}{ }_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	211	253	272	391
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	214	253	276	391
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	112	255	145	394
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	97	255	130	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	28	255	32	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	32	255	40	394
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	28	249	39	385
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	18	249	29	385
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \\ & \hline \end{aligned}$	123	409	159	432
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	100	409	136	432

表 9－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{*} *^{2}$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	336	$466^{* 3}$	383
P01＇	336	$466^{* 3}$	383
P02	374	$522^{* 3}$	383
P02	374	$522^{* 3}$	383
P03	174	246	383
P03＇	174	246	383
P04	200	282	383
P04＇	200	282	383
P05	42	70	383
P05＇	42	70	383
P06	46	82	383
P06＇	46	82	383
P07	98	166	383
P07＇	98	166	383
P08	102	178	383
P08＇	102	178	383
P09	62	102	383
P09＇	62	102	383
P10	66	110	383
P10＇	66	110	383
P11	192	270	552
P11＇	192	270	552
P12	222	310	552
P12＇	222	310	552

注記 $* 1: S_{n}{ }^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot S_{m}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 9－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\text {e }}$ に（ E 0 ／E）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 9－5（2）疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - & \text { SFVC2B }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊ 2 ： $\mathrm{S}_{e}$ に（ $\mathrm{E}_{0} / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 9－5（3）疲労累積係数

$$
\begin{array}{llll}
\text { 応力評価点 } & - & \text { P12 } \\
\text { 材 } & \text { 料 } & - & \text { SFVQ1A }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{\prime *} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	Nc	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	310	－	402	201	236	14165	340	0.024
				疲労累積係数 $U_{n}=$				0.001
				疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Us}_{\text {s }}=$				0.025

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 9－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U S d	U s s	U ${ }_{\text {f }}$	許容値
P01	0.001	0.020	0.087	0.088	1.000
P01＇	0.001	0.020	0.087	0.088	1． 000
P02	0.001	0.050	0.289	0.290	1.000
P02＇	0.000	0.050	0.289	0.289	1． 000
P03	0.003	0． 127	0.216	0． 219	1． 000
P03＇	0.003	0.127	0.216	0.219	1． 000
P04	0.000	0.003	0.007	0.007	1． 000
P04＇	0.000	0.003	0.007	0.007	1． 000
P05	0.001	0.000	0.000	0.001	1． 000
P05＇	0.001	0.000	0.000	0.001	1． 000
P06	0.000	0.002	0.009	0.009	1． 000
P06＇	0.000	0.002	0.009	0.009	1． 000
P07	0.001	0.000	0.001	0.002	1． 000
P07	0.001	0.000	0.001	0.002	1． 000
P08	0.001	0.000	0.005	0.006	1． 000
P08＇	0.001	0.000	0.005	0.006	1． 000
P09	0.000	0.000	0.000	0.000	1． 000
P09＇	0.001	0.000	0.000	0.001	1． 000
P10	0.001	0.000	0.000	0.001	1． 000
P10＇	0.001	0.000	0.000	0.001	1． 000
P11	0.001	0.003	0.007	0． 008	1． 000
P11＇	0.001	0.003	0.007	0.008	1． 000
P12	0.001	0.015	0.024	0.025	1． 000
P12＇	0.001	0.015	0.024	0.025	1.000

注記＊：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重S s のいずれか大きい方を加えた値である。

10．低圧注水ノズル（N6）の耐震性についての計算
10.1 一般事項

本章は，低圧注水ノズル（N6）の耐震性についての計算である。
低圧注水ノズル（N6）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

## 10．1．1 形状•寸法•材料 <br> 本章で解析する箇所の形状•寸法•材料を図10－1に示す。

## 10．1．2 解析範囲

解析範囲を図10－1に示す。

## 10．1．3 計算結果の概要

計算結果の概要を表10－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図10－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6） $\mathrm{VI}-2-3-4-1-2$ R 3

表 10－1 計算結果の概要


注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

## 10．2 計算条件

10．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

10．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

10．2．3 材料
各部の材料を図10－1に示す。

10．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

10．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

## 10．2．6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

10．3 応力計算
10．3．1 応力評価点
応力評価点の位置を図10－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）m．に定めるとおりである。

## 10．3．2 内圧及び差圧による応力

（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）m．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）m．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

10．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編 の参照図書（1）m．に定めるとおりである。

## 10．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

10． 4 応力強さの評価
10．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表10－2に示す。
表10－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

10．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表10－3に示す。
表10－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

10．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表10－4に示す。
表10－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。
10.5 繰返し荷重の評価

10．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表10－5に示 す。また，各応力評価点における疲労累積係数を表10－6に示す。

表10－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表10－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	115	188	157	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	109	188	155	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	74	188	86	292
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	72	188	83	292
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	18	188	21	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	18	188	21	292
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \\ & \hline \end{aligned}$	74	303	86	320
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	72	303	83	320

表 10－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	221	253	336	391
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	227	253	349	391
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	111	255	164	394
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	100	255	155	394
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	28	255	28	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	29	255	29	394
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	25	249	29	385
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	24	249	25	385
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	122	409	178	432
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	102	409	161	432

表 10－4 一次 + 二次応力強さの評価のまとめ

注記 $* 1: ~ S_{n}{ }^{1}$ 1は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 10－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \mathrm{P} 02 \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： $\mathrm{S}_{e}$ に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 10－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P08 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 10－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P10 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 10－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U s d	$\mathrm{Us} \mathrm{s} \mathrm{s}^{\text {d }}$	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.001	0.025	0.368	0.369	1.000
P01	0.001	0.025	0.368	0.369	1.000
P02	0.001	0.078	0.870	0.871	1.000
P02＇	0.000	0.078	0.870	0.870	1.000
P03	0.006	0.080	0.207	0.213	1.000
P03＇	0.003	0.080	0.207	0.210	1.000
P04	0.000	0.003	0.010	0.010	1.000
P04＇	0.000	0.003	0.010	0.010	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05＇	0.001	0.000	0.000	0.001	1.000
P06	0.000	0.000	0.000	0.000	1.000
P06＇	0.000	0.000	0.000	0.000	1.000
P07	0.001	0.000	0.000	0.001	1.000
P07	0.001	0.000	0.000	0.001	1.000
P08	0.001	0.000	0.000	0.001	1.000
P08＇	0.000	0.000	0.000	0.000	1.000
P09	0.001	0.003	0.010	0.011	1.000
P09＇	0.001	0.003	0.010	0.011	1.000
P10	0.001	0.012	0.030	0.031	1.000
P10＇	0.001	0.012	0.030	0.031	1.000

注記 $~$ ：疲労累積係数 $U_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

11．上蓋スプレイノズル（N7）の耐震性についての計算
11.1 一般事項

本章は，上蓋スプレイノズル（N7）の耐震性についての計算である。
上蓋スプレイノズル（N7）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

## 11．1．1 形状•寸法•材料 <br> 本章で解析する箇所の形状•寸法•材料を図11－1に示す。

## 11．1．2 解析範囲

解析範囲を図11－1に示す。

## 11．1．3 計算結果の概要

計算結果の概要を表11－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図11－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－4－1－2 R 4

表 11－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜 }+ \text { 一次曲げ応力強さ } \\ \text { (MPa) } \end{gathered}$			$\begin{gathered} \text { 一次 }+\underset{(\mathrm{MPa})}{\text { 二次応力強さ }} \\ (\mathrm{MP} \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価面	応力強さ	許容   応力	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価点	疲労累積係数＊1	許容値	応力評価点
フランジ部 SFVQ1A	$\mathrm{III}_{4} \mathrm{~S}$	45	303	P01＇－P02＇	76	454	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	45	320	P01＇－P02＇	80	481	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	82	552	P02	0． 004	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	90	552	P02			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	138	303	P03－P04	331	406	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	137	320	P03－P04	355	429	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	526	552	P06	0． 292	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$572 * 2$	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 $\mathrm{Sd}^{*}$ 双は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

## 11.2 計算条件

11．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

## 11．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

## 11．2．3 材料

各部の材料を図11－1に示す。

## 11．2．4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

11．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

11．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 11.3 応力計算

11．3．1 応力評価点
応力評価点の位置を図11－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。

## 11．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

## 11．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。

11．3．4 ボルト荷重による応力
（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n． に定めるとおりである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）n．に定めるとおりである。

## 11．3．5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 11．4 応力強さの評価

11．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表11－2に示す。
表11－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

11．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表11－3に示す。
表11－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

11．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表11－4に示す。
表11－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。 P06及びP06’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P06及びP06’）にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

## 11.5 繰返し荷重の評価

11．5．1 疲労解析
フランジ部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表11－5に示 す。また，各応力評価点における疲労累積係数を表11－6に示す。

表11－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 11－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	44	303	44	320
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	45	303	45	320
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	138	303	137	320
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	133	303	131	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	135	303	135	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	128	303	126	320

च $\mathrm{C} \quad$ Z－I－モ－$-\zeta-\mathrm{I} \Lambda \quad$（9）$\quad$ O O

表 11－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III $_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01   P02	62	454	66	481
P01   P02	76	454	80	481
P03   P04	302	406	330	429
P03   P04	215	406	240	429
P05   P06	331	406	355	429
P05   P06，	171	406	194	429

表 11－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{2} * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	54	60	552
P01	54	60	552
P02	82	90	552
P02	82	90	552
P03	428	472	552
P03	428	472	552
P04	480	528	552
P04	480	528	552
P05	468	508	552
P05	468	508	552
P06	526	$572^{* 3}$	552
P06	526	$572^{* 3}$	552

注記 $* 1: S_{n}{ }^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
＊ 3 ：許容応力 $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析 を行う。

表 11－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 11－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 11－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	$\mathrm{U}_{\mathrm{s}}$	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.000	0.000	0.000	0.000	1.000
P01	0.000	0.000	0.000	0.000	1.000
P02	0.001	0.003	0.003	0.004	1.000
P02	0.000	0.003	0.003	0.003	1.000
P03	0.001	0.052	0.041	0.053	1.000
P03	0.001	0.052	0.041	0.053	1.000
P04	0.007	0.231	0.184	0.238	1.000
P04	0.001	0.231	0.184	0.232	1.000
P05	0.002	0.069	0.051	0.071	1.000
P05	0.001	0.069	0.051	0.070	1.000
P06	0.004	0.204	0.288	0.292	1.000
P06	0.001	0.204	0.288	0.289	1.000

注記 $*$ ：疲労累積係数 $U_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は
地震荷重S s のいずれか大きい方を加えた値である。

12．ベントノズル（N8）の耐震性についての計算
12.1 一般事項

本章は，ベントノズル（N8）の耐震性についての計算である。
ベントノズル（N8）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備 （設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

## 12．1．1 形状•寸法•材料 <br> 本章で解析する箇所の形状•寸法•材料を図12－1に示す。

## 12．1．2 解析範囲

解析範囲を図12－1に示す。

12．1．3 計算結果の概要
計算結果の概要を表12－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図12－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－4－1－2 R 4

表 12－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力強さ }}{(\mathrm{MPa})} \end{gathered}$			疲労解析		
		応力強さ	許容 応力	応力評価面	応力強さ	許容 応力	応力評価面	応力強さ	許容   応力	応力評価点	疲労累積係数＊	許容値	応力評価点
フランジ部 SFVQ1A	$\mathrm{III}_{\text {A }} \mathrm{S}$	42	303	P01－P02	59	454	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	42	320	P01－P02	58	481	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	102	552	P02	0． 004	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	102	552	P02			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	101	303	P03－P04	251	418	P05－P06	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	98	320	P03－P04	235	442	P05－P06	－	－	－	－	－	－
	IIIA ${ }_{\text {S }}$ S	－	－	－	－	－	－	552	552	P06	0.578	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	542	552	P06			

注：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。

## 12.2 計算条件

12．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

## 12．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

## 12．2．3 材料

各部の材料を図12－1に示す。

12．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

12．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

12．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 12.3 応力計算

12．3．1 応力評価点
応力評価点の位置を図12－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。

## 12．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

12．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。

## 12．3．4 ボルト荷重による応力

（1）荷重条件（L11）
ボルト荷重は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o． に定めるとおりである。
（2）計算方法
ボルト荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）o．に定めるとおりである。

## 12．3．5 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

12． 4 応力強さの評価
12．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表12－2に示す。
表12－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

12．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表12－3に示す。
表12－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

12．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表12－4に示す。
表12－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
12.5 繰返し荷重の評価

12．5．1 疲労解析
フランジ部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表12－5に示 す。また，各応力評価点における疲労累積係数を表12－6に示す。

表12－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 12－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	42	303	42	320
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	42	303	42	320
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	101	303	98	320
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	98	303	94	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	98	303	96	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	95	303	91	320

O 2 （6） $\mathrm{VI}-2-3-4-1-2$ R 4

表 12－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	59	454	58	481
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	52	454	51	481
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	227	418	215	442
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	130	418	118	442
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	251	418	235	442
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	128	418	111	442

表 12－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	64	64	552
P01＇	64	64	552
P02	102	102	552
P02	102	102	552
P03	400	392	552
P03	400	392	552
P04	478	472	552
P04＇	478	472	552
P05	460	452	552
P05	460	452	552
P06	552	542	552
P06	552	542	552

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S^{\prime}$ による一次 + 二次応力差の最大範囲を示す。
＊ $2: \mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 12－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 12－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\text {e }}$ に（ E 0 ／E）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 12－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	$\mathrm{U}_{\mathrm{s}}$	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P01	0.000	0.000	0.000	0.000	1.000
P01	0.000	0.000	0.000	0.000	1.000
P02	0.000	0.004	0.002	0.004	1.000
P02	0.000	0.004	0.002	0.004	1.000
P03	0.000	0.041	0.022	0.041	1.000
P03	0.000	0.041	0.022	0.041	1.000
P04	0.002	0.189	0.105	0.191	1.000
P04	0.000	0.189	0.105	0.189	1.000
P05	0.001	0.065	0.036	0.066	1.000
P05	0.000	0.065	0.036	0.065	1.000
P06	0.001	0.577	0.166	0.578	1.000
P06	0.000	0.577	0.166	0.577	1.000

注記＊：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は
地震荷重S s のいずれか大きい方を加えた値である。

13．ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算
13.1 一般事項

本章は，ジェットポンプ計測管貫通部ノズル（N9）の耐震性についての計算である。 ジェットポンプ計測管貫通部ノズル（N9）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

## 13．1．1 形状•寸法•材料 <br> 本章で解析する箇所の形状•寸法•材料を図13－1に示す。

## 13．1．2 解析範囲

解析範囲を図13－1に示す。

13．1．3 計算結果の概要
計算結果の概要を表13－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図13－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－4－1－2 R 4

表 13－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \text { 一次膜 }+ \text { 一次曲げ応力強さ } \\ \text { (MPa) } \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力強さ }}{(\mathrm{MPa})} \mathrm{Cl} \end{gathered}$			疲労解析		
		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	応力   強さ	許容   応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ジェットポンプ } \\ \text { 計測管貫通部 } \\ \text { シール } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	72	143	P01＇－P02＇	157	209	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	68	280	P01＇－P02＇	159	408	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	358	360	P02	0． 001	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	360	360	P02			
溶接部 ステンレス鋼	$\mathrm{III}_{4} \mathrm{~S}$	72	143	P03＇－P04＇	118	207	P03＇－P04	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	69	280	P03＇－P04＇	119	406	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	256	360	P04	0． 001	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	256	360	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	107	303	P05＇－P06＇	210	418	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	101	320	P05－P06＇	210	442	P05－P06	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	456	552	P06	0.116	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	458	552	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

## 13.2 計算条件

13．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

## 13．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

13．2．3 材料
各部の材料を図13－1に示す。

13．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

13．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

## 13．2．6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 13.3 応力計算

13．3．1 応力評価点
応力評価点の位置を図13－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）p．に定めるとおりである。

## 13．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）p．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）p．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

13．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）p．に定めるとおりである。

## 13．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

13．4 応力強さの評価
13．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表13－2に示す。
表13－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

13．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表13－3に示す。
表13－3より，各許容応力状態の一次膜十一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

13．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表13－4に示す。
表13－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
13.5 繰返し荷重の評価

13．5．1 疲労解析
ジェットポンプ計測管貫通部シール，溶接部及びノズルエンドの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表13－5に示 す。また，各応力評価点における疲労累積係数を表13－6に示す。

表13－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 13－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態IV $\mathrm{A}^{\text {S }}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	71	143	67	280
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	72	143	68	280
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	71	143	67	280
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	72	143	69	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	105	303	99	320
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	107	303	101	320

च $\mathrm{C} \quad$ Z－I－モ－$-\zeta-\mathrm{I} \Lambda \quad$（9）$\quad$ O O

表 13－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{V}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	157	209	159	408
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	155	209	156	408
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	114	207	116	406
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \\ & \hline \end{aligned}$	118	207	119	406
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	209	418	210	442
$\begin{aligned} & \text { P05' } \\ & \text { P06 } \\ & \hline \end{aligned}$	210	418	210	442

表 13－4 一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	260	264	360
P01	260	264	360
P02	358	360	360
P02	358	360	360
P03	198	192	360
P03	198	192	360
P04	256	256	360
P04	256	256	360
P05	386	386	552
P05	386	386	552
P06	456	458	552
P06	456	458	552

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。
＊ $2: \mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 13－5（1）疲労累積係数

$$
\begin{array}{rrll}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - & \text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	260	－	366	183	203	732091	590	0.001
疲労累積係数 $\mathrm{US} \mathrm{d}^{\text {a }}$ 渡学 0.001								
疲労累積係数 $U_{n}=0.000$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\text {S d }}=0.001$								

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 13－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & \text { - } & \text { P04 } \\
\text { 材 } & \text { 料 } & \text { - }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K ${ }_{\text {e }}$	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{Se}_{\ell}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{e^{\prime} * 2} \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	256	－	256	128	142	3103670	590	0.001
疲労累積係数 $\mathrm{U}_{\mathrm{n}}=0.000$								
疲労累積係数						$\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{U}_{\mathrm{Sd}}=$		0.001

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 13－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & -
\end{array} \text { SFVQ1A }
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 13－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	$\mathrm{U}_{\mathrm{s} \mathrm{d}}$	$\mathrm{U}_{\mathrm{s}}$	$\mathrm{U}_{\mathrm{f}}{ }^{*}$	許容値
P 01	0.000	0.001	0.001	0.001	1.000
P01	0.000	0.001	0.001	0.001	1.000
P02	0.000	0.001	0.001	0.001	1.000
P02	0.000	0.001	0.001	0.001	1.000
P03	0.000	0.001	0.001	0.001	1.000
P03	0.000	0.001	0.001	0.001	1.000
P04	0.000	0.001	0.001	0.001	1.000
P04	0.000	0.001	0.001	0.001	1.000
P05	0.000	0.037	0.021	0.037	1.000
P05	0.000	0.037	0.021	0.037	1.000
P06	0.001	0.115	0.071	0.116	1.000
P06	0.000	0.115	0.071	0.115	1.000

注記＊：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

14．差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算
14.1 一般事項

本章は，差圧検出・ほう酸水注入ノズル（N11）の耐震性についての計算である。
差圧検出・ほう酸水注入ノズル（N11）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
$\begin{aligned} & \text { 14．1．1 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図 } 14-1 \text { に示す。 }\end{aligned}$

14．1．2 解析範囲
解析範囲を図14－1に示す。

14．1．3 計算結果の概要
計算結果の概要を表14－1に示す。
なお，応力評価点の選定に当たっては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図14－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－4－1－2 R 4

表 14－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			$\begin{gathered} \text { 一次膜+一次曲げ応力強さ } \\ \text { (MPa) } \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力強さ }}{(\mathrm{MPa})} \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価面	応力   強さ	許容応力	応力評価面	応力強さ	許容   応力	応力評価点	疲労累積係数＊	許容値	応力評価点
肉盛部高ニッケル合金	$\mathrm{III}_{A} \mathrm{~S}$	6	196	P01－P02	93	295	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	10	334	P01－P02	95	501	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	32	492	P02	0． 001	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	58	492	P02			
$\begin{gathered} \text { ノズル } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	32	143	P07－P08	32	207	P07－P08	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	37	280	P07－P08	47	406	P07－P08	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	68	360	P06	0． 004	1． 000	P08＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	142	360	P08			

注：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。

## 14．2 計算条件

## 14．2．1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

## 14．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

14．2．3 材料
各部の材料を図14－1に示す。

14．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

14．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

14．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 14.3 応力計算

14．3．1 応力評価点
応力評価点の位置を図14－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）q．に定めるとおりである。

## 14．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）q．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）q．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

14．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）q．に定めるとおりである。

## 14．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 14.4 応力強さの評価

14．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表14－2に示す。
表14－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

14．4．2 一次膜十一次曲げ応力強さの評価
各許容応力状態における評価を表14－3に示す。
表14－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

14．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表14－4に示す。
表14－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
14.5 繰返し荷重の評価

14．5．1 疲労解析
肉盛部及びノズルの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表14－5に示 す。また，各応力評価点における疲労累積係数を表14－6に示す。

表14－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 14－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 III ${ }_{4} \mathrm{~S}$		許容応力状態IV ${ }_{\text {A }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	6	196	10	334
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	6	196	10	334
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	2	196	4	334
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	2	196	4	334
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	15	143	20	280
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	15	143	20	280
$\begin{aligned} & \text { P07 } \\ & \text { P08 } \end{aligned}$	32	143	37	280
$\begin{aligned} & \hline \text { P07' } \\ & \text { P08 } \end{aligned}$	32	143	37	280

表 14－3 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	18	295	22	501
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	18	295	24	501
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	87	295	84	501
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	93	295	95	501
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	20	207	29	406
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	29	207	40	406
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \\ & \hline \end{aligned}$	32	207	47	406
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	23	207	41	406

表 14－4 一次 + 二次応力強さの評価のまとめ

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{\#} *_{2}$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	20	40	492
P01	20	40	492
P02	32	58	492
P02	32	58	492
P03	12	16	492
P03	12	16	492
P04	16	30	492
P04	16	30	492
P05	48	80	360
P05	48	80	360
P06	68	114	360
P06	68	114	360
P07	54	106	360
P07	54	106	360
P08	68	142	360
P08	68	142	360

注記 $* 1: ~ S_{n}{ }^{\# 1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 14－5（1）疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 } \\
& \text { 材 }
\end{aligned} \text { P01 }
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 14－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P08 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{Na}_{\mathrm{a}}$
1	142	－	496	248	275	113240	340	0.003
疲労累積係数 $U_{n}=0.001$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{Us}_{\text {s }}=0.004$								

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊ 2 ： $\mathrm{S}_{\mathrm{e}}$ に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 14－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U s d	U s s	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.001	0.000	0.000	0.001	1.000
P01＇	0.001	0.000	0.000	0.001	1.000
P02	0.000	0.000	0.000	0.000	1.000
P02＇	0.001	0.000	0.000	0.001	1.000
P03	0.001	0.000	0.000	0.001	1． 000
P03＇	0.001	0.000	0.000	0.001	1.000
P04	0.000	0.000	0.000	0.000	1． 000
P04＇	0.000	0.000	0.000	0.000	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05＇	0.001	0.000	0.000	0.001	1.000
P06	0.001	0.001	0.001	0.002	1.000
P06＇	0.000	0.001	0.001	0.001	1.000
P07	0.000	0.000	0.000	0.000	1.000
P07	0.000	0.000	0.000	0.000	1.000
P08	0.000	0.001	0.003	0.003	1.000
P08＇	0.001	0.001	0.003	0.004	1.000

注記＊：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重S s のいずれか大きい方を加えた値である。

15．計装ノズル（N12，N13，N14）の耐震性についての計算
15.1 一般事項

本章は，計装ノズル（N12，N13及びN14）の耐震性についての計算である。
計装ノズル（N12，N13及びN14）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

## 15．1．1 形状•寸法•材料 <br> 本章で解析する箇所の形状•寸法•材料を図15－1に示す。

## 15．1．2 解析範囲

解析範囲を図15－1に示す。

## 15．1．3 計算結果の概要

計算結果の概要を表15－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図 15－1（1）形状•寸法•材料•応力評価点（単位：mm） （計装ノズル（N12 及び N13））


図 15－1（2）形状•寸法•材料•応力評価点（単位：mm）
（計装ノズル（N14））

表 15－1（1）計装ノズル（N12）の計算結果の概要


注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－1（2）計装ノズル（N13）の計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+\underset{\text { 二次応力強さ }}{(\mathrm{MPa})} \end{gathered}$			疲労解析		
		応力 強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力   強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	47	143	P01－P02	121	214	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	45	280	P01－P02	114	420	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	226	360	P02	0． 002	1． 000	P01
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	224	360	P02			
溶接部近傍 ステンレス鋼側	$\mathrm{III}_{4} \mathrm{~S}$	45	143	P03－P04	139	214	P03－P04＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	45	280	P03－P04	130	420	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	258	360	P04	0． 002	1． 000	P04
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	258	360	P04			
$\begin{gathered} \text { ノズルエンド } \\ \text { NCF600-B } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	35	196	P05－P06	255	295	P05－P06，	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	33	334	P05－P06	246	501	P05－P06＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	266	492	P06	0． 245	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	264	492	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－1（3）計装ノズル（N14）の計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			一次膜＋一次曲げ応力強さ （MPa）			一次十二次応力強さ （MPa）			疲労解析		
		応力   強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力   強さ	許容   応力	応力評価面	応力強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \\ & \hline \end{aligned}$	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SUSF316 } \end{gathered}$	$\mathrm{III}_{A} \mathrm{~S}$	44	143	P01－P02	71	201	P01－P02	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	44	280	P01－P02	69	394	P01－P02	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	114	360	P02	0． 002	1． 000	P01＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	116	360	P02			
溶接部近傍 ステンレス鋼側	$\mathrm{III}_{A} \mathrm{~S}$	28	143	P03－P04	59	214	P03－P04	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	28	280	P03－P04	56	420	P03－P04	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	98	360	P04	0． 001	1． 000	P03
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	100	360	P04			
$\begin{aligned} & \text { ノズルエンド } \\ & \text { NCF600-B } \end{aligned}$	$\mathrm{III}_{4} \mathrm{~S}$	25	196	P05－P06	179	295	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	25	334	P05－P06	175	501	P05＇－P06＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {A }} \mathrm{S}$	－	－	－	－	－	－	106	492	P06	0.005	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	106	492	P06			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

## 15．2 計算条件

15．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

15．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

15．2．3 材料
各部の材料を図15－1に示す。

15．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

15．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

15．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 15.3 応力計算

15．3．1 応力評価点
応力評価点の位置を図15－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）r．亿定めるとおりである。

## 15．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）r．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）r．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

15．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）r．に定めるとおりである。

## 15．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

15．4 応力強さの評価
15．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表15－2に示す。
表15－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

15．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表15－3に示す。
表15－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

15．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表15－4に示す。
表15－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}} \#^{1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

## 15.5 繰返し荷重の評価

15．5．1 疲労解析
ノズルセーフエンド，溶接部近傍及びノズルエンドの応力評価点について，詳細な繰返 し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表15－5に示す。また，各応力評価点における疲労累積係数を表15－6に示す。

表15－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容値を満足する。

表 15－2（1）計装ノズル（N12）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

表 15－2（2）計装ノズル（N13）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

表 15－2（3）計装ノズル（N14）の一次一般膜応力強さの評価のまとめ
（単位：MPa）

表 15－3（1）計装ノズル（N12）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

表 15－3（2）計装ノズル（N13）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

表 15－3（3）計装ノズル（N14）の一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

表 15－4（1）計装ノズル（N12）の一次＋二次応力強さの評価のまとめ

表 15－4（2）計装ノズル（N13）の一次＋二次応力強さの評価のまとめ

表 15－4（3）計装ノズル（N14）の一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$S_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \# 2 * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	92	92	360
P01	92	92	360
P02	114	116	360
P02	114	116	360
P03	64	64	360
P03＇	64	64	360
P04	98	100	360
P04	98	100	360
P05	62	62	492
P05	62	62	492
P06	106	106	492
P06＇	106	106	492
P07	16	18	492
P07	16	18	492
P08	26	26	492
P08	26	26	492

注記 $* 1: S_{n} \#^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 15－5（1）計装ノズル（N12）の疲労累積係数

$$
\begin{array}{rrll}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - & \text { SUSF316 }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=$

MPa，E
 MPa

表 15－5（2）計装ノズル（N12）の疲労累積係数

$$
\begin{aligned}
& \text { 応力評価点 } \\
& \text { 材 }
\end{aligned} \text { P04’ }
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（3）計装ノズル（N12）の疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - & \text { NCF600-B }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（4）計装ノズル（N13）の疲労累積係数

$$
\begin{array}{rrl}
\text { 応力評価点 } & - & \text { P01 } \\
\text { 材 } & \text { 料 } & - \\
\text { SUSF316 }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（5）計装ノズル（N13）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & \text { - } & \text { P04 } \\
\text { 材 } & \text { 料 } & \text { - }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（6）計装ノズル（N13）の疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { NCF600-B }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（7）計装ノズル（N14）の疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P01' } \\
\text { 材 } & \text { 料 } & - & \text { SUSF316 }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $* 1$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（8）計装ノズル（N14）の疲労累積係数

$$
\begin{aligned}
\text { 応力評価点 } & \text { - } 03 \\
\text { 材 } & \text { 料 }
\end{aligned}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{1}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： $\mathrm{S}_{\mathrm{e}}$ に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－5（9）計装ノズル（N14）の疲労累積係数

$$
\begin{array}{rlll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - & \text { NCF600-B }
\end{array}
$$

No．	$\begin{gathered} \mathrm{S}_{\mathrm{n}} \\ (\mathrm{MPa}) \end{gathered}$	K e	$\begin{gathered} \mathrm{S}_{\mathrm{p}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{aligned} & \mathrm{S}_{e}{ }^{* 1} \\ & (\mathrm{MPa}) \end{aligned}$	$\begin{aligned} & \mathrm{S}_{\ell}{ }^{*} * 2 \\ & (\mathrm{MPa}) \end{aligned}$	Na	N c	$\mathrm{N}_{\mathrm{c}} / \mathrm{N}_{\mathrm{a}}$
1	106	－	510	255	251	186529	590	0.004
疲労累積係数 $U_{n}=0.001$								
疲労累積係数 $\mathrm{U}_{\mathrm{f}}=\mathrm{U}_{\mathrm{n}}+\mathrm{US}_{\text {d }}=0.005$								

注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 15－6（1）計装ノズル（N12）の疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U S d	$\mathrm{U}_{\text {S s }}$	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.001	0.001	0.001	0.002	1.000
P01＇	0.000	0.001	0.001	0.001	1.000
P02	0.001	0.001	0.001	0.002	1.000
P02＇	0.001	0.001	0.001	0.002	1.000
P03	0.001	0.000	0.000	0.001	1.000
P03＇	0.001	0.000	0.000	0.001	1． 000
P04	0.000	0.001	0.001	0.001	1.000
P04＇	0.001	0.001	0.001	0.002	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.000	0.000	0.000	0.000	1.000
P06	0.005	0.242	0.140	0.247	1.000
P06＇	0.005	0．242	0.140	0.247	1.000
P07	0.001	0.000	0.000	0.001	1.000
P07，	0.001	0.000	0.000	0.001	1． 000
P08	0.001	0.000	0.000	0.001	1.000
P08＇	0.001	0.000	0.000	0.001	1.000

注記 $*$ ：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－6（2）計装ノズル（N13）の疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U S d	$\mathrm{U}_{\text {S s }}$	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.001	0.001	0.001	0.002	1.000
P01＇	0.001	0.001	0.001	0.002	1.000
P02	0.000	0.001	0.001	0.001	1.000
P02＇	0.001	0.001	0.001	0.002	1.000
P03	0.001	0.000	0.000	0.001	1.000
P03＇	0.001	0.000	0.000	0.001	1． 000
P04	0.001	0.001	0.001	0.002	1.000
P04＇	0.001	0.001	0.001	0.002	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05，	0.001	0.000	0.000	0.001	1.000
P06	0.003	0.242	0.140	0.245	1.000
P06＇	0.001	0．242	0.140	0.243	1.000
P07	0.000	0.000	0.000	0.000	1.000
P07，	0.000	0.000	0.000	0.000	1． 000
P08	0.005	0.000	0.000	0.005	1.000
P08＇	0.005	0.000	0.000	0.005	1.000

注記 $*$ ：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重S s のいずれか大きい方を加えた値である。

表 15－6（3）計装ノズル（N14）の疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U S d	$\mathrm{Us} \mathrm{s}^{\text {s }}$	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.000	0.001	0.001	0.001	1.000
P01＇	0.001	0.001	0.001	0.002	1.000
P02	0.001	0.000	0.000	0.001	1.000
P02＇	0.001	0.000	0.000	0.001	1.000
P03	0.001	0.000	0.000	0.001	1.000
P03＇	0.001	0.000	0.000	0.001	1.000
P04	0.000	0.000	0.000	0.000	1.000
P04＇	0.000	0.000	0.000	0.000	1.000
P05	0.001	0.000	0.000	0.001	1.000
P05＇	0.001	0.000	0.000	0.001	1.000
P06	0.001	0.004	0.002	0.005	1.000
P06＇	0.001	0.004	0.002	0.005	1.000
P07	0.000	0.000	0.000	0.000	1.000
P07 ${ }^{\prime}$	0.000	0.000	0.000	0.000	1.000
P08	0.002	0.000	0.000	0.002	1.000
P08 ${ }^{\prime}$	0.002	0.000	0.000	0.002	1.000

注記 $*$ ：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重S s のいずれか大きい方を加えた値である。

16．ドレンノズル（N15）の耐震性についての計算
16．1 一般事項
本章は，ドレンノズル（N15）の耐震性についての計算である。
ドレンノズル（N15）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備 においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備 （設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。
$\begin{aligned} \text { 16．1．1 } & \text { 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図16－1に示す。 }\end{aligned}$

16．1．2 解析範囲
解析範囲を図16－1に示す。

16．1．3 計算結果の概要
計算結果の概要を表16－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図16－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6） $\mathrm{VI}-2-3-4-1-2 \mathrm{R} 4$

表 16－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			$\begin{gathered} \text { 一次膜 }+ \text { 一次曲げ応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			疲労解析		
		$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容   応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	70	188	P01－P02	187	262	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	70	292	P01－P02	182	405	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	376	383	P02	0． 047	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	378	383	P02			
肉盛部炭素鋼	$\mathrm{IIH}_{A} \mathrm{~S}$	36	188	P03－P04	217	279	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	35	292	P03－P04	214	432	P03＇－P04＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	234	383	P04	0． 027	1． 000	P04＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	234	383	P04			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重S s のいずれか大きい方を加えた値である。

## 16．2 計算条件

16．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

16．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

16．2．3 材料
各部の材料を図16－1に示す。

16．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

16．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

16．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

16．3 応力計算
16．3．1 応力評価点
応力評価点の位置を図16－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）s．に定めるとおりである。

## 16．3．2 内圧による応力

（1）荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）S．に定めるとおりである。
（2）計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）s．に定めるとおりである。

なお，各運転条件での内圧による応力は，既工認と同様に，既工認の最高使用圧力での応力を用いて，圧力の比により計算する。

16．3．3 外荷重による応力
（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）S．に定めるとおりである。

## 16．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

16．4 応力強さの評価
16．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表16－2に示す。
表16－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

16．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表16－3に示す。
表16－3より，各許容応力状態の一次膜十一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

16．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表16－4に示す。
表16－4より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\#}{ }^{2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
16.5 繰返し荷重の評価

16．5．1 疲労解析
ノズルエンド及び肉盛部の応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表16－5に示 す。また，各応力評価点における疲労累積係数を表16－6に示す。

表16－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 16－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01   P02	70	188	70	292
P01   P02	69	188	69	292
P03   P04	36	188	35	292
P03＇   P04	34	188	33	292

[^2]表 16－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	182	262	177	405
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \\ & \hline \end{aligned}$	187	262	182	405
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	69	279	67	432
$\begin{aligned} & \text { P03' } \\ & \text { P04' } \end{aligned}$	217	279	214	432

表 16－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{2} 2 * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	312	312	383
P01	312	312	383
P02	376	378	383
P02	376	378	383
P03	160	158	383
P03	160	158	383
P04	234	234	383
P04	234	234	383

注記 $* 1: ~ S_{n} \#^{1}$ は許容応力状態 $I I I I_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。
R 4

表 16－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 16－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P04' } \\
\text { 材 } & \text { 料 } & - \\
\text { 炭素鋼 }
\end{array}
$$



注 ：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\mathrm{e}}$ に（ $\mathrm{E} 0 / \mathrm{E}$ ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 16－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U S d	U s s	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.001	0.020	0.012	0.021	1.000
P01＇	0.001	0.020	0.012	0.021	1． 000
P02	0.001	0.046	0.026	0.047	1.000
P02＇	0.001	0.046	0.026	0.047	1． 000
P03	0.002	0.001	0.001	0.003	1.000
P03＇	0.002	0.001	0.001	0.003	1．000
P04	0.001	0.025	0.014	0.026	1． 000
P04 ${ }^{\prime}$	0.002	0.025	0.014	0.027	1． 000

注記 $~$ ：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 Sd ＊又は
地震荷重S s のいずれか大きい方を加えた値である。

17．高圧炉心スプレイノズル（N16）の耐震性についての計算
17.1 一般事項

本章は，高圧炉心スプレイノズル（N16）の耐震性についての計算である。
高圧炉心スプレイノズル（N16）は，設計基準対象施設においてはSクラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

## 17．1．1 形状•寸法•材料 <br> 本章で解析する箇所の形状•寸法•材料を図17－1に示す。

## 17．1．2 解析範囲

解析範囲を図17－1に示す。

## 17．1．3 計算結果の概要

計算結果の概要を表17－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図17－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－4－1－2 R 4

表 17－1 計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （ MPa ）			一次膜＋一次曲げ応力強さ （MPa）			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ \text { (MPa) } \\ \hline \end{gathered}$			疲労解析		
		$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	$\begin{aligned} & \hline \text { 応力 } \\ & \text { 強さ } \end{aligned}$	許容 応力	応力評価面	$\begin{aligned} & \text { 応力 } \\ & \text { 強さ } \end{aligned}$	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価点	疲労累積係数＊1	許容値	応力評価点
$\begin{gathered} \text { ノズル } \\ \text { セーフエンド } \\ \text { SFVC2B } \end{gathered}$	$\mathrm{III}_{\text {A }} \mathrm{S}$	89	188	P01－P02	214	253	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	92	292	P01－P02	276	391	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	374	383	P02	0． 290	1． 000	P02＇
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	$522^{* 2}$	383	P02			
サーマル   スリーブ   SFVC2B	$\mathrm{III}_{4} \mathrm{~S}$	17	188	P09－P10	39	247	P07－P08	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	18	292	P09－P10	58	382	P07－P08	－	－	－	－	－	－
	$\mathrm{III}_{4} \mathrm{~S}$	－	－	－	－	－	－	102	383	P08	0． 011	1． 000	P06
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	178	383	P08			
$\begin{gathered} \text { ノズルエンド } \\ \text { SFVQ1A } \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$	64	303	P11－P12	123	409	P11－P12	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	65	320	P11－P12	159	432	P11－P12	－	－	－	－	－	－
	$\mathrm{IIH}_{4} \mathrm{~S}$	－	－	－	－	－	－	222	552	P12	0． 024	1． 000	P12
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	310	552	P12			

注 ：管台（穴の周辺部）については設計•建設規格 PVB－3510（1）により，応力評価は不要である。
注記 $* 1$ ：疲労累積係数は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重 S s のいずれか大きい方を加えた値である。
＊2 ：許容値3• $\mathrm{S}_{\mathrm{m}}$ を超えるため，設計•建設規格 PVB－3300の簡易弾塑性解析を行う。

## 17．2 計算条件

## 17．2．1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

## 17．2．2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

## 17．2．3 材料

各部の材料を図17－1に示す。

## 17．2．4 荷重の組合せ及び許容応力状態

荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

17．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

## 17．2．6 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 17.3 応力計算

17．3．1 応力評価点
応力評価点の位置を図17－1に示す。
なお，応力集中を生じる箇所の応力集中係数は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）t．に定めるとおりである。

## 17．3．2 内圧及び差圧による応力

（1）荷重条件（L01及びL02）
各運転状態による内圧及び差圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）t．に定めるとおりである。
（2）計算方法
内圧及び差圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）t．に定めるとおりである。

なお，各運転条件での内圧及び差圧による応力は，既工認と同様に，既工認の最高使用圧力及び設計差圧での応力を用いて，圧力の比により計算する。

## 17．3．3 外荷重による応力

（1）荷重条件（L04，L07，L14，L15，L16及びL17）
外荷重を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）t．に定めるとおりである。

## 17．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さ を算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

## 17．4 応力強さの評価

17．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表17－2に示す。
表17－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

17．4．2 一次膜 + 一次曲げ応力強さの評価
各許容応力状態における評価を表17－3に示す。
表17－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

17．4．3 一次 + 二次応力強さの評価
地震荷重のみにおける評価を表17－4に示す。
表17－4より，以下の評価点を除くすべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。

P01，P01’，P02及びP02’

一次 + 二次応力強さの最大範囲が $3 \cdot \mathrm{~S}_{\mathrm{m}}$ を超える応力評価点（P01，P01’，P02及びP02’） にあっては，「応力解析の方針」（1）耐震評価編の5．4節に示す簡易弾塑性解析の方法を適用する。

## 17.5 繰返し荷重の評価

17．5．1 疲労解析
ノズルセーフエンド，サーマルスリーブ及びノズルエンドの応力評価点について，詳細 な繰返し荷重の評価を行う。
（1）疲労累積係数
それぞれの部分で最も厳しい応力評価点における疲労累積係数の計算結果を表17－5に示 す。また，各応力評価点における疲労累積係数を表17－6に示す。

表17－6より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の3．5節に示す許容値を満足する。

表 17－2 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態IV $\mathrm{A}_{\text {S }} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	89	188	92	292
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	88	188	90	292
$\begin{aligned} & \text { P03 } \\ & \text { P04 } \end{aligned}$	64	188	65	292
$\begin{aligned} & \text { P03' } \\ & \text { P04 } \end{aligned}$	63	188	64	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	14	188	14	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	15	188	16	292
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	14	188	15	292
$\begin{aligned} & \text { P09 } \\ & \text { P10 } \end{aligned}$	17	188	18	292
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	17	188	17	292
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \\ & \hline \end{aligned}$	64	303	65	320
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \end{aligned}$	63	303	64	320

表 17－3 一次膜＋一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{4} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \hline \text { P01 } \\ & \text { P02 } \end{aligned}$	211	253	272	391
$\begin{aligned} & \hline \text { P01' } \\ & \text { P02 } \end{aligned}$	214	253	276	391
$\begin{aligned} & \hline \text { P03 } \\ & \text { P04 } \end{aligned}$	112	255	145	394
$\begin{aligned} & \hline \text { P03' } \\ & \text { P04 } \end{aligned}$	97	255	130	394
$\begin{aligned} & \hline \text { P05 } \\ & \text { P06 } \end{aligned}$	28	255	32	394
$\begin{aligned} & \text { P05 } \\ & \text { P06 } \end{aligned}$	32	255	40	394
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \hline \text { P07 } \\ & \text { P08 } \end{aligned}$	39	247	58	382
$\begin{aligned} & \hline \text { P09 } \\ & \text { P10 } \end{aligned}$	28	249	39	385
$\begin{aligned} & \text { P09' } \\ & \text { P10' } \end{aligned}$	18	249	29	385
$\begin{aligned} & \text { P11 } \\ & \text { P12 } \end{aligned}$	123	409	159	432
$\begin{aligned} & \hline \text { P11 } \\ & \text { P12 } \\ & \hline \end{aligned}$	100	409	136	432

表 17－4 一次 + 二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}}^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}}^{\#} \#^{* 2}$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	336	$466^{* 3}$	383
P01	336	$466^{* 3}$	383
P02	374	$522^{* 3}$	383
P02	374	$522^{* 3}$	383
P03	174	246	383
P03	174	246	383
P04	200	282	383
P04	200	282	383
P05	42	70	383
P05	42	70	383
P06	46	82	383
P06	46	82	383
P07	98	166	383
P07	98	166	383
P08	102	178	383
P08	102	178	383
P09	62	102	383
P09＇	62	102	383
P10	66	110	383
P10	66	110	383
P11	192	270	552
P11	192	270	552
P12	222	310	552
P12	222	310	552

注記 $* 1: S_{n}{ }^{1}$ は許容応力状態 $I I I_{A} S$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。 ＊ 3 ：簡易弾塑性解析を行う。

表 17－5（1）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02' } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $~ 1 ~$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
＊2： $\mathrm{S}_{\text {e }}$ に（ E 0 ／E）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 17－5（2）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P06 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVC2B }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記 $*^{*}$ ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 17－5（3）疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P12 } \\
\text { 材 } & \text { 料 } & - \\
\text { SFVQ1A }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 17－6 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U s d	$\mathrm{U}_{\text {s s }}$	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.002	0.020	0.087	0.089	1.000
P01＇	0.001	0.020	0.087	0.088	1． 000
P02	0.000	0.050	0． 289	0． 289	1． 000
P02＇	0.001	0.050	0.289	0.290	1． 000
P03	0.023	0.127	0.216	0.239	1． 000
P03＇	0.019	0.127	0.216	0.235	1． 000
P04	0.000	0.003	0.007	0.007	1． 000
P04＇	0.000	0.003	0.007	0.007	1． 000
P05	0.006	0.000	0.000	0.006	1． 000
P05，	0.007	0.000	0.000	0.007	1． 000
P06	0.002	0.002	0.009	0.011	1． 000
P06＇	0.002	0.002	0.009	0.011	1． 000
P07	0.002	0.000	0.001	0.003	1． 000
P07	0.002	0.000	0.001	0.003	1． 000
P08	0.003	0.000	0.005	0.008	1． 000
P08＇	0.002	0.000	0.005	0.007	1． 000
P09	0.000	0.000	0.000	0.000	1． 000
P09＇	0.001	0.000	0.000	0.001	1． 000
P10	0.001	0.000	0.000	0.001	1． 000
P10＇	0.001	0.000	0.000	0.001	1． 000
P11	0.000	0.003	0.007	0.007	1． 000
P11＇	0.000	0.003	0.007	0.007	1． 000
P12	0.000	0.015	0.024	0.024	1． 000
P12＇	0.000	0.015	0.024	0.024	1． 000

注記 $*$ ：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は地震荷重S s のいずれか大きい方を加えた値である。

18．ブラケット類の耐震性についての計算
18.1 一般事項

本章は，ブラケット類の耐震性についての計算である。
ブラケット類は，設計基準対象施設においてはSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。

18．1．1 記号の説明
記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号		記号の説明
$\sigma z_{2}$	曲げ応力	単位
$\mathrm{F}_{\mathrm{x}}, \mathrm{F}_{\mathrm{y}}, \quad \mathrm{F}_{\mathrm{z}}$	荷重	MPa
$\ell, \ell_{\mathrm{y}}$	荷重点の距離	N
$\mathrm{Z}_{\mathrm{x}}, \mathrm{Z}_{\mathrm{y}}$	断面係数	mm

18．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図18－1に示す。

18．1．3 解析範囲
解析範囲を図18－1に示す。

## 18．1．4 計算結果の概要

計算結果の概要を表18－1に示す。
なお，応力評価点の選定に当たっては，モーメントが大きくなるブラケット付根部及び穴により断面の小さくなるロッド穴周辺部に着目し，応力評価上厳しくなる評価点を記載 する。


図18－1（1）形状•寸法•材料（単位：mm）
（原子炉圧力容器スタビライザブラケット）


図18－1（2）形状•寸法•材料（単位：mm）
（給水スパージャブラケット，蒸気乾燥器支持ブラケット）


妸心スブレイブラケット

## （ ）：材料

（高圧，低圧）

図18－1（3）形状•寸法•材料（単位：mm）
（炉心スプレイブラケット）

表 18－1 計算結果の概要
（単位：MPa）

ブラケット	許容応力状態	一次一般膜応力強さ		一次膜＋一次曲げ応力強さ		純せん断応力	
		応力   強さ	許容   応力	応力   強さ	許容＊応力	応力	許容   応力
$\begin{aligned} & \text { 原子炉圧力容器 } \\ & \text { スタビライザ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	52	303	110	454	－	－
	IV ${ }_{\text {A }} \mathrm{S}$	70	326	149	490	－	－
蒸気乾燥器支持 ブラケット	III ${ }_{\text {A }} \mathrm{S}$	35	143	121	214	－	－
	$I V_{A} \mathrm{~S}$	47	280	166	420	－	－
給水スパージャブラケット	III ${ }_{\text {A }} \mathrm{S}$	2	143	17	214	1	71
	$I V_{A} \mathrm{~S}$	2	280	17	420	1	168
$\begin{aligned} & \text { 炉心スプレイ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	6	143	41	214	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	6	280	45	420	－	－

注記＊：中実矩形断面の形状係数 $\alpha=\square$ を用いた。
18.2 計算条件

18．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

18．2．2 材料
各部の材料を図18－1に示す。

18．2．3 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

18．2．4 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。
なお，一次＋二次応力強さは許容応力を満足しており，疲労解析は設計•建設規格 PVB－3140を満足しているため，これらの評価を省略する。

18．2．5 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

18．2．6 応力の記号と方向
応力の記号とその方向は，以下のとおりとする。
$\sigma \mathrm{x}$ ：周方向応力
$\sigma$ y：軸方向応力
$\sigma$ z ：半径方向応力
$\tau \mathrm{xy}$ ：せん断応力
$\tau \mathrm{yz}$ ：せん断応力
$\tau_{\mathrm{zx}}$ ：せん断応力


## 18.3 応力計算

18．3．1 応力評価点
応力評価点は，図18－1（1）～図18－1（3）に示すそれぞれのブラケット付根及び図18－1（2） に示す給水スパージャブラケットのロッド穴周辺とする。

18．3．2 外荷重による応力
（1）荷重条件
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
ブラケットの荷重作用点を図18－1に示す。
（2）計算方法
a．ブラケット付根の応力
蒸気乾燥器支持ブラケットのブラケット付根の応力の計算は，「応力解析の方針」（1）耐震評価編の参照図書（1）u．における荷重点の距離もは95mmとし，曲げ応力 $\sigma z_{2}$ は次式で求め る。

$$
\sigma_{Z_{2}}=\sqrt{\left(\frac{\mathrm{F}_{\mathrm{y}} \cdot \ell}{\mathrm{Z}_{\mathrm{x}}}\right)^{2}+\left(\frac{\mathrm{F}_{\mathrm{z}} \cdot \ell_{\mathrm{y}}}{\mathrm{Z}_{\mathrm{x}}}\right)^{2}+\left(\frac{\mathrm{F}_{\mathrm{x}} \cdot \ell}{\mathrm{Z}_{\mathrm{y}}}\right)^{2}}
$$

蒸気乾燥器支持ブラケット以外のブラケット付根の応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）u．に定めるとおりである。
b．ロッド穴周辺の応力
給水スパージャブラケットのロッド穴周辺の応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）u．に定めるとおりである。

## 18．3．3 応力の評価

計算された応力から，応力強さを算出する。
応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおりで ある。

18． 4 応力強さの評価
18．4．1 ブラケット付根の応力強さの評価
（1）一次一般膜応力強さの評価
各許容応力状態における評価を表18－2に示す。
表18－2より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
（2）一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表18－3に示す。
表18－3より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

18．4．2 ロッド穴周辺の応力強さの評価
（1）純せん断応力の評価
各許容応力状態における評価を表18－4に示す。
表18－4より，各許容応力状態の純せん断応力は，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
（2）一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表18－5に示す。
表18－5より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

表18－2 ブラケット付根の一次一般膜応力強さの評価
（単位：MPa）

ブラケット	許容応力状態	応力		主応力			応力強さ	許容応力
		$\sigma_{\text {z }}$	$\tau$	$\sigma_{1}$	$\sigma_{2}$	$\sigma_{3}$		
原子炉圧力容器$\begin{aligned} & \text { スタビライザ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {S }} \mathrm{S}$	0	26	0	26	－26	52	303
	$I V_{A} \mathrm{~S}$	0	35	0	35	－35	70	326
蒸気乾燥器支持ブラケット	III ${ }_{\text {A }} \mathrm{S}$	13	16	0	23	－11	35	143
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	17	22	0	32	－15	47	280
給水スパージャブラケット	III ${ }_{A} \mathrm{~S}$	1	0	0	1	0	2	143
	IV ${ }_{\text {A }} \mathrm{S}$	1	0	0	1	0	2	280
$\begin{aligned} & \text { 炉心スプレイ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	4	2	0	4	－1	6	143
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	4	2	0	5	－1	6	280

表18－3 ブラケット付根の一次膜 + 一次曲げ応力強さの評価
（単位：MPa）

ブラケット	許容応力状態	応力		主応力			応力強さ	許容応力＊
		$\sigma_{z}$	$\tau$	$\sigma_{1}$	$\sigma_{2}$	$\sigma_{3}$		
原子炉圧力容器$\begin{aligned} & \text { スタビライザ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	96	26	0	103	－6	110	454
	$I V_{A} \mathrm{~S}$	131	35	0	140	－9	149	490
蒸気乾燥器支持ブラケット	III ${ }_{A} \mathrm{~S}$	117	16	0	119	－2	121	214
	$I V_{A} \mathrm{~S}$	160	22	0	163	－3	166	420
給水スパージャブラケット	III ${ }_{\text {A }} \mathrm{S}$	6	0	0	6	0	6	214
	IV ${ }_{\text {A }} \mathrm{S}$	6	0	0	6	0	6	420
$\begin{aligned} & \text { 炉心スプレイ } \\ & \text { ブラケット } \end{aligned}$	III ${ }_{\text {A }} \mathrm{S}$	40	2	0	40	0	41	214
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	44	2	0	44	0	45	420

注記＊：中実矩形断面の形状係数 $\alpha=\square$ を用いた。

表18－4 ロッド穴周辺の純せん断応力の評価
（単位：MPa）

ブラケット	許容応力状態	純せん断応力	許容応力
給水スパージャ ブラケット	III ${ }_{\text {A }} \mathrm{S}$	1	71
	IV ${ }_{\text {A }} \mathrm{S}$	1	168

表18－5 ロッド穴周辺の一次膜＋一次曲げ応力強さの評価
（単位：MPa）

ブラケット   許容応力状態	応力強さ	許容応力＊	
給水スパージャ   ブラケット	$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	17	214
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	17	420

注記＊：中実矩形断面の形状係数 $\alpha=\square$ を用いた。

19．原子炉圧力容器支持スカートの耐震性についての計算
19.1 一般事項

本章は，原子炉圧力容器支持スカート（以下「スカート」という。）の耐震性についての計算である。

スカートは，設計基準対象施設においてはSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。
なお，スカートは，設計•建設規格 SSB－3010（1）の規定により，設計•建設規格 PVB－3110 からPVB－3117，PVB－3130，PVB－3140及びPVB－3310の規定を適用し，「応力解析の方針」（1）耐震評価編に従い解析する。

## 19．1．1 記号の説明

記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
$\mathrm{R}_{\mathrm{m}}$	スカートの平均半径	mm
t	スカートの板厚	mm
A	スカートの断面積	$\mathrm{mm}^{2}$
Z	スカートの断面係数	$\mathrm{mm}^{3}$
$\ell$	座屈長さ	mm
$\mathrm{f}_{\mathrm{c}}$	鉛直方向荷重に対する許容圧縮応力	MPa
$\mathrm{f}_{\mathrm{b}}$	曲げモーメントに対する許容曲げ応力	MPa
$\alpha$	安全率	-
F	設計•建設規格	$\mathrm{SSB}-3121.1(1)$ に定める値

19．1．2 形状•寸法•材料
本章で解析する箇所の形状•寸法•材料を図19－1に示す。

19．1．3 解析範囲
解析範囲を図19－1に示す。

## 19．1．4 計算結果の概要

計算結果の概要を表19－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点 に着目し，各部分ごとに数点の評価点を設けて評価を行い，疲労累積係数が厳しくなる評価点を記載する。


図19－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6） $\mathrm{VI}-2-3-4-1-2 \mathrm{R} 4$

表 19－1（1）計算結果の概要

部分及び材料	許容応力状態	一次一般膜応力強さ （MPa）			$\begin{gathered} \hline \text { 一次膜+一次曲げ応力強さ } \\ (\mathrm{MPa}) \\ \hline \end{gathered}$			$\begin{gathered} \text { 一次 }+ \text { 二次応力強さ } \\ \text { (MPa) } \end{gathered}$			疲労解析		
		応力強さ	許容   応力	応力評価面	応力   強さ	$\begin{aligned} & \text { 許容 } \\ & \text { 応力 } \end{aligned}$	応力評価面	応力   強さ	許容   応力	応力評価点	疲労累積係数＊	許容値	応力評価点
$\begin{gathered} \text { スカート } \\ \text { SGV480 } \end{gathered}$	$\mathrm{III}_{\text {S }} \mathrm{S}$	85	199	P01＇－P02＇	78	255	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	106	280	P01＇－P02＇	99	358	P01＇－P02＇	－	－	－	－	－	－
	$\mathrm{III}_{\text {S }} \mathrm{S}$	－	－	－	－	－	－	230	403	P02	0． 082	1． 000	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	－	－	－	－	－	－	312	403	P02			

注記＊：疲労累積係数は，運転状態 I 及びIIに地震荷重 S d＊又は地震荷重 S s のいずれか大きい方を加えた値である。

## 表19－1（2）計算結果の概要

部分及び材料	許容応力状態	座屈に対する評価	
		計算結果	許容値
スカート   SGV480	$\mathrm{II}_{\mathrm{A}} \mathrm{S}$	0.33	1.00
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	0.44	1.00

19．2 計算条件
19．2．1 設計条件
設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。

19．2．2 運転条件
考慮した運転条件を「応力解析の方針」（1）耐震評価編の4．2節に示す。

19．2．3 材料
各部の材料を図19－1に示す。

19．2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の3．4節に示す。

19．2．5 荷重の組合せ及び応力評価
荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

19．2．6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

## 19.3 応力計算

19．3．1 応力評価点
応力評価点の位置を図19－1に示す。
なお，応力集中を生じる箇所の応力集中係数を表19－2に示す。

## 19．3．2 内圧による応力

（1）荷重条件（L01）
最高使用圧力 $: 8.62 \mathrm{MPa}$
各運転条件における内圧：「応力解析の方針」（1）耐震評価編の参照図書（1）a．参照
（2）計算方法
内圧による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「A－SAFIA」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図19－2に示す。

## 19．3．3 外荷重による応力

（1）荷重条件（L12，L13，L18，L14及びL16）
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
L12，L13及びL18の荷重のうち，軸対称荷重（鉛直力 $\mathrm{V}_{1}$ 及び $\mathrm{V}_{2}$ ）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「A－SAFIA」により行う。L14及び L16の荷重のうち，軸対称荷重（鉛直力 $\mathrm{V}_{1}$ 及び $\mathrm{V}_{2}$ ）による応力の計算は，二次元軸対称の有限要素でモデル化し，計算機コード「STAX」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プロ グラム（解析コード）の概要」に示す。

応力計算のモデル及び仮定した境界条件（拘束条件）を図19－2に示す。
L14及びL16の荷重のうち，非軸対称荷重（水平力H及びモーメントM）による応力の計算 は，二次元軸対称の有限要素でモデル化し，計算機コード「ASHSD」により行う。なお，評価に用いる計算機コードの検証及び妥当性確認等の概要については，添付書類

「VI－5 計算機プログラム（解析コード）の概要」に示す。
応力計算のモデル及び仮定した境界条件（拘束条件）を図19－3に示す。

## 19．3．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強 さを算出する。
応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとおり である。

## 19.4 応力強さの評価

19．4．1 一次一般膜応力強さの評価
各許容応力状態における評価を表19－3に示す。
表19－3より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

19．4．2 一次膜＋一次曲げ応力強さの評価
各許容応力状態における評価を表19－4に示す。
表19－4より，各許容応力状態の一次膜＋一次曲げ応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

19．4．3 一次＋二次応力強さの評価
地震荷重のみにおける評価を表19－5に示す。
表19－5より，すべての評価点において $\mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ 及び $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は， $3 \cdot \mathrm{~S}_{\mathrm{m}}$ 以下であり，「応力解析の方針」（1）耐震評価編の3．5節に示す許容応力を満足する。
19.5 繰返し荷重の評価

19．5．1 疲労解析
スカートの応力評価点について，詳細な繰返し荷重の評価を行う。
（1）疲労累積係数
最も厳しい応力評価点における疲労累積係数の計算結果を表19－6に示す。また，各応力評価点における疲労累積係数を表19－7に示す。

表19－7より，各応力評価点において疲労累積係数は1．000以下であり，「応力解析の方針」 （1）耐震評価編の 3.5 節に示す許容値を満足する。

19．6．1 座屈に対する評価
スカートには，鉛直力及びモーメントにより，圧縮応力が生じる。したがって，これ らの荷重の組合せにより発生する圧縮応力の評価を行う。
（1）計算データ
スカートの平均半径


スカートの板厚 $\mathrm{t}=\square \mathrm{mm}$（くされ代を除いた値）
スカートの断面積


スカートの断面係数

$$
\mathrm{Z}=\frac{\pi}{4} \cdot \frac{\left(\mathrm{R}_{\mathrm{m}}+\mathrm{t} / 2\right)^{4}-\left(\mathrm{R}_{\mathrm{m}}-\mathrm{t} / 2\right)^{4}}{\mathrm{R}_{\mathrm{m}}+\mathrm{t} / 2}
$$


$\mathrm{mm}^{3}$
（2）荷重
スカートに作用する鉛直力及びモーメントを「応力解析の方針」（1）耐震評価編の4．2節に示す。
（3）評価方法
各許容応力状態においてスカートに圧縮応力を生じさせる荷重は表19－8に示す鉛直力及 びモーメントである。

これらの荷重の組合せにより発生する圧縮応力の評価を以下により行う。
$\left(\ell / \mathrm{R}_{\mathrm{m}}=\square\right)$
$\frac{\alpha \cdot\left(\mathrm{V}_{1}+\mathrm{V}_{2}\right) / \mathrm{A}}{\mathrm{f}_{\mathrm{c}}}+\frac{\alpha \cdot(\mathrm{M} / \mathrm{Z})}{\mathrm{f}_{\mathrm{b}}} \leqq 1.0$
ここに，
座屈長さ


鉛直方向荷重に対する許容圧縮応力 $\mathrm{f}_{\mathrm{c}}=\mathrm{F}=199 \mathrm{MPa}$
曲げモーメントに対する許容曲げ応力 $f_{b}=F=199 \mathrm{MPa}$
安全率 $\quad \alpha=\square$
設計•建設規格 SSB－3121．1（1）に定める値 $\mathrm{F}=199 \mathrm{MPa}$
（4）座屈に対する評価
各許容応力状態における座屈に対する評価を表19－9に示す。
表19－9より，各許容応力状態における座屈に対する評価は，許容値を満足するため，座屈 は発生しない。

図 19－2 内圧及び外荷重（軸対称荷重）による応力計算のモデル
$\square$
図 19－3 外荷重（非軸対称荷重）による応力計算のモデル

表 19－2 応力集中係数

応力評価点	データ				$\begin{gathered} \mathrm{K}_{\mathrm{n}} \\ (\text { 引張り) } \end{gathered}$	$\begin{gathered} \mathrm{K}_{\mathrm{b}} \\ (\text { 曲げ) } \end{gathered}$
	T A（mm）	T B（mm）	R （mm）	$\mathrm{D}\left({ }^{\circ}\right)$		
P01，P01 ${ }^{\prime}$					2.0	1.6
P02，P02＇					2.0	1.6

注 ：計算方法は，「応力解析の方針」（1）耐震評価編の参照図書（1）a．に定めるとおりである。

表 19－3 一次一般膜応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態III ${ }_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01   P02	35	199	56	280
P01   P02	85	199	106	280

表 19－4 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 $\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
P01   P02	42	255	63	358
P01＇   P02	78	255	99	358

表 19－5 一次＋二次応力強さの評価のまとめ
（単位：MPa）

応力評価点	$\mathrm{S}_{\mathrm{n}} \#_{1 * 1}$	$\mathrm{~S}_{\mathrm{n}} \#^{2} * 2$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P01	92	130	403
P01＇	92	130	403
P02	230	312	403
P02	230	312	403

注記 $* 1: ~ S_{n}{ }^{1}$ は許容応力状態 $\mathrm{II}_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。 ＊2： $\mathrm{S}_{\mathrm{n}} \#^{2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。

表 19－6 疲労累積係数

$$
\begin{array}{rll}
\text { 応力評価点 } & - & \text { P02 } \\
\text { 材 } & \text { 料 } & - \\
\text { SGV480 }
\end{array}
$$



注：疲労累積係数の求め方は，「応力解析の方針」（1）耐震評価編の 5．4．2 項（疲労解析） に示す。

注記＊1 ：設計•建設規格 PVB－3315（1）又は（2）により求めた値である。 ＊2： $\mathrm{S}_{\text {e }}$ に（ E 0 ／ E ）を乗じた値である。
$\mathrm{E}_{0}=\square \mathrm{MPa}, \mathrm{E}=\square \mathrm{MPa}$

表 19－7 疲労累積係数の評価のまとめ

応力評価点	疲労累積係数				
	$\mathrm{U}_{\mathrm{n}}$	U S d	U s s	$\mathrm{U}_{\mathrm{f}}$＊	許容値
P01	0.016	0.001	0.003	0.019	1.000
P01＇	0.016	0.001	0.003	0.019	1.000
P02	0.007	0.051	0.075	0.082	1.000
P02＇	0.007	0.051	0.075	0.082	1.000

注記＊：疲労累積係数 $\mathrm{U}_{\mathrm{f}}$ は，運転状態 I 及びIIに地震荷重 $\mathrm{S}_{\mathrm{d}}$＊又は
地震荷重S s のいずれか大きい方を加えた値である。

表19－8 座屈に対する評価に用いる荷重

許容応力状態	鉛直力＊1		モーメント＊2
	$\mathrm{V}_{1}(\mathrm{kN})$	$\mathrm{V}_{2}(\mathrm{kN})$	
$\mathrm{III}_{\mathrm{A}} \mathrm{S}$			
$\mathrm{IV} \mathrm{V}_{\mathrm{A}} \mathrm{S}$			

注記＊1 ：「応力解析の方針」（1）耐震評価編の 4.2 節に示す $V_{1}$ 及び $V_{2}$ の値 ＊2：「応力解析の方針」（1）耐震評価編の4．2節に示すMの値

表19－9 座屈に対する評価

許容応力状態	計算結果	許容値
$\mathrm{III}_{\mathrm{A}} \mathrm{S}$	0.33	1.00
$\mathrm{IV} \mathrm{A}_{\mathrm{A}} \mathrm{S}$	0.44	1.00

20．原子炉圧力容器基礎ボルトの耐震性についての計算
20.1 一般事項

本章は，原子炉圧力容器基礎ボルト（以下「基礎ボルト」という。）の耐震性についての計算である。

基礎ボルトは，設計基準対象施設においてはSクラス施設に分類される。
以下，設計基準対象施設としての構造強度評価を示す。
$\begin{aligned} 20.1 .1 & \text { 形状•寸法•材料 } \\ & \text { 本章で解析する箇所の形状•寸法•材料を図20－1に示す。 }\end{aligned}$

20．1．2 解析範囲
解析範囲を図20－1に示す。

20．1．3 計算結果の概要
計算結果の概要を表20－1に示す。


図20－1 形状•寸法•材料（単位：mm）

表20－1 計算結果の概要
（単位：MPa）

許容応力状態	地震荷重	応力の種類	計算結果	許容応力
III ${ }_{\text {A }} \mathrm{S}$	$S d^{*}$	引張り	131	499＊
		せん断	18	384
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	S s	引張り	194	499＊
		せん断	27	384
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	S d＊	引張り	107	458＊
		せん断	18	353

注記 $*: f_{\mathrm{t} \mathrm{s}}=\operatorname{Min} .\left(1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right)$

## 20.2 計算条件

20．2．1 設計条件
設計条件は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（2） に定めるとおりである。

20．2．2 材料
各部の材料を図20－1に示す。

20．2．3 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（2）に定めるとおりである。

20．2．4 荷重の組合せ及び応力評価
応力評価は，20．2．3項に示す荷重の組合せにより発生する引張応力及びせん断応力に ついて行う。

## 20．2．5 許容応力

許容応力を「応力解析の方針」（1）耐震評価編の 3.5 節に示す。

## 20．2．6 許容応力評価条件

（1）許容応力状態 $\mathrm{IIII}_{A} \mathrm{~S}$ 及び許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ の応力の評価には，運転状態 I 及びII の荷重と組 み合わせる場合には $\square{ }^{\circ} \mathrm{C}$ ，冷却材喪失事故後の荷重と組み合わせる場合には $\square{ }^{\circ} \mathrm{C}$ に対 する許容応力を用いる。
（2）基礎ボルトの許容応力評価条件を表20－2に示す。

## 20.3 応力計算

20．3．1 外荷重による応力
（1）荷重条件
外荷重を「応力解析の方針」（1）耐震評価編の4．2節に示す。
（2）計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（2）に定めるとおりである。

20．4 応力の評価
各許容応力状態における評価を表20－3に示す。
表20－3より，各許容応力状態において基礎ボルトに発生する応力は，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。

表 20－2 許容応力評価条件

評価部位	材料	温度条件   $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S}_{\mathrm{m}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{y}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S}_{\mathrm{u}} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} S_{y} \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
基礎 ボルト	SNCM439	運転状態I 及びIIの温度	－			－
		運転状態IVの温度＊	－			－

注記＊：冷却材喪失事故後の温度を表す。

表20－3 計算結果

許容応力状態	地震荷重	温度   $\left({ }^{\circ} \mathrm{C}\right)$	応力の種類	計算結果 （MPa）	許容応力 （MPa）
III ${ }_{\text {A }} \mathrm{S}$	S d＊		引張り	131	499＊
			せん断	18	384
IV ${ }_{\text {A }} \mathrm{S}$	S s		引張り	194	499＊
			せん断	27	384
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	S d＊		引張り	107	458＊
			せん断	18	353

注記 $*: f_{\mathrm{t} \mathrm{s}}=\operatorname{Min} .\left(1.4 \cdot f_{\mathrm{to}}-1.6 \cdot \tau_{\mathrm{b}}, f_{\mathrm{to}}\right)$

VI－2－3－4－2 原子炉圧力容器付属構造物の耐震性についての計算書

VI－2－3－4－2－1 原子炉圧力容器スタビライザの耐震性についての計算書
VI－2－3－4－2－2 原子炉格納容器スタビライザの耐震性についての計算書
VI－2－3－4－2－3 制御棒駆動機構ハウジング支持金具の耐震性についての計算書
VI－2－3－4－2－4 差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の耐震性につ いての計算書

VI－2－3－4－2－1 原子炉圧力容器スタビライザの耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 2
2.1 構造計画 ..... 2
2． 2 評価方針 ..... 4
2.3 適用規格•基準等 ..... 4
2.4 記号の説明 ..... 5
2.5 計算精度と数値の丸め方 ..... 6
3．評価部位 ..... 7
4．構造強度評価 ..... 8
4． 1 構造強度評価方法 ..... 8
4．2 荷重の組合せ及び許容応力 ..... 8
4．2．1 荷重の組合せ及び許容応力状態 ..... 8
4．2．2 許容応力 ..... 8
4．2．3 許容応力評価条件 ..... 8
4．2．4 設計荷重 ..... 8
4.3 計算方法 ..... 9
4．4 応力の評価 ..... 11
5．参照図書 ..... 12

## 図表目次

図 2－1 スタビライザの耐震評価フロー ..... 4
図 3－1 形状•寸法•材料 ..... 13
図 3－2 応力評価点 ..... 14
図4－1 スタビライザ各部に加わる荷重 ..... 15
図4－2 ブラケットの形状及び寸法 ..... 16
表 2－1 構造計画 ..... 3
表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設） ..... 17
表 4－2 許容応力（クラス 1 支持構造物） ..... 18
表 4－3 許容応力評価条件 ..... 19
表 4－4 スタビライザに加わる荷重 ..... 20
表 4－5 評価結果まとめ ..... 21

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，原子炉圧力容器スタビライザ（以下「スタビライザ」という。）が設計用地震力に対して十分な構造強度を有していることを説明するものである。

スタビライザは設計基準対象施設においてはS クラス施設に分類される。以下，設計基準対象施設としての構造強度評価を示す。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（参照図書（1））を「既工認」という。

2．一般事項
2.1 構造計画

スタビライザの構造計画を表2－1に示す。

計画の概要		概略構造図
基礎•支持構造	主体構造	
スタビライザは，原子炉しやへい壁に設置されたソールプレ ートに溶接される。	ブラケット，ロッ ド，ヨーク，座金及 び皿ばねで構成され る，原子炉圧力容器 が揺れた場合にその水平方向を支持する ためのものであり，原子炉圧力容器外周 に 8 個等間隔に配置 されている。	

## 2.2 評価方針

スタビライザの応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定 した荷重及び荷重の組合せ並びに許容応力に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力等が許容応力内に収まることを，「4．構造強度評価」にて示す方法にて確認することで実施する。

スタビライザの耐震評価フローを図 2－1に示す。


図 2－1 スタビライザの耐震評価フロー
2.3 適用規格•基準等

適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 • 補－ 1984）
（2）原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格（以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
D	死荷重	－
$\mathrm{W}_{\text {A }}$	ロッド及びブラケットに加わる最大荷重	N
$\mathrm{F}_{\mathrm{H}}$	スタビライザ 1 個に加わる最大地震荷重	N
Fo	初期締付荷重	N
$f \mathrm{~b}$	許容曲げ応力	MPa
$f$ s	許容せん断応力	MPa
f t	許容引張応力	MPa
$\mathrm{H}_{1}$	スタビライザ全体に加わる S d＊地震時の水平地震荷重	N
$\mathrm{H}_{2}$	スタビライザ全体に加わる S s 地震時の水平地震荷重	N
$\sigma$ b	曲げ応力	MPa
$\tau$	せん断応力	MPa
$\sigma$ k	組合せ応力	MPa
$\mathrm{M}_{\mathrm{A}}, \mathrm{M}_{\mathrm{B}}$	モーメント	$\mathrm{N} \cdot \mathrm{mm}$
$\mathrm{Z}_{\mathrm{A}}, \mathrm{Z}_{\mathrm{B}}$	断面係数	$\mathrm{mm}^{3}$
$\mathrm{A}_{1}, \mathrm{~A}_{2}, \mathrm{~A}_{3}$	断面積	$\mathrm{mm}^{2}$
	地震及び死荷重以外で地震と組み合わすべきプラントの運	－
M	転状態（地震との組合せが独立な運転状態IV，V は除く）で設備に作用している機械的荷重	
$\mathrm{M}_{\mathrm{L}}$	地震との組合せが独立な運転状態IV の事故の直後を除き， その後に生じている死荷重及び地震荷重以外の機械的荷重	－
P	地震と組み合わすべきプラントの運転状態（地震との組合 せが独立な運転状態IV，V は除く）における圧力荷重	－
$\mathrm{P}_{\text {L }}$	地震との組合せが独立な運転状態IVの事故の直後を除き， その後に生じている圧力荷重	－
S	許容引張応力 設計•建設規格 付録材料図表 Part5 表 5 又は表6に規定される値	MPa
S d	弾性設計用地震動S d により定まる地震力	－
S d＊	弾性設計用地震動 S d により定まる地震力又はSクラス設備に適用される静的地震力のいずれか大きい方の地震力	－
S S	基準地震動 S s により定まる地震力	－
S u	設計引張強さ 設計•建設規格 付録材料図表 Part5 表 9 に規定される値	MPa
S y	設計降伏点 設計•建設規格 付録材料図表 Part5 表8 に規定される値	MPa
S y（R T ）	$40^{\circ} \mathrm{C}$ における設計降伏点 設計•建設規格 付録材料図表 Part5 表8に規定される値	MPa

2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示す通りである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
算出応力	$M P a$	小数点以下第 1 位	切上げ	整数位
許容応力＊	$M P a$	小数点以下第 1 位	切捨て	整数位

注記＊：設計•建設規格 付録材料図表に記載された温度の中間における許容応力は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

## 3．評価部位

本計算書で解析する箇所の形状•寸法•材料を図3－1 に示す。
なお，スタビライザの応力評価点は，スタビライザを構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を図 3－2 に示す。

## 4．構造強度評価

## 4.1 構造強度評価方法

（1）スタビライザは，原子炉しやへい壁に設置されたソールプレート上に溶接され，原子炉圧力容器の水平地震荷重を原子炉圧力容器スタビライザブラケット（以下「スタ ビライザブラケット」という。）からヨーク，ロッド，皿ばね，ブラケットの順に伝え られ，ソールプレートを介して，原子炉しやへい壁に伝達させる構造である。スタビ ライザの耐震評価は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」により求めた荷重を用いて，参照図書（1）に示す既工認の手法に基づき構造強度評価を行う。
（2）構造強度評価に用いる寸法は，既工認からの変更はなく，参照図書（1）に定めると おりである。
（3）概略構造図を表2－1に示す。

## 4．2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態 スタビライザの荷重の組合せ及び許容応力状態を表4－1 に示す。

## 4．2．2 許容応力

スタビライザの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づ き表 4－2 に示す。

## 4．2．3 許容応力評価条件

スタビライザの許容応力評価条件を表4－3に示す。

## 4．2．4 設計荷重

（1）最高使用温度
最高使用温度は，既工認からの変更はなく，参照図書（1）に定めるとおりである。
（2）スタビライザに加わる荷重及び設計用地震力
スタビライザに加わる荷重を表 4－4に示す。
スタビライザの評価に用いる設計用地震力は，水平地震荷重として，添付書類「VI －2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」により求めた，「弾性設計用地震動 S d 又は静的地震力」及び「基準地震動 S s 」の応答値を用いる。
（3）ロッド及びブラケットに加わる荷重
水平地震荷重Hは，表2－1に示すように 8 個のスタビライザで分担されるので， 1 個の受けもつ最大地震荷重 $\mathrm{F}_{\mathrm{H}}$ は次のように求める。

$$
\mathrm{F}_{\mathrm{H}}=\frac{1}{4} \cdot \mathrm{H}
$$

また，スタビライザは，図 3－1 に示すようにあらかじめ初期締付荷重を与えた 2組の血ばねによって，スタビライザブラケットを両側から押え付ける構造となって いる。したがって，各部に加わる荷重は図 4－1 に示すようになる。

ロッド及びブラケットに加わる最大荷重 $\mathrm{W}_{\mathrm{A}}$ は，次のようにして求める。
a．弾性設計用地震動 S d 又は静的地震力の場合
スタビライザ1個に加わる最大地震荷重 $\mathrm{F}_{\mathrm{H}}$ は1／4• H $\mathrm{H}_{1}$ であり，F o－ $1 / 2$ • $\mathrm{F}_{\mathrm{H}} \geqq 0$ となり皿ばねは外力に対して 2 組とも有効に働くため，次のように求める。

$$
\mathrm{W}_{\mathrm{A}}=\mathrm{Fo}+\frac{1}{2} \cdot \mathrm{~F}_{\mathrm{H}}=\mathrm{Fo}+\frac{1}{2} \cdot \frac{1}{4} \cdot \mathrm{H}_{1}
$$

b．基準地震動 S s の場合
スタビライザ 1 個に加わる最大地震荷重 $\mathrm{F}_{\mathrm{H}}$ は $1 / 4 \cdot \mathrm{H}_{2}$ であり， $\mathrm{Fo}-1 / 2 \cdot$ $\mathrm{F}_{\mathrm{H}}<0$ となり外力は全て 1 組の皿ばねで受けることになるため，次のように求める。

$$
\mathrm{W}_{\mathrm{A}}=\mathrm{F}_{\mathrm{H}}=\frac{1}{4} \cdot \mathrm{H}_{2}
$$

## 4． 3 計算方法

ロッドの応力計算方法は，既工認から変更はなく，参照図書（1）に示すとおりである。 ブラケットの応力計算方法は，以下に示すとおりである。ブラケットの形状及び寸法を図 4－2 に示す。
（1）応力評価点 P02 a．曲げ応力 $\sigma$ b

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{A}}}{\mathrm{Z}_{\mathrm{A}}}
$$

ここで，

$$
\mathrm{M}_{\mathrm{A}}: \text { モーメント }=\frac{\mathrm{W}_{\mathrm{A}} \cdot \ell_{\mathrm{B} 3}}{8}
$$

$$
\mathrm{Z}_{\mathrm{A}}: \text { 断面係数 }=\frac{\ell_{\mathrm{B} 2} \cdot \ell_{\mathrm{B} 5}{ }^{2}}{6}
$$

b．せん断応力 $\tau$

$$
\tau=\frac{\mathrm{W}_{\mathrm{A}}}{2 \cdot \mathrm{~A}_{3}}
$$

ここで，
$\mathrm{A}_{3}$ ：断面積 $=\ell_{\mathrm{B} 2} \cdot \ell_{\mathrm{B} 5}$

C．組合せ応力 $\sigma_{\mathrm{k}}$

$$
\sigma_{\mathrm{k}}=\sqrt{\sigma \mathrm{b}^{2}+3 \cdot \tau^{2}}
$$

（2）応力評価点 P03
a．曲げ応力 $\sigma$ b

$$
\sigma_{\mathrm{b}}=\frac{\mathrm{M}_{\mathrm{B}}}{\mathrm{Z}_{\mathrm{B}}}
$$

ここで，

$$
\mathrm{M}_{\mathrm{B}}: \text { モーメント }=\frac{\mathrm{W}_{\mathrm{A}} \cdot \ell_{\mathrm{B} 4}}{2}
$$

$$
Z_{\mathrm{B}}: \text { 断面係数 }=\frac{\mathrm{t}_{\mathrm{B} 1} \cdot \ell_{\mathrm{B} 1}{ }^{2}}{6}
$$

b．せん断応力 $\tau$

$$
\tau=\frac{\mathrm{W}_{\mathrm{A}}}{2 \cdot \mathrm{~A}_{1}}
$$

ここで，
$\mathrm{A}_{1}$ ：断面積 $=\mathrm{t}_{\mathrm{B} 1} \cdot \ell_{\mathrm{B} 1}$

C．組合せ応力 $\sigma_{\mathrm{k}}$

$$
\sigma_{\mathrm{k}}=\sqrt{\sigma_{\mathrm{b}}{ }^{2}+3 \cdot \tau^{2}}
$$

（3）応力評価点 P04
a．せん断応力 $\tau$

$$
\begin{aligned}
& \tau=\frac{\mathrm{W}_{\mathrm{A}}}{2 \cdot \mathrm{~A}_{1}+\mathrm{A}_{2}} \\
& \text { ここで, } \\
& \mathrm{A}_{2}: \text { 断面積 }=2 \cdot \ell_{\mathrm{B} 6} \cdot \ell_{\mathrm{B} 3}
\end{aligned}
$$

4.4 応力の評価

各許容応力状態における評価を表 4－5 に示す。
表 4－5 より，各許容応力状態の各応力は，「4．2．2 許容応力」に示す許容応力を満足する。

5．参照図書
（1）女川原子力発電所第2号機 第5回工事計画認可申請書 添付書類 IV－3－1－3－2「原子炉圧力容器スタビライザの応力計算書」


図 3－1 形状•寸法•材料（単位：mm）
（a）$F=r$


注記
＊1：応力部価点P04
（b）ブラヶット
はブラヶットと ンールプレート
との䧲䪺面を示
广。

図 3－2 応力評価点

（1）初期締結状態

（2）弾性設計用地震動 S d 又は静的地震力の場合

（3）基準地震動 S s の場合

図 4－1 スタビライザ各部に加わる荷重


図 4－2 ブラケットの形状及び寸法

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等の区分	荷重の組合せ	許容応力状態
原子炉本体	原子炉圧力容器付属構造物	スタビライザ	S	—＊	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	$\mathrm{III}_{A} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}{ }^{*}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	

注記＊：クラス 1 支持構造物の荷重の組合せ及び許容応力を準用する。

O 2 （6）VI－2－3－4－2－1 R 3

表4－2 許容応力（クラス 1 支持構造物）

許容応力状態	許容応力＊ （ボルト等以外）		許容応力 （ボルト等）
	一次応力		一次応力
	せん断	曲げ	引張り
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{fs}$	$1.5 \cdot \mathrm{fb}$	$1.5 \cdot \mathrm{ft}$
$\mathrm{IV}_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{fs}$＊	$1.5 \cdot \mathrm{fb}$＊	$1.5 \cdot \mathrm{ft}$＊

注記＊：鋼構造設計規準（日本建築学会 2005改定）等の幅厚比の制限を満足させる。応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

O 2 （6）VI－2－3－4－2－1 R 3

表 4－3 許容応力評価条件

評価部位	材料		温度条件   $\left({ }^{\circ} \mathrm{C}\right)$	$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} \text { y } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{Su} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} y \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
ロッド	棒鋼	SNCM439	最高使用温度	－			－
ブラケット	鋼板	SGV480	最高使用温度	－			－

表 4－4 スタビライザに加わる荷重

種別	記号	荷重
初期締付荷重	Fo	
スタビライザ全体に加わる S d＊地震時の   水平地震荷重	$\mathrm{H} \mathrm{H}_{1}$	
スタビライザ全体に加わるS s 地震時の   水平地震荷重	$\mathrm{H}_{2}$	

## 表 4－5 評価結果まとめ

（単位：MPa）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{\text {A }} \mathrm{S}$		$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		
			算出応力	許容応力	算出応力	許容応力		
スタビライザ	P01	ロッド		引張応力	123	440	156	440
			曲げ応力	71	228	90	274	
	P02		せん断応力	17	114	22	137	
			組合せ応力	77	198	97	238	
			曲げ応力	119	228	150	274	
	P03	ブラケット	せん断応力	37	114	46	137	
			組合せ応力	134	198	170	238	
			曲げ応力	－	－	－	－	
	P04		せん断応力	29	114	37	137	
			組合せ応力	－	－	－	－	

VI－2－3－4－2－2 原子炉格納容器スタビライザの耐震性についての計算書

## 目次

1．概要 ..... 1
2．一般事項 ..... 1
2.1 構造計画 ..... 1
2．2 評価方針 ..... 3
2.3 適用規格•基準等 ..... 4
2.4 記号の説明 ..... 5
2.5 計算精度と数値の丸め方 ..... 6
3．評価部位 ..... 7
4．固有周期 ..... 9
5．構造強度評価 ..... 12
5.1 構造強度評価方法 ..... 12
5.2 荷重の組合せ及び許容応力 ..... 12
5．2．1 荷重の組合せ及び許容応力状態 ..... 12
5．2．2 許容応力 ..... 12
5．2．3 使用材料の許容応力評価条件 ..... 12
5．2．4 設計荷重 ..... 16
5.3 設計用地震力 ..... 17
5.4 計算方法 ..... 19
5.5 計算条件 ..... 20
5.6 応力の評価 ..... 20
6．評価結果 ..... 21
6.1 設計基準対象施設としての評価結果 ..... 21
7．参照図書 ..... 25

## 1．概要

本計算書は，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」及び「VI－2－1－9 機能維持の基本方針」にて設定している構造強度の設計方針に基づき，原子炉格納容器スタビライザが設計用地震力に対して十分な構造強度を有していることを説明するものである。

原子炉格納容器スタビライザは設計基準対象施設においてはSクラス施設に分類され る。以下，設計基準対象施設としての構造強度評価を示す。

なお，本計算書においては，新規制対応工認対象となる設計用地震力に対する評価に ついて記載するものとし，前述の荷重を除く荷重による原子炉格納容器スタビライザの評価は，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類
（参照図書（1））による（以下「既工認」という。）。内側フィメイルシヤラグについて は，添付資料「VI－2－9－2－1－3 原子炉格納容器シヤラグの耐震性についての計算書」に て評価する。

2．一般事項
2.1 構造計画

原子炉格納容器スタビライザの構造計画を表2－1に示す。

表 2－1 構造計画

計画の概要		概略構造図
基礎•支持構造	主体構造	
原子炉格納容器スタビラ イザは，地震時の原子炉圧力容器及び原子炉しゃ へい壁に生じる荷重及び変位を小さくするため に，原子炉しやへい壁と原子炉格納容器シヤラグ の間に設置され，原子炉 しやへい壁に支持され る。   前記地震荷重は，原子炉格納容器シヤラグを介し原子炉建屋に伝達させ る。	パイプ，ガセットプレ ート，内側メイルシヤ ラグで構成される鋼製構造物である。	

## 2.2 評価方針

原子炉格納容器スタビライザの応力評価は，添付書類「VI－1－8－1 原子炉格納施設 の設計条件に関する説明書」及び「VI－2－1－9 機能維持の基本方針」にて設定した荷重及び荷重の組合せ並びに許容限界に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力等が許容限界内に収まることを，「5．構造強度評価」にて示す方法にて確認することで実施する。確認結果を「6．評価結果」に示 す。

原子炉格納容器スタビライザの耐震評価フローを図2－1に示す。


図 2－1 原子炉格納容器スタビライザの耐震評価フロー
2.3 適用規格•基準等

適用規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 460 1•補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）
（4）J S ME S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）

2． 4 記号の説明

記号	記号の説明	単位
B g	ガセットプレート付け根部の深さ	mm
$\mathrm{B}_{\mathrm{w}}$	ガセットプレート付け根部補強板の深さ	mm
C v	鉛直方向設計震度	－
D	死荷重	－
D i	直径（ $\mathrm{i}=1,2$ ）	mm
$f$ b	鋼材の許容曲げ応力	MPa
$f$ c	鋼材の許容圧縮応力	MPa
$\mathrm{f}_{\mathrm{p}}$	鋼材の許容支圧応力	MPa
f s	鋼材の許容せん断応力	MPa
$\mathrm{f}_{\mathrm{t}}$	鋼材の許容引張応力	MPa
$\mathrm{F}_{\mathrm{t}}$	水平地震荷重	N
$\mathrm{Hg}_{\mathrm{g}}$	ガセットプレート付け根部の長さ	mm
$\mathrm{H}_{\text {s }}$	内側メイルシャラグの接触部の長さ	mm
lg	原子炉格納容器スタビライザ 1 本の重心位置	mm
M	機械的荷重	－
$\mathrm{M}_{\mathrm{L}}$	地震と組み合わせる機械的荷重	－
P	圧力	－
$\mathrm{P}_{\mathrm{L}}$	地震と組み合わせる圧力	－
$\mathrm{P}_{\mathrm{x}}$	ガセットプレートに作用する水平荷重	N
$\mathrm{P}_{\mathrm{y}}$	ガセットプレートに作用する鉛直荷重	N
R 0	原子炉しやへい壁の外側円筒の半径	mm
R ${ }_{1}$	荷重作用点半径（内側）	mm
S	許容引張応力	MPa
S d	弾性設計用地震動S d により定まる地震力	－
S d＊	弾性設計用地震動 S d により定まる地震力又はS クラス設備に適用される静的地震力のいずれか大きい方の地震力	－
S s	基準地震動S s により定まる地震力	－
$\mathrm{S}_{\mathrm{u}}$	設計引張強さ	MPa
$\mathrm{S}_{\mathrm{y}}$	設計降伏点	MPa
$S_{y}$（ R T）	$40^{\circ} \mathrm{C}$ における設計降伏点	MPa
t g	ガセットプレート付け根部の板厚	mm
$t$ s	内側メイルシヤラグの接触部の板厚	mm
t w	ガセットプレート付け根部補強板の板厚	mm
W s	原子炉格納容器スタビライザ 1 本に作用する荷重	N
$\theta_{2}$	図 3－1において定める角度	－

2.5 計算精度と数値の丸め方

計算精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表2－2に示すとおりである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
震度	-	小数点以下第 3 位	切上げ	小数点以下第 2 位
温度	${ }^{\circ} \mathrm{C}$	-	-	整数位
長さ	mm	-	-	整数位 ${ }^{*} 1$
角度	${ }^{\circ}$	小数点以下第 4 位	四捨五入	小数点以下第 3 位
力	N	有効数字 5 桁目	四捨五入	有効数字 4 桁
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力	MPa	小数点以下第 1 位	切捨て	整数位 ${ }^{*} 2$

注記＊1：設計上定める値が小数点以下第 1 位の場合は，小数点以下第 1 位表示とする。
＊2：設計•建設規格 付録材料図表に記載された温度の中間における引張強さ及 び降伏点は，比例法により補間した値の小数点以下第 1 位を切り捨て，整数位までの値とする。

3．評価部位
原子炉格納容器スタビライザの形状及び主要寸法を図3－1に，使用材料及び使用部位 を表3－1に示す。


斷面BB


A－A矢視図
（1）ガセットプレート
（2）パイプ


C－C 矢視図
（3）内側メイルシヤラグ

（単位：mm）

図 3－1 原子炉格納容器スタビライザの形状及び主要寸法（その1）


図 3－1 原子炉格納容器スタビライザの形状及び主要寸法（その 2）

表 3－1 使用材料表

使用部位	使用材料
パイプ	STS410
ガセットプレート	SM400B
内側メイルシャラグ	SM400B

## 4．固有周期

（1）解析モデル及び諸元
設計基準対象施設における固有周期は，原子炉格納容器スタビライザのパイプ全長 を3次元はり要素でモデル化して計算する。原子炉しやへい壁側はガセットプレート で補強されているため固定端とする。原子炉格納容器側は，内側メイルシヤラグが差 し込まれる内側フィメイルシャラグの幅と内側メイルシャラグの幅はほぼ同じであり，内側メイルシャラグの水平方向の荷重を内側フィメイルシヤラグで受ける構造である。一方で，内側フィメイルシヤラグは鉛直方向に間隙を有して接触しない構造となって おり，鉛直方向に荷重は作用しない。このことから，原子炉格納容器側は自由端とし，鉛直方向に自由として評価する。 2 個のパイプが 1 個の内側メイルシヤラグと取り合 うため，内側メイルシヤラグ及び取合い部材の質量の $1 / 2$ を集中質量として考慮する。 パイプの質量は分布質量として考慮する。モデル化範囲を図4－1 に，固有周期算出に用いる模式図を図4－2に，FEM 解析モデル図を図4－3に，諸元を表4－1 に示す。解析コードは「MSC NASTRAN」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。


図 4－1 モデル化範囲


図 4－2 固有周期算出に用いる模式図（設計基準対象施設）


注記＊：鉛直方向に自由端としてモデル化

図 4－3 固有周期算出に用いる FEM 解析モデル図（設計基準対象施設）

表 4－1 固有周期算出に用いる FEM 解析モデル諸元

項目		記号	単位	入力値	
		設計基準対象施設			
$\begin{aligned} & \text { パ } \\ & \text { í } \\ & \text { プ } \end{aligned}$	材質		－	－	STS410
	全長	－	mm		
	外径	－	mm		
	厚さ	－	mm		
	厚さ（薄板部）＊	－	mm		
縦弾性係数		E	MPa		
ポアソン比		$v$	－		
単位質量		－	$\mathrm{kg} / \mathrm{mm}^{3}$	$7.85 \times 10^{-6}$	
集中質量		－	kg		
要素数		－	－		
節点数		－	－		

注記 $*$ ：薄板部はパイプ両端 100 mm 範囲を示す。
（2）設計基準対象施設としての固有周期
設計基準対象施設における固有周期は，「5．2．4 設計荷重」に示す設計基準対象施設としての評価温度を考慮し算出する。1次の振動モード図を図4－4に，固有周期を表 4－2に示す。固有周期は 0.05 秒以下であり，剛構造であることを確認した。鉛直方向（軸直角）の固有周期は，1次の振動モードにおける値を示す。


図 4－4 FEM 解析モデルの 1 次振動モード図（設計基準対象施設）

表 4－2 固有周期（設計基準対象施設）

卓越方向	固有周期   $(\mathrm{s})$
水平方向（軸）	$-{ }^{*}$
水平方向（軸直角）	$-{ }^{*}$
鉛直方向（軸直角）	0.041

注記＊：鉛直方向（軸直角）は一端が拘束及び支持されていないが，水平方向は地震力を伝達する構造であり，構造上拘束を受けるため固有周期は十分に小さく，計算を省略する。

5．構造強度評価
5.1 構造強度評価方法
（1）原子炉格納容器スタビライザは，原子炉しやへい壁と原子炉格納容器シヤラグ の間に設置され，原子炉しやへい壁に支持された構造であり，地震荷重は原子炉格納容器シャラグを介して原子炉建屋に伝達される。

原子炉格納容器スタビライザの耐震評価として，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」及び添付書類「VI－2－1－7 設計用床応答曲線の作成方針」におい て計算された荷重及び設計震度を用いて，参照図書（1）に示す既工認の手法に従い構造強度評価を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1に示す。
5.2 荷重の組合せ及び許容応力

5．2．1 荷重の組合せ及び許容応力状態
原子炉格納容器スタビライザの荷重の組合せ及び許容応力状態のうち，設計基準対象施設の評価に用いるものを表 5－1 に示す。

詳細な荷重の組合せは，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関 する説明書」に従い，対象機器の設置位置等を考慮し決定する。なお，考慮する荷重の組合せは，組み合わせる荷重の大きさを踏まえ，評価上厳しくなる組合せ を選定する。

## 5．2．2 許容応力

原子炉格納容器スタビライザの許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表5－2に示すとおりとする。

5．2．3 使用材料の許容応力評価条件
原子炉格納容器スタビライザの使用材料の許容応力評価条件のうち，設計基準対象施設の評価に用いるものを表 5－3に示す。

O 2 （6）VI－2－3－4－2－2 R 5

表5－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

施設区分		機器名称	耐震重要度分類	機器等   の区分	荷重の組合せ ${ }^{* 1, ~ * 2 ~}$		許容応力状態 ${ }^{* 1}$
原子炉本体	圧力容器   付属構造物	原子炉格納容器スタビ ライザ	S	その他の   支持構造物	$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{Sd}$＊	$\begin{gathered} (9) \\ (10) \\ (13) \\ (15) \\ \hline \end{gathered}$	$\mathrm{III}_{4} \mathrm{~S}$
					$\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$	$\begin{aligned} & (11) \\ & (12) \\ & (14) \end{aligned}$	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$
					$\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{Sd}^{*}$	（16）	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$

注記＊1：パイプ，ガセットプレート，内側メイルシヤラグはその他の支持構造物であるが，冷却材喪失事故後地震時の原子炉圧力容器及び原子炉 しゃへい壁に生じる荷重を原子炉建屋に伝達させる機能の維持を確認する意味で，クラスMC支持構造物に準じた許容応力状態及び荷重 の組合せを適用する。
＊2：（ ）内は添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表3－6 の荷重の組合せのNo．を示す。

O 2 （6）VI－2－3－4－2－2 R 5

表 5－2 クラスMC支持構造物の許容応力

	ボルト等以外 ${ }^{* 1, * 2}$										ボルト等	
	一次応力					一次＋二次応力					一次応力	
	引張り	せん断	圧縮	曲げ	支圧	引張り   ／圧縮	せん断	曲げ	支圧	座屈	引張り	せん断
$\mathrm{III}_{A} \mathrm{~S}$	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}$ s	$1.5 \cdot \mathrm{f}_{\text {c }}$	$1.5 \cdot \mathrm{f}$ b	$1.5 \cdot \mathrm{f}_{\mathrm{p}}$	－	－	－	－	－	$1.5 \cdot \mathrm{f}_{\mathrm{t}}$	$1.5 \cdot \mathrm{f}_{\text {s }}$
$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{ffs}^{*}$	$1.5 \cdot \mathrm{ff}^{*}$	$1.5 \cdot \mathrm{f}^{\text {b }}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{p}}{ }^{*}$	－	－	－	－	－	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{ff}^{*}$

注記＊1 ：設計•建設規格等の幅厚比の規定を満足させる。
＊2：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

表5－3 使用材料の許容応力評価条件（設計基準対象施設）

| 評価部材 | 材料 | 温度条件 <br> $\left({ }^{\circ} \mathrm{C}\right)$ | S <br> $(\mathrm{MPa})$ | $\mathrm{S}_{\mathrm{y}}$ <br> $(\mathrm{MPa})$ | $\mathrm{S}_{\mathrm{u}}$ <br> $(\mathrm{MPa})$ | $\mathrm{S}_{\mathrm{y}}(\mathrm{R} \mathrm{T})$ <br> $(\mathrm{MPa})$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| パイプ | STS410 | 周囲環境 <br> 温度 | 171 | - |  |  |
| ガセットプレート <br> 及び内側メイルシャラグ | SM400B | 周囲環境 <br> 温度 | 171 | - |  |  |

## 5．2．4 設計荷重

（1）設計基準対象施設としての設計荷重
設計基準対象施設としての設計荷重である，最高使用温度及び死荷重は，既工
認（参照図書（1））からの変更はなく，次のとおりである。
a．最高使用温度
温度 $\mathrm{T} \quad 171^{\circ} \mathrm{C}$
b．死荷重
原子炉格納容器スタビライザ本体の自重を死荷重とする。
死荷重 53940 N （原子炉格納容器スタビライザ1本当たり）

## 5.3 設計用地震力

評価に用いる設計用地震力を表5－4～表5－6に示す。
「弾性設計用地震動 S d 又は静的震度」及び「基準地震動 S s 」による地震力は，添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」及び添付書類「VI－2－1－7 設計用床応答曲線の作成方針」に基づき設定する。

原子炉格納容器スタビライザ 1 本に作用する設計用地震力の計算方法は，既工認 （参照図書（1））からの変更はなく，次のとおりである。

表 5－4 設計用地震力（設計基準対象施設）

据付場所   及び設置高さ （m）	固有周期 （ s ）		弾性設計用地震動 S d又は静的震度		基準地震動 S s	
	水平   方向	鉛直   方向	水平方向設計震度	鉛直方向設計震度	水平方向設計震度	鉛直方向設計震度
原子炉 しやへい壁 $\begin{gathered} 0 . \mathrm{P} . \\ 21.55 \end{gathered}$	－＊	0.041	－	$\begin{gathered} \mathrm{C}_{\mathrm{v}}= \\ 1.12 \end{gathered}$	－	$\begin{gathered} C_{v}= \\ 1.93 \end{gathered}$

注記 $~$ ：鉛直方向（軸直角）は一端が拘束及び支持されていないが，水平方向は地震力を伝達する構造であり，構造上拘束を受けるため固有周期は十分に小さ く，計算を省略する。

表 5－5 原子炉格納容器スタビライザ全体に作用する地震荷重 （設計基準対象施設）

地震荷重	水平地震荷重 $\mathrm{F}_{\mathrm{t}}$   $\left(\times 10^{3} \mathrm{~N}\right)$
$\mathrm{S} \mathrm{d}^{*}$	
S s	

表 5－6 原子炉格納容器スタビライザ 1 本に作用する地震荷重 （設計基準対象施設）

地震荷重	水平地震荷重W S   $\left(\times 10^{3} \mathrm{~N}\right)$
$\mathrm{S} \mathrm{d}^{*}$	
S s	

## 5.4 計算方法

原子炉格納容器スタビライザの応力評価点は，原子炉格納容器スタビライザを構成 する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定した応力評価点を表 5－7 及び図 5－1 に示す。

応力計算方法は既工認（参照図書（1））から変更はなく，次のとおりである。

表 5－7 応力評価点

応力評価点番号	応力評価点
P1	パイプ
P2	ガセットプレート
P3	内側メイルシャワグ



図 5－1 原子炉格納容器スタビライザの応力評価点
5.5 計算条件

応力計算に用いる荷重を，「5．2 荷重の組合せ及び許容応力」及び「5．3 設計用地震力」に示す。
5.6 応力の評価

「5．4 計算方法」で求めた各応力が，表 5－3に示す許容応力以下であること。

## 6．評価結果

6． 1 設計基準対象施設としての評価結果
原子炉格納容器スタビライザの設計基準対象施設としての耐震評価結果を以下に示 す。発生値は許容限界を満足しており，設計用地震力に対して十分な構造強度を有し ていることを確認した。
（1）構造強度評価結果
構造強度評価の結果を表6－1 及び表6－2 に示す。
表中の「荷重の組合せ」欄には，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」における表 3－6 の荷重の組合せの No．を記載する。

なお，添付書類「VI－1－8－1 原子炉格納施設の設計条件に関する説明書」の 3．1．23項にて，告示第501号第13条第1項第3号を満たすことを確認しており， これを準用し，設計•建設規格 PVB－3140（6）を満たしていることから，一次＋二次＋ピーク応力強さの評価は不要である。

表 6－1 許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{d}$＊）

評価対象設備	評価部位		応力分類	$\mathrm{III}_{4} \mathrm{~S}$		判定	荷重の   組合せ	備考	
			算出応力	許容応力					
			MPa	MPa					
原子炉格納容器 スタビライザ	P1	パイプ		引張応力	40		$\bigcirc$	（9），（10）	
				圧縮応力	40		$\bigcirc$	（9），（10）	
	P2	ガセットプレート	曲げ応力	89	$\bigcirc$		（9），（10）		
			せん断応力	41	$\bigcirc$		（9），（10）		
			組合せ応力	114	$\bigcirc$		（9），（10）		
	P3	内側メイルシャラグ	支圧応力	40	$\bigcirc$		（9），（10）		

注記＊：許容引張応力の値を用いる。

表 6－2（1）許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ に対する評価結果（ $\mathrm{D}+\mathrm{P}+\mathrm{M}+\mathrm{S} \mathrm{s}$ ）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	荷重の組合せ	備考	
			算出応力	許容応力					
			MPa	MPa					
原子炉格納容器 スタビライザ	P1	パイプ		引張応力	67		$\bigcirc$	（11），（12）	
				圧縮応力	67		$\bigcirc$	（11），（12）	
	P2	ガセットプレート	曲げ応力	133	$\bigcirc$		（11），（12）		
			せん断応力	66	$\bigcirc$		（11），（12）		
			組合せ応力	176	$\bigcirc$		（11），（12）		
	P3	内側メイルシヤラグ	支圧応力	66	$\bigcirc$		（11），（12）		

注記＊：許容引張応力の値を用いる。

表 6－2（2）許容応力状態 $V_{A} S$ に対する評価結果（ $\mathrm{D}+\mathrm{P}_{\mathrm{L}}+\mathrm{M}_{\mathrm{L}}+\mathrm{S} \mathrm{d}^{*}$ ）

評価対象設備	評価部位		応力分類	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$		判定	荷重の組合せ	備考	
			算出応力	許容応力					
			MPa	MPa					
原子炉格納容器 スタビライザ	P1	パイプ		引張応力	40		$\bigcirc$	（16）	
				圧縮応力	40		$\bigcirc$	（16）	
	P2	ガセットプレート	曲げ応力	89	$\bigcirc$		（16）		
			せん断応力	41	$\bigcirc$		（16）		
			組合せ応力	114	$\bigcirc$		（16）		
	P3	内側メイルシヤラグ	支圧応力	40	$\bigcirc$		（16）		

注記＊：許容引張応力の値を用いる。

7．参照図書
（1）女川原子力発電所第 2 号機 第 5 回工事計画認可申請書添付書類「IV－3－1－3－1 原子炉格納容器スタビライザの応力計算書」

VI－2－3－4－2－3 制御棒駆動機構ハウジング支持金具の耐震性につい ての計算書

## 目次

1．概 要 ..... 1
2．一般事項 ..... 2
2.1 構造計画 ..... 2
2． 2 評価方針 ..... 4
2.3 適用規格•基準等 ..... 5
2．4 記号の説明 ..... 6
2.5 計算精度と数値の丸め方 ..... 7
3．評価部位 ..... 8
4．地震応答解析及び構造強度評価 ..... 9
4． 1 地震応答解析及び構造強度評価方法 ..... 9
4.2 荷重の組合せ及び許容応力 ..... 9
4．2．1 荷重の組合せ及び許容応力状態 ..... 9
4．2．2 許容応力 ..... 9
4．2．3 許容応力評価条件 ..... 9
4．2．4 設計荷重 ..... 9
4.3 解析モデル及び諸元 ..... 10
4． 4 固有周期 ..... 10
4.5 設計用地震力 ..... 10
4． 6 計算方法 ..... 11
4．6．1 水平地震荷重による応力 ..... 11
4．6．2 鉛直地震荷重による応力 ..... 11
4．6．3 死荷重による応力 ..... 11
4．7 計算条件 ..... 11
4．8 応力の評価 ..... 11
5．参照図書 ..... 12

## 図表目次

図 2－1 CRD ハウジング支持金具の耐震評価フロー ..... 4
図 3－1 CRD ハウジング支持金具の形状•寸法•材料•応力評価点 ..... 13
図 4－1 解析モデル ..... 17
図 4－2 振動モード図 ..... 18
表 2－1 構造計画 ..... 3
表 2－2 表示する数値の丸め方 ..... 7
表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設） ..... 14
表 4－2 許容応力（クラス 1 支持構造物） ..... 15
表 4－3 許容応力評価条件 ..... 16
表 4－4 機器諸元 ..... 17
表 4－5 固有周期 ..... 18
表 4－6 設計用地震力（水平方向） ..... 19
表 4－7 設計用地震力（鉛直方向） ..... 19
表 4－8 評価結果まとめ ..... 20

## 1．概要

本計算書は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度 の設計方針に基づき，制御棒駆動機構ハウジング支持金具（以下「CRD ハウジング支持金具」という。）が設計用地震力に対して十分な構造強度を有していることを説明する ものである。

CRD ハウジング支持金具は設計基準対象施設においてはSクラス施設に分類される。以下，設計基準対象施設としての構造強度評価を示す。

注：本計算書においては，平成 4 年 1 月 13 日付け 3 資庁第 10518 号にて認可された工事計画の添付書類（参照図書（1））を「既工認」という。

2．一般事項
2.1 構造計画

CRD ハウジング支持金具の構造計画を表2－1に示す。

表 2－1 構造計画
基礎•支持構造

## 2.2 評価方針

CRD ハウジング支持金具の応力評価は，添付書類「VI－2－1－9 機能維持の基本方針」 にて設定した荷重及び荷重の組合せ並びに許容応力に基づき，「3．評価部位」にて設定する箇所に作用する設計用地震力による応力が許容応力に収まることを，「4．地震応答解析及び構造強度評価」にて示す方法にて確認することで実施する。 CRD ハウジング支持金具の耐震評価フローを図2－1に示す。


図 2－1 CRD ハウジング支持金具の耐震評価フロー
2.3 適用規格•基準等

適用する規格•基準等を以下に示す。
（1）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
（2）原子力発電所耐震設計技術指針重要度分類•許容応力編（J E A G 4 6 0 1 •補－1984）
（3）原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）（以降「 J EAG4601」と記載しているものは上記3指針を指す。）
（4）J S M E S N C 1－2005／2007 発電用原子力設備規格 設計•建設規格 （以下「設計•建設規格」という。）

2． 4 記号の説明

	記号	記号の説明	単位
	D	死荷重	－
	E	縦弾性係数	MPa
	f b	許容曲げ応力	MPa
	$f$ c	許容圧縮応力	MPa
	f s	許容せん断応力	MPa
	$\mathrm{f}_{\mathrm{t}}$	許容引張応力	MPa
	$\sigma$ b	曲げ応力	MPa
	$\sigma{ }_{\text {t }}$	引張応力	MPa
	$\sigma$ c	圧縮応力	MPa
	$\sigma \mathrm{k}$	組合せ応力	MPa
	$\tau$	せん断応力	MPa
	$\ell_{1}$	CRD ハウジング支持金具の内のり寸法	mm
	$\ell_{2}$	CRD ハウジング支持金具の内のり寸法	mm
a00111111	M	地震及び死荷重以外で地震と組み合わすべきプラントの運転状態（地震との組合せが独立な運転状態IV，Vは除く） で設備に作用している機械的荷重	－
	$\mathrm{M}_{\mathrm{L}}$	地震との組合せが独立な運転状態IVの事故の直後を除き， その後に生じている死荷重及び地震荷重以外の機械的荷重	－
（a）	mo	質量	kg
N	P	地震と組み合わすべきプラントの運転状態（地震との組合 せが独立な運転状態IV，Vは除く）における圧力荷重	－
	$\mathrm{P}_{\text {L }}$	地震との組合せが独立な運転状態IVの事故の直後を除き， その後に生じている圧力荷重	－
	S	許容引張応力 設計•建設規格 付録材料図表 Part5表5又は表6に規定される値	MPa
	S d＊	弾性設計用地震動 S d により定まる地震力又はS クラス設備に適用される静的地震力のいずれか大きい方の地震力	－
	S s	基準地震動S s により定まる地震力	－
	$\mathrm{S}_{u}$	設計引張強さ 設計•建設規格 付録材料図表 Part5表9に規定される値	MPa
	S y	設計降伏点 設計•建設規格 付録材料図表 Part5 表8 に規定される値	MPa
	$\mathrm{S}_{\mathrm{y}}$（ R T ）	$40^{\circ} \mathrm{C}$ における設計降伏点 設計•建設規格 付録材料図表 Part5 表8に規定される値	MPa
	T	温度	${ }^{\circ} \mathrm{C}$
	$v$	ポアソン比	－

2.5 計算精度と数値の丸め方

精度は，有効数字 6 桁以上を確保する。
表示する数値の丸め方は，表 $2-2$ に示す通りである。

表 2－2 表示する数値の丸め方

数値の種類	単位	処理桁	処理方法	表示桁
縦弾性係数	MPa	有効数字 4 桁目	四捨五入	有効数字 3 桁
固有周期	s	小数点以下第 4 位	四捨五入	小数点以下第 3 位
算出応力	MPa	小数点以下第 1 位	切上げ	整数位
許容応力＊	MPa	小数点以下第 1 位	切捨て	整数位

注記＊：設計•建設規格 付録材料図表に記載された温度の中間における許容応力は，比例法により補間した値の小数点以下第 1 位を切捨て，整数位までの値とする。

## 3．評価部位

本計算書で解析するCRD ハウジング支持金具の形状•寸法•材料を図3－1 に示す。 なお，CRD ハウジング支持金具の応力評価点は，CRD ハウジング支持金具を構成する部材の形状及び荷重伝達経路を考慮し，発生応力が大きくなる部位を選定する。選定し た応力評価点を図 3－1 に示す。

4．地震応答解析及び構造強度評価
4． 1 地震応答解析及び構造強度評価方法
（1）CRD ハウジング支持金具は，原子炉本体の基礎の内周側に固定され，CRD ハウジ ングの水平地震荷重を原子炉本体の基礎に伝達する構造である。
CRD ハウジング支持金具の耐震評価は，「4．5 設計用地震力」に示す水平地震荷重及び鉛直地震力を用いて，参照図書（1）に示す既工認の手法に従い構造強度評価 を行う。
（2）構造強度評価に用いる寸法は，公称値を用いる。
（3）概略構造図を表2－1 に示す。

## 4.2 荷重の組合せ及び許容応力

4．2．1 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を表 4－1 に示す。

4．2．2 許容応力
許容応力は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき表 4－2 のと おりとする。

4．2．3 許容応力評価条件
許容応力評価条件を表4－3に示す。

## 4．2．4 設計荷重

（1）最高使用温度及び死荷重
最高使用温度及び死荷重は，既工認から変更はなく，参照図書（1）に定めるとお りである。

## 4.3 解析モデル及び諸元

CRD ハウジング支持金具の解析モデルを図4－1に，解析モデルの概要を以下に示す。 また，機器の諸元について表4－4に示す。なお，解析においては原子炉本体基礎との取り合い部で溶接されるため，ブラケット，スプライスプレート及びレストレントビ ームをモデル化している。
（1） 3 次元はり要素による有限要素解析手法を適用する。
（2）拘束条件は，
（3）解析コードは「MSC NASTRAN」を使用し，固有周期と各要素に発生する荷重及びモ ーメントを求める。

なお，評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

## 4． 4 固有周期

固有値解析の結果を表 4－5 に，振動モード図を図4－2 に示す。固有周期は 0.05 秒以下であり，剛構造であることを確認した。
4.5 設計用地震力

評価に用いる設計用地震力を表4－6及び表4－7に示す。
CRD ハウジング支持金具に加わる地震荷重 S d＊及び地震荷重 S s での水平地震荷重は添付書類「VI－2－3－2 炉心，原子炉圧力容器及び原子炉内部構造物並びに原子炉格納容器及び原子炉本体の基礎の地震応答計算書」において，CRD ハウジングレスト レントビームがばね要素としてモデル化されているため，ばね反力として求めた水平地震荷重を用いる。

「弾性設計用地震動 S d 又は静的地震力」及び「基準地震動 S s 」による鉛直地震力は，「4．4 固有周期」に示す通り鉛直方向で剛構造であることから添付書類「VI－ 2－1－7 設計用床応答曲線の作成方針」に基づき設定する。
4.6 計算方法

応力計算方法は，既工認から変更はなく，参照図書（1）に示すとおりである。
以下の荷重を用いて応力評価断面の断面性状により各荷重による応力を算出し，組合せ応力は次のように求め，いずれか大きい方を用いる。
$\sigma_{\mathrm{k}}=\sqrt{\left(\sigma_{\mathrm{t}}+\sigma_{\mathrm{b}}\right)^{2}+3 \cdot \tau^{2}}$
又は，
$\sigma_{k}=\sqrt{\left(\frac{f_{\mathrm{t}}}{f_{\mathrm{c}}} \cdot \sigma_{\mathrm{c}}+\sigma_{\mathrm{b}}\right)^{2}+3 \cdot \tau^{2}}$

4．6．1 水平地震荷重による応力
表 4－6に示す水平地震荷重を「4．3 解析モデル及び諸元」に示す解析モデルに入力し，静解析により得られる荷重（軸力，モーメント，せん断力）を用いる。

4．6．2 鉛直地震荷重による応力
表4－7に示す鉛直地震力を「4．3 解析モデル及び諸元」に示す解析モデルに入力し，動的地震力及び静的地震力を用いた静解析により得られる荷重（モーメン ト，せん断力）を用いる。

4．6．3 死荷重による応力
「4．2．4（1）最高使用温度及び死荷重」に示す死荷重を「4．3 解析モデル及 び諸元」に示す解析モデルに入力し，静解析により得られる荷重（モーメント， せん断力）を用いる。

4．7 計算条件
応力解析に用いる荷重を「4．2 荷重の組合せ及び許容応力」及び「4．5 設計用地震力」に示す。
4.8 応力の評価

各許容応力状態における評価を表4－8に示す。
表 4－8より，各許容応力状態の各応力は，「4．2．2 許容応力」に示す許容応力を満足する。

## 5．参照図書

（1）女川原子力発電所第 2 号機 第 5 回工事計画認可申請書 添付書類 IV－3－1－3－3「制御棒駆動機構ハウジング支持金具の応力計算書」

：応力評価点
$l_{1}=\square \quad \ell_{2}=\square$

図 3－1 CRD ハウジング支持金具の形状•寸法•材料•応力評価点 （単位：mm）

O 2 （6）VI－2－3－4－2－3 R 3

表 4－1 荷重の組合せ及び許容応力状態（設計基準対象施設）

| 施設区分 |  | 機器名称 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | | 耐震重要度 |
| :---: |
| 分類 | | 機器等 |
| :---: |
| の区分 |$\quad$| 荷重の組合せ |
| :---: |

注記 $* 1: ク ラ ス 1$ 支持構造物の荷重の組合せ及び許容応力を準用する。

O 2 （6）VI－2－3－4－2－3 R 3

表 4－2 許容応力（クラス 1 支持構造物）

許容応力状態	許容応力＊1，＊2 （ボルト等以外）			
	一次応力			
	引張	せん断	圧縮	曲げ
III ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot{ }_{\text {t }}$	$1.5 \cdot \mathrm{f}$ s	$1.5 \cdot \mathrm{fc}$	$1.5 \cdot \mathrm{f}$ b
IV ${ }_{\text {A }} \mathrm{S}$	$1.5 \cdot \mathrm{ft}^{*}$	$1.5 \cdot \mathrm{f}_{\mathrm{s}}$＊	$1.5 \cdot \mathrm{f}{ }_{\mathrm{c}}$＊	$1.5 \cdot \mathrm{f}_{\mathrm{b}}$＊

注記＊1：鋼構造設計規準（日本建築学会 2005改定）等の幅厚比の制限を満足させる。
＊2：応力の組合せが考えられる場合には，組合せ応力に対しても評価を行う。

表 4－3 許容応力評価条件

評価部位	材料		温度条件   $\left({ }^{\circ} \mathrm{C}\right)$		$\begin{gathered} \mathrm{S} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} \text { y } \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \mathrm{S} \mathrm{u} \\ (\mathrm{MPa}) \end{gathered}$	$\begin{gathered} \text { S y } \\ (\mathrm{R} \mathrm{~T}) \\ (\mathrm{MPa}) \end{gathered}$
レストレントビーム	鋼板		周囲環境温度	171	－			－
ブラケット	鋼板				－			－
スプライスプレート	鋼板				－			－

図 4－1 解析モデル

表 4－4 機器諸元

項目	記号	単位	入力値
材質	-	-	
質量	m o	kg	
温度条件	T	${ }^{\circ} \mathrm{C}$	
縦弾性係数	E	MPa	
ポアソン比	$v$	-	
要素数	-	-	
節点数	-	-	

表 4－5 固有周期

モード	卓越方向	固有周期   $(\mathrm{s})$
1 次	鉛直	

$\square$
1 次モード

図 4－2 振動モード図

表 4－6 設計用地震力（水平方向）


表 4－7 設計用地震力（鉛直方向）

据付場所及び   床面高さ（mm）		原子炉本体基礎 O．P．					
固有周期（s）		水平： 0.05 以下			鉛直： 0.05 以下		
地震力		弾性設計用地震動 S d又は静的震度			基準地震動 S s		
モード	固有周期   （s）	応答水平震度		応答鉛直震度	応答水平震度		応答鉛直震度
		NS 方向	EW 方向		NS 方向	EW 方向	
1 次		－	－	－	－	－	－
動的地震力＊1		－	－	0.77	－	－	1． 32
静的地震力＊2		－	－	0.29	－	－	－

注記＊ $1: ~ \mathrm{~S} \mathrm{~s}$ 又は S d に基づく設計用最大応答加速度より定めた震度を示す。
＊2：静的震度（1．2•Cv）を示す。

表 4－8 評価結果まとめ


VI－2－3－4－2－4 差圧検出・ほう酸水注入系配管（ティーよりN11ノ ズルまでの外管）の耐震性についての計算書

## 目次

1．一般事項 ..... 1
1．1 記号の説明 ..... 1
1．2 形状•寸法•材料 ..... 1
1．3 解析範囲 ..... 1
1．4 計算結果の概要 ..... 1
2．計算条件 ..... 4
2.1 設計条件 ..... 4
2.2 運転条件 ..... 4
2．3 材料 ..... 4
2． 4 荷重の組合せ及び許容応力状態 ..... 4
2.5 荷重の組合せ及び応力評価 ..... 4
2.6 許容応力 ..... 4
3．外荷重の条件 ..... 5
3.1 計算方法 ..... 5
3.2 解析モデル ..... 5
3.3 設計震度 ..... 5
3.4 計算結果 ..... 5
3．4．1 固有周期 ..... 5
3．4．2 地震荷重 ..... 5
4．応力計算 ..... 6
4． 1 応力評価点 ..... 6
4．2 内圧による応力 ..... 6
4．2．1 荷重条件 ..... 6
4．2．2 計算方法 ..... 6
4．3 外荷重による応力 ..... 6
4．3．1 荷重条件 ..... 6
4．3．2 計算方法 ..... 6
4．4 応力の評価 ..... 6
5．応力強さの評価 ..... 7
5.1 一次一般膜応力強さの評価 ..... 7
5.2 一次膜 + 一次曲げ応力強さの評価 ..... 7
5.3 一次 + 二次応力強さの評価 ..... 7
6．繰返し荷重の評価 ..... 7
6.1 設計•建設規格 PVB－3140（6）についての検討 ..... 7
7．参照図書 ..... 7
図 1－1 形状•寸法•材料•応力評価点 ..... 2
図 3－1 解析モデル ..... 8
表 1－1 計算結果の概要 ..... 3
表 5－1 一次一般膜応力強さの評価のまとめ ..... 9
表 5－2 一次膜 + 一次曲げ応力強さの評価のまとめ ..... 10
表 5－3 一次＋二次応力強さの評価のまとめ ..... 11

1．一般事項
本計算書は，差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）の応力計算について示すものである。

差圧検出・ほう酸水注入系配管（ティーよりN11ノズルまでの外管）は，原子炉圧力容器付属構造物であるため，添付書類「VI－2－3－4－1－1 原子炉圧力容器の応力解析の方針」（以下「応力解析の方針」という。）に基づき評価する。

差圧検出・ほう酸水注入系配管（ティーよりN11 ノズルまでの外管）は，設計基準対象施設においてはS クラス施設に，重大事故等対処設備においては常設耐震重要重大事故防止設備及び常設重大事故緩和設備に分類される。

以下，設計基準対象施設及び重大事故等対処設備としての構造強度評価を示す。

1．1 記号の説明
記号の説明を「応力解析の方針」（1）耐震評価編の2．4節に示す。
更に，本章において，以下の記号を用いる。

記号	記号の説明	単位
$\mathrm{N}^{\prime}$	荷重変動回数	回
$\Delta \sigma$	機械的荷重により生じる応力の全振幅	MPa
Sa	任意の点の繰返しピーク応力強さ	MPa

1．2 形状•寸法•材料
本計算書で解析する箇所の形状•寸法•材料を図1－1に示す。

## 1．3 解析範囲

解析範囲を図1－1に示す。

## 1．4 計算結果の概要

計算結果の概要を表1－1に示す。
なお，応力評価点の選定に当たつては，形状不連続部，溶接部及び厳しい荷重作用点に着目し，応力評価上厳しくなる代表的な評価点を記載する。


図1－1 形状•寸法•材料•応力評価点（単位：mm）

O 2 （6）VI－2－3－4－2－4 R 4

表1－1 計算結果の概要
（単位：MPa）

部分及び材料	許容応力状態	一次一般膜応力強さ			一次膜＋一 次曲げ応力強さ			一次＋二次応力強さ		
		応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価面	応力強さ	許容応力	応力評価点
$\begin{gathered} \text { パイプ } \\ \text { SUS316LTP } \end{gathered}$	III ${ }_{A} \mathrm{~S}$	42	114	P01＇－P02＇	42	159	P01＇－P02＇	11	288	P02
	$\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	42	228	P01＇－P02＇	42	318	P01＇－P02＇	25	288	P02

2．計算条件
2.1 設計条件

設計条件を「応力解析の方針」（1）耐震評価編の4．1節に示す。
2.2 運転条件

考慮した運転条件を「応力解析の方針」（1）耐震評価編の 4.2 節に示す。

2． 3 材料
各部の材料を図1－1に示す。

2．4 荷重の組合せ及び許容応力状態
荷重の組合せ及び許容応力状態を「応力解析の方針」（1）耐震評価編の 3.4 節に示 す。
2.5 荷重の組合せ及び応力評価

荷重の組合せ及び応力評価を「応力解析の方針」（1）耐震評価編の4．4節に示す。

2． 6 許容応力
許容応力を「応力解析の方針」（1）耐震評価編の3．5節に示す。

3．外荷重の条件
3.1 計算方法

固有周期，地震荷重は「3．2 解析モデル」に示す解析モデルにより求める。
3.2 解析モデル

解析モデルは，既工認から変更はなく参照図書（1）a．に定めるとおりである。参照図書（1）a．に定める解析モデルを図3－1に示す。
3.3 設計震度

設計震度を下表に示す。

	設計震度	
	水平方向	鉛直方向
弾性設計用地震動 S d   又は静的震度	1.04	0.78
基準地震動 S s	1.96	1.33

3.4 計算結果

3．4．1 固有周期
固有周期を下表に示す。
固有周期は，既工認から変更はなく参照図書（1）a．に示すとおり 0.05 秒以下で あり，剛であることを確認した。

モード	固有周期 s ）	水平方向刺激係数		鉛直方向   刺激係数
		X 方向	Y 方向	
1 次	$\square$	-	-	-

## 3．4．2 地震荷重

解析により求めた地震荷重を「応力解析の方針」（1）耐震評価編の表 4－1（8）に示す。

4．応力計算
4． 1 応力評価点
応力評価点の位置を図1－1に示す。
なお，各応力評価点の断面性状は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）v．に定めるとおりである。

## 4．2 内圧による応力

4．2．1 荷重条件（L01）
各運転状態による内圧は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）v．に定めるとおりである。

4．2．2 計算方法
内圧による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）v．に定めるとおりである。

なお，各許容応力状態での内圧による応力は，内圧を受ける円筒にモデル化し計算する。

4．3 外荷重による応力
4．3．1 荷重条件（L04，L14及び L16）
外荷重を「応力解析の方針」（1）耐震評価編の表4－1（8）に示す。

4．3．2 計算方法
外荷重による応力の計算は，既工認から変更はなく「応力解析の方針」（1）耐震評価編の参照図書（1）v．に定めるとおりである。

なお，外荷重による各応力は，外荷重と各応力評価断面の断面性状により計算 する。

## 4．4 応力の評価

各応力評価点で計算された応力を分類ごとに重ね合わせて組合せ応力を求め，応力強さを算出する。

応力強さの算出方法は，「応力解析の方針」（1）耐震評価編の5．3．2項に定めるとお りである。

5．応力強さの評価
5.1 一次一般膜応力強さの評価

各許容応力状態における評価を表5－1 に示す。
表 5－1 より，各許容応力状態の一次一般膜応力強さは，「応力解析の方針」（1）耐震評価編の 3.5 節に示す許容応力を満足する。
5.2 一次膜 + 一次曲げ応力強さの評価各許容応力状態における評価を表5－2に示す。

表 5－2より，各許容応力状態の一次膜 + 一次曲げ応力強さは，「応力解析の方針」 （1）耐震評価編の 3.5 節に示す許容応力を満足する。
5.2 一次 + 二次応力強さの評価

各許容応力状態における評価を表5－3に示す。
表 5－3 より，各許容応力状態の一次 + 二次応力差の最大範囲は，「応力解析の方針」

6．繰返し荷重の評価
6.1 設計•建設規格 PVB－3140（6）についての検討

添付書類「VI－2－1－9 機能維持の基本方針」に基づき，設計•建設規格 PVB－ 3140 （6）の検討を行い，疲労解析が不要であることを示す。

著しい機械的荷重は，$S=94 \mathrm{MPa}$ を超えるような応力変動を生じる荷重である。
N＇は，「応力解析の方針」（1）耐震評価編の4．2節に示すように地震荷重の繰返 し回数が多い地震荷重S d＊の回数を用いる。
$\mathrm{N}^{\prime}=590$ 回
N’に対するS は，設計•建設規格 添付4－2 3．2よりS a＝968MPaである。
S d 又はS s 地震動による $\Delta \sigma$ は，「応力解析の方針」（1）耐震評価編の 4.2 節に示すように地震荷重の大きいS s 地震動による応力の全振幅を用いる。
$\Delta \sigma=12 \times 2=24 \mathrm{MPa}$
したがって， $\mathrm{S} \mathrm{a}>\Delta \sigma$ であり，条件を満足する。

7．参照図書
（1）女川原子力発電所第 2 号機 第 5 回工事計画認可申請書 添付書類
a．IV－2－3－9 差圧検出・ほう酸水注入系配管（原子炉圧力容器内部及びティーより N11ノズルまでの外管）の耐震性についての計算書
$\square$
図3－1 解析モデル

表5－1 一次一般膜応力強さの評価のまとめ

応力評価面	許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$		許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$	
	応力強さ	許容応力	応力強さ	許容応力
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	42	114	42	228
$\begin{aligned} & \text { P01 } \\ & \text { P02 } \end{aligned}$	42	114	42	228



表5－2 一次膜 + 一次曲げ応力強さの評価のまとめ
（単位：MPa）

応力評価面	許容応力状態 $\mathrm{III}_{\mathrm{A}} \mathrm{S}$		許容応力状態 IV   A	
	応力強さ	許容応力	応力強さ	許容応力
P01   P02	42	159	42	318
P01，   P02，	42	159	42	318

O 2 （6） $\mathrm{VI}-2-3-4-2-4$ R 4

> 表5-3 一次 + 二次応力強さの評価のまとめ

（単位：MPa）			
応力評価点	$\mathrm{S}_{\mathrm{n}}{ }^{\# 1 * 1}$	$\mathrm{~S}_{\mathrm{n}}{ }^{\# 2 * 2}$	許容応力   $3 \cdot \mathrm{~S}_{\mathrm{m}}$
P 01	9	21	288
P 01 ，	9	21	288
P 02	11	25	288
P 02 ，	11	25	288

注記＊ $1: \mathrm{S}_{\mathrm{n}}{ }^{\# 1}$ は許容応力状態 $\mathrm{III}_{A} \mathrm{~S}$ による一次 + 二次応力差の最大範囲を示す。
＊2： $\mathrm{S}_{\mathrm{n}}{ }^{\# 2}$ は許容応力状態 $\mathrm{IV}_{\mathrm{A}} \mathrm{S}$ による一次 + 二次応力差の最大範囲を示す。


[^0]:    注記 $*$ ：継手効率 $\square$ を乗じた値を示す。

[^1]:    注記 $*: ~$ 継手効率
    を乗じた値を示す。

[^2]:    R 4
    $\mathrm{VI}-2-3-4-1-2$
    （a）
    $\stackrel{\sim}{\sim}$

