VI－2－2－16 軽油タンク室（H）の耐震性についての計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 6
2.4 適用基準 9
3．耐震評価 10
3.1 地震時荷重算出断面 10
3.2 使用材料及び材料の物性値 13
3.3 許容限界 14
3．3．1 構造部材の健全性に対する許容限界 14
3．3．2 基礎地盤の支持性能に対する許容限界 15
3.4 評価方法 16
3．4．1 構造部材の健全性評価． 16
3．4．2 基礎地盤の支持性能評価． 21
4．構造部材の地震時応答 22
5．耐震評価結果 32
5.1 構造部材の健全性及び支持機能に対する評価結果。 32
5.2 基礎地盤の支持性能に対する評価結果． 35
5．2．1 基礎地盤（狐崎部層） 35
5．2．2 MMR（新設） 36

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，軽油タンク室（H）が基準地震動S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

軽油タンク室（H）の構造部材の健全性評価にあたつては，地震応答解析により算定した荷重を三次元構造解析モデルに作用させて確認する。基礎地盤の支持性能評価にあたつては，地震応答解析により基礎地盤に発生した接地圧を確認する。

2．基本方針
2.1 位置

軽油タンク室（H）の位置を図 2－1 に示す。

図 2－1 軽油タンク室（H）の位置図

2.2 構造概要

軽油タンク室（H）の平面図を図 2－2 に，断面図を図 $2-3$ 及び図 $2-4$ に，概略配筋図を図 2－5に示す。

軽油タンク室（H）は，軽油タンク等を頂版，底版及び側壁で間接支持しており，支持機能が要求される。

軽油タンク室（H）は，幅 9.00 m （東西）$\times 20.20 \mathrm{~m}$（南北），高さ 9.90 m の鉄筋コンクリート造 の地中構造物であり，マンメイドロック（以下「MMR」という。）を介して十分な支持性能を有 する岩盤に設置されている。

軽油タンク室（H）は，面部材として加振方向に平行に配置される妻壁を有する箱形構造物で ある。

（単位：m）

図 2－2 軽油タンク室（H）平面図

図 2－3 軽油タンク室（H）断面図（A－A 断面，南北）

図 2－4 軽油タンク室（H）断面図（B－B 断面，東西）

図 2－5 軽油タンク室（H）概略配筋図

2． 3 評価方針

軽油タンク室（H）は設計基準対象施設においては，S クラス施設の間接支持構造物である屋外重要土木構造物に分類され，重大事故等対処施設においては，常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設に分類される。

軽油タンク室（H）の耐震評価は，添付書類「VI－2－2－15 軽油タンク室（H）の地震応答計算書」より得られた地震応答解析の結果に基づき，設計基準対象施設及び重大事故等対処施設の評価として，表2－1に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

軽油タンク室（H）の耐震評価フローを図2－6に示す。
構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と及びSクラスの施設を支持する機能を損なわないことを確認する。
構造部材の健全性評価については，添付書類「VI－2－2－15 軽油タンク室（H）の地震応答計算書」より得られた，水平方向及び鉛直方向の荷重を用いた，線形シェル要素による三次元静的線形解析（以下「三次元構造解析」という。）により断面力を算定し，添付書類「VI－2－1－9機能維持の基本方針」に基づき，曲げ・軸力系の破壊については構造部材の発生応力度が許容限界を下回ること，せん断破壊に対しては発生せん断力が許容限界を下回ることを確認する。

なお，曲げ・軸力系の破壊に対する照査において，面内せん断力を軸力として考慮している ことから，壁部材の面内せん断に対しては，曲げ・軸力系の破壊に対する照査において併せて確認している。

基礎地盤の支持性能評価においては，添付書類「VI－2－2－15 軽油タンク室（H）の地震応答計算書」より得られた基礎地盤の接地圧が，添付書類「VI－2－1－9 機能維持の基本方針」に基 づく許容限界を下回ることを確認する。

ここで，軽油タンク室（H）の運転時，設計基準事故時及び重大事故時の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括されることから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。

表 2－1 軽油タンク室（H）の評価項目

評価方針	評価項目	部位	評価方法	許容限界	
構造強度 を有する	構造部材の健全性	鉄筋コン クリート 部材	発生応力度が許容限界を下回ること を確認	曲げ・軸力	短期許容応力度
S クラス の施設を				せん断力	短期許容せん断力
機能を損	基礎地盤の支持性能	基礎地盤	発生する接地圧が許容限界を下回る ことを確認	岩盤の極限支持力＊	
こと		MMR		MMR の支圧強度	

注記＊：妥当な安全余裕を考慮する。

図 2－6 軽油タンク室（H）の耐震評価フロー

2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V耐震設計編

3．耐震評価

3.1 地震時荷重算出断面

軽油タンク室（H）の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，タンク軸方向で構造物の中心を通る南北方向（ $\mathrm{A}-\mathrm{A}$ 断面）及びタンクの軸方向に対し直交し構造物の中心を通る東西方向（ $\mathrm{B}-\mathrm{B}$ 断面）の両断面とする。地震時荷重算出用地質断面図を図 3－2 及び図 3－3 に示す。

なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，南北方向（A－ A 断面）が強軸方向となり，東西方向（B－B 断面）が弱軸方向となることから，耐震評価は弱軸方向である東西方向（B－B 断面）に対して実施する。

地震応答解析における解析手法は，添付書類「VI－2－2－15 軽油タンク室（H）の地震応答計算書」のうち，「3．2 解析方法」に示すとおり全応力解析とする。解析ケースを表 3－1に示 す。

また，軽油タンク室（H）は，加振方向に平行に配置される面部材（妻壁や隔壁）を有する箱形構造物であり，Sクラスの施設を支持する機能（支持機能）が要求されることから，シェ ル要素を用いた三次元構造解析により耐震評価を行う。

（単位：m）

図 3－1 軽油タンク室（H）の地震時荷重算出断面位置図

図 3－2 軽油タンク室（H）地震時荷重算出用地質断面図 （ $\mathrm{A}-\mathrm{A}$ 断面，南北）

図 3－3 軽油タンク室（H）地震時荷重算出用地質断面図 （ $\mathrm{B}-\mathrm{B}$ 断面，東西）

表3－1 耐震評価における解析ケース

解析ケース	$\begin{gathered} \text { 材料物性 } \\ (\text { コンクリン) } \\ \left(\mathrm{E}_{0}:\right. \text { : ヤング係数) } \end{gathered}$	地盤物性	
		旧表土，盛土，可級岩盤 （Go：初期せん断弾性係数）	C C 級岩盤，C C 級岩盤， CH級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \text { ケース } 1 \text { (} \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値	平均値
ケース②	設計基準強度	平均値＋1 σ	平均値
ケース③	設計基準強度	平均値－1 σ	平均値

3.2 使用材料及び材料の物性値

構造物の使用材料を表3－2に，材料の物性値を表3－3に示す。

表 3－2 使用材料

材料	仕様
コンクリート	設計基準強度 $24.0 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋（主鉄筋）	$\operatorname{SD390}$
鉄筋 $($ せん断補強鉄筋）	SD345

表 3－3 材料の物性値（構造部材）

| 材料 | 項目 | | 材料諸元 |
| :---: | :---: | :---: | :---: |\quad 備考

3．3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 構造部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
構造強度を有することの確認及びS クラスの施設を支持する機能を損なわないことの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，短期許容応力度とする。コンクリート及び鉄筋の許容応力度を表 $3-4$ 及び表 $3-5$ に示す。

なお，頂版，底版及び側壁のアンカー定着部にS クラスの施設を支持する機能を要求さ れるが，短期許容応力度により照査を行うため，構造強度を有することの確認と許容限界 が同一となることから，全部材に対して構造強度を有することを確認することで，S クラ スの施設を支持する機能を損なわないことの確認も同時に行う。

表 3－4 コンクリートの許容応力度及び短期許容応力度

表 3－5 鉄筋の許容応力度及び短期許容応力度

鉄筋の種類	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD345	許容引張応力度 σ_{sa}	196	294
		206	309

注記＊：「土木学会 2002年 コンクリート標準示方書［構造性能照査編］」により地震時の割り増し係数として 1.5 を考慮する。
（2）せん断破壊に対する許容限界
構造強度を有することの確認及びSクラスの施設を支持する機能を損なわないことの確認における構造部材（鉄筋コンクリート）のせん断破壊に対する許容限界は，表3－4及 び表 3－5 に示すコンクリートと鉄筋の短期許容応力度から算定した短期許容せん断力と する。

3．3．2 基礎地盤の支持性能に対する許容限界

（1）基礎地盤（狐崎部層）
基礎地盤（狐崎部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（狐崎部層）の許容限界を表 3－6に示す。

表 3－6 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	狐崎部層	13.7

（2）MMR（新設）
MMR（新設）に発生する接地圧に対する許容限界は，「土木学会 2002年 コンクリート標準示方書［構造性能照査編］」に基づき，コンクリートの支圧強度とする。 MMR（新設）の許容限界を表3－7に示す。

| 表 3－7 \quad MMR | （新設）の支持性能に対する許容限界 | |
| :---: | :---: | :---: | :---: |
| 評価項目 | MMR（新設） | 許容限界
 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ |
| 支圧強度 | コンクリート
 $\left(\mathrm{f}^{\prime}{ }_{\mathrm{ck}}=21.0 \mathrm{~N} / \mathrm{mm}^{2}\right)$ | $\mathrm{f}^{\prime}{ }_{\mathrm{a}}=26.5$ |

3． 4 評価方法

3．4．1 構造部材の健全性評価

軽油タンク室（H）の耐震評価は，線形シェル要素を用いた三次元構造解析により実施 する。三次元構造解析には，解析コード「SLAP Ver．6．64」を用いる。なお，解析コード の検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コ ード）の概要」に示す。

三次元構造解析への入力荷重は，添付書類「VI－2－2－15 軽油タンク室（H）の地震応答計算書」に基づく地震応答解析において，軽油タンク室（H）の耐震評価に支配的な荷重 が最大となる時刻を選定し，当該時刻における地震時応答から設定する。

添付書類「VI－2－2－15 軽油タンク室（H）の地震応答計算書」に基づく地震応答解析に より算定した地震時荷重（地震時土圧及び慣性力）を用いて，三次元構造解析により算定 した照査用応答値が，「3．3 許容限界」において設定した許容限界を下回ることを確認す る。
（1）解析モデル
線形シェル要素でモデル化する。三次元構造解析モデルを図3－4及び図3－5に示 す。

図3－4 三次元構造解析モデル図（鳥瞰図）

図3－5 三次元構造解析モデル図（鳥瞰図（頂版非表示））
（2）照査時刻
構造部材の健全性評価において，照査時刻は構造的特徴を踏まえ，損傷モードごと及び部材ごとに評価が厳しくなる時刻を地震応答解析の結果から複数選定する。表3－8に照査時刻の選定の考え方を示す。

なお，三次元構造解析の結果において照査値が最大となる曲げ・軸力系の破壊に対する照査の地震動及び解析ケースにおける作用荷重分布図を図3－6及び図3－7に示す。

表3－8 照査時刻の考え方

せん断応力
図中の矢印は荷重の作用方向を示す

図 3－6 作用荷重分布図（直応力及びせん断応力）
（解析ケース（3），S s－D $2(++)$ ，東西）

水平震度

構造スケール

（m）設計震度スケール ${ }^{0} 1.0$

鉛直震度

図 3－7 作用荷重分布図（設計震度分布）
（解析ケース（3），S s－D $2(++)$ ，東西）
（3）入力荷重
三次元構造解析の入力荷重は，設計値及び添付書類「VI－2－2－15 軽油タンク室（H）の地震応答計算書」より得られた地震応答解析に基づく「（2）照査時刻」で選定した照査時刻における応答値を用いて算定する。入力荷重の一覧を表 3－9に示す。

表 3－9 三次元構造解析における入力荷重

区分	種別	考慮する荷重
	固定荷重	躯体自重，機器•配管荷重
	積載荷重	躯体に作用する積載荷重
	常時土圧	躯体側面に作用する常時土圧
地震時 苛重	慣性力	躯体に作用する慣性力
	機器反力＊	機器•配管反力
	地震時土圧	躯体側面に作用する地震時土圧

注記＊：地震応答解析により機器•配管を支持する位置で算出した応答加速度に機器•配管 の質量を乗じて算定する。

3．4．2 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては，構造部材を支持する基礎岩盤に発生する接地圧が許容限界を下回ることを確認する。

4．構造部材の地震時応答

三次元構造解析に基づく，各構造部材の地震時応答結果を示す。各部材位置を図4－1 に，各部材の要素座標系を図4－2 に，シェル要素における各要素の断面力の方向を図 $4-3$ に示す。

曲げ・軸力系の破壊に対する最大照査値の評価時刻での断面力分布を図 4－4～図4－8に，せ ん断破壊に対する最大照査値の評価時刻での断面力分布を図4－9 及び図4－10に示す。

図 4－1 各部材位置

頂版

東壁

底版

\bigcirc

黒：全体座標系を示す
赤：要素座標系を示す

図 4－2 各部材の要素座標系

$\mathrm{M}_{\mathrm{x}}, ~ \mathrm{M}_{\mathrm{y}}$ ：曲げモーメント
$\mathrm{Q}_{\mathrm{x}}, ~ \mathrm{Q}_{\mathrm{y}}$ ：せん断力
N_{x} ， N_{y} ：軸力
$\mathrm{N}_{\mathrm{x} y}$ ：面内せん断力

図 4－3 シェル要素における断面力の方向

図 4－4 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}): \mathrm{M}_{\mathrm{x}}$ ）
（東壁，解析ケース③，S s－D 2（＋＋））

図 4－5 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（曲げモーメント $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}): \mathrm{M}_{\mathrm{y}}$ ）
（東壁，解析ケース③）S s－D $2(++)$ ）

図 4－6 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{x} ）
（東壁，解析ケース（3），S s－D $2(++)$ ）

図 4－7 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{y} ）
（東壁，解析ケース（3），S s－D $2(++)$ ）

図 4－8 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（面内せん断力（ kN / m ）： $\mathrm{N}_{\mathrm{x} \mathrm{y}}$ ）
（東壁，解析ケース③）S s－D $2(++))$

図 4－9 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ kN / m ）： Q_{x} ）
（底版，解析ケース（3），S s－D $2(++)$ ）

東壁

西墅

北壁

接続部 頂版

接続部 底版

接続部 北壁

接続部 南壁

図 4－10 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（kN／m）： Q_{y} ）
（底版，解析ケース（3），S s－D $2(++)$ ）

5．耐震評価結果

5.1 構造部材の健全性及び支持機能に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 5－1 及 び表 5－2に，せん断破壊に対する各評価位置での最大照査値を表5－3に示す。

軽油タンク室（H）の発生応力度及び発生せん断力が，構造部材の健全性及びSクラスの施設 を支持する機能に対する許容限界を下回ることを確認した。

表 5－1 曲げ・軸力系の破壊に対する照査（コンクリート）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{aligned} & \text { 曲げ } \\ & \text { モーメント } \\ & (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{aligned}$	軸力 $(\mathrm{kN} / \mathrm{m})$	$\begin{gathered} \text { 発生 } \\ \text { 応力度 } \\ \sigma^{\prime}{ }_{c} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma^{\prime}{ }_{\text {ca }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	照査値 $\sigma^{\prime}{ }_{c} / \sigma^{\prime}{ }_{c a}$
底版	10	（3）	S s－D $2(++)$	2418	－2080	8.4	13.5	0.63
頂版	20	（3）	S s－D $2(++)$	－1335	－1154	7.3	13.5	0.55
南北壁	30	（3）	S s－D $2(++)$	－1170	－3031	4.3	13.5	0.32
東西壁	60	（3）	S s－D $2(++)$	－1783	－2476	6.2	13.5	0． 46
接続部 底版	70	（3）	S s－D $2(++)$	415	56	4． 0	13.5	0． 30
接続部 頂版	80	（3）	S s－D $2(++)$	－301	270	3.0	13.5	0． 23
接続部 南北壁	90	（3）	S s－D $2(++)$	－436	－2291	4． 4	13.5	0.33

注記＊：評価位置は図5－1に示す。

表 5－2 曲げ・軸力系の破壊に対する照査（鉄筋）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{aligned} & \begin{array}{c} \text { 曲げ } \\ \text { モーメント } \end{array} \\ & (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{aligned}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容応力度 $\begin{gathered} \sigma_{\text {sa }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	照査値 $\sigma_{s} / \sigma_{\text {sa }}$
底版	10	（3）	S s－D $2(++)$	636	1978	161	309	0.53
頂版	20	（3）	S s－D $2(++)$	－1254	－721	120	309	0． 39
南北壁	40	（3）	S s－D $2(++)$	753	2538	200	309	0.65
東西壁	60	（3）	S s－D $2(++)$	336	3509	207	309	0.67
接続部 底版	70	（3）	S s－D $2(++)$	－376	864	181	309	0.59
接続部 頂版	80	（3）	S s－D $2(++)$	287	901	169	309	0.55
接続部 南北壁	90	（3）	S s－D $2(++)$	235	636	128	309	0． 42

注記＊：評価位置は図5－1 に示す。

表 5－3 せん断破壊に対する照査

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 $\begin{gathered} \mathrm{V} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	短期許容 せん断力 V_{a} $(\mathrm{kN} / \mathrm{m})$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
底版	10	（3）	S s - D $2(++)$	1341	2390	0.57
頂版	20	（3）	S s $-\mathrm{D} 2(++)$	641	1817	0.36
南北壁	30	（3）	S s－D $2(++)$	634	2390	0.27
東西壁	50	（3）	S s $-\mathrm{D} 2(++)$	1238	2390	0.52
接続部 底版	70	（3）	S s $-\mathrm{D} 2(++)$	374	943	0． 40
接続部 頂版	80	（3）	S s $-\mathrm{D} 2(++)$	278	906	0.31
接続部 南北壁	90	（3）	S s－D $2(++)$	376	906	0． 42

注記＊：評価位置は図5－1に示す。

（a）

5－5（接続部，南北）

図 5－1 評価位置図
5.2 基礎地盤の支持性能に対する評価結果

5．2．1 基礎地盤（狐崎部層）

基礎地盤の支持性能に対する照査結果を表5－4に示す。また，最大接地圧分布図を図5－2に示す。

軽油タンク室（H）の基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認した。

表 5－4 基礎地盤の支持性能照査結果

$\left.$| 解析
 ケース | 地震動 |
| :---: | :---: | :---: | :---: | :---: | | 最大接地圧 |
| :---: |
| $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | | 極限支持力 |
| :---: |
| $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$ | | 照査値 |
| :---: |
| $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$ | \right\rvert\,

図 5－2 基礎地盤の最大接地圧分布図
（解析ケース①）S s－D $1 \quad(++)$ ）

5．2．2 MMR（新設）

MMR（新設）の支持性能に対する照査結果を表 5－5 に示す。また，最大接地圧分布図を図 5－3に示す。

軽油タンク室（H）のMMR（新設）に発生する最大接地圧が，支圧強度を下回ることを確認した。

表 5－5 MMR（新設）の支持性能照査結果

解析 ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	支圧強度 $\mathrm{f}^{\prime}{ }_{\mathrm{a}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime}{ }_{\mathrm{a}}$
(3)	$\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$	3.9	26.5	0.15

図 5－3 MMR（新設）の最大接地圧分布図
（解析ケース（3），S s－D $2(++))$

VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書

目 次
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 解析方針 5
2.4 適用基準 7
3．解析方法 8
3.1 地震時荷重算出断面 8
3.2 解析方法 10
3．2．1 構造部材 10
3．2．2 地盤物性及び材料物性のばらつき 11
3．2．3 減衰定数 13
3．2．4 地震応答解析の解析ケースの選定． 14
3.3 荷重及び荷重の組合せ 17
3．3．1 耐震評価上考慮する状態 17
3．3．2 荷重 17
3．3．3 荷重の組合せ 18
3.4 入力地震動 19
3.5 解析モデル及び諸元 34
3．5．1 解析モデル 34
3．5．2 使用材料及び材料の物性値 36
3．5．3 地盤の物性値 36
3．5．4 地下水位 37
4．解析結果 38
4．1 南北方向の解析結果 38
4．1．1 全応力解析の解析結果． 38
4．1．2 有効応力解析の解析結果． 95
4．2 東西方向の解析結果 110

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき実施するガスタービン発電設備軽油タンク室の地震応答解析について説明するものである。

本地震応答解析は，ガスタービン発電設備軽油タンク室が耐震性に関する技術基準へ適合する ことを確認するために用いる応答値を抽出するものである。

ガスタービン発電設備軽油タンク室は，面部材として加振方向に平行に配置される妻壁や隔壁 を有する箱形構造物であることから，二次元地震応答解析により地震時荷重を算定し，その荷重 を三次元構造解析モデルに作用させて耐震評価を実施するものである。よって，地震応答解析に より抽出する応答値は，三次元構造解析モデルに作用させる地震時土圧，慣性力及び基礎地盤に発生する接地圧である。

また，機器•配管系が耐震性に関する技術基準へ適合することを確認するために用いる応答値 の抽出を行う。

2．基本方針
2.1 位置

ガスタービン発電設備軽油タンク室の位置を図 2－1 に示す。

図 2－1 ガスタービン発電設備軽油タンク室の位置図

2.2 構造概要

ガスタービン発電設備軽油タンク室の平面図を図2－2に，断面図を図2－3 及び図2－4に示す。

ガスタービン発電設備軽油タンク室は，ガスタービン発電設備軽油タンク等を間接支持して おり，支持機能が要求される。

ガスタービン発電設備軽油タンク室は，幅 20.30 m （東西）$\times 22.00 \mathrm{~m}$（南北），高さ 7.10 m の鉄筋コンクリート造の地中構造物であり，十分な支持性能を有する岩盤に直接設置されている。

ガスタービン発電設備軽油タンク室は，面部材として加振方向に平行に配置される妻壁や隔壁を有する箱形構造物である。

PN

（単位：m）

図 2－2 ガスタービン発電設備軽油タンク室平面図

（単位：m）

図 2－3 ガスタービン発電設備軽油タンク室断面図（A－A 断面，南北）

（単位：m）

図 2－4 ガスタービン発電設備軽油タンク室断面図（B－B 断面，東西）

2.3 解析方針

ガスタービン発電設備軽油タンク室は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき，基準地震動 S s に対して地震応答解析を実施する。

図 $2-5$ にガスタービン発電設備軽油タンク室の地震応答解析フローを示す。
地震応答解析は，「2．基本方針」に基づき，「3．1 地震時荷重算出断面」に示す断面にお いて，「3．2 解析方法」に示す水平地震動と鉛直地震動の同時加振による二次元有限要素法に よる時刻歴応答解析により行うこととし，地盤物性及び材料物性のばらつきを適切に考慮する。
二次元有限要素法による時刻歴応答解析は，「3．3 荷重及び荷重の組合せ」及び「3．5 解析モデル及び諸元」に示す条件を基に，「3．4 入力地震動」により設定する入力地震動を用い て実施する。

地震応答解析による応答加速度は，機器•配管系の設計用床応答曲線の作成に用い，地震時土圧，慣性力及び基礎地盤の接地圧は，ガスタービン発電設備軽油タンク室の耐震評価に用い る。

注記＊：耐震評価に用いる応答値を算定する。

図2－5 ガスタービン発電設備軽油タンク室の地震応答解析フロー

2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］
- 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照查指針・マニュアル
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）

3．解析方法
3.1 地震時荷重算出断面

ガスタービン発電設備軽油タンク室の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，タンク軸方向で構造物の中心を通る南北方向（A－A 断面）及びタンク軸方向に直交し構造物の中心を通る東西方向（B－B 断面）の両断面 とする。地震時荷重算出用地質断面図を図 3－2 及び図 3－3に示す。

なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，南北方向（ A^{-} A 断面）が強軸方向となり，東西方向（B－B 断面）が弱軸方向となる。よって，構造物の耐震評価に用いる応答値の抽出は，弱軸方向に対して実施し，機器•配管系の耐震評価に用いる応答値の抽出は，弱軸方向及び強軸方向に対して実施する。

PN

（単位：m）

図 3－1 ガスタービン発電設備軽油タンク室の地震時荷重算出断面位置図

図 3－2 ガスタービン発電設備軽油タンク室 地震時荷重算出用地質断面図 （ $\mathrm{A}-\mathrm{A}$ 断面，南北）

図 3－3 ガスタービン発電設備軽油タンク室 地震時荷重算出用地質断面図 （ $\mathrm{B}-\mathrm{B}$ 断面，東西）

3.2 解析方法

ガスタービン発電設備軽油タンク室の地震応答解析は，添付書類「VI－2－1－6 地震応答解析 の基本方針」のらち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。
地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行うこととする。ガスタービン発電設備軽油タンク室の南北方向については，北側 は改良地盤とその外側の岩盤に囲まれており，南側は改良地盤に囲まれ，その外側には盛土が分布し，南方に向かって岩盤面が下り勾配で傾斜していることから解析手法は，全応力解析及 び有効応力解析を実施する。東西方向については，西側は改良地盤とその外側の岩盤に囲まれ，東側は耐震性が碓認されている緊急用電気品建屋が隣接していることから，解析手法は全応力解析とする。

東西方向において隣接構造物となる緊急用電気品建屋，構造物周辺の改良地盤及び MIR は， ガスタービン発電設備軽油タンク室の耐震評価において保守的な評価となるよう盛土としてモ デル化する。
構造部材については，頂版，底版及び地震時荷重算出断面に垂直な壁部材は線形はり要素，断面に平行な壁部材は平面応力要素とし，構造物の奥行方向の長さと各部材の奥行方向の長さ の比率や三次元構造解析モデルとの変位を整合させるためのヤング係数の調整を行い，実構造物と等価な剛性となるようモデル化する。また，地盤については地盤のひずみ依存性を適切に考慮できるようモデル化する。
地震応答解析については，解析コード「TDAPIII Ver．3．08」及び解析コード「FLIP ver．7．3．0＿2」 を使用する。なお，解析コードの検証及び妥当性碓認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．2．1 構造部材

鉄筋コンクリート部材は，線形はり要素及び平面応力要素でモデル化する。
3.2 .2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため，表 3－1 に示す解析ケースを設定する。

ガスタービン発電設備軽油タンク室は，岩盤上に設置され，周囲が埋戻されており，主 たる荷重は盛土等の土圧となることから，盛土，D級岩盤の初期せん断弾性係数のばらつ きを考慮する。

初期せん断弾性係数の標準偏差 σ を用いて設定した解析ケース（2），（3）及び（8）を実施する ことにより地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース（4）を実施することにより，材料物性のばらつきの影響を考慮する。

なお，ガスタービン発電設備軽油タンク室は，新設構造物であり許容応力度法により設計を行っており，十分に裕度を確保した設計としていることから，材料物性のばらつきを考慮した解析ケース④による耐震評価は実施せず，機器•配管系に対する応答加速度抽出 においては，材料物性のばらつきを考慮した解析ケース④を実施する。
詳細な解析ケースの考え方は，「3．2．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

解析ケース＊${ }^{1}$	解析手法	$\begin{gathered} \text { 材料物性 } \\ \text { (コンクリー) } \\ \left(\mathrm{E}_{0}:\right. \text { ヤング係数) } \end{gathered}$	地盤物性	
			盛土，回級岩盤 （ G_{0} ：初期せん断弹性係数）	C_{1} 級岩盤，C_{M} 級岩盤， CH級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \text { ケース } 11 \\ \text { (基本ケース) } \\ \hline \end{gathered}$	全応力解析	設計基準強度	平均値	平均値
ケース②	全応力解析	設計基準強度	平均値 $+1 \sigma$	平均値
ケース（3）	全応力解析	設計基準強度	平均値－1 σ	平均値
ケース（4）	全応力解析	実強度に基づく 圧縮強度＊ 2	平均値	平均値
ケース（8）	有効応力解析	設計基準強度	平均値－1 σ	平均値

注記 $* 1$ ：南北方向は全応力解析と有効応力解析を，東西方向は全応力解析を実施する。 ＊2：新設構造物のため，推定した圧縮強度とする。

3．2．3 減衰定数

構造部材の減衰定数は，粘性減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。なお，構造部材を線形でモデル化する場合は，Rayleigh 減衰のみを設定す る。

また，有効応力解析では，Rayleigh 減衰を考慮することとし，剛性比例型減衰（ $\alpha=0$ ， $\beta=0.002$ ）とする。なお，係数 β の設定については，「FLIP 研究会 14 年間の検討成果の まとめ「理論編」」による。

固有値解析結果に基づき設定した $\alpha, ~ \beta$ を表 3－2 に示す。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
α, β ：係数

表3－2 Rayleigh 減衰における係数 α, β の設定結果

地震時荷重算出断面	解析手法	α	β
南北方向	全応力解析	9.726×10^{-1}	3.085×10^{-4}
	有効応力解析	0.000	2.000×10^{-3}
東西方向	全応力解析	8.928×10^{-1}	3.360×10^{-4}

3．2．4 地震応答解析の解析ケースの選定
（1）耐震評価における解析ケース
耐震評価においては，すべての基準地震動 S s に対し，解析ケース（1）（基本ケース）を実施する。解析ケース①において，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 を超える照査項目に対して，最も厳しい地震動を用いて，表 3－1 に示す解析ケース（2）及び（3）を実施する。また，上記解析ケースの結果を踏まえ，更 に照査値が大きくなる可能性がある場合は，追加解析ケースを実施する。耐震評価におけ る解析ケースを表3－3に示す。

表 3－3 耐震評価における解析ケース

解析ケース			ケース①	ケース（2）	ケース③
			基本ケース	地盤物性のばらつき （＋1 o ）を考慮した解析ケース	地盤物性のばらつき （－1 o ）を考慮した解析ケース
地盤物性			平均値	平均値＋1 σ	平均値－1 σ
材料物性			設計基準強度	設計基準強度	設計基準強度
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	S s－D 1	＋＋＊	\bigcirc		
		$-+^{*}$	\bigcirc		
	S s－D 2	$++*$	\bigcirc		
		$-+*$	\bigcirc		
	S s－D 3	＋＋＊	\bigcirc		
		$-+*$	\bigcirc		
	S s－F 1	$++*$	\bigcirc		
		$-+*$	\bigcirc		
	$\mathrm{S} s$－F 2	＋＋＊	\bigcirc		
		$-+^{*}$	\bigcirc		
	S s－F 3	＋＋＊	\bigcirc		
		－＋＊	\bigcirc		
	S s－N 1	$++*$	\bigcirc		
		－＋＊	\bigcirc		

注記＊：耐震評価に当たつては，「土木学会 2005年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル」（以下「土木学会マニュアル」という。）に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「ー」は位相を反転させたケースを示す。
（2）機器•配管系に対する応答加速度抽出のための解析ケース
機器•配管系に対する応答加速度抽出においては，床応答への保守的な配慮として解析 ケース① に加え，表3－1 に示す解析ケース②）（4）及び（8）を実施する。機器•配管系の応答加速度抽出における解析ケースを表 3－4 に示す。

表 3－4（1）機器•配管系の応答加速度抽出のための解析ケース

				全応力	解析	
			ケース11）	ケース（2）	ケース（3）	ケース（4）
	解析ケー		基本ケース	地盤物性のば らつき（ $+1 \sigma$ ） を考慮した解析ケース	地盤物性のば らつき（－1 o） を考慮した解析ケース	材料物性（コン クリート）に実強度を考慮し た解析ケース
	地盤物性		平均値	平均値＋1 σ	平均値－1 σ	平均値
	材料物性		設計基準強度	設計基準強度	設計基準強度	$\begin{aligned} & \text { 実強度に基づ } \\ & \text { <圧縮強度*2 } \end{aligned}$
	S s－D	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S S D	$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－D 2	$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \end{aligned}$	S S－D 3	$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
動	S	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
位	S s－F1	$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
相	S s－F 2	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S S－F 2	$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Ss－F 3	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－r 3	$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－N 1	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－N 1	$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

注記＊1 ：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転 させたケースを示す。
＊2：新設構造物のため，推定した圧縮強度とする。

表 3－4（2）機器•配管系に対する応答加速度抽出のための解析ケース

注記 $*: ~$ 地震動の位相について，++ の左側は水平
動，右側は鉛直動を表し，「一」は位相を反
転させたケースを示す。

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 耐震評価上考慮する状態

ガスタービン発電設備軽油タンク室の地震応答解析において，地震以外に考慮する状態 を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。埋設構造物であるため風の影響は考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

3．3．2 荷重

ガスタービン発電設備軽油タンク室の地震応答解析において，考慮する荷重を以下に示 す。
（1）固定荷重（G）
固定荷重として，躯体自重，機器•配管荷重を考慮する。
（2）積載荷重（ P ）
積載荷重として，積雪荷重 P s を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（ P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（ S s ）
基準地震動 S s による荷重を考慮する。

3．3．3 荷重の組合せ

荷重の組合せを表 3－5に示す。

表3－5 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

G ：固定荷重
P ：積載荷重（積雪荷重 P s を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s ：地震荷重（基準地震動 S s）

3.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のう ち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図 $3-4$ に入力地震動算定の概念図を，図 $3-5 \sim$ 図 $3-18$ に入力地震動の加速度時刻歴波形及 び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「microSHAKE／3D Ver．2．3．3」 を使用する。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。

図 3－4 入力地震動算定の概念図（基準地震動 S s ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－5 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 1）

図3－6 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 1）

（a）加速度時刻歴波形
$h=0.05$

（b）加速度応答スペクトル

図3－7 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 2）

図3－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 3）

（a）加速度時刻歴波形
$\mathrm{h}=0.05$

（b）加速度応答スペクトル

図3－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 1）

（a）加速度時刻歴波形
$h=0.05$

（b）加速度応答スペクトル

図3－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 2）

（a）加速度時刻歴波形
$h=0.05$

（b）加速度応答スペクトル

図3－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 3）

（a）加速度時刻歴波形
$h=0.05$

（b）加速度応答スペクトル

図3－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－N 1）

図3－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鋁直成分：S s－N 1）

3.5 解析モデル及び諸元

3．5．1 解析モデル
ガスタービン発電設備軽油タンク室の地震応答解析モデルを図 3－19及び図 3－20に示 す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に及ばないよう，十分に広い領域とする。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
構造物と等価な剛性を有する二次元等価剛性モデルを作成して実施することとし，構造部材については，線形はり要素及び平面応力要素によりモデル化する。また，軽油タンク については，剛構造とした線形はり要素によりモデル化し，軽油タンクの総重量を重心高 さに質点として考慮する。
（4）地盤のモデル化
D級を除く岩盤は，線形の平面ひずみ要素でモデル化する。また，盛土及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化する。
（5）隣接構造物のモデル化
隣接構造物となる緊急用電気品建屋，構造物周辺の改良地盤及びMMR は，ガスタービン発電設備軽油タンク室の耐震評価において保守的な評価となるよう盛土としてモデル化す る。
（6）ジョイント要素の設定
地震時の「地盤と構造物」との接合面における剥離及びすべりを考慮するため，これら の接合面にジョイント要素を設定する。

図 3－19 ガスタービン発電設備軽油タンク室の地震応答解析モデル図（南北方向）

図 3－20 ガスタービン発電設備軽油タンク室の地震応答解析モデル図（東西方向）

3．5．2 使用材料及び材料の物性値

構造物の使用材料を表3－6に，材料の物性値を表3－7に示す。

表 3－6 使用材料

材料	仕様
コンクリート	設計基準強度 $24.0 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345
軽油タンク	SM490C

表 3－7 材料の物性値（構造部材）

注記 $*: ~$ 新設構造物のため，推定した圧縮強度とする。

3．5．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

3．5．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い，地表面に設定する。設計用地下水位の一覧を表3－8に，設計用地下水位を図 3－21 及び図 3 －22に示す。

表 3－8 設計用地下水位の一覧

施設名称	地震時荷重算出断面	設計用地下水位
ガスタービン発電 設備軽油タンク室	南北方向	0. P．+62.30 m
	東西方向	$0 . \mathrm{P} .+62.30 \mathrm{~m}$

図 3－21 設計用地下水位（南北方向）

図 3－22 設計用地下水位（東西方向）

4．解析結果

4． 1 南北方向の解析結果
4．1．1 全応力解析の解析結果
機器•配管系に対する応答加速度抽出として，解析ケース（1）（基本ケース）～④につい て，すべての基準地震動 S s に対する最大加速度分布図を図 4－1～図4－56に示す。

図 4－1 最大加速度分布図（解析ケース（1））（1／56）

（a）S s－D $1(-+)$ 水平

（b）S s－D $1 \quad(-+)$ 鉛直
構造スケール \square $\stackrel{2}{\perp}(\mathrm{~m})$

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－2 最大加速度分布図（解析ケース（1）（2／56）

（a）S s－D $2(++)$ 水平

（b）S s－D $2(++)$ 鉛直
構造スケール \qquad （m）応答値スケール 0 $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－3 最大加速度分布図（解析ケース①）（3／56）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+) \quad$ 水平

（b）S s－D $2(-+)$ 鉛直
構造スケール \square $\stackrel{2}{\perp}(\mathrm{~m})$

応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－4 最大加速度分布図（解析ケース①）（4／56）

（a） S s $-\mathrm{D} 3(++)$ 水平

（b）S s－D $3(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－5 最大加速度分布図（解析ケース（1）（5／56）

（a） S s－D $3(-+)$ 水平

（b）S s－D $3(-+)$ 鉛直
構造スケール \qquad $\stackrel{2}{ }(\mathrm{~m})$

応答値スケール $\stackrel{1000}{0}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－6 最大加速度分布図（解析ケース①）（6／56）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1 \quad(++)$ 水平

（b）S s－F 1 （ ++ ）鉛直
構造スケール \qquad （m）応答値スケール 0 $\stackrel{+}{0}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－7 最大加速度分布図（解析ケース（1）（7／56）

（a）S s－F $1(-+)$ 水平

（b）S s－F $1 \quad(-+)$ 鉛直
構造スケール \qquad （m）応答値スケール

図 4－8 最大加速度分布図（解析ケース（1）（8／56）

（a）S s－F $2(++)$ 水平

（b）S s－F $2(++)$ 鉛直
構造スケール \qquad （m）応答値スケール 0 \qquad

図 4－9 最大加速度分布図（解析ケース（1））（9／56）

（a）S s－F $2(-+)$ 水平

（b）S s－F $2(-+)$ 鉛直
構造スケール \qquad $\stackrel{2}{ }(\mathrm{~m})$

応答値スケール
${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－10 最大加速度分布図（解析ケース（1）（ $10 / 56$ ）

（a）S s－F $3(++)$ 水平

（b）S s－F $3(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－11 最大加速度分布図（解析ケース（1）（11／56）

（a） S s－F $3(-+)$ 水平

（b）S s－F $3(-+)$ 鉛直
構造スケール \qquad $\stackrel{2}{ }(\mathrm{~m})$

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－12 最大加速度分布図（解析ケース（1）（12／56）

（a）S s－N $1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－13 最大加速度分布図（解析ケース①）（13／56）

（a）S s－N $1(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直
構造スケール \qquad $\stackrel{2}{ }(\mathrm{~m})$

応答値スケール \qquad

図 4－14 最大加速度分布図（解析ケース（1）（14／56）

（b）S s－D $1 \quad(++)$ 鉛直
構造スケール \qquad （m）応答値スケール 0 \qquad

図 4－15 最大加速度分布図（解析ケース（2））（15／56）

（a）S s－D $1(-+)$ 水平

（b）S s－D $1 \quad(-+)$ 鉛直

構造スケール
$\stackrel{+}{2}$ \qquad $\stackrel{2}{ }(\mathrm{~m})$

応答値スケール \qquad

図 4－16 最大加速度分布図（解析ケース（2）（16／56）

（a）S s－D $2(++)$ 水平

（b）S s－D $2(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－17 最大加速度分布図（解析ケース（2））（17／56）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+) \quad$ 水平

（b）S s－D $2(-+)$ 鉛直
構造スケール \qquad」（m）応答値スケール ${ }^{2}$ ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－18 最大加速度分布図（解析ケース（2））（18／56）

（a）S s－D $3(++)$ 水平

（b）S s－D $3(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－19 最大加速度分布図（解析ケース（2））（19／56）

（a）S s－D $3(-+)$ 水平

（b）S s－D $3(-+)$ 鉛直
構造スケール
0 2 （m）応答値スケール 0 \qquad

図 4－20 最大加速度分布図（解析ケース（2）（20／56）

（a）S s－F $1 \quad(++)$ 水平

（b）S s－F $1 \quad(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール 0 $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－21 最大加速度分布図（解析ケース（2））（21／56）

（a）S s－F $1(-+)$ 水平

（b）S s－F $1(-+)$ 鉛直
構造スケール \square $\stackrel{2}{ل}(\mathrm{~m})$

応答値スケール \qquad

図 4－22 最大加速度分布図（解析ケース（2））（22／56）

図 4－23 最大加速度分布図（解析ケース（2））（23／56）

（a）S s－F $2(-+)$ 水平

（b）S s－F $2(-+)$ 鉛直
構造スケール \qquad （m）応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－24 最大加速度分布図解析ケース（2））（24／56）

（a）S s－F $3(++)$ 水平

（b）S s－F $3(++)$ 鉛直
構造スケール \qquad （m）応答値スケール 0 \qquad

図 4－25 最大加速度分布図（解析ケース（2））（25／56）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 3(-+)$ 水平

（b）S s－F $3(-+)$ 鉛直
構造スケール
$\stackrel{+}{0}$ 2 （m）応答値スケール 0 \qquad

図 4－26 最大加速度分布図（解析ケース（2）（ $26 / 56$ ）

（a）S s－N $1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール \qquad

図 4－27 最大加速度分布図（解析ケース（2））（27／56）

（a）S s－N $1 \quad(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直
構造スケール \qquad （m）応答値スケール 0 \qquad

図 4－28 最大加速度分布図（解析ケース（2））（28／56）

（b）S s－D $1 \quad(++)$ 鉛直

構造スケール \qquad （m）応答値スケール \qquad

図 4－29 最大加速度分布図（解析ケース③）（29／56）

（a）S s－D $1(-+)$ 水平

（b）S s－D $1 \quad(-+)$ 鉛直
構造スケール
0 $\stackrel{2}{4}(\mathrm{~m})$

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－30 最大加速度分布図（解析ケース③）（30／56）

（a）S s－D $2(++)$ 水平

（b）S s－D $2(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－31 最大加速度分布図（解析ケース③）（31／56）

（a）S s－D $2(-+)$ 水平

（b）S s－D $2(-+)$ 鉛直
構造スケール
0 \qquad」（m）応答値スケール ${ }^{2}$ \qquad

図 4－32 最大加速度分布図（解析ケース③）（32／56）

（a）S s－D $3(++)$ 水平

（b）S s－D $3(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－33 最大加速度分布図（解析ケース③）（33／56）

（a） S s $-\mathrm{D} 3(-+)$ 水平

（b）S s－D $3(-+)$ 鉛直
構造スケール
0 $\stackrel{2}{ }(\mathrm{~m})$

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－34 最大加速度分布図（解析ケース③）（34／56）

（a）S s－F $1 \quad(++)$ 水平

（b）S s－F 1 （ ++ ）鉛直
構造スケール \qquad （m）応答値スケール $\stackrel{+}{ } \quad 1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－35 最大加速度分布図（解析ケース③）（35／56）

（a）S s－F $1(-+)$ 水平

（b）S s－F $1(-+)$ 鉛直
構造スケール
0 $\stackrel{2}{4}$ （m）応答値スケール 0 \qquad

図 4－36 最大加速度分布図（解析ケース（3）（36／56）

（a）S s－F $2(++)$ 水平

（b）S s－F $2(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－37 最大加速度分布図（解析ケース③）（37／56）

（a） S s $-\mathrm{F} 2(-+)$ 水平

（b）S s－F $2(-+)$ 鉛直
構造スケール
$\stackrel{+}{0}$ $\stackrel{2}{」}(\mathrm{~m})$

応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－38 最大加速度分布図（解析ケース③）（38／56）

図 4－39 最大加速度分布図（解析ケース③）（39／56）

（a） S s $-\mathrm{F} 3(-+)$ 水平

（b）S s－F $3(-+)$ 鉛直

構造スケール
0 2 （m）応答値スケール 0 $\stackrel{1000}{ }\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－40 最大加速度分布図（解析ケース（3）（40／56）

（a）S s－N $1(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール \qquad

図 4－41 最大加速度分布図（解析ケース③）（41／56）

（a）S s－N $1 \quad(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直
構造スケール \qquad」（m）応答値スケール ${ }^{2}$ \qquad

図 4－42 最大加速度分布図（解析ケース③）（42／56）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1 \quad(++)$ 水平

（b）S s－D $1 \quad(++)$ 鉛直
構造スケール \qquad （m）応答値スケール 0 $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－43 最大加速度分布図（解析ケース（4）（43／56）

（a）S s－D $1(-+)$ 水平

（b）S s－D $1 \quad(-+)$ 鉛直
構造スケール \qquad $\stackrel{2}{4}(\mathrm{~m})$

応答値スケール \qquad

図 4－44 最大加速度分布図（解析ケース（4））（44／56）

（a）S s－D $2(++)$ 水平

（b）S s－D $2(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－45 最大加速度分布図（解析ケース（4））（45／56）

（a） S s－D $2(-+)$ 水平

（b）S s－D $2(-+)$ 鉛直
構造スケール
$\stackrel{+}{0}$ \qquad $\stackrel{2}{ل}(\mathrm{~m})$

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－46 最大加速度分布図（解析ケース④）（46／56）

図 4－47 最大加速度分布図（解析ケース（4））（47／56）

（a） S s－D $3(-+)$ 水平

（b）S s－D $3(-+)$ 鉛直
構造スケール
$\stackrel{+}{4}$ $\stackrel{2}{4}$ （m）応答値スケール 0 $\stackrel{1000}{0}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－48 最大加速度分布図（解析ケース（4）（48／56）

（a）S s－F $1 \quad(++)$ 水平

（b）S s－F 1 （ ++ ）鉛直
構造スケール \qquad （m）応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－49 最大加速度分布図（解析ケース（4））（49／56）

（a）S s－F $1(-+)$ 水平

（b）S s－F $1(-+)$ 鉛直
構造スケール
0 $\stackrel{2}{1}(\mathrm{~m})$

応答値スケール \qquad

図 4－50 最大加速度分布図（解析ケース（4））（50／56）

図 4－51 最大加速度分布図（解析ケース（4））（51／56）

（a）S s－F $2(-+)$ 水平

（b）S s－F $2(-+)$ 鉛直
構造スケール
$\stackrel{+}{0}$ \qquad $\stackrel{2}{ }(\mathrm{~m})$

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－52 最大加速度分布図（解析ケース（4））（52／56）

（a） S s $-\mathrm{F} 3(++)$ 水平

（b）S s－F $3(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－53 最大加速度分布図（解析ケース（4））（53／56）

（a） S s $-\mathrm{F} 3(-+)$ 水平

（b）S s－F $3(-+)$ 鉛直

構造スケール
0 $\stackrel{2}{1}(\mathrm{~m})$

応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－54 最大加速度分布図（解析ケース（4）（54／56）

（a）S s－N $1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直
構造スケール \qquad （m）
応答値スケール 0 $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－55 最大加速度分布図（解析ケース（4））（55／56）

（a）S s－N $1(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直
構造スケール
$\stackrel{+}{0}$ $\stackrel{2}{」}(\mathrm{~m})$

応答値スケール \qquad

図 4－56 最大加速度分布図（解析ケース（4））（56／56）

4．1．2 有効応力解析の解析結果

機器•配管系に対する応答加速度抽出として，解析ケース（8）について，すべての基準地震動S s に対する最大加速度分布図を図 4－57～図4－70に示す。

（a）S s－D $1 \quad(++)$ 水平

（b）S s－D $1 \quad(++)$ 鉛直

図 4－57 最大加速度分布図（解析ケース（8）（1／14）

（a）S s－D $1(-+)$ 水平

（b）S s－D $1 \quad(-+)$ 鉛直
構造スケール \qquad （m）応答値スケール 0 \qquad

図 4－58 最大加速度分布図（解析ケース（8）（2／14）

（a） S s－D $2(++)$ 水平

（b）S s－D $2(++)$ 鉛直
構造スケール \qquad $\stackrel{2}{4}(\mathrm{~m})$

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－59 最大加速度分布図（解析ケース（8）（3／14）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

（b）S s－D $2(-+)$ 鉛直

構造スケール \qquad （m）

応答値スケール $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－60 最大加速度分布図（解析ケース（8）（4／14）

（a）S s－D $3(++)$ 水平

（b）S s－D $3(++)$ 鉛直
構造スケール \qquad （m）応答値スケール 0 $\stackrel{1000}{0}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－61 最大加速度分布図（解析ケース（8）（5／14）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 水平

（b）S s－D $3(-+)$ 鉛直
構造スケール \qquad （m）応答値スケール 0 ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－62 最大加速度分布図（解析ケース（8）（6／14）

（a）S s－F $1(++)$ 水平

（b）S s－F $1 \quad(++)$ 鉛直

構造スケール \qquad （m）

応答値スケール \qquad

図 4－63 最大加速度分布図（解析ケース（8）（7／14）

（a）S s－F $1(-+)$ 水平

（b）S s－F $1 \quad(-+)$ 鉛直
構造スケール \qquad （m）応答値スケール $\quad 0$ \qquad

図 4－64 最大加速度分布図（解析ケース（8）（8／14）

（a）S s－F $2(++)$ 水平

（b）S s－F $2(++)$ 鉛直
構造スケール \qquad」（m）応答値スケール ${ }^{2}$ \qquad

図 4－65 最大加速度分布図（解析ケース（8）（9／14）

（a）S s－F $2(-+)$ 水平

（b）S s－F $2(-+)$ 鉛直
構造スケール \square （m）

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－66 最大加速度分布図（解析ケース（8）（ $10 / 14$ ）

（a）S s－F $3(++)$ 水平

（b）S s－F $3(++)$ 鉛直
構造スケール \square $\stackrel{2}{\perp}(\mathrm{~m})$

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－67 最大加速度分布図（解析ケース（8）（11／14）

（a）S s－F $3(-+)$ 水平

（b）S s－F $3(-+)$ 鉛直
構造スケール \square $\stackrel{2}{\perp}(\mathrm{~m})$

応答値スケール ${ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－68 最大加速度分布図（解析ケース（8）（12／14）

（a）S s－N $1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直
構造スケール \square $\stackrel{2}{\lrcorner}(\mathrm{m})$

応答値スケール \qquad

図 4－69 最大加速度分布図（解析ケース（8）（13／14）

（a）S s－N $1 \quad(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直
構造スケール \qquad $\stackrel{2}{」}(\mathrm{~m}) \quad$ 応答値スケール $\quad 0$ \qquad

図 4－70 最大加速度分布図（解析ケース（8）（14／14）

4．2 東西方向の解析結果

耐震評価のために用いる応答加速度として，解析ケース①（基本ケース）について，すべて の基準地震動 S s に対する最大加速度分布図を図4－71～図4－84に示す。また，解析ケース ①において，三次元構造解析の結果，照査項目ごとに照査値が 0.5 を超えるケースで照査値が最大となる地震動について，解析ケース（2）及び③）の最大加速度分布図を図4－85 及び図4－86 に示す。

これらに加え，機器•配管系に対する応答加速度抽出として，解析ケース（2）～④について， すべての基準地震動S s に対する最大加速度分布図を図4－87～図4－128に示す。

（b）S s－D $1(++)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－71 最大加速度分布図（解析ケース①）（1／16）

構造スケール \qquad （m）応答値スケール \qquad $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－72 最大加速度分布図（解析ケース（1）（2／16）

図 4－73 最大加速度分布図（解析ケース（1）（3／16）

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－74 最大加速度分布図（解析ケース①）（4／16）

構造スケール ${ }^{0} \quad \stackrel{2}{\square}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－75 最大加速度分布図（解析ケース（1）（5／16）

図 4－76 最大加速度分布図（解析ケース①）（6／16）

（a）S s－F $1 \quad(++)$ 水平

（b）S s－F $1 \quad(++)$ 鉛直

構造スケール ${ }_{L}^{0}, \quad{ }^{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－77 最大加速度分布図（解析ケース（1）（7／16）

構造スケール $\underbrace{0} \quad{ }^{2}$（m）応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－78 最大加速度分布図（解析ケース①）（8／16）

構造スケール \qquad （m）応答値スケール \qquad

図 4－79 最大加速度分布図（解析ケース①）（9／16）

（a）S s－F $2(-+)$ 水平

（b）S s－F $2(-+)$ 鉛直

構造スケール ${ }^{0} \quad \stackrel{2}{\square}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－80 最大加速度分布図（解析ケース（1）（10／16）

（b）S s－F $3(++)$ 鉛直

構造スケール $\underbrace{0} \quad{ }^{2}$（m）応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－81 最大加速度分布図（解析ケース①）（11／16）

（b）S s－F $3(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－82 最大加速度分布図（解析ケース（1）（12／16）

（a）S s－N $1 \quad(++)$ 水平

（b）S s－N $1 \quad(++)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－83 最大加速度分布図（解析ケース①）（13／16）

（b）S s－N $1 \quad(-+)$ 鉛直

図 4－84 最大加速度分布図（解析ケース（1）（14／16）

（b）S s－F $2(++)$ 鉛直

図 4－85 最大加速度分布図
（解析ケース（2）：曲げ・軸力系の破壊に対する最大照査値ケース）（15／16）

（b）S s－F $2(++)$ 鉛直

図 4－86 最大加速度分布図
（解析ケース（3）：曲げ・軸力系の破壊に対する最大照査値ケース）（16／16）

（b）S s－D $1 \quad(++)$ 鉛直

構造スケール ${ }^{0} \quad \stackrel{2}{\square}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－87 最大加速度分布図（解析ケース（2））（1／42）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 水平

（b）S s－D $1(-+)$ 鉛直

構造スケール $\underbrace{0} \quad \stackrel{2}{\square}(\mathrm{~m})$ 応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－88 最大加速度分布図（解析ケース（2））（2／42）

図 4－89 最大加速度分布図（解析ケース（2））（3／42）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

（b）S s－D $2(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－90 最大加速度分布図（解析ケース（2））（4／42）

（b）S s－D $3(++)$ 鉛直

図 4－91 最大加速度分布図（解析ケース（2））（5／42）

（a） S s－D $3(-+)$ 水平

（b）S s－D $3(-+)$ 鉛直

図 4－92 最大加速度分布図（解析ケース（2）（6／42）

（b）S s－F $1 \quad(++)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}_{2}(\mathrm{~m})$ 応答値スケール ${ }_{\square}^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－93 最大加速度分布図（解析ケース（2））（7／42）

構造スケール ${ }^{0} \quad \stackrel{2}{\square}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－94 最大加速度分布図（解析ケース（2））（8／42）

（b）S s－F $2(++)$ 鉛直

図 4－95 最大加速度分布図（解析ケース（2））（9／42）（図4－85 の再掲）

（a） S s－F $2(-+)$ 水平

（b）S s－F $2(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－96 最大加速度分布図（解析ケース（2））（10／42）

（b）S s－F $3(++)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－97 最大加速度分布図（解析ケース（2））（11／42）

（a） S s－F $3(-+)$ 水平

（b）S s－F $3(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－98 最大加速度分布図（解析ケース（2））（12／42）

（b）S s－N $1 \quad(++)$ 鉛直

構造スケール $\underbrace{0} \quad{ }^{2}$（m）応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－99 最大加速度分布図（解析ケース（2））（13／42）

（a）S s－N $1(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－100 最大加速度分布図（解析ケース（2））（14／42）

構造スケール $\underbrace{0} \quad{ }^{2}$（m）応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－101 最大加速度分布図（解析ケース③）（15／42）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール $\stackrel{1000}{ }\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－102 最大加速度分布図（解析ケース③）（16／42）

構造スケール \qquad （m）応答値スケール \qquad $1000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－103 最大加速度分布図（解析ケース③）（17／42）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

（b）S s－D $2(-+)$ 鉛直

構造スケール $\underbrace{0} \quad{ }^{2}$（m）応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－104 最大加速度分布図（解析ケース③）（18／42）

（b）S s－D $3(++)$ 鉛直

図 4－105 最大加速度分布図（解析ケース③）（19／42）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 水平

（b）S s－D $3(-+)$ 鉛直

図 4－106 最大加速度分布図（解析ケース③）（20／42）

構造スケール \qquad （m）応答値スケール \qquad

図 4－107 最大加速度分布図（解析ケース③）（21／42）

構造スケール ${ }^{0} \quad \stackrel{2}{\square}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－108 最大加速度分布図（解析ケース③）（22／42）

（b）S s－F $2(++)$ 鉛直

図 4－109 最大加速度分布図（解析ケース③）（23／42）（図4－86 の再掲）

（a） S s－F $2(-+)$ 水平

（b）S s－F $2(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}_{2}(\mathrm{~m})$ 応答値スケール ${ }_{\square}^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－110 最大加速度分布図（解析ケース③）（24／42）

（b）S s－F $3(++)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－111 最大加速度分布図（解析ケース③）（25／42）

（a） S s $-\mathrm{F} 3(-+)$ 水平

（b）S s－F $3(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－112 最大加速度分布図（解析ケース③）（26／42）

（b）S s－N $1 \quad(++)$ 鉛直

構造スケール $\underbrace{0} \quad{ }^{2}$（m）応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－113 最大加速度分布図（解析ケース③）（27／42）

（a）S s－N $1 \quad(-+)$ 水平

（b）S s－N $1(-+)$ 鉛直

構造スケール ${ }^{0} \quad \stackrel{2}{\square}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－114 最大加速度分布図（解析ケース③）（28／42）

（b）S s－D $1 \quad(++)$ 鉛直

図 4－115 最大加速度分布図（解析ケース（4））（29／42）

図 4－116 最大加速度分布図（解析ケース（4））（30／42）

（b）S s－D $2(++)$ 鉛直

図 4－117 最大加速度分布図（解析ケース（4））（31／42）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

（b）S s－D $2(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－118 最大加速度分布図（解析ケース（4））（32／42）

（b）S s－D $3(++)$ 鉛直

図 4－119 最大加速度分布図（解析ケース（4）（33／42）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 水平

（b）S s－D $3(-+)$ 鉛直

図 4－120 最大加速度分布図（解析ケース（4））（34／42）

（b）S s－F $1(++)$ 鉛直

構造スケール $\underbrace{0} \quad{ }^{2}$（m）応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－121 最大加速度分布図（解析ケース（4））（35／42）

（a）S s－F $1(-+)$ 水平

（b）S s－F $1 \quad(-+)$ 鉛直

構造スケール ${ }_{L}^{0}, \quad{ }^{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{0}{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－122 最大加速度分布図（解析ケース（4））（36／42）

（a）S s－F $2(++)$ 水平

（b）S s－F $2(++)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－123 最大加速度分布図（解析ケース（4）（37／42）

（a）S s－F $2(-+)$ 水平

（b）S s－F $2(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－124 最大加速度分布図（解析ケース（4）（38／42）

（b）S s－F $3(++)$ 鉛直

構造スケール $\underbrace{0} \quad{ }^{2}$（m）応答値スケール ${ }^{0} \quad{ }^{1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－125 最大加速度分布図（解析ケース（4）（39／42）

（a）S s－F $3(-+)$ 水平

（b）S s－F $3(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－126 最大加速度分布図（解析ケース（4））（40／42）

（b）S s－N $1 \quad(++)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－127 最大加速度分布図（解析ケース（4）（41／42）

（a）S s－N $1 \quad(-+)$ 水平

（b）S s－N $1 \quad(-+)$ 鉛直

構造スケール $\underbrace{0}, ~ \underbrace{2}(\mathrm{~m})$ 応答値スケール ${ }^{0}{ }^{~+1000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$

図 4－128 最大加速度分布図（解析ケース（4）（42／42）

VI－2－2－18 ガスタービン発電設備軽油タンク室の耐震性についての計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 6
2.4 適用基準 9
3．耐震評価 10
3.1 地震時荷重算出断面 10
3.2 使用材料及び材料の物性値 13
3.3 許容限界 14
3．3．1 構造部材の健全性に対する許容限界 14
3．3．2 基礎地盤の支持性能に対する許容限界 15
3．4 評価方法 16
3．4．1 構造部材の健全性評価． 16
3．4．2 基礎地盤の支持性能評価． 20
4．構造部材の地震時応答 21
5．耐震評価結果 31
5.1 構造部材の健全性及び支持機能に対する評価結果。 31
5.2 基礎地盤の支持性能に対する評価結果 34

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，ガスタービン発電設備軽油タンク室が基準地震動S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

ガスタービン発電設備軽油タンク室の構造部材の健全性評価にあたつては，地震応答解析によ り算定した荷重を三次元構造解析モデルに作用させて確認する。基礎地盤の支持性能評価にあた っては，地震応答解析により基礎地盤に発生した接地圧を確認する。

2．基本方針
2.1 位置

ガスタービン発電設備軽油タンク室の位置を図 2－1 に示す。

図 2－1 ガスタービン発電設備軽油タンク室の位置図

2.2 構造概要

ガスタービン発電設備軽油タンク室の平面図を図 $2-2$ に，断面図を図 $2-3$ 及び図 $2-4$ に，概略配筋図を図 2－5 及び図2－6に示す。

ガスタービン発電設備軽油タンク室は，ガスタービン発電設備軽油タンク等を頂版，底版及 び側壁で間接支持しており，支持機能が要求される。

ガスタービン発電設備軽油タンク室は，幅 20.30 m （東西）$\times 22.00 \mathrm{~m}$（南北），高さ 7.10 m の鉄筋コンクリート造の地中構造物であり，十分な支持性能を有する岩盤に直接設置されている。 ガスタービン発電設備軽油タンク室は，面部材として加振方向に平行に配置される妻壁や隔壁 を有する箱形構造物である。

図 2－2 ガスタービン発電設備軽油タンク室平面図

図 2－3 ガスタービン発電設備軽油タンク室断面図（ $\mathrm{A}-\mathrm{A}$ 断面，南北）

図 2－4 ガスタービン発電設備軽油タンク室断面図（B－B 断面，東西）

図2－5 ガスタービン発電設備軽油タンク室概略配筋図（A－A 断面，南北）

図 2－6 ガスタービン発電設備軽油タンク室概略配筋図（B－B 断面，東西）

2． 3 評価方針

ガスタービン発電設備軽油タンク室は，常設耐震重要重大事故防止設備及び常設重大事故緩和設備が設置される重大事故等対処施設に分類される。

ガスタービン発電設備軽油タンク室の耐震評価は，添付書類「VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書」より得られた地震応答解析の結果に基づき，重大事故等対処施設の評価として，表2－1に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

ガスタービン発電設備軽油タンク室の耐震評価フローを図2－7に示す。
構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と並びに常設耐震重要重大事故防止設備及び常設重大事故緩和設備を支持する機能を損なわ ないことを確認する。

構造部材の健全性評価については，添付書類「VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書」より得られた，水平方向及び鉛直方向の荷重を用いた，線形シェル要素 による三次元静的線形解析（以下「三次元構造解析」という。）により断面力を算定し，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，曲げ・軸力系の破壊については構造部材の発生応力度が許容限界を下回ること，せん断破壊に対しては発生せん断力が許容限界を下回る ことを確認する。

なお，曲げ・軸力系の破壊に対する照査において，面内せん断力を軸力として考慮している ことから，壁部材の面内せん断に対しては，曲げ・軸力系の破壊に対する照査において併せて確認している。

基礎地盤の支持性能評価においては，添付書類「VI－2－2－17 ガスタービン発電設備軽油タン ク室の地震応答計算書」より得られた基礎地盤の接地圧が，添付書類「VI－2－1－9 機能維持の基本方針」に基づく許容限界を下回ることを確認する。

表 2－1 ガスタービン発電設備軽油タンク室の評価項目

注記＊：妥当な安全余裕を考慮する。

図 2－7 ガスタービン発電設備軽油タンク室の耐震評価フロー

2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002年 コンクリート標準示方書［構造性能照査編］
- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1987）
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 V耐震設計編

3．耐震評価

3.1 地震時荷重算出断面

ガスタービン発電設備軽油タンク室の地震時荷重算出断面位置を図 3－1 に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，タンク軸方向で構造物の中心を通る南北方向（ $\mathrm{A}-\mathrm{A}$ 断面）及びタンクの軸方向に対し直交し構造物の中心を通る東西方向（ $\mathrm{B}-\mathrm{B}$ 断面）の両断面とする。地震時荷重算出用地質断面図を図 3－2 及び図 $3-3$ に示す。
なお，加振方向に平行に配置され耐震上見込むことができる面部材の配置から，南北方向（A－ A 断面）が強軸方向となり，東西方向（B－B 断面）が弱軸方向となることから，耐震評価は弱軸方向である東西方向（B－B 断面）に対して実施する。

地震応答解析における解析手法は，添付書類「VI－2－2－18 ガスタービン発電設備軽油タンク室の地震応答計算書」のうち，「3．2 解析方法」に示すとおり全応力解析とする。解析ケース を表3－1に示す。
また，ガスタービン発電設備軽油タンク室は，加振方向に平行に配置される面部材（妻壁や隔壁）を有する箱形構造物であり，常設耐震重要重大事故防止設備及び常設重大事故緩和設備 を支持する機能（支持機能）が要求されることから，シェル要素を用いた三次元構造解析によ り耐震評価を行う。

PN

図 3－1 ガスタービン発電設備軽油タンク室の地震時荷重算出断面位置図

図 3－2 ガスタービン発電設備軽油タンク室 地震時荷重算出用地質断面図 （ $\mathrm{A}-\mathrm{A}$ 断面，南北）

図 3－3 ガスタービン発電設備軽油タンク室 地震時荷重算出用地質断面図 （ $\mathrm{B}-\mathrm{B}$ 断面，東西）

表 3－1 解析ケース

解析ケース	材料物性 （コンクリート） （ E_{0} ：ヤング係数）	地盤物性	
		盛土，D 級岩盤 （ G_{0} ：初期せん断弾性係数）	C_{L} 級岩盤，C_{M} 級岩盤， CH 級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \text { ケース①) } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値	平均値
ケース②）	設計基準強度	平均値＋1 σ	平均値
ケース③）	設計基準強度	平均値－1 σ	平均値

3.2 使用材料及び材料の物性値

構造物の使用材料を表3－2に，材料の物性値を表3－3に示す。

表 3－2 使用材料

材料	仕様
コンクリート	設計基準強度 $24.0 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345

表 3－3 材料の物性値（構造部材）

材料	項目	材料諸元	備考
鉄筋コンクリート	単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	24.0	
	設計基準強度	2.50×10^{4}	
	ポアソン比		0.2

3．3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 構造部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
構造強度を有することの確認並びに常設耐震重要重大事故防止設備及び常設重大事故緩和設備を支持する機能を損なわないことの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，短期許容応力度とする。コンクリート及び鉄筋 の許容応力度を表 3－4及び表 3－5に示す。

なお，頂版，底版及び側壁のアンカー定着部に常設耐震重要重大事故防止設備及び常設重大事故緩和設備を支持する機能を要求されるが，短期許容応力度により照査を行うため，構造強度を有することの確認と許容限界が同一となることから，全部材に対して構造強度 を有することを確認することで，常設耐震重要重大事故防止設備及び常設重大事故緩和設備を支持する機能を損なわないことの確認も同時に行う。

表 3－4 コンクリートの許容応力度及び短期許容応力度

設計基準強度	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度＊ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
$\mathrm{f}, \quad \mathrm{ck}=24.0\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	許容曲げ圧縮応力度 $\sigma^{\prime}{ }^{2}$	9.0	13.5
	許容せん断応力度 $\tau_{\text {a1 }}$	0.45	0.675

注記＊：「土木学会 2002年 コンクリート標準示方書［構造性能照査編］」により地震時の割り増し係数として 1.5 を考慮する。

表 3－5 鉄筋の許容応力度及び短期許容応力度

鉄筋の種類	許容応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$		短期許容応力度＊ $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD345	許容引張応力度 σ_{sa}	196	294

注記＊：「土木学会 2002 年 コンクリート標準示方書［構造性能照査編］」により地震時の割り増し係数として 1.5 を考慮する。
（2）せん断破壊に対する許容限界
構造強度を有することの確認並びに常設耐震重要重大事故防止設備及び常設重大事故緩和設備を支持する機能を損なわないことの確認における構造部材（鉄筋コンクリート）の せん断破壊に対する許容限界は，表3－4及び表 3－5に示すコンクリートと鉄筋の短期許容応力度から算定した短期許容せん断力とする。

3．3．2 基礎地盤の支持性能に対する許容限界

基礎地盤（牧の浜部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（牧の浜部層）の許容限界を表3－6に示す。

表 3－6 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	牧の浜部層	11.4

3.4 評価方法

3．4．1 構造部材の健全性評価

ガスタービン発電設備軽油タンク室の耐震評価は，線形シェル要素を用いた三次元構造解析により実施する。三次元構造解析には，解析コード「SLAP Ver．6．64」を用いる。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラ ム（解析コード）の概要」に示す。

三次元構造解析への入力荷重は，添付書類「VI－2－2－17 ガスタービン発電設備軽油タン ク室の地震応答計算書」に基づく地震応答解析において，ガスタービン発電設備軽油タン ク室の耐震評価に支配的な荷重が最大となる時刻を選定し，当該時刻における地震時応答 から設定する。

添付書類「VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書」に基づく地震応答解析により算定した地震時荷重（地震時土圧及び慣性力）を用いて，三次元構造解析により算定した照査用応答値が，「3．3 許容限界」において設定した許容限界を下回 ることを確認する。
（1）解析モデル
線形シェル要素でモデル化する。三次元構造解析モデルを図 $3-4$ 及び図 $3-5$ に示す。

図3－4 三次元構造解析モデル図（鳥瞰図）

N

図3－5 三次元構造解析モデル図（鳥瞰図（頂版非表示））
（2）照査時刻
構造部材の健全性評価において，照査時刻は構造的特徴を踏まえ，損傷モードごと及び部材ごとに評価が厳しくなる時刻を地震応答解析の結果から複数選定する。表 $3-7$ に照査時刻の選定の考え方を示す。

なお，三次元構造解析において照査値が最大となる曲げ・軸力系の破壊に対する照査時 における作用荷重分布図を図 3－6 及び図 3－7に示す。

表 3－7 照査時刻の考え方

照査時刻	損傷モード		着目部位	荷重抽出時刻
時刻1	曲げ・軸力系の破壊	$\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$	W17	頂底版間の層間変位が最大となる時刻
時刻 2	せん断破壊 （面外）	$\begin{gathered} \text { 壁 } \\ \text { (面外) } \end{gathered}$	＋1／	総水平荷重が最大となる時刻
時刻 3 （時刻1）	せん断破壊 （面内）	$\begin{aligned} & \text { 壁 } \\ & \text { (面内) } \end{aligned}$		面部材の層間変位が最大となる時刻

直応力

せん断応力

図中の矢印は荷重の作用方向を示す

図 3－6 作用荷重分布図（直応力及びせん断応力）
（解析ケース（1），S s－F $2(++)$ ）

（3）入力荷重
三次元構造解析の入力荷重は，設計値及び添付書類「VI－2－2－17 ガスタービン発電設備軽油タンク室の地震応答計算書」より得られた地震応答解析に基づく「（2）照査時刻」 で選定した照査時刻における応答値を用いて算定する。入力荷重の一覧を表 $3-8$ に示す。

表3－8 三次元構造解析における入力荷重

区分	種別	考慮する荷重
常時 荷重	固定荷重	躯体自重，機器•配管荷重
	積載荷重	躯体に作用する積載荷重
	常時土圧	躯体側面に作用する常時土圧
	常時水圧	躯体側面に作用する常時水圧
地震時 荷重	慣性力	躯体に作用する慣性力
	機器反力＊	機器•配管反力
	地震時土圧	躯体側面に作用する地震時土圧
	地震時水圧	躯体側面に作用する地震時水圧

注記＊：地震応答解析により機器•配管を支持する位置で算出した応答加速度に機器•配管 の質量を乗じて算定する。

3．4．2 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては，構造部材を支持する基礎地盤に発生する接地圧が許容限界を下回ることを確認する。

4．構造部材の地震時応答

三次元構造解析に基づく，各構造部材の地震時応答結果を示す。各部材位置を図4－1 に，各部材の要素座標系を図 4－2に，シェル要素における各要素の断面力の方向を図 $4-3$ に示す。

曲げ・軸力系の破壊に対して最大照査値となる評価時刻での断面力分布を図 $4-4 \sim$ 図 $4-8$ に， せん断破壊に対して最大照査値となる評価時刻での断面力分布を図4－9及び図4－10に示す。

図 4－1 各部材位置

黒：全体座標系を示す
赤：要素座標系を示す

図 4－2 各部材の要素座標系

図 4－3 シェル要素における断面力の方向

図 4－4 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{x} ）
（東壁，解析ケース（1），S s－F $2(++)$ ）

頂 版

図 4－5 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（曲げモーメント（ $\mathrm{kN} \cdot \mathrm{m} / \mathrm{m}$ ）： M_{y} ）
（東壁，解析ケース（1），S s－F $2(++)$ ）

頂 版

北 壁

図 4－6 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{x} ）
（東壁，解析ケース（1），S s－F $2(++)$ ）

頂 版

北 壁

図 4－7 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（軸力（ kN / m ）： N_{y} ）
（東壁，解析ケース（1），S s－F $2(++)$ ）

頂 版

北 壁

図 4－8 曲げ・軸力系の破壊に対する照査値最大時の断面力分布図
（面内せん断力（ kN / m ）： N_{xy} ）
（東壁，解析ケース（1），S s－F $2(++)$ ）

頂 版

図 4－9 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ kN / m ）： Q_{x} ）
（東壁，解析ケース（1），S s－F $2(++)$ ）

頂 版

図 4－10 せん断破壊に対する照査値最大時の断面力分布図
（せん断力（ kN / m ）： Q_{y} ）
（東壁，解析ケース（1），S s－F $2(++)$ ）

5．耐震評価結果

5.1 構造部材の健全性及び支持機能に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 5－1 及 び表 5－2 に，せん断破壊に対する各評価位置での最大照査値を表5－3に示す。

ガスタービン発電設備軽油タンク室の発生応力度及び発生せん断力が，構造部材の健全性並 びに常設耐震重要重大事故防止設備及び常設重大事故緩和設備を支持する機能に対する許容限界を下回ることを確認した。

表 5－1 曲げ・軸力系の破壊に対する照査（コンクリート）

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	$\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \\ \hline \end{gathered}$	軸力 $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\begin{gathered} \sigma_{c}^{\prime} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	短期許容応力度 $\begin{gathered} \sigma^{\prime}{ }_{\text {ca }} \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \\ \hline \end{gathered}$	照査値 $\sigma^{\prime}{ }_{\mathrm{c}} / \sigma^{\prime}{ }^{\text {ca }}$
底版	13	（3）	S s－F $2(++)$	908	－905	4.0	13.5	0.30
頂版	21	（3）	S s－F $2(++)$	－268	－135	2.9	13.5	0． 22
南北壁	31	（3）	S s－F $2(++)$	－378	－1803	2． 0	13.5	0． 15
東西壁	50	（1）	S s－D $2(++)$	－729	－390	3.5	13.5	0． 26
隔壁	80	（3）	S s－F $2(++)$	－395	－329	4． 5	13.5	0.34

注記＊：評価位置は図 5－1 に示す。

表 5－2 曲げ・軸力系の破壊に対する照査（鉄筋）

| 評価位置＊ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |

注記＊：評価位置は図5－1 に示す。

表 5－3 せん断破壊に対する照査

評価位置＊		$\begin{aligned} & \text { 解析 } \\ & \text { ケース } \end{aligned}$	地震動	発生 せん断力 $\begin{gathered} \mathrm{V} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	短期許容 せん断力 $\begin{gathered} \mathrm{V}_{\mathrm{a}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	照査値 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
底版	11	（1）	S s－D $2(++)$	416	969	0． 43
頂版	22	（3）	S s－F $2(++)$	185	729	0． 26
南北壁	33	（3）	S s－F $2(++)$	180	1175	0.16
東西壁	60	（1）	S s－F $2(++)$	575	1175	0． 49
隔壁	70	（3）	S s－F $2(++)$	249	723	0.35

注記＊：評価位置は図5－1に示す。

図 5－1 評価位置図

5.2 基礎地盤の支持性能に対する評価結果

基礎地盤の支持性能に対する照査結果を表5－4に示す。また，最大接地圧分布図を図5－2 に示す。

ガスタービン発電設備軽油タンク室の基礎地盤に発生する最大接地圧が，極限支持力を下回 ることを確認した。

表 5－4 基礎地盤の支持性能照査結果

解析 ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	$\mathrm{S} \mathrm{s}-\mathrm{F} 3(++)$	0.9	11.4	0.08

図 5－2 ガスタービン発電設備軽油タンク室の基礎地盤の最大接地圧分布図 （解析ケース（1），S s－F $3(++)$ ）

VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 解析方針 6
2.4 適用基準 8
3．解析方法 9
3.1 評価対象断面 9
3．2 解析方法 11
3．2．1 構造部材 11
3．2．2 地盤物性及び材料物性のばらつき 13
3．2．3 減衰定数 14
3．2．4 地震応答解析の解析ケースの選定． 15
3.3 荷重及び荷重の組合せ 18
3．3．1 耐震評価上考慮する状態 18
3．3．2 荷重 18
3．3．3 荷重の組合せ 19
3.4 入力地震動 20
3.5 解析モデル及び諸元 49
3．5．1 解析モデル 49
3．5．2 使用材料及び材料の物性値 51
3．5．3 地盤の物性値 51
3．5．4 地下水位 52
4．解析結果 53

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき実施する軽油タンク連絡 ダクトの地震応答解析について説明するものである。

本地震応答解析は，軽油タンク連絡ダクトが耐震性に関する技術基準へ適合することを確認す るために用いる応答値を抽出するものである。その際，耐震評価に用いる応答値は，この地震応答解析により構造物に発生する変形，断面力，ひずみ及び基礎地盤に発生する接地圧とする。

また，機器•配管系が耐震性に関する技術基準へ適合することを確認するために用いる応答値 の抽出を行う。

2．基本方針

2.1 位置

軽油タンク連絡ダクトの位置を図2－1に示す。

図2－1 軽油タンク連絡ダクトの位置図

2.2 構造概要

軽油タンク連絡ダクトの平面図を図2－2 及び図2－3に，断面図を図2－4及び図2－5に，縦断図を図2－6に示す。

軽油タンク連絡ダクトは，燃料移送系配管を間接支持しており，支持機能が要求される。
軽油タンク連絡ダクトは，軽油タンク室と原子炉建屋を結ぶ，鉄筋コンクリート造の地中構造物であり，延長 52.30 m ，内空幅 1.25 m ，内空高さ 2.00 m の二連ボックスカルバート構造の標準部（以下「標準部」という。）と，内空幅 1.55 m （東西）$\times 2.25 \mathrm{~m}$（南北），内空高さ 3.05 m の軽油タンク室と接続する接続部（以下「接続部」という。）から構成され，マンメイドロック
（以下「MMR」という。）を介して十分な支持性能を有する岩盤に設置されている。
軽油タンク連絡ダクトは，延長方向に約 13 m 間隔で分割して構造目地を介して接合され，原子炉建屋との接合部には耐震ジョイントが設置されており，延長方向に断面変化の少ない線状構造物である。

（単位：m）

図2－2 軽油タンク連絡ダクト平面図

図 2－3 軽油タンク連絡ダクト平面図（詳細）

（単位：m）
図 2－4 軽油タンク連絡ダクト断面図（ $\mathrm{A}-\mathrm{A}$ 断面，標準部）

図 2－5 軽油タンク連絡ダクト断面図（B－B 断面，接続部）

（単位：m）
図 2－6 軽油タンク連絡ダクト縦断図（C－C 断面）

2．3 解析方針

軽油タンク連絡ダクトは，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づき，基準地震動 S s 及び弾性設計用地震動 S d に対して地震応答解析を実施する。

図2－7に軽油タンク連絡ダクトの地震応答解析フローを示す。
地震応答解析は，「2．基本方針」に基づき，「3．1 評価対象断面」に示す断面において，「3．2 解析方法」に示す水平地震動と鉛直地震動の同時加振による二次元有限要素法による時刻歴応答解析により行うこととし，地盤物性及び材料物性のばらつきを適切に考慮する。

二次元有限要素法による時刻歴応答解析は，「3．3 荷重及び荷重の組合せ」及び「3．5 解析モデル及び諸元」に示す条件を基に，「3．4 入力地震動」により設定する入力地震動を用い て実施する。

地震応答解析による応答加速度は，機器•配管系の設計用床応答曲線の作成に用い，変形，断面力，ひずみ及び基礎地盤の接地圧は，軽油タンク連絡ダクトの耐震評価に用いる。

図 2－7 軽油タンク連絡ダクトの地震応答解析フロー

2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］
- 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
- 土木学会 2017年 コンクリート標準示方書［設計編］
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）

3．解析方法

3.1 評価対象断面

軽油タンク連絡ダクトの評価対象断面位置を図3－1 及び図3－2に示す。
評価対象断面は，構造的特徴や周辺地質状況を踏まえ，図 3－1 及び図 3－2 に示す標準部の うち，復水貯蔵タンクの中心を通る A－A 断面とする。評価対象地質断面図を図 $3-3$ に示す。

（単位：m）

図 3－1 軽油タンク連絡ダクトの評価対象断面位置図

図 3－2 軽油タンク連絡ダクトの評価対象断面位置図（詳細）

図 3－3 軽油タンク連絡ダクト 評価対象地質断面図（A－A 断面）

3.2 解析方法

軽油タンク連絡ダクトの地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」 のうち，「2．3 屋外重要土木構造物」に示す解析方法及び解析モデルを踏まえて実施する。

地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s 及び弾性設計用地震動 S d に基づき設定した水平地震動と鉛直地震動の同時加振による逐次時間積分の時刻歴応答解析により行うこととする。軽油タンク連絡ダクト周辺の地下水位 は，構造物底版より十分に低いことから解析手法は，全応力解析とする。

構造部材については，非線形はり要素を用いることとし，構造部材の非線形特性については， ファイバーモデルで考慮する。また，地盤については，地盤のひずみ依存性を適切に考慮でき るようモデル化する。

地震応答解析については，解析コード「SLAP Ver．6．64」を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．2．1 構造部材

鉄筋コンクリート部材は，ファイバーモデルによる非線形はり要素でモデル化する。フ アイバーモデルは，はり要素の断面を層状に分割し各層に材料の非線形特性を考慮する材料非線形モデルであり（図3－4参照），図3－5に示すコンクリートの応力ーひずみ関係及 び図3－6に示す鉄筋の応力ーひずみ関係を考慮する。

図 3－4 ファイバーモデルの概念図

図 3－5 材料の非線形特性（コンクリートの応力ーひずみ関係）
（土木学会 2017年 コンクリート標準示方書［設計編］より引用）

図 3－6 材料の非線形特性（鉄筋の応力ーひずみ関係）
（土木学会 2002年 コンクリート標準示方書［構造性能照査編］より引用）

3．2．2 地盤物性及び材料物性のばらつき

地盤物性及び材料物性のばらつきの影響を考慮するため，表 3－1 に示す解析ケースを設定する。

軽油タンク連絡ダクトは，MMR 上に設置され，周囲が埋戻されており，主たる荷重は盛土等の土圧となることから，盛土，旧表土及びD級岩盤の初期せん断弾性係数のばらつき を考慮する。

初期せん断弾性係数の標準偏差 σ を用いて設定した解析ケース（2）及び③）を実施すること により地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケース（4）を実施することにより，材料物性のばらつきの影響を考慮する。

詳細な解析ケースの考え方は，「3．2．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

解析ケース	材料物性 （コンクリート） （ E_{0} ：ヤング係数）	地盤物性	
		盛土，旧表土，D級岩盤 （ G_{0} ：初期せん断弾性係数）	C_{L} 級岩盤，C_{M} 級岩盤， CH 級岩盤，B級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \text { ケース (1) } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値	平均値
ケース②）	設計基準強度	平均値 $+1 \sigma$	平均値
ケース③）	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく圧縮強度＊	平均値	平均値

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．2．3 減衰定数

構造部材の減衰定数は，粘性減衰及び履歴減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マト リックス及び剛性マトリックスの線形結合で表される以下の Rayleigh 減衰を解析モデル全体に与える。固有値解析結果に基づき設定した $\alpha, ~ \beta$ を表 $3-2$ に示す。

$$
[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]
$$

［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
α, β ：係数

表 3－2 Rayleigh 減衰における係数 $\alpha, ~ \beta$ の設定結果

評価対象断面	α	β
$\mathrm{A}-\mathrm{A}$ 断面	2.667×10^{-1}	1.125×10^{-3}

3．2．4 地震応答解析の解析ケースの選定
（1）耐震評価における解析ケース
耐震評価においては，すべての基準地震動 S s に対し，解析ケース①（基本ケース）を実施する。解析ケース①において，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごとに照査値が 0.5 を超える照査項目に対して，最も厳しい地震動を用いて，表 3－1 に示す解析ケース（2）～（4）を実施する。また，上記解析ケースの結果を踏まえ，更に照査値が大きくなる可能性がある場合は，追加解析ケースを実施する。耐震評価における解析ケースを表3－3に示す。

表 3－3 耐震評価における解析ケース

注記＊1：耐震評価にあたつては，土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル（以下「土木学会マニュアル」という。）に従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，
「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。
（2）機器•配管系に対する応答加速度抽出のための解析ケース
機器•配管系に対する応答加速度抽出においては，床応答への保守的な配慮として解析 ケース（1）に加え，表3－1 に示す解析ケース（2）～（4）を実施する。機器•配管系の応答加速度抽出における解析ケースを表3－4に示す。

表 3－4（1）機器•配管系の応答加速度抽出のための解析ケース（基準地震動 S s ）

解析ケース			ケース（1）	ケース（2）	ケース（3）	ケース④
			基本ケース	地盤物性のば らつき（＋1 o）を考慮し た解析ケース	地盤物性のば らつき（－1 o）を考慮し た解析ケース	材料物性（コ ンクリート） に実強度を考 慮した解析ケ ース
地盤物性			平均値	平均値＋1 σ	平均値－1 σ	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づ く圧縮強度＊2
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	S s－D 1	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－D 2	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-{ }^{+1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－D 3	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－F 1	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－F 2	＋＋＊1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s－F 3	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S s - N 1	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		－＋＊1	\bigcirc	\bigcirc	\bigcirc	\bigcirc

注記 $* 1$ ：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転 させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

表 3－4（2）機器•配管系の応答加速度抽出のための解析ケース（弾性設計用地震動S d）

解析ケース			ケース（1）	ケース（2）	ケース③	ケース（4）
			基本ケース	地盤物性のば らつき（＋1 o）を考慮し た解析ケース	地盤物性のば らつき（－1 $\sigma)$ を考慮し た解析ケース	材料物性（コ ンクリート） に実強度を考慮した解析ケ ース
地盤物性			平均値	平均値 $+1 \sigma$	平均値－1 σ	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づ く圧縮強度＊2
S d－D 1		$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	S d－D 2	＋＋＊1	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		－＋＊${ }^{1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S d－D 3	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S d－F 1	$+{ }^{*}{ }^{1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	Sd－F 2	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S d－F 3	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	S d－N 1	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		－＋＊1	\bigcirc	\bigcirc	\bigcirc	\bigcirc

注記 $* 1$ ：地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転 させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.3 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 耐震評価上考慮する状態

軽油タンク連絡ダクトの地震応答解析において，地震以外に考慮する状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただし，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
積雪を考慮する。埋設構造物であるため風の影響は考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

3．3．2 荷重

軽油タンク連絡ダクトの地震応答解析において，考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重，機器•配管荷重を考慮する。
（2）積載荷重（P）
積載荷重として，積雪荷重 P_{s} を含めて地表面に $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を考慮する。
（3）積雪荷重（ P s ）
積雪荷重として，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測され た月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるための係数 0.35 を考慮し た値を設定する。また，建築基準法施行令第 86 条第 2 項により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）地震荷重（S s ）
基準地震動 S s による荷重を考慮する。
（5）地震荷重（ S d ）
弾性設計用地震動 S d による荷重を考慮する。

3．3．3 荷重の組合せ

荷重の組合せを表3－5に示す。

表3－5 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$
地震時 $(\mathrm{S} \mathrm{d})^{*}$	$\mathrm{G}+\mathrm{P}+\mathrm{Sd}$

注記＊：機器•配管系の耐震設計に用いる。

G：固定荷重
P：積載荷重（積雪荷重 P_{s} を含めて $4.9 \mathrm{kN} / \mathrm{m}^{2}$ を地表面に考慮）
S s ：地震荷重（基準地震動 S s）
S d ：地震荷重（弾性設計用地震動S d）

3.4 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．3 屋外重要土木構造物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用地震動 S d を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用 いる。なお，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のうち「7．1 入力地震動の設定に用いる地下構造モデル」を用いる。

図 3－7 に入力地震動算定の概念図を，図 3－8～図3－35に入力地震動の加速度時刻歴波形及び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「SHAKE Ver．1．6」を使用する。

解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

地下構造モデル 構造物位置地盤モデル 地震応答解析モデル

図 3－7 入力地震動算定の概念図（基準地震動 S s 及び弾性設計用地震動 $\mathrm{S} d$ ）

（b）加速度応答スペクトル

図3－8 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－9 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－10 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 2）

図3－11 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－12 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－D 3）

図3－13 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－D 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－14 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F1）

図3－15 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 1）

（b）加速度応答スペクトル

図3－16 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 2）

図3－17 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－18 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－F 3）

図3－19 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－F 3）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－20 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S s－N 1）

（b）加速度応答スペクトル

図3－21 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S s－N 1）

（b）加速度応答スペクトル

図3－22 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－D 1）

（b）加速度応答スペクトル

図3－23 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 1）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－24 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分 ：S d－D 2）

（b）加速度応答スペクトル

図3－25 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－26 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－D 3）

（b）加速度応答スペクトル

図3－27 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－D 3）

（a）加速度時刻歴波形
$h=0.05$

（b）加速度応答スペクトル

図3－28 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－F 1）

（b）加速度応答スペクトル

図3－29 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－F 1）

（a）加速度時刻歴波形
$h=0.05$

（b）加速度応答スペクトル

図3－30 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分： $\mathrm{Sd}-\mathrm{F} 2$ ）

（b）加速度応答スペクトル

図3－31 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－F 2）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－32 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分 ：S d－F 3）

（b）加速度応答スペクトル

図3－33 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分： $\mathrm{Sd}-\mathrm{F} 3$ ）

（a）加速度時刻歴波形

（b）加速度応答スペクトル

図3－34 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （水平成分：S d－N 1）

（b）加速度応答スペクトル

図3－35 入力地震動の加速度時刻歴波形及び加速度応答スペクトル （鉛直成分：S d－N 1）

3.5 解析モデル及び諸元

3．5．1 解析モデル
軽油タンク連絡ダクトの地震応答解析モデルを図 3－36に示す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件の影響が地盤及び構造物の応力状態に及ばないよう，十分に広い領域とする。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
鉄筋コンクリート部材は，非線形はり要素によりモデル化する。
（4）地盤のモデル化
D 級を除く岩盤は，線形の平面ひずみ要素でモデル化する。また，盛土，旧表土及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひずみ要素でモデル化 する。
（5）隣接構造物のモデル化
隣接構造物となる復水貯蔵タンク基礎は，線形はり要素でモデル化する。
（6）ジョイント要素の設定
地震時の「MMR と構造物」，「地盤とMMR」及び「地盤と構造物」との接合面における剥離及びすべりを考慮するため，これらの接合面にジョイント要素を設定する。

3．5．2 使用材料及び材料の物性値
使用材料を表 3－6に，材料の物性值を表3－7に示す。

表 3－6 使用材料

材料	仕様
コンクリート	設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345

表 3－7 材料の物性値（構造部材）

材料	項目		材料諸元	備考
鉄筋コンクリート	単位体積重量 （ $\mathrm{kN} / \mathrm{m}^{3}$ ）		24.0	
コンクリート	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	実強度＊	3.32×10^{4}	解析ケース（4）
		設計基準強度	2． 33×10^{4}	解析ケース（1） （2），（3）
	ポアソン比		0.2	

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．5．3 地盤の物性値
地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定して いる物性値を用いる。

3．5．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い設定 する。設計用地下水位を表 3－8 及び図 3－37に示す。

表 3－8 設計用地下水位の一覧

施設名称	設計用地下水位
軽油タンク連絡ダクト	0. P．$-3.00 \mathrm{~m} \sim 0$. P．+3.00 m

図3－37 設計用地下水位

4．解析結果

耐震評価のために用いる応答加速度として，解析ケース①（基本ケース）について，すべての基準地震動S s に対する最大加速度分布図を図 4－1～図4－14に示す。また，解析ケース①化 4 いて，照査項目ごとに照査値が 0.5 を超えるケースで照査値が最大となる地震動について，解析 ケース（2）～（4）の最大加速度分布図を図4－15～図4－17に示す。

これらに加え，機器•配管系に対する応答加速度抽出として，解析ケース（2）～④について，す べての基準地震動 S s に対する最大加速度分布図を図4－18～図4－59に示す。また，解析ケー ス①～（4）について，すべての弾性設計用地震動S dに対する最大加速度分布図を図4—60～図4 － 115 に示す。

（a）S s－D $1 \quad(++)$ 水平

構造スケール

（m）応答値スケール

（b） S s－D $1 \quad(++)$ 鉛直

図 4－1 最大加速度分布図（解析ケース①）（1／17）

（a）S s－D $1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－D $1 \quad(-+)$ 鉛直

図 4－2 最大加速度分布図（解析ケース（1））（2／17）

（a） S s－D $2(++)$ 水平

構造スケール

（m）応答值スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－D $2(++)$ 鉛直

図 4－3 最大加速度分布図（解析ケース①）（3／17）

（a）S s－D $2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－D $2(-+)$ 鉛直

図 4－4 最大加速度分布図（解析ケース①）（4／17）

（a） S s $-\mathrm{D} 3(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－D $3(++)$ 鉛直

図 4－5 最大加速度分布図（解析ケース①）（5／17）

（a） S s $-\mathrm{D} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール

（b） S s－D $3(-+)$ 鉛直

図 4－6 最大加速度分布図（解析ケース（1））（6／17）

（a）S s－F $1(++)$ 水平

構造スケール \qquad （m）応答値スケール
 $\stackrel{2000}{\left(\mathrm{~cm} / \mathrm{s}^{2}\right)}$
（b） S s－F $1 \quad(++)$ 鉛直

図 4－7 最大加速度分布図（解析ケース①）（7／17）

（a）S s－F $1(-+)$ 水平

構造スケール

（m）
応答値スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－F $1(-+)$ 鉛直

図 4－8 最大加速度分布図（解析ケース①）（8／17）

（a） S s－F $2(++)$ 水平

構造スケール \qquad （m）応答值スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－F $2(++)$ 鉛直

図 4－9 最大加速度分布図（解析ケース（1））（9／17）

（a） S s－F $2(-+)$ 水平

構造スケール

（m）応答値スケール
 ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－F $2(-+)$ 鉛直

図 4－10 最大加速度分布図（解析ケース（1）（10／17）

（a） S s－F $3(++)$ 水平

構造スケール \qquad （m）応答值スケール

（b） S s－F $3(++)$ 鉛直

図 4－11 最大加速度分布図（解析ケース①）（11／17）

（a） S s $-\mathrm{F} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－F $3(-+)$ 鉛直

図 4－12 最大加速度分布図（解析ケース（1））（12／17）

（a） S s $-\mathrm{N} 1 \quad(++)$ 水平

構造スケール

（m）応答値スケール
 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$
（b）S s－N $1 \quad(++)$ 鉛直

図 4－13 最大加速度分布図（解析ケース（1）（13／17）

（a）S s－N $1(-+)$ 水平

構造スケール \qquad （m）応答值スケール ${ }^{0}$
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）S s－N $1 \quad(-+)$ 鉛直

図 4－14 最大加速度分布図（解析ケース①）（14／17）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－D $2(-+)$ 鉛直

図 4－15 最大加速度分布図
（解析ケース（2）：せん断破壊に対する最大照査値ケース）（15／17）

（a） S s $-\mathrm{D} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $\stackrel{2000}{\left(\mathrm{~cm} / \mathrm{s}^{2}\right)}$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－16 最大加速度分布図
（解析ケース ③）せん断破壊に対する最大照査値ケース）（16／17）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平
構造スケール \qquad （m）応答値スケール \qquad $\xrightarrow{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－D $2(-+)$ 鉛直

図 4－17 最大加速度分布図
（解析ケース（4）：せん断破壊に対する最大照査値ケース）（17／17）

（a） S s－D $1(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s $-\mathrm{D} 1 \quad(++)$ 鉛直

図 4－18 最大加速度分布図（解析ケース（2））（1／98）

（a） S s－D $1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s $-\mathrm{D} 1 \quad(-+)$ 鉛直

図 4－19 最大加速度分布図（解析ケース（2））（2／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 水平

構造スケール \qquad （m）応答値スケール ${ }^{\circ}$
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－20 最大加速度分布図（解析ケース（2））（3／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

構造スケール

（m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－21 最大加速度分布図（解析ケース（2））（4／98）

（a） S s－D $3(++)$ 水平

構造スケール \qquad （m）

応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－D $3(++)$ 鉛直

図 4－22 最大加速度分布図（解析ケース（2））（5／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 鉛直

図 4－23 最大加速度分布図（解析ケース（2））（6／98）

（a）S s－F $1 \quad(++)$ 水平

構造スケール
 （m）応答値スケール \qquad ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）S s－F $1(++)$ 鉛直

図 4－24 最大加速度分布図（解析ケース（2））（7／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール

（b） S s $-\mathrm{F} 1(-+)$ 鉛直

図 4－25 最大加速度分布図（解析ケース（2））（8／98）

（a） S s－F $2(++)$ 水平

構造スケール \qquad （m）応答值スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 鉛直

図 4－26 最大加速度分布図（解析ケース（2））（9／98）

（a） S s－F $2(-+)$ 水平

構造スケール \qquad （m）応答値スケール

（b） S s $-\mathrm{F} 2(-+)$ 鉛直

図 4－27 最大加速度分布図（解析ケース（2））（10／98）

（a） S s $-\mathrm{F} 3(++)$ 水平

構造スケール

（m）応答値スケール \qquad ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3(++)$ 鉛直

図 4－28 最大加速度分布図（解析ケース（2））（11／98）

（a） S s $-\mathrm{F} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－F $3(-+)$ 鉛直

図 4－29 最大加速度分布図（解析ケース（2））（12／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

構造スケール \qquad （m）

応答値スケール ${ }^{0}$ \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－30 最大加速度分布図（解析ケース（2））（13／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール

（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+) \quad$ 鉛直

図 4－31 最大加速度分布図（解析ケース（2））（14／98）

（a） S s－D $1(++)$ 水平

構造スケール \qquad （m）応答値スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(++)$ 鉛直

図 4－32 最大加速度分布図（解析ケース③）（15／98）

（a） S s－D $1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 鉛直

図 4－33 最大加速度分布図（解析ケース③）（16／98）

（a） S s－D $2(++)$ 水平

構造スケール

（m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－34 最大加速度分布図（解析ケース③）（17／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $\stackrel{2000}{ }\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－35 最大加速度分布図（解析ケース③）（18／98）

（a） S s $-\mathrm{D} 3(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $0\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－D $3(++)$ 鉛直

図 4－36 最大加速度分布図（解析ケース③）（19／98）

（a） S s－D $3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 鉛直

図 4－37 最大加速度分布図（解析ケース③）（20／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 水平

構造スケール \qquad （m）

応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）S s－F $1(++)$ 鉛直

図 4－38 最大加速度分布図（解析ケース（3））（21／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 鉛直

図 4－39 最大加速度分布図（解析ケース（3）（22／98）

（a）S s－F $2(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－F $2(++)$ 鉛直

図 4－40 最大加速度分布図（解析ケース③）（23／98）

（a） S s－F $2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(-+)$ 鉛直

図 4－41 最大加速度分布図（解析ケース（3））（24／98）

（a） S s $-\mathrm{F} 3(++)$ 水平

構造スケール

（m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3(++)$ 鉛直

図 4－42 最大加速度分布図（解析ケース（3））（25／98）

（a） S s $-\mathrm{F} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－F $3(-+)$ 鉛直

図 4－43 最大加速度分布図（解析ケース③）（26／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 水平

構造スケール \qquad （m）応答值スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－44 最大加速度分布図（解析ケース（3））（27／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－45 最大加速度分布図（解析ケース③）（28／98）

（a） S s－D $1(++)$ 水平

構造スケール

（m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(++)$ 鉛直

図 4－46 最大加速度分布図（解析ケース（4））（29／98）

（a） S s－D $1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 1(-+)$ 鉛直

図 4－47 最大加速度分布図（解析ケース（4））（30／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++) \quad$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(++)$ 鉛直

図 4－48 最大加速度分布図（解析ケース（4）（31／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ 鉛直

図 4－49 最大加速度分布図（解析ケース（4））（32／98）

（a） S s－D $3(++)$ 水平

構造スケール

（m）応答値スケール
 $0\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(++)$ 鉛直

図 4－50 最大加速度分布図（解析ケース（4））（33／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3(-+)$ 鉛直

図 4－51 最大加速度分布図（解析ケース（4）（34／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 水平

構造スケール \qquad （m）

応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(++)$ 鉛直

図 4－52 最大加速度分布図（解析ケース（4））（35／98）

（a） S s $-\mathrm{F} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 1(-+)$ 鉛直

図 4－53 最大加速度分布図（解析ケース（4））（36／98）

（a） S s－F $2(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 2(++)$ 鉛直

図 4－54 最大加速度分布図（解析ケース（4））（37／98）

（a） S s－F $2(-+)$ 水平

構造スケール \qquad （m）応答値スケール

（b） S s $-\mathrm{F} 2(-+)$ 鉛直

図 4－55 最大加速度分布図（解析ケース（4））（38／98）

（a） S s $-\mathrm{F} 3(++)$ 水平

構造スケール \qquad （m）応答值スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3(++)$ 鉛直

図 4－56 最大加速度分布図（解析ケース（4）（39／98）

（a） S s $-\mathrm{F} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） S s－F $3(-+)$ 鉛直

図 4－57 最大加速度分布図（解析ケース（4）（40／98）

（a）S s－N $1 \quad(++)$ 水平

構造スケール

（m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－58 最大加速度分布図（解析ケース（4））（41／98）

（a） $\mathrm{S} \mathrm{s}-\mathrm{N} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{s}-\mathrm{N} 1 \quad(-+)$ 鉛直

図 4－59 最大加速度分布図（解析ケース（4））（42／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 水平

構造スケール \qquad （m）応答値スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 鉛直

図 4－60 最大加速度分布図（解析ケース①）（43／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(-+)$ 鉛直

図 4－61 最大加速度分布図（解析ケース①）（44／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

構造スケール

（m）応答值スケール

（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－62 最大加速度分布図（解析ケース（1）（45／29）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 鉛直

図 4－63 最大加速度分布図（解析ケース①）（46／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

構造スケール

（m）
応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－64 最大加速度分布図（解析ケース①）（47／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(-+) \quad$ 鉛直

図 4－65 最大加速度分布図（解析ケース①）（48／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

構造スケール

（m）応答値スケール ${ }^{0}$ $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 鉛直

図 4－66 最大加速度分布図（解析ケース①）（49／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(-+)$ 鉛直

図 4－67 最大加速度分布図（解析ケース①）（50／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 水平

構造スケール

（m）
応答値スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++) \quad$ 鉛直

図 4－68 最大加速度分布図（解析ケース（1）（51／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(-+) \quad$ 鉛直

図 4－69 最大加速度分布図（解析ケース①）（52／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++)$ 水平

構造スケール

（m）
応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{F} 3(++) \quad$ 鉛直

図 4－70 最大加速度分布図（解析ケース（1）（53／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(-+)$ 鉛直

図 4－71 最大加速度分布図（解析ケース①）（54／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 水平

構造スケール
 （m）応答値スケール

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－72 最大加速度分布図（解析ケース①）（55／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(-+) \quad$ 鉛直

図 4－73 最大加速度分布図（解析ケース①）（56／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 水平

構造スケール \qquad （m）応答值スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 鉛直

図 4－74 最大加速度分布図（解析ケース（2））（57／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(-+)$ 鉛直

図 4－75 最大加速度分布図（解析ケース（2））（58／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

構造スケール \qquad （m）応答值スケール \qquad ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++) \quad$ 鉛直

図 4－76 最大加速度分布図（解析ケース（2））（59／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 鉛直

図 4－77 最大加速度分布図（解析ケース（2））（60／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

構造スケール \qquad （m）応答値スケール

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－78 最大加速度分布図（解析ケース（2））（61／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(-+) \quad$ 鉛直

図 4－79 最大加速度分布図（解析ケース（2））（62／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

構造スケール \qquad （m）応答値スケール ${ }^{0}$ $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 鉛直

図 4－80 最大加速度分布図（解析ケース（2））（63／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(-+)$ 鉛直

図 4－81 最大加速度分布図（解析ケース（2））（64／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 水平

構造スケール

（m）
応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 鉛直

図 4－82 最大加速度分布図（解析ケース（2））（65／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(-+)$ 鉛直

図 4－83 最大加速度分布図（解析ケース（2））（66／98）

（a） S d $-\mathrm{F} 3(++)$ 水平

構造スケール \qquad （m）応答値スケール

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++) \quad$ 鉛直

図 4－84 最大加速度分布図（解析ケース（2））（67／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(-+)$ 鉛直

図 4－85 最大加速度分布図（解析ケース（2））（68／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++) \quad$ 鉛直

図 4－86 最大加速度分布図（解析ケース（2））（69／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(-+) \quad$ 鉛直

図 4－87 最大加速度分布図（解析ケース（2））（70／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(++)$ 水平

構造スケール \qquad （m）応答值スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 鉛直

図 4－88 最大加速度分布図（解析ケース③）（71／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(-+)$ 鉛直

図 4－89 最大加速度分布図（解析ケース③）（72／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－90 最大加速度分布図（解析ケース③）（73／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 鉛直

図 4－91 最大加速度分布図（解析ケース（3））（74／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

構造スケール \qquad （m）応答值スケール

（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－92 最大加速度分布図（解析ケース（3））（75／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(-+) \quad$ 鉛直

図 4－93 最大加速度分布図（解析ケース（3））（76／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

構造スケール \qquad （m）応答値スケール ${ }^{0}$

（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 鉛直

図 4－94 最大加速度分布図（解析ケース（3））（77／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(-+)$ 水平

構造スケール \qquad （m）

応答値スケール
i $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(-+)$ 鉛直

図 4－95 最大加速度分布図（解析ケース③）（78／98）

（a） S d $-\mathrm{F} 2(++)$ 水平

構造スケール \qquad （m）応答值スケール
 $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 鉛直

図 4－96 最大加速度分布図（解析ケース③）（79／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール

（b） S d $-\mathrm{F} 2(-+) \quad$ 鉛直

図 4－97 最大加速度分布図（解析ケース③）（80／98）

（a） S d $-\mathrm{F} 3(++)$ 水平

構造スケール \qquad （m）応答值スケール \qquad ${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++) \quad$ 鉛直

図 4－98 最大加速度分布図（解析ケース（3））（81／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(-+)$ 鉛直

図 4－99 最大加速度分布図（解析ケース③）（82／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1(++)$ 水平

構造スケール \qquad （m）応答値スケール ${ }^{0}$ \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b）$\quad \mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－100 最大加速度分布図（解析ケース③）（83／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(-+) \quad$ 鉛直

図 4－101 最大加速度分布図（解析ケース③）（84／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(++)$ 鉛直

図 4－102 最大加速度分布図（解析ケース（4））（85／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 1 \quad(-+)$ 鉛直

図 4－103 最大加速度分布図（解析ケース（4））（86／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 水平

構造スケール

（m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(++)$ 鉛直

図 4－104 最大加速度分布図（解析ケース（4）（87／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 2(-+)$ 鉛直

図 4－105 最大加速度分布図（解析ケース（4））（88／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 水平

構造スケール

（m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(++)$ 鉛直

図 4－106 最大加速度分布図（解析ケース（4））（89／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{D} 3(-+)$ 鉛直

図 4－107 最大加速度分布図（解析ケース（4））（90／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $\stackrel{2000}{\left(\mathrm{~cm} / \mathrm{s}^{2}\right)}$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(++)$ 鉛直

図 4－108 最大加速度分布図（解析ケース（4））（91／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 1(-+)$ 水平

構造スケール \qquad （m）

応答値スケール
$\stackrel{0}{4}$ \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 1 \quad(-+)$ 鉛直

図 4－109 最大加速度分布図（解析ケース（4））（92／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 水平

構造スケール

（m）応答値スケール \qquad 2000
\qquad $1\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(++)$ 鉛直

図 4－110 最大加速度分布図（解析ケース（4）（93／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 2(-+) \quad$ 鉛直

図 4－111 最大加速度分布図（解析ケース（4）（94／98）

（a） S d $-\mathrm{F} 3(++)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(++) \quad$ 鉛直

図 4－112 最大加速度分布図（解析ケース（4））（95／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{F} 3(-+)$ 鉛直

図 4－113 最大加速度分布図（解析ケース（4）（96／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++) \quad$ 水平

構造スケール \qquad （m）応答値スケール

${ }^{2000}\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(++)$ 鉛直

図 4－114 最大加速度分布図（解析ケース（4）（97／98）

（a） $\mathrm{S} \mathrm{d}-\mathrm{N} 1(-+)$ 水平

構造スケール \qquad （m）応答値スケール \qquad $2000\left(\mathrm{~cm} / \mathrm{s}^{2}\right)$
（b） $\mathrm{S} \mathrm{d}-\mathrm{N} 1 \quad(-+) \quad$ 鉛直

図 4－115 最大加速度分布図（解析ケース（4）（98／98）

VI－2－2－20 軽油タンク連絡ダクトの耐震性についての計算書

目次

1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 評価方針 7
2.4 適用基準 10
3．耐震評価 11
3.1 評価対象断面 11
3.2 使用材料及び材料の物性値 13
3.3 許容限界 14
3．3．1 構造部材の健全性に対する許容限界 14
3．3．2 基礎地盤の支持性能に対する許容限界 18
3．4 評価方法 19
3．4．1 構造部材の健全性評価． 19
3．4．2 基礎地盤の支持性能評価． 19
4．構造部材の地震時応答 20
5．耐震評価結果 23
5.1 構造部材の健全性に対する評価結果． 23
5.2 Sクラスの施設を支持する機能に対する評価結果 24
5.3 基礎地盤の支持性能に対する評価結果。 25
5．3．1 基礎地盤（狐崎部層） 25
5．3．2 MMR（既設） 26

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している構造強度及び機能維持の設計方針に基づき，軽油タンク連絡ダクトが基準地震動S s に対して十分な構造強度及び支持機能を有していることを確認するものである。

軽油タンク連絡ダクトに要求される機能の維持を確認するにあたつては，地震応答解析に基づ く構造部材の健全性評価及び基礎地盤の支持性能評価を行う。

2．基本方針
2.1 位置

軽油タンク連絡ダクトの位置を図 $2-1$ に示す。

図 2－1 軽油タンク連絡ダクトの位置図

2.2 構造概要

軽油タンク連絡ダクトの平面図を図 $2-2$ 及び図 $2-3$ に，断面図を図 $2-4$ 及び図 $2-5$ に，縦断図を図 2－6に，概略配筋図を図 2－7 に示す。

軽油タンク連絡ダクトは，燃料移送系配管を隔壁で間接支持しており，支持機能が要求され る。

軽油タンク連絡ダクトは，軽油タンク室と原子炉建屋を結ぶ，鉄筋コンクリート造の地中構造物であり，延長 52.30 m ，内空幅 1.25 m ，内空高さ 2.00 m の二連ボックスカルバート構造の標準部（以下「標準部」という。）と，内空幅 1.55 m （東西）$\times 2.25 \mathrm{~m}$（南北），内空高さ 3.05 m の軽油タンク室と接続する接続部（以下「接続部」という。）から構成され，マンメイドロック（以下「MMR」という。）を介して十分な支持性能を有する岩盤に設置されている。

軽油タンク連絡ダクトは，延長方向に約 13 m 間隔で分割して構造目地を介して接合され，原子炉建屋との接合部には耐震ジョイントが設置されており，延長方向に断面変化の少ない線状構造物である。

（単位：m）

図 2－2 軽油タンク連絡ダクト平面図

図 2－3 軽油タンク連絡ダクト平面図（詳細）

（単位：m）
図 2－4 軽油タンク連絡ダクト断面図（標準部，A－A 断面）

図 2－5 軽油タンク連絡ダクト断面図（接続部，B－B 断面）

（単位：m）

図 2－6 軽油タンク連絡ダクト縦断図（C－C 断面）

図 2－7 軽油タンク連絡ダクト概略配筋図

2． 3 評価方針

軽油タンク連絡ダクトは，設計基準対象施設においては，Sクラス施設の間接支持構造物であ る屋外重要土木構造物に分類され，重大事故等対処施設においては，常設耐震重要重大事故防止設備，常設重大事故緩和設備及び常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設に分類される。

軽油タンク連絡ダクトの耐震評価は，添付書類「VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書」より得られた地震応答解析の結果に基づき，設計基準対象施設及び重大事故等対処施設の評価として，表2－1に示すとおり，構造部材の健全性評価及び基礎地盤の支持性能評価 を行う。

なお，地震応答解析による解析手法は，添付書類「VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書」のうち「3．2 解析方法」に示すとおり，全応力解析とする。解析ケースを表2－ 2 に示す。

軽油タンク連絡ダクトの耐震評価フローを図2－8に示す。
構造部材の健全性評価及び基礎地盤の支持性能評価を実施することで，構造強度を有するこ と及びS クラスの施設を支持する機能を損なわないことを確認する。
構造部材の健全性評価については，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，曲げ・軸力系の破壊については構造部材の照査用層間変形角及び照査用ひずみが許容限界を下回ることを確認する。せん断破壊に対しては照査用せん断力が許容限界を下回ることを確認す る。
基礎地盤の支持性能評価においては，添付書類「VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書」より得られた基礎地盤の接地圧が，添付書類「VI－2－1－9 機能維持の基本方針」に基づく許容限界を下回ることを確認する。

ここで，軽油タンク連絡ダクトの運転時，設計基準事故時及び重大事故時の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括されることから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。

表 2－1 軽油タンク連絡ダクトの評価項目

表2－2 解析ケース

解析ケース	材料物性$\begin{gathered} \text { (コンクリート) } \\ \left(\mathrm{E}_{0}:\right. \text { ヤング係数) } \end{gathered}$	地盤物性	
		盛土，旧表土，D級岩盤 （ G_{0} ：初期せん断弾性係数）	C_{L} 級岩盤，C_{M} 級岩盤， CH 級岩盤，B 級岩盤 （ G_{d} ：動せん断弾性係数）
$\begin{gathered} \text { ケース① } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値	平均値
ケース（2）	設計基準強度	平均値 $+1 \sigma$	平均値
ケース③）	設計基準強度	平均値－1 σ	平均値
ケース（4）	実強度に基づく圧縮強度＊	平均値	平均値

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

図 2－8 軽油タンク連絡ダクトの耐震評価フロー

2.4 適用基準

適用する規格，基準等を以下に示す。

- 土木学会 2002 年 コンクリート標準示方書［構造性能照査編］
- 土木学会 2017年 コンクリート標準示方書［設計編］
- 土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 日本道路協会 平成 14 年 3 月 道路橋示方書•同解説 I 共通編•IV下部構造編

3．耐震評価

3.1 評価対象断面

軽油タンク連絡ダクトの評価対象断面位置を図 3－1 及び図 3－2 に示す。
評価対象断面は，構造的特徴や周辺地質状況を踏まえ，図 3－1 及び図 3－2 に示す標準部の らち，復水貯蔵タンクの中心を通る A－A 断面とする。評価対象地質断面図を図 3－3 に示す。

（単位：m）

図 3－1 軽油タンク連絡ダクトの評価対象断面位置図

（単位：m）
図 3－2 軽油タンク連絡ダクトの評価対象断面位置図（詳細）

図 3－3 軽油タンク連絡ダクト評価対象地質断面図（A－A 断面）

3.2 使用材料及び材料の物性値

構造物の使用材料を表3－1，材料の物性値を表3－2に示す。

表 3－1 使用材料

材料	仕様
コンクリート	設計基準強度 $20.5 \mathrm{~N} / \mathrm{mm}^{2}$
鉄筋	SD345

表 3－2 材料の物性値（構造部材）

材料	項目		材料諸元	備考
鉄筋コンクリート	単位体積重量 $\left(\mathrm{kN} / \mathrm{m}^{3}\right)$		24.0	
コンクリート	ヤング係数 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	実強度＊	3.32×10^{4}	解析ケース（4）
		設計基準強度	2． 33×10^{4}	解析ケース（1）， （2），（3）
	ポアソン比		0.2	

注記＊：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3． 3 許容限界

許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき設定する。

3．3．1 構造部材の健全性に対する許容限界

（1）曲げ・軸力系の破壊に対する許容限界
構造強度を有することの確認における構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対する許容限界は，「土木学会 2005 年 原子力発電所屋外重要土木構造物の耐震性能照査指針・マニュアル」（以下「土木学会マニュアル」という。）に基づき，限界層間変形角（層間変形角 $1 / 100$ ）とする。

曲げ・軸力系の破壊に対する限界状態については，「土木学会マニュアル」ではコンクリ ートの圧縮縁のかぶりが剥落しないこととされており，層間変形角 $1 / 100$ の状態は，かぶ りコンクリートが剥落する前の状態であることが，屋外重要土木構造物を模したラーメン構造の破壊実験及び数値シミュレーション等の結果より確認されている。この状態を限界値とすることで構造全体としての安定性等が確保できるとして設定されたものである。
また，隔壁のアンカー定着部に要求されるSクラスの施設を支持する機能を損なわない ことの確認においては，主筋のひずみ及びコンクリートの圧縮ひずみについて，部材降伏 に相当するひずみ（主筋：1725 μ ，コンクリート：2000 μ ）とする。
鉄筋コンクリートの曲げ・軸力系の破壊に対する許容限界を表3－3に示す。

表 3－3 軽油タンク連絡ダクトの曲げ・軸力系の破壊に対する許容限界

確認項目	許容限界			
構造強度を有すること	限界層間変形角	$1 / 100$		
S クラスの施設を支持す る機能を損なわないこと	限界ひずみ			主筋（SD345）： 1725μ
:---				
コンクリート $: 2000 \mu$				

（2）せん断破壊に対する許容限界
構造強度を有することの確認及びS クラスの施設を支持する機能を損なわないことの確認における構造部材（鉄筋コンクリート）のせん断破壊に対する許容限界は，「土木学会マ ニュアル」に基づくせん断耐力とする。

せん断耐力は，「土木学会マニュアル」に基づき「a．棒部材式」，「b．ディープビーム式」のせん断耐力式で求まるせん断耐力のうち，いずれか大きい方とする。

また，せん断耐力式による照査において照査用せん断力が上記のせん断耐力を上回る場合，より詳細に材料非線形解析を用いて部材のせん断耐力を求め許容限界とする。せん断破壊に対する耐力評価のフローを図 3－4 に示す。

図 3－4 せん断破壊に対する耐力評価フロー
a．棒部材式
$V_{y d}=V_{c d}+V_{s d}$
ここで， V_{yd} ：せん断耐力
V_{cd} ：コンクリートが分担するせん断耐力
V_{sd} ：せん断補強鉄筋が分担するせん断耐力

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{cd}}=\beta_{\mathrm{d}} \cdot \beta_{\mathrm{p}} \cdot \beta_{\mathrm{n}} \cdot \beta_{\mathrm{a}} \cdot \mathrm{f}_{\mathrm{vcd}} \cdot \mathrm{~b}_{\mathrm{w}} \cdot \mathrm{~d} / \gamma_{\mathrm{bc}} \\
& \mathrm{f}_{\mathrm{vcd}}=0.20 \sqrt[3]{\mathrm{f}^{\prime}{ }_{\mathrm{ccd}} \quad \text { ただし, } \quad \mathrm{f}_{\mathrm{vcd}}>0.72\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \text { となる場合は }} \begin{array}{l}
\mathrm{f}_{\mathrm{vcd}}=0.72\left(\mathrm{~N} / \mathrm{mm}^{2}\right)
\end{array}
\end{aligned}
$$

$$
\beta_{\mathrm{d}}=\sqrt[4]{1 / \mathrm{d}} \quad(\mathrm{~d}[\mathrm{~m}]) \quad \text { ただし, } \beta_{\mathrm{d}}>1.5 \text { となる場合は } \beta_{\mathrm{d}}=1.5
$$

$$
\beta_{\mathrm{p}}=\sqrt[3]{100 \mathrm{p}_{\mathrm{v}}} \quad \text { ただし, } \beta_{\mathrm{p}}>1.5 \text { となる場合は } \beta_{\mathrm{p}}=1.5
$$

$$
\beta_{\mathrm{n}}=1+\mathrm{M}_{0} / \mathrm{M}_{\mathrm{d}} \quad\left(\mathrm{~N}_{\mathrm{d}}^{\prime} \geq 0\right) \text { ただし, } \beta_{\mathrm{n}}>2.0 \text { となる場合は } \beta_{\mathrm{n}}=2.0
$$

$$
=1+2 \mathrm{M}_{0} / \mathrm{M}_{\mathrm{d}} \quad\left(\mathrm{~N}_{\mathrm{d}}^{\prime}<0\right) \quad \text { ただし, } \beta_{\mathrm{n}}<0 \text { となる場合は } \beta_{\mathrm{n}}=0
$$

$$
\beta_{\mathrm{a}}=0.75+\frac{1.4}{\mathrm{a} / \mathrm{d}} \text { ただし, } \beta_{\mathrm{a}}<1.0 \text { となる場合は } \beta_{\mathrm{a}}=1.0
$$

ここで，f ${ }^{\circ}{ }_{\mathrm{cd}}$ ：コンクリート圧縮強度の設計用値（ $\mathrm{N} / \mathrm{mm}^{2}$ ）で設計基漼強度 $\mathrm{f}{ }^{\prime}{ }_{\mathrm{ck}}$ を材料係数 $\gamma_{\text {mc }}$ で除したもの
p_{v} ：引張鉄筋比 $\mathrm{p}_{\mathrm{v}}=\mathrm{A}_{\mathrm{s}} /\left(\mathrm{b}_{\mathrm{w}} \cdot \mathrm{d}\right)$
A s ：引張側鋼材の断面積
b_{w} ：部材の有効幅
d ：部材の有効高さ
N ${ }^{\text {d }}$ ：設計軸圧縮力
M_{d} ：設計曲げモーメント
$M_{0} \quad: M_{d}$ に対する引張縁において，軸方向力によって発生する応力を打ち消すのに必要なモーメント（デコンプレッション モーメント）

$$
\mathrm{M}_{\mathrm{o}}=\mathrm{N}^{\prime}{ }_{\mathrm{d}} \cdot \mathrm{D} / 6
$$

D ：断面高さ
a／d ：せん断スパン比

$$
\gamma_{\mathrm{bc}} \quad: \text { 部材係数 }
$$

$$
\gamma_{\mathrm{mc}} \quad: \text { 材料係数 }
$$

$V_{s d}=\left\{A_{w} f_{w y d}(\sin \alpha+\cos \alpha) / \mathrm{s}\right\} \mathrm{z} / \gamma_{\mathrm{b} s}$

ここで， A_{w} ：区間 s におけるせん断補強鉄筋の総断面積
$\mathrm{f}_{\mathrm{w} \text { y d }}$ ：せん断補強鉄筋の降伏強度を γ_{ms} で除したもので， $400 \mathrm{~N} / \mathrm{mm}^{2}$ 以下とする。ただし，コンクリート圧縮強度の特性値f ${ }^{\prime}{ }_{\mathrm{ck}}$ が $60 \mathrm{~N} / \mathrm{mm}^{2}$ 以上のときは $800 \mathrm{~N} / \mathrm{mm}^{2}$ 以下とする。
α ：せん断補強鉄筋と部材軸のなす角度
S ：せん断補強鉄筋の配置間隔
z ：圧縮応力の合力の作用位置から引張鋼材図心までの距離で $\mathrm{d} / 1.15$ とする。
$\gamma_{\mathrm{b} \text { s }}$ ：部材係数
γ_{ms} ：材料係数
b．ディープビーム式
$V_{y d d}=V_{c d d}+V_{s d d}$

ここで， $\mathrm{V}_{\mathrm{ydd}}$ ：せん断耐力
V_{cdd} ：コンクリートが分担するせん断耐力
$V_{\mathrm{s} \mathrm{d} \mathrm{d}}$ ：せん断補強鉄筋が分担するせん断耐力
$\mathrm{f}_{\mathrm{dd}}=0.19 \sqrt{\mathrm{f}^{\prime}{ }_{\mathrm{cd}}}$
$\beta_{\mathrm{d}}=\sqrt[4]{1 / \mathrm{d}} \quad(\mathrm{d}[\mathrm{m}]) \quad$ ただし，$\beta_{\mathrm{d}}>1.5$ となる場合は $\beta_{\mathrm{d}}=1.5$
$\beta_{\mathrm{p}}=\sqrt[3]{100 \mathrm{p}_{\mathrm{v}}} \quad$ ただし，$\beta_{\mathrm{p}}>1.5$ となる場合は $\beta_{\mathrm{p}}=1.5$
$\beta_{\mathrm{a}}=\frac{5}{1+(\mathrm{a} / \mathrm{d})^{2}}$
ここで，$\gamma_{b c}$ ：部材係数
$\mathrm{V}_{\mathrm{sdd}}=\phi \cdot \mathrm{V}_{\mathrm{sd}}$
$\phi=-0.17+0.3 \mathrm{a} / \mathrm{d}+0.33 / \mathrm{p}_{\mathrm{w}} \mathrm{b} \quad$ ただし $0 \leq \phi \leq 1$
ここで， p_{wb} ：せん断補強鉄筋比（\％）

3．3．2 基礎地盤の支持性能に対する許容限界

（1）基礎地盤（狐崎部層）
基礎地盤（狐崎部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力とする。

基礎地盤（狐崎部層）の許容限界を表 3－4に示す。

表 3－4 基礎地盤の支持性能に対する許容限界

評価項目	基礎地盤	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
極限支持力	狐崎部層	13.7

（2）MMR（既設）
MMR（既設）に発生する接地圧に対する許容限界は，「土木学会 2002年 コンクリート標準示方書［構造性能照査編］」に基づき，コンクリートの支圧強度とする。 MMR（既設）の許容限界を表3－5に示す。

表 3－5 MMR（既設）の支持性能に対する許容限界		
評価項目	MMR（既設）	許容限界 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
支圧強度	コンクリート $\left(\mathrm{f}^{\prime}{ }_{\mathrm{ck}}=15.6 \mathrm{~N} / \mathrm{mm}^{2}\right)$	$\mathrm{f}^{\prime}{ }_{\mathrm{a}}=15.6$

3．4 評価方法

軽油タンク連絡ダクトの耐震評価は，添付書類「VI－2－2－19 軽油タンク連絡ダクトの地震応答計算書」に基づく地震応答解析により算定した照査用応答値が，「3．3 許容限界」におい て設定した許容限界を下回ることを確認する。

3．4．1 構造部材の健全性評価

構造強度を有することの確認については，鉄筋コンクリートの曲げ・軸力系の破壊及び せん断破壊に対する照査において，地震応答解析により算定した照査用層間変形角及び照査用せん断力が許容限界を下回ることを確認する。

S クラスの施設を支持する機能を損なわないことの確認については，鉄筋コンクリート の曲げ・軸力系の破壊に対する照査において，照査用ひずみが許容限界を下回ることを， せん断破壊に対する照査においては，照査用せん断力が許容限界を下回ることを確認する。

3．4．2 基礎地盤の支持性能評価

基礎地盤の支持性能評価においては，構造部材を支持する基礎地盤に発生する接地圧が許容限界を下回ることを確認する。

4．構造部材の地震時応答

構造部材（鉄筋コンクリート）の曲げ・軸力系の破壊に対して最大照査値となる解析ケース及 び地震動での層間変形角の時刻歴波形を図4－1 に，各部材のコンクリートの圧縮ひずみ及び主筋のひずみに対して最大照査値となる部材位置及び応答値を図4－2 及び図4－3に，せん断破壊 に対する最大照査値の評価時刻での断面力図を図4－4に示す。

図 4－1 曲げ・軸力系の破壊に対する照査における層間変形角の時刻歴波形 （解析ケース（1），S s－F $1(-+)$ ）

注： はS クラスの施設を支持する部材（隔壁）を示す

図 4－2 曲げ・軸力系の破壊に対して最大照査値となる部材位置及び応答値（コンクリート） （隔壁，解析ケース①）S s－F $1(-+)$ ）

注：—はSクラスの施設を支持する部材（隔壁）を示す

図 4－3 曲げ・軸力系の破壊に対して最大照査値となる部材位置及び応答値（鉄筋） （隔壁，解析ケース①，S s－F $1(-+)$ ）

図 4－4 せん断破壊に対する照査値最大時＊の断面力図
（頂版，解析ケース（3），S s－D $3(++)$ ）
注記＊：材料非線形解析による評価結果

5．耐震評価結果

5.1 構造部材の健全性に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する最大照査値を表5－1に，せん断破壊に対する各評価位置での最大照査値を表5－2に示す。
軽油タンク連絡ダクトの照査用層間変形角及び照査用せん断力が，構造部材の健全性に対す る許容限界を下回ることを確認した。

表 5－1 曲げ・軸力系の破壊に対する最大照査値

解析 ケース	地震動	照査用層間変形角＊ R_{d}	限界層間変形角 R_{u}	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
（1）	$\mathrm{S} \mathrm{s}-\mathrm{F} 1$ $(-+)$	9.84×10^{-4}	1.0×10^{-2}	0.10

注記 $*$ ：照査用層間変形角 $\mathrm{R}_{\mathrm{d}}=$ 最大層間変形角 $\mathrm{R} \times$ 構造解析係数 γ_{a}

表 5－2 せん断破壊に対する最大照査値

評価位置＊${ }^{1}$		解析 ケース	地震動	照査用せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
頂版	3	（3）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 3 \\ (++) \end{gathered}$	248	$537 * 4$	0． 47
側壁	7	（2）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (-+) \end{gathered}$	318	848＊4	0.38
隔壁	6	（1）	$\begin{gathered} \mathrm{S} \text { s }-\mathrm{D} 2 \\ (++) \end{gathered}$	60	$227 * 4$	0． 27
底版	2	（1）	$\begin{gathered} \hline \text { S s }-\mathrm{F} 1 \\ (-+) \\ \hline \end{gathered}$	308	$515 * 3$	0． 60

注記＊1 ：評価位置は図 5－1に示す。
＊2：照査用せん断力＝発生せん断力 \times 構造解析係数 $\gamma \mathrm{a}$
＊3：せん断耐力式によるせん断耐力
＊ 4 ：材料非線形解析によるせん断耐力

図 5－1 評価位置図

5.2 Sクラスの施設を支持する機能に対する評価結果

鉄筋コンクリート部材の曲げ・軸力系の破壊に対する各評価位置での最大照査値を表 5－3及 び表 5－4に，せん断破壊に対する各評価位置での最大照査値を表5－5に示す。
軽油タンク連絡ダクトの照査用ひずみ及び照査用せん断力が，S クラスの施設を支持する機能に対する許容限界を下回ることを確認した。

表 5－3 曲げ・軸力系の破壊に対する最大照査値（コンクリートの圧縮ひずみ）

評価位置＊1		解析 ケース	地震動	照査用ひずみ＊2 ε_{d}	限界ひずみ ε_{R}	照査値 $\varepsilon_{\mathrm{d}} / \varepsilon_{\mathrm{R}}$
隔壁	6	(1)	S S -F 1 $(-+)$	443μ	2000μ	0.23

注記＊1：評価位置は図5－1に示す。
＊2：照査用ひずみ＝発生ひずみ×構造解析係数 γ_{a}

表 5－4 曲げ・軸力系の破壊に対する最大照査値（主筋ひずみ）

表 5－5 せん断破壊に対する最大照査値（再掲）

評価位置＊1		解析 ケース	地震動	照査用せん断力＊2 $\mathrm{V}_{\mathrm{d}}(\mathrm{kN})$	せん断耐力 $\mathrm{V}_{\mathrm{yd}}(\mathrm{kN})$	照査値 $\mathrm{V}_{\mathrm{d}} / \mathrm{V}_{\mathrm{yd}}$
隔壁	6	(1)	$\mathrm{S} \mathrm{s}-\mathrm{D} 2$ $(++)$	60	$227 * 3$	0.27

注記＊1：評価位置は図5－1に示す。
$* 2$ ：照査用せん断力 $=$ 発生せん断力 \times 構造解析係数 γ a
＊ 3 ：材料非線形解析によるせん断耐力

5.3 基礎地盤の支持性能に対する評価結果

5．3．1 基礎地盤（狐崎部層）

基礎地盤の支持性能に対する照査結果を表5－6に示す。また，最大接地圧分布図を図5 － 2 に示す。
軽油タンク連絡ダクトの基礎地盤に発生する最大接地圧が，極限支持力を下回ることを確認した。

表 5－6 基礎地盤の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	極限支持力 $\mathrm{R}_{\mathrm{u}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照査値 $\mathrm{R}_{\mathrm{d}} / \mathrm{R}_{\mathrm{u}}$
(1)	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$ $(++)$	6.6	13.7	0.49

西 東～ MMR底面

図 5－2 基礎地盤の最大接地圧分布図
（解析ケース（1），S s－D $1(++))$

5．3．2 MMR（既設）

MMR（既設）の支持性能に対する照査結果を表 5－7に示す。また，最大接地圧分布図を図5－3に示す。

軽油タンク連絡ダクトのMMR（既設）に発生する最大接地圧が，支圧強度を下回ること を確認した。

表 5－7 MMR（既設）の支持性能照査結果

解析ケース	地震動	最大接地圧 $\mathrm{R}_{\mathrm{d}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	支圧強度 $\mathrm{f}^{\prime}{ }_{\mathrm{a}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	照查値 $\mathrm{R}_{\mathrm{d}} / \mathrm{f}^{\prime}{ }_{\mathrm{a}}$
（1）	$\mathrm{S} \mathrm{s}-\mathrm{F} 1$ $(-+)$	2.0	15.6	0.13

構造物底面

図 5－3 MMR（既設）の最大接地圧分布図 （解析ケース（1），S s－F $1(-+)$ ）

VI－2－2－21 緊急用電気品建屋の地震応答計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2． 2 構造概要 3
2.3 解析方針 6
2.4 適用規格•基準等 8
3．解析方法 9
3.1 設計に用いる地震波 9
3.2 地震応答解析モデル 17
3.3 解析方法 29
3.4 解析条件 32
4．解析結果 42
4． 1 動的解析 42
4．1．1 基本ケースの地震応答解析結果 42
4．1．2 材料物性の不確かさを考慮したケースの地震応答解析結果 68
4.2 必要保有水平耐力 82

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく緊急用電気品建屋の地震応答解析について説明するものである。

地震応答解析により算出した各種応答値は，添付書類「VI－2－1－9 機能維持の基本方針」に示す建物•構築物及び機器•配管系の設計用地震力として用いる。また，必要保有水平耐力については建物•構築物の構造強度の確認に用いる。

2．基本方針

2.1 位置

緊急用電気品建屋の設置位置を図 $2-1$ に示す。

図 2－1 緊急用電気品建屋の設置位置

2.2 構造概要

緊急用電気品建屋は，地下 1 階，地上 1 階で，基礎底面からの高さは 16.0 m であり，平面は下部で南北方向 25.2 m ，東西方向 $30.0 \mathrm{~m} *$ である。建屋の構造は鉄骨造及び鉄筋 コンクリート造である。

緊急用電気品建屋の基礎は，厚さ 3.5 m で，支持地盤である砂岩に岩着している。
建屋の地上部分は鉄骨造の柱及び大ばりでフレームを形成（以下「フレーム構造部」 という。）しており，これらの柱及びはりは，地下部分の鉄骨柱及び耐震壁とつなが ってラーメン構造を形成している。地上部分に加わる地震時の水平力はすべてこれら のフレームで負担する。

地下部分の耐震壁は基礎版から1階床面まで連続しており，壁厚は $0.8 \mathrm{~m} \sim 1.5 \mathrm{~m}$ であ る。建屋の地下部分は全体として非常に剛性が高く，地下部分に加わる地震時の水平力はすべてこれらの耐震壁で負担する。地下部分のラーメン構造部材は地震時の建屋層間変形に追従可能な設計とする。

なお，緊急用電気品建屋に内包するガスタービン発電機に関して，仮想的に回転体 の損壊を想定しても，損壊した回転体が緊急用電気品建屋外壁を貫通することなく内部に留まり，タービンミサイルが発生することのないよう，緊急用電気品建屋外壁厚 さがタービンミサイルの防護上必要な板厚を上回る設計としており，外壁面にはルー バを，天井面には防護鉄板を設置している。

緊急用電気品建屋の概略平面図及び概略断面図を図2－2 及び図 $2-3$ に示す。

注記 $*$ ：建屋寸法は壁外面押えとする。

図 2－2（1）緊急用電気品建屋の概略平面図（0．P．＊ 56.4 m ）
（a）

注記＊：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－ 0.74 m である。

図 $2-2$（2）緊急用電気品建屋の概略平面図（0．P．62．9m）

図2－3（1）緊急用電気品建屋の概略断面図（A－A 断面，NS 方向）

－ル ルーバ，防護鉄板
■：S 造
—：R C 造

図2－3（2）緊急用電気品建屋の概略断面図（B－B 断面，EW 方向）

2.3 解析方針

緊急用電気品建屋の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づいて行う。

図 2－4に緊急用電気品建屋の地震応答解析フローを示す。
地震応答解析は，「3．1 設計に用いる地震波」及び「3．2 地震応答解析モデル」 において設定した地震応答解析モデルを用いて実施することとし，「3．3解析方法」及び「3．4 解析条件」に基づき，「4．1 動的解析」においては材料物性の不確かさ を考慮し，加速度，変位，せん断ひずみ，接地圧等を含む各種応答値を，「4．2 必要保有水平耐力」においては必要保有水平耐力を算出する。

注：［ ］内は，本資料における章番号を示す。
注記＊：材料物性の不確かさを考慮する。

図 2－4 緊急用電気品建屋の地震応答解析フロー

2.4 適用規格•基準等

緊急用電気品建屋の地震応答解析において適用する規格•基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 460 1 •補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 0 1－1991 追補版）（以下「 J EAG4601－1991追補版」という。）

3．解析方法
3.1 設計に用いる地震波

緊急用電気品建屋の地震応答解析モデルは，建屋と地盤の相互作用を評価した建屋 —地盤連成モデルとする。この連成モデルへの入力地震動は，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」に示す解放基盤表面レベルで定義された基準地震動 S s から，地盤の振動特性を考慮して算定した地震動を用いる。

基準地震動 S s の最大加速度一覧を表 3－1に，加速度時刻歴波形及び加速度応答ス ペクトルを図 3－1 及び図 3－2に示す。

表 3－1 基準地震動 S s の最大加速度一覧

基準地震動		最大加速度（cm／s ${ }^{2}$ ）	
		水平方向	鉛直方向
Ss－D1	プレート間地震の応答スペクトルに基づく手法による基準地震動	640	430
Ss－D2	海洋プレート内地震（SMGAマントル内）の応答スペクト ルに基づく手法による基準地震動	1000	600
Ss－D3	海洋プレート内地震（SMGA 地殻内）の応答スペクトルに基づく手法による基準地震動	800	500
Ss－F1	プレート間地震の断層モデルを用いた手法による基準地震動（応力降下量（短周期レベル）の不確かさ）	717	393
Ss－F2	プレート間地震の断層モデルを用いた手法による基準地震動（SMGA 位置と応力降下量（短周期レベル）の不確か さの重畳）	722	396
Ss－F3	海洋プレート内地震（SMGAマントル内）の断層モデルを用いた手法による基準地震動（SMGA マントル内集約）	835	443
Ss－N1	2004年北海道留萌支庁南部地震（K—NET 港町）の検討結果に保守性を考慮した地震動	620	320

（c） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$
図 3－1（1）加速度時刻歴波形（基準地震動 S s ，水平方向）（1／3）

（d） S s -F 1

（e） S s -F 2

（f） S s -F 3
図 3－1（2）加速度時刻歴波形（基準地震動 S s，水平方向）（2／3）

図 3－1（3）加速度時刻歴波形（基準地震動 S s，水平方向）（3／3）

（c） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$
図 3－1（4）加速度時刻歴波形（基準地震動 S s，鉛直方向）（1／3）

（e） S s -F 2

（f） S s－F 3
図 3－1（5）加速度時刻歴波形（基準地震動 S s，鉛直方向）（2／3）

図 3－1（6）加速度時刻歴波形（基準地震動 $\mathrm{S} s$ ，鉛直方向）（3／3）

図 3－2（1）加速度応答スペクトル（基準地震動 S s ，水平方向）

図 3－2（2）加速度応答スペクトル（基準地震動 S s ，鉛直方向）

3.2 地震応答解析モデル

地震応答解析モデルは，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析モデルの設定方針に基づき，水平方向及び鉛直方向についてそれぞれ設定する。地震応答解析モデルの設定に用いた使用材料の物性値を表3－2に示す。

表 3－2 使用材料の物性値

部位	使用材料	ヤング係数 E （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	せん断弾性係数 $\begin{gathered} \mathrm{G} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	減衰定数 h （\％）
建屋部（B1F）基礎版	$\begin{gathered} \text { 鉄筋コンクリート } \\ \text { コンクリート: } \\ \text { F c }=30\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$ 鉄筋：SD390	2． 44×10^{4}	1． 02×10^{4}	5
建屋部（1F）	$\begin{aligned} \text { 鉄骨: } & \text { BCP325, } \\ & \text { SN400B, } \\ & \text { SN490B } \end{aligned}$	2.05×10^{5}	7． 90×10^{4}	2

3．2．1 水平方向

（1）地震応答解析モデル
水平方向の地震応答解析モデルは，建屋を曲げ変形とせん断変形をする耐震壁部及びせん断変形をする鉄骨部からなる質点系モデルとし，地盤を等価なばねで評価した建屋一地盤連成モデルとする。

0．P． $62.9 \mathrm{~m} \sim 0$ ．P． 68.9 m のフレーム構造部は，構面ごとに柱及び大梁をモデル化 した 2 次元フレームモデルに単位の水平力 P を与えた時の水平変位より，等価な せん断剛性を算定し，曲げ剛性を無限大とした線形一軸モデルに置換する。なお， フレーム構造部については耐震設計上は弾性とする。

水平方向の地震応答解析モデル及び諸元を図 3－3に示す。
（2）地盤ばね
基礎版底面下の地盤は，水平方向の地震応答解析モデルにおいては底面水平ば ね及び底面回転ばねで置換している。この底面水平ばね及び底面回転ばねは，「 J EAG 4 6 O 1－1991追補版」により，基礎版底面下の地盤を等価な半無限地盤と見なして，振動アドミッタンス理論に基づいて評価している。いずれのばねも振動数に依存した複素剛性として表現されるが，図 3－4に示すようにばね定数とし て，実部の静的な値（ K_{c} ）を，また，減衰係数（ C_{c} ）として，建屋一地盤連成モデ ルの1次固有円振動数 $\left(\begin{array}{ll}\omega_{1}\end{array}\right)$ に対応する虚部の値と原点を結ぶ直線の傾きを採用 することにより近似する。このうち，底面回転ばねには，基礎浮上りによる幾何学的非線形性を考慮する。基礎底面ばねの評価には解析コード「ADMITHF」を用い る。

基礎版の埋込み部分の側面地盤ばねについては，基礎版の側面位置の地盤定数 を用いて，「J E A G 4 6 O 1－1991追補版」により，Novakの方法に基づき求め た側面水平ばねを，基礎底面地盤ばねと同様に近似法により定数化して用いる。側面水平ばねの評価には，解析コード「NOVAK」を用いる。

評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
地盤ばね定数及び減衰係数を表3－3に，地盤モデルの物性値を表3－4に示す。

（3）入力地震動

地震応答解析モデルへの入力地震動は，解放基盤表面レベルで定義される基準地震動 S s から以下の手順で算定する。まず，地下構造モデルの解放基盤表面以深の地盤を一次元地盤としてモデル化し，一次元波動論に基づく評価により 0．P．－ 200 m の入射波を算定する。算定した 0. P．-200 m の入射波を建屋位置地盤モデルに入力して線形解析を行い，建屋基礎底面レベルでの地盤及び基礎の上下端レベル

の建屋側面の地盤の応答を評価して入力地震動とする。また，建屋基礎底面レべ ルにおける補正水平力（以下「切欠き力」という。）を入力地震動に付加するこ とにより，地盤の切欠き効果を考慮する。図 3－5に地震応答解析モデルに入力す る地震動の概念図を，設定した地盤定数に基づき算定した基礎底面位置 （0．P．52．9m）における入力地震動の加速度応答スペクトルを図 3－6に示す。入力地震動の算定には，解析コード「SHAKE」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
ω

図 3－3 地震応答解析モデル及び諸元（水平方向）

ばね定数：底面ばねは 0 Hz のばね定数 K_{c} で定数化
減衰係数：建屋一地盤連成系の 1 次固有円振動数 ω_{1} に対応する虚部の値と原点とを結ぶ直線の傾き C c で定数化

図 3－4 地盤ばねの定数化の概要

表 3－3 地盤ばね定数と減衰係数（水平方向）
（a）NS 方向

地盤ばね 成分	質点 番号	ばね定数 K_{c}	減衰係数 C_{c}
側面•水平	3	$8.281 \times 10^{7} \quad(\mathrm{kN} / \mathrm{m})$	$1.470 \times 10^{6} \quad(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
側面•水平	4	$8.281 \times 10^{7} \quad(\mathrm{kN} / \mathrm{m})$	$1.470 \times 10^{6} \quad(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
底面•水平	4	$1.013 \times 10^{9} \quad(\mathrm{kN} / \mathrm{m})$	$3.844 \times 10^{6} \quad(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
底面•回転	4	$1.772 \times 10^{11} \quad(\mathrm{kN} \cdot \mathrm{m} / \mathrm{rad})$	$1.508 \times 10^{8} \quad(\mathrm{kN} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad})$

（b）EW方向

地盤ばね 成分	質点 番号	ばね定数 K_{c}	減衰係数 C_{c}
側面•水平	3	$8.281 \times 10^{7}(\mathrm{kN} / \mathrm{m})$	$1.463 \times 10^{6} \quad(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
側面•水平	4	$8.281 \times 10^{7}(\mathrm{kN} / \mathrm{m})$	$1.463 \times 10^{6} \quad(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
底面•水平	4	$9.999 \times 10^{8} \quad(\mathrm{kN} / \mathrm{m})$	$3.752 \times 10^{6} \quad(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
底面•回転	4	$2.269 \times 10^{11}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{rad})$	$2.628 \times 10^{8} \quad(\mathrm{kN} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad})$

表 3－4（1）緊急用電気品建屋の地震応答解析に用いる地下構造モデルの地盤物性値

地層レベル $0 . \mathrm{P} .(\mathrm{m})$	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断波速度 $\mathrm{Vs}(\mathrm{m} / \mathrm{s})$	減衰定数 $\mathrm{h}(\%)$
-14.1	26.1	1360	3
-27.0	26.4	2040	3
-50.0	26.5	2520	3
-200.0	26.5	2520	3

表 3－4（2）緊急用電気品建屋の地震応答解析に用いる建屋位置地盤モデルの地盤物性値

	地層レベル 0. P. (m)	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断波速度 $V_{s}(\mathrm{~m} / \mathrm{s})$	減衰定数 h（\％）
側面地盤	62.3	25.5	280	3
	61.7	25.5	680	3
	60.8	26． 2	670	3
	59.5	26． 2	1330	3
	57.5	26． 2	2080	3
底面地盤	52.9	26． 2	2080	3
	46.8	26.2	2510	3
	16.9	26.4	2500	3
	－200． 0	26． 4	2500	3

図 3－5 地震応答解析モデルに入力する地震動の概念図（水平方向）

図 3－6 入力地震動の加速度応答スペクトル （基準地震動 S s ，水平方向。 0．P．52．9m）

3．2．2 鉛直方向

（1）地震応答解析モデル
鉛直方向の地震応答解析モデルは，軸変形をする耐震壁部及び鉄骨部からなる質点系モデルとし，地盤を等価なばねで評価した建屋一地盤連成モデルとする。軸剛性は地下 1 階は耐震壁，地上 1 階は鉄骨柱の軸断面積に基づき算定する。鉛直方向の地震応答解析モデル及び諸元を図 3－7に示す。

（2）地盤ばね

基礎版底面下の地盤は，鉛直方向の地震応答解析モデルにおいては鉛直ばねで置換している。この鉛直ばねは，「J E A G 4 6 O 1－1991追補版」により，基礎版底面下の地盤を等価な半無限地盤と見なして，振動アドミッタンス理論に基づ いて評価しており，振動数に依存した複素剛性として表現される。図 $3-8$ に示す ようにばね定数として，実部の静的な値（ K_{c} ）を，また，減衰係数（ C c $)$ として，建屋一地盤連成モデルの 1 次固有円振動数（ ω_{1} ）に対応する虚部の値と原点を結 ぶ直線の傾きを採用することにより近似する。基礎底面ばねの評価には解析コー ド「ADMITHF」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要 については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。地盤ばね定数及び減裹係数を表 $3-5$ に示す。
（3）入力地震動
地震応答解析モデルへの入力地震動は，解放基盤表面レベルで定義される基準地震動 S s から以下の手順で算定する。まず，解放基盤モデルの解放基盤表面以深の地盤を一次元地盤としてモデル化し，一次元波動論に基づく評価により 0．P．－ 200 m の入射波を算定する。算定した 0．P．－ 200 m の入射波を構造物位置地盤の一次元地盤モデルに入力して線形解析を行い，建屋基礎底面レベルでの地盤の応答を評価して入力地震動とする。図3－9に地震応答解析モデルに入力する地震動の概念図を，設定した地盤定数に基づき算定した基礎底面位置（0．P． 52.9 m ）における入力地震動の加速度応答スペクトルを図 3－10に示す。入力地震動の算定には，解析コード「SHAKE」を用いる。評価に用いる解析コードの検証及び妥当性確認等 の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。

質点番号

O．P． 68.900 m

O．P． 62.900 m

図 3－7 地震応答解析モデル及び諸元（鉛直方向）

ばね定数：底面ばねは 0 Hz のばね定数 K_{c} で定数化
減衰係数：建屋一地盤連成系の 1 次固有円振動数 ω_{1} に対応する虚部の値と原点とを結ぶ直線の傾き C c で定数化

図 3－8 鉛直地盤ばねの定数化の概要

表 3－5 地盤ばね定数と減衰係数（鉛直方向）

地盤ばね 成分	ばね定数 K_{c}	減衰係数 C_{c}
底面•鉛直	$1.266 \times 10^{9}(\mathrm{kN} / \mathrm{m})$	$6.934 \times 10^{6}(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$

図 3－9 地震応答解析モデルに入力する地震動の概念図（鉛直方向）

図 3－10 入力地震動の加速度応答スペクトル

3． 3 解析方法

緊急用電気品建屋について，動的解析により応答加速度，応答変位，応答せん断力，応答曲げモーメント，応答軸力，応答せん断ひずみ及び接地圧を算出する。また，静的解析により必要保有水平耐力を算出する。

緊急用電気品建屋の地震応答解析には，解析コード「NUPP4」を用いる。評価に用い る解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プ ログラム（解析コード）の概要」に示す。

3．3．1 動的解析

建物•構築物の動的解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の解析方法に基づき，時刻歴応答解析により実施する。

なお，最大接地圧は，「原子力発電所耐震設計技術規程（J E A C 4 6 0 1－2015）」 を参考に，水平応答と鉛直応答から組合せ係数法（組合せ係数は1．0と0．4）を用 いて算出する。

3．3．2 必要保有水平耐力

各層の必要保有水平耐力 $\mathrm{Q}_{\mathrm{u} \mathrm{n}}$ は，次式により算出する。必要保有水平耐力算定用の基準面は基礎版上端（0．P．56．4m）とする。

$$
Q_{u n}=D_{s} \cdot F_{e s} \cdot Q_{u d}
$$

ここで，
D ：各層の構造特性係数
Fes ：各層の形状特性係数
$\mathrm{F}_{\mathrm{e} \mathrm{s}}=\mathrm{F}_{\mathrm{s}} \cdot \mathrm{F}_{\mathrm{e}}$
F s ：剛性率に応じた数値（ 1.0 ）
F_{e} ：偏心率に応じた数値（1．0）

地震力によって各層に生じる水平力 $\mathrm{Qu} \mathrm{a}_{\mathrm{u}}$ は，次式により算出する。

$$
\mathrm{Q}_{\mathrm{ud}}=\mathrm{n} \cdot \mathrm{C}_{\mathrm{i}} \cdot \mathrm{~W}_{\mathrm{i}}
$$

ここで，
n ：施設の重要度分類に応じた係数（1．0）
C i ：第 i 層の地震層せん断力係数
$W_{i} \quad$ ：第 i 層が支える重量

地震層せん断力係数C i は，次式により算出する。

$$
\mathrm{C}_{\mathrm{i}}=\mathrm{Z} \cdot \mathrm{R}_{\mathrm{t}} \cdot \mathrm{~A}_{\mathrm{i}} \cdot \mathrm{C}_{0}
$$

ここで，
Z ：地震地域係数（1．0）
$R_{t} \quad$ ：振動特性係数（ 0.8 ）
A_{i} ：第 i層の地震層せん断力係数の高さ方向の分布係数
Co ：標準せん断力係数（1．0）

なお，A_{i} はモーダル解析により以下のとおり算出する。

$$
\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}^{\prime} \quad / \mathrm{A}_{1}^{\prime}
$$

$$
A_{i}^{\prime}=\sqrt{\sum_{j=1}^{k}\left(\sum_{m=i}^{n} W_{m} \cdot \beta_{j} \cdot U_{m j} \cdot R_{t}\left(T_{j}\right)\right)^{2}} / \sum_{m=i}^{n} W_{m}
$$

ここで，
$\mathrm{n} \quad:$ 建物•構築物の層数
w_{m} ：第m層の重量
$\beta \mathrm{j} \cdot \mathrm{U}_{\mathrm{m}} \mathrm{j} \quad:$ 第 m 層の j 次刺激関数
T j ：固有値解析により得られる建物•構築物の j 次固有周期
$R_{t}\left(T_{j}\right)$ ：周期 T_{j} に対応する加速度応答スペクトルの値
（建築基準法施行令第 88 条第 1 項に与えられている振動特性係数 R_{t} の T_{j} に対する値とする。地盤種別は第 1 種地盤と する。）
k ：考慮すべき最高次数

3． 4 解析条件

3．4．1 建物•構築物の復元力特性

（1）耐震壁のせん断応力度一せん断ひずみ関係（ $\tau-\gamma$ 関係）
耐震壁のせん断応力度一せん断ひずみ関係（ $\tau-\gamma$ 関係）は「JEAG460 1－1991追補版」に基づき，トリリニア型スケルトンカーブとする。耐震壁のせん断応力度一せん断ひずみ関係を図 3－11に示す。

τ_{1} ：第1折点のせん断応力度
τ_{2} ：第 2 折点のせん断応力度
$\tau 3$ ：終局点のせん断応力度
γ_{1} ：第1折点のせん断ひずみ
γ_{2} ：第2折点のせん断ひずみ
γ_{3} ：終局点のせん断ひずみ $\left(=4.0 \times 10^{-3}\right)$

図 3－11 耐震壁のせん断応力度一せん断ひずみ関係
（2）耐震壁のせん断応力度一せん断ひずみ関係の履歴特性
耐震壁のせん断応力度一せん断ひずみ関係の履歴特性は，「JEAG4601 －1991追補版」に基づき，最大点指向型モデルとする。耐震壁のせん断応力度一せ ん断ひずみ関係の履歴特性を図3－12に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が
第1折点を越えていない時は負側第1折点に向かう。
c．B－C 間：負側最大点指向
d．各最大点は，スケルトン上を移動することにより更新される。
e．安定ループは面積を持たない。

図 3－12 耐震壁のせん断応力度一せん断ひずみ関係の履歴特性
（3）耐震壁の曲げモーメント一曲率関係（ $\mathrm{M}-\phi$ 関係）
耐震壁の曲げモーメントー曲率関係（M－ C 関係）は，「J E A G 4 6 O 1－1991追補版」に基づき，トリリニア型スケルトンカーブとする。耐震壁の曲げモーメ ントー曲率関係を図3－13に示す。

M_{1} ：第1折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント
M_{3} ：終局点の曲げモーメント
ϕ_{1} ：第 1 折点の曲率
\＄2 ：第 2 折点の曲率
ϕ_{3} ：終局点の曲率

図 3－13 耐震壁の曲げモーメントー曲率関係
（4）耐震壁の曲げモーメント一曲率関係の履歴特性
耐震壁の曲げモーメント—曲率関係の履歴特性は，「J E A G 4 6 O 1－1991 追補版」に基づき，ディグレイディングトリリニア型モデルとする。耐震壁の曲げ モーメントー曲率関係の履歴特性を図3－14に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第1折点を越えていない時は負側第1折点に向かう。
c．B－C 間：最大点指向型で，安定ループは最大曲率に応じた等価粘性減衰を与 える平行四辺形をしたディグレイディングトリリニア型とする。平行四辺形の折点は最大値から $2 \cdot \mathrm{M}_{1}$ を減じた点とする。ただし，負側最大点が第2折点を超えていなければ，負側第2折点を最大点とす る安定ループを形成する。また，安定ループ内部での繰り返しに用 いる剛性は安定ループの戻り剛性に同じとする。
d．各最大点はスケルトン上を移動することにより更新される。

図 3－14 耐震壁の曲げモーメントー曲率関係の履歴特性
（5）スケルトンカーブの諸数値
緊急用電気品建屋の各耐震壁について算出したせん断力及び曲げモーメントの スケルトンカーブの諸数値を表 3－6及び表 3－7に示す。

表 3－6（1）せん断力のスケルトンカーブ（ $\tau-\gamma$ 関係）NS 方向

$0 . \mathrm{P}$. (m)	通り	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$62.90 \sim 56.40$	A	1.78	2.40	6.91	0.174	0.523	4.00
	D	1.80	2.42	6.01	0.176	0.528	4.00
	E	1.77	2.39	6.91	0.174	0.521	4.00

表3－6（2）せん断力のスケルトンカーブ（ $\tau-\gamma$ 関係）EW 方向

0．P． (m)	通り	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$62.90 \sim 56.40$	0	1.75	2.36	7.67	0.171	0.514	4.00
	1	1.77	2.39	5.61	0.173	0.520	4.00
	4	1.77	2.39	5.62	0.174	0.521	4.00
	5	1.75	2.36	7.67	0.172	0.515	4.00

表 $3-7(1) \quad$ 曲げモーメントのスケルトンカーブ（ $\mathrm{M}-\phi$ 関係） NS 方向

$0 . \mathrm{P}$. (m)	通り	M_{1} $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{2} $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{3} $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$	ϕ_{1} $\left(\times 10^{-6} / \mathrm{m}\right)$	ϕ_{2} $\left(\times 10^{-6} / \mathrm{m}\right)$	ϕ_{3} $\left(\times 10^{-6} / \mathrm{m}\right)$
$62.90 \sim 56.40$	A	6.54	24.46	35.65	8.15	100.65	1347.70
	D	4.74	9.13	11.84	10.00	116.18	2323.60
	E	6.40	24.24	35.39	8.12	100.73	1345.82

表 $3-7$（2）曲げモーメントのスケルトンカーブ（ $\mathrm{M}-\phi$ 関係）EW 方向

0．P． (m)	通り	M_{1} $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{2} $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{3} $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$	ϕ_{1} $\left(\times 10^{-6} / \mathrm{m}\right)$	ϕ_{2} $\left(\times 10^{-6} / \mathrm{m}\right)$	ϕ_{3} $\left(\times 10^{-6} / \mathrm{m}\right)$
$62.90 \sim 56.40$	0	4.00	20.89	33.11	7.12	91.79	642.52
	1	8.67	23.22	31.99	6.40	80.19	1603.76
	4	8.70	23.27	32.04	6.42	80.23	1604.52
	5	4.01	20.90	33.12	7.13	91.81	642.16

3．4．2 地盤の回転ばねの復元力特性
地盤の回転ばねに関する曲げモーメントー回転角の関係は「JEAG4601 －1991追補版」に基づき，浮上りによる幾何学的非線形性を考慮する。地盤の回転 ばねの曲げモーメントー回転角の関係を図3－15に示す。

浮上り時の地盤の回転ばねの剛性は，図 3－15 の曲線で表され，減裹係数は，回転ばねの接線剛性に比例するものとして考慮する。

M ：転倒モーメント
M_{0} ：浮上り限界転倒モーメント $(=\mathrm{W} \cdot \mathrm{L} / 6)$
θ ：回転角
θ o ：浮上り限界回転角
Ko ：地盤の回転ばね定数（浮上り前）
K ：地盤の回転ばね定数（浮上り後）
W ：建屋総重量
L ：建屋基礎幅

図 3－15 地盤の回転ばねの曲げモーメントと回転角の関係

3．4．3 材料物性の不確かさ

解析においては，「3．2 地震応答解析モデル」に示す物性値及び定数を基本ケ ースとし，材料物性の不確かさを考慮する。材料物性の不確かさを考慮した地震応答解析は，すべての基準地震動 S s について実施することとする。

材料物性の不確かさのうち，地盤物性については，地盤調査結果の平均値をもと に設定した数値を基本ケースとし，支持地盤のせん断波速度の不確かさは，士 σ 相当として，変動係数 5.7% を考慮する。

建屋剛性の不確かさについては，既設建屋は3．11地震等の影響を踏まえて初期剛性の低下を考慮しているものの，緊急用電気品建屋は新設建屋であり地震の影響を受けていないこと，また評価基準値（耐震壁のせん断ひずみ：2． 0×10^{-3} ）に対 して十分な余裕を有しているため，耐震安全性は基本ケースの解析で確認可能と考えるが，念のため初期剛性の不確かさとして 0.8 倍を考慮することで設計にお ける保守性を確保する。

材料物性の不確かさを考慮する地震応答解析ケースを表 3－8に，地盤物性の不確かさを考慮した解析用地盤物性を表3－9に示す。

表 3－8 材料物性の不確かさを考慮する地震応答解析ケース

ケース名	建屋 減衰	コンクリート剛性		地盤の せん断波速度
		初期剛性	終局耐力	
$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	5\％	設計基準強度に基づき JEAG式で評価		平均値
ケース 2	同上	同上		$+\sigma$ 相当
ケース 3	同上	同上		－σ 相当
$\begin{aligned} & \text { ケース } 4 \\ & \text { (水平のみ) } \end{aligned}$	同上	基本ケースの 0.8 倍	設計基準強度に基づき JEAG 式で評価	平均値
$\begin{aligned} & \text { ケース } 5 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	$+\sigma$ 相当
$\begin{aligned} & \text { ケース } 6 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	－σ 相当

表3－9（1）地盤物性の不確かさを考慮した地下構造モデルの解析用地盤物性

$0 . \mathrm{P}$	地盤のせん断波速度 $(\mathrm{m} / \mathrm{s})$		
	基本ケース	$+\sigma$ 相当	$-\sigma$ 相当
-14.1	1360	1460	1260
-27.0	2040	2190	1890
-50.0	2520	2700	2340
-200.0	2520	2700	2340

表3－9（2）地盤物性の不確かさを考慮した建屋位置地盤モデルの解析用地盤物性

	$\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$	地盤のせん断波速度（m／s）		
		基本ケース	$+\sigma$ 相当	－σ 相当
側面地盤	62.3	280	300	260
	61.7	680	720	640
	60.8	670	710	630
	59.5	1330	1410	1250
	57.5	2080	2200	1960
底面地盤	52.9	2080	2200	1960
	46.8	2510	2650	2370
	16.9	2500	2640	2360
	－200． 0	2500	2640	2360

4．解析結果

4． 1 動的解析

4．1．1 基本ケースの地震応答解析結果
（1）固有値解析結果
基本ケースの地震応答解析モデルの固有値解析結果（固有周期，固有振動数及び刺激係数）を表4－1 に示す。刺激関数図を図4－1 に示す。

なお，刺激係数は，各次の固有ベクトル $\{\mathrm{u}\}$ に対し，最大振幅が 1.0 となるよ うに規準化した値を示す。
（2）地震応答解析結果
基準地震動 S s による最大応答値を図4－2～図4－12及び表4－2～表4－15に示す。また，基準地震動 S s に対する最大応答値を耐震壁のスケルトンカーブ上 にプロットして図4－13及び図4－14に示す。

表 4－1 固有値解析結果
（a）NS 方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数
1	0.119	8.39	1.160
2	0.039	25.52	1.205
3	0.019	52.90	0.138
4	0.017	60.37	0.722

（b）EW方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数
1	0.127	7.87	1.104
2	0.034	29.30	1.260
3	0.018	55.41	0.225
4	0.015	64.84	0.517

（c）UD 方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数
1	0.024	42.00	1.791
2	0.013	76.72	1.198
3	0.010	98.09	0.407
4	0.004	271.70	0.089

注記：刺激係数は，各次の固有ベクトル\｛u\}に対し, 最大振幅が 1.0 となるように規準化した値を示す。

図 4－1（1）刺激関数図（NS 方向）

図 4－1（2）刺激関数図（EW 方向）

図 4－1（3）刺激関数図（UD 方向）

図 4－2 最大応答加速度（基準地震動 S s，NS 方向）

表 4－2 最大応答加速度一覧（基準地震動 S s，NS 方向）

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$							
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	$\mathrm{Ss}-\mathrm{N} 1$	最大値
1	2190	2580	2235	1742	1834	2253	1047	2580
2	724	957	877	657	698	838	611	957
3	537	594	563	576	603	644	577	644

注：網掛け部分は最大値

図 4－3 最大応答変位（基準地震動 S s，NS 方向）

表 4－3 最大応答変位一覧（基準地震動 S s，NS 方向）

質点番号	最大応答変位（cm）							
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	最大値
1	0.79	0.93	0.81	0.64	0.66	0.82	0.39	0.93
2	0.03	0.03	0.03	0.02	0.02	0.03	0.02	0.03
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

注：網掛け部分は最大値

図 4－4 最大応答せん断力（基準地震動 S s，NS 方向）

表 4－4 最大応答せん断力一覧（基準地震動 S s，NS 方向）

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$							
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	最大値
（1）	8.17	9.62	8.33	6.50	6.84	8.40	3.91	9.62
（2）	12． 13	15． 29	14． 10	10.69	11.59	14． 52	10.62	15． 29
（3）	5.48	6.91	6． 37	4.83	5.23	6.56	4.80	6.91
（4）	12． 14	15． 29	14． 10	10．70	11.59	14.52	10.63	15．29

注：網掛け部分は最大値

図 4－5 最大応答曲げモーメント（基準地震動 S s，NS 方向）

表 4－5 最大応答曲げモーメント一覧（基準地震動 S s，NS 方向）

要素 番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$							
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	最大値
（1）	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4.90	5.77	5.00	3.90	4． 10	5.04	2.34	5.77
（2）	1.96	2． 49	2． 46	1.59	1． 68	2.36	0.71	2． 49
	8.95	12． 08	10.60	8． 20	7.82	10． 79	7.40	12.08
（3）	1． 48	2.03	1.90	1． 36	1． 35	1． 78	0.92	2.03
	4． 82	6.52	5.71	4． 42	4． 15	5.79	3.95	6.52
（4）	2.01	2.57	2.56	1． 64	1． 74	2.44	0.78	2.57
	9.04	12． 21	10.71	8.29	7.90	10.91	7.48	12． 21

注：網掛け部分は最大値

表 4－6 最大応答せん断ひずみ一覧（基準地震動 S s，NS 方向）

要素 番号	最大応答せん断ひずみ $\left(\times 10^{-3}\right)$								
	0.0315	0.0397	0.0366	0.0277	0.0301	0.0377	0.0276	0.0397	
(3)	0.0316	0.0398	0.0367	0.0279	0.0302	0.0378	0.0277	0.0398	
(4)	0.0315	0.0397	0.0366	0.0277	0.0301	0.0377	0.0276	0.0397	

注：網掛け部分は最大値

図 4－6 最大応答加速度（基準地震動 S s，EW 方向）

表 4－7 最大応答加速度一覧（基準地震動 S s，EW 方向）

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$							
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	最大値
1	2184	2511	2269	1659	1532	1912	930	2511
2	602	806	718	601	641	709	602	806
3	522	590	572	564	602	638	575	638

注：網掛け部分は最大値

$$
\text { O } 2 \text { (6) } \mathrm{VI}-2-2-21 \quad \mathrm{R} 3
$$

図 4－7 最大応答変位（基準地震動 S s，EW 方向）

表 4－8 最大応答変位一覧（基準地震動 S s，EW 方向）

質点番号	最大応答変位（ cm ）							
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	最大値
1	0.90	1． 02	0.93	0.68	0.63	0.78	0.39	1． 02
2	0.01	0.02	0.02	0.01	0.02	0.02	0.01	0.02
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

注：網掛け部分は最大値

ఠ

図 4－8 最大応答せん断力（基準地震動 S s，EW 方向）

表 4－9 最大応答せん断力一覧（基準地震動 S s，EW 方向）

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$							
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	最大値
（1）	8.15	9． 36	8． 46	6． 19	5.71	7.13	3.47	9.36
（2）	4.41	5． 89	4.61	4． 48	4． 65	5.61	4． 48	5． 89
（3）	8． 29	11.08	8.67	8． 42	8.75	10.55	8． 44	11.08
（4）	8.29	11.08	8.67	8． 42	8.75	10.55	8.44	11.08
（5）	4.41	5． 89	4.61	4． 48	4.65	5.61	4． 48	5.89

注：網掛け部分は最大値

๗

表 4－10 最大応答曲げモーメント一覧（基準地震動 S s，EW 方向）

要素番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$							
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	最大値
（1）	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4． 89	5． 62	5.08	3． 71	3． 43	4.28	2． 08	5.62
（2）	0.67	0.91	0． 72	0.54	0.58	0． 70	0.14	0.91
	3.09	4.18	3.21	3.04	3.44	3.99	2.95	4． 18
（3）	2.13	2.83	2.19	1.58	1.84	2． 19	0.96	2.83
	6.74	9.06	7.04	6.56	7.50	8.66	6． 33	9.06
（4）	2.13	2． 83	2.19	1.58	1.84	2． 19	0.96	2． 83
	6.74	9.06	7.04	6.56	7.50	8.66	6． 33	9.06
（5）	0.67	0.91	0.72	0.54	0.58	0.70	0.14	0.91
	3.09	4.18	3.21	3.04	3.44	3.99	2.95	4.18

注：網掛け部分は最大値

表 4－11 最大応答せん断ひずみ一覧（基準地震動 S s ，EW 方向）

要素 番号	最大応答せん断ひずみ $\left(\times 10^{-3}\right)$								
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	最大値	
(2)	0.0180	0.0241	0.0188	0.0183	0.0190	0.0229	0.0183	0.0241	
(3)	0.0181	0.0241	0.0189	0.0183	0.0191	0.0230	0.0184	0.0241	
(4)	0.0181	0.0241	0.0189	0.0183	0.0191	0.0230	0.0184	0.0241	
(5)	0.0180	0.0241	0.0188	0.0183	0.0190	0.0229	0.0183	0.0241	

注：網掛け部分は最大値

0．P．
（m）
68.9

図 4－10 最大応答加速度（基準地震動 S s，UD 方向）

表 4－12 最大応答加速度一覧（基準地震動 S s，UD 方向）

質点番号	最大応答加速度 $\left(\mathrm{m} / \mathrm{s}^{2}\right)$							
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1	最大値
1	542	801	680	422	464	531	334	801
2	443	631	531	397	405	471	316	631
3	402	546	548	366	382	422	308	548

注：網掛け部分は最大値

図 4－11 最大応答変位（基準地震動 S s，UD 方向）

表 4－13 最大応答変位一覧（基準地震動 S s，UD 方向）

質点 番号	最大応答変位 (cm)								
	Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	$\mathrm{Ss}-\mathrm{F} 3$	$\mathrm{Ss}-\mathrm{N} 1$	最大値	
1	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
2	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	
3	0.00	0.01	0.01	0.00	0.00	0.00	0.00	0.01	

注：網掛け部分は最大値

0．P．
（m）
68.9

0．P．
（m）
68.9

図 4－12 最大応答軸力（基準地震動 S s，UD 方向）

表 4－14 最大応答軸力一覧（基準地震動 S s，UD 方向）

要素 番号	最大応答軸力 $\left(\times 10^{3} \mathrm{kN}\right)$									$\mathrm{Ss}-\mathrm{D} 1$	$\mathrm{Ss}-\mathrm{D} 2$	$\mathrm{Ss}-\mathrm{D} 3$	$\mathrm{Ss}-\mathrm{F} 1$	$\mathrm{Ss}-\mathrm{F} 2$	$\mathrm{Ss}-\mathrm{F} 3$	$\mathrm{Ss}-\mathrm{N} 1$	最大値
	1.58	2.33	1.97	1.23	1.35	1.55	0.97	2.33									
(2)	19.07	27.29	22.89	16.94	17.43	20.08	13.50	27.29									

注：網掛け部分は最大値

$$
\mathrm{OS} \mathrm{~s}-\mathrm{D} 1 \quad \Delta \mathrm{~S} \mathrm{~s}-\mathrm{D} 2 \quad \square \mathrm{~S} \mathrm{~s}-\mathrm{D} 3 \bullet \mathrm{~S}-\mathrm{F} 1 \quad \mathrm{~S} \mathrm{~s}-\mathrm{F} 2 \quad \mathrm{~S} \mathrm{~s}-\mathrm{F} 3 \times \mathrm{S} \mathrm{~s}-\mathrm{N} 1
$$

要素番号（2）

要素番号（3）

要素番号（4）

図 4－13（1）せん断スケルトンカーブ上の最大応答値 （基準地震動 S s，NS 方向）

$$
\mathrm{OS} \mathrm{~s}-\mathrm{D} 1 \quad \mathrm{~S} \mathrm{~s}-\mathrm{D} 2 \quad \mathrm{~S} \mathrm{~s}-\mathrm{D} 3 \bullet \mathrm{~S} \mathrm{~s}-\mathrm{F} 1 \Delta \mathrm{~S} \mathrm{~s}-\mathrm{F} 2 ■ \mathrm{~S} \mathrm{~s}-\mathrm{F} 3 \times \mathrm{S} \mathrm{~s}-\mathrm{N} 1
$$

要素番号（2）

要素番号（4）

要素番号（3）

要素番号（5）

図 4－13（2）せん断スケルトンカーブ上の最大応答値 （基準地震動 S s，EW方向）

要素番号（2）

要素番号（3）

要素番号（4）

図 4－14（1）曲げスケルトンカーブ上の最大応答値 （基準地震動 S s，NS 方向）

図4－14（2）曲げスケルトンカーブ上の最大応答値 （基準地震動 S s ，EW 方向）

表 4－15 基準地震動 S s による地震応答解析結果に基づく接地率
（a）NS 方向

地震動	最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	最大転倒モーメント $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$	最小接地率 $(\%)$
$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	332	4.34	100.0
$\mathrm{~S} \mathrm{~s}-\mathrm{D} 2$	363	5.03	100.0
$\mathrm{~S} \mathrm{~s}-\mathrm{D} 3$	358	4.89	100.0
$\mathrm{~S} \mathrm{~s}-\mathrm{F} 1$	316	3.91	100.0
$\mathrm{~S} \mathrm{~s}-\mathrm{F} 2$	325	4.17	100.0
$\mathrm{~S} \mathrm{~s}-\mathrm{F} 3$	365	5.34	99.7
$\mathrm{~S} \mathrm{~s}-\mathrm{N} 1$	313	3.95	100.0

（b）EW方向

地震動	最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	最大転倒モーメント $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$	最小接地率 $(\%)$
$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} 1$	296	3.81	100.0
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{D} 2$	341	5.09	100.0
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{D} 3$	309	3.95	100.0
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{~F} 1$	297	3.93	100.0
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{~F} 2$	301	4.05	100.0
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{~F} 3$	331	5.04	100.0
$\mathrm{~S} \mathrm{~s} \mathrm{-} \mathrm{~N} 1$	292	3.94	100.0

4．1．2 材料物性の不確かさを考慮したケースの地震応答解析結果
材料物性の不確かさを考慮した基準地震動 S s に対する地震応答解析結果につ いて，基本ケースによる解析結果とあわせて表4－16～表4－26に示す。

表 4－16 最大応答加速度一覧表（基準地震動 S S ，NS 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$											
	S s－D 2						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	2580	2640	2512	2652	2710	2585	2580	2640	2512	2652	2710	2585
2	957	971	936	1131	1162	1094	957	971	936	1131	1162	1094
3	594	611	577	595	614	592	644	645	645	683	686	682

注：ケース 1：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4 ：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$											
	S s－D 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	2235	2288	2180	2281	2336	2220	2580	2640	2512	2652	2710	2585
2	877	913	836	887	922	848	957	971	936	1131	1162	1094
3	563	575	549	553	565	538	644	645	645	683	686	682

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4 ：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性－σ
（c） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$											
	S s－F 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	2253	2307	2191	2278	2331	2221	2580	2640	2512	2652	2710	2585
2	838	852	817	1131	1159	1092	957	971	936	1131	1162	1094
3	644	645	645	683	686	682	644	645	645	683	686	682

注：ケース 1：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4 ：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$

表 4－17 最大応答変位一覧表（基準地震動 S s，NS 方向）

質点番号	最大応答変位（cm）											
	$S \mathrm{~s}-\mathrm{D} 2$						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース6
1	0.93	0.95	0.91	0.96	0.98	0．94	0.93	0.95	0.91	0.96	0.98	0.94
2	0.03	0.04	0.03	0.05	0.05	0.05	0.03	0.04	0.03	0.05	0.05	0.05
3	0.00	0.00	0.00	0.01	0.01	0.01	0.00	0.00	0.00	0.01	0.01	0.01

ケース 4 ：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性一 σ
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

質点番号	最大応答変位（cm）											
	S s－D 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	0.81	0.83	0． 79	0.83	0.85	0.81	0.93	0.95	0.91	0.96	0.98	0.94
2	0.03	0.03	0.03	0.04	0.04	0.04	0.03	0.04	0.03	0.05	0.05	0.05
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4 ：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
（c） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

質点番号	最大応答変位（ cm ）											
	S s－F 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{array}{\|c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	0.82	0.84	0.80	0.83	0.85	0.81	0.93	0.95	0.91	0.96	0.98	0.94
2	0.03	0.03	0.03	0.05	0.05	0.04	0.03	0.04	0.03	0.05	0.05	0.05
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.01	0.01	0.01

注：ケース 1：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性一 σ

表 4－18 最大応答せん断力一覧表（基準地震動 S s，NS 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

要素番号	最大応答せん断力（ $\times 10^{3} \mathrm{kN}$ ）											
	S s－D 2						最大値					
	$\begin{array}{\|c\|} \hline \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	9.62	9.84	9.37	9.88	10.10	9.64	9.62	9.84	9.37	9.88	10.10	9.64
（2）	15． 29	15.89	14.56	17.56	18． 21	16． 76	15． 29	15.89	14.56	17.56	18.21	16． 76
（3）	6.91	7.18	6.57	7.93	8.22	7.57	6.91	7.18	6.57	7.93	8.22	7.57
（4）	15.29	15.89	14.56	17.57	18.21	16.76	15．29	15.89	14.56	17.57	18.21	16． 76

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$											
	S s－D 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	8.33	8.53	8.13	8． 50	8.70	8． 28	9.62	9.84	9.37	9.88	10.10	9． 64
（2）	14.10	14.64	13． 49	15.50	15.95	14.96	15．29	15.89	14.56	17.56	18.21	16． 76
（3）	6.37	6.61	6.09	7.00	7.20	6． 76	6.91	7． 18	6.57	7.93	8． 22	7． 57
（4）	14.10	14.65	13.50	15.51	15.96	14.96	15.29	15.89	14.56	17.57	18.21	16． 76

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
（c） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$											
	S s－F 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	8． 40	8.60	8.17	8． 49	8.69	8.27	9.62	9.84	9.37	9.88	10.10	9.64
（2）	14.52	14.79	14.21	17． 26	17.68	16.69	15．29	15.89	14.56	17.56	18.21	16． 76
（3）	6． 56	6.68	6． 42	7． 79	7.98	7.54	6.91	7.18	6.57	7.93	8． 22	7.57
（4）	14.52	14．79	14． 22	17.26	17.68	16.69	15． 29	15.89	14.56	17.57	18． 21	16． 76

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4 ：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$

表 4－19（1）最大応答曲げモーメント一覧表（基準地震動 S s，NS 方向）（1／2）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

要素番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－D 2						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.77	5.91	5.62	5.93	6.06	5.78	5． 77	5.91	5.62	5.93	6.06	5.78
（2）	2． 49	2.50	2． 51	2． 49	2.54	2． 47	2． 49	2.50	2.51	2.76	2.75	2． 70
	12.08	12.53	11.50	13.75	14.26	13.14	12.08	12.53	11.50	13.75	14.26	13.14
（3）	2.03	2.10	1.94	2． 29	2.36	2.20	2.03	2.10	1.94	2.29	2.36	2.20
	6.52	6． 76	6.21	7． 42	7． 70	7.09	6.52	6.76	6.21	7． 42	7． 70	7.09
（4）	2.57	2.59	2.59	2.57	2.62	2.58	2.57	2.59	2.59	2.87	2.86	2.81
	12.21	12.67	11.63	13.90	14.42	13.29	12.21	12.67	11.63	13.90	14.42	13.29

注1：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$注 2 ：上段は要素の上端，下段は要素の下端のモーメントを示す。
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

要素番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－D 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.00	5.12	4.88	5.10	5． 22	4.97	5． 77	5.91	5.62	5.93	6.06	5.78
（2）	2． 46	2． 46	2． 43	2． 65	2． 63	2.63	2． 49	2． 50	2.51	2． 76	2． 75	2.70
	10.60	10.83	10.31	11.88	12． 21	11． 49	12.08	12.53	11.50	13.75	14.26	13.14
（3）	1.90	1.90	1.86	2.06	2.06	2.04	2.03	2.10	1． 94	2.29	2.36	2.20
	5.71	5． 84	5.56	6.39	6.57	6.18	6.52	6． 76	6.21	7． 42	7． 70	7.09
（4）	2.56	2.56	2.53	2． 75	2． 74	2.73	2． 57	2． 59	2.59	2.87	2． 86	2.81
	10．71	10.95	10.42	12.00	12.35	11.61	12.21	12.67	11.63	13.90	14.42	13.29

注1：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性一 σ
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
注2：上段は要素の上端，下段は要素の下端のモーメントを示す。

表 4－19（2）最大応答曲げモーメント一覧表（基準地震動 S S ，NS 方向）
（c） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

要素番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－F 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.04	5.16	4.90	5.09	5.21	4.96	5.77	5.91	5.62	5.93	6.06	5.78
（2）	2． 36	2.34	2． 32	2． 76	2． 75	2． 70	2． 49	2.50	2.51	2． 76	2． 75	2． 70
	10． 79	10.90	10.65	11.91	12.17	11.56	12.08	12.53	11.50	13.75	14.26	13.14
（3）	1． 78	1.83	1． 71	2． 14	2.15	2.09	2.03	2.10	1.94	2． 29	2． 36	2． 20
	5.79	5.84	5.71	6.38	6.52	6． 20	6.52	6.76	6.21	7． 42	7． 70	7.09
（4）	2． 44	2.43	2． 39	2.87	2.86	2.81	2.57	2.59	2.59	2.87	2． 86	2.81
	10.91	11.02	10.76	12.03	12.30	11.68	12.21	12.67	11.63	13.90	14.42	13． 29

注1：ケース1：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性一 σ注 2 ：上段は要素の上端，下段は要素の下端のモーメントを示す。

表 4－20 最大応答加速度一覧表（基準地震動 S S ，EW 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$											
	S s－D 2						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	2511	2564	2451	2575	2628	2513	2511	2564	2451	2575	2628	2513
2	806	826	784	890	913	865	806	826	784	890	913	865
3	590	596	582	591	604	582	638	653	624	639	654	625

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性＋σ ，ケース 6 ：建屋剛性考慮•地盤物性－σ
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

質点番号	最大応答加速度（ $\mathrm{cm} / \mathrm{s}^{2}$ ）											
	S s－D 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	2269	2314	2215	2309	2357	2254	2511	2564	2451	2575	2628	2513
2	718	744	692	815	849	779	806	826	784	890	913	865
3	572	584	558	574	586	560	638	653	624	639	654	625

注：ケース 1：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性一 σ
（c） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$											
	S s－F 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	1912	1948	1870	1948	1985	1905	2511	2564	2451	2575	2628	2513
2	709	720	693	788	810	764	806	826	784	890	913	865
3	638	653	624	639	654	625	638	653	624	639	654	625

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性一 σ

表 4－21 最大応答変位一覧表（基準地震動 S s，EW 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

質点番号	最大応答変位（cm）											
	S s -D 2						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	1． 02	1.04	1.00	1.05	1． 07	1.02	1.02	1． 04	1.00	1.05	1． 07	1． 02
2	0.02	0.02	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.03	0.03	0.03
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

注：ケース 1：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

質点番号	最大応答変位（ cm ）											
	S s－D 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	0.93	0.95	0.91	0.95	0.97	0.93	1.02	1.04	1.00	1.05	1.07	1.02
2	0.02	0.02	0.02	0.02	0.02	0． 02	0.02	0.02	0.02	0.03	0.03	0.03
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性一 σ
（c） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

質点番号	最大応答変位（ cm ）											
	S s -F 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	0． 78	0.80	0.77	0． 80	0.82	0.78	1.02	1.04	1.00	1.05	1． 07	1． 02
2	0.02	0.02	0.02	0.03	0.03	0.03	0.02	0.02	0.02	0.03	0.03	0.03
3	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性＋σ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$

表 4－22 最大応答せん断力一覧表（基準地震動 S s，EW 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$											
	S s -D 2						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	9.36	9.56	9.14	9.60	9.80	9.37	9.36	9.56	9.14	9.60	9.80	9.37
（2）	5.89	6.03	5.75	6． 43	6.59	6.26	5.89	6.03	5． 75	6.43	6.59	6.26
（3）	11.08	11.35	10.81	12.09	12.39	11.78	11.08	11.35	10.81	12.09	12.39	11.78
（4）	11.08	11.35	10.81	12．09	12.39	11.78	11.08	11.35	10.81	12.09	12.39	11.78
（5）	5.89	6.03	5.75	6.43	6.59	6.26	5.89	6.03	5.75	6.43	6.59	6.26

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6：建屋剛性考慮•地盤物性 $-\sigma$

要素番号	最大応答せん断力（ $\times 10^{3} \mathrm{kN}$ ）											
	S s－D 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	8． 46	8.63	8.26	8.61	8.79	8． 40	9.36	9.56	9.14	9.60	9.80	9.37
（2）	4.61	4． 78	4． 45	5.24	5． 46	5.02	5.89	6.03	5.75	6.43	6.59	6.26
（3）	8.67	8.99	8.36	9.86	10.28	9． 44	11.08	11.35	10.81	12.09	12.39	11.78
（4）	8.67	8.99	8.36	9.86	10.28	9． 44	11.08	11.35	10.81	12.09	12.39	11.78
（5）	4.61	4.78	4.45	5.24	5.46	5.02	5.89	6.03	5.75	6.43	6.59	6.26

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
（c） S s -F 3

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$											
	S s -F 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	7． 13	7． 27	6.98	7.27	7． 40	7.11	9.36	9.56	9.14	9.60	9.80	9.37
（2）	5.61	5.69	5.48	6.16	6.32	5.97	5.89	6.03	5.75	6.43	6.59	6． 26
（3）	10.55	10．71	10.31	11.59	11.90	11.23	11.08	11.35	10.81	12．09	12.39	11.78
（4）	10.55	10.71	10.31	11.59	11.90	11.23	11.08	11.35	10.81	12.09	12.39	11.78
（5）	5.61	5.69	5.48	6.16	6.32	5.97	5.89	6.03	5.75	6.43	6.59	6.26

注：ケース 1：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$

表 4－23（1）最大応答曲げモーメント一覧表（基準地震動 S s，EW 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

要素 番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－D 2						最大値					
	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.62	5． 74	5.48	5． 76	5.88	5.62	5.62	5． 74	5． 48	5.76	5.88	5.62
（2）	0.91	0.91	0.92	0.94	0.95	0.95	0.91	0.91	0．92	0.94	0.95	0.95
	4.18	4． 29	4.10	4． 57	4.69	4． 46	4.18	4． 29	4．10	4.57	4.69	4． 46
（3）	2.83	2． 85	2． 82	2． 67	2． 71	2.69	2． 83	2.85	2． 82	2.67	2.71	2.69
	9.06	9.31	8.89	9．92	10.18	9.68	9.06	9.31	8． 89	9.92	10.18	9.68
（4）	2．83	2．85	2．82	2． 67	2． 71	2． 69	2.83	2．85	2．82	2.67	2.71	2． 69
	9.06	9.31	8． 89	9．92	10.18	9.68	9． 06	9.31	8． 89	9．92	10.18	9.68
（5）	0.91	0.91	0.92	0.94	0.95	0.95	0.91	0.91	0.92	0.94	0.95	0.95
	4.18	4.29	4.10	4.57	4.69	4． 46	4.18	4.29	4．10	4.57	4.69	4． 46

注1：ケース 1：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
注2：上段は要素の上端，下段は要素の下端のモーメントを示す。
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

要素番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－D 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	5.08	5.18	4.96	5.17	5． 27	5.04	5． 62	5． 74	5． 48	5． 76	5.88	5.62
（2）	0． 72	0.72	0.72	0.72	0.73	0.73	0.91	0.91	0.92	0.94	0.95	0.95
	3.21	3.29	3.13	3.60	3． 72	3． 49	4． 18	4． 29	4． 10	4． 57	4.69	4． 46
（3）	2． 19	2.21	2.18	2． 24	2.28	2.21	2． 83	2.85	2.82	2.67	2． 71	2.69
	7.04	7.20	6.86	7． 77	8.03	7.54	9.06	9.31	8.89	9.92	10.18	9.68
（4）	2． 19	2.21	2.18	2． 24	2． 28	2.21	2． 83	2.85	2.82	2． 67	2． 71	2.69
	7.04	7． 20	6.86	7． 77	8.03	7.54	9.06	9.31	8.89	9.92	10.18	9.68
（5）	0． 72	0.72	0.72	0． 72	0.73	0.73	0.91	0.91	0.92	0.94	0.95	0.95
	3.21	3.29	3.13	3.60	3.72	3． 49	4． 18	4． 29	4． 10	4． 57	4.69	4． 46

注1：ケース 1：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
注 2 ：上段は要素の上端，下段は要素の下端のモーメントを示す。

表 4－23（2）最大応答曲げモーメント一覧表（基準地震動 S s，EW 方向）
（c） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

要素番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－F 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
	4． 28	4.36	4． 19	4.36	4． 44	4． 27	5.62	5． 74	5． 48	5.76	5.88	5． 62
（2）	0.70	0.69	0.71	0． 72	0.73	0.73	0.91	0.91	0.92	0.94	0.95	0.95
	3.99	4.00	3.94	4． 44	4.52	4.34	4.18	4． 29	4.10	4.57	4.69	4． 46
（3）	2.19	2.31	2.14	2.23	2.27	2.23	2.83	2.85	2.82	2.67	2.71	2.69
	8.66	8.68	8.55	9． 65	9.81	9． 44	9.06	9.31	8.89	9.92	10.18	9.68
（4）	2.19	2.31	2.14	2.23	2.27	2.23	2.83	2.85	2.82	2.67	2.71	2． 69
	8.66	8.68	8.55	9.65	9.81	9． 44	9.06	9.31	8.89	9.92	10.18	9.68
（5）	0.70	0.69	0.71	0． 72	0.73	0.73	0.91	0.91	0.92	0.94	0.95	0.95
	3.99	4.00	3.94	4． 44	4.52	4.34	4.18	4.29	4.10	4.57	4.69	4． 46

注1：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性＋o，ケース 6 ：建屋剛性考慮•地盤物性－σ注 2 ：上段は要素の上端，下段は要素の下端のモーメントを示す。

表 4－24 最大応答加速度一覧表（基準地震動 S s，UD 方向）

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$					
	S s -D 2			最大値		
	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3
1	801	801	798	801	801	798
2	631	633	627	631	633	627
3	546	550	541	548	550	545

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$					
	S s－D 3			最大値		
	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3
1	680	694	666	801	801	798
2	531	533	531	631	633	627
3	548	549	545	548	550	545

（c） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

質点番号	最大応答加速度（ $\mathrm{cm} / \mathrm{s}^{2}$ ）					
	S s -F 3			最大値		
	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3
1	531	533	526	801	801	798
2	471	473	467	631	633	627
3	422	425	418	548	550	545

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$

表 4－25 最大応答変位一覧表（基準地震動 S s，UD 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

質点番号	最大応答変位（cm）					
	S s－D 2			最大値		
	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3
1	0.01	0.01	0.01	0.01	0.01	0.01
2	0.01	0.01	0.01	0.01	0.01	0.01
3	0.01	0.01	0.01	0.01	0.01	0.01

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

質点番号	最大応答変位（ cm ）					
	S s－D 3			最大値		
	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3
1	0.01	0.01	0.01	0.01	0.01	0.01
2	0.01	0.01	0.01	0.01	0.01	0.01
3	0． 01	0.01	0.01	0.01	0.01	0.01

（c） S s -F 3

質点番号	最大応答変位（cm）					
	S s－F 3			最大値		
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3
1	0.01	0.01	0.01	0.01	0.01	0.01
2	0.01	0.01	0.01	0.01	0.01	0.01
3	0.00	0.00	0.01	0.01	0.01	0.01

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$

表 4－26 最大応答軸力一覧表（基準地震動 S s，UD 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

要素番号	最大応答軸力 $\left(\times 10^{3} \mathrm{kN}\right)$					
	S s－D 2			最大値		
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3
（1）	2.33	2.34	2.32	2.33	2.34	2.32
（2）	27.29	27.31	27.20	27.29	27.31	27.20

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$

要素番号	最大応答軸力 $\left(\times 10^{3} \mathrm{kN}\right)$					
	S s－D 3			最大値		
	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3
（1）	1.97	2.01	1.93	2． 33	2.34	2.32
（2）	22.89	23.18	22.63	27.29	27.31	27.20

（c） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

要素番号	最大応答軸力 $\left(\times 10^{3} \mathrm{kN}\right)$					
	S s－F 3			最大値		
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3
（1）	1． 55	1.55	1.53	2.33	2． 34	2． 32
（2）	20.08	20.17	19.92	27.29	27.31	27.20

4.2 必要保有水平耐力

「3．3 解析方法」による解析方法で算出した必要保有水平耐力 $Q_{u n}$ を表4－27に示す。
構造特性係数 D s は以下の条件に基づき設定している。
耐震壁は全てせん断破壊型であるため建築基準法施行令に基づく耐力壁の種別はW Dとする。

地下 1 階については，耐震壁が全ての地震荷重を負担するため，耐震壁が分担する保有水平耐力の比 $\beta \mathrm{u}$ は 1.0 となる。

以上の条件から構造特性係数D s は 0.55 となる。
形状特性係数 F_{es} は

$$
\begin{aligned}
& \mathrm{F}_{\mathrm{s}}=1.0(\text { (剛性率が } 0.6 \text { 以上のため) } \\
& \mathrm{F}_{\mathrm{e}}=1.0(\text { 偏心率が } 0.15 \text { 以下のため) }
\end{aligned}
$$

より， 1.0 となる。

地上1階については，鉄骨造の柱及びはりは建築基準法施行令に示される幅厚比以下の数値となるため柱及びはりの種別はFAである。また，柱及びはりは保有耐力接合及び保有耐力横補剛として靭性を確保している。

筋かいは無いため，筋かいが分担する保有水平耐力の比 β uは 0 となる。
以上の条件から構造特性係数D s 0.25 となる。
形状特性係数 F es は
$\mathrm{F}_{\mathrm{s}}=1.0$（モーダル解析により A_{i} 分布を算定するため，剛性率による割り増し係数 F_{s} は既に考慮されているものとし， F s $=1.0$ とする。）
$\mathrm{F}_{\mathrm{e}}=1.0$（偏心率が 0.15 以下のため）
より，1．0となる。

表 4－27 必要保有水平耐力
（a）NS 方向

階	$0 . \mathrm{P}$. (m)	構造特性係数 D_{s}	形状特性係数 F_{es}	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}(\mathrm{kN})$
1 F	$68.90 \sim 62.90$	0.25	1.00	763
B1F	$62.90 \sim 56.40$	0.55	1.00	18423

（b）EW 方向

階	$0 . \mathrm{P}$. (m)	構造特性係数 D_{s}	形状特性係数 F_{es}	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}(\mathrm{kN})$
1 F	$68.90 \sim 62.90$	0.25	1.00	687
B1F	$62.90 \sim 56.40$	0.55	1.00	18423

VI－2－2－22 緊急用電気品建屋の耐震性についての計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2． 3 評価方針 6
2.4 適用規格•基準等 8
3．地震応答解析による評価方法 9
4．応力解析による評価方法 11
4． 1 評価対象部位及び評価方針 11
4． 2 荷重及び荷重の組合せ 12
4．2．1 荷重 12
4．2．2 荷重の組合せ 15
4．3 許容限界 16
4．4 解析モデル及び諸元 18
4．4．1 モデル化の基本方針 18
4．4．2 解析諸元 19
4． 5 評価方法 20
4．5．1 応力解析方法 20
4．5．2 断面の評価方法 21
5．地震応答解析による評価結果 23
5.1 耐震壁のせん断ひずみの評価結果 23
5．2 フレーム構造部の層間変形角の評価結果 25
5．3 接地圧の検討結果 25
5．4 保有水平耐力の評価結果 26
6．応力解析による評価結果 27

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，緊急用電気品建屋の地震時の構造強度及び機能維持の確認について説明するものであり，そ の評価は，地震応答解析による評価及び応力解析による評価に基づき行う。

緊急用電気品建屋は，重大事故等対処施設において「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」に分類される。

以下，「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」としての分類に応じた耐震評価を示す。

なお，緊急用電気品建屋に内包するガスタービン駆動補機に関して，仮想的に回転体の損壊を想定しても，損壊した回転体が緊急用電気品建屋外壁を貫通する ことなく内部に留まり，タービンミサイルが発生することのないよう，緊急用電気品建屋外壁厚さがタービンミサイルの防護上必要な板厚を上回る設計としてい る。仮想的損壊時のミサイル評価結果は，添付書類「VI－1－1－9 発電用原子炉施設の蒸気タービン，ポンプ等の損壊に伴う飛散物による損傷防護に関する説明書」 にて実施する。

2．基本方針
2.1 位置

緊急用電気品建屋の設置位置を図2－1に示す。

図 2－1 緊急用電気品建屋の設置位置

2． 2 構造概要

緊急用電気品建屋は，地下1階，地上1階で，基礎底面からの高さは 16.0 m であり，平面は下部で南北方向 25.2 m ，東西方向 30.0 m ＊である。建屋の構造は鉄骨造及び鉄筋 コンクリート造である。

緊急用電気品建屋の基礎は，厚さ 3.5 m で，支持地盤である砂岩に岩着している。
建屋の地上部分は鉄骨造の柱及び大ばりでフレームを形成（以下「フレーム構造部」 という。）しており，これらの柱及びはりは，地下部分の鉄骨柱及び耐震壁とつなが ってラーメン構造を形成している。地上部分に加わる地震時の水平力はすべてこれら のフレームで負担する。

地下部分の耐震壁は基礎版から1階床面まで連続しており，壁厚は $0.8 \mathrm{~m} \sim 1.5 \mathrm{~m}$ であ る。建屋の地下部分は全体として非常に剛性が高く，地下部分に加わる地震時の水平力はすべてこれらの耐震壁で負担する。地下部分のラーメン構造部材は地震時の建屋層間変形に追従可能な設計とする。

なお，緊急用電気品建屋に内包するガスタービン駆動補機に関して，仮想的に回転体の損壊を想定しても，損壊した回転体が緊急用電気品建屋外壁を貫通することなく内部に留まり，タービンミサイルが発生することのないよう，緊急用電気品建屋外壁厚さがタービンミサイルの防護上必要な板厚を上回る設計としており，外壁面にはル ーバを，天井面には防護鉄板を設置している。

緊急用電気品建屋の概略平面図及び概略断面図を図 $2-2$ 及び図 $2-3$ に示す。

注記 $*: ~$ 建屋寸法は壁外面押えとする。

図2－2（1）緊急用電気品建屋の概略平面図（0．P．＊ 56.4 m ）

注記＊：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－ 0.74 m である。

図 2－2（2）緊急用電気品建屋の概略平面図（0．P． 62.9 m ）

図 2－3（1）緊急用電気品建屋の概略断面図（A－A 断面，NS 方向）

図 $2-3$（2）緊急用電気品建屋の概略断面図（B－B 断面，EW 方向）

2． 3 評価方針

緊急用電気品建屋は，重大事故等対処施設において「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」に分類される。

緊急用電気品建屋の評価においては，基準地震動 S s による地震力に対する評価 （以下「S s 地震時に対する評価」という。）及び保有水平耐力の評価を行う こととし，それぞれの評価は添付書類「VI－2－2－21 緊急用電気品建屋の地震応答計算書」の結果を踏まえたものとする。緊急用電気品建屋の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，地震応答解析による評価に おいては地下部の耐震壁のせん断ひずみ，地上部のフレーム構造部の層間変形角，接地圧及び保有水平耐力の評価を，応力解析による評価においては基礎版 の断面の評価を行うことで，緊急用電気品建屋の地震時の構造強度及び機能維持の確認を行う。評価にあたつては材料物性の不確かさを考慮する。表2－1に材料物性の不確かさを考慮する解析ケースを示す。

緊急用電気品建屋の評価フローを図2－4に示す。

表 2－1 材料物性の不確かさを考慮する地震応答解析ケース

ケース名	建屋 減衰	コンクリート剛性		地盤の せん断波速度
		初期剛性	終局耐力	
$\text { ケース } 1$ （基本ケース）	5\％	設計基準強度に基づき JEAG式で評価		平均値
ケース 2	同上	同上		$+\sigma$ 相当
ケース 3	同上	同上		－σ 相当
$\begin{aligned} & \text { ケース } 4 \\ & \text { (水平のみ) } \end{aligned}$	同上	基本ケースの 0.8 倍	設計基準強度に基づき JEAG 式で評価	平均値
$\begin{aligned} & \text { ケース } 5 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	＋σ 相当
$\begin{aligned} & \text { ケース } 6 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	－σ 相当

図 2－4 緊急用電気品建屋の評価フロー

2.4 適用規格•基準等

緊急用電気品建屋の評価において，適用する規格•基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 1999 年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－
－日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説 （以下「R C－N 規準」という。）
- 日本建築学会 2005 年 鋼構造設計規準－許容応力度設計法－
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 460 1 •補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）（以下「 J EAG4601－1991追補版」という。）

3．地震応答解析による評価方法
緊急用電気品建屋の構造強度については，添付書類「VI－2－2－21 緊急用電気品建屋 の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断 ひずみ，フレーム構造部の最大層間変形角及び最大接地圧が許容限界を超えないこと，並びに保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有することを確認す る。

また，支持機能の維持については，添付書類「VI－2－2－21 緊急用電気品建屋の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひずみ が許容限界を超えないことを確認する。

地震応答解析による評価における緊急用電気品建屋の許容限界は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき，表3－1 のとおり設定する。

表 3－1 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

	要求機能	機能設計上の性能目標	地震力	部位	機能維持の ための考え方	許容限界 （評価基準値）
				耐震壁＊1	最大応答せん断ひ ずみが構造強度を確保するための許容限界を超えない ことを確認	せん断ひずみ $\text { 2. } 0 \times 10^{-3}$
	－	構造強度を	基準地震動	フレーム構造部	最大層間変形角が構造強度を確保す るための許容限界 を超えないことを確認	層間変形角 $1 / 120 * 2$
				基礎地盤	最大接地圧が地盤 の支持力度以下で あることを確認	$\begin{gathered} \text { 極限支持力度*3 } \\ 11400 \mathrm{kN} / \mathrm{m}^{2} \end{gathered}$
$\begin{aligned} & \text { ® } \\ & \sim \\ & \sim \\ & \underset{N}{N} \\ & \sim \end{aligned}$			$\begin{gathered} \text { 保有 } \\ \text { 水平耐力 } \end{gathered}$	構造物全体	保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有すること を確認	必要保有水平耐力
$\begin{aligned} & \text { N } \\ & 5 \end{aligned}$ （c） ～	支持 機能＊	機器•配管系等の設備を支持する機能を損なわないこ と	基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断ひ ずみが支持機能を維持するための許容限界を超えない ことを確認	せん断ひずみ $\text { 2. } 0 \times 10^{-3}$

注記＊1：建屋全体としては，耐震壁で地震力を全て負担する構造となっており，剛性の高い耐震壁の変形に追従する柱，はり，間仕切壁等の部材の層間変形は十分小 さいこと，また，全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの面内変形が抑えられることから，耐震壁の最大応答せん断ひずみが許容限界を満足していれば，建物•構築物に要求される機能は維持 される。
＊2：「2015 年版 建築物の構造関係技術基準解説書（国土交通省国土技術政策総合研究所•国立研究開発法人建築研究所）」により設定。
＊3：添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に示す地盤の支持力試験結果に基づき設定する。
＊4：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含まれ る。

4．応力解析による評価方法

4.1 評価対象部位及び評価方針

緊急用電気品建屋の応力解析による評価対象部位は，基礎版とし，S s 地震時に対して以下の方針に基づき評価を行う。

S s 地震時に対する評価は，3次元FEMモデルを用いた弾性応力解析によるこ ととし，地震力と地震力以外の荷重の組合せ結果，発生する応力が「R C－N規準」に基づき設定した許容限界を超えないことを確認する。

3 次元FEMモデルを用いた弾性応力解析にあたつては，添付書類「VI－2－2－21緊急用電気品建屋の地震応答計算書」より得られた結果を用いて，荷重の組合 せを行う。また，断面の評価については，材料物性の不確かさを考慮した断面力に対して行うこととする。応力解析による評価フローを図4－1に示す。

添付書類「VI－2－2－21 緊急用電気品建屋の地震応答計算書」

図 4－1 応力解析による評価フロー

4．2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している荷重及び荷重の組合せを用いる。

4．2．1 荷重

（1）固定荷重
固定荷重は建屋自重，機器荷重，配管荷重，積雪荷重，常時土圧荷重及び浮力 とする。なお，積雪量は 43 cm とし，地震荷重と組合せるため，その 0.35 倍の積雪荷重を考慮する。常時土圧荷重は「JEAGG4601－1991追補版」によるも のとし，図 $4-2$ に常時土圧を示す。また，浮力は，地下水位面を地表面 （0．P． 62.3 m ）とし，基礎版に上向きの等分布荷重として入力する。
（2）積載荷重
積載荷重は，表4－1のとおり設定する。

表 4－1 積載荷重

部位	積載荷重 $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
RF	600
1 F	800
B1F	800

（3）地震荷重
a．水平地震荷重
水平地震荷重は，基準地震動 S s による地震応答解析結果より設定する。なお，水平地震荷重は材料物性の不確かさを考慮した地震応答解析結果を包絡したもの とする。表 4－2 及び表 4－3 に応力解析で考慮した基準地震動 S s 時の水平地震荷重を示す。

表 4－2 水平地震荷重（せん断力）
（a）NS 方向

部位	せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$
耐震壁 $(\mathrm{A}$ 通り）	18.2
耐震壁 $(\mathrm{D}$ 通り）	8.22
耐震壁 $(\mathrm{E}$ 通り）	18.2

（b）EW 方向

部位	せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$
耐震壁 $(0$ 通り）	6.59
耐震壁 $(1$ 通り）	12.4
耐震壁 $(4$ 通り）	12.4
耐震壁 $(5$ 通り）	6.59

表 4－3 水平地震荷重（曲げモーメント）
（a）NS 方向

部位	曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$
耐震壁 $(\mathrm{A}$ 通り）	14.40
耐震壁 $(\mathrm{D}$ 通り）	7.70
耐震壁 $(\mathrm{E}$ 通り）	14.26

（b）EW 方向

部位	曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$
耐震壁 $(0$ 通り）	4.69
耐震壁 $(1$ 通り）	10.18
耐震壁 $(4$ 通り $)$	10.18
耐震壁 $(5$ 通り $)$	4.69

b．鉛直地震荷重
鉛直地震荷重は，基準地震動 S s による地震応答解析結果より鉛直震度として設定する。なお，鉛直震度は材料物性の不確かさを考慮した地震応答解析結果を包絡したものとする。表4－4に応力解析で考慮した基準地震動S s 時の鉛直地震荷重を示す。

表 4－4 鉛直地震荷重（鉛直震度）

部位	鉛直震度
耐震壁	0.653
基礎版	0.516

c．地震時土圧荷重

地震時土圧荷重は，常時土圧に地震時増分土圧を加えて算出する。地震時増分土圧は材料物性の不確かさを考慮した地震応答解析結果を基にして「J E A G 4 6 O 1－1991 追補版」の地震時増分土圧式から加力側増分土圧及び支持側増分土圧を包絡したものとする。図4－2に地震時土圧を示す。

図 4－2 常時土圧及び地震時土圧

4．2．2 荷重の組合せ

荷重の組合せを表4－5に示す。

表 4－5 荷重の組合せ

外力の状態	荷重の組合せ
S s 地震時	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

$\begin{array}{ll}\text { G } & \text { ：固定荷重 } \\ \text { P } & \text { ：積載荷重 } \\ \text { S s } & \text { ：地震荷重（地震時土圧荷重を含む）}\end{array}$

4． 3 許容限界

応力解析による評価における緊急用電気品建屋の基礎版の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表4－6のとおり設定する。
また，コンクリート，鉄筋の許容応力度を表4－7及び表4－8に示す。

表 4－6 応力解析による評価における許容限界
（重大事故等対処施設としての評価）

要求機能	機能設計上の性能目標	地震力	部位	機能維持のための考え方	許容限界
－	構造強度を有す ること	基準地震動 S s	基礎版	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	「 R C－N 規準」 に基づく短期許容応力度＊
支持 機能＊ 2	機器•配管系等 の設備を支持す る機能を損なわ ないこと	基準地震動 S s	基礎版	部材に生じる応力 が支持機能を維持 するための許容限界を超えないこと を確認	「 R C－N 規準」 に基づく短期許容応力度＊1

注記＊1：許容限界は終局耐力に対し妥当な安全余裕を有したものとして設定することと し，さらなる安全余裕を考慮して短期許容応力度とする。
＊2：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含まれ る。

表 4－7 コンクリートの許容応力度

設計基準強度 Fc $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期	
	圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
30	20	1.18

表 4－8 鉄筋の許容応力度

種別	短期	
	引張及び圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断補強 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD345	345	345
SD490	490	490

4． 4 解析モデル及び諸元

4．4．1 モデル化の基本方針
（1）基本方針
応力解析は，3 次元 FEM モデルを用いた弾性応力解析とする。解析には，解析 コード「MSCN N S T T R A N 」を用いる。解析コードの検証及び妥当性確認 の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」 に示す。

基礎版については，0．P．52．9m～0．P．56．4m をモデル化する。基礎版のモデル図 を図4－3 に示す。
（2）使用要素
解析モデルに使用する FEM 要素は，基礎版についてはシェル要素とする。また，基礎版より立ち上がっている耐震壁については，はり要素として剛性を考慮する。解析モデルの節点数は 285 ，要素数は 362 である。
（3）境界条件
3 次元 FEM モデルの基礎版底面に，添付書類「VI－2－2－21 緊急用電気品建屋の地震応答計算書」に示す地盤ばねを離散化して，水平方向及び鉛直方向のばねを設ける。3 次元 FEM モデルの水平方向のばねについては，地震応答解析モデルの スウェイばねを，鉛直方向のばねについては，地震応答解析モデルのロッキング ばねを基に設定を行う。

なお，基礎版底面の地盤ばねについては，引張力が発生した時に浮上りを考慮 する。また，基礎版周囲の側面に地盤ばねを設ける。

図 4－3 基礎版の解析モデル図

4．4．2 解析諸元
使用材料の物性値を表4－9に示す。

表 4－9 コンクリートの物性値

部 位	設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 v
基礎版	30.0	2.44×10^{4}	0.2

4． 5 評価方法

4．5．1 応力解析方法
緊急用電気品建屋基礎版について，S s 地震時に対して 3 次元 FEM モデルを用 いた弾性応力解析を実施する。
（1）荷重ケース
S s 地震時の応力は，次の荷重ケースによる応力を組み合わせて求める。
G ：固定荷重
P ：積載荷重

S S SN ：S $\rightarrow \mathrm{N}$ 方向 S s 地震荷重（地震時土圧を含む）
S S N S ：N \rightarrow S 方向 S S 地震荷重（地震時土圧を含む）
S S EW ：E \rightarrow W 方向 S S 地震荷重（地震時土圧を含む）
S swe：W \rightarrow E 方向 S s 地震荷重（地震時土圧を含む）
S s ud ：鉛直方向（下向き）S s 地震荷重
S S DU ：鉛直方向（上向き）S s 地震荷重
（2）荷重の組合せケース
荷重の組合せケースを表4－10に示す。
水平地震力と鉛直地震力の組合せは，「原子力発電所耐震設計技術規程（ J E AC4601－2015）」を参考に，組合せ係数法（組合せ係数は1．0 と 0．4）を用 いるものとする。

表 4－10 荷重の組合せケース

外力の状態	ケース No．	荷重の組合せ
S s 地震時	1	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{sn}+0.4 \mathrm{~S} \mathrm{sud}$
	2	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sns}+0.4 \mathrm{~S} \mathrm{sud}$
	3	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{sn}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	4	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{n} \mathrm{s}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	5	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{we}+0.4 \mathrm{~S} \mathrm{sud}$
	6	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sew}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{ud}$
	7	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{swe}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	8	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sew}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	9	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{sn}+1.0 \mathrm{~S} \mathrm{sud}$
	10	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{n} \mathrm{s}+1.0 \mathrm{~S} \mathrm{sud}$
	11	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{sn}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{du}$
	12	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sms}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	13	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{swe}+1.0 \mathrm{~S} \mathrm{sud}$
	14	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sew}+1.0 \mathrm{~S} \mathrm{sud}$
	15	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{we}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	16	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sew}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$

（3）荷重の入力方法
a．地震荷重
地震荷重は，上部構造物の基礎版への地震時反力を考慮する。基礎版底面に生じる反力が，基準地震動 S s に対する地震応答解析結果と等価になるように設定する。基礎版内に作用する荷重は，S s 地震時の上部構造による入力荷重 と基礎版底面に発生する荷重の差を FEM モデルの各要素の大きさに応じて分配 し，節点荷重として入力する。
b．地震荷重以外の荷重
地震荷重以外の荷重については，FEM モデルの各節点又は各要素に集中荷重 または分布荷重として入力する。

4．5．2 断面の評価方法

（1）軸力及び曲げモーメントに対する断面の評価方法
各断面は，軸力，曲げモーメント及び面内せん断力を受ける鉄筋コンクリート造長方形仮想柱として算定する。

S s 地震時において，軸力，曲げモーメント及び面内せん断力に対する必要鉄筋量が配筋量を超えないことを確認する。
（2）面外せん断力に対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき，評価対象部位に生じる面外せん断力が，次式を基に算定した許容面外せん断力を超えないことを確認する。

$$
\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j}\left\{\alpha \cdot \mathrm{f}_{\mathrm{s}}+0.5_{\mathrm{w}} \mathrm{f}_{\mathrm{t}}\left(\mathrm{p}_{\mathrm{w}}-0.002\right)\right\}
$$

ここで，
Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
α ：許容せん断力の割増し係数
（2を超える場合は 2 ， 1 未満の場合は 1 とする。また，引張軸力が $2 \mathrm{~N} / \mathrm{mm}^{2}$ を超える場合は1とする。）

$$
\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{~d})+1}
$$

M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Q ：せん断力（ N ）
d ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度で，表 4－6に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{w} \mathrm{f}_{\mathrm{t}}$ ：せん断補強筋の短期許容引張応力度で，表 4－7 に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
p w ：せん断補強筋比で，次式による。（0．002 以上とする。＊）

$$
\mathrm{p}_{\mathrm{w}}=\frac{\mathrm{a}_{\mathrm{w}}}{\mathrm{~b} \cdot \mathrm{x}}
$$

a_{w} ：せん断補強筋の断面積（ mm^{2} ）
x ：せん断補強筋の間隔（mm）

注記＊：せん断補強筋がない領域については，第 2 項を 0 とする。

5．地震応答解析による評価結果
5.1 耐震壁のせん断ひずみの評価結果

鉄筋コンクリート造耐震壁について，S s 地震時の最大応答せん断ひずみが許容限界（2．0×10－3）を超えないことを確認する。

材料物性の不確かさを考慮した最大応答せん断ひずみは $0.059 \times 10^{-3}(\mathrm{NS}$ 方向， S s－D 2，ケース5，要素番号（3））であり，許容限界（2．0×10 ${ }^{-3}$ ）を超えな いことを確認した。耐震壁の最大応答せん断ひずみ一覧を表5－1に示す。各表 において，最大応答せん断ひずみのうち最も大きい値について，せん断スケル トンカーブ上にプロットした図を図5－1に示す。

表5－1 耐震壁の最大応答せん断ひずみ
（a）NS方向

$\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$	階	地震応答解析 モデルの 要素番号	最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
$62.9 \sim 56.4$	B1F	（2）	0.059	2.0
		（3）	0.059	
		（4）	0.059	

注：ハッチングは各階の最大応答せん断ひずみのうち最も大きい値を示す。
（b）EW方向

$\underset{(\mathrm{m})}{\text { 0. P. }}$	階	地震応答解析 モデルの 要素番号	最大応答 せん断ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
$62.9 \sim 56.4$	B1F	（2）	0.034	2.0
		（3）	0.034	
		（4）	0.034	
		（5）	0.034	

注：ハッチングは各階の最大応答せん断ひずみのうち最も大きい値を示す。

（a）NS方向（S s－D 2，ケース5，要素番号（3））

（b）EW方向（S s－D 2，ケース5，要素番号（3），（4））

図5－1 せん断スケルトンカーブ上の最大応答せん断ひずみ
5.2 フレーム構造部の層間変形角の評価結果

フレーム構造部について，S s 地震時の最大層間変形角が許容限界（1／120）を超 えないことを確認する。

材料物性の不確かさを考慮したS s 地震時の最大層間変形角は $1 / 563$（要素番号（1）， EW 方向，ケース 5，S s－D 2 ）であり，許容限界（1／120）を超えないことを確認し た。フレーム構造部の最大層間変形角一覧を表5－2に示す。

表 5－2 最大層間変形角

方向	$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	許容限界
NS	$\begin{gathered} 1 / 654 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 639 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 672 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 636 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 622 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 652 \\ (\mathrm{~s} s-D 2) \end{gathered}$	1／120
EW	$\begin{gathered} 1 / 589 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 577 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 604 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 575 \\ (\mathrm{~s} \mathrm{~s}-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 563 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	$\begin{gathered} 1 / 589 \\ (\mathrm{~s} s-\mathrm{D} 2) \end{gathered}$	1／120

注：（ ）内は各ケースにおいて応答が最大となる地震動を示す。材料物性の
不確かさを考慮した地震応答解析は，基準地震動 S s－D 2，S s－D 3， Ss－F 3 に対して実施。

5．3 接地圧の検討結果
S s 地震時の最大接地圧が，地盤の極限支持力度（ $11400 \mathrm{kN} / \mathrm{m}^{2}$ ）を超えない ことを確認する。

材料物性の不確かさを考慮した S s 地震時の最大接地圧は $390 \mathrm{kN} / \mathrm{m}^{2}$ であるこ とから，地盤の極限支持力度を超えないことを確認した。

地震時の最大接地圧を表5－3に示す。

表 5－3 最大接地圧

	NS 方向	EW 方向
検討ケース	S s－D 2， ケース 5	S s－D ケース 5
ケ鉛直力 $\mathrm{N}\left(\times 10^{3} \mathrm{kN}\right)$	70.9	70.9
転倒モーメントト $\mathrm{M}\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$	58.9	54.1
最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	390	348

5.4 保有水平耐力の評価結果

保有水平耐力 Q_{u} が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全余裕を有する ことを確認する。なお，地下1階部分の各部材の保有水平耐力 $\mathrm{Q} u$ は，添付書類「VI－2－2－21 緊急用電気品建屋の地震応答計算書」に示すせん断力のスケルト ンカーブの τ ，に基づき算出する。地上1階部分の鉄骨部材の保有水平耐力 Q_{u} は，各構面の柱及び大ばりを線材置換し，柱頭•柱脚部及びはり端部の降伏耐力に応じて塑性ヒンジを仮定し，崩壊形形成時の水平耐力の和とする。ここで，塑性ヒンジは，柱及び大ばりのうち「日本建築学会 2017年 鋼構造塑性設計指針」に従い算定した全塑性モーメントが小さい部材に形成されるものとする。

必要保有水平耐力 $Q_{u n}$ と保有水平耐力 Q_{u} の比較結果を表5－4に示す。保有水平耐力 Q_{u} が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全余裕を有することを確認した。なお，必要保有水平耐力 $Q_{u n}$ に対する保有水平耐力 Q_{u} の比は最小 で33．90である。

表 5－4 必要保有水平耐力 $\mathrm{Qun}_{\mathrm{n}}$ と保有水平耐力 Q_{u} の比較結果

OP． （m）	必要保有水平耐力 $Q_{\mathrm{u}}(\mathrm{kN})$	保有水平耐力 $Q_{u}(k N)$	$\mathrm{Q}_{\mathrm{u}} / \mathrm{Q}_{\mathrm{un}}$
$68.90 \sim 62.90$	763	49646	65.07
$62.90 \sim 56.40$	18423	624566	33.90

（b）EW 方向
\(\left.$$
\begin{array}{|c|c|c|c|}\hline \begin{array}{c}\text { OP．} \\
(\mathrm{m})\end{array} & \begin{array}{c}\text { 必要保有水平耐力 } \\
\mathrm{Qun}_{\mathrm{n}}(\mathrm{kN})\end{array}
$$ \& \begin{array}{c}保有水平耐力

\mathrm{Q}_{\mathrm{u}}(\mathrm{kN})\end{array} \& \mathrm{Q}_{\mathrm{u}} / \mathrm{Q}_{\mathrm{un}}\end{array}\right]\)| $68.90 \sim 62.90$ | 687 | 48402 |
| :---: | :---: | :---: |
| $62.90 \sim 56.40$ | 18423 | 873510 |

6．応力解析による評価結果

基礎版の断面の評価結果を以下に示す。また，緊急用電気品建屋の基礎版の配筋領域図を図6－1に，配筋一覧を表6－1に示す。

断面の評価結果を記載する要素を，以下のとおり選定する。
軸力，曲げモーメント及び面内せん断力に対する評価については，必要鉄筋量 に対する配筋量の割合が最小となる要素を選定し，面外せん断力に対する評価に ついては，面外せん断力に対する短期許容せん断力の割合が最小となる要素をそ れぞれ選定する。

選定した要素の位置を図6－2に，評価結果を表6－2に示す。
S s 地震時において，軸力，曲げモーメント及び面内せん断力に対する必要鉄筋量が配筋量を超えないことを確認した。また，面外せん断力が短期許容せん断力を超えないことを確認した。

表 6－1 基礎版の配筋一覧
（a）主筋

領域	上ば筋		下ば筋	
	方向	配筋	方向	配筋
A	NS	2－D38＠200	NS	2－D38＠200
	EW	2－D38＠200	EW	2－D38＠200
B	NS	3－D38＠200	NS	3－D38＠200
	EW	2－D38＠200	EW	2－D38＠200
C	NS	2－D51＠200＋D38＠200	NS	2－D51＠200＋D38＠200
	EW	2－D38＠200	EW	2－D38＠200
D	NS	2－D38＠200	NS	2－D38＠200
	EW	3－D38＠200	EW	3－D38＠200
E	NS	3－D38＠200	NS	3－D38＠200
	EW	3－D38＠200	EW	3－D38＠200
F	NS	2－D51＠200＋D38＠200	NS	2－D51＠200＋D38＠200
	EW	3－D38＠200	EW	3－D38＠200

（b）せん断補強筋

10
～
N
$\stackrel{1}{1}$
$\stackrel{1}{5}$
（a）

N
0

領域	配筋
a	$\mathrm{D} 22 @ 600 \times 200$

（a）主筋

（b）せん断補強筋

図 6－1 基礎版の配筋領域図

図6－2 最大検定比発生位置

表6－2 評価結果

評価項目			要素 番号	荷重の 組合せ ケース	解析結果	許容値
軸力 $+$曲げ	NS 方向	必要鉄筋量／配筋量	225	3	0.07	1． 00
面内 せん断力	$\begin{gathered} \text { EW } \\ \text { 方向 } \end{gathered}$	必要鉄筋量／配筋量	4	8	0.09	1． 00
	NS 方向	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	225	2	0.25	2． 25
	$\begin{gathered} \text { EW } \\ \text { 方向 } \end{gathered}$	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	249	6	0.27	2． 36

VI－2－2－23 緊急時対策建屋の地震応答計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2.3 解析方針 8
2.4 適用規格•基準等 10
3．解析方法 11
3.1 設計に用いる地震波 11
3.2 地震応答解析モデル 19
3．2．1 水平方向 20
3．2．2 鉛直方向 27
3.3 解析方法 31
3．3．1 動的解析 31
3．3．2 必要保有水平耐力 32
3.4 解析条件 34
3．4．1 建物•構築物の復元力特性 34
3．4．2 地盤の回転ばねの復元力特性 41
3．4．3 材料物性の不確かさ 42
4．解析結果 44
4．1 動的解析 44
4．1．1 基本ケースの地震応答解析結果 44
4．1．2 材料物性の不確かさを考慮したケースの地震応答解析結果 77
4.2 必要保有水平耐力 91

1．概要
本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく緊急時対策建屋 の地震応答解析について説明するものである。

地震応答解析により算出した各種応答値は，添付書類「VI－2－1－9 機能維持の基本方針」に示す建物•構築物及び機器•配管系の設計用地震力として用いる。また，必要保有水平耐力については建物•構築物の構造強度の確認に用いる。

2．基本方針
2.1 位置

緊急時対策建屋の設置位置を図2－1に示す。

図 2－1 緊急時対策建屋の設置位置

2.2 構造概要

緊急時対策建屋は，地下 2 階，地上 2 階建で，基礎底面からの高さは 30.4 m （地上高さは 13.9 m ）であり，平面は 36.4 m （ NS 方向）$\times 36.4 \mathrm{~m}$（EW 方向）$* 1$ の正方形である。建屋の構造は鉄筋コンクリート造である。

緊急時対策建屋の基礎は，厚さ 6.0 m で，はね出しを有し，平面は 47.0 m （NS 方向）\times 47．0m（EW 方向）の正方形であり，支持地盤である砂岩に岩着している。

緊急時対策建屋の主たる耐震要素は，建屋外壁の耐震壁で，基礎版から屋上階床面 まで連続しており，壁厚は $0.5 \mathrm{~m} ~ 2.2 \mathrm{~m}$ である。建屋は全体として非常に剛性が高く，地震時の水平力はすべてこれらの耐震壁で負担する。なお，O．P．${ }^{*}{ }^{2} 75.9 \mathrm{~m}$ 床面の一部 は，十分に剛な水平ブレースを構成する鉄骨造となっており，建屋外壁の耐震壁と連続している。

緊急時対策建屋の概略平面図及び概略断面図を図2－2 及び図 $2-3$ に示す。

注記 $* 1$ ：建屋寸法は壁外面押えとする。
＊2：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面（T．P．） －0． 74 m である。
$\theta_{P N}$

（単位：m）

図2－2（1）緊急時対策建屋の概略平面図（0．P．51．5m）

（単位：m）
図 $2-2$（2）緊急時対策建屋の概略平面図（0．P．57．3m）

(単位: m)
$\theta^{\text {pon }}$

（単位：m）
図 $2-2$（5）緊急時対策建屋の概略平面図（0．P．75．9m）

図 2－3（1）緊急時対策建屋の概略断面図（A－A 断面，NS 方向）

（単位：m）
図 $2-3$（2）緊急時対策建屋の概略断面図（B－B 断面，EW 方向）

2.3 解析方針

緊急時対策建屋の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に基づいて行う。

図 2－4に緊急時対策建屋の地震応答解析フローを示す。
地震応答解析は，「3．1 設計に用いる地震波」及び「3．2 地震応答解析モデル」 において設定した地震応答解析モデルを用いて実施することとし，「3．3解析方法」及び「3．4 解析条件」に基づき，「4．1 動的解析」においては材料物性の不確かさ を考慮し，加速度，変位，せん断ひずみ，接地圧等を含む各種応答値を，「4．2 必要保有水平耐力」においては必要保有水平耐力を算出する。

注：［ ］内は，本資料における章番号を示す。注記＊：材料物性の不確かさを考慮する。

図 2－4 緊急時対策建屋の地震応答解析フロー
2.4 適用規格•基準等

緊急時対策建屋の地震応答解析において適用する規格•基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第201号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－
－原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 460 1 •補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）（以下「 J E AG4601－1991追補版」という。）

3．解析方法
3.1 設計に用いる地震波

緊急時対策建屋の地震応答解析モデルは，建屋と地盤の相互作用を評価した建屋一地盤連成モデルとする。この連成モデルへの入力地震動は，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」に示す解放基盤表面レベルで定義された基準地震動 S s から，地盤の振動特性を考慮して算定した地震動を用いる。

基準地震動 S s の最大加速度一覧を表 3－1 に，加速度時刻歴波形及び加速度応答 スペクトルを図 3－1 及び図 3－2 に示す。

表 3－1 基準地震動 S s の最大加速度一覧

基準地震動		最大加速度（cm／s ${ }^{2}$ ）	
		水平方向	鉛直方向
S s－D 1	プレート間地震の応答スペクトルに基づく手法による基準地震動	640	430
Ss－D 2	海洋プレート内地震（SMGAマントル内）の応答スペ クトルに基づく手法による基準地震動	1000	600
Ss－D 3	海洋プレート内地震（SMGA 地殻内）の応答スペクト ルに基づく手法による基準地震動	800	500
S s－F 1	プレート間地震の断層モデルを用いた手法による基準地震動（応力降下量（短周期レベル）の不確かさ）	717	393
S s－F 2	プレート間地震の断層モデルを用いた手法による基準 地震動（SMGGA位置と応力降下量（短周期レベル） 不確かさの重畳）	722	396
Ss－F 3	海洋プレート内地震（SMGAマントル内）の断層モデ ルを用いた手法による基準地震動（SMGA マントル内集約）	835	443
S s－N 1	2004 年北海道留萌支庁南部地震（K—NET 港町）の検討結果に保守性を考慮した地震動	620	320

（a） S s -D 1

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

（c） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$
図 3－1（1）加速度時刻歴波形（基準地震動 S s，水平方向）（1／3）

（e） $\mathrm{S} \mathrm{s}-\mathrm{F} 2$

（f）$\quad \mathrm{S}$ s -F 3
図 3－1（2）加速度時刻歴波形（基準地震動 S s ，水平方向）（2／3）

図 3－1（3）加速度時刻歴波形（基準地震動 S s ，水平方向）（3／3）

（a） S s -D 1

（b） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

（c） $\mathrm{S} \mathrm{s}-\mathrm{D} 3$
図 3－1（4）加速度時刻歴波形（基準地震動 S s，鉛直方向）（1／3）

（e） $\mathrm{S} \mathrm{s}-\mathrm{F} 2$

（f）$\quad \mathrm{S}$ s -F 3
図 $3-1$（5）加速度時刻歴波形（基準地震動 S s ，鉛直方向）（2／3）

図 3－1（6）加速度時刻歴波形（基準地震動 S s ，鉛直方向）（3／3）

図 3－2（1）加速度応答スペクトル（基準地震動 S s，水平方向）

図 3－2（2）加速度応答スペクトル（基準地震動 S s，鉛直方向）

3.2 地震応答解析モデル

地震応答解析モデルは，添付書類「VI－2－1－6 地震応答解析の基本方針」に記載の解析モデルの設定方針に基づき，水平方向及び鉛直方向についてそれぞれ設定する。地震応答解析モデルの設定に用いた使用材料の物性値を表 $3-2$ に示す。

表 3－2 使用材料の物性値

使用材料	ヤング係数 E $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断弾性係数 G $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	減衰定数 h $(\%)$
鉄筋コンクリート コンクリート： $\mathrm{F} \mathrm{c}=30\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	2.44×10^{4}	1.02×10^{4}	5
鉄筋 $: ~ S D 390$			

3．2．1 水平方向

（1）地震応答解析モデル
水平方向の地震応答解析モデルは，建屋を曲げ変形とせん断変形をする耐震壁部からなる質点系モデルとし，地盤を等価なばねで評価した建屋－地盤連成モデ ルとする。

水平方向の地震応答解析モデル及び諸元を図3－3に示す。

（2）地盤ばね

基礎版底面下の地盤は，水平方向の地震応答解析モデルにおいては底面水平ば ね及び底面回転ばねで置換している。この底面水平ばね及び底面回転ばねは，「 J EAG 4 6 O 1－1991 追補版」により，基礎版底面下の地盤を等価な半無限地盤 と見なして，振動アドミッタンス理論に基づいて評価している。いずれのばねも振動数に依存した複素剛性として表現されるが，図3－4に示すようにばね定数 として，実部の静的な値（ K_{c} ）を，また，減衰係数（ C c ）として，建屋一地盤連成 モデルの 1 次固有円振動数 $\left(\omega_{1}\right)$ に対応する虚部の値と原点を結ぶ直線の傾きを採用することにより近似する。このうち，底面回転ばねには，基礎浮上りによる幾何学的非線形性を考慮する。基礎底面ばねの評価には解析コード「ADMITHF」を用いる。

基礎版の埋込み部分の側面地盤ばねについては，基礎版の側面位置の地盤定数 を用いて，「JEAG4601－1991追補版」により，Novakの方法に基づき求め た側面水平ばねを，基礎底面地盤ばねと同様に近似法により定数化して用いる。側面水平ばねの評価には，解析コード「NOVAK」を用いる。

評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。
地盤ばね定数及び減衰係数を表3－3に，地盤モデルの物性値を表3－4に示す。

（3）入力地震動

地震応答解析モデルへの入力地震動は，解放基盤表面レベルで定義される基準地震動 S s から以下の手順で算定する。まず，地下構造モデルの解放基盤表面以深の地盤を一次元地盤としてモデル化し，一次元波動論に基づく評価により 0．P．-200 m の入射波を算定する。算定した 0．P．-200 m の入射波を建屋位置地盤モ デルに入力して線形解析を行い，建屋基礎底面レベルでの地盤及び基礎の上下端 レベルの建屋側面の地盤の応答を評価して入力地震動とする。また，建屋基礎底面レベルにおける補正水平力（以下「切欠き力」という。）を入力地震動に付加す ることにより，地盤の切欠き効果を考慮する。図 3－5に地震応答解析モデルに入力する地震動の概念図を，設定した地盤定数に基づき算定した基礎底面位置
（0．P．45．5m）における入力地震動の加速度応答スペクトルを図 3－6に示す。入力地震動の算定には，解析コード「SHAKE」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

（b）EW 方向
図 $3-3$ 地震応答解析モデル及び諸元（水平方向）

ばね定数：底面ばねは 0 Hz のばね定数 K 。で定数化
減衰係数：建屋一地盤連成系の 1 次固有円振動数 ω_{1} に対応する虚部の値と原点とを結ぶ直線の傾きC c で定数化

図 3－4 地盤ばねの定数化の概要

表 3－3 地盤ばね定数と減衰係数（水平方向）
（a）NS 方向

地盤ばね 成分	質点 番号	ばね定数 K_{c}	減衰係数 C_{c}
側面•水平	9	$5.968 \times 10^{7}(\mathrm{kN} / \mathrm{m})$	$3.042 \times 10^{6}(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
側面•水平	10	$5.968 \times 10^{7}(\mathrm{kN} / \mathrm{m})$	$3.042 \times 10^{6}(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
底面•水平	10	$1.081 \times 10^{9}(\mathrm{kN} / \mathrm{m})$	$8.664 \times 10^{6}(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
底面•回転	10	$6.744 \times 10^{11}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{rad})$	$1.123 \times 10^{9}(\mathrm{kN} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad})$

（b）EW 方向

地盤ばね 成分	質点 番号	ばね定数 K_{c}	減衰係数 C_{c}
側面•水平	9	$5.968 \times 10^{7}(\mathrm{kN} / \mathrm{m})$	$3.042 \times 10^{6}(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
側面•水平	10	$5.968 \times 10^{7}(\mathrm{kN} / \mathrm{m})$	$3.042 \times 10^{6}(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
底面•水平	10	$1.081 \times 10^{9}(\mathrm{kN} / \mathrm{m})$	$8.664 \times 10^{6}(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$
底面•回転	10	$6.744 \times 10^{11}(\mathrm{kN} \cdot \mathrm{m} / \mathrm{rad})$	$1.122 \times 10^{9}(\mathrm{kN} \cdot \mathrm{m} \cdot \mathrm{s} / \mathrm{rad})$

表 3－4（1）緊急時対策建屋の地震応答解析に用いる地下構造モデルの地盤物性値

地層レベル $0 . \mathrm{P} .(\mathrm{m})$	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断波速度 $\mathrm{Vs}(\mathrm{m} / \mathrm{s})$	減衰定数 $\mathrm{h}(\%)$
-14.1	26.1	1360	3
-27.0	26.4	2040	3
-50.0	26.5	2520	3
-200.0	26.5	2520	3

表 3－4（2）緊急時対策建屋の地震応答解析に用いる建屋位置地盤モデルの地盤物性値

	地層レベル 0. P. (m)	単位体積重量 $\gamma\left(\mathrm{kN} / \mathrm{m}^{3}\right)$	せん断波速度 $V_{S}(\mathrm{~m} / \mathrm{s})$	減衰定数 h（\％）
側面地盤	62.0	23.1	290	3
	61.3	23.1	710	3
	60.2	25.5	680	3
	52.8	26． 2	670	3
	52.5	26． 2	1330	3
底面地盤	45.5	26． 2	1330	3
	37.7	26.2	2080	3
	23.8	26． 2	2510	3
	10． 4	26． 4	2500	3
	-200.0	26.4	2500	3

図 3－5 地震応答解析モデルに入力する地震動の概念図（水平方向）

（基準地震動 S s，水平方向，0．P． 45.5 m ）

3．2．2 鉛直方向

（1）地震応答解析モデル
鉛直方向の地震応答解析モデルは，軸変形をする耐震壁部及び柱からなる質点系モデルとし，地盤を等価なばねで評価した建屋一地盤連成モデルとする。鉛直方向の地震応答解析モデル及び諸元を図 3－7に示す。
（2）地盤ばね
基礎版底面下の地盤は，鉛直方向の地震応答解析モデルにおいては鉛直ばねで置換している。この鉛直ばねは，「J E A G 4 6 O 1－1991追補版」により，基礎版底面下の地盤を等価な半無限地盤と見なして，振動アドミッタンス理論に基づ いて評価しており，振動数に依存した複素剛性として表現される。図 $3-8$ に示す ようにばね定数として，実部の静的な値（ K_{c} ）を，また，減衰係数（ C_{c} ）として，建屋一地盤連成モデルの 1 次固有円振動数 $\left(\omega_{1}\right)$ に対応する虚部の値と原点を結 ぶ直線の傾きを採用することにより近似する。基礎底面ばねの評価には解析コー ド「ADMITHF」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要 については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。地盤ばね定数及び減衰係数を表 $3-5$ に示す。
（3）入力地震動
地震応答解析モデルへの入力地震動は，解放基盤表面レベルで定義される基準地震動 S s から以下の手順で算定する。まず，解放基盤モデルの解放基盤表面以深の地盤を一次元地盤としてモデル化し，一次元波動論に基づく評価により 0．P．-200 m の入射波を算定する。算定した 0. P．-200 m の入射波を構造物位置地盤 の一次元地盤モデルに入力して線形解析を行い，建屋基礎底面レベルでの地盤の応答を評価して入力地震動とする。図 3－9 に地震応答解析モデルに入力する地震動の概念図を，設定した地盤定数に基づき算定した基礎底面位置（0．P． 45.5 m ） における入力地震動の加速度応答スペクトルを図 3－10に示す。入力地震動の算定には，解析コード「SHAKE」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード） の概要」に示す。

図 3－7 地震応答解析モデル及び諸元（鉛直方向）

ばね定数：底面ばねは 0 Hz のばね定数 K 。で定数化
減衰係数：地盤一建屋連成系の 1 次固有振動数 ω_{1} に対応する虚部の値と原点とを結 ぶ直線の傾きCcで定数化

図 3－8 鉛直地盤ばねの定数化の概要

表 3－5 地盤ばね定数と減衰係数（鉛直方向）

地盤ばね 成分	ばね定数 K_{c}	減衰係数 C_{c}
底面•鉛直	$1.457 \times 10^{9}(\mathrm{kN} / \mathrm{m})$	$1.733 \times 10^{7}(\mathrm{kN} \cdot \mathrm{s} / \mathrm{m})$

0．P． 75.9 m
0．P． 69.4 m
0．P． 62.2 m
0．P． 57.3 m
0．P． 51.5
0．P． 45.5 m

図 3－9 地震応答解析モデルに入力する地震動の概念図（鉛直方向）

図 3－10 入力地震動の加速度応答スペクトル
（基準地震動 S s，鉛直方向，0．P． 45.5 m ）

3.3 解析方法

緊急時対策建屋について，動的解析により応答加速度，応答変位，応答せん断力，応答曲げモーメント，応答軸力，応答せん断ひずみ及び接地圧を算出する。また，静的解析により必要保有水平耐力を算出する。

緊急時対策建屋の地震応答解析には，解析コード「NUPP4」を用いる。評価に用いる解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プロ グラム（解析コード）の概要」に示す。

3．3．1 動的解析

建物•構築物の動的解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」 に記載の解析方法に基づき，時刻歴応答解析により実施する。

なお，最大接地圧は，「原子力発電所耐震設計技術規程（J E A C 4 6 0 1－2015）」 を参考に，水平応答と鉛直応答から組合せ係数法（組合せ係数は1．0 と 0.4 ）を用いて算出する。

3．3．2 必要保有水平耐力

各層の必要保有水平耐力 $Q_{u n}$ は，次式により算出する。必要保有水平耐力算定用の基準面は基礎版上端（0．P．51．5m）とする。

$$
Q_{u n}=D_{s} \cdot F_{e s} \cdot Q_{u d}
$$

ここで，
D ：各層の構造特性係数
Fes：各層の形状特性係数
$\mathrm{F}_{\mathrm{e} \mathrm{s}}=\mathrm{F}_{\mathrm{s}} \cdot \mathrm{F}_{\mathrm{e}}$
F_{s} ：剛性率に応じた数値（1．0）
F_{e} ：偏心率に応じた数値（1．0）

地震力によって各層に生じる水平力 $\mathrm{T}_{\mathrm{ud} \text { dは，次式により算出する。 }}$
$\mathrm{Q}_{\mathrm{ud}}=\mathrm{n} \cdot \mathrm{C}_{\mathrm{i}} \cdot \mathrm{W}_{\mathrm{i}}$

ここで，
n ：施設の重要度分類に応じた係数（1．0）
Ci ：第i層の地震層せん断力係数
W_{i} ：第i層が支える重量

地震層せん断力係数 Ciは，次式により算出する。
$\mathrm{C}_{\mathrm{i}}=\mathrm{Z} \cdot \mathrm{R}_{\mathrm{t}} \cdot \mathrm{A}_{\mathrm{i}} \cdot \mathrm{C}_{0}$

ここで，
Z ：地震地域係数（1．0）
$R_{t} \quad$ ：振動特性係数（0．8）
A i ：第i層の地震層せん断力係数の高さ方向の分布係数
Co ：標準せん断力係数（1．0）

なお， A_{i} はモーダル解析により以下のとおり算出する。

$$
\mathrm{A}_{\mathrm{i}}=\mathrm{A}_{\mathrm{i}}^{\prime} \quad / \mathrm{A}_{1}
$$

$$
A_{i}^{\prime}=\sqrt{\sum_{j=1}^{k}\left(\sum_{m=i}^{n} w_{m} \cdot \beta_{j} \cdot U_{m j} \cdot R_{t}\left(T_{j}\right)\right)^{2} / \sum_{m=i}^{n} w_{m}}
$$

ここで，

n ：建物•構築物の層数
$\mathrm{W}_{\mathrm{m}} \quad$ ：第 m 層の重量
$\beta_{\mathrm{j}} \cdot \mathrm{U}_{\mathrm{m}} \mathrm{j} \quad$ ：第 m 層の j 次刺激関数
T_{j} ：固有値解析により得られる建物•構築物の j 次固有周期 R_{t}（ T_{j} ）：周期 T_{j} に対応する加速度応答スペクトルの値
（建築基準法施行令第 88 条第 1 項に与えられている振動特 性係数 R_{t} の T_{j} に対する値とする。地盤種別は第 1 種地盤とする。）
：考慮すべき最高次数

3． 4 解析条件

3．4．1 建物•構築物の復元力特性
（1）耐震壁のせん断応力度一せん断ひずみ関係（ $\tau-\gamma$ 関係）
耐震壁のせん断応力度一せん断ひずみ関係（ $\tau-\gamma$ 関係）は，「J E A G 460 1－1991追補版」に基づき，トリリニア型スケルトンカーブとする。耐震壁のせ ん断応力度一せん断ひずみ関係を図3－11に示す。

τ_{1} ：第 1 折点のせん断応力度
τ_{2} ：第2折点のせん断応力度
τ_{3} ：終局点のせん断応力度
γ_{1} ：第1折点のせん断ひずみ
γ_{2} ：第2折点のせん断ひずみ
γ_{3} ：終局点のせん断ひずみ $\left(=4.0 \times 10^{-3}\right)$

図 3－11 耐震壁のせん断応力度一せん断ひずみ関係
（2）耐震壁のせん断応力度一せん断ひずみ関係の履歴特性
耐震壁のせん断応力度一せん断ひずみ関係の履歴特性は，「JEAG4601－ 1991 追補版」に基づき，最大点指向型モデルとする。耐震壁のせん断応力度一せ ん断ひずみ関係の履歴特性を図3－12に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第1折点を越えていない時は負側第1折点に向かう。
c．B－C 間：負側最大点指向
d．各最大点は，スケルトン上を移動することにより更新される。
e．安定ループは面積を持たない。

図 3－12 耐震壁のせん断応力度一せん断ひずみ関係の履歴特性
（3）耐震壁の曲げモーメントー曲率関係（ $\mathrm{M}-\phi$ 関係）
耐震壁の曲げモーメントー曲率関係（M－ 1 関係）は，「J E A G 4 6 O 1－1991追補版」に基づき，トリリニア型スケルトンカーブとする。耐震壁の曲げモーメ ントー曲率関係を図3－13に示す。

M_{1} ：第1折点の曲げモーメント
M_{2} ：第2折点の曲げモーメント
M_{3} ：終局点の曲げモーメント
ϕ_{1} ：第 1 折点の曲率
ϕ_{2} ：第 2 折点の曲率
$\phi 3$ ：終局点の曲率

図 3－13 耐震壁の曲げモーメントー曲率関係
（4）耐震壁の曲げモーメントー曲率関係の履歴特性
耐震壁の曲げモーメントー曲率関係の履歴特性は，「J E A G 4 6 O 1－1991追補版」に基づき，ディグレイディングトリリニア型モデルとする。耐震壁の曲げ モーメントー曲率関係の履歴特性を図 3－14に示す。

a． $0-\mathrm{A}$ 間：弾性範囲
b．A－B 間：負側スケルトンが経験した最大点に向かう。ただし，負側最大点が第1折点を越えていない時は負側第1折点に向かう。
c．B－C 間：最大点指向型で，安定ループは最大曲率に応じた等価粘性減衰を与 える平行四辺形をしたディグレイディングトリリニア型とする。平行四辺形の折点は最大値から $2 \cdot \mathrm{M}_{1}$ を減じた点とする。ただし，負側最大点が第2折点を超えていなければ，負側第2折点を最大点と する安定ループを形成する。また，安定ループ内部での繰り返しに用いる剛性は安定ループの戻り剛性に同じとする。
d．各最大点はスケルトン上を移動することにより更新される。

図 3－14 耐震壁の曲げモーメントー曲率関係の履歴特性
（5）スケルトンカーブの諸数値
緊急時対策建屋の各耐震壁について算出したせん断力及び曲げモーメントのス ケルトンカーブの諸数値を表 3－6及び表 3－7に示す。

表3－6（1）せん断力のスケルトンカーブ（ $\tau-\gamma$ 関係）NS 方向
A通り

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$75.9 \sim 69.4$	1.84	2.48	7.64	0.180	0.541	4.00
$69.4 \sim 62.2$	1.84	2.49	7.67	0.181	0.543	4.00
$62.2 \sim 57.3$	1.88	2.54	7.46	0.185	0.554	4.00
$57.3 \sim 51.5$	1.94	2.62	7.67	0.190	0.571	4.00

E通り

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$75.9 \sim 69.4$	1.80	2.44	7.63	0.177	0.531	4.00
$69.4 \sim 62.2$	1.84	2.48	7.67	0.180	0.541	4.00
$62.2 \sim 57.3$	1.88	2.53	7.45	0.184	0.552	4.00
$57.3 \sim 51.5$	1.93	2.60	7.67	0.189	0.567	4.00

表3－6（2）せん断力のスケルトンカーブ（ $\tau-\gamma$ 関係）EW 方向 1 通り

0．P． (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$75.9 \sim 69.4$	1.81	2.44	7.63	0.177	0.531	4.00
$69.4 \sim 62.2$	1.83	2.48	7.67	0.180	0.540	4.00
$62.2 \sim 57.3$	1.88	2.53	7.45	0.184	0.552	4.00
$57.3 \sim 51.5$	1.93	2.60	7.67	0.189	0.567	4.00

5 通り

$0 . \mathrm{P}$. (m)	τ_{1} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{2} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	τ_{3} $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	γ_{1} $\left(\times 10^{-3}\right)$	γ_{2} $\left(\times 10^{-3}\right)$	γ_{3} $\left(\times 10^{-3}\right)$
$75.9 \sim 69.4$	1.83	2.48	7.64	0.180	0.540	4.00
$69.4 \sim 62.2$	1.85	2.49	7.67	0.181	0.543	4.00
$62.2 \sim 57.3$	1.88	2.54	7.45	0.184	0.553	4.00
$57.3 \sim 51.5$	1.94	2.62	7.67	0.190	0.570	4.00

表3－7（1）曲げモーメントのスケルトンカーブ（ $\mathrm{M}-\phi$ 関係）NS 方向 A通り

0．P． (m)	M_{1} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{2} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{3} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	ϕ_{1} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{2} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{3} $\left(\times 10^{-5} / \mathrm{m}\right)$
$75.9 \sim 69.4$	0.779	2.86	3.92	0.610	6.70	134
$69.4 \sim \sim 62.2$	1.94	7.48	10.2	0.594	6.79	136
$62.2 \sim \sim 57.3$	2.88	10.1	13.7	0.631	6.91	138
$57.3 \sim 51.5$	3.52	13.4	18.1	0.675	7.13	143

E通り

$0 . \mathrm{P}$. (m)	M_{1} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{2} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{3} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	ϕ_{1} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{2} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{3} $\left(\times 10^{-5} / \mathrm{m}\right)$
$75.9 \sim 69.4$	0.755	2.83	3.89	0.519	6.68	134
$69.4 \sim 62.2$	1.85	7.40	10.4	0.615	6.97	139
$62.2 \sim 57.3$	2.86	10.1	13.6	0.627	6.91	138
$57.3 \sim 51.5$	3.48	13.4	18.0	0.668	7.12	142

表 $3-7$（2）曲げモーメントのスケルトンカーブ（ $\mathrm{M}-\phi$ 関係）EW 方向
1 通り

$\begin{gathered} \text { 0. P. } \\ (\mathrm{m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{1} \\ \left(\times 10^{6} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{2} \\ \left(\times 10^{6} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \mathrm{M}_{3} \\ \left(\times 10^{6} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	$\begin{gathered} \phi_{1} \\ \left(\times 10^{-5} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \phi_{2} \\ \left(\times 10^{-5} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} \phi_{3} \\ \left(\times 10^{-5} / \mathrm{m}\right) \end{gathered}$
$75.9 \sim 69.4$	0． 756	2.83	3.89	0.592	6.68	134
$69.4 \sim 62.2$	1.96	7.68	10.6	0.596	6.82	136
$62.2 \sim 57.3$	2.86	10． 1	13.6	0.626	6.91	138
$57.3 \sim 51.5$	3． 47	13． 4	18.0	0． 667	7． 12	142

5 通り

0．P． (m)	M_{1} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{2} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	M_{3} $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	ϕ_{1} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{2} $\left(\times 10^{-5} / \mathrm{m}\right)$	ϕ_{3} $\left(\times 10^{-5} / \mathrm{m}\right)$
$75.9 \sim \sim 69.4$	0.776	2.85	3.92	0.608	6.69	134
$69.4 \sim 62.2$	1.79	7.08	9.89	0.598	6.77	135
$62.2 \sim 57.3$	2.87	10.1	13.7	0.630	6.91	138
$57.3 \sim 51.5$	3.51	13.4	18.1	0.674	7.13	143

3．4．2 地盤の回転ばねの復元力特性
地盤の回転ばねに関する曲げモーメントー回転角の関係は「JEAG4601 －1991 追補版」に基づき，浮上りによる幾何学的非線形性を考慮する。地盤の回転ばねの曲げモーメントー回転角の関係を図 3－15に示す。

浮上り時の地盤の回転ばねの剛性は，図 3－15の曲線で表され，減裹係数は，回転ばねの接線剛性に比例するものとして考慮する。

M ：転倒モーメント
M_{0} ：浮上り限界転倒モーメント $(=\mathrm{W} \cdot \mathrm{L} / 6)$
θ ：回転角
θ o ：浮上り限界回転角
K_{0} ：地盤の回転ばね定数（浮上り前）
K ：地盤の回転ばね定数（浮上り後）
W ：建屋総重量
（はね出し部上部のセメント改良土を考慮。単位体積重量は $21.6 \mathrm{kN} / \mathrm{m}^{3}$ ）
L ：建屋基礎幅

図 3－15 回転ばねのモーメントー回転角の関係

3．4．3 材料物性の不確かさ

解析においては，「3．2 地震応答解析モデル」に示す物性値及び定数を基本ケ ースとし，材料物性の不確かさを考慮する。材料物性の不確かさを考慮した地震応答解析は，すべての基準地震動 S s について実施することとする。

材料物性の不確かさのうち，地盤物性については，地盤調査結果の平均値をも とに設定した数値を基本ケースとし，支持地盤のせん断波速度の不確かさは，士 σ 相当として，変動係数 6.7% を考慮する。

建屋剛性の不確かさについては，既設建屋は 3.11 地震等の影響を踏まえて初期剛性の低下を考慮しているものの，緊急時対策建屋は新設建屋であり地震の影響を受けていないこと，また評価基準値（耐震壁のせん断ひずみ： 2.0×10^{-3} ）に対して十分な余裕を有しているため，耐震安全性は基本ケースの解析で確認可能 と考えるが，念のため初期剛性の不確かさとして 0.8 倍を考慮することで設計に おける保守性を確保する。

材料物性の不確かさを考慮する地震応答解析ケースを表 3－8に，地盤物性の不確かさを考慮した解析用地盤物性を表3－9に示す。

表 3－8 材料物性の不確かさを考慮する地震応答解析ケース

ケース名	建屋減衰	コンクリート剛性		地盤の せん断波速度
		初期剛性	終局耐力	
$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	5\％	設計基準強度に基づき JEAG式で評価		平均値
ケース 2	同上	同上		$+\sigma$ 相当
ケース 3	同上	同上		－σ 相当
$\begin{aligned} & \text { ケース } 4 \\ & \text { (水平のみ) } \end{aligned}$	同上	基本ケースの 0.8 倍	設計基準強度に基づき JEAG 式で評価	平均値
$\begin{aligned} & \text { ケース } 5 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	$+\sigma$ 相当
$\begin{aligned} & \text { ケース } 6 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	－σ 相 当

表 3－9（1）地盤物性の不確かさを考慮した地下構造モデルの解析用地盤物性

$0 . P$ $(\mathrm{~m})$	地盤のせん断波速度 $(\mathrm{m} / \mathrm{s})$		
	基本ケース	$+\sigma$ 相当	$-\sigma$ 相当
-14.1	1360	1460	1260
-27.0	2040	2190	1890
-50.0	2520	2700	2340
-200.0	2520	2700	2340

表 3－9（2）地盤物性の不確かさを考慮した建屋位置地盤モデルの解析用地盤物性

	$0 . \mathrm{P}$ ．	地盤のせん断波速度（m／s）		
	（m）	基本ケース	＋σ 相当	$-\sigma$ 相当
側面地盤	62.0	290	310	270
	61.3	710	760	660
	60.2	680	730	630
	52.8	670	710	630
	52.5	1330	1420	1240
底面地盤	45.5	1330	1420	1240
	37.7	2080	2220	1940
	23.8	2510	2680	2340
	10.4	2500	2670	2330
	－200．0	2500	2670	2330

4．解析結果

4． 1 動的解析
4．1．1 基本ケースの地震応答解析結果
（1）固有値解析結果
基本ケースの地震応答解析モデルの固有値解析結果（固有周期，固有振動数及 び刺激係数）を表 4－1 に示す。刺激関数図を図 4－1 に示す。

なお，刺激係数は，各次の固有ベクトル $\{\mathrm{u}\}$ に対し，最大振幅が 1.0 となるよう に規準化した値を示す。
（2）地震応答解析結果
基準地震動 S s による最大応答値を図 4－2～図4－12 及び表4－2～表4－15 に示す。また，基準地震動 S s に対する最大応答値を耐震壁のスケルトンカーブ上にプロットして図4－13及び図4－14に示す。

表 4－1 固有値解析結果
（a）NS 方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数
1	0.101	9.92	1.734
2	0.047	21.23	1.364
3	0.034	29.45	0.160
4	0.033	29.94	1.051

（b）EW方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数
1	0.101	9.91	1.734
2	0.047	21.22	1.361
3	0.034	29.33	0.143
4	0.033	29.93	1.060

（c）UD 方向

次数	固有周期 (s)	固有振動数 (Hz)	刺激係数
1	0.051	19.74	1.701
2	0.026	38.13	0.933
3	0.017	60.14	0.288
4	0.012	80.45	0.066

注記：刺激係数は，各次の固有ベクトル $\{\mathrm{u}\}$ に対し，最大振幅が 1.0 と なるように規準化した値を示す。

図 4－1（1）刺激関数図（NS 方向）

図 4－1（2）刺激関数図（EW 方向）

1 次モード
2 次モード

図 4－1（3）刺激関数図（UD 方向）

図 4－2 最大応答加速度（基準地震動 S s，NS 方向）

表 4－2 最大応答加速度一覧（基準地震動 S s ，NS 方向）

質点	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$							
番号	S s－D 1	S s－D 2	S s－D 3	$\mathrm{S} \mathrm{s}-\mathrm{F} 1$	$\mathrm{Ss}-\mathrm{F} 2$	$\mathrm{S} s-\mathrm{F} 3$	S s－N 1	最大値
1	2160	2603	2373	1584	2178	2590	734	2603
2	1556	1827	1687	1202	1517	1667	665	1827
3	1041	1253	1092	813	1118	1262	668	1262
4	802	984	792	636	788	891	627	984
5	2160	2603	2373	1584	2178	2590	734	2603
6	1556	1827	1687	1202	1517	1667	665	1827
7	1041	1253	1092	813	1118	1262	668	1262
8	802	984	792	636	788	891	627	984
9	565	673	553	518	551	579	580	673

注：網掛け部分は最大値

図 4－3 最大応答変位（基準地震動 S s，NS 方向）

表 4－3 最大応答変位一覧（基準地震動 S s，NS 方向）

質点 番号	最大応答水平変位 (cm)								
	0.51	0.60	0.53	0.38	0.49	0.58	0.21	0.60	
2	0.37	0.44	0.39	0.28	0.36	0.39	0.16	0.44	
3	0.22	0.26	0.23	0.17	0.22	0.22	0.10	0.26	
4	0.12	0.15	0.12	0.09	0.13	0.12	0.06	0.15	
5	0.51	0.60	0.53	0.38	0.49	0.58	0.21	0.60	
6	0.37	0.44	0.39	0.28	0.36	0.39	0.16	0.44	
7	0.22	0.26	0.23	0.17	0.22	0.22	0.10	0.26	
8	0.12	0.15	0.12	0.09	0.13	0.12	0.06	0.15	
9	0.03	0.04	0.02	0.02	0.02	0.03	0.01	0.04	

注：網掛け部分は最大値

図 4－4 最大応答せん断力（基準地震動 S s，NS 方向）

表 4－4 最大応答せん断力一覧（基準地震動 S s，NS 方向）

	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$							
番号	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$\mathrm{Ss}-\mathrm{D} 2$	S s－D 3	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~F} 1$	$\mathrm{Ss}-\mathrm{F} 2$	S s－F 3	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	最大値
（1）	29.17	34.51	32.22	21.51	29． 74	35． 14	9.84	35.14
（2）	73.83	85.51	79.10	54.55	73.36	83.33	28.56	85.51
（3）	113.04	130.32	119.65	85.91	109.08	118.62	52.34	130.32
（4）	139．11	159.51	146.21	107.08	138.80	146． 21	76． 50	159.51
（5）	28.84	33.96	32.00	21.41	29.48	34.60	9.72	34.60
（6）	80.46	93.32	86.19	59.48	80.08	91.02	31.11	93.32
（7）	112.65	129．92	119.23	85.63	108． 71	118.31	52.13	129.92
（8）	138.97	158.65	146.06	106． 97	138.66	146． 06	76． 42	158.65

注：網掛け部分は最大値

図 4－5 最大応答曲げモーメント（基準地震動 S S，NS 方向）

表 4－5 最大応答曲げモーメント一覧（基準地震動 S s ，NS 方向）

要素番号	最大応答曲げモーメント $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$							
	S s－D 1	S s－D 2	S s－D 3	S s－F 1	$\mathrm{Ss}-\mathrm{F} 2$	Ss－F 3	S s－N 1	最大値
（1）	0.56	0.80	0.69	0． 49	0.60	0.86	0． 14	0.86
	2.36	3.07	2.79	1.88	2.52	3.12	0.76	3.12
（2）	3.10	4． 42	3.91	2.67	3.58	4． 48	0.97	4． 48
	8.38	10.59	9.12	5.96	8.80	10.45	2.86	10.59
（3）	9.04	11.65	10.03	6.55	9.65	11.42	2.98	11.65
	14.53	17.62	15.45	10.54	14． 72	17.06	5． 40	17.62
（4）	15.03	18．39	15.99	10.90	15.35	17． 79	5.50	18． 39
	23.04	26.56	24.40	17.11	22.28	25．72	9． 42	26.56
（5）	0.38	0.63	0.50	0.33	0.43	0.63	0.09	0.63
	2.22	2.85	2.56	1.71	2.33	2.82	0.71	2.85
（6）	2.99	4． 29	3.70	2． 49	3． 40	4． 23	0.93	4． 29
	8.76	11.01	9.38	6.16	9.10	10． 76	3.02	11.01
（7）	9.38	12.07	10.25	6.65	9.92	11.67	3.14	12.07
	14.87	18.01	15.83	10．79	14.98	17.30	5.55	18.01
（8）	15.36	18． 77	16． 35	11.14	15.58	17.96	5.65	18． 77
	23.35	26.92	24.75	17.34	22.51	25.89	9.56	26.92

注：網掛け部分は最大値

表 4－6 最大応答せん断ひずみ一覧（基準地震動 S s ，NS 方向）

要素	最大応答せん断ひずみ $\left(\times 10^{-3}\right)$							
番号	S s－D 1	$\mathrm{Sc}-\mathrm{D} 2$	S s－D 3	S s－F 1	$\mathrm{Ss}-\mathrm{F} 2$	$\mathrm{Ss}-\mathrm{F} 3$	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	最大値
（1）	0.157	0.213	0． 174	0.116	0． 160	0.232	0.053	0.232
（2）	0.156	0.181	0.167	0.116	0.155	0.176	0.060	0.181
（3）	0.160	0． 185	0.170	0.122	0.155	0.168	0.074	0.185
（4）	0.170	0.219	0.179	0.131	0.170	0.179	0.094	0.219
（5）	0.155	0.211	0.172	0.115	0.159	0.231	0.052	0.231
（6）	0.155	0.179	0.166	0.114	0.154	0.175	0.060	0.179
（7）	0.160	0． 185	0.169	0.121	0.154	0.168	0.074	0.185
（8）	0.170	0.219	0.179	0.131	0.170	0.179	0.094	0.219

注：網掛け部分は最大値

図 4－6 最大応答加速度（基準地震動 S s，EW 方向）

表 4－7 最大応答加速度一覧（基準地震動 S s，EW 方向）

質点	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$							
番号	S s－D 1	S s－D 2	S s - D 3	S s－F 1	$\mathrm{S} s-\mathrm{F} 2$	S s－F 3	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	最大値
1	2162	2593	2365	1584	2183	2584	738	2593
2	1558	1832	1689	1202	1519	1673	666	1832
3	1040	1250	1089	810	1119	1261	668	1261
4	801	982	793	634	788	890	627	982
5	2162	2593	2365	1584	2183	2584	738	2593
6	1558	1832	1689	1202	1519	1673	666	1832
7	1040	1250	1089	810	1119	1261	668	1261
8	801	982	793	634	788	890	627	982
9	565	673	553	518	551	579	580	673

注：網掛け部分は最大値

図 4－7 最大応答変位（基準地震動 S s，EW 方向）

表 4－8 最大応答変位一覧（基準地震動 S s，EW 方向）

	最大応答水平変位（ cm ）							
番号	S s－D 1	$\mathrm{Ss}-\mathrm{D} 2$	S s－D 3	S s－F 1	$\mathrm{Ss}-\mathrm{F} 2$	S s－F 3	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	最大値
1	0.51	0.61	0.54	0.38	0.50	0.59	0.21	0.61
2	0.37	0． 44	0.39	0.28	0.36	0． 40	0.16	0． 44
3	0.22	0.26	0.23	0.17	0.22	0.22	0.10	0.26
4	0.12	0.15	0.12	0.09	0.13	0.12	0.06	0.15
5	0.51	0.61	0.54	0.38	0.50	0.59	0.21	0.61
6	0.37	0． 44	0.39	0.28	0.36	0． 40	0.16	0.44
7	0． 22	0． 26	0.23	0.17	0． 22	0.22	0.10	0.26
8	0.12	0.15	0.12	0.09	0.13	0.12	0.06	0.15
9	0.03	0.04	0.02	0.02	0.02	0.03	0.01	0.04

注：網掛け部分は最大値

図 4－8 最大応答せん断力（基準地震動 S s，EW 方向）

表 4－9 最大応答せん断力一覧（基準地震動 S s，EW 方向）

	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$							
番号	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} 1$	S s－D 2	S s－D 3	S s－F 1	$\mathrm{Ss}-\mathrm{F} 2$	Ss－F 3	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{~N} 1$	最大値
（1）	29.22	34.08	32.32	21.68	29.92	34.73	9.88	34.73
（2）	77.65	88.74	83.12	57.23	77.37	88.07	30.02	88.74
（3）	112.90	129.89	119.36	85.64	109． 10	118.67	52.26	129.89
（4）	139． 02	158． 62	145.96	106.83	138.90	146． 12	76.52	158.62
（5）	28.83	34.39	31.70	21.24	29.42	35.03	9.76	35.03
（6）	76.86	88.86	82.29	56.71	76.41	86.69	29．79	88.86
（7）	112.82	130． 20	119.30	85.62	109． 10	118.42	52.33	130.20
（8）	138.98	159.35	145.93	106.82	138.90	146.12	76.55	159.35

注：網掛け部分は最大値

図 4－9 最大応答曲げモーメント（基準地震動 S s，EW 方向）

表 4－10 最大応答曲げモーメント一覧（基準地震動S s，EW方向）

要素番号	最大応答曲げモーメント $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{m}\right)$							
	S s－D 1	S s－D 2	S s－D 3	S s－F 1	Ss－F 2	S s－F 3	$\mathrm{S} \mathrm{s}-\mathrm{N} 1$	最大値
（1）	0.35	0.59	0． 47	0.31	0.41	0.57	0.09	0.59
	2.22	2.83	2.56	1.71	2.34	2.83	0.71	2.83
（2）	2.97	4． 26	3.64	2.45	3.39	4.18	0.92	4.26
	8.55	10． 71	9.12	6.00	8.89	10.50	2.95	10． 71
（3）	9.18	11.82	10.00	6． 49	9． 73	11.40	3.07	11.82
	14.69	17.78	15.62	10.64	14.80	17.06	5． 49	17.78
（4）	15.17	18.55	16.15	10.99	15．41	17． 71	5.59	18.55
	23.16	26． 71	24.54	17． 19	22.34	25.65	9.51	26． 71
（5）	0.60	0.85	0． 74	0.52	0.63	0.93	0.15	0.93
	2.36	3.08	2.80	1.89	2.54	3.15	0.76	3.15
（6）	3.13	4． 48	3.96	2.71	3.62	4.58	0.98	4.58
	8.61	10.88	9.37	6.13	9.05	10.78	2.94	10.88
（7）	9.26	11.95	10.28	6.71	9.89	11.77	3.06	11.95
	14.74	17.90	15.67	10.66	14.95	17． 40	5.48	17.90
（8）	15.25	18.68	16． 20	11.01	15.58	18． 15	5.58	18.68
	23.24	26． 80	24.59	17.21	22.49	26.05	9.51	26.80

注：網掛け部分は最大値

表 4－11 最大応答せん断ひずみ一覧（基準地震動 S s，EW 方向）

要素 番号	最大応答せん断ひずみ $\left(\times 10^{-3}\right)$							
	0.157	0.214	0.174	0.117	0.161	0.234	0.053	0.234
(2)	0.158	0.184	0.169	0.116	0.157	0.179	0.061	0.184
(3)	0.160	0.185	0.169	0.121	0.155	0.168	0.074	0.185
(4)	0.170	0.219	0.179	0.131	0.170	0.179	0.094	0.219
(5)	0.155	0.211	0.171	0.114	0.158	0.230	0.053	0.230
(6)	0.157	0.183	0.168	0.116	0.156	0.177	0.061	0.183
(7)	0.160	0.185	0.169	0.121	0.155	0.168	0.074	0.185
(8)	0.170	0.219	0.179	0.131	0.170	0.179	0.094	0.219

注：網掛け部分は最大値

図 4－10 最大応答加速度（基準地震動 S s，UD 方向）

表 4－12 最大応答加速度一覧（基準地震動 S s，UD 方向）

質点	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$							
番号	S s－D 1	S s－D 2	S s－D 3	S s－F 1	$\mathrm{Ss}-\mathrm{F} 2$	S s－F 3	S s－N 1	最大値
1	964	1376	1285	689	647	1009	497	1376
2	821	1183	1026	570	567	933	472	1183
3	640	885	805	498	511	773	407	885
4	529	703	689	456	465	665	373	703
5	464	602	553	387	406	502	322	602

注：網掛け部分は最大値

図 4－11 最大応答変位（基準地震動 S s，UD 方向）

表 4－13 最大応答変位一覧（基準地震動 S s，UD 方向）

質点	最大応答鉛直変位（cm）							
番号	$\mathrm{S} \mathrm{s}-\mathrm{D} 1$	$\mathrm{S} \mathrm{s}-\mathrm{D} 2$	S s－D 3	$\mathrm{S} \mathrm{s}-\mathrm{F} 1$	$\mathrm{Ss}-\mathrm{F} 2$	S s－F 3	S s－N 1	最大値
1	0.05	0.08	0.07	0.04	0.04	0.06	0.03	0.08
2	0.05	0.06	0.06	0.04	0.04	0.05	0.03	0.06
3	0.04	0.05	0.04	0.03	0.03	0.04	0.02	0.05
4	0.03	0.04	0.03	0.02	0.02	0.03	0.02	0.04
5	0.02	0.02	0.02	0.02	0.02	0.02	0.01	0.02

注：網掛け部分は最大値

図 4－12 最大応答軸力（基準地震動 S s，UD 方向）

表 4－14 最大応答軸力一覧（基準地震動 S s，UD 方向）

要素	最大応軸力 $\left(\times 10^{4} \mathrm{kN}\right)$							
番号	S s－D 1	S s－D 2	S s－D 3	$\mathrm{S} \mathrm{s}-\mathrm{F} 1$	$\mathrm{Ss}-\mathrm{F} 2$	S s－F 3	S s－N 1	最大値
（1）	2.60	3.70	3． 45	1． 85	1． 74	2． 70	1． 34	3.70
（2）	7． 72	11.07	9.84	5． 44	5.32	8.54	4.30	11.07
（3）	12.29	17.31	15.55	8.82	8.94	13.97	7.20	17.31
（4）	16.36	22.64	20.37	11.87	12.52	18.90	10.01	22.64

注：網掛け部分は最大値

要素番号（1）

要素番号（2）

要素番号（3）

要素番号（5）

要素番号（6）

要素番号（7）

図 4－13（1）せん断スケルトンカーブ上の最大応答値 （基準地震動 S s ，NS 方向）（ $1 / 2$ ）

要素番号（4）

要素番号（8）

図 4－13（2）世ん断スケルトンカーブ上の最大応答値 （基準地震動 S s，NS 方向）（2／2）

要素番号（1）

要素番号（2）

要素番号（3）

要素番号（5）

要素番号（6）

要素番号（7）

図 4－13（3）せん断スケルトンカーブ上の最大応答値 （基準地震動 S s ，EW 方向）（ $1 / 2$ ）

要素番号（4）

要素番号（8）

図 4－13（4）せん断スケルトンカーブ上の最大応答値 （基準地震動 S s，EW 方向）（2／2）

要素番号（1）

要素番号（2）

要素番号（3）

要素番号（5）

要素番号（6）

要素番号（7）

図4－14（1）曲げスケルトンカーブ上の最大応答値 （基準地震動 S s，NS 方向）（1／2）

$$
\mathrm{OS} \mathrm{~s}-\mathrm{D} 1 \quad \mathrm{SS} \mathrm{~s}-\mathrm{D} 2 \quad \mathrm{~S} \mathrm{~s}-\mathrm{D} 3 \bullet \mathrm{~S} \mathrm{~s}-\mathrm{F} 1 \quad \mathrm{~S} \mathrm{~s}-\mathrm{F} 2 \quad \mathrm{~S} \mathrm{~s}-\mathrm{F} 3 \times \mathrm{S} \mathrm{~s}-\mathrm{N} 1
$$

要素番号（4）

要素番号（8）

図4－14（2）曲げスケルトンカーブ上の最大応答値 （基準地震動 S s，NS 方向）（2／2）

要素番号（1）

要素番号（2）

要素番号（3）

要素番号（5）

要素番号（6）

要素番号（7）

図4－14（3）曲げスケルトンカーブ上の最大応答値
（基準地震動 S s，EW 方向）（1／2）

$$
\mathrm{OS} \mathrm{~s}-\mathrm{D} 1 \quad \mathrm{SS} \mathrm{~s}-\mathrm{D} 2 \quad \mathrm{~S} \mathrm{~s}-\mathrm{D} 3 \bullet \mathrm{~S}-\mathrm{F} 1 \quad \mathrm{~S} \mathrm{~s}-\mathrm{F} 2 \quad \mathrm{~S} \mathrm{~s}-\mathrm{F} 3 \times \mathrm{S} \mathrm{~s}-\mathrm{N} 1
$$

要素番号（4）

要素番号（8）

図 4－14（4）曲げスケルトンカーブ上の最大応答値 （基準地震動 S s，EW 方向）（2／2）

表 4－15 基準地震動 S s による地震応答解析結果に基づく接地率

（a）NS 方向				
地震動	最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	最大転倒モーメント $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	最小接地率 $(\%)$	
S s－D 1	701	6.595	93.5	
S s－D 2	698	7.945	82.0	
S s－D 3	744	7.105	89.2	
S s－F 1	594	4.894	100.0	
S s－F 2	674	6.222	96.7	
S s－F 3	666	7.377	86.9	
S s－N 1	511	3.589	100.0	

（b）EW 方向

地震動	最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	最大転倒モーメント $\left(\times 10^{6} \mathrm{kN} \cdot \mathrm{m}\right)$	最小接地率 $(\%)$
S s－D 1	701	6.593	93.6
S s－D 2	697	7.939	82.0
S s－D 3	743	7.095	89.3
S s－F 1	593	4.882	100.0
S s－F 2	673	6.208	96.9
S s－F 3	666	7.380	86.8
S s－N 1	511	3.592	100.0

4．1．2 材料物性の不確かさを考慮したケースの地震応答解析結果
材料物性の不確かさを考慮した基準地震動 S s に対する地震応答解析結果につ いて，基本ケースによる解析結果とあわせて表4－16～表4－26に示す。

表 4－16 最大応答加速度一覧表（基準地震動 S s，NS 方向）

$$
\text { (a) } \mathrm{S} \text { s - D } 2
$$

（b）S s－F 3

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$											
	S s－F 3						最大値					
	$\left\|\begin{array}{c} \text { ケース } \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\|\begin{array}{c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	2590	2586	2603	2183	2361	2060	2603	2641	2603	2685	2727	2668
2	1667	1786	1531	1879	1941	1770	1827	1906	1707	1928	1981	1791
3	1262	1296	1212	1321	1368	1229	1262	1296	1235	1321	1368	1229
4	891	913	914	825	859	785	984	972	929	894	864	911
5	2590	2586	2603	2183	2361	2060	2603	2641	2603	2685	2727	2668
6	1667	1786	1531	1879	1941	1770	1827	1906	1707	1928	1981	1791
7	1262	1296	1212	1321	1368	1229	1262	1296	1235	1321	1368	1229
8	891	913	914	825	859	785	984	972	929	894	864	911
9	579	621	580	566	584	581	673	717	630	612	622	599

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4 ：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性一 σ

表 4－17 最大応答変位一覧表（基準地震動 S s，NS 方向）

	（a）S s－D 2												
	質点番号	最大応答変位（cm）											
		S s -D 2						最大値					
		$\left\|\begin{array}{c} \text { ケース } \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\|\begin{array}{c} \text { ケース } \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
	1	0.60	0.65	0.56	0.80	0.84	0.75	0.60	0.65	0.56	0.80	0.84	0.75
	2	0． 44	0． 46	0． 41	0.57	0.60	0.53	0． 44	0． 46	0.41	0.57	0.60	0.53
	3	0.26	0.28	0.24	0.33	0.35	0.31	0.26	0.28	0.24	0.33	0.35	0.31
	4	0.15	0.16	0.13	0.18	0．19	0.17	0.15	0.16	0.13	0.18	0.20	0.17
	5	0.60	0.65	0.56	0.80	0.84	0． 75	0.60	0.65	0.56	0.80	0.84	0.75
	6	0． 44	0． 46	0． 41	0.57	0.60	0.53	0． 44	0． 46	0． 41	0.57	0.60	0.53
	7	0.26	0.28	0． 24	0.33	0.35	0.31	0.26	0.28	0． 24	0.33	0.35	0.31
	8	0.15	0.16	0.13	0.18	0.19	0.17	0.15	0.16	0.13	0.18	0.20	0.17
∇	9	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
（b）S s－F 3

質点番号	最大応答変位（ cm ）											
	$\mathrm{S} s-\mathrm{F} 3$						最大値					
	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\|\begin{array}{c} \text { ケース } \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	0.58	0.61	0.54	0.72	0.76	0.67	0.60	0.65	0.56	0.80	0.84	0.75
2	0．39	0． 42	0．37	0.54	0.57	0． 50	0． 44	0．46	0． 41	0.57	0.60	0.53
3	0.22	0.24	0.21	0.33	0.34	0.30	0.26	0.28	0． 24	0.33	0.35	0.31
4	0.12	0.13	0.11	0.18	0.20	0.17	0.15	0.16	0.13	0.18	0.20	0.17
5	0.58	0.61	0.54	0． 72	0．76	0.67	0.60	0.65	0.56	0.80	0．84	0.75
6	0．39	0． 42	0.37	0.54	0.57	0.50	0． 44	0． 46	0． 41	0.57	0． 60	0.53
7	0.22	0.24	0.21	0.33	0.34	0.30	0.26	0.28	0． 24	0.33	0.35	0.31
8	0.12	0.13	0.11	0.18	0．20	0.17	0.15	0.16	0.13	0.18	0．20	0.17
9	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.03	0.04	0.04	0.04

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性一 σ

表 4－18 最大応答せん断力一覧表（基準地震動 S s，NS 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$											
	S s－D 2						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\|\begin{array}{c} \text { ケース } \\ 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	34.51	34.64	33.97	35.88	36.57	35.28	35.14	35.35	34.47	36.06	36.57	36.05
（2）	85.51	86． 73	80.04	90.95	92.37	87． 24	85.51	86． 73	80.04	90.95	92.37	87.24
（3）	130．32	131.05	126． 22	137．78	139.11	130.13	130．32	131.05	126.22	137.78	139.11	130． 13
（4）	159.51	162.88	155.93	164． 75	166． 94	156.64	159.51	162.88	155.93	164.75	166．94	156． 64
（5）	33.96	34.10	33.41	35.30	35.99	34.73	34.60	34.82	33.93	35.50	35.99	35.49
（6）	93.32	95.04	87.23	99.61	101．16	95.18	93.32	95.04	87.23	99.61	101.16	95.18
（7）	129.92	130.65	125.81	137． 39	138.71	129.75	129．92	130．65	125.81	137． 39	138.71	129． 75
（8）	158.65	162.03	155.08	163.86	166.05	156.50	158.65	162.03	155.08	163.86	166.05	156.50

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$											
	S s－F 3						最大値					
	$\left\|\begin{array}{c} \text { ケース } \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	35． 14	35.35	34.47	29.65	31.68	28.04	35.14	35.35	34.47	36.06	36.57	36.05
（2）	83.33	85.87	77.73	84.68	88.70	78.69	85.51	86． 73	80.04	90.95	92.37	87.24
（3）	118.62	126． 22	109．56	133.71	138.00	123.88	130．32	131.05	126． 22	137．78	139．11	130．13
（4）	146． 21	155.00	135．77	164． 19	166． 49	153.69	159.51	162.88	155.93	164.75	166．94	156． 64
（5）	34.60	34.82	33.93	29.32	31.26	27． 77	34.60	34.82	33.93	35.50	35.99	35.49
（6）	91.02	94.09	84.94	92.25	96.64	85． 72	93.32	95.04	87.23	99.61	101.16	95.18
（7）	118．31	125．86	109． 29	133．21	137． 58	123． 42	129．92	130.65	125.81	137．39	138．71	129． 75
（8）	146．06	154.47	135.62	163．29	165.58	153.51	158.65	162.03	155.08	163.86	166.05	156.50

注：ケース 1：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性一 σ
ケース 4 ：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$

表 4－19（1）最大応答曲げモーメント一覧表（基準地震動 S S ，NS 方向）（1／2）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

要素番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－D 2						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース6	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.80	0． 79	0.83	0． 79	0． 79	0． 86	0.86	0． 89	0.87	0.86	0.81	0.89
	3.07	3.09	3.07	3.02	3.16	2.88	3.12	3.14	3.13	3.22	3.20	3.24
（2）	4． 42	4． 44	4． 43	4.11	4.39	4． 04	4． 48	4． 48	4． 47	4.55	4． 44	4． 62
	10.59	10.81	10.20	10.67	11.16	10.15	10.59	10.81	10.20	10.67	11.16	10.15
（3）	11.65	11.96	11.21	11.62	12.20	10.96	11.65	11.96	11.21	11.62	12.20	11.13
	17.62	18.36	16.54	18.40	19.06	17． 34	17.62	18.36	16.54	18.40	19.06	17． 34
（4）	18.39	19.19	17.31	19.08	19.82	17.95	18． 39	19.19	17.31	19.08	19.82	17.95
	26.56	27.97	25.24	28.64	29.59	27.03	26.56	27.97	25.24	28.64	29.59	27.03
（5）	0.63	0.59	0.60	0.52	0.55	0.58	0.63	0.66	0.61	0.62	0.63	0.64
	2.85	2.85	2． 82	2． 78	2.91	2.68	2.85	2． 85	2.84	2.96	2.93	2.97
（6）	4． 29	4． 25	4． 27	3.89	4． 19	3． 78	4． 29	4． 25	4． 27	4． 34	4． 29	4． 41
	11.01	11.18	10.55	11.12	11.58	10.55	11.01	11.18	10.55	11.12	11.58	10.55
（7）	12.07	12.33	11.57	12.03	12.60	11.32	12.07	12.33	11.57	12.03	12.60	11.41
	18.01	18．71	16． 88	18．79	19． 44	17.68	18.01	18．71	16． 88	18．79	19． 44	17.68
（8）	18．77	19．49	17.65	19.41	20.15	18.27	18.77	19．49	17.65	19.41	20.15	18.27
	26.92	28.30	25.58	28.96	29.91	27.34	26.92	28.30	25.58	28.96	29.91	27.34

注1：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
注 2 ：上段は要素の上端，下段は要素の下端のモーメントを示す。

表 4－19（2）最大応答曲げモーメント一覧表（基準地震動 S s，NS 方向）（2／2）
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

要素番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－F 3						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース6	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.86	0． 89	0.87	0.60	0.56	0.61	0.86	0． 89	0.87	0.86	0.81	0.89
	3.12	3.14	3.13	2． 46	2.54	2.34	3.12	3.14	3.13	3.22	3.20	3.24
（2）	4． 48	4． 48	4． 47	3.31	3.39	3.25	4． 48	4． 48	4． 47	4.55	4． 44	4． 62
	10． 45	10.63	10.03	9.06	9.61	8.36	10.59	10.81	10.20	10.67	11.16	10.15
（3）	11.42	11.72	11.03	9.68	10.37	8.91	11.65	11.96	11.21	11.62	12.20	11.13
	17.06	17． 74	16.15	16． 23	17．15	14.97	17.62	18.36	16.54	18.40	19.06	17． 34
（4）	17．79	18.53	16.84	16． 72	17.69	15.41	18． 39	19.19	17.31	19.08	19.82	17.95
	25．72	27.06	24.01	26． 24	27.34	24.32	26.56	27.97	25.24	28.64	29.59	27.03
（5）	0.63	0.66	0.61	0.41	0.44	0． 40	0.63	0.66	0.61	0.62	0.63	0.64
	2.82	2.85	2． 84	2.31	2． 40	2.18	2.85	2． 85	2.84	2.96	2.93	2.97
（6）	4.23	4． 22	4． 20	3.23	3.36	3.06	4． 29	4． 25	4． 27	4． 34	4． 29	4． 41
	10.76	11.03	10．29	9.51	10.07	8． 80	11.01	11.18	10.55	11.12	11.58	10.55
（7）	11.67	12.03	11.21	10.15	10.84	9.34	12.07	12.33	11.57	12.03	12.60	11.41
	17．30	18． 04	16． 34	16.66	17． 60	15.38	18.01	18．71	16． 88	18．79	19． 44	17.68
（8）	17.96	18．74	16．98	17．17	18．11	15.80	18．77	19．49	17.65	19.41	20.15	18.27
	25.89	27.26	24.15	26.64	27.76	24.70	26.92	28.30	25.58	28.96	29.91	27.34

注1：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
注 2 ：上段は要素の上端，下段は要素の下端のモーメントを示す。

表 4－20 最大応答加速度一覧表（基準地震動 S s，EW 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$											
	S s－F 3						最大値					
	$\left\|\begin{array}{c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース }) \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\|\begin{array}{c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	2584	2609	2592	2182	2362	2059	2593	2623	2592	2687	2721	2676
2	1673	1762	1532	1887	1950	1775	1832	1889	1712	1901	1955	1801
3	1261	1295	1210	1316	1366	1224	1261	1295	1234	1316	1366	1224
4	890	911	911	819	855	781	982	971	927	895	862	911
5	2584	2609	2592	2182	2362	2059	2593	2623	2592	2687	2721	2676
6	1673	1762	1532	1887	1950	1775	1832	1889	1712	1901	1955	1801
7	1261	1295	1210	1316	1366	1224	1261	1295	1234	1316	1366	1224
8	890	911	911	819	855	781	982	971	927	895	862	911
9	579	621	580	567	584	582	673	712	630	612	622	599

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$

表 4－21 最大応答変位一覧表（基準地震動 S s，EW 方向）
（a） S s -D 2

質点番号	最大応答変位（ cm ）											
	S s -D 2						最大値					
	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\|\begin{array}{c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	0.61	0.65	0.56	0.80	0.85	0.75	0.61	0.65	0.56	0.80	0.85	0.75
2	0． 44	0． 46	0.41	0.57	0.60	0.53	0． 44	0． 46	0． 41	0.57	0.60	0.53
3	0.26	0.28	0.24	0.33	0.35	0.31	0.26	0.28	0． 24	0.33	0.35	0.31
4	0.15	0.16	0.13	0.18	0.19	0.17	0.15	0.16	0.13	0.18	0.20	0.17
5	0.61	0.65	0.56	0.80	0.85	0.75	0.61	0.65	0.56	0.80	0.85	0.75
6	0． 44	0． 46	0． 41	0.57	0． 60	0.53	0． 44	0.46	0． 41	0.57	0.60	0.53
7	0.26	0.28	0.24	0.33	0.35	0.31	0.26	0.28	0． 24	0.33	0.35	0.31
8	0.15	0.16	0.13	0.18	0.19	0.17	0.15	0.16	0.13	0.18	0． 20	0.17
9	0.04	0.04	0.03	0.04	0.04	0.04	0.04	0.04	0.03	0.04	0.04	0.04

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
（b） S s -F 3

質点番号	最大応答変位（cm）											
	S s -F 3						最大値					
	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
1	0.59	0.61	0.55	0.73	0． 77	0.67	0.61	0.65	0.56	0.80	0.85	0． 75
2	0． 40	0． 42	0.37	0.54	0.57	0.50	0． 44	0． 46	0． 41	0.57	0.60	0.53
3	0.22	0． 24	0.21	0.33	0.34	0.30	0.26	0.28	0.24	0.33	0.35	0.31
4	0.12	0.13	0.11	0.18	0.20	0.17	0.15	0.16	0.13	0.18	0.20	0． 17
5	0.59	0.61	0.55	0.73	0.77	0.67	0.61	0.65	0.56	0.80	0.85	0.75
6	0． 40	0． 42	0.37	0.54	0.57	0.50	0.44	0.46	0． 41	0.57	0.60	0.53
7	0.22	0.24	0.21	0.33	0.34	0.30	0.26	0.28	0． 24	0.33	0.35	0.31
8	0.12	0.13	0.11	0.18	0.20	0.17	0.15	0.16	0.13	0.18	0.20	0.17
9	0.03	0.03	0.03	0.03	0.03	0.03	0.04	0.04	0.03	0.04	0.04	0.04

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$

表 4－22 最大応答せん断力一覧表（基準地震動 S s，EW 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$											
	S s－D 2						最大値					
	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ \left(\left.\begin{array}{c} \text { 基本 } \\ \text { ケース) } \end{array} \right\rvert\,\right. \end{gathered}\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\|\begin{array}{c} \text { ケース } \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	34.08	34.23	33.54	35.42	36.05	34.86	34.73	34.90	34.04	35.68	36.05	35.64
（2）	88． 74	90.35	84.23	94.54	96.36	91.95	88.74	90.35	84.23	94.54	96.36	91.95
（3）	129．89	130.66	126． 12	137．36	138．69	130.12	129．89	130.66	126.12	137.36	138．69	130．12
（4）	158.62	161.88	155.01	163.78	166． 00	156． 53	158.62	161.88	155.01	163.78	166． 00	156． 53
（5）	34.39	34.51	33.86	35.71	36.32	34.84	35.03	35.15	34.32	35.94	36.32	35.90
（6）	88.86	90.39	83.16	94.58	96.35	90.84	88.86	90.39	83.16	94.58	96.35	90.84
（7）	130.20	130.94	126． 04	137．62	138．91	129.91	130．20	130.94	126． 04	137.62	138.91	129．91
（8）	159.35	162.59	155.74	164.53	166．74	156． 44	159.35	162.59	155． 74	164.53	166． 74	156． 44

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5：建屋剛性考慮•地盤物性＋σ ，ケース 6 ：建屋剛性考慮•地盤物性－σ
（b） S s -F 3

要素番号	最大応答せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$											
	S s－F 3						最大値					
	$\left\lvert\, \begin{gathered} \text { ケース } \end{gathered} 1\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\|\begin{array}{c} \text { ケース } \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	34.73	34.90	34.04	29.71	31.66	28.12	34.73	34.90	34.04	35.68	36.05	35.64
（2）	88.07	89.20	82.18	89.10	93.31	82.72	88.74	90.35	84.23	94.54	96.36	91.95
（3）	118.67	126．28	109.60	133．47	137.60	123.61	129．89	130.66	126.12	137．36	138.69	130．12
（4）	146． 12	154.41	135.56	163.19	165． 48	153.41	158.62	161.88	155.01	163.78	166.00	156.53
（5）	35.03	35.15	34.32	29.28	31.30	27.67	35.03	35.15	34.32	35.94	36.32	35.90
（6）	86.69	89.25	80.78	88.38	92.55	82.07	88.86	90.39	83.16	94.58	96.35	90.84
（7）	118． 42	126．06	109．32	133.51	137．90	123.66	130．20	130.94	126． 04	137.62	138.91	129.91
（8）	146.12	154.96	135.58	163.98	166.26	153．43	159．35	162.59	155． 74	164.53	166． 74	156． 44

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性一 σ

表 4－23（1）最大応答曲げモーメント一覧表（基準地震動 S s，EW 方向）（1／2） （a） S s -D 2

要素 番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－D 2						最大値					
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.59	0.57	0.57	0． 48	0.55	0.53	0.59	0.63	0.57	0.58	0.58	0.59
	2.83	2． 83	2． 75	2． 79	2.91	2.68	2.83	2． 88	2.81	2.95	2． 92	2.95
（2）	4． 26	4． 24	4． 19	3.93	4.18	3.68	4.26	4． 24	4.19	4.27	4.22	4.33
	10.71	10.80	10.25	10.77	11.18	10.29	10.71	10.80	10.25	10.77	11.18	10.29
（3）	11.82	11.99	11.32	11.72	12.22	11.07	11.82	11.99	11.32	11.72	12．22	11.14
	17．78	18.36	16.64	18.46	19.07	17.45	17．78	18.36	16.64	18.46	19.07	17.45
（4）	18.55	19.17	17．41	19.13	19． 82	18.04	18.55	19.17	17． 41	19.13	19．82	18.04
	26．71	27.93	25.39	28.68	29.56	27.12	26．71	27.93	25.39	28.68	29.56	27.12
（5）	0.85	0.85	0.88	0.86	0.82	0.94	0.93	0.94	0.93	0.92	0.87	0.94
	3.08	3.12	3.09	3.03	3.18	2.88	3.15	3.26	3.17	3.26	3.23	3.31
（6）	4． 48	4． 55	4． 48	4． 15	4． 46	4.15	4.58	4． 63	4． 57	4． 64	4.52	4． 75
	10.88	11.12	10.46	10.99	11.54	10.45	10.88	11.12	10.46	10.99	11.54	10.45
（7）	11.95	12.28	11.47	11.92	12.59	11.25	11.95	12.28	11.47	11.92	12.59	11.45
	17.90	18.64	16． 79	18.68	19． 42	17.61	17.90	18.64	16． 79	18.68	19．42	17.61
（8）	18.68	19．49	17.56	19.37	20.19	18.23	18.68	19．49	17.56	19.37	20.19	18.23
	26． 80	28.44	25.46	28.97	29.93	27.30	26.80	28.44	25.46	28.97	29.93	27.30

注1：ケース1：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
注 2 ：上段は要素の上端，下段は要素の下端のモーメントを示す。

表 4－23（2）最大応答曲げモーメント一覧表（基準地震動S s，EW 方向）（2／2）
（b） S s -F 3

要素番号	最大応答曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$											
	S s－F 3						最大値					
	$\left\|\begin{array}{c} \text { ケース } \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}\right.$	ケース 2	ケース 3	ケース 4	ケース 5	ケース 6
（1）	0.57	0.63	0.57	0.38	0.41	0.37	0.59	0.63	0.57	0.58	0.58	0.59
	2． 83	2． 88	2． 81	2． 30	2． 39	2.17	2.83	2.88	2.81	2.95	2.92	2.95
（2）	4． 18	4． 22	4． 09	3.18	3.31	3.04	4． 26	4． 24	4． 19	4.27	4． 22	4.33
	10.50	10.65	9.99	9.30	9.86	8． 60	10．71	10.80	10.25	10．77	11.18	10．29
（3）	11.40	11.66	10.92	9．96	10.64	9.17	11.82	11.99	11.32	11.72	12.22	11.14
	17.06	17．70	16.07	16.48	17． 40	15.21	17．78	18.36	16.64	18.46	19.07	17.45
（4）	17．71	18.45	16． 71	16.99	17.93	15.64	18.55	19.17	17． 41	19.13	19.82	18.04
	25.65	27.01	23.89	26． 49	27.55	24.54	26．71	27.93	25.39	28.68	29.56	27.12
（5）	0.93	0.94	0.93	0.64	0.59	0.65	0.93	0.94	0.93	0.92	0.87	0.94
	3.15	3.26	3.17	2． 48	2.55	2.35	3.15	3.26	3.17	3.26	3.23	3.31
（6）	4.58	4． 63	4.57	3.36	3.44	3.28	4.58	4.63	4.57	4.64	4.52	4.75
	10.78	11.06	10.36	9．32	9.87	8.59	10.88	11.12	10.46	10.99	11.54	10.45
（7）	11．77	12.12	11.35	9.92	10.62	9.13	11.95	12.28	11.47	11.92	12.59	11． 45
	17．40	18.09	16． 46	16． 46	17.38	15.17	17.90	18.64	16．79	18.68	19.42	17.61
（8）	18.15	18.88	17.16	16.94	17.93	15.60	18.68	19．49	17.56	19.37	20.19	18.23
	26.05	27.40	24.31	26.46	27.69	24.50	26.80	28.44	25.46	28.97	29.93	27.30

注1：ケース1：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
ケース 4：建屋剛性考慮，ケース 5 ：建屋剛性考慮•地盤物性 $+\sigma$ ，ケース 6 ：建屋剛性考慮•地盤物性 $-\sigma$
注 2 ：上段は要素の上端，下段は要素の下端のモーメントを示す。

表 4－24 最大応答加速度一覧表（基準地震動 S s，UD 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$					
	S s－D 2			最大値		
	$\left\|\begin{array}{c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	$\left\|\begin{array}{c} \text { ケース } \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3
1	1376	1384	1349	1376	1384	1349
2	1183	1214	1140	1183	1214	1140
3	885	908	860	885	908	860
4	703	708	691	703	708	691
5	602	608	593	602	608	593

注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$
（b） S s -F 3

質点番号	最大応答加速度 $\left(\mathrm{cm} / \mathrm{s}^{2}\right)$					
	S s－F 3			最大値		
	$\left\|\begin{array}{c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3
1	1009	1076	953	1376	1384	1349
2	933	972	886	1183	1214	1140
3	773	796	742	885	908	860
4	665	678	646	703	708	691
5	502	513	490	602	608	593

表 4－25 最大応答変位一覧表（基準地震動 S s，UD 方向）
（a）S s－D 2

質点番号	最大応答変位（ cm ）					
	S s－D 2			最大値		
	$\left\|\begin{array}{c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3	$\left\|\begin{array}{c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3
1	0.08	0.08	0.08	0.08	0.08	0.08
2	0.06	0.06	0.06	0.06	0.06	0.06
3	0.05	0.05	0.05	0.05	0.05	0.05
4	0.04	0.04	0.04	0.04	0.04	0.04
5	0.02	0.02	0.02	0.02	0.02	0.02

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$
（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$
（b） S s -F 3

質点番号	最大応答変位（cm）					
	S s－F 3			最大値		
	$\left\lvert\, \begin{gathered} \text { ケース } 1 \\ (\text { 基本 } \\ \text { ケース) } \end{gathered}\right.$	ケース 2	ケース 3	$\text { ケース } 1$ （基本 ケース)	ケース 2	ケース 3
1	0.06	0.06	0.06	0.08	0.08	0.08
2	0.05	0.05	0.05	0.06	0.06	0.06
3	0.04	0.04	0.04	0.05	0.05	0.05
4	0.03	0.03	0.03	0.04	0.04	0.04
5	0.02	0.02	0.02	0.02	0.02	0.02

注：ケース 1 ：基本ケース，ケース $2:$ 地盤物性 $+\sigma$ ，ケース $3:$ 地盤物性 $-\sigma$

表 4－26 最大応答軸力一覧表（基準地震動 S s，UD 方向）
（a） $\mathrm{S} \mathrm{s}-\mathrm{D} 2$

要素番号	最大応答軸力 $\left(\times 10^{3} \mathrm{kN}\right)$					
	S s -D 2			最大値		
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3
（1）	3． 70	3． 74	3.64	3.70	3． 74	3.64
（2）	11.07	11.29	10.74	11.07	11.29	10.74
（3）	17.31	17.69	16． 84	17.31	17.69	16.84
（4）	22.64	22.99	22.16	22.64	22.99	22.16

（b） $\mathrm{S} \mathrm{s}-\mathrm{F} 3$
注：ケース 1 ：基本ケース，ケース 2 ：地盤物性 $+\sigma$ ，ケース 3 ：地盤物性 $-\sigma$

要素番号	最大応答軸力 $\left(\times 10^{3} \mathrm{kN}\right)$					
	$\mathrm{S} s-\mathrm{F} 3$			最大値		
	$\begin{gathered} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{gathered}$	ケース 2	ケース 3	$\left\|\begin{array}{c} \text { ケース } 1 \\ \text { (基本 } \\ \text { ケース) } \end{array}\right\|$	ケース 2	ケース 3
（1）	2． 70	2.88	2.57	3.70	3.74	3.64
（2）	8． 54	8.92	8.10	11.07	11.29	10．74
（3）	13.97	14.51	13.32	17.31	17.69	16.84
（4）	18.90	19.53	18.12	22.64	22.99	22.16

4． 2 必要保有水平耐力
「3．3 解析方法」による解析方法で算出した必要保有水平耐力 $\mathrm{Qun}_{\mathrm{n}}$ を表4－27に示 す。

構造特性係数 Ds は以下の条件に基づき設定している。
耐震壁は全てせん断破壊型であるため建築基準法施行令に基づく耐力壁の種別はW Dとする。

耐震壁が全ての地震荷重を負担するため，耐震壁が分担する保有水平耐力の比 β_{u} は 1.0 となる。

以上の条件から構造特性係数D は 0.55 となる。
形状特性係数 F es は
$\mathrm{F}_{\mathrm{s}}=1.0$（剛性率が 0.6 以上のため）
$\mathrm{F}_{\mathrm{e}}=1.0$（偏心率が 0.15 以下のため）
より， 1.0 となる。

表 4－27 必要保有水平耐力
（a）NS 方向

階	0．P． (m)	構造特性係数 D_{s}	形状特性係数 F_{es}	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}(\mathrm{kN})$
2 F	$75.90 \sim 69.40$	0.55	1.00	29576
1 F	$69.40 \sim 62.20$	0.55	1.00	60038
B1F	$62.20 \sim 57.30$	0.55	1.00	83181
B2F	$57.30 \sim 51.50$	0.55	1.00	103088

（b）EW方向

階	0．P． (m)	構造特性係数 D_{s}	形状特性係数 F_{es}	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}(\mathrm{kN})$
2 F	$75.90 \sim 69.40$	0.55	1.00	29620
1 F	$69.40 \sim 62.20$	0.55	1.00	60087
B1F	$62.20 \sim 57.30$	0.55	1.00	83181
B2F	$57.30 \sim 51.50$	0.55	1.00	103088

> VI-2-2-24 緊急時対策建屋の耐震性についての計算書
1．概要 1
2．基本方針 2
2.1 位置 2
2． 2 構造概要 3
2.3 評価方針 8
2.4 適用規格•基準等 10
3．地震応答解析による評価方法 11
4．応力解析による評価方法 13
4． 1 評価対象部位及び評価方針 13
4．2 荷重及び荷重の組合せ 18
4．3 許容限界 23
4．4解析モデル及び諸元 25
4.5 評価方法 285．地震応答解析による評価結果33
5.1 耐震壁のせん断ひずみの評価結果 33
5．2 接地圧の検討結果 35
5.3 保有水平耐力の評価結果 36
6．応力解析による評価結果 37
6.1 基礎版の評価結果 37
6．2 耐震壁の評価結果 43
別紙1 ケーブルピット部壁の耐震性についての計算書

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，緊急時対策建屋の地震時の構造強度及び機能維持の確認について説明するものであり，その評価は，地震応答解析による評価及び応力解析による評価に基づき行う。

緊急時対策建屋は，設計基準対象施設においては「Cクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及 び常設重大事故緩和設備の間接支持構造物」に分類される。また，緊急時対策建屋を構成する壁及びスラブの一部は緊急時対策所遮蔽に該当し，その緊急時対策所遮蔽は，重大事故等対処施設において「常設重大事故緩和設備」に分類される。以下，「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」としての分類に応じた耐震評価を示す。

なお，緊急時対策所遮蔽の「常設重大事故緩和設備」としての分類に応じた耐震評価は，添付書類「VI－2－8－4－5 緊急時対策所遮蔽の耐震性についての計算書」 にて実施する。

2.1 位置

緊急時対策建屋の設置位置を図2－1に示す。

図 2－1 緊急時対策建屋の設置位置

2． 2 構造概要

緊急時対策建屋は，地下 2 階，地上 2 階建で，基礎底面からの高さは 30.4 m （地上高 さは 13.9 m ）であり，平面は 36.4 m （NS 方向）$\times 36.4 \mathrm{~m}$（EW 方向）${ }^{11}$ の正方形である。建屋 の構造は鉄筋コンクリート造である。

緊急時対策建屋の基礎は，厚さ 6.0 m で，はね出しを有し，平面は 47.0 m （NS 方向）\times 47．0m（EW 方向）の正方形であり，支持地盤である砂岩に岩着している。

緊急時対策建屋の主たる耐震要素は，建屋外壁の耐震壁で，基礎版から屋上階床面 まで連続しており，壁厚は $0.5 \mathrm{~m} \sim 2.2 \mathrm{~m}$ である。建屋は全体として非常に剛性が高く，地震時の水平力はすべてこれらの耐震壁で負担する。なお，O．P．${ }^{* 2} 75.9 \mathrm{~m}$ 床面の一部 は，十分に剛な水平ブレースを構成する鉄骨造となっており，建屋外壁の耐震壁と連続している。

緊急時対策建屋の概略平面図及び概略断面図を図2－2 及び図2－3に示す。

注記 $~$ 1：建屋寸法は壁外面押えとする。
＊2：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面（T．P．） －0．74m である。
$\square \mathrm{PN}$

図 2－2（1）緊急時対策建屋の概略平面図（0．P．51．5m）
\int_{P}

（単位：m）

図 2－2（2）緊急時対策建屋の概略平面図（0．P．57．3m）

（単位：m）

図 2－2（3）緊急時対策建屋の概略平面図（0．P．62．2m）

図 2－2（4）緊急時対策建屋の概略平面図（0．P．69．4m）
$\Leftrightarrow P N$

図 $2-2$（5）緊急時対策建屋の概略平面図（0．P．75．9m）

図 2－3（1）緊急時対策建屋の概略断面図（A－A 断面，NS 方向）

（単位：m）
図 $2-3$（2）緊急時対策建屋の概略断面図（B－B 断面，EW 方向）

2.3 評価方針

緊急時対策建屋は，設計基準対象施設においては「Cクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」に分類される。

緊急時対策建屋の評価においては，基準地震動S s による地震力に対する評価 （以下「S s 地震時に対する評価」という。）及び保有水平耐力の評価を行う こととし，それぞれの評価は添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」の結果を踏まえたものとする。緊急時対策建屋の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，地震応答解析による評価におい ては耐震壁のせん断ひずみ，接地圧及び保有水平耐力の評価を，応力解析によ る評価においては基礎版及び耐震壁の断面の評価を行うことで，緊急時対策建屋の地震時の構造強度及び機能維持の確認を行う。評価にあたつては材料物性 の不確かさを考慮する。表2－1に材料物性の不確かさを考慮する解析ケースを示す。

緊急時対策建屋の評価フローを図2－4に示す。

表 2－1 材料物性の不確かさを考慮する地震応答解析ケース

ケース名	建屋 減衰	コンクリート剛性		地盤の せん断波速度
		初期剛性	終局耐力	
$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	5\％	設計基準強度に基づき JEAG 式で評価		平均値
ケース 2	同上	同上		$+\sigma$ 相当
ケース 3	同上	同上		$-\sigma$ 相当
$\begin{aligned} & \text { ケース } 4 \\ & \text { (水平のみ) } \end{aligned}$	同上	$\begin{aligned} & \text { 基本ケースの } \\ & 0.8 \text { 倍 } \end{aligned}$	設計基準強度に基づき JEAG 式で評価	平均値
$\begin{aligned} & \text { ケース } 5 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	$+\sigma$ 相当
$\begin{aligned} & \text { ケース } 6 \\ & \text { (水平のみ) } \\ & \hline \end{aligned}$	同上	同上	同上	$-\sigma$ 相当

O 2 （6）VI－2－2－24 R 6

図 2－4 緊急時対策建屋の評価フロー

2． 4 適用規格•基準等
緊急時対策建屋の評価において，適用する規格•基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 1999 年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－
－日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説 （以下「RC－N規準」という。）
－原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG460 1 •補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）（以下「 J EAG4601－1991追補版」という。）

3．地震応答解析による評価方法
緊急時対策建屋の構造強度については，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひず み及び最大接地圧が許容限界を超えないこと，並びに保有水平耐力が必要保有水平耐力 に対して妥当な安全余裕を有することを確認する。

また，支持機能の維持については，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」に基づき，材料物性の不確かさを考慮した耐震壁の最大応答せん断ひずみが許容限界を超えないことを確認する。

地震応答解析による評価における緊急時対策建屋の許容限界は，添付書類「VI－2－1－9機能維持の基本方針」に基づき，表3－1のとおり設定する。

表 3－1 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

地震力	部位	$\begin{aligned} & \text { 機能維持の } \\ & \text { ための考え方 } \end{aligned}$	許容限界 （評価基準値）
基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断ひずみ が構造強度を確保する ための許容限界を超え ないことを確認	せん断ひずみ 2.0×10^{-3}
	基礎地盤	最大接地圧が地盤の支持力度以下であること を確認	極限支持力度＊2 $11400 \mathrm{kN} / \mathrm{m}^{2}$
保有水平耐力	構造物全体	保有水平耐力が必要保有水平耐力に対して妥当な安全余裕を有する ことを確認	必要保有水平耐力
基準地震動 S s	耐震壁＊${ }^{\text {P }}$	最大応答せん断ひずみ が支持機能を維持する ための許容限界を超え ないことを確認	せん断ひずみ $\text { 2. } 0 \times 10^{-3}$

注記 $~$ 1：建屋全体としては，耐震壁で地震力を全て負担する構造となっており，剛性の高い耐震壁の変形に追従する柱，はり，間仕切壁等の部材の層間変形は十分小 さいこと，また，全体に剛性の高い構造となっており複数の耐震壁間の相対変形が小さく床スラブの面内変形が抑えられることから，各層の耐震壁の最大応答せん断ひずみが許容限界を満足していれば，建物•構築物に要求される機能 は維持される。
＊2：添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に示す地盤の支持力試験結果に基づき設定する。
＊ $3: 「$ 支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含まれ る。

4．応力解析による評価方法

4.1 評価対象部位及び評価方針

緊急時対策建屋の応力解析による評価対象部位は，基礎版及び耐震壁とし， S s 地震時に対して以下の方針に基づき評価を行う。

4．1．1 基礎版

S s 地震時に対する評価は，3次元FEMモデルを用いた弾性応力解析によ ることとし，地震力と地震力以外の荷重の組合せ結果，発生する応力が「R C－N 規準」に基づき設定した許容限界を超えないことを確認する。

3 次元FEMモデルを用いた弾性応力解析にあたつては，添付書類「VI－2－ 2－23 緊急時対策建屋の地震応答計算書」より得られた結果を用いて，荷重の組合せを行う。また，断面の評価については，材料物性の不確かさを考慮した断面力に対して行うこととする。応力解析による評価フローを図 4－1に，選定した部材を図4－2に示す。

図 4－1 応力解析による評価フロー

図 4－2 基礎版の評価を記載する部材の位置

4．1．2 耐震壁

S s 地震時に対する評価は，材料物性の不確かさを考慮した地震力と地震力以外の荷重の組合せの結果により発生する応力が，「R C -N 規準」に基づき設定 した許容限界を超えないことを確認する。応力解析による評価フローを図 $4-3$ に，選定した部材を図4－4に示す。

図 4－3 耐震壁の応力解析による評価フロー

【ユル』：耐震壁 （単位：m）

図 4－4（1）耐震壁の評価を記載する部材の位置（B2F，0．P．51．5m）

Z／DA：耐震壁
（単位：m）

図 4－4（2）耐震壁の評価を記載する部材の位置（B1F，0．P．57．3m）

Z172：耐震壁
（単位：m）

図 4－4（3）耐震壁の評価を記載する部材の位置（1F，0．P．62．2m）

（単位：m）

図 4－4（4）耐震壁の評価を記載する部材の位置（2F，0．P．69．4m）

4.2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している荷重及び荷重の組合せを用いる。

4．2．1 基礎版

（1）荷重
a．固定荷重
固定荷重は建屋自重，機器荷重，配管荷重，積雪荷重，常時土圧荷重及び浮力とする。なお，積雪量は 43 cm とし，地震荷重と組合せるため，その 0.35 倍 の積雪荷重を考慮する。常時土圧荷重は「JEAGG4601－1991追補版」に よるものとし，図4－5に常時土圧を示す。また，浮力は，地下水位面を地表面 （0．P．62．0m）とし，基礎版に上向きの等分布荷重として入力する。なお，基礎版のはね出し部については，はね出し部の体積に応じた浮力を上向きの等分布荷重として入力する。
b．積載荷重
積載荷重は，表4－1 のとおり設定する。

表 4－1 積載荷重

	積載荷重 $\left(\mathrm{N} / \mathrm{m}^{2}\right)$
RF	600
2 F （屋外）	600
2 F （屋内）	800
1 F	800
B1F	800
B2F	800
はね出し部＊	194279

注記＊：添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」に記載の盛土重量（160210kN）をはね出し部の面積で除した数値
c．地震荷重
水平地震荷重は，基準地震動 S s による地震応答解析結果より設定する。な お，水平地震荷重は材料物性の不確かさを考慮した地震応答解析結果を包絡し たものとする。表 4－2 及び表 4－3 に応力解析で考慮した基準地震動 S s 時の水平地震荷重を示す。

鉛直地震荷重は，基準地震動 S s による地震応答解析結果より鉛直震度とし て設定する。なお，鉛直震度は材料物性の不確かさを考慮した地震応答解析結果を包絡したものとする。表4－4に応力解析で考慮した基準地震動S s 時の鉛直地震荷重を示す。

地震時土圧荷重は，常時土圧に地震時増分土圧を加えて算出する。地震時増分土圧は材料物性の不確かさを考慮した地震応答解析結果を基にして「J E A G4601－1991追補版」の地震時増分土圧式から加力側増分土圧及び支持側増分土圧を包絡したものとする。図4－5に地震時土圧を示す。

表 4－2 水平地震荷重（せん断力）
（a）NS 方向

部位	せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$
耐震壁 $(\mathrm{A}$ 通り）	166.94
耐震壁 $(\mathrm{E}$ 通り）	166.05

（b）EW方向

部位	せん断力 $\left(\times 10^{3} \mathrm{kN}\right)$
耐震壁 $(1$ 通り）	166.00
耐震壁 $(5$ 通り）	166.74

表 4－3 水平地震荷重（曲げモーメント）
（a）NS 方向

部位	曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$
耐震壁 $(\mathrm{A}$ 通り）	295.90
耐震壁 $(\mathrm{E}$ 通り）	299.13

（b）EW方向

部位	曲げモーメント $\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$
耐震壁 $(1$ 通り）	295.57
耐震壁 $(5$ 通り）	299.26

表 4－4 鉛直地震荷重（鉛直震度）

部位	鉛直震度
耐震壁	0.981
基礎版	0.442

土圧（kN／m²）
標準地盤

$+\sigma$ 地盤

－σ 地盤

図 4－5 常時土圧及び地震時土圧
（2）荷重の組合せ
荷重の組合せを表4－5に示す。

表 4－5 荷重の組合せ

外力の状態	荷重の組合せ
S s 地震時	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

$\begin{array}{ll}\text { G } & \text { ：固定荷重 } \\ \text { P } & \text { ：積載荷重 } \\ \text { S s } & \text { ：地震荷重（地震時土圧荷重を含む）}\end{array}$

4．2．2 耐震壁

水平地震力及び鉛直地震力は，基準地震動 S s に対する地震応答解析により算定される動的地震力より設定する。なお，水平地震力及び鉛直地震力は材料物性 の不確かさを考慮した地震応答解析結果を包絡したものとする。

地震時土圧荷重は，常時土圧に地震時増分土圧を加えて算出する。地震時増分土圧は材料物性の不確かさを考慮した地震応答解析結果を基にして「JEAG4 6 O 1－1991 追補版」の地震時増分土圧式から加力側増分土圧及び支持側増分土圧を包絡したものとする。図4－5 に地震時土圧を，荷重の組合せを表4－6に示 す。

表 4－6 荷重の組合せ

荷重状態	荷重の組合せ
S s 地震時	$\mathrm{G}+\mathrm{P}+\mathrm{S} \mathrm{s}$

G ：固定荷重

P ：積載荷重（常時土圧荷重を含む）
S s ：S s 地震荷重（地震時土圧荷重を含む）

4． 3 許容限界

応力解析による評価における緊急時対策建屋の基礎版及び耐震壁の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表4－6のとおり設定する。

また，コンクリート，鉄筋の許容応力度を表4－7及び表4－8に示す。

表 4－6 応力解析による評価における許容限界
（重大事故等対処施設としての評価）
（重大事故等观課としてい

| 要求
 機能 | 機能設計上の
 性能目標 | 地震力 | 部位 |
| :---: | :---: | :---: | :---: | :--- | :--- |

注記＊1：許容限界は終局耐力に対し妥当な安全余裕を有したものとして設定することと し，さらなる安全余裕を考慮して短期許容応力度とする。
＊2：施設全体の更なる安全性を確保するため，基準地震動 S s による地震力に対す る許容限界を短期許容応力度とする。
＊3：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含まれ る。

表 $4-7$ コンクリートの許容応力度

設計基準強度 F c $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期	
	圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
30	20	1.18

表 4－8 鉄筋の許容応力度

種別	短期	
	引張及び圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断補強 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD345	345	345
SD390	390	390
SD490	490	490

4． 4 解析モデル及び諸元

4．4．1 基礎版

（1）モデル化の基本方針
a．基本方針
応力解析は， 3 次元 FEM モデルを用いた弾性応力解析とする。解析には，解析コード「MSC NASTRAN」を用いる。解析コードの検証及び妥当性確認の概要に ついては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

基礎版については，0．P． $45.5 \mathrm{~m} ~ 0$ ．P． 51.5 m をモデル化する。基礎版のモデル図を図4－6に示す。
b．使用要素
解析モデルに使用する FEM 要素は，基礎版についてはシェル要素とする。ま た，基礎版より立ち上がっている耐震壁については，はり要素として剛性を考慮する。解析モデルの節点数は867，要素数は810である。
c．境界条件
3 次元 FEM モデルの基礎版底面に，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」に示す地盤ばねを離散化して，水平方向及び鉛直方向のばね を設ける。3次元 FEM モデルの水平方向のばねについては，地震応答解析モデ ルのスウェイばねを，鉛直方向のばねについては，地震応答解析モデルのロッ キングばねを基に設定を行う。

なお，基礎版底面の地盤ばねについては，引張力が発生した時に浮上りを考慮する。また，基礎版周囲の側面に地盤ばねを設ける。

図 4－6 基礎版の解析モデル図
（2）解析諸元
使用材料の物性値を表4－9に示す。

表 4－9 コンクリートの物性値

コンクリートの 設計基準強度 $\mathrm{Fr} \mathrm{c}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 v
30.0	2.44×10^{4}	0.2

4．4．2 耐震壁

（1）モデル化の基本方針
耐震壁の応力は，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」 に基づき評価する。
（2）解析諸元
使用材料の物性値を表4－10に示す。

表 4－10 使用材料の物性値

コンクリートの 設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 v
30.0	2.44×10^{4}	0.2

4． 5 評価方法

4．5．1 基礎版の応力解析方法
緊急時対策建屋の基礎版について，S s 地震時に対して 3 次元 FEM モデルを用 いた弾性応力解析を実施する。
（1）荷重ケース
S s 地震時の応力は，次の荷重ケースによる応力を組み合わせて求める。

G	：固定荷重	
P	：積載荷重	
S S SN	$: S \rightarrow N$ 方向	S s 地震荷重（地震時土圧を含む）
S SNS	：$N \rightarrow$ S 方向	S s 地震荷重（地震時土圧を含む）
S S EW	： $\mathrm{E} \rightarrow \mathrm{W}$ 方向	S s 地震荷重（地震時土圧を含む）
S S we	：W \rightarrow E 方向	S s 地震荷重（地震時土圧を含む）
S S UD	：鉛直方向	（下向き）S s 地震荷重
S S DU	：鉛直方向	（上向き）S s 地震荷重

注記＊：計算上の座標軸を基準として，NS 方向は $\mathrm{S} \rightarrow \mathrm{N}$ 方向の加力， EW方向は $\mathrm{E} \rightarrow \mathrm{W}$ 方向の加力，鉛直方向は下向きの加力を記載してい る。
（2）荷重の組合せケース
荷重の組合せケースを表4－10に示す。
水平地震力と鉛直地震力の組合せは，「原子力発電所耐震設計技術規程（ J E AC4601－2015）」を参考に，組合せ係数法（組合せ係数は1．0 と 0．4）を用 いるものとする。

表 4－10 荷重の組合せケース

外力の状態	ケース No．	荷重の組合せ
S s 地震時	1	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{sn}+0.4 \mathrm{~S} \mathrm{sud}$
	2	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{n} \mathrm{s}+0.4 \mathrm{~S} \mathrm{sud}$
	3	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{sn}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{du}$
	4	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sns}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	5	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{swe}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{ud}$
	6	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sew}+0.4 \mathrm{~S} \mathrm{sud}$
	7	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{swe}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	8	$\mathrm{G}+\mathrm{P}+1.0 \mathrm{~S} \mathrm{sew}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	9	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{sn}+1.0 \mathrm{~S} \mathrm{sud}$
	10	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sns}+1.0 \mathrm{~S} \mathrm{sud}$
	11	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{sn}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	12	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{~s} \mathrm{~ns}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	13	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S}$ swe +1.0 S sud
	14	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sew}+1.0 \mathrm{~S} \mathrm{sud}$
	15	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{swe}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$
	16	$\mathrm{G}+\mathrm{P}+0.4 \mathrm{~S} \mathrm{sew}+1.0 \mathrm{~S} \mathrm{~s} \mathrm{Du}$

（3）荷重の入力方法
a．地震荷重
地震荷重は，上部構造物の基礎版への地震時反力を考慮する。基礎版底面に生じる反力が，基準地震動 S s に対する地震応答解析結果と等価になるように設定する。基礎版内に作用する荷重は，S s 地震時の上部構造による入力荷重 と基礎版底面に発生する荷重の差を FEM モデルの各要素の大きさに応じて分配 し，節点荷重として入力する。
b．地震荷重以外の荷重
地震荷重以外の荷重については，FEM モデルの各節点又は各要素に集中荷重又は分布荷重として入力する。

4．5．2 耐震壁の応力解析方法
水平地震力は，基準地震動 S s に対する地震応答解析より算定される動的地震力より設定する。

S s 地震荷重は，基準地震動 S s に対する質点系モデルの最大応答せん断力よ り設定する。材料物性の不確かさを考慮した層せん断力を表4－13に示す。

表 4－13 層せん断力（基準地震動 S s による地震力）

階	要素番号	基準地震動 S s による地震力$\left(\times 10^{3} \mathrm{kN}\right)$			
		NS 方向		EW 方向	
2	（1），（5）	38.77	35.99	36.05	38． 49
1	（2），（6）	96.06	101.16	96． 36	98.27
B1	（3），（7）	140.50	138．71	138.69	140.30
B2	（4），（8）	168.61	166.05	166.00	168． 41

4．5．3 基礎版の断面の評価方法

（1）軸力及び曲げモーメントに対する断面の評価方法
各断面は，軸力，曲げモーメント及び面内せん断力を受ける鉄筋コンクリート造長方形仮想柱として算定する。 S s 地震時において，軸力，曲げモーメント及 び面内せん断力に対する必要鉄筋量が配筋量を超えないことを確認する。
（2）面外せん断力に対する断面の評価方法
断面の評価は，「R C -N 規準」に基づき，評価対象部位に生じる面外せん断力が，次式を基に算定した許容面外せん断力を超えないことを確認する。

$$
\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j}\left\{\alpha \cdot \mathrm{f}_{\mathrm{s}}+0.5 \cdot \mathrm{w}_{\mathrm{w}} \cdot\left(\mathrm{p}_{\mathrm{w}}-0.002\right)\right\}
$$

ここで，

Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j ：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
α ：許容せん断力の割増し係数
（2を超える場合は 2 ， 1 未満の場合は 1 とする。また，引張軸力が $2 \mathrm{~N} / \mathrm{mm}^{2}$ を超える場合は1とする。）
$\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})+1}$
M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Q ：せん断力（ N ）
$\mathrm{d} \quad$ ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度で，表 4－6 に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
${ }_{\mathrm{w}}^{\mathrm{f}} \mathrm{t}$ ：せん断補強筋の短期許容引張応力度で，表 4－7 に示す値（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
p w ：せん断補強筋比で，次式による。（0．002 以上とする。＊）
$\mathrm{p}_{\mathrm{w}}=\frac{\mathrm{a}{ }_{\mathrm{w}}}{\mathrm{b} \cdot \mathrm{x}}$
a_{w} ：せん断補強筋の断面積（ mm^{2} ）
x ：せん断補強筋の間隔（mm）

注記＊：せん断補強筋がない領域については，第 2 項を 0 とする。

4．5． 4 耐震壁の断面評価方法
S s 地震時について，せん断力による応力は全て鉄筋で負担し，また，曲げモ ーメントにより生じる引張応力についても鉄筋で負担することとし，必要鉄筋比 が設計鉄筋比を超えていないことを確認する。なお，地下外壁に作用する土圧荷重に対する面外せん断力による応力は，コンクリートで負担するものとし，次式 をもとに計算した許容面外せん断力を超えないことを確認する。
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j} \cdot \alpha \cdot \mathrm{f}{ }_{\mathrm{s}}$
ここで，
Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j ：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
α ：許容せん断力の割増し係数
（2 を超える場合は 2 ， 1 未満の場合は 1 とする。また，引張軸力 が $2 \mathrm{~N} / \mathrm{mm}^{2}$ を超える場合は1とする。）
$\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})+1}$
M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Q ：せん断力（N）
d ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

5．地震応答解析による評価結果
5.1 耐震壁のせん断ひずみの評価結果

鉄筋コンクリート造耐震壁について，S s 地震時の各層の最大応答せん断ひ ずみが許容限界（2．0×10 0^{-3} ）を超えないことを確認する。

材料物性の不確かさを考慮した最大応答せん断ひずみは 0.276×10^{-3}（NS方向， S s－D 2 ，ケース 5 ，要素番号（1））であり，許容限界（2．0×10 ${ }^{-3}$ ）を超えな いことを確認した。耐震壁の最大応答せん断ひずみ一覧を表5－1に示す。各表 において，最大応答せん断ひずみのうち最も大きい値について，せん断スケル トンカーブ上にプロットした図を図5－1に示す。

表5－1 耐震壁の最大応答せん断ひずみ
（a）NS方向

0．P． (m)	階	地震応答解 析モデルの 要素番号	最大応答せん断 ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
$69.4 \sim 75.9$	2 F	1	0.276	2.0
$62.2 \sim 69.4$	1 F	2	0.264	2.0
$57.3 \sim 62.2$	B1F	3	0.257	2.0
$51.5 \sim 57.3$	B2F	4	0.271	2.0
$69.4 \sim 75.9$	2 F	5	0.274	2.0
$62.2 \sim 69.4$	1 F	6	0.262	2.0
$57.3 \sim 62.2$	B1F	7	0.256	2.0
$51.5 \sim 57.3$	B2F	8	0.271	2.0

注：ハッチングは各要素の最大応答せん断ひずみのうち最も大きい値を示す。
（b）EW方向

0．P． (m)	階	地震応答解 析モデルの 要素番号	最大応答せん断 ひずみ $\left(\times 10^{-3}\right)$	許容限界 $\left(\times 10^{-3}\right)$
$69.4 \sim 75.9$	2 F	1	0.275	2.0
$62.2 \sim 69.4$	1 F	2	0.273	2.0
$57.3 \sim 62.2$	B1F	3	0.256	2.0
$51.5 \sim 57.3$	B2F	4	0.271	2.0
$69.4 \sim 75.9$	2 F	5	0.270	2.0
$62.2 \sim 69.4$	1 F	6	0.270	2.0
$57.3 \sim 62.2$	B1F	7	0.256	2.0
$51.5 \sim 57.3$	B2F	8	0.271	2.0

注：ハッチングは各要素の最大応答せん断ひずみのうち最も大きい値を示す。

（a）NS方向（S s－D 2，ケース5，要素番号（1））

（b）EW方向（S s－D 2，ケース5，要素番号（1））

図5－1 せん断スケルトンカーブ上の最大応答せん断ひずみ

5．2 接地圧の検討結果

S s 地震時の最大接地圧が，地盤の極限支持力度（ $11400 \mathrm{kN} / \mathrm{m}^{2}$ ）を超えない ことを確認する。

材料物性の不確かさを考慮した S s 地震時の最大接地圧は $744 \mathrm{kN} / \mathrm{m}^{2}$ であるこ とから，地盤の極限支持力度を超えないことを確認した。

地震時の最大接地圧を表5－2に示す。

表 $5-2$		最大接地圧
	NS 方向	EW 方向
検討ケース	S s－D 3， ケース 1	$\mathrm{S} \mathrm{s} \mathrm{-} \mathrm{D} \mathrm{3}$, ケース 1
鉛直力 $\mathrm{N}\left(\times 10^{3} \mathrm{kN}\right)$	366.56	366.56
転倒モーメントト $\mathrm{M}\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{m}\right)$	713.07	711.93
最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	744	743

5． 3 保有水平耐力の評価結果

保有水平耐力 Q_{u} が必要保有水平耐力 $Q_{u n}$ に対して妥当な安全余裕を有する ことを確認する。なお，各部材の保有水平耐力 Q_{u} は，添付書類「VI－2－2－23緊急時対策建屋の地震応答計算書」に示すせん断力のスケルトンカーブの $\tau 3$ に基づき算出する。

必要保有水平耐力 $Q_{u n}$ と保有水平耐力 Q_{u} の比較結果を表5－3に示す。保有水平耐力 Q_{u} が必要保有水平耐力 $\mathrm{Q}_{\mathrm{u}} \mathrm{n}$ に対して妥当な安全余裕を有することを確認した。なお，必要保有水平耐力 $Q_{u n}$ に対する保有水平耐力 Q_{u} の比は最小 で 6.51 である。

表 5－3 必要保有水平耐力 $\mathrm{Q}_{\mathrm{u} \mathrm{n}}$ と保有水平耐力 Q_{u} の比較結果
（a）NS 方向

0．P． (m)	必要保有水平耐力 $\mathrm{Qun}_{\mathrm{n}}(\mathrm{kN})$	保有水平耐力 $\mathrm{Q}_{\mathrm{u}}(\mathrm{kN})$	$\mathrm{Q}_{\mathrm{u} /} / \mathrm{Q}_{\mathrm{un}}$
$75.9 \sim 69.4$	29576	192505	6.51
$69.4 \sim 62.2$	60038	516753	8.61
$62.2 \sim 57.3$	83181	713943	8.58
$57.3 \sim 51.5$	103088	850597	8.25

（b）EW 方向

0．P． (m)	必要保有水平耐力 $\mathrm{Q}_{\mathrm{un}}(\mathrm{kN})$	保有水平耐力 $\mathrm{Q}_{\mathrm{u}}(\mathrm{kN})$	$\mathrm{Q}_{\mathrm{u} /} / \mathrm{Q}_{\mathrm{un}}$
$75.9 \sim 69.4$	29620	193136	6.52
$69.4 \sim 62.2$	60087	512501	8.53
$62.2 \sim 57.3$	83181	716237	8.61
$57.3 \sim 51.5$	103088	853422	8.28

6．応力解析による評価結果

6.1 基礎版の評価結果

基礎版の断面の評価結果を以下に示す。また，緊急時対策建屋の基礎版の配筋領域図を図6－1に，配筋一覧を表6－1に示す。

断面の評価結果を記載する要素を，以下のとおり選定する。
軸力，曲げモーメント及び面内せん断力に対する評価については，配筋量に対する必要鉄筋量の割合が最大となる要素を選定し，面外せん断力に対する評価については，短期許容せん断力に対する面外せん断力の割合が最大となる要素をそれぞれ選定する。

選定した要素の位置を図6－2に，評価結果を表6－2に示す。
S s 地震時において，軸力，曲げモーメント及び面内せん断力に対する必要鉄筋量が配筋量を超えないことを確認した。また，面外せん断力が短期許容せ ん断力を超えないことを確認した。

表 6－1 基礎版の配筋一覧
（a）主筋

領域	上ば筋		下ば筋	
	方向	配筋	方向	配筋
A	NS	2－D38＠200	NS	2－D38＠200
	EW	2－D38＠200	EW	2－D38＠200
B	NS	3－D38＠200	NS	3－D38＠200
	EW	3－D38＠200	EW	3－D38＠200
C	NS	4－D38＠200	NS	4－D38＠200
	EW	4－D38＠200	EW	4－D38＠200
D	NS	8－D38＠200	NS	8－D38＠200
	EW	8－D38＠200	EW	8－D38＠200

注：主筋はすべてSD490
（b）せん断補強筋

（a）NS 方向主筋

（b）EW方向主筋

図 6－1（1）基礎版の配筋領域図

（c）せん断補強筋

図 6－1（2）基礎版の配筋領域図

要素番号： 638

図 6－2 最大検定比発生位置

表6－2 評価結果

評価項目			要素番号		解析 結果	許容値
軸力 $+$ 曲げ	$\begin{gathered} \text { NS } \\ \text { 方向 } \end{gathered}$	必要鉄筋量／配筋量	171	3	0.31	1． 00
面内 せん断力	$\begin{gathered} \text { EW } \\ \text { 方向 } \end{gathered}$	必要鉄筋量／配筋量	78	8	0.31	1． 00
面外 せん断力	$\begin{gathered} \text { NS } \\ \text { 方向 } \end{gathered}$	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	247	1	0． 62	2.36
	$\begin{gathered} \text { EW } \\ \text { 方向 } \end{gathered}$	面外せん断応力度 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	638	6	0.62	2.36

6． 2 耐震壁の評価結果

評価対象とする耐震壁を示したものを図6－3に，配筋一覧を表6－3に示す。また，
「4．5．4 耐震壁の断面評価方法」に基づいた断面の評価結果を表6－4に示す。 S s 地震時において，必要鉄筋比が設計鉄筋比を超えないことを確認した。

表 6－3 耐震壁の配筋一覧

階	壁記号	壁厚 (mm)	縦筋		横筋	
	配筋		配筋	断面積 $\left(\mathrm{mm}^{2} / \mathrm{m}\right)$		
2	TW50	500	2－D35＠200	9570	$2-$ D35＠200	9570
1	TW140	1400	5－D38＠200	28500	5－D38＠200	28500
B1	TW190	1900	6－D38＠200	34200	6－D38＠200	34200
B2	TW220	2200	8－D38＠200	45600	$8-$ D38＠200	45600

θ PN

図 6－3（1）評価対象とする耐震壁（B2F，0．P．51．5m）

図 6－3（2）評価対象とする耐震壁（B1F，0．P．57．3m）

Z17：：耐震壁
（単位：m）

図 6－3（3）評価対象とする耐震壁（1F，0．P．62．2m）

$\mathbf{Z D}$ ：耐震壁
（単位：m）

図 6－3（4）評価対象とする耐震壁（2F，0．P．69．4m）

表 6－4（1）評価結果（基準地震動 S s ）（1／4）

	0．P．（m）	0．P．51．50～0．P．57． 30			
	壁位置 （通り）	A	E	1	5
	壁記号	TW220	TW220	TW220	TW220
	断面積（m²）	122.76	122.76	122.76	122.76
	壁厚（mm）	2200	2200	2200	2200
配筋	縦筋配筋	8－D38＠200	8－D38＠200	8－D38＠200	8－D38＠200
	縱筋設計鉄筋比 $\mathrm{P}_{\mathrm{g}}(\%)$	2． 073	2． 073	2． 073	2． 073
	横筋配筋	8－D38＠200	8－D38＠200	8－D38＠200	8－D38＠200
	横筋設計鉄筋比 $\mathrm{P}_{\mathrm{g}}(\%)$	2.073	2.073	2． 073	2． 073
せ ん 断 に 対 す る 検 討	$\begin{gathered} \text { せん断力 } \\ \mathrm{Q}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	168.61	166.05	166.00	168.41
	せん断力応力度 $\tau\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	2.11	2． 07	2． 07	2． 10
	必要鉄筋比 $P_{Q}(\%)$	0.540	0.532	0.532	0.539
曲 げ モ 1 メ ン ト に対 す る検討	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	298.86	299． 13	295.57	302.25
	$\begin{gathered} \text { 軸力 } \\ \mathrm{N}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	63.67	60． 29	59.82	63.26
	鉛直震度＊	0． 300	0． 300	0． 300	0． 300
	必要鉄筋比 $\mathrm{P}_{\mathrm{M}}(\%)$	0． 481	0． 487	0.481	0． 489
$\begin{aligned} & \text { 土 } \\ & \text { 圧 } \\ & \text { 荷 } \\ & \text { 重 } \\ & \text { 対 } \\ & \text { す } \\ & \text { る } \\ & \text { 検 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}_{\mathrm{So}}(\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	467	467	467	467
	必要鉄筋比 Pso (\%)	0.071	0.071	0.071	0.071
$\left(\mathrm{P}_{\mathrm{Q}}+\mathrm{P}_{\mathrm{M}}+\mathrm{P}_{\text {So }}\right) / \mathrm{P}_{\mathrm{g}}$		0.53	0.53	0． 53	0.54
判定		可	可	可	可

注記＊：鉛直震度には長期荷重時の重量は含まない。

表 6－4（2）評価結果（基準地震動 S s ）（2／4）

	0．P．（m）	0．P．57． $30 \sim 0$ P． 62.20			
	壁位置 （通り）	A	E	1	5
	壁記号	TW190	TW190	TW190	TW190
	断面積（m²）	106． 29	106． 29	106． 29	106． 29
	壁厚（mm）	1900	1900	1900	1900
配筋	縦筋配筋	6－D38＠200	6－D38＠200	6－D38＠200	6－D38＠200
	縱筋設計鉄筋比 $\mathrm{P}_{\mathrm{g}}(\%)$	1． 800	1． 800	1． 800	1． 800
	横筋配筋	6－D38＠200	6－D38＠200	6－D38＠200	6－D38＠200
	横筋設計鉄筋比 $\mathrm{P}_{\mathrm{g}}(\%)$	1． 800	1． 800	1． 800	1． 800
せ ん 断 に 対 す る 検 討	$\begin{gathered} \text { せん断力 } \\ \mathrm{Q}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	140． 50	138． 71	138.69	140． 30
	せん断力応力度 $\tau\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	2.03	2． 01	2.01	2.03
	必要鉄筋比 $P_{Q}(\%)$	0.521	0.514	0.514	0.520
曲 げ モ 1 メ ン ト に 対 す る 検 討	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	192.50	194． 37	190.68	196． 10
	$\begin{gathered} \text { 軸力 } \\ \mathrm{N}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	41.49	39.92	39.66	41.08
	鉛直震度＊	0． 380	0． 380	0． 380	0． 380
	必要鉄筋比 $\mathrm{P}_{\mathrm{M}}(\%)$	0． 368	0.375	0． 367	0． 377
$\begin{aligned} & \text { 土 } \\ & \text { 圧 } \\ & \text { 荷 } \\ & \text { 重 } \\ & \text { 対 } \\ & \text { す } \\ & \text { る } \\ & \text { 検 } \\ & \hline \end{aligned}$	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}_{\mathrm{So}}(\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	205	205	205	205
	必要鉄筋比 Pso (\%)	0.042	0． 042	0.042	0.042
$\left(\mathrm{P}_{\mathrm{Q}}+\mathrm{P}_{\mathrm{M}}+\mathrm{P}_{\text {SOO }}\right) / \mathrm{P}_{\mathrm{g}}$		0.52	0.52	0． 52	0.53
判定		可	可	可	可

注記＊：鉛直震度には長期荷重時の重量は含まない。

表 6－4（3）評価結果（基準地震動 S s ）（3／4）

	0．P．（m）	0．P．62． $20 \sim 0$. P． 69.40			
	壁位置 （通り）	A	E	1	5
	壁記号	TW140	TW140	TW140	TW140
	断面積（m²）	73.95	72.83	75.77	71.01
	壁厚（mm）	1400	1400	1400	1400
配筋	縦筋配筋	5－D38＠200	5－D38＠200	5－D38＠200	5－D38＠200
	縱筋設計鉄筋比 $\mathrm{P}_{\mathrm{g}}(\%)$	2.036	2.036	2． 036	2． 036
	横筋配筋	5－D38＠200	5－D38＠200	5－D38＠200	5－D38＠200
	横筋設計鉄筋比 $\mathrm{P}_{\mathrm{g}}(\%)$	2.036	2.036	2.036	2． 036
せ ん 断 に 対 す る 検 討	$\begin{gathered} \text { せん断力 } \\ \mathrm{Q}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	96.06	101． 16	96． 36	98.27
	せん断力応力度 $\tau\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	2.07	1． 99	2.00	2.05
	必要鉄筋比 $P_{Q}(\%)$	0.532	0.509	0.513	0.525
曲 げ モ 1 メ ン ト に 対 す る 検 討	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	116.02	115.80	111.78	117.73
	$\begin{gathered} \text { 軸力 } \\ \mathrm{N}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	22.62	21.48	21.54	22.22
	鉛直震度＊	0． 50	0.50	0.50	0.50
	必要鉄筋比 $\mathrm{P}_{\mathrm{M}}(\%)$	0.351	0． 368	0．332	0． 390
$\left(\mathrm{P}_{\mathrm{Q}}+\mathrm{P}_{\mathrm{M}}\right) / \mathrm{P}_{\mathrm{g}}$		0． 44	0． 44	0． 42	0． 45
判定		可	可	可	可

注記＊：鉛直震度には長期荷重時の重量は含まない。

表 6－4（4）評価結果（基準地震動 S s ）（4／4）

	0．P．（m）	0．P．69．40～0．P． 75.90			
	$\begin{aligned} & \text { 壁位置 } \\ & \text { (通り) } \end{aligned}$	A	E	1	5
	壁記号	TW50	TW50	TW50	TW50
	断面積（m2）	28.20	28.20	28． 20	28.20
	壁厚（mm）	500	500	500	500
配筋	縦筋配筋	2－D35＠200	2－D35＠200	2－D35＠200	2－D35＠200
	縦筋設計鉄筋比 $\mathrm{P}_{\mathrm{g}}(\%)$	1． 914	1.914	1.914	1． 914
	横筋配筋	2－D35＠200	2－D35＠200	2－D35＠200	2－D35＠200
	横筋設計鉄筋比 $\mathrm{P}_{\mathrm{g}}(\%)$	1.914	1.914	1.914	1． 914
せ ん 断 に 対 す る 検 討	$\begin{gathered} \text { せん断力 } \\ \mathrm{Q}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	38.77	35.99	36.05	38.49
	せん断力応力度 $\tau\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	2.13	1． 98	1． 98	2． 11
	必要鉄筋比 P_{Q}（\％）	0.546	0.507	0.508	0.542
曲 げ モ I メ ン ト に 対 す る 検 討	$\begin{gathered} \text { 曲げモーメント } \\ \mathrm{M}\left(\times 10^{4} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	34.31	29.67	29.50	35.07
	$\begin{gathered} \text { 軸力 } \\ \mathrm{N}\left(\times 10^{3} \mathrm{kN}\right) \end{gathered}$	8． 21	6． 18	6． 28	8． 02
	鉛直震度＊	0． 57	0． 57	0.57	0.57
	必要鉄筋比 P_{M}（\％）	0． 266	0． 233	0． 231	0． 273
$\left(\mathrm{P}_{\mathrm{Q}}+\mathrm{P}_{\mathrm{M}}\right) / \mathrm{P}_{\mathrm{g}}$		0． 43	0.39	0.39	0． 43
判定		可	可	可	可

注記＊：鉛直震度には長期荷重時の重量は含まない。

表 6－5 土圧荷重に対する面外せん断の評価結果（基準地震動 S s ）

階	B2	B1
厚さ $\mathrm{t}(\mathrm{mm}) \times$ 幅 $\mathrm{b}(\mathrm{mm})$	2200×1000	1900×1000
有効せい $\mathrm{d}(\mathrm{mm})$	1870	1615
発生曲げモーメントM $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	1804	1397
発生せん断力 $\mathrm{Q}(\mathrm{kN} / \mathrm{m})$	2076	1416
せん断スパン比による割増係数 α	2.00	2.00
許容限界 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	3861	3335
検定値 $\mathrm{Q} / \mathrm{Q} \mathrm{A}$	0.54	0.43
判定	可	可

別紙1 ケーブルピット部壁の耐震性についての計算書
1．概 要 別紙1－1
2．基本方針 別紙1－2
2.1 位置 別紙1－2
2.2 構造概要 別紙1－3
2． 3 評価方針 別紙1－6
2.4 適用規格•基準等 別紙1－8
3．応力解析による評価方法 別紙1－9
3． 1 評価対象部位及び評価方針 別紙1－9
3.2 荷重及び荷重の組合せ 別紙 1－10
3.3 許容限界 別紙 1－13
3.4 解析モデル及び諸元 別紙 1－15
3.5 評価方法 別紙 1－16
4．応力解析による評価結果 別紙 1－18

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，緊急時対策建屋の一部を構成するケーブルピット部躯体の地震時の構造強度及び機能維持の確認について説明するものであり，その評価は，応力解析による評価に基づき行 う。

緊急時対策建屋は，設計基準対象施設においては「Cクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及 び常設重大事故緩和設備の間接支持構造物」に分類される。また，緊急時対策建屋を構成する壁及びスラブの一部は緊急時対策所遮蔽に該当し，その緊急時対策所遮蔽は，重大事故等対処施設において「常設重大事故緩和設備」に分類される。

以下，「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」としての分類に応じた耐震評価を示す。

2.1 位置

緊急時対策建屋の設置位置を図2－1に示す。

図 2－1 緊急時対策建屋の設置位置

2． 2 構造概要

緊急時対策建屋のケーブルピットは，建屋の北面及び西面の地下部に位置し，基礎上端からの高さは 10.5 m であり，平面は $3.3 \mathrm{~m} \times 9.65 \mathrm{~m} *$ の長方形である。構造は鉄筋コ ンクリート造である。

ケーブルピット部壁は，基礎版から頂部床面まで連続しており，地下 2 階の壁厚は 2.0 m ，地下 1 階の壁厚は 1.5 m である。緊急時対策建屋の主たる耐震要素は，建屋外壁 の耐震壁で，地震時の水平力はすべてこれらの耐震壁で負担するため，ケーブルピッ ト部壁は，地震時の面外慣性力及び土圧のみ負担する。 ケーブルピットの概略平面図及び概略断面図を図2－2及び図2－3に示す。

注記＊：寸法は壁外面押えとする。

$4 P N$

（単位：m）
図 2－2（1）緊急時対策建屋の概略平面図（0．P．＊ 51.5 m ）
注記 $*: ~ 0$. P．は女川原子力発電所工事用基準面であり，東京湾平均海面（T．P．） －0． 74 m である。
（単位：m）
図 2－2（2）緊急時対策建屋の概略平面図（0．P．57．3m）

（単位：m）

図 2－3（1）緊急時対策建屋の概略断面図（A－A 断面，NS 方向）

（単位：m）

図 $2-3$（2）緊急時対策建屋の概略断面図（B－B 断面，EW 方向）

2.3 評価方針

緊急時対策建屋は，設計基準対象施設においては「Cクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」に分類される。 ケーブルピットの評価においては，基準地震動 S s による地震力に対する評価 （以下「S s 地震時に対する評価」という。）の評価を行うこととし，評価 は添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」の結果を踏ま えたものとする。ケーブルピットの評価は，添付書類「VI－2－1－9 機能維持 の基本方針」に基づき，応力解析による評価においてはケーブルピットの断面の評価を行うことで，ケーブルピットの地震時の構造強度及び機能維持の確認を行う。評価にあたつては材料物性の不確かさを考慮する。表2－1に材料物性の不確かさを考慮する解析ケースを示す。

$$
\text { ケーブルピットの評価フローを図 } 2-4 \text { に示す。 }
$$

表 2－1 材料物性の不確かさを考慮する地震応答解析ケース

ケース名	建屋 減衰	コンクリート剛性		地盤の せん断波速度
		初期剛性	終局耐力	
$\begin{aligned} & \text { ケース } 1 \\ & \text { (基本ケース) } \end{aligned}$	5\％	設計基準強度に基づき JEAG式で評価		平均値
ケース 2	同上	同上		$+\sigma$ 相当
ケース 3	同上	同上		$-\sigma$ 相当
$\begin{aligned} & \text { ケース } 4 \\ & \text { (水平のみ) } \end{aligned}$	同上	$\begin{aligned} & \text { 基本ケースの } \\ & 0.8 \text { 倍 } \end{aligned}$	設計基準強度に基づき JEAG 式で評価	平均値
$\begin{aligned} & \text { ケース } 5 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	$+\sigma$ 相当
$\begin{aligned} & \text { ケース } 6 \\ & \text { (水平のみ) } \end{aligned}$	同上	同上	同上	－σ 相当

図 2－4 ケーブルピットの評価フロー
2.4 適用規格•基準等

ケーブルピットの評価において，適用する規格•基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 日本建築学会 1999年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法－
－日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説 （以下「R C－N 規準」という。）
－原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG460 1 •補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）（以下「 J EAG4601－1991追補版」という。）

3．応力解析による評価方法
3.1 評価対象部位及び評価方針

ケーブルピットの応力解析による評価対象部位は，ケーブルピット部壁と し， S s 地震時に対して以下の方針に基づき評価を行う。

S s 地震時に対する評価は，弾性応力解析によることとし，地震力と地震力以外の荷重の組合せ結果，発生する応力が「RC－N 規準」に基づき設定 した許容限界を超えないことを確認する。

弾性応力解析にあたつては，添付書類「VI－2－2－23 緊急時対策建屋の地震応答計算書」より得られた結果を用いて，荷重の組合せを行う。また，断面の評価については，材料物性の不確かさを考慮した断面力に対して行うこ ととする。応力解析による評価フローを図3－1に示す。

図 3－1 応力解析による評価フロー
3.2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」に て設定している荷重及び荷重の組合せを用いる。

3．2．1 荷重

（1）水平地震荷重
水平地震荷重は，基準地震動 S s による地震応答解析結果より設定する。なお，水平地震荷重は材料物性の不確かさを考慮した地震応答解析結果を包絡したもの とする。

基準地震動 S s による地震応答解析結果の加速度から水平震度及び面外慣性力 を算定し，水平地震荷重とする。

表 3－1に応力解析で考慮した基準地震動 S s 時の水平地震荷重を示す。

表 3－1（1）水平地震時荷重（加速度•水平震度）

表 3－1（2）水平地震時荷重（面外慣性力）

$0 . \mathrm{P}$. (m)	壁厚 (m)	水平震度 （包絡値）	面外慣性力＊ $(\mathrm{kN} / \mathrm{m})$
62.0 ~ 57.3	1.5	1.395	50.2
$57.3 \sim$ 51.5	2.0	1.003	48.1

注記 $~$ ：鉄筋コンクリートの単位体積重量は $24 \mathrm{kN} / \mathrm{m}^{3}$ とする。
（2）地震時土圧荷重
地震時土圧荷重は，常時土圧に地震時増分土圧を加えて算出する。地震時増分土圧は材料物性の不確かさを考慮した地震応答解析結果を基にして「J E A G 4 6 0 1－1991 追補版」の地震時増分土圧式から加力側増分土圧及び支持側増分土圧を包絡したものとする。図 $3-2$ に地震時土圧を示す。

土圧（kN／m2）
標準地盤

土圧（kN／m2）
$+\sigma$ 地盤

土圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$
－σ 地盤

図 3－2 常時土圧及び地震時土圧

3．2．2 荷重の組合せ

荷重の組合せを表3－2に示す。

表3－2 荷重の組合せ

外力の状態	荷重の組合せ
$\mathrm{S} \mathrm{s} \mathrm{地 震 時}$	S s

S s ：地震荷重（地震時土圧荷重を含む）

3． 3 許容限界

応力解析による評価におけるケーブルピット部壁の許容限界は，添付書類「VI－2－ 1－9 機能維持の基本方針」に基づき，表3－3のとおり設定する。

また，コンクリート，鉄筋の許容応力度を表3－4及び表 3－5に示す。

表 3－3 応力解析による評価における許容限界
（重大事故等対処施設としての評価）

要求機能	機能設計上の性能目標	地震力	部位	機能維持のための考え方	許容限界
－	構造強度を有す ること	基準地震動 S s	$\begin{gathered} \text { ケーブ } \\ \text { ルピッ } \\ \text { ト部壁 } \end{gathered}$	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	「 R C -N 規準」 に基づく短期許容応力度 ${ }^{* 1}$
支持 機能＊2	機器•配管系等 の設備を支持す る機能を損なわ ないこと	基準地震動 S s	$\begin{gathered} \text { ケーブ } \\ \text { ルピッ } \\ \text { ト部壁 } \end{gathered}$	部材に生じる応力 が支持機能を維持 するための許容限界を超えないこと を確認	「 R C－N 規準」 に基づく短期許容応力度＊1

注記＊1：許容限界は終局耐力に対し妥当な安全余裕を有したものとして設定することと し，さらなる安全余裕を考慮して短期許容応力度とする。
＊2：「支持機能」の確認には，「内包する設備に対する波及的影響の確認」が含まれ る。

表 3－4 コンクリートの許容応力度

設計基準強度 Fc $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期	
	圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
30	20	1.18

表 3－5 鉄筋の許容応力度

種別	短期	
	引張及び圧縮 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	せん断補強 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$
SD390	390	390

3.4 解析モデル及び諸元

3．4．1 モデル化の基本方針
応力解析は，連続はりモデルを用いた弾性応力解析とする。解析には，解析コ ード「KANSAS」を用いる。解析コードの検証及び妥当性確認の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

ケーブルピット部壁については，0．P． $51.5 \mathrm{~m} \sim 0$ ．P． 62.0 m をモデル化する。壁を単位幅で切り出し，線材でモデル化する。境界条件は，基礎版と接続する脚部を固定，地下 1 階及び頂部の床スラブ上端をピン固定とする。ケーブルピット部壁 のモデル図を図 3－3に示す。

図 3－3 ケーブルピット部壁の解析モデル図

3．4．2 解析諸元

使用材料の物性値を表3－6に示す。

表 3－6 コンクリートの物性値

設計基準強度 $\mathrm{Fc}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 v
30.0	2.44×10^{4}	0.2

3．5 評価方法

3．5．1 応力解析方法
ケーブルピット部壁について，S s 地震時に対して連続はりモデルを用いた弾性応力解析を実施する。

荷重の入力方法を以下に示す。
（1）地震荷重
地震荷重は，「3．2．1 荷重」で示した面外慣性力を分布荷重として入力する。
（2）地震時土圧荷重
地震時土圧荷重は，「3．2．1 荷重」で示した荷重を面外慣性力と同一方向に分布荷重として入力する。

応力解析により算出した曲げモーメント及びせん断力を表3－7に示す。

表 3－7 応力解析により算出した曲げモーメント及びせん断力

部位	壁厚 (m)	モーツゾ $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	せん断力 $(\mathrm{kN} / \mathrm{m})$
地下 1 階壁	1.5	1493.2	1553.0
地下 2 階壁	2.0	1958.8	2225.0

3．5．2 断面の評価方法

（1）曲げモーメントに対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき，評価対象部位に生じる曲げモーメ ントが，短期許容曲げモーメントを超えないことを確認する。

$$
\mathrm{M}_{\mathrm{A}}=\mathrm{a}_{\mathrm{t}} \cdot \mathrm{f}_{\mathrm{t}} \cdot \mathrm{j}
$$

ここで，
M_{A} ：短期許容曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
$\mathrm{a}_{\mathrm{t}} \quad$ ：引張鉄筋断面積（ mm^{2} ）
f t ：引張鉄筋の短期許容引張応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
（2）面外せん断力に対する断面の評価方法
断面の評価は，「R C－N 規準」に基づき，評価対象部位に生じる面外せん断力が，次式をもとに計算した許容面外せん断力を超えないことを確認する。なお， ケーブルピット部壁については軸力を付加しない。
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j} \cdot \alpha \cdot \mathrm{f}_{\mathrm{s}}$
ここで，
Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j ：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
α ：許容せん断力の割増し係数
（2を超える場合は 2 ， 1 未満の場合は 1 とする。）
$\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})+1}$
M ：曲げモーメント $(\mathrm{N} \cdot \mathrm{mm})$
Q ：せん断力（ N ）
d ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度（ $\mathrm{N} / \mathrm{mm}^{2}$ ）

4．応力解析による評価結果
屋上外壁の配筋一覧を表4－1に示す。また，「3．5．2 断面評価方法」に基づいた断面の評価結果を表4－2に示す。

S s 地震時において，発生値が許容値を超えないことを確認した。

表 4－1 ケーブルピット部壁の配筋一覧

部材	配筋	断面積 $\left(\mathrm{mm}^{2} / \mathrm{m}\right)$
地下 1 階壁	$1-\mathrm{D} 38 @ 200$	5700
地下 2 階壁	$2-$ D38＠200	11400

表 4－2 評価結果

部位		地下 1 階	地下 2 階
厚さ $\mathrm{t}(\mathrm{mm}) \times$ 幅 $\mathrm{b}(\mathrm{mm})$		1500×1000	2000×1000
有効せい $\mathrm{d}^{*}(\mathrm{~mm})$		1275	1700
$\begin{aligned} & \text { 配 } \\ & \text { 筋 } \end{aligned}$	壁筋	$\begin{gathered} 1-\text { D38@200 } \\ \left(5700 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$	$\begin{gathered} 2-\mathrm{D} 38 @ 200 \\ \left(11400 \mathrm{~mm}^{2} / \mathrm{m}\right) \end{gathered}$
$\begin{gathered} \text { 曲 } \\ \text { げ } \\ \text { モ } \\ \text { । } \\ \times \\ ⿱ 亠 䒑 \end{gathered}$	$\begin{gathered} \text { 発生曲げモーメント } \\ \mathrm{M}(\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	1493． 2	1958． 8
	許容限界 M_{A} $(\mathrm{kN} \cdot \mathrm{m} / \mathrm{m})$	2480.0	6613.4
	検定値M／ $\mathrm{M}_{\text {A }}$	0． 603	0． 297
$\begin{aligned} & \text { 面 } \\ & \text { 世 } \\ & \text { 九 } \\ & \text { 断 } \\ & \text { 力 } \end{aligned}$	発生せん断力 Q （kN／m）	1553.0	2225.0
	せん断スパン比によ る割増し係数 α	2． 00	2.00
	許容限界 $\mathrm{Q}_{\mathrm{A}}(\mathrm{kN} / \mathrm{m})$	2632.9	3510.5
	検定値 $\mathrm{Q} / \mathrm{Q}_{\mathrm{A}}$	0.590	0.634
判定		可	可

注記 $*$ ：有効せいは，厚さの 0.85 倍とする。

VI－2－2－25 排気筒基礎の地震応答計算書
1．概要
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2．3 解析方針 8
2.4 適用規格•基準等 10
3．解析方法 11
3.1 設計に用いる地震波 11
3.2 地震時荷重算出断面 26
3.3 解析方法 28
3．3．1 構造部材 28
3．3．2 地盤物性及び材料物性の不確かさ 28
3．3．3 減衰定数 30
3．3．4 地震応答解析の解析ケースの選定 31
3．4 荷重及び荷重の組合せ 34
3．4．1 耐震評価上考慮する状態 34
3．4．2 荷重 34
3．4．3 荷重の組合せ 35
3.5 入力地震動 36
3． 6 解析モデル及び諸元 51
3．6．1 解析モデル 51
3．6．2 使用材料及び材料の物性値 54
3．6．3 地盤の物性値 54
3．6．4 地下水位 55
4．解析結果 56
4．1 地震応答解析結果 56

1．概要

本資料は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づく排気筒基礎の地震応答解析について説明するものである。

地震応答解析により算出した各種応答値は，添付書類「VI－2－1－9 機能維持の基本方針」に示す建物•構築物及び機器•配管系の設計用地震力として用いる。

2．基本方針
2.1 位置

排気筒の設置位置を図2－1に示す。

図 2－1 排気筒の設置位置

2.2 構造概要

排気筒は，地上からの高さ 160.0 m であり，基部内径 3.7 m ，頂部内径 3.0 m の鋼板製筒身2本を鋼管四角形鉄塔（制震装置付）で支えた四角鉄塔支持形鋼管構造であり，第2号機排気筒と第3号機排気筒で支持構造物を共有する集合方式である。排気筒の基礎は，フーチング基礎形式の鉄筋コンクリート造である。基礎版の形状 は 38．0m（NS）×38．0m（EW），厚さ 5.0 m であり，O．P．＊－4．0mで岩盤上に設置されてい る。筒身部を支える柱（以下「筒身柱」という。）は，平面形状 $14.0 \mathrm{~m} \times 14.0 \mathrm{~m}$ ，高さ 14.3 m であり，鉄塔部を支える 4 本の柱（以下「鉄塔柱」という。）は，平面形状 $5.0 \mathrm{~m} \times 5.0 \mathrm{~m}$ ，高さ 14.3 m である。それぞれの柱は，断面形状 $2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$ のつなぎはりでつながれて いる。これらの筒身柱，鉄塔柱，つなぎはり及び基礎版で囲まれた基礎の内側は，コ ンクリートで充填されている（以下「充填コンクリート」という。）。

排気筒の概要図及び概略平面図を図 $2-2$ 及び図 $2-3$ に，排気筒基礎の平面図を図 $2-4$ ，断面図を図 $2-5$ 及び図 $2-6$ に示す。

注記 $*: ~ 0 . P$ ．は女川原子力発電所工事用基準面であり，東京湾平均海面（T．P．） －0． 74 m である。

図 2－2 排気筒の概要図

G－G断面

制震オイルダンパ設置

$B-B$ 断面

E－E断面

F－F断面（第2支持点）

I－I断面（基部）

図2－3 排気筒の概略平面図

図 2－4 排気筒基礎平面図（単位：m）

図 2－5 排気筒基礎断面図（A－A 断面，NS 断面）（単位：m）

図 2－6 排気筒基礎断面図（B－B 断面，EW 断面）（単位：m）

2.3 解析方針

排気筒基礎の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」に基づいて行う。

図 2－7に排気筒基礎の地震応答解析フローを示す。
地震応答解析は，「3．2 地震時荷重算出断面」に示す断面において，「3．3 解析方法」に基づき二次元有限要素法による時刻歴応答解析により行うこととし，地盤物性及び材料物性のばらつきを適切に考慮する。

二次元有限要素法による時刻歴応答解析は，「3．4 荷重及び荷重の組合せ」及び「3．6解析モデル及び諸元」に示す条件及び地震応答解析モデルを用い，「3．5 入力地震動」 により設定する入力地震動を用いて実施する。

排気筒基礎の地震応答解析による応答加速度は，排気筒の入力地震動及び機器•配管系の設計用床応答曲線の作成に用い，地震時土圧，慣性力及び接地圧は，排気筒基礎の耐震評価に用いる。

図2－7 排気筒基礎の地震応答解析フロー
2.4 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（J E A G 4 6 O 1 •補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
- 日本建築学会 1999 年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法 -
－日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説

3．解析方法

3.1 設計に用いる地震波

排気筒基礎の地震応答解析に用いる入力地震動は，解放基盤表面で定義される地震動を一次元重複反射理論により地震応答解析モデル底面位置で評価したものを用いる。解放基盤表面で定義される地震動は，添付書類「VI－2－1－2 基準地震動 S s 及び弾性設計用地震動 S d の策定概要」に示す基準地震動 S s 及び弾性設計用地震動 S d を用 いる。基準地震動 S s 及び弾性設計用地震動 S d の加速度時刻歴波形及び加速度応答 スペクトルを図 3－1～図3－4に示す。

図 3－1（1）加速度時刻歴波形（基準地震動 S s，水平方向）（ $1 / 3$ ）

図 3－1（2）加速度時刻歴波形（基準地震動 S s，水平方向）（2／3）

図 3－1（3）加速度時刻歴波形（基準地震動 $\mathrm{S} \boldsymbol{s}$ ，水平方向）（3／3）

図 3－1（4）加速度時刻歴波形（基準地震動 S s，鉛直方向）（ $1 / 3$ ）

（e） $\mathrm{S} \mathrm{s}-\mathrm{F} 2$

（f） S s -F 3
図 3－1（5）加速度時刻歴波形（基準地震動 S s，鉛直方向）（2／3）

図 3－1（6）加速度時刻歴波形（基準地震動 S s，鉛直方向）（3／3）

図 3－2（1）加速度応答スペクトル（基準地震動 S s，水平方向）

図 3－2（2）加速度応答スペクトル（基準地震動 S s，鉛直方向）

図 3－3（1）加速度時刻歴波形（弾性設計用地震動 S d，水平方向）（1／3）

（e）$\quad \mathrm{Sd}-\mathrm{F} 2$

（f）$\quad \mathrm{S}$ d－F 3
図 3－3（2）加速度時刻歴波形（弾性設計用地震動 S d，水平方向）（2／3）

図 3－3（3）加速度時刻歴波形（弾性設計用地震動 S d，水平方向）（3／3）

図 3－3（4）加速度時刻歴波形（弾性設計用地震動 S d，鉛直方向）（1／3）

（e）$\quad \mathrm{Sd}-\mathrm{F} 2$

（f）$\quad \mathrm{S}$ d - F 3
図 3－3（5）加速度時刻歴波形（弾性設計用地震動 S d，鉛直方向）（2／3）

図 3－3（6）加速度時刻歴波形（弾性設計用地震動 S d，鉛直方向）（3／3）

図 3－4（1）加速度応答スペクトル（弾性設計用地震動 S d，水平方向）

図 3－4（2）加速度応答スペクトル（弾性設計用地震動 S d，鉛直方向）

3.2 地震時荷重算出断面

排気筒基礎の地震時荷重算出断面位置を図 3－5に示す。地震時荷重算出断面は，構造的特徴や周辺地質状況を踏まえ，基礎の中心を通る南北方向のNS断面（図中の A－A断面）及び東西方向の EW 断面（図中の B－B 断面）の両断面とする。地震時荷重算出用地質断面図を図3－6及び図3－7に示す。

図 3－5 排気筒基礎の地震時荷重算出断面位置図

図 3－6 排気筒基礎 地震時荷重算出用地質断面図（NS 断面）

図 3－7 排気筒基礎 地震時荷重算出用地質断面図（EW 断面）

3．3 解析方法

排気筒基礎の地震応答解析は，添付書類「VI－2－1－6 地震応答解析の基本方針」の うち，「2．1 建物•構築物」に示す解析方法及び解析モデルを踏まえて実施する。地震応答解析は，構造物と地盤の相互作用を考慮できる二次元有限要素法により，基準地震動 S s 又は弾性設計用地震動 S d に基づき設定した水平地震動と鉛直地震動 の同時加振による逐次時間積分の時刻歴応答解析（全応力解析）により行う。

NS 断面において隣接構造物となる排気筒連絡ダクト，第 3 号機排気筒連絡ダクト は，排気筒基礎の耐震評価において保守的な評価となるよう盛土としてモデル化する。排気筒基礎のモデル化は，筒身柱，鉄塔柱，つなぎはり，基礎版及び充填コンクリ ートの剛性を，構造物中心位置において各構造部材と等価な剛性を有する線形はり要素と等価な質量を有する質点でモデル化する。排気筒は基礎の上端に質点として考慮 する。

また，地盤については，動的変形特性のひずみ依存性を適切に考慮できるよう平面 ひずみ要素にてモデル化する。地震応答解析については，解析コード「TDAPIII Ver．3．11」 を使用する。なお，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

3．3．1 構造部材

鉄筋コンクリート部材は，線形はり要素でモデル化する。排気筒は質点でモデ ル化する。

3．3．2 地盤物性及び材料物性の不確かさ
地盤物性及び材料物性の不確かさの影響を考慮するため，表 3－1 に示す解析 ケースを設定する。

排気筒基礎は，岩盤上に直接構築され，周囲が盛土で埋戻されており，盛土等 の土圧が主たる荷重となる他，基礎の質量が大きく，作用する慣性力も主たる荷重となることから，すべての地盤のせん断弾性係数のばらつきを考慮する。

せん断弾性係数の標準偏差 σ を用いて設定した解析ケース（2）及び③を実施する ことにより地盤物性のばらつきの影響を網羅的に考慮する。

また，材料物性のばらつきとして構造物の実強度に基づいて設定した解析ケー ス④を実施することにより，材料物性のばらつきの影響を考慮する。

なお，排気筒基礎は，許容応力度法により設計を行っており，十分に裕度を確保した設計としていることから，材料物性のばらつきを考慮した解析ケース（4）に よる耐震評価は実施せず，機器•配管系に対する応答加速度抽出においては，材料物性のばらつきを考慮した解析ケース（4）を実施する。

排気筒に対する応答加速度抽出においては，排気筒応答への影響の大きい地震

動に対してばらつきを考慮した解析を実施することとし，基本ケースの地震応答解析の照査値が最大となる地震動を基準地震動 S s から選定する。

なお，排気筒に対する材料物性のばらつきを考慮した解析ケース（4）は，排気筒 に対する影響が少ないことから地盤のせん断弾性係数のばらつきを考慮した解析 ケース（2）及び③を考慮する。

詳細な解析ケースの考え方は，「3．3．4 地震応答解析の解析ケースの選定」に示す。

表 3－1 解析ケース

解析ケース	材料物性 （コンクリート） （ E_{0} ：ヤング係数）	地盤物性
		旧表土，盛土，D級岩盤 C_{L} 級岩盤，C_{M} 級岩盤， C_{H} 級岩盤，B 級岩盤 （G：せん断弾性係数）
$\begin{gathered} \text { ケース①) } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値
ケース（2）	設計基準強度	平均値 $+1 \sigma$
ケース（3）	設計基準強度	平均値－1 σ
ケース（4）	実強度に基づく圧縮強度＊	平均値

注記 $*: ~$ 既設構造物のコア採取による圧縮強度試験の結果を使用する。

3．3．3 減衰定数

構造部材の減衰定数は，粘性減衰で考慮する。
粘性減衰は，固有値解析にて求められる固有周期と各材料の減衰比に基づき，質量マトリックス及び剛性マトリックスの線形結合で表される以下の Rayleigh減衰を解析モデル全体に与える。固有値解析結果に基づき設定した α, β を表 3 － 2 に示す。
$[\mathrm{c}]=\alpha[\mathrm{m}]+\beta[\mathrm{k}]$
［c］：減衰係数マトリックス
［m］：質量マトリックス
［k］：剛性マトリックス
α, β ：係数

表 3－2 Rayleigh 減衰における係数 α, β の設定結果

地震時荷重算出断面	α	β
NS 断面	7.113×10^{-1}	4.218×10^{-4}
EW 断面	4.543×10^{-1}	6.604×10^{-4}

3．3．4 地震応答解析の解析ケースの選定

（1）排気筒基礎の耐震評価における解析ケース
排気筒基礎の耐震評価においては，すべての基準地震動 S s の正位相及び水平動の位相反転に対し，解析ケース①（基本ケース）を実施する。解析ケース（1）に おいて，曲げ・軸力系の破壊，せん断破壊及び地盤の支持力照査の照査項目ごと に照査値が 0.5 を超える照査項目に対して，最も厳しい地震動を用いて，表 3－1 に示す解析ケース（2）及び③を実施する。また，上記解析ケースの結果を踏まえ，更に照査値が大きくなる可能性がある場合は，追加解析ケースを実施する。耐震評価における解析ケースを表3－3に示す。

表 3－3 排気筒基礎の耐震評価における解析ケース

解析ケース			ケース①	ケース（2）	ケース③
			基本ケース	地盤物性のばらつ き（ $+1 \sigma$ ）を考慮した解析ケース	地盤物性のばらつ き（－1 σ ）を考慮した解析ケース
地盤物性			平均値	平均値 +10	平均値－1 σ
材料物性			設計基準強度	設計基準強度	設計基準強度
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \end{aligned}$動位相	S s－D 1	$++*$ $-+*$	\bigcirc	【追加解析ケースについて】基準地震動 S s（7 波）に水平動の位相反転を考慮した地震動（7 波）を加 えた全 14 波に対し，全応力解析によ る基本ケース①を実施し，曲げ・軸力系の破壊，せん断破壊，基礎地盤の支持力照査の各照査項目ごとに照査値 が 0.5 を超える照査項目に対して，最も厳しい（許容限界に対する裕度 が最も小さい）地震動を用いてケー ス（2）及び（3）を実施する。 すべての照査項目の照査値がいずれ も 0.5 以下の場合は，照査値が最も厳しくなる地震動を用いてケース（2）及び（3）を実施する。また，上記解析ケ ースの結果を踏まえ，更に照査値が大きくなる可能性がある場合は，追加解析ケースを実施する。	
	S s－D 2	$++^{*}$	\bigcirc		
		$-+*$	\bigcirc		
	S s－D 3	$++^{*}$	\bigcirc		
		$-+*$	\bigcirc		
	S s－F 1	$++^{*}$	\bigcirc		
		－＋＊	\bigcirc		
	$\mathrm{S} s-\mathrm{F} 2$	＋＋＊	\bigcirc		
		$-+*$	\bigcirc		
	S s－F 3	$++^{*}$	\bigcirc		
		$-+*$	\bigcirc		
	$\mathrm{S} s-\mathrm{N} 1$	$++^{*}$	\bigcirc		
		$-+*$	\bigcirc		

注記＊：耐震評価にあたつては，「土木学会 2005 年 原子力発電所屋外重要土木構造物 の耐震性能照査指針・マニュアル」（以下「土木学会マニュアル」という。）に従 い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
（2）排気筒に対する応答加速度抽出のための解析ケース
排気筒に対する応答加速度抽出においては，すべての基準地震動 S s の正位相 に対し，解析ケース①（基本ケース）を実施する。解析ケース①において，排気筒の筒身，主柱材それぞれの断面算定結果に対して，最も厳しい地震動を用いて，表 3－1に示す水平動の位相反転を考慮した解析ケース（1），及び解析ケース（2），（3） を実施する。排気筒の応答加速度抽出における解析ケースを表 3－4に示す。

表 3－4 排気筒の応答加速度抽出のための解析ケース

解析ケース			ケース①	ケース（2）	ケース③）
			基本ケース	地盤物性のばらつ き（＋1 o ）を考慮 した解析ケース	地盤物性のばらつ き（－1 $=$ ）を考慮 した解析ケース
地盤物性			平均値	平均値 $+1 \sigma$	平均値－1 σ
材料物性			設計基準強度	設計基準強度	設計基準強度
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	$\begin{aligned} & S \mathrm{~s}-\mathrm{D} 1 \\ & \mathrm{~S} d-\mathrm{D} 1 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle * 2$	$\triangle * 2$
		$-{ }^{* 1}$	$\triangle^{* 2}$	，	
	$\begin{aligned} & \mathrm{S} \mathrm{~s}-\mathrm{D} 2 \\ & \mathrm{~S} \text { d }-\mathrm{D} 2 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$		
	$\begin{aligned} & S s-D 3 \\ & S d-D 3 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$		
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 1 \\ & \mathrm{~S} \text { d }-\mathrm{F} 1 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle^{* 2}$		
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 2 \\ & \mathrm{~S} d-\mathrm{F} 2 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$		
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 3 \\ & \mathrm{~S} d-\mathrm{F} 3 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle * 2$	$\triangle * 2$
		$-{ }^{* 1}$	$\triangle^{* 2}$		
	$\begin{aligned} & S \mathrm{~s}-\mathrm{N} 1 \\ & \mathrm{~S} d-N 1 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	$\triangle * 2$	$\triangle * 2$
		$-+* 1$	$\triangle * 2$		

注記＊1：耐震評価にあたっては，土木学会マニュアルに従い，水平方向の位相反転を考慮する。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：\triangle については，正位相による解析ケース（1）において，排気筒の筒身，主柱材それ ぞれの断面算定結果が最も厳しい地震動を用いる。なお，S d の評価は，S s の評価結果が最も厳しくなる地震動について，地盤物性及び材料物性の不確かさ を考慮する。
（3）機器•配管系に対する応答加速度抽出のための解析ケース
機器•配管系に対する応答加速度抽出においては，床応答への保守的な配慮と して解析ケース（1）に加え，表3－1に示す解析ケース（2）～④）を実施する。機器•配管系の応答加速度抽出における解析ケースを表3－5に示す。

表 3－5 機器•配管系の応答加速度抽出のための解析ケース

解析ケース			ケース①	ケース（2）	ケース③	ケース（4）
			基本ケース	地盤物性のば らつき（＋ 1 o）を考慮し た解析ケース	地盤物性のば らつき（－ 1 o ）を考慮し た解析ケース	材料物性（コ ンクリート） に実強度を考慮した解析ケ ース
地盤物性			平均値	平均値 $+1 \sigma$	平均値－1 σ	平均値
材料物性			設計基準強度	設計基準強度	設計基準強度	実強度に基づ く圧縮強度＊${ }^{2}$
$\begin{aligned} & \text { 地 } \\ & \text { 震 } \\ & \text { 動 } \\ & \text { 位 } \\ & \text { 相 } \end{aligned}$	$\begin{aligned} & \mathrm{S} \text { s }-\mathrm{D} 1 \\ & \mathrm{~S} \text { d }-\mathrm{D} 1 \end{aligned}$	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & S \mathrm{~s}-\mathrm{D} 2 \\ & \mathrm{~S} \text { d }-\mathrm{D} 2 \end{aligned}$	$++^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{D} 3 \\ & \mathrm{~S} d-\mathrm{D} 3 \end{aligned}$	$+*^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 1 \\ & \mathrm{~S} d-\mathrm{F} 1 \end{aligned}$	$+{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 2 \\ & \mathrm{~S} d-\mathrm{F} 2 \end{aligned}$	$+*^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & \mathrm{S} s-\mathrm{F} 3 \\ & \mathrm{Sd}-\mathrm{F} 3 \end{aligned}$	$+*^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-{ }^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
	$\begin{aligned} & S s-N 1 \\ & S d-N 1 \end{aligned}$	$+*^{* 1}$	\bigcirc	\bigcirc	\bigcirc	\bigcirc
		$-+* 1$	\bigcirc	\bigcirc	\bigcirc	\bigcirc

注記 $* 1: ~$ 地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表し，「一」は位相を反転させたケースを示す。
＊2：既設構造物のコア採取による圧縮強度試験の結果を使用する。

3.4 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「V－2－1－9 機能維持の基本方針」に基づき設定する。

3．4．1 耐震評価上考慮する状態

排気筒基礎の地震応答解析において，地震以外に考慮する状態を以下に示す。
（1）運転時の状態
発電用原子炉施設が運転状態にあり，通常の条件下におかれている状態。ただ し，運転時の異常な過渡変化時の影響を受けないことから考慮しない。
（2）設計基準事故時の状態
設計基準事故時の影響を受けないことから考慮しない。
（3）設計用自然条件
固定荷重に対して，積雪荷重が十分に小さいことから考慮しない。
（4）重大事故等時の状態
重大事故等時の影響を受けないことから考慮しない。

3．4．2 荷重

排気筒基礎の地震応答解析において考慮する荷重を以下に示す。
（1）固定荷重（G）
固定荷重として，躯体自重，充填コンクリート自重，排気筒荷重，機器•配管荷重を考慮する。
（2）積載荷重（P）
積載物はないため，積載荷重は考慮しない。
（3）積雪荷重（ P_{s} ）
固定荷重に対して，非常に小さいことから積雪荷重は考慮しない。
（4）地震荷重（S s ）
基準地震動 S s による荷重を考慮する。
（5）地震荷重（S d）
弾性設計用地震動 S d による荷重を考慮する。

3．4．3 荷重の組合せ
荷重の組合せを表3－6に示す。

表 3－6 荷重の組合せ

外力の状態	荷重の組合せ
地震時 $(\mathrm{S} \mathrm{s})$	$\mathrm{G}+\mathrm{S} \mathrm{s}$
地震時 $(\mathrm{S} \mathrm{d})^{*}$	$\mathrm{G}+\mathrm{S} \mathrm{d}$

注記 $*: ~$ 排気筒及び機器•配管系の耐震設計に用いる。

G ：固定荷重
S s ：地震荷重（基準地震動 S s ）
S d ：地震荷重（弾性設計用地震動 S d）

3.5 入力地震動

入力地震動は，添付書類「VI－2－1－6 地震応答解析の基本方針」のうち「2．1 建物•構築物」に示す入力地震動の設定方針を踏まえて設定する。

地震応答解析に用いる入力地震動は，解放基盤表面で定義される基準地震動 S s を一次元重複反射理論により地震応答解析モデル下端位置で評価したものを用いる。な お，入力地震動の設定に用いる地下構造モデルは，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」のうち「7．1 入力地震動の設定に用いる地下構造モデル」を用 いる。

図 $3-8$ に入力地震動算定の概念図を，図 $3-9$ 及び図 $3-10$ に基準地震動 S s の加速度時刻歴波形及び加速度応答スペクトルを，図3－11及び図3－12に弾性設計用地震動 S d の加速度時刻歴波形及び加速度応答スペクトルを示す。入力地震動の算定には，解析コード「SHAKE Ver1．6」を使用する。解析コードの検証及び妥当性確認の概要に ついては，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

図 3－8 入力地震動算定の概念図

図 3－9（1）入力地震動の加速度時刻歴波形
（基準地震動 S s，水平成分）（ $1 / 3$ ）

図 3－9（2）入力地震動の加速度時刻歴波形
（基準地震動 S s，水平成分）（2／3）

図 3－9（3）入力地震動の加速度時刻歴波形
（基準地震動 S s ，水平成分）（3／3）

図 3－9（4）入力地震動の加速度時刻歴波形
（基準地震動 S s，鉛直成分）（ $1 / 3$ ）

（e） $\mathrm{S} \mathrm{s}-\mathrm{F} 2$

（f）$\quad \mathrm{S}$ s -F 3
図 3－9（5）入力地震動の加速度時刻歴波形
（基準地震動 S s，鉛直成分）（2／3）

図 3－9（6）入力地震動の加速度時刻歴波形
（基準地震動 S s ，鉛直成分）（3／3）

図 3－10（1）入力地震動の加速度応答スペクトル
（基準地震動 S s ，水平成分）

図 3－10（2）入力地震動の加速度応答スペクトル
（基準地震動 S s ，鉛直成分）

図 3－11（1）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d ，水平成分）（ $1 / 3$ ）

（e）$\quad \mathrm{Sd}-\mathrm{F} 2$

（f）$\quad \mathrm{S} d-\mathrm{F} 3$
図 3－11（2）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，水平成分）（2／3）

図 3－11（3）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，水平成分）（3／3）

図 3－11（4）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，鉛直成分）（ $1 / 3$ ）

（e） S d -F 2

（f）S d－F 3
図 3－11（5）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，鉛直成分）（2／3）

図 3－11（6）入力地震動の加速度時刻歴波形 （弾性設計用地震動 S d，鉛直成分）（3／3）

減衰定数： 0.05

図 3－12（1）入力地震動の加速度応答スペクトル
（弾性設計用地震動 $\mathrm{S} d$ ，水平成分）

図 3－12（2）入力地震動の加速度応答スペクトル
（弾性設計用地震動 S d，鉛直成分）
3.6 解析モデル及び諸元

3．6．1 解析モデル
排気筒基礎の地震応答解析モデルを図 $3-13 \sim$ 図 $3-15$ に示す。
（1）解析領域
二次元有限要素法による時刻歴応答解析の解析モデルの解析領域は，境界条件 の影響が地盤及び構造物の応力状態に影響を及ぼさないようっ十分に広い領域と する。
（2）境界条件
二次元有限要素法による時刻歴応答解析の解析モデルの境界条件については，有限要素解析における半無限地盤を模擬するため，粘性境界を設ける。
（3）構造物のモデル化
筒身柱，鉄塔柱，つなぎはり及び基礎版の剛性を，構造物中心位置において各構造部材と等価な剛性を有する線形はり要素と等価な質量を有する質点でモデル化する。排気筒は基礎の上端に質点として考慮する。また，基礎の構造部材と地盤の相互作用を考慮するため，構造部材に対して十分に剛な断面性能を有する仮想剛梁を水平方向に配置する。
（4）地盤のモデル化
D級を除く岩盤は，線形の平面ひずみ要素でモデル化する。また，盛土•旧表土及びD級岩盤は，地盤の非線形性をマルチスプリング要素で考慮した平面ひず み要素でモデル化する。充填コンクリートは，構造物中心位置での線形はり要素 に質量と剛性を考慮する。
（5）隣接構造物のモデル化
NS 方向において隣接構造物となる排気筒連絡ダクト，第 3 号機排気筒連絡ダク トは，排気筒基礎の耐震評価において保守的な評価となるよう盛土としてモデル化する。
（6）ジョイント要素の設定
地震時の「地盤と構造物」との接合面における剥離及びすべりを考慮するため， これらの接合面にジョイント要素を設定する。

図 3－13 排気筒基礎の地震応答解析モデル図（NS 断面）

図 3－14 排気筒基礎の地震応答解析モデル図（EW 断面）

図 3－15 排気筒基礎の地震応答解析モデル図（拡大図）

3．6．2 使用材料及び材料の物性値

構造物の使用材料を表3－7に示す。

表 3－7 使用材料の材料定数

使用材料	ヤング係数 $\begin{gathered} \mathrm{E}^{*} \\ \left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{gathered}$	ポアソン比	備考
$\begin{aligned} & \text { 鉄筋コンクリート } \\ & \text { コンクリート: } \\ & \text { F c = } 20.5\left(\mathrm{~N} / \mathrm{mm}^{2}\right) \end{aligned}$ 鉄筋：SD345	$\begin{gathered} 2.15 \times 10^{4} \\ \left(2.53 \times 10^{4}\right) \end{gathered}$	0． 2	鉄筋コンクリート部 （筒身柱，鉄塔柱， つなぎはり，基礎版）
$\begin{aligned} & \text { コンクリート: } \\ & \text { F c =18.0 }\left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{aligned}$	$\begin{gathered} 2.06 \times 10^{4} \\ \left(2.53 \times 10^{4}\right) \end{gathered}$	0． 2	充填コンクリート部

注記＊：括弧内は，既設構造物のコア採取による圧縮強度試験の結果に基づくヤ

3．6．3 地盤の物性値

地盤については，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」にて設定している物性値を用いる。

3．6．4 地下水位

設計用地下水位は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に従い，地表面に設定する。設計用地下水位の一覧を表 $3-8$ に，設計用地下水位を図 $3-16$ 及び図 $3-17$ に示す。

表 3－8 設計用地下水位の一覧

施設名称	地震時荷重算出断面	設計用地下水位
排気筒基礎	NS 断面	0. P． 14.8 m
	EW 断面	0. P． 14.8 m

図 3－16 設計用地下水位（NS 断面）

図 3－17 設計用地下水位（EW 断面）

4．解析結果

4.1 地震応答解析結果

基本ケース（ケース（1）），地盤物性の不確かさ（ケース（2），③）及び材料物性の不確 かさ（ケース（4））の地震応答解析結果を示す。排気筒基礎のNS 断面及びEW 断面の基準地震動 S s による最大応答加速度を図4－1～図4－16に，弾性設計用地震動 S d に よる最大応答加速度を図 4－17～図4－32に示す。

また，排気筒基礎地盤の支持性能評価に用いる接地圧を表 4－1に示す。なお，接地圧は二次元有限要素法における底面地盤ばね反力から求めていることから，最大転倒 モーメント及び鉛直力の値は用いていないが，参考として示す。

（a）水平方向

$\mathrm{Ss}-\mathrm{D} 1$	$\mathrm{Ss}-\mathrm{D} 2$	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
	－＝	－－	\square	\square	\square	－
969	1075	968	833	868	1026	828
919	1024	843	792	814	978	814
869	964	809	753	776	908	810
806	863	735	673	740	832	787
807	920	683	663	851	787	853

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
	－	－：		－	－	
644	661	715	419	449	702	390
619	649	694	416	443	693	378
602	628	656	409	432	671	371
565	570	562	386	404	627	347
548	550	499	369	385	596	330

（b）鉛直方向

図 4－1 最大応答加速度（基準地震動 S s $(++)$ ，ケース（1），NS 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
\square	－－－	－－－	－	－	－	\square
642	677	760	504	486	588	413
646	674	740	499	479	575	419
620	666	698	489	467	558	408
596	623	596	462	436	500	383
583	591	530	440	420	456	365

（b）鉛直方向

図 4－2 最大応答加速度（基準地震動 S s $(-+)$ ，ケース（1），NS 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	$\mathrm{Ss}-\mathrm{F} 2$	Ss－F3	$\mathrm{Ss}-\mathrm{N} 1$
	－		\square	\square	－	
645	670	724	452	462	757	398
638	660	707	448	456	751	394
626	640	673	439	445	735	385
600	586	585	413	416	693	362
578	556	524	390	398	658	344

（b）鉛直方向

図 4－3 最大応答加速度（基準地震動 S s（＋＋），ケース（2），NS 断面）

（a）水平方向

（b）鉛直方向

図 4－4 最大応答加速度（基準地震動S s（ -+ ），ケース（2），NS 断面）

（a）水平方向

（b）鉛直方向

図 4－5 最大応答加速度（基準地震動 S s $(++)$ ，ケース（3），NS 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
－	－－－	－．－．	—	－	－	－
672	692	803	455	430	539	383
668	683	782	452	424	526	378
650	665	739	442	412	501	369
619	624	634	424	400	456	351
603	598	567	410	393	437	339

（b）鉛直方向

図 4－6 最大応答加速度（基準地震動 S s $(-+)$ ，ケース（3），NS 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
－	－－－	－\cdot－	\square	－	\square	－
617	633	689	417	442	681	382
613	625	668	414	438	673	372
598	608	644	408	429	658	364
562	568	569	391	407	624	346
549	537	519	375	392	601	333

（b）鉛直方向

図 4－7 最大応答加速度（基準地震動 S S $(++)$ ，ケース（4），NS 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	$\mathrm{Ss}-\mathrm{N} 1$
	－	－－．	－	－	—	－
634	662	724	497	480	571	403
635	664	709	493	475	569	411
621	651	678	483	463	546	403
595	621	601	461	440	500	382
580	592	546	444	423	467	367

（b）鉛直方向

図 4－8 最大応答加速度（基準地震動 S s $(-+)$ ，ケース（4），NS 断面）

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
\square	ーー－	－－	－	－	－	－
1148	1307	1051	916	1029	1165	862
1079	1170	909	816	980	1075	850
1011	1067	839	729	906	990	835
968	961	757	734	829	864	824
932	913	735	734	788	920	881

（a）水平方向

（b）鉛直方向
図 4－9 最大応答加速度（基準地震動 S s $(++)$ ，ケース（1），EW 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
－	－－－	－－	－	\square	－	－
1111	1272	1037	973	1019	1024	872
1058	1146	962	898	945	972	863
1011	1098	872	804	901	919	835
975	994	776	733	816	834	797
936	909	742	694	847	865	897

Ss－D1	Ss－D2	Ss－D3	$\mathrm{Ss}-\mathrm{F} 1$	$\mathrm{Ss}-\mathrm{F} 2$	Ss－F3	$\mathrm{Ss}-\mathrm{N} 1$
	ーーロ	－：	\square	－	－	－
744	722	764	427	444	560	415
739	716	747	424	440	551	411
726	700	714	418	435	530	403
694	657	627	400	427	479	382
671	622	567	385	421	444	367

（b）鉛直方向

図 4－10 最大応答加速度（基準地震動 S s $(-+)$ ，ケース（1），EW 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	$\mathrm{Ss}-\mathrm{F} 2$	$\mathrm{Ss}-\mathrm{F} 3$	$\mathrm{Ss}-\mathrm{N} 1$
	ー－－	－．		－	－	
710	694	731	450	463	681	404
702	686	716	446	459	673	400
696	668	685	437	449	656	391
665	621	604	412	424	607	368
645	585	560	391	412	574	352

（b）鉛直方向

図 4－11 最大応答加速度（基準地震動 S s（ ++ ），ケース（2），EW 断面）

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
	－－－	－－．	－	－	－	－
1114	1339	1125	980	1028	1140	940
1025	1256	999	880	951	987	904
1033	1202	898	822	907	888	881
1011	990	827	716	840	879	831
978	862	953	692	892	845	824

（a）水平方向

（b）鉛直方向

図 4－12 最大応答加速度（基準地震動 S s $(-+)$ ，ケース（2），EW 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	$\mathrm{Ss}-\mathrm{F} 2$	$\mathrm{Ss}-\mathrm{F} 3$	$\mathrm{Ss}-\mathrm{N} 1$
	ー－－	－！			－	
730	742	667	401	523	495	437
725	734	654	396	521	474	432
712	714	623	383	514	452	422
680	662	544	365	496	425	402
666	623	516	354	484	405	387

（b）鉛直方向

図 4－13 最大応答加速度（基準地震動 S s（＋＋）ケース（3），EW 断面）

（a）水平方向

Ss－D1	$\mathrm{Ss}-\mathrm{D} 2$	Ss－D3	$\mathrm{Ss}-\mathrm{F} 1$	$\mathrm{Ss}-\mathrm{F} 2$	Ss－F3	$\mathrm{Ss}-\mathrm{N} 1$
	－－－	－．			－	
1093	1178	995	946	968	1067	826
1028	1126	941	846	925	1020	797
985	1086	888	819	875	964	781
919	949	778	762	804	901	747
966	879	725	729	845	941	820

（b）鉛直方向

図 4－14 最大応答加速度（基準地震動 S s（ -+ ），ケース（3），EW 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	$\mathrm{Ss}-\mathrm{F} 1$	$\mathrm{Ss}-\mathrm{F} 2$	$\mathrm{Ss}-\mathrm{F} 3$	$\mathrm{Ss}-\mathrm{N} 1$
	ー－－	－！		－	－	
722	678	698	417	470	578	403
719	671	686	414	468	572	400
710	655	662	408	463	560	394
687	616	598	392	453	529	377
670	586	553	378	445	507	365

（b）鉛直方向

図 4－15 最大応答加速度（基準地震動 S s（＋＋），ケース（4），EW 断面）

（a）水平方向

Ss－D1	Ss－D2	Ss－D3	Ss－F1	Ss－F2	Ss－F3	Ss－N1
－	－－－	－．－．	—	－	－	－
731	714	737	420	438	549	407
726	708	726	418	435	544	404
716	695	699	412	432	530	397
691	660	634	397	425	488	380
673	629	584	385	420	458	366

（b）鉛直方向

図 4－16 最大応答加速度（基準地震動 S s $(-+)$ ，ケース（4），EW 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－	－．－	—	－	－	－
569	644	580	432	435	532	416
540	622	509	405	407	506	410
512	590	484	380	393	474	404
464	546	427	336	365	409	387
454	682	463	317	351	438	375

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
\square	－－－	－－	－	－	\square	－
370	381	416	212	222	342	194
361	375	405	209	219	339	192
350	362	381	207	214	333	187
330	331	325	196	200	308	175
319	309	293	187	190	294	167

（b）鉛直方向

図 4－17 最大応答加速度（弾性設計用地震動 $\mathrm{Sd}(++)$ ，ケース（1），NS 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－－	－－－	—	－	－	－
560	713	542	447	458	443	420
525	662	500	427	440	419	411
501	635	478	404	421	392	395
480	574	425	338	397	369	395
476	608	495	383	381	383	355

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－	－．－	－	－	－	－
388	395	438	249	246	309	214
385	392	426	245	244	284	212
376	384	401	239	237	273	207
356	360	343	228	221	245	195
340	340	305	217	210	221	186

（b）鉛直方向

図 4－18 最大応答加速度（弾性設計用地震動 S d（ -+ ），ケース（1），NS 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	ーー－	－．－	－	－	－	－
576	668	624	465	385	548	397
532	654	567	427	385	524	395
510	616	518	387	379	494	392
464	523	462	341	361	418	378
528	633	406	329	342	384	367

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	－－－	－－	\square	\square	－	－
378	395	419	229	233	367	203
374	396	406	227	230	367	201
366	387	387	223	224	360	195
343	348	336	209	210	336	185
327	330	303	198	200	320	176

（b）鉛直方向

図 4－19 最大応答加速度（弾性設計用地震動 S d（ ++ ），ケース（2），NS 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	－－－	－－－	－	－	－	－
523	661	582	457	457	462	404
501	650	530	424	449	433	400
478	623	490	390	436	404	397
441	534	429	338	395	396	381
434	714	401	325	363	393	410

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－	－－．	－	－	－	－
371	420	394	239	269	284	224
369	414	384	236	266	278	222
362	400	364	231	259	268	218
340	364	326	218	243	252	205
321	333	306	208	231	248	195

（b）鉛直方向

図 4－20 最大応答加速度（弾性設計用地震動 S d（ -+ ），ケース（2），NS 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	ーー	－－	\square	－	－	－
590	648	551	390	526	511	433
566	607	507	370	483	484	422
556	590	474	348	443	454	414
512	515	423	319	385	402	399
504	603	387	309	352	386	387

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－－－	－－－	\square	－	－	－
384	393	394	191	223	331	190
380	388	382	189	220	327	186
373	376	356	185	212	318	181
355	346	311	177	198	296	169
341	324	283	171	192	281	162

（b）鉛直方向

図 4－21 最大応答加速度（弾性設計用地震動 S d（ ++ ），ケース（3），NS 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－	－．－．	－	－	－	－
568	704	542	407	493	498	427
519	652	510	388	481	451	416
508	610	467	369	469	410	405
503	509	425	324	392	360	398
494	452	409	386	542	378	390

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	－－－	－－．	－	\square	—	\square
400	396	467	221	218	266	189
399	391	455	223	215	264	190
392	382	430	221	208	253	185
373	359	367	211	203	224	179
358	340	327	204	199	205	173

（b）鉛直方向

図 4－22 最大応答加速度（弾性設計用地震動 S d（ -+ ），ケース（3），NS 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	ー－－	－\cdot	－	－	\square	－
564	661	567	434	423	524	410
540	621	500	410	397	501	405
507	587	469	386	389	472	401
459	555	422	338	366	424	387
448	688	395	319	355	458	378

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	－	－－－	——	－	－	－
356	367	399	211	218	333	189
361	362	390	209	216	329	188
348	352	373	205	212	323	185
329	328	331	198	201	308	175
319	309	302	191	194	297	168

（b）鉛直方向

図 4－23 最大応答加速度（弾性設計用地震動 S d（ ++ ），ケース（4），NS 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－	－－－	－	—	－	－
559	678	545	442	444	447	413
520	654	495	424	435	414	405
495	618	473	395	418	391	398
480	573	429	337	385	374	373
476	458	488	324	378	380	360

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－－－	－－－	\square	\square	－	－
380	386	416	243	241	289	209
377	384	407	241	240	282	208
370	378	390	237	235	269	204
351	359	345	226	223	245	194
339	342	314	218	214	229	187

（b）鉛直方向

図 4－24 最大応答加速度（弾性設計用地震動 S d（ -+ ），ケース（4），NS 断面）

（a）水平方向

$\left(\mathrm{cm} / \mathrm{s}^{2}\right)$						
Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	－	－．－		－	－	
689	834	635	467	533	597	440
646	751	568	419	499	545	430
605	663	506	371	466	521	419
576	579	440	365	419	473	404
561	549	431	379	435	435	403

（b）鉛直方向

図 4－25 最大応答加速度（弾性設計用地震動 S d（＋＋），ケース（1），EW 断面）
0．P
（m）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	ーーー	．－．	－	－	－	
638	772	682	507	535	530	445
611	703	599	466	500	496	437
596	645	530	419	460	475	421
561	573	457	365	410	425	393
603	615	436	348	459	434	393

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	$\mathrm{Sd}-\mathrm{N} 1$
	－－－	－－．	－	\square	－	－
458	424	438	211	218	298	200
453	418	429	209	216	293	198
444	406	409	206	211	283	194
419	381	360	197	200	257	183
402	360	326	190	192	239	175

（b）鉛直方向

図 4－26 最大応答加速度（弾性設計用地震動 S d（ -+ ），ケース（1），EW 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－－－	－－－	\square	－	\square	－
660	848	691	505	526	644	453
629	804	616	458	503	580	442
610	719	547	414	475	529	426
587	587	471	363	426	446	403
572	511	452	374	416	397	398

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	－	－－－	——	－	－	－
431	406	419	218	236	338	204
427	402	411	225	233	334	202
419	392	395	221	228	326	198
393	365	361	208	215	303	186
373	343	335	196	205	286	177

（b）鉛直方向

図 4－27 最大応答加速度（弾性設計用地震動 S d（ ++ ），ケース（2），EW 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－－－	－．－	－	－	－	－
679	820	703	500	536	568	472
609	768	624	469	496	508	457
602	706	554	437	466	476	435
581	584	480	370	417	430	405
557	496	516	344	539	433	385

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－－－	－．－	—	－	－	－
443	439	429	234	228	306	207
439	434	420	233	226	302	205
431	424	402	229	221	292	201
410	394	355	217	209	264	189
392	371	323	208	201	244	180

（b）鉛直方向

図 4－28 最大応答加速度（弾性設計用地震動 S d（ -+ ），ケース（2），EW 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	ー－－	－．－	－	－	－	－
680	740	598	437	495	589	406
636	689	537	384	454	568	395
598	639	480	382	415	542	396
542	574	418	386	376	500	389
512	578	427	383	390	573	400

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
	－	－－－	\square	－	－	－
442	424	394	201	247	247	200
438	419	386	198	244	243	198
431	407	367	192	240	237	194
411	377	320	181	226	221	184
396	356	301	175	217	208	176

（b）鉛直方向

図 4－29 最大応答加速度（弾性設計用地震動 S d（ ++ ），ケース（3），EW 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－	－．－	－	－	－	－
640	723	591	499	495	554	404
609	682	555	447	461	530	393
586	642	518	414	434	508	381
548	571	450	387	397	472	366
534	534	402	368	431	442	363

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
\longrightarrow	－－	－－－	－	－	－	－
423	429	408	196	226	283	203
421	423	400	193	224	280	200
414	410	381	187	219	272	196
398	382	333	176	207	252	185
388	362	301	171	202	235	177

（b）鉛直方向

図 4－30 最大応答加速度（弾性設計用地震動 S d（ -+ ），ケース（3），EW 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	ーー	－－	\square	－	－	－
683	825	624	457	534	586	436
645	744	566	410	499	545	430
600	671	509	368	465	509	420
581	576	445	362	426	467	402
600	548	435	366	440	445	411

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－－－	－－－	\square	－	－	－
435	389	407	210	235	290	194
432	385	400	209	233	287	193
425	377	385	206	229	281	190
408	354	350	198	218	266	181
396	337	329	191	210	254	174

（b）鉛直方向

図 4－31 最大応答加速度（弾性設計用地震動 $\mathrm{S} \mathrm{d}(++)$ ，ケース（4），EW 断面）

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－－－	－－－	－	\square	\square	－
626	770	671	499	517	523	443
602	704	595	458	486	485	437
594	636	531	416	460	464	422
562	571	465	363	414	420	396
604	543	438	346	386	429	398

（a）水平方向

Sd－D1	Sd－D2	Sd－D3	Sd－F1	Sd－F2	Sd－F3	Sd－N1
－	－	－．－	－	－	－	－
453	414	424	208	215	293	196
447	410	417	206	213	289	194
438	403	402	204	209	281	191
418	382	364	196	201	260	182
404	365	335	190	194	244	175

（b）鉛直方向

図 4－32 最大応答加速度（弾性設計用地震動 S d（ -+ ），ケース（4），EW 断面）

表 4－1（1）基準地震動 S s による地震応答解析結果に基づく接地圧
（a）NS 断面

地震動		最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	最大転倒モーメン ト $\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}\right)$	鉛直力 $\mathrm{N}\left(\times 10^{4} \mathrm{kN}\right)$
S s－D 1	＋＋	2550	1.82	2.59
	－＋	2840	1． 82	2.62
S s－D 2	＋＋	2870	1． 84	2.59
	－＋	3260	2.03	2.66
S s－D 3	＋＋	2450	1． 58	2.66
	$-+$	2290	1． 50	2.78
S s－F 1	＋＋	2250	1． 65	2.30
	$-+$	2290	1.58	2． 44
S s－F 2	＋＋	2280	1． 59	2.15
	$-+$	2380	1.63	2.26
S s－F 3	＋＋	2650	1.83	2.77
	$-+$	2860	1． 62	2.43
S s－N 1	＋＋	2120	1． 53	2.26
	$-+$	1780	1． 41	2.26

表 4－1（2）基準地震動 S s による地震応答解析結果に基づく接地圧
（b）EW 断面

地震動		最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	最大転倒モーメン $\begin{gathered} \text { ト } \\ \left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}\right) \end{gathered}$	鉛直力 $\mathrm{N}\left(\times 10^{4} \mathrm{kN}\right)$
S s－D 1	＋＋	3530	2． 14	2.55
	－＋	3290	2.12	2.65
S s－D 2	＋＋	3960	2． 44	2． 71
	－＋	4170	2． 39	2． 77
S s－D 3	＋＋	3020	1.91	2． 71
	－＋	3110	1． 94	2.76
S s－F 1	＋＋	2830	1． 69	2.28
	－＋	2770	1． 74	2． 31
S s－F 2	＋＋	2820	1.82	2.17
	－＋	2850	1． 87	2． 20
S s－F 3	＋＋	3410	2． 13	2.53
	－＋	3280	2.05	2． 43
S s－N 1	＋＋	2380	1． 62	2.30
	－＋	2300	1.64	2． 27

VI－2－2－26 排気筒基礎の耐震性についての計算書
1．概要1
2．基本方針 2
2.1 位置 2
2.2 構造概要 3
2． 3 評価方針 6
2.4 適用規格•基準等 9
3．地震応答解析による評価方法 10
4．応力解析による評価方法 11
4． 1 評価対象部位及び評価方針 11
4.2 荷重及び荷重の組合せ 13
4．2．1 荷重 13
4．2．2 荷重の組合せ 18
4．3 許容限界 19
4．4 解析モデル及び諸元 21
4．4．1 モデル化の基本方針 21
4．4．2 解析諸元 23
4． 5 評価方法 24
4．5．1 応力解析方法 24
4．5．2 断面の評価方法 26
5．評価結果 30
5.1 地震応答解析による評価結果 30
5.2 応力解析による評価結果 32

1．概要

本資料は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，排気筒基礎の地震時の構造強度及び機能維持の確認について説明するものであり，その評価は，地震応答解析及び応力解析により評価を行う。

排気筒基礎は，設計基準対象施設においては「Sクラスの施設の間接支持構造物」に，重大事故等対処施設においては「常設耐震重要重大事故防止設備及び常設重大事故緩和設備の間接支持構造物」に分類される。

以下，それぞれの分類に応じた耐震評価を示す。

2．基本方針
2.1 位置

排気筒基礎を含む排気筒の設置位置を図2－1 に示す。

図 2－1 排気筒の設置位置

2.2 構造概要

排気筒は，地上からの高さ 160.0 m であり，基部内径 3.7 m ，頂部内径 3.0 m の鋼板製筒身2本を鋼管四角形鉄塔（制震装置付）で支えた四角鉄塔支持形鋼管構造であり，第2号機排気筒と第3号機排気筒で支持構造物を共有する集合方式である。排気筒の基礎は，フーチング基礎形式の鉄筋コンクリート造である。基礎版の形状 は 38.0 m （NS）$\times 38.0 \mathrm{~m}$（EW），厚さ 5.0 m であり， 0. P．＊${ }^{*}-4.0 \mathrm{~m}$ で岩盤上に設置されてい る。筒身部を支える柱（以下「筒身柱」という。）は，平面形状 $14.0 \mathrm{~m} \times 14.0 \mathrm{~m}$ ，高さ 14． 3 m であり，鉄塔部を支える 4 本の柱（以下「鉄塔柱」という。）は，平面形状 5.0 m $\times 5.0 \mathrm{~m}$ ，高さ 14.3 m である。それぞれの柱は，断面形状 $2.5 \mathrm{~m} \times 2.5 \mathrm{~m}$ のつなぎはりでつ ながれている。これらの筒身柱，鉄塔柱，つなぎはり及び基礎版で囲まれた基礎の内側は，コンクリートで充填されている（以下「充填コンクリート」という。）。排気筒基礎の平面図を図2－2 に，断面図を図 $2-3$ 及び図 $2-4$ に示す。

注記＊：0．P．は女川原子力発電所工事用基準面であり，東京湾平均海面（T．P．） －0．74m である。

図 2－2 排気筒基礎平面図（単位：m）

図 2－3 排気筒基礎断面図（A－A 断面，NS 断面）（単位：m）
$B-B$ 断面図
$\xrightarrow{\mathrm{E}}$

図 2－4 排気筒基礎断面図（B－B 断面，EW 断面）（単位：m）

2． 3 評価方針

排気筒基礎の評価対象部位は，筒身柱，鉄塔柱，つなぎはり及び基礎版とし，設計基準対象施設及び重大事故等対処施設としての評価においては，基準地震動 S s によ る地震力に対する評価（以下「 S s 地震時に対する評価」という。）を行うこととする。 なお，排気筒の荷重は，地震時における基礎反力と風荷重が作用した時の基礎反力を排気筒基礎に作用させる。充填コンクリートは，鉄筋コンクリート部材の変形抑制の ため，埋戻土を置換えたものである。

排気筒基礎の設計基準対象施設としての評価においては，S s 地震時に対する評価 は，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」の結果を踏まえたものとす る。排気筒基礎の評価は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，地震応答解析による評価においては接地圧の評価を，応力解析による評価においては断面の評価を行うことで，排気筒基礎の地震時の構造強度及び支持機能の確認を行う。評価にあたつては，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」による地盤物性及び材料物性の不確かさを考慮する。また，重大事故等対処施設としての評価に おいては，S s 地震時に対する評価を行うこととする。ここで，排気筒基礎では，運転時，設計基準事故時及び重大事故等時の状態における荷重条件は変わらないため，評価は設計基準対象施設の評価結果に包括されることから，設計基準対象施設の評価結果を用いた重大事故等対処施設の評価を行う。表 $2-1$ に地盤物性及び材料物性の不確かさを考慮する解析ケースを，図 $2-5$ に排気筒基礎の評価フローを示す。

表 2－1 地盤物性及び材料物性の不確かさを考慮する解析ケース

解析ケース	材料物性$\begin{gathered} \text { (コンクリート) } \\ \text { (} \mathrm{E}_{0}: ~ \text { ヤング係数) } \end{gathered}$	地盤物性
		旧表土，盛土，D級岩盤 C C 級岩盤，CM級岩盤， CH 級岩盤，B級岩盤 （G：せん断弾性係数）
$\begin{gathered} \text { ケース①) } \\ \text { (基本ケース) } \end{gathered}$	設計基準強度	平均値
ケース（2）	設計基準強度	平均値 $+1 \sigma^{\circ}$
ケース③）	設計基準強度	平均値－1 σ

2.4 適用規格•基準等

適用する規格，基準等を以下に示す。

- 建築基準法（昭和 25 年 5 月 24 日法律第 201 号）
- 建築基準法施行令（昭和 25 年 11 月 16 日政令第 338 号）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1987）
- 原子力発電所耐震設計技術指針 重要度分類•許容応力編（JEAG4601••補－1984）
- 原子力発電所耐震設計技術指針（J E A G 4 6 O 1－1991 追補版）
- 日本建築学会 1999 年 鉄筋コンクリート構造計算規準•同解説－許容応力度設計法 ${ }^{-}$
- 日本建築学会 2001 年 建築基礎構造設計指針
- 日本建築学会 2005 年 原子力施設鉄筋コンクリート構造計算規準•同解説 （以下「R C－N 規準」という。）

3．地震応答解析による評価方法
地震応答解析による評価において，排気筒基礎の構造強度については，添付書類「VI －2－2－25 排気筒基礎の地震応答計算書」に基づき，地盤物性及び材料物性の不確かさを考慮した最大接地圧が許容限界を超えないことを確認する。

地震応答解析による評価における排気筒基礎の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に基づき，表 3－1 及び表 3－2 のとおり設定する。

表 3－1 地震応答解析による評価における許容限界
（設計基準対象施設としての評価）

機能設計上の 性能目標	地震力	部位	機能維持のための考え方	許容限界 （評価基準値）
構造強度を有すること	基準地震動 S s	基礎地盤	最大接地圧が地盤 の極限支持力度を超えないことを確認	極限支持力度＊ （ $11400 \mathrm{kN} / \mathrm{m}^{2}$ ）

注記＊：支持地盤（牧の浜部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力度とする。

表 3－2 地震応答解析による評価における許容限界
（重大事故等対処施設としての評価）

機能設計上の 性能目標	地震力	部位	機能維持のための考え方	許容限界 （評価基準値）
構造強度を有すること	基準地震動 S s	基礎地盤	最大接地圧が地盤 の極限支持力度を超えないことを確認	極限支持力度＊ $\left(11400 \mathrm{kN} / \mathrm{m}^{2}\right)$

注記＊：支持地盤（牧の浜部層）に発生する接地圧に対する許容限界は，添付書類「VI－2－1－3 地盤の支持性能に係る基本方針」に基づき，岩盤の極限支持力度とする。

4．応力解析による評価方法

4． 1 評価対象部位及び評価方針
排気筒基礎の応力解析による評価対象部位は筒身柱，鉄塔柱，つなぎはり及び基礎版とし，三次元 FEM モデルを用いた応力解析により評価を行う。三次元 FEM モデルを用いた応力解析にあたっては，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」 により算出された荷重の組合せを行う。応力解析による評価フローを図4－1 に示す。

S s 地震時に対する評価は，地震力と地震力以外の荷重の組合せの結果，発生する応力が，「 R C -N 規準」に基づき設定した許容限界を超えないことを確認する。

なお，断面の評価については，地盤物性及び材料物性の不確かさを考慮した断面力 に対して行うこととする。

注：［ ］内は，本資料における章番号を示す。
注記＊：地盤物性及び材料物性の不確かさについては，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」に基づき設定する。

図 4－1 応力解析による評価フロー

4．2 荷重及び荷重の組合せ

荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定し ている荷重及び荷重の組合せを用いる。

4．2．1 荷重
（1）固定荷重（G）
排気筒基礎に作用する固定荷重として次のものを考慮する。
－鉄筋コンクリート構造体（筒身柱，鉄塔柱，つなぎはり及び基礎版）の自重：
$24.0 \mathrm{kN} / \mathrm{m}^{3}$

- 充填コンクリートの自重： $23.0 \mathrm{kN} / \mathrm{m}^{3}$
- 筒身柱，鉄塔柱に作用する排気筒の自重並びに配管の重量
- 浮力： $184.4 \mathrm{kN} / \mathrm{m}^{2}$
（2）積載荷重（P ）
積載物はないため，積載荷重は考慮しない。
（3）積雪荷重（ P s ）
積雪荷重については，発電所の最寄りの気象官署である石巻特別地域気象観測所で観測された月最深積雪の最大値である 43 cm に平均的な積雪荷重を与えるた めの係数 0.35 を考慮した値を設定する。また，建築基準法施行令第 86 条第 2 項 により，積雪量 1 cm ごとに $20 \mathrm{~N} / \mathrm{m}^{2}$ の積雪荷重が作用することを考慮する。
（4）風荷重（ P_{k} ）
風荷重は，添付書類「VI－2－7－2－1 排気筒の耐震性についての計算書」に基づ き，排気筒に風荷重が作用した際に，筒身柱，鉄塔柱に作用する反力を考慮する。風荷重を表4－1に，筒身柱，鉄塔柱の配置図を図4－2に示す。

表 4－1 風荷重（ P_{k} ）（I 方向載荷＊）

荷重名称	作用位置	鉛直力	水平力			
		$\begin{gathered} \mathrm{N} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} Q_{x} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{\mathrm{Y}} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{x}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{Y}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
風荷重	筒身柱 1	0	100	100	－1100	500
	筒身柱 2	0	100	100	－1100	500
	鉄塔柱 1	4000	600	800	－200	－200
	鉄塔柱 2	1800	－300	500	－300	200
	鉄塔柱 3	－4000	600	800	－200	－200
	鉄塔柱 4	－1800	－300	500	－300	200

注記＊：I 方向載荷とIII方向載荷による反力は同値であるため，I 方向載荷を代表して記載する。

図 4－2 筒身柱，鉄塔柱の配置図
（5）地震荷重（ S s ）
a．慣性力（ K_{s} ）
地震時における基礎の慣性力は，添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」により求められた水平震度及び鉛直震度から算定する。水平震度及 び鉛直震度は，地震応答解析で発生した震度を全時刻包絡することで安全側に設定する。

許容応力度に対する発生応力度が最大となる，せん断破壊に対する断面算定時における水平震度及び鉛直震度を表4－2 及び表4－3に示す。

表 4－2 慣性力（ K_{s} ）（水平震度）（ $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ ，ケース（1）$)$

位 置	水平震度
0. P． $10.41 \sim 15.30 \mathrm{~m}$	1.16
0. P． $6.60 \sim 10.41 \mathrm{~m}$	1.05
0．P． $1.00 \sim 6.60 \mathrm{~m}$	0.92
0．P．$-4.00 \sim 1.00 \mathrm{~m}$	0.51

表 4－3 慣性力（ K_{s} ）（鉛直震度）（ $\mathrm{S} \mathrm{s}-\mathrm{D} 2(-+)$ ，ケース（1）$)$

位 置	鉛直震度
0. P． $10.41 \sim 15.30 \mathrm{~m}$	0.78
0. P． $6.60 \sim 10.41 \mathrm{~m}$	0.77
0. P． $1.00 \sim 6.60 \mathrm{~m}$	0.67
0．P．$-4.00 \sim 1.00 \mathrm{~m}$	0.61

b．地震時土圧荷重（ E_{s} ）
地震時土圧荷重は，入力地震動ごとに添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」により算定される，構造物の左右に発生した地震時土圧を全時刻包絡することで，加力側の土圧荷重を安全側に設定する。なお，支持側の土圧荷重については，保守的に考慮しない。

許容応力度に対する発生応力度が最大となる，せん断破壊に対する断面算定時における地震時土圧による荷重分布図を図4－3に示す。

図 $4-3$ 地震時土圧による荷重分布（S s－D $2(-+)$ ，ケース（1）
c．地震時の上部工反力 $\left(\mathrm{U}_{\mathrm{s}}\right)$
地震時における上部工の反力は，添付書類「VI－2－7－2－1 排気筒の耐震性に ついての計算書」に基づき，排気筒に地震荷重が作用した際に，筒身柱，鉄塔柱に作用する反力を考慮する。上部工反力は，すべてのS s 地震動と不確かさ を考慮した反力を安全側に包絡したものとする。

地震時の上部工反力を表4－4に，筒身柱，鉄塔柱の配置図を図 $4-2$ に示す。

表 4－4 地震時上部工反力（ U_{s} ）（I 方向載荷＊）

荷重名称	作用位置	鉛直力	水平力			
		$\begin{gathered} \mathrm{N} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{\mathrm{x}} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{Q}_{\mathrm{Y}} \\ (\mathrm{kN}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{X}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$	$\begin{gathered} \mathrm{M}_{\mathrm{Y}} \\ (\mathrm{kN} \cdot \mathrm{~m}) \end{gathered}$
地震時上 部工反力	筒身柱 1	4500	100	400	－7600	800
	筒身柱 2	－4500	100	400	－7600	800
	鉄塔柱 1	10100	1400	3000	－2400	－500
	鉄塔柱 2	10100	－1400	3000	－2400	500
	鉄塔柱 3	－10100	1400	3000	－2400	-500
	鉄塔柱 4	－10100	－1400	3000	－2400	500

注記＊：I 方向載荷とIII方向載荷による反力は同値であるため，I 方向載荷を代表して記載する。

4．2．2 荷重の組合せ
荷重の組合せは表4－5による。
表 4－5 荷重の組合せ

外力の状態	荷重の組合せ
S s 地震時	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+\mathrm{S} \mathrm{s}$

G	：固定荷重
$\mathrm{P}_{\text {s }}$	：積雪荷重
P_{k}	：風荷重
S s	：基準地震動 S s による地震力（ $\mathrm{S} \mathrm{s}=\mathrm{K}_{\mathrm{s}}+\mathrm{E}_{\mathrm{s}}+\mathrm{U} \mathrm{s}$ ）
K s	：基準地震動 S s による慣性力
Es	：基準地震動 S s による地震時土圧荷重
U s	：基準地震動 S s による地震時の上部工反力

4． 3 許容限界

応力解析による評価における排気筒基礎の許容限界は，添付書類「VI－2－1－9 機能維持の基本方針」に記載の構造強度上の制限及び機能維持の方針に基づき，表4－6及 び表 4－7 のとおり設定する。

また，コンクリート及び鉄筋の許容応力度を表4－8及び表4－9に示す。

表 4－6 応力解析による評価における許容限界（設計基準対象施設としての評価）

要求 機能	機能設計上 の性能目標	地震力	部位	機能維持のため の考え方	許容限界 （評価基準値）
－	構造強度を有すること	基準地震動 S s	筒身柱， 鉄塔柱， つなぎは り，基礎版	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊
支持 機能	筒身及び機器•配管系等 の設備を支持する機能 を損なわな いこと	基準地震動 S s	筒身柱， 鉄塔柱， つなぎは り，基礎版	部材に生じる応力 が支持機能を維持 するための許容限界を超えないこと を確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊

注記＊：許容限界は，「 R C－N 規準」に基づき，終局耐力に対して妥当な裕度を有する短期許容応力度を用いる。

表 4－7 応力解析による評価における許容限界（重大事故等対処施設としての評価）

要求 機能	機能設計上 の性能目標	地震力	部位	機能維持のため の考え方	許容限界 （評価基準値）
－	構造強度を有すること	基準地震動 S s	筒身柱， 鉄塔柱， つなぎは り，基礎版	部材に生じる応力 が構造強度を確保 するための許容限界を超えないこと を確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊
支持 機能	筒身及び機器•配管系等 の設備を支持する機能 を損なわな いこと	基準地震動 S s	筒身柱， 鉄塔柱， つなぎは り，基礎版	部材に生じる応力 が支持機能を維持 するための許容限界を超えないこと を確認	終局耐力に対し て妥当な安全裕度を有する許容限界＊

注記＊：許容限界は，「 R C－N 規準」に基づき，終局耐力に対して妥当な裕度を有する短期許容応力度を用いる。

表 4－8 コンクリートの許容応力度
（単位： $\mathrm{N} / \mathrm{mm}^{2}$ ）

外力の状態	設計基準強度 $\mathrm{F}_{\mathrm{c}}=20.5$			
	長 期		短 期	
	圧縮	せん断	圧縮	せん断
S s 地震時	6.8	0.68	13.6	1.02

表 4－9 鉄筋の許容応力度
（単位： $\mathrm{N} / \mathrm{mm}^{2}$ ）

外力の状態	鉄筋径	長 期		短 期	
		引張及び 圧縮	せん断補強	引張及び 圧縮	せん断補強
		SD345	SD345	SD345	SD345
S s 地震時	D25以下	215	195	345	345
	D29以上	195			

4．4 解析モデル及び諸元
4．4．1 モデル化の基本方針
（1）基本方針
応力解析は，三次元 FEMモデルを用いた応力解析を実施する。解析には，解析 コード「SLAPVer6．65」を用いる。また，解析コードの検証及び妥当性確認等の概要については，添付書類「VI－5 計算機プログラム（解析コード）の概要」に示す。

応力解析にあたつて，排気筒基礎の各部位（筒身柱，鉄塔柱，つなぎはり及び基礎版）を線形ソリッド要素にてモデル化しっこれらの構造部材を耐震評価する。 なお，応力の伝達を考慮するため，充填コンクリートについても線形ソリッド要素にてモデル化する。

解析モデルを図4－4及び図4－5に示す。
（2）境界条件
三次元 FEM モデルの基礎版底面に，水平方向及び鉛直方向の地盤ばねを設ける。三次元 FEM モデルの水平方向及び鉛直方向の地盤ばねについては，「JEAG4 601－1991追補版」に記載の振動アドミッタンス理論に基づいて評価する。

図 4－5 解析モデル図（鳥瞰図（充填コンクリート非表示））

4．4．2 解析諸元

使用材料の物性値を表 4－10及び表 4－11に示す。

表 4－10 コンクリートの物性値

部 位	設計基準強度 $\mathrm{F}_{\mathrm{c}}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ヤング係数 $\mathrm{E}\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	ポアソン比 v
筒身柱 鉄塔柱 つなぎはり な基礎版			
充填 コンクリート	20.5	2.15×10^{4}	0.2

表 4－11 鉄筋の物性値

部 位	鉄筋の種類	ヤング係数 $\left.\mathrm{E} \mathrm{(N/mm}^{2}\right)$
筒身柱		
鉄塔柱 つなぎはり 基礎版	SD345相当	2.05×10^{5}

4．5 評価方法

4．5．1 応力解析方法
排気筒基礎について，S s 地震時に対して三次元 FEMモデルを用いた線形解析 を実施する。
（1）荷重ケース
S s 地震時の応力は，次の荷重ケースによる応力を組み合わせて求める。
G ：固定荷重
Ps：積雪荷重
P_{k} ：風荷重
S sh（Ns，＋＋）：基準地震動 S s による入力地震動を NS 断面＊${ }^{*}$ への正位相（ ++ ）＊2で加振した際に生じる水平方向の地震力

S SH（EW，＋＋）：基準地震動 S s による入力地震動を EW 断面＊${ }^{*}$ への正位相（ ++ ）＊2で加振した際に生じる水平方向の地震力

S s v（NS，＋＋）：基準地震動 S s による入力地震動を NS 断面＊${ }^{*}$ への正位相 $(++) * 2$ で加振した際に生じる鉛直方向 ${ }^{* 3}$ の地震力

S S V（EW，＋＋）：基準地震動 S s による入力地震動を EW 断面＊${ }^{*}$ への正位相 $(++) * 2$ で加振した際に生じる鉛直方向 ${ }^{* 3}$ の地震力

S SH（NS，－＋）：基準地震動 S s による入力地震動を NS 断面＊${ }^{*}$ への逆位相 $(-+) * 2$ で加振した際に生じる水平方向の地震力

S SH（EW，－＋）：基準地震動 S s による入力地震動を EW 断面＊${ }^{1}$ への逆位相 $(-+) * 2$ で加振した際に生じる水平方向の地震力

S S v（Ns，－＋）：基準地震動 S s による入力地震動を NS 断面＊ 1 への逆位相 $(-+) * 2$ で加振した際に生じる鉛直方向 ${ }^{* 3}$ の地震力

S S V（EW，－＋）：基準地震動 S s による入力地震動を EW 断面＊${ }^{2}$ への逆位相 $(-+) * 2$ で加振した際に生じる鉛直方向 ${ }^{* 3}$ の地震力

注記＊1：添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」に基づく，排気筒基礎の地震応答解析における NS 断面，EW 断面を表す。 ＊2：添付書類「VI－2－2－25 排気筒基礎の地震応答計算書」に基づく，排気筒基礎の地震応答解析における水平方向の位相反転を表す。地震動の位相について，＋＋の左側は水平動，右側は鉛直動を表 し，「一」は位相を反転させたケースを示す。
＊ 3 ：鉛直方向は上向きの加力を正として記載している。
（2）荷重の組合せケース
荷重の組合せケースを表4－12に示す。
荷重及び荷重の組合せは，添付書類「VI－2－1－9 機能維持の基本方針」にて設定している荷重に対し，組合せ係数法（組合せ係数は1．0と0．4）を用いる。

表 4－12 荷重の組合せケース

外力の状態	$\begin{gathered} \text { ケース } \\ \text { No. } \end{gathered}$	荷重の組合せ
S s 地震時	1－1	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S} \mathrm{~s}_{\mathrm{H}(\mathrm{NS},++)}+0.4 \mathrm{~S}_{\text {s v }}^{(\mathrm{NS},++)}$
	1－2	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S} \mathrm{~s}_{\mathrm{H}(\mathrm{NS},++)}-0.4 \mathrm{~S} \mathrm{~s} \mathrm{v}(\mathrm{NS},++)$
	1－3	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\text {s }}(\mathrm{NS},++)+1.0 \mathrm{~S} \mathrm{~S}_{\text {v }}(\mathrm{NS},++)$
	1－4	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{NS},++)}-1.0 \mathrm{~S} \mathrm{~S}_{\text {v }}(\mathrm{NS},++)$
	1－5	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{EW},++)}+0.4 \mathrm{~S}_{\text {s }}^{\text {V }(\mathrm{EW},++)}$
	1－6	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S} \mathrm{~s}_{\mathrm{H}(\mathrm{EW},++)}-0.4 \mathrm{~S} \mathrm{~s} \mathrm{v}(\mathrm{EW},++)$
	1－7	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{EW},++)}+1.0 \mathrm{~S} \mathrm{~S}_{\mathrm{V}(\mathrm{EW},++)}$
	1－8	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\text {s }}^{\text {H（EW，}}$（＋）$-1.0 \mathrm{~S}_{\text {S }}^{\text {v（EW，}}$（＋）
	2－1	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{NS},-+)}+0.4 \mathrm{~S}_{\text {s }}^{\text {v }}$（NS，－＋）
	2－2	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S} \mathrm{~s}_{\mathrm{H}(\mathrm{NS},-+)}-0.4 \mathrm{~S}_{\text {s v }}^{(\mathrm{NS},-+)}$
	2－3	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{NS},-+)}+1.0 \mathrm{~S}_{\text {s }}^{\text {v }(\mathrm{NS},-+)}$
	2－4	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+0.4 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{NS},-+)}-1.0 \mathrm{~S}_{\text {s }}(\mathrm{NS},-+)$
	2－5	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S}_{\mathrm{s}}^{\mathrm{H}(\mathrm{EW},-+)}+0.4 \mathrm{~S}_{\text {S }}^{\text {v（EW，}}$（＋）
	2－6	$\mathrm{G}+\mathrm{P}_{\mathrm{s}}+\mathrm{P}_{\mathrm{k}}+1.0 \mathrm{~S} \mathrm{~s}_{\mathrm{H}(\mathrm{EW},-+)}-0.4 \mathrm{~S}_{\text {s v }}(\mathrm{EW},-+)$
	2－7	
	2－8	

（3）荷重の入力方法
a．地震荷重
排気筒基礎に作用する慣性力については，FEM モデルの各要素の質量に応じ て分配し，節点荷重として入力する。

排気筒基礎側面に作用する地震時土圧荷重については，土圧の作用面に対し，節点荷重として入力する。

排気筒から排気筒基礎に作用する地震力については，筒身脚部，主柱材脚部 からの曲げモーメント，軸力及びせん断力を節点荷重として入力する。
b．地震荷重以外の荷重
地震荷重以外の固定荷重，積雪荷重，風荷重については，FEM モデルの各節点又は各要素に，集中荷重又は分布荷重として入力する。

4．5．2 断面の評価方法

排気筒基礎について，軸力及び曲げモーメント並びに面外せん断力が，各許容値を超えないことを確認する。
（1）軸力及び曲げモーメントに対する断面の評価方法
軸力及び曲げモーメントによるコンクリート及び鉄筋の発生応力度が表 4－8及び表 4－9に示す許容応力度を超えないことを確認する。
（2）面外せん断力に対する断面の評価方法
筒身柱，鉄塔柱及びつなぎはりにおける断面の評価は「R C 規準」の柱及び梁 の評価式に基づき評価を行う。基礎版における断面の評価は「R C -N 規準」の基礎スラブの評価に基づき，面材規定を用いて評価を行う。

面外せん断力が，次式を基に算定した許容面外せん断力を超えないことを確認 する。
a．つなぎはりの評価
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j}\left\{\alpha \cdot \mathrm{f}_{\mathrm{s}}+0.5_{\mathrm{w}} \mathrm{f}_{\mathrm{t}}\left(\mathrm{p} \mathrm{w}^{-}-0.002\right)\right\}$
ここで，
Q_{A} ：許容面外せん断力（N）
b：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
α ：許容せん断力の割増し係数
（2 を超える場合は 2 ， 1 未満の場合は 1 とする。また，引張軸力が $2 \mathrm{~N} / \mathrm{mm}^{2}$ を超える場合は 1 とする。）
$\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{d})+1}$

M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Q ：せん断力（ N ）
d ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度で，表 4－8に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
wf t ：せん断補強筋の短期許容引張応力度で，表 4－9 に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
p w：せん断補強筋比で，次式による。

$$
\mathrm{p}_{\mathrm{w}}=\frac{\mathrm{a}_{\mathrm{w}}}{\mathrm{~b}_{\mathrm{x}}}
$$

a w ：せん断補強筋の断面積（ mm^{2} ）
bx ：せん断補強筋の間隔（mm）
b．筒身柱，鉄塔柱の評価
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j}\left\{\mathrm{f}_{\mathrm{s}}+0.5 \mathrm{w}_{\mathrm{w}} \mathrm{t}_{\mathrm{w}}(\mathrm{p}-0.002)\right\}$
ここで，
Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値 （mm）
f s ：コンクリートの短期許容せん断応力度で，表4－8に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
w f t ：せん断補強筋の短期許容引張応力度で，表 4－9 に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
p w ：せん断補強筋比で，次式による。

$$
\mathrm{p}_{\mathrm{w}}=\frac{\mathrm{a}_{\mathrm{w}}}{\mathrm{~b}_{\mathrm{x}}}
$$

a w ：せん断補強筋の断面積（ mm^{2} ）
bx ：せん断補強筋の間隔（mm）
c．基礎版の評価
$\mathrm{Q}_{\mathrm{A}}=\mathrm{b} \cdot \mathrm{j}\left\{\alpha \cdot \mathrm{f}_{\mathrm{s}}+0.5 \mathrm{w}_{\mathrm{f}} \mathrm{t}_{\mathrm{t}}\left(\mathrm{p} \mathrm{w}^{-}-0.002\right)\right\}$
ここで，
Q_{A} ：許容面外せん断力（N）
b ：断面の幅（mm）
j：断面の応力中心間距離で，断面の有効せいの $7 / 8$ 倍の値（mm）
$\alpha \quad: ~$ 許容せん断力の割増し係数
（2を超える場合は 2 ， 1 未満の場合は 1 とする。また，引張軸力が $2 \mathrm{~N} / \mathrm{mm}^{2}$ を超える場合は1とする。）

$$
\alpha=\frac{4}{\mathrm{M} /(\mathrm{Q} \cdot \mathrm{~d})+1}
$$

M ：曲げモーメント（ $\mathrm{N} \cdot \mathrm{mm}$ ）
Q ：せん断力（ N ）
$\mathrm{d} \quad$ ：断面の有効せい（mm）
f s ：コンクリートの短期許容せん断応力度で，表 4－8に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
$\mathrm{w}_{\mathrm{f}}^{\mathrm{f}} \mathrm{t}$ ：せん断補強筋の短期許容引張応力度で，表 4－9 に示す値 （ $\mathrm{N} / \mathrm{mm}^{2}$ ）
p w：せん断補強筋比で，次式による。（ 0.002 以上とする。＊）

$$
\mathrm{p}_{\mathrm{w}}=\frac{\mathrm{a}_{\mathrm{w}}}{\mathrm{~b}_{\mathrm{x}}}
$$

a w ：せん断補強筋の断面積（ mm^{2} ）
b x ：せん断補強筋の間隔（mm）
注記＊：せん断補強筋がない領域については，第2項を 0 とする。

5．評価結果

5.1 地震応答解析による評価結果

地震時の最大接地圧が，基礎地盤の許容限界を超えないことを確認する。二次元有限要素法における底面地盤ばね反力から算定したS s 地震時の最大接地圧を表 5－1 に示す。なお，参考として鉛直力及び転倒モーメントもあわせて示す。

地盤物性及び材料物性の不確かさを考慮した地震時の最大接地圧が $4170 \mathrm{kN} / \mathrm{m}^{2}$（ S $\mathrm{s}-\mathrm{D} 2(-+)$ ，EW 断面）であることから，地盤の極限支持力度（ $11400 \mathrm{kN} / \mathrm{m}^{2}$ ）を超 えないことを確認した。

表 5－1 $\quad \mathrm{S} \mathrm{s}$ 地震時の最大接地圧

	NS 断面	EW 断面
検討ケース	$\begin{gathered} \mathrm{Ss}-\mathrm{D} 2(-+), \\ \text { ケース (1) } \end{gathered}$	$\begin{gathered} \mathrm{S} \mathrm{~s}-\mathrm{D} 2(-+), \\ \text { ケース (1) } \end{gathered}$
$\begin{gathered} \text { 鉛直力 } \\ \mathrm{N}\left(\times 10^{4} \mathrm{kN}\right) \end{gathered}$	2.66	2． 77
$\begin{aligned} & \text { 転倒モーメント } \\ & \mathrm{M}\left(\times 10^{5} \mathrm{kN} \cdot \mathrm{~m}\right) \end{aligned}$	2.03	2． 39
最大接地圧 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	3260	4170
極限支持力度 $\left(\mathrm{kN} / \mathrm{m}^{2}\right)$	11400	11400

5.2 応力解析による評価結果

「4．5．2 断面の評価方法」に基づいた断面の評価結果を以下に示す。また，三次元 FEMモデルの概略配筋図を図5－1に示す。

鉄筋コンクリートの軸力及び曲げモーメント並びに面外せん断力に対する評価にお いて，許容応力度に対する発生応力度の割合（応力度比）が各部材で最大となる評価結果を表5－2～表5－4に示す。また，最大となる評価結果の部位を図5－2～図5－ 5 に示す。

S s 地震時において，鉄筋コンクリートの軸力及び曲げモーメント並びに面外せん断力に対する発生応力度が，各許容応力度を超えないことを確認した。

（a）概略配筋図（平面図）

（c）概略配筋図（ $\mathrm{B}-\mathrm{B}$ 断面）

（e）概略配筋図（D－D 断面）

（b）概略配筋図（ $\mathrm{A}-\mathrm{A}$ 断面）

（d）概略配筋図（C－C 断面）

（f）概略配筋図（E－E 断面）

図 5－1（1）排気筒基礎概略配筋図

（g）概略配筋図（ $\mathrm{F}-\mathrm{F}$ 断面）
（h）概略配筋図（ $G-G$ 断面）

図 5－1（2）排気筒基礎概略配筋図

図 5－1（3）排気筒基礎概略配筋図

図 5－2 評価位置図

（a）軸力十曲げモーメント

（b）面外せん断力
図 5－3 要素位置（筒身柱及び鉄塔柱）
注：赤字は要素位置番号を示す。

（a）軸力＋曲げモーメント

（b）面外せん断力
図 5－4 要素位置（つなぎはり）
注：赤字は要素位置番号を示す。

表5－2 S s 地震時における曲げ・軸力系の破壊に対する評価結果（コンクリート）

評価位置＊${ }^{*}$		要素 位置	荷重の 組合せ ケース	解析ケース	地震動	$\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ \mathrm{M} \mathrm{z}^{* 2} \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ \text { M y *2 } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力＊4 $\begin{gathered} \mathrm{N} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	発生応力度 $\sigma^{\prime}{ }^{c}$ $\left(\mathrm{~N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 σ^{\prime} ca （ $\mathrm{N} / \mathrm{mm}^{2}$ ）	応力度比 $\sigma^{\prime} \quad c / \sigma^{\prime} \quad \mathrm{ca}$
筒身柱	25	1	1－4	ケース（1）	S s－F 3	8739	27462	89237	0.8	13.6	0.06
鉄塔柱	23	1	2－6	ケース（2）	S s－D 2	9044	2923	37037	1.8	13.6	0.13
$\begin{gathered} \text { つなぎ } \\ \text { はり } \end{gathered}$	34	1	1－5	ケース（1）	S s－D 2	715	665	6681	1.4	13.6	0.10
基礎版	11	621	1－5	ケース（1）	S s－D 2	$-8833 * 3$	－	11540	4.0	13.6	0． 30

注記 $* 1$ ：評価位置は図5－2に示す。
古
＊2：Mz，Myを用いて中立軸を算定し，評価を行っている。
＊ 3 ：上縁圧縮を＋とする。
＊4：圧縮を＋とする。

表5－3 S s 地震時における曲げ・軸力系の破壊に対する評価結果（鉄筋）

評価位置＊${ }^{*}$		要素 位置	荷重の 組合せ ケース	解析ケース	地震動	$\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ \mathrm{M} \mathrm{z}^{2} * 2 \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	$\begin{gathered} \text { 曲げモー } \\ \text { メント } \\ \text { M y *2 } \\ (\mathrm{kN} \cdot \mathrm{~m} / \mathrm{m}) \end{gathered}$	軸力＊4 N $(\mathrm{kN} / \mathrm{m})$	発生応力度 $\left(\mathrm{N} / \mathrm{mm}^{2}\right)$	短期許容 応力度 $\begin{gathered} \sigma \mathrm{s} \text { a } \\ \left(\mathrm{N} / \mathrm{mm}^{2}\right) \end{gathered}$	応力度比 $\sigma \mathrm{s} / \sigma_{\mathrm{s}}$
筒身柱	25	6	1－5	ケース①	S s－D 2	145705	5914	15191	16	345	0.05
鉄塔柱	21	11	2－1	ケース①	S s－D 2	2898	5511	－10451	128	345	0.38
$\begin{gathered} \text { つなぎ } \\ \text { はり } \end{gathered}$	32	23	1－5	ケース①	S s－D 2	－1032	454	－4676	83	345	0． 24
基礎版	11	644	1－2	ケース（1）	S s－D 2	$-2152^{* 3}$	－	518	42	345	0.12

注記 $~$ 1：評価位置は図5－2に示す。
$\stackrel{\rightharpoonup}{\bullet}$
＊2：Mz，Myを用いて中立軸を算定し，評価を行っている。
＊ 3 ：上縁圧縮を＋とする。
＊4：圧縮を＋とする。
表5－4 S s 地震時におけるせん断破壊に対する評価結果

評価位置＊		要素 位置	荷重の 組合せ ケース	解析ケース	地震動	発生 せん断力 $\begin{gathered} \mathrm{V} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	短期許容 せん断力 $\begin{gathered} \mathrm{V}_{\mathrm{a}} \\ (\mathrm{kN} / \mathrm{m}) \end{gathered}$	応力度比 $\mathrm{V} / \mathrm{V}_{\mathrm{a}}$
筒身柱	25	1	2－6	ケース（1）	S s－D 2	102574	150768	0.69
鉄塔柱	24	1	2－5	ケース（2）	S s－D 2	12784	21511	0.60
つなぎはり	35	5	1－5	ケース①	S s－D 2	2346	9819	0． 24
基礎版	11	894	1－5	ケース（1）	S s－D 2	5508	8520	0.65

注記 $*$ ：評価位置は図5－2に示す。

