VI－1－1－1－1 発電用原子炉設置変更許可申請書「本文（五号）」との整合性
頁
1．概要 1
2．基本方針 1
3．記載の基本事項 1
4．発電用原子炉の設置の許可との整合性 2
五 発電用原子炉及びその附属施設の位置，構造及び設備
イ 発電用原子炉施設の位置
（1）敷地の面積及び形状 イ－1
（2）敷地内における主要な発電用原子炉施設の位置 イ－8
ロ 発電用原子炉施設の一般構造
（1）耐震構造 ロ－1
（i）設計基準対象施設の耐震設計
（ii）重大事故等対処施設の耐震設計
（2）耐津波構造 ロ－63
（i）設計基準対象施設の耐津波設計（ii）重大事故等対処施設の耐津波設計
（3）その他の主要な構造 ロ－87
（i）a．設計基準対象施設
b．重大事故等対処施設

原子炉本体の構造及び設備

（1）発電用原子炉の炉心 八－1
（ i ）構造（ii）燃料体の最大挿入量（iii）主要な核的制限値（iv）主要な熱的制限値
（2）燃料体 八－10
（i）燃料材の種類
（ii）燃料被覆材の種類
（iii）燃料要素の構造
（iv）燃料集合体の構造
（ v ）最高燃焼度
（3）減速材及び反射材の種類 八－14
（4）原子炉容器 八－14
（i）構造（ii）最高使用圧力及び最高使用温度
（5）放射性遮蔽体の構造 八－23
（6）その他の主要な事項 八－23
ニ 核燃料物質の取扱施設及び貯蔵施設の構造及び設備
（1）核燃料物質取扱設備の構造 $=-1$
（2）核燃料物質貯蔵設備の構造及び貯蔵能力 $=-4$
（i）新燃料貯蔵庫
（ ii）使用済燃料貯蔵設備
（3）核燃料物質貯蔵用冷却設備の構造及び冷却能力 $=-12$
（i）燃料プール冷却浄化系
（ii）使用済燃料プールの冷却等のための設備

ホ 原子炉冷却系統施設の構造及び設備

（1）一次冷却材設備 木－1（i）冷却材の種類（ii）主要な機器及び管の個数及び構造（iii）泠却材の温度及び圧力
（2）二次冷却設備 木－29
（3）非常用冷却設備 木－29（i）泠却材の種類（ii）主要な機器及び管の個数及び構造
a．非常用炉心泠却系
b．重大事故等対処設備
（4）その他の主要な事項 木－88
（i）残留熱除去系
（ii）原子炉隔離時冷却系
（iii）原子炉冷却材浄化系
（iv）原子炉補機冷却系
（v）最終ヒートシンクへ熱を輸送するための設備
（vi）重大事故等の収束に必要となる水の供給設備

へ 計測制御系統施設の構造及び設備

（1）計装 $\wedge-1$
（i）核計装の種類
（ii）その他の主要な計装の種類
（2）安全保護回路
（i）原子炉停止回路の種類
（ii）その他の主要な安全保護回路の種類
（3）制御設備
（i）制御材の個数及び構造
（ii）制御材駆動設備の個数及び構造
（iii）反応度制御能力
（4）非常用制御設備 ．．．${ }^{\text {．}}$－ 35
（i）制御材の個数及び構造
（ii）主要な機器の個数及び構造
（iii）反応度制御能力
（5）その他の主要な事項
（i）制御棒引抜阻止回路
（ii）警報回路
（iii）制御棒価値ミニマイザ
（iv）原子炉再循環流量制御系
（ v ）圧力制御装置
（vi）中央制御室
（vii）原子炉給水制御系
（viii）選択制御棒挿入機構
（ix）原子炉冷却材再循環ポンプトリップ機能
（x）計装用圧縮空気系
（ x i ）所内用圧縮空気系
（ x ii）緊急停止失敗時に発電用原子炉を未臨界にするための設備
（ x iii）原子炉冷却材圧力バウンダリを減圧するための設備

ト 放射性廃棄物の廃棄施設の構造及び設備
（1）気体廃棄物の廃棄施設 ト－1
（ i ）構造
（ii）廃棄物の処理能力
（iii）排気口の位置
（2）液体廃棄物の廃棄設備 ト－2
（i）構造
（ii）廃棄物の処理能力
（iii）排水口の位置
（3）固体廃棄物の廃棄設備 ト－4
（i）構造
（ii）廃棄物の処理能力
チ 放射線管理施設の構造及び設備
（1）屋内管理用の主要な設備の種類 チ－1
（i）出入管理関係設備（1号及び 2 号炉共用，一部既設）
（ii）試料分析関係設備（1号及び 2 号炉共用，一部既設）
（iii）放射線監視設備
（iv）個人管理用測定設備及び測定機器（1 号及び 2 号炉共用，一部既設）
（ v ）遮蔽設備
（vi）換気空調設備
（2）屋外管理用の主要な設備の種類 ．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．．チ－40
リ 原子炉格納施設の構造及び設備
（1）原子炉格納容器の構造 リー1
（2）原子炉格納容器の設計圧力及び設計温度並びに漏えい率 リ－22
（3）非常用格納容器保護設備の構造 リ－24
（i）設計基準対象施設（ii）重大事故等対処設備
（4）その他の主要な事項 リー138
（i ）原子炉建屋原子炉棟
（ii）非常用ガス処理系
（iii）水素爆発による原子炉建屋等の損傷を防止するための設備

ヌ その他発電用原子炉の附属施設の構造及び設備

（1）常用電源設備の構造 又 -1
（i）発電機
（ii）外部電源系
（iii）変圧器
（2）非常用電源設備の構造 ．．ヌ－5
（i ）外部電源系
（ii）非常用ディーゼル発電機
（iii）蓄電池
（iv）代替電源設備
（3）その他の主要な事項 ．．．又－52
（i）火災防護設備
（ii）浸水防護設備
（iii）補助ボイラー（1号及び2号炉共用，既設）
（iv）補機駆動用燃料設備
（ v ）非常用取水設備
（vi）緊急時対策所
（vii）通信連絡設備
（viii）復水貯蔵タンク

1．概要

本資料は，「核原料物質，核燃料物質及び原子炉の規制に関する法律」（以下「法」という。）第43条の3の8第1項の許可を受けたところによる設計及び工事の計画であることが，法第43条の3 の9第3項第1号で認可基準として規定されており，当該基準に適合することを説明するものであ る。

2．基本方針
設計及び工事の計画が女川原子力発電所発電用原子炉設置変更許可申請書（以下「設置変更許可申請書」という。）の基本方針に従った詳細設計であることを，設置変更許可申請書との整合性により示す。

設置変更許可申請書との整合性は，設置変更許可申請書「本文（五号）」（以下「本文（五号）」 という。）と設計及び工事の計画のうち「基本設計方針」及び「機器等の仕様に関する記載事項」 （以下「要目表」という。）について示すとともに，設置変更許可申請書「本文（十号）」（以下「本文（十号）」という。）に記載する解析条件についても整合性を示す。

また，設置変更許可申請書「添付書類八」（以下「添付書類八」という。）のうち本文（五号） に係る設備設計を記載している箇所については，本文（五号）の関連情報として記載する。 なお，設置変更許可申請書の基本方針に記載がなく，設計及び工事の計画において詳細設計を行う場合は，設置変更許可申請書に抵触するものでないため，本資料には記載しない。

3．記載の基本事項

（1）説明書の構成は比較表形式とし，左欄から「設置変更許可申請書（本文（五号））」，「設置変更許可申請書（添付書類八）該当事項」，「設計及び工事の計画 該当事項」，「整合性」及び「備考」を記載する。
（2）説明書の記載順は，本文（五号）に記載する順とする。 なお，本文（十号）については，「設置変更許可申請書（本文（五号））」内の該当箇所に挿入する。
（3）本文（五号）と設計及び工事の計画の記載が同等の箇所には，実線のアンダーラインで明示 する。記載等が異なる場合には破線のアンダーラインを引くとともに，設計及び工事の計画が本文（五号）と整合していることを明示する。
（4）本文（十号）との整合性に関する補足説明は一重枠囲みにより記載する。
本文（五号）との整合性に関する補足説明は原則として「整合性」欄に記載するが，欄内に記載しきれないものについては別途，二重枠囲みにより記載する。
（5）添付書類八については，上記（3）において設計及び工事の計画にアンダーラインを引いた箇所について，同等の記載箇所には実線，記載が異なる箇所には破線のアンダーラインを引いて明示する。

4．発電用原子炉の設置の許可との整合性

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
五 発電用原子炉及びその附属施設の位置，構造及び設備 イ 発電用原子炬施設の位置 （1）敷地の面積及び形状 発電用原子炬施設を設置する敷地は，宫城県牡鹿半島の ほぼ中央東部に位置し，北東側は太平洋に面しておりっ，三方を山に柬まれた山地と狭小な平地からなっている。 僌地内の地質は，中生界ジュラ系及びそれを不整合で覆 う第四系からなる。 僌地の形状は海岸線に直径を持つほぼ半円形であり，敷地全体の底さは約173 万 m^{2} である。 敷地の整地面は， 0. P．+14.8 m とする。ただし， 0. P．は女川原子力発電所工事用基準面であり，東京湾平均海面 （T．P．）－0．74mである。．．． 地震の発生によって生じるおそれがあるその安全機能 の喪失に起因する放射線による公衆への影響の程度が特 に大きい施設（以下「耐震重要施設」という。）は，その供用中に大きな影響を及ぼすおそれがある地震動（以下「基準地震動 S s 」という。）による地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤 に設置する。	1．4．1 設計基準対象施設の耐震設計 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （3）建物•構築物については，，耐震重要度分類の各クラ スに応じて算定する地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤に設置する。	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 1．地盤等 1.1 地盤 設計基準対象施設のらち，地震の発生によって生じるお それがあるその安全機能の喪失に起因する放射線による公衆への影響の程度が特に大きい施設（以下「耐震重要施設」という。）の建物•構築物，津波防護機能を有する施設（以下「津波防護施設」という。），浸水防止機能を有す る設備（以下「浸水防止設備」という。）及び敷地におけ る津波監視機能を有する設備（以下「津波監視設備」とい ら。）並びに浸水防止設備又は津波監視設備が設置された建物•構築物について，若しくは，重大事故等対処施設の らち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。）については，自重や運転時 の荷重等に加え，その供用中に大きな影響を及ぼすおそれ がある地震動（設置（変更）許可を受けた基準地震動 S s （以下「基準地震動 S s 」という。））による地震力が作用	設置変更許可申請書（本文（五号））イ項におい て，設計及び工事の計画 の内容は，以下のとおり整合している。 設置変更許可申請書（本文（五号））において許可を受けた「敷地の面積及び形状」は，本工事計画の対象外である。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，上記に加え，基準地震動 S s による地震力が作用 することによって弱面上のずれが発生しないイ（1）－（1）と を含め，基準地震憅S sによる地震力に対する支持性能を有する地盤に設置する。 耐震重要施設以外の設計基準対象施設については，耐震重要度分類の各クラスに応じて算定する地震力が作用し た場合においても，接地圧に対する十分な支持力を有する地盤に設置する。 耐震重要施設は，地震発生に伴う地殻変動によって生じ る支持地盤の傾斜及び撓み並びに地震発生に伴ら建物•構築物間の不等沈下，液状化及び揺すり込み沈下等の周辺地盤の変状により，その安全機能が損なわれるおそれがない	なお，建物•構築物とは，建物，構築物及び土木構造物 （屋外重要土木構造物及びその他の土木構造物）の総称と する。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系の間接支持機能又は非常時における海水の通水機能を求められる土木構造物をいう。 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （3）建物•構築物については，耐震重要度分類の各クラ スに応じて算定する地震力が作用した場合においても，接地圧に対する十分な支持力を有する地盤に設置する。 ＜中略＞	した場合においても，接地圧に対する十分な支持力を有す る地盤に設置する。 また，上記に加え，基準地震動 S s による地震力が作用す ることによって弱面上のずれが発生しない（1）－（1）地艦と して，設置（変更）許可を受けた地盤に設置する。設置（変更）許可を受けた地盤のうち改良地盤については，設置（変更）許可後の施工を含むことを踏まえ，所定の物性値が確保されていることを施工時の品質管理で確認する。 ここで，建物•構築物とは，建物，構築物及び土木構造物（屋外重要土木構造物及びその他の土木構造物）の総称 とする。 また，屋外重要土木構造物とは，耐震安全上重要な機器•配管系及び設備の間接支持機能又は非常時における海水の通水機能を求められる土木構造物をいう。 設計基準対象施設のうち，而震重要施設以外の建物•構築物については，自重や運転時の荷重等に加え，地震によ り発生するおそれがある安全機能の喪失（地震に伴って発生するおそれがある津波及び周辺斜面の崩壊等による安全機能の喪失を含む。）及びそれに続く放射線による公衆 への影響を防止する観点から，各施設の安全機能が喪失し た場合の影響の相対的な程度（以下「耐震重要度」という。） に応じた，Sクラス，Bクラス又はCクラスの分類（以下「耐震重要度分類」という。）の各クラスに応じて算定す る地震力が作用した場合，若しくは，重大事故等対処施設 のうち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設については，自重や運転時の荷重等に加え，代替する機能を有する設計基準事故対処設備が属する耐震重要度分類の各クラスに応じて算定する地震力が作用した場合においても，接地圧 に対する十分な支持力を有する地盤に設置する。 設計基準対象施設のうち，耐震重要施設，若しくは，重大事故等対処施設のうち，常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処	設計及び工事の計画の イ（1）－（1）は，当該要求事項が設置変更許可を受 けた地盤に設置するこ とを記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
地盤に設置する。		の傾斜及び撓み並びに地震発生に伴ら建物•構築物間の不			
		等沈下，液状化及び揺すり込み沈下等の周辺地盤の変状に			
		より，その安全機能，若しくは，重大事故に至るおそれが			
		ある事故（運転時の異常な過渡変化及び設計基準事故を除			
		するために必要な機能が損なわれるおそれがない地盤と			
		して，設置（変更）許可を受けた地盤に設置する。			
耐震重要施設は，将来活動する可能性のある断層等の露頭がない地盤に設置する。		設計基準対象施設のうち，耐震重要施設，若しくは，重			
		大事故等対処施設のらち，常設耐震重要重大事故防止設備			
頭がない地盤に設置する。		又は常設重大事故緩和設備が設置される重大事故等対処			
		施設は，将来活動する可能性のある断層等の露頭がない地			
		盤として，設置（変更）許可を受けた地盤に設置する。			
	1．4．1．4 荷重の組合せと許容限界	設計基準対象施設のらち，S クラスの施設（津波防護施			
	（4）許容限界	設，浸水防止設備及び津波監視設備を除く。）の地盤，若			
	d．基礎地盤の支持性能	しくは，重大事故等対処施設のらち，常設耐震重要重大事			
	（a）Sクラスの建物•構築物及びSクラスの機器•配管	故防止設備，常設重大事故緩和設備，常設重大事故防止設			
	系（津波防護施設，浸水防止設備及び津波監視設備を除	備（設計基準拡張）（当該設備が属する耐震重要度分類が S			
	く。）の基礎地盤	クラスのもの）又は常設重大事故緩和設備（設計基準拡張）			
	i ．弾性設計用地震動S d による地震力又は静的地震力と	が設置される重大事故等対処施設の建物•構築物の地盤の			
	の組合せに対する許容限界	接地圧に対する支持力の許容限界について，自重や運転時			
	接地圧に対して，安全上適切と認められる規格，基準等	の荷重等と基準地震動S s による地震力との組合せによ			
	による地盤の短期許容支持力度を許容限界とする。	り算定される接地圧が，安全上適切と認められる規格，基			
		準等による地盤の極限支持力度に対して妥当な余裕を有			
		することを確認する。			
	ii．基準地震動S s による地震力との組合せに対する許容	また，上記の設計基準対象施設にあっては，自重や運転			
	限界	時の荷重等と設置（変更）許可を受けた弾性設計用地震動			
	接地圧が，安全上適切と認められる規格，基準等による	S d（以下「弾性設計用地震動 S d 」 という。）による地			
	地盤の極限支持力度に対して妥当な余裕を有することを	震力又は静的地震力との組合せにより算定される接地圧			
	確認する。	について，安全上適切と認められる規格，基準等による地			
		盤の短期許容支持力度を許容限界とする。			
	（b）屋外重要土木構造物，津波防護施設，浸水防止設備	屋外重要土木構造物，津波防護施設，浸水防止設備及び			
	及び津波監視設備並びに浸水防止設備が設置された建	津波監視設備又は津波監視設備が設置された建物•構築物			
	物•構築物の基礎地盤	の地盤においては，自重や運転時の荷重等と基準地震動S			
	i ．基準地震動S s こよる地震力との組合せに対する許容	s による地震力との組合せにより算定される接地圧が，安			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
常設耐震重要重大事故防止設備又は常設重大事故緩和設備が設置される重大事故等対処施設については，基雉地	動 S s による地震力との組合せに対する許容限界を適用する。 （b）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラ スのもの）が設置される重大事故等対処施設の建物•構築物，機器•配管系及び土木構造物の基礎地盤 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すBクラス及びCクラスの建物•構築物，B クラス及びCクラスの機器•配管系並びにその他の土木構造物の基礎地盤の許容限界を適用する。	することを確認する。 また，上記の設計基準対象施設にあっては，自重や運転時の荷重等と設置（変更）許可を受けた弾性設計用地震動 S d（以下「弾性設計用地震動 S d」という。）による地震力又は静的地震力との組合せにより算定される接地圧 について，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。 屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備又は津波監視設備が設置された建物•構築物の地盤においては，自重や運転時の荷重等と基準地震動S s による地震力との組合せにより算定される接地圧が，安全上適切と認められる規格，基準等による地盤の極限支持力度に対して妥当な余裕を有す ることを碓認する。 設計基準対象施設のらち，B クラス及びCクラスの施設 の地盤，若しくは，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又 はCクラスのもの）が設置される重大事故等対処施設の建物•構築物及び機器•配管系の地盤においては，自重や運転時の荷重等と，静的地震力及び動的地震力（B クラスの共振影響検討に係るもの又はBクラスの施設の機能を代替 する常設重大事故防止設備の共振影響検討に係るもの）と の組合せにより算定される接地圧に対して，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。 2．自然現象 2.1 地震による損傷の防止 2．1．2 地震による周辺斜面の崩壊に対する設計方針 耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）		

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	（7）Bクラスの施設は，静的地震力に対しておおむねね弾性状態にとどまる範囲で耐えられるように設計する。 また，共振のおそれのある施設については，その影響に ついての検討を行ら。その場合，検討に用いる地震動は，弾性設計用地震動S dに 2 分の 1 を乗じたものとする。 なお，当該地震動による地震力は，水平 2 方向及び鉛直方向について適切に組み合わせて算定するものとし，S ク ラス施設と同様に許容限界の範囲内にとどまることを確認する。 （8）Cクラスの施設は，静的地震力に対しておおむ数弾性状態にとどまる範囲で耐えられるように設計する。 1．4．1．3 地震力の算定方法 設計基準対象施設の耐震設計に用いる地震力の算定は以下の方法による。 （1）静的地震力 静的地震力は，Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。），Bクラス及びCクラ スの施設に適用することとし，それぞれ耐震重要度分類に応じて次の地震層せん断力係数 C i 及び震度に基づき算	f．■（1）（i）c．－（1）bBクラスの施設は，静的地震力に対し でおおむね弾性状態にとどまる範囲で耐えられる設計 とする。 また，共振のおそれのある施設については，その影響に ついての検討を行う。その場合，検討に用いる地震憅は，弾性設計用地震動S dに2分の1を乗じたものとする。な お，当該地震動による地震力は，水平 2 方向及び鉛直方向 について適切に組み合わせて算定するものとする。 （1）（i）c．－（1）dC クラスの施設は，静的地震力に対して おおむね弾性状態にとどまる範囲で耐えられる設計とす る。 <中略> j．耐震重要施設については，液状化，摇すり込み沈下等 の周辺地盤の変状を考慮した場合においても，その安全機能が損なわれないよう，適切な対策を講ずる設計とす る。 常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，液状化，摇すり込み沈下等の周辺地盤の変状を考慮した場合においても，重大事故等に対処するた めに必要な機能が損なわれるおそれがないよう，適切な対策を講ずる設計とする。 （3）地震力の算定方法耐震設計に用いる地震力の算定は以下の方法による。 a．静的地震力 設計基準対象施設に適用する静的地震力は，Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除 く。），Bクラス及びCクラスの施設に適用することとし，そ れぞれ耐震重要度分類に応じて次の地震層せん断力係数	ており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
Sクラスの施設（e．に記載のもののらち，津波防護施設，浸水防止設備及び津波監視設備を除く。）については，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。 （1）（i）c．－（4）鉛直地震力は，建物•構築物については，震度 0.3 以上を基準とし，建物•構築物の振動特性，地艦 の種類等を考慮して求められるる鉛直震度， 機器•配管系口（1）（i）c．－（5）については，これを 1.2 倍し た鉛真震度より算定する。 ただし，鉛直震度は高さ方向に一定とする。	なお， S クラスの施設については，水平地震力と鉛直地震力は同時に不利な方向の組合せで作用するものとする。 ただし，鉛直震度は高さ方向に一定とする。 上記a．及びb。の標準せん断力係数 Co o 等の割増し係数の適用については，耐震性向上の観点から，一般産業施設，公共施設等の耐震基準との関係を考慮して設定する。	公共施設等の耐震基準との関係を考慮して設定する。 （1）耐震設計の基本方針 d．Sクラスの施設（e．に記載のもののらち，津波防護施設，浸水防止設備及び津波監視設備を除く。）について，静的地震力は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。 また，基準地震動 S s 及び弾性設計用地震動 S d による地震力は，水平 2 方向及び鉛直方向について適切に組み合 わせて算定するものとする。 ＜中略＞ （3）地震力の算定方法 耐震設計に用いる地震力の算定は以下の方法による。 a．静的地震力 （a）建物•構築物 ＜中略＞ S クラスの施設については，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。回 （1）（i）c．－44）鉛直地震力は，震度 0.3 以上を基準とし，建物•構築物の振動特性，地盤の種類等を考慮し，高さ方向 に一定として求めた鉛直震度より算定するものとする。 ただし，土木構造物の静的地震力は，安全上適切と認め られる規格及び基準を参考に，C クラスに適用される静的地震力を適用する。 （b）機器•配管系 静的地震力は，上記（a）に示す地震層せん断力係数 C_{i} に施設の耐震重要度分類に応じた係数を乗じたものを水平震度として，当該水平震度及びロ（1）（i）c．－（5）上記（a）の鉛直震度をそれぞれ 20% 堌しとした震度より求めるものと まる。 S クラスの施設については，水平地震力と鉛直地震力は同時に不利な方向の組合せで作用するものとする。ただ し，鉛直震度は高さ方向に一定とする。 上記（a）及び（b）の標準せん断力係数C。等の割増し係数 の適用については，耐震性向上の観点から，一般産業施設，公共施設等の耐震基準との関係を考慮して設定する。	設計及び工事の計画の （1）（i）c．－44は，設置変更許可申請書（本文 （五号））の（1）（i）c． －（4）と同義であり整合 している。 設計及び工事の計画の （1）（i）c．－（5）の「20\％増し」は，設置変更許可申請書（本文（五号）） の（1）（i）c．－（5）$「 1$. 2倍」と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
d．Sクラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基準地震動 S s による地震力に対して安全機能が保持できるよ らに設計する。 建物•構築物については，構造物全体としての変形能力（終局耐力時の変形）について十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有するように設計 する。 機器•配管系については，その施設に要求される機能を保持するように設計し，塑性ひずみが生じる場合であって も，その量が小さなレベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼ さないように，また，動的機器等については，基準地震動	1．4．1．1 設計基準対象施設の耐震設計の基本方針 （4）Sクラスの施設（（6）に記載のもののうち，津波防護機能を有する設備（以下「津波防護施設」という。），浸水防止機能を有する設備（以下「浸水防止設備」という。）及び敷地における津波監視機能を有する施設（以下「津波監視設備」という。）を除く。）は，基準地震動 S s に よる地震力に対してその安全機能が保持できるように設計する。 ＜中略＞ 1．4．1．4 荷重の組合せと許容限界 （4）許容限界 a．建物•構築物（c．に記載のものを除く。） （a）Sクラスの建物•構築物 ii ．基準地震動 S s による地震力との組合せに対する許容限界 構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひ ずみ，応力等） なお，終局耐力は，建物•構築物に対する荷重又は応力 を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成23年（2011年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等 が鉄筋コンクリート造耐震壁の変形能力及び終局耐力に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 b．機器•配管系（c．に記載のものを除く。） （a）Sクラスの機器•配管系 ii ．基準地震動 S s による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさないように応力，荷重等を制限する値を許容限界とする。 また，地震時又は地震後に動的機能が要求される機器等	（1）耐震設計の基本方針 c．S クラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）は，基準地震動 S s による地震力に対してその安全機能が保持 できる設計とする。 建物•構築物については，構造物全体としての変形能力 （終局耐力時の変形）に対して十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を有する設計と する。 機器•配管系については，その施設に要求される機能を保持する設計とし，塑性ひずみが生じる場合であっても， その量が小さなレベルにとどまって破断延性限界に十分 な余裕を有し，その施設に要求される機能に影響を及ぼさ ない，また，動的機器等については，基準地震動 S s によ		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，弾性設計用地震動S d（1）（i）d．－（2）は，基準地震動 S s との応答スペクトルの比率が目安として 0.5 を下回らない値とし，さらに応答スペクトルに基づく手法によ る基準地震憅 S s－D 1，D 2 に対しては，「発電用原子哣施設に関する耐震設計審查指針（昭和 56 年 7 月 20 旦原子力安全委員会決定，平成13年3月29日一部改訂）」に おける基準地震動 S ，を踏まえて設定する。具体的には，工学的判断により，基準地震動 S S－F 1，F 2 2 ，F 3 及 びS $\mathrm{s}-\mathrm{N} 1$ は係数 0.5 を乗じた地震動，基準地震憅 S s －D 1，D2，D3は係数 0.58 を乗じた地震動を弾性設計用地震動S dとして設定する。．．． （1）（i）d．－（3）なお，Bクラスの施設のうちょ，共振のお それのある施設については，弾性設計用地震動S d に 2 分 の1を乗じた地震憅によりその影響についての検討を行 う。	1．4．1．3 地震力の算定方法 （2）動的地震力 ＜中略＞ また，弾性設計用地震動 S dは，基準地震動S s との応答スペクトルの比率が目安として0．5を下回らないよう基蕉地震動S s に係数を乗じて設定する。ここで，係数は工学的判断として，原子炉施設の安全機能限界と弾性限界に対する入力荷重の比率が 0.5 程度であるという知見 ${ }^{(1)}$ を踏 まえ，さらに，「発電用原子哣施設に関する耐震設計審查指針（昭和 56 年 7 月 20 日原子力安全委員会決定，平成 13 年 3月29日一部改訂）」における基準地震動 $\mathrm{S}_{\mathrm{S}} 1$ の応答スペ クトルをおおむね下回らないよう配慮した値とする。具体的には，S s－F $1 \sim$ F 3 及び S s －N 1 は係数 0.5 を乗 じた地震動，応䈁スペクトルに基づく地震動評価による基準地震憅 S S－D $1 \sim$ D 3 は係数 0.58 を乗じた地震憅を弾性設計用地震憅 S d として設定する。 ＜中略＞ 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （7）Bクラスの施設は，静的地震力に対しておおむね弾性状態にとどまる範囲で耐えられるように設計する。 また，共振のおそれのある施設については，その影響に ついての検討を行う。その場合，検討に用いる地震動は，弾性設計用地震動 S d に 2 分の 1 を乗じたものとする。 なお，当該地震動による地震力は，水平 2 方向及び鉛直方向について適切に組み合わせて算定するものとし，S ク ラス施設と同様に許容限界の範囲内にとどまることを確認する。 1．4．1．4 荷重の組合せと許容限界 （4）許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対 する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている許容応力等を用いる。	1．地盤等 1.1 地盤 ＜中略＞ また，上記の設計基準対象施設にあっては，自重や運転時の荷重等と（1）（i）d．－（2）設置（変更）許可を受けた弾性設計用地震動 S d（以下「弾性設計用地震動 S d」とい ら。）による地震力又は静的地震力との組合せにより算定 される接地圧について，安全上適切と認められる規格，基準等による地盤の短期許容支持力度を許容限界とする。 <中略 > （1）耐震設計の基本方針 f．（1）（i）d．－③Bクラスの施設は，静的地震力に対して おおむね弾性状態にとどまる範囲で耐えられる設計と する。 また，共振のおそれのある施設については，その影響に ついての検討を行う。その場合，検討に用いる地震動は，．．．弾性設計用地震動 S d に 2 分の 1 を乗じたものとする。な お，当該地震動による地震力は，水平 2 方向及び鉛直方向 について適切に組み合わせて算定するものとする。 < 中略 > （4）荷重の組合せと許容限界 d．許容限界 各施設の地震力と他の荷重とを組み合わせた状態に対 する許容限界は次のとおりとし，安全上適切と認められる規格及び基準，試験等で妥当性が確認されている値を用い る。	設計及び工事の計画に適用するロ（1）（i）d．－ （2）は，設置変更許可申請書（本文（五号））の （1）（i ）d．－（2）にて設定した弾性設計用地震動を用いており整合し ている。 設計及び工事の計画の （1）（i）d．－（3）と設置変更許可申請書（本文 （五号））の（1）（ i ）d． －（3）は文章構成上の相違であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（1）（i）d．－（4）建物•横築物及び機器•配管采ともに，扮 およな权弾性状態にとどまる範囲で耐えられるように設計 まる。	a．建物•構築物（c．に記載のものを除く。） （a）Sクラスの建物•構築物 i ．弾性設計用地震動 S d による地震力又は静的地震力と の組合せに対する許容限界 「建築基準法」等の安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 ただし，泠却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリにおける長期的荷重との組合せを除く。）に対しては，下記 ii ．に示す許容限界を適用する。 ii ．基準地震動 S s による地震力との組合せに対する許容限界 構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひ ずみ，応力等）。 なお，終局耐力は，建物•構築物に対する荷重又は応力 を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成23年（2011年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等 が鉄筋コンクリート造耐震壁の変形能力及び終局耐力に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 （b）Bクラス及びCクラスの建物•構築物（（e）及び（f） に記載のものを除く。）	（a）建物•構築物（（c）に記載のものを除く。） イ．S クラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物 （へ，に記載のものを除く。） （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界 （1）（i）d．－（4）a．「建築基準法」等の安全上適切と認めら れる規格及び基準による許容応力度を許容限界とする。 ただし，冷却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリを構成する設備における長期的荷重との組合せを除く。）に対しては，下記イ（ロ）に示す許容限界を適用する。 （口）基準地震動 S s による地震力との組合せに対する許容限界 構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有し，建物•構築物の終局耐力に対し妥当な安全余裕を持たせることとする（評価項目はせん断ひ ずみ，応力等）。 なお，終局耐力は，建物•構築物に対する荷重又は応力 を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力 に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 ロ．（1）（i）d．－（4）b B クラス及びCクラスの建物•構築物 （ ，及びト，に記載のものを除く。）並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属 する耐震重要度分類が B クラス又はCクラスのもの）が	設計及び工事の計画の ■（1）（i）d．－（4），■（1） （i）d．－（4）b及びロ（1） （i）d．－（4）dは設置変更許可申請書（本文（五号））の厄（1）（i）d．－（4） を具体的に記載してお り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
e．津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物は，基準地震動 S s による地震力に対して，それぞれの施設及び設備に要求される機能が保持できるように設計する。	上記（a）i ．による許容応力度を許容限界とする。 ＜中略＞ b．機器•配管系（c．に記載のものを除く。） （b）Bクラス及びCクラスの機器•配管系 応答が全体的におおむね弾性状態にとどまることとす る（評価項目は応力等）。 1．4．1．1 設計基準対象施設の耐震設計の基本方針 （6）屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物は，基準地震動 S s による地震力に対して，構造物全体としての変形能力（終局耐力時の変形）につ いて十分な余裕を有するとともに，それぞれの施設及び設備に要求される機能が保持できるように設計する。 なお，基準地震動 S s の水平 2 方向及び鉛直方向の地震力の組合せについては，上記（5）と同様とする。 < 中略 > 1．4．1．3 地震力の算定方法 （2）動的地震力 動的地震力は，Sクラスの施設，屋外重要土木構造物及 びBクラスの施設のうち共振のおそれのあるものに適用 することとし，基準地震動 S s 及び弾性設計用地震動 S d から定める入力地震動を入力として，動的解析により水平 2 方向及び鉛直方向について適切に組み合わせて算定す る。 なお，構造特性から水平 2 方向及び鉛直方向の地震力の影響が考えられる施設及び設備については，水平 2 方向及 び鉛直方向の地震力の組合せに対して，許容限界の範囲内 にとどまることを確認する。	設置される重大事故等対処施設の建物•構築物（ト，に記載のものを除く。） 上記イ．（イ）による許容応力度を許容限界とする。 ＜中略＞ （b）機器•配管系（（c）に記載のものを除く。） 八。（1）（i）d．－（4） C Bクラス及び C クラスの機器•配管采並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類 B クラス又は C クラスのもの）が設置される重大事故等対処施設の機器•配管系 応答が全体的におおむすね弾性状態にとどまることとす る（評価項目は応力等）。 （1）耐震設計の基本方針 e．屋外重要土木構造物，津波防護施設，浸水防止設備及 び津波監視設備並びに浸水防止設備又は津波監視設備 が設置された建物•構築物は，基準地震動 S s による地震力に対して，構造物全体として変形能力（終局耐力時 の変形）について十分な余裕を有するとともに，それぞ れの施設及び設備に要求される機能が保持できる設計 とする。 ＜中略＞ （3）地震力の算定方法 b．動的地震力 設計基準対象施設については，動的地震力は，Sクラス の施設，屋外重要土木構造物及びBクラスの施設のうち共振のおそれのあるものに適用する。 Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）については，基準地震動 S s 及び弾性設計用地震動S d から定める入力地震動を適用する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	B クラスの施設のらち共振のおそれのあるものについ ては，弾性設計用地震動S dから定める入力地震動の振幅 を 2 分の 1 にしたものによる地震力を適用する。 屋外重要土木構造物，津波防謢施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物については，基準地震動 S s による地震力を適用する。 「添付書類六 5．地震」に示す基準地震動S s は，「敷地ごとに震源を特定して策定する地震動」及び「震源を特定せず策定する地震動」について，解放基盤表面における水平方向及び鉛直方向の地震動としてそれぞれ策定した。 「敷地ごとに震源を特定して策定する地震動」に基づき策定した基準地震動 S s－D $1 \sim$ D 3 の年超過確率は 10^{-4} $\sim 10^{-6}$ 程度で， S s $-\mathrm{F} 1 \sim \mathrm{~F} 2$ の年超過確率は， $\mathrm{S} \mathrm{s}-$ D 1 を超過する帯域で 10^{-6} より低くなっており， $\mathrm{S} s-\mathrm{F}$ 3 の年超過確率は，短周期側でおおむね 10^{-4} 程度である。「震源を特定せず策定する地震動」に基づき設定した基準地震動 $\mathrm{S} \mathrm{s}-\mathrm{N} 1$ の年超過確率は $10^{-4} \sim 10^{-7}$ 程度である。 ＜中略＞ a．入力地震動 原子炉格納施設設置位置周辺は，地質調査の結果によれ ば，約 $1.4 \mathrm{~km} / \mathrm{s}$ の S 波速度を持つ堅硬な岩盤が十分な広が りをもって存在することが確認されており，建物•構築物 はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュラ系の砂岩，頁岩等が広く分布 し，原子炉建屋の設置しベルにもこの岩盤が分布している ことから，解放基盤表面は，この岩盤が分布する原子炉建屋の設置位置0．P．－14．1mに設定する。	Bクラスの施設のらち共振のおそれのあるものについて は，弾性設計用地震動S d から定める入力地震動の振幅を 2分の1にしたものによる地震力を適用する。 屋外重要土木構造物，津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物については，基準地震動 S s による地震力を適用する。 ＜中略＞ 動的解析においては，地盤の諸定数も含めて材料のばら つきによる変動幅を適切に考慮する。 動的地震力は水平2方向及び鉛直方向について適切に組 み合わせて算定する。動的地震力の水平2方向及び鉛直方向の組合せについては，水平1方向及び鉛直方向地震力を組み合わせた既往の耐震計算への影響の可能性がある施設•設備を抽出し， 3 次元応答性状の可能性も考慮したう えで既往の方法を用いた耐震性に及ぼす影響を評価する。 （a）入力地震動 原子炉格納施設設置位置周辺は，地質調査の結果によれ ば，約 $1.4 \mathrm{~km} / \mathrm{s}$ の S 波速度を持つ堅硬な岩盤が十分な広が りをもって存在することが確認されており，建物•構築物 はこの堅硬な岩盤に支持させる。 敷地周辺には中生界ジュラ系の砂岩，頁岩等が広く分布 し，原子炉建屋の設置レベルにもこの岩盤が分布している ことから，解放基盤表面は，この岩盤が分布する原子炉建屋の設置位置 0．P．－14．1m に設定する。 建物•構築物の地震応答解析における入力地震動は，解放基盤表面で定義される基準地震動 S s 及び弾性設計用			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	b ．地震応答解析 （a）動的解析法 i．建物•構築物 動的解析による地震力の算定に当たつては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，建物•構築物に応じた適切な解析条件 を設定する。動的解析は，時刻歴応答解析法又は線形解析 に適用可能な周波数応答解析法による。 建物•構築物の動的解析に当たつては，建物•構築物の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換した解析モデルを設定する。 動的解析には，建物•構築物と地盤との相互作用を考慮 するものとし，解析モデルの地盤のばね定数は，基礎版の平面形状，地盤の剛性等を考慮して定める。設計用地盤定数は，原則として，弾性波試験によるものを用いる。 地盤—建物•構築物連成系の減衰定数は，振動エネルギ ーの地下逸散及び地震応答における各部のひずみレベル	地震動Sdを基に，対象建物•構築物の地盤の非線形特性等の条件を適切に考慮した上で，必要に応じ 2 次元 FEM 解析， 1 次元波動論又は 1 次元地盤応答解析により，地震応答解析モデルの入力位置で評価した入力地震動を設定す る。地盤条件を考慮する場合には，地震動評価で考慮した敷地全体の地下構造との関係や対象建物•構築物位置と炉心位置での地質•速度構造の違いにも留意するとともに，地盤の非線形応答に関する動的変形特性を考慮する。ま た，必要に応じ敷地における観測記録による検証や最新の科学的•技術的知見を踏まえ，地質•速度構造等の地盤条件を設定する。 また，設計基準対象施設における耐震 B クラスの建物•構築物及び重大事故等対処施設における耐震 B クラスの施設の機能を代替する常設重大事故防止設備又は当該設備 が属する耐震重要度分類が B クラスの常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設の建物•構築物のらち共振のおそれがあり，動的解析が必要な ものに対しては，弾性設計用地震動S d に 2 分の 1 を乗じ たものを用いる。 （b）地震応答解析 1．動的解析法 （イ）建物•構築物 動的解析による地震力の算定に当たっては，地震応答解析手法の適用性，適用限界等を考慮の上，適切な解析法を選定するとともに，建物•構築物に応じた適切な解析条件 を設定する。動的解析は，時刻歴応答解析法又は線形解析 に適用可能な周波数応答解析法による。 建物•構築物の動的解析に当たっては，建物•構築物の剛性はそれらの形状，構造特性等を十分考慮して評価し，集中質点系等に置換した解析モデルを設定する。 動的解析には，建物•構築物と地盤との相互作用を考慮 するものとし，解析モデルの地盤のばね定数は，基礎版の平面形状，基礎側面と地盤の接触状況，地盤の剛性等を考慮して定める。設計用地盤定数は，原則として，弾性波試験によるものを用いる。 地盤一建物•構築物連成系の減衰定数は，振動エネルギ の地下逸散及び地震応答における各部のひずみレベルを			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	ル，有限要素モデル等に置換し，設計用床応答曲線を用い たスペクトルモーダル解析法又は時刻歴応答解析法によ り応答を求める。配管系については，配管の形状や構造を考慮して，代表的な振動モードを適切に表現できるモデル を作成し，設計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法により応答を求める。スペク トルモーダル解析法及び時刻歴応答解析法の選択に当た つては，衝突，すべり等の非線形現象を模擬する観点又は既往研究の知見を取り入れ実機の挙動を模擬する観点で，建物•構築物の剛性，地盤物性のばらつき等への配慮をし つつ時刻歴応答解析法を用いる等，解析対象とする現象，対象設備の振動特性，構造特性等を考慮し適切に選定す る。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせるものとする。 なお，剛性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて地震力 を算定する。 （3）設計用減衰定数 応答解析に用いる減衰定数は，安全上適切と認められる規格及び基準，既往の振動実験，地震観測の調査結果等を考慮して適切な値を定める。 なお，建物•構築物の応答解析に用いる鉄筋コンクリー トの減衰定数の設定については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討する。 また，地盤と屋外重要土木構造物の連成系地震応答解析 モデルの減衰定数については，地中構造物としての特徴及 び同モデルの振動特性を考慮して適切に設定する。	ル，有限要素モデル等に置換し，設計用床応答曲線を用い たスペクトルモーダル解析法又は時刻歴応答解析法によ り応答を求める。 また，時刻歴応答解析法及びスペクトルモーダル解析法 を用いる場合は地盤物性等のばらつきを適切に考慮する。 スペクトルモーダル解析法には地盤物性等のばらつきを考慮した床応答曲線を用いる。 配管系については，その仕様に応じて適切なモデルに置換し，設計用床応答曲線を用いたスペクトルモーダル解析法又は時刻歴応答解析法により応答を求める。 スペクトルモーダル解析法及び時刻歴応答解析法の選択に当たっては，衝突・すべり等の非線形現象を模擬する観点又は既往研究の知見を取り入れ実機の挙動を模擬す る観点で，建物•構築物の剛性，地盤物性のばらつきへの配慮をしつつ時刻歴応答解析法を用いる等，解析対象とす る現象，対象設備の振動特性•構造特性等を考慮し適切に選定する。 また，設備の 3 次元的な広がりを踏まえ，適切に応答を評価できるモデルを用い，水平 2 方向及び鉛直方向の応答成分について適切に組み合わせるものとする。 剛性の高い機器は，その機器の設置床面の最大応答加速度の 1.2 倍の加速度を震度として作用させて構造強度評価 に用いる地震力を算定する。 c．設計用減衰定数 地震応答解析に用いる減衰定数は，安全上適切と認めら れる規格及び基準に基づき，設備の種類，構造等により適切に選定するとともに，試験等で妥当性を碓認した値も用 いる。 なお，建物•構築物の地震応答解析に用いる鉄筋コンク リートの減衰定数の設定については，既往の知見に加え，既設施設の地震観測記録等により，その妥当性を検討す る。 また，地盤と屋外重要土木構造物の連成系地震応答解析 モデルの減衰定数については，地中構造物としての特徴，同モデルの振動特性を考慮して適切に設定する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
	（c）設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な状態であって，当該状態が発生した場合には発電用原子炉施設から多量の放射性物質が放出するおそれがあるものと して安全設計上想定すべき事象が発生した状態。 （d）設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪等）。 （2）荷重の種類 a．建物•構築物 （a）発電用原子炉のおかれている状態にかかわらず常時作用している荷重，すなわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重 （b）運転時の状態で施設に作用する荷重 （c）設計基準事故時の状態で施設に作用する荷重 （d）地震力，風荷重，積雪荷重等 ただし，運転時の状態及び設計基準事故時の状態での荷重には，機器•配管系から作用する荷重が含まれるものと し，地震力には，地震時土圧，機器•配管系からの反力， スロッシング等による荷重が含まれるものとする。 b．機器•配管系 （a）通常運転時の状態で施設に作用する荷重 （b）運転時の異常な過渡変化時の状態で施設に作用する荷重 （c）設計基準事故時の状態で施設に作用する荷重 （d）地震力，風荷重，積雪荷重等	八．設計基準事故時の状態 発生頻度が運転時の異常な過渡変化より低い異常な状態であって，当該状態が発生した場合には発電用原子炉施設から多量の放射性物質が放出するおそれがあるものと して安全設計上想定すべき事象が発生した状態。 二．設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 b．荷重の種類 （a）建物•構築物 設計基準対象施設については以下のイ．～ニ．の荷重，重大事故等対処施設については以下のイ．～ホ．の荷重とす る。 イ．発電用原子炉のおかれている状態にかかわらず常時作用している荷重，すなわち固定荷重，積載荷重，土圧，水圧及び通常の気象条件による荷重 ロ。 運転時の状態で施設に作用する荷重 八。設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重 < 中略 > ただし，運転時の状態，設計基準事故時の状態及び重大事故等時の状態での荷重には，機器•配管系から作用する荷重が含まれるものとし，地震力には，地震時土圧，機器•配管系からの反力，スロッシング等による荷重が含まれる ものとする。 （b）機器•配管系 設計基準対象施設については，以下のイ。～ニ。の荷重，重大事故等対処施設については以下のイ。～ホ，の荷重と する。 イ．通常運転時の状態で施設に作用する荷重 ロ．運転時の異常な過渡変化時の状態で施設に作用する荷重 ハ．設計基準事故時の状態で施設に作用する荷重 二．地震力，風荷重，積雪荷重		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	（3）荷重の組合せ地震力と他の荷重との組合せを以下に示す。 a．建物•構築物（c．に記載のものを除く。） （a）Sクラスの建物•構築物については，常時作用して いる荷重及び運転時（通常運転時又は運転時の異常な過渡変化時）の状態で施設に作用する荷重と地震力とを組 み合わせる。 （b）Sクラスの建物•構築物については，常時作用して いる荷重及び設計基準事故時の状態で施設に作用する荷重のらち長時間その作用が続く荷重と弾性設計用地震動 S d による地震力又は静的地震力とを組み合わせ る。 （c）Bクラス及びCクラスの建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用 する荷重と動的地震力又は静的地震力とを組み合わせ る。	c．荷重の組合せ 地震と組み合わせる荷重については，「2．3 外部からの衝撃による損傷の防止」で設定している風及び積雪による荷重を考慮し，以下のとおり設定する。 （a）建物•構築物（（c）に記載のものを除く。） イ．Sクラスの建物•構築物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準抁張）（当該設備が属する耐震重要度分類がS クラスのもの）又は常設重大事故緩和設備（設計基準拡張）か設置される重大事故等対処施設の建物•構築物に ついては，常時作用している荷重及び運転時（通常運転時又は運転時の異常な過渡変化時）の状態で施設に作用 する荷重と地震力とを組み合わせる。 ロ．Sクラスの建物•構築物については，常時作用してい る荷重及び設計基準事故時の状態で施設に作用する荷重のらち長時間その作用が続く荷重と弾性設計用地震動S d による地震力又は静的地震力とを組み合わせる。 ＊1，＊2 ホ，Bクラス及びCクラスの建物•構築物並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの） が設置される重大事故等対処施設の建物•構築物につい ては，常時作用している荷重及び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力とを組み合 わせる。 ＊ $1: ~ S ク ラ ス の$ 建物•構築物の設計基準事故の状態で施設 に作用する荷重については，（b）機器•配管系の考え方に沿った下記の 2 つの考元方に基づき検討した結果と して後者を踏まえ，施設に作用する荷重のらち長時間そ の作用が続く荷重と弹性設計用地震動 S d による地震力又は静的地震力とを組み合わせることとしている。こ の考方方は，JEAG4601における建物•構築物の荷重の組合せの記載とも整合している。 －常時作用している荷重及び設計基準事故時の状態のうち地震によって引き起こされるおそれのある事象によっ		

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	b．機器•配管系（c．に記載のものを除く。） （a）Sクラスの機器•配管系については，通常運転時の状態で施設に作用する荷重と地震力とを組み合わせる。 （b）Sクラスの機器•配管系については，運転時の異常 な過渡変化時の状態及び設計基準事故時の状態のうち地震によって引き起こされるおそれのある事象によっ て施設に作用する荷重と地震力とを組み合わせる。 （c）Sクラスの機器•配管系については，運転時の異常 な過渡変化時の状態及び設計基準事故時の状態のらち地震によって引き起こされるおそれのない事象であっ ても，いったん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及 び地震動の年超過確率の関係を踏まえ，適切な地震力と組み合わせる。 （d）Bクラス及びCクラスの機器•配管系については，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，動的地震力又は静的地震力とを組み合わせる。	て施設に作用する荷重は，その事故事象の継続時間との関係を踏まえ，適切な地震力と組み合わせて考慮する。 －常時作用している荷重及び設計基準事故時の状態のらち地震によって引き起こされるおそれのない事象であっ ても，いつたん事故が発生した場合，長時間継続する事象による荷重は，その事故事象の発生確率，継続時間及 び地震動の超過確率の関係を踏まえ，適切な地震力と組 み合わせる。 ＊2：原子炉格納容器バウンダリを構成する施設について は，異常時圧力の最大値と弾性設計用地震動 S d による地震力とを組み合わせる。 （b）機器•配管系（（c）に記載のものを除く。） イ．S クラスの機器•配管系及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系に ついては，通常運転時の状態で施設に作用する荷重と地震力とを組み合わせる。 ロ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のらち地震によって引き起こされるおそれのある事象によって施設に作用する荷重と地震力とを組み合わせる。 二．Sクラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のらち地震によって引き起こされるおそれのない事象であって も，いったん事故が発生した場合，長時間継続する事象 による荷重は，その事故事象の発生確率，継続時間及び地震動の年超過確率の関係を踏まえ，適切な地震力と組 み合わせる。＊3 へ。Bクラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラスのもの） が設置される重大事故等対処施設の機器•配管系につい ては，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，			

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	（e）灲心内の燃料被覆管の放射性物質の閉じ込めの機能 の確認においては，通常運転時の状態で燃料被覆管に作用する荷重及び運転時の異常な過渡変化時の状態のう ち地震によって引き起こされるおそれのある事象によ って燃料被覆管に作用する荷重と地震力とを組み合わ せる。 c．津波防護施設，浸水防止設備及び津波監視設備並びに浸水防止設備が設置された建物•構築物 （a）津波防護施設及び浸水防止設備が設置された建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動 S s による地震力とを組み合わせる。 （b）浸水防止設備及び津波監視設備については，常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動S s による地震力とを組み合わせる。 なお，上記c．（a），（b）については，地震と津波が同時 に作用する可能性について検討し，必要に応じて基準地震動 S s による地震力と津波による荷重の組合せを考慮す る。また，津波以外による荷重については，「（2）荷重 の種類」に準じるものとする。 d．荷重の組合せ上の留意事項 （a）Sクラスの施設に作用する地震力のらち動的地震力 については，水平 2 方向と鉛直方向の地震力とを適切に組み合わせ算定するものとする。 （b）ある荷重の組合せ状態での評価が明らかに厳しいこ とが判明している場合には，その他の荷重の組合せ状態 での評価は行わないことがある。 （c）複数の荷重が同時に作用する場合，それらの荷重に よる応力の各ピークの生起時刻に明らかなずれがある ことが判明しているならば，必ずしもそれぞれの応力の ピーク値を重ねなくてもよいものとする。 （d）上位の耐震重要度分類の施設を支持する建物•構築	動的地震力又は静的地震力とを組み合わせる。 ト．炉心内の燃料被覆管の放射性物質の閉じ込めの機能 の確認においては，通常運転時の状態で燃料被覆管に作用する荷重及び運転時の異常な過渡変化時の状態のら ち地震によって引き起こされるおそれのある事象によ って燃料被覆管に作用する荷重と地震力とを組み合わ せる。 ＊3：原子炉格納容器バウンダりを構成する設備について は，異常時圧力最大値と弾性設計用地震動 $\mathrm{S} d$ による地震力とを組み合わせる。 （c）津波防護施設，浸水防止設備及び津波監視設備並び に浸水防止設備が設置された建物•構築物 ィ．津波防護施設及び浸水防止設備が設置された建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用する荷重と基準地震動S s による地震力とを組み合わせる。 口．浸水防止設備及び津波監視設備については，常時作用している荷重及び連転時の状態で施設に作用する荷重と基準地震動S s による地震力とを組か合わせる。 なお，上記（c）イ．，ロ，については，地震と津波が同時 に作用する可能性について検討し，必要に応じて基準地震動 S s による地震力と津波による荷重の組合せを考慮す る。また，津波以外による荷重については，「b．荷重の種類」に準じるものとする。 （d）荷重の組合せ上の留意事項動的地震力については，水平 2 方向と鉛直方向の地震力 とを適切に組み合わせ算定するものとする。			

設置変更許可申請書（ ${ }^{\text {a }}$ 本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	なお，終局耐力は，建物•構築物に対する荷重又は応力 を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力 に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 （b）Bクラス及びCクラスの建物•構築物（（e）及び（f） に記載のものを除く。） 上記（a）i ．による許容応力度を許容限界とする。 （c）耐震重要度分類の異なる施設を支持する建物•構築物（ (e) 及び（f）に記載のものを除く。） 上記（a）ii．を適用するほか，耐震重要度分類の異なる施設を支持する建物•構築物が，変形等に対してその支持機能を損なわないものとする。 なお，当該施設を支持する建物•構築物の支持機能が損 なわれないことを確認する際の地震動は，支持される施設 に適用される地震動とする。 （d）建物•構築物の保有水平耐力（（e）及び（f）に記載の ものを除く。） 建物•構築物については，当該建物•構築物の保有水平耐力が必要保有水平耐力に対して耐震重要度分類に応じ た妥当な安全余裕を有していることを確認する。	なお，終局耐力は，建物•構築物に対する荷重又は応力 を漸次増大していくとき，その変形又はひずみが著しく増加するに至る限界の最大耐力とし，初期剛性の低下の要因 として考えられる平成 23 年（2011 年）東北地方太平洋沖地震等の地震やコンクリートの乾燥収縮によるひび割れ等が鉄筋コンクリート造耐震壁の変形能力及び終局耐力 に影響を与えないことを確認していることから，既往の実験式等に基づき適切に定めるものとする。 ロ。 B クラス及び C クラスの建物•構築物（へ，及びト。 に記載のものを除く。）並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はC クラスのもの）が設置される重大事故等対処施設の建物•構築物（ト，に記載のものを除く。） 上記イ，（イ）による許容応力度を許容限界とする。 八。耐震重要度分類の異なる施設又は設備分類の異なる重大事故等対処施設を支持する建物•構築物（へ，及び ト，に記載のものを除く。） 上記イ。（ロ）を適用するほか，耐震重要度分類の異なる施設又は設備分類の異なる重大事故等対処施設がそれを支持する建物•構築物の変形等に対して，その支持機能を損なわないものとする。 当該施設を支持する建物•構築物の支持機能が維持され ることを確認する際の地震動は，支持される施設に適用さ れる地震動とする。 二．建物•構築物の保有水平耐力（ ，及びト，に記載の ものを除く。） 建物•構築物については，当該建物•構築物の保有水平耐力が必要保有水平耐力に対して耐震重要度分類又は重大事故等対処施設が代替する機能を有する設計基準事故対処設備が属する耐震重要度分類に応じた安全余裕を有 しているものとする。 < 中略 > 木．気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設 構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については，その機			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	（e）屋外重要土木構造物 i ．静的地震力との組合せに対する許容限界 安全上適切と認められる規格及び基準による許容値を許容限界とする。 ii ．基準地震動 S s による地震力との組合せに対する許容限界 構造部材の曲げについては限界層間変形角，許容応力度等，構造部材のせん断についてはせん断耐力，許容応力度等に対して，妥当な安全余裕を持たせることとする。 3 次元静的材料非線形解析により評価を行らもの等，ひずみを許容値とする場合は，構造物の要求機能に応じた許容值に対し妥当な安全余裕を持たせることとする。 （f）その他の土木構造物 安全上適切と認められる規格及び基準による許容値を許容限界とする。 b．機器•配管系（c．に記載のものを除く。） （a）Sクラスの機器•配管系 i．弾性設計用地震動 S d による地震力又は静的地震力と の組合せに対する許容限界 応答が全体的におおむね弾性状態にとどまることとす る（評価項目は応力等）。 ただし，冷却材震失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリを構成する設備，非常用炉心冷却設備等における長期的荷重との組合せを除く。）に対 しては，下記ii．に示す許容限界を適用する。 ii ．基準地震動 S s による地震力との組合せに対する許容	能を維持できる許容限界を適切に設定するものとする。 へ。 屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抎張）（当該設備が属する耐震重要度分類がSク ラスのもの）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設の土木構造物 （イ）静的地震力との組合せ改対する許容限界 安全上適切と認められる規格及び基準による計容応力度を許容限界とする。 （口）基準地震動S s による地震力との組合せに対する許容限界 構造部材の曲げについては限界層間変形角，限界ひず み，降伏曲げモーメント又は許容応力度，構造部材のせん断についてはせん断耐力，許容応力度又は限界せん断ひず みを許容限界とする。 なお，限界層間変形角，限界ひずみ，降伏曲げモーメン ト及びせん断耐力，限界せん断ひずみの許容限界に対して は妥当な安全余裕を持たせることとし，それぞれの安全余裕については，各施設の機能要求等を踏まえ設定する。 ト．その他の土木構造物及び常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの）が設置される重大事故等対処施設の土木構造物 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （b）機器•配管系（（c）亿記載のものを除く。） ィ． S クラスの機器•配管系 （イ）弹性設計用地震動 Sd による地震力又は静的地震力との組合せに対する許容限界 応答が全体的におおむる㸚弾性状態にとどまるものとす る（評価項目は応力等）。 ただし，椧却材喪失事故時に作用する荷重との組合せ （原子炉格納容器バウンダリ及び非常用炉心冷却設備等 における長期的荷重との組合せを除く。）に対しては，下記イ。（ロ）に示す許容限界を適用する。 （口）基準地震動 S s による地震力との組合せに対する			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	限界 塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさないように応力，荷重等を制限する値を許容限界とする。 また，地震時又は地震後に動的機能が要求される機器等 については，基準地震動S s による応答に対して，実証試験等により確認されている機能碓認済加速度等を許容限界とする。 （b）Bクラス及びCクラスの機器•配管系 応答が全体的におおむねね弾性状態にとどまることとす る（評価項目は応力等）。 （c）チャンネルボックス 地震時に作用する荷重に対して，燃料集合体の泠却材流路を維持できること及び過大な変形や破損を生じること により制御棒の挿入が阻害されることがないことを確認 する。 （d）燃料被覆管 炬心内の燃料被覆管の放射性物質の閉じ込めの機能に ついての許容限界は，以下のとおりとする。 i．弾性設計用地震動 S d による地震力又は静的地震力と の組合せに対する許容限界 応答が全体的におおむね弾性状態にとどまることとす る。 ii．基準地震動 S s による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，放射性物質の閉じ込めの機能に影響を及ぼさないこととする。	許容限界 塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさないように応力，荷重等を制限する值を許容限界とする。 また，地震時又は地震後に動的機能又は電気的機能が要求される機器については，基準地震動 S s による応答に対 して，実証試験等により確認されている機能確認済加速度等を許容限界とする。 八。 Bクラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準抁張）（当該設備が属する耐震重要度分類Bクラス又はCクラスのもの）が設置される重大事故等対処施設の機器•配管系 応答が全体的におおむむ双弾性状態にとどまることとす る（評価項目は応力等）。 ＝．チャンネルボックス チャンネルボックスは，地震時に作用する荷重に対し て，燃料集合体の原子炉冷却材流路を維持できること及び過大な変形や破損を生ずることにより制御棒の挿入が阻害されないものとする。 ホ．燃料被覆管 炬心内の燃料被覆管の放射性物質の閉じ込めの機能に ついての許容限界は，以下のとおりとする。 （イ）弹性設計用地震動 Sd による地震力又は静的地震力との組合せに対する許容限界 応答が全体的におおむる弾性状態にとどまることとす る。 （口）基準地震動S s による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，放射性物質の閉じ込めの機能に影響を及ぼさないこととする。 へ。主蒸気逃がし安全弁排気管及び主蒸気系（主蒸気第二隔離并から主蒸気止め弁まで） 主蒸気逃がし安全弁排気管は基準地震動 $\mathrm{S} s$ に対して，主蒸気系（主蒸気第二隔離弁から主蒸気止め弁まで）は弾性設計用地震動 Sd に対してイ。（口）に示す許容限界を適		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	なお，原子力発電所の地震被害情報をもとに，以下（1） ～（4）以外に検討すべき事項がないかを確認し，新たな检討事項が抽出された場合には，その観点を追加する。 （1）設置地盤及び地震応答性状の相違等に起因する不等沈下又は相対変位による影響 a．不等沈下 耐震重要施設の設計に用いる地震動又は地震力に対し て不等沈下により，耐震重要施設の安全機能へ影響がない ことを確認する。 b．相対変位 耐震重要施設の設計に用いる地震動又は地震力による下位クラス施設と耐震重要施設の相対変位により，耐震重要施設の安全機能へ影響がないことを確認する。 （2）耐震重要施設と下位クラス施設との接続部における相互影響 耐震重要施設の設計に用いる地震動又は地震力に対し て，耐震重要施設に接続する下位クラス施設の損傷によ り，耐震重要施設の安全機能へ影響がないことを確認す る。 （3）建屋内における下位クラス施設の損傷，転倒，落下等による耐震重要施設への影響 耐震重要施設の設計に用いる地震動又は地震力に対し て，建屋内の下位クラス施設の損傷，転倒，落下等により，耐震重要施設の安全機能へ影響がないことを確認する。 （4）建屋外における下位クラス施設の損傷，転倒，落下等による耐震重要施設への影響 a ．耐震重要施設の設計に用いる地震動又は地震力に対し て，施設の設置地盤及び周辺地盤の液状化による影響を	置時の配慮事項等を保安規定に定めて管理する。 （1）（i）f．－（2）耐震重要施設に対する波及的影響につい ては，以下に示す（a）～（d）の 4 つの事項から検討を行う。 なお，原子力発電所の地震被害情報等から新たに検討す べき事項が抽出された場合には，これを追加する。 < 中略 > （a）（1）（i）f．－（2）a設置地艦及び地震応答性状の相違等 に起因する不等沈下又は相対変位による影響 イ．不等沈下 耐震重要施設の設計に用いる地震動又は地震力に対し て，不等沈下による耐震重要施設の安全機能への影響。 ㅁ．相対変位 耐震重要施設の設計に用いる地震動又は地震力に対し て，下位クラス施設と耐震重要施設の相対変位による耐震重要施設の安全機能への影響。 （b）（1）（i）f．－②b而震重要施設と下位クラス施設との接続部における相互影響 耐震重要施設の設計に用いる地震動又は地震力に対し て，耐震重要施設に接続する下位クラス施設の損傷による耐震重要施設の安全機能への影響。 （c）（1）（i）f．－（2）c 建屋内における下位クラス施設の損傷，転倒，，落下等による耐震重要施設への影響耐震重要施設の設計に用いる地震動又は地震力に対し て，建屋内の下位クラス施設の損傷，転倒，落下等による耐震重要施設の安全機能への影響。 （d）（1）（i）f．－（2）d 建屋外における下位タラス施設の損傷，転例，，落下等による耐震重要施設への影響耐震重要施設の設計に用いる地震動又は地震力に対し て，建屋外の下位クラス施設の損傷，転倒，落下等による	しており整合している。 設計及び工事の計画の （1）（i）f．－（3）は，設置変更許可申請書（本文 （五号））の（1）（i）f． －32同義であり整合 している。		

g．設計基準対象施設は，防潮堤下部の（1）（i）g．－（1）堞艀改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏 まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲にお いては，自然水位より保守的に設定した水位又は地表面 にて設計用地下水位を設定し水圧の影響を考慮する。

設置変更許可申請書（添付書類八）該当事項考慮した上で，建屋外の下位クラス施設の損傷，転倒，落下等により，耐震重要施設の安全機能へ影響がないこ とを確認する。
b ．耐震重要施設の設計に用いる地震動又は地震力に対し て，耐震重要施設の周辺斜面が崩壊しないことを確認す る。
なお，上記（1）～（4）の検討に当たっては，溢水及び火災 の観点からも波及的影響がないことを確認する。
上記の観点で検討した波及的影響を考慮する施設を，第 1．4．1－1表中に「波及的影響を考慮すべき施設」として記載する。

1．4．1．1 設計基準対象施設の耐震設計の基本方針
（11）設計基準対象施設の設計においては，防潮堤下部の地盤改良等により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，そ の機能を考慮した設計用地下水位を設定し水圧の影響 を考慮する。地下水位低下設備の効果が及ばない範囲に おいては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。
耐震重要施設の安全機能への影響。
b．主要施設への地下水の影響
防潮堤下部の（1）（i）g．－（1）改良地䈠及び置換コンクリ一下により山から海に向から地下水の流れが遮断され，敷地内の地下水位が地表面付近まで上昇するおそれがある ことを踏まえ，原子炉建屋，制御建屋及び第 3 号機海水熱交換器建屋に作用する揚圧力の低減及び周辺の土木構造物等に生じる液状化影響の低減を目的とし，地下水位を一定の範囲に保持するために，原子炉建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアに地下水位低下設備 を各エリア 2 采統設置する。
耐震評価において，地下水位の影響を受ける施設及びア クセスルートについて，地下水位低下設備の効果が及ぶ範囲（0．P．$+14.8 \mathrm{~m} \frac{\mathrm{fin}_{\mathrm{n}} \text { ）においては，その機能を考慮した設計 }}{}$用地下水位を設定し水圧の影響を考慮する。なお，地下水位低下設備の効果が及ばない範囲においては，自然水位よ り保守的に設定した水位又は地表面にて設計用地下水位 を設定し水圧の影響を考慮する。

地下水位低下設備は，ドレーン，接続桝，揚水井戸，蓋，揚水ポンプ，配管，水位計，制御盤，電源（非常用ディー ゼル発電機），電源盤及び電路により系統を構成する。

地下水位低下設備は，ドレーン及び接続桝により揚水井戸に地下水を集水し，揚水ポンプ（容量 $375 \mathrm{~m}^{3} / \mathrm{h} /$ 個，揚程 52 m ，原動機出力 $110 \mathrm{~kW} /$ 個）により，揚水ポンプに接続さ れた配管を通して地下水を屋外排水路へ排水する。揚水ポンプは，地下水の最大流入量を排水可能な容量を

設計及び工事の計画の ロ（1）（i）g．－（1）は，設置変更許可申請書（本文 （五号））の（1）（i）g． －（1）を具体的に記載し ており整合している。

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		有する設計とし，設備の信頼性向上のため 100% 容量のポ ンプを 1 系統当たり 2 個（計 8 個）設置し，集水した地下水を排水できる設計とする。 地下水位低下設備は，1系統当たり3個（計 12 個）設置 した水位計からの水位信号を用いて， 2 out of 3 論理によ り揚水ポンプの自動起動及び自動停止を行うことで，揚水井戸の水位を自動で制御できる設計とする。また，各系統 の水位を，原子炉建屋及び中央制御室に設置した制御盤か ら監視可能な設計とする。水位や設備の異常時には，これ らを確実に検出して自動的に中央制御室に警報（水位低又 は高，水位高高，電源喪失，揚水ポンプ故障）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動に より運転員に通報できる設計とする。 制御盤は， 2 采統の独立した設備を 1 系統当たり現場及 び中央制御室に 1 面ずつ設置し，原子炉建屋•制御建屋工 リア及び第 3 号機海水熱交換器建屋エリアのそれぞれ 1 系統の設備ごとに，監視•制御可能な設計とする。 地下水位低下設備は，電源盤（容量 296kVA），及び電路 を設置し，非常用交流電源設備である非常用ディーゼル発電機から設備に必要な電力を供給できる設計とする。ま た，全交流動力電源喪失となった場合は常設代替交流電源設備であるガスタービン発電機から設備に必要な電力を供給できる設計とする。 電源盤は， 2 系統の独立した設備を 1 系統当たり 1 面ず つ設置し，原子炉建屋•制御建屋エリア及び第3号機海水熱交器建屋エリアのそれぞれ 1 系統の設備ごとに電力を供給できる設計とする。 揚水ポンプ，配管及び水位計は揚水井戸内に設置し，揚水井戸により支持するとともに，揚水井戸上部に蓋を設置 することで，外部事象の影響を受けない設計とする。 地下水位低下設備は，地震時及び地震後を含む，原子力発電所の供用期間の全ての状態（通常運転時（起動時，停止時含む），運転時の異常な過渡変化時，設計基準事故時及 び重大事故等時）において機能維持を可能とするため，基			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		準地震動S s による地震力に対して機能維持する設計と する。 また，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」第十二条第 2 項に基づき，地下水位低下設備を設置する原子炉建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアの各エリアで，多重性及び独立性を備える設計とするとともに，外部事象等に よる機能喪失要因に対し機能維持する設計とする。 さらに，プラント供用期間中において発生を想定する大規模損壊時の対応も考慮する。 地下水位低下設備の機能喪失が発生した場合を想定し，復旧措置に必要な資機材として，原子炉建屋•制御建屋工 リア及び第 3 号機海水熱交換器建屋エリアにおける全ての地下水位低下設備の機能喪失を考慮し，予備品及び可搬ポ ンプ（個数 3 ，容量 $114 \mathrm{~m}^{3} / \mathrm{h} /$ 個（計 $342 \mathrm{~m}^{3} / \mathrm{h}$ ））を搭載した可搬ポンプニニット（個数 2）を配備する。 予備品は，復旧措置にあたり機器の交換が必要な場合に備え，各エリアを 1 系統復旧できる数量を配備する。 可搬ポンプユニットは，各エリアの排水機能の維持を可能とする配備数とし，高台の堅固な地盤に外部事象を考慮 して分散配置する。 地下水位低下設備は，保安規定において運転上の制限を設定し，地下水位を一定の範囲に保持できない場合又はそ のおそれがある場合には，可搬ポンプユニットによる水位低下措置を速やかに開始するとともに，原子炉を停止す る。 また，地下水位低下設備の復旧措置に的確かつ柔軟に対処できるように，復旧措置に係る資機材の配備，手順書及 び体制の整備並びに教育訓練の実施方針を自然災害発生時等の体制の整備及び重大事故等発生時の体制の整備と して，保安規定に定めた上で，社内規定に定める。 地下水位低下設備の機能喪失を想定しても，地震時の液			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ii）重大事故等対処施設の耐震設計 （1）（ii）－（1）重大事故等対処施設については，設計基蕉対象施設の耐震設計における動的地震力又は静的地震力 に対する設計方針を踏韹し，重大事故等対処施設の構造上 の特徴，重大事故等における運転状態，重大事故等時の状態で施設に作用する荷重等を考盧し，適用する地震力に対 して重大事故等に対処するために必要な機能が損なわれ るおそれがないことを目的として，設備分類に応じて，以下の項目に従って耐震設計を行ら。	1．4．2 重大事故等対処施設の耐震設計 1．4．2．1 重大事故等対処施設の耐震設計の基本方針 重大事故等対処施設については，設計基蕉対象施設の耐震設計における動的地震力又は静的地震力に対する設計方針を踏韹し，重大事故等対処施設の構造上の特徴，重大事故等における運転状態，重大事故等時の状態で施設に作用する荷重等を考慮し，適用する地震力に対して重大事故等に対処するために必要な機能が損なわれるおそれがな いことを目的として，設備分類に応じて，以下の項目に従 \qquad	2．自然現象 2.1 地震による損傷の防止 2．1．1 而震設計 （1）耐震設計の基本方針 \qquad a．設計基準対象施設のらち，耐震重要施設は，その供用中に当該耐震重要施設に大きな影響を及ぼすおそれが ある地震（基準地震動S s）による加速度によって作用 する地震力に対して，その安全機能が損なわれるおそれ がない設計とする。 重大事故等対処施設のうち，常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラ スのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設 を除く。以下同じ。）は，基準地震動S s による地震力に対して，重大事故等に対処するために必要な機能が損なわ れるおそれがないように設計する。 b．設計基準対象施設は，耐震重要度に応じて，Sクラス， B クラス又はCクラスに分類し，それぞれに応じた地震力に十分耐えられる設計とする。 重大事故等対処施設については，施設の各設備が有する重大事故等に対処するために必要な機能及び設置状態を踏まえて，常設耐震重要重大事故防止設備が設置される重大事故等対処施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設 （特定重大事故等対処施設を除く。以下同じ。），常設重大事故緩和設備が設置される重大事故等対処施設，常設重大事故防止設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同じ。），常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（特定重大事故等対処施設を除く。以下同 じ。）及び可搬型重大事故等対処設備に分類する。 重大事故等対処施設のらち，常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置される重大事故等対処施設は，代替する機能を有する設計基準事故対処設	設置変更許可申請書（本文（五号））の（1）（ii） －（1）は，概要であり，詳細は設計及び工事の計画の「2．1．1（1），（2）， （3），（4）」に具体的に記載している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
f．ロ（1）（ii）f．－（1）重大事故等対処施設に『（1）（ii）f．－（2）適用する動的地震力は，水平 2 方向及び鉛直方向について適切に組み合わせて算定するものとする。	（7）重大事故等対処施設に適用する動的地震力は，水平 2 方向及び鉛直方向について適切に組み合わせて算定 するものとする。 なお，水平 2 方向及び鉛直方向の地震力が同時に作用 し，影響が考えられる施設及び設備については許容限界の範囲内にとどまることを確認する。	（4）周辺機器等からの悪影響 <中略 > （1）（ii）e．－（1）重大事故等対処設備は，事故対応のため に配置•配備している自主対策設備を含む周辺機器等から の悪影響により機能を損なわない設計とする。周辺機器等 からの悪影響としては，地震，火災及び溢水による波及的影響を考虜する。 ＜中略＞ 2．自然現象 2.1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針 d．S クラスの施設（e．に記載のもののうち，津波防護施設，浸水防止設備及び津波監視設備を除く。）について，静的地震力は，水平地震力と鉛直地震力が同時に不利な方向の組合せで作用するものとする。 また，基準地震動 S s 及び弾性設計用地震動S dによる地震力は，水平 2 方向及び鉛直方向について適切に組み合 わせて算定するものとする。 （1）（ii）f．－（1）a 虽設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基漼拡張） （当該設備が属する耐震重要度分類がSクラスのもの）又 は常設重大事故緩和設備（設計基漼拡張）が設置される重大事故等対処施設については，口（1）（ii）f．－（2）a 基準地震憅 S s 及び弾性設計用地震動 S d による地震力は水平 2 方向及び鉛直方向について適切に組み合わせて算定するもの とする。 f．（1）（ii）f．－（2）cBクラスの施設は，静的地震力に対し ておおむね弾性状態にとどまる範囲で耐えられる設計 とする。 また，共振のおそれのある施設については，その影響に ついての検討を行う。その場合，検討に用いる地震憅は，弾性設計用地震動S d に 2 分の1を乗じたものとする。な出，当該地震動による地震力は，水平 2 方向及び鉛直方向 について適切に組み合わせて算定するものとする。	んでおり整合している。 設計及び工事の計画の （1）（ii）f．－（1）a，ロ（1） （ ii ）f．－（1）b及びロ（1） （ii）f．－（1）cは，設置変更許可申請書（本文（五号））の（1）（ii）f．－（1 を具体的に記載してお り整合している。 設計及び工事の計画の （1）（ii）f．－（2）a並びに （1）（ii）f．－（2）cを含む （1）（ii）f．－（2）b及び回 （1）（ii）f．－（2）dは，設置変更許可申請書（本文 （五号））の（1）（ii）f． －（2）を具体的に記載し	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	なお，重大事故等対処施設のうち，設計基準対象施設の基本構造と異なる施設については，適用する地震力に対し て，要求される機能及び構造健全性が維持されることを確認するため，当該施設の構造を適切にモデル化した上で地震応答解析，加振試験等を実施する。 （3）設計用減衰定数 「1．4．1．3 地震力の算定方法」の「（3）設計用減衰定数」を適用する。 1．4．2．4 荷重の組合せと許容限界 重大事故等対処施設の耐震設計における荷重の組合せ と許容限界は以下による。 （1）耐震設計上考慮する状態地震以外に設計上考慮する状態を次に示す。 a．建物•構築物	重大事故等対処施設のらち，設計基準対象施設の既往評価を適用できる基本構造と異なる施設については，適用す る地震力に対して，要求される機能及び構造健全性が維持 されることを碓認するため，当該施設の構造を適切にモデ ル化した上で地震応答解析，加振試験等を実施する。 動的解析においては，地盤の諸定数も含めて材料のばら つきによる変動幅を適切に考慮する。 動的地震力は水平 2 方向及び鉛直方向について適切に組 み合わせて算定する。動的地震力の水平 2 方向及び鉛直方向の組合せについては，水平 1 方向及び鉛直方向地震力を組み合わせた既往の耐震計算への影響の可能性がある施設•設備を抽出し， 3 次元応答性状の可能性も考慮したら えで既往の方法を用いた耐震性に及ぼす影響を評価する。 c．設計用減衰定数 地震応答解析に用いる減衰定数は，安全上適切と認めら れる規格及び基準に基づき，設備の種頪，構造等により適切に選定するとともに，試験等で妥当性を確認した值も用 いる。 なお，建物•構築物の地震応答解析に用いる鉄筋コンク リートの減衰定数の設定については，既往の知見に加え，既設施設の地震钼測記録等により，その妥当性を検討す る。 また，地盤と屋外重要土木構造物の連成系地震応答解析 モデルの減哀定数については，地中構造物としての特徴，同モデルの振動特性を考慮して適切に設定する。 （4）荷重の組合せと許容限界耐震設計における荷重の組合せと許容限界は以下によ る。 a．耐震設計上考慮する状態地震以外に設計上考慮する状態を以下に示す。 （a）建物•構築物 設計基準対象施設については以下のイ。～八，の状態，重大事故等対処施設については以下のイ，～ニ，の状態を考慮する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	（a）運転時の状態 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 a．建物•構築物」に示す「（a）運転時の状態」を適用する。 （b）設計基準事故時の状態 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 a．建物•構築物」に示す「（b）設計基準事故時の状態」を適用する。 （c）重大事故等時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。 （d）設計用自然条件 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 a．建物•構築物」に示す「（c）設計用自然条件」を適用する。 b．機器•配管系 （a）通常運転時の状態 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 b ．機器•配管系」に示す「（a）通常運転時の状態」を適用する。 （b）運転時の異常な過渡変化時の状態 「1．4．1．4 荷重の組合せと許容限界」の「（1）耐震設計上考慮する状態 b ．機器•配管系」に示す「（b）運転時の異常な過渡変化時の状態」を適用する。	イ．運転時の状態 発電用原子炉施設が運転状態にあり，通常の自然条件下 におかれている状態。 ただし，運転状態には通常運転時，運転時の異常な過渡変化時を含むものとする。 口．設計基準事故時の状態 発電用原子炉施設が設計基準事故時にある状態。 八．設計用自然条件 設計上基本的に考慮しなければならない自然条件（風，積雪）。 二．重大事故等時の状態 発電用原子炉施設が，重大事故に至るおそれがある事故又は重大事故時の状態で，重大事故等対処施設の機能を必要とする状態。 （b）機器•配管系 設計基準対象施設については以下のイ．～ニ．の状態，重大事故等対処施設については以下のイ。～ホ，の状態を考慮する。 イ．通常運転時の状態 発電用原子炉の起動，停止，出力運転，高温待機，燃料取替等が計画的又は頻繁に行われた場合であって運転条件が所定の制限値以内にある運転状態。 ロ．運転時の異常な過渡変化時の状態 通常運転時に予想される機械又は器具の単一の故障若 しくはその誤作動又は運転員の単一の誤操作及びこれら と類似の頻度で発生すると予想される外乱によって発生 する異常な状態であって，当該状態が継続した場合には炉心又は原子炉冷却材圧力バウンダリの著しい損傷が生じ るおそれがあるものとして安全設計上想定すべき事象が発生した状態。			

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
	（d）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラ スのもの）が設置される重大事故等対処施設の建物•構築物については，常時作用している荷重及び運転時の状態で施設に作用する荷重と，動的地震力又は静的地震力 とを組み合わせる。 b．機器•配管系 （a）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，通常運転時の状態で作用する荷重と地震力とを組み合わせる。 （b）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時の異常 な過渡変化時の状態，設計基準事故時の状態及び重大事故等時の状態で作用する荷重のらち，地震によって引き起こされるおそれがある事象によって作用する荷重と地震力とを組み合わせる。重大事故等が地震によって引 き起こされるおそれがある事象であるかについては，設計基準対象施設の耐震設計の考え方に基づくとともに，確率論的な考察も考慮した上で設定する。	ホ。 B クラス及びCクラスの建物•構築物並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準抎張）（当該設備が属する耐震重要度分類が B クラス又はC クラスのもの） が設置される重大事故等対処施設の建物•構築物につい ては，常時作用している荷重及び運転時の状態で施設に作用する荷重と動的地震力又は静的地震力とを組み合 わせる。 ＜中略＞ （b）機器•配管系（（c）に記載のものを除く。） イ．S クラスの機器•配管系及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備 （設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系に ついては，通常運転時の状態で施設に作用する荷重と地震力とを組み合わせる。 ロ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のらち地震によって引き起こされるおそれのある事象によって施設に作用する荷重と地震力とを組み合わせる。 八．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系については，運転時の異常 な過渡変化時の状態，設計基準事故時の状態及び重大事故等時の状態で作用する荷重のらち，地震によって引き起こされるおそれがある事象によって作用する荷重と地震力とを組み合わせる。重大事故等による荷重は設計基準対象施設の耐震設計の考え方及び確率論的な考察 を踏まえ，地震によって引き起こされるおそれがない事象による荷重として扱う。 ニ．S クラスの機器•配管系については，運転時の異常な過渡変化時の状態及び設計基準事故時の状態のらち地震によって引き起こされるおそれのない事象であって も，いつたん事故が発生した場合，長時間継続する事象		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	その他の施設については，いったん事故が発生した場合，長時間継続する事象による荷重と基準地震動S s によ る地震力とを組み合わせる。 （d）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラ スのもの）が設置される重大事故等対処施設の機器•配管系については，通常運転時の状態又は運転時の異常な過渡変化時の状態で作用する荷重と動的地震力又は静的地震力とを組み合わせる。 c．荷重の組合せ上の留意事項 （a）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準抎張）が設置される重大事故等対処施設に作用する地震力のらち，動的地震力につ いては，水平 2 方向と鉛直方向の地震力とを適切に組み合わせ算定するものとする。 （b）ある荷重の組合せ状態での評価が明らかに厳しいこ とが判明している場合には，その他の荷重の組合せ状態 での評価は行わないことがある。 （c）複数の荷重が同時に作用する場合，それらの荷重に よる応力の各ピークの生起時刻に明らかなずれがある	圧代替注水系（常設）（復水移送ポンプ）又は低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）による原子炉注水により炉心損傷の回避が可能であることから荷重条件として考慮しない。 その他の施設については，いったん事故が発生した場合，長時間繙続する事象による荷重と基準地震動S s によ る地震力とを組み合わせる。 へ。Bクラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラスのもの） が設置される重大事故等対処施設の機器•配管系につい ては，通常運転時の状態で施設に作用する荷重及び運転時の異常な過渡変化時の状態で施設に作用する荷重と，動的地震力又は静的地震力とを組み合わせる。 ト．炉心内の燃料被覆管の放射性物質の閉じ込めの機能 の確認においては，通常運転時の状態で燃料被覆管に作用する荷重及び運転時の異常な過渡変化時の状態のう ち地震によって引き起こされるおそれのある事象によ って燃料被覆管に作用する荷重と地震力とを組み合わ せる。 ＊3 ：原子炉格納容器バウンダリを構成する設備について は，異常時圧力最大値と弾性設計用地震動 S d による地震力とを組み合わせる。 （d）荷重の組合せ上の留意事項動的地震力については，水平 2 方向と鉛直方向の地震力 とを適切に組み合わせ算定するものとする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	（e）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の土木構造物 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示す屋外重要土木構造物の基準地震動 S s による地震力との組合せに対する許容限界を適用する。 （f）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラ スのもの）が設置される重大事故等対処施設の土木構造物 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すその他の土木構造物の許容限界を適用する。 b．機器•配管系	木。 気密性，止水性，遮蔽性，通水機能，貯水機能を考慮する施設 構造強度の確保に加えて気密性，止水性，遮蔽性，通水機能，貯水機能が必要な建物•構築物については，その機能を維持できる許容限界を適切に設定するものとする。 へ。屋外重要土木構造物及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準抎張）（当該設備が属する耐震重要度分類が S ク ラスのもの）又は常設重大事故緩和設備（設計基準拡張） が設置される重大事故等対処施設の土木構造物 （イ）静的地震力との組合せに対する許容限界 安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （口）基準地震動 S s による地震力との組合せに対する許容限界 構造部材の曲げについては限界層間変形角，限界ひず み，降伏曲げモーメント又は許容応力度，構造部材のせん断についてはせん断耐力，許容応力度又は限界せん断ひず みを許容限界とする。 なおっ，限界層間変形角，限界ひずみ，降伏曲げモーメン ト及びせん断耐力，限界せん断ひずみの許容限界に対して は妥当な安全余裕を持たせることとし，それぞれの安全余裕については，各施設の機能要求等を踏まえ設定する。 ト。その他の土木構造物及び常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスのもの）が設置される重大事故等対処施設の土木構造物安全上適切と認められる規格及び基準による許容応力度を許容限界とする。 （b）機器•配管系（（c）に記載のものを除く。） イ．Sクラスの機器•配管系 （イ）弾性設計用地震動 S d による地震力又は静的地震力との組合せに対する許容限界 応答が全体的におおむね弾性状態にとどまるものとす る（評価項目は応力等）。 ただし，泠却材喪失事故時に作用する荷重との組合せ			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	（a）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すSクラスの機器•配管系の基準地震動 S s によ る地震力との組合せに対する許容限界を適用する。 ただし，原子炉格納容器バウンダリを構成する設備，非常用炉心冷却設備等の弾性設計用地震動 S d と設計基準事故時の状態における長期的荷重との組合せに対する許容限界は，「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すSクラスの機器•配管系の弾性設計用地震動 S d による地震力又は静的地震力との組合せに対す る許容限界を適用する。 （b）常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が B クラス又はCクラ スのもの）が設置される重大事故等対処施設の機器•配管系 「1．4．1．4 荷重の組合せと許容限界」の「（4）許容限界」に示すBクラス及びCクラスの機器•配管系の許容限界を適用する。	（原子炉格納容器バウンダリ及び非常用炉心冷却設備等 における長期的荷重との組合せを除く。）に対しては，下記イ。（ロ）に示す許容限界を適用する。 （口）基準地震動 S s による地震力との組合せに対する許容限界 塑性ひずみが生じる場合であっても，その量が小さなレ ベルにとどまって破断延性限界に十分な余裕を有し，その施設に要求される機能に影響を及ぼさないように応力，荷重等を制限する値を許容限界とする。 また，地震時又は地震後に動的機能又は電気的機能が要求される機器については，基準地震動 S s による応答に対 して，実証試験等により確認されている機能確認済加速度等を許容限界とする。 口．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類が S クラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設の機器•配管系 イ．（ロ）に示す許容限界を適用する。 ただし，原子炉格納容器バウンダリを構成する設備及び非常用炉心冷却設備等の弾性設計用地震動 S d と設計基準事故時の状態における長期的荷重との組合せに対する許容限界は，イ．（イ）に示す許容限界を適用する。 八．B クラス及びCクラスの機器•配管系並びに常設耐震重要重大事故防止設備以外の常設重大事故防止設備又 は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類 B クラス又はC クラスのもの）が設置される重大事故等対処施設の機器•配管系 応答が全体的におおむね弾性状態にとどまることとす る（評価項目は応力等）。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
h．ロ（1）（ii）h．－（1）上記b，及びd．の施設は，ロ（1）（ii）h．－ （2） B クラス及びCクラスの施設，上記 c ．の施設，上記 e．の設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準摭張）及 び常設重大事故緩和設備（設計基蕉掋張）のいずれにも属さない常設の重大事故等対処施設の波及的影響によ つて，重大事故等に対処するために必要な機能を損なわ ないように設計する。	1．4．2．1 重大事故等対処施設の耐震設計の基本方針 （10）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡掁）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準扡張）が設置される重大事故等対処施設が，Bクラス及びCクラスの施設，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重太事故防止設備．（設計基集应張）（当該設備 が属する耐震重要度分類がBクラス又はCクラスのも の）が設置される重大事故等対处施設，可搬型重大事故等対処設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基集拡張）及 ぴ虽設重大事故緩和設備（設計基集拡張）のいずれにも属さない黨設の重大事故等対边施設の波及的影響によ って，重大事故等に対処するために必要な機能を損なわ ないように設計する。	（1）耐震設計の基本方針 g．耐震重要施設及びロ（1）（ii）h．－（1）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備。設計基集掋張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準掋張）が設置される重大事故等対処施設が，，（回 （1）（ii）h．－（2）それ以外の発電所内にある施設（資機材等含畋。）の波及的影響によって，その安全機能及び重大事故等に対処するために必要な機能を損なわない設計 とする。	設計及び工事の計画の （1）（ii）h．－（1）は，設置変更許可申請書（本文 （五号））の（1）（ii）h． －（1）「b．常設耐震重要重大事故防止設備又は常設重大事故防止設備 （設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのも の）が設置される重大事故等対処施設（特定重大事故等対処施設を除 く。）」及び「d．常設重大事故緩和設備又は常設重大事故緩和設備（設計基準拡張）が設置され る重大事故等対処施設 （特定重大事故等対処施設を除く。）」を具体的に記載しており整合 している。 設計及び工事の計画の （1）（ii）h．－（2）は，設置変更許可申請書（本文 （五号））の（1）（ii）h． －（2）の「Bクラス及びCク ラスの施設」，「．．常設耐震重要重大事故防止設備以外の常設重大事故防止設備が設置され る重大事故等対処施設 （特定重大事故等対処施設を除く。）」，「e．可搬型重大事故等対処設備」，「常設重大事故	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
波及的影響の評価に当たつては，敷地全体を俯瞰した調查•検討を行い，（1）（ii）h．－（3）事象選定及び影響評価を行う。 （1）（ii）h．－（4）なおっ，影響評価においては，上記 b ，及 びd．の施設の設計に用いる地震動又は地震力を適用す る．．．	1．4．2．5 設計における留意事項 「1．4．1．5 設計における留意事項」を適用する。 ただし，適用に当たっては，「耐震重要施設」を「常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設」に， 「安全機能」を「重大事故等に対処するために必要な機能」 に読み替える。 なお，耐震重要度分類の下位のクラスに属する施設の波及的影響については，Bクラス及びCクラスの施設に加 え，常設耐震重要重大事故防止設備以外の常設重大事故防止設備又は常設重大事故防止設備（設計基準拡張）（当該設備が属する耐震重要度分類がBクラス又はCクラスの もの）が設置される重大事故等対処施設，可搬型重大事故等対処設備，常設重大事故防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準拡張）のいずれにも属さな い常設の重大事故等対処施設の影響についても評価する。 また，可搬型重大事故等対処設備については，地震によ る周辺斜面の崩壊，溢水，火災等の影響を受けない場所に適切な保管がなされていることを併せて確認する。	i．緊急時対策所の耐震設計の基本方針については，「（6）緊急時対策所」に示す。 （5）設計における留意事項 a．波及的影響 耐震重要施設及び常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張） （当該設備が属する耐震重要度分類がSクラスのもの）又 は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設（以下「上位クラス施設」という。）は，下位クラス施設の波及的影響によって，その安全機能及び重大事故等に対処するために必要な機能を損なわない設計とする。 （1）（ii）h．－（4）波及的影響については，耐震重要施設の設計に用いる地震動又は地震力を適用して評価を行う。な お，地震動又は地震力の選定に当たつては，施設の配置状況，使用時間等を踏まえて適切に設定する。また，波及的影響においては水平 2 方向及び鉛直方向の地震力が同時に作用する場合に影響を及ぼす可能性のある施設，設備を選定し評価する。 波及的影響の評価に当たつては，敷地全体を俯瞰した調查•検討等を行ら。 ここで，下位クラス施設とは，上位クラス施設以外の発電所内にある施設（資機材等含む。）をいう。 波及的影響を防止するよう現場を維持するため，機器設置時の配慮事項等を保安規定に定めて管理する。 耐震重要施設に対する波及的影響については，以下に示 す（a）～（d）の 4 つの事項から検討を行う。 なお，原子力発電所の地震被害情報等から新たに検討す	防止設備及び常設重大事故緩和設備並びに常設重大事故防止設備（設計基準拡張）及び常設重大事故緩和設備（設計基準拡張）のいずれにも属 さない常設の重大事故等対処施設」を含んでお り整合している。 設計及び工事の計画の （1）（ii）h．－（3）a，ロ（1） （ii ）h．－（3）b，\quad（1）（ii） h．－（3）c及びロ（1）（ii）h． －（3）dは，設計及び工事 の計画の（1）（ii ）h．（3）を具体的に記載して おり，設計及び工事の計画の（1）（ii）h．－（3）は，設置変更許可申請書（本文（五号））の（1）（ii） h．－（3）を具体的に記載 しており整合している。 設計及び工事の計画の （1）（ii）h．－（4）は，設置		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		べき事項が抽出された場合には，これを追加する。 （1）（ii）h．－（3）虽設耐震重要重大事故防止設備，，虽設重大事故緩和設備，常設重大事故防止設備（設計基蕉摭張） （当該設備が属する耐震重要度分類がSクラスのもの）又 は虽設重大事故緩和設備（設計基準掋張）が設置される重大事故等対処施設に対する波及的影響については，以下に示す（a）～（d）の 4 つの事項について「耐震重要施設」を「虽設耐震重要重大事故防止設備，虽設重大事故緩和設備，，虽設重大事故防止設備（設計基漼摭張）（当該設備が属する耐震重要度分類がSクラスのもの）又は常設重大事故緩和設備（設計基漼拡掁）が設置される重大事故等対処施設」 に，「安全機能」を「重大事故等に対処するために必要な機能」に読小替えて適用する。 （a）（1）（ii）h．－（3）a 設置地䉴及び地震底答性状の相違等 に起因する不等沈下又は相対変位による影響 1．否等沈下 耐震重要施設の設計に用いる地震動又は地震力に対し $て, ~$ 不等沈下による耐震重要施設の安全機能への影響。 ㅁ．相対変位 耐震重要施設の設計に用いる地震動又は地震力に対し て，下位クラス施設と耐震重要施設の相対変位による耐震重要施設の安全機能への影響。 （b）（1）（ii）h．－（3）b 耐震重要施設と下位クラス施設との接続部における相互影響 耐震重要施設の設計に用いる地震動又は地震力に対し $て, ~$ 耐震重要施設に接続する下位クラス施設の損傷による耐震重要施設の安全機能への影響。 （c）『（1）（ii）h．－（3）c建屋内における下位クラス施設の損傷，転㑯，．．落下等による耐震重要施設への影響耐震重要施設の設計に用いる地震動又は地震力に対し て，建屋内の下位クラス施設の損傷，転例，落下等による耐震重要施設の安全機能への影響。 （d）（1）（ii）h．－（3）d 建屋外における下位クラス施設の損傷，転倒，落下等による耐震重要施設への影響耐震重要施設の設計に用いる地震憅又は地震力に対し て，建屋外の下位クラス施設の損傷，転倒，落下等による耐震重要施設の安全機能への影響。	変更許可申請書（本文 （五号））の（1）（ii）h． （4）と同義であり整合 している。		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
i ．常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設は，防潮堤下部の口（1）（ii）i．－（1）地盤改良等 により地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位を一定の範囲に保持する地下水位低下設備を設置 し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。	1．4．2．1 重大事故等対処施設の耐震設計の基本方針 （12）常設耐震重要重大事故防止設備，常設重大事故緩和設備，常設重大事故防止設備（設計基準拡張）又は常設重大事故緩和設備（設計基準拡張）が設置される重大事故等対処施設については，防潮堤下部の地䈠改良等によ り地下水の流れが遮断され敷地内の地下水位が地表面付近まで上昇するおそれがあることを踏まえ，地下水位 を一定の範囲に保持する地下水位低下設備を設置し，同設備の効果が及ぶ範囲においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。地下水位低下設備の効果が及ばない範囲においては，自然水位 より保守的に設定した水位又は地表面にて設計用地下水位を設定し水圧の影響を考慮する。	b．主要施設への地下水の影響 防潮堤下部の（1）（ii）i．－（1）改良地盤及び置換コンクリ一トにより山から海に向から地下水の流れが遮断され，僌地内の地下水位が地表面付近まで上昇するおそれがある ことを踏まえ，原子炉建屋，制御建屋及び第 3 号機海水熱交換器建屋に作用する揚圧力の低減及び周辺の土木構造物等に生じる液状化影響の低減を目的とし，地下水位を一定の範囲に保持するために，原子炉建屋•制御建屋エリア及び第 3 号機海水熱交換器建屋エリアに地下水位低下設備 を各エリア 2 系統設置する。 耐震評価において，地下水位の影響を受ける施設及びア クセスルートについて，地下水位低下設備の効果が及ぶ範囲（ $0 . \mathrm{P} .+14.8 \mathrm{~m}$ 盤）においては，その機能を考慮した設計用地下水位を設定し水圧の影響を考慮する。なお，地下水位低下設備の効果が及ばない範囲においては，自然水位よ り保守的に設定した水位又は地表面にて設計用地下水位 を設定し水圧の影響を考慮する。 地下水位低下設備は，ドレーン，接続桝，揚水井戸，蓋，揚水ポンプ，配管，水位計，制御盤，電源（非常用ディー ゼル発電機），電源盤及び電路により系統を構成する。 地下水位低下設備は，ドレーン及び接続桝により揚水井戸に地下水を集水し，揚水ポンプ（容量 $375 \mathrm{~m}^{3} / \mathrm{h} /$ 個，揚程 52 m ，原動機出力 $110 \mathrm{~kW} /$ 個）により，揚水ポンプに接続さ れた配管を通して地下水を屋外排水路へ排水する。 揚水ポンプは，地下水の最大流入量を排水可能な容量を有する設計とし，設備の信頼性向上のため 100% 容量のポ ンプを 1 系統当たり 2 個（計 8 個）設置し，集水した地下水を排水できる設計とする。 地下水位低下設備は，1系統当たり3個（計 12 個）設置 した水位計からの水位信号を用いて， 2 out of 3 論理によ り揚水ポンプの自動起動及び自動停止を行らことで，揚水井戸の水位を自動で制御できる設計とする。また，各系統 の水位を，原子炉建屋及び中央制御室に設置した制御盤か ら監視可能な設計とする。水位や設備の異常時には，これ らを確実に検出して自動的に中央制御室に警報（水位低又 は高，水位高高，電源喪失，揚水ポンプ故障）を発信する	設計及び工事の計画の （1）（ii）i．－（1）は，設置変更許可申請書（本文 （五号））の（1）（ii）i． （1）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		装置を設けるとともに，表示ランプの点灯，ブザー鳴動に より運転員に通報できる設計とする。 制御盤は， 2 系統の独立した設備を 1 系統当たり現場及 び中央制御室に 1 面ずつ設置し，原子炉建屋•制御建屋工 リア及び第 3 号機海水熱交換器建屋エリアのそれぞれ 1 系続の設備ごとに，監視•制御可能な設計とする。 地下水位低下設備は，電源盤（容量 296 kVA ），及び電路 を設置し，非常用交流電源設備である非常用ディーゼル発電機から設備に必要な電力を供給できる設計とする。ま た，全交流動力電源霛失となった場合は常設代替交流電源設備であるガスタービン発電機から設備に必要な電力を供給できる設計とする。 電源盤は，2 系統の独立した設備を1系統当たり1面ず つ設置し，原子炉建屋•制御建屋エリア及び第 3 号機海水熱交器建屋エリアのそれぞれ 1 系統の設備ごとに電力を供給できる設計とする。 揚水ポンプ，配管及び水位計は揚水井戸内に設置し，揚水井戸により支持するとともに，掦水井戸上部に䒸を設置 することで，外部事象の影響を受けない設計とする。 地下水位低下設備は，地震時及び地震後を含む，原子力発電所の供用期間の全ての状態（通常運転時（起動時，停止時含む），運転時の異常な過渡変化時，設計基準事故時及 び重大事故等時）において機能維持を可能とするため，基準地震動S s による地震力に対して機能維持する設計と する。 また，「実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則」第十二条第 2 項に基づき，地下水位低下設備を設置する原子炉建屋•制御建屋エリア及び第 3 号機海水熱交换器建屋エリアの各エリアで，多重性及び独立性を備える設計とするとともに，外部事象等に よる機能喪失要因に対し機能維持する設計とする。 さらに，プラント供用期間中において発生を想定する大規模損壊時の対応も考慮する。 地下水位低下設備の機能喪失が発生した場合を想定し，			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		復旧措置に必要な資機材として，原子炉建屋•制御建屋工 リア及び第 3 号機海水熱交換器建屋エリアにおける全ての地下水位低下設備の機能喪失を考慮し，予備品及び可搬ポ ンプ（個数 3 ，容量 $114 \mathrm{~m}^{3} / \mathrm{h} /$ 個（計 $342 \mathrm{~m}^{3} / \mathrm{h}$ ））を搭載した可搬ポンプニニット（個数 2 ）を配備する。 予備品は，復旧措置にあたり機器の交換が必要な場合に備え，各エリアを 1 系統復旧できる数量を配備する。 可搬ポンプユニットは，各エリアの排水機能の維持を可能とする配備数とし，高台の堅固な地盤に外部事象を考慮 して分散配置する。 地下水位低下設備は，保安規定において運転上の制限を設定し，地下水位を一定の範囲に保持できない場合又はそ のおそれがある場合には，可搬ポンプニニットによる水位低下措置を速やかに開始するとともに，原子炉を停止す る。 また，地下水位低下設備の復旧措置に的確かつ柔軟に対処できるように，復旧措置に係る資機材の配備，手順書及 び体制の整備並びに教育訓練の実施方針を自然災害発生時等の体制の整備及び重大事故等発生時の体制の整備と して，保安規定に定めた上で，社内規定に定める。 地下水位低下設備の機能進失を想定しても，地震時の液状化に伴ら地中埋設構造物の浮上りに対して，アクセスル ートの通行性を外部からの支援が可能となるまでの一定期間確保するとともに，アクセスルートの通行性に影響を与える場合は対策を講ずる設計とする。 地下水位低下設備で汲み上げた地下水を $0 . P .+14.8 \mathrm{~m}$ 盤 から海へ排水するため，屋外排水路のらち敷地側集水ピッ卜（北側），北側排水路（防潮堤横断部），出口側集水ピ ット（北側）について基準地震動 S s に対し機能維持する設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
a．．．．設計基準対象施設の津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地 において，基準津波による遡上波を地上部から到達又は流入させない設計とする。また，取水路っ，放水路等の経路から流入させない設計とする。具体的な設計内容を以下に示す。．．．	10．6．1．1．2 設計方針 設計基準対象施設は，基準津波に対して安全機能が損な われるおそれがない設計とする。 耐津波設計に当たっては，以下の方針とする。 （1）設計基漼対象施設の津波防櫵対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地において，基準津波による遡上波を地上部から到達又 は流入させない設計とする。，＊た，取水路，，放水路等の経路から流入させない設計とする。具体的な設計内容を以下に示す。	の設備は損傷した場合を考慮して，代替設備により必要な機能を確保する等の対応を行う設計とする。これより，津波から防護すべき施設は，設計基準対象施設のらち「発電用軽水型原子炉施設の安全機能の重要度分類に関する審查指針」で規定されている区（2）（i）－（3）クラス 1 及びクラ ス2に該当する構築物，系統及び機器（以下「津波防檴対象設備」という。）とする。 津波防護対象設備の防護設計においては，津波により津波防護対象設備に波及的影響を及ぼすおそれのある津波防護対象設備以外の施設についても考慮する。 また，重大事故等対処施設及び可搬型重大事故等対処設備についても，設計基準対象施設と同時に必要な機能が損 なわれるおそれがないよう，津波防護対象設備に含める。 （2）（i）－③さらに，津波が地震の随伴事象であること を踏まえっ，耐震Sクラスの施設（津波防護施設，浸水防止設備及び津波監視設備を除く。）を含めて津波防櫵対象設備とする。 なお，津波防護施設，浸水防止設備及び津波監視設備は，入力津波に対して機能を十分に保持できる設計とする。 1.3 津波防護対策 「1．2 入力津波の設定」で設定した入力津波による津波防護対象設備への影響を，津波の敷地への流入の可能性 の有無，漏水による重要な安全機能及び重大事故等に対処 するために必要な機能への影響の有無，津波の流入等によ る重要な安全機能及び重大事故等に対処するために必要 な機能への影響の有無並びに水位変動に伴う取水性低下	具体的な内容は，設置変更許可申請書（本文（五号））「口（2）（i ）a．（a）， （b），（c）」に記載してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（a）（2）（i）a．（a）－（1）設計基準対象施設の津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画は，（2）（i）a．（a）－（2）基準津波による遡上波が到達する可能性があるため，口（2）（i）a．（a）－（3）津波防櫵施設を設置し，津波の流入を防止する設計とする。	a．設計基準対象施設の津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画は，，基集津波によ る遡上波が到達する可能性があるため，津波防護施設を設置し，基準津波による遡上波を地上部から到達又は流入させない設計とする。	及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無の観点から評価することにより，津波防護対策が必要となる箇所を特定して必要な津波防護対策を実施する設計とする。 入力津波の変更が津波防護対策に影響を与えないこと を確認することとし，定期的な評価及び改善に関する手順 を保安規定に定めて管理する。 1．3．1 敷地への流入防止（外郭防護 1） （1）遡上波の地上部からの到達，流入の防止 遡上波による敷地周辺の遡上の状況を加味した浸水高 さの分布を基に，津波防護対象設備（非常用取水設備を除 く。）を内包する建屋及び区画の設置された敷地において，遡上波の地上部からの到達，流入の可能性の有無を評価す る。 流入の可能性に対する裕度評価において，高潮ハザード の再現期間 100 年に対する期待値と，入力津波で考慮した朔望平均満潮位及び潮位のばらつきを踏まえた水位の合計との差を参照する裕度として，設計上の裕度の判断の際 に考慮する。 評価の結果，口（2）（i）a．（a）－（2）遡上波が地上部から到達 し流入するため，ロ（2）（i）a．（a）－（1）䢖波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画（緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第 1 保管エリア，第2保管エリア及び第4保管エリア，緊急時対策建屋並びにガスタービン発電設備タンクピットを除く。）の設置された敷地に，口（2）（i）a．（a）－（3）遡上波の流入を防止するための津波防護施設として，防潮堤を設置 する設計とする。 また，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画のうち，緊急用電気品建屋，可搬型重大事故等対処設備保管場所である第1保管エリア，第2保管エリア及び第4保管エリア，緊急時対策建屋並びにガ スタービン発電設備タンクピットは，津波による遡上波が地上部から到達，流入しない十分高い場所に設置する設計 とする。	設計及び工事の計画の （2）（i）a．（a）－（1）は，設置変更許可申請書（本文（五号））の（2）（i） a．（a）－（1）を具体的に記載しており整合してい る。 設計及び工事の計画の （2）（i）a．（a）－（2）は，設置変更許可申請書（本文（五号））の回（2）（i） a．（a）－（2）と同義であり整合している。 設計及び工事の計画の	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（c）（2）（i）a．（c）－（1）取水路，，放水路等の経路から，津波が流入する可能性について検討した上で，流入の可能性のある経路（毣，開口部，貫通口等）を特定し，．．． （2）（i）a．（c）－（2）必要に応じ津波防護施設及び回 （2）（i）a．（c）－（3）浸水防止設備の浸水対策を施すことによ り，津波の流入を防止する設計とする。	c．取水路，放水路等の経路から，津波が流入する可能性 について検討した上で，流入の可能性のある経路（扉，．．．閉口部っ，貫通口等）を特定し， 必要に応じ浸水対策を施すことにより，津波の流入を防止する設計とする。また， 1 号炉取水路及び 1 号炉放水路 に対しては，津波の流入を防止するため，取放水路流路縮小工を設置するが， 1 号炉に悪影響を及ぼさない設計とす る。	いて算定される時刻歴波形及び津波高さとして設定する。 1.3 津波防護対策 1．3．1 敷地への流入防止（外郭防護 1） （2）取水路，放水路等の経路からの津波の流入防止 （2）（i）a．（c）－（1）津波の流入の可能性のある経路につ ながる循環水采，海水采及び屋外排水路の標高に基づき，許容される津波高さと経路からの津波高さを比較するこ とにより，津波防護対象設備（非常用取水設備を除く。） を包する建屋及び区画の設置された敷地への津波の流入の可能性の有無を評価する。流入の可能性に対する裕度評価において，高潮ハザードの再現期間 100 年に対する期待値と，入力津波で考慮した朔望平均満潮位及び潮位のば らつきを踏まえた水位の合計との差を参照する裕度とし，設計上の裕度の判断の際に考慮する。 評価の結果，流入する可能性のある経路が特定されたこ とから，津波防護対象設備（非常用取水設備を除く。）を内包する建屋及び区画の設置された敷地並びに建屋及び区画への流入を防止するため，口（2）（i）a．（c）－（2）津波防護施設として防潮壁及び取放水路流路縮小工を設置する設計とする。また，ロ（2）（i）a．（c）－（3）浸水防止設備として逆流防止設備，水密扉，浸水防止蓋及び逆止弁付ファンネル を設置並びに貫通部止水処置を実施する設計とする。 防潮壁鋼製扉，水密扉及び浸水防止蓋については，原則閉運用とすることを保安規定に定めて管理する。また，取放水路流路縮小工については，津波防護機能及び第 1 号機 の取水•放水機能を維持する運用を保安規定に定めて管理 する。 上記（1）及び（2）において，外郭防護として設置する津波防護施設及び浸水防止設備については，各地点の入力津波	設計及び工事の計画の （2）（i）a．（c）－（1）は，設置変更許可申請書（本文（五号））の（2）（i） a．（c）－（1）を具体的に記載しており整合してい る。 設計及び工事の計画の （2）（i）a．（c）－（2）は，設置変更許可申請書（本文（五号））の ${ }^{(2)}$（ C （ ） a．（c）－（2）を具体的に記載しており整合してい る。 設計及び工事の計画の （2）（i）a．（c）－（3）は，設置変更許可申請書（本文（五号））の（2）（i） a．（c）－（3）を具体的に記載しており整合してい る。	

（a）取水•放水設備の構造上の特徴等を考慮して，取水•放水施設，地下部等における（2）（i）b．（a）－（1）漏水の可態性を検討した上でっ，漏水が継続することによる浸水範囲を想定（以下「浸水想定範囲」という。）するととも に，同範囲の境界において浸水の可能性のある経路及び浸水口（扉，開口部，貫通口等）を特定し，浸水防止設備を設置することにより浸水範囲を限定する設計とす る。
（b）浸水想定範囲及びその周辺に設計基準対象施設の津波防護対象設備（非常用取水設備を除く。）がある場合 は，防水区画化するとともに，（2）（i）b．（b）－（1）必要に応じて浸水量評価を実施し，安全機能への影響がないこ とを確認する。
（c）浸水想定範囲における長期間の冠水が想定される場合は，（2）（i）b．（c）－（1）必要に応じ排水設備を設置す る。

設置変更許可申請書（添付書類八）該当事項
（2）取水•放水施設，地下部等において，漏水する可能性を考虜の上，漏水による浸水䉐囲を限定して，重要な安全機能への影響を防止する設計とする。具体的な設計内容を以下に示す。
a ．取水•放水設備の構造上の特徴等を考慮して，取水•放水施設，地下部等における漏水の可能性を検討した上 でっ，漏水が継続することによる浸水範囲を想定（以下 10.6 において「浸水想定範囲」という。）するとともに，同範囲の境界において浸水の可能性のある経路及び浸水口（扉，開口部，貫通口等）を特定し，浸水防止設備 を設置することにより浸水範囲を限定する設計とする。
b ．浸水想定範囲及びその周辺に設計基準対象施設の津波防護対象設備（非常用取水設備を除く。）がある場合は，防水区画化するとともに，必要に応じて浸水量評価を害施し，安全機能への影響がないことを確認する。
c．浸水想定範囲における長期間の冠水が想定される場合 は，．．必要に応じ排水設備を設置する。．．．
に対し，設計上の計及び工事の計画を考慮する。

1．3．2 漏水による重要な安全機能及び重大事故等に対処
するために必要な機能への影響防止（外郭防護 2）
（1）漏水対策
（2）（i）b．（a）－（1）経路からの津波が流入する可能性の ある取水•放水設備の構造上の特徴を考慮し，取水•放水施設，地下部等において，津波による漏水が継続すること による浸水範囲を想定（以下「浸水想定範囲」という。） するとともに，当該範囲の境界における浸水想定範囲外に流出する可能性のある経路（扉，開口部，貫通口等）につ いて，浸水防止設備を設置することにより，浸水範囲を限定する設計とする。

さらに，浸水想定範囲及びその周辺にある津波防護対象設備（非常用取水設備を除く。）に対しては，浸水防止設備として，防水区画化するための設備を設置するととも に，ロ（2）（i）b．（b）－（1）防水区画内への浸水による重要な安全機能及び重大事故等に対処するために必要な機能への影響の有無を評価する。

評価の結果，浸水想定範囲における長期間の浸水が想定 される場合は，ロ（2）（i）b．（c）－（1）重要な安全機能及び重大事故等に対処するために必要な機能への影響がないよう，排水設備を設置する設計とする。

1．3．3 津波の流入等による重要な安全機能及び重大事故等に対処するために必要な機能への影響防止（内郭防護）

具体的な内容は，設置変更許可申請書（本文（五号））「ㅁ（2）（i）b．（a）， （b），（c）」に記載してい る。

設計及び工事の計画の （2）（i）b．（a）－（1）は，設置変更許可申請書（本文（五号））の（2）（i ） b．（a）－（1）と同義であり整合している。

設計及び工事の計画の
（2）（i）b．（b）－（1）は，
設置変更許可申請書（本
文（五号））の回（2）（i ）
b．（b）－（1）と同義であり整合している。

設計及び工事の計画の （2）（i）b．（c）－（1）は，設置変更許可申請書（本文（五号））の（2）（i） b．（c）－（1）を具体的に記載しており整合してい る。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
		内郭防護として設置及び実施する浸水防止設備につい ては，貫通口，開口部等の一部分のみが浸水範囲となる場合においても貫通口，開口部等の全体を浸水防護すること により，浸水評価に対して裕度を確保する設計とする。			
d．水位変動に伴う取水性低下による重要な安全機能への影響を防止する。	（4）水位変動に伴ら取水性低下による重要な安全機能へ の影響を防止する。	1．3．4 水位変動に伴ら取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するた めに必要な機能への影響防止 （1）非常用海水ポンプ，大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII）の取水性			
（2）（i ）d．－（1）そのため，原子炬補機冷却海水ポンプ及び	そのため，原子炉補機冷却海水ポンプ及び高圧炉心スプレ	■（2）（i）d．－（1）原子炉補機冷却海水ポンプ及び高圧炉心	設計及び工事の計画の		
高圧炉心スプレイ補機冷却海水ポンプ（以下（2）において	イ補機冷却海水ポンプ（以下 10.6 において「非常用海水	スプレイ補機冷却海水ポンプ（以下「非常用海水ポンプ」	（2）（i）d．－（1）は，設置		
「非常用海水ポンプ」という。）については，	ポンプ」という。）については，	という。）については，評価水位としての海水ポンプ室で の下降側水位と非常用海水ポンプの取水可能水位を比較 し，評価水位が非常用海水ポンプ取水可能水位を下回る可能性の有無を評価する。	変更許可申請書（本文 （五号））の（2）（i ）d． －（1）と同義であり整合 している。		
（2）（i）d．－（2）基漼津波による水位の低下に対して，非常	基漼津波による水位の低下に対して，津波防護施設を設置	評価の結果，口（2）（ i ）d．－（2）海水ポンプ室の下隆側の評	設計及び工事の計画の		
用海水ポンプの取水可能水位を下回る可能性があるため，．．	することにより，	価水位が非常用海水ポンプの取水可能水位を下回ること	口（2）（i）d．－（2）は，設置		
津波防護施設（貯留堰）を設置することにより，		からっ，津波防護施設として，海水を貯留するための貯留㙁	変更許可申請書（本文		
		を設置することで，取水性を確保する設計とする。．．	（五号））のロ（2）（ i ）d． －（2）を具体的に記載し ており整合している。		
非常用海水ポンプが機能保持でき，口（2）（ i ）d．－（3）かつ，	非常用海水ポンプが機能保持でき，かつ，冷却に必要な海	非常用海水ポンプについては，口（2）（ i ）d．－3 湕波によ	設計及び工事の計画の		
泠却に必要な海水が確保できる設計とする。．．	水が確保できる設計とする。．．．	る上昇側の水位恋動に対しても，取水機能が保持できる設計とする。	（2）（i）d．－（3）は，設置変更許可申請書（本文		
		大容量送水ポンプ（タイプI）及び大容量送水ポンプ（タ イプII）についても，入力津波の水位に対して，取水性を確保できるものを用いる設計とする。	（五号））の（2）（ i ）d． －（3）を具体的に記載し ており整合している。		
また，基準津波による水位変動に伴ら砂の移動•堆積及び	また，基準津波による水位変動に伴ら砂の移動•堆積及び	（2）津波の二次的な影響による非常用海水ポンプ，大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイ プII）の機能保持確認 基準津波による水位変動に伴う海底の砂移動•堆積に対			
漂流物に対して取水口，取水路及び海水ポンプ室の通水性	漂流物に対して取水口，取水路及び海水ポンプ室の通水性	して，取水口，取水路及び海水ポンプ室が閉塞することな			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
地震による（2）（i）f．－（1）敷地の隆起•沈降，	地震による僌地の隆起•沈降，	蓋，浸水防止壁，逆止弁付ファンネルを設置するとともに，貫通部止水処置を実施する設計とする。 軽油タンクエリアの浸水に対する浸水防止設備につい ては，内郭防護として流入経路となる開口部に設置する設計とする。 浸水防止設備は，耐性を評価又は試験等により止水性を確認した方法により，止水性を保持する設計とする。 （3）津波監視設備 津波監視設備は，津波の来襲状況を監視可能な設計とす る。津波監視カメラは，波力及び漂流物の影響を受けない位置，取水ピット水位計は波力及び漂流物の影響を受けに くい位置に設置し，津波監視機能が十分に保持できる設計 とする。また，基準地震動 S s に対して，機能を喪失しな い設計とする。設計に当たつては，自然条件（積雪，風荷重）との組合せを適切に考慮する。 津波監視設備のらち津波監視カメラは，非常用電源から給電し，赤外線撮像機能を有したカメラにより，昼夜にわ たり中央制御室から監視可能な設計とする。 津波監視設備のらち取水ピット水位計は，非常用電源か ら給電し，0．P．$-11.25 \mathrm{~m} \sim 0$. P．+19.00 m を測定範囲として，非常用海水ポンプが設置された海水ポンプ室補機ポンプ エリアの上昇側及び下降側の水位を中央制御室から監視可能な設計とする。 1．2 入力津波の設定 1．2．1 遡上波による入力津波 遡上波による入力津波については，遡上への影響要因と して，敷地及び敷地周辺の地形及びその標高，河川等の存在，設備等の設置状況並びに地震による口（2）（i）f．－（1）広域的な隆起•沈降を䎛盧して，遡上波の回り込みを含め敷地への遡上の可能性を評価する。 遡上する場合は，基準津波の波源から各施設•設備の設置位置において算定される津波高さとして設定する。ま た，地震による変状又は繰返し来襲する津波による洗掘•堆積により地形又は河川流路の変化等が考えられる場合 は，敷地への遡上経路に及ぼす影響を評価する。	設計及び工事の計画の （2）（i）f．－（1）は，設計 に用いる遡上波の設定 において，地震による敷地の隆起•沈降を考慮し ており，設置変更許可申請書（本文（五号））の （2）（i）f．－（1）を含ん でおり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
影響， 津波の繰返しロ（2）（i）f．－44の襲来による影響，	地震（本震及び余震）による影響．．． 津波の繰返しの韹来による影響，．．	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 2．自然現象 2.1 地震による損傷の防止 2．1．1 耐震設計 （1）耐震設計の基本方針 e．屋外重要土木構造物，津波防護施設，浸水防止設備及 び津波監視設備並びに浸水防止設備が設置された建物•構築物は，巴（2）（i）f．－（2）基蕉地震動S s による地震力に対して，構造物全体として変形能力（終局耐力時 の変形）について十分な余裕を有するとともに，それで れの施設及び設備に要求される機能が保持できる設計 とする。 ＜中略＞ 【浸水防護施設】（基本設計方針） 1.4 津波防護対策に必要な浸水防護施設の設計 1．4．2 荷重の組合せ及び許容限界 （2）（i）f．－（3）津波防護施設，浸水防止設備及び津波監視設備の設計に当たつては，津波による荷重及び津波以外 の荷重を適切に設定しっそれらの組合せを考慮する。また，想定される荷重に対する部材の健全性や構造安定性につ いて適切な許容限界を設定する。 （1）荷重の組合せ （2）（i）f．－（3）津波と組み合わせる荷重については，，原子炉冷却采統施設の基本設計方針「第1章 共通項目」の らち「2．3 外部からの衝撃による損傷の防止」で設定し ている自然条件（積雪，風荷重）及び余震として考えられ る地震に加え，漂流物による荷重を考盧する。津波による荷重の設定に当たっては，各施設•設備の機能損傷モード に対応した荷重の算定過程に介在する不確かさを考慮し，余裕の程度を検討した上で安全側の設定を行う。 （2）許容限界 津波防護施設，浸水防止設備及び津波監視設備の許容限界は，地震後，津波後の再使用性や，津波の繰返し回 （2）（i）f．－（4）作用を想定し，施設•設備を構成する材料が	設計及び工事の計画の （2）（i）f．－②）は，設置変更許可申請書（本文 （五号））の（2）（i）f． （2）を具体的に記載し ており整合している。 設計及び工事の計画の （2）（i）f．－（3）では，荷重の組合せに余震によ る荷重を考慮しており，設置変更許可申請書（本文（五号））の（2）（i） f．－（3）を含んでおり整合している。 設計及び工事の計画の （2）（i）f．－44では，津波の繰返しの影響を考	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
g．■（2）（i）g．－（1）津波防櫵施設，浸水防止設備及び津波監視設備の設計並びに非虽用海水ポンプの取水性の評価に当たつては，入力津波による水位変動に対して朔望平均潮位を考慮して安全側の評価を塞施する。．．．	（7）津波防護施設，浸水防止設備及び津波監視設備の設計並びに非虽用海水ポンプの取水性の評価に当たって は，入力津波による水位変勲に対して朔望平均潮位を考慮して安全側の評価を寒施する。	【浸水防護施設】（基本設計方針） 1．2 入力津波の設定 1．2．3 水位変動 「1．2．1 遡上波による入力津波」及び「1．2．2 経路か らの津波による入力津波」においては，水位変動として，『（2）（i）g．－（1）塑望平均満潮位 $0 . P .+1.43 \mathrm{~m}$ ，朔望平均干潮位 0. P．－-0.14 m を考盧する。上昇側の水位変動に対しては，潮位のばらつきとして 0.16 m を考盧して設定する。下隆側 の水位変動に対しては，潮位のばらつきとして 0.10 m を考虜して設定する。 1.1 耐津波設計の基本方針 （2）（i）g．－（1）設計基集対象施設及び重大事故等対処施設が設置（変更）許可を受けた基準津波によりその安全性又は重大事故等に対処するために必要な機能が損なわれ るおそれがないよう，遡上への影響要因及び流入経路等を考慮して，設計時にそれぞれの施設に対して入力津波を設定するとともに津波防櫵対象設備に対する入力津波の影響を評価し，影響に応じた津波防護対策を講じる設計とす る． <中略> 1.3 津波防護対策 1．3．4 水位変動に伴ら取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するた めに必要な機能への影響防止 （1）非常用海水ポンプ，大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII）の取水性 ＜中略＞ ロ（2）（i）g．－（1）評価の結果，海水ポンプ室の下隆側の評価水位が非常用海水ポンプの取水可能水位を下回ること から，津波防護施設として，海水を貯留するための貯留堰 を設置することでっ，取水性を確保する設計とする。 ＜中略＞ 1．2 入力津波の設定	設計及び工事の計画の （2）（i）g．－11）は，設置変更許可申請書（本文 （五号））の（2）（i）g． （1）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（2）（i）g．－（2）なお，その他の要因による潮位変憅につ いてもも適切に評価し考慮する。 （2）（i）g．－（3）また，地震により陸域の隆起又は沋隆が想定される場合，想定される地震の震源モデルから算定さ 評価を寒施する。	なおっとの他の要因による潮位変動についても適切に評価し考虜する。．． また，地震により陸域の隆起又は沈隆が想定される場合，想定される地震の震源モデルから算定される繋地の地㪍変動量を考慮して安全側の評価を塞施する。．．．	1．2．3 水位変動 ＜中略＞ 地殼変動については，基準津波の波源である東北地方太平洋沖型の地震による広域的な地殻変動及び平成 23 年 （2011 年）東北地方太平洋沖地震による広域的な地殻変動 を考慮する。 （2）（i）g．－（3）東北地方太平洋沖型の地震による広域的 な地殻変動については，基漼津波の波源モデルを踏まえ て，Mansinha and Smylie（1971）の方法により算定し，水位上俥側で考虜する波源で 0.72 m の沈隆，水位下隆側で耉慮する波源で 0.77 m の沈降を教虜する。．．また，平成 23年（2011 年）東北地方太平洋沖地震による地殻変動につい ては，発電所構内の水準点を用いた水準測量結果から 1 m と設定する。なお，平成 23 年（2011 年）東北地方太平洋沖地震後の余効変動として平成 29 年 4 月時点で約 0.3 m 隆起していることを確認している。 上昇側及び下降側の水位変動に対する安全性評価を実施する際には，平成 23 年（2011 年）東北地方太平洋沖地震による 1 m の沈降を考慮する。 ■（2）（i）g．－（4）以上のことから，上昇側の水位変動に対 して安全性評価を実施する際には，水位上昇側で考慮する波源による 0.72 m の沈隆を考慮する。 一方，下隆側の水位変動に対して安全性評価を塞施する際には，水位下隆側で考盧する波源による 0.77 m の沈降は考虜しない。 ただし，下隆側の水位変動に対する安全性評価を実施す る際には，平成 29 年 4 月までに確認された余効変動によ る約 0.3 m の隆起の影響を考虜する。また，今後も余効変動が継続することを想定し，平成23年（2011年）東北地方太平洋沖地震による庄域的な地殻変動の解消により䋞 1 m 隆起した場合の影響も考慮する。 また，基準津波による入力津波が有する数値計算上の不確かさを考慮することを基本とする。 1.3 津波防護対策 1．3．1 敷地への流入防止（外郭防護 1） （1）遡上波の地上部からの到達，流入の防止	設計及び工事の計画の （2）（i）g．－（2）は，設置変更許可申請書（本文 （五号））の（2）（i）g． （2）を具体的に記載し ており整合している。 設計及び工事の計画の （2）（i）g．－（3）は，設置変更許可申請書（本文 （五号））の（2）（i）g． （3）を具体的に記載し ており整合している。 設計及び工事の計画の （2）（i）g．－4）は，設置変更許可申請書（本文 （五号））の（2）（i）g． －（4）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（（2）（ii）c．－（2）浸水防護をすることにより津波による影響等から隔離する。－ そのため，浸水防護重点化範囲を明確化するとともに，回 （2）（ii）c．－（3）必要に応じて寒施する浸水対策については，「（i））設計基準詨象施設の耐津波設計 1 を適用する。．．． d．水位変動に伴う取水性低下による重大事故等に対処す るために必要な機能への影響を防止する。『（2）（ii）d．－ （1）そのため，非虽用海水ポンプについては，「（i）－設計基準対象施設の耐津波設計」を適用する。	浸水防護をすることにより津波による影響等から隔離す る。－ そのため，浸水防護重点化範困を明確化するとともに，必要に応じて寒施する浸水対策については，「10．6．1．1設計基潐対象施設」を適用する。 （4）水位変動に伴ら取水性低下による重大事故等に対処 するために必要な機能への影響を防止する設計とする。 そのため，非常用海水ポンプについては，「10．6．1．1計基集対象施設」を適用する。	（2）浸水防護重点化範囲の境界における浸水対策 経路からの津波の流入を考慮した浸水範囲及び浸水量 を基に，浸水防護重点化範囲に流入する可能性の有無を評価する。浸水範囲及び浸水量については，地震による溢水 の影響も含めて確認する。地震による溢水については，「2．発電用原子炉施設内における溢水等による損傷の防止」に示す内部溢水にて評価している溢水事象を考慮する。 評価の結果，浸水防護重点化範囲への流入の可能性のあ る経路が特定されたことから，地震による設備の損傷箇所 からの津波の流入を防止するための口（2）（ii）c．－（2）浸水防止設備として，浸水防止壁，水蜜扉及び浸水防止蓋の設置並びに貫通部止水処置を寒施する設計とする。 また，浸水防止設備として設置する水密扉及び浸水防止蓋については，津波の流入を防止するため，扉及び蓋の閉止運用を保安規定に定めて管理する。 内郭防護として設置及び実施する浸水防止設備につい ては，貫通口，開口部等の一部分のみが浸水範囲となる場合においても貫通口，開口部等の全体を浸水防護すること により，浸水評価に対して裕度を確保する設計とする。 1．3．4 水位変動に伴ら取水性低下及び津波の二次的な影響による重要な安全機能及び重大事故等に対処するた めに必要な機能への影響防止 （1）非常用海水ポンプ，大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タイプII）の取水性原子炉補機冷却海水ポンプ及び高圧炉心スプレイ補機泠却海水ポンプ（以下「非常用海水ポンプ」という。）に ついては，評価水位としての海水ポンプ室での下降側水位 と非常用海水ポンプの取水可能水位を比較し，評価水位が非常用海水ポンプ取水可能水位を下回る可能性の有無を評価する。 評価の結果，海水ポンプ室の下降側の評価水位が非常用海水ポンプの取水可能水位を下回ることから，津波防護施設として，海水を貯留するための貯留堰を設置すること で，取水性を確保する設計とする。 なお，大津波警報が発表された場合又は引き波による水位低下が確認された場合に，非常用海水ポンプの取水性を	設計及び工事の計画の （2）（ii）c．－（2）は，設置変更許可申請書（本文 （五号））の（2）（ii）c． －（2）を具体的に記載し ており整合している。 設置変更許可申請書（本文（五号））の（2）（ii） c．－（3）の具体的な内容 は，「ロ（2）（i）設計基準対象施設に対する耐津波設計」に示す。 設置変更許可申請書（本文（五号））の（2）（ii） d．－（1）の具体的な内容 は，「口（2）（i）設計基準対象施設に対する耐津波設計」に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（3）その他の主要な構造 （i）本発電用原子炉施設は，（1）耐震構造，（2）耐津波構造に加え，以下の基本的方針のもとに安全設計を行 う。 a．設計基準対象施設 （a）外部からの衝撃による損傷の防止 （3）（i）a．（a）－（1）安全施設は，発電所敷地で想定される洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑 り，火山の影響，生物学的事象，森林火災及び高潮の自然現象（地震及び津波を除く。）又はその組合せに遭遇した場合において，自然現象そのものがもたらす環境条件及び その結果として施設で生じ得る環境条件においても回 （3）（i）a．（a）－2 安全機能を損なわない設計とする。 なお，発䨌所僌地で想定される自然現象のうち，洪水及 び地滑りについては，立地的要因により設計上考慮する必要はない。	1.1 安全設計の方針 1．1．1 安全設計の基本方針 1．1．1．4 外部からの衝撃による損傷の防止 発電所敷地で想定される自然現象（地震及び津波を除 く。）については，網羅的に抽出するために，発電所敷地及びその周辺での発生実績の有無に関わらず，国内外の基準や文献等に基づき事象を収集し，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災等を考慮する。また，これらの自然現象について関連して発生する自然現象も含める。 これらの事象について，海外の評価基準を考慮の上，発電所及びその周辺での発生の可能性，安全施設への影響度，発電所敷地及びその周辺に到達するまでの時間余裕及 び影響の包絡性の観点から，発電用原子炉施設に影響を与 えるおそれがある事象として，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災及び高潮を選定する。 安全施設は，これらの自然現象（地震及び津波を除く。）又はその組合せに遭遇した場合において，自然現象そのも のがもたらす環境条件及びその結果として施設で生じ得 る環境条件においても，安全機能を損なわない設計とす る．．． なお，発電所敷地で想定される自然現象のうち，洪水及 び地滑りについては，立地的要因により設計上考慮する必要はない。	【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 2．自然現象 2.3 外部からの衝撃による損傷の防止 （3）（i）a．（a）－（1）設計基準対象施設は，，外部からの衝撃 のうち自然現象による損傷の防止において，発電所敷地で想定される風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災及び高潮の自然現象 （地震及び津波を除く。）又は回（3）（i）a．（a）－（2）a 地震及び津波を含む自然現象の組合せに遭遇した場合において，自然現象そのものがもたらす環境条件及びその結果として施設で生じ得る環境条件において，（3）（i）a．（a）－（2）b の安全性を損なうおそれがある場合は，防護措置，基碟地盤の改良その他っ，供用中における運転管理等の運用上の適切な措置を講じる。 ＜中略＞ 2．3．1 外部からの衝撃より防護すべき施設 設計基準対象施設が外部からの衝撃によりその安全性 を損ならことがないよう，外部からの衝撃より防護すべき施設は，設計基準対象施設のうち，口（3）（i）a．（a）－（3）a，「発䨌用軽水型原子炬施設の安全機能の重要度分類に関する審查指針」で規定されているクラス 1 ，クラス 2 及び安全評価上その機能に期待するクラス 3 に属する構築物，系統	設計及び工事の計画の （3）（i）a．（a）－1 の 「設計基準対象施設」 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a）－（1）の「安全施設」を含んでおり整合 している。 設計及び工事の計画の （3）（i）a．（a）－（2）aの自然現象の組合せは，設置変更許可申請書（本文 （五号））の（（3）（ i ）a． （a）－（9）の記載を含んで おり整合している。 設計及び工事の計画の （3）（i）a．（a）－（2）bは，設置変更許可申請書（本文（五号））の（3）（i） a．（a）－（2）を具体的に記載しており整合してい る。 設置変更許可申請書（本文（五号））で設計上の考慮を不要としている。 設計及び工事の計画の （3）（i ）a．（a）－（3）aの 「外部事象防護対象施設」及びロ（3）（i）a．（a） －（3）bの「上記以外の設計基準対象施設」は，設	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（a）－（3）上記妘加六，重要安全施設は，科学的技術的知見を踏まえ，当該重要安全施設に大きな影響を及 ぼすおえれがあると想定される自然現象により当該重要安金施設に作用する衝撃及び設計基準事故時に生じる回 （3）（i）a．（a）－（4）底力について，それぞれの困果関係及ぴ時間的変化を考慮して適切に組あ合わせる。	上記に加え，重要安全施設は，科学的技術的知見を踏ま远，当該重要安全施設に大きな影響を及ぼすおそれがある と想定される自然現象により当該重要安全施設に作用す子㣫撃及ひ設計基準事故時に生じる応力について，それぞ れの因果關係及び時闑的変化を考盧して適切に組み合わ せる。	及び機器（以下「外部事䱏防櫵対潒施設」という。）とす る。また，外部事象防護対象施設の防護設計については，外部からの㣫撃により外部事象防護対象施設に波及的影響を及ぼすおそれのある外部事象防護対象施設以外の施設についても考慮する。さらに，重大事故等対処設備につ いても，重大事故防止設備が，設計基準事故対処設備並び に使用済燃料䙹蔵槽（使用済燃料プール）の泠却設備及び注水設備（以下「設計基準事故対処設備等」といら。）の安全機能と同時に必要な機能が損なわれることがないよ ら，外部からの衝撃より防護すべき施設に含める。 （3）（i）a．（a）－（3）b 記以外の設計基漼対象施設につい ては，（3）（i）a．（a）－（3）C 機能を維持すること惹しくは損傷を考虜して代替設備により必要な機能を碓保すること，安全上支障のない期間での修復等の対店を行うこと又は それらを適切に組あ合わせることにより，その安全性を損 なわない設計とする。 2．3．2 設計基準事故時及び重大事故等時に生じる荷重と の組合せ 科学的技術的知見を踏まえ，（3）（i）a．（a）－（3）外部事象防護対象施設及び重大事故等対処設備のらち，特に自然現象（地震及び津波を除く。）の影響を受けやすく，かつ，代替手段によってその機能の維持が困難であるか，又はそ の修復が著しく困難な構築物，系統及び機器は，，建屋内に設置すること，又は可搬型重大事故等対処設備によるバッ クアップが可能となるように位置的分散を考慮して可搬型重大事故等対処設備を複数保管すること等により，当該施設に大きな影響を及ぼすおそれがあると想定される自然現象（地震及び津波を除く。）により作用する衝撃が設計基準事故時及び重大事故等時に生じる（3）（i）a．（a） （4）荷重と重なり合わない設計とする。 具体的には，建屋内に設置される外部事象防護対象施設及び重大事故等対処設備については，建屋によって自然現象（地震及び津波を除く。）の影響を防止することにより，設計基準事故又は重大事故等が発生した場合でも，自然現象（地震及び津波を除く。）による影響を受けない設計と する。	置変更許可申請書（本文 （五号））の（3）（i）a． （a）－（1） 「安全施設」 を示している。 設計及び工事の計画の （3）（i）a．（a）－（3） の 「上記以外の設計基準対象施設」の設計は，設置変更許可申請書（本文 （五号））の（3）（i）a． （a）－（2）を具体的に記載 しており整合している。 設計及び工事の計画の 「外部事象防護対象施設」は，「クラス1，ク ラス 2 に属する構築物，系統及び機器及び安全評価上その機能に期待 するクラス3に属する構築物，系統及び機器」で あり，設置変更許可申請書（本文（五号））の回 （3）（i）a．（a）－（3）を含 んでおり整合している。 設計及び工事の計画の （3）（i）a．（a）－（4）につ いて，設計及び工事の計画の添付書類「VI－1－1－ 2－1 発電用原子炉施設	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
設の安全性を損なわせる原因となるおそれがある事象で あって人為によるもの（故意によるものを除く。）に対し て，ロ（3）（i）a．（a）－（1）安全施設が安全機能を損なわないた めに必要な安全施設以外の施設又は設備等（重大事故等対処設備を含む。）への措置を含める。 （ $\mathrm{a}-1$ ）風（台風） （3）（i）a．（a－1）－（1）安全施設は，設計基準風速による風荷重に対し，安全施設及び安全施設を内包する建屋の構造健全性の確保若しくは風（台風）による損傷を考盧して，代替設備により必要な機能を確保すること，安全上支障の ない期間での修復等の対応を行うこと又はそれらを適切	人為によるもの（故意によるものを除く。）に対して，安全施設が安全機能を損なわないために必要な安全施設以外の施設又は設備等（重大事故等対処設備を含む。）～の措置を含める。 1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （外部からの衝撃による損傷の防止） 第六条 適合のための設計方針 第1項について （2）風（台風） <中略 > 安全施設は，「建築基準法」及び同施行令第87条第2項及び第 4 項に基づく「建設省告示第1454号」を参照し，設計基準風速（ $30 \mathrm{~m} / \mathrm{s}$ ，地上高 $10 \mathrm{~m}, ~ 10$ 分間平均）の風（台風） が発生した場合においても，安全機能を損なわない設計と する。 ＜中略＞ また，上記以外の安全施設については，風（台風）に対 して機能を維持すること若しくは風（台風）による損傷を耉慮して代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと又はそれ らを適切に組み合わせることにより，その安全機能を損な	（3）（i）a．（a）－（11）設計基蕉対象施設が安全性を損なわない ために必要な設計基準対象施設以外の施設又は設備等（重大事故等対処設備を含む。）への措置を含める。 重大事故等対処設備は，外部からの衝撃による損傷の防止において，想定される自然現象（地震及び津波を除く。）及び人為事象に対して，「5．1．2 多様性，位置的分散等」及び「5．1．5 環境条件等」の基本設計方針に基づき，必要な機能が損なわれることがないよう，防護措置その他の適切な措置を講じる。 設計基準対象施設又は重大事故等対処設備に対して講 じる防護措置として設置する施設は，その設置状況並びに防護する施設の耐震重要度分類及び重大事故等対処施設 の設備分類に応じた地震力に対し構造強度を確保し，外部 からの衝撃を考慮した設計とする。 2．3．3 設計方針 外部事象防護対象施設及び重大事故等対処設備は，以下 の自然現象（地震及び津波を除く。）及び人為事象に係る設計方針に基づき設計する。 自然現象（地震及び津波を除く。）のうち森林火災，人為事象のらち爆発，近隣工場等の火災，危険物を搭載した車両及び有毒ガスの設計方針については「c．外部火災」 の設計方針に基づき設計する。 なお，危険物を搭載した車両については，近隣工場等の火災及び有毒ガスの中で取り扱う。 （1）自然現象 d．風（台風） （3）（i）a．（a－1）－①外部事象防護対象施設は，風荷重を －．－建築基準法」に基づき設定し，外部事象防護対象施設及 び外部事象防護対象施設を内包する建屋の構造健全性を確保することで，外部事象防櫵対象施設の安全機能を損な わない設計とする。	設置変更許可申請書（本文（五号））の回（3）（i） a．（a）－（10）と同義であり整合している。 設計及び工事の計画の （3）（i）a．（a）－（11）は，設置変更許可申請書（本 文（五号））の（3）（i） a．（a）－（11）を全て含んで おり整合している。 設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－1）－ （1）は，設置変更許可申		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
に組み合わせることでっその安全機能を損なわない設計と する。 （a－2）竜巻 （3）（i）a．（a－2）－①安全施設は，想定される童巻が発生 した場合においても，作用する設計荷重に対して，その安全機能を損なわない設計とする。 （3）（i）a．（a－2）－（2）また，安全施設は，過去の竜巻被害状況及び発電所のプラント配置から想定される童巻に随伴 する事象に対して，安全機能を損なわない設計とする。	わない設計とする。 ＜中略＞ 1．8．2 竜巻防護に関する基本方針 1．8．2．1 設計方針 （1）竜巻に対する設計の基本方針 安全施設が童巻に対して，発電用原子炬施設の安全性を確保するために必要な安全機能を損なわないよう，基準童巻，設計童卷及び設計荷重を適切に設定し，以下の事項に対して，対策を行い，建屋による防護」，構造健全性の維持っ代替設備の確保等によって，安全機能を損なわない設計と する。 また，安全施設は，設計荷重による波及的影響によって，安全機能を損なわない設計とする。	重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能 と同時にその機能を損なわない設計とする。 （1）自然現象 a．童巻 （3）（i）a．（a－2）－（1）外部事象防檴対象施設は，童券防檴 に係る設計時に，設置（変更）許可を受けた最大風速 $100 \mathrm{~m} / \mathrm{s}$ の童卷（以下「設計童巻」という。）が発生した場合につ いて童鉃より防護す心゙き施設に作用する荷重を設定し，外部事象防櫵対象施設が安全機能を損なわないよう，それぞ れの施設の設置状沉等を考慮して影響評価を実施し，外部事象防護対象施設が安全機能を損なうおそれがある場合 は，影響に応じた防護措置その他の適切な措置を講じる設計とする。 また，重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置することにより，設計基準事故対処設備等の安全機能と同時にその機能を損な わない設計とする。 さらに，外部事象防護対象施設に波及的影響を及ぼす可能性がある施設の影響及び竜巻の随伴事象による影響に ついて考慮した設計とする。 なお，定期的に新知見の確認を行い，新知見が得られた場合に評価を行らことを保安規定に定めて管理する。 （b）竜巻に対する影響評価及び竜巻防護対策 ＜中略＞ （3）（i）a．（a－2）－②童巻随伴事象を考慮する施設は，過去の竜巻被害の状況及び発電所における施設の配置から童巻の随伴事象として想定される火災，溢水及び外部霊源噩失による影響を考慮し，童卷の随伴事象に対する影響評価を菶施し，外部事象防護対象施設及び重大事故等対処設備に竜巻による随伴事象の影響を及ぼさない設計とする。	請書（本文（五号））の ロ（3）（i）a．（a－1）－（1）と 同義であり整合してい る。 設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－2） （1）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－2）－（1）と同義であり整合してい る。 設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－2） （2）は，設置変更許可申請書（本文（五号））の	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
『（3）（i）a．（a－2）－8）飛来物の登生防止対策として，飛来物となる可能性のあるもののらち，資機材，車両等につい ては，飛来した場合の運動エネルギー又は貫通力が設定す る設計飛来物より大きなものに対し，固縛，固定又は防護 すごき施設からの䍜隔を実施する。．．	飛来物の発生防止対策については，現地調查により抽出 した飛来物や登霫所に持ち込まれる資機村，車两等の寸法，質量及び形状から飛来の有無を判断し，運動エネルギ一及び貫通力を乽慮して，㣫突時に建屋等又は童巻飛来物防護対策設備に与えるエネルギー又は貫通力が設計飛来物のらち鋼製材によるものより大きく，外部事象防護対象施設等を防護できない可能性があるものは固縛，固定又は評価対像施設等からの離隔を実施し，碓寒に飛来物となら ない運用とする。	飛来物の㣫撃荷重としては，『（3）（i）a．（a－2）－8）設置 （変更）許可を受けた設計飛来物である鋼製材（長さ 4.2 m \times 幅 $0.3 \mathrm{~m} \times$ 高さ 0.2 m ，質量 135 kg ，飛来時の水平速度 $46.6 \mathrm{~m} / \mathrm{s}$ ，飛来時の鋁直速度 $16.7 \sim 34.7 \mathrm{~m} / \mathrm{s})$ よりも運動工 ネルギ又は貫通力が大きな重大事故等対处設備，資機材等 は設置場所及び障害物の有無を考盧し，固䋘，固定又は外部事象防櫵対潒施設等からの壦限を実施すること，並びに車両については入構管理及び退避を実施することにより飛来物とならない措置を講じることから，設計飛来物が衝突する場合の荷重を設定することを基本とする。さらに，設計飛来物に加えて，竜巻の影響を考慮する施設の設置状況その他環境状況を考慮し，評価に用いる飛来物の衝突に よる荷重を設定する。 なお，飛来した場合の運動エネルギ又は貫通力が設計飛来物である銅製材よりも大きな重大事故等対処設備，資機材等については，その保管場所，設置場所及び障害物の有無を考慮し，外部事象防䕶対象施設，飛来物の衝突により外部事象防護対象施設の安全機能を損なわないよう設置 する防護措置（以下「防謢対策施設」という。）及び外部事象防護対象施設を内包する施設に衝突し，外部事象防護対象施設の機能に影響を及ぼす可能性がある場合には，固縛，固定又は外部事象防護対象施設等からの離隔によっ て，浮き上がり又は横滑りにより外部事象防護対象施設の機能に影響を及ぼすような飛来物とならない設計とする。 重大事故等対処設備，資機村等の固縳，固定又は外部事象防護対象施設からの離隔を実施すること，並びに車両に ついては，入構管理及び退据を実施することを保安規定に定めて管理する。 （b）竜巻に対する影響評価及び竜巻防護対策屋外の外部事象防護対象施設は，安全機能を損なわない よう，設計荷重に対して外部事象防護対象施設の構造強度評価を実施し，要求される機能を維持する設計とすること を基本とする。 屋内の外部事象防護対象施設については，設計荷重に対 して安全機能を損なわないよう，外部事象防護対象施設を内包する施設により防護する設計とすることを基本とし，外気と慗がっている屋内の外部事象防護対象施設及び建	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－2）－ 8は，設置変更許可申請書（本文（五号））の \qquad同義であり整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		屋等による飛来物の防護が期待できない屋内の外部事象防護対象施設は，加わるおそれがある設計荷重に対して外部事象防護対象施設の構造強度評価を実施し，安全機能を損なわないよう，要求される機能を維持する設計とするこ とを基本とする。 外部事象防護対象施設の安全機能を損ならおそれがあ る場合には，防護措置その他の適切な措置を講じる設計と する。 屋外の重大事故等対処設備は，竜巻による風圧力による荷重に対し，設計基準事故対処設備等及び同じ機能を有す る他の重大事故等対処設備と位置的分散を考慮した配置 とすることにより，重大事故等に対処するために必要な機能を有効に発揮する設計とする。 また，屋外の重大事故等対処設備は，その保管場所及び設置場所を考慮し，外部事象防護対象施設及び防護対策施設に衝突し，外部事象防護対象施設の機能に影響を及ぼす可能性がある場合には，浮き上がり若しくは横滑りを拘束 することにより，飛来物とならない設計とする。ただし，浮き上がり又は横滑りを拘束する車両の重大事故等対処設備のうち，地震時の移動等を考慮して地震後の機能を維持する設備は，重大事故等に対処するために必要な機能を損なわないよう，余長を有する固縛で拘束する。 屋内の重大事故等対処設備は，竜巻による風圧力による荷重に対し，設計基準事故対処設備等の安全機能と同時に重大事故等に対処するために必要な機能を損なわないよ らに，重大事故等対処設備を内包する施設により防護する設計とすることを基本とする。 防護措置として設置する防護対策施設としては，竜巻防護ネット（ネット（金網部）（硬鋼線材：線径 $\phi 4 \mathrm{~mm}$ ，網目寸法 50 mm 及び 40 mm ），防護板（炭素鋼：板厚 8 mm 以上）及 び支持部材により構成する。）及び竜巻防護鋼板（防護鋼板（炭素鋼：板厚 8 mm 以上）及び架構により構成する。） を設置し，内包する外部事象防護対象施設の機能を損なわ ないよう，外部事象防護対象施設の機能喪失に至る可能性 のある飛来物が外部事象防護対象施設に衝突することを防止する設計とする。防護対策施設は，地震時において外部事象防護対象施設に波及的影響を及ぼさない設計とす る。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a－3）凍結 （3）（i）a．（a－3）－①安全施設は，設計基準温度による凍結に対し，a（3）（ i ）a．（a－3）－（2）安全施設及び安全施設を内包する建屋の構造健全性の確保若しくは凍結を考慮して，代替設備により必要な機能を確保することっ安全上支障の ない期間での修復等の対応を行うこと又はそれらを適切 に組み合わせることで，その安全機能を損なわない設計と する。	1．10．3 発電用原子炉設置変更許可申請（平成25年12月27日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （外部からの衝撃による損傷の防止） 第六条 適合のための設計方針 第1項について （4）逨結 石巻特別地域気象観測所での観測記録（1887 年～2017 年）によれば，最低気温は $-14.6^{\circ} \mathrm{C}$（1919年1月6日）で ある。 安全施設は，設計基準温度（ $-14.6^{\circ} \mathrm{C}$ ）の低温が発生し た場合においても，安全機能を損なわない設計とする。 その上で，外部事象防檴対象施設等は，上顀記雟測記録を耆慮し，屋内施設については換気空調系により環境温度を維持し，屋外施設については保温等の凍結防止対策を必要 に底じて行うことにより，安全機能を損なわない設計とす	外部事象防護対象施設及び重大事故等対処設備を内包 する施設については，設計荷重に対する構造強度評価を実施し，内包する外部事象防護対象施設及び重大事故等対処設備の機能を損なわないよう，飛来物が内包する外部事象防護対象施設及び重大事故等対処設備に衝突することを防止可能な設計とすることを基本とする。飛来物が内包す る外部事象防護対象施設及び重大事故等対处設備に衝突 し，その機能を損ならおそれがある場合には，防護措置そ の他の適切な措置を講じる設計とする。 また，外部事象防護対象施設及び重大事故等対処設備 は，設計荷重により，機㭜的及び機能的な波及的影響によ り機能を損なわない設計とする。外部事象防護対象施設に対して，重大事故等対処設備を含めて機械的な影響を及ぼ す可能性がある施設は，設計荷重に対し，当該施設の倒壊，損壊等により外部事象防護対象施設に損傷を与えない設計とする。当該施設が機能喪失に陥った場合に外部事象防護対象施設も機能喪失させる機能的影響を及ぼす可能性 がある施設は，設計荷重に対し，必要な機能を維持する設計とすることを基本とする。 ＜中略＞ （1）自然現象 e．速結 （3）（i）a．（a－3）－（1）外部事象防櫵対象施設は，設計基集温度による涑結に対して，『（3）（i）a．（a－3）－（2）屋内施設に ついては換気坴調系により睘境温度を維持し，屋外施設に ついては保温等の谏結防止対策を必要に底じて行うこと により，安全機能を損なわない設計とする。 重大事故等対処設備は，建屋内への設置又は設計基淮事故対处設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能	設計及び工事の計画の「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－3） （1）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－3）－（1）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（ $\mathrm{a}-4$ ）降水 （3）（i）a．（a－4）－①安全施設は，設計基漼隆水量による浸水及び荷重に対し，安全施設及び安全施設を内包する建屋の構造健全性の確保若しくは隆水による損傷を考慮し て，代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで，その安全機能を損なわない設計とする。	る。 また，上記以外の安全施設については，低温による涷結 に対して機能を維持すること若しくは低温による涷結を考慮して代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと又はそれ らを適切に組み合わせることにより，その安全機能を損な わない設計とする。 （5）降水 石巻特別地域気象観測所での観測記録（1937 年～2017年）によれば，最大 1 時間降水量は 91.0 mm （2014 年 9 月 11日）である。 安全施設は，発電用原子炉施設内において設計基準降水量（ $91.0 \mathrm{~mm} / \mathrm{h}$ ）の降水が発生した場合においても，安全機能を損なわない設計とする。 その上で，外部事象防護対潒施設等は，設計基淮降水量 （ $91.0 \mathrm{~mm} / \mathrm{h}$ ）の降水に対し，排水口及び構内排水路による䅉域への排水，浸水防止のための建屋止水処置等により，安全機能を損なわない設計とする。 また，上䜠以外の安全施設については，隆水に対して機能維持すること若しくは降水による損傷を考慮して代替設備により必要な機能を碓保することっ，安全上支障のない期間での修復等の対底を行うこと又はそれらを適切に組 み合わせることにより，安全機能を損なわない設計とす る。 なお，「森林法」に基づく林地開発許可に関する審査基準等を示した「森林法に基づく林地開発許可申請の手引き （平成 26 年 2 月宮城県）」によると，発電所敷地におけ る対象区域の確率雨量強度は「気仙沼（三陸）」に分類さ れ， 10 年確率で想定される雨量強度は $88.11 \mathrm{~mm} / \mathrm{h}$ であり，設計基準降水量に包絡される。 ここで，降水に関連して発生する可能性がある自然現象 としては，土石流，土砂崩れ及び地滑りが考えられるが，敷地には，土石流，士砂崩れ及び地滑りの素因となるよう な地形の存在は認められないことから，安全施設の安全機	と同時にその機能を損なわない設計とする。 f．降水 （3）（i）a．（a－4）－（1）外部事象防護対象施設は，降水によ る浸水に対して，設計基漼降水量を上回る排水能力を有す る構内排水路による海域への排水及び建屋止水処置を行 ら設計とする。 降水による荷重に対して，排水口及び構内排水路による海域への排水により，外部事象防護対象施設及び外部事象防護対象施設を内包する建屋の構造健全性を確保するこ とで，外部事象防護対象施設の安全機能を損なわない設計 とする。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，環境条件等を考慮することにより，設計基準事故対処設備等の安全機能 と同時にその機能を損なわない設計とする。	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－3） （2）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－3）－（2）を具体的に記載しており整合している。 設計及び工事の計画の「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－4） （1）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－4）－1）と同義であり整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（a－7）火山の影響 （3）（i）a．（a－7）－（1）安全施設は，発電所の運用期間中に おいて発電所の安全機能に影響を及ぼし得る火山事象と して口（3）（i）a．（a－7）－（2）設定した層厚 15 cm ，粒径 2 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態）$\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）の降下火砕物に対し，（口）（ i ）a．（ $\mathrm{a}-7$ ）－（3）以下のような設計 とすることにより降下火砕物による直接的影響に対して機能維持すること若しくは隆下火砕物による損傷を考慮 して，代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応又はそれらを適切に組 み合わせることで，その安全機能を損なわない設計とす る。	雷が発生した場合においても，安全機能を損なわない設計 とする。 その上で，外部事象防護対象施設等の雷害防止対策とし て，原子炉建屋等への避雷針の設置，接地網の敷設による接地抵抗の低減等を行うとともに，安全保護系への雷サー ジ侵入の抑制を図る回路設計を行うことにより，安全機能 を損なわない設計とする。 また，上記以外の安全施設については，落雷に対して機能を維持すること苦しくは落雷による損傷を㐗慮して，代替設備により必要な機能を確保すること，安全上支障のな い期間での修復等の対応を行うこと又はそれらを適切に組学合わせることにより，安全機能を損なわない設計とす る。 （9）火山の影響 外部事象防護対象施設等は，隆下火硞物による真接的影響及び閴接的影響が発生した場合においても，安全機能を損なわないよう以下の設計とする。	重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置するとともに，必要に応じ避雷設備又は接地設備により防護することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわな い設計とする。 b．火山 （3）（i）a．（a－7）－（1）外部事象防檴対象施設は，発電所の運用期間中において発電所の安全性に影響を及ぼし得る火山事象としてロ（3）（i）a．（a－7）－（2）設置（変更）許可を受 けた降下火砕物の特性を設定し，その降下火砕物が発生し た場合においても，外部事象防護対象施設が回 （3）（i）a．（a－7）－③）安全機能を損ならおそれがない設計と する。 重大事故等対処設備は，建屋内への設置又は設計基準事故対処設備等及び同じ機能を有する他の重大事故等対処設備と位置的分散を図り設置することにより，設計基準事故対処設備等の安全機能と同時にその機能を損なわない設計とする。 なお，定期的に新知見の碓認を行い，新知見が得られた場合に評価することを保安規定に定めて管理する。 （a）防護設計における降下火砕物の特性の設定設計に用いる降下火砕物は，設置（変更）許可を受けた （ ${ }^{\circ}$ ）（i）a．（a－7）－（2）a 層厚 15 cm ，粒径 2 mm 以下，密度 $0.7 \mathrm{~g} / \mathrm{cm}^{3}$（乾燥状態）$\sim 1.5 \mathrm{~g} / \mathrm{cm}^{3}$（湿潤状態）と設定する。 （b）降下火砕物に対する防護対策 降下火磼物の影響を考慮する施設は，降下火磼物による「直接的影響」及び「間接的影響」に対して，以下の適切	（3）（i）a．（a－6）－（1）と同義であり整合してい る。 設計及び工事の計画の ロ（3）（i）a．（a－7）－（1） は，設置変更許可申請書 （本文（五号））の回（3） （i ）a．（a－7）－（1）と同義 であり整合している。 設計及び工事の計画の ロ（3）（i）a．（a－7）－（2）a を含む設計及び工事の計画の凹（3）（ i ）a．（a－ 7）－（2）は，設置変更許可申請書（本文（五号）） の口（3）（ i ）a．（a－7）－（2 と同義であり整合して いる。 設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－7）－ （3）は，設置変更許可申請書（本文（五号））の	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（a－7）－（7）換気系，電気采及び計測制御系に対 する機械的影響（閉塞）に対して降下必砕物が唚入しに くい設計とすること	－換気系，電気系及び計測制御系の機械的影響（閉塞）に対して隆下火䂠物が侵入しにくい設計とすること	下火硞物に対し，機能を損ならおそれがないよう，隆下火砤物の粘㣱に対し十分な流路幅を設けることにより，水循嘸系の㷋险部が閉塞しない設計とする。 ii．『（3）（i）a．（a－7）－（7）換気系，電気系及び計測制御系に対する機械的影響（閉塞） 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ばし得る施設のらち，韭虽用ディーゼル発電機（高压炬心スプレイ采ディーゼル登電機を含む。） は，吸気口上流側の外気取入口にルーバを設置し，下側かっ ら吸い远す構造とすることにより，降下火㸴物が流路に侵 外配管）は，排気筒の排気により隆下火砤物を侵入し難く することで排気流路が閣塞しない設計とする。 また，外気を取り入れる韭虽用換気空調系（外気取入口）及び非虽用ディーゼル発電機（高圧炳心スプレイ系ディー ぜル発電機を含む。）の空気の流路にえれでれだグフィル多を設置することにより，フィイタタツシュより大きな隆下火磼物が内部に侵入しにくい設計とし，更に隆下火砕物 がフィルタタ付着した場合でも取替え又は清掃が可能な構造とすることで，隆下火砤物により閉塞しない設計とす る． 非常用ディーゼル機関及び高圧炬心スプレイ系ディー ゼル機関は，フィルタを通過した小さな粒径の降下火砕物 が侵入した場合でも，降下火砕物により閉塞しない設計と する。 非常用換気空調系（外気取入口）以外の降下火砤物を含 む空気の流路となる換気系，電気系及び計測制御系の施設 についても，降下火碎物に対し，機能を損ならおそれがな いよう，降下火砤物が假入しにくい構造，又は降下火劯物 が侵入した場合でも，降下火砤物により流路が閉塞しない設計とする。 なお，降下火砕物により閉塞しないよう外気取入ダンパ の閉止，換気空調系の停止又は事故时運転モードへ切替え ることを保安規定に定めて管理する。 （八）摩耗	（i）a．（a－7）－6）を具体的に記載しており整合 している。 設計及び工事の計画の （3）（i）a．（a－7）－（7） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（a－7）－77を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
－発電所周辺の大気汚染に対して中央制御室換気空調系は降下火砕物が侵入しにくく，さらに外気を遮断できる設計とすること	－発電所周辺の大気污染に対して中央制御室換気空調系は降下火砕物が侵入しにくく，さらに外気を遮断できる設計とすること	宜除去することにより，降下火砤物による腐食に対して，設計基準事故対処設備等の安全機能と同時に重大事故等対処設備の重大事故等に対処するために必要な機能が損 なわれるおそれがない設計とする。 なお，降下火砕物により腐食の影響が生じないよう，屋外の重大事故等対処設備氾堆積する降下火碎物を適宜除去することを保安規定に定めて管理する。 ii．水循睘系の化学的影響（腐食） 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のらち，（3）（i）a．（a－7）－回隆下火砕物を含ま海水の流路となる施設については，隆下火砕物に対し，機能を損ならおそれがないよう，耐食性 のある材料の使用又は棌装等を塞施することにより，隆下炗砤物による短期的な腐食が発生しない設計とする。 なお，長期的な腐食の影響については，日常保守管理等 により，状況に応じて補修が可能な設計とする。 iii．換気系，電気系及び計測制御系に対する化学的影響（腐食） 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のうち，（3）（i）a．（a－7）－ （9）隆下火硤物を含き空気の流路となる換気系，電気系及ぴ計測制御系の施設については，隆下火火砕物に対し，機能を損ならおそれがないよう，耐食性のある村料の使用又は塗装を寒施することにより，隆下火砕物による短期的な腐食 が発生しない設計とする。 なお，長期的な腐食の影響については，日常保守管理等 により，状涀に応じて補修が可能な設計とする。 （木）発電所周辺の大気污染 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のらち，中央制御室換気空調系については，降下火砕物に対し，機能を損ならおそれ がないよう，バグフィルタを設置することにより，降下火砕物が中央制御室に侵入しにくい設計とする。 また，中央制御室換気空調系については，外気取入ダン パの閉止及び事故時運転モードとすることにより，中央制			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		（口）閉塞 ii ．換気系，電気系及び計測制御系に対する機械的影響（閉塞） 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のうち，非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。） は，吸気口上流側の外気取入口にルーバを設置し，下側か ら吸い込む構造とすることにより，降下火砕物が流路に侵入しにくい設計とする。排気筒及び非常用ガス処理系（屋外配管）は，排気筒の排気により降下火砕物を侵入し難く することで排気流路が閉塞しない設計とする。 （3）（i）a．（a－7）－（10）また，外気を取り入れる非常用換気空調系（外気取入口）及び非常用ディーゼル発電機（高圧灲心スプレイ系ディーゼル発電機を含む。）の空気の流路 にそれぞれバグフィルタを設置することにより，フィルタ メッシュより大きな降下煠物が内部に侵入しにくい設計とし，更に隆下火砕物がフィルタに付着した場合でも取替え又は清掃が可能な構造とすることで，隆下火砕物によ り閉塞しない設計とする。 非常用ディーゼル機関及び高圧炉心スプレイ系ディー ゼル機関は，フィルタを通過した小さな粒径の降下火砕物 が侵入した場合でも，降下火砕物により閉塞しない設計と する。 非常用換気空調系（外気取入口）以外の降下火砕物を含 む空気の流路となる換気系，電気系及び計測制御系の施設 についても，降下火砕物に対し，機能を損ならおそれがな いよう，降下火砕物が侵入しにくい構造，又は降下火砕物 が侵入した場合でも，降下火砕物により流路が閉塞しない設計とする。 なおっ，隆下火砕物により閉塞しないよう外気取入ダンパ の閉止，換気空調系の停止又は事故時運転モードー切替え ることを保安嫢定に定めて管理する。．．． （ホ）発電所周辺の大気污染 外部事象防護対象施設等及び外部事象防護対象施設等 に波及的影響を及ぼし得る施設のうち，（3）（i）a．（a－7）－ （10）中央制御室換気空調系については，隆下火砕物に対し，機能を損ならおそれがないようっバグフィルタを設置する			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（a－9）口（3）（i）a．（a－9）－（1）外部火災（森林火災，爆発及 び近隣工場等の火災） 安全施設は，想定される外部火災において，最も厳しい火災が発生した場合においても安全機能を損なわない設計とする。 （3）（i）a．（a－9）－②）想定される森林火災の延焼防止を目的として，発電所周辺の植生を確認し，作成した植生デ ータ等を基に求めた最大火線強度（ $4,428 \mathrm{~kW} / \mathrm{m}$ ）から算出 される防火帯（約 20m）を敷地内に設ける。	1．8．9 外部火災防護に関する基本方針 1．8．9．1 設計方針 安全施設が外部火災（火災•爆発（森林火災，近隣工場等の火災•爆発，航空機隊落火災等））に対して，発電用原子炉施設の安全性を確保するために想定される最も厳 しい火災が発生した場合においても必要な安全機能を損 なわないよう，防火帯の設置，離隔距離の確保，建屋によ る防護，代替手段等によって，安全機能を損なわない設計 とする。 外部火災によってその安全機能が損なわれないことを確認する必要がある施設を，安全重要度分類のクラス 1 ， クラス 2 及びクラス 3 に属する構築物，系統及び機器とす る。 外部火災によってその安全機能が損なわれないことを確認する必要がある施設のうち，外部事象防護対象施設 は，防火帯の設置，離隔距離の確保，建屋による防護等に より安全機能を損なわない設計とする。 想定する外部火災として，森林火災，近隣の産業施設の火災•爆発，発電所敷地内に設置する危険物貯蔵施設等の火災及び航空機墜落による火災を選定する。外部火災にて想定する火災を第1．8．9－1表に示す。 また，想定される火災及び爆発の二次的影響（ばい煙等） に対して，安全施設の安全機能を損なわない設計とする。 1．8．9 外部火災防護に関する基本方針 1．8．9．1 設計方針 （2）森林火災 「原子力発電所の外部火災影響評価がイド」を参照し，発電所周辺の植生及び過寺10年閴の気象条件を調查し，発電所から直線距離10kmの間に発火点を設定し，森林火災シ ミュレーション解析コード（以下「FARSITE」とい う。）を用いて影響評価を穽施し，森林火災の延焼を防ぐ ための手段として防火帯を設け，火炎が防火帯外縁に到達 するまでの時間，評価対象施設への熱影響及び危険距離を評価し，，必要な防火帯幅，，評価対象施設との離隔距離を確保すること等により，評価対象施設の安全機能を損なわな い設計とする。	c．\quad（3）（ i ）a．（a－9）－（1）外部火災 想定される外部火災において，火災源を発電所敷地内及 び敷地外に設定し外部事象防護対象施設に係る温度や距離を算出し，それらによる影響評価を行い，最も厳しい火災が発生した場合においても安全機能を損なわない設計 とする。 外部事象防護対象施設は，防火帯の設置，離隔距離の確保，建屋による防護によって，安全機能を損なわない設計 とする。 重大事故等対処設備は，「5．1．2 多様性，位置的分散等」 のうち，位置的分散を考慮した設計とする。 外部火災の影響については，定期的な評価の実施を保安規定に定めて管理する。 （a）防火帯幅の設定に対する設計方針 ロ（3）（ i ）a．（a－9）－（2）自然現象として想定される森林火災については森林火災シミュレーション解析コードを用 いて求めた最大火線強度（ $4,428 \mathrm{~kW} / \mathrm{m}$ ）から設定し，設置 ．．．変更）許可を受けた防火帯（約 20m）を敷地内に設ける設計とする。 また，防火帯は延焼防止効果を損なわない設計とし，防火帯に可燃物を含む機器等を設置する場合は必要最小限 とする。 （b）発電所敷地内の火災•爆発源に対する設計方針 ＜中略＞	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－9） （1）は，設置変更許可申請書（本文（五号））の ロ（3）（i）a．（a－9）－ 1 と同義であり整合してお り，設置変更許可申請書 （本文（五号））の「森林火災，爆発及び近隣工場等の火災」について は，設計及び工事の計画 の「2．3．3（1）c．（a）， （b），（c），（d），（e）」にて示す。 設計及び工事の計画の （3）（i）a．（a－9）－（2） は，設置変更許可申請書 （本文（五号））の（3） （i ）a．（a－9）－（2）と同義 であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
防火帯は延焼防止効果を損なわない設計とし，防火帯に可燃物を含む機器等を設置する場合は必要最小限とする。	a ．森林火災の想定 （a）森林火災における各樹種の可燃物量は，宮城県及び東北森林管理局から入手した森林簿データと現地調査等により得られた樹種を踏まえて補正した植生を用い る。また，林齢は，樹種を踏まえて地面草地の可燃物量 が多くなるように保守的に設定する。 f．防火帯幅の設定 FARSITEから出力される最大火線強度 （ $4,428 \mathrm{~kW} / \mathrm{m}$（発火点 1 ））により算出される防火帯幅 19.7 m に対し，約 20 m の防火帯幅を確保することにより評価対象施設の安全機能を損なわない設計とする。 防火帯は延焼防止効果を損なわない設計とし，防火帯に可燃物を含む機器等を設置する場合は必要最小限とする。設置する防火帯について，第1．8．9－1図に示す。	－森林火災については，発電所周辺の植生を確認し，作成 した植生デー夕等を基に求めた防火帯の外縁（火災側） における火炎輻射発散度（建屋及び復水貯蔵タンク評価 においては $477 \mathrm{~kW} / \mathrm{m}^{2}$ ，排気筒評価においては $367 \mathrm{~kW} / \mathrm{m}^{2}$ ， その他評価においては $\left.408 \mathrm{~kW} / \mathrm{m}^{2}\right)$ を用いて危険距離を求 め評価する。 －発電所敷地内に設置する危険物貯蔵施設等の火災につい ては，貯蔵量等を勘案して火災源ごとに建屋表面温度及 び屋外の外部事象防護対象施設の温度を求め，評価す る。 －航空機墜落による火災については，「実用発電用原子炉施設への航空機落下確率の評価基準について」（平成 $21 \cdot 06 \cdot 25$ 原院第 1 号（平成 21 年 6 月 30 日原子力安全•保安院一部改正））により墜落確率が 10^{-7}（回／炉•年） となる面積及び離隔距離を算出し，外部事象防護対象施設への影響が最も厳しくなる地点で火災が起こること を想定し，建屋表面温度及び屋外の外部事象防護対象施設の温度を求め，評価する。 －敷地内の危険物貯蔵施設等の火災と航空機墜落火災の重畳については，各々の火災の評価条件により算出した輻射強度，燃焼継続時間等により，外部事象防護対象施設 の受熱面に対し，最も厳しい条件となる火災源と外部事象防護対象施設を選定し，建屋表面温度及び屋外の外部事象防護対象施設の温度を求め評価する。 （a）防火帯幅の設定に対する設計方針 ＜中略＞ また，防火帯は延焼防止効果を損なわない設計とし，防火帯に可燃物を含む機器等を設置する場合は必要最小限 とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（a－9）－（3）また。森林火災による熱影響につい ては，最大火炎輻射強度の影響を考慮した場合において も，離隔距離の碓保等により安全施設の安全機能を損なわ ない設計とする。	1．8．9 外部火災防護に関する基本方針 1．8．9．1 設計方針 （2）森林火災 g ．評価対象施設への熱影響 森林火災の直接的な影響を受ける評価対象施設への影響評価を寒施し，離隔距離の確保，建屋による防護により，評価対象施設の安全機能を損なわない設計とする。 なお，影響評価に用いる火炎輻射強度は，F A R S I T Eから出力される反応強度から求める。 （a）火災の想定 i）森林火災による熱を受ける面と森林火災の火炎輻射強度が発する地点が同じ高さにあると仮定し，離隔距離 は最短距離とする。 ii）森林火災の火炎は，円筒火炎モデルとする。火炎の高さは燃焼半径の 3 倍とし，燃焼半径から円筒火炎モデ ルの数を算出することにより火炎到達幅の分だけ円筒火炎モデルが横一列に並ぶものとする。 （b）原子炉建屋，タービン建屋，制御建屋への熱影響火炎輻射発散度 $477 \mathrm{~kW} / \mathrm{m}^{2}$（火炎輻射強度 $477 \mathrm{~kW} / \mathrm{m}^{2}$ ）とな る「発火点1」に基づき算出する，防火帯の外縁（火炎側） から最も近くに位置する原子炉建屋（垂直外壁面及び天井 スラブから選定した，火災の輻射に対して最も厳しい箇所）の表面温度を，火災時における短期温度上昇を考慮し た場合のコンクリート圧縮強度が維持される保守的な温度である $200^{\circ} \mathrm{C}$ 以下とし，かつ換気空調系等による除熱に より建屋内の温度上昇を抑制することで，当該建屋内の外部事象防護対象施設の安全機能を損なわない設計とする。 （c）排気筒への熱影響 火炎輻射発散度 $367 \mathrm{~kW} / \mathrm{m}^{2}$（火炎輻射強度 $408 \mathrm{~kW} / \mathrm{m}^{2}$ ）とな る「発火点2－1」に基づき算出する排気筒の温度を，鋼材 の強度が維持される温度である $325^{\circ} \mathrm{C}$ 以下とすることで，排気筒の安全機能を損なわない設計とする。 （d）復水貯蔵タンクへの熱影響 火炎輻射発散度 $408 \mathrm{~kW} / \mathrm{m}^{2}$（火炎輻射強度 $408 \mathrm{~kW} / \mathrm{m}^{2}$ ）とな る「発火点2－1」に基づき算出する復水貯蔵タンクの温度	c．外部火災 （3）（i）a．（a－9）－③想定され豕外部火災において，火災源を発電所敷地内及び敷地外记設定し外部事象防護対象施設に係る温度や距催を算出し，それらによる影響評価を行い，最も厳しい火災が発生した場合においても安全機能 を損なわない設計とする。 ＜中略＞ （b）発電所敷地内の火災•爆発源に対する設計方針火災•爆発源として，森林火災，発電所敷地内に設置す る屋外の危険物タンク，危険物貯蔵所，常時危険物を貯蔵 する一般取扱所及び危険物を内包する貯蔵設備以外の設備（以下「危険物貯蔵施設等」といら。）の火災•爆発，航空機渼落による火災及び數地内の危険物販蔵施設等の火災と航空機䧛落による火災が同時に発生した場合の重畳火災を想定し，（3）（i）a．（a－9）－（3）火災源からの外部事象防護対象旗設への熱影響を評価する。 なお，発電所敷地内には屋外で爆発する可能性のある設備を設置していないことからガス爆発によって評価対象施設の安全機能が損なわれることはない。 外部事象防護対象施設の評価条件を以下のように設定 し，評価する。評価結果より火災源ごとに輻射強度，燃焼継绱時間等を求め，外部事象防護対象施設を内包する建屋 （垂直外壁面及び天井スラブから選定した，火災の輻射に対して最も厳しい箇所）の表面温度が訪容温度（ $200^{\circ} \mathrm{C}$ ） となる危険距離及び屋外の外部事象防護対象施設の温度 が許容温度（排気筒の表面温度 $325^{\circ} \mathrm{C}$ 並びに復水貯蔵タン クの貯留水を使用する補給水系の系統最高使用温度 $66^{\circ} \mathrm{C}$並びに原子炉補機泠却海水ポンプの泠却空気温度を上部軸受の機能維持に必要な $40^{\circ} \mathrm{C}$ 及び下部軸受の機能維持に必要な $55^{\circ} \mathrm{C}$ 並びに高圧炉心スプレイ補機泠却海水ポンプ の椧却空気温度を上部軸受及び下部軸受の機能維持に必要な温度である $55^{\circ} \mathrm{C}$ ）となる危険距離を算出し，その危険距離を上回る離隔距離を碓保する設計，又は建屋表面温度	設計及び工事の計画の 「2．3．1 外部からの衝 撃より防護すべき施設」 及び口（3）（i）a．（a－9） （3）は，設置変更許可申 請書（本文（五号））の （3）（i）a．（a－9）－3 と 同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（3）（i）a．（a－9）－4）発電所敷地又はその周辺で想定さ れる発電用原子炬施設の安全性を損なわせる原因となる おそれがある事象であって人為によるもの（故意によるも のを除く。）として，想定される近隣の産業施設の火災•爆発については，離隔距離の確保により安全施設の安全機能を損なわない設計とする。	を，復水貯蔵タンクの貯留水を使用する復水補給水系の系統最高使用温度である $66^{\circ} \mathrm{C}$ 以下とすることで，復水貯蔵夕 ンクの安全機能を損なわない設計とする。 （e）原子炉補機冷却海水ポンプへの熱影響 火炎輻射発散度 $408 \mathrm{~kW} / \mathrm{m}^{2}$（火炎輻射強度 $408 \mathrm{~kW} / \mathrm{m}^{2}$ ）とな る「発火点2－1」に基づき算出する原子炉補機冷却海水ポ ンプへの泠却空気の温度を，上部軸受の機能維持に必要な温度である $40^{\circ} \mathrm{C}$ 以下とすること及び下部軸受の機能維持 に必要な温度である $55^{\circ} \mathrm{C}$ 以下とすることで，原子炬補機冷却海水ポンプの安全機能を損なわない設計とする。 （f）高圧灲心スプレイ補機冷却海水ポンプーのの熱影響火炎輻射発散度 $408 \mathrm{~kW} / \mathrm{m}^{2}$（火炎輻射強度 $408 \mathrm{~kW} / \mathrm{m}^{2}$ ）とな る「発火点2－1」に基づき算出する高圧炉心スプレイ補機泠却海水ポンプへの泠却空気の温度を，上部軸受及び下部軸受の機能維持に必要な温度である $55^{\circ} \mathrm{C}$ 以下とすること で，高圧炉心スプレイ補機冷却海水ポンプの安全機能を損 なわない設計とする。 1．8．9 外部火災防護に関する基本方針 1．8．9．1 設計方針 （3）近隣産業施設の火災•爆発 「原子力発電所の外部火災影響評価ガイド」を参照し，発電所敷地外 10 km 以内の産業施設を抽出した上で発電所 との離隔距離を確保すること及び発電所敷地内で火災を発生させるおそれのある危険物貯蔵施設等を選定し，危険物貯蔵施設等の燃料量と評価対象施設との離隔距離を考慮して，輻射強度が最大となる火災を設定し，直接的な影響を受ける評価対象施設への熱影響評価を行い，離隔距離 の確保等により，評価対象施設の安全機能を損なわない設計とする。	及び屋外の外部事象防護対象施設の温度を算出し，その温度が許容温度を満足する設計とする。 －森林火災については，発電所周辺の植生を確認し，作成 した植生データ等を基に求めた防火帯の外縁（火災側） における火炎輻射発散度（建屋及び復水貯蔵タンク評価 においては $477 \mathrm{~kW} / \mathrm{m}^{2}$ ，排気筒評価においては $367 \mathrm{~kW} / \mathrm{m}^{2}$ ， その他評価においては $408 \mathrm{~kW} / \mathrm{m}^{2}$ ）を用いて危険距離を求 め評価する。 －発電所敷地内に設置する危険物貯蔵施設等の火災につい ては，貯蔵量等を勘案して火災源ごとに建屋表面温度及 び屋外の外部事象防護対象施設の温度を求め，評価す る。 また，燃料補充用のタンクローリ火災が発生した場合 の影響については，燃料補充時は監視人が立会を実施す ることを保安規定に定めて管理し，万一の火災発生時は速やかに消火活動が可能とすることにより，外部事象防護対象施設に影響がない設計とする。 －航空機墜落による火炎については，「実用発電用原子炉施設への航空機落下確率の評価基準について」（平成 $21 \cdot 06 \cdot 25$ 原院第 1 号（平成 21 年 6 月 30 日原子力安全•保安院一部改正））により墜落確率が 10^{-7}（回／炉•年） となる面積及び離隔距離を算出し，外部事象防護対象施設への影響が最も厳しくなる地点で火災が起こること を想定し，建屋表面温度及び屋外の外部事象防護対象施設の温度を求め，評価する。 ＜中略＞ （c）発電所敷地外の火災•爆発源に対する設計方針 （3）（i）a．（a－9）－44）発電所敷地外での火災•爆発源に対 して，必要な離隔距離を確保することで，外部事象防護対象施設の安全機能を損なわない設計とする。 －発電所敷地外 10 km 以内の範囲において，火災により発電用原子炉施設に影響を及ぼすような石油コンビナー ト施設は存在しないため，火災による発電用原子炉施設 への影響については考慮しない。 －発電所敷地外半径 10 km 以内の産業施設，燃料輸送車両及び漂流船舶の火災については，外部事象防護対象施設	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－9） （4）は，設置変更許可申請書（本文（五号））の ロ（3）（i）a．（a－9）－44と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（3）（i）a．（a－9）－（5）また，想定される発電所敷地内に設置する危険物貯蔵施設等の火災及び航空機墜落による火災については，離隔距離を確保することっその火災による損傷を考慮して代替設備により必要な機能を確保するこ と又はそれらを適切に組み合わせることでっその安全施設 の安全機能を損なわない設計とする。外部火災による屋外施設への影響については，屋外施設の温度を許容温度以下 とすることで安全施設の安全機能を損なわない設計とす る。	発電所敷地外 10 km 以内の範囲において，石油コンビナー ト施設を調查した結果，当該施設は存在しないことを碓認 している。 なお，発電所に最も近い石油コンビナート地区は西南西約 40 km の塩釜地区及び仙台地区である。 （3）近隣産業施設の火災•爆発 e．発電所敷地内に設置する危険物貯蔵施設等の火災•爆発 （a）火災の影響 発電所敷地内に設置する危険物貯蔵施設等の火災によ る直接的な影響を受ける評価対象施設への影響評価を実施し，離隔距離の確保，建屋による防護等により，評価対象施設の安全機能を損なわない設計とする。 < 中略 > （4）航空機墜落による火災 「原子力発電所の外部火災影響評価ガイド」を参照し，航空機墜落による火災について落下カテゴリごとに選定 した航空機を対象に，直接的な影響を受ける，評価対象施設への影響評価を実施し，離隔距離の確保及び建屋による防護により，評価対象施設の安全機能を損なわない設計と する。 また，航空機墜落による火災と発䨌所敷地内の危険物貯蔵施設等による火災の重畳を考慮する設計とする。	を内包する建屋（垂直外壁面及び天井スラブから選定し た，火災の輻射に対して最も厳しい箇所）の表面温度が許容温度となる危険距離及び屋外の外部事象防護対象施設の温度が許容温度となる危険距離を算出し，その危険距離を上回る離隔距離を確保する設計とする。 なお，漂流船舶の火災については，発電所敷地外半径 10 km を主要航路とする船舶が存在しないことから，発電所内の港湾施設に入港する船舶の中で燃料の積載量が最大である船舶の火災を想定する。 －発電所敷地外半径 10 km 以内の産業施設，燃料輸送車両及び漂流船舶の爆発については，ガス爆発の爆風圧が 0.01 MPa となる危険限界距離を算出し，その危険限界距離を上回る離隔距離を確保する設計とする。また，ガス爆発による容器破損時に破片の最大飛散距離を算出し，最大飛散距離を上回る離隔距離を確保する設計とする。 なお，漂流船舶の爆発については，爆発のおそれがあ る船舶が発電所敷地外半径 10 km 以内を航行していない ため，船舶の爆発による発電用原子炉施設への影響につ いては考慮しない。 c．外部火災 源を発電所敷地内及び敷地外に設定し外部事象防護対象施設に係る温度や距離を算出し，それらによる影響評価を行い，最も厳しい火災が発生した場合においても安全機能 を損なわない設計とする。 外部事象防護対象施設は，防火帯の設置，，離隔距離の確保，建屋による防護によって，安全機能を損なわない設計 とする。 ＜中略＞ （b）発電所敷地内の火災•爆発源に対する設計方針 火災•爆発源として，森林火災，発電所敷地内に設置す る屋外の危除物タンク，危険物貯蔵所，虽時危険物を貯蔵 する一般取扱所及び危険物を内包する貯蔵設備以外の設備（以下「危険物貯蔵施設等」という。）の火災•爆発，	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－9） （5）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－9）－（5）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		航空機噇落による火災及び數地内の危除物則蔵施設等の			
		火災と航坴機隚落による少災が同時に発生した場合の重			
		㫫火災を想定し，火災源からの外部事象防護対象施設への			
		熱影響を評僄する。．．．			
		なおっ，発電所敷地内には屋外で爆発する可能性のある設			
		備を設置していないことからがス爆発によって評価対象			
		施設の安全機能が損なわれることはない。			
		外部事象防護対象施設の評価条件を以下のように設定			
		し，評偠する。評価結果より火災源ごとに輻射強度，燃焼			
		継続時間等を求め，外部事象防護対象施設を内包する建屋			
		（垂直外壁面及び天井スラブから選定した，火炎の輻射に			
		対して最も厳しい䈏所）の表面温度が許容温度（ $200^{\circ} \mathrm{C}$ ）			
		となる危険距離及び屋外の外部事象防護対象施設の温度			
		が許容温度（排気筒の表面温度 $325^{\circ} \mathrm{C}$ 並びに復水貯蔵タン			
		の貯留水を使用する補給水系の系統最高使用温度 $66^{\circ} \mathrm{C}$			
		並びに原子炬補機泠却海水ポンプの椧却空気温度を上部			
		軸受の機能維持に必要な $40^{\circ} \mathrm{C}$ 及び下部軸受の機能維持に			
		必要な $55^{\circ} \mathrm{C}$ 並び化高圧炬心スプレイ補機冷却海水ポンプ			
		の泠却空気温度を上部軸受及び下部軸受の機能維持に必			
		要な温度である $55^{\circ} \mathrm{C}$ ）となる危険距離を算出し，その危険			
		距離を上回る催隔距攡を確保する設計，又は建屋表面温度			
		及び屋外の外部事象防護対象施設の温度を算出し，その温			
		度が許容温度を満足する設計とする。			
		－森林火災については，発電所周辺の植生を碓認し，作成			
		した植生データ等を基に求めた防火帯の外縁（火災側）			
		こおける火炎輻射発散度（建屋及び復水貯蔵タンク評価			
		こおいては $477 \mathrm{kW/m} / \mathrm{m}^{2}$ ，排気筒評価こういては $367 \mathrm{~kW} / \mathrm{m}^{2}$ ，			
		その他評価においては $\left.408 \mathrm{~kW} / \mathrm{m}^{2}\right)$ を用いて危険距催を求			
		め評価する。			
		発電所數地内に設置する危険物貯蔵施設等の火災につい			
		，貯蔵量等を勘案して火炏源ごとに建屋表面温度及			
		び屋外の外部事象防護対象施設の温度を求め，評価す			
		。			
		空機渼落による火災については，「実用発電用原子炉			
		施設への航空機落下確率の評亚基準について」（平成			
		$21 \cdot 06 \cdot 25$ 原院第 1 号（平成 21 年 6 月 30 日原子力安全•			
		保安院一部改正）以より隒落碓率が 10^{-7}（回／炉•年）			
		となる面積及び離隔距離を算出し，外部事象防詨対象施			

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（a－9）－⑥また，外部火災の二次的影響である ばい煙及び有毒ガスによる影響については，換気空調系等 に適切な防櫵対策を講じることで安全施設の安全機能を損なわない設計とする。	1．8．9 外部火災防護に関する基本方針 1．8．9．1 設計方針 （5）二次的影響（ばい煙等） 外部火災による二次的影響として，ばい煙等による影響 を抽出し，外気を取り达整評価対象施設を抽出した上でった．．．第1．8．9－5表の分類のとおり評価を行い，必要な場合は対策を実施することで評価対象施設の安全機能を損なわな い設計とする。	設への影響が最も厳しくなる地点で火災が起こること を想定し，建屋表面温度及び屋外の外部事象防護対象施設の温度を求め，評価する。 －敷地内の危険物貯蔵施設等の火災と航空機积落火災の重畳については，各々の火災の評価条件により算出した輻射強度，燃㳣継続時間等により，外部事象防護対象施設 の受熱面に対し，最も厳しい条件となる火災源と外部事象防護対象施設を選定し，建屋表面温度及び屋外の外部事象防護対象施設の温度を求め評価する。 （d）ロ（3）（i）a．（a－9）－（6）二次的影響（ばい煙）に対する設計方針 屋外に開口しており空気の流路となる設備及び換気空調系統に対し，ばい煙の侵入を防止するため，適切な防護対策を講じることで外部事象防檴対象施設の安全機能を損なわない設計とする。 イ．換気空調系 外部火災によるばい煙が発生した場合には，侵入を防止 するためフィルタを設置する設計とする。… なお，室内に滞在する人員の環境劣化を防止するため に，ばい煙の侵入を防止するよう外気取入ダンパの閉止及 び事故時運転モードへの切替えによる外気の遮断を保安規定に定めて管理する。 口．安全保護装置 外部事象防櫵対象施設のうち空調采統にて空調管理さ れており間接的に外気と接する安全保櫵装置盤について は，フィルタを設置することによりばい煙が侵入しにくい設計とする。．． 八．非常用ディーゼル発電機（高圧炬心スプレイ采ディー ゼル発電機を含む。） 非常用ディーゼル発電機（高圧烪心スプレイ系ディーゼ ル発電機を含す。）については，フィルタを設置すること によりばい煙が侵入しにくい設計とする。．．． また，ばい煙が侵入したとしてもばい煙が流路に溜まり にくい構造としっばい煙により閉塞しない設計とする。．．．	設計及び工事の計画の 「2．3．1 外部からの衝撃より防護すべき施設」及びロ（3）（i）a．（a－9） （6）は，設置変更許可申請書（本文（五号））の （3）（i）a．（a－9）－（6）を具体的に記載しており整合している。	

（a－13）電磁的障害

（3）（1）a．（a－13）－1安全施設は，電磁的障害による擾乱に
対し，制御盤へ入線する䨌源受電部へのラインフィルタや絶縁回路の設置，外部からの信另入出力部へのラインフィ ルタや絶縁回路の設置，鋼製筐体や金属シールド付ケーブ ルの適用等により，安全施設の電磁的障害に対する健全性 の確保若しくは霓磁的障害による損傷を考慮してっ，代替設備により必要な機能を確保すること，安全上支障のない期間での修復等の対応を行うこと又はそれらを適切に組み合わせることで，その安全機能を損なわない設計とする。

設置変更許可申請書（添付書類八）該当事項

小型船舶が発電所近傍で漂流した場合でも，防波堤等に衝突して止まることから取水性を損ならことはない。ま た，万が一防波堤を通過し，カーテンウォール前面に小型船舶が到達した場合であっても，吞み口が広いため，取水性を損なうことはない。
船舶の座礁により，重油流出事故が発生した場合は，オ
イルフェンスを設置する措置を講じる。
したがって，船舶の衝突によって取水路が閉塞すること はなく，安全施設が安全機能を損なうことはない。

（7）電磁的障害

安全保護系は，電磁的障害による擾乱に対して，制御盤 へ入線する電源受䕞部へのラインフィルタや絶縁回路の設置，外部からの信号入出力部へのラインフィルタや絶縁回路の設置，鋼製筐体や金属シールド付ケーブルの適用等 により，影響を受けない設計としている。
したがつて，電磁的障害により安全施設の安全機能を損
なうことはない。
設計及び工事の計画 該当事項

た場合でも，防波堤等に衝突して止まること及び天み口が広く，取水性を損なわないことから，船舶の衝突により安全機能を損なわない設計とする。
重大事故等対処設備は，航路からの離隔距離を確保する
こと，小型船舶が発電所近傍で漂流した場合でも，防波堤等に衝突して止まること及び設計基準事故対処設備等と位置的分散を図り設置することにより，船舶の衝突により取水性を損なわない設計とする。
b．電磁的障害
（3）（1）a．（a－13）－11外部事象防護対象施設及び重大事故
等対処設備のうち電磁波に対する考虜が必要な機器は，電
磁波によりその機能を損なうことがないよう，ラインフィ ルタや絶縁回路の設置，又は鋼製筐体や金属シールド付ケ ーブルの適用等により，電磁波の侵入を防止する設計とす
る。

航空機の墜落

重大事故等対処設備は，建屋内に設置するか，又は屋外 において設計基準事故対処設備等と位置的分散を図り設置する。

撃より防護すべき施設」
及びロ（3）（1）a．${ }^{\text {a }}$－12）－1
は，設置変更許可申請書 (本文 (五号)) の (3)
（1）a．（a－12）－11 と同義
あり整合している。

設計及び工事の計画の「2．3．1 外部からの衝撃より防護すべき施設」及び凹（3）（1）a．（a－13）－1 は，設置変更許可申請書 （本文（五号））の回（3） （1）a．（a－13）－1）と同義で あり整合している

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（c）火災による損傷の防止 設計基準対象施設は，火災により発電用原子炉施設の安全性を損なわないよう，火災防護対策を講じる設計とす る。 火災防護対策を講じる設計を行らに当たり，原子炉の高温停止及び低温停止を達成し，維持するための口（3）（i）a． （c）－（1）安全機能を有する構築物，系統及び機器を設置する区域を火災区域及び火災区画に設定し，放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置す る区域を火災区域に設定する。	1．6 火災防護に関する基本方針 1．6．1 設計基準対象施設の火災防護に関する基本方針 1．6．1．1 基本事項 設計基準対象施設は，火災により発電用原子炉施設の安全性を損なわないよう，火災防護対策を講じる設計とす る。 火災防護対策を講じる設計を行らに当たり，原子炉の高温停止及び低温停止を達成し，維持するための安全機能を直する構築物，系統及び機器を設置する区域を火災区域及 び火災区画に，放射性物質の貯蔵又は閉じ込め機能を有す る構築物，系統及び機器を設置する区域を火災区域に設定 する。 （3）原子炉の高温停止及び低温停止を達成し，維持する ために必要な構築物，系統及び機器 設計基準対象施設のうち，重要度分類に基づき，発電用原子炉施設において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な以下の機能を確保するための構築物，系統及び機器を「原子炉の高温停止及び低温停止を達成し，維持するために必要な構築物，系統及び機器」として選定する。 （1）原子炉冷却材圧力バウンダリ機能 （2）過剰反応度の印加防止機能 （3）炉心形状の維持機能 （4）原子炉の緊急停止機能 （5）未臨界維持機能 （6）原子炉泠却材圧力バウンダリの過圧防止機能 （7）原子炉停止後の除熱機能 （8）炬心冷却機能 （9）工学的安全施設及び原子炉停止系への作動信号の発生機能 （10）安全上特に重要な関連機能	【火災防護設備】（基本設計方針） 1．火災防護設備の基本設計方針 設計基準対象施設は，火災により発電用原子炉施設の安全性を損なわないよう，火災防護上重要な機器等を設置す る火災区域及び火災区画に対して，火災防護対策を講じ \qquad 発電用原子炉施設は，火災によりその安全性を損なわな いように，適切な火災防護対策を講じる設計とする。火災防護対策を講じる対象として「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」のクラス 1 ，ク ラス 2 及び安全評価上その機能を期待するクラス 3 に属す る構築物，系統及び機器とする。 火災防護上重要な機器等は，上記構築物，系統及び機器 のうち原子炉の高温停止及び低温停止を達成し，維持する ために必要な構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器とす る。 原子炉の高温停止及び低温停止を達成し，維持するため に必要な構築物，系統及び機器は，発電用原子炉施設にお いて火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために（3）（i）a．（c）－（1）必要な以下 の機能を確保するための構築物，系統及び機器とする。 （1）原子炬冷却材圧力バウンダリ機能 （2）過利反応度の钢加防止機能 （3）権心形状の維持機能 （4）原子炬の緊急停止機能 （5）未臨界維持機能 （6）原子炬冷却材圧力バウンダりの過圧防止機能 （7）原子炬停止後の除熱機能 （8）炬心冷却機能 （9）工学的安全施設及び原子炬停止系への作動信号の発生機能 （10）安全上特に重要な関連機能	設計及び工事の計画の （3）（i）a．（c）－（1）は，設置変更許可申請書（本文（五号））の回（3）（i） a．（c）－（1）と同義であり整合している。 以下同じものは扊災 1 とし省略する。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
建屋内のうち，火災の影響軽減の対策が必要な原子炉の	火災の影響軽減の対策が必要な，原子炉の高温停止及び	建屋内のらち，火災の影響軽減の対策が必要な原子炉の			
高温停止及び低温停止を達成し，維持するための安全機能	低温停止を達成し，維持するための安全機能を有する構築	高温停止及び低温停止を達成し，維持するための安全機能	口（3）（ i ）a．（c－1－1）－（2）		
を有する構築物，系統及び機器並びに放射性物質の貯蔵又	物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機	を有する構築物，系統及び機器並びに放射性物質の貯蔵又	は，設置変更許可申請書		
は閉じ込め機能を有する構築物，系統及び機器を設置する	態を有する構築物，系統及び機器を設置する火災区域は，	は閉じ込め機能を有する構築物，系統及び機器を設置する	（本文（五号））の凹（3）		
火災区域は，口（3）（ i ）a．（ $\mathrm{c}-1-1)-$－ 2 3 時間以上の耐火能力	3 時間以上の耐火能力を有する耐火壁として，3時間耐火	火炎区域は，3 時間以上の耐火能力を有する耐火壁として，	（i）a．（c－1－1）－（2）を具		
を有する耐火壁，天井及び床により隣接する他の火災区域	に設計上必要なコンクリート壁厚である 150 mm 以上の壁厚	3 時間耐火に設計上必要なコンクリート壁厚である 150 mm	体的に記載しており整		
と分離するよう設定する。	を有するコンクリート壁や火災耐久試験により 3 時間以	以上の壁厚を有するコンクリート壁や火災耐久試験によ	合している。		
	上の耐火能力を有することを確認した耐火壁（貫通部シー	り凹（3）（i）a．（c－1－1）－（2） 3 時間以上の耐火能力を有するこ			
	ル，防火扉，防火ダンパ）により隣接する他の火災区域と分離するように設宣する	とを確認した耐火壁（貫通部シール，防火扉，防火ダンパ） により隣接する他の火災区域と分離するように設定する			
		火災区域又は火災区画のファンネルは，煙等流入防止装置の設置によって，他の火災区域又は火災区画からの煙の流入を防止する設計とする。			
屋外の火災区域は，他の区域と分離して火災防護対策を	また，屋外の火災区域は，他の区域と分離して火災防護	屋外の火災区域は，他の区域と分離して火災防護対策を			
	対策を実施するために，「（2）－安全機能を有する構築物っ．	実施するために，火災2，火災防護上重要な機器等を設置す			
護対策を講じる安全機能を有する構築物，系統及び機器の	系統及び機器」において選定する機器を設置する区域を，	る区域及び重大事故等対処施設の配置を考慮するととも			
抽出」に示す安全機能を有する構築物，系統及び機器を設	火災区域として設定する。	に，延焼防止を考慮した管理を踏まえた区域を火災区域と			
直する区域を火火火火域として設定する。		この延焼防止を考慮した管理については，保安規定に定 めて，管理する。			
また，火災区画は，建屋内及び屋外で設定した火災区域	また，火災区画は，建屋内及び屋外で設定した火災区域	火災区画は，建屋内及び屋外で設定した火災区域を口（3）	設計及び工事の計画の		
を吅（3）（ i ）a．（c－1－1）－③系統分離等に応じて分割して設	を系統分離等，機器の配置状況に応じて分割して設定す	（ i ）a．（c－1－1）－33系統分離の状況及び壁の設置状況並び	口（3）（ i ）a．（c－1－1）－3		
定する。	る。	に重大事故等対処施設と設計基準事故対処設備の配置に応じて分割して設定する。	は，設置変更許可申請書 $\text { (本文 (五号)) の }{ }^{(2)}$		
		＜中略＞	（i）a．（c－1－1）－（3）を具		
			体的に記載しており整		
（c－1－2）火災防護対策を講じる安全機能を有する構築 物，系統及び機器の抽出	（2）安全機能を有する構築物，系統及び機器	1．火災防護設備の基本設計方針 ＜中略＞			
発電用原子炬施設は，火災によりその安全性が損なわれ	発電用原子炬施設は，火災によりその安全性を損なわな	発電用原子炬施設は，火災によりその安全性を損なわな	設計及び工事の計画の		
ることがないように，適切な火災防護対策を講じる設計と	いように，安全重要度分類のクラス1，クラス 2 及びクラ	いように，適切な火災防護対策を講じる設計とする。火災	（3）（ i ）a．（c－1－2）－1		
する。火災防護対策を講じる対象として口（3）（ i ）a．（c－1－	ス 3 に属する構築物，系統及び機器に対して，適切な火災	防護対策を講じる対象として「（3）（ i ）a．（c－1－2）－11．「発電	は，設置変更許可申請書		
2）－（1）設計基漼対象施設を設定する。．．	防護対策を講じる設計とする。	用軽水型原子炬施設の安全機能の重要度分類に関する審	（本文（五号））の回（3）		
	火災防護対策を講じる対象は，重要度分類のクラス 1 ，	査指針」のクラス $1, \ldots$ クラス 2 及び安全評価上その機能を	（i）a．（c－1－2）－（1）を具		
	クラス 2 及び安全評価上その機能を期待するクラス 3 に	期待するクラス 3 に属する構築物，系統及び機器とする。	体的に記載しており整		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
その上でっ，上記構築物，系統及び機器の中から，火災 1原子煏の高温停止及び低温停止を達成し，維持するための横築物，．系統及び機器を抽出し，火災の発生防止，火災の感知及び消火並びに火災の影響軽減のそれぞれを考慮し た火災防護対策を講じる設計とする。抽出した構築物，，系統及び機器を炎災2「「安全機能を有する構築物，系統及び機器」という。．．． なお，兆災2上記に含まれない構築物，系統及び機器は，「消防法」，「建築基準法」，日本電気協会電気技術規程•指針に基づき設備に応じた火災防護対策を講じる設計と する。 （c－1－3）火災防護計画 （3）（i）a．（c－1－3）－（1）発電用原子炬施設全体を対象と した火災防護対策を実施するため，火災防護計画を策定す る．－ 火災防護計画には，計画を遂行するための体制，責任の所在，－責任者の権限，体制の運営管理っ，必要な要員の確保及び教育訓練並びに火災防護対策を実施するために必要 な手順等について定めるとともに，発電用原子炉施設の炎㢁2安全機能を有する構築物，系統及び機器については，火災の発生防止，火災の早期感知及び消火並びに火災の影響軽減の 3 つの深層防護の概念に基づき，必要な火災防護対策を行うことについて定める。 重大事故等対処施設については，火災の発生防止，火災 の早期感知及び消火を行うことについて定める。…	属する構築物，系統及び機器とする。 その上でっ，上記構築物，系統及び機器の中から原子炉の高温停止及び低温停止を達成し，維持するための構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能 を有する構築物，系統及び機器を抽出し，火災の発生防止，火災の感知及び消火並びに火災の影響軽減のそれぞれを考慮した火災防護対策を講じる。 その他の設計基準対象施設は，「消防法」，「建築基準法」，日本電気協会電気技術規程•指針に基づき設備に応 じた火災防護対策を講じる設計とする。 （6）火災防護計画 発電用原子炬施設全体を対象とした火災防護対策を害施するため，火災防護計画を策定する。 火災防護計画には，計画を遂行するための体制，責任の所在，，責任者の権限，，体制の運営管理，必要な要員の確保及び教育訓練，火災から防護すべき安全機能を有する構築物，系統及び機器，火災発生防止のための活動，火災防櫵設備の保守点検及び火災情報の共有，火災防護を適切に害施するための対策並びに火災発生時の対応といった火災防護対策を実施するために必要な手順等について定める とともに，発電用原子炬施設の安全機能を有する構築物，系統及び機器については，火災の発生防止，火災の早期感知及び消火並びに火災の影響軽減の 3 つの深層防護の概念に基づき，必要な火災防護対策を行うことについて定め る。 重大事故等対処施設については，火災の発生防止，並び に火災の早期感知及び消火を行うことについて定める。．．．	火災 2 火災防護上重要な機器等は，上記構築物，系統及 び機器のうち灵災1原子哣の高温停止及び低温停止を達成 し，維持するために必要な構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及 び機器とする。．．． < 中略 > 設定する火災区域及び火災区画に対して，以下に示す火災の発生防止，火災の感知及び消火並びに火災の影響軽減 のそれぞれを考慮した火災防護対策を講じる設計とする。 なお，発電用原子炉施設のうち，火災 2 火災防護上重要 な機器等又は重大事故等対処施設に含まれない構築物，系統及び機器は，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策 を講じる設計とする。 （3）（i）a．（c－1－3）－（1）発電用原子炉施設の 火災2炎災防護上重要な機器等は，火災の発生防止，火災の早期感知及 び消火並びに火災の影響軽減の 3 つの深層防護の概念に基 づき，必要な運用管理を含む火災防護対策を講じることを保安規定に定めて，管理する。 重大事故等対処施設は，火災の発生防止，火災の早期感知及び消火の必要な運用管理を含む必災防櫵対策を講じ ることを保安規定に定めて管理する。… 重大事故等対処施設のらち，可搬型重大事故等対処設備	合している。 設置変更許可申請書（本 文（五号））の（3）（i） a．（c－1－3）－1）は，保安規定にて対応する。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
その他の発電用原子炬施設については，「消防法」，「建築基準法」，日本電気協会電気技術規程•指針に基づき設備に応じた火災防謢対策を行らことについて定める。 外部火災については，安全施設を外部火災から防護する ための運用等について定める。．．． （c－2）火㷋発生防止 （c－2－1）火災の発生防止対策 火災の発生防止については，ロ（3）（i）a．（c－2－1）－（1）発火性又は引火性物質を内包する設備及びこれらの設備を設置する火災区域又は火災区画に対する火災の発生防止対策を講じるほかっ，	その他の発電用原子炉施設については，「消防法」，「建築基準法」，日本電気協会電気技術規程•指針に基づき設備に応じた火㷋防謢対策を行うことについて定める。 外部火災については，安全施設を外部火災から防護する ための運用等について定める。．．． 1．6．1．2 火炏発生防止汇係る設計方針 1．6．1．2．1 火炎発生防止対策 発電用原子炉施設の苝災の発生防止については，発火性又は引快性物質を内包する設備及びこれらの設備を設置 する火災区域又は火災区画に対する火災の発生防止対策 を講じるほかっ	に対する火災防護対策についても保安規定に定めて，管理 する。 その他の発電用原子炬施設については，「消防法」，「建築基準法」，「日本電気協会電気技術規程•指針」に基づき設備に応じた火災防護対策を講じることを保安規定に定 めて，管理する。 外部火災については，設計基準対象施設及び重大事故等対処施設を外部火災から防護するための運用等について保安規定に定めて，管理する。 1．火災防護設備の基本設計方針 <中略〉 設定する火災区域及び火災区画に対して，以下に示す火災の発生防止，火災の感知及び消火並びに火災の影響軽減 のそれぞれを考慮した火災防護対策を講じる設計とする。 ＜中略＞ 1．1 火災発生防止 1．1．1 火災の発生防止対策 火災の発生防止における発火性又は引火性物質に対す る火災の発生防止対策は，口（3）（i）a．（c－2－1）－（1）火災区域又は火災区画に設置する潤滑油又は燃料油を内包する設備普びに水素を内包する設備を対象とする。．． 潤滑油又は燃料油を内包する設備は，溶接構造，シール構造の採用による漏えいの防止及び防爆の対策を講じる とともに，堰等を設置し，漏えいした潤滑油又は燃料油が拡大することを防止する設計とし，润滑油又は燃料油を内包する設備の火災により発電用原子炉施設の安全機能及 び重大事故等に対処する機能を損なわないよう，壁の設置又は離隔による配置上の考慮を行ら設計とする。 潤滑油又は燃料油を内包する設備を設置する火災区域又は火災区画は，空調機器による機械換気又は自然換気を行う設計とする。 潤滑油又は燃料油を貯蔵する設備は，貯蔵量を一定時間 の運転に必要な量にとどめる設計とする。	設計及び工事の計画の （3）（i）a．（c－2－1）－（1 は，設置変更許可申請書 （本文（五号））の口（3） （i）a．（c－2－1）－（1）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		水素を内包する設備のらち気体廃裹物处理系設備及び発電機水素がス供給設備の配管等は水素の漏えいを考慮 した溶接構造とし，弁グランド部から水素の漏えいの可能性のある弁は，ベローズ升等を用いて防爆の対策を行ら設計とし，水素を内包する設備の火炏により，発電用原子炉施設の安全機能及び重大事故等に対処する機能を損なわ ないよう，壁の設置による配置上の考慮を行ら設計とす る。 水素を内包する設備である蓄電池，気体廃棄物处理系設備，発電機水素がス供給設備及び水素ボンバを設置する火災区域又は火災区画は，送風機及び排風機による機械換気 を行い，水素濃度を燃鸾限界濃度以下とする設計とする。水素ボン心゙は，ボンベ使用時のみ建屋内汇持込みを行ら運用として保安規定に定めて，管理し，火災区域内に水素 の貯蔵機器は設置しない設計とする。 ＜中略〉			
（3）（i）a．（c－2－1）－（2）可燃性の蒸気又は可燃性の微粉に対する対策，	可燃性の蒸気又は可燃性の微粉に対する対策．．．．	火災の発生防止のため，火災区域又は火災区画において有機溶剤を使用する場合は必要量以上持ち込まない運用 として保安規定に定めて，管理するとともに，『（3）（i）a． （c－2－1）－（2）可燃性の蒸気が滞留するおそれがある場合は，使用する作業場所において，換気，通風，拡散の措置を行 らとともに，建屋の送風機及び排風機による機械換気によ り滞留を防止する設計とする。 ＜中略＞ 火災の発生防止のため，可燃性の微粉を発生する設備及 び静電気が溜まるおうそれがある設備を火災区域又は火災区再に設置したいととによって，可燃性の微汾及び静電気 による感災の登生を防止する設計とする。．．．	設計及び工事の計画の （3）（i）a．（c－2－1）－（2） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－2－1）－（2）を具 体的に記載しており整 合している。		
発火源への対策，	発火源への対策，	火災の発生防止のため，発火源いの対策として，設備を金属製の筐体内に収納する等，（3）（i）a．（c－2－1）－（3）火火 花㚙設備外部に出ない設備を設置するとともに，高温部分を保温材で覆うことによって，可然性物質との接触防止や潤滑油等可燃物の猧熱防止を行ら設計とする。 ＜中略＞	設計及び工事の計画の （3）（i）a．（c－2－1）－③ は，設置変更許可申請書 （本文（五号））を具体的に記載しており整合 している。		
（13）（i）a．（c－2－1）－（4）水素に対する換気及び	水素に対する換気及び		設計及び工事の計画の		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（c－2－1）－7）なお，放射線分解等により発生す る水素の蓄積防止対策は，水素や酸素の濃度が高い状態で滞留及び蓄積することを防止する設計とする。 （c－2－2）不燃性材料又は難燃性材料の使用火災 2 安全機能を有する構築物，系統及び機器のうち，主要な構造材，	1．6．1．2．1 火災発生防止対策 （5）放射線分解等により発生する水素の蓄積防止対策放射線分解により水素が発生する火災区域又は火災区画における，水素の蓄積防止対策としては，社団法人火力原子力発電技術協会「BWR配管における混合ガス（水素•酸素）蓄積防止に関するガイドライン（平成 17 年 10月）」等に基づき，蓄積した水素の急速な燃焼によって，原子炉の安全性を損なうおそれがある場合には水素の蓄積を防止する設計とする。 ＜中略＞ 1．6．1．2．2 不燃性材料又は難燃性材料の使用 安全機能を有する構築物っ，系統及び機器に対しては，不燃性材料又は難燃性材料を使用する設計とし，	＜中略＞ 電気品室は，電源供給のみに使用する設計とする。 火災の発生防止のため，放射線分解により水素が発生す る火災区域又は火災区画における，水素の蓄積防止対策と して，口（3）（i）a．（c－2－1）－（7）社団法人火力原子力発霊技術協会「BWR 配管における混合がス（水素•酸素）蓄積防止 に関するがイドライン（平成 17 年 10 月）」 等に基づき，原子炬の安全性を損ならおそれがある場合には水素の蓄積を防止する設計とする。 重大事故等時の原子炉格納容器内及び建屋内の水素に ついては，重大事故等対処施設にて，蓄積防止対策を行う設計とする。 1．1．2 不燃性材料又は難㦓性材料の使用 火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能を有するもの（以下「代替材料」 という。）を使用する設計，若しくは，当該構築物，系統及び機器の機能を確保するために必要な代替材料の使用 が技術上困難な場合は，当該構築物，系統及び機器におけ る火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止する ための措置を講じる設計とする。 火災 2 火災防護上重要な機器等及び重大事故等対処施設 のうち，機器，配管，ダクト，トレイ，電線管，盤の筐体及びこれらの支持構造物の主要な構造材は，ステンレス鋼，低合金鋼，炭素鋼等の金属材料又はコンクリート等の不燃性材料を使用する設計とする。 ただし，配管のパッキン類は，その機能を確保するため に必要な代替材料の使用が技術上困難であるため，金属で覆われた狭隘部に設置し直接火炎に晒されることのない設計とする。 金属に覆われたポンプ及び开等の駆動部の潤滑油並び	設計及び工事の計画の （3）（i）a．（c－2－1）－7 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－2－1）－（7）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
ケーブル, チャコールフィルタを除く換気設備のフィルタ， 保温材及び 建屋内装材は，不燃性材料又は難燃性材料を使用する設計 とする。		に金属に覆われた機器躯体内部に設置する電気配線は，発火した場合でも他の火災防護上重要な機器等及び重大事故等対処施設に延焼しないことから，不燃性材料又は難燃性材料でない材料を使用する設計とする。 < 中略 > 火災防護上重要な機器等及び重大事故等対処施設に使用するケーブルは，実証試験により自己消火性（UL 垂直燃焼試験）及び耐延焼性（I E E E 3 8 3（光ファイバケ ーブルの場合はIEEE1202）垂直トレイ燃焼試験） を確認した泰燃ケーブルを使用する設計とする。 ＜中略＞ 火災防護上重要な機器等及び重大事故等対処施設のう ち，換気空調設備のフィルタはチャコールフィルタを除 き，「JIS L 1091（繊維製品の燃焼性試験方法）」 又は「J A C A No．11A－2003（空気清净装置用万材燃焼性試験方法指針（公益社団法人日本空気清浄協会））」を満足 する難燃性材料を使用する設計とする。 火災防護上重要な機器等及び重大事故等対処施設の弓 ち，屋内の変圧器及び遮断器は，可燃性物質である絶縁油 を内包していないものを使用する設計とする。 1．1．2 不燃性材料又は難燃性材料の使用 <中略 > 火災防護上重要な機器等及び重大事故等対処施設に使用する保温材は，原則，「平成 12 年建設省告示第 1400 号」 に定められたもの又は「建築基準法」で不燃性材料として認められたものを使用する設計とする。 火災防護上重要な機器等及び重大事故等対処施設を設置する建屋の内装材は，「建築基準法」で不燃性材料とし て認められたものを使用する設計とする。 ただし，管理区域の床や，原子焒格納容器内の床や壁に使用する耐放射線性のコーテイング剤は，不燃性材料であ るコンクリート表面に塗布すること，難燃性が確認された塗料であること，加熱源を除去した場合はその燃焼部が広 がらないこと，原子炉格納容器内を含む建屋内に設置する火災防護上重要な機器等及び重大事故等対処施設は，不燃性又は難燃性の材料を使用し，その周辺には可燃物がない ことから，難然性材料を使用する設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	電線管の両端は，電線管外部からの酸素供給防止を目的と し，耐火性を有するシール材による処置を行う設計とす る。 耐火性を有するシール材を処置した電線管内は外気か ら容易に酸素の供給がない閉塞した状態であるため，核計装ケーブル及び放射線モニタケーブルに火災が発生して もケーブルの燃焼に必要な酸素が不足し，燃焼の維持がで きなくなるので，すぐに自己消火し，ケーブルは延焼しな い。 このため，専用電線管で収納し，耐火性を有するシール材により酸素の供給防止を講じた核計装ケーブル及び放射線モニタケーブルは，IEEE383垂直トレイ燃焼試験の判定基準を満足するケーブルと同等以上の延焼防止性能を有する。 一方，原子炉格納容器内の原子炉圧力容器下部における核計装ケーブルは，周囲環境が極めて狭隘であり電線管に敷設すると曲げ半径を確保できないこと，機器点検時にケ ーブルを解線して機器を取り外す必要があることから，一部ケーブルを露出する設計とする。しかしながら，以下の とおり対策することによって，原子炉の高温停止及び低温停止を達成し，維持するために必要な機能に影響が及ぶお それはない。 －原子炉格納容器内は，通常運転中については窒素を封入 しており火災発生のおそれがないこと。 －原子炉の起動中において，原子炉格納容器内点検前に核計装ケーブルから火災が発生し火災感知設備が作動し た場合は，速やかな消火活動が可能であること。また，原子炉格納容器内点検終了後から窒素封入までの期間 は短期間であること。 －原子炉の低温停止中及び起動中において，万一，核計装 ケーブルから火災が発生した場合を考慮しても，火災が延焼しないように，核計装ケーブルの露出部分の長さ は，ケーブル曲げ半径の確保及び機器点検時の解線作業 に影響のない範囲で極力短くし，周囲への火災の延焼を防止する設計とするとともに，当該ケーブルの周囲には自己消火性及び延焼性が実証された難燃ケーブルを敷設する設計とすること。 －原子炉格納容器下部に設置する発火性又は引火性物質で				

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
する。 火災感知設備及び消火設備については，設けられた火災区域及び火災区画に設置された扊災2安全機能を有する構築物，系統及び機器の耐震クラスに応じて，地震に対して機能を維持できる設計とする。	かつ，安全機能を有する構築物，系統及び機器の耐震クラ スに応じて，機能を維持できる設計とすることを「1．6．1． 3.3 自然現象の考慮」に示す。	火災感知設備及び消火設備については，火災区域及び火災区画に設置された扊災2炎災防集上重票な機器等の耐震 クラス及び重大事故等対処施設の区分に応じて，地震に対 して機能を維持できる設計とする。 1．2．1 火災感知設備 ＜中略＞ 火災区域又は火災区画の火災感知設備は，凍結等の自然現象によっても，機能，性能が維持できる設計とする。 屋外に設置する火災感知設備は，$-14.6^{\circ} \mathrm{C}$ まで気温が低下しても使用可能な火災感知設備を設置する設計とする。屋外の火災感知設備は，火災感知器の予備を保有し，万一，風水害の影響を受けた場合にも，早期に取替えを行う ことにより機能及び性能を復旧する設計とする。 1．2．2 消火設備 （6）消火設備に対する自然現象の考慮 a．凍結防止対策 屋外消火設備の配管は，保温材により配管内部の水が涷結しない設計とする。 屋外消火栓は，凍結を防止するため，自動排水機構によ り消火栓内部に水が溜まらないような構造とする設計と する。 b．風水害対策 消火用水供給系の消火設備を構成する電動機駆動消火 ポンプ，屋外消火系電動機駆動消火ポンプ，屋外消火系デ ィーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブ ルトレイ消火設備は，風水害に対してその性能が著しく阻害されることのないよう，建屋内に設置する設計とする。 c．地盤変位対策 地震時における地盤変位対策として，水消火配管のレイ アウト，配管支持長さからフレキシビリティを考慮した配置とすることで，地盤変位による変形を配管系統全体で吸収する設計とする。 さらに，屋外消火配管が破断した場合でも移動式消火設備を用いて屋内消火栓へ消火用水の供給ができるよう，建		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	また，消火設備は，破損，誤動作又は誤操作が起きた場合 においても，原子炉の高温停止及び低温停止を達成し，維持するための幾能を損なわない設計とすることを「1．6．1． 3.4 消火設備の破損，誤動作又は誤操作による安全機能 への影響」に示す。	屋に給水接続口を設置する設計とする。			
また，消火設備は，破損，誤作動又は誤操作が起きた場合		1．2．2 消火設備 火災防護上重要な機器等及び重大事故等対処施設を設	設計及び工事の計画の		
においても，原子炉を安全に停止させるための機能を口（3）		置する火災区域又は火災区画の消火設備は，破損，誤作動	ロ（3）（ i ）a．$(\mathrm{c}-3)$－（1）		
（i）a．（c－3）－（1）損なわない設計とする。		又は誤操作が起きた場合においても，原子炉を安全に停止	は，設置変更許可申請書		
		させるための機能又は重大事故等に対処するために必要	（本文（五号））の口（3）		
		な機能を有する電気及び機械設備口（3）（i）a．（c－3）－（1）に	（i）a．（c－3）－（1）を含ん		
		影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところは，自動消火	でおり整合している。		
		設備又は手動操作による固定式消火設備であるハロンガ			
		ス消火設備及びケーブルトレイ消火設備を設置して消火			
		を行ら設計とする。			
		＜中略＞			
（c－3－1）火災感知設備 火災感知器は，環境条件や火災の性質を考慮して口（3）	1．6．1．3．1 火災感知設備 （2）固有の信号を発する異なる火災感知器の設置火災感知設備の火災感知器は，「1．6．1．3．1（1）火災感	1．2 火災の感知及び消火 1．2．1 火災感知設備 火災感知設備の火災感知器は，火災区域又は火災区画に	設計及び工事の計画の		
（i）a．（c－3－1）－1型式を選定し，固有の信号を発する異な	知器の環境条件等の考慮」の環境条件等を考慮し，火災感	おける放射線，取付面高さ，温度，湿度，空気流等の環境	口（3）（i）a．（c－3－1）－1		
$\underline{\text { る種類を組み合わせて設置する設計とする。 }}$	知器を設置する火災区域又は火災区画の安全機能を有す る構築物，系統及び機器の種類に応じ，火災を早期に感知	条件，予想される火災の性質を考慮し，火災感知器を設置 する火災区域又は火災区画の火災防護上重要な機器等及			
		する火災区域又は火災区画の火災防護上重要な機器等及 び重大事故等対処施設の口（3）（i）a．（c－3－1）－（1）種類に応	(本文 (五号)) の (3)		
	し，誤作動を防止するために，固有の信号を発するアナロ		（i）a．（c－3－1）－（1）と同		
	の感知器を組み合わせて設置する設計とする。	じ，火災を早期に感知できるよう，固有の信号を発するア ナログ式の煙感知器及びアナログ式の熱感知器の異なる	義であり整合している。		
		種類の火災感知器を組み合わせて設置する設計とする。 火災感知器については，消防法施行規則等に従い設置す			
		る，又は火災区域内の感知器の網羅性及び火災報知設備の			
		感知器及び発信機に係る技術上の規格を定める省令に定			
		める感知性能と同等以上の方法により設置する設計とす			
	ただし，発火性又は引火性の雾囲気を形成するおそれの				
		ただし，発火性又は引火性の雾囲気を形成するおそれの ある場所及び层外等は，環境条件や火災の性質を考慮し			
	ある場所及び屋外等は，非アナログ式も含めた組み合わせ で設置する設計とする。	非アナログ式の炎感知器，アナログ式の屋外仕様の熱感知			
	炎感知器は非アナログ式であるが，炎が発する赤外線又	カメラ，非アナログ式の屋外仕様の炎感知器，非アナログ			
	は紫外線を感知するため，炎が生じた時点で感知すること	式の防爆型の煙感知器及び非アナログ式の防爆型の熱感			
	ができ，火災の早期感知が可能である。	知器も含めた組み合わせで設置する設計とする。			
	で，アナログ式とは「平常時の状況（温度，煙の濃				
	度）を監視し，かつ，火災現象（急激な温度や煙の濃度の	非アナログ式の火災感知器は，環境条件等を考慮するこ とにより誤作動を防止する設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（c－3－2）消火設備 火災 2 安全機能を有する構築物，恶続及ぴ機器を設置す る火災区域又は火災区画で，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところには，自動消火設備又は手動操作による固定式消火設備を設置して消火を行う設計とするとともに，	1．6．1．3．2 消火設備 消火設備は，以下に示すとおり，安全機能を有する構築物，系統及び機器を設置する火災区域又は火災区画の火災 を早期に消火できるよう設置する設計とする。 （1）原子炉の高温停止及び低温停止を達成し，維持する ために必要な構築物，系統及び機器を設置する火災区域又は火災区画に設置する消火設備 原子炉の高温停止及び低温停止を達成し，維持するため に必要な構築物，系統及び機器を設置する火災区域又は火災区画に設置する消火設備は，当該構築物，系統及び機器 の設置場所が，火災発生時の煙の充満又は放射線の影響に より消火活動が困難となるかを考慮して設計する。 c．火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画に設置する消火設備 火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画は，自動又は中央制御室からの手動操作による固定式消火設備である全域が ス消火設備を設置し消火を行ら設計とする。 なお，これらの固定式消火設備に使用するガスは，ハロ ゲン化物消火剤とする。 ＜中略＞ （2）放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域又は火災区画に設置する消火設備 放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域又は火災区画に設置する消火設備は，当該火災区域又は火災区画が，火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画であるかを考慮して設計する。 <中略 > c．火災発生時の煙の充満又は放射線の影響により消火活動が困難となる火災区域又は火災区画に設置する消火	1．2．2 消火設備 火災 2 火災防護上重要な機器等及び重大事故等対処施設 を設置する火災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起きた場合においても，原子炉を安全に停止させるための機能又は重大事故等に対処するために必要な機能を有する電気及び機械設備に影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところは，自動消火設備又は手動操作による固定式消火設備であるハロンガス消火設備及び ケーブルトレイ消火設備を設置して消火を行ら設計とす る。 火災発生時の煙の充満又は放射線の影響により消火活動が困難とならないところは，消火器，移動式消火設備又 は消火栓により消火を行ら設計とする。 なお，消火設備の破損，誤作動又は誤操作に伴ら溢水に よる安全機能及び重大事故等に対処する機能への影響に ついては，浸水防護設備の基本設計方針にて確認する。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
消火用水供給系は， 2 時間の最大放水量を確保し， （3）（i）a．（c－3－2）－（3）飲料水系等と共用する場合は隔離弁を設置し消火を優先する設計とし， 水源及び消火ポンプは多重性又は多様性を有する設計と する。	消火用水供給系の水源の供給先は屋内及び屋外の各消火栓である。 屋内消火栓については，「消防法施行令」第十一条（屋内消火栓設備に関する基準）に基づき，2時間の最大放水量（31． $2 \mathrm{~m}^{3}$ ）を確保する設計とする。 < 中略 > （9）水消火設備の優先供給 消火用水供給系は，飲料水系や所内用水系等と共用する場合には，隔離弁を設置して遮断する措置により，消火用水の供給を優先する設計とする。 なお，水道水系とは共用しない設計とする。 1．6．1．3．2 消火設備 （3）消火用水供給系の多重性又は多様性の考慮 消火用水供給系の水源は，屋内の火災区域又は火災区画用としては， 1 号炉及び 2 号炉共用の消火水槽（約 110 m 3 ），消火水タンク（約 110 m 3 ）を設置し，多重性を有する設計 とする。また，屋外の火災区域用としては，屋外消火水夕 ンク（約 100 m 3 ）を 2 基設置し多重性を有する設計とする。屋内消火用水供給系の消火ポンプは，電動機駆動消火ポ ンプを 2 台設置し，多重性を有する設計とする。 なお，消火ポンプについては外部電源喪失時であっても機能を喪失しないよう，非常用電源から受電する設計とす る。 屋外消火用水供給系の消火ポンプは，電動機駆動消火ポ ンプ，ディーゼル駆動消火ポンプをそれぞれ 1 台ずつ設置 し，多様性を有する設計とする。 なお，消火ポンプについては外部電源喪失時であっても	火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，以下の設計を行う。 （1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応じた十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。 b．消火用水供給系は， 2 時間の最大放水量を確保する設計とする。 c．屋内，屋外の消火栓は，「消防法施行令」に基づく容量を確保する設計とする。 （2）消火設備の系統構成 c．消火用水の優先供給 消火用水供給系は，ロ（3）（i）a．（c－3－2）－（3）飲料水系や所内用水系等と共用する場合には，隔離弁を設置して遮断す る措置により，消火用水の供給を優先する設計とする。 （2）消火設備の系統構成 a．消火用水供給系の多重性又は多様性 屋内水消火系の水源は，消火水槽（第 1 ， 2 号機共用（以下同じ。）），消火水タンクを設置し，屋外水消火系は，屋外消火系消火水タンクを 2 基設置し多重性を有する設計 とする。 屋内水消火系の消火ポンプは，電動機駆動消火ポンプ （第 1，2号機共用（以下同じ。））を 2 台設置し，多重性を有する設計とする。 屋外水消火系の消火ポンプは，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプを設置 し，多様性を有する設計とする。 屋外消火系ディーゼル駆動消火ポンプの駆動用燃料は，	設計及び工事の計画の （3）（i）a．（c－3－2）－（3 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－2）－（3）を具 体的に記載しており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，屋内，屋外の口（3）（i）a．（c－3－2）－4）消火範囲を考慮 し消火栓を配置するとともに， 移動式消火設備を配備する設計とする。 消火設備の消火剤は，想定される火災の性質に応じた土分な容量を配備し，	機能を喪失しないよう，ディーゼル駆動消火ポンプについ ては起動用の蓄電池を設置する設計とする。 （12）消火栓の配置 安全機能を有する構築物，系統及び機器を設置する火災区域又は火災区画に設置する消火栓は，「消防法施行令」第十一条（屋内消火栓設備に関する基準）及び第十九条（屋外消火設備に関する基準）に準拠し，屋内は消火栓から半径 25 m の範囲を考慮して配置し，屋外は消火栓から半径 4 0 m の範囲を考慮して配置することによって，全ての火災区域の消火活動に対処できるように配置する設計とする。 （7）移動式消火設備の配備 移動式消火設備は，「実用発電用原子炉の設置，運転等 に関する規則」第八十三条第五号に基づき，恒設の消火設備の代替として消火ホース等の資機材を備え付けている化学消防自動車（2 台，泡消火薬剤 $500 \mathrm{~L} /$ 台），泡原液搬送車（1台，泡消火薬剤 $1,000 \mathrm{~L} /$ 台）を配備する設計とす る。また， $1,000 \mathrm{~L}$ の泡消火薬剤を配備する設計とする。 （6）想定火災の性質に応じた消火剤の容量 火災防檴対象機器がある必災区域又は火災区画に設置 する全域がス消火設備及び局所がス消火設備については，「消防法施行規則」第二十条並びに試験結果に基づき，単位体積あたりに必要な消火剤を配備する設計とする。特 に，複数の場所に対して消火する設備の消火剤の容量は，．．．複数の消火対象場所のうち必要な消火剤が最大となる場所の必要量以上となるよう設計する。 火災区域又は火災区画に設置する消火器については，「消防法施行規則」第六～八条に基づき延床面積又は床面積から算出される必要量の消火剤を配備する設計とする。 消火剤に水を使用する消火用水の容量の設計は，「1．6． 1．3．2（8）消火用水の最大放水量の確保」に示す。	屋外消火系ディーゼル駆動消火ポンプに付属する燃料夕 ンクに貯蔵する。 （4）消火設備の配置上の考慮 c．消火栓の配置 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画に設置する屋内，屋外の消火栓は，（3）（i）a．（c－3－2）－（4）「消防法施行令」に準执し，全ての火災区域又は火災区画の消火活動に対処できるよ うに配置する設計とする。 （7）その他 a．移動式消火設備 移動式消火設備は，恒設の消火設備の代替として消火ホ ース等の資機材を備え付けている化学消防自動車を 2 台及 び泡原液搬送車を 1 台配備する設計とする。 1．2．2 消火設備 （1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応じた十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。 （4）消火設備の配置上の考慮	設計及び工事の計画の （3）（i）a．（c－3－2）－4 は，設置変更許可申請書 （本文（五号））の（（3） （i）a．（c－3－2）－4）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
管理区域で放出された場合に，管理区域外への流出を防止 する設計とする。 （3）（i）a．（c－3－2）－（5）消火設備は，火災の火炎等による直接的な影響，流出流体等による二次的影響を受けずっ，火㢁 2 安全機能を有する構築物，系統及び機器に悪影響を及 ぼさないよう設置し，	管理区域内で放出した消火水は，放射性物質を含むおそ れがあることから，管理区域外への流出を防止するため，管理区域と非管理区域の境界に堰等を設置するとともに，各フロアの建屋内排水系により液体廃槀物処理設備に回収し，处理する設計とする。万一，流出した場合であって も建屋内排水采から系外氾放出する前にサンプリングを実施し，検出が可能な設計とする。 （5）火災に対する二次的影響の考慮 全域がス消火設備は，電気絶緣性の高いがスを採用する ことで，火災が発生している火災区域又は火災区画からの火災の火炎，熱による直接的な影響のみならず，流出流体，断線及び爆発等の二次的影響を，火災が発生していない安全機能を有する横築物，系続及び機器に及ぼさない設計と する。また，防火ダンパを設け煙の二次的影響が安全機能 を有する横築物，系統及び機器に悪影響を及ぼさない設計 とする。 <中略〉	管理区域内で放出した消火剤は，放射性物質を含むおそ れがあることから，管理区域外への流出を防止するため，管理区域と非管理区域の境界に堰等を設置するとともに，各フロアの建屋内排水系により液体廃裏物処理設備に回収し，処理する設計とする。 （4）消火設備の配置上の考慮 a．火災による二次的影響の考慮 （3）（i）a．（c－3－2）－（5）人ロンガス消火設備（全域）のボ 大事故等対処施設に悪影響を及ぼさないよう消火対象と なる機器が設置されている火災区域又は火災区画と別の区画に設置する設計とする。 また，ハロンガス消火設備（全域）は，は，電気絶緑性の高 いがスを採用し，火災の火炎，熱による直接的な影響のあ ならず，，煙，流出流体，断線及び爆発等の二次的影響がっ，火災が発生していない灵災2兆災防護上重要な機器等及び重大事故等対処施設に悪港響を及ぽさない設計とする。．． ヘロンガス消火設備（局所）及びケーブルトレイ消火設備は，霓気絶縁性の高いがスを採用するとともに，ケーブ ルトレイ消火設備及び電源艦用のハロンガス消火設備（局所）については，ターブルトレイ内又は電源盤周围の隔壁内に消火剤を留める設計とする。 また，消火対潒と十分離れた位置にボンベ及び制御盤を設置することでっ，火災の火炎，熱による真接的な影饗のあ ならず，煙，流出流体，断線及び焜発等の一次的嚗響が，火炎が発生していない灵災2炎災防護上重要な機器符及び重大事故等対処施設に悪軖響を及ぼさない設計とする。 消火設備のボンべは，火炎による熱の影響を受けても破損及び爆発が発生しないよう，ボンべに接続する安全弁に よりボン心゙の過圧を防止する設計とする。．．． また，防火ダンパを設け，煙の二次的影響が火災防護上重要な機器等及び重大事故等対処施設に悪影響を及ぼさ ない設計とする。	設計及び工事の計画の （3）（i）a．（c－3－2）－（5） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－2）－（5）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
外部電源衰失時の（3）（i）a．（c－3－2）－6需源確保を図る とともに， 中央制御室に故障警報を発する設計とする。	（11）消火設備の電源確保 屋内消火用水供給系のらち，電動機駆動消火ポンプは外部電源喪失時でも起動できるように非常用電源から受電 し，消火用水供給系の機能を確保することができる設計と する。 屋外消火用水供給系のらち，電動機駆動消火ポンプは常用電源から受電する設計とするが，ディーゼル駆動消火ポ ンプは，外部電源喪失時でもディーゼル機関を起動できる ように蓄電池により電源を確保する設計とし，外部電源喪失時においてもディーゼル機関より消火ポンプへ動力を供給することによって消火用水供給系の機能を碓保する ことができる設計とする。 安全機能を有する構築物，系統及び機器を設置する火災区域又は火災区画の全域ガス消火設備及び局所ガス消火設備は，外部電源喪失時にも消火が可能となるように，韭常用電源から受電するとともに，設備の作動に必要な電源 を供給する蓄電池も設ける設計とする。 ケーブルトレイ用の局所ガス消火設備は，作動に電源が不要な設計とする。 （10）消火設備の故障警報 電動機駆動消火ポンプ，ディーゼル駆動消火ポンプ，全域ガス消火設備等の消火設備は，電源断等の故障警報を中央制御室に吹鳴する設計とする。	（3）消火設備の電源確保 屋内水消火系の電動機駆動消火ポンプは，外部電源喪失時でも起動できるように非常用電源から受電する設計と する。 屋外水消火系のらち屋外消火系ディーゼル駆動消火ポ ンプは，外部電源喪失時にもディーゼル機関を起動できる ように蓄電池を設け，電源を確保する設計とする。 ハロンガス消火設備は，（3）（i）a．（c－3－2）－6外部電源啔失時にも消火ができるように，非常用電源から受電する とともに，．．．設備の作動に必要な電源を供給する蓄電池も設 け，全交流動力電源喪失時にも電源を確保する設計とす る。 ケーブルトレイ消火設備については，作動に電源が不要 な設計とする。 （5）消火設備の警報 a．消火設備の故障警報電動機駆動消火ポンプ，屋外消火系電動機駆動消火ポン プ，屋外消火系ディーゼル駆動消火ポンプ，ハロンガス消火設備及びケーブルトレイ消火設備は，電源断等の故障警報を中央制御室に発する設計とする。 b．ハロンガス消火設備の職員退避警報 固定式消火設備であるハロンガス消火設備は，作動前に職員等の退出ができるように警報又は音声警報を発する設計とする。 ケーブルトレイ消火設備は，消火剤に毒性がなく，消火時に生成されるフッ化水素は延焼防止シートを設置した ケーブルトレイ内に留まり，外部に有意な影響を及ぼさな いため，消火設備作動前に退避警報を発しない設計とす る。	設計及び工事の計画の （3）（i）a．（c－3－2）－6 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－2）－（6）を具 体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
また，防火ダンパを設け煙の二次的影響が夷災2安全機熊を有する構築物，系統及び機器に悪影響を及ぼさない設計とする。 （3）（i）a．（c－3－2）－7）なお」，消火設備を設置した場所へ の移動及び操作を行らため，蓄電池を内蔵する照明器具を設置する設計とする。 （c－4）火災の影響軽減 火災の影響軽減については，（3）（i）a．（c－4）－（1）安全機熊を有する構築物，系統及び機器の重要度に応じ，ロ（3） （i）a．（c－4）－（2）それらを設置する火災区域又は火災区画 の火災及び隣接する火災区域又は火災区画における火災 による影響を軽減するため，以下の対策を講じる設計とす る。－	（5）火災に対する二次的影響の考慮 ＜中略＞ また，防火ダンパを設け煙の二次的影響が安全機能を有す る構築物，系統及び機器に悪影響を及ぼさない設計とす る。 （15）消火用非常照明 建屋内の消火栓，消火設備現場盤の設置場所及び設置場所までの経路には，移動及び消火設備の操作を行うため， 「消防法」で要求される消火継続時間 20 分に現場への移動等の時間（最大約 1 時間）も考慮し， 8 時間以上の容量 の蓄電池を内蔵する照明器具を設置する設計とする。 1．6．1．4 火災の影響軽減のための対策 1．6．1．4．1 安全機能を有する構築物，系統及び機器の重要度に応じた火災の影響軽減のための対策 安全機能を有する構築物，系統及び機器の重要度に応 じっそれらを設置する火災区域又は火災区画内の火災及び隣接する火災区域又は火災区画の火災による影響に対し，「1．6．1．4．1（1）原子炬の高温停止及び低温停止の達成，維持に係わる火災区域の分離」から「1．6．1．4．1（8）油夕 ンクに対する火災の影響軽減対策」に示す火災の影響軽減 のための対策を講じる設計とする。．． （1）原子炬の高温停止及び低温停止の達成，維持に係わ	（4）消火設備の配置上の考慮 a．火災による二次的影響の考慮 < 中略 > また，防火ダンパを設け，煙の二次的影響が兆災 2 炎災防讙上重要な機器等及び重大事故等対処施設に悪影響を及ぼさない設計とする。 （7）その他 b．消火用の照明器具 （（3）（i）a．（c－3－2）－7 ）建屋内の消火栓，消火設僙現場盤 の設置場所及び設置場所までの経路には，移動及び消火設備の操作を行らため，＿消防法で要求される消火継続時間 2 0 分に現場への移動等の時間も考慮し， 8 時間以上の容量 の畄電池を内蔵する照明器具を設置する設計とする。 1.3 火災の影響軽減 1．3．1 火災の影響軽減対策 火災の影響軽減対策の設計に当たり，発電用原子炉施設 において火災が発生した場合に，『（3）（i）a．（c－4）－（1）原子炬の高温停止及び低温停止を達成し，維持するために必要 な火災防檴対象機器及び火災防櫵対象ケーブルを火災防護対象機器等とする。 火災が発生しても原子炉の高温停止及び低温停止を達成し，維持するためには，プロセスを監視しながら原子炉 を停止し，泠却を行うことが必要であり，このためには，手動操作に期待してでも原子炉の高温停止及び低温停止 を達成し，維持するために必要な機能を少なくとも 1 つ確保するように系統分離対策を講じる必要がある。 （3）（i）a．（c－4）－（2）このため，火災防護対象機器等に対 して，以下に示す火災の影響軽減対策を講じる設計とす る．	設計及び工事の計画の （3）（i）a．（c－3－2）－（7） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－3－2）－7）を具体的に記載しており整合している。 設計及び工事の計画の （3）（i）a．（c－4）－（1） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－4）－（1）を具体的に記載しており整合 している。 設計及び工事の計画の （3）（i）a．（c－4）－（2） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（c－4）－（2）と同義 であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
火災2原子炉の高温停止及び低温停止を達成し，維持する ための安全機能を有する構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域は， 3 時間以上の耐火能力を有す 3（3）（i）a．（c－4）－（3）耐火壁，天井，床により他の火災区域と分離する設計とする。	る火災区域の分離 原子炉の高温停止及び低温停止を達成し，維持するため に必要な構築物，系統及び機器を設置する火災区域は，．．． 3時間以上の耐火能力を有する耐火壁として， 3 時間耐火に設計上必要な 150 mm 以上の壁厚を有するコンクリート壁や火災耐久試験により 3 時間以上の耐火能力を有する耐火壁（貫通部シール，防火扉，防火ダンパ）によって，隣接 する他の火災区域から分離する設計とする。 ＜中略＞ （5）放射性物質の貯蔵又は閉じ込め機能に関わる火災区域の分離 放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置する火災区域は， 3 時間以上の耐火能力 を有する耐火壁として， 3 時間耐火に設計上必要な 150 mm以上の壁厚を有するコンクリート壁や火災耐久試験によ り 3 時間以上の耐火能力を有することを碓認した耐火壁 …（貫通部シール，防火扉，防火ダンパ）により，隣接する他の火災区域と分離する設計とする。 1．6．1．4．1 安全機能を有する構築物，系統及び機器の重要度に応じた火災の影響軽減のための対策 （2）火災防護対象機器及び火災防護対象ケーブルの系統分離	1．火災防護設備の基本設計方針設計基準対象施設は，火災により発電用原子炉施設の安全性を損なわないよう，火災防護上重要な機器等を設置する火災区域及び火災区画に対して，火災防護対策を講じる。 ＜中略＞ 建屋内のらち，火災の影響軽減の対策が必要な灰災 2 原子炉の高温停止及び低温停止を達成し，維持するための安全機能を有する構築物，系統及び機器並びに放射性物質の貯蔵又は閉じ込め機能を有する構築物，系統及び機器を設置 する火災区域は， 3 時間以上の耐火能力を有する耐火壁と して，ロ（3）（i）a．（c－4）－3 3 3 時間耐火化設計上必要なコン クリート壁厚である 150 mm 以上の壁厚を有するコンクリー ト壁や火災耐久試験により3時間以上の耐火能力を有する ことを確認した耐火壁（貫通部シール，防火扉，防火ダン パ）により隣接する他の火災区域と分離するように設定す る。 1.3 火災の影響軽減 1．3．1 火災の影響軽減対策 火災の影響軽減対策の設計に当たり，発電用原子炉施設 において火災が発生した場合に，原子炉の高温停止及び低温停止を達成し，維持するために必要な火災防護対象機器及び火災防護対象ケーブルを火災防護対象機器等とする。火災が発生しても原子炬の高温停止及び低温停止を達成し，維持するためには，プロセスを監視しながら原子炉 を停止し，泠却を行うことが必要であり，このためには，手動操作に期待してでも原子炉の高温停止及び低温停止 を達成し，維持するために必要な機能を少なくとも 1 つ確保するように系統分離対策を講じる必要がある。	設計及び工事の計画の （3）（i）a．（c－4）－（3 は，設置変更許可申請書 （本文（五号））のロ（3） （i）a．（c－4）－（3）を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
高感度煙検出設備の設置，常駐する運転員による消火活動等により，上記設計と同等な設計とする。	分ごとに別々の盤で分離する設計とする。一部，一つの制御盤内に複数の安全系区分の火災防護対象機器及び火災防護対象ケーブルを設置しているものがあるが，これらに ついては，区分間に金属製の仕切りを設置する。ケーブル については，当該ケーブルに火災が発生しても延焼せず， また，周囲へ火災の影響を与えない耐熱ビニル電線，難燃仕様のフッ素樹脂（E T F E ）電線及び難燃ケーブルを使用し，電線管に敷設する，又は離隔距離を確保すること等 により系統分離する設計とする。これらの分離について は，実証試験等において火災により近接する他の区分の構成部品に火災の影響がないことを確認した設計とする。 （b）高感度煙検出設備の設置による早期の火災感知中央制御室内には，異なる 2 種類の火災感知器を設置す る設計とするとともに，火災発生時には常駐する運転員に よる早期の消火活動によって，異区分への影響を軽減する設計とする。特に，一つの制御盤内に複数の安全系区分の火災防護対象機器及び火災防護対象ケーブルを設置して いるものについては，これに加えて盤内へ高感度煙検出設備を設置する設計とする。 （c）常駐する運転員による早期の消火活動 中央制御室制御盤内に自動消火設備は設置しないが，中央制御室制御盤内に火災が発生しても，高感度煙検出設備 や中央制御室の火災感知器からの感知信号により，常駐す る運転員が中央制御室に設置する消火器で早期に消火活動を行うことで，相違する系列の火災防護対象機器及び火災防護対象ケーブルへの火災の影響を防止できる設計と する。 消火設備は，電気機器へ悪影響を与えない二酸化炭素消火器を使用する設計とし，常駐する運転員による中央制御室内の火災の早期感知及び消火を図るために，消火活動の手順を定めて，訓練を実施する。火災の発生箇所の特定が困難な場合も想定し，サーモグラフィカメラ等，火災の発	駐する運転員による早期の消火活動に加え，火災により中央制御室制御盤の 1 つの区画の安全機能が全て喪失して も，他の区画の制御盤は機能が維持されることを確認する ことにより，原子炉の高温停止及び低温停止の達成，維持 ができることを確認し，上記（1）と同等の火災の影響軽減対策を講じる設計とする。 離隔距離等による分離として，中央制御室制御盤につい ては，安全系区分ごとに別々の盤で分離する設計とし，1 つの制御盤内に複数の安全系区分のケーブルや機器を設置しているものは，安全系区分間に金属製の仕切りを設置 する。ケーブルは，当該ケーブルに火災が発生しても延焼 せず，また，周囲へ火災の影響を与えない耐熱ビニル電線，難燃仕様のフッ素樹脂（ETFE）電線及び難燃ケーブルの使用，電線管への敷設，操作スイッチの離隔等により系統分離する設計とする。 中央制御室内には，異なる 2 種類の火災感知器を設置す る設計とするとともに，火災発生時には常駐する運転員に よる早期の消火活動によって，異なる安全系区分への影響 を軽減する設計とする。これに加えて盤内へ高感度煙検出設備を設置する設計とする。 火災の発生箇所の特定が困難な場合も想定し，サーモグ ラフィカメラ等，火災の発生箇所を特定できる装置を配備 する設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	る。 火災の早期消火を図るために，原子炉格納容器内の消火活動の手順を定めて，自衛消防隊の訓練を実施する。 また，起動中又は停止過程の空気噮境において，原子炉格納容器内が広範囲な火災となり原子炉格納容器内への入域が困難な場合には，原子炉格納容器内を密閉状態とし内部の窒息消火を行う設計とする。 なおう，原子炉格納容器内点検終了後から窒素置換完了ま での間で原子炉格納容器内の火災が発生した場合には，火災による延焼防止の観点から，窒素封入開始後，約 2 時間 20 分を目安に窒素封入作業の継続による窒息消火又は窒素封入作業を中止し，早期の消火活動を実施する。	を用いた速やかな消火活動により消火ができる設計と まる。 起動中又は停止過程の空気環境において，原子炉格納容器内が広範囲な火災となり原子炬格納容器内への入域が困難な場合には，原子炉格納容器内を密閉状態とし内部の窒息消火を行う設計とする。 なお，原子炉格納容器内点検終了後から窒素置換完了ま での間で原子炬格納容器内の火炏が発生した場合には，火災による延焼防止の観点から窒素封入作業の継続による窒息消火又は窒素封入作業を中止し，早期の消火活動を実施する。 1．3．2 原子炬の安全碓保 （1）原子炉の安全停止対策 a．火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能霛失 を想定した設計 発電用原子炉施設内の火災によって，安全保護系及び原子炬停止系の作動が要求される場合には，当該火災区域又 は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失を想定しても，火災 の影響軽減のための系統分離対策によって，多重化された それぞれの系統が同時に機能を失らことなく，原子炉の高温停止及び低温停止が達成できる設計とする。 b．設計基準事故等に対処するための機器に単一故障を想定した設計 発電用原子炉施設内の火災によって運転時の異常な過渡変化又は設計基準事故が発生した場合に，「発電用軽水型原子炉施設の安全評価に関する審査指針」に基づき，運転時の異常な過渡変化又は設計基準事故に対処するため の機器に単一故障を想定しても，制御盤間の離隔距噰，盤内の延恠防止対策又は現場操作によって，多重化されたそ れぞれの系統が同時に機能を失らことなく，原子炉の高温停止，低温停止を達成できる設計とする。	る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	（b）停止過程（窒素排出期間） i ．火災防護対象ケーブルの分離及び対象機器の分散配置原子炉格納容器内においては，機器やケーブル等が密集 しており，干渉物が多く，耐火ラッピング等の 3 時間以上 の耐火能力を有する隔壁の設置が困難である。このため，停止過程では原子炉起動中と同様に，原子炉格納容器内に おいては，原子灲格納容器内の火災防護対象機器及び火災防護対象ケーブルは，系統分離の観点から安全系区分Iと安全系区分II機器の離隔距離を 6 m 以上碓保し，安全系区分 I と安全系区分II機器の間において可燃物が存在する ことのないように，異なる区分の機器間にある介在物（ケ ーブル，電磁升）については金属性の筐体に収納すること で延焼防止対策を行ら設計とする。 原子炉起動中と同様に，原子炉格納容器内の火災防護対象ケーブルは，原子炉格納容器貫通部を区分ごとに離れた場所に設置し，可能な限り距離的分散を図る設計とする。 また，火災発生後，消火活動を開始するまでの時間の耐火性能を確認した電線管又は金属製の蓋付ケーブルトレイ に敷設する。 ii ．火災感知設備 原子炉起動中と同様に，アナログ式の異なる 2 種類の火災感知器（煙感知器及び熱感知器）を設置する設計とする。 iii．消火設備 原子炉格納容器内の消火については，消火器を使用する設計とする。また，消火栓を用いても対応できる設計とす る。 なお，原子炉格納容器内が広範囲の火災の場合には，内部の窒息消火操作を行ら設計とする。 （c）低温停止中 i ．火災防護対象ケーブルの分離及び火災防護対象機器の分散配置 原子炉格納容器内においては，機器やケーブル等が密集 しており，干渉物が多く，耐火ラッピング等の 3 時間以上 の耐火能力を有する隔壁の設置が困難である。このため，低温停止中は原子炉起動中と同様に，原子炉格納容器内の火災防護対象機器及び火災防護対象ケーブルは，系統分離			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（c－5）火災影響評価 設備等の設置状況を踏まえた可燃性物質の量等を基に，想定される発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，火災に	の観点から安全系区分 I と安全系区分II機器の水平距離 を 6 m 以上確保し，安全系区分 I と安全系区分II機器の間 において可燃物が存在することのないように，異なる区分 の機器間にある介在物（ケーブル，電磁弁）については金属性の筐体に収納することで延焼防止対策を行ら設計と する。 原子炉起動中と同様に，原子炉格納容器内の火災防護対象ケーブルは，原子炉格納容器貫通部は区分ごとに離れた場所に設置し，可能な限り距離的分散を図る設計とする。 また，火災発生後，消火活動を開始するまでの時間の耐火性能を確認した電線管又は金属製の蓋付ケーブルトレイ に敷設することによって，近接する他の区分の火災防護対象機器へ火災の影響を及ぼすことなく消火できる設計と する。 低温停止中は，原子炉の安全停止が達成•維持された状態であること，制御棒は金属等の不燃性材料で構成された機械品であることから，原子炉格納容器内の火災によって も，原子炉の停止機能及び未臨界機能の喪失は想定されな い。 ii ．火災感知設備 原子炉起動中と同様に，アナログ式の異なる 2 種類の火災感知器（煙感知器及び熱感知器）を設置する設計とする。 iii．消火設備 原子炉起動中と同様に，原子炉格納容器内の消火につい ては，消火器を使用する設計とする。また，消火栓を用い ても対応できる設計とする。火災の早期消火を図るため に，原子炉格納容器内の消火活動の手順を社内規程に定め て，自衛消防隊の訓練を実施する。 1．6．1．4．2 火災影響評価 火災の影響軽減のための対策を前提とし，設備等の設置状況を踏まえた可燃性物質の量等を基に想定される発電用原子炉施設内の火災によって，安全保護系及び原子炉停	1．3 火災の影響軽減 1．3．2 原子炉の安全確保 （2）火災の影響評価 a．火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失 を想定した設計に対する評価 設備等の設置状況を踏まえた可燃性物質の量等を基に想定される発電用原子炉施設内の火災によって，安全保護系及び原子炉停止系の作動が要求される場合には，火災に		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
よる影響を考慮しても，多重化されたそれぞれの系統が同時に機能を失うことなく，原子炉の高温停止及び低温停止 が達成できる設計とし，火災影響評価にて確認する。 （3）（i）a．（c－5）－11また，発電用原子炬施設内の火災に よって口（3）（i）a．（c－5）－（2）運転時の異常な過渡変化又は設計基準事故が発生した場合に，それらに対処するために必要な機器の（3）（i）a．（c－5）－（3）単一故障を考慮しても異常状態を収束できる設計とし，火災影響評価にて確認す る。	止系の作動が要求される場合には，火災による影響を考慮 しても，多重化されたそれぞれの系統が同時に機能を失う ことなく，原子炉の高温停止及び低温停止を達成し，維持 できることを，「（1）火災伝播評価」から「（3）隣接火災区画に火災の影響を与える火災区画に対する火災影響評価」に示す火災影響評価により確認する。 ただし，中央制御室制御盤及び原子炉格納容器に対して は，「1．6．1．4．1（2）火災防護対象機器及び火災防護対象 ケーブルの系統分離」で示すとおり，火災が発生しても，原子炉の高温停止及び低温停止の達成，維持は可能であ る。 また，内部火災により原子炉に外乱が及ぶ可能性，又は安全保護系，原子炬停止系の作動が要求される事象が発生 する可能性があるため，「発電用軽水型原子炉施設の安全評価に関する審査指針」に基づき，運転時の異常な過渡変化又は設計基準事故に対処するための機器に単一故障を想定しても，以下の状況を考慮し，多重性をもったそれぞ れの系統が同時に機能を喪失することなく，原子炉の高温停止，低温停止を達成することが可能であることを火災影響評価により確認する。	よる影響を考慮しても，多重化されたそれぞれの系統が同時に機能を失うことなく，原子炉の高温停止及び低温停止 を達成し，維持できることを，以下に示す火災影響評価に より確認する。 （a）隣接する火災区域又は火災区画に影響を与えない場合当該火災区域又は火災区画に設置される不燃性材料で構成される構築物，系統及び機器を除く全機器の機能喪失 を想定しても，原子炉の高温停止及び低温停止の達成，維持が可能であることを確認する。 （b）隣接する火災区域又は火災区画に影響を与える場合当該火災区域又は火災区画と隣接火災区域又は火災区画の 2 区画内の火災防護対象機器等の有無の組み合わせに応じて，火災区域又は火災区画内に設置される不燃性材料 で構成される構築物，系統及び機器を除く全機器の機能喪失を想定しても，原子炉の高温停止及び低温停止の達成，維持が可能であることを確認する。 b．設計基準事故等に対処するための機器に単一故障を想定した設計に対する評価 （3）（i）a．（c－5）－（1）内部火災により原子炉に外乱が及 び，かつ，安全保護系及び原子炉停止系の作動が要求され る（3）（ i ）a．（c－5）－（2）運転時の異常な過渡変化又は設計基準事故が発生する可能性があるためっ「発電用軽水型原子炬施設の安全評価に関する審査指針」に基づき，運転時 の異常な過渡変化又は設計基準事故に対処するための機器に対して（3）（i）a．（c－5）－③単一故障を想定しても，多重化されたそれぞれの采統が同時に機能を失うことなく，原子炉の高温停止及び低温儫止を達成できることを火災影響評価により確認する。	設計及び工事の計画の （ 3 ）（ i ）a．（c－5）－（1） は，設置変更許可申請書 （本文（五号））の口（3） （i ）a．（c－5）－（1）と 同義 であり整合している。 設計及び工事の計画の （3）（i）a．（c－5）－（2） は，設置変更許可申請書 （本文（五号））の（3） （ i ）a．（c－5）－（2）と 同義 であり整合している。 設計及び工事の計画の ロ（3）（i）a．（c－5）－（3） は，設置変更許可申請書 （本文（五号））の ${ }^{(3)}$ （i ）a．（c－5）－（3）と同義	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ c －6）その他 （3）（i）a．（c－6）－1）「口（3）（i）a．（c－2）火災発生防止」から「口（3）（i）a．（c－5）火災影響評価」のほかっ安全機能を有する構築物，系統及び機器のそれぞれの特徴 を考慮した火災防櫵対策を講じる設計とする。		1.1 火災発生防止 1．1．1 火災の発生防止対策 ＜中略＞ （3）（i）a．（c－6）－①蓄電池室の換気設備が停止した場合には，中央制御室に警報を発する設計とする。また，蒡電池室には，直流開閉装置やインバータを設置しない。 いて，崩壊熱が発生し，火災事象に至るような放射性噔裹物を貯蔵しない設計とする。．． また，放射性物質を含んだ使用済イオン交換樹脂，チャ コールフィルタ及び HEPAフィルタは，固体廃裹物として処理を行うまでの間，金属容器や不燃シートに包んで保管 することを保安規定に定めて，管理する。 放射性廃重物処理設備及び放射性廃重物貯蔵設備を設置する火災区域又は火災区画の換気設備は，火災時に他の火災区域又は火災区画や環境への放射性物質の放出を防 ぐために，換気設備の停止及び風量調整ダンパの閉止によ り，隔離ができる設計とする。 ＜中略＞ 1.2 火災の感知及び消火 1．2．2 消火設備 （7）その他 c．．．．ポンプ室の煙の排気対策 火災発生時の煙の充満により消火活動が困難となるポ ンプ室には，消火活動によらなくとも迅速に消火できるよ すに固定式消火設備を設置し，鎮火の確認のために自衛消防隊がポンプ室に入る場合については，再発火するおそれ があることからっ，十分に冷却時間を確保した上で扉の閉放，換気空調系及び可搬型排煙装置により換気が可能な設計とする。．．． d．．．．．使用济燃料貯蔵設備及び新燃料貯蔵設備使用斎燃料貯蔵設備は，，水中に設置されたラックに燃料 を貯蔵することで未臨界性が碓保される設計とする。 新燃料貯蔵設備については，消火活動により消火水が噴	であり整合している。 設置変更許可申請書（本 文（五号））の（3）（i） a．（c－6）－（1）は，設計及 び工事の計画の（3） （i）a．（c－6）－（1）以降に 具体的に記載しており整合している。	

設置変更許可申請書（	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		霰され，水分雾囲気に满たされた状熊となっても未臨界性 が碓保される設計とする。 e．ケーブル処理室 ケーブル处理室は，，自動消火設備であるハロンガス消火設備により消火する設計とする。区分Iケーブル处理室及 び区分I斤ーブル处理室については，消火活動のため2籄所の入口を設置する設計とする。 なおっ，区分巠ケーブル处理室は，消火活憅のための入口 は1箅所であるが，部屋の大きさが狭く，室内の可燃物は少量のケーブルトレイのみであるため，火聮が発生した場合においてもっ入口から消火要員による当該室全域の消火活動を行うことが可能な設計とする。 1．3 火災の影響軽澸 1．3．1 火災の影響軽減対策 （4）換気設備に対する火災の影響軽減対策 火災防櫵上重要な機器等を設置する西災区域又は熒災区画に設置する換気設備には，他の火災区域又は火災区再 の境界となる笽所に3時間耐火性能を有する防火ダンパを設置する設計とする。 換気設備のフィルタは，チャコールフィルタを除き難然性のものを使用する設計とする。 （5）火災発生時の㖶に対する火災の影響軽減対策運転蒷が常馶する中央制御室には，火災発生時の煰を排気するため，「建築基準法」に蕉执した容量の排碡設備を設置する設計とする。 火災防櫵上重要な機器等を設置する火災区域又は単災区画のらち，電気ケーブルや引灭性液体が密集する学区域又は尖災区覀については，ハロンガス消火設備による星期の消火により火災発生時の煙の発生が抑制されること から，煙の排気は不要である。．．． （6）油タンクに対する火災の影響軽減対策 火災区域又は㥕区災区画に設置される油タンクは，換気突調設備による排気又ぱージント管により屋外に排気する設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	－プール泠却及びプールへの給水の機能を適切に維持する ために必要な設備	機器の故障を考慮しても発生が予想される運転時の異常 な過渡変化又は設計基準事故について安全解析を行い，炉心損傷に至ることなく当該事象を収束できる設計とする。 重大事故等対処設備に期待する機能については，溢水影響を受けて設計基準事故対処設備並びに使用済燃料プー ルの泠却設備及び給水設備（以下「設計基準事故対処設備等」という。）と同時に機能を損ならおそれがないよう，没水，被水及び蒸気の影響に対しては可能な限り設計基準事故対処設備等の配置を含めて位置的分散を図る設計と する。 溢水影響に対し防護すべき設備（以下「防護すべき設備」 という。）として溢水防護対象設備及び重大事故等対処設備を設定する。 発電用原子炉施設内の放射性物質を含む液体を内包す る容器，配管その他の設備（ポンプ，弁，使用済燃料プー ル，原子炉ウェル，蒸気乾燥器•気水分離器ピット）から放射性物質を含む液体があふれ出るおそれがある場合に おいて，当該液体が管理区域外い漏えいすることを防止す る設計とする。 溢水評価条件の変更により評価結果が影響を受けない ことを碓認するために，評価条件変更の都度，溢水評価を実施することとし保安規定に定めて管理する。 2.2 防護すべき設備の抽出 溢水によってその安全機能が損なわれないことを確認 する必要がある施設を，「発電用軽水型原子炉施設の安全機能の重要度分類に関する審査指針」（以下「重要度分類審査指針」という。）における分類のクラス 1 ，クラス 2 及 びクラス 3 に属する構築物，系統及び機器とする。 この中から，溢水防護上必要な機能を有する構築物，系統及び機器を選定する。 具体的には，運転状態にある場合には発電用原子炉を高温停止，引き続き低温停止することができ，並びに放射性物質の閉じ込め機能を維持するため，停止状態にある場合 は引き続きその状態を維持するため，及び使用済燃料プー ルの泠却機能及び給水機能を維持するために必要となる，重要度分類審査指針における分類のクラス 1，2 に属する構築物，系統及び機器に加え，安全評価上その機能を期待			

設置変更許可申請書（	設置変更許可申請書（添付書頑八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	配管の破損形状の想定に当たっては，高エネルギー配管 は，原則「完全全周破断」，低エネルギー配管は，原則「配管内径の $1 / 2$ の長さと配管肉厚の $1 / 2$ の幅を有する貫通ク ラック」（以下「貫通クラック」という。）を想定する。 ただし，応力評価を実施する配管については，発生応力 Sn と許容応力 Sa の比により，以下で示した応力評価の結果に基づく破損形状を想定する。 また，応力評価の結果により破損形状の想定を行う場合 は，評価結果に影響するような減肉がないことを確認する ために継続的な肉厚管理を実施する。	めに設置される系統からの放水による溢水（以下「消火水 の放水による溢水」という。）並びに地震に起因する機器 の破損及び使用済燃料プール等のスロッシングにより生 じる溢水（以下「地震起因による溢水」という。）を踏ま え，溢水源及び溢水量を設定する。 また，その他の要因による溢水として，地下水の流入，地震以外の自然現象，機器の誤作動等により生じる溢水 （以下「その他の溢水」という。）の影響も評価する。 想定破損による溢水では，単一の配管の破損による溢水 を想定して，配管の破損箇所を溢水源として設定する。 また，破損を想定する配管は，内包する流体のエネルギ に応じて，高エネルギ配管又は低エネルギ配管に分類す る。 高エネルギ配管は，「完全全周破断」，低エネルギ配管は，「配管内径の $1 / 2$ の長さと配管肉厚の $1 / 2$ の幅を有する貫通クラック」（以下「貫通クラック」という。）を想定した溢水量とし，想定する破損箇所は溢水影響が最も大きくな る位置とする。 ただし，高エネルギ配管についてはターミナルエンド部 を除き応力評価の結果により，原子炉冷却材圧力バウンダ リ及び原子炉格納容器バウンダリの配管であれば発生応力が許容応力の 0.8 倍以下であれば破損を想定せず，原子炉冷却材圧力バウンダリ及び原子炉格納容器バウンダリ以外の配管であれば発生応力が許容応力の 0.4 倍を超え 0 ． 8 倍以下であれば「貫通クラック」による溢水を想定した評価とし， 0.4 倍以下であれば破損は想定しない。 また，低エネルギ配管については，発生応力が許容応力 の 0.4 倍以下であれば破損は想定しない。 発生応力と許容応力の比較により破損形状の想定を行 ら場合は，評価結果に影響するような減肉がないことを確認するために継続的な肉厚管理を実施することとし保安規定に定めて管理する。 高エネルギ配管のらち，高エネルギ配管として運転して いる割合が当該系統の運転している時間の 2% 又はプラン ト運転期間の 1% より小さいことから低エネルギ配管とす る系統については，運転時間実績管理を実施することとし保安規定に定めて管理する。 ＜中略＞			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
－発電所内で生じる異常状態（火災を含む。）の拡大防止 のために設置される系統からの放水による溢水 －（3）（i）a．（d）－8 地震に起因する機器の破損等により生 じる溢水（使用済燃料プール等のスロッシングにより発生する溢水を含む。）	1．7．3．2 消火水の放水による溢水 （1）消火水の放水による溢水源の想定 消火水の放水による溢水については，発電用原子炬施設内に設置される消火設備等からの放水を溢水源として設定する。 消火栓以外の設備としては，スプリンクラや格納容器ス プレイ冷却系があるが，溢水防護対象設備が設置されてい る建屋には，スプリンクラは設置しない設計とし，溢水防護対象設備が安全機能を損なわない設計とすることから溢水源として想定しない。 また，原子炉格納容器内の溢水防護対象設備について は，格納容器スプレイ泠却系の作動によって発生する溢水 により安全機能を損なわない設計とする。 なお，格納容器スプレイ泠却系は，単一故障による誤作動が発生しないように設計上考慮されていることから誤作動による溢水は想定しない。 1．7．3．3 地震起因による溢水 （1）発電所内に設置された機器の破損による漏水 （1）地震起因による溢水源の想定	2.3 溢水源及び溢水量の設定 溢水影響を評価するために想定する機器の破損等によ り生じる溢水（以下「想定破損による溢水」という。），発電所内で生じる異常状態（火災を含む。）の拡大防止のた めに設置される系統からの放水による溢水（以下「消火水 の放水による溢水」という。）並びに地震に起因する機器 の破損及び使用済燃料プール等のスロッシングにより生 じる溢水（以下「地震起因による溢水」という。）を踏ま え，溢水源及び溢水量を設定する。 また，その他の要因による溢水として，地下水の流入，地震以外の自然現象，機器の誤作動等により生じる溢水 （以下「その他の溢水」という。）の影響も評価する。 ＜中略＞ 消火水の放水による溢水では，消火活動に伴ら消火检か らの放水を溢水量として設定する。発電所内で生じる異常状態（火災を含む。）の拡大防止のために設置されるスプ リンクラ及び格納容器スプレイ泠却系からの溢水につい ては，防護すべき設備が溢水影響を受けない設計とする。 ＜中略＞ 2.3 溢水源及び溢水量の設定 溢水影響を評価するために想定する機器の破損等によ り生じる溢水（以下「想定破損による溢水」という。），発電所内で生じる異常状態（火災を含む。）の拡大防止のた めに設置される系統からの放水による溢水（以下「消火水 の放水による溢水」という。）並びに『（3）（i）a．（d）－8 地震に起因する機器の破損及び使用済燃料プール等のスロ ッシングにより生じる溢水（以下「地震起因による溢水」 という。）を踏まえ，溢水源及び溢水量を設定する。 て，地下水の流入，地震以外の自然現象，機器の槑作動等 により生じる溢水（以下「その他の溢水」という。）の影響も評価する。	設計及び工事の計画の （3）（i）a．（d）－8 は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－8 と 同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	地震起因による溢水については，溢水源となり得る機器 （流体を内包する機器）のうち，基準地震動 S s による地震力により破損が生じる機器を溢水源として設定する。 耐震 S クラス機器については，基準地震動 S s による地震力によって破損は生じないことから溢水源として想定 しない。また，耐震B及びCクラス機器のらち耐震対策工事の実施又は設計上の裕度の考慮により，基準地震動 S s による地震力に対して耐震性が確保されているものにつ いては溢水源として想定しない。 （2）使用済燃料プールのスロッシングによる溢水 （1）使用済燃料プールのスロッシングによる溢水源の想定 使用済燃料プールのスロッシングによる溢水について は，基準地震動 S s による地震力により生じる使用済燃料 プールのスロッシングによる漏えい水を溢水源として設定する。	＜中略＞ 地震起因による溢水では，流体を内包することで溢水源 となり得る機器のうち，基準地震動 S s による地震力によ り破損するおそれがある機器及び使用済燃料プール等の スロッシングによる漏えい水を溢水源として設定する。 耐震 S クラス機器については，基準地震動S s による地震力によって破損は生じないことから溢水源として想定 しない。また，耐震 B 及びCクラス機器のらち耐震対策工事の実施又は設計上の裕度の考慮により，基準地震動S s による地震力に対して耐震性が碓保されているものにつ いては溢水源として想定しない。 溢水源となる配管については破断形状を完全全周破断 を考慮した溢水量とし，溢水源となる容器については全保有水量を考慮した溢水量とする。 また，使用済燃料プールのスロッシングによる溢水量の算出に当たつては，基準地震動 S s により発生する使用済燃料プールのスロッシングにて使用済燃料プール外へ漏 えいする溢水量を算出する。 また，施設定期検査中においては，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピットのスロッ シングによる漏えい水を溢水源とし溢水量を算出する。 その他の溢水については，地下水の流入，降水，屋外夕 ンクの竜巻による飛来物の衝突による破損に伴ら漏えい等の地震以外の自然現象に伴ら溢水，機器の誤作動，弁グ ランド部及び配管フランジ部からの漏えい事象等を想定 する。 溢水量の算出に当たつては，漏水が生じるとした機器の らち防護すべき設備への溢水の影響が最も大きくなる位置で漏水が生じるものとして評価する。 また，溢水量の算出において，漏えい検知による漏えい停止を期待する場合には，漏えい停止までの適切な隔離時間を考慮し，配管の破損箇所から流出した漏水量と隔離後 の溢水量として隔離範囲内の系統の保有水量を合算して設定する。なお，手動による漏えい停止の手順は，保安規定に定めて管理する。 2.4 溢水防護区画及び溢水経路の設定		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
ロ（3）（i）a．（d）－（9）溢水評価に当たつては， （3）（i）a．（d）－（10）溢水防護対象設備の機能喪失高さ（溢水 の影響を受けて，溢水防櫵対象設備の安全機能を損なうお それがある高さ）及び『（3）（i）a．（d）－（11）溢水防護区画を構成する壁，扉，堰，設備等の設置状況を踏まえ，評価条件 を設定する。	（1）溢水防護区画の設定 溢水防護に対する評価対象区画を溢水防護区画とし， 溢水防護対象設備が設置されている全ての区画並びに中央制御室及び現場操作が必要な設備へのアクセス通路に ついて設定する。 溢水防護区画は壁，扉，堰，床段差等又はそれらの組み合 わせによって他の区画と分離される区画として設定し，溢水防櫵区画を構成する壁，鿁，堰，床段差等については，現場の設備等の設置状況を踏まえ，溢水の伝播に対する評価条件を設定する。 1．7．5．1 没水の影響に対する設計方針 （1）没水の影響に対する評価方針 a 。発生した溢水による水位がっ，溢水の影響を受けて溢水防檴対象設備の安全機能を損ならおそれがある高さ（以下「機能喪失高さ」という。）を上回らないこと。 ＜中略＞	（3）（i）a．（d）－（9）溢水影響を評価するために，溢水防護区画及び溢水経路を設定する。 溢水防護区画は，防護すべき設備が設置されている全て の区画並びに中央制御室及び現場操作が必要な設備への アクセス通路について設定する。 （3）（i）a．（d）－（11）溢水防護区画は壁，扉，堰，床段差等，又はそれらの組み合わせによって他の区画と分離される区画として設定し，溢水防護区画内外で発生を想定する溢水に対して，当該区画内の溢水水位が最も高くなるように保守的に溢水経路を設定する。 また，消火活動により区画の扉を開放する場合は，開放 した扉からの消火水の伝播を考慮した溢水経路とする。 溢水経路を構成する水密扉に関しては，扉の閉止運用を保安規定に定めて管理する。 常設している堰の取り外し及びハッチを開放する場合 の運用を保安規定に定めて管理する。 2.5 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関する溢水評価及び防護設計方針 2．5．1 没水の影響に対する評価及び防護設計方針 （3）（i）a．（d）－（1）発生を想定する溢水量，溢水防護区画及び溢水経路から算出される溢水水位と防護すべき設備 が要求される機能を損なうおそれがある高さ（以下「機能喪失高さ」という。）を評価し，防護すべき設備が要求さ れる機能を損ならおそれがない設計とする。 また，溢水の流入状態，溢水源からの距離，人員のアク セス等による一時的な水位変動を考慮し，機能喪失高さは溢水による水位に対して裕度を確保する設計とする。 没水の影響により，防護すべき設備が溢水による水位に対し機能喪失高さを確保できないおそれがある場合は，溢水水位を上回る高さまで，溢水により発生する水圧に対し て止水性（以下「止水性」という。）を維持する壁，扉，堰，逆流防止装置及び貫通部止水処置により溢水伝播を防止するための対策を実施する。 止水性を維持する浸水防護施設については，試験又は構造健全性評価にて止水性を確認する設計とする。	設計及び工事の計画の （3）（i）a．（d）－（9）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（9）と同義であり整合している。 設計及び工事の計画の『（3）（i）a．（d）－（10）の 「防護すべき設備」は，設置変更許可申請書（本文（五号））の（3）（i ） a．（d）－（10）「溢水防護対象設備」を含んでい る。また，設計及び工事 の計画の（3）（i）a． （d）－（10）「要求される機能」は，設置変更許可申請書（本文（五号）） のロ（3）（i）a．（d）－（10）の「安全機能」を含んでお り整合している。 設計及び工事の計画の （3）（i）a．（d）－（11）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（11）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
 防櫵力バー，ブローアウトパネル等の設備については，回 （3）（i）a．（d）－（3）必要により保守点檢や『（3）（i）a．（d）－（4）水窑盃閉止等の運用を適切に寒施することにより，（13） （i）a．（d）－（5）溢水防護対象設備が安全機能を損なわない設計とする。	1．7．9 手順等 溢水評価に関して，以下の内容を含む手順を定め，適切 な管理を行う。	2.8 溢水防護上期待する浸水防謢施設の構造強度設計溢水防護区画及び溢水経路の設定並びに溢水評価にお いて期待する浸水防護施設の構造強度設計は，以下のとお りとする。 （3）（i）a．（d）－（12）浸水防櫵施設が回（3）（i）a．（d）－（16）要求される機能を維持するため，（1）（i）a．（d）－（13）計画的に保守管理，点検を実施するとともに必要に応じ補修を害施 する。 止水に期待する壁，堰，扉，蓋，逆流防止装置及び貫通部止水処置のらち，地震に起因する機器の破損等により生 じる溢水（使用済燃料プール等のスロッシングにより発生 する溢水を含む。）から防護する設備については，基準地震動 S s による地震力に対し，地震時及び地震後において も，溢水伝播を防止する機能を損ならおそれがない設計と する。ただし，放射性物質を含む液体が管理区域外に伝播 することを防止するために設置する堰については，要求さ れる地震力に対し，地震時及び地震後においても，溢水伝播を防止する機能を損ならおそれがない設計とする。 排水に期待する床ドレン配管の設計については，発生を想定する溢水に対する排水機能を損ならおそれがない設計とする。 漏えい蒸気影響を緩和する保護カバーの設計において は，配管の破断により発生する荷重に対し，蒸気影響を緩和する機能を損ならおそれがない設計とする。 循環水系配管及びタービン補機冷却海水系配管の破損箇所からの溢水量を低減する循環水系隔離システム及び タービン補機冷却海水采隔離システムの設計においては，基準地震動S s による地震力に対し，地震時及び地震後に おいても，溢水量を低減する機能を損ならおそれがない設計とする。 2.4 溢水防護区画及び溢水経路の設定 <中略 > （3）（i）a．（d）－（14）隘水経路を構成する水密扉に関して は，扉の閉止運用を保安規定に定めて管理する。 ＜中略＞	設計及び工事の計画の （3）（i）a．（d）－（12）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（12）を含んでおり整合している。 設計及び工事の計画の （3）（i）a．（d）－（13）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（13）と同義であり整合している。 設計及び工事の計画の （3）（i）a．（d）－（14）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（14）と同義であり整合している。 設計及び工事の計画の （（3）（i）a．（d）－（15）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（15）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	（1）配管の想定破損評価において，応力評価の結果によ り破損形状の想定を行う場合は，評価結果に影響するよ うな減肉がないことを継続的な肉厚管理で確認する。 （2）配管の想定破損による溢水が発生する場合及び基準地震動S s による地震力により耐震B，Cクラスの機器 が破損し溢水が発生する場合においては，隔離手順を定 める。 （3）運転実績（高エネルギー配管として運転している割合が当該系統の運転している時間の 2% 又はプラント運転期間の 1% より小さい）により低エネルギー配管と している設備については，運転時間管理を行う。 （4）内部溢水評価で用いる屋外タンクの水量を管理す る。 （5）地震起因による溢水において，溢水源となる機器の うち運用によって溢水を考慮しない機器について，プラ ント運転中及び停止中において系統運用を停止し，隔離 （水抜き）する。 （6）溢水防護区画において，各種対策設備の追加，資機材の持込み等により評価条件としている床面積に見直 しがある場合は，あらかじめ定めた手順により溢水評価 への影響碓認を行う。 （7）排水を期待する箇所からの排水を阻害する要因に対 し，それを防止するための運用を実施する。 （8）施設定期検査作業に伴う溢水防護対象設備の不待機 や扉の開放等，影響評価上設定したプラント状態の一時的な変更時においても，その状態を踏まえた必要な安全機能が損なわれない運用とする。 （9）水密扉については，開放後の確実な閉止操作，閉止状態の確認及び閉止されていない状態が確認された場合の閉止操作の手順等を定める。 （10）溢水発生後の滞留区画等での排水作業手順を定め る。 （11）溢水防護対象設備に対する消火水の影響を最小限 にとどめるため，消火活動における運用及び留意事項 と，それらに関する教育について「火災防護計画」に定 める。 （12）燃料プール泠却浄化系，燃料プール補給水系が機能喪失した場合における，残留熱除去系による使用済燃料	2.5 防護すべき設備を内包する建屋内及びエリア内で発生する溢水に関する溢水評価及び防護設計方針 2．5．2 被水の影響に対する評価及び防護設計方針 発生を想定する溢水源からの直線軌道及び放物線軌道 の飛散による被水及び天井面の開口部若しくは貫通部か らの被水が，防護すべき設備に与える影響を評価し，防護 すべき設備が要求される機能を損ならおそれがない設計 とする。 防護すべき設備は，浸水に対する保護構造（以下「保護構造」という。）を有し，被水影響を受けても要求される機能を損なうおそれがない設計とする。 保護構造を有さない場合は，機能を損なうおそれがない配置設計又は被水の影響が発生しないよう当該設備が設置される溢水防護区画において水消火を行わない消火手段（ハロンガス消火設備による消火，ケーブルトレイ消火設備による消火又は消火器による消火）を採用する設計と する。 保護構造により要求される機能を損ならおそれがない設計とする設備については，評価された被水条件を考慮し ても要求される機能を損ならおそれがないことを設計時 に確認する。 消火対象以外の設備への誤放水がないよう，消火水放水時に不用意な放水を行わない運用とすることとし保安規定に定めて管理する。 2．5．3 蒸気影響に対する評価及び防護設計方針 発生を想定する漏えい蒸気，区画間を拡散する漏えい蒸気及び破損想定箇所近傍での漏えい蒸気の直接噴出によ る影響について，設定した空調条件や解析区画条件により防護すべき設備に与える影響を評価し，防護すべき設備が要求される機能を損ならおそれがない設計とする。 また，漏えい蒸気による環境条件（温度，湿度及び圧力） を想定した試験又は机上評価により，防護すべき設備が要求される機能を損ならおそれがない設計又は配置とする。 漏えい蒸気の影響により，防護すべき設備が要求される機能を損ならおそれがある場合は，漏えい蒸気影響を緩和 するための対策を実施する。 具体的には，漏えい蒸気による機器への影響を考慮した			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	プールの泠却及び給水手順を定める。	試験で性能を確認した保護カバーを設置し，蒸気影響を緩和することにより防護すべき設備が要求される機能を損 ならおそれがない設計とする。 また，主蒸気管破断事故時等には，原子炉建屋原子炉棟内外の差圧による原子炉建屋ブローアウトパネル（設置枚数 1 枚，開放差圧 4.4 kPa 以下）（原子炉格納施設の設備を浸水防護施設の設備として兼用）の開放により，溢水防護区画内において蒸気影響を軽減する設計とする。 2．5．4 使用济燃料プールのスロッシング後の機能維持に関する溢水評価及び防護設計方針使用済燃料プールのスロッシングによる溢水量の算出 に当たっては，基準地震動S s による地震力によって生じ るスロッシング現象を三次元流動解析により評価し，使用済燃料プール外へ漏えいする水量を考慮する。 その際，使用済燃料プールの初期水位は，スキマサージ タンクへのオーバーフロー水位として評価する。 算出した溢水量からスロッシング後の使用済燃料プー ルの水位低下を考慮しても，使用済燃料プールの泠却機能及び使用済燃料プールへの給水機能を確保し，それらを用 いることにより適切な水温及び遮蔽水位を維持できる設計とする。 2.6 防護すべき設備を内包する建屋外及びエリア外で発生する溢水に関する溢水評価及び防護設計方針 防護すべき設備を内包する建屋外及びエリア外で発生 を想定する溢水である循環水配管等の破損による溢水，屋外タンクで発生を想定する溢水，地下水等による影響を評価し，防護すべき設備を内包する建屋内及びエリア内へ溢水が流入し伝播しない設計とする。 具体的には，溢水水位に対して止水性を維持する壁，扉，蓋の設置及び貫通部止水処置を実施し，溢水の伝播を防止 する設計とする。 タービン建屋内における循環水系配管の破損による溢水量低減については，破損箇所からの溢水を早期に自動検知し，自動隔離を行うために，循環水系隔離システム（漏 えい検出器，復水器水室出入口并並びに漏えい検出制御盤及び監視盤）を設置する。循環水系隔離システムは，隔離			

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（d）－（16）また，設計基準対象施設は，発電用原子炬施設内の放射性物質を含む液体を内包する容器，配管 その他の設備から放射性物質を含む液体があふれ出た場合において，当該液体が管理区域外い漏えいしない設計と する。	1．7．7 放射性物質を含んだ液体の管理区域外への漏えい を防止するための設計方針 管理区域内で発生した溢水の管理区域外への伝播経路 となる箇所については，壁，扉，堰等による漏えい防止対策を行うことにより，機器の破損等により生じた放射性物質を内包する液体が管理区域外に漏えいすることを防止 する設計とする。	信号発信後，約 30 秒で循環水ポンプを停止するとともに，約 3 分で復水器水室出入口弁を自動閉止する設計とする。 タービン建屋内におけるタービン補機冷却海水系配管 の破損による溢水量低減については，破損箇所からの溢水 を早期に自動検知し，隔離を行らために，タービン補機冷却海水系隔離システム（漏えい検出器，タービン補機冷却海水ポンプ出口弁並びに漏えい検出制御盤及び監視盤）を設置する。タービン補機冷却海水采隔離システムは，隔離信号発生後，約 30 秒でタービン補機冷却海水ポンプを停止するとともに，タービン補機冷却海水ポンプ出口弁を自動閉止する設計とする。 また，地下水に対しては，地下水位低下設備のらち揚水 ポンプの故障等より建屋周囲の水位が地表面まで上昇す ることを想定し，建屋外周部における壁，扉，堰等により溢水防護区画を内包する建屋内への流入を防止するとと もに，地震による建屋外周部からの地下水の流入の可能性 を安全側に考慮しても，防護すべき設備が要求される機能 を損なわない設計とする。 止水性を維持する浸水防護施設については，試験又は机上評価にて止水性を確認する設計とする。 2.7 管理区域外への漏えい防止に関する溢水評価及び防護設計方針 （3）（i）a．（d）－（16）放射性物質を含む液体を内包する容器，配管その他の設備（ポンプ，弁，使用済燃料プール，原子炉ウェル及び蒸気乾燥器•気水分離器ピット）からあ ふれ出る放射性物質を含む液体の溢水量，溢水防護区画及 び溢水経路により溢水水位を評価し，放射性物質を内包す －液体が管理区域外に漏えいすることを防止し伝播しな い設計とする。なお，地震時における放射性物質を含む液体の溢水量の算出については，要求される地震力を用いて設定する。 放射性物質を含む液体が管理区域外に伝播するおそれ がある場合には，溢水水位を上回る高さまで，止水性を維持する堰及び水密扉により管理区域外への溢水伝播を防止するための対策を実施する。	設計及び工事の計画の （ P （3）（i）a．（d）－（16）は，設置変更許可申請書（本文（五号））の（3）（i） a．（d）－（16）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
放射線防護措置（遮蔽 ${ }^{(1)}$（3）（i）a．（e）－（1）及び換気空調設備 の事故時運転モードの寒施）	器への誤接触を防止できる設計とする。 6．10．1．4．1 中央制御室 中央制御室は，制御建屋内に設置し，原子炉冷却系統に係る発電用原子炉施設の損壊又は故障が発生した場合に，従事者が支障なく中央制御室に入ることができるよう，こ れに連絡する通路及び出入りするための区域を多重化す る。また，中央制御室内にとどまり必要な操作，措置を行 ら運転員が過度の被ばくを受けないよう施設し，運転員の勤務形態を考慮し，事故後 30 日間において，運転員が中央制御室に入り，とどまっても，中央制御室遮蔽を透過す る放射線による線量，中央制御室に侵入した外気による線量及び入退域時の線量が，中央制御室換気空調系等の機能 とあいまって，「実用発電用原子炉及びその附属施設の技術基準に関する規則」及び「実用発電用原子炬及びその附属施設の技術基準に関する規則の解釈」に示される 100 mS v を下回るように遮蔽を設ける。中央制御室換気空調系は他と独立して設け，事故時には外気との連絡口を遮断し，高性能エアフィルタ及びチャコールエアフィルタを内蔵 した中央制御室再循環フィルタ装置を通る事故時運転モ ードとし運転員その他従事者を過度の被ばくから防護す る設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循環フィル夕装置で浄化しながら取り入れることも可能な設計とす る。また，室内の酸素濃度及び二酸化炭素濃度が活動に支障のない範囲であることを把握できるよう，酸素濃度計及 び二酸化炭素濃度計を保管する。 < 中略 >	【計測制御系統施設】（要目表） 4．12．2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 c．居住性の確保 中央制御室及びこれに連絡する通路並びに運転員その他の従事者が中央制御室に出入りするための区域は，原子炉泠却系統に係る発電用原子炉施設の損壊又は故障その他の異常が発生した場合に，中央制御室の気密性，遮蔽回 （3）（i）a．（e）－（1）云の他適切な放射線防護措置，気体状の放射性物質並びに火災等により発生する燃焼ガス，ばい煙，有毒ガス及び降下火砕物に対する換気設備の隔離その他の適切な防護措置を講じることにより，発電用原子炉の運転の停止その他の発電用原子炉施設の安全性を確保す るための措置をとるための機能を有するとともに連絡す る通路及び出入りするための区域は従事者が支障なく中央制御室に入ることができるよう，多重性を有する設計と する。 ＜中略＞ 【放射線管理施設】（基本設計方針） 2．換気設備，生体遮蔽装置等 2.2 換気設備 2．2．1 中央制御室換気空調系 ＜中略＞ 中央制御室換気空調系は，通常のラインの他，高性能エ アフィルタ及びチャコールエアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再循環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－D303，D304），中央制御室少量外気取入ダンパ（A），（B）（V30－D301A，B）及び中央制御室排風機（A），（B）出ロダンパ（V30－D305A，B）を閉とす ることにより（3）（i）a．（e）－（1）外気との連絡口を遮断し，中央制御室再循環フィルタ装置入口ダンパ（A），（B）（V30 －D302A，B）を䦩とすることにより中央制御室再循環フィル タ装置を通る事故時運転モードとし，放射性物質を含む外	設計及び工事の計画の （3）（i）a．（e）－（1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（e）－（1）と文章表現は異なるが，内容に相違は ないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	6．10．1．4．1 中央制御室 （内部火災） 中央制御室に二酸化炭素消火器を設置するとともに，常駐する運転員によって火災感知器による早期の火㷋感知 を可能とし，火炏が発生した場合の連転員の対応を社内規程に定め，運転員による速やかな消火を行らことで運転操作に影響を与えず容易に操作ができる設計とする。また，中央制御室床下に火炎感知器及び自動消火設備である局所がス消火設備を設置することにより，火災が発生した場合に速やかな消火を行らことで運転操作に影響を与えず容易汇操作ができる設計とする。	気が中央制御室氾直接流入することを防ぐことができ，運転員を被ばくから防護する設計とする。外部との遮断が長期にわたり，室内の雰囲気が悪くなった場合には，外気を中央制御室再循睘フィルタ装置で浄化しながら取り入れ ることも可能な設計とする。 ＜中略〉 ［火災防護設備】（基本設計方針） 1．火災防護設備の基本設計方針 1.2 火災の感知及び消火 1．2．1 火災感知設備 火災感知設備の火災感知器は，火災区域又は火災区画に おける放射線，取付面高さ，温度，湿度，空気流等の環境条件，予想される火災の性質を考慮し，火災感知器を設置 する火災区域又は火災区画の火災防護上重要な機器等及 び重大事故等対処施設の種類に応じ，火災を早期に感知で きるよう，口（3）（i）a．（e）－（2）固有の信号を発するアナログ式の煙感知器及びア十口グ式の熱感知器の異なる種頪の火災感知器を組条合わせて設置する設計とする。 <中略> 火災感知設備のうち火災受信機盤は中央制御室に設置 し，火災感知設備の作動状況を常時監視できる設計とす る。また，火災受信機盤は，構成されるアナログ式の受信機により作動した火災感知器を 1 つずつ特定できる設計と する。 ＜中略＞ 1．2．2 消火設備 <中略> 中央制御室は，消火器で消火を行う設計とし，中央制御室制御盤内の火災については，電気機器への影響がない二酸化炭素消火器で消火を行ら設計とする。また，厄（3）（i） a．（e）－（2）中央制御室床下ケーブルピントについては，自憅消火設備であるハロンガス消火設備（局所）を設置する設計とする。	設計及び工事の計画の （3）（i）a．（e）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（e）－（2）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（3）（i）a．（e）－（3）照盟用檽源の確保措置を講じ， 環境条件を想定しても，運転員が運転時の異常な過渡変化及び設計基準事故に対応するための設備を容易に操作す ることができる設計とするとともに，現場操作についても同様な環境条件を想定しても，設備を容易に操作すること ができる設計とする。	6．10．1．4．1 中央制御室 （外部電源喪失） 中央制御室における運転操作に必要な照明は，地震，竜巻，風（台風），積雪，落雷，外部火災及び降下火砕物に伴い外部電源が喪失した場合には，非常用ディーゼル発電機が起動することにより，運転操作に影響を与えず操作に必要な照明用電源を確保し，容易に操作ができる設計とす る。また，直流照明兼非常用照明により中央制御室におけ る運転操作に必要な照明を確保し，容易に操作ができる設計とする。 6．10．1．4．1 中央制御室 < 中略 > 中央制御室は，当該操作が必要となる理由となった事象 が有意な可能性をもつて同時にもたらされる環境条件及 び発電用原子炉施設で有意な可能性をもつて同時にもた らされる環境条件（地震，内部火災，内部溢水，外部電源喪失並びにばい煙，有毒ガス，降下火砕物による操作雰囲気の悪化及び凍結）を想定しても，適切な措置を講じるこ とにより運転員が運転時の異常な過渡変化及び設計基準事故に対応するための設備を容易に操作ができるものと する。 < 中略 >	（基本設計方針）「共通項目」 6．その他 6.3 安全避難通路等 ＜中略＞ （3）（i）a．（e）－③設計基蕉事故が発生した場合に用い る作業用照盟として，非常用照明，直流照明兼非常用照琞及び直流照盟を設置する設計とする。 （3）（i ）a．（e）－③韭虽用照盟は非虽用高圧母線又は非常用低圧母線，直流照明兼韭常用照明は韭常用低圧母線及 び125V蓄䨌池，並びに直流照明は125V蓄電池に接続し，非常用デイーゼル発霵機からも電力を供給できる設計と する。 ＜中略＞ 【計測制御系統施設】（要目表） 4．12．2 中央制御室機能及び中央制御室外原子炬停止機能 （1）中央制御室機能 a．中央制御室制御盤等 < 中略 > 当該操作が必要となる理由となった事象が有意な可能性をもって同時にもたらされる環境条件及び発電用原子炉施設で有意な可能性をもって同時にもたらされる環境条件（地震，内部火災，内部溢水，外部電源喪失並びに燃焼ガス，ばい煙，有毒ガス，降下火砕物及び倲結による操作雰囲気の悪化）を想定しても，運転員が運転時の異常な過渡変化及び設計基準事故に対応するための設備を中央制御室において操作に必要な照明の確保等により容易に操作することができる設計とするとともに，現場操作につ いても運転時の異常な過渡変化及び設計基準事故時に操作が必要な箇所は環境条件を想定し，適切な対応を行うこ とにより容易に操作することができる設計とする。	設計及び工事の計画の （3）（i）a．（e）－（3）は，設置変更許可申請書（本文（五号））の口（3）（i） a．（e）－（3）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
また，作業場所までの移動等に必要な照明として内蔵電池を備える可搬型照明を配備する。	故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの間，点灯可能な設計とす る。 作業用照明は，設計基準事故が発生した場合に必要な操作が行えるように非常灯と同等以上の照度を有する設計 とする。 可搬型照明は，内蔵電池にて点灯可能な設計とし，全交流動力電源電失時における緊急時対策所内の可搬型照明保管場所への移動及び緊急時対策所の作業に必要な照度 を碓保できる設計とする。可搬型照明は，作業開始前に準備可能な場所（緊急時対策所，事務建屋）に配備する。 上記以外の設計基準事故に対応するための操作が必要 な場所には，作業用照明を設置することにより作業が可能 であるが，万一，作業用照明設置箇所以外での対応が必要 になった場合には，初動操作に対応する運転員が常時滞在 している中央制御室に配備する可搬型照明（内蔵電池にて点灯可能な情中電灯等）を活用する。	設計基準事故が発生した場合に用いる可搬型の作業用照明として，内蔵電池を備える可船型照明（懐中電灯，ラ ンタンタイプLEDライト及びヘッドライト（ヘルメット装着用））起配備する設計とする。 可搬型照明（ヘッドライト（ヘルメット装着用））は全交流動力電源喪失時における緊急時対策所内の可搬型照明保管場所への移動時の照度を確保するために，発電所対策本部要員及び重大事故等対応要員が持参し，作業開始前 に準備可能なように事務建屋に配備する設計とする。 可搬型照明（ランタンタイプ LED ライト及びーッドライ ト（ヘルメット装着用））は全交流動力電源震失時におけ る緊急時対策所内の照度を碓保するために，事故対応時に発電所対策本部要員及び重大事故等対応要員が滞在する緊急時対策所岏配備する設計とする。 上記以外の設計基準事故に対応するための操作が必要 な場所には，作業用照明を設置することにより作業が可能 であるが，万一，作業用照明設置箇所以外での対応が必要 になった場合には，初動操作に対応する運転員が常時滞在 している中央制御室に配備する可搬型照明（懷中電灯，ラ ンタンタイプLED ライト及びへッドライト（ヘルメット装着用）を使用する設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたって機能が要求 される静的機器のうち，単一設計とする以下の機器につい ては，想定される最も過酷な条件口（3）（i）a．（g－1）－（2）下に おいても安全上支障のない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定しない。回 （3）（i）a．（g－1）－（3）設計に当たつては，想定される単一故障の発生に伴ら周辺公衆及び運転員の被ばく，，当該単一故障の除去又は修復のためのアクセス性，補修作業性並びに当該作業期間における従事者の被ばくを考盧する。．．． - 非常用ガス処理系の配管の一部及びフィルタ装置 - 中央制御室換気空調系のダクトの一部及び再循環フィル夕装置	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （安全施設）第十二条 適合のための設計方針第2項について ＜中略＞ また，重要度が特に高い安全機能を有する系統におい て，設計基準事故が発生した場合に長期間にわたつて機能 が要求される静的機器のらち，単一設計とする非常用がス処理系の配管の一部及びフィルタ装置並びに中央制御室換気空調系のダクトの一部及び再循環フィルタ装置につ いては，当該設備に要求される原子炉格納容器内又は放射性物質が原子炉格納容器内から漏れ出た場所の雾囲気中 の放射性物質の濃度低減機能及び原子炉制御室非常用換気空調機能が喪失する単一故障のらち，想定される最も過酷な条件として，配管及びダクトについては全周破断，フ ィルタ装置及び再循環フィルタ装置については閉塞を想定しても，単一故障による放射性物質の放出に伴ら被ばく の影響を最小限に抑えるよう，安全上支障のない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定しない。設計に当たつては，想定される単一故障 の発生に伴う周辺公衆及び運転員の被ばく，当該単一故障 の除去又は修復のためのアクセス性，補修作業性並びに当該作業期間として想定する3日間における従事者の被ば くを考慮し，周辺公衆の被ばく線量が設計基準事故時の判断基準である実効線量を下回ること，運転員の被ばく線量 が緊急時作業に係る線量限度を下回ること及び従事者の被ばく線量が緊急時作業に係る線量限度に照らしても十分小さく修復作業が実施可能であることを満足するもの とする。 なお，単一故障を除去又は修復ができない場合であって も，周辺公衆に対する放射線被ばくが，安全評価指針に示 された設計基準事故時の判断基準を下回ることを確認す る。	【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設 備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 ＜中略＞ 重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたって機能が要求 される静的機器のらち，単一設計とする非常用ガス処理系 の配管の一部及び非常用ガス処理系フィルタ装置につい ては，当該設備に要求される原子炉格納容器内又は放射性物質が原子炉格納容器内から漏れ出た場所の雰囲気中の放射性物質の濃度低減機能が喪失する単一故障のらち，想定される最も過酷な条件口（3）（i）a．（g－1）－②として，配管 の全周破断及び非常用ガス処理系フィルタ装置の閉塞を想定しても，単一故障による放射性物質の放出に伴う被ば くの影響を最小限に抑えるよう，安全上支障のない期間に単一故障を確実に除去又は修復できる設計とし，その単二故障を仮定しない。 （3）（i）a．（g－1）－（3）想定される単一故障の発生に伴う周辺公衆に対する放射線被ばくは，保守的に単一故障を除圭又は修復ができない場合で評価し，安全評価指針に示さ れた設計基漼事故時の判断基漼を下回ることを確認する。－ また，単一故障の除圭又は修復のための作業期間として想定する3日間を考慮し，修復作業に係る従事者の被ばく線量は緊急時作業に係る線量限度に照らしても十分小さ くする設計とする。．．． 単一設計とする箇所の設計に当たっては，想定される単一故障の除去又は修復のためのアクセスが可能であり，かっ つ，補修作業が容易となる設計とする。．．． <中略 >	設計及び工事の計画の （ 3 ）（ i ）a．（g－1）－（2） は，設置変更許可申請書 （本文（五号））の（3） （ i ）a．（g－1）－（2）を具体的に記載しており整合 している。 設計及び工事の計画の （ 3 ）（ i ）a．（g－1）－（3） は，設置変更許可申請書 （本文（五号））の（3） （i）a．（g－1）－（3）を具体的に記載しており整合 している。	

設置変更許可申請書（	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		【放射線管理施設】（基本設計方針） 2．換気設備，生体遮蔽装置等 2.2 換気設備 2．2．1 中央制御室換気空調系 ＜中略＞ （ ${ }^{(3)(\mathrm{i}) \mathrm{a} \text { a．（g－1）－（2）重要度が特に高い安全機能を有す }}$ る系統において，設計基準事故が発生した場合に長期間に わたつて機能が要求される静的機器のうち，単一設計とす る中央制御室換気空調系のダクトの一部及び中央制御室再循環フィルタ装置については，当該設備に要求される原子炉制御室非常用換気空調機能が喪失する単一故障のら ち，想定される最も過酷な条件として，ダクトの全周破断及び中央制御室再循環フィルタ装置の閉塞を想定してもっ，単一故障による放射性物質の放出に伴う被ばくの影響を最小限に抑えるよう，安全上支障のない期間に単一故障を確実に除去又は修復できる設計とし，その単一故障を仮定 しない。 （3）（i）a．（g－1）－（3）想定される単一故障の発生に伴う中央制御室の運転員の被ばく量は保守的に単一故障を除寺又は修復ができない場合で評価し，緊急作業時に係る線量限度を下回ることを確認する。 また，単一故障の除圭又は修復のための作業期間として想定する3日間を考慮し，修復作業に係る従事者の被ばく線量は緊急時作業に係る線量限度に照らしても十分小さ くする設計とする。 単一設計とする籄所の設計に当たっては，想定される単一故障の除去又は修復のためのアクセスが可能であり，か つ，補修作業が容易となる設計とする。 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．2 多様性，位置的分散等 （2）単一故障 ＜中略＞ ただし，非常用ガス処理系の配管の一部及び非常用ガス処理系フィルタ装置，中央制御室換気空調系のダクトの一			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
また，重要度が特に高い安全機能を有する系統におい て，設計基準事故が発生した場合に長期間にわたつて機能 が要求される静的機器のらち，単一設計とする口（3）（i）a． （g－1）－（4）以下の機器については，単一故障を仮定した場合 においても安全機能を達成できる設計とする。 －格納容器スプレイ椧却系のスプレイ管（ドライウェルス プレイ管及びサプレッションチェンバスプレイ管）	重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたつて機能が要求 される静的機器のらち，単一設計とする格納容器スプレイ椧却系のスプレイ管（ドライウェルスプレイ管及びサプレ ッションチェンバスプレイ管）については，想定される最 も過酷な単一故障の条件として，配管 1 箇所の全周破断を想定した場合においても，原子炉格納容器の泠却機能を達成できる設計とする。ここで，単一故障時には，残留熱除去系 1 系統による格納容器スプレイ泠却系は，スプレイ効果に期待できない状態となり，スプレイ液滴による除熱を考慮しないこと及び泠却水が破断箇所から落下してサプ レッションチェンバのプール水に移行することを想定す る。このような場合においても，他の残留熱除去系 1 系統 をサプレッションプール水冷却モードで運転することで原子炉格納容器の泠却機能を代替できる設計とする。 ＜中略＞	部及び中央制御室再循環フィルタ装置並びに残留熱除去系（格納容器スプレイ泠却モード）のドライウェルスプレ イ管及びサプレッションチェンバスプレイ管については，設計基準事故が発生した場合に長期間にわたつて機能が要求される静的機器であるが，単一設計とするため，個別 に設計を行う。 【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.2 原子炬格納容器安全設備 3．2．1 原子炉格納容器スプレイ椧却系 <中略> 重要度が特に高い安全機能を有する系統において，設計基準事故が発生した場合に長期間にわたつて機能が要求 される静的機器のらち，単一設計とする口（3）（i）a．（g－1）－ （4）残留熱除圭系（格納容器スプレイ渝却モード）のドライ ウェルスプレイ管及びサプレッションチェンバスプレイ管については，想定される最も過酷な単一故障の条件とし て，配管 1 笝所の全周破断を想定した場合においても，原子炉格納容器の冷却機能を達成できる設計とする。 ここで，単一故障時には，残留熱除去系 1 系統による格納容器スプレイ椧却モードは，スプレイ効果に期待できな い状態となり，スプレイ液滴による除熱を考慮しないこと及び泠却水が破断箇所から落下してサプレッションチェ ンバのプール水に移行することを想定する。このような場合においても，他の残留熱除去系 1 系統をサプレッション プール水泠却モードで運転することで原子炉格納容器の冷却機能を代替できる設計とする。 ＜中略＞ 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．2 多様性，位置的分散等 （2）単一故障 <中略 > ただし，非常用ガス処理系の配管の一部及び非常用ガス	設計及び工事の計画の （3）（i）a．（g－1）－4 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（g－1）－（4）を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
安全施設の設計条件を設定するに当たっては，材料疲労，劣化等に対しても十分な余裕を持って機能維持が可能 となるよう，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，（3）（i） a．（g－1）－（5）放射線量等各種の環境条件を考慮し，十分安全側の条件を与えることにより，これらの条件下においても期待されている安全機能を発揮できる設計とする。	第 3 項について 安全施設の設計条件を設定するに当たつては，材料疲労，劣化等に対しても十分な余裕を持って機能維持が可能 となるよう，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に想定される圧力，温度，湿度，放射線量等各種の環境条件を考慮し，十分安全側の条件を与えるこ とにより，これらの条件下においても期待されている安全機能を発揮できる設計とする。	処理系フィルタ装置，中央制御室換気空調系のダクトの一部及び中央制御室再循環フィルタ装置並びに残留熱除去系（格納容器スプレイ冷却モード）のドライウェルスプレ イ管及びサプレッションチェンバスプレイ管については，設計基準事故が発生した場合に長期間にわたって機能が要求される静的機器であるが，単一設計とするため，個別 に設計を行う。 5．1．5 環境条件等 安全施設の設計条件については，材料疲労，劣化等に対 しても十分な余裕を持って機能維持が可能となるよう，通常運転時，運転時の異常な過渡変化時及び設計基準事故時 に想定される圧力，温度，湿度，（3）（i）a．（g－1）－（5）放射線，荷重，屋外の天候による影響（涷結及び隆水），海水 を通水する系統への影響，電磁的障害，周辺機器等からの悪影響及び原子炬冷却材の性状を考慮し，十分安全側の条件を与えることにより，これらの条件下においても期待さ れている安全機能を発揮できる設計とする。 <中略 > （1）環境圧力，環境温度及び湿度による影響，放射線に よる影響，屋外の天候による影響（凍結及び降水）並び に荷重 安全施設は，通常運転時，運転時の異常な過渡変化時及 び設計基準事故時における環境圧力，環境温度及び湿度に よる影響，放射線による影響，屋外の天候による影響（凍結及び降水）並びに荷重を考慮しても，安全機能を発揮で きる設計とする。 ＜中略＞ （2）海水を通水する系統への影響 海水を通水する系統への影響に対しては，常時海水を通水する，海に設置する又は海で使用する安全施設及び重大事故等対処設備は耐腐食性材料を使用する設計とする。常時海水を通水するコンクリート構造物については，腐食を考慮した設計とする。	設計及び工事の計画の （3）（i）a．（g－1）－（5 は，設置変更許可申請書 （本文（五号））の（3） （i）a．（g－1）－（5）を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	第4項について 安全施設は，その健全性及び能力を確認するため，その	（3）電磁的障害 電磁的障害に対しては，安全施設は，通常運転時，運転時の異常な過渡変化時及び設計基準事故が発生した場合 においても，電磁波によりその機能が損なわれない設計と する。 ＜中略＞ （4）周辺機器等からの悪影響 安全施設は，地震，火災，溢水及びその他の自然現象並 びに人為事象による他設備からの悪影響により，発電用原子炉施設としての安全機能が損なわれないよう措置を講 じた設計とする。 ＜中略＞ （5）設置場所における放射線の影響 安全施設の設置場所は，通常運転時，運転時の異常な過渡変化時及び設計基準事故が発生した場合においても操作及び復旧作業に支障がないように，遮蔽の設置や線源か らの離隔により放射線量が高くなるおそれの少ない場所 を選定した上で，設置場所から操作可能，放射線の影響を受けない異なる区画若しくは離れた場所から遠隔で操作可能，又は中央制御室遮蔽区域内である中央制御室から操作可能な設計とする。 < 中略 > （6）原子炉冷却材の性状 原子炉冷却材を内包する安全施設は，水質管理基準を定 めて水質を管理することにより異物の発生を防止する設計とする。 安全施設及び重大事故等対処設備は，系統外部から異物 が流入する可能性のある系統に対しては，ストレーナ等を設置することにより，その機能を有効に発揮できる設計と する。 5．1．6 操作性及び試験•検查性 （2）試験•検查性 （3）（i）a．（g－1）－6）設計基準対象施設は，健全性及び能	設計及び工事の計画の	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
ることによって，発電用原子炇施設の安全性を損なわない設計とする。 （g－3）重要安全施設は，発電用原子炉施設間で原則共用又は相互に接続しないものとするが，安全性が向上する場合は，共用又は相互に接続することを考慮する。 なお，発電用原子炉施設間で共用又は相互に接続する重要安全施設は無いことから，共用又は相互に接続すること を考慮する必要はない。 安全施設（重要安全施設を除く。）を共用又は相互に接続する場合には，発電用原子炉施設の安全性を損なわない設計とする。	回転機器に対して，その損壊によりプラントの安全性を損 ならおそれのある飛散物が発生する可能性を十分低く抑 えるよう，機器の設計，製作，品質管理，運転管理に十分 な考慮を払う。 さらに，万一タービンの破損を想定した場合でも，ター ビン羽根，T－Gカップリング，タービン・ディスク，高圧タービン・ロータ等の飛散物によって安全施設の機能が損なわれる可能性を極めて低くする設計とする。 高温高圧の流体を内包する主蒸気•給水管等について は，材料選定，強度設計，品質管理に十分な考慮を払う。 さらに，これに加えて安全性を高めるために，上記配管 については仮想的な破断を想定し，その結果生じるかも知 れない配管のむち打ち，流出流体のジェット力，周辺雰囲気の変化等により，安全施設の機能が損なわれることのな いよう配置上の考慮を払うとともに，それらの影響を低減 させるための手段として，主蒸気•給水管についてはパイ プホイップレストレイントを設ける。 以上の考慮により，安全施設は安全性を損なわない設計 とする。 1．1．1．6 共用 重要安全施設は，発電用原子炉施設間で原則，共用又は相互に接続しないものとするが，安全性が向上する場合 は，共用又は相互に接続することを考慮する。 安全施設（重要安全施設を除く。）において，共用又は相互に接続する場合には，発電用原子炬施設の安全性を損 なわない設計とする。	時の対象物を破損する確率が 10^{-7} 回／炬•年以下となるこ とを確認する。… 高温高圧の配管については，材料選定，強度設計に十分 な考慮を払う。さらに，安全性を高めるために，原子炉格納容器内で想定される配管破断が生じた場合，破断口から の原子炉冷却材流出によるジェット噴流による力に耐え る設計とする。また，ジェット反力によるホイッピングで原子炉格納容器が損傷しないよう配置上の考慮を払らと ともに，レストレイント等の配管ホイッピング防止対策を設ける設計とする。 また，その他の高速回転機器が損壊し，飛散物とならな いように保護装置を設けること等によりオーバースピー ドとならない設計とする。 損傷防止措置を行う場合，想定される飛散物の発生箇所 と防護対象機器の距離を十分にとる設計とし，又は飛散物 の飛散方向を考慮し，配置上の配慮又は多重性を考慮した設計とする。 （2）共用 重要安全施設は，発電用原子炬施設間で原則共用しない ものとするが，安全性が向上する場合は，共用することを考慮する。 なお，発電用原子炬施設間で共用する重要安全施設はな いことから，共用することを考慮する必要はない。 安全施設（重要安全施設を除く。）を共用する場合には，発電用原子炉施設の安全性を損なわない設計とする。 ＜中略＞ （3）相互接続 重要安全施設は，発電用原子炬施設間で原則相互に接続 しないものとするが，安全性が向上する場合は，相互に接続することを考慮する。 なお，発電用原子炉施設間で相互に接続する重要安全施設はないことから，相互に接続することを考慮する必要は ない。	（i）a．（g－2）－（2）を含ん でおり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
核燃料物質の取扱施設及び貯蔵施設のうち，使用済燃料 プール（使用済燃料貯蔵ラックを含む。），燃料プール泠却浄化系設備，燃料プール冷却浄化系の燃料プール注入逆止弁は， 1 号炉と共用することで， 1 号炉の使用済燃料を 2号炉の使用済燃料プールに貯蔵することが可能な設計 としている。設備容量の範囲内で運用することにより，燃料プール泠却浄化系の泠却能力が不足しないようにする ことで，共用により安全性を損なわない設計とする。 燃料交換機及び原子炉建屋クレーンは，1号炉と共用する が， 1 号炉の使用済燃料，輸送容器等の吊り荷重を考慮し た設計とすることで，共用により安全性を損なわない設計 とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （安全施設） 第十二条 適合のための設計方針 第 7 項について ＜中略＞ 核燃料物質の取扱施設及び貯蔵施設のうち，使用済燃料 プール（使用済燃料貯蔵ラックを含む），燃料プール泠却浄化系設備，燃料プール冷却浄化系の燃料プール注入逆止弁は， 1 号炉と共用することで， 1 号炉の使用済燃料を 2号炉の使用済燃料プールに貯蔵することが可能な設計と している。設備容量の範囲内で運用することにより，燃料 プール泠却浄化系の冷却能力が不足しないようにするこ とで，共用により安全性を損なわない設計とする。 燃料交換機及び原子炉建屋クレーンは，1号炉と共用す るが， 1 号炉の使用済燃料，輸送容器等の吊り荷重を考慮 した設計とすることで，共用により安全性を損なわない設計とする。	安全施設（重要安全施設を除く。）を相互に接続する場合には，発電用原子炬施設の安全性を損なわない設計とす る。 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 2．燃料貯蔵設備 2.2 設備の共用 使用済燃料プール及び使用済燃料貯蔵ラックは，第 1 号機と共用することで，第 1 号機の使用済燃料を第 2 号機の使用済燃料プールに貯蔵することが可能な設計としてい る。設備容量の範囲内で運用することにより，燃料プール泠却浄化系の泠却能力が不足しないようにすることで，共用により安全性を損なわない設計とする。 4．使用済燃料貯蔵槽冷却浄化設備 4.8 設備の共用 燃料プール泠却浄化系設備及び燃料プール泠却浄化系燃料プール注入逆止弁（G41－F019）（設計基準対象施設と してのみ第 1,2 号機共用）は，第 1 号機と共用すること で，第 1 号機の使用済燃料を第 2 号機の使用済燃料プール に貯蔵することが可能な設計としている。設備容量の範囲内で運用することにより，燃料プール泠却浄化系の泠却能力が不足しないようにすることで，共用により安全性を損 なわない設計とする。 1．燃料取扱設備 1.2 設備の共用 燃料交換機及び原子炬建屋クレーンは，第 1 号機と共用 するが，第 1 号機の使用済燃料，輸送容器等の吊り荷重を考慮した設計とすることで，共用により安全性を損なわな い設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
通信連絡設備は， 1 号， 2 号及び 3 号炉で共用するが，各号炬に係る通信•通話に必要な仕様を満足する設計とす ることで，共用により安全性を損なわない設計とする。 放射性廃裹物の廃棄施設のうち，排気筒の支持構造物 は， 3 号炉と共用するが，支持機能を十分維持できる設計 とすることで，共用により安全性を損なわない設計とす る。 （3）（i）a．（g－3）－1固体廃裹物処理系のうち，プラスチ ック固化式固化装置は， 1 号及び 2 号炉で共用し，固体廃棄物貯蔵所，固体廃棄物焼却設備，サイトバンカ設備，雑固体廃裹物保管室は， 1 号， 2 号及び 3 号炉で共用してい るが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮することで共用により安全性を損な わない設計とする。 （3）（i）a．（g－3）－（2）なお，プラスチック固化式固化装置 について，設備は休止しており，今後も使用しないことと している。…	通信連絡設備は，1号，2号及び 3 号炉で共用するが，各号炉で同時に通信•通話するために必要な仕様を満足す る設備とすることで，共用により安全性を損なわない設計 とする。 放射性廃棄物の廃棄施設のうち，排気筒の支持構造物 は， 3 号炬と共用するが，支持機能を十分維持できる設計 とすることで，共用により安全性を損なわない設計とす る。 固体廃重物処理系のうち，プラスチック固化式固化装置 は， 1 号及び 2 号炉で共用し，固体廃棄物貯蔵所，固体廃棄物焼却設備，サイトバンカ設備，雑固体廃棄物保管室は， 1 号， 2 号及び 3 号炉で共用しているが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮 することで，共用により安全性を損なわない設計とする。 なお，プラスチック固化式固化装置について，設備は休止しており，今後も使用しないこととしている。	【計測制御系統施設】（基本設計方針） 4．通信連絡設備 4.3 設備の共用 通信連絡設備のらち電力保安通信用電話設備（固定電話機及び PHS 端末）（焼却炉建屋，固体廃棄物貯蔵所，サイ トバンカ建屋及び予備変圧器配電盤室）（第 1 号機設備，第 1，2，3号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，各号機に係る通信•通話に必要な仕様を満足する設計とすることで，共用により安全性を損なわな い設計とする。 【放射性廃棄物の廃棄施設】（基本設計方針） 1．廃棄物貯蔵設備，廃棄物処理設備等 1.5 設備の共用 <中略 > 排気筒の支持構造物（第 2,3 号機設備，第 2,3 号機共用）は，第 3 号機と共用するが，支持機能を十分維持でき る設計とすることで，共用により安全性を損なわない設計 とする。 1.5 設備の共用 プラスチック固化式固化装置は，第 1 号機及び第 2 号機 で共用し，固体廃棄物貯蔵所（第 1 号機設備，第 $1,2,3$号機共用），固体廃棄物焼却設備，サイトバンカ（第 1 号機設備，第 $1,2,3$ 号機共用），雑固体廃蓑物保管室（第 1号機設備，第 1，2，3号機共用）は，第 1 号機，第 2 号機及び第 3 号機で共用するが，放射性廃棄物の予想発生量に対して必要な処理容量又は貯蔵容量を考慮することで，共用により安全性を損なわない設計とする。 （3）（i）a．（g－3）－（2）なお，プラスチック固化式固化装置 は休止しており，今後も使用しない。 <中略 >	設置変更許可申請書（本文（五号））の（3）（i） a．（ $\mathrm{g}-\mathrm{y}$ ）－（1）は，文章表現は異なるが内容に相違はないため整合して いる。 設計及び工事の計画の （3）（i）a．（g－3）－（2 は，設置変更許可申請書 （本文（五号））の回（3） （i）a．（g－3）－（2）と文章表現は異なるが内容に相違はないため整合し	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（h）運転時の異常な過渡変化及び設計基準事故の拡大の防止 設計基蕉対象施設は，運転時の異常な過渡変化及び設計基準事故に対する解析及び評価を「発電用軽水型原子炬施設の安全評価に関する審查指針」，「発電用原子哣施設の安全解析に関する気象指針」等に基づき実施し，要件を满足 する設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （運転時の異常な過渡変化及び設計基準事故の拡大の防 止） 第十三条 適合のための設計方針 設計基淮対象施設は固有の安全性及び安全確保のため に設計した設備により安全に運転できることを示すため に，運転時の異常な過渡変化及び設計基蕉事故に対する解析及び評価を「発電用軽水型原子炬施設の安全評価に関す る審查指針」（平成 2 年8月30日原子力安全委員会決定）及び「「発霥用原子炬施設の安全解析に関する気象指針」（昭和57年1月28日原子力安全委員会決定）等に基づき実施 し，要件を满足する設計とする。．．		設置変更許可申請書（本文（五号））において許可を受けた「運転時の異常な過渡変化及び設計基準事故の拡大の防止」 は，本工事計画の対象外 である。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（i）全交流動力電源喪失対策設備 全交流動力電源喪失時から重大事故等に対処するため に必要な電力の供給が常設代替交流電源設備から開始さ れるまでの約 15 分を包絡した約 8 時間に対し，発電用原子炉を安全に停止し，かつ，発電用原子炉の停止後に炉心 を泠却するための設備が動作するとともに，原子炉格納容器の健全性を確保するための設備が動作することができ るよう，これらの設備の動作に必要な容量を有する回 （3）（i）a．（i）－（1）蓄電池（非虽用）を設ける設計とする。	10．その他発電用原子炉の附属施設 10.1 非常用電源設備 10．1．1 通常運転時等 10．1．1．2 設計方針 10．1．1．2．2 全交流動力電源喪失 発電用原子炉施設には，全交流動力電源趡失時から重大事故等に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの約 15 分を包絡した約 8時間に対し，発電用原子炬を安全に停止し，かつ，発電用原子炉の停止後に炬心を椧却するための設備が動作する とともに，原子炉格納容器の健全性を碓保するための設備 が動作することができるよう，これらの設備の動作に必要 な容量を有する非常用直流電源設備である蓄需池（非虽用）を設ける設計とする。	【非常用電源設備】（基本設計方針） 3．直流電源設備及び計測制御用電源設備 3.1 常設直流電源設備 3．1．1 系統構成 設計基準対象施設の安全性を確保する上で特に必要な設備に対し，直流電源設備を施設する設計とする。 直流電源設備は，全交流動力電源䨤失時から重大事故等 に対処するために必要な電力の供給が常設代替交流電源設備から開始されるまでの約 15 分を包絡した約 8 時間に対し，発電用原子炉を安全に停止し，かつ，発電用原子炉 の停止後に炉心を椧却するための設備が動作するととも に，原子炉格納容器の健全性を確保するための設備が動作 することができるよう，これらの設備の動作に必要な容量 を有する（3）（i）a．（i）－（1）125V ，萻電池を設ける設計とす る。 非常用の直流電源設備は，直流 125 V 3 系統の蓄電池，充電器及び $125 V$ 直流主母線盤等で構成する。 これらの 3 系統のらち 1 系統が故障しても発電用原子炉 の安全性は確保できる設計とする。また，これらの系統は，多重性及び独立性を確保することにより，共通要因により同時に機能が喪失することのない設計とする。直流母線は 125 V であり，非常用直流電源設備 3 組の電源の負荷は，工学的安全施設等の制御装置，電磁弁，無停電交流母線に給電する無停電交流電源用静止形無停電電源装置等である。 ＜中略＞ 3.5 計測制御用電源設備 設計基準対象施設の安全性を碓保する上で特に必要な設備に対し，計測制御用電源設備として，無停電交流電源用静止形無停電電源装置を施設する設計とする。 非常用の計測制御用電源設備は，無停電交流 120V 2 母線及び計測母線 120V2母線で構成する。 非常用の計測制御用電源設備は，非常用低圧母線と非常用直流母線に接続する無停電交流電源用静止形無停電電源装置等で構成し，核計装の監視による発電用原子炉の安全停止状態及び未臨界の維持状態の確認が可能な設計と する。	設計及び工事の計画の （3）（i）a．（i）－（1）は，設置変更許可申請書（本文（五号））の口（3）（i ） a．（i）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（j）炬心等 設計基準対象施設は，原子炉固有の出力抑制特性を有す るとともに，発電用原子炬の反応度を制御することによ り，核分裂の連鎖反応を制御できる能力を有する設計とす る。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （炉心等） 第十五条 適合のための設計方針 第1項について （1）沸騰水型原子炉には，通常運転時に何らかの原因で出力が上昇することがあっても，炡心内の蒸気量の増大 に伴う大きな負のボイド反応度効果により，出力の上显 を抑える働きがある。 また，沸騰水型原子炉では，低濃縮ウラン燃料を用いて おり，これは，ドップラ効果に基づく負の反応度係数を持 っている。このため，発電用原子炉に急激に反応度が投入 され出力の上昇があった場合でも，二酸化ウラン焼結ペレ ット燃料の熱伝導率が低いこととあいまって，ペレットの温度が急上昇してドップラ効果が有効に働き，核的逸走は自動的に抑えられる。 このように発電用原子炉は固有の負の反応度フィード バック特性を有しており，さらに原子炉停止（原子炉スク ラム）系等の反応度投入の影響を抑制する諸設備を設ける ことにより，発電用原子灲に急激に反応度が投入されたと しても，原子炉固有の安全性とあいまって反応度投入の影響を十分小さく抑えることができる設計とする。 （2）沸騰水型原子炉は，一般に大きな負の出力反応度係数を持ち，制御棒の操作等に起因する反応度の外乱に対 して自己制御性を持っている。 一方，沸騰水型原子炉は正の圧力係数を持つので，発電用原子炉には，蒸気圧力一定制御方式を採用するととも に，再循環流量を調整することによって出力を制御する。 また，発電用原子炉は，強制循環によって水力学的な乱 れを抑え，核的特性とあいまって負荷変動や外乱に対する安定性，あるいは沸騰による中性子束ノイズ特性の向上を図っている。このほか二酸化ウラン焼結ペレット燃料を使用しているので熱伝達時係数は大きく，安定性に寄与して いる。 さらに，選択制御棒挿入機構を設けるとともに安定性制	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．1 通常運転時の一般要求 （1）設計基準対象施設の機能 設計基準対象施設は，通常運転時において発電用原子炉 の反応度を安全かつ安定的に制御でき，かつ，運転時の異常な過渡変化時においても発電用原子炉固有の出力抑制特性を有するとともに，発電用原子炉の反応度を制御する ことにより，核分裂の連鎖反応を制御できる能力を有する設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
炬心は，通常運転時又は運転時の異常な過渡変化時に発電用原子炉の運転に支障が生ずる場合において，原子炉冷却系統，原子炉停止系統，反応度制御系統，計測制御系統及びロ（3）（i）a．（j）－（1）安全保櫵回路（安全保櫵系）の機能 と併せて機能することにより，燃料要素の許容損傷限界を超えない設計とする。 （3）（i）a．（j）－（2）燃料体，減速材及び反射材並びに炉心支持構造物は，通常運転時，運転時の異常な過渡変化時及 び設計基準事故時において，発電用原子炉を安全に停止 し，かつ，停止後に炬心の泠却機能を維持できる設計とす る。	限曲線を設け，低炉心流量高出力領域での運転を制限する ことにより，安定性の余裕を確保するようにしている。 上記のような諸特性により，出力振動に対し，十分な減衰特性を有している。また，たとえ出力振動が生じても，局部出力領域モ二夕等の原子炬核計装采で出力分布を監視し，燃料要素の許容損傷限界を超えないように反応度制御系により調整することができる設計とする。 第2項について （1）燃料の健全性を確保するため，熱水力設計上の燃料要素の許容損傷限界を定め，運転時の異常な過渡変化時 において，この限界値を満足するように通常運転時の熱的制限値を定める。 <中略> （2）想定される反応度投入過渡事象（原子炉起動時にお ける制御棒の異常な引き抜き）時においては「発電用軽水型原子炉施設の反応度投入事象に関する評価指針」に定める燃料エンタルピに関する燃料要素の許容損傷限界を超えることのない設計とする。 （3）原子炉椧却系，原子炉停止系，計測制御系及び安全保護系は，通常運転時及び運転時の異常な過渡変化時に おいて，燃料を碓実に泠却する炉心流量を確保し，燃料 の出力を計測し，プロセス量がある制限値に達したとき には，決められた安全保護動作を開始する設計とする。 第3項について 炬心を構成する燃料棒以外の構成要素及び原子炬圧力容器内で炬心近资に位置する構成要素は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において想定される荷重の組合せに対し，発電用原子炉の安全停止及 び炬心の泠却を確保するために必要な構造及び強度を維持し得る設計とする。 燃料体には燃料棒冷却のための流路を確保するととも に，制御棒をガイドする機能を持つチャンネルボックスを かぶせる。	【原子炉本体】（基本設計方針） 1．炉心等 <中略 > 炬心は，通常運転時又は運転時の異常な過渡変化時に発電用原子炉の運転に支障が生ずる場合において，原子炉冷却系統，原子炉停止系統，反応度制御系統，計測制御系統及びロ（3）（i）a．（j）－（1）安全保櫵装置の機能と併せて機能 することにより燃料要素の許容損傷限界を超えない設計 とする。 <中略 > （ 3 ）（i）a．（j）－（2）燃料体（燃料要素を除く。），，減速材及 び反射材並びに炉心支持構造物は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，発電用原子炬を安全に停止し，かつ，停止後に灯心の泠却機能を維持できる設計とする。 ＜中略＞	設計及び工事の計画の （3）（i）a．（j）－（1）は，設置変更許可申請書（本文（五号））の口（3）（i） a．（j）－（1）と同義であり整合している。 設計及び工事の計画の （3）（i）a．（j）－（2）は，設置変更許可申請書（本文（五号））の日（3）（i） a．（j）－（2）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
燃料体，炉心支持構造物並びに原子炉冷却系統に係る容器，管，ポンプ及び弁は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生ずる流体振動又は温度差のある流体の混合その他の原子炬冷却材の挙動により生ずる温度変動により損傷を受けない設計とする。	第4項について 燃料体は，原子炉冷却材の挙動により生じる流体振動に より損傷を受けない設計とする。 炬心支持構造物並びに原子炉冷却系に係る容器，管，ポ ンプ及び弁は，原子炉冷却材の循環，沸騰等により生じる流体振動又は温度差のある流体の混合等により生じる温度変動により損傷を受けない設計とする。 第 5 項及び第 6 項第 1 号について 燃料体は，，発電用原子炉内における使用期間中を通じ，通常運転時及び運転時の異常な過渡変化時においても，燃料棒の内外圧差，，燃料棒及び他の材料の照射，貝荷の変化 により起こる圧力••温度の変化，化学的効果，静的•動的荷重，燃料ペレットの変形，燃料棒内封入がスの組成の変化等を考慮して，各構成要素がっ，十分な強度を有し，その機能が保持できる設計とし，通常運転時及び運転時の異常 な過渡変化時における発電用原子师内の圧力，自重，附加	3．流体振動等による損傷の防止 燃料体，炉心支持構造物及び原子炉圧力容器は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生 じる流体振動又は温度差のある流体の混合その他の原子炉冷却材の挙動により生じる温度変動により損傷を受け ない設計とする。 【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針） 10．流体振動等による損傷の防止 原子炉冷却系統，原子炉冷却材浄化系及び残留熱除去系 （原子炉停止時冷却モード）に係る容器，管，ポンプ及び弁は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生じる流体振動又は温度差のある流体の混合 その他の原子炉冷却材の挙動により生じる温度変動によ り損傷を受けない設計とする。 管に設置された円柱状構造物で耐圧機能を有するもの に関する流体振動評価は，日本機械学会「配管内円柱状構造物の流力振動評価指針」（J S M E S 012 ）の規定に基づく手法及び評価フローに従った設計とする。 温度差のある流体の混合等で生じる温度変動により発生する配管の高サイクル熱疲労による損傷防止は，日本機械学会「配管の高サイクル熱疲労に関する評価指針」（J SME S 0171 ）の規定に基づく手法及び評価フロー に従った設計とする。 【原子炉本体】（基本設計方針） 1．炉心等 ＜中略＞ 然料体，減速材及び反射材並びに灲心支持構造物の材料 は，通常運転時における原子炉運転状態に対応した圧力，温度条件，（3）（i）a．（j）－（3）燃料使用期間中の燃焼度，中性子照射量及び水質の組み合わせのうち想定される最も厳しい条件において，耐放射線性，寸洼安定性，耐熱性，．．．核性質及び強度のうち必要な物理的性質並びに，耐食性，．．水素吸収特性及び化学的安定性の亏ち必要な化学的性質 を保持し得る材料を使用する。	設計及び工事の計画の （3）（i）a．（j）－（3）は，設置変更許可申請書（本文（五号））の（3）（i） a．（j）－（3）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
燃料体は，通常運転時及び運転時の異常な過渡変化時に おける発電用原子炉内の圧力，自重，附加荷重口（3）（i）a． （j）－4）その他の燃料体に加わる負荷に耐えるものとし，輸送中又は取扱中において，著しい変形を生じない設計とす る。	葓重，核盆裂生成物の䔔積による燃料被覆管の内压上昇，熱底力等の荷重に耐える設計とする。．．． 燃料体には燃料棒を保護する機能を持つチャンネルボ ックスをかぶせる。 第 6 項第 2 号について 然料体は，輸送及び取扱い中に受ける通掌の荷重に耐え る設計になっており，さらに輸送及び取扱いに当たつて は，過度な外力を受けないよう十分配慮して行ら。また，現地搬入後，，燃料体の変形の有無等を検查し，その健金性 を確認することとしている。…	<中略> 1．炬心等 < 中略 > 燃料体は，通常運転時及び運転時の異常な過渡変化時に おける発電用原子炬内の圧力，自重，附加荷重，，回 （3）（i）a．（j）－（4）核分裂生成物の蓄積による燃料被覆管の内圧上百，熱応力等の荷重に耐える設計とする。また，輸送中又は取扱中において，著しい変形を生じない設計とす る。 <中略>	設計及び工事の計画の （3）（i）a．（j）－（4）は，設置変更許可申請書（本文（五号））の（3）（i） a．（j）－（4）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（k）－（5）燃料体等の貯蔵施設（安全施設に属す るものに限る。）は，燃料体等の落下により燃料体等が破損して放射性物質の放出により公衆に放射線障害を及ぼ すおそれがある場合において，放射性物質の放出による公衆への影響を低減するため，燃料貯蔵設備を格納でき，放射性物質の放出を低減できる設計とする。	第 2 項第 1 号イについて 貯蔵設備は，思原子炉建屋原子炉棟内に設置し，適切な雰囲気を換気空調系で維持する設計とする。また，然料等の落下により放射性物質が放出された場合は，原子炉建屋原子炶棟で，その放散を防ぎ，非常用がス処理系で処理する設計とする。	『（3）（i）a．（k）－（4）原子炬建屋クレーンは，地震時にも転倒することがないように寺行方向及び横行方向に対して， クレーン本体等の浮上り量を考盧し，脱線防止ラグを設け ることで，タレーン本体等の車輪がしール上から落下した い設計とする。．．． （3）（i）a．（k）－（4）また，原子炬建屋クレーンは，使用済然料輸送容器等の重量物を另った状態では，使用斎然料貦蔵ラック上を走行できないようにインターロックを設け る設計とする。 ＜中略＞ （3）（i）a．（k）－（4）然料交換機の燃料つかか具は空気作勲式とし，然料休等をつかんだ状態で圧縮空気が喪失した場合にもっつかんだ状熊を保持し，然料体等が外れない設計とする。 （（3）（i）a．（k）－（4）燃料交換機，原子炬建屋夕レーン及ぴ然料チャンネル着照機は，動力電源霛失時に曘磁ブレーき による保持機能により，燃料体等の落下を防止できる設計 とする。 【原子炉格納施設】（基本設計方針） 2．原子炉建屋 2.1 原子炉建屋原子炉棟等 ＜中略＞ （3）（i）a．（k）－（5）新燃料貯蔵庫及び使用済燃料プール は，，燃料体等の落下により燃料体等が破損して放射性物質 の放出により公衆に放射線障害を及ぼすおそれがある場合において，放射性物質による敷地外への影響を低減する ため，原子炬建屋原子炬棟内に設置する設計とする。 3．圧力低減設備その他の安全設備 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．1 非常用ガス处理系 ＜中略＞ （3）（i）a．（k）－（5）新燃料貯蔵庫及び使用斎燃料プール は，，燃料体等の落下により燃料体等が破損して放射性物質 の放出により公衆に放射線障害を及ぼすおそれがある場	設計及び工事の計画の （3）（i）a．（k）－（5）は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（5）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（k）－（6）また，燃料体等を必要に応じて貯蔵する ことができる容量を有するとともに， （3）（i）a．（k）－7（燃料体等が盬界に達するおそれがない設計とする。	第 2 項第 1 号口について 新燃料貯蔵庫の貯蔵能力は，全炬心燃料の約 40% とす る。使用済燃料プールは， 2 号炉の全炬心燃料の約 400%相当分貯蔵できる容量とする。 第 2 項第 1 号八について （2）新燃料獖蔵ラックは，燃料間距離を十分とることに より，新燃料を貯蔵能力最大に収容した状態で万一新然料貯蔵庫が水で满たされるといら厳しい状熊を仮定し ても，実効増倍率を 0.95 以下に保つことができる設計 とする。… なお，実際に起きることは考えられないが，反応度が最 も高くなるような水分雰囲気で満たされた場合を仮定し ても臨界未満にできる設計とする。 （3）使用済燃料プール及び使用済燃料貯蔵ラックは，耐震 S クラスで設計し，使用斎燃料プール中の使用済燃料貯蔵ラックは，適切な燃料間距離をとることにより燃料 が相互に接近しないようにする。また，貯蔵能力最大に然料を収容し，使用済燃料プール水温及び使用済燃料貯蔵ラック内燃料位置等について想定されるいかなる場	合において，放射性物質による䡃地外への影響を低減する ため，非虽用がス処理系により放射性物質の放出を低減で きる設計とする。 ＜中略＞ 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 < 中略 > ロ（3）（i）a．（k）－6 新燃料貯蔵庫は，通嘗時の燃料取替を考慮し，適切な貯蔵能力を有し，全烪心燃料の約 40% な収納できる設計とする。… （3）（i）a．（k）－6 使用斎燃料プールは，第2号機の全炬心燃料の約 400% 相当分貯蔵が可能であり，さらに放射化 された機器等の貯蔵及び取り扱いができるスペースを確保した設計とする。なおっ，通常運転中，全炉心の燃料体等 を貯蔵できる容量を確保できる設計とする。．．． < 中略 > 2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 < 中略 > 新燃料貯蔵庫は，原子炉建屋原子炉棟内の独立した区画 に設け，新燃料を新燃料貯蔵ラックで貯蔵できる設計とす る。 ロ（3）（ i ）a．（k）－7 新燃料貯蔵庫は，鉄筋コンクリート構造とし，想定されるいかなる状態においても新燃料が臨界に達することのない設計とする。新燃料は，堅固な構造 のラックに垂直に入れ，乾燥状態で保管し，新燃料貯蔵庫 には水が充満するのを防止するための排水口を設ける設計とする。 （ 3 ）（i ）a．（k）－7 新燃料貯蔵庫に設置する新燃料貯蔵 ラックは，貯蔵燃料の臨界を防止するために必要な燃料間距離を保持しったとえ新燃料を貯蔵容量最大で貯蔵した状態でっ万一新燃料貯蔵庫が水で満たされるという厳しい状態を仮定してもっ実効増倍率を0．95以下に保つ設計とす る．	設計及び工事の計画の （3）（i）a．（k）－（6）は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（6）を具体的に記載しており整合してい る。 設計及び工事の計画の （3）（i）a．（k）－7 は，設置変更許可申請書（本文（五号））の（ 3 ）（i） a．（k）－（7）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
（1）（i）a．（k）－（1）及びその浄化系を有し， 使用済燃料プールから放射性物質を含む水があふれ，又は漏れないものであって，	また，燃料プール洽却浄化采は，ろ猧脱塩装置を設置し て使用斎然料プール水の浄化を行ら設計とする。 第2項第2号八について 使用斎燃料プールの耐震設計は，Sクラスで設計し，内面はステンレス鋼でライニングし漏えいを防止する。ま た，使用済然料プールには排水口を設けないとともに，使用済然料プールに入る配管には逆止弁を設けサイフォン効果により使用済然料プール水が流出しない設計とする。	ができない場合は，残留熱除圭系を用いて使用済燃料から の脜壊熱を除圭できる設計とする。 （3）（i）a．（k）－（1）㦓料プール冷却浄化愻熱交換器で除圭した熱は，原子炬補機冷却水系（原子炬補機冷却海水系 を含む。）を経て，最終ヒートシンクである海へ輸关でき る設計とする。 ＜中略＞ 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4．残留熱除去設備 4.1 残留熱除去系 4．1．5 燃料プール冷却 （3）（i）a．（k）－（10 残留熱除圭系は，使用済燃料からの崩罣熱を除寺できる設計とする。残留熱除圭系熱交換器で除去した熱快，原子炬補機冷却水系（原子炬補機冷却海水系 を含む。）を経て，最終ヒートシンクである海へ輸送でき る設計とする。 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 4．使用済燃料貯蔵槽冷却浄化設備 4.5 使用済燃料プールの水質維持 使用済燃料プールは，使用済燃料からの崩壊熱を燃料プ ール泠却浄化系熱交換器で除去して使用済燃料プール水 を泠却するとともに，口（3）（i）a．（k）－（11）燃料体の被覆が著 しく腐食するおそれがないよう，燃料プール冷却浄化系る過脱塩器で使用斎燃料プール水をろ猧脱塩して，使用済燃料プール，原子炉ウェル及ぴ蒸気乾燥器•気水分離器ピッ ト水の純度，透明度を維持できる設計とする。．．． 2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 <中略> 使用済燃料プールは，鉄筋コンクリート造，ステンレス鋼内張りの水槽であり，使用済燃料プールからの放射性物質を含む水があふれ，又は漏れない構造とする。	載しており整合してい る。 設計及び工事の計画の （3）（i）a．（k）－（1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（1）を具体的に記載しており整合してい る。		

設置変更許可申請書（ ${ }^{\text {a }}$ 本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		使用済燃料プールからの離隔を確保できる重量物につ いては，使用済燃料プールへ落下するおそれがないよう，転倒等を仮定しても使用済燃料プールに届かない距離に設置する。また，転倒防止のため床面や壁面へ固定する設計とする。 原子炉建屋クレーンは，使用済燃料貯蔵ラック上を使用済燃料輸送容器等重量物を吊った状態で走行及び横行で きないように可動範囲を制限するインターロックを設け る設計とする。 原子炉建屋原子炉棟の屋根を支持する屋根トラスは，基準地震動S s に対する発生応力が終局耐力を超えず，使用済燃料プール内に落下しない設計とする。また，屋根につ いては鋼欽（デッキプレート）の上に鉄筋コンクリート造 の床を設けた構造とし，地震による剥落のない構造とす る。また，燃料取替床の床面より上部を構成する壁は，鉄筋コンクリート造の耐震壁であり，燃料取替床の床面より下部の耐震壁と合わせて基準地震動S s に対して使用済燃料プール内に落下しない設計とする。 燃料交換機及び原子炉建屋クレーンは，基準地震動 S s による地震荷重に対し，燃料交換機本体及び原子炉建屋ク レーン本体の健全性評価及び転倒落下防止評価を行い，使用済燃料プールへの落下物とならない設計とする。 燃料交換機本体及び原子炉建屋クレーン本体の健全性評価においては，想定される使用条件において評価が保守的になるよう吊荷の条件を考慮し，地震時の各部発生応力 が許容応力以下となる設計とする。 燃料交換機の転倒落下防止評価においては，走行レール及び横行レール頭部を抱き込む構造をした燃料交換機の脱線防止装置について，想定される使用条件において評価 が保守的になるよう吊荷の条件を考慮し，地震時の各部発生応力が許容応力以下となる設計とする。 燃料交換機の走行レール及び横行レールの健全性評価 においては，想定される使用条件において，地震時の発生応力が許容応力以下となる設計とする。 原子炉建屋クレーンの転倒落下防止評価においては，走行方向及び横行方向に浮上り代を設けた構造をした原子炉建屋クレーンの脱線防止ラグについて，想定される使用条件において評価が保守的となるよう吊荷の条件を考慮			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（k）－困使用済燃料プールの機能に影響を及ば す重量物については落下しない設計とする。	第 2 項第 2 号二について 燃料交換機の燃料つかみ具は，二重のワイヤや種々のイ ンターロックを設け，かつ，ワイヤ，インターロック等は， その使用前に必す機能試験，検查を実施するので燃料体等取扱中沉燃料体等が落下することはないと考えるが，使用済燃料プールのライニングは，燃料体等の取扱中に想定さ れる燃料体等の落下時及び重量物の落下時においても使用済然料プールの機能を失らような損傷は生じない設計 とする。 また，燃料交換機本体等の重量物については，使用済然料プールに落下しない設計とする。 なお，使用済然料輸送容器の落下については，キャスク ピットは使用済然料プールとは障壁で分離し，かつ，原子炉建屋クレーンは吊り荷の落下防止措置を施すとともに使用済燃料輸送容器を吊った場合は，使用済然料貯蔵ラッ ク上を走行できない等のインターロックを設ける設計と するので，使用済燃料輸送容器が使用済然料プールに落下 することを想定する必要はない。	し，地震時の各部発生応力が許容応力以下となる設計とす る。 $<$ 中略＞ 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 ＜中略＞ 重量物の落下に関しては，使用済燃料プール周辺の状況，現場における作業実績，図面等にて確認することによ り，落下時のエネルギを評価し，落下試験時の燃料体等の落下エネルギ以上となる設備等に対しては，以下のとおり適切な落下防止対策を施し，使用済燃料プールの機能を維持する設計とする。 （3）（i）a．（k）－（14）使用済燃料プールからの離隔を確保 できる重量物については，使用斎燃料プールへ落下するお それがないよう，転倒等を仮定しても使用斎燃料プールに届かない距離に設置する。また，転侀防止のため床面や壁面へ固定する設計とする。 原子炬建屋クレーンは，使用済燃料貯蔵ラック上を使用済燃料輸送容器等重量物を吊つた状態で走行及び横行で きないように可動範囲を制限するインターロックを設け る設計とする。 原子炬建屋原子炬棟の屋根を支持する屋根トラスは，基準地震動 S s に対する発生応力が終局耐力を超えず，使用斎燃料プール内に落下しない設計とする。また，屋根につ いては鋼鈑（デッキプレート）の上に鉄筋コンクリート造 の床を設けた構造とし，地震による剥落のない構造とす る。また，燃料取替床の床面より上部を構成する壁は，鉄筋コンクリート造の耐震壁であり，燃料取賛床の床面より下部の耐震壁と合わせて基集地震憅SSに対して使用済然料プール内に落下しない設計とする。 燃料交換機及び原子炬建屋クレーンは，基蕉地震動S．s． による地震荷重に対し，燃料交換機本体及び原子炬建屋ク レーン本体の健全性評価及び転例落下防止評価を行い，使用斎燃料プールへの落下物とならない設計とする。…	設計及び工事の計画の （ ${ }^{\text {（3）（i）a．（k）－（14）は，}}$設置変更許可申請書（本文（五号））の回（3）（i） a．（k）－（14）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
ぴに燃料取扱場所の放射線量の異常を検知し，（3）（i）a． （k）－（16）吂れを中央制御室に伝えるとともに，	第 3 項について 使用斎然料プールには，使用済燃料プールの水位及び水温並びに燃料取扱場所の放射線量を監視する設備を設け，異虽が㛟知された場合には，中央制御室に警報を発するこ とが可能な設計とする。	3．計測装置等 （3）（i）a．（k）－（5）使用斎燃料プールの水温を計測する装置として燃料貯蔵プール水温度，燃料プール冷却浄化采 ポンプ入口温度及び使用斎燃料プール水位／温度（ガイド パルス式）を設け，（3）（i）a．（k）－（16）計測結果を中央制御室に表示できる設計とする。また，燃料貯蔵プール水温度及び燃料プール泠却浄化系ポンプ入口温度は計測結果を記録し，及び保存することができる設計とする。 （3）（i）a．（k）－（55）使用済燃料プールの水位を計測する ための装置として燃料貯蔵プール水位，燃料プールライナ ドレン漏えい及び使用斎燃料プール水位／温度（ガイドパ ルス式）を設け，（3）（i）a．（k）－（16）計測結果を中央制御室 に表示できる設計とする。また，燃料貯蔵プール水位の記録はプロセス計算機から帳票として出力し保存できる設計とする。 ＜中略＞ （3）（i）a．（k）－（15）使用済燃料プールの水温の著しい上显又は使用济燃料プールの水位の著しい低下の場合に，こ れらを確実に検出して口（3）（i）a．（k）－（16）自動的に中央制御室に警報（使用済燃料プール水温高又は使用斎燃料プー ル水位低）を発信する装置を設けるとともに，表示ランプ の点灯，ブザー鳴動等により運転員に通報できる設計とす る． 【放射線管理施設】（基本設計方針） 1．放射線管理施設 1．1 放射線管理用計測装置 ＜中略＞ 排気筒の出口又はこれに近接する箇所における排気中 の放射性物質の濃度，管理区域内において人が常時立ち入 る場所（3）（i）a．（k）－（15）その他放射線管理を特に必要と する場所（燃料取扱場所その他の放射線業務従事者に対す る放射線障害の防止のための措置を必要とする場所をい ․o）の線量当量率及び周辺監視区域に隣接する地域にお ける空間線量率が著しく上昇した場合に，これらを確実に検出して口（3）（i）a．（k）－（16）自動的に中央制御室に警報（排気筒放射能高，エリア放射線モニタ放射能高及び周辺監視	設計及び工事の計画の （3）（i）a．（k）－（15）は， 設置変更許可申請書（本文（五号））の日（3）（i） a．（k）－（15）を具体的に記載しており整合してい る。 設計及び工事の計画の （3）（i）a．（k）－（16は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（16）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
外部電源が利用できない場合においても非常用所内電源系からの電源供給により，使用済燃料プールの水位及び水温口（3）（i）a．（k）－（17）並びに放射線量を監視することがで きる設計とする。	またっこれらの計測設備については非常用所内電源采か ら受電し，外部霊源が利用できない場合においても，監視 が可能な設計とする。 第 4 項について 本発電用原子炉施設では，乾式キャスクを用いた使用済燃料の貯蔵設備を設置していない。	区域放射能高）を発信する装置を設ける設計とする。 上記の警報を発信する装置は，表示ランプの点灯，ブザ一鳴動等により運転員に通報できる設計とする。 < 中略 > 1．1．2 エリアモニタリング設備 通常運転時，運転時の異常な過渡変化時及び設計基準事故時に，管理区域内において人が常時立ち入る場所回 （3）（i）a．（k）－（15）その他放射線管理を特に必要とする場所 の線量当量率を計測するためのエリアモニタリング設備 を設け，ロ（3）（i）a．（k）－（16）計測結果を中央制御室に表示で きる設計とする。。また，計測結果を記録し，及び保存する ことができる設計とする。 <中略 > 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 3．計測装置等 <中略 > 燃料貯蔵プール水温度，燃料貯蔵プール水位及び使用済燃料プール水位／温度（ガイドパルス式）は，外部電源が使用できない場合においても非常用所内電源系からの電源供給により，使用済燃料プールの水温及び水位を回 （3）（i）a．（k）－（17）計測することができる設計とする。 < 中略 > 【放射線管理施設】（基本設計方針） 1．放射線管理施設 1.1 放射線管理用計測装置 1．1．2 エリアモニタリング設備 < 中略 > エリアモニタリング設備のらち，燃料交換フロア放射線 モニタは，外部電源が使用できない場合においても非常用所内電源系からの電源供給により，a（3）（i）a．（k）－（17）線量当量率を計測することができる設計とする。 < 中略 >	設計及び工事の計画の （3）（i）a．（k）－（17）は，設置変更許可申請書（本文（五号））の（3）（i） a．（k）－（17）を具体的に記載しており整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
原子炉冷却材の流出を制限するために隔離装置を有す る設計とする。	原子炉冾却村圧力バウンダりとならない部分からの異 停止させるため，。配管系の通常運転時の状態及び使用目的 を考慮し，適切な隔䧺弁を設ける設計とする。	10．流体振動等による損傷の防止 原子炉泠却系統，原子炉冷却材浄化系及び残留熱除去系 （原子炉停止時冷却モード）に係る容器，管，ポンプ及び弁は，原子炉冷却材の循環，沸騰その他の原子炉冷却材の挙動により生じる流体振動又は温度差のある流体の混合 その他の原子炉冷却材の挙動により生じる温度変動によ り損傷を受けない設計とする。 管に設置された円柱状構造物で耐圧機能を有するもの に関する流体振動評価は，日本機械学会「配管内円柱状構造物の流力振動評価指針」（J S M E S 012 ）の規定に基づく手法及び評価フローに従った設計とする。 温度差のある流体の混合等で生じる温度変動により発生する配管の高サイクル熱疲労による損傷防止は，日本機械学会「配管の高サイクル熱疲労に関する評価指針」（ J SME S 017 ）の規定に基づく手法及び評価フロー に従った設計とする。 3．原子炉冷却材の循環設備 3.3 原子炉冷却材圧力バウンダリの隔離装置等原子炉冷却材圧力バウンダリには，原子炉冷却材圧力バ ウンダリに接続する配管等が破損することによって，原子炬冷却材の流出を制限するために配管系の通常運転時の状態及び使用目的を考慮し，適切に隔離弁を設ける設計と する。 なお，原子炉冷却材圧力バウンダリの隔離弁の対象は，以下のとおりとする。 （一）通常時開及び設計基準事故時閉となる弁を有するも のは，発電用原子炉側からみて，第一隔離升及び第二隔離弁を対象とする。 （二）通常時開又は設計基準事故時に開となるおそれがあ る通常時閉及び設計基準事故時閉となる弁を有するも のは，発電用原子炉側からみて，第一隔離升及び第二隔離亣を対象とする。 （三）通常時閉及び設計基準事故時閉となる弁を有するも ののらち，（二）以外のものは，発電用原子炉側からみて，第一隔離弁を対象とする。 （四）通常時閉及び泠却材喪失時開となる弁を有する非常用炉心冷却系等も，発電用原子炉側からみて第一隔離弁			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（1（3）（i）a．（1）－（2）通常運転時，運転時の異虽な渦㵂恋化時及ひ設計基準事故時に睜間的破壊が生じないよう，十分 な破罣じん性を有する設計とする。．．	第 1 項第 3 号について 通常運転時，運転時の異常な過潧変化時，保绶時，試験時及び設計基準事故時における原子炉冷却材圧カバウン ダリの脆性的挙動及び急速な伝播型破断の発生を防止す るために，フェライト系鋼で製作する機器に対しては，材料選択，設計，製作及び試験に特別の注意を払ら。 （使用材料管理） 溶按部を含む使用材料纪起因する不具合や欠陥の介在 を防止するため次の管理を行う。 （1）材料仕様 （2）機器の製造•加工•工程 （3）非破壊検查の実施 （4）破壊勒性の確認（関連温度の妥当性の確認，原子炉圧力容器材料のテスト・ピースによる㣫撃試験の実施） （使用圧力•温度制限） フェライト系鋼製機器の非延性破壊や，急速な伝播型破断を防止するため比較的低温で加圧する水圧試験時には加える圧力に応じ，最低温度の制限を加える。 （使用期間中の監視） 供用期間中検查（溶接部等の非破壊検查，耐圧部の耐圧，漏えい試験）を実施し，構成機器の構造や気密の健全性を評価し，また，欠陥の発生の早期発見のため漏えい検出系	及び第二隔離开を対象とする。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基準事故時閉となる手動弁のらち個別に施錠管理を行う弁は，開となるおそれがなく，上記 （三）に該当することから，発電用原子炉側からみて第一隔離弁を対象とする。 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.2 材料及び構造等 5．2．1 材料について （2）破壊じん性 b．クラス 1 機器（クラス 1 容器を除く。），クラス 1 支持構造物（クラス 1 管及びクラス 1 弁を支持するものを除 く。），クラス 2 機器，クラス 3 機器（工学的安全施設に属するものに限る。），原子炉格納容器，原子炬格納容器支持構造物，炉心支持構造物及び重大事故等クラス 2 機器は，その（3）（i）a．（1）－（2）最低使用温度に対して適切 な破壊じん性を有する材料を使用する。。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。重大事故等クラス 2 機器のらち，原子炉圧力容器につい ては，重大事故等時における温度，放射線，荷重その他の使用条件に対して損傷するおそれがない設計とする。 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 3．原子炉冷却材の循環設備 3.2 原子炉冷却材圧カバウンダリ 原子炉冷却材圧力バウンダリを構成する機器は，通常運転時，運転時の異常な過渡変化時及び設計基準事故時に生 ずる衝撃，炉心の反応度の変化による荷重の増加その他の原子炉冷却材圧力バウンダリを構成する機器に加わる負荷に耐える設計とする。 設計における衝撃荷重として，冷却材喪失事故に伴うジ エット反力等，安全弁等の開放に伴ら荷重を考慮するとと	設計及び工事の計画の （3）（i）a．（1）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（1）－（2）と文章表現は異なるが，内容に相違は ないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（一）通常時開及び事故時閉となる弁を有するものは，原子炉側からみて，第二隔離弁を含むまでの範囲とする。 （二）通常時又は事故時に開となるおそれがある通常時閉及び事故時閉となる弁を有するものは，原子炉側からみ て，第二隔離弁を含むまでの範囲とする。 （三）通常時閉及び事故時閉となる弁を有するもののう ち，（二）以外のものは，原子炉側からみて，第一隔離弁を含むまでの範囲とする。 （四）通常時閉及び原子炉冷却材喪失時開となる弁を有す る非常用炉心冷却系等も（一）に準ずる。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，事故時閉となる手動弁のうち個別に施錠管理を行う弁は，開となるおそれがなく，上記（三）に該当するものとする。	れるもの及び制御棒駆動機構ハウジング等） （2）原子炉冷却材系を構成する機器及び配管（主蒸気管及び給水管のらち原子炉側からみて第二隔離弁を含む までの範囲） （3）接続配管 a．通常時開及び事故時閉となる弁を有するものは，原子炬側からみて，第二隔離弁を含むまでの範囲とする。 b．通常時又は事故時に開となるおそれがある通常時閉及 び事故時閉となる弁を有するものは，原子炉側からみ て，第二隔離弁を含むまでの範囲とする。 c．通常時閉及び事故時閉となる弁を有するもののうち， b．以外のものは，原子炬側からみて，第一隔離弁を含 むまでの範囲とする。 d．通常時閉及び原子炉冷却材喪失時開となる弁を有する非常用炉心冷却系等もa．．．に準ずる。 e．上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時ロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，事故時閉となる手動弁のらち，個別に施錠管理を行う弁は，開となるおそれがなく，上記 c．．．に該当するものとする。 原子炉冷却材圧力バウンダリの拡大範囲（以下「拡大範囲」という。）となる残留熱除去系ヘッドスプレイライン，残留熱除去系停止時冷却モード吸込ライン及び残留熱除去系停止時冷却モード戻りラインについては，従来クラス 2 機器としていたが，上記b。に該当するため，原子炉冷却材圧力バウンダリ範囲としてクラス 1 機器における要求を満足することを確認する。 拡大範囲については，クラス 1 機器の供用期間中検査を継続的に行い，健全性を確認する。	れるもの及び制御棒駆動機構ハウジング等） （2）原子炉冷却采を構成する機器及び配管（主蒸気管及 び給水管のうち発電用原子炬側からみて第二隔離弁を含むまでの簐囲） （3）接続配管 （一）通常時開及び設計基蕉事故時閉となる弁を有する ものは，発電用原子炉側からみて，第二隔離弁を含むま での範囲とする。 （二）通常時又は設計基蕉事故時に開となるおそれがあ る通常時閉及び設計基蕉事故時閉となる弁を有するも のは，発電用原子炬側からみて，第二隔離弁を含むまで の範囲とする。 （三）通常時閉及び設計基集事故時閉となる弁を有する もののうち，（二）以外のものは，発電用原子炉側からみ て，第一隔離弁を含むまでの範囲とする。 （四）通常時閉及び冷却材喪失時開となる弁を有する非常用炉心泠却系等も（一）に準ずる。 （五）上記において「隔離弁」とは，自動隔離弁，逆止弁，通常時施錠管理等でロックされた閉止弁及び遠隔操作閉止弁をいう。 なお，通常時閉，設計基蕉事故時閉となる手動弁のらち個別に施錠管理を行う弁は，開となるおそれがなく，上記 （三）に該当する。	文（五号））の回（3）（i） a．（1）－（4）を具体的に記載しており整合してい る。 設計及び工事の計画の「設計基準事故時」は，設置変更許可申請書（本文（五号））の「事故時」 と同義であり整合して いる。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		たときに達する回転速度までの間に発生しない設計とす る。 また，蒸気タービン起動時の危険速度を通過する際には速やかに昇速できる設計とする。 蒸気タービン及びその附属設備の耐圧部分の構造は，最高使用圧力又は最高使用温度において発生する最大の応力が当該部分に使用する材料の許容応力を超えない設計 とする。 蒸気タービンには，その回転速度及び出力が負荷の変動 の際にも持続的に動摇することを防止する調速装置を設 けるとともに，運転中に生じた過回転，発電機の内部故障，復水器真空低下，スラスト軸受の摩耗による設備の破損を防止するため，その異常が発生した場合に蒸気タービンに流入する蒸気を自動的かつ速やかに遮断する非常調速装置及び保安装置を設置する。 また，調速装置は，最大負荷を遮断した場合に達する回転速度を非常調速装置が作動する回転速度未満にする能力を有する設計とする。 なお，過回転については定格回転速度の 1.11 倍を超え ない回転数で非常調速装置が作動する設計とする。 蒸気タービン及びその附属設備であって，最高使用圧力 を超える過圧が生ずるおそれのあるものにあっては，排気圧力の上昇時に過圧を防止することができる容量を有し， かつ，最高使用圧力以下で動作する大気放出板を設置し， その圧力を逃がすことができる設計とする。 蒸気タービンには，設備の損傷を防止するため，以下の運転状態を計測する監視装置を設け，各部の状態を監視す ることができる設計とする。 （1）蒸気タービンの回転速度 （2）主蒸気止め弁の前及び組合せ中間弁の前における蒸気の圧力及び温度 （3）蒸気タービンの排気圧力 （4）蒸気タービンの軸受の入口における潤滑油の圧力 （5）蒸気タービンの軸受の出口における㵎滑油の温度又 は軸受メタル温度 （6）蒸気加減弁の開度 （7）蒸気タービンの振動の振幅			

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		蒸気タービンは，振動を起こさないように十分配慮をは ららとともに，万一，振動が発生した場合にも振動監視装置により，警報を発するように設計する。また，運転中振動の振幅を自動的に記録できる設計とする。 蒸気タービン及びその附属設備の構造設計において「発電用火力設備に関する技術基準を定める省令及びその解釈」に規定のないものについては，信頼性が確認され十分 な実績のある設計方法，安全率等を用いるほか，最新知見 を反映し，十分な安全性を持たせることにより保安が確保 できる設計とする。 復水器は，泠却水温度 $15^{\circ} \mathrm{C}$ ，タービン定格出力，大気圧 101 kPa において真空度 96.3 kPa を碓保できる設計とする。 1.2 蒸気タービンの附属設備 ポンプを除く蒸気タービンの附属設備に属する容器及 び管の耐圧部分に使用する材料は，想定される環境条件に おいて，材料に及ぼす化学的及び物理的影響に対し，安全 な化学的成分及び機械的強度を有するものを使用する。 また，蒸気タービンの附属設備のらち，主要な耐圧部の溶接部については，次のとおりとし，使用前事業者検查に より適用基準及び適用規格に適合していることを碓認す る。 （1）不連続で特異な形状でないものであること。 （2）溶接による割れが生ずるおそれがなく，かつ，健全 な溶接部の確保に有害な溶込み不良その他の欠陥がな いことを非破壊試験により確認したものであること。 （3）適切な強度を有するものであること。 （4）機械試験その他の評価方法により適切な溶接施工法，溶接設備及び技能を有する溶接士であることをあら かじめ確認したものにより溶接したものであること。 なお，主要な耐圧部の溶接部とは，蒸気タービンに係る蒸気だめ又は熱交換器のらち水用の容器又は管であって，最高使用温度 $100^{\circ} \mathrm{C}$ 末满のものについては，最高使用圧力 1960 kPa ，それ以外の容器については，最高使用圧力 98 kPa ，水用の管以外の管については，最高使用圧力 980 kPa （長手継手の部分にあっては，490kPa）以上の圧力が加えられる部分について溶接を必要とするものをいら。また，蒸気夕			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及びエ事の計画 該当事項	整合性	備 考
（n）非常用炉心冷却設備 非常用炉心泠却系口（3）（i）a．（n）－（1）（安全施設に属する ものに限る。）は，原子炬冷却材を喪失した場合において も，．．．然料被覆材（燃料被覆管）の温度が燃料材の溶融又は然料体の著しい損傷を生ずる温度を超えて上昇すること を防止できる設計とするとともに，燃料被覆管と冷却材と の反応により著しく多量の水素を生じない設計とする。	5.3 非常用炬心冷却系 5．3．1 通常運転時等 5．3．1．1 概要 非常用炉心泠却系は，泠却材喪失事故時に燃料被覆管の大破損を防止し，ジルコニウム一水反応を極力抑え，㴯壊熱を長期にわたつて除寺する機能を持ち，低圧炬心スプレ イ系，低圧注水系，高圧灲心スプレイ系及び自動減圧系で構成する。 5．3．1．2 設計方針 非常用炉心冷却系は，「軽水型動力炉の非常用炉心冷却系の性能評価指針について」に基づいて泠却材喪失事故の際に燃料被覆管の大破損を防止若しくは抑制するように設計する。 そのため以下のような設計方針に基づいて設計する。 （1）自動起動 非常用炉心冷却系は，冷却材進失事故時に早急に炉心の冷却をするため自動起動する。なお，必要により手動停止 できるようにする。 （2）単一故障，非常用電源及び物理的分離 非常用炉心冷却系は，動的機器の単一故障及び外部電源喪失を仮定した場合でも所要の安全機能を果たし得るよ らに重複性を有し，かつ一つの系統の事故が他の系統の故障を誘引し安全機能を失わないよう，物理的な分離をする設計とする。 このため，低圧炬心スプレイ系，低圧注水系は，独立 2系統の母線及びディーゼル発電機に（低圧注水系ポンプ （残留熱除去系ポンプ）2台が 1 台のディーゼル発電機 に，残りの低圧注水系ポンプ（残留熱除去系ポンプ）1台 と低圧炉心スプレイ系ポンプ 1 台がもう 1 台のディーゼ ル発電機に）接続する。高圧灲心スプレイ系は，専用のデ イーゼル発電機に，また，自動減圧系は，蓄電池にそれぞ れ接続する。 また，これらの非常用炉心泠却系は，その起動信号，電源及び原子炉補機冷却系も含めて区分 I ，区分IIおよび区	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5．非常用炉心泠却設備その他原子炬注水設備 5.1 非常用灲心冷却設備その他原子炉注水設備の機能 非常用炉心泠却設備は，ロ（3）（i）a．（n）－（1）工学的安全施設の一設備であって，高圧焾心スプレイ采，低圧炬心スプ レイ采，残留熱除圭系（低圧注水モード）及び自動減圧系 から構成する。．．． これらの各系統は，冷却材霝失事故等が起こったとき に，サプレッションチェンバのプール水又は復水貯蔵タン クの水を原子炬圧力容器内に注水し，又は原子炬蒸気をサ プレッションチェンバのプール水中に逃がし原子炬圧力 を速やかに低下させるなどにより，焾心を泠却し，燃料被覆管の温度が燃料材の溶融又は燃料体の著しい破損を生 ずる温度を超えて上昇することを防止できる設計とする とともに，燃料の過熱による燃料被覆管の大破强を防ぎ， さらにこれに伴らジルコニウムと水との反応を無視しら る程度に抑え，著しく多量の水素を生じない設計とする。非常用炉心冷却設備は，設置（変更）許可を受けた運転時の異常な過渡変化及び設計基準事故の評価条件を満足 する設計とする。	設計及び工事の計画の （3）（i）a．（n）－（1）は，設置変更許可申請書（本文（五号））の日（3）（i） a．（n）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	（6）非延性破壊の防止 非延性破壊を防止するため最低使用温度より低い温度 で実施した破壊勒性試験に適合する材料を用いる。 （7）共用の排除 安全上重要な系統及び機器は，共用によって安全機能を失うおそれのある場合，発電用原子炉施設間で共用しない よう設計する。 （8）試験可能性非常用炉心冷却系の作動試験が行えるよう設計する。	能する能力を有する設計とする。 非常用炉心泠却設備のらち，復水貯蔵タンクを水源とし て原子炉圧力容器へ注水するために運転するポンプは，復水貯蔵タンクの圧力及び温度により，想定される最も小さ い有効吸込水頭においても，正常に機能する能力を有する設計とする。 非常用炉心泠却設備その他原子炉注水設備のらち，復水貯蔵タンク，ほら酸水注入系貯蔵タンク，淡水貯水槽（No． 1），淡水貯水槽（No．2）又は海を水源として原子炉圧力容器へ注水するために運転するポンプは，復水貯蔵タンク， ほう酸水注入系貯蔵タンク，淡水貯水槽（No．1），淡水貯水槽（No．2）又は海の圧力及び温度により，想定される最 も小さい有効吸込水頭においても，正常に機能する能力を有する設計とする。 自動減圧系を除く非常用炉心泠却設備については，作動性を確認するため，発電用原子炉の運転中に，テストライ ンを用いてポンプの作動試験ができる設計とするととも に，弁については単体で開閉試験ができる設計とする。 自動減圧系については，発電用原子炉の運転中に主蒸気逃がし安全弁の駆動用窒素供給圧力の確認を行うことで，非常用炉心冷却設備の能力の維持状況を確認できる設計 とする。なお，発電用原子炉停止中に，主蒸気逃がし安全弁の作動試験ができる設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
（o）一次冷却材の減少分を補給する設備 （3）（i）a．（o）－（1）発電用原子炬施設には，通虽運車時又 は原子炬冷却材の小規模漏えい時に発生した原子炬冷却材の減少分を補給する設備（安全施設に属するものに限 る。）を設ける設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （一次冷却材の減少分を補給する設備） 第二十条 適合のための設計方針 原子炉泠却材の漏えいが生じた場合，その漏えい量が 10 mm （ $3 / 8$ インチ）径の配管破断に相当する量以下の場合 は制御棒駆動水ポンプで補給できる設計とする。 また，上記を超えた 25 mm （1インチ）径の配管破断に相当する漏えい量以下の場合は，原子炬隔離時冷却系を起動 させ，燃料の許容設計限界を超えることなく発電用原子炉 の泠却を行える設計とする。	【計測制御系統施設】（基本設計方針） 1．計測制御系統施設 1.2 制御棒及び制御棒駆動系 ＜中略＞ （3）（i）a．（o）－（1）原子炬冷却材の漏えいが生じた場合， その漏えい量が 10 mm （ $3 / 8$ インチ）径の配管破断に相当す る量以下の場合は制御棒駆動水ポンプで補給できる設計 とする。 【原子灲冷却采統施設（蒸気タービンを除く。）】 （基本設計方針） 6．原子炉冷却材補給設備 6.1 原子炉隔離時冷却系 （3）（i）a．（o）－（1）原子炬隔離時冷却系は，発電用原子炉停止後，何らかの原因で給水が停止した場合等に原子炉水位を維持するため，発電用原子炉で発生する蒸気の一部を用いたタービン駆動のポンプにより，復水貯蔵タンクの水又はサプレッションチェンバのプール水を原子炬圧力容器に注入し，水位を維持できる設計とする。 また，冷却材亚失事故に至らない原子炬冷却材圧力バウ ンダりからの小さな漏えい及び原子炬冷却材圧力バウン ダりに接続する小口径配管の破断又は小さな機器の損傷 による原子炬冷却材の漏えいに対し，原子炬冷却材を補給 する能力を有する設計とする。 <中略 >	設計及び工事の計画の （3）（i）a．（o）－（1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（o）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（q）最終ヒートシンクへ熱を輸送することができる設備 最終ヒートシンクへ熱を輸送することができる設備口 （3）（i）a．（q）－（1）（安全施設に属するものに限る。）は，原子炉圧力容器内において発生した残留熱及び重要安全施設において発生した熱を除圭することができる設計とす る。 また，津波，溢水又は発電所敷地若しくはその周辺にお いて想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるものに対して安全性を損なわない設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （最終ヒートシンクへ熱を輸送することができる設備） 第二十二条 適合のための設計方針 第 1 項第 1 号について 通常運俥時，運転時の異常な過渡恋化時及び設計基蕉事故時において発靁用原子炬で発生した熱は以下のように除去し，最終的な熱の逃がし場である海へ確寒に伝達でき るように設計する。．．． （1）－通常運転時及びタービンバイパス弁不作動を除く運転時の異常な過渡変化時において，発電用原子炬で発生 する熱は，主復水器を経て循環水系によって，並びに主蒸気逃がし安全弁からサプレッションチェンバ内のプ一ル水中に放出された熱は，残留熱除去系及び原子炬補機冷却系によって，それぞれ海に伝える設計とする。 原子炉停止時において，発電用原子炬で発生する熱 は，タービンバイパス系から主復水器を経て循環水系に よって海に伝える設計とし，原子媔圧力が十分低下した後において，残留熱徐寺系を経て原子炬補機冷却系によ つて海に伝える設計とする。．．． （2）発電用原子炬が隔離されタービンバイパス系が使用 できなくなるような運転時の異常な過渡変化時には，発電用原子炧で発生する蒸気を主蒸気逃がし安全弁によ りサプレッションチェンバ内のプール水中に逃がして原子媔圧力の過度の上显を防止し，原子炬隔離時冷却采 で原子炬水位を維持する。主蒸気逃がし安全弁から流出 する蒸気によってサプレッションチェンバ内のプール水中に放出された熱は，残留熱除圭系（サプレッション プール水冷却モード）を経て原子炬補機冷却系を経て，海に伝える設計とする。 （3）－原子炬冷却材喪失事故時，，発電用原子炉で発生する熱は，炬心が非常用炬心冷却系によって再冠水された後 は，残留熱除去系及び原子炉補機冷却系によって海に伝	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 7．原子炬補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備口 （3）（i）a．（q）－（1）である原子炬補機冷却水系（原子炬補機冷却海水系を含む。）は，発電用原子炬停止時に残留熱除去系により除圭された原子炉圧力容器内において発生し た残留熱及び重要安全施設において発生した熱を，常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力檽源唯失時を除いて，最終的な熱の逃がし場で ある海へ輸送が可能な設計とする。 また，津波，溢水又は発電所敷地若しくはその周辺にお いて想定される発電用原子炉施設の安全性を損なわせる原因となるおそれがある事象であって人為によるものに対して安全性を損なわない設計とする。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。）及び高圧炬心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。）は，非常用炉心泠却系の区分に対応した 3 系統構成とすることにより，非常時に動的機器の単一故障及び外部電源喪失を仮定した場合でも，非常用炉心泠却設備等の機器から発生する熱を最終的な熱の逃が し場である海へ輸送が可能な設計とする。 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） は，淡水ループである原子炉補機冷却水系と，海水系であ る原子炉補機冷却海水系から構成する設計とする。 < 中略 > 7.2 高圧炉心スプレイ補機冷却水系（高圧炉心スプレイ補機冷却海水系を含む。） 7．2．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備口 （3）（i）a．（q）－（1）である高圧炬心スプレイ補機冷却水系	設計及び工事の計画の （3）（i）a．（q）－（1）は，設置変更許可申請書（本文（五号））の（（3）（i） a．（q）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（s）安全保護回路 （3）（i）a．（s）－（1）安全保護回路は，運転時の異常な過渡変化が発生する場合において，その異常な状態を検知し及 び原子炬保護系その他系統と併せて機能することにより，燃料要素の許容損傷限界を超えないようにできるものと するとともに，設計基準事故が発生する場合において，そ の異常な状態を検知し，原子炉保護系及び工学的安全施設 を自動的に作動させる設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （安全保護回路） 第二十四条 適合のための設計方針 第1項第1号について （1）安全保護系は，運転時の異常な過渡変化時に，．．．中性子東及び原子炬圧力等の変化を検出し，原子炉保護系を含す適切な系統の作動を自動的に開始させ，，燃料要素の許容損傷限界を超えることがない設計とする。 （2）安全保護系は，偶発的な制御棒引抜きのような原子炉停止系のいかなる単一の誤動作に起因する異常な反応度印加が生じた場合でも，燃料要素の許容損傷限界を超えないよう，中性子束高スクラム及び原子炉周期短ス クラムにより発電用原子炉を停止できる設計とする。 第 1 項第 2 号について 安全保護系は，設計基準事故時に異常状態を検知し，原子炉保護系を自動的に作動させる。また，自動的に主蒸気隔離弁の閉鎖，非常用炉心泠却系の起動，非常用ガス処理系の起動を行わせる等の保護機能を有する設計とする。 （1）発電用原子炉は，下記の条件の場合にスクラムする。 a．原子炉圧力高 b ．原子炉水位低 c．ドライウェル圧力高 d．中性子束高（平均出力領域モニタ） e．中間領域における原子炉周期短（起動領域モニタ） f．中性子束計装動作不能（起動及び平均出力領域モニタ） g．スクラム排出容器水位高 h．主蒸気隔離弁閉 i．主蒸気止め弁閉 j．蒸気加減弁急速閉 k．主蒸気管放射能高 1．地震加速度大 m．手動 n．モードスイッチ「停止」	【計測制御系統施設】（基本設計方針） 3．安全保護装置等 3.1 安全保護装置 3．1．1 安全保護装置の機能及び構成 （3）（i）a．（s）－（1）安全保護装置は，運転時の異常な過渡変化が発生する場合又は地震の発生により発電用原子炉 の運転に支障を生じる場合において，その異常な状態を検知し及び原子炬保護系その他系統と併せて機能すること により，燃料要素の許容損傷限界を超えないようにできる ものとするとともに，設計基準事故が発生する場合におい て，その異常な状態を検知し，原子炉保護系及び工学的安全施設を自動的に作動させる設計とする。 運転時の異常な過渡変化及び設計基準事故時に対処し得る複数の原子炉スクラム信号及びその他の安全保護装置起動信号を設ける設計とする。 なお，安全保護装置は設置（変更）許可を受けた運転時 の異常な過渡変化の評価の条件を満足する設計とする。	設計及び工事の計画の （3）（i）a．（s）－（1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（s）－（1）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（3）（i）a．（s）－（2）安全保護回路を構成する機械若しく は器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取外しを行った場合において，安全保護機能を失わないよう，多重性を確保する設計とする。	（2）その他の主要な安全保護系（工学的安全施設作動回路）には，次のようなものを設ける設計とする。 a．原子炉水位低，主蒸気管放射能高，主蒸気管圧力低，主蒸気管流量大，主蒸気管トンネル温度高，主復水器真空度低のいずれかの信号による主蒸気隔離升閉鎖 b．ドライウェル圧力高，原子炉水位低，原子炉建屋原子炉棟放射能高のいずれかの信号による常用換気系の閉鎖と非常用ガス処理系の起動 c．原子炉水位低又はドライウェル圧力高の信号による高圧炉心スプレイ系，低圧炉心スプレイ系及び低圧注水系 の起動 d．原子炉水位低及びドライウェル圧力高の同時信号によ る自動減圧系の作動 e ．原子炉水位低又はドライウェル圧力高の信号による高圧炉心スプレイ系ディーゼル発電機及び非常用ディー ゼル発電機の起動 f．原子炉水位低又はドライウェル圧力高の信号による主蒸気隔離弁以外の隔離弁の閉鎖 第 1 項第 3 号について 安全保護系は，十分に信頼性のある少なくとも 2 チャン ネルの保護回路で構成し，機器又はチャンネルの単一故障 が起きた場合，又は使用状態からの単一の取外しを行った場合においても，安全保護機能を失わないように，多重性 を備えた設計とする。 具体例は下記のとおりである。 （1）原子炉保護系は，検出器，トリップ接点，論理回路，主トリップ継電器等で構成し，基本的に二重の「1 out of 2 」方式とする。 安全保護機能を維持するため，原子炉保護系作動回路 は，運転中全て励磁状態にあり，電源の喪失，継電器の断線及び検出器を取り外した場合，回路が無励磁状態 で，チャンネル・トリップになるようにする。したがっ て，これらの単一故障が起きた場合，又は使用状態から の単一の取外しを行った場合においても，その安全保護機能を維持できる。 核計装系は，安全保護回路として必要な最小チャンネ ル数よりも一つ以上多いチャンネルを持ち，運転中でも	（3）（i）a．（s）－（2）安全保護装置を構成する機械若しく は器具又はチャンネルは，単一故障が起きた場合又は使用状態からの単一の取り外しを行った場合において，安全保護機能を失わないよう，多重性を確保する設計とする。	設計及び工事の計画の （3）（i）a．（s）－（2）は， 設置変更許可申請書（本文（五号））の凹（3）（i） a．（s）－（2）と同義であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（3）（i ）a．（s）－（3）安全保護回路を構成するチャンネル は，それぞれ互いに分離し，それぞれのチャンネル間にお いて安全保護機能を失わないよう独立性を確保する設計 とする。 駆動源の喪失，系統の遮断その他の不利な状況が発生し た場合においても，発電用原子炉施設をより安全な状態に移行する，又は当該状態を維持することにより，発電用原子炉施設の安全上支障がない状態を維持できる設計とす る。	バイパスして保守，調整及び校正できる。 したがって，これが故障の場合，故障チャンネルはバ イパスし，残りのチャンネルにより安全保護回路の機能 が維持できる。 （2）工学的安全施設を作動させるチャンネル（検出器を含む。）は，多重性をもった構成とする。 したがって，これらの単一故障，使用状態からの単一 の取外しを行った場合においても，安全保護機能は維持 できる。 第1項第4号について 安全保護系は，その系を構成するチャンネル相互が分離 され，また計測制御系からも原則として分離し，独立性を持つ設計とする。 具体例は下記のとおりである。 （1）原子炉格納容器を貫通する計装配管は，物理的に独立した貫通部を有する 2 系列を設ける。 （2）検出器からのケーブル及び電源ケーブルは，独立に中央制御室の各盤に導く。各トリップチャンネルの論理回路は，盤内で独立して設ける。 （3）原子炉保護系作動回路の電源は，分離•独立した母線から供給する。 第 1 項第 5 号について 安全保護系の駆動源として電源あるいは空気圧を使用 する。この采続に使用する弁等は，フェイル・セイフの設計とする，又は故障と同時に現状維持（フェイル・アズ・ イズ）になるようにし，この現状維持の場合でも多重化さ れた他の回路によって保櫵動作を行うことができる設計 とする。 フェイル・セイフとなるものの主要なものを挙げると以下のとおりである。 （1）電源喪失 a．スクラム b．主蒸気隔離弁閉 c．格納容器ベント弁閉 （2）制御用空気喪失 a．スクラム	（3）（i ）a．（s）－（3）安全保護装置を構成するチャンネル は，それぞれ互いに分離し，それぞれのチャンネル間にお いて安全保護機能を失わないよう物理的，電気的に分離 し，独立性を確保する設計とする。 また，各チャンネルの電源は，分離•独立した母線から供給する設計とする。 安全保護装置は，駆動源の喪失，系統の遮断その他の不利な状況が発生した場合においても，フェイル・セイフと することで発電用原子炉施設をより安全な状態に移行す るか，又は当該状態を維持することにより，発電用原子炉施設の安全上支障がない状態を維持できる設計とする。 < 中略 >	設計及び工事の計画の （3）（i）a．（s）－（3）は，設置変更許可申請書（本文（五号））の ロ（3）（i ） a．（s）－（3）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
反応度制御系統は，通常運転時の高温状態において，口 （3）（i）a．（t）－（4）二つの独立した系統がそれぞれ発電用原子炬を（3）（i）a．（t）－（5）未臨界に移行し，及び未臨界を維持できるものであり，かつっ，運転時の異常な過渡変化時の高温状態においてもの（3）（i）a．（t）－（6）反応度制御采統の らち少なくとも一つは，燃料要素の許容損傷限界を超える ことなく発電用原子炬を口（3）（i）a．（t）－7 才 未臨界に移行 し，，及び未臨界を維持できる設計とする。 通常運転時及び運転時の異常な過渡変化時における低温状態において，（3）（i）a．（t）－8反応度制御系統のうち少なくとも一つは，（3）（i）a．（t）－（9）発電用原子炉を未臨界に移行し，及び未臨界を維持できる設計とする。	第 2 項第 2 号及び第 3 号について 反応度制御系（原子炉停止系を含む。）に含まれる独立 した系の一つである制御棒及び制御棒駆動系の反応度制御は次のような性能を持つ設計とする。 反応度制御能力 約 $0.18 \Delta \mathrm{k}$（最大過剰増倍率約 $0.14 \Delta \mathrm{k}$ の場合） スクラム時挿入時間（全灯心平均） 全ストロークの 75% 挿入まで 1.62 秒以下（定格圧力時） この性能は，炉心特性とあいまって通常運転時及び運転時の異常な過渡変化時においても，燃料要素の許容設計限界を超えることなく，発電用原子炉を臨界未満にでき，か つ，維持できるものである。 発電用原子炉は，低温状態において反応度が最も高くな り，その状態における発電用原子炉の過剰増倍率は約 0.1 $4 \Delta \mathrm{k}$ 以下である。これに対し，制御棒による系の反応度制御能力は約 $0.18 \Delta \mathrm{k}$ の性能を有し，低温状態において発電用原子炬を十分臨界未满に維持し得るものである。．．． したがって，高温停止を対象とする場合は，更に余裕を持つて未臨界に維持できる。 ほう酸水注入系は，単独で定格出力運転中の発電用原子炬を高温状態及び低温状態において十分未臨界に維持で きるだけの反応度効果を持つように設計する。．．	1.1 反応度制御系統及び原子炉停止系統共通 ＜中略＞ 通常運転時の高温状態において，（3）（i）a．（t）－4）独立 した原子炬停止系統である制御棒及び制御棒駆動采によ る制御䏾の炬心への挿入並びにほう酸水注入系による原子炬冷却材中へのほう酸注入は，それぞれ発電用原子炉を （3）（i）a．（t）－（5）臨界未満にでき，かつっ，維持できる設計 とする。 運転時の異常な過渡変化時の高温状態においても，ロ（3） （i）a．（t）－（6）制御棒及び制御棒駆動系による制御棒の焒心への括入により，燃料要素の許容損傷限界を超えること なく発電用原子炉を口（3）（i）a．（t）－7）臨界末满にでき，か －．．維持できる設計とする。 ＜中略＞ 1.2 制御棒及び制御棒駆動系 <中略> ロ（3）（i）a．（t）－8 制御䏾及び制御棒駆動采は，，通常運転時及び運転時の異常な過渡変化時における低温状態にお いて，キセノン崩壊による反応度添加及び高温状態から低温状態までの反応度添加を制御し，低温状態でロ（3）（i）a． （t）－9）炬心を未臨界に移行して維持できる設計とする。 ＜中略＞ 1．4ほう酸水注入系 （3）（i）a．（t）－（6），8）ほう酸水注入采は，，制御棒挿入に よる原子炉停止が不能になった場合，手動で中性子を吸収 するほら酸水（五ほら酸ナトリウム）を原子炉内に注入す る設備であり，単独で定格出力運転中の発電用原子炉を高温状態及び低温状態において回（3）（i）a．（t）－（7），（9）十分臨界未满に維持できるだけの反底度効果を持つ設計とする。 ＜中略＞	設計及び工事の計画の （3）（i）a．（t）－（4）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ t$)$－（4）を具体的に記載しており整合してい る。 設計及び工事の計画の （3）（i）a．（t）－（5）は，設置変更許可申請書（本文（五号））の（3）（i） a．（t）－（5）と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の （3）（i）a．（t）－（6）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ t ）－（6）を具体的に記載しており整合してい る。 設計及び工事の計画の （3）（i）a．（t）－（7）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ t ）－7 と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の ロ（3）（i）a．（t）－8 は，設置変更許可申請書（本文（五号））の（3）（i）	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（u）中央制御室 中央制御室は，設計基準対象施設の健全性を確認するた めに必要なパラメータを監視できるとともに，発電用原子炬施設の安全性を確保するために必要な操作を手動によ り行うことができる設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （原子炉制御室等） 第二十六条 適合のための設計方針 第 1 項第 1 号及び第 3 号について 中央制御室は，発電用原子煏及び主要な関連設備の運転状況並びに主要パラメータが監視できるとともに，安全性 を確保するために急速な手動操作を要する場合には，これ を行らことができる設計とする。 （1）発電用原子炉及び主要な関連設備の運転状況の監視及び操作を行うことができる設計とする。 （2）炉心，原子炉冷却材圧力バウンダリ，原子炉格納容器バウンダリ及びそれらの関連する系統の健全性を確保するため，炉心の中性子束，制御棒位置，原子炉冷却材の圧力，温度，流量，原子炉水位，原子炉格納容器内 の圧力，温度等の主要パラメータの監視が可能な設計と する。 （3）事故時において，事故の状態を知り対策を講じるた めに必要なパラメータである原子炉格納容器内の圧力•温度等の監視が可能な設計とする。	【計測制御系統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 中央制御室は以下の機能を有する。 ＜中略＞ 発電用原子炉及び主要な関連設備の運転状況（発電用原子炉の制御棒の動作状態，発電用原子炉及び原子炉冷却系統に係る主要なポンプの起動•停止状態，発電用原子炉及 び原子炬冷却系統に係る主要な弁の開閉状態）の監視及び操作ができるとともに，発電用原子炉施設の安全性を確保 するために必要な操作を手動により行うことができる設計とする。 a．中央制御室制御盤等 中央制御室制御盤は，原子炉制御関係，原子炉プラント プロセス計装関係，原子炉保護系関係，原子炉補助設備関係，タービン発電機関係，所内電気回路関係等の計測制御装置を設けた中央制御室主制御盤及び中央制御室内裏側直立盤で構成し，設計基準対象施設の健全性を確認するた めに必要なパラメータ（炬心の中性子束，制御棒位置，原子炉冷却材の圧力，温度及び流量，原子炉水位，原子炉格納容器内の圧力及び温度等）を監視できるとともに，全て のプラント運転状態において，運転員に過度な負担となら ないよう，中央制御室制御盤において監視，操作する対象 を定め，通常運転，運転時の異常な過渡変化及び設計基準事故の対応に必要な操作器，指示計，記録計及び警報装置 （核燃料物質の取扱施設及び貯蔵施設，計測制御系統施設，放射線管理施設及び放射性廃棄物の廃棄施設の警報装置を含む。）を有する設計とする。 なお，安全保護装置及びそれにより駆動又は制御される機器については，バイパス状態，使用不能状態について表示すること等により運転員が的確に認知できる設計とす る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，発電用原子炉施設の外部の状況を把握するため，監視力メラ，気象観測設備，（1）（3）（i）a．（u）－（1）公的機関から気象情報を入手できる設備等を設置し，中央制御室から発電用原子炉施設に影響を及ぼす可能性のある自然現象等 を把握できる設計とする。 発電用原子炉施設には，火災その他の異常な状態により中央制御室が使用できない場合において，中央制御室以外 の場所から，発電用原子炉を高温停止の状態に直ちに移行及び必要なパラメータを想定される範囲内に制御し，その後，発電用原子炉を安全な低温停止の状態に移行及び低温停止の状態を維持させるために必要な機能を有する回 （3）（i）a．（u）－（2）装置を設ける設計とする。	第 1 項第 2 号について 発電用原子炉施設に影響を及ぼす可能性のあると想定 される自然現象等に加え，昼夜にわたり発電所構内の状沉 ．．．海側，山側）をっ，屋外に暗視機能等を持った監視カメラ を遠隔操作することにより中央制御室にて把握すること ができる設計とする。 また，津波，童鉃等による発電所構内の状況の把握に有効なパラメータは，気象観測設備等にて測定し中央制御室 にて確認できる設計とする。．．． さらに，中央制御室に公的機関から気象情報を入手でき る設備を設置し，地震，津波，竜巻情報等を入手できる設計とする。… 第2項について 火災その他の異常な事態により，中央制御室内で原子炻停止操作が行えない場合でも，中央制御室以外の適切な場所から発電用原子炉を直ちに停止するとともに高温停止状態を維持できる設計とする。 （1）中央制御室外において，原子炬緊急停止系作動回路 の電源を遮断すること等により発電用原子炉をスクラ ムさせる。発電用原子炬を直ちに停止した後，中央制御室外原子炬停止装置により，主蒸気逃がし安全弁，原子炬隔離時冷却系，残留熱除圭系等を使用して，発電用原子炉を高温停止状態に安全に維持することができる設計とする。… （2）中央制御室外原子炉停止装置により，上記高温停止状態から残留熱除圭系等を使用して，適切な手順により発電用原子炉を低温停止状態に導くことができる設計 とする。	b．外部状況把握 発電用原子炉施設の外部の状況を把握するため，津波監視カメラ（浸水防護施設の設備を計測制御系統施設の設備 として兼用（以下同じ。）），，自然現象監視力メラ，．．風向，風速その他の気象条件を測定する気象観測設備（第 1 号機設備，第1，2，3号機共用）等を設置し，津波監視カメラ及び自然現象監視カメラの映像，気象観測設備等のパラメ ータ及びロ（3）（i）a．（u）－（1）公的機関から地震，津波，童巻情報等の入手により中央制御室から発電用原子炉施設に影響を及ぼす可能性のある自然現象等を把握できる設計 とする。 津波監視カメラ及び自然現象監視カメラは暗視機能等 を持ち，中央制御室にて遠隔操作することにより，発電所構内の周辺状況（海側，山側）を昼夜にわたり把握できる設計とする。 ＜中略＞ 【計測制御系統施設】（要目表） 4． 12.2 中央制御室機能及び中央制御室外原子炉停止機能 （2）中央制御室外原子炉停止機能 中央制御室外原子炉停止機能は以下の機能を有する。 火災その他の異常な状態により中央制御室が使用でき ない場合において，中央制御室以外の場所から，発電用原子炉を高温停止の状態に直ちに移行及び必要なパラメー夕を想定される範囲内に制御し，その後，発電用原子炉を安全な低温停止の状態に移行及び低温停止の状態を維持 させるために必要な機能を有する口（3）（i）a．（u）－（2）中央制御室外原子炬停止装置を設ける設計とする。	設計及び工事の計画の 「津波監視カメラ，自然現象監視カメラ」は，設置変更許可申請書（本文 （五号））の「監視カメ ラ」と同一設備であり整合している。 設計及び工事の計画の （3）（i）a．（u）－（1）は，設置変更許可申請書（本文（五号））の（（3）（ i ） a．（u）－（1）と文章表現は異なるが，内容に相違は ないため整合している。 設計及び工事の計画の ロ（3）（i）a．（u）－（2）は，設置変更許可申請書（本文（五号））の回（3）（i） a．（u）－（2）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
退域時の線量が，中央制御室換気空調系 ${ }^{[1(3)}$（i）a．（u）－（4）等の機能とあいまって，『（3）（i）a．（u）－（5）「塞用発電用原子哣及びその附庫施設の技術基蕉に閉する賛則」及ぴ「「塞用発電用原子炬及びその附属施設の技術基蕉に闗する規則の解釈」に江示される 100 mSV を下回る（3）（i）a．（u）－（6） ように遮蔽を設ける。 その他，運転員その他の従事者が中央制御室にとどまるた め，気体状の放射性物質及び中央制御室外の火災により発生する燃烍がス及びばい煙に対する換気設備の隔離その他の適切に防護するための設備を設ける設計とする。	（3）中央制御室は，中央制御室外の火災等により発生す当燃焼がス，ばい煙，有毒がス及び降下火砕物を想定し ても中央制御室換気空調系の外気取入れを手動で遮断 し，事故時運転モードに切り換えることにより，運転員 その他従事者を外部からの自然現象等から防櫵できる設計とする。 なお，事故時において，中央制御室への外気取入れを一時停止した場合に，室内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあることを把握できるよ う，酸素濃度計及び二酸化炭素浱度計を保管する。	射線による線量，中央制御室に侵入した外気による線量及 び入退域時の線量が，『（3）（i）a．（u）－（4）中央制御室の気密性並びに中央制御室換気空調系，中央制御室しやへい壁， 2 次しやへい壁及び補助しゃへいの機能とあいまって，回 （3）（i）a．（u）－（5）［原子力発需所中央制御室の居住性に係主被ばく評価手法について（内嫢）」 」に基づく被ばく評価 により，「核原料物質又は核燃料物質の製鍊の事業に関す尚規則等の規定に基づく線量限度等を定める告示」に示さ れる 100 mSv を下回る（3）（i）a．（u）－66設計とする。 また，運転員その他の従事者が中央制御室にとどまるた め，気体状の放射性物質及び中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒ガス及び降下火砤物に対 する換気設備の隔催その他の適切に防護するための設備 を設ける設計とする。 ＜中略＞ 設計基準事故時及び炬心の著しい損傷が発生した場合 において，中央制御室内及び中央制御室待避所内の酸素濃度及び二酸化炭素濃度が活動に支障がない範囲にあるこ とを把握できるよう，計測制御系統施設の酸素瀑度計（中央制御室用）及び二酸化炭素瀑度計（中央制御室用）を使用し，中央制御室内及び中央制御室待避所内の居住性を碓保できる設計とする。 ＜中略＞ 2.2 換気設備 2．2．1 中央制御室換気空調系 ＜中略＞ 中央制御室外の火災等により発生する燃焼ガス，ばい煙，有毒がス及び降下火砕物に対し，中央制御室換気空調系の外気取入れを手動で遮断し，事故時運転モードに切替 えることが可能な設計とする。 中央制御室換気空調系は，通常のラインの他，高性能工 アフィルタ及びチャコールエアフィルタを内蔵した中央制御室再循環フィルタ装置並びに中央制御室再看環送風機からなる非常用ラインを設け，設計基準事故時及び重大事故等時には，中央制御室換気空調系の中央制御室外気取入ダンパ（前），（後）（V30－D303，D304），中央制御室少量外気取入ダンパ（A）（B）（V30－D301A，B）及び中央制	体的に記載しており整合している。 設計及び工事の計画の （3）（i）a．（u）－5 5 は，技術基準規則及びその解釈に示される内規及 び告示を記載している ことから，設置変更許可申請書（本文（五号）） の日（3）（i ）a．（u）－（5）と同義であり整合してい る。 設計及び工事の計画の （3）（i ）a．（u）－6 ${ }^{\text {（3）}}$設置変更許可申請書（本文（五号））の回（3）（ i ） a．（u）－（6）と文章表現は異なるが，内容に相違は ないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
中央制御室には，炉心の著しい損傷が発生した場合にお いてもの（3）（i ）a．（u）－（7）運転員がとどまるために必要な重大事故等対処設備を設置及び保管する。．．．	6．計測制御系統施設 6． 10 制御室 6．10．2 重大事故等時 6．10．2．2 設計方針 （1）居住性を確保するための設備 重大事故が発生した場合における炬心の著しい損傷後 の原子炉格納容器フィルタベント系を作動させる場合に，放出される放射性雲による運転員の被ばくを低減するた め，中央制御室内に中央制御室待避所を設ける設計とす る。炉心の著しい損傷が発生した場合においても運転員が とどまるために必要な重大事故等対処設備として，可搬型照明（ S A），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボンベ），中央制御室遮蔽，中央制御室待避所遮蔽，差圧計，酸素濃度計及び二酸化炭素濃度計を設置する設計とする。	御室排風機（A），（B）出ロダンパ（V30－D305A，B）を閉と することにより外気との連絡口を遮断し，中央制御室再循環フィルタ装置入ロダンパ（A），（B）（V30－D302A，B）を開とすることにより中央制御室再循環フィルタ装置を通 る事故時運転モードとし，放射性物質を含む外気が中央制御室に直接流入することを防ぐことができ，運転員を被ば くから防護する設計とする。外部との遮断が長期にわた り，室内の雾囲気が悪くなった場合には，外気を中央制御室再循環フィルタ装置で浄化しながら取り入れることも可能な設計とする。 ＜中略＞ 【計測制御采統施設】（要目表） 4．12．2 中央制御室機能及び中央制御室外原子炉停止機能 （1）中央制御室機能 c．居住性の確保 ＜中略＞ 炬心の著しい損傷が発生した場合においても，回 （3）（i）a．（u）－（7）可搬型照明（SA），中央制御室送風機，中央制御室排風機，中央制御室再循環送風機，中央制御室再循環フィルタ装置，中央制御室待避所加圧設備（空気ボ ンベ），中央制御室しやへい壁，中央制御室待避所遮蔽，補助しやへい，2次しやへい壁，差圧計（中央制御室待避所用），酸素濃度計（中央制御室用）及び二酸化㟶素浱度計（中央制御室用）により，中央制御室内にとどまり必要 な操作ができる設計とする。 <中略 >	設計及び工事の計画の （3）（i）a．（u）－（7）は，設置変更許可申請書（本文（五号））の（3）（i） a．（u）－（7）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（v）放射性廃棄物の処理施設 （3）（i）a．（v）－（1）放射性廃棲物を処理する施設（安全施設に係るものに限る。）は，周辺監視区域の外の空気中及 び周辺監視区域の境界における水中の放射性物質の濃度 を（3）（i）a．（v）－（2） 1 分に低減できるよう。発電用原子炉施設において発生する放射性廃棄物を処理する能力を有 し，「発電用軽水型原子炉施設周辺の線量目標値に関する指針」を満足できる設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （放射性廃棄物の処理施設） 第二十七条 適合のための設計方針 第 1 項第 1 号について 放射性気体廃誱物及び放射性液体廃裹物の处理施設は，周辺公衆の線量を合理的に達成できる限り低く保つ設計 とし，「発電用軽水型原子炉施設周辺の線量目標値に関す る指針」を満足できる設計とする。 放射性気体廃棄物の主なものである蒸気式空気抽出器排ガスを活性炭式希ガスホールドアップ装置に通し排ガ ス中の放射能を十分減衰させ，監視しながら排気筒から大気に放出する。 また，他の排気については下記の対策を講ずることによ り，排気中の放射性物質濃度の低減を図った後，監視しな がら排気筒から放出する。 （1）タービンのグランドシールには，グランド蒸気発生器の蒸気を使用し，かつグランド蒸気発生器への給水に は，復水貯蔵タンク水を使用することにより，グランド蒸気復水器排ガス中の放射性物質を無視できる程度と する。 （2）補助ボイラーによる蒸気を熱源としたグランド蒸気発生器の発生蒸気により駆動される起動停止用空気抽出器を原子炉起動時及び停止時における主復水器の真空度維持に使用し，その排ガスを気体廃棄物処理系で処理することにより，原子炉起動時に運転する真空ポンプ排ガス中に含まれる放射性物質を低減する。 （3）汚染の可能性のある廃棄物処理区域からの換気系の排気については，粒子用フィルタで処理することによ り，排気中に含まれる粒子状放射性物質を低減する。 放射性液体廃棄物の処理は，放射性液体廃棄物を分離収集•処理し，廃液の性状により，ろ過，脱塩，蒸発濃縮処理等を行い，放射性物質の濃度がごく低いものを除 き，原則として環境には放出せず，できる限り原子炉等 の補給水として回収して再使用し，放射性物質の放出を合理的に達成できる限り低減するようにする。	【放射性廃棄物の廃棄施設】（基本設計方針） 1．廃棄物貯蔵設備，廃棄物処理設備等 1.2 廃棄物処理設備 （3）（i）a．（v）－（1）放射性廃重物を処理する設備は，周辺監視区域の外の空気中及び周辺監視区域の境界における水中の放射性物質の濃度が，ロ（3）（i）a．（v）－2 2 れぞれて，「‥核原料物質又は核燃料物質の製錬の事業に関する規則等の規定に基づく線量限度等を定める告示」に定められた濃度限度以下となるように，発電用原子炉施設において発生する放射性廃棄物を処理する能力を有する設計とする。 さらに，発電所周辺の一般公衆の線量を合理的に達成で きる限り低く保つ設計とし，「発電用軽水型原子炬施設周辺の線量目標値に関する指針」を満足する設計とする。 ＜中略＞ 放射性廃棄物を処理する設備は，放射性廃棄物以外の廃棄物を処理する設備と区別し，放射性廃棄物以外の流体状 の廃棄物を流体状の放射性廃棄物を処理する設備に導か ない設計とする。 <中略 >	設計及び工事の計画の ロ（3）（i）a．（v）－（1）は，設置変更許可申請書（本文（五号））の（3）（i ） a．（v）－（1）と同義であり整合している。 設計及び工事の計画の （3）（i）a．（v）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（v）－（2）を具体的に記載しており整合してい る。		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（w）放射性廃棄物の貯蔵施設 （3）（i）a．（w）－（1）放射性廃蓑物を貯蔵する施設（安全施設に係るものに限る。）は，放射性廃裹物が漏えいし難い設計とするとともに，	1． 10.3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （放射性廃棄物の貯蔵施設） 第二十八条 適合のための設計方針 放射性固体廃棄物を貯蔵する貯蔵槽類の容量は，原子炉泠却材浄化系及び燃料プール泠却浄化系から発生する使用済樹脂並びに復水浄化系復水ろ過装置廃スラッジ及び液体廃棄物処理系ろ過装置廃スラッジを発生量の約 10 年分以上，その他の使用済樹脂を発生量の約 5 年分以上貯蔵 できる容量とする。 サイトバンカ（ 1 号， 2 号及び 3 号炉共用，既設）の容量は使用済制御棒等を発生量の約 10 年分以上貯蔵保管で きる容量とする。 また，ドラム缶詰めした放射性固体廃棄物を約 55,000本（200L ドラム缶）相当貯蔵保管できる能力を持つ固体廃棄物貯蔵所（ 1 号， 2 号及び 3 号炉共用，既設）及び約 $500 \mathrm{~m}^{3}$ の貯蔵保管能力を持つ雑固体廃棄物保管室（ 1 号， 2 号及 び 3 号炉共用，既設）を設けるが，必要に応じて増設する。	【放射性廃裹物の廃重施設】（基本設計方針） 1．廃棄物貯蔵設備，廃棄物処理設備等 1．1 廃棄物貯蔵設備 放射性廃棄物を貯蔵する設備の容量は，通常運転時に発生する放射性廃棄物の発生量と放射性廃棄物処理設備の処理能力，また，放射性廃棄物処理設備の稼働率を想定し た設計とする。 （3）（i）a．（w）－（1）放射性廃裹物を貯蔵する設備は，放射性廃棄物が漏えいし難い設計とする。また，崩壊熱及び放射線の照射により発生する熱に耐え，かつ，放射性廃重物 に含まれる化学薬品の影響及び不純物の影響により著し く腐食しない設計とする。 1.3 污染拡大防止 1．3．1 流体状の放射性廃棄物の漏えいし難い構造及び漏 えいの拡大防止 放射性液体廃棄物処理施設内部又は内包する放射性廃棄物の濃度が $37 \mathrm{~Bq} / \mathrm{cm}^{3}$ を超える放射性液体廃棄物貯蔵施設内部のらち，流体状の放射性廃棄物の漏えいが拡大する おそれがある部分の漏えいし難い構造，漏えいの拡大防止，堰については，次のとおりとする。 （1）漏えいし難い構造 全ての床面，適切な高さまでの壁面及びその両者の接合部は，耐水性を有する設計とし，流体状の放射性廃棄物が漏えいし難い構造とする。また，その貫通部は堰の機能を失わない構造とする。 （3）放射性廃棄物処理施設に係る堰の施設 <中略 > 施設外へ漏えいすることを防止するための堰は，処理す る設備に係わる配管について，長さが当該設備に接続され る配管の内径の $1 / 2$ ，幅がその配管の肉厚の $1 / 2$ の大きさ の開口を当該設備と当該配管との接合部近傍に仮定した とき，開口からの流体状の放射性廃棄物の漏えい量のらち最大の漏えい量をもってしても，流体状の放射性廃妻物の漏えいが広範囲に拡大することを防止する設計とする。	設計及び工事の計画の （3）（i）a．（w）－（1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（w）－（1）を含んでおり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
固体状の放射性廃董物を貯蔵する設備にあっては，放射性廃重物による污染が広がらない設計とする。	固体廃裹物賏蔵施設は，廃重物による污染の拡大防止を考慮した設計とする。	この場合の仮定は堰の能力を算定するためにのみに設 けるものであり，開口は施設内の貯蔵設備に1ヶ所想定し，漏えい時間は漏えいを適切に止めることができるまでの時間とし，床ドレンファンネルの排出機能を考慮する。床 ドレンファンネルは，その機能かか確実なものとなるように設計する。 1．3．2 固体状の放射性廃寁物の污染拡大防止 固体状の放射性廃兼物を貯蔵する設備が設置される発電用原子炬施設は，固体状の放射性廃実物をドラム缶に詰 める，容器に入れる又はタンク内に貯蔵することによる汚染拡大防止措置を講じることにより，放射性廃裹物による污染が広がらない設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備
（3（3）（i）a．（y）－（2）発電所には，放射線から放射線業務涏事者を防櫵するため放射線管理施設を設け，回（3）（i）a． （y）－（3）放射楾管理に必要な情報を中央制御室及びその他当該情報を伝達する必要がある場所に表示できる設備。（客全施設に属するものに限る。）を設ける設計とする。	第 2 項について 放射線業務従事者等の出入管理，污染管理を行らため于 ェッタポイント，更衣室，手洗い場，シャワ室，，体表面年一トモニタ等（1号及び2号炬共用，既設）を設け，個人被ばく管理を行らため，ホールボディカウンタ等（1号，．．． 2 另及び 3 另炬共用，既設）を設ける。	部には，堰を施設することにより，流体状の放射性廃棄物 が施設外い漏えいすることを防止する設計とする。 ＜中略＞ （4）放射性廃棄物貯蔵施設に係る堰の施設放射性廃棄物貯蔵施設外に通じる出入口又はその周辺部には，堰を施設することにより，流体状の放射性廃妻物 が施設外い漏えいすることを防止する設計とする。 漏えいの拡大を防止するための堰及び施設外へ漏えい することを防止するための堰は，開口を仮定する貯蔵設備 が設置されている区画内の床ドレンファンネルの排出機能を考慮しないものとし，流体状の放射性廃棄物の施設外 への漏えいを防止できる能力をもつ設計とする。 ＜中略＞ 2．警報装置等 流体状の放射性廃棄物を処理し，又は貯蔵する設備から流体状の放射性廃重物が著しく漏えいするおそれが発生 した場合（床への漏えい又はそのおそれ（数滴程度の微少漏えいを除く。））を早期に検出するよう，タンクの水位，漏えい検知等によりこれらを確実に検出して自動的に警報（機器ドレン，床ドレンの容器又はサンプの水位）を発信する装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計とする。 また，タンク水位の検出器，インターロック等の適切な計測制御設備を設けることにより，漏えいの発生を防止で きる設計とする。 ＜中略＞ 【放射線管理施設】（基本設計方針） 1．放射線管理施設 1.1 放射線管理用計測装置 運転時の異常な過渡変化時及び設計基準事故時において，当該発電用原子炉施設における各系統の放射性物質の濃度，管理区域内等の主要箇所の外部放射線に係る線量当量率等を監視，測定するために，プロセスモニタリング設備， エリアモニタリング設備及び放射線サーベイ機器（第1号	設計及び工事の計画の 設置変更許可申請書（本文（五号））の（3）（i） a．（y）－（2）を具体的に記載しており整合してい	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（aa）原子炉格納施設 原子炉格納容器は，ロ（3）（i）a．（aa）－（1）格納容器スプレ イ冷却系とあいまって原子炉冷却材圧力バウンダリ配管 の最も過酷な破断を想定し，これにより放出される原子炬冷却材のエネルギーによる（3）（i）a．（aa）－（2）事故時の圧力，温度及び設計上想定された地震荷重に耐えるように設計する。 （3）（i）a．（aa）－（3）また，原子炉冷却材唯失事故が発生 した場合でもっ，格納容器スプレイ冷却系の作動により，温度及び圧力を速やかに下げ，出入口及び貫通部を含めて原子炉格納容器全体の漏えい率を原子炉格納容器の許容値以下に保ち，原子炉格納容器バウンダリの健全性を保つよ らに設計する。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （原子炉格納施設） 第三十二条 適合のための設計方針 第1項について 原子炉格納容器は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定し，これにより放出される泠却材の エネルギーによる圧力，温度及び設計上想定される地震力 に耐えるように設計する。 また，原子炬格納容器出入口及び貫通部を含めて全体漏 えい率が原子炬格納容器空間部体積の $0.5 \% / \mathrm{d}$ 以下（虽温，空気っ，最高使用圧力の 0.9 倍の圧力において）となるよう にする。 なお，設計基準事故後の圧力，温度を考慮した漏えい率 についても十分安全側になることを解析により確認する。	【原子炉格納施設】（基本設計方針） 1．原子炉格納容器 1.1 原子炉格納容器本体等 ＜中略＞ 原子炉格納容器は，口（3）（i）a．（aa）－（1）残留熱除圭系（格納容器スプレイ冷却モード）とあいまって原子炉冷却材圧 カバウンダリ配管の最も過酷な破断を想定し，これにより放出される原子炬冷却材のエネルギによる（3）（i）a．（a （a）－（2）冷却材喪失時の圧力，温度及び設計上想定された地震荷重に耐える設計とする。また，泠却材喪失時及び主蒸気逃がし安全弁作動時において，原子炉格納容器に生じる動荷重に耐える設計とする。 ＜中略＞ 【原子炉冷却采統施設（蒸気タービンを除く。）】 （基本設計方針） 4．残留熱除去設備 4．1．3 格納容器スプレイ冷却モード （1）系統構成 原子炉泠却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炉格納容器内の圧力及び温度の上昇 により原子炉格納容器の安全性を損ならことを防止する ため，原子炉格納容器内において発生した熱を除去する設備として，残留熱除去系（格納容器スプレイ冷却モード） を設ける設計とする。 残留熱除去系（格納容器スプレイ冷却モード）は，冷却材喪失事故時に，サプレッションチェンバのプール水をド ライウェル内及びサプレッションチェンバ内にスプレイ することにより，環境に放出される放射性物質の濃度を減少させる設計とする。	設計及び工事の計画の （3）（i）a．（aa）－1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（1）と同義であ り整合している。 設計及び工事の計画の （3）（i）a．（aa）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（2）と同義であ り整合している。 設計及び工事の計画の （3）（i）a．（aa）－3 は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（3）と同義であ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可甲請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
原子炉格納容器バウンダリロ（3）（i）a．（aa）－（4）が脆性的兴動をせず，かつつ，急速な伝播型破断を生じないよう，設計に当たつては，底力解析等を行い，予測される登生底力 による急速な伝播型破断が生じないように設計する。ま た，原子炬格納容器バウンダりを構成する鋼製の機器につ いては，最低使用温度を考慮して非延性破罣を防止するよ うに設計する。	第 2 項について 原子炬格納容器バウンダリが脆性的举動をせず，かつ急速な伝書型破断を生じないよう下下記の配慮を行う。．．． 設計に当たつては，応力解析等を行い，予測される発生底力による急速な伝播型破断が生じないように設計する。原子炋格納容器バウンダりを構成する銅製の機器につ いては，最低使用温度を考慮して非延性破罣を防止するよ らに設計する。 <中略 >	（3）（i）a．（aa）－（3）残留熱除圭系（（格納容器スプレイ洽却モード）は，原子炬冾却材压力バウンダり配管の最も過酷な破断を想定した場合でもっ，放出されるエネルギによる設計基蕉事故時の原子炬格納容器内厓力，温度が最高使田压力っ最高使用温庶を超えないようにし，かつっ，原子炬格納容器の内厓を速やかに下げて低く維持することにより，放射性物質の外部への漏えいを少なくする設計とする。 <中略〉 【原子炉格納施設】（基本設計方針） 1．原子炉格納容器 1．1 原子炉格納容器本体等 <中略> 原子炉格納容器の開口部である出入口及び貫通部を含 めて原子炉格納容器全体の漏えい率を許容值以下に保ち，椧却材喪失時及び主蒸気逃がし安全弁作動時において想定される原子炉格納容器内の圧力，温度，放射線等の環境条件の下でも原子炉格納容器バウンダリの健全性を保つ設計とする。 通常運転時，運転時の異常な過渡変化時及び設計基準事故時において，原子炬格納容器バウンダリ（3）（i）a．（a） －（4）を構成する機器は脆性破壊及び㗞断が生じない設計と じん性詞験を行い，規定値を满足した材料を使用する設計 とする。 ＜中略＞ 【原子炬冷却采䖻施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.2 材料及び構造等 5．2．1 材料について （2）破壊じん性 b．クラス 1 機器（クラス 1 容器を除く。），クラス 1 支持構造物（クラス1管及びクラス 1 弁を支持するものを除 く。），クラス 2 機器，クラス 3 機器（工学的安全施設に	設計及び工事の計画の （3）（i）a．（aa）－（4）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（4）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（aa）－（13）原子炬格納容器内に閉口部がある配管又は原子炬冷却材圧力バウンダリに接続している配管 のうち，原子炬格納容器の外側で閉じていない配管に圧力開放板を設ける場合には，原子炬格納容器の内側又は外側 に通常時において閉止された隔離弁を少なくとも1個設 ける設計とする。 原子炉格納容器内において発生した熱を除去する（3） （i）a．（aa）－（41）設備（安全施設に属するものに限る。）とし	第 5 項第 4 号について 原子炉格納容器内に閉口部がある配管又は原子炉冷却材圧力バウンダりに接続している配管のらち，原子炬格納容器の外側で閉じていない配管に圧力開放板を設ける場合には，原子炬格納容器の内側又は外側に通常時において閉止された隔離弁を少なくとも1個設ける設計とする。 第6項について 設計基漼事故時の格納容器熱除圭系として，残留熱除圭系を格納容器スプレイ冷却モードとして作動させる設計	び重大事故等時に容易に閉鎖可能な隔離機能を有する卉 を設置する設計とする。 また，重大事故等時に使用する原子炉格納容器調気系の隔離弁については，設計基準事故時の隔離機能の確保を考慮し自動隔離弁とし，重大事故等時に容易に開弁が可能な設計とする。 ＜中略＞ 隔離弁は，想定される漏えい量その他の漏えい試験に影響を与える環境条件として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 0 3 ）に定める漏えい試験のらち C 種試験ができる設計とする。また，隔離弁は動作試験ができ る設計とする。 1．1 原子炉格納容器本体等 <中略 > 原子炉格納容器を貫通する箇所及び出入口は，想定され る漏えい量その他の漏えい試験に影響を与える環境条件 として，判定基準に適切な余裕係数を見込み，日本電気協会「原子炉格納容器の漏えい率試験規程」（J E A C 4 2 03 ）に定める漏えい試験のうち B 種試験ができる設計と する。 <中略 > 1．2 原子炉格納容器隔離弁 ＜中略＞ （3）（i）a．（aa）－（1）原子炬格納容器を貫通する配管に は，圧力開放板を設けない設計とする。 ＜中略＞ 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4．残留熱除去設備 4．1．3 格納容器スプレイ泠却モード （1）系統構成 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障の際に生ずる原子炬格納容器内の圧力及び温度の上昇	設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（13は，詳細設計 した結果が設計及び工事の計画の（3）（i）a． （aa）－（13）であるため整合している。 設計及び工事の計画の （3）（i）a．（aa）－（14）は，	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
て，（3）（i）a．（aa）－（15）格納容器スプレイ冷却系を設ける。 （3）（i）a．（aa）－（16）格納容器スプレイ冷却采は，原子炬冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出されるエネルギーによる設計基準事故時の原子炉格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炬格納容器の内圧を速 やかに下げて低く維持することにより，放射性物質の外部 への漏えいを少なくする設計とする。	とする。 本采は，残留熱除去系ポンプ，熱交換器とその泠却系等 からなり，動的機器の単一故障を仮定しても安全機能を果 たし得るよう独立 2 系統を設ける。各系統は，原子炉格納容器内の圧力，温度が原子炬格納容器の最高使用圧力，最高使用温度を超えないような除熱容量を持つように設計 する。格納容器スプレイ泠却系は，泠却水であるサプレッ ションチェンバ内のプール水を残留熱除去系熱交換器で椧却し，原子炉格納容器内に設けたスプレイノズルからス プレイし，原子炉格納容器内の熱を除去する。 熱交換器で除去された熱は，原子炉補機冷却系を経て最終的に海水に伝えられる。	により原子炉格納容器の安全性を損ならことを防止する ため，原子炉格納容器内において発生した熱を除去する回 （3）（i）a．（aa）－（14）設備として，ロ（3）（i）a．（aa）－（15）残留熱除圭系（格納容器スプレイ冷却モード）を設ける設計とす る。 ＜中略＞ （3）（i）a．（aa）－（16）残留熱除去系（格納容器スプレイ冷却モード）は，原子炉冷却材圧力バウンダリ配管の最も過酷な破断を想定した場合でも，放出されるエネルギによる設計基準事故時の原子炬格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炉格納容器の内圧を速やかに下げて低く維持することにより，放射性物質の外部への漏えいを少なくする設計とする。 ＜中略＞ 【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.1 真空破壊装置 冷却材進失事故後，ドライウェル圧力がサプレッション チェンバ圧力より低下した場合に，ドライウェルとサプレ ッションチェンバ間に設置された 6 個の真空破壊弁が，圧力差により自動的に働き，サプレッションチェンバのプー ル水のドライウェルへの逆流及びドライウェルの破損を防止できる設計とする。 なお，発電用原子炉の運転時に原子炉格納容器に窒素を充てんしていることなどから，原子炉格納容器外面に受け る圧力が設計を超えることはない。 <中略 >	設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（14）を含んでお り整合している。 設計及び工事の計画の （3）（i）a．（aa）－（15）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（15）と同義であ り整合している。 設計及び工事の計画の 設置変更許可申請書（本 a．（aa）－（16）と同義であ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
さらに，（3）（i）a．（aa）－（17）格納容器スプレイ偷却系は， （3）（i）a．（aa）－（18）短期開では動的機器の単一故噇を仮定 しても，長期間では動的機辎の単一故障又は想定される静的機器の単一故障のいずれかなを仮定しても，上記の安全機能を満足するよう，格納容器スプレイヘッダを除き多重性及び独立性を有する設計とする。		【原子师冷却系䖻施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5.1 安全設備，設計基淮対象施設及び重大事故等対処設備 5．1．2 多樣性，位置的分散等 （1）多重性又は多様性及び独立性 （3）（i）a．（aa）－田設置許可基淮規則第 12 条第 2 項に規定される「安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するもの」は，当該系統を構成 する機器に「（2）単一故障」にて記載する単一故障が発生した場合であって，外部電源が利用できない場合におい ても，その系統の安全機能を達成できるよう，十分高い信頼性を碓保し，かつ維持し得る設計とし，原則，多重性又 は多樣性及び独立性を備える設計とする。 ＜中略＞ （2）単一故障 安全機能を有する系統のうち，安全機能の重要度が特に高い安全機能を有するものは，当該系統を構成する機器に （3）（i）a．（aa）－（18）短期間では動的機器の単一故障，長期閏では動的機器の単一故障若しくは想定される静的機器 の単一故障のいずれかが生じた場合であって，外部需源が利用できない場合においても，その系統の安全機能を達成 できる設計とする。 （ C ）（i）a．（aa）－（18）短期間と長期間の境界は 24 時間とす る． ただし，非常用ガス処理系の配管の一部及び非常用ガス処理系フィルタ装置，中央制御室換気空調系のダクトの一部及び中央制御室再循擐フィルタ装置並びに回（3）（i）a． （aa）－（18）线留熱除寺采（格絇容器スプレイ洽却モード）の ドライウェルスプレイ管及びサプレシションチェンバス プレイ管については，設計基観事故が発生した場合に長期闑にわたつて機能が要求される静的機器であるが，単一設計とするため，個別に設計を行ら。	設計及び工事の計画の （3）（i）a．（aa）－（17）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（17）を含んでお り整合している。 設計及び工事の計画の （3）（i）a．（aa）－（18）は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（18）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（3）（i）a．（aa）－（19）原子炬格納施設内の雾囲気の浄化系 （安全施設に係るものに限る。）として，非常用ガス処理系を設ける。 非常用ガス処理系は，原子炉冷却材喪失事故時に想定す る原子炉格納容器からの漏えい気体中に含まれるよう素 を除去し，環境に放出される核分裂生成物の濃度を減少さ せる設計とする。 （3）（i）a．（aa）－（20本設備の動的機器は，多重性を持た せ，また，口（3）（i）a．（aa）－（21）非常用電源から給電して十	第 7 項について 原子炋格納施設雰囲気浄化系としてフィルタ装置，湿分除圭装置及びファン等で構成する非常用ガス処理系を設置する。 原子炉冷却材喪失事故等が生じた場合，ドライウェル圧力高，原子炉水位低，原子炉棟放射能高のいずれかの信号 で，自動的に常用換気系を閉鎖し，非常用ガス処理系を作動させる。 非常用ガス処理系は，原子炬格納容器から漏えいしてき た放射性物質をフイルタを通してこれを除寺した後，排気筒から放出する。 なお，本系統のよう素除去効率は湿度 70% 以下において 99% 以上になるように設計する。高性能粒子フィルタは，粒子状核分裂生成物の 99.9% 以上を除去するよう設計す る。 以上により原子炉冷却材喪失事故時等において，環境に放出される核分裂生成物及びその他の物質の濃度を減少 させることができる。	【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設 備並びに格納容器再循環設備 3．3．1 非常用ガス処理系 ロ（3）（i）a．（aa）－（19）原子炬冷却系統に係る発電用原子炬施設の損壊又は故障の際に原子炬格納容器から気体状の放射性物質が漏えいすることによる敷地境界外の実効線量が「発電用軽水型原子炬施設の安全評価に閉する審植指針（平成 2 年 8 月 30 日原子力安全委員会）」に規定する線量を超えないよう，当該放射性物質の濃度を低減する設備 として非常用ガス処理系を設置する。 非常用ガス処理系は，非常用ガス処理系空気乾燥装置，非常用ガス処理系排風機及び高性能エアフィルタ，チャコ ールエアフィルタを含む非常用ガス処理系フィルタ装置等から構成される。 放射性物質の放出を伴う設計基準事故時には，常用換気系を閉鎖し，非常用ガス処理系排風機によって原子炉建屋原子炉棟内を水柱約 6 mm の負圧に保ちながら，原子炉格納容器等から漏えいした放射性物質を非常用ガス処理系フ ィルタ装置を通して除去•低減した後，排気筒から放出す る設計とする。 非常用ガス処理系は，泠却材喪失事故時に想定する原子炉格納容器からの漏えい気体中に含まれるよう素を除去 し，環境に放出される放射性物質の濃度を減少させる設計 とする。 非常用ガス処理系のらち，非常用ガス処理系フィルタ装置のよう素除去効率及び非常用ガス処理系の処理容量は，設置（変更）許可を受けた設計基準事故の評価の条件を満足する設計とする。 ＜中略＞ 【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．1．2 多様性，位置的分散等 （1）多重性又は多様性及び独立性 （3）（i）a．（aa）－（2）設置許可基蕉規則第 12 条第 2 項に規定される「安全機能を有する系統のうち，安全機能の重要	設計及び工事の計画の （3）（i）a．（aa）－（19は，設置変更許可申請書（本文（五号））の（3）（i） a．（aa）－（19）を具体的に記載しており整合して いる。 (3) (i) a. (aa)-(20)は,	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
分その機能を果たせる設計とする。 原子炉冷却材喪失事故後に原子炉格納容器内で発生す る水素及び酸素の反応を防止するため，可燃性ガス濃度制御系を設ける。	第8項について 原子炉泠却材喪失事故時に，原子炉格納容器内で発生す る水素及び酸素ガスの反応を防止するため，可燃性ガス濃度制御系を設ける。 中央制御室から本系統を手動にて作動させることによ り，原子炉格納容器内の水素濃度を 4 vol \％未満又は酸素濃度を $5 \mathrm{vol} \%$ 未満に維持し，可燃限界に達しないように することができる設計とする。	度が特に高い安全機能を有するもの」は，当該系統を構成 する機器に「（2）単一故障」にて記載する単一故障が発生した場合であって，ロ（3）（i）a．（aa）－（21）外部電源が利用 できない場合においてもっその系統の安全機能を達成でき るよう，．．．十分高い信頼性を確保し，かつ維持し得る設計と し，原則，多重性又は多様性及び独立性を備える設計とす る。 < 中略 > 【非常用電源設備】（基本設計方針） 1．非常用電源設備の電源系統 1.1 非常用電源系統 重要安全施設に給電する系統においては，多重性を有 し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持たせ， 3 系統の母線で構成し，工学的安全施設 に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通して降圧し， （3）（i）a．（aa）－（21）非常用低圧母線（パワーセンタ及びモ ータコントロールセンタで構成）へ給電する。非常用低圧母線も同様に多重性を持たせ 3 系統の母線で構成し，工学的安全施設に関係する低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 <中略> 【原子炉格納施設】（基本設計方針） 3．圧力低減設備その他の安全設備 3.3 放射性物質濃度制御設備及び可燃性ガス濃度制御設備並びに格納容器再循環設備 3．3．2 可燃性ガス濃度制御系 冷却材喪失事故時に原子炬格納容器内で発生する水素及び酸素の反応を防止するため，可燃性ガス濃度制御系を設け，原子炉格納容器調気系により原子炉格納容器内に窒素を充填することとあいまって，可燃限界に達しないため の制限値である水素濃度 $4 \mathrm{vol} \%$ 未満又は酸素濃度 $5 \mathrm{vo1} \%$未満に維持できる設計とする。	設置変更許可申請書（本文（五号））の（ 3 ）（ i ） a．（aa）－（20）を含んでお り整合している。 設計及び工事の計画の （3）（i）a．（aa）－（21）は，設置変更許可申請書（本文（五号））の（3）（i ） a．（aa）－（21）と同義であ り整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（ab）保安電源設備 発電用原子炉施設は，重要安全施設がその機能を維持す るために必要となる電力を当該重要安全施設に供給する ため，電力系統に連系した設計とする。 また，発電用原子炉施設には，（3）（i）a．（ab）－（1）非常用電源設備（安全施設に属するものに限る。以下，本項に おいて同じ。）を設ける設計とする。	1．10．3 発電用原子炉設置変更許可申請（平成 25 年 12 月 27 日申請）に係る実用発電用原子炉及びその附属施設の位置，構造及び設備の基準に関する規則への適合 （保安電源設備） 第三十三条 適合のための設計方針 第1項について 発電用原子炉施設は，重要安全施設がその機能を維持す るために必要となる電力を当該重要安全施設に供給する ため， 275 kV 送電線（牡鹿幹線及び松島幹線）2 ルート各 2 回線（ 1 号， 2 号及び 3 号炉共用，既設）及び 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。）及び万石線） 1 ルート 1 回線（ 1 号， 2 号及び 3 号炉共用，既設）で電力系統に連系した設計とする。 第2項について 発電用原子炉施設に，非常用所内電源設備として非常用交流電源設備である非常用ディーゼル発電機（高圧炉心ス プレイ系ディーゼル発電機を含む。）及び非常用直流電源設備である蓄電池（非常用）を設ける設計とする。また， それらに必要な燃料等を備える設計とする。	【常用電源設備】（基本設計方針） 1．保安電源設備 1.2 電線路の独立性及び物理的隔離 発電用原子炉施設は，重要安全施設がその機能を維持す るために必要となる電力を当該重要安全施設に供給する ため，電力系統に連系した設計とする。 < 中略 > 【非常用電源設備】（基本設計方針） 2．交流電源設備 2.1 非常用交流電源設備 2．1．1 系統構成 発電用原子炉施設は，重要安全施設がその機能を維持す るために必要となる電力を当該重要安全施設に供給する ため，電力系統に連系した設計とする。 発電用原子炉施設には，電線路及び当該発電用原子炉施設において常時使用される発電機からの電力の供給が停止した場合において発電用原子炉施設の安全性を確保す るために必要な装置の機能を維持するため，内燃機関を原動力とする（3）（i）a．（ab）－（1）非常用交流電源設備を設け る設計とする。 発電用原子炉施設の安全性を確保するために必要な装置（非常用電源設備及びその燃料補給設備，使用済燃料プ ールへの補給設備，原子炉格納容器内の圧力，温度，酸素•水素濃度，放射性物質の濃度及び線量当量率の監視設備並 びに中央制御室外からの原子炉停止設備）は，内燃機関を原動力とする（3）（i）a．（ab）－（1）非常用交流電源設備の非常用ディーゼル発電機（高圧炉心スプレイ系ディーゼル発電機を含む。）からの電源供給が可能な設計とする。 ＜中略＞	設計及び工事の計画の 設置変更許可申請書（本文（五号））のロ（3）（i ） a．（ab）－（1）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
保安電源設備（安全施設へ電力を供給するための設備を いう。）は，電線路，発電用原子炉施設において常時使用 される発電機，外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう，発電機，送電線，変圧器，母線等に保護継電器を設置し，機器の損壊，故障その他の異常を検知するとともに，異常を検知し た場合は，ガス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより，その拡大を防止す る設計とする。 特に口（3）（i）a．（ab）－（2）重要安全施設においては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置するとともに，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。	第3項について 保安電源設備（安全施設へ電力を供給するための設備を いう。）は，電線路，発電用原子炉施設において常時使用 される発電機，外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう，発電機，外部電源，非常用所内電源設備，その他の関連する電気采統機器の短絡若しくは地絡又は母線の低電圧若しくは過電流等を保櫵継電器にて検知できる設計とする。また，故障を検知した場合は，ガス絶縁開閉装置あるいはメタルク ラッド開閉装置等の遮断器により故障箇所を隔離するこ とによって，故障による影響を局所化できるとともに，他 の安全機能への影響を限定できる設計とする。	【常用電源設備】（基本設計方針） 1．保安電源設備 1.1 発電所構内における電気系統の信頼性確保 1．1．1 機器の破損，故障その他の異常の検知と拡大防止 安全施設へ電力を供給する保安電源設備は，電線路，発電用原子炉施設において常時使用される発電機，外部電源系及び非常用所内電源系から安全施設への電力の供給が停止することがないよう，発電機，送電線，変圧器，母線等に保護継電器を設置し，機器の損壊，故障その他の異常 を検知するとともに，異常を検知した場合は，ガス絶縁開閉装置あるいはメタルクラッド開閉装置等の遮断器が動作することにより，その拡大を防止する設計とする。 特に口（3）（i）a．（ab）－（2）重要安全施設に給電する系統に おいては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 常用高圧母線（メタルクラッド開閉装置で構成）は，2母線で構成し，通常運転時に必要な負荷を各母線に振り分 け給電する。それぞれの母線から動力変圧器を通して降圧 し，常用低圧母線（パワーセンタ及びモータコントロール センタで構成）へ給電する。 共通用高圧母線（メタルクラッド開閉装置で構成）は， 2 母線で構成し，それぞれの母線から動力変圧器を通して降圧し，共通用低圧母線（パワーセンタ及びモータコント ロールセンタで構成）へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障による影響 を局所化できるとともに，他の安全施設への影響を限定で きる設計とする。 常用の直流電源設備は， 250 V 蓄電池， 250 V 充電器， 250 V直流主母線盤等で構成する。 常用の直流電源設備は，タービンの非常用油ポンプ，発電機の非常用密封油ポンプ等へ給電する設計とする。 常用の計測制御用電源設備は，計測母線で構成する。常用電源設備の動力回路のケーブルは，負荷の容量に応 じたケーブルを使用する設計とし，多重化した非常用電源	設計及び工事の計画の （3）（i）a．（ab）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ab）－（2）を具体的に記載しており整合して いる。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		設備の動力回路のケーブルの系統分離対策に影響を及ぼ さない設計とするとともに，制御回路や計装回路への電気的影響を考慮した設計とする。 【非常用電源設備】（基本設計方針） 1．非常用電源設備の電源系統 1.1 非常用電源系統 （3）（i）a．（ab）－（2）重要安全施設に給電する系統におい ては，多重性を有し，系統分離が可能である母線で構成し，信頼性の高い機器を設置する。 非常用高圧母線（メタルクラッド開閉装置で構成）は，多重性を持たせ， 3 系統の母線で構成し，工学的安全施設 に関係する高圧補機と発電所の保安に必要な高圧補機へ給電する設計とする。また，動力変圧器を通して降圧し，非常用低圧母線（パワーセンタ及びモータコントロールセ ンタで構成）へ給電する。非常用低圧母線も同様に多重性 を持たせ 3 采統の母線で構成し，工学的安全施設に関係す る低圧補機と発電所の保安に必要な低圧補機へ給電する設計とする。 また，高圧及び低圧母線等で故障が発生した際は，遮断器により故障箇所を隔離できる設計とし，故障による影響 を局所化できるとともに，他の安全施設への影響を限定で きる設計とする。 更に，非常用所内電源系からの受電時の母線切替操作が容易な設計とする。 重要安全施設への電力供給に係る電気盤及び当該電気盤に影響を与えるおそれのある電気盤（安全施設（重要安全施設を除く。）への電力供給に係るものに限る。）につい て，遮断器の遮断時間の適切な設定，非常用ディーゼル発電機（高圧灯心スプレイ系ディーゼル発電機を含む。）の停止等により，高エネルギーのアーク放電によるこれらの電気盤の損壊の拡大を防止することができる設計とする。 これらの母線は，独立性を確保し，それぞれ区画分離さ れた部屋に配置する設計とする。 原子炉保護系並びに工学的安全施設に関係する多重性 をもつ動力回路に使用するケーブルは，負荷の容量に応じ たケーブルを使用し，多重化したそれぞれのケーブルにつ いて相互に物理的分離を図る設計とするとともに制御回			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，変圧器 1 次側において 3 相のうちの 1 相の電路の開放が生じ，${ }^{(1)}$（3）（i）a．（ab）－③安全施設への電力の供給 が不安定になった場合においては，自動（地絡や過電流に よる保護継電器の動作）若しくは手動操作で，故障籄所の隔離又は非常用母線の健全な電源からの受電へ切り替爫 ることにより安全施設への電力の供給の安定性を回復で きる設計とする。	変圧器 1 次側において 3 相のらちの 1 相の電路の開放 が生じ，安全施設への電力の供給が不安定になった場合に おいては，自動（地絡や過電流による保檴継電器の動作に より）若しくは手動操作で，故障䈯所の隔離又は非常用母線の健全な電源からの受電へ切り替えることにより安全施設への電力の供給の安定性を回復できる設計とする。ま た，送電線は複数回線との接続を確保し，巡視点検による異常の早期検知ができるよう，送電線引留部の外観確認が可能な設計とする。 また，保安電源設備は，重要安全施設の機能を維持する ために必要となる電力の供給が停止することがないよう，以下の設計とする。 －送電線の回線数と開閉所の母線数は，供給信頼度の整合が図れた設計とし，電気系統の系統分離を考慮し て， 275 kV 母線を 4 母線， 66 kV 母線を 1 母線で構成す る。 275 kV 送電線は母線連絡遮断器を設置したタイラ インにより起動変圧器を介して，66kV 送電線は予備変圧器を介して発電用原子炉施設へ給電する設計とす る。非常用母線を 3 母線確保することで，多重性を損 なうことなく，系統分離を考慮して母線を構成する設計とする。 －電気系統を構成する送電線（牡鹿幹線，松島幹線，塚浜支線（鮎川線 1 号を一部含む。）及び万石線），母線，変圧器，非常用所内電源設備，その他関連する機器については，電気学会電気規格調査会にて定められ た規格（J E C）又は日本産業規格（J I S）等で定 められた適切な仕様を選定し，信頼性の高い設計とす る。 －非常用所内電源系からの受電時等の母線切替は，故障 を検知した場合，自動又は手動で容易に切り替わる設計とする。	路や計装回路への電気的影響を考慮した設計とする。 【常用電源設備】（基本設計方針） 1．保安電源設備 1.1 発電所構内における電気系統の信頼性確保 1．1．2 1 相の電路の開放に対する検知及び電力の安定性回復 変圧器 1 次側において 3 相のらちの 1 相の電路の開放が生じた（3）（i）a．（ab）－（3）a場合に検知できるよう，変圧器 1 次側の電路は，，電路を筐体に内包する変圧器やガス絻縁開閉装置等により構成しっ 3 相のうちの11相の電路の開放 が生じた場合に保護継霊器にて自憅で故障笽所の隔離及 び非常用母線の受電切替ができる設計とし，電力の供給の安定性を回復できる設計とする。 送電線において 3 相のらちの 1 相の電路の開放が生じた場合， 275 kV 送電線は 1 回線での電路の開放時に安全施設 への電力の供給が不安定にならないよう，多重化した設計 とする。 また，電力送電時，保護装置による 3 相の電流不平衡監視にて常時自動検知できる設計とする。 66 kV 送電線は，各相の不足電圧継電器にて常時自動検知 できる設計とする。 更に，ロ（3）（i）a．（ab）－3 b 275 kV 送霓線及び 66 kV 送電線 は，保安規定に定めている巡視点検を加えることで，保護装置による検知が期待できない場合の 1 相開放故障や，そ の兆候を早期に検知できる設計とする。 275 kV 送電線及び 66 kV 送電線において 1 相の電路の開放 を検知した場合は，自動又は手動で故障箇所の隔離及び非常用母線の受電切替ができる設計とし，電力の供給の安定性を回復できる設計とする。	設計及び工事の計画の『（3）（i）a．（ab）－（3）a 及 びロ（3）（i）a．（ab）－（3b は，設置変更許可申請書 （本文（五号））の（3） （i）a．（ab）－3 を具体的に記載しており整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（3）（i）a．（ab）－（4）設計基蕉対象施設に接続する電線路 のらち少なくとも2回線は，それぞれ互いに独立したもの であって，当該設計基準対象施設において受電可能なもの であり，かつっそれにより当馀設計基集対象施設を電力系統に連系するとともに，	第 4 項について 設計基準対象施設は，送受電可能な回線として 275 kV 送電線（牡鹿幹線及び松島幹線）2 ルート各2回線（1号， 2号及び 3 号炉共用，既設）及び受電專用の回路として 6 6 kV 送電線（塚浜支線（鮎川線1号を一部含吉。）））1 ル ート 1 回線（ 1 号， 2 号及び 3 号炉共用，既設）の合計 3 ルート 5 回線にて，電力系統に接続する。 275 kV 送電線（牡鹿幹線）1 ルート 2 回線は，約 28 km 離 れた石巻変電所に，275kV 送電線（松島幹線）1 ルート 2回線は，約 84 km 離れた宫城中央変電所に連系する。また， 66 kV 送電線（塚浜支線（鮎川線 1 号を一部含む。）））1 ル ート 1 回線は約 8 km 離れた女川変電所及び万石線を経由 しその上流接続先である約 22 km 離れた西石巻変電所に連系する。 上記 3 ルート 5 回線の送電線の独立性を確保するため，万一，送電線の上流側接続先である石巻変電所が停止した場合でも，外部電源からの電力供給が可能となるよう，宮城中央変電所又は女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。また，宮城中央変電所が停止した場合には，石巻変電所又は女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。さらに，女川変電所が停止した場合に は，石巻変電所又は宮城中央変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。	1.2 電線路の独立性及び物理的隔離 ＜中略＞ （3）（i）a．（ab）－（4）設計基蕉対象施設は，送受電可能な回線として 275 kV 送電線（東北電力ネットワーク株式会社牡鹿幹線（以下「特鹿幹線」という。））（第1号機設備，第 $1,2,2$ 号機共用（以下同じ。））及び 275 kV 送電線（東北電力ネットワーク株式会社松島倝線（以下「松島幹線」 という。））（第 3 号機設備，第 $1,2,3$ 号機共用（以下同 じ。））の 2 ルート各 2 回線及び受電専用の回線として 66 kV送電線（東北電力ネットワーク株式会社塚浜支線（以下「塚浜支線」という。）（東北電力ネットワーク株式会社鮎！！線 （以下「鮎り線」という。）1 号を一部含む。）及び東北電力ネットワーク株式会社万石線（以下「万石線」という。）） （第1号機設備，第 $1,2,2$ 号機共用（以下同じ。）） 1 ル ート1回線の合計3ルート5回線にて，電力采統に接続す る設計とする。 275 kV 送電線（牡鹿幹線）1 ルート 2 回線は東北電力ネ ットワーク株式会社石䄅変電所（以下「石巻変電所」とい う。）， 275 kV 送電線（松島幹線）1 ルート 2 回線は東北電力ネットワーク株式会社豈城中央変䨝所（以下「富城中央変電所」という。）に連系する設計とする。また，66kV 送需線（塚浜支線（鮎川！線1号を一部含む。））1 ルート 1 回線は東北電力ネットワーク株式会社女川変電所（以下「女川変䨌所」という。）及び万石線を経由し，その上流接続先である東北電力ネットワーク株式会社西石巻変電所（以下「西石巻変霊所」という。）に連系する設計とする。．．． 上記 3 ルート 5 回線の送電線の独立性を確保するため，万一，，送電線の上流側接続先である石巻変電所が停止した場合でもっ，外部電源からの電力供給が可能となるよう，，宮城中央変電所又は女川変電所を経由するルートで本発電所に電力を供給することが可能な設計とする。また，富城中央変電所が停止した場合には，啳変電所又は女川変電所を経由するルートで本発䨌所に電力を供給することが可能な設計とする。更に，女川変䨠所が停止した場合には，石巻変電所又は豈城中央変電所を経由するルートで本発需所に電力を供給することが可能な設計とする。	設計及び工事の計画の （3）（i）a．（ab）－44は，設置変更許可申請書（本文（五号））の（3）（i） a．（ab）－（4）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
又は保管する。また，重大事故等に対処するために必要な数の要員を収容できる設計とする。		がとどまることができるよう，（3）（i）a．（ac）－（1）適切な遮蔽設計及び換気設計を行い緊急時対策所の居住性を確保する。 ＜中略＞ b．情報の把握 （3）（i）a．（ac）－（2）緊急時対策所には，原子炉冷却系統 に係る発電用原子炬施設の損壊その他の異虽に対処する ために必要な情報及び重大事故等が発生した場合におい ても当該事故等に対処するために必要な指示ができるよ ら，重大事故等に対処するために必要な情報を，中央制御室内の運転員を介さずに正確かつ速やかに把握できる設備として，安全パラメータ表示システム（SPDS）を設置す る． 安全パラメータ表示システム（SPDS）として，事故状熊等の必要な情報を把握するために必要なパラメータ等を収集し，緊急時対策所内で表示できるよう，データ収集装置，SPDS 伝送装置及びSPDS 表示装置を設置する設計とす る． c．通信連絡 原子炉冷却系統に係る発電用原子炉施設の損壊その他 の異常が発生した場合において，当該事故等に対処するた め，発電所内の関係要員に指示を行らために必要な通信連絡設備及び発電所外関係箇所と専用であって多様性を備 えた通信回線にて通信連絡できる設計とする。 （3）（i）a．（ac）－（3）緊急時対策所には，重大事故等が発生した場合においても発電所の内外の通信連絡をする必要のある場所と通信連絡できる設計とする。… ＜中略＞	設計及び工事の計画の （3）（i）a．（ac）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ac）－（2）を具体的に記載しており整合して いる。 設計及び工事の計画の （1）（i）a．（ac）－（3）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ac）－（3）を具体的に記載しており整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ad）通信連絡設備 通信連絡設備は，警報装置，通信連絡設備（発電所内），安全パラメータ表示システム（SPDS），通信連絡設備 （発電所外）及びデータ伝送設備』（3）（i）a．（ad）－（1）から構成される。．	10．12 通信連絡設備 10．12．1 通常運転時等 10．12．1．1 概要 設計基準事故が発生した場合において，発電所内の人に対し必要な指示ができるよう，警報装置及び多様性を確保 した通信連絡設備を設置又は保管する。 また，発電所外の通信連絡をする必要がある場所と通信連絡ができるよう，多樣性を確保した專用通信回線に接続 する。．．．	【計測制御系統施設】（基本設計方針） 4．通信連絡設備 4.1 通信連絡設備（発電所内） 原子炉冷却系統に係る発電用原子炉施設の損壊又は故障その他の異常の際に，中央制御室等から人が立ち入る可能性のある原子炉建屋，タービン建屋等の建屋内外各所の人に操作，作業，退避の指示，事故対策のための集合等の連絡をブザー鳴動等により行うことができる設備及び音声等により行らことができる設備として，警報装置及び通信連絡設備（発電所内）を（3）（i）a．（ad）－（1）設置又は保管する設計とする。 警報装置として，十分な数量の送受話器（ページング） （警報装置を含む。）及び多様性を碓保した通信連絡設備 （発電所内）として，十分な数量の送受話器（ページング） （警報装置を含む。），電力保安通信用電話設備（固定電話機，PHS 端末及び FAX），移動無線設備（固定型），移動無線設備（車載型），携行型通話装置，無線連絡設備（固定型），無線連絡設備（携帯型），衛星電話設備（固定型）及 び衛星電話設備（携帯型）を回（3）（i）a．（ad）－（1）設置又は保管する設計とする。 また，緊急時対策所へ事故状態等の把握に必要なデータ を伝送できる設備として，安全パラメータ表示システム （SPDS）を（3）（i）a．（ad）－（1）設置する設計とする。 ＜中略＞ 4.2 通信連絡設備（発電所外） 設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等により行うことができる通信連絡設備（発電所外）として，十分な数量の電力保安通信用電話設備（固定電話機，PHS 端末，FAX 及び衛星保安電話（固定型）），社内テレビ会議システム，局線加入電話設備（加入電話機及び加入 FAX），専用電話設備（地方公共団体向ホットライン），衛星電話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワークを用い た通信連絡設備（テレビ会議システム，IP 電話及び IP— FAX）をロ（3）（i）a．（ad）－（1）設置又は保管する設計とする。 また，発電所内から発電所外の緊急時対策支援システム	$\begin{aligned} & \text { 設計及び工事の計画の } \\ & \text { (e(3) (i) a. (ad)-(1)は, } \\ & \text { 設置変更許可申請書 (本 } \\ & \text { 文 (五号)) の回 (3) (i) } \\ & \text { a. (ad)-(1)と同義であ } \\ & \text { り整合している。 } \end{aligned}$	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（3）（i）a．（ad）－（2）発電用原子䅉施設には，設計基蕉事故が発生した場合において，中央制御室等から人が立ち入 る可能性のある原子炬建屋，タービン建屋等の建屋内外各所の者への必要な操作，作業又は退避の指示等の連絡をづ ザー鳴動等により行うことができる装置及び音声等によ り行うことができる設備として，警報装置及び多様性を確保した通信連絡設備（発電所内）を設置又は保管する設計 とする。また，緊急時対策所へ事故状態等の把握に必要な データを伝送できる設備として，安全パラメータ表示シス テム（S P D S ）を設置する設計とする。 発電用原子炉施設には，設計基準事故が発生した場合に おいて，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等に より行うことができる設備として，通信連絡設備（発電所外）を設置又は保管する設計とする。	10．12．1．2 設計方針 （1）設計基準事故が発生した場合において，中央制御室等から人が立ち入る可能性のある原子炬建屋，タービン建屋等の建屋内外各所の者への必要な操作，作業又は退避の指示等の連絡をブザー鳴動等により行うことがで きる装置及び音声等により行うことができる設備とし て，警報装置及び多様性を確保した通信連絡設備（発電所内）を設置又は保管する設計とする。また，緊急時対策所へ事故状態等の把握に必要なデータを伝送できる設備として，安全パラメータ表示システム（ S P D S ） を設置する設計とする。 なお，警報装置，通信連絡設備（発電所内）及び安全パ ラメータ表示システム（SPDS）は，非常用所内電源設備又は無停電電源装置（充電器等を含む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。 （2）設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所 へ事故の発生等に係る連絡を音声等により行うことが できる設備として，通信連絡設備（発電所外）を設置又 は保管する設計とする。	（ERSS）～必要なデータを伝送できる設備として，データ 伝送設備口（3）（i）a．（ad）－（1）を設置する設計とする。 ＜中略＞ 4.1 通信連絡設備（発電所内） （3）（i ）a．（ad）－（2）原子炬冷却系統に係る発電用原子炉施設の損壊又は故障その他の異堂の際に，中央制御室等か ら人が立ち入る可能性のある原子炬建屋，タービン建屋等 の建屋内外各所の人に操作，作業，退避の指示，事故対策 のための集合等の連絡をブザー鳴動等により行うことが できる設備及び音声等により行うことができる設備とし て，警報装置及び通信連絡設備（発電所内）を設置又は保管する設計とする。 警報装置として，十分な数量の送受話器（ページング） （警報装置を含む。）及び多様性を確保した通信連絡設備 （発電所内）として，十分な数量の送受話器（ページング） （警報装置を含む。），電力保安通信用電話設備（固定電話機，PHS 端末及び FAX），移動無線設備（固定型），移動無線設備（車載型），携行型通話装置，無線連絡設備（固定型），無線連絡設備（携帯型），衛星電話設備（固定型）及 び衛星電話設備（携帯型）を設置又は保管する設計とする。 また，緊急時対策所へ事故状態等の把握に必要なデータ を伝送できる設備として，安全パラメータ表示システム （SPDS）を設置する設計とする。 （3）（i）a．（ad）－3 警報装置，通信連絡設備（発電所内）及び安全パラメータ表示システム（SPDS）については，非常用所内電源又は無停電電源（充電器等を含む。）に接続 し，外部電源が期待できない場合でも動作可能な設計とす る。 ＜中略＞ 4.2 通信連絡設備（発電所外） 設計基準事故が発生した場合において，発電所外の本店，国，地方公共団体，その他関係機関等の必要箇所へ事故の発生等に係る連絡を音声等により行うことができる通信連絡設備（発電所外）として，十分な数量の電力保安通信用電話設備（固定電話機，PHS 端末，FAX 及び衛星保安電話（固定型）），社内テレビ会議システム，局線加入電話設備（加入電話機及び加入 FAX），専用電話設備（地方公	設計及び工事の計画の （3）（ i ）a．（ad）－（2）は，設置変更許可申請書（本文（五号））の（3）（i ） a．（ad）－（2）と文章表現 は異なるが，内容に相違 はないため整合してい る。 設計及び工事の計画の （3）（ i ）a．（ad）－（3）は，設置変更許可申請書（本文（五号））の回（3）（i ） a．（ad）－（3）と同義であ り整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，発電所内から発電所外の緊急時対策支援システム （ER S S）へ必要なデータを伝送できる設備として，デー夕伝送設備を設置する設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を確保した専用通信回線に接続し，輻輳等によ る制限を受けることなく常時使用できる設計とする。 ロ（3）（i）a．（ad）－3 これらの通信連絡設備については，非常用所内電源設備又は無停電電源装置（充電器等を含 む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。 発䨐用原子炬施設には，重大事故等が発生した場合にお いて，発電所の内外の通信連絡をする必要のある場所と通信連絡を行らために必要な口（3）（i ）a．（ad）－（4）通信連絡設備を設置又は保管する。	また，発電所内から発電所外の緊急時対策支援システム （ER S S）～必要なデータを伝送できる設備として，デ ータ伝送設備を設置する設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を確保した専用通信回線に接続し，輻輳等によ る制限を受けることなく常時使用できる設計とする。 なお，通信連絡設備（発電所外）及びデータ伝送設備は，非常用所内電源設備又は無停電電源装置（充電器等を含 む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。 10．12．2 重大事故等時 10．12．2．2 設計方針 （1）発電所内の通信連絡を行らための設備 a．通信連絡設備（発電所内） 重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行うための通信連絡設備（発電所内）として，衛星電話設備，無線連絡設備及び携行型通話装置を設置又は保管する設計とする。	共団体向ホットライン），衛星電話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワークを用い た通信連絡設備（テレビ会議システム，IP 電話及び IP一 FAX）を設置又は保管する設計とする。 また，発電所内から発電所外の緊急時対策支援システム （ERSS）へ必要なデータを伝送できる設備として，データ伝送設備を設置する設計とする。 通信連絡設備（発電所外）及びデータ伝送設備について は，有線系回線，無線系回線又は衛星系回線による通信方式の多様性を確保した通信回線に接続する。 電力保安通信用電話設備（固定電話機，PHS 端末，FAX及び衛星保安電話（固定型）），統合原子力防災ネットワー クを用いた通信連絡設備（テレビ会議システム，IP 電話及 び IP—FAX），専用電話設備（地方公共団体向ホットライ ン），社内テレビ会議システム及びデータ伝送設備は，專用通信回線に接続し，輻輳等による制限を受けることなく常時使用できる設計とする。また，これらの専用通信回線 の容量は，通話及びデータ伝送に必要な容量に対し，十分 な余裕を確保した設計とする。 （3）（i）a．（ad）－（3）通信連絡設備（発電所外）及びデー夕伝送設備については，非常用所内電源又は無停電電源 （充電器等を含む。）に接続し，外部電源が期待できない場合でも動作可能な設計とする。 <中略> 4.1 通信連絡設備（発電所内） < 中略 > 重大事故等が発生した場合において，発電所内の通信連絡をする必要のある場所と通信連絡を行らために必要な回 （3）（i）a．（ad）－（4）通信連絡設備（発電所内）及び計測等を行った特に重要なパラメータを発電所内の必要な場所で共有するために必要な通信連絡設備（発電所内）として，必要な数量の衛星電話設備（固定型），，衛星電話設備．．（携帯型），無線連絡設備（固定型），無線連絡設備（携帯型）及び撨行型通話装置を設置又は保管する設計とする。な お，可搬型については必要な数量に加え，故障を考慮した	設計及び工事の計画の （3）（i ）a．（ad）－（3）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ad）－（3）と同義であ り整合している。 設計及び工事の計画の 設置変更許可申請書（本文（五号））の回（3）（i） a．（ad）－4）を具体的に記載しており整合して いる。	

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	緊急時対策所へ重大事故等に対処するために必要なデ ータを伝送するための設備として，データ収集装置，S S P DS伝送装置及びS PD S S表示装置で構成する安全パラ メータ表示システム（SPDS）を設置する設計とする。 ＜中略＞ （2）発電所外との通信連絡を行らための設備 a．通信連絡設備（発電所外） 重大事故等が発生した場合において，発電所外（社内外） の通信連絡をする必要のある場所と通信連絡を行らため の通信連絡設備（発電所外）として，衛星電話設備及び統合原子力防災ネットワークを用いた通信連絡設備を設置又は保管する設計とする。 重大事故等が発生した場合において，発電所内から発電所外の緊急時対策支援システム（ERSS）へ必要なデー	数量の予備を保管する。 衛星電話設備（撨帯型）は，は緊急時対策所内に保管する設計とする。 所内に保管する設計とする。 撨行型通話装置は中央制御室内汇保管する設計とする。 中央制御室及び緊急時対策所内に設置する設計とする。 緊急時対策所へ重大事故等に対处するた姏に必要なデ一タを伝送するための設備として，安全パラメータ素示シ ステム（SPDS）のうちデータ収集装置は，制御建屋内に設置し，SPDS 伝关装置及び SPDS 表示装置は，緊急時対策所内比設置する設計とする。 ＜中略＞ 4． 2 通信連絡設備（発電所外） ＜中略〉 重大事故等が発生した場合において，発電所外（社内外） の通信連絡をする必要のある場所と通信連絡を行らため に必要な口（3）（i）a．（ad）－（4）通信連絡設備（発電所外）及 び計測等を行った特に重要なパラメータを発電所外（社内外）の必要な場所で共有するための通信連絡設備（発電所外）として，必要な数量の衛星霓話設備（固定型），衛星電話設備（携帯型）及び統合原子力防災ネットワークを用 いた通信連絡設備（テレビ会議システム，IP 電話及び IP一FAX）を設置又は保管する設計とする。なお，可搬型に ついては必要な数量に加え，故噇を考盧した数量の予備を保管まる。．．． 衛星電詰設備（撨或型）は，緊急時対策所内江保管する設計とする。 衛星電話設備（固定型）は，は，中央制御室及び緊急時対策所内に設置する設計とする。 統合原子力防災ネットワークを用いた通信連絡設備（テ レビ会議システム，IP電詰及びIPーFAX）は，は，緊急時対策所内纪設置する設計とする。 重大事故等が発生した場合において，登需所内加ら発電所外の緊急時対策支援システム（ERSS）～必要なデータを			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ae）補助ボイラー 発電用原子炬施設には，ロ（3）（i）a．（ae）－（1）タービン，液体廃重物処理系，．タンクの保温用等に必要な蒸気を供給 する能力がある補助ボイラーを設置する。口（3）（i）a．（ae） －（2）補助ボイラー（1号及び2号炬共用，既設）は，発電用原子炉施設の安全性を損なわない設計とする。	10.4 加熱蒸気系 10．4． 1 概要 加熱蒸気系は，愽助ボイラ及びスチームコンバータ等で構成し，液体廃裹物处理系の蒸発濃縮装置，タンクの保温用等に蒸気を供給するほか，タービングランドのシール及 び起動停止用空気抽出器駆動用の蒸気を発生させるグラ ンド蒸気発生器の加熱用にも蒸気を供給する。	【補助ボイラー】（基本設計方針） 1．補助ボイラー 1．1 補助ボイラーの機能 発電用原子炉施設には，設計基準事故に至るまでの間に想定される使用条件として，凹（3）（i）a．（ae）－（1）液体廃棄物処理采の濃縮装置，排がス予熱器，屋外タンクの保温及 び建屋の暖房用並びに主蒸気が使用できない場合のター ビンのグランドシール及び起動停止用蒸気式空気抽出器 に，必要な蒸気を供給する能力を有する口（3）（i）a．（ae） （2）補助ボイラー（第1，2号機共用（以下同じ。）））を設置する。 補助ボイラーは，発電用原子炬施設の安全性を損なわな い設計とする。	設計及び工事の計画の （3）（i）a．（ae）－（1）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ae）－（1）を具体的に記載しており整合して いる。 設計及び工事の計画の （3）（i）a．（ae）－（2）は，設置変更許可申請書（本文（五号））の（3）（i） a．（ae）－（2）を具体的に記載しており整合して いる。	

 な侵入等の防止，中央制御室，監視測定設備，緊急時対策所及び通信連絡を行らために必要な設備は，a．設計基準対象施設に記載）
（a）重大事故等の拡大の防止等
（ ${ }^{\text {（3）（i）b．（a）－（1）発䨌用原子炬施設は，重大事故に至る }}$ おそれがある事故が発生した場合において，炬心，使用済燃料プール内の燃料体等及び運転停止中原子炉内の燃料体の著しい損傷を防止するために必要な措置を講じる設計とする。
また，重大事故が発生した場合において，原子炬格納容器の破損及び発電用原子炬施設外への放射性物質の異堂 な水準の放出を防止するために必要な措置を講じる設計 とする。

1．1．7 重大事故等対処設備に関する基本方針
発電用原子炬施設は，重大事故に至るおそれがある事故
済燃料貯蔵プール）（以下「使用斎燃料プール」という。）内の燃料体等及び運転停止中における原子炬の燃料体の著しい損傷を防止するために，また，重大事故が発生した場合においても，原子炬格納容器の破損及び発電所外への放射性物質の異常な放出を防止するために，重大事故等対処設備を設ける。
これらの設備については，当該設備が機能を発揮するた めに必要な系統（水源から注入先まで，流路を含む。）ま でを含むものとする。
また，設計基準対象施設のらち，想定される重大事故等時にその機能を期待するものは，重大事故等時に設計基準対象施設としての機能を期待する重大事故等対処設備（以下「重大事故等対処設備（設計基準拡張）」という。）と位置づける。

重大事故等対処設備は，常設のものと可搬型のものがあ り，以下のとおり分類する。
（1）常設重大事故等対処設備
重大事故等対処設備のらち常設のもの
a．常設重大事故防止設備
重大事故に至るおそれがある事故が発生した場合であ って，設計基準事故対処設備の安全機能又は使用済燃料プ ールの冷却機能若しくは注水機能が喪失した場合におい て，その喪失した機能（重大事故に至るおそれがある事故 に対処するために必要な機能に限る。）を代替することに より重大事故の発生を防止する機能を有する設備（重大事故防止設備）のうち，常設のもの
b．常設耐震重要重大事故防止設備
常設重大事故防止設備であって，耐震重要施設に属する設計基準事故対処設備が有する機能を代替するもの

設置変更許可申請書（本

文（五号））の回（3）（i
b．（a）－（1）は，設計及び
工事の計画では，これら
を具体的に設置変更許
可申請書（本文（五号））
「二．核燃料物質の取扱
施設及び貯蔵施設の構造及び設備」，「ホ，原子炉泠却系統施設の構造及び設備」，「へ。計測制御系統施設の構造及び設備」，「チ．放射線管理施設の構造及び設備」，「リ．原子炉格納施設の構造及び設備」及び「ヌ，その他発電用原子炉の附属施設の構造及び設備」にて示す。

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
	c．常設重大事故緩和設備 重大事故等対処設備のらち，重大事故が発生した場合に おいて，当該重大事故の拡大を防止し，又はその影響を緩和するための機能を有する設備（重大事故緩和設備）のう ち，常設のもの d．常設重大事故防止設備（設計基準拡張） 設計基準対象施設の弓ち，重大事故等時に機能を期待す る設備であって，重大事故の発生を防止する機能を有する上記 a．以外の常設のもの e．常設重大事故緩和設備（設計基準拡張）設計基準対象施設のらち，重大事故等時に機能を期待す る設備であって，重大事故の拡大を防止し，又はその影響 を緩和するための機能を有する上記 c ．以外の常設のもの f．常設重大事故等対処設備のらち防止でも緩和でもない設備 常設重大事故等対処設備のらち，上記 a．，b．，c．， d．，e．以外の常設設備で，防止又は緩和の機能がない もの （2）可搬型重大事故等対処設備 重大事故等対処設備のらち可搬型のもの a．可搬型重大事故防止設備 重大事故防止設備のらち可搬型のもの b．可搬型重大事故緩和設備 重大事故緩和設備のらち可搬型のもの c．可搬型重大事故等対処設備のらち防止でも緩和でもな い設備 可搬型重大事故等対処設備の弓ち，上記 a ，b 以 以外 の可搬型設備で，防止又は緩和の機能がないもの 主要な重大事故等対処設備の設備種別及び設備分類を第1．1．7－1表に示す。 常設重大事故防止設備及び可搬型重大事故防止設備に ついては，当該設備が機能を代替する設計基準対象施設と その耐震重要度分類を併せて示す。 また，主要な重大事故等対処設備の設置場所及び保管場所を第1．1．7－1図から第1．1．7－16図に示す。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
屋外の火災区域は，他の区域と分離して火災防護対策を実施するために，重大事故等対処施設を設置する区域を重大事故等対処施設と（3）（i）b．（b－1－1）－4）設計基蕉事故対処設備の配置を考慮するとともに，延焼防止を考慮した管理を踏まえて火災区域として設定する。 また，火災区画は，建屋内及び屋外で設定した火災区域 を重大事故等対処施設と設計基準事故対処設備の配置回 （3）（i）b．（b－1－1）－（5）等に応じて分割して設定する。 （b－1－2）火災防護計画 $\mathrm{a}(3)(\mathrm{i}) \mathrm{b} \cdot(\mathrm{~b}-1-2)-1) \Gamma \text { (3) }(\mathrm{i}) \mathrm{a} \cdot(\mathrm{c})(\mathrm{c}-1)(\mathrm{c}-1-3)$火災防護計画」に定める。．．．	1．6．2 重大事故等対処施設の火災防護に関する基本方針 1．6．2．1 基本事項 （1）火災区域及び火災区画の設定 < 中略 > 屋外については，海水ポンプ室（補機ポンプエリア）及 び軽油タンクを設置する火災区域は，設計基蕉対象施設の火災防護に関する基本方針に基づき設定した火災区域を適用する。… また，他の区域と分離して火災防護対策を実施するため に，重大事故等対処施設を設置する区域を，「1．6．2．1（2） …火災防檴対象機器及び火災防檴対象ケーブル」において選定する構築物，系統及び機器と設計基集事故対処設備の配置も考慮して火災区域として設定する。．．． 屋外の火災区域の設定に当たっては，火災区域外への延焼防止を考慮して，資機材管理，火気作業管理，危険物管理，可燃物管理，巡視を行う。本管理については，火災防護計画に定める。 また，火災区画は，建屋内及び屋外で設定した火災区域 を重大事故等対処施設と設計基準事故対処設備の配置も考慮し，分割して設定する。 （2）火災防護対象機器及び火災防護対象ケーブル 重大事故等対処施設のらち常設のもの及び当該設備に使用しているケーブルを火災防護対象とする。 なお，重大事故等対処施設のらち，可搬型のものに対す る火災防護対策については，火災防檴計画に定めて実施す る。	屋外の火災区域は，他の区域と分離して火災防護対策を実施するために，（3）（i）b．（b－1－1）－（4）火災防櫵上重要な機器等を設置する区域及び重大事故等対処施設の配置を考慮するとともに，延焼防止を考慮した管理を踏まえた区域を火災区域として設定する。 火災区画は，建屋内及び屋外で設定した火災区域を系統分離の状沉及びロ（3）（i）b．（b－1－1）－（5）壁の設置状況並び に重大事故等対処施設と設計基準事故対処設備の配置に応じて分割して設定する。 この延焼防止を考慮した管理については，保安規定に定 めて，管理する。 ＜中略＞ 発電用原子炉施設の火災防護上重要な機器等は，火災の発生防止，火災の早期感知及び消火並びに火災の影響軽減 の 3 つの深層防護の概念に基づき，必要な運用管理を含む火災防護対策を講じることを保安規定に定めて管理する。 （3）（i ）b．（b－1－2）－（1）重大事故等対処施設は，火災の発生防止，火災の昆期感知及び消火の必要な運用管理を含䒼火災防護対策を講じることを保安規定に定めて管理する。 重大事故等対処施設のうち，可搬型重大事故等対処設備 に対する炗災防櫵対策についても保安賛定に定めて管理 する。．．． その他の発電用原子炬施設については，「消防洼」，「建築基準法」，「日本電気協会電気技術嫢程••指針」に基づき設備に応じた火災防護対策を講じることを保安規定に定	設計及び工事の計画の （3）（i）b．（b－1－1）－4 は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－1－1）－（4）を含 んでおり整合している。 設計及び工事の計画の （3）（i）b．（b－1－1）－（5） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－1－1）－（5）を具体的に記載しており整合している。 設計及び工事の計画の （3）（i）b．（b－1－2）－（1） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－1－2）－（1）の上位文書である保安規定 に定めて管理すること を記載しており整合し ている。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（b－2）火災発生防止 （b－2－1）火災の発生防止対策 火災の発生防止については，口（3）（i）b．（b－2－1）－（1）発火性又は引炎性物質を内包する設備及びこれらの設備を設置する火災区域又は火災区画に対する火災の発生防止対策を講じるほか，	1．6．2．2 火災発生防止 1．6．2．2．1 重大事故等対処施設の火㷋発生防止 重大事故等対処施設の火災発生防止については，発火性又は引火性物質を内包する設備及びこれらの設備を設置 する火災区域又は火災区画に対する火災の発生防止対策 を講じるほか，	めて，管理する。 外部火災については，設計基準対象施設及び重大事故等対处施設を外部火災から防護するための運用等について保安規定に定めて，管理する。 1．火災防護設備の基本設計方針 ＜中略＞ 設定する火災区域及び火災区画に対して，以下に示す火災の発生防止，火災の感知及び消火並びに火災の影響軽減 のそれぞれを考慮した火伙防護対策を講じる設計とする。 ＜中略＞ 1.1 火災発生防止 1．1．1 火災の発生防止対策 火災の発生防止における発火性又は引火性物質に対す る火炎の発生防止対策は，（1（3）（i）b．（b－2－1）－（1）火火災区域又は爫区再に設置する眮滑油又は燃料油を内包する設備並びに水素を内包する設備を対象とする。－ 沮滑油又は燃料油を内包する設備は，溶接構造，シール構造の採用による漏えいの防止及び防爆の対策を講じる とともに，堰等を設置し，漏えいした瀾滑油又は然料油が抎大することを防止する設計とし，泪滑油又は燃料油を内包する設備の火災により発電用原子炉施設の安全機能及 び重大事故等に対処する機能を損なわないよう，壁の設置又は離隔による配置上の考慮を行ら設計とする。 泪滑油又は燃料油を内包する設備を設置する火災区域又は火災区画は，空調機器による機械換気又は自然換気を行ら設計とする。 潤滑油又は燃料油を貯蔵する設備は，貯蔵量を一定時間 の運転に必要な量にとどめる設計とする。 水素を内包する設備のらち気体廃寁物处理系設備及び発電機水素がス供給設備の配管等は水素の漏えいを考慮 した溶接構造とし，弁グランド部から水素の漏えいの可能性のある弁は，ベローズ升等を用いて防爆の対策を行う設計とし，水素を内包する設備の火災により，発電用原子炉施設の安全機能及び重大事故等に対処する機能を損なわ ないよう，壁の設置による配置上の考慮を行ら設計とす る。	設計及び工事の計画の （3）（i）b．（b－2－1）－（1） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－1）－（1）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
なお，放射線分解等により発生する水素の蓄積防止対策 は，ロ（3）（i）b．（b－2－1）－7）水素や酸素の濃度が高い状態で滞留及び萻積することを防止する設計とする。 （b－2－2）不燃性材料又は難燃性材料の使用 重大事故等対処施設のうち，主要な構造材，	1．6．2．2．1 重大事故等対処施設の火災発生防止 （5）放射線分解等により発生する水素の蓄積防止対策放射線分解により水素が発生する火災区域又は火災区画における，水素の蓄積防止対策としては，社団法人火力原子力発電技術協会「BWR配管における混合ガス（水素•酸素）蓄積防止に関するガイドライン（平成 17 年 10月）」に基づき，蓄積した水素の急速な燃焼によって原子炉の安全性を損ならおそれがある場合には水素の蓄積を防止する設計とする。 蓄電池を設置する火災区域又は火災区画は，「1．6．2．2． 1（4）水素対策」に示すように，機械換気を行うことによ って水素濃度が燃焼限界濃度以下となるように設計する。 1．6．2．2．2 不燃性材料又は難燃性材料の使用 重大事故等対処施設に対しては，不燃性材料又は難燃性材料を使用する設計とし，	火災の発生防止のため，放射線分解により水素が発生す る火災区域又は火災区画における，水素の蓄積防止対策と して，（3）（i）b．（b－2－1）－（7）社団法人火力原子力発電技術協会「BWR配管における混合がス（水素•酸素）䉕積防止 に関するがイドライン（平成17年10月）」等に基づき，原子炬の安全性を損ならおそれがある場合には水素の䕗積を防止する設計とする。 重大事故等時の原子炬格納容器内及び建屋内の水素に ついては，重大事故等対処施設にて，蓄積防止対策を行う設計とする。 1.1 火災発生防止 1．1．2 不燃性材料又は難燃性材料の使用 火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能を有するもの（以下「代替材料」 という。）を使用する設計，若しくは，当該構築物，系統及び機器の機能を確保するために必要な代替材料の使用 が技術上困難な場合は，当該構築物，系統及び機器におけ る火災に起因して他の火災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止する ための措置を講じる設計とする。 火災防護上重要な機器等及び重大事故等対処施設のう ち，機器，配管，ダクト，トレイ，電線管，盤の筐体及び これらの支持構造物の主要な構造材は，ステンレス鋼，低合金鋼，炭素鋼等の金属材料又はコンクリート等の不燃性材料を使用する設計とする。 ただし，配管のパッキン類は，その機能を確保するため に必要な代替材料の使用が技術上困難であるため，金属で覆われた狭隘部に設置し直接火炎に晒されることのない設計とする。 金属に覆われたポンプ及び弁等の駆動部の㵎滑油並び に金属に覆われた機器躯体内部に設置する電気配線は，発火した場合でも他の火災防護上重要な機器等及び重大事	設計及び工事の計画の （3）（i）b．（b－2－1）－7 は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－1）－（7）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，不燃性材料又は難燃性材料が使用できない場合 は，不燃性材料若しくは難燃性材料と同等以上の性能を有 するものを使用する設計又は 当該口（3）（ i ）b．（b－2－2）－（1）施設の機能を確保するために必要な口（3）（i ）b．（b－2－2）－（2）不燃性材料若しくは難燃性材料と同等以上の性能を有するものの使用が技術上困難 な場合には，当該施設における火災に起因して他の重大事故等対処施設及びロ（3）（i ）b．（b－2－2）－3）設計基準事故対処設備において火災が発生することを防止するための措置を講じる設計とする。 このうち，重大事故等対処施設に使用するケーブルは，原則，実証試験により自己消火性及び延焼性を確認した難燃ケーブルを使用する設計とするが， 核計装ケーブルのように実証試験により延焼性が確認で きないケーブルは，難燃ケーブルと同等以上の性能を有す	不燃性材料又は難燃性材料が使用できない場合は，以下の いずれかの設計とする。 －不燃性材料又は難燃性材料と同等以上の性能を有するも の（以下「代替材料」といら。）を使用する設計とする。 －重大事故等対処施設の機能を確保するために必要な代替材料の使用が技術上困難な場合には，当該構築物，系統及び機器における火災に起因して他の重大事故等対処施設及び設計基蕉事故対処設備において火災が発生す ることを防止するための措置を講じる設計とする。 1．6．2．2．2 不燃性材料又は難燃性材料の使用 （3）難燃ケーブルの使用 重大事故等対処施設に使用するケーブルには，実証試験 により自己消火性（U L 垂直燃焼試験）及び延焼性（IEEE 383 （光ファイバケーブルの場合は IEEE1202）垂直トレイ燃焼試験）を確認した難燃ケーブルを使用する設計とす る。 なお，核計装ケーブルは，微弱電流又は微弱パルスを扱 う必要があり，耐ノイズ性を確保するために高い絶縁抵抗	<中略> 1．1．2 不燃性材料又は難燃性材料の使用 火災防護上重要な機器等及び重大事故等対処施設は，不燃性材料又は難燃性材料を使用する設計とし，不燃性材料又は難燃性材料が使用できない場合は，不燃性材料又は難燃性材料と同等以上の性能を有するもの（以下「代替材料」 という。）を使用する設計，若しくは，当該回 （3）（ i ）b．（b－2－2）－（1）構築物，系統及び機器の機能を確保 するために必要な口（3）（ i ）b．（b－2－2）－（2）代替材料の使用 が技術上困難な場合は，当該構築物，系統及び機器におけ る火災に起因して他の回（3）（i ）b．（b－2－2）－3 炎災防護上重要な機器等及び重大事故等対処施設において火災が発生することを防止するための措置を講じる設計とする。 ＜中略＞ 火災防護上重要な機器等及び重大事故等対処施設に使用するケーブルは，実証試験により自己消火性（UL 垂直燃焼試験）及び耐延焼性（I E E E 3 8 3（光ファイバケ ーブルの場合はI E E E 1 2 0 2 ）垂直トレイ燃焼試験） を確認した難燃ケーブルを使用する設計とする。 ただし，実証試験により耐延焼性が確認できない核計装 ケーブル及び放射線モニタケーブルは，原子炉格納容器外	設計及び工事の計画の （3）（i）b．（b－2－2）－（1） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－2）－（1）を具 体的に記載しており整合している。 設計及び工事の計画の （3）（i）b．（b－2－2）－（2） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－2）－（2）と同義であり整合している。 設計及び工事の計画の （3）（i）b．（b－2－2）－（3） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－2－2）－（3）を含 んでおり整合している。 設計及び工事の計画の $\text { (3) (i) b. }(\mathrm{b}-2-2)-(4)$	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
する上で設計上考盧すべき自然現象として，地震，津波，洪水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑 り，火山の影響，生物学的事象，森林火災及び高潮を抽出 した。 これらの自然現象のらち，重大事故等時に火災を発生さ せるおそれのある落雷，地震，竜巻（風（台風）を含む。） について，これらの現象によって火災が発生しないよう に，以下のとおり火災防護対策を講じる設計とする。 落雷によって，発電用原子炉施設内の構築物，系統及び機器に火災が発生しないよう，避雷設備の設置及び接地網 の敷設を行ら設計とする。	べき自然現象としては，地震，津波，洪水，風（台風），童巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災及び高潮を抽出した。 ＜中略＞ したがって，落雷，地震，竜巻（風（台風）含む。）に ついて，これらの現象によって火災が発生しないように，以下のとおり火災防護対策を講じる設計とする。 また，森林火災についても，以下のとおり火災防護対策 を講じる設計とする。 （1）落雷による火災の発生防止 重大事故等対処施設の構築物，系統及び機器は，落雷に よる火災発生を防止するため，地盤面から高さ 20 m を超え る建築物には，「建築基準法」に基づき「JIS A4201 建築物等の避雷設備（避雷針）（1992 年度版）」又は「JIS A 4201 建築物等の雷保護（2003 年度版）」に準拠した避雷設備の設置，接地網の敷設を行ら設計とする。 送電線については架空地線を設置する設計とするとと もに，「1．6．2．2．1（6）過電流による過熱防止対策」に示 すとおり，故障回路を早期に遮断する設計とする。 常設代替交流電源設備のガスタービン発電機には，落雷 による火災発生を防止するため，避雷設備を設置する設計 とする。さらに，ガスタービン発電機の制御回路に避雷器 を設置する設計とする。 【避雷設備設置箇所】 - 原子炉建屋 - 制御建屋 - タービン建屋 - 排気筒 - 緊急時対策建屋 - 緊急用電気品建屋 （2）地震による火災の発生防止 重大事故等対処施設は，施設の区分に応じて十分な支持性能をもつ地盤に設置するとともに，自らが破壊又は倒壊	水，風（台風），竜巻，凍結，降水，積雪，落雷，地滑り，火山の影響，生物学的事象，森林火災及び高潮を考慮する。 これらの自然現象のらち，火災を発生させるおそれのあ る落雷，地震，竜巻（風（台風）を含む。）及び森林火災 について，これらの現象によって火災が発生しないよう に，以下のとおり火災防護対策を講じる設計とする。 落雷によって，発電用原子炉施設内の構築物，系統及び機器に火災が発生しないよう，避雷設備の設置及び接地網 の敷設を行う設計とする。 < 中略 > 重大事故等対処施設は，施設の区分に応じて十分な支持性能をもつ地盤に設置する設計とするとともに，口（3）（i）	口（3）（ i ）b．（b－2－3）－（1） は，設置変更許可申請書 （本文（五号））の回（3） （i ）b．（b－2－3）－（1）と文 章表現は異なるが，内容 に相違はないため整合 している。 設計及び工事の計画の口（3）（ i ）b．（b－2－3）－（2）	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
また，消火設備は，破損，誤作動又は誤操作が起きた場合 においても，重大事故等に対処するために必要な機能を回 （3）（i）b．（b－3）－（1）損なわない設計とする。 （b－3－1）火災感知設備 火災感知器は，環境条件や火災の性質を考慮して口（3） （i）b．（b－3－1）－1）型式を選定し，固有の信号を発する異な る種類を組み合わせて設置する設計とする。	また，消火設備は，破損，誤作動又は誤操作が起きた場合においても，重大事故等に対処する機能を損なわない設計とすることを「1．6．2．3．4 消火設備の破損，誤作動又 は誤操作による重大事故等対処施設への影響」に示す。 1．6．2．3．1 火災感知設備 （2）固有の信号を発する異なる種類の感知器の設置 火災感知設備の火災感知器は，環境条件等を考慮し，火災感知器を設置する火災区域又は火災区画の重大事故等対処施設の種類に応じ，火災を早期に感知し，誤作動を防止するために，固有の信号を発するアナログ式の煙感知器及びアナログ式の熱感知器の異なる種類の感知器を組み合わせて設置する設計とする。ただし，発火性又は引火性 の雰囲気を形成するおそれのある場所及び屋外等は，非ア ナログ式も含めた組み合わせで設置する設計とする。炎感知器は非アナログ式であるが，炎が発する赤外線又は紫外線を感知するため，炎が生じた時点で感知することがで き，火災の早期感知が可能である。 ここで，アナログ式とは「平常時の状況（温度，煙の濃度）を監視し，かつ，火災現象（急激な温度や煙の濃度の上昇）を把握することができる」ものと定義し，非アナロ グ式とは「平常時の状況（温度，煙の濃度）を監視するこ とはできないが，火災現象（急激な温度や煙の濃度の上昇等）を把握することができる」ものと定義する。 < 中略 > （4）火災感知設備の電源確保 重大事故等対処施設を設置する火災区域又は火災区画	1．2．2 消火設備 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画の消火設備は，破損，誤作動又は誤操作が起きた場合においても，原子炉を安全に停止 させるための機能又は重大事故等に対処するために必要 な機能を有する電気及び機械設備凹（3）（i）b．（b－3）－（1）に影響を与えない設計とし，火災発生時の煙の充満又は放射線の影響により消火活動が困難となるところは，自動消火設備又は手動操作による固定式消火設備であるハロンガ ス消火設備及びケーブルトレイ消火設備を設置して消火 を行ら設計とする。 ＜中略＞ 1．2．1 火災感知設備 火災感知設備の火災感知器は，火災区域又は火災区画に おける放射線，取付面高さ，温度，湿度，空気流等の環境条件，予想される火災の性質を考慮し，火災感知器を設置 する火災区域又は火災区画の火災防護上重要な機器等及 び重大事故等対処施設の（3）（i）b．（b－3－1）－（1）種類に応 じ，火災を早期に感知できるよう，固有の信号を発するア ナログ式の煙感知器及びアナログ式の熱感知器の異なる種類の火災感知器を組み合わせて設置する設計とする。 ＜中略＞	設計及び工事の計画の ロ（3）（i）b．（b－3）－（1） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－3）－1 と同義 であり整合している。 設計及び工事の計画の （3）（i）b．（b－3－1）－1 は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－3－1）－（1）と同義であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
消火用水供給系は，2時間の最大放水量を碓保し， （3）（i）b．（b－3－2）－（3）飲料水系等と共用する場合は隔離弁を設置し消火を優先する設計とし， 水源及び消火ポンプは多重性又は多様性を有する設計と する。	1．6．2．3．2 消火設備 （7）消火用水の最大放水量の確保 設計基蕉対象施設の火災防櫵に関する基本方針を適用 する。 （8）水消火設備の優先供給 設計基準対象施設の火災防護に関する基本方針を適用 する。… 1．6．2．3．2 消火設備 （2）消火用水供給系の多重性又は多様性の考慮設計基準対象施設の火災防護に関する基本方針を適用 する。	1.2 火災の感知及び消火 1．2．2 消火設備 （1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応じた十分な容量を確保するため，「消防法施行規則」及び試験結果に基づく容量を配備する設計とする。 b．消火用水供給系は， 2 時間の最大放水量を確保する設計とする。 c．屋内消火栓及び屋外消火栓は，「消防法施行令」に基 づく容量を碓保する設計とする。 （2）消火設備の系統構成 c．消火用水の優先供給 内用水系等と共用する場合には，隔離弁を設置して遮断す る措置により，消火用水の供給を優先する設計とする。 （2）消火設備の系統構成 a．消火用水供給系の多重性又は多様性 屋内水消火系の水源は，消火水槽（第 1，2号機共用（以下同じ。）），消火水タンクを設置し，屋外水消火系は，屋外消火系消火水タンクを 2 基設置し多重性を有する設計 とする。 屋内水消火系の消火ポンプは，電動機駆動消火ポンプ （第1，2号機共用（以下同じ。））を 2 台設置し，多重性を有する設計とする。 屋外水消火系の消火ポンプは，屋外消火系電動機駆動消火ポンプ，屋外消火系ディーゼル駆動消火ポンプを設置 し，多様性を有する設計とする。 屋外消火系ディーゼル駆動消火ポンプの駆動用燃料は，屋外消火系ディーゼル駆動消火ポンプに付属する燃料夕 ンクに貯蔵する。	合している。 設計及び工事の計画の （3）（i）b．（b－3－2）－（3） は，設置変更許可申請書 （本文（五号））の（3） （i）b．（b－3－2）－（3）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
また，屋内，屋外の回（3）（i）b．（b－3－2）－4）消火範囲を考慮 し 消火栓を配置するとともに， ■（3）（i）b．（b－3－2）－（5）移憅式消火設備を配備する設計と する。 消火設備の消火剤は，想定される火災の性質に応じた土	（3）系統分離に応じた独立性の考慮 重大事故等対処施設は，重大事故に対処する機能と設計基準事故対処設備の安全機能が単一の火災によって同時 に機能喪失しないよう，区分分離や位置的分散を図る設計 とする。 重大事故等対処施設のある火災区域又は火災区画，及び設計基準事故対処設備のある火災区域又は火災区画に設置する全域ガス消火設備は，上記の区分分離や位置的分散 に応じた独立性を備えた設計とする。 （11）消火栓の配置 設計基準対象施設の火災防護に関する基本方針を適用 する。 （6）移動式消火設備の配備 設計基準対象施設の火災防護に関する基本方針を適用 する。 （5）想定火災の性質に応じた消火剤の容量設計基蕉対象施設の火災防檴に関する基本方針を適用	1．火災防護設備の基本設計方針 1．2 火災の感知及び消火 1．2．2 消火設備 （2）消火設備の系統構成 b．系統分離に応じた独立性 ＜中略＞ 重大事故等対処施設は，重大事故に対処する機能と設計基準事故対処設備の安全機能が単一の火災によって同時 に機能喪失しないよう，区分分離や位置的分散を図る設計 とする。 重大事故等対処施設のある火災区域又は火災区画，及び設計基準事故対処設備のある火災区域又は火災区画に設置するハロンガス消火設備は，上記の区分分離や位置的分散に応じた独立性を備えた設計とする。 （4）消火設備の配置上の考慮 c．消火栓の配置 火災防護上重要な機器等及び重大事故等対処施設を設置する火災区域又は火災区画に設置する屋内，屋外の消火栓は，（3）（i）b．（b－3－2）－44「消防法施行令」に準拠し，全ての火災区域又は火災区画の消火活動に対処できるよ らに配置する設計とする。 （7）その他 a．移動式消火設備 移動式消火設備は，恒設の消火設備の代替として消火ホ一ス等の資機材を備え付けている（3）（i）b．（b－3－2）－（5）化学消防自動車を2台及び泡原液搬送車を 1 台配備する設計とする。 1．2．2 消火設備 （1）消火設備の消火剤の容量 a．消火設備の消火剤は，想定される火災の性質に応じた	設計及び工事の計画の口（3）（ i ）b．（b－3－2）－4 は，設置変更許可申請書 （本文（五号））の回（3） （ i ）b．（b－3－2）－4）を具体的に記載しており整合している。 設計及び工事の計画の （ 3 ）（ i ）b．（b－3－2）－ 5 は，設置変更許可申請書 （本文（五号））の口（3） （ i ）b．（b－3－2）－（5）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（b－4）その他 （3）（i）b．（b－4）－（1）．「口（3）（i）b．（b－2）火炎発生防步」及び「口（3）（i）b．（b－3）火災の感知及び消火」の ほかっ，重大事故等対処施設のそれぞれの特徴を考慮した火災防櫵対策を講じる設計とする。	1．6．2．4 その他 設計基準対象施設の火災防護に関する基本方針を適用 まる。	分に現場への移動等の時間も考慮し，8時間以上の容量の蓄電池を内蔵する照明器具を設置する設計とする。 1.1 火災発生防止 1．1．1 火災の発生防止対策 ＜中略＞ （3）（i）b．（b－4）－（1）蔁需池室の換気設備が停止した場合には，中央制御室に警報を発する設計とする。また，萻電池室には，直流閉閉装置やインバータを設置しない。 放射性廃重物処理設備及び放射性噔重物貯蔵設備にお いて，蕂摆熱が発生し，火災事象に至るような放射性廃专物を貯蔵しない設計とする。．．． また，放射性物質を含んだ使用済イオン交換樹脂，千安 コールフィルタ及び HEPAフィルタは，固体発衰物として処理を行うまでの間，金属容器や不燃シートに包んで保管 することを保安規定に定めて，管理する。 放射性廃裹物処理設備及び放射性廃裹物貯蔵設備を設置する火災区域又は火災区画の換気設備は，火災時に他の火災区域又は炎災区画や環境への放射性物質の放出を防 ぐために，換気設備の停止及び風量調整ダンパの閉止によ り，隔離ができる設計とする。 ＜中略＞ 1．2 火災の感知及び消火 1．2．2 消火設備 （7）その他 c．- ポンプ室の煙の排気対策 火災発生時の煙の充満により消火活動が困難となるポ ンプ室には，消火活動によらなくとも迅速に消火できるよ うに固定式消火設備を設置し，鎮火の確認のために自衛消防隊がポンプ室に入る場合については，再発火するおそれ があることからっ，十分に冷却時関を確保した上で扉の関放，換気空調采及び可搬型排煙装置により換気が可能な設計とする。	（本文（五号））の（3） （i）b．（b－3－2）－（7）を具体的に記載しており整合している。 設置変更許可申請書（本文（五号））の（3）（i） b．（b－4）－（1）は，設計及 び工事の計画の（3） （i）b．（b－4）－（1）以降に具体的に記載しており整合している。	

故意による大型航空機の衝突その他のテロリズムにつ いては，可搬型重大事故等対処設備による対策を講じるこ ととする。
主要な重大事故等対処施設である原子炉建屋，制御建屋，緊急用電気品建屋及び緊急時対策建屋（以下「建屋等」 という。）については，地震，津波，火災及び外部からの衝撃による損傷を防止できる設計とする。
重大事故緩和設備についても，共通要因の特性を踏ま え，可能な限り多様性を有し，位置的分散を図ることを考慮する。

（c－1－1－1）常設重大事故等対処設備

常設重大事故防止設備は，設計基準事故対処設備等の安全機能と共通要因によって同時にその機能が損なわれる おそれがないよう，共通要因の特性を踏まえ，可能な限り多様性，独立性，位置的分散を考慮して適切な措置を講じ る設計とする。ただし，常設重大事故防止設備のらち，計装設備について，（3）（i）b．（c－1－1－1）－（1）重要代替監視パ ラメータ（当該パラメータの他チヤンネルの計器を除く。） による推定は，重要監視パラメータと異なる物理量又は測定原理とする等，重要監視パラメータに対して可能な限り

設置変更許可申請書（添付書類八）該当事項有毒ガス，船舶の衝突，電磁的障害，故意による大型航空機の衝突その他のテロリズム等の事象を考慮する。これら の事象のらち，発電所敷地及びその周辺での発生の可能性，重大事故等対処設備への影響度，事象進展速度や事象進展に対する時間余裕の観点から，重大事故等対処設備に影響を与えるおそれがある事象として，飛来物（航空機落下），ダムの崩罴，爆発，近隣工場等の火災，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突 その他のテロリズムを選定する。また，設計基準事故対処設備等と重大事故等対処設備に対する共通要因としては，飛来物（航空機落下），ダムの崩壊，爆発，近隣工場等の火災，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突その他のテロリズムを選定する。
故意による大型航空機の衝突その他のテロリズムにつ いては，可搬型重大事故等対処設備による対策を講じるこ ととする。
主要な重大事故等対処施設である原子炉建屋，制御建屋，緊急用電気品建屋及び緊急時対策建屋（以下「建屋等」 という。）については，地震，津波，火災及び外部からの衝撃による損傷を防止できる設計とする。
重大事故緩和設備についても，共通要因の特性を踏ま え，可能な限り多様性を有し，位置的分散を図ることを考慮する。
a．常設重大事故等対処設備
常設重大事故防止設備は，設計基準事故対処設備等の安全機能と共通要因によって同時にその機能が損なわれる おそれがないよう，共通要因の特性を踏まえ，可能な限り多様性，独立性，位置的分散を考慮して適切な措置を講じ る設計とする。ただし，常設重大事故防止設備のうち，計装設備について，重要代替監視パラメータ（当該パラメー タの他チャンネルの計器を除く。）による推定は，重要監視パラメータと異なる物理量又は測定原理とする等，重要監視パラメータに対して可能な限り多様性を有する方法

設計及び工事の計画 該当事項
整 合 性設置変更許可申請書（添付書類八）のロ－305で設計上の考慮を不要とし ており，設計及び工事の計画の記載と整合して いる。

故意による大型航空機の衝突その他のテロリズムにつ いては，可搬型重大事故等対処設備による対策を講じるこ ととする。
原子炉建屋，制御建屋，緊急用電気品建屋及び緊急時対策建屋（以下「建屋等」という。）については，地震，津波，火災及び外部からの衝撃による損傷を防止できる設計 とする。

重大事故緩和設備についても，共通要因の特性を踏ま え，可能な限り多様性を確保し，位置的分散を図ることを考慮する。

5．設備に対する要求
5.1 安全設備，設計基準対象施設及び重大事故等対処設備 5．1．2 多様性，位置的分散等
（1）多重性又は多様性及び独立性
a．常設重大事故等対処設備
常設重大事故防止設備は，設計基準事故対処設備並びに使用済燃料貯蔵槽（使用済燃料プール）の泠却設備及び注水設備（以下「設計基準事故対処設備等」という。）の安全機能と共通要因によって同時にその機能が損なわれる おそれがないよう，共通要因の特性を踏まえ，可能な限り多様性，独立性，位置的分散を考慮して適切な措置を講じ る設計とする。ただし，常設重大事故防止設備のらち，計装設備について，${ }^{(1)}$（3）（i）b．（c－1－1－1）－1）重大事故等に対処するために監視することが必要なパラメータの計測が

備 考

設置変更許可申請書（本文（五号））
多様性を有する方法により計測できる設計とする。重要代
替監視パラメータは重要監視パラメーターと可能な限り位
置的分散を図る設計とする。

環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，常設重大事故防止設備がその機能を確実に発揮で きる設計とする。重大事故等時の環境条件における健全性 については「ロ（3）（i）b 。（c－3）環境条件等」に記載す る。

常設重大事故防止設備は，「イ（1）敷地の面積及び形状」に基づく地盤に設置するとともに，地震，津波及び火災に対して，「口（1）（ii）重大事故等対処施設の耐震設計」，「口（2）（ii）重大事故等対処施設の耐津波設計」及 び「ロ（3）（i）b 。（b）火災による損傷の防止」に基づく設計とする。

地震，津波，溢水及び火災に対して常設重大事故防止設備は，設計基準事故対処設備等と同時に機能を損ならおそ れがないように，可能な限り設計基準事故対処設備等と位置的分散を図る。
風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，爆発，近隣工場等の火災，有毒ガス，船舶の衝突及び電磁的障害に対して，常設重大事故防止設備は，外部からの衝撃による損傷の防止が図ら れた建屋等内に設置するか又は設計基準事故対処設備等 と同時に機能が損なわれないように，設計基準事故対処設備等と位置的分散を図り，屋外に設置する。

落雷に対して常設代替交流電源設備は，避雷設備等によ り防護する設計とする。

設置変更許可申請書（添付書類八）該当事項
に とする。

環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，常設重大事故防止設備がその機能を確実に発揮で きる設計とする。重大事故等時の環境条件における健全性 については「1．1．7．3 環境条件等」に記載する。風（台風），凍結，降水，積雪及び電磁的障害に対して常設重大事故防止設備は，環境条件にて考慮し機能が損なわれない設計とする。
常設重大事故防止設備は，「1．10 発電用原子炉設置変更許可申請に係る安全設計の方針」に基づく地盤に設置す る。常設重大事故防止設備は，地震，津波及び火災に対し て，「1．4．2 重大事故等対処施設の耐震設計」，「1．5．2重大事故等対処施設の耐津波設計」及び「1．6．2 重大事故等対処施設の火災防護に関する基本方針」に基づく設計 とする。
溢水に対しては，可能な限り多様性を有し，位置的分散 を図ることで，想定する溢水水位に対して同時に機能を損 ならことのない設計とする。
地震，津波，溢水及び火災に対して常設重大事故防止設備は，設計基準事故対処設備等と同時に機能を損ならおそ れがないように，可能な限り設計基準事故対処設備等と位置的分散を図る。
風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，爆発，近隣工場等の火災，有毒ガス，船舶の衝突及び電磁的障害に対して，常設重大事故防止設備は，外部からの衝撃による損傷の防止が図ら れた建屋等内に設置するか又は設計基準事故対処設備等 と同時に機能が損なわれないように，設計基準事故対処設備等と位置的分散を図り，屋外に設置する。

落雷に対して常設代替交流電源設備は，避雷設備等によ り防護する設計とする。

設計及び工事の計画 該当事項 \qquad るために必
困難となった場合に当該パラメータを推定するために必
要なパラメータは，異なる物理量又は測定原理とする等，重大事故等に対処するために監視することが必要なパラ メータに対して可能な限り多様性を有する方法により計測できる設計とするとともに，可能な限り位置的分散を図 る設計とする。

環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，常設重大事故防止設備がその機能を確実に発揮で きる設計とする。重大事故等時の環境条件における健全性 については「5．1．5 環境条件等」に基づく設計とする。風（台風），凍結，降水，積雪及び電磁的障害に対して常設重大事故防止設備は，環境条件にて考慮し機能が損なわ れない設計とする。

常設重大事故防止設備は，「1．地盤等」に基づく地盤 に設置するとともに，地震，津波及び火災に対して，「2．1地震による損傷の防止」，「2．2 津波による損傷の防止」及び「3．1 火災による損傷の防止」に基づく設計とする。

溢水に対しては，可能な限り多様性を有し，位置的分散 を図ることで，想定する溢水水位に対して同時に機能を損 なうことのない設計とする。

地震，津波，溢水及び火災に対して常設重大事故防止設備は，設計基準事故対処設備等と同時に機能を損ならおそ れがないように，可能な限り設計基準事故対処設備等と位置的分散を図る。
風（台風），竜巻，凍結，降水，積雪，落雷，火山の影響，生物学的事象，森林火災，爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び電磁的障害に対して，常設重大事故防止設備は，外部からの衝撃 による損傷の防止が図られた建屋等内に設置するか，又は設計基準事故対処設備等と同時に機能が損なわれないよ らに，設計基準事故対処設備等と位置的分散を図り，屋外 に設置する。

落雷に対して常設代替交流電源設備は，避雷設備等によ り防護する設計とする。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
対処設備と異なる保管場所に保管する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，可搬型重大事故等対処設備がその機能を確実に発揮できる設計とする。重大事故等時の環境条件における健全性については「ロ（3）（i）b 。（c－3）環境条件等」に記載する。 地震に対して，屋内の可搬型重大事故等対処設備は，「イ （1）敷地の面積及び形状」に基づく地盤上に設置する建屋等内に保管する。屋外の可搬型重大事故等対処設備は，転倒しないことを確認する，又は必要により固縛等の処置 をするとともに，地震により生ずる敷地下斜面のすべり，液状化又は摇すり込みによる不等沈下，傾斜及び浮き上が り，地盤支持力の不足，地中埋設構造物の損壊等の影響口 （3）（i）b．（c－1－1－2）－（1）を受けない複数の保管場所に分散 して保管する設計とする。 地震及び津波に対して可搬型重大事故等対処設備は，「口（1）（ii）重大事故等対処施設の耐震設計」及び「口 （2）（ii）重大事故等対処施設の耐津波設計」にて考慮さ れた設計とする。 火災に対して可搬型重大事故等対処設備は，「口（3）（i） b．（b）火災による損傷の防止」に基づく火災防護を行 ら。 地震，津波，溢水及び火災に対して可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備 と位置的分散を図り複数箇所に分散して保管する設計とす る。	対処設備と異なる保管場所に保管する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，可搬型重大事故等対処設備がその機能を確実に発揮できる設計とする。重大事故等時の環境条件における健全性については「1．1．7．3 環境条件等」に記載する。 風（台風），凍結，降水，積雪及び電磁的障害に対して可搬型重大事故等対処設備は，環境条件にて考慮し機能が損なわれない設計とする。 地震に対して，屋内の可搬型重大事故等対処設備は，「1．10 発電用原子炉設置変更許可申請に係る安全設計 の方針」に基づく地盤上に設置する建屋等内に保管する。屋外の可搬型重大事故等対処設備は，転倒しないことを確認する，又は必要により固縛等の処置をするとともに，地震により生ずる敷地下斜面のすべり，液状化又は摇すり込 みによる不等沈下，傾斜及び浮き上がり，地盤支持力の不足，地中埋設構造物の損壊等の影響を受けない複数の保管場所に分散して保管する設計とする。 地震及び津波に対して可搬型重大事故等対処設備は，「1．4．2 重大事故等対処施設の耐震設計」，「1．5．2 重大事故等対処施設の耐津波設計」にて考慮された設計とす る。 火災に対して可搬型重大事故等対処設備は，「1．6．2 重大事故等対処施設の火災防護に関する基本方針」に基づく火災防護を行う。 地震，津波，溢水及び火災に対して可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り複数箇所に分散して保管する設計 とする。	対処設備と異なる保管場所に保管する設計とする。 環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，可搬型重大事故等対処設備がその機能を確実に発揮できる設計とする。重大事故等時の環境条件における健全性については「5．1．5 環境条件等」に基づく設計とす る。 可搬型重大事故等対処設備は，風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮し機能 が損なわれない設計とする。 地震に対して，屋内の可搬型重大事故等対処設備は，「1．地盤等」に基づく地盤に設置された建屋等内に保管す る。屋外の可搬型重大事故等対処設備は，転倒しないこと を確認する，又は必要により固縛等の処置をするととも に，地震により生ずる敷地下斜面のすべり，液状化又は揺 すり込みによる不等沈下，傾斜及び浮き上がり，地盤支持力の不足，地中埋設構造物の損壊等の影響口（3）（i）b．（c－1 －1－2）－（1）により必要な機能を喪失しない位置に保管する設計とする。 地震及び津波に対して可搬型重大事故等対処設備は，「2．1 地震による損傷の防止」及び「2．2 津波による損傷の防止」にて考慮された設計とする。 火災に対して可搬型重大事故等対処設備は，「3．1 火災 による損傷の防止」に基づく火災防護を行う。 重大事故等対処設備に期待する機能については，溢水影響を受けて設計基準事故対処設備等と同時に機能を損な らおそれがないよう，被水及び蒸気影響に対しては可能な限り設計基準事故対処設備等と位置的分散を図り，没水の影響に対しては溢水水位を考慮した位置に設置又は保管 する。 地震，津波，溢水及び火災に対して可搬型重大事故等対処設備は，設計基準事故対処設備等及び常設重大事故等対処設備と同時に機能を損ならおそれがないように，設計基準事故対処設備等の配置も含めて常設重大事故等対処設備と位置的分散を図り，複数箇所に分散して保管する設計 とする。	設計及び工事の計画の （3）（i）b．（c－1－1－2） （1）は，設置変更許可申請書（本文（五号））の （3）（i）b．（c－1－1－2） （1）と同義であり整合し ている。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
風（台風），竜巻，涷結，降水，積雪，落雷，火山の影	風（台風），竜巻，凍結，降水，積雪，落雷，火山の影	風（台風），竜巻，涷結，降水，積雪，落雷，火山の影			
響，生物学的事象，森林火災，爆発，近隣工場等の火災，	響，生物学的事象，森林火災，爆発，近隣工場等の火災，	響，生物学的事象，森林火災，爆発，近隣工場等の火災，			
有毒ガス，船舶の衝突及び電磁的障害に対して，可搬型重	有毒ガス，船舶の衝突及び電磁的障害に対して，可搬型重	危険物を搭載した車両，有毒がス，船舶の衝突及び電磁的			
大事故等対処設備は，外部からの衝撃による損傷の防止が	大事故等対処設備は，外部からの衝撃による損傷の防止が	障害に対して，可搬型重大事故等対処設備は，外部からの			
図られた建屋等内に保管するか又は設計基準事故対処設	図られた建屋等内に保管するか又は設計基準事故対処設	衝撃による損傷の防止が図られた建屋等内に保管するか，			
備等及び常設重大事故等対処設備と同時に必要な機能を	備等及び常設重大事故等対処設備と同時に必要な機能を	又は設計基準事故対処設備等及び常設重大事故等対処設			
損ならおそれがないように，設計基準事故対処設備等の配	損ならおそれがないように，設計基準事故対処設備等の配	備と同時に必要な機能を損ならおそれがないように，設計			
置も含めて常設重大事故等対処設備と位置的分散を図り，	置も含めて常設重大事故等対処設備と位置的分散を図り，	基準事故対処設備等の配置も含めて常設重大事故等対処			
防火帯の内側の複数箇所に分散して保管する設計とする。	防火帯の内側の複数箇所に分散して保管する設計とする。	設備と位置的分散を図り，防火帯の内側の複数箇所に分散			
		して保管する設計とする。			
クラゲ等の海生生物から影響を受けるおそれのある屋	クラゲ等の海生生物から影響を受けるおそれのある屋	クラゲ等の海生生物の影響を受けるおそれのある屋外			
外の可搬型重大事故等対処設備は，予備を有する設計とす	外の可搬型重大事故等対処設備は，予備を有する設計とす	の可搬型重大事故等対処設備は，予備を有する設計とす			
る。	る。	る。			
高潮に対して可搬型重大事故等対処設備は，高潮の影響	高潮に対して可搬型重大事故等対処設備は，高潮の影響	高潮に対して可搬型重大事故等対処設備は，高潮の影響			
を受けない敷地高さに保管する設計とする。	を受けない敷地高さに保管する。	を受けない敷地高さに保管する設計とする。			
飛来物（航空機落下）及び故意による大型航空機の衝突	飛来物（航空機落下）及び故意による大型航空機の衝突	飛来物（航空機落下）及び故意による大型航空機の衝突			
その他のテロリズムに対して，屋内の可搬型重大事故等対	その他のテロリズムに対して，屋内の可搬型重大事故等対	その他のテロリズムに対して，屋内の可搬型重大事故等対			
処設備は，可能な限り設計基準事故対処設備等の配置も含	処設備は，可能な限り設計基準事故対処設備等の配置も含	処設備は，可能な限り設計基準事故対処設備等の配置も含			
めて常設重大事故等対処設備と位置的分散を図り複数箇	めて常設重大事故等対処設備と位置的分散を図り複数箇	めて常設重大事故等対処設備と位置的分散を図り複数箇			
所に分散して保管する設計とする。	所に分散して保管する設計とする。	所に分散して保管する設計とする。			
屋外に保管する可搬型重大事故等対処設備は，	屋外に保管する可搬型重大事故等対処設備は，原子炬建	屋外に保管する可搬型重大事故等対処設備は，			
（3）（ i ）b．（c）（c－1－1－2）－（2）原子炬建屋及び制御建屋から	屋及び制御建屋から 100 m 以上の離隔距離を確保するとと	（3）（ i ）b．（c）（c－1－1－2）－（2）設計基漼事故対処設備等及び	設計及び工事の計画の		
100 m 以上の離隔距離を確保するとともに，当該可搬型重大	もに，当該可搬型重大事故等対処設備がその機能を代替す	虽設重大事故等対処設備が設置されている建屋等から	（3）（i ）b．（c）（c－1－1－		
事故等対処設備がその機能を代替する屋外の設計基準事	る屋外の設計基準事故対処設備等及び常設重大事故等対	100 m 以上の離隔距離を確保するとともに，当該可搬型重大	2）－（2）は，設置変更許可		
故対処設備等及び常設重大事故等対処設備から 100 m 以上	処設備から 100 m 以上の離隔距離を確保した上で，複数箇	事故等対処設備がその機能を代替する屋外の設計基準事	申請書（本文（五号））		
の離隔距離を確保した上で，複数箇所に分散して保管する	所に分散して保管する設計とする。	故対処設備等及び常設重大事故等対処設備から 100 m 以上	の（3）（ i ）b．（c）（c－1－1		
設計とする。	なお，洪水，地滑り及びダムの崩壊については，立地的要因により設計上考慮する必要はない。	の離隔距離を確保した上で，複数箇所に分散して保管する設計とする。	－2）－（2）と同義であり整合している。		
サポート系の故障に対しては，系統又は機器に供給され	サポート系の故障に対しては，系統又は機器に供給され	サポート系の故障に対しては，系統又は機器に供給され			
る電力，空気，油及び泠却水を考慮し，可搬型重大事故防	る電力，空気，油及び泠却水を考慮し，可搬型重大事故防	る電力，空気，油及び泠却水を考慮し，可搬型重大事故防			
止設備は，設計基準事故対処設備等又は常設重大事故防止	止設備は，設計基準事故対処設備等又は常設重大事故防止	止設備は，設計基準事故対処設備等又は常設重大事故防止			
設備と異なる駆動源，泠却源を用いる設計とするか，駆動	設備と異なる駆動源，泠却源を用いる設計とするか，駆動	設備と異なる駆動源，冷却源を用いる設計とするか，駆動			
源，冷却源が同じ場合は別の手段が可能な設計とする。ま	源，冷却源が同じ場合は別の手段が可能な設計とする。ま	源，冷却源が同じ場合は別の手段が可能な設計とする。ま			
た，水源についても可能な限り，異なる水源を用いる設計	た，水源についても可能な限り，異なる水源を用いる設計	た，水源についても可能な限り，異なる水源を用いる設計			
とする。	とする。	とする。			

（c－1－1－3）可搬型重大事故等対処設備と常設重大事故等対処設備の接続口
原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因によっ て接続することができなくなることを防止するため，それ ぞれ互いに異なる複数の場所に設置する設計とする。

環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，その機能を確実に発揮できる設計とするととも に，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。重大事故等時の環境条件における健全性については「口 （3）（i）b。（c－3）環境条件等」に記載する。風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件に て考慮し，機能が損なわれない設計とする。
地震に対して接続口は，「イ（1）敷地の面積及び形状」 に基づく地盤上の建屋内又は建屋面に複数箇所設置する。

地震，津波及び火災に対して接続口は，「口（1）（ii）重大事故等対処施設の耐震設計」，「口（2）（ii）重大事故等対処施設の耐津波設計」及び「口（3）（i）b 。（b）火災に よる損傷の防止」に基づく設計とする。
溢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に設置する。

風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），爆発，近隣工場等の火災，有毒ガス，船舶の衝突及び故意による大型航空機の衝突その他のテロリズムに対して，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔 した位置に複数箇所設置する。
生物学的事象のうちネズミ等の小動物に対して，屋外に設置する場合は，開口部の閉止により重大事故等に対処す

設置変更許可申請書（添付書類八）該当事項
c．可搬型重大事故等対処設備と常設重大事故等対処設備 の接続口

原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因によっ て接続することができなくなることを防止するため，それ ぞれ互いに異なる複数の場所に設置する設計とする。
なお，洪水，地滑り及びダムの崩壊については，立地的要因により設計上考慮する必要はない。
環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，その機能を確実に発揮できる設計とするととも に，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。重大事故等時の環境条件における健全性については「1．1．7．3 環境条件等」に記載する。風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件にて考慮 し，機能が損なわれない設計とする。
地震に対して接続口は，「1．10 発電用原子炉設置変更許可申請に係る安全設計の方針」に基づく地盤上の建屋内又は建屋面に複数箇所設置する。
地震，津波及び火災に対して接続口は，「1．4．2 重大事故等対処施設の耐震設計」，「1．5．2 重大事故等対処施設の耐津波設計」及び「1．6．2 重大事故等対処施設の火災防護に関する基本方針」に基づく設計とする。
溢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に設置する。

風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），爆発，近㴹工場等の火災，有毒がス，船舶の衝突及び故意による大型航空機の衝突その他のテロリズムに対して，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔 した位置に複数箇所設置する。
生物学的事象のらちネズミ等の小動物に対して，屋外に設置する場合は，開口部の閉止により重大事故等に対処す

可搬型重大事故等対処設備と常設重大事故等対処設備の接続口
原子炉建屋の外から水又は電力を供給する可搬型重大事故等対処設備と常設設備との接続口は，共通要因によっ て接続することができなくなることを防止するため，それ ぞれ互いに異なる複数の場所に設置する設計とする。

環境条件に対しては，想定される重大事故等が発生した場合における温度，放射線，荷重及びその他の使用条件に おいて，その機能を確実に発揮できる設計とするととも に，接続口は，建屋の異なる面の隣接しない位置又は建屋内及び建屋面の適切に離隔した位置に複数箇所設置する。重大事故等時の環境条件における健全性については，「5．1．5 環境条件等」に基づく設計とする。風（台風），凍結，降水，積雪及び電磁的障害に対しては，環境条件に て考慮し，機能が損なわれない設計とする。

地震に対して接続口は，「1．地盤等」に基づく地盤上 の建屋内又は建屋面に複数箇所設置する。

地震，津波及び火災に対して接続口は，「2．1 地震によ る損傷の防止」，「2．2 津波による損傷の防止」及び「3．1火災による損傷の防止」に基づく設計とする。

溢水に対して接続口は，想定される溢水水位に対して機能を喪失しない位置に設置する。
地震，津波，溢水及び火災に対しては，接続口は，建屋内及び建屋面の適切に離隔した隣接しない位置に複数箇所設置する。

風（台風），竜巻，落雷，火山の影響，生物学的事象，森林火災，飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒ガス，船舶の衝突及び故意による大型航空機の衝突その他のテロリズムに対して，接続口は，建屋の異なる面の隣接しない位置又は建屋内及 び建屋面の適切に離隔した位置に複数箇所設置する。

生物学的事象のらちネズミ等の小動物に対して，屋外に設置する場合は，開口部の閉止により重大事故等に対処す

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
るために必要な機能が損なわれるおそれのない設計とす	るために必要な機能が損なわれるおそれのない設計とす	るために必要な機能が損なわれるおそれのない設計とす			
る。		る。			
高潮に対して接続口は，高潮の影響を受けない敷地高さ	高潮に対して接続口は，高潮の影響を受けない敷地高さ	高潮に対して接続口は，高潮の影響を受けない敷地高さ			
に設置する。	に設置する。	に設置する。			
また，一つの接続口で複数の機能を兼用して使用する場	また，一つの接続口で複数の機能を兼用して使用する場	また，一つの接続口で複数の機能を兼用して使用する場			
合には，それぞれの機能に必要な容量が確保できる接続口	合には，それぞれの機能に必要な容量が確保できる接続口	合には，それぞれの機能に必要な容量が確保できる接続口			
を設ける設計とする。同時に使用する可能性がある場合	を設ける設計とする。同時に使用する可能性がある場合	を設ける設計とする。同時に使用する可能性がある場合			
は，合計の容量を確保し，状況に応じて，それぞれの系統	は，合計の容量を確保し，状況に応じて，それぞれの系統	は，合計の容量を確保し，状況に応じて，それぞれの系統			
に必要な容量を同時に供給できる設計とする。	に必要な容量を同時に供給できる設計とする。	に必要な容量を同時に供給できる設計とする。			
		5．1．3 悪影響防止等			
（c－1－2）悪影響防止	（2）悪影響防止	（4）悪影響防止			
重大事故等対処設備は，発電用原子炉施設（他号炉を含	重大事故等対処設備は，発電用原子炉施設（他号炉を含	重大事故等対処設備は，発電用原子炬施設（他号機を含			
む。）内の他の設備（設計基準対象施設及び当該重大事故	む。）内の他の設備（設計基漼対象施設及び当該重大事故	む。）内の他の設備（設計基準対象施設及び当該重大事故			
等対処設備以外の重大事故等対処設備）に対して悪影響を	等対処設備以外の重大事故等対処設備）に対して悪影響を	等対処設備以外の重大事故等対処設備）に対して悪影響を			
及ぼさない設計とする。	及ぼさない設計とする。	及ぼさない設計とする。			
他の設備への悪影響としては，重大事故等対処設備使用	他の設備への悪影響としては，重大事故等対処設備使用	他の設備への悪影響としては，重大事故等対処設備使用			
時及び待機時の系統的な影響（電気的な影響を含む。）並	時及び待機時の系統的な影響（電気的な影響を含む。）並	時及び待機時の系統的な影響（電気的な影響を含む。）並			
びにタービンミサイル等の内部発生飛散物による影響を	びにタービンミサイル等の内部発生飛散物による影響を	びにタービンミサイル等の内部発生飛散物による影響を			
考慮し，他の設備の機能に悪影響を及ぼさない設計とす	考慮し，他の設備の機能に悪影響を及ぼさない設計とす	考慮し，他の設備の機能に悪影響を及ぼさない設計とす			
る。	る。	る。			
系統的な影響に対しては，重大事故等対処設備は，弁等	系統的な影響に対しては，重大事故等対処設備は，弁等	系統的な影響に対しては，重大事故等対処設備は，弁等			
の操作によって設計基準対象施設として使用する系統構	の操作によって設計基準対象施設として使用する系統構	の操作によって設計基準対象施設として使用する系統構			
成から重大事故等対処設備としての系統構成とすること，	成から重大事故等対処設備としての系統構成とすること，	成から重大事故等対処設備としての系統構成とすること，			
重大事故等発生前（通常時）の隔離若しくは分離された状	重大事故等発生前（通常時）の隔離若しくは分離された状	重大事故等発生前（通常時）の隔離若しくは分離された状			
態から弁等の操作や接続により重大事故等対処設備とし	態から弁等の操作や接続により重大事故等対処設備とし	態から弁等の操作や接続により重大事故等対処設備とし			
ての系統構成とすること，他の設備から独立して単独で使	ての系統構成とすること，他の設備から独立して単独で使	ての系統構成とすること，他の設備から独立して単独で使			
用可能なこと，設計基準対象施設として使用する場合と同	用可能なこと，設計基準対象施設として使用する場合と同	用可能なこと，設計基準対象施設として使用する場合と同			
じ系統構成で重大事故等対処設備として使用すること等	じ系統構成で重大事故等対処設備として使用すること等	じ系統構成で重大事故等対処設備として使用すること等			
により，他の設備に悪影響を及ぼさない設計とする。	により，他の設備に悪影響を及ぼさない設計とする。	により，他の設備に悪影響を及ぼさない設計とする。			
また，放水砲については，建屋への放水により，当該設	また，放水砲については，建屋への放水により，当該設	放水砲については，建屋への放水により，当該設備の使			
備の使用を想定する重大事故時において必要となる屋外	備の使用を想定する重大事故時において必要となる屋外	用を想定する重大事故時において必要となる屋外の他の			
の他の設備に悪影響を及ぼさない設計とする。	の他の設備に悪影響を及ぼさない設計とする。	設備に悪影響を及ぼさない設計とする。			
内部発生飛散物による影響に対しては，内部発生エネル	内部発生飛散物による影響に対しては，内部発生エネル	内部発生飛散物による影響に対しては，内部発生エネル			
ギーの高い流体を内蔵する弁及び配管の破断，高速回転機	ギーの高い流体を内蔵する弁及び配管の破断，高速回転機	ギの高い流体を内蔵する弁及び配管の破断，高速回転機器			
器の破損，ガス爆発並びに重量機器の落下を考慮し，重大	器の破損，ガス爆発並びに重量機器の落下を考慮し，重大	の破損，ガス爆発並びに重量機器の落下を考慮し，重大事			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
事故等対処設備がタービンミサイル等の発生源となるこ	事故等対処設備がタービンミサイル等の発生源となるこ	故等対処設備がタービンミサイル等の発生源となること			
とを防ぐことで，他の設備に悪影響を及ぼさない設計とす	とを防ぐことで，他の設備に悪影響を及ぼさない設計とす	を防ぐことで，他の設備に悪影響を及ぼさない設計とす			
る。	る。	る。			
（c－1－3）共用の禁止	（3）共用の禁止	（2）共用			
		＜中略＞			
常設重大事故等対処設備の各機器については， 2 以上の	常設重大事故等対処設備の各機器については， 2 以上の	常設重大事故等対処設備の各機器については， 2 以上の			
発電用原子炉施設において共用しない設計とする。	発電用原子炬施設において共用しない設計とする。	発電用原子炬施設において共用しない設計とする。			
（c－2）容量等	1．1．7．2 容量等	5．1．4 容量等			
（c－2－1）常設重大事故等対処設備	（1）常設重大事故等対処設備	（1）常設重大事故等対処設備			
常設重大事故等対処設備は，想定される重大事故等の収	常設重大事故等対処設備は，想定される重大事故等の収	常設重大事故等対処設備は，想定される重大事故等の収			
束において，想定する事象及びその事象の進展等を考慮	束において，想定する事象及びその事象の進展等を考慮	束において，想定する事象及びその事象の進展等を考慮			
し，重大事故等時に必要な目的を果たすために，事故対応	し，重大事故等時に必要な目的を果たすために，事故対応	し，重大事故等時に必要な目的を果たすために，事故対応			
手段としての系統設計を行う。重大事故等の収束は，これ	手段としての系統設計を行う。重大事故等の収束は，これ	手段としての系統設計を行う。重大事故等の収束は，これ			
らの系統の組合せにより達成する。	らの系統の組合せにより達成する。	らの系統の組合せにより達成する。			
「容量等」とは，ポンプ流量，タンク容量，伝熱容量，	「容量等」とは，ポンプ流量，タンク容量，伝熱容量，	「容量等」とは，ポンプ流量，タンク容量，伝熱容量，			
弁吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，	弁吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，	弁吹出量，発電機容量，蓄電池容量，計装設備の計測範囲，			
作動信号の設定値等とする。	作動信号の設定値等とする。	作動信号の設定値等とする。			
常設重大事故等対処設備のらち設計基準対象施設の系	常設重大事故等対処設備のらち設計基準対象施設の系	常設重大事故等対処設備のらち設計基準対象施設の系			
統及び機器を使用するものについては，設計基漼対象施設	統及び機器を使用するものについては，設計基準対象施設	統及び機器を使用するものについては，設計基漼対象施設			
の容量等の仕様が，系統の目的に応じて必要となる容量等	の容量等の仕様が，系統の目的に応じて必要となる容量等	の容量等の仕様が，系統の目的に応じて必要となる容量等			
に対して十分であることを確認した上で，設計基準対象施	に対して十分であることを確認した上で，設計基準対象施	に対して十分であることを確認した上で，設計基準対象施			
設としての容量等と同仕様の設計とする。	設としての容量等と同仕様の設計とする。	設の容量等の仕様と同仕様の設計とする。			
常設重大事故等対処設備のらち設計基準対象施設の系	常設重大事故等対処設備のらち設計基準対象施設の系	常設重大事故等対処設備のらち設計基準対象施設の系			
統及び機器を使用するもので，重大事故等時に設計基準対	統及び機器を使用するもので，重大事故等時に設計基準対	統及び機器を使用するもので，重大事故等時に設計基準対			
象施設の容量等を補う必要があるものについては，その後	象施設の容量等を補う必要があるものについては，その後	象施設の容量等を補う必要があるものについては，その後			
の事故対応手段と合わせて，系統の目的に応じて必要とな	の事故対応手段と合わせて，系統の目的に応じて必要とな	の事故対応手段と合わせて，系統の目的に応じて必要とな			
る容量等を有する設計とする。	る容量等を有する設計とする。	る容量等を有する設計とする。			
常設重大事故等対処設備のらち重大事故等への対処を	常設重大事故等対処設備のらち重大事故等への対処を	常設重大事故等対処設備のらち重大事故等への対処を			
本来の目的として設置する系統及び機器を使用するもの	本来の目的として設置する系統及び機器を使用するもの	本来の目的として設置する系統及び機器を使用するもの			
については，系統の目的に応じて必要な容量等を有する設	については，系統の目的に応じて必要な容量等を有する設	については，系統の目的に応じて必要な容量等を有する設			
計とする。	計とする。	計とする。			
（c－2－2）可搬型重大事故等対処設備	（2）可搬型重大事故等対処設備	（2）可搬型重大事故等対処設備			
可搬型重大事故等対処設備は，想定される重大事故等の	可搬型重大事故等対処設備は，想定される重大事故等の	可搬型重大事故等対処設備は，想定される重大事故等の			
収束において，想定する事象及びその事象の進展を考慮	収束において，想定する事象及びその事象の進展を考慮	収束において，想定する事象及びその事象の進展を考慮			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
ない設計とする。	等の火炎っ，有毒がス，船舶の衝突，電磁的障害，故意によ				
	る大型航空機の衝突その他のテロリズム等の事象を考盧				
	する。これらの事象のらち，発電所敷地及びその周辺での				
	発生の可能性，重大事故等対処設備への影響度，事象進展				
	速度や事象進展に対する時聞余裕の観点から，重大事故等				
	対処設備に影響を与えるおそれがある事象として選定す				
	る電磁的障害に対しては，重大事故等対処設備は，重大事				
	故等時においても電磁波により機能を損なわない設計と				
	する。				
		（4）周辺機器等からの悪影響			
		＜中略＞			
重大事故等対処設備は，事故対応のために配置•配備し	重大事故等対処設備は，事故対応のために配置•配備し	重大事故等対処設備は，事故対応のために配置•配備し			
ている自主対策設備を含む周辺機器等からの悪影響によ	ている自主対策設備を含む周辺機器等からの悪影響によ	ている自主対策設備を含む周辺機器等からの悪影響によ			
り機能を損なわない設計とする。周辺機器等からの悪影響	り機能を損なわない設計とする。周辺機器等からの悪影響	り機能を損なわない設計とする。周辺機器等からの悪影響			
としては，地震，火災及び溢水による波及的影響を考慮す	としては，地震，火災及び溢水による波及的影響を考慮す	としては，地震，火災及び溢水による波及的影響を考慮す			
る。	る。	る。			
溢水に対しては，重大事故等対処設備は，想定される溢	溢水に対しては，重大事故等対処設備は，想定される溢	溢水に対しては，重大事故等対処設備は，想定される溢			
水により機能を損なわないように，重大事故等対処設備の	水により機能を損なわないように，重大事故等対処設備の	水により機能を損なわないように，重大事故等対処設備の			
設置区画の止水対策等を実施する。	設置区画の止水対策等を実施する。	設置区画の止水対策等を実施する。			
	地震による荷重を含む耐震設計については，「1．4．2 重	地震による荷重を含む耐震設計については，「2．1 地震			
	大事故等対処施設の耐震設計」に，火災防護については，	による損傷の防止」に，火災防護については，「3．1 火災			
	針」に示す。	る波及的影響により重大事故等に対処するために必要な			
		機能を損なわない設計とする。			
（c－3－2）重大事故等対処設備の設置場所	（2）重大事故等対処設備の設置場所	（5）設置場所における放射線の影響			
		<中略 >			
重大事故等対処設備は，想定される重大事故等が発生し	重大事故等対処設備は，想定される重大事故等が発生し	重大事故等対処設備は，想定される重大事故等が発生し			
た場合においても操作及び復旧作業に支障がないように，	た場合においても操作及び復旧作業に支障がないように，	た場合においても操作及び復旧作業に支障がないように，			
放射線量の高くなるおそれの少ない設置場所の選定，当該	放射線量の高くなるおそれの少ない設置場所の選定，当該	放射線量の高くなるおそれの少ない設置場所の選定，当該			
設備の設置場所への遮蔽の設置等により，当該設備の設置	設備の設置場所への遮蔽の設置等により当該設備の設置	設備の設置場所への遮蔽の設置等により当該設備の設置			
場所で操作可能な設計，放射線の影響を受けない異なる区	場所で操作可能な設計，放射線の影響を受けない異なる区	場所で操作可能な設計，放射線の影響を受けない異なる区			
画若しくは離れた場所から遠隔で操作可能な設計又は中	画若しくは離れた場所から遠隔で操作可能な設計，又は中	画若しくは離れた場所から遠隔で操作可能な設計，又は中			
央制御室遮蔽区域内である中央制御室から操作可能な設	央制御室遮蔽区域内である中央制御室から操作可能な設	央制御室遮蔽区域内である中央制御室から操作可能な設			
計とする。	計とする。	計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
（c－3－3）可搬型重大事故等対処設備の設置場所 可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても設置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等によ り，当該設備の設置及び常設設備との接続が可能な設計と する。 （c－4）操作性及び試験•検査性 （c－4－1）操作性の確保 （ $\mathrm{c}-4-1-1$ ）操作の確実性 重大事故等対処設備は，想定される重大事故等が発生し た場合においても操作を確実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とする。 操作する全ての設備に対し，十分な操作空間を確保する とともに，確実な操作ができるよう，必要に応じて操作足場を設置する。また，防護具，可搬型照明等は重大事故等時に迅速に使用できる場所に配備する。	（3）可搬型重大事故等対処設備の設置場所 可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても設置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等によ り，当該設備の設置及び常設設備との接続が可能な設計と する。 1．1．7．4 操作性及び試験•検査性 （1）操作性の確保 a ．操作の確実性 重大事故等対処設備は，想定される重大事故等が発生し た場合においても操作を確実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とする。 操作する全ての設備に対し，十分な操作空間を確保する とともに，確実な操作ができるよう，必要に応じて操作足場を設置する。また，防護具，可搬型照明等は重大事故等時に迅速に使用できる場所に配備する。	可搬型重大事故等対処設備は，想定される重大事故等が発生した場合においても設置及び常設設備との接続に支障がないように，放射線量の高くなるおそれの少ない設置場所の選定，当該設備の設置場所への遮蔽の設置等によ り，当該設備の設置及び常設設備との接続が可能な設計と する。 （6）泠却材の性状 原子炉冷却材を内包する安全施設は，水質管理基準を定 めて水質を管理することにより異物の発生を防止する設計とする。 安全施設及び重大事故等対処設備は，系統外部から異物 が流入する可能性のある系統に対しては，ストレーナ等を設置することにより，その機能を有効に発揮できる設計と する。 5．1．6 操作性及び試験•検査性 （1）操作性の確保 重大事故等対処設備は，手順書の整備，訓練•教育によ り，想定される重大事故等が発生した場合においても，確実に操作でき，設置変更許可申請書「十 発電用原子炉の炉心の著しい損傷その他の事故が発生した場合における当該事故に対処するために必要な施設及び体制の整備に関する事項」ハで考慮した要員数と想定時間内で，アク セスルートの確保を含め重大事故等に対処できる設計と する。これらの運用に係る体制，管理等については，保安規定に定めて管理する。 重大事故等対処設備は，想定される重大事故等が発生し た場合においても操作を確実なものとするため，重大事故等時の環境条件を考慮し，操作が可能な設計とする。 重大事故等対処設備は，操作する全ての設備に対し，土分な操作空間を確保するとともに，確実な操作ができるよ う，必要に応じて操作足場を設置する。また，防護具，可搬型照明等は重大事故等時に迅速に使用できる場所に配備する。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
現場操作において工具を必要とする場合は，一般的に用	現場操作において工具を必要とする場合は，一般的に用	現場操作において工具を必要とする場合は，一般的に用			
いられる工具又は専用の工具を用いて，確実に作業ができ	いられる工具又は専用の工具を用いて，確実に作業ができ	いられる工具又は専用の工具を用いて，確実に作業ができ			
る設計とする。工具は，作業場所の近傍又はアクセスルー	る設計とする。工具は，作業場所の近傍又は想定される重	る設計とする。工具は，作業場所の近傍又はアクセスルー			
トの近傍に保管できる設計とする。	大事故等の対処に必要な可搬型重大事故等対処設備の保	上の近傍に保管できる設計とする。可搬型重大事故等対処			
	管場所から設置場所及び接続場所まで運搬するための経	設備は，運搬，設置が確実に行えるように，人力又は車両			
	路又は他の設備の被害状況を把握するための経路（以下	等による運搬，移動ができるとともに，必要により設置場			
	「アクセスルート」という。）の近傍に保管できる設計と	所にてアウトリガの張り出し，輪留めによる固定等が可能			
	する。	な設計とする。			
可搬型重大事故等対処設備は運搬•設置が確実に行えるよ	可搬型重大事故等対処設備は連搬•設置が確実に行える				
らに，人力又は車両等による運搬，移動ができるとともに，	ように，人力又は車両等による運搬，移動ができるととも				
必要により設置場所にてアウトリガの張り出し，輪留めに	に，必要により設置場所にてアウトリガの張り出し，輪留				
よる固定等が可能な設計とする。	めによる固定等が可能な設計とする。				
現場の操作スイッチは運転員等の操作性を考慮した設	現場の操作スイッチは運転員等の操作性を考慮した設	現場の操作スイッチは運転員等の操作性を考慮した設			
計とする。また，電源操作が必要な設備は，感電防止のた	計とする。また，電源操作が必要な設備は，感電防止のた	計とする。また，電源操作が必要な設備は，感電防止のた			
め露出した充電部への近接防止を考慮した設計とする。	め露出した充電部への近接防止を考慮した設計とする。	め露出した充電部への近接防止を考慮した設計とする。			
現場において人力で操作を行ら弁は，手動操作が可能な	現場において人力で操作を行う弁は，手動操作が可能な	現場において人力で操作を行う弁は，手動操作が可能な			
設計とする。	設計とする。	設計とする。			
現場での接続操作は，ボルト・ネジ接続，フランジ接続	現場での接続操作は，ボルト・ネジ接続，フランジ接続	現場での接続操作は，ボルト・ネジ接続，フランジ接続			
又はより簡便な接続方式等，接続方式を統一することによ	又はより簡便な接続方式等，接続方式を統一することによ	又はより簡便な接続方式等，使用する設備に応じて接続方			
り，確実に接続が可能な設計とする。	り，確実に接続が可能な設計とする。	式を統一することにより，確実に接続が可能な設計とす			
また，重大事故等に対処するために迅速な操作を必要と	また，重大事故等に対処するために迅速な操作を必要と	る。			
する機器は，必要な時間内に操作できるように中央制御室	する機器は，必要な時間内に操作できるように中央制御室	また，重大事故等に対処するために迅速な操作を必要と			
での操作が可能な設計とする。制御盤の操作器は運転員の	での操作が可能な設計とする。制御盤の操作器は運転員の	する機器は，必要な時間内に操作できるように中央制御室			
操作性を考慮した設計とする。	操作性を考慮した設計とする。	での操作が可能な設計とする。制御盤の操作器は連転員の			
想定される重大事故等において操作する重大事故等対	想定される重大事故等において操作する重大事故等対	操作性を考慮した設計とする。			
処設備のうち動的機器については，その作動状態の確認が	処設備のらち動的機器については，その作動状態の確認が	想定される重大事故等において操作する重大事故等対			
可能な設計とする。	可能な設計とする。	処設備のらち動的機器については，その作動状態の確認が			
		可能な設計とする。			
（c－4－1－2）系統の切替性	b．系統の切替性				
重大事故等対処設備のらち，本来の用途以外の用途とし	重大事故等対処設備のらち，本来の用途以外の用途とし	重大事故等対処設備のらち，本来の用途以外の用途とし			
て重大事故等に対処するために使用する設備は，通常時に	て重大事故等に対処するために使用する設備は，通常時に	て重大事故等に対処するために使用する設備は，通常時に			
使用する系統から速やかに切替操作が可能なように，系統	使用する系統から速やかに切替操作が可能なように，系統	使用する系統から速やかに切替操作が可能なように，系統			
に必要な弁等を設ける設計とする。	に必要な弁等を設ける設計とする。	に必要な弁等を設ける設計とする。			
（c－4－1－3）可搬型重大事故等対処設備の常設設備との接続性	c．可搬型重大事故等対処設備の常設設備との接続性				
可搬型重大事故等対処設備を常設設備と接続するもの	可搬型重大事故等対処設備を常設設備と接続するもの	可搬型重大事故等対処設備を常設設備と接続するもの			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
屋外及び屋内アクセスルートに対する発電所敷地又は その周辺において想定される発電用原子炬施設の安全性 を損なわせる原因となるおそれがある事象であって人為 によるものについては，屋外アクセスルートに影響を与え るおそれがある事象として選定する飛来物（航空機落下）， ダムの崩壊，．．爆発，近隣工場等の火災，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突その他 のテロリズムに対して，迂回路も考慮した複数のアクセス ルートを確保する設計とする。 なお，洪水，地滑り及びダムの崩壊については，立地的要因により設計上考䲣する必要はない。．． 船舶の衝突に対しては，カーテンウォールにより船舶の侵入が阻害されることからアクセスルートへの影響はな い。 電磁的障害に対しては，道路面が直接影響を受けること はないことからアクセスルートへの影響はない。 屋外アクセスルートに対する地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり）， その他自然現象による影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセス ルートの中から状況を確認し，早期に復旧可能なアクセス ルートを確保するため，障害物を除去可能なブルドーザ及 びバックホウをそれぞれ 1 台（予備 1 台）保管，使用する。	する。 屋外及び屋内アクセスルートに対する発電所敷地又は その周辺において想定される発電用原子炬施設の安全性 を損なわせる原因となるおそれがある事象であって人為 によるものについては，網羅的に抽出するために，発電所敷地及びその周辺での発生実績の有無に関わらず，国内外 の基準や文献等に基づき収集した飛来物（航空機落下等）， ダムの崩壊，爆発，近隣工場等の火災，有毒ガス，船舶の衝突，電磁的障害，故意による大型航空機の衝突その他の テロリズム等の事象を考慮する。これらの事象のうち，発電所敷地及びその周辺での発生の可能性，屋外アクセスル ートへの影響度，事象進展速度や事象進展に対する時間余裕の観点から，屋外アクセスルートに影響を与えるおそれ がある事象として選定する飛来物（航空機落下），ダムの崩壊っ，爆発，近隣工場等の火災，有毒ガス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突その他のテ ロリズムに対して，迂回路も考慮した複数のアクセスルー トを確保する設計とする。 なお，洪水，地滑り及びダムの崩壊については，立地的要因により設計上考盧する必要はない。 船舶の衝突に対しては，カーテンウォールにより船舶の侵入が阻害されることからアクセスルートへの影響はな い。 電磁的障害に対しては，道路面が直接影響を受けること はないことからアクセスルートへの影響はない。 屋外アクセスルートに対する地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり）， その他自然現象による影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセス ルートの中から状況を確認し，早期に復旧可能なアクセス ルートを確保するため，障害物を除去可能なブルドーザ及 びバックホウをそれぞれ 1 台使用する。ブルドーザの保有数は 1 台，故障時及び保守点検による待機除外時のバック アップ用として 1 台の合計 2 台を分散して保管する設計 とする。また，バックホウの保有数は 1 台，故障時及び保	屋外及び屋内アクセスルートに対する人為事象につい ては，屋外アクセスルートに影響を与えるおそれがある事象として選定する飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両，有毒がス，船舶の衝突，電磁的障害及び故意による大型航空機の衝突その他のテ ロリズムに対して，迂回路も考慮した複数のアクセスルー トを確保する設計とする。 船舶の衝突に対しては，カーテンウォールにより船舶の侵入が阻害されることからアクセスルートへの影響はな い。 電磁的障害に対しては，道路面が直接影響を受けること はないことからアクセスルートへの影響はない。 屋外アクセスルートに対する地震による影響（周辺構造物等の損壊，周辺斜面の崩壊及び敷地下斜面のすべり）， その他自然現象による影響（風（台風）及び竜巻による飛来物，積雪並びに火山の影響）を想定し，複数のアクセス ルートの中から状況を確認し，早期に復旧可能なアクセス ルートを確保するため，障害物を除去可能なブルドーザ （台数1（予備 1））及びバックホウ（台数 1（予備 1））尞保管，使用する。	洪水，地滑り及びダムの崩壊については，設置変更許可申請書で設計上 の考慮を不要としてい る。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
また，地震による屋外タンクからの溢水及び降水に対し ては，道路上への自然流下も考慮した上で，通行への影響 を受けない箇所にアクセスルートを確保する設計とする。 津波の影響については，基準津波に対し余裕を考慮した高さの防潮堤及び防潮壁で防護することにより，複数のア クセスルートを確保する設計とする。 また，高潮に対しては，通行への影響を受けない敷地高 さにアクセスルートを確保する設計とする。 森林火災については，通行への影響を受けない距離にア クセスルートを確保する。 飛来物（航空機落下），爆発，近隣工場等の火災及び有毒ガスに対しては，迂回路も考慮した複数のアクセスルー トを確保する設計とする。落雷に対しては，道路面が直接影響を受けることはないため，さらに生物学的事象に対し ては，容易に排除可能なため，アクセスルートへの影響は ない。 屋外アクセスルートは，地震の影響による周辺斜面の崩壊及び敷地下斜面のすべりで崩壊土砂が広範囲に到達す ることを想定した上で，可搬型重大事故等対処設備の運搬 に必要な幅員を確保することにより通行性を確保できる設計とする。また，不等沈下等に伴う段差の発生が想定さ れる箇所においては，これらがアクセスルートに影響を及 ぼす可能性がある場合は段差緩和対策の実施，迂回又は砕石による段差箇所の仮復旧により対処する設計とする。 屋外アクセスルートは，考慮すべき自然現象のらち，凍結及び積雪に対して，道路については融雪剤を配備し，車両については常時スタッドレスタイヤを装着することに より，並びに急勾配の箇所のすべり止め材配備及びすべり止め舗装を施すことにより通行性を確保できる設計とす る。	守点検による待機除外時のバックアップ用として 1 台の合計 2 台を分散して保管する設計とする。 また，地震による屋外タンクからの溢水及び降水に対し ては，道路上への自然流下も考慮した上で，通行への影響 を受けない箇所にアクセスルートを確保する設計とする。 津波の影響については，基準津波に対し余裕を考慮した高さの防潮堤及び防潮壁で防護することにより，複数のア クセスルートを確保する設計とする。 また，高潮に対しては，通行への影響を受けない敷地高 さにアクセスルートを確保する設計とする。 森林火災については，通行への影響を受けない距離にア クセスルートを確保する設計とする。 飛来物（航空機落下），爆発，近隣工場等の火災及び有毒ガスに対しては，迂回路も考慮した複数のアクセスルー トを確保する設計とする。落雷に対しては，道路面が直接影響を受けることはないため，さらに生物学的事象に対し ては，容易に排除可能なため，アクセスルートへの影響は ない。 屋外アクセスルートは，地震の影響による周辺斜面の崩壊及び敷地下斜面のすべりで崩壊土砂が広範囲に到達す ることを想定した上で，可搬型重大事故等対処設備の運搬 に必要な幅員を確保することにより通行性を確保できる設計とする。また，不等沈下等に伴ら段差の発生が想定さ れる箇所においては，これらがアクセスルートに影響を及 ぼす可能性がある場合は段差緩和対策の実施，迂回又は砕石による段差箇所の仮復旧により対処する設計とする。 屋外アクセスルートは，考慮すべき自然現象のうち，凍結及び積雪に対して，道路については融雪剤を配備し，車両については常時スタッドレスタイヤを装着することに より，並びに急勾配の箇所のすべり止め材配備及びすべり止め舗装を施すことにより通行性を確保できる設計とす る。 なお，融雪剤の配備等については「添付書類十 5.1 重大事故等対策」に示す。 大規模な自然災害又は故意による大型航空機の衝突そ の他のテロリズムによる大規模損壊発生時の消火活動等 については，「添付書類十 5.2 大規模な自然災害又は故	また，地震による屋外タンクからの溢水及び降水に対し ては，道路上への自然流下も考慮した上で，通行への影響 を受けない箇所にアクセスルートを確保する設計とする。 津波の影響については，基準津波に対し余裕を考慮した高さの防潮堤及び防潮壁で防護することにより，複数のア クセスルートを確保する設計とする。 また，高潮に対しては，通行への影響を受けない敷地高 さにアクセスルートを確保する設計とする。 森林火災については，通行への影響を受けない距離にア クセスルートを確保する設計とする。 屋外アクセスルートは，人為事象のうち飛来物（航空機落下），爆発，近隣工場等の火災，危険物を搭載した車両及び有毒ガスに対しては，迂回路も考慮した複数のアクセ スルートを確保する設計とする。落雷に対しては，道路面 が直接影響を受けることはないため，さらに生物学的事象 に対しては，容易に排除可能なため，アクセスルートへの影響はない。 屋外アクセスルートは，地震の影響による周辺斜面の崩壊及び敷地下斜面のすべりで崩壊土砂が広範囲に到達す ることを想定した上で，可搬型重大事故等対処設備の運搬 に必要な幅員を確保することにより通行性を確保できる設計とする。また，不等沈下等に伴う段差の発生が想定さ れる箇所においては，段差緩和対策の実施，迂回又は砕石 による段差箇所の仮復旧により対処する設計とする。 屋外アクセスルートは，自然現象のらち，凍結及び積雪 に対して，道路については融雪剤を配備し，車両について は常時スタッドレスタイヤを装着することにより，並びに急勾配の箇所のすべり止め材配備及びすべり止め舗装を施すことにより通行性を確保できる設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
（d）緊急停止失敗時に発電用原子炉を未臨界にするた めの設備 運転時の異常な過渡変化時において発電用原子炬の運転を緊急に停止することができない事象が発生するおそ れがある場合又は当該事象が発生した場合においても炻心の著しい損傷を防止するため，原子炬冷却材圧力バウン ダり及び原子炬格納容器の健全性を維持するとともに，発電用原子炉を未臨界に移行するために必要な重大事故等対処設備を設置する。．． （e）原子炉冷却材圧力バウンダリ高圧時に発電用原子炉 を泠却するための設備 原子炬冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炬の冷却機能が喪失した場合においても炉心の著しい損傷を防止するた めに必要な重大事故等対処設備を設置する。．． （f）原子炉冷却材圧力バウンダリを減圧するための設備 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炬の減圧機能が喪失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するため，原子炬冷却材圧力バウンダ りを減圧するために必要な重大事故等対処設備を設置及 び保管する。．． （g）原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を泠却するための設備 原子彷冷却材圧力バウンダりが低圧の状態であって，設計基準事故対処設備が有する発電用原子炬の冷却機能が	6.7 緊急停止失敗時に発電用原子炉を未臨界にするため の設備 6．7．1 概要 運転時の異常な過渡変化時において発電用原子炬の運転を緊急に停止することができない事象が発生するおそ れがある場合又は当該事象が発生した場合においても焒心の著しい損傷を防止するため，原子炬冷却材圧力バウン ダリ及び原子炬格納容器の健全性を維持するとともに，発䨌用原子炬を未臨界に移行するために必要な重大事故等対処設備を設置する。．． < 中略 > 5.4 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉 を冷却するための設備 5． 4.1 概要 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発雸用原子炬の冷却機能が喪失した場合においても炬心の著しい損傷を防止するた めに必要な重大事故等対処設備を設置する。 < 中略 > 5.5 原子炉冷却材圧力バウンダリを減圧するための設備 5．5．1 概要 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炬の減圧機能が哇失した場合においても炬心の著しい損傷及び原子炬格納容器の破損を防止するため，原子炬冷却材圧力バウンダ りを減圧するために必要な重大事故等対処設備を設置及 び保管する。 ＜中略＞ 5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を冷却するための設備 5．6．1 概要 原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が		設置変更許可申請書（本文（五号））「へ（5）（x ii）緊急停止失敗時に発電用原子炉を未臨界 にするための設備」に示 す。 設置変更許可申請書（本文（五号））「ホ（3）（ii） b．（a）原子炉冷却材圧力バウンダリ高圧時 に発電用原子炉を冷却 するための設備」に示 す。 設置変更許可申請書（本文（五号））「ホ（3）（ii） b．（b）原子炉冷却材圧力バウンダリを減圧 するための設備」に示 す。 設置変更許可申請書（本文（五号））「ホ（3）（ii）	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
哇失した場合においても炬心の著しい損傷及び原子炬格納容器の破損を防止するため，発電用原子炉を冷却するた めに必要な重大事故等対処設備を設置及び保管する。．．．	喪失した場合においても炬心の著しい損傷及び原子炬格納容器の破損を防止するため，発電用原子炬を冷却するた めに必要な重大事故等対処設備を設置及び保管する。．．． ＜中略＞		b 。（c）原子炉冷却材圧力バウンダリ低圧時 に発電用原子炉を冷却 するための設備」に示 す。		
（h）最終ヒートシンクへ熱を輸送するための設備	5.10 最終ヒートシンクへ熱を輸送するための設備 5．10．1 概要				
設計基漼事故対処設備が有する最終ヒートシンクへ熱	設計基漼事故対処設備が有する最終ヒートシンク～熱		設置変更許可申請書（本		
を輸送する機能が喪失した場合において炬心の著しい損	を輸送する機能が喪失した場合において炬心の著しい損		文（五号））「ホ（4）（ v ）		
傷及び原子炬格納容器の破損，（炬心の著しい損傷が発生す	傷及び原子炬格納容器の破損（炬心の著しい損傷が発生す		最終ヒートシンクへ熱		
る前に生ずるものに限る。）を防止するためっ最終ヒート	る前に生ずるものに限る。）を防止するためっ，最終ヒート		を輸送するための設備」		
シンクへ熱を輸送するために必要な重大事故等対処設備	シンクへ熱を輸送するために必要な重大事故等対処設備		に示す。		
を設置及び保管する。．．	を設置及び保管する。				
（i）原子炉格納容器内の泠却等のための設備	9．2 原子炉格納容器内の泠却等のための設備 9．2．1 概要				
設計基漼事故対処設備が有する原子炬格納容器内の泠	設計基蕉事故対処設備が有する原子炬格納容器内の冷		設置変更許可申請書（本		
却機能が喪失した場合において炬心の著しい損傷を防止	却機能が喪失した場合において灯心の著しい損傷を防止		文（五号））「リ（3）（ i ）		
するため，原子炉格納容器内の圧力及び温度を低下させる	するため，原子炉格納容器内の圧力及び温度を低下させる		a ．原子炉格納容器内の		
ために必要な重大事故等対処設備を設置及び保管する。炻	ために必要な重大事故等対処設備を設置及び保管する。炬		冷却等のための設備」に		
心の著しい損傷が発生した場合において原子炬格納容器	心の著しい損傷が発生した場合において原子炬格納容器		示す。		
の破損を防止するため，原子炬格納容器内の圧力及び温度	の破損を防止するため，原子炉格納容器内の圧力及び温度				
並びに放射性物質の濃度を低下させるために必要な重大	並びに放射性物質の濃度を低下させるために必要な重大				
事故等対処設備を設置及び保管する。	事故等対処設備を設置及び保管する。 <中略〉				
（j）原子炉格納容器の過圧破損を防止するための設備	9．3 原子炉格納容器の過圧破損を防止するための設備 9．3．1 概要				
炬心の著しい損傷が発生した場合において原子炬格納	炬心の著しい損傷が発生した場合において原子炬格納		設置変更許可申請書（本		
容器の過压による破損を防止するため，原子炬格納容器バ	容器の過圧による破損を防止するため，原子炬格納容器内		文（五号））「リ（ 3 ）（ ii ）		
ウンダりを維持しながら原子炬格納容器内の圧力及び温	の圧力及び温度を低下させるために必要な重大事故等対		b．原子炉格納容器の過		
度を低下させるために必要な重大事故等対処設備並びに	処設備を設置及び保管する。．		圧破損を防止するため		
原子炉格納容器内の圧力を大気中に逃がすために必要な					
重大事故等対処設備を設置及び保管する。これらの重大事故等対処設備は，共通要因によって同時にその機能が損な					
われるおそれがないよう，適切な措置を講じる設計とす					
.ַַo..					

（k）原子炉格納容器下部の溶融炉心を泠却するための設備

炬心の著しい損傷が発生した場合において原子炬格納容器の破損を防止するため，溶融し，原子炬格納容器の下部に落下した烼心を冷却するために必要な重大事故等対処設備を設置及び保管する。
原子炬格納容器下部に落下した溶融炬心を泠却するこ とでっ溶融炬心・コンクリート相互作用（MCCI）を抑制し，溶融炬心が原子炬格納容器バウンダリに接触するこ とを防止する。
（1）水素爆発による原子炉格納容器の破損を防止するた めの設備

炬心の著しい損傷が発生した場合において原子灲格納容器内における水素による爆発（以下「水素爆発」という。） による破損を防止する必要がある場合には，水素爆発によ る原子炬格納容器の破損を防止するために必要な重大事故等対処設備を設置及び保管する。
（m）水素爆発による原子炉建屋等の損傷を防止するため の設備

炉心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために必要な重大事故等対処設備を設置する。
（n）使用済燃料プールの泠却等のための設備

使用済燃料プールの冷却機能又は注水機能が喪失し，又 は使用済燃料プールからの水の漏えいその他の要因によ り当該使用斎燃料プールの水位が低下した場合において使用斎燃料プール内燃料体等を冷却し，放射線を遮蔽し，

9．4 原子炉格納容器下部の溶融灯心を泠却するための設備 9．4．1 概要

炉心の著しい損傷が発生した場合において原子炉格納容器の破損を防止するため，溶融し，原子炬格納容器の下部に落下した炉心を冷却するために必要な重大事故等対処設備を設置及び保管する。
原子炬格納容器下部に落下した溶融炬心を冷却するこ とで，溶融焾心・コンクリート相互作用（MCCI）を抑制し，溶融炬心が原子炬格納容器バウンダリに接触するこ とを防止する。
＜中略＞
9.5 水素爆発による原子炉格納容器の破損を防止するた めの設備
9．5．1 概要
炉心の著しい損傷が発生した場合において原子炉格納容器内における水素による爆発（以下「水素爆発」という。） による破損を防止する必要がある場合には，水素爆発によ る原子炉格納容器の破損を防止するために必要な重大事故等対処設備を設置及び保管する。
＜中略＞
9.6 水素爆発による原子炉建屋等の損傷を防止するため の設備
9．6．1 概要
炬心の著しい損傷が発生した場合において原子炉建屋等の水素爆発による損傷を防止するために必要な重大事故等対処設備を設置する。
＜中略＞
4.3 使用済燃料プールの泠却等のための設備

4．3．1 概要
使用済燃料プールの冷却機能又は注水機能が喪失し，又 は使用済燃料プールからの水の漏えいその他の要因によ り当該使用斎燃料プールの水位が低下した場合において使用済燃料プール内燃料体等を冷却し，放射線を遮蔽し，

設置変更許可申請書（本
文（五号））「リ（3）（ii）
c．原子炉格納容器下部
の溶融炉心を泠却する
ための設備」に示す。

設置変更許可申請書（本文（五号））「リ（3）（ii）
d．水素爆発による原子炉格納容器の破損を防止するための設備」に示 す。

設置変更許可申請書（本文（五号））「リ（4）（iii）水素爆発による原子炉建屋等の損傷を防止す るための設備」に示す。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
（r）計装設備 重大事故等が登生し，計測機器（非虽用のものを含然。） の故障により，当該重大事故等に対処するために監視する ことが必要なパラメータを誢することが困難となった場合において，当該゚゚ラメー夕を推定するために必要なパ ラメータを計測する設備を設置又は保管する。	6． 4 計装設備（重大事故等対処設備） 6．4．1 概要 重大事故等が発生し，計測機器（非常用のものを含きァ。） の故障により，当該重大事故等に対処するために監視する ことが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定するために必要なパ ラメータを計測する設備を設置又は保管する。… ＜中略＞		設置変更許可申請書（本文（五号））「へ（1）計装」に示す。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
b．反応度停止余裕 （1）（iii）b．－（1）最大反応度価値を有する制御棒が 1 本未挿入の状熊であってもっ他の制御棒によって虽に炬心を臨界未満にできる能力を持つ設計とする。	3.3 核設計 〔その $2-9 \times 9$ 燃料が装荷されたサイクル以降〕 3．3．4 核特性 3．3．4．1 反応度 （1）反応度制御 <中略 > 制御棒は， $\mathrm{Gd}_{2} \mathrm{O}_{3}$ とあいまってっ，焒心の最大過剰反応度を士分制御できるように設計する。．．． < 中略 >	【計測制御系統施設】（基本設計方針） 1.2 制御棒及び制御棒駆動系 （1）（iii）b．－（1）制御䏾は，，最大の反応度価値を持つ制御㮮1本が完全に炬心の外に引き抜かれていて，その他の制御棒が全挿入の場合，高温状態及び低温状態において虽に鿉心を臨界未満にできる設計とする。…た。発電用原子炉運転中に，完全に挿入されている制御棒を除く，他のいず れかの制御棒が動作不能となった場合は，動作可能な制御棒のらち最大反応度価値を有する制御棒1本が完全に炉心 の外に引き抜かれた状態でも，他のすべての動作可能な制御棒により，高温状態及び低温状態において炉心を臨界未満に保持できることを評価確認し，確認できない場合に は，発電用原子炉を停止するように保安規定に定めて管理 する。 ＜中略＞		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
「（4）（i）a．－（1）また，供用期間中定期的にその健全性に関する検查を行い得るような寨造とする。．．．	（使用圧力•温度制限） <中略 > 供用期閴中検查（溶接部等の韭破罣検查，耐圧部の耐圧，漏えい詞験）を寒施し，構成機器の横造や気密の健全性を評価し，キた，尔䘏の発生の早期発見のため漏えい検出系計装を設置して監視を行えるよう設計する。 <中略 >	2.2 監視試験片 （4）（i）a．－（1） 1 又が電子ボルト以上の中性子の照射を受ける原子炬圧力容器は，当該容器が想定される運転状熊 において脆性破壊を引き起こさないようにするために，施設時に適用された告示「発電用原子力設備に関する構造等 の技術基集（昭和55年通商産業省告示第501号）」を满足 L，機械的強度及び破壊じん性の変化を確認できる個数の監視試験片を原子炬圧力容器内部に插入することにより，－照射の影響を確認できる設計とする。．．． 監視試験片は，適用可能な日本電気協会「原子炉構造材 の監視試験方法」（J E A C 4 2 0 1）により，取り出し及び監視試験を実施する。 【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針）「共通項目」 5．設備に対する要求 5．2 材料及び構造等 5．2．1 材料について ＜中略＞ （2）破壊じん性 a．クラス1容器は，当該容器が使用される圧力，温度，放射線，荷重その他の使用条件に対して適切な破壊じん性を有する材料を使用する。また，破壊じん性は，寸法，材質又は破壊じん性試験により確認する。 原子炉圧力容器については，原子炉圧力容器の脆性破壊 を防止するため，中性子照射脆化の影響を考慮した最低試験温度を確認し，適切な破壊じん性を維持できるよう，原子炉冷却材温度及び圧力の制限範囲を設定することを保安規定に定めて管理する。	設計及び工事の計画の （4）（i）a．－1）は，設置変更許可申請書（本文 （五号））の 1 （4）（i）a． －（1）を具体的に記載し ており整合している。	

			亦更前	変	更
監椇此欵片	诲	－	${ }^{12}$		
	初装监佃数	－	$\square \square^{* 12}$		理を
	取付苗所	－			，

 －

 5 水水系优优を代巷

付け 3 3

晝によう

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
d． 1 （4）（i）d．－（1）主要ノズル取付位置		【原子炉本体】（基本設計方針）	設計及び工事の計画の		
再循環水出口ノズル 胴下部2䈯所		2.1 原子炉圧力容器本体	入（4）（i）d．－（1）は，設置		
再循環水入口ノズル 胴下部10簂所		＜中略＞	変更許可申請書（本文		
蒸気出口ノズル 胴上部4箇所		原子炬圧力容器は，円筒形の胴部に半球形の下鏡を付し			
給水ノズル 胴中央部4箇所		た鋼製容器に，半球形の鋼製上部ふたをボルト締めする構	－（1）と，文章表現は異な		
		造であり，入（4）（i）d．－①再循環水出ロノズル，再循環水	るが，内容に相違はない		
		入口ノズル，主蒸気出口ノイズル，給水ノズル等を取り付け	ため整合している。		
		る設計とする。			
		＜中略＞	設計及び工事の計画の		
			「主蒸気出口ノズル」		
			は，設置変更許可申請書		
			（本文（五号））の「蒸		
			気出ロノズル」と同一設		
			備であり整合している。		
e． N （4）（ i ）e．－（1）支持方法		入（4）（i）e．－（1）原子炬圧力容器の支持方法は，原子炬圧	設計及び工事の計画の		
下部 円笱スカート支持		力容器支持スカートで下端を固定し，原子炉圧力容器スタ	入（4）（i）e．－1）は，設置		
上部		ビライザによって水平方向に支持する設計とする。	変更許可申請書（本文		
ルを介してドライウェル外周の壁に支持			（五号））のr（4）（ i ）e．		
			－（1）と，文章表現は異な		
			るが，内容に相違はない		
			ため整合している。		
	1．10．3 発電用原子炉設置変更許可申請（平成25年12月27				
	日申請）に係る実用発電用原子炉及びその附属施設の位				
	置，構造及び設備の基準に関する規則への適合				
	（原子炉冷却材圧力バウンダリ）				
	第十七条				
	適合のための設計方針				
	第 1 項第 3 号について				
	（4）破壊靭性の確認（関連温度の妥当性の確認，原子炉				
	圧力容器材料のテスト・ピースによる衝撃試験の実施）				
f．非延性破壊に対する考慮	（使用圧力•温度制限）				
原子炬圧力容器は，ハ（4）（i）f．－（1）非延性破罴防止の観	フェライト系鋼製機器の非延性破罴や，，急速な伝播型破	原子炉圧力容器は，（4）（ i ）f．－（1）最低使用温度を $10^{\circ} \mathrm{C}$ に	設計及び工事の計画の		
点から，原子力規制委員会規則等に基づき破壊勒性を確認	断を防止するため比較的低温で加圧する水圧試験時には	設定し，関連温度（初期）を－35 ${ }^{\circ} \mathrm{C}$ 以下に設定することで，	入（4）（i）f．－（1）は，設置		
し，適切な温度で使用する。	加える圧力に応じ，，最低温度の制限を加える。	脆性破壊が生じない設計とする。．．．	変更許可申請書（本文		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
$\begin{array}{ll}\text {（ii）} & \text { 最高使用圧力及び最高使用温度 } \\ \text { 圧力 } & \text { 厂（4）（ii）－（1）} 87.9 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g} \\ \text { 温度 } & \underline{302^{\circ} \mathrm{C}}\end{array}$	1.2 発電用軽水型原子炉施設に関する安全設計審査指針 への適合 指針 35 ．原子炉冷却材圧力バウンダリの健全性適合のための設計方針 <中略 > タービン・トリップ，主蒸気隔離弁閉鎖等の運転時の異常な過渡変化時において，「主蒸気止め弁閉」，「主蒸気隔離弁閉」等による原子灲スクラムのような安全保護回路 を設け，また主蒸気逃がし安全弁を設けること等により，原子炉冷却材圧力バウンダリ過渡最大圧力が原子炉冷却材圧力バウンダリの最高使用圧力である $87.9 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$ のの 1.1倍の圧力 $96.7 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$ を超えない設計とする。 <中略〉	【原子炉本体】（要目表）	設計及び工事の計画の「（4）（ii）－（1）は8．62 MPa $\div 0.098=87.9 \mathrm{~kg} / \mathrm{cm}^{2} \mathrm{~g}$ であり，工学単位をSI単位に変換したもので あることから整合して いる。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（5）放射性遮蔽体の構造 主要な放射線遮蔽体は，原子炬圧力容器周柬及び原子炬格納容器外周のコンクリート壁である。 （6）その他の主要な事項 なし		【放射線管理施設】（要目表） \square ＊3：主要寸法欄は	 設計及び工事の計画の 「原子炉しゃへい壁」 は，設置変更許可申請書 （本文（五号））の「原子炉圧力容器周囲のコ ンクリート壁」と同一設備であり整合している。 設置変更許可申請書（本文（五号））において許可を受けた原子炉格納容器外周のコンクリー ト壁は，本工事計画の対象外である。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
二 核燃料物質の取扱施設及び貯蔵施設の構造及び設備			設置変更許可申請書（本文（五号））二項におい て，設計及び工事の計画 の内容は，以下のとおり整合している。		
（1）核燃料物質取扱設備の構造	4．核燃料物質の取扱施設及び貯蔵施設 4.1 燃料体等の取扱設備及び貯蔵設備 4．1．1 通常運転時等 4．1．1．1 概要	【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 1．燃料取扱設備 1．1 燃料取扱設備の基本方針			
E（1）－（1）榜燃料物質取扱設僙（燃料取扱設備）は，燃料	燃料体等の取扱設備及び貯蔵設備は，新燃料貯蔵庫，．．使	E（1）－（1）燃料体等の取扱設備は，燃料交換機（第1，2号	設計及び工事の計画日		
交換機（1号及び2号炉共用（既設）），原子炉建屋クレ	用済燃料プール（1号及び2 号炬共用，既設），燃料交換	機共用（以下同じ。）），原子炬建屋クレーン（第1，2号	（1）－（1）は，設置変更許		
ーン（1号及び2号炉共用（既設））等で構成する。	機（1号及び2号炉共用，既設），原子炉建屋クレーン（1	機共用（以下同じ。））及び燃料チャンネル差脱機（第1，	可申請書（本文（五号））		
	号及び 2 号炉共用，既設），キャスク洗浄ピット（1号及	2 号機共用（以下同じ。））で構成し，新燃料を原子炉建	の日（1）－（1）を具体的に		
	び2号炉共用，既設）等で構成する。	屋原子炉棟に搬入してから原子炉建屋原子炉棟外—搬出	記載しており整合して		
	なお，使用済燃料の搬出には，使用済燃料輸送容器を使用する	するまで，燃料体等を安全に取り扱うことができる設計と する。	いる。		
	＜中略＞				
新燃料は，原子炉建屋原子炉棟内に設ける新燃料貯蔵庫 から原子炉建屋クレーン $=(1)$－（2）等で使用済燃料プールに	燃料体等の取扱設備及び貯蔵設備は，新燃料を原子炬建	新燃料は，原子炉建屋原子炉棟内に設ける新燃料貯蔵庫	設計及び工事の計画の		
	屋原子炉棟に搬入してから焾心に装荷するまで及び使用	から原子炬建屋クレーン（1）－（2）及び燃料チャンネル着脱	E（1）－（2）は，設置変更許		
移し，燃料交換機により灲心に挿入する。	済燃料を炉心から取り出し原子炉建屋原子炉棟から搬出	機を介して使用済燃料プール（設計基漼対象施設としての	可申請書（本文（五号））		
	までの貯蔵並びに取扱いを行うものである。	み第1，2号機共用（以下同じ。））に移し，燃料交換機に	の日（1）－（2）を具体的に		
	＜中略＞	より炬心沉挿入できる設計とする。	記載しており整合して いる。		
燃料の取替えは，原子灲上部のE（1）－（3）ウェルに水を張 り，水中で燃料交換機を用いて行う。	4．1．1．2 設計方針 （4）遮蔽				
	<中略> 燃料体等の取扱設備は，使用斎燃料の炬心から使用斎燃	また，燃料の取替えは，原子炉上部の $=(1)-$（3）原子炉ウ	設計及び工事の計画の		
	料プールへの移送操作，使用斎燃料プールから焒心への移	エルに水を張り，水中で燃料交換機を用いて行うことがで	E（1）－（3）は，設置変更許		
	送操作，使用済燃料輸送容器への収容操作等が，使用斎燃	きる設計とする。	可申請書（本文（五号））		
	料の遮蔽に必要な水深を確保した状態で，水中で行うこと		の日（1）－（3）と同一設備		
	ができる設計とする。		であり整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
使用済燃料は，遮蔽に必要な水深を確保した状態で，日 （1）－（4）水中で燃料交換機により移送し，原子炉建屋原子炉棟内の使用済燃料プール（ 1 号及び 2 号炬共用（既設）） の水中に貯蔵する。 燃料交換機は，＝（1）－（5）燃料取扱時において燃料が臨界 に達することのない設計とする。 E（1）－（6）また，燃料体等の取扱中における燃料体等の落下を防止する設計とするとともに，使用斎燃料プール周辺 の設備状況等を踏まえて，使用済燃料プールの機能に影響 を及ぼす重量物については落下を防止できる設計とする。	4．1．1．2 設計方針 （4）遮蔽 使用済燃料プール内の壁面及び底部は，コンクリート壁 による遮蔽を施すとともに，燃料体等の上部には十分な遮蔽効果を南する水深を確保する設計とする。 ＜中略＞ 4．1．1．2 設計方針 （1）未臨界性 燃料体等の取扱設備及び貯蔵設備は，幾何学的な安全配置又は適切な手段により，臨界を防止できる設計とする。 燃料体等の貯蔵設備は，燃料体等を貯蔵容量最大に収容 した場合でも通常時はもちろん，想定されるいかなる場合 でも，未臨界性を確保できる設計とする。また，燃料体等 の取扱設備は，燃料体等を直接取り扱う場合には，一体ず つ取り扱う構造とし，臨界を防止する設計とする。 （7）落下防止 落下時に使用斎燃料プールの機能に影響を及ぼす重量物については，使用済燃料プール周辺の状況，現場におけ る作業実績，図面等にて確認することにより，落下時の工 ネルギーを評価し，気中落下試験時の模擬燃料集合体（チ中ンネルボックス含志）の落下エネルギー（15．5kJ）以上 となる設備等を抽出する。床面や壁面へ固定する設備等に ついては，使用斎燃料プールからの離隔を確保するため，使用斎燃料プールい落下するおそれはない。 4．1．1．4 主要設備 （1）燃料交換機 燃料交換機（ 1 号及び 2 号炉共用，既設）は，原子炉ウ エル，使用済燃料プール及び蒸気乾燥器•気水分離器ピッ ト上を水平に移動するブリッジ並びにその上を移動する トロリで構成する。 また，燃料つかみ具は二重のワイヤや燃料体等を確実に	使用済燃料は，遮蔽に必要な水深を確保した状態で，日 （1）－（4）燃料交換機により水中移送し，原子炉建屋原子炉棟内の使用済燃料プールの使用済燃料貯蔵ラック（設計基準対象施設としてのみ第1，2号機共用（以下同じ。））に貯蔵できる設計とする。．．． ＜中略＞ 燃料交換機及び燃料チャンネル着脱機は，E（1）－（5）燃料体等を一体ずつ取り扱う構造とすることにより，臨界を防止する設計とし，燃料体等の検査等を行ら際に水面に近づ いた状態であっても，燃料体等からの放射線の遮蔽に必要 な水深を確保できる設計とする。 ＜中略＞ 原子炉建屋クレーンは，フック部の外れ止めを有し，使用済燃料輸送容器等を取り扱う主巻フックは，定格荷重を保持でき，必要な安全率を有するワイヤロープを二重化す ることにより，燃料体等の重量物取り扱い中に落下を防止 できる設計とする。また，想定される使用済燃料プール内 への落下物によって使用済燃料プール内の燃料体等が破損しないことを計算により確認する。 なお，ワイヤロープ及びフックは，それぞれ「クレーン構造規格」，「クレーン等安全規則」の規定を満たす安全率を有する設計とする。 E（1）－（6）㦓料交換機の燃料つかみ具は，昇降を安全かつ確実に行うため，定格荷重を保持でき，必要な安全率を有 するワイヤロープの二重化，フック部の外れ止めを有し， グラップルヘッドには機械的インターロックを設ける設計とする。 燃料チャンネル着脱機は，下限リミットスイッチによる	設計及び工事の計画の E（1）－44は，設置変更許可申請書（本文（五号）） の $=(1)-4$ を具体的に記載しており整合して いる。 設計及び工事の計画の E（1）－（5）は，設置変更許可申請書（本文（五号）） の日（1）－（5）を具体的に記載しており整合して いる。 設計及び工事の計画の E（1）－（6）a，E（1）－（6） ，日 （1）－（6）d，E（1）－（6）d及び E（1）－（6） e は，設置変更許可申請書（本文（五号））の $=(1)$－（6）を具体的に記載しており整合 している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
F（2）（ii）a．（a）－（2）使用斎燃料プール水位，使用済燃料プー ル水温，使用斎燃料プール上部の空間線量率及び体用斎然料プール水の漏えいを監視する設備を設ける。	蔽効果を有する水深を確保する設計とする。 ＜中略＞ 4．1．1．1 概要 < 中略 > 使用済燃料プールの水位及び水温並びに燃料取扱場所 の放射楾量は中央制御室で監視できるとともに，異常時は中央制御室に警報を発信する。 4．1．1．4 主要設備 <中略 > 使用済燃料プール水の漏えいを防止するため，使用済燃料プールには排水口を設けない。使用済燃料プール水の漏 えい又は崩壊熱の除去能力の喪失に至る状態を監視する ため，使用済燃料プール監視設備として，燃料貯蔵プール水位，燃料プールライナドレン漏えい，燃料貯蔵プール水温度，燃料プール冷却浄化系ポンプ入口温度，使用済燃料 プール水位／温度（ガイドパルス式），燃料交換フロア放射線モニタ，原子炉建屋原子炉棟排気放射線モニタ，燃料取替エリア放射線モニタを設ける。－ ＜中略＞	蔽効果を有する水深を碓保することにより，燃料体等から の放射線に対して適切な遮蔽能力を有し，放射線業務従事者の被じくを低減する設計とする。 ＜中略＞ 3．計測装置等 E（2）（ii）a．（a）－（2）使用济燃料プールの水温を計測する装置として燃料窑蔵プール水温度，燃料プール冷却浄化系 ポンプスロ温度及び使用済然料プール水位温度（カカイド パルス式）を諮け，計測結果を中央制御室に表示できる設計とする。また，燃料貯蔵プール水温度及び燃料プール椧却净化系ポンプ入口温度は計測結果を記録し，及び保存す ることができる設計とする。 E（2）（ii）a．（a）－（2）b使用済燃料プールの水位を詁測する ための装置として燃料劕蔵プール水位，然料プールライナ ドレン漏えい及び使用济然料プール水位／温度（ガイドパ ルス式）を設け，計測結果を中央制御室に表示できる設計 とする。また，燃料貯蔵プール水位の記録はプロセス計算機から帳票として出力し保存できる設計とする。 燃料貯蔵プール水温度，燃料眝蔵プール水位及び使用済燃料プール水位／温度（ガイドパルス式）は，外部電源が使用できない場合においても非常用所内電源系からの電源供給により，使用済燃料プールの水温及び水位を計測す ることができる設計とする。 E（2）（ii）a．（a）－（2）C使用済燃料プールの水温の著しい上㟟又は使用斎然料プールの水位の著しい低下の場合に，こ北らを確寒に検出して自動的に中央制御室に警報（使用済燃料プール水温高又は使用斎燃料プール水位低）を発信す る装置を設けるとともに，表示ランプの点灯，ブザー鳴動等により運転員に通報できる設計とする。 <中略〉 【放射線管理施設】（基本設計方針） 1．放射線管理施設	設計及び工事の計画日 （2）（ ii ）a．（a）－（2）a， （2）（ii）a．（a）－（2）b， （2）（ii）a．（a）－（2）c及び $E(2)$（ii）a．（a）－（2）d は，設置変更許可申請書 （本文（五号））の $=(2)$ （ii）a．（a）－（2）を具体的 に記載しており整合し ている。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
なうような損傷を生じない設計とする。	扱中に想定される燃料体等の落下時及び重量物の落下時 においても使用済燃料プールの機能を損なうような損傷 を生じない設計とする。 （7）落下防止 落下時に使用済燃料プールの機能に影響を及ぼす重量物については，使用済燃料プール周辺の状況，現場におけ る作業実績，図面等にて確認することにより，落下時のエ ネルギーを評価し，気中落下試験時の模擬燃料集合体（チ ヤンネルボックス含む）の落下エネルギー（ 15.5 kJ ）以上 となる設備等を抽出する。床面や壁面へ固定する設備等に ついては，使用済燃料プールからの離隔を確保するため，使用済燃料プールへ落下するおそれはない。 a．原子炉建屋原子炉棟 原子炉建屋原子炉棟の屋根を支持する屋根トラスは，基準地震動に対する発生応力が終局耐力を超えず，使用済燃料プール内に落下しない設計とする。また，屋根について は鋼鈑（デッキプレート）の上に鉄筋コンクリート造の床 を設けた構造とし，地震による剥落のない構造とする。 また，燃料取替床の床面より上部を構成する壁は，鉄筋 コンクリート造の耐震壁であり，燃料取替床の床面より下部の耐震壁と合わせて基準地震動に対して使用済燃料プ ール内へ落下しない設計とする。 b．燃料交換機 燃料交換機は，基準地震動による地震荷重に対し，燃料	失うような損傷が生じない設計とする。 燃料体等の落下に関しては，模擬燃料体の気中落下試験 （以下「落下試験」という。）での最大減肉量を考慮して も使用済燃料プールの機能が損なわれない厚さ以上のス テンレス鋼内張りを施設する設計とする。なお，使用済燃料輸送容器に使用済燃料を収納する場合などは，落下試験 での落下高さを超えるため，水の浮力を考慮することによ り落下試験時の落下エネルギを下回ることを碓認する。 重量物の落下に関しては，使用済燃料プール周辺の状況，現場における作業実績，図面等にて確認することによ り，落下時のエネルギを評価し，落下試験時の燃料体等の落下エネルギ以上となる設備等に対しては，以下のとおり適切な落下防止対策を施し，使用済燃料プールの機能を維持する設計とする。 使用済燃料プールからの離隔を確保できる重量物につ いては，使用済燃料プールへ落下するおそれがないよう，転倒等を仮定しても使用済燃料プールに届かない距離に設置する。また，転倒防止のため床面や壁面へ固定する設計とする。 ＜中略＞ 原子炉建屋原子炉棟の屋根を支持する屋根トラスは，基準地震動S s に対する発生応力が終局耐力を超えず，使用済燃料プール内に落下しない設計とする。また，屋根につ いては鋼鈑（デッキプレート）の上に鉄筋コンクリート造 の床を設けた構造とし，地震による剥落のない構造とす る。また，燃料取替床の床面より上部を構成する壁は，鉄筋コンクリート造の耐震壁であり，燃料取替床の床面より下部の耐震壁と合わせて基準地震動 S s に対して使用済燃料プール内に落下しない設計とする。 燃料交換機及び原子炉建屋クレーンは，基準地震動 S s	（五号））の E（2）（ii）a． （a）－（4）を具体的に記載 しており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
燃料プール泠却浄化系及び残留熱除去系の熱交換器で除去した熱は，原子炉補機冷却系 $=(3)$（ i ）－（2）等を経て，最終ヒートシンクである海へ輸送できる設計とする。	4．2．1．4 主要設備 < 中略 > 燃料プール冷却浄化系及び残留熱除圭系の熱交換器で除去した熱は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）を経て，最終的な熱の逃がし場である海へ輸送する。 < 中略 >	ができない場合は，残留熱除去系を用いて使用済燃料から の崩壊熱を除圭できる設計とする。 <中略 > 燃料プール泠却浄化系の流路として，配管，弁，スキマ サージタンク及びディフューザを重大事故等対処設備と して使用できる設計とする。 その他，設計基準対象施設である使用済燃料プールを重大事故等対処設備として使用できる設計とする。 2．燃料貯蔵設備 2.1 燃料貯蔵設備の基本方針 <中略 > 万一，使用済燃料プールからの水の漏えいが発生し，か つ，使用済燃料プール水の補給に復水貯蔵タンク水が使用 できない場合には，残留熱除去系を用いてサプレッション チェンバのプール水を補給できる設計とする。 <中略 > 4．使用済燃料貯蔵槽冷却浄化設備 4.1 燃料プール冷却浄化系 <中略 > 燃料プール冷却浄化系熱交換器で除去した熱は，原子炬補機冷却水系 $\because(3) ~(i)-$（2）（原子炉補機冷却海水系を含 むo ）を経て，最終ヒートシンクである海へ輸送できる設計とする。 <中略 > 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4．残留熱除去設備 4.1 残留熱除去系 4．1．5 燃料プール泠却 残留熱除去系は，使用済燃料からの崩壊熱を除去できる設計とする。残留熱除去系熱交換器で除去した熱は，原子炉補機冷却水系	設計及び工事の計画の E（3）（i）－（2）は，設置変更許可申請書（本文（五号））の $=(3)$（ i ）－（2）を具体的に記載しており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
（ii）使用済燃料プールの泠却等のための設備	4.3 使用済燃料プールの泠却等のための設備				
	4．3．1 概要	4.2 燃料プール代替注水系			
使用済燃料プールの泠却機能又は注水機能が喪失し，又	使用済燃料プールの泠却機能又は注水機能が喪失し，又	使用済燃料プールの泠却機能又は注水機能が喪失し，又	設計及び工事の計画の		
は使用済燃料プールからの水の漏えいその他の要因によ	は使用済燃料プールからの水の漏えいその他の要因によ	は使用済燃料プールからの水の漏えいその他の要因によ	E（3）（ ii ）－（1）は，設置変		
り当該使用済燃料プールの水位が低下した場合において	り当該使用済燃料プールの水位が低下した場合において	り当該使用済燃料プールの水位が低下した場合において	更許可申請書（本文（五		
使用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，	使用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，	使用斎燃料プール内の燃料体等を泠却し，放射線を遮蔽	号））の日（3）（ii）－1家を		
及び臨界を防止するために必要な重大事故等対処設備日	及び臨界を防止するために必要な重大事故等対処設備を	L，及び臨界を防止するために必要な重大事故等対処設備	具体的に記載しており		
（3）（ii）－（1）を設置及び保管する。	設置及び保管する。	E（3）（ii）－（1）として，燃料プール代替注水系を設ける設計 とする。	整合している。		
		＜中略＞			
使用済燃料プールからの大量の水の漏えいその他の要	使用済燃料プールからの大量の水の漏えいその他の要	4.3 燃料プールスプレイ系使用済燃料プールからの大量の水の漏えいその他の要	設計及び工事の計画の		
因により使用済燃料プールの水位が異常に低下した場合	因により使用済燃料プールの水位が異常に低下した場合	因により使用済燃料プールの水位が異常に低下した場合	E（3）（ii）－（2）は，設置変		
において，使用斎燃料プール内燃料体等の著しい損傷の進	において，使用斎燃料プール内燃料体等の著しい損傷の進	において，使用斎燃料プール内の燃料体等の著しい損傷の	更許可申請書（本文（五		
行を緩和し，及び臨界を防止するために必要な重大事故等	行を緩和し，及び臨界を防止するために必要な重大事故等	進行を緩和し，及び臨界を防止するために必要な重大事故	号））のE（3）（ii）－（2）を		
対処設備（3）（ ii ）－2 を設置及び保管する。	対処設備を設置及び保管する。	等対処設備 $=(3)$（ii）－（2）として燃料プールスプレイ系を設	具体的に記載しており		
	＜中略＞	ける設計とする。	整合している。		
	4．3．2 設計方針	4.2 燃料プール代替注水系			
E（3）（ ii ）－3使用済燃料プールの玲却等のための設備の	使用斎燃料プールの冷却等のための設備のらちゃ．．使用済	E（3）（ ii ）－（3）使用済燃料プールの泠却機能又は注水機能	設計及び工事の計画の		
らち，使用済燃料プールの泠却機能又は注水機能が喪失	燃料プールの泠却機能又は注水機能が喪失し，又は使用斎	が喪失し，又は使用済燃料プールからの水の漏えいその他	E（3）（ii）－3 ${ }^{\text {a }}$ は，設置変		
し，又は使用済燃料プールからの小規模な水の漏えいその	燃料プールからの小規模な水の漏えいその他の要因によ	の要因により当該使用済燃料プールの水位が低下した場	更許可申請書（本文（五		
他の要因により使用済燃料プールの水位が低下した場合	り使用済燃料プールの水位が低下した場合においても使	合において使用済燃料プール内の燃料体等を冷却し，放射	号））の日（3）（ii）－3 と		
においても使用済燃料プール内燃料体等を泠却し，放射線	用済燃料プール内燃料体等を泠却し，放射線を遮蔽し，及	線を遮蔽し，及び臨界を防止するために必要な重大事故等	文章表現は異なるが，内		
を遮蔽し，及び臨界を防止できるよう使用斎燃料プールの	び臨界を防止できるよう使用斎燃料プールの水位を維持	対処設備として，燃料プール代替注水系を設ける設計とす	容に相違はないため整		
水位を維持するための設備として，燃料プール代替注水系	するための設備として，燃料プール代替注水系（常設配管）	る。	合している。		
－（常設配管）及び燃料プール代替注水系（可搬型）を設け	及び燃料プール代替注水系（可搬型）を設ける。	＜中略＞			
$\underline{\text { る。 }}$					
E（3）（ ii ）－4）また，使用済燃料プールの玲却等のための	また，使用斎燃料プールの泠却等のための設備のうち，	4.3 燃料プールスプレイ系 使用済燃料プールからの大量の水の漏えいその他の要	設計及び工事の計画の		
設備のうち，使用済燃料プールからの大量の水の漏えいそ	使用済燃料プールからの大量の水の漏えいその他の要因	因により使用済燃料プールの水位が異常に低下した場合	E（3）（ ii ）－（4）は，設置変		
の他の要因により使用済燃料プールの水位が異常に低下	により使用済燃料プールの水位が異常に低下した場合に	において，使用済燃料プール内の燃料体等の著しい損傷の	更許可申請書（本文（五		
した場合においても使用済燃料プール内燃料体等の著し	おいても使用済燃料プール内燃料体等の著しい損傷を緩	進行を緩和し，及び	号））の日（3）（ii）－4 と		
い損傷を緩和し，及び臨界を防止するための設備として，	和し，及び臨界を防止するための設備として，燃料プール	要な重大事故等対処設備として燃料プールスプレイ系を	文章表現は異なるが，内		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
また，使用済燃料貯蔵ラックの形状を維持た（3）（ii）－8 することにより臨界を防止できる設計とする。 燃料プール代替注水系（可搬型）は，代替淡水源が枯渴 した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用できる設計とする。また，大容量送水ポンプ（タイプ I ） は，空冷式のディーゼルエンジンにより駆動できる設計 とする。	等を経由して使用済燃料プールへ注水することで，使用済燃料プールの水位を維持できる設計とする。 また，使用済燃料貯蔵ラックの形状を維持することによ り臨界を防止できる設計とする。 燃料プール代替注水系（可搬型）は，代替淡水源が枯渴 した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用できる設計とする。また，大容量送水ポンプ（タイプI） は，空冷式のディーゼルエンジンにより駆動できる設計と する。 <中略 >	ルの水位を維持できる設計とする。 ＜中略＞ また，使用済燃料プールは，使用済燃料貯蔵ラックの形状を維持した $=(3)$（ii）－8 状態において，燃料プール代替注水系（可搬型）による冷却及び水位確保により使用斎燃料プールの機能を維持し，実効堌倍率が最も高くなる冠水状態においても実効増倍率は不確定性を含めて0．95以下 で臨界を防止できる設計とする。 < 中略 > 4．2．2 燃料プール代替注水系（可搬型）による使用済燃料プールへの注水 < 中略 > 燃料プール代替注水系（可搬型）は，代替淡水源が枯渴 した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用できる設計とする。 < 中略 > 大容量送水ポンプ（タイプI）は，空泠式のディーゼル エンジンにより駆動できる設計とする。 ＜中略＞ 大容量送水ポンプ（タイプI）は，想定される重大事故等時において，使用済燃料プール内の燃料体等を泠却し，放射線を遮蔽し，及び臨界を防止するために必要な注水流量を有する設計とする。 燃料プール代替注水系（可搬型）に使用するホースの敷設等は，ホース延長回収車（台数 4（予備 1））により行う設計とする。 なお，ホース延長回収車は，核燃料物質の取扱施設及び貯蔵施設のうち「4．3 燃料プールスプレイ系」，「4．4 放射性物質拡散抑制系」，原子炉冷却系統施設のらち「4．2原子炉格納容器フィルタベント系」，「5．6 低圧代替注水系」，「5．10．2 代替水源移送系」，「7．3 原子炉補機代替泠却水系」，原子炉格納施設のうち「3．2．2 原子炉格納容	設計及び工事の計画の E（3）（ii ）－8 は，設置変更許可申請書（本文（五号））の具体的に記載しており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
b 。使用済燃料プールからの大量の水の漏えい発生時に用 いる設備 （a）燃料プールスプレイ （a－1）燃料プールスプレイ系（常設配管）による使用済 燃料プールへのスプレイ 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷 を緩和するとともに，燃料損傷時には使用済燃料プール内燃料体等の上部全面にスプレイすることによりできる限 り環境への放射性物質の放出を低減するための重大事故等対処設備として，燃料プールスプレイ系（常設配管）は，大容量送水ポンプ（タイプ I ）により，代替淡水源の水を E（3）（ii）－（9）然料プール冷却浄化系配管等を経由してスプ レイノズルから使用済燃料プール内燃料体等に直接スプ レイすることで，燃料損傷を緩和するとともに，環境への放射性物質の放出をできる限り低減できる設計とする。 E（3）（ii）－（10）また，スプレイや蒸気環境下でも臨界にな らないよう配慮したラック形状によって，臨界を防止する ことができる設計とする。 燃料プールスプレイ系（常設配管）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I ）により海を利用できる設計とする。また，大容量送水ポンプ（タイプ I）は，空冷式のディーゼルエンジンにより駆動できる設計とする。	（2）使用済燃料プールからの大量の水の漏えい発生時に用いる設備 a．燃料プールスプレイ （a）燃料プールスプレイ系（常設配管）による使用済燃料プールへのスプレイ 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷 を緩和するとともに，燃料損傷時には使用済燃料プール内燃料体等の上部全面にスプレイすることによりできる限 り環境への放射性物質の放出を低減するための重大事故等対処設備として，燃料プールスプレイ系（常設配管）を使用する。 然料プールスプレイ系（常設配管）は，大容量送水ポン プ（タイプI），スプレイノズル，配管・ホース・弁類，計測制御装置等で構成し，大容量送水ポンプ（タイプI） により，代替淡水源の水を燃料プール冷却浄化系配管等を経由してスプレイノズルから使用済燃料プール内燃料体等に直接スプレイすることで，燃料損傷を緩和するととも に，環境への放射性物質の放出をできる限り低減できる設計とする。 また，スプレイや蒸気環境下でも臨界にならないよう配慮したラック形状によって，臨界を防止することができる設計とする。 然料プールスプレイ系（常設配管）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプI）により海を利用できる設計とする。また，大容量送水ポンプ（タイプ I）は，空冷式のディーゼルエンジンにより駆動できる設計とする。	4.3 燃料プールスプレイ系 4．3．1 燃料プールスプレイ系（常設配管）による使用済燃料プールへのスプレイ 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷 を緩和するとともに，燃料損傷時には使用済燃料プール内 の燃料体等の上部全面にスプレイすることによりできる限り環境への放射性物質の放出を低減するための重大事故等対処設備として，燃料プールスプレイ系（常設配管） を設ける設計とする。 然料プールスプレイ系（常設配管）は，大容量送水ポン プ（タイプI）により，代替淡水源の水をも（3）（ii）－（9）燃料プールスプレイ系配管等を経由してスプレイノズルか ら使用済燃料プール内の燃料体等に直接スプレイするこ とで，燃料損傷を緩和するとともに，環境への放射性物質 の放出をできる限り低減できるよう，使用済燃料プール内燃料体等の上部全面に向けてスプレイし，使用済燃料プー ル内燃料体等からの崩壊熱による蒸散量を上回る量をス プレイできる設計とする。 使用済燃料プールは，燃料プールスプレイ系（常設配管） にて，使用済燃料貯蔵ラック及び燃料体等を泠却し，臨界 にならないように配慮したラック形状三（3）（ii）－（10）及び燃料配置において，いかなる一様な水密度であっても実効堌倍率は不確定性を含めて0．95以下で臨界を防止できる設計とする。 燃料プールスプレイ系（常設配管）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備である大容量送水ポンプ（タイプ I ）により海を利用できる設計とする。 大容量送水ポンプ（タイプI）は，空冷式のディーゼル エンジンにより駆動できる設計とする。 燃料プールスプレイ系（常設配管）に使用するホースの敷設等は，ホース延長回収車（台数 4 （予備 1））（核燃料	設計及び工事の計画の E（3）（ii ）－（9）は，設置変更許可申請書（本文（五号））の $=(3)$（ ii ）－（9）と同義であり整合してい る。 設計及び工事の計画の E（3）（ii ）－（10 は，設置変更許可申請書（本文（五号））の $=(3)$（ ii ）－（10 を具体的に記載しており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
		物質の取扱施設及び貯蔵施設のらち「4．2 燃料プール代替注水系」の設備を核燃料物質の取扱施設及び貯蔵施設の らち「4．3 燃料プールスプレイ系」の設備として兼用） により行ら設計とする。 燃料プールスプレイ系（常設配管）の流路として，設計基準対象施設である使用済燃料プール，使用済燃料貯蔵ラッ ク及び制御棒•破損燃料貯蔵ラックを重大事故等対処設備 として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 4.7 重大事故等の収束に必要となる水源 代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽 （No．2）を設ける設計とする。 また，淡水が枯渇した場合に，海を水源として利用でき る設計とする。 代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽 （No．2）は，想定される重大事故等時において，使用済燃料プールの泠却又は注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型）の水源として使用できる設計とする。 海は，想定される重大事故等時において，淡水が枯渇し た場合に，使用済燃料プールの泠却又は注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である燃料プール代替注水系（常設配管），燃料プール代替注水系 （可搬型），燃料プールスプレイ系（常設配管）及び燃料プ ールスプレイ系（可搬型）の水源として，さらに，放水設備（大気への拡散抑制設備）の水源として利用できる設計 とする。			
（a－2）燃料プールスプレイ系（可搬型）による使用済燃 料プールへのスプレイ 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷	（b）燃料プールスプレイ系（可搬型）による使用済燃料 プールへのスプレイ 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷	4．3．2 燃料プールスプレイ系（可搬型）による使用済燃料プールへのスプレイ 使用済燃料プールからの大量の水の漏えい等により使用済燃料プールの水位が異常に低下した場合に，燃料損傷			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
［可搬型重大事故等対処設備］ 燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型） 大容量送水ポンプ（タイプI） E（3）（ii）－（20）（「ホ（3）（ii）b．．．．．（c））原子炬冷却材圧力バ ウンダリ低圧時に発電用原子炬を冷却するための設備」，「ホ（4）（v）最終ヒートシンクへ熱を輸送するための設備」，「リ（3）（ii）a－．原子炬格納容器内の冷却等のための設備」，「リ（3）（ii）b－原子炬格納容器の過圧破損を防止 するための設備」，「り（3）（ii）c．．原子炬格納容器下部の溶融炬心を冷却するための設備」及び「ホ（4）（vi）重大事故等の収束に必要となる水の供給設備」と兼用）． （本文十号） 燃料プール代替注水系（可搬型）を使用した使用済燃料プールへの注水は，大容量送水ポンプ（タイプI） 1 台を使用するものとし， $114 \mathrm{~m}^{3} / \mathrm{h}$ の流量で注水する。 －記載箇所 $\begin{aligned} & \text { 八 (2) (ii)d. (a) (a-6) } \\ & \text { 八 (2) (ii)d. (b) (b-8) } \end{aligned}$	第4．3－1表 使用済燃料プールの泠却等のための設備の 主要機器仕様 （1）燃料プール代替注水系（常設配管），燃料プール代替注水系（可搬型），燃料プールスプレイ系（常設配管）及び燃料プールスプレイ系（可搬型） a．大容量送水ポンプ（タイプI） 兼用する設備は以下のとおり。 －原子炬冷却材圧力バウンダリ低圧時に発電用原子炬を冷却するための設備 - 最終ヒートシンクへ熱を輸送するための設備 - 原子炉格納容器内の泠却等のための設備 - 原子炬格納容器の過圧破損を防止するための設備 - 原子炉格納容器下部の溶融炬心を冷却するための設備 - 重大事故等の収束に必要となる水の供給設備 - 設置変更許可申請書（本文十号）で使用している大容量送水ポンプ（タイプI）の注水流量は，工事計画 で使用している大容量送水ポンプ（タイプI I）の容量 と整合しており，設置変更許可申請書（本文十号）で使用している解析条件に包絡される。	【核燃料物質の取扱施設及び貯蔵施設】（要目表） 2.4 使用济然料拧蔵槽洽却浄化設備	「大容量送水ポンプ（タ イプI）」は，設置変更許可申請書（本文（五号）における －（20）を設計及び工事の計画の $=(3)$（ ii ）－（20）に整理しており整合して いる。 設計及び工事の計画の E（3）（ii）－（21）は，設置変更許可申請書（本文（五号））の（3）（ii）－（21）と同義であり整合してい る。	

42＊期 TOMOM －10－0

$E(3)$（ii ）－（20）

10．

＊16：

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
放水設備（大気への拡散抑制設備） 大容量送水ポンプ（タイプII） E（3）（ii）－（22）（「ホ（4）（vi））重大事故等の収束に必要となる水 の供給設備」他と兼用）	（2）放水設備（大気への拡散抑制設備） a．大容量送水ポンプ（タイプII） 第5．7－1表 ．重大事故等の収束に必要となる水の供給設備の主要機器仕様に記載する。．．．	【原子炬格納施設】（要目表） （mFosone 1： ＊2 ： ${ }^{*} 3$ ： ＊：（ 	「大容量送水ポンプ（タ イプII）」は，設置変更許可申請書（本文（五号））における －（2）を設計及び工事の計画のE（3）（ii）－（22）に整理しており整合して いる。	

（12R＊
有 －

E（3）（ii ）－（26

 F｜tit

－：

 （

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（1）（ii）－（2）主復水器で凝縮した復水は，復水ポンプ，復水浄化系及び給水加熱器を通り，原子炉給水ポンプにより給水として原子炬圧力容器にもどす。 （1）（ii）－（3）蒸気タービンは，想定される環境条件にお いて材料に及ぼす化学的及び物理的影響に対し，而性を有 する材料が用いられ，かつ，蒸気タービンの振動対策及び過速度対策を含みっ十分な構造強度を有する設計とし，そ の運転状熊を中央制御室及び現場において監視可熊な設備を設ける。－	5.12 タービン設備 5．12．1 概要 5．12．2 設計方針 <中略 > （4）復水•給水系には，復水浄化系を設け，高純度の給水 を発電用原子炉へ供給できるようにする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉への適切な給水温度を確保できるような設計 とする。 <中略 >	3．原子炉泠却材の循環設備 3.1 主蒸気系，復水給水系等 木（1）（ii）－（1）b 炬心で発生した蒸気は，原子炉圧力容器内の気水分離器及び蒸気乾燥器を経た後，主蒸気管で蒸気 タービンに導く設計とする。 なお，主蒸気管には，主蒸気逃がし安全弁及び主蒸気隔離弁を取り付ける設計とする。 木（1）（ii）－（2）蒸気タービンを出た蒸気は復水器で復水す る。復水は，復水ポンプ，復水浄化系及び給水加熱器を通 り，給水ポンプにより発電用原子炉に戻す設計とする。．．主蒸気管には，タービンバイパス系を設け，蒸気を復水器へ バイパスできる設計とする。 復水給水系には復水中の核分裂生成物及び腐食生成物 を除去するために復水浄化系を設け，高純度の給水を発電用原子炉へ供給できる設計とする。また，4段の低圧給水加熱器及び 2 段の高圧給水加熱器を設け，発電用原子炉へ の適切な給水温度を確保できる設計とする。 <中略 > 【蒸気タービン】（基本設計方針） 1．蒸気タービン 木（1）（ii）－（3）設計基集対象施設に施設する蒸気タービン及び蒸気タービンの附属設備は，想定される環境条件にお いて，材料に及ぼす化学的及び物理的影響を考慮した設計 とする。 また，振動対策，過速度対策等各種の保櫵装置及び監視制御装置により，中央制御室及び現場において運転状熊の監視を行い，発電用原子炬施設の安全性を損なわないよ ．．．．．以下の事項を考慮して設計する。．．． 1.1 蒸気タービン本体 蒸気タービンの定格出力は，復水器真空度 96.3 kPa ，補	と同義であり整合して いる。 設計及び工事の計画の㕅（1）（ii）－（2）は，設置変更許可申請書（本文（五号））の困（1）（ii）－（2）と同義であり整合してい る。 設計及び工事の計画の木（1）（ii）－（3）は，設置変更許可申請書（本文（五号））の困（1）（ii）－（3）と文章表現は異なるが，内容に相違はないため整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
	5．12．4．1 蒸気タービン （4）タービンバイパス系	また，蒸気タービンの附属設備のらち，主要な耐圧部の溶接部については，次のとおりとし，使用前事業者検査に より適用基準及び適用規格に適合していることを確認す る。 （1）不連続で特異な形状でないものであること。 （2）溶接による割れが生ずるおそれがなく，かつ，健全な溶接部の確保に有害な溶込み不良その他の欠陥がないこ とを非破壊試験により確認したものであること。 （3）適切な強度を有するものであること。 （4）機械試験その他の評価方法により適切な溶接施工法，溶接設備及び技能を有する溶接士であることをあらか じめ確認したものにより溶接したものであること。 なお，主要な耐圧部の溶接部とは，蒸気タービンに係る蒸気だめ又は熱交換器のうち水用の容器又は管であって，最高使用温度 $100^{\circ} \mathrm{C}$ 未満のものについては，最高使用圧力 $1,960 \mathrm{kPa}$ ，それ以外の容器については，最高使用圧力 98 kPa ，水用の管以外の管については，最高使用圧力 980 kPa （長手継手の部分にあっては，490kPa）以上の圧力が加え られる部分について溶接を必要とするものをいう。また，蒸気タービンに係る外径 150 mm 以上の管のらち，耐圧部に ついて溶接を必要とするものをいう。 蒸気タービンの附属設備の機器仕様は，運転中に想定さ れる最大の圧力•温度，必要な容量等を考慮した設計とす る。 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 3．原子炉冷却材の循環設備 3.1 主蒸気系，復水•給水系等		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
木（1）（ii）－（4）主蒸気管には，タービンバイパス采を設け，蒸気を主復水器ヘバイパスできるようにする。	タービンバイパス系は，主蒸気をタービンを通さずに直接主復水器－放出させる配管及び弁で横成し，定格蒸気流量の約 25% を处理する熊力があり，原子炉起動時，停止時，通常運転時及び過渡状態時に主蒸気圧力の調整を行ら。 5．1 原子炉圧力容器及び一次冷却材設備 5．1．1 通常運転時等 5．1．1．4 主要設備 5．1．1．4．3 主蒸気系 5．1．1．4．3．3 主蒸気逃がし安全弁 主蒸気逃がし安全弁は，原子炉冷却材圧力バウンダリの過度の圧力上昇を防止するため原子炉格納容器内の主蒸気管に取付ける。排気は，排気管によりサプレッションチ ェンバ内のプール水面下に導き凝縮するようにする。主蒸気逃がし安全弁は，バネ式（アクチュエータ付）で，アク チュエータにより逃がし弁として作動させることもでき るバネ式安全弁である。 すなわち，主蒸気逃がし安全弁は，バネ式の安全弁に，外部から強制的に開閉を行らアクチュエータを取付けた もので，蒸気圧力がスプリングの設定圧力に達すると自動開放するほか，外部信号によってアクチュエータのピスト ンに窒素を供給して弁を強制的に開放することができる。 主蒸気逃がし安全弁は，11個からなり，次の機能を有し ている。 （1）逃がし弁機能 本機能における主蒸気逃がし安全弁は，原子炉泠却材圧 カバウンダリの過度の圧力上昇を抑えるため，原子炉圧力高の信号によりアクチュエータのピストンを駆動して強制的に開放する。11個の主蒸気逃がし安全弁は，すべてこ の機能を有している。 （2）安全弁機能	＜中略＞ 木（1）（ii）－（4）タービンバイパス系は，原子炉起動時，停止時，，通常運転時及び過渡状態において，原子炬蒸気を直接復水器に導き，原子炉定格蒸気流量の約 25% を処理できる設計とする。 3.4 主蒸気逃がし安全弁の機能 3．4．3 主蒸気逃がし安全弁の容量 主蒸気逃がし安全弁は，ベローズと補助背圧平衡ピスト ンを備えたバネ式の平衡形安全弁に，外部から強制的に開閉を行うアクチュエータを取付けたもので，蒸気圧力がス プリングの設定圧力に達すると自動開放するほか，外部信号によってアクチュエータのピストンに窒素圧力を供給 して弁を強制的に開放することができるものを使用し，サ プレッションチェンバからの背圧変動が主蒸気逃がし安全弁の設定圧力に影響を与えない設計とする。なお，主蒸気逃がし安全弁は，11個設置する設計とする。 主蒸気逃がし安全弁の排気は，排気管によりサプレッシ ョンチェンバのプール水面下に導き凝縮する設計とする。	設計及び工事の計画の 㕅（1）（ii）－（4）は，設置変更許可申請書（本文（五 号））㕅（1）（ii）－（4）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
术（1）（ ii ）－5＊た，原子炬冷却材系の過度の圧力上昇を	本機能における主蒸気逃がし安全弁は，原子炬冷却材圧	主蒸気逃がし安全弁の容量は，䢡（1）（ii）－⑤原子炬冷却	設計及び工事の計画の		
防止するため，	力バウンダリの過度の圧力上昇を抑えるため，逃がし升機	材圧力バウンダりの過度の圧力上昇を抑えるため，吹出し	木（1）（ii）－（5）は，設置変		
	能のバックアップとして，圧力の上昇に伴いスプリングに	圧力と設置個数とを適切に組み合わせることにより，原子	更許可申請書（本文（五		
	打勝って自動開放されることにより，運転時の異常な過渡	炉圧力容器の過圧防止に必要な容量以上を有する設計と	号））床（1）（ ii ）－5 ¢ と同		
	変化時に，原子炉冷却材圧力バウンダリの圧力を最高使用	する。	義であり整合している。		
	圧力の 1.1 倍以下，また，設計基準事故時に原子炬冷却材	なお，容量は運転時の異常な過度変化時に，原子炉冷却			
	圧力バウンダリの圧力を最高使用圧力の 1.2 倍以下とす	材圧力バウンダリの圧力を最高使用圧力の 1.1 倍以下に保			
	る。11個の主蒸気逃がし安全弁は，すべてこの機能を有し ている。	持するのに必要な容量を算定する。			
	5．1．1．4．3．3 主蒸気逃がし安全弁	3.4 主蒸気逃がし安全弁の機能			
		3．4．1 系統構成			
木（1）（ii）－（6）アクチュエータ作動の逃がし弁機能及びバネ	主蒸気逃がし安全弁は，原子炉泠却材圧力バウンダリの	主蒸気逃がし安全弁は，术（1）（ii）－66゙ネ式安全弁に，外	設計及び工事の計画の		
作動の安全弁機能を有する主蒸気逃がし安全弁を主蒸気	過度の圧力上昇を防止するため原子炉格納容器内の主蒸	部から強制的に開閉を行うアクチュエータを取付けたも	木（1）（ii）－⑥は，設置変		
管に設け，蒸気をサプレッションチェンバのプール水中に	気管に取付ける。排気は，排気管によりサプレッションチ	ので，排気はサプレッションチェンバのプール水面下に導	更許可申請書（本文（五		
導ける設計とする。	エンバ内のプール水面下に導き凝縮するようにする。主蒸	き，原子炉冷却系の過度の圧力上昇を防止できる設計とす	号））㕅（1）（ ii ）－6 を具		
	気逃がし安全弁は，バネ式（アクチュエータ付）でっアク		体的に記載しており整		
	チュエータにより逃がし弁として作動させることもでき	自動減圧系は，中小破断の泠却材喪失事故時に原子炉蒸	合している。		
	るバネ式安全弁である。	気をサプレッションチェンバのプール水中へ逃がし，原子			
		ード）又は低圧炬心スプレイ系による注水を可能とし，炉			
		心泠却を行うことができる設計とする。			
		＜中略＞			
	5．1．1．2 設計方針 （4）構造強度等	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）			
		3.2 原子炉冷却材圧力バウンダリ			
	a．原子炉冷却材圧力バウンダリを構成する配管及び機器	术（1）（ii）－7原子炬冷却材圧力バウンダリを構成する機	設計及び工事の計画の		
	は，通常運転時，運転時の異常な過渡変化時及び設計基	器は，年通常運転時，運転時の異常な過渡変化時及び設計基	木（1）（ii）－（7）は，設置変		
	準事故時に想定される圧力，温度等を耆慮し，地震時に	準事故時术（1）（ii）－8 に生ずる衝撃，炬心の反応度の恋化	更許可申請書（本文（五		
	生じる荷重をも適切に重ねる合わせ，変動時間，繰り返し	による荷重の増加その他の原子炉冷却材圧力バウンダリ	号））の床（1）（ii）－（7）と		
	回数等の過渡条件を想定し，材料疲労や腐食を考慮して	を構成する機器に加わる負荷に耐える設計とする。	同義であり整合してい		
	も健全性を損なわない構造強度を有する設計とする。．．	<中略 >			
困（1）（ ii ）－7 原子炬冷却材圧力バウンダリは，原子媔圧	b．一次冷却材設備を構成する系統及び機器は，通常運転				
力容器及びそれに接続される配管系等から構成され，通常	時及び運転時の異常な過渡変化時に健全性を損なわな	3.3 原子炉冷却材圧力バウンダリの隔離装置等	設計及び工事の計画の		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
運転時，運転時の異常な過渡変化時及び設計基準事故時困 （1）（ii）－（8）において，原子炬停止系等の作動等とあいまっ て，圧力及び温度変化に対し十分耐え，その健全性を確保 する設計とする。 原子炉冷却材圧力バウンダリホ（1）（ii）－（9）に接続する配管系には，適切に隔離弁を設ける設計とする。 また，原子炬冷却材圧力バウンダリからの原子炬冷却材 の漏えい林（1）（ii）－（10）量期に検出するため，漏えい監視設備を設ける。	い構造強度を有する設計とするとともに，その支持構造物は，温度変化による膨張収縮に伴う変位を吸収し得る設計とする。 5．1．1．4．5 弁類 ＜中略＞ 原子炉圧力容器及び一次冷却材設備に接続され，その一部が原子炉冷却材圧力バウンダリを形成する配管系に関 して原則として，次のとおり隔離弁を設ける。 a．通常時開及び事故時閉の場合は 2 個の隔離弁 b ．通常時開又は事故時開となるおそれがある通常時閉及 び事故時閉の場合は 2 個の隔離弁 c．通常時閉及び事故時閉のらちb．以外の場合は 1 個の隔離弁 d．通常時閉及び原子炉泠却材喪失時開の非常用炉心泠却系等はa，に準ずる。 ここで「隔離弁」とは，自動隔離弁，逆止弁，通常時口 ックされた閉止弁及び遠隔操作閉止弁をいう。	原子炉冷却材圧力バウンダリ冷却材圧力バウンダリに接続する配管等が破損すること によって，原子炬冷却材の流出を制限するために配管系の通常運転時の状熊及び使用目的を考盧し，適切に隔離弁を設ける設計とする。 ＜中略＞ 9．原子炉格納容器内の原子炉冷却材漏えいを監視する装置 原子炉冷却材圧力バウンダリからの原子炉冷却材の漏 えい林（1）（ii）－（10に対して」ドライウェル送風機冷却コイ ルドレン流量測定装置，ドライウェル床ドレンサンプ水位測定装置，ドライウェル機器ドレンサンプ水位測定装置及 び格納容器内ダスト放射線濃度測定装置を設ける設計と する。 このうち，漏えい位置を特定できない原子炬格納容器内 の漏えいに対しては，ドライウェル床ドレンサンプ水位測定装置により， 1 時間以内に $0.23 \mathrm{~m}^{3} / \mathrm{h}$ の漏えい量を検出す る能力を有する設計とするとともに，自動的に中央制御室 に警報を発信する設計とする。 また，測定値は，中央制御室に指示する設計とする。	木（1）（ii）－8 は，設置変更許可申請書（本文（五号））の同義であり整合してい る。 設計及び工事の計画の木（1）（ii）－（9）は，設置変更許可申請書（本文（五号））の床（1）（ii）－（9）を具体的に記載しており整合している。 設計及び工事の計画の木（1）（ii）－（101は，設置変更許可申請書（本文（五号））の床（1）（ii）－（10を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
大（1）（ii）－（11）原子㷧压力容器は，想定される重大事故等時において，重大事故等対処設備として使用する。	5．1．2 重大事故等時 5．1．2．1 概要 原子炉圧力容器（炉心支持構造物を含む。）については，重大事故に至るおそれのある事故時において，重大事故等対処設備としてその健全性を確保できる設計とする。 <中略 > 5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を冷却するための設備 5．6．2 設計方針 （1）原子炉運転中の場合に用いる設備 b ．サポート系故障時に用いる設備 （d）常設代替交流電源設備による低圧炉心スプレイ系の復旧 < 中略 > その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る低圧炉心スプレイ系及び原子炬補機冷却水系（原子炉補機冷却海水系を含む。）を重大事故等対処設備（設計基準拡張）として使用する。	4．残留熱除去設備 4.1 残留熱除去系 4．1．2 原子炉停止時冷却モード （1）系統構成 ＜中略＞ 残留熱除去系（原子炉停止時冷却モード）の流路として，設計基準対象施設である㕅（1）（ ii ）－（11）原子炉圧力容器，炬心支持構造物及び原子炬圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行う。 5．非常用炉心冷却設備その他原子炉注水設備 5.2 高圧炉心スプレイ系 5．2．1 系統構成 < 中略 > 高圧炉心スプレイ系の流路として，設計基準対象施設で ある床（1）（ii）－（11）原子炉圧力容器，炬心支持構造物及び原子煽圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。 <中略 > 5.3 低圧炉心スプレイ系 5．3．1 系統構成 < 中略 > 低圧炉心スプレイ系の流路として，設計基準対象施設で ある床（1）（ii）－（11）原子炉圧力容器，炬心支持構造物及び原子炉圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行う。	設計及び工事の計画の㕅（1）（ii）－（11）は，設置変更許可申請書（本文（五号））の术（1）（ii）－（11）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	5.4 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉 を冷却するための設備 5．4．2 設計方針 （1）フロントライン系故障時に用いる設備 a 。高圧代替注水系による発電用原子炉の冷却 < 中略 > 本系統の流路として，高圧代替注水系，高圧炉心スプレ イ系，原子炉隔離時冷却系及び主蒸気系の配管及び弁，原子炉冷却材浄化系及び補給水系の配管，燃料プール補給水系の弁並びに復水給水系の配管，弁及びスパージャを重大事故等対処設備として使用する。 その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用する。 （2）サポート系故障時に用いる設備 a ．原子炉隔離時冷却系の現場操作による発電用原子炉の冷却 < 中略 > その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る原子炉隔離時冷却系を重大事故等対処設備（設計基準拡張）として使用する。 b．代替電源設備による原子炉隔離時冷却系の復旧 ＜中略＞ その他，設計基準対象施設である原子炉圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る原子炉隔離時冷却系を重大事故等対処設備（設計基準拡張）として使用する。 5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を冷却するための設備 5．6．2 設計方針	5． 4 高圧代替注水系 ＜中略＞ 高圧代替注水系の流路として，設計基準対象施設である㕅（1）（ii）－（11）原子炉圧力容器，炬心支持構造物及び原子炬圧力容器内部構造物を重大事故等対処設備として使用す ることから，流路に係る機能について重大事故等対処設備 としての設計を行う。 5.5 原子炉隔離時冷却系 5．5．1 系統構成 < 中略 > 原子炉隔離時冷却系の流路として，設計基準対象施設で ある林（1）（ii）－（11）原子炬圧力容器，炬心支持構造物及び原子炬圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書頑八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	停止時冷却モード）の復旧 ＜中略〉 その他，設計基準対象施設である原子炬圧力容器を重大事故等対処設備として使用し，設計基準事故対処設備であ る残留熱除去系（原子炬停止時冷却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）を重大事故等対処設備（設計基準拡張）として使用さる。	代替循擐泠却系の流路として，設計基準対象施設であ る床（1）（ii）－（11）原子炬圧力容器，炬心支持構生物及び原子炬圧力容器内部構造物並びに原子炬格納容器を重大事故等対処設備として使用することから，流路に係る機能に ついて重大事故等対处設備としての設計を行ら。 <中略〉 3．2．5 高圧代替注水系 ＜中略＞ 高圧代替注水系の流路として，設計基準対象施設であ る困（1）（ii）－（11）原子炬圧力容器，炬心支持構造物及び原子炬厓力容器内部構生物を重大事故等対处設備として使用 することから，流路に係る機能について重大事故等対処設備としての設計を行ら。 3．2．6 低圧代替注水系 （1）低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 <中略> 低圧代替注水系（常設）（復水移送ポンプ）の流路とし て，設計基準対象施設である㕅（1）（ii）－（1）原子炉圧力容器，炬心支持寨造物及ぴ原子炬圧力容器内部構造物を重大事故等対処設備として使用することから，流路に係る機能について重大事故等対処設備としての設計を行ら。 （2）低圧代替注水系（可搬型）による原子炉注水 <中略 > 低圧代替注水系（可搬型）に使用するホースの敷設等は， ホース延長回収車（台数 4 （予備1））（核燃料物質の取扱施設及び貯蔵施設のらち「4．2燃料プール代替注水系」の設備を原子炉冷却采統施設のらち「5．6低圧代替注水系」の設備として兼用）により行ら設計とする。 低圧代替注水系（可搬型）の流路として，設計基準対象施設である床（1）（ii）－（11）原子炬圧力容器，炬心支持構造物		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
木（1）（ii）b．－（6）主蒸気隔離弁 個数 ${ }^{(1)}$（1）（ii）b．－7 2 2（主蒸気管 1 本当たり） 木（1）（ii）b．－8 取付位置 ドライウェル貫通部前後 木（1）（ii）b．－（9）閉鎖時間 $3 \sim 5$ 秒 漏えい率 $10 \% / \mathrm{d} /$ 個以下（主蒸気逃がし安全弁最低設定圧力において，原子炉圧力容器気相の体積 に対し，飽和蒸気で） 整合性 －設計及び工事の計画の匞（1）（ii）b．－（6）a 及び㕅（1）（ii の㕅（1）（ii）b．－（6）と同一設備であり整合している。 －設計及び工事の計画の㕅（1）（ii）b．－（7）a及び术（1）（ii の术（1）（ii）b．－7 ）と同義であり整合している。 2 個 \times 主蒸気管本数 4 本 $=8$ 個 －設置変更許可申請書（本文（五号））の㕅（1）（ii）b．－基準対象施設】主蒸気系系統図（ $1 / 2$ ）（主蒸気系 －設計及び工事の計画の术（1）（ii）b．－（9）a及び䢡（1）（ii の困（1）（ii）b．－（9）と同義であり整合している。 （本文十号） 主蒸気隔離弁閉止時間 3 秒 －記載箇所 $\begin{aligned} & \text { 个(2)(i)d. (c) } \\ & \text { 个 (2) (ii)c. (b) a) } \\ & \text { 八(2) (ii)b. (e) (e-5) } \end{aligned}$ （本文十号） 主蒸気隔離弁は，主蒸気管流量大の信号により 0.5 秒 の動作遅れ時間を含み，事故後 5.5 秒で全閉するもの とする。 －記載箇所 $\begin{aligned} & \text { ㅁ (2) (iii) b. (c) } \\ & \text { 口 (2) (iii) e. (h) } \end{aligned}$	（3）主蒸気隔離弁 形式 玉 形 弁 個数 2（主蒸気管1本当たり） 駆動方式 窒素又は空気及びスプリング 閉鎖時間 $3 \sim 5$ 秒 漏えい率 $10 \% / \mathrm{d} /$ 個以下 $\binom{\text { 主蒸気逃がし安全弁最低設定圧力において, }}{\text { 圧力容器気相の体積に対し, 飽和蒸気で }}$ ）b．－（6bbは，設置変更許可申請書（本文（五号）） ）b．－（7bbは，設置変更許可申請書（本文（五号）） 8）については，添付図面第4－2－1－1－1図「！設計 その1）」に記載しており整合している。 ）b．－（9）bは，設置変更許可申請書（本文（五号）） －設置変更許可申請書（本文十号）で使用している主蒸気隔離弁の閉止時間は下限値であり，設計及び工事 の計画で使用している主蒸気隔離弁の閉止時間は，設置変更許可申請書（本文十号）で使用している解析条件に包絡されている。 －設置変更許可申請書（本文十号）で使用している主蒸気隔離弁の閉止時間は上限値 $(0.5$ 秒 +5.0 秒 $=5.5$秒）であり，設計及び工事の計画で使用している主蒸気隔離弁の閉止時間（5．0秒）は，設置変更許可申請書（本文十号）で使用している解析条件に包絡されて いる。	【原子炉冷却系統施設（蒸気タービンを除く。）】 （要目表） 書による。 		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
非常用炬心冷却系は，工学的安全施設の一設備であつ て，低圧灲心スプレイ系，低压注水系，高圧炬心スプレイ系及び自動減圧奚から構成する。これらの各系統は，椧却材喪失事故等が起こったときは，復水貯蔵タンク水又はサ プレッションチェンバ内のプール水を原子炬に注入し，又 は原子炬蒸気をサプレッションチェンバ内のプール水中 に逃がし原子炬圧力を速やかに泜下させるなどにより，困 （3）（ii）a．－（1）炬心を冷却することができる。 㕅（3）（ii）a．－（2）また，低压炬心スプレイ系，低圧注水系，高压炬盆スプレイ采及び达（3）（ii）a．－（3）自動减压采は，想定される重大事故等時においても使用する。	5．3．1．1 概要 非常用炬心冷却系は，冷却材嚄失事故時に燃料被覆管の大破損を防止し，ジルコニウムー水反応を極力抑え，萛壊熱を長期にわたつて除寺する機能を持ち，低圧炉心スプレ イ系，低圧注水系，高圧炉心スプレイ系及び自動減圧系で構成する。 5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を泠却するための設備 5．6．1 概要 < 中略 > また，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（低圧注水モード），残留熱除去系（原子炉停止時冷却モード）及び低圧炉心スプレイ系が使用できる場合は，重大事故等対処設備（設計基準拡張）として使用する。残留熱除去系（低圧注水モード）及 び残留熱除去系（原子炉停止時冷却モード）については，「5．2 残留熱除去系」に記載する。低圧灲心スプレイ系に ついては，「5．3 非常用炉心冷却系」に記載する。	非常用炬心椧却設備は，工学的安全施設の一設備であっ て，高圧灲心スプレイ系，低圧炬心スプレイ系，残留熱除圭系（低压注水モード）及び自動減圧系から構成する。 これらの各系統は，泠却材啔失事故等が起こったとき に，サプレッションチェンバのプール水又は復水貯蔵タン クの水を原子炬圧力容器内に注水し，又は原子炬蒸気を少 プレッションチェンバのプール水中に逃がし原子炬圧力 を速やかに低下させるなどにより，床（3）（ii）a．－（1）炬心を洽却し，燃料被覆管の温度が燃料材の溶融又は然料体の著 しい破損を生ずる温度を超えて上䖝することを防止でき る設計とするとともに，燃料の猧熱による燃料被覆管の太破損を防ぎっさらにこれに伴らジルコニウムと水との反底 を無視しうる程度に抑え，著しく多量の水素を生じない設計とする。 ＜中略＞ 5． 3 低圧炉心スプレイ系 5．3．1 系統構成 低圧炉心スプレイ系は，大破断の椧却材喪失事故時には残留熱除去系（低圧注水モード）及び高圧炬心スプレイ系 と連携して，中小破断の椧却材喪失事故時には高圧炉心ス プレイ系あるいは自動減圧系と連携して炉心を泠却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポ ンプにより，サプレッションチェンバのプール水を，炉心上部に取付けられた低圧炉心スプレイスパージャのノズ ルから炉心にスプレイする設計とする。 㕅（3）（ii）a．－（2）原子炬冷却材圧力バウンダリ低圧時に発雷用原子炬を泠却するための設備として，想定される重大事故等時において，設計基準事故対処設備である低圧炉心 スプレイ系が使用できる場合は，重大事故等対処設備（設計基準掋張）として使用できる設計とする。	設計及び工事の計画の「残留熱除去系（低圧注水モード）」は設置変更許可申請書（本文（五号））の「低圧注水系」 と同一設備であり整合 している。以下同じ。 設計及び工事の計画の㕅（3）（ii）a．－11は，設置変更許可申請書（本文 （五号））の床（3）（ii）a． （1）を具体的に記載し ており整合している。 設計及び工事の計画の术（3）（ii）a．－2）は，設置変更許可申請書（本文 （五号））の㕅（3）（ii）a． （2）を具体的に記載し ており整合している。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
	5.6 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉 を泠却するための設備 5．6．1 概要 <中略 > また，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（低圧注水モード），残留熱除去系（原子炉停止時冷却モード）及び低圧炬心スプレイ系が使用できる場合は，重大事故等対処設備（設計基準拡張）として使用する。残留熱除去系（低圧注水モード）及 び残留熱除去系（原子炉停止時冷却モード）については，「5．2 残留熱除去系」に記載する。低圧炬心スプレイ系に ついては，「5．3 非常用炉心冷却系」に記載する。 5．4 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉 を泠却するための設備 5．4．1 概要 また，想定される重大事故等時において，設計基準事故対処設備である高圧炬心スプレイ系及び原子炉隔離時冷却系が使用できる場合は重大事故等対処設備（設計基準拡張）として使用する。高圧炉心スプレイ系については，「5．	5.9 残留熱除去系（低圧注水モード） 5．9．1 系統構成 木（3）（ii）a．－（2）原子炬冷却材圧力バウンダリ低圧時に発電用原子炬を冷却するための設備として，想定される重大事故等時において，設計基準事故対処設備である残留熱除寺系（低圧注水モード）が使用できる場合は，重大事故等対処設備．（設計基漼掋張）として使用できる設計とする。 ＜中略＞ 5．9．2 多様性，位置的分散等 残留熱除去系（低圧注水モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するた め，重大事故等対処設備としての基本方針に示す設計方針 を適用する。ただし，多様性及び独立性並びに位置的分散 を考慮すべき対象の設計基準事故対処設備はないことか ら，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 5.2 高圧炉心スプレイ系 5．2．1 系統構成 高圧炉心スプレイ系は，大破断の泠却材喪失事故時には低圧炉心スプレイ系及び残留熱除去系（低圧注水モード） と連携し，中小破断の泠却材喪失事故時には単独で炉心を冷却する機能を有し，非常用交流電源設備に結ばれた電動機駆動ポンプにより，復水貯蔵タンクの水又はサプレッシ ョンチェンバのプール水を炉心上部に取付けられた高圧炉心スプレイスパージャのノズルから炉心にスプレイす る設計とする。 木（3）（ii）a．－（2）原子炉冷却材圧力バウンダリ高圧時に発電用原子炬を冷却するための設備として，想定される重大事故等時において，設計基準事故対処設備である高圧炬心 スプレイ系が使用できる場合は重大事故等対処設備（設計			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
b．重大事故等対処設備 （a）原子炉泠却材圧力バウンダリ高圧時に発電用原子炉 を椧却するための設備 原子炬冷却材圧カバウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炬の冷却機能が啔失した場合においても炬心の著しい損傷を防止するた めに必要な（3）（ii）b．（a）－（1）重大事故等対処設備を設置 する。	5.4 原子炉冷却材圧カバウンダリ高圧時に発電用原子炉 を泠却するための設備 5．4．1 概要 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炬心の著しい損傷を防止するた めに必要な重大事故等対処設備を設置する。．．． ＜中略＞ また，想定される重大事故等時において，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系が使用できる場合は重大事故等対処設備（設計基準拡張）として使用する。高圧炉心スプレイ系については，「5． 3 非常用炉心冷却系」，原子炬隔離時冷却系については， 「5．8 原子炬隔離時冷却系」に記載する。 5．4．2 設計方針 原子炉冷却材圧力バウンダリ高圧時に発電用原子炉を冷却するための設備のらち，炬心を冷却するための設備と， して，高圧代替注水系を設ける。また，設計基準事故対処設備である高圧炬心スプレイ系及び原子炉隔離時冷却系 が全交流動力電源及び常設直流電源系統の機能喪失によ り起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，高圧代替注水系及び原子炉隔離時冷却系を現場操作により起動させる。	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5．非常用炬心椧却設備その他原子炬注水設備 5.2 高圧炉心スプレイ系 5．2．1 系統構成 ＜中略＞ 木（3）（ii）b．（a）－（1）原子炬冾却村压力バウンダり高压時 に発電用原子炬を冾却するための設備として，想定される重大事故等時にておいて，設計基集事故対処設備である高圧炬心スプレイ系が使用できる場合は重太事故等対处設備 ‥設計基蕉拡張）として使用できる設計とする。 ＜中略＞ 5．2．2 多様性，位置的分散等 高圧炬心スプレイ系は，設計基準事故対処設備であると ともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。 ただし，多柡性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多樣性，位置的分散等」に示す設計方針は適用しない。 5.4 高圧代替注水系 原子炉冷却村圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炬の椧却機能が啔失した場合においても炉心の著しい損傷を防止するた めに必要な（3）（ii）b．（a）－（1）重大事故等対処設備として，高压代替注水系を設ける設計とする。 また，設計基準事故対処設備である高厓焒心スプレイ系及び原子炬隔離時冾却系が全交流動力檽源及び虽設直流雫源系統の機能熹失により起動できない，かつっ中，中央制御室からの操作により高圧代替注水系を起動できない場合 に，高圧代替注水系を現場操作により起動できる設計とす 3．－．	設計及び工事の計画の床（3）（ii）b．（a）－（1）は，設置変更許可申請書（本文（五号））の 木 $_{\text {（3）（ii）}}$ b．（a）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合性	備 考
		5.5 原子炉隔離時冷却系 5．5．1 系統構成 木（3）（ii）b．（a）－（1）原子炬冷却材圧力バウンダり高圧時 に発雫用原子炉を冷却するための設備として，想定される重大事故等時において，設計基蕉事故対処設備である原子炬隔離時冷却系が使用できる場合は重大事故等対処設備 （設計基漼拡張）として使用できる設計とする。 木（3）（ii）b．（a）－（1）原子炬冷却材圧力バウンダりが高圧 の状態であって，設計基蕉事故対処設備が有する発電用原子炬の冷却機能が喪失した場合においても炬心の著しい損傷を防止するために必要な重大事故等対処設備として，設計基蕉事故対処設備である高圧炬心スプレイ系及び原子炬隔離時冷却系が全交流憅力電源及び常設直流䨌源系統の機能喪失により起動できない，かつっ中央制御室から の操作により高圧代替注水采を起動できない場合に，原子炬隔離時冷却系を現場操作により起動できる設計とする。 ＜中略＞ 5．5．2 多様性，位置的分散等 原子炉隔離時冷却系は，設計基準事故対処設備であると ともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。 ただし，多樣性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。 5.8 ほう酸水注入系 木（3）（ii）b．（a）－（1）原子炬冷却村圧力バウンダり高圧時 に発電用原子炬を冷却するための設備のらち，事象進展抑制のための設備として，ほら酸水注入系を設ける設計とす る．		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
㕅（3）（ii）b．（a）－（2）原子炬冾却材厈力バウンダり高圧時 に発電用原子炬を给却するための設備のらちっ，炬心を冾却 まるための設備として，高圧代替注水系を設ける。また，設計基準事故対処設備である高圧炬心スプレイ系及び原子炬隔催時冷却系が全交流動力電源及び常設直流電源系統の機能喪失により起動できない，かつ，中央制御室から の操作により高压代替注水系を起動できない場合に，高圧代替注水系及び原子炬隔離時冷却系を現場操作により起動させる。	5．4．1 概要 原子炉冷却材圧カバウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炉心の著しい損傷を防止するた めに必要な重大事故等対処設備を設置する ＜中略＞ 5．4．2 設計方針 原子炬冷却材圧力バウンダり高圧時に発電用原子炬を椧却するための設備の弓ち，炬心を浍却するための設備と して，高圧代替注水系を設ける。また，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系 が全交流動力電源及び常設直流電源系統の機能喪失によ り起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，高圧代替注水系及び原子炬隔離時冷却系を現場操作により起動させる。	5.4 高圧代替注水系 床（3）（ii）b．（a）－（2）原子炬冷却材圧力バウンダりが高圧 の状態であって，設計基準事故対処設備が有する発電用原子哣の冷却機能が吘失した場合においても炬心の著しい損傷を防止するために必要な重大事故等対処設備として，高圧代替注水系を設ける設計とする。．．． また，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系が全交流動力電源及び常設直流電源系統の機能喪失により起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合 に，高圧代替注水系を現場操作により起動できる設計とす る． ＜中略＞ 5.5 原子炉隔離時冷却系 5．5．1 系統構成 原子炉冷却材圧カバウンダリ高圧時に発電用原子炉を冷却するための設備として，床（3）（ii）b．（a）－（2）想定される重大事故等時において，設計基集事故対処設備である原子炬隔離時冷却系が使用できる場合は重大事故等対処設備 （設計基蕉掋張）として使用できる設計とする。．． 原子炉冷却材圧力バウンダリが高圧の状態であって，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炬心の著しい損傷を防止するた めに必要な重大事故等対処設備として，設計基準事故対処設備である高圧炉心スプレイ系及び原子炉隔離時冷却系 が全交流動力電源及び常設直流電源系統の機能喪失によ り起動できない，かつ，中央制御室からの操作により高圧代替注水系を起動できない場合に，原子炬隔離時冷却系を現場操作により起動できる設計とする。．．． ＜中略＞	設計及び工事の計画の木（3）（ii）b．（a）－（2）は，設置変更許可申請書（本文（五号））の术（3）（ii） b．（a）－（2）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
また，高圧代替注水系は，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができない場合にお いても，現場での人力による㕅（3）（ii）b．（a）－（3）弁の操作に より，原子炬冷却材圧力バウンダリの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の泠却対策の準備が整うま での期間にわたり，発電用原子炉の泠却を継続できる設計 とする。 なお，人力による措置は容易に行える設計とする。	また，高圧代替注水系は，所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができない場合にお いても，現場での人力による弁の操作により，原子炉冷却村圧カバウンダりの減圧対策及び原子炉冷却材圧力バゥ ンダリ低圧時の椧却対策の準備が整うまでの期間にわた り，発電用原子炬の泠却を繙続できる設計とする。なお，人力による措置は容易に行える設計とする。 <中略>	【原子炉格納施設】（基本設計方針） 3．2．5 高圧代替注水系 ＜中略＞ 高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備又は所内常設蓄電式直流電源設備からの給電が可能な設計とし，所内常設蓄電式直流電源設備が機能喪失した場合でも，常設代替直流電源設備又は可搬型代替直流電源設備からの給電により中央制御室からの操作が可能な設計とする。 <中略 > 【原子炉冷却采統施設（蒸気タービンを除く。）】 （基本設計方針） 5.4 高圧代替注水系 <中略> 高圧代替注水系は，常設代替交流電源設備，可搬型代替交流電源設備所内常設蓄電式直流電源設備，常設代替直流電源設備及び可搬型代替直流電源設備の機能喪失により中央制御室からの操作ができない場合においても，現場で の人力による本（3）（ii）b．（a）－（3）原子炬隔離時冷却采蒸気供給ライン分離弁（E51－F082）（原子炬冷却系統施設のう ち「5．5 原子炬隔離時冷却系」の設備を原子炬冷却系統施設のうち「5．4 高圧代替注水系」の設備として兼用），高圧代替注水系注入弁（E61－F003），高圧代替注水系夕ービ ン止め弁（E61－F050）及び燃料プール補給水系ポンプ吸込弁（P15－F001）の操作により，原子炉冷却材圧力バウンダ リの減圧対策及び原子炉冷却材圧力バウンダリ低圧時の冷却対策の準備が整うまでの期間にわたり，発電用原子炬 の泠却を継続できる設計とする。なお，人力による措置は現場にハンドルを設置することで容易に行える設計とす る。	設計及び工事の計画の木（3）（ii）b．（a）－（3）は，設置変更許可申請書（本文（五号））の㕅（3）（ii） b．（a）－（3）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
ほら酸水注入系 ほう酸水注入系ポンプ 床（3）（ii）b．（a）－（11）（「～（4）非虽用制御設備」 他と兼用）	（2）ほう酸水注入系 a．ほう酸水注入系ポンプ 第6．1．2－3表 ほら酸水注入系主要仕様に記載する。	【計測制御系統施設】（要目表） 44．4． ＊2－．．．tich ＊6：公梀植音文 	「ほう酸水注入系ポン プ」 及び「ほうら酸水注入系貯蔵タンク」は，設置変更許可申請書（本文 （五号））における床（3） （ii）b．（a）－（11）を設計及 び工事の計画の主たる登録先として「計測制御系統施設」のらち「ほう酸水注入設備」に整理 し，設計及び工事の計画 の㕅（3）（ii）b．（a）－（11） は，設置変更許可申請書 （本文（五号））の术（3） （ii）b．（a）－（11）と同義で あり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
緩和設備（自動減圧系作動阻止機能）により自動減圧系及	緩和設備（自動減圧系作動阻止機能）により自動減圧系及	動減圧系作動阻止機能）により自動減圧系及び代替自動減			
び代替自動減圧回路（代替自動減圧機能）による自動減圧	び代替自動減圧回路（代替自動減圧機能）による自動減圧	圧回路（代替自動減圧機能）による自動減圧を阻止できる			
を阻止する。	を阻止する。	設計とする。			
	＜中略＞	＜中略＞			
		【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）			
		3.4 主蒸気逃がし安全弁の機能			
（b－1－2）手動による原子炉減圧	b．手動による原子炉減圧	3．4．1 系統構成			
		＜中略＞			
主蒸気逃がし安全弁の自動減圧機能が喪失した場合の	主蒸気逃がし安全弁の自動減圧機能が喪失した場合の	主蒸気逃がし安全弁の自動減圧機能が喪失した場合の			
重大事故等対処設備として，主蒸気逃がし安全弁は，中央	重大事故等対処設備として，主蒸気逃がし安全弁を手動に	重大事故等対処設備として，主蒸気逃がし安全弁は，中央			
制御室からの遠隔手動操作により，主蒸気逃がし安全弁逃	より作動させて使用する。	制御室からの遠隔手動操作により，主蒸気逃がし安全弁逃			
がし升機能用アキュムレータ又は主蒸気逃がし安全弁自	主蒸気逃がし安全弁は，中央制御室からの遠隔手動操作	がし升機能用アキュムレータ又は主蒸気逃がし安全弁自			
動減圧機能用アキュムレータに蓄圧された窒素をアクチ	により，主蒸気逃がし安全弁逃がし弁機能用アキュムレー	動減圧機能用アキュムレータに蓄圧された窒素をアクチ			
ユエータのピストンに供給することで作動し，蒸気を排気	タ又は主蒸気逃がし安全弁自動減圧機能用アキュムレー	ユエータのピストンに供給することで作動し，蒸気を排気			
管によりサプレッションチェンバのプール水面下に導き	タに蓄圧された窒素をアクチュエータのピストンに供給	管によりサプレッションチェンバのプール水面下に導き			
凝縮させることで，原子炉冷却材圧力バウンダリを減圧	することで作動し，蒸気を排気管によりサプレッションチ	凝縮させることで，原子炬冷却材圧力バウンダリを減圧で			
できる設計とする。	ェンバのプール水面下に導き凝縮させることで，原子炉冷	きる設計とする。			
	$\frac{\text { 却材圧力バウンダリを減圧できる設計とする。 }}{\text { <中略 }>}$	＜中略＞			
		【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針）			
	5．5．2 設計方針	3． 4.5 主蒸気逃がし安全弁の機能回復			
（b－2）サポート系故障時に用いる設備	（2）サポート系故障時に用いる設備				
（b－2－1）常設直流電源采統喪失時の減圧	a．常設直流電源系統喪失時の減圧	＜中略＞			
原子炉泠却材圧力バウンダリを減圧するための設備の	原子炉冷却材圧力バウンダリを減圧するための設備の	原子炉冷却材圧力バウンダリを減圧するための設備の			
らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	うち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，可搬型代替直流電源設備及び主蒸気逃が	対処設備として，可搬型代替直流電源設備及び主蒸気逃が	対処設備として，可搬型代替直流電源設備及び主蒸気逃が			
し安全弁用可搬型蓄電池を使用する。	し安全弁用可搬型蓄電池を使用する。	し安全弁用可搬型蓄電池を使用できる設計とする。			
（b－2－1－1）可搬型代替直流電源設備による主蒸気逃がし安全弁機能回復	（a）可搬型代替直流電源設備による主蒸気逃がし安全弁機能回復				

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
原子炉泠却材圧力バウンダリを減圧するための設備の	原子炉冷却材圧力バウンダリを減圧するための設備の	原子炉冷却材圧力バウンダリを減圧するための設備の			
らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	うち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，可搬型代替直流電源設備は，主蒸気逃が	対処設備として，可搬型代替直流電源設備を使用する。	対処設備として，可搬型代替直流電源設備は，主蒸気逃が			
し安全弁の作動に必要な常設直流電源系統が喪失した場	可搬型代替直流電源設備は，主蒸気逃がし安全弁の作動に	し安全弁の作動に必要な常設直流電源系統が喪失した場			
合においても， 125 V 直流電源切替盤を切り替えることによ	必要な常設直流電源系統が喪失した場合においても， 125 V	合においても， 125 V 直流電源切替盤を切り替えることによ			
り，主蒸気逃がし安全弁（11個）の作動に必要な電源を供	直流電源切替盤を切り替えることにより，主蒸気逃がし安	り，主蒸気逃がし安全弁（11個）の作動に必要な電源を供			
給できる設計とする。	全弁（11個）の作動に必要な電源を供給できる設計とする。	給できる設計とする。			
（b－2－1－2）主蒸気逃がし安全弁用可搬型蓄電池による主	（b）主蒸気逃がし安全弁用可搬型蓄電池による主蒸気逃				
蒸気逃がし安全升機能回復	がし安全弁機能回復				
原子炉泠却材圧力バウンダリを減圧するための設備の	原子炉冷却材圧力バウンダリを減圧するための設備の	原子炉冷却材圧力バウンダリを減圧するための設備の			
らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，主蒸気逃がし安全弁用可搬型蓄電池は，	対処設備として，主蒸気逃がし安全弁用可搬型蓄電池を使	対処設備として，主蒸気逃がし安全弁用可搬型蓄電池は，			
主蒸気逃がし安全弁の作動に必要な常設直流電源系統が	用する。	主蒸気逃がし安全弁の作動に必要な常設直流電源系統が			
喪失した場合においても，主蒸気逃がし安全弁の作動回路	主蒸気逃がし安全弁用可搬型蓄電池は，主蒸気逃がし安	喪失した場合においても，主蒸気逃がし安全弁の作動回路			
に接続することにより，主蒸気逃がし安全弁（ 2 個）を一	全弁の作動に必要な常設直流電源系統が喪失した場合に	に接続することにより，主蒸気逃がし安全弁（2個）を一定			
定期間にわたり連続して開状態を保持できる設計とする。		期間にわたり連続して開状態を保持できる設計とする。			
	により，主蒸気逃がし安全弁（2個）を一定期間にわたり	<中略 >			
	連続して開状態を保持できる設計とする。				
		【非常用電源設備】（基本設計方針）			
		3．直流電源設備及び計測制御用電源設備			
		3.4 主蒸気逃がし安全弁用可搬型蓄電池			
		原子炉冷却材圧力バウンダリを減圧するための設備の			
		うち，主蒸気逃がし安全弁の機能回復のための重大事故等			
		対処設備として，主蒸気逃がし安全弁用可搬型蓄電池は，			
		主蒸気逃がし安全弁の作動に必要な常設直流電源系統が			
		喪失した場合においても，主蒸気逃がし安全弁の作動回路			
		に接続することにより，主蒸気逃がし安全弁（ 2 個）を一定			
		期間にわたり連続して開状態を保持できる設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備	考
	5．5．2 設計方針	【原子炉冷却系統施設（蒸気タービンを除く。）】			
	（2）サポート系故障時に用いる設備	（基本設計方針）			
（b－2－2）主蒸気逃がし安全弁の作動に必要な窒素喪失時	b．主蒸気逃がし安全弁の作動に必要な窒素喪失時の減圧	3．4．5 主蒸気逃がし安全弁の機能回復			
の減圧					
原子炉冷却材圧力バウンダリを減圧するための設備の	原子炉冷却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の			
らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，高圧窒素ガス供給系（非常用）及び代替	対処設備として，高圧窒素ガス供給系（非常用）及び代替	対処設備として，主蒸気逃がし安全弁の作動に必要な窒素			
高圧窒素ガス供給系を使用する。	高圧窒素がス供給系を使用する。	ガスが喪失した場合においても，高圧窒素がス供給系（非			
	＜中略＞	常用）及び代替高圧窒素ガス供給系を使用できる設計とす			
		る。			
		＜中略＞			
		【計測制御系統施設】（基本設計方針）			
（b－2－2－1）高圧窒素ガス供給系（非常用）こよる窒素確保	（a）高圧窒素ガス供給系（非常用）による窒素確保	5.2 高圧窒素ガス供給系			
		＜中略＞			
原子炉冷却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の			
らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，高圧窒素ガス供給系（非常用）は，主蒸	対処設備として，高圧窒素ガス供給系（非常用）を使用す	対処設備として，高圧窒素ガス供給系（非常用）は，主蒸			
気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃が	る。	気逃がし安全弁の作動に必要な主蒸気逃がし安全弁逃が			
し弁機能用アキュムレーダ隹主蒸気逃がし安全弁自動	高圧窒素ガス供給系（非常用）は，主蒸気逃がし安全弁	し弁機能用アキュムレータ及び主蒸気逃がし安全弁自動			
減圧機能用アキュムレータの充填圧力が喪失した場合に	の作動に必要な主蒸気逃がし安全弁逃がし弁機能用アキ	減圧機能用アキュムレータの充填圧力が喪失した場合に			
おいて，主蒸気逃がし安全弁の作動に必要な窒素を供給で	ユムレータ及び主蒸気逃がし安全弁自動減圧機能用アキ	おいて，主蒸気逃がし安全弁（6個）の作動に必要な窒素			
きる設計とする。	ユムレータの充填圧力が喪失した場合において，主蒸気逃	を高圧窒素ガスボンべにより供給できる設計とする。			
なお，高圧窒素がスボンべの圧力が低下した場合は，現	がし安全弁の作動に必要な窒素を供給できる設計とする。 なお，高圧窒素ガスボンべの圧力が低下した場合は，現	高圧窒素ガスボンべの圧力が低下した場合は，現場で高			
場で高圧窒素ガスボンべの切替え及び取替えが可能な設	場で高圧窒素ガスボンべの切替え及び取替えが可能な設	圧窒素ガスボンべの切替え及び取替えが可能な設計とす			
計とする。	計とする。	る。			
	＜中略＞	＜中略＞			
（b－2－2－2）代替高圧窒素がス供給系による原子炉減圧	（b）代替高圧窒素ガス供給系による原子炬減圧	5.3 代替高圧窒素ガス供給系			
		＜中略＞			
原子炉泠却材圧力バウンダリを減圧するための設備の	原子炬冷却材圧力バウンダリを減圧するための設備の	原子炉冷却材圧力バウンダリを減圧するための設備の			
らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等	らち，主蒸気逃がし安全弁の機能回復のための重大事故等			
対処設備として，代替高圧窒素がス供給系は，主蒸気逃が	対処設備として，代替高圧窒素ガス供給系を使用する。	対処設備として，代替高圧窒素がス供給系は，主蒸気逃が			
し安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機	代替高圧窒素がス供給系は，主蒸気逃がし安全弁の作動	し安全弁の作動に必要な主蒸気逃がし安全弁逃がし弁機			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
木（3）（ii）b．（b）－（3）HPCS注入隔離弁は，現場で弁を操作することにより原子炉冷却材の漏えい箇所を隔離でき る設計とする。 主蒸気逃がし安全弁は，想定される重大事故等時に確実 に作動するように，原子炉格納容器内に設置し，制御用空気が喪失した場合に使用する高圧窒素ガス供給系（非常用）及び代替高圧窒素ガス供給系の高圧窒素ガスボンベの容量の設定も含めて，想定される重大事故等時における環境条件を考慮した設計とする。操作は，中央制御室で可能 な設計とする。	HPCS注入隔離弁は，現場で弁を操作することにより原子炉冷却材の漏えい箇所を隔離できる設計とする。 <中略> 5．5．2．4 環境条件等 < 中略 > 主蒸気逃がし安全弁は，想定される重大事故等時に確実 に作動するように，原子炉格納容器内に設置し，制御用空気が喪失した場合に使用する高圧窒素ガス供給系（非常用）の高圧室素ガスボンべの容量の設定も含めて，想定さ れる重大事故等時における環境条件を考慮した設計とす る。 主蒸気逃がし安全弁の操作は，想定される重大事故等時 において中央制御室で可能な設計とする。 代替高圧窒素ガス供給系で使用する主蒸気逃がし安全弁は，想定される重大事故等時に確実に作動するように，原子炉格納容器内に設置し，制御用空気が喪失した場合に使用する代替高圧窒素ガス供給系の高圧窒素ガスボンべ の容量の設定も含めて，想定される重大事故等時における環境条件を考慮した設計とする。 <中略 >	棟内へ漏えいして蒸気となり，原子炉建屋原子炉棟内の圧力が上昇した場合において，外気との差圧により自動的に開放し，原子炉建屋原子炉棟内の圧力及び温度を低下させ ることができる設計とする。 5.2 高圧炉心スプレイ系 5．2．1 系統構成 ＜中略＞ インターフェイスシステムLOCA発生時の重大事故等対処設備として，木（3）（ii）b．（b）－（3）高圧炬憂スプレイ系注入隔離弁（E22－F003）は，現場で弁を操作することにより原子炉冷却材の漏えい箇所を隔離できる設計とする。 なお，設計基準事故対処設備である高圧炉心スプレイ系注入隔離弁（E22－F003）を重大事故等対処設備（設計基準拡張）として使用できる設計とする。 ＜中略＞ 3.4 主蒸気逃がし安全升の機能 3．4．2 環境条件等 主蒸気逃がし安全弁は，想定される重大事故等時に確実 に作動するように，原子炉格納容器内に設置し，制御用空気が喪失した場合に使用する高圧窒素ガス供給系（非常用）及び代替高圧窒素ガス供給系の高圧窒素ガスボンべの容量の設定も含めて，想定される重大事故等時における環境条件を考慮した設計とする。操作は，中央制御室で可能 な設計とする。	設計及び工事の計画の木（3）（ii）b．（b）－（3）は，設置変更許可申請書（本文（五号））の㕅（3）（ii） b．（b）－3 と 同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
原子炉冷却村圧カバウンダリが低圧の状態であって，設計基準事故対処設借が有する発電用原子炬の冷却機能が襄失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子炬を椧却するた めに必要な（ ${ }^{(1)}$（ii）b．（c）－（1）重大事故等対处設備を設置及び保管する。	原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の泠却機能が喪失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子炉を冷却するた めに必要な重大事故等対処設備を設置及び保管する。 <中略> また，想定される重大事故等時において，設計基準事故対処設備である残留熱除去系（低圧注水モード），残留熱除去系（原子炬停止時冷却モード）及び低圧炉心スプレイ系 が使用できる場合は，重大事故等対処設備（設計基準拡張） として使用する。残留熱除去系（低圧注水モード）及び残留熱除去系（原子炉停止時冷却モード）については，「5．2 残留熱除去系」に記載する。低圧炉心スプレイ系につい ては，「5．3 非常用炉心泠却系」に記載する。 5．6．2 設計方針 原子炉冷却材圧カバウンダリが低圧時に発電用原子炬 を泠却するための設備のらち，発電用原子炉を泠却し，炬心の著しい損傷及び原子炉格納容器の破損を防止するた	＜中略＞ 木（3）（ii）b．（c）－（1）原子炬冷却材圧力バウンダり低圧時 に発電用原子炬を冷却するための設備として，想定される重大事故等時において，設計基蕉事故対処設備である残留熱除去系（原子炬停止時冷却モード）が使用できる場合は，重大事故等対処設備（設計基準扩張）として使用できる設計とする。 <中略 > 5．非常用炉心椧却設備その他原子炉注水設備 5.3 低圧炉心スプレイ系 5．3．1 系統構成 <中略 > 木（3）（ii）b．（c）－（1）原子炬冷却材圧力バウンダり低圧時 に発電用原子炬を泠却するための設備として，想定される重大事故等時において，設計基準事故対処設備である低圧炬ふスプレイ系が使用できる場合は，重大事故等対処設備 （設計基漼拨張）として使用できる設計とする。 <中略 > 5．3．2 多様性，位置的分散等 低圧灲心スプレイ系は，設計基準事故対処設備であると ともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。 ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多樣性，位置的分散等」に示す設計方針は適用しない。 5.6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合においても炉心の著しい損傷及び原子炉格	設計及び工事の計画の木（3）（ii）b．（c）－（1）は，設置変更許可申請書（本文（五号））の术（3）（ii） b．（c）－（1）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	めの設備として，低圧代替注水系（可搬型）を設ける。ま た，炬心の著しい損傷に至るまでの時間的余裕のない場合 に対応するため，低圧代替注水系（常設）を設ける。 <中略>	納容器の破損を防止するため，発電用原子炬を椧却するた めに必要な床（3）（ii）b．（c）－（1）重太事故等対処設備として，炉心の著しい損傷に至るまでの時間的余镕のない場合に対底するための低圧代替注水系（虽設）（復水移送ポンプ） を設ける設計とする。 5． 6.2 低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）による原子师注水 原子炬冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炬の椧却機能が喪失した場合においても炬心の著しい損傷及び原子炬格納容器の破損を防止するため，発電用原子炬を冷却するた めに必要な ${ }^{(1)}$（3）（ii）b．（c）－（1）重大事故等対処設備として，炬心の著しい損傷に至るまでの時間的余浴のない場合に対底するための低压代替注水系（虽設）（真流駆動低压注水系ポンプ）を設ける設計とする。 5．6． 3 低圧代替注水系（可搬型）による原子炉注水 原子炉冷却材圧カバウンダリが低圧の状態であって，設計基淮事故対処設備が有する発電用原子炬の椧却機能が啔失した場合においても炉心の著しい損傷及び原子炬格納容器の破損を防止するため，発電用原子炬を椧却するた めに必要な（3）（ii）b．（c）－（1）重大事故等対処設備として，低圧代替注水系（可搬型）を設ける設計とする。 5.7 代替循環冷却系 㕅（3）（ii）b．（c）－（1）原子炬冾却村圧力バウンダり低圧時 に登電用原子炬を洽却するための設備として，炬心の著し い損傷及び溶融が登生した場合において，原子炬圧力容器内に溶融炬心が存在する場合の重大事故等対処設備とし て代替循睘冷却系を設ける設計とする。 <中略> 5.9 残留熱除去系（低圧注水モード） 5．9．1 系統構成			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
木（3）（ii）b．（c）－（2）原子炬冷却材圧力バウンダりが低圧時に発電用原子炉を冷却するための設備のうち，発電用原子炉を渝却し，炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として，低圧代替注水系（可搬型） を設ける。また，炬心の著しい損傷に至るまでの時間的余裕のない場合に対応するため，低圧代替注水系（常設）を設ける。	5．6．1 概要 原子炉冷却材圧力バウンダリが低圧の状態であって，設計基準事故対処設備が有する発電用原子炉の冷却機能が喪失した場合においても炉心の著しい損傷及び原子炬格納容器の破損を防止するため，発電用原子炉を冷却するた めに必要な重大事故等対処設備を設置及び保管する。 <中略 > 5．6．2 設計方針 原子炉冷却材圧力バウンダリが低圧時に発電用原子炉 を冷却するための設備のらち，発電用原子炉を冷却し，炬心の著しい損傷及び原子炉格納容器の破損を防止するた めの設備として，低圧代替注水系（可搬型）を設ける。ま た，炉心の著しい損傷に至るまでの時間的余裕のない場合 に対応するため，，低圧代替注水系（常設）を設ける。 < 中略 >	术（3）（ii）b．（c）－（1）原子炬冷却材圧力バウンダリ低圧時 に発電用原子炉を冷却するための設備として，想定される重大事故等時において，設計基蕉事故対処設備である残留熱除圭系（低圧注水モード）が使用できる場合は，重大事故等対処設備（設計基漼拡張）として使用できる設計とす る． ＜中略＞ 5.6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 木（3）（ii）b．（c）－（2）原子炬冷却材压力バウンダりが低圧 の状態であって，設計基準事故対処設備が有する発電用原子炬の冷却機能が唯失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子炬を冷却するために必要な重大事故等対処設備として，炬心の著しい損傷に至るまでの時間的余裕のない場合に対応するための低圧代替注水系（常設）（復水移送ポンプ） を設ける設計とする。 5．6． 2 低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）による原子炉注水 木（3）（ii）b．（c）－（2）原子炬冷却材压力バウンダりが低圧 の状態であって，設計基準事故対処設備が有する発電用原子炬の冷却機能が唯失した場合においても炬心の著しい損傷及び原子炉格納容器の破損を防止するため，発電用原子炉を泠却するために必要な重大事故等対処設備として，炡心の著しい損傷に至るまでの時間的余裕のない場合に対応するための低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）を設ける設計とする。 5．6．3 低圧代替注水系（可搬型）による原子炉注水木（3）（ii）b．（c）－（2）原子炬冷却材圧力バウンダりが低圧 の状熊であって，設計基蕉事故対処設備が有する発電用原子炬の冾却機能が霍失した場合においても炬心の著しい	設計及び工事の計画の木（3）（ii）b．（c）－（2）は，設置変更許可申請書（本文（五号））の ${ }^{木(3) ~(i i) ~}$ b．（c）－（2）を具体的に記載しており整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（c－1）原子炉運転中の場合に用いる設備 （ $\mathrm{c}-1-1$ ）フロントライン系故障時に用いる設備 （ $\mathrm{c}-1-1-1$ ）低圧代替注水系（常設）（復水移送ポンプ）に よる発電用原子炉の冷却 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポン プにより，復水貯蔵タンクの水を残留熱除去系等を経由し て原子炉圧力容器へ注水することで炉心を泠却できる設計とする。	5．6．2 設計方針 （1）原子炉運転中の場合に用いる設備 a．フロントライン系故障時に用いる設備 （a）低圧代替注水系（常設）（復水移送ポンプ）による発電用原子炉の泠却 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）を使用する。 低圧代替注水系（常設）（復水移送ポンプ）は，復水移送 ポンプ，配管•弁類，計測制御装置等で構成し，復水移送 ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで炉心を冷却でき る設計とする。	損傷及び原子炉格納容器の破損を防止するため，発靁用原子炬を冷却するために必要な重大事故等対処設備として，低圧代替注水系（可搬型）を設ける設計とする。 5.6 低圧代替注水系 5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 < 中略 > 残留熱除去系（低圧注水モード）及び低圧灲心スプレイ系の機能が喪失した場合並びに全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系による発電用原子炉 の泠却ができない場合の重大事故等対処設備として，低圧代替注水系（常設）（復水移送ポンプ）は，復水移送ポンプ により，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで炉心を泠却できる設計 とする。 <中略 > 【原子炬格納施設】（基本設計方針） 3．2．6 低圧代替注水系 （1）低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 <中略> 低圧代替注水系（常設）（復水移送ポンプ）は，復水移送 ポンプにより，復水貯蔵タンクの水を残留熱除去系等を経由して原子炉圧力容器へ注水することで溶融炉心を泠却 できる設計とする。 <中略 > 【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針）		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電 が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 （c－1－1－2）低圧代替注水系（常設）（直流駆動低圧注水系 ポンプ）による発電用原子炉の冷却 残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，直流駆動低圧注水系ポンプにより，復水貯蔵タンクの水を高圧炉心スプレイ系等を経由して原子炉圧力容器へ注水す ることで灯心を泠却できる設計とする。	低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電 が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 ＜中略＞ （b）低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） による発電用原子炉の冷却 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）を使用 する。 低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，直流駆動低圧注水系ポンプ，配管•弁類，計測制御装置等	5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水 < 中略 > 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電 が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 < 中略 > 【原子炉格納施設】（基本設計方針） 3．2．6 低圧代替注水系 （1）低圧代替注水系（常設）（復水移送ポンプ）による原子炬注水 <中略 > 低圧代替注水系（常設）（復水移送ポンプ）は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電 が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備からの給電が可能な設計とする。 < 中略 > 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5．6． 2 低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）による原子炉注水 < 中略 > 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能が喪失した場合並びに全交流動力電源喪失又は原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系による発電用原子炉 の泠却ができない場合の重大事故等対処設備として，低圧		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
直流駆動低圧注水系ポンプは，常設代替直流電源設備か らの給電が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電が可能な設計とする。 なお，系統構成に必要な電動弁（交流）は，交流電源に期待できないことから設置場所にて操作できる設計とす る。 （c－1－1－3）低圧代替注水系（可搬型）による発電用原子炉 の泠却 残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系 の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプ I ） により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器へ注水することで炉心を泠却できる設計とす る。	で構成し，直流駆動低圧注水系ポンプにより，復水貯蔵夕 ンクの水を高圧炉心スプレイ系等を経由して原子炉圧力容器へ注水することで灲心を泠却できる設計とする。 直流駆動低圧注水系ポンプは，常設代替直流電源設備か らの給電が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電が可能な設計とする。なお，系統構成に必要な電動弁（交流）は，交流電源に期待できな いことから設置場所にて操作できる設計とする。 <中略> （c）低圧代替注水系（可搬型）による発電用原子炉の冷却 残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系の機能が喪失した場合の重大事故等対処設備として，低圧代替注水系（可搬型）を使用する。 低圧代替注水系（可搬型）は，大容量送水ポンプ（タイ プ I ），配管・ホース・弁類，計測制御装置等で構成し，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器へ注水すること で炉心を泠却できる設計とする。	代替注水系（常設）（直流駆動低圧注水系ポンプ）は，直流駆動低圧注水系ポンプにより，復水貯蔵タンクの水を高圧炉心スプレイ系等を経由して原子炉圧力容器へ注水する ことで灲心を泠却できる設計とする。 直流駆動低圧注水系ポンプは，常設代替直流電源設備か らの給電が可能な設計とする。また，系統構成に必要な電動弁（直流）は，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電が可能な設計とする。なお，系統構成に必要な電動弁（交流）は，全交流動力電源が機能喪失した場合においても設置場所にて手動操作できる設計とする。 ＜中略＞ 5．6．3 低圧代替注水系（可搬型）による原子炉注水 < 中略 > 残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系の機能が喪失した場合並びに全交流動力電源喪失又は原子炉補機泠却水系（原子炉補機冷却海水系を含む。）機能喪失によるサポート系の故障により，残留熱除去系（低圧注水モード）及び低圧灲心スプレイ系による発電用原子炉 の泠却ができない場合の重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI） により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器に注水することで炉心を泠却できる設計とす る。 <中略 > 【原子炉格納施設】（基本設計方針） 3．2．6 低圧代替注水系 （2）低圧代替注水系（可搬型）による原子炬注水 <中略 > 低圧代替注水系（可搬型）は，大容量送水ポンプ（タイ プI ）により，代替淡水源の水を残留熱除去系等を経由し て原子炉圧力容器へ注水することで溶融炬心を泠却でき る設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。	低圧代替注水采（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。	＜中略＞ 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5.6 低圧代替注水系 5．6．3 低圧代替注水系（可搬型）による原子炉注水 <中略 > 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。 <中略〉 【原子炉格納施設】（基本設計方針） 3．2．6 低圧代替注水系 （2）低圧代替注水系（可搬型）による原子炉注水 <中略〉 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。 <中略> 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5．10 水源，代替水源移送系 5．10．1 重大事故等の収束に必要となる水源 < 中略 > 海は，想定される重大事故等時において，淡水が枯渇し た場合に，復水貯蔵タンクへ水を供給するための水源であ るとともに，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型）の水源として利用できる設計とする。		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
低圧代替注水系（可搬型）は，非常用交流電源設備に加 えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計と する。また，大容量送水ポンプ（タイプI）は，空冷式の ディーゼルエンジンにより駆動できる設計とする。	低圧代替注水系（可搬型）は，非常用交流電源設備に加远て，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計と する。また，大容量送水ポンプ（タイプI）は，空冷式の ディーゼルエンジンにより駆動できる設計とする。燃料 は，燃料補給設備である軽油タンク又はガスタービン発電設備軽油タンク及びタンクローリにより補給できる設計 とする。 ＜中略＞	5．10．2 代替水源移送系 <中略 > また，淡水が枯渴した場合に，重大事故等の収束に必要 な水源である復水貯蔵タンクへ海水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプI） は，海水を補給水系等を経由して復水貯蔵タンクへ供給で きる設計とする。 <中略 > 5．6．3 低圧代替注水系（可搬型）による原子炉注水 < 中略 > 低圧代替注水系（可搬型）は，非常用交流電源設備に加 えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計と する。 大容量送水ポンプ（タイプI）は，空泠式のディーゼル エンジンにより駆動できる設計とする。 <中略 > 【原子炉格納施設】（基本設計方針） 3．2．6 低圧代替注水系 （2）低圧代替注水系（可搬型）による原子炉注水 <中略 > 低圧代替注水系（可搬型）は，非常用交流電源設備に加 えて，代替所内電気設備を経由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電が可能な設計と する。 大容量送水ポンプ（タイプI）は，空泠式のディーゼル エンジンにより駆動できる設計とする。 <中略 > 【原子炉泠却系統施設（蒸気タービンを除く。）】 （基本設計方針）			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
機冷却海水系を含む。）機能喪失によるサポート系の故障	機冷却海水系を含む。）機能鋉失によるサポート系の故障	系の機能が喪失した場合並びに全交流動力電源啔失又は	木（3）（ii）b．（c）－4）は，	（ $\mathrm{c}-1-1-3$ ）」 につ
により，残留熱除去系（低圧注水モード）及び低圧炬心ス	により，残留熱除去系（低圧注水モード）及び低圧炉心ス	原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能	設置変更許可申請書（本	いてはそれぞれ
プレイ系が起動できない場合の重大事故等対処設備とし	プレイ系が起動できない場合の重大事故等対処設備とし	喪失によるサポート系の故障により，残留熱除去系（低圧	文（五号））の林（3）（ii）	P． － 63 に記載。
て㕅（3）（ii ）b．（c）－（4）使用する低圧代替注水系（可船型）は，	て使用する低圧代替注水系（可搬型）は，「（1）a．（c）－低	注水モード）及び低圧炉心スプレイ系による発電用原子炉	b．（c）－（4）を具体的に記	
「木（3）（ii）b ．（c－1－1－3）低圧代替注水系（可搬型）に	圧代替注水系（可搬型）による発電用原子炬の冷却」と同	の泠却ができない場合の重大事故等対処設備として，困	載しており整合してい	
よる発電用原子炉の冷却」と同じである。	じである。	（3）（ii）b．（c）－44低圧代替注水系（可搬型）は，大容量送水	る。	
		ポンプ（タイプI）により，代替淡水源の水を残留熱除去		
		系等を経由して原子炬圧力容器に注水することで炬心を		
		冾却できる設計とする。 ＜中略＞		
（c－1－2－3）常設代替交流電源設備による残留熱除去系	（c）常設代替交流電源設備による残留熱除去系（低圧注	5.9 残留熱除去系（低圧注水モード）		
（低圧注水モード）の復旧	水モード）の復旧	5．9．1 系統構成		
		＜中略＞		
全交流動力電源喪失又は原子炬補機冷却水系（原子炉補	全交流動力電源喪失又は原子炉補機冷却水系（原子炬補	全交流動力電源喪失又は原子炬補機冷却水系（原子炉補		
機冷却海水系を含む。）機能喪失によるサポート系の故障	機冷却海水系を含む。）機能喪失によるサポート系の故障	機冷却海水系を含む。）機能喪失によるサポート系の故障		
により，残留熱除去系（低圧注水モード）が起動できない	により，残留熱除去系（低圧注水モード）が起動できない	により，残留熱除去系（低圧注水モード）が起動できない		
場合の重大事故等対処設備として，常設代替交流電源設備	場合の重大事故等対処設備として，常設代替交流電源設備	場合の重大事故等対処設備として，常設代替交流電源設備		
を使用し，残留熱除去系（低圧注水モード）を復旧する。	を使用し，残留熱除去系（低圧注水モード）を復旧する。	を使用し，残留熱除去系（低圧注水モード）を復旧できる		
残留熱除去系（低圧注水モード）は，常設代替交流電源	残留熱除去系（低圧注水モード）は，常設代替交流電源	設計とする。残留熱除去系（低圧注水モード）は，常設代		
設備からの給電により機能を復旧し，残留熱除去系ポンプ	設備からの給電により機能を復旧し，残留熱除去系ポンプ	替交流電源設備からの給電により機能を復旧し，残留熱除		
によりサプレッションチェンバのプール水を原子炉圧力	によりサプレッションチェンバのプール水を原子炬圧力	去系ポンプによりサプレッションチェンバのプール水を		
容器へ注水することで灲心を泠却できる設計とする。	容器へ注水することで灲心を泠却できる設計とする。	原子炉圧力容器へ注水することで炬心を泠却できる設計		
本系統に使用する冷却水は，原子炬補機冷却水系（原子	本系統に使用する冷却水は，原子炬補機冷却水系（原子	とする。本系統に使用する泠却水は，原子炉補機冷却水系		
炬補機冷却海水系を含む。）又は原子炉補機代替冷却水系	炬補機冷却海水系を含む。）又は原子炬補機代替冷却水系	（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷		
から供給できる設計とする。	から供給できる設計とする。	却水系から供給できる設計とする。		
	＜中略＞	＜中略＞		
（c－1－2－4）常設代替交流電源設備による低圧灯心スプレ	（d）常設代替交流電源設備による低圧炉心スプレイ系の	5.3 低圧炉心スプレイ系		
イ系の復旧	復旧	5．3．1 系統構成		
		＜中略＞		
全交流動力電源喪失又は原子炉補機冷却水系（原子炉補	全交流動力電源喪失又は原子炬補機冷却水系（原子炉補	全交流動力電源喪失又は原子炬補機冷却水系（原子炉補		
機冷却海水系を含む。）機能喪失によるサポート系の故障	機冷却海水系を含む。）機能喪失によるサポート系の故障	機冷却海水系を含む。）機能喪失によるサポート系の故障		
により，低圧炉心スプレイ系が起動できない場合の重大事	により，低圧炬心スプレイ系が起動できない場合の重大事	により，低圧炬心スプレイ系が起動できない場合の重大事		
故等対処設備として，常設代替交流電源設備を使用し，低	故等対処設備として，常設代替交流電源設備を使用し，低	故等対処設備として，常設代替交流電源設備を使用し，低		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（ c －1－3－2）低圧代替注水系（可搬型）による残留溶融炬心 の冷却 炬心の著しい損傷，溶融が発生した場合において，原子炉圧力容器内に溶融炬心が存在する場合に，溶融炉心を泠却し，原子炬格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器へ注水することで原子炉圧力容器内に存在する溶融炉心を泠却できる設計とす る。 低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。	（b）低圧代替注水系（可搬型）による残留溶融炝心の冷却 灲心の著しい損傷，溶融が発生した場合において，原子炉圧力容器内に溶融灲心が存在する場合に，溶融炉心を泠却し，原子炉格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（可搬型）を使用する。 低圧代替注水系（可搬型）は，大容量送水ポンプ（タイ プ I ），配管・ホース・弁類，計測制御装置等で構成し，大容量送水ポンプ（タイプII）により，代替淡水源の水を残留熱除去系等を経由して原子炬圧力容器へ注水するこ とで原子炉圧力容器内に存在する溶融炉心を泠却できる設計とする。 低圧代替注水系（可搬型）は，代替淡水源が枯渴した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。	5．6．3 低圧代替注水系（可搬型）による原子炉注水 <中略 > 炬心の著しい損傷，溶融が発生した場合において，原子炉圧力容器内に溶融炉心が存在する場合に，溶融炉心を泠却し，原子炉格納容器の破損を防止するための重大事故等対処設備として，低圧代替注水系（可搬型）は，大容量送水ポンプ（タイプI）により，代替淡水源の水を残留熱除去系等を経由して原子炉圧力容器に注水することで原子炬圧力容器内に存在する溶融炉心を泠却できる設計とす る。 <中略 > 低圧代替注水系（可搬型）は，代替淡水源が枯渇した場合において，重大事故等の収束に必要となる水の供給設備 である大容量送水ポンプ（タイプI）により海を利用でき る設計とする。 <中略 > 5． 10 水源，代替水源移送系 5．10．1 重大事故等の収束に必要となる水源 <中略 > 海は，想定される重大事故等時において，淡水が枯渴し た場合に，復水貯蔵タンクへ水を供給するための水源であ るとともに，原子炉圧力容器への注水に使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系（可搬型）の水源として利用できる設計とする。 5．10．2 代替水源移送系 <中略 > また，淡水が枯渇した場合に，重大事故等の収束に必要	注水系（常設）（復水移送ポンプ）による発電用原子炉の椧却」に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
	器内に存在する溶融炉心を泠却できる設計とする。	（原子炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系から供給できる設計とする。 代替循環冷却系は，非常用交流電源設備に加えて，代替所内電気設備を経由した常設代替交流電源設備からの給電が可能な設計とする。 ＜中略＞		
本采統の詳細については，「リ（3）（ii）b－原子炬格納容器の猧圧破損を防止するための設備」に記載する。．．．	本系統の詳細については，「9．3 原子炉格納容器の過圧破損を防止するための設備」に記載する。		設置変更許可申請書（本 文（五号））「リ（3）（ii） b．原子炉格納容器の過	
（c－2）原子炉停止中の場合に用いる設備	（2）原子炉停止中の場合に用いる設備		圧破損を防止するため	
（c－2－1）フロントライン系故障時に用いる設備	a．フロントライン系故障時に用いる設備	5.6 低圧代替注水系	の設備」に示す。	
（ $c-2-1-1$ ）低圧代替注水系（常設）による発電用原子炉の冷却	（a）低圧代替注水系（常設）による発電用原子炉の泠却	5．6．1 低圧代替注水系（常設）（復水移送ポンプ）による原子炉注水		
発電用原子炉停止中において残留熱除去系（原子炉停止	発電用原子炉停止中において残留熱除去系（原子炉停止	<中略> 発電用原子炉停止中において残留熱除去系（原子炉停止	設計及び工事の計画の	「ホ（3）（ii）b
時冷却モード）の機能が喪失した場合の重大事故等対処設	時冷却モード）の機能が喪失した場合の重大事故等対処設	時冷却モード）の機能が喪失した場合及び発電用原子炉停	木(3) (ii) b. (c) -(5)は,	（c－1－1－1）」につ
備として术（3）（ii）b．（c）－（5）使用する低圧代替注水采．（裳	備として使用する低圧代替注水系（常設）は，「（1）a－（a）	止中において全交流動力電源喪失又は原子炉補機冷却水	設置変更許可申請書（本	いてはP．木－60に
設）は「「ホ（3）（ii）b ，（ $\mathrm{c}-1-1-1$ ）－低圧代替注水采（當設）	低圧代替注水采（常設）（復水移送ポンプ）による発電用	系（原子炉補機冷却海水系を含む。）機能喪失によるサポー	文（五号））の术（3）（ ii ）	記載
（復水移送ポンプ）による発電用原子炬の冷却」と同じで	原子煙の泠却」と同じである。	ト系の故障により，残留熱除去系（原子炉停止時冷却モー	b．（c）－（5）を具体的に記	
ある。		ド）が起動できない場合の重大事故等対処設備として困	載しており整合してい	
		（3）（ii）b．（c）－（5），，低圧代賛注水系．（虽設）（復水移送ポン プ）は，復水移送ポンプにより，復水貯蔵タンクの水を残留熱除圭系等を経由して原子炬圧力容器へ注水すること で炬心を冷却できる設計とする。．．． ＜中略＞		
（c－2－1－2）低圧代替注水系（可搬型）による発電用原子炉 の泠却	（b）低圧代替注水系（可搬型）こよる発電用原子炉の泠却	5． 6.3 低圧代替注水系（可搬型）による原子炉注水 ＜中略＞		
発電用原子炉停止中において残留熱除去系（原子炬停止	発電用原子炬停止中において残留熱除去系（原子炬停止	発電用原子炬停止中において残留熱除去系（原子炬停止	設計及び工事の計画の	「ホ（3）（ii）b．
時冷却モード）の機能が喪失した場合の重大事故等対処設	時冷却モード）の機能が喪失した場合の重大事故等対処設	時冷却モード）の機能が喪失した場合及び発電用原子炉停	木（3）（ii）b．（c）－6．6，	（ $\mathrm{c}-1-1-3)$ 」につ
備として术（3）（ ii ）b．（c）－⑥使用する低圧代替注水系（可搬	備として使用する低圧代替注水采（可搬型）は，「（1）a ．	止中において全交流動力電源喪失又は原子炉補機冷却水	設置変更許可申請書（本	いてはP．ホー63に
型）は，「ホ（3）（ii）b－（c－1－1－3）低圧代替注水系（可搬	（c）低圧代替注水采（可搬型）による発需用原子炉の冷	系（原子炉補機冷却海水系を含む。）機能喪失によるサポー	文（五号））の术（3）（ ii ）	
型）による発電用原子炬の泠却」と同じである。．．	却」と同じである。．．	ト系の故障により，残留熱除去系（原子炉停止時冷却モー	b．（c）－（6）を具体的に記	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備	考
		＜中略＞			
（c－2－2－3）常設代替交流電源設備による残留熱除去系 （原子炉停止時冷却モード）の復旧	（c）常設代替交流電源設備による残留熱除去系（原子炉停止時冷却モード）の復旧	4．残留熱除去設備 4． 1 残留熱除去系 4．1．2 原子炉停止時冷却モード （1）系統構成 <中略 >			
発電用原子炉停止中において全交流動力電源喪失又は	発電用原子炬停止中において全交流動力電源喪失又は	発電用原子炉停止中において全交流動力電源喪失又は			
原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機能	原子炉補機冷却水系（原子炉補機冷却海水系を含む。）機	原子炉補機冷却水系（原子炉補機泠却海水系を含む。）機能			
喪失によるサポート系の故障により，残留熱除去系（原子	能喪失によるサポート系の故障により，残留熱除去系（原	喪失によるサポート系の故障により，残留熱除去系（原子			
炬停止時冷却モード）が起動できない場合の重大事故等対	子炉停止時冷却モード）が起動できない場合の重大事故等	炬停止時冷却モード）が起動できない場合の重大事故等対			
処設備として，常設代替交流電源設備を使用し，残留熱除	対処設備として，常設代替交流電源設備を使用し，残留熱	処設備として，常設代替交流電源設備を使用し，残留熱除			
去系（原子炉停止時冷却モード）を復旧する。	除去系（原子炉停止時冷却モード）を復旧する。	去系（原子炉停止時冷却モード）を復旧できる設計とする。			
残留熱除去系（原子炉停止時冷却モード）は，常設代替	残留熱除去系（原子炬停止時冷却モード）は，常設代替	残留熱除去系（原子炉停止時冷却モード）は，常設代替交			
交流電源設備からの給電により機能を復旧し，泠却材を原	交流電源設備からの給電により機能を復旧し，冷却材を原	流電源設備からの給電により機能を復旧し，原子炉冷却材			
子炉圧力容器から残留熱除去系ポンプ及び熱交換器を経	子炉圧力容器から残留熱除去系ポンプ及び熱交換器を経	を原子炉圧力容器から残留熱除去系ポンプ及び残留熱除			
由して原子炉圧力容器に戻すことにより炉心を泠却でき	由して原子炉圧力容器に戻すことにより炉心を冷却でき	去系熱交換器を経由して原子炉圧力容器に戻すことによ			
る設計とする。	る設計とする。	り炬心を泠却できる設計とする。本系統に使用する冷却水			
本系統に使用する冷却水は，原子炉補機冷却水系（原子	本系統に使用する冷却水は，原子炉補機冷却水系（原子	は，原子炉補機冷却水系（原子炉補機冷却海水系を含む。）			
炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系	炉補機冷却海水系を含む。）又は原子炉補機代替冷却水系	又は原子炉補機代替冷却水系から供給できる設計とする。			
から供給できる設計とする。	から供給できる設計とする。 ＜中略＞	＜中略＞			
常設代替交流電源設備，可搬型代替交流電源設備，代替	常設代替交流電源設備，可搬型代替交流電源設備，代替		設置変更許可申請書（本		
所内雼気設備，所内常設薆電式直流電源設備及び虽設代替	所内電気設備，所内常設蓄電式直流電源設備，，虽設代替直		文（五号））「ヌ（2）（iv）		
直流電源設備については，「又（2）（iv）－代替電源設備」に	流霫源設備及び燃料補給設備については，「10．2－代替電		代替電源設備」に示		
記載する。．．．	源設備」に記載する。．．				
		5．6 低圧代替注水系			
	5．6．2．1 多様性及び独立性，位置的分散 ＜中略＞	5．6．4 多重性又は多様性及び独立性，位置的分散			
低圧代替注水系（常設）（復水移送ポンプ）は，残留熱除	低圧代替注水系（常設）（復水移送ポンプ）は，残留熱	低圧代替注水系（常設）（復水移送ポンプ）は，残留熱除			
去系（低圧注水モード及び原子炬停止時冷却モード）及び	除去系（低圧注水モード及び原子炉停止時冷却モード）及	去系（低圧注水モード及び原子炬停止時冷却モード）及び			
低圧炉心スプレイ系と共通要因によって同時に機能を損	び低圧炉心スプレイ系と共通要因によって同時に機能を	低圧炉心スプレイ系と共通要因によって同時に機能を損			
なわないよう，復水移送ポンプを代替所内電気設備を経由	損なわないよう，復水移送ポンプを代替所内電気設備を経	なわないよう，復水移送ポンプを代替所内電気設備を経由			

設置変更許可申請書（本文（五号））設置変更許可申請書（添付書類八）該当事項 した常設代替交流電源設備又は可搬型代替交流電源設備 からの給電により駆動することで，非常用所内電気設備を経由した非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モー ド及び原子炬停止時冷却モード）及び低圧炬心スプレイ系 ポンプを用いた低圧炉心スプレイ系に対して多樣性を有 する設計とする。
低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多樣性を有する設計とする。また，低圧代替注水系（常設） （復水移送ポンプ）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電 する系統に対して独立性を有する設計とする。また，電動弁（直流）は，ハンドルを設けて手動操作を可能とするこ とで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多樣性を有する設計とする。

また，低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェン バを水源とする残留熱除去系（低圧注水モード）及び低圧炬ふスプレイ系に対して異なる水源を有する設計とする。

復水移送ポンプは，原子炉建屋原子炬棟内の残留熱除去系ポンプ及び低圧炬心スプレイ系ポンプと異なる区画に

由した常設代替交流電源設備又は可搬型代替交流電源設備からの給電により駆動することで，非常用所内電気設備 を経由した非常用交流電源設備からの給電により駆動す る残留熱除去系ポンプを用いた残留熱除去系（低圧注水モ ード及び原子炬停止時冷却モード）及び低圧炉心スプレイ系ポンプを用いた低圧炬心スプレイ系に対して多様性を有する設計とする。
低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多様性を有する設計とする。また，低圧代替注水系（常設） （復水移送ポンプ）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電 する系統に対して独立性を有する設計とする。また，電動弁（直流）は，ハンドルを設けて手動操作を可能とするこ とで，所内常設蓄電式直流電源設備からの給電による遠隔操作に対して多樣性を有する設計とする。

また，低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェ ンバを水源とする残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系に対して異なる水源を有する設計とす る。
復水移送ポンプは，原子炉建屋原子炉棟内の残留熱除去系ポンプ及び低圧炬心スプレイ系ポンプと異なる区画に

設計及び工事の計画 該当事項
Lた常設代替交流電源設備又は可般型代替交流電源設備

低圧代替注水系（常設）（復水移送ポンプ）の電動弁（交流）は，ハンドルを設けて手動操作を可能とすることで，非常用交流電源設備からの給電による遠隔操作に対して多㥞性を有する設計とする。また，低圧代替注水系（常設） （復水移送ポンプ）の電動弁（交流）は，代替所内電気設備を経由して給電する系統において，独立した電路で系統構成することにより，非常用所内電気設備を経由して給電 する系統に対して独立性を有する設計とする。
低圧代替注水系（常設）（復水移送ポンプ）の電動弁（直流）は，ハンドルを設けて手動操作を可能とすることで，所内常設蓄電式直流電源設備からの給電による遠隔操作 に対して多様性を有する設計とする。また，低圧代替注水系（常設）（復水移送ポンプ）の電動升（直流）は，125V蓄電池から $125 V$ 直流主母線盤までの系統において，独立し た電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とする。さらに，常設代替直流電源設備からの給電も可能であり， $125 V$ 代替蓄電池加ら $125 V$ 直流主母線盤まで の系統において，独立した電路で系統構成することによ り，非常用ディーゼル発電機の交流を直流に変換する電路 に対して，独立性を有する設計とする。
低圧代替注水系（常設）（復水移送ポンプ）は，復水貯蔵 タンクを水源とすることで，サプレッションチェンバを水蒝とする残留熱除去系（低圧注水モード）及び低圧炬心ス プレイ系に対して異なる水源を有する設計とする。

復水移送ポンプは，原子炬建屋原子炬棟内の残留熱除去系ポンプ及び低圧炬心スプレイ系ポンプと異なる区画に

設置変更許可申請書（本文（五号））設置変更許可申請書（添付書類八）該当事項設置することで，共通要因によって同時に機能を損なわな いよう位置的分散を図る設計とする。
復水貯蔵タンクは，屋外に設置することで，原子炬建屋原子炉棟内のサプレッションチェンバと共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と する。
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系 と共通要因によって同時に機能を損なわないよう，直流駆動低圧注水系ポンプを常設代替直流電源設備からの給電 により駆動することで，非常用交流電源設備からの給電に より駆動する残留熱除去系ポンプを用いた残留熱除去系 （低圧注水モード）及び低圧炉心スプレイ系ポンプを用い た低圧炉心スプレイ系に対して多様性を有する設計とす る。

低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の電動弁（直流）は，ハンドルを設けて手動操作を可能とす ることで，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電による遠隔操作に対して多様性を有 する設計とする。

また，低圧代替注水系（常設）（直流駆動低圧注水系ポン プ）は，復水貯蔵タンクを水源とすることで，サプレッシ ヨンチェンバを水源とする残留熱除去系（低圧注水モー ド）及び低圧炬心スプレイ系に対して異なる水源を有する設計とする。
直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設
置することで，原子炉建屋原子炉棟内の残留熱除去系ポン

設置変更許可申請書（添付書類八）該当事項設置することで，共通要因によって同時に機能を損なわな いよう位置的分散を図る設計とする。
復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と する。

低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）
は，残留熱除去系（低圧注水モード）及び低圧炉心スプレ イ系と共通要因によって同時に機能を損なわないよう，直流駆動低圧注水系ポンプを常設代替直流電源設備からの給電により駆動することで，非常用交流電源設備からの給電により駆動する残留熱除去系ポンプを用いた残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系ポンプを用いた低圧炉心スプレイ系に対して多様性を有する設計 とする。
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ） の電動弁（直流）は，ハンドルを設けて手動操作を可能と することで，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電による遠隔操作に対して多様性を

設置することで，共通要因によって同時に機能を損なわな いよう位置的分散を図る設計とする。
復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と する。
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，残留熱除去系（低圧注水モード）及び低圧炬心スプレイ系 と共通要因によって同時に機能を損なわないよう，直流駆動低圧注水系ポンプを常設代替直流電源設備からの給電 により駆動することで，非常用交流電源設備からの給電に より駆動する残留熱除去系ポンプを用いた残留熱除去系 （低圧注水モード）及び低圧炉心スプレイ系ポンプを用い た低圧炬心スプレイ系に対して多様性を有する設計とす る。
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の電動弁（直流）は，ハンドルを設けて手動操作を可能とす ることで，所内常設蓄電式直流電源設備又は常設代替直流電源設備からの給電による遠隔操作に対して多様性を有

有する設計とする。

また，低圧代替注水系（常設）（直流駆動低圧注水系ポ ンプ）は，復水貯蔵タンクを水源とすることで，サプレッ ションチェンバを水源とする残留熱除去系（低圧注水モー ド）及び低圧炬心スプレイ系に対して異なる水源を有する設計とする。

直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設置することで，原子炬建屋原子炬棟内の残留熱除去系ポン する設計とする。また，低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）の電動弁（直流）は， 125 V 蓄電池から 125 V 直流主母線盤までの系統において，独立した電路で系統構成することにより，非常用ディーゼル発電機の交流を直流に変換する電路に対して，独立性を有する設計とす る。さらに， 125 V 代替蓄電池から 125 V 直流主母線盤まで の系統において，独立した電路で系統構成することによ り，非常用ディーゼル発電機の交流を直流に変換する電路 に対して，独立性を有する設計とする。
低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，復水貯蔵タンクを水源とすることで，サプレッションチェ ンバを水源とする残留熱除去系（低圧注水モード）及び低圧炉ふスプレイ系に対して異なる水源を有する設計とす る。
直流駆動低圧注水系ポンプは，原子炉建屋付属棟内に設置することで，原子炉建屋原子炉棟内の残留熱除去系ポン

設置変更許可申請書（本文（五号））
設置変更許可申請書（添付書類八）該当事項
設計及び工事の計画 該当事項
事項

よって同 プ及び低圧炉心スプレイ系ポンプと共通要因によって同
時に機能を損なわないよう位置的分散を図る設計とする。復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と する。
低圧代替注水系（可搬型）は，残留熱除去系（低圧注水 モード及び原子炉停止時泠却モード），低圧炉心スプレイ系及び低圧代替注水系（常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプI）を空冷式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系（低圧注水モ ード及び原子炬停止時冷却モード），低圧炉心スプレイ系及び低圧代替注水系（常設）に対して多様性を有する設計 とする。
低圧代替注水系（可搬型）の電動弁は，ハンドルを設け て手動操作を可能とすることで，非常用交流電源設備から の給電による遠隔操作に対して多様性を有する設計とす る。
また，低圧代替注水系（可搬型）の電動弁は，代替所内電気設備を経由して給電する系統において，独立した電路 で系統構成することにより，非常用所内電気設備を経由し て給電する系統に対して独立性を有する設計とする。
低圧代替注水系（可搬型）は，代替淡水源を水源とする ことで，サプレッションチェンバを水源とする残留熱除去系（低圧注水モード）及び低圧炉心スプレイ系並びに復水貯蔵タンクを水源とする低圧代替注水系（常設）に対して異なる水源を有する設計とする。
大容量送水ポンプ（タイプ I ）は，原子炉建屋から離れ た屋外に分散して保管することで，原子炉建屋原子炉棟内 の残留熱除去系ポンプ，低圧灲心スプレイ系ポンプ及び復水移送ポンプ並びに原子炬建屋付属棟内の直流駆動低圧注水系ポンプと共通要因によって同時に機能を損なわな いよう位置的分散を図る設計とする。
大容量送水ポンプ（タイプI）の接続口は，共通要因に

プ及び低圧炉心スプレイ系ポンプと共通要因によって同 プ及び低圧炉心スプレイ系ポンプと共通要因によって同時に機能を損なわないよう位置的分散を図る設計とする。復水貯蔵タンクは，屋外に設置することで，原子炉建屋原子炉棟内のサプレッションチェンバと共通要因によっ て同時に機能を損なわないよう位置的分散を図る設計と する。

低圧代替注水系（可搬型）は，残留熱除去系（低圧注水 モード及び原子炉停止時冷却モード），低圧炬心スプレイ系及び低圧代替注水系（常設）と共通要因によって同時に機能を損なわないよう，大容量送水ポンプ（タイプI）を空冷式のディーゼルエンジンにより駆動することで，電動機駆動ポンプにより構成される残留熱除去系（低圧注水モ ード及び原子炬信止時冷却モード），低圧邞ふスプレイ系
 とする。

低圧代替注水系（可搬型）の電動弁は，ハンドルを設け て手動操作を可能とすることで，非常用交流電源設備から の給電による遠隔操作に対して多様性を有する設計とす る。また，低圧代替注水系（可粍型）の電䣦升は，代澘所内電気設備を経由して給電する系統において，独立した電路で系維構成することにより，非常用所内電気竐俌を経由 して給電する系統に対して独立性を有する設計とする。

また，低圧代替注水系（可粆型）は，代替次水源を水源 とすることで，サプレッションチェンバを水源とする残留熱除去系（低压注水モード）及び低氏炉ふスプレイ系掽び江復水舅蔵タンクを水源とする低圧代替注水系（常設）に対して異なる水源を有する設計とする。
大容量送水ポンプ（タイプ）は，原子炬建屋から的椾れ た屋外比分散して保管することで，原子小炬建屋原子炬楝内 の残留熱除去系ポンプ，低圧炬心スプレイ系ポンプ及び隻水移送ポンプ並びに原子炬建屋付属棟内の直流駆動低圧注水系ポンプと共通要因によって同時に機能を損なわな いよう位置的分散き図る設計とする。
大容量送水ポンプ（タイブI）の接続はは，共通要因に

時に機能を損なわないよう位置的分敬を図る設計とする。復水垨蔵タンクは，屋外に設置することとで，原子炉建屋原子压楝内のサブレッションチェンパと共通要因によ口 て同峙に機能を挸なわないよう位置的分散を図る設計と さる。
低圧代㫷注水系（可般型）は，残留眎除去系（低圧注水 モード及び原子炣停止时洽却モード），低厌规ふスプレイ采及び低庄代替注水系（常設）と共通要因によって同時㐾機龍を挸なかないよう，大容量送水ポンブ（タイプI）を

及び低厌代巷注水系（常誠）に対して多検性を有する設計 とする。
低圧代替注水系（可般型）の電䣳并は，ハンドルを設け て手動操作を可能とすることで，非常用交流電源設備から の給電による遠隔操作に対して多様性を有する設計とす る。また，低府代替注水系（可彞型）の電動主は，代替所内電笑設恠を経由して給電する系䖻において，独立した電路で来統欗成することにより，非常用所内電気設偏を経由 して給電する系統に対して独立性を有する設計とする。

また，低圧代替注水系（可般型）は，代替谈水源を水源 とさることで，サプレッションチェンバを水源とさる残留熱除寺系（低压注水モード）及び低圧标ふスプレイ系並び に行推水时蔵夕ンクを水源とする方低圧代替注水系（常設）に対して異なる水源を有さる設計とさる。
大容量送水ポンプ（タイプI）は，原子炬建屋から閁れ た屋外忆分散して保管することで，原子炉建屋原子炉棶内 の残留熱除去系ポンプ，低圧炬心スプレイ系术ンプ及び宿水移送ポンプ並びて原子炬建屋付属棶内の直流曒䡃低圧注水系ポンプと共通要因によって同峙に機能を挸損なわな いよう位置的分散を图る設計とする。
大容量送水ポンプ（タイプI）の接続日は，共通要因に

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
上って接続できなくなることを防止するため，位置的分散	よって接続できなくなることを防止するため，位置的分散	上って接続できなくなることを防止するため，位置的分散			
を図った複数箇所に設置する設計とする。	を図った複数箇所に設置する設計とする。	を図った複数箇所に設置する設計とする。			
低圧代替注水系（常設）（復水移送ポンプ）及び低圧代替	低圧代替注水系（常設）（復水移送ポンプ）及び低圧代	低圧代替注水系（常設）（復水移送ポンプ）及び低圧代替			
注水系（可搬型）は，残留熱除去系及び低圧炉心スプレイ	替注水系（可搬型）は，残留熱除去系及び低圧炬心スプレ	注水系（可搬型）は，残留熱除去系及び低圧炉心スプレイ			
系と共通要因によって同時に機能を損なわないよう，水源	イ系と共通要因によって同時に機能を損なわないよう，水	系と共通要因によって同時に機能を損なわないよう，水源			
から残留熱除去系配管との合流点までの系統について，残	源から残留熱除去系配管との合流点までの系統について，	から残留熱除去系配管との合流点までの系統について，残			
留熱除去系に対して独立性を有する設計とする。	残留熱除去系に対して独立性を有する設計とする。	留熱除去系に対して独立性を有する設計とする。			
低圧代替注水采（常設）（直流駆動低圧注水系ポンプ）は，	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）	低圧代替注水系（常設）（直流駆動低圧注水系ポンプ）は，			
残留熱除去系及び低圧炬心スプレイ系と共通要因によっ	は，残留熱除去系及び低圧炬心スプレイ系と共通要因によ	残留熱除去系及び低圧炬心スプレイ系と共通要因によっ			
て同時に機能を損なわないよう，流路を独立することで独	つて同時に機能を損なわないよう，流路を独立することで	て同時に機能を損なわないよう，流路を独立することで独			
立性を有する設計とする。	独立性を有する設計とする。	立性を有する設計とする。			
これらの多椂性及び系統の独立性並びに位置的分散に	これらの多樣性及び系統の独立性並びに位置的分散に	これらの多樣性及び系統の独立性並びに位置的分散に			
よって，低圧代替注水系（常設）及び低圧代替注水系（可	よって，低圧代替注水系（常設）及び低圧代替注水系（可	よって，低圧代替注水系（常設）及び低圧代替注水系（可			
搬型）は，設計基漼事故対処設備である残留熱除去系（低	搬型）は，設計基漼事故対処設備である残留熱除去系（低	搬型）は，設計基漼事故対処設備である残留熱除去系（低			
压注水モード及び原子炉停止時冷却モード）及び低圧炬心	圧注水モード及び原子炬停止時冷却モード）及び低圧炬心	圧注水モード及び原子炉停止時冷却モード）及び低圧炬心			
スプレイ系に対して重大事故等対処設備としての独立性	スプレイ系に対して重大事故等対処設備としての独立性	スプレイ系に対して重大事故等対処設備としての独立性			
㐗有する設計とする。	を有する設計とする。	を有する設計とする。			
電源設備の多樣性及び独立性，位置的分散については「ヌ（2）（iv）代替電源設備」に記載する。	電源設備の多樣性及び独立性，位置的分散については「10．2 代替電源設備」に記載する。		設置変更許可申請書（本文（五号））「又（2）（iv）		
			代替電源設備」に示 す。		

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
原子炬補機代替冷却水系 熱交換器ユニット 木（3）（ii）b．（c）－（17）（「ホ（4）（v）最終ヒートシンクへ（熱 を輸送するための設備」他と兼用）	（2）代替循環冷却系 < 中略 > c．熱交換器ユニット 第5．10－1表 最終ヒートシンクへ熱を輸送するための設備の主要機器仕様に記載する。	【原子炬冷却系統施設】 \qquad （en） 	設計及び工事の計画の 「原子炉補機代替冷却水系熱交換器ユニット」 は，設置変更許可申請書 （本文（五号））の「熱交換器ユニット」と同一設備であり整合してい る。以下同じ。 「原子炉補機代替冷却水系熱交換器ユニット」 は，設置変更許可申請書 （本文（五号））におけ る困（3）（ii）b．（c）－（17）を設計及び工事の計画の「原子炉冷却系統施設」 のらち「原子炉補機冷却設備」に整理しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（4）その他の主要な事項 木（4）－（1）その他主要な設備として，以下のものを設置す る． （i）残留熱除去系 この系は，その運転方法（モード）により次の各機能を持たせる。すなわち，床（4）（i）－（1）原子炬停止後の焾心の崩壊熱及び原子炬圧力容器，配管，冷却材中の保有熱を除去 する原子炉停止時冷却モード，非常用冷却設備としての低圧注水モード，原子炉格納容器の補助系としての格納容器 スプレイ冷却モード等の各機能を持っており，ポンプ，熱交換器等からなる。 また，本系統は，想定される重大事故等時においても使用する。	5.2 残留熱除去系 5．2．1 通常運転時等 5．2．1．1 概要 5．2．1．1．2 設備の機能 残留熱除圭系は，通虽の原子炬停止時及び原子炬隔離時 の崩罴熱及び残留熱の除圭，冷却材霝失事故時の焾心冷却等を目的とし，弁の切替操作によって以下の4モードと一 つの補助機能を有する。 （1）原子炬停止時冷却モード（2 ループ） （2）低圧注水モード（3 ループ） （3）格納容器スプレイ泠却モード（ 2 ループ） （4）サプレッションプール水冷却モード（ 2 ループ） （5）燃料プール椧却（2 ループ）	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 4． 1 残留熱除去系 4．1．2 原子炉停止時泠却モード （1）系統構成 术（4）（i）－（1）発電用原子炉を停止した場合において，燃料要素の許容損傷限界及び原子炬冷却材圧力バウンダり の健全性を維持するために必要なパラメータが設計値を超えないようにするため，原子炬圧力容器内において発生 した残留熱を除去することができる設備として残留熱除寺系を設ける設計とする。 残留熱除圭系の冷却速度は，原子炬冷却材圧力バウンダ りの加熱•冷却速度の制限値（ $55^{\circ} \mathrm{C} / \mathrm{h}$ ）を超えないように制限できる設計とする。… 原子炬冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備として，想定される重大事故等時にお いて，設計基漼事故対処設備である残留熱除去系．．．原子炉停止時冷却モード）が使用できる場合は，，重大事故等対処設備（設計基漼拡張）として使用できる設計とする。．． 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基準事故対処設備で ある残留熱除圭系（原子炬停止時冷却モード）が使用でき る場合は重大事故等対処設備（設計基漼摭張）として使用 できる設計とする。 ＜中略＞ （2）多様性，位置的分散等 残留熱除去系（原子炉停止時冷却モード）は，設計基準事故対処設備であるとともに，重大事故等時においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はな いことから，重大事故等対処設備の基本方針のらち「5．1．2多様性，位置的分散等」に示す設計方針は適用しない。	設置変更許可申請書（本文（五号））の术（4）－1 は，以下で示す。 設計及び工事の計画の ホ（4）（i）－（1）a，$木$（4） （i）－（1）b，木（4）（i）－（1） c及及び木（4）（i）－（1）dは， 設置変更許可申請書（本文（五号））の床（4）（i） －（1）を具体的に記載し ており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		4．1．1 低圧注水モード 残留熱除去系（低圧注水モード）床（4）（i）－（1）bは，大破断の冷却材呩失事故時には低圧炬ふスプレイ系及び高圧炬心スプレイ系と連携して，中小破断の冷却材露失事故時 には高圧炬ふスプレイ系あるいは自動減圧采と連携して哂心を冷却する機能を有し，非常用交流電源設備に結ばれ た電動機駆動ポンプにより，サプレッションチェンバのプ一ル水を直接炬心シュラウド内に注水する設計とする。 4．1．3 格納容器スプレイ椧却モード （1）系統構成 木（4）（i）－（1）c原子炬冷却采統に係る発電用原子炬施設 の損壊又は故障の際に生ずる原子炉格納容器内の圧力及 び温度の上昇により原子炬格納容器の安全性を損なうこ とを防止するため，原子炬格納容器内において発生した熱 を除寺する設備として，残留熱除圭系（格納容器スプレイ冷却モード），を設ける設計とする。 ＜中略＞ 残留熱除圭采（格納容器スプレイ泠却モード）は，は，原子炬冷却材圧力バウンダリ配管の最も過酷な破断を想定し た場合でもっ，放出されるエネルギによる設計基準事故時の原子炬格納容器内圧力，温度が最高使用圧力，最高使用温度を超えないようにし，かつ，原子炬格納容器の内圧を速 やかに下げて低く維持することにより，放射性物質の外部 への漏えいを少なくする設計とする。 残留熱除圭設備のうち，サプレッションチェンバのプー ル水を水源として原子炉格納容器除熱のために運転する ポンプは，原子炬格納容器内の圧力及び温度並びに原子炬冷却材中の異物の影響について「非虽用炬心冷却設備又は格納容器熱除圭設備に係る万過装置の性能評価等につい て（内規）」（平成 $20 \cdot 02 \cdot 12$ 原院第5号（平成 20 年 2 月 27日原子力安全•保安院制定））による万過装置の性能評価により，設計基漼事故時に想定される最も小さい有効吸込水頭においても，正常に機能する能力を有する設計とす る．			

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
		残留熱除寺系（格納容器スプレイ洽却モード）の值樣は，設置（変更）許可を受けた設計基蕉事故の評価の条件を满足する設計とする。 残留熱除去系（格納容器スプレイ冷却モード）はは，テス トラインを構成することにより，発電用原子炬の運転中に試験ができる設計とする。また。設計基蕉事故時に動作す る弁については，残留熱除圭系ポンプが停止中に閔閉試験 ができる設計とする。 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基蕉事故対处設備で ある残留熱除去系（格納容器スプレイ椧却モード）が使用 でき百場合は重大事故等対処設備（設計基蕉应長）として使用できる設計とする。 残留熱除去系（格納容器スプレイ椧却モード）の流路と して，設計基準対象施設である原子炬格納容器を重大事故等対処設備として使用することから，流路に係る機能につ いて重大事故等対処設備としての設計を行う。 （2）多樣性，位置的分散等 残留熱除去系（格納容器スプレイ椧却モード）は，設計基準事故対処設備であるとともに，重大事故等時において も使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多樣性及び独立性並び に位置的分散を考慮すべき対象の設計基準事故対処設備 はないことから，重大事故等対処設備の基本方針のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用し ない。 4．1．4 木（4）（i）－（1）dサプレシションプール水飡却モード （1）系統構成 残留熱除去系（サプレツションプール水冾却モード）は，は， サプレッションチェンバのプール水温度を所定の温度以下に冷却できる設計とする。 最終ヒートシンクへ熱を輸送するための設備として，想定される重大事故等時において，設計基蕉事故対処設備で			

設置変更許可申請書（本文（五号））
b ．熱交換器 $\text { 床(4) (i) -(5) 基数 } \underline{2}$
（本文十号） 残留熱除去系（サプレッションプール水冷却モード） 残留熱除去系（原子炉停止時冷却モード） 伝熱容量は，熱交換器 1 基当たり約 8．8MW（サプレッシ ョンプール水温又は原子炉冷却材温度 $52^{\circ} \mathrm{C}$ ，海水温度 $26^{\circ} \mathrm{C}$ において）とする。 －記載箇所 $\begin{aligned} & \text { 八 (2) (ii) b. (b) (b-9) } \\ & \text { 八 (2) (ii)e. (a) (a-10) } \\ & \text { 八(2) (ii)e. (b) (b-11) } \end{aligned}$

（本文十号）

残留熱除去系（サプレッションプール水冷却モード）
伝熱容量は，熱交換器 1 基当たり 16MW（サプレッショ ンプール水温 $154^{\circ} \mathrm{C}$ ，海水温度 $26^{\circ} \mathrm{C}$ において）とする。 －記載箇所
八（2）（ii）b．（c）（c－1）（c－1－9）
八（2）（ii）b．（c）（c－2）（c－2－9）
八（2）（ii）b．（c）（c－3）（c－3－9）
八（2）（ii）b．（c）（c－4）（c－4－10）
八（2）（ii）b．（d）（d－1）（d－1－9）
八（2）（ii）b．（e）（e－13）

設置変更許可申請書（添付書類八）該当事項
－設置変更許可申請書（本文十号）では，熱交換器の設計性能に基づき，各モードの淡水側流量等を考慮した伝熱容量に設定している。
そのため，設計及び工事の計画で使用している残留熱除去系熱交換器の容量（設計熱交換量）は，設置変更許可申請書（本文十号）で使用している解析条件に包絡さ れる。
－設置変更許可申請書（本文十号）では，熱交換器の設計性能に基づき，各モードの淡水側流量等を考慮した伝熱容量に設定している。
そのため，設計及び工事の計画で使用している残留熱除去系熱交換器の容量（設計熱交換量）は，設置変更許可申請書（本文十号）で使用している解析条件に包絡さ れる。

整合性

－設計及び工事の計画の床（4）（i）－（5）は，設置変更許可申請書（本文（五号））の床（4）（i）－（5）と同義であり整合している。

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
（iv）原子炉補機泠却系 术（4）（iv）－（1）原子炬補機冷却系は，原子炬補機の冷却を行らためのものであり，原子炉補機から発生する熱を最終的な熱の逃がし場である海水に伝達できるよう熱交換器， ポンプ等からなる。 また，床（4）（iv）－（2）この采統は，想定される重大事故等時 においても使用する。	5.9 原子炬補機冷却系 5．9．1 通常運転時等 5．9．1．1 概要 原子炬補機冷却系は，原子炉設備の非常用機器，常用機器で発生する熱を冷却除圭するために設けるものである。．．． ＜中略＞ 5．9．1．4 主要設備 原子炉補機冷却系は非常用炉心冷却系の区分 I，区分 II及び区分IIIに対応した3采統としており，その各系統は，淡水ループ及び海水系で構成し，冷却水ポンプ，熱交換器，海水ポンプ，配管•弁類及び計測制御装置で構成する。 ＜中略＞	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 7．原子炉補機冷却設備 7.1 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） 7．1．1 系統構成 最終ヒートシンクへ熱を輸送することができる設備で ある木（4）（iv）－（1）原子炬補機冷却水系（原子炬補機冷却海水系を含む。）は，発電用原子炬停止時に残留熱除圭系に より除寺された原子哣圧力容器内において発生した残留熱及び重要安全施設において発生した熱を，．．常設代替交流電源設備から電気の供給が開始されるまでの間の全交流動力電源喪失時を除いて，最終的な熱の逃がし場である海 ～輸送が可能な設計とする。… ＜中略＞ 原子炉冷却材圧力バウンダリ低圧時に発電用原子炉を冷却するための設備，最終ヒートシンクへ熱を輸送するた めの設備，原子炉格納容器内の泠却等のための設備，原子炉格納容器の過圧破損を防止するための設備又は原子炉格納容器下部の溶融炬心を冷却するための設備として，想定される重大事故等時において，設計基準事故対処設備で ある术（4）（iv）－（2）原子炬補機冷却水系（原子炬補機冷却海水系を含む。））が使用できる場合は，重大事故等対処設備 （設計基準拡張）として使用できる設計とする。 7．1．2 多様性，位置的分散等 原子炉補機冷却水系（原子炉補機冷却海水系を含む。） は，設計基準事故対処設備であるとともに，重大事故等時 においても使用するため，重大事故等対処設備としての基本方針に示す設計方針を適用する。ただし，多様性及び独立性並びに位置的分散を考慮すべき対象の設計基準事故対処設備はないことから，重大事故等対処設備の基本方針 のらち「5．1．2 多様性，位置的分散等」に示す設計方針は適用しない。	設計及び工事の計画の木（4）（iv）－（1）は，設置変更許可申請書（本文（五号））の㕅（4）（iv）－（1）を具体的に記載しており整合している。 設計及び工事の計画の木（4）（iv）－（2）は，設置変更許可申請書（本文（五号））の术（4）（iv）－（2）を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（4）（v）－（1）を設置及び保管する。 最終ヒートシンクへ熱を輸送するための設備のうち，設計基準事故対処設備が有する最終ヒートシンクへ熱を輸送する機能が喪失した場合においても炉心の著しい損傷及び原子炉格納容器の破損を防止するための設備として，原子炉格納容器フィルタベント系，耐圧強化ベント系及び原子炬補機代替冷却水系を設ける。	を設置及び保管する。 ＜中略＞ 5．10．2 設計方針 最終ヒートシンクへ熱を輸送するための設備のらち，設計基淮事故対処設備が有する最終ヒートシンクー熱を輸送する機能が趡失した場合においても灲心の著しい損傷及び原子炬格納容器の破損を防止するための設備として，原子炬格納容器フィルタベント系，耐圧強化ベント系及び原子炬補機代替冷却水系を設ける。	（4）（v）－（1）$\geq し て$ ，原子炬補機代替洽却水系を設ける設計 とする。 $<$ 中略 $>$ 4.2 原子炉格納容器フィルタベント系 4．2．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱 を輸送する機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生す る前に生ずるものに限る。）を防止するため，最終ヒート シンクへ熱を輸送するために必要な重大事故等対処設備 として，原子炉格納容器フィルタベント系を設ける設計と する。 4．3 耐圧強化ベント系 4．3．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱 を輸送する機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生す る前に生ずるものに限る。）を防止するため，最終ヒート シンクへ熱を輸送するために必要な重大事故等対処設備 として，耐圧強化ベント系を設ける設計とする。 ＜中略＞ 7.3 原子炉補機代替冷却水系 7．3．1 系統構成 設計基準事故対処設備が有する最終ヒートシンクへ熱 を輸送する機能が喪失した場合において炉心の著しい損傷及び原子炉格納容器の破損（炉心の著しい損傷が発生す る前に生ずるものに限る。）を防止するため，最終ヒート シンクへ熱を輸送するために必要な重大事故等対処設備 として，原子炉補機代替冷却水系を設ける設計とする。 <中略 >	整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
	物質の放出量に対して，あらが心゙め數地境界での線量呼価	おいて敷地境界での線量評価を行い，実効線量が5 5 SV以以下	杕（4）（v）a．－（4）は，設置		
量評侕を行らこととする。．．．	を行ちこととする。	であることを砤認しており，耐压強化べント采はこの評偠	変更許可申請書（本文		
	＜中略＞	条件を满足する設計とする。．．．	（五号））の达（4）（v）a．		
		＜中略＞	－（4）を具体的に記載し		
			ており整合している。		
	5． 10.2 設計方針	7．原子炉補機泠却設備			
b．サポート系故障時に用いる設備	（2）サポート系故障時に用いる設備	7.3 原子炉補機代替冷却水采			
（a）原子炬補機代替冷却水系による原子炉格納容器内の	a．原子炉補機代替冷却水系による原子炬格納容器内の減	7．3．1 系統構成			
減圧及び除熱	圧及び除熱	＜中略＞			
原子炬補機洽却水系（原子炬補機冷却海水系を含む。）の	原子炬補機冷却水系（原子炬補機泠却海水系を含む。）	原子炬補機泠却水系（原子炬補機冷却海水系を含む。）			
故障又は全交流動力電源の喪失により，最終ヒートシンク	の故障又は全交流動力電源の䨖失により，最終ヒートシン	の故障又は全交流動力電源の䨤失により，最終ヒートシン			
へ熱を輸送する機能が喪失した場合の重大事故等対処設	クへ熱を輸送する機能が喪失した場合の重大事故等対処	クへ熱を輸送する機能が喪失した場合の重大事故等対処			
備として，原子炬補機代替冷却水系は，サプレッションチ	設備として，原子炬補機代替冷却水系を使用する。	設備として，原子炬補機代替冷却水系は，サプレッション			
エンバへの熱の蓄積により原子炬洽却機能が碓保できる	原子炬補機代替冷却水系は，淡水ポンプ及び熱交換器を	チェンバへの熱の蓄積により原子炬洽却機能が確保でき			
一定の期間内沉，熱交換器ユニットを原子炬補機冷却水系	搭載した熱交換器ユニット，大容量送水ポンプ（タイプ	る一定の期間内に，原子炬補機代替椧却水系熱交換器ユニ			
に接続し，大容量送水ポンプ（タイプI）により熱交換器	I），配管・ホース・弁類，計測制御装置等で構成し，世	ットを原子炉補機洽却水系に接続し，大容量送水ポンプ			
ユニットに海水を送水することで，残留熱除去系等の機器	プレッションチェンバへの熱の蓄積により原子炉泠却機	（タイプI）により原子炬補機代替椧却水系熱交換器ユニ			
で発生した熱を最終的な熱の逃がし場である海へ輸送で	能が碓保できる一定の期間内に，熱交換器ユニットを原子	ットに海水を送水することで，十分な余裕を持って残留熱			
きる設計とする。	炋補機泠却水系に接続し，大容量送水ポンプ（タイプ I）	除去系等の機器で除去した熱を最終的な熱の逃がし場で			
	により熱交換器ユニットに海水を送水することで，残留熱	ある海へ輸送できる設計とする。			
	除去系等の機器で発生した熱を最終的な熱の逃がし場で	原子炉補機代替冷却水系は，原子炉補機代替冷却水系熱			
	ある海へ輸送できる設計とする。	交换器ユニットを原子炉補機冷却水系に接続し，大容量送			
		水ポンプ（タイプI）により取水口又は海水ポンプ室から			
		海水を取水し，原子炉補機代替椧却水系熱交換器ユニット			
		に海水を送水することで，残留熱除去系熱交換器又は燃料			
		プール泠却浄化系熱交換器で除去した熱を最終的な熱の			
		逃がし場である海へ輸送できる設計とする。			
熱交換器ユニット及び大容量送水ポンプ（タイプI）は，	熱交換器ユニット及び大容量送水ポンプ（タイプI）は，	原子炬補機代替冷却水系熱交換器ユニット及び大容量			
空泠式のディーゼルエンジンにより駆動できる設計とす	空泠式のディーゼルエンジンにより駆動できる設計とす	送水ポンプ（タイプI）は，空泠式のディーゼルエンジン			
3。	る。燃料は，燃料補給設備である軽油タンク又はガスター	により駆動できる設計とする。			
	ビン発電設備軽油タンク及びタンクローリにより補給で	原子炬補機代替冷却水系に使用するホースの敷設は，ホ			
	きる設計とする。	一ス延長回収車（台数4（予備 1））（核燃料物質の取扱施設			
	＜中略＞	及び貯蔵施設のらち 54.2 燃料プール代替注水系」の設備			
		を原子炬冷却系統施設のらち「7．3 原子炉補機代替冷却			
		水系」の設備として兼用）により行う設計とする。			

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
また，原子炬格納容器フィルタベント系は，排出経路に設置される隔催弁の電動弁を所内常設蓄電式直流電源設備，常設代替直流電源設備若しくは可搬型代替直流電源設備からの給電による遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作を可能とす ることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ椧却モード）及び原子炬補機冷却水系（原子师補機冷却海水系を含む。）に対して，多樣性を有する設計とする。 而圧強化ベント系の排出経路に設置される隔催弁のら ち電動弁（直流）は，所内常設蓄電式直流電源設備，常設代替直流電源設備若しくは可搬型代替直流電源設備から の給電による遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作が可能な設計とし，排出経路に設置される隔離弁のらち電動弁（交流）は，常設代替交流電源設備若しくは可搬型代替交流電源設備か らの給電による遠隔操作を可能とすること又は操作ハン ドルを用いた人力による操作が可能な設計とすることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ脍却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有する設計とする。	また，原子炬格納容器フィルタベント系は，排出経路に設置される隔離弁の電動弁を所内常設蓄電式直流電源設備，常設代替直流電源設備若しくは可搬型代替直流電源設備からの給電による遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作を可能とす ることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ泠却モード）及び原子炉補機冷却水系（原子炬補機冷却海水系を含む。）に対して，多柡性を有する設計とする。 而圧強化ベント系の排出経路に設置される隔離并のう ち電動弁（直流）は，所内常設蓄電式直流電源設備，常設代替直流電源設備若しくは可般型代替直流電源設備から の給電による遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作が可能な設計とし，排出経路に設置される隔離弁のうち電動弁（交流）は，常設代替交流電源設備若しくは可搬型代替交流電源設備か らの給電による遠隔操作を可能とすること又は操作ハン ドルを用いた人力による操作が可能な設計とすることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ泠却モード）及び原子炬補機冷却水系（原子炬補機冷却海水系を含む。）に対して，多樣性 を有する設計とする。	4．2 原子炉格納容器フィルタベント系 4．2．2 多重性又は多様性及び独立性，位置的分散 ＜中略＞ 原子炉格納容器フィルタベント系は，排出経路に設置さ れる隔離弁の電動弁を常設代替交流電源設備，可搬型代替交流電源設備，所内常設蓄電式直流電源設備，常設代替直流電源設備又は可搬型代替直流電源設備からの給電によ る遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作を可能とすることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ冷却モード）及び原子炉補機冷却水系（原子炉補機冷却海水系を含む。）に対して，多様性を有する設計とする。 ＜中略＞ 4．3耐圧強化ベント系 4．3． 2 多重性又は多様性及び独立性，位置的分散 ＜中略＞ 耐圧強化ベント系の排出経路に設置される隔離弁のう ち電動弁（直流）は，所内常設蓄電式直流電源設備，常設代替直流電源設備若しくは可搬型代替直流電源設備から の給電による遠隔操作を可能とすること又は遠隔手動弁操作設備を用いた人力による遠隔操作が可能な設計とし，排出経路に設置される隔離弁のらち電動弁（交流）は常設代替交流電源設備若しくは可搬型代替交流電源設備から の給電による遠隔操作を可能とすること又は操作ハンド ルを用いた人力による操作が可能な設計とすることで，非常用交流電源設備からの給電により駆動する残留熱除去系（格納容器スプレイ泠却モード）及び原子炬補機冷却水系（原子炬補機冷却海水系を含む。）に対して，多様性を有する設計とする。 ＜中略＞ 4．2 原子炉格納容器フィルタベント系 4．2．2 多重性又は多様性及び独立性，位置的分散		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備	考
性を有するとともに，熱交換器ユニットから原子炬補幾冷	性を有するとともに，熱交換器ユニットから原子炉補機冷	性を有するとともに，原子炉補機代替冾却水系熱交換器工			
却水系配管との合流点までの系䖻について，原子炬補機冷	却水系配管との合流点までの系統について，原子炉補機冷	ニットから原子炬補機冷却水系配管との合流点までの系			
却水系に対して独立性を有する設計とする。	却水系に対して独立性を有する設計とする。	統について，原子炬補機冷却水采に対して独立性を有する			
これらの多様性及び系統の独立性並びに位置的分散に	これらの多様性及び系統の独立性並びに位置的分散に	設計とする。 これらの多樣性及び采統の独立性並びに位置的分散に			
よって，原子炬補機代替冾却水采は，設計基準事故対処設	よって，原子炬補機代替冷却水采は，設計基準事故対処設	よって，原子炬補機代替冷却水系は，設計基準事故対処設			
備である原子炬補機冷却水系（原子炬補機冷却海水系を含	備である原子炬補機冷却水系（原子炬補機洽却海水系を含	備である原子炬補機冷却水系（原子炬補機洽却海水系を含			
む。）に対して重大事故等対処設備としての独立性を有す	告。）に対して重大事故等対処設備としての独立性を有す	告。）に対して重大事故等対処設備としての独立性を有す			
3設計とする。	る設計とする。	る設計とする。			
電源設備の多様性及び独立性，位置的分散については「×（2）（iv）－代賛電源設備」にて記載する。	電源設備の多様性及び独立性，位置的分散については「10．2代替電源設備」にて記載する。		設置変更許可申請書（本文（五号））「ヌ（2）（iv）		
			代替電源設備」に示 す。		
［常設重大事故等対処設備］	第5．10－1表 最終ヒートシンクい熱を輸送するための設備の主要機器仕様	【原子炬冷却采統施設（蒸気タービンを除く。）】 （基本設計方針）	「フィルタ装置」，「フ イルタ装置出口側ラプ		
原子炉格納容器フィルタバント系	（1）原子炉格納容器フィルタバント系	4.2 原子炉格納容器フィルタベント系	チャディスク」及び「遠		
フィルタ装置	a．フィルタ装置	4．2．1 系䖻構成	隔手動弁操作設備」は，		
	第9．3－1表 原子炬格絞容器の猧厓破損を防止するた	＜中略＞	設置変更許可申請書（ ${ }^{\text {a }}$		
防止するための設備」，他と兼用）	めの設備の主要機器侍栓に記載する。．．	残留熱除去系の故障等により最終ヒートシンクい熱を	文（五号））における困		
		輸送する機能が需失した場合に，灯心の著しい損傷及び原	（4）（v）－ 5 をを設計及び		
		子炬格納容器の破損を防止するための重大事故等対処設	工事の計画における「原		
		備として，原子炬格納容器フィルタベント系は，フィルタ	子炉冷却系統施設」のら		
フィルタ装置出口側压力閔放板	b．フィルタ装置出口側压力闍放板	装置（フィルタ容器，スクラバ溶夜，金属繊維フィルタ，	ち「基本設計方針」に整		
	第9．3－1表 原子炬格納容器の猧压破損を防止于るた	放射性よう素フィルタ），フィィタタ装置出口側ラプチャデ	理しており整合してい		
防止するための設備」他と兼用）	めの設備の主要機器估㮩に記載する。	ィスク，配管•弁類，計測制御装置等で構成し，原子炉格納容器内雰囲气気ガスを原子师格納容器調气系等を経由			
		て，フィルタ装置へ導き，放射性物質を低減させた後に原	設計及び工事の計画の		
		子炉建屋屋上に設ける放出口から排出（采統設計流量	「フィルタ装置出口側		
		$10.0 \mathrm{~kg} / \mathrm{s}$（1Pdこういて））することで，排気中に含まれる	ラプチヤディスク」は，		
		放射性物質の環境への放出量を低減しつつ，原子炬格納容	設置変更許可申請書（本		
		器内に蓄積した熱を最終的な熱の逃がし場である大気へ	文（五号））の「フィル		
		輸送できる設計とする。	夕装置出口側圧力開放		
		＜中略＞	板」と同一設備であり整		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
原子炉補機代替冷却水系 熱交換器ユニット 木（4）（v）－7（「ホ（3）（ii）b．（c）－原子炬冷却材圧力バ ウンダり低圧時に原子炉を冷却するための設備」，「り （3）（ii）b。原子炉格納容器の過圧破損を防止するため の設備」，「リ（3）（ii）c．原子炬格納容器下部の溶融炉心 を冷却するための設備」及び「こ（3）（ii））使用済燃料プ ールの冷却等のための設備」と兼用） 大（4）（v）－8）台数 2（予備 1） 熱交換器 大（4）（v）－（9）組数 1 当たり）（海水温度 $26^{\circ} \mathrm{C}$ において） 整合性 －「原子炉補機代替冷却水系」は，設置変更許可申請書（本計画における「原子炉冷却系統施設」のうち「原子炉補機 －設計及び工事の計画の术（4）（v）－8 8 は，設置変更許可申請 している。 －設計及び工事の計画の床（4）（v）－（9）は，「原子炉補機代替換器で構成し，設置変更許可申請書（本文（五号））の术 －設計及び工事の計画の术（4）（v）－（10は，設置変更許可申請 している。 －設置変更許可申請書（本文（五号））における困（4）（v）－載事項の設定根拠に関する説明書（原子炉補機冷却系統旅	（3）原子炉補機代替冷却水系 a ．熱交換器ユニット 兼用する設備は以下のとおり。 ‥原子炬冷却材圧力バウンダリ低圧時に発電用原子炬を冷却するための設備 - 原子炉格納容器の過圧破損を防止するための設備 - ．原子炬格納容器下部の溶融烪心を冷却するための設備 - 使用斎燃料プールの泠却等のための設備 台数 2（予備1） 熱交換器 組数 1 伝熱容量 約20MW（1 組当たり）（海水温度 $26^{\circ} \mathrm{C}$ におい て） $\begin{aligned} & \text { 木(4) (v)-(9) } \\ & \boxed{木(4)(v)-(8)} \end{aligned}$ （本文（五号））における床（4）（v）－（7）を設計及び工事の幾冷却設備」に整理しており整合している。 書（本文（五号））の术（4）（v）－（8）と同義であり整合 冷却水系熱交換器ユニット」の1台当たり，3個の熱交 （4）（v）－（9）を詳細に記載しており整合している。 書（本文（五号））の术（4）（v）－（10）と同義であり整合 （11）を，設計及び工事の計画の「VI－1－1－4－3 設備別記施設）」に記載しており整合している。	【原子炬冷却系統施設（蒸気タービンを除く。）】 （要目表） ホ（4）（v）－（7） \square ＊2：公析植机床す 		

設置変更許可甲請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
大容量送水ポンプ（タイプI） 㕅（4）（v）－（56）（「こ（3）（ii））使用斎然料プールの洽却等 のための設備」他と兼用）	b．大容量送水ポンプ（タイプI） 第4．3－1表 使用済燃料プールの冷却等のための設備 の主要機器仕様に記載する。．．．	 木（4）（v）－（b）	「大容量送水ポンプ（タ イプI）」は，設置変更許可申請書（本文（五号））における床（4）（v） －（处を設計及び工事の計画の主たる登録先と して「核然料物質の取扱施設及び貯蔵施設」のら ち「使用済燃料貯藏槽冷却浄化設備」に整理し，設計及び工事の計画の （4）（v）－（b）は，設置変更許可申請書（本文（五号））の床（4）（v）－（65）と同義であり整合してい る。	

設置変更許可申請書（本文（五号））	設置変更許可中請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（vi）重大事故等の収束に必要となる水の供給設備 設計基準事故の収束に必要な水源とは別に，重大事故等 の収束に必要となる十分な量の水を有する水源を確保す ることに加えて，発電用原子炉施設には，設計基準事故対処設備及び重大事故等対処設備に対して重大事故等の収束に必要となる十分な量の水を供給するために必要な重大事故等対処設備本（4）（vi）－（1）を設置及び保管する。 㕅（4）（vi）－（2）重大事故等の収束に必要となる水の供給設備のうち，重大事故等の収束に必要となる水源として，復水貯蔵タンク，サプレッションチェンバ及びほう酸水注入系貯蔵タンクを設ける。これら重大事故等の収束に必要と なる水源とは別に，代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽（No．2）を設ける。また，淡水が枯渴した場合に，海を水源として利用できる設計とする。	5.7 重大事故等の収束に必要となる水の供給設備 5．7．1 概要 設計基準事故の収束に必要な水源とは別に，重大事故等 の収束に必要となる十分な量の水を有する水源を確保す ることに加えて，発電用原子炬施設には，設計基準事故対処設備及び重大事故等対処設備に対して重大事故等の収東に必要となる十分な量の水を供給するために必要な重大事故等対処設備を設置及び保管する。 ＜中略＞ 5．7．2 設計方針 重大事故等の収束に必要となる水の供給設備のうち，重大事故等の収束に必要となる水源として，復水貯蔵タン ク，サプレッションチェンバ及びほう酸水注入系貯蔵タン クを設ける。これら重大事故等の収束に必要となる水源と は別に，代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽（No．2）を設ける。また，淡水が枯渴した場合に，海 を水源として利用できる設計とする。	4.4 重大事故等の収束に必要となる水源 設計基準事故の収束に必要な水源とは別に，重大事故等 の収束に必要となる十分な量の水を有する水源を確保す ることに加えて，発電用原子炉施設には，設計基準事故対処設備及び重大事故等対処設備に対して重大事故等の収東に必要となる十分な水の量を供給するために必要な重大事故等対処設備として，サプレッションチェンバを困 （4）（vi）－（1）重大事故等の収束に必要となる水源として設 ける設計とする。 木（4）（vi）－（2）また」これら重大事故等の収束に必要とな る水源とは別に，代替淡水源として淡水貯水槽（No．1）及 び淡水貯水槽（No．2）を設ける設計とする。 <中略 > 5．10．1 重大事故等の収束に必要となる水源 設計基準事故の収束に必要な水源とは別に，重大事故等 の収束に必要となる十分な量の水を有する水源を確保す ることに加えて，発電用原子炉施設には，設計基準事故対処設備及び重大事故等対処設備に対して重大事故等の収東に必要となる十分な水の量を供給するために必要な重大事故等対処設備として，復水貯蔵タンク，サプレッショ ンチェンバ及びほら酸水注入系貯蔵タンクを床（4）（vi）－（1）重大事故等の収束に必要となる水源として設ける設計と する。．．． 木（4）（vi）－（2）また」これら重大事故等の収束に必要とな る水源とは別に，代替淡水源として淡水貯水槽（No．1）及 び淡水貯水槽（No．2）を設ける設計とする。 また，淡水が枯渴した場合に，海を水源として利用でき る設計とする。 ＜中略＞ 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 4.7 重大事故等の収束に必要となる水源 代替淡水源として淡水貯水槽（No．1）及び淡水貯水槽	設計及び工事の計画の木（4）（vi）－（1）は，設置変更許可申請書（本文（五号））㕅（4）（vi）－（1）を具体的に記載しており整合している。 設計及び工事の計画の木（4）（vi）－（2），設置変更許可申請書（本文（五号））㕅（4）（vi）－（2）と同義であり整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
床（4）（vi）－（9）大容量送水ポンプ（タイプI）は，海水を各無統へ供給できる設計とする。 㕅（4）（vi）－（1）また，原子炋禣機代替冷却水系の大容量送水 ポンプ（タイプI）並びに放水設備（大気ーの应散抑制設備）及び放水設備（泡消火設備）の大容量送水ポンプ（名 イプII）の水源として海を使用する。	大容量送水ポンプ（タイプI）は，海水を各系統へ供給 できる設計とする。 また，原子炬補機代替冷却水系の大容量送水ポンプ（タ イプI）並びに放水設備（大気への桩散抑制設備）及び放水設備（泡消火設備）の大容量送水ポンプ（タイプII）の水源として海を使用する。 大容量送水ポンプ（タイプ I ）及び大容量送水ポンプ（タ イプII）の燃料は，燃料補給設備である軽油タンク又はガ スタービン発電設備軽油タンク及びタンクローリにより補給できる設計とする。	【原子炉格納施設】（基本設計方針） 3.6 重大事故等の収束に必要となる水源 ＜中略〉 木（4）（vi）－8c海は，想定される重大事故等時において，淡水が枯渴した場合に，原子炉圧力容器への注水及び原子炬格納容器へのスプレイに使用する設計基準事故対処設備が機能喪失した場合の代替手段である低圧代替注水系 （可搬型），原子炉格納容器代替スプレイ泠却系（可搬型）及び原子炉格納容器下部注水系（可搬型）の水源として， さらに，放水設備（大気への拡散抑制設備）及び放水設備 （泡消火設備）の水源として利用できる設計とする。．．． 【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5．10．2 代替水源移送系 ＜中略＞ 木（4）（vi）－（9）また，淡水が枯渴した場合に，重大事故等の収束に必要な水源である復水貯蔵タンクー海水を供給す るための重大事故等対处設備として，大容量送水ポンプ （タイプI）は，海水を補給水系等を経由して復水貯蔵タ ンクへ供給できる設計とする。 ＜中略＞ 7．原子炬補機冷却設備 7.3 原子炉補機代替冷却水系 7．3．1 系統構成 ＜中略＞ 木（4）（vi）－（10）原子炬補機代替冷却水系は，，原子炬補機代替冷却水系熱交換器ユニットを原子炬補機冷却水系㳅接続し，大容量送水ポンプ（タイプI）により取水口又は海水ポンプ室から海水を取水し，原子炬補機代替冷却水系熱交換器ユニットに海水を送水することで，残留熱除圭系熱交換器又は燃料プール冷却浄化系熱交換器で除圭した熱 を最終的な熱の逃がし場である罆へ輸送できる設計とす 흐…	設計及び工事の計画の木（4）（vi）－（9）は，設置変更許可申請書（本文（五号））の杕（4）（vi）－（9を具体的に記載しており整合している。 設計及び工事の計画の木（4）（vi）－（10）は，設置変更許可申請書（本文（五号））の床（4）（vi）－（10を具体的に記載しており整合している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
各系統の詳細については，「二（3）（ii））使用済燃料プー ルの冷却等のための設備」，「ホ（3）（ii）b－（c）（c）原子炬冷却材圧力バウンダリ低圧時に発電用原子炬を冷却するた めの設備」，「ホ（4）（v）最終ヒートシンクへ熱を輸送す るための設備」，「リ（3）（ii）a．原子炉格納容器内の冷却等 のための設備」，「リ（3）（ii）c．原子涙格納容器下部の溶融炬心を冷却するための設備」及び「り（3）（ii）e．。発電所外 への放射性物質の拡散を抑制するための設備」に記載す る。 b．水源へ水を供給するための設備 （a）復水貯蔵タンクへ水を供給するための設備 重大事故等の収束に必要な水源である復水貯蔵タンク へ淡水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプI）は，代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）の淡水を補給水系等を経由して復水貯蔵タンクへ供給できる設計とする。 また，淡水が枯渴した場合に，重大事故等の収束に必要 な水源である復水貯蔵タンクへ海水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプI ） は，海水を補給水系等を経由して復水貯蔵タンクへ供給で	各系統の詳細については，「4．3 使用済燃料プールの冷却等のための設備」，「5． 6 原子炬冷却材圧力バウンダり低圧時に発電用原子炬を冷却するための設備」，「5． 10 最終ヒートシンクへ熱を輸送するための設備」っ「9．2 原子炉格納容器内の冷却等のための設備」，「9．4 原子炬格納容器下部の溶融炬心を冷却するための設備」及び「9．7 発電所外への放射性物質の拡散を抑制するための設備」に記載する。 （2）水源へ水を供給するための設備 a．復水貯蔵タンクへ水を供給するための設備 重大事故等の収束に必要な水源である復水貯蔵タンク へ淡水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプI）を使用する。 大容量送水ポンプ（タイプI）は，代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）の淡水を補給水系等を経由して復水貯蔵タンクへ供給できる設計とする。 また，淡水が枯渇した場合に，重大事故等の収束に必要 な水源である復水貯蔵タンクへ海水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプI） を使用する。	【原子炉冷却系統施設（蒸気タービンを除く。）】 （基本設計方針） 5．10．2 代替水源移送系 設計基準事故対処設備及び重大事故等対処設備に対し て，重大事故等の収束に必要となる十分な量の水を供給す るために必要な設備及び海を利用するために必要な設備 として，大容量送水ポンプ（タイプI）及び大容量送水ポ ンプ（タイプII）を設ける設計とする。 重大事故等の収束に必要な水源である復水貯蔵タンク へ淡水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプI）は，代替淡水源である淡水貯水槽（No．1）及び淡水貯水槽（No．2）の淡水を補給水系等を経由して復水貯蔵タンクへ供給できる設計とする。 また，淡水が枯渇した場合に，重大事故等の収束に必要 な水源である復水貯蔵タンクへ海水を供給するための重大事故等対処設備として，大容量送水ポンプ（タイプI） は，海水を補給水系等を経由して復水貯蔵タンクへ供給で	設置変更許可申請書（本文（五号））「ニ（3）（ii） 使用済燃料プールの冷却等のための設備」， 「ホ（3）（ii）b ．（c）原子炉冷却材圧力バウン ダリ低圧時に発電用原子炉を冷却するための設備」，「ホ（4）（v）最終ヒートシンクへ熱 を輸送するための設備」，「リ（3）（ii）a．原子炉格納容器内の泠却等のための設備」，「リ （3）（ii）c．原子炉格納容器下部の溶融炬心を冷却するための設備」及 び「リ（3）（ii）e 。発電所外への放射性物質の拡散を抑制するための設備」に示す。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
重大事故等が発生し，計測機器（非常用のものを含む。） の故障により，当該重大事故等に対処するために監視する ことが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定するために必要なパ ラメータを計測する設備を設置又は保管する。	6.4 計装設備（重大事故等対処設備） 6．4．1 概要 重大事故等が発生し，計測機器（非常用のものを含む。） の故障により，当該重大事故等に対处するために監視する ことが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定するために必要なパ ラメータを計測する設備を設置又は保管する。	【計測制御系統施設】（基本設計方針） 2．1．1 通常運転時，運転時の異常な過渡変化時及び重大事故等時における計測 ＜中略＞ 重大事故等が発生し，計測機器（非常用のものを含む。） の故障により，当該重大事故等に対処するために監視する ことが必要なパラメータを計測することが困難となった場合において，当該パラメータを推定するために必要なパ ラメータを計測する設備を設置又は保管する設計とする。 重大事故等が発生し，当該重大事故等に対処するために監視することが必要なパラメータとして，原子炉圧力容器内の温度，圧力及び水位，原子炉圧力容器及び原子炉格納容器への注水量，原子炉格納容器内の温度，圧力，水位，水素濃度及び酸素濃度，原子炉建屋原子炉棟内の水素漫度，未臨界の維持又は監視，最終ヒートシンクの碓保，格納容器バイパスの監視並びに水源の碓保に必要なパラメ一夕を計測する装置を設ける設計とする。 ＜中略〉 【放射線管理施設】（基本設計方針） 1．放射線管理施設 1.1 放射線管理用計測装置 <中略 > 重大事故等が発生し，当該重大事故等に対処するために監視することが必要なパラメータとして，原子炉格納容器内の放射線量率，最終ヒートシンクの碓保及び使用済燃料 プールの監視に必要なパラメータを計測する装置を設け る設計とする。 重大事故等が発生し，計測機器（非常用のものを含む。） の故障により，当該重大事故等に対処するために監視する ことが必要なパラメータを計測することが困難となった場合に抽いて，当該パラメータを推定するために必要なパ ラメータを計測する設備を設置する設計とする。 ＜中略〉		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
	設の状態を補助的に監視するパラメータを補助パラメー夕とする。なお，補助パラメータのらち，重大事故等対処設備を活用する手順等の着手の判断基準として用いるパ ラメータについては，重大事故等対処設備とする。重大事故等対処設備の補助パラメータの対象を第6．4－4表に示 す。	発電用原子炉施設の状態を直接監視することはできな いが，電源設備の受電状態，重大事故等対処設備の運転状態及びその他の設備の運転状態により発電用原子炉施設 の状態を補助的に監視するパラメータを補助パラメータ とし，その補助パラメータのらち重大事故等対処設備を活用する手順等の着手の判断基準として用いる6－2F－1母線電圧， $6-2 \mathrm{~F}-2$ 母線電圧， $6-2 \mathrm{C}$ 母線電圧， $6-2 \mathrm{D}$ 母線電圧， $6-2 \mathrm{H}$母線電圧， $4-2 C$ 母線電圧， $4-2 \mathrm{D}$ 母線電圧， 125 直流主母線 $2 A$ 電圧， 125 v直流主母線 $2 B$ 電圧， 125 v直流主母線 $2 A-1$ 電圧， 125V直流主母線2B－1電圧，250V直流主母線電圧，HPCS125V直流主母線電圧，高圧窒素がス供給系ADS入口圧力及び代替高圧窒素ガス供給系窒素ガス供給止め弁入口圧力を計測する装置は，重大事故等対処設備としての設計を行ら。 【放射線管理施設】（基本設計方針） 1.1 放射楾管理用計測装置 ＜中略〉 重大事故等に対処するために監視することが必要なパ ラメータは，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炬施設の状態を把握するためのパラメータとし，A（1）（ii）－（5）計測する装置は「表1 放射線管理施設の主要設備りスト」のプロセ正モニタリング設備に示す重大事故等対処設備，エリアモ ニタリング設備のらち㯈用斎燃料プール上部空閧放射線 モニタ（低線量）及び使用斎然料プール上部空閴放射線モ二多（高線量）とする。 ＜中略＞ 【核燃料物質の取扱施設及び貯蔵施設】（基本設計方針） 3．計測装置等 <中略> 重大事故等に対処するために監視することが必要なパ ラメータは，炬心損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炉施設の状態を把握するためのパラメータとし，へ（1）（ii）－（5）計測する装		

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（1）（ii）－8）重要監視パラメータ及び重要代替監視パラ メータを計測する設備（重大事故等対処設備）について，．．．設計基準を超える状態における発電用原子炬施設の状態 を把握するための能力（最高計測可能温度等（設計基漼最大值等）をを明碓にする。	6． 4 計装設備（重大事故等対処設備） 6．4．1 概要 < 中略 > 重要監視パラメータ及び重要代替監視パラメータを計測する設備（重太事故等対处設備）について，設計基準を超える状態における発電用原子炉施設の状態を把握する ための能力（最高計測可能温度等（設計基準最大值等）） を明碓にする。計測範囲を第6．4－1表に，設計基準最大値等を第6．4－2表に示す。 <中略>	置は「表1 核燃料物質の取扱施設及び貯蔵施設の主要設備りスト」の「使用斎燃料貯蔵槽の温度，水位及び漏えい を監視する装置」に示す重大事故等対処設備の他，使用済燃料プール監視カメラ（個数1）とする。 ＜中略＞ 【計測制御系統施設】（基本設計方針） 2.3 計測結果の表示，記録及び保存 ＜中略＞ （1）（ii）－（8）炬心損傷防止対策及び格納容器破損防止対策等を成㠫させるために必要な発電用原子炬施設の状熊 を把握するためのパラメータを計測する装置は，設計基準事故等に想定される変動篚囲の最大値を考慮し，適切に対応するための計測範囲を有する設計とするとともに，重大事故等が発生し，当該重大事故等に対処するために監視す ることが必要な原子炉圧力容器内の温度，圧力及び水位並 びに原子炉圧力容器及び原子炉格納容器への注水量等の パラメータの計測が困難となった場合又は計測範囲を超 えた場合に，代替パラメータにより推定ができる設計とす る。 また，重大事故等時に設計基準を超える状態における発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基準最大値等））を明確にするとともに， パラメータの計測が困難となった場合又は計測範囲を超 えた場合の代替パラメータによる推定等，複数のパラメー夕の中から確からしさを考慮した優先順位を保安規定に定めて管理する。 < 中略 > 【放射線管理施設】（基本設計方針） 1.1 放射線管理用計測装置 ＜中略＞ A（1）（ ii）－（8）炬ふ損傷防止対策及び格納容器破損防止対策等を成功させるために必要な発電用原子炬施設の状態 を把握するためのパラメータを計測する装置は，設計基準	設計及び工事の計画の人（1）（ii）－8 は，設置変更許可申請書（本文（五号））の（1）（ii）－8 と同義であり整合してい る。 設計及び工事の計画の人（1）（ii ）－8 は，設置変更許可申請書（本文（五	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合 性	備 考
a．監視機能喪失時に使用する設備 （1）（ii）a．－（1）発電用原子炬施設の状熊の把握熊力を超 えた場合に発電用原子哣施設の状熊を推定する手段を有 する設計とする。 人（1）（ii）a．－（2）重要監視パラメータ又は（1）（ii）－a．（3）直効監視パラメータ（原子炉圧力容器内の温度，圧力及び水位並びに原子炉圧力容器及び原子炉格納容器への注水量等）の計測が困難となった場合又は計測範囲を超えた場合は，「（1）（ii）a．－（2）「十 ハ（1）第 $10-1$ 表 ．重大事故等対策における手順書の概要」のうち，「1．15 事故時の計装に関する手順等」の計器故障時の代替パラメータによ る推定又は計器の計測範困を超えた場合の代替パラメー夕による推定の対応手段等により推定ができる設計とす る。	6．4．2 設計方針 （1）監視機能喪失時に使用する設備 発電用原子哣施設の状熊の把握能力を超えた場合に発電用原子炬施設の状態を推定する手段を有する設計とす る．－． 重要監視パラメータ又は有効監視パラメータ（原子炉圧力容器内の温度，圧力及び水位並びに原子炉圧力容器及び原子炉格納容器への注水量等）の計測が困難となった場合又は計測範囲を超えた場合は，添付書類十の「第5．1－1表重大事故等対策における手順書の概要」のうち，「1．15 事故時の計装に関する手順等」の計器故障時の代賛パラメー夕による推定又は計器の計測範囲を超えた場合の代替パ ラメータによる推定の対応手段等により推定ができる設計とする。	【計測制御系統施設】（基本設計方針） 2.3 計測結果の表示，記録及び保存 <中略 > 炉心損傷防止対策及び格納容器破損防止対策等を成功 させるために必要な発電用原子炉施設の状態を把握する ためのパラメータを計測する装置は，設計基準事故等に想定される変動範囲の最大値を考慮し，適切に対応するため の計測範囲を有する設計とするとともに，人（1）（ii）a．－（1）， （2）重大事故等が発生し，当該重大事故等に対処するために監視することが必要な原子炉圧力容器内の温度，圧力及び水位並びに原子炉圧力容器及び原子炉格納容器への注水量等のパラメータの計測が困難となった場合又は計測範囲を超えた場合に，代賛パラメータにより推定ができる設計とする。 また，重大事故等時に設計基準を超える状態における発電用原子炉施設の状態を把握するための能力（最高計測可能温度等（設計基準最大値等））を明確にするとともに， パラメータの計測が困難となった場合又は計測範囲を超 えた場合の代替パラメータによる推定等，複数のパラメー夕の中から確からしさを考慮した優先順位を保安規定に定めて管理する。 ＜中略＞ 【放射線管理施設】（基本設計方針） 1.1 放射線管理用計測装置 <中略 > 炉心損傷防止対策及び格納容器破損防止対策等を成功 させるために必要な発電用原子炉施設の状態を把握する ためのパラメータを計測する装置は，設計基準事故等に想定される変動範囲の最大値を考慮し，適切に対応するため の計測範囲を有する設計とするとともに，人（1）（ii）a．－（1）， （2）重大事故等が発生し，当該重大事故等に対処するために監視することが必要な原子炉格納容器の線量当量率等の パラメータの計測が困難となった場合に，代替パラメータ により推定ができる設計とする。	設計及び工事の計画の人（1）（ii）a．－（1）は，設置変更許可申請書（本文 （五号））の（1）（ii）a． －（1）と文章表現は異な るが，内容に相違はない ため整合している。 設計及び工事の計画の （1）（ii）a．－2 2 は，設置変更許可申請書（本文 （五号））の（1）（ii）a． －（2）と文章表現は異な るが，内容に相違はない ため整合している。 設置変更許可申請書（本文（五号））の（1）（ii） a．－（3）は，本工事計画の対象外である。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整 合 性	備 考
また，代替電源設備が喪失し計測に必要な計器電源が喪失した場合，特に重要なパラメータとして，人（1）（ii）b．－ （2）重要監視パラメータ及び重要代替監視パラメータを計測する設備については，温度，圧力，水位及び流量に係る ものについて，乾電池等を電源とした可搬型計測器により計測できる設計とする。 なお，可搬型計測器による計測においては，計測対象の選定を行ら際の考え方として，同一パラメータにチャンネ ルが複数ある場合は，いずれか 1 つの適切なチャンネルを選定し計測又は監視するものとする。同一の物理量につい て，複数のパラメータがある場合は，いずれか 1 つの適切 なパラメータを選定し計測又は監視するものとする。 c．パラメータ記録時に使用する設備 原子炉格納容器内の温度，圧力，水位，水素濃度，放射線量率等想定される重大事故等の対応に必要となる囚 （1）（ii）c．－（1）重要監視パラメータ及び重要代替監視パラ メー夕は計測又は監視及び記録ができる設計とする。	また，代替電源設備が䨤失し計測に必要な計器電源が霛失した場合，特に重要なパラメータとして，重要監視パラ メータ及び重要代替監視パラメータを計測する設備につ いては，温度，圧力，水位及び流量に係るものについて，乾電池等を電源とした可搬型計測器により計測できる設計とする。 なお，可搬型計測器による計測においては，計測対象の選定を行ら際の考え方として，同一パラメータにチャンネ ルが複数ある場合は，いずれか 1 つの適切なチャンネルを選定し計測又は監視するものとする。同一の物理量につい て，複数のパラメータがある場合は，いずれか 1 つの適切 なパラメータを選定し計測又は監視するものとする。 <中略 > 6．4．2 設計方針 （3）パラメータ記録時に使用する設備 原子炉格納容器内の温度，圧力，水位，水素濃度，放射線量率等想定される重大事故等の対応に必要となる重要監視パラメータ及び重要代替監視パラメータは計測又は監視及び記録ができる設計とする。 重大事故等の対応に必要となるパラメータは，電磁的に記録，保存し，電源喪失により保存した記録が失われない とともに，帳票が出力できる設計とする。 <中略 >	【計測制御系統施設】（基本設計方針） 2.4 電源喪失時の計測 ＜中略＞ また，代替電源設備が喪失し計測に必要な計器電源が喪失した場合，特に重要なパラメータとして，（1）（ii）b． （2）炉心損傷防止対策及び格納容器破損防止対策等を成功 させるために必要な発電用原子炬施設の状態を把握する ためのパラメータを計測する装置については，温度，圧力，水位及び流量に係るものについて，乾電池を電源とした可搬型計測器（原子炉圧力容器及び原子炉格納容器内の温度，圧力，水位，流量（注水量）の計測用として測定時の故障を想定した予備1個を含む1セット26個（予備26個（緊急時対策建屋に保管）））（核燃料物質の取扱施設及び貯蔵施設のらち「3．計測装置等」の設備と兼用）により計測 できる設計とし，これらを保管する設計とする。 なお，可搬型計測器による計測においては，計測対象の設定を行う際の考え方として，同一パラメータにチャンネ ルが複数ある場合は，いずれか 1 つの適切なチャンネルを選定し計測又は監視するものとする。同一の物理量につい て，複数のパラメータがある場合は，いずれか 1 つの適切 なパラメータを選定し計測又は監視するものとする。 【計測制御系統施設】（基本設計方針） 2.3 計測結果の表示，記録及び保存 <中略 > 原子炉格納容器内の温度，圧力，水位，水素濃度等想定 される重大事故等の対応に必要となるへ（1）（ii）c．－（1）パラ メータは，計測又は監視できる設計とする。また，計測結果は中央制御室に指示又は表示し，記録できる設計とす る。 重大事故等の対応に必要となるパラメータは，安全パラ メータ表示システム（SPDS）のらちSPDS伝送装置にて電磁的に記録，保存し，電源喪失により保存した記録が失われ ないとともに帳票が出力できる設計とする。また，記録は	設計及び工事の計画の人（1）（ii）b．－2 ${ }^{2}$ は，設置変更許可申請書（本文 （五号））の（1）（ii）b． －（2）と同義であり整合 している。 設計及び工事の計画の －（1）（ii）c．－1）は，設置変更許可申請書（本文 （五号））の（1）（ii）c． －（1）と同義であり整合 している。	

設置変更許可申請書（本文（五号））	設置変更許可申請書（添付書類八）該当事項	設計及び工事の計画 該当事項	整合性	備 考
（2）－（3）安全保櫵回路は，不正アクセス行為その他の電子計算機に使用目的に沿らべき動作をさせず，又は使用目的に反する動作をさせる行為による被害を防止する設計 とする。	電用原子炉を保護するため纪設ける。この系は，原子炬保護系を作動させるための原子炬保檴系作動回路及び非虽用炬心冾却系等の工学的安全施設を作動させるための工学的安全施設作動回路からなる。 6．6．2 設計方針 （9）安全保檴系は，不正アクセス行為その他の電子計算機に使用目的に沿らべき動作をさせず，又は使用目的に反する動作をさせる行為による被害を防止することが できる設計とする。	料要素の許容損傷限界を超えないようにできるものとす るとともに，設計基準事故が発生する場合において，その異常な状態を検知し，（2）－（2）原子炬保櫵系及び工学的安金施設を自動的に作動させる設計とする。．． 運転時の異常な過渡変化及び設計基準事故時に対処し得る複数の原子炉スクラム信号及びその他の安全保護装置起動信号を設ける設計とする。 ＜中略〉 【計測制御系統施設】（基本設計方針） 3．1．2 安全保護装置の不正アクセス行為等の被害の防止 （2）－（3）安全保櫵装置のうちっ，アナログ回路で構成する機器は，．．．外部ネットワークと物理的分離及び機能的分離，外部ネットワークからの遠隔操作の防止並びに物理的及 び電気的アクセスの制限を設け，システムの据付，更新，試験，保守等で，承認されていない者の操作を防止する措置を講じることで，不正アクセス行為その他の電子計算機 に使用目的に沿らい゙き動作をさせず，又は使用目的に反す る動作をさせる行為による被害を防止できる設計とする。 （2）－（3）安全保櫵装置のうちっ，一部デジ夕ル演算処理を行ら機器は，．．外部ネットワークと物理的分離及び機能的分離，外部ネットワークからの遠隔操作防止及びウイルス等 の侵入防止並びに物理的及び電気的アクセスの制限を設 け，システムの据付，更新，証験，保守等で，承認されて いない者の操作及びウイルス等の侵入を防止する措置を講じることで，不正アクセス行為その他の電子計算機に使用目的に沿らべき動作をさせず，又は使用目的に反する動作をさせる行為による被害を防止できる設計とする。 安全保護装置が収納された盤の施鏰によりハードウェ アを直接接続させない措置を実施すること及び安全保護装置のらち一部デジタル演算処理を行ら機器のソフトゥ ェア及びハードウェア回路は設計，製作，試験及び変更管理の各段階で検証と妥当性確認を適切に行うことを保安規定に定め，不正アクセスを防止する。	り整合している。設計及び工事の計画の （2）－（2）は，設置変更許可申請書（本文（五号）） の日（2）－（2）と文章表現 は異なるが，内容に相違 はないため整合してい る。 設計及び工事の計画の （2）－（3）は，設置変更許可申請書（本文（五号）） の $\begin{gathered}\text {（2）－（3）と同義であ }\end{gathered}$ り整合している。	

